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Kurzfassung 

Die Gebäudeautomationssysteme (GA-Systeme) nehmen einen immer größeren Stellenwert 
in heutigen modernen Gebäuden ein. Mehr und mehr übernehmen sie Aufgaben, die direkt oder 
indirekt die Sicherheit und Gesundheit der Menschen gefährden können. Daher sollten solche GA-
Systeme die Anforderung der zwei wichtigsten Eigenschaften – funktionale Sicherheit (Safety) und 
Systemsicherheit (Security) von Knoten und Protokoll – erfüllen. Manche GA-Systeme sind mit 
Security-Maßnahmen ausgestattet. Erste Ansätze Safety in GA-Systemen zu integrieren sind zu fin-
den. Was jedoch bis heute fehlt, ist ein gemeinsamer auf Safety- und Security-Belange ausgerichte-
ter Ansatz zur Erstellung eines GA-Systems. Besonders wird in dem Ansatz auf die Abhängigkeiten 
geachtet und wie von den Gemeinsamkeiten zu profitieren ist. 

In dieser Arbeit wird ein gemeinsamer Ansatz zur Erstellung eines Safety- und Security-GA-
Systems präsentiert. Er basiert auf einem Lebenszyklusmodell, das Anforderung für alle Phasen des 
Systemlebens spezifiziert. Außerdem werden beide Disziplinen auf Basis von Konzepten zweier 
internationaler Standards – IEC 61508 für Safety und IEC 15408 oder Common Criteria (CC) für 
Security – harmonisiert. Die Idee ist, das Lebenszyklusmodell aus IEC 61508 als Basis zu nehmen 
und den Security-Ansatz aus CC darin zu integrieren. Ziel ist es nicht, eine neue Disziplin ver-
gleichbar mit dem Konzept Dependability zu entwerfen. Deswegen wird angenommen, dass der 
gemeinsame Ansatz von Sicherheits- und GA-Leuten leicht anzuwenden ist, um ein neues GA-
System zu entwickeln oder ein bestehendes mit Sicherheitseigenschaften zu erweitern. 

Besonders wird in dem gemeinsamen Ansatz auf die Gemeinsamkeiten bei der Entwicklung 
eines sicherheitsgerichteten GA-Systems eingegangen. Es gibt nämlich gemeinsame Ziele, Anforde-
rungen und Maßnahmen, um ein System sicher zu gestalten. Darüber hinaus wird ein Konfliktlö-
sungsansatz vorgestellt, um unvermeidliche Widersprüche zu lösen. 

Wie dieser gemeinsame Ansatz zu verwenden ist, wird anhand eines Beispiels erläutert. Ein 
gängiges GA-System wird mit Sicherheitseigenschaften erweitert. Insbesondere wird auf Anforde-
rungsphase, Realisierung und Installation eines Knotens in einem GA-System eingegangen. Es liegt 
jedoch außerhalb des Rahmens der Arbeit, alle Teile des GA-System-Lebenszyklus zu diskutieren. 
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Abstract 

The importance of building automation and control systems (BACS) in modern automated 
buildings is constantly growing. Increasingly, these systems are responsible for functions directly or 
indirectly affecting people’s safety, security and health. Thus, the respective technology is supposed 
to be developed in a way that requirements of the two most important features are met: functional 
safety and system security (short safety and security) of both the network nodes and the communica-
tion protocols. Some BACS are enhanced with more or less sophisticated security features. First 
promising extensions of BACS with regard to safety are making their way to the market. However, 
there is no approach to develop a BACS paying attention to safety and security needs, especially 
focusing on the dependencies and benefiting from the commonalities. 

Consequently, a common approach to develop a safe and secure BACS is presented. It is 
based on a lifecycle model that defines requirements for the different stages of the system life. The 
common approach is harmonizing safety and security discipline by using methods specified in two 
international standards: IEC 61508 for safety and IEC 15408 or also known as Common Criteria 
(CC) for security. It uses the lifecycle model of IEC 61508 and integrates the security approach of 
CC. The common approach does not specify a new discipline comparable to the concept of depend-
ability. Hence, it should be easily applicable for safety and security experts, and BACS people. They 
may use it to develop a new BACS or to enhance standard systems with safety and security features. 

The special focus of the thesis is on the commonalities between the development of safety 
and security systems and how to benefit from these commonalities in development. There are similar 
goals, requirements and related measures to safeguard the system. Additionally, a way of dealing 
with inevitable contradictions is outlined by introducing a conflict resolution approach. 

How to apply the common approach is shown by enhancing a standard BACS with safety 
and security features. Especially, the pre-design phase of the BACS and the realization and installa-
tion of a node in the BACS is discussed. It is beyond the scope of the thesis to discuss every stage of 
the system life in detail, though.  
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Preface 

At the beginning of 2005 I started to work in the field of security in embedded systems. It 
was a project about remote meter reading over powerline and Internet where security is an important 
issue. My part was to develop a key distribution architecture that allows updating of keys automati-
cally. I learned about security objectives such as confidentiality, integrity and availability, or secu-
rity measures like message authentication code or symmetric block ciphers. The result of the work 
was my diploma thesis [NOV05]. Consequently, I also examined security related concepts and the 
underlying theory. 

In fall 2005 I became member of the SafetyLon project, which has the goal of enhancing 
LonWorks with functional safety features [HER08]. Since the words safety and security are the same 
in German (‘Sicherheit’), I mixed them up at first when I heard about it. In the following I realized 
very soon that functional safety and security are two different worlds, but only at first glance. Some 
safety concepts, some safety objectives, some safety measures sound familiar to me although I was a 
safety novice at the time. So I started to concern myself with functional safety and security. I have 
been keen on investigating the commonalities in both disciplines and finding a way of benefiting 
from them. 

In parallel, at our institute we started to push the topic functional safety and system security 
in building automation and control systems (BACS) in CEN, Technical Committee 247, Working 
Group 4 [CEN08]. Thomas Tamandl and I started to work out a first draft which covered the issues 
of safety and security in BACS. The intention has been to make people aware of safety and security 
needs in BACS; second, to demonstrate that developers, manufactures, integrators and customers 
can benefit greatly from a common approach. A lot of information gained during the development of 
and especially discussions about the working draft are part of the thesis. 

The thesis is some sort of an appeal for taking safety and security concerns serious in build-
ing automation, and an appeal for a common approach which is used to counter safety failures and 
security threats. The work presented is the basis of the subsequent drafts submitted to Working 
Group 4. It specifies a lifecycle model including activities for the different stages in the system life. 
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In addition, a way of integrating safety and security is pointed out. It includes methods to handle 
inevitable conflicts between both disciplines. 

In general, the dissertation is divided into ten chapters. The first chapter is an introduction to 
the three topics covered: BAC systems, functional safety and system security. Chapter 2 deals with 
the technical motivation and possible solutions to the problem of functional safety and system secu-
rity in BACS. 

The chapters 3 to 5 are about related work. First, standard BAC systems are investigated re-
garding their security features only because none of them incorporate any safety functionality. Each 
of them includes one to many features differing in their security strength. The result of the examina-
tion is an extra motivation for a common approach since no BACS provides a sufficient level of 
security. Moreover, safety related industrial automation system are presented to give an idea how 
safety features are integrated into an automation system. Second, the basic ideas of two international 
standards, IEC 61508 for functional safety and IEC 15408 or Common Criteria for security, are 
mentioned. They are the source for safety and security terms, concepts and methodology. Third, 
lifecycle terms and lifecycle approaches are presented since the common approach uses a lifecycle 
model to specify safety and security activities. 

The chapter 6 presents the common approach introduced by the author. It consists of a 
safety-security lifecycle model and a way of integrating safety and security. The lifecycle model 
includes four parts and covers all safety and security related activities in the system life, starting 
with the concept and ending with decommissioning. Chapter 7 discusses essential parts of the com-
mon approach. Additionally, two concepts of how to resolve conflicts between safety and security 
are outlined: conflict resolution on requirement level and measure assessment on function level. Put 
succinctly, chapter 7 discusses in detail the parts of the common approach that are new and proposed 
by the author. 

The chapters 8 to 10 are about a use case. It is mentioned how to apply the common ap-
proach in order to develop and use a safety-security related system. LonWorks is assumed as the 
standard BACS, which is enhanced with safety and security features. The example focuses on the 
hardware and software of a node and its integration into the system. The results of the use case are a 
proof of the concept, i.e. proof that a common approach is applicable to get a safe-secure BACS. 
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Abbreviations 

1oo2 One out of two 
1oo2D One out of two with diagnostic  
2oo2 Two out of two 
2oo3 Two out of three 
ACU Advanced coupler unit (KNX/EIB) 
ADV Assurance class, development 
AES Advanced encryption standard 
ANSI American national standards institute 
API Application programming interface 
ASHRAE American society of heating, refrigerating and air conditioning engineers 
B-AAC BACnet advanced application controller 
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BCU Bus coupling unit (KNX/EIB) 
B-OWS BACnet operator workstation 
B-SA BACnet smart actuator 
B-SS BACnet smart sensor 
CAN Control area network 
CC Common Criteria (IEC 15408) 
CEN European committee for standardization  
CIA Confidentiality, integrity, availability 
CRC Cyclic redundancy check 
DC Direct current (fault model) 
DC Diagnostic coverage 
DES Data encryption standard 
EAL Evaluation assurance level 
EHS European home system 
EIA Electronic industry alliance 
EIB European installation bus 
EIBA EIB association 
EUC Equipment under control 
FAU Functional security class, security audit 
FDP Functional security class, user data protection 
FIT Failure in time 
FPT Functional security class, protection of the TOE security function 
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FSP Functional specification (assurance family) 
HBES Home and building electronic system 
HVAC Heating, ventilation, air-conditioning 
IEC International electrotechnical commission 
IEEE Institute of electrical and electronics engineers 
IP Internet protocol 
ISO International standardization organization 
ISR Interrupt service routine 
LAN Local area network 
MAC Message authentication code 
OSP Organizational security policy 
PP Protection profile 
RCV Trusted recovery (functional security family) 
RMF Risk management framework 
SAR Security audit review (functional security family) 
SCADA Supervisory control and data acquisition  
SDI Stored data integrity (functional security family) 
SFF Safe failure fraction 
SHA-1 Secure hash algorithm 1 
SIL Safety integrity level 
SNVT Standard network variable type (LonWorks) 
SOF Strength of (security) function 
ST Security target 
STM Time stamps (functional security family) 
TC Technical committee 
TLS Transport layer security protocol 
TOE Target of Evaluation 
TUV Technischer Überwachungsverein 
V&V Validation and verification 
WG Working group 
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1. Introduction 

Automation systems are technical systems that perform a given task in order to relieve human be-
ings. They can be distinguished by their purpose or by their application. The first means differentiat-
ing between direct – taking over a task – and indirect support – optimizing the environment. In the 
beginning of integrating automation systems the intention was to (partly) substitute human work by 
automation systems because they do a job more accurate, faster, more reliable, less expensive, with a 
higher level of quality and so forth. Think of employees at the train station who were opening and 
closing the gates when a train passed a crossing. Today’s automation systems have replaced them 
step by step. Another example is an automatic door locking system. It locks the door of a building at 
a defined time. A doorman who locks each door manually with a key is not required anymore. Indi-
rect support means that the automation system optimizes a secondary process such as a climate con-
trol in an office building. They support human beings and try to make their life easier or more con-
venient. 

1.1 Building Automation and Control Systems 

Differentiating automation systems by their application results in categorizing them into automotive 
systems, industrial automation, building automation and control systems and so on. Automotive 
systems are systems with a rather limited amount of nodes compared to a BACS. They require the 
transmission of a message with very short delays in case of a critical situation. They are decentral-
ized systems where a node starts to send when it has to. Moreover, a high amount of reliability of the 
system must be guaranteed. Finally, transmission errors must be detected with a very high probabil-
ity and retransmission strategies have to be implemented. CAN (Control Area Network) developed 
by the company Bosch [ZEL98] in the mid 1980s is the system in the automotive area. It is notewor-
thy to say that CAN is used in other fields of applications nowadays such as medical engineering or 
industrial automation [LAW00, pp. 312]. 

Industrial automation systems are similar to automotive systems with regard to the level of reliability 
or the number of nodes. They also require robust transmission because of possible electromagnetic 
interferences and have a static network topology. Like automotive systems they are mostly closed 
systems not remotely accessible. On the contrary industrial automation systems in general are not 
very demanding regarding transmission delays. In addition, most of them are centralized systems 
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where each node is triggered periodically to send messages. Examples of industrial automation sys-
tems are PROFIBUS [IEC68, type 3], P-NET [IEC68, type 4] or INTERBUS [IEC68, type 8].  

Building automation and control systems (BACS), also called building automation systems (BAS) 
[KAS05], are integrated in today’s buildings to improve the interaction among integrated devices 
and people living and working in a building. In accordance with [DIE97, pp. 17; DIE00, pp. 8; 
KAS05] building automation is concerned with the control of building services and provide control 
of conditions of indoor environments automatically. Typical services are heating, ventilation and air-
conditioning, subsumed by the acronym HVAC. Others are lighting and shading. 

A BACS is, compared to an industrial automation system, different in many ways. Being based on 
the same principles and technologies, the structure of and usage in buildings and the respective ser-
vices lead to highly specialized systems. Their main features are [BAU00] 

 low bandwidth required from end nodes, 

 event driven and therefore less regular traffic, 

 soft real-time requirements, but 

 large number of network nodes (currently up to 50000) [DIE00, p. 10]. 

While the first three properties ease the life of an engineer, the last one results in a number of prob-
lems. Such a high amount of nodes has a massive effect on 

 scalability, 

 node costs,  

 safety and security, and 

 engineering tools (network management, commissioning, etc.). Unlike industrial networks, it 
is not possible to maintain the network manually. Sophisticated tools are necessary to give 
the operator an overview of the system and to help him making the right decisions when 
something goes wrong.  

The most important aspect is the costs of the individual network entities. The possible high number 
of nodes and therefore network infrastructure entities can lead to too expensive systems, when they 
are compared to their benefit. The benefit of building automation networks can sometimes be ex-
pressed in money, e. g. saving energy costs, occasionally it is difficult when it is about increasing 
comfort or personal safety. 

Typical universal building automation networks are open standards like LonWorks [EN149, DIE97], 
KNX [EN500, DIE00], and BACnet [ISO16, KRA05]. Other systems are specialized for certain 
applications like fire alarms or lighting (like the low-cost Digital Addressable Lighting Interface 
DALI [DAL06]) and might interface to universal building automation systems via gateways.  

Different systems may be connected at the same level, e.g. field level (see Fig. 2-1), called horizon-
tal integration. Or systems are considered to be self-contained and are connected via a common 
backbone network. That approach is called vertical integration and is going to become state of the art 
in modern BAC systems [SOU07]. The network management, however, does not get easier, the 
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more gateways between different technologies are necessary. On the contrary, benefit regarding 
lifecycle costs and functionality is going to be maximized the more systems are combined [KAS05]. 

1.2 Functional Safety 

Generally speaking, safety always deals with a reduction of risk to people. Additionally, as men-
tioned in [BUR92] risk in the context of safety results in immediate, direct harm. The standard 
IEC 61508 defines safety as “the absence of unacceptable risk of physical injury or damage to the 
health of people […]” and risk as combination of the probability of a harm arising and the conse-
quence (extent) of the harm [IEC61]. 

It has to be distinguished between electrical safety and functional safety. The first one deals with 
topics referring to the practical safeguarding of persons during installation, operation or maintenance 
of electric supply and communication lines and associated equipment [IEEC2]. “Functional safety is 
part of the overall safety that depends on a system or equipment operating correctly in response to its 
inputs.” [IEC61-0] An over-temperature protection using a thermal sensor to de-energize a motor 
before it overheats, is an example of functional safety. However, providing some sort of insulation to 
withstand high temperature is not an instance of functional safety [IEC61-0]. Within this document 
writing about safety always means functional safety. 

As mentioned before, safety is all about reducing the risk to people. The reason for risk is a hazard 
resulting from a hazardous failure. It is distinguished between systematic and stochastic failures 
resulting from stochastic or systematic faults. During development systematic faults are created, not 
intentionally, but accidentally. Typical systematic faults can be found for instance in the software 
design. Such faults can be avoided during development and detected during operation. Stochastic 
faults, however, can only be identified during operation and not avoided. Thus, the major tasks dur-
ing development of a safety related system are fault avoidance and fault control subsumed by the 
word countermeasures in Fig. 1-1. Fault avoidance can be achieved by using development tools, 
structured and well written documents, or performing software code walkthroughs during software 
development. Fault control, i.e. detect and monitor faults, is realized by online self tests of the hard-
ware or monitoring the execution of software. 

 

Fig. 1-1 Risk framework in the safety world [IEC61] 

Systems that perform functions to reduce the amount of risk to an acceptable level and incorporate 
safety countermeasures are called safety related system. In such a system a failure is not necessarily 
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critical. On the contrary, a safety critical system means a system where a single failure already 
causes a fatality [SMI04, p. 7] and is considered to be critical. 

The first safety related systems were accomplished using conventional discrete electromechanical 
wiring, relays or contractor based interlocks. With the advent of microcomputers it was desired to 
use them in safety related systems in order to solve quite complex problems more simply and more 
economically. For that reason TUV Rheinland and TUV Bavaria wrote a handbook called ‘Micro-
computers in Safety Technique’ [HOE86] that should help developers to design and build their sys-
tem in such a way that it complies to all regulations. As a consequence, modern safety related sys-
tems consist of programmable and non-programmable hardware, or software, or both. They are cre-
ated by applying measures to avoid systematic faults and includes functionality to detect systematic 
and stochastic faults during operation. 

One of the most important safety countermeasure to detect errors is the cyclic redundancy check 
(CRC). A CRC is a non-secure digest function for a data word which can be used to detect data cor-
ruption [KOO04]. From a mathematical point of view, a CRC is treating a binary data word as a 
polynomial with every polynomial coefficient being zero or one, and is performing polynomial divi-
sion by a CRC polynomial where each coefficient is either zero or one. The rest of the division op-
eration provides an error checking value either sent within a message or stored as data integrity 
check. The CRC calculation is based on an easy to implement and generic operation: the original 
data is placed bit by bit into a shift register and linked with the CRC polynomial by the exclusive 
OR operation. Consequently, performance of CRC calculation is in the range of tens of microsec-
onds on an embedded device [PRE06, pp. 90]. 

Errors are detected by comparing the received CRCrcv value in a message or the stored CRCsto value 
of a data sequence with a CRCdyn value calculated over the original data. An error is identified if the 
CRCdyn is not equal to CRCrcv or CRCsto. Though, there is a low, but finite probability that a data 
corruption inverts a sufficient amount of bits in the right pattern and hence results in an undetectable 
error. I.e., CRCdny = CRCrvc, but multiple data bits are corrupted. The minimum number of bit inver-
sions necessary to achieve an undetectable error is called hamming distance or hamming value. 

CRC polynomials are distinguished by their hamming value. For instance, the 16 bit CRC polyno-
mial CCITT-16 (the size of the CRC value is 2 byte) has a hamming distance of four. That is, all 1-
bit, 2-bit and 3-bit errors are detected. If four bits are inverted in a single data word, they are not 
detected in 84 of all possible cases [KOO04]. Another example is the 15 bit CAN CRC polynomial 
with a hamming distance of six. It detects all 1-bit to 5-bit errors in a data sequence, but fails to re-
veal 4314 of the different 6-bit errors [KOO04]. It is noteworthy to say that a greater length of the 
CRC polynomial not necessarily results in a higher hamming value. However, a higher hamming 
value can only be reached with a larger CRC size. 

The international standard IEC 61508 [IEC61] is the generic standard for functional safety of elec-
trical, electronic and programmable electronic devices. It is based on the content of [HOE86]. It uses 
a risk based approach and an overall safety lifecycle model as a technical framework for the activi-
ties to ensure safety. The lifecycle model covers all safety activities from the initial concept to the 
final decommissioning. It specifies requirements for preventing failures and requirements for con-
trolling failures, additionally techniques and measures necessary to achieve a level of safety. 
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It has spread enormously through most sectors of industry, such as process industry, IEC 61511 
[IEC65] or railway, EN 50126 [EN501]. IEC 61508 can be applied on its own as a global template 
or as a basis to specify application specific standards [IEC61-0]. That is why it is the basis of all 
topics relating to safety discussed in the thesis. 

Additional definitions used: 

 Fault [IEE74]: 
(1) A defect in a hardware device or component; for example, a short circuit or broken wire 
(2) An incorrect step, process, or data definition in a computer program 

 Error [IEE74]: 
The difference between a computed, observed or measured value or condition, and the true, 
specified, or theoretically correct value or condition; For example, a difference of 30 meters 
between a computed result and the correct result. 

 Failure [IEE74]: 
The inability of a system or component to perform its required functions within specified 
performance requirements 

 Fault tolerance [IEC61-4]: 
The ability of a functional unit – consisting of hardware and/or software – to perform a given 
job despite the presence of faults or errors 

 Redundancy [IEC61-4]: 
The presence of more than the minimal necessary means that enable a functional unit to per-
form a required function or to allow data to present information. 

1.3 System Security 

Within the thesis security is defined the following: “Security is concerned with the protection of 
assets from threats, where threats are categorized as the potential for abuse of protected assets” 
[IEC15]. Assets are described as information or resources to be protected by security countermea-
sures.  

On the contrary to safety, security is about reduction of risk to information or resources coming from 
threats. Especially, security pays attention to those threats resulting from malicious or other inten-
tional activities. In the context of security, risk enables or rises the ability of others to harm us 
[BUR92]. In the domain of security there are two main subdomains: network security or internet 
security, and system security or computer security [STA03, p. 2]. There are no clear boundaries be-
tween both subdomains. In [SCH00] good examples are given to get a feeling what system and net-
work security is about. System security is concerned with security kernels, access control and strong 
cryptography; network security with firewalls, intrusion detection and auditing mechanism. 
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Typically, security related systems in building automation and control systems are striving for the 
following primary objectives [SCH03] subsumed by the acronym CIA and intending to protect as-
sets from threats: 

 Confidentiality – the property that ensures that information is accessible only to those author-
ized to have access [ISO17] 

 Integrity – the property that safeguards the accuracy and completeness of information and 
processing methods [ISO17] 

 Availability – the property that ensures that authorized users have access to information and 
associated assets when required [ISO17] 

Secondary objectives also important are [DZU05]: 

 Authentication – determination of the true identity of data or a user 

 Authorization, also known as access control – preventing illegitimate users from accessing 
the system 

Security services or functions derived from security objectives, i.e. countermeasures are applied to 
withstand an attack (threat action), reduce risk to the assets (Fig. 1-2). According to [RFC49], at-
tacks are an assault on system security that derives from an intelligent threat. It is distinguished be-
tween active attacks and passive attacks. The first one wants to change assets or affect their opera-
tion. The other one tries to get or make use of assets without affecting the assets. Typical passive 
attacks are eavesdropping on, i.e. release of data content, or monitoring of transmissions, so called 
traffic analysis. Active attacks are for example masquerade that is, one entity pretends to be another; 
modification where some parts of data are changed [STA03, pp. 11]; or denial of service, i.e. preven-
tion of authorized access to assets or delaying of operations [RFC49]. 

In addition, attacks are categorized in inside and outside attacks [RFC49]. An inside attack is an 
attack coming from an entity inside the security realm. I.e., an attack by an authorized entity that 
does not behave as expected. An outside attack is coming from outside the security realm initiated 
by an unauthorized entity. 

 

Fig. 1-2 Risk framework in the security world [STO02] 

As shown in Fig. 1-2, threats that are exploited by a threat source – someone with the capability to 
exercise a vulnerability – result in an attack causing risk to assets. Vulnerabilities, in turn, are a re-
sult of flaws that can be deliberately exploited or unintentionally triggered. A flaw is a weakness in 
the implementation or design or an error such as a software bug. 
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Countermeasures, called security functions in the thesis, are implemented by different security 
measures. The most important and relevant for the understanding of the thesis are mentioned next. 
The strongest security measures are based on cryptographic methods [GOR00, p. 47]. It is notewor-
thy that implementing only cryptographic methods does not guarantee a defined level of security per 
se. Other activities discussed later in the thesis are required too. 

Cryptography is the art and science of keeping data secure [SCH96]. A mathematical algorithm and 
a key are used to secure data. Whereas the mathematical algorithm is publically available, the keys 
are the secret. Securing data denotes encryption of a plaintext to a ciphertext and decryption of a 
ciphertext to a plaintext. Multiple so called cipher algorithms are available to encrypt and decrypt 
data. They can be divided into symmetric and asymmetric ciphers. 

Symmetric ciphers such as 3-DES [NIS46-3] or AES [NIS19] use the same private key Kp for en-
cryption and decryption of data. That is, entity A and entity B that share the same key Kp can com-
municate securely. Revealing the private key on entity A and transferring it to entity C results in a 
loss of security between entity A and B because Node C can read the ciphertext from entity A and B. 
Moreover, it can generate a valid ciphertext. Therefore, it is necessary to keep the private key secret. 

There are two types of symmetric ciphers: stream ciphers and block ciphers. The first type encrypts a 
data stream one byte at a time. Examples of such ciphers are the autokeyed Vigenère cipher and the 
Vernam cipher [STA03, pp. 40]. On the contrary, block ciphers map a fixed size input block to a fix 
sized output block by means of a private key. Block sizes of 8 and 16 byte are used depending on the 
cipher. In addition, there are different ways of joining the single blocks. For example, the cipher 
block chaining mode (CBC) or the counter mode (CTR). In CBC mode the ciphertext of the last 
block n-1 is chained with the input plaintext block n and ciphered afterwards. In CTR mode each 
input plaintext block is chained with a counter value and ciphered next. Block ciphers seem applica-
ble to a wider range of applications than stream cipher and consequently are more popular [STA03, 
p. 64].  

Asymmetric ciphers like [RSA78] or also called public ciphers use different keys for encryption and 
decryption. Due to the mathematical algorithm it is possible to make the key for encryption public. 
The key for decryption of ciphertext, however, must be kept secret. When entity A and entity B want 
to communicate securely, A encrypts the data with K,B-public and B decrypts the key with K,B-secret. On 
the other hand, when B sends data to A is generates the ciphertext with key K,A-public and A decrypts 
the key with K,A-secret. The advantage of asymmetric ciphers is that not every key must be kept secret. 
Loss of a public key does not result in breaching security. Size of asymmetric cipher keys compared 
to symmetric keys is much greater, though. Typically, private keys are 8 to 32 byte long whilst 
asymmetric keys are 64 to 256 byte long. 

Ciphers can be used to encrypt and decrypt data of any length and grant its confidentiality. Addi-
tionally, ciphers are applied as basis to provide authenticity of data by means of a message authenti-
cation code (MAC). A MAC, or also known as cryptographic checksum, is a short piece of informa-
tion and sometimes also called a tag. It is a function that gets a data sequence of variable length as 
input M, and generates an output MAC by using a secret key K. 

MAC = CK(M) 
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In case of having three specific properties as mentioned in [STA03, p. 327] to withstand attacks of 
an opponent who knows the function, a MAC is considered to be secure. First, it should be computa-
tional infeasible that an opponent constructs a new message M´ that results in the same MAC that is 
the result of a message M. Second, it should thwart a brute-force attack, i.e. an attack with the goal 
to reveal the secret key. Third, the authentication function should not be weaker regarding certain 
portions or bits of the message than others. That is, it ought not include so called ‘weak spots’ sus-
ceptible to attacks. 

Authentication with a MAC is based on the following principle: Entity A calculates a MACA over 
the message to be sent with the private key Kp and sends it to entity B. B also calculates the MACB 
with Kp by taking the received message as input. Authenticity is granted in case of MACA = MACB. 
An example of a MAC the CBC message authentication code (MAC) [NIS11]. A symmetric cipher 
in CBC mode is used where every block is taken as input to the following block. The length of the 
MAC is therefore equal to the block length. 

In the field of security the Common Criteria (CC) (IEC 15408) are the international standard for 
information technology security. Products can be CC-certified and many organizations use the 
Common Criteria methodology. The Common Criteria have a mutual recognition agreement signed 
by more than a dozen of countries. I.e., products certified in one country are recognized in another 
[HER03, p. 1]. 

IEC 15408 addresses protection of information from unauthorized disclosure, modification, or loss 
of use, i.e. threats to confidentiality, integrity and availability. Especially, the standard concentrates 
on threats resulting from human activities. And Common Criteria are applicable to security measures 
realized in hardware, firmware or software [IEC15-1]. 

Due to their importance the Common Criteria are the basis of all topics related to system security in 
the thesis. However, not all parts of the CC are applicable for building automation and control sys-
tems such as privacy or non-repudiation because the CC are for IT security products.  
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2. Motivation and Possible Solution 

The thesis is related to three fields of knowledge: functional safety, system security and building 
automation and control system (BACS). All of them were introduced in the previous chapter. How-
ever, why is safety and security in BACS important and why has the importance still been growing? 
In other words, what is the motivation for investigating safety together with security in BACS, not 
the personnel, but the technical one. And what is the problem regarding today’s solutions. Second, a 
possible solution to the problem is presented: a common approach to safety and security where at-
tention is paid to requirements from both sides during the whole system life. 

2.1 Motivation and Problem Statement 

A modern building automation and control system (BACS) is mostly accomplished with a fieldbus 
at the field level and used in a building to perform a given task in order to relieve human beings. 
Fieldbus stands for a network that connects sensors and actuators in the field, where field means 
some common processes [REI98, pp. 14]. Fieldbus systems substituted the discrete wiring among 
sensors and actuators, i.e. every connection among sensors and actuators is realized by a dedicated 
line. In the early years of building automation with fieldbus technology typical processes were heat-
ing, ventilation and air-conditioning (HVAC). Later on lighting and shading processes have been 
integrated. The BACS was completely isolated without any possibility of accessing it from the out-
side. Therefore, the system was not considered to be security critical. And a BACS was safety criti-
cal neither. In safety critical environments sensors, actuators and logic elements had to be wired 
discretely. 

In the last years the field of application of BACS has been extended (e.g. fire alarm or intrusion de-
tection systems) to allow improvements in building control and cost reduction [GRA06]. Conse-
quently, more sophisticated and integrated services are necessary. Previously independent and iso-
lated service domains must be integrated [SOU07]. Systems with an enormous amount of nodes are 
becoming more likely. Additionally, the wireless technology is becoming popular in BACS [REI07]. 
It partly replaces the physical bus system. All facts mentioned make new demands on a BACS and 
require new properties. Two important properties are safety and security, often called quality proper-
ties of a system in the field of software engineering [FIR03]. Quality properties result in supplemen-
tary requirements [POO05]. The intention of such requirements is to support primary requirements. 
Therefore the supplementary requirements put constraints on how primary functionality is imple-
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mented. Mentioned later, but for the sake of understanding subsequent chapters outlined already at 
the beginning, in the following safety and security requirements are not considered to be supplemen-
tary or to be an additional quality attribute. They are the most important requirements in the com-
mon approach. 

Today’s BAC systems are systems with an enormous amount of nodes, even more than 10000 due to 
the integration of various processes. Typically, nodes are grouped in subsystems at the field level as 
shown in Fig. 2-1. Sensors and actuators are connected to the nodes and they are interacting with the 
environment. At the field level low bandwidth and cost effective systems are used. Subsystems are 
connected via gateways over the backbone network. Such networks are private and high bandwidth 
networks and are often using standard IT technology. They are connecting the different subsystems 
with network management devices and public networks like the Internet.  
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Fig. 2-1 BACS architecture [KAS05] 

Compared to automotive systems, BAC systems are quite dynamic and are subject to changes or 
reconfigurations. Just think of how often employees in an office building have to move and for ex-
ample light control has to be rearranged – either network topology or parameters have to be changed. 
Consequently, sophisticated tools to manage the system are required. Management includes jobs 
related to installation, commissioning, maintenance or decommissioning. Since tasks should be 
managed even among subsystems, the network management device running the tools resides at the 
backbone level. For control reasons such tools also give the user the possibility to access the net-
work remotely via Internet. At that level access to all subsystems results in the possibility to monitor 
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and control the BACS in a centralized way. By providing a unified visualization scheme to an opera-
tor, abnormal and faulty conditions can be detected, localized and corrected easily at an early stage. 
Furthermore, direct access to BACS data eases data acquisition [KAS05]. 

Additionally, more and more wireless technology at the field level is going to be employed in auto-
mation systems in general. Wireless technology reduces installation costs because wiring of nodes is 
not necessary. Moreover, installation effort and maintenance costs of the physical infrastructure are 
minimized compared to wired systems. For example, a wireless extension to KNX/EIB is presented 
in [REI07] using IEEE 802.15.4 [IEE80]. The ZigBee specification – based on IEEE 802.15.4 – for 
wireless sensor networks has already been used in oil and gas industry as a cost efficient means to 
enable a whole new range of applications [PET07]. It is a robust network and supports low data rate 
monitoring and control applications. In the mesh network topology it can be implemented with a 
very large number of nodes. Consequently, applying wireless sensor networks in BACS is also a 
topic. Such an approach is presented in [MAH03]. Wireless ad-hoc networks with a limited range of 
about some tens of meters are integrated into an automation system. As a result a broad range of new 
services and an increasing of the flexibility of a automation system is possible. In [ÖST07] another 
approach is presented that integrates wireless sensor networks in BACS: BACnet [ISO16] is used on 
top of a wireless sensor network. 

Facing the innovations in BAC systems, the severity of security problems has been increasing dra-
matically, in terms of the number of problems but also their consequences. The BACS cannot be 
considered an isolated island any more, i.e. without any access from the outside and wired node to 
node communication inside the network. Interconnection of subsystems over a backbone network 
such as an IP-based LAN for enabling process monitoring results in the possibility of attacks from 
inside of the system [REY05]. Moreover, attacks from outside the BACS are likely if the backbone 
network is further connected to a public network like the internet. Finally, employing wireless tech-
nology in particular and open media in general tighten the security problem. 

BAC systems are intended to be used in more and more fields of application, including safety criti-
cal environments like hospitals and safety critical services, respectively. Additionally, the demand 
on personal safety in general in our society is constantly growing and lowers the level of risk ac-
cepted to life of people. That fact has been taken into considerations by the national and European 
legislation. 

