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Abstract

This thesis deals with optimal receiver design for pilot-assisted communication sys-
tems with imperfectly available channel state information (CSI). In conventional re-
ceiver design the channel is assumed to be perfectly known. The maximum likelihood
(ML) decision metric is then derived under this assumption. But acquiring perfect
knowledge of the channel poses a fundamental problem for the receiver. In practice,
the receiver performs channel estimation using techniques like least squares (LS) or
minimum mean square error (MMSE) estimation. This is accomplished by sending
pilots, which are perfectly known by the receiver. Due to the limited number of pi-
lots, the channel estimation is imperfect. The so called mismatched receiver replaces
the true channel by its noisy estimate in the metric originally designed for a perfectly
known channel. The resulting mismatch leads to performance degradation in terms of
bit error rate (BER).

In this thesis, we pursue a more advanced approach to designing a receiver by
utilizing statistics of the channel and its estimation error to derive a so-called modified
ML metric. The metric obtained by this method is better suited to the presence of
channel estimation errors. This concept is applied in deriving a modified receiver for
an iterative system architecture based on the bit-interleaved coded modulation scheme
with iterative decoding (BICM-ID). Numerical simulations using an i.i.d Rayleigh block
fading channel model show the superior performance of the modified receiver in terms
of BER.

We further extend the idea of utilizing the channel statistics to correlated channel
models and derive an optimum maximum likelihood metric for a non-iterative system
architecture. The resulting optimum receiver performs sequence detection without
prior channel estimation, because the received pilots are directly incorporated into
the metric. We also provide low-complexity implementation of the optimum metric.
Numerical simulations based on orthogonal frequency division multiplexing (OFDM)
and autoregressive (AR) channel models show that the optimum receiver outperforms
the mismatched receiver in terms of BER. The optimum receiver further is observed to
be less sensitive to the number of pilots used.
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Kurzfassung

Diese Diplomarbeit beschäftigt sich mit dem optimalen Empfängerdesign für pi-
lotgestützte Kommunikationssysteme mit imperfekter Kanalzustandsinformation. Im
konventionellen Empfängerdesign wird angenommen, dass der Kanal perfekt bekannt
ist. Die Maximum-Likelihood (ML) Entscheidungsmetrik wird dann unter dieser An-
nahme hergeleitet. Ein perfektes Wissen über den Kanal zu erlangen, stellt ein fun-
damentales Problem für den Empfänger dar. In der Praxis, schätzt der Empfänger
den Kanal mithilfe von Techniken wie die Methode der kleinsten Quadrate oder Min-
imierung des mittleren quadratischen Fehlers. Dies wird durch das Senden von Pi-
loten, die dem Empfänger vollständig bekannt sind, erreicht. Wegen der limitierten
Anzahl von Piloten ist die Kanalschätzung imperfekt. Der sogenannte fehlangepasste
Empfänger verwendet die ursprünglich für einen perfekt bekannten Kanal entworfene
Metrik und ersetzt darin den echten Kanal durch dessen verrauschten Schätzwert. Die
dadurch entstandene Fehlanpassung führt zu einer Leistungsverminderung hinsichtlich
der Bitfehlerrate.

In dieser Diplomarbeit verwenden wir einem fortgeschrittenen Ansatz, um einen
Empfänger zu entwerfen, in dem die Statistik des Kanals und dessen Schätzfehlers
ausgenützt wird, um eine sogenannte modifizierte ML Metrik herzuleiten. Die
Metrik, die durch diese Methode ermittelt wird, ist besser an die Anwesenheit von
Kanalschätzfehlern angepasst. Dieses Konzept wird bei der Herleitung eines mod-
ifizierten Empfängers für eine iterative Systemarchitektur, die auf Bit-ineinander
Kodierte Modulation mit iterativer Decodierung (BICM-ID) basiert, angewendet.
Numerische Simulationen, die ein unabhängig und identisch verteiltes Rayleigh
Blockschwund Kanalmodell verwenden, zeigen eine überlegene Leistung des modi-
fizierten Empfängers bezüglich der Bitfehlerrate.

Ferner erweitern wir die Idee der Ausnützung von Kanalstatistik auf korrelierte
Kanalmodelle und leiten damit eine optimale ML Metrik für eine nicht iterative Sys-
temarchitektur her. Der dadurch entstandene optimale Empfänger führt eine Se-
quenzdetektion ohne vorausgehende Kanalschätzung aus. Wir stellen eine Implemen-
tierung der optimalen Metrik mit geringerer Komplexität bereit. Numerische Simula-
tionen, basierend auf orthogonale frequenzgeteilte Multiplexing (OFDM) und autore-
gressive (AR) Kanalmodelle zeigen, wie der optimale Empfänger den fehlangepassten
Empfänger hinsichtlich der Bitfehlerrate übertrifft. Zusätzlich beobachten wir beim
optimalen Empfänger eine geringere Empfindlichkeit gegenüber der Anzahl der ver-
wendeten Piloten.
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1
Introduction

“[. . .] they did not know it was impossible so they
did it.” Samuel Langhorne Clemens

IN conventional receiver design it is common to use maximum likelihood (ML) de-

tection based on the well know Euclidean distance metric [1] [2]. There is a however

a fundamental shortcoming in using this design. The ML detector based on this metric

assumes a perfect knowledge of the fading channel at the receiver. However, this as-

sumption cannot be fulfilled in practical scenarios. The so-called mismatched receiver

has to perform an estimation of the fading channel prior to detection. Channel esti-

mation is facilitated by multiplexing pilots in the transmitted symbol sequence [3], [4],

which are fully known to the receiver. It is to be noted that pilot symbols are not infor-

mation bearing symbols. The accuracy of channel estimation depends on the number of

pilots and their mean symbol energy [3]. Using a noisy channel estimate in conventional

ML detection causes a mismatch leading to performance degradation [5], [6].

An innovative method to counteract this problem is to utilize the statistics of the

channel and its estimation error in the derivation of a ML metric for a modified receiver

[2], [5]. We study this detection approach and apply the modified receiver to iterative

system architectures. The iterative system we use is based on the bit-interleaved coded

1



Chapter 1. Introduction 2

modulation scheme with bit-wise soft decision iterative decoding (BICM-ID) [7], [8].

The BICM-ID receiver consists of two main sub-blocks, i.e., a demodulator and a

decoder which exchange soft information about the transmitted bits in an iterative

manner [9]. We consider a Rayleigh block fading channel model for this system.

For a non-iterative system architecture, we take the channel correlation into account

while deriving the ML metric of the optimum receiver for hard decision sequence detec-

tion. Moreover, the channel estimation for this system does not need to be performed

explicitly as the received pilots are incorporated in the ML metric. For this system,

we consider an un-coded transmission over Rayleigh fast fading channel models. We

conclude this decision metric to be optimal for ML sequence detection.

A short overview of the thesis is given below.

• Chapter 2: Introduction to state of the art research work in the field of optimal

receiver design. We consider both iterative and non-iterative receivers.

• Chapter 3: Describes the iterative receiver based on BICM-ID. We describe

the system model, the pilot-assisted channel estimation and the demodula-

tion/decoding procedure.

• Chapter 4: Deals with the modified receiver design and its implementation in

the BICM-ID system. We derive the modified metric in this chapter and discuss

its performance with numerical simulations.

• Chapter 5: Deals with the derivation of the optimal receiver design for use in a

non-iterative system. We describe the system model, pilot-assisted channel esti-

mation and the derivation of the optimum metric. The performance is discussed

with the help of numerical simulations.

• Chapter 6: Concludes the thesis with a summary and gives the outlook for

further research.



2

State of the Art

“[. . .] Engineering is the professional art of applying science to the optimum
conversion of natural resources to the benefit of man.” Ralph J. Smith

IN this chapter we discuss current research work that investigates optimum receiver

design if only imperfect CSI is available at the receiver. In particular we look at the

work in [2], which derives a iterative receiver for a BICM multiband OFDM system and

[5], which derives a non-iterative receiver for a Multiple input multiple output (MIMO)

antenna system using space-time codes. Although they discuss different setups, they

employ the same fundamental concept.

3



Chapter 2. State of the Art 4

2.1 Receiver Architectures

Much of the State of the art research work deals with the problem of imperfect CSI

and methods to reduce the performance degradation caused by channel estimation

errors (CEE). The following receiver design approaches will be analyzed throughout the

work. The ideal receiver works with the assumption of a perfectly known channel. The

mismatched receiver performs channel estimation with the ML or the MMSE criterion

prior to decoding, and uses this estimate in the metric of the ideal receiver. In [2] a

modified receiver is derived which not only estimates the channel but also utilizes the

statistics of the channel and its estimation error in deriving the likelihood function used

for ML detection, thereby adapting the ML decision metric to the presence of CEE.

In [5] an optimum receiver which uses the channel statistics is derived. It performs

joint ML detection without explicitly having to estimate the channel. These receivers

can be implemented both in an iterative and also in a non-iterative fashion. In any

case the channel estimation is performed with the help of pilots embedded in the

transmit sequence. In the following we will see examples of these receivers in different

communication setups.

2.1.1 Iterative Receivers

For iterative receivers we will have a look at the work done by Sadough et al. in [2]. The

fundamental task playing a key role in designing a modified receiver is the derivation

of the respective maximum likelihood metrics, which depends on the choice of the

system model. But the principle concept of utilizing the statistics of the channel and

its estimation error remains the same.

In [2] a BICM-ID multiband OFDM (BICM-ID MB-OFDM) communication sys-

tem is considered. MB-OFDM is known to be a spectrally efficient technique for high

data rates in short range ultra wideband (UWB) applications [10]. In MB-OFDM it is

assumed that the channel is time invariant during the transmission of an entire frame.

Here, the system model is basically the same as that of a BICM-ID system (later

described in Chapter 3) with some additional signal processing blocks to incorporate
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OFDM modulation. At the transmitter, standard OFDM modulation is applied after

the symbol mapper with an inverse fast fourier transformation (IFFT), along with a

cyclic prefix (CP) and a guard interval. At the receiver side, a fast fourier transforma-

tion (FFT) is performed for the demodulation of the OFDM signal. An OFDM with

M subcarriers allows to convert the channel into M parallel Rayleigh distributed flat

fading subchannels [11], [2]. For any subband, the system can be described with an

equivalent baseband model as

yd = Hxd + wd, (2.1)

where the received data symbols and transmitted data symbols are M × 1 vectors rep-

resented by yd = [yd
1 · · · yd

M ] and xd = [xd
1 · · · xd

M ], respectively. The additive

noise is assumed to be zero mean circular symmetric complex Gaussian (ZMCSCG),

i.e., wd ∼ CN (0, σ2
wIM). Here, σ2

w denotes the noise variance and IM is a M × M

identity matrix. The channel H is a diagonal matrix with the diagonal elements equal

to the vector h = [h1 · · · hM ] containing the FFT coefficients.

At the receiver the ML based detector assumes perfectly known channel state infor-

mation, which in practice cannot be fulfilled. Instead of the exact channel an imperfect

channel estimate is used. Thus, the metric of the ideal receiver used in ML detection

is suboptimal and the receiver employing this metric is denoted as the mismatched

receiver. However, the mismatched metric is not able to cope up with CEE. The pres-

ence of CEE will influence the reliability of the transmission and its capacity [12]. The

channel estimation of the k-th fading coefficient hk, where k ∈ {1, · · · , M} is done by

inserting pilot symbols xp = [xp
1 · · · xp

P ] in the transmit sequence. The pilot sym-

bols are assumed constant modulus with energy Ep. The pilots and the data symbols

are assumed to observe the same channel. The received pilot sequence is given by

yp = hkx
p + wp. (2.2)

The P ×1 noise vector wp is distributed as wp ∼ CN (0, σ2
wIP ). The channel estimation

can now be done using a ML procedure, which is achieved by maximizing the pdf
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f(yp|hk,x
p) to give

ĥk, ML =
(xp)H

yp

PEp

= hk + ǫk, (2.3)

where PEp is the total pilot power and ǫk =
(xp)H

yp

PEp
is the estimation error with a

complex Gaussian distribution ǫk ∼ CN (0,
σ2

w

PEp
).

We will now have a look at the ML metrics for the different receiver designs men-

tioned earlier. The system model in (2.1) written in a component-wise form is given

by

yd
k = hkx

d
k + wk.

In the case of the ideal receiver, the ML metric can be derived by maximizing the

pdf f(yd
k |hk, x

d
k) under the assumption that hk is fully known. The pdf f(yd

k |hk, x
d
k) is

distributed as CN (hkx
d
k, σ

2
w). This results in the following ML decision rule given by

x̂k, ML = argmax
xd

k
∈A

f(yd
k |hk, x

d
k)

= argmin
xd

k
∈A

(
|yd

k − hkx
d
k|

2
)
, (2.4)

where A denotes the set containing all possible realizations of xd
k. As explained before,

the mismatched receiver uses the channel estimate (2.3) in the metric derived for the

ideal receiver by replacing hk with ĥk in (2.4). We get

x̂k, ML = argmin
xd

k
∈A

(

|yd
k − ĥkx

d
k|

2
)

. (2.5)

The modified receiver uses the pdf f(yd
k |ĥk, x

d
k) of the received symbols given the channel

estimate. This can be calculated by the integral [2]

f(yd
k |ĥk, x

d
k) =

∫

hk

f(yd
k , hk|ĥk, x

d
k)dhk

=

∫

hk

f(yd
k |hk, x

d
k)f(hk|ĥk)dhk, (2.6)
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For the calculation of (2.6) cf. [2]. The ML decision rule for the modified receiver is

given by

x̂k, ML = argmax
xd

k
∈A

f(yd
k |ĥk, x

d
k)

= argmax
xd

k
∈A

exp
(

−|yd
k − ρĥkx

d
k|

2
)

π
(
σ2

w + (1 − ρ)|xd
k|

2
)

= argmin
xd

k
∈A

ln
(
σ2

w + (1 − ρ)|xd
k|

2
)

+
|yd

k − ρĥkx
d
k|

2

(
σ2

w + (1 − ρ)|xd
k|

2
) . (2.7)

where ρ =
PEp

PEp + σ2
w

is a constant. It can be easily seen that the modified receiver

metric in the case of perfectly available CSI, i.e., ρ −→ 1 and ĥk −→ hk reduces to the

metric of an ideal receiver in (2.4). Although the system model was based on OFDM

scheme, the metric in (2.7) can still be used for ML detection in single carrier frequency

selective fading scenarios [2].

