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Introduction

A viscous conservation law in one space dimension is a partial differential
equation of the form
ou 0 0%u

o @) + o f(ule, 1) = 55 (1) ()

with variables t € R} and z € R as well as functions v : R x R} — R”
and f : R"™ — R™. Such equations arise frequently in continuum physics and
model the effects of nonlinear transport and diffusion. A viscous shock wave

u(z,t) is a traveling wave solution of (1),
u(z,t) :=u(§) with &:=z—s-1,

whose (viscous) profile u € C*(R;R") is transported with speed s € R and
approaches constant endstates u® := limg_ 4o 4(€). The profile w(¢) is gov-

erned by an autonomous system of ordinary differential equations,

du

&) = () = s u(®) = fwT) 4507, (2)

and is equivalent to a heteroclinic orbit that connects the distinct stationary

points u~ with u™.

Due to translational invariance of the differential equations, a shifted
profile also solves the profile equation (2). Therefore, a viscous shock wave
is considered to be nonlinearly stable, if its perturbed profile approaches the
manifold of heteroclinic orbits connecting the endstates u* asymptotically

in time. It is a natural idea to study the nonlinear stability of viscous shock
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waves via the spectrum of its linearized evolution operator. A viscous shock
wave is called spectrally stable, if the spectrum is confined to the left half-
plane and the multiplicity of the eigenvalue zero equals the dimension of
the manifold of heteroclinic orbits in the profile equation (2). Although the
accumulation of the spectrum at the imaginary axis complicates the analysis,
Zumbrun and collaborators proved that spectral stability of a viscous shock
wave implies its nonlinear stability [ZH98, MZ04|. This implication holds for
a viscous shock wave regardless of the magnitude of its amplitude, which is
the distance between its endstates u™. However, spectral stability of viscous
shock waves has been proved only in the small amplitude case [FS02|, whereas

the large amplitude case remains wide open.

A possible strategy is to consider a viscous shock wave with small ampli-
tude, which is spectrally stable, and to prove that no eigenvalue can move
into the right half-plane as a parameter, such as the amplitude, varies. Since
the spectrum accumulates at the origin, one has to distinguish between eigen-
values which move through the imaginary axis at the origin and away from
the origin, respectively. In this regard, we investigate scenarios for the onset

of instability and focus on the first situation.

Next, we give an outline of the thesis and state the main results. In
the first chapter, we collect some basic facts about the existence and sta-
bility of traveling wave solutions in viscous conservation laws. Additionally,
we discuss the Evans function approach to the spectral stability of viscous
shock waves. This approach is based on a dynamical system reformulation of
the eigenvalue problem, which has found many applications in related con-
texts [AGJ90,San02]. Briefly speaking, the Evans function is analytic away
form the essential spectrum and its zeros correspond to eigenvalues. More-
over, the multiplicity of an isolated eigenvalue equals its order as a root of the
Evans function. In the context of viscous shock waves the essential spectrum
lies in the left half-plane and touches the imaginary axis at the origin. How-
ever, the Gap Lemma [GZ98,KS98| allows to continue the Evans function
analytically into a small neighborhood of the origin. We give an alternative
proof, where we exploit the slow-fast structure of the eigenvalue equation

and use geometric singular perturbation theory [Fen79,Jon95,Szm91| to ob-
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tain the result. This idea was put forward by Freistiihler and Szmolyan to
construct and study the Evans bundles of weak shock waves [FS02].

Zumbrun and Howard based their spectral analysis on the resolvent ker-
nel, rather than the resolvent. The effective spectrum is defined as the set of
poles for the meromorphic continuation of the resolvent kernel into the essen-
tial spectrum. In particular, the effective spectrum coincides with the zero
set of the analytic continuation of the Evans function and the multiplicity of
an effective eigenvalue is equal to the order of the roots of the Evans function.
Moreover, an effective eigenprojection with respect to a spectral parameter
is defined via the residue of the resolvent kernel. The range of an effective
eigenprojection is referred to as the effective eigenspace and its elements, the
effective eigenfunctions, can be arranged in Jordan chains. In reference to
the special position, effective eigenfunctions that decay exponentially in the
limits £ — 400 are called genuine eigenfunctions [ZH98|.

For a viscous shock wave associated to a Lax shock, the simplicity of the
effective eigenvalue zero depends on the transversality of the profile and the
Liu-Majda condition, which is necessary for dynamical stability of the Lax
shock as a solution of the inviscid conservation law [Liu85, Maj83b, Maj83a,
Maj84]. An effective eigenvalue can move through the origin only if the effec-
tive eigenvalue zero is not simple. Thus two possible scenarios for the onset
of instability are the failure of the Liu-Majda condition and the occurrence
of a non-transversal profile, which generically signals a bifurcation.

In the second chapter, we consider a viscous shock wave whose profile
is non-transversal and associated to a Lax shock. First, we investigate its
effective spectrum: The profile is lying in the intersection of invariant mani-
folds, W*(u~) and W#(u™), of the profile equation (2). Since the eigenvalue
equation for the eigenvalue zero is related to the linearized profile equa-
tion, functions in the (two-dimensional) intersection of the tangent spaces,
TaeW™(u™ )NTyeyW?*(u"), are genuine eigenfunctions to the eigenvalue zero.
Thus the viscous shock wave is not spectrally stable. In accordance with the
concept of effective spectrum, we show that the multiplicity of the eigenvalue
zero is related to the existence of special bounded solutions of the generalized

eigenvalue equation.
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Second, we consider a viscous shock wave whose profile is governed by a

family of profile equations

du

dg(&u) = F(u(§, 1), 1),

where the smooth dependence of the vector field F'(u, ) on the parameter p
models the perturbative effects. In this way, the cases of a parameter de-
pendent flux function of the viscous conservation law and dependence on the

shock speed are covered.

A non-transversal profile @(¢, o) may not persist for all parameter val-
ues p close to pg. Melnikov theory is used to investigate this situation and
we show that the existence of a non-transversal profile associated to a Lax
shock indicates generically the occurrence of a saddle-node bifurcation of
profiles with respect to the parameter u. We describe the saddle-node bifur-
cation in a standard way such that the parameter u, the family of profiles
and the extended Evans function depend smoothly on a new parameter v.
If the Liu-Majda condition holds, then we are able to prove for the Evans
function F(k,v) that a bifurcation occurs in the equation E(x,v) =0. In a
neighborhood of the origin, the zero set consists of the line xk = 0 and a curve
of eigenvalues k = k(v), which change its sign as the parameter v is varied.
For v such that the eigenvalue x(v) is positive, the associated viscous shock

waves are unstable.

In the third chapter, we apply the outlined theory to examples moti-
vated by planar waves in magnetohydrodynamics. Such planar waves are
governed by a system of hyperbolic-parabolic conservation laws and the cor-
responding profile equation has a gradient like vector field, whose stationary
points are hyperbolic [Gerb9|. Freistiihler and Szmolyan investigated the
existence and bifurcation of profiles which are associated to intermediate
non-degenerate shocks. They found a parameter range such that profiles ex-
ist and are generated in a global heteroclinic bifurcation [FS95]. We prove
that the conjectured saddle-node bifurcation of profiles occurs and draw first
conclusions on the spectral stability of the associated family of viscous shock

waves. Subsequently, we consider a simplified model which has, besides re-
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flectional invariance, an additional symmetry. In this example a saddle-node
bifurcation occurs, where the associated viscous shock waves are not spec-
trally stable, since all of them exhibit an eigenvalue zero with multiplicity
two. Finally, an appendix contains a short summary of Melnikov theory.

Previously, Kapitula [Kap99| has studied the point spectrum which is as-
sociated to traveling wave solutions of semi-linear parabolic equations under
perturbations. The Evans function is used to describe the effects of the per-
turbation on the isolated eigenvalues, whose initial position and multiplicity
is given. However, we are interested in the effective spectrum and try to
obtain and interpret criteria for the existence and multiplicity of effective
eigenvalues.

The close relation between spectral stability of traveling waves and the ge-
ometry of the traveling wave problem (transversality and orientation proper-
ties of the involved stable and unstable manifolds) goes back to Evans |[EvaT72,
Eva73a, Eva73b, Eva75| and Jones [Jon84|. We are not aware of other work,
where the bifurcation in the traveling wave problem is related directly to
bifurcations in the equations defining the zero set of the Evans function close
to the origin.

Zumbrun and his collaborators investigated transversal profiles and pro-
posed the stability index, which determines the parity of the number of un-
stable eigenvalues |GZ98, BGSZ01,LZ04a,LZ04b]. It is a necessary, but not
sufficient, stability criterion. In contrast, we consider non-transversal viscous
shock waves associated to Lax shocks and study the existence of unstable

eigenvalues directly.



Chapter 1
Viscous conservation laws

We collect some basic facts about hyperbolic viscous conservation laws and
viscous shock waves. A viscous conservation law in one space dimension is a
partial differential equation of the form

ou 0 0%u

—(x,t) + — flu(z,t)) = =—(x,t 1.1

)+ f(u(e, ) = 55 (2,1 (11)
with a spatial variable x € R and a time variable t € Rgr. The unknown
function u(x,t) takes its values in an open convex set U C R™ and the given

non-linear flux function f: U — R™ is smooth. We assume that the inviscid

system
ou 0
—(x,t — t)) = 1.2
2 ,t) + - Fula, 1)) =0 (1.2
is hyperbolic, i.e. the Jacobian of the flux function, %(u), is diagonalizable

with real eigenvalues for all u € U. We are interested in a special kind of

solutions.

Definition 1.1. A traveling wave solution u(x,t) of system (1.1) has the
form wu(z,t) := u(&), where the variable ¢ is defined as £ := x — st for some
s € R and the function u € C?*(R; R") is twice differentiable. A viscous shock
wave u(z,t) of system (1.1) is a traveling wave solution, whose viscous profile

u(€) approaches asymptotically two distinct endstates u® := limg_ 4o @(€).

10
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The profile u(&) associated to a traveling wave solution is governed by
the system of ODEs,
d*u du d
— (&) = —s— - . 1.3
T €)= =GO+ e ule) (13)
In case of a viscous profile, integration with respect to £ yields the profile

equation

du

d—f(ﬁ) = f(u(§)) — su(§) — ¢ = F(u()), (1.4)

where the constant vector ¢ € R" satisfies the identity
c=f(ut) —sut = f(u") —su". (1.5)

The viscous profile associated to a viscous shock wave corresponds to a hete-
roclinic orbit. It connects the endstates u™, which are equilibria of the vector
field F'(u). Since the profile equation is a system of autonomous ODEs, two
orbits are either identical or do not intersect at all. Therefore, a viscous
profile u(§) of system (1.4) is uniquely determined by a point of its orbit.
Given a point uy € R", we will denote the corresponding viscous profile as
u(&;up), i.e. there exists a & € R such that u(&p;ug) = up.

Remark. [Smo83,Ser99,Daf05] The inviscid system of conservation laws (1.2)
is obtained by neglecting the second order derivatives in the system (1.1).
Typically, for non-linear flux functions, the associated Cauchy problem with
smooth initial data yields classical solutions which exist only for a finite
time. Hence, one is forced to consider weak solutions which allow jump
discontinuities, i.e. shocks. In the simplest case, these are piecewise constant

solutions

u~  for x < st,
u(r) = (1.6)
ut  for o > st,
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whose parameters (v, u™; s) have to satisfy the Rankine-Hugoniot condition

) = flu™) = s(ut —u”). (1.7)

It is apparent from (1.5) and (1.7) that a viscous profile is a smooth regular-
ization of the shock solution (1.6).

A shock solution (1.6) of a system of hyperbolic conservation law (1.2)
is called a Lax k-shock, if the real eigenvalues ;\j (u*) for j =1,...,n of the

Jacobians %(ui) are ordered by increasing value and satisfy the inequalities

Mec1(u™) < s < Me(u™) and  Ap(ut) <5 < Mpga (uh).

A finer classification is based on the indez of the shock solution (1.6), which

is the number of characteristics that enter the shock discontinuity.

Definition 1.2. A shock solution (1.6) of a system of hyperbolic conservation
laws (1.2) is referred to as undercompressive, Lax or overcompressive type if
the index of the shock solution is less than, equal to or greater than n + 1,

where n is the dimension of the state space.
In the following we will assume

(A1) A viscous shock wave u(x,t) = u(&) of the system of hyperbolic viscous

conservation laws (1.1) exists.

(A2) The shock speed s of the viscous shock wave (&) is non-characteristic,

i.e. the shock speed differs from any eigenvalue of the Jacobians %(ui).

Remark 1.1. The hyperbolicity of the system (1.1) and the assumption (A2)

+

imply that the endstates u™ are hyperbolic stationary points of the vector

field F'(u). In particular, the Jacobians £ (u*) have non-zero real eigenvalues

A;(u®) with associated eigenvectors r;(u®) for j =1,... n.
In this situation the Hartman-Grobman theorem applies, which states that
the flows of the profile equation (1.4) and its linearization about a hyperbolic

stationary point,
du, . dF

d_§< )= @(Ui)u(f),
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are topologically conjugate, i.e. there exists a homeomorphism in a small
neighborhood of the hyperbolic stationary point, which maps the trajectories
of the profile equation onto trajectories of the linearized system. In addition,
smooth stable manifolds

W*(u*) = {up € R™ | 3 a solution u(&;up) of (1.4): lim u(&up) =u™}

€—-+o0

and smooth unstable manifolds
W(u*) = {up € R" | 3 a solution u(&; ug) of (1.4):§lim w(&up) = u™}

of the profile equation exist and are tangent to the respective stable and
unstable subspace of the associated linear system. A viscous profile @(§) with
endstates u™ corresponds to a non-empty intersection of the stable manifold
W#(ut) and the unstable manifold W*(u~). We recall the general definition

of transversality.

Definition 1.3. The intersection of two smooth manifolds M and N, which
are embedded in R", is transversal, if for all points p in the intersection of

the manifolds M N N the sum of their tangent spaces spans R”, i.e.
dim (T,M + T,N) = n.

Definition 1.4. A viscous profile u(¢) is called transversal, if its orbit is
a transversal intersection of the stable manifold W?*(u') and the unsta-
ble manifold W*(u~), that means for all points p on the heteroclinic orbit
{a(&) | £ € R} the identity

dim (T,W*(u™®) + T,W"(u")) =n
holds.

A transversal, heteroclinic orbit will persist under small perturbations
of the system. However, viscous profiles associated to an undercompressive

shock are necessarily non-transversal.
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Figure 1.1: A profile which exists by a transversal intersection of the invariant
manifolds.

In some examples of systems of viscous conservation laws (1.1) there
exists for a pair of endstates (v, u") a manifold of viscous profiles, whose
dimension is greater than one. This property has direct consequences on the
(spectral) stability of viscous shock waves associated to such a viscous profile.
For this reason, Zumbrun and collaborators introduced a new classification

of viscous profiles.

Definition 1.5 ( [HZ06]|). Let | denote the dimension of the manifold of het-
eroclinic orbits connecting the endstates u* and the index i be the number of
incoming characteristics for the underlying shock solution (u=,u™;s). A vis-
cous profile is classified as pure undercompressive type if the associated shock
solution is undercompressive and [ = 1, pure Lax type if the corresponding
shock solution is Lax type and | =7 —n = 1, and pure overcompressive type
if the related shock solution is overcompressive and [ =7 —n > 1. Otherwise

it is classified as mized under-overcompressive type; see |LZ95, ZH98|.

1.1 Stability of viscous shock waves

In the following, we study the stability of viscous shock waves under small
perturbations of the viscous profile. We cast the viscous conservation law (1.1)

in the moving coordinate frame (z,t) — (£ := x — st,t) and obtain an evo-



CHAPTER 1. VISCOUS CONSERVATION LAWS 15

lutionary system

d*u

de?

=T~ i)+

= Sdf T3 =: F(u). (1.8)

Thus the equation for a stationary solution, 0 = F(u), is equivalent to the
profile equation (1.3) and the viscous profiles connecting the endstates u*
form a smooth manifold of stationary solutions. In order to study their
stability, we have to specify an appropriate Banach space B of solutions and
a subspace A C B of admissible perturbations. We will consider classical
solutions and choose the Banach space of twice differentiable functions B =
C?*(R;R") and the subspace A = CZ, (R;R") of functions with exponential

decay to zero in the limits £ to d-o0.

Definition 1.6. A viscous shock wave u(x,t) = u(€) is non-linearly sta-
ble with respect to A, if every solution u(,t) of the Cauchy problem (1.8),
with initial condition u(&,0) = u(€) + p(€) and sufficiently small perturba-
tion p € A, approaches the manifold of heteroclinic orbits, that connect the

endstates u™, asymptotically in time.

The function p(&,t) := u(&,t) — u(€) describes the evolution of the initial
perturbation p € A. By expanding the non-linear terms in the evolutionary

system (1.8), we obtain a differential equation for functions p(,t) as

%@ t) = F(a(€)) +Lp(€. 1) + R(p(&, 1)) (19)
——

=0

with a linear operator

L d<dp dF

= %(u)p = d_§ d_£ — %(U)p) (1.10)

and a non-linear function R(p) = o(||p||?). The linear part of system (1.9),

D)= Iae.), (1.11)

is a good approximation as long as the norm of the perturbation p(¢,t)
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remains small. The search for solutions of the linearized problem (1.11) of
the form p(¢,t) = exp(xt)p(§) with k € C and p in a complex Banach space
X D A leads to the eigenvalue equation

Lp(&) = rp(§).

In accordance with our choice for the Banach space of admissible perturba-
tions, we will restrict the operator L to the space X := C%_(R;C").

exp

Definition 1.7 ( [GK69,Kat95]). A complex number s € C is an eigenvalue
of the linear operator L, if there exists a function p # 0 in X such that
(L — xI)p =0. We refer to the function p as eigenfunction.

An eigenvalue k is isolated, if there exists a small neighborhood of x,
B(k), such that (L — RI) is invertible for all & € B(k)/{k}.

Suppose k € C is an isolated eigenvalue of the linear operator L, where
the kernel of (L — 1) is one-dimensional. The eigenvalue x has multiplicity
l € N, if there exist functions py = 0 and p; € X \ {po} for j =1,...,1 such
that

(L - /{I)p] = Dj—1,

but there is no function p, € X with (L — kI)p, = p;. The functions p; for
7 =2,...,1 are referred to as generalized eigenfunctions.

The multiplicity of an isolated eigenvalue x € C, where the kernel of the
operator (L — kI) has dimension m € N, is determined as the sum of the
multiplicities of m linearly independent eigenfunctions p; € ker(L — kI) for

1=1,...,m.

Definition 1.8 ( |[GK69,Kat95]). Let the linear operator L : X — ) be a
map between complex Banach spaces X and ). The resolvent set of L, p(L),
is the set of complex numbers « such that L — kI has a bounded inverse.
The resolvent function R(k) := (L — xI)~! is well-defined on p(L).

The spectrum of L, o(L), is the complement of the resolvent set p(L). The
point spectrum of L, o,(L), is the set of all isolated eigenvalues of L with
finite multiplicity. The essential spectrum of L, o.ss(L), is the complement

of the point spectrum within the spectrum, i.e. o.ss(L) = o(L)/o,(L).
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Lemma 1.1. If the assumptions (A1) and (A2) hold, then the derivative of
the wiscous profile 3—?(5) is an eigenfunction of the linear operator L (1.10)

for the eigenvalue k = 0.

Proof. The set {u({+2) | z € R} is a smooth manifold of stationary solutions
of F(u) and the identity F(u(£+2)) = 0 holds for all z € R. We differentiate

the last equation with respect to z at z = 0 and obtain

du dF du
Ld—g(ﬁ) = %(U(ﬁ))d—é(ﬁ) = 0.

Since limg_, 1o Z—?(g) = 0 exponentially fast, we conclude that Z—?(f) is an

eigenfunction. O]

Due to translational invariance, the manifold of viscous profiles connect-

+

ing the endstates u™ is at least of dimension one. Each additional invariance

implies the existence of another eigenfunction to the eigenvalue zero.

Definition 1.9. Let [ denote the dimension of the manifold of viscous pro-

files that connect the endstates u®. A viscous shock wave u(z,t) = u(€) is

dF
du

closed right half-plane C,. except for an eigenvalue zero with multiplicity 1.

spectrally stable, if the linear operator L = %-(u) has no spectrum in the

Zumbrun and collaborators |[ZH98, MZ02, MZ04| proved that a spectrally

stable viscous shock wave is indeed non-linearly stable.

Essential spectrum

The linear operator L = 2£(u) depends on the viscous profile @(€). Hence, it
approaches asymptotically operators with constant coefficients as ¢ tends to
+o00. For this reason the essential spectrum can be located by the following

theorem.

Theorem 1.1 ( [Hen81|). The essential spectrum of L is sharply bounded

to the right by 0ess(LT) U 0ees(L7), where L* = d%(j—’g — £ (u*)p) corre-

spond to the operators obtained by linearizing F(u) about the constant solu-

tions 4 = u™~.



CHAPTER 1. VISCOUS CONSERVATION LAWS 18

Next, we locate the essential spectrum of the linear operator (1.10).

Theorem 1.2. If the assumptions (A1) and (A2) hold, then the differential

dF
du

in the punctured, closed right half-plane C,° := C,. \ {0}.

operator L = %-(u), associated to a profile u(§), has no essential spectrum

Proof. In order to locate the essential spectrum o.ss(L), we use the result of

Theorem 1.1 and analyze the spectra of the operators

d (dp dr

1) = 5 (%6 - o).

A linear operator with constant coefficients has no point spectrum, which
implies 0(L%) = 00s5(LF). An element x € 0..(L*) is characterized by the

equivalent properties
e The operator L* — kI has no bounded inverse.
e The Fourier transform of the operator LT — I is not invertible.