A typical safety critical service is a fire detection service. It is obvious that failures in a fire detection 
system or failures in an application in a hospital can have severe consequences such as human injury 
or even death. So the risk resulting from critical stochastic and systematic failures must be reduced. 
In other words, the safety integrity (i.e. reliability with respect to catastrophic failures [KOP97, 
p. 10] assuming that safety is a subset of reliability – one of various definitions of the relationship 
between safety and reliability [GER02]) has to be reasonable high. As pointed out in subchapter 1.2, 
a system that incorporates safety techniques to reduce risk is called safety related. Strict require-
ments given by international standards like IEC 61508 have to be met by a safety related BACS. 
Requirements comprise the design, realization, deployment and maintenance phase of a system. And 
there are requirements that specify the way of developing and what to develop. Success of a product 
is inevitably linked to meet such requirements. 
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Today’s BACS guard against some security problems, depending on fieldbus technology and type of 
installation. Safeguards vary in terms of supported security features and kind of implementation. For 
example, LonWorks [EN149] incorporates an integrity service, standard KNX [EN500] not. The 
integrity service in LonWorks is based on an undisclosed cryptographical algorithm, BACnet 
[ISO16] uses the publicly available advanced encryption standard (AES) algorithm [NIS19]. A sur-
vey on the three most common BACS regarding their security features can be found in chapter 3. 
Additionally, on the contrary to industrial automation systems safety features are not included in 
standard BAC systems. However, efforts are made to make LonWorks safe [NOV07, HER08]. The 
basic idea is to enhance the standard system with safety features on application level. 

To sum up the aforementioned, it has to be stated that there are safety and security requirements on a 
modern BACS differing in the degree of rigor. Some of the BACS are satisfying a number of secu-
rity requirements, a single one presented in [NOV07, HER08] is going to meet a few security re-
quirements and specified safety requirements. The problem, still remaining unsolved, is that safety 
and security are examined independently: safety and security features are developed and integrated 
without paying attention to their dependencies. Safety related systems most likely incorporate secu-
rity flaws and consequently will not withstand intentional attacks from the inside or outside. In con-
trast, security threats, e.g. breaching integrity of hard- or software, will have safety consequences: a 
(critical) failure occurs leading to a hazardous event. 

A step further on making BAC systems more safe and secure is to examine them in terms of safety 
and security. Especially, the dependencies between them are worth being investigated: the common-
alities and contradictions. A common approach to safety and security in BACS shows in which 
situations they are similar or even identical, and therefore effort in development can be reduced. 
Commonalities can be found in the context of technical objectives or non-functional measures like 
methods to assess risk. Pointing out contradictions is another topic to be taken into account in the 
common approach. Of course, a BACS will never be totally safe and totally secure – a trade-off is 
necessary what feature weights more in a defined context. However, a list with contradictions forces 
to think of the intention, the environment of the BACS and so on. Afterwards the field of application 
is clear and either safety or security is preferred.  

2.2 Possible Solution of Common Approach 

The common approach presents a way of how to deal with safety and security issues as well as how 
to build a safe and secure BACS. Therefore, the challenge is to specify a way of 

1. how to integrate safety and security, i.e. concept and methodology and 

2. how to develop and use such a building automation and control system (BACS), i.e. ‘devel-
opment-use’ model. 

Additionally, it must meet some distinct design requirements because its success is without doubt 
linked to the acceptance of safety experts and security practitioners, and BACS developers and inte-
grators. Hence, the common approach shall be based on standard methodology and shall use stan-
dard terms known in the safety and security society, respectively. In the safety domain it is an estab-
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lished practice [BAT96, HAM91, IEC61] to use a lifecycle model as ‘development-use’ model. 
Within the thesis lifecycle model is used as generic term for every procedure starting with a prod-
uct’s conception and ending with its disposal. Or, as mentioned in [MOL02] a lifecycle model speci-
fies a logical activity flow of a project. Consequently, the common approach shall cover all stages of 
the lifecycle of a system. As stated in [BUR92] safety and security are subject to different legisla-
tions and standards with regard to the development, use and assessment. Thus, another requirement 
is that the common approach is accepted by the relevant bodies and therefore shall adhere to the 
requirements given by international standards. Finally, systems built in accordance with the common 
approach should be comparable to each other. So it is required that one or more levels are specified 
giving information on the degree of safety and security, respectively. 

Referring to the aforementioned first objective, a common approach has to specify a way of how to 
integrate safety and security. As mentioned in [EAM99], the word integrate can mean unifying 
safety and security. Alternatively, it can stand for harmonizing safety and security. While unifying 
implies creating a new concept and methodology, a harmonizing approach intends to use standard 
concepts and methodologies from both disciplines and shows how safety and security interact. That 
is the way how the common approach presented in the thesis looks like since it meets the design 
requirement: acceptance of safety, security and BACS people. Unification of safety and security 
attributes together with reliability and maintainability is an approach called dependability [LAP92]. 

Dependability

Attributes Means Threats

 

Fig. 2-2 The dependability tree 

According to [IEE98] dependability is defined as follows: “Trustworthiness of a computer system 
such that reliance can be justifiably placed on the service it delivers. Reliability, availability, and 
maintainability are aspects of dependability.“ Dependability is a unifying concept and consists of 
three parts: the threats to, the attributes of and the means by which dependability is reached as 
shown in Fig. 2-2 [AVI04]. 

As presented in Fig. 2-2, threats to a system can results from three different reasons (fault, error, 
failure). Risk coming from threats can be lowered by applying different means like fault prevention, 
fault tolerance, fault removal and fault forecast. These means or techniques are used in order to re-
duce the probability of endangering one or more dependability attributes of a system. According to 
[AVI04] attributes are defined as follows. 

 Availability: Readiness for correct service 

 Reliability: Continuity of correct service 

 Safety: Absence of catastrophic consequences on the user(s) and the environment 

 Confidentiality: Absence of unauthorized disclosure of information 
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 Integrity: Absence of improper system state alterations 

 Maintainability: Ability to undergo repairs and modifications 

Whereas safety is an explicit attribute of dependability and its definition is similar in content to the 
one presented in subchapter 1.2, security is not mentioned explicitly. However, the attributes of se-
curity as mentioned in subchapter 1.3 are integrated into the concept. The definition of integrity and 
availability differs, though. In the security context the attribute availability and integrity is linked to 
the topic of authorization. With regard to dependability security is the concurrent existence of the 
three attributes confidentiality, integrity and availability. 

In short, safety and security deal with the avoidance of a specific class of failure (hazardous failures, 
threats, vulnerabilities). Dependability widens the scope and means the prevention of any kind of 
failure. Therefore reliability is added as an attribute and availability is defined in a broader context. 
And the concept redefines standard terms of domains like security. As a consequence, the concept of 
dependability is not suitable for a common approach to functional safety and system security. Espe-
cially, security practitioners must acquaint themselves with a new terminology and concept. 

 

Fig. 2-3 Hierarchy of standards 

A second way to integrate safety and security is to harmonize both disciplines. The intention of the 
harmonizing approach is that safety experts apply the safety related concept and methodology and 
security practitioners the security related one. Such a way is reasonable since special techniques in 
the different domains evolved and are adapted to the individual needs. Using techniques from safety 
and security also gives the possibility to see what can be borrowed from the other discipline. Fur-
thermore, applying standard techniques in the safety and security domain increase the possibility of 
revealing the dependencies, communalities and conflicts, clearly. The challenge of the harmonizing 
approach is to develop a rule based conflict resolution approach. That forces the safety experts and 
security practitioners to think of the respective other discipline and to interact with each other. It 
finally results in a better understanding of the BACS. 

Fig. 2-3 [WRA07, p. 270] gives an overview of the hierarchy of standards. It is a three tier hierarchy 
with generic standards at the top. Type A standards include general term definitions and basic pro-
cedures used in a specific area, such as functional safety (IEC 61508) or IT security (IEC 15408). 
Type B standards correspond to a certain domain, such as railway, automotive or process industry. 
They cover particular aspects of the different domains, but inherit the basics of a generic standard. 
At the bottom type C standards are located. That type of standard is specialized to give requirements 
for a particular application, e.g. safety rules for installation of lifts (EN 81) or software for railway 
control and protection systems (EN 50128). In the field of BAC systems no standard relating to 
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safety or security has been available yet, neither of type C nor type B. Therefore as mentioned al-
ready in subchapter 1.2 and 1.3 two type A standards for safety (IEC 61508) and security 
(IEC 15408) are chosen as reference for concept and methodology in the respective discipline.  

 

Fig. 2-4 Generic lifecycle 

The ‘development-use’ model, the second challenge, is realized by a lifecycle model because it is a 
structured and systematic model covering the development and use of a system. Typically, as shown 
in Fig. 2-4, a lifecycle starts with the concept phase including a definition of the scope, the purpose 
and examination of the environment. Next, a requirements analysis is performed and a specification 
is set up. It includes functional, performance, usability, reliability, supportability or design-
constraints requirements. After that a design or architecture of the system is created that is realized 
in a further step. Subsequently, the built product is verified. Verification is the process of evaluating 
a system to determine if the products of a given development phase satisfy the conditions imposed at 
the start of that phase [IEE74]. In other words, it is asked, ‘Are we building the product right?’ Fol-
lowing the verification process, the system is installed and validated. Validation is the process of 
evaluating a system during or at the end of the development process to find out whether it satisfies 
specified requirements [IEE74]. Validating a product is associated with the question, ‘Are we build-
ing the right product?’ In the use-phase, the system is in operation and has to be maintained. At the 
end the system is decommissioned. 

As already outlined shortly, a lifecycle approach has become ‘best practice’ in the safety domain. 
There has been a common understanding that activities such as fault avoidance and fault control 
must be applied at the different stages of the lifecycle. Hence, the number of systematic failures can 
be reduced. Often safety assessment work has been confined to assessing whether the proposed ar-
chitecture meets the target failure probabilities [SMI04, p. 11]. Less attention was paid to the instal-
lation, maintenance and disposal phase [WRA07, p. 1]. 

Similar approaches, albeit less detailed and accepted, have been development in the security domain. 
In [MCG06, pp. 27] it is outlined that building any type of software securely is only possible if secu-
rity issues are considered during all phases of the lifecycle. Hence, seven so called touchpoints (a set 
of best practices) are introduced, each of them applicable to a different lifecycle phase. [AME05] 
also highlights that security related issues in general are present during the different phases of a life-
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cycle. In [LIP04] the so called ‘trustworthy computing security development lifecycle’ is discussed. 
It was developed by Microsoft and consists of a set of high-level principles presented in chapter 5.2. 
Although the lifecycle is implemented to develop IT software, the activities during the different life-
cycle phases are the same for embedded software. In general, the trend to ensure security during the 
various stages of a product life is clearly perceptible. Its importance is growing due to the increasing 
complexity and connectivity of security critical systems. 

2.3 Scope of the Thesis 

In conclusion, a solution to the problem of safety and security in BAC systems is a common ap-
proach harmonizing safety and security discipline. Thereby, both disciplines remain independent and 
use the respective concept and methodology where applicable. Attention is paid to the dependencies 
of both disciplines and therefore new additional activities such as a concept to resolve conflicts are 
proposed in the following. It is shown how to benefit from the commonalities. Topics referring to 
safety are according to IEC 61508, security related are in accordance with IEC 15408. The ‘devel-
opment-use’ model is a lifecycle model that gives requirements for the different lifecycle phases of 
the BACS. The target audience of the common approach is the developer, operator and maintainer of 
BAC systems. Topics relating to the acquisition of a project or, generally, procurement activities like 
independent cost estimation or contract issues are not part of the common approach. 

The common approach is applicable to create a new safe-secure BACS or to enhance a standard 
BACS with new features and widen the field of application. Discussion of common approach in the 
thesis focuses on the development and use of an existing BACS. Due to economic reasons that will 
be the case for almost all further developments in the field of general purpose BAC systems. 

Important to mention is that the common approach can be the basis of standardization. That is why 
international standards are taken as reference for the respective disciplines. Nevertheless, this thesis 
does not cover all aspects required for a standard. The work presented by the author subsequently 
intends to give an example how a common approach may look like and how to handle it when build-
ing up a safe and secure BACS. As much information is given to understand the basic ideas of the 
approach. 

Although an approach to a system lifecycle is presented, it is beyond the scope of the thesis to give 
examples of how to develop and use the complete BACS including nodes, gateways, installation and 
management tools, management devices and so on. Within the thesis the focus of attention is on the 
field level of a BACS (Fig. 2-1), especially on the node and its environment, the hardware in general 
and the software in particular. Other entities and issues are discussed only in such detail necessary to 
understand the context presented. 
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3. Safety and Security in Today’s Automation Systems 

The intention of fieldbus systems used at the field level of an automation system has been to replace 
discrete wiring of sensors and actuators as mentioned in subchapter 2.1. As a consequence, the tradi-
tional services heating, ventilation and air-conditioning (HVAC) in BACS became more flexible and 
more popular accordingly. These services are neither safety nor security critical. That is the reason 
why today’s BACS do not incorporate sufficient security features. Moreover, they are not featured 
with safety at all although some effort is done to enhance LonWorks with safety features [NOV07]. 

In the following the three universal building automation systems are examined also regarding their 
security features. More general information is conveyed on LonWorks because the building automa-
tion system is used in the use case presented in chapter 8. The result of the security investigation is 
giving an additional motivation to pay attention to the topic security in BACS. Additionally, some 
safety related automation systems are analyzed to show how safety features can be integrated into an 
automation system. 

3.1 BACnet 

In 1987 the American Society of Heating, Refrigerating and Air-Conditioning (ASHRAE) started 
with the development of a protocol that addresses the needs of building automation and control sys-
tems of various sizes and types. In 1995 the development of BACnet was finally completed and it 
was published as ANSI/ASHRAE Standard 135-1995. At the moment the current version of the 
standard is ANSI/ASHRAE Standard 135-2004. Additionally, addenda are made to the standard in 
order to consider new needs coming from the market. Addendum a to f are approved for publication 
and addendum g is now available for trial implementation. In the year 2003 BACnet was also 
adopted as international standard, ISO standard [ISO16]. The goal of standardization has been to 
achieve interoperability in BACS. 

BACnet is a vendor independent data transmission protocol for open communication in BACS. It 
specifies a layer 3 and layer 7 of the OSI reference model [ISO74; KRA05, pp. 103]. BACnet does 
not determine the underlying layers 1 and 2. However, it specifies five different network types dif-
fering in performance and costs that are supported such as Ethernet or LonTalk. In 1999 BACnet/IP 
was introduced to also make use of the Internet protocol. Because of the aforementioned network 
types physical media like twisted pair or fiber optic can be used. 
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BACnet is based on an object model that represents the functionality of the BACS. An object sum-
marizes data elements that correspond to a particular function. Each object consists of a number of 
properties. E.g., an analogue output object includes the property ‘Present_Value’ or ‘Description’. 
Each device can have none, one or many objects with the exception of the ‘Device’ object. Each 
device must have one and only one ‘Device’ object. It is used in the BACS to identify and control 
multiple characteristics of the device. Especially, it keeps a list of all other objects existing on the 
device. 

BACnet does not mandate any specific hardware, but it specifies five device types based on a device 
profile. In other words, requirements are given how a BACnet device has to look like. Typical de-
vice types are the BACnet operator workstations (B-OWS), a management equipment, or the 
BACnet advanced application controller (B-AAC), a configurable device, or the BACnet smart ac-
tuator (B-SA) or sensor (B-SS) [KRA05, pp. 123]. 

In contrast to the following BACS, BACnet incorporates many security features to ensure security 
objectives like authentication, confidentiality and integrity. The security architecture relies on the 
data encryption standard (DES) [NIS46-2] crypto algorithm and a central trusted key server 
[SCH03]. Some topics relevant for a defined level of security are not addressed in BACnet: the ini-
tial key distribution (keys used to secure device and key server communication), storage of private 
keys on a device or the generation of keys. Additionally, the security approach incorporates some 
weaknesses such as the central key server (single point of failure) or the use of DES (not considered 
to be secure enough any more due to the short key size and increasing computational power 
[RFC47]). 

Since the original security mechanisms in BACnet, based on the old Data Encryption Standard 
(DES), have been rendered insecure by advances in computer technology, the BACnet Network 
Security Working Group has developed replacement mechanisms based on the newer Advanced 
Encryption Standard (AES) [NIS19] published in addendum g to ANSI/ASHRAE standard 135-
2004. An additional advantage of AES is that it is simple enough that all BACnet can be secured, 
which would have been difficult and computational expensive with the computation heavy DES. 

3.2 KNX/EIB 

The European Installation Bus (EIB) is a fieldbus designed for home and building automation. In 
1990 the EIBA (EIB Association) was founded that maintained the open specification. In the year 
2002 EIB was merged with Batibus and European Home System (EHS) to form the new KNX stan-
dard [KNX04]. The standard seeks to combine the best features of the three systems mentioned be-
fore. The goal is to create a single European home and building electronic system (HBES) standard. 
Nowadays, KNX is maintained by the Konnex Association and EIB exists unchanged as a set of 
profiles within KNX, called KNX/EIB. 

The KNX/EIB protocol stack consists of layer 1-4 and layer 7. The layer 5 and 6 are not imple-
mented [DIE00, p. 56]. It supports physical media like twisted pair or powerline. Moreover, there is 
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an extension called EIBnet/IP available that gives the opportunity to use an IP based medium as 
transport channel. 

The KNX/EIB communication model is based on a shared variable model. Network-visible variables 
of a node are called group objects. They can be readable, writeable or both. Objects can be grouped 
and the group is assigned a unique group address. The address is used to handle the network traffic. 
Additionally, system management objects are implemented to access network management data like 
binding information. And application interface objects can be provided relating to the intended be-
havior of the application. 

The KNX specification also includes standard hardware components. The most important part of a 
component is the bus coupling unit (BCU). It consists of a microcontroller (MC68HC05 family) and 
a transceiver which makes access to the bus possible. The complete protocol stack and an applica-
tion environment are implemented on the unit. The BCU can host simple application programs. So 
called application modules like a thermostat can be connected to the BCU via an external interface  

KNX/EIB only offers security on a rudimentary scale. The application layer provides password 
based services to control access to the memory of the node and its object properties. Even worse, the 
passwords are sent in plaintext to the node. Because of the lack of security attempts have been made 
to enhance KNX/EIB so that it grants a medium level of security.  

One of the attempts is called EIBsec [GRA05, pp. 132, GRA06]. It relies on a distributed security 
solution to avoid a single point of failure. EIBsec supports data confidentiality and integrity, authen-
tication of both communication participants, protection of management and process data, and 
mechanism for initial key distribution and for key management. The advanced encryption standard 
(AES) [NIS19] is applied for granting the security objectives. 

Each network segment contains a security related device, the advanced coupler unit (ACU). The 
ACU is a security enhanced line or backbone coupler that acts as a key server. It is responsible for 
distribution and generation of keys. In EIBsec different types of keys are specified like the session 
key for device to device communication, group key for multicast messages or the node key and its 
companion the dynamic node key to retrieve other keys from the ACU in a secure way. 

Initial key distribution is solved quite easily. The lower part of the key is sent with one, the higher 
part of the message with another message. To check if the remote entity is allowed to change the key 
a password mechanism is used. Since the key is sent in plaintext such a way of initial key distribu-
tion is only secure if unauthorized access to the network is not possible. Otherwise, the keys must be 
uploaded to the device manually. Secure storage of the uploaded keys is not guaranteed in the ap-
proach because physical security is not part of EIBsec – a clear weakness of the proposed solution. 

3.3 LonWorks 

The company Echelon developed LonWorks, an event triggered control network system, in 1991/92. 
The intention was to cover about 80% of BACS application [DIE97, p. 23]. The system consists of 
the LonTalk communication protocol, a dedicated controller (Neuron Chip [MOT97] or LC3020 
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[LOY05]) and a network management tool. The LonTalk protocol is standardized in ANSI/EIA-709 
in America and in EN 14908-1 in Europe. In 1994 the LonMark Interoperability Association (today 
called LonMark International) was founded which specifies guidelines for interoperable devices. 

The LonTalk protocol incorporates all 7 layers of the OSI reference model and supports a variety of 
channels: twisted-pair, powerline or fiber optic. A very popular channel in building automation is the 
free topology twisted pair (TP/FT-10) [KAS05]. Also IP tunneling is possible, called LonWorks/IP 
and standardized in ANSI/EIA-852 in America. 

The communication in LonWorks is possible by means of network variables or explicit messages. A 
network variable is a data item that an application on Device A expects to get from Device B on a 
network (an input network variable) or expects to make available to Device B on a network (an out-
put network variable). Network variables are used for operational data such as temperatures, or pres-
sures and are limited to 31 byte. A lot of NV are specified for interoperability purpose and called 
standard network variable type (SNVT). Network variables of the same type, but opposite direction 
can be connected – they are logically connected by performing a binding. Moreover, explicit mes-
sages are used if messages larger than 31 byte must be sent or a request/response service is desired 
[DIE97, pp. 183]. 

As already mentioned, there are two chips available that can be used as network nodes: the Neuron 
Chip or the LC3020. The first one is integrated if just small applications have to be executed on the 
node. They are identified in the network by an unique device ID, in case of installing a Neuron Chip 
referred to as Neuron ID. Each chip provides input and outputs where sensors or actuators are 
plugged in. Depending on the channel, the nodes are equipped with different transceivers.  

Although LonWorks was published rather late compared to other fieldbus systems, security issues 
have also been neglected. LonWorks only offers authentication services, that are implemented at 
layer 4 and 5 of the OSI reference model. There is no possibility to encrypt data and access control is 
handled on a per node basis. 

Authentication is realized by a challenge response mechanism. Node A (writer) send message to 
Node B (reader) where the authentication bit is set, i.e. Node B expects an authentication of Node A. 
The reader generates a random number and returns it to Node A. In addition, it generates a one way 
transformation of the created random number and the data in the message using its private authenti-
cation key. The result is a 64 bit hash value. Node A does the same and sends its hash value to 
Node B. Finally, the reader compares the values and the result (successful or failed) is given to the 
application layer. That is, the application decides how to interpret the result. 

The cryptographic algorithm used to as one way transformation function is not publically available. 
Therefore, it must be considered to be insecure because it opposes Kerckhoff’s principle [KER83]: 
All algorithms must be public; only the keys are secret. Keeping the algorithm secret is referred to as 
security by obscurity which never works [TAN03, p. 726]. The authentication key is 48 bit long and 
it is assumed that it is not strong enough [SCH03]. In the end, only a single authentication key can 
be stored on a node. If a group of nodes use authentication service, all of them have to share the 
same key. Consequently, authenticity of a designated node cannot be verified any more. It can only 
be ensured that the node belongs to the group. 
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Because of the weaknesses regarding security, in [SCH03] an approach is presented that increases 
the level of security. The simple idea is to equip nodes with a smartcard and to integrate security 
services on top of the protocol layer (above application layer). The smartcard is a security token and 
a tamper proof device, i.e. data located on the card are considered to be secure. All cryptographic 
operations are performed and the private keys are stored on the smartcard. A security application 
cares for transferring sensor and actuator data to the smartcard and for reading it back. As a conse-
quence, authenticity, integrity and confidentiality of data sent over the network can be guaranteed. 
Confidentiality and authenticity of data in the memory on the node is not ensured by the approach. 
By means of network management tools, the values can be written and read. In other words, trans-
mission security, but not security of data on the node is tackled by the approach. 

3.4 Safety Related Automation Systems 

Safety related automation systems are accomplished by enhancing the standard protocol and/or 
adapting the hardware of the standard nodes. Such systems have to be implemented in a way so that 
systematic failures and stochastic failures are detected during the operation resulting from node or 
network faults. In the following three safety related automation systems out of a great amount of 
safe automation systems are presented to give an overview of common safety mechanisms. 

The CAN bus was developed in the mid 1980 by the company BOSCH for the automotive sector. It 
specifies a layer 1 and 2 as well as a layer 7 called CANopen of the ISO reference model. The CAN 
fieldbus was made safe by extending the CANopen protocol with safety features. The protocol is 
referred to as CANopen Safety [REI01, pp. 73; WRA07, pp. 140]. That is, no safety layer above 
layer 7 was developed since sensors and actuators are directly connected. And the actuator must 
meet defined safety requirements.  

Safety of CAN relies on the fault detection mechanism of standard CAN. Additionally, to increase 
integrity and reduce residual failure probability messages are sent twice and the second one is in-
verted. The two standard messages comprise a single safe message. To distinguish safety and non-
safety related messages, the identifier range in the standard message was extended. Finally, watch-
dog functionality is integrated to detect if a safe message part or a complete safe message was lost. 

CANopen Safety meets safety requirements of safety integrity level (SIL) 3 (refer to subchapter 4.1 
for the details) given by the international standard IEC 61508 [IEC61]. Since the protocol enhance-
ment was not sufficient to meet the desired safety level, a hardware architecture with two channels 
was chosen. In other words, a safe node consists of a single transceiver, two CAN controllers and 
two additional safety chips. The safety chips are cross-checking the received data independently and 
ensure that the data received has not been altered during transfer. 

In 1999 the first machine was put into operation whose safety functionality was realized by an open 
fieldbus system meeting requirements of category 4 of EN 954-1 [EN954-1]. It is called Safety-
BUS p [REI01, pp. 175] and based on the CAN protocol layer 1 and 2. Safety features are incorpo-
rated into the application layer (layer 7). 
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In contrast to CANopen Safety, SafetyBUS p specifies a safety message format. It is embedded into 
the payload field of the standard CAN message: a one byte header including the message type and a 
sequence number to verify the loss of messages, a one byte target address to identify if the message 
has been chosen for the node, four byte payload and a 2 byte CRC to ensure the integrity of the 
safety related message. Moreover, acknowledgements are sent by returning the received message 
inverted to the sender to detect corruption, insertion of messages and loss of messages. The last men-
tioned fault can be detected in case of using a watchdog that is triggered if the acknowledgement is 
not received within a predefined time frame. Safety and non-safety related messages can be distin-
guished by a special class of identifiers in the standard CAN message format (same mechanism used 
in CANopen Safety). 

Safety is further supported by a dedicated hardware architecture of the node. A two channel architec-
ture is used that consists of a single transceiver and CAN controller, and two safety chips. The chips 
are working independently and are cross-checking received messages. Such an approach decreases 
the residual failure probability because only if both channels come to the same result, the message 
payload is valid, i.e. integrity is granted. 

In 1999 another safety related system was published called PROFIsafe. It is an extension to standard 
PROFIBUS [REI01, pp. 155]. The protocol of PROFIBUS includes layer 1, 2 and 7 of the OSI ref-
erence model. It is equipped with a number of safety features to meet requirements of safety integ-
rity level 3 (SIL) specified in IEC 61508. 

PROFIsafe is based on the ‘black channel’ concept [WRA07, pp. 132], i.e. the standard equipment is 
not considered in the safety assessment, but faults resulting from the channel must be detected. 
Safety features to detect such faults are summarized in a dedicated safety layer above layer 7. Addi-
tionally, an interface to the safety layer is available to provide the safety functionality to the applica-
tion programmer in a convenient way. As it is done in SafetyBUS p, PROFIsafe uses a safety mes-
sage format that is embedded into the payload of standard messages. It includes a status byte to syn-
chronize the status between host and slave, a sequence number and a 2 byte CRC. In addition, au-
thentication of sender and receiver is provided by a password unique for every master and slave. 
And a watchdog function is integrated to detect a delay and loss of messages. 

Whilst the two aforementioned safety related automation systems are based on a two channel hard-
ware architecture, PROFIsafe only uses a single architecture. Put another way, the standard hard-
ware is not altered, just the firmware of the nodes is enhanced with the safety functionality. 

To sum up, the three examples mentioned before show that there are basic mechanisms applied to 
include safety functionality: additional safe message format embedded into the standard protocol, or 
watchdog functionality, CRCs or a two channel hardware architecture. Safety functions are located 
in layer 7 or in dedicated safety layer above the layer 7. Also noteworthy to outline that most safety 
related automation system adhere to requirements of SIL 3 of the IEC 61508 standard – category 4 is 
equivalent to SIL 3 with regard to the rigor of the safety requirements [WRA07, p. 72]. 
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4. International Standards 

A requirement to be met by the common approach in general is that it should be widely accepted in 
the safety, security and BACS community. Thus, all topics referring to lifecycle issues are based on 
international standards in order not to reinvent the wheel. Safety related topics in the common ap-
proach are covered by IEC 61508 whereas IEC 15408 or also known as Common Criteria comprises 
all security related issues. 

IEC 61508 is chosen because it is a generic standard, i.e. not application specific, and therefore ap-
plicable to all applications. As mentioned in [IEC61-0], its intention is to be used as standalone stan-
dard or as a basis of other standards. It includes different levels that can be used to distinguish sys-
tems. Finally, it specifies a safety lifecycle model and activities to guarantee a certain degree of 
safety quality. 

The Common Criteria (IEC 15408) cover all aspects of IT security and allow for comparing different 
systems by introducing evaluation assurance levels (EAL). Moreover, they specify activities for 
many lifecycle stages that help to assure a level of security quality. Finally, they also incorporate a 
way of deriving security functions. In short, these attributes are the reason that the Common Criteria 
are the preferred choice. 

4.1 Safety and IEC 61508 

The international standard IEC 61508 [IEC61] standardizes a lifecycle model for creating a safety 
related systems. It specifies requirements for every stage of the life of a system to avoid faults during 
the design and to control faults during operation. It aims at providing a technical sound, system 
based and risk based approach for determining the necessary performance of safety related systems. 
In addition, it provides a means for users and regulators to gain confidence when using computer 
based technology [IEC61-0]. 

Safety related systems are developed to reduce the inherent risk of the Equipment Under Control 
(EUC) below the maximum tolerable risk by applying a variety of measures: functional ones like 
online tests or non-functional ones as part of the functional safety management [IEC61-7]. The 
EUC, for example, corresponds with the building automation and control system (BACS) or an en-
tity of the BACS like a node. The amount and kind of measures incorporated in a safety related sys-
tem are always specified on account of hazards and their associated risks. As a result, developing a 
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safety related system always requires a hazard and risk analysis of the EUC. It consists of a specifi-
cation of hazards causing a dangerous situation, a description of the reason of the hazards and an 
identification of risks associated with the different hazards. 

Safety requirements describing how to handle hazards in a safe way are derived from the hazard and 
risk analysis. Safety requirements define the behavior of the safety functions performed by the safety 
related system. Beside safety requirements there are also safety integrity requirements, i.e. perform-
ance requirements for the safety functions, necessary to be defined in order to achieve functional 
safety with a safety related system. Safety integrity requirements specify the possibility of a safety 
function being performed according to expectation. Safety integrity requirements are derived from 
the risk assessment where the risk of every hazard is determined.  

Table 4-1. Safety integrity level (IEC 61508) 

Safety integrity level 
(SIL) 

High demand or continuous mode 
(Failure probability per hour) 

4 ≥ 10-9 to < 10-8 

3 ≥ 10-8 to < 10-7 

2 ≥ 10-7 to < 10-6 

1 ≥ 10-6 to < 10-5 

 

The performance of the safety functions is categorized by four safety integrity levels (SIL) defined 
in IEC 61508. Safety integrity level 1 (SIL 1) is the lowest and safety integrity level 4 (SIL 4) is the 
highest level. Each level corresponds with a specific failure probability per hour (see Table 4-1). The 
value of the failure probability specifies the probability of a dangerous failure per hour. On account 
of the safety integrity level the likelihood for successfully performing the safety functions is defined. 
The lower the likelihood of dangerous failures the higher the performance of the safety functions 
must be and the more thorough are the safety integrity requirements. 

After specifying the safety functions and the safety integrity level, designing a safety related system 
additionally requires a consideration of the deployed hardware on which the safety functions are 
executed. The maximum safety integrity level is restricted because of the hardware fault tolerance 
(see Table 4-2 for an explanation) and the safe failure fraction (SFF). The SFF specifies the quantity 
of failures that do not result in a dangerous situation. That is, the higher the SFF the more failures 
are detected and the less dangerous failures are undetected. 

Generally, there are two types of failures possible: stochastic (random) and systematic failures re-
sulting from stochastic and systematic faults, respectively. According to IEC 61508 it has to be dis-
tinguished between random (stochastic) hardware failures and systematic failures. Random hard-
ware failures can be quantified, i.e. it is possible to specify a failure rate per hour or day. However, 
systematic failures cannot be quantified exactly. In other words, failures that can be quantified are 
random hardware failures, the remainder of failures are systematic failures. Systematic failures en-
danger the systematic safety integrity whilst hardware failure jeopardize the hardware safety integ-
rity. Both together are comprising the safety integrity: the probability that a safety related system 
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executes the required safety functions under all defined circumstances within a fixed period of time 
[IEC61-4]. 

Efficiency of measures like online self tests to ensure hardware integrity is categorized by the diag-
nostic coverage. A higher diagnostic coverage means more faults related to a hardware component 
must be detected that do not result in a dangerous failure. Measures with a low diagnostic coverage 
must detect stuck-at faults: a fault category, which shows a constant “0” or “1“ on the pins of the 
component. Others with a high diagnostic coverage must detect faults of the DC-fault model (DC = 
direct current). It incorporates stuck-at fault, line break, high impedance outputs and short circuit 
between signal lines [IEC61-2]. On the contrary, performance of measures to ensure systematic in-
tegrity is categorized by 3 levels: ‘low’, ‘medium’ and ‘high’, depending on the target safety integ-
rity level. 

With the aforementioned in mind, a target SIL can be reached by a low hardware fault tolerance and 
using high efficient measures, i.e. with a high diagnostic coverage, to ensure a high level of hard-
ware integrity and a low probability of undetected dangerous failures. On the other hand, a target 
SIL is achieved by integrating measures with a low diagnostic coverage and therefore a low SFF, i.e. 
a rather high probability of undetected dangerous failures, but a hardware tolerance of one or two. In 
other words, the hardware architecture is a function of the target SIL and the SFF (Table 4-2). 

