
Diplomarbeit

Design and Implementation of a Bus-Switching Unit for a

High-Speed Peripheral Card

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines

Diplom-Ingenieurs unter der Leitung von

O.Univ. Prof. Dipl.-Ing. Dr. techn. Dietmar Dietrich

und

Univ.Ass. Dipl.-Ing. Dr. techn. Thilo Sauter

und

Dipl.-Ing. Patrick Loschmidt

als verantwortlich mitwirkenden Assistenten

eingereicht an der Technischen Universität Wien

Fakultät für Elektrotechnik und Informationstechnik

Institut für Computertechnik, Inst.-Nr. E384

von

Felix Ring

Matr.Nr. 9925202

Bachackergasse 35, 2380 Perchtoldsdorf

Perchtoldsdorf, 7. Mai 2009

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung

Diese Diplomarbeit befasst sich mit der Weiterentwicklung einer Ethernet Netzwerkkarte
für hochgenaue Uhrensynchronisation. Um die Genauigkeit der Uhrensynchronisation bis
zu Standardabweichungen im Subnanosekundenbereich verbessern zu können, soll die Eig-
nung von neuen Übertragungsmedien für Uhrensynchronisation untersucht werden. Die
vorliegende Arbeit beschreibt die Entwicklung einer dafür notwendigen Netzwerkkarte,
die die Durchführung von Uhrensynchronisation sowohl in optischen als auch in kabel-
basierten Gigabit Ethernet Netzwerken ermöglicht. Als Grundlage dafür wird eine bereits
verfügbare Hardwarearchitektur für hochgenaue Uhrensynchronisation verwendet, die auf
einer Evaluierungsplattform für optisches und kabelbasiertes Gigabit Ethernet implemen-
tiert werden soll. Da nur Evaluierungsplattformen mit PCI Express Anbindung erhältlich
sind, muss die bisherige PCI basierte Hardwarearchitektur in eine PCI Express basierte
Hardwarearchitektur übergeführt werden. Dieser Umbau erfordert die Entwicklung einer
Einheit, die unterschiedliche Bussysteme miteinander verbinden und deren Pakete auf die
verschiedenen teilnehmenden Knoten entsprechend verteilen kann. Es handelt sich dabei
um mehrere AHB Knoten, die mit dem PCI Express Bus verbunden werden müssen.
Das vorliegende Dokument behandelt ausführlich die Anforderungen für eine solche Ein-
heit und die dabei auftretenden Hürden, die es zu meistern gilt. Im Zuge dessen werden
gut erforschte Techniken für vergleichbare Fragestellungen aus unterschiedlichen Anwen-
dungsgebieten beleuchtet. Die dort gewonnenen Erfahrungen werden auf den vorliegenden
Fall angewendet, und darauf basierend werden verschiedene Lösungansätze dargestellt.
Desweiteren werden während der Entwicklungsarbeiten aufgetretene Schwierigkeiten be-
schrieben und analysiert, um daraus Hilfestellungen für zukünftige Projekte abzuleiten.
Die aus den gewonnenen Erfahrungen erwachsenen Vorschläge für strukturiertes Vorge-
hen sollen helfen, mögliche Entwicklungsfehler zu vermeiden. Schließlich wird beschrieben,
wie zwei auf grundsätzlich unterschiedlichen Ansätzen basierende Simulationsumgebun-
gen verwendet werden, um durch die Durchführung automatischer und halbautomatischer
Tests die entwickelte Einheit zu verfizieren. Als Ergebnis dieser Arbeit können durch den
Einsatz mehrerer Einheiten der entwickelten Hardware Testnetzwerke aufgebaut werden,
die ein tieferes Verständnis von hochgenauer Uhrensynchronisation in Gigabit Ethernet
Netzwerken ermöglichen.

I

Abstract

This diploma thesis is about the evolvement of a high-precision clock synchronization
enabled Ethernet Network Interface Card (NIC). To further improve the precision of the
clock synchronization system to sub-nanosecond standard deviation, investigations on
the suitability of new media for clock synchronization have to be made. The present
work describes the necessary development of an evaluation network interface card for
clock synchronization over copper- and optical fibre based Gigabit Ethernet. Therefore,
an existing hardware design for high-precision clock synchronization has to be imple-
mented on an evaluation board supplying Gigabit Ethernet physical layer connectors.
As such evaluation boards are only available with PCI Express connectors, the existing
Peripheral Component Interconnect (PCI) based system has to be transferred to a PCI
Express based system. The transformation requires the development of a bus-switching
and translation unit to interconnect multiple instances of Advanced High-Performance
Bus (AHB) interfaces to the PCI Express connection interface. This document provides
a thorough explanation of the requirements and challenges of such a unit, investigating
theoretical approaches and utilising knowledge of similar problems in different, well un-
derstood application fields. Moreover, traps and pitfalls that came up during the design
and implementation process are presented and analysed to derive hints and suggestions
for future projects, in order to use the gained experience to optimise the design method-
ology and avoid mistakes. The design is verified by using two developed, fundamentally
distinct simulation environments and applying a variety of test cases for automated and
semi-automated verification. The resulting system is a powerful means to gain deeper
knowledge of high-precision clock synchronization in Gigabit Ethernet based networks by
setting up and measuring test networks using multiple instances of the developed hard-
ware.

II

Acknowledgements

A lot of people contributed to this diploma thesis by encouraging words, helping hands
and good ideas here and there, and even more people contributed to the long way it took
me to get to this point of my studies. It is not possible to mention all but a small number
I am grateful for. Still, honour, to whom honour is due. Most of all I am grateful that
God, whom I may call my father, brought me this far. After him, I sincerely have to
thank my parents for providing everything I needed to finish my studies. I also want to
thank all my dear friends who supported and encouraged me during this long time, before
all others my long-time study companion Lukas Riegler for almost adopting me in his
family during the many hours spent studying together.
I am also very grateful for all of my colleagues at work, who also supported me during the
development of this diploma thesis, and who helped me out with ideas and advice in one
or the other fruitful discussion and conversation. For my supervisor Patrick Loschmidt,
I would need an extra page to thank him for all he has done for me, not only during the
writing of this thesis, but also for providing a superb working environment together with
Georg Gaderer and Thilo Sauter, and for holding my back free to be able to concentrate
on writing my thesis. I also want to specially thank my supervisors for correcting and
evaluating the thesis on such short notice, even late at night. Further thanks go to my
grandmother, Josefine Thurner, and my friends, Ilse und Andreas Schmaranzer, for letting
me retreat to their houses for quiet and concentrated writing, and to my aunt Judith
Thurner for lending me her car to get there. Finally, my special thanks for editing, go to
my dear friend, J. Steven Ramey, my brother, Stefan Ring, and to the most wonderful
person I have ever met, Leslie Kidd, who I want to thank for more than I can ever express.

III

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Task . 6
1.3 Related Work . 7
1.4 Document Structure . 10

2 Technology Overview 12
2.1 Protocol Overview . 12

2.1.1 Ethernet . 13
2.1.2 Advanced High-Performance Bus 17
2.1.3 PCI Express . 21
2.1.4 Altera PCI Express Interface . 25
2.1.5 Precision Time Protocol . 27

2.2 Typical Application . 29

3 Challenges and Possible Solutions 31
3.1 Principle of Operation . 32

3.1.1 Register Operations . 32
3.1.2 Burst Direct Memory Access Operation 34

3.2 Challenges . 38
3.2.1 Protocol Translation . 39
3.2.2 Packet-Switching . 40
3.2.3 Bus Arbitration . 42
3.2.4 Rate-Matching . 42
3.2.5 Prevention of Data Loss . 43

3.3 Possible Bus-Switching Architectures . 43
3.3.1 System on a Programmable Chip Builder 43
3.3.2 Bus Arbitration Considerations . 44

4 Development System 46
4.1 Choosing the Development Platform . 46
4.2 Network Interface Card Hardware Architecture 48
4.3 Device Driver Operation . 50

IV

5 Design and Implementation 53
5.1 Design Work Flow . 53
5.2 Hardware Transition . 54

5.2.1 FPGA Device Specific Alterations 55
5.2.2 Board Specific Alterations . 56
5.2.3 Configuration of the PCI Express Endpoint 59
5.2.4 Reset Circuit for the PCI Express Endpoint 59

5.3 Architectural Structure of the Bus-Switching Unit 60
5.3.1 Receive FIFO Memory . 62
5.3.2 Transmit FIFO Memory . 64
5.3.3 Header Decoder . 65
5.3.4 Address Decoder . 68
5.3.5 AHB Master – Register Operations 70
5.3.6 AHB Slave – Direct Memory Access Burst Transfer 73

5.4 Pitfalls During Development . 76
5.4.1 Evaluation Board Errors . 76
5.4.2 Hardware Design Errors . 77

6 Simulation and Verification 80
6.1 Accurate Altera PCI Express Simulation 81
6.2 Fast PCI Express Emulation . 83
6.3 Verification . 86

6.3.1 Verification by Simulation . 86
6.3.2 Hardware Testing . 94

7 Conclusion 95
7.1 Lessons Learned . 96
7.2 Outlook . 98

V

Chapter 1

Introduction

Moore’s law [1] has accurately predicted the development of the complexity of integrated
electronic systems for approximately the last forty years [2]. Moore’s prediction was the
doubling of the complexity of Integrated Circuits (ICs) every two years, which proved to
be a very good estimation of the past development. This rapid increase in complexity
allows the integration of more and more functional components up to complete systems
on a single chip. Not only because of the increase in complexity, but also because of
more efficient and faster transistor and circuit designs computational power increases
even faster than the mere number of transistors on a chip. In order to use the available
high computational power, most applications demand high performance data connections
to provide and receive the data that is to be processed.

Despite the possibility to integrate a high number of functions on a single chip, there will
always be a need for additional peripheral components which have to be connected to
the main unit. The advantages of peripheral components are rooted in the advantages of
modularity, which are mainly flexibility, changeability, and reusability. To allow several
modules to interact with each other and with the main unit, a communication system is
required. In order to satisfy the needs for constantly increasing data rates, the intercon-
nection systems for peripheral components have to be continuously adapted and improved.
Therefore, scalability is a very important requirement to keep the need for architectural
changes of the interconnection systems at a minimum. In recent years a transition from
Peripheral Component Interconnect (PCI) systems to the faster and highly scalable PCI
Express (PCIe) systems has taken place in the area of consumer PCs.

The steady development of more complex ICs with higher processing power and higher
interconnection data rates continuously straightens the path to new application fields.
The improvement and evolvement of industrial electronics, especially together with the
trend to distributed computing and control, leads, amongst others, to the requirement
for high-precision clock synchronization. In networking systems a strong trend towards
packet-switched networks can be observed. Therefore, during the last years many efforts
were taken to provide high-precision clock synchronization over packet-switched networks,

1

Chapter 1 Introduction

Broadcasting Sender

Backbone Network
Access Point 3

Area of confidentiality
of the position of the
sender

Access Point 2

tS1

tS2

tS3

Access Point 1

t1

t2

t3

tS

tS1 = t1 - tS
tS2 = t2 - tS
tS3 = t3 - tS

Figure 1.1: Basic localisation concept

e. g. over Ethernet. A dedicated working group was created at IEEE to define a standard
for clock synchronization, the IEEE 1588 standard [3].

1.1 Motivation

All of the above considerations together with the desire for wireless communications are
driving key factors for the FIT-IT project Embedded Position Determination and Secu-
rity in Wireless Fidelity networks (ε-WiFi). The aim of the project is to offer position
information to services in Wireless LANs (WLANs) without the need to modify the node
to be located.

To show the basic idea of localisation in wireless networks, figure 1.1 depicts a standard
approach to localisation by measuring the signal propagation delays from a mobile client
node to geographically distributed, positionally defined access points. With these mea-
sured propagation delays and the knowledge that WLAN packets travel at the speed of
light the distance of the mobile node to each Access Point (AP) can be calculated. With
the known distances, in the two-dimensional case the mobile node can be localised via
triangulation.

Position Detection

In ε-WiFi a more sophisticated approach for localisation has to be used, but the basic
idea stays the same. The ε-WiFi project aims at localising any standard mobile node with
a WLAN interface. No specific hardware, software or drivers are installed on the mobile
nodes. Therefore, the transmission time of the packet originating at the mobile node
cannot be known, since no clock synchronization can be implemented with appropriate
accuracy. And even if the clock was accurate, without a dedicated software the node does

2

Chapter 1 Introduction

not include the transmission times in its transmitted packets. To still be able to perform
localisation the Time Difference of Arrival (TDoA) of the WLAN packets has to be used.
The mathematical background for a technique using TDoA for localisation is described
in [4].

The concept is based on the idea that all wireless signals are inherently broadcast trans-
missions. Therefore, all access points receive the same signal at a different instant of time,
depending on the distance of the mobile node to the respective access point. As the access
points can communicate with each other, the time difference, and only the time difference
of the arrival of a packet at two distinct access points is known. With two access points
this calculated difference corresponds to the difference of the distance of the node to the
first access point (d1) and the distance of the node to the second access point (d2). This
known difference (d2−d1) is the only position determining information available. Mathe-
matically, in two-dimensional space, a function with a constant difference of the distance
of a variable point to two distinct focal points is a hyperbola, as depicted in figure 1.2. In
the three-dimensional space from the time difference of arrival of the packet at the two
different nodes a hyperboloid with the access points being the focal points can be drawn.
The mobile node can be anywhere on the hyperboloid, as the difference of the distance of
all points on a hyperboloid to the focal points is constant. When a third access point is
added, the node can be determined to be on the intersecting ellipses of the hyperboloids.
A fourth access point is needed to limit the node’s location to two points, and five access
points are needed to get a unique point (as long as the access points are not all on the
same plane).

Access Point 1
Focus 1

Access Point 2
Focus 2

d1 d2

constdd =− 12

Figure 1.2: Hyperbola defined by two access points

To get accurate localisation results, the measured differences of time have to be very pre-
cise. In order to achieve such high precision, the clocks of the access points have to be
well synchronized. The clock synchronization of the access points is performed over the
wire-based backbone network. Therefore, the project consortium of the ε-WiFi project
aims at further improving the precision of this wire-based synchronization. As previous
projects led to a deep understanding and remarkable results in the field of clock synchro-

3

Chapter 1 Introduction

ε-WiFi Access Point

M

COTS Ethernet nodes

IEEE 1588 enabled node

M
Sensors and Actuators

with IEEE 1588 enabled
Ethernet interfaces

ε-WiFi Access Point

ε-WiFi Access Point

Sensors and
Actuators with COTS
Ethernet interfaces

IEEE 1588 enabled switch

Figure 1.3: Example network for clock synchronization

nization over Fast Ethernet (100 MBit/s), new transmission media and technologies are
investigated for their suitability as base-networks for high-precision clock synchronization.

High-Precision Clock Synchronization

Figure 1.3 shows several Ethernet nodes which are interconnected in an example network.
The nodes in light green are equipped with Ethernet Network Interface Cards (NICs) that
are specifically designed for high-precision clock synchronization, while the other nodes
have Commercial Off-The-Shelf (COTS) Ethernet network interfaces. The interconnecting
Ethernet network is a standard network with no limitations. The clock synchronization
enabled NICs are capable of participating in normal Ethernet activities, and additionally
use standard Ethernet frames for communicating their specific messages needed for clock
synchronization. Those messages are part of the Precision Time Protocol (PTP), which
is a protocol for high-precision clock synchronization defined in the IEEE 1588 standard.
Therefore, the specific nodes in the figure are also labeled “IEEE 1588 enabled”. The PTP
uses Ethernet as a base-network to transmit specific messages for clock synchronization.
It is described in more detail in section 2.1.5. Undisturbed Ethernet traffic and high-
precision clock synchronization can co-exist even in an existing COTS Ethernet network.

For Ethernet-based clock synchronization, a crucial factor is the accurate delay mea-
surement of packets as they travel from the source node to the destination node. The
high-precision clock synchronization enabled network nodes perform such measurements
at the Media Independent Interface (MII) level (the connection between the Ethernet
Physical Layer (PHY) and the Ethernet Media Access Control (MAC) unit during nor-
mal operation). Any jitter of these measurements, as well as any asymmetric, direction

4

Chapter 1 Introduction

Gigabit Ethernet

or
optical fibre link

external clock sourceEthernet NIC Ethernet NIC

Figure 1.4: Example setup for delay measurements

dependent delay difference deteriorates the precision of the clock synchronization system.
To get an impression of the precision which can be expected, the jitter and asymmet-
ric delay properties of Gigabit Ethernet over copper and optical fibre links have to be
investigated.

Required Measurements

Figure 1.4 shows an example setup for direct-link measurements concerning the mentioned
delay and jitter properties. The used Ethernet NICs are not required to support clock
synchronization, any network card with physically accessible MII signals can be used.
However, it is advisable to measure the properties of the Ethernet PHYs which will be
used later for clock synchronization, as different PHYs have different jitter properties.

To minimise the number of influencing factors, such as added jitter by switches or high
traffic load, first measurements have to be done on a direct-link basis. With direct-link
measurements it is possible to focus on the influence of the clock recovery circuitry and
the clock transitions of the PHYs, which are the main sources for delay jitter. Asymmetric
line delays also deteriorate the achievable precision of clock synchronization and can be
observed by the direct-link measurements as well. As Gigabit Ethernet over copper uses
all available four twisted-pair lines for both directions of data transmission, in contrast
to Fast Ethernet which uses two dedicated pairs for each direction, a reduction of the
asymmetry is expected for Gigabit Ethernet. The measurements are needed to verify or
falsify this expectation.

The small depicted oscilloscope in the figure symbolises the measurement equipment. In
contrast to Ethernet-based clock synchronization, the measurement equipment can sample
the transmission time and reception time based on an external reference clock. Therefore,
jitter of the one-way delay, as well as an asymmetry of the delay in one direction compared
to the delay in the other direction can be measured. To get meaningful results, care has to
be taken to use absolutely identical measurement cables to not distort the measurement
by unequal signal propagation delays from the nodes to the measurement equipment.

5

Chapter 1 Introduction

The just mentioned measurements are required to estimate the theoretically achievable
precision of a clock synchronization system using the measured components. However,
measurements of an operational test network performing clock synchronization over Giga-
bit Ethernet have to be made to get real numbers of the standard deviation of the clocks
of different nodes. Additionally, the nodes can be used to evaluate clock synchronization
for systems with long distances between the individual nodes, e. g. measurement stations
at the particle accelerator at CERN. Therefore, it is important to provide network nodes
that are capable of participating in clock synchronization over Gigabit Ethernet copper
and optical fibre networks, which leads to the task requirement of this diploma thesis.

1.2 Task

The task of this diploma thesis is to develop an evaluation system that enables clock
synchronization related tests and measurements with Gigabit Ethernet over copper and
optical links. The work of this thesis is to be understood as part of the ε-WiFi project1

by providing the necessary hardware to perform the tests and investigations.

To be able to perform tests and measurements with the new media an appropriate test
platform has to be created. In order to keep the development effort for such a test
platform as low as possible, commercially available evaluation boards shall provide the
base framework. An FPGA based evaluation platform shall be chosen to allow tests with
the following transmission standards [5]:

� 10BASE-T (two pairs of twisted-pair copper, data rate is 10 MBit/s)

� 100BASE-TX (two pairs of twisted-pair copper, data rate is 100 MBit/s)

� 1000BASE-T (four pairs of twisted-pair copper, data rate is 1000 MBit/s)

� 1000BASE-LX (point-to-point link over one single-mode optical fibre, data rate is
1000 MBit/s)

Evaluation boards providing connectors for these standards are only available with a PCI
Express connection for host PC communication. To be able to use the existing hardware
design for the clock synchronization enabled Ethernet NIC, which is the outcome of pre-
vious projects, the modules responsible for host communication have to be re-developed.
Figure 1.5 sketches out the basic function blocks and supported communication standards
of the existing NIC. It also shows the desired new NIC system with the unchanged legacy
hardware core, the additional interfaces and the required change from a PCI to a PCI
Express based system.

1The work presented in this thesis is partly funded by the FIT-IT Project ε-WiFi -Embedded Position
Determination and Security in Wireless Fidelity Networks, grant number 813310

6

Chapter 1 Introduction

PCI

10/100BASE-
T(X)

Legacy HW
Design

PCI interface
control

PCI Express

10/100/1000BASE-
T(X)

Legacy HW
Design

PCI Express
interface cpntrol

1000BASE-
LX

Figure 1.5: Evolution of hardware

The legacy hardware core is maintained by a third party and must not be altered, even
though the source code is available. The interface on the legacy hardware side which has to
be connected to the PCI Express system is an Advanced Microcontroller Bus Architecture
Advanced High-Performance Bus (AMBA�AHB) [6] system. The bus system consists of
two AHB slave interfaces and one master interface. The interfaces do not have to be
connected to each other, only communication with the device driver in the host PC
is required. For this communication transfers with a data width of 32-bit—a Double
Word (DW)—have to be supported. The existing device driver requires the hardware to
support the reception and handling of single DW read and write requests, as well as the
independent generation of burst read and write requests for Direct Memory Access (DMA)
with a configurable length in multiples of a DWs. Furthermore, the interface has to be
able to generate an interrupt signal for hardware-to-software communication triggering.

A simulation environment shall be provided to be able to simulate the data-flow and
operation of the whole NIC architecture. The simulation environment is intended to be
a means of basic verification in the development phase. For the intended usage of the
evaluation board in an IEEE 1588 clock synchronization test network, it is not required
to optimize the design for high performance and high throughput.

1.3 Related Work

The given task addresses a couple of known problems which are treated in scientific
literature and papers. Addressed topics are e. g. packet-based clock synchronization in
Gigabit Ethernet over copper and optical fibre networks, PCI Express to AHB interfacing,
on-chip packet switching and buffering techniques for packet-switching. This section gives
an overview of approaches found in literature regarding the mentioned topics and shows
where experiences and results from different application fields can be used.

Clock Synchronization

Concerning the main system topic, the high-precision clock synchronization for packet
switched systems, a large number of publications is available. On the hardware side for

7

Chapter 1 Introduction

example in [7] an Ethernet NIC together with a dedicated switch for clock synchroniza-
tion is presented. A novel concept for enhancements to the IEEE 1588 version 2 standard
[3] master/slave based clock synchronization for fault tolerance is extensively discussed
in [8]. The main influences on jitter in timestamping and resulting theoretical limits for
high-precision clock synchronization accuracy over packet-based networks are discussed
in [9]. The ε-WiFi project embodies the knowledge and considerations of the mentioned
work. Additionally, to be able to calculate the theoretical limits presented in [9] the de-
lay jitter of the physical layer has to be known. In [10] delay measurements and delay
jitter measurements for 10BASE-T and 100BASE-TX PHY devices and cables are pre-
sented. Precise delay jitter measurements for 1000BASE-T and 1000BASE-LX physical
layers currently are not available and have to be made to be able to adjust the clock syn-
chronization algorithm, as described in [9], to get as close as possible to the theoretical
accuracy limit.

PCI Express

The diploma thesis of Nassar [11] deals with the generally connection of some registers
to a host PC using the PCI Express connection technology. Though this diploma thesis
deals as well with the connection of hardware using the PCI Express interface, the work
of Nassar has a completely different objective. It describes the PCI Express architecture
in more detail with an emphasis on helping users with their first experiences with PCI
Express. An example design is also included, demonstrating read and write operations
of single DWs. In contrast, this diploma thesis focuses on the design and the theoretical
principles of a more complex communication model in the context of an existing hardware
environment. While in the work of Nassar the registers can be directly connected to the
PCI Express protocol core, in this diploma thesis the PCI Express packets have to be
switched and translated to AHB nodes. Further, this diploma thesis has a focus on the
practical design and implementation work with all the occurred traps and pitfalls.

Packet-Switching

The problem of packet-switching is inherent to all direct-link, packet based communica-
tion systems with more than two participants. Therefore, it is a very well understood
topic with a vast number of available optimisation proposals for different cases of appli-
cation. For example, [12] proposes a general packet switching methodology for intra-chip
architectures. Although this and similar approaches have proved to be useful for systems
with a large number of inputs and outputs at very high data-rates, it is not reasonable for
this diploma thesis, as the general problem here appears in a very simplified environment
with only one input and two output ports. Still, the basic requirements stay the same.
The incoming packets arrive on one port, they carry some kind of address information
and they have to be forwarded to an outgoing port according to the address information.
Therefore, similar techniques as in the well known field of Ethernet switching can be used.

8

Chapter 1 Introduction

Hein [13] presents fundamental considerations concerning the switching fabric and the
switching technique. Two fundamentally different approaches for the switching fabric are
discussed, Space Division Switching (SDS) and Time-Division Switching (TDS). SDS
uses geometrical structures to interconnect all input ports to all output ports. Those
geometrical structures need space, hence the name. A crossbar switch, which connects
m inputs to n outputs with a m × n matrix of crossing points is a well known example
for space division switching. In contrast to SDS, with TDS not all inputs have a direct
connection to an output. The switching rather is realised by using a shared resource.
Circuit switched networks where a fixed slot time corresponds to a specific route from
a specified input port to a specified output port employ TDS as well as packet-based
switches with shared memory. With these switches the switching algorithm has to take
care that each input can write to the shared memory when a packet arrives on a port,
and to prevent that two inputs get simultaneous access to the same memory, as the data
would be destroyed. Depending on the destination, the respective output port gets read
access to the shared memory and thus can forward the packet to its intended destination.

For Ethernet switches Hein [13] also distinguishes between cut-through and store-and-
forward switching. Cut-through switching takes advantage of the fact that the destination
address of Ethernet packets is at the very beginning of a frame. Therefore, a switching
decision can already be made as soon as the destination address has been read and thus
the introduced delay of the packet transmission is kept low by the switch. Furthermore,
less resources are needed as only a small part of a frame has to be stored at a time.
Store-and-forward switching stores a complete frame upon reception, and only after the
frame is verified to be correct by calculating the frame check sequence of the received
frame and comparing it with the Frame Check Sequence (FCS) field of the frame it is
forwarded to the intended destination. This switching technique requires more resources
in the switch, as each arriving frame has to be stored and verified. It is especially useful for
low performance, low quality networks with a high amount of broken frames. By sorting
out the broken frames and not forwarding them, unnecessary network load is avoided.

The specific characteristics of the mentioned techniques of Ethernet packet switching
are compared to the needs for the application of this diploma thesis, considering the
comparably low throughput and the low number of ports that have to be interconnected.

Buffer Strategies

Switching almost always leads to the need of buffers. Buffers might only be omitted
if a specific application scenario enables the switching fabric to always perform non-
blocking packet forwarding, and if not more sources address the same destination port
simultaneously than the destination port can handle at once. As these very specific
requirements are seldom met, various buffering methods exist and are well understood.

Hluchyj [14] describes and compares four different buffering techniques, namely input
queuing, input smoothing, output queuing and completely shared buffering. With input

9

Chapter 1 Introduction

queuing, each input of the switch has a separate buffer. If the addressed output port of
a specific packet temporarily is not accessible, the incoming packet is stored in the input
buffer. Input smoothing takes advantage of the statistical distribution of packet destina-
tions by buffering all input during a certain time in all input buffers. All received packets
are then released simultaneously from all input ports into the switching fabric (which is
enlarged, compared to input buffering), thus smoothing the needed paths through the
switching fabric over all available paths. With output queuing all packets are routed
immediately to the intended output port and are queued there if more than one packet
is routed to the same port at the same time. Completely shared buffering basically uses
output buffering as well, but all outputs share one bigger buffer. Additionally, the switch-
ing fabric has to be enlarged to allow packets to be routed to the shared buffer if the
intended output temporarily is not accessible.

