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Design Comprehension of

Embedded Real-Time Systems

Abstract

Complexity management is a hot topic in the current computer science
literature. However, usually shallow explanations at the technical level are
used as arguments for specific complexity management techniques and com-
plexity metrics. This dissertation aims at bridging the gap between computer
science on the one side and the cognitive and learning sciences on the other
side with an interdisciplinary approach to design comprehension. A special
focus is put on high-criticality systems where latent design errors caused by
highly complex development tasks cannot be tolerated.

This work focuses on the cognitive complexity of development tasks,
which denotes the amount of cognitive resources that are required for a
given task. Overload of the human working memory system is a major fac-
tor that affects cognitive performance. Those tasks where many relational
aspects must be considered simultaneously are especially complex.

The basic goal of this work is the development of cognitive support theo-
ries for various system development approaches. Design for simplicity is an
important principle to keep the cognitive complexity of design and mainte-
nance tasks at a manageable level. Various techniques to achieve a simple
and understandable system structure are presented. A special focus is put on
the characteristics of component interfaces, as it is the characteristics and
the placement of the interfaces that affects the cognitive effort of system
comprehension.

It must be possible to develop and verify each component independent-
ly and then integrate the components with just minimal effort. The design
concept of near-independence can be used to minimize relational aspects
in large systems. Nearly-independent components represent units of design
with a high degree of self-containedness. They are a key technique to mi-
nimize global interdependencies. Temporal firewalls together with a sparse
global time-base represent suitable techniques to support a high degree of
temporal and conceptual decoupling between components.

The presented approach supports determinism at the application level
by the provision of various architectural services. Determinism enables de-
ductive reasoning, which is essential for the rational analysis of behavior.





Designverstehen von eingebetteten

Echtzeitsystemen

Kurzfassung

Obwohl Komplexitätsmanagement ein zentrales Thema der Informatik
ist, wird es in der Literatur nur sehr oberflächlich behandelt. Erkenntnisse
aus den Kognitions- und Lernwissenschaften finden kaum Beachtung. Daher
verfolgt diese Dissertation einen interdisziplinären Ansatz zur Verbesserung
des Designverstehens von eingebetteten Echtzeitsystemen für sicherheitskri-
tische Anwendungen. In diesen Systemen können latente Designfehler, ver-
ursacht durch hohe Komplexität von Entwicklungsaufgaben, nicht toleriert
werden.

Einen zentralen Aspekt dieser Arbeit stellt die kognitive Komplexität
der Entwicklungaufgaben dar, welche das Ausmaß an kognitiven Ressour-
cen beschreibt, die für die Aufgaben benötigt werden. Die beschränkte Kapa-
zität des menschlichen Arbeitsgedächtnisses stellt einen zentraler Faktor für
mentale Einschränkungen dar. Jene Aufgaben, wo viele Aspekte gleichzeitig
betrachtet werden müssen, sind besonders komplex.

Ein wesentliches Ziel der Arbeit ist die Betrachtung von verschiedenen
Ansätzen zum Systemdesign hinsichtlich ihrer Komplexität. Die Eigenschaf-
ten von Schnittstellen zwischen den Systemkomponenten sind dabei von
zentraler Bedeutung, da sie die Verständlichkeit eines Systems wesentlich
beeinflussen.

Um die Komplexität eines Systems beherrschen zu können ist es erfor-
derlich, dass die Systemkomponenten weitgehend unabhängig voneinander
entwickelt und verifiziert werden können. Dazu ist es notwendig, die relatio-
nalen Abhängigkeiten innerhalb des Systems zu minimieren. Das Kompo-
nentenmodell dieser Arbeit, das auf Temporal Firewalls, in Kombination mit
einem speziellen globalen Zeitmodell basiert, ermöglicht eine weitgehende
zeitliche und konzeptionelle Entkopplung der Komponenten. Die Integrati-
on der Komponenten wird dadurch vereinfacht, dass sich die Eigenschaften
der Komponenten durch die Integration nicht verändern.

Der präsentierte Ansatz ermöglicht Determinismus auf der Applikati-
onsebene. Dies unterstützt die Verständlichkeit, da sich das Verhalten des
Systems durch Deduktion logisch ableiten lässt.
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Chapter 1

Introduction

Embedded real-time systems are becoming increasingly important in many
areas of our life. We use intelligent appliances that are controlled by em-
bedded computer systems every day, from a simple electric toothbrush to a
car controlled by a large number of electronic components.

This dissertation focuses on one aspect of complexity – the cognitive
complexity of understanding safety-critical embedded real-time computer
systems during the development and maintenance process. This developer-
centered view on system understanding is called design comprehension. The
interrelations between technical and psychological aspects are discussed in
detail, which leads to some important implications for system development.

1.1 What is Design?

The term design is generally accepted as a well-known term and not defined
in detail. However, there exist various concepts related to this term – most
notably there is a difference between a more artistic and a more technical
viewpoint.

1.1.1 A Definition of Design

In this work we are interested in the technical perspective of design only.
Christopher Alexander, an architect who is widely accepted as the father of
design patterns [AIS77], which have also been adopted in computer science
(e.g., [GHJV94]), has introduced a good definition. In one of his early
books on design [Ale64] he writes: The ultimate object of design is form.
[...] Every design problem begins with an effort to achieve fitness between
two entities: the form in question and its context. The form is the solution
to the problem; the context defines the problem. [...] The form is the part
of the world over which we have control, and which we decide to shape while
leaving the rest of the world as it is. The context is the part of the world
which puts demand on this form; anything in the world that makes demands

1



1.1 What is Design?

of the form is context. Fitness is a relation of mutual acceptability between
the two. [...] It is only through the form that we can create order in the
ensemble. This is a very general definition of design. So it is very well-
suited for this dissertation where a very general discussion of design from
the viewpoint of comprehensibility is taken.

In essence, the main problem statement of this work is what makes a
design problem and its constituent tasks either easy or hard to understand.
The considerations are focused on embedded real-time systems. However,
many statements apply to the much wider domain of computer systems
design as a whole.

1.1.2 Design Problems – Definition and Characteristics

Now, after having a definition of design, what makes a problem a design
problem? The following differentiation between design problems and selec-
tion problems has again been taken from Alexander. For a selection problem
a unitary description can be given, whereas a design problem demands in-
vention. To solve a problem just by selection, two things are necessary
[Ale64] :

1. It must be possible to generate a wide enough range of possible alter-
native solutions symbolically.

2. It must be possible to express all the criteria for solution in terms of
the same formalism.

So a problem is a design problem only if selection cannot be used to solve
it.

In this thesis the tasks that can occur during system development are
differentiated into well-defined tasks and ill-defined tasks. The latter are
real design tasks according to the definition above, whereas the former cor-
respond to the selection tasks. For example, a well-defined task can be fully
described with a detailed work instruction, e.g., for a maintenance engineer,
or it can be automated with a tool, such as an automatic scheduler. An ex-
ample for an ill-defined task is the generation of a system description from a
number of potentially incomplete or contradictory requirements. With most
development methodologies the decomposition of a system description into
a number of components is also a design problem.

In this dissertation, all tasks that are involved in the development of a
computer system are called development tasks. A development task can be
either a well-defined or a design task, if this is not mentioned explicitly.

According to Alexander, a solution to a design problem can be considered
a good design if it minimizes the misfits – the potential problems that have
to be solved – between form and context. However, a design problem is not
an optimization problem; it is not necessary to find a solution that meets
every single requirement in the best possible way. It is usually sufficient that
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the solution satisfies the requirement at a level just to prevent misfit. It is
therefore necessary that all requirements are clearly defined to be able to
unambiguously classify a design a fit or a misfit. For quantifiable variables,
such as the maximum latency of a reaction of a system, this is easy to define.
For non-quantifiable variables, such as understandability the definition of a
criterion to classify a solution as a fit or a misfit regarding the requirement
may be considerable effort. So understandability is often ignored or defined
in a very superficial manner.

A solution to a design problem that is a good design according to the
definition above may not be the one that is most easily understandable.
This means there may be a different solution that has better characteristics
regarding comprehensibility. In this dissertation those aspects of design are
considered, that can affect comprehensibility.

For the considerations about cognitive complexity both well-defined and
ill-defined problems must be considered, as the creation of a new system
as well as the adaption of an existing system usually involves both kinds
of tasks. Some development tasks may be well-defined but very complex
anyway – due to the nature of the tasks. Others may be ill-defined or
involve a considerable amount of invention, which can make them difficult,
or at least unpredictable.

1.1.3 Trial-and-Error vs. Guided Design

By definition, design problems can not be well-defined. Trial-and-error de-
sign is expensive and slow. But how can the design process be guided so that
errors are minimized? The key is to re-use existing knowledge of previous
design problems and to replace trial-and-error by guided processes. In com-
puter science the use of design patterns [GHJV94] has become very popular
to reuse proven concepts for new problems. Computer system architectures
are another possibility to guide the system developers by providing a basic
design framework that can be reused. Computer system architectures can
thus be seen as kinds of design patterns.

1.2 What is Complexity?

There exist very different conceptualizations that all use the term complexity.
As complexity is a central aspect of this thesis, this section first summarizes
some of the common conceptualizations that are not used. Then, the term
cognitive complexity is introduced, which is the only definition of complexity
that is used in this work.
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1.2.1 Definitions as System Characteristics

In formal and mathematical discussions the term complexity is used to
describe system characteristics. For example, computational complexity
[FH03], which covers various theoretical approaches for models of compu-
tation. It discusses, among other things, the amount of time and memory
needed by a computer to solve a particular kind of problem. This definition
of complexity is not used in this work.

A different concept of complexity is used by the so-called new science of
complexity [NP89]. However, no exact definition of complexity exists in this
research field, just characterizations and examples for aspects of complexity.
Complexity in this area is also considered a characteristic of the system or
of the system’s behavior. For example, self-organization in physico-chemical
systems is usually considered to be a complex phenomenon. Such a charac-
terization of complexity is more related to the concept of complexity that is
used in this work than the aforementioned computational approaches, as this
kind of complex behavior is usually difficult to understand, too. However,
the science of complexity takes a very formal and mathematical viewpoint
that does not consider cognitive aspects at all, i.e., why we find it difficult
to understand a system.

In hands-on oriented computer science, the term complexity is commonly
used to describe a characteristic of the functionality of an artifact. For exam-
ple, we can say that automotive electronics systems implement increasingly
complex functionality. This complexity can be contrasted to simplicity in
the sense that the complex artifact has more capabilities than the simple
one.

Sometimes, more complex just means that more steps are required for
a particular task. For example, when a component has to be configured in
two steps this is sometimes said to be more complex than if just a single
step is needed. As this is a quite different conceptualization, it is referred
to as more effort rather than more complex in this work.

1.2.2 Cognitive Complexity

The cognitive complexity of a given task describes the amount of cognitive
resources that are required to perform the task. If the cognitive complexity
of a task is high, this becomes manifest in increased time required for the
task and in a high number of errors that occur.

This task-based view of complexity is central to this thesis. Of course, a
task such as component integration heavily depends on the characteristics of
the underlying system. However, just looking at a system without consider-
ing tasks at all does not make sense when trying to make judgments about
cognitive complexity. The characteristics that make a task either difficult or
simple can either be rooted in system properties or they result from the task
itself: From this viewpoint it does not make sense to consider the overall
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complexity of the whole system, as the complexity always depends on the
task that must be performed. Without a task, the description or even the
calculation of complexity is mostly useless. So it does not make sense to
“sum up” the cognitive complexity of a number of development sub-tasks to
determine the complexity of the encompassing development task: Each task
must be considered separately. However, it does make sense to determine
the most complex task of a chain of tasks.

There are two main factors that affect the performance of a task. First,
the knowledge (or expertise) in the problem domain and second, the inherent
complexity of the task itself [HWP97]. A detailed discussion of cognitive
complexity can be found in chapter 3.

In this thesis, the term complexity is just used as an abbreviation for
cognitive complexity, so the terms complexity and cognitive complexity can
be used interchangeably. If no task is mentioned explicitly, the task of
gaining a general understanding of the system under consideration can be
assumed. Complex system or complex component in this thesis always means
that the system or component is difficult to understand.

1.3 Embedded Real-Time Systems and Complex-
ity

The cognitive complexity of various tasks involved in the development and
maintenance of many of today’s embedded real-time systems has reached a
threshold of pain where new paradigms for system development are required.
For example, the complexity that arises during system development is one of
the most challenging problems in automotive electronics development [Gri03,
PYJ04]. The integration process of seemingly simple components often fails
due to unexpected complexity at the system level, i.e., the complexity that
arises due to the interactions of the components.

1.3.1 Factors Specific to Embedded Real-Time Systems

In this thesis a focus is put on hard real-time systems which are real-time
systems where a single failure to produce results on time may be a sys-
tem failure. Hard real-time systems are fundamentally different from soft
real-time systems where the occasional violation of a deadline can be toler-
ated. Hard real-time systems require more development effort and are more
difficult to design than soft real-time systems because the developer must
consider two dimensions of the design problem simultaneously: the value
dimension and the temporal dimension [Kop98].

Another important source for complexity in embedded real-time systems
is their interaction with the physical world [SS99]. The system environment
behaves non-deterministic, with events occurring asynchronously, concur-
rently and in an unpredictable order, but the system itself must respond
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appropriately and in a timely fashion.

Embedded real-time systems often have high dependability requirements.
Fault-tolerance is usually used to achieve the required level of dependabil-
ity, but fault-tolerance can also contribute to considerable complexity: Var-
ious fault scenarios must be considered and error containment and recovery
strategies must be provided. As will be shown in this thesis, the amount
of additional complexity introduced by fault-tolerance mechanisms heavily
depends on the type of fault-tolerance that is supported by the computer
system architecture.

1.3.2 Factors for Growing Complexity

Embedded electronics systems have been growing fast over the last years:
The introduction of new functionality as well as the replacement of mechan-
ical by electronic components are the two major factors for this growth.
However, system design methodologies for embedded real-time systems have
not kept pace with this development and now face severe problems.

Years ago, electronics systems were designed according to a federated
approach. This means that every subsystem was built as a separate system
with only minimal or no interaction with other systems. Today, there is a
trend from federated to integrated architectures, where multiple application
subsystems share the same physical resources. This trend can be observed,
e.g., in automotive and aerospace computer systems architectures, with AU-
TOSAR [AUT06, HSF+04], Integrated Modular Avionics (IMA) [Aer91] and
DECOS [KOPS04] representing key initiatives towards such integrated sys-
tems. The major benefits of this integration are increased interoperability,
a reduction of the number of computational nodes, cables and connectors,
and an increased reliability of the overall system. A major drawback is
the increased complexity of the development process and additional interde-
pendencies between subsystems that are introduced due to the integration.
These interdependencies are usually not modeled explicitly, but may exist
due to the fact that the same physical hardware is shared. For example, the
communication system can be highly loaded, or the processor may run at
high load which results in varying delays and runtimes depending on other
application subsystems.

1.3.3 Problems Caused by Complexity

There are high dependability requirements for embedded real-time systems
in many application areas, e.g., automotive and avionics control, nuclear
power stations, or air traffic control to mention just a few. A failure of such
a system can have fatal consequences, including the loss of life. But also in
other areas where real-time systems are used, e.g., for telecommunications
systems, errors may have severe consequences – at least financial ones – if a
system is out of service for some time.
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In automotive electronics the growing cognitive complexity of develop-
ment tasks has led to a high number of design faults in the recent past.
These latent faults remained undetected during system design, testing and
verification and were a major cause for recalls. Design faults usually have
their roots in lacking understanding or overlooking of some system aspects.
Such aspects may just be very inconspicuous details at a first glance, but
have severe consequences if their influence is not fully understood during
system development. If it is hard to analyze all possible influences of such
an aspect, it is very likely that this analysis is not performed fully, or proba-
bly not done at all. The more cognitive effort a particular task requires, the
more likely it is that errors are introduced. Wherever human understanding
is required, such problems can occur. As of today, system design, imple-
mentation, integration and test is largely done by humans. Formal methods
are still not mature enough for wide-spread use. See section 4.5.3 for a brief
discussion of the limitations of formal methods.

1.4 Improving Understandability

The central approach of this thesis is to make use of the advances in the
cognitive and learning sciences to analyze current real-time systems archi-
tectures and their design concepts with regard to comprehensibility. These
results can then be used for improvements and to support developers in
choosing an architecture that best fulfills their requirements. Understand-
ability or simplicity are common requirements these days.

1.4.1 Advances in the Cognitive Sciences

Research about various aspects of cognitive complexity is quite active. Es-
pecially the cognitive and learning sciences are still fields with many open
questions. However, there are some aspects of complexity and learning that
are widely accepted. Lots of progress has been made in recent years re-
garding how understanding works and what makes up a complex problem.
[SC94, Hol95, RW98, Rei01, Kel03, QKG05]. Extensive research has been
done with regard to what understanding and expertise mean [PG00, Jac01,
HSP04]. Furthermore, properties of material that is difficult to understand
have been identified [HWP97, Ree99, FCS01, Bir02, HBMB05]. Even if
there remain lots of open questions, the research results provide a valuable
basis for application in other domains, such as computer science, where cog-
nitive complexity is a fundamental problem and usually only tackled in a
very superficial manner. The characteristics of human cognition play a fun-
damental role in understanding computer systems and must be regarded by
system developers in order to create comprehensible systems. This is es-
pecially important in high-dependability domains where failures caused by
errors rooted in highly complex tasks can have fatal consequences.
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1.4.2 Design Comprehension

Although making sense of complex systems is a basic issue in the techni-
cal sciences, the recent advances in the cognitive and learning sciences have
received surprisingly little attention in computer science [Rum05]. There
exist some areas where psychological concepts and theories from the learn-
ing sciences are applied, e.g., learning systems, visualizations, or program
comprehension. See section 1.6 for a summary of research areas of com-
puter science where interdisciplinary approaches drawing on psychological
foundations are used. However, computer science in general and embedded
systems development in particular, largely ignore psychological issues. This
practice starts with computer science courses at universities and continues
throughout most of the scientific community. It is also present in compa-
nies that develop embedded systems. The AUTOSAR specification is an
example where a central goal was complexity management, but except for
standardization, the architecture does not provide any explicit complexity
management techniques. There does not even exist a concise conceptual
explanation of the architecture, just countless documents describing single
technical aspects of the standard at a very detailed level. So reading and
understanding the standard itself is quite a challenge.

In computer science, most concepts and theories that deal with complex-
ity management have been developed without the theories of the cognitive
and learning sciences in mind.

This thesis is about design comprehension [Rum05, RK06], which aims at
bridging the gap between computer science on the one side and the cognitive
and learning sciences on the other side with an interdisciplinary approach
– see figure 1.1. The term design comprehension includes all aspects of
understanding that occur during system development and maintenance. In
other words, it investigates and tries to amplify the understanding of the
relevant aspects of a computer system for a given task.

Figure 1.1: The interdisciplinary approach

The consideration of the characteristics of human comprehension allows
to design more comprehensible systems and can help to improve current
complexity management techniques by providing a systematic and scientific
basis for the development of computer systems architectures.

To be able to make statements about the complexity of development
tasks of embedded real-time systems, a conceptual framework that is rooted
in the theories and principles of cognitive psychology is needed. The char-
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acteristics of human cognition can be used to explain why we perceive a
particular task as either simple or complex. The approach taken in this
thesis is mainly on the theoretical level: The theories and principles from
the cognitive and learning sciences are directly applied to the domain of
embedded real-time systems concepts.

The terms understanding and comprehension are used synonymously in
this work. The choice of one or the other term is just a matter of linguistic
variation.

1.5 Scope and Objectives

This work focuses on the architectural characteristics of embedded real-
time systems, such as the overall system structure, (component) interface
design, the basic component interaction techniques, and those aspects of the
development process that are described by the presented architecture.

The development of visual models [Obj03], visualization techniques, (vi-
sual) user-interface design, and the development of design or verification
tools are interesting related topics. However, their consideration is beyond
the scope of this thesis. So this thesis focuses on how computer system
architectures can support comprehension, not on development tool support.

1.5.1 Focus on High-Criticality Real-Time Systems

This work focuses on embedded real-time systems for high-criticality do-
mains, such as steer-by-wire systems for automotive, or fly-by-wire systems
for avionics systems. For these dependable systems, the correct function is
especially important; latent design errors cannot be tolerated.

Safety-critical systems as well as their development process are quite
different to other computer systems, such as desktop computer applica-
tions. The development and verification processes of dependable systems
are far more formal and rigorous than for other systems where failures do
not have severe consequences. Certification is an important part of the devel-
opment process of safety-critical systems, for example according to DO-178B
[RTC92], which is the de-facto standard for avionics software systems.

Some of the concepts described in this work may also apply to other areas
of computer system development, but the discussion is focused primarily on
embedded real-time systems for high-dependability domains.

1.5.2 Design for Simplicity

When comparing automotive and avionics electronics development, the most
severe difference is that the aerospace industry already has some experience
with computer systems for safety-critical applications, whereas the automo-
tive industry is just beginning to create safety-critical systems. This differ-
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ence is also reflected by the application of standards that ensure that the
development processes are sufficiently mature for highly reliable computer-
controlled products. Currently, the automotive industry and most suppliers
do not have sufficient process maturity to handle safety-critical projects
[FFL07]. An important implication of this fact is that – especially in the
automotive industry – we are far away from fully and formally specified and
verified systems. This means that understandability is even more impor-
tant to minimize design faults that are not detected due to deficiencies in
the development process. But of course, even if all process objectives of a
good development process are followed, development and certification are
significantly easier if the system itself and the development tasks are easily
understandable.

1.5.3 Cognitive Support Theories

A central goal of this work is the development of cognitive support theo-
ries for complexity management techniques of embedded real-time systems.
Work about cognitive complexity that is based on psychological theories and
experiments is scarcely found in the main-stream computer science litera-
ture. Too often, shallow explanations at the technological level are used as
arguments for various approaches to complexity management. This work
tries to dig a bit deeper and bridge the still existing gap between complex
technical systems and psychological theories.

1.5.4 Near-Independence and Composability

Classical divide and conquer approaches, such as structured or object-
oriented development, do not allow for independent component development
and seamless integration. This dissertation favors a constructive develop-
ment approach that builds on stable, nearly-independent components that
can be developed and verified in isolation. The integration process is a
very critical phase in the development of a real-time computer system as
the properties that were established at the component level shall not be re-
futed by the integration. The approach presented in this thesis aims at the
integration of composable components with just minimal effort.

1.6 Related Work

Measuring the complexity of systems, supporting the understanding of
complex problems and avoiding complexity with appropriate development
methodologies has been subject to research in the history of computer sci-
ence. In this section related work from the computer science literature is
presented where theories and principles from psychology have been used.

In computer science, most concepts and solutions that deal with com-
plexity management and that are intended to support understanding have
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been developed without any psychological principles in mind. The theories
and practices that have proven to be useful are often implicitly based on
principles already known to cognitive psychologists. However, lots of infor-
mation is left implicit and the improvement of existing techniques as well as
the development of new techniques could be accelerated if the findings from
psychology and the learning sciences were paid more attention.

Even though the advances of the cognitive and learning sciences have re-
ceived very little attention in mainstream computer science, there are some
research communities where interdisciplinary approaches are being used. In
the following subsections the ones that are most relevant are shortly summa-
rized. E-Learning systems are not mentioned in the summary, as for these
systems the relations to learning theories are obvious. Furthermore, artifi-
cial intelligence is also not considered here as the goal of artificial intelligence
research is to model or imitate intelligence, rather than the development of
comprehensible computer systems.

1.6.1 Information Visualization and Human Computer In-
teraction

Information visualization is the use of interactive visual representations of
abstract data to amplify cognition. It is about external cognition, that
is, how resources outside the mind can be used to support the cognitive
capabilities of the mind. Information visualization is an interdisciplinary
topic involving both the machine side and the human side [War04].

Until recently, the field of information visualization has been more craft
than science [Spe01, BS03], with many techniques not being based on sound
scientific foundations [Ber81, Ber83, Tuf83, Tuf91] and rarely paying atten-
tion to cognitive principles. Many different visualization techniques have
been developed, some of them very usable for certain applications, others
less usable. In recent years, information visualization is developing more
and more into a science by providing a scientific basis for information visu-
alization concepts – also by paying attention to psychological theories. For
example, various models of working memory and the integration of infor-
mation stored in long-term memory are discussed extensively in the recent
information visualization literature [War04].

Human Computer Interaction (HCI) is a similar field of research but
it has a broader perspective. It is concerned with all aspects of interac-
tions between humans and computers, which involves user interface design
[Ras00], and also social aspects of the work environment [BB87]. One goal
is to make the usage of computers understandable, for example so that even
novices can use a system, or that critical failures displayed by the computer
system are immediately recognized by the users. By definition, HCI is an
inherently multidisciplinary field. Scientific work in this area usually draws
on theories from psychology [CMN83].
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1.6.2 Program Comprehension

When in the 1970s it had been recognized that most large programs undergo
significant change during the in-service phase of their life cycle [BL76] and
the problem of increasing complexity due to the development of ever larger
software systems had become obvious, the field of program comprehension,
has begun to develop. Program comprehension aims at supporting effective
maintenance and successful evolution of software systems [Cor89, vMV95,
BBH+95].

Brooks [Bro83] has developed a very influential theory for program com-
prehension. It is, in essence, a top-down strategy for experts who use their
extensive programming knowledge together with domain knowledge to drive
the comprehension process.

Von Mayerhauser and Vans [vMV95] have surveyed the most important
code cognition models, most of which follow either a top-down or bottom-
up comprehension model. Some models make use of research in cognitive
psychology, but as the authors admit, the development of program compre-
hension models is still in the theory-building phase, relying mainly on obser-
vational experiments. There have been some correlational and hypothesis-
testing experiments, but almost exclusively on very small-scale comprehen-
sion tasks of programs consisting just of a few hundred lines of code. An
evaluation of the models with large-scale experiments of large applications
in a professional environment has not yet been done.

Most code comprehension models draw on existing knowledge to build
new knowledge about the mental model of the software that is under consid-
eration: The understanding process matches existing knowledge with newly
acquired knowledge until the programmers believe they understand the code.
During code understanding, hypotheses are formed, they are checked for va-
lidity and revised if necessary. The key is to keep the number of open
hypotheses manageable while increasing understanding. The understanding
covers both programming concepts and the recovery of domain knowledge
[BMW93, LY01, HGK04].

In recent years, some authors have tried to make use of theories of human
learning, especially concerning the role of concepts in program comprehen-
sion. Rajlich and Wilde [RW02] have created a model that does not rely on
the top-down vs. bottom-up dichotomy of the earlier authors. Their model
is based on concept formation: Programmers tend to use an as-needed strat-
egy to understand how specific concepts are reflected in the code. They are
seeking the minimum essential understanding for a particular task. These
concepts can either be domain-level concepts or programming concepts, such
as design patterns [GHJV94]. An important aspect of program comprehen-
sion is to locate domain-level concepts in the code.

It has been shown that program comprehension can be supported by
tools: Domain-level as well as programming concepts can be identified and
dependencies can be found [AW95, BEW95, BK01a, BK01b].
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The discipline of program comprehension is currently just starting to
make use of theories of cognition and it is expected that this will lead to
interesting insights and techniques [RW02]. The psychological rationale be-
hind the design of present program comprehension tools is rarely described
in detail and, generally, the rationale is poorly articulated, leaving lessons
primarily implicit. Cognitive support theories [Wal02] of program compre-
hension must be developed, not merely shallow explanations at the techno-
logical level.

1.6.3 Software Engineering

Software engineers often have to handle complex problems and they some-
times create large systems. So complexity management is an important issue
in software engineering. Object-oriented programming (OOP) has become
popular in the last 15 years and has made it possible to develop larger soft-
ware systems with more elaborate features than were possible before. One
important aspect of OOP concerning complexity management has been the
shift from a centralized to a decentralized control model with objects/classes
communicating with each other instead of monolithic blocks of code. Pat-
terns [GHJV94] and heuristics [Rie96] have been developed to support soft-
ware engineers in creating comprehensible object-oriented programs. Most
of the heuristics aim at distributing functionality evenly over various small,
comprehensible parts that are loosely coupled with the other parts of the
system. In general, the heuristics have not been created with cognitive prin-
ciples in mind but they have proven to be helpful. They are implicitly based
on the properties of the human mind, at least in part. A common approach
to complexity management is information hiding, such the containment of
an object in another object which means that the hidden information can
be ignored at a higher level of abstraction. Another approach is the decom-
position of a complex part into a number of collaborating components each
of which is easy to understand and has just limited interactions with other
components [Rie96].

An important aspect of OOP is the possibility to model the real world
more closely, allowing the developer to make use of analogies and well-known
concepts. For example, an object-oriented program implementing the func-
tionality of an ATM machine can contain the classes customer, account
and withdrawal. This is very helpful for understanding, as the concepts
used in the program resemble those in the real world – see section 2.3.2 for
a detailed discussion of object concepts.

1.6.4 Complexity Metrics

Complexity metrics can be used to assess the overall design of a system
according to some properties and then use this assessment to perform cor-
rective actions early in the development process [MB98, Kan03], or for re-
engineering purposes [KB98].
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There exist various approaches to measure the complexity of software
systems, most of which focus on program code complexity [HS96]. There also
exists work on measuring the architectural complexity of software [KB98,
MB98, Zha98]. The latter work focuses on the high-level structure rather
than on the implementation details of any specific source module.

Complexity metrics can give an overview over some specific character-
istics of a system or subsystem – those measured by the metric. However,
the currently existing metrics in general do not take into account the cog-
nitive complexity of individual tasks that developers or maintainers have
to perform. For instance, a metric that measures the overall architectural
regularity of a system may return a high value, which means that the sys-
tem is highly regular and should thus be easy to understand. Nonetheless,
tasks performed with this system, even “general understanding” tasks, may
be very hard as the measure does not consider the complexity of the tasks
to be performed. However, it is the cognitive tasks that the developers are
performing, which must receive attention when making statements about
the complexity of system development. Unfortunately, this problem has not
yet been addressed in the literature.

A measure of cognitive task complexity from psychology – relational
complexity – is presented in section 3.2.6. For such a measure to be applica-
ble to development tasks, cognitive process models will have to be developed
– see sections 3.3 and 7.3.

1.7 Overview

Chapters 2 and 3 present mostly non-technical information that represents
the theoretical background of this thesis from cognitive psychology and the
learning sciences: First, chapter 2 summarizes some relevant theories mainly
from cognitive psychology, including theories of human working memory,
long-term memory and concept formation. Then, chapter 3 reviews various
theories that describe cognitive complexity and learning difficulties. Fur-
thermore, it is discussed how the cognitive complexity of computer system
design can be assessed.

Chapter 4 describes the technical background of this thesis. It sum-
marizes the basic concepts and definitions around distributed embedded
real-time systems. Then, chapter 5 uses the theories presented in chapters
2 and 3 to introduce complexity management techniques for embedded real-
time systems development. These techniques are used for a detailed analysis
of the architectural design concepts of the DECOS integrated architecture
which follows in chapter 6. In this chapter it is shown how the theoretical
considerations map to a real-world computer system architecture. Finally,
chapter 7 summarizes the most important contributions of this dissertation,
presents the conclusions that can be drawn and describes open issues that
need further research.
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Chapter 2

Cognitive Processes of
Understanding

With the emergence of cognitive psychology in the last decades, much
progress has been made concerning the development of theories of how our
brain works. This chapter summarizes some fundamental cognitive processes
and characteristics that are at the basis of understanding. A wide variety
of factors that have an influence on learning and understanding have been
identified. The author has tried to make use of the mainstream theories,
building up a coherent picture of the common aspects, instead of pointing
out the differences between the theories and the disputes of their advocates.

2.1 The Cognitive Perspective

In this section the scientific disciplines of cognitive psychology and the learn-
ing sciences are briefly introduced. Then, the concept of mental representa-
tions, which are at the basis of all cognitive abilities, is presented.

