
▪ ▪ ▪

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

http://www.tuwien.ac.at/

▪ ▪ ▪

http://www.tuwien.ac.at/

ä ä

ü

ö

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Changes in the Stock Exchange Market 2
1.3 Electronic Orderbook Trading . 4

1.3.1 Overview . 4
1.3.2 Orderbook Data Availability 5

1.4 Literature on Open Orderbook Markets 7
1.5 Algorithmic Trading . 8

1.5.1 Penn-Lehman Automated Trading Project 9
1.5.2 CCFEA SETS E-PLATFORM 10

2 XETRA Market Model 13
2.1 XETRA History . 13
2.2 Orderbook . 14
2.3 Order Types . 15

2.3.1 Limit Order . 15
2.3.2 Market Order . 15
2.3.3 Additional Order Types . 17

2.4 Additional Flags . 18
2.5 Trading Phases . 19

2.5.1 Pre/Post-Trading . 19
2.5.2 Auctions . 19
2.5.3 Continuous Trading . 20
2.5.4 Volatility Interruptions . 20

3 Data Set 21
3.1 Introduction . 21
3.2 Attributes . 22

3.2.1 ModificationTimestamp . 22
3.2.2 OrderEntryTimestamp . 26
3.2.3 OrderExpiryDate . 26
3.2.4 ISIN . 27
3.2.5 Ordernumber . 27

i

Contents

3.2.6 AuctionTradeFlag . 28
3.2.7 Ordertype . 29
3.2.8 BuySell . 30
3.2.9 Size . 30
3.2.10 Price . 30
3.2.11 Limit . 31
3.2.12 ModReasonCode . 31
3.2.13 Orderrestriction . 32
3.2.14 Traderestriction . 33

3.3 Event Code Sequences . 34
3.3.1 Limit Order Example revisited 35
3.3.2 Market Order Example revisited 36

4 Software Architecture 39
4.1 Design Goals . 39
4.2 Requirements . 40

4.2.1 Software . 40
4.2.2 Hardware . 40

4.3 Package Overview . 41
4.4 Database Architecture . 41

4.4.1 Data Integration . 41
4.4.2 Database Structure . 42

4.5 Orderbook Engine . 43
4.5.1 Order Object Model . 45
4.5.2 Data Access . 45
4.5.3 Orderbook Reconstruction . 45

4.6 Dataset Generator . 46
4.7 Orderbook Visualization . 46

5 Reconstruction Process 51
5.1 Overview . 51
5.2 Static Order Reconstruction . 52

5.2.1 Order Validity Check . 53
5.2.2 Order Repair Strategy . 55
5.2.3 Hidden Size . 60
5.2.4 Result . 60

5.3 Dynamic Order Reconstruction . 61
5.3.1 Orderbook Reconstruction . 61
5.3.2 Order Level Errors . 64
5.3.3 Orderbook Level Errors . 65

ii

Contents

6 Orderbook Visualization 69
6.1 Introduction . 69
6.2 Process Overview . 71
6.3 Data Retrieval . 72
6.4 Order Binning . 72

6.4.1 Overview . 72
6.4.2 Basic Binning Idea . 72
6.4.3 Data Structures . 73
6.4.4 Order Placement . 75
6.4.5 Binning Process . 78

6.5 Visualization . 79
6.6 Zoom . 80
6.7 Filtering . 81

6.7.1 Order Filters . 83
6.7.2 Rectangle Filters . 84

7 Orderbook Visualization Interface 87
7.1 Introduction . 87
7.2 User Interface Description . 88

7.2.1 Overview . 88
7.2.2 Tool Bar . 88

7.3 Data Navigation . 89
7.3.1 Order Exploration Mode . 89
7.3.2 Zoom-In Mode . 89
7.3.3 Zoom Out . 89

7.4 Data Import/Export . 90
7.4.1 File Import . 90
7.4.2 Database Import . 90
7.4.3 Data Export . 90

7.5 Layers . 90
7.5.1 Data Grid . 91
7.5.2 Bid/Ask Spread . 91

7.6 Filters . 92

8 Detection of Algorithmic Trading Patterns 95
8.1 Relevant Work . 95
8.2 Definition of Algorithmic Fleeting orders 96
8.3 Detection of Algorithmic Fleeting orders 97
8.4 Visualization of selected Chain Structures 98

8.4.1 Buy-in-Market chains . 98
8.4.2 Sell-in-Market chains . 100

iii

Contents

8.4.3 CIC order chains . 100

9 Conclusion and Outlook 103

iv

1 Introduction

This chapter motivates the use of the implemented orderbook reconstruction and visu-
alization packages at the beginning (Section 1.1). The rest of this chapter is organized
as follows: Section 1.2 describes most recent changes in the stock exchange market as
well as the competitive environment in the equity market. In Section 1.3 an overview
of electronic orderbook trading is given. Finally Section 1.5 stresses important aspects
of the rising algorithmic trading community.

1.1 Overview

Advances in computer technology as well as changes in the competitive environment
had a large impact on stock exchanges around the globe and led to major changes —
especially in the last decade. The entire trading environment has changed due to the
emergence of fast and cheap electronic orderbook trading and reduced the importance
of classical floor traders. Transparency also improved as real-time orderbooks became
widely available among most major stock exchanges. Even historical orderbook
data is sold by stock exchanges, mainly for the rising number of algorithmic traders
who want to backtest their high-frequency trading strategies. But also academic
institutions require detailed historical orderbook datasets to study liquidity supply
and demand of the market microstructure.
Historical orderbook datasets from stock exchanges are usually made available in a
raw database format and capture every trading event in the system. In order to run an
in-depth analysis various preliminary pre-processing steps have to be taken to ensure
consistency of the entire database. Further basic statistical analysis tools do not give
an intuitive view of orderbook data and orderbook states. As is generally known — a
picture is worth a thousand words. A good visualization tool of orderbook data can
save a lot of time doing explorative data analysis and gives a much deeper impression
of orderbook states, or equivalently, liquidity demand and supply dynamics over time.
Despite the existence of various chart analysis tools implemented in professional
trading software packages no visualization of orderbook data itself has been presented
in literature.
This thesis addresses exactly these issues and presents a software package to recon-
struct and visualize high-frequency orderbook datasets. Thanks to Deutsche Börse
Group a high-frequency dataset from the XETRA trading system was made available
to show the functionality of the reconstruction and visualization engine. Therefore

1

1 Introduction

the software library has been optimized and tested for XETRA orderbook data —
but also other orderbook datasets could be mapped and used by the implemented
software package.
After the initial order reconstruction process is completed the orderbook visualization
engine is able to present the orderbook dataset in an easy-to-use user interface. The
interface supports a zoom function to display orderbook states at any time and price
interval as well as filter and export features. The intuitive way of displaying complex
orderbook datasets facilitates explorative analysis of high-frequency orderbook data
and therefore represents a viable tool to study market microstructure at any detail.

1.2 Changes in the Stock Exchange Market

The severe competition for liquidity among exchanges worldwide has led to major
changes of the exchange market structure and the trading platforms. Potential cost
savings and gains from economies of scale are the most common arguments for a con-
solidation in the stock exchange market.
From a technical viewpoint the development of a new trading platform which handles
a sufficient order flow is usually very complex and expensive. As the development costs
are fixed big economies of scale can be gained by adding more shares or other financial
products to a trading platform. A scalable IT infrastructure facilitates the integration
of various trading platforms accompanied with overall cost reductions (maintenance,
staff, etc.). This is an important aspect for the computer intense electronic orderbook
market (see Section 1.3) in particular which gained significant importance over the last
years and accounts for the lion share of trading turnover on most major stock exchanges
today. Also increased order flow and speed requirements of algorithmic trading clients
(see Section 1.5) make cost intensive improvements of the IT infrastructure necessary
and generally favors big exchanges. Last but not least diversification is another key
point for further mergers between exchanges as they hope to attract more liquidity by
offering a broadened range of tradeable products in more regions around the globe.
Although competition between the big stock exchanges is intense new competitors
arose in form of electronic markets, ‘crossing networks’ and ‘dark pools’. Elec-
tronic markets like the American BATS and Direct Edge or the European Chi-X
and Turquoise aspire to become full exchanges and have already grabbed significant
market shares. Those newly established platforms are typically backed by consortia
of banks in hope to cut trading fees. In contrast crossing networks or dark pools have
been established to trade large blocks away from the eye of the exchanges. By hiding
the buyer’s identity and the price of each trade, market movements against the traders’
position can be avoided.
Altogether fierce competition among the major stock exchanges and its rivals has led

2

1.2 Changes in the Stock Exchange Market

0

5000000

10000000

15000000

20000000

25000000

30000000

2002 2003 2004 2005 2006 2007

NYSE Group

Nasdaq

London SE

Tokyo SE Group

Euronext

Deutsche Börse

Shanghai SE

BME Spanish
Exchanges
Borsa Italiana0

5

10

15

20

25

30

2002 2003 2004 2005 2006 2007

NYSE Group

Nasdaq

London SE

Tokyo SE Group

Euronext

Deutsche Börse

Shanghai SE

BME Spanish
Exchanges
Borsa Italiana

Hong Kong
Exchanges

Figure 1.1: Historical increase in Value of Share Trading among major stock exchanges
in trillion USD as reported by the World Federation of Exchanges in
[WFE08a]
Top ten Stock exchanges have been selected by the their USD value of share
trading turnover in 2007.

to reduced trading fees especially for heavy users like algorithmic traders. While trade
margins shrank the value of share trading (VST) significantly increased in the past
decade. Figure 1.1 shows the VST of the top ten stock exchanges (in terms of VST)
as listed in [WFE08a]. As comparable data could only be obtained for the years 2002–
2007 from [WFE08a] this figure does not reflect the actual market concentration after
recent mergers. It can be seen that the NYSE is the dominant stock exchange with an
estimated VST of 30T(rillion) USD , followed by NASDAQ (15T USD) and the LSE
(10T USD). Compared to the top 3 equity markets the Tokyo SE, Euronext, Deutsche
Börse and the Shanghai SE just play minor roles with a VST of around 5T USD.
Taking into account the mergers between NYSE–Euronext and LSE–Borsa Italia the
market concentration of the top three becomes even more evident.

3

1 Introduction

1.3 Electronic Orderbook Trading

1.3.1 Overview

Electronic Orderbook trading is a method to trade various financial securities (such as
stocks, bonds), currencies and derivatives electronically. Virtual market places bring
potential buyers and sellers together who can access the exchange through electronic
communication networks. Orderbooks form the core of electronic markets where buy
and sell orders are matched against each other. The matching engine follows the rules
defined by the exchanges’ market model and is responsible for a transparent and con-
tinuous price determination process of the traded security.
Advances in computer technology and communication networks have led to an in-
credible increase in electronic trading on most stock exchanges around the globe. It
can be seen that traditional floor trading and brokers are being reduced as market
participants can directly trade financial assets over electronic trading platforms. Cost
reductions for institutional investors are not the only advantages of electronic trading
as only a fraction of traders and brokers have to be employed in the exchanges’ back
offices. Improvements also come from a faster and more transparent transaction pro-
cess which involves order routing and matching.
Major stock exchanges have invested heavily in their IT infrastructure to reduce order
roundtrip times to less than ten milliseconds. Market participants can connect their
systems directly to the backbone of the stock exchanges’ computer systems to further
reduce latency times. The order matching engines are now capable to handle even
higher order flows and more financial securities at a time granularity of 10ms.
Market transparency is ensured by (partially) open orderbooks which give traders an
in-depth view of the liquidity supply and demand structure. Further modern trading
software allows to monitor the entire trading process combining various additional in-
formation sources from data feeds or statistical indicators. Thus it is possible to get a
very detailed picture of any market. It also allows market participants to react very
quickly to surprising market events.
Finally these advantages of electronic trading typically lead to more efficiency in trad-
ing and to an increased liquidity of the markets. More liquidity typically reduces
bid/ask spreads and therefore results in cheaper transaction costs for market partici-
pants.
Today’s stock exchanges rely heavily on electronic trading platforms. Examples like
the XETRA trading system (developed by Deutsche Börse) and the NASDAQ stock
exchange have initially been implemented as fully electronic orderbook markets. Even
the traditionally floor based NYSE has most recently introduced the Hybrid R©platform
where almost all listed stocks can be traded either immediately on the electronic plat-
form or further routed on the trading floor.
Figure 1.2 shows the increasing market share of electronic trading done in the XETRA

4

1.3 Electronic Orderbook Trading

62%

64%

66%

68%

70%

72%

74%

76%

78%

80%

2002 2003 2004 2005 2006 2007

Figure 1.2: Share of electronic equity trading at Deutsche Börse AG in 2007
reported by World Federation of Exchanges ([WFE08b])

system by total value of share trading of the Deutsche Börse Group as reported by the
World Federation of Exchanges (WFE) in [WFE08b]. It can be seen that the share
has climbed from 68% to 78% in the five year time period between 2002 and 2007.
Taking into account the value of share trading numbers reported in Figure 1.1 elec-
tronic orderbook trading was responsible for 3.37T USD of trading turnover in 2007.

1.3.2 Orderbook Data Availability

Data from the stock exchanges’ internal orderbook typically allow the reconstruction of
orderbook states at any time. As the in-depth view into the orderbook gives a detailed
picture about the current liquidity supply- and demand situation of a tradeable prod-
uct increasing interest arose from market participants to incorporate this additional
information source in their trading strategies. Increasing demand for orderbook data
mainly comes from algorithmic traders who are implementing high-frequency trading
strategies (see Section 1.5). But also academic institutions require these datasets to
study the empirical liquidity behavior in the market microstructure (Section 1.4). Of-
fering historical data is a lucrative business and most stock exchanges have already
reacted to make real-time data feeds and historical datasets available to paying clients.
Real-time data feeds from the top three stock exchanges (NYSE, NASDAQ, LSE) lets

5

1 Introduction

Stock Exchange Product Market Depth Reference
NYSE TotalView full [NYS08a]
NASDAQ OpenBook full [NAS08b]
LSE Level 2 full [LSE08a]
Deutsche Börse Level 2 10 [DBG08]

Table 1.1: Availability of real-time orderbook data from major stock exchanges

Stock Exchange From To Price Reference
NYSE 2002-1-24 present 24,500 USD [NYS08b]
NASDAQ 2005-8-1 present 2,000 USD/month [NAS08a]
LSE 1997 present 12,360 GBP/year [LSE08b]
Deutsche Börse - - -

Table 1.2: Availability of historical orderbook data from major stock exchanges.

subscribers view the full bid/ask market depth (aggregated volumes of any limit) of
any listed security. By contrast the Deutsche Börse stock exchange currently offers
Level 2 realtime data with a market depth of only 101. Table 1.1 summarizes the
offered products of the above mentioned stock exchanges.

Most recently even historical orderbook data has been made available by stock ex-
changes. These datasets are interesting for backtesting of trading strategies as well as
academic purposes. Only the LSE has made its complete internal orderbook already
publicly available. It includes each order event of the book and is therefore comparable
to the dataset investigated within this thesis. The datasets offered by the NYSE and
NASDAQ only contain aggregated volumes for the full market depth. At least the
number of orders aggregated is reported by the NYSE. The NASDAQ data product
is further restricted to a minimum time interval of one minute.
The Deutsche Börse currently offers no publicly available historical orderbook datasets.
Interested clients therefore have to search for data providers offering historical level
2 data which does not have the complexity of the stock exchange’s internal rebuilt
orderbook. Historical order data products are listed in Table 1.2.

1only the 10 best buy/sell orders are displayed

6

1.4 Literature on Open Orderbook Markets

1.4 Literature on Open Orderbook Markets

As already mentioned in Section 1.2 the availability of orderbook data allows aca-
demics to study empirical market microstructure at any detail. This section gives a
brief overview of literature related to the microstructure of open orderbook markets
with a clear focus on studies using reconstructed (XETRA) orderbook data.
While Harris’ book [Har03] is a broad treatment of economic theory and trading in-
stitutions O’Hara’s [O’H95] is the standard reference for the theory of market mi-
crostructure. Most recently Hasbrouck [Has07] surveyed various econometric models
for the empirical analysis of market microstructure.
Important articles about modeling limit orderbook markets come from Glosten [Glo94],
Parlour [Par98] and Foucault-Kadan-Kandel [FKK01]. According to Glosten’s model
Limit order traders post orders with characteristics (price and volume) that depend on
the underlying asset value. Parlour and Foucault-Kadan-Kandel suggest that the mix
of patient and impatient trader is another key factor to model orderbook dynamics.
The emergence of orderbook data for academic purposes has led to various studies of
market microstructure on almost all major stock exchanges around the world. By re-
construction of the limit orderbook from high-frequency raw data various aspects like
liquidity supply/demand dynamics and commonalities have been analyzed. For exam-
ple, De Winne [dWdH03] and Ekinci [Eki05] studied orderbook dynamics of the fully
reconstructed orderbook from Euronext and the Istanbul stock exchange, respectively.
Wagner [Wag] measured aggregate market liquidity of equity markets in the United
States, the United Kingdom and Japan. Ranaldo [Ran] studied liquidity dynamics
around public events on the Paris Bourse. Subrahmanyam [SCR] et al. analyzed com-
monalities in liquidity on the NYSE. Please refer to [LG] for the most recent collection
of articles on stock market liquidity and market microstructure.
Considering the scope of this thesis the analysis of XETRA orderbook data is of par-
ticular interest. Papers by Grammig et al. ([GHR04],[FG05]) and Gomber et al.
[GST04] focused on the liquidity supply and demand dynamics in the XETRA or-
derbook. Also the commonalities in the XETRA orderbook have been analyzed by
Grammig in [BLGG05].
Loistl et al. have also published numerous papers to investigate the market microstruc-
ture using the dataset investigated within this theses. Ranging from modeling ‘cadlag’
market event time series [LPH06] over best execution issues [LPH07] a wide variety
of aspects have been analyzed. Even algorithmic trading patterns have been found
in [PLH07]. Most recently also liquidity commonalities in the orderbook have been
studied using principal component analysis [PLHK08].

7

1 Introduction

1.5 Algorithmic Trading

Algorithmic trading refers to computer programs that automatically generate and
modify orders based on a predefined algorithm. Based on numerous features such as
news feeds and technical indicators the program decides the timing, limit and size of
orders and enters them into an electronic trading system. Speed and scalability to
various instruments are clearly the main advantages of algorithmic trading programs.
They react to changed market conditions faster than human traders and monitor
an incredible amount of financial instruments. The rising popularity of algorithmic
trading has led to numerous changes of the stock exchanges’ IT infrastructure as
most institutional investors are using automated trading programs. A study by AITE
Group, a consultancy, reckons that the market share of algorithmic trading will reach
over 50% by 2010 [AIT06]. New innovations in this new sector of the financial industry
are also discussed in various trading magazines like Automated Trader [Aut08].
Before deployment the return of algorithmic trading strategies is typically backtested
on historical data material. By monitoring the trading statistics of an algorithm its
behavior and risk can be analyzed under various historical market conditions. After the
algorithm’s parameters have been calibrated it is deployed to the actual trading system.
Further successful algorithms can be easily scaled to other financial instruments as they
handle huge amounts of data feeds simultaneously. Last but not least algorithms have
not the problem of emotional reactions and trading decisions of human traders.
Many institutional investors, especially hedge funds, are already running algorithmic
trading desks on major stock exchanges. Algorithms are typically designed for one of
the following trading strategies:

Transaction cost reduction: The basic idea behind this trading strategy is the split-
ting of large orders to optimize benchmarks like the time weighted average price
(TWAP) or, most commonly, the volume weighted average price (VWAP). Kissel
et al. [KG03] gives a good overview of such trading strategies. Entering large
orders at once into the trading system typically leads to price movements in
the adverse direction — also known as market impact. Most stock exchanges
like the XETRA trading system also allow special order types (typically known
as Iceberg orders, see Section 2.3.3) which do not reveal their entire volume in
the orderbook. Unfortunately these quite simple order mechanisms also can be
detected or reverse engineered by specialized algorithms. Transaction cost reduc-
tion algorithms are able to split these orders according to various optimization
methods and even schedule the timing of order entry.

Arbitrage: Algorithmic arbitrage strategies are designed to generate risk-free profits
by exploiting mispriced financial instruments. Speed is the essence for those
algorithms to make continuous profits as most arbitrage opportunities only last
for a few seconds. Most recently even algorithms that incorporate a certain

8

1.5 Algorithmic Trading

level of uncertainty have been implemented, also known as statistical arbitrage
[Pol07].

Market Making: Market making involves placing a Limit order to sell (or offer) above
the current market price or a buy Limit order (or bid) below the current price
in order to benefit from the bid-ask spread. Most market makers make use of
algorithms to determine the bid/ask spreads accordingly.

Model based strategies: Model based strategies include complex computer models
calibrated and backtested with historical data. These models often contain arti-
ficial intelligence concepts like neural networks and evolutionary programming.
Even news trading algorithms which handle news feeds from Thomson Reuters
or Bloomberg in only fractions of a second are part of this category.

In order to detect short term trading opportunities orderbook data has become
extremely useful to algorithmic traders. As high-frequency strategies often suffer
from slippage costs2, order limits and trading opportunities can be better calibrated
by using high-frequency orderbook data.
In [Har08] Hartle compares price based and orderbook based high-frequency trading
strategies on the S&P Mini future market. His results show that orderbook based
strategies generate better trading signals and returns. In academic literature the
prominent Penn Lehman Automated Trading Project (PLAT) and the project run by
the CCFEA institute at Essex University were two major initiatives to test a broad
range of trading strategies on high-frequency orderbook data.

1.5.1 Penn-Lehman Automated Trading Project

The PLAT project directed by Michael Kearns was initiated in 2002 as a trading
competition were participants could implement their own trading agents using a C++
Application Programming Interface (API) [KO03]. The implemented trading strate-
gies have been tested for a single stock as the framework interface only provided access
to the Microsoft (MSFT) stock listed on the NASDAQ stock exchange. The orderbook
data was obtained from the Island electronic crossing networks (ECN) which is one of
the biggest electronic markets for NASDAQ stocks. For trading agents the orderbook
was visible to a market depth of 15.
After a preliminary backtesting phase on historical data competitors could trade on
the real-time orderbook. Orders from the island orderbook as well as those entered
by virtual trading agents have been merged to a parallel market established by the
project authorities. The implemented trading strategies reported showed some in-
teresting results. Especially relatively simple trading algorithms such as the Static

2Price difference between order entering by client and order execution in the trading system

9

1 Introduction

Orderbook Imbalance (SOBI) or the Electronic VWAP (E-VWAP) strategy showed
remarkable returns [KKMO04]. More complex strategies also included price indica-
tors [SR05], stock news mining [Har04], boosting algorithms [CF06] and evolutionary
programming [SSSK06].
Unfortunately the PLAT project was discontinued in 2006.

1.5.2 CCFEA SETS E-PLATFORM

The SETS E-PLATFORM created by the CCFEA institute from Essex University also
provides a framework to implement and backtest trading strategies using a JAVA API.
Unlike the earlier mentioned PLAT project its dataset comes from the rebuild LSE
orderbook. The matching procedure can be studied with the CCFEA Limit Orderbook
application which is available online under [Mal07]. Figure 1.3 shows a screen shot of
the application user interface.