Theoretical considerations lead to the conclusion that pure input queuing by using First
In First Out (FIFO) structures reduces the maximum data throughput. As a packet is
queued when its destination cannot be reached, a consecutive arriving packet might also
be queued behind the first packet, although the destination of the second packet would
be reachable. The paper also concludes that the use of completely shared buffering is
most efficient in terms of required buffers to achieve a given error rate of dropped packets.
This efficiency in terms of buffers is traded off with a higher complexity of the switching
fabric, which has to include additional output ports to the buffers.

1.4 Document Structure

This document is intended to provide a thorough presentation of the work that was done
to develop a system which fulfils the requirements of the given task. This diploma thesis
is embedded in a long term project of packet-based clock synchronization. Although a
clear focus is set on the description of the actual work, a brief overview of the Syn1588
clock synchronization project is provided as well.

The basic structure of the main part of this document, chapter 3 to chapter 5, can be
compared to a top-down approach, while chapter 2 builds the knowledge base for the work.
Beginning with the requirements arising from the surrounding and previously existing
hardware units, the challenges are identified and theoretical approaches are discussed and
evaluated for the use in the system. Then the design decisions for the actual hardware are
presented and discussed in detail. The top-down nature of the description can be found
in the gradually increasing level of detail, according to the more general presentation of
the required functionality in the beginning, down to the very detailed description of the
individual realisation of the functional requirements in the end. In the following, a more
detailed description of what can be expected in each chapter is given.

Chapter 2 gives an overview of the already existing technologies which were used and
needed for the design of the required hardware. From the task description of this diploma

10

Chapter 1 Introduction

thesis it becomes clear that protocols and their respective differences are of great im-
portance for the actual work. Therefore, this chapter first gives a brief overview of the
used protocols, but also describes the specific details which are important to know for
the development of the bus-switching unit, the unit which combines the different bus
interfaces. The section about the protocol description might be skipped by experts on
the field of the mentioned protocols. Furthermore, a brief description of the Precision
Time Protocol (PTP) is given, as well as a short presentation of an application example
of the developed bus-switching unit together with the clock synchronization enabled NIC
design.

In chapter 3 a functional overview of the complete NIC is given. Based on the functional
requirements the main challenges are identified and listed. For all identified challenges the
theoretical background is discussed and possible approaches are presented. Well known
techniques for generalised problems are considered, and it is investigated whether they can
be applied to the present problem or not. Approaches and experiences of similar challenges
in different system and application environments are also considered, and conclusions are
drawn whether those approaches are suitable for the design of this diploma thesis or not.

Chapter 4 presents all of the existing hardware that surrounds the bus-switching unit.
First, the hardware platform itself, the chosen evaluation board is described. Then the
required interconnection of the different units with their individual interfaces is presented.

Chapter 5 describes the actually used methods to develop the required functionality of the
evaluation board. The transition from the old to the new hardware platform is described,
mentioning some difficulties which came up during the transition as well as some hints
to prevent unnecessary errors. Then the bus-switching unit is reviewed, describing each
module in detail with regards to the functionality, the respective realisation and the
reasons for the chosen realisation. This chapter also gives an insight into the detailed
information flow during operation of the bus-switching unit. Finally, some pitfalls that
occurred during the development are described, reasons are given why they could occur
and hints state how to avoid similar errors in the future.

Chapter 6 describes two distinct simulation environments which were developed for testing
and verifying the hardware design. The simulation environments are very different in
nature, and therefore they are both explained. Reasons are given why two different
environments are needed after all, and what their respective strength and weaknesses are,
as well as for which test cases which environment was needed and used.

The last chapter finally concludes this document, recapitulating the major challenges and
issues of the design process. Results are presented in a sense of lessons learned about a
hardware design which is embedded in an existing system environment. Also, perspectives
are given on how the resulting hardware evaluation board can be used, as well as which
enhancements and improvements can be performed in the future.

11

Chapter 2

Technology Overview

This chapter will present a knowledge base of the technologies in the hardware system that
were used. The bigger picture of clock synchronization will also be drawn to understand
the intended application of the developed hardware. The bus-switching unit is the main
part which has to be developed. It concerns itself about the interconnection of the units
with different bus interfaces, translates the protocols and controls the information flow
of the interfaces. To understand its operation and the challenges of the development,
the protocols in use must be known and understood. Therefore, this chapter presents
an overview of the used protocols, giving details only when necessary to understand the
hardware design.

2.1 Protocol Overview

In the task description three main protocols were listed which are involved in the system:
Ethernet, Advanced High-Performance Bus (AHB) and PCI Express. All three are of dif-
ferent nature, as they are designed for different purposes. Despite their differences they
have to be interconnected and data has to be passed from one protocol to the other. This

Ethernet
PHY

MII
Timestamper

Clock
Synchronization

Cell

Ethernet MAC

Bus-Switching
Unit

Altera PCI
Express

MegaCore
MII/GMII

Altera PCIe
Streaming
Interface

MDIO
AHB

AHB

Figure 2.1: Overview of the NIC architecture

12

Chapter 2 Technology Overview

raises some questions and challenges which are discussed in the following chapters. There-
fore, a description of the protocols in use is given here. Figure 2.1 shows the individual
connections of the different units and components of the hardware architecture.

Although the Ethernet protocol is not directly involved in the design of the bus-switching
unit, it is still an important part of the overall system and therefore is described here. As
the system itself is an Ethernet network interface card, the main task is to process Ethernet
traffic. The MAC unit of the existing hardware core processes the Ethernet frames and
translates them to AHB transfers and vice versa. Therefore, the bus-switching unit is not
directly involved in the handling of Ethernet traffic. Still, the data it must process results
from Ethernet frames.

The MII is the data connection between the Ethernet PHY and the MAC. This interface
is important for the hardware support for clock synchronization as well as for the simula-
tion environments. The MII management interface is a simple two wire serial interface for
the management connection between the Ethernet PHY and the MAC. It consists of the
Management Data Clock (MDC) and the Management Data Input/Output (MDIO) sig-
nals. It is described because some problems arose with this interface during the hardware
transition to the new evaluation board.

The AHB protocol is a high-speed intra-chip bus protocol which is used by the Clock
Synchronization Cell (CSC), the unit for the hardware support for clock synchronization,
as well as by the MAC. Those two units have to be connected to the PCI Express link,
which is depicted on the right side of the figure. The corresponding traffic from and to
the PCI Express protocol core interface must be switched and translated. This is the task
of the bus-switching unit, and therefore these two protocols are laid out in more depth.
Because of the three layered architecture and the complex structure of PCI Express, not
the whole PCI Express protocol is explained; only the transaction layer, the highest layer
of the PCI Express protocol stack, is reviewed in more detail.

2.1.1 Ethernet

Ethernet, as defined in the IEEE 802.3 standard [5], is a standard for connecting devices
in a Local Area Network (LAN) or Metropolitan Area Network (MAN) over a shared
medium using the Carrier Sense Multiple Access/Collision Detection (CSMA/CD) access
method. Though most office networks use Ethernet in full duplex mode with point-
to-point connections where no contention of the shared medium can occur and thus the
CSMA/CD mechanism is not used, it still is an important and integral part of the Ethernet
protocol. On the one hand many requirements are derived from the necessities for the
CSMA/CD access method, e. g. the minimum frame length, and on the other hand classical
CSMA/CD implementations are still used in industrial environments.

CSMA/CD access method means that all participants on the shared medium observe the
carrier for activity. If there is no activity sensed, each participant is allowed to start
the transmission of a packet at any given point in time. If an activity is sensed, the

13

Chapter 2 Technology Overview

Ethernet Frame (64-1518 Bytes)

FCS
(4 Bytes)

Dest. MAC Address
(6 Bytes)

Src. MAC Address
(6 Bytes)

Type
(2 B)

MAC Header (14 Bytes)

Payload

Data (46-1500 Bytes)

Pad

Preamble
(7 Bytes)

S
F
D

Layer 2 Frame
(64-1518 Bytes)

Figure 2.2: Structure of a standard Ethernet packet neglecting extensions

participant has to wait until the shared medium is found to be idle again. After sensing
the transmission line to be idle, it has to wait for the time specified by the interframe
gap, which is 96 bit times long. Because of the signal propagation delay it might happen
that two participants correctly start the transmission of a packet which will collide when
they have propagated over the network. In this case, all participants back off and try to
retransmit the frame after a random backoff time, with the length of the backoff time being
generated randomly, with the maximum duration depending on the number of previously
failed transmissions.

2.1.1.1 Ethernet Packets

Ethernet is a packet-based transmission protocol defining two layers according to the
ISO Open Systems Interconnection (OSI) reference model [15]. An Ethernet packet on
the physical layer consists of a layer two frame plus the preamble and the Start-of-Frame
Delimiter (SFD). The structure of a packet and a frame is depicted in figure 2.2. A packet
starts with the preamble, which is a sequence of seven times an octet of the hexadecimal
value 0x55, which is used for the PHY to synchronize on the received packet. The SFD
is an octet of the hexadecimal value 0x5D and indicates the start of a frame.

The SFD is followed by the actual frame which starts with the destination MAC address.
The destination address being at the beginning of the frame allows for a quick decision
whether the frame is intended for the actual receiver or not, as well as for quick routing
decisions in a switch. Moreover, because of the network byte order of Ethernet being big
endian and the multicast identification being contained in the first byte of the destination
address, a quick decision for multicasts can be performed. The following source address
indicates the sender of the frame. The length/type field specifies either a registered
Ethernet frame type (values ≥ 0x600), or it specifies the length of the payload (values ≤
0x5DC). The payload field holds the data and is followed by an optional padding field to
extend the length of the payload field to the minimum amount of 46 bytes if necessary.
The four bytes of the FCS are the last bytes belonging to a frame and contain the value

14

Chapter 2 Technology Overview

rx_clk

rx_dv

rx_data(3:0)

rx_er

tx_clk

col

crs

tx_en

tx_data(3:0)

tx_er

PHY

col

crs

MAC

rx_clk

rx_dv

rx_data(3:0)

rx_er

tx_er

tx_clk

tx_en

tx_data(3:0)

mdc

mdio

mdc

mdio

Media Independent Interface

Station Management

Figure 2.3: MII signals

rx_clk

rx_dv

rx_data(7:0)

rx_er

gtx_clk

col

crs

tx_en

tx_data(7:0)

tx_er

PHY

col

crs

MAC

rx_clk

rx_dv

rx_data(7:0)

rx_er

tx_er

gtx_clk

tx_en

tx_data(7:0)

mdc

mdio

mdc

mdio

Gigabit Media Independent Interface

Station Management

Figure 2.4: GMII signals

of a Cyclic Redundancy Check (CRC), which is computed as a function of all frame fields
except for the FCS field itself, thus containing all fields from the destination address to
the optional padding field.

2.1.1.2 PHY to MAC

The Ethernet PHY is on one side connected to the physical medium, the cable. On the
other side it is connected to the MAC unit. For this connection two different interfaces
are used, the Media Independent Interface (MII) and the MII management interface. All
Ethernet data is transmitted over the MII link. The MII basically consists of parallel data
lines for the actual Ethernet data, as well as of clock signals and some control signals,
while the MII management interface consists of a dedicated clock line and a bidirectional
data line, which is called the MDIO signal line.

Media Independent Interface

Figure 2.3 shows the various signals of the MII connection between the PHY and the
MAC. The data lines (rx data and tx data) always carry four bits of data in parallel.
While the coding and clock frequency of the physical link from one Ethernet node to

15

Chapter 2 Technology Overview

another depends on the used medium, the protocol of the MII is independent of the used
transmission medium, hence the name. Because of the four parallel data lines the clock
frequency for MII is the fourth part of the bit rate. For a 10 Mb/s link the MII clock rate
is 2.5 MHz, for 100 Mb/s links the clock rate is 25 MHz. Both, the receive (rx clk) as well
as the transmit clock (tx clk) are sourced by the PHY. While the receive clock is derived
from the received data, the transmit clock is sourced by a local oscillator. The rest of the
signals are control signals which are used to indicate the reception and transmission of
a frame (rx dv and tx en), for error propagation and detection at the PHY level (tx er

and rx er) and to propagate a busy line (crs) and the detection of a collision (col).

Gigabit Media Independent Interface and Further Derivatives

For Gigabit Ethernet the MII is no longer used, but the definition is enhanced to the
Gigabit Media Independent Interface (GMII) protocol which is very similar to MII. Fig-
ure 2.4 shows the signals of the GMII connection. In comparison to MII, only the data
lines are doubled to eight data lines per direction, and the transmit clock (gtx clk) is
not sourced by the PHY but by the MAC. Because of the increase of the parallel data
lines the clock frequency is no longer the fourth part of the bit rate, but the eighth part,
thus being 125 MHz for Gigabit Ethernet.

Further derivatives of the MII and GMII definitions with reduced pin counts exist, though
they are not covered by the IEEE 802.3 standard specification. Reduced Media Inde-
pendent Interface (RMII) [16] instead of MII, and Reduced Gigabit Media Independent
Interface (RGMII) [17] instead of GMII are de-facto standards proposed by special work-
ing groups. Both use less sideband signals and use only half of the data pins than the
original definition, but operate at a doubled clock rate. For RMII this means only two
data lines at a clock frequency of 5 MHz for 10 Mb/s operation and 50 MHz for 100 Mb/s
operation. RGMII uses four data lines and keeps the original clock frequency of 125 MHz,
but reacts on both, rising and falling edges of the clock signal and thus doubles the actual
data rate.

MII Management Interface

The MII management interface is common to all versions of MII and its derivatives. It
consists of two wires, the MDC and the Management Data Input/Output (MDIO), as
defined in IEEE 802.3 clause 22. It is a serial interface to transport management frames
between the MAC and the PHY. The PHY is requested to have a basic management
register set which can be written and read using the MII management interface.

The MDC signal is an aperiodic clock source for the management data frames, which
has a minimum period of 400 ns, corresponding to a frequency of 2.5 MHz. The duration
of the high and low times must be at least 160 ns each and have no upper bound. The
MDIO signal is a bidirectional line which requires both sides to have tri-state drivers and
needs a pull-up resistor to pull the bus high in idle state. The structure and timing of the

16

Chapter 2 Technology Overview

0 1 1 0 0 1 1 0 0 0 0 0 0 0 z 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 z

z

zz

z

MDC

MDIO
(MAC)

MDIO
(PHY)

example

z

Idle Start Opcode
(Read) PHY Address Register

Address TA Register Data

Figure 2.5: Timing and structure of a MDIO frame

management frames is depicted in figure 2.5. Special to a tristated bus is the turnaround
phase. When a read operation is performed, first the MAC drives the MDIO line to
initiate the read transfer. In the turnaround phase control is handed over to the PHY to
transmit its response using the same MDIO line that the MAC used before. Therefore,
the MAC shall change to high impedance state during the first bit time of the turnaround
phase while the PHY still stays in high impedance state. During this first bit time both
drivers are disabled to prevent a short circuit of the drivers. Only during the second bit
time the PHY drives the MDIO line with a zero bit, and thus takes over control of the
MDIO signal line.

2.1.2 Advanced High-Performance Bus

The Advanced High-Performance Bus (AHB) protocol [6] is part of the Advanced Micro-
controller Bus Architecture (AMBA) specification and is designed as a high-speed intra-
chip bus for the interconnection of different hardware cores. It is specifically designed
for synthesizable, high performance and high clock-rate designs. It is a master-slave ar-
chitecture, using a non-tristate implementation, supporting pipelined burst transactions
and variable data widths from 8 to 1024 bits. Out-of-band control signals together with
pipelining enable high performance with very low control overhead. Two different transfer
types are supported, non-sequential transfers and burst transfers.

The AHB master slave architecture is designed to support multi-master multi-slave con-
figurations with an address decoder, a dedicated bus arbiter module and the support for
split burst transactions to allow optimal resource usage of the shared bus medium. In the
course of this diploma thesis only a single-master system is used with no need for an AHB
bus arbiter or the support of split transactions. Such a system is also called an AHB lite
system [18]. The master and slave bus interfaces are depicted in figure 2.6.

2.1.2.1 Control and Slave Response Signals

The control signals are sourced by the master interface to control the individual AHB
transfers. The trans signal indicates the type of transfer and encodes either one out of

17

Chapter 2 Technology Overview

AHB Slave
clk

AHB Master

sel

clk

addr(31:0)

write

trans(1:0)

size(2:0)

burst(2:0)

wdata(31:0)

reset

rdata(31:0)

ready

resp

reset

Figure 2.6: AHB lite master and slave interface signals

four possible transfer types, idle (00), busy (01), non-sequential (10), or sequential (11).
The write signal indicates the direction of the transfer. If it is asserted, data is written
from the master to the slave. If it is deasserted, data is read from the slave to the master.
The size signal specifies the used data width with a valid range from 8 to 1024 bits,
where the three bits of the size signal encode an offset of a power of two. An encoded
zero of the size signal corresponds to 23 = 8, an encoded one corresponds to 24 = 16,
and the highest encoded value seven corresponds to 210 = 1024. The prot signal is an
optional signal for protection control and is not used in the design of the diploma thesis.
The same holds true for the lock signal, which can be used in multi-master systems to
indicate indivisible transfers.

The address is a byte address (a change of the least significant bit changes the addressed
memory by one byte) and is encoded by the 32 available address bits. Their timing is
exactly the same as the timing of the control signals, which is depicted and explained
in the following sections. An address decoder, usually a simple combinatorial decoder
of the high-order address signals, takes care of selecting the addressed slave by asserting
the corresponding sel signal. As the minimum memory space that can be mapped to
an AHB slave is 1 kB, no burst must cross a 1 kB address boundary in order to prevent
transfers to exceed the address range of a slave.

The slave response signals are the ready signal and the resp signal. The ready signal is
used to indicate the readiness of the slave. For write transfers this means that the slave
indicates by the assertion of the ready signal that it is ready to receive data in the next
clock cycle. For read transfers the assertion of the ready signal indicates valid data on the

18

Chapter 2 Technology Overview

slave’s rdata lines. When the master issues an idle transfer, the slave must respond with
the ready signal asserted. Therefore, the slave usually can not prevent the master from
initiating a transfer, but it can insert wait states until the next data is presented. The
response (resp) signal for an AHB lite slave can be either one of two possibilities, okay (0)
or error (1). On any kind of error the slave is expected to respond with an error response,
which is a two-cycle response. In the first cycle the resp signal has to be asserted to
indicate an error, while the ready signal has to be deasserted. In the subsequent cycle
the resp signal still stays asserted and the ready signal is asserted as well. A two-cycle
response is needed because of the pipelined nature of AHB, to allow the master to cancel
a potentially new transfer that has already been issued. A transfer with an error response
is shown in figure 2.7b.

2.1.2.2 Non-Sequential Transfer

The basic transfer type of AHB is the non-sequential transfer. Its duration is two clock
cycles, and it consists of two phases, one phase per clock cycle. The first phase is the
address phase, where all control signals are asserted according to the intended transfer. A
non-sequential transfer consists of exactly one data phase with the duration of one clock
cycle. During the data phase the data is presented on the respective data bus, either
on rdata for read transfers, or on wdata for write transfers. By using two distinct data
buses a two directional bus can be implemented without the need for tristate drivers.
The maximum transmittable data during a non-sequential transfer is limited by the data
width. Figure 2.7a shows the timing of a typical non-sequential transfer.

For non-sequential transfers one clock cycle is needed for the address phase and one clock
cycle for the data phase. This results in an overhead of 50%, which is not acceptable for a
high-speed, high-performance bus architecture. Therefore, AHB provides the possibility
for pipelining transfers. The first transfer needs a separate address phase, indicating the
address and the transfer type for the first data transfer. During the next clock cycle the
data is presented, but the address and control lines are not required anymore for the first
transfer. They can already be used to initiate the next transfer, with the corresponding
data being presented in the subsequent clock cycle. In other words, the data phase of
a transfer can simultaneously be used as address phase for the next transfer. Figure
2.7b shows an example for pipelined, non-sequential transfer. The address numbers are
chosen arbitrarily to indicate the arbitrary, independent nature of addressing with non-
sequential transfers. By pipelining the only remaining protocol overhead is one clock cycle
at the beginning, reducing to zero for all subsequent transfers, which makes the protocol
perfectly suitable for high-performance applications.

To be able to utilise the full benefit of pipelining both endpoints of the bus have to be
fast enough to handle the data within one clock cycle. Not all endpoints are at all times
capable of such a high-speed data processing. Therefore, both sides of the AHB protocol
are allowed to insert wait states. If the master is not ready to immediately initiate a new

19

Chapter 2 Technology Overview

idle

clk

trans

sel

addr

wdata w1

resp

ready

non-
seq

a1

rdata r1sl
av

e
si

gn
al

s
m

as
te

r s
ig

na
ls

(a) Non-sequential transfer

non-
seq

w1

non-
seq

a23a1

r1

non-
seq

a14a7

non-
seq

w7

r7

non-
seq

w23

r23

w14

a3

idle non-
seq

a14

(b) Fully pipelined non-sequential transfer

Figure 2.7: Non-sequential AHB transfers

transfer it can simply issue idle transfers until it is ready for the next transfer. If the
slave is not ready to immediately handle new data it can deassert the ready signal and
thereby force the master to remain in the current state until the ready signal is asserted
again, as also shown in 2.7b.

2.1.2.3 Burst Transfer

A burst transfer is very similar to a series of fully pipelined non-sequential transfers, it
even starts with a non-sequential transfer. As the name indicates, the important difference
to non-sequential transfers is the sequential nature of addresses in a burst transfer. In
contrast to non-sequential transfers, where each transfer can have an arbitrary address,
independent of the previous transfer, burst transfers have to follow a strict addressing
scheme.

The burst signal specifies the nature of the burst. It can be either incrementing with an
unspecified length, incrementing with a specified length or a wrapping burst of specified
length. Specified length transfers can be either one of 4, 8, or 16 beat length, while a beat
corresponds to a data cycle. Thus, the number of beats has to be multiplied by the data
width to get the actual amount of data which is transferred during a burst transfer.

All addresses within a burst transfer must be aligned to the address boundary which is
specified by the size signal. Therefore, all 32 bit transfers must be aligned to 32 bit

20

Chapter 2 Technology Overview

PCI Express Endpoint

CPU

PCI Express-PCI Bridge

Root Complex

Memory

Switch

Legacy Endpoint PCI Express Endpoint PCI Express Endpoint
PCI/PCI-X

PCIe

PCIe

PCIe

PCIe

PCIe

PCIe

Figure 2.8: Example topology of a PCI Express architecture

boundaries (the two least significant bits of the address have to be both zero), all 64 bit
transfers must be aligned to 64 bit boundaries (requiring the three least significant bits
to be zero). For all incrementing bursts, the address in a subsequent clock cycle must
be the address of the previous clock cycle incremented by the size transferred at each
beat, specified by the size signal. Incrementing bursts with an unspecified length have
no further restriction than not to cross a 1 kB address boundary. Wrapping transfers are
basically of incremental nature as well, but if they are not started at an address aligned
to the total number of bytes transmitted in the burst, they wrap at the boundary of this
total number of bytes.

Burst transfers also allow both, slaves and masters to insert wait states. The master can
insert busy transfers, while the slave again uses the ready signal to stall the master. The
advantage of burst transfers is the fixed addressing scheme. Many applications and devices
need more time to handle a random access transfer than a sequential transfer. Examples
are Random Access Memory (RAM) modules which can handle sequential transfers on the
same memory page much faster than if the page has to be switched, but also applications
which can pack sequentially addressed data into a single container structure.

2.1.3 PCI Express

The PCI Express protocol specification [19] describes PCI Express as a third generation
I/O interconnect. It is an advancement of the PCI protocol, intended to stay compati-
ble with PCI concepts such as the load-store architecture and the enumeration process,
allowing legacy PCI drivers to work unmodified with a PCI Express design.

PCI Express is a packet-oriented, switched point-to-point protocol, using a highly scalable,
serial differential electrical interface, providing means for e. g. power management, quality
of service, data integrity and error handling. Figure 2.8 shows a typical architecture of

21

Chapter 2 Technology Overview

Transaction Layer
Layer 3

Data Link Layer
Layer 2

Logical Sub-block

Electrical Sub-block
TX

RX

Transaction Layer
Layer 3

Data Link Layer
Layer 2

Logical Sub-block

Electrical Sub-block
RX

TX

Header Data EC
RC

Header Data EC
RC

Sequence
Number

LC
RC

Physical Layer
Layer 1

Physical Layer
Layer 1

Header Data EC
RC

Sequence
Number

LC
RC

Fra
ming

Fra
ming

Transaction Layer Packet (TLP)

Data Link Layer Packet (DLLP)

physical packet transmission

ECRC: end-to-end CRC

LCRC: link-by-link CRC

Figure 2.9: Three layered architecture of PCI Express

a PCI Express system. It consists of several point-to-point links of the root complex to
multiple endpoints, which are I/O devices. The root complex connects the CPU/memory
subsystem to the I/O components. The endpoints can be legacy endpoints, which use the
PCI Express protocol, but are required to work with a legacy PCI device driver which
uses functions supported only for PCI compatibility. Standard PCI Express endpoints
use only the semantics specified for pure PCI Express endpoints, and PCI Express-PCI
Bridges connect PCI hierarchies to the PCI Express fabric.

PCI Express is a three layered architecture, specifying a physical layer for the intercon-
nection of the components, a data link layer for link management and data integrity, and
a transaction layer to assemble read and write Transaction Layer Packets (TLPs) and for
credit-based flow control. Figure 2.9 gives an idea of the data-flow and the respective
packet formats through the layers.

2.1.3.1 Transaction Layer

For this diploma thesis only the transaction layer is relevant. The transaction layer of
an endpoint communicates with the transaction layer on the other side of the link using
transaction layer packets. These packets are of different types and can be addressed to
one of four address spaces: memory mapped, I/O mapped, configuration and message.
Memory mapped read and write transactions are the standard transaction type for PCI
Express endpoints. I/O mapped transactions are only supported for legacy device drivers
which require their use. Configuration transactions are used to access the configuration
registers of PCI Express devices and are primarily used during the initialisation phase.
Message transactions can be viewed as virtual wires which take over all protocol messaging

22

Chapter 2 Technology Overview

tasks which were previously signalled by out-of-band signal lines, e. g. interrupts, flow
control management and power management.

Generally, except for messages, there are two types of transactions, read and write. TLPs
which initiate a transaction sequence are called requests. If they operate in the memory
mapped address space, they are called memory read and memory write requests, respec-
tively. Memory write requests are posted requests, which means that they don’t require
an answer from the receiver. Memory read requests are non-posted requests. Read trans-
actions are split transactions, requiring the receiver to send a completion TLP back to
the requester which initiated the transfer. To do so, all requests are tagged to be uniquely
identifiable, so that the interconnect fabric can route them appropriately to the initiator
of the transaction.

2.1.3.2 Transaction Layer Packets

Depending on the address range of an endpoint, Transaction Layer Packets (TLPs) basi-
cally consist of a four Double Word (DW) long header for 64-bit addressing, and of a three
DW long header for 32-bit addressing plus the data payload and an optional end-to-end
CRC field. Figure 2.10 and 2.11 depict the header formats for requests and completions.
All fields marked with an R are reserved for future use and must not be used.

The first DW of the header is common to all TLPs. The format field (Fmt) specifies the
length of the header (three DW or four DW) and whether data is included in the packet or
not. The Type field specifies the type of the TLP. The basic types are read and write, and
the type field also defines the address space. Therefore, memory mapped requests have a
different type than I/O requests and messages. The fourth type of TLPs are completion
as response to previous read requests. Further sub-types are available for locked transfers
and special message routing information.

Bits four to six of byte one specify the traffic class (TC) which is used for Quality of
Service (QoS). All three bits being zero corresponds to best effort traffic. If the TLP
Digest (TD) bit is set, the TLP includes an 32-bit end-to-end CRC (ECRC) field after the
data payload. If the error forwarding by data poisoning (EP) field is set, it is indicated
that some component along the path of the TLP has found the data to be poisoned.
The Attr field contains two bits for optimised traffic handling, the no snoop and relaxed
ordering attribute. Finally, the Length field specifies the length of the payload in DWs.