The Fourier transform of the operators L™ — kI are given by
dF
R—-C" 6+~ <—92 —z@d—( )—KJI)

and we loose invertibility if the right-hand side is singular. Thus a complex

number x is an element of 0., (L*) if and only if for some 6 € R the identity
dF
det (—92 —u9d—( )—/d) =0 (1.12)

holds. The Jacobians %€ (u*) are diagonalizable with real eigenvalues \;(u*)

for 7 =1,...,n and we obtain the determinant as a finite product
[T (=06 —ioxn(u*) — k) =0. (1.13)
7j=1

The equation (1.13) is satisfied if a single factor vanishes, which happens for
spectral parameters /ﬁji(ﬁ) = —0% —i0\;j(ut) with§ e Rand j=1,...,n
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This defines 2n curves
H;-t ={k € C|r=—0—if\(u") for § € R}, (1.14)

which are parabolas associated to the eigenvalues \;(u®) for j=1,...,n.
They are contained in the left half-plane and touch the imaginary axis only

in the origin, see Figure 1.1. Their unions form the essential spectra og(LF),

Oess (L) = O H;-t.

Jj=1

Thus Theorem 1.1 implies that the essential spectrum o.s5(L) is bounded to
the right by the curves (1.14), which completes the argument. O

Im(A)

Cess(L)

Re(A)

Figure 1.2: The essential spectrum o..(L) is bounded to the right by the
spectrum of o..(L") and oees(L7).

1.2 Evans function F(k)

In the last section we proved that the essential spectrum does not inter-
sect (TL.. Hence, the point spectrum will decide upon spectral stability of
a viscous shock wave. Starting with the work of Evans, it became popular
to study the spectrum related to a traveling wave solution via a dynami-

cal system approach |Eva72, Eva73a, Eva73b, Eva75]. Soon, the connection
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between the profile equation and the eigenvalue equation became appar-
ent [Jon84|. Alexander, Gardner and Jones developed a method to locate
the point spectrum related to traveling wave solutions in reaction-diffusion
equations [AGJ90]. This approach is also applicable to other parabolic equa-
tions, notably viscous conservation laws, and is now known as Evans function
theory. We refer to the survey of Sandstede [San02| on the stability of trav-
eling waves and references therein.

The point spectrum consists of isolated eigenvalues of finite multiplicity.
A pair of an eigenvalue x € C and an eigenfunction p € C%_(R;C") has to

exp

satisfy the identity

We consider the variables (p, q := Z—Z — 42(7)p)(€) and rewrite the equation

as a system of first order ODEs

O G [

Thus the eigenvalue problem is to find a complex number x € E. and a non-
trivial function (%) € Cf,(R;C*") such that (1.15) is satisfied. The matrix
of the linear ODE,

is analytic in x and differentiable in £, because F'(u) is smooth and the viscous
profile @(¢) is differentiable. Since a viscous profile approaches constant
endstates u™ = limg_ 4o, 4(€), the coefficients of the matrix A(&, k) approach

constants as ¢ tends to £oo and we denote the limits of A(&, k) with

A*(r): = (d_;;‘ ) é”)
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Definition 1.10. A domain 2 C C has consistent splitting if there exists a
number [ € N such that for all k € Q the matrices A* (k) have [ eigenvalues

with positive real part and 2n — [ eigenvalues with negative real part.

The matrices A (k) have pure imaginary eigenvalues precisely for spectral
parameters x which lie on the curves /ﬁ in (1.14). The essential spectrum is
contained in the region to the left of the union of these curves and is tangent

to the imaginary axis at x = 0.

Theorem 1.3. Suppose the assumptions (A1) and (A2) hold. Then the
punctured, closed right half-plane C,° = C, \ {0} has consistent splitting

with splitting index | = n. In particular, the matrices A*(k) have eigenvalues

uf(ui,/i) = m F \/(M) +r, for j=1,...,n, (1.16)

2 2

and associated eigenvectors

ri(u®)

Vf(ui,ﬁ) = (—uji(ui,/i)rj(ui))’ for j=1,...,n, (1.17)

which are analytic in k in the domain C++.. Moreover, the eigenvalues satisfy

forall 5 =1,...,n the inequality
Re(u; (u™, k) < 0 < Re(uf (u™, k). (1.18)

The projection operators of the associated stable spaces ST (k) and unstable

spaces U*(k) are analytic in k € C,, too.

Proof. The eigenvalue equation associated to the matrix A* (k) can be writ-

ten as

n

det (A% (k) = plon) = [T ((w*) = ) (=p1) = &) =0,

Jj=1

since the Jacobians 95 (u*) are diagonalizable with real eigenvalues \;(u*)
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for j =1,...,n. Thus an eigenvalue p has to fulfill
=N — k=0 (1.19)

and we obtain the expressions

uf(ui,%):%ui)$\/<#)2+n

for j =1,...,n. For a pure imaginary eigenvalue, u = i0 with 8 € R, the

identity (1.19) is equivalent to the defining equation of the curves « in (1.14),
which do not intersect with (C+. by the result of Theorem 1.2. In addition,
the eigenvalues 4 (u*™, k) of A*(k) are continuous in x, which proves that
the domain C,  exhibits consistent splitting. In order to determine the
splitting index, we consider x to be real and positive. Hence, the eigenvalues
=R (ut

We infer that the eigenvalues ,ujt(ui, k) have opposite signs. Consequently,

/L]i(ui,ﬁ;) are real and their product p; (u ,K) = —K is negative.
the matrices A (k) have n positive eigenvalues and n negative eigenvalues
for K € Ry. Since ((Tr. has consistent splitting, the number of eigenvalues
with positive and negative real part respectively is constant for x € E..
This proves the identity (1.18).

A direct calculation shows that V¥ (u™, x) are indeed eigenvectors to the
eigenvalues /ﬁ (u*, k). The analytic dependence on the spectral parameter of
the eigenvalues induces the one of the eigenvectors. The identity (1.18) proves
that a spectral gap between S* (k) and U* (k) persists and we conclude from
standard matrix perturbation theory, see |[Kat95|, the analytic dependence

of the projections on k € E.. n

In view of the hyperbolicity of A (k) for all k € C.", we conclude that
an eigenfunction associated to an isolated eigenvalue necessarily decays to
zero as & tends to £oo. Thus the concept of exponential dichotomy for
linear systems, see Definition A.2, is a useful tool to study the existence of

eigenfunctions.
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Lemma 1.2. Let the assumptions (A1) and (A2) hold. Then the linear

system of ODEs
()o=(550 ) (e o

exhibits for all k € (C++. exponential dichotomies on Ry and R_, respectively.
The associated family of projections will be denoted as Py (&, k) with & € R,
and Q_(&, k) with £ € R_, respectively.

The statement is a consequence of the hyperbolicity of the matrices A% (k)
for all k € @. and the roughness property of exponential dichotomies, see
|Cop78, chapter 4].

Definition 1.11. Let the assumptions (A1) and (A2) hold. We define for all
k€ C, the stable space W§(r) := image(Py(0,x)) and the unstable space
Wi (k) = image(Q_(0,k)) via the projections P, (0,x) and Q_(0, ) from

Lemma 1.2.

Lemma 1.3. Let the assumptions (A1) and (A2) hold. Then the stable space
Wg(k) has for k € C." the following properties:

1. It consists of all initial values (zg) € C?" such that there exists a solu-

tion (1;) (&) of (1.15), that satisfies

(o-(2) wa g (-0

In addition, dimc W (k) = dimc image(P4 (0, k)) = n holds.

2. It is possible to choose a basis {n5(0,x) | j =1,...,n} for the stable
space Wi (k), which is analytic in k. The associated solutions n3(&, k)

of system (1.15) are analytic in x and satisfy lime 4o 05 (&, k) = 0.

Proof. The first statement is a direct consequence of the properties of an ex-
ponential dichotomy on R, and its associated projection P, (0, k). In partic-

ular, the dimension of the image of P, (0, k) equals the number of eigenvalues
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of A% (k) with negative real part, which is n by the results of Theorem 1.3.
An analytic basis of Wg(k) can be constructed by a standard procedure,
see [Kat95, chapter 11.4.2.]. Tts associated solutions of system (1.15) inherit
the analytic dependence. O]

Similar results are obtained for the unstable space W' (k).

Lemma 1.4. Let the assumptions (A1) and (A2) hold. Then the unstable
space Wi (k) has for k € C." the following properties:

1. The unstable space Wi'(k) consists of all initial values (gg) € C*" such

that there exists a solution (Z) (&) of (1.15), that satisfies

p Do . p
0) = and lim =0.
(Q)( ) (QO> §omo0 (Q> )
In addition, dimec W (k) = dimc image(Q_(0, k) = n holds.

2. It is possible to choose a basis {n}(0,k) | j =1,...,n} for the unstable
space Wi'(k), which is analytic in . The associated solutions nj (&, k)

of system (1.15) are analytic in x and satisfy lime oo 15 (&, k) = 0.

The existence of an eigenfunction is equivalent to a non-trivial intersection
of the spaces W (k) and W (k). In order to detect such an intersection, we

will study the Evans function.

Definition 1.12. Let the assumptions (Al) and (A2) hold. The FEwvans
function, E: R x C,~ — C, (&, k) — E(&, k), is defined as

£
B(E,x) = oxp ( _ / trace(A (e, m))dx) det (1t .o s o) (6 ),

with functions nj/“(g, k) for j =1,...,n from the Lemmata 1.3 and 1.4.

The Evans function is a Wronskian determinant, which suggests its inde-

pendence of &.
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Theorem 1.4 (Abel-Liouville-Jacobi-Ostrogradskii identity [CL55|). Let A
be an n-by-n matriz with continuous elements on an interval I = [a,b] C R,

and suppose ®(t) is a matriz of functions on I satisfying

%(t) = A(t)®(t), forall tel.

Then the determinant of ®(t) satisfies on I the first-order equation

%(det (1)) = trace(A(t))(det ®(1))

and thus for ,t € 1
t
det @(t) = det O(7) exp/ trace(A(s))ds.

Remark 1.2. The functions 77;/“(5, k) for 7 =1,...,n satisfy the eigenvalue

equation and we observe from the result of Theorem 1.4 for any & € R that

3
Blen) =exp (= [ trace(Ao.k))de ) det (.o s 22) (€0
0
o
—xp (= [ tnacole e ) det 18t ) (o)
0

Therefore, we consider the Evans function without loss of generality at £ = 0,
Le. E(k):=det (n¥,....0%nf,...,n5)(0,K).
Theorem 1.5 ( [ZH98|). Let the assumptions (A1) and (A2) hold. The

FEvans function in Definition 1.12 has the following properties
1. E(k) is analytic in k for k € C, and independent of €.
2. E(ko) =0 if and only if ko € o,(L).
3. The algebraic multiplicity of the eigenvalue ko € o,(L) equals its order
as a root of the Fvans function.

Remark. The Evans function approach was introduced in the setting of reac-

tion -diffusion equations. In this case the properties of the Evans function in
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a domain of consistent splitting, as stated in Theorem 1.5, have been proved
in the article [AGJ90].

1.2.1 Analytic continuation of the Evans function

In the stability analysis of a viscous shock wave, we need to locate the point
spectrum within the closed right half-plane C,. However, the Evans function
is only well-defined away from the essential spectrum, which lies in the left
half-plane and touches the imaginary axis at the origin, see Theorem 1.2.
Nonetheless, the Evans function can be analytically continued into a small

neighborhood of x = 0.

Definition 1.13. Suppose that U and S are complementary A-invariant
subspaces for some quadratic matrix A € C™*". The spectral gap of U and S
is defined as the difference between the minimum real part of the eigenvalues
of A restricted to U and the maximum real part of the eigenvalues of A
restricted to S.

The unstable space U~ (k) and the stable space S~ (k) of the linear system

O = A (9p(6)

have a positive spectral gap for any « in the domain @.. Therefore, the
solution manifold of 3—2’(5) = A(§, k)p(&) that approaches the space U~ (k) as
¢ tends to —oo can be uniquely determined. The same reasoning applies to
the stable space ST (k) of the linear system with matrix A" (k). Thus the
Evans function is well-defined in the domain E..

In the present case, the respective spectral gaps become negative as soon
as k enters the essential spectrum and the proper extension of the stable and
unstable manifolds is not obvious. However, the differential forms associated
to the invariant manifolds distinguish themselves by their maximal rate of
convergence to the differential forms related to the respective asymptotic
spaces, U~ (k) and ST (k). This idea was put forward in the Gap Lemma,
which has been proved independently by Gardner and Zumbrun [GZ98] in
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the setting of viscous conservation laws, as well as Kapitula and Sandstede
|KS98| for dissipative equations. The results on the existence of an analytic

continuation of the Evans function is summarized in following statements.
Theorem 1.6 ( [GZ98]). Let A(¢, k) satisfy
H1 T, has consistent splitting with respect to A% (k).

H2 exponential convergence of A(€, k) to A* (k) as £ — Foo with exponen-

tial rate o > 0, uniformly for k in compact sets.

H3 geometric separation: The eigenvalues (k) of A*(k) and the spectral
projection operators Ps(k) associated to S(k) and Py(k) associated to
U(k) for k € @. continue analytically to a simply connected domain
Q containing the right half-plane and a small neighborhood of the ori-
gin. Furthermore, the associated continuations S(k) = Ps(k)C*" and
U(k) = Py(k)C* complement each other in C*" for r € Q.

H/ gap condition: B(k) > —a for all k € Q, where B(k) is the spectral gap
of the pair U(k) and S(k).

Then there is an analytic extension of the Evans function E(k) to Q, which

s unique up to a non-vanishing, analytic factor.

Lemma 1.5 ( [GZ98]). If the assumptions of Theorem 1.6 hold and in ad-

dition A(&,R) = A(&, k) is satisfied, where K denotes complex conjugation,
then

1. there exist bases {n;(x) | j=1,...,n} and {n¥(x) | j=1,...,n} for
the spaces ST (k) and U™ (k), respectively, which depend analytically on

k for k € Q and are real-valued vectors for real Kk > 0.

2. the Evans function E(k) of Theorem 1.6 can be chosen to be real-valued
for real k > 0.

We are interested in the connection between the multiplicity of the eigen-

value zero and its order as a root of the continued Evans function. Therefore,



CHAPTER 1. VISCOUS CONSERVATION LAWS 28

we need to obtain analytic continuations of the individual vectors, which ex-
ist at least locally for s in a small neighborhood of the origin. This was
achieved in the articles [GZ98, ZH98, LZ04a]. We will give an alternative
derivation via geometric singular perturbation theory. First, we note prelim-
inary results about the analytic continuation of individual eigenvalues and

eigenvectors of the matrices A* (k) with constant coefficients.

Theorem 1.7. Let the assumptions (A1) and (A2) hold. Then the eigen-

+

values pf (u™, k) and the eigenvectors ‘/}:F(Ui,/ﬁ) for j=1,....n in The-

orem 1.3 admit an analytic continuation into a small neighborhood of the
origin Bs(0) :={r € C| |k| < 0} with radius § such that

O<5<min{(%u))2

In this domain the spaces

7=1...,n, u:ui}.

§* (k) 1= @), Vi (u" k) and U (s) 1= &), V; (u", ),
as well as the spaces
S (k) = @4V (u,w) and U™(k) = @),V (u™ ),

complement each other in C?". The associated projection operators, Ps ()

and Py=(., are analytic in k € B;(0), too.

Proof. The expressions for the eigenvalues

(a0 E (E) 2
M‘T(ui7l€):¥:‘:\/(¥> +H7 for j: 7"‘7n7

and the associated eigenvectors

+
V} + = rj(u ) f :1
7020 = (s o) T e

are analytic in x as long as |k| < . Therefore, the stated spaces and their
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associated projection operators will be analytic in the domain Bs(0). Since
the eigenvalues i (u*™, k) and p; (u*, k) are distinct for k € B;(0), the vec-
tors V7 (u*, k) as well as V;7(u™,x) will remain linearly independent for
j=1,...,n. Hence, the spaces ST(k) and U*(k), as well as S™(x) and

U~ (), will complement each other in C*" for all x € B;(0). O

In order to understand the dynamics of the eigenvalue equation (1.15)
better, we will augment it with the profile equation (1.4). The augmented
system is singularly perturbed at x = 0 and exhibits a slow-fast structure,
which we explore to prove the existence of an extension for the invariant
manifolds W" (k) and W¥(k).

Theorem 1.8. Suppose the assumptions (A1) and (A2) hold and the in-
dices k= and k™ are such that the real eigenvalues \;(u*) for j=1,...,n
of the Jacobians % (u*) are in increasing order of magnitude and satisfy the

du
inequalities

M-(u7) <0< Nm 1 (u™) and N+ (u) <0 < A1 (u),

respectively. Then the augmented system

€)= Plufc).
) = L) + 4(6) (1.21)
O = mpl©)

has stationary points U = (u*,0,0). For x in a small neighborhood of

the origin, there exists an invariant manifold W*(U™), which is the stable
manifold to the stationary point Ut as long as k € E.. The invariant

manifold W*(U™) has a decomposition into a slow manifold

—1
B p:—(dF<u+>) .

s,slow (rr+Y) t 3n bl
weton () = {(upa)t € € "

q € span{rg+ 1 (u’), . .. ,rn(zﬁ)}}
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and a fast manifold W*/%H(U*) with tangent space

Ty WISt UT) = {(u,p, q)" € C* | u,p € span{ri(u’),..., e (u")}, ¢ =0}

Similarly, for k in a small neighborhood of the origin, there exists an invariant
manifold W*(U™), which is the unstable manifold to the stationary point U~
as long as Kk € (C++.. The invariant manifold W*(U~) has a decomposition

nto a slow manifold

B dF _\""
u=u , p=— %(U) q,

q € span{ri(u”),... ,rk(u_)}}

Wu,slow(U—) — {(U,p, q)t c CSn

and a fast manifold W/ (U~) with tangent space

Ty- Wit (U~) = {(u,p,q)" € C*" | u,p € span{ry- (v ), ..., r(u")}, ¢ =

Proof. We observe that the augmented system (1.21), which is made up of
the profile equation (1.4) and the eigenvalue equation (1.15), has stationary
points U* = (u*,0,0)! and is singularly perturbed at x = 0. We will con-
struct the invariant manifolds for x in a small neighborhood of the origin and
use the parametrization k = pexp(i¢) with p € [0,d] and ¢ = [0,27[. The
manifold of equilibria for £ = 0 is given by My = My U M with

dF -1
— o E — + cry
u=u", p <du (u )) q qE€ }

The critical manifolds MOi are normally hyperbolic, since the linearization of

Mg = {(u,p, q)' e C*

0}.
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the augmented system at any point (@, p, §)' € M and x = 0 yields,

du dF', _

d—g(f) = o (@ug),

) = Sz @ DO + (@) + 4(6)
dq

d_f(g) =0.

The linearized vector field has exactly n = dim(Mg) eigenvalues with zero
real-part. Thus geometric singular perturbation theory [Fen79,Jon95,Szm91|
applies. At first, we will construct the invariant manifold W*(U™) for p =0
and note that it can be decomposed into two invariant manifolds, one within
the critical manifold M~ and another one which approaches M exponen-

tially fast. The equations on the slow time scale 7 := p¢ are

o5 (7) = Fu(r)),
p%(f) = fl—i(u(mp(r) +q(7),
@

- (1) = exp(ig)p(7).

The reduced problem p = 0 is only defined on M, and the slow flow on M

is governed by

%(7) — —exp(i¢) (2—5(“)) - q(7)-

Any subspace spanned by eigenvectors of (%(uﬂ)f1 will remain invariant.
However, for x in the domain C,° the invariant manifold W*(U *) should
be the stable manifold of the stationary point U'. By the assumptions,
the eigenvalues — exp(ig)(\;(u'))~! with associated eigenvectors r;(u™) for
j =k +1,...,n have negative real part as long as ¢ €] — 5, 5[. Thus we
obtain the invariant manifold W#*°¥(U*) within My in the slow directions
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as

dF -
WS’Slow(U+) - {(U,]L q)t c |y = u'f‘7 p=— (@(U*‘)) q,

q € span{ry+1(uh),. .. ,rn(u+)}}.

The fibers emanating from the slow manifold M;" are described by the equa-
tions on the fast time scale &. The augmented system reduces for p = 0

to

We consider without loss of generality the fiber with base point U™, i.e. solu-
tions satisfying the boundary condition limg_ o (u, p, )" (§) = (u*,0,0)". The
constant solution u(§) = u™ solves the first equation and the ¢ coordinates
are identically zero. Thus the invariant manifold W*/2t(U*) in the fast

directions has at the stationary point U™ the tangent space
Ty WHHUTY = {(u, p,q)" € C* | u,p € span{ri(u’),... rp+(u")}, ¢=0}.

In total, the invariant manifold W*(U™) can be decomposed into the flow
within M;" and the fibration emanating from W#slew(UT) C M. Since the
slow manifold M is normally hyperbolic it perturbs smoothly to an invariant
manifold M for p € [0,6] small. This implies that the construction of the
W#(U) persists for small p. In a similar way we are able to construct the
stated decomposition of W*(U™). O

Corollary 1.1. Suppose the assumptions (A1) and (A2) hold. Then the so-
lutions 05 (€, k) and 0} (&, k) for j =1,...,n of the eigenvalue equation (1.15)
in the Lemmata 1.3 and 1.4, respectively, have analytic continuations for k

in a small neighborhood of the origin .
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Figure 1.3: Decomposition of the invariant manifolds W*(U™) and W*(U ™).
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Proof. By the results of Lemma 1.3, the product space {u(0)} x W§(k) is
part of the stable manifold W*(U*) in Theorem 1.8 for x € C, . Hence, the
stable space W (k) has an analytic continuation into a small neighborhood
of the origin and a slow-fast decomposition. An analytic basis of W{(k) can
be constructed by a standard procedure, see [Kat95, chapter 11.4.2.], and the
associated solutions 73 (&, k) for j = 1,...,n of the eigenvalue equation (1.15)
inherit the analytic dependence on x. In the same way, the solutions 7} (&, x)

for y = 1,...,n associated to the analytic continuation of the unstable space
Wi (k) are obtained. O

Remark 1.3. The solutions of the eigenvalue equation (1.15) are also denoted

as

n;<s7n>=<pj> (€, k) for j=1,...,n

4q;

and

77;(57 l{) = (pn+j) (f’ H) for '] = 1’ AL

An+j

with functions p;,¢; : R x C — Cfor j =1,...,2n.
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Theorem 1.9. Suppose the assumptions (A1) and (A2) hold. For k in a
small neighborhood of the origin and the functions 77;/”(5, R)withj=1,...,n
from Corollary 1.1, the analytic continuation of the Evans function is given
by

E(k)=det(nt,....neni,...,n)(0, k). (1.22)

Proof. The solutions in Corollary 1.1 are the analytic continuations of the
solutions in the Lemmata 1.3 and 1.4. Hence, the function (1.22) is indeed

the analytic continuation of the Evans function in Definition 1.12. O]

Remark 1.4. The Evans function is only unique up to a non-vanishing ana-

lytic factor.

