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Abstract

This diploma thesis presents the mathematical theory and numerical analysis of the
contact problem with Tresca friction in plane elasticity. We give an overview of the
mathematical formulation of this problem as a variational inequality of the second kind,
and prove the existence and uniqueness of the corresponding displacement field using
methods of convex analysis. Furthermore, we introduce a primal-dual formulation, where
the nonlinear friction functional is replaced by using a Lagrange multiplier function on
the contact boundary.

Next, we analyse how the given problem can be appropriately discretised. It is well
known that p-finite element methods can yield exponential convergence, but only if the
exact solution is smooth on all elements of the employed mesh. As the displacement field
is expected to be nonsmooth near those parts of the contact boundary where the boundary
conditions change from sticking to sliding, in addition to corners and transitions between
Dirichlet and Neumann boundaries, however, this assumption is not justified for the
presented problem. Therefore, in the numerical analysis, we focus on hp-methods. These
methods combine fine grids at points where the solution is irregular with high polynomial
degrees on elements where it is smooth. We prove a general convergence result for hp-finite
element approximations on meshes with arbitrary element size and polynomial degree
distributions. Furthermore, given sufficient regularity, we obtain convergence rates using
a novel hp-mortar projection operator, which uses a discontinuous Lagrange multiplier
space on the boundary.

As the information on the regularity of the exact solution, which is necessary to
construct an appropriate mesh, is not available a priori, we apply an error indicator of
residual type, generalised to our context, to determine those elements where the local
error appears high and which thus should be refined in an adaptive computation. For
these elements, we then estimate the local regularity of the solution using the rate of
decay of the Legendre series coefficients of the given numerical approximation. Based on
this, we decide whether to subdivide the element or increase the polynomial degree.

We finally show numerical results which confirm our analysis. The adaptive methods
are able to resolve the irregularities of the solution properly, and give rates of convergence
that are significantly higher than those of uniform mesh refinements. In particular, the
hp-method empirically yields exponential convergence.
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Introduction

Today, mathematical models are an indispensable tool in science and engineering. They give
the practitioner the opportunity to predict the behaviour of complex systems, and as such
save significant amounts of money, as only those prototypes will be built that have proved
usable in the model.

Typically, these models are very complex. They are often given as systems of ordinary
or partial differential equations, and can in general not be solved explicitly. Thus, numerical
methods are central to the simulation of technical processes, and this makes the development
of efficient numerical schemes for a large range of mathematical problems necessary.

The present work deals with a certain kind of problem arising in technical applications.
We want to simulate an elastic body which has frictional contact with a fixed object. Due
to the presence of the frictional contact, we do not have a partial differential equation, but
a partial differential inequality, more specifically, a variational inequality of the second kind;
this formulation was pioneered in [DL76]. Moving from an equation to an inequality leads
to several difficulties in the numerical simulation. Because it is straightforward to solve a
linear system of equations, the Newton algorithm is a standard approach for solving nonlin-
ear system of equations, and there are several high-performance methods for solving linear
variational inequalities of the first kind. The presence of a nontrivial, convex, nondifferen-
tiable functional in variational inequalities of the second kind, however, makes it necessary to
use different algorithms. One approach is the primal method, described in detail in [Kor97],
where also some ways to accelerate the convergence rate through the use of adequate precon-
ditioners are given.

We focus on a different idea: Due to the special structure of the nondifferentiable func-
tional, it is possible to construct a primal-dual formulation as a saddle point problem, which
is described in detail in [HHNL88]. This leads to a coupled system of variational inequalities
of the first kind, and under certain assumptions can be reduced to a single variational in-
equality of the first kind on the contact boundary by first solving the problem on the domain
and using the Schur complement of the system matrix, as done in [Sin06].

Furthermore, we investigate the use of high order hp-methods in this context. For these,
it is essential to have a well-constructed mesh, and this can only be done by either knowing
the problem relatively well, or using an adaptive process, as we expect the solution to have
singularities, not only at corners and transitions between Dirichlet and Neumann boundaries,
but also at the unknown points of the contact boundary where the boundary conditions
change from sticking to sliding. Adaptive algorithms are based on local error indicators and
those in hp-FEM typically use an estimation of the local regularity of the solution.

The error indicator employed in this work is a standard residual error indicator, gener-
alised appropriately to the primal-dual formulation as suggested in [Han05]. These indicators
are relatively easy to implement, and deliver acceptable results to steer the refinement pro-
cess. As a stopping criterion, however, their reliability and efficiency properties are not good
enough. For methods enlarging the polynomial degree, in particular, the fact that the error
indicator might overestimate the error by up to a factor p is a significant problem.

To decide whether to do an h-refinement, more appropriate for a singular, or a p-

1



INTRODUCTION

refinement, more appropriate for a regular solution, on an element where the estimated error
is large, the estimation of the local smoothness of the solution is done by expanding the ap-
proximate solution into a Legendre series. Depending on the decay rate of the coefficients in
this series, calculated by a least squares method, we do an h- or a p-refinement. This method,
based on theoretical results on Legendre series for analytic functions in [Dav63, HS05, EM07],
yields very good empiric convergence rates in our numerical experiments, and can thus be
recommended for practical computations: In particular, we empirically obtain exponential
convergence in one model problem.

This diploma thesis is arranged as follows. In Chapter 1, we give an overview of the
mathematical basics which are necessary for an understanding of the later topics. This
includes, in particular, several results on Sobolev spaces.

Chapter 2 contains the mathematical formulation of the frictional contact problem. In
particular, we give a primal-dual or saddle point formulation, where we can reduce the vari-
ational inequality of the second kind on the domain to a variational inequality of the first
kind on the boundary.

Based on the primal-dual formulation, in Chapter 3, we construct an hp-finite element
approximation of the frictional contact problem. We use a theorem by Glowinski to prove
the strong convergence of the method, and a theorem by Haslinger on mixed methods for
variational inequalities, together with a new kind of hp-mortar protection operators, to obtain
an a priori estimate on the convergence rate.

Chapter 4 contains the formulation of the residual error indicator as given in [Han05] for
the hp-approximation of the frictional contact problem. We obtain reliability and efficiency
up to a factor p and certain terms which can be expected to be of higher order if the mesh
is well chosen.

Finally, in Chapter 5, we show some numerical experiments which support our theoretical
results.
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Chapter 1

Mathematical Preliminaries

The aim of this chapter is to collect the mathematical tools needed in the following parts of
this work.

1.1 Vectors and Tensors

For the convenience of the reader, we quickly repeat the notation that we already used in
[Dör07].

We use the Einstein summation convention, that is, if there is a repeated index in a single
term, we sum over it. Letting d P N be the dimension, we say that a change of coordinates
is an affine mapping

yi � aijxj � cj , i � 1, . . . , d, (1.1)

where the linear part is given by an orthogonal matrix A � paijqi,j�1,...,d P Rd�d, that is,
aijakj � δik, and c � pciqi�1,...,d P Rd. The inverse change of coordinates is then given as

xj � ajiyi � ajici, j � 1, . . . , d. (1.2)

A tensor of order (or rank) N is a mapping T � pTi1...iN q, ik � 1, . . . , d, k � 1, . . . , N from
the set of Cartesian coordiate systems to pRdqN which transforms by the rule

T 1i1...iN
� ai1j1 . . . aiN jN Tj1...jN , ik � 1, . . . , d, k � 1, . . . , N, (1.3)

whenever we apply the change of coordinates yi � aijxj � ci, i � 1, . . . , d.
The trace (or contraction) of a tensor of order N ¥ 2 is obtained by setting two different

indices equal. Thus, the trace of a tensor of order N is a tensor of order N � 2. If T �
pTijqi,j�1,...,d is a matrix, we recover the usual trace trT � Tii, the sum over the diagonal
elements.

For vectors in Rd, we define the Euclidean inner product

x � y :� xiyi (1.4)

with its induced Euclidean norm |x| :� px � xq1{2, and for matrices in Rd�d, we define the
Frobenius inner product

A : B :� aijbij (1.5)

with its induced norm |A| :� pA : Aq1{2, the Frobenius norm.
Partial derivatives are denoted by

v,j :� Bv
Bxj

, j � 1, . . . , d. (1.6)
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CHAPTER 1. MATHEMATICAL PRELIMINARIES

A multi-index α � pαkqk�1,...,d is an element of Nd
0. Its order is denoted by |α| :�°d

k�1 αk, and its maximum by maxα :� maxk�1,...,d αk. For a (sufficiently regular) function
v, we set Dαv :� v,1α1 ...dαd , that is,

Dαv :� B|α|v
Bxα1

1 . . . Bxαd
d

. (1.7)

1.2 Sobolev Spaces

We give a thorough introduction into the part of the theory of Sobolev spaces which we need
in the following. Standard references are [Ada75, Eva98, RR04, Bre83, Gri85].

Let Ω � Rd be a bounded domain, and L2pΩq the Hilbert space of (equivalence classes
of) real valued, square-integrable functions on Ω � Rd endowed with the norm

‖v‖L2pΩq :�
�»

Ω
v2dx


1{2
. (1.8)

The Sobolev space H1pΩq is the Hilbert space of all elements of L2pΩq such that the weak
derivatives are again in L2pΩq, and carries the seminorm and norm

|v|H1pΩq :�
�

ḑ

j�1

‖v,j‖2
L2pΩq

�1{2
, (1.9)

‖v‖H1pΩq :� �
‖v‖2

L2pΩq � |v|2H1pΩq
	1{2

. (1.10)

Starting from H1pΩq, higher order Sobolev spaces can be defined recursively; then, for k ¥ 1,
Hk�1pΩq is the Hilbert space of all elements of H1pΩq such that its weak derivatives are in
HkpΩq.

Analogous definitions are also possible for unbounded domains, but then, for several theo-
rems formulated below, in particular the trace theorem, additional assumptions are required.

Theorem 1.1 (Meyers-Serrin). Assume that Ω � Rd is open, bounded, and has a Lipschitz
boundary, that is, BΩ can be locally parametrised by Lipschitz functions, and Ω is locally on
one side of its boundary BΩ.

Then, for k P N0, the set C8pΩq of functions which are infinitely often differentiable on
a neighbourhood of Ω is dense in HkpΩq.

Furthermore, we shall define fractional order Sobolev spaces in the following way. Let
s � k � θ, where k P N and θ P p0, 1q (for integer s, we use the above definitions). Denoting
the Slobodeckij seminorm by

|v|HspΩq :�
�� ¸
|α|�k

»
Ω

»
Ω

|Dαvpxq �Dαvpyq|2
|x� y|d�2θ

dxdy

�
1{2
, (1.11)

we set
HspΩq :� !

v P HkpΩq : |v|HspΩq   8
)

, (1.12)

and endow HspΩq with the norm

‖v‖HspΩq :� �
‖v‖2

HkpΩq � |v|2HspΩq
	1{2

. (1.13)
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1.2. SOBOLEV SPACES

For ease of notation, we also define H0pΩq :� L2pΩq and

|v|H0pΩq :� ‖v‖L2pΩq . (1.14)

Using local parametrisations, it is possible to define Sobolev spaces HspΓq for Γ � Rd a
pd � 1q-dimensional manifold. We shall make use of these spaces in the following; the more
technical details of their definition can be found in [Sch98].

In order to be able to deal with boundary conditions, we need to check in which sense it is
possible to evaluate functions in Sobolev spaces on the boundary. This question is answered
by the following results.

Theorem 1.2 (Trace theorem). Let Ω � Rd be open, bounded with Lipschitz boundary, and
Γ1 � Γ :� BΩ be relatively open with positive surface measure, and s P p1{2, 3{2q.

Then, there exists a continuous linear operator γ0,Γ1 : HspΩq Ñ L2pΓ1q, the trace operator,
satisfying γ0,Γ1u � u|Γ1 whenever u P C0pΩq XHspΩq.

Note that the above result does not yet characterise the range of γ0,Γ1 . Setting γ0 :� γ0,Γ,
the next result shows when it is possible to lift a boundary condition to the domain.

Theorem 1.3 (Inverse trace theorem). Under the assumptions of the trace theorem, we have
that γ0HspΩq � Hs�1{2pΓq.

In particular, there is a linear, continuous lifting operator Z : Hs�1{2pΓq Ñ HspΩq such
that γ0Zv � v for all v P Hs�1{2pΓq.

A similar problem is to extend a function given on a bounded domain Ω � Rd to Rd.
This is possible in a very general way; we shall only need the following result, which is given
in [Ada75, Theorem 4.26].

Theorem 1.4 (Extension operator in one dimension). There exists an extension operator
Ê : L2p0, 1q Ñ L2pRq such that

∥∥∥Êv
∥∥∥

L2pRq ¤ C ‖v‖L2p0,1q for v P L2p0, 1q, (1.15)
∥∥∥Êv

∥∥∥
H1pRq ¤ C ‖v‖H1p0,1q for v P H1p0, 1q, (1.16)

and

pÊvq|p0,1q � v for all v P L2p0, 1q. (1.17)

In general, the Hs-seminorm is clearly not a norm, as it vanishes on constant functions.
For s ¤ 1, however, these are the only functions for which this happens, as the following
result shows.

Theorem 1.5 (Generalised Deny-Lions lemma). For 0 ¤ s ¤ 1, there exists a constant
C ¡ 0 such that

inf
zPR ‖v � z‖HspΩq ¤ C |v|HspΩq . (1.18)

For s � 0, this is trivial; for 0   s   1, this follows from [DS80, Theorem 6.1]; and for
s � 1, this is the well-known Poincaré inequality (see [Eva98, Section 5.8.1, Theorem 1]). A
similar result, also known as Poincaré inequality and given in [Eva98, Section 5.6.1, Theorem
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CHAPTER 1. MATHEMATICAL PRELIMINARIES

3], uses the fact that the function vanishes on the boundary of the domain to deduce the
fact that the H1-seminorm is actually a norm. We define H1

0pΩq :�  
v P H1pΩq : γ0v � 0

(
.

Equivalently, H1
0pΩq is given as the closure of the space DpΩq of test functions, that is, of

infinitely often differentiable functions with support strictly contained in Ω, with respect to
the norm of H1pΩq.
Theorem 1.6 (Poincaré inequality). There exists a constant C ¡ 0 such that for all bounded
domains Ω � Rd,

‖v‖H1pΩq ¤ Cp1� diamΩq |v|H1pΩq for all v P H1
0pΩq. (1.19)

Scaling arguments make use how Sobolev norms behave if we map the domain Ω to
another domain. First of all, we note that all the Sobolev norms are, due to the translation
invariance of the Lebesgue measure, equally translation invariant. If we scale the domain
Ω, that is, we consider the mapping F : Ω Ñ rΩ, x ÞÑ F pxq :� rx, then we have, by the
transformation theorem for multidimensional integrals, that for all v P L2prΩq,

‖v‖2
L2prΩq � rd ‖v � F‖2

L2pΩq , (1.20)

for all v P H1prΩq,
|v|2H1prΩq �

ḑ

j�1

‖v,j‖2
L2prΩq �

ḑ

j�1

rd
∥∥r�1pv � F q,j∥∥2

L2pΩq � rd�2 |v � F |2H1pΩq , (1.21)

and for fractional order Sobolev spaces, s P p0, 1q, v P HsprΩq,
|v|2HsprΩq �

»
rΩ

»
rΩ

|vpxq � vpyq|
|x� y|d�2s

dxdy � rd�2s

»
Ω

»
Ω

|vpF psqq � vpF ptqq|
|s� t|d�2s

dsdt

� rd�2s |v � F |2HspΩq .
(1.22)

Remark 1.7. Similar results also hold true if F is a more complicated, one-to-one and onto
function F : Ω̂ Ñ Ω, where Ω̂ is usually called the reference element ; then, we only obtain
inequalities. The constants appearing only depend on the product of the Frobenius norms of
the Jacobian DF � pFi,jqi,j�1,...,d and DpF�1q � ppF�1qi,jqi,j�1,...,d; in particular, if we have
regular meshes (see Section 3.2), the powers of the diameter of the domain are the same.
Together with approximation results on the reference element such as Theorem 1.5, we see
that this yields convergence of h-versions. For hp-versions, we have to use finer results on
the reference element which make the dependence of the estimate on the polynomial degree
explicit.

The question of the smoothness of functions in Sobolev spaces is answered by the following
results.

Theorem 1.8 (Sobolev embedding theorem). Assume that Ω � Rd is open, bounded with
Lipschitz boundary, and that 2ps�mq ¡ d.

Then, we have HspΩq � CmpΩq with continuous embedding.

Theorem 1.9 (Gagliardo-Nirenberg-Sobolev inequality). Let pa, bq � R1 be a bounded inter-
val.

Then, there exists a constant C ¡ 0 such that for all u P H1pa, bq,
‖u‖L8pa,bq ¤ C ‖u‖1{2

L2pa,bq ‖u‖
1{2
H1pa,bq . (1.23)
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1.2. SOBOLEV SPACES

Consider an open interval pa, bq � R1. Then, by Theorem 1.8, we see that Hspa, bq
consists of continuous functions if s ¡ 1{2. One can show that H1{2pa, bq contains functions
which are not continuous. Another feature of H1{2pa, bq functions in H1{2pa, bq cannot be
extended by zero to functions in H1{2pRq. We define therefore the spaces of functions H1{2

00 pa, bq
which consists of those functions in H1{2pa, bq which can be extended by zero to functions in
H1{2pRq, H1{2p0 pa, bq which consists of functions which can be extended by zero to functions in

H1{2p�8, bq, and H1{2
0q pa, bq similarly with H1{2pa,8q. On these spaces, we define seminorms

by

|v|
H

1{2
00 pa,bq :�

�
|v|2H1{2pa,bq �

» b

a

|vpxq|2
distpx, ta, buqdx

�1{2
, (1.24)

|v|
H

1{2p0 pa,bq :�
�
|v|2H1{2pa,bq �

» b

a

|vpxq|2
x� a

dx

�1{2
, and (1.25)

|v|
H

1{2
0q pa,bq :�

�
|v|2H1{2pa,bq �

» b

a

|vpxq|2
b� x

dx

�1{2
, (1.26)

and norms by

‖v‖
H

1{2
00 pa,bq :� �

‖v‖2
L2pa,bq � |v|2H1{2

00 pa,bq
	1{2

, (1.27)

‖v‖
H

1{2p0 pa,bq :�
�
‖v‖2

L2pa,bq � |v|2H1{2p0 pa,bq

1{2

, and (1.28)

‖v‖
H

1{2
0q pa,bq :�

�
‖v‖2

L2pa,bq � |v|2H1{2
0q pa,bq


1{2
. (1.29)

Note that, actually, the seminorms on these spaces are already equivalent to the full norms,
as the weighted L2-norms are upper bounds for the standard L2-norms.

We define negative order Sobolev spaces as dual spaces of Sobolev spaces with positive
order. We set H̃�spΩq :� HspΩq� and H�1pΩq :� H1

0pΩq�, and correspondingly for manifolds.
Further spaces will be defined by interpolation.

Finally, we note that vector-valued spaces can always be defined using product spaces, as
for a space V of functions Ω Ñ M , we see that the product space V m can be interpreted as
a space of functions ΩÑMm.

1.2.1 Interpolation Spaces

Above, we defined integer and fractional order Sobolev spaces. In practice, it is typically
easier to show certain estimates for integer order spaces. It is thus interesting to check
whether it is possible to generalise such results to the fractional order case. A very general
approach is given by the theory of interpolation spaces. Here, we define, based on two Banach
spaces A0 and A1, some kind of “intermediate” spaces pA0, A1qθ,q with the property that all
operators T which are defined on both A0 and A1 and coincide on A0XA1 can be extended to
operators on the intermediate spaces, and admit bounds on the norms based on the norms on
A0 and A1 and the parameters q and θ. Further details on interpolation theory in general and
its applications to Sobolev spaces in particular can be found in [BS08, BL76, Tri95, Sch98].
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CHAPTER 1. MATHEMATICAL PRELIMINARIES

Definition 1.10. Let A1 � A0 be two Banach spaces where the embedding is continuous,
0   θ   1 and 1 ¤ q ¤ 8, and define the K-functional by

Kpt, vq :� inf
wPA1

�‖v � w‖A0
� t ‖w‖A1

�
. (1.30)

Then, we define the interpolation space pA0, A1qθ,q by

Aθ,q :� pA0, A1qθ,q :� !
v P A0 : ‖v‖Aθ,q

  8)
, (1.31)

where

‖v‖Aθ,q
:�

�» 8
0

�
t�θKpt, vq�q dt

t


1{q
for q P r1,8q, (1.32)

‖v‖Aθ,8 :� sup
0 t 8

�
t�θKpt, vq� . (1.33)

The most important properties are collected in the following results.

Theorem 1.11. 1. For 0   θ2 ¤ θ1   1, 1 ¤ q1 ¤ q2 ¤ 8,

A1 � Aθ1,q1 � Aθ2,q2 � A0. (1.34)

2. If A0 � A1, then for all 0   θ   1 and 1 ¤ q ¤ 8,

A0 � Aθ,q � A1. (1.35)

3. For v P A1, 0   θ   1 and 1 ¤ q ¤ 8,

‖v‖Aθ,q
¤ Cpθ, qq ‖v‖1�θ

A0
‖v‖θ

A1
. (1.36)

Theorem 1.12 (Interpolation of operators). Let Ai, Bi be two pairs of Banach spaces as
above, and assume that Ti : Ai Ñ Bi are continuous and linear, i � 0, 1, with T0|A1 � T1.

Then, the operator Tθ,q : Aθ,q Ñ Bθ,q is well-defined and continuous for every θ and q,
coincides with T1 on A1, and satisfies

‖Tv‖Bθ,q
¤ ‖Tv‖1�θ

B0
‖Tv‖θ

B1
. (1.37)

Theorem 1.13 (Reiteration theorem). For 0   θ0   θ1   1, 1 ¤ q0, q1, q ¤ 8, 0   θ   1,
we have that �pA0, A1qθ0,q0

, pA0, A1qθ1,q1

	
θ,q
� pA0, A1qp1�θqθ0�θθ1,q . (1.38)

Theorem 1.14 (Dual spaces). For A1 dense in A0, 0   θ   1 and 1{p� 1{q � 1,

pA0, A1q�θ,q � pA�1 , A�0q1�θ,p . (1.39)

The fundamental theorem which allows us to apply the above theory to Sobolev spaces
is:

Theorem 1.15. Let s � k � θ, where k P N0 and 0   θ   1, and assume that Ω � Rn is a
bounded domain with Lipschitz boundary.

Then,
HspΩq � �

HkpΩq, Hk�1pΩq	
θ,2

, (1.40)

and the interpolation norm is equivalent to the Slobodečkij norm given above.
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We want to see how the spaces satisfying weak boundary conditions fit into this interpo-
lation framework. This is answered by the following result.

Theorem 1.16. Let pa, bq � R be a bounded interval.
Then,

H1{2
00 pa, bq � �

L2pa, bq, H1
0pa, bq�

1{2,2
, (1.41)

and the interpolation norm is equivalent to the H1{2
00 -norm.

Similarly, if we let H1p0pa, bq and H1
0qpa, bq be the spaces of functions in H1pa, bq vanishing

at a or b, respectively, then

H1{2p0 pa, bq � �
L2pa, bq, H1p0pa, bq	

1{2,2
, (1.42)

H1{2
0q pa, bq � �

L2pa, bq, H1
0qpa, bq	

1{2,2
, (1.43)

where again the interpolation norms are equivalent to the natural norms of the respective
space.

The proof for H1{2
00 pa, bq is given in [LM72, Chapter 1, Theorem 1.7]. The result for

H1{2p0 pa, bq follows by using the reflection operator R mapping functions on the interval pa, bq
to functions on the interval pa, 2b�aq, that is, for f : pa, bq Ñ R, we define Rf : pa, 2b�aq Ñ R
by

Rfpxq :�
#

fpxq, x ¤ b,

fp2b� xq, x ¡ b,
(1.44)

and its left inverse, the restriction operator S, which is defined by Sfpxq :� fpxq for x P pa, bq,
where f : pa, 2b� aq Ñ R. The result for H1{2

0q pa, bq is proved analogously.
Define Hs

0pΩq :� �
L2pΩq, H1

0pΩq�s,2
for s P p0, 1qz t1{2u. It can be shown that the interpo-

lation norm of Hs
0pΩq is equivalent to the norm of HspΩq, and the space equals the closure of

DpΩq in this norm. For s � 1{2, we see by the last theorem that this result obviously cannot
hold. Furthermore, for s   1{2, Hs

0pΩq � HspΩq.
Using the duality theorem, we set H�spΩq :� �

H�1pΩq, L2pΩq�
s,2

. We note that H�1{2pΓCq
is thus the dual space of H1{2

00 pΓCq, where ΓC is a piece of Γ � BΩ.