2.1.1 The Sciences of the Mind

Cognitive psychology emerged as a separate discipline in its modern form
in the late 1950s [Mil56, BGA56, Bro58]. It is a branch of psychology that
had a very deep impact on psychology as a whole, called the cognitive rev-
olution, which has taken place in the 1950s and 1960s [Rei01]. Due to the
shortcomings of the nineteenth-century movement that emphasized intro-
spection and the following behaviorist movement, psychologists turned to a
method in which one focuses on observable events, but then asks what (in-
visible) events must have taken place in order to make these (visible) effects
possible. The computer metaphor is often used in this context where theo-
ries are based on an information-processing approach that became popular
with the introduction of computers. The interdisciplinary research area that
emerged during the cognitive revolution is called cognitive sciences. It covers
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psychology, philosophy, linguistics, anthropology, neurosciences and artifi-
cial intelligence. Today, cognitive psychology can be seen as the science that
plays the central role in the cognitive sciences, investigating human mental
processes and their role in perception, thinking, feeling, and behaving.

The learning sciences are an interdisciplinary field that studies teaching
and learning [Saw06]. They developed into a separate discipline in the late
1980s when researchers realized that new scientific approaches to learning
had to be developed. It became clear that the single sciences that play
a role in this area, such as the cognitive sciences, educational psychology,
computer science, and sociology must be integrated. The goal of the learning
sciences is to better understand the cognitive and social processes that result
in the most effective learning. In this work those aspects and theories are
considered, that affect the presentation of material and the learning process
itself.

With the advances of cognitive psychology and the development of the
learning sciences, much progress has been made: In the last years, theories
have been developed and principles were discovered that are supported by
a wide variety of experimental data. Although there is still much active
research in the field and many issues remain unknown, some theories are
quite well-accepted and can thus be considered sufficiently mature to be
readily used in the technical sciences.

2.1.2 Mental Representations

The information processing approach in cognitive psychology is based on
the assumption that an organism’s ability to perceive, comprehend, learn,
decide, and act depends on mental representations, which are unobservable
internal codes for information [Kel03]. These internal representations of the
human mind are usually contrasted with physical external representations.
For example, you can imagine a dolphin which results in an image that only
you can experience, or you can see a dolphin in the real world, which can
also be seen by others. Mental representations are the basis of all cognitive
abilities.

It is assumed that there exist different kinds of mental representations,
for example verbal representations, or spatial representations. Depending
on the task that is performed, different mental representations are used. An
aspect that is very interesting for this thesis is that there exists evidence
that spatial representations are used in both spatial and temporal reason-
ing [Gil04]. This view is supported by the concept of a time-line that is
commonly used in technical sciences to model time and as an aid for under-
standing temporal problems.

The result of the processes that construct mental representations of the
information available in the environment is called perception. The processes
of perception organize and interpret the information. The recognition of
many objects is influenced by the context in which the objects are en-
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countered, thus perception is both a bottom-up (data-driven) and top-down
(concept-driven) process [Rei01].

Mental representations are processed in stages, such as encoding the
information, storing it in memory, retrieving it, and manipulating it.

Attention refers to the selection of certain stimuli for processing to the
exclusion of others as well as for the concentration of mental resources on a
particular process.

2.2 Memory

Cognitive psychologists use a three-store model of memory distinguishing
among sensory, short-term and long-term stores. Sensory memory is the
initial, unconscious and very short-lived recording of information from our
senses. This kind of memory is not discussed in this work as the recognition
of sensory information is not considered.

2.2.1 Working Memory

The concept of working memory has been developed in the 1960s and 1970s
[MGP60, BH74]. Various models have been successful in the explanation of
a variety of phenomena [Rei01, Ste04]. Working memory refers to the system
or mechanism for temporarily maintaining mental representations that are
relevant to the performance of a cognitive task. There exist different work-
ing memory models, e.g., with respect to whether working memory is a part
of long-term memory that is activated for a particular task [Cow01, Kel03],
or whether it uses separate structures [BH74, Bad98]. Fortunately, many of
these unknown aspects are not relevant for the considerations in this dis-
sertation. Many characteristics of working memory that are important for
this work – and that a working memory system exists at all – are widely
accepted in cognitive psychology [Bad98, MS99, Rei01, Gil04, Ste04]. The
basic characteristics common to most models is that working memory is a
system consisting of storage components, processes for achieving and main-
taining activation, and controlled attention [MS99].

In this dissertation the working memory model of Baddeley and Hitch
[BH74] is adopted as it is the most influential and well-known [MS99, Rei01].
It is also supported by a wide variety of experimental data [Bad98, Bad00,
AGWA04]. For a detailed discussion of the differences and similarities of
working memory models see [MS99].

The working memory system comprises multiple components [Bad00]:

Phonological loop: This component stores verbal representations and
maintains active memory via rehearsal mechanisms of inner speech.

Visual-spacial sketch pad: This part is used to store visual and spatial
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representations and to maintain active memory via rehearsal mecha-
nisms of image generation or action preparation.

Episodic buffer: This is a limited capacity system that provides tempo-
rary storage of information held in a multimodal code. It is capable of
binding information from the subsidiary systems, and from long-term
memory, into a unitary episodic representation.

Central executive: This component constitutes the supervisory control
of the working memory system. It coordinates the two storage com-
ponents, focuses and switches attention and retrieves representations
from long-term memory. Evidence suggests that the central executive
is a task-general mental resource with limited capacity [Rei01].

What is important is that – like in most other models of working memory
– the working memory system is not a simple storage container; it contains
both processing resources and memory. It is at the base of all cognitive ac-
tivities. As the mental resources of the working memory system are limited,
this has important consequences on human cognitive performance.

A chunk is a collection of mental representations that have strong as-
sociations to one another and much weaker associations to other chunks
currently in use. By grouping a number of items into a larger chunk, the
working memory capacity limit can be stretched. A very simple example for
chunking is to group meaningful information together: Instead of remem-
bering the single numbers 1, 7, 7, 6, 2, 0, 0, 5, 1, 9, 4, 5 they can be grouped
to the year dates 1776, 2005, 1945 which can be remembered far more easily
as they only form three chunks instead of 12 chunks when seeing them as
single numbers. Thus, a chunk does not hold a fixed quantity of information.

There exists lots of work investigating the capacity of working memory.
One of the first and still one of the most influential papers is that of Miller
[Mil56] who claimed that the capacity of the short-term memory is about
seven chunks of information. This number was the result of experiments that
investigated immediate recall of chunks of information, such as numbers or
words. One reason for the popularity of the number of seven is probably that
a single number is easy to understand and to remember. The number was
simply transferred to other domains, where it was treated as a magic number,
without any validation. This resulted in quite bizarre recommendations,
such as to limit the number of function parameters to seven, not to put
more than seven items on a presentation slide, and the like.

More recent research has investigated more complex tasks than just im-
mediate recall of numbers. For more complex tasks than simply recalling
a list of items, a working memory capacity limited to about four chunks
of information seems more realistic [Cow01]. Also see section 3.2.6 for a
discussion of relational complexity theory that uses the same number as the
maximum number of chunks we can integrate mentally in a single task.

The limited capacity of working memory of both the processing and
memory components is a major cause for limitations of cognitive tasks
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[Kel03, Gil04]. When working memory is overloaded, errors occur [SC94,
Gil04].

2.2.2 Long-Term Memory

Long-term memory allows the retrieval of stored mental representations even
decades after they have been stored. It’s capacity is unknown.

Current memory theories propose that long-term memory is not unitary.
It can be subdivided into declarative and nondeclarative memory [Rei01,
Kel03]. Declarative (explicit) memory refers to knowledge of events, facts,
and concepts (“knowing what”). Nondeclararive (implicit) memory refers
to skills and related procedural knowledge (“knowing how”) [Kel03].

Declarative Memory consists of two subsystems: Episodic memory con-
tains specifically dated occurrences of events in a particular context. Seman-
tic memory1, refers to factual and conceptual knowledge about the world.

Implicit learning refers to the unconscious acquisition of complex rules
that cannot be verbalized. Implicit memories can be the consequence of
processing fluency, produced by experience in a particular task and can be
registered as a sense of “specialness” attached to a specific stimulus [Rei01].

2.2.3 Encoding, Storing and Retrieving Information

Encoding and storing information in long-term memory involves rehearsal
[Rei01, Kel03]. Maintenance rehearsal refers to recycling information within
working memory by covertly verbalizing it, with little thought about what
the items mean, or how they are related to other bits of knowledge. Elab-
orative rehearsal draws on semantic features of the to-be-remembered in-
formation. Elaborative rehearsal can be, for example, organizing items into
categories or associating them with information already known. This kind
of rehearsal usually involves linking information in working memory with
information already stored in long-term memory.

In analogy to elaborative and maintenance rehearsal, there are different
depths of processing in learning: Shallow processing means to engage infor-
mation in a superficial fashion, deep processing is to think about the meaning
of the items. The deeper the processing, the easier the items are remembered
since thinking about the meaning of items and categorizing them means that
they are related to knowledge already in long-term memory by establishing
memory connections. These connections serve as retrieval paths so that the
learned items can be found later on. Thus, learning is not simply a matter
of placing information in long-term memory. It also involves the creation
of appropriate retrieval paths – otherwise the stored information becomes
inaccessible, i.e., it is forgotten. The deeper the processing, the easier the
information can be retrieved from memory, just doing maintenance rehearsal

1Also referred to as generic memory [Rei01].
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does not lead to good retrieval performance [Rei01, Kel03].

From the perspective of storing and retrieving information in memory,
understanding can be defined as seeing connections to related knowledge. A
good understanding thus means that most or all relevant connections are
known, whereas a shallow understanding means that just a fraction of all
relevant connections are known.

When people have extensive knowledge about a specific area, this pro-
vides a framework on which new materials can be “hooked”. So it is much
easier for them to remember and understand the new information.

However, the same memory connections that are crucial for understand-
ing can be a source of memory error called source confusion as some kind
of interference can occur: When the new information is interwoven with
similar prior knowledge, this can create confusion as one might lose track
which elements belong to which concepts or events [Rei01].

Organization provides retrieval cues: It has long been known that well-
organized information is better remembered. A learner must discover the
relations among items or, when none are apparent, create his or her own
subjective relations. The categories imposed by the materials or by the
learner serve as highly effective retrieval cues [Kel03]. We remember poorly
if we can neither find nor create an organizing scheme, but arbitrary orga-
nization is not very effective – we remember best, what we understand best:
The optimal organization of complex materials is generally dependent on
understanding [Rei01].

Chunking also helps to store and retrieve information in long-term mem-
ory: By integrating and unifying (i.e., understanding) the materials, one
ends up with less to remember, reducing the load on memory [Rei01].

Learning serves best if, at the time of retrieval, the material is ap-
proached in the same way, i.e., via the same connections. It is much harder
to locate the sought-for information via a different retrieval path, i.e., from
another perspective [Rei01]. The encoding specificity principle says that in-
formation is recognized or recalled only when the retrieval cues at the time
of test match the encoding cues at the time of learning. The retrieval cues
enable the activation of the to-be-remembered information and its context.
Even the environmental and psychological context has an effect on retrieval
performance: If the environmental conditions (the same room, the same
sounds, etc.) and the person’s mood match the conditions and mood of
learning, then the recall performance is significantly better [Kel03].

2.3 Semantic Memory

Semantic memory allows us to categorize the world. Without the ability to
acquire, represent and use knowledge about meaningful symbols, high-level
cognition would not be possible. Whenever we reason about kinds, such
as chairs, cars, or dogs, we are employing categories. We are also using

20



2.3 Semantic Memory

categories if we intentionally perform any kind of action (e.g., “going to a
supermarket”), which again consists of kinds of motor activities (as they are
never exactly the same) [Lak87, Kel03].

Concepts are the general ideas that enable the categorization of unique
stimuli as related to one another. The stimuli categorized may be concrete
objects or abstract ideas [Kel03]. In this section some fundamental theories
of concept formation are summarized. These theories try to explain how
we categorize the world around us and how we use our conceptual knowl-
edge for reasoning. Reasoning is usually defined as the process of drawing
conclusions [Lei04]. Conclusions are drawn in problem-solving and decision-
making tasks.

2.3.1 Rule-Governed Concepts

The classical approach of categorization assumes that concepts can be de-
fined by a set of singly necessary and jointly sufficient rules [Kel03]. This
means that for every concept a set of defining features can be provided.
Some abstract concepts, especially in mathematics and physics, can be seen
as rule-governed. However, for many concepts it is quite impossible to
find a set of defining features, e.g., for the concept of “dog”, so that all
dogs fit to the concept, whereas all other animals that are no dogs do not.
The problem here is that there is a fuzzy boundary of class membership
[Ros78, LM99, Kel03].

2.3.2 Object Concepts

Object concepts refer to natural kinds or biological objects, and artifacts or
human-made objects. They are often organized hierarchically. For example,
a parrot and a dove are both birds.

A flexible boundary can usually be observed for object concepts, depend-
ing on which other concepts are active in memory [Lab73]. For example,
whether we perceive object B shown in figure 2.1 as a cup or a glass heavily
depends on the context in which it is shown.

Figure 2.1: A cup or a glass or something else? Source: [Lab73]

Object concepts show a family resemblance, which means that the cate-
gory is not defined by a small set of defining features, but by a quite large
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number of features that apply to some but not all instances. For example,
it is hard to define a dog by a complete set of characteristics that really
apply to all dogs we will ever see. There will always be some special dogs
that do not have some characteristics – as, for example, an ill dog that
cannot bark is still a dog... So there is a difference between typicality and
category membership. Even though typicality matters considerably in our
judgments, typicality is not crucial for category membership. What seems
more important is that a case has the essential properties for the category:
If those properties are present, a case can be in the category even if it is
highly atypical; if they are not present, a case is likely to be excluded from
the category. For example, object A in figure 2.1 will not be perceived as a
wine glass as it lacks a stem and a foot which are typical for wine glasses,
while object C might easily be perceived as a wine glass – even though it
is not a typical wine glass due to its handle. The importance of a property
depends on our beliefs about what matters for that category [Rei01].

Human categorization is not the arbitrary product of historical accident
or of whim, but rather the result of psychological principles of categorization.
Two basic principles have been proposed [Ros78]:

Cognitive economy: The function of category systems is to provide max-
imum information with the least cognitive effort.

Perceived World Structure: Maximum information with least cognitive
effort is achieved if categories map the perceived world structure as
closely as possible.

These two basic principles have implications both for the level of abstrac-
tion of categories and for the internal structure of categories: Categories
can be seen as having a vertical dimension concerning the inclusiveness of
the category, and a horizontal dimension concerning the segmentation of
categories at the same level of inclusiveness. The implication of the two
principles of categorization for the vertical dimension is that not all possible
levels of categorization are equally useful. The most basic level will be the
most inclusive (abstract) level at which the categories can mirror the struc-
ture of attributes perceived in the world. Thus, the term level of abstraction
within a taxonomy refers to a particular level of inclusiveness. The implica-
tion for the horizontal dimension is that if the distinctiveness of categories
is increased, they tend to become defined in terms of prototypes. Cognitive
economy dictates that categories should be as separate from each other and
as clear-cut as possible [Ros78].

The prototype is the most typical member of a category. Categorical
judgments become a problem if one is concerned with class boundaries. The
basic-level categories are the ones that are the most useful for the given
context. They are usually first created and learned, spreading both upward
and downward as taxonomies increase in depth. The basic level provides
the cornerstone of a taxonomy [Ros78]. For example, in the area of dis-
tributed embedded real-time systems, the concepts of state, cycle, messages,
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and components represent the basic level for reasoning at the system level
[Kop08]. These concepts can be refined for more detailed considerations at
lower levels, or abstracted for considerations at higher levels.

Concepts usually cannot be characterized in isolation; they often have
interrelationships with other concepts. There exists a wide network of be-
liefs in which concepts are embedded. The beliefs describing a category in
relation to various other concepts are referred to as mental models or im-
plicit theories [Rei01, JL04]. For instance, to be able to understand the term
widget, one needs a basic understanding of what a graphical user interface of
a computer is, which in turn requires one to know what a computer is, and
so on. The list of concepts that is needed can be extended almost endlessly.
This is a basic characteristic of nearly all concepts which has consequences
on all semantic descriptions: Most definitions and specifications – especially
on the semantic level – cannot be complete. They almost always require
some background knowledge to be interpreted meaningfully.

Prototypes and exemplars can serve as categorization heuristics, which
allow efficient and usually accurate judgments about category membership.
However, as with all heuristics, such judgments may not be adequate in all
circumstances [Rei01].

2.3.3 Schemata and Concept-Driven Processing

A schema [Bar32] is an integrated chunk of knowledge that organizes related
concepts and integrates past events. A schema allows us to form expecta-
tions and to form inferences. So schemata are important in understanding
the constructive aspects of perception and memory. Schemata shape how
information is retrieved from long-term memory. A schema can be seen as a
set of organized concepts that provides expectations about the world. There
exist conceptually driven processes that guide the reconstruction of infor-
mation from memory. Details may be assimilated or normalized so as to
fit the expectations provided by the schema. Schemata also influence how
information is encoded by establishing expectations that result in the selec-
tion of features that are encoded [Rei01, Kel03]. A kitchen-schema makes
us expect that a stove and a refrigerator are likely to be present, whereas a
bed is not likely to be present.

When reading a text, the concepts and schemata of semantic memory
provide the reader with a personal interpretation. Propositions contributed
from the reader’s long-term memory rather than from the text itself consti-
tute the situation model [Kel03].

Schema theory is sometimes contrasted to mental model theory (see
section 3.2.7). A main reason for criticism is the rather static nature of
schemata, as compared to mental models which support changes more easily.
However, the differences between the two theories are not relevant for this
thesis. The relevant aspect that is supported by both theories is that human
reasoning is characterized by a large amount of concept-driven processing.
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So the knowledge from long-term memory influences how we perceive the
world and how we solve problems. In the literature both terms – schema and
mental model – are used to refer to a mental representation that organizes
knowledge about related concepts.

Once a schema or a mental model is formed, it can replace carefully
considered analysis to increase processing performance. Hence, concept-
driven processing provides automatisms (“short-cuts”) at the conceptual
level.

2.3.4 Abstract Thinking

Thinking means to manipulate mental representations. This definition cov-
ers problem solving, as well as reasoning and decision making [Kel03]. Ab-
stract human thought is possible only because of the conceptual representa-
tions that represent the building blocks of semantic memory.

Human memory can not only represent reality quite accurately, it also
provides the flexibility to distort reality to see the world in different ways.
A meta-representation is a mental representation of another mental repre-
sentation. This allows us to think about other thoughts. Thus, there are
primary representations representing objects in the world which must be as
accurate and literally correct as possible, and adaptive meta-representations
that add a high degree of flexibility and creativity to cognition [Kel03].

2.4 Expertise

Experts are individuals who have learned lots of factual and conceptual
knowledge and have developed the necessary procedural skills to excel in a
specific domain of tasks [Kel03].

2.4.1 Expert/Novice Differences

The basis of expertise seems to be that experts organize their knowledge
around deep principles of a domain that represent key phenomena and their
interrelationships [HSP04]. They can differentiate easily between relevant
and less important information.

As a result of extensive practice, experts are able to retrieve information
from memory more effectively than are novices. They have highly special-
ized retrieval structures to gain access to what they know. These structures
allow experts to anticipate what they need to remember and to encode the
relevant information in a format that ensures later retrieval (elaborative re-
hearsal). An expert’s organization of long-term memory guides the encoding
of information into meaningful chunks [Kel03].

According to schema theory [Bar32, SC94], schema acquisition and au-
tomation are major learning mechanisms. Experts have acquired a large
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number of schemata and can use them very efficiently – irrelevant details
can be ignored and the key phenomena can be focused. Novices do not
have a large repertoire of suitable schemata in long-term memory. So in
essence, schema theory also says that elaborate retrieval and structures and
reasoning strategies account for the differences between experts and novices.

Experts in a domain solve problems in a qualitatively different fashion
from that of novices. Novices engage less in metacognition, i.e., they do
not reflect so much on different strategies to solve a problem and use any
information that is at hand. Experts think through problems carefully before
taking any steps toward solving them [Kel03, MG03]. Novices often rely
on perceptually available, static components of a system, whereas experts
integrate structural, functional and behavioral elements [HSP04].

The differences in problem solving between experts and novices can also
be explained in terms of complex systems concepts, such as emergence char-
acteristics, multiple agents, hierarchical levels, etc. These are, in essence,
the properties found to be difficult to understand (see chapter 3). Experts
use more of these complex systems concepts than do novices, which allows
them to acquire a better and more accurate understanding than novices who
mostly exhibit a quite reductive understanding [Jac01, HSP04].

Novices tend to rely on folk theories, which are naive commonsense ex-
planations of phenomena as opposed to scientific facts.

Complex systems often involve concepts that are in conflict with learn-
ers’ prior experience. Most people prefer explanations that assume central
control, single causality and predictability [RW98, Jac01].

Furthermore, experts use more sophisticated reasoning strategies and
don’t rely on heuristics used by novices. This results in less errors as the
situations where the heuristics are not applicable can be recognized in ad-
vance [Rei01]. For example, the recognition heuristic is often used if the
only information available is whether an option has ever been encountered
before. If this is the case, then we typically choose the known option, and
not an unknown option. Detailed discussions of cognitive heuristics can be
found in [MTG04, Rob04].

The power law of practice says that the reaction time decreases as a
power function of the degree of practice [Log88]. Within their specific do-
main, experts perceive, remember, think, and behave considerably faster
than do novices.

2.4.2 Becoming an Expert

The amount of practice is a critical factor that can lead to excellence. Thus,
we cannot become experts in many different domains, as extensive deliberate
practice of many hours per day is not possible for various domains.

In the literature ten years of persistent deliberate practice is generally
assumed as the minimum time to become an expert. This is called the
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ten-year-rule [Kel03]. This rule implies that expertise is not a short-term
solution to many problems and real experts in a specific domain are usu-
ally rare. Thus, regarding computer systems development, the topic of this
thesis, a large number of non-experts will usually have to do the job. This
does not mean that the developers are complete novices, but they are not
experts according to the explanation above.

2.5 Chapter Summary

Mental representations are the basic internal codes used in our brain. A
chunk is a collection of mental representations that can hold different quan-
tities of information.

Working memory is the system for temporarily storing mental represen-
tations that are relevant to the performance of an active cognitive task. It
contains processing resources and memory. Its limited capacity is a major
cause for limitations of cognitive tasks.

Long-term memory allows the retrieval of information even decades after
it has been stored. Learning involves the creation of retrieval paths so that
the stored information can be found later on. It is especially important
that connections between related knowledge are created, so that a network
of concepts and beliefs is formed. From this perspective, understanding
means seeing connections to related knowledge. We remember best what we
understand best.

Concepts are the general ideas that allow to categorize related chunks of
information. A fuzzy boundary of class membership can be found for many
concepts. There is a family resemblance between the members of a category,
but usually there is no set of defining features. Depending on the context,
an object may be seen as a member of different categories. There may exist
essential properties for a category that must be present for an object so that
it is perceived as a category member. Quite often, categorization heuristics
are used.

Concepts usually cannot be characterized in isolation as there exist net-
works of beliefs around a category which form relations to other categories.
These beliefs are called mental models or schemata.

Categories can be seen at different levels of abstraction, which refers to
a particular level of inclusiveness. The basic-level categories are the ones
that are the most useful for a given context and provide the cornerstones of
a taxonomy. Abstract thinking is supported by meta-representations that
provide the flexibility to see a given concept at different levels of abstraction.

Concept-driven processing is an inherent feature of the human mind. Our
knowledge from long-term memory influences how we perceive the world and
the ways we think. Details may be assimilated or normalized so as to fit the
expectations provided by the schema.
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Expertise in a particular domain can be acquired by extensive practice
over many years. Within their domain, experts perceive, remember and
think considerably faster than do novices. An important difference between
novices and experts is that the extensive knowledge in long-term memory
supports various cognitive tasks: Experts have highly specialized retrieval
structures that support access to their knowledge. This speeds up processing
and ensures that the relevant knowledge can be found. Moreover, experts
organize their knowledge around the core principles of the domain, which
supports the separation of relevant information from irrelevant detail. The
use of appropriate heuristics also plays an important role in expert reasoning,
whereas novices are more prone to rely on folk theories.
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Chapter 3

Cognitive Complexity

This chapter outlines what makes concepts and tasks either simple or com-
plex by reviewing relevant literature from the cognitive and learning sci-
ences. In the literature, quite different views on complexity exist. Some
authors use a task-based view, while others follow a material-based view.
As already outlined in section 1.2.2 a task-based (“problem-based”) view is
needed when making judgments about cognitive complexity, as a system per
se cannot be complex – it is just the tasks that must be performed, that can
exhibit a certain degree of cognitive complexity. The tasks of course follow
from the system characteristics, so the two viewpoints must be integrated
and used in combination.

Human mental performance also depends on individual differences and
other factors, such as age, motivation, as well as social and cultural aspects.
In this dissertation, a focus is put on the material that must be processed
and on the tasks that are performed, discussing human mental processes
in the area of computer system design and understanding. These processes
and characteristics affect all of us to a similar extent. So general principles
for design can be derived, without restriction to a special class of people.

Unfortunately, there is no unified theory about cognitive complexity.
There exist just various factors and characteristics that can be described by
individual psychological theories. It seems that all those aspects must be
taken into account when assessing the cognitive complexity of tasks.

First, section 3.1 describes the most important cognitive characteristics
that affect task performance, thereby discussing cognitive limitations that
cannot be overcome, e.g., by training, and characteristics that are affected
by the level of expertise of an individual. Then, section 3.2 integrates the
cognitive limitations mentioned in section 3.1 with problem (or system) char-
acteristics. Furthermore, theories of cognitive complexity are summarized,
that all suggest that cognitive overload is the main reason for complexity.
Finally, some considerations about assessing and measuring cognitive com-
plexity are presented.
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3.1 Cognitive Characteristics

The characteristics of our brain and our way of thinking influences what
kinds of errors are likely to occur and what kinds of tasks we find either
difficult of simple. In the following subsections the most important factors
that affect us all to a considerable extent are summarized. Factors such as
motivation and attention are very important, too, but they are not consid-
ered in this work as they rather represent topics for learning environment
development. Their detailed consideration would be far beyond the scope
of this thesis.

3.1.1 Limits of Working Memory

Reasoning and problem solving act on the transient contents of working
memory. As discussed in section 2.2.1, the working memory system is a
limited resource system. So these limits also impose limits on our reason-
ing and problem solving capabilities. There exist many examples where
peoples’ failures with complex tasks can be attributed to limited working
memory capacity: Readers of a text have to resolve ambiguities of interpre-
tations. Large working memory capacity has been found typical for good
readers [Kel03]. Similarly, when solving a problem, people often forget or
fail to represent all possible combinations of premises [Kel03, Gil04]. More-
over, making connections among different levels of a complex system places
added demands on working memory, especially for systems characterized by
complex causality, i.e., systems where there are intermediate steps between
cause and effect [PG00].

There exist many theories in psychology and the learning sciences that
relate the degree of complexity of a problem to the amount of working
memory that is needed – see sections 3.2.5, 3.2.6, and 3.2.7.

3.1.2 Biased Thinking and Heuristics

Another important source for reasoning errors are various kinds of biased
thinking, which are typical for humans. We usually try to avoid thinking
in ways that contradict prior knowledge. For example, belief bias refers
to people accepting any and all conclusions that happen to fit with their
network of beliefs [Kel03].

We can differentiate into implicit and explicit reasoning processes. The
former are automatic, associative and pragmatic in nature, and the latter
are slow and sequential, load working memory, and potentially enable us
to reason in an abstract logical manner [EF04]. So it depends on the used
reasoning mechanism whether our thinking is influenced by belief bias or
follows from logic conclusions. If we do not attend to all premises, or if
we do not know all premises, then we are very likely to use more implicit
than explicit reasoning processes. So it is very important to have a solid
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foundation of understanding before drawing conclusions.

The use of heuristics is an inherent characteristic of human reasoning.
Heuristics usually serve as shortcuts to reduce the cognitive processing de-
mands. Without the use of heuristics, many cognitive tasks would not be
possible due to overwhelming resource requirements [MTG04]. Sometimes,
shortcuts are unconscious and implicit procedures, but often they are also
applied deliberately [Rob04]. Heuristics not always yield correct results, but
often they yield satisfactory results very fast.

3.1.3 Probabilistic Reasoning

Especially when we have to perform tasks that involve probabilistic rea-
soning, we are very likely to make errors because we do not pay attention
to relevant information or give undue importance to irrelevant information
[TK74, MTG04].

Good performance with probabilistic reasoning can only be achieved if
the tasks are clearly described in a causal structure and the statistics clearly
map onto that structure [KT07]. In other words, probabilistic reasoning
tasks must be presented in certain ways so that judgment errors can be
avoided. If tasks are presented in an arbitrary form or are embedded in a
setting where lots of task-irrelevant information is available, errors are very
likely.

3.1.4 Oversimplification

Humans show an inclination to construct overly simplistic understandings
and categories. This reductive tendency is an inevitable consequence of the
learning process [FRR04]. When one acquires new knowledge, such as the
creation of a new category, or the forming of an new understanding, the
knowledge is necessarily incomplete. So, at any point in time, a person’s
understanding of anything that’s at all complex, even domain experts’ un-
derstandings, is bound to be simplifying at least in some respects [FRR04].
However, these necessary simplifications may persist even if there is evidence
that they are wrong. If learners are confronted with evidence contrary to
their views, they often perform mental maneuvers to rationalize their faulty
beliefs without fundamentally altering them [FRR04]. So oversimplification
is supported by our tendency towards belief bias.

3.1.5 Dependency on Domain Knowledge

Many studies have shown that domain knowledge is power for reasoning and
problem solving [Kel03]. Knowledge of the essential concepts of a domain
is at the core of high-level cognition. Without that network of basic con-
cepts, understanding is not possible – abstract explanations will fail to be
understood.
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3.1.6 Dependency on Metacognition

Monitoring of cognitive activities is an important issue, especially for com-
plex tasks: Metacognitive skills allow to monitor progress in solving a
problem. Good thinkers are able to evaluate problem-solving efforts and
abandon an unproductive way of representing or searching a problem space
and looking for alternatives. Poor thinkers lack these metacognitive skills
[MG03, Kel03].

3.2 Characteristics of Complex Problems

Various characteristics of complex problems have been identified by authors
from the learning sciences community and by cognitive psychologists. Un-
fortunately, there exist quite different viewpoints, but all of these views seem
to be part of the whole story.

3.2.1 Conceptual Complexity

The characteristics of concepts have a severe influence on how difficult they
are to comprehend. Complexity minimization plays an important role in
human concept learning [CV03]: Concept learning involves the extraction of
a simplified (abstracted) generalization from examples. This means that we
try to find patterns that provide the simplest explanation of available data.
For example, high-level cognition involves finding patterns in information to
extract categories, and to infer causal relations.

There exists evidence that inductive concepts are represented in terms of
the regularities (patterns in the observed examples) that they obey [Fel03].
Maximally complex concepts have no common regularities. The most effi-
cient way to store them is item by item, as exemplars. This view of complex-
ity is closely related to Kolmogorov complexity, which defines complexity of a
string as the length of the string’s shortest description in a given description
language. So complex concepts are incompressible, whereas simple concepts
can be compressed. If the categories covered by a concept differ widely, the
concept is more difficult to learn than if the categories are very similar.

3.2.2 Dimensions of Difficulty

Research in the area of medical education identified characteristics of learn-
ing material that cause cognitive difficulty for learners. The characteristics
have also been confirmed in the area of complex socio-technical systems
[FRR04]. These “dimensions of difficulty” provide a basis for evaluations of
computer systems architectures regarding cognitive complexity. The char-
acteristics are as follows [FCS01, FRR04]:

Static vs. dynamic: Are important aspects captured by a fixed “snap-
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shot”, or are the critical characteristics captured only by the changes
from frame to frame? Are phenomena static and scalar, or do they
possess dynamic characteristics?

Discrete vs. continuous: Do processes proceed in discernible steps, or
are they unbreakable continua? Can we describe attributes by using a
few categories, or must we use continuous dimensions or many different
categorical distinctions?

Separable vs. interactive: Do processes occur independently or with
only weak interaction, or do strong interaction and interdependence
exist?

Sequential vs. simultaneous: Do processes occur one at a time, or do
multiple processes occur at the same time?

Homogeneous vs. heterogeneous: Are components or explanatory
schemes uniform or similar across a system, or are they diverse?

Single vs. multiple representations Do elements in a situation afford
single or just a few interpretations, functional uses, categorizations, or
do they afford many? Do we need multiple representations (such as
multiple perspectives, schemata, analogies, models, or case precedents)
to capture and convey the meaning of a process or situation?

Mechanism vs. organicism: Are effects traceable to simple and direct
causal agents, or are they the product of more system-wide, organic
functions? Can we gain important and accurate understandings by
understanding just parts of the system, or must we understand the
entire system to understand even the parts well?

