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Kurzfassung 
 
 
Die vorliegende Dissertation „Effektive Schwingungsdämpfung von planmäßig 

asymmetrischen Gebäuden“ untersucht den Einfluß passiver Tilger in asymmetrischen 

Gebäuden bei Erdbebenbelastung, wobei insbesondere gekoppelte Torsions- und 

Biegeschwingungen untersucht werden. Da der Massenmittelpunkt CM nicht mit dem 

Steifigkeitsmittelpunkt CS der Geschoßdecken übereinstimmt, verursacht die seismische 

Erregung in einer Richtung eine dreidimensionale Schwingung (schiefe Biegeschwingung und 

Torsion). Die dynamische Schwingungstilgung dissipiert Energie, um strukturelle 

Beschädigung oder Unannehmlichkeit der Bewohner zu minimieren, mit 

Gas-Flüssigkeitskombitilgern (tuned liquid column gas dampers-TLCGDs) und/ oder mit 

Gas-Flüssigkeitskombi-Torsionstilgern (torsional tuned liquid column gas 

dampers-TTLCGDs), mit Gasfeder Wirkung. Es wurden theoretische Studien durchgeführt. 

Die Zielsetzung dieser Arbeit war, die optimale Installation und die optimalen Parameter von 

Gas-Flüssigkeitskombitilgern und Gas-Flüssigkeitskombi-Torsionstilgern für seismische 

Anwendungen festzustellen. Sie können in verschiedenen Positionen in den vorgewählten 

Geschoßdecken installiert werden, dennoch ist eine optimale Position von der Lage des 

modalen Geschwindigkeitspols abhängig. Wenn die Geschwindigkeitspole außerhalb der 

Geschoßdecke (mäßige Asymmetrie) liegen, dann ist die ideale Position des U-förmigen 

Gas-Flüssigkeitskombitilgers durch den größtmöglichen normalen Abstand zu diesem 

Geschwindigkeitspol gegeben. Wenn der modale Geschwindigkeitspol innerhalb der 

Geschoßdecke (starke Asymmetrie) liegt, dann wird eine neue Konstruktion vorgeschlagen: 

der horizontale Abschnitt des Rohr-Systems wird gebogen, so dass der 

Gas-Flüssigkeitskombi-Torsionstilger den Geschwindigkeitspol umschließt. Die optimale 

Eigenfrequenz und der lineare Dämpfungskoeffizient des Gas-Flüssigkeitskombitilgers 

werden mittels geometrischer Transformation in Analogie zum klassischen 

Feder-Masse-Tilger (tuned mass dampers -TMDs) abgeleitet. Anschließend führt eine 

Feinabstimmung mit einem im Zustandsraum definierten Gütekriterium zu einer weiteren 

Verbesserung der Tilgerwirkung. Eine besondere robuste Dämpfung in einem vergrößerter 

Frequenzfenster wird durch die Aufteilung in kleine, parallele wirkende 

Gas-Flüssigkeitskombitilger erreicht. Numerische Beispiele haben bereits gezeigt, dass eine 

wirkungsvolle Methode zur effektiven Dämpfung von Translations- und 

Torsionsschwingungen vorgelegt wird. 
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Abstract 
 
 
The purpose of this dissertation is to reduce lateral flexural and torsional vibrations of 

asymmetric buildings under the influence of earthquakes by means of passive absorbers. Since 

the centre of mass CM and the centre of stiffness CS of the floors do not coincide, even the 

uni-directional seismic excitation causes a three dimensional vibration (oblique bending and 

torsion). Dynamic vibration absorbers dissipate energy to avoid structural damage or 

discomfort of the occupants. As to tuned liquid column gas damper (TLCGD) and torsional 

tuned liquid column gas damper (TTLCGD), theoretical studies have been carried out to 

reduce translational and torsional vibrations of asymmetric structures. The objective of this 

study was to determine optimum installation and the optimum parameters for TLCGDs and 

TTLCGDs for seismic applications. They could be installed on any position of the selected 

floor. Nevertheless, an optimal position is highly dependent on the position of the center of 

velocity CV in order to minimize vibration. If such a center falls outside of the floor (moderate 

asymmetry), the ideal position of the trace of the mid-plane of the U-shaped TLCGD requires 

its normal distance from this center maximum. If the modal center lies within the floor plan 

(strong asymmetry), the TTLCGD has its horizontal curved piping section enclosing the center. 

The optimal natural frequency and equivalent linear damping coefficient of TLCGD or 

TTLCGD are derived by means of geometrical transformation in analogy to the classical tuned 

mass damper (TMD) or torsional tuned mass damper (TTMD), respectively. Improvements of 

the performance in MDOF structures are achieved by considering the neighbouring modes in 

the state space rendering the optimal parameters modified. A special robust damping to 

increase frequency window is reached by the smaller, parallel action of TLCGD-units. 

Numerical examples have already shown that an effective method is presented for controlling 

the translational and torsional response of asymmetric structures.  
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Introduction 

1 Introduction 
  

This chapter begins with an overview of tuned mechanical damper (TMD) and tuned 
liquid column damper (TLCD). A brief literature review in the area of TLCD is made. The 
motivation of the present research is presented in the next section and the organization of the 
dissertation is finally laid out in detail.  
 
1.1 Overview of passive devices 

Passive devices protect a structure by increasing its energy dissipation capacity. A 
supplemental damping system works by absorbing a portion of the input energy to a structure 
thereby reducing energy dissipation demands and preventing damage to the primary structure. 
This effect is achieved either by conversion of kinetic energy to heat or through the transfer of 
energy among vibration modes. The first method utilizes devices that operate on principles 
such as frictional sliding, yielding of metals, phase transformation in metals, and deformation 
of viscoelastic solids or fluids, examples include metallic yield dampers, friction dampers, 
viscoelastic dampers, viscous fluid dampers, etc. The second method of energy dissipation 
incorporates dynamic vibration absorbers, such as tuned mechanical damper (TMD), tuned 
liquid damper (TLD) and tuned liquid column damper (TLCD). The following Sections are 
conceptually concerned with TMD and TLCD. 

 
1.1.1 The tuned mechanical damper, TMD 
 The tuned mechanical damper is the most commonly used passive device, which consists 
of a mass attached to the building through a spring and a dashpot. Alternatively, a 
pendulum-type mechanical damper is used in high-rise buildings, e.g. in the Taipei 101 tower. 
In order to be effective, its parameters need to be optimally tuned to the building dynamic 
characteristics, thus imparting indirect damping through modification of the combined 
structural system.  
    Den Hartog1 derived expressions for the optimum damping coefficient and the tuning 
ratio (i.e., ratio of the absorber frequency to the natural frequency of the undamped 
single-degree-of-freedom (SDOF)-primary system) for the coupled SDOF-TMD system 
subjected to harmonic excitation. The optimum absorber parameters that minimize the 
displacement response of the primary system were found to be simple functions of the mass 
ratio (ratio of mass of SDOF-structure and damper).  
 
1.1.2 The tuned liquid column damper, TLCD and its extension to 
include a gas-spring, TLCGD 

TLCD is an effective passive energy absorbing device that has been proposed for 
controlling vibrations of structures under different dynamic loading conditions, see e.g. Sakai2. 
Such a TLCD consists of a rigid, U-shaped tube of rectangular, oval or circular cross-section 
that is smoothly integrated into a building and partially filled with a liquid, preferably water. 
Similar to the TMD, the vibration decreasing capability is based on an energy transfer from 
the supporting host structure to the TLCD, thereby including a relative flow of the water 
column. Finally, the energy is dissipated by viscous and turbulent fluid damping. TLCDs 
provide many advantages, when compared to TMD, such as low cost, no moving mechanical 
parts, relatively easy installation in new buildings or in retrofitting existing structures, simple 
maintenance requirements. Indeed, a TLCD may not cause additional cost or weight if a water 
tank used for water supply and fire fighting is incorporated into design of a TLCD. 
Furthermore, they can be combined with active control mechanisms to function as hybrid 
systems.  

Hochrainer3 invented the gas-spring effect. Applications of the TLCD with a sealed piping 
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system, tuned liquid column gas damper (TLCGD), to tall buildings or slender bridges, see 
Hochrainer and Ziegler4, Reiterer5, Reiterer and Ziegler6, can effectively reduce steady state 
vibrations, equally well as a direct increase of the modal structural damping. In the passive 
mode, a sealed piping system with gas pressure in the equilibrium state properly adjusted 
extends the frequency range of application even of large sized TLCGD up to about 5 Hz and 
limits the maximum speed of the fluid-gas interface.  