Table 4-2. Safety integrity of deployed hardware (IEC 61508) 

Safe failure fraction Hardware fault tolerance1 
 0 1 2 

< 60% not possible SIL 1 SIL 2 
60% - < 90% SIL 1 SIL 2 SIL 3 
90% - < 99% SIL 2 SIL 3 SIL 4 

≥ 99% SIL 3 SIL 4 SIL 4 
1) A hardware fault tolerance of N denotes that N+1 faults cause a loss of the safety status of the system. 

 

Beside hardware integrity also systematic integrity has to be granted. Part of the systematic integrity 
is software integrity. It is ensured by first of all specifying a software safety lifecycle model based 
on the V-model [BRO93]. Second, non-functional and functional measures are specified for the 
various lifecycle stages. For example, the use of design tools during specification or use of perform-
ance tests during integration of the software onto the target hardware. 

In conclusion, all the safety topics mentioned are spread over the seven parts of the standard. They 
were published by the International Electrotechnical Commission (IEC) between 1998 and 2000. In 
2001 it also became a European standard (EN). Part 1 is dedicated to the safety lifecycle model, 
part 2 to hardware related topics to be considered, part 3 to software related issues. Part 4 conveys 
information on the definition of terms used in the standard. Part 5 gives examples of how to reach 
target safety integrity levels and part 6 provides guidelines of how to apply part 2 and part 3 of the 
standard. In the end, part 7 lists functional and non-functional safety measures used to reach a target 
safety integrity level. 
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4.2 Security and the Common Criteria 

The standard IEC 15408 [IEC15] – for historical purpose called Common Criteria (CC) – is a basis 
of evaluation of security properties of IT products and systems. CC specify a set of requirements for 
the security functions of IT products and systems. Additionally, it gives requirements for assurance 
measures applied to the security functions during security evaluation. As a consequence, CC permits 
to compare results of independent security evaluations. 

The goal of the Common Criteria are to develop a full lifecycle consensus based security engineer-
ing standard [HER03, p. 10]. It does not covered for example operational security such as mentioned 
in [WOO07]. Operational security is discussed in ISO 17799 [ISO17]. Moreover, it does not address 
physical or personnel security, or administrative security measures. 

The Common Criteria include two basic concepts: a security concept and an evaluation concept. The 
idea of the first one (Fig. 4-1) is that owners of assets analyze the possible threats to the assets. They 
determine which threats apply to their environment. These threats result in risk to the assets. To re-
duce the risk to assets, countermeasures are required that themselves may posses vulnerabilities and 
lead to a risk to the assets. 

Owners

countermeasures

vulnerabilities

risk

assetsthreats

Threat agents

value

wish to minimizeimpose

to reduce

that may possess

that exploit

wish to abuse and/or damage

give raise to

that increase
to

may be aware

leading to

that may be 
reduced by

 

Fig. 4-1 Security concept [IEC15-1] 

The evaluation concept is based on the idea that evaluation, i.e. active investigation of the IT product 
or system that is to be trusted, gives evidence of assurance and assurance techniques produce assur-
ance. Owners of assets require assurance because it gives confidence that countermeasures minimize 
risk to their assets. The standard presents a framework in which an effective evaluation is possible 
by defining a way to derive requirements and a specification. It, however, does not mandate any 
specific lifecycle model. 

The security concept is based on a catalogue of security functional requirements [IEC15-2] that de-
scribe the security behavior of a Target of Evaluation (TOE). On the other hand, the security evalua-
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tion concept is implemented by a catalogue of security assurance requirements [IEC15-3] that de-
fine the scope, depth and rigor of evaluation of a TOE, i.e. IT product or system that is subject of 
evaluation. Both, security and assurance requirements catalogues, are categorized in classes. Secu-
rity requirements of a class share a common focus. The name of an assurance class indicates the 
covered topics. Each class consists of different families of security requirements which share same 
security objectives. Families are finally divided into components that are the smallest set of require-
ments (Fig. 4-2). 

Security requirements from the different functional security classes (Table 4-3) are chosen depend-
ing on the security objectives. Security assurance requirements are selected from various assurance 
classes (Table 4-3). Evaluation assurance requirements intend to rise the quality of the product by 
demanding design, organizational and analytic measures. 

 

Fig. 4-2 Hierarchical structure of security functional and security assurance requirements 

In the classes, there are principal security requirements and supporting requirements. The latter are 
dependent on the ones mentioned first. In addition, it is foreseen to state security functional and cor-
responding evaluation assurance requirements explicitly in case of issues not covered in the Com-
mon Criteria. Put another way, security requirement specification or security design need not to be 
limited to the security requirements catalogues.  

Within the Common Criteria a security requirement specification is referred to as protection profile. 
It is a formal document that expresses an implementation independent set of security functional and 
security assurance requirements for an IT product that meets specific consumer needs [IEC15-1]. By 
contrast, a security target, i.e. a security design, is an implementation dependent response to a pro-
tection profile that is used a basis to develop of Target of Evaluation (TOE). The security target in-
cludes security functions and the strength of functions (SOF), and measures. A physical implementa-
tion of a security target is called a TOE. A single protection profile can be instantiated by multiple 
security targets (one to many), whereas a TOE is always derived from just one security target (one to 
one). 

Evaluation of a protection profile and security target, respectively, is performed by means of assur-
ance requirements stated in the class ‘Protection profile evaluation’ and ‘Security Target Evalua-
tion’. The other assurance classes listed in Table 4-3 are used to evaluate a TOE in its different life-
cycle stages. In contrast to the class of a protection profile or security target, such evaluation assur-
ance requirements are depending on the chosen level of evaluation assurance (EAL). A higher EAL 
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reduces the likelihood of vulnerabilities and increase the amount of confidence, but the effort is get-
ting greater because a larger portion of the system is included in the evaluation process In addition, 
more details of the design are covered and the evaluation process is carried out in a more structured 
and formal manner the higher the EAL is required. 

The Common Criteria specify seven evaluation assurance levels (EAL) for TOE evaluation. Each 
EAL consists of a set of requirements from the different assurance classes referred to as package. 
The EAL is chosen regarding the intended use of the TOE. E.g., EAL 1 is appropriate for such envi-
ronments where no serious security threats are anticipated [HER03, p. 180]. Or, EAL 3 is called 
methodically tested and checked, and provides a moderate level of confidence [IEC15-3]. It includes 
at least one component from every assurance class. EAL packages can be augmented with additional 
assurance requirements from all classes and then called e.g. EAL 3 augmented. However, it is 
strictly forbidden to remove any requirement from an EAL package. 

Table 4-3 Security functional classes [IEC15-2] and security assurance classes [IEC15-3] 

Security functional classes Security assurance classes 
Communications Configuration management 
Cryptographic support Delivery and operation 
Identification and authentication Development 
Privacy Guidance documents 
Protection of the trusted security functions Lifecycle support 
Resource utilization Protection profile evaluation 
Security audit Security Target evaluation 
Security management Vulnerability assessment 
TOE access Tests 
Trusted path/channels  

User data protection  

 

All aforementioned topics are covered in the standard IEC 15408 in three parts: part 1 – introduction 
and the general model, part 2 – security functional requirements and part 3 – security assurance re-
quirements. The second edition of the standard, published by the International Organization for 
Standardization (ISO) and the International Electrotechnical Commission (IEC) in 2005 is based on 
the Common Criteria Version 2.3. 

In 1993 the Common Criteria (CC) project was started to harmonize US, Canadian and European 
security criteria and create a single set of IT security criteria. After some draft versions were pub-
lished and extensive reviews were made, CC version 2.1 was finally standardized as ISO/IEC 15408 
in 1999. The CC are considered the international standard for information technology security 
[HER03, p. 1]: a reason why CC are applied in the common approach. 
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5. Survey on Safety and Security Approaches 

The two objectives of the common approach are first to find a way of integrating safety and security, 
and second to specify a ‘development-use’ model. Integration is accomplished by harmonizing 
safety and security, and not unifying both domains. Different ways of safety and security harmoniza-
tion are presented in the first subchapter. It must be noted that some ways are called ‘unified’ by 
their authors, although they mean integrating safety and security without inventing new methodolo-
gies. 

Issues relating to the lifecycle of a system are discussed in the second subchapter. Because of no 
complete lifecycle approaches being publicly available that deals with safety and security, lifecycle 
issues in the field of safety and security are outlined. In addition, since a requirement on the com-
mon approach is to be widely accepted by safety, security and BACS people, lifecycle model related 
terminology is in adherence with the international standard IEC 12207 [IEC12].  

5.1 Harmonizing Safety and Security 

In accordance with [EAM99], within the thesis harmonizing means to integrate safety and security 
by using standard concepts and methodologies from both disciplines. The intention is not to reinvent 
what is state of the art as stated in [SCH05], but to design the common approach in a way so that is 
likely accepted by safety, security and building automation and control (BACS) people, and there-
fore adheres to international standards. 

An approach to integrate safety and security is presented in [EAM99]. Integration is performed at 
requirements level. As the safety risk analysis process and the security risk analysis process show 
quite a lot similarities, it is argued that safety and security can be integrated; moreover, because both 
deal with risks and both safety and security risk analysis result in constraints. Additionally, safety 
and security use protective measures and produce requirements to be considered of great importance. 

The approach discussed in [EAM99] suggests to develop safety and security requirements absolutely 
independent from each other in parallel. Safety requirements are determined by defining the system 
boundaries and functions first. Next, preliminary hazard identification is carried out in order to re-
cord hazards and hazardous failures. Third, a preliminary hazard analysis is performed to identify 
the functional failures that could result to hazardous states. Finally, the safety requirements are 
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specified due to the inputs from the aforementioned activities and other sources such as good engi-
neering practice. 

Security requirement specification is set up by first defining the system: identify security relevant 
information, data to be handled and the system configuration, and account the role of the system. 
Second, security threats are assessed applying a process specified in the Orange Book [TCS85], but 
also influenced by the European ITSEC standard [ITS91]. Threat sources are identified and evalu-
ated to determine the level of assurance required to protect the system. In the end, security measures 
are defined. Such measures necessary to achieve the defined level of security are described. 

The safety requirements and security requirements were specified. Now the interaction between 
safety and security is investigated. Two types of interaction are mentioned: requirements can be 
conflicting and/or inconsistent, or inter-related. Conflicting means that the requirements are incom-
patible. The best example is a door. In case of a defect, fail safe would mean the door is open, fail 
secure the door is closed. The other form of interaction covers the possibility that a security re-
quirement is specified because of safety analysis or vice versa. Such requirements are called derived 
requirements. The two forms of interactions are distinguished because of executing the conflict reso-
lution properly. A change of a derived requirement influences the other domain and might cause new 
problems, whilst resolving a conflict between conflicting requirements has no impact on the corre-
sponding domain. 

Whereas [EAM99] discusses the integration of safety and security on requirements level, [STO06] 
focuses on the risk framework and presents a unified safety/security risk framework. With respect to 
the definition of ‘unified’ in the thesis, it is an approach to harmonize the risk frameworks. A stan-
dard safety risk framework and a standard security risk framework are used and an interface between 
both frameworks is design. In other words, output of the security framework is seen as input to the 
safety framework. 

In detail, the security framework defines vulnerability and threat source as the potential of harmful 
security events. Such events result in threats. The impact and likelihood of occurrence of the threat 
finally leads to a level of risk. The safety framework defines undesired events as hazards. The occur-
rence of a specific hazardous event with likelihood and resulting impact leads to a mishap. Impact 
multiplied with likelihood of occurrence of a mishap causes a level of risk. Harmonizing the both 
frameworks is performed by considering the potential of harmful security events to be a safety haz-
ard. 

In [SCH05] a unified approach of safety and security for designing complex embedded systems is 
proposed. ‘Unified’ again means harmonization of safety and security. The approach is suggested 
since it is stated that security impacts have severe safety impact and vice versa. 

The international standard IEC 61508 [IEC61] is taken as source for safety and the lifecycle model 
in the standard is the model where to integrate safety and security. It is mentioned that safety and 
security follow the same steps at requirements level: security analysis and risk/hazard analysis, secu-
rity requirements and safety requirements, security design and safety design. Security related topics 
are taken from the international standard ISO 17799 [ISO17] in order to avoid specifying a new 
methodology and terminology. 



  Survey on Safety and Security Approaches 

 33

5.2 Lifecycle Approaches 

The ‘development-use’ model is realized by a lifecycle model as mentioned in subchapter 2.2. Such 
a model specifies a structured way of developing and using a BACS. It covers all phases in the life 
of a system starting with the concept phase and ending with the decommissioning of the system. As 
a result, systematic failures and vulnerabilities can be reduced and the level of quality with regard to 
safety and security is increased. 

In the following, terms related to lifecycles are introduced first. They are being used as terms in the 
common approach to describe the safety-security lifecycle. Second, starting with subchapter 5.2.2, 
some realizations of lifecycles in the safety and security domain are presented. 

5.2.1 Terminology 

A lifecycle model specifies requirements for the different phases in the life of a system. On the con-
trary to system requirements that specify what to do to receive the desired system, lifecycle require-
ments specify how to proceed during the lifecycle phases of the system. As shown in Fig. 5-1, sys-
tem requirements are categorized in subsystem requirements and further grouped into hardware and 
software ones. Such a categorization is not only valid for requirements, but also for lifecycles: a 
system lifecycle covering the life of the system; a subsystem or entity lifecycle specifying require-
ments on the development and use of a subsystem such as a node; a hardware and software lifecycle 
dealing with issues related to hard- and software. 

 

Fig. 5-1 Types of requirements 

Lifecycle requirements are referred to as tasks in [IEC12]. Tasks are grouped into various activities 
and activities are summarized in a process (Fig. 5-1). According to [IEC12] a lifecycle process is “a 
set of interrelated activities, which transform inputs into outputs”. For instance, the activity is called 
‘Establish security objectives’. It receives as input assumptions, threats and the organizational secu-
rity policy. Task 1 is ‘Define security objectives.’, task 2 is ‘Categorize them into detective, preven-
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tive and corrective objectives.’. The output is a list of security objectives being input to the subse-
quent activity.  

[IEC12] specifies three different types of processes: five primary, eight supporting and four organ-
izational lifecycle processes. Primary lifecycle processes specify activities and tasks of the primary 
parties during the lifecycle. The primary parties are the acquirer (acquisition process), the supplier 
(supply process), the developer (development process), the operator (operation process), and the 
maintainer (maintenance process).  

Supporting lifecycle processes (Table 5-1) support another process in order to increase the change of 
succeeding and to raise the quality. Supporting processes are called by another process. For exam-
ple, development process executes supporting documentation process to record the information on 
system requirements. The output of the documentation process is a system requirements specifica-
tion. Or, at the end of development validation process is called to check if the system satisfies its 
intended use. 

Table 5-1 Supporting lifecycle processes [IEC12] 

 Supporting lifecycle process Activity 
1. Documentation  Recording information produced by a lifecycle 

process; e.g., plans, specifications 
2. Configuration management Configuration identification, control, evaluation, 

release management; e.g., identification of software 
artifacts 

3. Quality assurance Product assurance and process assurance; e.g., 
define procedures for review process 

4. Verification Verify process, requirements, documents; e.g., 
check project planning requirements 

5. Validation Validate requirements; e.g., ensure that the system 
satisfies its intended use 

6. Joint review Review project management, technical issues; e.g., 
check whether specifications are complete 

7. Audit Determining compliance with requirements or 
plans; e.g., test data complies with specification 

8. Problem resolution Analyze and resolve problems; e.g., provide a re-
port describing the problems 

 

The third type of processes are the four organizational lifecycle processes: management, infrastruc-
ture, improvement and training. The processes are set up by an organization and not specific to pro-
jects or systems. They are an underlying structure for primary and supporting lifecycle processes. 

The management process specifies the basic activities of the management necessary to execute other 
lifecycle processes (see Fig. 4-2). The infrastructure process provides the activities for establishing 
the underlying structure of a lifecycle process. Activities related to controlling, improving, measur-
ing lifecycle process are subsumed in the improvement process. In the end, the training process com-
prises activities for providing trained personnel. 
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5.2.2 Generic Model 

The IEEE standard 1074-2006 [IEE17] provides a process for creating a (software) lifecycle process. 
I.e., it defines requirements for building a lifecycle process adapted to the needs of a specific project. 
Consequently, it defines a pool of activities that are mapped to the lifecycle model and that create a 
lifecycle process together with organizational activities like the ones outlined in subchapter 5.2.1. 

Activities are grouped into project management, pre-development, development, post-development 
and supporting activities. Each activity consists of three parts: input information – the source to be 
transformed –, description – actions to be performed to accomplish transformation – and output in-
formation – result of transformation. In addition, an entry and exit criteria for every activity is de-
fined. To start an activity, at least one element of the required input information must be present. To 
exit an activity, all output information has to be generated. 

Lifecycle models not necessarily intend to mandate a sequential procedure, where activity n has to 
be finished before starting with activity n+1. [IEE17] foresees three ways of mapping an activity to 
a lifecycle model. First, an activity is mapped as an instance, i.e. it is mapped once. It takes all speci-
fied inputs, processes it and delivers the complete output. A chain of instances of activities in a life-
cycle model results in a sequential procedure. Second, an entity is mapped as an iteration. Some of 
the input is available and hence some of the output is produced. The activity is repeated as long as 
the complete output has not been created. Third, supporting activities such as verification activities 
are invoked by other activities directly relating to a lifecycle phase. Such activities exist in parallel to 
others, perform a specific function and then return to the invoking activity. For example, the activity 
‘Define and develop software requirements.’ invokes the activity ‘documentation’ to receive a re-
cord of the software requirements, i.e. a software requirements specification. The invoking activity is 
considered to be finished, only if the invoked activity (e.g., documentation) was processed success-
fully. 

5.2.3 Safety 

As already mentioned in subchapter 2.2, in the area of safety systems are often developed according 
to a lifecycle because it is a structured way of developing and hence reduces the number of system-
atic failure and raises safety integrity, respectively. 

In [HAM91] a holistic safety lifecycle for software engineering is presented that is based on the V-
Model [BRO93]. It is extended in a way so that it starts with the hazard analysis and risk assessment. 
Results of both activities are input the first step of the V-Model: requirement specification. The final 
step in the lifecycle approach is safety validation where the result of development is checked against 
the safety requirements specification. 

The disadvantage of the aforementioned approach is that a concept phase and the whole use phase, 
i.e. commissioning or modification is not covered. The lifecycle approach mentioned in [BAT96] 
includes a concept and scope definition as well as topics related installation and modification. That 
is important because a wrong concept may lead to design faults and to a development of the ‘wrong’ 
system. A waste of time and effort, and increasing costs are the consequence. 
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A lot of ideas discussed in [HAM91], [BAT96] and of course many other publications are included 
into the safety lifecycle standardized in IEC 61508 [IEC61-1], mentioned already in subchapter 4.1. 
The safety lifecycle covers all stages in the life of a safety related system starting from the concept 
phase and ending with decommissioning. It consists of sixteen stages that guide through the devel-
opment and use of hardware and software safety related systems.  

This lifecycle consists of a hardware and software realization stage that includes further activities 
referring to the hardware and software: another lifecycle to realize the hardware [IEC61-2] and the 
software [IEC61-3]. Realization of software should be in accordance with the V-Model. 

5.2.4 Security 

Due to the increasing connectivity of computers, the extensibility (extension of functionality by 
means of updates) and the growth of complexity of systems, the security problem has been growing. 
Especially, software is riddled with software defects: bugs such as buffer overflow or design flaws 
like inconsistent error handling [MCG06, p. 17]. For that reason Microsoft started with the ‘Trust-
worthy Computing Initiative’ in 2002 [LIP04]. 

As outlined in [LIP04], the trustworthy computing initiative specifies security related activities for 
the different lifecycle phases. Activities can be grouped into a security process (a supporting lifecy-
cle process as shown in Fig. 5-2) that is supporting the primary processes: requirements, design, 
implementation, verification, release, support and servicing. In addition, an organizational lifecycle 
process, training, is addressed by the initiative. 

The security process comprises seven activities that in turn include some tasks. Activity during re-
quirement process is called inception. A typical task is ‘Identify security requirements’. Design and 
threat modeling is performed in the design process. Assets and threats to the assets are identified as 
well as the risk resulting from the threats is assessed. Moreover, the security architecture is docu-
mented. Guidelines and best practice activity is carried out during implementation. Tasks are the 
development of test plans or adherence to coding standards and the use of tools. The verification 
process includes the security activity security push. On the one hand the reviews of the threat model 
and code are performed and attack testing is executed. The final security review yet again reviews 
the threat model and the new and unfixed bugs, and completes penetration testing. Finally, the activ-
ity security response feedback and its tasks such as ‘Processes evaluated’ are executed during sup-
port and service process. 

In [AME05] a survey on security in the system development lifecycle is provided. A summary of 
security related activities in the different lifecycle phases is given. However, there are not mentioned 
any specific lifecycle model and measures to ensure security, nor is security seen as a supporting 
process. The intention is to introduce a general approach to security architecture: security activities 
are highlighted, but implementation of activities is not addressed. 

The lifecycle of a system is separated into seven phases. The lifecycle starts with the investigation 
phase that includes the investigation of the project scope, the evaluation of existing resources, and 
the definition of security goals and the security policy. The analysis phase is the second phase and 
concerned with identifying the threats to assets and with classifying the risk resulting from the 
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threat. Next, in the logical design phase it is necessary to select the applications to be used, and the 
data and structure support. The result of the phase is a so called security blueprint as well as a plan is 
developed including a way of how to response to incidents. Solution developed in the previous phase 
are realized in the physical design phase. Appropriate system security, network security, database 
security and software security mechanism are defined. In the implementation phase mechanism 
specified before are implemented on the target system. After that, the system is verified and vali-
dated. Moreover, since not everyone is a security expert, it is recommended to have an independent 
third party that evaluates the system. Such evaluation process can be performed according to the 
requirements in Common Criteria [IEC15-3]. Finally, maintenance and change phase deals with 
monitoring the secure system to become aware of attacks. And a security management model is re-
quired to manage and plan security during operation. 

Whereas the previous approach mentioned in [AME05] is highlighting the basic security activities in 
the different lifecycle phases, [MCG06] presents an approach for putting software security into prac-
tice. Proactive design and exploit driven testing built on a foundation of risk management are the 
key factors of the approach. It is based on three pillars: applied risk management, seven so called 
touchpoints or software security best practices, and knowledge. The approach presented in [MCG06] 
does not specify a security lifecycle model. Applying the three pillars to a standard lifecycle model, 
however, results in a security lifecycle. 

Risk management is introduced as an activity to be carried out throughout the whole lifecycle. The 
idea is to identify, assess, track and understand security risk during the different phases of the lifecy-
cle. That philosophy is implemented in the risk management framework (RMF). 

The seven touchpoints are software security best practices and are applied to various software arti-
facts. It is stressed that they are executed in an iterative way. As mentioned before, no specific life-
cycle model is defined. However, it is assumed that every software development process produces 
similar artifacts.  

Finally, the third pillar is called knowledge. The term summarizes the gathering, encapsulating and 
sharing of security knowledge used as a foundation for software security practices. That is, a knowl-
edge management is required that should help to evolve a software security culture in a company. 
Knowledge gained must be circulated to other people by means of training activities and is used as 
input to the various touchpoints. 

5.3 Conclusion 

The common approach faces two challenges: first to find a way of integrating safety and security, 
and second to specify a ‘development-use’ model. In the context of the thesis integration means 
harmonizing safety and security, i.e. using standard concepts and methodologies from both disci-
plines. 

Safety and security can be harmonized on different levels: requirement level [EAM99], risk level 
[STO06] or during the whole lifecycle [SCH05]. In the thesis safety and security are harmonized 
throughout the whole lifecycle since safety and security related issues are present in every lifecycle 
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stage. E.g., safety and security is relevant in the requirements specification, but also in the installa-
tion stage. It must be ensured that security keys are distributed securely and configuration data is 
stored on every node with a very high probability. 

Mentioned many times, the ‘development-use’ model is based on a lifecycle model as it is common 
practice in the safety domain (see subchapter 5.2.3). A lifecycle model is chosen because it is a 
structured way of developing and using a safe-secure system. Hence, it reduces the number of sys-
tematic failures resulting for instance from a design fault. In addition, it eases traceability of the 
work performed since a set of clearly specified requirements is available. The fact also makes verifi-
cation and validation easier [HAM91]. 

Pre-desing

Design and installation 

Operation and Maintenance 

Decommissioning 

Management Infrastructure Improvement Training

Primary lifecycle processes Supporting lifecycle processes

Organizational lifecycle processes

                Documentation                 Validation

              Quality assurance                 Joint review 

      Configuration management                    Audit

                     Verification                     Problem resolution

 

Fig. 5-2 Safety-security lifecycle processes 

Safety and security requirements given during the different stages in the lifecycle model are organ-
ized as stated in IEC 12207 [IEC12] and shown in Fig. 5-2. Supporting lifecycle processes such as 
documentation or verification include activities to ensure a defined level of safety and security. Ad-
ditionally, four organizational lifecycle processes are employed to provide an underlying structure. 
Both set of processes are equal to the ones specified in [IEC12] because such activities are also in-
cluded in IEC 61508 and the Common Criteria. For instance, in IEC 61508 activities of the organ-
izational lifecycle processes are subsumed by the term functional safety management. Or, in 
[MCG06, pp. 259] when discussing security best practice activities it is the third pillar: knowledge.  

In contrast to [IEC12] there are only four primary lifecycle processes since the common approach 
does not cover topics related to project acquisition or supply. The focus of attention is on the four 
primary processes within the thesis and they are outlined in chapter 6 when presenting the safety-
security lifecycle model, i.e. the flow of activities in the different primary processes proposed by the 
author. 

According to the methodology presented in [IEE17] supporting lifecycle processes are either instan-
tiated, i.e. each activity is finished before the next one starts or implemented as an iteration. Primary 
lifecycle processes and their activities in the safety-security lifecycle model (Fig. 6-1) are run 
through more than once to allow for delivering first prototypes in a project soon. That is, the lifecy-
cle model in chapter 6 does not mandate a sequential flow of activities.  
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6. Common Approach 

The common approach to functional safety and system security in building automation and control 
systems (BACS), proposed by the author and presented in the following, is based on a lifecycle 
model. Generally, it is a model of the life of a system, including all the activities needed to specify, 
develop, operate, maintain and dispose of a system. The basic idea of the safety-security lifecycle 
presented in Fig. 6-1 is to use the safety lifecycle from IEC 61508 and integrate the security ap-
proach specified in Common Criteria (CC) [IEC15]. Requirements how to proceed are given for 
every stage of the system life. Moreover, activities are added by the author to consider safety and 
security dependences resulting from harmonizing safety and security. 

The common approach specifies a procedure that allows for certification of the safe and secure sys-
tem by (national) evaluation and certification authorities such as TUV in Germany [TUD08]. Since 
there are only authorities that certify a product with regard to safety or security, a way is presented 
how to integrate safety requirements into the CC security model and how to incorporate security 
requirements into the IEC 61508 safety concept. Even though, the structure of safe and secure 
documents (e.g., protection profile and safety requirements specification) differ, the security certifi-
cation “approach is similar to that followed to verify safety-critical embedded software systems (see 
IEC 61508)” [HER03, p. 177]. 

The lifecycle in Fig. 6-1 is separated into 4 primary processes. Each of them invokes supporting 
processes and is based on organizational processes (Fig. 5-2). Noteworthy to say, stages not includ-
ing the word overall (i.e. system wide) must be performed for every subsystem such as a node or 
gateway (entity lifecycle):  

1. Pre-design process – stage 1 to 11 

2. Design and installation process – stage 12 to 17 

3. Operation and maintenance process – stage 18 and 19 

4. Decommissioning process – stage 20 

6.1 Pre-design 

The pre-design of a safe-secure BACS is the first process of the safety-security lifecycle model. 
Stages 1 to 4 are following IEC 61508 (refer to subchapter 4.1), stages 5 to 8 are following the 
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Common Criteria (see subchapter 4.2). Stages 9 is an additional activities included by the author to 
handle dependencies between safety and security. Stages 10 and 11 already consider safety and secu-
rity issues. 

 

Fig. 6-1 Safety-security lifecycle model 

The pre-design process begins with the definition of the concept that is input to the safety dependent 
and the security dependent part. First of all the purpose and the scope of the BACS in general and its 
entities in particular must be defined. It is important to know what the BACS is used for, its field of 
application: either to cool server rooms in a huge administration building or to heat and cool two 
operation rooms in a hospital. Moreover, it is required to specify the scope: Are there 10000 or only 
100 nodes in the BACS? Are they connected to an intranet or even to the Internet via gateways? 
Next, the physical environment has to be investigated. It includes checking the environment of the 
nodes and the gateways regarding EMC interference, temperature, interaction with other systems 
and so on, but also people affected by and working with the BACS. In addition, possible sources of 
hazardous events have to be identified, especially with regard to the environment of the BACS. Such 
events can result for example from aging of the hardware, human failures or stochastic failures. Fi-
nally, social, economical, legal questions are taken into consideration – only mentioned shortly at 
this point, but these topics are also of great importance. 
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The next activity is called the safety scope definition. It specifies the scope of the BACS required to 
be investigated in a hazard and risk analysis. Put another way, the boundaries of the BACS and its 
entities are defined that are analyzed regarding hazardous events and their associated risk. 

 

Fig. 6-2 Iterative procedure to achieve required level of safety 

The hazard and risk analysis aims at identifying typical hazards in BACS. Hazards resulting from 
failures on the network as well as the ones coming from nodes and gateways, respectively, must be 
considered. Additionally, the reasons for the hazards are described and the risk associated with the 
hazards is determined, i.e. a risk assessment is performed. Carrying out a hazard and risk analysis is 
always an iterative procedure as shown in Fig. 6-2 [WRA07, p. 4]. Whereas most of the statements 
in Fig. 6-2 are self-explaining, the statement “Is network/device safe?” has to be discussed in detail. 
A device is safe if the risk is below a tolerable risk level. In other words, the residual failure prob-
ability of a failure per hour causing a hazard is lower a defined target level. As mentioned in sub-
chapter 4.1., IEC 61508 specifies such levels, called safety integrity levels (SIL). In short, a device 
or network is safe if the target SIL is reached. 

The hazard analysis can be performed in two ways [BOE07, pp. 80]: 

1. Bottom-up search: The chronological method of failure propagation is followed. The origi-
nal source of the incident is examined and after that step by step the facilities affected by the 
failure are investigated. The Failure Mode and Effects Analysis (FMEA) [WIT95] is an ex-
ample of a bottom-up approach. 

2. Top-down search: The hazard is taken as starting point and the reason for this hazard is ex-
amined to finally detect the source of the hazard. Take the Fault Tree Analysis (FTA) 
[WIT95] as an example. 

The result of the hazard analysis is a list of hazardous events coming from the network and the de-
vices. Typical hazardous events on the network are loss, insertion, corruption of a message due to 
crosstalk or delay of a message because of congestion on the network. Hazardous events on a device 
refer to random hardware failures resulting from faults in the I/O component or volatile memory as 
well as systematic failures in the software, for instance the operating system. 

Following the identification of hazards, a level of risk of the hazardous event going to happen is 
specified. After that the risk is assessed. Generally, risk assessment is possible by means of a quanti-
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tative or qualitative approach. The quantitative uses numbers and mathematical rules (calculus of 
probabilities) to calculate the risk. As a consequence , it is necessary to specify a maximum tolerable 
risk target, e.g. the maximum tolerable risk of fatality to an employee or of an accident at home. 
[TOR92] and [RRP01] are giving a lot of information on that topic. The risk of random hardware 
failures e.g., on a node can also be quantified by failure rates of the hardware components. In litera-
ture such as [GIE95] or [LIG02] failure rates for standard hardware components are listed. 

The IEC 61508 standard also allows for a qualitative approach to assess risk. A well known mecha-
nism is the risk graph as shown in Fig. 6-3. In IEC 61508 four parameters are specified as input and 
the output is a corresponding SIL. 

1. C – extent of hazard (severity): 4 different levels C1 (insignificant) to C4 (disastrous). 

2. F – frequency of occurrence: 4 different levels F1 (rare) to F4 (very often). 

3. P – possibility of avoidance: 2 different levels P1 (possible) and P2 (not possible). 

4. W – probability of occurrence: 3 different levels W1 (not likely) to W3 (very likely). 

 

Fig. 6-3 Risk graph [IEC61] 

After hazard identification and risk assessment it is either necessary to apply additional risk reduc-
tion measures or the target SIL has been reached (Fig. 6-2). Risk reduction can only be achieved by 
performing safety functions derived from safety requirements, both specified in the safety require-
ments specification. It is distinguished between safety functions requirements and safety integrity 
requirements. The first one specifies requirements on functions whereas the latter requirements on 
the integrity of a function. Safety integrity requirements can also be seen as performance require-
ments [IEC61-0].  
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 A safety function requirement is ‘Detect a failure (wrong values stored) in the volatile mem-
ory of a node to ensure hardware integrity.’ A corresponding safety integrity requirement is 
‘The diagnostic coverage1 has to be 90%.’ 

 Another safety function requirement is ‘Detect systematic faults in the hardware or software 
design’. The safety integrity requirement is ‘Because of target SIL 3, efficiency must be of 
level ‘medium’ as stated in IEC 61508.’ 

Safety functions are derived from the safety functions requirements. It is not necessarily required 
that one requirement maps to one safety function. A safety function requirements can map to various 
functions whereas different functions may map to a single requirement. Safety functions, in turn, are 
implemented by different safety measures. The kind of measure is determined by the safety integrity 
requirement. 

 A safety function derived from the first requirement is ‘Use of memory test on start-up and 
during operation’. A safety measure is ‘Implementation of memory test ‘walk-path’. Its di-
agnostic coverage is high (90%) and therefore the safety integrity requirement is met. 

 A requirement on the detection of systematic failure in the hardware and software design re-
sults in the safety function ‘Monitor the program flow of the safety related software on a 
node’. The safety integrity should be of level ‘medium’. As a result, the safety measure is 
‘Monitor program flow by using key techniques’. Such techniques are described in [HOE86, 
pp. 7-86]. 

