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Abstract

Due to the increasing demand to have access to data anywhere at any time, distributed systems
are more important these days than they were in the past. Most of the deployed distributed
systems have considerable restrictions such as that both communication partners must be aware
of each other and running at the same time. These problems are addressed by e.g. space
based systems, which allow decoupled communication in time and space via a so called shared
space. The JavaSpaces technology developed by Sun Microsystems and the newly developed
eXtensible Virtual Shared Memory (XVSM) at the Institute of Computer Languages at the
Vienna University of Technology are such space based systems.

This diploma thesis is concerned with the design and implementation of the JavaSpaces API
standard for XVSM, using MozartSpaces, the Java based open source implementation of the
XVSM model. The implementation shall be realized by developing a “middleman”, enabling
the collaboration between the JavaSpaces API standard and MozartSpaces. As a result, already
existing JavaSpaces based systems and applications may use MozartSpaces without the neces-
sity to adapt or rewrite their source code. Furthermore the implementation shall demonstrate
the flexibility and extensibility of MozartSpaces.



Kurzfassung

Aufgrund der steigenden Nachfrage an jedem Ort zu jeder Zeit Zugriff auf Informationen
zu haben, sind verteilte Systeme heutzutage wichtiger als sie es noch in der Vergangenheit
waren. Viele der eingesetzten verteilten Systeme haben bedeutende Einschränkungen, wie zum
Beispiel dass beide Kommunikations-Partner sich kennen und zur gleichen Zeit erreichbar sein
müssen. Diese Probleme werden durch z.B. Space-basierte Systeme angesprochen, welche eine
Entkoppelung von Zeit und Raum mittels eines so genannten gemeinsamen Space ermöglichen.
Die von Sun Microsystems entwickelte JavaSpaces-Technologie und das am Institut für Com-
putersprachen der Technischen Universität Wien entwickelte eXtensible Virtual Shared Mem-
ory (XVSM) sind solche auf Space basierende Systeme.

Diese Diplomarbeit befasst sich mit dem Design und der Implementierung des JavaSpaces-
API-Standard für XVSM, unter Verwendung von MozartSpaces, der Java-basierenden Open-
Source-Implementierung des XVSM Modells. Die Implementierung soll durch die Entwick-
lung eines “Vermittlers” realisiert werden, der die Zusammenarbeit zwischen dem JavaSpaces-
API-Standard und MozartSpaces ermöglicht. Als Ergebnis sollen bereits existierende Java-
Spaces basierende Systeme und Applikationen MozartSpaces verwenden können, ohne die
Notwendigkeit der Anpassung oder des Neu-Schreibens ihres Quellcodes. Weiters soll mit
der Implementierung die Flexibilität und die Erweiterbarkeit von MozartSpaces demonstriert
werden.



Danksagung
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Chapter 1

Introduction

The constant growth of the internet (over 1400 million users in 2008) and the steady distribu-
tion of mobile devices makes distributed applications more attractive than ever before. This
is due to the various services, which can be used by users independent from their location via
their mobile devices, offered by distributed applications. Although, it is a handsome benefit for
users, it is a challenge for developers to engineer. They must overcome and hide the drawbacks
of mobile devices such as heterogeneous hardware, various operating systems, different con-
nectivity and network failures. In order to simplify the development of distributed applications
and relief developers of coping with the mentioned problems, various middle-ware systems
have been introduced in the course of time.

The most widespread middle-wares are message passing and remote procedure calls (RPC)
systems, but these synchronous communication systems have several drawbacks such as that
both communication partners, sending and receiving processes, must know each other, both
partners have to be available at the same time and if there is more than receiving processes to
be informed, a message must be sent to each of them.

Asynchronous communication systems such as message queues eliminate some of the above
mentioned problems by introducing a queue where messages are stored until the receiver(s) are
available and willing to accept the message. On the other hand, the sending process still must
know in which queue to place the message in order to send it to the right recipients.

Recently middleware systems based on the shared data space paradigm enjoy great popularity
because they well address the above mentioned problems. The precursor of such systems is the
Linda coordination language [54, 19], which enables the coordination of distributed processes
by providing a handful operations that access a shared tuple space. In general, space based
middleware offers the decoupling of distributed application participants in time and space.
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The JavaSpaces technology [7, 39] is such a popular space based middleware system. It was
developed by Sun Microsystems [16] as part of the Jini framework [71, 53, 52, 56], which
is based on a service oriented architecture (SOA) [63, 49], in the late 90s. Essentially the
JavaSpaces technology is more a service standard API specification with principally predefined
interfaces that simplifies the development of space based applications and leaves the actual
implementation to the developer.

Another newly developed space based middleware is the eXtensible virtual shared memory
(XVSM) [37, 35] developed at the Institute of Computer Languages at the Vienna University
of Technology [6]. XVSM provides many features such as various coordination types (First
In First Out (FIFO), Last In First Out (LIFO), etc.) and aspects. Should the offered features
be insufficient, XVSM offers possibilities to add new or modify existing features too. Mozart-
Spaces(MS) [62, 65, 11], the Java reference implementation of XVSM, provides support for
the standard JMS API [61], the JavaScript API [46] and a Java high-level API, but until recently
it did not supported the JavaSpaces API standard.

This thesis is mainly concerned with the development of the JavaSpaces API standard for
MozartSpaces. It shall prove that it is possible to implement such an API standard with lit-
tle effort on top of MozartSpaces, using only the resources (the various coordination types,
transactions, aspects and the ability to extend MozartSpaces with new features) provided by
MozartSpaces. Therefore, the Jini framework and the JavaSpaces API specification have been
analyzed to facilitate the best compatible implementation as possible.

The secondary objective of this thesis is the improvement of the existing MozartSpaces im-
plemenetations of the Linda coordination language to enhance its performance. For this pur-
pose the Linda coordination language has been analyzed as part of this thesis, to gain knowledge
about possible performance optimizations. A benchmark comparison between the original and
the revised implementation of the Linda coordination language should depict the performance
difference between both.

The remainder of the diploma thesis is structured as the following: Chapter 2 gives an intro-
duction to the concepts of the Linda coordination model and an overview about existing Linda
and Space based implementations. Chapter 3 gives a general view on the Jini framework and
its main components, followed by an insight into the JavaSpaces API standard specification
in chapter 4. Furthermore chapter 5 deals with an overview on MozartSpaces and various
its features. The revised LindaCoordinator as part of this thesis is presented in chapter 6,
including the design approach, implementation details and a benchmark comparing the per-
formance of the revised LindaCoordinator to the old one. Chapter 7 is concerned with the
main objective of this thesis, the design and implementation of the JavaSpaces API standard
as an extension for MozartSpaces. Chapter 8 comprises an evaluation of the implemented
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JavaSpaces-MozartSpaces API and a benchmark to compare its performance to the JavaSpaces
implementations GigaSpaces, Blitz and Outrigger. Chapter 9 summarizes the results of this
thesis.
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Chapter 2

Linda Coordination Language

In the year 1985 David Gelernter introduced a new type of concurrent programming, the gen-

erative communication model [54, 40, 41], better known as the Linda coordination language.
It is not a particular programming language, it is rather intended as an extension used by any
existing programming language.
The Linda coordination language’s basis is a “shared data space”, which is an abstract com-
putational environment called “tuple space” where data objects, called “tuples”, are stored or
retrieved by diverse processes. This enables among other things that processes don’t commu-
nicate directly with each other, rather they are using the shared data space to exchange data
and coordinate themselves, by placing data objects into or removing them from the space1.
Therefore the Linda coordination language is not only fully distributed in space but also fully
distributed in time [40]. The writing process does not need to wait for a reading process, it sim-
ply places its data into the shared data space, then continuing its work. The data objects remains
in space until another process, possibly created long after the data object has been placed into
the shared data space, withdraws it again. This is also the reason why the Linda coordination
language is a generative communication language. The Linda coordination language will be
referred to as the “Linda model” in the remainder of this diploma thesis.

The remainder of this chapter is structured as follows: First the basic principles of the Linda
model will be described in section 2.1. It is followed by the various terms in section 2.2 and
the supplied operations in section 2.3, of the Linda model. Finally section 2.4 gives a survey of
several popular implementations of the Linda model.

1The term “space” is commonly used to refer to the shared data space
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2.1 Basic Principles

The Linda model, particularly the data objects and the shared data space, is often described by
means of the “Blackboard” model [55], that is most often applied in the field of artificial intel-
ligence, but is applicable in this case too. The Linda’s shared data space is represented by the
blackboard and the data objects are represented by notes. Processes can exchange information
by putting notes on the blackboard, by reading all the posted notes or even withdraw them to
consume or alter the information. The diverse processes, that are collaborating this way, are
joining and leaving, which means that the notes on the blackboard exist independently from the
processes which created it as long as the notes are not removed. This leads to another important
feature of the Linda model: “Anonymous Communication”. The writing process is never aware
of which process will read the note it has posted, the same is true for the reading process, which
doesn’t know who has posted the note. Certainly it is possible to add additional information
to the tuples to specify both the process which has written the tuple and the reading process
the note was meant for, but apart from this “extension”, both processes aren’t aware of each
other.

2.2 Components

This section describes the various components, including the already mentioned template mat-
ching, of the Linda model in detail, in order to provide a foundation for the remainder of this
chapter and this thesis.

2.2.1 Tuple

In the Linda model the data objects are represented by data tuples, a fixed length ordered list
of typed fields, each possessing an assigned value, for example <“a string”, 3.1415, 42>. A
tuple can contain fields of different types. By definition it is not necessary that each field’s
value must have a value assigned. This is an important characteristics, because it enables to use
tuples with partly unassigned field’s values as a template for retrieving tuples from the tuple
space by template matching. Templates and the application of template matching when reading
from the tuple space will be described later in section 2.2.3 and 2.2.4.
Linda also specifies another type of tuples, the “live tuples” [54]. In contrast to a data tuple,
which contains only static data objects, a live tuple can contain both expressions and static data
objects, for example <“compute sum”, computeSum(2, 3)> contains the string “compute sum”
and the function “computeSum” that sum’s up two integers. After writing the live tuple into
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the tuple space, the expression is automatically evaluated. After execution the live tuple turns
into an ordinary data tuple that can be queried by processes like any other data tuple.

2.2.2 Tuple Space

In terms of the Linda model the shared data space is called “tuple space” for the simple reason
that it is used to either store data or live tuples. The Linda model only specifies the operations
that have to be supported by the space, and it is free for the implementation how the tuple space
is implemented.

2.2.3 Template

In contrast to conventional programming languages and programming techniques, where ele-
ments are accessed by their address, the tuples in the tuple space are accessed by a selection
query on its values. Therefore the Linda model specifies that tuples can only be read from
the tuple space by using a “template”. The template is used by the implementation to find an
appropriate matching tuple in the tuple space by comparing the template with all tuples that
are stored in the tuple space. Templates are nothing else than tuples but with the exception that
they are used only for finding appropriate tuples in the space. The unassigned value of a field
is called a “wildcard” when used in a template. Using wildcards in a template permits to find
similar tuples in the tuple space.

2.2.4 The Rules of Template Matching

Before the rules of template matching can be explained a few definitions are necessary. A tuple
T consists of one or more fields F. The ith field of a tuple T is denoted by the notation F i

T . In
addition, the ith fields’ type and value are denoted by the notation F i

T .type and F i
T .value.

The following three criteria [54] must be met, when comparing a tuple T to a template P, in
order to decide whether the tuple matches the template or not:

• size: Both tuple and template must be of the same size, that is they must have the same
number of fields.

• type: The corresponding fields F i
T and F i

P must be of the same type.

F i
T .type = F i

P.type

• value: If both field’s type match, the value of the corresponding fields F i
T and F i

P must be
matched by one of the following rules:
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– If both fields F i
T and F i

P have a value assigned then the equation

F i
T .value = F i

P.value

must hold else the fields are matching.

– If field F i
T has a value and field F i

P has a wildcard assigned, then the fields are
matching. In this case the value of F i

T is assigned to F i
P.

F i
P.value := F i

T .value

Table 2.1 depicts some examples of template matching, where the leftmost column contains
the templates and the uppermost row examples of tuples that either match the template or not.
Matching tuples are denoted by a X.
If there are several tuples that match the template, one of them is chosen randomly. On this

Template <“Apple”, 42> <“Orange”, 42, 3.1415>
<“Apple”, 42> X —

<“Orange”, 42, 3.1415> — X
<“Orange”, ?int, 3.1415> — X

<?string, 42, 3.1415> — X
<?string, ?int, 3.14> — —

<?string, ?int> X —
<?string, ?int, ?float> — X

Table 2.1: Template matching examples

account the Linda model has a nondeterministic behavior. It might happen that a tuple is never
read or taken from the tuple space although there are reading and taking processes which use
an adequate template.

2.3 Tuple Space Operations

The original Linda model offers a simple interface, which specifies 4 operations to operate
on the tuple space, two write and two read operations that allow blocking reading. Later the
interface has been extended by two additional non-blocking read operations. The operations
will be now explained in more detail starting with the write operations and then continuing with
the read operations.

Write Operations

out() The out operation places an ordinary data tuple T into the tuple space.
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eval() The eval operation places a live tuple into the tuple space. The tuple space automatically
creates a new process for each task performing independently from each other. The result
is a data tuple that is stored in the tuple space and can be read. Although eval() is not a
write operation in the proper sense, its result is nevertheless stored in the tuple space too.

Read Operations

Both read operations, the rd and in operation, require a single tuple as parameter that serves as
template.

rd() Read a data tuple without removing it from the tuple space. Reading is performed by
using a template t to find an appropriately matching tuple. If there is no appropriate
tuple available that matches the template the invoking process is suspended until another
process creates an appropriate one.

in() The in(t) operation behaves in almost the same manner as the rd(t) operation except that it
removes the tuple from the tuple space.

Because both operations block until there is an appropriate tuple available in the tuple space,
two additional operations, rdP and inP, have been added to the Linda model. These operations
are the non-blocking counterpart of the rd and in operations. If there is no matching tuple
available in the space, both operations rdP and inP return with a failure.

Figure 2.1 shows a typical diagram between 2 different processes. Process A writes a tuple into
the tuple space, whereas process B successfully consumes the tuple later.

Figure 2.1: A simple tuple space example

2.4 Existing Linda and Space based Implementations

Since the introduction of the Linda model several systems based on the coordination model’s
principles were implemented in various programming languages. In the following, an overview
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of relevant implementations of the Linda model with focus on their used concepts and provided
extensions is given.

2.4.1 JavaSpaces

The JavaSpaces technology [7] is the Java based implementation of the Linda model by Sun
Microsystems.
The concepts of the Linda model have been extended by the advantages of object oriented
programming, which allows subtype matching and further by the addition of transactional op-
erations, event notification and leases for registered resources. A detailed description of the
JavaSpaces technology is given later in section 4. There are several implementations of the
JavaSpaces service available. In the following, the most popular ones will be described.

Outrigger Outrigger is the reference implementation of the JavaSpaces service developed by
Sun, which complies with the JavaSpaces specification. The current version implements the
JavaSpace05 interface, which also allows the use of the inherited basic JavaSpace interface.
Outrigger comes ready to use with the Jini framework. It also supports both a transient and a
persistent space services. The latter keeps its state between executions and even preserves the
committed entries in case of system failures.

Blitz Blitz [4] is an open source project, developed by Dan Creswell, which implements the
JavaSpaces service. It is a fully Jini enabled service that complies to the JavaSpaces specifica-
tions implemented on top of Berkeley DB. Blitz aims at making the development and deploy-
ment of JavaSpace technologies simpler in order to encourage the spreading of the JavaSpaces
technology. It comes as a ready to use package requiring the Jini framework only to run.
Blitz is intended to optimize the storage of entries by fast indexing and hence keep search times
to a minimum. The indexing mechanism uses both disk and memory to store entries. This
results in a trade-off between performance and reliability. Blitz already provides several pre-
defined configurations each intended to offer balance between data integrity and performance,
including a configuration that defines a complete transient behavior and one that defines a com-
plete persistent behavior.
Another mentionable feature of Blitz is that it can be run within the same JVM as the applica-
tion using it. Running Blitz embedded, circumvents the use of Blitz as a remote Jini service,
allowing faster access times. With the possibility to adapt the sources if required and to control
the tradeoff between persistence and performance, Blitz invites developers to experiment with
it.
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GigaSpaces GigaSpaces [5] is a commercial product, developed by a company with the same
name, that started as an implementation of the JavaSpaces technology aiming at high scalability
and high performance. In the meantime GigaSpaces has provided development frameworks not
only for Java but also for .Net and C++. The interoperability between Java, .NET and C++
platforms is realized through XML and is restricted to a specified list of types. The current
GigaSpaces version XAP6.6 supports a wide set of APIs, beside JavaSpaces such as JDBC for
SQL/IMDB queries. It also contains the OpenSpaces [13] framework, an open source initiative
of GigaSpaces, which is build upon the GigaSpace implementation and utilizes the Spring
framework [44].
Additional features provided by the current GigaSpaces version XAP6.6 are:

• The integration of external data sources such as Hibernate [31] (by default) or MySQL
[30]. External data soruces are deployed for persistancy of GigaSpaces.

• Clustering for scaling, load-balancing and high-availability.

• Security models for:

– Authentication via name and password.

– Authorization constrains the execution of specific operations on the space by as-
signing roles and permissions.

– Message encryption using SSL.

2.4.2 ActiveSpace

ActiveSpace [1] is a tuple space similar to JavaSpaces, but with a reduced API designed for
SEDA 2 style architectures on top of message oriented middleware like Java Message Service
(JMS) [48]. The features of such a JMS provider allows ActiveSpace to group spaces and
to create subspaces. ActiveSpace is also capable of using the available Quality of Services
implemented by a JMS provider, for example:

• Reliable messaging

• Durable (persistent) messaging together with message acknowledgement

• JMS transaction

• XA transactions for the use with other resources like databases

In contrast to the Linda model ActiveSpace does not use templates to query the space, instead
a SQL-92 query string is used to filter spaces and the results are placed into a subspace.

2SEDA (Staged Event-Driven Architecture) [72] is an architecture that decomposes complex, event-driven ap-
plication into a set of stages connected by queues.
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ActiveSpace can operate, similar to JMS, in two different modes: queue and publish/subscribe

based. The former one allows only one consumer to get the object which was placed in the
space, while the latter one allows any consumer who is currently subscribed to the space to get
the object.
In addition ActiveSpace offers with the implementation of JCache [8] transactional caching and
clustered caching.

2.4.3 Blossom

Blossom [69, 70] is a C++ class library, implementing a distributed tuple space that supports
the use of multiple tuple spaces. The standard Linda model is extended by additional features
[70] in Blossom. The most important ones are the following:

• Strongly Typed Tuple Spaces: In contrast to the Linda model, Blossom allows a single
tuple space to store only one tuple type. Therefore an application using Blossom might
have several tuple spaces, each strongly typed. The advantage is a gain in performance,
because the system knows which space contains which specific tuple.

• Field Access Patterns: Each field of a tuple additionally contains a flag indicating
whether the field is designated as “Actual” or “Any”. The information is used during
template matching where Actual means that a value must be specified in order to retrieve
the tuple field. Any allows the use wildcards as specified by the Linda model.

• Tuple Space Access Patterns: In Blossom it is assumed that a systems engineer already
knows the purpose of the tuple space. Therefore a unique access pattern can be applied
to each tuple space on creation, defining the way the tuple space will be accessed and
used during runtime. The different access patterns are:

– write-once Tuples can be written only during initialization of the space. Afterwards
the tuples are readable only and cannot be removed.

– private The space can be accessed only by one proccess.

– write-many The content of the space is frequently modified.

– result The space’s content is not needed until all data is collected together

– synchronization Two processes can use the space for synchronisation like semap-
hores. The read operation is not permitted in this access pattern.

– migratory The space can be accessed only by one proccess at the same time.

– producer-consumer Only a single process is allowed to write tuples to the space,
whereas several proccess can read or take the entries.

– read-mostly More read than write or take operations are performed on the space.
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– general read-write The general access pattern, which does not define any restric-
tions.

• Tuple Space Assertions: Assertions allow to get an insight into tuple spaces, but they
are only intended for debugging purposes. This is due to the fact that the whole tuple
space must be locked to assure that neither a tuple is added or removed from it during the
assertion process.

2.4.4 LIME

LIME (Linda in a Mobile Environment) [60, 51, 50, 10] is a tuple space written in Java that is
built on the Linda model but is adapted to the use with mobile agents. Mobile agents are defined
by LIME as both physical mobile agents, which reside on mobile hosts that are roaming through
the physical space, and logical mobile agents, processes that are migrating from host to host
while preserving their code and state.
Each mobile agent has a interface tuple space (ITS) bound to itself that is accessible through
the conventional Linda operations. The actual content of an ITS is determined on the one hand
by the tuples the owning mobile agent is willing to share with others and on the other hand by
the content of other ITSs of co-located mobile agents spread across the network. The space
created this way forms the “transient shared tuple space”. Each mobile agent has access to the
same transient shared tuple space as all the others. The content of the transient shared tuple
space is recalculated each time a mobile agent joins or leaves.

The current available LIME version uses LighTS (see section 2.4.5) as its tuple space and
offers support for mobile agents based on µCode3. Moreover there are two additional versions
of LIME available: TinyLIME [28] concentrating on wireless sensor networks and TeenyLIME
[27] focusing on for wireless sensor and actuator networks. Since these two implementations
are an extension of the original LIME they are not described in detail.

2.4.5 LighTS

LighTS [9, 22, 59] is a lightweight tuple space framework implemented in Java that only pro-
vides the basic Linda operations as well as building blocks (e.g. interfaces) to customize and
extend its functionalities. This means that the framework is designed as an minimalistic but ex-
tensible tuple space that does not support any features like distribution, persistence or security.
These features can be implemented using the provided building blocks by applications build
around LighTS.

3µCode[12] provides a minimal set of primitives to support mobility of code and state in Java.
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In the first place LighTS was designed as the core underlying tuple space for LIME (see pre-
vious section 2.4.4), but its flexible framework makes it possible for other tuple space based
systems to use LighTS as their core tuple space adapting it in a way that it meets their require-
ments.

