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Abstract

This diploma thesis presents the mathematical theory and numerical analysis of the
contact problem with Tresca friction in plane elasticity. We give an overview of the
mathematical formulation of this problem as a variational inequality of the second kind,
and prove the existence and uniqueness of the corresponding displacement field using
methods of convex analysis. Furthermore, we introduce a primal-dual formulation, where
the nonlinear friction functional is replaced by using a Lagrange multiplier function on
the contact boundary.

Next, we analyse how the given problem can be appropriately discretised. It is well
known that p-finite element methods can yield exponential convergence, but only if the
exact solution is smooth on all elements of the employed mesh. As the displacement field
is expected to be nonsmooth near those parts of the contact boundary where the boundary
conditions change from sticking to sliding, in addition to corners and transitions between
Dirichlet and Neumann boundaries, however, this assumption is not justified for the
presented problem. Therefore, in the numerical analysis, we focus on hp-methods. These
methods combine fine grids at points where the solution is irregular with high polynomial
degrees on elements where it is smooth. We prove a general convergence result for hp-finite
element approximations on meshes with arbitrary element size and polynomial degree
distributions. Furthermore, given sufficient regularity, we obtain convergence rates using
a novel hp-mortar projection operator, which uses a discontinuous Lagrange multiplier
space on the boundary.

As the information on the regularity of the exact solution, which is necessary to
construct an appropriate mesh, is not available a priori, we apply an error indicator of
residual type, generalised to our context, to determine those elements where the local
error appears high and which thus should be refined in an adaptive computation. For
these elements, we then estimate the local regularity of the solution using the rate of
decay of the Legendre series coefficients of the given numerical approximation. Based on
this, we decide whether to subdivide the element or increase the polynomial degree.

We finally show numerical results which confirm our analysis. The adaptive methods
are able to resolve the irregularities of the solution properly, and give rates of convergence
that are significantly higher than those of uniform mesh refinements. In particular, the
hp-method empirically yields exponential convergence.
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Introduction

Today, mathematical models are an indispensable tool in science and engineering. They give
the practitioner the opportunity to predict the behaviour of complex systems, and as such
save significant amounts of money, as only those prototypes will be built that have proved
usable in the model.

Typically, these models are very complex. They are often given as systems of ordinary
or partial differential equations, and can in general not be solved explicitly. Thus, numerical
methods are central to the simulation of technical processes, and this makes the development
of efficient numerical schemes for a large range of mathematical problems necessary.

The present work deals with a certain kind of problem arising in technical applications.
We want to simulate an elastic body which has frictional contact with a fixed object. Due
to the presence of the frictional contact, we do not have a partial differential equation, but
a partial differential inequality, more specifically, a variational inequality of the second kind;
this formulation was pioneered in [DL76]. Moving from an equation to an inequality leads
to several difficulties in the numerical simulation. Because it is straightforward to solve a
linear system of equations, the Newton algorithm is a standard approach for solving nonlin-
ear system of equations, and there are several high-performance methods for solving linear
variational inequalities of the first kind. The presence of a nontrivial, convex, nondifferen-
tiable functional in variational inequalities of the second kind, however, makes it necessary to
use different algorithms. One approach is the primal method, described in detail in [Kor97],
where also some ways to accelerate the convergence rate through the use of adequate precon-
ditioners are given.

We focus on a different idea: Due to the special structure of the nondifferentiable func-
tional, it is possible to construct a primal-dual formulation as a saddle point problem, which
is described in detail in [HHNLS8S8]. This leads to a coupled system of variational inequalities
of the first kind, and under certain assumptions can be reduced to a single variational in-
equality of the first kind on the contact boundary by first solving the problem on the domain
and using the Schur complement of the system matrix, as done in [Sin06].

Furthermore, we investigate the use of high order Ap-methods in this context. For these,
it is essential to have a well-constructed mesh, and this can only be done by either knowing
the problem relatively well, or using an adaptive process, as we expect the solution to have
singularities, not only at corners and transitions between Dirichlet and Neumann boundaries,
but also at the unknown points of the contact boundary where the boundary conditions
change from sticking to sliding. Adaptive algorithms are based on local error indicators and
those in Ap-FEM typically use an estimation of the local regularity of the solution.

The error indicator employed in this work is a standard residual error indicator, gener-
alised appropriately to the primal-dual formulation as suggested in [Han05]. These indicators
are relatively easy to implement, and deliver acceptable results to steer the refinement pro-
cess. As a stopping criterion, however, their reliability and efficiency properties are not good
enough. For methods enlarging the polynomial degree, in particular, the fact that the error
indicator might overestimate the error by up to a factor p is a significant problem.

To decide whether to do an h-refinement, more appropriate for a singular, or a p-
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refinement, more appropriate for a regular solution, on an element where the estimated error
is large, the estimation of the local smoothness of the solution is done by expanding the ap-
proximate solution into a Legendre series. Depending on the decay rate of the coefficients in
this series, calculated by a least squares method, we do an h- or a p-refinement. This method,
based on theoretical results on Legendre series for analytic functions in [Dav63, [HS05, [EM07],
yields very good empiric convergence rates in our numerical experiments, and can thus be
recommended for practical computations: In particular, we empirically obtain exponential
convergence in one model problem.

This diploma thesis is arranged as follows. In Chapter [I, we give an overview of the
mathematical basics which are necessary for an understanding of the later topics. This
includes, in particular, several results on Sobolev spaces.

Chapter [2 contains the mathematical formulation of the frictional contact problem. In
particular, we give a primal-dual or saddle point formulation, where we can reduce the vari-
ational inequality of the second kind on the domain to a variational inequality of the first
kind on the boundary.

Based on the primal-dual formulation, in Chapter Bl we construct an hp-finite element
approximation of the frictional contact problem. We use a theorem by Glowinski to prove
the strong convergence of the method, and a theorem by Haslinger on mixed methods for
variational inequalities, together with a new kind of hp-mortar protection operators, to obtain
an a priori estimate on the convergence rate.

Chapter @l contains the formulation of the residual error indicator as given in [Han05|] for
the hp-approximation of the frictional contact problem. We obtain reliability and efficiency
up to a factor p and certain terms which can be expected to be of higher order if the mesh
is well chosen.

Finally, in Chapter B, we show some numerical experiments which support our theoretical
results.



Chapter 1

Mathematical Preliminaries

The aim of this chapter is to collect the mathematical tools needed in the following parts of
this work.

1.1 Vectors and Tensors

For the convenience of the reader, we quickly repeat the notation that we already used in
[D6r07].

We use the Finstein summation convention, that is, if there is a repeated index in a single
term, we sum over it. Letting d € N be the dimension, we say that a change of coordinates
is an affine mapping

Yi = Qi T5 + Cj, 1=1,....,d, (1.1)

where the linear part is given by an orthogonal matrix A = (a;j)ij—1,..d € R4 that is,
aijarj = i, and ¢ = (¢;)i=1,...d € R?. The inverse change of coordinates is then given as

Tj = Qj3Y; — QjCq, j = 1,...,d. (1.2)

A tensor of order (or rank) N is a mapping T = (T, i), ik =1,...,d, k =1,..., N from
the set of Cartesian coordiate systems to (R?)" which transforms by the rule

Till...iN :ailjl...aiNjNﬂl_,.jN, ’L'k = 1,...,d, k= 1,...,N, (13)
whenever we apply the change of coordinates y; = a;jx; +¢;, i =1,...,d.

The trace (or contraction) of a tensor of order N > 2 is obtained by setting two different
indices equal. Thus, the trace of a tensor of order N is a tensor of order N — 2. If T =
(T3j)ij=1,...a is a matrix, we recover the usual trace tr T = Tj;, the sum over the diagonal
elements.

For vectors in R?, we define the Euclidean inner product

Xy = Ty (1.4)
with its induced Fuclidean norm |x| := (x - x)1/2, and for matrices in R4, we define the
Frobenius inner product

A :B = ai]’bl’j (15)
with its induced norm |A| := (A : A)Y/2, the Frobenius norm.
Partial derivatives are denoted by
ov
j=—, Jj=1,...,d 1.6
v,j ax] 9 j ’ ) ( )
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A multi-index o = (ag)g—1,. q i3 an element of N&. Its order is denoted by |a :=
Zi:l ay, and its maximum by max o := maxy_1,_q . For a (sufficiently regular) function
v, we set D%V := v 1o1__gea, that is,

olely

D= —— .
ozt ... oxy

(1.7)

1.2 Sobolev Spaces

We give a thorough introduction into the part of the theory of Sobolev spaces which we need
in the following. Standard references are [Ada75l, [Eva98, [RR04, Bre83, [Gri85).

Let © € R? be a bounded domain, and L?(9) the Hilbert space of (equivalence classes
of) real valued, square-integrable functions on Q € R¢ endowed with the norm

1/2
H'UHLQ(Q) = (JQ ’UQdX) . (18)

The Sobolev space H () is the Hilbert space of all elements of L?(2) such that the weak
derivatives are again in L2(f2), and carries the seminorm and norm

d 1/2
[0l = (Z Hv,jHia(Q)> , (1.9)

j=1

1/2
Il = (Il + lin) - (1.10)

Starting from H'(€), higher order Sobolev spaces can be defined recursively; then, for k > 1,
H*+1(Q) is the Hilbert space of all elements of H'(€2) such that its weak derivatives are in

Analogous definitions are also possible for unbounded domains, but then, for several theo-
rems formulated below, in particular the trace theorem, additional assumptions are required.

Theorem 1.1 (Meyers-Serrin). Assume that Q < R? is open, bounded, and has a Lipschitz
boundary, that is, 02 can be locally parametrised by Lipschitz functions, and ) is locally on
one side of its boundary of).

Then, for k € Ny, the set C*(Q) of functions which are infinitely often differentiable on
a neighbourhood of Q is dense in H*(Q).

Furthermore, we shall define fractional order Sobolev spaces in the following way. Let
s =k + 0, where k € N and 0 € (0,1) (for integer s, we use the above definitions). Denoting
the Slobodeckij seminorm by

1/2
|D*>v(x) — Dv(y)|?
V|gsioy 1= dxdy , 1.11
o= | 3L (L11)
we set
H(Q) = {v e HY(Q): [olgge0) < oo}, (1.12)
and endow H*(2) with the norm
1
[l = (0l + o) - (1.13)
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For ease of notation, we also define H°(Q) := L2(Q) and
[vlroq) = vl - (1.14)

Using local parametrisations, it is possible to define Sobolev spaces H*(T) for I' € R a
(d — 1)-dimensional manifold. We shall make use of these spaces in the following; the more
technical details of their definition can be found in [Sch9§].

In order to be able to deal with boundary conditions, we need to check in which sense it is
possible to evaluate functions in Sobolev spaces on the boundary. This question is answered
by the following results.

Theorem 1.2 (Trace theorem). Let Q < R? be open, bounded with Lipschitz boundary, and
'y €T := 09 be relatively open with positive surface measure, and s € (1/2,3/2).

Then, there exists a continuous linear operator o, : H*(Q) — L2(I'1), the trace operator,
satisfying Yo r,u = u|r, whenever u e CO(Q) n H*(Q).

Note that the above result does not yet characterise the range of vor,. Setting vo := 7o,r,
the next result shows when it is possible to lift a boundary condition to the domain.

Theorem 1.3 (Inverse trace theorem). Under the assumptions of the trace theorem, we have
that 4oH*(Q) = H~Y2(T).

In particular, there is a linear, continuous lifting operator Z: H*~V/2(T') — H*(Q) such
that voZv = v for all v e HS~Y2(").

A similar problem is to extend a function given on a bounded domain Q@ < R? to R%.
This is possible in a very general way; we shall only need the following result, which is given
in [AdaT75, Theorem 4.26].

Theorem 1.4 (Extension operator in one dimension). There ezists an extension operator
E:L%0,1) - L2(R) such that

HEU( oy S Oty Jorve12(0,1), (1.15)

HEU\ iy < Ml forveH©,), (1.16)
and

(Ev)|oy =v for allveL2(0,1). (1.17)

In general, the H*-seminorm is clearly not a norm, as it vanishes on constant functions.
For s < 1, however, these are the only functions for which this happens, as the following
result shows.

Theorem 1.5 (Generalised Deny-Lions lemma). For 0 < s < 1, there exists a constant
C > 0 such that
inf [lv = 2lgs () < Clolps(q) - (1.18)

For s = 0, this is trivial; for 0 < s < 1, this follows from [DS80, Theorem 6.1]; and for
s =1, this is the well-known Poincaré inequality (see [Eva9d8, Section 5.8.1, Theorem 1]). A
similar result, also known as Poincaré inequality and given in [Eva98, Section 5.6.1, Theorem

5
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3], uses the fact that the function vanishes on the boundary of the domain to deduce the
fact that the H'-seminorm is actually a norm. We define Hj(Q2) := {v e H'(Q): yov = 0}.
Equivalently, H}(Q) is given as the closure of the space D(Q) of test functions, that is, of
infinitely often differentiable functions with support strictly contained in 2, with respect to
the norm of H!(Q).

Theorem 1.6 (Poincaré inequality). There ezists a constant C' > 0 such that for all bounded
domains Q < RY,

[Vl () < C(1 + diam Q) |v|yi ) for allve HL(Q). (1.19)

Scaling arguments make use how Sobolev norms behave if we map the domain € to
another domain. First of all, we note that all the Sobolev norms are, due to the translation
invariance of the Lebesgue measure, equally translation invariant. If we scale the domain
Q, that is, we consider the mapping F': Q@ — rQ, x — F(x) := rx, then we have, by the
transformation theorem for multidimensional integrals, that for all v € L2(r (),

lollF20) = 7 llv o Flifz(q » (1.20)
for all v e H!(r2),
d d ,
2 2 — _ 2
oy = 2 villtepay = 2 Ir 1(UOF),J‘HLz(Q) =2 |vo Fli g, (1.21)
P =1

and for fractional order Sobolev spaces, s € (0,1), v € H? (TQ),

)l J J o(F v(F'(t))]
v|? ., f f —— 5 dxdy = rd . dsdt
’ Hs(rQ2) — r Jro |X y|d+2 t|d+2 (1'22)

=% v o Flfqg) -

Remark 1.7. Similar results also hold true if F' is a more complicated, one-to-one and onto
function F: ) — Q, where Qis usually called the reference element; then, we only obtain
inequalities. The constants appearing only depend on the product of the Frobenius norms of
the Jacobian DF = (Fj;); j—1,..4 and D(F~Y) = ((F_l)i7j)i,j:17__.7d; in particular, if we have
regular meshes (see Section [B.2), the powers of the diameter of the domain are the same.
Together with approximation results on the reference element such as Theorem [LH we see
that this yields convergence of h-versions. For hp-versions, we have to use finer results on
the reference element which make the dependence of the estimate on the polynomial degree
explicit.

The question of the smoothness of functions in Sobolev spaces is answered by the following
results.

Theorem 1.8 (Sobolev embedding theorem). Assume that Q@ < R? is open, bounded with
Lipschitz boundary, and that 2(s —m) > d.
Then, we have H*(Q) € C™(Q) with continuous embedding.

Theorem 1.9 (Gagliardo-Nirenberg-Sobolev inequality). Let (a,b) € R! be a bounded inter-
val.
Then, there exists a constant C > 0 such that for all u € H'(a,b),

lull e oy < C il sy Il (1.23)
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Consider an open interval (a,b) € R!. Then, by Theorem [[8, we see that H%(a,b)
consists of continuous functions if s > 1/2. One can show that H/?(a,b) contains functions
which are not continuous. Another feature of HY?(a,b) functions in HY?(a,b) cannot be
extended by zero to functions in H'/?(R). We define therefore the spaces of functions H(l)éQ (a,b)
which consists of those functions in HY2(a, b) which can be extended by zero to functions in
H'/2(R), Hz(/]Q (a,b) which consists of functions which can be extended by zero to functions in
H'/2(—o0,b), and H(lf (a,b) similarly with H'/2(a, 00). On these spaces, we define seminorms
by

) G AR
|U‘H(1362(a,b) = |U|H1/2(a,b) + L dlst($7 {a7 b} dx s (124)
b 2 1/2
ar jo(a)
|U‘Hééz(a’b) = <|’U‘H1/2(a’b) + L P da:) , and (1.25)
b 2 1/2
o o(a)
‘U‘H%Q(a,b) T <|U‘Hl/2(a,b) + L b— dl’) 3 (126)
and norms by
- ) ) 1/2
Plypyzay = (100 + 1ol n) (1.27)
) ) 1/2
ooy = (1l + Pliang )+ ond (1.28)
) ) 1/2
g = (Pl + e ) (1.29)

Note that, actually, the seminorms on these spaces are already equivalent to the full norms,
as the weighted L?-norms are upper bounds for the standard L?-norms.

We define negative order Sobolev spaces as dual spaces of Sobolev spaces with positive
order. We set H=*(Q) := H*(Q)* and H~1(Q2) := H}(Q)*, and correspondingly for manifolds.
Further spaces will be defined by interpolation.

Finally, we note that vector-valued spaces can always be defined using product spaces, as
for a space V of functions 2 — M, we see that the product space V" can be interpreted as
a space of functions Q@ — M™.

1.2.1 Interpolation Spaces

Above, we defined integer and fractional order Sobolev spaces. In practice, it is typically
easier to show certain estimates for integer order spaces. It is thus interesting to check
whether it is possible to generalise such results to the fractional order case. A very general
approach is given by the theory of interpolation spaces. Here, we define, based on two Banach
spaces Ap and Aj, some kind of “intermediate” spaces (A, A1)97 o With the property that all
operators 1" which are defined on both Ag and A; and coincide on Agn Ay can be extended to
operators on the intermediate spaces, and admit bounds on the norms based on the norms on
Ap and A; and the parameters ¢ and 0. Further details on interpolation theory in general and
its applications to Sobolev spaces in particular can be found in [BS08|, BL76, [Tri95] [Sch9g].

7
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Definition 1.10. Let A; < Ag be two Banach spaces where the embedding is continuous,
0< 60 <1and 1< q< o, and define the K-functional by

K(t,o) = inf [Jo—wlly, +luly,]. (1.30)

Then, we define the interpolation space (A, A1)97q by

Apg = (Ao, Ar)g, = {U e Aot [olly,, < oo}, (1.31)
where
©r g dt\ M
||vHqu = <J [t 0K(t,v)] t) for g € [1, 0), (1.32)
’ 0
o]l 4, == sup [r@K(t,u)]. (1.33)
’ O<t<oo

The most important properties are collected in the following results.
Theorem 1.11. 1. For0 <0, <0, <1,1<q1 € qo <0,

A C A91,q1 o A927q2 C Ap. (1.34)

2. If Ag = Ay, then for all0 <60 <1 and 1 < g < w0,
Ag = Agq = A1 (1.35)

3. ForveA;,0<f0<landl <q<

w}
1-6 [4
[0l 45, < C O, ) 0]l (0], - (1.36)

Theorem 1.12 (Interpolation of operators). Let A;, B; be two pairs of Banach spaces as
above, and assume that T;: A; — B; are continuous and linear, i = 0,1, with To|a, = T1.

Then, the operator Ty ,: Agq — Bp g is well-defined and continuous for every 6 and g,
coincides with Ty on A1, and satisfies

—0 0
ITollg,, < ITolg" IT0]p, - (1.37)

Theorem 1.13 (Reiteration theorem). For 0 < 0y < 61 <1, 1 < qo,q1,9 <00, 0<0 <1,
we have that

((AO; A1)907q0 9 (A07 A1)01’q1)97q = (AO, Al)(179)00+6917q . (138)
Theorem 1.14 (Dual spaces). For A; dense in Ag, 0 <0 <1 and 1/p+1/q =1,
(AO,Al);,q = ( ikvAa‘)l,e’p- (1.39)

The fundamental theorem which allows us to apply the above theory to Sobolev spaces
is:

Theorem 1.15. Let s = k + 60, where k € Ny and 0 < 6 < 1, and assume that Q € R" is a
bounded domain with Lipschitz boundary.
Then,

HY () = (H’f(Q), Hk+1(Q)) (1.40)

92’
and the interpolation norm is equivalent to the Slobodeckij norm given above.

8
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We want to see how the spaces satisfying weak boundary conditions fit into this interpo-
lation framework. This is answered by the following result.

Theorem 1.16. Let (a,b) € R be a bounded interval.
Then,

HY (a,b) = (L2(a, b), Hy(a, b)) (1.41)

1/2,2°

and the interpolation norm is equivalent to the Hé{f—norm.

Similarly, if we let H%O(a7 b) and H(l))(a7 b) be the spaces of functions in H'(a,b) vanishing
at a or b, respectively, then

1/2 N 2 1

HY) (a,b) = (L (a,b), Hly (a, b))lm, (1.42)
1/2 . 2 1

Hyf* (a,b) = (L (a,b), H} (a. b))l/w’ (1.43)

where again the interpolation norms are equivalent to the natural norms of the respective
space.

The proof for Hé{f(a, b) is given in [LMT72, Chapter 1, Theorem 1.7]. The result for
HééQ (a,b) follows by using the reflection operator R mapping functions on the interval (a, b)
to functions on the interval (a,2b—a), that is, for f: (a,b) — R, we define Rf: (a,2b—a) - R
by
f(@), z < b,

f(2b—x), x>0, (144)

Rf(x) := {

and its left inverse, the restriction operator S, which is defined by Sf(x) := f(z) for x € (a,b),
where f: (a,2b —a) — R. The result for H(l]§2 (a,b) is proved analogously.