The BICM-ID works with soft information using log likelihood ratios and the pdfs

used in (2.4), (2.5), (2.7) are the likelihood functions, which are used in the iterative

decoding process of the respective receivers (cf. Chapter 3).

The authors in [2] analyzed the performance gain obtained by using the modified

ML metric through numerical simulations.

The modified receiver was shown to outperform the mismatched receiver especially

when fewer number of pilots were used for channel estimation. The SNR required to

achieve a BER =10−3 was about 1.5 dB less if the modified receiver is used instead of

the mismatched receiver (cf. [2]). For a larger number of pilots the performances of

both the receivers comes very close.

Sadough et al. extend the concept of modified ML decoding to a MIMO-OFDM

system with BICM-ID over a frequency selective Rayleigh fading channel (cf. [13]).

The derived modified ML metric for this system has a similar form to the one in (2.7).

Thus, we only discuss the numerical results presented in [13]. The SNR required to

achieve a BER = 10−5 is reduced by 1.5 dB if the modified ML metric is used instead of

the mismatched ML metric (cf. [13]). The performance loss of the mismatched receiver



Chapter 2. State of the Art 8

becomes insignificant for a larger number of pilots.

We will see in the next subsection that the concepts for deriving the modified receiver

can also be applied to non-iterative systems. The concept of an optimum receiver is

also introduced.

2.1.2 Non-iterative Receivers

The non-iterative system we discuss, is based on work [5] by Taricco et al. We now

consider the non-iterative narrow band multiple-input multiple-output (MIMO) com-

munication system using standard space-time codes given in [5]. Space-time codes are

designed for transmit diversity systems. The basic idea of a transmit diversity scheme

is to transmit symbols in a redundant fashion spread spatially over the antennas and

also in time [1]. Antenna diversity is a practical technique for reducing the effects of

multipath fading, hereby improving error performance of the wireless communication

system (cf. [14]). The most famous example for a space-time code is the so called

Alamouti scheme [14] used in systems with two transmit antennas and one receive an-

tenna, yielding a diversity order of two. The Alamouti scheme can also be extended to

multiple antennas at the receiver and has been shown in [15].

The channel model for a MIMO system with t transmit and r receive antennas with

r ≥ t, can be given by the linear equation

Yd = HXd + W.

The space-time code χ used here, has a block length N . The transmitted data sym-

bol matrix Xd = [x1 · · · xN ] is a t × N matrix and the received data symbol is

represented by the r × N matrix Y. The channel itself is denoted by a r × t com-

plex random matrix H. The elements of H are i.i.d zero-mean circularly symmetric

complex Gaussian (ZMCSCG) random variables with unit variance and the elements

of the noise matrix W are i.i.d ZMCSCG random variables with variance σ2
w and

E{WWH} = Nσ2
wIr, where Ir is a r × r identity matrix. The average symbol energy

for a MIMO based system is calculated using the Frobenius norm, which is actually a



Chapter 2. State of the Art 9

standard norm used for MIMO systems

Ed =
1

tN
E{‖Xd‖2

F},

where ‖Xd‖F represents the Frobenius norm and is defined as, ‖Xd‖F , (
∑

i,j

|Xd
i,j|

2)1/2.

The channel matrix H is assumed to be constant during the transmission of the whole

codeword and also statistically independent of Xd and W.

Generally, for study and design purposes the channel matrix is often assumed to be

perfectly known. However in a reality, this assumption is incorrect. The receiver has

to estimate the channel matrix which is made possible by sending pilot symbols at the

beginning of each frame. These pilots and their positions are known at the receiver. If

the transmitter sends a t×P pilot matrix Xp and a t×N data matrix Xd, the receiver

observes the pilots and data symbols given by the following equations as

Yp = HXp + W

Yd = HXd + W.

The average pilot symbol energy can be calculated by the Frobenius norm in the same

way as for the data symbols and is given by

Ep =
1

tN
E{‖Xp‖2

F}.

The estimation of the channel matrix H can be done by using a maximum likelihood

(ML) or a minimum mean squared error (MMSE) estimator.

The ML estimate of H is obtained by maximizing f(Yp|H,Xp), which leads to

minimizing ‖Yp − HXp‖2 with respect to H yielding:

ĤML = YpXp (Xp(Xp)H)−1 = H + E

where the channel estimation error matrix E = WXp (Xp(Xp)H)−1.

The MMSE channel estimate is obtained by the linear transformation YpA, where

A is a P × t matrix minimizing the mean square error E{‖YpA −H‖2} yielding:

ĤMMSE = Yp(Xp)H (σ2
wIt + Xp(Xp)H)−1
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The receivers can be differentiated in the way they utilize the channel estimate Ĥ,

which can be done in various ways. Firstly the receiver estimates the channel H by

observing the pilot matrix sent in the transmission and the resulting estimate is used

in the decision metrics of the corresponding receivers. Note that different estimators

will in general produce different ML receivers [5].

Mismatched receiver: The mismatched receiver uses the estimated channel matrix

in the metric designed under the assumption that perfect channel state information is

available. This results in the following metric

X̂mis, ML = argmin
Xd

‖Yd − ĤXd‖2. (2.8)

The mismatched receiver depends on the channel estimator used, as Ĥ depends on the

channel estimation criterion.

Modified receiver: If the receiver, apart from estimating the channel, conditions

the likelihood function in its ML decision rule on the channel estimate, we get

X̂mod, ML = argmax
Xd

f(Yd|Xd, Ĥ). (2.9)

This receiver utilizes not only the channel estimate but also the statistical distribution

of the channel estimation error. It may seem that the ML metrics would depend on the

channel estimator, but it turns out to be independent of the linear channel estimator

used [5]. This receiver is termed as a modified receiver.

Optimum receiver: It is also possible for the receiver to avoid estimating the chan-

nel explicitly if it jointly detects the transmitted symbol matrix Xd by processing Yd,

Yp and Xp at the same time. The ML decision rule for this receiver is given by

X̂opt, ML = argmax
Xd

f(Yd,Yp|Xd,Xp). (2.10)

The receiver using this detection method is termed as an optimum receiver in [5]. It

focuses on directly detecting the data symbols.
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The pdfs (likelihood functions) and the corresponding ML metrics of receivers in

are derived in [5]. Here, we only discuss their final expressions.

For the modified receiver in (2.9) the pdf f(Yd|Xd, Ĥ) is given by1

f(Yd|Xd, Ĥ) =

exp
(

tr
[

−(Yd − ρĤXd)[σ2
wIN + (1 − ρ)(Xd)

H
Xd]−1(Yd − ρĤXd)H

])

det
(

π[σ2
wIN + (1 − ρ)(Xd)H

Xd]
)r , (2.11)

where ρ is a constant defined as ρ ,
PEp

σ2
w + PEp

. The corresponding ML metric is

calculated by taking logarithm of (2.11) and ignoring terms independent of Xd. The

modified ML metric is given by

X̂mod, ML = argmin
Xd

rσ2
w ln det

[

IN +
(1 − ρ)(Xd)

H
Xd

σ2
w

]

+

tr



(Yd − ρĤXd)

[

IN +
(1 − ρ)(Xd)

H
Xd

σ2
w

]−1

(Yd − ρĤXd)H



 . (2.12)

For the sake of simplicity, the metric to be minimized in (2.12) is denoted by ξmod(X
d).

The modified metric in (2.12) yields interesting results for following extreme cases

ξmod(X
d) =







‖Yd − ĤXd‖2, ρ −→ 1;

rσ2
w ln det

[

IN +
(Xd)

H
Xd

σ2
w

]

+

tr



Yd

[

IN +
(Xd)

H
Xd

σ2
w

]−1

Yd H



 , ρ −→ 0.

The first case for ρ −→ 1 corresponds to
PEp

σ2
w

−→ ∞, i.e., perfect channel state

information is available. The ML metric automatically reduces to that of an ideal

1The function tr(A) is equivalent to trace(A)
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receiver. The second case, where ρ −→ 0, i.e.,
PEp

σ2
w

−→ 0 corresponds to the situation

where no channel state information is available. This is visible by the fact that Ĥ is

missing in the second expression. An important fact to be noted is that the modified

metric suits itself to the quality of the available CSI. This actually results from the fact

that the distribution of the channel estimation error was incorporated while calculating

this metric. These results are only valid under the conditional independence of the

received vector components, which was assumed in the channel model beforehand.

Finally the ML metrics for the optimum receiver is calculated by maximizing the

pdf f(Yd,Yp|Xd,Xp) avoiding the need to involve any prior estimation procedure of

the channel matrix. It is assumed that that joint pdf of H and W is known. After

taking the logarithm of f(Yd,Yp|Xd,Xp) the resulting optimum ML metric is given

by the expression (cf. [5])

ξopt(X
d) = r ln det

[

It +
Xd(Xd)

H
+ Xp(Xp)H

σ2
w

]

+

tr



(Yd(Xd)
H

+ Yp(Xp)H)

[

It +
Xd(Xd)

H
+ Xp(Xp)H

σ2
w

]−1
Xd(Xd)

H
+ Xp(Xp)H

(σ2
w)2



 .

(2.13)

The results for the optimum receiver are only valid under the assumption that H and W

have i.i.d elements distributed as CN (0, 1) and CN (0, σ2
w), respectively. Otherwise the

metric is not optimum. For the special case of orthogonal pilot matrix, i.e., Xp(Xp)H =

PEpIt the optimum metric becomes equivalent to the modified metric.

Moreover, the result in (2.12) shows a great similarity to the metric derived in

[13] for a MIMO-OFDM with BICM-ID, even though the latter was calculated for an

iterative setup with a different system model (cf. [13], [5]). We have thus seen, that for

both iterative and non-iterative receiver designs the basic task of calculating a modified

or optimum metric is fundamentally the same.
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2.1.2.1 Iterative Metric Computation

In order to implement the optimum metric in (2.13) using a sequential decoding algo-

rithm e.g., a Viterbi decoder, it is necessary to compute the metric recursively. The

authors in [5] have been able to find such an iterative computational algorithm for the

optimum metric which is discussed here. For that cause the transmitted and received

matrices can be split as Xd = (Xd−,xd) and Yd = (Yd−,yd), where xd and yd are

column vectors. The objective is to calculate the metric increment defined as

∆ξopt(x
d;Xd−) , ξopt(X

d) − ξopt(X
d−). (2.14)

The necessary functions for further calculations are defined as

Ξ(Xd) ,
Xd(Yd)

H
+ Xp(Yp)H

σ2
w

Λ(Xd) ,

(

It +
Xd(Xd)

H
+ Xp(Xp)H

σ2
w

)−1

. (2.15)

With (2.15) the optimum metric can be rewritten as

ξopt(X
d) = −r ln detΛ(Xd) − tr

(
Ξ(Xd)HΛ(Xd)Ξ(Xd)

)
. (2.16)

To calculate the metric increment defined in (2.14), the functions in (2.15) have to be

split up into components dependent on Xd− and xd and are given as







Ξ(Xd) = Ξ(Xd−) +
xd(yd)

H

σ2
w

Λ(Xd) = Λ(Xd−) −

(

Λ(Xd−)xd(xd)
H
Λ(Xd−)

σ2
w + (xd)H

Λ(Xd−)xd

)

ln detΛ(Xd) = ln detΛ(Xd−) − ln

(

1 +
(xd)

H
Λ(Xd−)xd

σ2
w

)

.

(2.17)

Using the results in (2.17), the metric increment turns out to be

∆ξopt(x
d;Xd−) = ln

(

1 +
(xd)

H
Λ(Xd−)xd

σ2
w

)

+

tr
(

Ξ(Xd−)HΛ(Xd−)Ξ(Xd−) − Ξ(Xd)HΛ(Xd)Ξ(Xd)
)

. (2.18)
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Equation (2.18) can be used to calculate the branch metrics for a Viterbi decoder. It

is to be noted that the branch metric is independent of the code word length N . The

iterative metric algorithm is practical for implementing the optimum metric, because

it reduces the computational complexity and also the processing time. The extensive

calculation procedure for deriving the branch metrics is in [5].

The numerical results presented by the authors in [5] were based on two different

trellis space time codes (STC-1 and STC-2) (cf. [5] for details).

The performance was measured in terms of frame error rate (FER). Moreover,

the number of pilots needed to achieve optimum performance by the mismatched and

modified receivers was found. With t = r = 2 the gaps of the mismatched and modified

receivers to the ideal receiver with perfect CSI were measured in terms of SNR. A few

results are summarized here.