Memory Request TLP

Memory request TLPs can be initiated by all participants in the PCI Express complex.
They are used to perform read and write transactions on memory mapped devices. The
header of memory requests has five additional fields to the common header fields. The
Requester ID holds the unique number of the requesting PCI Express component. This
Identification (ID) is formed by the bus number, device number, and function number.

23

Chapter 2 Technology Overview

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 R R TD EP

Byte 4
Byte 8

32‐bit Memory Request Header
+0 +1 +2 +3

Address[31:2] R

LengthFmt Type TC R Attr R

Requester ID Tag Last DW 1st DW

Figure 2.10: Header format of PCI Express memory requests

The bus and device number of an endpoint might change during operation and have to be
tracked. Together with the tag field, which identifies a read request within an endpoint,
a unique identifier in the PCI Express system is associated with each request.

Usually, it is sufficient to use only the five least significant bits of the tag field, which
corresponds to 32 possible uncompleted requests. The requester is responsible for keeping
track of the uncompleted requests and must not have more than 32 outstanding requests
at a time. However, the nodes can be configured to use all eight bits of the tag field if
required, allowing for 256 concurrently outstanding requests. As write requests are posted
requests and do not need a completion, the tag field for write requests is unspecified and
may have an arbitrary value.

The Last DW and 1st DW fields specify the valid data bits for payload that is not quadword
(64-bit) aligned. The four bits of the 1st DW field correspond to the first four bytes of the
data payload, indicating whether a byte contains valid data or not. The four bits of the
Last DW specify the usage of the last four bytes of the data payload. The Address field
finally stores the full byte address of the transaction and can be 32 bits or 64 bits long,
depending on the address range of the PCI Express node. All transactions performed on
addresses below four Gigabyte must use a 32-bit address.

Completion TLP

A completion TLP is always the response to a previous non-posted request. It is the
second and final part of a split transaction and either returns some data, or in the case
of I/O transactions informs the initiator about the completion of the transaction. Figure
2.11 depicts the header format of a PCI Express completion TLP. A completion header
has several specific fields in addition to the common header fields. Most of them are used
for the correct correlation of a completion to the corresponding read request.

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte 0 R R TD EP

Byte 4 BC
Byte 8 R

+2

Completion Packet Header

Requester ID Tag Lower Address

Length

+3

Completer ID Cpl.Status Byte Count

Fmt Type TC R Attr R

+0 +1

Figure 2.11: Header format of PCI Express completions

24

Chapter 2 Technology Overview

The traffic class and attribute field of the common header part have to match the val-
ues of the corresponding request. The Completer ID specifies the ID of the completing
component. The Cpl Status field holds information about the completion status of the
completer. Currently supported completion states are successful completion, unsupported
request (e. g. wrong or unsupported message for a message transaction), configuration re-
quest retry status and completer abort, which is used if an endpoint does not support a
specific request, although it would be allowed by PCI Express (e. g. read of an unreadable
address).

The BC field is a field for legacy PCI-X components and indicates that the byte count
has been modified. It is possible to use multiple completions of smaller size to complete
a single read request. For this case, the Byte Count field exists and indicates how many
bytes still have to be transferred to complete a read request. The Requester ID and Tag

field must have the same values as stored in the corresponding read request. These fields
are used for routing by the PCI Express complex, to return the completion to the correct
requester. Finally, the Lower Address holds the seven least significant bits of the address
of the first enabled byte of the read request.

2.1.4 Altera PCI Express Interface

rx_ready

rx_valid

rx_data(63:0)

rx_sop

rx_eop

rx_err

rx_bardec(7:0)

tx_ready

tx_valid

tx_data(63:0)

tx_sop

tx_eop

tx_err

Altera ST Interface

refclk

clk125_out

npor

srst

crst

app_int_sts

cfg_busdev

cpl_err(6:0)

l2_exit

hotrst_exit

dlup_exit

Figure 2.12: Signals of the Altera MegaCore PCI Express Avalon Streaming interface

The Altera® MegaCore PCI Express Interface is the interface used between Altera’s PCI
Express hardware core and the application hardware as described in [20]. A fully featured

25

Chapter 2 Technology Overview

PCI Express endpoint embodying the functions of all three layers is quite a complex
piece of hardware. Altera offers a ready made solution as part of their MegaCore library,
offering an interface to the transaction layer of the PCI Express endpoint. The interface
requires the user application to handle data in the form of PCI Express TLPs.

The interface basically consists of an adapted Avalon® bus interface for the transmission
of TLP data plus additional control and information signals. Figure 2.12 shows the signals
of the Avalon bus and important control signals. The Avalon bus is adapted for a direct
point to point connection transmitting PCI Express TLPs only. Therefore, no address
signals are included and the read and write indicating signals are omitted as well, because
the corresponding information is contained in the TLP.

The ref clock signal must be sourced by the 100 MHz reference clock of the PCI Express
connector. The reference clock line is not allowed to source any other unit than the Altera
interface. The transceiver module of the Field Programmable Gate Array (FPGA) device
transforms the 100 MHz input clock to a 125 MHz output clock, which can be used as clock
source for the application. The assertion of the app int sts signal triggers the Altera
core to generate a PCI Express message TLP and send it upstream, which corresponds to
a legacy PCI interrupt. All signals on the right side of the white block in the figure are
reset signals and are used for different levels of reset.

The transmission of a TLP always starts with the assertion of the Start Of Packet (SOP)
signal line (rx sop and tx sop) during the first data cycle. Simultaneously with the
assertion of the SOP indicator the data valid signals (rx valid and tx valid) are asserted
together, indicating that the data lines contain valid information. The ready signal is used
by the receiving side to insert wait states, but in contrast to the AHB the transmitting
side only needs to react on a change of the ready signal within three clock cycles. The
valid signals must stay asserted throughout the whole transmission, except for a three
clock cycles delayed reaction on a change of the ready signal. They must not be used
to insert wait states by the transmission side. Actually, there are no means at all for
the transmission side to stall a transmission by inserting wait states. The transmission
is finished when the End Of Packet (EOP) signal is asserted during the clock cycle when
the last data is transmitted. After this last data cycle all signals are deasserted again and
the transmission is finished.

The interface is responsible for the transmission of TLPs between the PCI Express core
and the application hardware. The TLP information simply is transferred using the
64-bit wide data lines of the Avalon interface. But the mapping of TLP payload to
the Avalon bus depends on the address alignment of the TLP. Figure 2.13 shows the
difference between non-quadword and quadword aligned addresses. For non-quadword
aligned addresses the first DW of payload data directly follows the header data, while the
data of quadword aligned addresses only starts with the next full quadword and leaves
the upper DW after the header data unused.

The rest of the signals concern configuration specific information, e. g. the bus device
number (cfg busdev) or the addressed memory bar (rx bardec), depending on the real

26

Chapter 2 Technology Overview

Header 0

Header 1

Header 2

PCIe Header Byte 0, Byte 1, Byte 2, Byte 3

PCIe Header Byte 4, Byte 5, Byte 6, Byte 7

PCIe Header Byte 8, Byte 9, Byte 10, Byte 11

Data 0 PCIe Data Byte 3, Byte 2, Byte 1, Byte 0

Data 1 PCIe Data Byte 7, Byte 6, Byte 5, Byte 4

Bit 0Bit 63

clk

data(63:32)

sop

data(31:0)

eop

Header 1 Data 0

Header 0 Header2 Data 1

xxx

(a) Non-quadword aligned TLP

Header 1 xxx

Header 0 Header2 Data 0

Data 1

(b) Quadword aligned TLP

Figure 2.13: Mapping of 32-bit addressed PCI Express TLP to Avalon ST bus

address assigned to the PCI Express node during initialisation. Further signals are used
for different levels of reset, for interrupt generation, and error reporting.

2.1.5 Precision Time Protocol

The Precision Time Protocol (PTP) is a standardised protocol for clock synchronisation
in packet-oriented, distributed network architectures such as Ethernet. It is defined in the
IEEE 1588 standard [3], a standard for precise synchronization of clocks in measurement
and control systems.

A basic system for clock synchronization consists of a sole grandmaster clock and various
slave clocks which synchronize to the grandmaster. For synchronization, so-called Sync
and Delay-Request messages are used. Sync messages are sent by the master using mul-
ticast to inform the slaves about the current time of the master. The knowledge about
the absolute time of the master at the transmission time is not enough for precise clock
synchronization. The delay of the packet from the master to the slave has also be taken
into account. Therefore, the slave can send a Delay-Request message to the master. Fig-
ure 2.14 shows these messages in the synchronization principle. Together with the Sync
message the round-trip delay as well as the clock offset can be calculated. A detailed
description of this calculation can be found in the standard [3], clause 11.

Sync and Delay Request messages are part of a group called event messages, which have
to be timestamped. One timestamp is taken when an event message is sent, and an-

27

Chapter 2 Technology Overview

Master Slave

Master Time Slave Time

Delay Request ST2MT2

Delay Response

ST3
MT3

ST4

Δ=Δ1

Δ=Δ2

Sync Packets

T M5

T S
6

Δ=Δ2
T M5

Figure 2.14: Synchronization messages and round-trip delay measurement

other timestamp is taken when the event message is received. With a Sync message the
receive-timestamp is drawn by the slave and therefore is known, while the send-timestamp
either is directly included in the event message (one-step clock), or it is sent in a dedi-
cated Follow Up message (two-step clock), informing the receiver of the send-timestamp.
Therefore, the receiver of a Sync message, the slave, always has knowledge about the
send-timestamp and the receive-timestamp. Therefore, the sum of the delay of a packet
in both directions as well as the clock offset of the slave clock compared to the master
clock can be calculated. Under the assumption of constant delay the sum of the delay
of the two packets corresponds to the round trip delay. The slave clock then uses this
information in a control loop to correct its clock.

Uncertainties remain due to jitter and asymmetric delays of packets. Because of liber-
ties in serialisation and deserialisation of the bit stream in the PHY, but also because of
asymmetric cable properties the delay might vary depending on the direction of transmis-
sion. The IEEE 1588 protocol provides no means to measure the transmission asymmetry.
However, the protocol allows for asymmetric delay cancellation if it is known in advance.
Further uncertainties are added because of any jitter introduced during transmission. To
keep the jitter as low as possible it is important to draw the timestamps as close as possible
to the actual transmission of a packet on the physical medium to reduce jitter influence
of higher layer protocol processing.

28

Chapter 2 Technology Overview

2.2 Typical Application

The design of a component that connects a PCI Express core to an AHB system can be
used in a variety of applications. Typically, such applications will be peripheral compo-
nents which add some functionality to a standard PC system. As AHB is a very common,
general purpose high-speed high-performance intra-chip bus system it can be used for all
kinds of applications which require data transmission. The PCI Express protocol also
offers a highly scalable, high performance standardised connection. PCI Express already
is the main standard for connecting peripheral components to a PC system. Therefore,
an AHB to PCI Express bus-switching unit can be used for low cost standard components
as well as for high performance devices. Examples for such devices are extension cards
for control and measurement, specific hardware extensions for calculations and parallel
computing and extension cards for bus interfacing, like the Syn1588 NIC.

The Syn1588 NIC

The bus-switching unit that was developed in the course of this diploma thesis is specif-
ically designed, but not limited to the use with the Syn1588 NIC hardware [21] design.
Therefore, the NIC may also be considered as an application example for the bus-switching
unit.

The Syn1588 NIC embodies the knowledge gained through the long term project SynUTC.
The project started years before the PTP standard was approved by IEEE in the year
of 2002 [22] with the number 1588. Still, the current hardware version is compliant
to the current IEEE 1588 standard, version 2 [3]. Figure 2.1 already showed the basic
components of the NIC hardware. In parallel to the standard Ethernet path over the
Ethernet MAC unit the hardware support for clock synchronization is depicted.

The dedicated hardware for clock synchronization uses an interval based algorithm to-
gether with adder based clocks for smooth rate adjustment [23]. This approach enables
seamless clock synchronization by continuous amortisation with no points of discontinuity
of the controlled clock. The adjustment of the step size of the adder in an adder based
clock varies the rate of the clock, so that it is possible to increase or decrease the clock
rate according to the measured clock offset from the master clock.

Clock Synchronization Operation

In order to get accurate timestamps of received and transmitted Ethernet frames, the
MII Scanner (MIIS) scans all data on the MII and analyses it. When the start of an
Ethernet frame is detected, the MII Scanner asserts a signal and triggers the CSC to take
a timestamp. The scanner continues to observe the complete Ethernet frame, checking
whether its content is a PTP packet that really needs to be timestamped. If not, the
previously taken timestamp is dropped and no further action is taken.

29

Chapter 2 Technology Overview

If the packet needs to be timestamped another signal is asserted, informing the CSC to
store the current timestamp together with an identification number of the PTP packet.
The interrupt line is asserted and the interrupt status register is set to identify the CSC
as the source for the interrupt. The device driver then can read out the timestamp and
packet ID by accessing the corresponding registers in the CSC.

The dedicated hardware is needed to reduce protocol jitter by higher layers, as the packets
are scanned when they enter or leave the PHY. The only remaining jitter is induced by
the PHY and by environmental influences on the physical medium itself. In comparison
to the ISO OSI reference model, the timestamper has a special role. It scans the interface
between the layer one and layer two implementation, but in order to detect PTP event
messages it must have knowledge concerning the protocol structure of all higher layers up
to the application layer, on which the PTP stack is realised.

30

Chapter 3

Challenges and Possible Solutions

After the individual protocols, their signals, their basic operation and their specialities
were presented in the previous chapter, in this chapter first the principle of operation
of the Ethernet NIC will be described. Based on the operation of the whole NIC and
the tasks of the bus-switching unit in particular, the requirements for the bus-switching
unit are derived and the challenges are formulated. Then, possible theoretical approaches
to the problems are discussed and compared. Finally, the results from the theoretical
considerations are put together, in order to present a reasonable realisation for the bus-
switching unit.

A short note on the glossary for this chapter is given here. In this chapter different parts of
a whole have to be named. To avoid misunderstandings it is pointed out that the following
four terms are used intentionally for a specific part and can not be used interchangeably.

Ethernet packet is a packet as defined and depicted in figure 2.2, including the preamble
and the Start-of-Frame Delimiter (SFD). Packets are transmitted over the MII
connection between the MAC and the PHY, and over the physical Ethernet link
between the transmitting and receiving PHYs.

Ethernet frame is only the layer 2 presentation of the Ethernet packet. For received
Ethernet packets frames are available after the MAC has processed them, and for
transmitted packets frames are available before the MAC has processed them.

Memory slice names a DMA memory region at the host PC which is reserved to store a
single Ethernet frame, and therefore is also referred to as frame buffer. The number
of available slices is exactly the number of Ethernet frames that can be buffered on
the device driver side.

Cell is used to indicate a part of an Ethernet frame. During DMA transmission between
the device driver located frame buffer and the frame buffer in the MAC, an Ethernet
frame is disassembled into several equisized cells and reassembled in the destination
frame buffer.

31

Chapter 3 Challenges and Possible Solutions

Furthermore, for the ease of reading, in the following the full term for PCI Express mem-
ory read/write request TLP will often be shortened to read or write request, respectively,
except for passages where the short form could lead to confusion. PCI Express comple-
tion TLP will be shortened to completion, and Altera PCI Express MegaCore Streaming
Interface will be shortened to PCI Express interface.

3.1 Principle of Operation

To understand the requirements for the bus-switching unit, the principle of operation of
the complete hardware system has to be understood. A device driver at the host PC
is responsible for the communication between software applications on the host PC and
the hardware NIC. During the initialisation phase, the device driver reserves a virtual
memory area for memory mapped access to the registers of the NIC, as well as a memory
area for the DMA transfers. These two different types of data transfer are described in
the following sections.

In the following descriptions only the major issues are pointed out to get an overview of
the functionality, with special emphasis on the requirements for the bus-switching unit.
To improve the readability the references to the specific detailed descriptions in the text
are saved, but it is reminded that the used protocols were already described in section
2.1, while a detailed description of the actual design of the bus-switching unit and its
functional particularities is provided in section 5.3.

3.1.1 Register Operations

This type of data transfer is used for reading and writing the status and configuration
registers, both of the MAC as well as of the CSC. All register read and write operations
are initiated by the device driver at the host PC. Figure 3.1 gives an illustration of the
data paths and the respective data formats.

To point out the conceptional differences between PCI Express and AHB the packet and
transmission formats of the two protocols are sketched in the figure, including the most
important fields. In the PCI Express TLP, starting with the least significant bit on
the right side, all control information is transmitted in-band and therefore is included
in the TLP header. In contrast, the AHB transfer uses out-of-band signals for control
information, which are dedicated signal lines in parallel to the data lines, as illustrated in
the figure.

For register operations a memory read or write request TLP is sent over the PCI Express
link, initiated by the device driver. As there are different TLP types which have to be
treated and routed differently, the bus-switching unit first has to analyse and route the
TLP to the respective module. Figure 3.2 shows the message flow only inside of the

32

Chapter 3 Challenges and Possible Solutions

Ethernet
MAC

AHB
Slave

AHB
Slave AHB

Master

AHB Transfer

Address

Read/Write

Size

Control

Altera PCI
Express

Streaming
Interface

PCIe TLP
over Altera
Streaming
Interface

AHB
Slave

Bus-Switching Unit

CSC

Altera PCIe
MegaCore

AHB
Master

PCIe TLP

Address ControlSize
0

Payload Read/Write
n

Data[31:0]

Figure 3.1: Register read and write operation

bus-switching unit. The involved TLPs are depicted, and the small number indicate their
respective sequence for a register read operation.

As depicted in figure 3.2, an incoming read or write request TLP initiates a sequence
in the bus-switching unit. The small numbers in the figure mark the sequence of the
information flow in chronological order. The number 1 at the PCI Express connector
arrow indicates that the first step is the reception of a memory request TLP which has
to be analysed by the bus-switching unit. If it is identified as a read or write request, it
is forwarded to the AHB master. There the address is decoded and an AHB transfer is
started.

In the case of a write request, the AHB slave side takes care of writing the value to the
corresponding register, if it is available. For the bus-switching unit, the task is completed
with the end of the AHB transfer. In case of an error, there is no notification of the
device driver, as the PCI Express write request is a posted request with no reply. In case
of a read request, the AHB master initiates a read transfer. The master then has to wait
for the slave to present the data on the data line. A PCI Express memory read request
is a non-posted request which requires a reply. Therefore, the bus-switching unit then
assembles a PCI Express completion packet, using the data received from the AHB slave,
and sends the read data back to the device driver. As the read operation is a non-posted
operation, the device driver can be informed about a probably occurred error, e. g. a
non-existing register address.

33

Chapter 3 Challenges and Possible Solutions

AHB Master

AHB Slave

Bus-Switching Unit

AHB

Altera PCI
Express

Streaming
Interface

AHB

AHB

PCIe

read
completion

read
request

write
request

read
completion

write
request

read
request

to host

to CSC

to MAC

to MAC

1

6

2

3
4

5

Figure 3.2: Information flow in the bus-switching unit for register operation

To transmit a PCI Express TLP, the PCI Express interface requires 64-bits of data at
each clock cycle to be present at its data lines. First the 3 DW header information, then
the data payload. As all register read transactions are limited to only one DW (32-bits)
of data the data payload can be presented in a single clock cycle. The transmission of the
assembled PCI Express completion TLP to the PCI Express interface only starts when
the data already is present at the AHB interface. Therefore, the TLP can be presented to
the PCI Express interface at once as it is required, with no need for stalling by inserted
wait cycles.

3.1.2 Burst Direct Memory Access Operation

The second type of data transfer concerns the actual Ethernet packet traffic between the
MAC and the host PC. Figure 3.3 gives an illustration of the data paths and the data
formats for the burst type operation. All data transfers of this kind are initiated by the
Ethernet MAC. As DMA is used for data exchange with the memory area at the host
PC, interrupts and interrupt status registers have to be used to signal events to the device
driver.

The DMA memory is split into slices of the size of the longest possible Ethernet frame.
Each slice is meant to store exactly one Ethernet frame. The number of available slices

34

Chapter 3 Challenges and Possible Solutions

Ethernet
PHY

E
th

er
ne

t F
ra

m
e

D
es

tA
dd

r
S

rc
A

dd
r

Le
n/

Ty
pe

P
ay

lo
ad

0
m

Ethernet
MAC

AHB
Master

AHB
Slave

AHB
Slave

CSC

AHB
Master PCIe TLP

over Altera
PCIe

Streaming
InterfaceAHB

Slave

Bus-Switching Unit

M
D

I

AHB Burst Transfer

Address

Read/Write

Data[31:0]

Address+1Address+n
...

...

Size

ControlControlControl ...

Altera PCI
Express

Streaming
Interface

Altera PCIe
MegaCore

M
II/

G
M

II

Data[31:0] Data[31:0]

PCIe TLP

Address ControlSize
0

Payload Read/Write
n

Figure 3.3: Ethernet over AHB-burst-transmission

for transmit and receive frames can be varied, but is limited to the maximum number of
available buffer descriptors in the MAC. The buffer descriptors are special registers, each
storing the address and status information of a single DMA memory slice. These buffer
descriptors as well as a register storing the number of available DMA memory slices are
written by the device driver using register write operations during the initialisation phase.

Each buffer descriptor consists of two 32-bit wide registers. One stores the DMA address
of the corresponding memory slice, which is the frame buffer, and the other stores control
and status information for the corresponding buffer. The control and status register is
used for some configuration and basic error reporting, but mainly to store the size of the
content of the buffer and to report whether it currently contains valid data or not.

3.1.2.1 Receiving an Ethernet Frame

When the MAC receives an Ethernet packet on the MII interface, it processes the frame
according to the specification of the Ethernet standard 802.3 [5]. When it is found to be
a valid packet, which is intended for the host PC, the MAC interface splits the Ethernet
frame into smaller cells. Each cell is transferred using a single AHB burst transfer, and
then is packed into a single TLP and transmitted over the PCI Express connection. The
size of a cell can be configured in advance by writing the corresponding control register.

35

Chapter 3 Challenges and Possible Solutions

AHB Master

AHB Slave

Bus-Switching Unit

AHB

Altera PCI
Express

Streaming
Interface

AHB

AHB

PCIe

read
completion

read
request

write
request

read
completion

write
request

read
request

to host

to CSC

to MAC

to MAC

1

6
2

3
4

5

Figure 3.4: Information flow in the bus-switching unit for DMA operation

Figure 3.4 shows the sequence of the information flow inside of the bus-switching unit
for DMA burst operations. When the MAC receives a valid Ethernet packet (number
1 in the figure) it initiates an AHB burst transfer. The base address for the transfer is
retrieved from the buffer descriptor and is increased for each consecutive transferred DW
of data. At each clock cycle 32 bits of data are transferred, until the total amount of the
predefined cell size is reached. This is illustrated in figure 3.3 by showing several 32 bit
wide data blocks side by side in the light green “AHB Burst Transfer” data format box.

The AHB slave in the bus-switching unit then assembles one PCI Express TLP per AHB
burst transfer, i. e. the data of a cell size (number 2 in figure 3.4). The AHB side-band
signals are used to form the TLP header, while the content of the AHB data lines is
transmitted in the payload. The AHB interface only presents 32 bits of data during one
clock cycle, while the PCI Express interface requests 64 bits of data per clock cycle. The
PCI Express interface does not permit stalling by inserting wait states. Therefore, all data
for a complete TLP has to be available before a transmission can be started. Hence, the
data has to be collected in a buffer before a TLP can be scheduled for transmission. The
PCI Express interface then transmits the TLP over the PCI Express connection (3), and
the DMA controller on the receiving side writes the data to the addressed DMA memory
slice.

36

Chapter 3 Challenges and Possible Solutions

This procedure (step 1–3) is repeated for each cell, until all data of the complete Ethernet
frame is transmitted. After the last cell has been transmitted, the interrupt status register
is set accordingly to indicate that the received Ethernet frame is available in the addressed
DMA memory slice. The status part of the corresponding buffer descriptor is set as well
to indicate the size of the Ethernet frame and to mark the memory area as used. Then
the interrupt line is asserted to trigger the device drivers interrupt service routine.

3.1.2.2 Transmitting an Ethernet Frame

If there is an Ethernet frame to be sent, the device driver writes the data into the memory
area assigned to the NIC for DMA transfers. It then writes the corresponding buffer
descriptor in the MAC, informing the hardware about the presence of data, its size and
address. Consequently, the AHB master in the MAC starts an AHB read burst transfer.
The sequence of the information flow again is depicted in figure 3.4. When a read burst
transfer is started (number 1 in the figure), the bus-switching unit has to assemble a
read request TLP (2) and send it over the PCI Express interface (3). In a read request
itself no data is included, only the according read request header has to be sent and some
identifying data has to be stored in order to be able to match the incoming completion to
the outgoing read request. The size of the requested data is a cell size, which is controlled
by the same control register that also controls the size of the cells in which received
Ethernet frames are split up to.

The DMA engine of the host PC handles the read request and reads the data from the
assigned DMA memory slice. The data is packed into a completion TLP and returned to
the PCI Express interface of the NIC (4). This incoming completion has to be analysed in
the same way as the incoming read and write requests of the register transfer are analysed.
If it is identified as a completion, it is checked whether it is the expected completion and
fits to the previously sent read request. If so, it is routed to the AHB slave (5), which
only then can present the read data to the AHB data line (6). The slave presents the data
in units of 32 bits to the AHB master, until the data of a cell is transferred and thus the
AHB burst transfer is completed. The AHB master on the MAC side receives the data of
the burst and stores it in a frame buffer.

This procedure (step 1–6) is repeated as well until all data cells stored in the DMA
memory slice are transferred. When all data is transferred, the complete Ethernet frame
is available in the frame buffer of the MAC. It then sends an Ethernet packet over the
Media Independent Interface (MII) to the PHY, which puts the data on the physical
Ethernet link. As soon as the MAC sent the complete Ethernet packet to the PHY, the
interrupt status register is set and an interrupt is issued to signal the device driver that
the packet has been sent.

37

Chapter 3 Challenges and Possible Solutions

3.2 Challenges

Based on the principle of operation of the Ethernet NIC, the basic requirement for the bus-
switching unit is clear – it has to manage and translate the data-flow between the different
bus interfaces. Still, a number of challenges are faced. Those challenges are identified and
described in this section. Theoretical backgrounds are considered to support fundamental
design decisions which have to be made before the unit can be designed and implemented.

Based on the description of the principle of operation, it becomes obvious that for all
incoming PCI Express TLPs similar challenges are faced. The PCI Express and the AHB
interface have to be rate-matched, as the PCI Express interface presents 64 bits of data per
clock cycle, while the implemented AHB interface accepts only 32 bits of data per clock
cycle. Regardless of the type of the TLP, consecutive TLPs of the same type (memory
request or completion) are switched to the same module. Therefore, care has to be taken
that neither an ongoing operation is disturbed by a new incoming packet, nor that a packet
is lost while a previous operation is still being processed. During an ongoing operation,
no new TLP can be handled by the module. Therefore, the PCI Express interface has to
be prevented to present data when it can’t be processed. As described in section 2.1.4,
the PCI Express interface is only required to react on a change of the controlling ready
signal within three clock cycles. Therefore, some buffering mechanism has to be applied
to avoid data loss during this reaction time.

Outgoing PCI Express TLPs can result from both types of transfer, register operations
and DMA burst transfers. To be able to transmit TLPs, both modules have to use the
same shared resource: the transmission part of the PCI Express interface. As described,
the register operations and the DMA burst transfers are initiated independently from
each other. Furthermore, the AHB master and slave modules in the bus-switching unit
have no knowledge of each other. Hence, there is no correlation between their sending of
TLPs. Therefore, some kind of locking algorithm has to be applied to prevent the two
modules from writing their data simultaneously to the shared data line.