Define H§(2) := (L*(2), H(l)(Q))S’2 for s € (0,1)\ {1/2}. It can be shown that the interpo-

lation norm of H{(€2) is equivalent to the norm of H*(€2), and the space equals the closure of

D(€2) in this norm. For s = 1/2, we see by the last theorem that this result obviously cannot

hold. Furthermore, for s < 1/2, H§(Q) = H*().
Using the duality theorem, we set H™%(Q) := (H™(1), LQ(Q))S ,- We note that H-Y2(T¢)

is thus the dual space of Hé{f(FC), where T'¢ is a piece of T' = 9€).

1.2.2 Inverse Inequalities

In general, in the finite element method, we have two kinds of inequalities: First direct

inequalities, which give approximation rates for sufficiently regular functions, and second

inverse inequalities, which yield an estimate of a stronger norm by a weaker norm. Clearly,

such a statement is only possible on finite-dimensional spaces. In particular, we shall focus

here on spaces of polynomials. Let, thus, P? be the vector space of polynomials of degree gq.
The following results can be found in [Sch98, Sections 3.6, 4.6].

Theorem 1.17. There exists a constant C' > 0 such that for all p € N and all v € PP, we
have that

[olle 21,1y < Clp + 1) [vlleo, - (1.45)
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Theorem 1.18. For all pe N and all v e PP with v(—1) = v(1) = 0, we have that

H(l _ -2)1/21/

L2(—1,1) <+ vl - (1.46)

Theorem 1.19. There exists a constant C' > 0 such that for all p € N and all v € PP with
v(—1) =v(1l) =0, we have that

[l g1y < Cln@+ 1) ol - (1.47)
00

1) S
The next result follows from [BDMO7, Proposition 4.1].

Theorem 1.20. There exists a constant C' > 0 such that for all p € N and all v € PP with
v(—1) = v(1l) =0, we have that

lolliea1y < CO + 1) ollga 1) - (1.48)

For the reference interval I = [—1,1], we define the edge bubble function as r(x) :=
dist(z, 0I), and similarly, for the reference square S := I?, we define the element bubble
function as g(x) := dist(x,dS). Using the edge bubble function, we can formulate the
following result, which is similar to Theorem [[.18

Theorem 1.21. Let —1 < a < 8 and § € [0,1].
Then, there exists a constant C' > 0 such that for all p € N and all polynomials v € PP,

12,1 -
Hi/J L2(—1,1) CpHU”L? (-1,1)> (1.49)
a/2 < B—a ﬁ/Q
’ w L2(7171) =~ Cp 1 Lz(fl,l) ) (150)
4.y 2-6 || 92, |51
HW} L2(—1,1) <Cp Hw ‘L%m)' (1.51)

If, furthermore, v(—1) = v(1) =0, then

[V HLZ( 1) S Cpr—l/z

i’ (1.52)

The following inverse inequalities are the two-dimensional analogues.

Theorem 1.22. For —1 < a < (8 and § € [0,1], there exists a constant C > 0 such that for
all p e N and all polynomials v € PP,

12

Hw L2((,1’1)2) < Cp HUHL2 —1,1)2)? (153)
04/2 < B—a 6/2 L5
‘ w LZ((—1,1)2) = Cp w L2((_171)2) ) ( 5 )

9 < (20 || 072 )
o vy S o ”‘Lz<(_1,l>z)' (1.55)

If, furthermore, v =0 on 0S5, then
[Vl 2y < CpHK/J_l/ZU . (1.56)
L2((-1,1)2) S L2((_1,1)2)

The last two theorems can be found in [MWOI), Lemma 2.4, Theorem 2.5].
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1.3. FUNCTIONAL ANALYSIS, VARIATIONAL INEQUALITIES AND DUALITY
THEORY

1.3 Functional Analysis, Variational Inequalities and Duality
Theory

We collect some fundamental results from functional analysis, variational inequalities and
duality theory. Standard references are [KS80) Kor97, [Zei85].

Let V be a Hilbert space, K € V convex and closed, a: V x V — R a symmetric,
continuous bilinear form with

a(v,v) =20 forallveV, (1.57)

L:V — R a continuous linear functional, and j: L — R a continuous, convex, but possibly
nonlinear functional. We define the energy functional J: K — R by
1
J(v) = 5@(1},1}) — L(v) +j(v) forallveV. (1.58)

We then have:
Theorem 1.23. u is a minimiser of J over K if and only if
a(u,v —u) + j(v) — j(u) = L(v —u) for allve K. (1.59)

Proof. First, assume that u minimises J. For v e K and t € (0,1), we see that u+t(v—u) =
(1 —t)u + tv € K by the convexity of I, and thus

J(u+ t(v — ) — J(u) > 0, (1.60)
that is,
0< Sau+ (v —w),u+ (v )~ L(u+ £y — ) + j(u+ (v — w)
- %a(u, W) + L) — j(u) (1.61)
— ta(u,v — 1) + La(v — v — 1) — LV — 1) + j(u+ H(v — ) — j(u).
Applying the convexity of j, we obtain that
J((A=tu+tv) < (1 -1t)j(u) +ti(v), (1.62)
which yields
0 < ta(u,v —u) + t2a(v —u,v —u) — tL(v —u) + tj(v) — tj(u). (1.63)

Dividing by t and letting t — 0, we see that u satisfies the variational inequality.
Conversely, for a solution u of the variational inequality, we see that for all v € IC,

1a(v,v) —L(v)+j(v)— 1a(u, u) + L(u) — j(u)

J(v) —J(u) 5 5

%a(v,v —u) + %a(u,v —u)— L(v—u)+j(v)—j(u)

(1.64)

= %a(v—u,v—u)—i—a(u,v—u)—L(v—u) +j(v) — j(u)
= 0,

that is, u minimises J. O

11
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To analyse the solvability of the above problems, let J: X — R be a general convex
functional which is continuous and coercive, that is,
lim J(v) = o0. (1.65)

l[vlly—o0
velC

The next result follows from [Zei85, Proposition 41.8].

Lemma 1.24. Let J: K — R be continuous and convex.
Then, J is weakly sequentially lower semicontinuous, that is, J(v) < liminf,, o J(vy)
whenever v, — v.

Here, as usual, v, — v denotes convergence in the weak topology, that is, we say that
v, — v if and only if lim,_,x (v, W)y, = (v, w)y, for all w € V; similarly, we write v, — v
for strong convergence, that is, v,, — v if and only if lim,_,« ||[v — vy,||, = 0. With this, we
obtain:

Theorem 1.25. Let K € V be a closed, convex set and J: K — R be continuous, convex
and coercive.
Then, there exists u € K such that

J(u) < J(v) forallvelk. (1.66)
If, furthermore, J is strictly convex, that is,
Jtu+ (1 —ty) <tJ(u)+ (1 —t)J(v) foru,ve K withu#v andte (0,1), (1.67)
then the minimiser u is unique.

We shall need in the proof the following compactness result, which is proved in [Yos80),
p. 126, Theorem 1].

Lemma 1.26. Let V be a Hilbert space, and let (vy,) be a sequence in V' which is bounded in
norm.
Then, there exists a subsequence (vy) of (vn) converging weakly to some ve V.

Proof of Theorem[L.24. Set o := inf,exc J(v) € R, and choose a sequence (uy)neny S K such
that o = limy, ,o J(up). By the coercivity of J, we see that (uy,) is necessarily bounded, and
thus, by Lemma [[.26] admits a weakly convergent subsequence (u,). Denote this limit by w.

By Lemma [I.24] we see that J is weakly sequentially lower semicontinuous, and thus

o < J(u) <liminf J(uy) = lim J(uy) = a, (1.68)
n'—oo n’'—aoo
that is, « € R, J(u) = «, and u is a minimiser of J.

For the second part, assume that J is strictly convex, and let u; # us be two minimisers.
Then, letting again o denote the minimum and noting that tu; + (1 —t)ug € K as K is convex,
for t € (0,1),

a < J(tup + (1 = tyug) < tJ(ur) + (1 —t)J(u2) = «, (1.69)

a contradiction. Thus, u; = ug, and the minimiser is unique. ]

To derive an error indicator, we shall apply duality theory. We collect here the definition
of the conjugate function, and the basic theorem on solvability of the primal and the dual
problem and their connection.

12
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Definition 1.27. Let V' be a Hilbert space, and f: V — R.
Then, the conjugate function f*: V* — R of f is defined by

fH(0*) :=sup [(v*, v)y« — f(v)] for all v* e V*. (1.70)
veV

The next result is a consequence of [Han05, Theorem 2.39].

Theorem 1.28. Let V', Z be Hilbert spaces, L: V — Z linear and bounded with L: Z* — V'*
its adjoint operator, F: V — R, G: Z — R lower semicontinuous, convex functions such that
there exists vo € V' with F(vg) < 00, G(Lvg) < 0, and q — G(q) is continuous at Lvg, and
v F(v) + G(Lv) is coercive on V.

Denoting J(v,q) := F(v) + G(q), the conjugate function of J is given by J*(v*, q*) =
F*(v*) + G*(q*). Furthermore, there exist u eV and p* € Z* with

J(u, Lu) = in‘f/ J(v, Lv), (1.71)
ve
—J*(L*p*, —p*) = sup [—J*(L*q*, —q%)], (1.72)
qrez*
and
J(u, Lu) = =J*(L*p*, —p*). (1.73)

Moreover, if v — J(v, Lv) is strictly convez, then the minimiser u is unique.

1.4 Measure Theory

We shall make use of the following version of the Riesz representation theorem, which is
proved in [Yos80, p. 115, Example 3].

Theorem 1.29 (Riesz representation theorem). Let (X, ) be a o-finite measure space.
Then, for every continuous linear functional £: L1(X) — R, there exists a function f €
L*(X) such that

l(g) = J fgdu  for all g e LY(X) (1.74)
X
and
sup  [{(g)| = HfHLw(X)~ (1.75)
geL1(X)
HQHLl(X):l

The following result is given in [Yos80, p. 53, Corollary to Proposition 2].

Theorem 1.30. Let (X, ) be a o-finite measure space.
Then, for every Cauchy sequence (fn)nen in LP(X), there exists a subsequence (f,) of
(fn) which converges almost everywhere on X .

Theorem 1.31 (Dominated convergence theorem). Let (X, p) be a measure space, (fp)nen @
sequence of measurable functions converging almost everywhere on X to f, and assume that
there exists a function g € LY(X) such that |f,(x)| < g(x) for almost every x € X.

Then, f e LY(X), lim,_ S [fn— fldp =0, and limy o § fudp = § fdp.
The proof can be found in [Rud87, Theorem 1.34].
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Chapter 2

An Introduction to Elastic Contact
with Friction

In the present chapter, we want to give a short introduction to the mathematical formulation
of elastic contact problems with friction. We shall briefly describe the elements of small-strain
elasticity, and then focus on the effects of friction. For a more detailed account on elasticity,
we refer the reader to the author’s work [Dor(7] and the references cited therein. A standard
reference for contact problems, with and without friction, is [KO88], and the formulation as a
variational inequality is detailed in [DL76]. The model given here corresponds to the friction
model used in [Han05, Example 1.27]. A good, short introduction to Coulomb friction is
given in [Sin06].

2.1 Small-Strain Elasticity

In this section, we introduce the objects necessary to work with problems of elasticity.

2.1.1 The Basic Equations

Consider a body, that is, a domain Q € R3. A body force F = (Fy, F, F3) is an R3-valued
function defined on Q, a force density. The stress vector T(x,z) is defined as the density of
internal forces at x in the direction z. Using T, we can define the stress tensor o = (0;;) as

oij(x) :=Tj(x,e;) fori,j=1,2,3 and x e . (2.1)

For a body in equilibrium, the internal forces o and the external forces F have to balance,
and from this, one can show that the equations of equilibrium

0jij(x) + Fi(x) =0 fori=1,2,3 and xe (2.2)

hold true. In the dynamic case, one has to add inertial terms, that is, pti with p the density
of the material, u the displacement and 1 = §?u/dt? the acceleration, in the above equation.
Additionally, from the equilibrium of moments, we obtain the symmetry of the stress

tensor,
Oi5 = 0js for ’i,j = 1,2,3. (23)

Let © be deformed into another body €', and assume that this deformation is realised
by a diffeomorphism y: Q — €/, that is, y is one-to-one, onto, and y and its inverse are
differentiable. Then, we define the displacement vector by u(x) := y(x) — x. Comparing the
lengths of the line segment from x to x + tAx with the line segment after the deformation,
y(x) to y(x + tAx), we see that

p(t) =y (x + tAx) — y (x)|* — [tAx]*
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= |u(x + tAX) — u(x) + tAz|* — 12 |Ax|?

3
= [(ui(x +tAX) — ui(x))2 + 2t (u3(x) + tAX) — ui(x)) Axi] (2.4)
i=1
3 1 2 1
=2 [Z (J wi j(x + tTAx)ijdT) + QJ u; j(x + tTAX)Ax;Axjdr
i=1 W0 0
Then, %gp"(O) = QEfjiniteAxiij, where (5?}““9)@]‘:172,3 is the finite strain tensor defined by
. 1
= 5 (Uit + uij +ujq)  ford,j=1,2,3. (2.5)

Assuming that u;; is small, we see that the term wuy;uj ; is of higher order and can be
neglected, which gives the small strain tensor

€ij 1= % (um + UJ',Z‘) fori,7=1,2,3. (2.6)

We want to relate € := (¢;5) and o; this is done by a material law. As we restrict ourselves
to small deformations, we can assume that the relation between o and ¢ is linear, from which
it follows that there exists a 4-tensor C := (cix1) With 0y = cijuen for 4, j, k, 1 =1, 2, 3;
in short & = Ce. From the symmetry of € and o and an assumption of hyperelasticity, it
follows that

Cijkl = Cjikl = Cijik = Cklij for i,j,k,l =1,2,3, (2.7)

and furthermore, we suppose that C is positive definite, that is, € : Ce > 0 for all strains €.
For a general material, C depends on the point x and on the choice of the coordinate system.
For simplicity, we shall assume a homogeneous and isotropic material, that is, C neither
depends on the point or on the choice of (Cartesian) coordinate system. These assumptions
yield the existence of Lamé coefficients X\, i € R such that the generalised Hooke’s law

0ij(x) = AMre(x)d;; + 2ueij(x) fori,j=1,2,3 (2.8)

holds true. Typically, for physical materials, the Lamé coefficients are not directly given, but
instead the Young modulus E and the Poisson ratio v. From these, the Lamé coefficients can
be calculated as

Ev E

A -y n=

(2.9)

2.1.2 Boundary Conditions

We describe the different kinds of boundary conditions considered in the following. Decom-
pose the boundary I' of 2 into three disjoint, relatively closed subsets I'p, I'y and I'¢ which
are the closures of their interiors such that the respective interiors have empty intersection,
and I' = I'p u I'y U I'c. Then, we prescribe kinematic boundary conditions on I'p, that is,
the displacement is given, u; = ug;, j = 1,2, 3, which corresponds to Dirichlet boundary con-
ditions. To guarantee the unique solvability of the problems which will be formulated below,
we shall always assume that [I'p| > 0, as then, the Korn inequality as given in Theorem 2.8
holds, and the fundamental bilinear form describing the inner energy of an elastic body is
coercive.
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On I'y, we prescribe static boundary conditions, that is, the stress vector is given, o;;v; =
Gi, i =1,2,3, where v = (v;) is the outer unit normal vector on I'y and G = (G;) is a given
function. Lastly, on I'c, we assume contact conditions with friction. These will be the topic
of Section

2.1.3 Plane Problems in Elasticity

There are two typical ways of reducing problems in elasticity to two dimensions. The first
is the plane strain assumption, where the body is considered to be infinitely large in one
dimension, and the strain € is assumed to be planar, that is, ;3 = 0 for ¢ = 1,2,3. The
second is the plane stress assumption which we will describe now.

Let the 3-dimensional body be given as Q x [—h, h] with a domain 2 € R?, and assume
that the boundary conditions and volume forces do not depend on z3. Furthermore, assume
that h is small, ugz is an odd function of z3, that is, upz(—x3) = —up3(z3), and that o3; =0
at 3 = +h for i = 1,2,3. Then, the assumption that o3; =0, i = 1,2,3, on  x [—h, h] is
justified, see [LL70L pp. 53], and the stress tensor can be described by a 2 x 2 matrix. Thus,
as 033 = O,

0= A(e11 + €22 + €33) + 2uess, (2.10)

which yields

633:)\+2u

and the generalised Hooke’s law reads

(11 +€22), (2.11)

i = A* (811 + 822) (51']‘ + Quéz‘j, 1,7 = 1,2, (2.12)

where \* := A /\iéu’ that is, we have to solve a problem analogous to the three-dimensional

system, but A is replaced by A\*.

2.2 Contact with Friction

In this section, we first describe the full three-dimensional setup for contact with friction,
and then explain how the system can be reduced under the plane stress assumption.

2.2.1 The 3-Dimensional Situation

We shall now define the Signorini contact conditions with friction on I'g. Set for x € I'c and
v sufficiently regular on €2

Un(X) 1= v (X)vi (%), (2.13)
0 (%) 5= (%) — v (X)), (2.14)
T (v) () = 03 ()3 (), (2.15)
T()(x) i= o)) — Ta(V) (X5 (x), G = 1,2,3. (2.16)

Assume that the body with which contact is possible and the coefficient of friction are
given by functions ug € H/?(T'¢) and f € L*(I'¢) on I'g, ug = uor and f > 0, respectively.
We see that necessarily, u,, < up on I'c. Furthermore, if, at x € I'c, un(x) < up(x), we do
not have contact, and thus, the stresses have to vanish, T),(u)(x) = 0 and T};(u)(x) = 0,
j = 1,2,3, as this corresponds to zero static boundary conditions. If, however, at x € I'g,
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un(x) = up(x), then the normal stresses have to point inwards, that is, T, (u)(x) < 0.
If, additionally, for Ti(u)(x), |T¢(u)(x)| < f(x)|Tn(u)(x)], then u; = 0. If |T¢(u)(x)| =
f(x) [T (u)(x)|, then there exists h > 0 such that us(x) = —hT;(u)(x). This model is called
Coulomb friction.

Thus, we obtain: For every x € I'c::

Up(x) < up(x). Then, T(u)(x) =

Un(x) = up(x). Then, T},(u)(x) < 0, and only the following two cases can occur:

()| < f(x) [T
()| = f(x) |Tn

All the different cases can also be summed up in an equivalent formulation given as

Ti(u
]Tt(u

u)(x)[; then, u;(x) =0, and

) (
) (u)(x)|; then, there exists h > 0 with us(x) = —hT¢(u)(x).

Up < U, (2.17a)

Tn(u) <0, (2.17b)

(un — u0)Tn(u) =0, (2.17¢)

[Te(w)| < f[Tn(w)l, (2.17d)

(f ITn()| = |T¢(a)|)us = 0, (2.17¢)
Ti(a) - u + f[Tn(w)] Ju] = (2.17f)

To facilitate the discretisation of the given problem, we shall give an equivalent formula-
tion as a variational inequality. To that end, define the space of displacements

Vi={ve HY(Q)?: vor, (V) = u}, (2.18)
the closed, convex set of admissible displacements
={veV:vr.(v) v < uyalmost everywhere on I'c}, (2.19)

the bilinear form a: V x V — R by
a(v,w) := J o(v):e(w)dx forv,weV, (2.20)
Q
and the linear functional L: V' — R by

L(v):= J F-vdx + G - yoryvdsx forvelV. (2.21)
Q I'n

Note that in the case I'c nI'p # ¢ it can happen that the conditions vy, (v) = ug and
Y0,r¢ (V) - v < ug are incompatible. We shall therefore assume in the following that uy and
ug are chosen in such a way that IC # .

To incorporate the friction terms, we introduce the friction functional j: V' x V' — R by

jv,w) = f F1Tn(v)| |wedsx forall v, we V. (2.22)
e

Note that not only j, but even the mapping v — j(v, v) is nondifferentiable and nonconvex.
Consider the following two problems.
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2.2. CONTACT WITH FRICTION

Problem 2.1 (Classical formulation, Coulomb friction). Find u € (C?(©2) n C*(Q))? such
that

o) + F; = 0, nQ, =123, (2.23a)
U; = UQ; onI'p, 1=1,2,3, (2.23Db)
oij(wy; = G; onTy, i=1,2,3, (2.23¢)
and on I'c,
Up, < Ug, (2.23d)
Tn(u) <0, (2.23¢)
(tn — uo)Tp(u) = 0, (2.23f)
T¢(u)| < f[Tn(u)l, (2.23g)
(f | Tn()| = [Te()[)uy = 0, (2.23h)
Ti(u) - w + f[Th(u)| [w| =0 (2.231)

Problem 2.2 (Variational formulation, Coulomb friction). Find u € K such that for all
veK,
a(u,v—u) +j(u,v) —j(u,u) = L(v —u). (2.24)

Theorem 2.3. The Problems[21] and[2.2 are equivalent in the following sense: IfT' and T'c
are smooth enough, and u € (C%(Q) n CY(Q))?3 solves one of the two above problems, it solves
the other one, as well.

