
DIPLOMARBEIT

Automated Graphical User Interface Generation
based on an Abstract User Interface Specification

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Diplom-Ingenieurs unter der Leitung von

Univ.Prof. Dipl.-Ing. Dr.techn. Hermann Kaindl
und

Univ.Ass. Dipl.-Ing. Dr.techn. Jürgen Falb
als verantwortlich mitwirkendem Assistenten am

Institutsnummer: 384
Institut für Computertechnik

eingereicht an der Technischen Universität Wien
Fakultät für Elektrotechnik und Informationstechnik

von

David Raneburger
Matr.Nr. 0125896

Forsthausgasse 16/2/7702, 1200 Vienna

17.12.2008

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung

Bei der Entwicklung neuer Software, bzw. dem raschen Erstellen von Prototypen, wird
der Programmierer heute vielfach durch Tools, die eine teilweise automatische Generierung
des Quellcodes ermöglichen, unterstützt. Durch den vermehrten Einsatz von graphischen
Anzeigen bzw. Bildschirmen, basiert die Kommunikation zwischen System und Benutzer
häufig auf einem Graphischen User Interface (GUI), vielfach auf einem sogenannte WIMP
(window, icon, menu, pointer) UI. Ein WIMP UI besteht aus einer beschränkten Anzahl von
Widgets, die je nach der zu erfüllenden Aufgabe kombiniert werden.

Im Zuge dieser Diplomarbeit wird ein Code Generator präsentiert, mit dessen Hilfe eine ab-
strakte User-Interface Spezifikation in Quellcode für ein WIMP UI übersetzt wird. Das als
Ausgangspunkt dienende abstrakte Model ist nicht auf ein bestimmtes GUI-toolkit festgelegt,
sehr wohl aber auf ein bestimmtes Zielgerät (z.B. PDA, Bildschirm, . . .). Die Transformation
des Modeles zu Quellcode wurde mittels Templates realisiert und Java Swing als GUI-toolkit
gewählt.

Die Implementierung des Code Generators hängt von der Meta-Model Struktur der abstrak-
ten UI-Spezifikation ab und ist deshalb auf die Transformation von Instanzen des Meta-
Modells beschränkt. Durch die Verwendung von Templates kann die Anzahl der untertützten
GUI-toolkits jedoch ohne größeren Aufwand erhöht werden.

Abstract

Automated code generation tools support rapid prototyping and the development of software
in various fields of application. As almost any kind of technological device is equipped with
either a screen or a display, system-user communication frequently relies on graphical user
interfaces, in the majority of cases on WIMP (window, icon, menu, pointer) UIs. Such inter-
faces consist of a limited number of widget types. What varies, due to the task that should
be accomplished, is the way they are combined.

The generator presented in this work translates an abstract description of a graphical user
interface into source code that implements a WIMP UI. The abstract UI models forming the
inputs are independent of the target GUI toolkit, but not of the target device. The actual
translation from model to target toolkit specific code involves the use of templates. The code
generator has been implemented and tested, using Java Swing as the target toolkit.

The structure of the code generator depends on the meta-model definition of the abstract
user interface specification. Therefore, the generator is not applicable to any other kind of
input model. Due to the use of templates however, the number of supported target toolkits
can be extended without much effort.

Acknowledgements

Da ich privat sehr gerne Bergsteige, freut es mich umso mehr, auch im übertragenen Sinn
auf einem Höhepunkt des Weges angekommen zu sein, den ich vor sieben Jahren zu gehen
begann. Die hier vorliegende Diplomarbeit stellt das Ende eines Studiums dar, das ich ohne
der Hilfe und Motivation vieler Freunde und vor allem meiner Familie nie absolviert hätte.

Mein erster Dank gilt deshalb auch meinen Eltern und Geschwistern, die nicht müde wurden
mich zu motivieren und sowohl finanziell als auch moralisch zu unterstützen. Sollte ich Erfolg
haben, ist eure Pension gesichert, gern hab ich euch sowieso!

Ein jeder Gipfel ist mit fachkundiger Führung leichter zu erreichen und in diesem Sinne
möchte ich mich vor allem bei meinen Betreuern Prof. Hermann Kaindl und Dr. Jürgen Falb
recht herzlich bedanken. Ein großes Dankeschön auch an Roman Popp und Sevan Kavaldjian
für die vielen wertvollen Tipps, eure Geduld und die gute Zusammenarbeit. Es freut mich
sehr, euch seit Oktober Arbeitskollegen nennen zu dürfen.

Des weitern bedanken möchte ich mich bei allen Mitstudenten, die mir nicht nur als Mit-
streiter bei Prüfungen, sondern im Laufe der Jahre vor allem als Freunde eine wertvolle Hilfe
waren und sind. Nicht zu vergessen all jene Freunde und Innen, die mich, ganz unabhängig
vom Studium, mit Motivation und Energie versorgt haben.

Nachdem zumindest meine Urlaubstage inzwischen gezählt sind hat, so wie es aussieht der
Ernst des Lebens begonnen... und es macht Spaß!

David

Contents

1 Introduction 1

2 State of the Art 3
2.1 Automated Code Generation . 3

2.1.1 Templates and Filtering . 4
2.1.2 Templates and Meta-Model . 5
2.1.3 Frame Processing . 6
2.1.4 API-based generation . 6
2.1.5 Inline Generation . 7
2.1.6 Code Attributes . 7
2.1.7 Code Weaving . 7
2.1.8 Combinations . 8
2.1.9 Differences and Similarities . 8

2.2 Template Engines . 9
2.2.1 Velocity . 10
2.2.2 FreeMarker . 11
2.2.3 AndroMDA . 12
2.2.4 Java Emitter Templates . 13

2.3 The Eclipse Modeling Framework . 16

3 OntoUCP – Ontology-based Unified Communication Platform 18
3.1 The Discourse Model . 20

3.1.1 Communicative Acts . 20
3.1.2 Conversation Analysis . 21
3.1.3 Rhetorical Structure Theory (RST) Relations 22
3.1.4 Procedural Constructs . 25

3.2 The Abstract User Interface . 26
3.3 The Rendering Architecture . 32
3.4 The Online Shop . 34

3.4.1 The Online Shop Discourse Model . 34
3.4.2 The Online Shop Domain of Discourse Model 36

4 From Abstract User Interface to Java Swing 38
4.1 The Code Generator . 38

4.1.1 The Code Generator Implementation Class 40
4.1.2 From Structural UI Widgets to Java Swing 41
4.1.3 Cascading Style Sheets . 56

4.2 The Online Shop continued . 59

2

4.2.1 The Application . 60
4.2.2 Manually-Created vs. Automatically-Generated Abstract UI Description 68

5 Conclusion 69

A Diagrams 71

I

Abbreviations and Acronyms

API Application Programming Interface

AST Abstract Syntax Tree

CDL Communication Definition Language

CSS Cascading Style Sheets

DOM Document Object Model

EMF Eclipse Modeling Framework

EMOF Essential Meta Object Facility

GUI Graphical User Interface

HTML Hypertext Markup Language

JET Java Emitter Templates

MDA Model Driven Architecture

MVC Model View Controller

OntoUCP Ontology-based Unified Communication Platform

SWT Standard Widget Toolkit

VTL Velocity Template Language

W3C World Wide Web Consortium

XMI XML Metadata Interchange

XML Extensible Markup Language

XSLT Extensible Stylesheet Language Transformations

WIMP Window, Icon, Menu, Pointer

Chapter 1

Introduction

With an increasing number of computer-based systems in our environment, a device’s abil-
ity not only to interact with other devices but with humans as well becomes more and more
important. Up to now describing machine-machine interaction requested profound technolog-
ical knowledge. Widespread protocols are based on a simple request-response principle or on
message passing metaphors. Building such systems would be much easier if higher semantics
were introduced in communication protocols in a way that would make the interaction more
human-like and therefore “natural”. Such an interaction description would enable people
with only limited technological knowledge to understand such a system easily and even to
design it, with the help of a graphical editor for example.

Making the interaction mechanism independent from the other communication party involves
the advantage that a device does not have to know whether it talks to a machine or a person.
This unification of machine-machine interaction and human-machine interaction would make
the inclusion of a system in an ubiquitous computing environment much easier.

Such a system can only be built, relying on the results of communication theoretical research.
The goal of the Ontology-based Unified Communication Platform project is to take a model-
driven approach to generate the communication component for a whole system, including the
graphical user interface, automatically. The interaction between user and system is modelled
using Communicative Acts [Sea69], linked via Rhetorical Speech Theory (RST) Relations
[MT88] and Adjacency Pairs [LGF90].

Communicative Acts are based on Searle’s theory, which states that speech is used to do
something with a certain intention. A question is asked to obtain information, a command is
given to make someone do something, a statement is made to convey information and so on.
These acts can be seen as basic units of a communication and, therefore, offer a precise way
to describe not only human communication but also communication between machines or any
other type of communication between two parties. To model the flow of an interaction these
Communicative Acts need to be linked somehow. This can be done using another linguistic
theory.

The Rhetorical Structure Theory (RST) has its focus on the function of text. It offers a
comfortable way to describe internal relationships between text-potions, their effects and
associated constraints. Such relations can be a Condition, Background Information or a
Joint. The objects linked by such relations are communicative acts. They encapsulate a

1

Chapter 1 Introduction

certain intention each and form the basic building blocks for any discourse. Adjacency Pairs
have been introduced as well to complete the meta-model for discourses. This theory describes
typical turns in communications, which result in typical pairs of communicative acts within
the model.

The combination of these three theories allows the description of a communication as a tree.
The communicative acts represent the leaves that are linked by RST relations. Diagrams are
used as a graphical representation of the communication (see Chapter 3).

Based on the above given theories, communication between a computer system and a user or
even between two machines can be described. Considering the first type of interaction one
more problem to be considered is how to interact with a user. One of the most established
ways to display information and to communicate with a user is to do so via a graphical user
interface. Up to now such interfaces offer the most “intuitional” way of interaction with
a system. Nowadays almost all, even portable devices, contain a screen, differing only in
the platform they use to display the graphical information. Two of the most widespread
underlying technologies, due to their platform independence, are HTML and Java Swing.

Programming such an interface is still a time consuming and therefore expensive task. Au-
tomating the generation of the graphical user interface source-code would, therefore, save a
lot of money and moreover ease the maintenance of the system as well. As soon as something
concerning the structure of the system changes, it would not be necessary to look for changes
to be made in the user interface but only to generate it anew. What would be needed as an
input to the code-generator is an abstract description of the user interface, independent of the
target toolkit but not of the target device. Issues like screen resolution must be considered
right from the beginning to find an expedient representation of the information that needs
to be conveyed or gathered by the system.

Using a model-driven approach, the intention is to generate the graphical user interface, out
of the discourse description, in two steps. At first an abstract user interface is generated. In
this step the discourse model is transformed into widgets, considering the screen resolution
of the target platform to find the right layout. The second step is the transformation of
this abstract user interface specification into a specific language like Java Swing. This target
language needs to be selected by the user in advance. The resulting code contains everything
needed by the system during runtime.

These two steps are hidden from the designer, who does not know how the transition between
discourse model and concrete user interface happens. Everything the designer has to do is
define the discourse model, select a target device and toolkit, push the generate button which
triggers the automatic generation of the source code for the graphical user interface, including
all the runtime components.

The topic of this master thesis is the transition from an abstract user interface specification
to generated source code files. Before the details on the developed device are presented, an
outline concerning common code generation techniques is given. The second half of Chapter 2
introduces four widely used template engines, including Java Emitter Templates (JET), which
have been used to implement the code generator. The subsequent chapter has its focus on
the OntoUCP project and provides the information necessary to fully understand Chapter 4.
Within this section the code generator, which has been implemented using JET, is presented
in detail. Finally the pros and cons of the code generator implementation are pointed out and
the essence of the presented work is repeated. The last chapter gives an outlook on future
development as well as on the deployment of the developed technology.

2

Chapter 2

State of the Art

This chapter presents the most common techniques to generate source code automatically
and reasons why it makes sense to do so. As templates have been used in the code generator
implementation (presented in chapter 4) an overview over the most widely spread template
engines is given. The Eclipse Modeling Framework is presented at the end of this chapter
because major parts of the OntoUCP project rely on this framework.

2.1 Automated Code Generation

The model-driven approach is a promising technique to design software today. This signifies
that systems are not developed writing source code right from the beginning, but describing
the software’s design on a higher level of abstraction. Models play an important role within
the OntoUCP project, but instead of translating them to code directly they are transformed
to another model first. Subsequently the code generator, which only depends indirectly on
the actual input models, completes the model-to-code transformation.

One of the main reasons for using a code generator is to guarantee a certain performance
without losing much flexibility. As soon as traditional object-oriented approaches like frame-
works, polymorphism or reflection are not sufficient to reach the desired performance the
actual configuration can be set in an abstract way and more efficient code is generated auto-
matically.

Another point of consideration might be the size of the code. If the features needed during
the runtime of the system are already known in advance, the generator only needs to include
these parts at compilation time. This way the size of the code can be reduced efficiently.

Complex generic frameworks or runtime systems frequently work interpretive, which compli-
cates the static analysis of program characteristics as well as the search for faults. Regarding
this aspect, automatically generated code, using a standard programming language possesses
the quality of classically written code. Many systems can only be realised combining manu-
ally written and automatically generated code, which requires the designer to find the right
balance.

Weak type definitions are frequently used to enable the program to make decisions only
during runtime. This increases the flexibility but transfers fault detection from compile to

3

Chapter 2 State of the Art

runtime as well, thus enlarging the difficulty of finding errors. Using static frameworks for
code generation includes the advantage of being able to find errors already at compilation
time, giving the compiler the possibility of uttering warnings as well.

One of the big benefits of using a model-driven approach in software development is the
independence of the system architecture and logic from the actual implementation platform.
This way the transition to newer or potentially better platforms can be achieved easily.

Another issue to point out would be that shortcomings of the actually used programming
language can be compensated. Examples concerning Java would be its type genericity (at
least for version 1.5 downwards) or the downcast to one variable class. Moreover, code
generation eases the introduction of object-oriented concepts in procedural programming
languages.

Finally introspection should be mentioned. It describes a program’s read access to itself.
Some programming languages support this mechanism dynamically (e.g. Java) and some
do not support it at all (e.g. C++). If this feature is not supported dynamically, code
generation can at least introduce this mechanism statically. Instead of analysing a program’s
structure and connecting it with a certain functionality during runtime, this task is done
before hand. Based on the analysis of the system, code is generated that activates the
requested functionality during the runtime of the system.

Stahl and Voelter [SV05, p. 175, p. 190] distinguishes the code generation techniques presented
in the following paragraphs. These techniques differ strongly in many aspects but all of them
do have at least three things in common:

1. There is always a meta-model or an abstract syntax (at least given implicitly).

2. There are always transformations based on this meta-model.

3. There is always some kind of frontend which reads the meta-model and triggers its
transformation.

2.1.1 Templates and Filtering

This technique represents a very simple and direct access to code generation. The code is
generated using templates that iterate over the relevant parts of a textually represented model
(e.g. XSLT iteration over XML). The code to be generated is provided by the templates and
the variables contained by the templates are bound to values provided by the model. The
same model can easily be translated to various target platforms by using different templates.

XSLT is a typical language used to implement this technique in combination with XMI or
XML. Therefore, this example is used to illustrate a typical drawback of this technology. The
fact that the XSLT-Stylesheet’s complexity increases with the amount of code to be generated
makes this technique inapplicable for big systems, even more so if their specification is based
on XMI. To resolve the XMI problem, a model-to-model transformation can be done before
the actual code generation. This first step converts the XMI description to a domain-specific
XML representation. Further steps generate the source code based on this XML description.
This eases the code generation a lot because it separates the templates from the actual XMI
syntax. The level of abstraction the generator works on is still the level of the XML meta-
model. This problem can be solved by following the next generation approach.

4

Chapter 2 State of the Art

2.1.2 Templates and Meta-Model

This technique solves some of the problems arising through direct code generation by intro-
ducing an approach that includes more than one step. The XML description is parsed by the
generator in a first step. Subsequently an instance of the meta-model is created, which can
be customized by the user. This model then forms the basis on which the actual output code
is generated. The whole process is illustrated by Figure 2.1.

Figure 2.1: Templates and Meta-Model

An advantage of this approach is that the generator module is more or less independent
from the concrete model syntax. This is due to the insertion of the parser, which itself is
syntax-dependent. Frequently, the description is provided either in UML or any available
XMI version.

Another benefit of this technique is that complex logical verification functions regarding the
meta-model can be included in the meta-model itself. In contrast to templates, such functions
can be implemented in common programming languages like Java.

5

Chapter 2 State of the Art

This technique has been used in the implementation of the openArchitectureWare generator,
which includes another aspect worth highlighting. From a compiler constructor’s point of
view, the transformation consists of the meta-model implementation (e.g. in Java) and the
templates. The meta-model’s function is once again the one of an abstract syntax. This
syntax as well as the transformation are part of the compiler’s parameters. The main is-
sue is that these abstract syntax constructs (i.e. the elements of the meta-model) translate
themselves. Therefore the compiler is called object oriented.

Taking a conceptual point of view, the templates and the support functions implemented in
Java, are means for translating the meta-model elements. Just like Java, the template lan-
guage supports polymorphism and overwriting. Only the helper class definition is outsourced
to the Java part. This is the reason why template languages are called object-oriented.

2.1.3 Frame Processing

The basis of this generation technique is frames. These frames contain the specification of
the code to be generated and are processed by the frame processor.

Just like classes in object-oriented languages, these frames can be instanced. Every frame
instance, more than one of the same frame is possible, binds the variables, in this case called
slots, to concrete values. Every instance can be bound to its own set of values. Such values can
be basic data types like String or Double or other frame instances. The resulting structure
of the code to be generated is then represented by a tree that consists of the instantiated
frames. In a second step, after the frames have been created, the code is generated according
to the given tree structure.

2.1.4 API-based generation

The concept of this kind of code generator is to provide the programmer with an output-
language-specific Application Programming Interface (API). This interface enables the pro-
grammer to create elements of the target platform. The abstract syntax the generator works
with is defined by the meta-model of the target language. Therefore, the generator is bound
to one specific target platform or target languages that share the same abstract syntax tree.

This mechanism is used by the .NET framework, which allows varying the output language
through the change of the generator backend. Abstract syntax trees can be specified by
creating a Code Document Object Model (CodeDOM). In .NET this model is based on the
abstract syntax defined by the Common Language Specification (CLS). Through the selection
of an appropriate ICodeGenerator, the concrete syntax for a chosen .NET language (e.g. C#,
VB, C++) can be generated.