1.2.2 Inverse Inequalities

In general, in the finite element method, we have two kinds of inequalities: First direct
inequalities, which give approximation rates for sufficiently regular functions, and second
inverse inequalities, which yield an estimate of a stronger norm by a weaker norm. Clearly,
such a statement is only possible on finite-dimensional spaces. In particular, we shall focus
here on spaces of polynomials. Let, thus, Pq be the vector space of polynomials of degree q.

The following results can be found in [Sch98, Sections 3.6, 4.6].

Theorem 1.17. There exists a constant C ¡ 0 such that for all p P N and all v P Pp, we
have that

‖v‖L8p�1,1q ¤ Cpp� 1q ‖v‖L2p�1,1q . (1.45)
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Theorem 1.18. For all p P N and all v P Pp with vp�1q � vp1q � 0, we have that
∥∥∥p1� �2q1{2v1∥∥∥

L2p�1,1q ¤ pp� 1q ‖v‖L2p�1,1q . (1.46)

Theorem 1.19. There exists a constant C ¡ 0 such that for all p P N and all v P Pp with
vp�1q � vp1q � 0, we have that

‖v‖
H

1{2
00 p�1,1q ¤ C lnpp� 1q ‖v‖H1{2p�1,1q . (1.47)

The next result follows from [BDM07, Proposition 4.1].

Theorem 1.20. There exists a constant C ¡ 0 such that for all p P N and all v P Pp with
vp�1q � vp1q � 0, we have that

‖v‖H1{2p�1,1q ¤ Cpp� 1q ‖v‖L2p�1,1q . (1.48)

For the reference interval I � r�1, 1s, we define the edge bubble function as ψIpxq :�
distpx, BIq, and similarly, for the reference square S :� I2, we define the element bubble
function as ψSpxq :� distpx, BSq. Using the edge bubble function, we can formulate the
following result, which is similar to Theorem 1.18.

Theorem 1.21. Let �1   α   β and δ P r0, 1s.
Then, there exists a constant C ¡ 0 such that for all p P N and all polynomials v P Pp,

∥∥∥ψ
1{2
I v1

∥∥∥
L2p�1,1q ¤ Cp ‖v‖L2p�1,1q , (1.49)

∥∥∥ψ
α{2
I v

∥∥∥
L2p�1,1q ¤ Cpβ�α

∥∥∥ψ
β{2
I v

∥∥∥
L2p�1,1q , (1.50)

∥∥∥ψδ
Iv
1∥∥∥

L2p�1,1q ¤ Cp2�δ
∥∥∥ψ

δ{2
I v

∥∥∥
L2p�1,1q . (1.51)

If, furthermore, vp�1q � vp1q � 0, then

∥∥v1∥∥
L2p�1,1q ¤ Cp

∥∥∥ψ
�1{2
I v

∥∥∥
L2p�1,1q . (1.52)

The following inverse inequalities are the two-dimensional analogues.

Theorem 1.22. For �1   α   β and δ P r0, 1s, there exists a constant C ¡ 0 such that for
all p P N and all polynomials v P Pp,

∥∥∥ψ
1{2
S ∇v

∥∥∥
L2pp�1,1q2q ¤ Cp ‖v‖L2pp�1,1q2q , (1.53)

∥∥∥ψ
α{2
S v

∥∥∥
L2pp�1,1q2q ¤ Cpβ�α

∥∥∥ψ
β{2
S v

∥∥∥
L2pp�1,1q2q , (1.54)

∥∥∥ψδ
S∇v

∥∥∥
L2pp�1,1q2q ¤ Cp2�δ

∥∥∥ψ
δ{2
S v

∥∥∥
L2pp�1,1q2q . (1.55)

If, furthermore, v � 0 on BS, then

‖∇v‖L2pp�1,1q2q ¤ Cp
∥∥∥ψ

�1{2
S v

∥∥∥
L2pp�1,1q2q . (1.56)

The last two theorems can be found in [MW01, Lemma 2.4, Theorem 2.5].
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1.3. FUNCTIONAL ANALYSIS, VARIATIONAL INEQUALITIES AND DUALITY
THEORY

1.3 Functional Analysis, Variational Inequalities and Duality
Theory

We collect some fundamental results from functional analysis, variational inequalities and
duality theory. Standard references are [KS80, Kor97, Zei85].

Let V be a Hilbert space, K � V convex and closed, a : V � V Ñ R a symmetric,
continuous bilinear form with

apv, vq ¥ 0 for all v P V , (1.57)

L : V Ñ R a continuous linear functional, and j : K Ñ R a continuous, convex, but possibly
nonlinear functional. We define the energy functional J : KÑ R by

Jpvq :� 1
2
apv, vq � Lpvq � jpvq for all v P V . (1.58)

We then have:

Theorem 1.23. u is a minimiser of J over K if and only if

apu, v � uq � jpvq � jpuq ¥ Lpv � uq for all v P K. (1.59)

Proof. First, assume that u minimises J . For v P K and t P p0, 1q, we see that u� tpv�uq �
p1� tqu� tv P K by the convexity of K, and thus

Jpu� tpv � uqq � Jpuq ¥ 0, (1.60)

that is,

0 ¤ 1
2
apu� tpv � uq,u� tpv � uqq � Lpu� tpv � uqq � jpu� tpv � uqq

� 1
2
apu,uq � Lpuq � jpuq

� tapu,v � uq � t2apv � u,v � uq � tLpv � uq � jpu� tpv � uqq � jpuq.
(1.61)

Applying the convexity of j, we obtain that

jpp1� tqu� tvq ¤ p1� tqjpuq � tjpvq, (1.62)

which yields

0 ¤ tapu,v � uq � t2apv � u,v � uq � tLpv � uq � tjpvq � tjpuq. (1.63)

Dividing by t and letting t Ñ 0, we see that u satisfies the variational inequality.
Conversely, for a solution u of the variational inequality, we see that for all v P K,

Jpvq � Jpuq � 1
2
apv,vq � Lpvq � jpvq � 1

2
apu,uq � Lpuq � jpuq

� 1
2
apv,v � uq � 1

2
apu,v � uq � Lpv � uq � jpvq � jpuq

� 1
2
apv � u,v � uq � apu,v � uq � Lpv � uq � jpvq � jpuq

¥ 0,

(1.64)

that is, u minimises J .
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To analyse the solvability of the above problems, let J : K Ñ R be a general convex
functional which is continuous and coercive, that is,

lim
‖v‖VÑ8

vPK
Jpvq � 8. (1.65)

The next result follows from [Zei85, Proposition 41.8].

Lemma 1.24. Let J : KÑ R be continuous and convex.
Then, J is weakly sequentially lower semicontinuous, that is, Jpvq ¤ lim infnÑ8 Jpvnq

whenever vn Ýá v.

Here, as usual, vn Ýá v denotes convergence in the weak topology, that is, we say that
vn Ýá v if and only if limnÑ8 xvn, wyV � xv, wyV for all w P V ; similarly, we write vn ÝÑ v
for strong convergence, that is, vn ÝÑ v if and only if limnÑ8 ‖v � vn‖V � 0. With this, we
obtain:

Theorem 1.25. Let K � V be a closed, convex set and J : K Ñ R be continuous, convex
and coercive.

Then, there exists u P K such that

Jpuq ¤ Jpvq for all v P K. (1.66)

If, furthermore, J is strictly convex, that is,

Jptu� p1� tqvq   tJpuq � p1� tqJpvq for u, v P K with u � v and t P p0, 1q, (1.67)

then the minimiser u is unique.

We shall need in the proof the following compactness result, which is proved in [Yos80,
p. 126, Theorem 1].

Lemma 1.26. Let V be a Hilbert space, and let pvnq be a sequence in V which is bounded in
norm.

Then, there exists a subsequence pvn1q of pvN q converging weakly to some v P V .

Proof of Theorem 1.25. Set α :� infvPK Jpvq P R̄, and choose a sequence punqnPN � K such
that α � limnÑ8 Jpunq. By the coercivity of J , we see that punq is necessarily bounded, and
thus, by Lemma 1.26, admits a weakly convergent subsequence pun1q. Denote this limit by u.

By Lemma 1.24, we see that J is weakly sequentially lower semicontinuous, and thus

α ¤ Jpuq ¤ lim inf
n1Ñ8 Jpun1q � lim

n1Ñ8Jpun1q � α, (1.68)

that is, α P R, Jpuq � α, and u is a minimiser of J .
For the second part, assume that J is strictly convex, and let u1 � u2 be two minimisers.

Then, letting again α denote the minimum and noting that tu1�p1�tqu2 P K as K is convex,
for t P p0, 1q,

α ¤ Jptu1 � p1� tqu2q   tJpu1q � p1� tqJpu2q � α, (1.69)

a contradiction. Thus, u1 � u2, and the minimiser is unique.

To derive an error indicator, we shall apply duality theory. We collect here the definition
of the conjugate function, and the basic theorem on solvability of the primal and the dual
problem and their connection.

12



1.4. MEASURE THEORY

Definition 1.27. Let V be a Hilbert space, and f : V Ñ R̄.
Then, the conjugate function f� : V � Ñ R̄ of f is defined by

f�pv�q :� sup
vPV rxv

�, vyV � � fpvqs for all v� P V �. (1.70)

The next result is a consequence of [Han05, Theorem 2.39].

Theorem 1.28. Let V , Z be Hilbert spaces, L : V Ñ Z linear and bounded with L : Z� Ñ V �
its adjoint operator, F : V Ñ R̄, G : Z Ñ R̄ lower semicontinuous, convex functions such that
there exists v0 P V with F pv0q   8, GpLv0q   8, and q ÞÑ Gpqq is continuous at Lv0, and
v ÞÑ F pvq �GpLvq is coercive on V .

Denoting Jpv, qq :� F pvq � Gpqq, the conjugate function of J is given by J�pv�, q�q �
F �pv�q �G�pq�q. Furthermore, there exist u P V and p� P Z� with

Jpu,Luq � inf
vPV Jpv,Lvq, (1.71)

�J�pL�p�,�p�q � sup
q�PZ� r�J�pL�q�,�q�qs , (1.72)

and
Jpu,Luq � �J�pL�p�,�p�q. (1.73)

Moreover, if v ÞÑ Jpv,Lvq is strictly convex, then the minimiser u is unique.

1.4 Measure Theory

We shall make use of the following version of the Riesz representation theorem, which is
proved in [Yos80, p. 115, Example 3].

Theorem 1.29 (Riesz representation theorem). Let pX, µq be a σ-finite measure space.
Then, for every continuous linear functional ` : L1pXq Ñ R, there exists a function f P

L8pXq such that

`pgq �
»

X
fgdµ for all g P L1pXq (1.74)

and
sup

gPL1pXq
‖g‖L1pXq�1

|`pgq| � ‖f‖L8pXq . (1.75)

The following result is given in [Yos80, p. 53, Corollary to Proposition 2].

Theorem 1.30. Let pX, µq be a σ-finite measure space.
Then, for every Cauchy sequence pfnqnPN in LppXq, there exists a subsequence pfn1q of

pfnq which converges almost everywhere on X.

Theorem 1.31 (Dominated convergence theorem). Let pX, µq be a measure space, pfnqnPN a
sequence of measurable functions converging almost everywhere on X to f , and assume that
there exists a function g P L1pXq such that |fnpxq| ¤ gpxq for almost every x P X.

Then, f P L1pXq, limnÑ8
³
X |fn � f | dµ � 0, and limnÑ8

³
X fndµ � ³

X fdµ.

The proof can be found in [Rud87, Theorem 1.34].
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Chapter 2

An Introduction to Elastic Contact
with Friction

In the present chapter, we want to give a short introduction to the mathematical formulation
of elastic contact problems with friction. We shall briefly describe the elements of small-strain
elasticity, and then focus on the effects of friction. For a more detailed account on elasticity,
we refer the reader to the author’s work [Dör07] and the references cited therein. A standard
reference for contact problems, with and without friction, is [KO88], and the formulation as a
variational inequality is detailed in [DL76]. The model given here corresponds to the friction
model used in [Han05, Example 1.27]. A good, short introduction to Coulomb friction is
given in [Sin06].

2.1 Small-Strain Elasticity

In this section, we introduce the objects necessary to work with problems of elasticity.

2.1.1 The Basic Equations

Consider a body , that is, a domain Ω � R3. A body force F � pF1, F2, F3q is an R3-valued
function defined on Ω, a force density. The stress vector Tpx, zq is defined as the density of
internal forces at x in the direction z. Using T, we can define the stress tensor σ � pσijq as

σijpxq :� Tjpx, eiq for i, j � 1, 2, 3 and x P Ω. (2.1)

For a body in equilibrium, the internal forces σ and the external forces F have to balance,
and from this, one can show that the equations of equilibrium

σji,jpxq � Fipxq � 0 for i � 1, 2, 3 and x P Ω (2.2)

hold true. In the dynamic case, one has to add inertial terms, that is, ρ:u with ρ the density
of the material, u the displacement and :u � B2u{Bt2 the acceleration, in the above equation.

Additionally, from the equilibrium of moments, we obtain the symmetry of the stress
tensor,

σij � σji for i, j � 1, 2, 3. (2.3)

Let Ω be deformed into another body Ω1, and assume that this deformation is realised
by a diffeomorphism y : Ω Ñ Ω1, that is, y is one-to-one, onto, and y and its inverse are
differentiable. Then, we define the displacement vector by upxq :� ypxq � x. Comparing the
lengths of the line segment from x to x � t∆x with the line segment after the deformation,
ypxq to ypx� t∆xq, we see that

ϕptq :� |ypx� t∆xq � ypxq|2 � |t∆x|2
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� |upx� t∆xq � upxq � t∆x|2 � t2 |∆x|2

� 3̧

i�1

�puipx� t∆xq � uipxqq2 � 2t puipxq � t∆xq � uipxqq∆xi

�
(2.4)

� t2

�
3̧

i�1

�» 1

0
ui,jpx� tτ∆xq∆xjdτ


2

� 2
» 1

0
ui,jpx� tτ∆xq∆xi∆xjdτ

�
.

Then, 1
2ϕ2p0q � 2εFinite

ij ∆xi∆xj , where pεFinite
ij qi,j�1,2,3 is the finite strain tensor defined by

εFinite
ij :� 1

2
puk,iuk,j � ui,j � uj,iq for i, j � 1, 2, 3. (2.5)

Assuming that ui,j is small, we see that the term uk,iuk,j is of higher order and can be
neglected, which gives the small strain tensor

εij :� 1
2
pui,j � uj,iq for i, j � 1, 2, 3. (2.6)

We want to relate ε :� pεijq and σ; this is done by a material law . As we restrict ourselves
to small deformations, we can assume that the relation between σ and ε is linear, from which
it follows that there exists a 4-tensor C :� pcijklq with σij � cijklεkl for i, j, k, l � 1, 2, 3;
in short σ � Cε. From the symmetry of ε and σ and an assumption of hyperelasticity, it
follows that

cijkl � cjikl � cijlk � cklij for i, j, k, l � 1, 2, 3, (2.7)

and furthermore, we suppose that C is positive definite, that is, ε : Cε ¡ 0 for all strains ε.
For a general material, C depends on the point x and on the choice of the coordinate system.
For simplicity, we shall assume a homogeneous and isotropic material, that is, C neither
depends on the point or on the choice of (Cartesian) coordinate system. These assumptions
yield the existence of Lamé coefficients λ, µ P R such that the generalised Hooke’s law

σijpxq � λ tr εpxqδij � 2µεijpxq for i, j � 1, 2, 3 (2.8)

holds true. Typically, for physical materials, the Lamé coefficients are not directly given, but
instead the Young modulus E and the Poisson ratio ν. From these, the Lamé coefficients can
be calculated as

λ � Eν

p1� νqp1� 2νq , µ � E

1� ν
. (2.9)

2.1.2 Boundary Conditions

We describe the different kinds of boundary conditions considered in the following. Decom-
pose the boundary Γ of Ω into three disjoint, relatively closed subsets ΓD, ΓN and ΓC which
are the closures of their interiors such that the respective interiors have empty intersection,
and Γ � ΓD Y ΓN Y ΓC. Then, we prescribe kinematic boundary conditions on ΓD, that is,
the displacement is given, uj � u0j , j � 1, 2, 3, which corresponds to Dirichlet boundary con-
ditions. To guarantee the unique solvability of the problems which will be formulated below,
we shall always assume that |ΓD| ¡ 0, as then, the Korn inequality as given in Theorem 2.8
holds, and the fundamental bilinear form describing the inner energy of an elastic body is
coercive.

16
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On ΓN, we prescribe static boundary conditions, that is, the stress vector is given, σijνj �
Gi, i � 1, 2, 3, where ν � pνjq is the outer unit normal vector on ΓN and G � pGiq is a given
function. Lastly, on ΓC, we assume contact conditions with friction. These will be the topic
of Section 2.2.

2.1.3 Plane Problems in Elasticity

There are two typical ways of reducing problems in elasticity to two dimensions. The first
is the plane strain assumption, where the body is considered to be infinitely large in one
dimension, and the strain ε is assumed to be planar, that is, εi3 � 0 for i � 1, 2, 3. The
second is the plane stress assumption which we will describe now.

Let the 3-dimensional body be given as Ω� r�h, hs with a domain Ω � R2, and assume
that the boundary conditions and volume forces do not depend on x3. Furthermore, assume
that h is small, u03 is an odd function of x3, that is, u03p�x3q � �u03px3q, and that σ3i � 0
at x3 � �h for i � 1, 2, 3. Then, the assumption that σ3i � 0, i � 1, 2, 3, on Ω � r�h, hs is
justified, see [LL70, pp. 53], and the stress tensor can be described by a 2� 2 matrix. Thus,
as σ33 � 0,

0 � λ pε11 � ε22 � ε33q � 2µε33, (2.10)

which yields

ε33 � �λ

λ� 2µ
pε11 � ε22q , (2.11)

and the generalised Hooke’s law reads

σij � λ� pε11 � ε22q δij � 2µεij , i, j � 1, 2, (2.12)

where λ� :� λ 2µ
λ�2µ , that is, we have to solve a problem analogous to the three-dimensional

system, but λ is replaced by λ�.

2.2 Contact with Friction

In this section, we first describe the full three-dimensional setup for contact with friction,
and then explain how the system can be reduced under the plane stress assumption.

2.2.1 The 3-Dimensional Situation

We shall now define the Signorini contact conditions with friction on ΓC. Set for x P ΓC and
v sufficiently regular on Ω

vnpxq :� vipxqνipxq, (2.13)
vtjpxq :� vjpxq � vnpxqνjpxq, (2.14)

Tnpvqpxq :� σijpvqνipxqνjpxq, (2.15)
Ttjpvqpxq :� σjkpvqνkpxq � Tnpvqpxqνjpxq, j � 1, 2, 3. (2.16)

Assume that the body with which contact is possible and the coefficient of friction are
given by functions u0 P H1{2pΓCq and f P L8pΓCq on ΓC, u0 � u0ν and f ¥ 0, respectively.
We see that necessarily, un ¤ u0 on ΓC. Furthermore, if, at x P ΓC, unpxq   u0pxq, we do
not have contact, and thus, the stresses have to vanish, Tnpuqpxq � 0 and Ttjpuqpxq � 0,
j � 1, 2, 3, as this corresponds to zero static boundary conditions. If, however, at x P ΓC,
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unpxq � u0pxq, then the normal stresses have to point inwards, that is, Tnpuqpxq ¤ 0.
If, additionally, for Ttpuqpxq, |Ttpuqpxq|   fpxq |Tnpuqpxq|, then ut � 0. If |Ttpuqpxq| �
fpxq |Tnpuqpxq|, then there exists h ¥ 0 such that utpxq � �hTtpuqpxq. This model is called
Coulomb friction.

Thus, we obtain: For every x P ΓC:

unpxq   u0pxq. Then, Tpuqpxq � 0.

unpxq � u0pxq. Then, Tnpuqpxq ¤ 0, and only the following two cases can occur:

|Ttpuqpxq|   fpxq |Tnpuqpxq|; then, utpxq � 0, and

|Ttpuqpxq| � fpxq |Tnpuqpxq|; then, there exists h ¥ 0 with utpxq � �hTtpuqpxq.
All the different cases can also be summed up in an equivalent formulation given as

un ¤ u0, (2.17a)
Tnpuq ¤ 0, (2.17b)

pun � u0qTnpuq � 0, (2.17c)
|Ttpuq| ¤ f |Tnpuq| , (2.17d)

pf |Tnpuq|� |Ttpuq|qut � 0, (2.17e)
Ttpuq � ut � f |Tnpuq| |ut| � 0. (2.17f)

To facilitate the discretisation of the given problem, we shall give an equivalent formula-
tion as a variational inequality. To that end, define the space of displacements

V :�  
v P H1pΩq3 : γ0,ΓD

pvq � u0

(
, (2.18)

the closed, convex set of admissible displacements

K :� tv P V : γ0,ΓC
pvq � ν ¤ u0 almost everywhere on ΓCu , (2.19)

the bilinear form a : V � V Ñ R by

apv,wq :�
»
Ω

σpvq : εpwqdx for v, w P V , (2.20)

and the linear functional L : V Ñ R by

Lpvq :�
»
Ω

F � vdx�
»
ΓN

G � γ0,ΓN
vdsx for v P V . (2.21)

Note that in the case ΓC X ΓD � H it can happen that the conditions γ0,ΓD
pvq � u0 and

γ0,ΓC
pvq � ν ¤ u0 are incompatible. We shall therefore assume in the following that u0 and

u0 are chosen in such a way that K � H.
To incorporate the friction terms, we introduce the friction functional j : V � V Ñ R by

jpv,wq :�
»
ΓC

f |Tnpvq| |wt| dsx for all v, w P V . (2.22)

Note that not only j, but even the mapping v ÞÑ jpv,vq is nondifferentiable and nonconvex.
Consider the following two problems.
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2.2. CONTACT WITH FRICTION

Problem 2.1 (Classical formulation, Coulomb friction). Find u P pC2pΩq X C1pΩqq3 such
that

σij,jpuq � Fi � 0, in Ω, i � 1, 2, 3, (2.23a)
ui � u0i on ΓD, i � 1, 2, 3, (2.23b)

σijpuqνj � Gi on ΓN, i � 1, 2, 3, (2.23c)

and on ΓC,

un ¤ u0, (2.23d)
Tnpuq ¤ 0, (2.23e)

pun � u0qTnpuq � 0, (2.23f)
|Ttpuq| ¤ f |Tnpuq| , (2.23g)

pf |Tnpuq|� |Ttpuq|qut � 0, (2.23h)
Ttpuq � ut � f |Tnpuq| |ut| � 0. (2.23i)

Problem 2.2 (Variational formulation, Coulomb friction). Find u P K such that for all
v P K,

apu,v � uq � jpu,vq � jpu,uq ¥ Lpv � uq. (2.24)

Theorem 2.3. The Problems 2.1 and 2.2 are equivalent in the following sense: If Γ and ΓC

are smooth enough, and u P pC2pΩqXC1pΩqq3 solves one of the two above problems, it solves
the other one, as well.

This is [KO88, Theorem 10.1].

Proof. Integration by parts and the symmetry of σpuq yield for an arbitrary v P K
apu,v � uq �

»
Ω

σijpuqpvi,j � ui,jqdx
�
»
Γ

σijpuqνjγ0,Γpvi � uiqdsx �
»
Ω

σij,jpuqpvi � uiqdx.

(2.25)

Let u be a solution of the classical formulation. Then, σij,jpuq � �Fi, vi � ui � 0 on ΓD

and σijpuqνj � Gi on ΓN, from which we obtain

apu,v � uq �
»
ΓN

Giγ0,ΓN
pvi � uiqdsx �

»
ΓC

σijpuqνjγ0,ΓC
pvi � uiqdsx

�
»
Ω

Fipvi � uiqdx
� Lpv � uq �

»
ΓC

σijpuqνjγ0,ΓC
pvi � uiqdsx.

(2.26)

As σijpuqνj � Ttipuq � Tnpuqνi, we see that»
ΓC

σijpuqνjγ0,ΓC
pvi � uiqdsx �

»
ΓC

pTtipuq � Tnpuqνiqγ0,ΓC
pvi � uiqdsx

�
»
ΓC

rTtpuq � pvt � utq � Tnpuqpvn � unqs dsx
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�
»
ΓC

rTtpuq � vt � Tnpuqpvn � unqsdsx

�
»
ΓC

Ttpuq � utdsx (2.27)

�
»
ΓC

rTtpuq � vt � Tnpuqpvn � unqsdsx

�
»
ΓC

f |Tnpuq| |ut|dsx

�
»
ΓC

rTtpuq � vt � Tnpuqpvn � unqsdsx � jpu,uq.
Note that for v P K,

Tnpuqpvn � unq � Tnpuqpvn � u0q � Tnpuqpu0 � unq ¥ Tnpuqpu0 � unq � 0 (2.28)

and
Ttpuq � vt ¥ � |Ttpuq| |vt| ¥ �f |Tnpuq| |vt| , (2.29)

which in turn yields »
ΓC

rTtpuq � vt � Tnpuqpvn � unqs ¥ �jpu,vq. (2.30)

Thus, u satisfies the variational formulation.
For the converse, pick u satisfying the variational formulation. Clearly, the Dirichlet

conditions and the condition un ¤ u0 on ΓC are defined by definition. For φ P DpΩq3, we see
easily that v :� u� φ P K, and as the two functions u and v coincide on the boundary, we
obtain by integration by parts that σij,jpuq � Fi � 0 on Ω.