The experimental and theoretical work by Kwok7 and further studies on TLCD in recent 
years have demonstrated its high effectiveness in suppressing wind induced structural 
vibration. To reduce transient vibration peaks in the initial period of the strong motion phase 
of an earthquake, a novel active control by pressurising gas above the liquid column-ATLCD 
is required as the cheap counterpart to the ATMD. Hochrainer3 invented such an ATLCD. A 
semi-active MR-TLCD control system using magnetorheological fluid was recently proposed 
to counteract the vibrations of wind-excited tall buildings8.  

Under the earthquake loads, plan-asymmetric buildings with irregular distributions of 
mass and/or stiffness are likely to undergo torsional responses coupled with the lateral 
vibrations. In this dissertation, TLCGD instead of TMD are used to mitigate bending and 
torsional vibrations of tall buildings. Active control is outside of the scope of this dissertation. 

In this study, the passive action of TLCGD is considered and the coupled torsional 
response of plan-asymmetric structures is investigated. The dynamic model of a building is 
established by assigning three-degrees-of-freedom to each floor in a first attempt of 
condensation of a large system, second attempt is by modal truncation. Each floor is 
represented as a rigid diaphragm that is horizontally obliquely displaced and rotated about the 
vertical axis during earthquake or wind induced vibrations. Thus it has three 
degrees-of-freedom. These modal expansion displacements and the small rotation combine 
approximately to a rotation about the floor’s center of velocity. If such a center falls outside of 
the floor, translations dominate and the ideal position of the trace of the mid-plane of the 
U-shaped TLCGD requires its normal distance from this center maximum. If the modal center 
lies within the floor plan, the novel torsional tuned liquid column gas damper (TTLCGD) with 
its horizontal curved piping section enclosing the center for best efficiency becomes superior. 
The plane TLCGD and TTLCGD are applied in numerical studies in a total of eight different 
small scale building models and a 30-storey high-rise eccentric structure9. 
 Tuning of the TLCGD is performed in several steps. At first, the linearized model is tuned 
with respect to a selected mode of the structure using the analogy to TMD tuning3 with the 
properly transformed Den Hartog’s optimal parameters taken into account1. In a second step, 
improvements of the performance in MDOF structures are achieved by considering the 
neighbouring modes as well, in a state space optimization with the Den Hartog parameters as 
starting values. Such a fine-tuning renders the optimal parameters modified. Final adjustments 
are easily performed in the course of in-situ testing by adjusting the equilibrium gas pressure 
in TLCGD. 
 
1.2 Motivation of the research 

Through intensive research and development in recent years, TLCD has been accepted as 
an effective vibration control device for new and in retrofit for existing civil engineering 
structures to enhance their reliability in suppressing horizontal vibrations forced by 
earthquakes, wind-gusts and traffic loads, and there are relatively fewer studies in literature on 
the suppression of torsional vibrations of tall buildings by using TLCD. However, a real 
building usually possesses a large number of degrees of freedom and is actually asymmetric to 
some degree even with a nominally symmetric plan. It will undergo coupled vibrations 
simultaneously under purely translational excitations. The earthquakes acting on tall buildings 
are analytically expressed as 3-D model. Meanwhile, here the 3-D responses of tall buildings 
may be coupled due to the eccentricities between the stiffness and mass centers of the 
buildings. Therefore, reducing the large earthquake-induced coupled torsional vibration 
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naturally becomes a critical consideration in the design of earthquake-sensitive tall buildings. 
In theses cases, when torsional responses of the buildings dominate, extensive analytical and 
numerical work has been done to present the calculation method and optimize the parameters 
of TLCGD systems. The low frequency modes are often prominent in the responses of tall 
buildings and high-rise structures, and controlling only the first mode is not sufficient for the 
expected effectiveness. Therefore, the approach for reducing the multi-modal responses of tall 
buildings with multiple TLCGDs is presented here. The numerical examples show that the 
spatially placed TLCGDs system can reduce lateral-torsional responses significantly with 
fairly small mass ratios assigned.  
 
1.3 Literature review 
 In recent years, there has been an increasing interest in the application of TLCD to the 
problem of vibration suppression in civil structures. Since Sakai and his co-authors2 developed 
the idea of TLCD in 1989 for the purpose of structural vibration suppression, many successors 
had employed it in many civil engineering applications to verify its control effectiveness. 
Some references discuss the determination of optimal parameters, such as the optimal 
frequency tuning ratio and optimal head loss coefficient. 

The investigations conducted by Haroun et al.10 showed that the TLCD could reduce 
lateral vibration of a structure effectively if the parameters of the TLCD were properly 
selected. Aiming at improving the robustness of TLCD, multiple tuned liquid column damper 
(MTLCD), which consists of a series of TLCDs with distributed natural frequencies, has been 
studied by Gao et al.11 for reducing lateral vibration of a structure. Xue et al.12 demonstrated 
that the TLCD could also reduce torsional vibrations of a structure under time-harmonic 
excitation, and Shum and Xu13,14 theoretically and experimentally investigated the 
effectiveness of TLCD in reducing torsional vibration of a structure. TLCD is thus believed to 
be an effective device in controlling the lateral or torsional vibration of a building structure. 
However, there is little information on whether and how TLCDs can most effectively reduce 
the coupled lateral and torsional vibration of a building structure. 
 Huo et al.9 proposed the vibration control methodology of TLCD on eccentric structures, 
modelled as torsional coupled multi-storey shear structures, excited by multi-dimensional 
ground motions. The equations of motion of the multi-storey eccentric structure with two 
TLCDs set in orthogonal directions subjected to multi-dimensional earthquake excitation, are 
derived. The main parameters such as frequency of TLCD, frequency of structure and 
eccentric distance are investigated. A 30-storey high-rise eccentric structure under three 
different types of earthquake records as numerical example is analyzed using TLCD control 
method. Li et al.15 proposed the TLCD semi-active control of eccentric structures excited by 
multi-dimensional ground motions as well. This semi-active control strategy is established and 
implemented based on Artificial Neural Network (ANN). The numerical example of 
five-storey eccentric structure has shown that it is an effective method presented for 
controlling the coupled torsion. 
 The TTLCD is a type of damper that can effectively control the torsional response of 
structures. The results of free vibration and forced vibration simulations show that TTLCD is 
effective on the control of structural torsional response, for a first attempt see e.g. Hochrainer3. 
In a later publication Huo et al.16 presented the optimal parameters of TTLCD for vibration 
control of offshore platforms based on the stochastic vibration theory. The torsional vibration 
and torsionally coupled vibration of platform structures are controlled by use of TTLCD. To 
make frequency tuning more accessible, the sealed TTLCD is proposed in this dissertation, 
exhibiting the gas-spring effect, TTLCGD. 
 
1.4 Overview of the Dissertation 
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This dissertation consists of seven chapters, focusing mainly on the couped lateral and 
torsional vibration control of asymmetric buildings by means of TLCGD and TTLCGD of 
various designs.  

Chapter 2 provides a theoretical investigation on the performance of TLCGDs for 
mitigating the couped lateral and torsional vibrations of single-storey moderately 
plan-asymmetric space frames which can be modeled as a three degree-of-freedom structure. 
The biaxial horizontal earthquakes are applied at the rigid foundation as a 
single-point-excitation. The equation of relative fluid motion in TLCGD is derived using a 
generalized Bernoulli equation of relative streamlines in a moving frame, see Ziegler17, page 
483. The interaction forces and moments between absorber and structure are determined. Then, 
the optimum TLCGD parameters are derived by employing Den Hartog’s procedure followed 
by fine-tuning in a state space optimization. Finally, a numerical example is given in order to 
illustrate the effectiveness of TLCGD in suppressing the time-harmonic excitation and the 
earthquake response under varying angles of attack as well. 

The control performance of TTLCGD over coupled torsional response of single-storey 
strongly plan-asymmetric space frames excited by ground motions is investigated in Chapter 3. 
Strong asymmetry renders several modal centers of velocity within the floor plan. Based on 
the equation of motion for TTLCGD-structure system, the optimal control parameters of 
TTLCGD are given through the analogy between TTMD and TTLCGD as derived the first 
time in this dissertation under general conditions. A numerical study shows that the TTLCGD 
is an effective torsional response control device. 

In Chapter 4, in order to enhance the understanding of TLCGD performance and its 
behavior in the mitigation of coupled torsional motion of tall building, multi-storey 
moderately plan-asymmetric space frames are studied. Three numerical examples of a 
multi-storey moderately plan-asymmetric space frame show that TLCGD is very effective to 
suppress coupled lateral and torsional vibrations under either time-harmonic excitation or 
earthquake ground motion. 
 Chapter 5 deals with the optimum parameters of TTLCGD for multi-storey strongly 
plan-asymmetric space frames under horizontal earthquake excitations. Theoretical 
development and numerical results show that TTLCGD is adequate for reducing both 
translations and rotation under earthquakes from any incident angle-of-attack. 