2.4.6 MARS

MARS (Mobile Agent Reactive Spaces) [25, 26] is a tuple space for the coordination of Java
based mobile agents. It extends the conventional Linda model by reactions that can be associ-
ated to the space’s operations to alter their behavior. Reactions are specified by quadruplets of
the form <Rct, T, Op, I>, where Rct is the object containing the reaction that will be triggered
by the invocation of operation Op, matching a tuple T, by an agent with identity I. If both the
identity I and the tuple T are omitted the reaction will be triggered by each invocation of the
associated operation Op. The reaction quadruplets are stored in a “meta-level” tuple space that
is associated to the “base-level” space. Each invocation of an operation on the base-level space
triggers a meta-level pattern matching mechanism, which finds reactions matching the access
event, and executes them.
MARS also provides security on the base of authentication of mobile agents by their identity.
Furthermore it is possible to define roles for mobile agents to constrain their access level.

2.4.7 TSpaces

TSpaces [74] is a Java based tuple space system developed at the IBM Almaden Research
Center[2]. It is based on the concepts of JavaSpaces but provides a different API to access
the tuple space. The API offers several other operations besides the standard JavaSpaces op-
erations write, read and take that facilitate the work with the space like the operation count

that simply counts the found matching tuples and returns an integer, or delete that removes a
matching tuple from tuple space but in contrast to a take operation does not return it to the
process. TSpaces also introduces a new operation called rhonda in its API. A process invoking
the rhonda operation must pass a tuple as an argument. The tuple’s field types are used as a
template, which contains wildcards as values only to find a tuple offered by another rhonda
operation. If two matching tuples are found they are swapped between both operations and the
two involved processes will receive the other one’s tuple.
Additionally the latest version of TSpaces already supports the storage of XML documents as
tuple fields, which can be queried by using a subset of the XML Query Language (XQL) [18].
TSpaces provides several ways to retrieve a tuple from the space:
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• Match queries: Match queries further distinguish between:

– Structural matching: Standard template matching as specified by the Linda model,
but with subtype matching of each tuple field’s type.

– Object matching: Template matching as used by JavaSpaces, where the tuple’s type
can be a subtype of the template.

Structural matching is the default matching form used by TSpaces.

• Indexed queries: Named fields allow matching of tuples based on a provided field’s
name and value pair. Additionally, a range of values can be specified to be found by
the query in a best effort manner. This means that as many matching tuples as possible
should be retrieved.

• XML queries: Tuples that contain XML documents in their fields can be queried using
a subset of the XQL language.

• And queries: Combining two queries with an “AND” operator.

• Or queries: Combining two queries with an “OR” operator.

Because both And and Or queries can be used in a nested way, it is possible to use complex
query trees to retrieve tuples.
The functionalities of TSpaces can be extend and modified by defining custom operations that
are implemented by so called handlers and factories. Handlers are implementing the operation
that is mapped by the factory to an operator.
similar to JavaSpaces, TSpaces provides the specification of leases for stored tuples, the regis-
tration for events and the use of transactions to combine various operations into a single atomic
operation.
Furthermore TSpaces supports the definition of access permissions that constrain access to the
space on operational level based on user identification with name and password. Users are as-
signed to user groups, which have assigned permissions too.
Depending on its utilization TSpaces can be either used with real database systems (like the
IBM’s in-house product DB2) or a computer memory based data structure as their tuple stor-
age.

2.4.8 TuCSoN

TuCSoN (Tuple Centers Spread over Networks) [57, 58, 17] is a coordination model intended
for the coordination of mobile information agents. Mobile agents are interacting with each
other through a local communication space, which consists of multiple tuple centers, located
at every node of a TuCSoN environment. A tuple center is an extension of the conventional
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tuple space model, allowing the definition of different behaviors in response to communication
events. The behavior of a tuple center is altered through the definition of reactions that are as-
sociated with the appropriate communication events. Reactions are defined in the specification
language ReSpecT (Reaction Specification Tuples) [29, 14].
The execution of an operation triggers all associated reactions at the specific tuple center. In
such a case, all reactions are carried out in a single transaction, where either all are performed
or none of them. This is realized in such a way that the agent is after all unaware of the various
reactions that were triggered by the invocation of an operation.

2.4.9 XMLSpaces

XMLSpaces [67] is an extension of the Linda tuple space model that adds support for storing
and querying XML documents in a space, developed at the Technical University of Berlin.
XMLSpaces is built on top of TSpaces (see previous section 2.4.7) utilizing its extensibility to
facilitate the storing of XML documents as tuple fields by sub-classing the TSpaces’ Field
class. As matching relations XMLSpaces offers several XML query languages such as XQL or
XPath, structural matching with respect to a DTD and equality of XML documents.

2.4.10 XMLSpaces.Net

XMLSpaces.Net [68] is a further development of the aforementioned XMLSpaces (see sec-
tion 2.4.9) and implemented on top of the .Net platform. The basic concepts of XMLSpaces
have been adapted and further improved by the .Net implementation. The similarities of XML
documents and tuple spaces were taken into account for the implementation. Both share the
characteristics of a tree, XML documents by definition and tuple spaces by containing either
nested spaces or tuples, whereby the latter might again contain either nested tuples or fields
(being the tree’s leaves). XMLSpaces.Net considers the tuple space as a single XML docu-
ment, where tuples are stored as nested XML documents with XML based serial representation
of fields containing objects.
XMLSpaces.Net extends the matching capabilities of XMLSpaces by additional features such
as FlatTemplate- and DeepTemplate-matching. FlatTemplate matching considers only the first
level without further testing the fields for content equivalence. However, DeepTemplate match-
ing performs a complete recursive matching, considering also the contained sub-tuples.
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2.4.11 Corso

Corso [33, 24] is space based middleware developed at the Institute of Computer Languages
at the Technical University of Vienna by the space based computing group (SBC-Group) [15].
In contrast to the other tuple space systems, Corso is based on the concepts of virtual shared

memory [34] that allows the sharing of data objects between processes for coordination or
information exchange.
The Corso kernel itself is written in C, but provides several language bindings such as Java,
.Net, Ada and C++. Apart from transactions and persistence, Corso supports as well replication
of data objects across a network of Corso kernels.

2.4.12 XVSM

XVSM (eXtensible Virtual Shared Memory) [32, 37, 36] is a space based middleware based
on the concepts of virtual shared memory and developed as well as its predecessor Corso (see
section 2.4.11) at the Institute of Computer Languages at the Technical University of Vienna
by the space based computing group. It integrates the concepts of P2P-networks [20] to set
up a distributed shared space amongst the participating and distributed clients, referred to as
peers. Tuple spaces are represented in XVSM by containers that have one ore more coordina-
tion types, which describe the way how tuples can be stored and accessed by clients, assigned
to it. Beside transactions and event notification, XVSM supports aspect-oriented programming
[45] to extend and modify the behavior of its space operations on a specific container either
before or after the operation is performed.
There are already two open source implementations available, a Java based implementation
called MozartSpaces [65] and a .Net based implementation called XcoSpaces [64]. Both im-
plementations are able to interact with each other through a XML-based protocol.
A more detailed description of XVSM and MozartSpaces is given in section 5.
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Jini

The idea of this thesis is to realize the JavaSpaces API on top of the XVSM API. Since Java-
Spaces is a part of the Jini framework a detailed description of the framework will be given
in the following sections. Jini [21] is a Java based Middleware technology, developed by Sun
Microsystems. It is a distributed and service oriented network architecture that enables services
and devices to interact without the need of time consuming configuration. Sun refers to this
mechanism as “spontaneous networking”, where both hardware and software can be integrated
and removed dynamically. Software and hardware components shall “federate” together in a
network through the use of Java technology.
In order to achieve this objective, Jini provides an infrastructure of components, which turns
the network into a flexible and easy to handle tool that provides a high level of abstraction.
The Jini technology is not responsible for managing resources1, but it facilitates the publishing
and discovering of providers of resources, as depicted in figure 3.1. In the terms of the Jini
technology the provider of resources is called a “service”.

The Jini technology is a general architecture (see figure 3.2), which provides a simple but pow-
erful API that extends the Java API and is based on Java Remote Method Invocation (RMI),
which allows to pass and exchange objects over the network. The Jini API [71] is a collection of
service and component specifications, e.g. the JavaSpaces API service and the Jini transaction
specification, represented for the most part by interfaces and abstract classes. The Jini architec-
ture distinguishes between services, which are forming the central point of the Jini architecture,
and clients, the users of services, which can be either normal users or even other services. Ser-
vices and clients are forming together the so called “Jini Community”. Services must register
themselves at a lookup service to make it possible for other clients in the Jini Community to
find them. A more detailed description of services will be given in section 3.1.

1Resources can be everything that can be used by clients or even by other services, e.g. a service, computing
power, secondary-storage or hardware.
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Figure 3.1: Jini service

Figure 3.2: Jini architecture
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Jini is not just a gathering of diverse services. It allows and encourages writing services that
build upon already existing services. In other words a service can be the client of another
service and can offer its own service to other services or clients. The term “client” is therefore
used in this chapter to refer to clients and services, which are using other services for their
operations.
The Jini specification defines also the use of special objects, called entries, everywhere, where
objects are exchanged and exact-match lookup semantics plays a decisive role. Entries are not
addressed directly by naming, but their content is matched against so called templates. More
about entries, templates and how template matching is performed will be discussed in section
3.4.

Another essential element of the architecture is the already mentioned lookup service. The
lookup service is necessary to publish services and accordingly to find a service in the network.
It can be considered as a directory of services, where clients can search for a particular service.
As the name implies the lookup service is itself a Jini service, with the task to administrate and
provide references to other services. Section 3.2 is concerned with the lookup service and its
functionality.
Another service that is specified by the Jini specifications is the JavaSpaces service, which is
Sun’s implementation of the Linda coordination model on top of the Jini architecture. It is a
good example of a service which takes advantage of other Jini services and components. The
JavaSpaces’ functionality and its requirements will be described in more detail in chapter 3.3.
There are several other services specified by the Jini framework2 but their description is beyond
the scope of this thesis.

The Jini technology predefines further components, which facilitate services and clients to fed-
erate and work together, like transactions, notifications and leases. Build upon a “Two-Phase
Commit Protocol” [66], the Jini transactions allow clients to perform several operations at
different services as a single operation with the guarantee that either all operations will be per-
formed or none of them. The creation of a transaction and the coordination of the two-phase
commit protocol between the transaction participants is the transaction manager’s responsibility
[53]. The transaction manager itself is a Jini service. More detailed information on transactions
will be presented in section 3.6. Distributed events are an important feature of the Jini tech-
nology: Clients can register for an event they are interested in and be informed as soon as the
event occurred. Details on the functionality of distributed events will be described in section
3.7. ASsuming that due to network failures resources and services cannot be used forever, or
due to the mobility of clients unable of assuring their presence permanently, everything in the

2e.g.: Lease Renewal Service - a service that takes care of the renewal of leases on behalf of the lease holder or
Event Mailbox Service - a service which gathers notifications, allowing the client to obtain them at once when
required.
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Jini world is leased. Leases can also be considered to be the “garbage collection” mechanism
of the distributed Jini system, where resources are removed silently and automatically as soon
as the lease expired. Of course, Jini allows the “renewal” of leases in order to show that there
is still interest in the resources. Jini leases will be discussed in more detail in section 3.5.

Although Jini is more likely a specification in the form of an API that consists of several in-
terfaces, Sun assists the development of services by providing default implementations of its
basic services and components. Towards the end of 2005 Sun decided to rerelease the Jini
specification, bundled together with its default implementations of the before mentioned ser-
vice and component specifications into the “Jini Starter Kit” as version 2.1, which is the latest
release by Sun. The new starter kit was not the only improvement Sun made, but also it was
released under the Apache License Version 2.0 making the sources available to everyone. As a
result, the open source community started a project called “Apache River” [3], with the aim to
further develop the Jini framework. The current status of the Apache River project is, that it is
undergoing incubation at the Apache Software Foundation to become a part of it.

3.1 Jini Services

Jini services are distributed applications that provide their service to the Jini community by
publishing themselves at a lookup service. The lookup service is the only Jini service which
does not require registering itself at another lookup service to be findable, however, this is not
prohibited.
Services do not send their entire implementation across the network, but rather a proxy that
implements a well known interface. The proxy is responsible to enable the client to interact
with the Jini service by forwarding the client’s requests to the service. It may also preprocess
the client’s data before it is forwarded to the service or post process the service’s data before it
is delivered to the client.

Services may implement one or more of the Jini APIs as they require. Such services are called
“Jini enabled” and are obligated to comply with the corresponding interface specification, but
the implementation itself is not prescribed. This is necessary to ensure that a client, which is
looking for a service implementing a specific Jini API, can rely on the fact that it can use the
service only on the basis of the well-known API specification.

The Jini framework distinguishes between two types of Jini services: persistent and transient
ones. Persistent services maintain their state between executions3, whereas transient services
do not. The former can be run as non-activatable or as activatable service, which means that

3Their reliability at system failures depends on the implementation of the services.
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they are only running when they are needed and not wasting unnecessarily resources while they
are waiting. Transient services can only be run as non-activatable services.

The Jini starter kit contains a collection of default implementations of the services specified by
the Jini framework. A description of the contained services can be found in appendix A.

3.2 Lookup Discovery Service

The lookup service is one of the key-components of the Jini architecture. The lookup service
acts as the central “bootstrapping” mechanism of a Jini system to locate services. It is also
comparable to a directory containing an index of several services. A lookup service my contain
references to other lookup services, creating a hierarchical structure of lookup services. An-
other possibility would be to encapsulate other naming and directory services (such as DNS,
NIS or LDAP) in lookup services’ objects, providing a crossover between Jini lookup services
and other naming services.
The bootstrapping mechanism can be separated into two independent procedures:

1. Services making their service available by registering themselves at a lookup service.

2. Obtaining a reference to a service by looking it up at a lookup service.

Both procedures have in common that the client or service has to find a lookup service and
obtain a reference to it. Therefore, Jini offers a network-level protocol, used by Jini’s runtime
infrastructure, that offers two ways to obtain the reference to a lookup service: multicast- and
unicast-discovery. A multicast-discovery is a broadcast, particularly a UDP4 packet, across the
network, where it is expected that all lookup services respond that are available and within the
range of the multicast discovery. The client may choose one of the many lookup service remote
object references it received. In contrast the unicast-discovery assumes that the hostname and
the corresponding port-number of a specific lookup service are known. In this case it is tried
to connect directly via a TCP/IP5 connection to the known lookup service, and on success a
remote object reference to the lookup service is received.

The above introduced procedures of the bootstrapping mechanism will be described in detail
in the following, to provide a basis for the later implementation of the XVSM JavaSpaces API
(see chapter 7).

4User Datagram Protocol (UDP) [66]
5Transmission Control Protocol/Internet Protocol (TCP/IP) [66]
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3.2.1 Service Registration

The procedure of a service registration at a lookup service is depicted in figure 3.3 and described
below:

1. Find a lookup service through multicast- or unicast-discovery.

2. Receive the remote object reference of the found lookup service.

3. Join the lookup service by handing over the service’s proxy and additional attributes
wrapped in entry objects, which offer more information about the service that might be
helpful to a client to find the desired service.

4. Receive a lease as a confirmation about successful registration, as a reference to the
registered reference of the object and to be able to request the lease’s renewal.

Figure 3.3: Service registration

3.2.2 Service Lookup

The procedure of a service lookup by a client at a lookup service is depicted in figure 3.4 and
described below.

Before a client is able to interact with a lookup service it must first obtain a reference to it.
It can locate the lookup service via multicast- or unicast-discovery. Like all other services,
the lookup service sends back a proxy that implements the ServiceRegistrar interface,
the so called service registrar object. The client can now “look up” a service by invoking the
lookup method of the received object. The proxy forwards the request to the lookup service to
look up a service that matches in the first place the interface and optionally additional attributes
specified by the client. The lookup service will return the proxy of the registered service that
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Figure 3.4: Service lookup

matched the specified characteristics. From this moment on, the client interacts with the service
via the proxy it obtained by the lookup service.

3.3 JavaSpaces Service

The JavaSpaces service is Sun’s implementation of the Linda coordination model on top of
the Jini architecture. The JavaSpaces service specification is a good example of a service
which takes advantage of other Jini services and components to succeed. The JavaSpaces’
functionality and its requirements will be described in more detail in chapter 4.
Jini already provides a default implementation of the JavaSpaces service, called Outrigger, in
its starter kit.

3.4 Entry

Jini entries are the equivalent of tuples (see section 2.2.1) in the Linda coordination model. The
Jini Entry Specification defines that entries are designed to be used in distributed algorithms for
which exact-match lookup semantics are useful. An entry is a typed group of objects, which
correspond to the tuple’s fields, represented by a class that must implement the Entry marker
interface. In this thesis the term “field” is applied to the fields of an entry which are public,
non-static, non-transient and non-final in the context of Jini entries and template matching.

Entries have two applications in the Jini framework:
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1. When a service is registered at a lookup server, the registrant can optionally provide sets
of attributes which contain additional information about the service. A set of attributes is
represented by a class that is a subtype of the Entry interface, where the fields represent
the attributes. For convenience the Jini Starter Kit already provides classes for the most
common attributes (e.g. Name, Version) used for describing services in lookup services.

2. The Jini JavaSpace API specifies to use entries for the objects that are stored in and
retrieved from the space. The JavaSpaces services will be described in more detail in see
section 4.

The Entry specification prescribes that the fields of Entry objects have to be moved between ser-
vices and clients in marshalled form6. On the client side it is the task of the service’s exported
proxy to marshall and unmarshall the fields of the entry. The service has to store the entries in
the marshalled form, which allows faster exchange between the service and the client, as well
as faster matching against templates. If fields of an Entry object can not be unmarshalled, an
UnusableEntryException will be thrown.

3.4.1 Template and Matching

An entry that is used for matching by retrieval operations is called a template. Template fields
can contain either value references or null references as fields of entries, where null-references
are interpreted as wildcards by match operations. A template is a match against an entry if the
following rules can be applied to the corresponding fields:

• The entry’s type must be either the template’s type or a subtype of the template’s type. In
the last case all fields, which are not contained by the template’s type, are considered to
be wildcards, thus a template can match entries of any of its subtypes. The entry that is
returned by a retrieval operation must be of the type or subtype that has matched against
the template.

• Matching the value of the corresponding fields of an entry against the fields of a template
is similar to the matching of a tuple against a template in the Linda coordination model,
see chapter 2.2.3. The fields are compared in their marshalled form and are considered
to match if one of the following rules applies:

– If both fields are non-null, they are considered to be equal if the MarshalledObject’s
equal method returns true.

– If the template’s field is null, it is considered to be a wildcard that matches any
value, except null, of the entry’s field.

6serialized representation of an object in Java
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– Although it is not forbidden to store an entry that contains one or more fields with
unassigned values, it is not possible to match on null-valued fields. This is due to
the reason that a null-valued field is considered to be a wildcard field.

3.5 Lease

A challenge distributed systems have to meet is how to deal with forgotten, unneeded or out-
dated information, which is wasting resources. A garbage collection, in traditional sense, is
harder to realize in distributed systems, because to find a way to identify unreferenced or un-
used resources, is more difficult than in centralised systems. Therefore, the Jini specification
introduces another method to deal with out-dated information: it specifies that resources must
be leased. A “lease” constrains the time that the holder has to keep the resource, unless it was
explicitly removed before the lease expires.
This section introduces the concepts of the Jini Distributed Event specification and the Land-

lord package that is contained in the Jini framework. The landlord package is a semi-finished
lease manager, which can be easily used by services to support leases. For this reason and
because it was used in the first instance to implement the XVSM JavaSpaces API, the landlord
framework will be described more detailed than the Jini Distributed Event specification. A de-
tailed description of the specification is beyond the scope of this thesis and can be found in the
Sun’s original Jini Distributed Event specification [71].

3.5.1 Concepts of Jini leases

The Jini specification distinguishes between the “lease holder”, the entity which requests to
lease a resource for a specific amount of time, and the “lease grantor”, the entity that decides
whether to grant the lease and specifies the maximum lease time. The lease grantor’s decision
depends on the defined lease policy, whether a fixed period is always granted or the lease holder
request is involved in the decision. In the latter case there might be an upper limit on the lease
duration, defined by the lease policy, which the lease holder must not exceed. As soon as the
lease expires, the lease grantor will remove the leased resource without sending a “warning” to
the lease holder. However the lease holder is able to renew the lease at any time, informing the
lease grantor that it is still interested in the leased resource. This requires the lease holder to
take care of the lease itself. To simplify matters, the Jini framework provides a Lease Renewal

Manager that is able to renew leases on behalf of the lease holder automatically and silently.
The Jini framework specifies a “Lease Renewal Service”, which is a service that offers the
functionality of the lease renewal manager, and also provides a default implementation called
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“Norm”.
As soon as the lease holder does not require the leased resource any more it can cancel the
resource’s lease, causing the lease grantor to take care of removing the leased resource.
If the lease grantor has granted the lease of a resource for a specific period, it returns an object
that implements the Lease interface. As it is shown in the class diagram in figure 3.5, the
Lease interface provides amongst other things the methods renew, cancel, which allow the
lease holder to either renew or cancel the lease without contacting the lease grantor directly.
The lease object also contains the lease time that was granted by the lease grantor. The lease
holder must check the received lease, because the granted lease time can be less or equal to the
requested lease duration.

+FOREVER : long
+ANY : long
+DURATION : int
+ABSOLUTE : int

+getExpiration() : long
+cancel() : void
+renew(duration : long) : void
+setSerialFormat(format : int) : void
+getSerialFormat() : int
+createLeaseMap(duration : long) : LeaseMap
+canBatch(lease : Lease) : boolean

<<Interface>>
Lease

Figure 3.5: Jini Lease interface

3.5.2 Landlord Package

The Landlord package is intended to simplify the provision of leases in Jini services or other
Java RMI based distributed systems. To accomplish that the landlord package comes with an
almost ready to use solution that consists of a set of interfaces and classes, providing a basis
for the later lease’s implementation. A brief description of the most important ones is given
below:

Landlord Interface The basic interface that services, lease grantors so called “landlords”, must
implement, to be able to utilize the landlord package, is the Landlord interface, see
figure 3.6 for its class diagram. The interface specifies that leases must be identified
by a “cookie”, an Universally Unique Identifier (Uuid), internally by the landlord and
associated to the leased resources. Furthermore it specifies those remote methods that are
needed by the lease object, which the lease holder obtains after registering its resource
for a specified amount of time, to communicate back to the lease grantor.
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• cancel & cancelAll: Cancels the lease that is specified by the provided cookie.
CancelAll is a batch operation to cancel more than one lease, by providing a list of
cookies, with a single call. On failure it returns all leases that failed to be canceled.