Next, choose φ � pϕiq P C8pΩq such that there exists U � R3 open with suppφ � U ,
U X Γ � ΓN, and φjpxq � 0 for some x P ΓN. Such a function can be found for every x P ΓN

and j � 1, 2, 3 as ΓN is relatively open in Γ. As u and u � φ coincide on ΓC, this in turn
yields Tjpuq � Gj on ΓN. Thus, we obtain that for all v P K,»

ΓC

rf |Tnpuq| p|vt|� |ut|q �Ttpuq � pvt � utq � Tnpuqpvn � unqsdsx ¥ 0. (2.31)

Choose φ P C8pΩq such that φt � 0, that is, φ � φnν on ΓC, and u � φ P K. Then, we
obtain »

ΓC

Tnpuqφndsx ¥ 0. (2.32)

We can always choose φn ¤ 0, which entails Tnpuq ¤ 0. Furthermore, if at some point x P ΓC,
unpxq   u0pxq, then we can also choose φ with φnpxq � u0pxq � unpxq ¡ 0, and this gives
Tnpuqpxq � 0.

Choose φ P C8pΩq such that φn � 0. Clearly, u� αφ P K for all α P R, and thus»
ΓC

rf |Tnpuq| p|ut � αφt|� |ut|q � αTtpuq � φtsdsx ¥ 0. (2.33)

Choose φ in such a way that φt � 0 whenever ut � 0. Then, BBα |α�0 |ut � αφt| � ut�φt
|ut|

whereever ut � 0, and 0 otherwise. By Theorem 1.31, we obtain»
ΓC

f |Tnpuq| ut � φt

|ut| dsx ¥ �
»
ΓC

Ttpuq � φtdsx, (2.34)
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and thus, by replacing φ by �φ,

f |Tnpuq|ut � �Ttpuq |ut| whenever ut � 0. (2.35)

Taking absolute values and dividing by |ut|, we obtain

pf |Tnpuq|� |Ttpuq|qut � 0 on ΓC, (2.36)

and taking the scalar product with ut and dividing by |ut|, we obtain

f |Tnpuq| |ut| � �Ttpuq � ut, (2.37)

as in both cases, the assertion is trivial for ut � 0.
Thus, again for φ P C8pΩq with φn � 0, setting v :� u� φ,»

ΓC

rf |Tnpuq| p|vt|� |ut|q �Ttpuq � pvt � utqsdsx ¥ 0. (2.38)

Choose φ in such a way that φ � 0 whenever ut � 0. Then, |vt|� |ut| � |φt|, and plugging
in both φ and �φ, we obtain

∣∣∣∣
»
ΓC

Ttpuq � φtdsx

∣∣∣∣ ¤
»
ΓC

f |Tnpuq| |φt| dsx. (2.39)

By approximating the function sign pTtpuq � φtq with smooth functions bounded by 1, we see
that »

ΓC

|Ttpuq � φt|dsx ¤
»
ΓC

f |Tnpuq| |φt|dsx. (2.40)

First, we note that obviously, from the above, Ttpuq � 0 whenever f |Tnpuq| � 0. Second,
using the weighted measure dµ :� f |Tnpuq|dsx, we see that, as Ttpuq �ψn � 0 for any ψ,

ψ ÞÑ
»
ΓC

Ttpuq �ψdsx, (2.41)

defined on the smooth functions, can be extended to a linear functional of norm ¤ 1 on
the space L1pΓC; µq3 of measurable functions integrable with respect to µ. The Riesz rep-
resentation theorem, Theorem 1.29, yields the existence of a function H P L8pΓCq with
‖H‖L8pΓCq ¤ 1 and

Ttpuq � f |Tnpuq|H; (2.42)

in particular, |Ttu| ¤ f |Tnpuq| whenever f |Tnpuq| ¡ 0.
Combining the results, we see that u is a solution of the classical formulation.

Due to the fact that v ÞÑ jpv,vq is nonconvex, we shall analyse only a simplified problem.
The simplified friction law is known as Tresca friction and corresponds to a friction functional
j : V Ñ R defined by

jpvq :�
»
ΓC

g |vt| dsx. (2.43)

This corresponds to the assumption that g � f |Tnpuq| is constant, that is, the normal
component of the normal stresses is replaced by a given slip stress. This functional is still
nondifferentiable, but convex.

Thus, we define:
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Problem 2.4 (Variational formulation, Tresca friction). Find u P K such that for all v P K,

apu,v � uq � jpvq � jpuq ¥ Lpv � uq. (2.44)

The equivalent conditions on the contact boundary with friction are here

un ¤ u0, (2.45a)
Tnpuq ¤ 0, (2.45b)

pun � u0qTnpuq � 0, (2.45c)
|Tt| ¤ g, (2.45d)

pg � |Tt|qut � 0, (2.45e)
ut �Tt ¤ 0. (2.45f)

For the proof of existence and uniqueness of the solution of 2.4, it is helpful to rewrite
the problem as a minimisation of a convex functional. Define therefore J : V Ñ R by

Jpvq :� 1
2
apv,vq � Lpvq � jpvq. (2.46)

Problem 2.5 (Minimisation formulation, Tresca friction). Find u P K such that

Jpuq � min
vPK Jpvq. (2.47)

The following result clearly is a consequence of Theorem 1.23.

Theorem 2.6. Problems 2.4 and 2.5 are equivalent.

We shall prove:

Theorem 2.7. There exists a unique solution of Problem 2.5.

Thus, by Theorem 2.6, there exists a unique solution of Problem 2.4. The proof uses the
following variant of a Korn inequality, which is proved in [KO88, Lemma 6.2].

Theorem 2.8 (Korn’s inequality). For |ΓD| ¡ 0, there exists a constant C ¡ 0 such that

‖v‖2
H1pΩq ¤ Capv,vq for all v P V . (2.48)

Proof of Theorem 2.7. Clearly, J defines a convex functional which is continuous with respect
to the strong topology of K � V . By Korn’s inequality and the boundedness of L, we see
that

Jpvq � 1
2
apv,vq � Lpvq � jpvq ¥ C�1 ‖v‖2

H1pΩq � C ‖v‖H1pΩq , (2.49)

and this expression tends to 8 as ‖v‖H1pΩq Ñ8. This yields the coercivity of J . Moreover,
for v � w and t P p0, 1q, by the convexity of j,

Jptv � p1� tqwq � 1
2
rtapv,vq � p1� tqapw,wq � tp1� tqapv �w,v �wqs

� tLpvq � p1� tqLpwq � jptv � p1� tqwq
¤ 1

2
rtapv,vq � p1� tqapw,wq � tp1� tqapv �w,v �wqs

� tLpvq � p1� tqLpwq � tjpvq � p1� tqjpwq.

(2.50)
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Applying Korn’s inequality, we see that tp1� tqapv �w,v �wq ¡ 0, and we obtain

Jptv � p1� tqwq   tJpvq � p1� tqJpwq, (2.51)

that is, J is strictly convex.
Thus, Theorem 1.25 yields the result.

2.2.2 Friction under the Plane Stress Assumption

Consider the plane stress assumption as described in Subsection 2.1.3. As the boundary
conditions are independent of x3, we see that the contact boundary is given as ΓC � r�h, hs,
where ΓC � Γ :� BΩ. For h small, we can assume that all functions are constant with respect
to x3. Thus, we see that the friction term satisfies

jpvq �
» h

�h

»
ΓC

g |vt|dspx1,x2qdx3 � 2h

»
ΓC

g |vt| dspx1,x2q. (2.52)

Similarly, as σ3ipvq � 0,

apv,wq �
» h

�h

»
Ω
rσ11pvqε11pwq � 2σ12pvqε12pwq � σ22pvqε22pwqs dpx1, x2qdx3

� 2h

»
Ω
rσ11pvqε11pwq � 2σ12pvqε12pwq � σ22pvqε22pwqsdpx1, x2q

(2.53)

and, as v3p0q � 0,

Lpvq �
» h

�h

�»
Ω

F � vdpx1, x2q �
»
ΓN

G � γ0,ΓN
vdspx1,x2q

�
dx3

� 2h

�»
Ω
pF1v1 � F2v2qdpx1, x2q �

»
ΓN

pG1γ0,ΓN
v1 �G2γ0,ΓN

v2qdspx1,x2q
�

.

(2.54)

Thus, setting
Ṽ :�  

v P H1pΩq2 : γ0,ΓD
v � 0

(
(2.55)

and
K̃ :� !

v P Ṽ : γ0,ΓC
pvq � ν ¤ u0 almost everywhere on ΓC

)
(2.56)

and defining the bilinear form ã : Ṽ � Ṽ Ñ R, the linear form L̃ : Ṽ Ñ R and the nonlinear
functional j̃ : Ṽ Ñ R with F̃ :� pF1, F2q and G̃ :� pG1, G2q by

ãpv,wq :�
»
Ω
pσpvq : εpwqqdpx1, x2q, (2.57)

L̃pvq :�
»
Ω

F̃ � vdpx1, x2q �
»
ΓN

G̃ � γ0,ΓN
vdspx1,x2q, (2.58)

and

j̃pvq :�
»
ΓC

g |vt| dspx1,x2q, (2.59)

23



CHAPTER 2. AN INTRODUCTION TO ELASTIC CONTACT WITH FRICTION

where vt is defined for v � pv1, v2q as in the three-dimensional case using the unit normal
vector ν � pν1, ν2q on the two-dimensional boundary Γ � BΩ, together with the energy
functional J̃ : Ṽ Ñ R

J̃pvq :� 1
2
ãpv,vq � L̃pvq � j̃pvq, (2.60)

we have that
Jpvq � 2hJ̃pvq. (2.61)

This gives:

Problem 2.9 (Tresca friction, minimisation formulation, plane stress). Find u P K̃ such that

J̃puq � min
vPK̃ J̃pvq. (2.62)

Thus, the problems in the plane stress situation are of the same type as in the full three-
dimensional situation, we just replace the sets and the operators accordingly. It is now
also possible to formulate a two-dimensional analogue of Problem 2.4 based on the above
minimisation problem.

Note that the solution u of the plane stress problem does not necessarily satisfy a corre-
sponding three-dimensional problem, as we applied an approximation while going from J to
J̃ .

2.3 The Primal-Dual Formulation

It is possible to discretise Problem 2.4 directly, but the solution algorithms for problems of
this kind are unsatisfying in the hp-context that will be the focus of the later chapters of
the present work. Instead, it is possible to give an equivalent formulation as a saddle point
problem. For this, note first that

jpvq � sup
µPΛ bpv,µq, (2.63)

where
Λ :�  

µ P L8pΓCq3 : |µ| ¤ 1 and µn � 0 almost everywhere on ΓC

(
, (2.64)

and the bilinear form b : V � ΛÑ R is given by

bpv, µq :�
»
ΓC

gvt � µdsx. (2.65)

From a functional analytic point of view, it is sensible to define a surrounding space W of Λ
which has better analytic properties than L8pΓCq. The largest reasonable space is

pγ0,ΓC
V q� , (2.66)

the dual space of the traces on ΓC of functions in V , as for these functions, the mapping b can
still be defined in the sense of a duality product. For the moment, though, we shall choose

W :� L2pΓCq3. (2.67)

Here, the inclusion Λ � W is trivial, and we can also define b : V �W Ñ R by continuous
extension.
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Furthermore, Λ is closed (as all sequences converging in L2pΓCq admit a subsequence
converging almost everywhere; see Theorem 1.30) and convex, but clearly not a linear space.
We define the Lagrange functional L : V �W Ñ R by

Lpv, µq :� 1
2
apv,vq � Lpvq � bpv,µq (2.68)

and note that, by (2.63),
Jpvq � sup

µPΛLpv, µq, (2.69)

and thus, for the unique minimiser u of J ,

Jpuq � inf
vPK Jpvq � inf

vPK sup
µPΛLpv, µq. (2.70)

We consider the following formulation of our problem.

Problem 2.10 (Primal-dual formulation, Tresca friction). Find pu, λq P K�Λ such that for
all pv, µq P K � Λ,

apu,v � uq � bpv � u, λq ¥ Lpv � uq, (2.71a)
bpu, µ� λq ¤ 0. (2.71b)

Theorem 2.11. For every solution pu, λq of Problem 2.10, u solves Problem 2.5.

Proof. First of all, note that the primal-dual formulation implies

Lpu,µq ¤ Lpu, λq ¤ Lpv, λq for all pv, µq P K � Λ, (2.72)

as the first inequality follows from (2.71b) and the second one from (2.71a). Furthermore, for
any such pair pu, λq, it is clear that u minimises J , as obviously Lpu, λq � Jpuq, and thus

Jpvq ¥ Lpv,λq ¥ Lpu, λq � Jpuq. (2.73)

We see thus that for any solution pu, λq of the primal-dual formulation, u is a minimiser of
J .

It follows that there exists at most one solution to Problem 2.10. Next, we want to prove
existence of a solution, which also establishes the equivalence of the three formulations of the
equations of elasticity with Tresca friction given above.

Theorem 2.12. There exists a solution to Problem 2.10.

Proof. Consider the space V :� V �W endowed with the norm

‖pv,µq‖V :� �
‖v‖2

H1pΩq � ‖µ‖2
L2pΓCq

	1{2
. (2.74)

Defining the bilinear form a : V�V Ñ R,

appv, µq, pw,ηqq :� apv,wq � bpw, µq � bpv,ηq (2.75)

and the linear form L : VÑ R,
Lppv,µqq :� Lpvq, (2.76)
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it is readily seen that a and L are bounded. The set K :� K�Λ � V being convex and closed,
the given problem is equivalent to finding u � pu, λq P K such that for all v � pv, µq P K,

apu, v� uq ¥ Lpv� uq. (2.77)

For all v � pv, µq P V,
apv, vq � apv,vq, (2.78)

and as Λ is bounded and a is coercive, it follows that v ÞÑ 1
2apv, vq �Lpvq is coercive, convex

and continuous. Thus, by Theorem 1.25, there exists a minimiser u � pu, λq of

1
2
apv, vq � Lpvq (2.79)

in K, and this pair solves the primal-dual formulation.

Note that we did not have to prove the strict coercivity of the energy functional: The
uniqueness of the solution follows from Theorem 2.7.

Theorem 2.13. The Lagrange multiplier λ of the solution of Problem 2.10 satisfies gλ �
Ttpuq.

If, additionally, g ¡ 0 on ΓC, λ is unique.

Proof. First, note that we have shown already that u is unique. Thus, the first assertion
follows from an integration by parts.

The second statement follows trivially by dividing by g.

Remark 2.14. In a similar way, it is possible to derive a primal-dual formulation of the
minimisation formulation in Problem 2.9. Here, we have

W̃ :� L2pΓCq2, (2.80)

Λ̃ :� !
µ P W̃ : ‖µ‖L8pΓCq ¤ 1 and µn � 0 almost everywhere on ΓC

)
, (2.81)

and the bilinear form b̃ : Ṽ � W̃ Ñ R is given by

b̃pv,µq �
»
ΓC

gvt � µdspx1,x2q. (2.82)

This will be the basis of the numerical methods developed in the subsequent parts of the
present work.
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Chapter 3

Finite Element Methods for Mixed
Variational Inequalities

In this chapter, we describe how finite element methods have to be formulated for variational
inequalities, with a focus on mixed variational problems. The classical references for this topic
are [GLT81] and [Glo84], where first order approximations are discussed. These approaches,
however, cannot be generalised to an hp-context. For high order polynomials, important
results were given in [Mai01a] in the context of boundary element methods, generalising
earlier results in [GS93] to a true p-method. The idea of using Gauss-Lobatto nodes in spectral
collocation methods was then already well known, see, for example, [BM92], and here, this
was taken to the logical conclusion by also discretising inequality constraints by restricting
them to Gauss-Lobatto points, and using the positivity-preserving Bernstein polynomials of
nonnegative test functions in conjunction with the exactness of Gauss-Lobatto quadrature
to prove the convergence in the sense of Glowinski of the discretised convex sets. Based
on these, in [MS05, MS07, Kre04, KS07], some further applications to boundary and finite
element methods were analysed, all of which restrict themselves to variational inequalities of
the first kind, but also for nonlinear operators.

Some advances with respect to hp-finite element methods for variational inequalities of
the second kind were done by Chernov in [Che06], where he considered penalty approaches,
and in [CMS08], where the focus lies on an a priori estimate. The latter article, however, has
a significant deficit: The estimates are done for a primal formulation which, in itself, is clearly
numerically infeasible due to the necessity of determining certain integrals of absolute values
of polynomials exactly. Thus, the actual calculation is done using a primal-dual formulation,
which is not equivalent to the formulation for which the convergence rate is proved, and for
this method, the estimates are not directly applicable.

The aim of this chapter is therefore also to give an a priori convergence rate result directly
for a discrete formulation which can be solved numerically. Note that nevertheless, there is
the implicit assumption that the solver for the discrete problem yields the exact solution,
which typically is not the case: In practice, one uses an iterative solution algorithm — which
may or may not have a finite termination property — and stops the algorithm as soon as the
solution is “good enough” in some appropriate sense.

3.1 Abstract Finite Elements for Mixed Variational
Inequalities

Let V , W be Hilbert spaces with K � V , Λ �W nonempty, closed and convex, a : V �V Ñ R
bilinear, symmetric, bounded and coercive, b : V �W Ñ R bilinear and bounded, F : V Ñ R,
G : W Ñ R linear and bounded. We consider the following mixed variational inequality
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problem:

Problem 3.1 (Continuous abstract variational inequality). Find pu, λq P K � Λ with

apu, v � uq � bpv � u, λq ¥ F pv � uq, v P K, (3.1a)
bpu, µ� λq ¤ Gpµ� λq, µ P Λ. (3.1b)

We shall assume that Problem 3.1 has a unique solution pu, λq. This is guaranteed, for
example, if we consider the situation as in Section 2.3.

Consider sequences pVN qN , pWN qN of finite-dimensional subspaces of V and W , VN � V ,
WN � W , where the index N runs over an infinite subset of N . Typically, one sets N :�
dimVN . From these, define closed convex subsets pKN qN , pΛN qN such that KN � VN and
ΛN �WN .

If we were able to consider KN :� KXVN � K and ΛN :� ΛXWN � Λ, the situation would
be relatively simple, but this is for practical problems, especially for p-versions, not possible
in an actual implementation of the algorithm: Consider, for example, that V � H1pΩq for
Ω � p0, 1q � R1 and

K :� tv P V : v ¥ 0 almost everywhereu , (3.2)

and the approximation VN :� PN . Then, the constraint vN ¥ 0 almost everywhere cannot
easily be checked numerically. Thus, we cannot assume that the approximations KN and ΛN

satisfy KN � K and ΛN � Λ, respectively, that is, we have to deal with a non-conforming
approximation. The fundamental notion in this context is:

Definition 3.2 ([AG00, Definition 2.1], [Glo84, p. 9]). Let V be a Hilbert space, K � V
nonempty, convex and closed, and pKN qN a sequence of convex, closed subsets of V .

Then, KN converges to K in the sense of Glowinski , KN
GlÝÑ K, if and only if

• for all sequences pvN q with vN P KN for all N , and such that vN converges weakly to
some v P V , the limit satisfies v P K, and

• there exists a dense subset D � K such that for all v P D, there exists a sequence pvN q
with vN P KN for all N such that vN converges strongly to v.

In some sense, this means that KN is neither “too large” nor “too small” compared to K.
Note that, as K is nonempty, KN has to be nonempty, as well.

The discretisation of Problem 3.1 is given as:

Problem 3.3 (Discretised abstract variational inequality). Find puN , λN q P KN � ΛN such
that

apuN , vN � uN q � bpvN � uN , λN q ¥ F pvN � uN q, vN P KN , (3.3a)
bpuN , µN � λN q ¤ GpµN � λN q, µN P ΛN . (3.3b)

We shall also assume that this discretisation has a unique solution for all N . This can be
shown similarly as in the continuous situation.

Using these definitions, we are able to show a relatively general convergence result.

Theorem 3.4 ([HHNL88, Section 1.1.52, Theorem 5.3], [Glo84, Chapter I, Theorem 5.2]).
Assume that Λ, ΛN are uniformly bounded, that is, there exists a constant C ¡ 0 such that

‖µ‖W ¤ C for all µ P Λ and (3.4)
‖µN‖W ¤ C for all µN P ΛN and all N . (3.5)
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Furthermore, suppose that KN
GlÝÑ K and ΛN

GlÝÑ Λ.
Then, the solutions puN , λN q of Problems 3.3 and the solution pu, λq of Problem 3.1 satisfy

uN ÝÑ u in V and λN Ýá λ in W .

Proof. Assume that the dense subsets given by the convergence in the sense of Glowinski are
denoted by D � K and M � Λ, respectively.

By definition, pλN q is bounded in W . Choose an arbitrary v0 P D and vN P KN with
vN ÝÑ v0 in V , which is possible due to KN

GlÝÑ K. Then, there exists C ¡ 0 such that
‖vN‖V ¤ C for all N . Plugging vN into (3.3a), we see that

apuN , uN q ¤ apuN , vN q � bpvN � uN , λN q � F pvN � uN q, (3.6)

and the boundedness of λN yields the existence of a constant C ¡ 0 such that for all N ,

apuN , uN q ¤ Cp1� ‖uN‖V q. (3.7)

Applying the coercivity of a, we obtain boundedness of ‖uN‖V .
Thus, we see that we can choose a subsequence puN 1 , λN 1q of puN , λN q converging weakly

to some pu�, λ�q in V �W . As KN
GlÝÑ K and ΛN

GlÝÑ Λ, we see that pu�, λ�q P K � Λ. We
now want to show that pu�, λ�q solves the continuous problem.

Let pv, µq P D �M and choose pvN , µN q P KN � ΛN with pvN , µN q ÝÑ pv, µq strongly in
V �W . Passing to the limit inferior in (3.3a) and (3.3b), we obtain

lim inf
N 1Ñ8 apuN 1 , uN 1q � lim inf

N 1Ñ8 bpuN 1 , λN 1q ¤ lim inf
N 1Ñ8 rapuN 1 , uN 1q � bpuN 1 , λN 1qs

¤ lim inf
N 1Ñ8 rF puN 1 � vN 1q

� apuN 1 , vN 1q � bpvN 1 , λN 1qs,
(3.8)

lim inf
N 1Ñ8 bpuN 1 , µN 1q � lim inf

N 1Ñ8 GpλN 1 � µN 1q ¤ lim inf
N 1Ñ8 rbpuN 1 , µN 1q �GpλN 1 � µN 1qs

¤ lim inf
N 1Ñ8 bpuN 1 , λN 1q. (3.9)

From the lower semicontinuity of a, which is a consequence of Lemma 1.24, the continuity
of F and the strong convergence of the sequence pvN q (and thus also pvN 1q), we obtain that
limN 1Ñ8 F puN 1�vN 1q � F pu��vq, limN 1Ñ8 bpvN 1 , λN 1q � bpv, λ�q and limN 1Ñ8 apuN 1 , vN 1q �
apu�, vq together with apu�, u�q ¤ lim infN 1Ñ8 apuN 1 , uN 1q, which yields

apu�, u�q � lim inf
N 1Ñ8 bpuN 1 , λN 1q ¤ F pu� � vq � apu�, vq � bpv, λ�q, (3.10)

and due to the continuity of G and the strong convergence of pµN q,
bpu�, µq �Gpλ� � µq ¤ lim inf

N 1Ñ8 bpuN 1 , λN 1q. (3.11)

Letting µ ÝÑ λ� in the last inequality, we have that

bpu�, λ�q ¤ lim inf
N 1Ñ8 bpuN 1 , λN 1q, (3.12)

and thus with (3.10),

apu�, u�q � bpu�, λ�q ¤ F pu� � vq � apu�, vq � bpv, λ�q. (3.13)
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Letting v ÝÑ u� in (3.10), we obtain

lim inf
N 1Ñ8 bpuN 1 , λN 1q ¤ bpu�, λ�q, (3.14)

which gives in (3.11) that

bpu�, µq �Gpλ� � µq ¤ bpu�, λ�q. (3.15)

Finally, choose an arbitrary pair pv, µq P K�Λ and a sequence pvk, µkq P D�M converging
strongly to pv, µq. Thus, we see that pu�, λ�q solves Problem 3.1, and due to the uniqueness,
u� � u and λ� � λ. As this argument works for all subsequences puN 1 , λN 1q, the entire
sequence puN , λN q converges weakly, as well.