In the following we will restrict our presentation to viscous shock waves

that are related to Lax shocks.

(A3) Let A\;j(u®) for j=1,...,n denote the real eigenvalues of the Jaco-

bians %(ui) in increasing order of magnitude. The viscous profile u(§)

in (A1) is associated to a Lax k-shock, i.e. the inequalities
)\k,l(uf) <0< )\k(uf) and )\k(uﬂ <0< )\k+1(u+)

hold.

Remark. The shock speed s does not show up in the above inequalities, since

we consider instead of the flux function f(u) the new vector field F(u) =

f(u) — su — c. Thus the shock speed is absorbed into the eigenvalues of the
dF (y%)

Jacobian &~ (u
U

Corollary 1.2. Suppose the assumptions (A1), (A2) and (A3) hold. Then
the solutions of the eigenvalue equation (1.15) in Corollary 1.1 will satisfy

for k =0 the reduced system,

PO = G WP +a(c).
E (1.23)
“ ()=,

dg
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In addition, the solutions are of the form

(&) = (p”+é(£)>, for j=1,... k (1.24)
n(€) = (1:;20(*5))) for j=k+1,....n (1.25)
() = (5?5—)))’ for j=1,... k-1, (1.26)
() = (pjff)), for j=k.. . n (1.27)

Proof. The eigenvalue equation (1.15) reduces for x = 0 to the system (1.23).
Thus the g-coordinates of the solutions are constant. In Corollary 1.1 we ex-
tracted solutions of the eigenvalue equation from the invariant manifolds of
the augmented system (1.21). The results on the stable manifold W#(U™)
and the unstable manifold W*(U~) provide boundary conditions for the so-
lutions of (1.15). For example, the solutions nj(§,x) for j =1,...,k and
j=k+1,...,n are related to the fast manifold W*/%'(U") and the slow
manifold W*stew(UT), respectively. O

Remark 1.5. A new notation for the functions 7];/“(57 k) in Corollary 1.1 will
emphasize their distinct asymptotic behavior. In the following we will refer

to the solutions in the fast manifold as

/ s o
S1(& k) =05, k), for j=1,...,k,

UL (&, k) =i (6 5), for j=1,...n—k+1,

and the solutions in the slow manifold as

S(& k) = 1544, (E, R), for j=1,...,n—k,

Ui (& k) = nj (€, k), for j=1,... k-1,

respectively. Additionally, we will denote the matrices spanned by the solu-
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tions as

Uf (& k)= (U],.... UL, )& R), U &r)=U,....Ui_)(E k),
ST k) = (S],....S0)(& r), S*(&, k) = (Sf,..., S5 1) (& K).

Thus the Evans function in Theorem 1.9 is written as

E(k) = det(ny,...,nn.n5, - m)(0, k)
=det (U{,...., U/, .U, ... .U, S{,....,S], S5, ..., 85_,)(0,K)
= det (Uf,Us,Sf,SS)(O,/f).

1.3 Effective Spectrum

Zumbrun and Howard consider the resolvent kernel, rather than the resolvent,
to study the stability of viscous shock waves [ZH98|. The resolvent kernel
is the Green’s function G,(&,y) associated to the operator L — kI via the
identity

(L = kDGl y) = 8,1,

where 0, denotes the Dirac delta distribution centered at y. On the resolvent
set p(L), the resolvent (L — xI)~' and the Green’s function G,(&,y) are
meromorphic with poles of finite order. By the result of the Gap Lemma, or
alternatively Theorem 1.8 and Corollary 1.1, Zumbrun and Howard are able
to construct a representation of the Green’s function on the resolvent set and

prove the following result.

Lemma 1.6. ( [ZH98, Proposition 5.3.]) Suppose the assumptions (A1) and
(A2) hold. Then the Green’s function G.(§,y) has a meromorphic contin-
uation into a small neighborhood of the origin, €y, with only poles of finite
order, which coincide with zeros (of the analytic continuation) of the Evans

function in Theorem 1.9.

Definition 1.14. The effective (point) spectrum is defined as the set of
poles of the meromorphic continuation of the Green’s function G, (z,y) in

Lemma 1.6.
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The space Cg5,(R; C") consists of smooth functions that decay exponen-

tially fast to zero. Moreover, the linear operator L maps Cgg,(R; C") into

itself, since the operator has continuous and bounded coefficients.

Definition 1.15. ( [ZH98, Definition 5.1.]) Suppose the assumptions (A1)
and (A2) hold. Then for kg in the domain €2y of the meromorphic continu-
ation of the Green’s function G (x,y) in Lemma 1.6, we define the effective

eigenprojection P, : C2 (R;C") — C*(R;C") by

exp

400
Prof(x) = / Poo(,9) f(9)dy,

[e.o]

where the projection kernel, P (z,y) := residue,, G.(x,y), is defined as
the Residue of the Green’s function G(z,y) at ro. Likewise, we define the

effective eigenspace Z;O(L) by

’

¥y (L) := image(Py,).-

Definition 1.16. ( [ZH98, Definition 5.2]) Suppose the assumptions (A1)
and (A2) hold. Then for kg in the domain Qq of the meromorphic continu-

ation of the Green’s function G (x,y) in Lemma 1.6 and k any integer, we
define the effective eigenprojection Qy, k. : Co (R; C") — C*(R;C") by

+00
Qi f () = / Qo (2, 9) f (1),

—00

where the kernel Qy, x(z,y) is defined as

Qro (7, y) := residue,, ((/-@ - %O)kGH(x, y))

Additionally, let K be the order of the pole of G (x,y) at ko and k =0, ..., K.
Then we define the effective eigenspace of ascent k, Z;O’k(L), by

’

Yo (L) = image( Qg k)

In the following, Zumbrun and Howard prove a modified Fredholm theory.
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Lemma 1.7. ( [ZH98, Proposition 5.3.]) Suppose the assumptions (A1) and
(A2) hold. Additionally, for ko in the domain Qqy of the meromorphic con-
tinuation of the Green’s function G.(z,y) in Lemma 1.6, let K be the order
of G.(x,y) at ky. Then,

1. The operators Py, Quor : Cog — C are L-invariant,with

Qno,kJrl = (L - Kol)Qno,k = Qno,k(L - "fof)
forall k # —1, and
Quok = (L — kol )* Py,
for k> 0.

2. The effective eigenspace of ascent k satisfies

!/ !/

Eno,k<L) = (L - ’%OI)Eno,k+l<L)

forallk=0,..., K, with

/

{0} = S, 0(L) € Xy (1) € o € Sy D) = S (L), (128)
Moreover, each containment in (1.28) is strict

3. On P HCX,): Pros Lok for k>0 all commute, and Py, is a projec-
tion. More generally, Pe,f = f for any f € ¥ (L : CX)), hence

exp

Seon(L: C2) C Z;M(L)

exp

forallk=0,... K.

4. The multiplicity of the effective eigenvalue kg, defined as dim Z;O (L),
s finite and bounded by K -n. Moreover, for all k =0,..., K,

/

dim ¥, (L) = dim X, . . (L*).
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Further, the projection kernel can be expanded as

me(m’y) = ngj(x)ﬂj(y%

where {;}, {m;} are bases for X, (L), X, .(L*), respectively.

5. (Restricted Fredholm alternative) For g € CS°

(L—roD)f =g (1.29)

is soluble in C™ if, and soluble in Cgg, only if, Quyx-19 = 0, or
equivalently

g€ Z;O*VI(L*)L.

Zumbrun and Howard note that for ko away from the essential spectrum,
the effective eigenprojection agrees with the standard definition. In that case,
the effective eigenspace E;mk(L) coincides with the usual LP eigenspace of
generalized eigenfunctions of ascent k. However, for k € (0ess(L) N €)) the
operator P, is not a projection operator, since its domain does not match

its range unless the domain is restricted to C'° . The special position of

exp*

the functions in Cg7, in the modified Fredholm theory is emphasized in the

following definition.

Definition 1.17. For kg in the domain 0y of the meromorphic continuation
of the Green’s function G, (z,y) in Lemma 1.6, a function that lies in the
effective eigenspace E'HO(L) as well as in the function space Cg is referred

exp

to as genuine eigenfunction.

Lemma 1.8. ( [ZH98, Lemma 6.1.]) Suppose the assumptions (A1) and (A2)
hold, and the domain Qqy as well as the functions 0} (&, k) and 13 (&, k) for
j=1,...,n are taken from Corollary 1.1. Then, at any zero k € Qq of the
Fvans function E(k) in Theorem 1.9, there exist analytical choices of bases
and indices p1 > pa > -+ > py such that for j=1,...,J and p=20,...,p;
the identities

o’ o
%nj (ga /i) - %77] (57 "{) (130)
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and

oPL +1 opJ~t 1

u

det (771{’777727W(7ﬁ _771)77W(773 _773)7773—&—177772)(0) 7é 0

hold.

Zumbrun and Howard point out that the functions in (1.30) are solutions
of the generalized eigenvalue equations

u/s 8p u/s
1" 8) = (L= moD)" =0 (6, )

with j=1,...,J and p=0,...,p;. Thus the functions in (1.30) are, for-

mally, effective eigenfunctions which are arranged in Jordan chains.

Theorem 1.10. ( [ZH98, Theorem 6.3.]) Suppose the assumptions (A1) and
(A2) hold. Then for k in the domain Qo from Lemma 1.6,

1. the functions %77}‘(5, k) for j=1,...,J and p=0,...,p; in Lem-
ma 1.8, projected onto their first n coordinates are a basis for ¥ (L).
Moreover, the projection of %77;(5,%3) s an effective eigenfunction of

ascent p+ 1.

2. The dimension of the eigenspace Z;(L) 1s equal to the order of k as a

root of the Evans function in Theorem 1.9.

Remark 1.6. An effective eigenfunction for an effective eigenvalue x is lying
in the intersection of the spaces W*"(k) = span{nj({,x) | j=1,...,n} and
W?(k) = span{n;(§, &) | j = 1,...,n}, which are associated to the functions
in Corollary 1.1. In particular, the solutions 7 (&) and 13 (€) of the eigenvalue
equation for Kk = 0 and 7 = 1,...,n are bounded functions on R_ and R,,
respectively. Thus an effective eigenfunction for the effective eigenvalue zero
is bounded on R.
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1.3.1 Multiplicity of the effective eigenvalue x = 0

It turns out that the multiplicity of the effective eigenvalue zero depends on
the transversality of the viscous profile and the hyperbolic stability of the

associated Lax shock.

Remark 1.7. By the results of Lemma 1.1, the function (%)(f) is a solution
of the eigenvalue equation (1.15) for K = 0 and an element of the spaces
ST (€,0) and U7(£,0) in the Remark 1.5. Thus we assume without loss of
generality that for k = 0 the identities

vt = siie.n = (%) ©

hold.

Lemma 1.9. If the assumptions (A1) and (A2) hold, then the functions
Ulf(f, k) and S{(é, k) in Remark 1.7 will satisfy

aen=(.0%,)

and

%—if@,w - (u@ 1—(2*)’

where z1(§) == %(5, 0) and z,11(§) == %(5, 0).

Proof. We differentiate the eigenvalue equation (1.15) with respect to x and

obtain the differential equations,

0 () e o (E@©) L) (% 0
o€ <3_> (&,1) = ( o O) <3_> (&, k) + (p) )

! oof
which govern the vectors 88%(5, k) and %(f, k). The g-coordinates for k = 0
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satisty the equations

d 0
%%Q(& 0) = p(£7 0)7

which we integrate from —oo to €. The left hand side equals

¢ 0 Oq ¢

oo O 0K

_ O

_9q 90
N _Oo_ali

(x,0)dz B (x,0) &) -0

and the right-hand side is obtained as

/é p1(z,0)dr = /6 %(m,O)dz =u(§)—u,

—00 —00 AT

since p1(&,0) = fl—z(f). This gives

wen=(:6%,)

with 2 (§) := %(f, 0). Similarly, we compute

Bhiso-(5.)

O

Theorem 1.11 ( |GZ98|). Suppose the assumptions (A1), (A2) and (A3)
hold. Then the first derivative of the Evans function satisfies

dFE
C0) = ¢+ det(prs - Pukr1s Pusas - i) (O)
cdet(ry(u”), .. e (uT ), ut —uT e (), (ut)),
with a non-zero constant ¢ € R and vectors p;(0) for j =1,...,2n in Corol-

lary 1.2.
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Proof. We consider the analytic continuation of the Evans function in The-
orem 1.9 in the notation of Remark 1.5,

E(k)=det(U{,...,U , ., U, ...,U,,Si,...,8],8%)(0, ).

n

In the following, we will restrict our calculations to the real half-line x &
R, and note that the involved vectors and the Evans function will be real
valued there. By the explanation in Remark 1.7, we assume without loss of
generality that the vectors U (€, k) and S (€, k) satisfy for = 0 the identity

Ul (£,0) = 5{(¢,0) = (%) 3}

dua
Thus the Evans function vanishes, F(0) = 0, and the function (%5)(5) is a
genuine eigenfunction for the effective eigenvalue zero. The first derivative

of the Evans function with respect to s is computed by the Leibniz rule,

dE & pil) 0 (pz) (pi+1) )
— = det { ..., ,— , s (0, K).
dK </{) ; ¢ ( (%—1 0k \qi qi+1 ( K)

We evaluate the derivative at x = 0 and obtain

dE 9
——(0) = det (&U{,U{, . U,f_l,US,Sf,SS) (0)+
+ det (Uf,Us, 8%5{,5,{, L ,5,5,58) (0)

= det (Uf,US,%(S{—U{);Sg77515758)(0)

All other summands vanish, since they contain two linearly dependent vec-
tors S7(0) = U/(0). The vectors have been analyzed in Corollary 1.2 and

Lemma 1.9 and we obtain the expressions

Uf<o>:<f; - p"‘o’f“) (0).
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0= ) ©
Q(S{ _ Ulf) (f) _ (Zn—i-l(g) - 21(5))’

Ok —(ut —u")
[ _ f f [ Pn+2 " Pntk
s <o>—<sz,.--,sk><o>—<0 o ><o>
and
gs _ Prntk+1 o0 Pan '
© (Tk;+1(u+) . rn(u+)> (0)

We change the order of the vectors with an even number of permutations

and derive the inner matrix in block diagonal form,

dFE A B
—_— = det
dk (0) ¢ (0 C) ’

nxn

with quadratic matrices
A= (p17 <oy Pn—k+1, Pn+2, - - - 7pn+k)(0) € Rnxn7

B € R™", the null matrix 0,,,, € R™" and
C=(ri(u™),. .1 (u”), —(u —u”), repa (u®), o (u™)).
Thus, the identity

A B
det = det(A) det(C)
OTLXTL C

and the assumption (A3) prove the stated result. O
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Corollary 1.3 ( [GZ98|). Suppose the assumptions (A1), (A2) and (A3)
hold, the viscous profile u(§) is realized by a transversal intersection of the
invariant manifolds W*(u™) and W*(u™) in (1.4) and, additionally, the Liu-

Majda criterion

det (ri(u™),...,re—1(u”), (@], rega (uh), .. rp(ut)) #0 (1.31)
is satisfied. Then the effective eigenvalue k = 0 is simple.

Proof. The matrix A = (p1,...,Pn_tr1, Pni2;-- - Pnsk)(0) is spanned by the
tangent vectors of the invariant manifolds W*(u~) and W*(u™) in the profile
equation (1.4). The assumption of a transversal intersection along the viscous
profile implies that the tangent vectors are linearly independent. Hence the
factor det(A) will be non-zero. Together with the Liu-Majda condition, we
obtain that the first derivative of the Evans function at x = 0 does not
vanish. Thus the order of the root x = 0 is one, which implies by the result

of Theorem 1.10 that the effective eigenvalue zero is simple. O]

In case of a non-transversal viscous profile the first derivative of the Evans
function at kK = 0 vanishes. Hence, the effective eigenvalue zero has multi-
plicity greater or equal than two, which may signal the onset of instability.

We will study this situation in the remainder of this work.

Remark 1.8. The Lax 1-shock and the Lax n-shock are often referred to as
extreme Lax shocks. The related profiles of (1.4) exist always by a transversal
intersection, since for example in case of a Lax 1-shock the unstable manifold

W (u~) has dimension n and transversality is trivial.



Chapter 2
Non-transversal profiles

We study the situation of a viscous shock wave whose viscous profile is non-
transversal. A non-transversal viscous profile may not persist under small
perturbations of the profile equation and indicates a possible bifurcation.
We have seen that the multiplicity of the zero eigenvalue depends on the
transversality of the viscous profile and the Liu-Majda condition. Thus,
the existence and the stability of such a viscous shock wave are sensitive to
perturbations. We consider a parametrized family of viscous conservation
laws and study the simplest bifurcation scenario: a saddle-node bifurcation
of viscous profiles. In particular, we investigate the stability of the associated
viscous shock waves.

We consider a family of hyperbolic viscous conservation laws

ou 0 0*u

E*'%f(%/ﬁ) = a2 (2.1)

whose flux function f(u, ) depends smoothly on the real parameter p. The

associated viscous profile equations are

fl—z@ = Fu(€), 1) — sGu(E) — ) = F(u(e),p),  (2.2)

where the vector field F'(u, ¢t) inherits the smooth dependence on p from the
flux function. A simple example is the case of a parameter independent flux

function where the shock speed s becomes the parameter of interest. Next,

46
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we adapt the assumptions (A1)—(A3) of the previous chapter.

(B1) For some parameter value ji, a viscous shock wave of the system of
viscous conservation laws (2.1) exists whose viscous profile @(§, uo) is

non-transversal.

In order to simplify our notation, we will omit for u = o the dependence on
the parameter; for example, we will write @(¢) instead of u(€, uo), u™ instead

of u*(pp), s instead of s(uy), etc.

(B2) The shock speed s of the viscous shock wave in assumption (B1) is non-
characteristic, that means it differs from any eigenvalue of the Jacobian

matrices & (u*).

Again, the assumptions (B1) and (B2) imply that the endstates of the viscous
profile u(&) are hyperbolic fixed points of the vector field F(u). We denote
the respective non-zero real eigenvalues of the Jacobians C(u*) by A;(u*)
for j = 1,...,n and assume that they are ordered by increasing value. The
associated eigenvectors of \;(u®) are r;(u®) with j =1,...,n. Again, we

restrict our presentation to the following kind of viscous shock waves:

(B3) The viscous profile @(£) in (B1) is related to a Lax k-shock, i.e. the

eigenvalues \;(u®) satisfy the inequalities

Meo1(u”) <0< M(u™) and  Ag(uh) <0 < Apq(uh). (2.3)

Now, we add another assumption that specifies the non-transversal viscous
profiles. In general, a viscous profile u() is non-transversal, if its heteroclinic
orbit is lying in the intersection of the invariant manifolds, W*"(u~) and
W (u™), whose united tangent spaces fail to cover the state space R™. That

means, for all points p on the orbit {u(§) | £ € R} the inequality
dim (T,W*(u™) + T,W*(u")) <n

holds. The dimensions of the tangent spaces, T,W*(u") and T,W*(u™), at

any point p on the heteroclinic orbit are determined by the assumption (B3)
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as
dim (T,W*(u")) =n—k+1 and dim (T,W*(u")) =k,

respectively. Therefore, the transversality of the viscous profile can fail in
various ways and we give a short list in the Table 2.1. We restrict our
attention to the cases where the sum of the tangent spaces has co-dimension

one:

(B4) The viscous profile @(§) in (B1) is non-transversal and for all points p
on the orbit {a(§) | £ € R} the identity

dim (T,W*(u") + T,W*(u")) =n—1
holds.

Low-dimensional examples are highlighted in red in the Table 2.1.

Remark. For all points p on the orbit {u(§) | £ € R}, the dimension of the

sum of the tangent spaces,
dim (T,W*(u™) + T,W*(u")), (2.4)
is equal to
dim T,W*(u~) + dim T,W*(u™) — dim (T,W"(u™) N T,W*(u™)).

Hence, the assumptions (B2) and (B3) imply that the intersection of the

tangent spaces is two-dimensional.

2.1 Application of Melnikov theory

We now address the existence of heteroclinic orbits for the family of profile
equations (2.2). In (B1), we assumed the existence of a viscous profile of (2.2)
for some parameter value py. Due to hyperbolicity, the equilibria u* and
their stable and unstable manifolds depend smoothly on the parameter for

i close to . A viscous profile is said to persist for a parameter close
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- | - | dm T,W*(u™) | dim T,W*(u™) | dimension of

n |k n-k+1 k the sum (2.4) | transversal
1)1 1 1 1 yes
211 2 1 2 yes
2|2 1 2 2 yes
311 3 1 3 yes
312 2 2 2 no
312 2 2 3 yes
313 1 3 3 yes
411 4 1 4 yes
412 3 2 3 no
4|2 3 2 4 yes
413 2 3 3 no
413 2 3 4 yes
414 1 4 4 yes
5|3 3 3 3 no
6|2 5 2 5 no

49

Table 2.1: A list of increasingly degenerate intersection scenarios for the

invariant manifolds W*(u~) and W*(u™).
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to po, if there exists a solution of (2.2) that is close to the unperturbed
viscous profile. A transversal viscous profile persists for all parameter values
in a small neighborhood of yy. In case of a non-transversal viscous profile,
Melnikov theory is well suited to analyze for which parameter values the
profile persists.

We give a short summary on Melnikov theory and refer to the Appendix A
for further details. At first, we recall the main hypotheses of Melnikov theory

and discuss the connections to our assumptions on the viscous profile.