The modified receiver achieves a 0.3 dB gap using STC-1 at a FER = 10−2 with

P = 4 pilots and a 0.45 dB gap using STC-2 at a FER = 10−2 with P = 4 pilots.

The mismatched receiver achieves 1 dB gap using STC-1 at a FER = 10−2 with

P = 16 pilots and a 1.1 dB gap using STC-2 at a FER = 10−2 with P = 16 pilots.

It was concluded in [5] that the mismatched receiver attains its optimum perfor-

mance with P = 16 pilots (11% pilot overhead), while the modified receiver attains its

optimum performance for P = 4 pilots (3% pilot overhead). The overall gain achieved

by using the modified receiver is about 0.7 dB [5].



3
Bit-interleaved coded

modulation

“[. . .] Everything should be made as simple as possible,
but not one bit simpler.” Albert Einstein

IN this chapter we take a detailed look at the bit-interleaved coded modulation

scheme employing soft decision iterative decoding (BICM-ID) [16], [2]. The BICM-

ID scheme builds the foundation for the implementation of iterative receivers in Chapter

4. Bit-interleaving helps to achieve a large diversity order and provides protection

against burst errors [16]. ML detection in BICM requires splitting of the sequence

probabilities into bit probabilities. This is only possible by assuming the encoded

bits to be independent. Hence, BICM is suboptimal in performance [16]. But by

using iterative demodulation and decoding the performance loss can be reduced [9].

The advantage of iterative decoding lies in the reduction of computational complexity

because joint demodulation and decoding is too complicated to implement [17], [18].

We only investigate the BICM-ID scheme for single antenna systems in this thesis.

15
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Figure 3.1: BICM Transmitter

3.1 System Model

The BICM transmitter consists of the blocks shown in Fig. 3.1. These blocks are

described as follows:

In the BICM scheme an information bit sequence of length K, i.e., b =

[b1 · · · bK ]T where bk ∈ {0, 1} and k ∈ {1, · · · , K} is first encoded with an error-

correcting code C to form a sequence c = [c1 · · · cL]T of coded bits cl, where

l ∈ {1, · · · , L} and c ∈ C. The length L ≥ K of the coded bit sequence depends on the

code. Note that the indices taken for the information bits k and for the coded bits l are

different. This is done in order to emphasize the fact that the given number of informa-

tion bits usually corresponds to a different number of encoded bits. In general, the rate

of the code is given by R = K/L. For example consider a convolutional code of rate

R =
1

2
. The length of the coded bit sequence is then given by L = |c| = K/R = 2K

resulting in the coded bit sequence c = [c1 · · · c2K ]T . As there is a one to one

correspondence between the bit sequences and codewords, the cardinality of the set of

valid codewords is given by |C| = 2K for the code rate R =
1

2
.

The coded bit sequence c is permuted via a pseudo-random interleaver Π, which

is considered to be ideal [8]. The correspondence between the coded bit sequences

and the interleaved bit sequences is represented by the permutation function Π, giv-

ing us the equation d = Π(c). The interleaver permutates the coded bit sequence

c = [c1 · · · cL]T into an interleaved bit sequence d = [d1 · · · dL]T , which has

the same cardinality as the coded bit sequence c. The interleaver helps to protect the

transmission against burst errors [19]. These errors can cause too many consecutive

bits to be overwritten in a single codeword, making it impossible to decode it correctly.

Error correcting codes can correct only a limited number of errors in one single code-
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word. Interleaving solves this problem and distributes the errors over many codewords.

This way, the error correcting code is able to work more efficiently, as there are less

number of errors per codeword. Moreover, an ideal interleaver introduces statistical

independency between the coded bits.

The symbol alphabet is represented by A and contains all the possible symbols.

For the chosen modulation type the cardinality of the symbol alphabet is given by

Ma = |A| = 2m, where m is the number of bits assigned per symbol. For example,

16QAM has an alphabet size of 16 resulting in m = 4 bits/symbol.

The deinterleaved bit sequence d is broken into n ∈ {1, · · · , N} subsequences of

m bits each. The n-th subsequence dn = [dn dn+1 · · · dn+m−1]
T is mapped onto

complex higher level non-binary symbols to give the symbol vector xd = [xd
1 · · · xd

N ]T ,

where xd
n ∈ A. The mean power of the data symbols is given by Ed = E{|xd

n|
2}. The

relation between the number of subsequences and mapped symbols N is defined as

L = N m.

Finally, the pilot symbols are inserted at the beginning of each data block in order

to facilitate estimation of the channel at the receiver. The pilots and their positions

are fully know at the receiver. It is possible to estimate the channel state information

using linear estimation techniques like least squares (LS) estimation, minimum mean

square error (MMSE) estimation, see Section 3.2.

The N × 1 transmitted data symbol vector xd and the P × 1 inserted pilot symbol

vector xp are defined as

xd =
[
xd

1 · · · xd
N

]T
(3.1)

xp = [xp
1 · · · xp

P ]
T

. (3.2)

We assume pilot symbols with equal energy, i.e., |xp
1 |

2 = |xp
2|

2 = · · · = |xp
P |

2 = Ep. The

system model for the data and pilot symbol vectors is described by the following linear

equations

yd , hxd + wd (3.3)

yp , hxp + wp. (3.4)
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The N × 1 vector yd represents the received data symbol and the P × 1 vector yp

represents the received pilot symbols. We define a complex Gaussian distribution

with mean µ and variance σ2 as CN (µ, σ2). The N × 1 vector wd denotes additive

noise with a zero-mean circular symmetric complex Gaussian (ZMCSCG) distribu-

tion wd ∼ CN (0, σ2
wIN) and the P × 1 vector wp also has a ZMCSCG distribution

wp ∼ CN (0, σ2
wIP ), where σ2

w denotes the noise variance. Here, IN and IP are iden-

tity matrices of dimension N × N and P × P , respectively. We consider a Rayleigh

flat fading channel model [1]. It is to be noted in (3.3) and (3.4) that the pilot and

data symbol vectors observe the same channel h, which is typical for a block fading

scenario. The channel only changes for each block and can thus be represented by a

single coefficient with a ZMCSCG distribution as h ∼ CN (0, σ2
h), where σ2

h denotes the

channel variance.

3.2 Pilot Assisted Channel Estimation

For this thesis we consider linear channel estimation techniques based on pilots.

The channel estimator observes the received pilot symbol sequence yp. The pilots

xp are known at the receiver. From the definition of the system model for pilots given

in (3.4), we know that yp = hxp +wp. We will use this equation to derive an estimate

of the channel.

Two well known fundamental techniques for linear estimation [20] are

• Least squares (LS) estimation

• Minimum mean square error (MMSE) estimation.

A significant property of LS estimation method is that no statistical assumptions

are made regarding the parameters which are estimated. The basic idea in the least

squares approach is to minimize the squared difference between the observed pilot
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symbol sequence yp and the assumed sequence hxp with respect to h. We define the

Euclidean length of a complex valued vector χ = [χ1 χ2 · · · χN ]T by

||χ|| =

√
√
√
√

N∑

i=1

χ2
i =

√

χHχ. (3.5)

The LS estimate ĥ is found by minimizing the least squares error which is given by

ǫLS(h) = (yp − x̃)H(yp − x̃)

= (yp − hxp)H(yp − hxp)

= ‖yp − hxp‖2, (3.6)

The function ǫLS(h) in (3.6) is a quadratic function of h. To minimize the least squares

error, the gradient of (3.6) with respect to h can be calculated as

∂ǫLS(h)

∂h
= −2(xp)H

yp + 2(xp)H
xph. (3.7)

By setting
∂ǫLS(h)

∂h
= 0 from (3.7) we get the LS estimate given by

ĥLS = ((xp)H
xp)−1(xp)H

yp. (3.8)

The corresponding least square error can be calculated by inserting (3.8) in (3.6) and

is given by

ǫLS(h) |h=ĥ = ǫLS(ĥ)

= (yp)H(I − xp((xp)H
xp)−1(xp)H)yp. (3.9)

From (3.6) it is obvious that the LS approach strives to minimize the Euclidean dis-

tance between the observed signal vector yp to the assumed signal vector hxp. A

geometrical interpretation of the LS method is given in [20]. An important result of

this interpretation is that the LS error lies orthogonal to signal space spanned by the

pilots vectors.

The process of minimizing the least squares error is also equivalent to maximizing

the likelihood function f(yp|h,xp) with respect to h and yields the same results as in
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(3.8). With the number of pilots P and pilot energy Ep as defined in the system model

in Section 3.1, the LS estimate of h from (3.8) is given by

ĥLS =
1

PEp
(xp)H

yp = h + w̃, (3.10)

where w̃ =
1

PEp

(xp)H
wp is the channel estimation error (CEE). The product (xp)H

xp

in (3.8) reduces to ‖xp‖2 = PEp, for the equal energy assumption we made in the

system model. The noise, as we know from the system model is Gaussian distributed

as wp ∼ CN (0, σ2
wIP ). As a consequence w̃ is also Gaussian distributed but with a

different variance, i.e., w̃ ∼ CN (0, σ2
w̃). The error variance is given by

σ2
w̃ ,

σ2
w

PEp
. (3.11)

The statistics of the channel estimation error can be exploited to enhance the

performance of the system. Such metrics are derived and discussed in Chapter 4.

The MMSE estimator is based on the Bayesian approach [20]. Unlike LS estimation

the Bayesian approach does not assume the channel to be an unknown deterministic

constant. Instead, the statistic of h as defined in the system model in Section 3.1 is

taken into account. With this method, prior knowledge of the channel statistics can

be utilized to improve the estimation accuracy.

We will first define the mean square error (MSE) for h as

ǫMSE(ĥ) = E{(h − ĥ)2}, (3.12)

where the channel coefficient h has a given pdf as described in the system model model

3.1, i.e., h ∼ CN (0, σ2
h). The problem now is to find ĥ that minimizes the mean

square error defined in (3.12). The expectation operator E is with respect to the joint

probability density function f(yp, h), with the observations yp defined in the system

model (3.4).

As the channel h is Gaussian distributed, the MMSE estimator reduces to a linear

MMSE (LMMSE) estimator (cf. [20]). Thus, ĥ can be expressed as a linear function
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of the observations yp as

ĥ = aT yp. (3.13)

Equation (3.13) shows that ĥ lies in the P -dimensional subspace SP spanned by

{yp
1 , · · · , yp

P}. The LMMSE estimator minimizing the MSE in (3.12) can be expressed

as

ĥMMSE = argmin
ĥ∈SP

E{(h − ĥ)2} = argmin
ĥ∈SP

‖h − ĥ‖2 (3.14)

The projection theorem [20] states that ĥ ∈ SP which minimizes ‖h− ĥ‖2 is the orthog-

onal projection of h on SP . This means that h − ĥ is orthogonal1 to SP . Using (3.13)

we have

〈h − aTyp,yp〉 = E{(h − aTyp)(yp)H} = 0. (3.15)

We further calculate the expectation in (3.15) as

E{(h − aTyp)(yp)H} = E{h(yp)H} − aT
E{yp(yp)H}

= chyp − aTCypyp . (3.16)

Using (3.15) and (3.16) we get aT = chypC−1
ypyp . The LMMSE estimator can thus be

given as

ĥMMSE = chypC−1
ypypy

p. (3.17)

The corresponding variance of the estimation error (h − ĥMMSE) can be calculated

utilizing the orthogonality between (h − ĥMMSE) and ĥMMSE as

σ2
MMSE = E{(h − ĥMMSE)(h − ĥMMSE)H}

= E{(h − ĥMMSE)hH} − E{(h − ĥMMSE)ĥH
MMSE}

= E{hhH} − E{ĥMMSEhH}

= σ2
h − chypC−1

ypypcyph. (3.18)

Equation (3.17) and (3.18) are actually the mean and variance of the posterior pdf

f(h|yp), respectively (cf. [20]). The variance of the pdf f(h|yp) gives the accuracy of

1Two complex valued vectors x and y are orthogonal if their inner product is equals to zero, i.e.,

〈x,y〉 = E{xHy} = 0
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estimation. For a smaller variance the f(h|yp) will be more concentrated about its

mean.