Considering the above, the main requirements and challenges for the bus-switching unit
can be identified as

� Protocol translation

� Packet-switching

� Bus arbitration

� Rate-matching

� Prevention of data loss

Each of these challenges are discussed now in detail by analysing requirements, considering
theoretical backgrounds and analysing possible solutions.

38

Chapter 3 Challenges and Possible Solutions

3.2.1 Protocol Translation

The term “protocol translation” means the interconnection of two interfaces employing
two different communication protocols in a way that they can exchange data. Therefore,
some logic has to be developed with detailed knowledge about both protocols. For each
direction, the data of one protocol interface has to be read, transformed (or translated)
to a format that is understood by the other protocol interface and written to the other
protocol interface. Therefore, a protocol translator consists of a fully featured interface
for both protocols and some logic to translate the data formats and control information.

The protocol translation can either be done directly inside of the AHB interface control
module or in an external module, which is connected to and controlled by the AHB
interface control module. The advantage of the latter type is a more modular design,
which simplifies especially the reuse of the AHB modules.

On the other hand, a too fine grained modularisation has disadvantages as well. When
closely interconnected functional elements are split into many small sub-modules, it gets
very difficult to understand the overall operation. Therefore, maintainability is decreased.

A quality measure for decent functional partitioning is the information-flow-measure [24],
which measures the amount of exchanged information between different sub-modules. If
different sub-modules operate on the same, or on subsets of the same information sources,
a large amount of information has to be exchanged. In such a case, it might be better
to combine the sub-modules to get rid of the information exchanging signals [24]. The
combined module will have a slightly increased complexity in terms of Mc Cabe’s cyclo-
matic number [25], nesting level and code length compared to the complexity of the single
sub-modules, but the overall understandability can be increased by processing closely
related functions in the same module. Splitting up the AHB interface control and the
protocol translation would lead to a high number of the information-flow-measure, as they
would both need to operate on the AHB data and address lines, which together already
make up 64 bits of exchanged information. Still, maintainability and understandability
are subjective measures, depending on the preferences of the developing engineer. There-
fore, optimising for the mentioned measures can not guarantee a perfect design, but the
measures can be used as guidelines for design decisions.

A different consideration further weakens the argumentation for a separate protocol trans-
lation module. The main advantage of the separate approach would be the simpler reuse
of the AHB interface module. This argumentation might hold true for an AHB interface
without the need for wait states. But generally speaking, there is no generic AHB inter-
face implementation which can be taken from one unit and be reused without change in a
different unit. Even the AHB slave interface for register operations in the MAC and the
CSC are different. The reason for that is the interface nature of the AHB module. The
definition of the bus itself for sure is generic. It even offers the possibility of wait state
insertion on both sides, master and slave, to be able to adjust to a large variety of ap-
plications. But the AHB interface module is the interface which connects the application

39

Chapter 3 Challenges and Possible Solutions

specific part to the generic AHB signals. Therefore, the interface module has to be aware
of the application specific needs. For example, the ready signal has to be controlled by the
slave interface in a way that fits the specific behaviour of the application. Therefore, the
slave interface module always has to be adapted to meet the application’s requirements
and can’t be reused without alteration.

A separate protocol translation module can’t be reused as well. It is a translation module
specifically designed for the translation of AHB to PCI Express and vice versa. Therefore,
it can only be used together with an AHB interface. If such a protocol translation unit is
needed at a different place, the AHB module is needed as well, and therefore a separate
protocol translation module does not augment reusability at all. From that point of view,
the advantage in terms of reusability is too small to justify the splitting of the AHB slave
and the protocol translation module.

3.2.2 Packet-Switching

The term “packet-switching” is chosen on purpose to point out the similarity of the nature
of the given problem to well known interconnection problems of packet-based networks.
Even though the general problem here appears in a very simplified environment, the basic
requirements stay the same. The incoming packets arrive on one port, they carry some
kind of address information and they have to be forwarded to an outgoing port according
to the address information. Therefore, similar techniques as in the well known field of
Ethernet switching can be used and are discussed in this section. Although packets on the
processing level (layer two of the OSI reference model) usually are referred to as frames,
they still are packets in the sense of individually addressed data and information capsules.

Because of the very simple nature of the possible linkage of the modules, the packet-
switching can, similarly to the protocol translation, also be realised integrated in the
respective AHB interface control modules or as a separate module. The argumentation
about the reusability of the AHB interface module is similar to the considerations about
the reuse of the AHB interface module with the protocol translation.

Figure 3.5 shows the principle operation of a separate switching module. The packet-
switcher observes the type and address of the incoming PCI Express TLP (symbolised by
the magnifying glass in the figure) and routes the TLP to its intended destination. There-
fore the path to the intended destination is opened, symbolised by the open semaphore
in the figure, and the path to the not-intended destination is closed.

A separate PCI Express TLP switching module, in contrast to the protocol translation
module, can easily be reused. Additionally, a separate switching module brings advantages
also in terms of scalability. Compared to the protocol translation, the argumentation for
understandability with two separate modules is also different. While the protocol trans-
lation unit is tightly coupled to the timely sequence of the AHB slave module throughout
the complete transfer, the packet-switching module only has to take action at the very
beginning of the reception of a PCI Express TLP and is not at all involved in the further

40

Chapter 3 Challenges and Possible Solutions

AHB Master

AHB Slave

Bus-Switching Unit
AHB

Altera PCI
Express

Streaming
Interface

AHB

PCIe

to host

to CSC

to MAC

to MAC

AHB

Packet
Switcher

PCIe TLP n0

PayloadAddress

Figure 3.5: Operation principle of a separate switching module

processing of the TLP by the AHB interface. Therefore, the functional coupling is not of
a parallel nature, but of a sequential. Hence, the separation in two distinct modules does
not lead to an obfuscated functional partitioning with reduced maintainability, but to a
clear, sequential functional modularisation.

For the separate switching unit, the decision about the switching technique still has to be
taken. The methodology for switching can be space division or time division switching.
Space Division Switching (SDS) allows multiple packets from different inputs to different
outputs to be switched at the same time. Time-Division Switching (TDS) uses a shared
medium for all inputs and outputs. Therefore, the switching has to be defined by granting
access to the shared medium at different instants of time. Further, the packet-switching
of the PCI Express TLPs can either be done in a store-and-forward or cut-through like
manner. Store-and-forward means, that a complete packet is stored upon reception. Only
after the complete packet is received it is forwarded. Cut-through switching means, that
the packet is forwarded as soon as the destination is known. As the PCI Express type
field, which in this case is the decisive factor for the destination module, is at the very
beginning of the TLP header, the packet can be forwarded immediately.

To be able to judge whether switching techniques known from Ethernet are appropriate for
the PCI Express TLP switching, the differences of the environments have to be considered.
In Ethernet switches, the main argument for a store-and-forward technique, in contrast to
cut-through, is the avoidance of unnecessary data traffic in the case of corrupted packets
[13]. Considering the CSMA/CD access method of Ethernet, the probability for broken
packets in a not fully switched, full duplex environment is considerably high. This is not
true for the PCI Express TLPs arriving in the bus-switching unit. Referring to the ISO
OSI reference model [15], PCI Express TLPs are layer three packets. Broken packets are
already filtered out at the lower layers. Therefore, it is not expected to receive any broken

41

Chapter 3 Challenges and Possible Solutions

packet at all. Hence, there is no need to prefer a store-and-forward like technique, instead
a cut-through like technique seems to be more appropriate.

For the decision about space and time division switching, the requirements for the bus-
switching unit have to be considered as well. Though there is only one port for incoming
PCI Express TLPs, still packets can arrive faster than the data sink can process them.
Therefore, space division switching would still be possible to allow the processing of two
packets destined to different modules at the same time. However, achieving the highest
possible throughput is not the main intention of the design. Even if it was, under normal
operation conditions mostly packets of DMA bursts are involved. With this kind of traffic,
SDS would not have any advantage over TDS, because all packets have to be routed to
the same receiver. TDS can be realised by input buffering or output buffering. TDS needs
less logic than SDS, it is easier to understand and thus to maintain. As already discussed,
an input buffer is needed anyway. Therefore, even though the maximum theoretical
bandwidth can not be achieved by using input buffering [14], it is a reasonable choice for
the bus-switching unit.

3.2.3 Bus Arbitration

Bus arbitration concerns the access control of a shared bus. In the case of the bus-
switching unit, two modules have to access the same shared bus, namely the transmission
line of the PCI Express interface. The two modules are the AHB master when sending
a request and the AHB slave when sending a completion. Since both modules are AHB
units, it would seem natural to use the arbiter module described in the AMBA® AHB
[6] protocol specification. On a closer sight, it is obvious that this is not possible, as
the shared bus is not part of an AHB system and thus not at all underlie the timing
specifications of AHB. Therefore, a dedicated arbitration scheme has to be developed.

The same question, together with a similar argumentation arises, whether to have a
separate arbitration unit or an integrated functionality with dedicated signalling. The
possibilities for arbitration are numerous. Simple, purely sequential operation of all mod-
ules might be a solution, as well as more complex, quasi pipelined operation, blocking
only when really necessary. A trade-off between design simplicity and performance has
to be made. Considerations about these topics are presented in section 3.3.2.

3.2.4 Rate-Matching

Rate-matching deals with the connection of two distinct interfaces, which operate at
different data rates. In the case of the bus-switching unit, the general problem is simplified,
because both interfaces use the same clock, which usually is not the case. Therefore, only
the data width is accountable for the different data rates. There are two basic methods
to perform rate-matching in such a case: buffering and stalling of the interface with the
higher data rate. Stalling slows down an interface by inserting idle wait cycles. This

42

Chapter 3 Challenges and Possible Solutions

might deteriorate the system performance, especially if the faster interface is a shared
medium. Furthermore, the interface specification has to support this kind of technique.
On the other hand, if the faster interface can not be slowed down by stalling, buffers
might need to be very large to prevent data loss. Therefore, a trade-off between buffer
size and system performance has to be made.

3.2.5 Prevention of Data Loss

Finally, all of the previous mentioned challenges have to accommodate for the one ultimate
requirement, the prevention of data loss. The blocking of specific functional units might
lead to data loss. Therefore, buffers of an appropriate size have to be implemented. Both,
the AHB as well as the PCI Express interface support back pressure, which allows slowing
down the respective data sources. Using this technique greatly reduces the required buffer
size, since only data which arrives during the propagation delay of the back pressure
mechanism has to be buffered.

3.3 Possible Bus-Switching Architectures

The main challenges for the bus-switching unit have been identified and discussed. Now,
some considerations concerning the architecture of the bus-switching unit as a whole have
to be taken. The design decisions concerning the previously mentioned challenges can
not be made completely independent of each other. The whole unit has to meet the
requirements and an efficient design can only be made if all dependencies and trade-offs
are considered together. Therefore, not all possible combinations will be discussed, rather
more general considerations about the complete unit will be presented.

3.3.1 System on a Programmable Chip Builder

The necessity to connect different units of a design is a very common problem. For
common problems standard solutions are desirable. Altera provides such a solution, the
so-called System on a Programmable Chip (SOPC) Builder [26]. It is a tool to auto-
matically interconnect design modules. Each module is required to have an Avalon bus
interface. The tool then generates the interconnect fabric, including address decoding
and bus arbitration. It can even be configured to use dynamic bus-sizing logic to connect
narrower slaves to wider masters and vice versa.

There is a possibility to generate the Altera PCI Express MegaCore Unit with an Avalon
Memory Mapped (MM) interface, which is designed to be used together with the SOPC
builder [27]. This interface tackles all the above mentioned challenges. It has a protocol
and address translation unit, it uses FIFO memory structures in both directions, as well
as large RAM blocks of 1 KB size for completion buffering and reordering.

43

Chapter 3 Challenges and Possible Solutions

The SOPC builder appears to be a powerful tool to quickly get an evaluation system
up and running. However, there are a couple of drawbacks remaining. For example,
the individual units need to be equipped with an Avalon bus interface, the design needs
a relatively large amount of resources, and possibilities for individual optimisation are
missing. Concerning the Avalon bus, the existing AHB interfaced modules would need to
be packed into additional bus mapping units, to convert AHB to Avalon and vice versa.
Although AHB and Avalon are quite similar, there are differences mainly in the control
signals and in the requirements for the control signal timing, which leads to the need of a
more complex bus protocol translator that goes beyond a simple signal mapping. Altera
did offer an AHB to Avalon bus interface mapper, but this device has been discontinued.

Therefore, still a protocol translator would have been needed in order to facilitate the
features of the SOPC builder, though the complexity of the AHB–Avalon translator is
definitely lower than what is needed for the PCI Express translation. Furthermore, the
PCI Express interface generated for the use with the SOPC builder, as well as the gen-
erated interconnect fabric, offer much more functionality than needed for the specific
application of the network interface card. The requirement for additional logic and mem-
ory is not a problem with the very powerful FPGA device of the evaluation board, but
might be a problem with smaller and cheaper FPGA devices for a probably upcoming
product development. For those reasons, it was not an option to use the SOPC builder
design variant in the course of this diploma thesis.

3.3.2 Bus Arbitration Considerations

As the automatic generation of the bus interconnection is not reasonably feasible, the bus-
switching unit has to be designed from scratch. From the above mentioned challenges,
the design of the bus arbitration is a key factor, since most of the other design choices are
affected by the bus arbitration behaviour.

The realisation with Finite State Machines (FSMs) is the most reasonable variant for the
design of the AHB bus interface control modules, as well as for the protocol translation.
Especially Moore machines are relatively easy to understand and therefore to maintain.
All following considerations thus will be based on an FSM realisation of the mentioned
modules. For a better understanding of these considerations, it is important to bear
in mind that all Ethernet traffic uses AHB burst transfers, which are processed by the
AHB slave module in the bus-switching unit. All register operations use the AHB master
interface. For more details refer to section 4.2.

As already mentioned, there are plenty of possibilities to prevent concurrent access of
different modules to a shared resource. Just a few examples are round-robin scheduling
of the affected state machines, mutual exclusion, usage of semaphore signals with an
additional mechanism to avoid the concurrent claim of the semaphore, usage of an protocol
aware observing unit which controls the access to the shared resource, or the usage of a
bus arbiter with dedicated control signals to request and grant bus access.

44

Chapter 3 Challenges and Possible Solutions

For the given requirements of the bus-switching unit, and bearing in mind the typical use
case of mostly Ethernet traffic with only sporadic register access for DMA and interrupt
control, a strict round-robin scheduling scheme seems not appropriate. Since an Ethernet
frame is split to multiple cells, there are a lot of burst transfers, until comparably few reg-
ister operations take place. Strict round-robin scheduling would unnecessarily deteriorate
the throughput of the Ethernet traffic, reserving time for not required register operations.
Thus, a demand-oriented approach seems to be more suitable.

Still, the blocking policy and control has to be defined. A very simple approach is mutual
exclusion of the operation of the state machines of the affected modules. As long as one
module’s state machine is operating, the start of the other state machine is prohibited,
until the first one has completed its operation. A simple prioritisation has to be made
to prevent concurrent operation when both state machines encounter their respective
starting condition at the same time. The prioritised state machine is always allowed to
start, as long as the other state machine is in idle state. The not prioritised state machine
is only allowed to start when the prioritised one is in idle state and the starting condition
is not met. Therefore, the starting condition of the prioritised state machine has to be
observed as well.

The mutual exclusion and prioritisation control can be realised by an external control
unit or integrated in the state machines. In the case of an integrated control approach,
the state machines can observe the necessary signals and combine those signals with the
start request to decide on the start of its operation. The observation can also be done by
an external control unit, the bus arbiter. The bus arbiter again can be realised as a Moore
machine, which adds an additional clock cycle until the start signal can be asserted, or as
a Mealy machine. In the actual case of only two units, which access the shared resource,
the arbitration is so simple that it is not necessary to use a dedicated bus arbiter. On
the other hand, an arbiter as a Moore machine increases scalability and simplifies the
understandability of the design, and thus increases maintainability.

A different performance increasing blocking policy could take advantage of the fact that
the shared resource is only utilised in a fraction of the operation time of the affected
state machines. Thus, mutual exclusion can still be performed in a similar manner, but
protecting the shared resource by blocking the other state machine only when the shared
resource is effectively used. For this kind of blocking all state machines must be allowed
to be stalled at any given time. This holds true for the bus-switching unit, because
both AHB modules, the master as well as the slave are allowed to stall their respective
counterparts. The slave can stall the master by deasserting the ready signal and the
master can stall the slave by issuing a busy transfer. Therefore, each transfer can be
stalled at any given time and it is possible to block a state machine in any given state.
For this kind of bus arbitration, it is strongly recommended to use a dedicated bus arbiter
unit. If no dedicated bus arbiter is used, the locking signals would have to be hidden in
one or more specific states of the state machines, which greatly obfuscates the operation
sequence, and thus reduces maintainability as well as scalability.

45

Chapter 4

Development System

This chapter gives an overview of the surrounding system components, which define the
boundary conditions for the designed bus-switching module. First, the selection of the
development platform to support the required Gigabit Ethernet connections is described.
Then an overview of the different interconnections of the units of the legacy NIC hardware
is given. To have a good overview of the overall system operation before going into the
specific design details, the interaction of the device driver with the hardware is presented
as well.

4.1 Choosing the Development Platform

First of all, a suitable hardware platform had to be chosen. The platform needs to
support evaluation and measurements of the protocols mentioned in section 1.2. All
commercially available evaluation boards, which match the requirements, use PCI Express
to communicate with the host PC. Thus, the existing Ethernet NIC hardware design had
to be adapted to be able to communicate with the host computer using the PCI Express
protocol specification. Due to the different interface standards of the existing Ethernet
NIC design on the one side and the Altera PCI Express core on the other side, a bus-
switching unit had to be developed.

The evaluation system is required to host the existing NIC design and the bus-switching
unit as well as the PCI Express protocol core. It has to be able to communicate with the
host PC and to operate the physical layer protocols listed in section 1.2. For the hosting
of the hardware only FPGA devices are suitable. All Mask Programmable Gate Arrays
(MPGAs), no matter if sea of gates, standard cell, or full custom Application Specific
Integrated Circuit (ASIC) based technologies are by far too expensive and inflexible for
an evaluation design. Higher clock speed could be the only driving argument for an
MPGA design, but is not the issue of this diploma thesis, since there are commercially
available FPGAs which are fast enough.

46

Chapter 4 Development System

g p p

Stratix II GX Device (U10)

Power Switch
 (SW1)

Power Supply
 Input (J3)

User DIP Switch
Bank (S5)

Flash Device (U3)

User LEDs
(D9 through D16)

MAX II Device
 (U4)

High-Speed Mezzanine
 Card Interfaces A & B

 (J1 and J2)

User Push-Button
Switches (S1 - S4)

DDR2 32 x 16 Mbytes
SDRAM (U5, U8, U11, U13)

Transmit/Receive
Yellow LEDs
 (D5 and D6)

DDR2 64 x 8 Mbytes
 SDRAM (U2)

Temperature
Sensor With
 Alarm (U7)

100-MHz
Crystal (X1)

155.25-MHz
Crystal (X4)PCI Express x8

 Edge Connector

QDRII SRAM (U6)

SFP Ports
 A and B
 (J6, J7)

JTAG
 Header

 (J5)

Ethernet RJ-45
Single Port

 (RJ1)

HSMC Interface A (J1) HSMC Interface B (J2)
Configuration Done

 LED (D8)

External Clock Input
 SMA Connector (J4)

Figure 4.1: Altera PCI Express development kit, Stratix II GX Edition [28]

The use of a pure software design, which is operated on a microprocessor, is not applica-
ble as well, as the high-precision clock synchronization depends on specific hardware in
addition to the standard Ethernet hardware realisation. Hence, an FPGA based develop-
ment platform was chosen. It fits the requirements perfectly, offers the flexibility to insert
new modules to the existing hardware core, and it allows for immediate testing of newly
developed design units.

Therefore, available products of known FPGA vendors were examined. The big players in
the market definitely are Altera® and Xilinx®. Lattice®, an FPGA producing company,
which mainly concentrates on market niches, like small, low cost FPGAs, was also con-
sidered. All three of them offer evaluation boards with Ethernet PHYs for 10/100/1000
Megabit/s and Small Form-Factor Pluggable (SFP) slots for optical transceivers. Another
company on the FPGA market is Actel®, but in contrast to the other three companies,
they currently don’t offer evaluation boards with the required interfaces. As there were
only minor differences between the three evaluation boards regarding price and capabili-
ties, prior experiences with the mentioned companies led to favouring the most powerful
solution, the Altera® PCI Express Evaluation Board with a Stratix® II GX device.
Figure 4.1 shows the board with all its components.

47

Chapter 4 Development System

FPGA

The Stratix II GX is a high-end FPGA device produced in 90 nm technology. It offers
sixteen high-speed transceiver modules with integrated clock data recovery ability, 8B/10B
en- and decoding, and Serializer/Deserializer (SERDES) capabilities, which is needed for
the PCI Express connection, as well as for the connection to the optical link modules. It
offers eight Phase Locked Loops (PLLs), more than 90.000 equivalent logic elements, and
on-chip RAM blocks of more than four megabyte in total. With those key features, more
than enough resources are available for the implementation of the complete hardware
design of this diploma thesis, leaving plenty of possibilities for enhancing the design, or
adding new features.

Board Features

Most of the components on the evaluation board are directly wired to specific pins of
the FPGA. Among others, the mounted oscillators are of importance for this design.
Although oscillators with different frequencies are present on the board, only the 100 MHz
signal can be used for the FPGA design. However, because of the several PLLs inside the
FPGA, and one SMA connector for external clock input, enough flexibility for different
clock speeds is provided. The eight user configurable on-board Light Emitting Diodes
(LEDs) also proved to be very useful for debugging reasons, although even more LEDs
could have been used. The push-buttons were used for selective reset and for event
triggering.

Peripherals

The relevant peripheral components on the evaluation board are the Marvell® 88E1111
Ethernet PHY and the PCI Express connector. The Ethernet PHY on this board supports
the 10/100/1000BASE-T protocols as specified in the Ethernet standard IEEE 802.3 [5],
which operate at different bit rates over twisted pair cable. The PHY itself would also
support 1000BASE-X, which is suitable for the connection of an optical medium, but on
the evaluation board the respective pins are not connected. However, dedicated SFP slots
are provided for optical link networking.

4.2 Network Interface Card Hardware Architecture

Figure 4.2 shows the main components of the NIC, their respective location as well as the
different protocols that are used at the different module interfaces. The lightly coloured
blocks depict the physical and logical location of the units and components. The blue
area depicts the evaluation board domain. All components in this domain are separate
physical ICs or plugs and wires which are mounted on the evaluation board Printed
Circuit Board (PCB) and are not modifiable, except for some programmable configuration

48

Chapter 4 Development System

FPGA Domain

Evaluation Board Domain
Ethernet connection

Ethernet
PHY

MII
Timestamper

Clock
Synchronization

Cell

Ethernet MAC

Bus-Switching
Unit

Altera PCI
Express

MegaCore
MII/GMII

Altera PCIe
Streaming
Interface

MDI

MDIO
AHB

AHB

Figure 4.2: Module interfaces and hardware domains of the NIC

registers of the Ethernet PHY. The FPGA device is also part of the evaluation board
and mounted on the PCB, but all functional units inside the FPGA are modifiable if the
design source is available, or at least the hardware configuration can be selected for the
Altera PCI Express MegaCore unit. As depicted in the figure, the MAC unit resides in
the FPGA. Therefore, the MAC design of the existing NIC hardware design can be used,
even though the PHY and the surrounding PCB has changed.

In contrast to the Media Dependent Interface (MDI) connection between the physical
Ethernet medium and the Ethernet PHY, the MAC is connected to the PHY over the
Media Independent Interface (MII) connection. As the name says, the MII connection is
independent of the used physical medium, which connects multiple Ethernet nodes with
each other. Therefore, the same MAC module can be used, regardless of the attached
medium. However, the protocol is not completely independent of the used bit-rate. For
data transmission rates of 10 Mbit/s and 100 Mbit/s, MII is used, only the clock is changed
between 2.5 and 25 MHz, respectively. In case of Gigabit Ethernet, the GMII protocol
is used, which is similar to MII, except for a little difference in the clocking scheme as
described in section 2.1.1 and the use of eight data lines instead of four. When the PHY
operates in Gigabit Ethernet mode, the GMII protocol is used, while in slower operation
modes the MII interface is used. As the broader GMII is supported, the narrower MII can
also be used on the same interconnection lines. All Ethernet data frames are transmitted
either over the GMII or MII connection, while management data is transmitted using the
MDIO interface.

On the right side in figure 4.2, the Ethernet MAC is connected to the bus-switching unit.
For this connection the existing MAC design uses both, an AHB specification compliant
master as well as a slave interface. Therefore, the bus-switching unit is required to provide
also an AHB slave as well as a master interface as the corresponding counterparts. The

49

Chapter 4 Development System

AHB interface is an intra-chip interface, as both sides, the master as well as the slave
module, reside in the same FPGA device. The development of the bus-switching unit is
the main part of this diploma thesis and is described in detail in section 5.3. Its main
task is the arbitration and translation of AHB data transfers to the Altera PCI Express
Streaming Interface and vice versa.

The Altera PCI Express MegaCore module is connected to the bus-switching unit using
the Altera PCI Express Streaming interface, which is described in section 2.1.4. It is
responsible for the transmission and reception of the PCI Express TLPs, as well as for
all management and control functions of the PCI Express protocol. The module itself is
a soft-core implementation, which is connected to the hard-core high-speed transceiver
module. A soft-core representation of the module means that all required resource and
interconnection information is available, but the fitter tool has to process this informa-
tion together with the user defined application code and program the complete system
into the FPGA. Thus, a soft-core realisation has no dedicated space in the hardware, no
guaranteed timing and prolongs the fitting of the design. In contrast, a hard-core real-
isation provides a dedicated function in hardware with guaranteed and constant timing
behaviour. It is a permanent part of the FPGA which is implemented already at the
production time of the FPGA and therefore is neither modifiable nor removable. The
advantage of a soft-core solution over a hard-core realisation is flexibility, as only the
parts that are really needed have to be implemented, or the whole function can be left
out completely if not needed, thus leaving more space for the application logic.

The soft-core part of the PCI Express protocol stack is connected to the hard-core part,
which is a high-speed transceiver module provided by the Stratix II GX FPGA. The
respective pins of the FPGA belonging to the transceiver are hard-wired to the PCI
Express connector on the edge of the evaluation board. The PCI Express connector is
plugged into the host PC, enabling communication between the NIC and the host PC.

4.3 Device Driver Operation

To complete the overview of the operation of the system, a brief explanation of the
functionality of the device driver is given as well. The described functionality of the
device driver is emulated by the fast emulation of the PCI Express connection, which is
described in detail in section 6.2.

During the initialisation phase the device driver first reads the version number of the MAC
and the CSC to make sure the driver version is compatible with the hardware version.
Then some registers are set to their initial values, including the Ethernet PHY registers,
which are mapped to the MAC register area, and the MAC configuration for the Ethernet
link. Important for DMA transfers is the initialisation of the interrupt mask and enable
registers, the burst size defining the cell size for AHB transfers, the number of available
DMA Ethernet frame buffers and corresponding buffer descriptors, as well as the buffer

50

Chapter 4 Development System

descriptors themselves. On start-up, the device driver reserves memory for the DMA
transfers in the host PC’s memory, according to the specified number of frame buffers. It
then writes the start address of each frame buffer to the address field of the corresponding
buffer descriptor.