(M1) For g = pp, a heteroclinic orbit in the profile equation (2.2) exists,
which connects two distinct hyperbolic rest points u® of the vector
field F'(u).

(M2) The heteroclinic orbit {u(§) | £ € R} in (M1) is non-transversal, that
means the dimension of the sum of the tangent spaces T, W"(u~) and
T,W*(u™) is less than the dimension n of the state space. In addition,
for some k € N and any point p on the orbit {u(¢) | £ € R} the identity

dim (,W*(u") NT,W*(u")) =k +1
holds.

The hypothesis (M1) follows from our assumptions (B1) and (B2). In par-
ticular, (B1) ensures the existence of a heteroclinic orbit and (B2) gives the
hyperbolicity of the endstates. The assumptions (B3) and (B4) imply the
hypothesis (M2) with index & equal to one.

Remark 2.1. We can relax the assumptions (B3) and (B4) as long as the
hypothesis (M2) is met. On the one hand, we can consider viscous profiles
which are associated to under- or overcompressive shock solutions. In par-
ticular, a viscous profile associated to an undercompressive shock solution is
necessarily non-transversal, see also [GZ98]. On the other hand, the sum of
the tangent spaces may not be of co-dimension one, for example, the more
degenerate cases at the end of the Table 2.1. These changes would influence

the index k € N and consequently the multiplicity of the zero eigenvalue.
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In the following we assume without loss of generality that py = 0. We

study the existence of solutions u(&, p) of the profile equation

Ou

o€ (& p) = F(u(& p), 1), (2.5)

for parameters p in a small neighborhood of py = 0. Any profile @(&, i) of

interest can be decomposed into the sum

u(&, p) = u(§) + 2(& p) (2.6)

of the profile u(§) and a globally bounded function z(§, ), whose norm
2]l = supgeg [[2(&, p)|| is close to zero. The differential equation for the

auxiliary function z(&, p) is obtained as

dz dF

d—g(f,ﬂ) = @(ﬂ(SLO)Z(S,u) +9(&, 2(&, 1), 1), (2.7)

with a function

96,2, ) = F((E) + 2 p) — F(a(€),0) - 5 (0(6),0)2. (28)
The inhomogeneity satisfies the identities

9(£,0,0) =0€R" and %({, 0,0) =0 e R™". (2.9)
The homogeneous problem

6 = G @(,0x(€ (2.10)

has exponential dichotomies on R~ and R*. This allows to construct the

stable manifold

W (n) = {z € C'(R;R") | 3& : [|2(& pl| < o0, V& =€}
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and the unstable manifold

W (n) = {z € C(R;R") | 3o : [|2(& p)|| < 00, V& < &}

in a small neighborhood of the trivial solution z5(§) = 0. A non-empty
intersection of these invariant manifolds corresponds to the existence of a
globally bounded function z(§, ). We study this intersection without loss
of generality at £ = 0 within a transversal section Y of the profile u(&).
There we define the Melnikov function M (v, i), which measures the distance
between these invariant manifolds along the direction that is orthogonal to
the tangent plane Ty)W*(u™) N Ty)W*(u™). The Theorem A.1 reads in

our case as follows:

Theorem 2.1. Under the assumptions (B1)-(Bj4), there exists a function
2*(v,1)(§) as in Lemma A.8 and a unique (up to a multiplicative factor)
globally bounded solution V(&) of the adjoint equation of (2.10),

= (Gwo.0) e, (211

The Melnikov function M : R x R — R has an integral representation
“+o0o
M(v,p) = / <(s),g(s, 2" (v, 1) (s), p) > ds, (2.12)

—00

which is well-defined and smooth in the domain Bs(0)x Bs(0) for a sufficiently

small, positive constant . Moreover, it satisfies the identities
M(0,0) =0 (2.13)

and

%—Aj(o, 0) = 0. (2.14)
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In order to apply the regular value theorem we have to meet the following

hypothesis.

(M3) The dimension of the parameter space is greater than or equal to the

number of globally bounded solutions of (2.11).

In our situation the hypothesis holds, since we have a single real parameter p
and a single globally bounded solution of (2.11). Again, (M3) is not a severe
restriction, since we always can enlarge the parameter space to ensure the

requirement. We use Lemma A.9 to restate the Theorem A.3.
Theorem 2.2. Suppose the assumptions (B1)-(B4) and

%—Jf(o, 0) = /: < (s), g—i(u(s,O), 0) > ds £0 (2.15)

holds. Then the solution set B = {(v,pn) € R* | M(v,u) = 0} is a smooth

curve in a neighborhood of the origin.

2.2 Saddle-node bifurcation of profiles

The Melnikov function M (v, 1) in Theorem 2.1 satisfies the identities (2.13)
and (2.14). Thus M (v, 1) has a singularity at (0,0), whose nature is deter-
mined by its higher order derivatives. We will focus on the least degenerate

situation:

(B5) The Melnikov function M (v, u) in Theorem 2.1 has non-zero derivatives

oM
T 0.0 £0 (2.16)
and
FM 6 0) £0. (2.17)

ov?
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The result of Theorem 2.2 shows that the solution set is a smooth curve
which contains the point (0,0). In addition, the conditions (2.13), (2.14),
(2.16) and (2.17) on the Melnikov function imply that a saddle-node bifur-
cation occurs [GH83]. We follow a standard procedure and obtain a smooth

parametrization of the solution curve with respect to the variable v.

\
[

Figure 2.1: Bifurcation diagram of a saddle-node bifurcation.

Theorem 2.3. If the assumptions (B1)-(B5) hold, then there exists a small
neighborhood B of v =0 and a function u(v) : B — R, v+ u(v), such that
w1(0) =0 and M (v, u(v)) =0 for all v € B. In addition, the identities

d*u

dp dp
dv?

o (0)=0 and

(0) £0 (2.18)
hold.

Proof. We conclude by the implicit function theorem from (2.13) and (2.16)

the existence of a unique function p(v), which satisfies (0) = 0 and
M(v, p(v)) = 0 (2.19)

for sufficiently small v. We differentiate this identity with respect to v,

dM oM oM dp

0= () = T 1) + G ) 0),



CHAPTER 2. NON-TRANSVERSAL PROFILES 35

evaluate the result at v = 0 and use (2.14) as well as (2.16) to obtain

dp, o 50,00
L) = ——az_ﬂj 00 =" (2.20)

Thus the curve {(v, u(v)) € R? | v sufficiently small} is tangent to the v-axis
at (v, ) = (0,0). In the next step, we differentiate the identity (2.19) twice
with respect to v,

0= T )

— (G

-4 (%—M< )+ 2, u(u))d“<u>)

S\ 0v2  Ouovdy  Ovdudy  Op? \dv ou dv? BV,

evaluate the expression at v = 0 and use the identity (2.20) to derive

OPM  OM d*u
0= (8V2 i o dV2>(O,O).

Hence, we conclude from (2.16) and (2.17) that the second order derivative

of the function p(v) at v = 0 does not vanish,

i 32_1\24(() 0)
——(0) = -~ A4, 2.21
a5 7 220

O

The assertion of Theorem 2.3 is illustrated in Figure 2.1. The identity
M (v, ) = 0 for some (v, 1) close to (0,0) is equivalent to the existence of
a profile u(&, p) close to u(§). Hence, on one side of the bifurcation point
1 = 0 two profiles exist, which coalesce into a single one as p reaches zero
and cease to exist as the parameter u moves beyond zero. The profile (&)

at the bifurcation point p = 0 exists by a non-transversal intersection of the
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involved invariant manifolds.

The simplest situation where this bifurcation scenario can be realized is a
Lax 2-shock in a system of viscous conservation laws (2.1) in R?. In this case,
the tangent spaces of the invariant manifolds W*"(u~) and W#*(u™) are two-
dimensional and coincide, see Figure 2.2. The series of pictures in Figure 2.3
shows the invariant manifolds for different values of the parameter . Again,

any intersection of the invariant manifolds corresponds to a profile.

Y
w W

Figure 2.2: A non-transversal profile u(§) associated to a Lax 2-shock and
the invariant manifolds W"(u~) and W#(u"), which are shown until they
reach the transversal cross section Y.

WYl we owe we w we

Il
o

u<0 ! p>0

Figure 2.3: The series of pictures indicates how the invariant manifolds move
within the cross section Y as the parameter p changes.

The result of Theorem 2.3 allows us to find expressions for the tangent
vectors, which span the two-dimensional intersection of the tangent spaces
Tg(g)W“(U_) and Tﬁ(g)Ws(u"").
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Lemma 2.1. If the assumptions (B1)-(B5) hold, then
1. The family of profiles u(§,v) = u(&, u(v)) depends smoothly on the

parameter v.

2. The function 3z 94 (5, v) is a solution of

dp dF  _
PO = G e ) 1)p(O)
and satisfies limgﬂioo 94 (5, v) = 0 for all sufficiently small v. More-

over, the functions 9% (5, v) are elements of Cgg (R;R™).
3. The function 9%(&,v) |,—o is a solution of

dp dF
O = o @(ENpl©)
and satisfies limg_ 4 o %(5,0) = 0. Moreover, the function %(5,0) is

an element of C (R;R™).

4. The vector valued functions g’g (&) and S%(¢,0) are linearly independent

for all £ € R and span the intersection of the tangent spaces,

o0u

€. (€ 0>} (222

TaeyW"(u™) N Tﬁ(g)Ws(u ) = span {

Proof. The first two statements are obvious. The family of profiles u (&, v) for
sufficiently small v solves the profile equation (2.2) and has the asymptotic
behavior limg_ 4o @(€,v) = u*(u(v)). We differentiate the profile equation
with respect to v,

S €)= S @€ V) W) G () + S (a6 ) 1) o),

evaluate the derivative at v = 0 and use p(0) = 0 as well as (2.18) to obtain

0 Ou dF

S G 60) = o) €0
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Additionally, the function %(5 ,0) approaches the endstates
ou out du
1 _ 2 F
P 81/(5’0) ou du( )

which coincide with the null vector by the identity (2.18). The matrix

ar
du

4E (y*) with constant coefficients. This fact and the result of Theorem 8.1

in [CL55, chapter 3| imply that the function %(5 ,0) converges exponentially

(u(€)) in the linearized profile equation approaches hyperbolic matrices

fast to the null vector as £ tends to £oo.

Finally, we prove the fourth statement. By the result of Lemma A.8, the
viscous profiles u(&, ) can be written as the sum of the unperturbed profile
4(¢) and the function 2*(v, u(v))(€). Moreover, the derivatives $%(0,0) and
g—?(o, 0) are linearly independent and satisfy

w s ou ou
Tﬂ(O)W (U ) N ﬂj(O)W (U+) = Span {8_§<0’ 0), 5(0, 0)}

The associated solutions, 2%(¢,0) and g—?(g, 0), of the linearized profile equa-
tion remain linearly independent, which implies that the identity (2.22) holds
for all £ € R. O

In Theorem 2.1 we observed that a unique (up to a multiplicative fac-
tor) globally bounded solution of the adjoint problem (2.11) exists. In the

following, we construct this solution. At first, we note a basic fact.
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Lemma 2.2. Suppose A : R — R™" ¢ A(€) is a quadratic matriz with

continuous coefficients. If p(§) is a solution of the associated linear system

of ODFEs in R™,

dp
d_g(f) = A(§)p(§),

and ¥(§) is a solution of the adjoint problem,

i

1 (€ = ~AT©w(E),

then their inner product is constant.

Proof. The derivative of the inner product < ¥, p > () is zero:

d d d
U= O =< > O <v. T > ©

—< —AT.p> &)+ < 1, Ap > (£)
= — <, Ap> (O)+ < b, Ap > (€)
=0.

Hence, the inner product < ¢, p > (&) is constant.

[]

Any tangent vector of the invariant manifolds W*(u~) and W*(u™) is a

solution of the linearized profile equation (2.10). We will construct a solution

of the adjoint system that is orthogonal to these solutions via a generalization

of the cross product to higher dimensions.

Definition 2.1 ( [Blo79]). Let n > 2 and ¢; with i = 1,...,n denote the Eu-

clidean basis vectors of the real vector space R™. For n—1 vectors pq, . ..

in R", we define the (generalized) cross product as the vector

PL X X Pl = Zdet (p1, cee 7pn717€j)ej'
j=1

We state some properties of the (generalized) cross product.

y Pn—1
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Lemma 2.3 ( [Blo79]). Let n > 2 and w as well as p; withi=1,...,n—1

be vectors in R".

1. The matriz spanned by the given vectors satisfies the identity

det(pr, ..., Ppo1, W) =< Py X -+ X Ppog,w > . (2.23)

2. The cross product py X - -+ X p,_1 1s perpendicular to any vector p; with

1=1,...,n—1.

3. The cross product p1 X -+ X p,_1 18 equal to the null vector if and only

if the vectors p; with i =1,...,n— 1 are linearly dependent.

4. In addition, let C be a quadratic matriz whose coefficients c;; are defined

by cij = % fori,5=1,...,n—1. Then the length of the cross
i j

product satisfies

lpy % - < paall = llpall - llpall - -+ - Ipa-a]l - (det(C)2.

This allows to construct the bounded solution of the adjoint problem from

the tangent vectors.

Theorem 2.4. Suppose the assumptions (B1)-(B4) hold. Let
{ppe C'(R;:R") |i=1,...,n—1}

be a basis for the sum of the tangent spaces Tye)W™(u™) and Tye)W*(u™).
Then the tangent vectors p;(§) fori=1,...,n—1 are solutions of the lin-
earized profile equation,

_dF

dp _
d—€(£> = @(U(S))p(é‘), (2.24)

which decay to zero in the limit ¢ — —oco and/or & — +oo. In addition, the
function (&) defined as

U

Y(€) = exp (— /O ® trace (Ccli—F(u(x))) d:zc) (1 X oo X pa1)(€) (2.25)
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s the globally bounded solution of the adjoint problem,

dip dF T

2y = - =—(u 2.2

0=~ (Gae) v, (2.26)
which is unique up to a multiplicative factor and is an element of Cgg (R; R™).

Remark 2.2. The construction of the bounded solution ¥ (&) in the case of
planar [GH83, Pal84] and higher dimensional systems [BL90, Section 4] is
well known. However, we use the concept of the generalized cross product to

prove the result.

Proof. A solution of the profile equation in the invariant manifolds W*"(u ™)
and TW*(u™) approaches asymptotically a constant endstate as £ tends to —oo
and +oo, respectively. The associated tangent vector solves the linearized
profile equation and decays in the respective limit. By assumption (B4), the
sum of the tangent spaces Tye)W*(u™) and Ty W*(u™) has dimension n—1.
Thus, there are n — 1 linearly independent solutions of the linearized profile
equation that decay in at least one limit.

We will prove that 1(€) is a solution of system (2.26) by a direct compu-
tation and use the short hand notation

A(€) = Z—Z(a(f)) as well as  a(&) := exp ( - /05 trace(A(x))dx).

First, we obtain the derivative of the cross product
(pl X ... X pn—l)(é) = Zdet (p1(£)7 e 7pn—1(£)7 ej)ej
j=1

via the Leibniz rule for determinants. Then, we observe from the proof of
Theorem 1.4 in [CL55] that for a set of vectors p; € R® withi =1,...,n and
a quadratic matrix A € R™*" the identity

n
Z det(p1, ..., pi—1, Api, Pit1, - - -, Pn) = trace(A) det(py, ..., pn)
i=1
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holds. In this way, we compute the derivative of the cross product as follows

jixpl XX pa)(€) = d%;det (P1(E)s- - us(©).0))e;

n n—1

- ; ;det (pl(ﬁ), - pim1(8), Z—Zz(é),pi+1(§), (), 6j>ej
-y Z Aet(pi(€). - picr (€), AODE) Pia (€). - Paca(€). e)es+

+ Z det(p1(€), ..., pn-1(£), A(€)ej)e;—
_ Z det(p1(€), - ... pn-1(£), A(€)e;)e;
= trace(A(£))(p1 X ... X pn-1) Z det(p1(§), - -, pn-1(8), A(§)e;)e;.

We differentiate the function ¢(§) via the product rule and obtain

%(5) :%(a<§)(p1 X ... X pnfl)(f))
da

O - X r)(E) + )

= — trace(A(£))y(§) + trace(A(&))Y (&) —
—a(§) 3 det(pi(€), - paa(§), A©)es)ey

(p1 X ... X pp=1)(§)

— —a(€) Z det(pi(€), ..., pn1(£), A()e;)e;.

We represent the vectors A(§)e; with respect to the Euclidean basis, A(§)e; =

Yorey < A(&)ej, e > ey, and obtain after a change in the order of summation
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the stated result:

d
T - Zdet PE)s- - pr(€). ALE)e)e;
—a 5) Z Z det(pl(é)u cee 7pn71(£>7 < A(é-)eﬁ €k > ek>€j
7j=1 k=1
6) Z Z det(pl(é)a s 7}%—1(5)7 ek) < A(g)ejv €k > ej
j=1 k=1

= al() Y det(pi(6), - pa-r(€) ex) D < (A(0)) et > ¢

T

=—a(§) Z det(p1(§), - - - pn-1(8), 6k)(A(§)) €k

—(A©)" (a(f) S det(n©). - pur (©), >)

Next, we prove that the function ¢ (&) is bounded on R. The functions
pi(§) withi =1,...,n — 1 are linearly independent solutions of (2.24) whose
norm decays in at least one limit. In addition, we denote with p,(§) the
solution of (2.24) whose norm becomes unbounded in both limits. The so-
lution of the adjoint problem, (), has a constant inner product with any
solution of (2.24). In particular, the function (&) is orthogonal to p;(&)
fort=1,...,n— 1 by construction and the inner product with the solution
pn(€) is non-zero. Hence, the function () is bounded on R, since it has to
compensate for the unbounded growth of p,(£). Moreover, the norm ||¢||(&)

decays in both limits.

Finally, we show that the norm |[|1]|(§) decays exponentially to zero as £
tends to +o0o. We conclude from Theorem 8.1 in [CL55, chapter 3| that the

solutions p;(£) with ¢ = 1,...,n have asymptotic behavior

Ipill(§) ~ exp(Aj(u*)€)
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as & tends to oo and the indices satisfy {jF | i =1,...,n} = {1,...,n},
Since we assume that p,(€) is the solution of (2.24) whose norm becomes
unbounded in both limits, its exponential rates satisty A,- <0 and A;+ > 0.

The norm of the cross product (p; X - -+ X p,_1)(§) has asymptotic behavior

11 % - X Pu)|[ () ~ exp( 3 Wi)g).

i=1ijik

Therefore, the norm of the function ¢ (§) satisfies

1611©) = exp (= [ tracetatae ) o -+ )9
~ exp ( — i )\i(ui)g) exp ( i )\i(ui)g)

i=1,ijn

= exp (= Ay (uF)e)

and decays to zero exponentially fast as ¢ tends to +o00. Hence, the smooth

function ¢(¢) is an element of CZ (R; R™). O
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2.3 Effective eigenvalue x = 0

We now investigate the spectral stability of the family of viscous shock waves
u(z,t;v) = u(§, u(v)) for sufficiently small v, that means we study the spec-

trum of the associated linear operators

Lp(e) = j‘é(j—é’(f) e, u>,u<v>>p<§>). (2.27)

The Evans function theory can be easily extended to incorporate the smooth
dependence on the parameter v. We define the extended Evans function and

state its properties.

Theorem 2.5. Suppose the assumptions (B1)-(B5) hold and ¢ is a suffi-
ciently small, positive constant. By Corollary 1.1, there exist for sufficiently

small v solutions of the eigenvalue equation,

HOGE (%“(22’“@” é) (o e

which span the matrices US,U*, ST and S® in Remark 1.5. The Evans func-
tion E : B5(0) x (=9,0) CC xR — C, (k,v) — E(k,v), is defined as

E(k,v) = det (Uf,US,Sf,SS)(O, K, V). (2.29)

In addition, it exhibits the following properties:
1. The Evans function is analytic in k € Bs(0) and smooth in v € (—6,06).

2. The FEvans function can be constructed such that its restriction to a real

domain is real valued.

3. The zero set of the Evans function coincides with the effective point
spectrum and the multiplicity of an effective eigenvalue equals its order

as a root of the Fvans function.

Subsequently, we determine the multiplicity of the effective eigenvalue

zero via the extended Evans function.
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2.3.1 Genuine eigenfunctions

We will identify genuine eigenfunctions for the effective eigenvalue zero.

Theorem 2.6. Suppose the assumptions (B1)-(B5) hold. Then the functions

o oa
)& and {2 )(&0) (2.30)
0 0

are linearly independent, genuine eigenfunctions for the effective ergenvalue

zero. Moreover, the FEvans function in Theorem 2.5 and its derivatives satisfy

the identities

oE OFE
(0,0) =0, o (0,0)=0 an 5 (0,0)=0 (2.31)
Proof. By the results of Lemma 2.1, the functions (2.30) are solutions of
the eigenvalue equation (2.28) for (k,v) = (0,0) and decay exponentially
fast to zero as € tends to f£oo. Therefore the functions (2.30) are genuine
eigenfunctions.

Finally, we verify the identities for the Evans function, which is defined

in Theorem 2.5 as
E(k,v) = det (Uf, Us, s/, SS)(O, R, V).

Since the solutions (2.30) are of the kind proposed in Corollary 1.2 and

globally bounded, we can assume without loss of generality that

9u
Ul (£,0,0) = S{(£,0,0) = (%f) (€) (2.32)
and
9u
U{(£,0,0) = 5§(£,0,0) = (%”)(5,0). (2.33)

The assumptions (2.32) and (2.33) imply that the Evans function E£(0,0) has

two pairs of linearly dependent vectors and vanishes at (k,v) = (0,0). We
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transform the Evans function with respect to the linear dependencies,
E(k,v) =det (U, U*, 8] —U{, 8§ —~U{,S{,....8],9°)(0,k,v),

and differentiate with respect to x by the Leibniz rule. The derivative is a sum
of determinants, where in each summand a difference vector (S{ —U/)(0, &, v)
and /or (8§ —UJ)(0, k, v) is left. Thus 92(0,0) equals zero, since the difference
vectors coincide with the null vector at (k,v) = (0,0). In a similar way, we
prove that 2£(0,0) vanishes. O

Any tangent vector associated to the invariant manifolds W*(u~) and
W#(ut) satisfies the eigenvalue equation (2.27) for (k,v) = (0,0), since it

solves the linearized profile equation

_dF
 du

)

i (@()p(©)

However, only a tangent vector, that is lying in the intersection of the tangent
spaces Tge)W*(u™) and TyeyW*(u'), is a bounded function. By assumption
(B4), the intersection is two-dimensional and, by Lemma 2.1, it is spanned by
the functions g—?(f) and 9%(¢,0). Thus we conclude that the functions (2.30)
are the only genuine eigenfunctions for the effective eigenvalue zero, whose
g-coordinates vanish identically.