In Chapter 6 a 30-storey moderately asymmetric structure described in literature under 
either time-harmonic excitation or earthquake ground motion is investigated. The author 
performed a model reduction to 12 degrees of freedom using the method of modal truncation 
and TLCGDs are installed to mitigate the first three modes. 

Finally, Chapter 7 summarizes the results drawn from the research presented in this 
dissertation.  

The studies reported in this dissertation are intended to provide insight into the behavior 
of TLCGD and TTLCGD and their potential applications to large-scale structures using 
smaller units in parallel action. This work is expected to accelerate the implementation of 
these dampers in the areas of vibration mitigation in tall buildings. 
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2 Single-storey Moderately Plan-asymmetric 
Space Frame with TLCGDs 
 
2.1 Introduction 

In this chapter, we investigate how to reduce lateral oblique flexural and torsional 
vibrations of a single-storey moderately asymmetric structure e.g. caused by earthquakes, by 
means of plane U-shaped TLCGD. The modal displacements and rotation combine to a 
sufficiently small rotation about the floor’s center of velocity. We define moderate asymmetry 
if the modal centers of velocity are outside of the floor plan. Since the centre of mass CM and 
the centre of stiffness CS do not coincide for an asymmetric structure, even the uni-directional 
seismic excitation in general causes a three dimensional in-plane motion of the floor. A model 
of TLCGD for reducing coupled lateral and torsional motions of such a single-storey mass 
asymmetric structure is developed. The coupled equations of motion of the TLCGD-main 
structure are derived considering the floor and damper interaction. Such a substructure model 
constitutes a theoretical basis of this dissertation and will be used for further studies on the 
performance and the control effectiveness of TLCGD. The installation of TLCGD on 
moderately asymmetric structures should be a successful means for reducing the effects of 
dynamic excitations. In principle, the TLCGD can be set at any position of the selected floor. 
However, the ideal position of the midplane of the U-shaped TLCGD requires its normal 
distance from center of velocity maximum. The analogy between TMD and TLCGD when 
attached to main SDOF-structure under the horizontal base acceleration has been established 
by Hochrainer1, see also Hochrainer and Ziegler2. It is repeated in Section 2.6 for sake of 
completeness and it becomes a basic procedure for a more general analogy between TMD 
and TLCGD when attached to the 3DOF-space frame structure. We also present a numerical 
example to illustrate that multiple properly tuned TLCGDs in controlling multiple modes 
considerably increase the effective structural damping and thus reduce the ductility demands 
in the response to strong ground motions. 

 
2.2 Equation of motion for single-storey moderately 
asymmetric space frame 
 

  
a) Plan view   b) Front view 

Fig. 2.1: Single-storey moderately asymmetric space frame. 
 

The simplest model is analyzed here: a single-storey shear-type space frame has e.g., a 
rectangular base of length a and width b, as shown in Fig. 2.1. It consists of a homogenous 
floor of mass Sm , which is supported by four symmetrically arranged clamped-clamped 
“massless” and inextensible elastic columns of height l in each corner. The columns have the 
same anisotropic stiffness ky and kz in y- and z-directions. An additional point mass 1m  is 
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attached off-center on the rigid floor, ye , ze  denote the eccentricity. Let gv , gw  denote 
the free-field horizontal components of a seismic ground acceleration in y-, z-directions, 
while soil-structure interaction is neglected. The lateral displacements of CM are denoted v 
and w, and θ is the rotational angle about the vertical x-axis. The origin O of the Cartesian 
coordinates happens to be the center of stiffness CS in this doubly symmetric arrangement of 
the columns. 

 

 
Fig. 2.2: Free-body-diagram of the floor. 

 
The free-body-diagram of single-storey structure under ground excitation as indicated in 

Fig.2.2 is subjected to the basic laws of conservation of momentum and conservation of 
angular momentum about the vertical x-axis, see Ziegler3, page 400-411. The coordinates of 
the center of mass CM with respect to point O are given by considering the static 
mass-moments, Fig. 2.2, 

1

1
MC y

S

my e
m m

=
+

, 1

1
MC z

S

mz e
m m

=
+

. 

 
(i) Conservation of momentum in the y-z plane:  

( )1 MS Cm m a R+ = , 
MC t y t za v e w e= + , 

t gv v v= + , t gw w w= + , 

where tv  and tw  are the absolute accelerations in y- and z-directions, respectively and R  
is the resultant of the external forces, 1θ ,  

( ) ( )4
M My C y z C zR k v z e k w y eθ θ⎡ ⎤= − + + −⎣ ⎦ . 

Thus, neglecting structural damping, in y- and z-directions we have respectively,  
( ) ( )1 14 4

MS y y C S gm m v k v k z m m vθ+ + + = − + ,          (2.1a)           

( ) ( )1 14 4
MS z z C S gm m w k w k y m m wθ+ + − = − + .         (2.1b) 

 
(ii) Conservation of angular momentum with respect to the center of mass CM: 

M
M

C
C

dD
M

dt
= , ,

M MC C xD D e=  ,
M MC C xM M e=  

MC xD I θ= .  

According to Fig. 2.2, the axial moment of the external forces becomes 
2 2

2 24 4 4
2 2M M M M MC y C z C y C z C
b aM k z v k y w k z k y θ

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞= − + − + + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎨ ⎬⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
, 
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( )2 2 2 24 4 4 4 0
M M M Mx y z y C z C y C z CI k b k a k z k y k z v k y wθ θ+ + + + + − = ,     (2.1c) 

where the mass moment of inertia about the vertical x-axis of the rectangular floor with point 
mass 1m  is, Fig. 2.2,  

( ) ( ) ( ) ( ) ( )
2 22 2 2 2 2

x 1 1= a +b /12+ +
M M M MS S C C y C z C S SI m m y z m e y e z m m r⎡ ⎤+ − + − = +⎢ ⎥⎣ ⎦

,  

where Sr  denotes the radius of inertia with respect to the center of mass CM . 
 

The three coupled equations of undamped motion namely Eqs. (2.1a)- (2.1c) are put in 
the matrix form, 

 
M K M gx x x+ = − , [ ]T

Tx v w u= , 0T
g g gx v w⎡ ⎤= ⎣ ⎦ ， T Su rθ= ,    (2.2) 

 
where M  and K  are the mass and stiffness matrices of the structure with dimension 3×3, 
both are positive definite; x  means the displacement vector in the center of mass of the 
structure; gx  denotes the given seismic ground acceleration vector.  

The diagonal mass- and the symmetric stiffness matrix of the 3-DOF (degree-of-freedom) 
structure are deduced from Eqs. (2.1a)- (2.1c) by inspection 

 

( )1

1 0 0
M 0 1 0

0 0 1
Sm m

⎡ ⎤
⎢ ⎥= + ⎢ ⎥
⎢ ⎥⎣ ⎦

,               (2.3) 

( )2 2 2 2 2

K 4

4 4 / 4

M

M

M M M M

y y C S

z z C S

y C S z C S y z y C z C S

k k z r

k k y r

k z r k y r k b k a k z k y r

⎡ ⎤0 /⎢ ⎥
⎢ ⎥= 0 − /⎢ ⎥
⎢ ⎥/ − / + + +⎢ ⎥⎣ ⎦

.     (2.4) 

 
(i) Control of stiffness matrix by direct method, see e.g. Chopra4, page 376 and Fig.2.3: 
1) 1,  0,  0T Sv w u rθ= = = = , 2) 0,  1,  0T Sv w u rθ= = = = , 3) 0,  0,  1T Sv w u rθ= = = =  

4yy yk k=    0yzk =     4
My y C Sk k z rθ =  

0zyk =     4zz zk k=    4
Mz z C Sk k y rθ = −  

4
My y C Sk k z rθ =   4

Mz z C Sk k y rθ = −   ( )2 2 2 2 24 4
M My z y C z C Sk k b k a k z k y rθθ = + + +  

 

 

Fig. 2.3: Evaluation of stiffness matrix of single-storey moderately asymmetric space frame: 
restoring forces indicated. 
 
(ii) Control of the mass matrix by the direct “stiffness method”, see Fig.2.4: 

1) 1, 0, 0T Sv w u rθ= = = = , 2) 0, 1, 0T Sv w u rθ= = = = , 3) 0, 0, 1T Sv w u rθ= = = =  

1yy Sm m m= +      1zz Sm m m= +     1Sm m mθθ = +  
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Fig. 2.4: Direct evaluation of mass matrix of single-storey moderately asymmetric space 
frame: inertial forces indicated. 
 