Ethernet Frame Reception

When an Ethernet frame is received by the MAC, it is processed as described in the
previous section 3.1.2 and written to the DMA memory. A counter is implemented to
use the buffers in ascending order of the buffer descriptors. When the buffer descriptor
with the highest number is reached, the one with the lowest number is selected as the
subsequent descriptor. As soon as the complete frame has been written to the memory
the empty bit of the currently used buffer descriptor is cleared to indicate that valid
data is present in the buffer memory, and the length field is set according to the size of
the received Ethernet frame. The MAC then sets the “receive frame” bit in the interrupt
source register and generates an interrupt, informing the device driver about an important
event. As only a single interrupt is used, the device driver has to read out the interrupt
source registers of the MAC as well as of the CSC, which is also capable of generating
interrupts.

The device driver first reads the interrupt source register and immediately writes back to
clear the interrupt. When reading the device driver sees the “receive frame” bit of the
interrupt source register of the MAC asserted and therefore reads out the current buffer
descriptor. The device driver has a counter on its own and keeps track of the currently
used buffer descriptor. The device driver now sees the cleared empty bit of the buffer
descriptor and therefore knows that valid data is present at the memory address which
is assigned to the buffer descriptor. The device driver then reads the buffer memory and
forwards the content to the network subsystem. It then sends a write request to set the
empty flag of the buffer descriptor again, indicating that the data has been read and the
buffer memory can be used for new incoming Ethernet frames.

It is possible that during the currently described process of handling the reception of
an Ethernet frame another frame arrived and was written to the DMA memory corre-
sponding to the subsequent buffer descriptor. This might even have happened before the
previous interrupt could be cleared, and therefore the reception of the new frame could
not generate an interrupt signal. Therefore, the device driver keeps on reading the status
of the subsequent buffer descriptors and processing possibly present data, until a buffer
descriptor with a set empty bit is reached.

Ethernet Frame Transmission

When the device driver has to transmit an Ethernet frame, it first has to write the data
from the network subsystem to the DMA memory for transmit frames. Similar to the
receive frame buffer, the device driver and the MAC hardware independently keep track

51

Chapter 4 Development System

of the currently used buffer descriptor. The device driver always chooses the memory
assigned to the currently used buffer descriptor, with the buffer descriptors being selected
in ascending order.

The device driver then sends a write request to the MAC, clearing the empty flag of the
corresponding transmit buffer descriptor. The MAC realizes the clearance of the empty
flag and starts an AHB burst read transfer to read the data from the DMA memory at
the address specified by the buffer descriptor. When the complete frame has arrived at
the MAC, the MAC starts the actual Ethernet transfer, sets the interrupt source register
to indicate the frame was sent, sets the empty flag of the buffer descriptor and generates
an interrupt to inform the device driver of the new event. The device driver again clears
the interrupt and reads the transmit buffer descriptors. As the driver knows how many
transmit buffer descriptors were written, it checks whether all of the used transmit buffers
are empty already, or it stops the read out at the first buffer descriptor indicating a non-
empty memory.

Because of the independent tracking of the currently used buffer descriptor in the hardware
MAC unit, as well as in the device driver, a lost write request to a buffer descriptor would
lead to an inconsistent view of the used buffer descriptors in the driver and the hardware.
This can lead from degraded performance to permanent failure. Therefore, it is of utmost
importance to ensure the reliable data transmission from the device driver down to the
hardware register, including PCI Exrpress transmission, protocol translation and AHB
transfer.

52

Chapter 5

Design and Implementation

The previous chapters described the practical and theoretical framework of the whole
system. In chapter 3, possible approaches and solutions were presented. In this chapter,
the actual design of the bus-switching unit is described, regarding the theoretical possi-
bilities as presented in chapter 3. It is also described how a typical work flow for FPGA
design was applied to the current problem, and which adaptations had to be made to fit
the given tasks. Moreover, traps and pitfalls that occurred on the path to the successful
implementation are discussed, and guidelines on how to avoid some of those problems in
future projects are presented.

5.1 Design Work Flow

A typical design workflow for FPGA based design consists of several stages, while some
of them have to be repeated in an iterative manner. Figure 5.1 shows the flow diagram of
a typical design flow. As depicted, simulation is a central element which is performed at

Specification

System Level
Design

Circuit Level
Design

Simulation

Physical
Design

Verification

Figure 5.1: Typical design flow

53

Chapter 5 Design and Implementation

different levels for the different stages of the design. The bridging line between simulation
and verification symbolises that simulation is an integral part of verification.

In contrast to a design from scratch, for this diploma thesis an already existing, working
hardware design was used as a base to start from. The original hardware design was
developed for a Lattice FPGA device, whereas the new design has to work on an Altera
Stratix II GX device. Although the Very High Speed Integrated Circuits Hardware De-
scription Language (VHDL) is designed to be mostly independent of the used technology
and hardware platform, there are still design components for which the used platform
has to be considered. Such elements, for example, are memory blocks, which could be
described in a generic manner, but can be used more efficiently if the code is optimised
for the specific FPGA technology. Most FPGA vendors offer tools to create specifically
optimised code for their respective devices. Another example are on chip PLLs or other
device specific function blocks, like high-speed transceivers.

The timing of such device specific elements is very likely to vary from device to device.
The timing of modules usually is the most crucial part of a hardware design. Therefore,
a changed timing behaviour of a single element bears the potential to harmfully effect
the functionality of the complete system, which might end up in a total system failure.
To minimise the influence of a single element, it is desirable to design the system in a
way that timing dependencies are limited to only directly connected components. Due to
multi-stage timing requirements, or due to critical-path-optimisation, this is not always
possible, and there might be more complex timing dependencies. In order to get a stable,
proven base to start from, it is important to first perform and verify the transition of
the system to the new platform, before any other modules are added or modified. In this
diploma thesis, it was not possible to test the original system design with the new, adapted
module parts on the actual hardware platform, because the evaluation board supports PCI
Express only, whereas the original system design is based on PCI. Nevertheless, it was
possible to use the original simulation environment to test the new modules, as it offers
the simulation of a PCI bus system as well.

This first step of the design phase guaranteed, that the changed device specific modules
did not affect the timing in a destructive way. This knowledge is very important, as it
offers a trusted system base to start from. Any new module or additional modification
adds new error sources. The more changes are performed at a time, the more complex
error conditions can become. For a successful system design, it is of utmost importance
to keep the modification steps as small and isolated as possible.

5.2 Hardware Transition

Before the real development of the new design could start it was necessary to generate a
stable, proven platform to start from. The existing hardware design had to be transferred
from a Lattice LFXP20 to an Altera Stratix II GX FPGA device. To do so, the hardware

54

Chapter 5 Design and Implementation

platform dependent elements had to be identified. Basically, they can be divided into two
groups. The first group contains the elements dependent on the FPGA device, namely

� RAM

� FIFO structures

� PLLs

and the second group contains the elements dependent on the hardware components
present on the evaluation board, namely

� Quartz oscillators

� Ethernet PHY

� PCI Express connector.

5.2.1 FPGA Device Specific Alterations

The group of FPGA device specific elements depend on the internal structures of a spe-
cific device. For example, RAM cells basically consist of a memory array with a small
configurable surrounding logic. The arrangement of the memory cells, as well as the or-
ganisation and type of the surrounding logic parts, vary from device type to device type.
The surrounding logic parts are used to form the so called glue logic, which e. g. takes
care of the correct addressing of the underlying memory, the handling of simultaneous
read and write accesses etc. Because of the varying physical implementation of those
memory units, standard memory blocks used in applications are dependent on the used
FPGA device. FIFOs are likewise dependent as they consist of RAM blocks with some
additional control logic. Beside these similarities, RAM and FIFO elements still have to
be treated separately if no generic FIFO control logic implementation is used. In both
cases, the original timing behaviour has to be extracted and the corresponding elements
in the design for the new platform have to meet the original timing requirements. Except
for the naming scheme, the interfaces usually are quite similar between different vendors,
but attention has to be paid to the different timing models. The elements might differ
in the handling of the input and output signals and thus differ in the timing behaviour.
They might be registered on each side, which adds a delay of one clock cycle by each
register stage. The quality of a PLL is also highly dependent on the underlying technol-
ogy and physical implementation. For all three mentioned types of technology dependent
elements, the main requirement of meeting the old timely behaviour stays the same.

Unfortunately, it is not always easy to access the information about used components,
their configuration, and thus their timing behaviour. Generally speaking, five methods
can be identified to get the necessary details about components of a third party project.

55

Chapter 5 Design and Implementation

Data sheets of the configuration of the used components might be present. The informa-
tion about the timing details can be directly accessed and used for the own design.
This is the preferred method to get the respective information, but it is not always
applicable. Information about the exact timing of internal memory structures usu-
ally is not found in the data sheets of any device. The design internal timing is not
relevant for end users. Thus, chances are very low to have documented information
about the internal timing, if a project is not explicitly designed for exchangeable
modules.

Source code of the project is more likely to be available than the specifically documented
information about the internal timing. If the source code is available, it can be used
as well to get the relevant information about the timing, though it is not always
easy. The device specific elements are often created using some kind of generation
tool, which creates more or less readable code, usually with a lot of parameters
describing the actual behaviour. If the parameters have speaking names, the needed
information might be extracted very quickly, but care has to be taken as some
important information or cross dependencies might be missed. Using this method
can lead to a very quick solution, but it is highly recommended to counter check
the result with a different method, for example by simulation. The combination of
these two methods, source code inspection and usage of simulation, has been used
for this diploma thesis.

Simulation can provide reliable information about the timing behaviour of components,
but the simulation test bench and other modules for simulation purposes as well as
appropriate test cases have to be available. Even when they are available, it might
take some time to find the corresponding test cases and signals to reveal the detailed
behaviour of the investigated modules.

Developer contact might finally give access to some missing information. A contact
should be available in most of the cases, but there is no guarantee that support is
offered, and if it is offered, responses could take some time.

Hardware observation is the least suggested possibility and should only be used if all
other methods fail. The hardware design has to be programmed into the FPGA
and some means for signal observation inside the FPGA has to be applied. As it
might be necessary to make a lot of changes at once to be able to get meaningful
results, various complex error sources might be added, which makes it very difficult
to observe the correct functionality of the replaced modules.

5.2.2 Board Specific Alterations

The necessity for the second group of alterations is due to the dependence on the available
hardware components and their respective interfaces. Except for the third item, the
transition to a PCI Express interface, which is the main part of this diploma thesis, the

56

Chapter 5 Design and Implementation

other two mentioned items were not expected to raise major problems. However, in the
course of the practical realisation at least the connection of the Ethernet PHY was not
straight forward.

5.2.2.1 Clocking Scheme

The original clocking scheme had to be altered because of the specific requirements for
the PCI Express MegaCore clocking. In the original implementation, two external clocks
were fed into the design, a so called user clock, which sourced the Clock Synchronization
Cell (CSC), and the PCI clock, which sourced the PCI core and the AHB components.
The user clock was operated at a frequency of 25 MHz, while the PCI clock was driven at
a frequency of 33 MHz. In the new design, the PCI Express interface offers no dedicated
clock line. The receive clock can be derived from the received data, the transmit clock
has to be sourced at the transmitter. On the used Altera hardware platform the Stratix
II GX FPGA device has a high-speed transceiver module included which is used as the
electrical sub layer for the PCI Express PHY. This receiver requests a 100 MHz input
clock, which is then converted to a 125 MHz output clock, the frequency at which the
Altera PCI Express MegaCore Streaming Interface operates. Therefore, it is called the
application clock.

In the original design, the PCI clock was also used for debouncing of the reset buttons
as well as for delaying the Ethernet PHY reset. In the new design, the 100 MHz input
clock must not drive any other logic except for the high-speed transceiver, and the derived
application clock is only available after the reset is deasserted. Therefore, the clocking
scheme for debouncing and Ethernet PHY reset had to be redesigned to be sourced by
the user clock.

5.2.2.2 Ethernet Physical Layer Device Connection

The communication between an Ethernet PHY and Ethernet MAC device is standardised
in the IEEE 802.3 standard [5] clauses 6, 22 and 35. For data transmission the Media
Independent Interface (MII) and Gigabit Media Independent Interface (GMII) protocols
are used, while for station management functions the MDIO interface is used. Using the
MDIO, registers in the PHY can be configured or read out, such as PHY ID, link speed,
auto-negotiation, etc. For proper operation of the tristate bus a pull-up resistor has to be
inserted. The data sheet [29] of the used Marvell® PHY requires a pull-up resistor in the
range from 1.5 kΩ to 10 kΩ to be inserted to pull the bus high in idle state, when both
drivers are in high impedance state. On the Altera evaluation board, a 4.5 kΩ pull-up
resistor is mounted, which is compliant to the requirements of the PHY.

To verify the functionality of the MDIO interface, the new design was implemented in the
FPGA device in an early development phase. After the register read and write operation
design was completed as described in section 5.3.5, the PHY was connected to the FPGA.

57

Chapter 5 Design and Implementation

Unfortunately, the PHY did not respond to any register read requests. Observation of
the signal levels with Altera’s Signal Tap tool revealed, that the MDIO interface bus
turnaround failed. After the station management of the MAC started a read operation
and switched to high-impedance state, the MDIO signal line stayed high, although the
PHY should have taken over control and responded. To solve the problem, first all timing
requirements and electrical specifications defined in IEEE 802.3 clause 22 and the data-
sheet of the PHY [29] were checked on the schematic level of the board layout [30], but
no violations were found.

As no obvious design error could be identified, a different approach had to be taken.
Together with the evaluation board, Altera delivers a couple of reference designs. One of
those reference design projects contains the initialisation of the PHY. In this reference
design, there were three different versions of the MDIO read operation control. The first
version switched the station management to high-impedance state when the PHY should
respond, as it is required by the standard. The version finally used in the reference
implementation drives the bus constantly low, even when it should be in high-impedance
state during PHY response. Copying this behaviour to the design of this diploma thesis
solved the problem, and registers of the PHY could be read.

The reason for this behaviour might be a wrong pull-up resistor. The influence of a too
large or too small value of the resistor is investigated to derive a possible failure scenario.
Figure 5.2 shows the MDIO bus line with the two drivers and the pull-up resistor.

When all drivers are in high-impedance state, the pull-up resistor drives the bus line
high. A receiver thus can not distinguish between an actively driven high state and a
high-impedance state. A too high value, or even a missing pull-up resistor would result in
a too low voltage level of the bus line in the high-impedance state, making it impossible
for the PHY to detect the high impedance state of the station management in the bus
turnaround phase. In that case, the bus would have to be driven active high by the station
management to fake the beginning of the turnover phase. As the bus line has to be driven
low, a too big pull-up resistor can not be the cause for the problem.

A too small resistor could result in a permanent high state of the signal line. If the PHY
drives zero to the bus line, it has to be able to draw enough current to make the voltage
drop over the pull-up resistor large enough for the bus line to switch to low voltage state.

MAC-side
driver

VDC VDC

VDC

MDIO
PHY-side

driver

pull-up resistor

Figure 5.2: Pull-up resistor and drivers of the MDIO bus line

58

Chapter 5 Design and Implementation

If the current-limitation of the driver is too low, not enough current can be drawn and
thus the bus line stays high. When the opposite side also drives the bus active low, the
current can be split to both drivers, which is enough to pull the line to the digital low
level. If now the PHY drives the line high, the driver must be strong enough to pull
the line up again (supported by the small pull-up resistor) and override the low driving
opposite side. This basically results in a short circuit for the time the signal line is driven
high, but the current-limitation saves the parts from getting destroyed.

Concluding from the observed behaviour, it seems likely that some kind of leakage current
bypasses the mounted 4.7 kΩ pull-up resistor and thus hinders the MDIO signal line to be
driven low by the PHY. The existence of the different file versions of the reference project
might suggest that the developers of the evaluation board also had some problems with
the MDIO interface.

5.2.3 Configuration of the PCI Express Endpoint

The available PCI Express Endpoint design by Altera has several configuration options.
The most important options are described here and the chosen configurations are reasoned.

The address space is configured for the use of 32-bit addresses only. The application re-
quires only 13 bits (8 kBytes) of address space, therefore no 64-bit addresses are needed.
The memory mapped region is configured as non-prefetchable memory, because the CSC
uses a FIFO structure for the stored timestamps and packet IDs where reading is destruc-
tive. A side effect of the use of non-prefetchable memory is the possibility to use 32-bit
addresses, as only non-prefetchable memory is allowed to not support 64-bit addresses.

It further is configured as a single lane connection (x1 PCIe), which supports up to 250
MByte per second of raw data. This is fairly enough for the theoretical maximum of Giga-
bit Ethernet’s 125 MByte per second. Support of ECRC is disabled, as the encapsulated
Ethernet packets have their own FCS for data integrity checks.

The maximum payload length is set to 256 byte per TLP. This size allows high protocol
efficiency, while keeping the maximum blocking times and required buffer sizes reasonably
low. The supported number of tags is set to the standard of 32, which allows for 32
concurrently outstanding completions. Under normal operation conditions, this number
should be fairly high enough. Further, as no virtual channels and traffic classes were
supported in the original PCI system, there is no need for virtual channels in the PCI
Express either, therefore the number of virtual channels is set to the minimum of one.

5.2.4 Reset Circuit for the PCI Express Endpoint

The several reset signals and the associated reset logic are depicted in figure 5.3. The reset
signal names ending with a number sign are low active signals. The five reset sources can
be reduced to three different types, the power-on reset signal on the PCI Express connector

59

Chapter 5 Design and Implementation

Altera ST Interface

refclk

clk125_out

npor#

srst

crst

app_int_sts

cfg_busdev

cpl_err(6:0)

l2_exit#

hotrst_exit#

dlup_exit# >=1

>=1

reset_button#

pcie_reset#

flop

Figure 5.3: Reset circuitry for the PCI Express Endpoint

(pcie reset#), the user push-button reset (reset button) and the three hot reset signals
triggered by PCI Express messages (l2 exit#, hotrst exit# and dlup exit#).

The pcie reset# signal is the power-on reset of the host PC. When this signal is active,
the main reset signal of the Altera interface, the negative logic power-on reset (npor#)
is also set to zero (activated). This reset is also called fundamental reset and resets all
register settings, including even the sticky registers which are not affected by a hot reset.
Additionally, the datapath (srst) and configuration (crst) resets are asserted. To ensure
that the root complex is stable and ready for link training, those resets are held active
(flop) for some microseconds.

On any activity of the three hot reset signals or the activation of the user push-button
the datapath and configuration resets are asserted. Such a hot reset is applied when the
software requires a hot reset (hotrst exit#), when the PCI Express nodes leaves the low
power state, (l2 exit#) or when the data link layer looses connection (dlup exit#).

5.3 Architectural Structure of the Bus-Switching Unit

The development of the bus-switching unit was the main part of this diploma thesis. It
is the core unit for the translation and arbitration of the AHB interfaces and the Altera
PCI Express Streaming Interface, as already discussed in section 4.2 and in chapter 3.
The block diagram of the architecture is depicted in figure 5.4. First, the functions of the
individual modules are described. Reasons are given, how and why functional require-
ments were mapped to the individual modules. Furthermore, for important decisions the
influence of possible variations are discussed.

Beside the AHB interfaces and the PCI Express interface, a header decode unit, an address
decoder and both, input and output FIFOs are present. Referring to the discussion about

60

Chapter 5 Design and Implementation

AHB Master

AHB Slave

Bus-Switching Unit

Header
Decoder

AHB

RX FIFO

AHB

AHB
PCIe

read
completion

read
request

write
request

read
completion

write
request

read
request

TX FIFO Output
Control

TX FIFO

A
dd

re
ss

 D
ec

od
er

to MAC

to MAC

to CSC

Figure 5.4: Architecture of the bus-switching unit

the possible solutions in chapter 3, the dedicated bus arbiter unit and the packet translator
are missing. Those functions are integrated in the header decoder and the AHB interfaces.
For the protocol translator, the argumentation of section 3.2.1 applies. For the bus arbiter,
it has to be explained that a mutual exclusion scheme for the complete AHB interface
state machines is used. Therefore, the simple case of mutual exclusion, as described in
section 3.3.2, eventuates. This simple mutual exclusion scheme of the state machines was
not the first choice during the development of the bus-switching unit. For an explanation
about the history of this decision refer to section 5.4.

Numerous considerations lead to the conclusion, that a buffer for incoming PCI Express
TLPs is needed. The necessity for rate-matching the faster PCI Express interface to the
slower AHB interface requires to either stall the PCI Express interface, or to buffer the
incoming TLPs, as described in section 3.2.4. Since the PCI Express interface, as described
in section 2.1.4, is only required to react within three clock cycles on changes of the ready
signal, the incoming data of at least three clock cycles has to be buffered. The use of
the mutual exclusion scheme for the state machines also require the buffering of incoming
TLPs, when the state machine currently is blocked. Since a buffer has to be implemented
anyway, it is as well used as a shared memory for packet-switching, as described in section

61

Chapter 5 Design and Implementation

0 1 21

1

clk

fifo_cnt

ready

fifo_rd

data_in 2 3

2

fifo_out

4 5

1 12 0 0 0 0 1

6

2 3 41

Figure 5.5: RX-FIFO timing with simple ready signal control

3.2.2. Therefore, the controlling read signal for the Receive FIFO (RX-FIFO) becomes a
shared resource as well, as all modules with RX-FIFO data access have to be able to take
over control of the read signal. This additional shared resource must also be considered
in the bus arbitration.

The incoming data to be buffered does not have to be reordered, or read in advance. It
has to be stored, 64 bits (the size of a quadword) per clock cycle, and read in the same
order as it was written to the buffer. Therefore, the most reasonable architecture for the
buffer is a FIFO structure. The size of the FIFO can be varied. The minimum size is
three times 64 bits, but this minimum size already needs some small additional logic to
prevent buffer overflow, and thus data loss.

5.3.1 Receive FIFO Memory

The simplest version can be realised with a FIFO with the size of four quadwords. Figure
5.5 shows an example timing diagram for this simple version. The simple logic for the
ready signal of the PCI Express interface has to deassert the ready signal on the reception
of each data block, and reassert it when the buffer is empty. The deassertion of the ready
signal has to be done immediately on reception of data, because it is not known in advance
if the data of the FIFO will be read in the next clock cycle. If it is not read, the data
stays in the buffer. The ready signal is required to stay deasserted until the data of the
FIFO is read again, since the three remaining stages of the buffer are needed to buffer
possibly incoming data until the PCI Express interface reacts on the deassertion of the
ready signal. The ready signal can only be reasserted, when the FIFO is empty. From
then on it takes three clock cycles until the PCI Express presents the next data. Thus,
in order not to loose any data, many performance deteriorating wait-states have to be
inserted. With this simple logic, the use of a six- or seven-staged FIFO would greatly

62

Chapter 5 Design and Implementation

0 1 21

1

clk

fifo_cnt

ready

fifo_rd

data_in 2 3

1

fifo_out

4 5 6

11 1 1 0 0 0

2 3 4

0

no src data

fifo empty

avoid congest.

1 5

Figure 5.6: RX-FIFO timing with intelligent ready signal control

increase the performance, because the ready signal would not have to be deasserted after
the reception of only a single TLP.

With a little more intelligent control of the PCI Express interface ready signal, the mini-
mum of a three staged FIFO buffer suffices to prevent data loss without any deterioration
of the system’s performance. Figure 5.6 shows the corresponding timing diagram. The
idea behind the ready signal control is an active surveillance of the maximum possible
FIFO fill for each clock cycle. Therefore, the state of the ready signal at the current, and
the two preceding clock cycles is counted and added to the current value of the FIFO fill
counter. An asserted ready signal is counted as one, a deasserted ready signal is counted
as zero. If this number is smaller than three (the FIFO depth), the ready signal for the
next clock cycle is asserted, otherwise it is deasserted. This mechanism ensures, that at
any time the FIFO has enough remaining space to store all possible incoming data from
outstanding asserted ready signals. It also prevents the ready signal to be high for more
than three consecutive clock cycles, which is required to maintain the minimum size of
three FIFO stages.

The RX-FIFO can certainly be made larger than the minimum size, but no increase
in performance can be achieved. A larger FIFO can store more incoming TLPs when
the processing state machine is blocked, but it is not necessary to do so. The PCI
Express interface unit has a receive buffer for itself, which is needed to maintain full
bandwidth because of the PCI Express credits update loop delay. A larger RX-FIFO in
the bus-switching unit would only come into account, when first incoming TLPs were not
accepted, until the PCI Express internal FIFO was full, and then all buffered TLPs were
processed faster than new data could be delivered over the PCI Express link. When the
system operation is considered it becomes clear, that under normal operation conditions
this situation does not occur.

63

Chapter 5 Design and Implementation

The device driver can only send two different types of TLPs: completions when they are
requested, and memory read or write requests for register operations. Since the completion
packets, which are involved in Ethernet traffic, can only be sent when they are requested,
they can’t come faster than the requests can be sent. A new request can not be sent, until
the completion of the last request arrives and is completely processed. Therefore, with
only Ethernet traffic, the system stays in a self-regulated equilibrium and is only required
to buffer the data of one PCI Express TLPs.

The other type of TLPs, register read and write requests, might lead to full buffers when
the device driver floods the network interface card with requests. As all register read
requests require a completion to be sent back, they definitely can’t be processed faster
than they can arrive. Even if the processing speed was high enough, the internal transmit
buffer of the PCI Express interface, which is of the same size or smaller as the receive
buffer, would be filled up. Because PCI Express has symmetric transmission speeds,
outgoing TLPs can’t be sent faster than incoming TLPs can arrive. Thus, read requests
can not be processed faster than they can arrive, and therefore the FIFO size of the
bus-switching unit is not relevant. Register write requests are different. They can be
processed faster than they can arrive, since no completion has to be sent back. Therefore,
it is possible to fill the PCI Express interface internal buffers with write requests when
the bus-switching unit is currently not accepting incoming TLPs, and then process them
faster than new requests can be sent. Considering the fact that under normal operation
conditions only a few consecutive register write requests are sent, the theoretical possibility
of the influence of the RX-FIFO in the bus-switching unit is not performance deteriorating,
because the performance influencing condition does not happen under normal operation
conditions. The only case when several subsequent write requests are likely to occur is
the initialisation phase of the NIC. Since the initialisation is done only once, and is most
likely outlasted by the auto-negotiation procedure of the Ethernet PHY, also this regular
use case can not be counted as performance deteriorating.

5.3.2 Transmit FIFO Memory

The reason for the Transmit FIFO (TX-FIFO) in the bus-switching unit is a completely
different one than for the RX-FIFO. The only common reason is the necessity for rate-
matching. For the TX-FIFO, not the slow reaction time of the faster transmitting unit
requires the data to be buffered, but the missing possibility to stall the faster receiving
unit. The PCI Express interface requires a PCI Express TLP to be transmitted at once,
without inserting any wait states once the transmission has started. The data sink, which
is the the PCI Express interface, works with twice the data rate of the data source, the
AHB interface. Therefore, the TLP has to be buffered until the complete TLP is available,
before it can be presented to the PCI Express interface.

The size of the TX-FIFO can easily be derived from this requirement. It has to be able
to hold a complete TLP, which includes the size of the TLP header, and the size of the

64

Chapter 5 Design and Implementation

data payload, which is exactly one cell size, as configured in the corresponding register of
the Ethernet MAC. Since the cell size can be reconfigured dynamically, but the size of
the TX-FIFO can not, there must be an absolute limit for the cell size, and the TX-FIFO
must be able to accommodate a TLP of the corresponding maximum size.

Beside lowering the maximum cell size, there are two different methods to reduce the
depth of the TX-FIFO. If the AHB master guarantees never to insert a wait state, thus
guaranteeing only to start a burst transfer when the complete burst of the size of one
cell can be transferred, then the TX-FIFO depth can be reduced to the size of a TLP
header plus half the size of one cell. In this case, the transmission of the TLP must begin
as soon as half of the cell size of data is written to the FIFO. From then on, the PCI
Express interface side draws 64 bits per clock cycle out of the FIFO, while the AHB side
puts 32 bits per clock cycle of new data into the FIFO. Because the transmission begins
exactly when half of the cell has arrived, the FIFO gets empty only when drawing the
last quadword out of the cell.