To prove the strong convergence of uN to u, we note that, by the coercivity of a, there
exists a constant C ¡ 0 such that

‖u� uN‖2
V ¤ C2apu� uN , u� uN q � C2 rapu, uq � 2apu, uN q � apuN , uN qs . (3.16)

With a sequence pvN q such that vN P KN converging strongly to v P D,

apuN , uN q ¤ apuN , vN q � bpvN � uN , λN q � F pvN � uN q, (3.17)

and thus,
lim sup
NÑ8 apuN , uN q ¤ apu, vq � bpv � u, λq � F pv � uq, (3.18)

where we applied (3.12). Letting v ÝÑ u,

lim sup
NÑ8 apuN , uN q ¤ apu, uq. (3.19)

Therefore, by the weak convergence uN Ýá u,

0 ¤ lim inf
NÑ8 ‖u� uN‖2

V ¤ lim sup
NÑ8 ‖u� uN‖2

V

¤ C2 lim sup
NÑ8 rapu, uq � 2apu, uN q � apuN , uN qs

¤ 0,

(3.20)

and the assertion follows.

Remark 3.5. The above proof shows that actually, the uniqueness of u and λ is not necessary
for a corresponding result to hold. In particular, if λ and λN are not unique, we see that still
uN ÝÑ u in V , but for λN , we only have convergence of subsequences to some solution of the
continuous problem. If, however, λN is not necessarily unique, but λ is, then we still obtain
weak convergence of the entire sequence.

The last result has the disadvantage that only convergence is ensured, but no rate is
given. As such, it is not very useful for the practitioner. To give an a priori result on the
rate of the convergence, we need to introduce the concept of inf-sup conditions, which is also
fundamental for finite elements for mixed variational equations; see [BF91] for applications.

For simplicity, we shall restrict ourselves to the situation that the convex subset K � V
is actually the entire space. In this situation, we have the advantage that we can formulate
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the discrete problem solved by uN on VN . Furthermore, by substituting v by u � v and vN

by uN � vN , respectively, the equalities (3.1a) and (3.3a) simplify to

apu, vq � bpv, λq � F pvq for all v P V (3.1a’)

and

apuN , vN q � bpvN , λN q � F pvN q for all vN P VN , (3.3a’)

respectively, where we stress that (3.1a’) can also be used with v :� vN P VN as VN � V .
This assumption is not necessary, however, in the special case that K is a convex cone given
as

K � tv P V : cpv, ϕq ¤ Hpϕq for all ϕ P Φu , (3.21)

where Z is another Hilbert space, c : V � Z Ñ R is a bounded bilinear form, H : Z Ñ R is a
bounded linear functional, and Φ � Z is a closed, convex set. Here, the inequality constraint
in K can be again formulated by duality, and we obtain a dual-dual formulation (two-fold
saddle point problem; see [GM01] for other applications of dual-dual formulations. This is,
for example, true for the contact problem with friction we are considering. Details can be
found in [HHNL88, pp. 204].

Definition 3.6 ([BF91]). The bounded bilinear form b is said to satisfy an inf-sup condition
on V �W if and only if there exists a constant β ¡ 0 such that

inf
µPW sup

vPV
bpv, µq

‖v‖V ‖µ‖W

¥ β. (3.22)

b is said to satisfy a (non-uniform) discrete inf-sup condition on pVN �WN qN (Babuška-
Brezzi condition) if and only if there exists a sequence pβN qN , βN ¡ 0 for all N , such that

inf
µNPWN

sup
vNPVN

bpvN , µN q
‖vN‖V ‖µN‖W

¥ βN for all N. (3.23)

Note that as b is bounded, βN stays bounded.
The next result is a generalisation of [Has81, Theorem 6] to the case of non-uniform

discrete inf-sup conditions.

Theorem 3.7 (A priori error estimate for the abstract primal-dual formulation). Assume
that b satisfies a non-uniform discrete inf-sup condition on pVN ,WN qN with constants pβN qN ,
that KN � VN � K � V , and that Λ and pΛN qN are uniformly bounded.

Then, there exists C ¡ 0 such that for all µ P Λ, µN P ΛN and vN P VN ,

‖u� uN‖2
V ¤ C

�
bpu, λN � µq �GpλN � µq � bpu, λ� µN q �Gpλ� µN q
� β�2

N

�
‖u� vN‖2

V � ‖λ� µN‖2
W

	� (3.24)

and

‖λ� λN‖W ¤ Cβ�1
N p‖u� uN‖V � ‖λ� µN‖W q . (3.25)
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Proof. Define V :� V �W , endowed with the norm

‖pv, µq‖V :� �
‖v‖2

V � ‖µ‖2
W

	1{2
, (3.26)

K :� V � Λ and KN :� VN � ΛN , the bilinear form a : V�VÑ R by

appv, µq, pw, ηqq :� apv, wq � bpw, µq � bpv, ηq, (3.27)

and the linear form L : V Ñ R

Lppv, µqq :� F pvq �Gpµq. (3.28)

It is readily seen that

appv, µq, pv, µqq � apv, vq for all v P V and µ PW (3.29)

and that a and L are bounded on V. Furthermore, due to (3.1) and (3.3), u :� pu, λq and
uN :� puN , λN q satisfy

apu, v� uq ¥ Lpv� uq for all v P K (3.30)

and

apuN , vN � uN q ¥ LpvN � uN q for all vN P KN , (3.31)

respectively. Thus, by the coercivity of a, there exists a constant C ¡ 0 such that for all
v � pv, µq P K and vN � pvN , µN q P KN ,

‖u� uN‖2
V ¤ Capu� uN , u� uN q
¤ C papu, uq � apu, uN q � apuN , uq � apuN , uN qq
¤ C

�
Lpu� vq � apu, vq � LpuN � vN q � apuN , vN q
� apu, uN q � apuN , uq�

� C
�
Lpu� vN q � LpuN � vq � apu, v� uN q
� apuN � u, vN � uq � apu, vN � uq�.

(3.32)

By the boundedness of a, we obtain the existence of a constant C ¡ 0 such that for all ε ¡ 0,

‖u� uN‖2
V ¤ C

�
Lpu� vN q � LpuN � vq � apu, v� uN q
� C

2
ε ‖uN � u‖2

V � C

2
ε�1 ‖vN � u‖2

V � apu, vN � uq�
� C

�
Lpu� vN q � LpuN � vq � apu, v� uN q
� C

2
ε ‖uN � u‖2

V � C

2
ε ‖λN � λ‖2

W

� C

2
ε�1 ‖vN � u‖2

V � apu, vN � uq�.
(3.33)

Due to the discrete inf-sup condition, we obtain that for arbitrary µN P ΛN , there exists
vN P VN with

‖µN � λN‖W ¤ 1
2βN

bpvN , µN � λN q
‖vN‖V

, (3.34)
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and from (3.3a’) and (3.1a’) and the boundedness of a and b, we see that there exists a
constant C ¡ 0 such that for all v P V ,

bpvN , µN � λN q � bpvN , µN q � bpvN , λN q
� bpvN , µN q � apuN , vN q � F pvN q
� bpvN , µN � λq � apuN � u, vN q
¤ C ‖vN‖V p‖µN � λ‖W � ‖uN � u‖V q .

(3.35)

Thus, by the triangle inequality, there exists C ¡ 0 such that

‖λ� λN‖W ¤ ‖λ� µN‖W � ‖µN � λN‖W ¤ Cβ�1
N p‖λ� µN‖W � ‖u� uN‖V q. (3.36)

Plugging this into (3.33), we see that there exists a constant C ¡ 0 such that

‖u� uN‖2
V ¤ C

�
apu, vN � uq � LpvN � uq � apu, v� uN q � Lpv� uN q
� εβ�2

N ‖u� uN‖V � εβ�2
N ‖λ� µN‖W � ε�1 ‖u� vN‖V

�
.

(3.37)

Set ε :� p2Cq�1β2
N . Choosing v � uN and applying again (3.1a’), the result follows.

3.2 Mixed hp-Finite Elements for Elasticity with Tresca
Friction

We now want to apply the theory developed in the last section to the problem with frictional
contact introduced in Chapter 2. We shall restrict ourselves to the two-dimensional situation.

Recall that Ω � R2 is a domain, ΓD, ΓN and ΓC partition the boundary Γ :� BΩ, and
that the continuous spaces are given by

V �  
v P H1pΩq2 : γ0,ΓD

pvq � 0
(

(3.38)

where we assume for simplicity that the Dirichlet data vanishes, u0 � 0 on ΓD, and

W � L2pΓCq2, (3.39)

and that the closed, convex sets of admissible functions are

K � tv P V : γ0,ΓC
pvq � ν ¤ u0 almost everywhere on ΓCu (3.40)

and

Λ � !
µ P W : ‖µ‖L8pΓCq ¤ 1 and µn � 0 almost everywhere on ΓC

)
. (3.41)

We define the mappings a : V � V Ñ R, L : V Ñ R and b : V � W Ñ R directly for the
two-dimensional situation as

apv,wq :�
»
Ω

σpvq : εpwqdx, (3.42)

Lpvq :�
»
Ω

F � vdx�
»
ΓN

G � γ0,ΓN
vdsx, (3.43)
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and

bpv,µq :�
»
ΓC

gvt � µdsx. (3.44)

For simplicity, we shall assume that g is constant on ΓC.
The following definitions are based on the formulation given in [Sch98, pp. 169].

Definition 3.8. 1. A finite set T is called a partition of Ω into quadrilaterals if and only
if

a) Ω � �
KPT K,

b) every K P T is a closed, convex quadrilateral,

c) for all K, K 1 P T , intK X intK 1 � H.

2. Let T be a partition of Ω into quadrilaterals, K P T , and x a vertex of K.

Then, x is called an unconstrained or regular node if and only if it is a vertex of all
elements K 1 P T with x P K 1. Otherwise, x is called a constrained or irregular node.

3. Let T be a partition of Ω into quadrilaterals.

T is said to satisfy the one hanging node rule if and only if for every element K and
every edge E of K, there is at most one constrained node x with x P intE.

4. Let T be a partition of Ω into quadrilaterals satisfying the one hanging node rule.

A constrained node x is called singly-constrained if and only if there exists an element
K and an edge E of K such that x P intE, and the two vertices of E are unconstrained.
Otherwise, x is called multiply constrained .

5. Let T be a partition of Ω into quadrilaterals satisfying the one hanging node rule.

Then, T is said to be a 1-irregular partition if and only if all nodes x of T are either
unconstrained or singly-constrained.

6. Let pTN qN be a sequence of partitions of Ω into quadrilaterals.

pTN qN is said to be shape-regular with constant κ if and only if

sup
N

sup
KPTN

hK

ρK
¤ κ   8, (3.45)

where hK is the length of the longest edge of K and ρK is the diameter of the largest
circle lying entirely in K.

7. Let pTN qN be a sequence of partitions of Ω into quadrilaterals.

We say that pTN qN is regular in the sense of Ciarlet (see [Cia78, Exercise 4.3.9] if and
only if there exist constants σ1 ¡ 0 and γ   1 such that

sup
N

sup
KPTN

hK

h1K
¤ σ1 and γK ¤ γ, (3.46)

where h1K is the length of the shortest side of K and γK :� maxi�1,2,3,4 |cospβiq|, where
βi are the inner angles of K.
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Note that the regularity in the sense of Ciarlet prevents the quadrilaterals from degen-
erating to triangles and implies that the family of partitions is shape-regular (see [Cia78,
Exercise 4.3.9(iii)]).

Clearly, for a partition T of Ω into quadrilaterals to be possible, Ω has to be a polygon.
We shall assume this, and furthermore, we assume that the partition ensures that for each
element K P T and each edge E of K, either intE � Ω or intE � ΓD, intE � ΓN or
intE � ΓC; that is, the boundary conditions are completely resolved by T . In particular,
this ensures that ΓC is piecewise affine, and we can define Gauss quadrature on edges on ΓC.

From now on, let pTN qN be a sequence of 1-irregular partitions of Ω, regular in the sense of
Ciarlet, and for every N , let ppN,KqKPTN

be a vector of polynomial degrees; that is, pN,K P N
with pN,K ¥ 2 for all K P TN .

It is proved in [Mel05, Lemma 2.3] that for such meshes, there exists a constant C ¡ 0
with hK{hK1 ¤ C for all K, K 1 P TN with K X K 1 � H, that is, the elements of TN are
locally of comparable size. Similarly, we shall require that the elements of TN are locally of
comparable polynomial degree, that is, there exists C ¡ 0 with pN,K{pN,K1 ¤ C for all K,
K 1 P TN with K XK 1 � H.

We shall also assume that TN 1 is a refinement of TN for N 1 ¡ N , that is, for all K 1 P TN 1
there is some K P TN such that K 1 � K, and for K P TN , K 1 P TN 1 with K 1 � K,
pN,K ¤ pN 1,K1 . Furthermore, set

EI,N :�  BK X BK 1 : K, K 1 P TN , K � K 1( , (3.47)
ED,N :� tΓD X BK : K P TN with ΓC X BK � Hu , (3.48)
EN,N :� tΓN X BK : K P TN with ΓC X BK � Hu , (3.49)
EC,N :� tΓC X BK : K P TN with ΓC X BK � Hu , (3.50)

and for every E P EC,N , let KE be the (unique) element with E � ΓC X BKE . The set of
all edges is denoted by EN :� EI,N Y ED,N Y EN,N Y EC,N . To be able to apply certain kinds
of hp-Clément operators, we require the assumption [Mel05, (M4)], which basically says that
all elements adjacent to a node can be together mapped to a reference patch, requiring only
affine maps in between.

The element maps are defined in the following way: Let K P TN be the convex hull of its
vertices pNiq4i�1, S :� r�1, 1s2 the reference square, and ψi : S Ñ R the hat functions on S,
that is,

ψ1pt1, t2q :� 1
4
p1� t1qp1� t2q, (3.51)

ψ2pt1, t2q :� 1
4
p1� t1qp1� t2q, (3.52)

ψ3pt1, t2q :� 1
4
p1� t1qp1� t2q, (3.53)

ψ4pt1, t2q :� 1
4
p1� t1qp1� t2q. (3.54)

Then, the element map FK : S Ñ K is given by FKptq :� °4
i�1 Niψiptq. The regularity in

the sense of Ciarlet yields that FK is one-to-one and onto, and that there exists a constant
C ¡ 0 such that for all N and all K P TN , for the Frobenius norms of the Jacobians DFK

and DF�1
K of the element map and its inverse,

C�1hK ¤ |DFK | ¤Chk (3.55)
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and

C�1h�1
K ¤ ∣∣DF�1

K

∣∣¤Ch�1
k . (3.56)

This ensures that all scaling arguments work as expected.
We consider the following hp-approximations: For Qq :� !°q

i,j�0 αijx
i
1x

j
2 : αij P R

)
the

space of tensor product polynomials, we let

VN :� !
vN P V : vN |K � FK P pQpN,K q2 for all K P TN

)
(3.57)

and

WN :� !
µN PW : µN |E P �PpN,KE

�2
�2 for all E P EC,N

)
. (3.58)

To be able to define discretisations of K and Λ appropriate for an hp-context, we recapitulate
the main properties of Gauss and Gauss-Lobatto quadrature. The basic properties can be
found in books on numerical analysis such as [SB93, QSS07]. The interpolation error estimates
in fractional order Sobolev spaces are taken from [BM92, Theorem 3.4, Theorem 4.2].

Theorem 3.9 (Gauss quadrature). For every q P N, there exists a unique set GI
q � p�1, 1q

of cardinality q� 1 and, for every x P GI
q , a corresponding weight wG,q

I,x , such that the induced
quadrature formula is of exactness 2q � 1, that is,» 1

�1
vpxqdx �

x̧PGI
q

vpxqwG,q
I,x for all v P P2q�1. (3.59)

Furthermore,

1. all weights are positive, wG,q
I,x ¡ 0 for all x P GI

q , and

2. letting jq : C0pr�1, 1sq Ñ Pq denote the interpolation operator at GI
q , we have that for

all ε ¡ 0, there exists a constant C ¡ 0 such that

‖v � jqv‖L2p�1,1q ¤ Cq�p1{2�εq ‖v‖H1{2�εp�1,1q for all v P H1{2�εp�1, 1q. (3.60)

Theorem 3.10 (Gauss-Lobatto quadrature). For every q P N, there exists a unique set
GLI

q � r�1, 1s with �1, �1 P GLI
q of cardinality q�1 and, for every x P GLI

q , a corresponding
weight wGL,q

I,x , such that the induced quadrature formula is of exactness 2q � 1, that is,» 1

�1
vpxqdx � ¸

xPGLI
q

vpxqwGL,q
I,x for all v P P2q�1. (3.61)

Furthermore,

1. all weights are positive, wGL,q
I,x ¡ 0 for all x P GLI

q , and

2. letting iq : C0pr�1, 1sq Ñ Pq denote the interpolation operator at GLI
q , we have that for

all ε ¡ 0, there exists a constant C ¡ 0 such that

‖v � iqv‖L2p�1,1q ¤ Cq�p1{2�εq ‖v‖H1{2�εp�1,1q for all v P H1{2�εp�1, 1q. (3.62)
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Let E � R2 be an arbitrary segment. Then, we can easily define Gauss and Gauss-Lobatto
points and weights on E by GE

q with wG,q
E,x for x P GE

q and GLE
q with wGL,q

E,x for x P GLE
q ,

respectively, by using an affine, one-to-one and onto mapping FE : r�1, 1s Ñ E and setting

GE
q :�  

FEpxq : x P GI
q

(
, (3.63)

wG,q
E,x :� |E|

2
wG,q

I,x for x � FEpxq with x P GE
q , (3.64)

GLE
q :�  

FEpxq : x P GLI
q

(
, (3.65)

wGL,q
E,x :� |E|

2
wGL,q

I,x for x � FEpxq with x P GLE
q . (3.66)

We note that these formulas yield the same exactness when integrating polynomials as the
corresponding formulas on I. In the same way, we define the Gauss and Gauss-Lobatto
interpolation operators jE

q : C0pEq Ñ Pq and iEq : C0pEq Ñ Pq.
Note that, if v P C0pΓCq and we do a piecewise interpolation with respect to the Gauss-

Lobatto points on the edges E P EC,N , the resulting piecewise polynomial is also a continuous
function, as the boundary points of the edges E P EC,N are always contained in the points
where we do the interpolation.

The discretisation of K and Λ is done by setting

KN :� !
vN P VN : vN pxq � νpxq ¤ u0pxq for all x P GLpN,KE

and all E P EC,N

)
, (3.67)

and

ΛN :� !
µN PWN : |µN pxq| ¤ 1 for all x P GpN,KE

�2 and all E P EC,N ,

and pµN qn � 0
)
.

(3.68)

Furthermore, we introduce the local mesh width hN : ΩÑ p0,8q and local polynomial degree
pN : ΩÑ N and qN : ΓC Ñ N as

hN pxq :� sup
KPTN :
xPK

hK , (3.69)

pN pxq :� sup
KPTN :
xPK

pN,K , (3.70)

and

qN pxq :� sup
EPEC,N :

xPE
ppN,KE

� 2q. (3.71)

The discrete problem is:

Problem 3.11 (Discrete primal-dual formulation, Tresca friction). Find puN ,λN q P KN�ΛN

such that for all pvN , µN q P KN � ΛN ,

apuN ,vN � uN q � bpvN � uN , λN q ¥ LpvN � uN q, (3.72a)
bpuN ,µN � λN q ¤ 0. (3.72b)
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The following theorem, which is given in [Mel05, Theorem 3.3], ensures the existence
of hp-interpolation operators of Clément type. Here, Kpatch � �

K 1, where the union is
taken over all elements K 1 which are near to K; for details, see the article cited above. In
particular, Kpatch is chosen large enough such that Epatch � Kpatch for all edges E � BK,
where Epatch :� �

BK1XE�HK 1.
Theorem 3.12 (hp-Clément interpolant). There exists a sequence piN qN of linear operators
iN : V Ñ VN such that for all K P TN and edges E � BK,

‖v � iNv‖L2pKq � hK

pK
‖∇iNv‖L2pKq �

d
hK

pK
‖v � iNv‖L2pEq

¤ C
hK

pK
‖∇v‖L2pKpatchq for all v P V .

(3.73)

We shall also need the following variant, which is given in [Mel05, Theorem 3.4].

Theorem 3.13 (hp-Clément interpolant preserving polynomials on ΓC). Set

V̂N :� tv P V : γ0,ΓC
v|E P PpN,KE for all E P EC,N , and γ0,ΓC

v P C0pΓCqu. (3.74)

Then, there exists a sequence p̂iN qN of linear operators îN : V̂N Ñ VN such that for all
K P TN and edges E � BK,

∥∥∥v � îNv
∥∥∥

L2pKq �
hK

pK

∥∥∥∇îNv
∥∥∥

L2pKq �
d

hK

pK

∥∥∥v � îNv
∥∥∥

L2pEq
¤ C

hK

pK
‖∇v‖L2pKpatchq for all v P V̂N ,

(3.75)

and γ0,ΓC
v � γ0,ΓC

îNv for all v P V̂N .

3.2.1 Strong Convergence

In the following, we suppose that the function u0 given on ΓC satisfies u0 P H1{2�εpΓCq. Actu-
ally, we shall see below that it would be sufficient that the piecewise interpolation polynomials
of u0 at Gauss-Lobatto nodes converges in L1pΓCq to u0.

Theorem 3.14. Suppose that supΩ hN{pN Ñ 0.
Then for the solutions puN , λN q of the discrete primal-dual formulation given in Problem

3.11 and the solution pu,λq of the corresponding continuous problem, we have that uN ÝÑ u
in V and λN Ýá λ in W .

We shall apply the variant of Theorem 3.4 suggested in Remark 3.5. Thus, we need to
prove the convergence in the sense of Glowinski of KN and ΛN , and also that the solution
uN is unique.

Lemma 3.15. We have that KN
GlÝÑ K.

This follows similarly as in [MS05, Theorem 1], where they prove a corresponding result
for a Sobolev space on the boundary, which is used in a boundary element formulation of the
Signorini problem. We recall the following basic convergence result on Bernstein polynomials;
see [DL93, Chapter 10] for further properties.
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Theorem 3.16 (Bernstein operators). For q P N, define the q-th Bernstein operator as

Bq : C0pr0, 1sq Ñ Pq, Bqf :� ņ

j�0

fpj{nqpn,j , (3.76)

where

pn,jpxq :�
�

n

j



xjp1� xqn�j . (3.77)

Then, Bqf converges uniformly to f on r0, 1s for all f P C0pr0, 1sq, that is, Bq converges
to the identity operator in the strong operator topology.

Furthermore, for q ¥ 1, Bqfp0q � fp0q, Bqfp1q � fp1q, and if f ¥ 0, then Bqf ¥ 0, that
is, Bq is a positive operator.

Similarly as for the interpolation operators at Gauss and Gauss-Lobatto points, it is
possible to transform the Bernstein operators into operators on the space C0pEq for E � R2

an arbitrary segment. We shall denote these operators by BE
q : C0pEq Ñ Pq. Using these

operators, we can construct approximations of continuous functions:

Theorem 3.17. Given a function ϕ P C2pΓCq, define ϕN P C0pΓCq piecewise by ϕN |E �
BE

pN,KE
�1ϕ|E.

Then, for N Ñ8, ϕN converges uniformly to ϕ.

Proof. The continuity of ϕN follows from the fact that Bqfp0q � fp0q and Bqfp1q � fp1q for
all q ¥ 1.

Recall that limNÑ8 supxPΓC
hN pxqpN pxq�1 � 0. By [DL93, p. 308, (3.4)], we have that

‖f �Bqf‖C0pr0,1sq ¤ Cpq � 1q�1
∥∥f2∥∥

C0pr0,1sq , f P C2pr0, 1sq. (3.78)

Thus, for every N and every E P EC,N , with an affine, one-to-one and onto mapping
FE : r0, 1s Ñ E,

‖ϕ|E � ϕN |E‖C0pEq � ‖ϕ|E � FE � ϕN |E � FE‖C0pr0,1sq
� ∥∥∥ϕ|E � FE �BpN,KE

�1pϕ|E � FEq
∥∥∥

C0pr0,1sq
¤ Cp�1

N,KE

∥∥pϕ|E � FEq2∥∥C0pr0,1sq (3.79)

� Ch2
Ep�1

N,KE

∥∥pϕ|Eq2∥∥C0pEq
¤ Ch2

Ep�1
N,KE

‖ϕ‖C2pΓCq .
The regularity of the mesh yields the convergence.