2.2.1 Effective mass and stiffness of a column 
If we consider the mass per unit of length Aρ , as well as the stiffness EI  of the 

column both to be constant (for convenience of integration), an approximation of the equation 
of motion of the flexural vibration in the first natural mode can be determined. An admissible 
Ritz approximation can be always given affined to a proper static deformation. Hence, see 
Ziegler3, page 611, 

( ) ( ) ( ),w t q tξ ϕ ξ= ,                 (2.5) 

where ( )ϕ ξ  suffices to choose the Hermite shape function for the cc-beam, unit 
displacement of x=l is 1,  

( ) 3 2
3 2 3 , 0 1H x lξ ξ ξ ξ= − +  ≤ = ≤ .              (2.6) 

The kinetic energy becomes simply 

( )
1 1 22

2 2 1
3

0 0

1
2 2 2

m qqT w Ald Al H dρ ξ ρ ξ ξ= = =∫ ∫ .          (2.7) 

Thus, the kinetic energy is equivalent to that of a single equivalent mass 1m  

 ( )
1

2
1 3

0

13 ,
35 c cm H Ald m m Alξ ρ ξ ρ= =  =∫ ,            (2.8) 

where mc is the mass of column. 
The potential energy of the slender column (rigid in shear) is approximated by  

221 1 22 2
2 3

3 2 3 2
0 0

1
2 22

d HEI w EI kqV U d q d
l l d

ξ ξ
ξ ξ

⎛ ⎞⎛ ⎞∂
= = = =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

∫ ∫ .        (2.9) 

The effective static stiffness of the cc-column becomes  
21 2

3
3 2 3

0

12d HEI EIk d
l d l

ξ
ξ

⎛ ⎞
= =  ⎜ ⎟⎜ ⎟

⎝ ⎠
∫ .                                           (2.10) 

The moment of inertia I for standard profiles is listed by Robert5. 
 
2.2.2 Influence of the normal force on the stiffness matrix: 
geometric correction 

If a slender column is subjected to a large compressive force, its lateral stiffness is 
significantly reduced. The geometric correction of stiffness of c-c beam is 6 5Gk N l= , 
where 0N <  is the compressive axial force, l  is the length of the beam. If the lateral load 
is less than 0.3 of the critical buckling load, the linear geometric stiffness correction is 
applicable, see e.g. Clough-Penzien6, page167 and Ziegler3, page 604. A numerical example is 
studied in Section 2.9.1.  

Assuming that additional point mass 1m  is attached on number 1 column, the column 
has the corrected stiffness 1yk  and 1zk  in y- and z-directions, and other columns have the 
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same corrected stiffness 2 3 4y y yk k k= =  and 2 3 4z z zk k k= =  in y- and z-directions, the 
corrected stiffness matrix can be derived as 

 

11 1 23y yk k k′ = + , 12 21 0k k′ ′= = , ( ) ( )13 31 1 2 2 13 2
My y C y y Sk k k k z k k b r⎡ ⎤′ ′= = + + − /⎣ ⎦ , 

22 1 23z zk k k′ = + , ( ) ( )23 32 1 2 1 23 2
Mz z C z z Sk k k k y k k a r⎡ ⎤′ ′= = − + − − /⎣ ⎦ , 

( )( ) ( )( ) ( )
( )

2 2 2 2
33 1 2 1 2 2 1

2
2 1

3 4 3 4
M M M

M

y y C z z C y y C

z z C S

k k k b z k k a y k k bz

k k ay r

⎡′ = + + + + + + −⎣
⎤+ − ⎦

   (2.11) 

 
i) Position of the center of stiffness 

The center of stiffness CS coincides with the origin O in the floor without considering the 
geometric correction as the columns have the same anisotropic stiffness. The distance 
between center of stiffness and center of mass is increased by considering the geometric 
correction and the rotational response of the structure becomes more prominent. The 
coordinate of the center of stiffness can be calculated by means of the static 
stiffness-moments, see Fig.2.5,  

 
( )1 2

1 2

2
0

3S

z z
C

z z

k k a
y

k k
−

= <
+

, 
( )1 2

1 2

2
0

3S

y y
C

y y

k k b
z

k k

−
= <

+
 .        (2.12) 

 
                    Fig. 2.5: Position of the center of stiffness. 
 
2.2.3 Natural modes of the main structure 

The solution of the eigenvalue problem associated with the homogenous Equation (2.2) 
when considering the corrected stiffness matrix provides the natural circular frequencies nω  

and mode shapes nφ , n=1,2,3 of the undamped main system. Consequently, the undamped 
free vibration is time-harmonic, see e.g. Chopra4, page 404, 

( ) cosn n nx t A tφ ω= .                (2.13) 
After substituting Eq. (2.13) into the homogenous Eq. (2.2), the time-reduced equations result, 

2K M 0n nω φ⎡ ⎤′ − =⎣ ⎦ . The characteristic equation becomes, 

2det K M 0nω⎡ ⎤′ − =⎣ ⎦ .                (2.14) 

The three eigenvalues 2
nω  can be assembled into a diagonal matrix 2Ω  
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2
1

2 2
2

2
3

0 0

Ω 0 0

0 0

ω

ω

ω

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

.               (2.15) 

The orthogonal eigenvectors nφ  corresponding to the natural frequencies nω  can be 
assembled into the modal matrix φ  

11 12 13

21 22 23

31 32 33

φ φ φ
φ φ φ
φ φ φ

⎡ ⎤
⎢ ⎥φ = ⎢ ⎥
⎢ ⎥⎣ ⎦

.                (2.16) 

nφ  are normalized to either putting max 1jiφ = , rendering the modal mass by scalar product 

MT
k j jm = φ φ , or ortho-normalized by requiring M 1T

k j jm = φ φ = . 
The numerical solution is a standard solution in Matlab 7.07, performed numerically by 
calling the function eig.  
 
2.3 Position of the modal center of velocity CV  
 

The point of a rigid body in-plane motion that instantly has zero velocity is called the 
center of velocity CV, the acceleration of CV is generally nonzero. The velocity of any point P 
of the body can be calculated using the equation ˆ

M MP C PCv v rθ= + , where ˆ
MPCr is the 

positively rotated orthogonal vector to 
MPCr , ˆ

M MPC x PCr e r= × . If P=CV, its material 
position with respect to point CM is defined, see e.g. Ziegler3, page19, 

ˆ 0
V M V MC C C Cv v rθ= + = .                 (2.17a) 

With respect to small displacements and small rotation, Eq. (2.17a) is multiplied by the time 
differential to render  

ˆ 0
M V MC C Cr rδ δθ+ = .                 (2.17b) 

 
Fig. 2.6: Moderately asymmetric space-frame. Position of the center of velocity is outside 
floor plan. Small displacements and small rotation 1θ of the floor are understood, 
exaggerated in the figure. 
 

The centers of mass and stiffness are distant points in the floor of the space frame. 
Consequently, the modal shapes are defined by rotations of the floor about the modally 
resulting centers of velocity, a general position of the floor is shown in Fig.2.6. The position 
vector of the center of velocity CV is 

V V V

T
C C Cr y z⎡ ⎤= ⎣ ⎦  and the displacement of CV for 
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sufficiently small motions is zero. The material vector 
V M V M V M

T
C C C C C Cr y y z z⎡ ⎤= − −⎣ ⎦ , 

with the rotated material vector ( )ˆ
V M V M V M

T
C C C C C Cr z z y y⎡ ⎤= − − −⎣ ⎦ , (see Fig.2.6). The 

coordinates of the center of velocity can be derived under such conditions, putting δθ θ , 
v vδ , w wδ , 

1
V MC Cy y w

θ
= − , 

1
V MC Cz z v

θ
= + .              (2.18a) 

In terms of the components of the modal vector jφ , 

2
3

V M
S

C j C j
j

ry y φ
φ

= − , 1
3

V M
S

C j C j
j

rz z φ
φ

= + , 3 0jφ ≠ .          (2.18b) 

 
2.4 The equation of relative motion of the fluid in a 
TLCGD 

    

      
              Fig. 2.7: U-shaped tuned liquid column gas damper. 