Linear vs. nonlinear: Are functional relationships linear or nonlinear
(that is, are relationships between input and output variables propor-
tional or nonproportional)? Can a single line of explanation convey
a concept or account for a phenomenon, or does adequate coverage
require multiple overlapping lines of explanation?

Universal vs. conditional: Do guidelines and principles hold in much the
same way (without needing substantial modification) across different
situations, or does their application require considerable context sen-
sitivity?

Regular vs. Irregular: Does a domain exhibit a high degree of regularity
or typicality across cases, or do cases differ considerably even when
they have the same name? Do concepts and phenomena exhibit strong
elements of symmetry and repeatable patterns, or is there a prevalence
of asymmetry and an absence of consistent patterns?

Surface vs. deep: Are important elements for understanding and for guid-
ing action delineated and apparent on the surface of a situation, or are
they more covert, relational, and abstract?

33



3.2 Characteristics of Complex Problems

Research found out that people often deal with complexity through over-
simplification, which leads to misconceptions and errors [FRR04], as de-
scribed in section 3.1.4.

3.2.3 Emergent Views

The concept of levels of description can be used to characterize a system with
lots of interacting parts [WR99]. The higher levels arise from interactions of
objects at lower level. E.g., a traffic jam can be seen as a phenomenon on a
higher level than the single cars that enter and leave the jam. This emergent
view of levels is fundamental to scientific theory. Emergent phenomena
typically can be conceptualized as having two levels, a macro or aggregate
level, and a micro or individual objects level. The macro level is an orderly
pattern that can often (although not necessarily) be perceived; but there
is no mechanism at that level that is directly responsible for that pattern.
Instead, a collection of local interactions among the individual objects allows
the pattern to emerge.

Emergent phenomena are characterized by new properties at the aggre-
gate level that cannot be derived directly from the properties at the micro
level. For example, the properties of a diamond, such as brilliance or hard-
ness, are substantially different from the characteristics of its constituent
atoms.

It has been shown that confusion of levels is the source of many of peo-
ples’ misunderstandings, not only in the study of science, but even in every-
day life [WR99]. Humans have difficulties in understanding processes with
an emergent structure [Chi00]. Robust misconceptions often arise when
people treat emergent phenomena as causal events.

As today there is a great need to develop systemic approaches for design-
ing and understanding the world, a deep understanding of the concept of
levels is crucial for developing such systemic approaches and understanding
the sciences of complexity [NP89], where complex phenomena can arise from
simple components and simple interactions. The ability to shift levels, view-
ing the same object as either singular or plural, depending on the situation,
is a prerequisite for building deep understandings of scientific phenomena.
However, for systems development tasks that shall be as simple as possible,
reasoning about emergent phenomena must be avoided.

3.2.4 Complex Causality

According to some authors, difficulties in understanding scientific or elabo-
rate technical concepts is caused by misunderstanding causal relationships
[PG00]: Most learners have a limited model of causality. Their simple styles
of causal modeling contrast with the esoteric character of scientific models,
which is referred to as complex causality.

Thinking in causal series instead of causal nets is another common prob-
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lem [Rea90]: People have a tendency to think in linear sequences. They are
sensitive to the main effects of a certain cause, but remain unaware of the
side-effects on the rest of the system. So they only see influences within the
narrow sector of their current concern.

The problem of biased thinking and oversimplification is often found
when complex causality is not fully understood: Learners often have little
experience or comfort with epistemic moves [PG00] such as remaining alert
to gaps in causal relations or seeking disconfirmation for theories – moves
that lead to more complex models.

3.2.5 Cognitive Load

Cognitive load theory [SC94] claims that material that is difficult to un-
derstand is characterized by high element interactivity. High interactivity
means that there exist many relevant relations between the elements that
must be integrated, resulting in high working memory load. We are forced
to process elements simultaneously when they interact and cannot be con-
sidered in isolation. Elements may interact either because of the intrinsic
structure of the elements, or because of the manner in which they are pre-
sented. In this view, learning difficulty is not just a function of the number of
elements that must be learned, but also a function of the number of elements
that must be learned simultaneously.

The authors of the cognitive load theory suggest that learning mech-
anisms have the primary function of circumventing our limited working
memory and emphasizing our long-term memory. According to the theory,
schema acquisition and transfer from controlled to automatic processing are
the major learning mechanisms that reduce the burden on working mem-
ory. Extraneous activities that are not directed to concept acquisition and
automation must be minimized. The cognitive load heavily depends on the
knowledge of the learner as chunks of information can be formed more effi-
ciently if underlying concepts are already known. A chunk for one person
may be several dozen elements for another.

The original cognitive load theory is mainly based on schema theory.
However, the view that the presence of irrelevant information can hinder task
performance is also supported by experiments around mental model theory
[Gir04, JL04]. The way information is presented is of great importance for
good comprehension results.

3.2.6 Relational Complexity

Relational complexity is a theory from cognitive psychology that is supported
by a wide variety of empirical data [HWP98, HBMB05, Bir02]. According
to the theory, the processing load of a cognitive task is determined by the
complexity of the relations that must be processed in a given step. The
arity of a relation describes its dimension, i.e., the number of independent

35



3.2 Characteristics of Complex Problems

elements that must be considered simultaneously. For example, BIG(dog) is
a binding between the unary relation BIG and one argument. The relation
can be interpreted as expressing a state or an attribute. Class membership,
e.g., DOG(fido) can also be expressed as a unary relation. A binary relation
such as BIGGER(dog,mouse) relates two components. Univariate functions
and unary operators can be represented at this level. Ternary relations are
needed to represent bivariate functions and concepts such as transitivity or
class inclusion. Formal similarity mappings, independent of content, can
also be made at this level. Greater abstraction is thus related to higher
dimensionality [HWP97]. Quaternary relations are the most complex we
can handle [HBMB05]. At this level four-way comparisons are possible. An
example for a quaternary relation is a matching task of objects according
to four independent attributes, such as color, shape, filling pattern, and
orientation.

Relational complexity theory proposes that the cognitive demand can be
reduced through conceptual chunking and segmentation [HWP98]. Concep-
tual chunking means recoding of a relation to lower dimensionality. For
instance, velocity can be considered as a function of distance and time
(v = s/t), which is a ternary relation. It can, however, also be considered as
a unary relation if it is conceptualized as VELOCITY(50km/h). The chun-
ked variables distance and time become inaccessible with this representation,
i.e., they cannot be considered. Segmentation means to reduce problems of
high dimensionality into a number of tasks of lower dimensionality that can
be solved serially. However, not all relations can be decomposed into simpler
relations and then recomposed into the original relation. Even if relations
are decomposable, people may not have the necessary strategies. This ex-
plains that higher cognitive processes often depend on expertise [HWP97].

3.2.7 Complex Mental Models

Mental model theory [Gir04, JL04] postulates that individuals use the mean-
ing of assertions and general knowledge to construct mental models of the
possibilities under description. Models are mental representations that rep-
resent states of affairs, real or imaginary.

The theory assumes that each mental model represents a possibility. So a
conclusion is necessary if it holds in all the models of the premises, probable
if it holds in most of the equipossible models, and possible if it holds in at
least one model [JL04].

Mental models are iconic, which means that reasoners can draw conclu-
sions that do not correspond to any of the assertions used to construct the
model. This characteristic seems to correspond to the technique of concep-
tual chunking of relational complexity theory.

An important characteristic of mental models is that a reasoning prob-
lem becomes harder with the number of mental models (or model interpre-
tations) [Gir04]. For example, when an interface lacks coherence such that
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a user can develop two or more mental models of the interface, the user is
forced to deal with both possible interpretations [Ree99].

We are also more likely to err by overlooking a model if a high num-
ber of models must be considered for a given task. Similar effects can be
observed when people have to handle inconsistencies: The consistency of
a set of assertions is checked by searching for a single model in which all
the assertions are true [JL04]. So the larger the number of assertions that
is relevant for a given problem, the harder the creation of a mental model
becomes. Consistency of the premises is essential for the simple creation
of mental models. Ambiguity and uncertainty require the construction of
larger models.

3.3 Assessing Cognitive Complexity

As already summarized in section 1.6.4 there exists a wide variety of different
metrics that try to measure the complexity of software systems.

Metrics that deliver some value for a system might be of interest to
project managers to assess the state or effort of a project, but such met-
rics measure something different than the cognitive effort that is actually
required for a specific task. So instead of trying to measure the overall
complexity of some system, it seems to be more reasonable to consider the
complexity of the tasks that must be performed. Even a subsystem that
rates very high on a given complexity scale might support some tasks that
are quite simple.

As the development tasks are the central concern of a system develop-
ment, it is these development tasks that must be subject to the considera-
tions about cognitive complexity.

This section discusses the problem of assessing the cognitive complexity
of computer systems development tasks. First, possible approaches for as-
sessment of well-defined and of design problems are considered. Then, two
different viewpoints where the assessment of complexity is helpful are pre-
sented: the component interface level and the component implementation
level.

3.3.1 Well-Defined Problems

A cognitive process model can be developed for a well-defined problem.
However, this may be hard – especially for problems that draw on existing
knowledge as every individual person has a different knowledge base and
might thus use different cognitive processes. For very isolated problems,
cognitive process models could in theory be developed, but this is still an
open research issue – see section 7.3. Some simple models have been de-
veloped for isolated domains, such as program comprehension (see section
1.6.2), but these models are far too general and leave too many aspects open
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to serve as a basis for analysis of a wide variety of development tasks.

An experimental approach seems to be more promising than a purely
analytic approach. We can compare problems that require specific develop-
ment tasks and then measure the performance of the participants. What is
important here is to avoid comparing apples and oranges. It does not make
sense to compare completely different problems and then come to the con-
clusion that the one is far more difficult than the other. As we are interested
in aspects that make a problem either simple or difficult, we have to vary
the problems just in the given aspect we want to investigate.

3.3.2 Design Problems

As a design problem involves invention and so draws on unknown aspects,
the development of a detailed cognitive process model is not possible. Thus,
a fully analytic approach is not even a theoretic option in this case.

Regarding computer system development, the characteristics of the un-
derlying system influence the design tasks that must be performed. For
example, if a system is implemented according to a given architecture, these
architectural characteristics restrict and guide the design in certain ways.

A design problem can thus be influenced by restricting its freedom. This
means that the design process is guided into a particular direction by pro-
hibiting, or at least by discouraging some possibilities. In this way it should
not just be possible to guide the design of components into directions that
have desired technical characteristics, but also into directions with good
characteristics regarding comprehensibility. These characteristics can pay
off during all phases of the product lifecycle. See section 5.3 for examples of
such characteristics.

Experiments can of course also be performed with design tasks. The
design freedom, i.e., the invention that is necessary, does not restrict the
evaluation of measures such as required time, and fitness of the solution ac-
cording to a given definition. What is problematic with design experiments
is to assess the quality of the design if it is not easily possible to test it
according to a given specification. Thus, experiments that involve design
problems can only be evaluated objectively if a well-defined test criterion
for the fitness of the design exists.

3.3.3 Component Interface Level

The component interface level is the level of abstraction of a component as
seen by the component integrator. Numerous properties have been identified
that contribute to the complexity when having to understand a component
interface. However, the development of accurate complexity metrics is still
in its infancy [HS96, GeA04]. A major drawback of existing metrics is that
they do not consider chunking aspects, even if they are intended to measure
cognitive complexity. For example, the behavior of a function that relates
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three conceptually completely different parameters may be much harder
to understand than a function that uses three parameters that are more
or less the same and that are split into tree parts just as an accidental
characteristic. But even if the complexity of interface comprehension often
cannot be measured in terms of concrete numbers, complexity management
at the component interface is an issue of utmost importance to be able to
use, integrate, and re-use a component. Some important aspects of good
interface design are presented in section 5.3.8.

3.3.4 Component Implementation Level

This is the level of abstraction that is required for the component developer.
At the implementation level the internals of a component must be consid-
ered. Depending on the chosen methodology, either just the component
itself, or also relational aspects to other components can be relevant.

To acquire an understanding of a component we have to consider the
program code and its run-time behavior. The run-time behavior may require
knowledge about the job scheduler, potential resource conflicts, ordering
constraints, communication to other components, timing aspects and the
relations to relevant real-time entities. So the behavior also includes the
relationship between the component and its environment, as usually many
relevant real-time entities are situated outside a component.

The complexity of the implementation or maintenance of program code
alone is not considered in this thesis as this is not specific to embedded
real-time systems architectures, but a general software engineering issue.
However, the influence of different system structures, communication mech-
anisms, and models of time are discussed in detail in chapters 5 and 6.

3.4 Chapter Summary

There exists no unified theory about cognitive complexity. Some authors
follow a problem-based approach, where the complexity is related to a cer-
tain problem (cognitive task). Others have identified system characteristics
that can make a system hard to understand. As the tasks that have to be
performed with a system heavily depend on the characteristics of the sys-
tem, these two approaches do not contradict each other; they only represent
different viewpoints.

The limits of working memory are a major limiting factor of our cognitive
abilities. Many theories relate the complexity of a problem to the amount
of cognitive resources that are required.

Conceptual complexity can be related to the compressibility of the cate-
gories that are covered by the concept: If the categories are incompressible,
the concept is harder to understand than if the categories contain lots of
regularities.
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Another major factor that influences the performance of cognitive tasks
is domain knowledge. The more domain knowledge a person has, the better
is usually the performance of cognitive tasks that are related to the domain.
Cognitive heuristics leading to reasoning errors are used if we have insuffi-
cient domain knowledge. Biased thinking and oversimplification are factors
that mainly depend on prior beliefs.

Various dimensions of difficulty have been identified. The difficult side
of these dimension is can be categorized into a high level of variety, interac-
tivity, simultaneity and dynamics. In addition, emergent phenomena that
require a thinking at different levels of abstraction seem to be especially
hard to understand. Moreover, complex causality, such as causal nets are
another common problem.

Cognitive load theory also says that a high degree of element interac-
tivity is a major reason for complexity. The theory suggests that we can
circumvent our limited working memory by a transfer from controlled to au-
tomatic processing, i.e., the automation of tasks so that the load on working
memory is reduced. The presentation of the material can heavily affect
task performance. Tasks should be reduced to essential aspects for optimal
processing.

Relational complexity theory focuses on the detailed characteristics of
complex tasks. According to the theory, the processing load is determined
by the arity of conceptual relations that must be processed in a single step.
Quaternary relations are the most complex we can handle. Conceptual
chunking means to recode a relation to lower dimensionality. The chunked
relations become inaccessible. Segmentation means to reduce problems of
high dimensionality into a number of tasks of lower dimensionality that can
be solved in a series. The used segmentation and chunking strategies are
influenced by the level of expertise.

Reasoning problems that involve multiple mental models are harder than
problems with just a single model. Moreover, consistency of the premises
is essential for the easy creation of mental models. So deterministic models
are generally easier to understand than those that involve non-determinism.

The development of metrics that can measure how difficult we find it
to understand a computer system, or even just a piece of program code,
is still in its infancy. It is yet unclear if it will ever be possible to develop
effective measures that can predict the cognitive complexity of a wide variety
of tasks. One problem is that cognitive complexity is always related to the
tasks that must be performed, so measuring the cognitive complexity of a
system itself is not possible. Moreover, design tasks are not well-defined by
definition. So the creation of cognitive process models is not possible at all.
What could be possible is to experimentally correlate system characteristics
to the difficulty of a given task. A major problem with this approach is that
every person has a different knowledge base and may use different cognitive
processes, such as different segmentation and chunking strategies.

Even if it is not possible to create exact cognitive process models of
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development tasks, it is possible to create systems that do not have charac-
teristics of which it is known that they account for a high level of complexity
in a wide range of tasks. This is the approach that is followed in this thesis.
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Chapter 4

Real-Time Systems Concepts

This section provides an overview over the technical concepts of embedded
real-time systems, which are relevant for the discussion in the next chapters.

4.1 System Model

This section introduces the basic terminology around real-time computer
system architectures, such as systems and components, state, a definition of
behavior, and composability.

4.1.1 Architectures

A computer system architecture describes the overall design of computer
systems that share a set of common characteristics [KB03]. It provides the
basic concepts for the development of a class of computer systems. Each
computer system is developed according to its own rules and conventions
concerning data representation, protocol choices, error handling, etc. These
conventions are called the architectural style of the system [GIJ+03].

Examples for computer system architectures according to this definition
are, e.g., the DECOS architecture [KOPS04] for integrated systems in high-
criticality domains, and AUTOSAR [HSF+04], which is an architecture for
automotive electronics. Also the well-known personal computers we all use
in our homes and offices, together with the operating system and device
drivers represent computer system architectures according to the definition
used in this work.

This definition of architecture is not constrained to pure hardware, which
is commonly denoted as computer architecture, but also includes software
aspects. In this work, the term architecture is used as an abbreviation for
computer system architecture.
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4.1.2 Systems and Components

In this thesis, a system is defined as a collection of components or subsys-
tems. Depending on the viewpoint, a system may be a subsystem of an even
larger system, or – if considered in isolation – a subsystem may be seen as
a system itself.

With this definition of system, a subsystem is just a part of a larger
system. The terms system and subsystem are more general than the notion
of components, which usually refer to technical subsystems. The notion of
a component refers to a technical subsystem that is used as a building block
for a larger system. This is a very general definition that is not restricted
to a specific level of abstraction.

For the discussion in this work, the larger, whole is always denoted as
system, whereas its constituent parts are called components. As this work
is about computer systems, the term system usually refers to a computer
system. If not indicated otherwise, the system view always comprises the
whole computer system. If a different viewpoint is taken, such as a compo-
nent being discussed as an independent system, this is mentioned explicitly.

Components are used as units of design. They can offer some degree
of self-containedness, e.g., in function or error-containment. For distributed
real-time systems adhering to the federated approach, each node computer is
considered a component [KS03b]. In an integrated architecture a node com-
puter may host more than one component. This definition of component re-
flects its most general meaning in technical systems without being restricted
to pure software components on the one hand, and software-hardware com-
ponents on the other hand. Besides the constructive system design approach
that uses components to build up a larger system, components can also be
seen as the result of a top-down design process, in which a large system
is decomposed into a number of smaller components, e.g., for complexity
management.

As already mentioned, systems and components can be considered at
varying levels of abstraction. System-level components represent the com-
ponents at the level of abstraction that is used by the system integrator. A
system-level component can be built-up from a number of smaller compo-
nents, but this is considered an implementation detail of the component at
the system level.

4.1.3 Application Structure

A software application that is executed by the distributed real-time system
can be structured into a number of jobs. Depending on the architecture
and the programming environment, a job can be simply a function in a pro-
gramming language, such as C [KR78], or an aggregate construct including
middleware. If the jobs of an application are distributed, this is called a
distributed application system (DAS). Examples of DASs in present day au-
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tomotive applications are body electronics, the power-train system, and the
infotainment system.

In this thesis the term component is always used in a generic way. It can
refer to both an application job as well as to a whole DAS.

The communication mechanisms that are used for coordination and in-
formation exchange among collaborating jobs are usually provided by the
computer system architecture. However, they can also be provided by an
additional middleware layer.

4.1.4 Component Behavior

In accordance to the DSoS conceptual model [GIJ+03] component behavior is
defined as traces of activity at (component) interfaces which are sequences of
(perhaps timestamped) send and receive operations of the component. This
definition of behavior represents a viewpoint of the component as seen from
the outside, e.g., by a system integrator.

During component design the internals of the component – such as the
component state – must also be considered, of course. Thus, from this
viewpoint, behavior involves all traces of activity of the component, not
just those at the component interfaces. So a definition of behavior always
requires a given viewpoint and thus a suitable level of abstraction. When
discussing behavior in this work, the component-external viewpoint is used
unless mentioned otherwise.

4.1.5 System State

The state of a system can be defined either in a forward-looking style, or
in a backward-looking style [GIJ+03]: According to the forward-looking
definition, the state of a system at a given instant is a notional attribute
of the system that is sufficient to determine its potential behavior. The
backward-looking definition of the state of a system at a given instant is the
total information explicitly stored by the system up to the given instant.
The second definition is therefore often called stored state 1. The stored
state alone does not determine the potential behavior of a system, it must be
considered together with the system definition. For example, some systems
do not have a stored state, and yet have a well-defined behavior. The abstract
state of a system at a given instant is a notional attribute of the system
that is sufficient to determine its potential behavior. The declared state of a
system at a given instant is the value assigned to a declared data structure
that can be accessed via an interface. The declared state is a representation
of the stored state that is made available at a system interface.

A ground state of a component of a distributed system at a given level
of abstraction is defined as a state where no job is active and where all

1or “internal state”
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communication channels are flushed, i.e., where there are no messages in
transit [AKC90]. Thus, if a component is in a ground state then the state
of a component is contained in its data structures. The concept of a ground
state is important for the re-integration of components after failures, as the
ground state can be used as a reintegration point [Kop97].

4.1.6 Composability

Composability is defined as the ease of forming a whole by combining parts
[KS03b]. In the terminology of the Time-Triggered Architecture [KB03],
the parts to be combined always denote whole node computers comprising
hardware and software. In this dissertation composability is defined slightly
different due to the more general definition of component introduced in
section 4.1.2: Not whole computational nodes are used, but just the system-
level components used by the system integrator.

It is not possible to consider pure software systems with regard to com-
posability, as software alone does not have temporal properties. The tem-
poral properties always require some knowledge about implementation con-
straints so that they can be specified, e.g., by a platform-specific model
(PSM) [OMG01]. For the definition of composability, a component must be
fully specified in the temporal domain. Even with the slightly different def-
inition of components in this work, technical composability can be defined
as [Kop00]:

(1) Independent development of components: This principle is con-
cerned with the design at system level. Components can only be developed
in isolation if the architecture supports the precise specification of all com-
ponent services at the system level.

(2) Stability of prior services: This principle is concerned with the
design at the component level. The validated service of a component must
not be affected by the integration of the component into the system.

(3) Constructive integration of components: This principle is con-
cerned with system-level properties. It must be ensured that the n already
integrated components are not disturbed by the integration of the n+1th

component.

(4) Replica determinism: If fault-tolerance is achieved by replication, a
set of replicated components must provide replica determinism (see section
4.8.5).

4.2 Models of Time

A central characteristic of a real-time system is that either parts of it or
the system as a whole is time critical. Systems usually become time-critical
if they directly interact with the physical world: A computer system that
controls a train must work in a timely fashion so that no dangerous situations
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can occur, e.g., that a train enters an occupied section of a track which might
lead to collisions.

A real-time system is thus an entity that is capable of interacting with its
environment and may be sensitive to the progression of time [GIJ+03]. This
means that the system may react differently to the same input at different
points in time.

Time is also important for a system’s failure to be observable by some
other system. For example, if we do not have a well-specified reaction time
of a system for a given request, we might be waiting for the answer infinitely
and don’t know if the system is still working correctly. If the system has a
well-specified reaction time and does not answer in time, we know that the
system has failed.

The characterization of a system as being non time critical does not
mean that issues like performance are irrelevant, but such systems can be
specified without explicit references to the progression of real time. This
means that such systems can be specified by simpler approaches that are
less constraining in terms of time awareness so that more design freedom is
possible [GIJ+03]. However, not modeling time means that no statements
or assumptions about timing can be made. Time is thus an essential notion
for real-time systems [Kop97, SS99, dAH01].

4.2.1 Dense Time vs. Sparse Time

Real time can be modeled by a directed time-line consisting of an infinite
set of instants [Kop97]. An instant is a cut in the time-line. A real-time
system can use either a dense time-base or a sparse time-base [Kop97]: If
significant events are allowed to occur at any instant of the time-line, this is
called a dense time-base. If the occurrence of significant events is restricted
to active intervals of duration ε, with an interval of silence of duration ∆
between any two active intervals, then the time-base is called sparse 2 – see
figure 4.1. All events that occur within a duration of activity are considered
to happen at the same time.

Only events that are in the sphere of control of the computer system can
be restricted to a sparse time-base, e.g., the sending and receiving of mes-
sages. The events that occur outside the sphere of control of the computer
system, such as depressing the brake pedal in an automobile, cannot be re-
stricted. These external events are based on a dense time-base. However,
the observation of external events can be based on a sparse time-base.

The implications of dense and sparse time-bases in real-time systems are
discussed in detail in section 6.4.

2or ε/∆-sparse
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Figure 4.1: Sparse time-base

4.2.2 Global Time

Some distributed real-time systems synchronize the local clocks of the node
computers in order to establish an approximation of a common global time
[KO87]. In many distributed systems there exists no global time. In these
computer systems every node has its own local clock that establishes a local
time-base for the node.

A sparse global time [Kop92, Kop97] is a global time available to all
components of the computer system that adheres to the principles of a sparse
time-base. In a distributed system, events that happen at the same global
clock tick in different components are considered simultaneous. Events that
happen during different durations of activity and that are separated by the
required interval of silence can be temporally ordered according to their
timestamps.

If a system has a sparse global time-base, the ticks of the global clock can
be seen as a globally synchronized action lattice. Events within the system
can be restricted to the globally available lattice points. So these events are
synchronized perfectly.

In many distributed systems there exists no notion of global time. In
such a system every computational node has its own local oscillator that
establishes a local time-base for this particular node. Sometimes just very
primitive concepts of time exist, such as the definition of timeouts.

4.3 Real-Time Entities and Real-Time Images

When a real-time system is designed, the states of various objects in the
environment of the computer system or in the computer system itself must
be modeled. For this purpose, the notions of real-time entities and real-time
images can be used.

4.3.1 Real-Time Entities

A real-time entity is a state variable that is relevant for a given purpose
[Kop97]. It can be located either in the environment of in the computer
system or within the computer system itself. Examples for real-time entities
are the current speed of a vehicle, or the intended position of a flap of an
airplane. A real-time entity has a number of static attributes, such as a
name, the data type, the value domain and the maximum rate of change.
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The value of a real-time entity at a given point in time is its most important
dynamic attribute.

An observation is the information about the state of a real-time entity at
a particular point in time. An observation is an atomic data structure con-
sisting of the name of the entity, the point in real time when the observation
was made, and the observed value [Kop97].

An observation is called a state observation if the value of the observation
contains the state of the real-time entity. The time of the state observation
refers to the point in time when the real-time entity was sampled [Kop97].
An essential characteristic of a state observation is that every reading is self-
contained because it carries an absolute value. Many control algorithms use
sequences of equidistant state observations which are provided by periodic
(time-triggered) readings.

An event is a state change that happens at a particular instance. If an
observation contains the change in value between the states of the real-time
entity before and after the event, this is called an event observation [Kop97].

If the time of an observation is not known or of too little accuracy, this
is called an untimed observation [Kop97]. In a distributed system without
a global time, a timestamp can only be interpreted within the scope of
the component that has created the timestamp. Often, the arrival time of
a message is taken to be the time of the observation. In some systems,
timestamps do not even exist, e.g., in purely event-triggered systems where
reactions of the system can only be triggered by events. Usually, these events
are queued according to the observed event occurrence at the particular node
computers, but no time differences between subsequent events are measured.

4.3.2 Real-Time Images

A real-time image is a current picture of a real-time entity [Kop97]. It
is valid while it is an accurate representation of the corresponding real-
time entity. It is invalidated by the progression of time. In contrast, an
observation remains valid forever as it is just a statement about a real-time
entity at a particular point in time. Real-time images can be created from
state observations, from event observations, or with a technique called state
estimation, which involves building a model of a real-time entity to compute
the probable state of a real-time entity [Kop97].

4.4 Interfaces

An interface is a boundary between subsystems. The purpose of an inter-
face is information exchange between subsystems. A component interacts
with its environment via interfaces. The environment may be either other
components, or sensors and actuators that are connected to the component.

An interaction is a sequence of message exchanges between connected
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interfaces [GIJ+03]. A protocol is a set of rules that specifies the interactions
between two or more components with connected interfaces [GIJ+03].

4.4.1 Interface Properties

An interface can be characterized by a set of attributes that determine the
types of interaction that are possible across the interface, e.g., the encoding,
the byte-order, the structure, or the meaning of the information. In addition,
the temporal characteristics are of central concern for real-time systems.
These attributes of an interface are called interface properties [GIJ+03]. A
property mismatch is a disagreement among connected interfaces in one or
more of their properties.

A boundary line is a connection between at least two interfaces with
matching properties [GIJ+03]. Matching interfaces can be connected di-
rectly via a boundary line. If there are property mismatches, a connection
system must be introduced: A connection system hast at least two interfaces.
Its purpose is to connect component interfaces with property mismatches,
to coordinate multicast communication, or to introduce emerging services
[GIJ+03].

An interaction via an interface usually involves data flow and/or control
flow. Data flow denotes the data structures that are exchanged during the
interaction, whereas control flow denotes the immediate influence on the
interaction itself that may be exerted by the interacting components. Data
flow across an interface can be unidirectional or bidirectional. Control flow
in an interaction can also be either unidirectional or bidirectional: Unidi-
rectional control flow occurs if the sender creates a control message/signal
to the receiver, but the receiver has no possibility to influence the sender in
this interaction, e.g., to block the sender. Bidirectional control flow takes
place in interactions where the receiver can also exert control on the sender,
e.g., to block the interaction or to slow down the communication.

Flow control is concerned with the control of the speed of information
flow between a sender and a recipient to ensure that the recipient can keep
up with the sender [GIJ+03]. Explicit flow control means that the recipient
sends explicit acknowledgments to the sender after a successful arrival of a
message, which informs the sender that the receiver is ready to accept the
next message. With this control mechanism, the sender is under control of
the receiver as the recipient can exert back pressure on the sender. Implicit
flow control means that the sender and the recipient agree a priori, i.e.,
before the communication is started, on the transmission rate and when
messages are going to be exchanged. No acknowledgments are needed. This
control mechanism requires a common time-base available at the sender and
receiver. Implicit flow control is well-suited for multicast communication,
e.g., publish/subscribe and time-triggered protocols.

Interfaces can be differentiated by the types of interactions that are
allowed [Kop99]:
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Elementary Interface: This is an interface across which only elemen-
tary interactions can occur. In an elementary interaction all messages are
transmitted according to the information push model. This means that
the consumer of a message does not exert control (no back pressure) on its
transmission. As an example, an information producer writes its informa-
tion periodically into shared memory which can be read by all interested
consumers.

Composite Interface: This is an interface across which composite in-
teractions can occur. In a composite interaction at least one message is
transmitted according to the information pull model. This means that the
consumer of a message exerts control (back pressure) on its transmission.
As an example, in a request-response transaction the information consumer
must read a control message to the producer to get the required information.

4.4.2 Interface Types

In the context of embedded real-time systems it is common to distinguish be-
tween four different types of component communication interfaces [KS03b]:

Service Providing Linking Interface (SPLIF): This interface pro-
vides the component services to its users. It is the primary interface
of a component.

Service Requesting Linking Interface (SRLIF): A component may
request services from other components via this interface. A user of the
service providing linking interface may not be aware that a component
requests services from other components.

Configuration Planning Interface (CP): This interface is used to con-
figure a component.

Diagnostic and Management Interface (DM): This interface pro-
vides selective access to the internals of a component for monitoring
and diagnosis purposes.

The service providing and the service requesting interfaces represent real-
time service interfaces of a component. So they are time critical. Moreover,
they represent linking interfaces (LIFs), which are interfaces through which
components are connected to other components within a system [GIJ+03].
Figure 4.2 depicts a system of three components A, B, and C that are con-
nected via LIFs.

A local interface is a component interface that does not represent a
linking interface. The configuration planning and the diagnostic and man-
agement interface are examples for local interfaces. They are usually not
time critical.

The controlled object interface (COI) is another example for a local in-
terface. It connects sensors and actuators to a component. Hence, it is
usually time critical.
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Figure 4.2: A system of three components connected via LIFs (from [KS03b])

4.4.3 Open vs. Closed Components

Based on the relation between a component and its environment, two basic
component types can be distinguished [KS03b]:

Closed Component: A component that interacts with its environment
only via a SPLIF. The output messages that are produced by the
SPLIF are only a function of the SPLIF input messages and the SPLIF
state.

Open Component: A component that has one or more SRLIFs that ac-
cept inputs from the natural environment3. As the natural environ-
ment possesses a boundless number of properties it is difficult to pro-
vide a complete and rigorous specification.

An example for a closed component is a component implementing a
stack providing the well-known functions push and pop. A component that
accepts interrupts from the natural environment is an example for an open
component.