Proof of Lemma 3.15. First, let pvN q be a sequence of functions with vN P KN for all N ,
and assume that vN Ýá v. We need to prove that v P K, that is, γ0,ΓC

v � ν ¤ u0 almost
everywhere on ΓC. By Theorem 1.1, this follows if we can show»

ΓC

pγ0,ΓC
v � ν � u0qϕdsx ¤ 0 for all ϕ P C2pΓCq with ϕ ¥ 0. (3.80)

As the mapping v ÞÑ γ0,ΓC
v � ν is continuous as a mapping V Ñ L2pΓCq, we see that

γ0,ΓC
vN � ν Ýá γ0,ΓC

v � ν in L2pΓCq.
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Define, for a given ϕ P C0pΓCq, ϕ ¥ 0, the function ϕN by ϕN |E � BE
pN,KE

�1ϕ|E , that

is, piecewise by Bernstein polynomials, and u0N by u0N |E � iEpN,KE
u0, that is, piecewise by

interpolation at the Gauss-Lobatto points. By Theorem 3.16, we see that ϕN ¥ 0. By the
exactness of the Gauss-Lobatto quadrature given in Theorem 3.10 and the definition of KN ,
we see that for every E P EC,N , as u0NϕN P P2pN,KE

�1,»
E

γ0,ΓC
vN � νϕNdsx � ¸

xPGLE
pN,KE

vN pxq � νpxqϕN pxqwGL,pN,KE
E,x

¤ ¸
xPGLE

pN,KE

u0pxqϕN pxqwGL,pN,KE
E,x (3.81)

� ¸
xPGLE

pN,KE

u0N pxqϕN pxqwGL,pN,KE
E,x

�
»

E
u0N pxqϕN pxqdsx.

As u0N P H1{2�εpΓCq, we can apply the estimate in Theorem 3.10 together with a scaling
argument to see that u0N converges to u0 strongly in L2pΓCq. Furthermore, by Theorem 3.17,
ϕN converges uniformly to ϕ, and thus also strongly in L2pΓCq. Taking the limit N Ñ8, we
therefore obtain that v P K.

To show the second property, let v P C8pΩq2XK be given arbitrarily, where we note that
C8pΩq2XK is dense in K by [Glo84, Chapter II, Lemma 4.2]. We see that the construction as
in [DGS�98, p. 150] yielding, on ΓC, interpolation polynomials at the Gauss-Lobatto points,
produces a sequence pvN q satisfying vN P KN , and, as stated in the beforementioned article,
vN ÝÑ v. This proves the claimed result.

The following measure-theoretic result is essential in showing the convergence in the sense
of Glowinski of ΛN .

Lemma 3.18. Let pX,µq be a finite measure space. For 1 ¤ q ¤ 8, let q1 be the conjugate
of q, that is, 1

q � 1
q1 � 1 for q P p1,8q, q1 � 8 for q � 1 and q1 � 1 for q � 8 Let D � Lq1pXq

be a dense subspace, and define p : LqpXq Ñ r0,8s by

ppfq :� sup
"»

X
fgdµ : g P D and ‖g‖L1pXq ¤ 1

*
. (3.82)

Then, for f P LqpXq, if ppfq   8, it follows that f P L8pXq and ppfq � ‖f‖L8pXq.
Proof. We see that, if ppfq   8, the linear functional

˜̀: D � L1pXq Ñ R, g ÞÑ
»

X
fgdµ (3.83)

is continuous. As the injection Lq1pXq ãÑ L1pXq is continuous, we see that the space of
characteristic functions is contained in the L1pXq-closure of D as it is contained in Lq1pXq,
and therefore, D is dense in L1pXq. Thus, there exists a continuous extension ` : L1pXq Ñ R,
and by the definition of p, ‖`‖L1pXq� � ppfq. By the Riesz representation theorem, Theorem
1.29, we see that there exists f̃ P L8pXq such that

`pgq �
»

X
f̃gdµ for all g P L1pXq (3.84)
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and
∥∥∥f̃

∥∥∥
L8pXq � ‖`‖L1pXq� � ppfq. It is clear that»

X
f̃gdµ �

»
X

fgdµ for all g P D. (3.85)

By continuity and density, this equality extends to Lq1pXq, and we obtain that f � f̃ almost
everywhere in X, from which it follows that f P L8pXq and ‖f‖L8pXq � ppfq.
Remark 3.19. A version of Lemma 3.18 which holds for vector-valued functions f follows
analogously.

Lemma 3.20. We have that ΛN
GlÝÑ Λ.

Proof. The set M :� C8pΓCq2 X Λ is dense in Λ with respect to the L2-topology, which
follows from [Dör07, Lemma 4.1]. For µ P M , we can choose µN P ΛN as the interpolant of
µ at the Gauss points of every edge E P EC,N . Then, by applying Theorem 3.9 together with
a scaling argument, we see that µN converges strongly to µ.

For the second property, consider a sequence pµN q, µN P ΛN , and assume that µN Ýá µ
in W . We shall prove that µ P Λ. Following Remark 3.19, we only need to prove that³
ΓC

µ � ηdsx ¤ 1 for all η P C8pΓCq2 with ‖η‖L1pΓCq � 1. Note, furthermore, that µ � ν � 0,
and thus, we can assume that η �ν � 0. Choose therefore such a η. Choose a sequence pηN q,
ηN P WN , piecewise on each E P EN,N , componentwise as the Bernstein polynomial of order
pN,KE

� 1. By Theorem 3.17, it follows that ηN converges to η uniformly, and thus also in
L2pΓCq. In particular, this yields that the norms converge, ‖ηN‖L1pΓCq Ñ ‖η‖L1pΓCq � 1.

By the exactness of Gauss quadrature as given in Theorem 3.9, as µN �ηN P P2pN,KE
�3,»

ΓC

µN � ηNdsx � ¸
EPEC,N

¸
xPGE

pN,KE
�2

µN pxq � ηN pxqwG,pN,KE
�2

E,x

¤ ¸
EPEC,N

¸
xPGE

pN,KE
�2

|ηN pxq|wG,pN,KE
�2

E,x

¤ ¸
EPEC,N

¸
xPGE

pN,KE
�2

|ηN pxq � ηpxq|wG,pN,KE
�2

E,x (3.86)

� ¸
EPEC,N

¸
xPGE

pN,KE
�2

|ηpxq|wG,pN,KE
�2

E,x

¤ |ΓC| ‖ηN � η‖L8pΓCq �
¸

EPEC,N

¸
xPGE

pN,KE
�2

|ηpxq|wG,pN,KE
�2

E,x .

As x ÞÑ |ηpxq| is in H1pΓCq and ηN Ñ η uniformly, we see that the above expression
converges to ‖η‖L1pΓCq � 1.

On the other hand, µN Ýá µ and ηN Ñ η in L2pΓCq, and finally, we obtain

lim
NÑ8

»
ΓC

µN � ηNdsx �
»
ΓC

µ � ηdsx ¤ 1, (3.87)

that is, µ P Λ.
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Proof of Theorem 3.14. First, we show that for puN ,λN q, uN is unique. Let pu1N , λ1N q be
another solution. Then,

apuN ,u1N � uN q � bpu1N � uN , λN q ¥ Lpu1N � uN q, (3.88)
apu1N ,uN � u1N q � bpuN � u1N , λ1N q ¥ LpuN � u1N q, (3.89)
bpuN ,λ1N � λN q ¤ 0, (3.90)

and

bpu1N ,λN � λ1N q ¤ 0. (3.91)

Thus, adding the respective inequalities,

apuN � u1N ,uN � u1N q � bpuN � u1N ,λN � λ1N q ¤ 0 (3.92)

and

bpuN � u1N ,λN � λ1N q ¥ 0, (3.93)

which gives that uN � u1N by the coercivity of a.
Next, clearly,

‖λ‖L2pΓCq ¤ |ΓC|1{2 ‖λ‖L8pΓCq ¤ |ΓC|1{2, for all λ P Λ, (3.94)

and also

‖λN‖L2pΓCq �
��� ¸

EPEC,N

¸
xPGE

pN,KE
�2

|λN pxq|2 w
pN,KE

�2

E,x

��
1{2

¤
��� ¸

EPEC,N

¸
xPGE

pN,KE
�2

w
pN,KE

�2

E,x

��
1{2
�
�»

ΓC

dsx


1{2

� |ΓC|1{2 for all λN P ΛN ,

(3.95)

which gives the uniform boundedness of both Λ and ΛN .
Applying Lemma 3.15 and Lemma 3.20 together with Remark 3.5 and Theorem 3.4, we

obtain the claimed result.

3.2.2 An hp-Mortar Projection Operator with Slowly Growing Bound

Our aim is to apply Theorem 3.7 to the friction problem under consideration. For this, we
need to show an inf-sup condition. A usual approach to do this is outlined in [BS08, Lemma
12.5.22] and is based on the construction of sequences of operators conserving scalar products
with elements of the Lagrange multiplier space, and having a calculable operator norm. This
is done in this section.

Note that the operators constructed here correspond to the kind of operators used in
mortar finite element methods. They can be compared to the mortar projection operators
constructed in [SS00]. There, a space of continuous functions on the boundary is used as the
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mortar space, which leads to an operator norm growing as maxi p
3{4
i , which was numerically

shown to be sharp by Seshaiyer and Suri in the above reference. We use a discontinuous
mortar space, and obtain that the operator norms are of the order maxipp1{2

i log3{2 piq, that
is, they grow more slowly.

Theorem 3.21. There exists a sequence of polynomials pLnqn¥0, the Legendre polynomials,
with Ln P Pn for all n ¥ 0 and such that

xLn, LmyL2p�1,1q � wnδnm for all n, m ¥ 0, (3.96)

where
wn :� 2

2n� 1
. (3.97)

Furthermore, with the above normalisation,

‖Lq‖H1{2p�1,1q ¤ C log1{2 q (3.98)

for some constant C ¡ 0 independent of q ¥ 2.

The first part is well known, and can be found in [Sch98, Appendix C]. The estimate for
the H1{2-norm of the Legendre polynomials is contained in the proof of [AMW99, Lemma
10].

We consider an operator Pq : H1{2p�1, 1q Ñ H1{2p�1, 1q which satisfies Pqv P Pq for all
v P H1{2p�1, 1q. Furthermore, we require that

xPqv, wyL2p�1,1q � xv, wyL2p�1,1q for all w P Pq�2. (3.99)

This implies that
Pqv � ΠL2p�1,1q

Pq�2 v � ϕq,q�1pvqLq�1 � ϕq,qpvqLq, (3.100)

where ΠL2p�1,1q
Pj is the orthogonal projector onto Pj with respect to the scalar product of

L2p�1, 1q, and ϕj,k are continuous linear functionals on H1{2p�1, 1q. The aim is therefore
to determine ϕj,k in such a way that the norm of Pq does not grow too quickly, but at the
same time, we obtain a globally continuous approximation if, for a given mesh, we apply Pq

element by element.
Consider therefore a mesh pxiqi�0,...,m, a � x0   x1   � � �   xm � b, together with a

polynomial degree distribution ppiqi�1,...,m, that is, pi P N, pi ¥ 2, satisfying

C�1 ¤ hi{hi�1 ¤ C for i � 1, . . . , m� 1 (3.101)

and

C�1 ¤ pi{pi�1 ¤ C for i � 1, . . . , m� 1. (3.102)

and let Fi : p�1, 1q Ñ pxi�1, xiq be defined by Fiptq :� xi�1 � t�1
2 pxi � xi�1q. Define the

operator PN : H1{2pa, bq Ñ H1{2pa, bq by

pPNvq|pxi�1,xiq � ΠL2p�1,1q
Ppi�2 pv � Fiq � F�1

i

� ϕi
pi,pi�1pvqLpi�1 � F�1

i � ϕi
pi,pi

pvqLpi � F�1
i .

(3.103)

43



CHAPTER 3. FINITE ELEMENT METHODS FOR MIXED VARIATIONAL
INEQUALITIES

Let JN : H1{2pa, bq Ñ VN , where

VN :� !
vN P H1{2pa, bq : vN |pxi�1,xiq P Ppi for i � 1, . . . ,m

)
, (3.104)

be an arbitrary, continuous operator. We define ϕi
pi,pi�1 and ϕi

pi,pi
in such a way that

PNvpxiq � JNvpxiq for i � 0, . . . , m. This is achieved by solving the linear system of equations

JNvpxi�1q �ΠL2p�1,1q
Ppi�2 pv � Fiqpxi�1q�p�1qpi�1ϕi

pi,pi�1pvq�p�1qpiϕi
pi,pi

pvq, (3.105)

JNvpxiq �ΠL2p�1,1q
Ppi�2 pv � Fiqpxiq � ϕi

pi,pi�1pvq� ϕi
pi,pi

pvq. (3.106)

In particular, as JNv is necessarily continuous, PNv is so, as well, and PNv P VN .
We have the following variant of a von Petersdorff inequality, which is also given in

[AMT99, Theorem 4.1].

Lemma 3.22. There exists a constant C ¡ 0 independent of the mesh such that for all
v P H1{2pa, bq such that v|pxi�1,xiq P H1{2

00 pxi�1, xiq for all i � 1, . . . , m,

|v|2H1{2pa,bq ¤ C
m̧

i�1

∣∣v|pxi�1,xiq
∣∣2
H

1{2
00 pxi�1,xiq . (3.107)

Conversely, for v P H1{2pa, bq,
m̧

i�1

∣∣v|pxi�1,xiq
∣∣2
H1{2pxi�1,xiq ¤ |v|2H1{2pa,bq . (3.108)

Proof. By definition of the H1{2-seminorm (see Section 1.2),

|v|2H1{2pa,bq �
»
pa,bq

»
pa,bq

|vpxq � vpyq|2
|x� y|2 dxdy

� m̧

i,j�1

»
pxi�1,xiq

»
pxj�1,xjq

|vpxq � vpyq|2
|x� y|2 dxdy

� m̧

i�1

»
pxi�1,xiq

»
pxi�1,xiq

|vpxq � vpyq|2
|x� y|2 dxdy

� 2
m̧

i�1 j̧�i

»
pxi�1,xiq

»
pxj�1,xjq

|vpxq � vpyq|2
|x� y|2 dxdy.

(3.109)

By the triangle inequality and the Fubini theorem,

m̧

i�1 j̧�i

»
pxi�1,xiq

»
pxj�1,xjq

|vpxq � vpyq|2
|x� y|2 dxdy

¤ 2
m̧

i�1 j̧�i

»
pxi�1,xiq

»
pxj�1,xjq

|vpxq|2 � |vpyq|2
|x� y|2 dxdy (3.110)

¤ 4
m̧

i�1 j̧�i

»
pxi�1,xiq

»
pxj�1,xjq

|vpxq|2
|x� y|2 dydx
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� 4
m̧

i�1

»
pxi�1,xiq

|vpxq|2
»
pa,bqzpxi�1,xiq

1
|x� y|2 dydx.

As x P pxi�1, xiq,»
pa,bqzpxi�1,xiq

1
|x� y|2 dy �

»
pa,xi�1q

1
px� yq2 dy �

»
pxi,bq

1
px� yq2 dy

� 1
x� xi�1

� 1
x� a

� 1
b� x

� 1
xi � x

¤ 1
x� xi�1

� 1
xi � x

¤ 2
distpx, txi�1, xiuq .

(3.111)

Thus,

|v|2H1{2pa,bq ¤
m̧

i�1

»
pxi�1,xiq

»
pxi�1,xiq

|vpxq � vpyq|2
|x� y|2 dxdy

� 2
m̧

i�1 j̧�i

»
pxi�1,xiq

»
pxj�1,xjq

|vpxq � vpyq|2
|x� y|2 dxdy

¤ m̧

i�1

�
∣∣v|pxi�1,xiq

∣∣2
H1{2pxi�1,xiq � 16

»
pxi�1,xiq

|vpxq|
distpx, txi�1, xiuqdx

�
(3.112)

¤ 16
m̧

i�1

�∣∣v|pxi�1,xiq
∣∣2
H

1{2
00 pxi�1,xiq

�
.

Therefore, the result holds true with C � 16.
For the second estimate, note that

|v|2H1{2pa,bq �
»
pa,bq

»
pa,bq

|vpxq � vpyq|2
|x� y|2 dxdy

� m̧

i,j�1

»
pxi�1,xiq

»
pxj�1,xjq

|vpxq � vpyq|2
|x� y|2 dxdy

¥ m̧

i�1

»
pxi�1,xiq

»
pxi�1,xiq

|vpxq � vpyq|2
|x� y|2 dxdy

� m̧

i�1

∣∣v|pxi�1,xiq
∣∣2
H1{2pxi�1,xiq ,

(3.113)

from which the result follows.

Lemma 3.23. We have the estimate

‖PNv‖H1{2pa,bq ¤ ‖JNv‖H1{2pa,bq

� C max
i�1,...,m

log3{2 pi

�
m̧

i�1

p2
i

∥∥∥ΠL2p�1,1q
Ppi�2 pv � Fiq � JNv � Fi

∥∥∥
2

L2p�1,1q

�1{2
.

(3.114)
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Proof. First, note that

‖PNv‖H1{2pa,bq ¤ ‖JNv‖H1{2pa,bq � ‖PNv � JNv‖H1{2pa,bq . (3.115)

As PNvpxiq � JNvpxiq, we can apply Lemma 3.22 together with a scaling argument to obtain

‖PNv � JNv‖2
H1{2pa,bq � ‖PNv � JNv‖2

L2pa,bq � |PNv � JNv|2H1{2pa,bq
¤ C

m̧

i�1

�
‖PNv � JNv‖2

L2pxi�1,xiq

� |PNv � JNv|2
H

1{2
00 pxi�1,xiq

�
� C

m̧

i�1

�pxi � xi�1q ‖PNv � Fi � JNv � Fi‖2
L2p�1,1q

� |PNv � Fi � JNv � Fi|2H1{2
00 p�1,1q

�
¤ Cpb� aq m̧

i�1

‖PNv � Fi � JNv � Fi‖2

H
1{2
00 p�1,1q .

(3.116)

Theorem 1.19 yields the existence of a constant C ¡ 0 such that

‖PNv � Fi � JNv � Fi‖H
1{2
00 p�1,1q

¤ C log pi ‖PNv � Fi � JNv � Fi‖H1{2p�1,1q .
(3.117)

By the triangle inequality,

‖PNv � Fi � JNv � Fi‖H1{2p�1,1q ¤
∥∥∥ΠL2p�1,1q

Ppi�2 pv � Fiq � JNv � Fi

∥∥∥
H1{2p�1,1q

� ∣∣ϕi
pi,pi�1pvq∣∣ ‖Lpi�1‖H1{2p�1,1q (3.118)

� ∣∣ϕi
pi,pi

pvq∣∣ ‖Lpi‖H1{2p�1,1q .

Furthermore, Theorem 1.20 gives, with some constant C ¡ 0,
∥∥∥ΠL2p�1,1q

Ppi�2 pv � Fiq � JNv � Fi

∥∥∥
H1{2p�1,1q

¤ Cpi

∥∥∥ΠL2p�1,1q
Ppi�2 pv � Fiq � JNv � Fi

∥∥∥
L2p�1,1q .

(3.119)

Next, it is easy to see that, by Theorem 1.17, there exists a constant C ¡ 0 such that

∣∣ϕi
pi,qpvq∣∣ ¤

∥∥∥ΠL2p�1,1q
Ppi�2 pv � Fiq � JNv � Fi

∥∥∥
L8p�1,1q

¤ Cpi

∥∥∥ΠL2p�1,1q
Ppi�2 pv � Fiq � JNv � Fi

∥∥∥
L2p�1,1q .

(3.120)

Together with the estimate of the H1{2-norms of the Legendre polynomials in 3.21, this yields
the claimed estimate.
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Thus, the fundamental point is to construct the operator JN in such a way that
∥∥∥ΠL2p�1,1q

Ppi�2 pv � Fiq � JNv � Fi

∥∥∥
L2p�1,1q and ‖JNv‖H1{2pa,bq (3.121)

can be bounded. This is done in the following result.

Theorem 3.24. There exists a sequence pJN q of operators JN : H1{2pa, bq Ñ VN such that
∥∥∥ΠL2p�1,1q

Ppi�2 pv � Fiq � JNv � Fi

∥∥∥
L2p�1,1q ¤ Cp

�1{2
i |v|H1{2pxi�2,xi�1q

for i � 2, . . . ,m� 1,
(3.122)

∥∥∥ΠL2p�1,1q
Pp1�2 pv � F1q � JNv � F1

∥∥∥
L2p�1,1q ¤ Cp

�1{2
1 |v|H1{2px0,x2q , (3.123)

∥∥∥ΠL2p�1,1q
Ppm�2 pv � Fmq � JNv � Fm

∥∥∥
L2p�1,1q ¤ Cp�1{2

m |v|H1{2pxm�2,xmq , (3.124)

and

‖JNv‖H1{2pa,bq ¤ C ‖v‖H1{2pa,bq . (3.125)

The construction uses certain operators giving simultaneous approximation in Sobolev
spaces with different exponents.

Lemma 3.25. There exists a sequence pπqq8q�0 of operators πq : L2p�1, 1q Ñ Pq and a con-
stant C ¡ 0 such that for all q ¥ 0,

‖v � πqv‖Hrp�1,1q ¤ Cpq � 1q�ps�rq |v|Hsp�1,1q
for 0 ¤ r ¤ s ¤ 1 and v P Hsp�1, 1q, (3.126)

and

πqv � v for v P P0. (3.127)

In particular, for a function v P Hsp�1, 1q, this yields a simultaneous approximation in
all spaces Hrp�1, 1q with r   s, and stability in Hsp�1, 1q.
Proof. Define the linear operator πq : L2p�1, 1q Ñ Pq as the operator constructed in [Mel05,
Proposition A.2] for R � 1 and N � q. Then, the results follow by combining Theorems 1.15
and 1.12, where we apply Theorem 1.5 to obtain the seminorms.

Proof of Theorem 3.24. We shall do this based on partition of unity methods; for general
ideas of this method, see the articles [MB96, BM97].

Let ψk : pa, bq Ñ R be functions piecewise affine on the given mesh such that ψkpxiq � δki

for i, k � 0, . . . , m. We remark that suppψk � rxk�1, xk�1s for k � 1, . . . , m� 1, suppψ0 �rx0, x1s and suppψm � rxm�1, xms, and that on pxi�1, xiq, ψi�1 � ψi � 1.
Define p̃i :� minppi, pi�1q for i � 1, . . . , m � 1, p̃0 :� p1 and p̃m :� pm, the mappings

F̃k : p�1, 1q Ñ pxk�1, xk�1q, F̃kptq :� xk�1 � t�1
2 pxk�1 � xk�1q for k � 1, . . . , m� 1, F̃0 :� F1

and F̃m :� Fm,

πi
Nv :�

#
πp̃i�1pv � F̃iq � F̃�1

i on F̃ipp�1, 1qq,
0, elsewhere,

(3.128)

47



CHAPTER 3. FINITE ELEMENT METHODS FOR MIXED VARIATIONAL
INEQUALITIES

and JN by

JNv :� m̧

i�0

pπi
Nvqψi. (3.129)

Note that by the choice of the p̃j , pJNvq|pxi�1,xiq is a polynomial of degree not more than pi,
and by construction of the ψk, JNv is continuous. Thus, JN : H1{2pa, bq Ñ VN is well-defined.
By the triangle inequality,

∥∥∥ΠL2p�1,1q
Ppi�2 pv � Fiq � JNv � Fi

∥∥∥
L2p�1,1q

¤ ∥∥∥ΠL2p�1,1q
Ppi�2 pv � Fiq � v � Fi

∥∥∥
L2p�1,1q (3.130)

� ‖v � Fi � JNv � Fi‖L2p�1,1q ,
and by the properties of the orthogonal projection,

∥∥∥ΠL2p�1,1q
Ppi�2 pv � Fiq � v � Fi

∥∥∥
L2p�1,1q ¤ ‖πpi�2pv � Fiq � v � Fi‖L2p�1,1q

¤ Cppi � 1q�1{2 |v � Fi|H1{2p�1,1q
¤ Cppi � 1q�1{2 |v|H1{2pxi�1,xiq .

(3.131)

As 0 ¤ ψk ¤ 1, by scaling, there exists, due to (3.101), a constant C ¡ 0 such that for
i � 2, . . . , m� 1,

‖v � Fi � JNv � Fi‖L2p�1,1q
¤ Ch

�1{2
i ‖v � JNv‖L2pxi�1,xiq

� Ch
�1{2
i ‖vpψi�1 � ψiq � JNv‖L2pxi�1,xiq

¤ Ch
�1{2
i

∥∥pv � πi�1
N vqψi�1 � pv � πi

Nvqψi

∥∥
L2pxi�2,xi�1q

¤ Ch
�1{2
i

�∥∥pv � πi�1
N vqψi�1

∥∥
L2pxi�2,xiq (3.132)

� ∥∥pv � πi
Nvqψi

∥∥
L2pxi�1,xi�1q

�
¤ Ch

�1{2
i

�∥∥v � πi�1
N v

∥∥
L2pxi�2,xiq

� ∥∥v � πi
Nv

∥∥
L2pxi�1,xi�1q

�
¤ C

�∥∥∥v � F̃i�1 � πp̃i�1�1pv � F̃i�1q
∥∥∥

L2p�1,1q
� ∥∥∥v � F̃i � πp̃i�1pv � F̃iq

∥∥∥
L2p�1,1q

	
.