 
A TLCGD with geometry shown in Fig. 2.7 is a symmetric, U- or V-shaped rigid piping 

system consisting of one horizontal and two inclined (
4 2
π πβ≤ ≤ ), partially water-filled pipe 

sections. Let ρ, B, H, denote the liquid density, ρ=1000 kg/m3 for water, the horizontal length 
of the liquid column, and the length of the liquid column in the inclined pipe sections at rest, 
respectively. Furthermore AB, AH denote the cross-sectional areas of the liquid column 
assumed to be constant of the horizontal and inclined pipe sections, respectively. The relative 
motion of the liquid column is described by the displacement ( )1 2u u u t= = . It is important 

to emphasize that ( ),u s t′  is a relative displacement of the liquid with respect to the moving 
frame. Since the ends of the piping system might be closed and filled with gas, an internal gas 
pressure can build up on either side of the liquid path, denoted p1 and p2 with a reference 
pressure p0 in equilibrium, see Hochrainer1 and Hochrainer, Ziegler2. 

 
Figure 2.8 shows a model of the single–storey moderately asymmetric structure (for the 

main system see Section 2.2) equipped with a TLCGD, with its trace under the general angle 
γ to the y-direction. The position coordinate of the reference point A of the TLCGD is (yA, zA, 
0). 
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Fig. 2.8: Model of single-storey asymmetric space frame with a single TLCGD, reference 
configuration. CM is the center of mass of the main system (without TLCGD). The mass of 
the piping system is considered in the course of fine-tuning. 
 

The motion of TLCGD during lateral and torsional vibrations is shown in Figs. 2.8 and 
2.9. The liquid motion in TLCGD can be classified as two types: i) the global motion of the 
liquid with the main structure; and ii) its relative flow, assuming the piping system to be rigid. 
The generalized non-stationary Bernoulli equation can be used to derive the equation of 
relative fluid motion, see e.g. Ziegler3, page 483. The generalized Bernoulli equation of the 
ideal fluid-flow takes on the form 

( ) ( )
'

'

2

2 1 2 1
1

1
ta e ds g x x p p

ρ
′ ′⋅ = − − − −∫ ,            (2.19) 

where 1x , 2x  and g  denote the geodesic height of the free surface 1' and 2' and the 
constant of gravity 29.81g m s= ; a  and te′  denote the absolute acceleration of a fluid 
particle and the relative streamline’s tangential direction, respectively.  
 

Fig. 2.9: TLCGD under general in-plane acceleration of the floor: tv , tw  and θ . Resulting 
force components FAy, FAz and moment MAx, indicated in the instant configuration. 
 
  The position of a liquid particle against the center of mass of the main system CM is 
described by Ar r r′= + , where r′  denotes the relative position of a fluid particle with 
respect to point A. The relative position vector r′  is decomposed into its horizontal and 
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vertical components, y z xr r r′ ′′ ′ ′= + . Ar  is the in-plane position vector of point A against 
origin CM, see e.g. Ziegler3, page 497. The velocity v  can be derived straightforwardly by 
differentiating r  with respect to time  

 A
A

dr dr drv v
dt dt dt

′ ′
= + = + ,              (2.20) 

 ˆ
x y z

dr d re r r u
dt dt

θ θ ′ ′
′ ′ ′

′ ′= × + = + .               (2.21) 

Here we define ( , ) tu u s t e′ ′= , see Fig. 2.7, as the relative velocity of the fluid particle with 

respect to the moving reference frame. ˆ
g A y zv v rθ ′ ′′= +  denotes the guiding velocity, 

ˆ
M MA C ACv v rθ= + , see Fig. 2.9. A second differentiation with respect to time renders an 

expression for the acceleration 

 2ˆ 2A y z y z x g c
d ua a r r e u a a a
dt

θ θ θ′ ′ ′ ′
′

′ ′ ′= + − + × + = + + ,       (2.22) 

with the guiding acceleration 2ˆ
g A y z y za a r rθ θ′ ′ ′ ′′ ′= + −  and the Coriolis acceleration 

2c xa e uθ= × , the latter is perpendicular to the relative velocity u . The relative acceleration 
d ua
dt
′

′ =  is the relative rate of the relative velocity and with respect to the moving frame can 

be expressed as 
2

2t
u ua e
t s

⎛ ⎞′∂ ∂′ ′⋅ = + ⎜ ⎟⎜ ⎟′∂ ∂ ⎝ ⎠
, see again Ziegler3, page 498. 

  Projecting absolute acceleration, Eq. (2.22), along the relative streamline’s tangent te′  
yields 

2
2

0
2t g t c t t A t y z t

u ua e a e a e a e a e r e
t s

θ ′ ′
⎛ ⎞′∂ ∂′ ′ ′ ′ ′ ′ ′ ′⋅ = ⋅ + ⋅ + ⋅ = ⋅ − ⋅ + + ⎜ ⎟⎜ ⎟′∂ ∂ ⎝ ⎠

.        (2.23) 

 

                  
Fig. 2.10: TLCGD in general horizontal motion. Instant position of the fluid center of 
mass Cf is shown. 
 
  The absolute acceleration of the reference point A (yA, zA, 0) is given by, Fig. 2.7, 

2ˆ
M M MA y y z z C AC ACa a e a e a r rθ θ= + = + − , ( ) ( )M M MAC A C y A C zr y y e z z e= − + − , 

( ) ( )ˆ
M M MAC A C y A C zr z z e y y e= − − + − ，thus, 
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( ) ( ) 2
M My g A C A Ca v v z z y yθ θ= + − − − − , ( ) ( ) 2

M Mz g A C A Ca w w y y z zθ θ= + + − − − (2.24) 

where the seismic ground acceleration, a common time function is understood, is gv  in 

y-direction, gw  in z-direction. v , w  and θ  are the acceleration of the floor’s center of 

mass in y- and z-directions and the angular acceleration of the floor, respectively. Aa  
projected in Ae′ -direction is 

( ) ( )' cos sinA A y za e a aγ θ γ θ⋅ = + + + .            (2.25) 

For the inclined segments, Fig. 2.10: 10 s H u′≤ ≤ − : cosA te e β′ ′⋅ = , 
          20 s H u′≤ ≤ + : cosA te e β′ ′⋅ = . 
For the horizontal segment, Fig. 2.10: 0 s B′≤ ≤ : 1A te e′ ′⋅ = . 
Using ( )1 2u u u t= =  and the continuity equation ( ) ( ), .u s t A s const′ ′ = , the integral term, 
see Eq. (2.19), becomes 

( ) ( )[ ]( ) ( )( )
'

'

2

1

cos cos 2 cosA t A A A Aa ds H u B H u B He a e a eβ β β′⋅ = − + + + = +′ ′ ′⋅ ⋅∫ ,   (2.26) 

For the inclined segments:  

10 s H u′≤ ≤ − : ( )1 cos cos
2y z A
Br H u s eβ β′ ′

⎡ ⎤′ ′ ′= − + − −⎢ ⎥⎣ ⎦
, 

( )1 cos cos cos
2y z t
Br e H u sβ β β′ ′

⎡ ⎤′ ′ ′⋅ = − + − −⎢ ⎥⎣ ⎦
,         (2.27) 

20 s H u′≤ ≤ + : cos
2y z A
Br s eβ′ ′

⎛ ⎞′ ′ ′= +⎜ ⎟
⎝ ⎠

, cos cos
2y z t
Br e s β β′ ′

⎛ ⎞′ ′ ′⋅ = +⎜ ⎟
⎝ ⎠

.    (2.28) 

For the horizontal segment: 0 s B′≤ ≤ :  

2y z A
Br s e′ ′

⎛ ⎞′ ′ ′= − −⎜ ⎟
⎝ ⎠

, 
2y z t
Br e s′ ′

⎛ ⎞′ ′ ′⋅ = − −⎜ ⎟
⎝ ⎠

.           (2.29) 

Substituting ( )1 2u u u t= = , the integral terms become 

( )
2

2 2 2

1

cos 2 cosy z tr e ds u B Hθ θ β β
′

′ ′
′

′ ′ ′− ⋅  = − +∫ ,          (2.30)           

( )
2 2

2 2
2 1

1

1 0
2 2

u ds u u
s

′

′

⎛ ⎞∂ ′ = − =⎜ ⎟⎜ ⎟′∂ ⎝ ⎠
∫  (symmetry),           (2.31) 

( ) ( )
2

1 2
1

2H H

B B

A Au ds u H u uB u H u H B u
t A A

′

′

⎛ ⎞
⎜ ⎟
⎝ ⎠

′∂ ′ = − + + + = +
∂∫ ,       (2.32)  

( ) ( )2 1 2 1sin sin 2 sinx x H u H u uβ β β− = + − − = .         (2.33) 
 