A special case of a closed component is a semi-closed component, which
has, in addition to the LIF input messages a (hidden) clock message, which
represents the beginning of a sparse global time-granule (see section 4.2.2).
So a semi-closed component is time-aware, whereas a closed component is
not time-aware.

A special case of an open component is a semi-open component, which
can exchange data with the natural environment without delegating control
to the environment, e.g., a sampling system.

When closed components are connected to all SRLIFs of an open com-
ponent, this can transitively close the component [KS03b].

4.5 Specifications

In nearly all engineering disciplines there is a need to understand the relevant
properties of a component for a given purpose. Such descriptions are usually

3This does not mean that the component receives the input directly from the natural
environment; the inputs can also be passed on by other components that are connected
to the environment.
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called specifications. A specification describes what a system should do,
rather than how it is achieved [GIJ+03].

4.5.1 Specification of Semantics

Specifications can describe aspects of a system at different levels of ab-
straction. Usually, specifications of technical systems just describe purely
technical aspects, e.g., the data types and the rate of change of a value that
is provided at an interface. However, the semantics are usually not fully
described by specifications, so a specification is – in general – incomplete
with regard to application semantics. This means that lots of information
is either implicit or it is assumed that the reader of the specification has
sufficient knowledge to fill the gaps. The more semantic descriptions there
are in a specification, the less information is left for interpretation by the
reader.

One reason for the semantic incompleteness of specifications is due to the
inherent characteristics of concepts, which usually cannot be fully specified
(see section 2.3.2). For example, “driving at a safe speed” needs a defined
context to be interpreted meaningfully. Even when trying to avoid such
concepts, a designer is likely to rely on other, contextual concepts when
writing a specification.

4.5.2 Varying Degrees of Formalism

There exist various specification techniques, with different degrees of formal-
ism. Formal here means abstract in the sense that mathematical symbolisms
are used. These formalisms, and the way they are handled, may be conceptu-
ally quite different from a less formal specification. Of course, specifications
of semantics can not be as formal as operational specifications of a real-time
service. In general, the level of formalism must be suitable for the purpose of
the specification. If a specification is used for for formal verification, it must
be very abstract and formal. However, for various development tasks, less
formal specifications are more useful, as the information that is required for
the task at hand should be easily accessible and not require the translation
across different levels of abstraction.

4.5.3 Formal Specifications

Formal specifications are very useful for formal verification. A thorough con-
cept formation is an essential prerequisite for any formal analysis or formal
verification [Kop08]. Only if the underlying conceptual model is precisely
specified and understood it can be formalized correctly. However, the cre-
ation of formal specifications from a set of informal requirements is very
difficult and requires a high degree of expertise. Even worse, the formal-
ization must usually also be sufficiently documented to be understandable
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later on [Bar87]. If formalizations are done manually, they may of course
also contain errors. So in the ideal case the formal models can be derived
automatically from implementation models.

Unfortunately, due to the excessive need of computing resources of to-
day’s formal verification techniques the model sizes that can be verified in
reasonable time are very limited. This requires the use of techniques to ei-
ther split the model into parts that can be verified separately, or to generate
abstractions that considerably simplify the model. For this to be possible,
however, it must be ensured that the model that is verified really corre-
sponds to the actual application. So again a deep understanding of the
formal model and the corresponding implementation model are necessary.

Due to the fact that specifications can hardly be complete on the se-
mantic level, we cannot use formal techniques to verify aspects that rely on
the missing semantic aspects. For example, the compatibility of interfaces
regarding their semantics can hardly be assured with strictly formal tech-
niques. On the semantic level we have to rely on the human mind to be able
to fully understand the interface services.

Highly formal specifications are of little use in a design process, or as a
basis for system understanding as they are on a different abstraction level
and usually require considerable transformations from the conceptual world
of the application into the formalism. Moreover, many aspects of a sys-
tem cannot be formally specified, especially concerning the semantic level.
Formal specifications usually can only handle some low-level characteristics.
Furthermore, most formal specifications can only be created and read by
experts with extensive knowledge in the used formalism; or they require at
least substantial training that is not feasible for wide-spread use in general
system development.

4.5.4 Interface Specifications

The most frequently used and most important kind of specifications are
interface specifications. They specify a component from a particular point
of view. If different views (models) of a component are required, different
interfaces can be provided – each for a specific viewpoint.

In the context of embedded real-time systems, it must be possible to
specify a component interface in the value and time domain, with timing
assumptions and timing guarantees [dAH01]. Thus, a LIF is characterized
by data properties, i.e., the structure and semantics of the data crossing the
interface, and by the temporal properties that must be satisfied. Ideally, a
component should be encapsulated so that it maintains its properties (value
and temporal) when it is used in a larger context (see section 4.1.6).

For successful communication across an interface, a consistent specifica-
tion of the interface is required. A LIF specification consists of the opera-
tional specification and the meta-level specification [KS03b]. A rich interface
specification describes all relevant operational and meta-level aspects of an
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interface [BCC+03].

The operational part of the specification describes the syntax, the value,
and the temporal properties of the interface. Such a specification must be
precise and formal. Moreover, it can be formally verified that interfaces of
different subsystems are compatible by ensuring various formally definable
constraints [dAH01].

The meta-level part of the specification assigns a meaning to the informa-
tion that is exchanged via the interface, describing the interface semantics.
As already mentioned in section 4.5.1, such semantic specifications are usu-
ally incomplete. However, besides this limitation, it is also not possible to
provide a rich interface specification without considering the context of use
of the component [KS03a]. For example, it is important to consider the
use context of a temperature sensor in a car to be able to determine which
temperature it delivers – that of the oil or that of the radiator water. This
use context is usually not contained in the interface specification of the tem-
perature sensor itself – it is contextual information of the system that uses
the sensor.

4.5.5 Uses of Specifications

Specifications are important for the creation of new systems and components
as they serve as a reference for development. If each component has a
complete interface specification, this makes its behavior well-defined and
serves as a stable reference for component implementation.

Another important use of specifications is the integration of already ex-
isting components into a system. Only if the behavior of a component is
explicitly described, it can be reused without having to consider its imple-
mentation.

Furthermore, a specification can serve as a reference for testing and error
detection. For example, if a specification says that a message received via
an input port must always be in a certain value range, then it is possible
to check the actual values against this specified value range. If the actual
value is outside the specified range, its sender can be considered erroneous.
Similarly, an interface specification describes all possible values and oper-
ations supported by a component. So test cases can be derived from the
specifications.

4.6 Interaction Styles

Communication is essential for the interplay of the components of a dis-
tributed computer system. Even if a system is not distributed but structured
into components, the components must interact. Many different techniques
of interactions between components and within the components of a system
are used in different computer systems. This section summarizes the most
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relevant interaction and communication mechanisms for embedded real-time
systems. The classification is taken from [GIJ+03].

An interaction may be connection-oriented [CDK94]. This means that
a state is shared between the communication partners, which is modified
by their interactions as a virtual connection is set up. For example, for an
FTP transaction first a connection must be set up, then the files can be
transferred, and finally the connection is closed.

If the individual interactions are independent of each other, this is called
a connectionless interaction [CDK94]. An example for this are messages
based on single datagrams.

4.6.1 Client-Server Interactions

The client-server model is very common in today’s real-time systems. It is
based on request-reply interactions between a client and a server which are
usually one-to-one and synchronous. The interactions can be connection-
oriented or connectionless. In the basic model, clients have a fixed a-priori
knowledge of the identity of servers. The introduction of a naming service
allows more flexibility by determining appropriate servers dynamically.

An example for a standard client-server interaction is the well-known
HTTP protocol, where a client requests webpages from a webserver. Re-
mote procedure calls (RPC) are another example for a client-server inter-
action where the arriving call causes the activation of a remote procedure
at the receiving component. Remote procedure calls can be implemented
to be transparent to the caller. This means that regarding the functional
properties, their invocation does not differ from the invocation of a locally
implemented procedure. Timing properties and possible failures may be
different, though.

The interactions of object-oriented systems can also be considered client-
server interactions, with the caller being the client and the server being the
callee. An object may thus be both – server and client. In distributed object-
oriented systems remote method invocation (RMI) is used to call methods
of objects residing in different components. The difference to RPC is the
late binding of the method call in RMI – the object instance can be created
dynamically, immediately before it’s methods are called [GIJ+03].

4.6.2 Publish/Subscribe

Publish/subscribe means that systems do not communicate directly with
each other, but use a publication mechanism to announce that an event has
occurred. The subscribers of the event are notified when the event has oc-
curred. This interaction style provides decoupling between component sys-
tems [GIJ+03]: Space decoupling, as producers do not need to know who has
subscribed to their events, which allows consumers to remain anonymous;
and time decoupling, as subscribers do not need to be alive at the instant the
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events are produced. Typically, the announcer of an event is not informed
about who receives the event; it does not know the order in which the event
notifications are delivered, and when processing of the events at the sub-
scribers has finished. The publish/subscribe mechanism usually depends on
a middleware infrastructure that is responsible for managing subscriptions
and for propagating events from the producers to the consumers. It is a
purely event-triggered approach.

An example for publish/subscribe interactions are network variables in
the Neuron C programming language [Ech03]. This language extends ANSI
C with network communication functionality. Neuron C is used for smart
transceivers in LONWORKS applications, which is intended for industrial,
building and home automation. A network variable is written by one com-
ponent and read by the other components of the LONWORKS application.
The readers execute appropriate event handling functions every time the
network variable is updated by the writer. Not just pure notifications can
be implemented with this approach, it is also possible to transfer data values
through the network variables.

4.6.3 Data Passing via a Repository

For this interaction style a shared memory is established that can be ac-
cessed by two or more components. The sender writes the data into the
shared space and the reader can decide which data to read at what times
(information pull). To avoid the mutilation of data due to concurrent access,
the repository must ensure atomicity of those actions that might lead to in-
correct data, such as concurrent write or read operations on the same data
items. Data passing via a repository can be used for both time-triggered
and event-triggered interactions.

A well-known example for this interaction style are database systems,
which are usually event-triggered applications. An example for time-
triggered interactions that are based on data passing is the temporal firewall
[KN97]. This is an interface model for hard real-time systems that aims at
the avoidance of control error propagation and temporal coupling via the in-
terface. It provides a strict data sharing interface: The producer periodically
updates the state information in the input firewall ; the consumer periodi-
cally reads the information from the output firewall. The timing properties,
ensuring, e.g., the temporal accuracy of the data, are established a priori –
during system design, that is.

4.7 Interaction Contents

In this section the characteristics of the information that is exchanged in an
interaction are discussed: Interactions can involve implicit information as
well as explicitly passed data items. If data is transferred explicitly, it can
be classified according to its semantics. Furthermore, a data item can be
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either an atomic unit, or it can represent an aggregate data structure.

4.7.1 Implicit vs. Explicit Interaction Content

When two or more components in a computer system interact, the infor-
mation can either be transferred explicitly, or implicitly by using a priori
knowledge. In some interactions, the receiver is just notified that an event
has occurred, no additional data is passed. For example, a timer interrupt
signals a component that a timer has expired. The receiver knows what the
meaning of the notification is, so no message content needs to be transferred.

The implicit interaction content is common knowledge of the sender and
receiver: The receiver must know what the interaction means to be able to
react to it properly. With the publish/subscribe interaction technique, it is
quite common to implement purely implicit interactions.

Most interactions involve explicit information that is passed from a pro-
ducer to one or more consumers. The information is transferred as data
items (payload), which is part of the interaction. For example, an FTP
transaction involves lots of explicit interaction content – the files that are
transferred. Another common example where data is transferred explicitly
are datagrams that are sent from a sender to one or more receivers.

In many interactions, both explicit and implicit content is transferred,
e.g., if an event handler is not just activated, but also additional information
about the event is available.

4.7.2 Atomic vs. Composite Interaction Content

As can be seen in the discussion of the previous sections, there exist various
means of communication between components. The choice of communica-
tion mechanisms is a central aspect of every computer system architecture.
One of these mechanisms that is frequently found in embedded real-time
systems are simple messages. Simple messages are atomic data units, such
as the value of a sensor. In this thesis, simple messages are referred to as
messages for brevity. As the data used in automotive and avionics control
systems usually are atomic sensor and effector data values that are trans-
formed by the components of the computer system [Lea94], simple messages
can be found in most embedded real-time control systems.

Aggregate data structures, such objects or records are not be treated as
atomic units. Depending on the level of abstraction, they either represent an
opaque data structure without any known semantics, or they are treated as
an aggregate chunk with a visible sub-structure. An aggregate data transfer
does not represent a simple message.
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4.7.3 State Information vs. Event Information

Corresponding to the concepts of state and event observations (see section
4.3.1), the semantics of data exchanged in an interaction can also be clas-
sified into state and event information. Of course, such a classification is
just possible with atomic data units. Composite data structures can contain
both state and event information.

Messages that contain event information are called event messages, state
information is transmitted via state messages. Event messages are typically
transmitted whenever a significant event occurs, whereas state messages can
either be transmitted in case an event occurs, but also periodically at a priori
known instants. These instants are common knowledge to the sender and
the receivers [Kop97].

Messages containing event information are usually sent in an event-
triggered fashion. An event-triggered event message combines unidirectional
data flow with bi-directional control flow. Except for time-stamped event
messages, they are not idempotent, so exactly-once processing semantics are
required.

A different approach are periodic state messages, which are characterized
by unidirectional data flow and implicit control flow. Since a state message
contains state information, a new version of the message updates-in-place
the old version of the message. No tight synchronization between sender and
recipient is needed, as the recipient can read the state information never,
once, or many times, because state information is idempotent. Hence, no
queuing or buffering is required.

4.8 Dependability

Dependability is the ability of a system to deliver a service that can justifiably
be trusted. It covers characteristics of a computer system that relate the
quality of a service that the system delivers to its users during an extended
interval of time. There exist different measures of dependability [Lap92]
– reliability, safety, maintainability, availability, and security: Reliability is
the probability that a system will provide the specified service until a given
time. Safety is reliability regarding critical failure modes. Maintainability is
a measure of the time required to repair a system. Availability is a measure
of the fraction of time that the system is ready to provide its specified service,
compared to incorrect service. Security is a characteristic of a system that
prevents unauthorized access to information or services.

4.8.1 Fault - Error - Failure

Computer systems are expected to provide dependable services to their
users. The users may be humans or other (technical) systems. Whenever
the service of a system deviates from the agreed specification, this is called
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a failure of the system [Lap92]. Failures are said to be malign if the failure
costs are orders of magnitude higher than the normal utility of a system. If
the costs of a failure are of the same order of magnitude as the loss of nor-
mal utility of a system, the failures are said to be benign [Kop97]. Examples
of malign failures are airplane crashes due to a failure of the flight-control
system, or automobile accidents due to a failure of a computer-controlled
braking system. If the quality of the braking system just deteriorates but
the car can still be stopped safely, this is a benign failure.

Most computer system failures can be traced to an incorrect internal
state of the computer. Such an unintended state is called an error. The
cause of an error is called a fault [Lap92]. Thus, a fault often leads to an
error, which can become manifest as a failure of the system.

4.8.2 Fault-Tolerance

Fault-tolerance is the provision of the system service in spite of faults. As
parts of computer systems can fail, fault-tolerance is essential in safety-
critical real-time systems as otherwise a single component failure can lead
to a catastrophic system failure.

The developers of safety-critical systems have two options to achieve
fault-tolerance [Kop97]:

Systematic fault-tolerance: This means that the fault-tolerance is
achieved transparently to the application, either by architectural ser-
vices or by a dedicated middleware layer. An architecture must provide
replica determinism so that fault-tolerance can be implemented by the
spatial or temporal replication of computations. The replicated results
can then be used to mask faults.

Application-specific fault-tolerance: Fault-tolerance functionality is
implemented at the application level, within the application code.
The fault-tolerance mechanisms intertwine the normal processing func-
tions.

Making use of systematic fault-tolerance means that the amount of
application-specific fault-tolerance functionality can be minimized, so that
the application code can remain mostly free from fault-tolerance functions.

4.8.3 Error Containment

A fault-tolerant system must provide error-containment regions so that er-
rors that occur in one of these regions can be detected and corrected or
masked before the rest of the system becomes corrupted [Kop97]. Error-
containment regions can be introduced at different levels. A whole node
computer is usually used as an error-containment unit for hardware faults.
In integrated systems where application jobs with different criticality levels
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can run on a single node computer, dedicated smaller units are required for
software faults.

In an integrated architecture, partitioning [Rus99] provides appropriate
hardware and software mechanisms to ensure strong fault containment. To
avoid error propagation by the flow of erroneous data, the error detection
mechanisms must be part of different fault-containment regions than the
message sender. Otherwise the failure could affect the error detection ser-
vice. The set of fault-containment regions that perform error containment
is called an error containment region [Kop03]. An error-containment region
must consist of at least two independent fault-containment regions.

4.8.4 Dependability Attributes of Interactions

In a real-time system, component interactions must fulfill various non-
functional properties. For example, a collision avoidance system in a car
requires not only the immediate recognition of a dangerous situation. The
system also depends on the time it takes for the selected maneuver (e.g.,
an emergency brake request) to propagate to the wheel controllers. Timing
guarantees can be decomposed into latency and jitter [GIJ+03]. Latency is
a fixed amount of time that is required for an action (delay), whereas jitter
is the varying amount of the delay, that may be different each time an action
is executed.

Different computer system architectures vary considerably regarding
their delivery guarantees concerning the non-loss of messages, the order of
delivery, and the amount of latency and jitter that can occur.

4.8.5 Replica Determinism

If fault-tolerance is implemented by the replication of components, replica
determinism becomes an issue. A set of components is replica deterministic
if all members show correspondence of their outputs and/or service state
changes under the assumption that all components start in the same initial
state and execute corresponding service requests within a given time interval
[Pol96].

A point in an algorithm that provides a choice between a set of signif-
icantly different courses of action is called a major decision point [Kop97].
As non-deterministic replicas may follow different courses at a major deci-
sion point due to the differences in the data used for the decision, replica
determinism is a desired property of fault-tolerant real-time systems archi-
tectures. If replica determinism cannot be provided, agreement functions
are needed on the application level to resolve all potential conflicts that can
be introduced by the non-determinism.

Some important causes for replica non-determinism are [Pol96, Kop97]:

Inconsistent inputs: If different input values are presented to components
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then the outputs may differ, too. An example for this is a temperature
sensor reading of an analog sensor that results in slightly different
values in every component due to the inaccuracies of the sensor and the
digitization errors. Not just the value domain is affected, inconsistent
inputs are also a problem in the temporal domain. For example, the
same temperature sensor may be read at slightly different times by the
replicated components.

Dynamic scheduling decisions: If dynamic preemptive scheduling is
used, the points in time where an external event is recognized may
differ at the different replicas. These differences may lead to different
internal states and different behavior of the components.

Non-deterministic program constructs: Replica determinism can be
lost if non-deterministic program constructs, such as the select-
statement in the Ada programming language are used.

Race conditions: Synchronization constructs, such as wait operations of
semaphores can cause non-determinism because of the uncertain out-
come which process will win the race. Moreover, communication pro-
tocols that resolve access conflicts via random number generation,
such as Ethernet, can also cause non-determinism. Similarly, com-
munication protocols that resolve access conflicts by relying on non-
deterministic temporal decisions, such as CAN, can give rise to non-
determinism of replicated components.

4.9 Time- vs. Event-Triggered Paradigm

There exist two major approaches for embedded real-time systems devel-
opment: The time-triggered paradigm and the event-triggered paradigm.
Between this theoretical dichotomy, many real-world systems can be seen
as hybrid systems that contain time-triggered as well as event-triggered as-
pects. For example, the FlexRay [Con05] communication protocol supports
both time-triggered message transfer as well as a dynamic segment that can
be used for event-triggered messages.

4.9.1 Event-Triggered Systems

The event-triggered paradigm is the classic approach used in computer sci-
ence. In a purely event-triggered system all actions of the system are in fact
reactions that are caused by events. These events may be triggered either
by the environment or by the computer system itself. This is the way most
computer systems work.

The communication in event-triggered systems is typically also driven
by events, which means that components only have to communicate if new
information is available.
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The advantage of the event-triggered approach is that both the computa-
tion and communication resources can be utilized very efficiently as they are
just used in case events occur. However, this advantage very much depends
on the characteristics of the application as event-triggered message trans-
fer often causes overhead due to large message headers, acknowledgment
messages and retransmissions in case of failures.

A main drawback of event-triggered systems that is relevant for the con-
siderations in this thesis is that its behavior is not so predictable as that
of a time-triggered system. For example, depending on the events that oc-
cur in the environment, the computations of the system may be triggered
in different order, which leads to different behavior. Furthermore, in high
load scenarios the system may behave differently compared to a normal load
scenario, due to delayed computations, increased communication system la-
tency and jitter, or lost messages due to buffer overflows.

4.9.2 Time-Triggered Systems

The time-triggered model of computation [Kop98, EBK03] was introduced
to develop highly predictable systems with low latency and minimal jitter.
Such systems are used, e.g., for safety-critical applications in the automotive
and avionics domain. With the time-triggered approach, all actions of a
system are triggered by the progression of real time. A sparse global time-
base provides a synchronized system-wide action lattice.

Algorithms using real-time images containing state information are typ-
ical for time-triggered systems. Usually, these real-time images are updated
periodically. If a real-time image can become temporally inaccurate before
it is updated again, this is called a phase-sensitive real-time image. If the
image always is a temporally accurate representation of its corresponding
real-time entity, this is a phase-insensitive real-time image [Kop97]. Phase-
insensitive real-time images can always be used by applications, whereas for
phase-sensitive images the temporal validity must be ensured.

In a time-triggered system a time-triggered communication system is
used for the transport of messages from a sending component to the
receivers. Time-triggered protocols, such as TTP [TTT04], FlexRay
[Con05, RWW07] or Time-Triggered Ethernet [KAGS05] can be used. The
messages are transferred autonomously by the communication system, based
on an a periodic schedule that is generated off-line during the development
of the system. Each component has assigned durations for sending messages
within the period. Broadcast is typically provided to all interested receivers.
The data that is either sent or received is provided in special memory ar-
eas that can be accessed both by the application components and by the
communication system [Kop97].

Due to the a priori defined schedule, the events of state message transmis-
sion depend only on the progression of real time and not on the availability
of new information. Even if no new information is available, the messages
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are sent anyway, containing the same data as the previous message. So un-
like an event-triggered system a time-triggered system always runs with the
same load, regardless of the dynamics of the environment. The advantage of
this approach is that overload scenarios do not occur, the system is highly
deterministic and delivers its service with minimal jitter.

The drawback of the time-triggered approach is its limited flexibility.
However, as discussed in the next chapters, this limited flexibility can also
be seen as an advantage as it makes the system easier to understand.

4.9.3 Two-Level Design Methodology

A two-level design [Nos97, KB03] methodology is typically used for time-
triggered systems. It was introduced to achieve composability and distin-
guishes sharply between system-level design and component design. The
system-level design is typically done by the system integrator4, whereas the
component design is done by a subsystem supplier5. The system-level com-
ponents used by the system integrator are application jobs, or even sets of
jobs in case a whole DAS is implemented by a specific vendor.

The development of a system starts with the system-level design. The
input to this design step is the requirements specification [Nos97]. If a new
system is created from scratch, then in the system-level design phase involves
decomposing the application into system-level components. Moreover, the
linking interfaces between the system-level components must be fully spec-
ified in the time and value domain. For example, it can be specified that a
message must be sent from one component to another component every 5
milliseconds. Based on these specifications and on a global notion of time,
the communication planning can be performed. This means that a global
communication schedule can be established from which the exact data fetch
and delivery instants at all components can be derived.

Existing components can also be reused in the system-level design as
their interface specifications can be integrated. In this case just the calcu-
lation of the fetch and delivery instants must be re-run for the new system.

So, more precisely, the system-level design consists of two sub-phases:
First, there is the interface specification phase, which is mainly manual
design work that has to be done by engineers. Then the verification and
configuration phase follows, in which the communication schedule is gener-
ated and the compatibility of the interfaces can be verified. This second
sub-phase is usually automated except for semantic verification.

The system-level design phase is typically supported by a system-level
design tool [KN95, TTT07b, TTT07d].

The second large step is the component design phase, which involves the
development of the component internals – mainly the application software.

4e.g., an OEM for an automotive system
5e.g., a tier-one supplier
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This step can also be subdivided into two sub-phases: First, the applica-
tion software is developed according to the interface specifications that were
established in the system-level design phase. So the system-level design con-
strains the component design. This first sub-phase involves again manual
design effort that must be done by engineers. If existing application software
is re-used, nothing must be done for this first sub-phase.

Then, in the second sub-phase the necessary middleware layers and op-
erating system configuration can be generated. This is necessary if multiple
system-level components are mapped onto the same computational node
(hardware unit). This second sub-phase is usually also automated with ap-
propriate development tools [KN95, TTT07a, TTT07c]. For this step the
precise data delivery and fetch instants of the global communication sched-
ule are taken into account to generate appropriate node-local configurations,
such as node-local job scheduling tables. Finally, all applications together
with the node-local configurations must be compiled, linked and downloaded
onto the hardware units.

4.10 Chapter Summary

A computer system architecture describes the overall design of computer
systems that share a set of common characteristics, such as data represen-
tation, protocol choices, or fault-tolerance mechanisms.

A computer system can be decomposed into a number of components.
Components represent units of design that can offer some degree of self-
containedness, e.g., in function or error containment. System-level compo-
nents represent the level of abstraction of components that is used by the
system integrator.

An integrated system architecture supports multiple distributed appli-
cation subsystems that can further be decomposed into a number of jobs.
These jobs are the basic units of design and represent system-level compo-
nents.

Component behavior from a component-external view can be defined as
traces of activity at the component interfaces, which are the message send
and receive operations.

Composability is an important architectural principle that ensures that
the effort of component integration is minimal as the properties that were
established at the component level do not change when the component is
integrated.

An interface specification consists of the operational specification, which
covers the syntactic and temporal aspects of the messages exchanged across
the interface, and the meta-level specification which deals with the meaning
of the information contained in the messages. The operational specification
can be used for formal verifications; semantic descriptions can usually not
be verified formally.
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The stored state of a system is the total information stored by a system
up to a given instant. The declared state is a representation of the stored
state that is made available at a system interface.

A ground state of a component of a distributed system is defined as a
state where no job is active and where there are no messages in transit, so
the state of the component is fully contained in its data structures.

There exist different interaction styles of components, with client-server
interactions, publish/subscribe and data passing via a repository being the
most important ones. Data passing via a repository is the only interac-
tion style that avoids control flow via the interface, which enables temporal
decoupling between components.

The availability of a notion of time is essential for real-time systems.
With a dense time-base significant events can occur at any instant of the
time-line. With a sparse time-base the occurrence of significant events is
restricted to certain intervals of activity that are separated by intervals of
silence. All events that occur within an interval of activity are considered
to happen at the same time. In a distributed system with a sparse global
time-base, events that happen at the same global clock tick in different com-
ponents are considered simultaneous. So a sparse global time-base provides
a system-wide action lattice for perfectly synchronous operation. Events
that happen during different intervals of activity can be temporally ordered
according to their timestamps.

Fault-tolerance is an important property for dependable systems as com-
ponent failures must not lead to a system failure. Systematic fault-tolerance
is transparent to the application. Application-specific fault-tolerance is im-
plemented at the application level, within the application functionality.

Replica determinism ensures that replicated components show the same
behavior if they start in the same initial state and execute corresponding
service requests. Replica determinism is essential to achieve fault-tolerance
by the replication of components. If replica determinism cannot be provided,
agreement functions are required to resolve all conflicts that are introduced
by non-determinism.

In an event-triggered system all actions of the system are reactions
caused by events. This control strategy allows to utilize resources very
efficiently and provides a high degree of flexibility.

In a time-triggered system all actions are triggered by the progression of
real time. Time-triggered systems are highly predictable with low latency
and minimal jitter.

A two-level design methodology is typically used for time-triggered sys-
tems. It supports the development of composable components and strictly
separates between system-level design and component design. The system-
level design is created by the system integrator and includes the precise spec-
ification of all component interfaces. Then, the components can be created
independently of each other based on the respective interface specifications.
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Chapter 5

Complexity Management

In this chapter complexity management in the context of embedded real-
time systems is discussed for different tasks and viewpoints, such as the
decomposition of large systems into components, component development
and component integration. In addition, some general techniques that can
be used throughout system development are presented.

5.1 General Considerations

This section gives an introduction to complexity management, defines ac-
cidental and essential system characteristics, and provides a rationale for
design for simplicity.

5.1.1 What is Complexity Management?

As discussed in chapter 3, human cognitive resources are limited. Overloads
must be avoided. Ensuring that we only have to consider a small number
of chunks simultaneously is of utmost importance for tasks such as system
development and maintenance. Tool support can help us with those tasks
where our working memory is likely to be overloaded as too many items must
be dealt with simultaneously. But of course, not all tasks can be automated
and performed by tools. Just well-defined tasks for which algorithms are
known can be done by tools. Considerable parts of system development will
always be design tasks where human understanding is required.

Large computer systems, e.g., integrated architectures for automotive
and aerospace control applications [KOPS04] cannot be considered in all
details as a single unit. For almost any task it is necessary to reduce the
relevant aspects to a manageable level. Each development step must have
a level of complexity that can be handled. If tasks with high cognitive
complexity must be performed, errors are likely to occur.

Model building is an inherent characteristic of the human mind [Hay91,
JL04]. We usually do not see the world as it really is, but create abstractions
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(models) from it. For example, when we use a cooking spoon we do not think
about it in terms of particle physics.

Model building is also an essential activity in the development of a com-
puter system: We have to build models of the system that focus on the
relevant properties for a given task and ignore irrelevant details. A model
can be defined as a deliberate simplification of reality with the objective of ex-
plaining a chosen property of reality that is relevant for a particular purpose
[Kop08]. For example, when we are interested in the physical structure of a
distributed system, we can create a model that corresponds to the physical
building blocks, such as node computers. If we are interested in the logical
structure, we can create a model that corresponds to the functional units,
such as application jobs.

Complexity management techniques aim at keeping the cognitive com-
plexity of various development and maintenance tasks low, e.g., by providing
appropriate models, or by structuring the system in certain ways. A com-
mon goal of many techniques is to reduce the number of aspects that must
be considered for a given task instead of having to handle large parts of the
system at once.

Low coupling between modules and high cohesion inside each module are
commonly accepted characteristics of good software design [YC79, Rie96].
In this chapter it is discussed how this can be achieved in the context of
component-oriented embedded real-time systems – mainly by drawing on
concepts and theories introduced in chapters 2 and 3.

Most of the techniques presented in this chapter do not focus on a specific
task. They rather try to provide good system characteristics to support var-
ious development tasks, such as component implementation, verification, or
integration. The techniques are often used in combination, and the underly-
ing mechanisms are sometimes closely related to each other. So the borders
between the concepts presented in this section are somewhat fuzzy. As a
consequence, the the descriptions are slightly overlapping to avoid too many
cross-references where just a single thought of another section is relevant.

5.1.2 Accidental vs. Essential Characteristics

Computer systems are often unnecessarily hard to understand because of
functionality and characteristics that are introduced during their devel-
opment. These aspects are not inherent to the problem that has to be
solved. Brooks [Bro87] has made an important distinction between two
kinds of “complexity”: Accidental complexity is caused by bad design, e.g.,
by paradigm or interface mismatches, whereas essential complexity is inher-
ent to the problem at hand. In this respect, the design of a comprehensible
system must avoid accidental complexity. To avoid confusion with the termi-
nology of cognitive complexity introduced in section 1.2, the terms accidental
characteristics and essential characteristics of a system are used instead of
accidental and essential complexity.
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An example for an accidental characteristic is the introduction of a con-
nection system (a wrapper) for the only purpose of being able to connect
two interfaces that do not match.

Sometimes it is hard to judge whether a specific characteristic of a system
or component is accidental or essential. A given computer system architec-
ture or design philosophy may have special aspects that are essential for
the architecture, while according to a different design philosophy the same
aspect may be seen as accidental. So it seems that accidental characteristics
can only be defined with respect to a given computer system architecture.

Accidental characteristics often can only be discovered by a sudden in-
sight or by hints from other, usually more experienced people. As long as a
developer does not see a different, more simple solution, in the developer’s
view the system has just essential characteristics.