10

1.5 Algorithmic Trading

F
ig

ur
e

1.
3:

C
C

F
E

A
L

im
it

O
rd

er
bo

ok
A

pp
lic

at
io

n

11

1 Introduction

12

Release Date Content
1.0 10.06.1997 Introduction Xetra front end
2.0 28.11.1997 Introduction Xetra back end
3.0 12.10.1998 Xetra Grundstufe
4.0 02.05.2000 Xetra Warrant Trading
5.0 02.10.2000 European Alliance Release
6.0 30.04.2001 CCP-Readiness Release
7.0 19.08.2002 Xetra BEST Introduction
7.1 06.12.2004 Subscription Right Trading
8.0 23.04.2007 Performance & Speed Release
8.1 22.10.2007 MiFID Readiness Release
9.0 28.04.2008 Introduction to Certificates
9.1 Dec. 2008 (planned) Introduction to ETF Trading

Table 2.1: XETRA Release History (1.0-9.1)

2 XETRA Market Model

This chapter gives a basic overview of the underlying market model used by the XE-
TRA trading system. Starting with a brief introduction of the XETRA (Release)
History (Section 2.1) orderbooks (Section 2.2), order types (Section 2.3), additional
flags (Section 2.4) and trading phases (Section 2.5) will be further described for the
XETRA Release 7.1, which defines all relevant rules for the dataset (Chapter 3) under
investigation.

2.1 XETRA History

XETRA R©1 is a fully electronic trading platform of Deutsche Börse AG. Based on
the Deutsche Börse EUREX system XETRA was implemented in 1997 by Deutsche
Börse Systems and Anderson Consulting (today Accenture) and has been further
developed through various releases [ISE07]. Table 2.1 gives a short overview of the
XETRA release history. The significant changes within the exchange industry over

1The name XETRA can be interpreted as an abbreviation of EXchange Electronic TRAding

13

2 XETRA Market Model

the last years also show up in the most recent releases of the trading platform.
Especially performance improvements have been a big issue since release 8.0 to meet
speed requirements of algorithmic traders who already account for over 40% of all
executed trades. With a minimum roundtrip time of 4ms, an average roundtrip time
of 13ms[Gro08a] and an availability of 99.97%[Gro08b] XETRA is one of the fastest
and most reliable electronic trading platforms worldwide. Release 8.1 was aimed to
meet MiFID requirements in terms of transparency (Best Execution). Later releases
increased the number of tradeable instruments further, including certificates and
exchange traded funds, to over 300,000. XETRA also offers remote access for over
260 participants in 19 countries and more than 4700 authorized traders [Gro08a].
Still in an early development cycle XETRA was created as a scalable platform under
an independent brand name to be easily sold to other exchanges. Today a reasonable
number of exchanges have implemented the XETRA platform like the Frankfurt Stock
Exchange (1997), the Vienna Stock Exchange (1999), the Irish Stock Exchange (2000),
the European Energy Exchange (2005) and the Shanghai Stock Exchange (upcoming).

2.2 Orderbook

An orderbook forms the basis of the market model’s price determination process and
ensures a transparent and continuous price development. Two different books are kept
for (unexecuted) buy and sell orders, respectively. Incoming orders are sorted by the
so-called Price-Time priority rule. Table 2.2 illustrates the sorting procedure in more
detail where T describes the time2 when the Order was entered into the book, L the
limit3 and V the volume of the particular order.
Buy(Sell) Orders with a higher(lower) limit get a higher priority and are therefore
placed higher in the orderbook . If the limits of two orders are equal the one which
has been entered earlier gets a higher priority (compare e.g. buy orders in row 3 and
4). Market orders (M) always have the highest priority in terms of price and are only
sorted by its timestamp of order entry if other Market orders are available in the book
(compare buy orders in row 1 and 2).
The bid/ask spread is defined as the difference between the limits of the best (highest
priority) buy and sell order. In case of a crossed orderbook4 the matching procedure
starts which will be described in Section 2.3 for all different order types.

2For simplicity reasons time is an integer number instead of a date/time value
3For better readability limit has just one decimal place
4price overlapping of bid/ask orders or existence of Market orders which results in a less or equal to

zero bid/ask spread

14

2.3 Order Types

BUY SELL

T L V T L V

2 M 100 4 M 100
3 M 300 3 98.2 200
1 98.0 100 2 98.3 100
5 98.0 1000 1 98.5 1100
4 97.9 500 5 98.6 300

Table 2.2: Orderbook Example
Example shows the Price-Time priority rule applied by the order sorting procedure
to buy orders (left) and sell orders (right).

2.3 Order Types

The following sections give an overview of all different order types defined by the
XETRA market model. Main order types like Limit orders (Section 2.3.1) and Market
orders (Section 2.3.2) as well as Market-to-Limit orders (Section 2.3.3) also include
examples to get a better insight of the matching procedure.

2.3.1 Limit Order

Limit orders represent the most common order type in the XETRA orderbook and
are entered at a fixed limit price. If the limit price of a buy(sell) order overlaps with
the limit of a sell(buy) the order is executed against all possible orders on the other
side of the book with respect to the Price-Time priority rule.
Table 2.3 shows an example of Limit order matching. The incoming sell order at time
T=5 has a lower or equal limit than the buy orders in row 1 and 2 and generates a
crossed orderbook with a bid/ask spread of −0.1. Thus the sell order will be partially
executed with a volume of 100 with the first buy order at 98.3. The rest is fully
executed with the second buy order. The price received by the seller is therefore
98.3 ∗ 100 + 98.2 ∗ 100 = 19650. The right side shows the resulting orderbook at T=6
with a bid/ask spread of 0.2.

2.3.2 Market Order

Market orders are unlimited buy/sell orders. They are to be executed immediately at
the next best price determined. If the volume of the buy(sell) Market order is bigger
than the volume of the best sell(buy) order several trades are generated. Therefore
big Market orders have the characteristic of ‘walking-up-the-book’ which is shown in

15

2 XETRA Market Model

BUY SELL BUY SELL

T L V T L V T L V T L V

2 98.3 100 5 98.2 200 3 98.2 200 2 98.4 300
3 98.2 300 2 98.4 300 1 98.0 100 4 98.5 1000
1 98.0 100 4 98.5 1000 5 98.0 1000 4 98.7 400
5 98.0 1000 4 98.7 400 4 97.9 500 1 98.8 500
4 97.9 500 1 98.8 500

T = 5 T = 6

Table 2.3: Limit Order Matching Example
Example shows the matching of an incoming sell Limit order at T=5 with two buy
orders. Result at T=6 is presented on the right side.

BUY SELL BUY SELL

T L V T L V T L V T L V

2 98.3 100 5 M 1000 5 98.0 500 2 98.4 300
3 98.2 300 2 98.4 300 4 97.9 500 4 98.5 1000
1 98.0 100 4 98.5 1000 4 98.7 400
5 98.0 1000 4 98.7 400 1 98.8 500
4 97.9 500 1 98.8 500

T = 5 T = 6

Table 2.4: Market Order Example
Example shows the matching of a sell Market order at T=5 with 4 buy orders.
Resulting orderbook at T=6 is shown on the right side.

Table 2.4.
The incoming sell order at T=5 with a volume of 1000 is partially executed against
the best buy order at 98.3 (V=100), the second buy order at 98.2 (V=300) and the
third buy order at 98.0 (V=100). Finally the rest volume of 500 is executed at 98.0
with the fourth buy order. The result at T=6 is shown on the right side.

16

2.3 Order Types

BUY SELL BUY SELL

T L V T L V T L V T L V

2 98.3 100 5 M 1000 3 98.2 300 5 98.3 900
3 98.2 300 2 98.4 300 1 98.0 100 2 98.4 300
1 98.0 100 4 98.5 1000 5 98.0 1000 4 98.5 1000
5 98.0 1000 4 98.7 400 4 97.9 500 4 98.7 400
4 97.9 500 1 98.8 500 1 98.8 500

T = 5 T = 6

Table 2.5: Market-to-Limit Order Example
Example shows the matching of a Market-to-Limit sell order with one buy order at
T=5. Resulting orderbook including changed Market-to-Limit order type at T=6
is shown on the right side.

2.3.3 Additional Order Types

Market-to-Limit Order

Market-to-Limit orders are unlimited buy/sell orders, which are to be executed at the
auction price or (in continuous trading) at the best limit in the orderbook, if this limit
is represented by at least one Limit order and if there is no Market order on the other
side of the book. Any unexecuted part of a Market-to-Limit order is entered into the
orderbook with a limit equal to the price of the executed part. This features prevents
the order to walk-up-the-book.
Table 2.5 shows how a Market-to-Limit order works. In contrast to the Market Order
example given in Table 2.4 the incoming Market-to-Limit order at T=5 is only executed
against the best buy order at 98.3 (V=100) and immediately changes to a Limit order
with L=98.3.

Iceberg Orders

Due to the price influencing effect of large Limit orders Iceberg orders, mainly used
by institutional investors, are entered to hide the actual volume of an order. Main
properties of Iceberg orders are the initial peak volume, the whole (hidden) volume
and a specified limit price. When an Iceberg order is entered into the system only
the peak volume is visible in the orderbook. Once the peak volume has been fully
executed another peak (Limit order) with the same volume and limit is entered into
the orderbook. Finally, if the peak volume is greater than the residual volume of an
Iceberg order, the residual volume is entered into the orderbook. Because of the simple
structure of Iceberg orders they can be identified using computerized methods.

17

2 XETRA Market Model

Stop Orders

Stop orders contain an additional stop-limit attribute and are typically not immedi-
ately visible in the orderbook. With a stop order a trader can either ‘stop into the
market’ in case of a buy-stop order (order is entered if price is equal or higher than
limit) or limit losses with a sell-stop order (order is entered if price is equal or lower
than limit).

2.4 Additional Flags

Additional flags added by the trader can further specify the matching behavior of
an order. By using Immediate-or-Cancel and Fill-or-Kill flags traders have a better
control over the execution price of an order. These flags can reduce slippage costs
as well as market impact by restricting orders to ‘walk-up-the-book’. By contrast the
Triggered-Stop-Order flag identifies orders which have been entered because a specified
stop-limit has been reached.

Immediate-or-Cancel: The Immediate-or-Cancel flag forces the trading system to
check which parts of the incoming order can be matched immediately at ar-
rival time. All unexecuted parts of the order are to be canceled immediately. In
case of a Market order or an aggressive Limit order this restriction prevents a
‘walking-up-the-book’ of the order.

Fill-or-Kill: In contrast to the Immediate-or-Cancel flag the Fill-or-Kill restriction lets
the system check if the full order can be executed immediately. If not the entire
order is deleted.

Triggered-Stop-Order: The Triggered-Stop-Order flag indicates that the order has
been entered into the system because a specified stop-limit has been reached
(see also Stop orders in Section 2.3.3).

18

2.5 Trading Phases

Pretrading
Continous

Trading

Continous

Trading
Posttrading

7:30 8:50 9:00 13:00 13:02* 17:30 17:35 20:30

Opening

Auction

Intraday

Auction

Closing

Auction

Figure 2.1: DAX Trading Phases of DAX stocks in the XETRA trading system [Gro03]

2.5 Trading Phases

This section gives a brief overview of the trading phases for DAX traded stocks initially
defined by XETRA Release 7.0[Gro03]. Figure 2.1 shows the basic trade flow including
the trading hours at the bottom. Opening hours of the XETRA trading system are
from 7:30 until 20:30 while traders can enter, modify or delete their orders. The trading
day starts with the Pre-Trading phase at 7:30 and ends with the Post-Trading phase
at 20:30 (Section 2.5.1). Actual trading starts at 8:50 at the beginning of the Opening
Auction (OA) (Section 2.5.2). The OA ends at 9:00 and the Continuous Trading (CT)
phase is initiated until 17:30 (Section 2.5.3). The CT phase is only interrupted during
the Intraday Auction (Section 2.5.2) at 13:00 and by possible volatility interruptions
which can occur during the day (Section 2.5.4). The Closing Auction ends the trading
session at 17:30 (Section 2.5.2).

2.5.1 Pre/Post-Trading

The Pre-Trading phase and the Post-Trading phase are the same for all equities
whereas the course of the trading phase may vary from equity to equity. Accord-
ing to their segmentation, individual equities are traded in different trading models
and at different trading hours. The Pre-Trading phase initiates the trading session.
Market participants can enter orders and quotes for preparing the actual trading day
and modify or delete their existing orders and quotes. The exchange confirms the
member’s order entry and maintenance by order confirmation. Market participants do
not receive an overview of the market’s orderbook situation as the orderbook is closed
during this phase. The last price fixed or the best bid/best ask limits after the last
auction of the previous day are displayed.

2.5.2 Auctions

In auctions, all order sizes (round lot and odd lot orders) are tradable. By considering
all existing orders (Market orders, Limit orders, Market-to-Limit orders and Iceberg

19

2 XETRA Market Model

orders) in one equity, a concentration of liquidity is ensured. Iceberg orders participate
with their full volume in auctions. Concerning the price determination in auctions,
Market-to-Limit orders are handled in the same way as Market orders. If there is no
auction price Market-to-Limit orders, which were entered during the call phase of the
auction, are deleted. If there is an auction price, remaining parts of Market-to-Limit
orders, which are partly executed, and Market-to-Limit orders, which are not executed,
are entered into the orderbook with a limit equal to the price of the auction. Price
determination in auctions is effected according to the principle of most executable
volume. At the same time Price-Time priority is valid so that the maximum of one
order, which is limited to the auction price or unlimited, can be partially executed.
The orderbook remains partially closed during the auction’s call phase. As information
about the market situation participants obtain the indicative price or the best bid/ask
limit which may be augmented by market imbalance information. Market participants
are informed via an auction plan about the time the individual equity is called.

2.5.3 Continuous Trading

Depending on the trading model and trading segment, orders of any size or round
lots can be traded in the trading phase. The trading phase varies according to the
respective trading segments. Depending on trading segment, equities will be traded in
one of the trading models. Considering the analyzed dataset from the XETRA trading
system all order types and matching rules apply as defined by the market model (see
Section 2.2 and Section 2.3).

2.5.4 Volatility Interruptions

XETRA contains safeguards to improve price continuity and to increase the proba-
bility to execute Market orders. The main safeguards are volatility interruptions in
auctions and continuous trading as well as Market order interruptions in auctions (not
in auctions initiated by volatility interruptions). As far as designated sponsors exist
for an equity, they will enter quotes during volatility interruptions. Volatility inter-
ruptions can be initiated in two ways: If the price of an equity lies either outside the
dynamic or outside the static price range. Price ranges are typically adjusted by the
historical volatility of respective equities.
The dynamic price range is determined by the last reference price (last traded price).
By contrast, the static price range is wider and is determined by the reference price
of the last auction.

20

3 Data Set

This chapter introduces the dataset of all DAX30 stocks from the XETRA trading
system in the time period between 2005-1-5 and 2005-1-12. After a general introduc-
tion (Section 3.1) all attributes describing order modification records in the database
will be described in Section 3.2. Finally event code sequences that describe the entire
lifetime cycle of an order will be introduced in Section 3.3.

3.1 Introduction

The Dataset under investigation contains the fully rebuilt orderbook of all DAX30
stocks listed on the Frankfurt Stock Exchange and traded on the XETRA platform
in the week between January 5th and 12th 2005. The Frankfurt Stock Exchange
(FWB R©) where the XETRA system has been initially implemented is by far the largest
of Germany’s seven stock exchanges While most of the DAX30 stocks are also listed
on other exchanges over 97% of trading was done via the XETRA trading platform in
2005 [Gro05].
Each order modification (like Insertion, Execution or Deletion; see Section 3.2.12)
done on the XETRA trading system is recorded as a single database entry. More than
5 million (5,014,200) database entries can be identified in the raw Microsoft Access
database with a size of 1.7GB. The dataset represents the vast majority of trading
done on DAX30 stocks as only relative small volumes are cross-listed on other stock
exchanges across the globe (mostly the NYSE). The most important index for the
German stock market, the XETRA DAX30 index, is also calculated from XETRA
system.
As already mentioned in Section 1.2 rebuilt XETRA orderbook data is not publicly
available. Thanks to Deutsche Börse AG access to the limited subset has been granted
for academic purposes. The immense detail of the dataset allows the analysis of every
single trading activity and the reconstruction of every order and orderbook state in
the respective time interval.
To get a more detailed picture of the entire trading week under investigation Figure 3.1
shows the movement of the DAX index by a candlestick chart1 aggregated to a time

1Candlesticks aggregate open, high, low and close prices in a respective time interval. Bars show
the difference between open and close prices - white bars indicate positive price movements, black
negative ones. Lines on tops and bottoms of the bars show the entire price range between highs
and lows.

21

3 Data Set

frame of one hour. The money volume traded was calculated from the dataset and is
shown by blue bars. It can be seen that the index moved in a range between the high
of 4325 on 2005-1-7. and the low of 4200 on 2005-1-12. Also the typical u-shape of the
traded money volume catches the eye as most trades are done at the beginning and
the end of each trading session. In the morning sessions until 11:00 and from 16:00
on, when the American stock exchanges open, more liquidity flows into the market.

Table 3.1 further summarizes the movement of each stock included in the DAX30
dataset in the analyzed trading week. By average daily turnover the Deutsche Telekom
stock ranks at first place, followed by SAP and Deutsche Bank.

3.2 Attributes

Each modification to an order is represented by a database entry in the trading sys-
tem. This section introduces the attributes describing each order modification entry
found in the rebuilt XETRA orderbook database. 14 different attributes specify each
order modification and are described in the following subsections. Table 3.2 lists all
attributes of the orderbook database.
In order to improve readability database attribute names are emphasized in italic
shape, database values which store enumeration-like data types in rectangles and
all other database values in teletypefont characters. Table 3.2 also includes value
examples for each database attribute.

3.2.1 ModificationTimestamp

The ModificationTimestamp describes the date/time value when the order modifica-
tion was entered into the database. It is set by the XETRA trading system with a
precision of up to 10ms. Figure 3.2 gives a short overview of trading activity in the
trading week based on the number of order modifications and the ModificationTimes-
tamp. Like the money traded volume histogram in Figure 3.1, Figure 3.2 shows the
typical u-shaped histogram for most of the trading days with a strong activity at the
beginning and at the end of each trading session. In contrast to the trading volume
diagram the ModificationTimestamp histogram shows the number of incoming order
modifications; thus it shows how stressed the connections to the trading system are.
The number of order modifications per day deviates around the mean of 835,700 with
a minimum of 723,700 on the January 10th and a maximum of 955,200 modifications
on January 11th. The histogram also shows a discontinuous order modification flow
— especially on 2005-1-11 during the Intraday Auction.

22

3.2 Attributes

4100

4150

4200

4250

4300

4350

0

100

200

300

400

500

600

700

800

900

05.01.2005 06.01.2005 07.01.2005 10.01.2005 11.01.2005 12.01.2005

m
o

n
e

y
vo

lu
m

e
 in

 m
ill

.
€

Figure 3.1: Movement of the DAX index and trading volume in the trading week be-
tween 2005-1-5 and 2005-1-12 aggregated to one hour
Movement of the DAX index indicated by candlestick chart;index levels are shown
by the right vertical axis. 5 min. DAX intraday index data was obtained from
[Md08] and aggregated.
Blue bars indicate Money volume traded (in million EUR); volume levels are
shown by the left vertical axis. Volumes have been calculated and aggregated
using the provided high-frequency dataset from Deutsche Börse.

23

3 Data Set

Figure 3.2: Histogram of order modifications by ModificationTimestamp attribute
Histograms were created in R with a variable bin size using the provided dataset.
For each trading day between 2005-1-5 and 2005-1-12 a separate histogram has
been generated indicating the frequencies of incoming order modifications to the
XETRA trading system over time.

24

3.2 Attributes

Stock Name High Low VWAP ADT ADT %
ADIDAS-SALOMON AG O.N. 120.35 114.84 117.95 37.26 1.09%
ALLIANZ AG VNA O.N. 97.75 91 96.23 201.74 5.91%
ALTANA AG O.N. 46.67 44.17 45.39 27.27 0.8%
BASF AG O.N. 53.16 51.12 52.26 129.92 3.81%
BAY.HYPO-VEREINSBK.O.N. 17.71 16.22 17.02 120 3.52%
BAY.MOTOREN WERKE AG ST 34.91 33.55 34.29 84.78 2.48%
BAYER AG O.N. 24.59 23.47 24.02 124.97 3.66%
COMMERZBANK AG O.N. 16.34 15.32 16 79.78 2.34%
CONTINENTAL AG O.N. 49.2 47.65 48.43 42.14 1.23%
DAIMLERCHRYSLER AG NA O.N 36.35 34.86 35.7 157.26 4.61%
DEUTSCHE BANK AG NA O.N. 67.63 64.42 66.22 285.65 8.37%
DEUTSCHE BÖRSE NA O.N. 45.58 44.22 44.87 35.22 1.03%
DEUTSCHE POST AG NA O.N. 17.26 16.48 16.93 40.16 1.18%
DT.TELEKOM AG NA 16.88 15.96 16.46 411.95 12.07%
E.ON AG O.N. 67.97 65.92 67.05 168.64 4.94%
FRESEN.MED.CARE AG O.N. 59.09 57.1 58.12 14.04 0.41%
HENKEL KGAA VZO O.N. 67.32 64.12 66.22 25.61 0.75%
INFINEON TECH.AG NA O.N. 8 7.45 7.79 87.6 2.57%
LINDE AG O.N. 48.78 47.47 48.18 25.31 0.74%
LUFTHANSA AG VNA O.N. 10.8 10.44 10.65 33.13 0.97%
MAN AG ST O.N. 30.1 28.63 29.19 45.22 1.32%
METRO AG ST O.N. 42.23 39.15 40.98 80.09 2.35%
MUENCH.RUECKVERS.VNA O.N. 94.21 90.55 92.46 143.97 4.22%
RWE AG ST O.N. 43.7 40.73 42.8 171.65 5.03%
SAP AG ST O.N. 133.9 124.45 129.8 299.23 8.77%
SCHERING AG O.N. 56.76 53.28 54.51 97.49 2.86%
SIEMENS AG NA 62.88 61.04 62.1 248.6 7.28%
THYSSENKRUPP AG O.N. 16.68 16.14 16.35 49.95 1.46%
TUI AG O.N. 18.46 17.71 18.07 27.12 0.79%
VOLKSWAGEN AG ST O.N. 36.35 34.72 35.72 117.04 3.43%

Table 3.1: Price range and traded volume of DAX30 stocks traded on the XETRA
system in the week between 2005-1-5 and 2005-1-12
All indicators have been calculated from the dataset of the analyzed trading week.
VWAP . . . Volume Weighted Average Price
ADT . . . Average Daily Turnover in million EUR
ADT % . . . Share of trading done in respective trading week

25

3 Data Set

Attribute Section Example Value
ModificationTimestamp 3.2.1 2005-1-5 15:30:21.110
OrderEntryTimestamp 3.2.2 2005-1-7 08:25:59.230
OrderExpiryDate 3.2.3 2005-1-10
ISIN 3.2.4 DE0007664005
Ordernumber 3.2.5 50120002058993926

AuctionTradeFlag 3.2.6 C

Ordertype 3.2.7 L

BuySell 3.2.8 B
Size 3.2.9 200
Price 3.2.10 98.3
Limit 3.2.11 95.4

ModReasonCode 3.2.12 1

Orderrestriction 3.2.13 F

Traderestriction 3.2.14 AU

Table 3.2: All order modification attributes defined in the orderbook database

3.2.2 OrderEntryTimestamp

The OrderEntryTimestamp attribute saves the date/time value when the order was
entered into the database and is set by the trading system. This timestamp is the
same for all modifications belonging to an order. When a new order is entered the
ModificationTimestamp and OrderEntryTimestamp attribute value of the Insert order
modification are the same. Further modifications that refer to an already entered order
contain the same OrderEntryTimestamp as the first insert order. This is important
as the OrderEntryTimestamp is also used to apply the Price-Time priority rule (see
Section 2.2) and is therefore necessary for the sorting procedure in the orderbook if
two orders have the same limit.