This technique offers a intuitive and easy way to generate code. Another advantage is that
the compiler in combination with the API can force the user to write syntactically correct
code quite easily. A slight drawback compared to using templates is that variable values need
to be set by using a common method. This process requires more code to be written than if
the values simply replace specified text parts.

Such generators can be used much more efficiently if domain-specific classes are used together
with default types. Such classes can be derived by the generator through common object-
oriented concepts. Flexibility can be reached through parameterisation of the generator class.

6

Chapter 2 State of the Art

2.1.5 Inline Generation

Inline code generation stands for source code that contains constructs which generate further
source, byte or machine code when compiled. Examples are C++ pre-processor statements
or C++ templates.

There are few cases in which the use of such pre-processor statements is reasonable because,
as they are based on simple text substitution, no type checks or preference rules are included.
Templates, on the other hand, form a Turing-complete, functional programming language
based on types and literals. This enables the user to create complete programmes that are
executed at compile time.

Due to the unintuitive syntax, this technique is not in widespread use. It is not advisable to
create large generation projects using this technique, because most compilers have not been
optimised for this kind of task. See [CE00] for further details on this topic.

2.1.6 Code Attributes

This mechanism is widely known in Java environments and started out as JavaDoc. This
tool allows the automatic generation of a HTML-documentation of the program via added
comments. Due to JavaDoc’s extensible architecture, custom tags and code generators can
be hooked easily. The best known generator using this technique is XDoclet [Tea05], which
lost significance since Java introduced similar features directly in version 1.5.

Using this technique the developer only writes the interface or class definition manually and
attaches the commentary needed for the generator. Apart from the commentary, the genera-
tor accesses the source code syntax tree to extract additional information. The advantage of
this method is that much information needed by the generator is already provided through
the source code. The programmer can save a lot of work by adding commentaries. Typical
applications would be the generation of EJB Remote/LocalInterfaces as well as Deployment
Descriptors.

The same mechanism is deployed by .NET, which offers the attachment of attributes to source
code elements like methods, attributes or classes. Apart from automatic code generation,
runtime functionality can be added this way. Such “realtime” framework characteristics can
be illustrated best by introducing a small example. Every class is given a certain priority in
advance. Subsequently, every instance of such a class is equipped with such an attribute and
every method of such a class carries a time limit within which it needs to complete its task.
The idea is that services are executed within a framework that measures certain parameters
(e.g. the execution time). If this limit is exceeded, a log entry can be made, no more requests
can be accepted and an exception can be thrown to the user.

2.1.7 Code Weaving

This term names the technique of merging different independent code snippets. The definition
of how to integrate the different parts is given by so-called Join Points or Hooks.

An implementation of this principle is AspectJ [Fou08b], which is available as Eclipse plugin
as well. This generator combines regular object-oriented code with so-called aspects on source

7

Chapter 2 State of the Art

or byte code level. In this context the word aspects is used to describe functionalities that
solve the problem of cross-cutting concerns. Such cross-cutting concerns are connections that
can not be described locally using common object-oriented means. An example would be an
aspect offering logging of calls on methods of a certain class. This aspect logs for example
the name of the class as well as the name of the method that calls methods on the specified
class.

2.1.8 Combinations

To reach the best performance for a given task, various combinations of the generation tech-
niques presented above can be deployed. An example would be the generation of annotated
source code using a template engine. Another frequently found case is the combination of
code that was generated automatically, customized manually and now needs to be merged
with new automatically generated code. Another possibility is to create API-based generators
that offer the option to include templates.

2.1.9 Differences and Similarities

Generators that build an Abstract Syntax Tree (AST) of the application domain are frame
processors and API-based ones. To raise the level of abstraction in contrast to pure template-
based approaches and the efficiency, the addition of platform-specific constructs is quite popu-
lar (e.g. a Frame that creates a JavaBeans-Property). This way a general approach is tailored
to a certain target platform. Due to this reason the starting point for such applications is
normally the AST of the target language or platform.

The Templates and Meta-Model approaches, on the contrary, build the AST during runtime.
This task is completed by the generator, relying on the meta-model as representation of the
problem domain. Therefore, this approach starts on a higher level of abstraction and the
translation to a certain target platform is completed by the templates. The deployment of
this technique is widely used if a comprehensive meta-model of the application domain is
available. Model driven architecture usually results in the use of this technique. Regarding
the amount of similar code to be generated, this approach is normally preferred as well to the
API-based generator. These generators are quite efficient on the other hand, if the granularity
of the code to be generated is very fine.

Code attributes can be seen as a kind of inline generation as well. This would be the case
if the code is generated where the specification in the base source code is found. Normally,
attributes are used to generate code that is completely extern. As it covers mostly persistency
or glue logic aspects, it does not need to be integrated with manually written code. These
approaches are not appropriate if models are used, but can be quite convenient if already
available code can be used as a basis. This way only attributes and specifications have to be
added.

The difference between inline generation and code weaving is that cross-cutting concerns can
be included more easily by the latter one. These aspects allow the modification of the existing
code from the outside. Both technologies are appropriate if code instead of models forms the
basis worked on.

8

Chapter 2 State of the Art

2.2 Template Engines

As the tasks computer programs have to accomplish get more and more complex, the pro-
grams themselves get more complicated as well and the amount of code increases. Modelling
languages like UML have been developed to support the designer, giving him an abstract
way of illustrating the most important aspects of a system. As UML is a general modelling
language it gives the designer the opportunity to concentrate on the design and the content
of a system instead of worrying about the concrete technical realisation.

In a second step, these models need to be translated to source code of course. As this
step involves tedious programming, it was soon the intention of programmers and scientists
to automate this step. There is a wide range of applications offering the construction of
UML models and as a second step the automated generation of class declarations and their
associated method declarations. This generated code offers the skeleton of the system to
the programmer which then needs to be filled with code to accomplish the given task. To
obtain already executable code the amount of information contained by the model needs to
be augmented or added some other way.

An established way to produce runable code is the use of template engines. By combining
templates and additional information, they produce source code that only needs to be com-
piled and executed as Figure 2.2 illustrates. The nature of the output is determined by the
templates and the additional information is frequently extracted from a detailed model of the
system the code shall implement in the end.

Figure 2.2: Template Engine

Automation of repeating steps eases the development of new systems. Taking a closer look
at any source code file, it becomes obvious that the structure, apart from a component’s
source code, is always quite similar. Another important advantage that comes with the
use of templates is that the amount of code to be written manually is reduced drastically.
Furthermore the error rate of the resulting code is lower because only the templates need to
be checked for faults instead of the whole program. One more thing that’s worth to focus
on is the appliance of changes. If either the model or the template is adjusted to fit new
circumstances, the program does not have to be rewritten but only to be generated anew.

Today, various template engines are available for software engineers. Most of them are pub-
lished under a public license and can either be used as off-the-shelf component or be cus-

9

Chapter 2 State of the Art

tomized to a user’s special needs. Usually a reduced syntax set is offered, which allows the
user to navigate through the input model described in XML or any other data description
language. The requirements on such a template language are quite similar to the require-
ments on a programming language. The difference is that additionally to performance and
ease of use it is important that the template language gives you an idea of what the output
will look like even before the generation. This feature is frequently supported through the
editor used to create the templates by providing some kind of color coding. The underlying
of the template code with different colors helps the programmer to distinguish which code is
executed during the time of generation and which code forms the resulting output.

2.2.1 Velocity

This Java-based template engine introduces a simple, yet powerful template language which
allows the user to reference objects defined in Java code. The template writer includes markup
statements called references in his file, which are filled with content during the rendering
process. This content is stored in a context object, which basically consists of a hashtable.
To set or retrieve values from the context object get() and set() methods are provided. These
references do not only allow one to link properties but also to call methods from a given Java
class. Apart from substituting the markups with the actual values the Velocity Template
Language (VTL) offers basic control statements. A Foreach command can be used to loop
over a set of values and if/else introduces the possibility to bind the inclusion of a text to a
condition.
The #include directive allows the designer to include files containing text. The content of
files included this way is not rendered by the template engine beforehand. If the given file
needs to be rendered as well it must be included using the #parse directive. A #macro script
element offers the opportunity to define a repeated segment of the VTL document. For a
complete documentation of the VTL Syntax refer to [Fou08a].

The features presented above make Velocity not only attractive to Java programmers but to
Web engineers as well. Main application fields of Velocity are:

• Web applications: In this case VTL directives act as place holders for dynamic
information in a static HTML environment. To process such pages VelocityViewServlet
or any framework that supports Velocity can be used. This approach results in a Model-
View-Controller (MVC) architecture, which is intended to provide a viable alternative
to applications built with Java Server Pages (JSP) or PHP.

• Source code generation: Seen as a standalone component, Velocity can, of course
be used to generate Java source code, SQL or PostScript. See [Fou08a] for details on
open source and commercial software packages that use Velocity this way.

• Automatic emails: Frequently, automatically generated emails are used as signup,
password reminders or reports sent on a regular basis. Instead of including the email
directly in the Java source code, Velocity offers the opportunity to store it in a separate
text file.

• XML transformation: Anakia is an ant task provided by Velocity which makes
an XML file available to a Velocity template. A frequently needed application is the
conversion of a documentation stored in a generic “xdoc” format to a styled HTML
document.

10

Chapter 2 State of the Art

If the features already provided by Velocity are still insufficient to resolve a given problem,
various possibilities are offered to extend its capabilities:

• Tools: They are a special type of object which contains methods instead of data.
Placed in a Velocity context the template can call these methods. Such objects are
frequently used to format numbers or escape HTML entities.

• Resource Loaders: If templates need to be retrieved from text files, the classpath, a
database or even a custom resource, such loaders can be used.

• Event Handlers: In case of certain events, the Event Handler performs a specified
custom action. An example would be the insertion of a reference into a text.

• Introspectors: To retrieve reference properties and methods, a custom Introspector
has to be written. An application would be to retrieve data from Lucene or other search
engine indexes.

• Extend the Velocity Syntax: The grammar of Velocity is processed in a parser
generated by JavaCC (Java Compiler Compiler). The JJTree extension is used to
create an abstract syntax tree. To change the Velocity syntax itself, only the JavaCC
specification file has to be changed and a recompilation has to be done.

2.2.2 FreeMarker

Just like Velocity, FreeMarker can be used to generate text output based on templates. As
it comes as a Java package, a class library for programmers, it is no application for the end
user but needs to be embedded. It is quite easy to integrate as it does not require servlet
environment.

FreeMarker has been developed to support the construction of HTML Web pages with dy-
namic content. Once more the MVC pattern has been implemented to enable everybody to
work on what he is good at. This way the appearance of a Web page can be changed easily
without having to recompile the code needed for the dynamic features.

Another advantage is that the templates used for the design are kept clean from complex
code fragments and therefore easily maintainable. FreeMarker offers some programming
capabilities as well, but the main data preparation is done by Java programs, leaving only
the generation of the textual pages that display the data to the template engine.

Templates to be included or rendered can be loaded from any sources (e.g. local files or
database) via a pluggable template loader. The template engine can produce any kind of
textual output ranging from HTML, XML to RTF and any kind of source code. The output
text can either be stored as a file, sent as email, sent back to a Web browser from a Web
application etc.

As any template engine, FreeMarker offers its own template language. It consists of all usual
directives (e.g. include), conditions like “if/elseif/else” and “loop” constructs. It allows the
creation and changing of variables as well as the execution of a number of operations on
them. These operations include String operations, Boolean arithmetic, decimal precision
arithmetic calculations, reading array and associative array elements and the possibility of

11

Chapter 2 State of the Art

defining custom operations within self-written methods. The macro directives can be endued
with named and positional parameters and modularization is supported by providing name-
spaces. This feature helps avoiding name clashes and eases the maintainability of macro
libraries or big projects. Transformations like HTML escaping or syntax highlighting on the
output is supported by the template engine via output transformation blocks, which can be
customized as well by the programmer.

To ease the use of the Java objects providing the data needed to fill the template, FreeMarker
exposes these objects to the template through a pluggable object wrapper class. This way
complicated technical details can be hidden and only the information relevant for the template
author is shown. Compared to Velocity, its template language is more complex but therefore
more powerful. For detailed comparison of these two template engines see [Pro08].

As said before, FreeMarker has been designed to support the MVC pattern and offers a
template language with built-in constructs that make it especially suitable for Web applica-
tions. Currently it supports JSP taglibs up to JSP 2.1 and can be integrated in Model2Web
frameworks as direct JSP replacement. Contemplating the multinational character of the
Web features like locale sensitive number, date and time formatting alongside with char set
awareness and the possibility of using non-US characters in identifiers are very useful.

Since version 2.3 the directives <#recurse> and <#visit> enable the engine to traverse XML
trees recursively. This version is also intended as an alternative to eXtensible Style Sheet
Language Transformations (XSTL). Editor plugins offering at least syntax highlighting are
available for the most common editors and IDEs.

2.2.3 AndroMDA

As suggested by the name, this extensible generator framework adheres to the Model Driven
Architecture (MDA) paradigm. AndroMDA itself is basically a transformation engine which
offers the possibility to directly transform UML models into deployable components. Various
standard platforms like Spring, EJB 2/3, Hibernate, Java or XSD are supported and an
Eclipse integration should be available soon. For each such transformation, a ready-made
cartridge is provided which only needs to be plugged in as shown in Figure 2.3.

To implement custom transformations, a meta cartridge is provided, which can be adapted
to the user’s special needs and wishes. This way a custom code generator for any UML tool
can be created. The UML 2.0 meta-model is supported completely. AndroMDA consists of
various modules, which are pluggable and can easily be changed or customized. This gives
great flexibility to the programmer to tailor the engine to his needs. Moreover, support for
the most common UML tools like MagicDraw, Poseidon or Enterprise Architect is given.
Using UML models to generate large portions of the source code makes them lose their static
character and turns them into always up-to-date reflections of the system. Once again the
engine’s capabilities are not limited to UML but allow the programmer to generate code from
any meta-model described in MOF XMI. As an additional feature AndroMDA validates these
input models using OCL constraints which are related to the meta-model classes. Apart from
offering constraints that protect the designer against the most common modelling mistakes,
project-specific constraints can be added too.

Since AndroMDA is not only a template engine but a generator framework, it includes the
possibility of model-to-model transformation. A model-to-model transformation foregoing a

12

Chapter 2 State of the Art

Figure 2.3: AndroMDA Architecture [Tea08]

model-to-code transformation is very useful to detail the model. The transformations needed
for the first step can be written using Java or any other transformation language like the Atlas
Transformation Language (ATL), for example. Templates are used to realize the model-
to-code transformation. Relying on well-known template engines, currently Velocity and
FreeMarker, any kind of textual output is producible. As mentioned above, arbitrary target
architectures are supported via plug-in custom transformations named cartridges. Support
can be found 24 hours a day by visiting the AndroMDA forum at [Tea08].

2.2.4 Java Emitter Templates

Java Emitter Templates (JET) and Java Merge (JMerge) are two powerful code generation
tools included in the Eclipse Modeling Framework (EMF). JMerge allows the programmer to
modify the generated code and preserve these changes if the generation process is repeated.
This is done by tags that indicate which code can be replaced and which parts of the code
should be left untouched.

JET is a generic template Engine which can be used to generate Java, SQL, XML or any
other output from given templates. Furthermore, JET offers an easy way to generate source
code from Ecore-based models. The syntax used by the JET-Engine is quite simple and
similar to JSP, actually a JSP subset. A JET Template’s structure always looks the same
and does not contain more than four different kinds of elements.

The actual JET syntax is presented in detail, because this template engine has been used to
implement the code generator presented in chapter 4.

13

Chapter 2 State of the Art

2.2.4.1 The JET Syntax

1. JET Directive
Every JET Template starts with certain messages to the JET engine. These directives
show the following syntax:

<%@ directive { attr="value" }* %>

Such directives are used to set the class name, the package name, to import Java libraries
used in the scriptlets, to change the start and the end tag and to use a user-defined
skeleton instead of the standard one for the Java file generation during the translation
step. In other words, they affect the way the template is translated but do not produce
any output.

The JET directive must be included on the first line of the template. It defines a
number of attributes and communicates these to the JET engine. Any unrecognized
attributes result in fatal transition errors and any subsequent JET directives are ignored
by the engine. The following attributes can be set to influence the way the template is
translated:

• package: This attribute defines to which package the Java implementation class
is translated. If this attribute is left out the default package is chosen.

• class: This field defines the class name of the implementation class. It is set to
CLASS if not defined otherwise.

• imports: Unlike in Java source code this list is space-separated and defines the
packages or classes to import in the implementation class.

• startTag: This string, used in a JET template, marks the beginning of a scriptlet,
an expression or a directive. By default it is defined as “<%”.

• endTag: This tag signals the end of a scriptlet, an expression or a directive. It
always needs to be combined with a startTag and is set to “%>” by default.

• skeleton: If needed the skeleton of the implementation class to which the template
is translated, can be changed by setting this attribute to the URI of the new
skeleton. The URI is resolved in a similar way to the file attribute in the include
directive. Its default value is “public class CLASS\n{\n
public String generate(Object argument)\n{\n return "";\n}\n}\n”.
The name of the class in any skeleton definition must be CLASS because usually it
is substituted by the template engine with the value defined by the class attribute.

• nlString: This way the newline string to be used in the Java template class can be
defined. It’s default value is “System.getProperties().getProperty("line.separator")”.

A common header found similarly in each template would be:

<%@ jet package="my.templates" class="LabelTemplate"
imports="org.eclipse.emf.ecore.* java.util.*" %>

2. Include Directive
The include directive offers the possibility of including another textfile, which is inter-
preted by the JET Engine during translation time and is included in the output file at

14

Chapter 2 State of the Art

the location where the directive is situated in the template. Each file to be included
needs its own include directive.

As the file is inserted in the template by the engine it may contain scriptlets, expressions
or directives apart from simple text. This allows the programmer to avoid redundant
programming as well as to encapsulate certain parts for better readability of the tem-
plates. As inducted above, the include directive has exactly one value and looks like
the following example:

<%@ include file="copyright.jet" %>

The URI specified may be either absolute or relative. Relative URIs are always inter-
preted as relative to the folder of the template file that contains the include directive.