The result of Lemma 2.1 implies the following result.

Lemma 2.4. If the assumptions (B1)-(B5) hold, then for all sufficiently
small v the derivative of the viscous profile u(&,v) with respect to & is a

genuine eigenfunction to the effective eigenvalue zero.

Corollary 2.1. If the assumptions (B1)-(B5) hold, then all derivatives of
the Evans function with respect to the parameter v at the point (k,v) = (0,0)

are zero, i.e.
d"FE
dv™

(0,v) =0, foralln € NU{0}. (2.34)

Proof. The Evans function vanishes identically for k = 0 and sufficiently

small v, and we conclude the statement. O]
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Similarly, one can investigate if the eigenvalue equation for (x,v) = (0,0)

has solutions, whose g-vector is constant but different from the null vector.

Lemma 2.5. ( [Pal8}]) Let A(t) be an n x n matriz function bounded and

continuous on R such that the system

dx
E(t) = A(t)x(t) (2.35)

has an exponential dichotomy on both half lines. Then the linear operator
L:CYR,R") — C°(R,R"™)

defined by ;
(La)(t) = () = A (?)

is Fredholm and f € image(L) if and only if

/m < (b), f(t) > dt = 0

o0

for all bounded solutions 1 (t) of the adjoint system

@

L) = —AT(Bu(e)

The index of L is dimV + dim W — n, where V and W are the stable and
unstable subspaces for (2.35).

Later we will need the following technical result, which follows from

Palmer’s Lemma 2.5.

Lemma 2.6. Suppose the assumptions (B1)-(B5) hold. The solutions p;(§)
fori=1,....n—1 and (&) of the linearized profile equation and the adjoint
differential equation, respectively, are taken from Theorem 2.4. If y(&) is a

bounded solution of the inhomogeneous differential equation

d dF
O =7

i (@(E)y(€) +b(e),
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where the inhomogeneity b : R — R™ is a bounded function, then we obtain

+oo
det(prs - pot, y)(0) = —/0 < b > (€)de

0
:/ < ,b> (&)d¢.

—00

Proof. We use the short hand notation

dF

A(€) = %(ﬂ(f)) as well as  a(§) := exp ( - /05 trace(A(x))dav).

The function () is defined in Theorem 2.4 as the product of a scalar expo-

nential factor and a cross product of vectors,

Y€)= a(€)(pr X -+ X pp_1)(§)

Therefore, the properties of the cross product as stated in Lemma 2.3 imply
for a function f € C(R;R") and for all £ € R the identity

<, f>(§) =al§) <(p1x...xpp1)(§), f(§) >
= a(§) det(p, ..., Pu-1, [)(§)- (2.36)

We differentiate the scalar function < v,y > (£) and obtain

d d
=< —ATop y > ()+ < ¥, Ay +b > (§)
= — <0, Ay > (O+ <, Ay > (O+ < ,b> (§)

=<9,b> (§).
The scalar function < 1,0 > (§) is integrable, since its the inner product

of a smooth L'-integrable function ¢(£) and a bounded continuous function
b(&) € Cp(R;R™). We integrate the identity a% <y > () =< ,b> (&)
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from 0 to +oo and obtain from (2.36) for the left hand side
+oo B!
/ e < V> Qe =0= <ty >(0) = —det(pr, -, P, y)(0).
0

Thus we derive that the first identity

+oo
et )0 = = [ <wb> (€

holds. In a similar way we obtain the second identity

0

det(p1, ..., pn1,¥)(0) = / <, b> (§)dE.

—0o0

]

There exist many bounded solutions of the eigenvalue equation (2.28) for
(k,v) = (0,0).

Lemma 2.7. Suppose the assumptions (B1)-(B5) hold. Then the eigenvalue
equation (2.28) for (k,v) = (0,0) has n — 1 linearly independent, globally
bounded solutions, whose q-vector is constant but different from the null vec-

tor.

Proof. A solution of the proposed form has to satisfy the differential equation

_dF

~du

dp
d—£(€>

with a constant vector ¢ € R"\{0}. By the result of Lemma 1.2, the homo-

(@(€))p(§) +q (2.37)

geneous system associated to (2.37) has exponential dichotomies on R_ and
R, respectively. Thus Palmer’s Lemma 2.5 is applicable. By the result of
Theorem 2.1, a unique (up to a multiplicative factor) bounded solution (&)
of the adjoint problem exists. Therefore a bounded solution of (2.37) exists

if and only if the identity

“+o0o
/ <P(€),q > dE =0

—00
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holds. For constant vectors ¢, we obtain a well-defined linear system of

equations
+oo

< P(€)dE, q >= 0,

where the vector f_Jr;o Y(€)d¢ is different from the null vector. Hence, the

kernel is n — 1 dimensional and we conclude the statement. O

2.3.2 Multiplicity of the effective eigenvalue zero - 1

By the result of Lemma 2.7, the eigenvalue equation (2.28) for (k,v) = (0,0)
has n — 1 bounded solutions with a constant ¢-vector different from the null

vector, but only solutions in the non-trivial intersection of the spaces

span{n;(g) - <pj(§) ) ‘j: L. k- 1} C W™(0) (2.38)

rj(u~)

and

span {n;(g) - (p"“(f)) ’j: k+ ln} c W*(0) (2.39)

rj(ut)
are effective eigenfunctions. If the Liu-Majda condition (1.31) holds, i.e.
(B6) d€t<7“1<u_), ce 7Tk71(u_)7 ut — u-, rk+1(u+)7 ce 7rn(u+>> 7£ 07

then the intersection of the spaces (2.38) and (2.39) is necessarily trivial. In
agreement with the modified Fredholm theory in Lemma 1.7, a generalized
eigenfunction has to be a solution p() of the generalized eigenvalue equation
L(Lp) = 0. The functions g—g(f) and 9%(¢,0) are the only genuine eigen-
functions and are L'-integrable. Hence, an associated solution p(§) of the
generalized eigenvalue equation L(Lp) = 0 has to satisfy the equation
d (dp dF ou ou
L =—| =) — —(u&),0 =10 —
916 = 15 (00 — S (0. 000) ) = 5el60) + n T €)
for some real constants v; and ~,. After integrating the last identity with re-

spect to &, we obtain the inhomogeneous linear system of ordinary differential
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equations ; P
p B ~
() = G (a©).0)p(6) + b(O) (2.40)
with a continuous and bounded inhomogeneity
- € ou ou
66 = [ (o0 + ngelo) s (2.41)

We will relate the existence of a bounded solution of (2.40) to the vanishing

PE
3 8’{2
The following preliminary result is a direct consequence of the results in

of the second order derivative of the Evans function (k,v), at the origin.

Lemma 2.1.

Lemma 2.8. Suppose the assumptions (B1)-(B5) hold. Then the function

§ u
o() = g (. 0)dz

is continuous and bounded on R. In addition, (&) approaches constant end-

states vt = = lime_ 400 0(8).

In preparation of Theorem 2.7 we derive an expression for the func-
tion b(¢).

Lemma 2.9. Suppose the assumptions (B1)-(B6) hold. Then there exist real
constants o; € R fori=1,...,n such that the identity

k-1
= Z oiri(u™) — pr(u™ — Z wiri(u (2.42)
i=1

i=k+1

holds. The function
b(&) 1 = (&) — vt —@r(@(é) —ut) = Y giri(u?)

=9(&) — v —p(a(é) —u) + Z wiri(u”)

18 continuous and bounded on R.
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Proof. The assumption (B6) implies that the set of vectors
{ritu’)|i=1,..  k=1}Uu{u" —uw }U{r@u®) |i=k,...,n}

forms a basis of R™ and the vector v™ — v~ has a representation (2.42) with
respect to this basis. Thus the function b(¢) is well-defined as a linear combi-

nation of continuous and bounded functions and inherits these properties. [

Theorem 2.7. Suppose the assumptions (B1)-(B6) hold. Then the second
order deriwative of the Fvans function with respect to the spectral parameter

K satisfies

e T

2
Ok -

+

cdet(ry(u™), .o (u ), ut —u T e (uh), e (uth)),

with a non-zero, real constant c, the function (&) in Theorem 2.4 and the
function b(§) in Lemma 2.9.

Proof. The assumptions imply by Theorem 2.5 the existence of the Evans
function E(k,v). We assume without loss of generality that for sufficiently

small v individual solutions of the eigenvalue equation are given by
ou
Ul(£,0,v) = 8{(€,0,v) = (%f ) (&v) (243)
and
du
Uf(6.0.0) = s{(6.0.0 = (%) (€0 (2.44)
Thus we rewrite the Evans function as in the proof of Theorem 2.6,
E(k,v) =det (U, U*, 8] —U{, 5§ —~U{,S{,.... 8], 5)(0,r,v),

differentiate twice with respect to x by the Leibniz rule and evaluate the
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derivative at (k,v) = (0,0) to obtain

9 s

82
Ok?

9 (sl —uy,

0,0) =det | U/, U®
22 0.0 e( T Ok

All other summands vanish at (x,v) = (0,0), since they contain a vector
(S{—U7)(0,0,0) and /or (S5 —UJ)(0,0,0) which coincide with the null vector.

We consider the solutions of the eigenvalue equation (2.28) satisfying the
identities (2.43) and (2.44). Their derivatives with respect to the spectral

parameter k are governed by the system of differential equations

0 (5 (@) ) L (2 0
%(%) (& K, v) = < ol 0n> (%)( ,/{,1/)4—(]))( K, V).

In Lemma 1.9, we obtained the expressions

Scwo-(5.) = Bewn-(512)

where the functions z;(§) are defined as z;(€) = %’z (£,0,0) for i = 1,n + 1.

In a similar way, we derive

Feco0 = (9, ) e %wa (JZT_(%)’

a“ (x,0)dz with

o v

asymptotic endstates v* = lime_ 4o, 9(€) is taken from Lemma 2.8 and the
functions z;(£) are defined as z;(§) == 8”1 % (&£,0,0) for i = 2,n + 2. We insert
these expressions into the derivative of the Evans function E(k,v) at (k,v) =

(0,0) and obtain

where the continuous and bounded function o(¢§ f ¢

2 f s _ _ Jf s
OB 0y =det (D7 Up Zen— 20 Zne2 =2 50 550 () (g )
Ok 0 U —[q —[9] 0 s

q
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with matrices

U;{(O) = (p1,-- -, Pn-k41)(0) € R”X(n—kﬂ)’
Us(0) == (Pu—ks2, - - - pn)(0) € R™F71,
qu(O) = (Tl(uf) T 1(u )) Rnx(k—l)’
57(0) := <pn+37..., D) (0) € RPX(—2)
S;(O) (Pnakats--->D2n)(0) € R7*(n—k)

and

S;(O) = (Tk+1(u+), o ,Tn(u+>) e Rx(n—k)

In the matrix within the determinant (2.45) the g-coordinates of n+1 vectors
are different from the null vector. In addition, the assumption (B6) implies
that there exist real constants ¢; € R for + = 1,...,n such that the vector

[0] = vT — v~ has a representation
k—1 n
= ori(u”) — el + Y @iri(u®). (2.46)
i=1 i=k+1
We take this linear combination into account and transform the determinant,

2 Uf s _ z _z O f s
aa = (O 0) det p UI; ZnJr_l i 21 Rn42 z9 Sp SZ; (O),
K 0 U [i] 0 0 S

q
where the auxiliary functions are defined as
Znt2(8) = 2n12(8) — wrznt1(§) — Z PiPn+i(§)
i=k+1
and

k-1

2(8) 1 = 2(8) — ee21() + D @ipn-rr14i(€),

=1
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respectively. In the next step, we change the order of the vectors by k? — 2

permutations to obtain a matrix in block diagonal form,

02E 2
——(0,0) = (=1)¥ 2. det
gz 00 =1 e(o o o0 U —[@ s

q

UI{ SZ{ §n+2 — 22 U; Zn+1 — 21 S;) (O)

and factorize the expression into the product

’FE 2 - -
W(Q O) = (—1)k b det(ph co s Pn—k+1:Pn+3; - - - s Pntks fnt2 — 22)(0)'
t— u77 7,kJrl(qu)a e 7Tn<u+))'

(2.47)

~det(ry(u™),. .., rp(u”),u

We rewrite the first determinant as a sum of determinants and evaluate each

summand in turn. The function Z,,2(&) is governed by a linear differential

equation
AZni2 oy _dznga o dZnga . . Appi
i © =g )=o) Zk;go g ©
dF

=——((§))Zn+2(8) + b7 (§) (2.48)

with inhomogeneity
bH(€) =(0(8) = v") —@rl(a€) —u?) = D griut).  (249)
i=k+1

The functions Z,,2(§) and b7 (&) are bounded on R, since they are linear

combinations of bounded functions. Thus, the requirements of Lemma 2.6



CHAPTER 2. NON-TRANSVERSAL PROFILES 7

are met and we obtain
+o00
det(pry -+ Pnkits Pniss - - s Dok, 2na2)(0) = — / <, bt > (£)d¢.
0

In a similar way, we derive the expression

0
det(pb <oy Pn—k+1,Pn+3, - - - s Ptk 22)(0) = / < ¢7 b- > (£)d£7

—0o0

where the bounded function b= () is defined as
k-1
b (&) = (0(6) —v7) = pp(@(€) —uT) + Y iri(u”).
i=1

The linear combination (2.46) implies the identity b*(£) = b (£) and we
define b(§) := b1 (§). Thus we obtain the expression

+oo
et (D1, Prsts Pt s Drs Enta — 52)(0) = — / < b > (€)de

and conclude from (2.47) the stated result. O

In the following, we will prove the connection between the existence of
a bounded solution of the generalized eigenvalue equation for (x,v) = (0,0)

and the second order derivative of the Evans function ?927];;(07 0).

Theorem 2.8. Suppose the assumptions (B1)-(B6) hold. Then the second
order derivative of the Evans function with respect to the spectral parameter,
‘3275(&, v), vanishes at (k,v) = (0,0), if and only if there exists a generalized
eigenfunction for the effective eigenvalue zero that is bounded on R and as-
sociated to the genuine eigenfunction g—g(ﬁ, 0)+ gokg—?(ﬁ) with the constant

from Lemma 2.9.

Proof. By the assumptions and the result of Theorem 2.7, the second order
d*E
? dl{Q

of non-zero factors and the definite integral fj;o < 1, b > (§)d§, where the

derivative of the Evans function (0,0), has a factorization into a product
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function b(¢) is taken from Lemma 2.9 and ¥ (€) is the unique (up to a multi-
plicative factor) bounded solution of the adjoint problem as in Theorem 2.1.

By Palmer’s Lemma 2.5, the condition

+o0
| <wbs©i=o
is equivalent to the existence of a bounded solution of the inhomogeneous
linear system of differential equations (2.40). Since the inhomogeneity b(¢)
has the proposed form (2.41) with 73 = 1 and 75 = ¢, the statement follows.

O

2.3.3 Multiplicity of the effective eigenvalue zero - 11

Finally, we consider a non-transversal viscous profile, whose associated Liu-

Majda determinant vanishes:
(B7) The Liu-Majda condition fails, i.e.

t— U_,Tk+1(u+), s 7T7L(u+)) = 0.

det(ri(u™),...,rp_1(u”),u
Remark. The first derivative of the Evans function, ‘Z—E(O7 0), depends on the
Liu-Majda determinant and the transversality of the viscous profile. Hence,

the assumption (B7) implies that the first derivative of the Evans function
vanishes, %—E(O, 0) =0.

Ezample 2.1. For some non-transversal, intermediate profiles in MHD the
Liu-Majda determinant vanishes. We will present this example in the next

chapter.

The multiplicity of an effective eigenvalue equals its order as a root of the
Evans function. Whereas the identities £(0,0) = 0 and 22(0,0) = 0 still
hold, we will have to compute the second order derivative of the Evans func-

tion anew.
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In this regard, we will refine the assumption (B7) and consider the com-

plementary cases:
(B7a) dim (span {ri(u™),...;rp—1(u”), v —u", rppa (uh), o rp(uh)}) < n—2.

(B7b) dim (span {r(u™),...,rp—1(u”), 0t —u, rpsa (uh), . ra(uh)}) = n—1
and the vectors 1 (u™),...,mg—1(u") and reiq(ut), ..., r(u') are lin-

early dependent.

(B7¢) dim (span {ri(u"),...,me1(u), ut —u™, rpga (uh), o (uh) }) = n—1
and the vectors r(u™),...,mg—1(u”) and rg4q(ut), ..., m(u') are lin-

early independent.

Lemma 2.10. Suppose the assumptions (B1)-(B5) and (B7a) hold. Then
the second order derivative of the Evans function, 38275(&, v), vanishes at the

oTLgIn.

Proof. We follow the proof of Theorem 2.7 and obtain the second order

derivative of the Evans function as

2 f s _ qf s
2_6(070) _ det Up Uz; zn+—1 - 21 _>|<_ Sp Sz; (0)
K 0 U [u] 0] 0 S;

with matrices U (0) € R0 75(0) € R™*=D §/(0) € R™*=2) and
S5(0) € R™("=F) ag well as

U2(0) : = (ri(u”), ..., rp1(u7)) € RPXED
and

S;(O) L= (Tk+1(u+), . ,Tn(u"')) e Rx(n—k)

The assumption (B7a) implies that among the n + 1 vectors in the second
row of the matrix there are at most n — 1 linearly independent ones. Hence,

the matrix has not full rank and its determinant vanishes. O

We deduce from the Lemmata 2.5 and 2.10 the following result.
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Corollary 2.2. Suppose the assumptions (B1)-(B5) and (B7a) hold. Then
the multiplicity of the effective eigenvalue zero is at least three. Moreover,
effective eigenfunctions are given by the bounded solutions of the differential

equation
dp dF
d_§(£ )=

for any constant vector q in the non-trivial intersection of the spaces

(@(€),0)p(&) +4q

span{ri(u”),...,rp_1(u")} and span{ry(u),... r(ut)}.

Theorem 2.9. Suppose the assumptions (B1)-(B5) as well as (B7b) hold
and without loss of generality the vector r1(u™) has for real constants p; with

1=1,...,n a representation

ri(u”) = Z%‘Tz‘(u_) + Z piri(u’).

1=k+1

Then the second order derivative of the Fvans function satisfies

o2 oo -
8_/§(O>0) = C'/_ < (&), Z piri(u™) > dE-

o0 i=k+1

~det(ro(u™), ..., me1(u7), [a], [0], re(uh), . (uT))

with a non-zero real constant c, the function (&) in Theorem 2.4 and the

function v(€) in Lemma 2.8.

Proof. We follow the proof of Theorem 2.7 and obtain the second order

derivative of the Evans function as

2 f s _ qf s
(?)_1}2?(0’0) — det U; UZ zn+—1 ) 21 _*7 Sp Sz; (0)
K 0 U [u] [w] 0 S;

q
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with matrices UJ(0) € R™(FD, 173(0) € R™*D, 5/(0) € R™(*) and
55(0) € R™("=0) a5 well as

U(0) s = (ri(u),...,rp-1(u)) € RPED
and
S;(O) - = (rk+1(u+), e ,Tn(u"')) c R (n—k)

The assumption (B7b) implies that the matrix (U?,S2)(0) € R™ ™= has

q’q
rank n — 2. We assume without loss of generality that the vector ri(u™)

has for some real constants ¢; with i = {2,...,k— 1} U{k+1,...,n} a

representation
k—1 n
r(u”) = Z oiri(u™) + Z oiri(u®). (2.50)
i=2 i=k+1

We take this linear combination into account and transform the determinant
such that

82E(070) — det (UJ Dn—k+2 — Dniktl Ulf * * S,{ S;) (0)

Ok 0 O: -] —[] 0 S

with matrices
U (0) = (pu-rss, - - pa) (0) € R,
and
U;(O) = (ro(u”), .. rp_i(u”)) € RE=2)
The auxiliary functions are defined as pnix41(§) == D14 @iPnti(§) and

Pr—ki2(§) == — Zf;ll YiPn—k+1+i(&) with ¢ := —1. We change the order of
the vectors by an even number of permutations to obtain a matrix in block
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diagonal form,

822(0 0) = det Ul SI Puksz — Prsrr [{Z‘,: *_ *_ Sé (0),
Ok 0 0 0 u: —la] —[v] S

q

and factorize the expression into the product

O*FE ;
Ok 9.9 (0 0) - det(U Sp7pn k+2 _pn-l-k—i-l)(()) (251)

~det(ro(u), ..., me_1(u”), [a], [0], regr (uT), ..o (uh)).

We write the first determinant as a sum of determinants and evaluate each
summand in turn. The function p, ri2(£) is governed by the differential

equation

k-1

dPn—k+2 _ 'dpn—k—&-l—&-i
e ©= ;‘%—dg (©)

= - Z ©i (%(a(g))pnkJrlJri(f) + Ti(u—>>
k—1
= S (a(€))P-rs2(6) = Y iri(u”).

=1

The function p,_r12(§) and the inhomogeneity — Z,’L:ll @;r;(u™) are bounded
on R, since they are linear combinations of bounded functions. Thus, the

requirements of Lemma 2.6 are met and we obtain
det(U], 57, put+2)(0) = / Z piri(u”) > dE.
In a similar way, we derive the expression

det(Ugv Sg7ﬁn+k+1)(0) = _/ Z %Tz > d€
0

i=k+1
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Thus the determinant satisfies

det(Ug7 S’IJ:’ ﬁn7k+2 - ﬁn+k+1)<0) = / Z (pzn U > d€+
+oo
+ / Z piri(u®) > dg
0 i=k+1
+oo
= / Z piri(ut) > de.
- 1=k+1
The last inequality holds by the assumption (B7b) and the linear combina-
tion (2.50) with ¢; = —1. We combine the last expression and (2.51) to
obtain the stated result. ]

We infer from Palmer’s Lemma 2.5 and Theorem 2.9 the following result.