3.2.3 OrderExpiryDate

The OrderExpiryDate must be set by the trader at order insertion and indicates the
maximum lifetime of an order with a precision of one day. It is the same for all
modifications referring to an already inserted order but can also be changed by the
trader during the trading session. Approximately 98.5% of all orders in the investigated
dataset have the OrderExpiryDate set to the same day (also referred as ‘good-for-day’
orders) which means that the order will be deleted automatically at the end of the
trading session.

26

3.2 Attributes

Name ISIN Frequency
ALLIANZ AG VNA O.N. DE0008404005 302,414
SAP AG ST O.N. DE0007164600 286,185
MUENCH.RUECKVERS.VNA O.N. DE0008430026 271,141
DEUTSCHE BANK AG NA O.N. DE0005140008 268,666
SIEMENS AG NA DE0007236101 257,374
DAIMLERCHRYSLER AG NA O.N DE0007100000 234,130
DT.TELEKOM AG NA DE0005557508 233,364
E.ON AG O.N. DE0007614406 221,488
BASF AG O.N. DE0005151005 219,028
RWE AG ST O.N. DE0007037129 206,408

Table 3.3: ISIN codes of top 10 DAX Stocks in terms of order modification frequencies

3.2.4 ISIN

The ISIN 2 number is a 12-character alpha-numerical code to identify tradeable finan-
cial instruments on stock exchanges around the word. It typically starts with a country
code with a length of 2 followed by a numerical code. In the investigated database
the ISIN code is also a foreign key to the Instruments table which contains more de-
tailed information about the traded instrument like e.g. the stock name (see more in
Section 4.4.2). Most importantly the dataset has to be separated (or grouped) by the
ISIN to analyze the market of a single stock. Table 3.3 shows the ISIN numbers of the
ten most actively traded DAX stocks based on the number of order modifications on
the XETRA system. Compared with the average daily turnover ranking in Table 3.1
which placed Deutsche Telekom in front of SAP and Deutsche Bank, the top 3 stocks
in terms of entered order modifications are Allianz followed by SAP and Münchner
Rückversicherung.

3.2.5 Ordernumber

The Ordernumber identifies each order entered into the trading system over its lifetime
cycle. It is set by the trading system as a numeric code with a length of 18. A total
of 2,347,387 distinct Ordernumber values, or equivalently orders, can be identified in
the database. Compared with the total order modification number of 5,014,200 the
average number of order modifications per order is approximately 2.14. Although
Ordernumber values cannot be changed, modifications to an order which violate the
Price-Time priority rule lead to a deletion followed by a re-insertion of an order and

2abbreviation for ‘International Securities Identification Number’

27

3 Data Set

therefore to a new Ordernumber value.

3.2.6 AuctionTradeFlag

The AuctionTradeFlag identifies the trading phase (Section 2.5) in which the order
modification entered the system. As trading phases like Volatility Interruptions can
occur at any time during the trading session this attribute can be used to identify the
respective trading phase in the orderbook for reconstruction purposes. The Auction-
TradeFlag attribute can have one of the following values:

A Intraday Auction: The order modification was entered during Intraday Auction
(Section 2.5.2) between 13:00 and 13:02.

C Continuous Trading: The order modification was entered during the continuous
trading phase (Section 2.5.3) between 9:00 and 13:00 or 13:02 and 17:30.

F Closing Auction: The order modification was entered during the Closing Auction
(Section 2.5.2) between 17:30 and 17:35.

O Opening Auction: The order modification was entered during the Opening Auc-
tion (Section 2.5.2] between 8:50 and 9:00.

V Volatility Interruption: The order modification was entered while a Volatility In-
terruption (Section 2.5.4) occurred. As already mentioned in Section 2.5.4 no
fixed start/end time is defined.

P Pre-Trading: The order modification was entered during the Pre-Trading phase
(Section 2.5.1) between 7:30 and 8:50.

R Post-Trading: The order modification was entered during the Post-Trading phase
(Section 2.5.1) between 17:35 and 20:30.

Table 3.4 shows the Frequencies of the different AuctionTradeFlag values. It can be
seen that most order modifications enter the system during the continuous trading
phase, followed by a Closing Auction and an Opening Auction. In terms of order
modification inflow Pre/Post-Trading phases and Volatility Interruptions just play a
minor role. Also the start- and end-time ranges of trading phases are shown, calculated
using the orderbook dataset. It can be seen that the time of trade phase changes is not
as exact as described in [Gro03] (see also Section 2.5). Only one volatility interruption
was detected at Allianz stock on 2005-1-11 which lasted for approximately 4 minutes.

28

3.2 Attributes

AuctionTradeFlag Frequency startMin startMax endMin endMax
C Continuous 4,885,137 09:00:02 09:00:07 17:30:03 17:40:07
F Closing Auction 64,728 17:30:00 17:30:01 17:35:32 17:35:35
O Opening Auction 31,883 08:50:01 08:50:08 09:00:39 09:03:52
P Pre-Trading 11,437 08:00:02 08:00:06 08:49:59 08:50:04
R Post-Trading 10,032 17:35:03 17:35:07 20:10:15 20:29:58
A Intraday-Auction 9,767 13:00:00 13:00:01 13:02:32 13:02:34
V Volatility Interruption 1,216 13:05:44* 13:05:44* 13:09:10* 13:09:10*

Table 3.4: Frequencies of order modifications by AuctionTradeFlag attribute including
trading phase start- and end-times
Start- and end-times have been determined by AuctionTradeFlag and Modifica-
tionTimestamp attributes. min/max start/end times have been filtered over all
DAX30 stocks for investigated period between 2005-1-5 and 2005-1-12
startMin . . . minimum trading phase start-time
startMax . . . maximum trading phase start-time
endMin . . . minimum trading phase end-time
endMax . . . maximum trading phase end-time
* . . . only one volatility interruption occurred in investigated time period on 2005-
1-11 at the Allianz stock. Respective start- and end-times are given.

3.2.7 Ordertype

This Attribute describes the specific order type and is fixed (except for Market-to-Limit
orders) during order lifetime. All different order types have been previously described
in Section 2.3. The following Ordertype flags can be identified in the database:

L Limit Order: Orders with a fixed limit price as described in Section 2.3.1

M Market Order: Orders which are executed at the best price, see Section 2.3.2

I Iceberg Order: Limit orders with a visible peak size and a hidden volume, see
Section 2.3.3. Although Iceberg orders are only visible as limit orders to market
participants they are identified in the database with the I attribute value.

T Market-to-Limit Order: Order is inserted as a Market-to-Limit Order T and at
first matched like a Market Order (against the best limit). Afterwards it even
in the database changes to a Limit order L .

Table 3.5 gives an overview of the order modification frequencies by Ordertype. It
can be clearly seen that Limit orders are the most frequent orders in the XETRA
orderbook, followed by Market orders. Although Iceberg order modifications just
represent a small share they are typically inserted with a high (hidden) volume.

29

3 Data Set

Ordertype Frequency
L Limit 4,768,834
M Market 132,825
I Iceberg 105,409
T Market-to-Limit 7,132

Table 3.5: Frequencies of order modifications by Ordertype

3.2.8 BuySell

The BuySell attribute distinguishes buy and sell orders and cannot be changed over
order lifetime. It only holds one single character for buy B and sell S orders, re-
spectively. In the dataset under investigation slightly more buy (2,564,342) than sell
(2,449,858) order modifications could be found; they represent approximately 51% of
all order modifications.

3.2.9 Size

The Size attribute stores integer values set by the trader and has different meanings
depending on the ModReasonCode value (see Section 3.2.12).

Insert Modification: In case of an order insertion (ModReasonCode 1 or 101) the
size attribute shows the volume to be inserted into the book.

(Partial-)Execution: If an order is fully executed or partially executed (ModReason-
Code 1 or 5) the size attribute indicates the executed volume.

Modification: The inserted order volume can also be reduced by an order Modification
(ModReasonCode 2). In case of an order Modification the Size indicates the
open order volume to be reduced. Volume increases by order Modifications
while letting the OrderEntryTimestamp unchanged could lead to a violation of
the Price-Time priority rule and are not allowed. Therefore a later increase of
the volume has to be done by an Insertion (ModReasonCode 1) of a new order.

Deletion: Finally, in case of deletions (ModReasonCode 3 , 103) the Size indicates
the rest open order volume to be deleted from the orderbook.

3.2.10 Price

The Price shows the actual execution price of a specific orders (usually greater than
zero) and is determined by the trading system. Like the Limit (Section 3.2.11) the

30

3.2 Attributes

Price is a floating point number with two decimals. It is relevant for order modifi-
cations with the ModReasonCode 4 or 5 , see also Section 3.2.12. Considering the
ordertype, the execution price has to be best for Market orders (best bid/ask) or at
least the limit price (Section 3.2.11) for limit orders (see also Section 2.3).

3.2.11 Limit

The Limit attribute specifies the limit price of an order in EUR. It is a floating point
number with two decimals. Market orders always have a Limit of zero, Limit orders
and Iceberg orders must have a Limit greater than zero. In case of Market-to-Limit
orders the Limit attribute indicates the price of the Limit order which is generated after
the previous Market-to-Limit order has been partially executed (see Section 2.3.3).

3.2.12 ModReasonCode

The ModReasonCode describes the reason for insertion of each database entry and is
therefore one of the most important attributes. Generally, each modification to an
order can be described by the ModReasonCode. It is a small integer number with a
range from 1 to 103 3.
The following ModReasonCode values can be identified in the dataset:

1 Insert: An Insert entry marks the beginning of the order lifetime cycle. Each order
must have exactly one Insert order modification. In case of a Limit-, Market or
Market-to-Limit - order the Size shows the entire volume of the specific order.
Iceberg orders only show up its peak volume at insertion. ModificationTimes-
tamp and OrderEntryTimestamp are equal for each Insert database entry.

2 Modification: A Modification can occur at any time during the order lifetime
cycle. If the Modification leads to changes according to the Price-Time priority
rule (e.g. change of order limit) or has a negative impact on the priority of
other orders in the orderbook (e.g. volume increase) a new order (with a new
Ordernumber value) has to be entered into the book. Most commonly a volume
decrease is changed under the same Ordernumber where the Size attribute shows
the volume to be decreased.

3 Deletion-by-User: Deletion-By-User is a very common modification reason at the
end of the order lifetime cycle and indicates a user initiated deletion of an order.
The Size attribute (Section 3.2.9) shows the rest volume of an order to be deleted.

3The later introduced modification reasons System Insert 201 System Delete 203 and System

Execution 204 extend the range to 204

31

3 Data Set

4 Execution: The Execution entry marks the end of the order lifetime cycle and
shows that the whole volume of an order has been executed; the Size attribute
(Section 3.2.9) gives the volume of the last execution.

5 Partial Execution: A Partial Execution can occur at any time during order life-
time. It shows that only parts or the order volume have been executed while the
order is still remaining in the book with an unexecuted rest volume.

6 Deletion-by-System: The Deletion-by-System modification ends the order lifetime
cycle. Most commonly it is entered when a specific order restriction has been
triggered like, for example, by the OrderExpiryDate (Section 3.2.3).

101 Technical Insert (due to modified Trade Restriction): The TradeRestriction
attribute (Section 3.2.14) of an order can generally be changed and actually
requires the XETRA trading system to delete and re-insert the order. In order
to recycle all attribute values the order is preliminary deleted by a Technical
Delete modification (ModReasonCode 103) and immediately re-inserted. The
re-insertion is done by a Technical Insert modification 101 which is similar to
a normal Insertion 1 and leaves all attributes, except the TradeRestriction,
unchanged.

103 Technical Delete (due to modified Trade Restriction): As indicated above a
Technical Delete has to be done if the TradeRestriction of an order has been
changed. A Technical Delete modification is similar to a Delete modification 3
and temporarily removes an order from the orderbook.

Order modifications like Insertions 1 , Modifications 2 and Deletions 3 are generally
initiated by the trader. By contrast, (Partial)Executions (5 , 4), Deletions-by-System
6 and Technical Insert/Deletes (101 , 103) are generated by the trading system.

Table 3.6 lists the frequencies of ModReasonCode values in the orderbook. Insert mod-
ifications are obviously most common, followed by Deletions-by-User and Executions.
By the extraction of ModReasonCode values from order modifications belonging to the
same order the entire lifetime cycle of an order can be described. In Section 3.3 and
Section 5.2.1 the ModeReasonCode induced lifetime cycle will be further specified.

3.2.13 Orderrestriction

The Orderrestriction attribute sets execution restrictions for a specific order. All
different order restrictions have already been described in Section 2.4. The Order-
restriction is set by the trader and requires only one character in the database.
The Orderrestriction can have one of the following values:

- No Restriction: No order restriction has been set.

32

3.2 Attributes

Modification Reason Frequency
1 Order Insert 2,284,628
2 Order Modification 36,165
3 Deletion By User 1,626,896
4 Order Execution 675,232
5 Order Partial Execution 373,760
6 System Deletion 16,597
101 Technical Insert 461
101 Technical Deletion 461
Total 5,014,200

Table 3.6: Order modification frequencies by modification reason codes (attribute
ModReasonCode)

F Fill-or-Kill: The order has been entered by the trader with the Fill-or-Kill flag. If
the entire volume cannot be executed it will be deleted.

I Immediate-or-Cancel: The Immediate-or-Cancel flag forces the trading system to
test which parts of the order can be executed. In contrast to the Fill-or-Kill flag
only the unexecuted volume will be deleted.

S Triggered Stop Order: The Triggered Stop Order indicates that a stop limit (en-
tered by the trader) has been reached which triggered an order insertion by the
trading system. Triggered Stop Orders can either be Market orders (Stop Market
order) or limit orders (Stop Limit order).

Table 3.7 shows the frequencies of all Orderrestriction values in the dataset. It can be
seen that order restrictions are not widely used in the dataset. Considering the subset
of order modifications with the Orderrestriction attribute set, Immediate-or-Cancel
restrictions are the most common, followed by Triggered Stop orders and Fill-or-Kill
orders.

3.2.14 Traderestriction

Sets the Trading Phase (Section 2.5) in which the order is visible in the orderbook
and ready for execution. The following Traderestriction values are possible:

- No Traderestriction: The order can be executed in every trading phase.

AU Auction only: The order can only be executed in any auction (Opening-,
Intraday- or Closing Auction), see Section 2.5.2.

33

3 Data Set

Orderrestriction Frequency
- No Orderrestriction 4,887,209
I Immediate-or-Cancel 116,984
S Triggered Stop Order 9,279
F Fill-or-Kill 728

Table 3.7: Frequencies of order modifications by Orderrestriction Attribute

Traderestriction Frequency
- No Restriction 4,997,396
AU Auction Only 9,637
CA Closing Auction Only 3,764
MT Main Trading Phase 2,613
OA Opening Auction Only 790

Table 3.8: Frequencies of order modifications by Traderestriction attribute

CA Closing Auction only: The order can only be executed during the Closing Auc-
tion (Section 2.5.2).

OA Opening Auction only: The order can only be executed during the Opening Auc-
tion (Section 2.5.2).

MT Main Trading Phase only: The order can only be executed during the Main
Trading Phase (see Section 2.5) from 9:00 to 17:30. This restriction has no
effect since 2003-11-1, when trading hours have been shortened on the XETRA
trading system from 20:00 to 17:30.

Table 3.8 shows the frequencies of entered trade restrictions obtained from the dataset.
Only very few orders use this restriction type; if used, the Auction Only restriction is
the most common, followed by the Closing Auction Only and the Main Trading Phase.

3.3 Event Code Sequences

As already mentioned in Section 3.2.12 the lifetime cycle of an order can be described
through various database records or order modifications which also contain the im-
portant ModReasonCode attribute. The ModReasonCode values form characteristic

34

3.3 Event Code Sequences

event code sequences over time. The sequence order is chronological as defined by the
ModificationTimestamp.
A sequence generally has to start with an order Insertion 1 which shows the exact
time and size of the order entering the book. After Insertions, Modifications 2 and
Partial Executions 5 are possible while the order still remains in the book. The order
lifetime ends either with a Deletion(3 or 6) or an Execution (4).
Figure 3.9 shows the 15 most frequent event code sequences from the raw XETRA
database. Short event code sequences only containing two ModReasonCode values
form the lion share of the order dataset under investigation. As the most frequent
1 – 4 sequence could be seen as a quite ‘normal’ order (Insertion followed by an Ex-

ecution) the striking 1 – 3 sequence (Insertion followed by Deletion) on the second
place shows a high share of deleted orders. Most of the other listed orders basically
contain Partial Executions (– 5 –) in between and end with either Executions (– 4)
or Deletions (– 3). Also a lot of fragmentary event code sequences consisting of only
one ModReasonCode value can be identified. The strategies how to handle obviously
broken sequences like a single 3 ‘sequence’ (deletion without insertion), a single 1
(insertions without deletions or executions) or a single 4 (executions without inser-
tions) will be discussed in Section 5.2 in more detail.
To get a better understanding of what is actually happening in the database during
different orderbook events and which records are generated we will revisit the order
matching examples from Section 2.2.

3.3.1 Limit Order Example revisited

This section refers to the Limit order matching example from Section 2.3.1. As al-
ready mentioned the sell Limit order which enters the orderbook at Time T=5 with a
volume of 200 and a limit of 98.2 is matched against the best two buy orders.
Table 3.10 shows the attribute values and database records of the sell order. On the
left side of the table one can find the attribute values which are fixed for all database
records generated by the sell order. The right side shows the database entries with
varying attribute values like the ModificationTimestamp (MT), Size, ModReasonCode
(MRC) and the executed Price. For simplicity reasons the ModificationTimestamp
and the OrderEntryTimestamp, which are actually date/time attributes with a pre-
cision up to 10 milliseconds, are displayed as integer values. As can be seen on the
right side of the table, three database records have been generated for the sell order.
Immediately after insertion the order is partially executed against the best buy order
(Price 98.30) and fully executed against the second best buy order (Price 98.20).
The ModificationTimestamp value is the same for all records with T=5. The event
code sequence of this order results therefore as 1 – 5 – 4 .

35

3 Data Set

Event Code Sequence Frequency
1 – 3 3,002,564
1 – 4 1,042,492
1 – 5 – 4 255,060
1 – 5 – 3 126,627
1 – 5 – 5 – 4 103,136
1 – 2 – 3 64,965
1 – 5 – 5 – 5 – 4 51,205
3 38,209
1 – 5 – 5 – 3 32,516
1 – 5 – 5 – 5 – 5 – 4 28,350
1 27,983
1 – 6 22,324
1 – 5 – 5 – 5 – 5 – 5 – 4 17,787
4 15,499
1 – 5 – 6 14,979

Table 3.9: The 15 most common event code sequences found in the dataset from 2005-
1-5 to 2005-1-12
ECS . . . Event Code Sequence
Sequences have been obtained using the implemented Orderbook Engine library.
ModReasonCodes have been grouped by Ordernumber and sorted chronologically
by the ModificationTimestamp. If the ModificationTimestamp of order modifica-
tions belonging to the same order are equal, modification reason codes have been
sorted with respect to their causal order (e.g. Insert before Modification).

3.3.2 Market Order Example revisited

In this Section the database entries generated by the Market order example from
Section 2.3.2 will be discussed in more detail.
Table 3.11 shows the attribute values of the entries for the sell Market order analogous
to Table 3.10. The event code sequence of this order results as 1 – 5 – 5 – 5 – 4 .

36

3.3 Event Code Sequences

Fixed Attributes MT Size MRC Price
ISIN : DE0007664005 5 200 1 0.00

Ordernumber : 50120002058993926 5 100 5 98.30

Ordertype: Limit L 5 100 4 98.20

BuySell : Sell S
Limit : 98.2
OrderEntryTimestamp: 5
AuctionTradeFlag : Continuous C
Orderrestriction: No Restriction -
OrderExpiryDate: 2005-1-12

Table 3.10: Limit order example revisited

Fixed Attributes MT Size MRC Price
ISIN : DE0007664005 5 1000 1 0.00
Ordernumber : 50120002058994944 5 100 5 98.30
Ordertype: Market M 5 300 5 98.20
BuySell : Sell S 5 100 5 98.00
Limit : 0.00 5 500 4 98.00
OrderEntryTimestamp: 5
AuctionTradeFlag : Continuous C
Orderrestriction: No Restriction -
OrderExpiryDate: 2005-01-12

Table 3.11: Market Order Example Revisited

37

3 Data Set

38

Reconstruction Visualization

Figure 4.1: Basic Process Overview

4 Software Architecture

This chapter gives an overview of the architectural design of this software project.
After a discussion of design goals in Section 4.1 soft- and hardware requirements are
discussed (Section 4.2). Further a package overview is given in Section 4.3. While
Section 4.4 sketches the database architecture each implemented software package like
Orderbook Engine (Section 4.5), Dataset Generator (Section 4.5) and Orderbook Visu-
alization (Section 4.7) will be discussed.
To improve readability some typographic definitions have been introduced for the rest
of this thesis. Package names and namespaces are written in San Serif italic, class/ob-
ject names and events in San Serif, function names and object values in teletype
font face and Property/Attribute names in italic.

4.1 Design Goals

Generally the architectural design goal of this software project was the creation of a
transparent and flexible object model to support a wide range of possible extensions
and improvements. The basic functionality can be summarized as a 2-step procedure.
The first step is the reconstruction process to integrate and clean the raw dataset.
It is described in Chapter 5 in more detail. Separated from that the orderbook vi-
sualization (Chapter 6) is done afterwards in a second step. Although it would have
also been possible to integrate the data cleaning procedure directly in the orderbook
visualization process (and do the data cleaning procedure online) the separation be-
tween the reconstruction and the visualization process leads to a better performance
of the orderbook visualization engine. The basic process overview of the implemented
software is shown in Figure 4.1.
Performance has also been a big implementation issue to ensure a better user experi-
ence — particularly for the orderbook visualization part. Furthermore an intuitive user
interface should make the interactive analysis of orderbook data as easy as possible.

39

4 Software Architecture

Altogether the user interface design should allow the exploration of orderbook data
and the visualization of the ‘orderbook landscape’ — just as simple as geo-browsing
with applications like Google Earth.
To provide the above mentioned functional requirements it was decided that the C#
programming language would be the ‘language of choice’. Although (unmanaged)
C++ can bring some improvements in terms of performance C# using the .NET frame-
work supports a type-save runtime environment and automatic garbage collection —
thus a more comfortable and faster development environment. As this software project
is heavily database-dependent the feature rich and easy to use database connectivity
libraries (ADO.NET) have been another strong argument for the .NET environment.
Last but not least the recently introduced Windows Presentation Foundation (WPF)
which is supported by .NET 3.5 enables the development of feature rich and scalable
graphical representations (including accelerated 3D representations) and leaves enough
room for further improvements of the visualization engine.

4.2 Requirements

4.2.1 Software

The complete software project has been implemented with Microsoft Visual Studio
2008 (VS2008) in the C# programming language. There is also a free VS2008 C#
Express Edition [Mic08b] available to develop and compile the entire project. The
type-safe .NET Environment 3.5 is necessary to execute the packages and is available
under [Mic08a]. It is restricted to the Windows XP, Windows Vista and the Windows
Server versions 2003 or 2008 operating systems. The Mono - Project [Mon08] by Nov-
ell also provides a free implementation of .NET - libraries under Linux but does not
support .NET 3.5 yet.
The database has been integrated to the Microsoft SQL Server 2005 (see also Sec-
tion 4.4.1) which is also available as a free Express Edition under [Mic05]. Due to
the generic implementation of the database connectors the integration to other servers
(like MySQL, PostgreSQL, Oracle) is also possible but has not been tested yet.

4.2.2 Hardware

The minimum hardware requirement is an Intel Pentium 3 (or equal) with 1GB RAM
whereas a Pentium 4 with 2GB RAM is recommended. The orderbook visualization
software needs approximately 8MB of Disk Space — the database of the analyzed
DAX30 dataset has a size of 1.38GB.