• renew & renewAll: Renews the lease, specified by the provided cookie, by the re-
quested duration and returns the new lease object. RenewAll is a batch operation to
renew more than one lease, by providing a list of cookies and the related durations,
with a single call.

+renew(cookie : Uuid, duration : long) : long
+cancel(cookie : Uuid) : void
+renewAll(cookies : Uuid [], durations : long []) : RenewResults
+cancelAll(cookies : Uuid []) : Map

<<Interface>>
Landlord

Figure 3.6: Landlord interface

LeasedResource Interface To associate a lease with its resource the landlord package pro-
vides the LeasedResource interface, see figure 3.7 for the class diagram. It is the
correspondent part to the lease object that is handed over to the lease holder, which will
remain on the Landlord’s side. Hence, it contains the cookie and the expiration of the
lease. It is recommended but not required to include at least a reference to the leased
resource in the implementation of this interface.

+setExpiration(newExpiration : long) : void
+getExpiration() : long
+getCookie() : Uuid

<<Interface>>
LeasedResource

Figure 3.7: LeasedResource class

LandlordLease Class After the lease holder’s lease request was granted it receives a receipt,
represented by an instance of the LandlordLease class, as a confirmation. As de-
picted in figure 3.8 the LandlordLease class extends the AbstractLease class
and inherits from the Lease interface. There is no necessity to extend the Landlord-
Lease class, since it is ready for use as is. Amongst other things it allows to verify the
lease’s expiration and renew or cancel the lease by invoking the remote methods of the
landlord interface internally.

LandlordLeaseMap Class A ready to use class that allows to renew or cancel several Land-
lordLeases together in a batch process. Just as the LandlordLease class this class’
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LandlordLease

AbstractLease

<<Interface>>
Lease

Figure 3.8: LandlordLease class
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renew and cancel methods invoke the remote methods of the landlord interface internally.

<<Interface>>
LeaseMap

LandlordLeaseMap

AbstractLeaseMap

Figure 3.9: LandlordLeaseMap class

LeasePeriodPolicy Interface The LeasePeriodPolicy interface is implemented by ob-
jects that allow calculating lease grants and renewals on the basis of their implemented
lease policy. The interface’s predefined methods are grant and renew, as shown in figure
3.10, both requiring to hand over an instance of LeasedResource and the new lease
duration.

+grant(resource : LeasedResource, requestedDuration : long) : Result
+renew(resource : LeasedResource, requestedDuration : long) : Result

<<Interface>>
LeasePeriodPolicy

Figure 3.10: LeasePeriodPolicy interface

LeaseFactory Class After the lease time was successfully granted by the object that im-
plements the LeasePeriodPolicy interface, the LeaseFactory class creates a
LandlordLease class instance that can be returned to the lease holder. Figure 3.11
shows the LandlordLease class’ class diagram.
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-landlord : Landlord
-landlordUuid : Uuid

+LeaseFactory(landlord : Landlord, landlordUuid : Uuid)
+newLease(cookie : Uuid, expiration : long) : LandlordLease
+getVerifier() : TrustVerifier

LeaseFactory

Figure 3.11: LeaseFactory class

3.6 Transactions

Transactions are essential for distributed systems. They allow to treat a group of operations as
a single atomic operation and guarantee that either all operations will successfully complete or
none of them. I.e., operations wrapped in a transaction will appear to everyone as if they were
executed “simultaneously”.
Since clients can make use of several services at the same time, a client possibly wants opera-
tions that belong together, perhaps distributed over various services, to be performed as if they
were a single operation. In this case the client relies on the fact that either all operations will
be processed or none of them.
Jini transactions have been designed especially to coordinate transactions across multiple ser-
vices allowing clients to perform related operations on various services as a single atomic op-
eration. Jini does not confine the use of its transactions to Jini services only, any other service
can use Jini transactions premising that it behaves in conformity with the specification. Due
to the fact that Jini transactions are supposed to support distributed transactions over several
services it is build upon a “Two-Phase Commit Protocol”. The protocol requires that services,
which are involved in a transaction, vote on a commit request. Based on the result the services
will either commit (roll forward) or abort (roll back) the changes that where made under the
transaction. The Jini transactions specification distinguishes three kinds of actors that take part
in a transaction:

• The transaction manager (see section 3.6.2) is responsible to create, observe and coordi-
nate the progress of transactions.

• The transaction participant (see section 3.6.3) , in most instances a service but it can
be any process that supports the participant7 contract by implementing the appropriate
interface. It will be asked by the transaction manger to vote on a commit whether it is
able to roll forward or not.

• The transaction client (see section 3.6.4), which requests the server to create a new trans-
action, which it can use to perform operations on transaction participants and finally

7The term participant refers to transaction participant in this section
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completes the transaction by requesting to commit or abort it.

A transaction is created upon a client’s8 request by a transaction manager. Since transactions
are leased, the client has to provide a desired lease time (see chapter 3.5 for details about
leases) on transaction creation. If the client does not complete the transaction before the lease
expires, the transaction manager, which observes the transaction, will abort it. Apart from that
a transaction is assumed to be active as long as the client does not request the manager to
complete the transaction by requesting to either commit or abort the transaction, or the lease of
the transaction expires.

The sequence diagram of the Jini transactions procedure is depicted in figure 3.12. It shows
the afore-mentioned three parties (a single client, two participants and a transaction manager)
which participate in a typical Jini transaction procedure that commits. The sequence is as
follows:

1. The client has to find a Jini transaction manager in the Jini community. Therefore, it
queries a lookup service to send it a reference to a transaction manager.

2. The client requests the transaction manager to create a new transaction that is leased for
the desired period.

3. After receiving the new transaction from the transaction manager, the client can use it to
perform operations on various services which support Jini transactions.

4. The service has to join the transaction as a participant, at the first time one of its transac-
tional methods is called.

5. If the client has finished its work it will request the transaction manager to commit the
transaction, which thereupon initiates the two-phase commit protocol by requesting all
participants to “prepare” the commit of the transaction.

6. Participants return their decision if they are ready to roll forward in the next step to the
transaction manager.

7. The transaction manager receives all participants’ responses, decides to commit the trans-
action and notifies the participants to roll forward.

8. At last all participants commit the transaction making all changes under the transaction
permanent.

Furthermore Jini transactions enable to group transactions together into a single transaction.
Such transactions are called nested transactions, or also known as subtransactions. A nested
transaction behaves as if it was a normal transaction, but it is wrapped inside a parent trans-
action. Aborting a nested transaction forces neither the parent nor other nested transactions of

8The term client refers to transaction client in this section
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Client Transaction Manager Transaction Participant Transaction Participant

commit(txn)

prepare(txn)

prepared

prepared

commit(txn)

commited

commited

Figure 3.12: Sequence diagram of the two-Phase-Commit protocol

the parent to be aborted. Nested transactions are beyond the scope of this thesis and will not be
discussed in detail. A description can be found in [53].

The Jini transaction specification is only a guideline enabling the use of transactions between
Jini clients and services, the implementation details itself are left to the supporting Jini service
and are not predetermined. In the following the specification of the two-phase commit proto-
col will be presented that has to be supported by a Jini service, which offers support for Jini
transactions.

3.6.1 Two-Phase Commit Protocol

The two-phase commit protocol mainly describes how it can be guaranteed that a transaction,
which may consist of distributed operations on various services, is either carried out by all
participants or none of them upon the client’s request to commit. The two-phase commit pro-
tocol ensures that services, which are utilizing Jini transactions, can comply with the ACID
properties [43] much easier. Giving a brief summary, the ACID properties are:

Atomicity A transaction is atomic if and only if its contained operations are either all per-
formed or none of them is.
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Consistency It must be guaranteed that the state of a system is still consistent after a transac-
tion has completed.

Isolation Transactions that are performed on the same system at the same time must not be
aware of each other. This means that resources used by an operation of a transaction
have to be locked and are therefore unavailable for other transactions until the owning
transaction has completed.

Durability After a transaction has committed successfully its changes are made permanent,
and will still exist after a system failure.

The compliance to the ACID properties of Jini transactions depends on the implementation of
the supporting Jini services, but not on the transaction manager’s implementation.
As the name of the protocol implies, the process of committing a transaction is divided into
two phases:

1. Prepare Phase: The transaction manager asks all participants that joined the transaction
to prepare for commit. A participant must decide whether it is able to roll forward or not
in the next step and return its decision to the transaction manager. With its decision to be
able to roll forward the participant assures that it will make all changes, made under this
transaction, permanent, when asked to do so by the transaction manager.
This phase is commonly called the “Prepare Phase” but also referred to as the “Vote
Phase” in terms of Jini transactions, because the participants are voting by returning their
preparedness to commit to the transaction manager that will if the transaction can be
committed or not.

2. Commit Phase: The transaction manager sends the order to roll forward to the par-
ticipating parties if and only if each participant has voted independently to commit the
transaction. If only one participant voted that it is not able to commit in the next step,
the transaction will be aborted and the transaction manager sends the order to abort the
transaction to all participants.

3.6.2 Transaction Manager

The transaction manager is a Jini service that either implements the TransactionManager
or the NestableTransactionManager interface. It hast to be registered at a lookup ser-
vice like any other Jini service. In general it is concerned with the creation of transactions and
the coordination of the two-phase commit protocol, on a client’s request to commit a transac-
tion, between the transaction participants and itself. A transaction manager that implements the
NestableTransactionManager interface additionally supports nested transaction.
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Further description on the internal behavior of the transaction manager, whether supporting
nested transactions or not, are beyond the scope of this thesis and can be found in [71].

3.6.3 Transaction Participant

A Jini service that wants to provide operations that can be performed under transactions must
implement the TransactionParticipant interface and define transactional methods for
the client. The participant must join the transaction, after the client has invoked one of its trans-
actional methods with a non-null transaction, by calling the transaction manager’s join method
providing the transaction and a proxy that implements the TransactionParticipant

interface, otherwise the operation will not be performed under the transaction. The Trans-
actionParticipant interface allows the transaction manager to communicate with and
coordinate the transaction participant. The provided methods of the interface are shown in the
class diagram in figure 3.13 and are briefly described below:

• abort: The transaction manager requests the transaction participant to undo any changes
made under the transaction.

• prepare: The transaction manager asks the transaction participant if it is ready to roll
forward in the next step. The transaction participant has three possible responses:

– NOTCHANGED: The operations performed under the transaction had no effects
on the participant’s side. It does not have to wait for the transaction manager’s
answer to commit or abort the transaction.

– PREPARED: The transaction participant is ready to make the changes permanent.

– ABORTED: A failure occurred on the participant’s side. Hence, the participant is
not able to roll forward on a commit request.

• commit: The transaction manager informs the participant that it can roll forward now,
making all changes under the transaction permanent.

• prepareAndCommit: If the transaction manager has “prepared” all participants and
received only “NOTCHANGED” responses from all of them but one, it could call pre-

pareAndCommit on the remaining participant. The semantic of this method must be the
same as first to invoke prepare and then if it does not return ABORTED to call commit.

3.6.4 Transaction Client

In the Jini transaction procedure the client is the initiator. It requests the transaction manager to
create a new transaction and uses the transaction to unite several operations on various services.
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+prepare(mgr : TransactionManager, id : long) : int
+commit(mgr : TransactionManager, id : long) : void
+abort(mgr : TransactionManager, id : long) : void
+prepareAndCommit(mgr : TransactionManager, id : long) : int
+prepare(mgr : TransactionManager, id : long) : int
+commit(mgr : TransactionManager, id : long) : void
+abort(mgr : TransactionManager, id : long) : void
+prepareAndCommit(mgr : TransactionManager, id : long) : int

<<Interface>>
TransactionParticipant

Figure 3.13: Jini TransactionParticipant interface

The client completes the transaction by either requesting to commit or to abort the transaction.
The client does not need to implement any interfaces to use transactions but it has to look for a
transaction manager at a lookup service in order to receive a new transaction that it can use for
its operations.

3.7 Distributed Events

Sometimes clients and services are waiting for a certain resource to become available, for this
reason they can either use a blocking remote method of another service, where the wanted re-
source is expected to be, or poll the service periodically. However this leads to unnecessary
network traffic or will/may even block the calling process for a very long time.
With the support of distributed events Jini allows clients or Jini services to become a remote

event listener for events they are interested in. To become a listener the client or Jini services
must register with the object, also called the “event source” that is able to generate the event
of interest. If an event was triggered, the event source informs all registered listeners about
the occurrence of the event by sending them a so called “notification”, that is a class which
implements the RemoteEvent interface.
Due to the fact that events are propagated over the network via RMI, the delivery of the notifi-
cation is unreliable because it might get lost on the way to the listener. There is no guarantee
that all listeners will receive the notifications at the same time, that they reach each listener
in the same order or that a client receives the notifications anyway. Hence, each event has a
consecutive numbering so that the listener is able to reproduce the chronological order of the
occurrence of a certain event. It is left to the implementation of the event source whether it
retries, or how often it retries to notify a listener if it is unreachable. Depending on the imple-
mentation it can also happen that a notification a received more than once by a listener. For this
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reason, notifications have a unique ID and a consecutive numbering.
Because a listener may be only interested in a notification within a specified time, Jini speci-
fies that registrations must be leased because they are nothing else than resources, which are
managed by a service. Leasing event listeners is done in the same way as leasing entries (see
section 3.5).
This section will first introduce the RemoteEvent interface in sub-section 3.7.1, followed by an
explanation how listeners can register to be notified in section 3.7.2 and finally how listeners
are notified by an event source in section 3.7.3.

3.7.1 Remote Event

After an event is triggered, the event source has to notify the listeners, which have registered
for the occurrence of this kind of event. Listeners can register for various types of events
defined by the service which supports Jini distributed events. If a listener has registered for
more than one event at the same event source, it must be able to distinguish events from each
other, if it receives a notification. Therefore, the event source has to attach an instance of
the RemoteEvent class as a parameter of the call. The RemoteEvent class, the class
diagram (depicted in figure 3.14) provides additional information about the occurred event for
the listener:

• eventID: A unique ID9 identifying the event.

• seqNum: The actual event’s sequence number at the time of event generation.

• source: A reference to the event source, which generated the event. For instance, the
returned object might be a proxy that implements the remote interface of the source. But
this is left open to the implementation.

• handback: The handback object serves as a “reminder” for the listener to be remembered
why it has originally registered to notifications of such events.

3.7.2 Registration of a Remote Listener

The Jini framework does neither specify in which way a remote listener can register for an
event of interest at the event source nor what types of events the event source can offer for
clients to subscribe. However it specifies that the listener must provide a remote object on
event registration that implements the RemoteEventListener interface, a handback ob-
ject, and that the event source must lease the registration. It is left to the event source whether it

9The ID’s are only unique at a single service that supports distributed events.
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+EventObject(source : Object)
+getSource() : Object
+toString() : String

EventObject

RemoteEvent

Figure 3.14: Jini RemoteEvent class

prescribes how long a registration will be existent or it enables the listener to specify a desired
lease time on registration. Furthermore the Jini distributed event specification recommends the
event source to return an instance of the EventRegistration class (its class diagram is
depicted in figure 3.15) as a confirmation that the listener was successfully registered. The
EventRegistration class contains the following information:

• eventID: A unique ID identifying the event at an event source

• seqNum: The actual event’s sequence number at the time of registration provided by the
event source.

• lease: The lease object for the registration, containing how long the event source agrees
to send notifications to the registered listener.

• source: A reference to the event source, which generated the event. For instance, the
returned object might be a proxy or a remote interface of the source.

#eventID : long
#source : Object
#lease : Lease
#seqNum : long

+EventRegistration(eventID : long, source : Object, lease : Lease, seqNum : long)
+getID() : long
+getSource() : Object
+getLease() : Lease
+getSequenceNumber() : long

EventRegistration

Figure 3.15: Jini EventRegistration class
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3.7.3 Notification of a Remote Listener

As previously mentioned a listener has to provide a reference to its implementation of the
RemoteEventListener interface when registration at an event source. The Remote-

EventListener interface, the class diagram is shown in figure 3.16 specifies only the re-
mote method notify which is used by the event source to inform the listener about the occur-
rence of the event of interest. On invocation the event source has to provide an instance of the
RemoteEvent class to identify the occurred event. As already mentioned in section 3.7.1,
the RemoteEvent class contains a unique ID, identifying the event itself, and a sequence
number, which allows the listener to reconstruct the ordering of the events as they occurred at
the event source. The sequence number is also helpful if the listener either receives the same
notification more than once due to network problems or if the listener crashed and therefore
missed notifications. In the first case the listener might drop the duplicate notification. In the
second case it might request the service to resend the missed notification

+notify(theEvent : RemoteEvent) : void

<<Interface>>
RemoteEventListener

Figure 3.16: Jini RemoteEventListener interface

38



Chapter 4

JavaSpaces

The JavaSpaces [39, 23, 42] technology is a space based system developed by Sun Microsys-
tems, based on the concepts of the Linda model developed by David Gelernter, which has been
introduced in chapter 2. It enables Java distributed applications to collaborate, communicate
and coordinate through Java object exchange using a shared memory between two applications
instead of message passing or remote method invocation. The JavaSpaces technology is part
of the Jini framework and is itself an API specification of a Jini service. As a Jini service, it
makes use of other Jini services and components, like distributed transaction or events.
This chapter is dedicated to present an overview of the JavaSpaces service specification, starting
with a description of the architecture (see section 4.1), followed by a comparison of the Java-
Spaces technology and the Linda model (see section 4.2). Finally an insight into the usage of
transactions and leases is given before explaining the JavaSpace and JavaSpace05 interface.

4.1 JavaSpaces Architecture

A JavaSpaces service is made up of objects, called “entries” that are placed into a persistent-,
associative- and shared-memory, called “object space” or just “space”1.

• The space is persistent, as entries placed into the space will remain there until they are
explicitly removed from the space or their lease time expired (more about leases in sec-
tion 4.4). Certainly the entries will be still lost, if services crash or shutdown and they do
not use a persistent storage to store the entries.

• The space is associative because it finds entries by matching their type and content to a
template rather than by their name or memory location. (templates and template matching
were discussed in section 3.4.1)

1The term “space” refers to the implementation of the JavaSpaces service specification
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• As a Jini service the space is shared because it is remotely accessible by several concur-
rently working processes.

The JavaSpaces service specification specifies a few simple operations (see the JavaSpace- and
JavaSpaces05-API in section 4.6 and section 4.7.2), which enable to insert, read or remove
entries from the space. These key features are the Java equivalents to those of the Linda model.
A detailed comparison between JavaSpaces and the Linda model is given in chapter 4.2. The
collaboration between processes using simple operations on various spaces is depicted in figure
4.1, taken from [39].

Figure 4.1: Collaborating processes across spaces.

As a Jini service the JavaSpaces service specification takes advantage of other Jini service and
component specifications:

• Distributed Transactions: JavaSpaces uses the Jini transaction specification to bundle
multiple operations, which are possibly distributed on various JavaSpaces, into a single
atomic transaction. More about how JavaSpaces utilizes transactions in its service is
described in chapter 4.3.

• Distributed Events: To avoid that clients block on a read or take request, until a spec-
ify entry is available, JavaSpaces offers notifications. Notifications build on the Jini
distributed events specification. More about JavaSpaces notifications can be found in
chapter 4.5 and the methods a client can use for registration are explained in chapter 4.6
and in chapter 4.7.

• Distributed Leasing: A JavaSpaces service assigns each entry and each notification reg-
istration a lease time. This prevents that neither unneeded entries waste service resources
nor that clients are notified any longer than required. The utilization of leases by Java-
Spaces services is described in section 4.4.

• Entries and Templates: Entries are the objects that are stored by a JavaSpaces service in
its space. In order to retrieve an entry, a template has to be used because stored entries are
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non-accessible directly via a name or reference. Templates are used to find an appropriate
entry in the space. The JavaSpaces operations are described in section 4.6 and in section
4.7.

4.2 JavaSpaces compared to the Linda model

The JavaSpaces service specification is strongly influenced by the Linda model (described in
chapter 2).
The JavaSpaces specification as well as the Linda model specifies an associative, persistent
and shared memory that allows clients to collaborate, communicate and coordinate with each
other. The shared memory is called “Java Space” by JavaSpaces and “Tuple Space” by the
Linda model. The data objects, which can be stored in the space, exhibit another similarity.
A single data object is represented by a list of typed fields in the Linda model and is called a
“Tuple”, whereas in JavaSpaces it is an object of type “Entry” with fields declared as public.
The operations allow to place, read or retrieve data objects from the space and are similar in
both the JavaSpaces and the Linda model. Placing a data object into the space is achieved by the
write operation in JavaSpaces and the out operation in the Linda model. The only difference
between these operations, besides their naming, is that JavaSpaces specifies a lease time for
each written entry and provides support for using transactions. This guarantees that entries can
be removed when their lease time expires if they have not been taken in the mean time by a
process. The read and take operations of both, the JavaSpaces and the Linda model, require
to specify a “template” on invocation. This template is then used to match an appropriate data
object in the space. The process of template matching is identical for both except for matching
the field’s type. In this case the Linda model returns true if and only if the field’s type of the data
object, stored in the space, and the corresponding field’s type of the template are equivalent.
In contrast, JavaSpaces allows matching subtypes of entries, which means that a match returns
true if either both entry types are equal or if the template’s entry type is a supertype of the
compared entry’s type in the space.
The Linda model provides additionally the eval operation, which allows evaluating expressions
within the space by specifying a “live tuple”. The result of which is a tuple that is again
stored in the space. As stated in the JavaSpaces specification [7], JavaSpaces does not provide
this functionality because it would require additional security restrictions, such as execution
of arbitrary code only within a controlled environment, with limited resources and operations,
which is shielded from the host-system, to execute arbitrary computation on behalf of the client.
Aside from that it is possible to emulate the eval operation by using threads and specially
extended entries.
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On the other hand the Linda model neither contains notifications nor defines transactions or
leases, all three functionalities that are part of the JavaSpaces service specification.