This is [KO88|, Theorem 10.1].

Proof. Integration by parts and the symmetry of o(u) yield for an arbitrary v €

a(u,v—u) = JQ oij(u)(v;j —u; ;)dx

(2.25)

= J O’Z'j(u)Vj’)/()I('Ui — ui)dsx — J O'Z'jVj(u)(’Uz‘ — ui)dx.

T Q
Let u be a solution of the classical formulation. Then, o;;;(u) = —F;, v; = u; = 0 on I'p
and o;;(u)v; = G; on I'y, from which we obtain
a(u, vV — u) = Gi'YO,FN (’UZ' — ui)de + J Uij(u)Vj’yo’FC (’Uz' — ui)dsx
I'n I¥e
+ J Fi(v; — u;)dx (2.26)
Q

=L(v—u)+ f oij(W)vivo,re (Vi — ug)dsx.
Pc

As o;5(u)v; = Ty(u) + T, (u)v;, we see that
f o3 (Wrino,re (v — ui)dsx = J (Thi(w) + Tu(w)vi)yo,re (vi — ui)dsx
I'c e

_ JF [Te(w) - (ve — u) + To(w) (v — )] s
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= L [Te(u) - vi + Tn(u)(vn — up)] dsx
— J Ty (u) - urdsx (2.27)
I'c
::J; [T2(w) - Vi + T (@) (0 — )] ds
+£bﬂﬂ@WWN&

= L [Ti(u) - vi + Ty (u)(vy, — up)] dsx + j(u,u).

Note that for v € K,
To(u)(vy — up) = Tn(u)(vy, — uo) + Tn(u)(uo — uy) = Tn(u)(ug — up) =0 (2.28)

and
Ti(a) - vi = — [Te(w)| [ve| = —f [Tn(u)] |[ve] , (2.29)

which in turn yields
J [Ti(u) - vi + Tp(u)(vn — up)] = —j(u, v). (2.30)
NG

Thus, u satisfies the variational formulation.

For the converse, pick u satisfying the variational formulation. Clearly, the Dirichlet
conditions and the condition u,, < ug on I'c are defined by definition. For ¢ € D(2)3, we see
easily that v := u + ¢ € K, and as the two functions u and v coincide on the boundary, we
obtain by integration by parts that o;;;(u) + F; = 0 on .

Next, choose ¢ = (¢;) € C®(Q) such that there exists U € R3 open with supp¢ < U,
UnT cI'n, and ¢j(x) # 0 for some x € I'y. Such a function can be found for every x € I'y
and j = 1,2,3 as I'y is relatively open in I". As u and u + ¢ coincide on I'c, this in turn
yields Tj(u) = G on I'y. Thus, we obtain that for all v e C,

L [ | Ta(w)] (Jve] = [ue]) + Te(u) - (vi = up) + T () (v — un)] dsx = 0. (2.31)

Choose ¢ € C*(Q) such that ¢, = 0, that is, ¢ = ¢, on I'c, and u + ¢ € K. Then, we
obtain

f Th(u)ppdsx = 0. (2.32)
NG

We can always choose ¢,, < 0, which entails 7;,(u) < 0. Furthermore, if at some point x € I'c,
un(x) < up(x), then we can also choose ¢ with ¢, (z) = ug(x) — un(x) > 0, and this gives
T, (u)(x) = 0. B

Choose ¢ € C*(Q2) such that ¢, = 0. Clearly, u + a¢ € K for all « € R, and thus

|| 1717 e+ 0t = el + 0Tutw) - gl s >0, (233)
Ic
Choose ¢ in such a way that ¢, = 0 whenever u; = 0. Then, a%|a=0 lu; + agp,| = u‘tuﬁt
whereever u; # 0, and 0 otherwise. By Theorem [[L31], we obtain
u .
L) ™ s> — [ L) gy (2.34)
I'c ’ut‘ T'c
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and thus, by replacing ¢ by —a,
f|Th(u)|u; = —=T¢(u) Juy] whenever u; # 0. (2.35)
Taking absolute values and dividing by |u;|, we obtain
(f1Tn(a)| = |Te(u)])uy =0 on I'c, (2.36)
and taking the scalar product with u; and dividing by |u;|, we obtain
FTh(W)| [uy| = =Ty(u) - uy, (2.37)

as in both cases, the assertion is trivial for u; = 0.

Thus, again for ¢ € C*(Q2) with ¢,, = 0, setting v := u + ¢,
J L 1 Tn()| ([ve] = [ue]) + Tofw) - (vi —ug)] dsx > 0. (2.38)
INe

Choose ¢ in such a way that ¢ = 0 whenever u; # 0. Then, |v¢| — |ut| = |¢,|, and plugging
in both ¢ and —¢, we obtain

|| - sdse] < [ 71z 104 dse (2.39)
ING Tc

By approximating the function sign (T (u) - ¢;) with smooth functions bounded by 1, we see
that

f|nmw@m&<f F 1T (w)] 16| ds. (2.40)
T'c NG

First, we note that obviously, from the above, T;(u) = 0 whenever f|T,(u)| = 0. Second,
using the weighted measure du := f|T,,(u)|dsx, we see that, as Ty(u) - ¢,, = 0 for any ¥,

P - Ty (u) - Ydsy, (2.41)
ING

defined on the smooth functions, can be extended to a linear functional of norm < 1 on
the space L(I'c; ) of measurable functions integrable with respect to p. The Riesz rep-
resentation theorem, Theorem [[.29] yields the existence of a function H € L®(I'c) with
IH|Lr(rey <1 and

Ty(w) = f [T (w)| H (2.42)

in particular, |Tiu| < f |7, (u)| whenever f |1}, (u)| > 0.
Combining the results, we see that u is a solution of the classical formulation. O

Due to the fact that v — j(v,Vv) is nonconvex, we shall analyse only a simplified problem.
The simplified friction law is known as Tresca friction and corresponds to a friction functional
j: V — R defined by

Jj(v) = J g |ve| dsx. (2.43)

e
This corresponds to the assumption that g = f|T,,(u)| is constant, that is, the normal
component of the normal stresses is replaced by a given slip stress. This functional is still

nondifferentiable, but convex.
Thus, we define:

21



CHAPTER 2. AN INTRODUCTION TO ELASTIC CONTACT WITH FRICTION

Problem 2.4 (Variational formulation, Tresca friction). Find u € K such that for all v € K,

a(u,v—u) + j(v) — j(u) = L(v —u). (2.44)

The equivalent conditions on the contact boundary with friction are here

Up < U, (2.45a)

T, (u) < 0, (2.45b)

(up, —uo)Tyn(u) =0, (2.45¢)
T <4, (2.45)

(9 —|T¢))us =0, (2.45¢€)
w-T; <0 (2.45¢)

For the proof of existence and uniqueness of the solution of 2.4] it is helpful to rewrite
the problem as a minimisation of a convex functional. Define therefore J: V' — R by

J(v) i %a(v,v) _ L)+ (V). (2.46)

Problem 2.5 (Minimisation formulation, Tresca friction). Find u € K such that

J(u) = r\]/rlellrcl J(v). (2.47)

The following result clearly is a consequence of Theorem [[.23]
Theorem 2.6. Problems and[2.8 are equivalent.

We shall prove:
Theorem 2.7. There exists a unique solution of Problem[2.7

Thus, by Theorem 2.6l there exists a unique solution of Problem 2.4l The proof uses the
following variant of a Korn inequality, which is proved in [KO88, Lemma 6.2].

Theorem 2.8 (Korn’s inequality). For [I'p| > 0, there exists a constant C' > 0 such that
Hv||12{1(9) < Ca(v,v) forallveV. (2.48)

Proof of Theorem[2.7]. Clearly, J defines a convex functional which is continuous with respect
to the strong topology of K € V. By Korn’s inequality and the boundedness of L, we see

that
1 . _
T(V) = 5a(v,v) = Lv) +(v) 2 O™ ¥l o~ C IVl (2.49)

and this expression tends to o0 as [|v||y1 gy — co. This yields the coercivity of J. Moreover,
for v ## w and t € (0, 1), by the convexity of j,

<
-
<
+
—
|
N’
)
Il
N |
ey
=
<
<
+
_
|
=
2
2
|
~
—_
|
N’
2
<
|
z
<
|
2
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2.2. CONTACT WITH FRICTION

Applying Korn’s inequality, we see that t(1 — t)a(v — w,v — w) > 0, and we obtain
J(tv + (1 —=t)yw) < tJ(v) + (1 = t)J(w), (2.51)

that is, J is strictly convex.
Thus, Theorem [[.27] yields the result. O

2.2.2 Friction under the Plane Stress Assumption

Consider the plane stress assumption as described in Subsection 2.1.3] As the boundary
conditions are independent of x3, we see that the contact boundary is given as I'c x [—h, h],
where I'c € I' := 0€). For h small, we can assume that all functions are constant with respect
to x3. Thus, we see that the friction term satisfies

h
= J J g |vi|ds (g, z,)dT3 = 2hf 9|vie| ds (g 20)- (2.52)
—h JT¢ T'c

Similarly, as o3;(v) =0,

h
a(v, W) = f f [0'11(V)€11 (W) + 2012(V)512(W) + UQQ(V)EQQ(W)] d(ib‘l, I‘Q)d.%‘g
—h JQ

(2.53)
= QhJ [o11(V)e11 (W) + 2012(V)e12(W) + o2a(V)eaa(w)] d(z1, z2)
Q
and, as v3(0) =0,
= J |:J F. Vd 1’1,%2) + G- ’YO,FNVdS(z1,12):| d.’L‘3
I'n (2.54)
=2h [J (Fivr + Favg)d(z1, 22) +J (Gryoryvr + GWOINU?)dS(’“’M)} i
I'n
Thus, setting
Vi={veH (Q)*: r,v =0} (2.55)
and
K := {v € V:9re(V) - v < ug almost everywhere on FC} (2.56)

and deﬁnin~g tpe bilinear fo~rm a:VxV-o R, the linear form L: V — R and the nonlinear
functional j: V — R with F := (F1, F3) and G := (G1,G2) by

a(v,w) := J (o(v) :e(w))d(x,z2), (2.57)
Q
f/(V) = f F . vd(xl,acg) + G . 707FNVdS(:E1,I2)? (2.58)
Q 'y
and
i) = | gl s e, (2.59)
I'c
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CHAPTER 2. AN INTRODUCTION TO ELASTIC CONTACT WITH FRICTION

where v, is defined for v = (v1,v2) as in the three-dimensional case using the unit normal
vector v = (v1,v2) on the two-dimensional boundary I' = 0, together with the energy
functional J: V — R

a(v,v) — L(v) + j(v), (2.60)

we have that }
J(v) =2hJ(v). (2.61)

This gives:

Problem 2.9 (Tresca friction, minimisation formulation, plane stress). Find u € K such that

J(u) = min J(v). (2.62)
vell

Thus, the problems in the plane stress situation are of the same type as in the full three-
dimensional situation, we just replace the sets and the operators accordingly. It is now
also possible to formulate a two-dimensional analogue of Problem [2.4] based on the above
minimisation problem.

Note that the solution u of the plane stress problem does not necessarily satisfy a corre-
sponding three-dimensional problem, as we applied an approximation while going from J to

J.

2.3 The Primal-Dual Formulation

It is possible to discretise Problem [2.4] directly, but the solution algorithms for problems of
this kind are unsatisfying in the hp-context that will be the focus of the later chapters of
the present work. Instead, it is possible to give an equivalent formulation as a saddle point
problem. For this, note first that

j(v) = supb(v, p), (2.63)
peA
where
A= {peLl®lc)’: |p| <1 and p, = 0 almost everywhere on I'c}, (2.64)
and the bilinear form b: V' x A — R is given by
b(v,p) := J gV - pdsx. (2.65)
INe

From a functional analytic point of view, it is sensible to define a surrounding space W of A
which has better analytic properties than L®(I'c). The largest reasonable space is

(orcV)*, (2.66)

the dual space of the traces on I'c of functions in V', as for these functions, the mapping b can
still be defined in the sense of a duality product. For the moment, though, we shall choose

W =L13T¢)>. (2.67)

Here, the inclusion A € W is trivial, and we can also define b: V' x W — R by continuous
extension.
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Furthermore, A is closed (as all sequences converging in L?(I'c) admit a subsequence
converging almost everywhere; see Theorem [[.30)) and convex, but clearly not a linear space.
We define the Lagrange functional £: V x W — R by

1
LOvop) = Sa(v.v) = L) + (v 1) (268)
and note that, by (2.63),
J(V) = sup E(Va /*l')’ (269)
HEA

and thus, for the unique minimiser u of J,

J(u) = inf J(v) = inf sup L(v, p). (2.70)
velk vek e

We consider the following formulation of our problem.

Problem 2.10 (Primal-dual formulation, Tresca friction). Find (u, A) € K x A such that for
all (v, ) € K x A,

a(u,v—u) + b(v—u,A)
b(u,p — )

L(v —u), (2.71a)
0. (2.71b)

N WV

Theorem 2.11. For every solution (u, X) of Problem[2.10, u solves Problem [2.3.
Proof. First of all, note that the primal-dual formulation implies
L{u,p) < L(u,A) < L(v,A) forall (v,u)e L x A, (2.72)

as the first inequality follows from (2.71D) and the second one from (2.71al). Furthermore, for
any such pair (u, A), it is clear that u minimises J, as obviously £(u, A) = J(u), and thus

J(v) = L(v,A) = L(u,A) = J(u). (2.73)

We see thus that for any solution (u, A) of the primal-dual formulation, u is a minimiser of
J. O

It follows that there exists at most one solution to Problem 2.0l Next, we want to prove
existence of a solution, which also establishes the equivalence of the three formulations of the
equations of elasticity with Tresca friction given above.

Theorem 2.12. There ezists a solution to Problem [2.10.

Proof. Consider the space U :=V x W endowed with the norm

1/2
1v, 0l o= (VI oy + ey ) - (2.74)
Defining the bilinear form a: U x U — R,
Cl((V, Ij’)v (Wa 77)) = a(v, W) + b(W> N) - b(V7 77) (275)

and the linear form £: 0 — R,
((v.p) = L(v), (2.76)
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it is readily seen that a and £ are bounded. The set 8 := K x A € U being convex and closed,
the given problem is equivalent to finding u = (u, A) € £ such that for all v = (v, u) € R,

a(u,p —u) = L£(v —u). (2.77)

For all v = (v, ) € Y,
a(v,v) = a(v,v), (2.78)

and as A is bounded and a is coercive, it follows that v — Za(v,0) — £(b) is coercive, convex
and continuous. Thus, by Theorem [[.25] there exists a minimiser u = (u, A) of

%a(n,n) — £(v) (2.79)

in K, and this pair solves the primal-dual formulation. ]

Note that we did not have to prove the strict coercivity of the energy functional: The
uniqueness of the solution follows from Theorem 2.7

Theorem 2.13. The Lagrange multiplier X of the solution of Problem [2.10 satisfies g\ =
Tt(u).
If, additionally, g > 0 on T'c, A is unique.

Proof. First, note that we have shown already that u is unique. Thus, the first assertion
follows from an integration by parts.
The second statement follows trivially by dividing by g. O

Remark 2.14. In a similar way, it is possible to derive a primal-dual formulation of the
minimisation formulation in Problem 2.9 Here, we have

W= L%(T¢)?, (2.80)

A= {u eW: [l (rgy <1 and gy = 0 almost everywhere on FC} , (2.81)

and the bilinear form b: V x W — R is given by

b(v,p) = JF gVt - pdS(z, 2p)- (2.82)
C

This will be the basis of the numerical methods developed in the subsequent parts of the
present work.
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Chapter 3

Finite Element Methods for Mixed
Variational Inequalities

In this chapter, we describe how finite element methods have to be formulated for variational
inequalities, with a focus on mixed variational problems. The classical references for this topic
are [GLTS8I] and |Glo84], where first order approximations are discussed. These approaches,
however, cannot be generalised to an hp-context. For high order polynomials, important
results were given in [MaiOla] in the context of boundary element methods, generalising
earlier results in [GS93] to a true p-method. The idea of using Gauss-Lobatto nodes in spectral
collocation methods was then already well known, see, for example, [BM92], and here, this
was taken to the logical conclusion by also discretising inequality constraints by restricting
them to Gauss-Lobatto points, and using the positivity-preserving Bernstein polynomials of
nonnegative test functions in conjunction with the exactness of Gauss-Lobatto quadrature
to prove the convergence in the sense of Glowinski of the discretised convex sets. Based
on these, in [MS05, MS07, [Kre04l, [KS07], some further applications to boundary and finite
element methods were analysed, all of which restrict themselves to variational inequalities of
the first kind, but also for nonlinear operators.

Some advances with respect to hp-finite element methods for variational inequalities of
the second kind were done by Chernov in [Che06], where he considered penalty approaches,
and in [CMS0§|, where the focus lies on an a priori estimate. The latter article, however, has
a significant deficit: The estimates are done for a primal formulation which, in itself, is clearly
numerically infeasible due to the necessity of determining certain integrals of absolute values
of polynomials exactly. Thus, the actual calculation is done using a primal-dual formulation,
which is not equivalent to the formulation for which the convergence rate is proved, and for
this method, the estimates are not directly applicable.

The aim of this chapter is therefore also to give an a priori convergence rate result directly
for a discrete formulation which can be solved numerically. Note that nevertheless, there is
the implicit assumption that the solver for the discrete problem yields the exact solution,
which typically is not the case: In practice, one uses an iterative solution algorithm — which
may or may not have a finite termination property — and stops the algorithm as soon as the
solution is “good enough” in some appropriate sense.

3.1 Abstract Finite Elements for Mixed Variational
Inequalities

Let V', W be Hilbert spaces with IC € V', A € W nonempty, closed and convex, a: VxV — R
bilinear, symmetric, bounded and coercive, b: V x W — R bilinear and bounded, F': V — R,
G: W — R linear and bounded. We consider the following mixed variational inequality

27
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problem:
Problem 3.1 (Continuous abstract variational inequality). Find (u, ) € K x A with

a(u,v —u) +b(v—u,\) = Fv—u), vek, (3.1a)
b(u, p — \) <Gp—A), peA. (3.1b)

We shall assume that Problem B.I] has a unique solution (u,A). This is guaranteed, for
example, if we consider the situation as in Section 2.3

Consider sequences (Vy)n, (Wn)n of finite-dimensional subspaces of V and W, Vy € V,
Wy € W, where the index N runs over an infinite subset of N. Typically, one sets N :=
dim V. From these, define closed convex subsets (Kn)n, (Anx)n such that Ky € Vi and
Ay € Wy

If we were able to consider Ky := KnVy € Kand Ay := AnWy € A, the situation would
be relatively simple, but this is for practical problems, especially for p-versions, not possible
in an actual implementation of the algorithm: Consider, for example, that V = H!(Q) for
Q=(0,1) < R! and

K :={veV:v >0 almost everywhere} , (3.2)

and the approximation Vi := PV. Then, the constraint vy > 0 almost everywhere cannot
easily be checked numerically. Thus, we cannot assume that the approximations Ky and Ayn

satisfy Ky € K and Ay € A, respectively, that is, we have to deal with a non-conforming
approzrimation. The fundamental notion in this context is:

Definition 3.2 ([AG00, Definition 2.1], [Glo84, p.9]). Let V' be a Hilbert space, K € V

nonempty, convex and closed, and (K )y a sequence of convex, closed subsets of V.
Then, Ky converges to IC in the sense of Glowinski, KCn AEN K, if and only if

o for all sequences (vy) with vy € Ky for all N, and such that vy converges weakly to
some v € V, the limit satisfies v € I, and

e there exists a dense subset D € K such that for all v € D, there exists a sequence (vy)
with vy € Ky for all N such that vy converges strongly to v.

In some sense, this means that I is neither “too large” nor “too small” compared to K.
Note that, as K is nonempty, Cn has to be nonempty, as well.
The discretisation of Problem [B.1]is given as:

Problem 3.3 (Discretised abstract variational inequality). Find (un,Ax) € Kn x An such
that

F(oy —un), vy €EKn, (3.3a)
G(uny — AN), un € An. (3.3b)
We shall also assume that this discretisation has a unique solution for all N. This can be

shown similarly as in the continuous situation.
Using these definitions, we are able to show a relatively general convergence result.

a(uN, UN — UN) + b(UN —Uupn, )\N)

=
b(un, uN — AN) <

Theorem 3.4 ([HHNLSS, Section 1.1.52, Theorem 5.3], [Glo84, Chapter I, Theorem 5.2]).
Assume that A, AN are uniformly bounded, that is, there exists a constant C > 0 such that

lplly < C forall pe A and (3.4)
lunllyw < C for all pn € Ay and all N. (3.5)
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Furthermore, suppose that Ky LK and Ay GLA.
Then, the solutions (un, An) of Problems[3.3 and the solution (u, \) of Problem[3.1] satisfy
uy —>u iV and Ay — X in W.

Proof. Assume that the dense subsets given by the convergence in the sense of Glowinski are
denoted by D € K and M < A, respectively.