40

4.3 Package Overview

Dataset

Generator

Orderbook

Visualization

Orderbook

Engine

Database

Figure 4.2: Overview of Software packages and database
The Dataset Generator and the Orderbook Visualization package both require the
OrderBookEngine library. The OrderBookEngine also implements functions to di-
rectly access the SQL database.

4.3 Package Overview

The entire software project consists of three separated packages which provide the
specified functionality already mentioned in Section 4.1. The separation has been
done in a quite straightforward manner to cleanly divide the basic functionality from
the user interface. Figure 4.2 provides a basic overview of the implemented packages.
It shows the Orderbook Engine package which is required by the Dataset Generator and
the Orderbook Visualization. The Orderbook Engine supports the core functionality of
this project (especially for cleaning and reconstruction purposes) and encapsulates the
order object model. Further it includes connectors to access the XETRA orderbook
database. The Dataset Generator provides a user interface to clean selected parts of
the dataset easily. The entire visualization of orderbook data is done by the Orderbook
Visualization program.

4.4 Database Architecture

4.4.1 Data Integration

The integration of the original Microsoft Access Database which contains all DAX30
stocks in the time period between 2005-1-5 and 2005-1-12 has been done with the
SQL Server Integration Services (SSIS) package which is included in the standard
version of Microsoft SQL Server 2005. At first the Access data import wizard was
used to create a basic import package. The raw Access database had a few attributes
with wrongly assigned data types (mostly string types) which consumed too much

41

4 Software Architecture

Attribute AT(Length) CT(Length)
ModificationTimestamp Text(255) DateTime
OrderEntryTimestamp Text(255) DateTime
OrderExpiryDate DateTime DateTime
ISIN Text(255) nvarchar(12)
Ordernumber Text(255) nvarchar(18)
AuctionTradeFlag Text(255) nvarchar(1)
Ordertype Text(255) nvarchar(1)
BuySell Text(255) nvarchar(1)
Size Double int
Price Double float
Limit Double float
ModReasonCode Text(255) tinyint
Orderrestriction Text(255) nvarchar(1)
Traderestriction Text(255) nvarchar(1)

Table 4.1: Datatype conversions from Access raw database to Microsoft SQL 2005
database
AT . . . Access data type from raw data base
CT . . . Converted SQL type which has been used in integrated SQL 2005 database

disk space. This issue has been corrected in the Integration process. Table 4.1 gives
an overview of the data type conversions done in the SSIS integration package. While
the second column contains the original Access data type the third column list the
converted SQL 2005 data types. Under [Bro08] and [Mic07] you can find the exact
data type specifications for Access and MS SQL 2005 data types, respectively. Most
of the target SQL data types have been chosen to preserve all information from the
Access database. Only the Traderestriction (TR) attribute (see Section 3.8) has been
shortened to a character length of one. Just the first TR character has been preserved
in the SQL database, e.g. MT (stands for Main Trading Phase) has been changed to
M . This conversion still makes a distinction between all TR values possible.

While the original Access Database consumed 1.7GB of disk space its size could be
reduced to 1.38GB through all mentioned data type conversions.

4.4.2 Database Structure

The integration package has been further modified to automatically create the tar-
get database and tables including correctly assigned primary keys and relationships.

42

4.5 Orderbook Engine

Data

 ModificationTimestamp

 OrderEntryTimestamp

 OrderExpiryDate

FK1 ISIN

 Ordernumber

 AuctionTradeFlag

 Ordertype

 BuySell

 Size

 Price

 Limit

 ModReasonCode

 Orderrestriction

 Traderestriction

Instruments

 ISIN

 Mnemonic

 Name

 Index

Figure 4.3: Diagram of integrated MS SQL 2005 database
Database consists of Instruments and Data table (stores order modifications).
Data table is connected to Instruments through the ISIN attribute as foreign
key, ISIN is also the primary key of the Instruments table. Bold attribute names
indicate that they are not nullable.

The database diagram of the completely integrated dataset (drawn in Microsoft SQL
Server Management Studio 2005) is shown in Figure 4.3.
As can be seen in Figure 4.3 the integrated database has a quite simple structure. The
entire dataset is stored in only two tables that contain general descriptions about the
instruments and the order modifications from the XETRA orderbook.
The Instruments table contains information regarding the underlying stock like the
ISIN code, the Long Name and the Mnemonic of the stock.
The Data table contains all order modification attributes already mentioned in Sec-
tion 3.2. It also stores the ISIN as a foreign key (FK1) from the Instruments table.

4.5 Orderbook Engine

The Orderbook Engine represents the core of this project. Built as a dynamic link
library (dll) it encapsulates the complete order object model, the database access
and all necessary data structures to reconstruct the orderbook. Figure 4.4 gives an

43

4 Software Architecture

Figure 4.4: OrderBookEngine Class Diagram

44

4.5 Orderbook Engine

overview of the basic Orderbook Engine Class Diagram.

4.5.1 Order Object Model

The order object model is represented by the classes Order, Instrument and Ordermod-
ification. An order includes a single instance of the Instument class and stores multiple
Ordermodification objects in a type-safe List Collection. The Instrument class contains
properties like the Name and the ISIN of the traded stock. An Ordermodification
object basically stores all attributes already described in Section 3.2.

4.5.2 Data Access

The complete data connection logic is implemented in the DBConnector and the CSV-
Connector class. While the DBConnector enables generic database access the CSV-
Connector imports data from comma separated value (CSV) files. Both classes can be
accessed through the implemented IConnector interface which supports the extension to
other data import classes. All connectors must implement the a NewOrdersIterator
function. It provides the generation of Ordermodification objects through an iterator
and can be accessed using a foreach-loop.

4.5.3 Orderbook Reconstruction

The classes involved in the orderbook reconstruction process are the MatchEngine, Or-
derprocessor, Orderbook, Orderlist and the Ordercollection classes.
The MatchEngine manages the whole reconstruction process including the static and
dynamic orderbook reconstruction. It is mainly accessed by the Dataset Generator user
interface. It includes instances of the Orderprocessor and the Orderbook classes.
The Orderprocessor reads data through a class which has implemented the IConnector
interface. As a first reconstruction step it creates Order objects in ‘raw mode’. In this
context raw mode implies that Ordermodifications are just added to the Orders but
generated Orders are not checked for consistency. The second step is the static order
reconstruction where Orders are checked for static validity considering their event code
sequences. The Repair function is called for each Order instance which has no valid
event code sequence.
The Orderbook class is part of the dynamic order(book) reconstruction process. It con-
tains all necessary data structures to store and match incoming Order(modification)s.
Thereby it is possible to reconstruct the entire state of the original XETRA matching
engine. Through replaying entire trading sessions it is possible to detect all kinds
of inconsistencies in the dataset. The Orderbook class stores two Orderlist objects to
manage buy and sell orders, respectively. The entire order reconstruction process will
be described in Chapter 5 in more detail.

45

4 Software Architecture

4.6 Dataset Generator

The Dataset Generator is an executable software package and provides a user interface
to interactively control the entire reconstruction process. As the reconstruction of the
complete dataset takes quite a lot of time the generator also allows the reconstruction
of a selected subset. It was also designed to extract specific orderbook features from
the dataset.
The Dataset Generator basically consists of one main form — its complete functionality
is therefore event driven through delegates1. The Orderbook Engine library which
actually contains the complete reconstruction logic is required to execute the Dataset
Generator. Simply put, the generator instantiates all necessary database connection
objects and passes them as arguments to the MatchEngine which is responsible for the
actual reconstruction process as has been mentioned in Section 5.3.1. The MatchEngine
reads the data from the specified source table, reconstructs it and writes the clean
database table to the selected target table.

Using the generator user interface (see Figure 4.5) the reconstruction process can
be described in a simple 3-step procedure: Firstly the source table has to be selected
from the combo box. The connection strings to access a specified table are stored
in the XML configuration file of the application. After the source has been selected
all different stocks are listed in the result table below. Secondly all stocks which
should be reconstructed are selected by the checkboxes on the left side. Finally the
reconstruction process is started by pushing the ‘Start’ button.

4.7 Orderbook Visualization

The Orderbook Visualization program provides an interface to visualize the XETRA
orderbook dataset and to do some basic exploratory data analysis. It implements a
free zoom function as well as a filter function to visually emphasize specific orders. A
basic class diagram of the Orderbook Visualization package is shown in Figure 4.6.
As already mentioned in Section 4.3 the Orderbook Visualization package requires the
Orderbook Engine library to read order objects from the database. Mainly the ICon-
nector interface and the Order class are required to read the reconstructed orderbook
dataset (see top of Figure 4.6). The core functionality of the Orderbook Visualization
package is represented by the Window1 class. It is responsible for the entire visualiza-
tion logic and the user interface interaction. Various objects are stored in the Window1
class to encapsulate different parts of the visualization functionality: the ZoomState,
Filter and TradingSession classes are the most important ones.
After reconstructed orderbook data has been read, Order objects are stored and aggre-
gated in a special Hashtable data structure to support fast visualization. The Hashtable

1Delegates are quite similar to function pointers in C++ but have more features.

46

4.7 Orderbook Visualization

Figure 4.5: Dataset Generator User Interface

contains OrderRectangle objects as well as coordinates and is stored in the ZoomState
object to allow fast navigation through the dataset. The data structure therefore
stores a pixel representation of order objects.
Also a Filter class has been implemented to restrict the visualization of orders or Or-
derRectangles. It can be applied to various order attributes as well as aggregated
OrderRectangle Attributes.
The TradingSession object allows the visualization engine to ‘glue’ orders from different
trading sessions together. This aspect is especially important to display many trading
sessions at once as big white spaces between different trading sessions are avoided.
Finally some helper classes have been implemented like the Statistics or the FileExport

47

4 Software Architecture

class. The Statistics class is mainly used to calculate quantiles of distributions and is
used to filter numerical attributes. The FileExport class encapsulates the entire logic
which is needed to export orderbook visualizations to an image file. Please refer to
Chapter 6 for more details about the orderbook visualization process.

48

4.7 Orderbook Visualization

F
ig

ur
e

4.
6:

O
rd

er
b
o
ok

V
is
u
al

iz
at

io
n

cl
as

s
di

ag
ra

m

49

4 Software Architecture

50

5 Reconstruction Process

This chapter describes the implemented reconstruction process for the analyzed XE-
TRA dataset in more detail. Starting with an overview of the process (Section 5.1)
the following sections further discuss the static order reconstruction (Section 5.2) and
the dynamic order reconstruction process (Section 5.3) in more detail. Also the han-
dling of hidden volumes (Section 5.2.3) is presented. Finally the results are given in
Section 5.2.4.

5.1 Overview

As already mentioned in Chapter 3 the rebuilt orderbook dataset for all DAX30 -
stocks from the XETRA trading system has a very high quality standard and allows
an in-depth view of trading activity on the XETRA trading system. However, various
inconsistencies in the dataset have been encountered and need to be corrected in or-
der to provide a good (visual) representation of trading activity. Further a consistent
dataset is necessary to reconstruct all states of the XETRA orderbook and to run
various data analysis and simulation tools.
The reconstruction process has been implemented as a 2-step procedure as shown in
Figure 5.1. First the static order reconstruction process has to correct errors within
event code sequences. Already introduced in Section 3.3, the entire order lifetime
cycle can be described through order modifications and, more importantly, sequences
of modification reason codes. Even Table 3.9, where the most frequent sequences
were shown, lists various incomplete sequences (missing Insertions, missing Execu-
tions, etc.). The static order reconstruction process implements strategies to repair
these defect sequences.
The second step is represented by the dynamic reconstruction of orders. In contrast to
the static order reconstruction which only corrects event code sequences on the order
level, the dynamic order reconstruction monitors and corrects numerous dynamic er-
rors on the order- as well as on the orderbook level. Therefore the order and orderbook
states are reconstructed using order modifications from the static order reconstruction
step while considering XETRA trading rules for order sorting and order execution.
These rules have already been introduced in Chapter 2. Most important features
monitored and corrected during the dynamic order reconstruction step are order size
mismatches, bid/ask spreads and the trading turnover.

51

5 Reconstruction Process

Static Order Reconstruction Dynamic Order Reconstruction

Figure 5.1: Basic Reconstruction Process Overview

5.2 Static Order Reconstruction

GetOrder

Repair

StoreOrder

RemoveOrder
¬IsValid

Is
V

a
lid

¬
Is

V
a
lid

IsValid

Figure 5.2: Static Order Reconstruction Process Overview

The goal of the Static Order Reconstruction Process handles the reparation of fragmen-
tary order event code sequences. As already mentioned in Section 3.3 defect sequences
occur quite often in the dataset and have to be repaired to ensure a proper functioning
of the dynamic orderbook reconstruction.
The basic process overview of the static order reconstruction process can basically be
described as an order validity check followed by an order repair function. Figure 5.2
shows a graphical process overview. After Data retrieval from the connector (function
GetOrder) all orders are checked for validity (see Section 5.2.1). If the order is valid
the loop continues with the next order and stores the valid order in the resulting or-
der collection (implemented as a Hashtable). Else the Repair function of the invalid
order is called (see Section 5.2.2). If not even the Repair function can reconstruct a
valid event code sequence for the order it is deleted or equivalently not stored in the
returned order collection.
In the following sections the order validity check (Section 5.2.1) as well as the order
repair strategy (Section 5.2.2) will be discussed. Also a special treatment of Iceberg
orders’ hidden size is part of the static order reconstruction as it is necessary for the
dynamic reconstruction process. It will therefore be discussed in Section 5.2.3. Finally

52

5.2 Static Order Reconstruction

Insert
Technical Delete +

Technical Insert

Deletion By User or

Deletion By System or

Execution

Order Insertion

Modification Partial Execution

Order Modification Order Completion

Figure 5.3: Basic order lifetime cycle described by order modification reasons
The entire order lifetime cycle is defined by 3 main categories of order modification
reasons:
Order Insertion . . . Insert
Order Modification . . . Technical Delete + Technical Insert, Modification, Partial
Execution
Order Completion . . . Deletion-by-User/System, Execution

the resulting dataset is presented in Section 5.2.4.

5.2.1 Order Validity Check

For the static order reconstruction process the validity check of order event code se-
quences represents a very important part. It is assumed that the event code sequence
of any order follows a predefined structure. A definition of the structure used for the
validity check is given in section Order Structure. Section Invalid Order Statistic gives
a statistical overview of invalid orders.

Order Structure

This section defines the order event code structure used for the static order validity
check. The basic structure is also sketched in Figure 5.3.
Any order has to start with an Insert order modification 1 (see Figure 5.3–Order
Insertion). The Insert modification ‘officially publishes’ the order and all important
attributes like the size, limit, etc. to the trading system and is therefore essential to
represent the order properly.
The Insert modification can be followed by the combination of a Technical Deletion
103 and a Technical Insertion 101 , a Modification 2 or a Partial Execution 5

(see Figure 5.3–Order Modification). After any of those modifications the order still
remains actively in the orderbook (or the trading system’s memory).
In the investigated dataset Technical Deletions and Technical Insertions only occur
in combination — a Technical Deletion is always followed by a Technical Insertion.
They appear when the trader changes the TradeRestriction property of his already
inserted order. This change leads to a Technical Deletion of the order; in effect the
order is deleted from the orderbook but still held in memory of the trading system.

53

5 Reconstruction Process

Insert

Technical Delete Technical Insert

Modification

Partial Execution

Deletion By System

Deletion By User

Execution

Figure 5.4: Order Modification State Diagram
Description of order modification reason sequences as state diagram. Following
the arrows from start to end state all valid event code sequences can be generated.

A fulfillment of the changed TradeRestriction value triggers the Technical Insertion
(or re-insertion) of the order with the same attributes. The entire TradeRestriction
change process leaves the unique Ordernumber value unchanged for all modifications
done.
An order Modification 2 done by the trader usually reduces the size of an already
inserted order. A size decrease is allowed by the market model because the priority of
the order remains unchanged and does not affect the priority of other orders in terms
of the Price-Time priority rule.
Partial Executions 5 can occur during the order lifetime and just reduce the size/vol-
ume of the (still active) order.
The order lifetime cycle is completed after either a Deletion-by-System 6 , a Deletion-
by-User 3 or an Execution 4 modification (see Figure 5.3–Order Completion). After
any of those modifications the order is deleted from the orderbook and not further in-
volved in the matching/trading process.
A Deletion-by-System modification is an automatic deletion of an order by the trading
system. It most often occurs due to the actual time exceeds the order expiry date (at-
tribute OrderExpiryDate). Therefore most of the Deletion-by-System modifications
are executed at the end of each trading session. In contrast to the automatic deletions
a Deletion-by-User modification indicates a trader initiated deletion of an order.
The Execution modification executes the rest volume of an order against an order on
the other side of the book.
To make the description of the order event code sequence structure more precise Fig-
ure 5.4 shows the structure in a state diagram.

54

5.2 Static Order Reconstruction

I-ECS Frequency
3 38,209
1 27,983
4 15,499
2 – 3 5,881
2 – 2 – 3 1,006
5 – 4 895
5 – 3 344
5 – 5 – 4 249
1 – 5 237
2 – 2 – 2 – 3 196

Table 5.1: Frequency of ten most common invalid order event code sequences in the
dataset
I-ECS . . . Invalid Event Code Sequence

Invalid Order Statistic

Based on the basic order structure already described in section Order Structure the
validity check identifies broken event code sequences. 91,406 orders have been identi-
fied to be erroneous by the validity check function. Considering all 2,347,387 Orders
(or equivalently Ordernumbers) the share of invalid orders is 3.89%. Table 5.1 shows
the frequencies of the 10 most common invalid event code sequences.

5.2.2 Order Repair Strategy

As could be seen in Section 5.2.1 about 4% of all orders contain fragmentary event
code sequences. On the one hand invalid order sequences have to be avoided because
they lead to an improper orderbook reconstruction. The orderbook reconstruction is
necessary for the dynamic order reconstruction process and will be described in Sec-
tion 5.3. On the other hand also invalid orders have to be preserved to ensure that
the reconstructed orderbook is as close to reality as possible and no important order
information is lost. Generally the order repair strategy is aimed to preserve orders
which contain Execution 4 or Partial Execution 5 modifications in their sequences.
Executed orders have a proven effect on the trading system and do not only affect the
turnover statistic of the exchange but are also matched against orders on the other
side of the orderbook. Therefore the reconstruction priority of executed orders is con-
sidered to be higher.
As you could already see from the most common invalid event code sequences in
Table 5.1 the sequence errors can be separated in 3 categories: Missing Insert mod-

55

5 Reconstruction Process

Missing Insertion

Modification

Missing Completion

Modification

Missing

Insertion + Completion

Modification

Invalid Orders

Execution No Execution Execution No Execution Execution No Execution

91406

62740 28645 21 0.02%68.64% 31.34%

498 1.74% 28147 98.26%17389 27.72% 45351 72.28%

3.89%

14 66.67% 7 33.33%

Figure 5.5: Segmentation of orders having defect event code sequences
Segmentation is first done by the 3 main error types and further separated de-
pending on (Partial-)Execution modifications inside the order sequence.

ification, Missing Completion modification and Missing Insert and Completion mod-
ification. Considering the general goal of the order repair strategy those categories
can be further subdivided in sequences which contain (Partial-)Executions and in se-
quences which do not. For example, the most common invalid sequence 3 , consisting
of only one Deletion-by-User modification, can be categorized as Missing Insertion
modification without execution. The segmentation of invalid order sequences is also
summarized in Figure 5.5 as a tree diagram.
The repair process identifies and corrects sequences with a missing Insert modifica-
tion first and deals with missing completion modification sequences afterwards. The
repair strategies to deal with all 3 different invalid event code sequence categories are
described in the following subsections.

Missing Insert Modification

Missing Insert order modifications are the most common reason for defect event code
sequences and represent more than two thirds of all invalid sequences. Table 5.2
shows the frequencies of all fragmentary sequences in question. To shorten the ta-
ble sequences with similar patterns have been summarized, e.g. the sequence 5+ – 4
stands for one or more consecutive partial executions 5+ followed by an execution
4 . As can be seen from Table 5.2 single deletions and single executions represent the

lion share of Missing Insert modification sequences.

56

5.2 Static Order Reconstruction

ECS Frequency Execution
3 38,209 No
4 15,499 Yes
2+ – 3 7,128 No
5+ – 4 1,381 Yes
5+ – 3 441 Yes
2+ – 4 44 Yes
6 14 No
2 – 5 – 3 9 Yes
5 – 2 – 3 5 Yes
5 – 2 – 4 4 Yes
2 – 2 – 5 – 3 3 Yes
2 – 5 – 5 – 3 1 Yes
2 – 5 – 5 – 4 1 Yes
5 – 5 – 2 – 3 1 Yes

Total 62,740

Table 5.2: Missing Insertion Sequences
ECS . . . Event Code Sequence
Execution . . . indicates if sequence contains Executions 4 or Partial Executions
5

In order to complete fragmentary sequences the Repair function has to insert the
missing Insert modifications at the beginning of each sequence. Attributes common
to each order modification in the sequence like Limit, ordertype, etc. (see Section 3.2)
are typically taken from the remaining order modification in the sequence. Further
the ModificationTimestamp of the insert modification is set to the same value as the
OrderEntryTimestamp. Only the inserted volume has to be calculated using all avail-
able order modifications.
The calculation of the inserted volume is done chronologically by a loop through all
existing modifications. In case of an Execution 4 or a Partial Execution 5 the Size
attribute of each modification is added to the inserted volume (initially set to zero). A
Modification 2 typically leads to a volume reduction of the inserted order (indicated
by the size attribute). Therefore the Size value of a Modification 2 is also added
to the inserted volume. The Size of a Deletion-by-User 3 and Deletion-by-System
modification 6 shows the rest volume of the order which has been deleted. If an order
contains one of these modifications at the end of its sequence the respective Size value
of the deletion modification is added to the inserted volume.

57

5 Reconstruction Process

Finally all necessary attributes are integrated in the reconstructed Insert order mod-
ification. The ModReasonCode of the modification is set to 201 (instead of 1) to
identify reconstructed Insert modifications.
The repair strategy stated above ensures the completion of all defect event code se-
quences listed in Table 5.2 and equivalently reduces the number of invalid orders by
approximately 69%.

Missing Completion Modification

Event Code Sequence Frequency Execution
1 27,983 No
1 – 5+ 489 Yes
1 – 2+ 162 No
1 – 5+ – 2 6 Yes
1 – 2 – 5+ 3 Yes
1 – 1 – 3 – 6 2 No

Total 28,645

Table 5.3: Missing Completion Event Code Sequences

In contrast to the reconstruction of missing Insert modifications the reparation of
missing completion modifications is more problematic. Completion modifications can
either be Executions 4 , Deletions-by-User 3 or Deletions-by-System 6 as already
defined in Section 5.2.1–Order Structure. Table 5.3 lists all uncompleted event code
sequences. Orders consisting of only one single insert modification clearly represent the
lion share of the Missing Completion modification sequences. The sequence 1 – 3 – 6
represents a rare exception with only two occurrences. Here the order is completed by a
User Delete modification 3 followed by a 6 System Delete Modification. Generally it
is almost impossible to ‘correctly’ reconstruct an uncompleted order due to the range of
possibilities of modification combinations at the end of the order event code sequence.
Although it would have been possible to reconstruct e.g. executions if there is a
turnaround mismatch in the orderbook (see Section 5.3) these reconstruction strategies
have been found to be too complicated with just a little chance to be correct. Therefore
all event code sequence have been completed with the newly introduced System Delete
203 ModReasonCode value.