The results of the comparison between the JavaSpaces service specification and the Linda
model are summarized in table 4.1.

Linda model JavaSpaces
Associative, shared memory Tuple Space Java Space

Data object Tuple Entry
insertion out(tuple) write(entry)

read rd(template) read(template)
consuming read in(template) take(template)

Evaluation in space eval() not supported
Notification not supported notify()
Transaction not supported Jini Transaction

Table 4.1: A comparison between JavaSpaces and the Linda model

4.3 Transactions

The JavaSpaces services take advantage of the Jini distributed transaction, see chapter 3.6 for
details, to group several operations possibly over several JavaSpaces services into a single
atomic transaction. JavaSpaces services must join each transaction as a participant in order to
be informed by the transaction manager if the transaction shall be committed or rolled back.
It is optional to the JavaSpaces client to be a participant too. For the sake of completeness,
joining a transaction would allow the client to observe the transaction and being involved in
the execution of the two-phase commit protocol. Figure 4.2 shows the interaction between
JavaSpaces services, clients and the transaction manager in a distributed transaction. Each
participating JavaSpaces service has to guarantee that on a commit either all modifications
under a transaction will be committed or none of them. Equally it has to guarantee that on a
rollback all modifications under a transaction are rolled back.

The various operations of the JavaSpaces and JavaSpaces05 API can be either invoked with a
null or a non-null transaction. Invocations with a null transaction will be handled by a Java-
Spaces service as if the operation was within a committed transaction. The JavaSpaces and
JavaSpaces05 API define additional behaviors on their operations if a non-null transaction is
used. The different behaviors of an operation in- or outside a transaction is explained later in
section 4.6 and 4.7, after the various operations have been discussed.
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Figure 4.2: Operations across several spaces grouped into one transaction

4.4 Leases

JavaSpaces requires the definition of lease times for resources that are created on behalf of
clients, such as entries and notifications. Leases shall guarantee that resources, which are no
longer used by clients, do not waste the resources of JavaSpaces services unnecessarily.
On a successful write or notification’s registration, clients receive a Lease object, which pro-
vides the operations renew lease and cancel lease. The renew operation allows the clients to
further extend the lease of a resource before it expires, whereas the cancel operation can be
used by the clients to announce that they are not further interested in the leased resource. The
lease management in JavaSpaces builds upon the Jini distributed leases (see chapter 3.5 for
details).

4.5 Notifications

JavaSpaces supports notifications in order that client processes are not blocked unnecessarily
or have to poll the service until an appropriate entry is available in the space. Besides a Re-
moteEventListener, which will receive the notification from the service, the client must also
specify a handback object (see section 3.7.1) provided in a marshalled form. Figure 4.3 shows
a client (Process A) registering at a JavaSpaces service and later receiving a notification about
a new entry inserted by another client (Process B).
JavaSpaces services utilize the Jini distributed events for notifications.

43



Chapter 4 JavaSpaces

Figure 4.3: Client registers for notification

4.6 JavaSpace Interface

The JavaSpace interface provides the basic Linda model functionalities to JavaSpaces’ clients.
Either the JavaSpace interface or its extension JavaSpace05 interface (see section 4.7) must be
implemented by a JavaSpace service. JavaSpaces services must either implement the Java-
Space interface, or the the JavaSpace05 interface (see section 4.7). Figure 4.4 shows the class
diagram of the JavaSpace interface, with a brief description of the provided methods.

<<Interface>>
JavaSpace

Figure 4.4: JavaSpace interface

write The write operation places a copy of an entry into the space. The same entry can be used
for multiple write operations, because each write operation places a new entry into the
specified space. It is necessary to provide the lease duration for the entry. The lease for
an entry is handled by the service’s lease manager. A successful write returns a Lease
object, containing the granted lease duration. If the requested lease cannot be granted or
the write of the entry failed a RemoteException is thrown.

Transactional Behavior: An entry written within a transaction is only visible for opera-
tions that are using the same transaction. If the same entry is removed by a take operation
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within the transaction, it will not become visible outside the transaction even if the trans-
action successfully commits. The roll back of a transaction causes all written entries
under the transaction to be discarded.

read & readIfExist Reading requires to provide a template that is used to find an appropriate
entry in the space via template matching. As described in section 3.4.1 a template is
nothing else than an entry that is used by query operations and that may contain fields
with no value assigned called wildcards. As a special case it is possible to pass a null
reference for the template, resulting in a return of any entry that is available and not
locked by another transaction. On success, a read will return a reference to a copy of
the matching entry. Otherwise, the read waits until an entry is available that matches
the template. In order to prevent the operation from blocking no longer than necessary a
timeout value can be provided. If no matching entry is available until the timeout expires,
a RemoteException is thrown which indicates the timeout expiration.

In contrast to the regular read, a readIfExist does not wait until a matching entry is found,
except if there is a matching entry available, but the entry’s transactional state is not yet
certain.

Transactional Behavior: Using a transaction the read operation can match entries that
are either written under the same transaction or already committed in the space. An entry
that was read within a transaction that is still active, has the consequence that the entry is
still visible to read operations but unavailable for take operations of other transactions. If
a readIfExist finds an appropriate matching entry that is currently locked by a transaction,
it will wait either until its timeout expires or the transactional state of the entry is certain.

take & takeIfExist The take behave in almost the same manner as the read operations, except
that the matching entry is removed from the space.

On success, a take returns a non-null value (e.g. the entry) and the entry is removed from
the space. If a take operation is executed within a transaction, the entry is locked and
not available for other read operations of other transactions. It is not removed until the
transaction has successfully committed.
Although a remote exception is thrown on failure, the entry might have been removed
before the client has received it successfully, thus losing the entry in between. To prevent
this from happening it is recommended to wrap the take operation inside a transaction,
which is then not committed until the client has successfully received the entry.

Transactional Behavior: Entries removed within a transaction are no longer visible in
the space. Neither a read nor a take operation will find the entries, even if they share the
same transaction. A rollback of the transaction causes the entries to be restored and to
become visible again.
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notify In order that a process does not wait unnecessarily until a matching entry is available in
the space, it can register its interest in future incoming entries. Blocking operations can
be used as well, but are not appropriate since they block the entire application. Invoking
the notify operation requires the specification of:

• A template specifying the entries of interest. The meaning of templates and tem-
plate matching is identical to their meaning in read oeprations.

• The RemoteEventListener of the registering process, which will handle the notifi-
cation.

• Upper bound of the lease time, which specifies how long the registering process is
interested in receiving notifications about the registered event.

Transactional Behavior: Optionally a transaction can be provided upon the registration
of a notification. In such a case the registered RemoteEventListener will receive notifica-
tions also about new matching entries, written under the same transaction, although the
transaction has not committed so far. If no transaction was provided the listener will be
notified only if matching entries are written under a null transaction or when a transaction
has commited. Providing a transaction has effect on the lifetime of a registration, too.
A registration is alive as long as the the lease or the used transaction are, meaning that
a registration is removed when the provided transaction’s state settles even, if the lease
time has not yet expired.

snapshot It is highly probable that a template is used more than once for multiple read, take

or notify operations. Because the process of serializing is expensive and the result of
each serialization of the same entry is identical, the snapshot operation makes the work
with the space more effizient. The Snapshot operation achieves this by creating a “snap-
shot” of the provided entry, which can be used by all operations on the same JavaSpaces
service. The resulting snapshot is equivalent to the original entry as long as the original
entry has not been modified. Modifications of the original entry have no effect on its
snapshot.

4.7 JavaSpace05 Extensions

A drawback of the commonly used JavaSpace interface is that it does not provide methods for
batch operations on the space, therefore the interface has been extended by the JavaSpace052

interface. The JavaSpace05 interface enables to use more than one entry or template on oper-
ation invocation and to retrieve more than one entry with a single query operation. Within the
scope of the JavaSpace05 extension, the MatchSet interface was additionally added. First the

2The latest version of the JavaSpace05 interface is 2.1 released in 2005.
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MatchSet interface and then the JavaSpace05 interface will be described briefly.

4.7.1 MatchSet Interface

The JavaSpace05 interface allows reading multiple entries with a single call. If the result is re-
turned directly as a collection of entries to the caller, there is a risk that entries are removed from
the space in the meantime, causing a wrong view of the space at the caller. The MatchSet
interface has been introduced to circumvent this problem and to reduce resource consumption
on the client side by managing the match set itself at the service side and by only exporting a
proxy of an instance implementing the MatchSet interface. The interface (the class diagram

+next() : Entry
+getLease() : Lease
+getSnapshot() : Entry

<<Interface>>
MatchSet

Figure 4.5: MatchSet interface

is depicted in figure 4.5) allows the client to read incrementally the entries from the match set.
The match set has a lease time, just as entries and notifications have, provided by the client and
indicating how long it is interested in it. The lease time also guarantees that only those entries
with a lease time equal or greater than the lease time of the match set are contained in the match
set. This prevents that the MatchSet is invalidated for the reason that an entry is removed caused
by an expired lease. If an entry is removed from the space by a take operation, the match set
containing the entry must be invalidated by the service in order to ensure a consistent view of
the space.

4.7.2 JavaSpace05 Interface

Figure 4.6 shows the class diagram of the JavaSpace05 interface.
The transactional behavior of the contained operations is equivalent to the transactional behav-
ior of their corresponding singleton operations in the JavaSpace interface. In the following the
methods of the JavaSpace05 interface will be described briefly:

write The JavaSpace05.write operation is an overload of the JavaSpace.write method allowing
to write multiple entries with a single invocation to the space. The call of this method
with a list of entries has the same effect on the space as if each of the entries was written
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<<Interface>>
JavaSpace

<<Interface>>
JavaSpace05

Figure 4.6: JavaSpace05 interface

by means of the JavaSpace.write method combined under one transaction. Although an
ordered list is handed over on method invocation, it is neither guaranteed that the entries
are stored in the same order as they occur in the list, nor that the entries will become
visible to different observers in the same order.

contents This method is the counterpart of the singleton JavaSpace.read method, it allows to
read multiple entries with more than one template. The found entries will match one or
more of the provided templates. The results are stored in a match set, a remotely incre-
mentally, iterable list, introduced in section 4.7.1. An upper bound, which is limiting the
number of entries to be read, has to be specified on method invocation. The method will
block until at least one matching entry is available.

take The JavaSpace05.take operation is an overload of the JavaSpace.take method allowing
to retrieve more than one entry with multiple templates with a single method invocation.
The fetched entries will match one or more of the provided templates. An upper bound,
which is limiting the number of entries to be removed, has to be specified on method
invocation. The method will block at last until one matching entry is available.
The invocation of this method with a list of templates has the same effect as fetching
all available matching entries for each template with the singleton takeIfExist method
combined under a single transaction.

registerForAvailabilityEvent Just like the singleton JavaSpace.notify method, this method is
designed to notify a registered RemoteEventListener if a matching entry is avail-
able in the space. In addition it allows assigning a set of templates to a single event,
causing the same event to be triggered by one or more templates. To prevent a no-
tification flood, only one notification is sent for a single event, regardless of how many
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templates are matching the entry. In contrast to the JavaSpace.notify method, this method
distinguishes between two kinds of transitions that an entry can make:

• From invisible to visible: An entry is assumed to be invisible if it is either not
present in the space or if it was removed by a take operation within an uncommitted
transaction.

• From unavailable to available: An entry is unavailable if it was read under a transac-
tion and can not be removed by a take operation until the transaction has terminated.

The transition from invisible to visible is the same as the transition from unavailable
to available. Table 4.2 shows the relation between the two transition types and the op-
erations read and take. The leftmost column shows the two operations read and take,
whereas the topmost row shows the two transitions invisible to visible and unavailable to
available. The state after a transition, where an entry can be read or taken, is marked by
a X.

invisible⇒ visible unavailable⇒ available
read X X
take — X

Table 4.2: Relation of transition types and operations

On method invocation the caller can choose whether it wants to be notified on visibil-
ity only transitions or on both transition types. The RemoteEventListener receives an
instance of the AvailabilityEvent class, a subclass of the RemoteEvent interface, which
allows checking whether the event was triggered by a visibility or availability transition.
Apart from that the registerForAvailabilityEvent method is similar to the JavaSpace.notify

method. On method invocation the lease time and a transaction, which may be null, are
required. The registration is removed as soon as the lease time has expired or if a non-null

transaction was used and the transaction has completed. The application of transactions
at the registration of notifications results in additional notifications that are triggered by
activities within the same transaction.
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MozartSpaces

The Space Based Computing Group of the Institute of Computer Languages at the Vienna
University of Technology has taken up the concepts of the Linda coordination model, intro-
duced in chapter 2, in their development of a space based middleware: The eXtensible Virtual
Shared Memory (XVSM) technology [37]. In contrast to other space based architectures like
JavaSpaces, introduced in chapter 4, the XVSM technology is based on the concepts of a dis-
tributed, peer-to-peer (P2P) space whereas JavaSpaces is based on a centralized space architec-
ture. XVSM’ integrates the concepts of P2P-networks [20] to set up a distributed shared space
amongst the participating and distributed clients, referred to as peers. XVSM is not restricted
to a single space it enables the use of several spaces. Centralized space systems are rather prone
to the failure of the space server or a network fault. In XVSM, if a peer becomes unavailable
for any reason it does not imply that objects become unavailable. XVSM peers can use the
space to coordinate, collaborate and communicate with each other, as it is the case with other
space based systems.
In XVSM, the space is structured into containers whith operations that conform to those of the
Linda coordination model. The container itself is only responsible to store objects and does not
implement any coordination model itself. Hence so called coordinators take care of the coor-
dination and administration of the stored objects. It is possible to assign several coordinators
to a container and thus enabling the container to support various types of coordination mech-
anisms. The RandomCoordinator (see section 5.4) is attached to every container by default,
enabling a random access to the stored objects. In order to insert or read an object some co-
ordinators require the use of so called selectors, which provide additional coordinator specific
meta-information that is required by the coordinator to store or find an object. Each selector
is assigned to a coordinator, because the additionally contained information can only be in-
terpreted correctly by the appropriate coordinator. XVSM distinguishes between two types of
objects that can be stored in a container: entries and tuples (see section 5.2).
XVSM also supports the use of transactions (see section 5.6). XVSM is called “extensible”
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because it allows extending and modifying the behavior of a container with the use of aspects

(see section 5.8). Furthermore, XVSM provides notifications (see section 5.7) that are realized
using aspects.
The Java based open source implementation of the XVSM technology, also developed by the
Space Based Computing Group, is called “MozartSpaces” [62, 65]. Since it takes a central role
in this thesis this chapter is dedicated to describe MozartSpaces in more detail. Starting with
section 5.1 the MozartSpaces-API will be introduced before a brief description of entries and
tuples is presented in section 5.2. Next, after a short description about containers in section 5.3,
the coordinators that are already supported by MozartSpaces will be described in section 5.4,
followed by section 5.5 that describes the corresponding selectors. The handling of transactions
is explained in section 5.6 followed by section 5.8 about extending and modifying the behavior
of containers by using aspects.

5.1 MozartSpaces-API

The MozartSpaces-API provides a set of operations which allow accessing the space. These are
specified by the ICapi interface and can be categorized into operations that are either performed
on the space itself or performed on a container. Figure 5.1 shows the class diagram of the ICapi
interface.

The methods specified by the ICapi interface will now be described briefly. To give a better
overview they have been categorized into the above mentioned two categories.

• Operations performed on the space itself
Operations that are performed on the space itself, can be executed on the embedded or a
remote space1. It is also possible to execute these operations under transactions.

– lookupContainer: The operation lookupContainer can be used to retrieve a con-
tainer reference for a given name, that already exists, from the space.

– createContainer: Creates a new container, by providing the container’s name, the
coordinators to be used and its maximum size. The container’s name must be unique
in the space. The container’s maximum size specifies the maximal number of en-
tries it is able to store. The caller receives a container reference if the operation
completed successfully.

– destroyContainer: Removes a container from the space, specified by the provided
container’s reference.

1An embedded space runs in the same Java Virtual Machine (JVM) as the client that accesses it, whereas a
remote space is running in a different JVM
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<<Interface>>
ICapi

Figure 5.1: ICapi interface

– createTransaction: Creates a new transaction at the specified space.

– commitTransaction: Commits a transaction, making all changes performed un-
der the transaction permanent, only if the operations within the transaction were
successfully completed.

– rollbackTransaction: Rollbacks a transaction and discards all changes made within
the transaction.

– createNotification: Creates a new notification on the specified container. This
operation requires that the client specifies the condition when it wants to receive
notifications and the listener to whom to send the notifications.

– addAspect: The addAspect operation is separated into a method that adds local
aspects and into a method that adds global aspects to the space2. Both methods
require providing the aspect itself and the IPoints3, which specify where to attach
the aspects. The local aspects additionally require specifying the container on which
they shall do their work.

2The difference between local- and global-aspects is discussed in section 5.8
3IPoints are specified in section 5.8
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– removeAspect: The removeAspect operation is separated into a method that re-
moves local aspects and into a method that removes global aspects from the space.
Both methods require providing the IPoints where to detach the aspect. The local
aspects additionally require specifying the container where they shall be removed.

– set-/getAspectContext: These methods allow to set or query the properties of an
aspect, e.g.: this can be useful to send authentication data to a security aspect.

• Operations performed on a container

– write: Writes one or more entries into a container. Depending on the coordinator
(see section 5.4) that was used at the time of container creation it is either required
to use a selector, which provides additional information about how to store the entry,
or not.

– read: Reading one or more entries from a container always needs to make use of a
selector. Selectors contain meta information for querying purposes, which are used
to e.g. specify the number of entries to be read from the container, or which contain
keys or represent templates.

– take: The take operation works just as the read operation except that it also removes
the entries from the container.

– shift: The shift operation works just as the write operation except that if either the
container is full or e.g. a specific key already exists, the entries are nevertheless
written, causing the container to “shift out” entries. The selection of the entries
that are removed depends on the coordinator’s behavior. It also might happen that
the coordinator does not allow the shifting of any entry. In contrast to the other
operations, shift is a non-blocking operation.

– destroy: Destroy removes entries from the container. It is necessary to use a selec-
tor to specify which entries are to be removed. Although its usage is similar to read
or take operations, it does not return any entries to the client.

5.2 Entry

An entry is the basic entity which can be stored in a container. It is an abstract class, and
possesses a unique identifier. There are currently two derivatives of the abstract entry class:
AtomicEntry and Tuple as depicted in figure 5.2.

An AtomicEntry represents a single entry in a container that holds the stored data’s type and
value.
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Entry

Tuple AtomicEntry
T

Figure 5.2: Entry types

A Tuple can be used to structure multiple entries and write them as one unit into a container.
The number of entries a Tuple can contain is not restricted.
Accordingly a Tuple T can either hold:

• multiple AtomicEntries a0, a1, . . . , an:

T = a0,a1, . . . ,an

• multiple Tuples t0, t1, . . . , tm:

T = t0, t1, . . . , tm

• a mixture of AtomicEntries a0, a1, . . . , an and Tuples t0, t1, . . . , tm in arbitrary order. The
numbers of AtomicEntries and Tuples do not necessarily have to be equal.

T = t0,a0,a1, t1, . . . , tm, . . . ,an

5.3 Container

MozartSpaces does not store data in a single storage. It rather makes use of several storages,
called containers (e.g. spaces). A container is not just a simple storage. On creation it is
possible to define the behavior of the container by specifying multiple Coordinators (see section
5.4). In addition every container owns a default coordinator: the RandomCoordinator (see
section 5.4). Apart from specifying the container’s coordination type, a container has a unique
name and it is possible to limit the capacity of the coordinator, which is how many entries can
be maximal stored by the container.
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5.4 Coordinator

The coordinators are used to define how entries are written to or retrieved from a container.
MozartSpaces distinguishes two categories of coordinators, the implicit and explicit coordina-
tors. An implicit coordinator does not require additional information in case of writing an entry
into the container. It is the coordinator’s responsibility to correctly store the entry according
to the coordinators’ type. When reading an entry, it is again the coordinator’s responsibility to
retrieve the correct entry from the container according to the coordinators’ type. In other words
an implicit coordinator does the bookkeeping of an entry transparently to the user as defined by
the coordinators’ type.
In contrast, explicit coordinators require additional information if an entry is read or written.
In this case the user is also responsible to contribute information for the administration of the
entries in the container.
Listed below are the currently implemented coordinators of MozartSpaces divided into the
above mentioned categories:

• Implicit Coordinators:

– FiFoCoordinator: A Coordinator that organizes the stored entries in first in, first

out manner commonly known as a queue. The entries are retrieved in the same
order as they have been written to the container.

– LiFoCoordinator: A Coordinator that organizes the stored entries in last in, first

out manner commonly known as a stack. The entry that is retrieved is always the
one that has been written last.

– LindaCoordinator: The LindaCoordinator is an implementation of the Linda coor-
dination model (see section 2) for MozartSpaces. Because the coordinator is based
on the Linda model it is the only coordinator that restricts the type of entry it can
store to the tuple class. To retrieve or destroy a tuple from the container, either with
read, take or destroy, a template has to be provided. A template is a tuple that might
contain fields whose value is null. Such fields are called wildcards, meaning that
the value of the field is not of interest when looking for appropriate matching tuples
in the container. To find matching tuples a template has to have the same structure,
that is the same number of fields and ordering of the field types, as the Tuples that
shall be found otherwise no matching Tuples can be found. The LindaCoordinator
is like other tuple space implementations nondeterministic because it can store an
unlimited amount of equal or similar Tuples; read, take or destroy cannot influence
which tuple will be returned. It might happen that a tuple is never read, taken or
destroyed.
Although the LindaCoordinator requires a template when reading tuples it counts
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as an implicit coordinator because the user has neither an influence how tuples are
stored nor on its nondeterministic behavior.

– RandomCoordinator: As its name implies this coordinator offers only random
access to its data structure. Because of that it is nondeterministic just like the Lin-
daCoordinator. The RandomCoordinator is currently the default coordinator that
is always added to a container on creation even if no coordinator is specified at
container creation.