By the properties of πq and the invariance of the H1{2-norm with respect to scaling,
∥∥∥v � F̃i � πp̃i�1pv � F̃iq

∥∥∥
L2p�1,1q ¤ Cp̃

�1{2
i

∣∣∣v � F̃i

∣∣∣
H1{2p�1,1q

¤ Cp̃
�1{2
i |v|H1{2pxi�1,xi�1q .

(3.133)

Clearly, there exists a constant C ¡ 0 such that

ppi � 1q�1{2 ¥ Cp
�1{2
i (3.134)
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and

minpp̃i�1, p̃iq�1{2 ¤ Cp
�1{2
i , (3.135)

and thus
∥∥∥ΠL2p�1,1q

Ppi�2 pv � Fiq � JNv � Fi

∥∥∥
L2p�1,1q ¤ Cp

�1{2
i |v|H1{2pxi�2,xi�1q (3.136)

with some C ¡ 0; corresponding results hold for i � 1 and i � m.
For the stability of the operators JN , note first that

‖JNv‖H1{2pa,bq ¤ ‖v‖H1{2pa,bq � ‖JNv � v‖H1{2pa,bq
¤ ‖v‖H1{2pa,bq �

m̧

i�0

∥∥pπi
Nv � vqψi

∥∥
H1{2pa,bq . (3.137)

As, by (3.126) with r � 0 and s � 0 and a scaling argument, for i � 1, . . . , m� 1,
∥∥pπi

Nv � vqψi

∥∥
L2pa,bq �

∥∥pπi
Nv � vqψi

∥∥
L2pxi�1,xi�1q

¤ ∥∥πi
Nv � v

∥∥
L2pxi�1,xi�1q

¤ Cphi � hi�1q1{2
∥∥∥πp̃i�1pv � F̃iq � v � F̃i

∥∥∥
L2p�1,1q

¤ Cphi � hi�1q1{2
∥∥∥v � F̃i

∥∥∥
L2p�1,1q

¤ C ‖v‖L2pxi�1,xi�1q ,

(3.138)

and again correspondingly for i � 0 and i � m, which yields, as locally, there are at most
two i such that ψi � 0,

‖JNv � v‖L2pa,bq ¤ C ‖v‖L2pa,bq . (3.139)

In a similar fashion, by a scaling argument together with (3.126) with r � 0 and s � 1, for
i � 1, . . . , m� 1,

∥∥rpπi
Nv � vqψis1∥∥L2pa,bq �

∥∥rpπi
Nv � vqψis1∥∥L2pxi�1,xi�1q

� ∥∥pπi
Nv � vq1ψi � pπi

Nv � vqψ1i∥∥L2pxi�1,xi�1q
¤ ∥∥pπi

Nv � vq1ψi

∥∥
L2pxi�1,xi�1q

� ∥∥pπi
Nv � vqψ1i∥∥L2pxi�1,xi�1q

¤ ∥∥pπi
Nv � vq1∥∥

L2pxi�1,xi�1q
� Cphi � hi�1q�1

∥∥πi
Nv � v

∥∥
L2pxi�1,xi�1q (3.140)

¤ Cphi � hi�1q�1{2 ∥∥∥pπp̃i�1pv � F̃iq � v � F̃iq1
∥∥∥

L2p�1,1q
� Cphi � hi�1q�1{2 ∥∥∥πp̃i�1pv � F̃iq � v � F̃i

∥∥∥
L2p�1,1q

¤ Cphi � hi�1q�1{2 ∥∥∥pv � F̃iq1
∥∥∥

L2p�1,1q
¤ C

∥∥v1∥∥
L2pxi�1,xi�1q

¤ C ‖v‖H1pxi�1,xi�1q ,
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and correspondingly for i � 0 and i � m, which yields, by the finite overlap of the pψiq,
‖JNv � v‖H1pa,bq ¤ C ‖v‖H1pa,bq . (3.141)

Using Theorems 1.15 and 1.12 to interpolate the above estimates in L2pa, bq and H1pa, bq, we
obtain

‖JNv‖H1{2pa,bq ¤ C ‖v‖H1{2pa,bq , (3.142)

that is, the stability of the operators JN .

Combining the above results, we obtain:

Theorem 3.26. There exists a sequence pPN q of operators PN : H1{2pa, bq Ñ VN such that
for all v P H1{2pa, bq,

‖PNv‖H1{2pa,bq ¤ C

�
1� max

i�1,...,m
pp1{2

i log3{2 piq


‖v‖H1{2pa,bq , (3.143)

and for all w P Ppi�2 and i � 1, . . . ,m,

xPNv, wyL2pxi�1,xiq � xv, wyL2pxi�1,xiq . (3.144)

Proof. Plug in the operators JN constructed in Theorem 3.24 into the estimate given in
Lemma 3.23. This, together with Lemma 3.22, yields

‖PNv‖H1{2pa,bq ¤ ‖JNv‖H1{2pa,bq � C max
i�1,...,m

log3{2 pi�

�
�

m̧

i�1

p2
i

∥∥∥ΠL2p�1,1q
Ppi�2 pv � Fiq � JNv � Fi

∥∥∥
2

L2p�1,1q

�1{2

¤ C ‖v‖H1{2pa,bq � C max
i�1,...,m

log3{2 pi

�
p1 |v|2H1{2px0,x2q

� m�1̧

i�2

pi |v|2H1{2pxi�2,xi�1q � pm |v|2H1{2pxm�2,xmq
�1{2

(3.145)

¤ C ‖v‖H1{2pa,bq

� C max
i�1,...,m

pp1{2
i log3{2 piq

�
m̧

i�1

|v|2H1{2pxi�1,xiq
�1{2

¤ Cp1� max
i�1,...,m

pp1{2
i log3{2 piqq ‖v‖H1{2pa,bq .

The second property follows from the definition of PN in (3.103).

Remark 3.27. Analysing the above proofs, we see that actually, given an operator JN mapping
a space of functions vanishing weakly at one or both end points into polynomials vanishing
there as well and satisfying analogous approximation properties will ensure that PN also
satisfies these boundary conditions.

Consider therefore the space H1{2p0 pa, bq as defined in Section 1.2. We then only have to
define a modification π̃1

N of the local approximation operator π1
N on the element pa, x1q which

satisfies pπ̃1
Nvqpaq � 0 for all v P H1{2p0 pa, bq.
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The first step is the following argument, which is done on the reference element.

Lemma 3.28. There exists a sequence pπ̃qq8q�0 of operators π̃q : L2p0, 1q Ñ Pq and a constant
C ¡ 0 which satisfy

‖v � π̃qv‖L2p0,1q ¤ C ‖v‖L2p0,1q
for v P L2p0, 1q, (3.146)

‖v � π̃qv‖H1p0,1q ¤ C ‖v‖H1p0,1q
for v P H1p0, 1q, (3.147)

‖v � π̃qv‖L2p0,1q ¤ Cpq � 1q�1{2 |v|
H

1{2p0 p0,1q
for v P H1{2p0 p0, 1q, (3.148)

‖v � π̃qv‖L2p0,1q ¤ Cpq � 1q�1 |v|H1p0p0,1q
for v P H1p0p0, 1q, (3.149)

and

pπ̃qvqpaq � 0 for v P H1{2p0 p0, 1q. (3.150)

Proof. By Theorem 1.4, there exists an extension operator Ê : L2p0, 1q Ñ L2pRq such that
∥∥∥Êv

∥∥∥
L2pRq ¤ C ‖v‖L2p0,1q for v P L2p0, 1q (3.151)

and
∥∥∥Êv

∥∥∥
H1pRq ¤ C ‖v‖H1p0,1q for v P H1p0, 1q. (3.152)

Define the operator E : L2p0, 1q Ñ L2p�1, 1q by

Ev :� pÊvq|p�1,1q. (3.153)

Then,
∥∥∥Êv

∥∥∥
L2p�1,1q ¤ C ‖v‖L2p0,1q for v P L2p0, 1q (3.154)

and
∥∥∥Êv

∥∥∥
H1p�1,1q ¤ C ‖v‖H1p0,1q for v P H1p0, 1q. (3.155)

Interpolating the above estimates using Theorems 1.15 and 1.12 yields

‖Ev‖Hsp�1,1q ¤ C ‖v‖Hsp0,1q for all v P Hsp0, 1q and all s P r0, 1s. (3.156)

Define π̃q : L2p0, 1q Ñ L2p0, 1q by

π̃qupxq :� πqEupxq � pπqEuq p0qp1� xqq for x P p0, 1q. (3.157)
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We see that, as by definition pEuq|p0,1q � u,

‖π̃qu� u‖L2p0,1q ¤ ‖πqEu� Eu‖L2p�1,1q � |πqEup0q| ‖p1� �qq‖L2p0,1q (3.158)

and

‖π̃qu� u‖H1p0,1q ¤ ‖πqEu� Eu‖H1p�1,1q � |πqEup0q| ‖p1� �qq‖H1p0,1q . (3.159)

A simple calculation shows that

‖p1� �qq‖L2p0,1q � pq � 1q�1{2 (3.160)

and

‖p1� �qq‖H1p0,1q � pq � 1q1{2. (3.161)

By Theorem 1.9, we see that, as p1� x2q|x�0 � 1 and 0 ¤ p1� x2qγ ¤ 1 for x P r�1, 1s and
γ ¥ 0,

|πqEup0q| ¤ ∥∥p1� �2qπqEu
∥∥

L8p�1,1q
¤ C

∥∥p1� �2qπqEu
∥∥1{2

L2p�1,1q� (3.162)

�
�∥∥p1� �2qπqEu

∥∥1{2
L2p�1,1q �

∥∥∥
�p1� �2qπqEu

�1∥∥∥1{2
L2p�1,1q

�
¤ C ‖πqEu‖1{2

L2p�1,1q
�
‖πqEu‖1{2

L2p�1,1q �
∥∥∥p1� �2q1{2pπqEuq1∥∥∥1{2

L2p�1,1q
�

.

Theorem 1.18 yields
∥∥∥p1� �2q1{2pπqEuq1∥∥∥

L2p�1,1q ¤ Cpq � 1q ‖πqEu‖L2p�1,1q , (3.163)

and thus
|πqEup0q| ¤ Cpq � 1q1{2 ‖πqEu‖L2p�1,1q . (3.164)

Choose first u P L2p0, 1q; then, it follows by the L2-stability of πq that

‖π̃qu� u‖L2p0,1q ¤ C ‖u‖L2p0,1q . (3.165)

Next, choose u P H1p0, 1q with up0q � 0, which also yields Eup0q � 0. Then, again by
Theorem 1.9,

|πqEup0q| � |πqEup0q � Eup0q| ¤ ‖πqEu� Eu‖L8p�1,1q
¤ C ‖πqEu� Eu‖1{2

L2p�1,1q ‖πqEu� Eu‖1{2
H1p�1,1q .

(3.166)

By the approximation properties and stability of πq and the continuity of E, we have that

‖πqEu� Eu‖L2p�1,1q ¤ Cpq � 1q�1 ‖Eu‖H1p�1,1q ¤ Cpq � 1q�1 ‖u‖H1p0,1q (3.167)

and

‖πqEu� Eu‖H1p�1,1q ¤ C ‖Eu‖H1p�1,1q ¤ C ‖u‖H1p0,1q , (3.168)
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Thus,
|πqEup0q| ¤ Cpq � 1q1{2 ‖u‖H1p0,1q , (3.169)

which yields both

‖π̃qu� u‖L2p0,1q ¤ Cpq � 1q�1 ‖u‖H1p0,1q , (3.170)

and

‖π̃qu� u‖H1p0,1q ¤ C ‖u‖H1p0,1q , (3.171)

Interpolating these estimates using Theorems 1.16 and 1.12, the results follow.

Thus, defining π̃0
N by

π̃0
Nv :�

#
π̃p̃0�1pv � F̃0q � F̃�1

0 on pa, x1q,
0, elsewhere,

(3.172)

and J̃N by

J̃Nv :� pπ̃0
Nvqψ0 �

m̧

i�1

pπi
Nvqψi, (3.173)

we obtain, with
ṼN :� tv P VN : vpaq � 0u , (3.174)

the following result corresponding to Theorem 3.26:

Theorem 3.29. There exists a sequence pP̃N q of operators P̃N : H1{2p0 pa, bq Ñ ṼN such that

for all v P H1{2p0 pa, bq,
‖PNv‖

H
1{2p0 pa,bq ¤ Cp1� max

i�1,...,m
pp1{2

i log3{2 piqq ‖v‖H
1{2p0 pa,bq , (3.175)

and for all w P Ppi�2 and i � 1, . . . , m,

xPNv, wyL2pxi�1,xiq � xv, wyL2pxi�1,xiq . (3.176)

The proof is analogous to the steps done before; we only have to note that

‖PNv � JNv‖
H

1{2p0 pa,bq ¤ ‖PNv � JNv‖
H

1{2
00 pa,bq . (3.177)

Remark 3.30. Corresponding results also hold true for H1{2
0q pa, bq and H1{2

00 pa, bq.
3.2.3 A priori Error Estimates for the Frictional Contact Problem

We are now ready to give an a priori convergence rate result for the finite element method
formulated in Problem 3.11. For simplicity, however, we shall assume that contact holds on
the complete contact boundary and that u0 � 0, that is, we solve the continuous problem on
the closed convex set

K1 :� tv P V : γ0,ΓC
pvq � ν � 0 almost everywhere on ΓCu , (3.178)
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and for the discrete problem,

K1N :� tvN P VN : γ0,ΓC
pvN q � ν � 0 almost everywhere on ΓCu . (3.179)

In particular, we note that K1 and K1N are linear spaces and K1N � K1. Thus, the continuous
and discrete primal-dual problems become:

Problem 3.31 (Primal-dual formulation, Tresca friction, forced contact). Find pu,λq P
K1 � Λ such that for all pv, µq P K1 � Λ,

apu,vq � bpv,λq � Lpvq, (3.180)
bpu, µ� λq ¤ 0. (3.181)

Problem 3.32 (Discrete primal-dual formulation, Tresca friction, forced contact). Find
puN , λN q P K1N � ΛN such that for all pvN , µN q P K1N � ΛN ,

apuN ,vN q � bpvN , λN q � LpvN q, (3.182)
bpuN , µN � λN q ¤ 0. (3.183)

The existence, uniqueness and basic convergence results can be proved similarly as in the
situation considered above.

We now prove an inf-sup condition using the results of the last section. For simplicity,
we restrict ourselves to the situation that ΓC consists of a single affine line.

Theorem 3.33. Assume that ΓC X ΓD � H.
Then, we have the discrete inf-sup condition

inf
µNPWN

sup
vNPVN

bpvN , µN q
‖vN‖H1pΩq ‖µN‖H̃�1{2pΓCq

¥ C

maxEPEC,N
pp1{2

N,KE
log3{2 pN,KE

q , (3.184)

where the constant C ¡ 0 is independent of N .

In the proof of this theorem, we need to extend a function v given on a part ΓC of the
boundary Γ of Ω to a function ṽ on Ω which satisfies the (homogeneous) Dirichlet boundary
conditions. If v P H1{2

00 pΓCq, this can be done by simply setting ṽ � 0 on ΓzΓC and applying
Theorem 1.3. If, however, v P H1{2pΓCq, we need to ensure that ṽ � 0 on ΓD. In principle,
the theory developed in [Gri85, Section 1.5.2] shows that this is possible. We prove this result
directly for polygons.

Lemma 3.34. Let Ω � R2 be a polygon, and let ΓC, ΓD be disjoint, relatively open parts of
BΩ consisting each of a finite number of edges of Ω.

Then, there exists a continuous operator E : H1{2pΓCq Ñ H1pΩq such that γ0,ΓC
Ev � v

and γ0,ΓD
Ev � 0 for all v P H1{2pΓCq.

Proof. We only prove the result under the simplifying assumption that Ω :� pa, bq � pc, dq,
ΓC :� pa, bq � tcu and ΓD :� pa, bq � tdu. In the case of a general polygon, a similar, but
much more technical, argument is possible.

Similarly as in the proof of Lemma 3.28, we see that there exists a continuous extension
operator Ẽ : H1{2pΓCq Ñ H1{2pR�tcuq. By Theorem 1.3, we see that there exists a continuous
lifting operator Z : H1{2pR� tcuq Ñ H1pR2q. Choose a function ϕ P C80 pR2q with 0 ¤ ϕ ¤ 1
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such that ϕpx, cq � 1 and ϕpx, dq � 0 for x P pa, bq. Then, the operator E : H1{2pΓCq Ñ H1pΩq
defined by

Ev :� pϕZẼvq|Ω (3.185)

satisfies the claimed properties.

A similar result holds true for a space of functions vanishing at one boundary point of
ΓC.

Proof of Theorem 3.33. As ΓC consists of a single affine line, we can assume without loss of
generality that ΓC � tpt, 0q : t P pa, bqu. Furthermore, we see that the partition EC,N of ΓC is
given by points pxiqi�0,...,m with a � x0   x1   � � �   xm � b such that for every E P EC,N

there exists i P t1, . . . ,mu with E � pxi�1, xiq and polynomial degrees pN,i :� pN,KE
. The

fact that g is constant yields that b � g x�, �yH̃�1{2pΓCq, that is, b is just a scalar multiple of the

duality product of H1{2pΓCq � γ0,ΓC
V and H̃�1{2pΓCq � pH1{2pΓCqq�, and thus, for a given

µN PWN there exists v P V with

bpv, µN q
‖v‖H1pΩq ‖µN‖H̃�1{2pΓCq

¥ g

2
. (3.186)

Applying the operators PN constructed in Theorem 3.26 componentwise and using a bounded
extension operator E : H1{2pΓCq Ñ V as given in Lemma 3.34, we see that due to Theorem
1.2, together with the operators îN given in Theorem 3.13,

∥∥∥îNEPNγ0,ΓC
v
∥∥∥

H1pΩq ¤ C max
EPEC,N

�
p
1{2
N,KE

log3{2 pN,KE

	
‖v‖H1pΩq . (3.187)

Thus, there exists vN :� îNEPNγ0,ΓC
v P VN with γ0,ΓC

vN � PNγ0,ΓC
v such that

bpvN , µN q
‖vN‖H1pΩq ‖µN‖H̃�1{2pΓCq
� bpv,µN q
‖vN‖H1pΩq ‖µN‖H̃�1{2pΓCq

¥ bpv,µN q
C maxEPEC,N

�
p
1{2
N,KE

log3{2 pN,KE

	
‖vN‖H1pΩq ‖µN‖H̃�1{2pΓCq

,

(3.188)

and the assertion follows.

Theorem 3.35. Assume that ΓC X ΓD � H, and set

βN :� max
EPEC,N

�
p
1{2
N,KE

log3{2 pN,KE

	�1
. (3.189)

There exists a constant C ¡ 0 independent of N such that for pu, λq the solution of
Problem 3.31 and puN , λN q the solution of Problem 3.32,

‖u� uN‖2
H1pΩq ¤ C

�
bpu, λN � µq � bpu, λ� µN q
� β�2

N

�
‖u� vN‖2

H1pΩq � ‖λ� µN‖2
H̃�1{2pΓCq

	� (3.190)

and

‖λ� λN‖H̃�1{2pΓCq ¤ Cβ�1
N

�
‖u� uN‖H1pΩq � ‖λ� µN‖H̃�1{2pΓCq

	
. (3.191)
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Proof. Applying Theorem 3.7 together with Theorem 3.33 yields the result.

Remark 3.36. Applying the results of Remark 3.27 instead of Theorem 3.26, we see that the
assumption ΓCXΓD � H is not necessary. We then only have to replace the space H̃�1{2pΓCq
by H�1{2pΓCq or, potentially, a space satisfying zero boundary conditions at one of the points
in ΓC X ΓD.
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Chapter 4

The Residual Error Indicator for
the Frictional Contact Problem

Error indicators are a fundamental part of modern finite element implementations. The two
goals which one aims for with error indicators are

1. to be able to determine whether the numerical approximation which was obtained by
the finite element method is “good enough” for the application under consideration,
and

2. to find the elements where the error is high, and which should therefore be refined in
an adaptive computation.

Today, there are several very versatile error indicators available. In this work, we will focus on
the classical residual error indicator, which was generalised to the hp-context by Melenk and
Wohlmuth in [MW01]. To be able to apply this error indicator for the variational inequality
under consideration, we shall make use of the dual approach to a posteriori error indication
given in [Han05, Chapter 6]. Using this error indicator, we propose an hp-adaptive mesh
refinement strategy based on local estimation of solution regularity through the decay of
Legendre coefficients, which was developed in [HS05] and [EM07].

As in Subsection 3.2.3, we assume in the following that γ0,ΓC
pvq�ν � 0 almost everywhere

on ΓC.

4.1 Duality-Based Error Estimation

Let d � 2 or d � 3, Z1 :� �
L2pΩq�d�d with the scalar product

xq, ryZ1
:�

»
Ω

Cq : rdx, (4.1)

Z2 :� �
L2pΓCq�d, and Z :� Z1 � Z2. Defining a function J : V � Z Ñ R by

J pv,qq :� 1
2
xq1,q1yZ1

dx� Lpvq �
»
ΓC

g |q2| dsx, (4.2)

where q � pq1,q2q, we see easily that, by introducing L : V Ñ Z through

Lv :� pεpvq, γ0,ΓC
vq, (4.3)

we have that, as apv,wq � xεpvq, εpwqyZ1
,

Jpvq � J pv,Lvq for all v P V . (4.4)
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Thus, in particular, the minimisation formulation in Problem 2.5 (or, for d � 2, Problem 2.9)
can be written as: Find u P V such that

J pu,Luq � inf
vPV J pv,Lvq. (4.5)

With L� : Z� Ñ V � the adjoint of L, we want to calculate the conjugate function J � : V � �
Z� Ñ R, which is given on tpL�q�,�q�q : q� P Z�u by

J �pL�q�,�q�q � sup
pv,qqPV�Z

rL�q�pvq � q�pqq � J pv,qqs . (4.6)

Plugging in the definition of J ,

sup
pv,qqPV�Z

rL�q�pvq � q�pqq � J pv,qqs
� sup
pv,qqPV�Z

�
L�q�pvq � q�pqq � 1

2
xq1,q1yZ1

� Lpvq �
»
ΓC

g |q2| dsx

�
� sup

vPV
�xq�1 , εpvqyZ1

� xγ0,ΓC
v,q�2yL2pΓCq � Lpvq�

� sup
q1PZ1

�
�
B

q�1 � 1
2
q1,q1

F
Z1

�
� sup

q2PZ2

�
�xq�2 ,q2yL2pΓCq �

»
ΓC

g |q2| dsx

�
.

(4.7)

Clearly,

sup
q1PZ1

�
�
B

q�1 � 1
2
q1,q1

F
Z1

�
� 1

2
xq�1 ,q�1yZ1

. (4.8)

Next,

sup
q2PZ2

�
�xq�2 ,q2yL2pΓCq �

»
ΓC

g |q2| dsx

�
�
#

0 if |q�2 | ¤ g almost everywhere on ΓC,

�8 otherwise.

(4.9)

Finally, it is easy to see that

sup
vPV

�xq�1 , εpvqyZ1
� xγ0,ΓC

v,q�2yL2pΓCq � Lpvq� � �8 (4.10)

unless q� P Z� is chosen in such a way that

xq�1 , εpvqyZ1
� xγ0,ΓC

v,q�2yL2pΓCq � Lpvq � 0 for all v P V , (4.11)

and in that case, the supremum is trivially 0. We define the set of admissible dual functions
by

Z�0 :� !
q� P Z� : xq�1 , εpvqyZ1

� xγ0,ΓC
v,q�2yL2pΓCq � Lpvq � 0 for all v P V ,

and |q�2 | ¤ g almost everywhere on ΓC

)
.

(4.12)
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Thus, the conjugate function is given by

J �pL�q�,�q�q �
#

1
2 xq�1 ,q�1yZ1

for q� P Z�0 ,

�8 otherwise.
(4.13)

Consider the dual problem of finding p� P Z�0 such that

�J �pL�p�,�p�q � sup
q�PZ�0

r�J �pL�q�,�q�qs . (4.14)

To prove the strict convexity of the dual functional, let q�, q̃� P Z�0 with J �pL�q�,�q�q,
J �pL�q̃�,�q̃�q   8 and s P p0, 1q such that

J �pL�psq� � p1� sqq̃�q,� psq� � p1� sqq̃�qq
� sJ �pL�q�,�q�q � p1� sqJ �pL�q̃�,�q̃�q. (4.15)

This implies

xsq�1 � p1� sqq̃�1 , sq�1 � p1� sqq̃�1yZ1
� s xq�1 ,q�1yZ1

� p1� sq xq̃�1 , q̃�1yZ1
, (4.16)

and thus q�1 � q̃�1 . Therefore,

xγ0,ΓC
v,q�2yL2pΓCq � xγ0,ΓC

v, q̃�2yL2pΓCq for all v P V , (4.17)

and we obtain q� � q̃�.
It follows similarly that the mapping q� ÞÑ J �pL�q�,�q�q is coercive, and we can apply

Theorem 1.28 to obtain the existence of a unique solution p� P Z�0 of the above problem
which satisfies

J pu,Luq � �J �pL�p�,�p�q, (4.18)

where u is the minimiser of J .
For an arbitrary w P V , by the variational inequality formulation in Problem 2.4,

1
2
apu�w,u�wq � 1

2
apw,wq � apu,wq � 1

2
apu,uq

� 1
2
apw,wq � apu,w � uq � 1

2
apu,uq

¤ 1
2
apw,wq � jpwq � jpuq � Lpw � uq � 1

2
apu,uq

� Jpwq � Jpuq.