As explained in section 2.4, experts use more elaborate reasoning strate-
gies than do less experienced people. So computer system architectures
should be created by experts. The actual implementation and development
of systems according to a given architecture can then be done by less expe-
rienced people. The constraints imposed by the architecture must provide
sufficient guidance so that systems with good characteristics can be devel-
oped. Thus, complexity management must be considered at the architectural
level so that comprehensible systems will be created. A computer system ar-
chitecture should not introduce a large number of accidental characteristics
that increase the cognitive effort of the development tasks.

5.1.3 Design for Simplicity

Complexity becomes manifest in increased time needed for a task, and in a
high number of errors that occur while performing the task.

Increased time needed for a task is reason enough to strive for simple
systems and simple tasks so that development and maintenance can be sped
up. Regarding the number of errors and overlooking of aspects, mental over-
loads can result in even more serious problems: For similar tasks, situations
of mental overload occur for most people, or at least for people with a similar
background (similar knowledge base in long-term memory). So these errors
caused by mental overload are especially hard to detect – even with con-
siderable reviewing effort. However, peer reviews are a common technique
to achieve high quality products with a low number of errors, for example
in certification projects of computer systems for automotive or aerospace
applications.

Moreover, if people face difficult tasks, they often misinterpret the com-
plex problem as if they were facing a simpler problem – see section 3.1.4
for a discussion of oversimplification. This is also a serious problem with
peer-reviewed artifacts, as errors may remain undetected if the reviewer uses
an oversimplified mental model of the artifact under review. So design for
simplicity is an important principle for the development of real-time systems
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that must be certified according to the highest criticality level.

5.2 Standardization and Architectures

A usual approach proposed for complexity management is standardization.
But how can standardization help? In this section first the requirements and
then the advantages of standardization for comprehension are discussed.

5.2.1 Requirements

To be able to make use of standardization, a standard must exist, of course.
This standard must be well-known to all involved users so that they all
have the same conceptual model of the standard and how it must be used.
This means that a suitable conceptual description for the development of a
mental model of the standard is available.

A standard that does not offer an in-depth conceptual description is hard
to understand and needs considerable learning effort. Unfortunately, many
industry standards do not offer good conceptual descriptions. They often
just provide detailed technical specifications and ignore the requirement for
high-level conceptual models.

A usual way to specify a standard is to define a computer system ar-
chitecture. Architectures enforce standardized interfaces, communication
mechanisms, system structure, and methodology. Moreover, appropriate
development tools should be available to support the development process.

An important requirement for an architecture is that it restricts the
design considerably. If an architecture allows too much design freedom it
cannot offer sufficient guidance. For example, if very diverse communication
mechanisms are supported, then it is again up to developer to choose the
appropriate one.

The architectural concepts should provide an easy-to-understand basis
for development and not provide too many exceptions to accommodate spe-
cial cases. Otherwise most of the advantages mentioned in the next subsec-
tion are just minimal or not even present at all.

5.2.2 Advantages

Architecting is a consequence of system complexity [Rec91]. An architecture
reduces the effort of the design process as the most fundamental decisions
have already been made. It guides the designers and constrains the possible
design decisions. So the architectural level is where considerations about
complexity must start: A comprehensible computer architecture must be
designed with the characteristics of human cognition in mind.

Of course, to be able to choose a suitable architecture, a system designer
must first consider possible dichotomous architectural alternatives [Chr07].
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In this way, both newcomers and experts can get a clear understanding of
the different options available to make better initial architectural decisions.

A major advantage of a standard in the form of a computer system
architecture is that a set of well-known core concepts can be established.
These concepts can form the basis for system development and can also
serve as basic-level categories as described in section 2.3.2. So with an
architectural approach one does not have to start from scratch to re-invent
the wheel anew.

An architecture that does not explicitly define a network of basic con-
cepts may be quite hard to understand and require considerable learning
effort: The essential basic-level categories must first be identified in an of-
ten overwhelming network of architectural concepts. Unfortunately, this
fact is ignored in many architecture and standard definitions.

Standards and a architectures restrict the design according to given as-
pects. This means that not all possible directions can be implemented so
that the problem domain becomes smaller. The basic design decisions have
already been made so that the system development is guided into a specific
direction.

An architectural development approach with a well-defined methodol-
ogy enables the use of tools that can check the well-defined aspects of the
architecture. For example, architectural models and constraints can be es-
tablished and the design can be checked against these definitions. Moreover,
an architecture enables the establishment of development guidelines and the
provision of design patterns that can guide those aspects of development
that cannot be formally constrained.

If an architecture defines standardized interfaces among the components,
which is quite usual, then a high degree of regularity or similarity can be
achieved among the components. This regularity can in turn support the
re-use of existing knowledge as well as comprehension strategies from one
component to the next.

One of the most important advantages of a standard is that if it is widely
used, there are many experienced experts. These experienced people can
develop new systems more easily than less experienced people. So a re-use
of knowledge from one system to the next is possible.

5.3 Interface Issues

As defined in section 4.4, an interface is a boundary, i.e., a technical border
line, between linked subsystems. The nature and the placement of interfaces
in a computer system decide on the system’s structure and the degree of
coupling between the components. As this coupling is a major factor that
affects comprehension, interfaces are discussed extensively in this section.

First, the relation between mental and technical representations is con-
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sidered, then conceptual chunking and segmentation support by interfaces is
discussed in detail. In addition, component encapsulation is considered from
the technical and conceptual viewpoint. Then, the role of hierarchies, layer-
ing and stable intermediate forms are considered. Finally, the characteristics
of an ideal component interface are described.

5.3.1 Support for Chunking and Segmentation

Interfaces can represent reduced representations (models, abstractions) of
subsystems if they restrict the view of the interfacing subsystems in certain
ways. Furthermore, interfaces technically structure a system into a number
of subsystems. These two technical mechanisms of reduction and partition-
ing are closely related to the psychological concepts of conceptual chunking
and segmentation.

According to relational complexity theory (see section 3.2.6), conceptual
chunking and segmentation are used to handle complex tasks. For the task
of understanding a computer system, conceptual chunking and segmenta-
tion are essential, as a whole system cannot be considered at once. So the
introduction of interfaces can split a large system into subsystems which can
then be better suited for more specific comprehension or development tasks.

If the technical border lines (interfaces) and conceptual structures of
the system match, this can support comprehension. However, as described
in the following subsections, the conceptual structures that are required to
get an understanding of a system, are often not reflected by corresponding
interfaces at the technical level.

5.3.2 Abstraction and Conceptual Chunking

According to relational complexity theory, chunking means to reduce the
dimensionality of the problem space by hiding information that is not needed
for the task at hand. Interfaces support chunking by hiding component-
internal details. So they are the primary means for conceptual chunking
at the technical level, often implicitly, by providing an abstract model of a
component.

According to cognitive load theory (see section 3.2.5), all information
that is not needed for a particular task should be hidden. So ideally, an
interface hides as much information as possible, so that just the information
that is really necessary for a given task is available. According to relational
complexity theory, the dimensionality of the tasks must also be considered.
The dimensionality of a task can be reduced if a component interface does
not have a large number of highly relational properties, but encapsulates
relations as much as possible. For example, a temperature sensor component
may have two or more physical sensors. It can encapsulate this fact by
providing an average value, or by making use of an even more elaborate
algorithm to achieve a sensible temperature value. If, however, values from
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multiple physical sensors are passed on as raw values that require further
processing before they can be used, this introduces additional conceptual
relations into the system.

The elimination of relational component properties is especially impor-
tant at the system level, where relations typically involve more levels of
abstraction than node-local relations. In addition, small-scale relational as-
pects within a component do not impair the understandability at the system
level if they can be fully encapsulated within the component.

So for a given task, an interface can reduce the dimensionality of the task
by encapsulating relational operations within a component, thus providing
a more abstract view of the component. To achieve this reduction, the
interface must be designed with regard to the tasks that must be supported.

If very different tasks must be supported it is likely that the component
must provide separate interfaces to support all tasks optimally. So interfaces
can be used aspect-based. This means we can create different abstractions
of the same system, i.e., we can see the system from different perspectives,
depending on the task that must be performed. E.g., a maintenance engineer
in a garage needs a different view of a brake-by-wire system in a car than
the developers of the system.

The discussion so far has just considered the abstraction provided by
interfaces as a simplification of the components. However, simplification
can also be achieved in the opposite direction: An interface of a component
can serve as an abstraction of its environment. An interface insulates an
artifact from the environment and so it serves as an invariant relation that
is maintained between the component and its environment, independent of
variations over the defined range of parameters [Sim81]. Thus, abstraction
is possible in both directions. The abstraction of the environment for the
component-internal view provides a well-defined model of the environment.
For example, if all relevant real-time entities of the environment are specified
in the time and value domains, this allows to ignore all those aspects of the
environment that are not contained in the interface specification.

5.3.3 Partitioning and Segmentation

Segmentation according to relational complexity theory means to split a
complex task into a number of subtasks which can be performed in a series.
This reduces the arity of the task to keep the cognitive resource requirements
to a manageable level. A related technique is the decomposition of large
computer systems into smaller components. This partitioning also serves to
keep the complexity of design and maintenance tasks low: If just a part of
the system must be considered, e.g., for component development, the rest of
the system can be ignored. So segmentation alone can already considerably
reduce the complexity of various development tasks.

Regarding general system comprehension, segmentation on the system
level means to decompose the large system into smaller conceptual units.
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These conceptual units can be the components (i.e., the technical units) that
build up the system so that the component interfaces represent segmentation
boundaries. So a high degree of conceptual decoupling from the rest of the
system can be achieved. However, this kind of system structure cannot be
found in all component-oriented systems – see section 5.3.7.

In practice, segmentation is used in combination with conceptual chunk-
ing: A component interface mostly not just serves as a pure borderline
between two subsystems. As described in section 5.3.2 it can also provide
an abstraction of at least one of the interfacing subsystems.

5.3.4 The Interface View

Segmentation and chunking is not just used for comprehension tasks at the
system level by splitting up the large system into a number of components.
Segmentation and chunking can also be performed within a component in-
terface: There, it supports comprehension by providing appropriately struc-
tured information and functionality. If the interface is badly structured or
does not exhibit any obvious structure at all, the user first has to find an
appropriate chunking and segmentation strategy, i.e., to split the interface
into parts and identify the ones that are needed for the task at hand. Such
a search for a comprehension strategy of course takes some time and cog-
nitive effort. It involves model building and concept formation about the
interface to identify a meaningful structure. From this perspective, an in-
terface should provide a meaningful concept and not just present a mixture
of unrelated functionality. If the latter is the case, further partitioning or
restructuring at the system level may be necessary.

Chunking of data is frequently found in computer systems to support
higher levels of abstraction. For example, aggregate data structures are
often used to group related data items that belong together. They can be
seen as a single unit at a higher level of abstraction. These abstract data
chunks can then be used for communication between components to raise
the level of abstraction of the communication.

5.3.5 The Interaction View

Segmentation and chunking is also possible for the interactions between
components. Chunking can be found frequently, as it often makes sense to
chunk some low-level details of an interaction into a single high-level inter-
action. For example, transferring data from one component to another may
involve a series of low-level interactions, such as establishing a connection,
transferring the single data bytes, probably performing retransmissions of
lost data, and finally closing the connection. At the application level this
can be handled as a single message passing operation.
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5.3.6 Component Encapsulation

A component interface can encapsulate a component so that the component
internals are neither visible nor accessible from the outside. This principle
of information hiding [Par72] is very well known and often used – most
prominently in object-oriented programming.

The encapsulation an interface provides of a component is usually only
considered from a viewpoint outside of the component. However, as already
mentioned in section 5.3.2, an interface can also serve as an abstraction of
the environment. This purpose of an interface is not known so widely and so
it is also used far more scarcely. For an interface to provide an abstraction
in both directions, it must specify output ports and input ports. So both
directions of interactions are covered by the specification.

If just a service interface as in a client-server interaction is specified,
the interactions that are initiated by the component itself (outbound con-
nections) are usually not covered by the interface specification. Just the
possible inbound connections are covered, as the specification only describes
the potential service requests that can be fulfilled by a component. This
difference has important implications on comprehension. If a component
interface is fully specified in both directions, the following advantages can
be achieved:

Environment Simplification: If the interface encapsulates both inbound
and outbound service requests and data access, the interface serves
as an abstraction of the environment. A component design has to
deal only with those aspects of the environment that pass through the
interface.

Stability: If an interface fully describes all relevant aspects of the environ-
ment, this means that the interface represents a stable view of the en-
vironment that cannot change as long as the interface is not explicitly
changed. So, for system development, the interfaces of a component
represent stable intermediate forms [Sim81] that provide a stable basis
for development.

Explicit Connections: If the interface specification covers all kinds of in-
teractions, this makes all connections explicit, instead of having them
scattered all around the component implementation. Moreover, all
connections between components can be identified easily.

The simplification of the environment is an essential characteristic to
reduce the complexity of component development. For example, if an inter-
face just says that the temperature is either too high, too low, or just right,
this will require less effort during component development, than if the raw
temperature values are passed.

The stability property of a fully specified interface with input and out-
put ports avoids the unintended propagation of changes across the interface.
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A change inside a component rather leads to interface mismatches, which
can be detected. So a change in a single component cannot result in unin-
tended effects in other components. From the viewpoint of the component
developer, also the environment appears more stable by the introduction of
a fully specified interface with input and output ports.

As already explained in section 2.2.3, understanding means to see rele-
vant connections. So getting an understanding of a component involves the
identification of relevant connections to other components. If the interface
specification does not cover all outbound interactions, as for example, in
an object-oriented architecture, this means that the outbound interactions
are scattered all around the component implementation. So these outbound
interactions, such as remote method calls, represent an implicit interface
within the component implementation. This has severe consequences on
the level of abstraction that is required for analyzing a component: As the
outbound interactions are scattered all around the component implemen-
tation, the component implementation level must be used when identifying
the connections 1. If, however, all interactions – including the outbound
ones – are covered by the interface specification, this means that the level
of abstraction can be higher: All connections can be investigated without
having to consider the component implementation. So in general, a fully
specified interface with both input and output ports supports comprehen-
sion at the component interface level, whereas implicit interfaces require
a consideration of the component implementation level. In the latter case
the component interface specification does not offer a sufficient relational
description of the component that is required for comprehension.

Figure 5.1: Implicit vs. explicit interfaces

Figure 5.1 depicts the difference between implicit interfaces and explicit
ports. In the left part of the figure component C1 has two ports x any y that
are described by the interface specification. To implement its service, C1
requires services from the components C2, C3 and C4. As these relations are

1A kludge to overcome this problem is the use of modeling and code analysis tools that
make those implicit connections visible.
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not covered by the interface specification, they represent implicit interfaces
that are scattered all over the implementation of C1. Depending on the kind
of service and the interaction type, either just data flow from the components
C2, C3 and C4 is necessary to C1, or also control flow might be involved. In
the right part of the figure, C1 again needs the services of C2, C3 and C4 to
implement its services available via ports x and y. The interface specification
now covers all interactions of C1, which are implemented via explicit ports.
No implicit interfaces are used and the connections between the components
can be easily identified without having to consider the implementation of
C1. So the component interface level is sufficient to analyze the relations
between C1 and the other components of the system.

5.3.7 Built-In Segmentation and Chunking

As already mentioned above, interfaces can represent segmentation bound-
aries for system comprehension. The extent to which this is possible depends
on the characteristics of the interfaces. Technically, an interface can always
be seen as a border line between a component and its environment. However,
if an interface between two components is not well-defined, e.g., by support-
ing a priori unknown kinds of interactions, or if the border line between the
components is not clear, as for example, in an object-oriented system (see
section 5.4.1), then the conceptual segmentation lines become less clear. At
least, they are not immediately apparent at the surface. A similar problem
is a component interaction that involves hidden mechanisms or relies on
component implementation details that are not contained in the interface
specification. So additional conceptual structures are necessary to be able
to understand the hidden or non-apparent mechanisms that are involved.
Besides the technical structure built into the system by its designers via ex-
plicitly defined interfaces, additional conceptual structures may be required.
This is the case if the structures provided by the interfaces do not match all
those conceptual structures that are necessary to understand the system.

In the ideal case, all interactions of components occur via well-defined,
fully specified interfaces and do not rely on non-apparent mechanisms. So
the technical structures provided by the interfaces can be taken as a good
basis for conceptual chunking and segmentation. This can be seen as built-in
segmentation and chunking.

If the components of the system and conceptual structures that are re-
quired to understand the system do not match, this causes increased cog-
nitive effort as both structures must be considered simultaneously and the
required underlying concepts must be detected. For example, two concep-
tually unrelated kinds of functionality can be closely intertwined in a com-
ponent instead of being separated into dedicated components. In this case
the chunks that are needed for understanding just one kind of functionality
must first be identified. This additional cognitive effort also means that
comprehension errors can be introduced.
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The advantage of explicit chunking and segmentation via component
interfaces is that they represent fixed and explicit structures in the system.
If additional mechanisms that are not apparent at the surface are required,
they tend to be forgotten easily. They just exist in the conceptual world
of the developer. This considerably complicates system understanding as
the hidden structures must first be identified. People who maintain large
systems, where components are considered just once every few months or
even years, know this problem very well.

Built-in segmentation and chunking via interfaces can also reduce mis-
understandings that are caused by different interpretations of the system
structure by different people. Moreover, explicitly available structures sup-
port external cognition [War04], which reduces the working memory load
as the structures are physically available and must not be kept in working
memory while a cognitive task is performed.

See section 5.4.2 for a detailed discussion of how built-in segmentation
can support the conceptual decoupling of components.

5.3.8 The Optimal Component Interface

Concluding from the previous discussion, a component interface should have
the following properties:

Coherence: An interface should provide a meaningful abstraction, i.e., a
semantically coherent mental model, so that it can be handled as a
conceptual unit.

Decoupling: An interface should provide a high degree of conceptual de-
coupling from the rest of the system so that independent development
and verification is possible, without knowledge about any other com-
ponents. So an interface should provide a sufficient conceptual model
(i.e., a mental model) of the component environment. If no sufficient
conceptual model of the environment is available, independent devel-
opment is not possible as knowledge about other components of the
system is required.

Task-Level Inclusiveness: An interface should provide exactly those ser-
vices that are required for the task at hand. This requires to avoid
services not needed for the task, which just add accidental charac-
teristics to the interface. Moreover, the services must be well-suited
for the task at hand. They must neither be too fine-grained, nor too
general as missing the optimal level of abstraction leads to accidental
characteristics elsewhere in the system, for the users of the interface.

Component Simplification: An interface must provide a considerable
simplification of the underlying component. Otherwise the introduc-
tion of the interface is a needless indirection that just makes the task
of system understanding more complex. If the interface just reflects
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the implementation this is an indication of bad design. If no proper-
ties of a component can be abstracted away the system is likely to be
badly structured. In addition, a component interface should encapsu-
late relational aspects if the underlying relation is not needed outside
the component.

Environment Simplification: An interface should provide a simplified
and stable view of the environment to ease component implementation.

Completeness: An interface should be complete with regard to all relevant
relational connections to other components and real-time entities out-
side the component. This means the interface must provide an explicit
description of all interactions of the component. The relations must
be fully described in the time and value domains and also provide a
sufficient semantic description. So implicit interfaces can be avoided
and the interface provides a sufficient description of all possible inter-
actions.

Encapsulation Strength: An interface should not expose any of the com-
ponent internals that are not covered by the interface specification. An
example for a violation of this principle regarding the operational spec-
ification would be an error code that is not defined in the specification.
An example for a violation of this principle regarding the meta-level
specification would be to rely on concepts that are concerned with
the implementation details of the component. Such violations of the
meta-level specification are often especially hard to identify.

Stability: An interface should support temporal composability so that be-
havioral stability is guaranteed. If a component exhibits different be-
havior before and after the integration, this invalidates the conceptual
models that were established at the component level. So additional
models must be developed.

5.4 Seeing Connections

Acquiring a general understanding of a system and its constituent compo-
nents (the big picture) is a frequent task in computer systems development
and maintenance. As described in section 2.2.3, understanding means to see
the relevant connections between related parts. In an embedded computer
system there exist lots of connections between its constituent parts that
are essential for correct understanding, e.g., data dependencies or shared
resources.

A computer system where the relevant dependencies are apparent at the
surface is easier and faster to understand than a computer system where
the dependencies are hard to identify. Minimizing the number of relevant
connections simplifies understanding. In this section it is discussed, how
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system structure can be made explicit and how the number or relevant
connections can be reduced.

5.4.1 Making Connections Explicit

There are endless possibilities of introducing relations between components
that are not immediately apparent. Often, these dependencies are not intro-
duced intentionally, but are rather accidental characteristics of the design.
Such dependencies are sometimes not even recognized by the developers of
the system. For example, it is often not clear whether a change in a piece
of software affects other parts the system. For such systems the well-known
saying “never touch a running system” applies. The connections between
the parts are often not known until a problem occurs.

There are two requirements to make the connections between the parts
of a system explicit:

1. Clear system structure

2. Explicit communication and coordination mechanisms - no hidden in-
teractions

First of all it is important that a system has a clear structure. This
means that for every part of a system it is clear where the part belongs
to. While this condition is easy to fulfill for hardware components, for
software it is often less clear where the parts that build up a system belong
to. For example, when deep inheritance hierarchies are used to program a
component, it is often not immediately obvious where the parts that really
go into the system come from. They may be scattered around various files,
directories, or even development tools. Consequently, when looking at a
particular piece of code or configuration data, it might not be clear if this
piece is actually used, and if it is used, what parts of the system make use
of it.

As already mentioned in section 5.3.7, in the optimal case the concep-
tual structures that are used for the segmentation and chunking process for
system understanding are reflected directly by the system structure2. This
means that the relevant structures that are needed for comprehension can
be easily identified by the person trying to understand a system. So a de-
veloper or maintenance engineer does not have to develop his or her own
chunking and segmentation techniques, but can simply take the components
as chunks.

The second requirement – explicit interaction mechanisms – means that
all communication and interaction between the components of a system must
be implemented through dedicated mechanisms. This prohibits interactions
such as private data access, side-effects in service calls, making use of un-
documented implementation details and similar mechanisms. If resource

2built-in segmentation and chunking
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sharing causes relevant connections, these connections must also be made
explicit or prohibited. A computer systems architecture shall offer a set of
interaction and communication mechanisms so that there is no need for ap-
plications to by-pass those explicit interaction mechanisms. Furthermore, it
must rule out relevant interactions that are caused by resource sharing.

If an interface specification covers all interactions of a component by a
complete description of dedicated input and output ports, this makes all
interactions explicit at the component interface level (see section 5.3.6). So
the cognitive effort can be reduced considerably compared to a system where
the component interface specification does not cover all possible interactions.

5.4.2 Minimizing Connections

To support comprehension, making the connections between related parts
explicit is just one important goal. Another aspect is to reduce the con-
nections between the constituent parts. According to relational complexity
theory, a connection (relation) that has a high arity is always hard to under-
stand. So even if we know that there exists a relation between, for example,
five independent variables, their mutual influence may be hard to compre-
hend.

As already discussed in section 5.1.2, it is hard to ensure that a system
only has essential characteristics. However, as a first development step, a
designer should create a high-level model and then identify required high-
level interrelationships. Probably multiple models must be tried to be able
to minimize the number of dependencies. As this is pure design work, one
can of course never be sure if there exists a better solution. At the level of
a detailed implementation model it is often impossible to decide whether a
dependency is accidental or essential.

For comprehension, just the different conceptual aspects of communica-
tion are relevant, not the rate of message exchange. For example, if one
component of an application regularly sends a single state message to an-
other component this is a very simple interaction, even if the rate of message
exchange is high. However, if there is a high number of conceptually differ-
ent messages, the interaction and thus the relations between the components
require far more comprehension effort.

An important design principle to minimize connections is to keep a pri-
ori unrelated parts as separate from each other as possible. This can be
done, for example, by hiding the existence of one application to a different
application that runs on the same system. If this separation is supported
by by a computer system architecture in the time and value domain, then
no complexity is introduced by the integration of different applications into
a single system.

A major factor for interdependencies between components is control flow.
Control flow usually serves to propagate events and data updates within the
system. If control flow between components can be removed, this reduces
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the degree of coupling. An important design principle in this respect is
temporal decoupling of components. This means that the temporal control of
a component is fully performed by the component itself, no external control
is possible. This includes, for example, explicit control signals, such as
interrupts, and waiting for the occurrence of external events, such as the
arrival of a message. Conditional evaluation of input data is another example
where external control can be exerted on a component.

Conceptual decoupling of components is a design principle that ensures
that reasoning about components is possible with no or just minimal knowl-
edge about other components [RS07]. Conceptual decoupling does not mean
conceptual independence, though. A component necessarily has conceptual
relations to collaborating components. Decoupling just means that the de-
tails of this relation are not necessary for the component-internal viewpoint.
So the knowledge about the component interface is sufficient to be able
to develop the internal details of the component. Of course, this requires
fully specified interfaces in the temporal and value domain, as well as a
sufficient semantic specification. So besides the interface specification of
the component under consideration, no further knowledge about any other
components of the system is necessary, i.e., thinking beyond the interface
of the component is not required [RE06]. This means that the conceptual
relations between the components can be segmented at the interfaces be-
tween the components. So built-in segmentation and chunking (see section
5.3.7) is required for a high degree of conceptual decoupling. Moreover,
conceptual decoupling of a component will usually be improved if temporal
decoupling of the component is provided, as considering timing issues across
an interface increases the conceptual coupling of a component. For example,
if a system allows remote function calls or similar mechanisms, the timing
properties of these functions must also be considered, as well as access con-
flicts with shared resources. All the knowledge that may be required from
other components must be analyzed when reasoning about the behavior of
a component. However, such an analysis may involve a large number of
components to be able to fully understand the temporal properties of the
system. This characteristic might be very familiar to developers of large
object-oriented systems. Control flow analysis in such systems typically in-
volves more than just a single component and is inherently relational. These
relational properties are not only present in object-oriented systems. Similar
characteristics can be found in most event-triggered systems where control
flow across interfaces can occur.

The direct invocation of methods of other objects that is not coordinated
globally may lead to access conflicts, processing or network overloads that
must be considered during system design. This is an issue that has not yet
been solved satisfactorily for object-oriented approaches. So object-oriented
systems are, in general, not composable [Los05].

While a component developer is working on a component with a high de-
gree of conceptual decoupling, e.g., during initial development, all relevant
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aspects of the component are either fully described by the interface specifi-
cation or by those parts of the component implementation that are already
available. The largest chunk that may be required is the component itself.
This considerably supports the analysis of all possible behavior of a compo-
nent as no references to other components must be resolved. For example, if
the component specification just says that a component receives a tempera-
ture sensor reading in the form of an integer value every 10 milliseconds and
that this number represents the temperature of a vessel in degrees Celsius,
this is all required knowledge. However, if the component specification says
that a temperature object of type <temp_object> is sent every 10 millisec-
onds and <temp_object> is not part of the component specification, this
requires reference to the specification of <temp_object>. In this case the
component specification is not self-contained any more. This means that
reasoning about a component requires significant knowledge about other
parts of the system that are not just attributive properties of the compo-
nent under consideration.

So although the object-oriented approach at first glance seems to nat-
urally support the principles of conceptual chunking and segmentation, it
inherently requires thinking beyond the interface as objects are typically in-
terwoven with each other: An object may access various methods and data
properties of other objects, which requires a lot of knowledge about these
objects to be able to understand them. This aspect is often ignored when
discussing the advantages of the object-oriented approach. No clear con-
ceptual separation between objects is usually possible due to the existence
of relational properties. So it seems that object-oriented approaches are
more suitable for intra-component software development where tight inter-
dependencies are less problematic than for the specification of conceptually
decoupled, composable components that shall be developed and verified in-
dependently.

Section 6.2.3 discusses temporal firewalls as an example for an interface
that supports a high degree of conceptual decoupling of components.

5.5 Exploiting Regularity

As already presented in section 3.2.1, regularity is synonymous to concep-
tual simplicity as regularities allow a compressed (simplified, chunked) rep-
resentation of the underlying information. In real-time systems development
there are two different kinds of regularity that can support comprehension:
The structure of the system can exhibit some degree of regularity, as well
as the behavior of the system over time. In this section the implications of
both kinds of regularity are discussed.
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5.5.1 Structural Regularity

Structural regularities, i.e., if the components of a system have a similar or
even equal structure, help a lot when having to comprehend a system as reg-
ularities allow to re-use conceptual knowledge and comprehension strategies
from one component of the system to other components. For example, every
component can have the same diagnosis interface with support for the same
set of operations. So we just have to learn one set of diagnostic operations
and can then apply this knowledge to all components. If every component
has a different diagnosis interface, each of these interfaces must be learned
separately.

Similarities in structure, for example, that every component consists of
just one additional level of sub-components, can be used to simplify the un-
derstanding process as for each component a similar comprehension strategy
can be used to identify the relevant parts and their interconnections. If all
components are completely different, a new strategy must be developed for
each single component, with no re-use between components.

Regularities should be made explicit, e.g., by using the same names for
the same parts in different components. So identifying the same or very
similar structures becomes recognition of already known parts, instead of
learning new structures.

A large system with a regular substructure may be simple to create and
maintain, whereas even a relatively small system with no obvious regularities
is perceived as being far more complicated. As regularity means simplicity,
the number of different component types in a system should be limited.
Nowadays, the development of embedded real-time systems still follows a
very customized ECU3-focused, or at least application-focused approach,
resulting in rather isolated applications either at the ECU or application
level, with little reuse of components (either hardware or software) across
diverse ECUs, applications, and even product families. So very diverse com-
ponent types must be handled.

Architectures and design patterns support the creation of systems with
a regular structure as design concepts can be re-used. A high degree of regu-
larity is a desired property of a comprehensible real-time computer system.
From this perspective, all components of a system should have the same
high-level structure. Low-level differences (e.g., different application jobs)
implement the necessary behavioral differences that justify the creation of
different components.

Architectural fault-tolerance by the exact replication of components is
an example for high structural regularity, making use of completely identical
parts.

3Electronic Control Unit
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5.5.2 Behavioral Regularity

Regularity of behavior means that over time a system shows the same or
at least similar behavior. For example, a component can become activated
every 50 milliseconds, read a number of sensor values, perform some compu-
tations according to these values, and then send a message to an actuator. A
static (cyclically executed) schedule introduces a large amount of behavioral
regularity into a system.

Regularity in behavior helps in a number of different aspects. It reduces
the behavior of a component as the number of possible action sequences is
limited. A component that has no cyclically recurring behavior can have a
different order of its actions every time it is activated, and it can be activated
at arbitrary points in time. For comprehension, this additional variety can
increase the problem space dramatically. If the behavior is regular, the
number of concepts and comprehension strategies needed to understand the
behavior of the system is limited. If there is more variety in behavior, a
larger number of comprehension strategies is needed.

Let’s have a look at an example where a static scheduling table is used:
First, job A is executed, then job B and finally job C. Job C requires input data
from jobs A and B. In this case the schedule ensures that job C always has
up-to-date input data. All other job sequences can be ignored. They would
only have to be considered, if a scheduling strategy with more possible job
sequences was used. Moreover, errors can be tracked to a specific sequence,
so they are easier to reproduce than if the sequence of job executions that
has led to the error was unknown.

If the message patterns that are produced and consumed by a component
are highly regular, these regularities are very helpful to develop a concep-
tual model of the component. We can induce the simplest categories that
are consistent with the observed message pattern. Hence, a simple concep-
tual model can be developed by a highly regular message pattern. This is
especially helpful for diagnosis and monitoring purposes, where no details
about the component internals are known. In addition, a simple concep-
tual model of a component simplifies the use of component services in other
components.

Another advantage of behavioral regularity is that the future behavior
of a component can be predicted. So deterministic models can be used. If a
component does not behave as expected, this is an indication for a failure.

Moreover, the exact prediction of future behavior is helpful if we have
to ensure that a receiver of messages does not get overloaded. It is known
exactly when the sender will submit messages. This knowledge helps to
avoid message queues, timeouts, and similar mechanisms that are required
if the timing of events is not known. Similarly, access conflicts for shared
resources can be avoided so that mutual exclusion constraints do not occur
at the job level.

In a highly regular system, developers are unlikely to overlook an aspect
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that does not occur very often, such as a rarely sent message. Similarly, if
most jobs of a component are activated regularly and not just in rare-event
scenarios, this gives confidence that the system works as expected.