By definition, (Ay) is bounded in W. Choose an arbitrary vg € D and vy € Ky with
vy — v in V, which is possible due to Ky K. Then, there exists C' > 0 such that
lon]ly < C for all N. Plugging vy into ([B:3a), we see that

a(un,un) < alun,vn) + by —un, An) — F(vy — un), (3.6)
and the boundedness of Ay yields the existence of a constant C' > 0 such that for all IV,
a(un,un) < C(1 + [lun|ly). (3.7)

Applying the coercivity of a, we obtain boundedness of ||un|| .
Thus, we see that we can choose a subsequence (uys, An7) of (un, An) converging weakly

to some (u*,A\*) in V x W. As Ky S K and Ay S5 A, we see that (u*,\*) e L x A. We
now want to show that (u*, \*) solves the continuous problem.

Let (v, ) € D x M and choose (vy,un) € Ky x Ay with (vn, un) — (v, p) strongly in
V' x W. Passing to the limit inferior in (3.3a) and (B.3D]), we obtain

liminfa(uN/,uN/) + lim inf b(uN/, AN’) < lim inf [CL(UN/,UN/) + b(uN/, )\N’)]
N’—w0 N’—w0 N’'—w0

< lminf[F(un: — vnr) (3.8)

N’'—w0
+ a(uN/,vN/) + b('UN/, )‘N’)]v
lim inf b(uN’aMN’) + liminfG(/\N/ — UN’) < liminf [b(uN/,MN/) + G(AN/ — MN’)]
N'—w N’—w0 N’'—w (39)

< lim inf b(’lLN/, )‘N’)
N'—w0

From the lower semicontinuity of a, which is a consequence of Lemma [[.24], the continuity
of F' and the strong convergence of the sequence (vy) (and thus also (vy/)), we obtain that
hm]\/’aoo F(uN/—vN/) = F(u*—v), limN/Hoo b('UN/, )\N’) = b(v, )\*) and limN/HOO CL(UN/, ’UN/) =
a(u*,v) together with a(u*,u*) < liminf N/, a(uyr, upn), which yields

a(u®,u*) + ljivminfb(uN/,)\N/) < F(u* —v) 4+ a(u®,v) + b(v, \*), (3.10)
'—o0

and due to the continuity of G and the strong convergence of (uy),
I*)w

Letting 4 — A* in the last inequality, we have that

b(u®, \*) < liminf b(unr, Anv), (3.12)
N'—o0
and thus with (310,
a(u*,u*) + b(u*, \*) < F(u* —v) + a(u*,v) + b(v, \*). (3.13)
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INEQUALITIES
Letting v — u* in ([B.10), we obtain
l]ivgl_i&f b{unr, An) < b(u*, \*), (3.14)
which gives in (B.I1]) that
b(u®, u) + G(N* — p) < b(u*, \*). (3.15)

Finally, choose an arbitrary pair (v, ) € K x A and a sequence (vg, 1) € D x M converging
strongly to (v, ). Thus, we see that (u*, A*) solves Problem B.I], and due to the uniqueness,
u* = uw and \* = A. As this argument works for all subsequences (upns, An7), the entire
sequence (upn, Ay) converges weakly, as well.

To prove the strong convergence of uy to u, we note that, by the coercivity of a, there
exists a constant C' > 0 such that

Ju —un|? < C%a(u — un,u —un) = C?[a(u, u) — 2a(u, un) + a(uy, un)] . (3.16)

With a sequence (vy) such that vy € K converging strongly to v € D,

a(un,un) < aluy,vy) + b(oy —un, An) — F(uy — un), (3.17)
and thus,
limsup a(un, un) < a(u,v) +b(v —u, \) — F(v —u), (3.18)
N—ow

where we applied (B.12). Letting v — u,

limsup a(uy,un) < a(u, u). (3.19)
N—

Therefore, by the weak convergence uy — wu,

0 < liminf ||u — uN||%/ < limsup ||u — uN||%/
N-—w

N-—w
< C%limsup [a(u, u) — 2a(u, uy) + a(uy, uy)] (3.20)
N—w
<0,
and the assertion follows. O

Remark 3.5. The above proof shows that actually, the uniqueness of u and \ is not necessary
for a corresponding result to hold. In particular, if A and Ay are not unique, we see that still
uy — u in V, but for Ay, we only have convergence of subsequences to some solution of the
continuous problem. If, however, Ay is not necessarily unique, but A is, then we still obtain
weak convergence of the entire sequence.

The last result has the disadvantage that only convergence is ensured, but no rate is
given. As such, it is not very useful for the practitioner. To give an a priori result on the
rate of the convergence, we need to introduce the concept of inf-sup conditions, which is also
fundamental for finite elements for mixed variational equations; see [BE91] for applications.

For simplicity, we shall restrict ourselves to the situation that the convex subset € V
is actually the entire space. In this situation, we have the advantage that we can formulate
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the discrete problem solved by uy on V. Furthermore, by substituting v by u + v and vy
by un + vy, respectively, the equalities (3.1al) and (B3.3al) simplify to

a(u,v) + b(v,\) = F(v) forallveV B.1ar)
and

a(un,vn) + blun, An) = F(vy) for all vy € Vi, B3al)

respectively, where we stress that ([B.1al') can also be used with v := vy € Viy as Vy € V.
This assumption is not necessary, however, in the special case that K is a convex cone given
as

K={veV:c(v,p) < H(p) for all p € D}, (3.21)

where Z is another Hilbert space, ¢: V x Z — R is a bounded bilinear form, H: Z — R is a
bounded linear functional, and ® € Z is a closed, convex set. Here, the inequality constraint
in I can be again formulated by duality, and we obtain a dual-dual formulation (two-fold
saddle point problem; see [GMO1] for other applications of dual-dual formulations. This is,
for example, true for the contact problem with friction we are considering. Details can be
found in [HHNLS8S, pp. 204].

Definition 3.6 ([BF91]). The bounded bilinear form b is said to satisfy an inf-sup condition
on V x W if and only if there exists a constant § > 0 such that

inf sup 2B 5 g (3.22)
peW vev [|v|ly [l

b is said to satisfy a (non-uniform) discrete inf-sup condition on (Vn x Wx)n (Babuska-
Brezzi condition) if and only if there exists a sequence (6n)n, On > 0 for all N, such that

inf sup b(UN7 MN)

— P > By forall N. (3.23)
ENEWN yneVN ||UN”V HMNHW

Note that as b is bounded, Gy stays bounded.
The next result is a generalisation of [Has81, Theorem 6] to the case of non-uniform
discrete inf-sup conditions.

Theorem 3.7 (A priori error estimate for the abstract primal-dual formulation). Assume
that b satisfies a non-uniform discrete inf-sup condition on (Vy, Wn)n with constants (Bn) N,
that Ky = Vy € K =V, and that A and (Ax)n are uniformly bounded.

Then, there exists C' > 0 such that for all w € A, uy € Ay and vy € Vi,

= un i} < Clblus Av = ) = GO = 1) + b, A = ) = G(A = )

(3.24)
+ 857 (Il = on I} + 1A = iy )|

and
A= Al < OB (lu = unlly + 1A = il (3.25)
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Proof. Define U :=V x W, endowed with the norm

1/2
1@, )l = (ol + ) (3.26)
R:=V x A and Ry := Vi x Ay, the bilinear form a: U x U — R by
a((v, 1), (w,n)) = a(v, w) + b(w, u) — b(v,n), (3.27)

and the linear form £: U — R
((v,1)) = F(v) - G(p). (3.28)
It is readily seen that
a((v, n), (v,pn)) = a(v,v) forallveV and pe W (3.29)

and that a and £ are bounded on U. Furthermore, due to (B1) and [B.3)), u := (u,\) and
uy = (un, Ay) satisfy

a(u,o0 —u) > L(v—u) forallve K (3.30)
and

a(uy, oy —uy) = Loy —uy) for all oy € Ry, (3.31)

respectively. Thus, by the coercivity of a, there exists a constant C' > 0 such that for all
v = (v,p) € Rand vy = (v, un) € Ry,

Ju —un|? < Ca(u — uy,u—uy)
C (a(u,u) —a(u,uy) — aluy,u) + a(uy, uy))
C(L(u—1v) +a(u,0) + L(uy — on) + a(uy, by)
—a(u,uy) — a(uy,u))
=C(Lu—on) + L(uy — v) + alu, 0 — uy)
+a(uy —u, oy —u) + a(u, by — u)).

<
<
(3.32)

By the boundedness of a, we obtain the existence of a constant C' > 0 such that for all € > 0,

Ju — unly, < C(L(u—vy) + L(un —b) + alu, v — uy)
C C
+5e Jun —ufl3 + 55_1 Jon —ully + a(u, on —u))
=C(Lu—oy)+ Luy — ) + alu, b — uy) (3.33)

C C
+ S un = ullf + ey = My

Cc _
+ e Hon —ully + alw o —w).
Due to the discrete inf-sup condition, we obtain that for arbitrary puy € Ay, there exists
vy € Vy with

1 b(”N? UN — A1\7)
268 lowlly

v = Anlly < : (3.34)
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and from [B3a) and BJIal) and the boundedness of a and b, we see that there exists a
constant C' > 0 such that for all v e V,

b(on, un) — b(on, An)

bun, un) + a(un,vy) — F(un)
b(UN,uN A) +a(un — u,vN)
Cllonlly (len = Alw + lluy —ully) -

b(un, uN — AN) =

(3.35)

/N

Thus, by the triangle inequality, there exists C' > 0 such that
IN = Al < A = xllyy + llew = Anlly < CB A = unlly + e = unlly). (3.36)
Plugging this into (3.33)), we see that there exists a constant C' > 0 such that

|lu — uN||%/ < C(a(u,ony —u) — Loy —u) + alu, v —uy) — £(0 — uy)

+efy” lu —unlly +eBy" 1A = pnlly + 7 [u = vnlly)-

Set ¢ := (2C)~13%,. Choosing v = ux and applying again (B.Ia), the result follows. O

3.2 Mixed hp-Finite Elements for Elasticity with Tresca
Friction

We now want to apply the theory developed in the last section to the problem with frictional

contact introduced in Chapter2l We shall restrict ourselves to the two-dimensional situation.

Recall that < R? is a domain, I'p, I'y and I partition the boundary I' := ), and
that the continuous spaces are given by

V ={veH"(Q)*: yr,(v) =0} (3.38)
where we assume for simplicity that the Dirichlet data vanishes, ug = 0 on I'p, and
W =L3(IT¢)?, (3.39)
and that the closed, convex sets of admissible functions are
={veV:vr.(V) v < uyalmost everywhere on I'c} (3.40)
and
A= {u eW: [pll»(rg) < 1 and py = 0 almost everywhere on FC} . (3.41)

We define the mappings a: V xV — R, L: V —» R and b: V x W — R directly for the
two-dimensional situation as

a(v,w) = JQ o(v): e(w)dx, (3.42)

L(v) := J F-vdx + G - v0,ry Vdsx, (3.43)
Q I'y
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and
b(v,p) := J gvi - pdsy. (3.44)
I'c
For simplicity, we shall assume that g is constant on I'c.

The following definitions are based on the formulation given in [Sch98|, pp. 169].

Definition 3.8. 1. A finite set 7 is called a partition of Q2 into quadrilaterals if and only
if

a) Q= UKeT K,
b) every K € T is a closed, convex quadrilateral,
c) foral K, K'e 7, int K nint K' = (.

2. Let 7 be a partition of 2 into quadrilaterals, K € 7, and x a vertex of K.

Then, x is called an unconstrained or regular node if and only if it is a vertex of all
elements K’ € 7 with x € K'. Otherwise, x is called a constrained or irreqular node.

3. Let 7 be a partition of 2 into quadrilaterals.

T is said to satisfy the one hanging node rule if and only if for every element K and
every edge F of K, there is at most one constrained node x with x € int E.

4. Let 7 be a partition of 2 into quadrilaterals satisfying the one hanging node rule.

A constrained node x is called singly-constrained if and only if there exists an element
K and an edge E of K such that x € int F/, and the two vertices of £ are unconstrained.
Otherwise, x is called multiply constrained.

5. Let 7 be a partition of ) into quadrilaterals satisfying the one hanging node rule.
Then, 7 is said to be a 1-irregular partition if and only if all nodes x of 7 are either
unconstrained or singly-constrained.

6. Let (7n)n be a sequence of partitions of €2 into quadrilaterals.

(7Tn)n is said to be shape-regular with constant k if and only if

h
sup sup K k< 0, (3.45)
N KeTy PK

where hg is the length of the longest edge of K and px is the diameter of the largest
circle lying entirely in K.

7. Let (7Tn)n be a sequence of partitions of € into quadrilaterals.
We say that (7n)n is regular in the sense of Ciarlet (see [Cia78| Exercise 4.3.9] if and

only if there exist constants ¢’ > 0 and v < 1 such that

!/

sup sup K <o’ and YK <7, (3.46)

!
N KeTy Mk

where 1 is the length of the shortest side of K and yx := max;—1,23 4 |cos(0;)|, where
0; are the inner angles of K.
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Note that the regularity in the sense of Ciarlet prevents the quadrilaterals from degen-
erating to triangles and implies that the family of partitions is shape-regular (see [Cia78|
Exercise 4.3.9(iii)]).

Clearly, for a partition 7 of ) into quadrilaterals to be possible, 2 has to be a polygon.
We shall assume this, and furthermore, we assume that the partition ensures that for each
element K € 7 and each edge F of K, either int F € Q or int £ € I'p, int F < I'y or
int £ € I'q; that is, the boundary conditions are completely resolved by 7. In particular,
this ensures that I'c is piecewise affine, and we can define Gauss quadrature on edges on I'c.

From now on, let (7x)n be a sequence of 1-irregular partitions of €2, regular in the sense of
Ciarlet, and for every N, let (pn k) KkeTy be a vector of polynomial degrees; that is, py x € N
with py g > 2 for all K € Ty.

It is proved in [Mel05, Lemma 2.3] that for such meshes, there exists a constant C' > 0
with hg/hgr < C for all K, K' € Ty with K n K’ # &, that is, the elements of 7y are
locally of comparable size. Similarly, we shall require that the elements of 7y are locally of
comparable polynomial degree, that is, there exists C' > 0 with py x/pn x < C for all K,
K'eTy with K nK' # .

We shall also assume that 7y is a refinement of 7y for N’ > N, that is, for all K’ € T/
there is some K € 7y such that K’ ¢ K, and for K € Ty, K' € Ty with K/ ¢ K,
PN,k < pn k7. Furthermore, set

&N = {8K08K/:K, KIGTN,K;éK'}, (3.47)
Epn:={pndK: KeTy withT'cndK # &}, (3.48)
Enn:={I'nndK: K e Ty with I'c n 0K # &}, (3.49)
Eon={TcndK: K e Ty with I'c n 0K # &}, (3.50)

and for every E € Ec n, let Kg be the (unique) element with £ = I'c n 0Kg. The set of
all edges is denoted by En := &y U Ep v U NN U Ec,n. To be able to apply certain kinds
of hp-Clément operators, we require the assumption [Mel05 (M4)], which basically says that
all elements adjacent to a node can be together mapped to a reference patch, requiring only
affine maps in between.

The element maps are defined in the following way: Let K € 7y be the convex hull of its
vertices (N;)i;, S := [—~1,1]? the reference square, and v;: S — R the hat functions on S,
that is,

Gt t2) 2= (1= t)(1 1), (3.51)
Yaltr,t2) 1= (14 00)(1 1), (3.52)
Us(tr,12) 2= (L 0)(1+ 1), (3.53)
Va(ti, ta) = 3(1 — (14 b). (3.54)

Then, the element map Fi: S — K is given by Fi(t) := 2;121 N;1;(t). The regularity in
the sense of Ciarlet yields that Fi is one-to-one and onto, and that there exists a constant
C > 0 such that for all N and all K € 7y, for the Frobenius norms of the Jacobians DFx
and DFI}1 of the element map and its inverse,

C'hyx < |DFg| <Chy, (3.55)
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and

C 'hy! < |DF|<Chy ' (3.56)

This ensures that all scaling arguments work as expected.
We consider the following hp-approximations: For Q9 := {Z‘ijzo aijx’ixéz Qjj € R} the
space of tensor product polynomials, we let

Vi = {vN e V:unlx o Fre € (QP¥5)2 for all K € TN} (3.57)
and

Wy e {“N eW: uxlp € (PP¥x52)? for all E € SQN}. (3.58)

To be able to define discretisations of L and A appropriate for an hp-context, we recapitulate
the main properties of Gauss and Gauss-Lobatto quadrature. The basic properties can be
found in books on numerical analysis such as [SB93|,[QSS07]. The interpolation error estimates
in fractional order Sobolev spaces are taken from [BM92, Theorem 3.4, Theorem 4.2].

Theorem 3.9 (Gauss quadrature). For every q € N, there ezists a unique set Gé c(—-1,1)

of cardinality ¢+ 1 and, for every x € Gé, a corresponding weight w?;cq, such that the induced

quadrature formula is of exactness 2q + 1, that is,
1
J v(z)dz = Z v(x)w?;cq for all v e P+, (3.59)
-1 zeGl
Furthermore,

1. all weights are positive, w?f >0 forallxz e Gé, and

2. letting j,: C°([—1,1]) — P9 denote the interpolation operator at Gé, we have that for
all € > 0, there exists a constant C' > 0 such that

v — jqUHLQ(fl,l) < Cqm (/29 ||UHH1/2+5(71,1) for allve H1/2+8(—17 1). (3.60)

Theorem 3.10 (Gauss-Lobatto quadrature). For every q € N, there exists a unique set

GLé c [-1,1] with -1, +1 € GLé of cardinality g+1 and, for every x € GLé, a corresponding
q

weight w?lg; , such that the induced quadrature formula is of exactness 2q — 1, that is,

1
J v(z)dr = Z v(@)w$H for all ve P2, (3.61)
-1 ’

Furthermore,

1. all weights are positive, w?i’q >0 for all x € GLé, and

2. letting i,: C°([—1,1]) — P denote the interpolation operator at GLCII, we have that for
all € > 0, there exists a constant C > 0 such that

[l — Z'qUHL2(—1,1) < g~ (/249 [ollgr2re21yy  Jor allve H'/2%¢(—1,1). (3.62)

36



3.2. MIXED HP-FINITE ELEMENTS FOR ELASTICITY WITH TRESCA FRICTION

Let E < R? be an arbitrary segment. Then we can easily define Gauss and Gauss-Lobatto
points and weights on E by GE with wp, ’q for x € GE and GLE with wE L9 for x e GLE
respectively, by using an affine, one- to—one and onto mapping FE [-1,1] - E and settmg

Gl :={Fp(x): v G[}, (3.63)
E

wgi = ’2 wy G4 for x = Fp(x) with z € GF, (3.64)

GL[ := {Fg(x): v € GL{}, (3.65)
E

g};’q = |2 ?I;q for x = Fg(x) with x € GLqE. (3.66)

We note that these formulas yield the same exactness when integrating polynomials as the
corresponding formulas on 7. In the same way, we define the Gauss and Gauss-Lobatto
interpolation operators j2: C°(E) — P? and i} : C°(E) — P1.

Note that, if v € C°(I'¢) and we do a piecewise interpolation with respect to the Gauss-
Lobatto points on the edges I € £, v, the resulting piecewise polynomial is also a continuous
function, as the boundary points of the edges E € £¢ v are always contained in the points
where we do the interpolation.

The discretisation of K and A is done by setting

Ky = {VN € Vy: vn(x) - v(x) < up(x) for all x e GL and all F € Sc,N} ,  (3.67)

PN.Kp
and

Ay = {[LN eWn: [puy(x)| < 1forall x € Gy, —2 and all E'€ Eo,n,

(3.68)

and (uN)n = 0}.
Furthermore, we introduce the local mesh width Ay : Q — (0, 00) and local polynomial degree
pn: > Nand gy: I'c > Nas

hy(x) := Ksqu hi, (3.69)
€ :
xek

pN(X) := sup pnK, (3.70)

KETN:
xeK

and

sup (pN,Kkp — 2)- (3.71)
EESC,N:
xeE

gn(x) :

The discrete problem is:

Problem 3.11 (Discrete primal-dual formulation, Tresca friction). Find (uy, Ay) € Ky x Ay
such that for all (vy, puy) € Kn x A,

L(vy —un), (3.72a)
0. (3.72b)

a(un,vy —uy) + b(vy —un, An)

=
b(un, py — An) <
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The following theorem, which is given in [Mel05, Theorem 3.3], ensures the existence
of hp-interpolation operators of Clément type. Here, Kpaten = | JK’, where the union is
taken over all elements K’ which are near to K; for details, see the article cited above. In
particular, Kpaicn is chosen large enough such that Epaicn © Kpaten for all edges E € 0K,

where Epaten := Upgrnpreg K-

Theorem 3.12 (hp-Clément interpolant). There exists a sequence (in)n of linear operators
in: V. — Vy such that for all K € Ty and edges E € 0K,

. hK . hK .
H'l) — ZN’UHLQ(K) + — HVZNUHL2(K) + \/7 ”U - ZNUHL2(E‘)
PK PK (3.73)
h

K
< C’p—K HVUHLQ(KWM) forallveV.

We shall also need the following variant, which is given in [Mel05, Theorem 3.4].
Theorem 3.13 (hp-Clément interpolant preserving polynomials on I'c). Set

Vv :={veV:yr.v|g € PPNEe for all E € Eon, and yor.v € CO(Tc)}. (3.74)

Then, there exists a sequence (%N)N of linear operators iy : Vy — Vi such that for all

K e Ty and edges E € 0K,
hK A
L2(K) * \| px HU B sz’

h N
< C}i ||VU||L2(KWM) for all v e Vy,

h A
+ K HVZNU‘
PK

Hv — iNU‘

L2(K) L2(E)

(3.75)

and YoreV = Yoreinv for all v e Vy.