The System Delete modifications which are appended at the end of each modification
sequence simply contain all necessary attributes which are common to all modifications
in an order (like Limit, Ordertype, etc.) and the rest volume of the order (expressed by
the Size). The ModificationTimestamp (MT) has been set to the MT of the last order

58

5.2 Static Order Reconstruction

plus 1ms. From the trading system’s viewpoint all orders are therefore immediately
deleted from the system. Of course this approach oversimplifies the way to deal with
uncompleted orders and may leave room for discussion. But the immediate deletion of
those orders from the book by a System Delete 203 reduces problems that could occur
during orderbook reconstruction and therefore makes the dynamic order reconstruction
process much easier.
Finally all 31% of uncompleted orders are kept in the system although the System
Delete modification appended at the end ensures an immediate deletion from the
orderbook after the last recorded order modification. As most of the orders consist
of just one single Insert modification they actually play no role in either the dynamic
order reconstruction process or the order visualization process.

Missing Insert and Completion Modification

Event Code Sequence Frequency Execution
5+ 13 Yes
2 6 No
2 – 2 1 No
2 – 5 1 Yes

Total 21

Table 5.4: Missing Insertion/Completion Sequences

Orders consisting of sequences with missing Insert and completion modifications only
represent the tiny fraction of 0.02% of all invalid orders (see Table 5.4 for all sequences).
Due to the repair process structure already described in Section 5.2.2 the event code
sequence of those orders is first corrected by an Insert modification at the beginning
(see Section Missing Insert modification) and afterwards by a System Delete 203
modification at the end. For example, an invalid 5 – 5 – 5 event code sequence
results in a 201 – 5 – 5 – 5 – 203 sequence. A quite strange order results from the
reconstruction of 2+ event code sequences. Due to the calculation of the insert
order size which is the sum of all modification sizes a resulting 201 – 2+ – 203 order
means that the inserted order volume is reduced to zero over its order lifetime and
deleted afterwards. Only 7 such orders could be identified in the dataset, therefore
this behavior can be neglected.

59

5 Reconstruction Process

5.2.3 Hidden Size

Iceberg orders, already mentioned in Section 2.3.3, are a special order type and can
be described through a peak size which is visible in the orderbook and the entire
(hidden) volume. While the peak volume is published by the Size attribute of the
insert order the entire hidden volume equals the sum of all (Partial-)Execution Size
values. In order to provide a proper Size consistency check also the hidden volume has
to be published to the dynamic order reconstruction process when the order enters the
system. Therefore a new HiddenSize attribute is introduced during the static order
reconstruction process for all orders in the reconstruction database. For non-Iceberg
orders the HiddenSize value simply equals the Size of the Insert order modification;
for Iceberg orders it is its actual hidden size.

5.2.4 Result

The dataset which results from the static order reconstruction process still contains
all as ‘invalid’ classified orders with consistent order event code sequences. The newly
introduced System Insert 201 and System Delete 203 ModReasonCode values make
it possible to identify all order modifications which have been inserted during the static
order reconstruction process. Further the HiddenSize attribute publishes the hidden
volume of Iceberg orders already in the Insert order modification and makes a size
consistency check for all order types during the dynamic order reconstruction process
possible.
Table 5.5 looks quite similar to Table 5.1 and shows the most frequent repaired event
code sequences resulting from the static order reconstruction process.

Event Code Sequence Frequency
201 – 3 38,209
1 – 203 27,983
201 – 4 15,499
201 – 2 – 3 5,881
201 – 2 – 2 – 3 1,006
201 – 5 – 4 895
201 – 5 – 3 344
201 – 5 – 5 – 4 249
1 – 5 – 203 237
201 – 2 – 2 – 2 – 3 196

Table 5.5: Frequency of repaired order event code sequences

60

5.3 Dynamic Order Reconstruction

5.3 Dynamic Order Reconstruction

In Section 5.2 the reconstruction of defect order event code sequences has been de-
scribed. Although fragmentary event code sequences are the main source of inconsis-
tencies in the dataset only a complete reconstruction of the orderbook can show up
all kinds of inconsistencies. Detectable errors can be separated in two main groups:
Errors in single orders (or order level errors) and errors in the complete orderbook
(orderbook level errors). Order level errors typically appear as size mismatches in
orders. This error type can be detected quite easily and occurs if the inserted order
volume is not exactly executed or deleted by the system. By contrast orderbook level
errors can have various forms and result in an inconsistent orderbook.
While Section 5.3.1 shows the implementation of the orderbook reconstruction Sec-
tion 5.3.2 and Section 5.3.3 describe order– and orderbook level errors including the
repair strategies in more detail.

5.3.1 Orderbook Reconstruction

The reconstruction of the orderbook plays a crucial part for the dynamic order recon-
struction process. In addition to the general introduction of orderbooks in Section 2.2
this section will give a brief technical overview of the implemented orderbook classes
and their interactions. The classes of interest during the dynamic order(book) recon-
struction process are the MatchEngine, Orderbook, Orderlist, Ordercollection and the
Order class. Please review the class diagram from Figure 4.4 to get a better under-
standing of connections between the classes in question.

Addition of Order Modifications

The MatchEngine controls the whole reconstruction process and collects all Ordermod-
ifications that result from the static order reconstruction process. The MatchEngine
also instantiates the Orderbook object and adds Ordermodifications chronologically to
the Orderbook. The chronological addition of Ordermodifications (by the Modifica-
tionTimestamp) to the Orderbook leads to a ‘fast replay/simulation’ of all orderbook
states. The Orderbook object itself manages two Orderlists for buy and sell orders
respectively. After the addition of new Ordermodifications the Orderbook separates
them by the BuySell attribute. Buy(Sell) orders are added to the Buy(Sell)-Orderlist
accordingly. The Orderlist implements an easy-to-use interface to the encapsulated
Ordercollection class and has exclusive rights to modify its Ordercollection. Insert mod-
ifications added to the Orderlist lead to the instantiation of new Order objects. During
the generation of Order objects the Orderlist also registers for various order events;
thus the Orderlist can react to all kinds of (order-)events like order deletion (to be

61

5 Reconstruction Process

MatchEngine

Add Ordermodification

Orderbook

Add Ordermodification

Orderlist

Ordercollection

Add Ordermodification Order

Add Ordermodification

Order Event NotificationOrder Event Notification

Figure 5.6: Sequence diagram of all classes involved when order modification is added
to the orderbook

discussed later). Finally the newly generated Order is added to the Ordercollection
object. All other modification types (ModReasonCodes) are directly added to the Or-
dercollection object accordingly. The Ordercollection is the actual data container and
stores all Order objects. It is also responsible for the correct sorting of Orders and will
be discussed in the next section.
Figure 5.6 visualizes the interactions of all involved classes during additions of Order-
modification objects in a sequence diagram.

Ordercollection

The Ordercollection class provides data structures for the storage and sorting of order
objects. Order objects are stored in two separated Hashtables for enabled and disabled
orders, respectively. These tables contain the Ordernumber as Key (string) and the
Order object as value. The correct implementation of active trade restrictions makes
this separation necessary and will be discussed in the next section in more detail.
For performance reasons the order sort mechanism is implemented by the SortedDic-
tionary class (first introduced in the .NET 2.0 Framework). The sorting procedure not
only has to take the Price-Time priority rule (already discussed in Section 2.2) into
account, but also the order type (Market orders generally have a limit of zero but
a higher (bid-)priority). To simplify the sorting data structure the SortedDictionary
contains a special sort string as key and a string list of Ordernumbers as values.
The sort key starts with one character indicating the order type. Possible values are
Market M , Limit L , Iceberg I and Market-to-Limit T . The next characters identify
the limit which is rounded to two decimals and multiplied by 100 afterwards (which in

62

5.3 Dynamic Order Reconstruction

T L+ YYYY MM DD HH MM SS MMM
Ordertype Limit Year Month Day Hour Minute Second Millisecond

Figure 5.7: Order sort key

L 9813 2005 01 05 09 15 12 110
Ordertype Limit Year Month Day Hour

Minute

Second

Millisecond

Figure 5.8: Order sort key example

effect erodes the comma). The last 17 characters contain the OrderEntryTimestamp
with a precision of 1ms. Figure 5.7 shows the structure of the order sort key. To get
a better understanding of the generated order sort key we consider the example of a
98.13 EUR Limit order with the OrderEntryTimestamp 2005-01-05 09:15:12.110.
The order key generated is shown in Figure 5.8. . The introduced sort string is han-
dled by the OrderComparer which implements the search logic of our SortedDictionary.
The comparer splits the generated string, converts its items to their underlying data
types and applies a 3-level sorting procedure. The sorting procedure has the following
hierarchical levels (ordered by priority): order type, limit and time of order entry (by
OrderEntryTimestamp. Occasionally it can happen that entered orders have the same
priority or equally the same order type, limit and OrderEntryTimestamp. Therefore
their Ordernumbers are stored in the same string list as values with the common order
sort key as value of the SortedDictionary.

Handling of Trade Restrictions

Trade restrictions, already introduced in Section 3.8, restrict the visibility and execu-
tion of an order to defined trading phases (see Section 2.5). The trade restriction can
be set to Auctions, Closing Auctions, Opening Auctions and Main Trading Phases.
If, for example, a trader enters a Limit order into the system during the Continuous
Trading Phase at 16:00 with a Closing Auction Only trade restriction, the order will
only be visible and executed during the Closing Auction at 17:30. The order is there-
fore disabled and not visible in the orderbook from 16:00–17:30 and is enabled (and
enters the book) at 17:30 during the Closing Auction. Another example would be
a Limit order with an Auction Only restriction which enters the orderbook at 13:00

63

5 Reconstruction Process

during the Intraday Auction. If the order cannot be executed during Intraday Auction
it will be disabled during the Continuous Trading Phase until Closing Auction.
The examples above have shown an important and required feature of the orderbook
— the ability to enable and disable orders based on the TradeRestriction attribute.
This feature requires that the Orderbook also sets the actual trading phase correctly.
Basically the Orderbook sets its trade phase based on the AuctionTradeFlag of incom-
ing Ordermodifications. It would generally be possible to set the trading phase based
only on the simulation time of the trading system (see Section 2.5) but by the usage of
the AuctionTradeFlag also unexpected trading phases can be managed like e.g. Volatil-
ity Interruptions. After the Orderbook has recognized a trade phase change it notifies
the Orderlist by sending a message in form of a TradePhaseChangedEvent. Based on
the new trading phase the Orderlist enables and disables Orders in the Ordercollection
by their trade restrictions.

Order Events

In order to notify the system about changes made to an order a number of events are
implemented in the Order class. Events are defined for executions and deletions and
are sent to the Orderlist object. The event generation can be described as follows:
First an Ordermodification is added by the Orderlist object to the Ordercollection. The
Ordercollection further adds the Ordermodification to the according Order (see also Sec-
tion Addition of OrderModifications). In case of a Partial Execution, an Execution or
a Deletion By User/System the Order fires an OrderExecution event or an OrderDeleted
event, respectively. OrderExecution events are generally passed to the Orderbook which
manages the executed order volumes. Full-Executions and Deletions-By-User/System
(notified by the OrderDeleted event) inform the Orderlist to delete the specified orders
from the Ordercollection. The function of order notification events has already been
sketched in Figure 5.6. Market-to-Limit orders are handled in a special way through
the OrderModifiedInsert and the OrderModifiedDelete events. As already described in
Section 2.3.3 a Market-to-Limit order is first inserted as a Market order and changes
to a Limit order after the first partial execution. The order is therefore deleted from
Ordercollection (initiated by the OrderModifiedDelete event) and re-inserted with its
changed attributes by the OrderModifiedInsert event.

5.3.2 Order Level Errors

Order level errors represent the simplest error type detected by the dynamic orderbook
reconstruction process. Unlike the static order reconstruction process, which only
repaired event code sequences based on the ModReasonCode attribute those errors
occur due to size mismatches inside the order. Generally the inserted size/volume
of an order which entered the orderbook has to equal the summed sizes/volumes

64

5.3 Dynamic Order Reconstruction

of all (Partial-)Executions, Modifications and Deletions-by-User/System. The order
therefore must have a volume of zero when it is booked out of the orderbook. A volume
not equal to zero at completion indicates a size mismatch and has to be investigated
further.
The definition of an order size mismatch leads to two simple cases: volumes greater
and volumes less than zero at completion. Volumes greater than zero should normally
appear if order modifications (which lower the volume) are missing. By contrast, the
reason for negative values could be a wrong size in either the Insert or the completion
modification.
The introduction of the HiddenSize attribute (see Section 5.2.3) enables the system
to check even Iceberg orders for size mismatch errors.
Although no size mismatches could be detected in the investigated dataset the check
for order level errors was a nice utility to debug various orderbook reconstruction
errors.

5.3.3 Orderbook Level Errors

The following section describes the detection of dynamic errors resulting from the
reconstructed orderbook in Section 5.3.1. To capture all facettes and errors of the
trading process a re-implementation of the XETRA matching engine combined with
a consistency check of matched orders and modifications from the dataset would
probably be the most exact way to go. Early implementations of the XETRA
matching engine showed a great increase of the dynamic orderbook reconstruction
runtime and have therefore been abandoned. Instead it was discovered that a
‘matching’ directly done by order modifications would be sufficient for reconstruction
purposes. Only a consistency check for important parameters of the orderbook class
has been implemented and leads to a dramatic decrease in reconstruction runtime.
However, in some cases you cannot make exact statements about which orders have
exactly been matched — but that is actually of no interest during for reconstruction
process. An implementation of a re-engineered XETRA matching engine makes more
sense in the context of trading strategy testing or live simulation and is left for further
developments of this software package.
The dynamic orderbook parameters which have been analyzed for reconstruction
purposes are the bid/ask spread and the executed volumes in the orderbook. The test
is done after each addition of Ordermodifications to the Orderbook. Errors have been
written to a predefined log in the CSV file format for statistical reporting issues.

65

5 Reconstruction Process

Bid/Ask Spread

The bid/ask spread of an orderbook is defined as the difference between the best ask
(sell) and the best bid (buy) limit (see also Section 2.2). Crossed orderbooks or, equiv-
alently, negative bid/ask spreads should lead to the immediate execution of respective
orders. Therefore the spread is checked to be positive after the addition of OrderMod-
ifications to the book. In some cases, however, the spread can also become zero or
negative.
Orders are only executed at the end of auctions which can lead to a negative spread
while an auction is hold. For that reason orderbooks with negative spreads during
auctions are still considered to be valid.
The insertion of Market orders can also lead to a spread of zero during Continuous
Trading Phases. Although those orders should be executed immediately when in-
serted (OrderEntryTimestamp equals ModificationTimestamp of Execution) the XE-
TRA matching engine sometimes executes those orders a few milliseconds afterwards.
If a Market order exists in the buy-orderbook, the best bid(ask) is set to the best
ask(bid) which results in a spread of zero.
By the definitions for valid bid/ask spreads mentioned above no spread errors could
be encountered in the investigated dataset.

Executed Volumes

After the addition of new Ordermodifications to the Orderbook the volume of executed
orders is reported to the Orderbook class through the OrderExecution event. Typically
orders contain (Partial-)Execution modifications with the same size and Modifica-
tionTimestamp of their matched counterpart. The executed buy and sell volumes
reported to the Orderbook after each modification addition iteration (or equivalently
after each simulation time step) therefore need to be equal. Unequal volumes indicate
that executed orders are missing.

The error output statistic in Table 5.6 shows the aggregated numbers of volume
mismatches encountered during the dynamic orderbook reconstruction process. The
raw error data showed that mismatches always happen due to executions on only one
side of the orderbook within the investigated time period. Further the mismatches
appeared rather uniform over the simulation period.
Therefore we define Buy(Sell) Order Mismatches as executed buy(sell) orders without
executions in the sell(buy) orderbook. Although the summed volumes of Buy- and
Sell Order Mismatches appear rather big at first sight the missing volumes only
represent 0.0021% of all shares traded in the sample period. A by-stock analysis
shows that shares of Fresenius Medical Care have the highest relative error rate of
0.02% while the lowest is given by Metro AG with only 0.0003%.
In order to correct missing volumes a new Market order has been inserted at each

66

5.3 Dynamic Order Reconstruction

time when an executed volume mismatch was detected. An executed buy volume
less than the executed sell volume triggers the insertion of a new buy order and vice
versa. The insertion size is generally given by

|(executedBuyV olume)− (executedSellV olume)|

From the trading system’s point of view the inserted order is immediately executed
with a newly introduced System Execution 204 ModReasonCode which leads to a
complete order event code sequence of 201 – 204 . The newly introduced Market
order therefore consists of two order modifications with ModificationTimestamps set
to the respective time of order mismatch and corrects all volume mismatches that
occurred in the investigated time period.

67

5 Reconstruction Process

Stock Name BOM SOM BS Exec.Shares*
ADIDAS-SALOMON AG O.N. 97 0 97 3,797,385
ALLIANZ AG VNA O.N. 537 634 1171 25,176,559
ALTANA AG O.N. 760 8 768 7,217,032
BASF AG O.N. 591 285 876 29,849,186
BAY.HYPO-VEREINSBK.O.N. 962 479 1441 84,639,113
BAY.MOTOREN WERKE AG ST 440 990 1430 29,678,956
BAYER AG O.N. 346 574 920 62,443,602
COMMERZBANK AG O.N. 1391 1741 3132 59,850,440
CONTINENTAL AG O.N. 100 176 276 10,449,262
DAIMLERCHRYSLER AG NA O.N 532 442 974 52,869,814
DEUTSCHE BANK AG NA O.N. 38 229 267 51,786,795
DEUTSCHE BRSE NA O.N. 195 0 195 9,425,059
DEUTSCHE POST AG NA O.N. 101 0 101 28,479,967
DT.TELEKOM AG NA 200 653 853 300,265,473
E.ON AG O.N. 488 300 788 30,200,060
FRESEN.MED.CARE AG O.N. 64 564 628 2,903,284
HENKEL KGAA VZO O.N. 0 417 417 4,645,115
INFINEON TECH.AG NA O.N. 2351 200 2551 134,910,873
LINDE AG O.N. 295 0 295 6,309,161
LUFTHANSA AG VNA O.N. 187 640 827 37,344,071
MAN AG ST O.N. 400 339 739 18,592,895
METRO AG ST O.N. 63 0 63 23,462,145
MUENCH.RUECKVERS.VNA O.N. 992 373 1365 18,699,341
RWE AG ST O.N. 546 124 670 48,139,296
SAP AG ST O.N. 438 868 1306 27,688,252
SCHERING AG O.N. 901 312 1213 21,473,705
SIEMENS AG NA 163 100 263 48,063,271
THYSSENKRUPP AG O.N. 698 559 1257 36,674,671
TUI AG O.N. 255 268 523 18,013,437
VOLKSWAGEN AG ST O.N. 343 560 903 39,332,589
Total 14,474 11,835 26,309 1,272,380,809

Table 5.6: Executed Size Order Mismatch
BOM . . . Buy Order Mismatch Volume
SOM . . . Sell Order Mismatch Volume
BSV . . . Sum of Buy- and Sell Order Mismatch Volumes
* Number of Executed Shares have been double-counted (executed buy and sell
volume)

68

6 Orderbook Visualization

This chapter highlights the implementation of the orderbook visualization process;
the orderbook visualization user interface will be discussed separately in Chapter 7.
Starting with an introduction (Section 6.1) which also describes the main features of
the Orderbook Visualization package the visualization process (Section 6.2) is outlined
including Data Retrieval (Section 6.3), Order Binning (Section 6.4), Visualization
(Section 6.5), Zoom (Section 6.6) and Filtering (Section 6.7).

6.1 Introduction

The Orderbook Visualization package is designed to provide an easy-to-use interface
for the visual exploration of XETRA orderbook data. Although statistical software
packages like R or Matlab support more sophisticated tools for data analysis in general
([R08], [Mat08]) the implementation of an interactive data visualization tool including
a fast zoom function had to be done in an object oriented language because of flexibility
and performance issues. As already mentioned in Chapter 4 the C# programming lan-
guage was selected because of its powerful Windows Presentation Foundation (WPF)
graphics library, fast SQL Server data access libraries and — last but not least —
because of the highly productive Visual Studio 2008 development environment. How-
ever, the execution of the Orderbook Visualization tool requires the Microsoft Windows
XP SP2 (or higher) operating system.
The graphical presentation of orderbook data also reveals interesting trading patterns.
Typical patterns found in the XETRA orderbook can be described as order sequences
whereas the orders have common attributes like e.g. the inserted volume. By using
the filters implemented in the Orderbook Visualization program, orders having specific
attributes can be emphasized which also highlights interesting trading patterns in the
dataset.
Finally, the Orderbook Visualization program not only allows users to do preliminary
explorative data analysis and study the states and mechanisms of the XETRA Order-
book; they can even explore trading patterns found on the XETRA orderbook. The
detection of visual trading patterns in the XETRA dataset will be further described
in Section 8.
The supported features of the Orderbook Visualization package are summarized below.

69

6 Orderbook Visualization

Data Retrieval: The implemented data connectors already support the import of re-
constructed orderbook data from database or from CSV files, respectively. The
connectors are implemented in a very generic way (see Chapter 4) and can be
extended to various other databases or file formats.

Data Export: In order to store graphical representations of the orderbook export func-
tions for various image file formats have been implemented (Section 7.4.3). The
implemented framework also includes functions to export selected orderbook
data to databases as well as text files (CSV) which can be analyzed with other
statistical tools like R or Matlab.

Data Visualization: The visualization of orderbook data naturally represents the core
functionality of this software package. Beside the intuitive graphical represen-
tation of orders also other features like visualization of different layers for grids,
spreads, etc. are possible. Altogether it enables the user to get a detailed and
intuitive overview of what actually happened in the orderbook at any time.

Data Navigation: The fast navigation through the visualized orderbook also repre-
sents one of the main features of this program. It is done by the Zoom function
and provides the visualization of orderbook data at any level of detail. Order
level information can also be retrieved by simply clicking any visualized order.

Filtering: By using implemented filters only a subset of orders can be displayed ac-
cording to defined filter parameters for any order attribute. The application
of filters can reveal interesting trading patterns in the orderbook. Even some
algorithmic patterns can be detected and displayed, zoomed, exported, etc. in a
very intuitive manner.

70

6.2 Process Overview

Data Retrieval Order Binning Filtering Visualization

Zoom

Instrument Changed

Filter Changed

Figure 6.1: Overview of the Visualization Process

6.2 Process Overview

This section describes the visualization process of orderbook data also sketched in
Figure 6.1.
As a first step orderbook data is imported by the data retrieval process. Implemented
connectors are able to import data resulting from the reconstruction process (Sec-
tion 5) form either SQL databases or CSV files.
After Ordermodifications and Orders have been generated they are stored in data struc-
tures designed to provide a fast access for two-dimensional graphical representation
purposes. The storage location can be described as data‘bins’ whereas a bin represents
a single pixel on a x-y pane. Attributes like ModificationTimestamp and Limit are
scaled properly to determine the correct bin for data storage. This whole process is
also referred as order binning and will be described in Section 6.4 in more detail.
The order filtering process provides a filter function either on the Order level or the
aggregated OrderRectangle level. The Filter on the Order level supports parameters
for any Order specific attribute (like e.g. Ordertype) and is executed after the binning
process. By contrast, OrderRectangle filters apply to aggregated attributes calculated
from order bins (like e.g. Volume). The visualization process is responsible for the
representation of already binned and filtered orders. After orders have been rendered
and displayed on screen the dataset can be navigated using the Zoom function. Techni-
cally a zoom leads to a cycle of order re-binning followed by a visualization of zoomed
orders. A filter change simply leads to a re-application of filters to the binned orders
followed by a Visualization. For the entire order binning–visualization–zoom cycle
performance optimization was a big issue and led to a fast navigation through large

71

6 Orderbook Visualization

orderbook datasets. A change of the instrument leads to a re-execution of the en-
tire visualization process, starting with data retrieval. All mentioned actions involved
in the visualization process will be described in the following sections in more de-
tail, including data retrieval (Section 6.3), order binning (Section 6.4), visualization
(Section 6.5), zoom (Section 6.6) and filtering (Section 6.7).