The requirement for no wait states of the AHB master goes beyond the specification
of AHB. Half of the FIFO size of memory can be saved, but at the prize of reduced
compatibility and reusability of the bus-switching unit. A better solution to completely
get rid of the TX-FIFO would be a change of the data width of the AHB interface. With
a 64 bit wide AHB data bus, there is no need for rate-matching, and thus no need for a
TX-FIFO. Unfortunately, the existing interface specification is a legacy requirement, and
therefore unchangeable.

On the other hand, increasing the buffer size of the TX-FIFO does not directly effect
the system performance. There is a corner case, though, where a larger buffer does
affect the performance. When the PCI Express bus is congested, the internal buffer of
the PCI Express interface is full, the TX-FIFO of the bus-switching unit is full and all
frame buffers of the Ethernet MAC are full as well, then a larger TX-FIFO would prevent
incoming Ethernet frames from being discarded. This situation only happens when the
device driver is not able to handle incoming data streams fast enough, which did occur
in test runs. However, the investigation of the reasons for this situation is out of scope
of this diploma thesis, as it concerns the device driver and not the hardware modules.
Besides, it is not the job of the bus-switching unit to buffer incoming Ethernet frames.
For that case, the frame buffer of the MAC would have to be increased, not the TX-FIFO
of the bus-switching unit.

5.3.3 Header Decoder

The unit in figure 5.3 labeled “Header Decoder” can be identified as the packet-switching
module, as described in section 3.2.2. Additionally, it has a part of the bus arbitration
function integrated. It is named header decoder because it has to read and analyse the
TLP header in order to route the packet to its intended destination.

65

Chapter 5 Design and Implementation

The functional rationale for the packet-switching is the cut-through technique with shared
memory switching. The header decoder is implemented as a Moore machine, i. e. an FSM
with the output signals being only dependent on the current state of the state machine, not
on the value of the input variables. The implementation as a Moore machine increases the
response time, because no immediate response on the change of input signals is allowed.
This reduces the performance of the whole system, but the understandability of the control
sequence is greatly increased, which again reduces the risk of bugs during development
and hence increases the stability of the system.

Packet-Switching

In the following paragraph, the sequence of operation is described. The PCI Express
interface presents the TLP in sets of eight bytes per clock cycle. When a PCI Express
TLP arrives, the first set of eight bytes of data is written into the RX-FIFO and can be
read by the header decoder module in the next clock cycle. The header of the TLP is
twelve bytes long, as described in detail in section 2.1.3.2. The first arriving eight bytes
on the PCI Express interface thus are the first part of the TLP header. As depicted in
the figures 2.10 and 2.11, the format and type fields are included in this first part of the
header. Those two fields are used to determine the destination of the data transmitted in
the TLP.

Memory read and write requests belong to transactions initiated by the device driver.
The device driver is only allowed to initiate register read and write operations of the
length of exactly 32 bits of data. Therefore, when a memory request TLP is received, the
length field is checked to have exactly the value of one, which corresponds to one DW of
data. In the case of a read request, the requester ID and the tag information, as well as
the attribute and the traffic class field are stored in a register, as this information has
to be included in the completion TLP. The content of the attribute and the traffic class
fields are ignored, as different traffic classes are not supported by the NIC. If the data is
indicated as poisoned, the TLP is dropped. If an error is detected in a read request, an
error message is sent back, informing the requester that the sent request is unsupported. If
an error is detected in a write request, the TLP is dropped and no further action is taken.
If all checks are passed, the request is routed to the AHB master module. This is done by
asserting a control signal, allowing the module’s state machine to start its operation. For
an overview of the information flow of the TLPs inside of the bus-switching unit, refer to
figures 3.2 and 3.4.

Completion packets belong to DMA operations and are the response to previously issued
memory read requests. The memory read requests are issued by the AHB slave, and
therefore the completion packets are routed back to the AHB slave module by asserting
the corresponding control signal. The completion packets contain the data of Ethernet
frames, which are bound to be transmitted over the Ethernet link. Upon reception, the
header decoder module checks a completion TLP for a successful completion status, for
correct traffic class and attribute fields and for the correct size, which is controlled by a

66

Chapter 5 Design and Implementation

configurable register in the Ethernet MAC unit. In the case of an error, an error message
is sent back, informing the requester about the unexpected completion. Any other TLPs
except for the described ones are discarded upon reception.

Bus Arbitration

Concerning the bus arbitration, one part is integrated in the idle state of the state machine
of the header decoder, whereas the second part is integrated in the idle state of the AHB
slave. As already mentioned, the simple mutual exclusion version is used, which allows the
integration of the very short code for arbitration in the respective modules. A description
and some thoughts about the mutual exclusion scheme for bus arbitration were presented
in section 3.3.2.

The reason for integrating the bus arbitration function in the header decoder module is
its leading position in the processing sequence. Only the header decoder module can start
the processing of a received TLP, which is stored in the RX-FIFO. To ensure that only
one state machine is allowed to run at a time, the header decoder module monitors the
operation of all other state machines and only starts the processing of a new TLP when
all state machines are in idle state. When a TLP is present in the RX-FIFO, the header
decoder module starts the processing by decoding the header of the TLP and asserting
the respective control signal, granting the addressed module to access the RX-FIFO and
further process the TLP. The header decoder then waits until it receives a response
signal asserted by the addressed module. This control signal tells the header decode state
machine, that the respective module has finished its operation, is back in idle state and
does not access any shared resource any more. Only after this response signal is received,
the header decoder itself changes back to idle state, and thus is ready to start a new
operation. By waiting on the end of the operation, it is assured that two modules can
never work simultaneously. This is important, as all bus modules share the TX-FIFO as
well as the RX-FIFO resource.

The header decoding module thus works as a bus arbiter, passing control to the respective
bus module using a dedicated start control signal. Actually, there are three different start
signals. One is for the AHB slave module upon reception of a completion, and two are
for the AHB master module, one for read and one for write. As the header decoder has
to analyse the format and type field of the TLP to be able to switch it to the correct
module, it already has knowledge about whether it is a read or write request. Therefore,
the respective signal is asserted, both telling the AHB master to start the respective
operation.

For the prioritisation of the modules, the following considerations were taken into account.
Remember that the prioritisation mechanism is only relevant when both independent sides
want to start a transfer at the same time, the device driver by sending a read or write
request to the PCI Express interface of the bus-switching unit, and the Ethernet MAC by
starting an AHB transfer which involves the AHB slave in the bus-switching module. For

67

Chapter 5 Design and Implementation

the decision on which transfer to prefer upon concurrent starting conditions, the different
nature of the transfers has to be considered. Register operations are restricted to the
length of only one DW of data per transfer. Therefore, their TLPs are short and the
operations are processed quickly. For that reason, register operations are prioritised over
the longer DMA transfers.

The prioritisation is easy to implement. As already mentioned, the header decoder module
can only start the processing of a new incoming TLP request, when itself is in idle state.
Because it waits for all controlled state machines to return to idle before itself switches
into idle mode, no conflict can occur with subsequent incoming requests. The only point of
conflict can be the AHB slave, which is controlled by the Ethernet MAC unit. Therefore,
before the header decoder module starts the processing of a TLP, it has to check whether
a DMA operation currently is in progress. This is done by observing the state machine
of the AHB slave interface in the bus-switching unit, which is responsible for the DMA
transfers. If the header decoder module finds the AHB slave to be in idle state, the
processing of an incoming TLP can start. If the AHB slave is not in idle state, the header
decoding module has to wait until the slave module has finished its operation. Only after
the header decoder observes, that the slave module has changed back to idle state, which
indicates that the previous operation has finished, the processing of the received TLP is
started. Because the prioritisation of the incoming TLPs, it suffices to ensure that the
AHB slave state machine is not currently working. If the AHB slave receives a transfer
at the same time, requiring the state machine to start its operation, the AHB slave is of
lower priority and has to wait for the incoming TLP to be processed first. Therefore, the
AHB slave has to observe the starting condition of the header decoder as well, but the
header decoder does not have to care about a concurrent starting condition of the AHB
slave.

Concluding, the packet-switching is done by granting the addressed bus module access to
the shared RX-FIFO memory, which holds the incoming data. After the header decoder
has interpreted the first quadword of data, the respective bus module takes over control,
and continues to process the incoming data. Therefore, the bus arbitration behaviour cor-
responds to cut-through, shared memory switching. The realisation as a Moore machine
results in a lower overall performance. The control output signals can only be asserted
after the first part of the header is decoded. Although the TLP data is already present,
the further processing module first has to sense the asserted control signal, until it can
process the data. Therefore, the processing is delayed, but the sequence is much easier to
understand, to develop, and to maintain.

5.3.4 Address Decoder

The address decoder as such is a very simple module. Since there are only two slaves
present, a very simple address decoding can be applied. All addresses below a certain
value belong to the Ethernet MAC unit, all larger addresses belong to the CSC. For the

68

Chapter 5 Design and Implementation

AHB Master

AHB

AHB

Address Decoder

D
E

M
U

X

AHBM
U

X

RX FIFO

address

control

da
ta

read

Bus-Switching Unit

(a) Standard architecture

AHB Master
MACAHB

AHB Master
CSCAHB

Header
Decoder

(Arbitration)

R
X

 FIFO

data

read

select

select

data

re
ad

Bus-Switching Unit

(b) Architecture after logic duplication

Figure 5.7: Address decoding with one and two AHB masters

sake of simplicity, the address boundary is 0x1000 (hexadecimal notation), which allows
address decoding based on the obervation of a single bit.

However, the real structure of the AHB interfaces and the address decoder is different. The
different architecture was necessary because of timing problems during the implementation
phase. Figure 5.7 shows the difference between the standard architecture and the actually
implemented architecture. Although, from a functional point of view the structure of a
single master, an address decoder and two slaves is maintained, the logical structure is
changed. Instead of a single master with a multiplexer, two identical AHB masters are
used, each of them having a direct point to point connection to only one of the slaves. By
performing this logic duplication, a register retiming is achieved. The large multiplexer
for the AHB signals from figure 5.7a became obsolete, because there are no shared AHB
signal lines any more. Only the read signal for the RX-FIFO is shared. But, in contrast to
the AHB signals, this is a single data line. Because of the mutual exclusion scheme of the
state machines, no real multiplexer is needed, it suffices to or-connect the two sources. By
duplicating the AHB master, the or-gating was moved from the AHB side of the master
to the RX-FIFO side of the master. Additionally, only a single line instead of the whole
AHB signals has to be gated. Therefore, the registers have been retimed and the routing
became much simpler.

69

Chapter 5 Design and Implementation

Due to the duplication of the AHB masters, the need for address decoding is moved to the
functional partition of the bus arbiter, as a different addressed slave also means a different
addressed master. Thus, the address decoding has to be done in the header decoder
module. As the address is not contained in the first quadword of a TLP header, the second
quadword also has to be read. Only after the address is obtained, the corresponding
control signal can be asserted. From then on, the operation is equal to the standard
version with one master and a separate address decoder, as described in section 5.3.3.

However, in all previous considerations the two AHB masters were treated as if they were
realised in the standard way, as one master with a following address decoder. For the sake
of understandability and consistency, this style will be kept in all following descriptions
except for the rare cases, where the special realisation as two distinct masters have to be
taken into account.

5.3.5 AHB Master – Register Operations

Although there are actually two AHB masters, as was described in the previous section,
the operation of only one master is described, because the two master modules are exact
duplicates, and therefore work in the same way.

The AHB master module is responsible for processing the register read and write opera-
tions. The principle of operation was already outlined in section 3.1.1. The AHB master
module does not support all optional features specified in the AHB specification [6]. It
rather is implemented as an AHB lite [18] master, with support for non-sequential trans-
fers only. An AHB lite master is a simplified version of a full AHB master, which operates
only in a single master environment, and therefore, no AHB bus arbiter is required, nor
do split and retry slave responses have to be supported. The support of non-sequential
transfers only is a further restriction to a full AHB master, but it is sufficient, considering
that the AHB master interface solely is involved in the register read and write operations,
which are defined to be exactly 32 bits per operation. Therefore, in any case all data can
be transmitted in a single, non-sequential transfer and no support of burst transfers is
required.

The AHB master interface is implemented as an FSM. It has to read the PCI Express
TLP data from the RX-FIFO, which is a shared resource. Therefore, it is not allowed
to start its operation independently. As already discussed, the header decoder module
acts as an arbiter as well as a packet-switcher. When the header decoder identifies a
TLP for register operation, the controlling start signal is asserted. When in idle state,
the AHB master does nothing more than waiting for the assertion of either one of the
start signals, the start signal for a read or write operation. As soon as the start signal
is received, the AHB master can start its operation. For the reasons presented in section
3.2.1, the protocol translation is integrated in the AHB master state machine. Therefore,
the master has to read the data of the TLP and translate it to an AHB transfer.

70

Chapter 5 Design and Implementation

Read Request

If a read request TLP is received by the bus-switching unit, the only information the AHB
master needs to extract from the TLP is the address of the read request. Because of the
special realisation as two distinct masters, the address decoding is already done by the
header decoder module. Therefore, at the time the AHB master state machine starts its
operation, the part of the TLP header containing the address has already been read from
the RX-FIFO and is no longer available. However, the address has to be presented to the
AHB slave. The header decoder thus stored the address in a register, which now can be
accessed by the AHB master module. No further information of the PCI Express TLP is
needed, hence no data from the RX-FIFO needs to be read for a register read request.

To initiate an AHB read transfer, the master signals the start of a non-sequential transfer
of the fixed size of 32 bits to the slave and waits for the ready signal of the slave to
be asserted, which indicates that the AHB read data lines hold valid data. Because of
the mutual exclusion scheme of the state machines, it is guaranteed that currently no
other module wants to access the shared TX-FIFO resource. Therefore, the AHB master
immediately can start to write the first eight bytes of the TLP completion header into
the TX-FIFO. The following eight bytes of data expected by the PCI Express interface
depend on the address of the register read operation. As described in 2.1.4, it has to
be distinguished between quadword aligned and non-quadword aligned addresses. In any
case, the lower four bytes, bytes 9 to 12, contain the four remaining bytes of the header.
This remaining part of the header contains the completion specific data which had to be
extracted from the requesting PCI Express TLP. As the complete TLP was only read by
the header decoder, this information, as well as the address, had to be stored in separate
registers, which can now be accessed by the master module to build the proper completion.

The upper four bytes, bytes 13 to 16, depend on the address of the read request. In
the case of a quadword aligned address, they can be of arbitrary value, in the case of a
non quadword aligned address they are expected to hold the completion data, which is
the data provided by the AHB slave. For non quadword aligned addresses, the TLP is
complete and can be sent, whereas quadword aligned requests require another eight bytes
of data to be presented to the PCI Express interface. Bytes 17 to 20 are expected to
hold the data, while the remaining four bytes, bytes 21 to 24, can be of arbitrary value.
Therefore, the assembly of the completion packet for a quadword aligned addressed read
request takes three clock cycles, whereas the assembly of the completion packet for a non
quadword aligned addressed read request takes only two clock cycles.

When all data is written to the TX-FIFO, a control signal is asserted which causes the TX-
FIFO control module to start the transmission of the TLP to the PCI Express interface.
Only after the TX-FIFO control module confirmed the start of the transmission, the AHB
master module asserts the response signal to the header decoder module, indicating that
the transfer is completed, and changes back to idle state.

It might be argued that the assembly of the completion packet could already start before
the actual data of the slave is present, as the first eight bytes of data only contain header

71

Chapter 5 Design and Implementation

information which is independent of the read data. This is true, and the benefit would be
a speed gain of one clock cycle per register read request, thus shortening the time where
no Ethernet data can be transferred, because the mutual exclusion scheme only allows the
operation of one state machine at a time. However, it would lead to more complex states
in the master state machine. The goal of this diploma thesis is the implementation of a
stable test setup for clock synchronization, where high performance Ethernet throughput
is not required. Thus, the simpler but less performant design was chosen, as it simplifies
the development of a stable hardware.

If, at any time during the AHB transfer an error or an unexpected behaviour of the
AHB slave occurs, the dedicated error messaging signals of the PCI Express interface
are asserted according to the occurred error. The PCI Express interface then uses the
error messaging means of the PCI Express protocol to inform the device driver about the
occurred error.

Write Request

In contrast to the read request, the write request is a posted PCI Express transaction
which requires no completion packet. Therefore, there is also no possibility for error
reporting.

When a PCI Express write request is received by the header decoder module, the corre-
sponding start signal for a write request is asserted. The AHB state machine then already
has to distinguish between a quadword aligned and a non quadword aligned address. In
the case of a non quadword aligned address, the data was already contained in the upper
four bytes of the TLP portion that had to be read by the header decoder to extract the
address. As no further data had to be read from the RX-FIFO since then, the data to
write is still accessible at the registered output of the FIFO. Therefore, the AHB master
can immediately start a write transfer. The address is also still accessible at the output
of the RX-FIFO and no additional registers are needed to store TLP data. The master
simply waits until the slave responses with an asserted ready signal, indicating that it is
ready to receive the data, and presents the data contained in the write request TLP. As
soon as the slave indicates the successful completion of the write operation by having the
ready signal asserted again, the AHB master asserts the response signal to the header
decoder module, indicating the completion of the transfer, and changes back to idle state.

In the case of a quadword aligned address, no data is included in the address containing
quadword. Only the subsequent quadword holds the data. Therefore, the data has to be
requested from the RX-FIFO by asserting the read signal. As the data is available only
one clock cycle after the asserted read signal was detected by the RX-FIFO, the previous
output data, containing the address information, can still be accessed at the output of
the RX-FIFO. Therefore, the AHB transfer is started and handled in the same way as
with a non quadword aligned address, except for the fact the data at the output of the
RX-FIFO changes between the address phase and the data phase of the AHB transfer.

72

Chapter 5 Design and Implementation

5.3.6 AHB Slave – Direct Memory Access Burst Transfer

The AHB slave module is responsible for the actual Ethernet traffic. It is the AHB
counterpart to the master module of the MAC unit, which controls the AHB transfers for
Ethernet traffic. The master in the MAC unit is an AHB lite master, which allows the
slave to omit the support of split and retry responses. Additionally, the slave is not able
to handle pipelined write transfers. According to the AHB specification [6], the slave is
not required to do so, as long as it keeps the ready signal deasserted during the last burst
transfer, until it is ready to accept the new transfer.

The AHB master in the MAC unit belongs to the legacy hardware environment of the
Ethernet NIC and is not to be changed in the course of this diploma thesis. Unfortunately,
the AHB master does not completely conform to the AHB specification. Instead of using
the AHB specified HSIZE and HBURST signals to indicate the length of a burst, it uses
an unspecified, extra out-of-band signal to pass the information about the burst length
to the AHB slave, while the HSIZE and HBURST signals are not implemented at all.
Therefore, the slave in the bus-switching unit has to violate the specified rules of how to
handle burst length information, in order to be able to communicate with the implemented
AHB master of the MAC unit.

The AHB slave module has a special role in the bus arbitration mechanism. As already
mentioned in section 5.3.3, the bus arbitration mechanism is integrated in the respective
state machines. The two participating state machines are the header decoder module as
well as the AHB slave module, as both receive data from external units and therefore
have to initiate access to the shared resources of the bus-switching unit. Thus, on the one
hand the AHB slave module acts as a controlling instance of the arbitration mechanism,
on the other hand it is controlled by the header decoder, the second controlling instance
of the arbitration mechanism, when an incoming PCI Express completion TLP has to be
processed. Therefore, the two cases have to be handled and discussed separately.

When the AHB master in the MAC initiates a transfer, the slave module has to act as the
controlling instance of the bus arbitration mechanism. The AHB slave can not prevent the
master from starting a transfer, but it can prevent it from sending data. Therefore, when
the master starts a transfer, the slave has to make sure that no other module currently
has access to the shared resources, to the RX-, and TX-FIFO. This is done by observing
the header decoder state machine and its starting condition. As already discussed, the
header decoder state machine is only in idle state, when all processes controlled by the
header decoder are in idle state as well. As the AHB slave module is the only module
that can act independently of the header decoder, it suffices to observe the state of the
header decoder state machine alone. Because of the lower priority of burst transfers, the
starting condition of the header decoder state machine has to be observed as well. The
starting condition of the header decoder is a non empty RX-FIFO. Therefore, the AHB
slave is only allowed to start its operation when the header decoder state machine is in
idle state and the RX-FIFO is empty. Otherwise, it has to wait in idle state for those two
conditions to become true.

73

Chapter 5 Design and Implementation

When the AHB master in the MAC unit initiates an AHB transfer, and the slave is not
allowed to start its operation, it keeps the ready signal deasserted, thus preventing the
master to continue the transfer. When the AHB slave is allowed to access the shared
resources and therefore to start its operation, it asserts the ready signal and thus allows
the AHB master to continue the transfer.

5.3.6.1 Dataflow of Received Ethernet Frames

When an Ethernet frame is received by the Ethernet MAC, it is split into cells of the
specified cell size. The cell size is controlled by a read- and writeable register in the
MAC. The MAC then starts an AHB burst write transfer, to write the data into the
DMA memory area assigned by the device driver.

As already discussed in section 3.2.1, the protocol translation from AHB to PCI Express
TLPs is integrated in the AHB interface modules. Therefore, the AHB slave has to
translate each AHB burst transfer to a corresponding PCI Express TLP and store it in
the TX-FIFO. When the AHB master initiates a write transfer, it starts with the address
phase in the first clock cycle, where the destination address for the first data is given.
Because the ready signal of the slave can only be deasserted when the slave encountered a
new transfer, the master still sees the ready signal asserted. Therefore, in the next clock
cycle it presents the first Double Word (DW) of data and the destination address for the
second DW. The address for the first data is only present during the very first clock cycle
of the AHB transfer. It has to be stored in an additional register, because the slave is not
able to write the address information to the TLP in the very first clock cycle. First of
all, it has to wait until it is allowed to start its operation and access the TX-FIFO, and
even if it does not have to wait, the address information is not contained in the first eight
bytes of the TLP which can be written immediately, but only in the second part of the
header.

As soon as the arbitration controlling part allows the state machine to start the header
of the TLP is built. The first eight bytes of the header don’t require any information of
the AHB transfer. Only the second eight bytes are dependent on the address of the AHB
transfer. First, because the lower four bytes, bytes nine to twelve, hold the address itself,
and second, because bytes thirteen to sixteen are required to hold data in the case of a
non quadword aligned address, and random data otherwise. In the case of a quadword
aligned address the first DW of data is needed one clock cycle later than with a quadword
aligned address. For this reason, the ready signal is deasserted for one additional clock
cycle, compared to the sequence of a non quadword aligned addressed transfer.

After the header is built, the data has to be written to the TX-FIFO. The 64 bit input port
width of the TX-FIFO requires the AHB data to be buffered in a 64 bit wide register. The
incoming 32 bit per clock cycle are written alternating to the lower and the higher DW of
the register. After the higher DW is written, the data of the register is transferred to the
TX-FIFO. This is done until all data of the burst is written to the TX-FIFO. Then the

74

Chapter 5 Design and Implementation

control signal for the TX-FIFO control module to transmit the data to the PCI Express
interface is asserted, and the AHB slave state machine waits until the TX-FIFO control
module confirms the start of the transmission. Only after the confirmed transmission
it changes back to idle state and thus releases its claim for the shared resources. If an
error occurred during the AHB transfer, the data in the TX-FIFO is not transmitted, but
deleted instead.

5.3.6.2 Data-Flow of Sent Ethernet Frames

When Ethernet frame has to be sent, the data first has to be read from the shared memory
part of the host PC. Still, only the AHB master module of the MAC unit is able to initiate
DMA burst transfers. Therefore, the device driver first has to write a register – register
operations are initiated by the device driver – and by that inform the MAC, that the DMA
memory area holds Ethernet data which is ready for transmission. The AHB master in
the MAC module then initiates a read transfer.

The AHB slave in the bus-switching has to translate the read transfer to a PCI Express
read request. Therefore, it has to build and transmit a TLP, following the same arbitra-
tion procedure as described for received Ethernet frames. When the transmission of the
read request TLP is confirmed, the AHB slave state machine also changes back to idle,
allowing other operations to take place until the PCI Express completion arrives. When
the completion arrives, first the header decoder modules gains control, and processes the
TLP as described in section 5.3.3. Because for a completion the single AHB slave module
is the intended target for the data, and not one of the two AHB master modules, there
is no need of the header decoder to examine the second part of the TLP, which holds
the address. Therefore, after the first available quadword of the TLP has been read from
the RX-FIFO, control and access to the shared resources is passed on to the AHB slave
module.

The AHB slave then examines the remaining part of the header, which contains the
information to which read request it belongs. When this information identifies the TLP
to be the correct completion to the previously issued read request, the TLP is further
processed. It has also to be distinguished between a quadword aligned address and non
quadword aligned address, as again the bytes 13 to 16 of the TLP hold random data or
the first data of the transfer, respectively. For the remaining data, at each clock cycle the
lower and the higher DW of the data of the RX-FIFO are presented alternating to the
AHB read lines. Every second clock cycle the RX-FIFO read signal is asserted to present
the next quadword of data at the output of the RX-FIFO. This again is done, until all
data of a burst is transferred. If an error occurred during the AHB transfer, the AHB
transfer is cancelled and the remaining data of the TLP is removed from the RX-FIFO.

75

Chapter 5 Design and Implementation

5.4 Pitfalls During Development

In the course of the design and implementation of the described functions, a couple of
unexpected, but major challenges arose and had to be solved. Some of them arose from
incomplete or wrong documentation, some of them because of third party errors, and
some of them because of own faults. In the following a brief overview will be given,
describing the errors encountered and the methodology used to solve them, as well as
recommendations to avoid similar mistakes in the future.

5.4.1 Evaluation Board Errors

The first problems encountered had to do with the hardware of the evaluation board.
At the very beginning of the practical work with this diploma thesis, some testing was
done to try out and verify the design flow with the evaluation board. Therefore, the PCI
Express reference setup provided with the evaluation board kit was altered and should
be programmed to the FPGA on the evaluation board. First of all, some errors in the
provided reference design had to be fixed. Apparently the source code of the reference
design did not undergo a final check before distribution, as the project did not even
compile. With later updates of the design, these problems were fixed by the developers.

5.4.1.1 Power Supply

After fixing those minor issues, the design was programmed to the FPGA. Unfortunately,
the PCI Express core needs to be initialised, which is only done at startup of the host PC.
Therefore, after programming the FPGA, the host PC has to be restarted. A hardware
reset suffices to initialise the PCI Express connection. However, due to a misinterpre-
tation of simultaneously appearing other errors in the first place, it was thought that a
hardware reset is not enough, but the system had to be shut down and turned on again.
When shutting down the system, the FPGA looses its setup, and is automatically loaded
with the unaltered reference design, which is stored on an extra flash memory on the eval-
uation board. Usually it is possible to store own hardware designs in this flash memory
to be loaded at startup, but not with designs using the Altera PCI Express MegaCore
unit using only Altera’s free OpenCore Plus hardware evaluation feature. This feature
allows simulation and evaluation of the hardware design, but only for one hour after pro-
gramming the FPGA. It is not allowed, and not possible to create a design file fitting the
requirements for the flash memory to be loaded at startup. Therefore, the altered PCI
Express reference design could not be tested, because either the PCI Express connection
was uninitialised, or the altered design was lost due to power down of the host PC.