Corollary 2.3. Suppose the assumptions from Theorem 2.9 hold. Then the
multiplicity of the effective eigenvalue zero is generically two. However a
third effective eigenfunction for the effective eigenvalue zero exists, if the

differential equation

dp dF
d_f(g) du( Z SOzTi
i=k+1
with constants p; fori =k+1,...,n from Theorem 2.9 has a bounded solu-

tion.

In preparation of the analysis of the case (B7c) we derive an expression
for the function b(¢).

Lemma 2.11. Suppose the assumptions (B1)-(B5) and (B7c) hold. Then
there exist real constants p; € R fori=1,... n such that the identity

k—1 n

—lu] = Z piri(u”) + Z oiri(u’) (2.52)

i=1 i=k+1
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holds. The function

b(&) : = (a(§) —u") - Z piri(u™)

i=k+1

k-1
= (a(§) —u7) + Z%W(U_)
i=1
s continuous and bounded on R.

Proof. The assumption (B7c¢) implies that the vector [u] = u™ — u~ has a

representation with respect to the set of linearly independent vectors
{riu)]i=1,...,k=1}U{r;(u") |i=Fk,...,n}.

Thus the function b(¢) is well-defined as a linear combination of continuous

and bounded functions and inherits these properties. O]

Theorem 2.10. Suppose the assumptions (B1)-(B5) and (B7c) hold. Then
the second order derivative of the Fvans function with respect to the spectral
parameter Kk satisfies

aZE 400
S0 =c [ <ub> (e

2
0K o

~det(ry(u™), .. e (u), [0), e (), (uth)),

with a non-zero real constant c, the bounded solution V(&) of the adjoint
problem in Theorem 2.4 as well as continuous and bounded functions v(§)
and b(§) in the Lemmata 2.8 and 2.11, respectively.

Proof. We follow the proof of Theorem 2.7 and obtain the second order

derivative of the Evans function as

2 f s _ qf s
(?)_1}2?(0’0) — det U; UZ zn+—1 ) 21 _*7 Sp Sz; (0)
K 0 U [u] [w] 0 S;

q
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with matrices UJ(0) € R™(FD, 173(0) € R™*D, 5/(0) € R™(*) and
55(0) € R™("=0) a5 well as

U(0) s = (ri(u),...,rp-1(u)) € RPED
and
S;(O) - = (rk+1(u+), e ,Tn(u"')) c R (n—k)

The assumption (B7c) implies that the vector [u] = ut — u~ has for some

constants p; € R with ¢ = 1,...,n a representation
k—1 n
—[a] = emiw )+ Y pmi(ut). (2.53)
i=1 i=k+1
We take this linear combination into account and transform the determinant,

2 f s z _z of s
TE G oy=det (B U Zn =2 x50 50 g5
O 0 U 0 - o0 S

where the auxiliary functions are defined as

Znt1(8) 1 = 2npa(§) — Z PiPnti(§) (2.55)

i=k+1

and

k—1

2(8) =20 + Y ipnks14i(6), (2.56)

i=1
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respectively. In the next step, we change the order of the vectors by k? — 3

permutations to obtain a matrix in block diagonal form,

25 Uf 51(0) Zop—2 US o« 5;) 0

= 20,0) =(=1)F 3 . det | P P
gz (00 =(=1) e(o 0 0 U —[o] 8

and factorize the expression into the product
aQE k272 ~ ~
W(Oa 0) = (_1> ' det(ph <oy Pn—k41,Pn43s - -+ Pntks Zntl — Zl)(O)
~det(ry(u™), .1 (u), [0), rrar (uh), o ra(ut)). (2.57)

We write the first determinant as a sum of determinants and evaluate each

summand in turn. The function Z,,(&) is governed by the differential equa-

tion
dZy 11 dzn i1 - dPnvi
i <s>=d—§<5>—i§1% i ©
= @)1 (6) + (3(§) ") -
= 3 (GO + )
i=k+1
= O (E) 20 (€) + 57, (259

with inhomogeneity

The functions Z,1(§) and b7 (&) are bounded on R, since they are linear
combinations of bounded functions. Thus, the requirements of Lemma 2.6

are met and we obtain

“+oo
det<p17 « ooy Pn—k+1,Pn+3y - - -y Ptk 2n—i—l)(o) - _/ < w7 b+ > (é.)dé.
0
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In a similar way, we derive the expression

0
Aet(1, . Prtsts Pt s P 1)(0) = / < b > (€)de,

—0o0

where the bounded function b= () is defined as

(€)= () — ) + Y i),

The linear combination (2.53) implies the identity b*(£) = b (¢) and we
define (&) := b1 (£). Thus we obtain the expression

—+00

det(pla <oy Pn—k+1,Pn+3, - - -y Pntk 2n—i—l - g1)(0> = _/ < wa b > (g)dg

and conclude from (2.57) the stated result. O

We infer from Palmer’s Lemma 2.5 and Theorem 2.10 the following result.

Corollary 2.4. Suppose the assumptions (B1)-(B5) and (B7c) hold. Then
the multiplicity of the effective eigenvalue zero is generically two. However a
third generalized eigenfunction for the effective eigenvalue zero exists, if the
differential equation

dp dF

Yoy 22 (g b

PO = G @), 0m(E) +(6)
with the function b(§) from Lemma 2.11 has a bounded solution. Moreover,

such a generalized eigenfunction would be related to the genuine eigenfunc-

tion g—?(f’).
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2.4 Bifurcation analysis of E(k,v) =0

The identities 2£(0,0) = 0 and E(0, v) = 0 for all v sufficiently small indicate
a bifurcation in the equation E(k,v) = 0 defining the zero set of the Evans
function. The nature of the singularity of the Evans function at the origin is

studied via its higher order derivatives.

First, we establish the connection between (a derivative of) the Evans

function and (a derivative of) the Melnikov function.

Theorem 2.11. If the assumptions (B1)-(B5) hold, then the derivative of

the Evans function equals

i I ? i O
T2 (0.0)=c- /_OO < zp(f),%(u(f))(%, %) €.0)>de (250
cdet(ry(u”), . remr(uT ), ut —uT e (u), ()

with a non-zero real constant ¢ and the function (&) in Theorem 2.4.

Proof. By Theorem 2.5 the assumptions imply the existence of the Evans
function E(k,v). We assume without loss of generality that for sufficiently

small v solutions of the eigenvalue equation are given by
ou
Ul(&,0,v) = 8{(€,0,v) = (%f ) (&v) (2.60)
and
du
U3(£0,0) = $4(£,0,0) = (%”)(5, 0). (261)
Thus we rewrite the Evans function as in the proof of Theorem 2.6,
E(k,v) =det (U, U*, 8] —U{, 5§ —~U{,S{,.... 8], 5)(0,r,v),

differentiate with respect to x and v by the Leibniz rule and evaluate the
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derivative at (k,v) = (0,0) to obtain

0’FE
Oovok

o(s{ —ul) a(s{ —Ud) s oo
B , % S350, S (0)+

a(s{ —uf) a(sf —uf)
ov ’ Ok

(0,0) = det (Uf U,

+ det (Uf,US, ,Sg,...,s,{,58>(0).

All other summands vanish at (x,v) = (0,0), since they contain a vector
(S{=U7)(0,0,0) and /or (S —UJ)(0,0,0) which coincide with the null vector.

In the proof of Theorem 2.7 we computed the derivatives of the solutions

with respect to the spectral parameter x and obtained the expressions

o (5]~ ) €.0.0) = () =) 262
and
8%(55 — U4)(£,0,0) = (Z”jz(ii) :ji(f)> (2.63)

with functions z;(§) = apl ”(&,0,0) for i = 1,2,n + 1,n + 2 and v(§) =
fé a“ (x,0)dx with asymptotlc limits v* := limg_, 4+ 0(€).

In a similar way, we calculate the derivatives of the solutions of (2.28)

with respect to v, which satisfy the system of differential equations

0 (5 @ @) pw) L) (5
2 (£) € = (BECD ) () e e

. <§T§<a(g, N5 V>) .

. (g:;m, v), v O)) p(&, 5, v)g”;(u)) e

The functions U/ (€, k,v) and S7 (€, k, ) satisfy the identities (2.60). Hence,
the difference vector (S7 — U{)(€, k,v) vanishes identically for x = 0 and
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sufficiently small v, which implies

%(5{ —U{)(&0,v) = (8) (2.65)

The solutions UJ (€, k,v) and SJ (€, k,v) are chosen such that the identi-
ties (2.61) hold and are part of the fast manifold. By Corollary 1.2, their
g-coordinates demonstrate for k = 0 and sufficiently small v the asymptotic

behavior
fhm (.72(57071/) =0 and 5115—11 qn+2<£707 V) = 0.
In addition, the order of taking the limit and the derivative, respectively, can

be interchanged for these functions and their derivatives satisfy for k = 0

and sufficiently small v the asymptotic behavior

) aQ2 . aQn+2
1 —(£,0 =0 d 1
Jm 5, (& 0v) =0 and - lm =27

(&,0,v) = 0. (2.66)
The derivatives of the solutions Ugf(f, k,v) and Sg(f, k,v) are governed by
the differential equations (2.64). In particular, the ¢g-vectors satisfy for k = 0
and sufficiently small v the equations 8%%% (&,0,v) = 0 € R™. Thus we
conclude that the g-vectors are constant and equal the null vector due to the

limits (2.66). Hence, we obtain the expression

0

5, (51 =) (€.0,0) = (y””o_ y) ©) (2.67)

with functions y;(€) defined as y;(§) := %’l’j (€,0,0) for i =2,n + 2.




CHAPTER 2. NON-TRANSVERSAL PROFILES 91

We insert the vectors (2.62), (2.63), (2.65) and (2.67) into the derivative
of the Evans function E(k,v) at (k,v) = (0,0) and obtain

0?E Ul us wio — 1y S g8
(0,0):det<6” po T T p)(o)+

OvokK U —[a] 0 0 S
+ det Ug U; 0 Zn+2 — 22 S]{ S; (0)
0 Us 0 —[v] 0 S5

with matrices

UI{(O) = (p17 cee apn—k+1)(0) S Rnx(n—k+1)7
Up(0) := (Pn—k+2,---,pn)(0) € R (k1)
U:(0) == (ri(u),...,me1(u”)) € R (k1)
NIJ;<O> = (pn+37 cee ;anrk)(O) € Rnx (k— 2)
Sp(0) == (Pnskt1s -, P20)(0) € R"* (k)

and

S;<O> = (Tk+1(u+), e ,T’n<u+)) e Rx(n—k)

The second determinant vanishes, since it contains a null vector. However,
in the first determinant we change the order of the vectors by k? — 2 permu-

tations to obtain a matrix in block diagonal form,

92E (0,0) = (—1)k2_2-det Ulf Sz{ Ynt2 —Yy2 U,  * S; ,
Ovok 0 0 0 U, —lu] S;

and factorize the expression into the product

0’FE
Ovok

<07 O) = (_1)16271 ’ det(Uz{7 5’;{7 Ynt2 — y2>(0) (268)

cdet(ry(u™), .o e (u), [a), reea (uh), e (uh)).

We write the first determinant as a sum of determinants and evaluate
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each summand in turn. The functions that span the matrices U7 (¢, 0,0)
and SIJ; (£,0,0) are solutions of the linearized profile equation, which decay
in at least one limit. In addition, the function y,,2(§) = p”“ (£,0,0) is
governed by the system of differential equations (2.64), which s1mp11ﬁes for
(k,v) = (0,0) to

(€)= G 0(€sal€) + Gy 06D (G 5 ) (€0

since the identities p,.2(£,0,0) = d“ 52(£,0), aq"“ (£,0,0) =0, u(0) = 0 and

3—5(0) = 0 hold. The function yn+2(§) and the 1nh0mogenelty of its differential

equation are bounded on R. Thus we can apply Lemma 2.6 and obtain

(0], om0 == [ < (e o) G o ) (€.0) > de

In a similar way we derive

0 d*F ou du
det(U7, SI ——(u

et@], 3100 = [ <l T wen (e 50 ) €0 > e
Hence, the first determinant in (2.68) satisfies

- Foo d’F ou Ou
det(Uf. 3]sz = 1)0) = = [ <0(€), L @(©) (€.0) > de.

o du o’ v

We combine this expression with (2.68) and obtain the stated result, where
the constant c is set to ¢ := (—1)*. O

Corollary 2.5. If the assumptions (B1)-(B6) hold, then the mized derivative

O%E

of the Evans function, 5 ==

(k,v), is non-zero at the point (k,v) = (0,0).

Proof. Under the assumptions (B1)-(B5), we obtained in Theorem 2.11 the

second order derivative of the Evans function as

o0

cdet(ry(u™), .1 (uT ), ut —uT e (uh), L (u))

;ji(0,0) = C~/_ "< w(ﬁ),%(a(ﬁ))gz gu>(§ 0) > dé
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with a non-zero constant c. By the results of the Lemmata 2.1 and A.10,
the integral expression equals the second order derivative of the Melnikov
function at (v, u) = (0,0),

oo &PF du Ou O*M
/_OO < (), W(u(f))(5> 5)(570) > dg§ = W(O,OX
which is non-zero by assumption (B5). In addition, the Liu-Majda determi-
nant does not vanish by assumption (B6). Hence, the derivative of the Evans

function is the product of non-zero factors, which proves the assertion. [

In the next step, we prove that the Evans function exhibits a bifurcation.

Lemma 2.12. Suppose the assumptions (B1)-(B6) hold. Then the zero set

of the Evans function consists close to the origin of two curves

{(k,v) ER* |k =0,v € (=6,0)} and {(k,v) ER*|v=1r(k),k € (—6,0)}

(2.69)
where 0 is a sufficiently small positive constant, and v : (—=§,0) — R, k —
v(k) is a differentiable function such that v(0) =0 and

dv 122
--(0) = —5%(0,0). (2.70)
ovok

Moreover, the curves intersect transversally at the point (k,v) = (0,0).

Proof. Under the assumptions (B1)-(B5), we conclude from Corollary 2.1
that the Evans function vanishes at x = 0 for sufficiently small v. Thus
the curve {(k,v) € R? | k = 0,rv € (—4§,0)} is part of the zero set of the
Evans function. In addition, the Evans function is analytic in the spectral

parameter k. Hence, the function

B v) Bler) i i 40,
K, V) =
4B (g v) if k=0,

is well-defined and satisfies
E(0,0) =0. (2.71)
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It is differentiable at (k,v) = (0,0) and its derivative with respect to v is

non-zero, since the identity

OE 0?E
ov 2, 0.0) = Ovok

(0,0) (2.72)

holds and the mixed derivative of the Evans function is non-zero by the
result of Corollary 2.5. Under the conditions (2.71) and (2.72), we conclude
from the implicit function theorem the existence of an interval (—4,d) for
a sufficiently small, positive constant § and a function v : (—0,0) — R
k +— v(k), such that the identities v(0) = 0 and

E(k,v(k))=0 (2.73)

hold. Thus the zero set of the Evans function E(k,v) close to the origin

consists of the curves in (2.69), which intersect transversally at (x, v) = (0,0).

We differentiate the identity (2.73) with respect to the spectral param-

eter x and use L’Hospital’s rule as well as the results of Corollary 2.1 to

obtain
d ~ d E(k,v(K))
O — — E _ — —
| Bt = o) S
OF OF dv
et wa) K- E
~ i BB B,
8%2F 8%E dv 8%E ( dv OF d?v dE dE
: n2+21/1£_n+ o2 \dk + v dr2) +_I€__I€
:,lig(l)(a Ovok d el (dz)ﬁ v d ) d d (R,V(/ﬁ)):
10%°FE O’E dv

:EW(O 0) + O ———(0, O)d (0).

By the result of Corollary 2.5, the mixed derivative of the Evans function is

non-zero, 2-2(0,0) # 0. Thus the derivative of the function v(k) satisfies
d 1 28
T(0) = =555 (0,0)
K Ovok

and is determined by the second order derivative of the Evans function at

the bifurcation point. m
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Since the curves in (2.69) intersect transversally at the bifurcation point,
possible bifurcation scenarios are given in Figure 2.4. The following result

guarantees the occurrence of a transcritical bifurcation.

K K K

Figure 2.4: Bifurcation diagram of a transcritical, a degenerate and a pitch-
fork bifurcation.

Theorem 2.12. Suppose the assumptions (B1)-(B6) hold and the definite
integral fj:: < ,b > (£)dE, with the function (&) in Theorem 2.4 and
the bounded function b(€) in Theorem 2.7, is non-zero. Then a transcritical
bifurcation will occur in the equation E(k,v) = 0 at the bifurcation point
(k,v) = (0,0).

Proof. A transcritical bifurcation in the equation E(k, ) = 0 is characterized
by the following conditions on the Evans function E(k,v) and its partial

derivatives at (k,v) = (0,0):

E(0,0) =0, (2.74)
OF
5, (0.0)=0, (2.75)
and
OF
-, (0.0)=0, (2.76)
9*E
0°E

52(0.0)#0. (2.78)
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The four conditions (2.74)-(2.77) have been established in Theorem 2.6 and
Corollary 2.5. Additionally, the second order derivative of the Evans function,
‘2271;3(0, 0), has by Theorem 2.7 a representation

82E 400

GE0 = [ <> (@

+

~det(ry(u™), .o (u ), ut —uT e (uh), o ra(uh)).

The assumptions imply that the factors are non-zero and the identity (2.78)
holds. Hence, the conditions (2.74)-(2.78) are satisfied and a transcritical

bifurcation occurs. O

In the next step, we identify viscous shock waves that are not spectrally
stable.

Corollary 2.6. Suppose the assumptions of Theorem 2.12 hold. Then the

viscous shock waves with viscous profiles u(&,v) are not spectrally stable

1. for sufficiently small positive parameters v if the factor (2.70) is posi-

tive.

2. for sufficiently small negative parameters v if the factor (2.70) is neg-

alive.
3. forv=0.

Proof. By the result of Lemma 2.12, the zero set of the Evans function close to
the origin consists of two curves (2.69), which represent effective eigenvalues.
Since the derivative of a viscous profile is always a genuine eigenfunction
associated to the effective eigenvalue zero, the curve {(k,v) € R? | k =
0,v € (—9,0)} is present.

The other curve, {(k,v) € R? | v = v(k),k € (—0,0)} has a represen-
tation with respect to x. Moreover, the function v(k) satisfies the iden-
tity (2.70). Hence, in the proposed parameter regimes there exist positive
real eigenvalues x, which imply the instability of the associated viscous shock

wave. In contrast, the viscous shock wave with viscous profile u(&) is not
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spectrally stable, since the multiplicity of the effective eigenvalue is two and
exceeds the dimension (one) of the manifold of heteroclinic orbits connecting

the endstates u™ in the profile equation. O

2.4.1 Marginal case

We consider again the case of a non-transversal profile, whose associated

Liu-Majda determinant vanishes:

(B7) The Liu-Majda condition fails, i.e.
det(ri(u™),...,re_1(u”),ut —u e (u®), ..., r(u™)) = 0.

Corollary 2.7. Suppose the assumptions (B1)-(B5) and (B7) hold. Then
the second order mized deriwvative of the Evans function, %(ﬁ, v), vanishes

at the origin.

Proof. In Theorem 2.11 we computed the mixed derivative of the Evans

function as

O’FE +oo d’F ou 0Ou
S 00 = [ <. GG 5 ) €0 > de

~det(ry(u™), ..o (), ut =T e (), (ut))

with a non-zero constant ¢ and the function ¥ (&) in Theorem 2.4. The
expression vanishes, since the Liu-Majda determinant is zero by assump-
tion (B7). O

Thus the bifurcation analysis in the previous section does not apply. The
nature of the singularity of the Evans function at the origin is determined by

higher order derivatives.



Chapter 3
Applications

We will apply the theory to selected model problems.

3.1 Viscous shock waves in MHD

Planar waves in magnetohydrodynamics (MHD) are governed by a system
of hyperbolic -parabolic conservation laws. Freistiihler and Szmolyan proved
that all magnetohydrodynamic shocks have viscous profiles in a certain range
of the dissipation coefficients [FS95, Theorem 1.1]. Moreover, they show
that the viscous profiles with the same relative flux are generated in a global
bifurcation [FS95, Theorem 1.3|. After presenting their results, we will prove
via Melnikov theory that a saddle-node bifurcation of viscous profiles occurs
and discuss the stability of these viscous profiles.

In the parameter regime of interest, where the dissipative effects due to
electrical resistivity v and longitudinal viscosity A dominate those of trans-
versal viscosity and heat conductivity, a slow-fast structure in the profile
equation is evident. An application of geometric singular perturbation the-

ory [Fen79,Szm91] leads to the study of the reduced system,

V_dé =(1 — d*)b —c, o)
dr 1 1 2 d? '
A— =—||b]|? —j4+— —— ——|bl*~ <b

& =5 lIblP 7 J+,W( bl < ,c>+e),

98
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where the unknowns are the transversal magnetic field b : R — R? and the
specific volume 7 : R — R. The constants d, e, j and k are real numbers,
whereas the constant k is bigger than one and the constant vector ¢ € R? is

different from the null vector. The physical domain U? is given by

e {)en

where the temperature 6 is defined as

7>0,0(b,7)> 0},

1/1 9 9 72 )
d(b, ) ::C— §<T—d)HbH —<b,C>+5—j7‘+€

with a positive real constant c,,.

Definition 3.1. The reduced system (3.1) restricted to the domains U? and
the half-space U =R?x R, is referred to as ¥* and 237 respectively.

Systems 23 and 5 are gradient-like and the physical domain U? is posi-
tively invariant under the flow of 3°. The well known symmetry property of

the full MHD equations imply a reflectional invariance of the reduced system.