3.2.1 Strong Convergence

In the following, we suppose that the function ug given on I'¢ satisfies ug € Hl/2+e (I'c). Actu-
ally, we shall see below that it would be sufficient that the piecewise interpolation polynomials
of ug at Gauss-Lobatto nodes converges in L!(I'c) to ug.

Theorem 3.14. Suppose that supg hy/pn — 0.

Then for the solutions (un, An) of the discrete primal-dual formulation given in Problem
[Z.117] and the solution (u,X) of the corresponding continuous problem, we have that uy — u
mV and Ay — Xin W.

We shall apply the variant of Theorem B.4] suggested in Remark Thus, we need to
prove the convergence in the sense of Glowinski of Ky and Ay, and also that the solution
uy is unique.

Lemma 3.15. We have that Ky SN K.

This follows similarly as in [MS05, Theorem 1], where they prove a corresponding result
for a Sobolev space on the boundary, which is used in a boundary element formulation of the
Signorini problem. We recall the following basic convergence result on Bernstein polynomials;
see [DL93| Chapter 10] for further properties.
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Theorem 3.16 (Bernstein operators). For g € N, define the g-th Bernstein operator as

By: CU[0,1]) = P9, Byf := Y f(§/n)pns (3.76)
j=0
where
Pn,j(z) = (?) j(l — :L‘)nfj. (3.77)

Then, Byf converges uniformly to f on [0,1] for all f € C°([0,1]), that is, B, converges
to the identity operator in the strong operator topology.

Furthermore, for ¢ > 1, Byf(0) = f(0), Byf(1) = f(1), and if f > 0, then Byf >0, that
is, By is a positive operator.

Similarly as for the interpolation operators at Gauss and Gauss-Lobatto points, it is
possible to transform the Bernstein operators into operators on the space C°(E) for E € R?
an arbitrary segment. We shall denote these operators by B(;E : CY(E) — P9. Using these
operators, we can construct approximations of continuous functions:

Theorem 3.17. Given a function ¢ € C*(T¢), define oy € CO(T¢) piecewise by on|p =
BIJEN,KE_1¢|E'
Then, for N — o0, on converges uniformly to .

Proof. The continuity of ¢n follows from the fact that B, f(0) = f(0) and B, f(1) = f(1) for
all ¢ = 1.
Recall that limy e Supyer, Ay (x)py(x)~! = 0. By [DL93, p. 308, (3.4)], we have that

”f - qu”CO([O,I]) < C(q + 1)71 Hflluco([oyl]) ’ f € C2([07 1]) (378>

Thus, for every N and every E € &g, with an affine, one-to-one and onto mapping
FE: [O, 1] — E,

lele = enlellcomy = llele © Fe — onle © Fullcoo )

= H<P|E o Fp — Bpy sc,—1(¢lE 0 FE)‘

Co([o,1])
< Opyigs 1@1E © FB)"[| coggo) (3.79)
= Ch%pl_\f}KE H<90|E)”HCO(E)
S ChQEp;V,lKE lellcare) -
The regularity of the mesh yields the convergence. O

Proof of Lemma 3.1 First, let (vy) be a sequence of functions with vy € Ky for all N,
and assume that vy — v. We need to prove that v € K, that is, yor v - v < ug almost
everywhere on I'c. By Theorem [[1] this follows if we can show

J (YoreV -V —up) pdsx <0 forall pe C*(T¢) with ¢ > 0. (3.80)
Tc

As the mapping v — 7or.V - v is continuous as a mapping V — L?(I'¢), we see that
Yo.reVn -V — YoreV - v in L2(T¢).
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Define, for a given p € C°(I'¢), ¢ = 0, the function px by pn|p = BpEN KE_190|E, that

is, piecewise by Bernstein polynomials, and ugn by won|g = ifN x
interpolation at the Gauss-Lobatto points. By Theorem B.I6] we see that ¢on = 0. By the
exactness of the Gauss-Lobatto quadrature given in Theorem [3.I0 and the definition of Ky,

2 1
we see that for every E € Ec N, as uopnen € PPNEe™ 7,

o, that is, piecewise by

GL,py,
| orevy vendse= 3 vl wxen wgh
E

E
xeGLy N g

S wx)en (wp e EE (3.81)

E
XEGLPN,KE

N

GL,pn,
= D un®en(xuwy

E
xeGLy N g

J uoN (X)on (x)dsx.
E

As ugy € HY/2+e (I'c), we can apply the estimate in Theorem together with a scaling
argument to see that ugy converges to ug strongly in L?(I'¢). Furthermore, by Theorem 317,
@ converges uniformly to ¢, and thus also strongly in L?(I'c). Taking the limit N — oo, we
therefore obtain that v € K.

To show the second property, let v.e C®(Q)2 n K be given arbitrarily, where we note that
C*®(Q)2NK is dense in K by [Glo84, Chapter II, Lemma 4.2]. We see that the construction as
in [DGS™98, p. 150] yielding, on ', interpolation polynomials at the Gauss-Lobatto points,
produces a sequence (vy) satisfying vy € Ky, and, as stated in the beforementioned article,
vy — v. This proves the claimed result. O

The following measure-theoretic result is essential in showing the convergence in the sense
of Glowinski of Ay.

Lemma 3.18. Let (X, ) be a finite measure space. For 1 < q < o, let ¢’ be the conjugate

of q, that is, %—1—% =1forqge (1,0), ¢ =w forq=1andq =1 forq= o0 Let D < Lq'(X)
be a dense subspace, and define p: LI(X) — [0, 0] by

p(f) :=sup UX fodp:ge D and ||gl[i1xy < 1} : (3.82)
Then, for f € LY(X), if p(f) < o0, it follows that f € L°(X) and p(f) = | £l (x)-
Proof. We see that, if p(f) < oo, the linear functional

(:DcLYX)>R, g J fodu (3.83)
X

is continuous. As the injection LY (X) < L'(X) is continuous, we see that the space of
characteristic functions is contained in the L'(X)-closure of D as it is contained in LY (X),
and therefore, D is dense in L'(X). Thus, there exists a continuous extension ¢: L}(X) — R,
and by the definition of p, [|€]|;,1 x)« = p(f). By the Riesz representation theorem, Theorem

29, we see that there exists f € L®(X) such that
{(g) = J fgdp for all g e LY(X) (3.84)
X
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and HfH - 1]l 1 xyx = p(f)- It is clear that

Le(X
J fgdp = f fgdp for all g € D. (3.85)
X X

By continuity and density, this equality extends to L? (X), and we obtain that f = f almost
everywhere in X, from which it follows that f € L(X) and || f|lp=xy = p(f)- O

Remark 3.19. A version of Lemma B.I8 which holds for vector-valued functions f follows
analogously.

Lemma 3.20. We have that Ay SLA.

Proof. The set M := C®(I'c)? n A is dense in A with respect to the L?-topology, which
follows from [Dor07, Lemma 4.1]. For p € M, we can choose py € Ay as the interpolant of
p at the Gauss points of every edge E € £c y. Then, by applying Theorem together with
a scaling argument, we see that p, converges strongly to p.

For the second property, consider a sequence (py), py € An, and assume that gy — p
in W. We shall prove that u € A. Following Remark B.19] we only need to prove that
ch p-ndsy < 1 for all n € C*(I'¢)? with ||77HL1(FC) = 1. Note, furthermore, that p - v = 0,
and thus, we can assume that n-v = 0. Choose therefore such a . Choose a sequence (1),
Ny € Wi, piecewise on each E € x n, componentwise as the Bernstein polynomial of order
PN, Ky — 1. By Theorem B.17 it follows that my converges to m uniformly, and thus also in
L2(T'c). In particular, this yields that the norms converge, InllLirey = Il =1

By the exactness of Gauss quadrature as given in Theorem 3.9 as p -my € PPNEE S,

G,pn, —2
[ RS DR
I'c Eeéc,n XEGPENK 9
Kp

G,pn, —2
< Z Z |TIN (X)| wE,xN e

Eelc, N xeGE L,
PN.Kg

< Sy - n) w e (3.86)

Eefc, N xeGE 9
PN,Kp~

LD D Y U TC [

Eefc N xeGE
PN

ﬁKE_Q
GoN,Kp—2
<|Telllmy = nlliere + 2 Z In(x)| wE,xN e
Lefon xeGp
BB

As x +— |n(x)| is in HY(I'¢) and ny — m uniformly, we see that the above expression
converges to |11y, = 1.

On the other hand, gy — p and n — 1 in L?(I'c), and finally, we obtain
lim J py - ydsx = j p-ndsy <1, (3.87)
N—>w FC FC
that is, pu € A. 0
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Proof of Theorem[3.1]. First, we show that for (uy,An), uy is unique. Let (u)y, Aly) be
another solution. Then,

a(uy,uy —uy) + b(uy —uy,Ay) = L(uly —uy), (3.88)
a(uly,uy —uly) + bluy —uly,Ny) = L(uy — uly), (3.89)
bluy, Ny — An) < 0, (3.90)
and
b(uly, An — Ay) < 0. (3.91)
Thus, adding the respective inequalities,
a(uy —uly,uy —uly) +b(uy —uy, Ay — Ay) <0 (3.92)
and
b(uy — u’N, AN — )\IN) =0, (3.93)
which gives that uy = u)y by the coercivity of a.
Next, clearly,
Mp2re) < el [IMlpe ey < Tol /2, for all A€ A, (3.94)
and also
1/2
-2
MNlzeey = | 20 2 AN wgy
Eelo,N xerN i
1/2
, 12 (3.95)
<[ X X wEET| - (JF dsx)
C

Ee&c, N xeGE L
PN, Kp

= [Dc|¥? for all Ay € Ay,

which gives the uniform boundedness of both A and Ay.
Applying Lemma B.T5 and Lemma [B.20] together with Remark and Theorem B.4] we
obtain the claimed result. O

3.2.2 An hp-Mortar Projection Operator with Slowly Growing Bound

Our aim is to apply Theorem [3.7] to the friction problem under consideration. For this, we
need to show an inf-sup condition. A usual approach to do this is outlined in [BS08, Lemma
12.5.22] and is based on the construction of sequences of operators conserving scalar products
with elements of the Lagrange multiplier space, and having a calculable operator norm. This
is done in this section.

Note that the operators constructed here correspond to the kind of operators used in
mortar finite element methods. They can be compared to the mortar projection operators
constructed in [SS00]. There, a space of continuous functions on the boundary is used as the
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mortar space, which leads to an operator norm growing as max; p?/ 4, which was numerically
shown to be sharp by Seshaiyer and Suri in the above reference. We use a discontinuous
mortar space, and obtain that the operator norms are of the order max; (le 2 10g3/ 2 pi), that
is, they grow more slowly.

Theorem 3.21. There exists a sequence of polynomials (Ly,)n=>0, the Legendre polynomials,
with Ly, € P™ for all n = 0 and such that

<Ln,Lm>L2(_171) = WpOpm for alln, m =0, (3.96)
where 5
Wn 1= o (3.97)

Furthermore, with the above normalisation,
HLQ||H1/2(—1,1) < Clog'?q (3.98)
for some constant C > 0 independent of ¢ = 2.

The first part is well known, and can be found in [Sch98, Appendix C]. The estimate for
the HY2-norm of the Legendre polynomials is contained in the proof of [AMW99, Lemma
10).

We consider an operator P,: H/2(—1,1) — HY?(—1,1) which satisfies P,v € P? for all
veHY 2(—1,1). Furthermore, we require that

(P, whyag_y gy = 0, w)a_yyy  for all we PI72 (3.99)
This implies that
2(_
Py = H;q(—zm)” + ©q,9-1(0) Lg—1 + Pq,4(v) Ly, (3.100)
where H;}i(_l’l) is the orthogonal projector onto P’ with respect to the scalar product of

L%(—1,1), and ¢, are continuous linear functionals on HY2(—1,1). The aim is therefore
to determine ¢;; in such a way that the norm of P, does not grow too quickly, but at the
same time, we obtain a globally continuous approximation if, for a given mesh, we apply P,
element by element.

Consider therefore a mesh (z;)i—o,.m, @ = 0 < 1 < -+ < &y, = b, together with a
polynomial degree distribution (p;)i=1,....m, that is, p; € N, p; > 2, satisfying

C ' <hi/hij1 <C fori=1,...,m—1 (3.101)
and

C U< pifpig1 <C fori=1,...,m—1. (3.102)
and let Fy: (—1,1) — (z;_1,2;) be defined by Fi(t) := x;_1 + 1 (2; — ;.1). Define the
operator Py : H/?(a,b) — H'Y?(a,b) by

2(— —
(PNU)|(3?1'71,$1') = H;P(rgyl)(v © Fl) © Fz‘ !

i 1 : 1 (3.103)
+ SO;i»pi—l(v)Lpi*I © Fi + SO;hpi (’U)Lpi o Fi .
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Let Jy: HY?(a,b) — Vi, where

Vy = {UN € H1/2(a, b): ON|(¢;_y,0) € PP fori=1,.. .,m}, (3.104)
be an arbitrary, continuous operator. We define Spéi,prl and ‘p;)i,pi in such a way that
Pnv(z;) = Jyv(z;) fori = 0,...,m. Thisis achieved by solving the linear system of equations

1.2 71,1 i— . i
Inv(@i 1)~ 00 B @y 1)=(—1)P 7l () +(—1)Peh (), (3.105)

L2(—1, , .
Tno(a) =T, oV (wo F) () = Chp 1@+ oh ). (3.106)

In particular, as Jyv is necessarily continuous, Pyv is so, as well, and Pyv € V.
We have the following variant of a von Petersdorff inequality, which is also given in
[AMT99, Theorem 4.1].

Lemma 3.22. There exists a constant C' > 0 independent of the mesh such that for all
v E Hl/Q(a, b) such that v|, | .)€ Hé{f(:ci_l, x;) foralli=1,...,m,

(3.107)

m
2 2

|U‘H1/2(a,b) < CZ |U|(mi71,xi) H(l){f(xi—l,xi) .
=1

Conversely, for ve H1/2(a, b),

m

2 ’U|(mi—17$i)

i=1

2
HY/2(z;_1,2;) < |U‘?{1/2(a,b) : (3108)

Proof. By definition of the H'/2-seminorm (see Section [[J),

2
‘U|2H1/2(a,b) = J f Mdlﬂy
@b) Jap) | —yl

m 2
S [ Moy,
=1 Y (%i—1,3:) J(xj-1,25)

|z — y|?

1,j=1

m 2
S [ boowry,
im1 J(@im1,2) J(@im1,2i)

|z — y|?

Sy [ e,
Y.
(Ti1,m0) J(xj-1,%5)

2
i=1j#i lz —yl

(3.109)

By the triangle inequality and the Fubini theorem,

i 3 f Lj_w) |o(2) = v(y)|* dedy

2
i=1 ji Y (@i-1,4) ‘x - y‘

M|

i=1j#i (ri—1,74)

S|

i=1 j£i Y (@i-1,2i)

2 2
(Tj—1,25) [z —y|

f( P@F 440

Tj_1,Tj) |33 - y|2

44
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= 1), f o)l | 1 ayde
= J@is ) (@ (ior.e) |2 — y|?

As x € (i1, x;),

1 1 1
———dy = ——dy + 3
(@b\(@i_1a:) | — Y (@i 1) (T —Y) (@:.b) (T —Y)
1 1 1 1
= - - +
r—xi1 x—a b—zxz x;—x
1 1
< +
r — T;—1 Ty, — &

< 2 .
dist(z, {zi—1, zi})

Thus,

m 2
) —v
’U|H1/2 (ap) = ZJ f —| @) ®) dxdy
i1 Y (@ic1,mi) J(@i—1,24)

|z — y|?

D I T

=1 j#1 y|

[v()]

<) [1vl(m—m>
=1
< 162 [{U|(zi—1:xi) ;
=1

H(l)(/f(fﬁiflﬂfi)] ’

Therefore, the result holds true with C' = 16.
For the second estimate, note that

2
[Vl5r1/2(a) = J J o) = o)l v(éy)‘ dzdy
(@b) Jap) |z -yl

i,7=1

m 2
S [ mosry,
i1 Y (@i—1,mi) J(Tio1,24) |z —y|

il 2
= 2 ‘/U|($i717$i)
=1

HY2(zi_1,%;)

\Y

from which the result follows.
Lemma 3.23. We have the estimate

||PNUHH1/2 (ab) = HJNUHHl/2 (a,b)

1, (vo B) — Iyvo By

32 2
+C max log’"p; <21 ;
1=

2 +16 f
HY2(z;_1,2;) (@i1,:) dist(z, {xi—1,zi})

m 2
S [ el
P g (i—1,24) (mj—lvl'j) ’:E - y’

1/2
L2(— 11)) '

(3.111)

(3.112)

(3.113)

(3.114)
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Proof. First, note that
1PNvllgziap < 1IN0 + 1PN = INvllgzgp) - (3.115)

As Pyv(z;) = Jyv(z;), we can apply Lemma [B:22] together with a scaling argument to obtain

2 2 2
1Pnv = INVligap = 1PNV = INUIT2(0p) + PN = INUli12(30)

<O X[ IPve = Invlg,

i=1
+ |PNU JNU‘ 1/2( v 1’%)]
m (3.116)
Z[ —xi1) |[Pnvo Fy — JNUOFHL2( 1,1)
=1
+|PNUOF JNUOF’l/Q( 11)]
<Ch-a 2 | Pyv o Fy — Jyv o Fy|? 21
=1 '
Theorem yields the existence of a constant C' > 0 such that
1Pvv o Fi= e Bl (3117)
< Clogp; [|Pnvo Fy — Inv o Fillyipz g -
By the triangle inequality,
L2(—
1Py o Fy = Jyv o Fillgua_yy) < HHPP(Z__;J)(U oF) — |
+ ‘wéi,pi—l(v)} HLpi*IHHl/Q(—l’l) (3118)
+ ‘(p;i,pi (U)‘ HLpz||H1/2(—1’1) :
Furthermore, Theorem [[.20] gives, with some constant C' > 0,
1) A .
HHPP —2 (Uon) t H/2(-1,1) (3 119)
L2(—1,1 ’
< Cp; ‘pr(i_g )(v oF;) — Jyvo F; L1’

Next, it is easy to see that, by Theorem [[L.T7], there exists a constant C' > 0 such that

i L2(—-1,1
‘gpm,q(v)‘ < ‘ I_I'P:DE*2 )(U © Fl) a L©(—1,1)
’ 3.120
== L Pri—2 N L2( 1 1)

Together with the estimate of the H/2-norms of the Legendre polynomials in [3:21], this yields
the claimed estimate. ]
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Thus, the fundamental point is to construct the operator Jy in such a way that

Hnﬁgi;”(v o ) — Jyvo F;

L2(—1,1) and HJNUHHl/Q(a,b) (3.121)

can be bounded. This is done in the following result.

Theorem 3.24. There exists a sequence (Jx) of operators Jy: HY?(a,b) — Vi such that

L?(~1,1) , , —1/2

HHPW"’ o k) = Ivve B,y SO g s (3.122)
fori=2,...,m—1,

L2(—1,1 —1/2
M we ) = Jyoe Ay oy SO0 " 0l4g1/2(ap.00) (3.123)

L2(~1,1) —1/2
HHPPm*Q (’U o Fm) - JNU o Fp L2(—1,1) < Cpm |U‘H1/2(xm_2,xm) ’ (3124)

and

I l2g0y < € Nollpagay (3.125)

The construction uses certain operators giving simultaneous approximation in Sobolev
spaces with different exponents.

Lemma 3.25. There exists a sequence (mq)oLg of operators my: L2(~1,1) — P9 and a con-
stant C' > 0 such that for all ¢ = 0,

v = mqvllir 1y < Cla+ 17 ol

(3.126)
forO0<r <s<1andveH(-1,1),

and
v =uv forve P’ (3.127)

In particular, for a function v € H*(—1,1), this yields a simultaneous approximation in
all spaces H"(—1,1) with r < s, and stability in H*(—1,1).

Proof. Define the linear operator m,: L*(—1,1) — P, as the operator constructed in [Mel05,
Proposition A.2] for R = 1 and N = g. Then, the results follow by combining Theorems
and [[L.12] where we apply Theorem to obtain the seminorms. O

Proof of Theorem[3.24 We shall do this based on partition of unity methods; for general
ideas of this method, see the articles [MB96l, [BM97].

Let ¢y : (a,b) — R be functions piecewise affine on the given mesh such that ¢y (z;) = dx;
for i, k = 0,...,m. We remark that supp¢x = [r_1,Tk41] for k=1,...,m — 1, supptp =
[z0, 1] and supp ¥, = [Tm—1, Tm], and that on (z;_1,2;), Yi—1 + ¥ = L.