To calculate the exact expressions of the ĥMMSE and σ2
MMSE we need to evaluate the

following covariances using the system model in (3.4) as

Cypyp = E{yp(yp)H}

= E{(hxp + wp)(hxp + wp)H}

= xpσ2
h(x

p)H + σ2
wI, (3.19)

chyp = E{h(yp)H}

= E{h(hxp + wp)H}

= σ2
h(x

p)H . (3.20)

By inserting (3.19) and (3.20) in (3.17) and (3.18) we get the final expressions

ĥMMSE = σ2
h(x

p)H(xpσ2
h(x

p)H + σ2
wI)−1yp, (3.21)

σ2
MMSE = σ2

h − σ2
h(x

p)H(xpσ2
h(x

p)H + σ2
wI)−1xpσ2

h. (3.22)

The equations (3.21) and (3.22) can be further simplified. We begin by first calcu-

lating the following expression common in (3.21) and (3.22) as

σ2
h(x

p)H(xpσ2
h(x

p)H + σ2
wI)−1 =

1

σ2
w

(

I +
σ2

h

σ2
w

xp(xp)H

)−1

=
σ2

h(x
p)H

σ2
w







I −

σ2
h

σ2
w

xp(xp)H

1 +
σ2

h

σ2
w

(xp)H
xp







=
σ2

h

σ2
w







(xp)H −

σ2
h

σ2
w

PEp(x
p)H

1 +
σ2

h

σ2
w

PEp







=
σ2

h

σ2
w + PEpσ2

h

(xp)H (3.23)
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where the inverse was calculated using the Woodbury’s identity [20]. Using (3.23), we

can compute a closed expression for ĥMMSE and covariance σ2
MMSE, as follows

ĥMMSE = σ2
hI(x

p)H(xpσ2
hI(x

p)H + σ2
wI)−1yp

=
σ2

h

σ2
w + PEpσ2

h

(xp)H
yp. (3.24)

σ2
MMSE = σ2

h − σ2
h(x

p)H(xpσ2
h(x

p)H + σ2
wI)−1xpσ2

h

= σ2
h −

σ2
h

σ2
w + PEpσ2

h

(xp)H
xpσ2

h

= σ2
h −

σ2
hPEpσ

2
h

σ2
w + PEpσ2

h

=
σ2

hσ
2
w

σ2
w + σ2

hPEp

. (3.25)

Now that we have calculated two different types of linear channel estimators, we can

generalize linear channel estimation by analyzing the expressions of the LS channel

estimate in (3.9) and the MMSE channel estimate in (3.24) as

ĥ = α(xp)H
yp, (3.26)

where α is a constant scaling factor which depends on the type of channel estimator

used. The constant α is characteristic for linear channel estimators. For the LS and

MMSE channel estimators, α is given by

α =







1

PEp

for LS estimation

σ2
h

(σ2
w + σ2

hPEp)
for MMSE estimation.

(3.27)

By comparing the constant scaling factors for the two linear channel estimators given

in (3.27), we notice that the two linear channel estimators can be put in relation to

each other through the following equation

ĥMMSE =
σ2

hPEp

(σ2
w + σ2

hPEp)
ĥLS. (3.28)
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Thus, we have illustrated the similarity of the linear estimators. Linear estimators

only differ to each other by a constant factor. For example if we know the LS channel

estimate, the MMSE channel estimate can be calculated straight away by using an

appropriate biasing factor. However, the channel statistics and the noise variance have

to be known beforehand. Similar results have also been shown in [5].

It is useful to know this fact about linear estimators, when calculating the posterior

pdf of the channel given its estimate, see Subsection 4.2. Linear estimators assure that

this posterior pdf will remain unchanged in their distribution, because they only differ

by a constant factor. In Subsection 4.2, we use the general form of the linear channel

estimator in (3.26). We then prove the independence of this posterior pdf from the

type of linear channel estimator used.
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Figure 3.2: BICM-ID Receiver

3.3 BICM-ID Receiver

The BICM-ID receiver is composed of the following signal processing blocks also shown

in Fig. 3.2. Detailed analytic descriptions can be found in the corresponding subsec-

tions. A short overview of the receiver is given here.

In the first stage at the receiver, the channel estimator utilizes the known pilots

and the received pilot symbol sequence yp to estimate the channel h. The channel

estimation can be done using linear estimation techniques like LS or MMSE estimation

as explained in section 3.2. The soft demodulator signal processing block is of main

interest in this work and will be investigated in more detail in Chapter 4. Here, the

received symbol sequences are de-mapped to bit sequences. It delivers soft information

about the individual bit probabilities in the form of log-likelihood ratios λ for each

transmitted bit, see Subsection 3.3.2. The soft demodulator also receives feedback

from the decoder carrying information about the coded bits and uses it as a-priori

information for the de-mapping of the bits.

The exact inverse operation of the pseudo-random interleaver from Subsection 3.1 is

done by the deinterleaver Π−1 at the receiver. The deinterleaver is necessary to put the

log-likelihood ratios of the bit sequences in correct order, as expected by the decoder.

The interleaver and the deinterleaver are critical for the performance of BICM-ID [9],

because the interleaver introduces statistical independency between the encoded bits,

which allows splitting up of the probabilities.
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The decoder resolves the code, e.g., a convolutional code from the encoder and can

be implemented with the BCJR-algorithm (cf. [21]). The BCJR algorithm computes

the updated bit probabilities using the whole sequence and taking the code structure

into account. As in Fig. 3.2, the decoder provides two outputs. The soft information for

the decoded bits is sent to the slicer, where the received bit sequence b̂ is constructed.

The second output delivers the extrinsic information for the de-mapped bits and is

sent to the interleaver. This interleaved sequence serves as a-priori information for the

soft-demodulator.

The exchange of information between the decoder and the soft demodulator happens

every iteration or cycle. The decoded bit sequence for each iteration is calculated by

the slicer. It applies decision on the incoming soft information from the decoder, based

on the magnitude and sign of the log-likelihood ratios.

3.3.1 Maximum Likelihood Detection

To describe BICM-ID demodulation procedure, we first need to lay down some basic

detection methods, which are based on the Maximum likelihood (ML) or the Maximum

a posteriori probability (MAP) criterion [17]. In the case of uniformly distributed

transmitted information bits or symbols, the two criterion are equivalent to each other.

The MAP criterion maximizes the a-posteriori probability of detecting a bit sequence

b given the received sequence y and is formulated by the following equation

b̂ = argmax
b

f(b|y). (3.29)

The maximization process involves an exhaustive search over all possible combinations

of bit sequences, which is exponentially complex in the length of the bit sequence.

Due to this fact, it is practically impossible to implement the MAP criterion in (3.29).

Thus, it is not possible to evaluate f(b|y) for each and every realization of the bit

sequence b. We will see in Subsection 3.3.3 how an alternative iterative algorithm is

implemented for the demodulation and decoding [9], [17].
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3.3.2 Log Likelihood Ratios

The iterative decoding procedure exchanges soft information between the demodulat-

ing and the decoding sub-blocks [19], [22]. In each iteration the demodulating and

decoding sub-blocks utilize the a-posteriori information from each other as an addi-

tive information to get closer to the optimal criterion [17]. As the iterative decoding

procedure for soft-in/soft-out demodulators and decoders has to deal with a-posteriori

probabilities, it is convenient to define something called as the log-likelihood ratio

(LLR). LLRs are the basic tools which prove to be very useful in describing iterative

schemes [19]. Soft information is carried by the means of LLRs between the sub-blocks

of the BICM receiver. If b be a binary random variable from the set {0, 1}, then the

log-likelihood ratio of the random variable b is defined as

λ = log
p(b = 1)

p(b = 0)
,

where p(b = 1) denotes the probability that the random variable b takes the value

b = 1. It is possible to tell the value of the bit by looking at the sign of the LLR, i.e.,

a positive sign of the LLR would mean that the probability of the bit b being ”1” is

greater than the probability of b being a ”0”. The magnitude of the LLR shows the

reliability of this decision. The larger the magnitude of LLR, the more certain is the

decision. Probabilities p(b = 0) or p(b = 1) carry the all the soft information about

the bit b. The soft information of the bit b is denoted by λ [22].
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Figure 3.3: BICM Receiver

3.3.3 BICM-ID Demodulation & Decoding

In this subsection we describe how the iterative decoding procedure of a BICM-ID

works. The fundamental task is to decode the received data symbol sequence yd =

[yd
1 · · · yd

N ]T into the bit sequence b̂ = [̂b1 · · · b̂K ]T . We will use the MAP or

ML criterion for detection in (3.29).

We know that there is a one to one correspondence between the bit sequences b

and the encoded bit sequence c. Therefore maximizing over the coded bits would be

an equivalent way of maximizing the a-posteriori probability (APP). This has to be

done only over the set of valid codewords c ∈ C

ĉ = arg max
c∈C

f(c|yd).

Assuming the interleaver to be linear and ideal the calculation of the APPs can also

be done over the interleaved bit sequence d as

d̂ = arg max
d∈D

, f(d|yd)

where the set D represents the set of codewords corresponding to the set of valid

codewords C after interleaving. With the help of the Bayes’s theorem [20], we can

further simplify the posterior distribution into a more practical form as

f(d|yd) =
f(yd|d)f(d)

f(yd)
.

We can further assume that the bits are uniformly distributed and independent. This

would mean that we can omit f(d) for the maximization process as it is constant and
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f(yd) can also be omitted as it is independent of d. That means

f(d|yd) ∝ f(yd|d) =
N∏

n=1

f(yd
n|dn),

where dn = [dn dn+1 · · · dn+m−1]
T , see section 3.1. The interleaved bit subse-

quence dn corresponds to the symbol xd
n and we can equivalently formulate f(xd|yd)

as

f(xd|yd) ∝ f(yd|xd) =

N∏

n=1

f(yd
n|x

d
n).

The demodulator incorporates soft information (APPs of the mapped bits) from

the decoder and the decoder also incorporates the soft information (APPs of the

encoded bits) provided by the demodulator. Information is exchanged in an itera-

tive way between the demodulator and the decoder until the desired performance is

achieved [17], [19]. The information is exchanged with the help of LLRs, see Section

3.3.2.

Figure 3.3 shows the flow of soft information during the iterative de-

modulation and decoding process. The soft-demodulator and the decoder

are the two main working sub-blocks of the receiver. Here, the vector

λ = [λ1,1 λ1,2 · · · λ1,m λ2,1 λ2,2 · · · λ2,m · · · λN,1 λN,2 · · · λN,m] contains the

log-likelihood ratios of the whole bit sequence. The cardinality of the LLR vector

λ can be calculated as |λ| = N m. With k ∈ {1, · · · , m} and n ∈ {1, · · · , N}, each

element of the vector λ is represented by the likelihood ratio λn,k. This likelihood

ratio belongs to the k-th bit of the n-th symbol. The superscripts in the Fig. 3.3

denote the corresponding type of soft information the vector λ is carrying. The soft

information regarding the interleaved bit sequence is denote by λ(d), for the coded bit

sequence by λ(c) and for the actual data bit sequence λ(b).

The soft-demodulator has knowledge of the received symbol sequence y and takes

the a-priori knowledge λ
(d)
a,in of the mapped bits after the interleaver and calculates the

so called extrinsic information λ
(d)
e,in for all the encoded bits. This extrinsic information

is then deinterleaved to produce λ
(c)
a,out and sent to the soft-in/soft-out MAP decoder
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(uses the BCJR algorithm cf. [21]) as an a-priori input. The decoder in turn calculates

the extrinsic information λ
(c)
e,out on the coded bits. The LLR λ

(c)
e,out is interleaved and

produces λ
(d)
a,in, to serve as an a-priori input for the soft-demodulator. This completes

an iteration. With every iteration the bit-error rate (BER) decreases, because with

every iteration the a-priori information for the bits gets updated and thus becomes

more reliable.

As we can see from the Fig. 3.3 that the decoder also has a second output, which

delivers the LLR vector λ(b) corresponding to the decoded bits. Finally, the Slicer

makes decisions based on the sign and magnitude of each element in the LLR vector

λ(b) and produces the received bit sequence b̂.

We can now have a look at the log-likelihood algebra, with the help of which all

operations of this iterative decoding procedure are done. Calculations with APPs

using the log-likelihood ratios is a convenient method to describe iterative decoding

algorithms. The separation of the a-priori information from the extrinsic information

can be done by simple addition or subtraction of the LLRs.

First we will calculate the log-likelihood ratio λn,k. The use of conditioned LLRs

is fully equivalent to the use of posterior probabilities. Each conditioned LLR can be

separated into two entities, one contains the a-priori information and the second the

extrinsic information [22]. We have

λ(bk|y
d, h) = log

P (bk = 1|yd, h)

P (bk = 0|yd, h)
,

= log
P (bk = 1)

P (bk = 0)
︸ ︷︷ ︸

a-priori λk
a

+ log
f(yd|bk = 1, h)

f(yd|bk = 0, h)
︸ ︷︷ ︸

extrinsic λk
e

.

For calculation purposes, we will denote the a-priori information as λk
a and the extrinsic

information as λk
e . By splitting up the probabilities λk

e can further be expressed as

λn,k = λk
a + log

∑

xd
n∈X

(1)
k

f(yd
n|h, xd

n)f(xd
n)

∑

xd
n∈X

(0)
k

f(yd
n|h, xd

n)f(xd
n)

, (3.30)
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where X
(b)
k is the set of all symbols whose bit labels at position k equals b ∈ {0, 1}.