In short, safety requirements specification includes a specification of the functions and integrity 
requirements. Additionally, requirements on the safety functions and the safety measures imple-
menting safety functions are defined. Finally, safety requirements also affect the hardware architec-
ture. As shown in Fig. 4-2, a target SIL can be reached by either increasing the fault tolerance or the 
safe failure fraction (SFF). In case of SIL 3 three ways are possible: a very high SFF, i.e. detecting 
more than 99% of all dangerous failures with highly efficient measures, and a fault tolerance of zero, 
i.e. just a single safety channel; or a SFF between 90%-99% and a hardware fault tolerance of one 
(two channels); or a SFF in the range of 60%-90% and a hardware fault tolerance of two (three 
channels).  

All that information is also used as input to the security dependent part of the safety and security 
lifecycle (Fig. 6-1). It starts with the definition of security environment. It comprises the physical 
environment as well as the list of assets requiring protection, already including the safety require-
ments. The physical environment has already been investigated in stage 1 of the lifecycle. However, 
hardware architecture of entities (nodes, gateway) may have changed due to safety requirements. 
Consequently, it has to be reexamined in detail. For example, it is ‘good practice’ to use redundancy 
to ensure a target level, in BACS for instance accomplished by a 1oo2 (speak: one out of two) hard-
ware architecture [NOV07]. Such an architecture consists of two independent channels that execute 
a given job, but must agree on the result unanimously. Put another way, the hardware of a node is 
duplicated (e.g., two microcontrollers) and every microcontroller performs the safety functions. The 
                                                      
1 See subchapter 4.1 for explanation of diagnostic coverage. 
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output of the function is only valid, if the safety function on both microcontroller results in the same 
answer. 

Second, definition of security environment includes identification and valuation of assets, i.e. infor-
mation or resources requiring protection as well as a statement of assumptions. In [HER03, pp. 68] 
three categories of assets are identified: 

1. TOE (Target of Evaluation: node, gateway) operational data that the TOE stores, processes 
or transports; for example, data from sensors, processed results of measurements on node 
side, traffic data sent among nodes or gateway. 

2. TOE hardware, software and firmware on node and gateway side (IT environment): Assets 
are node resources such as the safety related software, cryptographic keys, the security soft-
ware itself, the (redundant) hardware. Other assets are the hardware and software of the 
gateway. 

3. Operational data and documentation used to operate and maintain the TOE. Such assets are 
security incident lists, security configuration and management information. These types of 
assets are not investigated within the thesis regarding safeguarding them since it is not 
BACS specific and therefore standard measures can be applied.  

Assets not only must be identified, but also the value of the asset has to be fixed. The value can be 
determined either by introducing different discrete levels (‘high’ or ‘low’) or expressing the value of 
an asset in terms of money. The first approach is a qualitative, the second a quantitative one. 

A description of assumptions conveys information on the security aspects of the environment which 
the TOE will be used in, i.e. information about the intended usage and the environment of the TOE. 
An assumption can be: ‘All hardware and software of a node critical to security functions are pro-
tected from unauthorized modification by hostile insiders or outsiders’. 

Next a threat and risk analysis is performed. As already shown in Fig. 4-1, threats are resulting from 
threat agents, i.e. attackers. There are threats directly increasing the risk to assets or exploiting vul-
nerabilities and indirectly leading to risk. Risk analysis assigns a risk potential to the identified 
threats, i.e. it values the risk. Finally, a risk assessment is performed where the value of assets is 
associated with the risk potential of a threat. 

In [HER03, p. 74] two categories of potential threats are identified at a high level: 

1. Information confidentiality, integrity and availability is compromised accidentally or mali-
cious intentionally by either insiders or outsiders. That are threats directly increasing risk of 
an asset. For instance, an unauthorized user performs actions the individual is not authorized 
to perform, e.g. reading data remotely from a node via a network management tool; or inser-
tion of bogus data onto the network. 

2. Failures of hardware, software, communication links and so forth allow an accidental or ma-
licious intentional interruption to operations. In other words, vulnerabilities, e.g. improper 
operation of software on a node due to a implementation bug, exploited by an attacker lead 
to risk to assets. Other vulnerabilities may result from weaknesses in the hardware and soft-
ware architecture, respectively. 
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Furthermore, the direct and indirect threats are valued. It is possible to assign a risk value to every 
threat individually or to define classes of threats with the same risk value. The latter require less 
effort and forces the developer to structure the threats. [GOR00, p. 73] suggests four groups of assets 
for a fieldbus system in general: node data, node resources, gateway resources, network traffic. 
Every threat is assigned to a group and every threat in a group has the same risk level. For example, 
a threat ‘unauthorized user performing traffic analysis’ is assigned to the group network traffic; or 
the threat mentioned before ‘reading data remotely from a node via a network management tool’ is a 
threat to node data. 

In the end, the risk value of a threat and the value of an asset must be associated with each other. 
That procedure is called risk assessment and is the basis of further discussion with regard to security 
objectives. As already mentioned above during describing the safety dependent part of the pre-
design, risk can be assessed in a quantitative or qualitative way. If assets are valued in terms of 
money, risk will be quantified. In [MCG06, pp. 39] a quantified approach called risk management 
framework is presented. It starts with a description of business goals. They include but are not lim-
ited to increasing revenue, reducing development costs or generating high return on investment. Risk 
is assessed by prioritizing the business goals and which goals are threatened immediately. A qualita-
tive approach of risk assessment is to use a risk matrix [BOE07, pp. 85]. In case of 4 groups of as-
sets and four categories of risk levels a risk matrix identifying the actual risk level can be proposed 
as shown in Table 6-1 for a BACS.  

Table 6-1 Risk matrix for risk assessment 

 Probability of risk of threat 
 highest high medium low 

highest highest highest high high 
high highest high high medium 
medium high high medium medium 
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low high medium medium low 
 

Table 6-1 has to be read in the following way: 4 columns are specified, each with a different degree 
of a risk level of a threat. The diverse values of assets are written into 4 rows. The actual risk to an 
asset can be taken from the matrix. Put another way, the risk matrix shows the likelihood of an asset 
being a target for various threats and the risk mitigation priority. 

After that the security objectives are defined that counter all identified threats and their risk to the 
assets. In addition, assumptions taken and if available organizational security policy are considered. 
In detail, at that point is has to be fixed what the Target of Evaluation (TOE such as a node) will and 
will not do in the context of the security environment. That is, the scope of the TOE is specified. 

Security objectives are written for the TOE and the IT environment. Additionally, security objec-
tives can be grouped into three categories [IEC54]. 

1. Preventive objectives are objectives preventing a threat from being carried out or limiting 
the ways it can be carried out. For example, ‘A security function will protect integrity of in-
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formation when it is stored.’ or ‘Nodes are connected to a reliable time source to allow 
proper synchronization.’ 

2. Detective objectives detect and monitor the occurrence of threats, e.g. ‘A security function 
will detect the loss of system or data (node or network) integrity.’ or ‘System activity audit 
records will be reviewed.’ 

3. Corrective objectives require the TOE to take actions in response to a threat in order to pre-
serve or return to a secure state or limit any damage. For example, ‘The node will return to a 
predefined secure state after a system failure.’ 

Security objectives result in security requirements and subsequently in security functions. Security 
measures, in turn, implement security functions. Security requirements and requirements on the 
functions and measures are included in the security requirements specification. In general, a security 
requirement maps to one or more security objectives, whereas each security objective maps to at 
least one security requirement. There are three types of security requirements: functional, assurance 
and for the IT environment as illustrated in Fig. 6-4. 

Security functional requirements are specified to implement one or more security objective(s) of a 
TOE. Such requirements can be taken from the CC requirements catalogue for functional require-
ments (Table 4-3) or can be stated explicitly. Moreover, a statement of the minimum strength of 
function (SOF) level for the functional requirement (SOF-basic, SOF-medium, SOF-high) has to be 
determined. That is, the performance of every functional requirement is qualified if the function is 
permutational. 

On selecting a security functional requirement, three key factors have to be kept in mind in order not 
to over- or under-protect a TOE and its asset [HER03, p. 89]: 

1. Value of the asset being protected: Refer to asset valuation in stage 5 of the safety and secu-
rity lifecycle. 

2. Intended use of the TOE: Is it a node or a gateway? 

3. Actual risk level of an asset identified during risk assessment 

In the following, an example is given how to receive a security functional requirement derived from 
a security objective. Mentioned before, a security objective is: ‘A security function will protect in-
tegrity of information when it is stored’ on a node. Assuming that information means user data, i.e. 
data that does not affect the operation of any security function such as value of a sensor, a require-
ment from the functional class ‘User data protection’ (FDP) is chosen. In particular, the family 
‘Stored data integrity’ (SDI) and the corresponding component FDP_SDI.2 ‘Stored data integrity 
monitoring and action’ is selected. The more severe component 2 is used, since missing data integ-
rity of sensor data in a safety critical environment can result in fatal consequences on actuator side. 

Another type of security requirements are security assurance requirements. As outlined in detail in 
subchapter 4.2, they define the criteria for evaluating among others a TOE and the security assurance 
responsibilities and activities. To specify security assurance requirements, first a level of confidence 
required is chosen regarding the value of assets and the perceived risk of compromise, technical 
feasibility and evaluation cost and time requirements, respectively [IEC15-3, IEC54]. Next an ap-



  Common Approach 

 47

propriate evaluation assurance level (EAL) is chosen that corresponds with the level of confidence. 
For instance, low to medium level of confidence is required. Then EAL 3, methodically tested and 
checked, is a suitable level of assurance. 

An EAL defines an assurance package including numerous security assurance requirements. As a 
further step it has to be clarified, if these requirements are sufficient to guarantee the desired level of 
confidence. If not, the EAL package can be enhanced with additional requirements (see subchapter 
4.2 for details). However, it is not possible to exclude requirements from an EAL package. 

Security objectives related to the operational environment lead to security requirements of the IT 
environment. Mentioned above, a security objective was that proper synchronization among nodes 
are necessary. The corresponding IT environment requirement is listed in the functional class ‘Pro-
tection of TOE security function’ (FPT), subclass ‘time stamps’ (STM), component 1: ‘The TOE 
security function shall be able to provide time stamps for its own use’. 

Functional IT environment Assurance

Security functional 
requirements

Security assurance 
requirements

Security function

Security mechanism

Security assurance measure

l:m

m:n

l:m

 

Fig. 6-4 Types of security requirements 

Functional and operational (IT environment) requirements result in various security functions, assur-
ance requirements in defined security assurance measures (Fig. 6-4). Security requirements enforce a 
security policy and are implemented by security measures. In the end, requirements on the different 
security functions and their mechanisms as well as requirements on the security assurance measures 
are specified. 

To receive a security function, the following procedure is used. A security requirement is ‘Stored 
data integrity monitoring and action’, i.e. data on a node must be regularly checked for integrity and 
in case of corruption action must be taken. The strength of function (SOF) is specified with level 
‘medium’. A security function is ‘integrity check’. A suitable security measure may be ‘Use a hash 
functions and hash the data. Encipher the hash value with a secret key’. Since SOF-medium is re-
quired, the secure hash algorithm SHA-1 [LAB95] and a 128 bit key may be applied. 
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Security assurance measures are derived from security assurance requirements. Depending on the 
chosen evaluation assurance level (EAL), different requirements must be met. Again, each security 
assurance requirement must map to at least one security assurance measure whereas each assurance 
measure has to map to at least one requirement (Fig. 6-4). Furthermore, it is necessary to describe 
how the evidence elements of a safety assurance requirements have been achieved, i.e. what meas-
ures have been applied. 

For example, EAL 3 includes the requirement ADV_FSP.1 ‘Informal functional specification’ taken 
from the family ‘Functional specification’ (FSP) and the class ‘Development’ (ADV). That require-
ment can be satisfied e.g., by a system architecture document and by a hardware functional specifi-
cation.  

The step threat-hazard and risk analysis investigates safety and security requirements. First, con-
flicts between safety and security requirements are solved due to a specified conflict resolution ap-
proach (Fig. 7-4) including a conflict resolution policy. Such a policy defines ways of dealing with 
conflicts, i.e. what requirement (safety or security) to prefer in which context. This kind of require-
ments are influenced by the organizational safety and security policy of a project or consortium as 
well as the environment. A simple conflict resolution requirement would be: ‘Favor safety over se-
curity.’, a little more sophisticated ‘Prefer functions that lead to a higher risk reduction.’ At this 
stage of the pre-design phase a possibility is given to set the main focus of the BACS either on 
safety or security. 

Second, the conflict resolution policy undergoes a verification by actually performing the threat-
hazard and risk analysis. It takes a set of safety and security requirements and measures, free from 
conflicts, as input. Consequences of the conflict resolution are supposed to be made obvious. The 
output is a list of hazards and threats and their associated risk. It has to be checked if new hazards or 
threats have been identified and if risk levels have been changed, respectively. Next, hazards and 
threats must be evaluated if they are either acceptable or not. Additionally, the risk levels are exam-
ined regarding acceptance of the degree of risk. When something is not acceptable, the conflict reso-
lution policy has to altered. Otherwise, the safety dependent and/or the security dependent part of the 
safety and security lifecycle are iterated to find new solutions to the problem, e.g. reduce SIL or 
EAL, revalue assets, redesign hardware architecture, and so on. 

In case of having solved the conflicts, a safety-security requirements specification is available. It is 
noteworthy that from this stage on there are not any safety and security requirements, each belong-
ing to either safety or security, but there are only safety-security requirements. There are require-
ments on the functions and measures to be implemented on an entity, requirements on the hardware 
and software design as well as requirements on the supporting lifecycle processes (see Fig. 5-1). 

The final activity in the pre-design phase is the safety-security requirements allocation. The func-
tions as well as measures and functional requirements are allocated to the hardware and software on 
an entity. They are input to hardware and software realization in addition to design requirements. In 
the end, requirements on supporting lifecycle processes are allocated and resulting in activities to be 
performed during the different stages of the lifecycle, e.g. style of documents or way of designing 
embedded software. Rigor of supporting lifecycle activities depend on the target level of safety in-
tegrity and evaluation assurance.  
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The document output of the pre-design lifecycle process is the safety-security requirement specifica-
tion document, the safety-security plan and the validation and verification (V&V) plan as shown in 
Fig. 6-5. Whereas the requirement specification document is a description of what was done in the 
process, the latter two documents are mentioning what has to be done in all lifecycle processes. 

In the style of a safety plan, standardized in [IEE12], the safety-security plan consists of the respon-
sibilities and tasks of people involved in the development, the qualification of the staff required, 
methods to analyze and assess risk in the different lifecycle stages, the tool support and topics re-
lated to maintenance of documents are specified. Also the training of users, operators, maintenance 
and management personnel is addressed. Security related activities mentioned in the plan are mainly 
dealt within [ISO17]. Put succinctly, the safety-security plan covers activities of the organizational 
lifecycle processes. Therefore it also includes the project plan and the resources necessary to provide 
an adequate infrastructure for the project. 

Lifecycle
planning

document

Safety-security requirement specification document

Functional specification

Safety requirement 
specification Protection profile

Safety-security plan

Validation and 
verification plan

 

Fig. 6-5 Documents created in the pre-design process 

The validation and verification (V&V) plan comprehends all activities of the supporting processes to 
be performed in the different primary processes in order to assess the system, entities, hardware and 
software, and the primary and management lifecycle activities. According to [IEE10; WRA07, 
pp. 33] the V&V plan lists the persons involved in the V&V process, their responsibilities, the re-
sources, tools and techniques. Additionally, the V&V activities in the primary processes and man-
agement process are outlined. Requirements on the reporting of activities and anomalies (i.e. vulner-
abilities, flaws, bugs) are given as well. Finally, the requirements how to administrate the reports 
and how to document V&V results are specified. A list of all documents provides an overview of the 
V&V results. 

The safety-security requirement specification document is based on the functional specification and 
includes a functional description of the entity and its environment, a list of hazards and threats, secu-
rity objectives, safety-security functional requirements, requirements on the supporting lifecycle 
processes and associated quality assurance measures, implementation independent safety-security 
functions, requirements on the hard- and software design and the like.  
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6.2 Design and Installation 

The design and installation process is split up into two parts. The overall planning, installation, vali-
dation is valid for the whole BACS. In this context overall means looking at all the different entities 
in the BACS at once, i.e. a system wide view. The output from every entity lifecycle is considered to 
be an input to the overall activities of the system lifecycle (refer to Fig. 8-1). 

The activity realization of a safe-secure BACS entity, however, is unique for every entity. Realiza-
tion activity is divided into two portions: hardware and software realization. It includes the realiza-
tion of every entity in the BACS such as a gateway and a node or even different kind of nodes. As 
outlined in subchapter 4.2, the Common Criteria (CC) do not mandate any typical lifecycle model. 
As a consequence, procedures from IEC 61508 are used and security activities according to the 
evaluation assurance level specified in CC are integrated. 

Fig. 6-6 shows the interaction between hardware and software realization. Derived from safety-
security requirements software safety-security requirements are delineated. Such requirements may 
be: 

 Implementing a CRC with polynomial 0x12f to ensure data integrity 

 Signaling data corruption to application 

 Logging access of unauthorized user to an internal data table 

The requirements are input to the design and development phase of software for e.g., a microcontrol-
ler on a node. A generic logic software design for a microcontroller of a node consists of three parts. 
The philosophy of designing safe-secure software for standard BACS is to use the standard services 
for data transmission and enhance it with additional functionality [REI01, pp. 31]. Finally, the soft-
ware is integrated into the programmable target hardware. 

1. On top is the safety-security application software. 

2. The safety-security functionality is encapsulated in a software layer, i.e. firmware, and lo-
cated in or above the application layer of the OSI reference model.  

3. The application layer is the last layer of the standard BACS software and the base for the 
safety-security firmware and application software. 

Software realization has to be performed in accordance with a standard software lifecycle model. 
These models, for example the V-model [BRO93], cover all stages in the life of software of an en-
tity. 

On the other hand, a hardware architecture for an entity is specified according to given requirements. 
The hardware architecture results in requirements on the programmable and non-programmable 
hardware. The first kind of hardware are microcontrollers or smartcards that perform a given task 
implemented in software. The latter are integrated circuits such as a fail safe unit [WRA07, p. 91]. In 
the end, programmable hardware with software and non-programmable hardware are integrated to 
form a safe-secure BACS entity. 
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As shown in Fig. 6-6, hardware architecture is influenced by safety-security requirements. There are 
demands on the functionality and on the hardware design. Typically, functional requirements on the 
hardware are: Inputs and outputs must be testable for shortcut and stuck-at failures, power supply 
must be testable so that over- and under-voltage can be detected, hardware interface to a smartcard 
must provide a flow control. 

Hardware design is very much influenced by the safety aspects, first of all by two factors: safe fail-
ure fraction (SFF) and hardware fault tolerance. Depending on the safety integrity level (SIL) a 
trade-off between these two factors must be found (Table 4-2). According to the target SIL, self-tests 
with a high diagnostic coverage must be implemented resulting in a high SFF, or (in addition) hard-
ware redundancy is required. In the safety world always hot or active, parallel redundancy is used. 
That is, the redundant element is operating in the same way as the other(s) from the very beginning 
[BOE07, p. 146].  

 

Fig. 6-6 Interaction between hardware and software realization [IEC61-2] 

Hardware redundancy can result in different hardware architectures [WRA07, pp. 92; BOE07, 
pp. 260]. A possible architecture is the dual channel hardware architecture for entities in a BACS as 
shown in Fig. 6-7. It is realized in CANopen Safety or SafetyBUS p as mentioned in subchapter 3.4. 
A sensor value is received from Node A via the network on Node B. The sensor value is processed 
by the both microcontrollers and afterwards the output is set. According to the output value the ac-
tuator performs a predefined task. The two channels can cooperate or can perform actions independ-
ently.  

In case of cooperation the dual channel architecture is called 1oo2 (speak: one out of two) system. 
From the safety point of view, in a XooY system the X stands for the number of channels required to 
switch to a fail safe state after a failure occurred. Y always denotes the number of channels available 
[WRA07, p 41]. That way of interpreting X is used in the following, since X can also be interpreted 
as the number of channels necessary to perform a given task. 
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There are two independent channels available. They perform the given task on their own. However, 
the actuator is only triggered if both channels agree. That is, the channels are AND-connected. If the 
channels disagree, the actuator enters a predefined fail safe state. That kind of system is not affected 
by a dangerous failure in one of the channels because the actuator is only triggered if both channels 
deliver the same result as output. Consequently, the system is tolerant towards a single fault, i.e. 
hardware fault tolerance of 1. In addition, such a system can be enhanced with diagnostic features. 
Channel 1 observes and tests channel 2 and vice versa by means of further hardware circuits. By 
doing so, it is possible to detect dangerous failures with software. This system is called 1oo2D where 
‘D’ stands for diagnostic. 

Even though there are 2 channels available, the 1oo2 system results in a behavior of a single channel 
system seen from the outside. As a consequence availability of an entity with a 1oo2 system is not 
increased at all, but reliability with respect to critical failures modes [KOP97] (known as safety in-
tegrity in the safety world) is raised. The entity is hardware fault tolerant in the sense of safety mean-
ing that a hardware fault tolerance of N denotes that N+1 faults cause a loss of the safety status of 
the system. From the security point of view the entity is not fault tolerant. As stated in the Common 
Criteria fault tolerance means that the secure entity continues all or some of its operation despite the 
occurrence of failures. 

 

Fig. 6-7 Dual channel hardware architecture 

A dual channel architecture is called 2oo2 (speak: two out of two) system when both channels are 
operating independently and the actuator is triggered if just one of the channels forces the actuator to 
do so. In that case the channels are OR-connected. Put succinctly, if operation in one channel fails 
due to a fault, the second one takes over and executes the required task. In this case redundancy 
through switching to a second source is applied. Such a system increases availability, but does not 
raise safety integrity. That is, a single dangerous failure in one of the channels is linked to a danger-
ous state of the complete system. From the safety perspective the hardware fault tolerance of that 
system is zero and it is treated like a single channel system. In the context of security, however, the 
fault tolerance is one and cold or unstressed redundancy is employed. 

To receive – in the sense of safety – a reliable (safe hardware fault tolerance of one) and yet highly 
available system (secure fault tolerance of one) a three channel architecture is needed with a 2oo3 
(speak: two out of three) system. Moreover, each channel consists of two outputs (a and b) [BOE04, 
pp. 123]. Always two outputs of different channels are AND-connected and are able to trigger the 
actuator. A possible connection of outputs would be: 1a to 2a (output 12), 1b to 3b (output 13) and 
2b to 3a (output 23). A 2oo3 system is therefore comparable to three 1oo2 systems in parallel. When 
all three channels agree on the same value, the output is triggered. If just two of three channels de-
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liver the same value, e.g. output 12 and output 23, the third is considered to be faulty. However, the 
system is still operating.  

Beside the reasoning about the number of channels and as a result about the amount of microcontrol-
lers to be deployed, it is also necessary to delve into the topic of how to access the network. Men-
tioned already before, quite common hardware architecture of nodes in safety related BAC systems 
is a two channel architecture. Hence, Fig. 6-8 shows four different ways of accessing the network 
always assuming a two channel architecture. Every part of the figure consists of two nodes: Node A 
and Node B. Each node again includes two microcontrollers (controller 1 and controller 2) and one 
or two network access units (NAU). The NAU are standard hardware components used to access the 
non-safe network. It consists of a microcontroller that handles the protocol and provides an API for 
the user application, and a transceiver to support the network media (powerline, twisted-pair). For 
example, in case of LonWorks the NAU is either a Neuron Chip [MOT97] or a LC3020 [LOY05]. 

The first architecture in Fig. 6-8(a) shows an architecture with two network access units, each con-
nected to one controller. The advantage is that messages can be received independently and proc-
essed simultaneously on both controllers. In addition, a malfunction in one NAU does not result in 
not having access to the node. Although the safety-security functionality cannot be provided any 
longer, the node (if desired) can be accessed by network management tools. The level of availability 
is increased. As a consequence, the status of the node can be determined remotely. The drawback of 
such a solution is the additional hardware: two network access units are required. Moreover, each 
NAU is equipped with a unique network identifier (NID) in order to identify it during commission-
ing clearly. Hence, from a network management view a safe-secure node consists of two standard 
nodes because it is always assumed that one NAU comprises exactly one node. Therefore, manage-
ment of the system gets even more complicated. 

Fig. 6-8(b) demonstrates an architecture with only one NAU and each microcontroller is connected 
to the NAU. Compared to the aforementioned architecture less hardware equipment is necessary, but 
messages are received on both microcontrollers independently and can be processed simultaneously. 
The disadvantages of such an architecture are: when the NAU has a malfunction, the node cannot be 
accessed nor is able to send messages. Second, especially safety operations ought not to be per-
formed on the NAU. It is a strict safety requirement that absence of reaction between NAU and mi-
crocontrollers is guaranteed. Put another way, a failure on the NAU must not affect operation on the 
microcontrollers at all. Therefore, its task is only to forward complete messages to the microcontrol-
lers and receive complete messages from the microcontrollers. When both microcontrollers send a 
message to the NAU, both messages have to be send via the network – the same is valid for architec-
ture (a). The NAU is not allowed to choose which one to send. As a result, bandwidth consumption 
is raising and additional computational power on receiver side is required since two messages have 
to be processed. 

The third architecture illustrated in Fig. 6-8(c) mitigates problems of architecture (a) and (b). The 
number of hardware elements is reduced. In addition, triggering the sending process on both nodes 
results in a single message on the network because only one microcontroller is connected to the 
NAU. However, communication between the controllers is raising dramatically. Every message 
received must be forwarded from controller 1 to controller 2 to enable processing messages on both 
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controllers. The same is valid for the sending process in inverse order. As mentioned before when 
discussing (b), a failure in the NAU results in unavailability of the node. 

Fig. 6-8(d) represents a complete redundant architecture. Not only all hardware elements are dupli-
cated, but also different networks are used. The solution includes all advantages of architecture (a) to 
(c), but the number of hardware elements and the two network cause additional costs. 

In conclusion, there are four ways of designing the network access (Fig. 6-8) in case of a two chan-
nel architecture. At least two microcontrollers are required (c), i.e. only the controllers are dupli-
cated. Access to the NAU as shown (b) or the NAU itself is doubled (a). Finally, two independent 
channels can be realized (d). 

 

Fig. 6-8 Hardware architecture of access to the network [REI01, p. 38] 

The next activity in the process is overall planning of installation and commissioning, safety-
security validation, and operation and maintenance. The activity is influenced on the one hand by the 
safety-security requirements of the different entities, on the other hand by the realization of the enti-
ties. During realization of a BACS entity installation, commissioning, validation, operation and 
maintenance was planned for every entity. Now a system wide plan has to be created. It ensures that 
safety and security is not endangered during system installation or maintenance. Additionally, 
evaluation has to be planned to grant a specified level of safety integrity and confidence in security.  

The overall installation and commissioning must be done in accordance with the designated plan. In 
general, installation and commissioning must be performed by responsible persons nominated in the 
plan. They have to integrate the different entities into the system as specified. It is very important 
that during installation and commissioning safety and security of the system is always granted. As a 
consequence, the following problems must be solved, specified in the plan and executed during in-
stallation and commissioning. 

 A safe-secure entity must be identified clearly. A BACS may include non-safe-secure enti-
ties and safe-secure entities. Thus, authentication is required to verify the claimed identity of 
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an entity. Not only an entity, but also the version of the firmware and type of application 
software must be identified unambiguously.  

 Parameters to configure communication relationships must be transferred safely and securely 
to an entity and have to be verified by the management device. Communication parameters 
are used to establish logical communication paths among entities. A procedure has to be 
specified which guarantees that parameters sent from a management device are stored with-
out modification on the entity. Thus, a multistage request-response mechanism may be used 
that returns the stored data of an entity to the management device [WRA07, pp. 191]. 

 Parameters to configure the application have to be sent to an entity and received safely and 
securely by the management device. Generally, safe-secure entities are delivered with a fixed 
application. Due to requirements coming from safety certification authorities, a safe-secure 
application cannot be uploaded with standard mechanism. Moreover, such an approach re-
duces the probability of installing the software in an insecure way. Uploading the software 
remotely leaves the possibility open for changing the software by intentional attacks without 
the user being able to detect it. However, parameters can be set to configure the application, 
for example setting timing parameters. Application parameters can be uploaded the same 
way as configuration parameters. 

 Initial cryptographic key distribution: It is likely that safety-security measures rely on cryp-
tographic operations (encryption, decryption). For that reason, entities that are meant to 
communicate have to share the same key in case of symmetric algorithms or a pair of keys in 
case of asymmetric algorithms. Since already the first communication among entities has to 
be secure, a mechanism is required that ensures secure communication from the very begin-
ning. The requirement is mostly met by initializing entities with keys out-of-band, i.e. each 
entity is equipped with appropriate keys before installation. General requirements for the 
task are given in [IEC15-2] in family FCS_CKM. 

Reports on activities

Overall
 installation

plan

Overall
 installation

report

Overall
 commissioning

plan

Overall
 commissioning

report

Overall
 safety-security
validation plan

Overall
 safety-security validation

report

Hardware realization
 documents

Software realization
documents

Overall
 operation and 

maintenance plan

 

Fig. 6-9 Documents created during design and installation process 

The overall safety-security validation executes the tasks specified in the plans: overall plan, and 
validation and verification (V&V) plan whereas the overall validation plan can be part of the V&V 
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plan. The activity validates the system regarding safety and security. That is, the BACS is checked 
against safety requirements and security objectives during its different lifecycle stages, from installa-
tion to decommissioning. Measures specified in the plan such as static tests are used to validate the 
system. 

At the end of the design and installation process a great amount of new documents has been created 
as illustrated in Fig. 6-9. First, planning documents of the overall installation, commissioning and 
safety-security validation activities. Second, reports on some of the planned activities. Third, docu-
ments referring to hardware realization: hardware requirement specification, hardware schematics, 
test plans and reports. Fourth, software realization documents such as software requirements specifi-
cation, design document, test plan and test report. 

6.3 Operation, Maintenance, Decommissioning 

The last two processes, operation and maintenance, decommissioning, are summarized and dealt 
with in the following. Both processes relate to the use-phase of the building automation and control 
system (BACS). As mentioned in the introduction of subchapter 6.2, general purpose of the activi-
ties are in accordance with IEC 61508 and security relevant tasks taken from the Common Criteria 
are integrated. 

Operation covers all activities required to operate the BACS in a safe-secure way. Therefore, the 
following issues should be addressed: how to test that the data transferred during commissioning 
was successfully stored on the designated entity; how to switch from commissioning to operation of 
the system; how to synchronize network time among nodes in case of applying a timestamp mecha-
nism; how to update cryptographic keys; how to check availability of the field level network; and 
finally how to recover from network failures due to stochastic or systematic faults, or intentional 
attacks. 

After the commissioning of entities (nodes, gateways) a procedure described in the overall operation 
and maintenance plan is required giving confidence that the configuration (communication and ap-
plication related) data e.g. on a node was transferred correctly. In other words, the data stored on the 
management device has to be identical with the one on a node in order to guarantee a proper system 
behavior. Assuming that there is a safe-secure communication path between management device and 
node, a proper means is to use a message authentication code (MAC). Node side data is used to cal-
culate a MACNode and the node related data is used on the management device to calculate a 
MACMgn_Dev. The management device sends a request to the node asking for the MACNode. The node 
sends the response. In case of identical MACs (MACMgn_Dev = MACNode) it is ensured that the correct 
configuration data was sent to the node. Next, the management device sends a message to the node 
including the command to switch to operation. The aforementioned procedure must be performed for 
every safe-secure node. 

A safety-security requirement is to detect reply, wrong sequence, delay of a message, or message 
insertion. A measure to detect all such network failures is to use timestamps. Such a measure, how-
ever, only works if entities communicating with each other share a common time base. In order to 



  Common Approach 

 57

satisfy the requirement, a time synchronization mechanism is required. In general, two approaches 
are possible: a centralized time server or a decentralized approach where a pair of sender and re-
ceiver share a common time base.  

In case of a centralized time synchronization approach all entities connected to the time server share 
the same time base. The advantage is that time management on entity side is quite simple. However, 
a single time server for maybe hundreds or even thousands of entities is very much susceptible for 
attacks. When the time server is out of order, safe-secure communication among numerous entities is 
not guaranteed any longer. On the contrary, the decentralized approach avoids a single point of fail-
ure, but each entity has to handle different time bases.  

Which algorithm to use to synchronize time depends on the time resolution required. What most of 
them have in common is a request and response mechanism [IEC15, RFC43]. An entity A is sending 
a request to another entity B, asking for the current time. B is responding with the current time. The 
mechanism might be repeated [IEC58] and is applied to measure the network delay.  

A lot of security measures rely on cryptographic operations. For example, a node A sends a timing 
request to the time server. But how can the time server be sure that the request is from the node? By 
means of an authentication measure the authenticity of the message can be verified. A standard secu-
rity authentication measure is a message authentication code (MAC) as outlined in subchapter 1.3. 
Therefore, a checksum over the message is generated and ciphered with a key afterwards. The time 
server shares a key with node A and hence also generates the checksum and ciphers it with its key. If 
the MAC from the node and the time server are identical, authenticity of the message is granted. 

During installation and commissioning the keys were distributed for the first time. However, keys 
have to be updated in a frequent manner in order to keep the data volume for cryptographic analysis 
limited. Moreover, they have to be updated in a secure way and not in plaintext as it is done in stan-
dard KNX/EIB with the password (refer to subchapter 3.2), and the scalability of the mechanism 
must be appropriate. Finally, due to the limited bandwidth at the field level symmetric keys such as 
[NIS46-2] are the preferred choice [NOV05, p. 21; GRA06]. Symmetric means that the same key is 
used to cipher and decipher data as mentioned in subchapter 1.3. 

 

Fig. 6-10 Key hierarchy [RAN99] 



 58

The problem of implementing an efficient key update mechanism when using symmetric keys is 
mostly solve by setting up a key hierarchy [RAN99, pp. 171; TRE05]. Another choice would be to 
store numerous different keys on a node securely at installation. The disadvantage of the latter ap-
proach is twofold: A great number of keys has to be stored because of the long lifetime of a BACS 
and therefore a lot of memory resources are required. A tremendous problem on node side since 
nodes are typical embedded devices. Second, keys have to be stored in a highly secure way. Disclo-
sure of keys being used for operation in the future inevitably results in breaching security of the sys-
tem. 