The evaluation board offers the possibility of external power supply in addition to the
power supply provided by the PCI Express connection. In the originally included manual
it was stated, that one could plug in the external power supply if the power supply of the

76

Chapter 5 Design and Implementation

PCI Express was not sufficient [31]. Using the additional external power supply promised
to solve the problem of the loss of the programmed design due to powering down the host
PC. Hence, first the external power supply was turned on, and then the host PC was
switched on. The result was unsatisfactory, as the switching MOSFET for the two-phase,
synchronous step down switching regulator dissolved to black smoke.

Fortunately, operation with the PCI Express power supply only was not affected by this
defect. The problem could have been avoided by studying the provided schematic of the
board layout, but without thorough investigation of the functionality of the switching
regulator IC it is not obvious that the concurrent attaching of both power supplies leads
to a damaged board. However, the problem of the initialisation of the PCI Express core
was solved by using the hardware reset instead of a power down of the host PC, and the
evaluation board was repaired by replacing the damaged part.

Another error due to an issue of the evaluation board was the MDIO connection of the
PHY as described in section 5.2.2.2. Later tests with different evaluation boards revealed
that this issue was not a problem with all of the cards. The reason for this behaviour
thus is still unknown and might result from a rather arbitrary appearing material fault.
Still, the fact that more than one version of the design example exists, and that the latest
version pulls the bus low as described, it seems that the problem affects a bigger number
of boards.

5.4.2 Hardware Design Errors

In spite of the issues with the evaluation board itself, the hardware design itself provided
some sources for errors as well. The causes for errors were manifold, as some of them
resulted from a wrong interface implementation in the legacy hardware core, some resulted
from incomplete or misunderstood documentation, or simply from faulty programming.

5.4.2.1 Documentation

Additionally to the misleading documentation of the power supply, another missing and
misleading description in the manual for the evaluation board caused a lot of problems.
As described earlier, it is not allowed to stall the PCI Express interface when transmitting
a TLP to it. This limitation was not mentioned in the original manual, on the contrary,
a timing example suggested that stalling the interface was possible [32].

When trying to transmit data to the PCI Express interface without a TX-FIFO, all
register operations worked perfectly well, but no DMA transfer was received at the host
PC. Moreover, after a certain amount of issued DMA transfers the PCI Express interface
did not accept any further data, and the host PC running an ubuntu linux with kernel
version 2-6-18 had a complete hang, and did not react to any input anymore. The reason
for this behaviour was hard to find, but after several attempts the only real difference

77

Chapter 5 Design and Implementation

between a DMA and a register transfer was the length of the data. Because of the rate-
matching of the slower AHB interface to the faster PCI Express interface, with DMA
transfers the data valid signal of the PCI Express interface was deasserted every second
clock cycle. When this behaviour was changed to a constantly asserted data valid signal
during the transmission of one TLP, the host PC was able to receive the TLPs and did
not hang. After this discovery, the TX-FIFO was implemented to be able to transmit
correct data without stalling of the PCI Express interface. Quite at the same time this
error was discovered, Altera also updated the manual, explicitly stating that it is not
allowed to deassert the data valid signal during the transmission of a TLP [20].

Two further errors resulted from a wrong or inaccurate interpretation of the documen-
tation. In the beginning some register operations succeeded, and some failed. It could
be identified, that the failed write operations always were three clock cycles long, while
the succeeding operations were only two clock cycles long. The reason for that was the
already described difference between quadword- and non quadword aligned addresses of
the requests. The description in the manual was misinterpreted. The quadword aligned-
ness was considered to be some system preference, not a packet-based, address dependant
property. Therefore, it was not correctly implemented. A review with the supervisor
solved the problem.

Another error that occurred is a quite well known, nevertheless it also happened during
the design of the bus-switching unit. Resulting from inaccurate examination of the PCI
Express interface user guide, the byte order mapping from the TLP definition to the PCI
Express interface signals was implemented wrongly. Therefore, it appeared that rather
randomly correct and broken TLPs were received. For this issue again a review with the
supervisor helped to identify the problem.

5.4.2.2 Design

Some further design errors occurred during the development of the bus-switching unit.
One of the errors resulted from a wrong AHB interface design in the existing MAC unit
of the NIC, while the other errors were programming errors in the bus-switching unit.
As already mentioned, the AHB master interface in the MAC unit does not correctly use
the burst and size signals to indicate the length of a burst. During the development of
the bus-switching unit this deviation from the specification was easy to identify. Unfor-
tunately, there were more errors concerning the timing of the control signals. The AHB
slave of the bus-switching unit was first developed against the AHB specification, but it
did not work with the erroneous AHB master. Therefore, the slave had to be adapted to
deliberately violate the specification, in order to be able to communicate with the master.

A faulty signal calculation led to sporadic errors, as some completion packets were not
accepted. The tag that is used to identify a PCI Express completion as the response to a
certain read request is always increased by one, after a read request is sent. Therefore, the
value of the tag of an incoming completion must be the previous value of the tag, which

78

Chapter 5 Design and Implementation

is the actual value minus one. The values of the tag are limited to 32, which requires
a rollover from 31 to zero. The check for the incoming tag value can be performed by
calculating the expected by subtracting 1 from the actual tag value. This was correctly
done in the design, but the error came because of a wrong operator precedence. Because
the PCI Express core can be configured to support more than 32 different tag values, the
three preceding bits of the incoming TLP header are checked as well to make sure that
not only the lower five bits do match. Checking for these additional bits introduced the
error, as the command was:
if (pcie rx data i(15 downto 8) =

"000" & s pcie dma tag - conv unsigned(1, s pcie dma tag’length)).
The leading zeros "000" were added first, and only after that the value was decreased.
Therefore, on the underflow rollover the resulting value was not "00011111" as intended,
but "11111111" instead. The cause for this problem was found during a design review
with the supervisor.

Finally, an unwise design decision was made. As already mentioned, the bus arbitration
scheme using mutual exclusion for the different modules was not the first choice. Instead,
in the beginning a more demand dependant scheme was used, locking shared resources,
especially the TX-FIFO only when really needed. In order to not loose any unnecessary
clock cycle by blocking a resource, a Mealy machine was chosen for the bus arbitration. To
cover all possible cases of simultaneous requests, a quite complex logic was needed, which
was not intuitively understandable. The complex logic was error prone, and therefore the
system was unstable. Though generally working, after the transfer of a few thousand to
hundred thousand Ethernet frames, the system stopped working due to dropped TLPs,
because the the device driver depended on their reliable delivery. Therefore, to save
maintenance effort, the bus arbitration was changed to the described strictly sequential
scheme. Doing this, performance was traded in for maintenance effort and stability, which
finally led to a stable running PCI Express Ethernet NIC.

79

Chapter 6

Simulation and Verification

Simulation of hardware designs is a very powerful and important part of hardware devel-
opment. Simulation can be used for testing, debugging, verifying, and optimising the code
throughout the whole design process. The possibility to observe each and every signal
at each and every instant of time provides great opportunities for testing and debugging
of individual modules as well as of the complete system. The possibility for the mere
manual examination of the signals is already a very important feature. The real power of
simulation unfolds in the possibility for automatic observation not only of signal states at
a given point in time, but of sequences of bundles of signals as well. Therefore, designs
can be verified for correct top level functionality, as well as for inner timing requirements,
adherence to bus specifications and 100% logic testing.

A big drawback of simulation is the big development effort needed to provide a reasonable
simulation environment, which is able to perform the above mentioned tasks. Neverthe-
less, even for the development of comparably simple modules the development of a decent
simulation environment must not be neglected. Although there are tools to analyse the
actual signal flow in hardware for FPGA based designs, e. g. the Altera SignalTap II
Logic Analyzer, such tools cannot replace simulation, they only can support simulation
to tackle problems which are not accessible in simulation. An example for such a case
is the described problem with the MDIO signal line due to unknown hardware failures
which can not be simulated.

In addition to the lack for the mentioned automatic verification possible in simulation,
with hardware inspection tools like the SignalTap tool, the design cycles are prolonged.
For each small change of the logic, the complete FPGA based part of the system has to
be resynthesised, remapped, refitted, and reprogrammed to the FPGA device. Such a
cycle can take several minutes to hours, or even days for very complex designs. Thus,
although in the beginning time for the development of a simulation environment has to
be spent, in the end a lot of time can be saved by having a profound simulation at hand.
Even more for mask programmable gate arrays, simulation is the only means for testing

80

Chapter 6 Simulation and Verification

and verifying, as a production cycle takes weeks to month, and expensive masks have to
be produced for each production run.

In the course of this diploma thesis two simulation environments were developed, both
having a different approach and different aims.

6.1 Accurate Altera PCI Express Simulation

One of these two simulation environments here is called the accurate Altera PCI Express
simulation environment. Altera, because the complete environment for the simulation is
provided by Altera, and accurate, because the Altera PCI Express interface as well as the
data-flow on the PCI Express link, including configuration, management and flow control
messages, is accurately simulated. Thus, this simulation environment is very important
for the verification of the complete system, as all PCI Express transactions are properly
simulated according to the timing and behaviour of the PCI Express interface.

Drawbacks of this simulation environment are the lacking flexibility for module testing of
the bus-switching unit. For verification of the bus-switching unit not only a typical use
case has to be investigated, but also corner cases have to be applied to assure that the
unit reacts in a stable way under all possible operation conditions, and even in the case
of erroneous input to the interface. Further, exact timing sequences have to be tested
to make sure that all possible concurrencies are handled properly. Those possibilities
are not offered by the Altera simulation environment, as it accurately simulates the PCI
Express interface, but does not offer direct influence on the interface. For example, it
is not possible to test the case of congestion with filled buffers of the interface, as no
other traffic which could block the root port is simulated. The most important drawback
though is the simulation time. Because of the accurate simulation of the PCI Express
link, including the setup and initialisation, the simulation is very complex, and thus a
simulation takes several minutes on a powerful computer until the transmission of the
first TLP is simulated and can be observed.

Nevertheless, due to the accurateness, this simulation environment was very important
to tackle the no-stall issue, which was described in section 5.4.2.1. At this point of time,
the fast PCI Express emulation unit, as described in section 6.2, was already present and
used. Because of the missing knowledge about the no-stall requirement of the Altera PCI
Express interface it was not implemented in the emulation and could not help in finding
the issue. The Altera simulation environment did show the same behaviour as the actual
hardware system, and thus could be used for further tries and tests.

Figure 6.1 shows the architecture of the simulation environment. On the left side is the
Device Under Test (DUT), the hardware design of the NIC. All other components are
part of the simulation environment, simulating the physical channel, the root port as well
as the device driver. The device driver simulating module is the module responsible for

81

Chapter 6 Simulation and Verification

Toplevel Testbench

PCIe NIC

Altera PCI
Express
Interface

NIC
functionality

Root Port

Device
Driver

Root Port
Model

PI
PE

 In
te

rc
on

ne
ct

io
n

M
od

ul
e

PIPE: PHY Interface for the PCI Express Architecture

Shared
Memory

Figure 6.1: Architecture of the Altera simulation environment

interaction with the hardware design. It is used for the initialisation of the PCI Express
connection as well as for all PCI Express transactions.

The device driver has a shared memory which is used for all PCI Express transactions. It
is accessed by the device driver simulating module as well as by the root port simulating
model, therefore it has to be realised as a shared memory. Its size has to be exactly double
the size of the address space of the NIC, once the size for read data, and once the size
to store data to write to the NIC. The framework of the simulation environment offers
some functions to read and write the shared memory, as well as to initiate PCI Express
transactions using data from the shared memory.

Register Operations

If the driver needs to write data to a register of the NIC, first the shared memory region
for write transactions at the given address has to be written. A function of the simulation
framework can be called to do so. Then another function of the framework has to be called
to send a write request to the NIC. The function takes arguments to specify the address of
the data in the shared memory as well as the destination address in the NIC and the size
of the data. The framework then builds a TLP and sends it over the simulated physical
link to the target, the NIC. Read requests are sent similarly, with the only difference that
no data has to be written to the shared memory in advance. Still, the register address
to read from has to be passed, as well as the address in the shared memory to store the
response data to. Because a completion packet does not have a dedicated destination
address, but only holds a copy of the lowest six bits of the address of the read request, the
simulation framework has to map the data of the incoming completion to the specified
address of the shared memory.

82

Chapter 6 Simulation and Verification

Ethernet Traffic

For Ethernet traffic, the device driver passively receives read and write requests. Similarly
to the real use with hardware and the device driver in the host PC, first the buffer
descriptor registers in the NIC have to be set. The transmit buffer descriptors are set to
store the address of the shared memory which holds the Ethernet data for frames which
have to be transmitted and the receive buffer descriptors are set to store the address of
the shared memory which is intended to store the incoming Ethernet data. The Ethernet
traffic then is completely handled by the framework without being noticed by the device
driver module. This is an accurate simulation of the reality, where the shared memory is
written and read by the DMA controller without notice of the device driver. Therefore,
to simulate usual traffic, the PCI Express interrupts have to be observed.

However, no interrupt handling has been implemented in the Altera simulation environ-
ment, as it was not used for the simulation of a series of Ethernet frames, but only to
verify the transmission of a single AHB burst transfer from and to the device driver.
Due to the long simulation time of the Altera simulation environment, interrupt handling
to allow the simulation of actual Ethernet traffic was only implemented in the fast PCI
Express emulation.

6.2 Fast PCI Express Emulation

The second simulation environment is an emulation of the PCI Express interface without
the use of any third-party simulation Intellectual Property (IP) cores. It is called fast
because of its comparatively short simulation time. Compared to the accurate Altera
PCI Express simulation, depending on the desired length of a simulation run, the speed-
up ranges from one to two orders of magnitude. Especially with often required short
simulation runs, e. g. until the first PCI Express transaction takes place, the speed up is
in the range of two orders of magnitude, which saves minutes with each simulation run.

The emulation in the name comes from the nature of the environment. The fast envi-
ronment is not intended to accurately simulate the behaviour of the Altera PCI Express
interface unit. It is not designed as a simulation of the complete data path, but only
as an emulation of the behaviour of the complete PCI Express side. It emulates the
behaviour of the Altera PCI Express interface with the controlling device driver in the
background, therefore combining the functionality of the PCI Express interface and the
device driver. The emulation can be used to verify the input to the PCI Express inter-
face and produce interface output by emulating a real PCI Express connection. In the
following, TLPs which usually are initiated by the device driver, sent by the PCI Express
root port, received by the Altera PCI Express MegaCore unit, and presented to the PCI
Express interface are described as emulated received TLPs, because they are not actu-
ally transmitted, but only their reception is emulated. The fast PCI Express emulation
simulation environment is simply called emulation unit.

83

Chapter 6 Simulation and Verification

As already mentioned, the main reason for the development of the fast emulation unit was
the speed-up compared to the Altera simulation, as well as the more flexible control. In
contrast to the Altera simulation the output signals can be directly controlled. Therefore,
all kinds of timely sequences, error conditions, and concurrencies can be realised, enabling
a thorough testing of the bus-switching unit. In order to be able to develop different test
cases, the fast emulation was developed as a programmable testbench providing several
commands to control the action sequence.

The fast emulation supports a couple of operations, which can be controlled by an external
input file. In contrast to the accurate Altera simulation environment, no internal functions
are defined which are called from within the simulation module, rather specific functions
are mapped to a command and can be called from an external input file. The approach
with an external input file offers more flexibility for the simulation setup. In contrast to
an integrated approach, where functions are called from within the simulation module,
with external input files, the simulation environment does not have to be recompiled when
the input sequence or data is changed. This saves a lot of time when experimenting with
different inputs. It also allows the simple creation of different test cases, with each testcase
having a specific simulation sequence stored in a separate input file.

The internal realisation of the functionality also differs from the accurate Altera simula-
tion. No shared memory is used for the data for PCI Express write requests. The data
to write is directly passed to the module as argument to the command in the input file.
For received completions, similarly to the Altera simulation a memory is used to store the
data, but it is not a shared memory. For Ethernet frames, a dedicated memory is used
just like in the real device driver. For each frame to be stored, a distinct memory area is
reserved.

Write Verification for Register Operations

In addition to normal register read and write operations the emulation unit also supports
write verification. When a register write with verification is requested, the emulation unit
first emulates the reception of a PCI Express TLP by presenting a write request TLP on
the interface to the bus-switching unit. Data and address are stored locally to allow for
later comparison. Immediately after the write request, the reception of a read request for
the same address is emulated. Then the completion is awaited and upon reception it is
verified to be the answer to the previous read request. If so, the read data is compared
with the previously stored data and a warning is written to the output if they don’t match.

A read request immediately following a write request to the same address can, in general,
lead to the problem that the read request still reads the old value of the not updated
register. This happens only if the write request has not finished successfully until the
read request is processed. In the present design, it is known that the AHB slaves keep
the ready signal deasserted until the register write operation has completely finished.
Therefore, it might be possible that the read request arrives while the write request

84

Chapter 6 Simulation and Verification

is still being processed, but the registers can not be accessed until the write request has
completed its operation, therefore the subsequent read request always delivers the correct,
new data.

Ethernet Traffic

For the simulation of Ethernet traffic, some preparations have to be made. As already
mentioned, the emulation unit does not have a complete memory image of the registers
of the hardware. To be able to handle the DMA transfers correctly, the emulation unit
has to have knowledge about the addresses written to the buffer descriptor registers, as
these addresses define the address space of the DMA memory region. Therefore, when
the external input file requires to write data to the buffer descriptors, the emulation unit
observes and stores the data written to the descriptors. The emulation unit then maps
all incoming PCI Express requests, which are addressed to one of the DMA frame buffers
to the corresponding memory of the emulation unit.

Interrupt Handling

The emulation unit is capable of emulating the behaviour of the device driver for Ethernet
traffic. Therefore, the interrupt signal is observed and on assertion of the interrupt signal
line the reception of a register write request is emulated to clear the interrupt. Further, the
reception of register read operations are emulated to read the interrupt status registers.
Depending on the read data of the status registers, further read operations to read the
buffer descriptors are emulated. Similarly to the device driver, the emulation unit keeps
track of the currently used buffer descriptors.

Verification of Received Ethernet Frames

It is possible to check incoming Ethernet frames for correctness. For simulation, an MII
generator unit exists and is attached to the MAC. The unit can be programmed by an
input file to generate MII signals as if the real Ethernet PHY had received a frame. The
data for the Ethernet frame again can be loaded from an external file. This same file can
be read by the PCI Express emulation unit as well. Doing so, the emulation unit can
compare the data written to the DMA memory with the original source data from the
input file. If the received data in the memory matches the data of the file, the complete
data path through the Ethernet NIC is verified. If the data does not match, a warning is
printed.

When Ethernet frames are sent, the emulation unit can also read data from a file. First,
this data has to be stored in the memory area which is assigned to the current transmit
buffer descriptor. The emulation unit emulates the reception of a write request TLP
to the currently active buffer descriptor, telling the MAC that data is present. The
read requests of the bus-switching unit are recognised and served with corresponding

85

Chapter 6 Simulation and Verification

completion packets, presenting the data of the DMA memory area to the PCI Express
interface. The MII generator is also capable of verifying the received Ethernet frames
against the data of a file. Therefore, also the path of a sent Ethernet frame can be
verified.

6.3 Verification

Of the whole development and implementation process of a design, verification is the
most important part. Verification of the resulting system is of course necessary to prove
that the required functionality is fulfilled. It is a good idea though not only to verify
a complete system, but to split the design in several distinct, independently verifiable
modules. This was done during the development of this diploma thesis. Some testcases
were developed and applied in simulation to test specific functions. However, most of the
testcases evolved during development and were merged to a single testcase, verifying the
complete functionality of the system.

After applying testcases for simulation, the complete system also was tested to work in
hardware together with the device driver. In contrast to simulation testcases not every
detail can be tested and analysed, but high network traffic and long test runs can be
performed to also test for stability and reliability under high load.

All tests and verifications were done with 10 and 100 MBit/s Ethernet only. At the design
time of this diploma thesis the MAC module of the legacy hardware did not support GMII.
As the difference between MII and GMII only affects the connection between the MAC
and the PHY, but not the connection between the MAC and the PCI Express interface
where the bus-switching unit is involved, nothing except for the maximal achievable data
throughput changes for the bus-switching unit. As the verification also aimed at verifica-
tion for high load and congestion, the bus-switching unit is prepared to be connected to
a Gigabit Ethernet capable MAC.

6.3.1 Verification by Simulation

For simulation the two described, different environments are available. As already men-
tioned, due to the long simulation time of the accurate Altera simulation environment,
only simple testcases were applied to the accurate simulation environment. It was mainly
used for testing register read and write operations and for short Ethernet packets during
development. Most testcases were applied to the fast emulation unit. In the following,
the applied testcases are listed and described, and the used simulation environment for
each testcase is mentioned.

86

Chapter 6 Simulation and Verification

F
ig

u
re

6.
2:

R
eg

is
te

r
w

ri
te

ve
ri

fic
at

io
n

in
th

e
ac

cu
ra

te
si

m
ul

at
io

n
en

vi
ro

nm
en

t

87

Chapter 6 Simulation and Verification

6.3.1.1 Register Write Verification

This testcase was applied to write a value to a register and verify that the value has been
written. Write verification is not only possible in simulation, the device driver can be
configured to perform write verification during normal operation. Therefore, a testcase
using write verification not only verifies the correct register operation, but also simulates
a regular use case of the real hardware.

Figure 6.2 shows a register write operation with write verification in the accurate sim-
ulation environment. A number of signals are depicted, showing the data flow during a
register operation. The signals are sorted by the functional units they belong to. The first
signal is the 125 MHz clock. The sections labelled pcie rx (at the top of the figure) and
pcie tx (at the bottom of the figure) belong to the Altera PCI Express interface. The
pcie rxfifo section shows the signal of the RX-FIFO which buffers the incoming PCI
Express TLPs. The section labelled header decoder shows the signal of the separate
packet-switching module, while the signals of the section ahb mac master ifc belong
to the AHB master interface inside of the bus-switching unit, which initiates the AHB
transfers for register operations. The pcie txfifo shows the signals of the TX-FIFO,
which collects the complete TLP data until it is transmitted to the PCI Express interface.

In the beginning of a register read operation a PCI Express read request is sent. The
asserted pcie rx valid i signal indicates that valid data is available. The data is directly
written into the RX-FIFO, with the sop and eop signals appended as the Most Significant
Bits (MSBs), therefore the data in the FIFOs differs in the first digit from the data of the
PCI Express interface.

The empty signal is deasserted and the header decoder can start reading the first part
of the header of the TLP. The write tlp signal is asserted by the header decoder,
indicating that a register has to be written. Therefore, the chip select (cs) for the AHB
master is asserted – with one clock cycle delay after it is known that the packet is a write
request, because previously the address has to be decoded, as described in section 5.3.4.
It is obvious that the duration of the packet transmission is only two clock cycles, which
corresponds to two times a quadword of 64-bits. Therefore, this packet’s address must
be non-quadword aligned with the data being contained in the upper DW of the last
transmitted quadword.

The AHB master then acknowledges its exclusive control over the shared resources, namely
the RX- and TX-FIFO by asserting the ahb ack signal and initiates a write transfer by
asserting the select signal for the AHB slave of the MAC (sel o). The trans o signals
are set to indicate a non-sequential transfer (10), the write o signal is asserted and the
addr o signals are set to the register address. The Least Significant Bits (LSBs) of the
second part of the TLP header hold the address of the register operation. As depicted,
the pcie rx data i addresses the register 0x404, whereas the addr o shows 0x101. This
is a pure presentational issue, as all addresses are known to be DW aligned addresses
with the two LSBs being zero the addr o signals simply omit the two LSBs, which results

88

Chapter 6 Simulation and Verification

in a presentation of 0x101. This is an uneven number, which again corresponds to a
non-quadword aligned address and fits the prior observation of the short TLP.

The addressed AHB slave first delays the address phase by one clock cycle by keeping the
ready i signal low. This is not allowed by the AHB specification and is one of the errors
of the AHB implementation of the legacy hardware mentioned in section 5.4.2.2. After
the address phase is over the master presents the data to write, which was contained in
the upper DW of the second part of the TLP. The slave again deasserts the ready i

signal and inserts a regular wait cycle. When the slave finally is ready to process the
data, it asserts the ready i signal and thereby ends the transfer. The master therefore
informs the header decoder that it has finished its operation and releases its claim for the
shared RX-FIFO by asserting the ahb fin signal.

In the meantime a new TLP was already transmitted over the PCI Express system and
arrives (by chance) right after the transfer has finished. This TLP is processed in exactly
the same way as the previous one, with the only difference that this one is a read request.
Therefore, the AHB master initiates a read request to the given address. The address
phase again is illicitly delayed. When the AHB slave is ready it presents the data and again
asserts the ready i signal. The AHB master state machine again has exclusive access
to the shared resources. Thus, it can access the TX-FIFO. It assembles a completion
TLP with the read data in the payload and writes it to the TX-FIFO. When the whole
completion packet is stored in the FIFO the content of the TX-FIFO is transmitted to the
PCI Express interface and the AHB master again releases the claim for exclusive access
to the shared resources by asserting the ahb fin signal.

The device driver simulation module of the Altera simulation environment can then verify
whether the received data coincides with the previously sent data or not.

6.3.1.2 Erroneous Requests

To verify the correct handling of erroneous PCI Express requests, a testcase was applied,
which intermittently sends erroneous TLPs to the bus-switching unit. Correct handling
of erroneous requests means that the bus-switching unit must return to a defined and
operational state after the reception of erroneous requests. Nevertheless, it is desirable
to inform the user or developer about the occurrence of an error. This is done by using
the LEDs on the evaluation board. As too few LEDs are available, different errors are
assigned different error codes. The binary error codes are displayed by the LEDs. As an
erroneous state of the hardware usually lasts a few clock cycles at maximum, it is not
enough to light a LED only as long as the erroneous state prevails, but to trigger the
lighting of the LEDs by the detection of the error and keep it on until the user actively
resets the error status LEDs. As it is possible and likely that more than one kind of error
occurs at a time, the error codes are assigned in a way to reduce the risk of confusing
the code of a single error with the displayed code of two different, consecutively occurred
errors.

89

Chapter 6 Simulation and Verification

In the simulation, the state machines and signals can be observed individually, so it can
be verified that the behaviour after an erroneous input is not deteriorated by the single
erroneous event. Also, the observation of the LED controlling signals makes it easy to
locate and identify detected erroneous events.

The testcase sends completely broken TLPs of arbitrary length to check the correct clean-
up of the RX-FIFO. The bus-switching unit has to take care that no part of a broken TLP
blocks the RX-FIFO and therefore leads to a hang of the hardware. On the other hand,
no correct information must be lost even if it is in between broken data. The clean-up is
done by (destructively) reading the FIFO until a correct part (SOP signal asserted and
a correct first part of a TLP header) is found. But even if the first part is correct and
consecutive DWs of the TLP are corrupt (e. g. the claimed size of the header does not
match the actual size of the TLP), all actions that have been taken so far have to be made
undone, if possible, or at least the information about an error has to be forwarded.

A similar error is the transmission of a correct TLP with a wrong register address. This
error is only detected by the AHB slave. The slave then issues an error response, and the
master has to cancel the transfer and release its claim for the shared resources.

All these kinds of errors were injected using the emulation unit. The verification of the
return to the defined operational states was done manually. Additionally, after the error
injection register operations with write verification and verified Ethernet transfers were
performed. This does not verify the correct behaviour, but a failure of those operations
would at least indicate a wrong error handling of the bus-switching unit.

6.3.1.3 Dropped Completion

Another testcase also checks for correct error handling, but aims at disturbing the split
transaction mechanism of PCI Express read requests. Therefore, the emulation unit can be
programmed to not return a completion for the next read request, or to send a completion
that does not correspond to the last request.