Further, by exploiting the independence of the bits due to the assumption of an ideal

interleaver, and we can express (3.30) as

λn,k = λk
a + log

∑

xd
n∈X

(1)
k

f(yd
n|h, xd

n)
∏

j 6=k

p(bj)

∑

xd
n∈X

(0)
k

f(yd
n|h, xd

n)
∏

j 6=k

p(bj)
. (3.31)

It is possible to express the individual bit probabilities as a function of a log-likelihood

ratio. For the bit bj we have the log-likelihood ratio λj =
p(bj = 1)

p(bj = 0)
. By applying

p(bj = 0) = 1 − p(bj = 1) we can express λj as

λj = log
p(bj = 1)

1 − p(bj = 1)
or = log

1 − p(bj = 0)

p(bj = 0)
. (3.32)

It is now possible to express the individual bit probabilities p(bj) by using (3.32). We

have

p(bj = 0) =
1

1 + eλj and p(bj = 1) =
eλj

1 + eλj . (3.33)

Moreover (3.33) can be generalized for any bit value b as

p(bj = b) =
ebλj

1 + eλj . (3.34)

It is to be noted that the denominator in (3.34) is independent of the actual value of

the bit bj , and can thus be ignored when calculating the product term
∏

j 6=k

p(bj). We

further on multiply the numerator and denominator in (3.31) with
∏

j 6=k

exp(−
1

2
λj) and

get the expression

λn,k = λk
a + log

∑

xd
n∈X

(1)
k

f(yd
n|h, xd

n)
∏

j 6=k

exp

(
1

2
(2bj − 1)λj

)

∑

xd
n∈X

(0)
k

f(yd
n|h, xd

n)
∏

j 6=k

exp

(
1

2
(2bj − 1)λj

) , (3.35)

where pdf of the likelihood function f(yd
n|h, xd

n) in (3.35) has a complex Gaussian dis-
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tribution CN (hxd
n, σ2

w), which follows from the system model in (3.3) and is given by

f(yd
n|h, xd

n) =
1

πσ2
w

exp

(

−
|yd

n − hxd
n|

2

σ2
w

)

. (3.36)

The likelihood function in (3.36) in can be easily incorporated in (3.35) to give the

final expression for the LLR λn,k as

λn,k = λk
a + log

∑

xd
n∈X

(1)
k

exp

{

−
|yd

n − hxd
n|

2

σ2
w

+
1

2

∑

j 6=k

(2bj − 1)λj

}

∑

xd
n∈X

(0)
k

exp

{

−
|yd

n − hxd
n|

2

σ2
w

+
1

2

∑

j 6=k

(2bj − 1)λj

} . (3.37)

The above expression is generally approximated via the max-log approximation [19],

see Section 4.3. Equation (3.37) can be used for both types of LLRs, i.e., the ones

carrying soft information on the mapped bits and the ones carrying soft information

on the coded bits. For the mapped bits, λk
a will be an element of the a-priori LLR

vector λ
(d)
a,in and λk

e an element of the extrinsic LLR λ
(d)
e,in. Both being for the kth

position. This also applies in the same sense to the coded bits.

It is to be noted that during all calculations and system description, the channel

h was considered as perfectly known. This is an assumption, which in reality would

be incorrect. In practice, an estimate of the channel with the methods described in

Subsection 3.2 is used instead. This will definitely cause performance degradation,

because of channel estimation errors. The main concern of this thesis is to investigate

methods, which are useful in improving the performance. And hereby reducing the

performance loss due to channel estimation. We will see in the next chapters, how the

performance can be improved even in the presence of channel estimation errors.
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3.4 Symbol Constellations

The BICM-ID system performance also depends upon the type of bit-to-symbol map-

ping used. Some constellations used with BICM-ID are given here for a 16QAM mod-

ulation.
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For an iterative system set-partitioning performs much better than Gray-coded

constellation [8], [23]. The authors in [24] have described methods to derive an optimal

bit labeling for BICM-ID with quadratic QAM constellations. (cf. [24], [23])



4

Modified Receiver for Iterative

Systems

“[. . .] The enchanting charms of this sublime science reveal only to those who
have the courage to go deeply into it.” Carl Friedrich Gauss

IN this chapter we take a closer look at the mismatched and modified receiver designs

for a BICM-ID system model. The use of these receivers is not limited to the BICM-

ID system. The ML metrics of these two receivers are discussed here. In particular,

the derivation of the modified ML metric is explained in detail. The modified receiver

utilizes the statistics of the CEE and is thus able to adapt itself to the presence of

CEE. This is a significant advantage over the mismatched receiver, which is unable to

do so. The ML metrics of the mismatched and modified receivers are first discussed

for a hard symbol decision decoding and are then adapted for soft decision bit-wise

decoding in the BICM-ID system from Chapter 3. The simulation results at the end

of the chapter show that the modified receiver outperforms the mismatched receiver.

34
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4.1 Mismatched Receiver

In conventional design, the receiver expects the exact knowledge of the CSI for its

ML based detector metric. However in practice, the receiver only has an imperfect

channel estimate available. The channel estimate is imperfect due to the fact that only

a limited number of pilots can be used to estimate the channel [2], (cf. Section 3.2).

It is thus not possible to eliminate the CEE completely. Therefore, the mismatched

receiver is suboptimal. The true channel is replaced by its noisy estimate in the receiver

metric [2], which was originally designed for perfect CSI.

First we calculate the ML metric of the ideal receiver, under the assumption of a

perfectly known channel h using the system model in (3.3). This is done by maximizing

the pdf of the likelihood function f(xd|yd, h). The likelihood function f(xd|yd, h) can

be approximated with the Bayes’s theorem [20] as

f(xd|yd, h) ∝ f(yd|xd, h)

=

N∏

n=1

f(yd
n|x

d
n, h). (4.1)

The pdf f(yd|xd, h) in (4.1) for the ML detection can be factorized because the receiver

does not take the channel correlation into account. This property allows symbol-wise

ML detection at the receiver. With the pdf f(yd
n|x

d
n, h) distributed as CN (hxd

n, σ2
w)

given in (3.36), the ML decision rule for the ideal receiver is formulated as

x̂d
n, ML = argmax

xd
n∈A

f(yd
n|x

d
n, h)

= argmax
xd

n∈A

ln f(yd
n|x

d
n, h)

= argmin
xd

n∈A

(
|yd

n − hxd
n|

2
)
. (4.2)

By using the LS or MMSE channel estimate ĥ from (3.10) or (3.24) in(4.2) we can

write the ML decision rule for the mismatched receiver as

x̂d
n,ML = argmax

xd
n∈A

f(yd
n|x

d
n, h) |h=ĥ

= argmin
xd

n∈A

(

|yd
n − ĥxd

n|
2
)

. (4.3)
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There are several possible mismatched receivers employing the metric in (4.3) depending

on the type of channel estimation used. The use of the channel estimate in the ML

metric of the ideal receiver causes a mismatch leading to performance degradation. It

is not designed to deal with CEE. We will see in Section 4.2, how a modified receiver

can be derived to overcome this problem.

4.1.1 BICM-ID with Mismatched Metric

The mismatched metric in (4.3) can easily be integrated in to the BICM-ID receiver

in 3.3.3. We know that the mismatched metric is a result of replacing the true channel

with its estimate in the metric of the ideal receiver. This allows us to formulate the

LLR λmis
n,k for the mismatched receiver employing iterative decoding by simply replacing

h with ĥ in the expression of the LLR for the ideal receiver in (3.37). The LLR for the

mismatched receiver is thus given by

λmis
n,k = λk

a + log

∑

xd
n∈X

(1)
k

exp

{

−
|yd

n − ĥxd
n|

2

σ2
w

+
1

2

∑

j 6=k

(2bj − 1)λj

}

∑

xd
n∈X

(0)
k

exp

{

−
|yd

n − ĥxd
n|

2

σ2
w

+
1

2

∑

j 6=k

(2bj − 1)λj

} . (4.4)

4.2 Modified Receiver

The ML metric can be adapted to the presence of CEE by utilizing its statistics. It

further uses the posterior pdf of the channel conditioned on its estimate [2]. This

method allows the receiver to have better knowledge of the channel statistics.

4.2.1 Posterior Channel Statistics

The modified receiver estimates the channel by using LS or MMSE estimators in Section

3.2. For illustrative purposes we use the general form of a linear channel estimator given

in (3.26), i.e., ĥ = α(xp)H
yp. This will later on help us to understand the working of

the receiver better.
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Using the general form of the linear estimator the posterior pdf of the channel

given its estimate, i.e., f(h|ĥ), is derived. This is calculated with the help of the

Bayes’s theorem [20] and is given by

f(h|ĥ) =
f(ĥ|h)f(h)

f(ĥ)
=

f(ĥ|h)f(h)
∫

h

f(ĥ|h)f(h)
dh. (4.5)

where we already know that f(h) is distributed as CN (0, σ2
h) and the pdf f(ĥ|h) can

be derived from the linear estimator in (3.26). Using the system model for the received

pilot symbols in (3.4), the channel estimate in the general form can be expressed as

ĥ = α(xp)H(hxp + wp). (4.6)

For the system model in (3.4) we know that wp has a Gaussian distribution. Thus,

f(ĥ|h) will also be Gaussian distributed. The mean and variance of the pdf f(ĥ|h)

with the distribution CN (µĥ|h, σ
2
ĥ|h

) is calculated using (4.6) and is given by

µĥ|h = E{ĥ|h}

= E{α(xp)H(hxp + wp)|h}

= αPEph, (4.7)

σ2
ĥ|h

= E{ĥĥH |h}

= E{(α(xp)H(hxp + wp))(α(xp)H(hxp + wp))H |h}

= E{(α(xp)H
xph + α(xp)H

wp)(α(xp)H
xph + α(xp)H

wp)H |h}

= α2PEpσ
2
w. (4.8)

These results are only valid under the assumption that the pilot symbols have equal

energy, i.e., |xp
1 |

2 = |xp
2 |

2 = · · · = |xp
P |

2 = Ep. With this assumption, the term (xp)H
xp

reduces to PEp. Here, P is the number of pilots and Ep is the energy of each pilot.

For further calculations we define the signal-to-noise ratio (SNR) as

γ ,
σ2

hPEp

σ2
w

. (4.9)

The product f(ĥ|h)f(h) is a simple multiplication of Gaussian distributions, which

again yields a Gaussian distribution given by
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f(ĥ|h)f(h) =
1

π2α2γσ4
w

exp

(

−
α2PEp(1 + γ) h2 − (2αγĥ) h + γĥ2/PEp

α2γσ2
w

)

(4.10)

The exponent in (4.10) is expressed as a quadratic function in h. The integral to obtain

f(ĥ) is given by

f(ĥ) =

∫

h

f(ĥ|h)f(h), (4.11)

and we will utilize the integrand calculated in (4.10). The integral in (4.11) can be

evaluated by using the following integral identity

∫

h

exp(−(ah2 + bh + c))dh =

√
π

a
exp

(
b2 − 4ac

4a

)

, (4.12)

where a, b and c are arbitrary constants. Finally, using (4.10), (4.11) and (4.12) we get

the expression for the pdf f(ĥ) as

f(ĥ) =
1

πα2PEpσ2
w(1 + γ)

exp

(

−
ĥ2

α2PEpσ2
w(1 + γ)

)

. (4.13)

We calculate the posterior pdf using the results in (4.10), (4.13) and standard algebraic

calculations. The final expression for f(h|ĥ) distributed as CN (µh|ĥ, σ
2
h|ĥ

) is easier to

analyze by inserting the general form of the linear estimator in the posterior pdf, i.e.,

ĥ = α(xp)H
yp from (3.26). The posterior pdf of the channel, given its estimate f(h|ĥ)

is given by the distribution

CN

(
γ

PEp(1 + γ)
(xp)H

yp,
σ2

h

1 + γ

)

, (4.14)

with the mean and variance defined as

µh|ĥ =
γ

PEp(1 + γ)
(xp)H

yp (4.15)

σ2
h|ĥ

=
σ2

h

1 + γ
(4.16)
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By observing the expression for the posterior pdf in (4.14), we conclude an important

result. The pdf f(h|ĥ) is independent of the constant α and therefore independent of

the type of linear channel estimator used. Similar results have also been shown in [5]

but for a different system model. For high SNR, i.e., γ → ∞ we make the following

conclusions for the mean and variance in (4.15) and (4.16).







lim
γ→∞

µh|ĥ = lim
γ→∞

γ

PEp(1 + γ)
(xp)H

yp =
(xp)H

yp

PEp

lim
γ→∞

σ2
h|ĥ

= lim
γ→∞

σ2
h

1 + γ
= 0.

(4.17)

It can be seen in (4.17) that the mean of the posterior pdf converges to the LS estimate

in (3.10) and the variance converges down to zero. This means that the distribution

of the posterior pdf f(h|ĥ) in (4.14) will become concentrated around the LS channel

estimate for an increasing SNR value. Thus, we conclude that the mean of the posterior

pdf is a scaled LS estimate. For higher values of SNR the channel estimation will

become more accurate, because the error variance of the CEE as given in (3.11) tends

to zero.

4.2.2 Modified ML Detection

The ML decision rule for the modified receiver can be formulated as

x̂d
n, ML = argmax

xd
n∈A

f(yd
n|x

d
n, ĥ)

= argmax
xd

n∈A

ln f(yd
n|x

d
n, ĥ). (4.18)

It is to be noted that the likelihood function f(yd
n|x

d
n, ĥ) is conditioned on the channel

estimate. Thus, it is now possible to incorporate the channel statistics expressed as

the posterior pdf of the channel in (4.14). To derive the modified ML metric, the

likelihood function f(yd
n|x

d
n, ĥ) needs to be calculated explicitly. The pdf f(yd

n|x
d
n, ĥ)

can be expressed as a marginalization of the joint likelihood function, with respect to
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the true channel and is given by

f(yd
n|x

d
n, ĥ) =

∫

h

f(yd
n, h|x

d
n, ĥ)dh

=

∫

h

f(yd
n|x

d
n, h)f(h|ĥ)dh. (4.19)

The last step in (4.19) follows from the statistical independency of xd from h and ĥ.

Equation (4.19) can be interpreted as the following conditional expectation calculated

over the posterior distribution of the true channel given its estimate [2] as

f(yd
n|x

d
n, ĥ) = Eh|ĥ{f(yd

n|x
d
n, h)|ĥ}.

The product of the two known Gaussian distributions in the integrand of (4.19) remains

Gaussian. The pdf f(yd
n|x

d
n, h) is given by the distribution CN (hxd

n, σ2
w) and f(h|ĥ) is

to be taken from (4.14). After calculating the product of the Gaussian distributions,

the exponent of the integrand in (4.19) can be formulated as a quadratic function in h

and is given by

f(yd
n|x

d
n, h)f(h|ĥ) =

1

π2σ2
h|ĥ

σ2
w

exp

(

−
(σ2

h|ĥ
|xd

n|
2 + σ2

w)h2 − 2(ydxd
nσ2

h|ĥ
+ µh|ĥσ

2
w)h + σ2

h|ĥ
yd + µ2

h|ĥ
σ2

w

σ2
h|ĥ

σ2
w

)

.