In the key hierarchy (Fig. 6-10) different levels are specified and a key from a lower level is derived 
from a key of an upper level. Key derivation is accomplished by using a derivation function and 
some data changing every time a new key is derived. Such data is referred to as initialization vector 
(IV). [SCH01] discusses key derivation within a system wide security architecture. Derivation of a 
key, in turn, is performed by applying either a serial or parallel method [ABD00]. The first method 
uses the precedent key as initialization vector whilst the latter uses an iteration count or the current 
time if time synchronization is implemented as initialization vector.  

As shown in Fig. 6-10, keys of a hierarchy may be implemented the following. The key at the top of 
the hierarchy is called general master key. The master key is derived from the general master key. 
The general master key and master key are stored on every entity before installation (out-of-band 
initialization). Dynamic keys are used for security operations. They are updated by deriving a new 
key from the derived key after a defined rather short timeframe. A derived key, in turn, is updated 
after a specified timeframe or after an attack on an asset. The keys have to be updated synchronously 
among the entities to grant continuous security functionality. As a consequence, update procedure 
can be signaled by an external master or can be performed because of the common time base among 
entities. 

The network provides a transport service to the different entities. In particular, it enables the sensor 
to send its data via the network to an actuator that is acting according to the data received. The sen-
sor ‘produces’ data and is called producer. The actuator receives and ‘consumes’ the data and is 
referred to as consumer. To check the availability of the network, a producer sends messages peri-
odically to its consumer. Such messages are called heartbeats. As long as the consumer has received 
heartbeats within a defined timeframe Tc, it can be sure that the network is available. When heart-
beats have not been received for a period longer than Tc, unavailability of the network is assumed 
due to an attack or some hardware defect. Or, it is possible that the sensor has a malfunction and is 
not able to send heartbeats. 

In case of such a failure a procedure is required that specifies how to react and recover from network 
failures and network attacks. In [IEC15-2] requirements are given for a trusted recovery (family 
FPT_RCV). For instance, after recognition of a failure the maintenance mode (fail secure state) 
should be entered where normal operation might be impossible or restricted. In the safety domain, 
such a mode is called fail safe state meaning that in the state safety of the entity is not endangered at 
all. Recovery can be automatic or manual. Which strategy to use depends on the failure category and 
has to be specified before operation. Automatic recovery means that the entity returns to normal 
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operation after the failure disappeared, e.g. heartbeats are received again. Manual recovery requires 
authorized input from external. Meanwhile the entity remains in fail secure or fail safe state.  

Maintenance comprises activities such as how to gather diagnostic information in order to react to 
failures – with respect to security related failures gathering information is called a security audit 
(class FAU in [IEC15-2]). Another topic is the replacement of a safe-secure entity, or modification 
of communication parameters. Maintenance regarding reconfiguration of a BACS in general is a 
very challenging task. Just think of an airport with ten thousands of nodes. It is not acceptable to 
shut down the complete BACS when a node shall be replaced or configuration parameters shall be 
changed, just because safety and security ought not to be endangered. Sophisticated management of 
maintenance is necessary: the impact of replacement or modification has to be analyzed by means of 
a hazard-threat and risk analysis. 

Diagnostic information is required to react to stochastic and systematic failures, or malicious attacks. 
Diagnostic data comprises safety-security related events such as the number of missing heartbeats, 
delayed or corrupted messages, missing key updates, or attempts to access data by unauthorized 
entities. Next, rules have to be set up how to handle such events. For example, corrupted messages 
are discarded for an indefinite time. On the contrary, when a heartbeat has been missing for three 
times, the entity enters a fail safe state or fail secure state. The same is valid for failed key updates. 
In case of a reaction to a safety-security related event it can be specified to send a specific message 
to the management device to inform the operator about the safety-security incident. The operator, in 
turn, should have the possibility to access diagnostic information in a safe-secure way. Finally, diag-
nostic data must be stored on every entity in such a way that integrity is granted. Moreover, only 
authorized user ought to have access to the information. 

The activity replacement as part of the maintenance process is a composition of decommissioning 
(the old) and installing the (new) entity. However, communication and application related parame-
ters and cryptographic keys must be migrated from the old to the new entity. Parameters are stored 
in the management device as well as keys used to communicate with the new entity securely. There-
fore, the following procedure can be applied. First, the old entity is switched off, replaced by the 
new one and the new entity is turned on and waiting for further external input. As already men-
tioned, each entity connected to a field level network is identified by its unique network identifier 
(NID). So the only difference between the two entities is the NID. Second, the new entity sends its 
new NID to the management device after an operator pressed a button on the entity. Third, the com-
munication and application related parameters secured by a MAC are sent to the new device. The 
same procedure is applied as outlined before during operation. The MAC received and the one cal-
culated over the parameters on the entity are compared and if equal the entity is configured properly. 
Fourth, the initialization vectors must be synchronized in case of using key derivation function and a 
key hierarchy (Fig. 6-10). 

Modification of communication related parameters is always required when the logical or physical 
network topology is reconfigured, for example a new entity is added or new sensors are connected to 
a node. Second, changing communication related parameters also results in establishing new safe-
secure paths, i.e. keys have to be exchanged among the new entities. As mentioned in subchapter 
2.1, BACS is a rather dynamic system and thus the topic modification must be considered. 
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Adding a new entity to the system, i.e. reconfigure the physical network topology, requires tasks 
equal to the ones described in the replacement activity when installing a new entity. Changing the 
logical network topology is always triggered by the management device and either a parameter is 
added or deleted. Inserting a new logic communication path is identical to the procedure outlined 
during installation, deleting equivalent to decommissioning. 

Decommissioning is the last stage of the safety-security lifecycle. There are three ways of under-
standing decommissioning: The whole system, an entity or a logical communication path can be 
decommissioned. The first and the second type require the third type described in the following. 
First, all the logical communication parameters of an entity are deleted. Second, the entity is turned 
off. The procedure is repeated with every entity and finally the system is decommissioned. 

Deletion of communication related parameters on entity A has an impact on other entities (B, C …) 
logically connected to A. For a better understanding, let’s assume the following scenario. Node A 
receives sensor data from Node B and Node C. In addition, Noda A sends sensor data to Node D. 
Put another way, Node A is a consumer and ‘consumes’ information from producers B and C and 
‘produces’ information for Node D. Communication parameter is deleted on Node A so that no more 
data is accepted from B and C. Moreover, communication parameters in B and C are deleted that 
were used to send data to A. In the end, it has to be verified in order to ensure the integrity of system 
communication, first that parameters on A, B, and C were deleted and second that deletion process 
had no impact on logical communication between Node A and Node D. As a consequence, the same 
procedure as described when discussing installation is used. The management device calculates a 
MAC over the communication parameters of every Node. Each node does the same using its pa-
rameters. If every MAC of Node A, B, C, and D is identical with the one from the management de-
vice, decommissioning was successful and integrity guaranteed. 

 

Fig. 6-11 Documents created during installation and maintenance, and decommissioning process 

Documents of the use-phase (Fig. 6-11) are separated in requirement specification and plan, i.e. 
cover what to do and reports and log files. The reports outline the tasks performed whereas the log 
files gives information on the tasks in chronological order. 
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7. Key Ideas of Common Approach 

In chapter 6, a common approach used to develop a safe-secure BACS was presented. The common 
approach is based on the lifecycle standardized in IEC 61508 and the security concept of IEC 15408 
(Common Criteria) is integrated similar to the approach presented in [SCH05]. It specifies four pri-
mary processes (Fig. 5-2) as they are incorporated in typical generic lifecycle models. 

In the following the common approach is discussed with focus on the topics that are new and pro-
posed by the author, i.e. to use such a lifecycle model and to harmonize safety and security. In addi-
tion, it is explained why safety is investigated first in the pre-design phase and what safety-security 
validation means. Another topic corresponds to the relationship between safety and security: a way 
of conflict resolution between safety and security requirements as well as safety and security meas-
ure assessment are presented. 

7.1 Safety-security Lifecycle 

The term lifecycle model was already outlined in general in subchapter 2.2 and in the introduction in 
chapter 4. A detailed definition of lifecycle model is given in [IEC12]: “A framework containing the 
processes, activities, and tasks involved in the development, operation, and maintenance […], span-
ning the life of the system from the definition of its requirements to the termination of its use.“ The 
advantage of a lifecycle model is the formal and structured way of development, operation and 
maintenance because requirements on the processes, activities and tasks are given for every stage in 
the system life. 

Within the thesis lifecycle is an umbrella term for every model that covers all stages in the life of a 
system. Therefore arrows in Fig. 6-1 need not to symbolize a sequential development progress such 
as the waterfall model [ROY70] does. Activities are not necessarily integrated into the lifecycle as 
instance, but mostly as iteration [IEE17] as mentioned in subsection 5.2.2. Arrows in the safety-
security lifecycle imply that tasks of activity n requires input from the preceding activity n-1 and 
delivers an output to the following activity n+1. Activity n is considered to be finished when all 
activity input is processed and the complete specified output is available. 

As shown in Fig. 7-1, an activity of the lifecycle needs four pieces of input information and gener-
ates three pieces of output information. In case of an instance, all input information is available and 
the whole output information can be generated at once. By contrast, in case of an iteration only some 
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pieces of input information are available at first, and step by step further input information is exist-
ing to finally receive all required output information. 

Activity n

Input activity n-1

Output activity n

Activity n

Input activity n-1

Output activity n

Activity n

Input activity n-1

Output activity n

Activity n

Input activity n-1

Output activity n

Instance Iteration 1 Iteration 2 Iteration 3
 

Fig. 7-1 Mapping of activities in a lifecycle 

7.1.1 Motivation 

Safety and security issues ought to be considered not only during requirement specification, but also 
during design, operation, maintenance and decommissioning. Hence, a lifecycle model is used as 
‘development-use’ model in the common approach. The reasons are the following. 

1. Safety is concerned with ensuring systematic and hardware integrity (see subchapter 4.1). 
Therefore measures are necessary to avoid and detect faults in order to minimize risk to 
people. Stochastic failures endanger hardware integrity. They occur during the use-phase 
and can only be detected, not avoided. On the contrary, systematic failures jeopardize sys-
tematic integrity during development- and use-phase. They can be avoided during develop-
ment and detected during use-phase. 

2. Security deals with minimizing risk to assets coming from threats and vulnerabilities (see 
subchapter 4.2). Countermeasures are threat and vulnerability avoidance, and threat control. 
The first is only possible during development whilst threat control is performed during use-
phase. 

3. A BACS consists of many entities such as nodes, gateways, management devices and so on. 
Due to the large number of nodes as mentioned in subchapter 1.1, clearly defined require-
ments for the use-phase are of great importance. E.g., how to install and maintain the system 
safely and securely. 

As mentioned in subchapter 5.2, various lifecycle models, in particular for safety, also some for se-
curity are available in literature. [IEE10] specifies requirements on how to develop a (software pro-
ject) lifecycle. It might seem reasonable to develop a completely new lifecycle because a new field 
of application is entered. And ideas of models in literature are used as input. 

Special focus, however, is paid to the acceptance of the common approach by safety experts and 
security practitioners as mentioned in subchapter 2.1. Furthermore, the common approach shall al-
low for certification of products. In the end, it shall specify a level of safety and security to compare 
products. As a consequence, reinventing the wheel and developing a new lifecycle is the wrong 
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choice as mentioned in [SCH05]. The solution is to use a well approved standardized lifecycle – the 
one in IEC 61508 [IEC61]. The standard is a generic standard for functional safety and it explicitly 
means to allow development of domain and application specific standards. IEC 61508 also specifies 
four levels, so called safety integrity levels (SIL), that make a comparison of different product pos-
sible. Safety integrity levels are defined by different numbers of failure probability per hour (Table 
4-1).  

Security issues are covered by IEC 15408 [IEC15] because it gives requirements for the various 
stages in the system life too. Moreover, it specifies a level of security: seven evaluation assurance 
levels (EAL). Evaluation assurance levels specify a set of requirements from the different assurance 
classes (Table 4-3). IEC 15408, however, does not mandate any specific ‘development-use’ model. 
As a result, the safety-security lifecycle uses the model presented in IEC 61508 and integrates secu-
rity related issues. Additional activities are specified to cover the topics resulting from the interac-
tion of safety and security, such as conflict resolution or measure assessment (see subchapter 7.2). 

Noteworthy to say, the measurands SIL and EAL are different in their definition. Both levels, how-
ever, have in common that the higher the level the more and stricter requirements must be met. A 
higher level results in a higher risk reduction. And products shall be compared regarding their ability 
to reduce risk to a defined level. 

7.1.2 Macro- and Micro-Processes 

The safety-security lifecycle specifies activities for the different processes in the lifecycle of a sys-
tem, the building automation and control system (BACS). The word overall in Fig. 6-1 intends that 
the complete BACS is meant. Put another way, the safety-security lifecycle gives requirements for 
macro-processes, i.e. how to development and use the BACS. Nodes, gateways or management de-
vices are subsystems, each consisting of hardware or software, or both. The safety-security lifecycle 
is used for subsystems also and called entity lifecycle. That is, various entity lifecycles comprise the 
system lifecycle (Fig. 7-2, Fig. 8-1). Subsystems can be created for a specific system or already ex-
isting third party subsystems might be integrated into a new BACS. As a consequence, overall plan-
ning is influenced by the requirements in case of a new subsystems to be developed otherwise by the 
realization of the subsystem. 

Software engineering and hardware development is performed in accordance with well established 
models: the V-model [BRO93], the spiral model [BOE88], the incremental model [BAL98] or the 
like for software realization. Processes giving requirements on hardware and software engineering 
are called micro-processes. 

Macro- and micro processes can further be distinguished between primary, and supporting and or-
ganizational processes according to [IEC12]. In addition, processes consist of several activities. In 
the safety-security lifecycle an activity corresponds with an enumerated stage in Fig. 6-1. 

Primary Processes 

Primary processes in [IEC12] are acquisition, supply, development, operation and maintenance 
process as outlined in subchapter 5.2. The safety-security lifecycle, however, includes the pre-
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design, design and installation, operation and maintenance, and decommissioning process as primary 
processes. The reason for specifying the aforementioned four processes is that the target audience of 
the common approach are developer, operator and maintainer as mentioned in subchapter 2.3. There-
fore no explicit processes for acquisition and supply are defined, but more emphasis is laid on de-
velopment and use of the system. 

BAC
system

Subsystem 
Node

Subsystem 
Gateway

Subsystem 
Management device

Subsystem
...

Hardware
Node

Software
Node

Hardware
…

Software
...

Macro-processes

Micro-processes

 

Fig. 7-2 Lifecycle macro- and micro-processes 

Primary processes, and their activities and tasks are directly relating to the development and use of 
the system. Moreover, they invoke supporting and organizational processes. I.e., the activity ‘overall 
safety and security validation’ invokes the supporting activity ‘validation’ and ‘documentation’. In 
contrast to the approaches presented in [FIR03] or [POO05], safety and security related activities are 
not considered to be independent supporting processes. They are embedded explicitly into the pri-
mary processes to emphasize their importance and to highlight the objective of the common ap-
proach: development and use of a safe-secure BACS. 

Supporting and Organizational Processes 

Supporting lifecycle processes support another process as an integral part in order to raise the quality 
and contribute to the success of the project. Moreover, organizational processes are established by an 
organization as an underlying structure for associated lifecycle processes. 

Organizational processes at project level according to [IEC12] are the management process, manag-
ing the supporting processes; the infrastructure process establishing the required infrastructure; at 
organizational level the improvement process assessing an improving processes and the training 
process providing and maintaining trained personnel. In accordance with [IEC12], supporting lifecy-
cle processes are the documentation, configuration management, quality assurance (verification, 
validation, joint review, audit) and problem resolution process. 

These processes force to evolve a safety-security culture in a project. Activities of the processes 
make a contribution to the success of a project by assuring a level of safety integrity and of confi-
dence in security. Rigor of lifecycle process activities depends on the safety integrity level (SIL) and 
evaluation assurance level (EAL). The higher the levels the more attention is paid to supporting life-
cycle activities. It is important to point out that developing and using a safe-secure BACS does not 
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only mean to meet all technical requirements. Therefore, functional safety management is introduced 
in the safety domain [WRA07, pp. 25]. In [MCG06] something equivalent is presented for security: 
software security – best practice to engineer software with paying attention to the security situation 
through the whole software lifecycle.  

7.1.3 Safety First 

As shown in Fig. 6-1, the lifecycle model starts with activities related to safety. Output of the activi-
ties is used as input to security related activities. Finally, pre-design phase ends with activities linked 
to safety and security. In [EAM99] safety and security issues are investigated independently. At the 
end of specification safety and security requirements are only cross-checked regarding conflicts. In 
[STO06] a risk framework for safety and security is discussed: Security threats are seen as input to 
the safety risk framework. They are considered as safety hazards that lead to risk. Refer to subchap-
ter 5.1 for the details on [EAM99] and [STO06].  

The safety-security lifecycle, however, starts with activities referring to safety and then investigates 
security issues. This procedure was chosen because [OVA07]: 

1. IEC 61508 specifies a very strict and formal way of receiving requirements. The IEC 61508 
approach is very well adopted and often a legal requirement. Therefore, it is very likely that 
a well described input is given to the activities related to security. In turn, quality of security 
related activities is going to be raised.  

2. Depending on the safety integrity level a hardware fault tolerance different from zero is re-
quired (see Table 4-2). This requirement results in a specific physical subsystem architecture 
of an entity, e.g. 1oo2 architecture that must be taken into consideration while establishing 
the security environment. 

3. Depending on the chosen safety integrity level (SIL) defined activities of supporting lifecy-
cle processes to ensure quality during the whole lifecycle are specified. Whereas security as-
surance requirements in an evaluation assurance package of a defined evaluation assurance 
level (EAL) only specify such activities to be performed after the pre-design phase. Activi-
ties to grant a level of quality during pre-design phase are always the same, regardless of the 
EAL. 

4. Moreover, assets to be protected including safety requirements might be comprising the se-
curity environment. In most BAC systems safety is a key application functionality that can-
not be readjusted. 

Since it is possible that security requirements influence safety issues in a negative way, threat-hazard 
and risk analysis allows for cross-checking safety and security requirements. The activity is a means 
to verify whether security requirements jeopardize safety targets. If so, stages in the lifecycle must 
be repeated in an iterative way to finally receive a complete set of safety-security requirements. 
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7.1.4 Safety-security Functions 

The output of the pre-design phase in the safety-security lifecycle (Fig. 6-1) is a set of safety-
security functions having been allocated to hardware or software. They are implementation inde-
pendent and are seen as constraints to be taken into account when specifying the general hardware 
and software requirements. General means that not only safety-security functionality is considered, 
but all the non-safety-security related functionality necessary to get the entity performing as ex-
pected. On the contrary to software requirements engineering [POO05, FIR03], safety-security func-
tions are not supporting the primary functionality by imposing quality attributes on the system, but 
they are the primary functionality. 

Let’s assume a safe-secure node as example, consisting of two microcontrollers (1oo2 hardware 
architecture). Every microcontroller has an interface to a smartcard used to store secret data such as 
cryptographic keys. Messages sent over the network are created by both microcontrollers. They are 
compared and if they are identical sent to an other node. Some messages might be encrypted or au-
thenticated with a key. This operation is performed on the smartcard. Received messages are proc-
essed by both microcontrollers and if both agree on the integrity and if necessary on the authenticity, 
the payload of the message is considered to be valid. A safety-security function is ‘encryp-
tion/decryption of data’ and ‘data authentication’. 

General hardware requirements are: ‘a serial interface between microcontrollers’ and ‘a serial inter-
face to every smartcard.’ Otherwise, an agreement on the integrity and authenticity of a message 
between both microcontrollers would not be possible. Derived from the hardware requirements, a 
software requirement is: ‘a serial driver and an API to handle serial communication’. Additionally, 
payload of messages received is going to be processed by an application. Another software require-
ment is ‘forward payload received in an message to the application’. 

Even though function specification is part of the design phase in a generic lifecycle, safety-security 
function specification is part of the pre-design phase. The type of function specification is looked on 
as a constraint to be considered during design of an entity in the BACS. 

7.1.5 Validation and Verification 

Validation as well as verification are defined as a process of evaluating a system as already men-
tioned in subchapter 2.2. Verification is a process performed after every activity of a lifecycle proc-
ess to determine if the output coming from the activity satisfies conditions imposed at the start of the 
activity [IEE74]. Moreover, according to [IEE10] verification deals with giving evidence of confor-
mance to requirements, and adherence to standards, practices, conventions during lifecycle proc-
esses, and giving evidence of successful completion of each lifecycle activity. Verification means 
asking the question: ‘Are we building the system correctly?’ 

In the safety-security lifecycle (Fig. 6-1), verification process to prove conformance to lifecycle 
process requirements (Fig. 5-1) is not mentioned explicitly because it has to be executed without 
exception after every activity in the lifecycle. For example, stage 8 of the safety-security lifecycle, 
security requirements specification, has the goal to specify security related requirements. Verifica-
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tion means to check that every security objective is at least implemented by one security require-
ment. Additionally, verification is carried out at the end of hardware and software development. 
E.g., it has to be checked that the source code, considered to be the output of software development, 
conforms to the software requirements, i.e. to portions of the system requirements (Fig. 5-1). The 
latter type of verification is mentioned explicitly in the hardware or software lifecycle because it is 
not performed regularly. 

In [IEE74] validation is a process carried out during or at the end of development in order to deter-
mine if specified requirements are met. Additionally, in [IEE10] validation is considered to be the 
process that checks if system requirements are satisfied, the right problem is solved and the indented 
use is satisfied. In other words, validation means checking the system behavior against its intended 
use: ‘Are we building the right system?’ 

Validation activity regarding safety-security is mentioned explicitly because it is not performed pe-
riodically in contrast to the lifecycle process requirement verification. In the field of safety 
(IEC 61508) the summary of safety requirements is considered to be the specification of intended 
use and system requirements (Fig. 7-3). Therefore, safety validation is the process of comparing 
system behavior with the safety requirements specification(s). In the context of security 
(IEC 15408), security objectives are a statement of indent (Fig. 7-3). In addition, an assurance tech-
nique is a means used to produce confidence that an entity meets its security objectives. And, 
evaluation gives evidence of assurance. Evaluation in [IEC15-1] has two aspects: validating the pro-
tection profile(s) including the security objectives and verification of the conformance of the system 
with its functional and assurance requirements. Security validation is therefore refers to checking the 
system against the security objectives (Fig. 7-3). 

In conclusion, seen from a more general point of view safety-security validation is concerned with 
investigating if risks have been mitigated properly and risk mitigation strategy is working. Testing 
techniques as described in [IEC61] or [IEC15-3] can be used to ensure the effectiveness of risk miti-
gation strategy. 

Safety requirements
Security objectives

Requirements analysis 
and specification

Design

Realization, installation
Verification

Verification

Verification

Safety-security
validation

 

Fig. 7-3 Safety-security validation and verification process 
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How to proceed during validation and verification process is written down in the V&V plan, also 
what measure have to be used. Results of validation and verificationis noted in reports. The docu-
ments are referenced in the V&V plan. Typical measure to check the process requirements are static 
techniques like reviews (inspection or walk-through), to check the system requirements dynamic 
techniques like black box or white box testing [IEC61-7] are applied. Validation regarding safety-
security either uses dynamic techniques like simulation or static techniques such as static analysis. 

7.2 Relationship between Safety and Security 

Safety and security more or less interact in every stage of the lifecycle. Both either show identities or 
conflicts. Of course, there are also topics where they do not interact. The requirements are consid-
ered to be independent. Identity means that safety and security strive for the same with equal or dif-
ferent effort. In opposite to identity, conflict indicates that safety and security pursue contradicting 
things. 

Conflicts or identities between safety and security are always a result of conflicting or identical re-
quirements. Consequently, to figure out and resolve conflicts between safety and security require-
ments, it is necessary to examine interdependencies. That is why activity threat-hazard and risk 
analysis is integrated into the pre-design phase of the lifecycle (Fig. 6-1, stage 9). 

After stage 8 of the pre-design process safety requirements were specified that are part of the secu-
rity environment. Additionally, a set of security requirements is available already considering safety 
requirements. What is still missing at this point is a crosschecking of both sets of requirements. Are 
the safety and security requirements complementary? Do security requirements contradict safety 
requirements and vice versa? Therefore, the conflict resolution approach in Fig. 7-4 is applied. The 
result is a conflict free set of requirements. Next, the measures implemented to satisfy the conflict 
free requirements are checked. Only these measures are crosschecked that are different although 
they result from the same requirement, stated once during safety and a second time during security 
requirement specification. After measures assessment have been performed, the threat-hazard and 
risk analysis is carried out to verify the correctness of the decisions made during conflict resolution 
and measure assessment. Especially, the conflict resolution policy is checked if it delivers the appro-
priate result with regard to the field of application of the BACS. 

7.2.1 Conflict Resolution Approach 

Even though safety and security have the same major goal, namely risk reduction, they reduce risk 
because of different reasons. Put succinctly, safety is concerned with reducing risk to people, 
whereas security strives for minimizing risk to information and resources. Refer to subchapter 1.2 
and 1.3 for detailed definition. Accordingly, it is very likely that requirements how to reduce risk 
differ. Even worse, it is almost inevitable that these requirements contradict each other. Hence, a 
methodology has to be specified that presents a clear and concise, and easy to handle way of conflict 
resolution. Such an approach is shown in Fig. 7-4. It consists of two parts: a separation of require-
ments into two groups to perform the conflict resolution itself afterwards. 
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Resolving requirements conflicts has already been discussed extensively in the software engineering 
domain. In [LAM98] the problem is addressed and a methodology called KAOS is used to manage 
conflicts. A formal way of dealing with conflicts is proposed, not covering safety and security prob-
lems explicitly. [POO05] discusses a means, called non-functional decomposition (NFD), to resolve 
requirement conflicts. It separates requirements into primary and supplementary requirements. Secu-
rity requirements are explicitly mentioned and are only considered to be supplementary require-
ments. Integration of safety and security requirements, and resulting conflicts are addressed in 
[ZAF05]. Safety and security are integrated in the form of integrated behavior tree and step by step 
refined into a design behavior tree giving a so called design behavior view of the system. The view 
provides a platform for requirements conflict resolution. 

What the three approaches in particular and approaches in the field of software engineering in gen-
eral have in common, is a very formal and often abstract way of dealing with the problem of conflict 
resolution. Additionally, all the approaches of course are dedicated to software. As outlined in sub-
chapter 2.2, the common approach should be accepted by safety and security experts. They are used 
to rules, accustomed to explicit stated requirements on how to develop, used to ‘best practice’. As a 
consequence, the conflict resolution approach specified in the following is based on predefined rules 
that are applied to solve a conflict. Such a way of handling conflicts is also understandable for 
BACS developers and integrators. 

A list of safety and security requirements is available after stage 8 of the pre-design process (Fig. 
6-1). As stated before, they can be independent, identical or conflicting. To solve the conflict among 
requirements, a conflict resolution policy has to be applied. It should state a set of rules how to deal 
with conflicting safety and security requirements. Such rules are specified with regard to the field of 
application, the organizational safety and security policies and the operational environment. Accord-
ing to the rules conflicting requirements are evaluated and either the safety or the security one is 
discarded. 

The conflict resolution policy enables the developer to allow for the particular point of view of 
course. As mentioned in [BUR92], it is absolutely reasonable to view a BACS and its entities as 
being security or safety critical or both. From a system point of view for example, a room in a build-
ing is equipped with a climate control that heats or cools the room. Inside a server is placed that 
stores credit cards numbers of thousands of customers. If the climate control is compromised in 
summer, the temperature in the room rises and the server crashes. Availability of the server is not 
existing any more. Therefore the system is considered to be security critical. Just imagine, though, 
that inside the room a patient is lying in his bed, unable to move because of a car accident. The cli-
mate control fails and decreases the temperature of the room continuously and therefore endangers 
the life of the patient. Thus the system represents a safety critical one. 

It must be mentioned that it is not always easy to classify a system or subsystem and its entities to be 
either security or safety critical. Thinking about the example given before, it is possible that many 
rooms with patients are available like in a hospital. Nodes of three rooms are grouped in a domain 
and domains are connected via gateways. The system can be accessed remotely by means of a re-
mote entity via a so called remote gateway. The remote entity is used to manage the system and uses 
a safe-secure message format to send messages to the entities of the BACS. As stated before, the 
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complete system is considered to be safety critical, but the remote gateway is security critical be-
cause of the following reason. It is assumed that the remote gateway is the virtual entrance to the 
BACS and therefore checks the access to the BACS by having implemented an access control. From 
the safety point of view this entity is transparent assuming that it does not interpret the payload of 
the message. In that case it only forwards messages. 
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Categorize requirements 
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Checking requirements List of final detective 
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Fig. 7-4 Conflict resolution approach 

Consequently, the conflict resolution policy can specify rule(s) valid for a system or subsystem. E.g., 
‘Safety requirements are preferred because the system is considered to be safety-critical.’ A more 
detailed policy focuses on the different entities and network types. A BACS may include gateways 
among domains or nodes with different computational power and memory resources. So there might 
be policies for every entity; for the residual gateway and a node in a server room one preferring se-
curity, another favoring safety requirements. In case of conflicting requirements allocated to soft-
ware, a conflict resolution policy may be specified for the firmware and another for the application 
software. The policy for the firmware will correspond to the intention of the BACS in general. If the 
intention of the BACS is to be used in a hospital, conflict resolution policy will tend to prefer safety 
requirements rather than security ones. One of the many applications in a hospital is the control of a 
door giving access to a room where drugs are stored. Conflict resolution for such an application 
software is favoring security requirements. 
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Following the conflict resolution specification, each safety and security requirement is categorized. 
In general, a requirement is specified to reach a defined objective. As mentioned in subchapter 4.1, 
the objectives of safety is to guarantee hardware and systematic integrity by fault avoidance during 
the different phases of the lifecycle and fault control (detection and correction) during operation of 
the system [IEC61-2]. Security is concerned with preventing and mitigating the loss of confidential-
ity, integrity and availability [IEC15-1]. Although the naming is different, safety and security objec-
tives are prevention, detection and correction. Hence three types of categories of safety and security 
requirements are specified as shown in Fig. 7-5 [HER03, p. 85]. It is noteworthy that requirements 
can fall into more than one category. 

1. Preventive: An objective of every safety and security system is to prevent faults or attacks. 
In the safety world that objective is called fault avoidance – other wording, but same mean-
ing. A typical preventive objective is ‘Documentation will be available and managed by a 
document administration program.’. Consequently, a requirement is ‘Software architecture 
is documented and stored in a document database.’. 

2. Detective: Safety and security systems aim at detecting faults and attacks. For example, ‘The 
loss of system data integrity will be detect.’ As a result, a requirement is ‘Integrity of system 
data is detected.’. 

3. Corrective: Such an objective delineates the corresponding response to a fault or an attack, 
i.e. the action to be taken. E.g., ‘In case of failure the node will return to a known state’. A 
derived requirement says, ‘A known state is specified when a failure occurs’. 

 

Fig. 7-5 Classes of requirements 

Detective requirements result in actions that monitor the processes or the system during the different 
stages of the lifecycle. For example, every message is checked regarding data integrity. A possible 
loss of integrity due to a stochastic failure or intentional attack is detected. How to react in case of 
loss of integrity is specified by a corrective requirement. Safety and security requirements of the 
category detective requirements are identical, supporting or independent because they are just moni-
toring and therefore not influencing the processes or system itself. However, countermeasures, i.e. 
implementation of activities, may differ and are subject to discussion in subchapter 7.2.2. 

A conflict between safety and security requirements is possible if actions are derived from a correc-
tive or preventive object. A corrective and preventive requirement specifies actions and a reaction to 
an incident. These types of actions are influencing the process or system. Especially, corrective re-
quirements have to be investigated regarding conflicts. They determine actions of how to respond to 
and recover from a failure or attack. In other words, corrective requirements lead to actions to be 
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executed under abnormal circumstances. Conflicts may occur because the intention of safety – re-
duce risk to people – and security – reduce risk to resources – differ. A simple and classic example is 
a door. Under normal circumstances the door opens and closes when an authorized person wants to 
enter the room. If it is opened, it should be guaranteed that the person is not hurt. So also safety is 
involved. In case of a failure, i.e. under abnormal circumstances, it is not clear what the state of the 
door is. The reaction of the system can be either to open or close the door according to the specified 
conflict resolution policy. 

After a list of corrective and preventive requirements is available, each requirement is evaluated 
regarding its action item (Fig. 7-4). That is, the action and the reaction to a failure or attack is evalu-
ated. The action item is checked against the other action items of corrective or preventive require-
ments. If there is no conflict, the requirement is considered to be a final safety-security requirement. 
Otherwise, the conflict resolution policy is applied and one of the requirements is discarded. In the 
end, a conflict-free set of requirements is existing that undergoes a verification by a threat-hazard 
and risk analysis as presented in subchapter 6.1. 

7.2.2 Measure Assessment 

In general, it has to be distinguished between functional and non-functional measures. The latter are 
often called quality assurance measures. The intention of the measures is to raise the level of quality 
of the system. They are means used to implement activities of the supporting and organizational 
lifecycle processes. In the context of safety and security they provide support in order to reach a 
defined level of safety integrity and confidence in security. As shown in Fig. 7-6 [FRU02, p. 25], the 
measures can be divided into three classes. 

Quality 
assurance

Analytical measures Design measures

Organizational measures

 

Fig. 7-6 Quality assurance measures 

1. Design measures are used to avoid faults or detect them at a very early stage in the devel-
opment and are therefore preventive measures. Typical examples are the use of a ‘develop-
ment-use’ model, a configuration management system or development tools, or project man-
agement activities. 
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2. Analytical measures check the system (tests and reviews), the processes (audit) and observe 
and measure the system. Checks can either by dynamic or static such as code walkthroughs. 
Dynamic checks are black-box or white-box tests. 