(4.19)

As p� solves the dual problem, we obtain that

Jpuq � J pu,Luq � �J �pL�p�,�p�q ¥ �J �pL�q�,q�q for all q� P Z�0 , (4.20)

and thus
1
2
apu�w,u�wq ¤ Jpwq � J �pL�q�,q�q for all q� P Z�0 . (4.21)

Let r�1 P Z�1 be arbitrary, then

Jpwq � J �pL�q�,q�q � 1
2
xεpwq � r�1 , εpwq � r�1yZ1

� xεpwq, r�1yZ1
� Lpwq

� jpwq � 1
2
�xq�1 ,q�1yZ1

� xr�1 , r�1yZ1

�
.

(4.22)
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As q� P Z�0 , we have that

xq�1 , εpwqyZ1
� xγ0,ΓC

w,q�2yL2pΓCq � Lpwq � 0, (4.23)

which yields

Jpwq � J �pL�q�,q�q � 1
2
xεpwq � r�1 , εpwq � r�1yZ1

� xεpwq, r�1yZ1

� xq�1 , εpwqyZ1
� xγ0,ΓC

w,q�2yL2pΓCq
� jpwq � 1

2
xq�1 � r�1 ,q�1 � r�1yZ1

� xq�1 � r�1 , r�1yZ1

� 1
2
xεpwq � r�1 , εpwq � r�1yZ1

� xεpwq � r�1 ,q�1 � r�1yZ1

� 1
2
xq�1 � r�1 ,q�1 � r�1yZ1

� xγ0,ΓC
w,q�2yL2pΓCq � jpwq.

(4.24)

Furthermore,

1
2
xεpwq � r�1 , εpwq � r�1yZ1

� xεpwq � r�1 ,q�1 � r�1yZ1
� 1

2
xq�1 � r�1 ,q�1 � r�1yZ1

¤ xεpwq � r�1 , εpwq � r�1yZ1
� xq�1 � r�1 ,q�1 � r�1yZ1

.
(4.25)

Thus, we have proved the following result.

Theorem 4.1. Let u P V be the solution of the continuous minimisation formulation in
Problem 2.5, and w P V arbitrary.

Then, for all r�1 P Z�1 ,

1
2
apu�w,u�wq ¤ xεpwq � r�1 , εpwq � r�1yZ1

� inf
q�PZ�0

�xq�1 � r�1 ,q�1 � r�1yZ1
� xγ0,ΓC

w,q�2yL2pΓCq � jpwq� .
(4.26)

Define the residual R : Z�2 � Z�1 Ñ R by

Rpq�2 , r�1q :� sup
vPV apv,vq�1{2 �xr�1 , εpvqyZ1

� Lpvq � xq�2 , γ0,ΓC
vyL2pΓCq

�
. (4.27)

As q� P Z�0 if and only if |q�2 | ¤ g almost everywhere on ΓC and

sup
vPV

�xq�1 , εpvqyZ1
� xγ0,ΓC

v,q�2yL2pΓCq � Lpvq� � 0 (4.28)

and the above expression is infinite otherwise, we see that, setting

Z�# :� tq�2 P Z�2 : |q�2 | ¤ g almost everywhere on ΓCu (4.29)

and replacing q�1 � r�1 by q�1 in the infimum over Z�#, we get

inf
q�PZ�0

�xq�1 � r�1 ,q�1 � r�1yZ1
� xγ0,ΓC

w,q�2yL2pΓCq � jpwq�
� infpq�1 ,q�2 qPZ�1 �Z�#

sup
vPV

�xq�1 � r�1 ,q�1 � r�1yZ1
� xγ0,ΓC

w,q�2yL2pΓCq � jpwq
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� xq�1 , εpvqyZ1
� xγ0,ΓC

v,q�2yL2pΓCq � Lpvq� (4.30)

� infpq�1 ,q�2 qPZ�1 �Z�#
sup
vPV

�xq�1 ,q�1yZ1
� xq�1 , εpvqyZ1

� xγ0,ΓC
w,q�2yL2pΓCq � jpwq

� xr�1 , εpvqyZ1
� xγ0,ΓC

v,q�2yL2pΓCq � Lpvq�.
The above expression can be simplified by applying the principle of complementary energy

(see [BF91, p. 20], [Bra07, p. 293]); we do the calculation here using Theorem 1.28. Define,
for q�2 P Z�# fixed, the linear functional `q�2 : V Ñ R by

`q�2 pvq :� xr�1 , εpvqyZ1
� xγ0,ΓC

v,q�2yL2pΓCq � Lpvq. (4.31)

We see that the above simplifies to

inf
q�2 PZ�#

inf
q�1 PZ�1

sup
vPV

�xq�1 ,q�1yZ1
� xq�1 , εpvqyZ1

� xγ0,ΓC
w,q�2yL2pΓCq � jpwq � `q�2 pvq

�
. (4.32)

Clearly, the inner supremum is infinite unless

xq�1 , εpvqyZ1
� `q�2 pvq � 0 for all v P V , (4.33)

and thus, defining F : Z�1 Ñ R by F pq�1q :� xq�1 ,q�1yZ1
and G : V � Ñ R̄ by Gp�`q�2 q :� 0

and Gp`q :� �8 for ` � `q�2 , we obtain, with the linear operator M : Z�1 Ñ V � given by
pMq�1qpvq :� xq�1 , εpvqyZ1

,

inf
q�2 PZ�#

inf
q�1 PZ�1

�
F pq�1q �GpMq�1q � xγ0,ΓC

w,q�2yL2pΓCq � jpwq	 . (4.34)

As F � : Z1 Ñ R and G� : V Ñ R are given by

F �pq1q � sup
q�1 PZ�1

�xq�1 ,q1yZ1
� xq�1 ,q�1yZ1

� � 1
4
xq1,q1yZ1

(4.35)

and
G�pvq � �`q�2 pvq, (4.36)

respectively, F is coercive, and M� : V Ñ Z1 is given by M�v � εpvq, we can apply Theorem
1.28 to obtain

inf
q�2 PZ�#

inf
q�1 PZ�1

�
F pq�1q �GpMq�1q � xγ0,ΓC

w,q�2yL2pΓCq � jpwq	
� inf

q�2 PZ�#
sup
vPV

�
�1

4
xεpvq, εpvqyZ1

� `q�2 pvq � xγ0,ΓC
w,q�2yL2pΓCq � jpwq



� inf

q�2 PZ�#
sup
vPV

��1
4
xεpvq, εpvqyZ1

� xγ0,ΓC
w,q�2yL2pΓCq � jpwq

� xr�1 , εpvqyZ1
� xγ0,ΓC

v,q�2yL2pΓCq � Lpvq�
¤ inf

q�2 PZ�#
sup
vPV

��1
4
apv,vq �Rpq�2 , r�1qapv,vq1{2 � xγ0,ΓC

w,q�2yL2pΓCq � jpwq�
� inf

q�2 PZ�#
�
Rpq�2 , r�1q2 � xγ0,ΓC

w,q�2yL2pΓCq � jpwq�.

(4.37)

This yields:
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Theorem 4.2. Let u P V be the solution of the continuous minimisation formulation in
Problem 2.5, and w P V arbitrary.

Then, for all r�1 P Z�1 ,

1
2
apu�w,u�wq ¤ xεpwq � r�1 , εpwq � r�1yZ1

� inf
q�2 PZ�#

�
Rpq�2 , r�1q2 � xγ0,ΓC

w,q�2yL2pΓCq � jpwq�. (4.38)

4.2 Reliability and Efficiency of the Residual Error Indicator

Selecting w :� uN , r�1 :� �εpuN q and q�2 :� �gλ̃N in Theorem 4.2 and applying Theorem
2.8, we have the error estimate

‖u� uN‖H1pΩq ¤ C sup
vPV ‖v‖

�1
H1pΩq

��apuN ,vq � Lpvq � bpv, λ̃N q
	

, (4.39)

where λ̃N can be chosen arbitrarily in Λ satisfying

jpuN q � bpuN , λ̃N q. (4.40)

It is easy to see that such a λ̃N exists, for example by choosing λ̃N :� uN,t{ |uN,t| whenever
uN,t � 0, and 0 otherwise. Inserting the λN P ΛN obtained by solving Problem 3.11, we
obtain by the definition of the H�1{2-norm that

‖u� uN‖H1pΩq ¤ C
�
sup
vPV ‖v‖

�1
H1pΩq r�apuN ,vq � Lpvq � bpv,λN qs

� ∥∥∥λN � λ̃N

∥∥∥
H�1{2pΓCq

�
.

(4.41)

Applying the definition of the discrete problem, we can insert vN P VN and substitute v by
�v, which yields

‖u� uN‖H1pΩq ¤ C
�
sup
vPV ‖v‖

�1
H1pΩq rapuN ,v � vN q � Lpv � vN q � bpv � vN , λN qs

� ∥∥∥λN � λ̃N

∥∥∥
H�1{2pΓCq

�
.

(4.42)

Decomposing the integrals and integrating by parts on each element, we obtain, defining the
vector divergence operator by divpσpuN qq :� pσji,jpuN qqi�1,...,d,

‖u� uN‖H1pΩq

¤ C

�
sup
vPV

1
‖v‖H1pΩq ĶPTN

�»
K
r�div σpuN q � Fspv � vN qdx

�
»
ΩXBK

σpuN q � νpv � vN qdsx

�
»
ΓCXBK

rσpuN qτ � gpλN qτ spv � vN qdsx (4.43)
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�
»
ΓNXBK

rσpuN q � ν �Gspv � vN qdsx

�
� ∥∥∥λN � λ̃N

∥∥∥
H�1{2pΓCq

�
.

Define for K P TN the interior residuals by

rK :� �div σpuN q � F (4.44)

and for E P EN the boundary residuals by

RE :�

$''''&''''%
1
2 rσpuN q � νsE if E P EI,N ,

σpuN qτ � gλN,τ if E P EC,N

σpuN q � ν �G if E P EN,N ,

0, if E P ED,N ,

(4.45)

where
rσpuN q � νsE :� σpuN q|KE,1

� νKE,1
� σpuN q|KE,2

� νKE,2
(4.46)

is the boundary jump with E � KE,1 X KE,2 and νKE,1
pointing from KE,1 to KE,2, and

νKE,2
� �νKE,1

. Applying the Cauchy-Schwarz inequality and regrouping the interior bound-
ary terms, we thus obtain

‖u� uN‖H1pΩq ¤ C sup
vPV

1
‖v‖H1pΩq ĶPTN

�»
K

rK � pv � vN qdx

� ¸
E�BK

»
E

RE � pv � vN qdsx

�
¤ C sup

vPV
1

‖v‖H1pΩq ĶPTN

�
‖rK‖L2pKq ‖v � vN‖L2pKq

� ¸
E�BK

‖RE‖L2pEq ‖v � vN‖L2pEq
�
.

(4.47)

Plugging in the hp-Clément operator of Theorem 3.12 for vN ,

‖v � vN‖L2pKq ¤ ChKpatch
p�1

Kpatch
‖v‖H1pKpatchq , (4.48)

‖v � vN‖L2pEq ¤ Ch
1{2
Kpatch

p
�1{2
Kpatch

‖v‖H1pKpatchq . (4.49)

Defining the local error indicators by

ηN,K :�
�
h2

Kp�2
K ‖rK‖2

L2pKq � hKp�1
K

¸
E�BK

‖RE‖2
L2pEq

�1{2
(4.50)

and the global error indicator by

ηN :�
�

ĶPTN

ηN,K

�1{2
, (4.51)

we obtain due to the finite overlap and local comparability of h and p (see the assumptions
on the mesh in Section 3.2):
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Theorem 4.3 (Reliability). There exists a constant C ¡ 0 such that for all λ̃N P Λ with
jpuN q � bpuN , λ̃N q, the residual error indicator satisfies

‖u� uN‖H1pΩq ¤ C

�
ηN �

∥∥∥λN � λ̃N

∥∥∥
H�1{2pΓCq

�
for all N. (4.52)

Therefore, if
∥∥∥λN � λ̃N

∥∥∥
H�1{2pΓCq is of higher order, ηN is reliable up to higher order

terms. This can be expected if the mesh is chosen adaptively: Then, we actually presume
that |λN | ¤ 1 on “most” of ΓC, and there, we can choose λ̃N � λN . Thus, as the elements
where |λN | ¡ 1 should altogether have a size of order h, we should obtain a power of h in the
above estimate, additionally to the rate obtained by estimating the error

∥∥∥λN � λ̃N

∥∥∥
H�1{2pΓCq.

We now want to prove an efficiency result, which shows that the above error indicator
will not overestimate the true error too much. Let FK : S Ñ K be the element map for K,
that is, FK is one-to-one and onto and bilinear, and assume that FK maps I, interpreted
as an edge of the reference element, to the edge E of K. Then, using the bubble functions
on the reference interval and element given in Subsection 1.2.2, we define the element bubble
function on K and the edge bubble function on E by

ψK :� cKψS � F�1
K , ψE :� cEψI � F�1

K , (4.53)

where the scaling factors cK , cE ¡ 0 are chosen in such a way that»
K

ψKdx � |K|,
»

E
ψEdsx � |E|. (4.54)

For the proof of the efficiency, we shall need the following lifting theorem, which is proved in
[MW01, Lemma 2.6]. Recall that S � r�1, 1s2 is the reference square.

Theorem 4.4. Set E :� r�1, 1s � t�1u.
For every α P p1{2, 1s, there exists a constant C ¡ 0 such that for every p, every ε P p0, 1s

and every polynomial v P Pp, there exists a function ṽ P H1pp�1, 1q2q such that

γ0,E ṽ � v � ψα
E , (4.55)

γ0,BSzE ṽ � 0, (4.56)

‖ṽ‖2
L2pp�1,1q2q ¤ Cε

∥∥∥ψ
α{2
I v

∥∥∥
2

L2p�1,1q , (4.57)

‖∇ṽ‖2
L2pp�1,1q2q ¤ C

�
εp2p2�αq � ε�1

	∥∥∥ψ
α{2
I v

∥∥∥
2

L2p�1,1q . (4.58)

Consider (2.71a) and (3.72a) and integrate by parts on each element to obtain

apu� uN ,vq � apu,vq � apuN ,vq � Lpvq � bpv,λq � apuN ,vq
� �

ĶPTN

�»
K

rKvdx� ¸
E�BK

»
E

REvdsx

�
� g

»
ΓC

pλN � λqvdsx.
(4.59)

Choose β P p1{2, 1s arbitrary, but fixed. Let v :� ψβ
K r̄K , where r̄K is a polynomial approxi-

mation of rK of degree pN,K . Plugging this into (4.59) yields

apu� uN , ψβ
K r̄Kq � �

»
K

rKψβ
K r̄Kdx. (4.60)
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Thus, »
K

ψβ
K r̄2

Kdx �
»

K
ψβ

K r̄Kpr̄K � rKqdx� apu� uN , ψβ
K r̄Kq, (4.61)

and the Cauchy-Schwarz inequality and the boundedness of a give, together with Theorem
1.6, which is applicable due to the fact that ψβ

K r̄K � 0 on Γ,»
K

ψβ
K r̄2

Kdx ¤ ∥∥∥ψ
β{2
K r̄K

∥∥∥
L2pKq

∥∥∥pr̄K � rKqψβ{2
K

∥∥∥
L2pKq

� C ‖u� uN‖H1pKq ‖ψK r̄K‖H1pKq (4.62)

¤ ∥∥∥ψ
β{2
K r̄K

∥∥∥
L2pKq

∥∥∥pr̄K � rKqψβ{2
K

∥∥∥
L2pKq

� C ‖u� uN‖H1pKq |ψK r̄K |H1pKq .

Applying Theorem 1.22 together with a scaling argument, we see that

∣∣∣ψβ
K r̄K

∣∣∣
2

H1pKq �
∥∥∥∇pψβ

K r̄Kq
∥∥∥

2

L2pKq ¤ 2
�∥∥∥p∇ψβ

Kqr̄K

∥∥∥
2

L2pKq �
∥∥∥ψβ

K∇r̄K

∥∥∥
2

L2pKq
�

¤ C

�
h�2

K

∥∥∥ψβ�1
K r̄K

∥∥∥
2

L2pKq � h�2
K p

2p2�βq
N,K

∥∥∥ψ
β{2
K r̄K

∥∥∥
2

L2pKq
�

(4.63)

¤ Ch�2
K p

2p2�βq
N,K

∥∥∥ψ
β{2
K r̄K

∥∥∥
2

L2pKq .

Inserting this in (4.62), we get

∥∥∥ψ
β{2
K r̄K

∥∥∥
L2pKq ¤ C

�∥∥∥pr̄K � rKqψβ{2
K

∥∥∥
L2pKq � h�1

K p2�β
N,K ‖u� uN‖H1pKq

�
¤ C

�
‖r̄K � rK‖L2pKq � h�1

K p2�β
N,K ‖u� uN‖H1pKq

�
.

(4.64)

Finally, by the triangle inequality and Theorem 1.22,

‖rK‖L2pKq ¤ ‖r̄K � rK‖L2pKq � ‖r̄K‖L2pKq
¤ ‖r̄K � rK‖L2pKq � Cpβ

K

∥∥∥ψ
β{2
K r̄K

∥∥∥
L2pKq

¤ C
�p1� pβ

Kq ‖r̄K � rK‖L2pKq � h�1
K p2

N,K ‖u� uN‖H1pKq
�

¤ C
�
pβ

K ‖r̄K � rK‖L2pKq � h�1
K p2

N,K ‖u� uN‖H1pKq
�
.

(4.65)

As the next step, we shall estimate ‖RE‖L2pEq for E P EN . Let v be an extension to

Epatch of ψβ
ER̄E with R̄E a polynomial approximation of R̄E of degree pN,E , constructed by

applying Theorem 4.4 together with a scaling argument, and patching the results for the two
neighbouring elements of E together. Plugging this into (4.59), we obtain

apu� uN , ψβ
ER̄Eq � � ¸

K�Epatch

�»
K

rKψβ
ER̄Edx�

»
EXBK

REψβ
ER̄Edsx

�
� g

»
EXΓC

pλN � λqψβ
KR̄Edsx.

(4.66)
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Assume first that E P EI,N . Then, |E X ΓC| � 0, the integrals over each E appear twice,
and thus »

E
ψβ

ER̄2
Edx �

»
E

ψβ
ER̄EpR̄E �REqdx�

»
E

REψβ
ER̄Edsx

�
»

E
ψβ

ER̄EpR̄E �REqdx� 1
2
apu� uN , ψβ

ER̄Eq (4.67)

� 1
2

»
Epatch

rEpatch
ψβ

ER̄Edx.

The Cauchy-Schwarz inequality and the boundedness of a yield, together with Theorem 1.6,»
E

ψβ
ER̄2

Edx ¤ ∥∥∥ψ
β{2
E R̄E

∥∥∥
L2pEq

∥∥∥pR̄E �REqψβ{2
E

∥∥∥
L2pEq

� C
�
‖u� uN‖H1pEpatchq

∥∥∥ψβ
ER̄E

∥∥∥
H1pEpatchq

� ∥∥rEpatch

∥∥
L2pEpatchq

∥∥∥ψβ
ER̄E

∥∥∥
L2pEpatchq

�
(4.68)

¤ ∥∥∥ψ
β{2
E R̄E

∥∥∥
L2pEq

∥∥∥pR̄E �REqψβ{2
E

∥∥∥
L2pEq

� C
�
‖u� uN‖H1pEpatchq

∣∣∣ψβ
ER̄E

∣∣∣
H1pEpatchq

� ∥∥rEpatch

∥∥
L2pEpatchq

∥∥∥ψβ
ER̄E

∥∥∥
L2pEpatchq

�
.

Applying Theorem 4.4 together with a scaling argument, we obtain, as β ¡ 1{2, for ε ¡ 0,
and as we assumed in Section 3.2 that the mesh is regular,

∣∣∣ψβ
ER̄E

∣∣∣
2

H1pEpatchq ¤ Ch�1
E pεp2p2�βq

N,E � ε�1q∥∥∥ψ
β{2
E R̄E

∥∥∥
2

L2pEq , (4.69)
∥∥∥ψβ

ER̄E

∥∥∥
2

L2pEpatchq ¤ ChEε
∥∥∥ψ

β{2
E R̄E

∥∥∥
2

L2pEq , (4.70)

and thus∥∥∥ψ
β{2
E R̄E

∥∥∥
L2pEq ¤ C

�∥∥R̄E �RE

∥∥
L2pEq � h

�1{2
E pεp2p2�βq

N,E � ε�1q1{2 ‖u� uN‖H1pEpatchq
� h

1{2
E ε1{2 ∥∥rEpatch

∥∥
L2pEpatchq

�
.

(4.71)

Choosing ε � p�2
E yields

∥∥∥ψβ{2R̄E

∥∥∥
L2pEq ¤ C

�∥∥R̄E �RE

∥∥
L2pEq � h

�1{2
E pN,E ‖u� uN‖H1pEpatchq

� h
1{2
E p�1

N,E

∥∥rEpatch

∥∥
L2pEpatchq

�
.

(4.72)

Using the triangle inequality, we obtain with Theorem 1.21 that

‖RE‖L2pEq ¤ ∥∥R̄E �RE

∥∥
L2pEq �

∥∥R̄E

∥∥
L2pEq

¤ C

�∥∥R̄E �RE

∥∥
L2pEq � pβ

N,E

∥∥∥ψ
β{2
E R̄E

∥∥∥
L2pEq

�
¤ C

�
pβ

N,E

∥∥R̄E �RE

∥∥
L2pEq � h

�1{2
E p1�β

N,E ‖u� uN‖H1pEpatchq
� h

1{2
E p�1�β

N,E

∥∥rEpatch

∥∥
L2pEpatchq

�
,

(4.73)
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and
∥∥rEpatch

∥∥
L2pEpatchq is estimated using (4.65), giving, due to the local comparability of h

and p,

‖RE‖L2pEq ¤ C
�
pβ

N,E

∥∥R̄E �RE

∥∥
L2pEq � h

�1{2
E p1�β

N,E ‖u� uN‖H1pEpatchq
� h

1{2
E p�1�β

N,E

∥∥rEpatch

∥∥
L2pEpatchq

�
¤ C

�
pβ

N,E

∥∥R̄E �RE

∥∥
L2pEq � h

�1{2
E p1�β

N,E ‖u� uN‖H1pEpatchq
� h

1{2
E p�1�β

N,E

�
pβ

N,E

∥∥r̄Epatch
� rEpatch

∥∥
L2pEpatchq (4.74)

� h�1
E p2

N,K ‖u� uN‖H1pEpatchq
��

¤ C
�
pβ

N,E

∥∥R̄E �RE

∥∥
L2pEq � h

�1{2
E p1�β

N,E ‖u� uN‖H1pEpatchq
� h

1{2
E p�1�2β

N,E

∥∥r̄Epatch
� rEpatch

∥∥
L2pEpatchq

�
.

The proof for E P EN,N is done analogously. For E P EC,N , we have to add the term
corresponding to the contact boundary, gpβ

N,K ‖λN � λ‖L2pEq.
Plugging the results together, we obtain for |BKXΓC| � 0 due to the local comparability

of h and p with an adequate element patch Kpatch � Epatch for all E � BK, as β ¡ 1{2,

η2
N,K � h2

Kp�2
N,K ‖rK‖2

L2pKq � hKp�1
N,K

¸
E�BK

‖RE‖2
L2pEq

¤ C
�
h2

Kp�2
N,K

�
p2β

N,K ‖r̄K � rK‖2
L2pKq � h�2

K p4
N,K ‖u� uN‖2

H1pKq
	

� hKp�1
N,K

¸
E�BK

�
p2β

N,K

∥∥R̄E �RE

∥∥2

L2pEq

� h�1
K p

2p1�βq
N,K ‖u� uN‖2

H1pEpatchq

� hKp
�2p1�2βq
N,K

∥∥r̄Epatch
� rEpatch

∥∥2

L2pEpatchq
	�

¤ C
�pp2

N,K � p1�2β
N,K q ‖u� uN‖2

H1pKpatchq
� h2

Kp
�2p1�βq
N,K p1� p2β�1

N,K q∥∥r̄Kpatch
� rKpatch

∥∥2

L2pKpatchq (4.75)

� hKp2β�1
N,K

¸
E�BK

∥∥R̄E �RE

∥∥
L2pEq

�
¤ C

�
p1�2β

N,K ‖u� uN‖2
H1pKpatchq

� h2
Kp�3�4β

N,K

∥∥r̄Kpatch
� rKpatch

∥∥2

L2pKpatchq
� hKp2β�1

N,K

¸
E�BK

∥∥R̄E �RE

∥∥2

L2pEq
�

¤ Cp2β
N,K

�
pN,K ‖u� uN‖2

H1pKpatchq � h2
Kp�3�2β

N,K

∥∥r̄Kpatch
� rKpatch

∥∥
L2pKpatchq

� hKp�1
K

¸
E�BK

∥∥R̄E �RE

∥∥2

L2pEq



.
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For E � BK X ΓC, we obtain in a similar fashion

η2
N,K ¤ Cp2β

N,K

�
pN,K ‖u� uN‖2

H1pKpatchq � h2
Kp�3�2β

N,K

∥∥r̄Kpatch
� rKpatch

∥∥
L2pKpatchq

� hKp�1
K

¸
E�BK

∥∥R̄E �RE

∥∥2

L2pEq (4.76)

� g2hKp�1
K ‖λN � λ‖2

L2pBKXΓCq
	
.