If the piping system is not sealed, then the air pressure at the free surface is 

approximately equal to the ambient pressure 1 2 0p p p= = , Figure 2.7 and the pressure 
difference vanishes. If the piping system is sealed, the gas inside the air chamber is 
quasi-statically compressed, see Ziegler3, page 88 by the liquid surface in sufficiently slow 
motion (piston theory). Hence, the pressure difference 2 1p p−  in Eq. (2.19) in the range of 
linearized gas compression, i.e. if the maximum fluid-stroke is limited by max 3au H≤ , 
changes the undamped natural circular frequency of the TLCGD defined in Equation (2.34a), 
Hochrainer1 and Hochrainer, Ziegler2. Thus, 2 1 02 ap p np u H− ≈ , 1 1.4n≤ ≤ . n is the 
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polytropic index, which is determined by the type of quasi-static state-change of the gas. For 
an adiabatic process of any two atomic gas n=1.4 whereas for the isothermal (slow) process 
n=1.0, Ziegler3, page 88. Any other polytropic process is in between those two extreme 
situations. aH  denotes the effective height of the gas volume at rest 0 H aV A H= . 
  Finally, the experimentally observed averaged turbulent damping L u uδ  must be added, 

see Hochrainer1, where 
2L

effL
λδ =  is the head loss coefficient. Substitution of Eqs. (2.26)- 

(2.33) into Eq. (2.19), adding the turbulent pressure loss and considering the linearized gas 
compression yield the nonlinear and parametrically forced ( 2β π< ) equation of motion of 
the relative fluid motion in the TLCGD,  

( )
2

2
1 21L A A A

A
u u u u a eθδ ω κ κ

ω

⎛ ⎞
′+ + − = − ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
          (2.34) 

2 cos

eff

B H
L

βκ +
= , 1 cosκ κ β= , 2 H

eff
B

A
L H B

A
= + ，        

2 sin
A

eff

g
L

βω =  (“open TLCD”, no gas-spring), 

0
0 0

2 sin ,A
eff a

hg h np g
L H

ω β ρ
⎛ ⎞

= +    =⎜ ⎟
⎝ ⎠

 (linearized gas-spring), 1 1.4n≤ ≤ .     (2.34a) 

effL  can be considered as the length of an equivalent uniform liquid column with constant 

cross sectional area HA  rendering the same natural circular frequency Aω  of the TLCD; 
κ , 1κ  are geometry dependent coupling factors linking the floor acceleration and the 
TLCGD excitation, respectively. Furthermore, 0p , ρ  and g  denote the gas pressure in 

equilibrium, the liquid density, e.g. water 31000 /kg mρ =  and the gravity constant. The 
TLCGD are ideally suited to extend the frequency range of civil engineering applications by 
properly adjusting the equilibrium gas-pressure 0p . 

The stiffness of TLCGD, 
2

2
1 21A

A

θω κ
ω

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠
 turns out to be timevariant for 2β π< , i.e. 

unwanted parametric forcing is present due to rotation about the vertical x-axis. For small 
rotations 1θ , cos 1θ , sinθ θ , tanθ θ , the right hand side of Eq. (2.34) becomes 

approximately 1 z
y

y

aa
a

κ θ⎛ ⎞+⎜ ⎟
⎝ ⎠

 for the TLCGD oriented parallel to the y-direction.  

In the course of the tuning procedure, an equivalent linearized damping coefficient 
2A f A AC m ζ ω=  might be used to replace the nonlinear turbulent damping term, where 

04 / 3A LUζ δ π=  is the linear damping ratio proportional to the amplitude 0U  of a time 
harmonic relative fluid flow for details of equivalent linearization. It is achieved by 
Hochrainer1, page 74. Approximately, we put 0 maxU u=  in any motion. If the damping 
coefficient Aζ  exceeds the cut-off value of parametric resonance, the influence of 
parametric excitation becomes negligible, see Reiterer8, page 77 and Reiterer, Ziegler9.  

Ziegler10 pointed out the speed limitation of the fluid-gas interface to keep the interface 
intact and thus to allow the application of the piston theory, based on Lindner-Silvester and 
Schneider11, 
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max 2 max 10 /u f u m sπ= < .             (2.35) 
Substituting the acceleration components, Eq. (2.24) into Eq. (2.34), and further 

linearizing the forcing term yield the simplified and linearized equation of motion for the 
relative fluid flow in the TLCGD in proper form for tuning and to be compared to the 
equivalent TMD-equation,  

( ) ( ){ }22 cos sin
M MA A A g A C g A Cu u u v v z z w w y yζ ω ω κ θ γ θ γ⎡ ⎤ ⎡ ⎤+ + = − + − − + + + −⎣ ⎦ ⎣ ⎦ . (2.36) 

We can see that the left-hand terms in Eq. (2.36) are corresponding to the vibrational terms of 
the relative liquid motion and the right-hand terms in Eq. (2.36) can be regarded as the 
linearized portions of the generalized external forces causing the motion of the liquid. 
 
2.5 The natural frequency of TLCGD in relation to the 
linear frequency of the mathematical pendulum 

 
The frequency of the mathematical pendulum (rigid massless rod with a point-mass, 

attached at a pivot point) for small angular motion is approximately constant and solely 

depends on its length L0, 
2

0

/
4A

gf
L
π

=  (Hz). Thus, its length is related to a given frequency 

by a hyperbola, Fig. 2.11, 

( ) ( )2 2
0 / 4 AL g fπ= .                (2.37) 

0 0.5 1 1.5 2 2.5
-2

-1

0

1

2
logL0

fA

10

1

0.1

L0[m]

Fig. 2.11: Relation of length and frequency of the mathematical pendulum, 1Af Hz= , 

0 0.25L m= . 
 

The natural frequency of the open TLCD, i.e. without a gas-spring is, Eq. (2.34a), 

( )
( )

2/
sin

2 4 / 2
A

A
eff

g
f

L

πω β
π

= = (Hz). If TLCD and the pendulum have the same frequency, we 

can write the relation 02 sineffL L β= . The natural frequency of the TLCD is thus practically 
limited to frequencies below 0.5 Hz. The length of a pendulum that would have a frequency of 
0.5 Hz is about 0 1L m=  and thus the effective length of the equivalent TLCD is just 

1.4effL m=  for 4β π= .  
Taking into account Eq. (2.34a), the frequency of a TLCGD, with linearized gas-spring 

effect is rewritten as  
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( )
( )

2
0sin

2 4 2
A

A
aeff

g hf
HL

πω β
π

⎛ ⎞
= = +⎜ ⎟

⎝ ⎠
. 

If the TLCGD and the mathematical pendulum have the same frequency, we can determine the 
parameters of the gas-spring, crucial for frequency tuning, in terms of the effective liquid 
column length effL  as  

0 02 sina effh H L L β= − .                (2.38) 

Equation (2.38) determines the gas volume H aA H  if for some reasons the equilibrium 
pressure 0p  and thus 0h  is assigned. In some applications the atmosphere pressure is a 
suitable choice.  
 
2.6 Control forces of TLCGD 

 
To couple the TLCGD with the main structure it becomes important to know the interface 

reactions. Assuming that the dead weight of a rigid piping system has been added to the 
corresponding floor mass, only the interaction forces between the massless, rigid, liquid filled 
piping system and the supporting floor are considered. FAy, FAz and MAx the control forces in y, 
z and θ directions are derived by conservation of momentum and angular momentum of the 
moving fluid. 
(i) Instant coordinates of center of fluid mass Cf, conservation of momentum f fR m a= . 

The instant position of Cf with respect to reference point A is given by f f xr x e′ + , f f Ar s e′ ′ ′= , 

see again Fig. 2.10. Hence, f A f f xr r r x e′= + + ,  

ˆf
f A f A

dr
s e s e

dt
θ

′
′ ′ ′ ′= + , ' ˆf

f A f A f A f x
dr

v v s e s e x e
dt

θ′ ′ ′= = + + + ,       (2.39)           

( ) ( )2 ˆ2f
f A f f A f f A f x

dv
a a s s e s s e x e

dt
θ θ θ′ ′ ′ ′ ′ ′= = + − + + + ,       (2.40) 

and by means of the static fluid mass-moments 

( ) ( )

( )

cos cos
2 2 2 2

2 cos

f f H H

H

B H u B H um s A H u A H u

A u B H

ρ β ρ β

ρ β

+ −⎛ ⎞ ⎛ ⎞′ = + + − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= +
,   (2.41) 

( ) ( ) ( )2 2sin sin sin
2 2H H Hf f

H u H um x A H u A H u A H uρ β ρ β ρ β+ −= + + − = + . (2.42) 