(4.20)

It is now possible to apply the integral identity in (4.12) on (4.19) and after stan-

dard algebraic calculations, we get the likelihood function f(yd
n|x

d
n, ĥ) for the modified

receiver, given by the distribution

CN
(

µh|ĥx
d
n, σ2

w + σ2
h|ĥ

|xd
n|

2
)

= CN

(

γ (xp)H
yp

PEp(1 + γ)
xd

n, σ2
w +

σ2
h|x

d
n|

2

1 + γ

)

, (4.21)

where µh|ĥ and σ2
h|ĥ

are given in (4.15) and (4.16), respectively. For the sake of simplicity
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we denote the mean and variance of the likelihood function f(yd
n|x

d
n, ĥ) for the modified

receiver as

µmod =
γ (xp)H

yp

PEp(1 + γ)
xd

n (4.22)

σ2
mod = σ2

w +
σ2

h|x
d
n|

2

1 + γ
(4.23)

It is to be noted that the mean and variance of the likelihood function are not constants,

since they depend on the data symbol xd
n. The final decision metric for the modified

receiver is evaluated using (4.21) in the decision rule (4.18) and is given by

x̂d
n,ML = argmin

xd
n∈A










ln

(

σ2
w +

σ2
h|x

d
n|

2

1 + γ

)

+

∣
∣
∣
∣
∣
yd −

γ (xp)H
yp

PEp(1 + γ)
xd

n

∣
∣
∣
∣
∣

2

(

σ2
w +

σ2
h|x

d
n|

2

1 + γ

)










. (4.24)

The modified ML metric can be analyzed for extreme cases of SNR. This results in the

following two possibilities:

a) In the case of perfect CSI (ĥ −→ h) corresponding to γ −→ ∞, the modified

metric reduces to the Euclidean distance metric of the ideal receiver in (4.2)

x̂d
n, ML = argmin

xd
n∈A





∣
∣
∣
∣
∣
yd −

(xp)H
yp

PEp
xd

n

∣
∣
∣
∣
∣

2


 . (4.25)

b) In the case of γ −→ 0, the metric reduces to the following expression

x̂d
n,ML = argmin

xd
n∈A

(

ln
(
σ2

w + σ2
h|x

d
n|

2
)

+

∣
∣yd
∣
∣2

(σ2
w + σ2

h|x
d
n|

2)

)

. (4.26)

It is to be noted that the metric in (4.26) does not contain the channel estimate. In

b) it can be seen that the variance of the likelihood function f(yd
n|x

d
n, ĥ) reduces to

(
σ2

w + σ2
h|x

d
n|

2
)

for γ −→ 0. The presence of the channel variance σ2
h in (4.26) can

be seen. Thus, we conclude that the modified metric takes the channel statistics into

account even when the CSI is so bad that it is absent in the metric (4.26). Similar

results have been shown in [5]. The modified metric in (4.24) is in a position to adapt
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itself to the CEE. Moreover, the modified metric proves to be independent of the linear

channel estimator used because the constant α does not appear in (4.24).

The decision metric in (4.24) is fully equivalent to the one derived in [2]. The

modified metric in (4.24) can be reformed by inserting the value of the SNR, i.e.,

γ =
σ2

hPEp

σ2
w

and then using the constant ρ =
PEp

PEp + σ2
w

. Under the assumption that

the distribution of the true channel has a unit variance, i.e., σ2
h = 1, we get exactly the

same expression for the decision metric as in [2].

4.2.3 Alternative Derivation of Modified ML Detector

An alternative method to detect the transmitted data is by maximizing the likelihood

function f(yd
n|x

d,yp). This pdf can be calculated by the following marginalization

f(yd
n|x

d
n,yp) =

∫

h

f(yd
n|h, xd

n)f(h|yp)dh, (4.27)

where f(h|yp) is to be calculated using Bayes’s theorem [20] as

f(h|yp) =
f(h|yp)f(h)

f(yp)
,

and is given by the distribution

CN

(
γ

PEp(1 + γ)
(xp)H

yp,
σ2

h

1 + γ

)

. (4.28)

It can be seen that (4.28) is the same as the posterior pdf given in (4.14). This would

mean that likelihood function in (4.21) is equivalent to the outcome of (4.27). This can

easily be verified by evaluating the integral in (4.27) using the integral identity (4.12).

The advantage of this method is that the posterior distribution of the true channel

given its channel estimate, can directly be calculated with Bayes theorem. Moreover,

due to the fact that the pdf f(h|ĥ) and f(h|yp) are equivalent, we conclude that the

calculation of the posterior pdf f(h|ĥ) with an LS estimate ĥ yields the posterior pdf

f(h|yp) for an MMSE estimator. Derivation of f(h|ĥ) can be found in Subsection 4.2.1.

In the following subsection we adapt the modified receiver for implementation in the

BICM-ID system given in Chapter 3.



Chapter 4. Modified Receiver for Iterative Systems 43

4.2.4 BICM-ID with Modified Metric

The modified receiver can be easily incorporated into the BICM-ID system model. As

in Subsection 3.3.3, the likelihood function (3.36) for a perfectly known CSI is inserted

in the expression (3.35) for the LLR λn,k. We only need to replace this likelihood

function with our modified likelihood function given in (4.21). The LLR λmod
n,k for the

modified receiver can be formulated by using f(yd
n|x

d
n, ĥ) in (3.35) and is given by

λmod
n,k = λk

a + log

∑

xd
n∈X

(1)
k

exp

{

−
|yn − µmod|2

σ2
mod

+
1

2

∑

j 6=k

(2bj − 1)λj

}

∑

xd
n∈X

(0)
k

exp

{

−
|yn − µmod|

2

σ2
mod

+
1

2

∑

j 6=k

(2bj − 1)λj

} , (4.29)

where f(yd
n|x

d
n, ĥ) is distributed as CN (µmod, σ

2
mod). The mean µmod and variance σ2

mod

of the modified likelihood function are given in (4.22) and (4.23), respectively. The

iterative decoding procedure as described in Section 3.3.3 remains unchanged and we

only use a different likelihood function for the soft decision decoding, i.e., the modified

likelihood function.
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4.3 Simulation Results

4.3.1 Implementation Issues

The BICM-ID receiver in Fig. 3.2 has been implemented in MATLAB c©. The LLRs

carrying soft information of the bit probabilities in this figure are expressed in general

by (3.37). For the implementation of the iterative receiver, some approximations for

the LLR are calculated as follows

λn,k = λk
a + log

∑

xd
n∈X

(1)
k

exp

{

−
|yd

n − hxd
n|

2

σ2
w

+
1

2

∑

j 6=k

(2bj − 1)λj

}

∑

xd
n∈X

(0)
k

exp

{

−
|yd

n − hxd
n|

2

σ2
w

+
1

2

∑

j 6=k

(2bj − 1)λj

}

≈ λk
a + max

xd
n∈X

(1)
k

{

−
|yd

n − hxd
n|

2

σ2
w

+
1

2

∑

j 6=k

(2bj − 1)λj

}

− max
xd

n∈X
(0)
k

{

−
|yd

n − hxd
n|

2

σ2
w

+
1

2

∑

j 6=k

(2bj − 1)λj

}

≈ λk
a + min

xd
n∈X

(0)
k

{

|yd
n − hxd

n|
2

σ2
w

−
1

2

∑

j 6=k

(2bj − 1)λj

}

− min
xd

n∈X
(1)
k

{

|yd
n − hxd

n|
2

σ2
w

−
1

2

∑

j 6=k

(2bj − 1)λj

}

. (4.30)

The approximation was done by using the max-log approximation of the Jacobian

logarithm, i.e., jacln(a, b) = ln(ea + ea) + ln(1 − e−|a−b|) ≈ max(a, b) [19]. The max-log

approximation facilitates efficient implementation of the iterative decoding system in

MATLAB c© with low performance loss.

4.3.2 Performance Evaluation of the BICM-ID Receivers

As discussed in Chapter 3 and Chapter 4, we have three BICM-ID receivers. The ideal

receiver for perfect CSI, the mismatched receiver for imperfect CSI and the modified

receiver for imperfect CSI with posterior channel statistics. We hereby evaluate the

performance of these three receivers by analyzing the bit error rate (BER) performance

for increasing SNR. The influence of the number of pilots and the pilot symbol energy
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on the BER is also discussed. These BICM-ID receivers use different metrics in the

expression of their LLRs. To summarize, the LLR λn,k used for the ideal receiver is in

(3.37) and approximated in (4.30). The LLRs for the mismatched receiver and for the

modified receiver are in (4.4) and (4.29), respectively and can be approximated in the

same way as shown in (4.30).

4.3.3 Simulation Setup

A sequence of 512 information bits are encoded by a rate R = 1/2 (5,7) convolutional

code with constraint length 3, where (5,7) represent the generator polynomials. The

coded bits are sent through a pseudo-random interleaver. A 16QAM modulation (Ma =

16) is used to map the interleaved bits to symbols using a set-partitioning mapping (cf.

Section 3.4). We use a i.i.d Rayleigh block fading channel of block length 16 symbols.

For each transmitted block we use a different realization of the channel and it remains

constant for the whole block. The pilots are inserted in the beginning of each block.

A BCJR [21] decoder was used for iterative decoding. We will show the simulation

results of a various number of pilots P and pilot energy Ep. The channel estimation is

done with an LS estimator.

The SNR in the following figures is defined as

γ = 10 log
Eb

σ2
w

= 10 log
Ed

σ2
w

1

R ld(Ma)
, (4.31)

where σ2
w is the noise variance. The respective mean bit and symbol energies are Eb, Ed.

For a 16QAM modulation Ma = 16.

In Fig. 4.1 we see the BER performance of the receivers for P = 1 pilot with energy

Ep = 0.5 for 10 iterations. The SNR required to achieve a BER = 10−3 is about 1.0

dB lower for the modified receiver than for the mismatched receiver.

Fig. 4.2 shows the performance improvement for the modified receiver for an increas-

ing number of iterations for P = 1 pilot with mean energy Ep = 0.5. The performance

improvement is significant for the first few iterations and decreases for larger number

of iterations. The type of bit labeling plays an important role in improving the perfor-

mance over the iterations [9], see Section 3.4. The ideal and mismatched receivers also
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Figure 4.1: BER performance for 10 decoding iterations, with P = 1 pilot, Ep = 0.5

using set-partitioning labeling.

benefit from iterative decoding in the same way as the modified receiver does, see Fig.

4.3 for the ideal receiver.

Fig. 4.4 and Fig. 4.5 show the influence of the number of pilots and their symbol

energy on the performance of the modified and mismatched receivers. Fig. 4.4 shows

the improvement of the BER performance with P = 1, P = 2 and P = 3 pilots using

constant mean pilot energy Ep = 0.5. The performance of the modified receiver for

P = 2 pilots comes very close to that of a mismatched receiver for P = 3 pilots. For an

increasing number of pilots the performance loss of the mismatched receiver becomes

less. In Fig. 4.4 it can be seen that for P = 3 pilots the mismatched receiver comes

quite close to the performance of the modified receiver.

By varying the pilot energy Ep and keeping the number of pilots constant P = 1,

we get Fig. 4.5. We see that the modified receiver for pilot energies Ep = 0.5 and

Ep = 0.75 achieves almost the same performance as the mismatched receiver for pilot
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Figure 4.2: Performance of the modified receiver for various number of iterations,

with P = 1 pilot, Ep = 0.5with P = 1 pilot, Ep = 0.5.

energies Ep = 0.75 and Ep = 1, respectively. By increasing the pilot energies the gap

between the mismatched receiver and the modified receiver becomes insignificant. The

channel estimation improves by increasing the number of pilots and their mean symbol

energy. This consequently reduces the gap between the BER curves of the modified

and mismatched receivers. The performance gain of the modified receiver over the

mismatched receiver is maximum for P = 1 pilot with Ep = 0.5. The modified receiver

outperforms the mismatched receiver, specially when fewer number of pilots are used

for channel estimation. Similar results have also been shown in [2], [5] and [6].

Fig. 4.6 shows the BER performance of the receivers for P = 1 pilot with energy

Ep = 0.5 for 10 iterations using a Gray bit labeling. The SNR required by the ideal

receiver to achieve a BER = 10−5 is increased by 4 dB if Gray labeling is used instead

of set-partitioning as in Fig. 4.1. This is only due the fact that we used a different

bit labeling because rest of the parameters are the same as for Fig. 4.1. Using a Gray

labeling in an iterative system shows insignificant gain for more than one iteration.
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Figure 4.3: Performance of the ideal receiver for various number of iterations, with

P = 1 pilot, Ep = 0.5.
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Figure 4.4: Performance of BICM-ID for varying number of pilots, Ep = 0.5.
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Figure 4.5: Performance of BICM-ID for varying pilot energy, P = 1.

This can be seen in Fig. 4.7, where the performance gain between 10 iterations is

negligible. Gray labeling is not suitable for an iterative system as the maximum possible

performance is achieved in the first iteration only (cf. [24], [23]).