_ Define p; := min(p;,pi1) for i = 1,...,m — 1, po := p1 and P, := py,, the mappings
Fy: (-1,1) > (w1, 2k41), Fp(t) := 21 + %(l’mﬂ —xpq)fork=1,....m—1, Fy:= F}
and ﬁ’m = Fy,
iy i {mm(v o F)o F' on Fi((~1,1)), (3.128)
0, elsewhere,
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and Jy by .
Tnv = > (o). (3.129)
=0

Note that by the choice of the p;, (JNV)|(z;_, ;) IS a polynomial of degree not more than p;,
and by construction of the ¢y, Jyv is continuous. Thus, Jy: HY 2(a,b) — Vi is well-defined.
By the triangle inequality,

L2(-1,1
HHPP(Z-% )(v o F}) — Jyvo Fj L2
L2(—1,1
< HHPPE,Q JwoF) —voF . (3.130)
+ oo Fy = Invo Filla_q 1y,
and by the properties of the orthogonal projection,
L2(-1,
HHPP(r; 1 (vo F;) —voFj L2 1) < || mp,—2(vo F;) —vo FiHLQ(fl,l)

< Cpi = 1) v o Filgey (3.131)

<Clpi = 1) olgpage

Ti1,Li)
As 0 < 9 < 1, by scaling, there exists, due to (BI01]), a constant C' > 0 such that for
1=2,....,m—1,
lvo ks — Jnvo Filliz_q
< Ch P o = Tnvlliege, e
= Ch; ' |Jo(ioy + i) — INVllL2(, )
< Ch P [0 = 7 )i+ (0 = TN ey

< Chy (| w = 7y Moy | (3.132)

Ti—2,T;)
+ 1w =m0l a0

< Oh P (o =7 "ol 2,y e

+ o = mivellieg, s )

< C'(HU oFy_q—mp_,_1(vo E—l)‘

L2(=1,1)

+ H’U o F, — mpi—1(v o

L2(—1,1)>'

By the properties of m,; and the invariance of the H'/2-norm with respect to scaling,

—1/2 =
L2(-1,1) < Op; ’U o ks

Hv oFy —mp,_1(vo F) H'/2(-1,1) (3.133)

—1/2
’U|H1/2(73i—17xi+1) :

< Cp,
Clearly, there exists a constant C' > 0 such that

~1/2

(pi — 1)Y= Cp, (3.134)
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and
e o —1/2
mln(piflapi) 1/2 < sz / )
and thus

HH (o F) —

—1/2
Pri—2 RURIESEY < Op; s ai)

with some C' > 0; corresponding results hold for i = 1 and ¢ = m.
For the stability of the operators Jy, note first that

1INVl < vl + 180 = vllgzee

< vy + Z H(ﬂ\/” - ”WiHHl/Z(a,b) :

As, by (8126) with » = 0 and s = 0 and a scaling argument, for i = 1,...,m

H(Trfvv - U)WHLZ(a,b) - H(ﬂVU o U)WHLZ(OEFLWH)

< Hﬂv“ - UHLQ(m_MEHI)

< C(hi + hip1)"? ‘ 51 (v o Fy) —

He-1
< Chi + his)2|

-1,1)
< ¢ HUHLQ(:UZ' 1,

—1,Ti+1)

_]_’

(3.135)

(3.136)

(3.137)

(3.138)

and again correspondingly for ¢ = 0 and ¢ = m, which yields, as locally, there are at most

two ¢ such that ¢; # 0,
[ Inv = vz < CllvllLagap) -

(3.139)

In a similar fashion, by a scaling argument together with (3.126) with » = 0 and s = 1, for

i=1,....m—1,
H[(F,]LVU - U)wi]IHL?(ab H[ ﬂ—NU wl HLz(xz 1 :U7+1)
- H(TFNU —0) wz (7TNU — wiHL2(l’ifl,$i+1)
S H(T‘-NU leLQ(xl 1,Ti41)
+ H TFNU - Q’Z)Z'HLQ(xi_l,a:¢+1)

< H(ﬂ'?\ﬂ) - U)/HLQ(xi_hIHl)
+ C(hi + hi+1)_1 Hﬂ—j\w - UHLQ(xiflﬂz’lﬁrl)

< C(hi + hir) ™ ||(m5,-1(v 0 Fy) —v o Y

+ C(h; + hi+1)_1/2 Hﬂ'ﬁi,l(v oF}))—voF;

< O(hi + hip1) 2 {|(vo FyY

< C 'l

< Ol

(Ti—1,Ti41)

(Ti—1,Tit1)?

(3.140)
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and correspondingly for ¢ = 0 and i = m, which yields, by the finite overlap of the (1),
1750 = Vlhssgany < € 10l gasy - (3.141)

Using Theorems [[L.TH and [LT2 to interpolate the above estimates in L?(a, b) and H'(a, b), we
obtain

HJNU”Hl/Q(a,b) <C HvHHl/Q(a,b) ’ (3.142)
that is, the stability of the operators Jy. O

Combining the above results, we obtain:

Theorem 3.26. There exists a sequence (Py) of operators Py: HY?(a,b) — Vi such that
for all v e HY?(a,b),

1/2
||PNUHH1/2(a,b) < C (1 + ZEIllaX ( z/ 10g3/2 p1)> HU”H1/2(a,b) 5 (3143)
and for allwe PPi~2 andi=1,...,m,
<PNU,'[U>L2($¢717$Z_) = <'U, ’LU>L2(1,Z_717:L,1_) . (3144)

Proof. Plug in the operators Jy constructed in Theorem [B.24] into the estimate given in
Lemma [3.23] This, together with Lemma [3:22] yields
”PNU||H1/2((L b) < ||JNU||H1/2(a b) + C . max 10g3/2p1><
’ ? i=1,...,m
1/2
(2 Pi L2( 1 1)>

3/2 2
<C HUHHI/Q(avb) + Cﬁi{lé.xm log / b (pl ‘v’Hl/z(xOv@)

1

PP 21)UOF)

m—1

1/2
2 2
+ 2 Di |U|H1/2($i727l‘i+1) + Dm |U’H1/2(fcm2,wm)> (3.145)
=2

S C||U”H1/2(a,b)

1/2
1/2 E
+C HllaX (p; 10g i) ( |U‘H1/2(rz 1@1))

-----

<C(1+ max_ (p (pi/* 10g®? p;)) [0l r1/2(a,0) -

The second property follows from the definition of Py in (3.103). O

Remark 3.27. Analysing the above proofs, we see that actually, given an operator Jy mapping
a space of functions vanishing weakly at one or both end points into polynomials vanishing
there as well and satisfying analogous approximation properties will ensure that Py also
satisfies these boundary conditions.

Consider therefore the space H(é (a,b) as defined in Section We then only have to

define a modification 7} w of the local approximation operator 7'(']1\[ on the element (a, z1) which
satisfies (7 v)(a) =0 for all v e Hzc/f(a b).
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The first step is the following argument, which is done on the reference element.

Lemma 3.28. There exists a sequence (7q),Z of operators 7y : L2(0,1) — P and a constant
C > 0 which satisfy

v — 7~rqv||L2(o71) <C ”UHL?(O,l)

3.146
for veL2(0,1), | )
v — WU <Clv
| q ”Hl(o,l) I ”HI(OJi (3.147)
for ve H(0,1),
I = vl < Ca+ 1) folyyeg
L © (3.148)
forve H(o/ (0,1),
_ <Clg+ 1)t
v 7Tq”||L2(0,1) (¢+1) |U|H%o(0’1) (3.149)
forve H%O(O, 1),
and
(Tgu)(a) =0 forve HzéQ(O, 1). (3.150)

Proof. By Theorem [[4] there exists an extension operator £: L2(0,1) — L?(R) such that

| v

< f L2(0,1 151
L2(R) Clvlliz,y for ve L3(0,1) (3.151)

and

|

1
. < Cvllgyy for ve HY(0,1). (3.152)

Define the operator E: L2(0,1) — L2(—1,1) by

Ev := (Ev)|_1,1- (3.153)
Then,
n 2
HEU\ vy S Ol for veL2(0,1) (3.154)
and
[ 1
HEU‘ i <Ol forve'©,1) (3.155)

Interpolating the above estimates using Theorems and yields
[Ev|lgs(—1,1) < Clvllgs(o,1y  for all v e H*(0,1) and all s € [0,1]. (3.156)
Define 7,: L2(0,1) — L2(0,1) by
Tqu(x) := mgEu(x) — (meEu) (0)(1 — x)? for z € (0,1). (3.157)
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We see that, as by definition (Eu)|q,1) = u,

1Fqu = e < I7eBu — Bulla_ ) + I Eu(©)] (1 = )20 (3.158)
and
7 = ullygs 0.y < ImaBu = Bullys_y 3y + o) (1 = )l .1 - (3.159)
A simple calculation shows that
1A =)Lz 01y ~ (g + 1)~1? (3.160)
and
I =)0,y ~ (g + )2, (3.161)

By Theorem [L9, we see that, as (1 — 22)|;—0 = 1 and 0 < (1 — 2?)7 < 1 for z € [-1,1] and
v =0,

|7Tun(0)’ < H(l - 'z)ﬂ—unHLx 1

1)
1/2
< (1 = A)mgBul| b ) % (3.162)
1/2 2 r|[1/2
[ Bmmit, o - mey ]
1/2 2y1/2 12
< CmeBuliy_, [||Wun||L2( oy + [ =22 g By Lz<1,1>]
Theorem [I.1§] yields
|1 =22,y oy S Clat D ImBullz (3.163)
and thus
7 Bu(0)] < Cg+ 1) | mgBull 2y 5y - (3.164)
Choose first u € L2(0,1); then, it follows by the L?-stability of m, that
1Tqu = ully 201y < Cllullpzoy - (3.165)

Next, choose u € H'(0,1) with u(0) = 0, which also yields Eu(0) = 0. Then, again by
Theorem [I.9,
7 Eu(0)] = [mgEu(0) — Eu(0)| < |[mgBu — Eullye_y ;)
1/2 (3.166)
L1)"

By the approximation properties and stability of 7, and the continuity of £, we have that

1/2

< C||mgEBu — Eu||L2(_171)

ImgBu — Bull}f

lq B — Eull 211y < Clg+1)" ! [Eullgr 1,1y < Clg+ ! [l 0,1 (3.167)
and

17 B — Bullyy_q 1y < C 1 Bullgr—11) < Cllullaopy (3.168)
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Thus,
7 Eu(0)] < Cg+ 1) ullory » (3.169)
which yields both
g =l iz < Cla+ Dl oy (3.170)
and
[7qu — UHHl(o,l) <C HUHHI(O,l) ) (3.171)
Interpolating these estimates using Theorems [[L.T6 and [[.T2], the results follow. O

Thus, defining 7?9\, by

Ry o TRt Fo) o B on (a,21), (3.172)
0, elsewhere,
and Jy by
Inv o= (7)o + D (), (3.173)
i=1
we obtain, with )
Vn :={veVy:v(a) =0}, (3.174)

the following result corresponding to Theorem

Theorem 3.29. There exists a sequence (Py) of operators Py : H1/2(a7 b) — Vi such that

(0
forallve Hé(/)Q(a, b),

1Pvollgspgep < O+ max (b 1082 pi)) [0]gore (3.175)
and for allw e PPi~2 andi=1,...,m,
<PNU’w>L2(xi,1,a:i) = (v, w>L2(l’i71,xi) ) (3.176)
The proof is analogous to the steps done before; we only have to note that
|| Pnvo — JNUHHE{f(a,b) < ||Pyv — JNUHH}){,Z(a,b) . (3.177)

Remark 3.30. Corresponding results also hold true for H(lf(a, b) and H(l)ég(a, b).

3.2.3 A priori Error Estimates for the Frictional Contact Problem

We are now ready to give an a priori convergence rate result for the finite element method
formulated in Problem [3.11l For simplicity, however, we shall assume that contact holds on
the complete contact boundary and that ug = 0, that is, we solve the continuous problem on
the closed convex set

K':={veV:yr.(v) v =0 almost everywhere on I'c}, (3.178)
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and for the discrete problem,
Ky :={v~n € VN: vr(vN) - v = 0 almost everywhere on I'c}. (3.179)

In particular, we note that K’ and Ky are linear spaces and Ky € K. Thus, the continuous
and discrete primal-dual problems become:

Problem 3.31 (Primal-dual formulation, Tresca friction, forced contact). Find (u,A) €
K’ x A such that for all (v, u) € K' x A,

a(u,v) + b(v,A) = L(v), (3.180)
b(u, p — A) < 0. (3.181)

Problem 3.32 (Discrete primal-dual formulation, Tresca friction, forced contact). Find
(un, An) € Ky x Ay such that for all (v, py) € Ky x Ap,

a(uN,vN) + b(VN,AN) = L(VN)7 (3.182)
b(uN, KUy — >\N) < 0. (3.183)

The existence, uniqueness and basic convergence results can be proved similarly as in the
situation considered above.

We now prove an inf-sup condition using the results of the last section. For simplicity,
we restrict ourselves to the situation that I'c consists of a single affine line.

Theorem 3.33. Assume that Tc nTp = &.
Then, we have the discrete inf-sup condition

b(VNa II/N) > C

inf sup > 7 e
maxpeec (PN x, 108

. (3.184)
€W vaeby VAT T ey

where the constant C > 0 is independent of N.

In the proof of this theorem, we need to extend a function v given on a part I'c of the
boundary I of €2 to a function ¥ on {2 which satisfies the (homogeneous) Dirichlet boundary
conditions. If v € Hé{f (T'c), this can be done by simply setting © = 0 on I'\I'c and applying
Theorem L3l If, however, v € HY/2 (T'c), we need to ensure that o = 0 on I'p. In principle,
the theory developed in [Gri85l Section 1.5.2] shows that this is possible. We prove this result

directly for polygons.

Lemma 3.34. Let Q < R? be a polygon, and let T'c, T'p be disjoint, relatively open parts of
082 consisting each of a finite number of edges of 2.

Then, there exists a continuous operator E: H/?(T'¢) — HY(Q) such that YorcEv = v
and Yorp, Ev = 0 for all ve HY2(T¢).

Proof. We only prove the result under the simplifying assumption that Q := (a,b) x (¢, d),
I'c := (a,b) x {c} and I'p := (a,b) x {d}. In the case of a general polygon, a similar, but
much more technical, argument is possible.

Similarly as in the proof of Lemma [B.28] we see that there exists a continuous extension
operator E: H'/2(I'¢) — HY2(R x {c}). By Theorem[L3, we see that there exists a continuous
lifting operator Z: HY2(R x {c}) — H*(R?). Choose a function ¢ € CX(R?) with 0 < ¢ < 1
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such that ¢(z,c) = 1 and (2, d) = 0 for 2 € (a,b). Then, the operator E: HY?(T¢) — H'(Q)
defined by .
Ev := (pZEv)|q (3.185)

satisfies the claimed properties. O

A similar result holds true for a space of functions vanishing at one boundary point of
c.

Proof of Theorem [3.33. As T'c consists of a single affine line, we can assume without loss of
generality that I'c = {(¢,0): t € (a,b)}. Furthermore, we see that the partition ¢ n of I'c is
given by points (z;)i=o,..m With a = 29 < 21 < --- < z, = b such that for every £ € Ec n
there exists i € {1,...,m} with E = (x;_1,2;) and polynomial degrees pn; := pn,k,. The
fact that g is constant yields that b = g (-, -1/ (Ta) that is, b is just a scalar multiple of the
duality product of HY/?(T'¢) = 4o,V and H~/2(I'c) = (H/?(I'c))*, and thus, for a given
py € Wi there exists v € V with

b(v, 1) > 9 (3.186)

”V”HI(Q) ”NNHI”{—W(FC) T2

Applying the operators Py constructed in Theorem [B.26] componentwise and using a bounded
extension operator E: H/2(I'c) — V as given in Lemma B34, we see that due to Theorem
[[2 together with the operators iy given in Theorem B.13]

Thus, there exists vy := 'ZNEPN'YO,FCV € Vi with voro, vy = Pn7o,ro Vv such that

< C max (p}v/?KE 1og3/2pN,KE) vl g - (3.187)

%NEPN 0. V’
Torc HI(Q)  Eefon

b(VN, IJ/N)
”VN”Hl(Q) ”HNHﬁ—1/2(rc)
— b(V7 l"‘N)
vl e e -1, (3.188)
> 7 b(V, I“LN) ,
C maxpegg v (PN,KE 10g3/2 PN,KE) HVNHHl(Q) HNNHﬁ—1/2(rC)
and the assertion follows. O
Theorem 3.35. Assume that Tc nIT'p = &, and set
. 1/2 3/2 -1
oy = s (p e, 108" prcs) (3.189)

There exists a constant C' > 0 independent of N such that for (u, ) the solution of
Problem[3.31) and (un, AN) the solution of Problem [7.32,

lu = gy < C|blu, Ay = ) + blu, A = py)
B , , (3.190)
837 (= vl oy + I3 = By ) |

and

[P ANHH%/Z(FC) < 05&1 (Hu - uNHHl(Q) + A - l’l‘NHH*l/?(FC)) : (3.191)

95



CHAPTER 3. FINITE ELEMENT METHODS FOR MIXED VARIATIONAL
INEQUALITIES

Proof. Applying Theorem B.7] together with Theorem B.33] yields the result. O

Remark 3.36. Applying the results of Remark instead of Theorem [3.28] we see that the
assumption Tc nTp = & is not necessary. We then only have to replace the space H/ 2(Tq)
by H-Y 2(T'¢) or, potentially, a space satisfying zero boundary conditions at one of the points
in e nIp.
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Chapter 4

The Residual Error Indicator for
the Frictional Contact Problem

Error indicators are a fundamental part of modern finite element implementations. The two
goals which one aims for with error indicators are

1. to be able to determine whether the numerical approximation which was obtained by
the finite element method is “good enough” for the application under consideration,
and

2. to find the elements where the error is high, and which should therefore be refined in
an adaptive computation.

Today, there are several very versatile error indicators available. In this work, we will focus on
the classical residual error indicator, which was generalised to the hp-context by Melenk and
Wohlmuth in [MWO1]. To be able to apply this error indicator for the variational inequality
under consideration, we shall make use of the dual approach to a posteriori error indication
given in [Han05, Chapter 6]. Using this error indicator, we propose an hp-adaptive mesh
refinement strategy based on local estimation of solution regularity through the decay of
Legendre coefficients, which was developed in [HS05] and [EMO07].

As in Subsection[3.2.3] we assume in the following that vy r.(v)-v = 0 almost everywhere
on I'c.

4.1 Duality-Based Error Estimation

Let d=2ord=3, Z; := (L2(Q))dXd with the scalar product
(q,r), = JQ Cq : rdx, (4.1)
Zy = (L3(T0))", and Z := Z) x Z. Defining a function J: V x Z — R by

1
J(v,q) := 3 {a1,d1)y, dx — L(v) + L g |az| dsx, (4.2)
C

where q = (q1,q2), we see easily that, by introducing £: V' — Z through
Lv = (e(v),Y,r:V), (4.3)
we have that, as a(v,w) = (e(v),e(W))

J(v)=J(v,Lv) forallveV. (4.4)
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Thus, in particular, the minimisation formulation in Problem 23] (or, for d = 2, Problem [Z9))
can be written as: Find u € V such that

J(u, Lu) = in‘gj(v,ﬁv). (4.5)
vE

With £*: Z* — V* the adjoint of £, we want to calculate the conjugate function J*: V* x
Z* — R, which is given on {(£*q*, —q*): q* € Z*} by

J*(L*q*, —q") = sup [L*q*(v) —q"(q) — T(v,q)]. (4.6)
(v,a)eVxZ

Plugging in the definition of 7,

sup  [L*q*(v) —q*(q) — T(v,q)]
(v,a)eVxZ

= sup [ﬁ*q* (v) —q*(aq) — %<q1, qi)y + L(v) — J

g ’q2’ dSx:|
(v,Q)eVxZ I'c

= sup [<qi‘ ,€(VDz, +0re Vs a2z rg) + L(V)] (4.7)

1
+ sup [—<q’f+2q1,q1> ]
qQi1€Z1 7

b sup by - [ allds|.
q2€Z2 T'c

Clearly,

1 1
sup [— <qi‘ + §Q17 Q1> ] = B <q>1k7q>1k>zl . (4-8)
qQ1€21 Z1

Next,

sup [—<q§,q2>L2(rc>—L glqaldsx}
C

qQ2€Z2

)0 if |q5| < g almost everywhere on I'c,
+00  otherwise.

Finally, it is easy to see that
sup < &)z, + Qorev, @i + L) = +o0 (4.10)
VE

unless q* € Z* is chosen in such a way that

aj,e(v))y, + <707ch7q;>L2(rc) + L(v)=0 forallveV, (4.11)

and in that case, the supremum is trivially 0. We define the set of admissible dual functions
by

Zk = {q* € Z*:{af,e(v))z, + {0V, A3 )pa(py) + L(V) = 0 for all ve V, o
4.12
and |q3| < g almost everywhere on FC}.
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Thus, the conjugate function is given by

l< * ok * *
qi.qiy, for q* € Z3,
T*(L*q*, —q*) =<2 ! 4.13
( T +0o0 otherwise. ( )
Consider the dual problem of finding p* € Zj such that

—J*(L*p*, —p*) = sup [-T*(L*q*, —q")]. (4.14)

q*eZ¥

*

To prove the strict convexity of the dual functional, let q*, q* € Z5 with J*(L*q*, —q*),
J*(L*q*, —q*) < oo and s € (0,1) such that

THLH(sq" + (1= 9)q"), — (sq* + (1 = 5)q%))

N R I BN LA U D R
This implies
(saf + (1= s)ai, sar + (1 = 5)a7)z, = s{ar,a1)z + (1 = $)<a1, 41z, » (4.16)
and thus qf = qf. Therefore,
YoreV, q§>L2(FC) = (YoreVv, q;}LQ(FC) for all veV, (4.17)

and we obtain q* = q*.