Hence, we define 

1

2 cos
f

B Hs u u
L

β κ+′ = = , fs uκ′ = , fs uκ′ = ,       

( ) ( )
2 2

2 2
2

1

sin 1
2f

H u
x H u

L H

β
κ

+
= = + , 2

1
fx uu

H
κ= , ( )2

2
1

fx u uu
H

κ= + .  (2.43) 

with the following two geometry coefficients and the total fluid mass,  

1effL Lκ κ= , ( )2 12 sinH Lκ β= , 
2

1
1

( )f Hm A s ds A Lρ ρ
′

′

′ ′= =∫ , 1 2 B

H

AL H B
A

= + . (2.44) 

1L  equals effL  in the case of H BA A= .  
 Substituting Eq. (2.43) into Eq. (2.40) confirms, after multiplication with mf the result, Eq. 
(2.45).  
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( ) ( ) ( )2 2
2

1 ˆ2f A f x f A f AR m a m u uu e m u u e m u u e
H

κ κ θ κ θ θ′ ′= + + + − + + ,   (2.45) 

where 
( ) ( ) ( ) ( ) ˆcos sin sin cosA y z A y z Aa a a e a a eγ θ γ θ γ θ γ θ⎡ ⎤ ⎡ ⎤′ ′= + + + + − + + +⎣ ⎦ ⎣ ⎦ .   (2.46) 

It must be mentioned, that static dead weight loading of fluid mass is not included in the 
unwanted vertical reaction force component FAx. However, when working with framed 
structures, this vertical force is generally negligible. Equation (2.45) renders the components 
of the control forces acting on the piping system, Fig. 2.9, 

( ) ( ) ( )2cos sinA A f y z fF e m a a m u uγ θ γ θ κ κ θ⎡ ⎤′ = + + + + −⎣ ⎦ ,      (2.47) 

( ) ( ) ( )ˆ sin cos 2A A f y z fF e m a a m u uγ θ γ θ κ θ κ θ⎡ ⎤′ = − + + + + +⎣ ⎦ ,      (2.48) 

and when rotated 

( ) ( ) ( ) ( )2 cos 2 sinAy f yF m a u u u uκ κ θ γ θ κ θ κ θ γ θ⎡ ⎤= + − + − + +⎣ ⎦ ,     (2.49) 

( ) ( ) ( ) ( )2 sin 2 cosAz f zF m a u u u uκ κ θ γ θ κ θ κ θ γ θ⎡ ⎤= + − + + + +⎣ ⎦  .    (2.50) 

Equations (2.49) and (2.50) are simplified under the condition 1θ  and the essential 
linear parts become  

( ) cos
MAy f g A C fF m v v z z m uθ κ γ⎡ ⎤= + − − +⎣ ⎦ ,          (2.51) 

( ) sin
MAz f g A C fF m w w y y m uθ κ γ⎡ ⎤= + + − +⎣ ⎦ .         (2.52) 

 
(ii) Use of the law of conservation of the angular momentum of the fluid body, see Ziegler3, 
page 405. 
The resultant of the acting moments can be calculated by, with respect to the accelerated 
point of reference A, 

( )A
f f f x A A

dD m r x e a M
dt

′+ + × = , ( )A A
x A

dD d D e D
dt dt

θ
′

= + × ,      (2.53) 

relative angular momentum 

( ) ( )

( ) ( ) ( )( )
2 2

1 1

ˆ ( )

ˆ

( ) ,

y z
m mf f

y z t

A f fr v

r r r e s

D dm r r u dm

A s ds A s u s t ds

θ

ρ θ

′ ′

′ ′

′ ′

′ ′

⎡ ⎤′ ′× ⎢ ⎥⎣ ⎦

⎡ ⎤
′ ′ ′ ′ ′⎢ ⎥× ×

⎢ ⎥⎣ ⎦

′ ′= = × +

′ ′ ′ ′ ′= +

∫ ∫

∫ ∫

        (2.54) 

 

10 s H u′≤ ≤ − : ˆsin
2t A
Br e eβ′ ′ ′× = − , 20 s H u′≤ ≤ + : ˆsin

2T A
Br e eβ′ ′ ′× = − ,  

0 s B′≤ ≤ : 0tr e′ ′× =  

( ) ( )( )
2

2
1

ˆ, ( )
2t f A
BA s u s t r e s ds m ueρ κ

′

′

′ ′ ′ ′ ′ ′ ′× = −∫           (2.55) 
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( )

( )

22 2
1

1 0
2 2

0 0
3 2

2 2 3 2 2

( ) cos cos
2

cos
2 2

2cos 2 cos
12 2 3

H u

y z H

B H u

B H

B
H

H

BA s r ds A H u s ds

B BA s ds A s d

A B BA H B H u H Hu
A

s

ρθ ρθ β β

ρθ ρθ β

ρθ β β

′ −

′ ′
′

+

⎡ ⎤⎛ ⎞′ ′ ′ ′ ′= − + − −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞′ ′ ′+ − − + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞= + + + + +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

′

∫ ∫

∫ ∫ ,    (2.56) 

 
10 s H u′≤ ≤ − :  

( ) ( )1 1
ˆ sin sin cos cos

2x y z A
Br r H u s H u s eβ β β β′ ′

⎡ ⎤⎛ ⎞′ ′ ′ ′ ′× = − − − − + − −⎡ ⎤ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
,  

20 s H u′≤ ≤ + : ( )ˆ sin cos
2x y z A
Br r s s eβ β′ ′

⎛ ⎞′ ′ ′ ′ ′× = − +⎜ ⎟
⎝ ⎠

,  

( )
2

3 2

1

2ˆ( ) sin 2 sin cos
3x y z H AA s r r ds A HBu u H u eρθ ρθ β β β

′

′ ′
′

⎡ ⎤⎛ ⎞′ ′ ′ ′ ′× = − + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫ ,   (2.57) 

 
2 2

2
1 1 1

3 2 2 2 3 2
2

1 1 1 1 1 1

2 ˆ2 cos sin
3 2

2cos 2 cos
12 2 3

A A

B
x

H

A f
HB u H Bu e ue
L L L

A B B H u H HuH B e
A L L L L L L

D m β θ β κ

β β θ

⎧ ⎡ ⎤⎛ ⎞⎪ ⎢ ⎥⎜ ⎟⎨ ⎜ ⎟⎢ ⎥⎪ ⎝ ⎠⎣ ⎦⎩
⎫⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎪⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎪⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎭

′ ′− + + −

+ + + + + +

=
,    (2.58) 

( )2 2
3 1Ax fD m H uκ κ θ= + ,              (2.59)           

with the following two geometry coefficients 
2 3

2
3 3

1cos cos
2 3 2 2 3

B
T

H

AB B B
H A H H

κ κ β β
⎡ ⎤⎛ ⎞ ⎛ ⎞= + + +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

， 1 1
1

effL
L

κ κ= , 3
1

2
T

H
L

κ = , 

( )2 2
3 1 2Ax

f H u uudD m
dt

κ θ κ θ θ⎡ ⎤+ +⎣ ⎦= .            (2.60) 

where 1κ  is defined in Eq. (2.34a). 
  Substituting Eqs. (2.43) and (2.46) into Eq. (2.53), yields, 

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) ( )2

2 2
2

2 2

1 sin cos
2

1 ˆcos sin sin cos
2

f y z A

y z A y z x

x Af f f H u a a e
H

H u a a e u a a e
H

m r x e a m

κ

κ γ θ γ θ

γ θ γ θ κ γ θ γ θ

= −

+

⎡ ⎤ ′+ − + + +⎣ ⎦

⎫⎡ ⎤ ⎡ ⎤′+ + + + + − + + + ⎬⎣ ⎦ ⎣ ⎦ ⎭

′ + ×

                     (2.61) 
The undesired additional moment pM  from gravity force with respect to the reference point 
A is 

( ) ˆ
p f f f x x f AM m g r x e e m g ueκ′ ′= − + × = .           (2.62) 

  The undesired axial moment MA about ˆ
Ae′  direction is the sum of the TLCGD-floor 

interaction, Eq. (2.58) and a second contribution resulting from gravity force acting at the 
(displaced) center of fluid-mass fm g uκ , Eq. (2.62). The latter is similar to that of a TMD. 
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The axial moments MA about ˆ
Ae′  and Ae′  directions are generally both found negligible in 

their action on the structure. The nonlinear resultant control moment MAx (acting on the 
piping system) becomes finally, adding Eq. (2.60) and the proper component of Eq. (2.61), 
see again Fig. 2.9, 

( ) ( ) ( ){ }2 2
3 1sin cos 2Ax f y zM m u a a H u uuκ γ θ γ θ κ θ κ θ θ= − + + + + + +⎡ ⎤⎣ ⎦  .   (2.63) 

Equation (2.63) is simplified under the condition 1θ  and, when properly linearized, 
becomes  

2
3Ax fM m Hκ θ= .                (2.64) 

 
2.7 Control of SDOF main structure by a single TLCGD 
when compared to an equivalent TMD 
 

The modal tuning of liquid column damper can be presented from the purely geometric 
analogy between the classical tuned mechanical damper and the tuned liquid column damper, 
Hochrainer1, page 98. In this Section the representative model under both base and force 
(wind) excitation in purely horizontal translation is investigated, thus repeating the derivation 
of Hochrainer1. 