Fig. 4.8 shows the BER performance of the receivers for P = 1 pilot with energy

Ep = 0.5 for 10 iterations using the so-called m16a bit labeling (cf. Section 3.4). To

achieve a BER = 10−3 the modified receiver requires about 1.2 dB less SNR than the

mismatched receiver. For a SNR of 12 dB the ideal receiver with m16a labeling achieves

a BER =10−6, whereas with set-partitioning labeling a BER = 10−5 in Fig. 4.6 was

possible. By looking at Fig. 4.8 and Fig. 4.6 we see that the m16a labeling achieves

better performance for an SNR ≥ 10 for the ideal receiver. Moreover, it can be seen

in Fig. 4.9 that the performance gain of the ideal receiver for the first two iterations

is quite huge. For a larger number of iterations the decrease in the performance gain

per iteration is much slower than in Fig. 4.1 for set-partitioning labeling. Thus, m16a

labeling is able to achieve a better performance for a larger number of iterations than

the set-partitioning labeling in the case of perfect CSI.
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Figure 4.6: BER performance for 10 decoding iterations, with P = 1 pilot, Ep = 0.5

using Gray labeling.
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Figure 4.7: Performance of the modified receiver for various number of iterations,

with P = 1 pilot, Ep = 0.5 using Gray labeling.
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Figure 4.8: BER performance for 10 decoding iterations, with P = 1 pilot, Ep = 0.5

using m16a labeling.
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Figure 4.9: Performance of the ideal receiver for various number of iterations, with

P = 1 pilot, Ep = 0.5 using m16a labeling.



5

Optimum Receiver for

Non-iterative Systems

“[. . .] Engineering is the professional art of applying science to the optimum
conversion of natural resources to the benefit of man.” Ralph J. Smith

IN this chapter we consider the derivation of the optimum metric for a pilot-assisted

non-iterative system model. The received symbols are correlated due to an imperfect

CSI. Symbol-wise detection for a correlated received symbol sequence leads to perfor-

mance loss. In the derivation of the ML decision metric, the optimum receiver takes

the channel correlation into account. This receiver delivers better performance through

sequence detection, which is exponentially complex in the transmit sequence length.

We have derived the optimum receiver for OFDM [11] and autoregressive (AR) [25]

based channel models.

52
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5.1 System Model

We define the N × 1 transmit symbol sequence as a vector x containing both data

symbols and pilot symbols given by

x = xd + xp, (5.1)

where xd and xp are the N × 1 vectors carrying data symbols and pilots symbols,

respectively. The pilot and data symbols are transmitted in an orthogonal manner.

Depending on the channel model, the positions of the pilots in the transmitted symbol

vector x correspond to the time or frequency slots in which they were sent. The

positions of the pilots in the transmission is arbitrary. Let Ψd and Ψp denote the sets

containing the positions of the symbols in the data and pilot vectors in a sequence,

respectively. Then, Ψd and Ψp are disjoint sets, i.e., Ψd ∩ Ψp = ∅ with cardinalities

|Ψp| , P and |Ψd| , N − P .

The data symbols are taken from the symbol alphabet A containing all possible

symbols for the chosen modulation, i.e., with n ∈ Ψd we have xd
n ∈ A. The cardinality

of the symbol alphabet is given by Ma = |A| = 2m, where m is the number of bits

assigned per symbol. The pilot symbols can be chosen from the symbol alphabet.

An example for the transmitted symbol vector x is given by sending pilot symbols

periodically after every two data symbols, that yields the following sequence

x = [xp
1 xd

1 xd
2 xp

2 xd
3 xd

4 xp
3 · · · · · · ]T .

The system model is described by the following linear equation in its two equivalent

forms given by

y , Hx + w , Xh + w, (5.2)

where the N×1 vector y denotes the received symbol sequence. The noise is represented

by the N × 1 vector w ∼ CN (0, σ2
wI), where σ2

w denotes the noise variance and I is a

N ×N identity matrix. The transmitted N ×N symbol matrix X is a diagonal matrix
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with the transmitted sequence x as its main diagonal, i.e., X = diag(x). By definition

of the symbol matrix we have X = Xd + Xp, where Xd = diag(xd) and Xp = diag(xp)

are diagonal matrices for the data symbols and pilot symbols, respectively. With the

system model in (5.2) the received data symbol sequence yd and the received pilot

symbol sequence yp are given by

yd = Hxd + w = Xdh + wd (5.3)

yp = Hxp + w = Xph + wp. (5.4)

It is easy to verify with (5.1) and (5.2) that y = yd + yp. The N × 1 data and pilot

noise vectors are distributed as wd ∼ CN (0, σ2
wI) and wp ∼ CN (0, σ2

wI), respectively

5.2 Channel Model

We consider a Rayleigh fast fading scenario with correlated channel coefficients. In

general, the channel is modeled by a N × N diagonal channel matrix H. The main

diagonal of the channel matrix is given by the N × 1 vector h ∼ CN (0,Ch), such

that H = diag(h). The covariance matrix of the channel coefficients is defined as

Ch , E{hhH}, and is characteristic for each channel model, e.g., OFDM [11], AR [25]

models. These two channel models are described in Subsections 5.2.1 and 5.2.2.

5.2.1 OFDM Based Channel Model

We consider an OFDM model [1] with the channel impulse response defined by the

N × 1 vector as

h̃ , [h̃1 · · · h̃L 0 · · · 0]T , (5.5)

with L uncorrelated channel taps. The vector h contains the channel coefficients for

each subcarrier and is defined as the discrete fourier transform of the vector h̃ in (5.5)

as

h = Fh̃, (5.6)
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where F denotes the N ×N unitary discrete fourier transformation (DFT) matrix. An

arbitrary element of the unitary DFT Matrix is defined by the following equation as

[F]l,k ,
1

√

(N)
W

(l−1)(k−1)
N l, k ∈ {1, · · · , N}, (5.7)

where WN is the n-th root of unity is defined as WN , exp

(

−
2πi

N

)

. Thus, the

covariance matrix Ch for an OFDM based channel model is given by

Ch = E{hhH}

= E{F h̃ h̃H FH}

= FCh̃ FH , (5.8)

where Ch̃ = E{h̃h̃H} is the diagonal covariance matrix of the channel taps vector h̃

defined in (5.5).

5.2.2 AR(1) Based Channel Model

The channel coefficients in the vector h based on the autoregressive model are related

by the following equation as

hn = α2 hn−1 + wn n ∈ {1, · · · , N}, (5.9)

where α is the correlation coefficient and wn is a zero mean complex Gaussian noise

with the distribution wn ∼ CN (0, σ2
w). The covariance matrix corresponding to (5.9)

has a Toeplitz structure [26] with elements defined by the following equation as

[Ch]l,k , E{hlhk} = α2|l−k| l, k ∈ {1, · · · , N}. (5.10)

The covariance matrix Ch can also be represented with the help of a singular value

decomposition (SVD) [26] as

Ch = UVUH , (5.11)

where U is a unitary matrix and V contains the singular values of the covariance

matrix in diagonal form. It is easy to see the similar form of the covariance matrices in

(5.8) and (5.11). We will need the latter form of the covariance matrix in Subsection

5.5.2.
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5.3 Pilot Assisted Channel Estimation

The pilot assisted channel estimation at the receiver is done with the help of the

known pilot matrix Xp defined in Section 5.1. Channel estimation is done by deriving

the MMSE estimator for the channel using the system model in (5.4) for the received

pilot symbol sequence yp = Xph + w. The MMSE channel estimation requires the

posterior pdf of the channel given the received pilot symbol sequence f(h|yp) (cf. [20]).

We can utilize the MMSE estimator derived in Chapter 3 to calculate the mean

and covariance of the multivariate Gaussian pdf f(h|yp). From the vector extension

of (3.17) and (3.18) we get the expressions

ĥMMSE = E{h|yp} = Chyp C−1
ypyp yp, (5.12)

Ch|yp = Ch − Chyp C−1
ypyp Cyph. (5.13)

The pdf of the noise and channel vectors are defined in Sections 5.1 and 5.2, respectively.

As in Section 3.2 we calculate the following covariances to evaluate 5.12 and 5.13 as

Cypyp = E{yp (yp)H}

= E{(Xp h + w)(Xp h + w)H}

= Xp
E{hhH} (Xp)H + E{wwH}

= Xp Ch (Xp)H + σ2
wI, (5.14)

Chyp = E{h(yp)H}

= E{h(Xp h + w)H}

= E{hhH} (Xp)H

= Ch (Xp)H . (5.15)

Using (5.14) and (5.15) the MMSE estimate for the channel h becomes

ĥMMSE = Ch (Xp)H [Xp Ch (Xp)H + σ2
wI]−1 yp. (5.16)

The covariance matrix of the estimation error is obtained as

Ch|yp = Ch − Ch (Xp)H [Xp Ch (Xp)H + σ2
wI]−1 Xp Ch, (5.17)
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where Ch is the covariance matrix for the general channel model described in Section

5.2. The mean square error (MSE) [20] is defined as

ǫmse =
1

N
E{‖h− ĥMMSE‖

2}, (5.18)

which is equal to the trace of the covariance matrix averaged over the length of the

transmit symbol sequence1

ǫmse =
tr
(
Ch|yp

)

N
. (5.19)

Fig. 5.1(b) and 5.1(a) show the theoretical (MSE) versus SNR γ = 10 log(σ2
w)−1 for the

channel models in Subsection 5.2.1 and 5.2.2. The MSE was computed using P = 2

pilot symbols with an average pilot energy Ep = 1 and a transmit symbol sequence of

length N = 8.

In Fig. 5.1(b) the MSE for an OFDM model is shown for a varying number of

channel taps L. It can be seen that the channel estimation only works well for L ≤ P ,

because the sampling theorem is not satisfied if L > P [27], [28]. The MSE for the AR

channel model in Fig. 5.1(a) is plotted for a different channel correlation coefficients α.

The MSE has an error floor because the channel coefficients are not bandlimited [25].

Thus, it is not possible to reconstruct the channel properly with a limited number of

pilots.

1The function tr(A) is equivalent to trace(A)
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(b) MSE OFDM channel model.

Figure 5.1: Mean square error with P = 2, Ep = 1 and N = 8 for (a) an AR channel

model and (b) an OFDM channel model.
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5.4 Mismatched Receiver

The ML decision rule for the ideal receiver based on the system model in (5.2) and

the general channel model in Section 5.2, is formulated by maximizing the pdf of the

likelihood function f(Xd|yd,h). Using the Bayes’s theorem [20] we can write

f(Xd|yd,h) ∝ f(yd|Xd,h)

=
∏

Ψd

f(yd
n|x

d
n, hn). (5.20)

The pdf f(yd|Xd,h) can be factorized because the receiver does not take the correlation

of the received symbol sequence into account. Because of the factorization, a symbol-

wise detection of the received symbol sequence is possible. The pdf f(yd
n|x

d
n, hn) can be

derived from the system model in (5.3) and is given by the distribution CN (hnxd
n, σ2

w).

The ML decision rule for the ideal receiver with perfect CSI is formulated as

x̂d
n,ML = argmax

xd
n∈A

f(yd
n|x

d
n, hn)

= argmax
xd

n∈A

ln f(yd
n|x

d
n, hn)

= argmin
xd

n∈A

(
|yd

n − hnxd
n|

2
)
. (5.21)

As mentioned in Section 4.1, the mismatched receiver replaces the true channel by its

estimate in the metric of an ideal receiver. The ML decision rule for the mismatched

receiver is derived by using the channel estimate in the metric for perfect CSI in (5.21)

and therefore given by

x̂d
n,ML = argmax

xd
n∈A

f(yd
n|x

d
n, hn) |hn=ĥn

= argmin
xd

n∈A

(

|yd
n − ĥnxd

n|
2
)

. (5.22)

The knowledge of the channel statistics is only used for the MMSE channel estimation

as given in Section 5.3. In the following section we derive the optimum receiver, which

incorporates the knowledge of the channel statistics in its ML decision metric.
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5.5 Optimum Receiver

The optimum receiver utilizes the channel statistics in the derivation of the ML metric.

ML detection at the receiver is performed by maximizing the joint pdf f(X|y) ∝

f(y|X), therefore no prior channel estimation is required. The symbol matrix X and

received symbol vector y are defined in the Section 5.1 in (5.2). The likelihood function

f(y|X) used for the ML detection cannot be factorized because the receiver takes the

channel correlation into account, i.e., the receiver knows that the received symbols will

not be statistically independent of each other. Thus, the optimum receiver will have

to perform sequence ML detection.

5.5.1 Optimum ML Detection

The pdf of the general channel model h and the additive noise w is defined in Section

5.2 and 5.1 respectively. The likelihood function can be calculated by the following

marginalization

f(y|X) =

∫

h

f(y|X,h)f(h)dh. (5.23)

By inspecting (5.2) and (5.23) it can be seen that f(y|X) has a Gaussian distribution,

therefore it is sufficient to calculate the mean and covariance matrix. With respect to

the system model in (5.2) we calculate the mean and variance as

µopt = E{y|X}

= E{(Xh + w)|X}

= XE{h} + E{w} = 0, (5.24)

Σopt = E{yyH |X}

= E{(Xh + w)(Xh + w)H |X}

= X E{hhH}XH + E{wwH}

= XCh XH + σ2
w I. (5.25)
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It is to be noted that the covariance matrix Σopt is a function of the symbol matrix

X and therefore a function of the data sequence xd. We represent a realization of

the transmit symbol matrix as X̃ = X̃d + X̃p, where the pilot matrix X̃p remains the

same throughout. We define the set containing all possible realizations of the transmit

sequence x̃d as X d. It is to be noted that the cardinality |X d| , |A|(N−P ) = 2m(N−P )

is exponentially complex in the length of the transmit sequence N . The ML decision

rule for the optimum receiver can now be formulated as

x̂d
ML = argmax

x̃d∈Xd

f(y|X̃)

= argmax
x̃d∈Xd

ln f(y|X̃)

= argmax
x̃d∈Xd

ln

(

exp
(
− (y − µopt)

H Σ−1
opt (y − µopt)

)

πN det(Σopt)

)

= argmin
x̃d∈Xd

(
ln det(Σopt) + yHΣ−1

opty
)
, (5.26)

We note that the term yHΣ−1
opty in (5.26) has a quadratic form in Σopt, which has a

computational complexity O(N2). In the following subsection we analyze the metric

for a low-complexity computation.