3. Expressions
This JET element evaluates the given Java expression at the invocation time of the
template and appends its result to the StringBuffer object returned by the generate
method. Its content must be a complete Java expression that returns a String. In
case the engine fails to execute the expression correctly a fatal translation error occurs.
Expressions can be used to insert strings directly as well. Their syntax is as follows:

<%= (new java.util.Date()).toLocaleString() %>

If the expression includes the character sequence <% or %> it needs to be escaped. This
can be done by writing <\% and %\>. White spaces before the start and the end tag
are optional.

4. Scriptlets
Scriptlets are short parts of logic implemented in Java. This enables the programmer
to encapsulate certain functionality in the template and therefore makes them perfectly
appropriate for modular programming. They are executed at the template invocation
time, and it depends on the actual code whether they produce a string output or not.
Scriptlets as well as expressions may have side effects as they modify the objects visible
in them. To embed a scriptlet the following syntax has to be used in the *.txtjet file:

<% this Java code fulfils the required functionality %>

For detailed information on the JET Syntax and getting started with the engine refer to
[Pop07a].

2.2.4.2 The JET Model

Any template file can be the input of the JET engine as long as its suffix ends with “jet”. The
JET conventions are to use the extension of the file to be generated with this suffix. “javajet”
implies the generation of Java source code, “xmljet” and “sqljet” are other frequently found
template file extensions.

The transition from a *.javajet file to a java file consists of two steps. In a first step the
*.javajet file is translated to a Java implementation class. This implementation class has

15

Chapter 2 State of the Art

a method that can be called to obtain the result of the generation process as a String.
If the skeleton of the implementation class has not been changed by the programmer this
method is called generate(). The following two objects are contained implicitly by the Java
implementation class and can be referenced from the template:

• stringBuffer: This ‘‘java.lang.StringBuffer’’ object is used to create the result-
ing string as soon as the generate() method is called.

• argument: this ‘‘java.lang.Object’’ can be an array of objects that contains all
the arguments passed to the generate() method.

Any further skeleton attributes need to be specified in the jet directive.

The separation of the generation process in two steps allows JET not only to offer a reduced
syntax set but the complete Java functionality. The first step is automatically completed
by the JETNature and JETBuilder modules, included in the JET package. As these classes
operate on Eclipse workspace projects only, they have to be called manually for plug-in
transition. For more information on this topic see [Pop07b].

To receive the output source code in the end, the second step of the transition needs to be
completed by calling the implementation class’ generate() method and handing over the ap-
propriate arguments. Figure 2.4 illustrates the two-step nature of the process. The transition
is composed of a Translation followed by the actual Generation. Both steps are combined by
the JETEmitter class which is part of Eclipse Modeling Framework and situated alongside
the other classes needed in the org.eclipse.emf.codegen package.

Figure 2.4: JET Transition

2.3 The Eclipse Modeling Framework

As a Java-based framework, the Eclipse Modeling Framework supports automatic code gener-
ation based on structured models as well as the construction of tools and other applications
based on such models. Being part of the Eclipse project, which is developed as an open
source initiative, it offers a low cost entry to converting object-oriented models to efficient,
syntactically correct and easily customizable Java code.

Today object-oriented modelling frequently implies the use of diagrams specified in the Unified
Modelling Language (UML). Using a combination of these standard notations allows the
complete specification of an application. Apart from easing the understanding of a system,
these models become part of the development process as input to code generation tools like
JET.

16

Chapter 2 State of the Art

Regarding the modelling aspect, the low cost entry argument can be applied once more. This
is due to the fact that an EMF model requires just a small subset of things that are supported
by UML. To be precise, this subset is called Essential Meta Object Facility (EMOF) and offers
the core features of MOF, with an infrastructure similar to UML. As only simple definitions
of classes, their attributes and relations are used a full scale graphical modelling tool is not
needed. The EMF’s meta-model is called Ecore. Any Ecore model is defined and stored as
an XML Metadata Interchange (XMI) description. Several possibilities are given to create
such a model:

• An XMI model can be written manually using any XML or text editor.

• Most graphical modelling tools offer a way to export an XMI model from a graphically
created model.

• If Java interfaces are annotated with model properties, the XMI description can be
generated automatically.

• Last but not least, XML Schema can be used to describe the model.

With little effort the first approach, though the most direct one, appeals only to programmers
with very sophisticated XML skills. Having great tool support in combination with the fact
that diagrams are most frequently easier to understand than code, the second approach is
the most popular one. Java annotations are most frequently used by programmers to get the
benefits of EMF and its code generator without the use of a graphical editor. The description
of the model using XML Schema is very appealing if the application to be created needs to
read or write a particular XML file format.

The EMF generator subsequently generates the corresponding set of Java classes out of any
of these descriptions. Manual changes like the addition of classes or variables are preserved
even if the code is generated anew. Other features coming along with EMF are a frame-
work for model validation, model change notification, persistence support including XMI
and schema-based XML serialization and a very efficient reflective API for the manipulation
of generic EMF objects. Another important aspect is that EMF provides a foundation for
interoperability with other EMF-based tools or applications.

Basically EMF consists of three fundamental frameworks: the EMF core framework, EMF.Edit
and EMF.Codegen. Most of the above mentioned features are contained by the core frame-
work. Moreover, the Ecore or meta-model used for the description of models and their runtime
support are part of this module. EMF.Edit extends the core framework’s functionality by
including reusable adapter classes that offer the possibility of viewing and command-based
editing of a model as well as a basic model editor. The EMF.Codegen represents EMF’s code
generation facility and distinguishes three levels of code generation. Firstly, the Java inter-
faces and implementation classes specified by the model as well as a factory and a package
(meta-data) are created. Consequently implementation classes, so called ItemProviders, are
added that adapt the model classes for viewing and editing. On the third level, the source
code needed for the EMF model editor is generated. This editor includes a GUI, which allows
the specification of options as well as the invocation of the generation process. Downloads,
Tutorials and other information regarding EMF can be found at [Fou08c].

17

Chapter 3

OntoUCP – Ontology-based Unified
Communication Platform

Developing complex software today would be much more effort if there were not dozens of
programmes supporting the creator. These programmes contain features ranging from simple
syntax highlighting to model-to-code transformation tools. To give an example, the Eclipse
software project, which is one of the most powerful software development frameworks, is worth
to be mentioned. Relying on this already developed and tested software, new programmes
can turned into functioning prototypes very quickly.

As automatically generated code is hardly ever optimized this step, if needed, still has to be
completed manually later on. Concerning user interface programming, an automated source
code generation is very interesting, because user interfaces normally consist of a small number
of recurring widgets, that are combined in different ways to fulfil a certain task. If supported
by automated source code generation the programmer does not only save a lot of work and
can reduce the probability of syntax errors, but is able to create a prototype fastly. This is
due to the fact that the amount of code needed for the generation is most of the time much
smaller than the amount of code that is generated.

One further advantage is that the amount of time needed till a functioning prototype is
available is reduced drastically, not to forget that changes in the interface conception just
lead to a new generation instead of tedious changes in the source code itself. Such code
generation is most frequently based on an abstract user interface description. The OntoUCP
project1 takes this development one step further and aims to generate WIMP UIs out of an
interaction description. This interaction description is provided using a specially developed
Communication Definition Language (CDL). From this description an abstract user interface
description is generated automatically, which is then turned into source code in a second step.

This project aims to enable people whose programming skills are limited to create systems
with WIMP UIs. The description of such a system is per se independent of the target device
and of the graphical toolkit used.

One more thing to point out is the fact that such a system does not even care whether
it communicates with a person or another system, which makes it applicable for Human-
Machine as well as for Machine-Machine interaction. This results in great flexibility and

1http://www.ontoucp.org

18

Chapter 3 OntoUCP – Ontology-based Unified Communication Platform

widens the range of applications which can be realized using the Communication Platform.
Figure 3.1 illustrates which parts are needed to create a working system, using this newly

Figure 3.1: The Communication Platform [KFAP06]

developed technology.

The central part is the above mentioned Communication Definition Language. This language
is needed to model the communication between the user and the system. It is based on speech
act theory, which makes its use much more intuitive than common programming languages.
The CDL relates communicative acts with knowledge about domain and workflow. This
represents a combination of the content and intention of the communication. The intention
is represented by the type of communicative act (e.g. Question or Informing) whose content
is modelled by objects defined in the domain specification.

The discourse model repository holds sequences of communication, needed to achieve some
goal (e.g. retrieve or gather information). Typical combinations of related communicative
acts are called adjacency pairs (e.g. Question-Answer, Offer-Accept or Request-Inform). The
communication, resulting through the exchange of communicative acts between two parties,
can be described as a number of resulting interaction scenarios. The synchronisation between
the two communication parties is related to the exchanged communicative acts. As the
number of interaction scenarios is limited it can be seen as a finite state-machine. A transition
is triggered according to the sending and receiving of communicative acts.

19

Chapter 3 OntoUCP – Ontology-based Unified Communication Platform

3.1 The Discourse Model

One of the major advantages of a system like OntoUCP is that the system designer does
not have to care about how things are displayed but can entirely focus on the interaction
with the system. Using a specially developed description language, which is based on results
of human speech theory, he describes the communication between the system and its user
on a high level of abstraction. This user can either be human or another electronic system.
As this description language is based on language theory results, its use is far more intuitive
than common programming languages. The theoretical background needed to understand the
elements used to create a discourse model is presented throughout the following paragraphs.

3.1.1 Communicative Acts

One of the key ideas in the OntoUCP project is to use speech acts [Sea69] to model human
machine communication on a high level of abstraction. Speech, or more generally communica-
tive acts are based on the fact that speaking or communicating is not only used to describe
something or to give a statement, but also to do something with intention – to act. So-called
performatives, expressions to perform an action are illustrating examples. These are sen-
tences like “I nominate John to be President” or “I promise to pay you back”, whose act is
performed by the sentence itself. The speech is equal to the act it triggers.

According to Searle, not words or sentences but these speech acts form the basic units of
communication. This means that speaking a language is performing speech acts like making
statements, asking questions, giving commands, making promises, etc. Any of these speech
acts can be represented in the form F (P) where F is the illocutionary force and P its propo-
sitional content. Three speech acts with the same proposition P would be:

Sam smokes habitually.

Does Sam smoke habitually?

Sam smokes habitually!

As said before the proposition P (Sam smokes habitually) stays the same, what differs is the
illocutionary force F . The first sentence is an assertion whereas the second one is a question
and the third one poses a command. Additional ways to characterise speech acts are:

• Degree of strength, describing the intensity and importance of the speech act. Speech
acts like a command and a polite request may have more or less the same illocutionary
force but different strength.

• Propositional content, describing the content of the speech act.

• Preparatory condition, ensuring that the receiver is able to perform the action re-
quired by the speech act.

20

Chapter 3 OntoUCP – Ontology-based Unified Communication Platform

Searle’s work offers a clean and formal way to computer scientists to describe communication
even apart from speech or natural language. The name communicative act was introduced
to lay emphasis on their general applicability. Such communicative acts simply abstract
from the corresponding speech act as they do not rely on natural language as a basis. So
far they have been used successfully in several applications like Knowledge Query and Ma-
nipulation Language [FFMM94] or electronic commerce and information systems [KM97].
These systems use communicative acts on a low semantic level whereas OntoUCP embeds
them in a Communication Definition Language which describes communication on a high
level of abstraction. Figure 3.2 shows a selection of the most frequently used communicative

Figure 3.2: Communicative Act Taxonomy [BFK+08]

acts in OntoUCP. They are used to model the intention of the communication, referring to
elements of the domain of discourse. As stated before, these elements are defined in the
domain-of-discourse model.

3.1.2 Conversation Analysis

To describe the relationship between communicative acts, a further theoretical device is
needed. Conversation Analysis offers theoretical background to describe typical turns in
human conversation. Using the CDL, any communication is represented through a composi-
tion of communicative acts. Consequently patterns found in human communication can be
mapped to typical combinations of communicative acts.

As can be seen in Figure 3.2, two communicative acts related via an is adjacent to relation
are called adjacency pair. Such corresponding communicative acts describe a typical dialogue
fragment between the user and the system (e.g. Question-Answer or Offer-Accept). Patterns
such as “noticing” or “teasing” have not been considered in this model as they are still too
subtle for the current state of human-machine interaction [ABF+06b].

21

Chapter 3 OntoUCP – Ontology-based Unified Communication Platform

3.1.3 Rhetorical Structure Theory (RST) Relations

As shown above, communicative acts are quite handy as basic basic blocks of communication.
Typical patterns can be described using adjacency pairs, but what is still missing, are means
to describe the connection of communicative acts in a more general way.

Rhetorical Structure Theory offers the possibility to describe internal relationships among
text portions and associated constraints and effects. It represents the functionality of an un-
derlying text in the form of a tree structure. These basic blocks, or in our case communicative
acts, are associated with non-leaf nodes, which are the rhetorical relations. Their purpose is
to describe the function of the associated sentences, or communicative acts. RST started out
as an empirical approach with three simplifying assumptions that have to be considered:

1. The elementary units joined by rhetorical relations are clauses. These units are called
elementary text spans and can be simple sentences, main or subordinate clauses. This
constraint has no scientific background but has been introduced by the authors [MT88]
to make analysis manageable and to strengthen agreement among human speech ana-
lysts.

2. Two elementary text spans or sub-trees are connected by exactly one rhetorical relation.
In case of more connections only the most prominent one has to be considered.

3. A tree constructed using rhetorical relations does always result in a coherent text. This
is due to the assumption that rhetorical relations do not imply any implicit text spans.

The above given assumptions ease the use of RST in general but they do not hold for every
application. In our case some refinements need to be done to make RST applicable as part
of the CDL.

The first assumption can easily be challenged by the fact that the same thing can be expressed
using different formulations. An example would be a causal relation which can be expressed
using a “because”, which connects two clauses, or by a “because of” which attaches a noun
phrase to a clause. These variations are considered as semantically equivalent, hence their
rhetorical representations should be the same. To make a system handle both text variants
equally, one of two measures should be taken:

1. Considering textual analysis such variants must be mapped to a generalized represen-
tation or, regarding the generation, either variant must be producible.

2. Another possibility would be the generalisation of the assumption, so that a rhetorical
relation might also hold between two text spans within the same clause.

As variations in natural language expression are quite common, many systems follow one of
the above given strategies to resolve this problem. This problem appears in a slightly different
form as far as human-computer interaction is concerned. In this case rhetorical relations that
might be obvious for a human observer might be inaccessible for the system. Consequently,
special attention needs to be paid to decisions about information for the interface. A different
partitioning of the information leads almost certainly to a different user interface.

The second assumption can be challenged by taking a closer look at the virtue of perspectives
of rhetorical relations. Following systemic functional linguistics [BDRS97], three categories
of rhetorical relations can be defined:

22

Chapter 3 OntoUCP – Ontology-based Unified Communication Platform

1. interpersonal relations
They define the intentional structure of the discourse (e.g. the motivation relation).

2. ideational relations
Through them the informational structure of the discourse is defined (e.g. sequence or
cause relation).

3. textual relations
They refer to the textual presentation itself (e.g. announcement of enumeration or
explicit reference to a piece of text).

Since there are cases in which the first two categories appear competitive they are considered
to be the more important ones. The current view among scientists is that both structures
are necessary but there is still no agreement whether a system must build on both of them
explicitly. For detailed information on how the relations have been classified within the
OntoUCP project see [ABF+06b].

Figure 3.3: Taxonomy of used RST relations

The third assumption has been challenged rarely so far. This is due to the fact that com-
putational approaches deal most frequently with narratives and fact-reports, whereas the
problem most frequently arises in inference-rich discourses. This problem might occur for
texts which are composed of several parts which extend the text’s structure in a similar way.
A frequently found example are mathematical texts in which a chain of equations may be
preceded or followed by explanation or justification for the different steps without an explicit
reference to the precise position of the text. This connection then can only be discovered in
the presentation and, therefore by the addressee.

A reasonable solution to this conflict would be to create and maintain a precise rhetorical
structure and to leave the appropriate presentation to the rendering engine. This approach
is supported by a rich repertoire of expressive means on most devices. A composed construct
could be represented as list or table for example, where extensions are included as clickable
links.

23

Chapter 3 OntoUCP – Ontology-based Unified Communication Platform

What can be learned for human-computer interaction is that a certain level of explicitness
needs to be chosen as a design decision and to be maintained throughout the project. This
will make the result more predictable but will not be critical for most applications.

The following RST relations are suitable for human-computer as well as for machine-machine
interaction. In total, there are five basic relations: Joint, Background, Elaboration, Circum-
stance and Result. These relations are divided into the three categories introduced above
as is illustrated in Figure 3.3. Their difference lies in the constraints they place on each
participant. The seven above named relations consist of symmetric (multi-nuclear) as well as
of asymmetric (nucleus-satellite) RST relations. Multi-nuclear relations link RST structures
or communicative acts that are independent of each other and offer the same kind of support
to their parent relation.

Nucleus-Satellite relations link different types of RST structures or communicative acts. The
main intention is linked via the nucleus, whereas the satellite links a structure that supports
the nucleus. All specified nucleus-satellite relations are interpersonal or ideational relations.
This signifies that they represent relationships of the content, which is referred to by the asso-
ciated communicative acts. Sequence and Joint are presentational relations. This means that
they do not correlate the content of the associated communicative acts but communicative
acts themselves based on the communicative goal of the discourse.

Each RST relation has at least two children, the nucleus and the satellite. The children can
be either RST relations or communicative acts. As every RST relation is followed by at least
two children, the leaves of the end of the discourse tree have to be communicative acts. An
additional constraint has been introduced which limits the number of following objects to
exactly two for nucleus-satellite relations.

Joint

Through the Joint relation associated objects are only related through their presentation. As
stated above, there does not have to be a connection between the content of the communica-
tive acts at the leaves.

Elaboration

The elaboration relation provides details on the information presented by the nucleus. These
details can be properties, parts, actions or other elaborations on the nucleus. The constraint
posed on the satellite sub-tree is that it must contain only assertive communicative acts. The
elaboration relation requires exactly one nucleus and at least one satellite.

Annotation

The annotation relation is a specialisation of the elaboration where the detailed information
is marked as additional comments. This relation mainly serves as a hint for rendering the
elaboration.

24

Chapter 3 OntoUCP – Ontology-based Unified Communication Platform

Title

The title relation is a specialisation of the elaboration as well. In this case the detailed
information is marked as a restatement of the nucleus information. This relation mainly
serves as a hint for rendering the elaboration.