5.6 System Structuring

This section describes how system structure can influence the complexity of
development tasks. First, hierarchies, layering and partitioning are discussed
in general, then job-based system structuring is analyzed.

5.6.1 Hierarchies

Hierarchies play an important role in human thinking. On the one hand,
concepts are usually organized hierarchically, and on the other hand the
world is, in many aspects, organized hierarchically. Hierarchies are also
present in computer systems. Sometimes they are just there because they
cannot be avoided, e.g., a computer consists of a number of electronic com-
ponents. Sometimes, hierarchies are introduced explicitly for the purpose
of structuring a system. It has been recognized in many different areas
that appropriate use of hierarchies can make systems more understandable
[Sim81, Sim95, Res03].

Hierarchal relations can be combined with abstraction so that simplified
views of underlying components can be achieved. Sometimes, hierarchies
just represent an organization between related parts, without any imme-
diate simplification. The latter is used, for example, to create inheritance
hierarchies in object-oriented programming.

The introduction of hierarchies is not always useful. If hierarchies are
just created for technical reasons, e.g., to enable the re-use of program code,
this does not necessarily mean that this improves understandability. The
problem with large hierarchies with many relational aspects is that it takes
considerable effort to understand the relationships.

An example for hierarchies of concepts are inheritance hierarchies in
object-oriented programming [JL04]. There exist multiple different lines of
arguments which claim that the extensive use of hierarchies in the style of
object-oriented programming is highly complex: Nonmonotonic reasoning,
i.e., reasoning where conclusions have to be withdrawn by counterevidence,
is required for understanding object-oriented systems as default values de-
fined in superclasses can be overridden by descendants. This reasoning to
consistency [JL04] can be considered highly complex – see section 3.2.7.
Moreover, object-oriented hierarchies are highly relational structures as de-
pendencies can span multiple levels of abstraction. So the relational com-
plexity of development tasks can be very high. The level of abstraction
usually does not increase with the number of inheritance relationships, just
the number of dependencies. Another problem is that not all problems can
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be structured to result in a useful hierarchy. So the resulting relationships
can sometimes be considered accidental characteristics.

A system should only be structured hierarchically, if relations between
subsystems that are far away from each other in the hierarchy are minimized,
and clusters between related subsystems can be formed. If there are many
relations in a system that involve various different layers of a hierarchy, this
takes considerable effort to understand, as many parts of the system are
involved. The relational complexity of these structures is usually high. To
overcome these problems, a system can be structured horizontally into layers
that hide global hierarchical relationships – see section 5.6.2.

5.6.2 Layering

Layering is a technique where different levels of abstraction are used within
a system. The details of lower levels are hidden from higher levels. Layering
is frequently used for communication systems where high-level interactions
are built on a number of low-level operations so that the low-level details
are hidden from the application. A famous example for layering is the OSI
model [Int84].

An abstraction ladder represents views of different levels of abstraction
on the same object [Hay91]. For example, a cow called Bessie can be seen
as a cow, more abstract as livestock, or even more abstract as a farm asset.
A computer system can also be considered at different levels of abstraction:
Figure 5.2 shows the interrelationship between simplicity and complexity,
depending on the respective position on the abstraction ladder. The figure
depicts the Four Universe Model of a computer [Avi82], which introduces
four levels of abstraction when modeling a computer system: The physi-
cal level is concerned with the analog signals of the circuits. The digital
logic level is concerned with binary logic values, which represents a higher
level of abstraction. The information level combines the binary values into
meaningful data structures, and the external level represents the services of
the computer system as seen from an outside observer. Each abstraction
level allows a reduced view on the lower layer by ignoring irrelevant detail,
which is an important aspect for complexity management. However, within
each abstraction level complexity can emerge, depending on the number of
elements and their interrelationships [Kop08]. So it is important to avoid
wide steps on the abstraction ladder in order to keep complexity at a man-
ageable level. In the ideal case, a modeling task requires just a single level of
abstraction. If modeling tasks require moving up and down the abstraction
ladder, the complexity of the tasks increases. This is a strong argument to
limit the entities that are required for a given development task to a single
level of abstraction. For example, for the task of system integration, the
concept of system-level components can be used (see section 5.7.4).

Layering can be helpful to reduce complexity for two main reasons:

Increase the level of abstraction: Layering can reduce the complexity
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Figure 5.2: Abstraction ladder of the Four Universe Model (from [Kop08])

of tasks as it can increase the level of abstraction of tasks. For exam-
ple, it is much easier for an application programmer to open an FTP
transaction, than to directly access a communication controller that
transfers Ethernet frames. All those low-level details, such as message
encoding, or handling of communication errors, are irrelevant at the
application level.

Hide differences: The introduction of an intermediate layer can hide dif-
ferences between subsystems that would be different otherwise. For
example, if a system consists of a number of similar but not iden-
tical components, or even some legacy components, an intermediate
layer can hide the low-level differences so that all components can be
treated alike. Similarly, device drivers make use of this principle of
hiding different hardware implementations.

The introduction of an additional abstraction layer only makes sense
for one of these two reasons. If a layer is introduced for a different pur-
pose, it is very likely that the layer represents an indirection that impairs
understanding.

If lower level layers are not fully hidden to the users of the higher level
layers, or if there is considerable crosstalk between layers that do not di-
rectly sit upon each other this is also problematic for comprehension, as
the relational aspects within the system are increased. To understand these
relations, multiple steps on the abstraction ladder are required. Similarly,
relational aspects in a system are also increased, if in a layered architecture
the architectural services are not cleanly separated from the applications.
This requires knowledge about the layers and the relationships between the
layers.

Global hierarchical relationships can be hidden with a layered system
structure so that just the immediate relations between layers are relevant.
This helps to reduce relational complexity of development tasks.

5.6.3 Layering vs. Partitioning

Layering (also called horizontal structuring) can be used in combination
with partitioning (vertical structuring). Partitioning alone may result in a
large and flat system structure, so the introduction of layers may be useful.
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However, the introduction of a layer must be considered carefully, so that
conceptually coherent layers are created. Design concepts should not be
scattered across various layers to avoid a large amount of relational aspects
between layers. Pure layering does not result in an optimal system struc-
ture, because the encapsulation of components can be increased considerably
with partitioning – both technically (see section 4.8.3) and conceptually (see
sections 5.3.3, 5.3.6, and 5.3.7).

A good choice for the introduction of a layer in an integrated system is,
for example, the conceptual difference between the application layer (consist-
ing of various jobs of the same application) and the system layer (consisting
of various applications). A good choice for the introduction of a partition
in an integrated system is, for example, the natural border between applica-
tions, as each application is quite independent from other applications. This
avoids a flat structure where different applications are mixed up at the same
level of abstraction. Each application component (job) can also represent a
partition if it is designed to operate nearly independent from the other jobs.

5.6.4 Job-Based Structure

An important level of abstraction for embedded systems modeling is the
application level. Components introduce structure into a system. There
exist two main approaches to structure application functionality into com-
ponents – job-based and object-based structuring. Job-based structuring
means that the application is decomposed into a number of jobs of equal
level of abstraction, usually with standardized interfaces between the jobs
[KOPS04, AUT06]. So at the job level a flat system-level structure is created
(vertical structuring). An object-based (hierarchical) structure is used for
systems that are developed according to an object-oriented design approach,
see section 5.4.2.

An important advantage of a job-based system structure is that there
exists just a single level of abstraction, so climbing up and down the abstrac-
tion ladder – which is typical for object-based structuring (see section 5.6.1)–
is not required. As long as the application itself does not grow too large, this
is the optimal solution. For today’s embedded real-time systems this system
structure seems most appropriate; unrelated functionality is separated into
different DASs, so the resulting applications are not too large.

5.7 Component Integration Issues

In this section system and component characteristics are considered from
the point of view of the system integrator. In the following discussion the
term component refers to system-level component as defined in section 4.1.2.

A goal of any composable architecture must be to keep the complexity
of component integration at the system level to a moderate and manageable
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level. The system integrator shall not have to care about component imple-
mentation details, just assemble components to build up the system. The
difficulty of this task largely depends on the characteristics of the compo-
nents. More precisely, the degree of encapsulation of a component decides
on the amount of knowledge that is needed about each component by the
system integrator.

Moreover, it is explained how the effort of component integration can
be minimized by avoiding design tasks during the component integration
phase.

5.7.1 Attributive, Relational and Emergent Properties

At a given level of abstraction of a system we can differentiate between
attributive properties, relational properties and emergent properties. At-
tributive and relational properties can be accessed directly and are usually
also modeled directly. Emergent properties cannot be accessed directly but
result from the interplay or at least from the existence of components or
subsystems at a lower level of abstraction. So an emergent property repre-
sents a higher level of abstraction – the system level, where the components
are integrated.

As the emergent properties can only be influenced indirectly – via the
properties of the components – they are often hard to understand. A re-
lational property conceptually belongs to the component level, just like an
attributive property, but it only has a meaning with respect to other prop-
erties, i.e., a relation between the related properties must be established to
be able to fully understand the property. The related properties can either
belong to the same component or to other components.

An example for an emergent property is the load of the communication
system of an integrated ensemble of components. An example for an attribu-
tive property is that a device supports a standard communication interface
like USB or IEEE 1394. However, if a data sheet of a device states a serial
RS232 interface, the user needs to adjust several relational properties, such
as baud rate, parity mode, number of stop bits, and type of flow control
between the two communication partners, which increases the complexity
for setting up a working system.

It is important that the emergent properties can be deduced with just
moderate effort from the characteristics of the components. If the inter-
actions of the components result in uncontrolled emergent properties, the
characteristics of the system level are hard to model, or can only be de-
termined by simulation or prototype implementation. An example for an
architecture with just controlled emergent properties is the time-triggered
architecture [KB03].

Ideally, a component should have only minimal relational properties as
this minimizes the relational complexity of tasks involving these attributes.
Depending on the number of entities that are uniquely related to a relational
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attribute, the arity and thus the relational complexity of the tasks increases.

5.7.2 Complexity of Component Integration

The overall essential functionality of a system can be considered constant. It
cannot be removed by a good design. However, system design can influence
the distribution of the functionality and how much accidental characteristics
there are.

Often, there is a trade-off between interface complexity and implemen-
tation complexity, i.e., one can get a simpler interface if one is willing to
pay implementation complexity for it [Ray03]. If a system has a certain
functionality, it can be implemented either on one or on the other side of
the interface. One of the basic questions of good design is where to locate
the functionality. Of course, there is no solution to this question that is
applicable to all kinds of systems.

The approach favored in this thesis is to implement all functionality
within the components and leave no open functionality for the integration
process. In other words, the integration of components should be a well-
defined task, instead of a design task.

From the composability viewpoint, the complexity of component inte-
gration at the system level is an important aspect as it should increase just
moderately when building up a system. When the complexity of component
integration grows quadratically or even exponentially then the integration
process of large systems is likely to fail.

Even when all the components are designed with very easy-to-understand
interfaces, the integration process can be very complex, if the required func-
tionality is not fully implemented within the components, or if the interfaces
between the components do not match: It is thus design work that is left to
be dealt with at the system level – by the system integrator. For example,
wrappers around components may be needed in case of interface mismatches,
or missing functionality might be implemented.

To avoid this propagation of design effort to the system level, the goal
of the system architect should be to implement all functionality within the
components, and provide matching interfaces so that the integration be-
comes a non-issue. This might now seem to be a platitude, however, most
of today’s computer systems are not developed according to this principle.

Another example for complexity of component integration is when un-
intended side-effects occur, e.g., caused by resource conflicts, such as tem-
porary overloads of the communication system. In this case the principle of
composability is not fulfilled. Such problems become apparent due to the in-
tegration of the components, so they are detected at a very late development
stage, or probably even later in the field.

The current crisis of electronics systems development in the automo-
tive industry can be attributed to ignoring complexity during component
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integration: Every single component is easy to understand in isolation, but
the emergent properties of the components are often extremely hard to un-
derstand, especially the timing behavior of event-triggered systems. This
results in a high number of faults that are very hard to detect during sys-
tem development and verification, and even harder when a vehicle fails in
the field. It has happened to the author that a car regularly lost most of its
power when driving on a motorway with a specific speed at temperatures
around 5 degrees Celsius. Stopping and then restarting the engine helped
to re-gain normal power. The reason for the error could not be found. Just
with a software update months later that – according to the car manufac-
turer – had no specific fix for this particular problem, the error went away.
It seems likely that some timing aspects that changed due to the update,
had caused the problem.

5.7.3 Traditional Approaches

A typical approach to system design and integration is to deal with emergent
properties, property mismatches or missing functionality at the system level
by creating wrappers around the subsystems [Swa98]. Such an approach
can be well-suited for the creation of systems mainly from legacy compo-
nents, but it is fundamentally different from the concept of self-contained
system-level components that is introduced in section 5.7.4: It does not
avoid complexity at the system level, but tries to deal with various design
problems at the system level, as part of the integration process.

Furthermore, temporal properties of components are usually changed
due to the additional indirection of a wrapper. So the temporal properties
that are established for the components are of no use at the system level.
Hence, temporal composability of the components is not supported.

Moreover, a wrapper-based development approach does not result in a
detailed architecture that can be used as a framework to easily implement a
system from scratch: Too many aspects of system development are left unde-
fined. No detailed framework is available that can provide a good guidance
for the developers.

Another approach to complexity management is to use hierarchically
structured software modules [PYJ04]. This solution has the disadvantage
that most real-world systems can not use centralized control: Modeling a
system with centralized control means to introduce dependencies where no
such dependencies would be needed. Moreover, such an architecture does
also not support temporal composability.

These traditional approaches make the integration process quite complex
as lots of complexity caused by emergent properties, property mismatches,
or missing functionality of the components must be handled by the system
integrator.
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5.7.4 Self-Contained System-Level Components

To be able to reduce the complexity of the integration process the concept of
self-contained system-level components has been developed [Rum06]. Such
components are self-contained so that they can be developed and verified
in isolation and the integration is just minimal effort. Self-contained here
means that no functionality is left to be implemented at the system level.
This does not mean that the components have to be closed components,
though. It must only be ensured that the SRLIFs of all components are
connected to the respective SPLIFs of other components.

Such an approach is only possible if a strict two-level design approach as
described in section 4.9.3 is used, and if the computer system architecture
supports composability. So the components have matching interfaces and
the properties that have been established at the component level also hold
after the components are integrated.

Self-contained system-level components encapsulate all the functional-
ity of the applications and avoid the propagation of (potentially complex)
design tasks to the system level. The matching interfaces ensure that the
component interfaces are clean boundary lines, without being blown up by
connection systems. The additional indirection of the connection system
usually leads to more comprehension effort regarding the interactions of
components.

With a system-level component based approach, all components that
must be used by the system integrator are on the same conceptual level,
which reduces the cognitive load of the integration process. Of course, this
is only possible if the component interfaces are fully specified and if no
implicit interfaces are used.

Moreover, the distributed approach based on system-level components
has an important advantage regarding fault-tolerance: The single points
of failure that are introduced by hierarchic or centralized approaches as
described in section 5.7.3 can be avoided.

5.7.5 System-Level Services

The system level is the aggregate level where the emergent services of the
system-level components are realized. The system-level services that are re-
quired to integrate the components can be provided by the architecture, e.g.,
the communication service and clock synchronization. No controlled object
interfaces are involved when just the LIFs of the system-level components
are connected.

Such an architecture enables a separation of concerns: The system-level
services, which are required for the integration, are provided by the archi-
tecture, the applications are only concerned with application functionality.
The provision of the controlled object interface is the responsibility of the
application.
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5.7.6 Integration Levels

There exist two major approaches for the integration of components into
a distributed real-time system. With a two-level approach as described in
section 4.9.3, the integration of a component is always done in a single
step, whereas in a layered architecture it is possible to integrate every layer
separately, starting from the lowest layers and then moving upward to the
higher layers.

The advantage of a pure two-level approach that strictly separates into
system-level and component-level issues is that the integration is more or less
a non-issue as the components all are designed to have matching interfaces
and no open functionality or interface mismatches are left for the integration
phase. All components that are used by the system integrator are at the
same level of abstraction (system-level components), and all relevant aspects
for the integration of the components have been fixed during the system
design phase. The only task to be done is to verify the correct operation of
the system, i.e., a system test.

In a layered architecture that does not follow a strict separation of
system-level and component-level development, the aspects that are rele-
vant for the integration are not fully specified during system-level design, as
there are, by definition, more than two levels. So for each level a separate
integration step can be done. This is how most of today’s layered systems
are integrated.

Table 5.1 shows an overview over the possible combinations of layered
and single-level architectures with either an architecture that supports com-
posability or with an architecture that does not support composability.
Single-step means that all components can be integrated in a single step,
whereas stepwise means that each component requires a separate integration
step.

layered two-level approach

composability layer-wise single-step
no composability layer-wise / stepwise stepwise

Table 5.1: Overview of integration approaches

It is possible to combine a two-level approach with a layered architec-
ture: If architectural services, such as fault-tolerant communication, are im-
plemented in layers (transparent to the application components), this means
that the system conceptually remains a two-level system regarding the in-
tegration process of the application. In this case the architectural layers
should be generated automatically by the development tools. Similarly, a
component can internally be structured to use layers (horizontal interfaces)
and just present vertical interfaces to the system integrator. This also results
in a single-step integration at the system level. If, however, such a compo-
nent does not exhibit strong encapsulation regarding its internal structure
during the integration process, e.g., by requiring additional configuration for
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each layer, then the integration cannot be done in a single step.

5.8 Determinism

Determinism can be defined as follows: The world is deterministic if and only
if, given a specified way things are at time t, the way things go thereafter is
fixed as a matter of natural law [Hoe04]. Determinism is an essential factor
that affects the comprehensibility of a system. In the area of embedded
systems, a component (or model) is said to behave deterministically if, given
the initial state t0 and a sequence of future timed inputs, the outputs at any
future instant t are entailed [Kop08].

5.8.1 Logical Reasoning

The identification of abstraction levels and the development of corresponding
deterministic models, where the indeterminism of the world at the lower
levels does have only a negligible effect, are at the root of scientific discovery
and engineering practice [Kop08].

Deterministic models enable the exact prediction of future behavior,
whereas non-deterministic models do not allow an exact prediction. Non-
deterministic models require probabilistic reasoning, i.e., reasoning under
uncertainty. As described in section 3.1.3 our minds are ill-equipped re-
garding probabilistic reasoning. So we should try to avoid the necessity for
probabilistic reasoning in technical systems wherever possible. Furthermore,
non-determinism requires a larger amount of mental models to describe the
behavior of a system, which also accounts for increased complexity – see sec-
tion 3.2.7. In other words, reasoning about non-deterministic systems is far
more likely to lead to judgment errors than reasoning about deterministic
systems.

Deterministic systems support the rational analysis of behavior, since
determinism is a sufficient precondition for logical reasoning [Kop08]. When
we reason about deterministic models, we can perform deductive tasks in
which we perform very well, such as modus ponens 4. Furthermore, it is easier
abstract from deterministic models, as they exhibit less behavioral variety,
which allows a more compressed representation. It is also more difficult to
validate a non-deterministic system, since repeated test cases do not neces-
sarily produce identical results [Kop08]. So it is hard, or sometimes even
impossible to reproduce errors. Thus, the correctness of non-deterministic
aspects is often left to be verified by different means, which usually involves
human reasoning.

Non-determinism can be hidden within a system as a design error. For
example, a programmer may not be aware that certain program constructs,

4The performance of other kinds of tasks, such as modus tollens is usually worse, but
these kinds of tasks can be avoided and are usually not used very often.
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such as the select statement in the Ada programming language [Int95]
behave non-deterministically. These errors are often very hard to detect as
they just become visible in certain (probably rare) scenarios, which might
not be covered by tests. Thus, non-deterministic program constructs should
always be avoided.

5.8.2 Consistency

In technical systems, determinism is often just present at certain levels
of abstraction [Kop08]: The basic building block of computer systems,
synchronous digital logic, is deterministic at the logic level. The non-
determinism of the lower levels, such as voltage fluctuations at the phys-
ical level, that do not have an influence at the logic level, can be neglected.
However, the determinism of the logic level is often sacrificed by the pres-
sure to build high-performance processors, e.g., by implementing caching,
pipelining and similar techniques. But also at the application level, non-
determinism can arise due to inconsistencies of distributed data and due to
improper handling of simultaneous events.

In order to achieve consistency in a distributed system, the proper han-
dling of simultaneous events is very important [Kop08]: Mutual exclusion
and the consistent ordering of messages are problems that are related to
handling simultaneity. Whenever two events are perceived to have occurred
simultaneously by a component of a distributed system, an additional rule
must be put into effect to establish a uniform processing order of the si-
multaneous events. This additional rule must be applied consistently by all
components of the distributed systems [Kop08].

Due to the denseness property of real time it is in theory impossible
to ensure a system-wide consistent notion of simultaneity [Kop97, Kop08].
The sparse time model, which is discussed in detail in section 6.4, solves
this problem by restricting the occurrence of relevant events that are in the
sphere of control of the computer system. For events that are not in the
sphere of control of the computer system, consensus or agreement algorithms
[BDM93] must be used to re-establish consistency of distributed information.

5.9 Reducing the Problem Space

A reduction of the problem space is a widely accepted technique (e.g., sug-
gested by cognitive load and mental model theories) to reduce the complexity
of a task. In this section some generally applicable techniques are described.

5.9.1 Removing Irrelevant Information

The difficulty of reasoning tasks can be influenced severely by the presence of
irrelevant information. If irrelevant information is processed, reasoning tasks
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are more difficult than if no irrelevant information is present – see section
3.2.5. So not just the inherent characteristics of the underlying problem are
relevant. It is also the way and the amount of information that is available,
which influences the task performance. So often just skipping optional items
in a design can help to increase understandability.

Abstraction is another important technique to reduce the amount of
information. It is important to consider a system at the optimal level of
abstraction. The optimal level depends on the task that must be performed.
The term level of abstraction refers to a particular level of inclusiveness –
the most useful level is the most abstract level at which the categories can
mirror the structure of the problem domain [Ros78].

Interfaces should just present information that is required for a particular
task. If very diverse tasks must be supported, the introduction of different
interfaces is the only possibility to keep the amount of irrelevant information
low. If the provision of different interfaces for different tasks cannot be
implemented on the component side, it is possible to provide different views
of a component with development tools.

5.9.2 Using Categories

Categorization is a very important aspect of understanding – see section
2.3. A system that makes good use of categories provides a good basis for
comprehension.

Categorization of system or environment properties can reduce the prob-
lem space considerably. For example, if the environment can be modeled
with just a few categories, this provides a more reduced view on the en-
vironment than if continuous dimensions must be used, or if many differ-
ent categorical distinctions are required. Similarly, if the externally visible
system state can be mapped to just a few categories, such as startup,
operational, shutdown and error, the system state can be determined
easier than if various detailed properties of the system must be analyzed.
So categories can be used as a means for abstraction. They group related
information into a single category and remove irrelevant diversity.

Another important use of categorizations is that similarities between
parts of a system can be made explicit. For example, if two components use
the same data type vessel_temperature we know that they both make use
of the same semantics, such as a restriction to a particular range and rate
of change5. If just a general integer type was used, these similarities would
not be visible immediately, and the problem space for a developer would
be larger until the similarities are discovered. Moreover, if similarities are
directly reflected by the system this supports external cognition.

If different levels of abstraction must be used, a suitable framework of

5If the effort of specifying separate types is not feasible, or would result in a very large
number of different types, at least the same names should be used for the same things.
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categories has to be established for each level. Using categories at the wrong
level of abstraction usually causes complexity, as a frequent switching of
abstraction levels requires cognitive effort. So at each level, a consistent set
of categories must be used.

5.9.3 Minimizing the Number of Model Interpretations

If there are many possible interpretations of a model, tasks are generally
harder to perform than if there are less, or if there exists just a single inter-
pretation – see section 3.2.7. The mental model theory says that problems
are more difficult if they require reasoners to construct more mental mod-
els, due to the limited processing capacity of working memory. This is a
very strong argument to reduce the number of possible mental models of a
system. In general, this means to reduce a system just to essential char-
acteristics, and to remove ambiguities and non-determinism – see section
5.8. So a highly deterministic, minimal system will be easier to understand
than a system that exhibits a high degree of variation and non-determinism,
which results in a large number of possible model interpretations.

For the development of real-time systems this means that predictability
and behavioral regularity (section 5.5.2) are essential for creating systems
with a low number of possible mental models. Whenever unpredictability
and behavioral variety must be dealt with, this results in a high number of
possible mental models of a system. At the application level, unpredictabil-
ity is introduced, for example, by potential communication and component
failures, a high degree of communication jitter, and non-deterministic ob-
servations of the times of event occurrences by different components.

Counting the possible states of a computer system can be done with
model checking [CGP99]. However, model checking is not suitable to de-
termine the cognitive complexity of tasks. One reason for this is that the
number of states alone does not give a clear indication whether a system
has good characteristics regarding comprehension, or not. A low number of
overall states is a desirable property, but depending on the task that must
be performed, just a limited number of states may be relevant. Issues that
are relevant for understanding, such as chunking or segmentation, or pro-
viding different views of a component, cannot be modeled with the model
checking tools that are available today. Furthermore, the number of states
of the model may not correspond to the number of relevant states of a real-
world computer system. For example, if the progression of time is modeled
with a numeric counter in a computer system, this results in a very high
number of states: Transitions between states that are effectively the same
are counted multiple times if they span multiple time granules. Appropri-
ate model checking techniques that do not have these drawbacks will have
to be developed so that counting model states can be used as a cognitive
complexity metric. However, it is yet unclear if it will ever be possible to
create the required cognitive process models – see section 7.3.
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5.10 Failure Handling

Appropriate handling of failures is an important aspect in the development
of reliable embedded systems. In this section it is discussed how the handling
of failures can influence the complexity of development tasks.

5.10.1 Stability of Models

The development of mental models of a system is inherent to system design.
A deviation between the intended and the actual behavior of an artifact (a
failure), leads to an upset of the model if the failure scenario is not part
of the model, i.e., if only the fault-free system is modeled. To be able to
understand the behavior of a system in case of a failure, a new model must
be developed. As the development of new models means increased cognitive
effort, we should aim at restricting the effects of a failure to a small scale,
i.e., to contain the errors so that large parts of the system remain unaffected
by the failure. It must be ensured that the abstractions and models that are
developed for understanding the system are stable even in case of failures
[Kop08]. This means that the system must be partitioned into independent
fault containment regions to avoid error propagation to other parts of the
system that are not directly affected by the fault.

The analysis of failures is simplified considerably if the effects of a failure
are restricted to a small part of the system. If the whole system can be
influenced by the propagation of errors then the identification of the initial
cause becomes like finding a needle in a haystack.

5.10.2 Separation of Concerns

In a fault-free system no failure handling must be considered. This is the
ideal case regarding system understandability as the system model can be
much smaller and simpler than if various failure scenarios must be included.
Unfortunately, completely fault-free systems cannot be achieved. However,
it is possible to provide architectural fault-tolerance that can mask a large
number of faults so that at the application level certain classes of failures
can be ignored. So the models at the application level can be simplified
considerably. In addition, this separation of concerns leads to more coherent
application models – see section 6.3.3.

As an example, communication faults are a major cause for error han-
dling in computer systems. However, this class of faults can be fully ignored
if fault-tolerant, reliable communication is provided to an application. So
applications can be modeled assuming an ideal (fault-free) communication
environment.
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5.11 Chapter Summary

Architectures and standards support the establishment of a well-defined
conceptual framework for system development. This is only possible if the
network of basic-level concepts can be identified easily. Hence, appropriate
semantic descriptions of the core concepts are needed to make an architec-
ture easily understandable for novices.

An architecture reduces the effort of the design process as the most
fundamental decisions have already been made. So the design freedom is
restricted, which reduces the size of the problem space. An architecture
makes it possible to reuse comprehension techniques, concepts and whole
subsystems across multiple components of a system.

Component interfaces not just serve as technical border lines between
components, they can also support the psychological concepts of segmenta-
tion and conceptual chunking. Chunking is related to simplifications pro-
vided by the interface. Segmentation on the system level means to split
the large system into smaller conceptual units. If these conceptual units
correspond to the technical units (components) that build up the system,
this system structure can be seen as built-in segmentation and chunking:
The border lines between the components correspond to the conceptual seg-
mentation lines, and the chunking is provided by the abstraction of the
interface. Built-in segmentation and chunking supports the conceptual de-
coupling of components by minimizing relational component properties and
by providing a conceptual structure that is easy to identify. External cogni-
tion is supported as the conceptual units that are needed for understanding
are reflected by the system structure itself and do not just exist as mental
representations.

Interfaces can reduce the relational complexity of various tasks at the
component interface level if relations are encapsulated within a component.
The elimination of relational component properties is particularly important
for the system-level components that are used by the system integrator.

Interfaces can provide a simplification of the component if they encapsu-
late component-internal details. Abstraction of the environment is another
important purpose of an interface. Component development can be simpli-
fied if the interface provides a reduced and stable view of the environment.

All component interactions should be defined explicitly in the component
interface. This is especially important as understanding means seeing rele-
vant connections. If the connections between components are not apparent
at the surface, understandability suffers. Reducing the number of relevant
connections between components is an important design principle. This can
be achieved by a high degree of conceptual decoupling between components.

A comprehensible component interface should provide semantic coher-
ence so that it can represent a single chunk at a high level of abstraction.
Task-level inclusiveness is required to remove unnecessary details from the
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interface on the one hand and to provide all necessary information on the
other hand. So different views on a component can be supported best by
the provision of different interfaces.

Implicit interfaces should be avoided as they require the consideration
of the component implementation level. If all interactions occur through
explicitly defined interfaces, the level of abstraction can be increased to the
component interface level for all users of the component services.

Almost all embedded real-time systems have a high degree of interde-
pendencies between subsystems. This is due to the characteristics of control
applications that are typically performed by these systems. So data de-
pendencies cannot be removed from these systems. The introduction of
suitable interfaces and the provision of temporal decoupling can break up
the system into nearly-independent subsystems. If these nearly independent
subsystems have interfaces that support conceptual decoupling and provide
a full conceptual description of the environment, independent development
of components is possible. No additional information about other parts of
the system or the environment is required. This is essential to reduce the
cognitive load of component development.

The integration of components that are developed and verified in iso-
lation can only proceed with minimal effort if the architecture supports
temporal composability, if component interfaces match and if all required
functionality is encapsulated within the components. So the integration
process is just a well-defined task of interconnecting component interfaces,
instead of a design task with unforeseeable complexity. Hence, the integra-
tion process is straightforward and connection systems can be avoided. Such
an approach is possible with self-contained system-level components.

An architecture that supports composability enables the use of stable
models across various development phases. This is a considerable advantage
compared to an architecture that does not support composability, where
different models of a component must be used, depending on whether a
component is considered in isolation or as an integrated part of the system.

The development of a computer system requires modeling at different
levels of abstraction. In order to reduce the complexity, each development
task should just require a single level of abstraction. Tasks that require
climbing up and down the abstraction ladder are inherently more complex.

Determinism is an essential factor that affects the comprehensibility of a
computer system. Deterministic models enable the prediction of future be-
havior, which is a prerequisite for logical reasoning about behavior. In addi-
tion, it is easier to derive abstractions from deterministic models than from
non-deterministic models. Non-deterministic models require probabilistic
reasoning for which our minds are ill-equipped. Moreover, non-deterministic
systems are more difficult to validate than deterministic systems.

The proper handling of simultaneous events is essential to achieve con-
sistency in a distributed system. Simultaneous events must be processed in
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the same order by all components to avoid inconsistencies. If inconsisten-
cies of distributed data cannot be avoided, e.g., as the data sources are not
in the sphere of control of the computer system, consensus or agreement
algorithms must be used.

There are two kinds of regularities that can be exploited to simplify
embedded real-time systems: The structure of the system can exhibit some
degree of regularity, as well as the behavior of the system over time. Regular
structures represent concepts that are easier to understand than structures
with no regularities. Moreover, they support the re-use of concepts and
comprehension strategies across components. Behavioral regularity, such as
the cyclic execution of a static schedule, reduces the possible component
behavior.

The problem space for component development and verification can be
reduced if irrelevant information is removed wherever possible, and if the
number of possible model interpretations is minimized. Determinism and
consistency are very important to keep the number of models low. In addi-
tion, making use of categorization can increase the level of abstraction and
makes relations between components explicit.