• Explicit Coordinators:

– KeyCoordinator: Like a map the KeyCoordinator consists of a collection of unique
keys and a collection of entries. Each key is assigned to one entry but its type is
not confined to a specific type. When writing an entry to the container the key
and the associated value have both to be provided. Later on the key is needed to
successfully retrieve the entry from the container. It is not possible to retrieve an
entry without knowing its associated unique key using the KeyCoordinator.

– VectorCoordinator: The VectorCoordinator manages its stored entries in a mod-
ifiable list. This means that the position of the entries is not fixed. With this co-
ordinator it is also possible to specify the position, where to insert an entry when
writing it. If there is already an entry at the same position as where the new entry
is requested to be written, the existing entry and all following entries are automati-
cally moved up by one position. The entries are accessible by an index that is equal
to the entry’s position in the list. On retrieval it is possible to address each entry
individually or to specify a subsequence of entries that should be retrieved from a
particular index onward.

5.5 Selector

The selector [73] is used to supply the coordinator with additional information about an entry
that shall be written to or retrieved from the container. All selectors have in common that
it is possible to define how many entries shall be retrieved from or written to the container
(representing the sementics of a bulk operation). Although implicit selectors can be omitted
on writing and they do not provide extra information on retrieval, nevertheless they have to
be provided in order to specify the coordinator that is used to store or retrieve entries. In
contrast, explicit selectors are needed to provide additional information for the coordinator for
both writing and retrieving of entries. There is one selector for each coordinator type (forming
a selector - coordinator pair) and the implicit ones are only needed for retrieval. In section 5.3
it was mentioned that a container can own several coordinators. The selector, which is handed
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over on container access, specifies the coordinator that has to be used to proceed the request.
Although the function of most selectors is obvious and self explanatory it is briefly described
below, following the same categorization as the coordinators before.

• Implicit Selectors:

– FiFoSelector: The FiFoSelector belongs to the FiFoCoordinator and hence it re-
trieves the entries in a first in, first out manner. Only the number of entries to
retrieve can be specified.

– LiFoSelector: The LiFoSelector belongs to the LiFoCoordinator and hence it re-
trieves the entries in a last in, first out manner. Only the number of entries to retrieve
can be specified.

– RandomSelector: The RandomSelector belongs to the RandomCoordinator and
hence it retrieves the entries in a random order. Only the number of entries to
retrieve can be specified.
As is the case with the RandomCoordinator the RandomSelector is the base selector
of a container, meaning that if no selector is used in a query the RandomSelector is
used by default.

• Explicit Selectors:

– KeySelector: The KeySelector belongs to the KeyCoordinator. On writing the
entry and it’s corresponding key have to be provided by the KeySelector to the
KeyCoordinator. On retrieval the key has to be provided by the KeySelector to
retrieve the designated entry from the container again.

– LindaSelector: The LindaSelector belongs to the LindaCoordinator. In contrast to
the other implicit selector - coordinator pairings, the LindaSelector is an explicit
selector because it requires a template, which is then used by the LindaCoordinator,
to retrieve matching tuples. On the other hand it is not necessary to specify the
selector when writing a tuple to the container as it is the case with the implicit
selectors.

– VectorSelector: The VectorSelector belongs to the VectorCoordinator. On writing
it is possible to specify the index, where to insert the entry in the list, besides the
entry itself. On retrieval either only the index of the wanted entry or additionally
also the number of entries to be removed starting at the given index is handed over.
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5.6 Transactions

MozartSpaces transactions [65] are related to transactions in database management system. In
MozartSpaces they are used to unite several space access operations on one or more containers
into one atomic operation. As a matter of course the MozartSpaces transactions comply with
the ACID properties [43] (which were already introduced in section 3.6) and are performed
as pessimistic transactions, meaning that a transaction builds up locks either on the entries or
possibly even on the whole container. This depends on the type of coordinator used by the
container. MozartSpaces allows executing space access operations without specifying a trans-
action. In such a case MozartSpaces uses internally an implicit transaction, which is invisible
to the executing client, to execute the operation and guarantee the compliance with the ACID
properties. However if a transaction was specified by the client it corresponds to an explicit
transaction in MozartSpaces. A MozartSpaces transaction can be committed on success, mak-
ing all changes permanent or rolled back on failure, restoring the state before the changes.

5.7 Notifications

In order to minimize the number of blocking or polling operations MozartSpaces supports the
concept of notification [62]. In contrast to the other features of MozartSpaces, such as trans-
actions and the various coordination types, notifications are not part of the basis MozartSpaces
API. They are realized by means of the coordinated usage of the appropriate aspects, which are
provided by MozartSpaces itself.
The client registers itself for an event it is interested in at MozartSpaces and waits until it re-
ceives a notification from MozartSpaces meaning that the event has occurred. On registration
for notification the client has to specify the container, the notification target it is interested
in and a reference to the listener that should receive the notification. The notification targets
currently available in MozartSpaces are:

• read: The listener will be notified when a read operation has been executed on the spec-
ified container.

• write: The listener will be notified when a write operation has been executed on the
specified container.

• take: The listener will be notified when a take operation has been executed on the speci-
fied container.

• shift: The listener will be notified when a shift operation has been executed on the spec-
ified container.
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• destroy: The listener will be notified when an entry has been removed as a result of an
operation on the specified container.

The notification is sent to any client, which is registered, whether or not it was the initiator of the
process, which triggered the notification event, on the container. The behavior of notifications
according to operations within transactions is customizeable by means of the usage of the
appropriate aspect.

5.8 Aspects

MozartSpaces allows adding additional functionality to the space or to a container by defining
aspects [62]. An aspect defines an action that has to be performed either before an operation,
called pre-aspect, or after an operation, called post-aspect, and are executed on the space or a
container. MozartSpaces distinguishes two main categories of aspects:

• Local Aspects: Local aspects are limited to the operations performed on a specific con-
tainer. They allow the definition of pre- and post-methods for the following operations
that can be performed on a container:

– addAspect()

– removeAspect()

– read()

– destroy()

– take()

– write()

– shift()

To create a new local aspect only the abstract class LocalAspect, provided by the
MozartSpaces API, has to be extended and the required pre- or post-methods overridden
by the implementation.

• Global Aspects: As its name implies “Global Aspects” are executed globally, which is
that they refer to the space itself or to all containers. They allow the definition of pre-
and post-methods for the following operations that can be performed on a container:

– createContainer()

– destroyContainer()

– transactionCreate()

– transactionCommit()

– transactionRollback()
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– coreShutdown()

To create a new global aspect only the abstract class GlobalAspect, provided by the
MozartSpaces API, has to be extended and the required pre- or post-methods imple-
mented by the implementation.

Figure 5.3 shows how pre- and post-aspects are integrated into the control flow when using a
local aspect on a container and a global aspect on the space.

Figure 5.3: Control flow of LocalAspect on a container and GlobalAspect on space

After creating a new aspect it has to be integrated into MozartSpaces by specifying the point
where the aspect’s method has to be executed. Such a point is called Interception Point (IPoint)
and is distinguished into the subcategories LocalIPoint and GlobalIPoint. These two categories
are corresponding to the two basic aspect categories local- and global-aspect. It is possible to
execute more than one aspect for the same pre- or post-method, but in such a case they are
executed consecutively in the same order as they have been registered. Likewise it is possible
to use an aspect more than once and in the case of local aspects for various containers too.
Therefore the aspect needs only to be registered in MozartSpaces for the intended purposes as
often as it is required.
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MozartSpaces LindaCoordinator Revised

The LindaCoordinator introduced in section 5.4 is a simple implementation of the Linda coor-
dination model that has not been yet optimized. On closer examination of the Coordinator it
turned out that a Java HashMap is used as its data structure. Although Java HashMaps provide
a nearly constant-time performance for the basic operations, it turns out to be a bottleneck when
one or more templates are used to find matching tuples. In this case it is inevitable to iterate
over all tuples, contained in the HashMap, and match them against the given template(s). The
larger the HashMap becomes the slower are appropriate tuples found via template matching.
The examination of the Coordinator also revealed that the kind of template matching that is
specified by the JavaSpaces API is not supported. Concretely the existing matching algorithm
does not support matching of subtypes even tough it supports type matching. Taken these
deficiencies into account it turned out that a complete redesign of the Coordinator was more
effective than adapting the original one. The term “LindaCoordinator” is referred to the revised
coordinator that will be described and the original LindaCoordinator will be especially denoted
as the “original LindaCoordinator” in this chapter.

This chapter deals with the revision of the LindaCoordinator in order to make it faster and
provide a basis for the later implementation of a similar coordinator that is required by the
XVSM JavaSpaces API in section 7. The redesign of the data structure is described in the first
section 6.1, followed by the implementation details in section 6.2. The modification of the
LindaCoordinator made it necessary to adapt the LindaSelector to comply with the new Linda-
Coordinator. The LindaSelector’s modifications are described in section 6.3. Finally, section
6.4 presents the results of a benchmark comparison between the original LindaCoordinator and
the revised one.
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6.1 Redesign of the Data Structure

The redesign of the data structure required a detailed analysis of the tuple’s structure and how
template matching is performed. As explained, in section 5.2, tuples consist of multiple fields
represented by entries. An entry holds a value and the type of the value. Template matching,
which performs similar to the template matching of the Linda coordination model, uses a tupl
(called template) that can contain “wildcards”, which are not assigned field values, to find
matching tuples in the data structure.
The first question that came up at the beginning of the design process was: “When are two
tuples different from each other and therefore do not match?”
Two tuples T = (F0

T ,F1
T , . . . ,Fn

T ) and P = (F0
P ,F1

P , . . . ,Fm
P ), with field F i containing a type and

value pair, are different:

• if the tuple’s number of entries are different: |T | 6= |P|

• if the corresponding field’s types at position i differ: F i
T .type 6= F i

P.type and F i
T .type is

not a subtype of F i
P.type

• if the corresponding field’s values at position i differ: F i
T .value 6= F i

P.value

Aware of this fact the first data structure, which was selected, was a special tree structure, the
prefix trie [38]. The trie specifies that strings sharing a common prefix are connected to a
common node. This characteristic appeared to be useful for the problem. Instead of a string,
the tuples’ field order is used as prefix to index the tuples. This means that the path from the
root node to one of the trie’s leaf represents the size and the order of the tuple’s fields. This
approach is depicted in figure 6.1.

Figure 6.1: Trie as data structure
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Considering the fact that it is more likely that tuples with the same size and ordering are inserted
and retrieved from the container than tuples that differ in their size or ordering the trie approach
is not optimal enough. On top of everything if only tuples with same size and ordering are
stored, a single node would still contain all similar tuples in a single HashMap. As a result the
performance would not be better than the performance of the original implementation.

Bearing this fact in mind and still holding on the tree structure the next approach would be to
distinguish between different tuples as soon as possible. Therefore, the tree structure has been
divided into several levels starting from the root node.

The first level, the “root-node” uses the tuple’s size to make a first distinction between the
tuples. The second level uses the field’s ordering of the tuple to distinguish further between
different tuples. The third level consists of a list representing the different fields of a tuple in
the same order as they are arranged within the tuple. The fourth level maps the field’s value
to another list of tuples that share the same field’s type and value at the same position. The
resulting data structure is depicted in figure 6.2.

Figure 6.2: Tree Data-Structure including the different levels
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6.2 Implementation

The RevisedLindaCoordinator is just like the original coordinator an implicit coordinator, since
the user has no influence on how tuples are saved or retrieved from the container, and therefore
derived from the ImplicitCoordinator class. In contrast to the existing coordinators
the data structure has been separated from the coordinator class. This allows easier mainte-
nance and increases replaceability of both components. Diagram 6.3 shows the architecture of
the RevisedLindaCoordinator including the internal buildup of the RevisedLinda-
Storage, the class implementing the data structure. The RevisedLindaCoordinator conforms
to the MozartSpaces container’s specifications including the support of transactions.

Figure 6.3: RevisedLindaCoordinator buildup

The RevisedLindaStorage class grants only indirect access to its internal data structure
through the public methods shown in the class-diagram in figure 6.4. This is necessary in order
to ensure that on the one side the data structure can only be modified through the predefined
methods, which guarantee a consistent view for all concurrent accessing processes, and on
the other side to enable the possibility to exchange the RevisedLindaStorage’s data structure
without affecting the remaining coordinator’s implementation. Therefore, the synchronization
between the concurrent processes is achieved by using the ReentrantReadWriteLock
class to limit and coordinate concurrent read, write and delete access. The Reentrant-

ReadWriteLock allows simultaneous reading by multiple readers as long as there are no
writers. The write lock however is exclusive.

In comparison to the design, the implementation of the data structure forgoes to use a separate
level for the tuple’s size. Instead it has been combined with the tuple’s field order into a single
level, not only because they are correlative but also to reduce the number of maps used by the
implementation.
The first level is represented by a TreeMap, using a so-called TupleFingerPrint class
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+write(tuple : Tuple) : void
+read(txn : Transaction, tupleID : String) : Tuple
+read(txn : Transaction, template : Tuple, maxEntries : int) : List<Tuple>
+delete(tupleID : String) : void
+size() : int
+setCleanupAfter(cleanupAfter : int) : void

<<Interface>>
ILindaStorage

-storageIndex : TupleFingerPrintMap
-tupleStorage : ConcurrentHashMap<String, IndexedTuple>
-storageLock : ReentrantReadWriteLock
-ignoreFields : int
-deletedTuples : int
-cleanupAfter : int

+RevisedLindaStorage()
+RevisedLindaStorage(ignoreFields : int)
+write(tuple : Tuple) : void
+read(txn : Transaction, tupleID : String) : Tuple
+read(txn : Transaction, template : Tuple, maxEntries : int) : List<Tuple>
+delete(tupleID : String) : void
-cleanup() : void
+size() : int
+setCleanupAfter(cleanupAfter : int) : void

RevisedLindaStorage

Figure 6.4: RevisedLindaStorage class
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as the key’s type and a HashMap for each assigned value representing the second level. The
TupleFingerPrint class contains the tuple’s size and the list of types in the same order
as they appear in the tuple. The compare method of this class is responsible to compare the
stored tuple’s size and the order of the types to the ones contained by the passed instance of
a TupleFingerPrint object. Furthermore, while comparing the internal type list to the
passed TupleFingerPrint’s type list, it is verified if the passed TupleFingerPrints
type at position i is derived from the type at position i of the internal type list. This has been
done to provide support for the JavaSpaces API which requires subtype matching when reading
or taking with a template.
The second level is represented by a list of Concurrent-Hash-Maps1, which is ordered
in the same way as the type list contained by the TupleFingerPrint one level higher.
In this level it is enough to keep the ordering because the matching of the types was already
done in the first level of the tree structure. The Concurrent-Hash-Maps, contained in
the list of the second level, represent the third and last level. The field’s value is used as the
HashMap’s key, which is then mapped to a list that contains references to the indexed tuples.
The special case in which the field’s value is unassigned, it is not possible to store the tuple’s
reference straightly in the Concurrent-Hash-Map, because this kind of HashMap does
not allow to use null values as keys. As a way out, a new class called ValueMap was derived
from Concurrent-Hash-Map, which provides an additional list to store reference of tuples if the
field’s value is unassigned. Figure 6.5 shows the ValueMap’s class diagram as it extends the
Concurrent-Hash-Maps with its additional methods.

-nullValueList : List<IndexedTuple>

+ValueMap()
+ValueMap(initialCapacity : int, loadFactor : float, concurrencyLevel : int)
+ValueMap(initialCapacity : int, loadFactor : float)
+ValueMap(initialCapacity : int)
+ValueMap(m : Map<? extends Object, ? extends List<IndexedTuple>>)
+getNullValueList() : List<IndexedTuple>

ValueMap

Figure 6.5: ValueMap class

The final implemented data structure, inclusive the various components which have been used
to realize the different levels, is depicted in the diagram in figure 6.6. Additionally to the data
structure, the RevisedLindaStorage contains a normal HashMap, which assigns the tuple-ID to
a so called IndexedTuple, a class that holds a reference to the tuple itself and to the lists of
the leaves of the data structure. This enables faster access to the tuple or the referencing lists,
if a specific tuple has to be looked up.

1Concurrent-Hash-Map is a HashMap that adds concurrent support.
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Figure 6.6: The data structure as it is finally implemented

For more flexibility, the RevisedLindaCoordinator has been extended by an optional parameter
“ignoreFields”, which defines the number of fields to ignore at the beginning of each written
tuple. These fields are ignored in a sense that they are neither involved in the way the tuples
are indexed by the data structure nor that these fields are used for template matching. The
parameter can be specified in one of the RevisedLindaCoordinator’s constructor.

6.2.1 Adding a Tuple to the Data-Structure

When writing a tuple, the root node is evaluated if the tuple’s TupleFingerPrint is already
existent. If not, a complete new branch will be generated, right up to the tuple’s references in the
leaves, and mapped to the corresponding TupleFingerPrint in the root node. Otherwise if
there is already a mapping existent for the TupleFingerPrint, the corresponding subtree
is examined if it contains a mapping for each field’s value and based on the result either a new
mapping is added or the existing mapping is extended by a reference to the newly inserted tuple.
At last a new tuple-ID to IndexedTuple assignment is added to the normal HashMap.

The current implementation of the RevisedLindaCoordinator has been optimized for fast tuple
search and return, hence the complex process of tuple indexing slows down the speed of adding
a tuple to the data structure.

6.2.2 Reading a Tuple from the Data-Structure

Reading is accomplished either by providing a string representing the tuple-ID to find a specific
tuple or by using a template to find appropriate matching tuples. Former uses the normal

67



Chapter 6 MozartSpaces LindaCoordinator Revised

HashMap to find an appropriate mapping to the tuple-ID and either returns the tuple with the
same tuple-ID or nothing.
If a template is used to find matching tuples, the template is first analyzed to determine the
first field whose value is not null, to offer a speed up of the search process. After that the
tree is descended up to the second level, where descending is continued along the path of the
previously determined first none null-value field of the template. The remaining fields of the
found tuples are compared to the remaining fields of the template. The resulting tuples are
then returned to the calling process. If the template is composed of null-values only, the tree
is searched through using the tuple’s TupleFingerPrint and the first field’s type as route. The
resulting tuples, which are obtained by uniting the list of tuples contained in the located leaves,
are then returned.

6.2.3 Removing a Tuple from the Data-Structure

Removing a tuple is only possible by providing the tuple’s unique tuple-ID. The Indexed-
Tuple that is assigned to the tuple-ID is looked up in the normal HashMap. The list of refer-
ence, contained in the IndexedTuple, to those leaves of the data structure, which contain a
reference to the tuple itself, allows a fast removal of all tuple’s references. But removing only
the references instead of the whole branch if it is empty, results in a slow down of the data
structure. To prevent this, the data structure has to be “cleaned up” after a certain number of
deletions. The default value is set to 1000 removals, which has showed to be a good tradeoff,
but the value is adjustable on coordinator instantiation.

6.3 Adapted LindaSelector

The original LindaSelector has been extended to allow the usage of a list of templates to find
appropriate matching tuples. All of the tuples returned will match either one or more of the
specified templates.
Due to the fact that neither the Linda model nor the original LindaCoordinator have a deter-
ministic behavior, a new constructor has been added to the LindaSelector class which takes a
tuple ID as a parameter. This allows the retrieval of a specific tuple from the container and on
top of that the LindaCoordinator obtains a deterministic behavior.
These features are reflected by the newly added constructors and methods that are listed in
class-diagram 6.7.
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#templateList : List<Tuple>
#tupleID : String

+RevisedLindaSelector()
+RevisedLindaSelector(tupleID : String)
+RevisedLindaSelector(templates : Tuple ...)
+RevisedLindaSelector(count : int, templates : Tuple ...)
+getTemplates() : List<Tuple>
+setTemplates(templates : List<Tuple>) : void
+addTemplate(templates : Tuple ...) : void
+getTupleID() : String
+getProperties() : Properties
+setProperties(props : Properties) : void
+equals(obj : Object) : boolean
+hashCode() : int
+toString() : String

RevisedLindaSelector

Selector

Figure 6.7: LindaSelector class

6.4 Benchmark

In order to verify the increased performance of the revised LindaCoordinator, it has been com-
pared to the original LindaCoordinator by executing several benchmarks. The benchmarks are
divided into two categories: The first one measures the performance of both coordinators di-
rectly, whereas the second one analyzes the performance of both coordinators when used within
the MozartSpaces system. Both categories have in common that the amount of time was mea-
sured each coordinator required to complete write, read and take operations. These operations
were performed separately and independently from each other on both coordinators. Multiple
measurements were made, each with a different number of tuples.
The tuples themselves are made up of 4 fields ordered in the same manner as listed in table
6.1. The table also shows beside the “template tuple”, two further versions of the tuple which
differ only in their values. The “normal tuple” is written (n - 1) times, where n is the number
of entries to be written within a measurement of the write operation. The “predefined tuple” is
only written once and before the normal tuples by the write operation, because this special tuple
is at the same time the one for which the read operation will look for during the measurement
of the read operation. After the write operation’s measurement a total number of n tuples are
contained in the coordinator.
Now that both coordinators contain n tuples, including the predefined tuple, the read opera-
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tion’s performance was measured. For this purpose the predefined tuple is required to measure
the time how long each coordinator requires to find this special tuple out of the previously writ-
ten n normal tuples.
In the final step the time is measured that each coordinator needs to perform as many take op-
erations as entries contained by the coordinator. In order to achieve this, the “template tuple”,
depicted in table 6.1, is used to take all tuples that were previously written by the write oper-
ation measurement. All fields of the template tuple have a type but unassigned values, which
allows to query all containing tuples one after the other out of the coordinator. The performance
test of the take operation, executed on the coordinators directly, required the simulation of the
behavior of the MozartSpaces system, because the coordinators do not support the retrieval
and removal of a tuple in a single call. Therefore, a tuple was first read with the help of the
“template tuple” and then using the returned tuple’s ID, it was removed from the coordinator.
Moreover, executing operations directly on the coordinators requires the simulation of trans-
actions, because the coordinators are designed to perform all operations within transactions.
Normally, if no transaction was specified by a client on operation’s call, an implicit transaction
is used by MozartSpaces to execute the client’s operation. Apart from that, it was sufficient
to use the operations provided by the coordinators and the MozartSpaces API. As a general
restriction only a single tuple was written, read or taken at a time by each operation. All mea-
surements were repeated 10 times, independently from each other, and the repetitions’ mean
value was used to finally generate the diagrams.