Circumstance

This relation describes situations in which the nucleus is embedded. The nucleus gets valid
as soon as the satellite situation is fulfilled (e.g. a visitor of an art exhibition only gets
information about the pieces of art that are in the room he is in). This relation requires
exactly one nucleus and one satellite.

Result

The satellite sub-tree of the result relation describes the result caused by the nucleus. It
is possible to have more than one result. As the result consists of information conveyed to
the receiver, the communicative acts contained by the satellite can only be assertive. There
needs to be exactly one nucleus and one satellite.

Background

The so far only interpersonal relation is used to provide the system designer with the pos-
sibility to include information that he considers as necessary for understanding or further
acting. This relation is based on the designers believes. An example would be that the
designer believes that the user has to get the content delivered by the satellite to be able
to understand or act upon the content represented by the nucleus. Due to this reason the
Background relation requires exactly one nucleus and one satellite. This satellite provides
details on the information conveyed by the nucleus. Such details can be properties, parts,
actions or other elaborations of the nucleus. According to this fact the satellite sub-tree has
been constraint to contain only assertive communicative acts.

3.1.4 Procedural Constructs

Most RST relations describe a subject-matter relationship between the branches they relate
(e.g. the dialogue situated in the nucleus branch of an Elaboration is elaborated by its satellite
branch). These relations only suggest a particular execution order but do not imply one. In
some cases it turned out to be useful to define sequences and repetitions, based on the
evaluation of some condition. This led to the introduction of prcedural constructs. By
determining the order of when to display information to the user, they determine which
information can not be presented together in the same screen of the WIMP UI as well.

Sequence

This procedural construct defines an order for the execution of its sub-trees. Like any dis-
course relation, it relates two sub-trees and implies the constraint that the type of the highest
level communicative act has to be the same in both.

25

Chapter 3 OntoUCP – Ontology-based Unified Communication Platform

IfUntil

The IfUntil construct allows the interaction designer to define the order of execution related
to conditions. Its statechart is shown in Figure 3.4. The combination of an if-statement and
a conditional loop make this construct more complex compared to procedural statements
found in typical procedural programming languages.

Condition

Tree

Els e

Then

RepeatCondition

[false]

[true]

[false]

[true]

Figure 3.4: IfUntil Statechart

As soon as the If Condition is fulfilled, the Then Branch is executed. In case it turns out
false two different scenarious are possible:

1. the Tree branch is executed again and again until the Condition turns true, or

2. the optional Else branch is executed if the RepeatCondition is false. As the Else
branch is optional it might be missing as well. In this case the sub-tree with the
IfUntil as root node, is considered as completely executed. The dialogue continues
either at the next higher level or stops if the IfUntil node is the root of the dialogue
itself.

Combining communicative acts, adjacency pairs, RST relations and procedural constructs,
the CDL was developed. Its purpose is to describe the interaction between a user and a sys-
tem. Every such discourse is represented by a tree structure. The leaf nodes are the Commu-
nicative Acts, which are connected via RST-relations and procedural constructs. Graphically
these relations are represented through inner nodes. Some types of communicative acts have
been related as adjacency pairs using the results of conversation analysis. This structure is
illustrated by the UML-class diagram in Figure 3.5. What needs to be considered is that this
class diagram allows modelling other graphs besides tree structures as well and therefore is
not as restrictive as its interpretation used to create a discourse model. For further details
on the content specification language see [PFA+09] and [ABF+06a].

3.2 The Abstract User Interface

The abstract UI model is an intermediate step between the discourse model and the generated
code. Basically, it is a widget-based tree which represents the user interface structure. It is
based on an abstract Widget class, from which all the other Widgets are derived. Basically,
all Widgets can be divided into two classes. The OutputWidgets’ only task is to represent

26

Chapter 3 OntoUCP – Ontology-based Unified Communication Platform

Discours e

Node

RST Relation

Communicative Act

+ content

Adjacency PairDiscourse Relation

Procedural Construc t

+child

2..*

+parent 0..1

0..*

inserted sequence

+opening
1

is adjacent to >

+closing
0..1

+rootNode 1

Figure 3.5: Discourse Metamodel [PFA+09]

information, whereas the InputWidgets are used to gather information from the user. A
short description of the most important Widgets found in the abstract UI meta-model is
given below. For more details see [ABF+07b]. To separate cleary between Widgets defined
in the abstract UI meta-model and Java widgets the abstract ones are written with small
capitals.

Widget Class

Widget is the abstract representation of a widget capturing its basic characteristics. All
Input as well as Output Widgets are derived from this class. Its properties are:

• visible – the value of this attribute defines whether the widget is visible or not.

• style – each widget can be assigned a certain style, which effects the way it is displayed.

• name – the name is used as a unique reference to the widget.

• enabled – this property enables or disables the widget in the actual screen representa-
tion.

• tracesTo – this field relates the widget to a communicative act. This communicative
act delivers the information needed to be displayed by the widget.

• layoutData – contains the data needed to set constraints imposed by a certain layout
type (e.g. GridBagConstraints).

• parent – in case the widget is contained by another widget this field specifies the
container widget.

• content – this property field holds the data or a reference to the data the widget should
display.

27

Chapter 3 OntoUCP – Ontology-based Unified Communication Platform

• contentSpecification – this property is relevant only for the mapping of the discourse
model to the abstract UI description. It specifies which data to put in the widget’s
content field by means of the Object Constraint Language(OCL).

• text – this field contains static text to be displayed by the widget.

• getTopPanel() – this method returns the top panel containing the widget. It is needed
to relate the widget to a window.

OutputWidget Class

As most of the widgets defined within the abstract UI meta-model can be distinguished due to
their purpose, two abstract classes have been introduced, which inherit all their characteristics
from the widget class presented above. All widgets displaying information are derived from
this class.

InputWidget Class

It is an abstract class as well and represents the counterpart to OutputWidget. Further-
more it serves as base class for all widgets needed to collect information from the user. It
extends the widget class by introducing the property event.

• Event – this property holds the specification of what needs to be done with the collected
data.

Panel Class

This class serves as a container for other widgets, which are arranged according to a given
layout manager. It is derived from Widget and therefore inherits all its characteristics.
Panel is not an abstract class and can therefore be found in abstract UI models. Moreover,
it serves as base class for other classes that contain widgets (e.g. ListWidget).

• Widgets – this property hosts the widgets contained by the panel.

• Layout – specifies the layout manager to be used to arrange the widgets.

Frame Class

Each window of the application to be generated is represented by this widget class. An
application may contain more than one window, which implies that more than one Frame
widget will be found in the abstract UI model. As a Frame represents a window and a
window can not be contained by another widget but choice, it can only be found one level
beneath the root choice in the abstract UI description.

• title – the title of the window is set according to the value found in this field.

• screenResolutionX – this property defines the x resolution of the window.

• screenResolutionY – this property defines the y resolution of the window.

28

Chapter 3 OntoUCP – Ontology-based Unified Communication Platform

ListWidget Class

This abstract widget class is derived from Panel as well and represents a reoccuring set of
widgets.

Choice Class

This class offers the opportunity to choose exactly one out of its child widgets. A Choice
is the root of all abstract UI representations, its children being the windows to be generated
(i.e. Frames). It may, of course also appear somewhere within the tree structure of the
abstract UI. Choice is derived from Panel. As Panel is derived from Widget, this class
inherits a Widget’s characteristics as well.

TabControl Class

Being a specialisation from Choice, TabControl offers the user to switch between differ-
ent Panels within the same screen. Concerning the inherited characteristics it is equal to
Choice, differing only in the code that needs to be generated.

Label Class

This class is the abstract representation of a label widget. As it can only be used to display
information, it is derived from the abstract widget class OutputWidget.

Button Class

It defines the abstract representation of a button widget and is derived from InputWidget.

TextBox Class

This class represents a user input field and is derived from InputWidget as well.

Hyperlink Class

The Hyperlink is the abstract representation of a hyperlink and inherits all its characteris-
tics from Button.

PictureBox Class

This class represents the abstract widget for the illustration of a picture.

• picture – this attribute contains the name of the picture to be displayed.

29

Chapter 3 OntoUCP – Ontology-based Unified Communication Platform

ImageMap Class

This class belongs to the category InputWidget and is, therefore derived from this class.

• picture – this property field carries the name of the picture to be used.

ComboBox Class

A Combo Box widget represents the abstract class of a widget that allows the user to choose
one or more items from an offered list. It extends the class InputWidget introducing the
following two properties:

• type – the value of this property defines whether only one or more items from the
offered list can be selected.

• list – this property contains the items to be added to the list offered to the user.

Style Class

A Style can be added to any widget to set its style properties. It is not derived from any
other widget.

• id – this attribute contains the name of any CSS class which should be used to set the
associated widget’s style attributes.

LayoutManager Class

Each Panel can optionally have a LayoutManager. This abstract class forms the base
class from which all layout managers are derived.

FlowLayout Class

This class is the abstract representation of a flow layout manager. It is derived from Lay-
outManager.

XYLayout Class

This class is the abstract representation of an absolute, or XY layout. Just like FlowLayout
it is directly derived from LayoutManager.

GridLayout Class

This class is directly derived from LayoutManager, but as it is an abstract representation
of a grid layout manager, it introduces two more attributes.

• rows – this attribute contains the grid’s number of rows.

• cols – this attribute contains the grid’s number of columns.

30

Chapter 3 OntoUCP – Ontology-based Unified Communication Platform

LayoutData Class

Depending on the layout manager additional information may be needed. This information
is attached to the corresponding widget and is modelled as LayoutData in the abstract UI
meta-model. LayoutData has been introduced as an abstract class from which the layout
manager specific layout data is derived.

XYLayoutData Class

This widget provides the additional data needed to place a widget correctly in an XY layout.
It is directly derived from LayoutData.

• x – this values specifies the x coordinate of the upper left corner of the widget.

• y – this values specifies the y coordinate of the upper left corner of the widget.

• width – the width of the widget is specified by this attribute.

• height – the height of the widget is specified by this attribute.

GridLayoutData Class

To place a widget correctly on a grid, additional data is needed. This data is stored in an
GridLayoutData object, which is attached to the widget that should be placed. Grid-
LayoutData is directly derived from LayoutData.

• row – this attribute specifies in which row of the grid the widget should be placed.

• col – the corresponding column is specified by this attribute.

• rowSpan – any widget spans one row by default. If a widget should cover more rows,
the value of this field needs to be set.

• colSpan – this attribute specifies the number of columns a widget spans.

• alignment – several predefined values are available to align a widget. Therefore, this
attribute contains a value specified in the abstract UI enumeration. AlignmentType.

• weightx – grid layout managers offer to influence the distribution of extra space. This
attribute sets the x value of the corresponding widget.

• weighty – this attribute influences the distribution of extra space on the y-axis.

• fill – predefined values for this attribute are provided in the abstract UI’s FillType
enumeration. This attribute contains one of those values.

The abstract UI model is generated by applying mapping rules to the discourse model. Both
models are instances of meta-models, which have been constructed using Eclipse’s MOF-like
core meta-model called Ecore. The model-to-model transformation is supported by languages
like the ATLAS Transformation Language (ATL). For more details on the mapping rules see
[ABF+07b].

31

Chapter 3 OntoUCP – Ontology-based Unified Communication Platform

3.3 The Rendering Architecture

The rendering process is divided into two steps. At first an abstract user interface description
is generated, using the discourse model and additional information, like a device profile and
user preferences as input. This model specifies the structure of the user interface on a widget
basis. It is independent of the output toolkit, used to display the screens in the end, but it
is not independent of the target device. All the additional information like screen resolution,
paths, etc. is included either directly in the abstract UI description or passed on to the code
generator via a properties object.

The separation of the rendering process in two steps has the major advantage that the
generated abstract model is still platform independent and can be translated into several
different GUI-toolkit languages in a second step. Another advantage is that the design of
the screens that are finally displayed can be influenced directly and much more easily by
modifying the generated abstract UI model, before triggering the actual code generation.
This leads to a more predictable output.

Figure 3.6 shows a conceptual view of the rendering architecture, highlighting the components
needed to generate a system automatically. As illustrated below the rendering architecture
consists of three main components:

• A Discourse To Structural UI Transformer

• A Concrete UI Code Generator

• And a UI Behaviour Generator.

The Discourse To Structural UI Transformer takes the Discourse- as well as the Domain-of-
Discourse model as input and transforms them into a structural UI model. This translation
is completed, taking device constraints into consideration. Therefore, the resulting abstract
UI model is not independent of the target device but it is still not tailored to a certain target
toolkit. The Discourse To Structural UI Transformer completes a model-to-model transfor-
mation based on rules. Such a mapping rule can state, for example that each “Informing”
communicative act found in the discourse model has to be transformed to a panel containing
a label widget for each discourse object referred to by the communicative act.

32

Chapter 3 OntoUCP – Ontology-based Unified Communication Platform

Domain of
Discourse Model

Discourse
Model

Target Platform Constraints Style Info

Structural UI Model

Discourse To
Structural UI
Transformer

Concrete UI
Code

Generator

Generated GUI
(SWT, Swing, ...)

View

Runtime Platform
(GUI Toolkit)

UI Behavior
Generator

Generation Framework Components

Generated Models and Components

Externally Provided Components

Generation Output

Generation Input

C
o

n
tr

o
lle

r

Figure 3.6: The Rendering Architecture [FKP+09]

The concrete UI code generator takes the abstract UI description, generated by the Dis-
course To Structural UI Transformer as input and maps it to concrete widgets, available on
the target platform’s GUI toolkit. To gather the information not provided by the abstract
UI description, additional constraints are passed on and style information can be included
deliberately.

Apart from the source code for the actual window representation, the component needed for
the communication during the runtime of the system is generated as well. These components
are generated according to the Model-View-Controller (MVC) pattern. The user interface
needs to be able to receive data and update the corresponding widgets. This is done by a
controller that selects the corresponding screens (views) and sends the data needed to fill the
widgets via communicative acts. Apart from receiving information from the controller, the
user interface needs to be able to accept input from the user via its widgets.

The UI Behaviour Generator generates a finit statemachine that represents the model com-
ponent of the MVC pattern. As multimodal interfaces are supported the output depends on
the type of interface. For further details on this component see [PFA+09], [AFK+06] and
[ABF+07a].

The input models needed for the rendering process have to be provided by the system designer.
The Discourse Model specifies the communication between the system and the user and refers
to objects defined in the Domain of Discourse model. This model contains the objects that
are needed to model the system’s domain of application. Optional style information can be
provided in the form of Cascading Style Sheets (CSS), if the designer wishes to influence the
design of the generated WIMP UI.

As soon as the designer selects a target device for the application, additional constraints are
set. These constrains mainly represent characteristics of the selected device. They contain
information like screen size, screen resolution or package names. Moreover, information like

33

Chapter 3 OntoUCP – Ontology-based Unified Communication Platform

country, language or position should be contained as well as a personalization context, which
determines whether the end user is a novice or an expert. This information is partly needed for
the abstract UI generation as well and, therefore passed on to the code generator. Additional
information needed by the code generator is style information. Within this document font
styles, types, sizes and any other information concerning the layout can be defined. All these
values have to be set before the start of the generation process.

3.4 The Online Shop

To illustrate the ideas presented so far, an online shop application is introduced as a running
example. It is presented from the very first step till the running application. The commu-
nication taking place between the system and the user has been specified using the CDL
presented above. To support the designer, a graphical modelling tool is available, which has
been used to create this discourse model. The graphical tree representation of the whole
discourse can be found in the appendix. Each step of the discourse is presented in detail,
following the order of appearance in the application.

3.4.1 The Online Shop Discourse Model

As soon as the onlineshop application is started, it should offer the user a list of all the product
categories available. Using the CDL this can be modelled as an Offer-Accept adjacency pair.
As can be seen in Figure 3.7, the system designer chose to provide the user with some extra
information on the product categories. Therefore, the Background relation has been used.
Its satellite branch extends the nucleus and provides the communicative act that holds the
extra information. All leaves contained in this part of the discourse are communicative acts.
This indicates that this sub-tree can be found at the lower end of the discourse tree.

Figure 3.7: Background relation

The sub-tree illustrated in Figure 3.7 is related to the one in Figure 3.8 through an IfUntil
relation. The second one forming the Then branch is presented as soon as the Tree branch
has been executed successfully. The main purpose of this part is to get a product selected by
the user. Therefore, the nucleus of this relation is another adjacency pair which offers a list
of products available in the formerly selected product category.

34

Chapter 3 OntoUCP – Ontology-based Unified Communication Platform

The satellite branch links a Joint relation which contains two informings. These commu-
nicative acts offer the additional information required by the Background relation to the
user. The Joint only becomes necessary because there is more than one informing to be
linked.

Figure 3.8: Then branch of IfUntil relation

As soon as the user selects a product, this branch of the IfUntil relation has been completed
successfully and the next relation to be found one level further up the discourse tree is being
executed. In this discourse model, this is once more an IfUntil relation. With the extract
presented in Figure 3.8 the Tree branch of this relation has been completed and the focus
lies now on the Then branch. This branch consists of a Joint relation that links three
adjacency pairs as can be seen in Figure 3.9.

Figure 3.9: Joint relation

In contrast to the adjacency pairs presented above, these ones consist of OpenQuestions.
Their target is to collect the data concerning the billing and the delivery address as well as
the credit card details needed to finalize the transaction. This signifies that the user adds
information to the system. A ClosedQuestion as presented in Figure 3.7 and 3.8 allows the
user only to choose one from several available options. Whether the data inserted by the user
in an OpenQuestion is valid or not needs to be verified by the application logic of the system.
If the data entered by the user is to be accepted by the system, the online shop discourse has
come to a successful end.

35

Chapter 3 OntoUCP – Ontology-based Unified Communication Platform

3.4.2 The Online Shop Domain of Discourse Model

Just like the discourse model this model needs to be provided by the designer of the system.
It specifies all the classes and their hierarchical structures typical for the domain the system is
built for. Objects or their attributes defined in the domain of discourse model are used to fill
the communicative acts’ content field. Communicative acts are used to store and transport
information between the application logic and the user interface. Figure 3.10 presents the
domain of discourse model of the online shop application. All the classes needed for the

Figure 3.10: Online Shop Domain of Discourse Model

execution of the online shop are defined in the UML class diagram presented in Figure 3.10.
This diagram has been designed as an Ecore diagram, which allows generating the Java source
code automatically. To create an instance of such a class during the runtime of the system,
the associated content factory has to be used.