3. Organizational measures are supporting design and analytical measures. Examples are the 
use of standardized concepts described in national or international standards, training of em-
ployees or management of the technical infrastructure, guidelines and checklists. 

Functional measures are the implementation of functions whereas functions are derived from re-
quirements. Such measures are sometimes called methods or techniques too. Functional safety-
security measures are implemented in hardware or software on an entity in the BACS, such as a 
node or a gateway. Typical functional measures are a cyclic redundancy check (CRC) or a hash al-
gorithm or software monitoring. 

One of the many motivations to design a common approach is to benefit from synergies on applying 
measures. Safety and security measures and synergies gained can be classified in three groups 
[OVA07]. Since the thesis is focused on the hard- and software of a node of a BACS, measure as-
sessment is outlined for functional measures only. It is assumed that the same procedure can be ap-
plied to assess quality assurance measures. 

1. There are measures that directly match derived from the same or different requirements. The 
safety as well as security requirement ‘Detect delay and loss of a message’ results in the 
measure ‘Use of timestamps or sequence numbers for delayed or repeated messages’. Or, the 
safety requirement ‘Detect systematic software failures’ and the security requirement ‘De-
tect deliberate corruption of security related software’ lead to the measure ‘Use of the online 
self tests walking pattern [HOE86, pp. 7-56]’. Usually there is not going to be a problem to 
commonly use them. Therefore, high potential for synergies exists since measures are easily 
combinable.  

2. There are measures that are unique for safety and security and need to be implemented sepa-
rately. Consequently, no synergies are possible. E.g., a security requirement is ‘Avoid dis-
closure of sensitive data’ and therefore ‘Use a confidentiality measure’. A safety require-
ments can be ‘Detect shortcut of cable to external sensor on node side ’ and hence ‘Use of 
test pulses’. 

3. There are measures that require different efforts, e.g. in terms of computational power or 
consumed memory, although they are derived from the same requirement. A common safety 
and security requirement may be ‘Integrity of network related data must be ensured’. The 
safety measure is ‘Use of a 2 byte CRC (cyclic redundancy check)’ whilst the security 
measure is ‘Use of a 16 byte MAC (message authentication code)’. Both of these measures 
protect the integrity of the message, but the execution time (e.g., 10-100µs for CRC and 8-
15ms for MAC) and memory resource (e.g., length 2 byte for CRC and 16 byte for MAC) 
differ. 

Measure assessment has to be only performed when safety and security measures are of group 3: 
different measures with different effort are derived from the same requirement. Just that group of 
measures exhibit conflicts regarding e.g., computational power, throughput, computation time, 
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memory resources or application constraints. Measures of the other groups are either identical or 
unique and thus cannot be conflicting per definition. 

Assessment of measures derived from functions and the associated requirements is influenced by six 
factors (Fig. 7-7) including a safety and security related one. Factor 1-3 were already investigated 
during stage 2 and stage 5 of the safety-security lifecycle (Fig. 6-1). 

Field of application. Building automation services in general are not real-time critical. That is, reac-
tion times within a couple of microseconds are not of concern. Standard HVAC services require 
reaction times within minutes. The same for smoke detection service or a security alert service. An 
emergency push button application used to stop a revolving door, however, needs a reaction time 
within some hundreds of milliseconds. 

Hardware environment. Measures are dependent on the deployed hardware. The memory resources, 
computational power or interfaces provided must be considered. Typically, nodes are embedded 
systems with limited resources whereas gateways are equipped with more resources compared to 
nodes. Additionally, the performance of the network must be taken into account. Field level net-
works are low bandwidth, backbone level networks are generally high bandwidth ones. 

Software environment. The safety-security related software includes different measures and may 
interface with other non-safety-security related software such as an operating system or an API (ap-
plication programming interface). That kind of software is a constraint to be taken into considera-
tion. 

Safety integrity level (SIL) specifies the level of performance of a safety function and the associated 
measure. In the context of safety, performance essentially means the likelihood of carrying out the 
adequate action(s), e.g. detecting faults. The SIL is applicable to all kinds of measures. Moreover, 
measures used to detect stochastic faults such as online self tests are characterized by their diagnos-
tic coverage (DC). 

Evaluation assurance level (EAL) is a security related factor. The EAL defines a scale for measuring 
assurance and includes individual assurance components varying in depth and rigor depending on 
the level. One assurance component is strength of function (SOF): It specifies the minimum effort 
assumed to defeat the security behavior by directly attacking the associated functional measure. In 
other words, it defines the security performance of a measure. SOF attribute is only applicable to 
permutational functional measures like hash functions. 

Performance. EAL and SIL are covering safety and security performance: likelihood of detect faults 
or effort to break a security function. Performance in the context refers to topics like throughput, 
reaction time, computational power and memory resources required. 

Generally, functional measures differ in the kind of realization and performance. As mentioned be-
fore, functional measures are realized either in hardware or software. Consequently, they very likely 
interact with hardware and software, respectively. That is, the reason why the hardware and software 
environment has to be investigated. These functional measures provide various functionalities that 
differ in terms of performance. In the context performance means throughput, reaction time, but also 
safety and security performance. Necessary reaction time, throughput and so on is dependent on the 
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field of application. Finally, safety and security performance is specified by the safety integrity and 
evaluation assurance levels. 

Measure 

Field of application

Hardware environment

Software environment

Safety integrity level

Evaluation assurance 
level

Performance

 

Fig. 7-7 Factors used to assess measures 

Before giving an example, it is outlined why measure assessment need not necessarily apply the 
same policy used during conflict resolution (see subchapter 7.2.1). It would be possible to simply 
use safety related measures if conflict resolution policy favors safety or implement security related 
measures in case of security being preferred in the policy. Moreover, it would make sense because 
conflict resolution policy is influenced by quite the same factors. During conflict resolution at re-
quirement level, however, no attention is paid to the implementation of the functions derived from 
the requirements. Although safety and security performance (SIL and EAL) are considered in the 
conflict resolution policy, performance regarding throughput, computational power, timing, reaction 
time is not taken into consideration. Performing measure assessment independently of conflict reso-
lution does not exclude applying security measures in safety critical scenarios and vice versa. Espe-
cially, implementing security measures in safety critical environments adds additional value to the 
system. That is, because security related measures (also) withstand intentional attacks on the con-
trary to safety related ones. 

Next, an example is give of how to assess measures. In the safety world it is common practice to 
send ‘alive messages’, so called heartbeats, between a producer (sensor) and a consumer (actuator). 
They are sent periodically to check whether the network is still available and messages are not mis-
directed on their way from the producer to the consumer. Additionally, it gives the consumer evi-
dence that the producer is still operating. Heartbeats must be protected from stochastic failures on 
the network. Furthermore, since a consumer should just accept heartbeats from particular defined 
producers, an access control is required.  

Safety measures are on the one hand source based addresses to avoid insertion of messages. They are 
used to some kind of authenticate a heartbeat to be allowed to access the consumer. Moreover a 
CRC is in use to ensure integrity of the heartbeat. The source based addressing model says that every 
producer is assigned a safe address. Every consumer holds a table with the safe addresses of produc-
ers. Only if the safe address of the producer in the heartbeat is in the table on consumer side, the 
heartbeat is accepted. A security measure ensuring integrity and authenticity of a heartbeat is the 
message authentication code (MAC). Producer and consumer share a symmetric key or pair of 
asymmetric keys. Producer appends the MAC ciphered with the key and the consumer checks the 
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MAC by deciphering the MAC. If no error is revealed integrity and access is granted. The MAC, for 
example, can be generated by hashing data of the heartbeat and ciphering it with the key. 

The effort of safety and security measure differs. Safe addresses are for example 3 byte [NOV07], a 
CRC typically is 2 byte and a MAC is 4 to 16 byte long. Generating a CRC on an embedded device 
takes some tens to hundreds of microseconds, whereas calculating a MAC requires tens of millisec-
onds. On producer side time to copy safe address into message and on consumer side time to check 
safe addresses are microscopic and not considered. In short, safety and security measures differ in 
terms of performance and bandwidth overhead. 

Let’s assume a safety critical environment, a hospital, and a safety critical service: a fire alarm sys-
tem. Heartbeats have to be sent between a fire detector (producer) and a fire damper (consumer). 
Timing requirements of such a service are relaxed: reaction time is somewhere in the order of min-
utes until a fire damper has to be triggered. Consequently, heartbeats are sent every tens of seconds 
and so some tens of milliseconds to generate and check the MAC are not critical. Albeit a safety 
critical service, a security related measure is applied and hence intentional attacks are considered.  

In case of an emergency push button service to stop the revolving door at the entrance, requirements 
on the reaction time are far more strict. The door has to stop within hundreds of milliseconds in or-
der not to hurt someone having fallen down. Heartbeats have to be sent every tens of milliseconds 
and therefore safety measure is chosen. In case of an access control system to a vault the situation is 
different. Heartbeats are sent between an actuator to open the door and the input screen. If we as-
sume that the door of the vault can be opened manually from the inside – low risk level to people 
being inside the vault –, strong authentication (generating a MAC) has priority to avoid unauthorized 
access to the actuator. 
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8. Safety-security Requirements 

In the last two chapters the common approach was presented and discussed regarding the whole 
system, the building automation and control system (BACS). According to [IEC12] a system is “an 
integrated composite that consists of one or more of the [lifecycle] processes, hardware, software, 
facilities and people, that provides a capability to satisfy a stated need or objective.” 

As mentioned in chapter 6, it has to be distinguished between the system and (multiple) entity 
safety-security lifecycle models. Activities in Fig. 6-1 that include the word ‘overall’ meaning ‘sys-
tem wide’ are considering the system during execution whilst the other activities are to be performed 
for every entity in the system. It has to be emphasized that the different tasks of an activity are iden-
tical in every entity lifecycle. That is why there is only one safety-security lifecycle model. How-
ever, the results during the non-overall activities differ, e.g. the hardware architecture of a node and 
a gateway are different. Put another way, the entity lifecycle models are instantiated multiple times 
and are input to the system lifecycle model as shown in Fig. 8-1. 

8.1 Scope of Use Case 

In the chapter the pre-design process of the safety-security lifecycle model of a subsystem or entity, 
the node, is outlined. The node is taken as example to present the lifecycle model because it may be 
safety and security critical. The same is valid for a management device. A gateway, for example, is 
not safety critical because it just tunnels safety related messages and does not process them at all. 
However, if the gateway also interprets the payload, i.e. changes the format of a data value in the 
payload field of the message, it is safety critical because it processes the safety related message. For 
instance, that is the case when data points from LonWorks are mapped to BACnet. Moreover, a node 
by contrast to a management device is an embedded device. Thus, standard IT security measures 
such as TLS [RFC22] using asymmetric cryptography cannot be applied efficiently due to the enor-
mous computational and message overhead. As mentioned in [NOV05, p. 21], asymmetric crypto-
graphic operation on a smartcard takes up to 50% longer than symmetric cryptographic ones. In 
addition, the key size of an asymmetric cipher is 64 byte [RSA78] whereas the one of a symmetric 
cipher is 8 byte long [NIS46-2]. Embedded devices such as a node are low power entities equipped 
with very limited memory resources. To identify commonalities between safety and security in order 
to reduce effort, is therefore of greatest importance on node side. 
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The following use case, i.e. development of a safe-secure node and integration into the BACS, is 
based on knowledge gained from two EU funded projects: REMPLI (Real-time Energy Management 
via Power lines and Internet) [NOV05] and SafetyLon [NOV07, HER08]. 

 

Fig. 8-1 Relationship between entity and system lifecycle model 

The REMPLI project deals with the design and implementation of a communication infrastructure 
for distributed data acquisition and remote control operations, referred to as SCADA (supervisory 
control and data acquisition) tasks, using the power grid as communication medium. The intention of 
such an infrastructure is to allow remote meter reading and to gain more information on the energy 
consumption of end users. Security critical high level services such as energy billing can be built 
upon the REMPLI system. 

The goal of the SafetyLon project is to enhance LonWorks [EN149], both the protocol as well as the 
nodes, with additional features to meet the safety requirements of safety integrity level 3 (SIL 3) 
[IEC61]. Additionally, management tools are adapted to the safety needs. SafetyLon is the first 
BACS that meets safety requirements, and is prepared to be used for safety critical application like 
fire alarm systems. 

In detail, the use case focuses on pointing out dependencies between safety and security regarding 
technical issues, e.g. hardware and software architecture, functional safety-security measures, or 
testing methods. Less attention is paid to safety-security management or infrastructure, i.e. organiza-
tional processes. Nevertheless, they are absolutely important for succeeding in developing and using 
a safe-secure BACS. 
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8.2 Definition of the Concept 

The intention of a BACS developed and used according to the requirements of the safety-security 
lifecycle is to provide safe-secure communication among nodes to send process data to actuators or 
controllers as well as to enable transport service from nodes to a management device. Problems to be 
tackled are the safe communication among nodes and to the management device; additionally, se-
cure communication among nodes and to the gateway in the field level. Ensuring secure communica-
tion between gateway and management device is accomplished by standard security measures 

The goal of the use case is to develop a safe-secure node that is integrated into a standard field level 
network, i.e. the fieldbus. Reaction time of the node, i.e. time between getting an input and sending a 
message has to be about 300 ms. The physical medium of the network is TP/FT-10 channel [EN149-
2] with a bandwidth of 78,1 kbit/s. The transport protocol is called LonTalk [EN149-1] that provides 
the routing service. The hardware used to access the network is either the Shortstack Microserver 
[ECH02] or the LC3020 [LOY05]. They differ in computational power and memory resources as 
presented in subchapter 3.3. 

Each safe-secure node is able to process safe-secure and non-safe-secure messages. Furthermore, 
safe-secure nodes and standard nodes are connected to the same network. The standard node must be 
enhanced with hardware and software functions so that it receives input from sensors and sends out-
put to actuators safely. It provides safety-security functions to allow safe-secure message exchange 
with the management device and with other nodes. 

Functionality to meet safety-security requirements is encapsulated in a safe-secure firmware. Soft-
ware programmed to execute a task by using the firmware of a safe-secure node is called application 
software. Firmware is logically located above layer 7 of the ISO/OSI reference model [ISO74]. The 
reasons are the following: In the safety world a requirement is to prove that the residual failure prob-
ability is below a maximum level. To avoid investigation of the standard protocol regarding failure 
probability, it is treated as ‘black channel’. I.e., it is assumed that is does not contribute to failure 
probability reduction. Therefore, only the safety software must be considered when calculating the 
residual failure probability [REI01, p. 32]. Second, locating security above layer 7 makes end-to-end 
security possible. Desired in most security applications [REY05] where the standard protocol stack 
should remain unchanged. Finally, regarding standard LonWorks nodes, integration of safety-
security functions into the different layers of the OSI reference model is not possible because they 
are fully implemented in hardware and firmware without the change of alteration. Additionally, full 
compliance with the LonTalk standard is given [SCH03]. 

Due to the enormous amount of nodes, it must be possible to setup and manage the safe-secure sys-
tem remotely via a management device. Consequently, standard management tools must be en-
hanced with a plug-in and safe-secure nodes have to support the safe-secure network management 
commands. Network installation is therefore divided into two steps: first, the standard procedure is 
applied to establish the logical communication paths (the so called binding). After that a safe-secure 
procedure is executed, the so called safe-secure-binding. 
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The system shall comply with requirements of safety integrity level 3 (SIL 3) and evaluation assur-
ance level 3 (EAL 3). To explain the reason for a target SIL 3, refer to the risk graph in Fig. 6-3 
taken from IEC 61508. Severity of hazards resulting from BAC systems are in between insignificant 
C1 and very significant C3, but not disastrous C4, i.e. death of thousands of people. Significant haz-
ards resulting from bit fault occur often F3 and cannot be avoided P2, very significant faults leading 
to a hardware failures occur likely F2 and also cannot be avoided P2. However, such a failure do not 
occur very often F4, since BAC systems are typically not operating in EMC critical environments 
compared to industrial automation systems. Failures in general do not W1 or sometime occur W2, 
especially during management activities. In short, a SIL 3 BACS takes into account injury of hu-
mans and death of a human. 

According to IEC15-3, EAL 3 permits maximum assurance from positive security engineering at the 
design stage. EAL 3 is referred to as methodically tested and checked and provides a moderate level 
of confidence in the correct operation of security functions [HER03, p. 184]. The level ensures a 
rather high testing coverage, similar to the one required by SIL 3. It is an adequate level especially 
regarding the field level network that is susceptible to denial-of-service attacks, but not to viruses, 
worms or faulty updates. 

Target safety integrity and evaluation assurance level are determined at the beginning and action are 
taken to meet requirements of the corresponding levels. Such an approach is chosen because the 
BACS shall cover applications like fire alarm, access control, intrusion detection, or emergency 
lighting. In that field of application the defined target SIL is mandatory and target EAL desired. 

8.3 Safety Dependent Activities 

The scope of the safety hazard and risk analysis is the node connected to the fieldbus. On the one 
hand, hazards resulting from failures on the network must be investigated that are influencing node 
safety. It is not intended to ensure network safety because the network is part of the black channel 
and not included into safety considerations. On the other hand, the node itself has to be examined 
regarding failures. Moreover, the risk caused by the failures must be assessed and countermeasures 
according to the chosen SIL must be specified. 

Table 8-1 Typical network faults [REI01, p. 32] 

1. Crosstalk 6. Aging 
2. Broken cable 7. Temperature 
3. EMC failure 8. Human failure 
4. Stochastic failure 9. Wiring failure 
5. Stuck at failure 10. Transmission of non-authorized messages 
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Table 8-2 Safety requirement specification (network failures) 

Failure Hazard Safety requirement 
Single bit destroyed A new message can be pro-

duced which can cause mal-
functions. 

Check with a CRC  

Lots of bits destroyed A new message can be pro-
duced which can cause mal-
functions. 

Duplication of message and 
comparison of both messages 

Malfunction of the network 
(e.g. broken wire), entity 

A safety related message can-
not reach the consumer. 

Send messages periodically 
(heartbeat) and use a watchdog 

Malfunction of entity (of a 
producer) 

A safety related message can-
not reach the consumer. 

Send messages periodically 
(heartbeat) and use a watchdog 

Malfunction of the network 
access unit 

A message is received, but 
these messages do not corre-
spond to actual values. 

Use of a watchdog, use of a 
timestamp 

Loss of a message A safety related message can-
not reach the consumer. 

Send messages periodically 
(heartbeat) and use a watchdog 

Insertion of a message An old message, which has 
been stored for a certain time 
reappears, or the message is 
doubled, or another entity adds 
a new message. 

Use of safe source addresses 

Repetition of a message An old message, which has 
been stored for a certain time 
reappears, or a message is 
doubled by the producer or a 
network entity. 

Use of a timestamp 

Wrong sequence of messages The sequence of messages 
differs from the actual one. 

Use of a timestamp 

Delay of a message The message may be delayed 
due to a network entity. The 
value is not valid any more. 

Use of a timestamp 

Non-safety related message A non-safety related message 
looks like a safety related 
message. Or, a non safety 
related message prevents a 
safety related message from 
being sent. 

Use of a specific header, use 
of a safe source address, use of 
a timestamp, use of a watch-
dog 

 

Table 8-1 lists typical network faults. The faults can be categorized in three different groups: faults 
directly corresponding to human mistakes (8, 9), faults not directly relating to human mistakes (1-7), 
and faults either directly or indirectly referring to human mistakes (10). The cause of such a group-
ing is to point out that human mistakes must be considered during investigation of (network) faults. 
In [SCH00, pp. 255] it is called the ‘human factor’ saying that humans are the weakest link. 
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The next step is to identify the network failures resulting from faults listed in Table 8-1. Network 
failures can be separated into stochastic, i.e. hardware failures, and systematic failures as mentioned 
in subchapter 4.1. Such failures lead to hazards and must be countered by adequate countermeasures 
as presented in Table 8-2. 

Risk analysis can be performed by quantifying or qualifying the risk. As already mentioned in sub-
chapter 6.1, stochastic or hardware failures can be quantified, others only qualified by specifying 
discrete levels such as ‘low’, ‘medium’, or ‘high’. For example, risk of a ‘bits being destroyed’ can 
be calculated the following. According to [PHO97], the probability of a bit being destroyed on 
shielded twisted pair cables is p = 10-5. It is assumed that v = 10 safety related messages are sent 
every second. The rate of transmission errors U is [REI01, p. 40]: 

U1 = p*v = 10-4/s 

In other words, every 10000 seconds a single transmission error occurs and the risk of being a single 
bit destroyed per seconds is 10-4. The probability that two bits are destroyed is 10-9/s, assuming that 
probabilities are independent and therefore p2 is inserted into the aforementioned formula. As a re-
sult, a safety integrity requirement is that a CRC must be chosen so that the residual failure probabil-
ity of a message is at least below 10-7/hour (Table 4-1). Additionally, data duplication has to be used, 
i.e. definition of a safe message format. 

The target SIL does not only affect the safety integrity of safety functions, but also the hardware 
architecture of a node. As shown in Table 4-2, there is the possibility to either increase the hardware 
fault tolerance or the safe failure fraction (SFF) to achieve a target SIL. With regard to SIL 3 three 
ways are possible: Implement safety functions so that more than 99% failures do not result in a criti-
cal situation, or use a dual channel architecture (see Fig. 6-7), i.e. introduce hardware redundancy 
and guarantee that 90-99% of all failures do not cause a critical situation, or use a three channel 
structure and care for a safe failure fraction of 60-90%. 

Using no hardware redundancy requires very resource and time consuming measures such as very 
sophisticated online self tests to grant a SFF of greater 99%. For example, self tests have to be im-
plemented to test the volatile memory of the microcontroller that executes the safety functions. A 
memory test with a high diagnostic coverage (DC) is the galloping pattern test. It test effort is equal 
to 2*(2N+2n2) [WRA07, p. 211] where N is the number of address bits and n the number of memory 
cells in bits. Such tests cannot be executed on standard LonWorks network access units (NAU). 

As a consequence, a 1oo2 structure is selected. In general, there are two possible solutions to design 
such a structure: the NAU is considered to be the first channel and an additional safety chip is the 
second channel. However, the problem is that the Neuron Chip is not powerful enough regarding 
computational power and memory resources. Hence, just the LC3020 can be used, but hardware 
interfaces have to be redesigned to meet safety requirements. The second and better solution is to use 
both NAUs only to access the network. The node is designed so that it consists of two additional 
safety chips. 

Also failures on node side must be investigated. That is, a hazard analysis and risk analysis has also 
to be performed to identify failures on the node itself (Table 8-3). In [IEC61-2] a detailed list is pro-
vided that gives information on the various failures in the components of a microcontroller that must 
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be taken into consideration. Such a hazard analysis can be carried out by means of a failure mode 
and effects analysis (FMEA) – refer to subchapter 6.1. 

Table 8-3 Safety requirement specification (hardware node failures) 

Hardware  
component 

Failure Effect Safety requirement 

Controller Malfunction Wrong operation of 
device 

Use of a 1oo2 structure with 
watchdog and cross-checking; 
Use of cyclic communication 
via serial interface between 
both channels; use of CPU test 
at startup and during operation  

Memory Wrong values 
stored 

Wrong operation of 
device 

Use of memory test at startup 
and during operation 

Input device Stuck at failure or 
shortcut failure 
between different 
channels 

Wrong operation of 
device 

Use of test pulses; use of test 
pattern with different test 
pulses 

Output device to 
NAU 

Stochastic and 
systematic failures 
during data transfer 

Wrong operation of 
device 

Check of message by inde-
pendent channels and compari-
son of check-results 

Output device to 
actuator 

Failure of output 
switch 

Unable to switch off Use of test pulses 

 

In literature such as [GIE95] or [LIG02] failure rates for standard hardware components are listed. 
Failure rates are available for resistors, diodes, transistors or capacitors and the like, and are quanti-
fied in FIT (failure in time) which equals a risk of 10-9/hour. They are used to perform the risk 
analysis. For example, a risk resulting from the input device is a combination of failures rates of 
different components finally leading to a quantified risk value for the complete circuit. The same is 
true for the CPU, or static and volatile memory. See [BOE04, pp. 107; BOE07, pp. 260; WRA07, 
pp. 73] for examples how to calculate failures rates of circuits. Yet again, safety integrity require-
ments are derived from the risk analysis. E.g., test pulses must be sent every 2 seconds to ensure that 
residual failure probability is below the target level, or diagnostic coverage of RAM test must be 
about 90%. 

8.4 Security Dependent Activities 

Security activities start with an investigation of the security environment. First of all, it has to be 
clarified where entities in the field level network are placed. In [SCH02] it is distinguished between 
a controlled network where the entities are under control of the user who is the owner, and an uncon-
trolled network where the entities are under control of a user who is not the owner and therefore 
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considered to be an adversary. Definitely, the nodes in the use case are located in an uncontrolled 
and hostile environment.  

The physical environment of the node consist of 2 safety chips and a network access unit (NAU); 
moreover, of sensors and actuators connected to a node. However, the boundaries of the Target of 
Evaluation (TOE), i.e. the part that is subject to node security considerations, are the hardware inter-
faces to the sensors and actuators, and the interface to the NAU. Put another way, communication 
lines to actuators and sensors, and to the NAU are not included into security investigation. 

The next step is identification of the assets. That is, information or resources requiring protection are 
identified and valued afterwards. As mentioned in subchapter 6.1, assets are categorized into three 
groups. Two of them are under investigation in the following: operational data that the TOE stores, 
and TOE hardware, software and firmware. Additionally, the are valued by specifying four levels 
‘low’, ‘medium’, ‘high’ and ‘highest’ as shown in Table 8-4. 

Without proper process data the BACS is not working. Services to be provided by the system simply 
rely on the data. It is the core of the BACS informational resources [GOR00, p. 74]. As a conse-
quence, they are assigned the value ‘high’.  

Diagnostic information, and security audit and fail safe data are separated although the second one 
can be seen as part of the first one. Diagnostic information compromise information on the number 
of missing input and output test pulses, or the number of failures during communication between the 
safety chips or safety chips and NAU. Such data is interesting to evaluate quality in general and 
therefore is ranked ‘low’. Security audit and fail safe data summarizes information on security and 
safety critical events such as the number of unauthorized accesses to sensor data, or the specification 
of a hardware failure detected during execution of an online memory test. Such information is val-
ued with ‘medium’ since it gives advice of attacks or defects. 

Network management data, e.g. safe-secure binding data, is ranked ‘medium’. It is important for 
setting up a system, but it need not to be available immediately and to be protected from disclosure. 

TOE hardware, software, firmware must operate correctly to ensure the proper operation of safe and 
secure applications. A higher number of malfunction of node hardware or the scheduler decreases 
availability of functionality. Hence, the two assets are ranked ‘high’. Disclosure of the cryptographic 
keys result in breaching the security of the whole system and are ranked ‘highest’. 

Aforementioned hardware boundaries and security objectives to be specified next are based upon the 
following assumptions.  

 The communication between a node and a sensor or actuator is not susceptible to security at-
tacks. Connection to sensors or actuators is realized by a dedicated line that is not accessible 
from the outside. 

 The interface to NAU and between the safety chips is realized by a serial interface and not 
accessible from the outside. 

 Cryptographic measures will be resistant to cryptanalytic attacks [HER03, p. 75].  
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 Key used in cryptographic measures are located within controlled access components that 
prevent unauthorized physical access. Communication line to such components is not acces-
sible from the outside. 

 Hardware components of the node like a smartcard cannot be replaced. 

 A single organization is responsible for installing, configuring, maintaining and controlling 
the network [SCH03]. 

After determination of assets and assumptions threats to the assets are identified and risk associated 
with the threats is assessed. Generally, threats can be classified into three groups: interception, sabo-
tage, manipulation [GOR00, p. 78]. Interception denotes an unauthorized access to information vio-
lating node data confidentiality. Sabotage means prevention or denial of node functionality as well 
as destruction of node resources and therefore is threatening integrity and availability. Manipulation 
endangers confidentiality, integrity and availability, and can be separated into modification, deletion, 
insertion and replay. 

Table 8-4 Assets, value of assets, risk of threats and resulting risk level 

Operational data of the TOE Value Threat risk Risk level 
Input (sensor) data high highest highest 
Output (actuator) data high highest highest 
Diagnostic information  low medium medium 
Security audit and fail safe data medium high high 
Network management data  medium medium medium 
TOE hardware, software, firmware    
Safety chips high low medium 
Software functions scheduler  high medium high 
Cryptographic keys highest highest highest 

 

Input and output data has to be protected against attacks relating to the integrity, availability and 
authenticity of data. Since an actuator is reacting according to the sensor data, integrity and authen-
ticity must be granted. Furthermore, to ensure a high availability of the node, such data must be on-
hand when needed. However, confidentiality is not of importance. Why should the command ‘stop 
the machine’ after pressing an emergency button be protected against disclosure? Attackers do not 
get information to break security. Consequently, input and output data must be secured against sabo-
tage and manipulation. 

Diagnostic information, security and fail safe data, and network management data are relevant to 
manage and maintain the system, and to react to safety-security critical events on node side. Hence, 
integrity and authenticity must be ensured since diagnostic information, and security and fail safe 
data are the basis to respond in case of obvious malfunctions. Network management data, in turn, is 
the basis to setup and maintain the system. Availability and confidentiality are not taken into account 
because first if node data is not available for some time, a malfunction in general must be assumed. 
Second, revealing for example security audit data does not help to manipulate, but maybe to evaluate 
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the quality of the system. As a consequence, threats resulting from sabotage and manipulation have 
to be considered. 

The safety-security related node hardware, i.e. the safety chips, and the part of the firmware that 
schedules the functions have to be guarded against sabotage, in particular the safety chips, and ma-
nipulation, not against replay, but insertion, deletion and modification. Integrity of hardware and 
software is a prerequisite so that safety-security functionality can be provided according to expecta-
tion.  

Cryptographic keys are required to communicate in a secure way. Since symmetric keys are pre-
ferred in field level networks (see subchapter 6.3), they must be kept secret on the node and trans-
ferred securely to the right node. Additionally, they must be on hand when a message should be se-
cured. As a result, confidentiality, integrity, availability, and authenticity has to be ensured and func-
tions are required to counter interception, sabotage and manipulation. 

Whereas it is a common practice to use a quantitative approach for risk assessment – see [BOE04, 
pp. 15] for various examples –, security often uses a qualitative approach. Quantitative approaches in 
the security domain do not use failure probabilities, but solely assesses risk in terms of money. A 
criteria is the annual loss expectancy (ALE) [SCH00, pp. 301]. The basic idea is to take all the 
threats, estimate the expected loss per incident and amount of incidents per annum. 

To assess the risk, the risk matrix presented in Table 6-1 is applied. At first, threats to the assets have 
to be valued, i.e. the threat likelihood must be specified (Table 8-4). Since input and output data are 
processed and sent on a regular basis, risk of threat is ‘high’. Diagnostic information gives informa-
tion on the quality of the node and is not directly corresponding to security critical events. Threats 
are not very likely and the risk is determined to be ‘medium’. On the contrary, security audit and fail 
safe data relates to safety-security critical events. They may give the attacker a feedback. That is, he 
can verify if his attack was recognized. Risk level of the threat is ‘high’. Network management data 
is processed and sent at a defined time (installation of the node). Afterwards its use is absolutely 
unpredictable for an attacker, though. That is the reason why the risk of threat is ‘medium’. 

Threat risk to safety chips is low because the node itself is mostly not or hardly physical accessible. 
Software functions scheduler is running permanently and is therefore on the one hand easy to attack. 
On the other hand it can only be accessed indirectly since it does not provide functionality to the 
outside. Hence, threat risk is ‘medium’. Cryptographic keys are used frequently and are exchanged 
at installation at a defined time. The risk of threat is ranked ‘highest’. 

Table 8-5 Security requirements related to TOE 

Security objective Security requirements Security functional family 
Authorization Use of an access control function FDP_ACF 
Integrity, Authenticity Use of message authentication code (MAC) FIA_UAU, FDP_DAU 
Confidentiality Use of a symmetric cipher FDP_ITT, FDP_UCT, 

FPT_ITC, FPT_ITT 
Availability Use of fault tolerance mechanism FRU_FLT 
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Taking the value of assets and the risk of threat levels as input to the risk matrix in Table 6-1, output 
as shown in Table 8-4 is received. Next security objectives must be determined. Most of them were 
already mentioned during discussion of the threats: confidentiality, integrity, availability and authen-
ticity. A further security objective is authorization meaning that all assets should only be accessed 
and processed by the ones that are allowed to. 

Security requirements are derived from the security objectives in the next step. Requirement specifi-
cation also accounts for the organizational security policy (OSP). It specifies rules, procedures and 
guidelines for the different lifecycle activities. In the use case the OSP consists of a single rule: 
‘Topics related to safety must be in accordance with IEC 61508’. Security requirements can be di-
vided into functional and assurance ones (see subchapter 4.2). Since the evaluation assurance level 
was already fixed (EAL 3), in the following only security functional requirements are dealt with.  

Table 8-6 Security requirements related to operational environment 

Reason Security requirements Security functional class 
Security operations (MAC, cipher) Use of cryptographic keys FCS 
Non-disclosure of keys Smartcard support - 
Update keys simultaneously  Use of timestamps FPT_STM 
Reaction to attacks Security audit FAU 
Integrity of software functions scheduler Use of online self tests FPT_TST 

 

Table 8-5 shows security requirements directly relating to the security objectives. And the dedicated 
security functional family in [IEC15-2] is listed that gives the detailed requirements. Additionally, 
Table 8-6 presents security requirements that are specified in order to support requirements men-
tioned in Table 8-5. For example, symmetric ciphers are used to grant confidentiality of data. Such 
ciphers use cryptographic keys to cipher the data. The keys, in turn, must not be disclosed since 
symmetric ciphers with private keys are applied. In the end, keys are subject to attacks and have to 
be updated.  

8.5 Safety and Security Integration 

As a result from the safety dependent activities a safety requirement specification is available. A 
security requirement specification, in Fig. 6-5 referred to as protection profile, is the output of the 
security dependent activities. The next step is to perform the conflict resolution and measure as-
sessment to receive a conflict free set of safety-security requirements that are influencing hardware, 
software and lifecycle process requirements as shown in Fig. 8-2.  