It is important that the abstractions and models that are developed for
understanding a system are stable even in the case of failures. This can
be achieved either by including the failure scenarios into the models, or
by modeling just the fault-free case and providing appropriate systematic
fault-tolerance mechanisms.
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Chapter 6

DECOS Analysis

In this chapter the theoretical considerations of chapter 5 are used for an
analysis of the DECOS computer system architecture. So the complexity
management techniques can be considered in the context of a specific com-
puter system architecture.

First, section 6.1 introduces the basic architectural concepts. Then the
remaining sections discuss various aspects of these concepts in detail.

6.1 The DECOS Architecture

The DECOS integrated architecture [KOPS04, POT+05] is a framework for
the development of distributed embedded real-time systems. It was devel-
oped by the EU Framework Program 6 Dependable Components and Systems
(DECOS) research project.

6.1.1 Physical System Structure

The physical building blocks of the DECOS architecture are clusters, phys-
ical networks, components and partitions. In this thesis the term node com-
puter is used instead of component, as component is defined in a more
general sense than just a node computer – see section 4.1.2. A cluster is a
distributed computer system that consists of a number of node computers
that are interconnected with a physical network. Each node computer has
its own dedicated hardware (processors, memory, communication interfaces,
controlled object interfaces), and software (application programs, operating
system, middleware).

6.1.2 Functional System Structure

In the DECOS architecture, the overall real-time computer system is di-
vided into a set of encapsulated Distributed Application Subsystems (DASs),
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each with dedicated computational and communication resources. There ex-
ist two different categories of DASs – safety-critical and non-safety-critical
DASs.

The communication resources for the DASs are provided as virtual net-
works [OPK05b], which are implemented as overlay networks on top of a
time-triggered physical network. In each virtual network a communication
protocol tailored to the needs of the respective DAS is provided. The par-
titioning of the overall system into DASs with dedicated virtual networks
ensures a strong encapsulation of each DAS, enabling a functionally inde-
pendent operation of each DAS. This strategy supports the independent
development of the applications as each DAS can become the responsibility
of a corresponding supplier. Moreover, error containment between DASs is
ensured as a message failure in one DAS cannot propagate to another DAS.

A DAS, such as a steer-by-wire system, is further decomposed into a
number of jobs – see figure 6.1. These jobs interact with each other via
the communication system provided as a virtual network. The interface
between the jobs and the architecture is called the platform interface. Via
this interface the architectural services are provided to the application jobs.
The second interface type a job can have is the controlled object interface.

There are no direct interfaces between the jobs of a DAS, all commu-
nication is redirected via ports. Depending on the data flow direction, one
can distinguish between input ports and output ports. For the safety-critical
DASs all ports are state message ports. The application is never interrupted
by incoming messages and can disseminate outgoing messages without re-
lying on a control signal from the communication system. The points in
time when the ports are accessed by the jobs are determined by the appli-
cation. Message transmissions are performed according to the information
push principle, message receptions are performed according to the informa-
tion pull principle. The message transfer to other jobs is done autonomously
by the communication system. For non-safety-critical DASs event message
ports are also supported.

Figure 6.1: The structure of a DAS
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6.1.3 Architectural Services

In the DECOS architecture, generic architectural services separate the ap-
plication functionality from the underlying platform technology, which cor-
responds to the concept of platform-based design [SVM01]. So the applica-
tion job behavior can be modeled independently from the underlying plat-
form technology, i.e., independent from the implementation. Thus, highly
portable application models can be created.

The architecture is built around four core services [KOPS04]

Deterministic and Timely Message Transport: This service enables
the transport of state messages from the CNI of the sending com-
ponent to the CNIs of the receiving components. The fault-tolerant
message transport service is provided by a time-triggered communi-
cation system, such as the TTA [KB03]. Temporal firewall interfaces
eliminate control error propagation and minimize the coupling between
components.

Fault-Tolerant Clock Synchronization: As the operation of time-
triggered systems requires a notion of global time, clock synchroniza-
tion is a fundamental service [KO87]. This allows to establish a sparse
time-base where the activity intervals form a globally synchronized
action lattice.

Strong Fault Isolation: As the effects of a fault can propagate across
fault containment region boundaries as erroneous data, error contain-
ment is required. The error detection mechanisms must be located in
other fault-containment regions than the message sender.

Consistent Diagnosis of Failing Nodes: The membership service pro-
vides consistent information about the health state of nodes. It is
based on a priori knowledge about the points in time of the time-
triggered message send times. If a receiver does not receive a correct
message at the expected points in time, the sender is considered erro-
neous.

Based on these core services, numerous high-level services can be pro-
vided, that can be tailored to the needs of the respective DAS [KOPS04]. As
depicted in figure 6.2 these services are provided to the DASs via a Platform
Interface Layer (PIL):

Encapsulation Service: This service is responsible for spatial and tempo-
ral error containment at the node computer level. Error containment is
provided between the safety-critical and the non safety-critical subsys-
tem. Computational resources as well as communication bandwidth
is allocated statically; control and information flow may only occur
from the safety-critical to the non-safety-critical subsystem, but not
the other way round. Error containment is also provided between the
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Figure 6.2: The DECOS architectural services (adapted from [OPK05b])

jobs at each subsystem by managing the access of each job to the
shared resources. It is ensured that each job executes within a pro-
tected partition and the interactions between the jobs are restricted
to the controlled message exchange via ports. Intellectual property
protection is also provided by the encapsulation service.

Virtual Network Service: Virtual networks are provided as overlays on
the time-triggered backbone network. They provide error containment
at the network level. Each network has a separate namespace, which
supports the independent development of DASs, and the integration
of existing namespaces of legacy applications.

Hidden Gateway Service: Gateways are necessary to achieve communi-
cation between different subsystems. A hidden gateway performs the
interconnection at the architectural level. So it is transparent to the
jobs at the application level.

Fault-Tolerance Service: Architectural fault-tolerance is provided via a
dedicated fault-tolerance layer. If the application supports replica de-
terminism, redundant groups of jobs can be managed and failures can
be masked by N-modular redundancy.

Diagnostic Service: The high-level diagnostic service comprises a diag-
nostic acquisition service and a diagnostic dissemination service. So it
exceeds the node-level granularity of the core diagnostic service. The
acquisition service monitors the port state of each job by evaluating
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the incoming and outgoing messages against the interface specifica-
tion. In addition, the fault-tolerance mechanisms of the fault-tolerance
layer are also monitored. This is necessary as the masking of failures
is transparent to the applications and errors would remain undetected.
The dissemination service is responsible for forwarding the diagnostic
information for analysis via a dedicated diagnostic DAS.

Figure 6.3: Jobs connected by an ETCC (from [KOPS04])

6.1.4 DASs and Virtual Networks

All communication between jobs in the DECOS architecture is achieved
via virtual networks, which are overlay networks on top of a time-triggered
physical network, e.g., based on TTP [TTT04] or Time-Triggered Ethernet
[KAGS05]. Each virtual network supports a corresponding communication
protocol that is tailored to the needs of the respective DAS regarding its
functional, operational (temporal and syntactic) and meta-level properties
(dependability, semantics of the interface data structures) [OPK05b, OP06].

A virtual network provides an independent namespace for each DAS
[OPK05b]. All communication between a set of jobs is private within the
DAS, so transmissions or receptions of messages can only occur between
jobs of the DAS, unless a message is explicitly exported or imported by
a virtual gateway [OPK05a]. So a virtual network provides encapsulation
at the network level. No interference between different virtual networks is
possible.

The provision of encapsulated virtual networks for each DAS supports
service optimization [OPK05b]. This means that the communication re-
quirements of different DAS, which can be quite diverse (e.g., when inte-
grating legacy applications), can be supported ideally.

The virtual networks can be either time-triggered or event-triggered. For
safety-critical DASs only time-triggered communication is supported due to
the advantages regarding predictability, error detection, fault-tolerance and
replica determinism. For non-safety-critical DASs either time-triggered or
event-triggered communication can be used.

Event-Triggered Communication Channels (ETCCs) [KOPS04] are used
to exchange event messages between the jobs of a DAS with event-triggered
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ports. An ETCC implements a one-to-many communication relationship
with exactly one output port and n input ports. So the job with the output
port acts as the exclusive sender of the ETCC. Its messages can be received
by all other connected jobs – see figure 6.3. An ETCC provides an elemen-
tary interface with unidirectional information and control flow and so it acts
as an error-propagation boundary. Errors of the message consumers cannot
propagate back to the producers and affect their operation. As dedicated
ETCCs are provided for each sender job, there is no need for authentication
mechanisms as masquerading failures cannot occur. In addition, the use of
dedicated ETCCs prevents a faulty sender job from causing omission failures
of correct jobs as bandwidth of other ETCCs cannot be acquired [KOPS04].

Multiple ETCCs can be combined to implement high-level event-
triggered protocols that include services such as flow control or retrans-
missions in case of failures. Of course, then the advantages of elementary
interfaces are lost.

An architectural gateway can either be a virtual gateway within a cluster,
or a physical gateway that interconnects the physical networks of different
clusters. A virtual gateway is always a gateway between two different DASs
as each DAS has just a single virtual network. A physical gateway can be a
gateway within a DAS, or between different DASs. Virtual gateways allow
for the controlled coupling of the virtual networks of two or more DASs
[OPK05a].

Virtual gateways resolve the differences in the operational specification
of different DASs. A gateway can be introduced, for example, between
a DAS with a time-triggered virtual network and a DAS with an event-
triggered virtual network. So the gateway has to map the different temporal
specifications by queuing messages that are received from the event-triggered
virtual network so that they can be forwarded to the time-triggered network
in a controlled fashion [KOPS04].

The introduction of virtual gateways is conceptually different to placing
the jobs of the corresponding DASs into a single, common DAS. First, the
export of information can be controlled as the virtual gateway selectively
redirects the information. So it provides a reduced view on just that in-
formation that is really required. Second, virtual gateways prevent error
propagation across DASs.

6.1.5 Development Process

DECOS employs a model-based design [OMG01], starting with a platform-
independent model (PIM), which is then transferred to a platform-specific
model (PSM). UML is used to describe both the PIM and the PSM. More-
over, UML-based meta-models is are provided for the description of both
the PIM and PSM [TU 05]. These meta-models serve as constraints and
guidance for system design, i.e., they are a formal representation of the
architecture that can be used by design tools.
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The development of a DECOS system starts with a PIM of each DAS
– see figure 6.4. A PIM is a formal specification of structural, functional
and meta-level properties of a system that abstracts away technical details.
It is the starting point of system architecture conceptualization. When the
functional and dependability properties of a system are clarified, the exact
physical structure can be fixed, i.e., the functional elements (see section
6.1.2) must be mapped to the physical building blocks (see section 6.1.1).

Figure 6.4: DECOS system development process (from [HOP06])

In the PIM, the structural units that are used for modeling are DASs
and jobs. A focus is put on the specification of the linking interfaces, i.e., the
ports between the jobs, and the specification of virtual gateways between
DASs [HOP06]. These interface specifications capture the operational prop-
erties (syntax, temporal constraints, interface state) and meta-level proper-
ties (e.g., dependability) of the messages exchanged via the port.

The application functionality itself can be modeled with appropriate
modeling tools, such as SCADE [Tec07]. For this purpose, the PIM can be
imported into the tool. So a correct mapping of PIM and applications can
be ensured. Modeling the applications can be achieved at the PIM level,
as long as no platform-specific functionality is included in the applications.
From the formal models of the applications, application program code can be
automatically extracted with code-generators certified according to DO178B
level A [RTC92]. Directly integrating C-code is also possible.

Simulation that uses the formally specified models can be done with tools
such as Simulink [Mat04]. So even simulation is possible at the PIM level.

A resource specification describes the availability of resources, such as
processor, memory, communication bandwidth, or special purpose hardware.
It provides building blocks for system composition in a library [HOP06].

The high-level model of the PIM is transformed to a PSM with tool
support, thereby taking into account resource constraints imposed by the
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resource specification. This transformation is called virtual integration
[GFL+02] as the integration is not performed on physical hardware, but
operates on a virtual platform described by the resource specification. The
purpose of the virtual integration is to find a feasible allocation of jobs to
partitions and mappings of virtual networks to the time-triggered core net-
work [HOP06]. Based on the specification of the available resources and on
the resource requirements of the PIM, several checks can be performed that
allow the identification of infeasible integration results at an early stage of
the development.

The PSM extends the PIM regarding the allocation of jobs to partitions,
the mapping of virtual networks to the time-triggered core network, and the
parameterization of high-level services, which are selected and configured
during the transformation [HOP06, HSS+07].

A problem for modeling hardware characteristics at a high level of ab-
straction is to establish a common view on the meaning of a particular
characteristic. For example, just specifying a concept such as memory ac-
cess time may not be sufficient, as for some hardware implementations the
access time may be constant, while for other implementations the access
time may depend on the location of the memory element. Such differences
are especially problematic if diverse hardware is used. To achieve common
semantics for resource primitives, the DECOS approach supports – besides
a natural language description – links to technical dictionaries [HOP06].
These dictionaries are used to establish a common understanding of the re-
sources and their characteristics. An example for such a dictionary is the
Component Data Dictionary of the IEC 61360 standard.

Figure 6.5: DECOS platform modeling workflow (from [HOP06])

The workflow of platform modeling is depicted in figure 6.5. The mod-
eling process is supported by tools that provide the respective meta models
and resource building blocks, and is guided by the constraints of the meta
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model. In addition, an OCL checker ensures that additional constraints that
can not be specified in the UML meta model are fulfilled by the cluster re-
source specification. So modeling errors can be identified early in the design
workflow. The constraints restrict the structure and interconnection of the
objects as well as the possible attribute values [HOP06]. So a verified clus-
ter resource specification can be obtained, which is used for the subsequent
virtual integration – see figure 6.4.

6.1.6 Diagnostic Strategy

In the DECOS architecture, a node computer represents a Field Replaceable
Unit (FRU) with respect to hardware faults, and a job a FRU for software
faults. To identify faulty subsystems, a diagnostic framework is part of the
architecture. Due to the fact that the fault-tolerance functions of the archi-
tecture are transparent to the applications, the diagnosis of these services
must be done at the architectural level.

The diagnostic service is provided at the network and application level
[KOPS04]. The acquisition of diagnostic data is achieved via a dedicated
virtual diagnostic network and the analysis of the data in a dedicated diag-
nostic DAS. So-called Out-of-Norm assertions [POK05] are checked against
the interface state of the ports to indicate that the actual state deviates
from the expected one. So a holistic view of the system can be established
by operating on the distributed state. This allows to trace system anomalies
to the responsible FRU.

The provision of a separate diagnostic DAS has the advantage that no
probe effect can be introduced: At first, the diagnostic DAS cannot dis-
turb the real-time functionality as it is fully encapsulated like every other
DAS. Secondly, the purely virtual solution ensures that no additional hard-
ware failures can be introduced, e.g., due to erroneous wiring or connector
problems.

As the diagnostic DAS cannot interfere with the real-time functionality
of other DASs, a certification of the diagnostic DAS to the highest criticality
levels is not necessary.

6.2 State Message Ports

In the DECOS architecture, state message ports are required for the in-
terfaces between the jobs of a safety-critical DAS. In this section the most
important advantages of state messages and state message based interfaces
regarding comprehensibility are discussed.
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6.2.1 Conceptual Simplicity

State messages are a very simple means of communication between the com-
ponents of a system, especially for control systems where lots of state in-
formation of various real-time entities must be exchanged. The simplicity
of state messages can be explained with relational complexity theory: Pro-
cessing state messages has lower relational complexity than processing event
messages that describe the state changes of real-time entities. A state mes-
sage is self-contained as it contains the full information about the state of
the real-time entity. An event message just contains information about a
state change. It is thus necessary to integrate the history of state changes
to be able to reconstruct the full state of the real-time entity. In terms of
relational complexity theory, a state message thus represents a unary rela-
tion. It requires no knowledge about the history of state changes and can
be used immediately. An event message has a higher arity, depending on
the steps required to reconstruct the state of the real-time entity.

It depends on the use case whether state or event information is required
by the receiver of the message. If possible, a receiver should be designed to
rely on state messages only to achieve the aforementioned simplification
concerning the integration of past events. In general, control algorithms
require the full state of real-time entities more often than event information,
which is, conceptually, just incomplete state information.

6.2.2 Unification of Interfaces - Temporal Firewalls

The state message ports of DECOS jobs represent temporal firewalls [KN97],
which are pure data sharing interfaces where control flow across the interface
is avoided by design. So control errors cannot propagate across the interface.

As a temporal firewall just represents a collection of state messages,
no complex interaction mechanisms are introduced. State message transfer
is the only communication mechanism that is required in a safety-critical
DAS. No additional interaction mechanisms must be considered. So all
interactions are covered by a single mechanism.

An interface such as a temporal firewall, which supports periodic state
messages with error detection at the receiver, represents an elementary in-
terface. Composite interfaces are inherently more complex than elementary
interfaces as the correct operation of the sender depends on the control
signals from all receivers. E.g., an event message interface with error de-
tection is a composite interface where even unidirectional data flow requires
bidirectional control flow.

A temporal firewall allows for a high degree of temporal decoupling be-
tween components. Control flow analysis across component interfaces is not
necessary. Independent timing is possible on both sides of the interface as
long as it is ensured that the state messages are temporally accurate. This
largely reduces the effort of component development as the consideration of
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timing and control flow aspects is reduced to a single component.

6.2.3 Conceptual Decoupling

An important characteristic of state messages is that they support the con-
ceptual decoupling of components – see section 5.4.2. Conceptual relations
between components can involve semantic relations and temporal depen-
dencies. As described above, state message interfaces support temporal
decoupling as timing issues can be considered at a component-local scale.

The self-containedness on the semantic level is achieved due to the fact
that a state message contains the full state of a real-time entity. So a state
message port can be fully described by the port specification in the time,
value and meta-level domains. No references to other component interfaces
are necessary. This is a prerequisite for the independent development of
components – see section 5.4.2.

An interface that makes use of more relational concepts than pure state
messages does not provide the same high degree of conceptual decoupling.
For example, if component A sends a notification message to component B

which indicates that some data is ready to be transferred to component B,
then component B requires knowledge about how to retrieve the data from
component A. So a specification of the interface of component B without
reference to the specification of the interface of component A is not possible.
Thus, the conceptual coupling is higher than for a pure state message in-
terface where the data is directly transferred as state information from the
interface of component A to the interface of component B.

6.2.4 Interface State

In a DAS where only state message ports are used, every job exposes its
declared state at its ports. This characteristic has the benefit that this
part of the application state is easily accessible without the need for explicit
queries via a separate monitoring interface. So the number of job interfaces
can be minimized. The declared interface state can be used directly for
analysis, e.g., by the diagnostic DAS or for error detection.

If the interface state is used for diagnosis, the analysis can be done at
level of abstraction of the component interface. No low-level knowledge of
component internals is required, so the abstraction of the interface holds
even for diagnosis.

6.2.5 State Message Objects

The level of abstraction of pure state message ports is, in general, quite low.
For many applications this is the optimal level of abstraction. However,
sometimes a higher level of abstraction may be useful.
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Additional abstraction layers must be added onto a set of state messages
to enable built-in chunking. This can be achieved by using state message
objects, which represent aggregate data structures consisting just of collec-
tions of related state messages, but represent a higher level concept. For
example, a state message object airspeed may contain related data around
the current airspeed of an airplane. The collection of data could comprise
an agreed value collected from multiple sensors and also the single sensor
readings. So a single state message object can hold multiple state messages
that belong together, representing a single chunk. At the level of abstraction
of the interface, a state message object is an atomic unit. This avoids that
the interfaces are blown up with large collections of similar state messages.
So the level of abstraction of state message interfaces can be increased and
the structure of the data supports built-in chunking.

6.3 Architectural Service Provision

As described in section 6.1.3, the DECOS architecture provides a number of
architectural services to the applications. In this section it is discussed, how
the provision of the architectural services can help to reduce the complexity
of various development tasks, compared to systems where these architectural
services are not available.

6.3.1 Reduction of the Problem Space

The provision of the architectural services reduces the problem space for
application development. For example, the system-wide notion of time can
be used by an application. Hence, the application does not have to imple-
ment timers or similar mechanisms at the application level.In addition, a lot
less application-specific fault-tolerance is required due to the fault-tolerance
service of the architecture. The fault-tolerance layer provides fault-tolerant
message transfer, so an application just needs to handle each fault-tolerant
message send and receive operation like a normal message transfer opera-
tion. No additional functionality, such as retransmissions in case of errors
or replica handling are required. This is all done transparently by the sys-
tematic fault-tolerance service. So these kinds of problems do not need to
be considered as part of the application design.

6.3.2 Support for Determinism

It considerably helps to simplify the design problem at the application level,
if the architectural services enable the creation of deterministic systems.
Determinism allows to establish a consistent distributed state [MBSP02],
which is essential to reduce the complexity of distributed real-time system
design. The consistent distributed state simplifies error detection, state
recovery and diagnosis. A consistent state is easy to achieve in a single-
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node computer system, but in a distributed system message transmission
times, different local clocks and lost messages are examples why consistency
cannot be assumed in general.

The DECOS architecture supports deterministic and timely message
transport, a consistent diagnosis of failing nodes and a sparse global time.
Together with the fault-tolerance service these architectural services enable
the development of highly deterministic applications.

In addition, the provision of a communication service with constant de-
lay and minimum jitter supports control stability in real-time applications.
Jitter brings an additional uncertainty into a control loop. This uncertainty
of course requires additional comprehension effort.

6.3.3 Separation of Concerns

The applications are not blown up with those services that are provided by
the architecture. Hence, they can implement pure application functionality,
which allows to develop conceptually coherent applications.

For example, errors that are not application errors, such as the loss of
a message due to a transient communication error caused by electromag-
netic interference, are not the responsibility of the application. Handling
such errors conceptually rather belongs to the message transport service
than to the application. So the architectural fault-tolerance service helps
to separate concerns and provides an ideal (simplified) environment for the
application developers. Furthermore, applications are reusable more easily:
Their essence, i.e., the basic domain-level and implementation concepts are
easier to see and to understand if they are not bloated with conceptually
unrelated fault-tolerance functionality.

If those services that are provided by the architecture were implemented
at the application level, the application functionality and the service imple-
mentation would not be clearly separated. So developers and maintainers
would have to separate the two mentally. This means increased cognitive
load and additional effort to develop appropriate segmentation techniques.
The architectural services provide natural, i.e., built-in, segmentation be-
tween generic, reusable services and application functionality.

6.3.4 Support for Structural Regularity

As application and architectural service functionality are cleanly separated
from each other, they can be verified and re-used independently. In a system
where there is no clean separation, increased design variety is likely, as it is
the responsibility of the developers to implement the same functionality in
the same way – especially if multiple developers create different parts of a
system.

For example, systematic fault-tolerance supports a regular system struc-
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ture leading to less design variety, as the fault-tolerance functionality pro-
vided by the architecture can be reused all over the system. Application-
specific fault-tolerance is likely to be implemented differently in different
parts of the system.

Moreover, if multiple developers create different parts of a system with-
out systematic fault-tolerance, it is additional effort to ensure the correct
function of the fault-tolerance functionality. Each developer may have a
slightly different conceptualization of the fault-tolerance functions, so their
correct interplay must be ensured. This additional verification effort is not
required if the fault-tolerance service provided by the architecture is used.

6.3.5 Simplified Diagnosis

In current automotive systems, typically more than 50 percent of the pro-
gram code in an ECU is related to diagnosis [PBC+02]. So by providing a
diagnostic framework as an architectural service, a considerable reduction
of the application size and thus the development effort can be saved.

As described in section 6.1.6, the diagnostic DAS allows the easy identi-
fication of faulty FRUs by providing a level of trust for each component. So
maintenance engineers are supported in their decisions which FRUs need to
be replaced. In addition, the error rate during a given time interval can be
determined. This allows the tracking of transient errors and provides a basis
for detecting wearout symptoms. Tracking these errors at the application
level is only possible when the fault-tolerance mechanisms are also provided
at the application level. However, as described above, this would make the
development far more complex. Diagnosis at the architectural level can be
added to a system without adding any complexity to application develop-
ment. The holistic view of the system (e.g., by monitoring a subset of the
distributed state of various applications) can only be achieved via architec-
tural means. A holistic view is essential to be able to determine the health
state of the overall system.

6.3.6 Stability of Models

The support for composability enables the stability of application models
regarding the integration process. The architectural fault-tolerance service
and the encapsulation service ensure fault containment and failure masking
so that the application model remains stable even in the presence of faults.

6.4 Sparse Global Time

A sparse global time-base provides an abstraction of real time. In the
DECOS architecture, the sparse global time is available to all components
of the distributed system. In this section the advantages of a system with
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a sparse global time-base are compared to a system where no sparse global
time is available.

6.4.1 Natural Model of Time

A globally available notion of time most closely resembles our natural un-
derstanding of the concept of time, which is that of an omniscient outside
observer with a single reference clock. This reference clock is used to times-
tamp all observations in a system, no matter which component observes an
event. So if two or more components of a distributed system observe the
same event, from the omniscient observers’ viewpoint the event observation
must get the same timestamp by all components.

If a system is based on a dense time-base, each component may assign
different timestamps to the same observation as the local clocks of the com-
ponents cannot be fully synchronous. So in effect, a system where there
is no global time-base that allows to set identical timestamps to events by
all components does not model real time very closely: Assigning different
timestamps to one and the same event is just an accidental characteristic
that is rooted in the technical implementation of the time sources. This
has nothing to do with the model of real time we are all used to. So all
effects that are rooted in these inaccuracies must be considered accidental
characteristics that just complicate various development tasks.

The model of time provided by a sparse global time allows to observe all
events with regard to a single, globally available time-base. From the view-
point of the outside observer the single time source more closely resembles
our natural concept of real time than various local clocks that are not fully
synchronous. So we can reuse our knowledge about real time and do not
have to consider different time sources.

6.4.2 Modeling Simultaneity

Simultaneity is an essential property when modeling actions of a computer
system. Achieving simultaneity is especially difficult if large time delays are
used so that inaccuracies between local timers can become significant. How-
ever, simultaneity cannot be modeled explicitly in distributed systems with
a dense global time due to the inaccuracies of the local clocks. So simulta-
neous events must be coordinated globally to achieve nearly simultaneous
actions by multiple components. This global coordination step represents an
accidental characteristic as it is just required due to technical limitations. It
introduces relational aspects into a system that are not required on a purely
conceptual level.

Only in a distributed system with a sparse global time-base, simultaneity
can be modeled explicitly, without the need for global coordination. The
system-wide action lattice can be used to initiate simultaneous functions.
This avoids relational aspects in a design, hence improving the decoupling

117



6.4 Sparse Global Time

of components.

6.4.3 Consistency and Order

If a consistent interpretation of time and order is not guaranteed, this leads
to ambiguity and non-determinism, which in turn requires additional com-
prehension effort when trying to analyze all possible system behavior. In
addition, functionality to handle these accidental inconsistencies may be
required, which leads to increased system size.

With a sparse global time-base it is possible to assign a significant event
in the sphere of control of the computer system to the same global clock
tick by all components. This characteristic is especially helpful when fault-
tolerance is implemented by replication: Replicas just have to reach an
agreement on the timestamps of events that are outside the sphere of con-
trol of the computer system, but can rely on a consistent interpretation
within the system. This considerably helps to reduce the problem space of
application development.

Not just if replication at the component level is used, consistency is use-
ful. Also in non-replicated components, a replication of data values and
timestamps is often required. For example, in an automotive computer sys-
tem, multiple DASs may use the wheel speed for different purposes. In
these cases, too, a consistent interpretation of time and order within the
computer systems helps to reduce the possible behavior of the system and
so keeps the number of possible system states low. The amount of agree-
ment and coordination in a system with a global sparse time-base can be
reduced significantly, compared to a system where no sparse global time-
base is available. Less functionality must be modeled if inconsistencies and
non-determinism can be ruled out by design.

6.4.4 Reduced Model of Time

In a system that uses an ε/∆-sparse time-base, all events that are close
together within the interval ε are supposed to happen at about the same
time [Kop97]. So this model of time allows to ignore small variations of
timing.

For example, if sending and receiving of messages is performed accord-
ing to a sparse global time-base, small variations of message timing (e.g.,
caused by different propagation delay of the communication medium) can
be ignored. So no small-scale concurrency issues must be considered for all
those events that occur according to a sparse time-base.

Another example are small variations of application job runtimes (e.g.,
caused by varying input data that lead to different execution paths). If a
system is designed so that finishing the execution of the job does not repre-
sent a significant event for the application, then these differing runtimes can
simply be ignored. This can be achieved if just sending and receiving mes-
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sages represent significant events and the results of the jobs are transferred
to the collaborating jobs according to a sparse time-base.

Furthermore, computations that fit into a single global clock tick can be
handled as if they would take no time at all. So for these short computations,
runtimes can be fully ignored, except for the fact that it must be ensured
they are short enough to fit into the interval.

6.4.5 Availability of a Model of Time

A model of sparse global time is a concept that can be used for system-wide
modeling of timing aspects. So it contributes to low relational complexity
with regard to timing issues: Timestamps that refer to the sparse global
time-base are valid system-wide, so absolute times can be modeled easily.
This avoids the establishment of causal relationships that are introduced
solely for the progression of control flow. Control flow across interfaces can
be avoided in most cases if the progression of global time can trigger system
actions. So the global time-base allows for globally coordinated functions
with low relational complexity as each component can operate temporally
decoupled from the other components – see section 6.4.6. Moreover, time-
outs can be avoided, as durations can be specified by referencing two instants
of the global time.

In a system where there is no notion of a global time-base, it is not
possible to generate globally valid timestamps for events. So time can only
be referenced according to local clocks. Regarding the interactions of com-
ponents, timing issues usually have to be modeled relative to events, which
results in the introduction of causal event chains resulting in high relational
complexity (see section 6.7.2). The causal event chains must be followed
to be able to understand the system behavior as absolute points in time
cannot be referenced. For example, to analyze the timing and the input
parameter values of a function call, its causal predecessors that can call the
function must be determined. Such causal chains can be very long, making
a full analysis based on human understanding unfeasible. So formal analysis
techniques and tools support may be required.

Another problem in systems with no global time-base is that timeouts
must be used to specify durations. However, the introduction of timeouts
can add relational aspect to a system. Multiple simultaneous timers concep-
tually is like having multiple clocks. As already mentioned in section 3.2.2,
parallel aspects that are not completely independent of each other tend to
be hard to understand. If the effect of a timeout is not fully constrained to
an isolated aspect, relational aspects are introduced. So in general, timeouts
should be used with care.
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6.4.6 Temporal Decoupling

The availability of a sparse global time-base supports the temporal decou-
pling of components. If a component can become activated according to the
progression of real time, this means that a component can implement its
own control strategy. Temporal decoupling does not mean temporal inde-
pendence. Temporal decoupling just means that control flow is not necessary
to propagate data changes across interfaces. The interfacing partners have
some freedom to access shared data items. The global timing properties,
such as the temporal accuracy of a real-time image, must be covered by the
interface specification. As long as the temporal constraints of the interface
specification are fulfilled, a component is free to decide on the points in time
when data is read or written.

If components are temporally decoupled from each other, e.g., by the
usage of temporal firewall interfaces, this means that no control flow and
no temporal dependencies between components must be considered. Due
to the autonomous control, each component can be considered a nearly-
independent system with no relational properties resulting from control flow
propagation (see section 6.5.3).

6.5 System Structure

In this section the implications of the DECOS system structure with regard
to comprehensibility are discussed. First, the structure of a single DAS and
then the integration of multiple DASs is considered.

6.5.1 Simple Application Structure

Jobs are the only units of structuring an application. This leads to a very
regular structure as there is just a single granularity of structural elements:
All jobs represent the same abstraction level. Hence, no climbing up and
down the abstraction ladder (see section 5.6.2) is necessary when modeling
the job behavior (i.e., when designing the job interfaces), or when integrating
the jobs of a DAS.

Moreover, no structural relations, such as containment or inheritance
between the jobs must be considered. This means that at the purely struc-
tural level the relational complexity is just minimal. The only dependencies
that can be introduced are functional ones – by exchanging messages.

The definition of time- or event-triggered ports is the only mechanism of
the architecture to specify interactions between components. This represents
just a very minimal – hence easy to understand – set of concepts that are
required to understand the interactions between components.