Normal tuple Predefined tuple Template tuple
String “Tuple” “Benchmark” null
Integer [0 . . . (n - 2)] 42 null
Float 3,14159 3,14159265 null
Boolean true true null

Table 6.1: Composition of the tuples

The relevant characteristics of the system, on which all benchmarks where performed, are listed
in table 6.2.

Processor AMD Athlon™ 64 X2 Dual Core 6400+
(each core with a frequency of 3.2GHz)

Main memory 2GB
OS Ubuntu 8.04 32bit
Java™ Version 1.6.0 07-b06

Table 6.2: Computer’s characteristics used for all benchmarks

Next the results of the benchmark will be discussed, starting with the results of the write perfor-
mance measurement in section 6.4.1, followed by the results of the read performance measure-
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ment in section 6.4.2 and then by the results of the take performance measurement in section
6.4.3. At last an evaluation is given in section 6.4.4 about the performance of the revised Lin-
daCoordinator compared to the performance of the original LindaCoordinator.

6.4.1 Write Performance Measurement

The results of the write operation’s benchmark performed directly on the coordinators are pre-
sented in figure 6.8a. As it can be seen both coordinators consume nearly the same time up
to 2500 tuples. After that it is clearly evident that the revised LindaCoordinator requires more
time to store the tuples than the original LindaCoordinator. This is due to the overhead that is
required by the revised LindaCoordinator’s data structure to index the tuples.

The results of the write operation’s benchmark performed via MozartSpaces on the coordinators
are presented in figure 6.8b. In contrast to the benchmark performed directly on the coordina-
tors, in this case both coordinators consume nearly the same time to write up to 10000 tuples.
Beyond this number of tuples the revised LindaCoordinator is getting slower than the original
one, but the difference between the measured times is lesser than the difference between the
measured times of the coordinators when the benchmark was performed directly.

6.4.2 Read Performance Measurement

The results of the read operation’s benchmark performed directly on the coordinators are pre-
sented in figure 6.9a. The revised LindaCoordinator requires a nearly constant time to find the
predefined tuple independent from the number of tuples contained by the coordinator. On the
other hand the original LindaCoordinator requires more time to find the predefined tuple out of
1000 and more tuples than the optimized coordinator. The original Coordinator must compare
every single tuple to the given template to find appropriate matching tuples. This disadvantage
becomes already noticeable at a number of only 1000 tuples, as it can be seen in the diagram.

The results of the read operation’s benchmark performed via MozartSpaces on the coordinators
are presented in figure 6.9b. The resulting diagram has nearly the same characteristics as the
directly performed operation’s diagram, but differs at a number of tuples less than 100. In
this case both coordinators require more time to find the predefined tuple than finding it out of
500 stored tuples. As well the revised LindaCoordinator requires clearly more time to find the
predefined tuple out of 50000 stored tuples in a read operation performed via MozartSpaces
than finding it out of 25000. Comparing it with the results of the read operation’s benchmark
performed directly, these results are nearly constant only for a number of tuples between 100
and 25000.
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Figure 6.8: Benchmark results of the “write” operation

6.4.3 Take Performance Measurement

The results of the read operation’s benchmark performed directly on the coordinators are pre-
sented in figure 6.10a. Both coordinators are showing the same behavior up to a size of 10000
stored tuples, from this point on it is clearly that the revised LindaCoordinator is faster than the
original LindaCoordinator thanks to its optimized data structure.

The results of the read operation’s benchmark performed via MozartSpaces on the coordinators
are presented in figure 6.10b. It can be seen from the diagram that there are no major differences
apparent up to a size of 10000 stored tuples. Both LindaCoordinator requires a little more time
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Figure 6.9: Benchmark results of the “read” operation

to take 25000 stored tuples, when performed via MozartSpaces as performed directly on the
coordinators itself, and even doubles this time difference at a size of 50000 stored tuples.

6.4.4 Benchmark Evaluation

The benchmark results confirm the previously made assumption in section 6.2.1 that the revised
LindaCoordinator is slower at write operations, but it is faster at read and take operations. As
well both operations read and take have a constant time behavior up to a size of 10000 stored
tuples, but are 2 times faster at a size of 25000 and even 4 times faster at a size of 50000 stored
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Figure 6.10: Benchmark results of the “take” operation

tuples than the corresponding original LindaCoordinator’s operations. It is suppossed that Java
internal mechanisms like re-organization mechanisms, e.g. hashmaps index restructuring, are
responsible for the time consuming operation.

To conclude the revised LindaCoordinator performs better than the original LindaCoordinator
at the operations read and write depending on the size of the stored tuples. This speedup comes
with the disadvantage that the revised LindaCoordinator is slower in writing tuples than the
original one. As already mentioned this is due to the data structure used by the revised Linda-
Coordinator that requires to index the stored tuple. One improvement would be to temporarily
store the written tuple in a separated list and assign a thread with the task to index the tuple.
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But in this case additional attention must be payed with read and take operations, because these
operations will have to browse through the list of temporary tuples as well.
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The JavaSpaces API Standard for XVSM

The JavaSpaces API standard for XVSM (JAXS) enables existing JavaSpaces based systems to
use MozartSpaces, the open source java implementation of XVSM, as an entry storage without
the need of altering the existing system itself. Therefore it can also be seen as a “bridge” or
“middleman” between the JavaSpaces API and the MozartSpaces API.

As introduced in chapter 4 the JavaSpaces API specification is a specification of a tuple space
like Jini service that is built mainly on the following list of components offered by the Jini
framework:

• Jini Entry as the objects to be stored in the space.

• Jini Transactions to combine various operations, possibly across various Jini services,
into a single atomic operation.

• Jini Events for JavaSpace notifications.

• Jini Leases to prevent the waste of resources.

The main object of the implemented JAXS is to behave as a Jini service, which complies with
the JavaSpaces API specification, to other services and clients in the Jini community and hide
the fact that MozartSpaces is used as the back-end of the implementation. MozartSpaces not
only provides the space where the entries are stored, it also takes care of other functionalities,
like transactions, that are needed by the JAXS implementation. The JAXS service architecture
will be described in more detail in section 7.1.

Although the JavaSpaces API is based on the concepts of the Linda coordination model, the
way how stored entries are matched against a template in a read or take operation is different.
The template matching, as described in section 3.4.1, specifies that a stored entry is a potential
match against the template if it is a subtype of the used template. For this reason, the revised
LindaCoordinator, which was implemented in the scope of this thesis and described in section
6, is unsuitable for the use as the storage of the JAXS, because it does not support this type of
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matching. The coordinator compares each field’s type of a stored tuple to the corresponding
field’s type of the template. Since there is no simple way to constrain the type matching to
specific fields in the revised LindaCoordinator, a slightly modified version, but based on the
concepts of the revised LindaCoordinator, had to be written. The implementation details of the
JSLindaCoordinator are presented in the section 7.2.

The JAXS is further responsible to take care of the interaction between the JavaSpaces API,
which is used by its clients, and MozartSpaces, which is used in the background. It is respon-
sible for:

• The conversion of Jini Entry into a storable MozartSpaces tuple.

• The management of Jini transactions and the mapping of those to MozartSpaces transac-
tions.

• The management of Jini notifications.

• The management of Jini leases.

Jini entries must be converted into MozartSpaces tuples by the JAXS before they can be pro-
cessed by the MozartSpaces operations. Certainly the tuples must be reconverted to Jini entries
by the JAXS again before they are returned to the JAXS’s clients. The conversion of Jini entries
to storable MozartSpaces tuples and back again will be explained in section 7.3.

The JavaSpace API uses Jini transactions for its transactional operations, but these are incom-
patible with MozartSpaces transactions. Mapping Jini transactions to MozartSpaces transac-
tions is possible but not simple. On the one hand, Jini transactions are based on a two-phase
commit protocol that must be supported by services. On the other hand, services must join
as transaction participants each transaction that is used by clients when invoking the services’
operations. The management and the implementation for the support of Jini transactions will
be described later in section 7.5.

JavaSpace notifications differ in their semantics from the notifications provided by Mozart-
Spaces. A significant difference is that JavaSpace notifications allow the specification of a tem-
plate on registration, which constrains the notification to certain matching entries, but Mozart-
Spaces does not provide any equivalent mechanism for its notifications. Another difference is
that JavaSpace notifications are bound to a lease that is granted on registration. In contrast,
MozartSpaces notifications are bound to a number of times, specified at registration, that the
registered listeners should be notified. For this reason it was essential to write a custom notifi-
cation module JAXS, whose implementation is described later in section 7.6.

The JavaSpace specification defines the application of leases amongst other things for stored
entries and notifications. On the basis of the fact that MozartSpaces does not provide a lease
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management or something comparable, it was essential to write a lease management component
for the JAXS based on the Landlord framework (see section 3.5.2 for details). Section 7.7 is
dedicated to the implemented lease management’s description.

7.1 The JavaSpaces-MozartSpaces API Service

Architecture

The JAXS’s internal architecture is depicted in figure 7.1, which shows three main architecture
components:

JAXS Service Proxy The JAXS service proxy is the front-end through that the JavaSpaces
clients are able to communicate with the JAXS service. It is provided by the JAXS ser-
vice during the registration process at a Lookup service and is forwarded by the Lookup
service to the client on its service lookup request. The service proxy provides the Java-
Spaces API to the clients that can use it to interact with the JAXS service. The proxy
does not only forward the client’s requests to the JAXS service and vice versa, but is also
responsible to preprocess the data before delivering it either to the JAXS service or to the
client. The preprocessing includes among other things the conversion and reconversion
between Jini entries and MozartSpaces tuples.

JAXS Service The JAXS service is the core of the JAXS, the “bridge” between the JavaSpaces
API and the MozartSpaces API. It is in charge of behaving as an ordinary JavaSpaces
service to its clients that includes the support of Jini transactions, Jini Event notifications
and leasing of resources. Most of these are implemented using the features provided by
MozartSpaces, but there are features like leasing which have to be handled and managed
by JAXS service.

MozartSpaces MozartSpaces and its functionalities are used as storage for the entries, as
transaction handler for the JAXS operations and as a part of the notification system im-
plemented by the JAXS.

How JAXS fits into a Jini federation is depicted in Figure 7.2. As a Jini service it is operating
in the same manner as any other Jini or especially JavaSpaces service. The fact that another
space based middleware is working in the background is hidden from the accessing Jini clients
and services. They are using the proxy of JAXS service, which they can lookup at the Lookup
service where JAXS is registered, to interact with the service. JAXS can wrap the operations
executed by the clients or services into Jini transactions on their demand.
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Figure 7.1: JAXS architecture

Figure 7.2: JAXS system integration
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7.2 JSLindaCoordinator

The JSLindaCoordinator is a slightly modified version of the revised LindaCoordinator intro-
duced in section 6. The only difference is that the JSLindaCoordinator meets the requirements
of the Jini template matching specifications (see section 2.2.4) to support the subtype matching
of Jini entries. The standard LindaCoordinator is not able to do this because it does subtype
matching for every field of a tuple and not just for the entry’s class. Although it would be possi-
ble to store the entries class type as one of the tuple’s fields, template matching would not work
either because the revised LindaCoordinator uses all tuple fields to generate a fingerprint of the
tuple. This fingerprint is later used to find potential matching tuples against a given template
in the first instance. If there are subtypes of a template available, they won’t be identified as
potential matching tuples if their number of fields differs from the template’s field count. Due
to of the tuple’s fingerprint they are treated as different non matching tuples. For this reason
the data structure, which is used by the revised LindaCoordinator, has been slightly modified
to meet the JSCoordinator’s requirements.

7.2.1 Implementation

As previously mentioned the only difference is how the TupleFingerPrint is generated and used
to index the stored tuples. Therefore only this difference will be discussed in this chapter.
The JSLindaCoordinator’s data structure allows only to store instances of JSTuple class, a
subtype of the Tuple class. The composition of tuples, which can be stored, has been restricted
to the subclass. The first field that is not ignored must provide the class type of the Jini Entry
to be stored. As depicted in the class diagram in figure 7.3 the JSTuple has an additional field
“jsEntryType” to store the class type of the original Jini Entry instance. The tuple’s fingerprint
is therefore defined by the provided class type and not by the types of all tuple fields. The
remaining fields are then used as in the revised LindaCoordinator’s data structure. They are
stored in an ordered list, which is linked to the corresponding tuple’s fingerprint, where each
list’s entry refers to a ValueMap, which is already known from the revised LindaCoordinator.
The ValueMap map’s the field’s value to a list of references of stored tuples. The data structure
that is used by the JSLindaCoordinator is depicted in figure 7.4.

The JSCoordinator is not restricted to the subtypes of Jini Entry classes and hence is usable
for any other purpose that requires such a coordinator.
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Entry

Tuple

-jsEntryType : Class

+JSTuple(jsEntryType : Class)
+JSTuple(jsEntryType : Class, arg0 : int)
+JSTuple(jsEntryType : Class, ent : Entry ...)
+getJSEntryType() : Class

JSTuple

Figure 7.3: JSTuple class

Figure 7.4: JSLindaCoordinator’s data structure
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7.2.2 Adapted Revised-LindaSelector

The revised LindaSelector, introduced in section 6.3, has been extended by additional features
to provide better support for the implementation of JavaSpaces. These features are reflected by
the newly added constructors and methods that are listed in the class diagram in figure 6.7.

-minCount : int
-maxCount : int

+JSLindaSelector()
+JSLindaSelector(count : int, minCount : int, maxCount : int, templates : Tuple ...)
+JSLindaSelector(minCount : int, maxCount : int, templates : Tuple ...)
+JSLindaSelector(tupleID : String)
+JSLindaSelector(templates : Tuple ...)
+getMinCount() : int
+getMaxCount() : int
+getProperties() : Properties
+setProperties(props : Properties) : void
+equals(obj : Object) : boolean
+toString() : String

JSLindaSelector

RevisedLindaSelector

Selector

Figure 7.5: JSLindaSelector class

The usage of several templates and the definition of a specific tuple to be retrieved is also
possible as it was introduced by the revised LindaSelector. The JSLindaSelector extends the
revised LindaSelector by additional properties that are required by the JSCoordinator.
Perhaps the most important extensions are the values minCount and maxCount. These values
add, together with the existing value count, a new feature to the selector. Based on the relation
of these three values the selector has a different behavior relating how many tuples must be
found. The possible relations and how the LindaCoordinator behaves in each case are listed
below:

• minCount < count < maxCount
In this case minCount and maxCount are ignored, the LindaCoordinator either returns
count matching tuples or throws a CountNotMetException.
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• minCount ≥ count or
maxCount ≤ count
The limiting values minCount and maxCount are used as lower- and upper-bound when
reading or taking multiple tuples. The LindaCoordinator must find minCount tuples, else
it would either block or throw a CountNotMetException, but it must not find more than
maxCount.

7.3 From Jini Entry to MozartSpaces JSTuple and backward

When converting Jini entries to MozartSpaces tuples attention must be paid to extract the public
fields of a Jini Entry and generating an instance of JSTuple out of it. On the one hand the Jini
Entry’s type is required for instantiate a new JSTuple as well as all public fields of the Jini Entry
must be extracted. It is possible to specify the fields to be stored by the JSTuple as well as their
ordering, by adding the method getFields to the implementing class of the Jini Entry.

The composition of the tuples that are stored by the JAXS in the JSLindaCoordinator is depicted
in figure 7.6. The first field is reserved for a tuple that may contain additional information, like
the lease assigned by the JavaSpaces service for the written entry. The tuple is intended to allow
interoperability between several JAXS services and is set be ignored by the JSLindaCoordina-
tor. The number of the tuple’s remaining fields depends on the size of the entry’s public fields
that are to be stored. All fields of an entry are stored in marshalled form as specified by the Jini
Entry specification.

Figure 7.6: Composition of a JSTuple as used by the JAXS

A write operation must convert an entry to a tuple before it can be written by the MozartSpaces’
write operation to the space. The conversion is done in the following 3 steps:

1. Ascertainment of the entry’s class type and instantiation of a new JSTuple with the ex-
tracted entry’s class type as argument.

2. Ascertainment and extraction of the entry’s public fields

3. Each extracted field is stored as a MarshalledObject1 in a separate field of the tuple
in the same order as it was extracted in step 2.

1A MarshalledObject is a Java RMI class which provides a constructor that automatically serializes the as pa-
rameter provided object and deserializes it again on invocation of its get method.
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A read or take operation must reconvert the tuple, returned by the corresponding MozartSpaces
operation, to an entry before it can be returned to the invoking client’s procedure. The recon-
version is the inverse of the previously described conversion and is done in the following 3
steps:

1. Extraction of the stored entry’s type.

2. Instantiation of a new empty entry whose type equals the class type of the previously
extracted entry.

3. Assignment of the stored values, which are contained by the fields after the second field,
to the in step 2 generated entry’s fields.

7.4 Implementation of JavaSpace and JavaSpace05

Operations

As introduced in section 4.6, the JavaSpaces API is the interface that must be implemented by
services, which want to provide the functionalities of a standard JavaSpaces service. Of course
a service could also implement the JavaSpaces05 API, introduced in section 4.7, which extends
the functionalities of the original JavaSpaces API by adding support for bulk operations. Al-
though the primary target of this thesis was the implementation of the JavaSpaces API standard,
attention was paid from the beginning to allow later the implementation of the JavaSpaces05
API without the need to completely rewrite the sources. Not only that the sources have been
prepared for a later implementation of the JavaSpaces05 API, the API has been implemented
as part of this thesis too.

As depicted in section 7.1 the JAXS consists of two components that are relevant for the Jini
community: the JAXS service and the JAXS service proxy. The service proxy is the front-end
through which the Jini clients and services can interact with the JAXS service. Therefore it
must implement the JavaSpace or JavaSpace05 interfaces in order to be accessible by them as
a JavaSpaces service. The service proxy possesses a reference to the exported remote object of
the JAXS service through that it is able to interact with the JAXS service. The diagram in figure
7.7 depicts the symbiosis between the JAXS service, represented by the JAXSService class
in the implementation, and the service proxy, represented by the JAXSServiceProxy class
in the implementation. It shows the mapping of the various JavaSpace and JavaSpace05 opera-
tions in the service proxy implementation to the corresponding operations in the JAXS service
implementation. The JAXSService implements the IRemoteJAXSService interface,
which defines the methods that can be remotely used and accessed by the JAXSServiceProxy.
The implementation details of these remote methods will be discussed next.

84



Chapter 7 The JavaSpaces API Standard for XVSM

Figure 7.7: Symbiosis between JAXSServiceProxy and JAXSService

7.4.1 Remote JAXSService Operations

As aforementioned, the JAXSService implements the IRemoteJAXSService interface, which
defines the operations that can be remotely used by the JAXSServiceProxy to interact with the
service. The methods defined by the IRemoteJAXSService interface are listed below in listing
7.8.

All these methods have in common that the passed transaction reference, which is a Jini trans-
action, has to be converted into a MozartSpaces transaction before it can be further processed.
This is done by looking up the transaction at the transaction manager. It will either return
the associated MozartSpaces transaction or create a new one if there was no associated so far.
More details on the transaction manager’s functionality will be discussed in section 7.5. The
implementation of the methods itself will be explained next.

write The write method takes the passed list of entries, which were converted to tuples before
by the service proxy, and writes them into the space by calling the ICapi.write method.
But before they can be written, a lease must be created for each single entry. The creation
of leases is left to the TupleLeaseManager (see section 7.7.1 for details). After all
leases were created successfully, the entries are written to the space and the references
to the created leases returned. In case of failure, any created lease is dropped and a
RemoteException is thrown.

The JAXSServiceProxy uses the IRemoteJAXSService.write to delegate the invocations
of its methods JavaSpace.write and JavaSpace05.write to the JAXSService. In the case
of the implemented JavaSpace.write method, the JAXSService.write method is invoked

85



Chapter 7 The JavaSpaces API Standard for XVSM

<<Interface>>
IRemoteJAXSService

<<Interface>>
IJAXSService

Figure 7.8: IRemoteJAXSService interface

with a list, which only contains single entry, as argument. In almost the same manner
the implemented JavaSpace05.write method invokes the JAXSService.write method with
a list of entries as argument.

read The read method simply calls the ICapi.read method to find entries in the space that
match one or more of the passed templates. This method does not require any additional
processing before or after the invocation of the MozartSpaces method’s call, except the
previously mentioned transaction’s conversion.
The read method has two arguments, which are directly passed on to the ICapi.read

method, that are important for the JAXSServiceProxy:

• timeout: The JAXSServiceProxy uses the timeout argument to implement the
JavaSpace.readIfExist by passing 0 as value. This tells MozartSpaces that the op-
eration shall not block and return anyway.

• count: The JAXSServiceProxy uses the count argument to implement the
JavaSpace.read method by passing 1 as value, because the JavaSpace method spec-
ifies the return of a single matching argument.

contents The contents method is an extension of the read method. It uses the read method
to find matching entries, but it does not return the received list immediately. Instead
it requests the MatchSetManager (see section 7.4.2 for details) to create a new in-
stance of the ServiceMatchSet class, containing the received list of entries. The
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obtained reference of the stored MatchSet is then returned to the calling process. This
must be done because the contents method is the corresponding implementation of the
JavaSpace05.contents method (see section 4.7.2 for details), which defines the return of
a reference to a MatchSet that is managed by the implementing service.

take Like the read method, the take method simply calls the ICapi.read method to retrieve en-
tries that match one or more of the passed templates from the space. The arguments, their
meaning and the way they are used are the same as for the read method. The received
entries need to be post processed before they can be returned to the invoking process.
This includes the removal of each associated lease from the TupleLeaseManager, be-
cause these are no longer required.

notify The notify method is used by the JAXSServiceProxy to pass on registration requests that
were placed by the corresponding JavaSpace.notify method. The registration request is
further passed on to the NotificationManager (see section 7.6 for details), which returns
a Lease of the registered notification as a voucher that the notification was registered
successfully.

registerForAvailabilityEvent Basically the registerForAvailabilityEvent works the same way
as the notify method, except that it allows to provide more than one template at notifica-
tion registration.