Lemma 3.1. ( [FS95, Lemma 4.3]) System 3 is invariant under the reflec-

tion across the plane

()

In particular, E is invariant under the flow of .

b e Span{c}}.

For non-degenerate intermediate shocks the constant vector c is different
from the null vector [FS95, Lemma 2.3|, which implies that all stationary
points of (3.1) are lying in the invariant plane E. Moreover, we can choose
a vector d that is orthogonal to the vector c. In the new coordinates

b(£) :=<b(¢), and b, (§) :=<b(¢),

d
llell H flal ~
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the system (3.1) is obtained as

1/3—2 = (1 —d*)b—c, (3.2)
y‘g’g — (1= d)b, (3.3)
/\2—2: (%l|bl|2+7—j+%<—%2—%2Hb]|2—bc+e)), (3.4)
with a positive constant ¢ := ||c|| and the invariant plane E has the repre-

sentation E := {(b,b,, )" € R*|b, = 0}.

Definition 3.2. The restriction of system 3’ to the plane F is referred to as
3%, The differential equations of system 5 are given by the equations (3.2)
and (3.4).

The nullclines of system ¥ are given by

o {()cx

and

=)o

Thus any stationary point of system % lies in G N H N (R x Ry).

o(b,7) = P(k7 — &) — 2be + (2k — 1)7% — 2kj7 + 20 — o}

h(b,7) = (1 —d*)b—c= O}.

Lemma 3.2. ( [FS95, Lemma 4.4])

The nullclines G and H intersect transversally in ezxactly four points. With
appropriate numbering, these points u; = (b, ;)" for i = 0,1,2,3, satisfy
Ht*NG = {up,us}, H NG = {uz,us}, more precisely,

o> >d>>7m>1 >0,

b1>b0>0>bg>bg.
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At least the fized points uy and uz are lying in the physical range

U? .= {(b> eR*|7>0, 9<bi,7> > 0}.
T il

We repeat the discussion of the geometry of the nullclines in [KL61,FS95]:

The nullcline H has asymptotes at 7 = d? as b tends to =00 and consists of

two hyperbolas

H :=Hn{b 1) eR*|r<d, b<0}
and

H" .= Hn{(b,7)" € R*|7>d* b>0}.

The nullcline G has asymptotes at 7 = d?/k, which G approaches from
above as b tends to 400 and from below as b tends to —oo. Additionally, the
asymptote of H, 7 = d?, lies above the asymptote of G, 7 = d?/k, since the
constant k is bigger than one.

The function g(b, 7) can be regarded as a quadratic polynomial in either b
or 7. Hence horizontal or vertical lines will intersect G at most in two points.

For given 7, the identity ¢g(b,7) = 0 has solutions

b (r) = ct/m(7)

e m(7) == = ((2k — 1)7% = 2kj1 + 2¢) (k7 — &%),
T —

which are real valued as long as the discriminant 7(7) is non-negative. Thus
the geometry of the nullcline G will depend on the number and location of
zeros 7; of the polynomial 7(7). Since, the leading coefficient of 7(7) is
negative and m(d*/k) = ¢? is positive, one has to distinguish three cases:

d2

(C1) there exists one zero 77 > T,

C2) there exist three zeros 7% > © > 7% > 7
1 k 2 3

d2

(C3) there exist three zeros 71 > 75 > 75 > .
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The set G consists in cases (C1) and (C2) of two connected components, G4
and Go, and in case (C3) of three connected components, Gy, G5 and Gs.
The components G; are labeled due to their order of appearance with respect
to decreasing 7. In all three cases the connected components are separated

by either vertical or horizontal strips, see Figure 3.1.

(C1) (C2) (C3) 1
G, G, O G,
; <\\ \//\ (=
T j ~ G T~ D \

] G,
b

Figure 3.1: [FS95, Figure 1] Nullclines g(b, 7) = 0 in the cases (C1), (C2) and
(C3).

Freistiihler and Szmolyan continue to discuss the relative position of the
nullclines G and H.

Lemma 3.3. ( [FS95, Lemma 4.5])

In case (C1) the nullclines H~ and H™ both intersect G1, whereas in case
(C2) HT intersects Gy twice and H~ intersects G and Go each once. In
case (C3) there are two possible scenarios: Either H~ and H™ both intersect
Gy or both intersect G,.

Lemma 3.4. ( [FS595, Lemma 4.6])

The set G N ([by,bs] x R) consists of two smooth graphs G* of functions
g% ¢ [b1,ba] — R, distinguished by g~ (b) < gt (b) for all b € [by,bs]. wug
belongs to G, us belongs to G—. wu; and uy each lie on G or G~ or both.
(At least) in (b1, bs), both functions g~ and g~ are smooth, and are stationary

i at most one point.

By the results of Lemma 3.4, the vector field of system ¥ looks generically
like in Figure 3.2.
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Figure 3.2: [FS95, Figure 2| Phase Portrait of ¥ in the domain (b2, b1] % [0, 7]
Lemma 3.5. ( [FS95, Lemma 4.7])

The stationary points of system 5 have the following properties:

1. wug,uy,us,us are hyperbolic fired points for the flow of 52, Ug 1S an

unstable node, us is a stable node, uq and uy are saddles.

2. Interpreted, via the suspension

w-w, (1)~ ("), (35

as points in R3, u; for i = 0,1,2,3 are hyperbolic fived points in .
As such the u; have stable (unstable) manifolds of dimension i (3 —1i)
fori=20,1,2,3.

Freistithler and Szmolyan established the following heteroclinic bifurca-

. . =2
tion scenario for system .
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Lemma 3.6. ( [FS95, Lemma 5.1])

1.

5.

With a certain fized pg, the two dimensional system 227 depending on

v, A > 0, has heteroclinic orbits of the following types and no others:

|14
(a) ug — u1, ug — ug, Ug — U, Uy — U3, Uy — ug, for X =~ Mos
v __
(b) uo — w1, uy — ug, Uy — uz, for ¥ = po,

(¢) up — uy, ug — us, for ¥ < pig.

At the bifurcation ratio ¥ = po, the unstable manifold of {u;} x (0, 00)?
and the stable manifold of {us} x (0,00)?, with respect to the extension

of 5’ by the equations j—g(f) =0, %(5) = 0, intersect transversally.

All orbits of types ug — u1, ug — Uz, U — U, U] — U3, Uy — U3
are unique, while the orbits of type uy — usg occur in a one-parameter
family. In all cases there exist also orbits with a-limit uy (w-limit usz)

which have no w-limit (a-limit) in the physical range UZ.

The fixed points which lie in the physical range are ordered according

to increasing values of the entropy S, i.e., i < j implies S(u;) < S(u;).

The fized points ui, uy and us always lie in the physical range U2,

The heteroclinic orbits which are described in the previous lemma become

solutions of system 3% via the suspension (3.5). The authors note that the

stationary point ug may not be physically admissible, depending on its (po-

tentially negative) temperature 6 (boﬁ,m). Hence they prove two distinct

scenarios:

Lemma 3.7. ( [FS95, Lemma 5.2/)

1.

Assume that X2 has four fized points and that an orbit uy — us exists
in E. Then unique orbits ug — uy, us — us, a pair of orbits u; — us,
and one-parameter families of orbits uy — us, u1 — us exist for X°.
The union of these orbits and the fized points is the boundary of a

two-parameter family of orbits ug — usz.
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2. Assume that X3 has the three fized points u,, us, and us and that an
orbit uy — wus exists. Then, a unique orbit us — us, a pair of orbits

uy — Uy, and a one-parameter family of orbits u; — us exist for ¥3.

Remark 3.1. Freistiihler and Rohde investigated the parameter space in the
MHD equations and locate the subset of parameters such that either 3 or
4 physically admissible stationary points of the original profile equation ex-
ist [FRO3)].

In a remark, Freistiihler and Szmolyan note that one can deduce the
result of Lemma 5.2 in [FS95] from the A-Lemma, see [GH83|, and the con-
dition that the invariant manifolds W*(u;) and W#(uy) in system 33 are
in sufficiently general position at the bifurcation value py: By the reflec-
tional symmetry of system (3.1), the intersection of the invariant manifolds
W (uy) and W#(usq) is non-transversal at the parameter value po. However,
it remained an open problem to prove the (expected) quadratic contact of
the invariant manifolds W*(u;) and W*(us).

We will use Melnikov theory to study this heteroclinic bifurcation in more
detail. By introducing the new time scale { = vt in the equations (3.2)—(3.4),

we obtain the system

%:@-d?)b—c, \
CZ* = (1 = d*)b., (3.6)
(gl =i+ (=5 - SIbIE - tere) ).

where the dissipation ratio y = ¥ is the parameter of interest and all others

are constant. Moreover, we will write the profile equation (3.6) as

du

—(t) = F'(u(t

M 1) = Pu). ),
where u(t) := (b, by, 7)'(t) and F(u,u) := (Fy, Fy, F3)'(u, 1) denote the solu-
tion and the right hand side of system (3.6), respectively. In order to apply
the analysis of Chapter 2, we will verify the conditions (B1)-(B4):
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Lemma 3.8. Suppose pg is the parameter value from Lemma 3.6

1. For pn = o, there exists a viscous profile u(t) that connects the endstates

uy with us. Moreover, the viscous profile has the form
u(t) = (b,0,7)"(t) (3.7)

for some scalar functions b,7 : R — R, which are strict monotonically

decreasing with respect to t.
2. The viscous profile u(t) is associated to a Lazx 2-shock.

3. The viscous profile u(t) exists by a non-transversal intersection of the
invariant manifolds W*(uy) and W*(us). In particular, for any point
p on the orbit {u(t) |t € R} the identity

T,W*(uy) = T,W*(ug) = span {%(t}, v(t)} (3.8)

holds, where the derivative of the viscous profile %(t) and the function

0

u(t) = [ exp ([ (7(s) — d?)ds) (3.9)
0

are two linearly independent, bounded solutions of the linearized profile

equation
_dF

~du

94y

i (@(t), no)p(t)- (3.10)

Proof. 1. By the result of Lemma 3.6, such a viscous profile u(¢) exists and
lies in the plane E. Thus the viscous profile has the form (3.7) for some scalar
functions b,7 : R — R. In the proof of Lemma 5.1 in [FS95] it is observed
that the functions g(b, 7) and h(b, 7), whence Fy(b,0,7) and F3(b,0,7), are
negative along the viscous profile u(t) and vanish only in the stationary
points u; and u,. Hence the scalar functions b(t) and 7(t) decrease strict

monotonically with respect to ¢.
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2. By the results of Lemma 3.5, the hyperbolic stationary points u; and
ug are saddle points whose associated eigenvalues satisfy (with appropriate
numbering) the inequalities A\j(ug, po) < 0 < Ao(ug, po) < Ag(u, po) and
A1 (uz, o) < Aa(ug, to) < 0 < Ag(uz, o), respectively.

3. The intersection of the invariant manifolds W*(u;) and W#*(us) is non-
transversal at the parameter value po, due to the reflectional symmetry of

system (3.1). Moreover, the second ODE of the linearized profile equation,

d _

% = (T — d*)p1 + bps,

d

=&

dpg . 3F3 _ (9F3 _

dt - 81) (%/LO)Pl + 87_ (u7u0)p37

is independent. Hence the function (3.9) and the derivative of the viscous
profile are solutions of the linearized profile equation and linearly indepen-
dent. In addition, the viscous profile u(t) tends to endstates, which satisfy
by the results of Lemma 3.2 the inequalities

lim 7(t) =7 >d*> and lim 7(t) =7 < d°.

t——00 t—+o00

Thus the integral
t
/ (7(s) — d*)ds — —o0
0

diverges in both limits t — +o00 to —oo and we conclude that v(t) is globally
bounded on R. Since the invariant manifolds W*"(u;) and W?*(us) are two-
dimensional, we obtain that for any point p on the orbit {u(t)|t € R} the
identity (3.8) holds. O

Thus the conditions (B1)-(B4) of Chapter 2 hold and we conclude from
Theorem 2.1 the following result.

Lemma 3.9. The Melnikov function M : R x R — R, (v, pu) — M(v, p), is
well-defined and smooth in a small neighborhood of the point (v, 1) = (0, o).



CHAPTER 3. APPLICATIONS 108

Moreover, it satisfies the identities

M
M(0,p0) =0 and %—V(O,MO) = 0.

We have to compute additional derivatives of the Melnikov function.

Lemma 3.10. The Melnikov function satisfies

S0 = [ w0, @ (310

a(t) == exp ( - /0 *trace (%(u(s), Mo)) ds)

and v(t) = (0,w(t),0)" from Lemma 3.8. Moreover, the derivative of the
Melnikov function (3.11) is non-zero at the point (0, pi).

with functions

Proof. By the results of Lemma A.9, the Melnikov function satisfies

oM oo oF
S0, = / <) (). ) > s

where 1(s) is the unique (up to a multiplicative factor) bounded solution
of the adjoint differential equation of (3.10). We derive from the results of

Theorem 2.4 and Lemma 3.8 the expression

b(t) = exp (- /Ot trace (%(u(s),u@)ds) <%(t) X U(t))

In addition, the derivative of the vector field F'(u, u) with respect to p satisfies

0
2 (). o) = 0
O8% (a(t), 1)
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Hence, the first order derivative of the Melnikov function is obtained as

+o0
S0 = [ < v, 5 ats) ) > ds =

ol o 0
oo ou OF
= /OO a(t) < (a X v) (t),a(u(t),uo) > dt
+o0 Fl (a7 HJO) 0
= / a(t) det 0 w 0 (t)dt
o Fs(t, po) 0 %—Iff(uﬁﬁo)

where a(t) := exp ( — fot trace (%(ﬂ(s), uo))ds). The third equality holds by

the results of Lemma 2.3. The integrand

alt)ult) Au(a(e) o) 5 (0(0). o)

is the product of scalar and continuous functions, which do not change sign
by the equation %—%(a(t), Ho) = % and the results of Lemma 3.8. Thus the
integrand has a common sign and is integrable, which implies that %—]\5(0, Lo)

does not vanish. OJ

In addition, we need to compute the second order derivative of the Mel-

nikov function with respect to v.
Lemma 3.11. The Melnikov function satisfies

02 F,
02

8me—[wwwwﬂwmm (a(t), wo)t.

2
v o

with functions

a(t) = exp ( _ /0 * irace (Z—Z(a(s), uo)) ds)

and v(t) = (0,w(t),0)" from Lemma 8.8. Each of the following conditions

implies that %271\2/[(0, o) 18 non-zero:
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1. The function (k7(t) — d?) has a common sign for all t € R.
2. The expression ke — d? is positive.

Proof. By the results of Lemma A.10, the Melnikov function satisfies

0*M oo O*F

T O = [ <00, G lals) ) w(s),v(s) > ds
where 1 (s) is the unique (up to a multiplicative factor) bounded solution
of the adjoint differential equation of (3.10). We derive from the results of

Theorem 2.4 and Lemma 3.8 the expression

In addition, the special form of the solution v(t) = (0,w(t),0)* implies that

ottt ) o0, 000) = (0.0, 52 a0, )

where k is bigger than one and 7(¢) is positive for all ¢ € R. We use these

expressions to obtain

66)27]\;/(0’“()) :/_ < b(s), 0827};(5(5),#0)(@(5),@(5)) > ds

[e.9]

_ /joo alt) < (% x 0,%@,%)(@,@) > (1)dt

400 Fl(anu()) 0 0
_ / aydet| 0w 0 ()t

FS(TIHIMO) 0 %ngg)(ﬁ7u0)w2

+o00 2
= [ 0w OF ) G ) 0

o0 *
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where the third equality holds by the results of Lemma 2.3. The integrand

0?Fy

a(t)w(t) Fy(a(t), “°>W

(@(t), o)

is the product of scalar factors. The functions a(t), w(t) and Fi(u(t), uo) do

not change sign by the results of Lemma 3.8. Additionally, the continuous

function 6;? (a(t), po) = k'?k;dQ (t) does not vanish by the first assumption.
Thus the integrand has a common sign and is integrable, which implies that
%(0, fo) is non-zero.

By the results of Lemma 3.8, the coordinate functions of the viscous
profile @(t) = (b,0,7)!(t) decrease strict monotonically to (bs,0,7)t. Thus
the second assumption, k7 —d? > 0, implies that for all ¢ € R the inequality
kT(t)—d? > 0 holds and we obtain the statement from the previous result. [

Indeed we can identify a parameter regime such that a saddle-node bifur-

cation of the type studied in Chapter 2 occurs.

Theorem 3.1. In case (C3) where H™ and H" both intersect Gy a saddle-

node bifurcation will occur.

Proof. In case (C3), all stationary points are elements of the intersection
G1 N H and the component G lies entirely above the line 7 = d—]:. Thus the
7 coordinates of all four stationary points are greater than %, which implies
by Lemma 3.11 that the second order derivative of the Melnikov function
%(0, fo) is not zero. We conclude from the Lemmata 3.9 and 3.10 that the
assumptions of Theorem 2.3 hold, which implies the occurrence of a saddle-

node bifurcation. O

Hence, the results from Chapter 2 on the spectral stability of the involved

viscous profiles are applicable.

Lemma 3.12. Any viscous profile u(t, pu) that connects the endstates uy with
ug 15 associated to a Lar 2-shock. Moreover, the Liu-Majda determinant,

det (rl(ul, 1), ug — uy, r3(us, ,u)), vanishes.
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Proof. All stationary points u; for j =0,...,3 of the vector field F'(u, p)
lie in the plane E and are independent of the parameter p. By the results
of Lemma 3.5, the related eigenvalues of the vector field satisfy (with ap-
propriate numbering) the inequalities A;(u1, 1) < 0 < Ag(ug, ) < Az(ug, p)
and Aj(ug, p) < Ao(ug, ) < 0 < As(ug,p). Thus any viscous profile that
connects the endstates u; with us is associated to a Lax 2-shock. Moreover,
the points u; and uy are saddle points of the system (3.6) restricted to the
plane E. Hence, the vectors r(uy, i), us — uy and rz(ug, 1) are confined to

the plane E and the Liu-Majda determinant vanishes. O]

We conclude from Theorem 1.11 and Lemma 3.12 that for any viscous
shock wave whose viscous profile connects the endstates u; with uy the related
linear operator has an effective eigenvalue zero with multiplicity at least
two. If, in addition, the parameter values are specified, it is possible to
determine the type (B7a)-(B7c) of the viscous profile and to apply the results
of Subsection 2.3.3 on the spectral stability of the associated viscous shock
waves. However, we are not able to give a general classification for all viscous
profiles.

In the following, we will consider a model problem which resembles the
case (C3) and exhibits, besides the reflectional invariance, an additional sym-
metry. This will allow to verify the occurrence of a saddle-node bifurcation

and to obtain explicit expressions for the profiles and the bifurcation value.

3.2 A model problem

We consider the model problem, due to Freistiihler,

0b; 0 9%b; )

e LY = 2

0bs 0 0%b,

a o A 312
ov 1 > 4o g 0%

o Togp (v Hhith) =uss, |
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where by, by and v are functions of (z,t) € R x Ry and pu is a small positive
parameter. In reference to the physical motivation (b, bs)? corresponds to a
transversal magnetic field, v to a specific volume and p to a ratio of dissipa-
tion constants. The system (3.12) is a system of viscous conservation laws of

the form
ou 0 ou

=+ %f(u) = (B%), (3.13)

where the functions are given by
u:RxRy — R (2,t) — u(z,t) := (b, by, v) (0, 1)

and
f : RS - R?’v (b17 b?a U>t = (bl’U7 bZUa (b% + bg + UQ)/Q)t‘

The introduction of a regular viscosity matrix B := diag(1, 1, 1) does not
affect the previous analysis. We will investigate the existence and stability
of viscous shock waves of (3.12), whose associated viscous profile, u(£) with

¢ := x—st, approaches asymptotic endstates. The associated profile equation

is given by

d

d—z:B_l(f(u)—s-u—c) =: F(u,p) (3.14)
where the constant vector ¢ satisfies ¢ = f(u™) — su™ = f(u™) — sut. We

assume without loss of generality that the shock speed s is zero, otherwise we
switch to a moving coordinate frame (z,t) — (§ = z — st,t). Additionally,
we choose an appropriate basis of the state space such that the relative flux
satisfies f(u™) = f(u™) = (0,01, a2)". Thus the profile equation (3.14) is

obtained as

db )

d_g - Ubla

db

—dg = Ubg — (q, (315)
dv 1

’ud_f — 5(2}2 + b% -+ bg) — Q9. )
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The profile equation exhibits two symmetries
Lemma 3.13. The profile equation (3.15) is invariant with respect to

1. reflections about the plane E = {(by, by, v)t € R?| b = 0}:
by — —by, by by, v 0. (3.16)
2. time reversal and a reflection of (by,v)" at the origin:

§— =& bi—=bi, by— —by, v —v. (3.17)

Lemma 3.14. Suppose p is positive and the parameters aq and as satisfy

the inequality 0 < oy < as.

1. Then the vector field F(u,u) of the profile equation (3.15) has four
hyperbolic fixed points

0 0 0 0
=106, mi= 6|, u=|-5|, u=|-05
B Bo —Bo — B
(3.18)
where the positive constants By and (3, are defined as
Bo = L(\/042 + o — oy — 041) (3.19)
V2
and
61 = L(\/OCQ—FCU—F\/OQ—CU). (320)
V2

2. The Jacobian matriz of the vector field F(u,pu) at a stationary point
uj = (0,bg,v) for j =0,...,3 satisfies

dF

%(uj,,u) =10 v b (3.21)
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and has real eigenvalues

ni =3 ((1+2)e - (14 1) v 2 (1-2)) o2

Aol 1) = v, (3.23)

o =3((1 2o (1 2) e 2(5-) ). o

with associated eigenvectors

0
™ (Uj, ,u) = Z)Q N (325)
)\1 (uja :u) -V
ra(uj, 1) = 10, (3.26)
0
7“3(’&]‘, /L) = bQ . (327)
Az, p) — v

In addition, the eigenvalues (3.22)- (3.24) are real valued and satisfy
for all positive p the order

A (ug, 1) < Aa(ugs ) < As(ug, p).