The application logic uses these classes to provide the user information with information that
should be displayed. An example would be ProductCategory, which carries the information
to be displayed by the Informing communicative act in the objects description field. Further
examples would be all the attributes of Product that are related to different communicative
acts of the Then branch subtree presented in Figure 3.8.

The user interface itself instantiates objects defined in the domain of discourse model as well.
It uses them to store information collected from the user and subsequently sends the objects
to the application logic. Examples would be billing as well as delivery address.

36

Chapter 3 OntoUCP – Ontology-based Unified Communication Platform

The class CCProvider is an enumeration, holding all the credit card providers available for
payment. The user interface offers this list to the user and puts the selected value in the
CreditCard class’ provider attribute field.

What is of great interest concerning the model-to-code transformation is the connection
between the domain of discourse model and the abstract user interface description. More
details on this topic are given below.

37

Chapter 4

From Abstract User Interface to
Java Swing

As presented in Chapter 3, the whole generation process can be divided in two steps. The
first step takes the discourse model as well as the domain of discourse model as input and
generates, apart from components needed for the communication during runtime, an abstract
user interface specification.

As soon as the first step is completed the code generator translates the abstract user interface
description to source code. This code provides all the windows and frames that are needed
to communicate with a user. Besides a component needed to enable the communication
between formerly generated components is created. This component implements the Model-
View-Controller (MVC) principle, which separates the tasks to be fulfilled by every module.
This chapter elaborates on the second step of the generation process – the actual source code
generation.

4.1 The Code Generator

The code generator’s task is the transformation of an abstract user interface specification to
source code of a specified programming language. This structural user interface specification
is provided as a model which is an instance of a meta-model. In other words, what has
to be completed is a model to code transformation. As graphical user interfaces normally
consists of a limited number of widgets that are combined in various ways, the resulting code
can be seen as a combination of similar code fragments that differ only in their sequence of
appearance.

The most appropriate generation approach is the combination of meta-model and templates,
presented above. As large parts of the OntoUCP project are based on the Eclipse Modeling
Framework and, therefore on Java, JET was chosen as template language. The code generator
itself was implemented as a template engine, using Java Swing as target toolkit.

Figure 4.1 illustrates the basic approach of the code generator. All the structural informa-
tion regarding the user interface is specified by the abstract UI specification. It consists of an
ordered set of the Widgets presented in 3.2. Its structure forms a tree, a Choice making

38

Chapter 4 From Abstract User Interface to Java Swing

Figure 4.1: The Code Generator

up the root. As Frames are the abstract representations of windows, any Widget one level
below the root Choice needs to be such a Frame. These Frames contain all the Wid-
gets needed to interact with the user as specified in the discourse model. If an application
requested only one window there would be no need for the root being a Choice, but as the
abstract UI is generated automatically, there’s no problem to add this Choice to provide
more flexibility. All considerations concerning a meaningful distribution of all the Widgets
needed to interact with the user to accomplish the tasks designed in the discourse model,
have to be made during the generation of the abstract UI. As this description is the result
of the first generation step, it is based on the discourse model as well as on the domain of
discourse model.

The discourse model defines the sequence of interaction and the domain of discourse model
provides the objects needed by the system to describe actions in its domain of application.
Using EMF, both models can be defined as Ecore diagrams, resulting in automatically gen-
erated code for its classes. A content factory is automatically generated, which enables the
programmer to instantiate these classes.

The abstract UI specification is an instance of a meta-model. As this meta-model has been
created using Ecore as well, such specifications can be created or modified without much
effort by using the editor provided by EMF.

Figure 4.1 shows that the input includes Cascading Style Sheets (CSS) apart from the abstract
UI model. This mechanism allows the separation of functional content and design. All the
style information is bundled in these files and mapped to target platform specific values
by the generator at generation time. Another advantage is that the layout of the resulting
windows can be changed quite easily by modifying the style sheet and generating the source
code anew. The generation of the abstract UI does not have to be repeated.

All the remaining specifications needed by the code generator, can be put in a properties file
or object. This item is created automatically during the first step of the generation process
and passed on. Information contained by this object ranges from runtime specific settings to
values concerning the package and path of where to save the generated files or where to find
images to be included.

39

Chapter 4 From Abstract User Interface to Java Swing

4.1.1 The Code Generator Implementation Class

This class poses the core element of the code generator. Its generate() method is called during
the generation process and performs all major steps needed to transform the input data to
correct Java Swing source code. Because JET offers the full Java syntax, some functions were
outsourced to the templates to keep the code well structured and easily maintainable.

The generator class takes two input objects, the abstract UI specification and the properties
object. The additional style information is not obligatory. The two mandatory objects are
the result of the first step of the generation process. The code generator combines this infor-
mation with suitable templates that have to be provided in advance, to produce the desired
output. Implementing the code generator as a template engine keeps this component target
toolkit independent and allows the addition of another target toolkit by simply providing the
appropriate templates. The generator implementation class extends an abstract class called
AbstractGenerator. This class contains method declarations and the code formatter, that
is used to give the generated output String a more readable format. In the following the
methods implemented in the GeneratorImpl class and their function are presented.

4.1.1.1 generate()

This method contains the core functionality of the module and is called to complete the
generation step. The two input objects resulting from the first generation step are handed to
this method. The abstract UI description is passed on as an IFile and the properties object
as a map containing the key as a String and the corresponding object.

The first action of this method is to load the abstract UI description. As it is structured as
a tree, the root Choice can be accessed by getting the element with the index 0.

Subsequently all Widget names are transformed to be unique. This task is completed by
simply attaching a sequence number to every Widget’s name. This way the Widget’s
name can be used as variable name in the source code later on.

The next step is to create a map named “messages”, which will be filled with all the text
contained by any widget of the abstract UI description. This map, of course can not contain
text from widgets whose content is filled during the runtime of the system. Its values are
written to a properties file in the end. During the runtime of the system all widgets that
do not obtain their text from the content of a communicative act, get it from this file. The
advantage of investing this little extra effort is that the language used by an application can
easily be changed by replacing the messages.properties file. All that needs to be translated
are the values displayed by the associated widgets.

As the separation from content and style has proven to be of great value not only in the Web
but in all applications, style sheets have been introduced. The details on which CSS values
can be defined and to which Java Swing values they are mapped are presented in section
4.1.3.

For now the generate() method tries to load a CSS file from a location given by in the launch
configuration of the code generator. If any file is found it is loaded and used to set the
widget’s style attributes. Missing style information does not pose a serious problem, as all
widgets provided by Java Swing are equipped with a default value.

40

Chapter 4 From Abstract User Interface to Java Swing

Once all these preparative steps have been completed, the next step is to start the actual code
generation process. All Widgets of the abstract UI tree are dealt with one after another,
starting with the root Choice once more. As a Choice poses a Widget that does not
produce any source code, the real start of the process is one level further down the tree.
This level contains all the Frames that are translated into the application’s windows. To
generate the actual source code, a generateFrame() method has been implemented, which
returns the code as String. Each window extends Java Swings JFrame and therefore needs
to be generated as its own class. As classes need to be stored in their own *.java file, a
writeJavaFile() method has been implemented. In case the root Widget of the abstract UI
specification is not of the type Choice the generation process is stopped. Such circumstances
would require a new generation of the abstract UI specification.

So far, all code needed to display the actual windows has been generated. What is still left to
do is to generate a component needed to complete the implementation of the MVC pattern.
The model, as well as the control component, are either generated during the first generation
step or taken care of by other modules. This leaves the view component to be implemented.
By invoking the generate() method of the appropriate template, this task can be completed
easily (for details see 4.1.2.4). The interoperability of these three independently generated
components is assured through the definition of interfaces.

Two more features have been included in the code generator, which require generated code
as well. The first one has already been introduced and is based on the messages map. Its
generation requires the creation of two more template instances that result in a generated
Java class and the messages.properties file. The Java class provides the get() method that is
needed to access the values stored in the messages.properties file. The file itself contains the
actual values, loaded during the runtime of the system.

As not all content to fill the user interface is already available at generation time, the gen-
erated code can not simply be compiled and run. To actually display the windows, the
communicative acts that provide the information to the window’s widgets need to be pro-
vided. Therefore, an extra class named Preview is generated automatically, which allows the
verification of the generated source code. This class provides all the needed communicative
acts, which themselves provide the content objects needed by the widgets. By default their
content is set to null, but a mechanism has been included to load content objects during the
execution of the Preview class.

If all the above presented steps have been executed successfully, the structural code generation
for Java Swing has been finished!

4.1.2 From Structural UI Widgets to Java Swing

This section is dedicated to the actual generation process i.e., it describes what happens as
soon as the generateFrame() method is called and presents subsequently called methods as
well as the templates used by this methods.

Java, as an object-oriented programming language, supports modular programming. Using
JET, this principle together with encapsulation was used to transfer huge parts of the Wid-
get-specific logic, as well as toolkit specific issues, from the generator to the corresponding
template. This way the generator implementation class has been kept almost independent of

41

Chapter 4 From Abstract User Interface to Java Swing

the target toolkit. Hence it can easily be modified to generate code for a different toolkit, by
providing the appropriate templates.

JET does not offer its own template language, but allows the user to include any kind of Java
code by using scriptlets or expressions (see section 2.2.4.1 for details). Due to this reason the
template mainly consists of Java statements that differ only in their time of execution (i.e.
generation-time or runtime). All logic needed during the runtime of the system is treated
as a String during the generation. The parts needed to translate the template correctly
need to be embedded as scriptlets. The return value of any embedded expression needs to
be a String, because this String is directly appended to the output. Specific JET Editors
ease the distinction of which code belongs to which time by underlying the source code with
different colours.

4.1.2.1 Inclusions

By exploiting the possibility of including any file in a template via JET’s include direc-
tive, repeating procedures can be modularized. This way the readability of the templates is
improved and the amount of code that has to be written can be reduced.

All such files that encapsulate a certain functionality, are created as simple text files. To
distinguish them from proper template files their ending has been assigned as jetinc. Various
inclusions have been written for the code generator. They appear in almost any *.javajet file
and are, therefore presented before the actual template files.

inc header

This header is added to all the templates and only relevant at the time of generation. The
argument passed on to the generate() method of the template is an array of objects. The first
element of this array is always the Widget the code is generated for. The header creates
a variable of the type Widget and casts the first element of the object array to this type.
Furthermore two local String variables named jName and jPanelName are created. jName
is filled with a unique name for any Widget to be generated and jPanelName contains the
name of the Widget’s parent, if it has one. These three variables are available in any
template and they allow the modularisation of code in further JET inclusions 4.1.2.1.

inc addToPanel

Any Java Swing widget that is contained by another widget, needs to be added to its con-
taining component. The only component that is never added to any container is the frame
itself. This header’s purpose is to add the appropriate line of source code, depending on the
type of component the widget needs to be added to. Possible containers are JTabbedPane,
JPanel or the content pane of the JFrame itself.

Moreover it needs to be checked, whether the Widget is equipped with layout data or not.
Neither FlowLayout nor XYLayout need this information, but in case of GridBagLayout the
additional constraints need to be included in the add() method as well.

42

Chapter 4 From Abstract User Interface to Java Swing

inc getCaContent

During the runtime of the system, the communication is based on sending and receiving
communicative acts. Each of these communicative acts has a unique id and carries the
information as an object, defined in the domain of discourse model of the system, in its
content field.

Any OutputWidget whose content is filled dynamically during the runtime of the system
extracts the information it displays from the communicative act specified in its tracesTo field.
Frequently one Widget does not display the whole object, but only the value of one of the
object’s attributes. The information which attribute field should be selected is specified in
the Widget’s content field.

Any InputWidget stores the information gathered through the user interface in an object
defined in the domain of discourse model as well. As soon as required, this object is sent to
the application logic. The object is passed on as content of the communicative act specified
in the Widget’s event field.

The extraction of the information and its storage can be handled the same way for all Wid-
gets and are therefore perfectly encapsulate able in an inclusion. One task completed by the
code contained by the ind getCAContent.jetinc, is to check how the information needs to be
retrieved from the communicative act in case of an OutputWidget. For InputWidgets
the object to store the collected information is created. As several abstract UI configurations
can be found for both widget types, the inclusion has been designed to offer the appropriate
lines of code for each of them.

Due to the classification hierarchy of the widgets presented in 3.2, the inclusion only needs
to distinguish between Input and OutputWidgets. As InputWidgets may not only
display information but primarily collect it, they need additional functionality compared to
the OutputWidgets. The process of data retrieval is the same for both widget types.
The communicative act to be used is specified in the Widget’s tracesTo field, its content
value specifying what should be displayed. Concerning the type of this value, three different
scenarios are possible:

1. The whole object can be delivered by the communicative act. In theis case the object
is an instance of EClass, no additional code is required, because the needed object is
returned directly by calling the getContent() method on the communicative act.

2. Alternatively, the value can only be an attribute of the communicative act’s content
object. If the content value is an instance of EAttribute, the returned object needs
to be cast to the type of the containing class. The required value can be extracted
subsequently by calling the appropriate get() method on this object.

3. In the last case the value is just a reference to another object. EReferences just like
EAttributes require to cast the received object to a certain type. In this case the
reference can either point to an object or to an attribute of an object.

According to which case is found, the inclusion adds the needed lines of code to retrieve the
information correctly.

One further mechanism that has been implemented in this file creates an instance of the
object found in the corresponding communicative act’s content field. The object is only

43

Chapter 4 From Abstract User Interface to Java Swing

created if it does not already exist, otherwise the existing object is used by the widget.
As OutputWidgets only read from received objects, this function is only needed by In-
putWidgets. Frequently, the gathered information can be matched to an attribute of an
object defined in the system’s domain of discourse model. Therefore, the input widget checks
whether the object needed to store the information already exists. If not, the object is created
and the attribute value is set. In case the object already exists, the attribute is set in the
existing instance. The whole object is always stored within the corresponding communicative
act’s content field. As soon as required, this communicative act, as specified in the Widget’s
event field, is sent to the application logic.

Of course the value to be set can not only be an attribute, but an object or a reference as well.
Therefore, the inclusion distinguishes those cases and adds different lines of code according
to the prevailing situation.

The OntoUCP project currently relies on Ecore models for describing the domain of discourse.
Therefore, information on which package includes the factory to create instances of any object
defined this way needs to be provided as well. This information is passed on in the properties
file handed to the generator.

inc setLayoutData

Three different types of layout are defined in the abstract UI meta-model. The only layout
manager that requires additional constraints is Java Swing’s GridBagLayout. The code
contained by this header checks whether the Widget has GridLayoutData attached or
not. If so, the values defined in the abstract UI are mapped to Java Swing attributes as
specified in 4.1.2.3. Finally the constraints are added to the widget they belong to. The line
of code needed in the template is the same for every widget as any widet’s name is stored in
the variable jName.

inc setPreferredSize

This inclusion has no functional capacity. Its only purpose is to influence the layout. Java
Swing sets the size of a component according to its “PreferredSize” value. If this value is
not set, the actual size is calculated by the layout manager and differs for every widget. A
label’s size for example, is set according to the length of the text it displays. This way every
widget’s size is unique. To unify the appearance of the generated screens, the width of any
widget is set in advance, with the height to be calculated during runtime.

The width is set to a third of the frame’s x-resolution minus a tenth of the same value. This
leaves a margin of one twentieth at each edge of the frame, even if three widgets are displayed
next to each other in the same row. The x-resolution is already available in the abstract UI
specification, hence this value is set at the time of generation.

The height of the widget is calculated dynamically according to the length of the text that
needs to be displayed. Another parameter that influences this value is the size of the font
the widget uses.

If the text is given in the abstract UI specification as well, no font size is set and it is shorter
than the width of the widget, the height is set to the widget’s Java Swing default value. If the
text can not be displayed in one row, the height value is adjusted and the text is displayed

44

Chapter 4 From Abstract User Interface to Java Swing

in as many lines as required. To implement the required line break, Java’s support of HTML
has been exploited. Any widget’s text is set as HTML text, using the HTML tag to center
the text.

In case the content of the widget is only known at runtime, the height is calculated dynam-
ically. The following formula is used to compute the factor with which the default height
value is multiplied:

factor =
widget.getPreferredSize().getWidth()

screenResolution−screenResolution∗0.1
3

+ 1

1 is added to the result of the division because the type of factor is cast from double to
Integer subsequently. The size of the font used by the widget is considered by checking
whether its value multiplied by two is higher than the Java Swing default value. If so, the
default value is doubled.

By using this formula to calculate the heigth dynamically, the widgets’ dimensions and there-
fore the whole panels’ design is unified. The preferred size differs from its default value only
in case the text to be displayed does not fit in one line. The values used in the formula should
be seen as default values and can, of course be adjusted if needed.

inc setStyleData

The style aspect is something that does not influence the logic of a system at all and can be
treated separately for this reason. Cascading Style Sheets (CSS) have been designed to fulfil
exactly this purpose. They encapsulate all information concerning the design of an object,
making it easy to adapt a system to a new layout by simply exchanging the style sheet. As
CSS have been designed for HTML pages, the attributes need to be mapped to Java Swing
attributes by the generator. The CSS attributes supported so far as well as the mapping are
documented in detail in 4.1.3.

According to the abstract UI meta-model, all Widgets can be given additional style informa-
tion. The code needed to set the appropriate attributes, is the same for all the widgets and
has therefore been put in the inc setStyleData.jetinc. This generalisation is possible due to
the header inclusion presented before. As style is a Widget’s attribute, it is inherited by
all classes derived from Widget, but can be accessed as well by casting any Widget to its
base class. This is exactly what the header inclusion does.

Using Java Swing, the attributes can be applied directly to the widget instances. The only
exception is a JFrame, where the options need to be set for the object’s content pane. Apart
from this mechanism, this inclusion sets the default values for font type and size, as well as
for border thickness and colour. It is included only if a style sheet is available. In any other
case no attributes are set and the Java Swing default values are used.

Apart from the attribute matching, this inclusion is the fall-back mechanism known from
HTML. If any widget has a valid style id attribute, the generator tries to extract all the
values to be set from this CSS class. As classes in CSS frequently extend elements, the
inclusion tries to find the attribute value there if nothing is specified in the CSS class. If both
attempts fail, the value is set to a default value specified in the inclusion. An example is the
following extraction of a style sheet:

45

Chapter 4 From Abstract User Interface to Java Swing

.heading {
font-weight: bold;
font-size: 14;

}

label {
font-size: 12;
font-style: italic;
font-family: Dialog;
color: rgb(0, 0, 0);
background-color: rgb(99, 248, 16);

}

The abstract UI defines a label’s style id as .heading. The code generator then tries to extract
all the attributes from this class. Font-weight as well as font-size can be found. As there are
no values specified for the rest of the attributes, the generator starts looking at the element
defined by the widget’s name. This way the background as well as the foreground color
and the font-family are set. This saves the designer the work of specifying the values twice.
Instead, they are inherited and only the new values or the ones to be changed need to be
introduced or overwritten.