6.3 Data Retrieval

The data retrieval process has been implemented using the connectors from the Order-
book Engine library and is therefore quite similar to the reconstruction process data
import functions described in Chapter 5. Imported data results from the reconstruc-
tion process and contains ‘synthetic’ Ordermodifications as well with the newly intro-
duced attribute HiddenSize and the ModReasonCodes System Insert 201 , System
Execution 204 , and System Delete 203 . As already outlined those Ordermodifica-
tions should ensure the static and dynamic consistency of the dataset.
Basically data retrieval is implemented by the GetData function in the main Window1
class which instantiates a data connector and reads data through its IConnector inter-
face. Imported Ordermodification objects will further be stored in Order objects, as
described in Section 6.4.

6.4 Order Binning

6.4.1 Overview

The order binning process describes the storage of orders generated by the data
retrieval process (Section 6.3) in special data structures. The structures are designed
to provide a fast data access for the proper visualization of orders in the visualization
process.
The overall goal of the visualization process can be described as the graphical
representation of orders, which are generally represented in an event-based way by
order modifications, on a two dimensional x-y pane. The data structures are designed
as a data grid to directly represent each pixel of the pane. The order binning process
therefore plays a crucial part due to the actual pre-transformation of Orders by
storing them in the grid. It is also one of the main sources when performance issues
are considered.

6.4.2 Basic Binning Idea

As already mentioned in Section 5.2.1 the order lifetime cycle can be described through
a sequence of various events. Beginning with an Insert modification and maybe some

72

6.4 Order Binning

modifications in between, the lifetime always ends with a completion modification.
For visualization purposes two order properties are of special interest: limit and the
order lifetime.
Except for Market(-to-Limit) orders the limit is always the same for all modifications
of an order. The Limit attribute is a floating point number with a precision of two
decimal points (see also Section 3.2.11). However, other order attributes like the Vol-
ume can change in case of Modifications (ModReasonCode 2) or Partial executions
(ModReasonCode 5).
The order lifetime starts at the time defined by the OrderEntryTimestamp or the
ModificationTimestamp of the insert order. Its end is marked by the Modification-
Timestamp of the completion modification. The attribute Orderlifetime is therefore
defined as the difference between the completion ModificationTimestamp and the in-
sertion ModificationTimestamp.
For visualization purposes the attributes Limit and Orderlifetime have to be displayed
on a 2-dimensional pane. The x-axis is defined as time and the Limit is displayed by the
y-axis. The display area of the pane is limited by the four attributes min-/maxTime
and min-/maxLimit. Internally the pane is created by a two-dimensional array of pix-
els whereas the colors are set by a 3-dimensional vector for red, green and blue values.
In order to allow a fast visualization of imported orders it was decided to create a
data structure with a 1:1 representation of each pixel of the pane. The basic data
structure can therefore be simplified to a 2-dimensional array (or data grid); its actual
implementation is left to Section 6.4.3. Due to the discrete character of pixels or array
elements each element could also be seen as an order storage bin spanning a specified
time and price interval. Therefore the resolution of the pane which is defined as the
number of horizontal and vertical pixels also sets the possible size of the data structure
and equivalently the number of bins. The number of bins is another characteristic at-
tribute of the pane and becomes crucial when performance issues are considered. After
these preliminary thoughts the basic binning idea can now be defined as a mapping
problem of Orders (defined by OrderModifications) on a 2-dimensional data grid. The
attributes which define Limit and Orderlifetime have to be properly scaled to put the
generated orders in the data structure.
The implemented data structures are reviewed in Section 6.4.3 and the determination
of order bins is be described in Section 6.4.4. In Section 6.4.5 the operational binning
process is further analyzed.

6.4.3 Data Structures

The data structures implemented for order storage are designed to provide a fast
data access of the visualization process. At first sight a simple two-dimensional
array would be sufficient for this purpose. However, only a limited amount of space
spanned by the time and limit attribute is filled with Order objects. Therefore an

73

6 Orderbook Visualization

vTable

Key Value

vBin1

vBin2

...

vBinN

hTable1

hTable2

...

hTableN

hTable1

Key Value

hBin1

hBin2

...

hBinN

ORect1 ORect1

Orderlist

Volume

Color

...

ORect2

...

ORectN

Figure 6.2: Design of the order visualization data structure
The order visualization data structure consists of 3 parts:
vTable (SortedDictionary) stores vertical coordinates as key and a SortedDictionary
(hTables) as value
hTable stores horizontal coordinates as key and OrderRectangle objects as value
OrderRectangle actually represents a bin and contains an Orderlist of all respective
orders, aggregated features (e.g. volume) and color information

implementation with a simple array would lead to a massive waste of memory. It was
therefore decided to implement the data structure as a double-Hashtable. The basic
structure design is shown in Figure 6.2.

The first Hashtable (Hashtable1) stores the y-coordinate (or vertical bin-number)
as defined by the Order Limit as key and a second Hashtable as value. Hashtable2
contains the horizontal bin-number (defined by time) and an OrderRectangle object
as value.
Compared to the simple two-dimensional array approach the Hashtables just use as
much memory as necessary and provide a fast lookup method by the keys which
are simply the according x-y coordinates of Orders. The visualization process (see
Section 6.5) therefore implements a fast access when Orders have to be addressed
by their coordinates. The actual order storage is done by the OrderRectangle object
which contains a list of all Order objects added. Most importantly it also manages
Order attributes which can change over time when further Ordermodifications are
added. The best example is the Volume attribute that can change when e.g. a Partial
Execution modification is added afterwards. The reason for the special handling
of those order attributes, which will also be referred as OrderRectangle attributes
in this chapter, is the recycling of Order objects in the memory’s heap to reduce
memory requirements and will be discussed in Section 6.4.5. Attributes set by the

74

6.4 Order Binning

OrderRectangle object like pixel color are also accessed by the visualization engine.

6.4.4 Order Placement

The bin sizes of the 2-dimensional structure can be defined by the display borders
for the attributes time (minTime, maxTime), limit (minLimit, maxLimit) and by the
number of horizontal (hDim) and vertical bins (vDim). The horizontal bin-size for the
time attribute results as

hBinSize =
maxTime−minTime

hDim

Analogous the vertical limit bin size is defined as

vBinSize =
maxLimit−minLimit

vDim

Figure 6.3 shows an example grid with a resolution of 6x7 containing all relevant
attributes.

After the actual shape of the grid has been determined by the grid parameters the
placement of orders into the data structure will be described. As already mentioned
in Section 6.4.2 the necessary order attributes are the Limit and the order start- and
endtime defined by the ModificationTimestamp of the Insert- and completion order
modification. Based on these attributes the corresponding bin coordinates have to be
calculated as described in the following sections.

Limit Calculation

The calculation of the vertical coordinate (vBin) for an order with a limit of oLimit
simply follows from the grid definition and is given by

vBin = vDim− boLimit−minLimit

vBinSize
c

whereas vDim, minLimit and vBinSize have already been defined in Section 6.4.4.
If oLimit is outside the defined borders minLimit or maxLimit the order lies in the
clipping area and cannot be displayed.

Time Calculation

In contrast to the calculation of the vertical bin coordinate in Section 6.4.4 the time
calculation is a bit more complicated. For the visualization of consecutive trading days
sessions actually have to be ‘glued together’. In order to calculate the actual trading

75

6 Orderbook Visualization

maxLimit

minLimit

m
in

T
im

e

m
a

x
T

im
e

hBinSize

v
B

in
S

iz
e

Figure 6.3: Example of a 6x7 Visualization grid containing all important parameters
vBinSize . . . vertical bin size (limit interval)
hBinSize . . . horizontal bin size (time interval)
min/maxLimit . . . limit price borders
min/maxTime . . . time borders

time a TradingSession object is generated for each trading day between the borders
minTime and maxTime. A TradingSession object contains the attribute startTime,
endTime and the resulting trading time which results by subtracting startTime from
endTime.
If, for example, the trading time between two DateTime objects 2005-01-05
10:30:00.000 and 2005-01-12 16:15:00.000 have to be calculated and a general
TradingSession is defined with a startTime of 09:00:00.000 and 17:30:00.000 the
TradingSessions generated are listed in Table 6.1. It can be seen that the weekend
from 2005-01-09 until 2005-01-10 has been skipped which results in a total trading
time interval of 56:45:00.000. Using the time interval calculation method described
above the calculation of the horizontal time bin is quite similar to the vertical limit
bin calculation for any given order time oTime (either startTime or endTime) and is
given by

hBin = 1 + boT ime−minTime

hBinSize
c

The division of time intervals (or Timespan objects in .NET) is actually not defined.
The Timespan object has therefore been converted to long variables which represent
respective Timespan values as tick numbers (one tick equals a time interval of 100 nano

76

6.4 Order Binning

TS startTime endTime trading Time
01 ’05.01.2005 10:30:00.000’ ’05.01.2005 17:30:00.000’ 07:30:00.000
02 ’06.01.2005 09:00:00.000’ ’06.01.2005 17:30:00.000’ 10:30:00.000
03 ’07.01.2005 09:00:00.000’ ’07.01.2005 17:30:00.000’ 10:30:00.000
04 ’10.01.2005 09:00:00.000’ ’10.01.2005 17:30:00.000’ 10:30:00.000
05 ’11.01.2005 09:00:00.000’ ’11.01.2005 17:30:00.000’ 10:30:00.000
06 ’12.01.2005 09:00:00.000’ ’12.01.2005 16:15:00.000’ 07:15:00.000

Total 56:45:00.000

Table 6.1: Trading Session Time Calculation Example
startTime and endTime is given in the format ’DD.MM.YYYY HH:MM:SS.MS’
trading time by HH:MM:SS.MS

Grid Order

Attribute Value Attribute Value

minTime ’10:30:00’ Limit 97,97
maxTime ’11:05:00’ startTime ’10:37:30’
minLimit 97,90 endTime ’10:57:30’
maxLimit 98,00
hDim 7
vDim 5

vBinSize 0.02 start-bin (hBin/vBin) (2/2)
hBinSize ’00:05:00’ end-bin (hBin/vBin) (6/2)

Table 6.2: Specifications of an Order Placement Example
Grid and order parameters are given on top, resulting binsize and bins are shown
below.

seconds). Time intervals as well as the size of the horizontal time bin (hBinSize) are
therefore internally represented as ticks of type long.
In case that oTime lies outside the defined trading session time intervals the
time is ‘rounded’ to the next startTime or endTime of the according TradingSes-
sion. Considering our TradingSession example above a timestamp of 2005-01-05
18:00:00.000 would be rounded to 2005-01-05 18:00:00.000, a timestamp of
2005-01-06 07:30:00.000 to 2005-01-06 09:30:00.000. Therefore even orders
which have been entered during Pre- and Post-Trading phases are displayed at the
beginning or the end of the defined TradingSessions.

77

6 Orderbook Visualization

1
0
:3

0

98,00

97,98

97,96

97,94

97,92

1
0
:3

5

1
0
:4

0

1
0
:4

5

1
0
:5

0

1
0
:5

5

1
1
:0

0

2 3 4 51 6 7

1

2

3

4

5

v
B

in

hBin

Limit / Time

Figure 6.4: Order Placement Example
Specified order in 6.2 drawn on the visualization grid from (2/2) to (6/2)

Order Placement Example

To put all considerations about order placement together we consider a simple ex-
ample. All relevant parameters for the placement calculation example are given in
Table 6.2. The attributes below the horizontal line in Table 6.2 have been calculated
using the formulas defined in previous sections and show the results for the bin sizes
(hBinSize, vBinSize) and the resulting coordinates for the order insert- and comple-
tion modification. As can be seen from Figure 6.4 the finally placed order is not only
inserted into the start- and end-bin (2/2 and 6/2). It is also added to the bins which
lie in between like 3/3, 4/2 and 5/2. Bins to which the respective order object has
been added are marked with a gray background.

6.4.5 Binning Process

The implemented binning process slightly deviates from the general order placement
strategy from Section 6.4.4 and will be described in this section. The general process
is shown in Figure 6.5 and can be described as a loop through all OrderModifications
generated by the data retrieval process (Section 6.3). After the OrderModification
has been retrieved (function GetModification) an according Order is generated and

78

6.5 Visualization

Get Modification

Generate Order

Place Order

If insert mod.

If ¬insert

mod.

Add Modification

Figure 6.5: Binning Process Overview

placed in the data structures (Section 6.4.3).
As a first step the OrderModification is imported through an iterator and analyzed by
its ModReasonCode. In case of an insert modification an Order object will be generated
and is preliminary stored in a Hashtable container. Afterwards the OrderModification
iterator continues with the next modification. All other modification types are sim-
ply added to the already generated Order in the Hashtable. In contrast to the order
placement example described in Section 6.4.4 Orders are not actually placed only by
their startTime and endTime. After the addition of an OrderModification the Order
is already placed into the data grid. The order endTime is therefore defined as the
modification added to the Order — its startTime as the modification before the added
order. This approach is used for the correct calculation of OrderRectangle attributes
(see Section 6.4.3). However, it could lead to multiple Order insertions at the Or-
derModification connection points. This issue has been corrected by a order query
executed before insertion.
Finally when the binning process has iterated through all OrderModification objects
the resulting data structure is filled with Order objects and ready for the graphical
visualization process described in the next section.

6.5 Visualization

The visualization process has the goal to graphically represent Orders stored in the
data structures (see Section 6.4.3). As can be seen from the process overview in
Section 6.2 the visualization process is executed after the binning (Section 6.4) and
filtering (Section 6.7) of orders has been finished. The entire information about binned
and filtered orders is aggregated in an OrderRectangle object and stored in the data
structures (Section 6.4.3). The OrderRectangle object therefore plays a crucial part for
the visualization process as it not only contains information about the Order objects
and aggregated attributes (like Volume). It also defines graphical parameters like the

79

6 Orderbook Visualization

color and coordinates (by its location in the structure) for any (filled) order-bin or
pixel.
The color attribute is set when Orders are added to the OrderRectangle object and
dependent on the BuySell attribute. For buy orders it is defined as blue and for sell
orders as red, respectively. If an OrderRectangle contains buy and sell orders its color
is set to green.
The task of the visualization process results as an iteration through all OrderRectangle
objects stored in the data structures followed by the painting of respective pixels on
a two-dimensional image. Although this procedure sounds quite simple early visual-
ization implementations using WPF Rectangle objects for the representation of each
OrderRectangle showed serious performance problems. Finally it has been decided to
draw the complete graphical orderbook representation as a bitmap picture using the
WriteableBitmap class included in the System.Windows.Media.Imaging namespace. The
WriteableBitmap class is known to be one of the fastest ways to display images in the
WPF framework and proved to be the best solution for our purposes. The fast visual-
ization performance combined with incredible re-scaling performance when the image
(included in a Viewbox) is resized have been one of the main arguments for using the
WPF framework in .NET 3.5 as already mentioned in Chapter 4

6.6 Zoom

The Zoom function is one of the most important data navigation features and allows
an unbounded scale-up of any visualized orderbook area. It enables the user to get
an in-depth view of any orderbook state at any time or price interval. A zoom-out
function has also been implemented to recover the previous visualization state of the
orderbook.
Technically speaking only a subset of Orders already binned and visualized from
the data structures (Section 6.4.3) are used for Zoom. The subset is defined by new
visualization borders which we will define in this section as zoomMin-/MaxTime
for the time- and zoomMin-/MaxLimit for limit dimension. Although zoom limits
change the resolution, or equivalently the numbers of horizontal (hDim) and vertical
bins (vDim), stay the same. This results in a change of hBinSize and vBinSize (see
Section 6.4.4) and therefore a re-binning of relevant orders becomes necessary.
The entire zoom-process can be summarized as follows:
1. Get Relevant Orders
2. Extract OrderModifications from Orders
3. Re-Bin Orders and store them in data structures

The first step is the determination of relevant Orders based on the newly intro-
duced zoom borders that define the limit and time interval. The borders are

80

6.7 Filtering

converted to respective hBin/vBin values which define the extraction window for the
current data structures. With those limits all relevant Orders can be retrieved from
the data structures.
As a second step the OrderModifications of relevant Orders are extracted as the binning
procedure already introduced in Section 6.4 needs single OrderModification objects.
Finally the binning procedure creates new data structures for the zoom state and
stores the newly generated Orders.
It has to be mentioned that this approach is probably not the most efficient one and
could be further optimized in various ways. The re-binning procedure, for example,
could directly map orders(or modifications) from the old data structures to the zoom
structures whereas less calculations have to be done. Further the re-instantiation of
orders leads to a relatively high memory usage and should also be re-thought. These
issues leave further room for improvements although the zoom function already shows
a very good performance.
In order to provide a zoom-out function the pre-zoomed state has to be kept as not
all orders can be recovered from the zoomed data structure state. For that reason
zoom states, or equivalently data structures holding orders, are saved in a so-called
zoom-state list. A zoom-out therefore leads to a simple replacement of the currently
viewed data structure by the previous one in the list. Although this approach leads
to a very fast zoom-out performance it is quite memory intense. Figure 6.6 shows a
visualization example of the zoom procedure.

6.7 Filtering

The implemented filters extend the data exploration capabilities of the Orderbook Vi-
sualization package and restrict the visualization of Orders or OrderRectangles to a
specified subset. Generally the filters can be divided in two different classes: Order-
Filters and OrderRectangleFilters. OrderFilters are able to filter single orders by their
attributes (see Section 3.2) and already take place during the binning process (Sec-
tion 6.4). In contrast OrderRectangleFilters are designed to filter entire OrderRectangle
objects by their aggregated OrderRectangle attributes which have been introduced in
Section 6.4.
Order and OrderRectangle attributes are generally implemented as properties marked
by custom attributes. Marked properties are identified by the visualization engine
at runtime using reflection. This approach facilitates the implementation of new Or-
der(Rectangle)Filters after a new Property has been added to the Order(Rectangle) class
and marked by a custom attribute.
Generally multiple filters for any defined attribute can be applied and are used in
conjunction. However, a distinction has to be made between OrderFilters and Order-
RectangleFilters. The execution of OrderFilters typically lead to an enabling or dis-

81

6 Orderbook Visualization

Figure 6.6: Example of the orderbook visualization zoom function
The orderbook visualization zoom capabilities are shown in a 3-step zoom navi-
gation example. Zoom-in can be viewed by top-down reading the pictures. Blue
rectangle shows the zoom borders of the next zoom state below.

82

6.7 Filtering

Order Filter Order Rectangle Filter

Figure 6.7: Basic Filtering Process

abling of orders in all OrderRectangles (see Section 6.7.1 for details). Due to the fact
that OrderRectangle attributes are only calculated for enabled orders the application
of OrderFilters affect OrderRectangle attributes and have to be executed before. Aggre-
gated OrderRectangle attributes are only executed afterwards, just before the actual
visualization process (Section 6.5). The general filtering process is also sketched in
Figure 6.7.
In order to make the generic implementation of filters as simple as possible filter
parameters can be generated automatically based on the property data type. For
enumerations and numeric types extraction methods have already been implemented.
The enumeration parameters simply result from all items listed in the Enum type. The
filter parameters for numeric attributes result from a fixed number of quantiles defined
by the distribution of the filter property and therefore require more calculation effort.
Currently numerical filter parameters are set to quintiles whereas other values could
be defined for each different filter.
The next sections describe the implementation of OrderFilters (Section 6.7.1) and Or-
derRectangleFilters (Section 6.7.2) in more detail.

6.7.1 Order Filters

OrderFilters are defined for marked Order properties and allow users to filter Orders by
attributes like Ordertype or Traderestriction. Table 6.3 shows all already implemented
OrderFilter attributes. Orders are generally stored and aggregated in OrderRectangle
objects which are located in the data structures described in Section 6.4.3. An Or-
derFilter has to enable or disable Orders located in the Orderlist of the OrderRectangle
objects based on various filters and parameters. If an applied filter restriction leads to
a disabling of Orders all Orders in question have to be deleted from the Orderlist and
added to a Hashtable for disabled orders located in the same OrderRectangle object.
This Hashtable also stores a list of filters which have been applied to each Order. Con-
trary, when a filter restriction is released the disabled orders in each OrderRectangle
are scanned while deleting the respective filter from each Order in the list. Only if no
more filters are applied to disabled orders the Order is enabled, or to be more precise,
deleted from the disabled-orders Hashtable and added to the Orderlist. Each time when
an Order is enabled or disabled the OrderRectangle attributes have to be recalculated
e.g. a disabled Order leads to a reduction of the aggregated Volume and vice versa.

83

6 Orderbook Visualization

Property Name Datatype Description
BuySell Enumeration Order BuySell Attribute
TradeRestriction Enumeration Order TradeRestriction At-

tribute
EnterAuctionTradeFlag Enumeration AuctionTradeFlag Attribute

of Insert Modification
Ordertype Enumeration Ordertype Attribute
EnterSize Integer Size Attribute of Insert Mod-

ification
Orderlifetime Integer Orderlifetime (endTime -

startTime) in seconds
Limit Double Order BuySell Attribute

Table 6.3: Order filter attributes
Attributes which can be used using the implemented filter functions.

To take applied order filters into account the visualization process now simply has
to check if the Orderlist of the OrderRectangle is empty by calling the OrderRectan-
gle.IsEmpty function. A positive return value signals that all Orders in the OrderRect-
angle have been disabled and results in a visualization of an white pixel.

6.7.2 Rectangle Filters

OrderRectangleFilters are defined for OrderRectangle attributes apply only after the
execution of OrderFilters. While numerous OrderFilters have been defined (see Sec-
tion 6.7.1) only the aggregated Volume property (data type integer) has been defined
as an OrderRectangle attribute. In contrast to OrderFilters OrderRectangleFilters en-
able or disable entire OrderRectangle objects based on the filter attributes. The en-
abling/disabling of OrderRectangles is done in a loop through all elements and sets the
IsRestricted property of OrderRectangles accordingly. The visualization engine only
has to check the IsRestricted field to correctly draw the pixel.

84

6.7 Filtering

F
ig

ur
e

6.
8:

E
xa

m
pl

e
of

th
e

O
rd

er
bo

ok
vi

su
al

iz
at

io
n

fu
nc

ti
on

E
xa

m
pl

e
sh

ow
s

th
e

zo
om

ed
or

de
rb

oo
k

st
at

es
of

th
e

A
lli

an
z

st
oc

k
fr

om
10

.1
.2

00
5-

11
.1

.2
00

5.

85

6 Orderbook Visualization

86

7 Orderbook Visualization Interface

This chapter gives a brief description of the orderbook visualization user interface. Af-
ter a short introduction (Section 7.1) and a basic user interface overview (Section 7.2)
all functions that can be accessed by the interface are described like data naviga-
tion (Section 7.3), data import/export (Section 7.4), layers (Section 7.5) and filters
(Section 7.6).

7.1 Introduction

The orderbook visualization interface is designed to provide fast and intuitive data
analysis functions. Implemented using the Microsoft WPF library the visualization
window can be easily scaled and viewed on various display devices. Further the WPF
library gives the designer much freedom to extend the user interface in various ways.
Interactive zoom and filter functions enable users to get an in-depth impression of
the dynamics in an open limit orderbook. Implemented data connectors provide data
import and export functions for many data sources/destinations.
The typical work-flow when using the orderbook visualization interface can be
described as follows:

1. Open orderbook visualization program

2. Load orderbook data (from database or CSV-text file)

3. Zoom/Navigate to area of interest

4. Filter orders to highlight specific trading patterns

5. Export visualization to image or data files

Altogether the orderbook visualization interface represents a viable tool to do
explorative data analysis of orderbook data. Providing an in-depth view of the
market microstructure users can visualize and understand many aspects of micro
price dynamics and liquidity commonalities which are of big interest in recent market
microstructure literature.