5.5.2 Evaluation of the Optimum Metric

To find the minimum of the optimum metric, we need to compute (5.26) for all realiza-

tions of the transmitted symbol matrix X̃. This involves two major matrix operations

for each X̃, i.e., we need to calculate the determinant and the inverse of the joint covari-

ance matrix Σopt. By using standard matrix determinant and inversion lemmas [20],

it is easier to take an in depth look at the computational procedure.

We will now take a look at the optimum metric for the OFDM based channel model.

For further calculations we assume that the transmitted symbols are from a constant

modulus symbol alphabet, i.e., X̃HX̃ = |x|2I. First we calculate the determinant of
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the joint covariance matrix Σopt using the matrix determinant lemma as

det(Σopt) = det(X̃Ch X̃H + σ2
w I)

= det(C−1
h + X̃H(σ2

w I)−1X̃) det(Ch) det(σ2
w I)

= det

(

C−1
h +

X̃H X̃

σ2
w

)

det(Ch) det(σ2
w I)

= det

(

C−1
h +

|x|2

σ2
w

I

)

det(Ch) det(σ2
w I), (5.27)

where the last step results from the constant modulus property of the transmitted

symbols. The determinant of the joint covariance matrix turns out to be constant

and independent of the data symbols xd. Thus, it is not necessary to include the

determinant of the joint covariance matrix in the minimization process of the optimum

metric in (5.26).

We next insert the channel covariance matrix Ch, as given in (5.8) and (5.25) to yield

Σopt = X̃ (FCh̃ FH) X̃H + σ2
w I

= X̃
(

FCh̃ FH + X̃−1 (σ2
wI) X̃−H

)

X̃H

= X̃F
(

Ch̃ + σ2
w F−1 X̃−1 X̃−H F−H

)

FH X̃H . (5.28)

Using (5.28), the inverse of Σopt can now be calculated as

Σ−1
opt = X̃−H F−H

(

Ch̃ + σ2
w F−1 X̃−1 X̃−H F−H

)−1

F−1 X̃−1

= X̃−H F
(

Ch̃ + σ2
w FH X̃−1 X̃−H F

)−1

FH X̃−1, (5.29)

where the last step results from the fact that F−1 = FH . For the sake of simplicity we

define D =
(

Ch̃ + σ2
w FH X̃−1 X̃−H F

)−1

. With the assumption of constant modulus

symbols, the matrix D becomes a diagonal matrix, i.e.,

D =
(

Ch̃ + σ2
w FH X̃−1 X̃−H F

)−1

=

(

Ch̃ +
|x|2

σ2
w

I

)−1

, (5.30)
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Figure 5.2: ML Detector for the optimum receiver

which is independent of xd and therefore the diagonal matrix D can be precalculated.

With (5.27), (5.29) and (5.30) the optimum metric reduces to the following expression

x̂d
ML = argmin

x̃d∈Xd

(

yH X̃−H FDFH X̃−1 y
)

. (5.31)

By further examining the optimum metric in (5.31), we see that the expression for

the metric has a quadratic form in D. With the vector ỹ = FH X̃−1 y, the optimum

metric in (5.31) can now be expressed as

x̂d
ML = argmin

x̃d∈Xd

(
ỹH Dỹ

)
. (5.32)

We only need to calculate the vector ỹ = FH X̃−1 y once for every realization of the

transmitted symbol matrix X̃ an we can Hermitian transpose it to get ỹH . The total

number of realizations of the symbol matrix X̃ is given by the cardinality of the set X d

in Section 5.5.1. Since the symbol matrix X̃ is diagonal, i.e., X̃ = diag(x̃), the term

X̃−1 y corresponds to a symbol-wise division of the received symbol sequence y and

the symbol sequence x̃.
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The analysis of the optimum metric has shown that simplifications are possible and

have also been implemented. The implementation procedure described in this section

proves to be more efficient than using the original quadratic form of the optimum

metric in (5.26). The complexity reduces from O(N2) to O(N log N).

The evaluation of the optimum metric in this section is only valid for a constant

modulus symbol alphabet and the channel model we used, i.e., the OFDM channel

model from Subsection 5.2.1. The implementation of the ML detector for the opti-

mum metric in (5.31) is illustrated in the block diagram in Fig. 5.2 and it shows the

computation process for M = 2m(N−P ) realizations of the transmit symbol matrix X̃.

Even though the metric evaluation has been made efficient, the complexity of the

ML detection is still a problem. The complexity increases exponentially in the length

of the transmitted data symbol sequence. In [5] a sequence decoding algorithm like the

Viterbi decoder has been used to overcome the exponential complexity (cf. 2.1.2.1).

To apply this approach to our problem still remains an open issue.

The efficient implementation of the optimum metric remains the same for the AR(1)

channel model and thus will not be repeated here. This is due to the fact that covariance

matrices of the OFDM channel model (5.8) and the AR(1) channel model (5.11) have

a similar form. However, the AR(1) model additionally requires a SVD for its channel

covariance matrix to have the same form as in the OFDM channel model. The results

for the AR(1) model can easily be derived by replacing the matrix F with U in the

expression of the optimum metric.
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5.6 Simulation Results

5.6.1 Performance Evaluation of the Optimum Receiver

In the following subsection, we will compare the BER performance of the ideal receiver,

the mismatched receiver and the optimum receiver. The ML metrics of these receivers

are given in (5.21), (5.22) and (5.26), respectively. The BER performance is evaluated

for the OFDM and AR(1) channel models.

5.6.2 OFDM Channel Model

A total of N = 8 information bits are mapped to symbols using a BPSK modulation

(Ma = 2). We consider a Rayleigh fast fading OFDM based channel model with N sub-

carriers and L = 2 channel taps. The channel estimation for the mismatched receiver

is done with an MMSE estimator.

In the following figures the SNR for the OFDM based channel model is defined as

γ = 10 log
Eb

σ2
w

= 10 log
Es

ld(Ma)

‖F h̃‖2

N
, (5.33)

where σ2
w is the noise variance. Here, Eb and Es denote the mean bit and symbol

energies, respectively.

Fig. 5.3 shows the BER performance versus SNR of the three receivers using P = 2

and P = 3 pilots with mean pilot energy Ep = 1/16. It can be seen that the optimum

receiver outperforms the mismatched receiver. For P = 2, the SNR required to achieve

a BER = 10−3 by the optimum receiver is about 10.3 dB less than that of a mismatched

receiver. Moreover, for high SNR values the performance of the optimum receiver comes

close to that of an ideal receiver. For a BER = 10−3 and P = 2 pilots the optimum

receiver has a 4.5 dB gap to the ideal receiver whereas the mismatched receiver has 14.8

dB gap.

In Fig. 5.4, we see the effect of varying the mean pilot symbol energy on the BER

performance of the mismatched and optimum receivers. Fig. 5.4 shows the BER per-

formance of the three receivers for P = 2 pilots with different mean symbol energies.
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Figure 5.3: BER performance versus SNR of the three receivers for different number

of pilots with mean pilot energy Ep = 1/16.

Increasing the pilot power helps to improve the BER performance of the optimum re-

ceiver, especially for low SNR values. This is visible in the resulting gap between the

BER curves of the optimum receiver with Ep = 1/4 and Ep = 1/16 for SNR up to 25

dB. From Fig. 5.3 and Fig. 5.4 we observe that for high values of SNR the optimum

receiver achieves almost the same BER performance irrespective of the number of pilots

and their mean symbol energy. It can be seen in all figures that the receivers achieve

the same diversity. Similar results have also been shown in [6], but for a different

system model.

The MSE reduces by increasing the number of pilots and their mean symbol energy.

This explains the improvement in BER performance of the mismatched receiver in Fig.

5.3 and 5.4. The mismatched receiver relies completely on the quality of the channel

estimate, as its metric does not incorporate any methods to adapt to MSE. That is

why the gap between the BER curves of the mismatched receiver and the ideal receiver
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Figure 5.4: BER performance versus SNR of the three receivers, with P = 2 pilots

and of mean energy Ep = 1/16 and Ep = 1/4.

remains constant for increasing SNR. From Fig. 5.4 it can be seen that the mismatched

receiver for mean pilot symbol energy Ep = 1/4 needs about 6 dB less SNR than for

Ep = 1/16 in order to achieve a BER = 10−3.

5.6.3 AR(1) Channel Model

A total of N = 8 information bits are mapped to symbols using a BPSK (Ma = 2)

modulation. We consider a AR(1) based channel model with the channel correlation

coefficient α. The channel estimation for the mismatched receiver is done with an

MMSE estimator.

In the following figures the SNR for the AR(1) based channel model is defined as

γ = 10 log
Eb

σ2
w

= 10 log
Es

ld(Ma)
, (5.34)

where σ2
w is the noise variance. Here, Eb and Es are the respective mean bit and symbol
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Figure 5.5: BER performance of the three receivers, with α = 1−10−6 and Ep = 1/16.

energies.

Fig. 5.5 shows the BER performance of the three receivers for P = 2 and P = 3

pilots with mean symbol energy Ep = 1/16 and a channel correlation coefficient α =

1 − 10−6. For P = 2, the SNR required to achieve a BER = 10−3 is about 8 dB less if

the optimum receiver is used instead of the mismatched receiver. There is no significant

error floor in Fig. 5.5 because we have chosen a channel correlation coefficient very close

to 1, see Fig. 5.1(a).

In Fig. 5.5 we can see the effect of decreasing the channel correlation coefficient.

This figure shows the BER performance for channel correlation coefficients α = 1−10−3

and α = 1 − 10−6 for P = 2 pilots with mean symbol energy Ep = 1/16. For a BER

= 10−3 and P = 2 pilots the optimum receiver has a 3.1 dB gap to the ideal receiver

whereas the mismatched receiver has 11.1 dB gap.

The error floor in the BER performance of the mismatched and optimum receivers

can be clearly seen after a SNR of about 20 dB, which corresponds very well to the
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Figure 5.6: BER performance of the three receivers, with α = 1− 10−2, α = 1− 10−3

and α = 1 − 10−6 for P = 2 with Ep = 1/16.

theoretical error floor of the MSE for α = 1 − 10−3 shown in Fig. 5.1(a). By further

decreasing the channel correlation coefficient the error floor can be at much lower SNR

values. As shown in Fig. 5.1(a) the error floor for α = 1 − 10−2 starts at about 10

dB SNR and will be about the same for the BER performance of the mismatched and

optimum receivers and can be seen in Fig. 5.6.

Thus, we have shown that the optimum receiver outperforms the mismatched re-

ceiver for both OFDM and AR(1) channel models.



6
Conclusions & Outlook

“[. . .] If I were again beginning my studies, I would follow the advice
of Plato and start with mathematics.” Galileo Galilei

IN this thesis, we have investigated pilot-assisted communication systems for both

iterative and non-iterative receiver architectures. The pilots are embedded in the

transmitted sequence to facilitate channel estimation at the receiver, which was done

using LS or MMSE estimators.

We have discussed the current research work on optimal receiver designs. These

systems involve sophisticated technologies like OFDM, BICM or a combination of these

two with multiple antennas.

The iterative receiver based on BICM-ID system has been described for a single

antenna system. This receiver performs channel estimation prior to detection. A

modified receiver was derived and adapted to a bit-wise soft decision decoding for this

system. This was accomplished by incorporating the posterior distribution of the true

channel conditioned on the channel estimate, into the likelihood function used for ML

decoding. We made two important conclusions. Firstly, the ML metric of the modified

receiver proved to be independent of the type of linear channel estimator used and

secondly, it was able to suit itself to the quality of the available channel estimate.

70
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The superior BER performance of the optimal receiver in comparison to a mismatched

receiver using LS channel estimation was shown in the simulation results.

We have also derived an optimal receiver for a non-iterative system, which uses

a ML metric derived by taking the channel correlation into account. The optimal

receiver performs sequence detection without prior channel estimation, because the

received pilot sequence is already incorporated in its ML metric. The ML metric of

the optimal receiver was analyzed for low-complexity implementation. As a result, the

computational time of the ML metric was significantly reduced. Simulation results

have shown that the modified receiver outperforms the mismatched receiver in terms of

BER.

There are a number of topics left open for further research on the optimal receiver,

such as:

• The computational complexity of sequence detection increases exponentially in

the length of the transmit sequence. This still poses a problem in the efficient

implementation of the receiver. A low-complexity implementation of the opti-

mal receiver can be done, e.g., using a sequence detector based on the Viterbi

approach.

• Further, the BER performance of the optimal receiver could be researched for

other channel models.

• The influence of the pilot placement on the BER performance could be examined.

• The optimal receiver could be extended to multiple antenna systems.
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