The actual access to the style sheet values is provided by a style sheet parser, that has been
developed as a free software project named CSS4J [Ame08]. This parser implements the
Document Object Model (DOM) Level 2 CSS interface specification published by the World
Wide Web Consortium (W3C) [WHA00]. Apart from parsing the style sheet, the interface
provides objects for easy handling of frequently needed attributes (e.g. an RGBColor object).

4.1.2.2 Template Classes

So far the general generation aspects have been presented. As these functions are stored
in *.jetinc files they are not translated by the JET engine. This would not be possible
anyway as they do not contain the obligatory JET directive. The following subsection is
dedicated to fully fledged templates that are translated to common Java classes by the JET
engine. These classes are instantiated by the corresponding generateWidget() method of the
generator. They contain the inclusions presented in the previous section and return the code
to be generated as a String.

Before the actual template class is instantiated, the code generator needs to verify the type
of the Widget. This task is completed by the generateWidget() method. It consists of a
row of if-statements that check which class the Widget is an instance of and invoke the
widget-specific generate() method. The only issue that needs to be considered concerning
this part of the generation process is the sequence of the if-statements. Due to the hereditary
hierarchy, defined in the abstract UI meta-model, all Widget’s are derived either from
Input or OutputWidget. This is no problem as these classes are abstract and no code is
generated for them. What matters is the sequence of Widgets that produce output code.
The check whether a Widget is of type Choice needs to be made before the check whether
it’s of type Panel. A glance at the meta-model reveals that Choice is a specialization of

46

Chapter 4 From Abstract User Interface to Java Swing

Panel. If the check is made in the reverse order, any Choice results in the invocation of
the generatePanel() method.

The remainder of this section is used to present the widget’s templates. The order is the
same as in the generateWidget() method. Primarily, all Widgets derived from Panel are
presented, hence Panel is the last one of this group. TabControl is checked first as it
is derived from Choice, which itself inherits all characteristics from Panel. The second
group is Hyperlink preceding Button for the reasons given above. From then on the order
does not matter anymore, as the entire rest of Widget’s is derived directly either from the
abstract widget type input or output.

So code generator supports code generation for the abstract Widgets presented below. The
abstract UI meta-model defines their attributes as well as the relationships among them.
This information is of relevance only to the code generator and to the templates. It is of
absolutely no concern to the generated code itself.

The following paragraphs explain exactly how those abstract Widgets are mapped to Java
Swing objects. For some of them, Java Swing already offers corresponding Java data types,
others had to be constructed using Java Swing types to fulfil a requested task. An example is
TabControl versus Hyperlink. The first construct can be mapped directly to Java Swing’s
JTabbedPane whereas the second construct needs to be simulated by using a JTextfield,
implementing the functionality known from HTML in a MouseListener.

TabControl

A TabControl widget is gives the user the possibility to switch between different panels
on the same screen. Such functionality is offered by the Java Swing class JTabbedPane. A
TabControl provides just a container for other Panels. Each of those Panels is generated
as Java class. This is why all that has to be done by the JTabbedPane is to create an
instance of the contained class and add it to itself. A TabControl is always containded
by another Panel or Frame and therefore usually requires additional layout data. Header,
panel addition, style and layout attributes are set by using the appropriate inclusion files.

Choice

A Choice is always followed by at least one Frame or Panel. This Widget contains no
information relevant for the user interface and, therefore does not result in any generated
code. Due to this fact the generateChoice() method does not invoke a template class but
only calls the generateWidget() method anew.

As presented in 3.2, this Widget always forms the root of the abstract UI tree. This root
Choice can only be followed by Frames. This is due to the fact that all windows needed
by the application are defined on this level. If the Choice appears somewhere within the
abstract UI tree, the ensuing Widgets need to be Panels.

A Choice implies that not any of its two successors can be displayed at the same time
within the containing element. This is why it does not directly influence the generation of
code relevant for the user interface, but the chain of events and therefore the state machine.

47

Chapter 4 From Abstract User Interface to Java Swing

ListWidget

Just like Choice this Widget is derived from Panel and, therefore acts as a container for
other Widgets. Each entry of the list consists of the Widgets placed right beneath the
ListWidget in the abstract UI tree. The number of entries is variable because the content
of a ListWidget is only filled during runtime. This separation of structure and content
adds a good amount of flexibility to the application. All entries can be added, deleted or
exchanged without the need to generate the system anew.

In Java Swing the ListWidget has been realized as JPanel. The layout manager is set
to GridBagLayout with fixed GridBagConstraints. The widgets that make up one list
entry are put in another panel. This means that a ListWidget does not directly contain
the widgets but only the panels that make up an entry each. These panels should be placed
one beneath the other, so the GridBagConstraints of the list-panel are set to one column
and the number of rows is adjusted to the number of entries during runtime. Each panel
representing one entry should display the components contained one after another. Therefore
these panels’ layout manager is set to FlowLayout.

The attributes positioning the list-panel correctly in the containing panel are set by including
the inc setLayoutData.jetinc file. Apart from this, only the header and addToPanel inclusion
are employed.

Panel

A Panel is generated as extension of Java’s JPanel. As every Panel is generated as a Java
class, it results in a *.java file, which contains the code for Widgets contained by the panel
as well. This implies that the code generation has to be done recursively, generating the code
for the Widgets first, handing it to the panel template in the end. In case the Panel itself
contains another Panel, it is not necessary to add the code for the contained Panel, because
the sub-panel will be stored as a Java class in its own file. Only the lines of code to create
an instance of the sub panel which is added to the containing one need to be appended.

As said above a panel’s function is to work as a container for other widgets. Frequently these
widgets need to put or extract information from communicative acts. Due to this reason the
panel’s constructor needs to be passed on an EventHandler. This object is stored as a global
variable within the panel class. To make the EventHandler easily accessible to all widgets
the panel provides a get() and a set() method.

The String returned by the panel template’s generate() method is written directly to a
*.java file with the panel’s name. During runtime, these panels are instantiated and added
as required to the displayed windows.

Header, style and layout attributes are set by using the appropriate inclusion files.

Frame

This component acts as container for the panels to be displayed and represents the window
seen by the user. Looking at the abstract UI tree such Widgets can only be positioned right
beneath the top level Choice because windows can not be contained by other windows. Any

48

Chapter 4 From Abstract User Interface to Java Swing

instance of this Widget is based on Java’s JFrame and implements the interface UIWindow.
This interface ensures that the showScreen() as well as the getPanel() method is implemented.

The method showScreen() receives an EventHandler and the name of the screen to be dis-
played as arguments. A dynamic classloader is used to create an instance of the panel.
Subsequently the window checks whether it already contains an instance of the panel or not.
This way the new panel either substitutes the old one or is simply added to the window.

The second method returns a panel which simulates the window’s content pane. All widgets
contained by the window are added to this so-called “base panel” instead of directly adding
it to the window’s content pane. This trick is necessary to be able to display the window’s
content in another window. The CommRob project1 requires this functionality, because the
application consists of more than one discourse executed concurrently. So far these discourses
are rendered separately and therefore the Widgets found beneath the root Choice are
Frames. Using the getPanel() method the content of these frames can be displayed in
parallel in one big window.

Just like panel instances, the window instances are created dynamically using a classloader.
To create such an instance, the widget’s name is taken as a String. This way it is impossible
to know whether the object to be instantiated is of the UIWindow or JPanel. To solve this
problem, constructors with the same arguments are used in both cases. The type of the
created object can then be checked and the object is either directly added or, in case it is a
UIWindow, its “base panel”.

The look and feel of each UIWindow is adapted to the platform it is displayed on and its
resolution is set according to the values found in the abstract UI specification. Header, style
and layout attributes are set by using the appropriate inclusion files.

Hyperlink

This Widget simulates a hyperlink as known from HTML (i.e. a given text should be sensitive
to mouse clicks and represents a link to some other part of a document, screen,. . .). As soon
as the mouse pointer enters the area, the cursor changes from standard to hand cursor, to
signal that the underlying text is a link. As soon as the mouse button is clicked over the
text, a communicative act containing the link’s text, is sent to the application logic.

As Java Swing does not offer such a construct, the hyperlink has been implemented as a
JTextField where the attribute editable is set false. The text to be displayed is either
taken directly from the text attribute field of the abstract UI Widget or from a specified
field in a given communicative act. As with any other objects derived from Widget this
communicative act is specified in the tracesTo field.

Header, layout, style and the panel addition inclusion are used by this template.

Button

This Widget is directly mapped to Java Swing’s JButton. It’s text and the action to be
performed on clicking the button are set according to the corresponding attribute values set
in the abstract UI description. Any text that is specified in the Button’s text field is written

1http://commrob.eu

49

Chapter 4 From Abstract User Interface to Java Swing

to the messages.properties file and retrieved as soon as needed during runtime. This way the
label of any button can be changed easily by modifying the properties file. In case the text is
set dynamically by retrieving information from an object received by a communicative act,
the label is set to <default> in the properties file.

As soon as pressed each button should send the communicative act specified in its event field.
This communicative act carries the content object associated with the pressed button. To be
able to set these values in the action listener belonging to this button, they are set as client
properties to the widget.

In case the Button’s tracesTo field is found blank the object to be sent is collected from the
event communicative act’s adjacency pair. This configuration is found if the button is used
to send data collected by text fields, for example. If there is more than one communicative
act specified in the event field the button sends them all.

Finally a CommActListener is added to each button. This mechanism allows to update
the button’s content independently from the rest of the containing frame. As soon as the
associated communicative act is received anew by the EventHandler, it updates all the
widgets registered for this communicative act. This way any button’s information can be
kept up-to-date even if the screen stays the same.

All style and layout attributes are set by using the appropriate inclusion files. As Buttons
are frequently contained by ListWidgets its preferred size is set by using the inc setPreferredSize.jetinc
inclusion. This is set alongside with the preferred size for labels and results in a well struc-
tured and easily well arranged layout. Moreover the header and container addition inclusion
are used.

Label

A Label’s task is to display given information and it is, therefore derived from OutputWid-
get. It is directly mapped to Java Swing’s JLabel. In case the abstract UI label’s attribute
text is set, this text is added to the messages.properties file and retrieved during runtime,
just like for buttons. If no text is available the properties value is set to <default> and the
actual value is retrieved from a communicative act during runtime.

Once again a CommActListener has been added. This is especially important for labels as
these components are frequently used to display status information. The principle is the same
as for button.

Header, container addition, style, layout and preferred size attributes are set by using the
appropriate inclusion files once again.

TextBox

The TextBox widget has been mapped to Java Swing’s JTextField. A common use for text
boxes is to collect information, which is stored in an object. Frequently these objects have
several attributes, which means that several textboxes are needed to collect the information
for one object. This implies a different content attribute for all the abstract UI widgets,
which makes it impossible to include them in a ListWidget. Therefore the preferred size is
not calculated using the inclusion but defined in the JTextFields constructor.

50

Chapter 4 From Abstract User Interface to Java Swing

Apart from collecting information, a TextBox can display text as well. This text is editable
and taken once more from the messages file. If no text is specified in the abstract UI,
<default> is used if the text box type is String and 0 for Integer and double values.

Frequently more than one text box is used to store information that belongs to one object.
To keep this object consistent and up-to-date, every text box works on the same instance.
As soon as the text box loses the focus, its text is stored in the corresponding object’s
attribute field. The object itself is always retrieved from the communicative act specified
in the TextBox’s tracesTo field. The object is created as soon as the first entry is made.
From then on it is only retrieved and updated. All these tasks are completed by inserting
the inc getCAContent.jetinc inclusion.

All input retrieved from a JTextField is gathered as a String, but sometimes the attribute
type of the object may be Integer or double. This makes explicit parsing necessary to avoid
a type mismatch. Header, the correct lines for adding the widget to its container, style and
layout attributes are set by using the appropriate inclusion files.

ComboBox

This Widget’s objective is to provide a list of certain values for selection. If the focus lies
elsewhere, only the selected item is displayed instead of the whole list. The corresponding
Java Swing widget is JComboBox.

The values that fill the combo box need to be specified in the domain of discourse model of
the system. This enumeration can then be referenced as an attribute by a content object. A
positive side effect of this mechanism is that the values are not put in the source code and
can, therefore be altered without any problem during runtime. A focusListener is used to
update the object attribute with the latest selection.

Header, layout data and the right adding to the containing object are accomplished by using
the appropriate inclusions. Besides the inc getCAContent.jetinc is used to retrieve and set
the content of the associated communicative act correctly.

ImageMap

The idea of an ImageMap is to make specified regions of an underlying image sensitive to
mouse clicks. An example is a map of a zoo with the area of an animal’s cage being sensitive
to clicks. As soon as the user selects an animal he receives background information about
the chosen species.

As Java does not offer any corrisponding construct, the widget has been created by using a
JLabel combined with a mouseListener. The picture needs to be provided by the creator
of the discourse. Moreover, he needs to define the interactive areas in absolute coordinates.
The left, upper edge of the picture is used as point of reference (i.e. (0, 0)). The information
of where to position an object on the map is usually defined as attribute of this object. This
way the association between object and sensitive area can be set easily in the mouseListener.
As soon as a mouse click occurs this listener checks whether it has been within any sensitive
area or not. In case any of these conditions becomes true, a communicative act with the
corresponding object as content, is sent to the application logic.

Header, layout data and adding the widget correctly to the containing object are accomplished
by using the appropriate inclusions.

51

Chapter 4 From Abstract User Interface to Java Swing

PictureBox

A PictureBox is intended to display a simple image without any interactive task. Just
like Label it is derived directly from OutputWidget. Using Java Swing it is generated as
JLabel without text, displaying just an icon. The pictures to be displayed must be provided
by the discourse model designer. They need to be put in a folder, whose path needs to be
specified in the *.properties object passed on to the generator implementation class as soon
as the code generation starts.

The attribute picture of the abstract UI widget contains the name of the image to be dis-
played on the screen. Header, layout data and adding the widget correctly to the containing
object are accomplished by using the appropriate inclusions.

The source code for any of the Widgets presented so far is generated by invoking the
generate() method of the corrsponding template. Encapsulating a great deal of the logic
needed to select the right lines of code to be generated in the inclusions, leaves almost no logic
to be contained by the widget-specific generateWidget() method. The task of this method is
in most cases restricted to creating an instance of the template class and handing the right
arguments to its generate() method. These arguments are passed on as an array of objects.
They include the Widget itself in any case, the properties object and the styleProvider
object if needed. Moreover the messages object is needed by those Widgets that retrieve
their content from the equally named file later on. In case the Widget is a container the
code generated for its children is handed over as well.

4.1.2.3 Layout Types

Code for all Widgets presented so far, is generated by invoking the corresponding tem-
plate. Therefore, they correspond directly to one widget on a screen. The layout types
are containded as Widgets in the abstract UI description as well. In contrast to direct
correspondence they only influence the way the widgets are arranged and therefore their
attributes.

The abstract UI meta-model contains three different layout types: FlowLayout, Grid-
Layout and XYLayout. Depending on the layout type, appropriate layout data has to
be added to the Widgets, thus defining where each widget is placed within the containing
panel. Panels apart from having a layout type might have layout data as well. This defines
their position in the containing component.

FlowLayout

FlowLayout is mapped to Java Swing’s FlowLayout. Every component contained in a
FlowLayout follows the component added right before. If the end of the window is reached,
the widget moves to a new row. Resizing the window might change the position of the widgets.
If through resizing the window enough space is gained for one widget to move one row up,
all the following widgets are arranged anew as well. If not specified differently, the preferred
size value is used for each widget.

FlowLayout is the simplest layout type. It offers the use of constraints but it does not
require them. Due to its simplicity and its ease of use it has been selected as the default

52

Chapter 4 From Abstract User Interface to Java Swing

layout type for JPanels. If no layout type is specified explicitly, the code generator uses the
FlowLayout manager as default as well.

GridLayout

This layout type is mapped to Java’s GridBagLayout. Unlike the FlowLayout manager,
this type of layout requires constraints, which are represented in the abstract UI description
as GridLayoutData. Every widget being part of a GridBagLayout has to contain such
layout data, otherwise it cannot be placed correctly.

Compared to other layout managers, Java’s GridBagLayout is very powerful and flexible.
Basically all components added are placed in a grid of rows and columns. Flexibility is added
as not all of these rows and columns need to have the same width or height. To calculate
these values, a component’s preferred size is taken into consideration. Placement, resizing
behaviour and other things needed to determine a component’s display characteristics can be
defined by using the above mentioned GridBagConstraints as well. Each of these values has
a matching counterpart in the abstract UI description’s GridLayoutData.

GridLayoutData A GridLayoutData object consists of various attribute fields, which
are defined in the meta-model. As the meta-model’s GridLayout is mapped to Java’s
GridBagLayout, these attributes need to be mapped to Java’s GridBagConstraints some-
how. The following paragraph states which abstract UI attribute is matched to which Java
Swing constraint and gives a short explanation of what their effect is. The first attribute
name represents the abstract UI value and the one following the “∼” is the one used by Java
Swing.

• Alignment ∼ Anchor
This attribute is used to determine where the component should be displayed if the
area provided for this component is bigger than its actual size. The attribute’s value
is set by constants. The abstract UI constants are matched to the corresponding
GridBagConstraints constants during generation time, the default value in both rep-
resentations is CENTER.

• Col ∼ gridx
This value is a number which defines the column, or the x value, in which to place the
component. The leftmost x value is zero.

• ColSpan ∼ gridwith
This value defines the number of columns the component is going to span. Using
GridBagConstraints.REMAINDER guarantees that the component is the last one in its
column.

• Fill ∼ Fill
Apart from Alignment this value is used if the display area is larger as the component’s
size as well. It determines whether the remaining space should be filled or not and if
so, in which way. Just like the anchor value its value is defined by constants. Possible
selections are HORIZONTAL, VERTICAL and BOTH.

53

Chapter 4 From Abstract User Interface to Java Swing

• Row ∼ gridy
The value of this attribute defines the row or the y value of where to place the compo-
nent. 0 is the uppermost value.