The JavaSpace.snapshot method is handled by the JAXSServiceProxy itself and is not
forwarded to the JAXSService. The generated snapshots of entries are simply stored in a
HashMap, where they are mapped to their originating entry.

7.4.2 MatchSetManager

The MatchSetManager class is responsible to create, store and administrate MatchSets as
long as they are valid. It possesses a reference to the MatchSetLeaseManager, which is con-
cerned with the administration of the MatchSets’ leases. The MatchSetManager’s class diagram
is depicted in figure 7.9.

Matchsets are created by the createMatchSet method, which requires the caller to provide a
list of tuples and the duration that the MatchSet should be leased as arguments on invocation.
According to the JavaSpace05 specification a MatchSet (see section 4.7.1 for details) is man-
aged by the service and accessed remotely by the client via the MatchSet interface. For this
reason a MatchSet is represented within the MatchSet manager by the ServiceMatchSet
class (depicted in figure 7.10) that contains beside the list of found tuples a unique ID and the
MatchSet’s lease.
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+nextTuple(matchSetID : Uuid) : ServiceTuple

<<Interface>>
IMatchSetManager

-matchSets : ConcurrentHashMap<Uuid, ServiceMatchSet>
-remoteMatchSetManager : IMatchSetManager
-leaseManager : MatchSetLeaseManager

+MatchSetManager()
+init() : void
+createMatchSet(tuples : List<Entry>, duration : long) : MatchSet
+removeMatchSet(matchSetID : Uuid) : void
+invalidateMatchSet(tuple : ServiceTuple) : void
+nextTuple(matchSetID : Uuid) : ServiceTuple

MatchSetManager

Figure 7.9: MatchSetManager class

-ID : Uuid
-tuples : List<Entry>
-snapShot : ServiceTuple
-lease : Lease
-valid : boolean

+ServiceMatchSet(tuples : List<Entry>)
+setLease(lease : Lease) : void
+getLease() : Lease
+getSnapshot() : ServiceTuple
+next() : ServiceTuple
+contains(tuple : ServiceTuple) : boolean
+isValid() : boolean
+invalidate() : void
+getID() : Uuid

ServiceMatchSet

Figure 7.10: ServiceMatchSet class
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However the client receives an instance of the ServiceMatchSetProxy class, which im-
plements the MatchSet interface and contains a reference to the MatchSet manager’s remote
object. With its instance of the ServiceMatchSetProxy class the client is able to iterate over the
content of the MatchSet as long as the MatchSet is not invalidated. A MatchSet is either invali-
dated if at most one of its contained tuples was removed from the space or after the MatchSet’s
lease expired.

7.5 From Jini Transactions to MozartSpaces Transactions

Jini transactions are incompatible with MozartSpaces transactions, because Jini transactions
are built on a two-phase commit protocol and are centrally managed by a transaction manager.
For this reason the JAXS service must map Jini transactions to MozartSpaces transactions. But
it is not sufficient to create an association between both transaction types. The Jini transaction
specification (see section 3.6 for details) requires that any service that wants to provide support
for transactions must additionally join a transaction as a transaction participant and also imple-
ment the two-phase commit protocol.
The JAXS service does not implement a Jini transaction manager itself. It only joins a Jini
transaction as a transaction participant. For this purpose, Jini transaction manager services like
the reference implementation “Mahalo” [53] can be used to create and manage Jini transac-
tions.
In the JAXS service, the mapping and administration of the transactions is left to the Trans-
actionManager class. It takes care of the assignment of Jini transactions to MozartSpaces
transactions and the creation of MozartSpaces transactions if there was none assigned to a
Jini transaction so far. The TransactionManager also joins each used Jini transaction as a
transaction participant in order to notice when the transaction is committed or aborted. As
a transaction participant it must implement the TransactionParticipant interface and the therein
specified methods prepare, commit and prepareAndCommit. The prepare method must return
the state of readiness of the transaction participant. In order to do that the TransactionManager
must perform a read operation with the MozartSpaces transaction, which is associated to the
corresponding Jini transaction, to check whether the transaction is still valid or not. The Trans-
actionManager therefore possesses its own separate container “TXN-Validation” that contains
a single entry. If the transaction is still valid the read operation will return the entry and the
TransactionManager can send back that it is ready to commit the transaction to the Transac-
tionManager service. If the transaction was no longer valid, the TransactionManager receives
an exception and sends back that it must abort the transaction.
The operations workflow of the TransactionManager joining a Jini transaction is depicted in

89



Chapter 7 The JavaSpaces API Standard for XVSM

the sequence diagram in figure 7.11 and described below. The JAXSServiceProxy was
omitted here because it does not play any role in the process of transactions.

A transaction starts with the creation of a new Jini transaction at the Mahalo service by a
client and the return of a new transaction jTxn to the client. The client uses the received
transaction jTxn to write an entry into the JAXS service. Thereupon, the JAXS service looks
up the transaction jTxn at the TransactionManager, which first tries to find an already existing
mapping to the transaction jTxn. Because the transaction jTxn is used the first time on the JAXS
service the TransactionManager is unable to find an associated MozartSpaces transaction and
hence requests MozartSpaces to create a new transaction. The received new MozartSpaces
transaction msTxn is mapped to the transaction jTxn in its HashMap. Before it is returned to
the JAXS service, the TransactionManager registers itself as a transaction participant of the
transaction jTxn at the Mahalo service. The JAXS service creates a lease under the transaction
msTxn for the entry at the TupleLeaseManager (see section 7.7.1 for details), before it is written
under the transaction msTxn to the space. This is done in order to remove the lease in case of
a transaction’s rollback and to be able to remove the entry from the space as soon as the lease
expired, but before the transaction was already committed. Next the JAXS performs the write
operation under the transaction msTxn on the MozartSpaces container “space”, which is carried
out without any failures and the JAXS service returns to the client.

The operations workflow of the TransactionManager committing a Jini transaction, is depicted
in the sequence diagram in figure 7.12 and described next. Again, the JAXSServiceProxy
was omitted here because it does not play any role in the process of transactions.
After the client has performed all its operations under the transaction jTxn, it requests to com-
mit the transaction jTxn at the Mahalo service, which then asks all the transaction participants
that partake in the transaction jTxn, including the TransactionManager, to prepare the transac-
tion for commit. The TransactionManager looks up the transaction jTxn in its HashMap to find
the associated MozartSpaces transaction msTxn. With the found transaction it performs a read
operation on its container “TXN-Validation” to check whether the transaction is still valid or
not. In this case the read operation returns successfully and the TransactionManager sends back
that it is ready to commit the transaction. In the last step the Mahalo service requests the trans-
action participants of the transaction jTxn, including the TransactionManager, to commit the
transaction jTxn. After the TransactionManager looked up the mapped transaction msTxn for
the transaction jTxn, it requests MozartSpaces and after that the TupleLeaseManager to commit
the transaction msTxn. The TupleLeaseManager must remove the transaction reference from
the lease object. Otherwise it would receive an exception as soon as it tries to remove the entry
from the space. Finally the TransactionManager reports back that the transaction was commit-
ted successfully.
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If the transaction is rolled back for any reason the TransactionManager issues MozartSpaces to
rollback the transaction and requests the lease manager to drop the leases associated with the
transaction by calling the LeaseManager.rollback method.

7.6 Notifications

The notification feature provided by MozartSpaces is not applicable to the notification specified
by the JavaSpaces API specification, which specifies that clients must provide a template when
registering their notification. The template is required to inform the client only when entries,
matching the provided template, are written. Template matching works the same way as it
does in a common read or take operation. For this reason a custom notification module for
the JAXS service was implemented that complies to the JavaSpaces specifications and consists
of as many existing MozartSpaces’ features as possible. The architecture of the implemented
notification module is shown in figure 7.13.

Figure 7.13: Notification architecture

Template Container The “template” container uses a JSLindaCoordinator with the “reverse-
Matching” option turned on to manage its content. The reverse matching is required
because the coordinator has to work the other way round as it would normally do. This
way, templates are stored like entries and entries are used like templates by the coordina-
tor.
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Notifications Container The “notification” container uses a FiFoCoordinator to manage its
content. It contains tuples that are composed of the MozartSpaces transaction, which
was used by the write operation, and all templates that are matching the just written
entry.

Notification Aspect The NotificationAspect is an extension of the LocalAspect class
that implements the postWrite method. On invocation the postWrite method performs
a read operation with the just written entry, as the template to be matched, on the tem-
plate container. The template container returns the matching templates, which are placed
together with the transaction that was used by the write operation, into a newly created
tuple (the tuple’s composition is depicted in figure 7.14). The resulting tuple then is
stored in the notification container.

Figure 7.14: Notification tuple composition

Notification Participant Each registration of a client is represented by an instance of the
NotificationParticipant class. It stores all the information that was provided
by the client on its registration (the transaction, a reference to the client’s implementa-
tion of the RemoteEventListener interface and the handback object) including the
event the client has registered for.

Notification Manager The notification manager administrates the registered notification and
uploads each new template into the template container. A separate thread is engaged
to carry out a blocking take operation on the notification container in an infinite loop,
in order to receive the matching templates from the notification aspect. As soon as the
blocking take returns any result, a separate thread is charged with the notification of the
clients, which are registered with the same template as it was returned, about the occurred
event.

One problem to be solved was the different behavior of the JavaSpace.notify and the JavaS-

pace05.registerForAvailabilityEvent method. The difference between them is that the JavaS-
pace method allows the registration of a single template only, whereas the JavaSpace05 method
allows the registration of multiple templates. Each registration requires the assignment of an
event ID with respect to all other existing active registrations and the way they were registered.
This means that events registered via the JavaSpace.notify method must be handled separately
from those registered via the JavaSpace05.registerForAvailabilityEvent method.
Registered notifications are distinguished according to the way they were registered and repre-
sented by two classes, both extending the AbstractEvent class:
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• The Event class, representing notifications registered via the JavaSpace.notify method.

• The EventSet class, representing notifications registered via the
JavaSpace05.registerForAvailabilityEvent method

Within the notification manager the correlation between events and the notification participants
is administrated by the EventManager class. For this purpose the EventManager pos-
sesses a HashMap where a list of notification participants is mapped to their associated event.
Events exist as long as there is at least one notification participant associated with it, whereas
the notification participants are removed as soon as their lease expired. Hence it might happen
that an event is never dropped, if the presence time of coming and going notification partici-
pants overlaps. Once an event is dropped a new registration for the same kind will result in the
creation of a new event, with a different ID as the one before.

7.7 Leasing

The JavaSpaces API specification specifies that entries, MatchSets and notifications must be
leased by the implementing service. This should prevent that unneeded resources are unnec-
essarily wasting important system resources. MozartSpaces does not yet feature the lease of
resources, hence the entire lease management had to be implemented within the JAXS service.
Although it may seem naturally to implement the lease’s management with the aid of aspects
within MozartSpaces, it was not realized this way because it would have violated the Mozart-
Spaces specification. On the one hand MozartSpaces does not admit the use of custom threads
within aspects and on the other hand it does not admit to directly access aspects from the out-
side of MozartSpaces too. If an aspect is assigned with the leases’ management, it must check
the leases in certain intervals. This would require the use of threads, which would violate the
specification of MozartSpaces. According to the Jini lease specification, the returned Lease ob-
ject contains a reference to the remote lease manager, enabling the client to manage its leases.
Allowing the client to access the aspect, which is assigned with the leases’ management, would
again violate the specification of MozartSpaces.
The leases’ management for the different resources is nearly the same. Nevertheless they are
managed seperately from each other by its own lease manager. Therefore the JAXS owns
three different lease managers, all extending the AbstractLeaseManager class. The
AbstractLeaseManager class takes care of the main work, the actual management of
the leases. It creates new leases for resources and stores them in its own HashMap associated
to the leased resource’s ID. A leased resource is represented internally by the Abstract-
LeasedResource class, which is implemented seperately for each type of leased resource.
It contains only the ID of the resource that is leased and the time when the lease will expire.
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The AbstractLeaseManager class possesses its own thread that is concerned with check-
ing whether a lease resource has expired and its associated resources must be dropped. If an
expired lease is found the handleTimout method is called, which has to be implemented by all
classes that are implementing the AbstractLeaseManager class, in order to remove the
expired lease.
The three different lease managers TupleLeaseManager, NotificationLeaseManager and Match-
SetLeaseManager that are used by the JAXS will be discussed next, followed by a short descrip-
tion about the leasing of the JAXS service at a lookup service.

7.7.1 Lease Managers

TupleLeaseManager The TupleLeaseManager class is responsible for managing the leases
of the tuples stored by MozartSpaces. In contrast to the other lease managers the Tuple-
LeaseManager must access MozartSpaces in order to be able to remove a tuple whose
lease has expired. The leased tuples are represented by the TupleLeasedResource
class, an extension of the AbstractLeasedResource class, which contains the ID
of the stored tuple and the transaction that was used to write the tuple into the space. The
transaction is removed again as soon as the transaction was committed successfully.
Attention had to be paid for the case that a tuple was removed from the space again be-
fore the lease expired, because the lease was no longer valid. For this reason the JAXS
service removes the lease for each taken tuple from the TupleLeaseManager.
In the case that a write or take operation is performed under a transaction, the TupleLease-
Manager owns its own LeaseHistory class, which extends the AbstractHistory
class, to be able to rollback the adding or removal of a lease in case of that the transaction
is aborted.

NotificationLeaseManager The NotificationLeaseManager class is responsible for
managing the leases of the registered notifications. It owns a reference to the Notifi-
cationManager to be able to remove the expired notification. The Notification-
LeasedResource class, an extension of the AbstractLeasedResource class,
represents the leased notification within the NotificationLeaseManager.

MatchSetLeaseManager The MatchSetLeaseManager class is responsible for managing
the leases of the created MatchSets. It owns a reference to the MatchSetManager to be
able to remove the expired MatchSet. The MatchSetLeasedResource class, an
extension of the AbstractLeasedResource class, represents the leased notification
within the MatchSetLeaseManager.
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The class diagram in figure 7.15 gives a better overview on the class hierarchy of the various
lease managers.

7.7.2 JAXS Service Leasing

The JAXS as a Jini service owns a lease for its registration at a lookup service. The lease is
updated periodically to ensure that the registration is not dropped by the lookup service as long
as the service is running. For this purpose Jini already provides the LeaseRenewalManager
class, a tool that periodically updates leases.
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<<Interface>>
LocalLandlord

<<Interface>>
Landlord

AbstractLeaseManager

MatchSetLeaseManager

NotificationLeaseManager

TupleLeaseManager

Figure 7.15: Lease managers’ class diagram
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Evaluation and Benchmarking

This section evaluates first in which way the implemented JavaSpaces API for XVSM-Space
(JAXS), as part of this thesis, complies with the JavaSpaces API standard specification. After
that a comparison between JAXS and the JavaSpaces implementations GigaSpaces, Blitz and
Outrigger is given. In the end, a description of possible enhancements of JAXS and the concept
of a further feature are presented.

8.1 JavaSpaces API Compliance

The implemented JavaSpaces-XVSM API (JAXS) as part of this thesis complies in almost ev-
ery point to the JavaSpaces specification. The compliance was approved by testing the API
with own test cases (see appendix B) and by running 3rd party applications (e.g. the applica-
tions listed in [42]) that use the JavaSpaces API standard.
JAXS does not comply with the JavaSpaces specification in the following points:

• The JavaSpace interface specification prescribes for the readIfExist and takeIfExist meth-
ods that they should block if a matching entry was found. The problem is that its transac-
tional state does not terminates so far until either the transaction terminates, or the given
timeout has expired (see section 4.6 for details). The execution of test cases J.11 and
J.13 (see section B.2) showed that JAXS does not comply with the specification in this
particular cases.
Explanation: JAXS uses MozartSpaces as storage for entries and as a transaction man-
ager. MozartSpaces is accessed by JAXS via the ICapi interface and utilizes the Mozart-
Spaces’ methods read and take, which do not support the required type of blocking.

• The JavaSpace05 specification prescribes for the registerForAvailabilityEvent method the
detection of the transition of an entry from invisible to visible and from unavailable to

99



Chapter 8 Evaluation and Benchmarking

available (see section 4.7.2 for details). The execution of test case N.10 (see section B.5)
showed that JAXS does not comply with the specification in this particular case.
Explanation: JAXS supports the notification of newly added entries to the space but
does not support the transitions specified by the JavaSpace05 specification. This is again
due to the fact that MozartSpaces is used both as storage for entries and as transaction
manager. The internal process flow of MozartSpaces does not allow the implementation
of the required feature.

8.2 Benchmarks

Benchmarks were made with the objective to compare the JavaSpaces API implemented on top
of MozartSpaces against the JavaSpaces API implementations (see section 2.4.1) GigaSpaces,
Blitz and Outrigger. For this purpose, the amount of time was measured that each JavaSpaces
implementation required to complete write, read and take operations. These operations were
performed separately and independently from each other on all JavaSpaces implementations.
Multiple measurements were made, each with a different number of entries.
To be able to insert entries into the space the Jini Entry interface has been implemented by
the SimpleEntry class, the class diagram is depicted in figure 8.1, which contains three public
fields: Integer, String, and a Boolean field. Instances of SimpleEntry are used on the one
hand to fill the space and on the other hand as template to perform read and take operations.
Table 8.1 depicts the different entries and their values that were used for this purpose.

<<Interface>>
Entry

+ID : Integer
+name : String
+accept : Boolean

+SimpleEntry()
+SimpleEntry(ID : Integer, name : String, accept : Boolean)
+toString() : String

SimpleEntry

Figure 8.1: SimpleEntry class

The “normal entry” is written (n - 1) times, where n is the number of entries to be written within
a measurement of the write operation. The “predefined entry” is only written once and before
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Normal entry Predefined entry Template entry
Integer [0 . . . (n - 2)] 42 null
String “Tuple” “Benchmark” null
Boolean true true null

Table 8.1: Values assigned to SimpleEntry instances

the normal tuples by the write operation, because this special tuple is at the same time the one
for which the read operation will look for during the measurement of the read operation. After
the write operation’s measurement a total number of n tuples are contained in the space. All
entries were inserted with the maximum available lease time to avoid the expiration of entries
and the necessity to renew the leases, which would have influenced the measurements, during
the benchmark.
Now that the space contains n entries, including the predefined entry, the performance of the
read operation was measured. For this purpose the predefined entry is required to measure the
time needed for each space implementation to find the predefined entry out of the previously
written n entries.
In the final step the time that each space implementation takes to perform as many take opera-
tions as entries contained in the space is measured. The “template entry”, depicted in table 8.1,
is used to perform the take operations because all fields of the template entry are unassigned
(null) and hence allow to take all entries that were written previously by the write operation’s
measurement.

As a general restriction the standard JavaSpace interface (see section 4.6) was only used to
write, read or take entries. For this reason, the operations are further constrained to work with a
single entry respectively. All measurements were repeated 10 times, independently from each
other, and the repetitions’ mean value was used to finally generate the diagrams.

The relevant characteristics of the system, on which all benchmarks where performed, are listed
in table 8.2.

Processor AMD Athlon™ 64 X2 Dual Core 6400+
(each core with a frequency of 3.2GHz)

Main memory 2GB
OS Ubuntu 8.04 32bit
Java™ Version 1.6.0 07-b06

Table 8.2: Computer’s characteristics used for all benchmarks

In the following, the results of the benchmark will be discussed, starting with the results of
the write performance measurement in section 8.2.1, followed by the results of the read per-
formance measurement in section 8.2.2 and then by the results of the take performance mea-
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surement in section 8.2.3. At last an evaluation is given in section 8.2.4 about the performance
of the implemented JAXS compared to the performance of the JavaSpaces implementations
GigaSpaces, Blitz and Outrigger.

8.2.1 Write Performance Measurement

The benchmark results of write operations performed on the JavaSpaces implementations are
presented in figure 8.2. It shows that the performance of the implemented JAXS is nearly the
same as the performance of the other JavaSpaces implementations up to 1000 sequentially writ-
ten tuples. JAXS requires much more time to sequentially write more than 1000 tuples as the
other spaces. On the one hand this is due to the overhead required by the JSLindaCoordinator’s
data structure to index the tuples. On the other hand it is slower because the JavaSpaces entries
have to be transformed into MozartSpaces tuples before they can be further processed.
Outrigger and Blitz are getting slower than GigaSpaces above 5000 sequentially written tuples.
GigaSpaces showed the best performance in this benchmark.
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Figure 8.2: Benchmark results of the “write” operation

8.2.2 Read Performance Measurement

The results of the read operation’s benchmark performed on the JavaSpaces implementations
are presented in figure 8.3. Nearly all spaces show a constant performance when reading the
predefined entry out of 500 or more entries, GigaSpaces even showed throughout a constant
performance. JAXS is slower than the other spaces because of the required time of transforming
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the template (a JavaSpaces entry instance) into a MozartSpaces tuple and the result back to a
JavaSpaces entry than the other spaces
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Figure 8.3: Benchmark results of the “read” operation

8.2.3 Take Performance Measurement

The results of the take operation’s benchmark performed on the JavaSpaces implementations
are presented in figure 8.4. The spaces are almost equally fast until a number of 5000 stored
tuples and as from 7500 stored tuples upward the performance is clearly diverging. Blitz shows
the worst performance of all, in this benchmark because it requires more than 2 minutes to
sequentially take 25000 tuples and even more than 5 minutes for 50000 tuples. JAXS is slowing
down continuously with increasing tuple size.

8.2.4 Benchmark Evaluation

Overall JAXS is slower than the other spaces, except Blitz in the “take” operation’s benchmark,
but shows a good performance even with more than 10000 tuples as well. The sole bottleneck
is the write operation, just as with the revised LindaCoordinator (compare with the revised
LindaCoordinator benchmark in section 6.4) that is using nearly the same data structure as the
JSLindaCoordinator.
Principally JAXS is however slower than the other spaces, because it acts as a middleman
between the JavaSpaces clients and the MozartSpaces and as such it is interacting on the Java-
Spaces side via RMI with the XVSMServiceProxy, used by the JavaSpaces clients, and inter-
acting on the other hand with MozartSpaces via TCP/IP.
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Figure 8.4: Benchmark results of the “take” operation

In overall however, it has to mentioned that MozartSpaces is a premature implementation with
a lot potential of improving its implementation. The aspect of benchmarking an improved ver-
sion of MozartSpaces can be seen as an additional future work resulting in hopefully better
measurements than the current one shows.