In the following only such safety and security requirements are examined that have an impact on 
hardware and software requirements of the node. Others are out of the scope of the use case. How-
ever, they are of great importance and lots of commonalities can be found. Examples are: require-
ments on the configuration management; requirements on the type of testing, requirements on the 
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use of methods to avoid design faults or requirements on documentation mentioned in [IEC15-3] and 
[IEC61-2, IEC61-3].  

Before starting with conflict resolution, a conflict resolution policy has to be specified. In the use 
case the policy consists of two rules: 

1. Prefer safety requirements to security requirements if security reduces safety. 

2. Otherwise, use security requirement in order to consider also intentional attacks. 

 

Fig. 8-2 Influence of safety-security requirements on different types of requirements 

According to Fig. 7-4, the first step of the conflict resolution approach is to group the requirements 
into three categories. First, detective requirements such as ‘Use of a timestamp’, or ‘Use of a 
CRC/MAC to detect integrity faults. Such requirements lead to functions that detect faults or inci-
dents. Second, preventive requirements like ‘Use of symmetric ciphers’, or ‘Use of an access control 
to prevent from unauthorized access to resources’. The type of requirements results in function aim-
ing at avoiding failures or incidents. Third, corrective requirements that specify actions to be taken 
after a failure or incident has occurred. As mentioned in subchapter 7.2.1, requirements of the type 
are likely to be conflicting. 

Table 8-7 shows four corrective safety and security requirements, respectively. They are specified 
because of a fault or incident being detected by a detective function. The first fault lead to a ‘hard-
ware failure’. For instance, the online volatile memory test revealed a fault in a sector of the RAM of 
the first safety chip. From the safety point of view it is required that the safety chip switches to fail 
safe state immediately. Since both chips absolutely must agree on everything that should be exe-
cuted (two channel architecture), fail safe state of one results in fail safe state of the complete node. 
Security requirement says that the first chip has to go to fail secure state and the second one takes 
over. The conflict is solved by taking the safety and discarding the security requirement. In the case 
security reduces safety – rule one of the conflict resolution approach. 



  Safety-security Requirements 

 89

The second fault leading to an ‘integrity failure’ results in similar safety and security requirements. 
Such a failure is detected due to CRC or MAC mismatches. Safety requirement is part of the security 
requirement. As security does not reduce safety, the security requirement is chosen – rule two of the 
conflict resolution approach. Failure 3 and incident 4 have no impact on security and safety, respec-
tively. Consequently, the safety requirement as a reaction to ‘Message lost’ and the security re-
quirement to ‘Disclosure of key’ is determined to be a final safety-security requirement. 

Table 8-7 Corrective safety and security requirements 

Failure/incident Safety requirement Security requirement 
1. Hardware failure Fail-safe state of node Fail-secure state of safety chip 
2. Integrity failure Discard message Discard message; after five successive inci-

dents send message to network management 
device to signal attack. 

3. Message lost Fail-safe state of consumer none 
4. Disclosure of key none Stop communication until new key available 

 

At this stage a few commonalities between safety and security can be identified. Beside similar tools 
(e.g. methods to identify risk) and approaches for analysis, some safety and security requirements 
are identical. If safety and security measures are used jointly and not installed in parallel, a potential 
for high synergies can be acquired. In the following an example of measure assessment as outlined 
in subchapter 7.2.2 is given. 

In a safety related system a source addressing model is used to guarantee message exchange between 
safe nodes only and to avoid message insertion of non-safety related messages (see Table 8-2). 
Therefore each producer is assigned an additional unique address, a so called safe address. The re-
ceiving consumer checks this safe address against its access list and only allows reception of mes-
sages in the list. The safety integrity is given by a CRC checking and by the transfer of a safe ad-
dress within the safe message which can only be generated by safe nodes. 

Access control to network management data is realized by specifying a protocol different from the 
one used to exchange process data. Therefore, each node gets a safe address. Additionally, the ex-
change is based on a request/respond model where only the network management device sends a 
request to a node with a defined safe address and just a node sends a response. Hence, it is guaran-
teed that only a network management device can read or write management data. 

In a secure system similar measures are used. An access control is also based on the node address, 
but instead of the CRC a cryptographic message authentication code (MAC) is used that cannot be 
recalculated without the knowledge of the appropriate key. According to the node address and in 
case of a proven authenticity of the message, data can be read or written. 

A matching of the requirements and measures can lead to synergies in the design of a safe-secure 
system. In the example the CRC is replaced by the MAC which allows to remove the safe address. 
Access control is now managed by standard network addresses and the requirement to identify pro-
ducers belonging to the consumer is realized by a particular key only available to the producer and 



 90

consumer. Moreover, each node shares a unique key with the network management device. Assum-
ing a 1 byte CRC and a safe address of 3 byte [NOV07], overhead in every message part is 4 byte. 
Since data is duplicated to ensure a minimum of residual failure probability (see Table 8-2), the 
overhead of each message is 8 byte. On the contrary, a 3-DES [NIS46-3] MAC as mentioned in 
[NOV05, pp. 29] is also 8 byte long. That is, message length does not increase, but message is 
guarded against intentional attacks also. And implementation of a further protocol is not required 
any longer since every node and the network management device protect their messages with a 
unique key. 

In general, security measures will replace safety measures since measures designed for safety do not 
withstand intentional attacks. E.g., a CRC protects the integrity of a message, but can be recalculated 
online. Hence stochastic faults are discovered, but an attacker is not impeded to manipulate the tar-
geted information (asset) as well as the CRC. Important factors to be considered when replacing 
safety measures are shown in Fig. 7-7. 

Table 8-8 Performance of security functions [TRE05] 

Description Time [ms] 
Cipher message using 3-DES in outer CBC mode  58 
Decipher message using 3-DES in outer CBC mode  55 
Authenticate message with 8-byte MAC using 3-DES in outer CBC mode 53 
Verify 8-byte MAC using 3-DES in outer CBC mode  47 

 

First, safety integrity must not be jeopardized, i.e. the residual failure probability value has to be 
similar to the one before replacement of safety measures. In other words, a MAC must be selected 
that grants the same level of integrity than the non-secure CRC does. A possible way to solve the 
problem is introduced in [KRA94]: use of cryptographic CRCs. They are based on the same opera-
tions as a standard CRC is based on, but are combined with a one-time pad (i.e. a random irreducible 
polynomial) or a secure stream cipher. The advantage of such a cryptographic CRC is that mathe-
matical methods used to calculate the residual failure probability of a standard CRC – a must in the 
safety world – can also be applied to the cryptographic CRC. In contrast, it is a challenging task to 
produce a large number ‘real’ random polynomials [STA03, pp. 43]. 

Second, according to the evaluation assurance level (EAL) a minimum strength of function is speci-
fied and has to be proven. Put another way, the MAC has to be chosen in a way so that it cannot be 
defeated. It must adhere to the three properties mentioned in subchapter 1.3. 

Third, software and hardware environment has to be considered. Using a smartcard with a symmet-
ric cipher algorithm being implemented in hardware, results in less computational time than calculat-
ing the same algorithm in software. Furthermore, memory resources of embedded devices are low 
compared to PCs. Replacing the safe address of 3 byte to be stored in an access list as identification 
of a producer by a 8 byte key, increases memory consumption. On the other hand, since the imple-
mentation of a network management protocol is not required, some memory space is saved. Whereas 
memory space required for the network management protocol is a constant value, memory consump-
tion of keys depends and raises with the number of producers a message is received from. Since it is 



  Safety-security Requirements 

 91

assumed that a safe-secure node does not receive messages of more than 20-40 different producers, 
security measure is applied. The assumption is based on the requirement stated in Table 8-2: Heart-
beats must be sent on a regular basis (e.g. every hundred milliseconds or every 5 seconds) by a pro-
ducer and processed by the consumer to reset the watchdog. Due to the low bandwidth, congestion 
on the network is inevitable and functionality is reduced when 60 producers send heartbeats to a 
single node. Bandwidth overhead, however, does not change whether the safety or the security meas-
ure is used.  

Finally, performance of measures and the impact on field of application are examined. Referring to 
Table 8-8, generating and verifying a 8 byte CBC-MAC [NIS11] on a smartcard takes about 50 ms 
of time whereas the process of calculating a CRC like the ones mentioned in [KOO04] lasts about 
300-500 µs [PRE06, pp. 90]. Consequently, ensuring integrity with a MAC excludes applications 
like emergency push button since an overall reaction time, i.e. time from pressing the button on 
Node A and stopping a machine connected to Node B, of less than 150 ms is required [REI01, 
p. 27]. A requirement specified in the concept of the uses case is to have a node reaction time of 
300 ms – so a MAC is the preferred choice. 

Table 8-9 Safety-security requirements 

Hazard, threat Safety-security requirement 
Loss of a message Send heartbeats and use a watchdog 
Insertion of a message Use of a MAC and timestamp, store information of 

last message received 
Replay of a message Timestamp, store information of last message received 
Wrong sequence of messages Timestamp, store information of last message received 
Delay of message Timestamp 
Modification of data Use of a MAC 
Disclosure of data Data encryption 
Unauthorized access to data Access control 
Availability of data Data duplication (hardware architecture) 
Software function scheduler modification Software monitoring 
Failure in volatile, non-volatile memory, 
and CPU 

Online self tests 

Failure in input, output device Test pulses, test pattern 
 

Table 8-9 presents the final detective and preventive safety-security requirements. A lot of synergies 
are identified that reduce implementation and computational effort: 

 Safe address of node used as node identification to perform a security access control 

 Timestamps to detect network failures and carry out key updates synchronously 

 MAC to verify integrity and authenticity of messages or data on a node 

 Hardware tests like RAM tests support integrity of software function scheduler. 

 The 1oo2 channel architecture increases data availability. 
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Moreover, corrective requirements are listed in Table 8-7. Together with the implementation re-
quirements specified during measure assessment (e.g. quality of the MAC) they are the base for 
hardware and software realization. 
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9. Software Realization 

The safety-security requirements are the basis of hardware and software realization as shown in Fig. 
6-6. They are influencing the software requirements and the hardware architecture. The last men-
tioned is dealt with at the beginning of the chapter. An overview of the architecture of the node is 
presented, not a close look to the details (e.g. hardware schematics of a safe input) is made. Put suc-
cinctly, hardware is discussed with the level of detail required to understand the software design. 

The chapter focuses on the software design, the development and testing, and the operation of the 
node software. A high level view of the activities of lifecycle micro-processes are presented in the 
following, not discussing software modules in detail neither presenting implementation aspects such 
as source code listings. The software lifecycle model is the V-model [BRO93] because it is the basis 
of the software safety lifecycle mentioned in [IEC61-3]. Additional activities are integrated taken 
from an approach to software security (subchapter 5.2.4) – the idea of engineering software in a way 
so that it also works correctly under malicious attacks [MCG06, p. 3]. 

9.1 Hardware Architecture 

The hardware architecture as shown in Fig. 9-1 consists of two microcontroller, Saf-sec Chip 1 and 
Saf-sec Chip 2. They are implemented to satisfy the requirement ‘Use of a 1oo2 structure’ (a two 
channel structure) listed in Table 8-3. The first channel is Saf-sec Chip 1 and the second Saf-sec 
Chip 2. 

In a 1oo2 structure always both channels have to agree to perform an operation like setting a safe 
output or reading an input. For that reason both saf-sec chips are connected to the safety related in-
put/output unit. The unit consists of circuits designed in such a way that they also can be tested by 
means of test pulses with test pattern. More information on test circuits can be found in [WRA07, 
pp. 79]. 

Smartcards equipped with a microcontroller are used as a security token to store cryptographic keys 
and protect them from disclosure. Additionally, network management data is stored in the EEPROM 
of the smartcard. As the channels have to carry out the same task on their own and data availability 
ought to be increased, each safe-secure node consists of two smartcards. In the architecture pre-
sented in Fig. 9-1 a further intention of the integration of the smartcard is to support node security. 
On the contrary to two other approaches mentioned in [PAL03] where the smartcard is the interface 



 94

to the network or the interface to the input/output unit, in the architecture the smartcard cares for 
operations with symmetric keys such as ciphering or authenticating a message. 

Smartcards are the preferred choice because they are small, well standardized in ISO 7816 [ISO78], 
tamper-proof, i.e. physically protected and not accessible in an unauthorized manner, and consume 
very little power [SCH03]. It has to be mentioned though that they are not invulnerable against any 
kind of attack [SCH00, pp. 222]. The drawback compared to a simple secure EEPROM is the addi-
tional programming effort. Programs on the smartcard must be developed to handle the keys used for 
security operations and other data, and to perform the security operations. 

 

Fig. 9-1 Safe-secure node hardware architecture 

Network access is realized by a single dedicated network access unit (NAU), the EN 14908 chip: 
Shortstack Microserver or LC3020. Such an architecture corresponds to the one illustrated in Fig. 
6-8(c). It is the same architecture used for nodes in SafetyBUS p as outlined in subchapter 3.4. It 
was selected because seen from the network side a safe-secure node behaves like a standard node. It 
has a single unique network ID, sends and receives messages, is accessible and configurable via 
standard network management tools. Thus, installation and maintenance of the BACS can be ac-
complished in a convenient way. As an one-to-one relationship between NAU and Safe-sec Chip 1 is 
specified, synchronization of sending to and receiving messages from the EN 14908 chip is easy to 
manage via a serial interface. Last but not least, less hardware compared to other architectures 
shown in Fig. 6-8 results in fewer costs – very important when thinking of systems with thousands 
of nodes. 

9.2 Design 

The firmware is organized in a three layered architecture and located above ISO/OSI layer 7 – equal 
to the approach chosen in PROFIsafe (refer to subchapter 3.4) – as shown in Fig. 9-2. Since only 
Saf-sec Chip 1 is connected to the EN 14908 chip, the lower layer differs between the chips. Short-
stack API and Saf-sec Chip Orion Stack API, respectively, are third-party ISO/OSI layer 7 software 
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located below the first layer of the firmware. They care for the transmission of data from and to the 
chosen EN 14908 chip. Their software is not part of safety and security considerations. They are 
already part of the ‘black channel’ and hence not outlined in the following. 

On top of the firmware is the application layer interface. It offers the application programmer func-
tions that are used to realize safe-secure application software. Typical functions are sending and 
receiving functions, writing to and reading from the smartcard, receiving value from the safety re-
lated input or setting the safety related output, or write and read access to the sensor and actuator 
data stored in a table being part of the safe-secure software. The application layer interface provides 
a convenient way of programming safety-security applications without taking care of safety-security 
functions encapsulated in the safety-security layer. 

A part of the first safety-security firmware layer is called network access layer interface. It is an 
abstraction layer that makes access to the LON possible regardless of the underlying third-party 
software, the Shortstack API with the Shortstack Microserver or the Saf-sec Chip Orion Stack API 
with the LC3020. Functions of the network access layer are declared in such a way that they encap-
sulate functions of the Shortstack API or the Safe-sec Chip Orion Stack API. Since only Saf-sec 
Chip 1 is connected to the LON, the network access layer is not implemented on Saf-sec Chip 2. 
Another part of the first safety-security firmware layer is the saf-sec chip interface that handles data 
exchange between both saf-sec chips. It includes a hardware dependent driver and a software API 
that interfaces with the safety-security layer. It offers a function to send data to and receive data 
from the corresponding saf-sec chip. 
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Fig. 9-2 Software design of safe-secure node 

The safety-security layer is located in the middle of the software design and comprises all software 
functionality directly referring to safety-security. It is interfacing with the application layer interface, 
and the network access layer interface and saf-sec chip interface. The safety-security layer is sur-
rounded by two other layers, in other words, the safety-security firmware is separated into three lay-
ers, to make it absolutely independent from the third-party software. Second, the third layer is speci-
fied to hide safety-security functionality from the application programmer. Such a layer eases pro-
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gramming and avoids misuse of safety-security functions since it must be assumed that application 
programmer are not familiar with details of the firmware functionality. 

The safety-security firmware layer 2 consists of multiple parts related to safety-security, i.e. primary 
functions: online self test module, safety related input/output module, software monitoring, or safe-
secure protocol stack. Other parts are supporting the desired functionality called supporting func-
tions like the smartcard interface. Albeit not part of layer 2, the scheduler and state machine, and the 
saf-sec chip interface are also supporting functions. 

The online self test module includes online tests that are executed to guarantee a high integrity of the 
hardware by revealing faults in the different parts of the hardware. Tests are separated into volatile 
memory (RAM), non-volatile read only memory (FLASH), and CPU tests. In [TAM07] implemen-
tation examples are presented. In [WRA07, pp. 203] different test algorithm are outlined. 

In general, volatile memory test algorithms differ in test effort and diagnostic coverage. A high test 
effort and a high diagnostic coverage is ensured when using the galloping pattern test, a low one 
when implementing the marching bit test [HOE86, pp. 7-50]. The level of the diagnostic coverage 
depends on the faults revealed by the test. Test with a high level detect faults according to the DC-
fault model others only detect stuck-at faults (see subchapter 4.1). 

Tests of the non-volatile read only memory relies on parity bits, checksums or CRCs [WRA07, 
pp. 213] whereas diagnostic coverage of the first is low and the last is high. To withstand intentional 
attacks also, the CRC is replaced by a MAC. The non-volatile memory is grouped in blocks of 256 
byte. A 8 byte static MACstatic is calculated using the data of the block and stored for each block in a 
defined area in the EEPROM before installation. During operation the data is read from the memory 
periodically and a MACdynamic is calculated on the smartcard and compared with MACstatic stored in 
the EEPROM. A matching of the MACstatic and MACdynamic indicates that the integrity is granted. 
Storing the static MACstatic in the EEPROM of the smartcard is not required because it is a assumed 
that a MAC is calculated in a way so that it meets requirements mentioned in subchapter 1.3. Hence, 
it is not susceptible to brute-force attacks with reasonable computational effort. 

Safety-related input/output module is responsible for testing the inputs and outputs, and to provide 
functionality to set/reset an input and to get the value of an output. Testing of the safe I/Os has to be 
synchronized between the saf-sec chips. In contrast to the aforementioned online self tests, safe I/O 
tests are performed in close cooperation between the saf-sec chips. Hardware schematics are de-
signed in such a way that inputs signal is received and output signal set by both chips, and that test 
signals can be sent from one chip and received and evaluated by the other chip. As a consequence, a 
software function of the module triggers a test pulse on the first saf-sec chip and a software function 
on the other saf-sec chip checks if the test pulse has been received.  

The objective of software monitoring is to ensure software integrity being part of the systematic 
integrity, in contrast to self tests that care for the hardware integrity. It is a means to detect if a 
safety-security functions located in the volatile memory were executed according specification or 
have been altered due to unauthorized modification. Such misbehavior is possible because of soft-
ware faults during the design or implementation, and exploitation of design and implementation 
vulnerabilities by attackers, respectively. 
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Software monitoring can be distinguished between time based and logic based monitoring [HOE86, 
pp. 7-86]. Both are integrated into the safe-secure firmware. The first type uses a timer with an inde-
pendent time base. Typically, such a timer is called watchdog timer and realized in hardware. So 
software functions are monitored by measuring the execution time. After completion of a function 
the watchdog is reset by a software command. If the execution takes too long, the watchdog is trig-
gered and predefined actions are taken. The type of monitoring is integrated to check if the system is 
blocked or modified in a way so that execution takes much longer than expected.  

Logic based monitoring is used to check if functions have not been bypassed. Therefore, a counter is 
implemented that is increased every time the function was executed. Such a counter is available for 
every safety-security function. The counter values are exchanged within fixed periods of time be-
tween the saf-sec chips to detect a fault in the firmware. If the counter values are not equal on both 
saf-sec chips, predefined actions are taken. 

The safe-secure protocol stack incorporates functionality to send and receive sensor/actuator data in 
a safe-secure way. Additionally, is supports network management activities such as configuring a 
node or exchanging security audit data, and handles the key update procedure of keys applied for 
security operations. The message structure used for the different tasks is shown in Fig. 9-3.  

 

Fig. 9-3 Safe-secure message structure 

A safe-secure message consists of two parts in order to detect multiple integrity faults. Moreover, a 
message authentication code (MAC) is added to the message to increase the level of data integrity 
and as a means to verify authenticity. Each message part starts with a one byte ID. The lower six bits 
give information on the length. The upper two bits are used to identify the message: sensor/actuator 
message without (00), network management message (01), key update message (10), network time 
synchronization message (11). Both message parts include a two byte timestamp: the first the upper 
two bytes, the second the lower two bytes of the four byte timestamp. Such a design allows message 
parts of equal length and hence a symmetric implementation of the stack. The size of the payload 
field can vary from one to sixty four (26) byte. Payload field itself is structured according to the mes-
sage type. 

In case of sending a sensor value each saf-sec chip build message part 1 and message part 2 and 
calculates the MAC. Saf-sec Chip 1 receives the complete message from the other chip and com-
pares the whole message. If the MACs and the two message parts are identical, the message is sent 
otherwise discarded. Consequently, faulty messages due to a node internal failure are not sent. That 
avoids a waste of bandwidth and saves computational resources on receiver side since it need not to 
process the faulty message. 

On receiver side the message is forwarded from Saf-sec Chip 1 to Saf-sec Chip 2 and processed by 
both (two channel structure): first the MAC is checked in order to verify integrity and authenticity, 
second the timestamp is used to check for insertion, repetition and wrong sequence of a message, 
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third the payload field is compared bit by bit to detect other integrity failures not being revealed by 
the MAC. Results on the checks are exchanged between both saf-sec chips. Only if both agree on a 
positive result, the payload is released for further processing for example by the application soft-
ware. 

The smartcard interface handles data exchange between saf-sec chip and smartcard. As mentioned 
before, smartcards in general and the data transfer in particular are standardized in ISO 7816 
[ISO78]. Consequently, the driver of the interface has to be realized in accordance with the standard 
specification. The API of the smartcard interface formats the massages. The structure of messages is 
also standardized in ISO 7816: so called application protocol data units (APDU) are specified to 
send a request and receive a response [NOV05, pp. 39]. 

 

Fig. 9-4 Overview of safe-secure state machine 

Safety-security functions must be called and executed on a regular base. For that reason a scheduler 
and a state machine are included in the firmware. To avoid computational overhead, to ease the inte-
gration of safety-security requirements and to reduce the likelihood of vulnerabilities, no commercial 
operating system is used. However, a static scheduling mechanism is realized with a fixed cycle time 
and a static sequence of functions, i.e. a single task scheduling. Such an approach first of all ensures 
a deterministic timing behavior. It guarantees that test pulses are sent or the RAM test is executed in 
fixed time intervals that cannot be ensured for example by the earliest-deadline-first scheduling 
mechanism [WOL01, pp. 377]. Second, static scheduling eases synchronization between saf-sec 
chips mandatory for the close cooperation between the saf-sec chips. Both chips start at the same 
time with the execution of function in the same order. 

The state machine controls the behavior of the node. According to inputs received, it decides to 
which state to switch to. In a safe-secure node five states are specified as illustrated in Fig. 9-4. After 
a reset the node is in IDLE state and runs through the startup procedure. For example, the hardware 
is tested, the hardware interfaces are initialized and configuration parameter are copied from the 
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smartcard to the RAM due to performance reasons. In case of no error the node enters to the RUN 
state where the node is operating. If security critical failures occur, the node enters FAIL SECURE 
state and if safety critical failures are detected, the node switches to FAIL SAFE state. In both states 
the functionality of the node is limited to a minimum that does not jeopardize security or safety. 
Both fail states are only left when the critical fault was eliminated by an operator. MODIFY state is 
used to configure the node, e.g. to make a safe-secure binding or to update keys. In the state the node 
provides only such functionality necessary to execute configuration requests and send the responses. 

9.3 Development and Testing 

Development of the firmware means implementation of the software design onto the target hardware 
by means of a programming language. That is, each primary and supporting safety-security function 
corresponds with a software module and is implemented by various software units or also called 
software functions. The result is source code for the saf-sec chips and the smartcard. During and 
after development firmware has to be tested in order to check that it complies to the software re-
quirements. Additionally, tests are performed to validate that the behavior of the firmware accords 
with the intended use. 

Safety-security related firmware is developed by using standard tools and standard programming 
languages. In addition, the firmware is uploaded to a commercial-off-the-shelf microcontroller. To 
ensure a level of safety-security, hardware is tested and guidelines for firmware development are 
specified. Such guidelines relate to organizational topics, the programming of code and test issues. 
They are a collection of ‘best practices’ and can be found in safety [HOE86, WRA07] as well as in 
the security domain [MCG06]. Examples of organizational guidelines are ‘Use of only one version 
of a compiler and linker’ or ‘Use of a compiler that is proven in use’ where list of possible bugs is 
available. Programming guidelines for example say ‘Functions of a software module shall start with 
the same prefix’. Or, ‘Choose meaningful and unambiguous names for functions and variables’. 
Other rules cover technical issues.  

A rule concerning technical issues mentioned in [HOE86, pp. 4-7] says ‘Consider carefully inter-
rupts against polling’. With reference to the safety related inputs the rule means the following. As a 
matter of fact, sensor input signals will not be triggered synchronously, but asynchronously. In other 
words, in most cases it is not predicable when an input signal is available. Consequently, the inputs 
are supervised by an interrupt service routine (ISR). It is a software artifact that is called by the inter-
rupt controller of the saf-sec chip every time a new input value is available. The new value is read 
from a hardware register and stored in a buffer as specified in the interrupt service routine. The ISR 
is called in parallel to the execution of the firmware. It requires computational power and slows 
down execution of software functions. If the input value changes permanently due to a maybe inten-
tional disturbance on the input line, ISR is called constantly and the node cannot perform its func-
tionality. 

Another way of managing the problem is to poll the hardware register. Therefore an explicit soft-
ware function is used that is called periodically by the scheduler. It reads the hardware register and 
for example stores the value in a software buffer. Such an approach is not susceptible to any distur-
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bance of the input line. As a consequence, influence on the behavior of the node from the outside is 
reduced. The disadvantage of polling the safety related input register is that is time critical: the soft-
ware function has to be called at least as often as a change of the input value is expected which is a 
strict timing constraint to be considered during implementation of the scheduler. 

A further topic to be investigated is the use of dynamic memory allocation. The safe-secure protocol 
stack necessitates software buffers to store the message received for processing them and to store 
intermediate results while waiting for the result of message verification from the other saf-sec chip. 
The buffers can be declared as static arrays at startup or as dynamic arrays during operation and 
when needed. On the assumption that not all software buffers are needed at the same time, the use of 
dynamic memory allocation results in less memory consumption. In the light of limited resources on 
embedded devices the fact is welcomed. On the other hand, declaring static arrays at startup leads to 
a fixed code size already known before operation and delivered for example by the linker. Conse-
quently, required memory resources can be estimated quite exactly – single variables in functions are 
not static. It is not possible that memory for a buffer cannot be allocated or memory cells are over-
written and protected resources are modified. Moreover, static buffers need not be released after use 
in contrast to dynamic buffers. In case of a frequent use of dynamic buffers it is likely that the re-
source is not freed, freed and used again afterwards or freed twice which leads to a failure. 

What also has to be considered during implementation is to check the return value of functions. In 
general, it is absolutely recommended to declare all functions in such a way that they return a value. 
Unchecked return values can cause to overlook unexpected states or conditions. An obvious example 
is the RAM test. In case of a revealed fault leading to a safety critical failure, an error code is re-
turned. Not checking the value results in not switching to FAIL SAFE state and therefore safety of 
the node is endangered. Another example is the access control. It is verified if a message of a pro-
ducer is accepted or not. A return value gives information whether the producer is authorized.  

Finally, the most security critical topic is a buffer overflow. In the case it is written outside the 
bounds of allocated memory regardless if static or dynamic. Thus, data is corrupted, the node firm-
ware crashes or malicious payload is executed. Such a problem might occur in a application layer 
interface function. A function to write sensor data into a 16 byte buffer is offered to the application 
programmer. Parameters of the function is a pointer to the data and the length of data. The pointer, 
however, points to a 20 byte data field and length of data is set to 20 byte. Inside the application 
layer interface function the data bytes are copied into the 16 byte buffer. To avoid a buffer overflow, 
length of data received must always be verified if it is less than or equal 16 byte. An error code is 
returned if data length is greater than 16 byte and data is not processed. In case of an attack data 
length maybe set deliberately to 16 byte or less. Again, buffer overflow is avoided, but data is proc-
essed. 

Beside organizational and programming guidelines also guidelines for testing are available. The 
firmware is tested first to verify and second to validate the software artifact. Testing the firmware 
means uncovering bugs for removal, but not to prove that firmware is error free. It is absolutely a 
necessity to test the firmware because complete avoidance of human mistakes during coding is not 
realistic. According to [WAN05] the probability of a fault for a well-trained and experienced pro-
grammer in software code is about 1%. Put another way, there is an error in every 100 statements 
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coded. Additionally, it must be mentioned that testing is a very good means to detect errors. On the 
other hand, a defined level of safety and security also requires further means such as well docu-
mented source code or well structured software specifications. In other words, supporting lifecycle 
activities that help to avoid faults during programming of source code. 

Testing is an important part of software development and an area under investigation for many years 
in the software engineering discipline, for example in [ZUS01, pp. 191]. A lot of terms are in use in 
the area of testing that are mixed up or classified differently. Fig. 9-5 provides a way of classifying 
terms related to testing. 

 

Fig. 9-5 Classification of terms related to testing 

First, tests are carried out to check small pieces of the software artifact like units or modules. For 
example, testing the RAM test implemented as a software module as mentioned in [AMA07] is a 
module test. Or, testing the software unit used to process a message received, is also a unit test. Sec-
ond, integration software modules or units and testing them is called integration testing. E.g., inte-
gration of units of the safe-secure protocol stack in order to trigger a request and receive a response. 
Integration testing also means migrating the software to the target hardware and perform tests. Fi-
nally, system testing stands for testing the complete software running on the target hardware of the 
node. That is, software modules like RAM test, safe-secure protocol, or safety related inputs and 
outputs are integrated onto each saf-sec chip and are tested for different criteria such as performance 
or functionality. 

Test types differ in the test objective, i.e. what is the focus of testing. They can be carried out at the 
different test levels. Fig. 9-5 lists some examples of function testing. The intention of the test type 
function testing is to verify if the requirements are met by the developed software. For example, the 
safe-secure protocol stack receives a message from an invalid producer. If the message is discarded 
and an appropriate error code is returned, the test was performed successfully. Or, a fault was intro-
duced into the RAM. If the RAM test does not reveal the stuck-at fault, the test failed. 

Another test is the performance test in which response times, transaction rates, and other time sensi-
tive requirements are measured and evaluated. The goal of the performance test is to check that per-
formance requirements have been achieved under different workloads. E.g., a change of a safety 
related input is recognized within 3 ms. Or, the node receives valid messages permanently and it is 
verified if all messages have still been processed according to expectation. Such tests are called 
stress tests or load tests. 
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Penetration testing is a security related test technique. The test objective is to determine how the 
node behaves under attack. As written in [MCG06, p. 172], penetration testing is ‘testing for nega-
tives’. Derived from identified security risks during specification, tests are performed to reveal vul-
nerabilities. E.g., a message with invalid length is sent to the node and is check if a buffer overflow 
in the network access layer interface is handled properly. Penetration testing is about testing the 
firmware on the node hardware, i.e. it is carried out at the end of software development. 

Installation testing has two purposes. The first is to ensure that the software can be installed under 
different conditions – such as installations where just a small/large number of producers and con-
sumers is specified – under normal and abnormal conditions. Abnormal conditions include insuffi-
cient memory, data transmission errors, wrong parameter settings. The second purpose is to verify 
that, once installed, the software operates correctly. This usually means running a number of the 
tests that were developed for function testing. 

Failure recognition and recovery testing ensures that the firmware can successfully identify failures, 
react properly and recover from a variety of hardware, software or network malfunctions with undue 
loss of data or data integrity. Recovery testing is an antagonistic test process in which the application 
or system is exposed to extreme conditions, or simulated conditions, to cause a failure. Automati-
cally and manually triggered recovery processes are invoked, and the application or system is moni-
tored and inspected to verify proper application, or system, and data recovery has been achieved. It 
is similar to penetration testing, but the focus is not only on malicious attacks. For example, it is 
tested if the missing of heartbeats from a defined producer is recognized and if the consumer enters 
fail safe state; moreover, if the consumer leaves fail safe state after heartbeats have been received 
again. 

The various test types can be executed by means of different test methods. The white box testing 
considers the software as a transparent box [WAN05]. The test type focuses on the inner structure of 
the firmware. Tests are designed in such a way that all statements in a unit are executed once (C0), or 
every branch (C1) or each logical path (C2) is run through. Put another way, white box tests differ in 
the test coverage (C) [HOW87]. 

Black box testing treats the firmware like a black box. According to the requirements specification it 
is verified if correct corresponding output values to input values are created. Whereas white box 
tests are applied for small software artifacts like parts of the RAM test or the receiving function of 
the safe-secure protocol stack, black box tests are performed in case of integration and systems tests. 

Code review is a static test approach that can be carried out either manually or automatically. Man-
ual code review is executed by experts together with the development team. Automatic code review 
is supported by tools that analyze the code. Both ways are concentrating on topics like: Is the code 
programmed according to the coding guidelines? Are the functions well documented? Does every if-
command also have a else-command? Is the interface between the layers clearly specified and im-
plemented accordingly? In [MCG06, pp. 123] code review tools are mentioned and presented. 

Every test type is based on test cases. Such test cases specify the target test item (safety related in-
put/output module or state machine), give a description of the test case, specify the expected result 
and the test data to be used. There are two possible ways to specify a test case: based on the re-
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quirements or derived from the code structure. The first one is applied in case of black box, the other 
in case of white box testing. 

On developing safety-security related software all three test types mentioned in Fig. 9-5 should be 
applied to verify and validate the system. White box test require more effort compared to black box 
tests. Each unit might be tested with various test cases depending on the test coverage and the com-
plexity. Faults can be located easier though because inner structure of the code is examined. In addi-
tion, white box tests are carried out by the programmers themselves since they are familiar with the 
structure of the source code. Black box tests, however, are performed by external testers to avoid 
that a wrong implementation and incorrect test cause a supposedly successful test result. 