• RowSpan ∼ gridheight
The number of rows the widget spans is defined by this value. Just like gridwidth,
GridBagConstraints.REMAINDER makes the widget being displayed as the last one in
its row.

• WeightX ∼ weighxt, WeightY ∼ weighty
These values are used to determine how extra space is distributed among components.
Weightx refers to the x axis and weighty provides the values for the y axis. Its default
value is 0.0, which means that all extra space is put between the window’s grid of cells
and its edges. This results in all the components clumping together at the centre of
the window. Usually numbers between 0.0 and 1.0 are used to define how much extra
space should be given to the specified row or column.

If more than one component is contained by one row or column, then the highest number
is taken into consideration at the end. Normally extra space tends to be given to the
rightmost column and to the bottommost row.

Apart from the windows appearance when displayed for the first time, these two values
have also great influence on its resizing behaviour.

XYLayout

XYLayout makes it necessary to define the absolute position of each widget within one
panel. It requires XYLayoutData which determines a components height and width apart
from the left upper edge of its position. In this case resizing the window does not change any
widget’s position. Using this layout requires some extra work, but is sometimes inevitable.
The deployment of any other layout, apart from absolute layout, would change the link
positions on an ImageMap, for example. Using Java Swing, a JPanel can be set to XYLayout
by setting its layout manager value to null.

XYLayoutData As this layout data does not allow any flexibility, it is quite simple. The
coordinates of the upper left edge of a rectangular area are defined by an x and a y value.
The widget’s dimensions are given by the properties height and width. This way actually no
layout manager is needed but the objects are placed directly on the canvas.

4.1.2.4 View Implementation

This component is generated by invoking the corresponding template by the generator main
class. It does not produce code needed to display information but completes the Model-
View-Controller configuration needed for communication during runtime. Implementing the
MVC pattern, three components need to be generated. A finit-state machine is generated
automatically from the abstract UI descpription as behavioural model for the whole system
. Within this component the system’s states are specified as well as the communicative acts
needed to trigger a transition from one state to another.

54

Chapter 4 From Abstract User Interface to Java Swing

These communicative acts are handled in the control component, called EventHandler. The
EventHandler registers and stores all incoming communicative acts. In case a communicative
act’s content is needed during runtime to get some data to be displayed in a window, the
communicative act can be retrieved from the EventHandler. According to the communicative
acts it receives from the application logic, the EventHandler triggers state transitions in the
state machine.

The third component to complete this triple is the view component. Just like the creation
of the state machine, its generation is based on information provided by the abstract user
interface model. Its task is to instance the screen set by the state machine. As an applica-
tion may consist of more than one window, it needs to know which panel belongs to which
frame. Its inner structure roughly consists of two hash maps. The first one is used to store
which panel belongs to which window. As some of those windows may have been already
instantiated, the second hash map provides information on which of them already exist.

At generation time the template is handed over the data of which window contains which
panels. This information is used to fill the first hash map. The second one is only filled
during runtime. A new entry is made for every newly instantiated window. The constructor
of this class requires to be given the EventHandler of the system. This is due to the fact
that any window, whose showScreen() method is called needs to know where to retrieve the
required communicative acts from.

The ViewImpl class only contains one method, which is used to display the available screens.
To complete this task, the setScreen() method receives a panel’s name as an argument. As a
first step it checks whether this panel is contained by an already existing window or if a new
window needs to be instantiated. In case the corresponding window is already available, its
showScreen() method is called with the EventHandler and the screen’s name as arguments.
In the other case an instance of the window is created by using Java’s dynamic class loader.
Subsequently the newly created window’s showScreen() method is used to display the re-
quested panel, just like before.

4.1.2.5 The Preview Component

This component is not relevant for any aspect of the running system. Its only use is to
display the generated screens without the need for the model and the control component,
or the application logic. The preview component becomes necessary due to the dynamic
character of widgets like the list. The trial to display any such panel by simply creating an
instance leads to null pointer exceptions, because the corresponding communicative acts can
not be retrieved from the EventHandler.

The preview component is generated by invoking the corresponding template. Apart from
the properties object it receives a list of all screens as well as a list of all communicative acts
deployed by the system. The list of screens is displayed to the user and offers him all panels
that have been generated. As soon as one item of this list is selected, the corresponding
screen is instantiated and shown to the user within the preview window. The panel selected
next, replaces the panel shown before and so on. Due to the insertion of the base panel it is
possible to display any frame’s content as well.

The communicative acts needed to avoid null pointer exceptions as soon as the panel is
instantiated, are registered to an EventHandler, that is created by the preview class itself.

55

Chapter 4 From Abstract User Interface to Java Swing

During the generation of the component, the list of communicative acts is put into the
content of a method that registers those communicative acts to the EventHandler as soon
as the preview class is instantiated. The content objects for each communicative act are
created and initialised within this method as well. If no values are available, the objects
are set to null in the beginning. This makes the widgets get their default value from the
messages.properties file. Through the insertion of a *.xmi file this content objects can be set
to meaningful values during runtime of the preview component. Clicking a button offers the
user a dialogue in which he can select the file graphically. The objects that are found in this
file are set as the communicative acts’ content subsequently.

If the system’s domain of discourse model has been constructed using Ecore, this file can
be created easily. EMF includes the possibility to create dynamic instances from any class
specified within such a model. This instances’ attribute values can be set graphically due to
the automatically generated editor, provided by EMF as well.

Finally the String generated by the preview template is written to a file named Preview.java.
As this class contains a main() method it can be executed as Java application.

Figure 4.2 shows the preview screen generated for the online shop application. The screen
selected from the list shown on the left side of the frame is displayed in the right panel. To
test whether the widgets have been bound to the right communicative acts, test data has
been entered. This test data is stored in a *.xmi file and can be selected via the Browse
button. By taking a look at the labels carrying the product description, the correct function
of the preferred size calculation can be tested. As soon as the text is too long to be displayed
in one line, a second row is opened.

Figure 4.2: Preview Window for the Online Shop

4.1.3 Cascading Style Sheets

One of the main reasons for not directly generating the source code out of the discourse model
was that a user interface must not only be functional but also fulfil certain requirements
concerning usability and design. The introduction of the abstract UI as an intermediate step
offers the possibility of influencing the layout of the frames more directly. The automatic
translation is done according to rules specified in [ABF+06c] and [ABF+07b].

Additional refinement can be accomplished by the system designer after the generation as
well. The abstract UI takes usability into account, but hardly contains anything concerning

56

Chapter 4 From Abstract User Interface to Java Swing

design. All this data can be encapsulated in a style sheet, whose classes and elements are
then referenced by the abstract UI.

The code generator parses this style sheet and extracts the needed information at generation
time. The style sheet itself needs to be provided by the system designer. To change the style
of a system only the second generation step (i.e. the abstract UI to Java Swing translation)
needs to be repeated instead of the whole process. The whole mapping logic as well as
the fall-back mechanism known from HTML is contained by the inc setStyleData.jetinc (see
4.1.2.1).

Below the CSS attributes supported so far are presented. Moreover is shown to which Java
Swing property they have been mapped. As some values are not directly mapped to a Java
Swing attribute but passed on in an object’s constructor, default values for some attributes
have been introduced.

• color
The value of this attribute specifies the color of the text. It can either be defined as an
RGB value or using the hexadecimal notation marked with a #. To set the foreground
value in Java Swing the RGB values need to be extracted for each color. This task can
be completed with the help of the CSS API that provides a method which returns the
RGB values independently of the notation found in the style sheet.

• background-color
The CSS API’s RGBColor object is used once more to set the RGB value of this Java
Swing property. Additionally the background needs to be set opaque, otherwise no
effect can be seen.

• border-width
This is one of several short-cuts provided by CSS. By using this attribute, actually
four attributes, one for each side of the border, are set. As all of them are set to
the same value it is sufficient to query one of them. In fact Java Swing borders do
not allow more than one value to specify its width. As only top, bottom, left and
right value can be queried using the CSS API, the border-top-width has been chosen.
Hence the Java Swing border thickness can either be set by using CSS’ border-width
or border-top-width.

To create a new border object in Java Swing, this value needs to be handed over
to the object by the constructor. Therefore a default value has been introduced to
avoid NullPointerExceptions. This value is used if no value has been specified in the
style sheet. Two pixels have been chosen as a default with the regular CSS attributes
matching to pixels as follows:

– thin ∼ 1 pixel

– medium ∼ 2 pixels

– thick ∼ 5 pixels

If the system designer wants to change these values, he can do so by setting them anew
in the inc setStyleData.jetinc file.

• border-color
Just like border-width, this tag is a short-cut to set the four sides of a border to the

57

Chapter 4 From Abstract User Interface to Java Swing

same color. Java Swing does not support this mechanism as it allows only the definition
of one color for each border. As border-color can not be queried directly, anyway, the
border-top-color attribute has been chosen. Therefore, border-color can either be set by
using this attribute or border-top-color. The color definition can be set using either the
decimal or the hexadecimal notation of the RGB color schema. As it is only possible
to set a border’s color passing it on to the object’s constructor, the default value black
(i.e. rgb(0, 0, 0)) is used. If the border-color has been defined in the CSS these values
are overwritten.

• border-style
This attribute is yet another short-cut and, therefore results in querying border-top-
style. The border types defined in CSS are mapped to the types offered by Java Swing
as follows:

– solid ∼ LineBorder(color, thickness);

– groove ∼ EtchedBorder(); with LOWERED edges.

– ridge ∼ EtchedBorder(); with RAISED edges.

– inset ∼ BevelBorder(); with LOWERED edges.

– outset ∼ BevelBorder(); with RAISED edges.

• font-family
Similar to the generation of a border, the constructor for a new java.awt.Font object
requires certain parameters to be set. To avoid NullPointerExceptions, default values
have been introduced once again. These values fill attributes that are required and have
been left blank by the designer. If no style sheet is given at all, the Java Swing default
values are used. For this attribute, Dialog has been chosen as a default value, because
it is used by Java Swing as well.

• font-weight
This attribute is used to set the weight of the font. The CSS attributes normal and
bold are supported. Java Swing sets the weight of the font including whether it’s italics
or not using only one Integer. Therefore the selection of the font-weight sets a local
variable that is combined with the one set by font-style as soon as the font object is
instantiated. Its default value is plain.

• font-style
This attribtue is used to set the font-style either to normal or italic. During the
generation of the source code a second Integer variable is set. This way a combination
of bold and italics can be realized. Its default value is plain.

• font-size
The value of this attribute has to be the font size in pixels. Its default value has been
set to 12, as this is once more the value Java Swing uses as a default. Therefore it
is unrecognizable for the end user which default value has actually been used and a
consistent design has been preserved.

These CSS options presented so far can easily be extended by adding the required code to
the inc setStyleData.jetinc file. Changes are then automatically applied to all widgets due to
the modularisation of this fuctionality.

58

Chapter 4 From Abstract User Interface to Java Swing

4.2 The Online Shop continued

This section resumes the online shop example presented in 3.4. So far the online shop’s
discourse description and its domain of discourse model have been introduced. It remains to
show the abstract UI specification as well as the resulting source code.

A lot of literature can be found regarding the test procedures for new technologies, especially
on software. The most demonstrative way to prove the feasibility of any concept is to create
a sample application. In our case the online shop did not only show that the system works
correctly, but helped to discover and clarify some of the aspects that had not been considered
profoundly enough before.

The basis to work on was the meta-model for the abstract user interface. Top down en-
gineering was used as well as the bottom up method, because the automatic generation of
the abstract UI description was not completely implemented yet. Due to this reason the
first abstract UI descriptions to be turned into source code have been constructed manually.
They were created to represent the ideal version of the screens and therefore constituted
what the ideal output of the discourse to abstract UI conversion should look like. Another
advantage of the combination of these two techniques was that usability criteria had already
been taken into consideration. These particular characteristics could then be incorporated in
the transformation rules as well.

By implementing concrete screens it sometimes turned out that some more widgets would be
needed or that it would be better to combine a few input widgets to one to fulfil a certain
task. These changes in the actual screens resulted in changes in the abstract UI of course,
sometimes even implying changes in the discourse model. Therefore it became necessary to
introduce new transition rules for the discourse model to abstract UI translation.

Apart from these modifications, some aspects concerning the attributes of the abstract UI
widgets could be refined during the code generator’s implementation. The information about
the screen resolution was directly attached to the Frame instead of being passed on in the
properties object, for example. Therefore, the attributes screenResolutionX and screenRes-
olutionY had to be added.

Some classes as well as attributes could be deleted, because all information concerning the
style of the application was outsourced to CSS. The Style class remaining in the abstract
UI meta-model carries the id of the style to be applied to the widget only. This separation
simplified the meta-model and improved the independence between logic and style.

Furthermore some redundant relations were eliminated. Any of this changes needed to be
followed by a new generation of the editor as well as the factory. As these steps are automated
using EMF, neither of them was too much effort.

One of the main goals in the OntoUCP project is to separate the discourse creation as much
as possible from the actual screen representation. It should not be necessary to follow any
rules while creating the discourse model, because the discourse model is target independent.
If the discourse model is completely self consistent, the output code should be almost as good
as hand tailored code. As general rules are applied to the discourse model some overhead is
unavoidable. This overhead mainly results in additional choices that are of no importance
for the code generation because no code is generated for such a widget. Furthermore some
extra panels, which are of no vital importance to the application, appear in the generated
abstract UI. This is due to the generalized character of the transformation rules.

59

Chapter 4 From Abstract User Interface to Java Swing

In case of critical applications further optimisation can either be done by improving the
abstract UI description before the code generation, or the generated code itself. This still
saves a lot of programming work compared to complete manual creation.

4.2.1 The Application

The implementation of an online shop is a good example to start with, because everybody
knows in advance what the result should be like. The functionality was stripped down to the
very basics, nevertheless separating the structure from the content. That is, the structure of
the screens is fixed by the abstract UI specification but the content is filled during runtime,
with content delivered by the received communicative acts. A good example is the list of
product categories. This way a category can be added or deleted easily, even during runtime,
without having any effect on the generated code.

The initial version of the online shop consisted of various screens, which were partially com-
bined to TabControls or recombined, introducing the possibility of a Choice being situ-
ated somewhere else than at the root of the abstract UI tree.

The chain of events of the online shop is quite easy and has already been presented in the form
of a discourse in 3.4.1. This chain of events is transformed into several screens that contain
everything that has been defined in the discourse model, combining it with the information
from the domain of discourse model.

The initial screen offers the customer a list of product categories to chose one out of many
possibilities. According to his choice a list of products is displayed in Screen2. As soon as
the customer selects a product, Screen3 is displayed. This screen collects the delivery and
payment details by offering the user an appropriate form. Depending on whether he inserted
the data correctly or not, a screen appears telling him whether his transaction was completed
successfully or not.

The abstract UI description constructed manually according to the discourse description and
to the images we had in mind, is illustrated by Figure 4.3.

60

Chapter 4 From Abstract User Interface to Java Swing

Figure 4.3: Abstract UI Prototype

The root Choice is followed by one Frame only, which signifies that the application displays
all information within the same window. Therefore the root Choice could be eliminated
without the loss of information. The reason to generate it is the resulting unification of the
generation process. Besides the application is kept easily extendable this way.

This Frame is followed by another Choice which implies that only one Panel at a time,
from all Panels situated subsequently, will be displayed. As there are no other objects
than one panel at a time contained by the window, there is no need for a layout manager.
Depending on the desired layout, the panels themselves contain appropriate layout managers,
of course.

Apart from showing the screen structure of the Online Shop, Figure 4.3 illustrates quite well
which information is processed by the code generator. The abstract UI relies on information
found in the discourse as well as in the content model. Therefore these two resources are
needed as source of information by the generator as well.

A reference to the online shop’s discourse model is shown right beneath the abstract UI de-
scription. Within this model the communicative acts used by the application are represented.
Right underneath the domain of discourse model with all the classes defined for the online
shop is shown. These objects are used to fill the content field of the communicative acts
spedified in the discourse model.

61

Chapter 4 From Abstract User Interface to Java Swing

The following paragraphs describe the function of each screen and present the readily rendered
screens as well as the corresponding part of the abstract UI description.

4.2.1.1 Screen1

This panel is the first one to be shown to the user. Its purpose is to offer all the available
product categories and send the user’s selection to the EventHandler as soon as the choice
has been made. As can be seen in Figure 4.4 the Panel’s layout manager has been set
to GridLayout. The appearance of this Widget as child of the panel Screen1 implies
the inclusion of GridLayoutData widgets for each Widget contained by this component.
The three Name Labels are used to display a given, static text. This text is taken from

Figure 4.4: Abstract UI Description for Screen1

the Label’s text field and stored in the messages.properties file during the generation of the
system.

Due to the use of local variables no problems arise through the identical denomination of the
three Labels. As name clashes are almost inevitable for larger systems, the code generator
attaches a simple number to every generated widget name to make them unique.

Each Widget directly contained by a panel with GridLayout, needs to be followed by
at least one child. The attribute values of the obligatory GridBagConstraints are defined
in the corresponding abstract UI widget and transferred to source code by the generator.
The Style widget that can be seen as an attachement of the first Label, carries optional
information. In case no style information is found, no style information is set and Java Swing
uses its default values.

Figure 4.5 shows the generated screen during runtime, thus filled with information. The three
Name Labels can be seen in the upper part of this screen. The list of product categories
seen below corresponds to the ListWidget List13 in Figure fig:Screen1.

62

Chapter 4 From Abstract User Interface to Java Swing

The ListWidget is intended to display the list of product categories. Each entry in this list
consists of a Button, which can be clicked to chose the product category and a Label that
carries additional information. The third child of the ListWidget is the obligatory layout
information. Widgets contained by a ListWidget do not require any layout data, because
they are contained by a panel whose layout manager is set to FlowLayout. The only way to
influences the arrangement of the widgets is their order in the abstract UI description. The
widgets are added onte after another to the panel of the list entry. This is why the sequence
found in the abstract UI specification implies the order in the actual screen.

As the content of the ListWidget is only filled during runtime, the number of entries is
adjusted to the number of data sets received by the communicative act specified in each
Widget’s tracesTo field.
The last widget contained by Screen1 is the layout widget that specifies the GridLayout.

Figure 4.5: Online Shop Screen1

4.2.1.2 Screen2

As soon as the user selects a product category by clicking the corresponding button, a com-
municative act is sent to the application logic. The communicative act received in return
triggers a state change in the state machine, which results in Screen2.