3. The stationary point ug s a source, uy and us are saddle points, and
us 18 a sink. The number of positive and negative eigenvalues of the
Jacobian %(uj, w) for 5 =0,...,3 are (3 —j) and j, respectively.

Remark 3.2. If the parameters a; and ay satisfy 0 < —a; < g, then a

similar result holds.
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Proof. A stationary point u = (by, by, v)" of the vector field F'(u, u) of (3.15)
has to satisfy the identity

Ubl = 0,
UbQ = Qq,

v? + b2 + b3 = 20,

which is equivalent to

by =0, (3.28)
(by +v)?* = 2(ap + ), (3.29)
(by —v)? = 2(ay — ay). (3.30)

By the assumption 0 < oy < «g, the right hand sides of the equations (3.29)

and (3.30) are positive. We take the square root and solve the linear system

b2 +v = j:\/i\/ag + o,
bQ — UV = :i:\/ﬁ\/OéQ — (1.

Thus we obtain four stationary points

by 0
by | = j:\/ii(\/()@ + a1 Fas — al) , (3.31)
v :i:\/ii(\/ag + a1ty — )

which lie in the plane E. We define the constants Gy and (; like in (3.19)
and (3.20), respectively, and obtain the stationary points (3.31) in the pro-
posed form (3.18). Moreover, the assumption 0 < a; < ayp implies that the

constants 5y and (1 are real and positive.

The bi-coordinate of all stationary points is identically zero. Hence the
expression for the Jacobian matrix, the eigenvalues and the eigenvectors fol-

low from a direct computation. The eigenvalues are real, since for a positive
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constant p the discriminant,

1\? 4 1\° 4
<1—|——) 02+—(b§—v2) = <1——) v? 4 —b3,
Iz f

f 1

is non-negative. The order of the eigenvalues is proved in two steps: First,

we show that for positive p the inequality Aj(uj, 1) < Aa(uj, ) holds, that

(0 ) (o)) =

This is equivalent to

1\*, 4 1
(Dot (- D)
H H H

which holds since v- and by-coordinate of a stationary point u; are non-zero.

means

In the same way, for positive p the inequality Aa(u;, 1) < As(uj, @) is proved.

The assumption 0 < a1 < ap implies that 0 < Gy < ;. Thus we obtain
from the definition of the eigenvalues (3.22)- (3.23) the classification of the
stationary points (3.18). O

Remark 3.3. The assumption 0 < a7 < ay implies that the constants (3
and 3 in Lemma 3.14 are real and positive. Moreover, the dependence on

the parameters a; and s is invertible and we obtain

_ B+ s

B and a1 = 6061. (332)

%)

Thus the profile equation can be written as

db )

d_fl Ubl?

db

d_g = vby — Bofi, (3'33)
v 1,, B2+ B2
o b2 b2 o 1 )

Md{ 2(” + b7 + b3) 5 )
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Remark 3.4. In Lemma 3.13, we recorded two symmetries of the profile equa-
tion. Due to the second one, the stationary point u; = (0, 31, 5p)" is mapped
onto us = (0, —B1, —Bp)" and the identities

)\1(U17N) = —/\3(U2,N)7 7‘1(U1,/~b) = 7"3(“27,@7
Ao (1, ) = —Ao(ug, 1), ro(ur, ) = ra(us, 1),
/\S(Ulnu) = _/\I(UQHU): T3(u17ru’) = 7“1(“27M)7

hold. In the same way, ug is associated to ugs.
We study the existence of viscous profiles in the profile equation (3.33).

Theorem 3.2. Suppose the inequalities 0 < By < (31 hold. Then the profile
equation (3.33) has viscous profiles of the following kind:

1. For non-negative p, there exist a transversal heteroclinic orbit con-
necting ug with wy, and a transversal heteroclinic orbit connecting us

with us.

2. For all 0 < p < g := 5322557
0

there exist viscous profiles of the form

LV B3+51 2083

cosh(Bo€)

al?(gv :u) =\ -5 tanh(ﬁof’) : (334)
— o tanh(fof)

The associated heteroclinic orbits connect w; with us.

2 2
3. For0<pu<p = 602;?1,

there exist viscous profiles of the form

+V B3+57 —2uB7

cosh(B1€)

o3 (&, 1) = | =y tanh(B€) | - (335)
— By tanh(,€)

The associated heteroclinic orbits connect ug with us and exist by a

transversal intersection of the invariant manifolds W (ug) and W*(us).
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Proof. 1. We will show that the proposed heteroclinic orbits exist and lie
entirely in the plane F = {(by,by,v)" € R?|b; = 0}: An associated solution
has a b;-coordinate which vanishes identically and the profile equation (3.33)

reduces to the system

db
d_; = vby — 50517
s (3.36)
d_vzl(UZ_i_bQ)_ﬁO—i_ﬁl
Hae =2 2 2

The stationary points Py = (Bo, £1) and P = (01, Bo) are a source and
a saddle point of the system (3.36), respectively. The nullclines of (3.36)
describe a hyperbola, vby = (y3;, and a circle, v? + b3 = (32 + (2, in the
plane F, see Figure 3.3.

v
t R

Figure 3.3: The stationary points are the intersection points of the nullclines.

We consider the domain

() ex

vby > BoB, v +b5 < B85+ 5%}7 (3.37)
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which is negatively invariant with respect to the flow (3.36), see Figure 3.4.

Moreover, the stable manifold W*(u;) points into the domain D as long as p

Figure 3.4: The domain D is negatively invariant.

is positive. Since wug is a source, there exists a transversal heteroclinic orbit
connecting uy with ;.

In case p = 0, the profile equation (3.36) reduces to the system

db
d_; = vby — ﬁoﬁh
1 52 n 52 (3.38)
025(02+b%)— 02 1.

Thus solutions of the reduced system (3.38) are restricted to the circle, v +
by = (B2 + 7. The stationary point ug is a source and u; is a sink of the
reduced system (3.38) and lie on the solution manifold. Hence, the arc of
the circle connecting uy with u; is a heteroclinic orbit, since there are no
additional stationary points along this arc. Again, the heteroclinic orbit
exists by a transversal intersection of the invariant manifolds W*(ug) and

W#(uy), since ug is a source of the original profile equation (3.33).
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By the symmetry of the profile equation (3.36), see Lemma 3.13, a viscous
profile @(§) = (b1, b2, v)"(§) induces the existence of another solution of the
form a(§) = (b1, —be, —v)"(—&). Moreover, the symmetry implies that the
identities us = —ug and uy = —u; hold. Thus the existence of a heteroclinic
orbit between 1y and u; implies the existence of a heteroclinic orbit between

uo and w3, which is transversal since ug is a sink.

2. Since the stationary points u; = (0, 81, 8o)" and uy = (0, =31, — )" lie

on the straight line span{(0, 31, 5o)'}, we make an ansatz for a viscous profile

of the form
by 0
al&p) =10 En+ |6 | wE n (3.39)
0 Bo

with functions by, w : R x Ry — R. Such a solution has to satisfy the profile

equation (3.33), which becomes the overdetermined system

db,

d_§ = 50()111}, (340)

ﬁlz—? = ﬁoﬁl(wQ - 1), (3.41)
2 2 2

MOC;—? _ w(uﬂ 1)+ % (3.42)

Specifically we obtain from the equations (3.41) and (3.42) an implicit defi-

nition of the solution manifold

_ (B
0_(02 1

— uﬁ@) (w? —1) + % (3.43)

The defining equation (3.43) of the solution manifold is consistent with the
differential equations (3.40) and (3.41), if the derivative of the right hand

side of (3.43),
i((ﬁﬂﬁf _ﬂﬁg) (w2_1)_|_b_%) (3.44)

dé 2 2

vanishes identically for all £ € R. This is true, since the expression (3.44)
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simplifies to

2 2 2
o (B2 -8 - 1)+ ).

with (3.40) and (3.41), which vanishes identically by equation (3.43). Since

(1 is non-zero, the differential equation (3.41) has a solution

w(&, p) = —tanh(Go€ + C)

with a constant C' € R. We use the identity (3.43) to obtain the expression

b(€, 1) = i\/(ﬁg + 87 = 2p83) (1 — w2(&, ),

which is real-valued as long as

(B3 + 87 — 2u35) (1 — w? (&, )

is non-negative. Since the expression (1 — w?(&, 1)) = (1 — tanh®(5y€)) is

non-negative for all £ € R, viscous profiles of the proposed form (3.34) will
B3+67

262
asymptotic behavior lime_, o w(, 1) = F1 and the associated heteroclinic

exist as long as 0 < p < Moreover, the function w(&, ) has the

orbits connect the endstates u; with us.

3. In the same way, we prove the existence of heteroclinic orbits connecting
the endstates ug = (0, Bo, £1)" with uz = (0, —5y, —1)". Since the endstates
lie on the straight line span{(0, 5y, 1)}, we make the ansatz

by 0
(€ p) = 0| (&u)+ | Bo | w&, p)
0 61

2 2
with scalar functions b, w : R x R, — R. Thus we obtain for 0 < p < %

1
the existence of viscous profiles of the proposed form (3.35). In addition, the
associated heteroclinic orbits are transversal, since ug is a source and ug is a

sink. O



CHAPTER 3. APPLICATIONS 123

Remark 3.5. The assumption 0 < By < (; implies the inequality

_ BB _ BB
M= o 20

Consequently, for all 0 < p < 4, there exist viscous profiles of the form (3.34)
and (3.35) which connect u; with us and ug with ug, respectively. In the range
w1 < p < po only the viscous profiles from u; to us remain, which cease to

exist for g > .

We will investigate the obtained families of viscous profiles (3.34), which
satisfies the conditions (B1)-(B3) of the previous chapter. In particular, the

viscous profiles (3.34) are associated to a Lax 2-shock.

Lemma 3.15. The family of viscous profiles u2(&, ) in Theorem 3.2, which
connect the stationary points uy and us, exhibit a saddle-node bifurcation at

2 2
the parameter value o = %
0

Proof. In order to prove the occurrence of a saddle-node bifurcation, we will
verify that the associated heteroclinic orbit exists for y© = pg by a non-
transversal intersection of the invariant manifolds W*(u;) and W#*(uz). This
will allow us to construct the Melnikov function and to check the necessary
conditions (B5) on its derivatives.

By the result of Lemma 3.14, the stationary points u; and wusy are hyp-
erbolic and have a two-dimensional unstable manifold W*"(u;) and a two-
dimensional stable manifold W#*(us), respectively. In accordance with the

result of Theorem 2.3, we define a new parameter v via

2 _BoH B
263

pu(v) o= po — v

and obtain a smooth parameterization of the family of viscous profiles (3.34):

V2Bov
cosh(Bo§)

ti12(&,v) :== | — B tanh(B€) | - (3.45)
— o tanh(5,€)
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Moreover, the partial derivatives of u12(&,v) at (,0),

0

8@12 . 50 aalQ o \/550
D¢ (&@—M —Gi [ and —7 (fao)—m 0],
—Po
are solutions of the linearized profile equation
d dF
G0 = (1(6,0), pop(©) (3.46)

and decay in both limits & — 400. Hence, the linearly independent functions

615%2 (£,0) and 2412(¢, 0) span a two-dimensional intersection of tangent spaces

associated to the invariant manifolds W*(u,) and W#(uy). Consequently, the

viscous profile is non-transversal and the assumption (B4) holds with k£ =1
and n = 3. By the result of Theorem 2.1, we are able to construct a Melnikov

function M (v, u) which satisfies
oM
M(0, o) =0 and ——(0,po) =0.
ov
Moreover, Theorem 2.4 implies that

2 0

5357
D(€) == V265 (cosh(B€)) 071 | =, | (3.47)
By

is the unique (up to a multiplicative factor) bounded solution of the adjoint
differential equation of (3.46). Thus the derivatives of the Melnikov function
are determined by the results of Lemmata A.9 and A.10 as

oM oo oF
W(O»MO) = /_OO < ?ﬂ(f),a—u(ﬂlz(fao),uo) > dg

+00 M,
— 25, / (cosh(fag)) 771 dg (348)

o -
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and

o0

0*M oo 0*F 0 0
W(OMU’O) :/ < w(f)am(ﬂm,m) (% U12>(§ 0) > d¢

pE 5%
z—\/_ﬁoﬁl / (cosh(Be8)) 7 de, (349)

s-81
respectively. The positive-valued function (cosh(ﬁgé)) #5+01 " can be shown

to be integrable, since the exponent is negative by the assumption 0 < Gy <
(1. Thus the integral

+o0 B2 —5% 5
| (comh(a)) 4
is definite and does not vanish, which implies that (3.48) and (3.49) are also
non-zero. Hence, the assumptions of Theorem 2.3 hold and we conclude the
occurrence of a saddle-node bifurcation of viscous profiles (3.34) with respect
to . O

Remark 3.6. Heteroclinic orbits from uy to uz will persist for all parameter
values p close to p1, since they are transversal. The special family of solutions
in Theorem 3.2 cease to exist for p > pq, but other solutions nearby will

connect the two endstates.

3.2.1 Stability of the viscous shock waves

The family of viscous profiles in Theorem 3.2, which connect the endstates wuy
with ug, have a smooth parameterization u2(&, u(v)) with p(v) := go—r>2 In
the proof of Lemma 3.15, we verified for these viscous profiles the conditions
(B1)-(B5). Therefore, we can use the Evans function F(k,v) in Theorem 2.5

to locate the (effective) eigenvalues of the associated linear operator.

Lemma 3.16. The viscous profiles u1o(&, u(v)) with p(v) == puy — v* in

Theorem 3.2 are associated to a Lax 2-shock. Moreover, the associated Liu-
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Majda determinant,

det(ry (ur, p(v)), ug — uy, r3(ug, p(v))), (3.50)

vanishes, since the constant vectors r1(uy, p(v)) and ro(ug, u(v)) are linearly

dependent.

Proof. Due to the nature of the saddle points u; and us, see Lemma 3.14, the
viscous profiles are associated to a Lax 2-shock and the Liu-Majda determi-
nant equals (3.50). However, by the results of Lemma 3.14 and Remark 3.4,

the constant vectors ri(uq, 1) and r3(ug, 1) are linearly dependent. O

Since the determinant (3.50) vanishes, the Liu-Majda condition (B6) fails.

In particular, the case (B7b) occurs and we prove the following result.

Theorem 3.3. Consider the viscous shock waves whose viscous profiles are
given by t2(&, 1w(v)) with p(v) == po — v* in Theorem 3.2. For sufficiently
small v, the associated linear operator has an effective eigenvalue zero of
multiplicity two, which exceeds the dimension (one) of the manifold of hete-

roclinic orbits connecting wy with uy for fized p(v).

Proof. By the result of Theorem 1.9, we obtain an analytic continuation of

the Evans function,
_ forrf 7rs of of as
E(k,v)=det (U{,U;,U;,51,85;,5;)(0,r,v), (3.51)

into a small neighborhood of the origin. The result of Lemma 3.16 implies
that the case (B7b) occurs. Thus the first derivative of the Evans function,
%—5(0, v), vanishes for all v € R. By the result of Theorem 2.9, the second

order derivative of the Evans function with respect to x satisfies

9L ,0) = / < (), ralun, o) > de - det([al, (0], (s, o)) (352)

2
0K ~
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with functions

2 2 O
83 —63
(&) : = V263 (cosh(Bo)) B | =5y |
b
and constant vectors
0
[’I_L] = U9y — U1 = —251
—20
(o] = / O )i Wf
U] = S z,0)dxr =
and
0
r3(ug, plo) = —r1(u1, fro) = —b
2 B2 5o
Bi+55
Thus the expression (3.52) simplifies to
0°E L L[ BH3B\? [t s
W(O, O) = 475150 (W) / (COSh(ﬁog)) Bo P df (353)
0 1 —00

By the assumption 0 < Gy < 1, the constant factors do not vanish and the

2_ 2 . . . . .
exponent g% +§§ is negative. Thus the positive-valued function
0 1

B3 —52

(cosh(5o€)) o+t

can be shown to be integrable and the integral

+00 By —57
/ (cosh(Bo€)) %71 d¢

—00
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is definite and does not vanish. Consequently, the second order derivative
of the Evans function (3.53) is non-zero at the origin. The smoothness of
the Evans function implies that also 2275(0, v) does not vanish for sufficiently
small v € R. Hence, for all sufficiently small v, the linear operator associ-
ated to viscous shock waves with viscous profile u12(&, 11(v)) has an effective
eigenvalue zero of multiplicity two. For each p(v), the viscous shock wave
with viscous profile @5(€, u(v)) is not spectrally stable, since the manifold

of heteroclinic orbits connecting u; with uy is only one-dimensional. O

The model problem resembles the case (C3) in magnetohydrodynamics,
where all stationary points lie on the closed nullcline G;. Due to the addi-
tional symmetry, we are able to obtain the family of viscous profile involved
in the saddle-node bifurcation and classify the failure of the Liu-Majda con-
dition (B7b). Thus we obtain the general result of Theorem 3.3 on spectral

stability of the involved viscous profiles.



Appendix A

Melnikov theory

We will use Melnikov theory to study the persistence of heteroclinic orbits
in a parameter dependent family of autonomous differential equations. In
particular, we obtain a system of bifurcation equations for the parameters,
whose solution set ensures the existence of heteroclinic orbits that are close
to the original one. In this way, we observe that transversal heteroclinic or-
bits persist for small variations of the parameters. Whereas, non-transversal
heteroclinic orbits persist only for a proper subset of a small neighborhood
of the original parameters. In this account on Melnikov theory we follow the
references [Van92, Kok88, Wig03].

A.1 Persistence of heteroclinic orbits

We consider a family of autonomous differential equations

du

%(tnu) = F(u(t’ /L)a :U) (Al)

with ¢ € R, state variable u € R", parameter ¢ € R™ and a smooth function

F:R"x R™ — R".

Definition A.1l. The system (A.1) has for some pg a heteroclinic orbit ~, if
there exist two distinct hyperbolic fixed points u™ of the vector field F(u, jq)

and a solution u(t) of (A.1) that satisfies lim; 4. @(t) = u™.

129
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In other words, a heteroclinic orbit exists if the intersection of the stable
manifold W*(u™) and the unstable manifold W*(u ™) is not empty.

The hyperbolicity of the fixed points u* implies by the implicit function
theorem the existence of a small neighborhood of py, B(1), and functions
u® : B(pg) — R, u +— u*(u), such that u™(u) are hyperbolic fixed points
for F(u, ) and u* (o) = u*. The heteroclinic orbit v(jug) persists for p, if
a heteroclinic orbit (u) exists that connects the fixed points u*(u) and is

close to the original orbit v(p). We make the following assumptions:

(M1) For u = pup, a heteroclinic orbit 7 in the profile equation (A.1) exists

that connects two distinct hyperbolic fixed points u* of the vector field
F<u7 MO)

In order to study the persistence of the heteroclinic orbit v in (M1), we
fix a solution u(t) of (A.1), that parametrizes the orbit v = {u(t) | t € R}.
We are interested in solutions wu(t, ) of (A.1) whose orbits remain close to ~y

and consider the ansatz
u(t, p) == u(t) + 2(t). (A.2)

Hence, the auxiliary function z : R — R" is globally bounded and its norm
12|00 := supser ||2(¢)|| is small. We insert the ansatz into (A.1) and obtain a

differential equation for the auxiliary function as

% (1) = L a0) o) (0) + (e, 2(0). 1) (A3)

The smooth inhomogeneity is given by

dF

9(t, 2, 1) = F(ult) + 2, 1) = F(a(t), po) — ——(a(t), po)2 (A.4)
and satisfies the identities
n ag nxn
g(t,0,0) =0 € R" and g(t,o,uo) =0¢eR"™". (A.5)

We note that the existence of a pair (z,u) is equivalent to the existence
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of a heteroclinic orbit with a(t, u) := a(t) + z(t) for p close to py. In the
following we will draw upon properties of the homogeneous part of (A.3),
which represents a linear system of ODEs. We recall for general linear sys-
tems with associated evolution operator ¢(¢,s) the definition of exponential

dichotomies.

Definition A.2. Let / = R™,R* or R. A linear system of ODEs has an
exponential dichotomy on I if constants K > 1 and x > 0 exist as well as
a family of projections P(t), defined and continuous for all ¢ € I, such that
the following holds true for all s,t € I:

1. The projections commute with the evolution operator

¢(t,5)P(s) = P(t)o(t, ),

such that for all points 2y € R™ and the associated family of projections
Q(t) :== I — P(t) the following identities hold:

o(t, s)P(s)zy € image(P(t)), t>s,
o(t, s)Q(s)z0 € kernel(P(t)), t<s.

2. |o(t,s)P(s)| S K -e =9 ¢ >5,

3. |t s)Q(s)} <K-e bt ¢ <.

Lemma A.1l. Let the assumption (M1) hold. The linear system of ODEs

% 1) = 2L @), mo)=(0) (A.6)

has exponential dichotomies on Rt and R~ with associated families of pro-
jections {P.(t) |t e RT} and {P_(t) | t € R™}, respectively.

The statement follows from the hyperbolicity of the matrices ‘fj—i(ui, Lo)

and the roughness property of exponential dichotomies [Cop78, chapter 4].
The linear system (A.6) is the linearization of the nonlinear system (A.1)

about the solution u(t). Hence, the stable subspace of (A.6) corresponds to
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the tangent space of the stable manifold W*(u™) of (A.1), that means for all
t > 0 the identity

image (P (t)) = TayW*(u") (A7)
holds. Similarly, for all £ < 0 the unstable subspace of (A.6) satisfies
image (Q_(t)) = TuyW"(u"). (A.8)

The projections P, and ¢)_ are not unique. At a later stage, we fix the

kernels of these projections such that subsequent expressions simplify.

We will restrict our attention to heteroclinic orbits v(u) for p in a small
neighborhood of 1, which are close to (1) and intersect each transversal
section of v(up) once. First, we find for the associated solution u(t) an

appropriate description of the transversal section at ¢ = 0:

Definition A.3. Suppose the solution u(t) of (A.1), parametrizes the het-
eroclinic orbit in (M1). We define the transversal section Y with respec