9.4 Installation and Operation 

After validation and verification by means of test procedures the firmware is installed. In addition, 
an application software using functionality of the application layer interface has to be integrated. 
Some of the network configuration dependent parameter are specified and uploaded to the node. 
Next, the node is set into operation: hardware and software is initialized, and in the end the node is 
ready for providing its intended functionality. The following paragraphs concentrate on the installa-
tion and operation of node software whereas chapter 10 outlines such issues from a system point of 
view. 

Table 9-1 Node software 

Firmware Application software 
(examples) 

Configuration parameter Cryptographic keys 

Saf-sec Chip 1 Smoke detector Producer related Producer-consumer 
Saf-sec Chip 2 Fire damper Consumer related Node-management device 
 Emergency lighting Application related Node software integrity 

 

In essence, node software consists of four parts as mentioned in Table 9-1. First of all, the firmware 
different for Saf-sec Chip 1 and Saf-sec Chip 2 due to the asymmetric hardware architecture is part 
of the node software. It provides the required safety-security functionality and consists of three lay-
ers as illustrated in Fig. 9-2.  

On top of the firmware layers resides the application software. The piece of software specifies what 
the node is used for. In case of a fire alarm system application there are nodes with a smoke detector 
(sensor) application, others with a fire damper (actuator) application, or nodes having an emergency 
lighting (actuator) application installed. Some applications might be configurable by parameters. In 
the majority of the cases the application software is not realized by the same group being responsible 
for the development of the firmware. Nevertheless, the application software has also to be developed 
according to the requirements of the software safety-security lifecycle model. 

Each application software of a node necessitates ways to send its data and receive data from other 
nodes. Consequently, a number of producers to send and consumers to receive data in a safe-secure 
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way is going to be specified. For example, the smoke detector application on a Node A uses two 
producers OUT_sd1 and OUT_sd2 (Fig. 9-6) to send sensor values received from two smoke detec-
tors connected to the node. By contrast, the fire damper application on a Node C specifies four con-
sumers IN_fd1 to IN_fd4 (Fig. 9-6) in order to receive messages from other nodes. According to the 
information in the messages the fire damper is closed or opened. The emergency lighting application 
on a Node B includes two consumers IN_el1 and IN_el2 (Fig. 9-6) since it is assumed that two 
emergency lights are connected to a node. Again, depending on the data received the light is turned 
on or switched off.  

 

Fig. 9-6 Producer and consumer configuration 

To ensure dedicated security objectives, cryptographic keys are used. Software mentioned before is 
located in the FLASH of the saf-sec chips. However, the firmware part referring to operations with 
cryptographic keys (e.g. MAC generation or verification) is stored on the smartcard. In addition, 
keys are stored on the smartcard to prevent them from disclosure. At least there are three types of 
keys: the ones used to secure communication between producer and consumer (each producer has its 
unique key), others to exchange messages between node and the management device, and keys to 
ensure integrity of node software stored in the FLASH of the saf-sec chips. Differentiating between 
different types of keys is necessary, otherwise revealing a key results in breaching security of the 
whole system. E.g., message from producer A to consumer B was analyzed and the key could be 
received from the analysis. As a consequence, all other producer-consumer messages are not secure 
anymore. And messages between network management device and nodes as well as node software 
integrity are not protected any longer. 

Software being stored in the FLASH of the saf-sec chips is comprised in a single software image. As 
already outlined before, integrity of the software image has to be ensured during operation. Conse-
quently, the image is separated into blocks of 256 byte. Each block is secured by a MAC by apply-
ing a dedicated key. The MAC generation is performed before installation and then MACs are stored 
at the end of the software image in the FLASH too. Assuming an image of about 60 Kbyte and a 
MAC of 8 byte, additional FLASH memory of 1920 byte is necessary. 

The key to verify the MAC and check integrity of the software image is stored on the smartcard also 
before installation. Therefore, it need not be distributed over the network, yet security operation can 
be executed from the beginning of operation. Such an approach is called out-of-band initialization. 
The approach is also used to store keys to guarantee a secure communication between network man-
agement device and every node at initialization. 
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Fig. 9-7 Safe-secure startup procedure 

After every node was equipped with the proper software, it is installed and ready for operation. 
Every node runs through a startup procedure as shown in Fig. 9-7. Note that during startup of the 
node safety-security must always be ensured. The startup procedure is started after pressing the reset 
button on the node. Next, the hardware is initialized, i.e. the interrupt and exception vectors are con-
figured, the watchdog timer is set up and the like. Then the complete RAM is tested, the CPU 
checked and the MACs in the FLASH are compared with the ones calculated online on the smart-
card. If the tests are passed successfully, the safety related inputs and outputs are configured, and 
initialized with the predefined safe state value. As a further step the hardware interfaces are set up, 
i.e. the smartcard and saf-sec chip interface, and the interface to the EN 14908 chip are set into op-
eration. In case of succeeding in initializing the hardware interfaces, network configuration data is 
read from the smartcard and copied into volatile buffers in the RAM due to performance reasons. 
Finally, diagnostic information including security audit data stored on the smartcard is analyzed. The 
information also includes the last state of the node before reset. According to the information the 
node is set to RUN, MODIFY, FAIL SAFE or FAIL SECURE state. 

During the whole startup procedure no messages are processed and input values coming from the 
safety related inputs are ignored. And the safety-security application software is not executed. Put 
another way, the node does not react to any external input nor does it produce any output. In addi-
tion, the safety-security firmware does not react to inputs from the application. Thus, the node can-
not be influenced by malicious attacks from the outside. Second, the complete hardware is tested as 
well as the software stored in the FLASH. Consequently, integrity of the node is guaranteed. Finally, 
the node returns to the same state before reset. By doing so, it is impossible to change for example 
from a FAIL SECURE state entered after a deliberate modification of the software to RUN state and 
full operation by just resetting the node. 
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10. System Integration 

The intention of the chapter is to present a way of integrating a node into a building automation and 
control system (BACS) in a safe-secure way. Integration in the context means discussing the proce-
dure of configuring and maintaining a safe-secure node in a BACS. Related topics are establishing 
communication paths between producer and consumers, or key distribution and key updates. It is not 
meant to examine the topic integration in a broader context as mentioned for example in [SAU05] 
where the three major aspects of integration are presented and discussed: horizontal, vertical and 
temporal integration. 

As shown in Fig. 2-1, a typical architecture of a BACS consists of three levels: the public network at 
the top, the private in the middle and the field level network at the bottom. The characteristic of 
every level is mentioned in subchapter 2.1. Different entities are located in the networks. Beside the 
nodes there a two other entities relevant for safety-security considerations: the gateway and the net-
work management device. 

10.1 Gateway and Network Management Device 

The field level network, and private and public network are separated by dedicated entities, referred 
to as gateways in the thesis. Gateways provide a suitable protocol conversion between an IP-based 
private or public network, and a specific fieldbus protocol [LOB05, p. 11]. Often the gateway is 
going to have caching mechanism for a set of data objects to ease data exchange with clients in the 
outside world [PAL00]. The gateway is the entrance point to the field level. It makes remote access 
to the field level network possible. Hence, it is also called access point [REY05]. 

The gateway is not safety relevant and it is absolute transparent from a safety point of view when it 
does not interpret the payload of messages, but can contribute a lot to the security of the field level 
network. It is part of the ‘black channel’ assuming that it does not process safety related data. It re-
ceives a message, stores it temporarily, converts the received message into the other protocol and 
forwards it. That is, the gateway increases the transmission delay. Therefore measures are applied 
such as a timestamp and watchdog to detect too long delays [WRA05]. However, the gateway does 
not intentionally change or process the data, or acts according to specific data value.  

Situation is different in case of security. Attaching field level networks to IP-based networks ex-
poses the field level network to all kind of attacks that are common on the Internet nowadays. How-
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ever, as outlined in chapter 3 when examining standard BACS, very little security functionality ex-
cept BACnet is integrated. Therefore a lot of research has been made so far to increase security of 
field level networks. In general, there are two approaches: the integration of standard Internet secu-
rity measures into the field level network as presented in [TRE04]. The various network levels are 
considered to be a single security zone.  

Second, it is possible to divide the BACS into two security zones: the field level, and the IP-based 
private and public zone. In the IP-based zone standard Internet security measures are used whilst 
other measures are applied in the field level, referred to as smartcard approach in [PAL00]. In that 
case, the gateway not only converts the protocol, but also converts the security measures and must 
be considered to be security critical. In addition, the gateway can also check during security measure 
conversion if a message is allowed to access the field level network by means of an access control. 
In general, the gateway can be enhanced with security features such as a firewall [PAL00] to be a 
security related gateway so that is defeats attacks from the outside. It is important to mention that a 
security related gateway does not prevent from attacks coming from the inside. Hence, it supports 
security, but does not alone guarantee the security of the BACS. 

The two security zone is assumed in the following example: standard Internet security measures to 
secure the safe-secure message in the IP-based networks and the use of symmetric ciphers with pri-
vate keys stored on smartcards in the field level network. On the other hand, Internet security meas-
ures would have to be implemented on the nodes, but they are rather resource consuming [PAL00]. 
They often use asymmetric ciphers that add more overhead to a message and require more computa-
tional power compared to symmetric ciphers. Implementation of Internet security measures reduce 
the field of application of a safe-secure BACS because transmission time and processing time of 
messages on the node is increased. Consequently, the reaction time is lowered. 

 

Fig. 10-1 Communication in a safe-secure BACS 

The consequences of the two security zone approach are illustrated in Fig. 10-1: The key used to 
secure messages between network management device and node (path 1 and 2) must also be stored 
securely on the gateway. The reason is the following. The network management device and the 
gateway share a secure communication path 2 granted by Internet security measures. The network 
management device wants to send an authenticated request to Node A using the key KMD,A. It uses 
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the secure path 2 to the gateway. The gateway, however, must verify whether the message is allowed 
to access the field level network. Therefore, it takes the private key of Node A KMD,A and checks the 
MAC. In case of a successful check the message is forwarded to Node A (path 1). The node also 
must verify the authenticity of the message with its private key KMD,A. Node A sends a response by 
using the private key KMD,A. The gateway receives the message and checks the MAC and only for-
wards it if the check was successful. Finally, the network management device receives the message 
and can verify if the message is coming from Node A. 

Moreover, the keys of producers and consumers on various nodes that are exchanging messages 
from Domain 1 to Domain 2 and vice versa (path 1, 3, 4) have to be available on the Gateway A and 
Gateway B for the same reason mentioned above. Keys used for message exchange between pro-
ducer of Node A and consumer of Node C (path 5) being part of the same domain need not be stored 
on the gateway, though.  

To sum up, the gateway is transparent from the safety point of view (assuming safety related data is 
not processed), but not from the security point of view. So safe-secure message exchange is between 
node and gateway (path 1), gateway and network management device (path 2). Or between producer 
and consumer residing in different domains: Node A to Gateway A (path 1), Gateway A to Gate-
way B (path 3), and Gateway B to Node B (path 4).  

The network management device is connected to the private, but is accessible from the public net-
work and exchanges messages via gateways (Fig. 2-1). Such devices as the name suggests are used 
to manage the network by applying standard management tools. For management and maintenance it 
is advantageous to have unlimited access to resources, but it is a big security risk, especially when 
having free access to application and configuration data [SCH02, REY05]. A possible solution to the 
problem is to use tools limiting the access to the nodes according to rights of the operator by means 
of access control mechanism [SCH02].  

In a safe-secure BACS the problem is solved differently. Safe-secure messages received via the net-
work access unit (EN 14908 chip) are stored in a table in the ISO/OSI Layer 7 (Fig. 9-2), called the 
layer-7-table. Standard network management tools can read and write application data in the layer-7-
table. Data in the table, however, has not been processed by safety-security firmware yet. The data is 
equal to the one sent over the network. Only if integrity and authenticity is granted, the data is cop-
ied to a table of the safe-secure software, called the ALI-table. Theses values are used by the appli-
cation. If application triggers a sending process, it writes into the ALI-table and that data is used in 
the message to be sent. The complete safe-secure message is finally copied into the layer-7-table to 
forward it unchanged to the network access unit. In other words, the standard network management 
tools do not have direct access to the ALI-table and therefore cannot write or read safety-security 
related data without being recognized. 

To ensure a safe-secure access to safety-security related data, standard network management tools 
are enhanced with additional libraries or plug-ins as presented in [FIS07] for SafetyLon. The en-
hanced software manages the producer and consumer related parameters, application parameters, 
and cares for a secure storing of the cryptographic keys. The design of such a tool is beyond the 
scope of the thesis. However, as much information is conveyed to understand the configuration, 
commissioning and maintenance of a node. 
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10.2 Node Configuration and Commissioning 

Each node in the field level network must be configured so that it is able send message to other 
nodes and receive messages from nodes in a safe-secure way. As a result, producer and consumer 
related configuration parameter must be sent to the different nodes by the network management de-
vice. And cryptographic keys are distributed to the nodes. If required, also application related pa-
rameters are transferred to the node. In the following, it is assumed that the node is ready for opera-
tion as mentioned in subchapter 9.4; additionally, the producer consumer communication relies on 
network variable service (NV), and network management device to node communication is based on 
explicit message service. 

 

Fig. 10-2 Safe-secure binding example 

Node configuration consists of two major steps: first the standard afterwards the safety-security re-
lated configuration. And it is executed by sending requests from the network management device to 
the corresponding nodes. Standard network configuration with NVs is called binding. Each NV on a 
node has a unique index, already defined before installation of the node software. Theses indices are 
used to establish logic communication paths among nodes. Applying the names mentioned in Fig. 
9-6, the NV OUT_sd2 with index 2 of type output is bound to the NV IN_fd1 with index 4 of type 
input. 

Next the safe-secure binding is executed. In the process output NVs are referred to as producers and 
input NVs as consumers. In the following the safe-secure binding is explained on the basis of an 
example: Node A includes the producer OUT_sd2, and Node C the consumer IN_fd1 (Fig. 9-6). 
First, every node is assigned a safe-secure address in order to identify the node clearly as shown in 
Fig. 10-2. The address is different from the standard network identifier (NID) and used within every 
safe-secure network management message. Without a safe-secure address the node does not respond 
to any message except the one that includes the safe-secure address.  

Second, the consumer receives the private key KOUT_sd2, IN_fd1, which it always uses to check security 
of messages received from the corresponding producer. Besides, the value of the timing expectation 
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is set by the user. The value specifies the maximum time that can go by before the watchdog timer is 
triggered. Put another way, it is the maximum allowed time interval between two valid messages 
from the corresponding producer. If the watchdog was triggered, the consumer switches to a prede-
fined fail safe state. As outlined in Table 8-2, the watchdog is utilized to detect malfunctions on pro-
ducer side or of the network access unit, or to detect the loss of messages. The lower the value, the 
faster malfunctions and loss of message are detected. That is, the value specifies the maximum fault 
detection time. Though, the size of the value must be specified in correspondence with the delays on 
the nodes and the network. A too low value may decrease availability of the consumer. E.g., each 
nodes requires 300 ms to process a message, delay on the network is about 300 µs and negligible. 
Total delay is 600 ms. A timing expectation value of 700 ms would results in the fact that if just a 
single message was lost, the consumer enters fail safe state. 

Third, the producer is configured on Node A. It also receives the private key KOUT_sd2, IN_fd1 which is 
exercised to protect data sent to the consumer. Additionally, the value of the heartbeat send rate is 
transferred to the producer. The value is a multiple of the timing expectation. The factor used is 
equal to the number of messages that can be lost before the consumer enters fail safe state. I.e., a 
timing expectation on consumer side of 3 s would cause a heartbeat send rate of 1 s on the assump-
tion that 2 messages can get lost. 

 

Fig. 10-3 Payload field of a safe-secure network management message 

The safe-secure binding in particular and network management activities in general like sending 
application related parameters rely on a three step request/response mechanism, called a transaction. 
Request and response messages are formatted as shown in Fig. 9-3 and secured by a private key 
unique for each node and network management connection. That is, every node in the field level 
network shares a key with the network management device. To guarantee secure communication 
from initialization phase on, the keys are distributed out-of-band before installation and are stored on 
a smartcard as outlined in subchapter 9.4. In accordance with [FIS07] the payload field in the safe-
secure message is structured as illustrated in Fig. 10-3. 

To give details on the transaction mechanism the command ‘Configuring of a producer – Send the 
heartbeat send rate’ from Fig. 10-2 is taken as an example. 

1. Verify that the right node is addressed. The management device sends a request to the node 
with the safe-secure address of the node, authenticated with the appropriate key and asking 
the node for a ‘Start transaction’. 
The node checks authenticity and the node address. Moreover, it checks whether a transac-
tion is open or not. Only a single transaction can be opened since just one network manage-
ment device is allowed to configure the node. If all checks were passed successfully, the 
node returns a response including a transaction ID – a counter value increased every time a 
new transaction is opened. Consequently, each transaction can be distinguished.  
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2. Perform the network management command. In case of a successful response, the device is 
ensured that it is the right node to be configured. The device sends a request with the com-
mand ID ‘Set heartbeat send rate’ and the transaction ID received to the node. Furthermore, 
the heartbeat send rate and the NV index of the producer and a MACheartbeat calculated with 
the key of the producer KOUT_sd2, IN_fd1 over the heartbeat send rate value is included in the 
command related data. 
The node receives the message and first checks authenticity of the message. On success, it 
verifies the MACheartbeat of the corresponding producer. If authenticity is granted, the heart-
beat send value is stored in a buffer, and not yet written into the corresponding table for pro-
ducer and consumer related data. Received data that was copied into the buffer is returned to 
the device in the response message. If sent and received command related data is equal the 
device is sure that the right data is on the node. 

3. Test in case of a write command that network management data was written successfully on 
the node. The device sends a request with the ‘Commit transaction’ so that the network 
management command takes effect.  
On receiving the request the node writes the heartbeat send rate value to the table for pro-
ducer and consumer related data located in the RAM. As mentioned in subchapter 9.4, the 
data is copied from the smartcard to the RAM due to performance reasons. Additionally, the 
heartbeat send rate value is written into the smartcard and read back afterwards. The data is 
placed into the response message to the device. If command related data in the response 
message is also equal to the one included in the command request, it is guaranteed that 
heartbeat send rate value has been written and the command was executed successfully. 
With the ‘Commit transaction’ response the transaction is closed automatically. 

After configuration of the nodes, they are set into RUN state by the network management device. At 
this point of the time, the node still does not react to any incoming message or sensor input. It only 
tries to synchronize its time based on a centralized or decentralized approach [SEV07, pp. 24]. Fi-
nally, the node is time synchronized and configured, and start to process messages. 

10.3 Node Operation and Maintenance 

A lot of topics relating to operation and maintenance of the system in general were presented in sub-
chapter 9.4. Maintenance is concerned with activities like reconfiguration of the network, replace-
ment and installation of additional nodes. All the activities rely on the same mechanism as presented 
before in subchapter 10.2. Hence, they are not outlined again. 

Key update mechanism, however, is different from the initial key distribution. The basics were dis-
cussed in subchapter 6.3. There are multiple approaches like the one presented in [NOV05, pp. 49] 
or [GRA05, pp. 132]. In [SCH01] a security architecture including key update mechanism is pre-
sented for an BACS connected to the Internet. Generally, key updating is a sophisticated task and 
detailed discussion is out of the scope of the thesis. 
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In the following, operation of the system is highlighted. In particular, safe-secure communication 
between two nodes is outlined as shown in Fig. 10-4 is taken as an example. Node A runs the smoke 
detector application and includes the producer OUT_sd2. Sensor 2 is connected to the safety related 
input. Node C is equipped with the fire damper application and the consumer IN_fd1. A fire 
damper 1 is plugged to the safety related output. Both nodes were configured properly (safe-secure 
binding) as described in subchapter 10.2, network time synchronization was successful, and all saf-
sec chips are in RUN state. 

In case of smoke detected, the smoke detector sensor sends a signal to Node A. The signal is re-
ceived by both saf-sec chips (S1,1 and S2,1) as illustrated in Fig. 10-4. On the assumption that the 
smoke detector application triggers a message sending process when a signal has been received, the 
sensor value is embedded into a safe-secure message on both saf-sec chips. Next, they send the mes-
sage to the smartcards (S1,2 and S2,2) where the MAC with the appropriate key is calculated. In 
general, all operations that require cryptographic keys are performed on the smartcard to avert a 
disclosure of the keys. The smartcards return the complete safe-secure message structured as shown 
in Fig. 9-3 to the corresponding chip (S1,3 and S2,3). Since only Saf-sec Chip 1 is connected to the 
EN 14908 chip, Saf-sec Chip 2 sends its complete message to his neighboring chip (4). The result of 
the sending process are two safe-secure messages built in parallel on two chips being independent 
from each other. If the two messages are not identical, a failure in one of the chips must be assumed 
and the message is discarded. Hence, e.g. deliberate modification of the software on a chip can be 
detected. Finally, the message is sent to the EN 14908 chip (5) and transferred over the network. 
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Fig. 10-4 Safe-secure communication between two nodes 

The safe-secure message from Node A is received by Node C via the EN 14908 chip and sent to Saf-
sec Chip 1 (1). It, in turn, forwards the complete message to Saf-sec Chip 2 (2). Next both chip per-
form the following task in parallel: the message is sent to the smartcards to verify authenticity and 
integrity (S1,3 and S2,3). The result is returned to the chips (S1,4 and S2,4). Furthermore, other 
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checks are performed such as verification of timestamps. The final result of the various checks is 
exchanged between the saf-sec chips (5,6). If both agree on a positive end result, the fire damper 
application on each chip sets the safety related output (S1,7 and S2,7). Otherwise, the safe-secure 
message is discarded. 

Heartbeats, i.e. messages sent periodically to detect failures on the producer side or the network, are 
based on the same procedure. However, they are sent by Node A in defined time intervals and the 
application is not involved. The payload sent is the last valid one received from the sensor. By con-
trast, Node C processes the heartbeat the same way as mentioned before. 

In conclusion, any input to a node either from a sensor or the network is processed on both saf-sec 
chips independently and results are crosschecked. The same is valid for every output generated (out-
put to an actuator or network output). That is due to the required two channel architecture. All opera-
tions that necessitate cryptographic keys are executed on the smartcards to ensure a high level of 
security.  
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11. Conclusion and Outlook 

The possibilities to gain synergies by taking an harmonized approach towards safety and security in 
BACS is given in many areas. This fact is honored often, e.g., “Safety and security […] are closely 
related, and their similarities can be used to the advantage of both in terms of borrowing effective 
techniques from each to deal with the other.” [LEV95]. Yet little effort to combine the fields is given 
because applications are thought to be either safety or security critical. 

In [BUR92] it is stated that a system can be viewed as safety and security critical since systems can 
be seen from different points of view of course. That is especially true for the near future because 
IT-systems and also BAC systems are embedded in more and more influential parts of our living and 
working environment. And they are networked [PFI04]. For example, in building automation mainly 
for cost reasons a combination of formerly separated networks for safety, e.g., fire alarm system, 
security, e.g., access control, and operation, e.g. heating, ventilation and air conditioning, is desired.  

As a consequence, the thesis presents a common approach of a harmonized safety and security 
BACS. Techniques such as the risk analysis common in both areas are synchronized to figure out 
hazards that endanger safety or security of a BACS. Since various hazards even jeopardize both 
safety and security of the system, a dual usage of countermeasures is feasible. The safety-security 
lifecycle model presented specifies requirements for the different stages in development and use of a 
BACS. 

11.1 Results and Benefits 

The thesis introduces a common approach to functional safety and system security in building auto-
mation and control systems (BACS). The approach has two objectives, namely to specify a way 

1. how to integrate safety and security, and 

2. how to develop and use a safe-secure BACS. 

First, safety and security are harmonized, i.e. standard concepts and methodologies from both disci-
plines are applied and the focus is on the interaction between safety and security. Interaction in the 
context means areas are investigated where safety and security have identical or contradicting goals 
or requirements, or use identical or conflicting measures.  
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As a result, a conflict resolution approach and a measure assessment is introduced by the author. 
Such methods are necessary because not in every case safety will prevail over security. That may not 
be true seen from a system point of view – the complete system must always react so that life of 
people, and not protection of assets is ensured. However, on entity, hardware or software level the 
situation is different. Why should not a security requirement or measure instead of a safety one be 
used, e.g. a message authentication code (MAC) in lieu of a CRC and therefore also grant authentic-
ity? There is no negative impact on safety itself, but on the reaction time since calculation of a CRC 
needs much less time than calculation of a MAC. 

Conflict resolution is a means to handle conflicts on requirement level (Fig. 7-4). It specifies a rule 
based approach and a framework for conflict resolution. At the beginning a conflict resolution policy 
consisting of one to many rules is set up. Next, safety and security requirements are categorized in 
detective, corrective and preventive. Finally, the conflict resolution policy is applied to every correc-
tive and preventive requirement. The outcome is a set of conflict free requirements that is verified by 
threat-hazard and risk analysis afterwards. 

Measure assessment specifies a procedure of managing conflicts on function level. For that reason, 
measures are grouped into three classes: directly matching, unique and different effort. Whereas the 
first two do not show any interaction between safety and security, the third class does. Safety and 
security functional measures that require different effort, but are derived from the same requirement 
are assessed by using six factors, shown in Fig. 7-7. The result is that either the safety or the security 
measure is being implemented. 

Second, a safety-security lifecycle model is developed (Fig. 6-1) that specifies a way of developing 
and using a safety-security related BACS. It gives requirements for the different activities in the 
system life, starting with the concept and ending with the decommissioning of the system. It is based 
on the safety lifecycle model included in the international standard IEC 61508. Moreover, the way 
of deriving security requirements and functions presented in Common Criteria (IEC 15408) is inte-
grated into the lifecycle model. The result is the safety-security harmonized lifecycle model en-
hanced with activities like conflict resolution and measure assessment to cover the interaction be-
tween both areas. 

The safety-security lifecycle model includes activities relating to the entities of the system, others 
corresponding to the system (Fig. 8-1). There are multiple entity lifecycles, one for a node, another 
for a gateway, but just a single system lifecycle. Activities with the word ‘overall’ in the name are 
valid for the system, others for each entity. 

The lifecycle model defines four primary processes, each one including activities that determine 
requirements how to develop and use the BACS. Additionally, it incorporates supporting processes 
(Table 5-1). As the name implies activities of the processes support the primary and organizational 
processes (management, infrastructure, improvement, training). Activities of the supporting proc-
esses are invoked by the different activities of the primary processes multiple times. Organizational 
processes are the basis of the primary and supporting processes.  

Both objectives are realized in such a way so that the common approach is accepted by safety ex-
perts, security practitioners, and BACS developers and operators. Consequently, the common ap-
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proach is based on three international standards (Fig. 11-1), IEC 61508 covers safety related issues, 
Common Criteria (IEC 15408) security related issues, and IEC 12207 is the source of lifecycle re-
lated topics. In addition, it harmonizes safety and security in order not to specify new terminology 
and methodology, but add further activities to handle the interaction. Such activities are specified in 
a general manner, and intentionally avoid a very formal realization. 

 

Fig. 11-1 Basis of common approach 

The benefit of the common approach is different depending on the target audience. Developer and 
operator can apply the common approach to develop a BACS in a safe and secure way and to oper-
ate it according to safety-security requirements. In addition, costs and effort are reduced compared to 
an independent safety and security development of a BACS. The reason is that the commonalities in 
the area of functional and non-functional measures are used. E.g., message overhead remains equal 
compared to a safety only message, but also security concerns are covered. Or, some test procedures 
and test tools are the same for safety and security. Finally, methods are given to handle conflicts and 
assess measures. 

Customers benefit from the common approach because hopefully reduced development costs results 
in less expensive systems. Moreover, the structured and well described way of developing and main-
taining increases the quality of the BACS in general. Furthermore, since the safety as well as the 
security standard define levels of the degree of safety (safety integrity level – SIL) and security 
(evaluation assurance level – EAL), respectively, customers get the chance of comparing various 
BAC systems regarding their safety and security features. Put another way, the common approach 
allows for a categorization of BAC systems. 

Certification bodies such as TUV in Germany [TUD08] or Austria [TUA08] get the possibility to 
certify a system according to a well described set of requirements. Thus, customers are assured that 
requirements of a defined safety-security level are met. Room for interpretation and subjective per-
ception at the certification bodies leading to different decisions as the case arises are reduced. Today 
there is no approach to the problem publically available. Certification in the area of BACS gains 
more and more importance, especially in Europe. It will become a legal requirement to use certified 
products in public projects [FIS04]. 

In conclusion, the common approach is new in the sense that is specifies the safety-security related 
harmonized activities for the whole system life based on well known standards. Integrated safety and 
security approaches are publically available on requirement level [EAM99] or on risk level 
[STO06], but not in detail for a complete lifecycle and not for building automation and control sys-
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tems. Additionally, methods are specified by the author how to manage conflicts on requirement 
level and on function level. Two absolutely required tools in a common approach since conflicts are 
likely due to the different intentions of safety (risk reduction to people) and security (risk reduction 
to assets). The methods are verified and validated by examining concrete examples. 

The common approach is applied to a defined use case in order to prove the concept: development 
and operation of a safe-secure BACS based on LonWorks. Although the use case is based on a spe-
cific BACS, most results are applicable for every BACS. It focuses on the safety-security require-
ments of a node including conflict resolution and measure assessment. A safe-secure requirement 
specification is specified. In addition, a safe-secure hardware and software design of a node is pre-
sented. Especially, the software design is discussed in more detail and safety-security functionality is 
outlined. In the end, the integration of a safe-secure node into the system is presented, in particular 
how to configure and commission a node by means of a remote network management device. 

11.2 Further Procedure 

The thesis presents a common approach to safety and security in BACS. It focuses on commonalities 
between safety and security in the primary lifecycle processes, and does not consider in detail sup-
porting and organizational lifecycle processes. Future work will be to investigate the activities of the 
processes for commonalities. Related topics are for example how to organize and lay out the re-
quired documents. Additionally, conflict resolution and especially measure assessment may be 
adapted to these activities. 

Another job going to be done is examining the other entities regarding safety and security, such as 
gateways and network management devices. How may the hardware and software architecture of a 
safe-secure gateway look like? What synergies can be gained by developing a safe-secure manage-
ment tool? E.g., a password mechanism is integrated in a safety tool to avoid an accidental alteration 
of safety related data. It is stored in plaintext on the device. In contrast, security uses the password to 
get access to specific data and consequently the password must be stored secretly. 

The common approach is being a great input to a working draft on functional safety and system se-
curity in BACS in European standardization. Since 2007 the working draft is treated as a working 
item in CEN [CEN08], Technical Committee (TC) 247, Working Group (WG) 4, called “Building 
Automation, Controls and Building Management” [CEN08]. The goal is to create an European and 
later on international standard for functional safety and system security in building automation and 
control systems. The standard ought to be application independent and a generic standard for safety 
and security in BACS. 

For that reason a list of detailed requirements has to be set up for every process and every activitiy in 
the system life. Definitions for the different terms used must be found to establish a common 
understanding among the experts in the working group about the intention of the working draft. 
Generally, the idea of the common approach must be promoted in the BACS society. The first and 
most important argument against such an approach refers to the increasing costs, to the additional 
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effort of training of integrators and operators. Related to the first argument it is said that customers 
will not buy such systems because of the costs and the complexity. 

As a result, developers, manufactures, integrators and consumers have to be made aware of the 
safety-security needs. As a matter of fact, integration of different BAC systems and hence raising 
complexity, remote access to the systems, the use of new technology such as wireless networks, or 
the increasing demand of safety in our society simply result in new requirements on BACS. Of 
course, they were not considered when first automation systems were developed because at this time 
vertical integration, the Internet or Web services were beyond the scope. 

Though, neglecting the new requirements does not help. Systems that are implemented in safety-
security critical environments or that are providing safety-security critical services, and only these 
are the target systems of the common approach, should not be valued in terms of absolute costs. 
Other measures will be required to assess such systems. Maybe a way would be to assess the sys-
tems in terms of risk and costs resulting from an hazardous incident. 

It is not just essential to ask for some understanding for a common approach. It is also required to 
specify a clear picture of the relationship between safety and security. When talking about safety 
together with security very often a relationship as shown in Fig. 11-2(a) is assumed. Security is con-
sidered to be supportive to safety on functional level. E.g., security measures are integrated in order 
to withstand also intentional attacks, and not only safeguard against stochastic and systematic fail-
ures. On the other hand, it is said that security can learn from safety on non-functional level. A typi-
cal example is presented in [BRO01]: a safety critical approach of designing a system is proposed 
for a security design. Or a safety method like the HAZOP analysis is modified to assess security in 
safety critical systems [WIN01]. 

Safety Security

Non-functional level

Functional level

Safety Security

Functional and non-functional level

Functional and non-functional level

 

Fig. 11-2 (a) Obvious and (b) actual relationship between safety and security 

However, safety and security have to be treated on equal basis. Not one is subordinated to another. 
Hence, safety can also learn from security on a non-functional level (Fig. 11-2 (b)). For example, in 
[RUS89] it is proposed to use the technique of security kernels, an small and simple component that 
encapsulates all security functionality, should also be used in the safety area. What is very little dis-
cussed is that safety actually supports security on functional level. An obvious example is redun-
dancy. As mentioned in the thesis, a specific level of safety integrity can be reached by using redun-
dant components, such as two microcontrollers (1oo2) or even three microcontrollers on a node 
(2oo3). The latter design increases data availability, a security objective, since corrupted data on one 
chip can be replaced by data from the other chip. 
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In short, the most important task in the near future is to convince the BACS society that such an 
approach is required in case of widening the field of application towards safety and security critical 
systems. Next, it is required to find a variety of examples that clearly show how such an approach 
works and to use them to finally receive a standard incorporating the common approach.  

The thesis is not only the basis to finally receive a common approach in BAC systems. Its ideas and 
concepts are also applicable to IT systems in general. As mentioned in [PFI04], IT systems are inte-
grated in more influential parts of our living- and working environment and these IT-systems are 
networked. They are safety and security critical and therefore also such systems should be developed 
and used based on the requirements of a common approach. The ideas presented in the thesis are the 
basis to reach the desired goals. 
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