Screen2 is another panel that offers the user a list to select from. Therefore its structure is
very similar to Screen1 as can be seen in Figure 4.6. The ListWidget offers the user the
items belonging to the selected product category. The Button selects the product and the
Labels carry additional information, in this case a description of the product and its price.
As the content of the list is filled during runtime and consists of entities of the sample entry
found in the abstract UI specification, the Style widgets attached to the two Labels are
applied to each entry.

63

Chapter 4 From Abstract User Interface to Java Swing

Figure 4.6: Abstract UI Description for Screen2

Figure 4.7 shows the readily rendered and already filled Screen2 that is displayed if Hardware
has been selected as the product category. The three Labels named Anonymous represent
the header of each list entry. Due to the calculated preferred size the layout resembles the
form of a table.

Figure 4.7: Online Shop Screen2

64

Chapter 4 From Abstract User Interface to Java Swing

4.2.1.3 Screen3

To select an item, the user only needs to click the corresponding button. Just like in Screen1,
a communicative act with the content set according to which button has been clicked, is
sent to the application logic. Subsequently the state machine triggers another transition
as the following communicative act is received by the EventHandler. As a result, Screen3 is
displayed. The difference between this screen and its two predecessors is that data is collected
instead of only displayed. As a consequence, the screen’s abstract UI description, shown in
Figure 4.8, is quite different compared to Screen1 and Screen2.

Figure 4.8: Abstract UI Description for Screen3

Only four Widgets are directly contained by this screen: a Label, a TabControl, a
Button and the GridLayout. The Label can easily be identified as the header seen
in Figure 4.9. The task of collecting the user data is fulfilled by the TabControl. The
abstract UI shows that this widget contains three Panels apart from the obligatory layout
information. Just like in the other Panels the additional style information is not mandatory.

65

Chapter 4 From Abstract User Interface to Java Swing

Figure 4.9: Online Shop Screen3

The first Panel is used to collect the user’s payment data. Figurefig:Screen3 shows that each
TextBox is preceded by a Label. These Labels are found to the left of each text box in
Figure fig:OnlineShopScreen3 and inform the user about which data to insert. Each panel
corresponds to a communicative act, which implies that each text box sets the attribute of
the communicative act’s content object.

The CCInfos Panel collects the information needed for payment. The corresponding object
is defined in the application’s domain of discourse model and is named CreditCard (see fig.
4.3). Whenever the text box loses the focus, its data is transferred to the attribute field of
this object. The combo box is filled with the values specified as the enumeration CCProvider
in the domain of discourse model as well. Unlike the ListWidget’s layout, the layout of
these Panels needs to be specified explicitly to receive a consistent design.

The panels BillingAdress and DeliveryAddress contain only labels and text fields as their
information is specific for each user. The corresponding content objects are specified in the
domain of discourse model and named Address.

The TabControl allows the user to switch between these panels within the same screen. The
information is not sent when he changes the tab, but only when he clicks the submit Button
situated on the same level as the TabControl. Unlike the Buttons presented so far not
only one, but three different communicative acts are sent. Each of these communicative acts
contains one of the objects filled by the panels (i.e. credit card details, payment and shipment
address).

This Button already represents some kind of optimization, because compared to one But-
ton per Panel and communicative act it saves the user two mouse clicks and more impor-
tantly two rounds of communication with the application logic.

4.2.1.4 Accept & Reject

One of these two panels concludes every online shop discourse. Both structures are similar
and very simple as can be seen in Figure 4.10. Their only task is to inform the user whether

66

Chapter 4 From Abstract User Interface to Java Swing

the transaction has been finished successfully or not. Which screen is displayed depends on
the data sent to the application logic by Screen3. Both of them are, as they are children of
the Frame Window, displayed in the application window and not pop-ups as the smaller
size of the screens in Figure fig:OnlineShopAcceptReject may suggest.

If every text field has been filled out with the expected type of data the Accept panel confirms
the successful end of the transaction. In case any data has been filled out incorrectly or left
blank, the application logic returns a communicative act to inform the user about the failure
of the transaction. The content of this communicative act is displayed to the user.

Figure 4.10: Abstract UI Description for Screen Accept & Reject

Style definitions are given for both Labels in the online shop’s style sheet. The corresponding
style class is displayed next to the Style widget in the abstract UI.

Figure 4.10 shows two almost identical screens. Therefore it seems quite suggestive and easy
to combine them and to set the text on the label during runtime.

Figure 4.11: Online Shop Screen Accept & Reject

67

Chapter 4 From Abstract User Interface to Java Swing

The problem is that this change induces the introduction of a new communicative act and,
therefore a change in the discourse model. Due to the general character of these rules the
resulting abstract UI is not 100 percent optimized for a certain application. There is no
remarkable difference for the user, so this small overhead is not too much of a price to pay
in comparison to the work saved by generating the system automatically.

4.2.2 Manually-Created vs. Automatically-Generated Abstract UI Descrip-
tion

General approaches always lead to some overhead as compared to hand-tailored solutions. In
case of the abstract UI specification this overhead results in the generation of some widgets
that are not necessarily required to fulfil the essential task of the system. This results in an
abstract UI structure that may be harder to comprehend for humans but is equivalent to the
optimized version, as far as the code generator is concerned.

A great part of optimization regarding the usability of the system needs to be done on the
abstract UI model. Such things would be the integration of several panels into one tab control
or the combination of different buttons to one. This is only possible if the data of all those
buttons is needed to fullfil one goal (e.g. the online shop’s payment and shipment details). As
the statemachine is generated, based on the abstract UI specification as well, a functioning
system is obtained in both cases.

The transformation from the discourse model to the abstract UI description is completed
using rules. To optimize the usability of the screens, the number of rules will have to be
augmented. The more rules, the more typical discourse sequences can be covered directly,
hence the easier will be the generation of optimized code for several discourse constellations.
This signifies that the more work is invested by the system developers, the easier will be the
use of this technology for the system designer.

As mentioned above, this optimization does not have any direct implications for the code
generator. Fine-tuning, like specifying the distance between neigbouring widgets, can either
be done through the layout manager defined in the abstract UI specification, or via “default”
values defined in the code generator.

68

Chapter 5

Conclusion

A major objective of the OntoUCP project was the fully automatic generation of a user
interface, from a specification of the communication between user and system. The trans-
formation process consists of two steps with an abstract UI model as an intermediate result.
Device constraints are considered during the generation of the abstract UI description as well
and need not be considered during the execution of the second step.

The code generator translates this abstract specification into toolkit-specific source code.
Using EMF, the abstract user interface model is based on an Ecore meta-model. Moreover,
the domain of discourse model, which is needed as input for the generator as well, is provided
as an Ecore description, too. As the input is provided in the form of models, the generator
has been implemented as a template engine. Due to the extensive use of Ecore models, and
the fact that the whole system is based on Eclipse, JET was chosen as template language.

Java Swing was selected as the target toolkit, because of its platform independence and the
wide deployment of Java, on all kinds of devices. The design can be adjusted to the operating
system the application is running on, by setting the appropriate look and feel.

Another target toolkit option would have been Eclipse’s Standard Widget Toolkit (SWT).
The advantage of the SWT, compared to Java Swing, lies in the direct use of the operating
system’s graphic elements, thus a better performance can be achieved. The drawback is that
many features are taken for granted, which are frequently not provided by non-Windows plat-
forms. In this case those widgets need to be emulated, and this invalidates the performance
benefit.

As a third option, HTML output has been considered to provide better support to browser-
based applications. This option would have required to focus much on browser compatibility
and runtime communication problems instead of the code generation process. Therefore, this
option has not been implemented so far.

The design of the windows used by the application, has successfully been separated from all
functional units by introducing support for CSS. This gives the system designer the option
to influence the appearance of the windows. Furthermore, the style can be changed without
a new generation of the abstract UI description. All that has to be adapted is the style
sheet, which is handed to the generator. No problems arise if no, or incomplete information
is added, because the generator, along with Java Swing, defines default values for any widget.

69

Chapter 5 Conclusion

Another feature introduced by the code generator, supports the use of multiple languages.
Any text displayed to the user is stored in a properties file. To change this text, all that
needs to be done is to modify or replace the properties file. Additionally to the files needed to
display the windows of an application, a runtime component is generated. This component
represents the view module and completes the MVC implementation.

Apart from the components created for the application, the Preview class is generated. This
class can be executed as a Java application and enables the user to display the created
windows independently from the other components of the application.

Concurrently the technology developed in the OntoUCP project, is being adapted and ex-
tended to satisfy the requirements of the CommRob project. Throughout this project, a
prototype robot is being developed, which will have the form of a robot trolley. This trolley
knows several scenarious of interaction with its user. These scenarious have been specified,
using the CDL presented in 3.1. What still needs to be found is a way to link these discourse
descriptions to be able to render them to a consistent user interface. Using the OntoUCP
components, all discourses can be rendered without problems. As they are processed sepa-
rately, the combining component still needs to be created manually. One first step towards
full automation will be the creation of this component by using abstract UI widgets. The
abstract UI descriptions from every discourse can be generated automatically and, therefore
only needs to be added to the file. Once a consistent abstract UI representation is avail-
able the code generator can be started. The second possibility is to take the automatically
generated source code from each discourse and include it in the manually written main frame.

The code generator has been implemented and tested successfully as part of the OntoUCP
framework. It is applicable to any kind of abstract UI specification generated automatically
from a discourse model. Due to its modular character, the support for further abstract UI
widgets or target-toolkits can be included without much effort.

70

Appendix A

Diagrams

Figure A.1: The Abstract UI Meta Model Part I

71

Chapter A Diagrams

Figure A.2: The Abstract UI Meta Model Part II

72

Chapter A Diagrams

Figure A.3: The Abstract UI Meta Model Part III

73

Chapter A Diagrams

Figure A.4: The Online Shop Discourse Model

74

List of Figures

2.1 Templates and Meta-Model . 5

2.2 Template Engine . 9

2.3 AndroMDA Architecture [Tea08] . 13

2.4 JET Transition . 16

3.1 The Communication Platform [KFAP06] . 19

3.2 Communicative Act Taxonomy [BFK+08] . 21

3.3 Taxonomy of used RST relations . 23

3.4 IfUntil Statechart . 26

3.5 Discourse Metamodel [PFA+09] . 27

3.6 The Rendering Architecture [FKP+09] . 33

3.7 Background relation . 34

3.8 Then branch of IfUntil relation . 35

3.9 Joint relation . 35

3.10 Online Shop Domain of Discourse Model . 36

4.1 The Code Generator . 39

4.2 Preview Window for the Online Shop . 56

4.3 Abstract UI Prototype . 61

4.4 Abstract UI Description for Screen1 . 62

4.5 Online Shop Screen1 . 63

4.6 Abstract UI Description for Screen2 . 64

4.7 Online Shop Screen2 . 64

4.8 Abstract UI Description for Screen3 . 65

4.9 Online Shop Screen3 . 66

4.10 Abstract UI Description for Screen Accept & Reject 67

75

4.11 Online Shop Screen Accept & Reject . 67

A.1 The Abstract UI Meta Model Part I . 71

A.2 The Abstract UI Meta Model Part II . 72

A.3 The Abstract UI Meta Model Part III . 73

A.4 The Online Shop Discourse Model . 74

76

Bibliography

[ABF+06a] Arnautovic, Edin ; Bogdan, Cristian ; Falb, Juergen ; Horacek, Helmut ;
Kaindl, Hermann ; Kavaldjian, Sevan ; Popp, Roman ; Roeck, Thomas:
Complete Specification of the Communication Description Language (CDL).
(2006) 26

[ABF+06b] Arnautovic, Edin ; Bogdan, Cristian ; Falb, Juergen ; Horacek, Helmut
; Kaindl, Hermann ; Kavaldjian, Sevan ; Popp, Roman ; Roeck, Thomas:
Language Specification of Episodes. (2006) 21, 23

[ABF+06c] Arnautovic, Edin ; Bogdan, Cristian ; Falb, Juergen ; Kaindl, Hermann ;
Kavaldjian, Sevan ; Popp, Roman ; Szep, Alexander: User Interface Render-
ing Specification (Structural Part). (2006) 56

[ABF+07a] Arnautovic, Edin ; Bogdan, Cristian ; Falb, Juergen ; Kaindl, Hermann
; Kavaldjian, Sevan ; Popp, Roman ; Szep, Alexander: Information System
Application Design Document. (2007) 33

[ABF+07b] Arnautovic, Edin ; Bogdan, Cristian ; Falb, Juergen ; Kaindl, Hermann ;
Kavaldjian, Sevan ; Popp, Roman ; Szep, Alexander: User Interface Render-
ing Specification (IO Rendering). (2007) 27, 31, 56

[AFK+06] Arnautovic, Edin ; Falb, Juergen ; Kaindl, Hermann ; Kavaldjian, Sevan ;
Popp, Roman ; Szep, Alexander: Communication Process Specification. (2006)
33

[Ame08] Amengual, Carlos. CSS4J: A CSS API implementation for the Java platform.
http://informatica.info/. 2008 46

[BDRS97] Browne, Thomas ; Dávila, David ; Rugaber, Spencer ; Stirewalt, Kurt:
Using declarative descriptions to model user interfaces with MASTERMIND.
(1997) 22

[BFK+08] Bogdan, Cristian ; Falb, Jürgen ; Kaindl, Hermann ; Kavaldjian, Sevan
; Popp, Roman ; Horacek, Helmut ; Arnautovic, Edin ; Szep, Alexander:
Generating an Abstract User Interface from a Discourse Model Inspired by Hu-
man Communication. In: Proceedings of the 41th Annual Hawaii International
Conference on System Sciences (HICSS-41). Piscataway, NJ, USA : IEEE Com-
puter Society Press, January 2008 21, 75

[CE00] Czarnecki, Krysztof ; Eisenecker, Ulrich: Generative Programming.
Addison-Wesley, 2000 7

77

[FFMM94] Finin, Tim ; Fritzson, Richard ; McKay, Don ; McEntire, Robin: KQML
as an Agent Communication Language. In: Proc. of the third international
conference on information and knowledge management (1994) 21

[FKP+09] Falb, Jürgen ; Kavaldjian, Sevan ; Popp, Roman ; Raneburger, David ;
Arnautovic, Edin ; Kaindl, Hermann: Fully automatic User Interface Gen-
eration from Discourse Models. In: Proceedings of the 2009 ACM International
Conference on Intelligent User Interfaces (IUI 2009). Sanibel Island, Florida,
USA, to appear Feb 2009 33, 75

[Fou08a] Foundation, The Apache S. The Apache Velocity Project.
http://velocity.apache.org/. 2008 10

[Fou08b] Foundation, The E. AspectJ - crosscutting objects for better modularity.
http://www.eclipse.org/aspectj/. 2008 7

[Fou08c] Foundation, The E. The Eclipse Modeling Framework.
http://www.eclipse.org/modeling/emf/. 2008 17

[KFAP06] Kaindl, Hermann ; Falb, Juergen ; Arnautovic, Edin ; Popp, Roman: High-
level Communication in Systems-of-Systems. In: Proceedings of the Fourth An-
nual Conference on Systems Engineering Research (CSER-06), Los Angeles, Cal-
ifornia (2006) 19, 75

[KM97] Kimbrough, Steven O. ; Moore, Scott A.: On automated message processing
in electronic commerce and work support systems. In: ACM Transactions on
Information Systems (1997) 21

[LGF90] Luff, Paul (Hrsg.) ; Gilbert, Nigel (Hrsg.) ; Frohlich, David (Hrsg.): Com-
puters and Conversation. Academic Press, London, UK, January 1990 1

[MT88] Mann, W.C. ; Thompson, S.A.: Rhetorical Structure Theory: Toward a func-
tional theory of text organization. In: Text (1988) 1, 22

[PFA+09] Popp, Roman ; Falb, Jüurgen ; Arnautovic, Edin ; Kaindl, Hermann ;
Kavaldjian, Sevan ; Ertl, Dominik ; Horacek, Helmut ; Bogdan, Cristian:
Automatic Generation of the Behavior of a User Interface from a High-level
Discourse Model. In: Proceedings of the 42nd Annual Hawaii International Con-
ference on System Sciences (HICSS-42). Piscataway, NJ, USA : IEEE Computer
Society Press, to appear 2009 26, 27, 33, 75

[Pop07a] Popma, Remko. JET Tutorial Part 1. http://www.eclipse.org/articles/Article-
JET/jet tutorial1.html. 2007 15

[Pop07b] Popma, Remko. JET Tutorial Part 2. http://www.eclipse.org/articles/Article-
JET2/jet tutorial2.html. 2007 16

[Pro08] Project, The F. FreeMarker: Java Template Engine Library.
http://freemarker.org/. 2008 12

[Sea69] Searle, J. R.: Speech Acts: An Essay in the Philosophy of Language. Cam-
bridge, England : Cambridge University Press, 1969 1, 20

78

[SV05] Stahl, Thomas ; Voelter, Markus: Modellgetriebene Softwareentwicklung.
dpunkt.verlag, 2005 4

[Tea05] Team, XDoclet. XDoclet - Attribute-Oriented Programming.
http://xdoclet.sourceforge.net. 2000 - 2005 7

[Tea08] Team, The AndroMDA C. AndroMDA. http://www.andromda.org/. 2008 13,
75

[WHA00] Wilson, Chris ; Hégaret, Philippe L. ; Apparao, Vidur. Document
Object Model CSS. http://www.w3.org/TR/2000/REC-DOM-Level-2-Style-
20001113/css.html. 2000 46

79

	Titlepage
	Introduction
	State of the Art
	Automated Code Generation
	Templates and Filtering
	Templates and Meta-Model
	Frame Processing
	API-based generation
	Inline Generation
	Code Attributes
	Code Weaving
	Combinations
	Differences and Similarities

	Template Engines
	Velocity
	FreeMarker
	AndroMDA
	Java Emitter Templates

	The Eclipse Modeling Framework

	OntoUCP – Ontology-based Unified Communication Platform
	The Discourse Model
	Communicative Acts
	Conversation Analysis
	Rhetorical Structure Theory (RST) Relations
	Procedural Constructs

	The Abstract User Interface
	The Rendering Architecture
	The Online Shop
	The Online Shop Discourse Model
	The Online Shop Domain of Discourse Model

	From Abstract User Interface to Java Swing
	The Code Generator
	The Code Generator Implementation Class
	From Structural UI Widgets to Java Swing
	Cascading Style Sheets

	The Online Shop continued
	The Application
	Manually-Created vs. Automatically-Generated Abstract UI Description

	Conclusion
	Diagrams