Summing up, and noting that the term involving λN vanishes whenever BK X ΓC � H,
we have:

Theorem 4.5 (Efficiency). There exists a constant C ¡ 0 such that residual error indicator
satisfies

η2
N,K ¤ Cp2β

N,K

�
pN,K ‖u� uN‖2

H1pKpatchq � h2
Kp�3�2β

N,K

∥∥r̄Kpatch
� rKpatch

∥∥
L2pKpatchq

� hKp�1
K

¸
E�BK

∥∥R̄E �RE

∥∥2

L2pEq � g2hKp�1
K ‖λN � λ‖2

L2pBKXΓCq
	 (4.77)

for all N and K P TN .

Thus, up to the term containing ‖λN � λ‖L2pEq, we obtain the same efficiency result as
in [MW01]. Note, however, that the presence of this additional term is not surprising: It
corresponds to the error done in the approximation of λ, and is as such, at least from a
heuristic point of view, acceptable in the efficiency estimate.

4.3 An hp-Adaptive Mesh Refinement Algorithm

We shall describe a mesh refinement algorithm which is aimed at producing good meshes for
the problem under consideration. The basic approach in the refinement is always the one
discussed, for example, in [BC04, p. 98], that is,

SOLVE ñ ESTIMATE ñ MARK ñ REFINE,

that is, we solve the discrete problem to find an approximate solution uN P VN , estimate
the error based on the results of the preceding sections, mark those elements where the error
indicator is high, and refine those elements. For the refinement itself, we use two distinct
refinement strategies:

1. In the h-adaptive refinement, we divide all elements which have been marked into four
new elements. For simplicity, we restrict ourselves to halving the quadrilaterals which
are the basis of our partition of the domain in both directions simultaneously.

2. In the hp-adaptive refinement, we decide first whether to do a bisection of a marked ele-
ment, or whether to increase the polynomial degree on the given element by one. Again,
for simplicity, we increase the polynomial degree in both directions simultaneously.

A fundamental question in the theory of fully automatic hp-adaptive algorithms is how
to decide whether an h- or a p-refinement should be applied on a given element. Several
different strategies were compared in [EM07] for the case of triangular meshes; we shall use
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the approach of expanding the numerically computed solution into Legendre polynomials and
estimating the decay of the coefficients, as was proposed therein and also in [HS05]. At the
heart of this heuristic, we have the following result, which can be found in [Mel02, Lemma
3.2.7] and is based on the corresponding one-dimensional result given in [Dav63, Theorem
12.4.7].

Theorem 4.6. Let I :� r�1, 1s, S :� I2 and u : S Ñ R be real-analytic, and satisfy for some
Cu, γ ¡ 0, hx, hy P p0, 1s

‖Dαu‖L8pp�1,1q2q ¤ Cuhα1
x hα2

y γ|α|α! for all α � pα1, α2q P N2
0z tp0, 0qu. (4.78)

Then, u can be expanded in a Legendre series on S, and there are C, σ ¡ 0 depending
only on γ such that

upx, yq � 8̧

i,j�0

uijLipxqLjpyq uniformly on S, (4.79)

|uij | ¤ CuCp1� σ{hxq�ip1� σ{hyq�j for pi, jq � p0, 0q. (4.80)

In particular, setting b :� lnpminp1�σ{hx, 1�σ{hyqq, we see that for an analytic function
u, the Legendre coefficients uij satisfy

|uij | ¤ CuC expp�bpi� jqq. (4.81)

Calculating b from the given Legendre coefficients of the local approximation on a single
element with the above formula therefore gives a heuristic estimate of how regular the function
is locally: We expect that the behaviour of the true, unknown Legendre coefficients is reflected
by the known Legendre coefficients of the given approximation.

We prove a result showing that based on b, we obtain fast convergence of the local poly-
nomial approximations, which shows heuristically why the above approach is reasonable. We
follow the proof for [Mel02, Proposition 3.2.8], but in contrast to that result, we are actually
working on rectangular elements and can therefore directly use the L2-projection operator,
which is for u as above given by

ΠL2pp�1,1q2q
p upx, yq :�

p̧

i,j�0

uijLipxqLjpyq. (4.82)

Theorem 4.7. Under the assumptions of the last theorem, there exist constants C ¡ 0, σ ¡ 0
depending only on γ ¡ 0 such that

∥∥∥u�ΠL2pp�1,1q2q
p u

∥∥∥
L8pp�1,1q2q � ∥∥∥Bx

�
u�ΠL2pp�1,1q2q

p u
	∥∥∥

L8pp�1,1q2q
� ∥∥∥By

�
u�ΠL2pp�1,1q2q

p u
	∥∥∥

L8pp�1,1q2q

¤ CCu

��
hx

hx � σ


p�1 �
�

hy

hy � σ


p�1
�

.

(4.83)

The proof uses the following version of Markov’s inequality, which can be found in [DL93,
Theorem 4.1.4].
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Theorem 4.8 (Markov’s inequality). For all polynomials v P Pp,
∥∥v1∥∥

L8p�1,1q ¤ p2 ‖v‖L8p�1,1q . (4.84)

Proof of Theorem 4.7. We only prove the estimate for Bx
�
u�ΠL2pp�1,1q2q

p u
	
; the other in-

equalities follow similarly. Clearly,
∥∥∥Bx

�
u�ΠL2pp�1,1q2q

p u
	∥∥∥

L8pp�1,1q2q ¤
¸

i¥p�1
j¥0

|uij |
∥∥L1i

∥∥
L8p�1,1q ‖Lj‖L8p�1,1q

�
i̧¥0

j¥p�1

|uij |
∥∥L1i

∥∥
L8p�1,1q ‖Lj‖L8p�1,1q .

(4.85)

By (4.84) and (4.80), after setting αx :� p1�σ{hxq�1 and αy :� p1�σ{hyq�1 and decreasing
σ as needed to absorb the additional factor i2,

∥∥∥Bx
�
u�ΠL2pp�1,1q2q

p u
	∥∥∥

L8pp�1,1q2q ¤ CuC

���� ¸
i¥p�1
j¥0

αi
xαj

y �
i̧¥0

j¥p�1

αi
xαj

y

����
� CuC

�
αp�1

x

1� αx

8̧

j�0

αj
y � αp�1

y

1� αy

8̧

i�0

αi
x

�
(4.86)

� CuC

p1� αxqp1� αyq
�
αp�1

x � αp�1
y

�
,

and the result follows.
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Chapter 5

Numerical Experiments

We now present some numerical experiments. The implementation was done using Fortran
90 and is based on the software package maiprogs by Matthias Maischak (see [Mai01b]). The
problem descriptions were given in the maiprogs control language BCL.

The discrete problems which are solved numerically are those given in Problem 3.32. We
need to chooses bases of the spaces VN and WN . For VN , we choose tensor products of
antiderivatives of Legendre polynomials piecewise with respect to the mesh, corrected on the
inter-element boundaries by the minimum rule to deal with differing polynomial degrees and
hanging nodes. For WN , we are able to use discontinuous basis functions, and thus, we select
Lagrange interpolation polynomials at the shifted and scaled Gauss points on each boundary
piece on ΓC. Denoting these bases as pviqi�1,...,N and pwjqj�1,...,N 1 , respectively, we define
the matrices ApNq P RN�N and BpNq P RN 1�N by

A
pNq
kl :� apvl,vkq and BpNqmn :� bpvn,wmq (5.1)

and the vector f pNq P RN by
f
pNq
k :� Lpvkq, (5.2)

then we see that in matrix notation, we obtain:

Problem 5.1 (Discrete primal-dual formulation, Tresca friction, forced contact, matrix for-
mulation). Find pxpNq, zpNqq P RN � r�1,�1sN 1 such that for all wpNq P r�1,�1sN 1 ,

ApNqxpNq �BpNqT zpNq � f pNq, (5.3)

pwpNq � zpNqqBpNqxpNq ¤ 0. (5.4)

It is then easy to see that Problem 5.1 has a unique solution, which corresponds to the
unique solution of Problem 3.32 through

uN �
Ņ

i�1

x
pNq
i vi and λN �

N 1̧

j�1

z
pNq
j wj . (5.5)

To be able to solve this problem efficiently, we use a similar approach as proposed in [Sin06]:
Defining the Schur complement matrix by

SpNq :� BpNqApNq�1
BpNqT , (5.6)

we have that the above system corresponds to

pwpNq � zpNqqSpNqzpNq ¥ pwpNq � zpNqqBpNqApNq�1
f pNq for all wpNq P r�1,�1sN 1 . (5.7)
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Due to the inf-sup condition proved in Theorem 3.33 and the symmetry and positive def-
initeness of ApNq, we see that SpNq is symmetric and positive definite. Thus, the reduced
variational inequality (5.7) admits a unique solution for zpNq, and given this solution, we
can find xpNq by solving (5.3). The numerical computation of SpNq is done by first cal-
culating a Cholesky factorisation of ApNq using the PARDISO library and METIS (see
[SG02, SG06, KK98]).

We are therefore led to the question of how to solve the variational inequality (5.7)
efficiently. As detailed in [Sin06, Section 4.2], the MPRGP algorithm given in [DS05] can be
generalised to such a problem with two-sided constraints; see Section 5.1 for a short review
of the algorithm.

We give some numbers below showing that for the hp-version, the matrices SpNq are
very ill-conditioned, but diagonal scaling (which can easily be applied, even with variational
inequalities) was sufficient for the two-dimensional problems under consideration (where the
boundary is one-dimensional), as here, N 1, and thus the dimensionality of the variational
inequality, stays relatively small.

For the numerical problems under consideration, we consider h-uniform and h-adaptive
versions with polynomial degrees 2, 3 and 4 (hup2, hup3 and hup4 and hap2, hap3 and hap4,
respectively), the uniform p-version (pu), and two different hp-adaptive versions. All methods
use the same initial mesh.

In the h-adaptive methods, we refine all elements where the local error indicator is larger
than 1{2 times the mean local error indicator.

The first hp-adaptive version (hpa1) is similar as in [MS05], and works by sorting elements
by the local error indicator and h-refining the first and p-refining the second ten percent.
The second hp-adaptive version (hpa2) works, as described in more detail in Section 4.3, by
estimating the decay of the coefficients in the local expansion of the numerical solution into
tensor products of Legendre polynomials. We refine the 20 percent of the elements with the
highest local error indicator. Calculating b, which is given as in (4.81), by a linear regression,
we do a p-refinement if b ¡ 1, and an h-refinement otherwise. Here, we start with a uniform
polynomial degree of 3 to be able to obtain a useful estimate of the rate of decay.

We do not consider methods using a polynomial degree of 1, as the convergence rate
results in Subsection 3.2.3 only apply for splines of local polynomial degree ¥ 2.

Note that there are no exact solutions for all problems we consider below. Therefore, we
cannot give any estimates including the actual error, but only the estimated error as given
by the residual error indicator. This means, in particular, that for all p-refining methods, the
given numbers might overestimate the actual error by as much as a factor p in addition to
all effects resulting from the terms in the reliability and efficiency estimates which cannot be
directly controlled.

Due to the fact that we do adaptive calculations, we plot all error estimates against
the number of degrees of freedom on the domain, and also use these numbers when giving
convergence rates. This means that we do not include the number of degrees of freedom for
the Lagrange multiplier space in the analysis below, but this should not be significant, as
the mesh on ΓC is constructed from the mesh on Ω, and the bulk of the total problem size
stems from the domain discretisation; in particular, the total number of degrees of freedom
dimVN � dimWN can be bounded by 2N , where N � dimVN .
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5.1. THE MPRGP ALGORITHM WITH TWO-SIDED CONSTRAINTS

5.1 The MPRGP Algorithm with Two-Sided Constraints

The MPRGP algorithm as used in our numerical computations is given in Algorithm 1.The
functions β :� pβjqNj�1, ϕ :� pϕjqNj�1 and ν :� pνjqNj�1 depend on a vector y P RN (for which
we always plug in the current approximation x P RN ) and on the residual r � Ax � b and
are defined by

βjpyq :�
$'&'%minprj , 0q, yj � `j ,

maxprj , 0q, yj � uj ,

0, otherwise,

(5.8)

ϕjpyq :�
#

rj , `j   yj   uj ,

0, otherwise,
(5.9)

and

νjpyq :� βjpyq � ϕjpyq. (5.10)

For z P RN , we define z̃ P RN , which depends on the current approximation x P RN , by

z̃ :� ᾱ�1 px�maxp`,minpu, x� ᾱ � zqqq . (5.11)

5.2 Problems and Results

We analyse the following two problems, which are both taken from [Han05, Section 6.6].

Example 5.2 ( [Han05, Example 6.12] ). Consider the domain Ω :� p0, 4q � p0, 4q, where
space is measured in millimeters, under the plane stress assumption, with the boundary
decomposed into the Dirichlet boundary ΓD :� t4u � p0, 4q, the Neumann boundary ΓN :�
pt0u � p0, 4qq Y pp0, 4q � t4uq, and the contact boundary ΓC :� p0, 4q � t4u. The elastic
constants are E � 15kN{mm2 and ν � 0.4, the frictional constant is g � 4.5kN{mm2.
The volume forces vanish, F :� p0, 0qkN{mm2, and on the Neumann boundary, we have
Gpx1, x2q :� p1.5p5�x2q,�.75qkN{mm2 on t0u� p0, 4q, and no surface forces on p0, 4q� t4u,
G :� p0, 0qkN{mm2.

The convergence plot is given in Figure 5.1, and Figures 5.2 and 5.3 show the deformed
mesh and Lagrange multiplier for the second hp-adaptive method, which can be expected to
deliver the best results. The advantage of the adaptive methods compared to the uniform
methods is very clear: Neither the uniform h-versions nor the uniform p-version can deliver
a satisfying convergence rate, but the adaptive h-methods give good results.

It seems that the second hp-adaptive method hpa2 yields an exponential convergence
rate. Numerically, assuming that the error approximately follows a behaviour of the type
eN � C expp�βN1{3q and doing a linear least squares estimate for ln eN � ln C � βN1{3, we
obtain β � 0.3476. Such a behaviour is expected from hp-FEM in two space dimensions for
appropriate meshes; see [GB86]. The condition numbers of the Schur complement become
as high as 5.5 � 108 for 22690 degrees of freedom for uN ; by a diagonal scaling, however, it
is reduced to 2.7 � 103. Table 5.1 gives the number of elements with the different polynomial
degrees. Figure 5.4 shows a zoom of the mesh in the final refinement step, together with
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Figure 5.1: Error plot, Example 5.2

Figure 5.2: Deformed mesh, Example 5.2, method hpa2
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Algorithm 1: MPRGP algorithm for minimising 1
2xT Ax� xT b subject to u ¥ x ¥ `

Data: A P RN�N positive definite, b, u, ` P RN with `   u, parameter ᾱ ¡ 0
Result: minimiser x P RN of 1

2xT Ax� xT b
x :� 0;
r :� b;
p :� ϕpxq;
while |νpxq| ¡ ε do

if βpxq � β̃pxq   Γ2ϕpxq � ϕ̃pxq then
// trial CG step
αCG :� p�r

p�Ap ;
αmin :� min tα : ` ¤ x� αp ¤ uu;
αmax :� max tα : ` ¤ x� αp ¤ uu;
if αmin ¤ αCG ¤ αmax then

// CG step
x :� x� αCG � p;
r :� r � αCG �Ap;
p :� ϕpxq � ϕpxq�Ap

p�Ap ;
else

// expansion step
if αCG   αmin then

x :� x� αmin � p;
r :� r � αmin �Ap;

else
// αCG ¡ αmax

x :� x� αmax � p;
r :� r � αmax �Ap;

end
x :� maxp`,minpu, x� ᾱ � ϕpxqq;
r :� Ax� b;
p :� ϕpxq;

end
else

// proportioning step

αCG :� r�βpxq
βpxq�Aβpxq ;

x :� maxp`,minpu, x� αCGβpxqq;
r :� Ax� b;
p :� ϕpxq;

end
end

the polynomial degrees, near the point of the contact boundary where the transition from
sticking to sliding happens.

The uniform h-versions all deliver convergence rates of about 0.45, which corresponds
to the fact that the solution is not very regular. The adaptive h-versions with polynomial
degree 2, 3 and 4 deliver convergence rates of 0.6, 0.9 and 1.5, respectively, which is still not
optimal, but significantly better. The uniform p-version only yields a convergence rate of
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Figure 5.3: Lagrange multiplier, Example 5.2, method hpa2

refinement step |T | 3 4 5 6 7 8
1 16 16
2 28 28
3 43 42 1
4 64 58 6
5 85 70 15
6 97 66 28 3
7 127 78 41 6 2
8 157 79 57 12 9
9 196 83 83 16 14

10 226 75 107 25 19
11 271 67 131 49 22 2
12 319 59 165 61 26 8
13 358 54 158 87 36 19 4
14 418 40 180 113 44 37 4
15 472 34 176 145 64 44 9

Table 5.1: Number of elements of different polynomial degrees, Example 5.2, method hpa2
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Figure 5.4: Polynomial degree distribution, zoom onto r0.5, 1.5s � r0.0, 0.5s, Example 5.2,
method hpa2, final refinement step
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about 0.35, which can be conjectured to stem from the fact that a uniform p-mesh will not
be appropriate do decompose the contact boundary properly into the sliding and the sticking
region.
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Figure 5.5: Error plot, Example 5.3

Figure 5.6: Deformed mesh, Example 5.3, method hpa2

Example 5.3 ( [Han05, Example 6.13] ). In the second example, we again use millimeters
as spacial unit, and consider Ω :� p0, 10q � p0, 2q with plane stress, ΓD :� p0, 10q � t2u,
ΓN :� pt0u � p0, 2qq Y pt10u � p0, 2qq and ΓC :� p0, 10q � t0u. The elastic constants are
E � 10kN{mm2 and ν � 0.3, the frictional constant is g � 1.75kN{mm2. The volume forces
vanish, F :� p0, 0qkN{mm2, the surface forces on t0u� p0, 2q are Gpx1, x2q :� p5, 0qkN{mm2,
and on t10u � p0, 2q, Gpx1, x2q :� p2.5x2 � 7.5,�1qkN{mm2.
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Figure 5.7: Lagrange multiplier, Example 5.3, method hpa2

refinement step |T | 3 4 5 6 7
1 4 4
2 7 7
3 13 13
4 22 22
5 37 37
6 58 57 1
7 85 78 7
8 124 104 20
9 175 135 40

10 226 161 63 2
11 280 171 94 11 4
12 331 170 132 22 7
13 400 167 173 45 14 1
14 502 189 211 74 24 4
15 580 170 254 116 33 7

Table 5.2: Number of elements of different polynomial degrees, Example 5.3, method hpa2
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Figure 5.8: Polynomial degree distribution, zoom onto r1.25, 2.5s � r0.0, 0.5s, Example 5.3,
method hpa2, final refinement step
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Figure 5.9: Polynomial degree distribution, zoom onto r6.875, 8.125s�r0.0, 0.5s, Example 5.3,
method hpa2, final refinement step

The convergence plot is shown in Figure 5.5, and Figures 5.6 and 5.7 give the deformed
mesh and Lagrange multiplier for the second hp-adaptive version. Again, only the adaptive
methods yield acceptable convergence rates, the uniform methods converge too slowly.

Here, the second hp-adaptive version appears to yield an exponential convergence rate,
and for an error behaviour of the form eN � C expp�βN1{3q, linear least squares for ln eN

yields β � 0.3167. The condition number of the unmodified Schur complement for 19045
degrees of freedom on the domain is 5.3 � 107; after diagonal scaling, we obtain a condition
number of 1.2 � 103. Table 5.2 gives the number of elements with the different polynomial
degrees. Figures 5.8 and 5.9 show zooms of the mesh in the final refinement step, together
with the polynomial degrees, near the two points of the contact boundary where the transition
from sticking to sliding happens.

The uniform h-versions all deliver a convergence rate of about 0.38. The adaptive h-
versions with polynomial degrees 2, 3 and 4 yield convergence rates of 0.6, 0.95 and 1.6,
respectively, again a significant enhancement. The uniform p-version delivers a convergence
rate of about 0.3, again significantly worse than all the other methods.

5.3 Comments

When comparing different choices for the mesh of a finite element method, it is not only
relevant to compare the errors of the different methods, but also the computational work. In
our numerical experiments, it showed that the different adaptive methods take a comparable
time, as the main task is calculating a Cholesky decomposition of the stiffness matrix ApNq
while constructing the Schur complement, and the iterations of the MPRGP algorithm are
rather negligible due to the fact that the Lagrange multiplier only has about 300 degrees
of freedom. Therefore, we can recommend the fully automatic second hp-adaptive strategy
proposed above for practical computations.

Compared to the results given in [Han05], we see that the higher-order elements we
employ yield significantly better convergence rates in adaptive computations. This is what
we expected from the a priori error estimate in Theorem 3.35, together with the reliability
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and efficiency of the error indicator given in Theorems 4.3 and 4.5. The non-optimal terms
in these results might also be the reason why we do not obtain the full approximation rates
expected from the h-adaptive methods used. Note here, however, that due to the fact that
we use a smaller polynomial degree for the approximation of λ, we can only expect a rate
of up to N1{2p�1{4 for a pure h-version; but even this, lower, rate is not fully attained. For
hp-versions, the reduced rate for the approximation of the Lagrange multiplier is irrelevant,
as we anyways expect exponential convergence.
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Conclusion

In this diploma thesis, we gave an account of the mathematical theory and numerical analysis
of an elastic contact problem with friction, focussing on the latter. In Chapter 2, we saw that
the existence and uniqueness theory for the problem with Tresca friction is simplified by the
fact that we only have to deal with a problem of convex minimisation.

The numerical analysis, however, is more complicated. Due to the presence of the non-
differentiable functional, which contains an integration which cannot be done exactly when
using polynomials of higher degrees, we use a primal-dual formulation in the discretisation.
This allows us to use a very elegant approach for the actual solution of the discrete problem,
based on the Schur complement of the system matrix and using the very powerful MPRGP
algorithm developed in [DS05], as suggested in [Sin06]. The primal-dual formulation leads
to certain difficulties in the proof of an a priori convergence rate result. Using a new kind of
hp-mortar projection operator, constructed in Subsection 3.2.2, we can remedy these prob-
lems, and obtain an error estimate given in Theorem 3.33 which shows (Theorem 3.35) that
a well-chosen hp-mesh can be expected to yield exponential convergence.

In Chapter 4, we use the duality approach suggested in [Han05] to construct a variant of
the residual error indicator for the displacement u of our primal-dual formulation. We obtain
reliability and efficiency (Theorems 4.3 and 4.5) by the methods developed in [MW01] up to
terms which we expect to be of higher order for adapted meshes, and up to a factor p, which
is also present in the error indicator for linear systems given in [MW01]. Furthermore, we
recapitulate the ideas of the hp-adaptive strategies given in [HS05, EM07] using estimation
of the decay of the coefficients of the Legendre series of the discrete solution for the decision
of whether to h- or to p-refine a certain element.

This combination turns out to be very effective, as can be seen in the numerical exper-
iments given in Chapter 5. We see that higher order h-adaptive methods yield very good
convergence rates compared to uniform methods. The uniform p-version, in particular, is not
able to deliver an acceptable convergence rate, which is likely due to the fact that the (a priori
unknown) points of nondifferentiability of λ are not resolved properly by the mesh. With the
hp-adaptivity using the decay of the Legendre coefficients, in contrast, we can even obtain
exponential convergence. This proves that even for relatively complicated nonlinear prob-
lems, fully automatic hp-adaptivity is very effective, and if the implementational complexity
appears to be too high, one should at least try to use h-adaptive methods, by which one can
obtain the maximal order of convergence of an h-version even for non-smooth solutions.
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