It follows similarly that the mapping q* — J*(L*q*, —q*) is coercive, and we can apply
Theorem to obtain the existence of a unique solution p* € Z§ of the above problem
which satisfies

J(u, Lu) = =J*(L*p*, —p*), (4.18)

where u is the minimiser of J.
For an arbitrary w € V', by the variational inequality formulation in Problem 2.4]

§a(u —wW,u—w) = §a(w, w) —a(u,w) + Qa(u, u)
= ia(w,w) —a(u,w —u) — ia(u,u) (4.19)
< %a(w,w) + j(w) —j(u) — L(w —u) — %a(u, u)
= J(w) — J(u).
As p* solves the dual problem, we obtain that
J(u) = J(u, Lu) = =J*(L*p*, —p*) = —~T*(L*q",q") for all q* € Z7, (4.20)
and thus 1
5@(u —w,u—w) < J(w)+JT*(L*q",q*) forall q* € Zj. (4.21)
Let r] € Zf be arbitrary, then
J(w) + T (Lq% q") = % (e(w) +17,e(W) + 17, —(e(W), 17z — L(W) 2)

. 1
+3(w) + 5 [Catsal)y, — oz
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As q* € Z, we have that
(e (W), + Core ™, @paqrey + Lw) = 0, (4.23)
which yields
T(w) + T q) = | (e(w) 41 e(w) 41Dy, — (e(w),xy,
+4ar, e(w))z, +{10,re W, a3)120,
(W) + 5 Gt — e, ey, (4.24)
= §(elw) +xf,e(w) 41Dy, + (e(w) 41 af )y,
b5 dat —xfat g+ Gorew, A, + (W)

Furthermore,

1 1
5 (e(W) + 17, (W) +17)7 +{e(W) +17,af —r1)z +5{Ai —11,a1 — 1)z

2 (4.25)

< (e(w) +r],e(w) +17) 4 +{af —11,a7 — 1)y, -
Thus, we have proved the following result.

Theorem 4.1. Let u € V be the solution of the continuous minimisation formulation in
Problem[2.3, and w e V' arbitrary.
Then, for all rT € Z7,

1
ia(u —w,u—w) < (e(w) +r],e(w) +r17),

+ inf[af —faf = xDg, + Oorews s +JW)] e
Define the residual R: Z5 x Z{ — R by
R(q5,r1) 1= supa(v,v) "/ |t &)z, + L(V) + a3 0re Vo | - (4.27)
As q* € Z§ if and only if |q5| < g almost everywhere on I'c and
sup [(af ()7, + QoreV- @iz +L(V)| =0 (4.28)
and the above expression is infinite otherwise, we see that, setting
Zy = {q3 € Z3: |q5| < g almost everywhere on I'c} (4.29)

and replacing qf — r{ by qf in the infimum over Z3j,, we get

: ] * * * * .
q;relgg [<q1 =1, 9] — 1)z T (0reW, 421200 + J(W)]

= inf su[ T—rf,qf —r, + raW, qs + j(w
(qf,qg)ezfxzzveg @ —ri, a7 —ri)z +ore Q2>L2(FC) j(w)
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+(at (), + 0rcvs @iz + LV)| (4.30)

= inf su[ Lab, +{af,e(v + w,qs + j(w
(qi‘,qg‘)er‘xZ;ve\F/) i, a1z +<are(v))z +ore Q2>L2(FC) J(w)

+ & eV, + GoreVs @dra) + LV)|.

The above expression can be simplified by applying the principle of complementary energy
(see [BE9IL p.20], [BraO7, p.293]); we do the calculation here using Theorem [[.L28 Define,
for q3 € Z;; fixed, the linear functional qu :V >R by

L3 (v) 1= (01 6V, + (orevs aparey + L(V). (4.31)
We see that the above simplifies to

inf | inf sup| Ca ), + <, e(V)z, + Qorews aDiaee +iW) +gp (™| (132)

ajeZ} afeZf ve
Clearly, the inner supremum is infinite unless
i, e(v))y +lqz(v) =0 forallveV, (4.33)

and thus, defining F: Z} — R by F(q}) := {qf,q}),, and G: V* — R by G(—Lgx) =0
and G(¢) := 4+ for £ # qu, we obtain, with the linear operator M: Zf — V* given by
(Mai)(v) := (ai, e(v))z,

inf_inf(Fa) + GMaF) + Gorew, a5z, +3(W)) (4.34)

q;‘eZ;{‘& qfez}
As F*: Zy »> R and G*: V — R are given by
1
F*(a) = suwp_[{af, a1z —{af,ai)z ] = 7{a, a0y, (4.35)
qfezZ¥

and
G*(v) = =Lz (v), (4.36)

respectively, F'is coercive, and M*: V — Zj is given by M*v = g(v), we can apply Theorem
[1.28] to obtain

qg‘uelgi; q%gf (F(ql) + GMaT) + (0,0 Ws 93)12(rg) + J(W))

1
= inf sup(—- + (V) + w,q} +j(w
qu2§3§5< 1 (), e(VDz, +Lar (V) + Qore W, 42 p2(r) + 4 )>

. 1 .
— inf_sup|—(e(v),e(v))z, + 0reW. Apa(rg) + (W)
D) EZ# veV

(4.37)
+ (T ez, + Qorev Ao + LV)]

N

. 1 :
inf_sup| (v, ) + Rar)a(von) 2 + Gorew,aDyagy +I0V)|
a5 EZ# veV

inf [R5, + Gorew, abpa e +3(w)]
a5 EZ#

This yields:
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Theorem 4.2. Let u € V be the solution of the continuous minimisation formulation in
Problem[2.3, and w € V' arbitrary.
Then, for allrT € Z7,

1
ia(u —w,u—w) <(g(w)+rj,e(w) +r]),

(4.38)

: % H\2 * .
+ qg‘uelgi [R(Q2ar1) + <’)’0,FCW7Q2>L2(FC) +](W)]'

4.2 Reliability and Efficiency of the Residual Error Indicator

Selecting w := up, rf := —e(uy) and q; := —gAn in Theorem and applying Theorem
2.8, we have the error estimate

=l < Csup vl (<atuy.v) + L) —blv.Av)) . (4:39)
ve

where Ay can be chosen arbitrarily in A satisfying
j(un) = b(uy, An). (4.40)

It is easy to see that such a A N exists, for example by choosing A N = upn;/ |un+| whenever
uy; # 0, and 0 otherwise. Inserting the Ay € Ay obtained by solving Problem B.11] we
obtain by the definition of the H~*2-norm that

1~ w sy < O sup VI gy [, v) + L(v) = b(v, A)]
VeV ) (4.41)
Av = An |
L SRR M
Applying the definition of the discrete problem, we can insert vy € Vi and substitute v by
—v, which yields

[u—un|g g < C[sup ”V”ﬁll(gz) [a(un, v —vN) = L(Vv—=vN)+b(v—vN,AN)]|
vev ) (4.42)
[ = A |
N N H-12(T0)
Decomposing the integrals and integrating by parts on each element, we obtain, defining the
vector divergence operator by div(o(uy)) := (0ji;(un))i=1,....d,

HU—UNHHI(Q)

1
sup

<C
vev [Vl @) KeTy

[ L{[— div o (uy) — F](v — vy )dx

+

J o(uy) - v(v—vy)dsx

QnoK

+ J [o(un)r + g(AN)-](V — v)dsx (4.43)
T'cndoK
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4.2. RELIABILITY AND EFFICIENCY OF THE RESIDUAL ERROR INDICATOR

+ LNmaK[U(UN) v —G](v— VN)dSX}

H-1/2 Fc)]
Define for K € 7y the interior residuals by

=

rg :=—diveo(uy)—F (4.44)
and for F € £y the boundary residuals by

%[O'(UN) -V]E ifEEgLN,
O'(uN)T + g)\N,T if Fe 5(37]\7

Rg := , (4.45)
oluy)-v—G if Eeénn,
0, if Fe 5D’N,
where
[U(uN) ’ V]E = U(uN)|KE,1 "VKpa + U(uN)|KE,2 "VKp, (4'46)
is the boundary jump with £ = Kg1 n Kg2 and VK, bointing from Kg1 to Kga, and
VKp, = —VKp,- Applying the Cauchy-Schwarz inequality and regrouping the interior bound-
ary terms, we thus obtain
1
lu = un |l ) < Csup ——— > ri - (v —vy)dx
veV HVHHl(Q) KeTv | VK
+ Z J Rg- V — VN)dsx]
peoK (4.47)
1
< Osup ——— [ rcllz ey 1V = vivllpa
vev VIl gy K;N[ A U
+ >, IREl2gm v - VNHL2(E)]'
ECoK
Plugging in the hp-Clément operator of Theorem B.12] for vy,
v — VN||L2(K Cthatchpratch 1% ||H1(Kpatch) ) (4.48)
1/2 1/2
IV = villiae < R P, 1V i ) - (4.49)
Defining the local error indicators by
1/2
2
IN.K = [th HrKHL2 ) T thK 2 ||REHL2(E)] (4.50)
ECoK

and the global error indicator by

1/2
ny = [ > nN,K] : (4.51)

KETN

we obtain due to the finite overlap and local comparability of h and p (see the assumptions
on the mesh in Section B.2]):
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Theorem 4.3 (Reliability). There exists a constant C > 0 such that for all Ay € A with

jlun) = b(un, An), the residual error indicator satisfies

for all N. (4.52)

o —un|gig <C [”N + H)‘N B S‘NHH1/2(FC)}

Therefore, if H)\N — S‘NHH (T is of higher order, ny is reliable up to higher order
- C

terms. This can be expected if the mesh is chosen adaptively: Then, we actually presume
that [Ay| < 1 on “most” of I'c, and there, we can choose Ay = Ayn. Thus, as the elements
where |[Ay| > 1 should altogether have a size of order h, we should obtain a power of h in the

AN — AN

above estimate, additionally to the rate obtained by estimating the error ‘H*l/Q(FC)'

We now want to prove an efficiency result, which shows that the above error indicator
will not overestimate the true error too much. Let Fg: S — K be the element map for K,
that is, Fx is one-to-one and onto and bilinear, and assume that Fx maps I, interpreted
as an edge of the reference element, to the edge E of K. Then, using the bubble functions
on the reference interval and element given in Subsection [[L2.2] we define the element bubble

function on K and the edge bubble function on E by

Vi = crbs o Fely g = cpiro Ft, (4.53)

where the scaling factors cx, cg > 0 are chosen in such a way that

f Yrdx = |K], J Ypdsx = |E|. (4.54)
K E

For the proof of the efficiency, we shall need the following lifting theorem, which is proved in
[MWO01, Lemma 2.6]. Recall that S = [—~1,1]? is the reference square.

Theorem 4.4. Set £ :=[—1,1] x {—1}.
For every a € (1/2,1], there exists a constant C > 0 such that for every p, every ¢ € (0,1]
and every polynomial v € PP, there exists a function © € H'((—1,1)?) such that

Y0,0 = v - g, (4.55)
Y0,05\£0 = 0, (4.56)
12 a/2 |2
Io0Eaq 1 < Ce o™, - (4.57)
~112 —« — af2 2
||VUHL2((—171)2) < C <€p2(2 ) +¢€ 1) ‘ I/ ’U‘ L2(_1,1) . (458)
Consider ([2.7Ta) and (B.72al) and integrate by parts on each element to obtain
a(u—upy,v) =a(u,v) —a(uy,v) = L(v) — b(v,A) — a(uy, v)
(4.59)

-~ Y UKrdeer 3 JEREvdsx]JrgLC(AN—A)vdsx.

KeTy EcoK

Choose 3 € (1/2,1] arbitrary, but fixed. Let v := w?(f' Kk, where T is a polynomial approxi-
mation of rx of degree py k. Plugging this into (£59) yields

a(u —up, l/Jf(f'K) = —f I‘Kﬂ)jﬂ(deX. (460)
K

64



4.2. RELIABILITY AND EFFICIENCY OF THE RESIDUAL ERROR INDICATOR

Thus,
f WO Edx = J Vot (Fx — ri)dx — a(u — uw, ¥2x), (4.61)
K K

and the Cauchy-Schwarz inequality and the boundedness of a give, together with Theorem
[[L6] which is applicable due to the fact that w}g{f‘ k=0onT,

J it < il e =m0
+ Cllu = un |l ) 10K Tk Ml ) (4.62)
< wa(/QfK)LQ(K) H T —TK) f’1/2‘142(1@

+ Cllu—un |l gy [VETE 11 (k)

Applying Theorem [[.22] together with a scaling argument, we see that

s |? vl e
‘wKrK HY(K) H (wKrK)‘ L2(K) {H VeRT K‘ L2(K) * HwK rK’ LQ(K)}
—2 -2, 2(2-5) ﬁ/Q—
¢ [hK H¢ rK‘ L2(K) I PN K H¢ ‘ L2(K)] (4.63)
< Ch-222P) || 025 .
< Chi PNk Hl/J ’ L2(K)
Inserting this in (4.62]), we get
/2— < F 5/2 -1 _2—
H¢ ‘ 2Ky C {H(PK i)Y L2(K) +hg pNK [Ju - uNHHl(K)} (4.64)
O |Iex = vl + AP Il = un i ) |-
Finally, by the triangle inequality and Theorem [[.22]
Ik llizgy < 1Tk = rrllizg) + 1Tk 2
<|rx —rrlleg +CpKH1/)’8/2 ’ ,
LA (4.65)

<O (14 98) Iexe = ricluagey + PP 0 = i ) |
< O [P s = ricluagiey + i P I = un o |-

As the next step, we shall estimate |[Rgl|y>p) for E € En. Let v be an extension to

Epaten of 1#@13;]5 with Rp a polynomial approximation of Ry of degree py. g, constructed by
applying Theorem [£.4] together with a scaling argument, and patching the results for the two
neighbouring elements of E together. Plugging this into (£.59]), we obtain

a(u —up, T/JE.RE) = — Z [JK ergREdX + JE . RE¢§REdSX:|
K Epaten ) (4.66)

+g f (AN — M) Rpdsx.
Enl'c
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Assume first that F € & y. Then, |E n I'c| = 0, the integrals over each E appear twice,
and thus

J WP REdx = J W REp(RE — Rp)dx + J R ) Rpdsy
E E E

= JE YpRp(Rp — Rp)dx — %a(u — uy, VoRE) (4.67)

1 _
- f rg, 0 VR pdxX.
Epatch

The Cauchy-Schwarz inequality and the boundedness of a yield, together with Theorem [L.6],

BR2 S2R H Ry — o2
waEREd Hw ‘LQ(E) B = ReWVE || o )
—_ ﬁ R
+C[|lu uN||H1(Epatch) ‘Q’Z)ERE‘HI(Epatch)
P
+ HrEpatCh L2(Epatch) ‘¢ERE‘ LQ(Epatch)] (468)
P Re, ,, || Re - Repo”
< |lvi°R gy |2~ REWE o
se
+ C[||u B uNHHl(EPatCh) wERE)Hl(Epatch)
0B lags . [[PFRE J
patch [|T, (Epatch) L2(Epatch)

Applying Theorem [4.4] together with a scaling argument, we obtain, as 5 > 1/2, for ¢ > 0,
and as we assumed in Section that the mesh is regular,

54 —1,_2(2-B) H BPR
i <Ch; 7 4.69
‘wE Bl (Byaren) (8PNE re v Flliee) .
9 2
SR <Ch H B/QR 4.70
HwE Pl gy S EC Ve Re L2(B)’ (470
and thus
824 1/2 2-03 —
H¢ R L2(E) [HRE REHL2(E +hg / (ep (,E ) t+e 1)1/2 a— uNHHl(Epatch)
- (4.71)
+ h HrEpatch L2(Epatch):| .
Choosing & = p;” yields
_ _ ~1/2
HWWRE L) S ClIRe =Ry + H5 P 0 = 0 s,
; (4.72)
-1
+ h PN E HrEpatch LZ(EpatCh)].
Using the triangle inequality, we obtain with Theorem [[.2]] that
IREl2m) < [Re =Rl + Rl
[”RE—REHL2(E JFPNE‘WW2 2 ]
L2(E)
(4.73)

O[pNEHRE REHL2(E + hp 2 1+5”“ up |

(Epatch)

+ oyt ee

patch L2(Epatch):| ?
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and HrEpmh L2(By ) is estimated using (4.63]), giving, due to the local comparability of h
patch
and p,
_ ~1/2 1
IREls(e) < O R = Relliagny + b N2 10 = x50
1/2 —1+8
+ hp Pn.E HrEpatch L2(Epmh)]
Jé] — —-1/2 1+p
< C[pN,E IRe - REHL2(E) + py.e 0= unlle (g,
12 14878 ||=
+ hE pN,E (pN,E HrEpatch - rEpatch LQ(Epatch) (474)
s L T
Jé] — —-1/2 1+p
< C[pN,E IRe - REHL2(E) +hg / Py la— uNHHl(Epatch)

1/2 —1428 (|-
+ hE pN,E HrEpatch - rEpatch

—

The proof for E € &y n is done analogously. For E € £c n, we have to add the term
corresponding to the contact boundary, gp/]gvy & IAN = Allz -

Plugging the results together, we obtain for |0K nT'c| = 0 due to the local comparability
of h and p with an adequate element patch Kpatch 2 Epaten for all E € 0K, as 5> 1/2,

_ 2 _ 2
7712V,K = h%(pN?K ||rKHL2(K) + thN,lK Z ||RE||L2(E)
ECoK

— 2 - 2 -2 4 2
< C[h%(pN,ZK (pNﬁ,K IFK = rrclfagrey + h P lu = uN||H1(K))

+ thfv,lK 2 (P?VB,K |RE — REH?P(E)
EcCoK

—1_2(1+8

2
+hEt N R u = un g,

—2(1-28) ||=
+ thN,K HrEpatch - rEpatch

i2(Epatch))]

< C| Wk + PN I = un sy )

9 —2(1-8 2811 ||=
+ thNJ(( )(1 +p]\//v6,K ) Heratch - eratch

2
L2(K o) (4.75)

+ hKP?vﬁ,l_(l REe — REHL?(E)]

EcoK

1+2 2
< C[prKﬂ I = an i (k)

+hipn i |Fx

2
patch eratch LQ(KpatCh)

+ th?vﬂ,;(l |Rs — REH?R(E)]
EcCoK

yt h%{%??}?m Hf'

2 2
< Cp]\/gK <pN7K Hu - uNHHl(K Kpatch - eratch

patch LQ(Kpatch)

P 3 [Re =Rl )
EcCoK
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For £ € 0K n I'c, we obtain in a similar fashion

+ hiepy ot |®

2 2
77]2\7,1( < CpNﬁyK (pN,K Hu - uNHHl(KpatCh) ‘L2(Kpatch)

+ hipy 2 |Re — REH;(E) (4.76)
ECoK

Kpatch - eratch

+ 0P henit A = MEagoare) )

Summing up, and noting that the term involving Ay vanishes whenever 0K nT'c = (F,
we have:

Theorem 4.5 (Efficiency). There exists a constant C > 0 such that residual error indicator
satisfies

2 2 2 2 —3+428 ||=
T’N,K < Cp]\/f@:K (pN,K ”u - uNHHl(Kpatch) + thNV;(» B Heratch - eratch L2(Kpatch)
_ _ 9 _ 9 (4.77)
+ hip Z |IRE — REHL2(E) + 9" hipg AN — A”LQ(aKmFC))

EcoK

for all N and K € Ty.

Thus, up to the term containing ||Ax — Ally2(f), we obtain the same efficiency result as
in [MWO1]. Note, however, that the presence of this additional term is not surprising: It
corresponds to the error done in the approximation of A, and is as such, at least from a
heuristic point of view, acceptable in the efficiency estimate.

4.3 An hp-Adaptive Mesh Refinement Algorithm

We shall describe a mesh refinement algorithm which is aimed at producing good meshes for
the problem under consideration. The basic approach in the refinement is always the one
discussed, for example, in [BC04, p. 98], that is,

SOLVE = ESTIMATE = MARK = REFINE,

that is, we solve the discrete problem to find an approximate solution uy € Vy, estimate
the error based on the results of the preceding sections, mark those elements where the error
indicator is high, and refine those elements. For the refinement itself, we use two distinct
refinement strategies:

1. In the h-adaptive refinement, we divide all elements which have been marked into four
new elements. For simplicity, we restrict ourselves to halving the quadrilaterals which
are the basis of our partition of the domain in both directions simultaneously.

2. In the hp-adaptive refinement, we decide first whether to do a bisection of a marked ele-
ment, or whether to increase the polynomial degree on the given element by one. Again,
for simplicity, we increase the polynomial degree in both directions simultaneously.

A fundamental question in the theory of fully automatic hp-adaptive algorithms is how
to decide whether an h- or a p-refinement should be applied on a given element. Several
different strategies were compared in [EMOT7] for the case of triangular meshes; we shall use
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the approach of expanding the numerically computed solution into Legendre polynomials and
estimating the decay of the coefficients, as was proposed therein and also in [HS05]. At the
heart of this heuristic, we have the following result, which can be found in [Mel02, Lemma
3.2.7] and is based on the corresponding one-dimensional result given in [Dav63, Theorem
12.4.7].