87

7 Orderbook Visualization Interface

7.2 User Interface Description

7.2.1 Overview

The orderbook visualization interface shown in Figure 7.1 can be divided in 6 regions:

1. Orderbook Visualization Menu: The Orderbook Visualization Menu provides all
functions which are also available from the tool bar for data navigation, import/-
export functions, layer and filter purposes.

2. Tool Bar: The Tool Bar itself provides those functionalities in a more intuitive way
through buttons and will be described in Section 7.2.2 in more detail.

3. Database Tree View: The interface area 3 is dedicated to the Database Tree View
to list all available databases and instruments. Using the Database Tree View it
is easy to change the displayed instrument quickly.

4. Orderbook Visualization Box: The actual orderbook data is visualized in the Or-
derbook Visualization Box and also plays an important part for data navigation
and exploration.

5. Filter Area: The Filter Area shows all activated filters including filter parameters
represented by check-boxes. Parameters can therefore be easily changed by sim-
ply (un-)checking a box accordingly.

6. Info Bar: Finally, the Info Bar shows all information about the currently loaded
stock, the current cursor position in terms of time and limit and a button to
show/hide the Filter Area.

7.2.2 Tool Bar

The Tool Bar provides all functions of the orderbook visualization interface. The
functions can be divided in 3 main categories: data navigation, import/export and
layer/filtering. A detailed description of all buttons in the Tool Bar is given by Fig-
ure 7.2.
The data navigation facilities include a switch between order exploration mode and
zoom-in mode (Figure 7.2–buttons 1,2). Further a zoom out is provided (Figure 7.2–
button 3). Data navigation facilities will be described in Section 7.3 in more detail.
Data import functions allow the import of order modifications either from a CSV file
or from a database (Figure 7.2–buttons 4,5). Visualized orderbooks shown in the Or-
derbook Visualization Box can be either exported as an image file or directly printed
(Figure 7.2–buttons 6,7). Import/export facilities will be further described in Sec-
tion 7.4.

88

7.3 Data Navigation

Additional layers can also be shown for either the grid or the bid/ask spread (Fig-
ure 7.2–buttons 8,9) and are part of the third Tool Bar category (see Section 7.5).
This category also includes the addition/removal of order filters (Section 7.6) and a
specialized tool for order sequence detection (see Chapter 8).

7.3 Data Navigation

For explorative data navigation the user can switch between order exploration mode
and the zoom-in mode.

7.3.1 Order Exploration Mode

While the order exploration mode is activated (default on startup) users can get a
quick overview of Orders inside specific OrderRectangles. By simply moving the mouse
over a filled OrderRectangle a yellow selection rectangle is drawn. The height of the
rectangle is always set to one as only orders with the specified limit are selected.
Its width is determined by a loop through all OrderRectangles before and after the
filled mouse-over rectangle. The loop is stopped when a consecutive OrderRectangle
no longer contains any orders of the mouse-over rectangle whereby the start-bin and
end-bin for the selection rectangle is determined. The width of the selection rectangle
is therefore typically determined by the order having the longest lifetime.
By a mouse click on the previously selected area a new window pops up showing all
orders and their attributes. Thus the user can get a detailed view of orders actually
added to the selected OrderRectangles.

7.3.2 Zoom-In Mode

The zoom-in mode enables the most important data navigation functions and supports
a detailed visualization of any time/limit area. While the left mouse button is pressed
the user can draw a rectangle in the Orderbook Visualization Box representing any
time/limit area of interest. A release of the mouse button immediately initiates a zoom
in the selected area of interest. Internally the zoom process described in Section 6.6
is triggered including re-binning and filtering of orders. Figure 6.6 already showed
visualizations of consecutive zoom states where the upper 2 states still include the
zoom rectangle drawn in the Orderbook Visualization Box.

7.3.3 Zoom Out

The zoom-out function recovers the previous zoom state (if available). While the
zoom-in mode is activated a zoom out can also be done by a right mouse-click.

89

7 Orderbook Visualization Interface

7.4 Data Import/Export

The following sections describe the file import (Section 7.4.1) and database import
(Section 7.4.2) functions. Also the data export functions are summarized in Sec-
tion 7.4.3.

7.4.1 File Import

The file import function is able to import order modifications from CSV files. This
feature has been actually implemented for visualization demo purposes only as no
database installation or complete dataset is necessary. After a CSV file has been
chosen from the file dialog data is imported using the CSVConnector class (see also
Section 6.3).

7.4.2 Database Import

A click on the database import button (Figure 7.2–button 5) opens the Database Tree
View window on the left side (see also Figure 7.1–area 3). The tree view shows all
retrieved database names as parent nodes (indicated by blue symbol) which could be
retrieved using the connection string settings stored in the app.config XML configu-
ration file. Only if the database contains a valid structure as defined in Section 4.4.2
the node can be expanded and all Instrument names are shown. After an instrument
of interest has been selected a click on the ‘Load’ button below the tree view starts
the entire order visualization procedure described in Chapter 6.

7.4.3 Data Export

The already implemented data export functions are able to either store visualized
orderbooks as image files or to directly print them.
A click on the ‘Save’ button (Figure 7.2–button 6) opens a file dialog where the location
and file type can be selected. Image filetypes available are listed in Table 7.1. The
implemented print function (Figure 7.2–button 7) enables the user to directly print
the visualized orderbook including all visualization parameters on a DIN-A4 page.

7.5 Layers

In order to visualize orderbook data in context to various parameters two different
layers have been implemented for data grids and bid/ask spreads. The layers are
simply added to the Orderbook Visualization Box and can be selectively turned on
and off. Also a simultaneous display of multiple layers is possible. The layers support
various basic WPF Shape objects (like Lines, TextBoxes, Rectangles, Curves, etc.) and

90

7.5 Layers

Extension Filetype Description
.bmp Windows Bitmap
.jpg JPEG
.gif Graphics Interchange Format
.png Portable Network Graphics
.tiff Tagged Image File Format
.wmp Windows Media Photo
.xps XML Paper Specification

Table 7.1: Supported export image filetypes

could also be extended for other features like technical indicators.
The two following sections describe the data grid and bid/ask spread layer in more
detail.

7.5.1 Data Grid

The data grid layer shows horizontal and vertical lines for price and limit values,
respectively. The distance between price and limit lines is previously set to a fixed
interval by the parameters vGridDensity and hGridDensity. The actual price values
of horizontal lines are shown in text boxes on the left side; time values are drawn
vertically at the bottom of the Order Visualization Box.
Trading sessions are also separated by thick vertical lines while horizontal text boxes
at the bottom indicate each trading day.

7.5.2 Bid/Ask Spread

The bid/ask spread first introduced in Section 2.2 and already calculated in Section 5.3
is an essential orderbook feature to set buy and sell orders in relation to each other.
Most importantly the price distance of an order to the spread determines its aggres-
siveness. Aggressive incoming orders on only one side of the book typically lead to
considerable price movements and are therefore a very interesting topic to be studied.
The bid/ask spread layer makes this important orderbook feature visible to the user
though some preliminary calculations have to be done. The current layer implemen-
tation takes all orders added to the data structures (see Section 6.4.3) to calculate the
spread. However, this approach leads to problems if many Market orders have been
added to the book. It is not as accurate as the spread calculation done during the
dynamic order reconstruction process in Section 5.3. A better solution would be to
store the calculated spread (or other orderbook features) in Section 5.3 to an addi-
tional table in the reconstructed database which avoids its re-calculation and leads to

91

7 Orderbook Visualization Interface

accurate results.

7.6 Filters

Filters broaden the explorative data analysis capabilities of the orderbook visualization
interface. Basically any Order(Rectangle)-attribute which is detected using reflection
(Section 6.7) can be filtered. A click on the ‘Filter’ button (Figure 7.2–button 10)
shows a checkbox table containing all available filters. A simple ‘checking’ of a respec-
tive filter adds it to the Filter Area including all available parameters values. Multiple
filters can be added and modified by the parameter check-boxes in the Filter Area at
the bottom. By changing a filter parameter a FilterChanged event is triggered which
initiates a filtering–visualization cycle as described in Section 6.2. This event is also
fired when a filter is removed form the list.

92

7.6 Filters
1

2

3
4

5

6

F
ig

ur
e

7.
1:

O
rd

er
bo

ok
V

is
ua

liz
at

io
n

U
se

r
In

te
rf

ac
e

93

7 Orderbook Visualization Interface

Navigation Import/Export Layer / Filter Tools

1 2 3 4 5 6 7 8 9 10 11

Figure 7.2: Tool Bar Figure
1. Order Exploration Mode
2. Zoom-In Mode
3. Zoom Out
4. Open File
5. Open Database
6. Save (Picture)
7. Print (Picture)
8. Show/Hide Visualization Grid
9. Show/Hide Bid/Ask Spread
10. Add/Remove Filters
11. Detect Order Sequences

94

8 Detection of Algorithmic Trading
Patterns

An interesting application of the Orderbook Visualization package is the detection of
algorithmic trading patterns in the orderbook. This chapter gives an overview of
work related to this topic in Section 8.1 followed by a definition of detectable algo-
rithmic fleeting orders (Section 8.2), detection strategy of algorithmic fleeting orders
(Section 8.3) and finishes with some selected visualization of found structures (Sec-
tion 8.4).

8.1 Relevant Work

Market microstructure literature already discussed in Section 1.4 presents numerous
approaches to model orderbook dynamics. Most of those models assume that limit
orders cannot be withdrawn or revised once submitted. Also argued by Fong and Liu
[FL06], who have analyzed orderbook data from the Australian Stock Exchange, this
assumption of previous theoretical models is simply not realistic as traders do monitor
and change entered orders frequently. Empirical findings of high order cancelation
rates on most major (electronic) stock exchanges like NYSE, LSE and Deutsche Börse
AG’s XETRA trading system give further evidence to this suggestion. Canceled orders
even show a clustering of order lifetimes as shown by Prix [PLH07] et al. for orders
on the XETRA trading system. Prix et al. in [PLH07] use the same DAX30 dataset
which has been analyzed within this thesis (see Chapter 3) and found that even 68%
of money volume has been canceled in the time period between 2005-1-5 and 2005-1-
12. Order lifetimes are also reported to be clustered at multiples of one minute. Yeo
[Yeo05] finds that more than 40% of NYSE orders have been canceled and that 95%
of the survive less than five minutes.
These findings not only suggest that orders are frequently revised by cancelations and
re-inserts but that this process is done in an automated manner by trading algorithms.
Hasbrouck and Saar [HS07] first introduced the term fleeting orders appearing in the
spread of Island ECN orders. Large [Lar04] suggests a theoretical model for fleeting
orders.
In [PLH08] Prix et al. used a DAX30 dataset covering the complete trading activity
on the XETRA trading system from 2006-12-6 to 2006-12-13 and from 2007-1-10 to
2007-1-17. They found that about 50% of all orders can be identified as fleeting orders

95

8 Detection of Algorithmic Trading Patterns

Time

Limit

1.1 1.3

2.1 2.3

3.1 3.3

4.1 4.3

5.1 5.3

Order revistion

Figure 8.1: Example of a Fleeting Order
x.1 . . . (Re-)Insertion of Order x
x.3 . . . Deletion of Order x

and integrated in an order chain structure. Algorithmic fleeting orders are therefore a
major source of (systematic) liquidity in the XETRA orderbook. By identifying those
order structures properly a big share of the liquidity supply and demand behavior in
the orderbook can be explained. Even liquidity forecasts can be done if fleeting orders
are successfully detected and analyzed.

8.2 Definition of Algorithmic Fleeting orders

Algorithmic fleeting orders (or order chain structures) can be defined as frequently
revised orders by cancelation of an already entered order and re-insertion of an order
with changed attributes. As found by Prix et al. in [PLH08] re-inserted orders in chain
structures typically modify only the limit of an order and leave other attributes (like
volume/size) unchanged. The limit price of re-inserted orders mostly changes only
by a small fraction. Because of the Price-Time priority rule defined in the XETRA
market model (see Section 2.2) a revision of the limit price makes a cancelation of an
order followed by a re-insertion of a new one necessary. Figure 8.1 shows an example
of a fleeting order consisting of 5 canceled and re-inserted orders.

The fleeting order example shown in Figure 8.1 shows that cancelations and re-
insertions of orders are typically not done at exactly the same timestamp. Revised
orders can either be inserted shortly before or after the previous order in the chain. The

96

8.3 Detection of Algorithmic Fleeting orders

respective time window of cancelation and re-insertion is determined by the roundtrip
time and indicated by dashed rectangles in Figure 8.1. The roundtrip time is defined
as the time difference between the submission of an order modification and the con-
firmation by the exchange. Roundtrip times are currently reported to be 13ms on
average. Considering the dataset under investigation we reckon that the roundtrip
times in 2005 were higher by a factor of 3-4 which results as an average roundtrip time
of 50ms.
The major drawback of those assumptions is that they cannot be tested directly as
no information about the market participants who have entered the orders is avail-
able from the rebuilt orderbook dataset. Only the stock exchanges themselves have
respective information and hold them under disclosure. However, very simple assump-
tions about fleeting orders’ behavior and clear statistical and even visual evidence
suggests that fleeting orders found in the dataset come from trading algorithms which
continually revise entered orders.

8.3 Detection of Algorithmic Fleeting orders

Considering the strategy of algorithmic fleeting orders as defined in Section 8.2 a
relatively simple algorithm can be written to detect them. For the detection of
most obvious fleeting orders the implemented algorithm makes the following simple
assumptions:

1. Fleeting orders consist of order chains where each order consists of an insertion
modification 1 and is deleted by a deletion 3 .

2. Insertion ModificationTimestamp of the successor order lies in a small time frame
around the deletion ModificationTimestamp of previous chain element.

3. Re-inserted orders have the same Volume as previously deleted ones.

4. In case of an ambiguous order chain continuation (more orders have correspond-
ing properties) select the successor with the smallest limit price difference to the
predecessor.

While point 1 and 2 are considerable assumptions for the detection of fleeting orders,
3 and 4 represent simplifications and leave room for discussion.
The equal-volume assumption in 3 can miss fleeting orders which change volumes but
should detect most chains. It is also supported by the findings in [PLH08] where
almost all fleeting order chains left the order volume unchanged.
The assumption in point 4 handles the problem of ambiguous order chain continuation
and selects successors according to its limit price. Various ambiguities can be found in

97

8 Detection of Algorithmic Trading Patterns

the orderbook using the proposed algorithm — especially when high trading volumes
enter the book. Evidence from [PLH08] suggests that limits of re-inserted orders are
only changed by a small amount whereas no exact solution can be found as traders
are entering orders anonymously into the book.
The detection algorithm is designed to achieve a fast detection performance and takes
the input parameters time-window and size-tolerance. According to point 2 and 3 time-
window has been set to one second, size-tolerance to zero. Simply put, the algorithm
extracts all deleted order objects from the order data structure and sorts them in
2 lists; list1 is sorted by the insertion ModificationTimestamp, list2 by the deletion
ModificationTimestamp. While looping through all orders in list1 the algorithm tries
to match all orders (by insert ModificationTimestamp) against orders in list 2 (by
deletion ModificationTimestamp) within the defined time-window and by taking the
size-tolerance parameter into account. If ambiguities occur it is proceeded according
to point 4.
Although the presented algorithm is quite simple its reasonable performance make it
a viable tool for the detection of fleeting orders in the orderbook.

8.4 Visualization of selected Chain Structures

Consequently in line with the filter framework (Section 6.7) the sequence detection
algorithm (Section 8.3) is also implemented as a filter. It is therefore possible to
interactively turn it on/off, even in combination with other Order- or OrderRectangle
filters.
For the ‘visual’ detection of fleeting orders the combination of the EnterOrderSize
Order filter (filters by size indicated in insert order modification) and/or the Volume
OrderRectangle filter (filters aggregated order-bin volume) with the detection algorithm
has proved to work best. The following sections describe various interesting fleeting
order patterns detected with the orderbook visualization interface.

8.4.1 Buy-in-Market chains

Buy-in-Market chains can be described as limit buy orders which are continually
revised by increasing its limit. As common to all fleeting orders defined in Section 8.2,
the limit increase is done by deletion of the inserted order and insertion of a new order
with the same volume and a higher limit price.
Traders who use this pattern obviously want to continually increase the probability
of an order execution in a given time interval and therefore place the limit closer to
the bid/ask spread. Figure 8.2 shows 3 different Buy-in-Market chains at different
volumes found in the SAP orderbook. These are relatively small volume chains; chain
1 has a volume of 67 shares, chain 2 of 10- and chain 3 100 shares. For the selected

98

8.4 Visualization of selected Chain Structures

1

2
3

F
ig

ur
e

8.
2:

B
uy

-i
n-

M
ar

ke
t

or
de

r
ex

am
pl

e
3

pa
ra

lle
l

B
uy

-i
n-

M
ar

ke
t

or
de

r
ch

ai
ns

in
th

e
or

de
rb

oo
k

of
th

e
SA

P
st

oc
k

T
im

e-
P

er
io

d:
16

:2
1:

10
–1

7:
08

:3
4;

L
im

it
-I

nt
er

va
l:

12
9.

87
–1

32
.5

6
F

ilt
er

se
tt

in
gs

:
E

nt
er

Si
ze

(q
ui

nt
ile

s
0<

x<
10

0,
10

0<
x<

20
5)

,
Se

qu
en

ce
D

et
ec

t

99

8 Detection of Algorithmic Trading Patterns

visualization window, the limit price is increased in chain 1 from 131.20 to 131.43, in
chain 2 from 129.92 to 131.68 and in chain 3 from 131.52 to 131.92.

8.4.2 Sell-in-Market chains

Analogous to Buy-in-Market, Sell-in-Market chains continually decrease the limit of
a sell limit order. The strategy behind can be simply described as ‘sell volume X in
defined time frame’. Figure 8.3 shows a very clear Sell-in-Market in the orderbook of
the Deutsche Börse AG stock. The sell limit market chain has a volume of 15 shares
and its limit is decreased in the selected time frame from 46.96 to 45.40.

8.4.3 CIC order chains

Constant-Initial-Cushion (CIC) order chains have already been discovered by Prix et
al. [PLH07] and can easily be detected with the orderbook visualization interface.
According to their definition, CIC order chains consist of buy and sell limit orders,
i.e. of coincidental order placements on both sides of the market, where the bids and
asks have the same order size. The name ’CIC orders’ is motivated by the observed
order limits as all bids (asks) of CIC order chains have the same constant cushion at
insertion. The cushion is defined as

cushion =

{
best bid− bid order limit, for a bid
ask limit− best ask limit, for an ask

By the insertion of bids and asks the CIC strategy assumes that prices fluctuate around
a mean price. If the stock price falls below the CIC order cushion for a bid, the stock
is purchased. Otherwise, if the price increases above the CIC order cushion the stock
is sold. Profits are therefore made by fishing profitable roundtrip times. Please refer
to [PLH07] for a more precise (statistical) analysis of CIC orders.
Figure 8.4 shows a very obvious CIC order chain in the orderbook of the Allianz stock.
It can be seen that the observed CIC order pattern can be found over almost the entire
investigated trading week of the dataset.

100

8.4 Visualization of selected Chain Structures

F
ig

ur
e

8.
3:

Se
ll-

in
-M

ar
ke

t
or

de
r

ex
am

pl
e

Se
ll-

in
-M

ar
ke

t
or

de
r

ch
ai

n
in

th
e

or
de

rb
oo

k
of

D
eu

ts
ch

e
B

ör
se

A
G

st
oc

k
T

im
e-

P
er

io
d:

12
:5

0:
04

–1
5:

49
:2

4;
L

im
it

-I
nt

er
va

l:
45

.0
9–

47
.0

3
F

ilt
er

se
tt

in
gs

:
Se

qu
en

ce
D

et
ec

t

101

8 Detection of Algorithmic Trading Patterns

F
igure

8.4:
C

IC
order

chain
exam

ple
C

IC
order

chain
exam

ple
in

the
orderbook

of
A

llianz
A

G
stock

T
im

e-P
eriod:

2005-1-6–2005-1-12;
L

im
it-Interval:

93.08–99.22
F

ilter
settings:

E
nterSize

(quintile
176<

x
<

206),
Sequence

D
etect

102

9 Conclusion and Outlook

The increasing availability of real-time and historical high-frequency orderbook data
allow an in-depth analysis of orderbook states and price dynamics in the market mi-
crostructure. Thanks to Deutsche Börse AG the presented software packages for recon-
struction and visualization of orderbook data could be tested on the complete rebuilt
orderbooks of all DAX30 stocks traded on the electronic XETRA system.
By using the implemented Orderbook Engine library data cleaning and reconstruction
of orderbook states can be done at a very high performance. The resulting dataset
is consistent and can be used for various data analysis purposes as well as market
simulations.
The Orderbook Visualization package makes it possible to quickly navigate through very
large orderbook datasets. Combined with numerous filters preliminary explorative
data analysis can be done immediately. The intuitive user interface provides tools to
highlight many aspects of the orderbook. Filters, Layers and Detection Algorithms
can easily be turned on and off and used in combination. Therefore a tremendous
freedom is given when visualizing rebuilt orderbook states. Further the step-less zoom
function allows views of the orderbook in a specified market at the macro level as well
as on the micro level on a tick-by-tick basis.
Even algorithmic trading patterns can visually be identified by combining various fil-
ters and sequence detection algorithms .
The flexible object model implemented in C# lets plenty of room for further improve-
ments. An extension of already defined data connectors could be used to import/ex-
port orderbook datasets from/to various other sources/destinations. Data exploration
capabilities could be extended by implementing further filters and detection algo-
rithms. The WPF graphical framework used makes numerous other visualizations
possible — even in 3D. Last but not least, the already implemented orderbook recon-
struction functions could be used to extend the Orderbook Visualization Interface to a
‘live’ trading simulator to e.g. backtest trading strategies or detect systemic liquidity
and hidden volumes in an environment which comes very close to reality.

103

9 Conclusion and Outlook

104

Bibliography

[AIT06] AITE. Algorithmic trading 2006: More bells and whistles [online].
October 2006. Available from: http://www.aitegroup.com/reports/
200610311.php [cited December 3, 2008].

[Aut08] AutomatedTrader. Automated trader [online]. October 2008. Available
from: http://www.automatedtrader.net/ [cited December 3, 2008].

[BLGG05] Helena M. Beltran-Lopez, Pierre Giot, and Joachim Grammig. Common-
alities in the Orderbook. SSRN eLibrary, 2005.

[Bro08] Allen Browne. Sql data types [access 2007 develpers reference] [online].
2008. Available from: http://msdn.microsoft.com/en-us/library/
bb208866.aspx [cited December 3, 2008].

[CF06] German G. Creamer and Yoav Freund. A boosting approach for auto-
mated trading. In Proceedings of the Data Mining for Business Applica-
tions Workshop on International Conference on Knowledge Discovery and
Data Mining (KDD), Philadelphia, 2006.

[DBG08] DBG. Deutsche börse group, level 2 data [online]. 2008. Available
from: http://deutsche-boerse.com/dbag/dispatch/de/binary/
gdb_content_pool/imported_files/public_files/10_downloads/
50_informations_services/10_market_data_dissemination/11_
information_products/10_spot_market/Spot_Market_Germany.PDF
[cited December 3, 2008].

[dWdH03] R. de Winne and C. de Hondt. Rebuilding the limit orderbook on euronext
or how to improve market liquidity assessment. Unpublished working pa-
per, 2003.