8.3 Future Work

Performance Enhancement To increase the performance of the implemented JAXS, the ad-
ministration and management of the Jini leases should be delegated to MozartSpaces. In
concrete terms, by adding the feature of leased tuples to MozartSpaces, the management
of entries would be centralized. Thus the omission of the “middleman”, would not only
simplify the job of JAXS, but also increase its performance.

ActiveCoordinator Based on the concepts of the eval operation introduced by the Linda co-
ordination model (see section 2.3), and the P2P characteristics of MozartSpaces the
idea came up to add a new feature similar to Linda model’s eval operation. This re-
quires the implementation of a new coordinator “ActiveCoordinator” for MozartSpaces
that only accepts classes implementing the ActiveEntry interface, which extends the
MozartSpaces Entry interface and contains the abstract method evaluate as depicted
in listing 8.5. The evaluate method returns a list of instances of classes implementing
the Runnable interface1. The coordinator takes this list and distributes the contained
classes, which implement the Runnable interface, across other running MozartSpaces

1Any class implementing the Runnable is executeable by a thread [47].
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+evaluate() : List<Runnable>
+finalize() : void

ActiveEntry

Entry

Figure 8.5: ActiveEntry class

that offer free computing time to other participants. Runnable instances can use Mozart-
Spaces just like normal clients are using it. This means that they could also place in-
stances of ActiveEntries into an ActiveCoordinator to further subdivide its computation.
The results are returned to the source coordinator which then calls the finalize method of
the ActiveEntry instance to do final computations, before the ActiveEntry instance can
be retrieved again from the coordinator, containing the computation result(s).
The ActiveCoordinator is self-organized because it is responsible to distribute the Run-
nable instances across other MozartSpaces, offering free computation time, and to collect
the results. The distribution could take place on the basis of the available capacity and
characteristics of the MozartSpaces.

Great care must be taken to prevent the execution of malicious code by the Runnable
instances contained by the ActiveEntry, as well as exception handling of the Runnable
instances that must be returned to the source coordinator.

The introduced ActiveCoordinator could be offered by JAXS as an extension to the Java-
Spaces API standard. Just like Jini Entries are the analog of MozartSpaces Tuples, an
analog to the ActiveEntry interface must exist for the extended JavaSpaces API to be
able to forward the client’s request to MozartSpaces.
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Conclusion

The design and implementation of the JavaSpaces API standard for XVSM, especially for
MozartSpaces, has been presented in this diploma thesis. As a result, already existing Java-
Spaces based systems and applications may use MozartSpaces without the necessity to adapt
or rewrite their source code. Furthermore the implementation shall demonstrate the flexibility
and extensibility of MozartSpaces.
The implementation uses preferably the features of MozartSpaces and the possibility to extend
or modify them, respectively. As part of the implementation it was necessary to develop a new
coordinator, complying with the Jini Entry specification, particularly with regard to the pre-
scribed template matching. In addition, the support for Jini Transactions, Events and Leases
were considered in order to create the outward impression of a complete JavaSpaces implemen-
tation.
The resulting JavaSpaces frontend was in the final stages not only tested for its compliance
with the JavaSpaces API specification, but also compared in a set of benchmarks against the
other JavaSpaces implementation GigaSpaces, Blitz and Outrigger. The benchmarks showed
that the presented implementation is not much slower than the others and is even faster in a few
particular cases.

Another objective of this thesis was the enhancement of the MozartSpaces’ LindaCoordina-
tor in order to increase the coordinators performance. In the scope of the LindaCoordinator’s
revision a new data structure was developed that allows fast retrieval of tuples, matching one
ore more specified templates. Both LindaCoordinators, the original and the revised one, were
compared in a set of benchmarks, which proved that read and take operations have been suc-
cessfully speed up by the sophisticated data structure that exploits the characteristics of the
Linda coordination model.

This thesis comprises a detailed description of the Linda coordination model, the basic idea
behind space based system, including a description of the few operations that can be used to
build powerful distributed applications.
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Chapter 9 Conclusion

To conclude, MozartSpaces now supports an additional API standard, the JavaSpaces API,
beside its other existing API such as JMS-API, JavaScript-API and the Java high level API.
Furthermore, MozartSpaces is applicable as a Jini enabled service by Jini clients and other Jini
enabled services.
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Appendix A

Jini Services

In the following, an overview about the default Jini service implementations shipped together
with the Jini starter kit is given.

Reggie Reggie is the default Sun-implementation of the Jini lookup service. The lookup ser-
vice is the central registry of services, where clients and services can find a service of
interest [71].

Fiddler Fiddler is the default Sun-implementation of the Jini lookup-discovery service. It is
a helper service, employing the Jini discovery protocol to find lookup services in which
clients or services have expressed interest [71].

Mahalo Mahalo is the default Sun-implementation of the Jini transaction managers. It sup-
ports the Jini specified two-phase commit protocol (see section 3.6.1) as well as nested
transactions.

Mercury Mercury is the default Sun-implementation of the Jini event mailbox service. This
service purpose is to collect events on behalf of the clients and to forward them at the
clients’ request.

Norm Norm is the default Sun-implementation of the Jini lease renewal service. This service
purpose is to renew leases of resources, before they are expiring, on behalf of the clients.

Outrigger Outrigger is the default Sun-implementation of the JavaSpaces service (see chapter
4) providing the JavaSpace05 interface (see section 4.7.2) to its clients.

Phoenix Phoenix is the default Sun-implementation of the Jini activation service. Activatable
services, which are registered at the phoenix service, are inactive as long as they are
not needed, in order to save resources, and will be activated as soon as the service is
requested by a client.
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Appendix B

JAXS - Test Cases

This appendix contains a survey of the test cases that were performed to test the compliance of
the JavaSpaces API for XVSM-space (JAXS) implementation with the JavaSpaces specifica-
tion.

The following assumptions are made, if not explicitly otherwise stated, for all test cases:

• An HTTP server, a Jini lookup service (e.g. Reggie) and a Jini transaction service (e.g.
Mahalo) are running.

• All tests are performed without transactions, with a maximum lease duration and a 5
seconds timeout.

• Only the provided methods of the JavaSpace interface are used to access the space.

To be able to perform the test cases, the Jini Entry class has been implemented by the
SimpleEntry class, which was further extended by the ExtendedEntry class. The Ex-
tendedEntry class is required for testing the subtype matching mechanism of the read, take and
notify operations. Both classes are depicted in figure B.1.

B.1 Service Registration and Lookup

The following test cases (depicted in table B.1) test the registration and the lookup of the JAXS
service.
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+ID : Integer
+name : String
+accept : Boolean

+SimpleEntry()
+SimpleEntry(ID : Integer, name : String, accept : Boolean)
+toString() : String

SimpleEntry

+pi : Float

+ExtendedEntry()
+ExtendedEntry(ID : Integer, name : String, accept : Boolean, pi : Float)
+toString() : String

ExtendedEntry

<<Interface>>
Entry

Figure B.1: SimpleEntry and ExtendedEntry classes

ID Description Precondition Expected Result
S.1 Start JAXS to register it at a

lookup service.
Only a HTTP server,
a lookup service and
a transaction service
are running.

JAXS is registered at
the lookup service.

S.2 Lookup JAXS service using the
JavaSpace interface.

JAXS service is run-
ning.

Receive a reference to
the JAXS service.

S.3 Lookup JAXS service using the
JavaSpace05 interface.

JAXS service is run-
ning.

Receive a reference to
the JAXS service.

S.4 Lookup JAXS service using the
IXVSMService interface.

JAXS service is run-
ning.

Receive a reference to
the JAXS service.

S.5 Shutdown JAXS and restart it
again

JAXS service is run-
ning.

The JAXS service is
registered at the lookup
service once only.

Table B.1: Service registration and lookup test cases
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B.2 JavaSpace Operations

The following test cases (depicted in table B.2) test the basic operations of the JavaSpace in-
terface as specified by JavaSpaces. These tests also include test cases for subtype matching of
entries, as specified by the Jini entry specification [71]. The notification method is omitted at
this point and will be tested later in section B.5.

ID Description Precondition Expected Result
J.1 Writing a SimpleEntry Empty space. The space contains

the written entry and a
Lease object is returned
by JAXS.

J.2 Reading with a blank template of
type SimpleEntry.

Empty space. The read operation
clocks until its timeout
expires. Afterwards an
exception is thrown.

J.3 Reading with a blank template of
type SimpleEntry.

10 SimpleEntries in
the space.

Return of a single
matching SimpleEntry.

J.4 Reading with a partially filled tem-
plate of the type SimpleEntry.

10 SimpleEntries in
the space.

Return of a single
matching SimpleEntry.

J.5 Reading with a blank template
of type SimpleEntry. (Subtype-
Matching)

10 entries of each
type in the space.

Return of a single
matching entry either
of type SimpleEntry or
ExtendedEntry.

J.6 Reading with a blank template of
type ExtendedEntry. (Subtype-
Matching)

10 entries of each
type in the space.

Return of a single entry
of type ExtendedEntry.

J.7 Reading with a blank template of
type ExtendedEntry. (Subtype-
Matching)

10 SimpleEntries in
the space.

The read operation
clocks until its timeout
expires. Afterwards an
exception is thrown.

J.8 Taking with a blank template of
type SimpleEntry.

10 entries of each
type in the space.

Return of a matching
SimpleEntry and its re-
moval from the space.

continued on next page
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continued from previous page

ID Description Precondition Expected Result
J.9 Consecutive taking with an entry

created with the snapshot method.
10 entries of each
type in the space.
Snapshot of a blank
template of type
SimpleEntry.

Return of all entries and
their removal from the
space.

J.10 Invocation of the readIfExist

method with a blank template of
type SimpleEntry.

Empty space. Immediate return with-
out a result.

J.11 Invocation of the readIfExist

method with a blank template of
type SimpleEntry. Rollback of the
open transaction

A single Simple-
Entry in the space,
which is unavailable
because it is taken
by an unsettled
transaction.

The readIfExist op-
eration must block
until the transactional
state of the potentially
matching entry is de-
cided. In this case, it
returns the matching
entry

J.12 Invocation of the takeIfExist

method with a blank template of
type SimpleEntry.

Empty space. Immediate return with-
out any results.

J.13 Invocation of the takeIfExist

method with a blank template of
type SimpleEntry. Rollback of the
open transaction

A single SimpleEn-
try in the space, wich
is unavailable be-
cause it is taken by
an unsettled transac-
tion.

The takeIfExist opera-
tion must block until
the transactional state
of the potentially entry
is decided. In this case,
it returns the matching
entry.

Table B.2: Basic operation test cases
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B.3 Javaspace05 Operations

The following test cases (depicted in table B.3) test the basic operations of the JavaSpace05
interface as specified by JavaSpaces. The registerForAvailabilityEvent method is omitted at
this point and will be tested later in section B.5.

ID Description Precondition Expected Result
E.1 Invocation of the contents method

with a blank template of type Sim-
pleEntry.

10 entries of each
type in the space

Return of a Match-
Set object that iterates
over all matching en-
tries.

E.2 Invocation of the contents method
with a blank template of type Sim-
pleEntry and afterwards invalida-
tion through a take operation

10 entries of each
type in the space.

Return of a MatchSet
object that is inval-
idated after the per-
formed take opera-
tion.

E.3 Invocation of the contents method
with 3 differently filled templates
of type SimpleEntry, which will
match more than one entry in the
space.

10 entries of each
type in the space

Return of a Match-
Set object that iterates
over all matching en-
tries.

E.4 Writing 5 entries of each type
at once with the JavaSpace.write

method.

Empty space. The space contains all
written entries and a
Lease object is re-
turned for each writ-
ten entry.

E.5 Try to take 10 entries with the
JavaSpace.take method and a
blank template of type Extended-
Entry.

10 entries of each
type in the space

Return of 10 match-
ing ExtendedEntries.

Table B.3: JavaSpace05 interface test cases
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B.4 Transaction

The following test cases (depicted in table B.4) test the correct behavior of JAXS’ operations
under transactions as specified by JavaSpaces. The support of the 2-phase commit protocol
(see section 3.6.1) is not tested explicitly. The correct implementation of the 2-phase com-
mit protocol is rather assumed from the results of the test cases performed with one or more
clients.

ID Description Precondition Expected Result
T.1 Write a SimpleEntry under a new

transaction. Commit the transac-
tion afterwards.

Empty space. The space contains
the written entry.

T.2 Write a SimpleEntry under a new
transaction. Rollback the transac-
tion afterwards.

Empty space. The space is still
empty.

T.3 Perform a take operation with a
blank template of type SimpleEn-
try under a new transaction. Com-
mit the transaction afterwards.

10 SimpleEntries in
the space.

Return of a single
matching entry. The
entry is removed from
the space.

T.4 Perform a take operation with a
blank template of type SimpleEn-
try under a new transaction. Roll-
back the transaction afterwards.

10 SimpleEntries in
the space.

Return of a single
matching entry and
the space still con-
taines the entry.

T.5 Use a newly created transaction to
write a SimpleEntry and use the
same transaction to take the entry
again. Commit the transaction.

Empty space. The space is still
empty.

T.6 Use a newly created transaction to
write a SimpleEntry and use the
same transaction to take the entry
again. Rollback the transaction.

Empty space. The space is still
empty.

continued on next page
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continued from previous page

ID Description Precondition Expected Result
T.7 Create a transaction with a 5 sec-

onds timeout. Perform a take oper-
ation with a blank template of type
SimpleEntry under the previously
created transaction. Create another
transaction with maximum timeout
and perform a take with a blank
template of type SimpleEntry un-
der the new transaction.

Empty space. The second take oper-
ation must block un-
til the first transac-
tion is rolledback au-
tomatically after the
timeout and return a
single entry.

T.8 Create a transaction with a 5 sec-
onds timeout. Write a SimpleEntry
under the previously created trans-
action. Create another transaction
with maximum timeout and per-
form a take with a blank template
of type SimpleEntry under the new
transaction.

Empty space. The second take oper-
ation must block until
its timeout expires.

T.9 Create a transaction with a 5 sec-
onds timeout. Write a Simple-
Entry under the previously created
transaction. Perform a take with a
blank template of type SimpleEn-
try again.

Empty space. The second take oper-
ation must block until
its timeout expires.

T.10 Create a transaction with a maxi-
mum timeout. Perform a take oper-
ation with a blank template of type
SimpleEntry under the previously
created transaction. Use another
thread or client to create another
transaction and perform a write op-
eration with an SimpleEntry under
the lastly created transaction. Af-
terwards rollback the last transac-
tion.

Empty space. The first take opera-
tion must block until
its timeout expires.

continued on next page
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ID Description Precondition Expected Result
T.11 Create a transaction with a maxi-

mum timeout. Perform a take op-
eration with a blank template of
type SimpleEntry under the previ-
ously created transaction. Use an-
other thread or client to create an-
other transaction and perform both
a write operation with an Simple-
Entry and a take operation with a
blank template of type SimpleEn-
try under the lastly created trans-
action. Afterwards commit the last
transaction.

Empty space. The first take opera-
tion must block until
its timeout expires.

Table B.4: Transaction test cases

B.5 Notification

The following test cases (depicted in table B.4) test the correct behavior of JAXS’ notifications
as specified by JavaSpaces. The test cases for the method JavaSpace.registerForAvailability-

Event are invoked, if not otherwise stated, with the parameter visibilityOnly set to “true”.

ID Description Precondition Expected Result
N.1 Create a notification with a blank

template of type SimpleEntry.
Write a new SimpleEntry.

Empty space. A notification is
received immediately
after writing the
entry.

N.2 Create a notification with a blank
template of type SimpleEntry.
Write a new ExtendedEntry.
(Subtype-Matching)

Empty space. A notification is
received immediately
after writing the
entry.

continued on next page
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continued from previous page

ID Description Precondition Expected Result
N.3 Create a notification with a blank

template of type ExtendedEn-
try. Write a new SimpleEntry.
(Subtype-Matching)

Empty space. No notification is ex-
pected.

N.4 Create a notification with a blank
template of type ExtendedEntry.
Write a new ExtendedEntry.
(Subtype-Matching)

Empty space. A notification is
received immediately
after writing the
entry.

N.5 Create a notification with a partial
matching template of type Simple-
Entry. Write 5 different potentially
matching entries of type Extended-
Entry.

Empty space. A notification is re-
ceived after each writ-
ten entry.

N.6 Create a notification with a partial
matching template of type Simple-
Entry. Write an entry that does not
contain any matching content.

Empty space. No notification is ex-
pected.

N.7 Based on test case N.6, create 2
notifications each for a seperate
client. Write 5 different potentially
matching entries of type Extended-
Entry.

Empty space
2 seperate clients.

Each client receives a
notification after each
written entry. The no-
tification ID and se-
quence number must
be the same for both
clients, but the order
inwhich the notifica-
tions are received can
be different at each
client.

continued on next page
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ID Description Precondition Expected Result
N.8 Create a notification using

the JavaSpace05.registerFor-

AvailabilityEvent method with 3
different templates:
1) A blank template of type Sim-
pleEntry.
2) 2 differently and partially filled
templates of type ExtendedEntry.
Also set the boolean visibilityOnly
to false.
Write 5 different potentially
matching entries of type Extend-
edEntry.

Empty space. A single notification
should be received af-
ter each written en-
try, regardless of how
many templates are
matching.

N.9 Create a notification us-
ing the JavaSpace05.-

registerForAvailabilityEvent

method with a blank template of
type SimpleEntry. Use a transac-
tion to take an entry with a blank
template of type SimpleEntry and
rollback the transaction afterwards.

10 SimpleEntries in
the space.

A single notification
should be received af-
ter the rollback of the
transaction.

N.10 Based on test case N.8, create a no-
tification for a each client. Write
5 different potentially matching en-
tries of type ExtendedEntry.

Empty space
2 seperate clients.

Each client receives
only a single notifica-
tion for each written
entry, regardless of
how many templates
are matching. The no-
tification ID and se-
quence number must
be the same for both
clients, but the order
inwhich the notifica-
tions are received can
be different at each
client.

continued on next page
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ID Description Precondition Expected Result
N.11 Based on test case N.6 and N.8,

create a notification for each test
case for each client. Write 5 dif-
ferent potentially matching entries
of type ExtendedEntry.

Empty space
2 seperate clients.

Each client receives
two notifications (one
for each notification
type) for each written
entry. The notifica-
tion ID and sequence
number must be the
same for both clients
and unique with re-
spect to each notifica-
tion type. The order
inwhich the notifica-
tions are received can
be different at each
client.

Table B.5: Notification test cases

B.6 Lease

The following test cases (depicted in table B.4) test the correct behavior of JAXS’ leases as
specified by JavaSpaces. The differentiation between the notification methods notify and regis-

terForAvailabilityEvent is omitted because the test cases are the same for both types.

ID Description Precondition Expected Result
L.1 Write a SimpleEntry with a lease

duration of 10 seconds. Wait 5 sec-
onds and perform a read operation
with a blank template of type Sim-
pleEntry. Wait 10 seconds and per-
form a read operation with a blank
template of type SimpleEntry.

Empty space. The first read opera-
tion returns the entry,
whereas the second
read operation blocks
and throws an excep-
tion after its timeout.

continued on next page
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ID Description Precondition Expected Result
L.2 Write a SimpleEntry with a lease

duration of 10 seconds. Renew the
lease every 5 second and perform
a read operation shortly after each
invocation of renew.

Empty space. The entry is available
as long as the lease is
renewed periodically.

L.3 Write a SimpleEntry with a lease
duration of 60 seconds. Wait 5 sec-
onds and perform a read operation
with a blank template of type Sim-
pleEntry. Shortly afterwards can-
cel the lease. Wait another 5 sec-
onds and perform a read operation
with a blank template of type Sim-
pleEntry again.

Empty space. The first read opera-
tion returns the entry,
whereas the second
read operation blocks
and throws an excep-
tion after its timeout.

L.4 Create a notification with a lease
duration of 10 seconds and a blank
template of type SimpleEntry. Wait
5 seconds and write a SimpleEntry.
Wait another 10 seconds and write
another SimpleEntry.

Empty space. Shortly after the first
write operation a no-
tification is received,
whereas the second
write operation does
not trigger any notifi-
cation.

L.5 Create a notification with a lease
duration of 60 seconds and a blank
template of type SimpleEntry. Wait
5 seconds and write a SimpleEntry.
Shortly afterwards cancel the lease.
Wait another 5 seconds and write a
SimpleEntry again.

Empty space. Shortly after the first
write operation a no-
tification is received,
whereas the second
write operation does
not trigger any notifi-
cation.

continued on next page
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ID Description Precondition Expected Result
L.6 Create a notification with a lease

duration of 10 seconds and a blank
template of type SimpleEntry. Re-
new the lease every 5 second and
write a SimpleEntry shortly after
each invocation of renew.

Empty space. The notifications are
as long received as the
lease is renewed peri-
odically.

L.7 Create a MatchSet with the JavaS-

pace05.contents method, a lease
duration of 10 seconds and a blank
template of type SimpleEntry. Wait
5 seconds and invoke the Match-

Set.next method. Wait 10 sec-
onds and invoke the MatchSet.next

method again.

10 entries of each
type in the space

The first invocation
the MatchSet.next

method returns an
entry, whereas the
second invocation
throws an excep-
tion indicating that
the MatchSet is
invalidated.

L.8 Create a MatchSet with the JavaS-

pace05.contents method, a lease
duration of 10 seconds and a blank
template of type SimpleEntry. Re-
new the lease every 5 second and
invoke the MatchSet.next method
shortly after each renew.

10 entries of each
type in the space

The MatchSet is iter-
ated as long as the
lease is renewed pe-
riodically and as long
as there are entries
left in the MatchSet.

L.9 Create a MatchSet with the JavaS-

pace05.contents method, a lease
duration of 60 seconds and a blank
template of type SimpleEntry. Wait
5 seconds and invoke the Match-

Set.next method. Shortly after-
wards cancel the lease. Wait an-
other 5 seconds and invoke the
MatchSet.next method again.

10 entries of each
type in the space

The first invocation
the MatchSet.next

method returns an
entry, whereas the
second invocation
throws an excep-
tion indicating that
the MatchSet is
invalidated.

Table B.6: Lease test cases
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