Theorem 4.6. Let [ :=[—1,1], S:=I? and u: S — R be real-analytic, and satisfy for some
Cu, v >0, hyg, hy € (0,1]

1Dl e 11y2y < Cuh§ G2yl for all a = (o1, a2) € N\ {(0,0)}. (4.78)

Then, u can be expanded in a Legendre series on S, and there are C, o > 0 depending
only on v such that

u(z,y) = i wijLi(x)Li(y) uniformly on S, (4.79)
i,j=0
uijl < CuC(L+0/hy) "(L+0/hy) 7 for (i,5) # (0,0). (4.80)

In particular, setting b := In(min(1+o0/h,,1+0/hy)), we see that for an analytic function
u, the Legendre coefficients u;; satisfy

|uij| < CuC exp(=b(i + j)). (4.81)

Calculating b from the given Legendre coefficients of the local approximation on a single
element with the above formula therefore gives a heuristic estimate of how regular the function
is locally: We expect that the behaviour of the true, unknown Legendre coefficients is reflected
by the known Legendre coefficients of the given approximation.

We prove a result showing that based on b, we obtain fast convergence of the local poly-
nomial approximations, which shows heuristically why the above approach is reasonable. We
follow the proof for [Mel02, Proposition 3.2.8], but in contrast to that result, we are actually
working on rectangular elements and can therefore directly use the L2-projection operator,
which is for u as above given by

P
H;Q((*l’l)z)u(ﬂc,y) = Z i Li(z) L (y)- (4.82)
i,j=0

Theorem 4.7. Under the assumptions of the last theorem, there exist constants C > 0, o > 0
depending only on v > 0 such that

L I O]

* H(?y (u B HIEQ((iM)Q)u) HL@((—M)?) (4.83)
ha: p+1 hy p+1
(hx—l-a) +(hy+a) ]

The proof uses the following version of Markov’s inequality, which can be found in [DL93]
Theorem 4.1.4].

Le((-1,1)%) L*((=1,1)%)

<00,
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Theorem 4.8 (Markov’s inequality). For all polynomials v € PP,
‘}v/”Lw(_1,1) <p’ HUHL%(71,1) : (4.84)

Proof of Theorem[{.7, We only prove the estimate for 0, <u — H;;Q((*l’ly)u); the other in-
equalities follow similarly. Clearly,

3, (u — Hg«—l,l)?)u)‘

DI Y 121 Py (2]

1=zp+1
Jj=0

+ 2 il 1B e oy 1l -

=0
Jj=p+1

Le((-1,1)2)

(4.85)

By ([@&84) and ([EX0), after setting o, := (14 0/hy)~" and oy, := (1 +0/h,)~! and decreasing
o as needed to absorb the additional factor i2,

2. (u B HIEQ((il’l)Q)u)HL@((—l,l)Q) <C,C 2 aia‘; + 2 a;aé

izp+1 =
7=0 Jjzp+1
ap+1 0 p+1
=00 | —— > o) + ol (4.86)
_1_0‘13':0 1_0‘%:0
CuC [ap+1 + ap+1]
(—an(i—ay e T ]
and the result follows. ]
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Chapter 5

Numerical Experiments

We now present some numerical experiments. The implementation was done using Fortran
90 and is based on the software package maiprogs by Matthias Maischak (see [Mai01b]). The
problem descriptions were given in the maiprogs control language BCL.

The discrete problems which are solved numerically are those given in Problem [3.321 We
need to chooses bases of the spaces Viy and Wy. For Vy, we choose tensor products of
antiderivatives of Legendre polynomials piecewise with respect to the mesh, corrected on the
inter-element boundaries by the minimum rule to deal with differing polynomial degrees and
hanging nodes. For Wy, we are able to use discontinuous basis functions, and thus, we select
Lagrange interpolation polynomials at the shifted and scaled Gauss points on each boundary
piece on I'c. Denoting these bases as (v;);=1,.. .~y and (w;);_1 . nv, respectively, we define
the matrices AN) € RNXN and BWY) ¢ RV >N py

Al(c]lV) = CL(V[,Vk) and B%\TZL) = b(Vn,Wm) (51)

and the vector f(N) e RN by
= L(wy), (5.2)

then we see that in matrix notation, we obtain:

Problem 5.1 (Discrete primal-dual formulation, Tresca friction, forced contact, matrix for-
mulation). Find (z(V), 2(M)) e RV x [=1, +1]" such that for all w®™) e [-1,+1]V,

AN (V) g (N) _ (V). (5.3)
(w™) = ;N BIW)Z(N) < g (5.4)

It is then easy to see that Problem [5.] has a unique solution, which corresponds to the
unique solution of Problem [B.32] through

N/
uy = Z a:,EN)vZ- and Ay = Z Z](-N)Wj. (5.5)
i=1 j=1

To be able to solve this problem efficiently, we use a similar approach as proposed in [Sin06]:
Defining the Schur complement matriz by

SN) .= gV) AN~ )T (5.6)
we have that the above system corresponds to
(W) 200) 5 5 (0 _ LN B 4007 ) g all o) € [—1, 417 (5.7)
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Due to the inf-sup condition proved in Theorem B33l and the symmetry and positive def-
initeness of AY)| we see that S®V) is symmetric and positive definite. Thus, the reduced
variational inequality (5.7) admits a unique solution for z(¥), and given this solution, we
can find () by solving (53). The numerical computation of S&V) is done by first cal-
culating a Cholesky factorisation of A®Y) using the PARDISO library and METIS (see
[SG02l, [SG06), KK9S]).

We are therefore led to the question of how to solve the variational inequality (5.7
efficiently. As detailed in [Sin06l, Section 4.2], the MPRGP algorithm given in [DS05] can be
generalised to such a problem with two-sided constraints; see Section B.1] for a short review
of the algorithm.

We give some numbers below showing that for the hAp-version, the matrices SOV are
very ill-conditioned, but diagonal scaling (which can easily be applied, even with variational
inequalities) was sufficient for the two-dimensional problems under consideration (where the
boundary is one-dimensional), as here, N’, and thus the dimensionality of the variational
inequality, stays relatively small.

For the numerical problems under consideration, we consider hA-uniform and h-adaptive
versions with polynomial degrees 2, 3 and 4 (hup2, hup3 and hup4 and hap2, hap3 and hap4,
respectively), the uniform p-version (pu), and two different hp-adaptive versions. All methods
use the same initial mesh.

In the h-adaptive methods, we refine all elements where the local error indicator is larger
than 1/2 times the mean local error indicator.

The first hp-adaptive version (hpal) is similar as in [MS05], and works by sorting elements
by the local error indicator and h-refining the first and p-refining the second ten percent.
The second hp-adaptive version (hpa2) works, as described in more detail in Section L3} by
estimating the decay of the coefficients in the local expansion of the numerical solution into
tensor products of Legendre polynomials. We refine the 20 percent of the elements with the
highest local error indicator. Calculating b, which is given as in ({.8]]), by a linear regression,
we do a p-refinement if b > 1, and an h-refinement otherwise. Here, we start with a uniform
polynomial degree of 3 to be able to obtain a useful estimate of the rate of decay.

We do not consider methods using a polynomial degree of 1, as the convergence rate
results in Subsection 3223 only apply for splines of local polynomial degree > 2.

Note that there are no exact solutions for all problems we consider below. Therefore, we
cannot give any estimates including the actual error, but only the estimated error as given
by the residual error indicator. This means, in particular, that for all p-refining methods, the
given numbers might overestimate the actual error by as much as a factor p in addition to
all effects resulting from the terms in the reliability and efficiency estimates which cannot be
directly controlled.

Due to the fact that we do adaptive calculations, we plot all error estimates against
the number of degrees of freedom on the domain, and also use these numbers when giving
convergence rates. This means that we do not include the number of degrees of freedom for
the Lagrange multiplier space in the analysis below, but this should not be significant, as
the mesh on I'c is constructed from the mesh on €2, and the bulk of the total problem size
stems from the domain discretisation; in particular, the total number of degrees of freedom
dim Vy 4+ dim Wy can be bounded by 2N, where N = dim V.
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5.1 The MPRGP Algorithm with Two-Sided Constraints

The MPRGP algorithm as used in our numerical computations is given in Algorithm [Il The
functions [ := (ﬁj)le, Y= (cpj)é-vzl and v := (l/j)é\’:1 depend on a vector y € RY (for which
we always plug in the current approximation 2 € R") and on the residual » = Az — b and
are defined by

min(r;,0), y; =4;,

ﬁ](y) = maX(rj> O)a Y; = Uy, (58)
0, otherwise,
Ty, Ej <yY; <uj,

; = 5.9

?i(y) {O, otherwise, (5.9)

and

vi(y) := Bi(y) + ¢;(y)- (5.10)

For z € RV, we define Z € RY, which depends on the current approximation = € RV, by

Z:=a ! (z — max(¢, min(u, z — @ * 2))) . (5.11)

5.2 Problems and Results

We analyse the following two problems, which are both taken from [Han05, Section 6.6].

Ezample 5.2 ( [Han05, Example 6.12] ). Consider the domain 2 := (0,4) x (0,4), where
space is measured in millimeters, under the plane stress assumption, with the boundary
decomposed into the Dirichlet boundary I'p := {4} x (0,4), the Neumann boundary I'y :=
({0} x (0,4)) U ((0,4) x {4}), and the contact boundary I'c := (0,4) x {4}. The elastic
constants are E = 15kN/mm? and v = 0.4, the frictional constant is g = 4.5kN/mm?.
The volume forces vanish, F := (0,0)kN/mm?, and on the Neumann boundary, we have
G(z1,72) := (1.5(5 — z2), —.75)kN/mm? on {0} x (0,4), and no surface forces on (0,4) x {4},
G := (0,0)kN/mm?.

The convergence plot is given in Figure B.1], and Figures and (.3 show the deformed
mesh and Lagrange multiplier for the second hp-adaptive method, which can be expected to
deliver the best results. The advantage of the adaptive methods compared to the uniform
methods is very clear: Neither the uniform h-versions nor the uniform p-version can deliver
a satisfying convergence rate, but the adaptive h-methods give good results.

It seems that the second hp-adaptive method hpa2 yields an exponential convergence
rate. Numerically, assuming that the error approximately follows a behaviour of the type
eN X Cexp(—ﬂNl/S) and doing a linear least squares estimate for Iney = InC — BN/3, we
obtain 8 &~ 0.3476. Such a behaviour is expected from hAp-FEM in two space dimensions for
appropriate meshes; see [GB86]. The condition numbers of the Schur complement become
as high as 5.5 - 108 for 22690 degrees of freedom for uy; by a diagonal scaling, however, it
is reduced to 2.7 - 103. Table 5.1 gives the number of elements with the different polynomial
degrees. Figure [5.4] shows a zoom of the mesh in the final refinement step, together with
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10000 ——————ry ——————y ——————y
[ hup2 —+—
hup3 ---x---
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hap2 &
hap3 --—=-
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Figure 5.1: Error plot, Example
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Figure 5.2: Deformed mesh, Example 5.2] method hpa2



5.2. PROBLEMS AND RESULTS

Algorithm 1: MPRGP algorithm for minimising %xTA:c — 2Tb subject tou >z > ¢

Data: A € RV*N positive definite, b, u, £ € RY with ¢ < u, parameter & > 0
Result: minimiser z € RY of %JJTA.%‘ —2Tb

x :=0;
ri=b;
p = p(z);

while |v(z)| > ¢ do

if B(z) - B(z) < T%p(x) - (=) then
// trial CG step

aCG ‘= o

Qmin :=min{a: { <z —ap < u};
Omax ‘= max{a: { <z —ap < ul;
if amin < acg < max then

// CG step

T:i=2x—acg *P;
ri=1—acq * Ap;

pi=p(z) — L2,

else

// expansion step

if acg < amin then

T = T — Qpin * P;

=T = Omin * Ap;

else

// aCG > Omax

X 1= T — Omax * P;

7= T — Qmax * Ap;

end
x = max (¢, min(u, x — a = ¢(x));
r:= Ax — b;
p = p();
end
else
// proportioning step

B |
QACG *= Ba)-AB(z)’

x = max({, min(u, x — acgf(x));

r:= Ax — b;
p = p(z);
end

end

the polynomial degrees, near the point of the contact boundary where the transition from
sticking to sliding happens.

The uniform h-versions all deliver convergence rates of about 0.45, which corresponds
to the fact that the solution is not very regular. The adaptive h-versions with polynomial
degree 2, 3 and 4 deliver convergence rates of 0.6, 0.9 and 1.5, respectively, which is still not
optimal, but significantly better. The uniform p-version only yields a convergence rate of
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B

Figure 5.3: Lagrange multiplier, Example (.21 method hpa?2

refinement step | |7] | 3 4 5 6 7 8
1 16 | 16
2| 28128
3| 43| 42 1
4| 64| 58
5| 8 |70 15
6| 97|66 28 3
7127 |78 41 6 2
8| 157 |79 57 12 9
9119 |83 8 16 14
10 | 226 | 75 107 25 19
11 | 271 | 67 131 49 22 2
12 1319159 165 61 26 8
13 | 358 | 54 158 87 36 19 4
14 | 418 | 40 180 113 44 37 4
15 | 472 | 34 176 145 64 44 9

Table 5.1: Number of elements of different polynomial degrees, Example 5.2 method hpa2

7 7 4 4 4 4 5 5
4 4
7 7 4 4 4 5 5
4 4
5 5
5 5 5 5 4 4 4
5 5
4 4 5 5 5 4 4 4
5 5 4 4
3/3|4|4|4|4| 4|4

Figure 5.4: Polynomial degree distribution, zoom onto [0.5,1.5] x [0.0,0.5], Example [(5.2]
method hpa?2, final refinement step
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about 0.35, which can be conjectured to stem from the fact that a uniform p-mesh will not
be appropriate do decompose the contact boundary properly into the sliding and the sticking
region.

100000 ——————— ——————— ———————— ———
[ hup2 —+— ]
hup3 ---x--- 1
hupg -
hap2 8- |
hap3 ——--
10000 |- hapa --o - |
- pu -- -@-- - B
hpal -—-a-— |
hpa2 ---a--
o 1000 |- b
IS
£
D
Q
g 0
@ 100 - b
10 | Y .
1 s M S S SR | s M S S S R | s M S S SR | s R T S S A
10 100 1000 10000 100000

displacement degrees of freedom

Figure 5.5: Error plot, Example 5.3l

Figure 5.6: Deformed mesh, Example £.3] method hpa?2

Ezample 5.3 ( [Han05, Example 6.13] ). In the second example, we again use millimeters
as spacial unit, and consider © := (0,10) x (0,2) with plane stress, I'p := (0,10) x {2},
'y := ({0} x (0,2)) u ({10} x (0,2)) and I'c := (0,10) x {0}. The elastic constants are
E = 10kN/mm? and v = 0.3, the frictional constant is g = 1.75kN/mm?. The volume forces
vanish, F := (0,0)kN/mm?, the surface forces on {0} x (0,2) are G(z1,x2) := (5,0)kN/mm?
and on {10} x (0,2), G(x1,2) := (2.522 — 7.5, —1)kN/mm?.
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Figure 5.7: Lagrange multiplier, Example [5.3] method hpa?2

refinement step | |7 3 4 5 6 7
1 4 4
2 7 7
31 13| 13
41 22| 22
5| 37| 37
6| 58| 57 1
7| 8 | 78 7
8124 | 104 20
9| 175 | 135 40
10 | 226 | 161 63 2
11 | 280 | 171 94 11 4
12 | 331 | 170 132 22 7
13 | 400 | 167 173 45 14 1
14 | 502 | 189 211 74 24 4
15 | 580 | 170 254 116 33 7

Table 5.2: Number of elements of different polynomial degrees, Example 5.3 method hpa?2

3 3 4 4
4 5
3 3 4 4
4 4 4 4 4 3 3 3

w
w
w
w
w
w

Figure 5.8: Polynomial degree distribution, zoom onto [1.25,2.5] x [0.0,0.5], Example B3]
method hpa2, final refinement step
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4 4
4 4 5
4 4
4 4
3 3 3 3 4 4 4
4 4

8 8 4 4 3 5 [3[3]3]3[3[3] . 4
34 3/ 3] 3

Figure 5.9: Polynomial degree distribution, zoom onto [6.875, 8.125] x [0.0, 0.5], Example[5.3]
method hpa2, final refinement step

The convergence plot is shown in Figure (.5, and Figures and [£.7] give the deformed
mesh and Lagrange multiplier for the second hp-adaptive version. Again, only the adaptive
methods yield acceptable convergence rates, the uniform methods converge too slowly.

Here, the second hp-adaptive version appears to yield an exponential convergence rate,
and for an error behaviour of the form ey ~ Cexp(—BN'/3), linear least squares for In ey
yields 8 &~ 0.3167. The condition number of the unmodified Schur complement for 19045
degrees of freedom on the domain is 5.3 - 107; after diagonal scaling, we obtain a condition
number of 1.2 - 103. Table gives the number of elements with the different polynomial
degrees. Figures [0.8 and 5.9 show zooms of the mesh in the final refinement step, together
with the polynomial degrees, near the two points of the contact boundary where the transition
from sticking to sliding happens.

The uniform h-versions all deliver a convergence rate of about 0.38. The adaptive h-
versions with polynomial degrees 2, 3 and 4 yield convergence rates of 0.6, 0.95 and 1.6,
respectively, again a significant enhancement. The uniform p-version delivers a convergence
rate of about 0.3, again significantly worse than all the other methods.

5.3 Comments

When comparing different choices for the mesh of a finite element method, it is not only
relevant to compare the errors of the different methods, but also the computational work. In
our numerical experiments, it showed that the different adaptive methods take a comparable
time, as the main task is calculating a Cholesky decomposition of the stiffness matrix AX)
while constructing the Schur complement, and the iterations of the MPRGP algorithm are
rather negligible due to the fact that the Lagrange multiplier only has about 300 degrees
of freedom. Therefore, we can recommend the fully automatic second hp-adaptive strategy
proposed above for practical computations.

Compared to the results given in [HanO5], we see that the higher-order elements we
employ yield significantly better convergence rates in adaptive computations. This is what
we expected from the a priori error estimate in Theorem [B.38] together with the reliability

79



CHAPTER 5. NUMERICAL EXPERIMENTS

and efficiency of the error indicator given in Theorems and The non-optimal terms
in these results might also be the reason why we do not obtain the full approximation rates
expected from the h-adaptive methods used. Note here, however, that due to the fact that
we use a smaller polynomial degree for the approximation of A, we can only expect a rate
of up to N1/2P=1/4 for a pure h-version; but even this, lower, rate is not fully attained. For
hp-versions, the reduced rate for the approximation of the Lagrange multiplier is irrelevant,
as we anyways expect exponential convergence.
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Conclusion

In this diploma thesis, we gave an account of the mathematical theory and numerical analysis
of an elastic contact problem with friction, focussing on the latter. In Chapter 2] we saw that
the existence and uniqueness theory for the problem with Tresca friction is simplified by the
fact that we only have to deal with a problem of convex minimisation.

The numerical analysis, however, is more complicated. Due to the presence of the non-
differentiable functional, which contains an integration which cannot be done exactly when
using polynomials of higher degrees, we use a primal-dual formulation in the discretisation.
This allows us to use a very elegant approach for the actual solution of the discrete problem,
based on the Schur complement of the system matrix and using the very powerful MPRGP
algorithm developed in [DS05], as suggested in [Sin06]. The primal-dual formulation leads
to certain difficulties in the proof of an a priori convergence rate result. Using a new kind of
hp-mortar projection operator, constructed in Subsection B.2.2, we can remedy these prob-
lems, and obtain an error estimate given in Theorem B.33] which shows (Theorem [3.35]) that
a well-chosen hp-mesh can be expected to yield exponential convergence.

In Chapter @], we use the duality approach suggested in [Han05] to construct a variant of
the residual error indicator for the displacement u of our primal-dual formulation. We obtain
reliability and efficiency (Theorems (3] and [L.5]) by the methods developed in [MWO0I] up to
terms which we expect to be of higher order for adapted meshes, and up to a factor p, which
is also present in the error indicator for linear systems given in [MWO1]. Furthermore, we
recapitulate the ideas of the hp-adaptive strategies given in [HS05, [EMO07] using estimation
of the decay of the coefficients of the Legendre series of the discrete solution for the decision
of whether to h- or to p-refine a certain element.

This combination turns out to be very effective, as can be seen in the numerical exper-
iments given in Chapter Bl We see that higher order h-adaptive methods yield very good
convergence rates compared to uniform methods. The uniform p-version, in particular, is not
able to deliver an acceptable convergence rate, which is likely due to the fact that the (a priori
unknown) points of nondifferentiability of A are not resolved properly by the mesh. With the
hp-adaptivity using the decay of the Legendre coefficients, in contrast, we can even obtain
exponential convergence. This proves that even for relatively complicated nonlinear prob-
lems, fully automatic hp-adaptivity is very effective, and if the implementational complexity
appears to be too high, one should at least try to use h-adaptive methods, by which one can
obtain the maximal order of convergence of an h-version even for non-smooth solutions.
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