Due to the fact that all communication is redirected through ports, this
makes all interactions between the jobs explicit. There are no implicit inter-
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faces. Hidden dependencies or unintended side-effects that are not visible
at the job interfaces can not occur. This makes it possible to analyze a job
at the interface level, without having to consider its implementation.

For a safety-critical DAS where just state message ports are used, a high
level of decoupling between the jobs is achieved so that they can represent
nearly independent components at the application level. The job interfaces
serve as conceptual segmentation boundaries and provide conceptual chunk-
ing of jobs. So when reasoning about a job, the job interface specification
provides a sufficient representation of both the job and the environment –
no thinking beyond the interface is necessary.

Of course, fully specified interfaces are only possible if the job interface
specifications are at the level of abstraction of the application. If the ports
are just used to tunnel high-level protocols that require additional knowl-
edge that is not contained in the specification, this makes understanding of
interactions and dependencies more complex again – see section 5.3.8. For
safety-critical DASs such mechanisms are not allowed. For the non safety-
critical DASs it is the responsibility of the designers to avoid overly complex
solutions. An architecture can just provide easy-to-understand mechanisms,
but not avoid their circumvention by application designers. So for safety-
critical DASs the job interfaces must be fully specified in the time and value
domains and also provide a sufficient semantic specification. For non safety-
critical DASs this requirement can be relaxed as the errors that can be
introduced due to the additional design freedom do not have severe conse-
quences. So opaque data structures can be transmitted where the possible
contents are not fully specified at the port level.

The communication mechanisms that are provided directly by the archi-
tecture are at a very low level of abstraction. High-level protocols must be
implemented at the DAS-level, or tailored to a DAS as a high-level archi-
tectural service.

As discussed above, this is possible for event-triggered applications
just as on any other computing platform, by tunneling a high-level event-
triggered protocol via the event message ports. For state message based
communication of safety-critical DASs, it is not so easy to increase the level
of abstraction of the communication. However, due to the nature of safety-
critical applications, and due to the fact that the transport of state infor-
mation is inherent to most control applications this is not a severe problem.
In some cases the introduction of state message objects (at the application
level) as suggested in section 6.2.5 can be beneficial, though.

6.5.2 Straightforward DAS Integration

The encapsulation service and the virtual network service provide a frame-
work so that a DAS can be completely isolated from other DAS. Each DAS
is logically fully independent from the other DASs that are executed on
the same system. This way the advantages of a federated system are fully
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preserved by the shift to an integrated system: A priori independent appli-
cations logically remain fully independent from the other systems that share
the same physical hardware. No side-effects, dependencies or coupling is in-
troduced due to the integration. The only form of coupling that is possible
are explicitly modeled (i.e., intended) interactions via virtual gateways to
achieve service integration.

The selective redirection of data via virtual gateways is defined at the
beginning of the development process of each DAS. This allows for indepen-
dent development of the DASs by separate vendors and ensures matching
interfaces for seamless integration at the end of the development process.
So no design tasks are left for the integration process, such as introducing
glue functionality to resolve interface mismatches.

The selective forwarding of information from one DAS into another DAS
with a virtual gateway has considerable advantages regarding complexity
management: First, the selective data forwarding makes the real interac-
tions explicit as just the information that is really needed in the other DASs
is passed on. Second, the reduction of the amount of information to just the
relevant interactions reduces the cognitive load when analyzing the DASs as
the problem space becomes smaller. Third, a gateway supports the intro-
duction of additional abstractions, instead of simply forwarding information
from one DAS into another. This can rise the level of abstraction of the in-
teractions and reduce the relational aspects – see section 5.3.2. Fourth, the
gateway approach supports the conceptual decoupling of a DAS, because for
understanding a DAS, only the jobs of the DAS with their interactions and
the specification of the virtual gateways must be considered.

An important characteristic of the DECOS architecture is the possibility
to tailor virtual networks according to the needs of the application (service
optimization). So there is no need to use an architectural framework that
represents a compromise which does not fulfill all application requirements
fully. This is very likely to happen in an architecture where the communica-
tion systems of each subsystem are not fully independent of each other and
where tailoring of the communication services on the DAS level is not pos-
sible. Moreover, service optimization allows to provide the communication
at the optimal level of abstraction for each DAS.

6.5.3 Near-Independence of Components

Near-independence of subsystems is a design principle of time-triggered sys-
tems that is achieved in the DECOS architecture by the combination of the
following design concepts:

Encapsulation Service: An encapsulation of components avoids unin-
tended interference between unrelated functionality.

Temporal Firewalls: Autonomous control is supported by the introduc-
tion of temporal firewalls as linking interfaces between components.
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Sparse Global Time: A sparse global time-base enables the establish-
ment of a globally consistent view on the temporal characteristics of
real-time images.

Temporal firewalls together with a sparse global time-base enable the au-
tonomous control of components. Autonomous control means that control
flow is restricted to the component level. No control flow across component
interfaces is allowed. This is a fundamental requirement to achieve high de-
gree of temporal decoupling between components, but still allows controlled
data exchange. As long as the shared data is temporally accurate, each
component can access the data autonomously. The sparse global time-base
enables a common (i.e., consistent) view on the temporal properties of the
temporal firewall.

The DECOS architecture provides an encapsulation service for DASs so
that different applications can run completely independent of each other. At
the network level, the encapsulation between the communication of different
DASs is provided by the virtual network service. So each DAS can be
considered a nearly-independent component of the overall computer system.

Within a time-triggered DAS, encapsulation is also possible, but it can-
not be as strict as between different DASs as the jobs of a DAS must collab-
orate. Closely related functionality that needs a high degree of coupling can
be clustered into jobs. So the coupling between different jobs can be mini-
mized at the functional level. In addition, jobs can represent units of error
containment within a DAS, e.g., if replicated jobs are used. So erroneous
information from a faulty job cannot propagate to other jobs. Due to the
encapsulation and the high degree of decoupling, jobs can also be considered
nearly-independent components of a DAS. The degree of independence of
jobs is of course lower than that of different DASs.

Due to the tight control flow coupling, the jobs of an event-triggered
DAS do not represent nearly-independent components.

6.6 Development Process

In this section the characteristics of the DECOS development process are
described. First, the advantages of the two-level application design approach
are presented. Then, model-based application development and hardware
platform modeling are discussed.

6.6.1 Two-Level Application Design

Regarding application design, the DECOS architecture supports a two-level
design: At the global level1 the interfaces between the jobs of a DAS and
the virtual gateways to other DASs are specified. At the job-local level the

1Global here means the whole DAS, not the whole system
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constraints of the interface specification enable the isolated development of
the jobs.

A two-level design approach strictly separates between the interface de-
sign of the jobs and the design at the job level. The behavior of the jobs is
already fully described by the interface specifications, so the design at the
job level is only concerned with fulfilling the requirements and constraints
that were established by the interaction design.

Due to the explicit interaction design, no hidden dependencies or implicit
interfaces are created. The interfaces that are developed during the global
design step represent stable building blocks (i.e., stable intermediate forms)
for job development.

An advantage of a strict two-level design approach is that a clear sepa-
ration of concerns is possible: Both global aspects and job-local aspects are
designed explicitly and can also be verified at a separate level.

At the global level the designers can fully concentrate on the interac-
tions between the jobs at a level where the job internals are not relevant.
So the interaction design of an application can be made in an ideal envi-
ronment, where just the application model itself can be focused. At that
level a conceptual interface model for each job can be developed. As the
designers can abstract away component internals they are not distracted by
the component implementation aspects.

The separation into the global design and the job-local design does not
mean that there are just two steps that are always performed just once, one
after the other. Job implementation may lead to new insights and a better
understanding of the problem. So it can of course happen that during the
design of a job a developer recognizes that a certain global constraint is un-
feasible. For example that an update rate of a message can not be achieved,
or that an additional real-time image that is available only in another job
is necessary. So the global design must again be changed to accommodate
these requirements. However, in a two-level design, an explicit change of
the global design is necessary. So the developers immediately recognize that
their changes have a global effect. If there is no clear separation between job-
local and global design decisions, job-local details can more easily propagate
to the system level without being recognized.

6.6.2 Model-Based Application Design

Creating an application means to develop a (usually high-level) conceptual
model and then derive a (usually more detailed) technical model that can
be used for implementation. This model building is pure design work that
must be done by the developers. So at this stage of development, human
understanding is especially important. This is where model-based design
can be especially helpful, as it allows to increase the level of abstraction of
the applications.
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The generic architectural services provide a platform model, which is an
abstraction of the underlying hardware platform. This platform abstraction
provides a simplified design environment, i.e., a reduction of the problem
space. The applications can be developed independently from details of
the underlying implementation. Due to this separation from the underly-
ing platform, which results in pure high-level application functionality, the
platform-independent model (PIM) of an application is easy to understand
and reuse.

Modeling of the application at a high level of abstraction, i.e., at the PIM
level enables the creation of a mental model of the application without being
influenced (distracted, overloaded) by implementation details. Moreover,
developers are not tempted to start with the implementation (i.e., modeling
at the implementation level) before they have developed a complete model
(i.e., before they have fully understood what they have to do). So the
application modeling process is simplified by the high level of abstraction.

The PIM (a technical model) can serve as a basis for a high-level mental
model of an application. It is much harder to derive a high-level mental
model from an implementation-level technical model, such as a PSM, or –
even worse – from application code. For example, the DECOS architectural
membership service can be described more easily at the PIM level than on
the implementation level. For the application at the PIM level it is irrelevant
how a membership vector is created. Its existence and its semantics are all
that is relevant.

Another advantage of the PIM is that it is available for later analysis
of the system, e.g., for certification or maintenance tasks. So a mental
model of the application can be derived more easily as a suitable high-level
technical model is available. If there is no explicit high-level model, then the
implementation is the only technical model that is available for analysis. In
that case the extraction of a high-level mental model, which is required for
comprehension, is far more effort.

The virtual integration enables the detection of design faults early in the
design process, before the DASs are deployed on real hardware. So a purely
functional integration is possible, where problems caused by hardware or
compilers cannot occur. At this stage of development, simulations can al-
ready show the behavior of the future application. So the integration process
is reduced to a virtual resource allocation problem. Physical hardware prob-
lems, such cabling or connector faults, that typically cause problems in the
early stages of development of embedded systems, cannot occur. As every
embedded system developer knows, it is often hard to decide whether a sys-
tem failure is caused by a hardware fault or by a software fault, especially
if the software has not yet run successfully. So the developers can get some
confidence in their applications before the deployment to hardware.
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6.6.3 Hardware Platform Modeling

As described in section 6.1.5 the DECOS modeling process for the hardware
platform provides a library with resource primitives. So a compositional
definition of node computers and complete clusters is possible. The design-
ers need not start from scratch but can build on predefined elements that
just need to be correctly composed to create the required resource specifica-
tion. The predefined resource primitives and hardware elements (including
full definitions of node computers) provide a standardized framework for
conceptually guided application development.

The provision of pre-defined building blocks, such as the pre-defined
hardware elements or the architectural meta models, has the advantage that
these structures can be created by experts. So these building blocks can be
reused by system developers that may not have such a high level of expertise
in hardware design. This can improve the quality of the system as the
results produced by experts usually excel those of less experienced people
(see section 2.4). For example, many design errors can be avoided by the
specification of meta models and constraints against which the models of
the developers can be checked. Moreover, the difficult parts of the resource
specification can be delegated to experts, such as hardware suppliers, and
then be included into the system model by the system integrator. E.g., a
sensor can be modeled by an expert with extensive knowledge in this domain
[HOP06].

Semantic descriptions are essential to establish a common understand-
ing of the hardware building blocks among different people involved in the
development. The technical dictionary links and the natural language de-
scriptions support a sufficient specification of semantics.

Due to the provision of automatic checkers, the mental load of verifying
the constraints, which mainly represent relational properties of modeling
objects, is not burdened onto the developers. In addition, external cognition
is supported by the modeling tool and the provision of a meta model. Hence,
designers can experiment easily with different configurations and settings,
without having to consider all possible implications of their changes.

6.7 Time- vs. Event-Triggered Control

In the DECOS architecture both the time-triggered as well as the event-
triggered control paradigm are supported. As already explained in section
4.9, the actions of an event-triggered system are in fact reactions that are
triggered by events, whereas in a time-triggered system the progression of
real time triggers the actions of the system. This is the major difference
between the two control paradigms that also has considerable influence on
the conceptual structuring and thus on the analysis of the behavior of a
DAS.
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At a first glance one might think that not every problem is suitable for a
time-triggered solution, which has a cyclically recurring behavior, and that
the time-triggered model of thinking is not “natural” as we are more used
to think in cause-effect relationships. This may be true to some extent,
however, it is not the whole story. In this section the major differences
between the two paradigms that affect comprehension are discussed. We will
see that it depends on the problem and on the application characteristics
whether a time-triggered or an event-triggered approach is likely to be more
complex.

6.7.1 Conceptual Structuring

In a time-triggered DAS, significant events that are in the sphere of control
of the computer system are triggered only by the progression of real time.
The instants when these events occur are determined a priori. So these
points in time represent important information that can be used to get an
understanding of the behavior of the system. The trigger times represent the
focal points for conceptual structuring. So the time axis represents the basis
for modeling and understanding the behavior of a system – every action of
the system is related directly to an instant of the time-line, see figure 6.6.
At each a priori defined instant ai, bi, ci, and di a given application job A,
B, C, and D is executed.

Figure 6.6: Job activations triggered by the progression of time

In an event-triggered DAS it is the occurrence of events that provides a
basis for conceptual structuring, not the time-line. The time of occurrence
of events is not known a priori and may vary considerably, depending on the
dynamics of the environment. So no information about the order of events
and about the order of possible reactions of the system can be taken as
given. Hence, a structuring of the actions of the system along the time axis
is not possible. Instead, causal event chains must be followed to be able to
determine the initial cause of a reaction, or the possible effects of an event
– see section 6.7.2.

As already mentioned in section 2.1.2, there exists evidence that tem-
poral problems are mentally represented like spatial problems. Hence, the
time-line based action structure of the time-triggered approach seems to be
advantageous compared to the event-triggered approach. The event-based
structure cannot be represented easily as a spatial diagram.
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6.7.2 Modeling Cause and Effect

Cause and effect is a well-known relation that can frequently be found in
the real world. So we can easily model a system according to this principle.
When an event-triggered DAS is designed, cause and effect relationships
are usually modeled via event handlers. A developer can define appropri-
ate handling functions for each significant event. The event handlers can in
turn generate new events that cause the invocation of further event handlers,
resulting in event chains. So causal event chains can be a very helpful struc-
turing technique. As long as the event chains remain short and the event
handlers just have low relational aspects to other handlers, the system be-
havior can be understood easily. For each event it is just necessary to follow
its event handlers. However, if the chains become long, include branching or
cyclic structures, the relational aspects between the event handlers increase.
This leads to high relational complexity when analyzing the possible effects
of an event, or when trying to determine the cause of a system reaction.
The possible length of the causal event chains depends on the system struc-
ture and on the degree of coupling between the components. If data value
changes can trigger remote events and control flow across interfaces is pos-
sible, the whole system may be affected by a single event. So a high degree
of coupling between components is typical for event-triggered systems.

To keep causal event chains short, boundaries must be provided that
break up the chains and avoid the propagation of events all over a system.
However, the developers must explicitly design their systems in a way that
avoids long event chains. Moreover, causal relations may sometimes be
hidden within an application so that they are not immediately recognized.
So it may be very hard to ensure short causal event chains in a large event-
triggered application.

In a time-triggered DAS, cause and effect is just modeled at a very small
scope – only within a single job. For example, when an incoming message
is read from a time-triggered state message port, specific functionality may
be executed, depending on the message data. There are no long causal
event chains as the application jobs of a DAS are usually small units that
communicate with one another via temporal firewalls. The propagation of
information about an event from one job to the next is done via state mes-
sages. So an important advantage of time-triggered DASs is that there is
no global control flow across job interfaces. The temporal firewalls break up
the global control flow, keeping the causal event chains very short. This con-
siderably supports comprehension as long and net-like causal relationships
tend to be very hard to understand (see section 3.2.4).

If there are no long causal event chains between a significant event and an
action of the system, the step backward to the triggering event is very short.
The reactions are always immediate. Long delays caused by event queuing
or long causal event chains do not occur. This supports understanding the
system behavior in simulation environments or when analyzing the run-time
behavior of a system.
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It can be considered a disadvantage of the time-triggered approach that
a direct modeling of causal relationships across component interfaces is not
possible. This means that creating such relationships requires more effort
than in an event-triggered system as the additional intermediate mechanism
of a time-triggered state message is required. This involves the introduction
of the concept of a regular message transfer. However, this characteristic
can only be considered a disadvantage for very small systems. As discussed
above, the advantage of short causal event chains for improved understand-
ing outweighs the additional design effort in most large systems that would
otherwise require long and net-like causal event chains.

6.7.3 Segmentation Boundaries

In an event-triggered DAS the job interfaces do not coincide with the bound-
aries of control flow. Control flow across component interfaces is is an inher-
ent principle of event-driven control. This coupling via the control flow leads
to a high conceptual coupling between the jobs, so “thinking beyond the job
interface” is required to analyzing cause and effect relationships. Thus, no
built-in segmentation along the job interfaces is provided.

In a purely time-triggered DAS, time-triggered state messages are used
as a means for the transport of information across component interfaces. As
described in section 6.2.3, these state messages represent an abstraction pro-
vided at the component interface that improves the temporal and conceptual
decoupling of the components. So conceptual segmentation boundaries are
provided by the component interfaces and each component can be analyzed
and implemented almost independently from the rest of the system.

6.7.4 Behavioral Variety

Time-triggered DASs have a repetitive nature. A job is activated according
to an a priori created scheduling table, reads the same input ports, per-
forms its calculations, and then writes its set of output messages to the
output ports – usually at about equidistant points in time. This static,
globally synchronized action lattice results in a high degree of behavioral
regularity. A component does not change its temporal behavior, and similar
functionality is performed each time the job is activated. So the variations
in behavior are restricted to the value domain and do not affect the tem-
poral properties of the jobs. Thus, just a limited number of comprehension
strategies is needed, compared to a system with varying temporal behavior.

In an event-triggered DAS, actions are triggered by events within the
system or by events in the environment. This results in inherent dependen-
cies of the component behavior on the dynamics of the event occurrences
and on the characteristics of the input data2. The jobs are typically called in
different orders. Due to this increased behavioral variety of event-triggered

2The input data may trigger new events.
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DASs, a larger number of comprehension strategies is required than for a
comparable time-triggered DAS.

6.7.5 Size of the Problem Space

In an event-triggered DAS the increased behavioral variety results in a larger
problem space for system development. The unpredictability of the dynam-
ics of the environment are directly reflected by the system behavior, which
results in arbitrary sequences of job activations. For example, first job A
may be activated before job B, and the next time the jobs may be executed
in the reverse order. This increased variability must be considered when
designing a DAS. Mechanisms may be required that make the jobs indepen-
dent of the order and frequency of execution. So the non-determinism of
the environment must be handled inside the system.

In a time-triggered DAS the order of job execution results from the mes-
sage dependencies between the jobs. For example, if job A sends a message
to job B then job A is executed before job B. The static job schedule ensures
that the job sequence never changes at run-time. So resource conflicts and
concurrency problems are avoided by design. Moreover, in a time-triggered
DAS the relevant real-time entities in the environment are polled regularly
for their state. So the dynamics of the environment do not influence the
temporal behavior of the system. This reduced system behavior results in
a considerably reduced problem space for system development. The unpre-
dictability and non-determinism of the environment is not handled inside
the system, but abstracted away at the interfaces.

6.7.6 Hybrid Applications

As explained in the previous subsections, the time-triggered and event-
triggered approach of modeling differ considerably. We need to think in
different ways about an application, depending on whether it follows the
time-triggered or the event-triggered paradigm. This means that mixing up
the two approaches in a single system requires a combination of both ways
of thinking. If aspects of both paradigms are intertwined in the same appli-
cation, or if mutual influences between time-triggered and event-triggered
application systems cannot be ruled out, this makes system development
and analysis very hard. Moreover, many advantages of the time-triggered
approach, such as a high degree of conceptual decoupling between compo-
nents, do not exist in hybrid systems.

In a hybrid integrated system that supports time-triggered as well as
event-triggered control, it is thus essential to clearly separate the time-
triggered from the event-triggered functionality. In the DECOS architec-
ture, this separation is supported as a control strategy can be established
per DAS, and mutual interferences between different DASs are ruled out
by the encapsulation service. Moreover, for safety-critical (time-triggered)
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DASs, no dependencies on messages from non safety-critical DASs are al-
lowed.

6.8 Chapter Summary

Time-triggered systems in general and the time-triggered DASs of the
DECOS integrated architecture in particular provide various mechanisms
that support system comprehension.

State messages are used as the only means for communication between
application jobs. They are self-contained and enable the development of
components with low relational complexity. The dynamics of the environ-
ment are abstracted by periodic state message readings, enabling a stable
and simplified view of the relevant real-time entities.

Temporal decoupling between time-triggered components is achieved by
the provision of a sparse global time-base, together with temporal firewalls
that prohibit control flow across the interfaces. So the components on either
side of the interface can operate according to their individual schedules.

For event-triggered DASs, control flow across job interfaces is typical,
which results in long and often net-like causal event chains. Oversimplifi-
cation of the event chains and ignoring relevant side-effects is more likely
when analyzing event-triggered than time-triggered DASs.

As the conceptual structuring of time-triggered and event-triggered
DASs differs considerably, the clear separation of event-triggered and time-
triggered functionality at the DAS level is essential to ensure that the advan-
tages of the time-triggered approach regarding comprehensibility are main-
tained.

The encapsulation service ensures that no unintended interactions be-
tween different jobs can occur. The restriction of all interactions between
jobs to message exchange via well-defined ports makes all interactions ex-
plicit and avoids implicit interfaces. So hidden dependencies are avoided by
design.

Temporal decoupling, a full specification of all input and output ports,
and the provision of the encapsulation service are the key factors for a high
degree of conceptual decoupling between the jobs of a time-triggered DAS.
Time-triggered DASs provide built-in conceptual segmentation at the job
interfaces.

The conceptual decoupling of time-triggered components allows to re-
duce the scope of consideration during component development to the com-
ponent itself. In the DECOS architecture, each DAS can be considered a
nearly-independent subsystem of the integrated system. Similarly, each job
can be considered a nearly-independent subsystem of a time-triggered DAS.
Of course, the degree of decoupling between the jobs of a DAS is lower than
that between different DASs.
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The provision of the port concept in just two basic forms – with time-
triggered and event-triggered control – reduces the number of architectural
communication mechanisms to a minimum. This reduces the amount of
learning effort and also the cognitive effort when analyzing an system.

The logical system structure does not contain deep hierarchical relation-
ships or dependencies. The system is structured vertically into a safety-
critical and a non-safety-critical subsystem and – at the same level of ab-
straction – into various DASs. The only hierarchical relationship is that
various DASs are further subdivided into jobs. However, at the job level
this hierarchical subdivision is not visible any more due to the introduction
of virtual gateways. So for any application development task, there is just
a single level of abstraction regarding structural units.

The provision of a dedicated virtual networks for each DAS allows for
service optimization and supports an optimal level of abstraction of the
communication services for each DAS.

The architecture provides various architectural services that serve as a
validated and stable baseline that reduce the problem space for application
development and enable a high degree of structural regularity. The architec-
tural services provide a simplified environment for the applications as they
support the transparent masking of various classes of failures and enable
determinism at the application level. So coherent applications that are easy
to understand and reuse can be developed. Furthermore, a clean separa-
tion of concerns between application functionality and generic architectural
services is ensured.

The support for composability ensures stable application models regard-
ing the integration process. The architectural fault-tolerance and encapsu-
lation services ensure application model stability even in case of faults.

The sparse global time-base provides an abstraction of real time that
more closely resembles our natural understanding of time than the use of
various local clocks that are not perfectly synchronized. Moreover, a sparse
global time allows to model simultaneity and supports determinism. It also
represents a reduced model of time that avoids small-scale concurrency prob-
lems. The availability of a model of time simplifies the implementation of
globally coordinated functionality and avoids the introduction of timeouts
and similar mechanisms. The globally synchronized, system-wide action lat-
tice induced by the sparse time-base provides behavioral regularity of the
system.

The DECOS architecture follows a strictly model-based approach which
supports a high level of abstraction for the modeling of applications in the
PIM, abstracting from the details of the underlying platform. The two-
level design methodology ensures composability and enables the indepen-
dent development of jobs or whole DASs by different suppliers. So the job
interfaces provide stable building blocks for component-based application
development.
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Model-based development is also supported for the hardware platform
where pre-defined building blocks created by experts are provided.

The models can be verified according to architectural meta models and
pre-defined constraints. So design errors can be detected during the model-
ing process. The PIM is transferred to a PSM with tools support to relieve
the developers from resource allocation and schedule generation tasks.
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Chapter 7

Conclusions

This section first summarizes the most important aspects of the dissertation,
then outlines the scientific contribution and finally describes open issues that
need further research.

7.1 Summary

Managing the complexity of computer system design has always been subject
to research in computer science. The increase of the abstraction level from
the early programming languages to today’s modeling environments has al-
leviated some of those problems. However, temporal composability and
independent development of components is not possible by only increasing
the level of abstraction. A major problem are the inherent relationships be-
tween components. Just as almost no single concept can be fully described
in isolation, the same problem occurs during system development. When
we develop a single component of a distributed application, we always need
some knowledge about the other components in the system.

The only promising strategy to avoid complex development tasks is the
decomposition of a large system into nearly-independent components that
can be developed almost independently. The components must be compos-
able so that their integration into the system can proceed with minimal
effort.

In this thesis self-contained system-level components are suggested as
a means to provide nearly-independent components that can be integrated
with just minimal effort. A two-level design approach enables the design of
fully specified component interfaces where mismatches can not occur. All
application functionality is implemented by the system-level components, so
no design effort is left at the system level. A composable architecture with a
two-level design methodology ensures that the properties of the components
also hold when the components are integrated. So behavioral stability of
the components is guaranteed and uncontrolled emergent properties can be
avoided. In addition, a single level of abstraction of components reduces the
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complexity of the modeling and integration tasks.

Full conceptual independence between components is not possible due to
the inherent relationships between collaborating components. However, con-
ceptual decoupling is the key for independent development of components.
If there are lots of conceptual interdependencies between components, com-
prehensibility is impaired significantly as it is not possible to consider a
component independently of other components. The characteristics and the
placement of the interfaces decides on the degree of conceptual decoupling
that can be achieved. State message interfaces serving as temporal firewalls
support a high degree of conceptual decoupling as state messages are self-
contained and can fully describe a real-time entity. In addition, temporal
decoupling is enabled as temporal firewalls avoid control flow across inter-
faces. The provision of a sparse global time-base that can trigger component
functions supports the temporal decoupling between components as the tem-
poral control can remain component-local. This means that the control flow
is broken up at the component interfaces, which avoids long causal event
chains. Such event chains are a major factor for relevant relations between
components. So state message interfaces allow for simple system structuring
by minimizing relational component properties, hence limiting the scope of
consideration for component development to a single component.

A globally available notion of time most closely resembles our natural
understanding of the concept of time, which is that of an omniscient ob-
server. It avoids the introduction of the concept of multiple parallel local
clocks that are not perfectly synchronized. A sparse global time-base fur-
ther simplifies system development as globally coordinated actions of the
system and simultaneity can be modeled easily. In addition, a consistent
interpretation of time and order is guaranteed for all events that are in the
sphere of control of the computer system. Furthermore, the abstraction of a
sparse time-base represents a reduced model of time where small variations
in timing can be ignored.

Segmentation at the system level means to split the large system into
smaller conceptual units. If these conceptual units correspond to the techni-
cal units (components) that build up the system this structure can be seen as
built-in segmentation and chunking: The border lines between the compo-
nents, i.e., the interfaces, correspond to the conceptual segmentation lines;
chunking is provided by the abstraction of the interfaces. So built-in segmen-
tation and chunking supports the conceptual decoupling of the components
by minimizing relational properties. Moreover, the conceptual structure is
easy to identify, which supports external cognition: The conceptual units
that are needed for understanding are also reflected by the system structure
and do not just exist as mental representations. The component-oriented
approach presented in this thesis supports built-in conceptual chunking and
segmentation at the component interfaces. All interactions between com-
ponents are redirected through ports, which makes them explicit, hence
avoiding implicit interfaces.
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The provision of systematic fault-tolerance can help to reduce the com-
plexity of various development tasks. Application-specific fault-tolerance
can be minimized, so the design problem is simplified considerably. More-
over, architectural fault-tolerance enables a separation of concerns: Appli-
cations contain only application functionality, whereas the fault-tolerance
functions are provided by the architecture. So conceptually coherent ap-
plications can be developed. In addition, the architectural fault-tolerance
leads to increased structural regularities that support comprehension.

An architecture that supports composability enables the use of stable
models across various development phases. This is a considerable advantage
compared to an architecture that does not support composability, where
different models of a component must be used, depending on whether a
component is considered in isolation or as an integrated part of the system.

In time-triggered systems, the instants when actions are triggered rep-
resent the focal points for conceptual structuring of system behavior. This
keeps causal event chains short. In event-triggered systems it is the oc-
currence of events that provides a basis for conceptual structuring, not the
time-line. Causal event chains resulting from interconnected event handlers
are typical for event-triggered systems. Long and net-like causal event chains
result in complex causality and high relational complexity when analyzing
the possible effects of an event, or when determining the causes of a system
reaction.

In addition, the behavioral regularity of time-triggered systems, which
results from the cyclic operation, requires just a low number of comprehen-
sion strategies. Event-triggered systems exhibit far more behavioral variety
and unpredictability which increases the problem space for system analysis
considerably.

Determinism enables deductive reasoning, which is essential for the ra-
tional analysis of behavior. Hence, computer system architectures must
support the development of highly deterministic applications. The DECOS
integrated architecture supports determinism at the application level, in-
duced by the sparse global time-base, architectural fault-tolerance, deter-
ministic and timely message transport, the encapsulation service, strong
fault isolation, and by the consistent diagnosis of failing nodes.

7.2 Contributions

The introduction of hierarchical relationships and abstraction is the usual
approach to reduce the complexity of development tasks. This is the concept
of divide and conquer, which is not new, of course. However, the traditional
approaches such as structured or object-oriented development do not provide
a high level of conceptual decoupling between the subsystems. So indepen-
dent development of components is not possible as component developers
always need some knowledge about the other components of the system.
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The approach presented in this thesis is more than just traditional di-
vide and conquer, though. The component model supports a high degree of
conceptual decoupling of components so that the component interface spec-
ification is sufficient for all reasoning about the component. A theoretical
basis for conceptually dividing a large system with many interdependencies
into decoupled nearly-independent components with well-defined interfaces
is introduced. The characteristics of component interfaces are analyzed in
detail with regard to comprehensibility issues, resulting in a guideline for
component interface design. In addition, various techniques for architectural
complexity management are presented, accompanied by cognitive support
theories.

In the computer science literature, interdisciplinary approaches to com-
plexity management can hardly be found, and to the knowledge of the author
there exist none in the area of embedded real-time systems. So the introduc-
tion of complexity management techniques for embedded real-time systems
with regard to psychological theories represents a unique contribution of
this work, especially the analysis of conceptual chunking and segmentation
support by interfaces.

In addition, architectural real-time systems concepts are analyzed with
regard to their support for complexity management. The effects of the ar-
chitectural concepts on comprehensibility have never been fully analyzed, so
lots of knowledge was left implicit. The cognitive support theories provided
by this work make the advantages of specific architectural concepts explicit.
So a theoretical framework is available that justifies the claims that some of
the architectural concepts can really support comprehension.

7.3 Open Issues

To be able to make statements about the complexity of more specific de-
velopment and maintenance tasks than for general system comprehension,
cognitive process models of the tasks must be developed. However, it is yet
unclear if it will ever be possible to determine exact cognitive process models
that are generally applicable. As human reasoning heavily depends on the
knowledge base in long-term memory, which can be different for every sin-
gle person, the cognitive processes may vary considerably. For example, an
experienced developer may use a more efficient chunking and segmentation
strategy for a given problem than a novice.

Furthermore, empirical evaluations of the predictions made in this work
will have to be done. However, this is beyond the scope of this thesis as
large-scale experimental evaluations with real-world applications are neces-
sary. Most problems that can be alleviated with the complexity management
techniques proposed in this work can only be observed in large real-world
systems. The extraction of small-scale experiments with the same charac-
teristics seems unfeasible.
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