[Eki05] Cumhur Ekinci. Limit Orderbook Reconstruction And Beyond: An Ap-
plication To Istanbul Stock Exchange. EconWPA Finance, (0510025),
2005.

[FG05] Stefan Frey and Joachim Grammig. Liquidity Supply and Adverse Selec-
tion in a Pure Limit Orderbook Market. SSRN eLibrary, 2005.

105

http://www.aitegroup.com/reports/200610311.php
http://www.aitegroup.com/reports/200610311.php
http://www.automatedtrader.net/
http://msdn.microsoft.com/en-us/library/bb208866.aspx
http://msdn.microsoft.com/en-us/library/bb208866.aspx
http://deutsche-boerse.com/dbag/dispatch/de/binary/gdb_content_pool/imported_files/public_files/10_downloads/50_informations_services/10_market_data_dissemination/11_information_products/10_spot_market/Spot_Market_Germany.PDF
http://deutsche-boerse.com/dbag/dispatch/de/binary/gdb_content_pool/imported_files/public_files/10_downloads/50_informations_services/10_market_data_dissemination/11_information_products/10_spot_market/Spot_Market_Germany.PDF
http://deutsche-boerse.com/dbag/dispatch/de/binary/gdb_content_pool/imported_files/public_files/10_downloads/50_informations_services/10_market_data_dissemination/11_information_products/10_spot_market/Spot_Market_Germany.PDF
http://deutsche-boerse.com/dbag/dispatch/de/binary/gdb_content_pool/imported_files/public_files/10_downloads/50_informations_services/10_market_data_dissemination/11_information_products/10_spot_market/Spot_Market_Germany.PDF

Bibliography

[FKK01] Thierry Foucault, Ohad Kadan, and Eugene Kandel. Limit orderbook
as market for liquidity [online]. 2001. Available from: http://papers.
ssrn.com/sol3/papers.cfm?abstract_id=269908.

[FL06] Kingsley Y. Fong and Wai-Man R. Liu. Limit Order Cancellation and
Revision Activities. SSRN eLibrary, 2006.

[GHR04] Joachim Grammig, Andréas Heinen, and Erick W. Rengifo. Trading Activ-
ity and Liquidity Supply in a Pure Limit Orderbook Market. An Empirical
Analysis Using a Multivariate Count Data Model. SSRN eLibrary, 2004.

[Glo94] Lawrence R. Glosten. Is the electronic open limit orderbook inevitable?
Journal of Finance, (49):1127–61, 1994.

[Gro03] Deutsche Börse Group. Xetra auction plan [online]. November 2003. Avail-
able from: http://deutsche-boerse.com/dbag/dispatch/en/kir/
gdb_navigation/trading_members/12_Xetra/40_Auction_Plan [cited
December 3, 2008].

[Gro05] Deutsche Börse Group. Xetra: Leading international trading platform
[online]. December 2005. Available from: http://www.google.at [cited
December 3, 2008].

[Gro08a] Deutsche Börse Group. Xetra: Leading international trading plat-
form [online]. April 2008. Facts and Functionalities. Available
from: http://deutsche-boerse.com/dbag/dispatch/en/binary/gdb_
content_pool/imported_files/public_files/10_downloads/31_
trading_member/10_Products_and_Functionalities/20_Stocks/BR_
Xetra.pdf [cited December 3, 2008].

[Gro08b] Deutsche Börse Group. Xetra trading platform [online]. 2008. Features.
Available from: http://deutsche-boerse.com/dbag/dispatch/en/
kir/gdb_navigation/technology/20_Applications/10_Trading/10_
Xetra_Trading_Platform?horizontal=page3 [cited December 3, 2008].

[GST04] Peter Gomber, Uwe Schweickert, and Erik Theissen. Zooming in on Liq-
uidity. SSRN eLibrary, 2004.

[Har03] Larry Harris. Trading and Exchanges. Market Microstructure for Practi-
tioners. Oxford University Press Inc, 2003.

[Har04] Gurushyam Hariharan. News mining agent for automated stock trading.
Master’s thesis, University of Texas, Austin, 2004.

106

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=269908
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=269908
http://deutsche-boerse.com/dbag/dispatch/en/kir/gdb_navigation/trading_members/12_Xetra/40_Auction_Plan
http://deutsche-boerse.com/dbag/dispatch/en/kir/gdb_navigation/trading_members/12_Xetra/40_Auction_Plan
http://www.google.at
http://deutsche-boerse.com/dbag/dispatch/en/binary/gdb_content_pool/imported_files/public_files/10_downloads/31_trading_member/10_Products_and_Functionalities/20_Stocks/BR_Xetra.pdf
http://deutsche-boerse.com/dbag/dispatch/en/binary/gdb_content_pool/imported_files/public_files/10_downloads/31_trading_member/10_Products_and_Functionalities/20_Stocks/BR_Xetra.pdf
http://deutsche-boerse.com/dbag/dispatch/en/binary/gdb_content_pool/imported_files/public_files/10_downloads/31_trading_member/10_Products_and_Functionalities/20_Stocks/BR_Xetra.pdf
http://deutsche-boerse.com/dbag/dispatch/en/binary/gdb_content_pool/imported_files/public_files/10_downloads/31_trading_member/10_Products_and_Functionalities/20_Stocks/BR_Xetra.pdf
http://deutsche-boerse.com/dbag/dispatch/en/kir/gdb_navigation/technology/20_Applications/10_Trading/10_Xetra_Trading_Platform?horizontal=page3
http://deutsche-boerse.com/dbag/dispatch/en/kir/gdb_navigation/technology/20_Applications/10_Trading/10_Xetra_Trading_Platform?horizontal=page3
http://deutsche-boerse.com/dbag/dispatch/en/kir/gdb_navigation/technology/20_Applications/10_Trading/10_Xetra_Trading_Platform?horizontal=page3

Bibliography

[Har08] Thom Hartle. Using orderbook data to improve automated model perfor-
mance [online]. 2008. Available from: http://www.automatedtrader.
net/automated-trader-strategies-737.xhtm [cited December 3,
2008].

[Has07] Joel Hasbrouck. Empirical Market Microstructure. Oxford University
Press Inc, 2007.

[HS07] Joel Hasbrouck and Gideon Saar. Technology and Liquidity Provision:
The Blurring of Traditional Definitions. SSRN eLibrary, 2007.

[ISE07] Deutsche Börse Group Irish Stock Exchange. Xetra release 9.0 functional
description [online]. December 2007. Release 9.0. Available from: http:
//www.ise.ie/getFile.asp?FC_ID=1086&docID=501 [cited December 3,
2008].

[KG03] Robert Kissell and Morton Glantz. Optimal Trading Strategies: Quanti-
tative Approaches for Managing Market Impact and Trading Risk. Oxford
University Press Inc, 2003.

[KKMO04] Sham M. Kakade, Michael Kearns, Yishay Mansour, and Luis E. Ortiz.
Competitive algorithms for vwap and limit order trading. In EC ’04:
Proceedings of the 5th ACM conference on Electronic commerce, pages
189–198, New York, NY, USA, 2004. ACM Press. doi:http://doi.acm.
org/10.1145/988772.988801.

[KO03] Michael Kearns and Luis Ortiz. The penn-lehman automated trading
project. IEEE Intelligent Systems, 18(6):22–31, 2003. doi:http://doi.
ieeecomputersociety.org/10.1109/MIS.2003.1249166.

[Lar04] Jeremy H. Large. Cancellation and Uncertainty Aversion on Limit Order
Books. SSRN eLibrary, 2004.

[LG] Francois-Serge Lhabitant and Greg N. Gregoriou, editors. Stock Market
Liquidity, Implications for Market Microstructure and Asset pricing.

[LPH06] Otto Loistl, Johannes Prix, and Michael Hutl. Doubly stochastic markov
process: A causal approach to modelling cadlag market event time series.
In 9th Conference of the Swiss Society for Financial Market Research,
Zurich, Switzerland, April 2006.

[LPH07] Otto Loistl, Johannes Prix, and Michael Hutl. Best execution and the
xetra orderbook. In Campus For Finance – Research Conference, Campus
For Finance - Research Conference, Vallendar, Germany, January 2007.

107

http://www.automatedtrader.net/automated-trader-strategies-737.xhtm
http://www.automatedtrader.net/automated-trader-strategies-737.xhtm
http://www.ise.ie/getFile.asp?FC_ID=1086&docID=501
http://www.ise.ie/getFile.asp?FC_ID=1086&docID=501
http://dx.doi.org/http://doi.acm.org/10.1145/988772.988801
http://dx.doi.org/http://doi.acm.org/10.1145/988772.988801
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MIS.2003.1249166
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MIS.2003.1249166

Bibliography

[LSE08a] LSE. London stock exchange, level 2 data [online]. 2008. Avail-
able from: http://www.londonstockexchange.com/en-gb/products/
marketdata/Information+Products/realtimedata.htm [cited Decem-
ber 3, 2008].

[LSE08b] LSE. London stock exchange, rebuild orderbook [online]. July 2008. Avail-
able from: http://www.londonstockexchange.com/en-gb/products/
informationproducts/historic/rebuild.htm [cited December 3, 2008].

[Mal07] Azeem Malik. etradplat [online]. 2007. Facts and Functionalities. Avail-
able from: http://www.etradplat.com/ [cited December 3, 2008].

[Mat08] The MathWorks. The r project for statistical computing [online].
September 2008. Available from: http://www.mathworks.de/products/
matlab/index.html.

[Md08] Markt-daten.de. Daten [online]. October 2008. Available from: http:
//www.markt-daten.de/daten/daten.htm [cited December 3, 2008].

[Mic05] Microsoft. Microsoft sql server 2005 express edition [online].
November 2005. Available from: http://www.microsoft.
com/downloads/details.aspx?displaylang=en&FamilyID=
220549b5-0b07-4448-8848-dcc397514b41.

[Mic07] Microsoft. Msdn sql server development center - data types (transact-sql)
[online]. September 2007. Available from: http://msdn.microsoft.com/
en-us/library/ms187752(SQL.90).aspx [cited December 3, 2008].

[Mic08a] Microsoft. .net 3.5 [online]. 2008. Available from: http:
//www.microsoft.com/downloads/details.aspx?FamilyId=
333325FD-AE52-4E35-B531-508D977D32A6&displaylang=en [cited
December 3, 2008].

[Mic08b] Microsoft. Visual c# 2008 express edition [online]. 2008. Avail-
able from: http://www.microsoft.com/germany/Express/product/
visualcsharpexpress.aspx [cited December 3, 2008].

[Mon08] Mono. The mono project [online]. 2008. Available from: http://www.
mono-project.com/Main_Page [cited December 3, 2008].

[NAS08a] NASDAQ. Model view [online]. October 2008. Available from: http:
//www.nasdaqtrader.com/Trader.aspx?id=ModelView [cited December
3, 2008].

108

http://www.londonstockexchange.com/en-gb/products/marketdata/Information+Products/realtimedata.htm
http://www.londonstockexchange.com/en-gb/products/marketdata/Information+Products/realtimedata.htm
http://www.londonstockexchange.com/en-gb/products/informationproducts/historic/rebuild.htm
http://www.londonstockexchange.com/en-gb/products/informationproducts/historic/rebuild.htm
http://www.etradplat.com/
http://www.mathworks.de/products/matlab/index.html
http://www.mathworks.de/products/matlab/index.html
http://www.markt-daten.de/daten/daten.htm
http://www.markt-daten.de/daten/daten.htm
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=220549b5-0b07-4448-8848-dcc397514b41
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=220549b5-0b07-4448-8848-dcc397514b41
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=220549b5-0b07-4448-8848-dcc397514b41
http://msdn.microsoft.com/en-us/library/ms187752(SQL.90).aspx
http://msdn.microsoft.com/en-us/library/ms187752(SQL.90).aspx
http://www.microsoft.com/downloads/details.aspx?FamilyId=333325FD-AE52-4E35-B531-508D977D32A6&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=333325FD-AE52-4E35-B531-508D977D32A6&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=333325FD-AE52-4E35-B531-508D977D32A6&displaylang=en
http://www.microsoft.com/germany/Express/product/visualcsharpexpress.aspx
http://www.microsoft.com/germany/Express/product/visualcsharpexpress.aspx
http://www.mono-project.com/Main_Page
http://www.mono-project.com/Main_Page
http://www.nasdaqtrader.com/Trader.aspx?id=ModelView
http://www.nasdaqtrader.com/Trader.aspx?id=ModelView

Bibliography

[NAS08b] NASDAQ. Nasdaq total view [online]. 2008. Available from: http:
//www.nasdaqtrader.com/Trader.aspx?id=TotalView [cited December
3, 2008].

[NYS08a] NYSE. New yord stock exchange, openbook [online]. 2008. Available
from: http://www.nyxdata.com/openbook [cited December 3, 2008].

[NYS08b] NYSEEuronext. Openbook history [online]. July 2008. NYSE Orderbook
Data. Available from: http://www.nyxdata.com/nysedata/default.
aspx?tabID=743 [cited December 3, 2008].

[O’H95] Maureen O’Hara. Market Microstructure Theory. Blackwell, 1995.

[Par98] Christine A. Parlour. Price dynamics in limit order markets. Review of
Financial Studies, (11):789–816, 1998.

[PLH07] Johannes Prix, Otto Loistl, and Michael Hutl. Algorithmic trading pat-
terns in xetra orders. European Journal of Finance, 13(8):717–739, 2007.

[PLH08] Johannes Prix, Otto Loistl, and Michael Hutl. Chain-structures in xe-
tra order data. campus for finance. In Research Conference, Vallendar,
Germany, January 2008.

[PLHK08] Johannes Prix, Otto Loistl, Michael Hutl, and Emanuel Albin Kopp.
Cross-sectional liquidity interactions from intraday perspectives. In
Soares/Pina/Catalao-Lopes, editor, New Developments in Financial Mod-
elling, pages 213–244, Cambridge, 2008. Cambridge Scholars Publishing.

[Pol07] Andrew Pole. Statistical Arbitrage: Algorithmic Trading Insights and
Techniques. Wiley and Sons, 2007.

[R08] R. The r project for statistical computing [online]. September 2008. Avail-
able from: http://www.r-project.org/index.html.

[Ran] Angelo Ranaldo. Intraday market dynamics around public information
arrivals. In Francois-Serge Lhabitant and Greg N. Gregoriou, editors,
Stock Market Liquidity, Implications for Market Microstructure and Asset
pricing.

[SCR] Avanidhar Subrahmanyam, Tarun Chordia, and Richard Roll. Common-
ality in liquidity. In Francois-Serge Lhabitant and Greg N. Gregoriou,
editors, Stock Market Liquidity, Implications for Market Microstructure
and Asset pricing.

109

http://www.nasdaqtrader.com/Trader.aspx?id=TotalView
http://www.nasdaqtrader.com/Trader.aspx?id=TotalView
http://www.nyxdata.com/openbook
http://www.nyxdata.com/nysedata/default.aspx?tabID=743
http://www.nyxdata.com/nysedata/default.aspx?tabID=743
http://www.r-project.org/index.html

Bibliography

[SR05] G.C. Silaghi and V. Robu. An agent strategy for automated stock market
trading combining price and orderbook information. In Proceedings of the
IEEE Congress on Computational Intelligence Methods and Applications
(CIMA 2005), pages 189–198, 2005. work in progress report.

[SSSK06] Harish Subramanian, Ramamoorthy Subramanian, Peter Stone, and Ben
Kuipers. Designing safe, profitable automated stock trading agents using
evolutionary algorithms. In Proceedings of the Genetic and Evolutionary
Computation Conference, July 2006.

[Wag] Niklas Wagner. On the dynamics of market illiquidity. In Francois-Serge
Lhabitant and Greg N. Gregoriou, editors, Stock Market Liquidity, Impli-
cations for Market Microstructure and Asset pricing.

[WFE08a] WFE. World federation of exchanges, time series [online]. September
2008. Historical Time Series from 1997-2007. Available from: http:
//www.world-exchanges.org/WFE/home.asp?menu=421 [cited December
3, 2008].

[WFE08b] WFE. World federation of exchanges, value of share trading [online].
September 2008. Historical Time Series from 1997-2007. Available from:
http://www.world-exchanges.org/WFE/home.asp?menu=27 [cited De-
cember 3, 2008].

[Yeo05] Wee Yong Yeo. Cancellations of Limit Orders. SSRN eLibrary, 2005.

110

http://www.world-exchanges.org/WFE/home.asp?menu=421
http://www.world-exchanges.org/WFE/home.asp?menu=421
http://www.world-exchanges.org/WFE/home.asp?menu=27

List of Tables

1.1 Availability of real-time orderbook data from major stock exchanges . 6
1.2 Availability of historical orderbook data from major stock exchanges. . 6
2.1 XETRA Release History (1.0-9.1) . 13

2.2 Orderbook Example . 15
2.3 Limit Order matching example . 16
2.4 Market order matching example . 16
2.5 Market-to-Limit Order Example . 17

3.1 Price range and traded volume of DAX30 stocks 25
3.2 All order modification attributes defined in the orderbook database . . 26
3.3 ISIN codes of top 10 DAX Stocks in terms of order modification frequencies 27
3.4 Frequencies of order modifications by AuctionTradeFlag 29
3.5 Frequencies of order modifications by Ordertype 30
3.6 Order modification frequencies by modification reason codes (attribute

ModReasonCode) . 33
3.7 Frequencies of order modifications by Orderrestriction Attribute . . . 34
3.8 Frequencies of order modifications by Traderestriction attribute 34
3.9 The 15 most common event code sequences 36
3.10 Limit order example revisited . 37
3.11 Market Order Example Revisited . 37

4.1 Datatype Conversions from Access raw database to Microsoft SQL 2005
database . 42

5.1 Frequency of ten most common invalid order event code sequences in
the dataset . 55

5.2 Missing Insertion Sequences . 57
5.3 Missing Completion Event Code Sequences 58
5.4 Missing Insertion/Completion Sequences 59
5.5 Frequency of repaired order event code sequences 60
5.6 Executed Size Order Mismatch . 68

6.1 Trading Session Time Calculation Example 77

111

List of Tables

6.2 Specifications of an Order Placement Example 77
6.3 Order filter attributes . 84

7.1 Supported export image filetypes . 91

112

List of Figures

1.1 Historical increase in Value of Share Trading among major stock ex-
changes in $tr . 3

1.2 Share of electronic equity trading at Deutsche Börse AG in 2007 . . . 5
1.3 CCFEA Limit Orderbook Application 11

2.1 DAX Trading Phases of DAX stocks in the XETRA trading system
[Gro03] . 19

3.1 Movement of the DAX index and trading volume 23
3.2 Histogram of order modifications by ModificationTimestamp attribute 24
4.1 Basic Process Overview . 39

4.2 Overview of Software packages and database 41
4.3 Diagram of integrated MS SQL 2005 database 43
4.4 OrderBookEngine Class Diagram . 44
4.5 Dataset Generator User Interface . 47
4.6 Orderbook Visualization class diagram 49

5.1 Basic Reconstruction Process Overview 52
5.2 Static Order Reconstruction Process Overview 52
5.3 Basic order lifetime cycle described by order modification reasons . . . 53
5.4 Order Modification State Diagram . 54
5.5 Segmentation of orders having defect event code sequences 56
5.6 Sequence diagram of all classes involved when order modification is

added to the orderbook . 62
5.7 Order sort key . 63
5.8 Order sort key example . 63

6.1 Overview of the Visualization Process 71
6.2 Design of the order visualization data structure 74
6.3 Example of a 6x7 Visualization grid containing all important parameters 76
6.4 Order Placement Example . 78
6.5 Binning Process Overview . 79
6.6 Example of the orderbook visualization zoom function 82

113

List of Figures

6.7 Basic Filtering Process . 83
6.8 Example of the Orderbook visualization function 85

7.1 Orderbook Visualization User Interface 93
7.2 Tool Bar Figure . 94

8.1 Example of a Fleeting Order . 96
8.2 Buy-in-Market order example . 99
8.3 Sell-in-Market order example . 101
8.4 CIC order chain example . 102

114

	OrderbookVisualization.pdf
	1 Introduction
	1.1 Overview
	1.2 Changes in the Stock Exchange Market
	1.3 Electronic Orderbook Trading
	1.3.1 Overview
	1.3.2 Orderbook Data Availability

	1.4 Literature on Open Orderbook Markets
	1.5 Algorithmic Trading
	1.5.1 Penn-Lehman Automated Trading Project
	1.5.2 CCFEA SETS E-PLATFORM

	2 XETRA Market Model
	2.1 XETRA History
	2.2 Orderbook
	2.3 Order Types
	2.3.1 Limit Order
	2.3.2 Market Order
	2.3.3 Additional Order Types

	2.4 Additional Flags
	2.5 Trading Phases
	2.5.1 Pre/Post-Trading
	2.5.2 Auctions
	2.5.3 Continuous Trading
	2.5.4 Volatility Interruptions

	3 Data Set
	3.1 Introduction
	3.2 Attributes
	3.2.1 ModificationTimestamp
	3.2.2 OrderEntryTimestamp
	3.2.3 OrderExpiryDate
	3.2.4 ISIN
	3.2.5 Ordernumber
	3.2.6 AuctionTradeFlag
	3.2.7 Ordertype
	3.2.8 BuySell
	3.2.9 Size
	3.2.10 Price
	3.2.11 Limit
	3.2.12 ModReasonCode
	3.2.13 Orderrestriction
	3.2.14 Traderestriction

	3.3 Event Code Sequences
	3.3.1 Limit Order Example revisited
	3.3.2 Market Order Example revisited

	4 Software Architecture
	4.1 Design Goals
	4.2 Requirements
	4.2.1 Software
	4.2.2 Hardware

	4.3 Package Overview
	4.4 Database Architecture
	4.4.1 Data Integration
	4.4.2 Database Structure

	4.5 Orderbook Engine
	4.5.1 Order Object Model
	4.5.2 Data Access
	4.5.3 Orderbook Reconstruction

	4.6 Dataset Generator
	4.7 Orderbook Visualization

	5 Reconstruction Process
	5.1 Overview
	5.2 Static Order Reconstruction
	5.2.1 Order Validity Check
	5.2.2 Order Repair Strategy
	5.2.3 Hidden Size
	5.2.4 Result

	5.3 Dynamic Order Reconstruction
	5.3.1 Orderbook Reconstruction
	5.3.2 Order Level Errors
	5.3.3 Orderbook Level Errors

	6 Orderbook Visualization
	6.1 Introduction
	6.2 Process Overview
	6.3 Data Retrieval
	6.4 Order Binning
	6.4.1 Overview
	6.4.2 Basic Binning Idea
	6.4.3 Data Structures
	6.4.4 Order Placement
	6.4.5 Binning Process

	6.5 Visualization
	6.6 Zoom
	6.7 Filtering
	6.7.1 Order Filters
	6.7.2 Rectangle Filters

	7 Orderbook Visualization Interface
	7.1 Introduction
	7.2 User Interface Description
	7.2.1 Overview
	7.2.2 Tool Bar

	7.3 Data Navigation
	7.3.1 Order Exploration Mode
	7.3.2 Zoom-In Mode
	7.3.3 Zoom Out

	7.4 Data Import/Export
	7.4.1 File Import
	7.4.2 Database Import
	7.4.3 Data Export

	7.5 Layers
	7.5.1 Data Grid
	7.5.2 Bid/Ask Spread

	7.6 Filters

	8 Detection of Algorithmic Trading Patterns
	8.1 Relevant Work
	8.2 Definition of Algorithmic Fleeting orders
	8.3 Detection of Algorithmic Fleeting orders
	8.4 Visualization of selected Chain Structures
	8.4.1 Buy-in-Market chains
	8.4.2 Sell-in-Market chains
	8.4.3 CIC order chains

	9 Conclusion and Outlook