The bus-switching unit implements a time-out counter which observes the time the root
port needs to answer a read request with the corresponding completion. When this time-
out counter expires, the still active AHB transfer has to be cancelled. If the corresponding
TLP would arrive later, it must not be accepted as a correct completion anymore. Ac-
cording to the PCI Express specification this time-out must not be shorter than 50 µs, and
is recommended to be not shorter than 10 ms. In the hardware version a 10 ms counter
is implemented, but to avoid long simulation times to test the time-out the counter is
reduced to 4 µs when used with the emulation unit.

The verification of the correct handling of this kind of error was done in a similar manner to
the previously mentioned injected errors, by manually inspecting the state and performing
automatically verifiable operations afterwards.

90

Chapter 6 Simulation and Verification

6.3.1.4 PCI Express Flooding

To verify the correct behaviour of the bus-switching unit with a flood of PCI Express
TLPs, a different testcase was applied. This testcase floods the bus-switching unit with
PCI Express requests and/or completions faster than they can be handled. It was applied
to the emulation unit, because this unit is capable of emulating the reception of consecutive
TLPs without any delay in between. Therefore it is possible to fill the RX-FIFO without
artificially having to slow down the bus-switching unit.

Before the RX-FIFO gets full, the ready signal to the PCI Express interface has to be
deasserted to perform back pressure and hinder the PCI Express interface to transmit
more TLPs. The ready signal has to be deasserted early enough, considering that the
PCI Express interface can continue transmitting data for three clock cycles after the
deassertion of the ready signal. If this is not done correctly, data is lost, which is not
allowed. The verification of the behaviour for this testcase was performed in the same
way as with the injected errors.

6.3.1.5 Regular Ethernet Traffic

The operation of the bus-switching unit with regular Ethernet traffic was verified by using
the MII generator unit. For only a few Ethernet packets (not more than the number of
initialised buffer descriptors), the accurate simulation environment was used. No auto-
matic verification of the sent and received Ethernet frames is implemented in the accurate
simulation environment, but the data stream on the MII connection can be inspected and
manually compared to the known, expected data.

In the emulation unit, the complete interrupt handling procedure is implemented, and
therefore arbitrary Ethernet traffic can be simulated. Due to the automatic handling,
the emulation unit has knowledge about when a received Ethernet frame is available
in the simulated DMA memory, and therefore can verify the content of this memory
automatically with the known sent data. In the other direction, the MII generator is also
capable of comparing received Ethernet data (sent by the simulated NIC) with a given
data set. The data of the Ethernet frames which’s transmission is simulated is stored in
a file. As both units, the PCI Express emulation unit and the MII generator can access
this file, they both have exact knowledge of what data is expected to be transmitted by
a specific Ethernet frame.

Figure 6.3 shows the transmission of a single cell of a received Ethernet frame to the
DMA memory in the host PC using the emulation unit. In the ahb slave ifc section,
it can be seen that the AHB master interface of the MAC unit asserts the control and
select signals to activate the AHB slave interface in the bus-switching unit. The slave
employs the same wrong ready o behaviour as previously mentioned with the AHB slave
of the MAC unit. This is the case because also the master of the MAC is implemented

91

Chapter 6 Simulation and Verification

F
ig

u
re

6.
3:

T
ra

ns
m

is
si

on
of

a
ce

ll
of

a
re

ce
iv

ed
E

th
er

ne
t

fr
am

e

92

Chapter 6 Simulation and Verification

incorrectly and does not work with a correctly asserted ready signal during the idle state
of the slave.

In the figure it can be seen that first the master issues a non-sequential transfer (10 of
the trans i signal), and only after the slave has acknowledged the start of a transfer by
asserting the ready o signal the master switches to sequential transfer (11 of the trans i

signal), as defined in the AHB specification. The slave starts to assemble the PCI Express
TLP in the TX-FIFO, which can be seen by the asserted wrreq signal and the activity
on the data in lines in the section pcie txfifo of the figure. The address addr i is
identified to be a quadword aligned address. Therefore, the first two quadwords of the
TLP contain only the header and no data.

Then the data payload is assembled from the received AHB data. The first DW of data
was already present at the wdata i lines before the transfer was started. Therefore,
this first DW is written to the TX-FIFO and simultaneously the AHB ready o signal is
asserted to indicate that further data can be processed. The wrreq signal of the FIFO
is asserted only every second clock cycle, which is due to the rate-matching of the slower
AHB to the faster PCI Express interface. It can be seen that the cell size is set to six
DWs, which is also indicated by the s dword cnt signal.

When the complete cell is written to the FIFO, the transmission to the PCI Express
interface with no inserted wait states can start, which is seen in the pcie tx labelled
section. As soon as the transmission to the PCI Express interface has started, the AHB
slave interface is informed about this fact by the asserted tx start i signal and returns
to dma idle state, thus releasing its claim for exclusive access to the TX-FIFO resource.

6.3.1.6 AHB Checker

For verification of a correct AHB implementation Altera offers AHB checker modules,
which observe the AHB signals and check them for conformity with the specification. As
already mentioned, the legacy hardware design has several errors in the AHB implemen-
tation, which produce a long list of errors when checked with the AHB checker modules.

In addition to the task for this diploma thesis where it was not allowed to alter the legacy
hardware design, the AHB master side of the MAC was corrected due to private interests.
The AHB checker modules confirmed the correctness of this altered implementation. The
correction of the AHB master unit required some changes in the timing of the AHB
module. Unfortunately, this altered timing had side effects on the complete MAC unit
– with the correct AHB implementation it did not issue any interrupts. This shows the
tight coupling of the AHB interface with its surrounding application module, as it was
discussed in section 3.2.1.

93

Chapter 6 Simulation and Verification

6.3.2 Hardware Testing

To test the hardware design under high load, the evaluation board was plugged into a
standard PC. It was connected to an 100 Mbit/s office network and incoming and outgoing
flood ping was performed. Additionally, large files with the size of several Gigabytes were
transferred in both directions using the SSH File Transfer Protocol (SFTP). Simultane-
ously, the PTP stack for clock synchronization was active to synchronize the clock of the
evaluation board to a high-precision reference clock.

As SFTP is a secure and reliable protocol for data transmission, the received data is
guaranteed to be unaltered. Thus, if the SFTP data transfers succeed, the data was
successfully processed by the NIC implementation on the evaluation board. It is not
guaranteed that no Ethernet packets have been dropped, for which the TCP protocol
makes up, but it is guaranteed that over a longer time the hardware works correctly. The
clock synchronization worked perfectly well aside to the high network load.

94

Chapter 7

Conclusion

This diploma thesis presented the evolvement of an existing NIC hardware design to be
prepared to support Gigabit Ethernet over copper and optical fibre connections. There-
fore, a bus-switching unit had to be developed to connect multiple AHB interfaces to
a PCI Express interface. Before and during the design of this unit a number of design
decisions had to be taken to develop a robust test platform that could support Gigabit
Ethernet. The main influencing factors were the estimated development time and the
primary intention for the use in a clock synchronization network without the urgent need
for high data throughput. If possible along with these main requirements, flexibility for
further enhancements was also considered.

For the PCI Express protocol core it was decided to use an existing hardware core, as PCI
Express is a highly sophisticated protocol with the need for complex logic to implement
the required functions for all three layers of the specification. Thus, the development of
a PCI Express protocol core from scratch would have greatly extended the design time,
would have been economically unreasonable, and would have delayed the availability of
the hardware for scientific valuable measurements. To best fit the PCI Express protocol
core to the used FPGA, a core provided by the FPGA developer Altera was chosen.

Several possibilities for configuring and connecting the PCI Express protocol core to
the application hardware are available. The selected interface relieves the application
hardware of a number of management tasks, e. g. the handling of corrupt and illegally
addressed packets, and of buffering and managing the packet flow control, still leaving
enough flexibility to allow for a customised handling of PCI Express TLPs.

The bus-switching unit for the connection of the AHB interfaces of the existing legacy
hardware and the PCI Express interface was designed from scratch. There are existing
AHB IP cores available, but as the design of such an AHB module is not very complex,
and as the bus communication has to be tailored to the application’s needs anyhow, it
is not reasonable to use an existing core for the AHB interfaces. The requirement for
interconnecting the bus interfaces was identified as a packet-switching problem similar to
the well known field of packet switching in Ethernet. Therefore, knowledge and experience

95

Chapter 7 Conclusion

from Ethernet switches was used to build a unit comparable to a shared memory based,
cut-through packet switch employing time division switching. The focus was on a robust,
easily maintainable design with less regard to scalability and data throughput, which are
not stringent requirements for the hardware unit.

Extra effort was made to allow for fast, thorough and accurate verification of the hardware
system. This resulted in the development of two distinct simulation environments, each
designed to meet their specific intentions of accuracy and speed.

In summation of the presented work the lessons learned during the design and imple-
mentation progress have been compiled and written here. Finally, an outlook for further
enhancements of the hardware design is given.

7.1 Lessons Learned

The greatest mistake you can make in life is to be continually fearing you will
make one.

– Elbert Hubbard

During the design and implementation many challenges were raised that had to be tackled,
and some of them have already been mentioned. During any creative work mistakes
happen to occur. The important thing is to draw conclusions and learn how to avoid
them in the future. Personal experiences and conclusions are listed on how to improve
the applied practical procedures for future design and implementation projects.

Importance of Simulation and Verification

The most significant lesson learned in the course of this diploma thesis was the importance
of simulation and small step verification. Although the complexity of the design, and
thus the importance of simulation was underestimated in the beginning, fortunately a
simulation environment was developed. In the end it proved to be extremely valuable
to have a powerful simulation environment at hand to verify the design. A lot of time
was saved by the development of a decent simulation environment right from the start,
instead of relying on the way slower, less capable hardware debugging mechanisms.

The design process can greatly benefit from early thoughts regarding design for testability.
Already at the system level design, when only a rough overview of functional blocks is
known, considerations about functional partitioning for good testability should be taken.
When functional parts can be split up inro smaller submodules, which can be tested
and verified separately, unforeseen hidden mistakes of the bigger system can be avoided.
Therefore, a lot of debugging time and money are saved.

It is advisable to prepare the design in advance in order to have some debugging mecha-
nisms available. Preparations should be made to have some debugging information even

96

Chapter 7 Conclusion

in the final hardware realisation. Examples are the LEDs for simple error reporting, live
LEDs for certain critical modules to detect a hang, or the storing of state histories of
state machines. For hardware signal inspection tools with limited memory capacity, e. g.
the Altera SignalTap II tool, it might be useful to implement some kind of an event clock.
The inspection tools store the state of the specified signals at each rising clock edge. If
there are long idle cycles, a lot of memory is wasted by storing irrelevant data. An event
clock only shows rising clock edges when some remarkable events which are worthy to be
observed occur, thus much more relevant events can be recorded by ignoring irrelevant
data.

Information Updates

Another critical issue during the development of this diploma thesis was wrong or inac-
curate information of data-sheets, user guides, and manuals. Especially with relatively
new products (younger than approximately two years) it must be expected that there
are still previously undetected hardware issues or inaccurate documentation information.
Therefore, updates for the product, erratas for documentations, and probably existing
discussion boards or developer blogs have to be checked for updates on a regular ba-
sis, especially when major, inexplicable errors occur. It must also be kept in mind that
professional product documentations are error-prone and thus cannot always be totally
trusted.

If a development is a part embedded in a larger project, or surrounded by third-party
components such as third-party IP cores or device drivers, it is important to keep track
of updates of the components used. Particular attention has to be paid to change-logs.
It might be a bad idea to frequently update to new, probably less reliable versions if
they just support additional features not needed by the specific application, or if regular
interface changes are performed. On the other hand, if there are regular bug-fixes it is
highly recommend to update to the new versions of the third-party components.

Tracking Changes

A further important point for development and testing is the tracking and tracing of
performed changes. When debugging a specific error some modifications might be made
to several modules to narrow down the problem. It is very important to clearly mark the
performed changes to be able to undo them later when the problem was found and solved.

For example, during tests of the register operations of the bus-switching unit, certain parts
of the device driver were commented out to narrow down the possibilities for errors. If
this applied limitation of the device driver was not removed after the tests, later broader
tests would have shown only limited functionality. Since an error source can not always be
easily localised it might happen that efforts are taken to find the reason for the limitations
in the hardware, even though the (thought to be fully functional) device driver is the real
source.

97

Chapter 7 Conclusion

Time can be saved by marking modified portions of otherwise stable code and recording
performed tasks and changes by writing some kind of journal to simplify later tracking of
the activities.

It is also a good idea to mark questionable sections which are designed for a quick proof
of concept and not for a robust final product. When a first test design evolves to a
full product, all marked sections can be searched and worked on. Marking them during
the first design when it is known that the functionality is limited might save a lot of
time searching for the reason for incompletely supported functions during full system
verification.

7.2 Outlook

This thesis showed the needs for an evaluation network card for the use in high-speed Eth-
ernet environments as a node supporting high-precision clock synchronization. It further
showed that the developed hardware is prepared for the integration in a Gigabit Ethernet
environment. All preparations to allow for delay measurements of Gigabit Ethernet over
copper and optical fibre links were made. As soon as a a Gigabit Ethernet capable MAC
unit is at hand, the hardware can be used to perform these measurements. During the
description of the design, some possibilities for further improvements of the whole system
as well as of the bus-switching unit in particular were mentioned already. It is obvious
that the current design can be enhanced by tackling these issues.

The most important enhancement to the developed hardware is the integration of the
newly available, third party Gigabit Ethernet MAC. Only the integration of this MAC
enables the developed hardware to deliver the desired measurement results for clock syn-
chronization over Gigabit Ethernet. As the new Gigabit MAC is designed for the same
platform as the original legacy MAC was, again some steps as described in section 5.2
will have to be performed in order to enable the unit to work on the Altera Stratix II
GX FPGA. Additionally, it can be expected that the incorrectly implemented AHB in-
terfaces will be corrected. This requires the adaptation of the bus-switching interfaces
to not only work with the incorrectly implemented interfaces, but also with the correct
implementation.

Another possible improvement concerns the system design of the interconnection inter-
faces. The TX-FIFO in the bus-switching unit and its control logic is only needed because
the AHB connection has to be rate-matched to the PCI Express interface. If the AHB for
DMA burst transfer between the MAC and the bus-switching unit was changed to a 64-bit
wide data connection, which is possible with the specification of AHB, the complete logic
for rate-matching could be saved. This would save resources, it would increase the data
throughput and decrease the transmission delay for TLPs because the TLPs could be sent
directly without the need for buffering before transmitting. The bus-switching unit thus
would become simpler, smaller and faster. As this improvement incorporates the legacy

98

Chapter 7 Conclusion

hardware as well, it is a question of system design and specification. The requirements
for this diploma thesis did not allow for such a change, but it is recommended to perform
this conceptual change in the future.

A different approach can be made to increase the speed and data throughput of the bus-
switching unit. The simple restrictive locking scheme for mutual exclusion is easy to
understand and to maintain, but it greatly reduces the performance of the hardware. If a
more sophisticated locking and arbitration mechanism would be used, the maximum data
throughput could be greatly increased. On the other hand, this would make the logic
larger and more complex, introducing new error sources. As the intended application of
the hardware is the use in test and measurement networks for clock synchronization, and
as the driving argument for the use of Gigabit Ethernet are the delay jitter properties
and not the data throughput, the bus-switching unit is not required to be optimised for
high throughput and performance. However, it is possible to enhance the design towards
high throughput.

On behalf of the simulation and verification, the simulation environment can be extended
to also support programmable AHB master and slave simulation modules. By doing this,
the bus-switching unit could be verified completely separated from the rest of the system.
This would enable testing for all possible inputs from the AHB side as well as from the
PCI Express side. Doing so, a 100% code- and branch-coverage of the bus-switching
unit simulation could be achieved. Additionally, further automatic verification could be
implemented in the simulation environment.

Finally, the intended measurements on delay and delay jitter for Gigabit Ethernet over
copper and optical fibre connections can be performed. The precision of the clock syn-
chronization algorithm over these connections can be investigated and verified by mea-
surements. Test networks for clock synchronization over long haul optical fibre based
Ethernet can also be implemented.

99

List of Figures

1.1 Basic localisation concept . 2

1.2 Hyperbola defined by two access points 3

1.3 Example network for clock synchronization 4

1.4 Example setup for delay measurements . 5

1.5 Evolution of hardware . 7

2.1 Overview of the NIC architecture . 12

2.2 Structure of a standard Ethernet packet neglecting extensions 14

2.3 MII signals . 15

2.4 GMII signals . 15

2.5 Timing and structure of a MDIO frame 17

2.6 AHB lite master and slave interface signals 18

2.7 Non-sequential AHB transfers . 20

2.8 Example topology of a PCI Express architecture 21

2.9 Three layered architecture of PCI Express 22

2.10 Header format of PCI Express memory requests 24

2.11 Header format of PCI Express completions 24

2.12 Signals of the Altera MegaCore PCI Express Avalon Streaming interface . 25

2.13 Mapping of 32-bit addressed PCI Express TLP to Avalon ST bus 27

2.14 Synchronization messages and round-trip delay measurement 28

3.1 Register read and write operation . 33

3.2 Information flow in the bus-switching unit for register operation 34

100

3.3 Ethernet over AHB-burst-transmission . 35

3.4 Information flow in the bus-switching unit for DMA operation 36

3.5 Operation principle of a separate switching module 41

4.1 Altera PCI Express development kit, Stratix II GX Edition [28] 47

4.2 Module interfaces and hardware domains of the NIC 49

5.1 Typical design flow . 53

5.2 Pull-up resistor and drivers of the MDIO bus line 58

5.3 Reset circuitry for the PCI Express Endpoint 60

5.4 Architecture of the bus-switching unit . 61

5.5 RX-FIFO timing with simple ready signal control 62

5.6 RX-FIFO timing with intelligent ready signal control 63

5.7 Address decoding with one and two AHB masters 69

6.1 Architecture of the Altera simulation environment 82

6.2 Register write verification in the accurate simulation environment 87

6.3 Transmission of a cell of a received Ethernet frame 92

101

Acronyms

AHB: Advanced High-Performance Bus

AMBA: Advanced Microcontroller Bus Architecture

AP: Access Point

ASIC: Application Specific Integrated Circuit

CERN: Conseil Européen pour la Recherche Nucléaire, European Organization for
Nuclear Research, the world’s largest particle physics laboratory

COTS: Commercial Off-The-Shelf

CRC: Cyclic Redundancy Check

CSC: Clock Synchronization Cell, responsible for timestamping

CSMA/CD: Carrier Sense Multiple Access/Collision Detection

DMA: Direct Memory Access

DUT: Device Under Test

DW: Double Word, 4 bytes, 32-bit of data

ECRC: end-to-end CRC

EOP: End Of Packet

ε-WiFi : Embedded Position Determination and Security in Wireless Fidelity
networks

FCS: Frame Check Sequence

FIFO: First In First Out memory structure

FIT-IT: Forschung, Innovation, Technologie – Informationstechnologie

FPGA: Field Programmable Gate Array, the acronym FPGA is used for a device
of the respective technology

102

FSM: Finite State Machine

GMII: Gigabit Media Independent Interface

IC: Integrated Circuit

ID: Identification

IP: Intellectual Property, third party hardware cores are called IP

ISO: International Organization for Standardization

LAN: Local Area Network

LED: Light Emitting Diode

LSB: Least Significant Bit

MAC: Media Access Control

Mb: Megabit

MAN: Metropolitan Area Network

MDC: Management Data Clock, the clock signal for the MDIO interface

MDI: Media Dependent Interface

MDIO: Management Data Input/Output, a tristate bus management interface
between the Ethernet PHY and the station management part of the MAC

MHz: Megahertz

MII: Media Independent Interface

MIIS: MII Scanner

MM: Memory Mapped

MPGA: Mask Programmable Gate Array, non reprogrammable, production mask
defined chips

MOSFET: Metal-Oxide-Semiconductor Field-Effect-Transistor

MSB: Most Significant Bit

NIC: Network Interface Card

OSI: Open Systems Interconnection

PC: Personal Computer

PCB: Printed Circuit Board

103

PCI: Peripheral Component Interconnect

PCIe: PCI Express

PHY: Physical Layer, the acronym PHY is used for a physical layer interface
device

PLL: Phase Locked Loop

PTP: Precision Time Protocol

QoS: Quality of Service

RAM: Random Access Memory

RGMII: Reduced Gigabit Media Independent Interface

RMII: Reduced Media Independent Interface

RX-FIFO: Receive FIFO

SDS: Space Division Switching

SERDES: Serializer/Deserializer

SFD: Start-of-Frame Delimiter, indicates the start of an Ethernet frame

SFP: Small Form-Factor Pluggable, modular hot-pluggable optical transceivers

SFTP: SSH File Transfer Protocol

SMA: Sub-Miniature-A

SOP: Start Of Packet

SOPC: System on a Programmable Chip

SSH: Secure Shell

TCP: Transmission Control Protocol

TDoA: Time Difference of Arrival

TDS: Time-Division Switching

TLP: Transaction Layer Packet

TX-FIFO: Transmit FIFO

VHDL: Very High Speed Integrated Circuits Hardware Description Language

WLAN: Wireless LAN

104

Bibliography

[1] Gordon E. Moore. Cramming more components onto integrated circuits. Electronics,
38(8), April 1965.

[2] Excerpts from a conversation with gordon moore: Moores law, 2005.

[3] IEEE Standard for a Precision Clock Synchronization Protocol for Networked Mea-
surement and Control Systems, July 2008.

[4] Zafer Sahinoglu, Sinan Gezici, and Ismail Guvenc. Ultra-wideband Positioning Sys-
tems. Cambridge University Press, 2008.

[5] David J. Law, editor. IEEE 802.3 (tm) Carrier sense multiple access with colli-
sion detection (CSMA/CD) access method and physical layer specifications. IEEE,
December 2005.

[6] ARM. AMBA (tm) Specification, 2.0 edition, May 1999.

[7] R. Holler, T. Sauter, and N. Kero. Embedded SynUTC and IEEE 1588 clock syn-
chronization for industrial Ethernet. In IEEE Conference Emerging Technologies and
Factory Automation, 2003. Proceedings. ETFA’03, volume 1, 2003.

[8] Georg Gaderer. Fault Tolerance Enhancements to Master/Slave Based Clock Syn-
chronization. PhD thesis, Vienna University of Technology, Institute of Computer
Technology, November 2008.

[9] Patrick Loschmidt, Reinhard Exel, Anetta Nagy, and Georg Gaderer. Limits of Syn-
chronization Accuracy Using Hardware Support in IEEE 1588. In ISPCS 2008, In-
ternational IEEE Symposium on Precision Clock Synchronization for Measurement,
Control and Communication, pages 12–16, Ann Arbor / U.S.A., September 2008.

[10] Martin Horauer. Clock Synchronization in Distributed Systems. PhD thesis, Vienna
University of Technology, Institute of Computer Technology, February 2004.

[11] Faraj Nassar. PCI Express based Embedded System. Master’s thesis, Vienna Uni-
versity of Technology, Institute of Computer Technology, October 2007.

105

[12] Pierre Guerrier and Alain Greiner. A generic architecture for on-chip packet-switched
interconnections. In DATE ’00: Proceedings of the conference on Design, automation
and test in Europe, pages 250–256, New York, NY, USA, 2000. ACM.

[13] Mathias Hein. Switching-Technologie in lokalen Netzen. Internat. Thomson Publ.,
1996.

[14] MG Hluchyj and MJ Karol. Queueing in high-performance packet switching. IEEE
Journal on Selected Areas in Communications, 6(9):1587–1597, 1988.

[15] ISO/IEC. ISO/IEC 7498-1 Information technology – Open Systems Interconnection
– Basic Reference Model: The Basic Model, November 1994.

[16] RMII Consortium. RMII (tm) Specification, March 1998. Revision 1.2.

[17] Hewlett Packard Company, 3000 Hanover Street, Palo Alto, CA. Reduced Gigabit
Media Independent Interface (RGMII), January 2002. Version 2.0.

[18] How does ahb differ from ahb-lite?, September 2008.

[19] PCI-SIG. PCI Express (tm) Base Specification, March 2005. Revision 1.1.

[20] Altera Corporation. PCI Express Compiler User Guide, 8.0 edition, May 2008. chap-
ter 5.

[21] R. Holler, M. Horauer, G. Gridling, N. Kero, U. Schmid, and K. Schossmaier.
SynUTC-high precision time synchronization over Ethernet networks. CERN EURO-
PEAN ORGANIZATION FOR NUCLEAR RESEARCH-REPORTS-CERN, pages
428–432, 2002.

[22] IEEE Std. 1588 - 2002 IEEE Standard for a Precision Clock Synchronization Protocol
for Networked Measurement and Control Systems. IEEE Std 1588-2002, pages i–144,
November 2002. Replaced by 61588-2004.

[23] Ulrich Schmid and Klaus Schossmaier. Interval-based clock synchronization. Special
Issue on the Challenge of Global Time in Large ScaleDistributed Real-Time Systems,
12(2):173–228, March 1997.

[24] M. Mastretti, M.L. Busi, R. Sarvello, M. Sturlesi, and S. Tomasello. Vhdl quality:
synthesizability, complexity and efficiency evaluation. In Design Automation Con-
ference, 1995, with EURO-VHDL, Proceedings EURO-DAC ’95., European, pages
482–487, September 1995.

[25] T.J. McCabe. A complexity measure. In IEEE Transactions on Software Engineering,
volume SE-2, pages 308–320, December 1976.

[26] Altera Corporation. Quartus II Version 7.2 Handbook – Volume 4: SOPC Builder,
October 2007.

106

[27] Altera Corporation. PCI Express Compiler User Guide, 8.0 edition, May 2008. pages
2-6ff, 5-66–5-72.

[28] Altera. Stratix II GX PCI Express Development Board Reference Manual, 1.0.1
edition, April 2007.

[29] Marvell. 88E1111 Datasheet Integrated 10/100/1000 Ultra Gigabit Ethernet Trans-
ceiver, October 2006.

[30] Altera Corporation. Stratix II GX PCI Express Board, c-1 edition, September 2006.

[31] Altera. PCI Express Development Kit, Stratix II GX Edition - Getting Started User
Guide, 1.0.1 edition, August 2006. page A-1.

[32] Altera Corporation. PCI Express Compiler User Guide, 7.2 edition, October 2007.
page 5-11.

107

	Titlepage
	Introduction
	Motivation
	Task
	Related Work
	Document Structure

	Technology Overview
	Protocol Overview
	Ethernet
	Advanced High-Performance Bus
	PCI Express
	Altera PCI Express Interface
	Precision Time Protocol

	Typical Application

	Challenges and Possible Solutions
	Principle of Operation
	Register Operations
	Burst Direct Memory Access Operation

	Challenges
	Protocol Translation
	Packet-Switching
	Bus Arbitration
	Rate-Matching
	Prevention of Data Loss

	Possible Bus-Switching Architectures
	System on a Programmable Chip Builder
	Bus Arbitration Considerations

	Development System
	Choosing the Development Platform
	Network Interface Card Hardware Architecture
	Device Driver Operation

	Design and Implementation
	Design Work Flow
	Hardware Transition
	FPGA Device Specific Alterations
	Board Specific Alterations
	Configuration of the PCI Express Endpoint
	Reset Circuit for the PCI Express Endpoint

	Architectural Structure of the Bus-Switching Unit
	Receive FIFO Memory
	Transmit FIFO Memory
	Header Decoder
	Address Decoder
	AHB Master -- Register Operations
	AHB Slave -- Direct Memory Access Burst Transfer

	Pitfalls During Development
	Evaluation Board Errors
	Hardware Design Errors

	Simulation and Verification
	Accurate Altera PCI Express Simulation
	Fast PCI Express Emulation
	Verification
	Verification by Simulation
	Hardware Testing

	Conclusion
	Lessons Learned
	Outlook

	List of Figures
	Acronyms
	Bibliography