 

                
Fig. 2.12: U-shaped TLCGD rigidly attached to the floor of a horizontally displaced 
SDOF-main system, ground acceleration gw and wind force F(t). Total floor displacement 

f gw w w= + . Action of the control force zF  shown. 
 

A TLCGD installed on the floor is illustrated in Fig. (2.18). The equations of motion for 
the TLCGD-main structure interaction, w is the relative horizontal displacement of the floor, 
become  

( )g zMw Cw+ Kw Mw F t F+ = − + + , control force: ( )z f gF m w w uκ= − + + ,   (2.65) 

see Hochrainer1, page 97, and the properly simplified Eq. (2.36) with 2γ π= ,  

( )22 A A A gu u u w wζ ω ω κ+ + = − + .             (2.66) 

Combining Eqs. (2.65) and (2.66), the matrix form of the coupled system of linearized 
equations results 

2

2

21 1 1
( )

1 00 2 0
S S S

g
A A A

w w w M
w F t

u u u
ζ ω ωμ κμ μ

κ κζ ω ω

⎡ ⎤ ⎡ ⎤      0         0   + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ + = − +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦                   ⎣ ⎦ ⎣ ⎦
, 
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fm
M

μ =  < 6% , 2
S

K
M

ω = , 2 S S
C
M

ζ ω = ,   (2.67)       

where μ , Sζ , Sω  and Aω  are the mass ratio, the light structural damping ( 1Sζ ), the 
circular natural frequency of the main structure and the TLCGD’s circular natural frequency, 
respectively. Substituting the “equivalent” tuned mechanical damper TMD for the TLCGD 
changes also the main system, see again Hochrainer1, page 38, the parameters carry a star, 

* *( )* * *
g zM w C w+ K w M w F t F+ = − + + , ( )* * *

z A gF m w w u= − + + ,     (2.68)  

( )* * * *2 *2 A A A gu u w wζ ω ω+ + = − + .             (2.69) 

Combining equations (2.68) and (2.69), the TMD-structure interactive equation takes on its 
matrix form 

* * *2* * * *

* * ** * *2

21 1 1 ( )
1 1 1 00 2 0

S S S
g

A A A

w w w Mw F t
u u u

ζ ω ωμ μ μ

ζ ω ω

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤      0         0   + ++ + = − +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥                   ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 

*
*

*
Am

M
μ = , 

*
*2

*S
K
M

ω = , 
*

* *
*2 S S

C
M

ζ ω = ,   (2.70) 

where *μ , *
Sω  and *

Aω  are the alternative mass ratio, the natural frequency of the main 
structure and the TMD’s natural frequency (indicated by the superscript *), respectively. A 
strong indication for existence of an analogy is the fact that the TMD behaviour can be 
derived from the corresponding TLCGD by setting 1κ κ= = . 
 
2.7.1 Analogy between TMD and TLCGD when attached to 
SDOF-main structure 

Hochrainer1, page 98 established such an analogy. We repeat his derivation to form the 
basis for the more general case of a space-structure. The first step is to define the relationship 
between u  and *u . If Eqs. (2.66) and (2.69) on the right hand side have the same excitation, 

*u  turns out proportional to u , 
*u u κ= .                  (2.71) 

Substituting this result and comparing the left hand side of the second equation in Eqs. (2.67) 
and (2.70), yield at once 

*
A Aω ω= , *

A Aζ ζ= .                (2.72) 
In a second step, substituting these results into the first equation in Eqs. (2.67) and (2.70) 
renders by inspection 

( )
*

*1 1
μκ μ

μ κ μ
=

+ +
, *

1 1
1 1

2 *2
S Sω ω

μ μ
=

+ +
, *

*
1 12 2

1 1
*

S S S Sζ ω ζ ω
μ μ

=
+ +

, 

( ) ( )* *
1 1
1 1M Mμ μ

=
+ +

, 

and thus the mass ratio of the equivalent TMD-main system becomes 

( )
*

1 1
μκκμ μ

μ κκ
= <

+ −
, 

( )
*

1 1
S

S S
ωω ω

μ κκ
= <

+ −
, 

( )
*

1 1
S

S S
ζζ ζ

μ κκ
= <

+ −
,    (2.73) 

and  
( )( )* 1 1M M Mμ κκ= + − > , *

A f fm m mκκ= < .           (2.74) 

The conjugate main structural mass includes the dead fluid mass of the TLCD, ( )1fm κκ− , 
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i.e. κκ  should be maximal. 
 
2.8 Control of single-storey moderately plan-asymmetric 
space frame by a single TLCGD when compared to an 
equivalent TMD 
 
2.8.1 TMD attached to space frame  

   A model of the single–storey asymmetric structure with the mass matrix *M and the 
stiffness matrix *K  is considered, analogous to Section 2.4. A TMD is set with the general 
angle γ to y-direction. The position coordinate of TMD is (yA, zA, 0). 
 

               
Fig. 2.13: TMD under general in-plane acceleration of the floor: tv , tw  and θ .  
 
  The instant coordinate position of the point mass CA is 

*
Au e′ , for its TLCGD 

counterpoint Cf. Hence, 
*

AC A Ar r u e′= + , * * ˆ
AC A A Av v u e u eθ′ ′= + + ,           (2.75) 

( ) ( )* * * * 2 * * 2 * *ˆ ˆ ˆ2 2
AC A A A A A A A Aa a u e u e u e u e a u u e u u eθ θ θ θ θ θ′ ′ ′ ′ ′ ′= + + + − = + − + + ,   (2.76) 

( ) ( )* * * * * 2 * * * ˆ2
AA C A A A A A AR m a m a m u u e m u u eθ θ θ′ ′= = + − + + .      (2.77) 

Equation (2.77) compares favorably with Eq. (2.45), TMD has not relative displacement in x 
direction. The equation of motion for the TMD, viscous damping is added subsequently, is 
derived by considering the A' component and inserting Eq. (2.46) for Aa , 

* * * * 0
AA C Am a e c u k u′⋅ + + =* , 

( ) ( ) * * 2cos sin
AC A y za e a a u uγ θ γ θ θ′⋅ = + + + + − , 

( ) ( )* * * 2 * * *cos sin 0A y zm a a u u c u k uγ θ γ θ θ⎡ ⎤+ + + + − + + =⎣ ⎦
*                    (2.78) 

and takes on its linearized form with parametric forcing neglected, related to Eq. (2.35) of the 
linearized TLCGD, 
 

( ) ( )* * * * *2 *2 cos sin
M MA A A g A C g A Cu u u v v z z w w y yζ ω ω θ γ θ γ⎡ ⎤ ⎡ ⎤

⎣ ⎦ ⎣ ⎦
+ + + − − − + + −= − ,  

*

*
*

A
A

k
m

ω = , 
*

*
* *2

A
A A

c
m

ζ ω = .              (2.79) 
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The control forces are, see Eqs. (2.47)- (2.50) for the TLCGD  
( ) ( )* * * * 2cos sinA A A y zF e m a a u uγ θ γ θ θ⎡ ⎤′ = + + + + −⎣ ⎦ ,        (2.80) 

( ) ( )* * * *ˆ sin cos 2A A A y zF e m a a u uγ θ γ θ θ θ⎡ ⎤′ = − + + + + +⎣ ⎦ ,       (2.81) 

and when rotated become 

( ) ( ) ( ) ( )* * * * 2 * *cos 2 sinAy A yF m a u u u uθ γ θ θ θ γ θ⎡ ⎤= + − + − + +⎣ ⎦ ,     (2.82) 

( ) ( ) ( ) ( )* * * * 2 * *sin 2 cosAz A zF m a u u u uθ γ θ θ θ γ θ⎡ ⎤= + − + + + +⎣ ⎦ .     (2.83) 

Equations (2.82), (2.83) are simplified under the condition 1θ and the essential linear parts 
are 

( )* * * * cos
MAy A g A C AF m v v z z m uθ γ⎡ ⎤= + − − +⎣ ⎦ ,          (2.84) 

( )* * * * sin
MAz A g A C AF m w w y y m uθ γ⎡ ⎤= + + − +⎣ ⎦ .         (2.85) 

Conservation of angular momentum of the point mass *
Am  requires, compare with Eq. 

(2.63), 
*

* * *A
A A A A

dD m u e a M
dt

′+ × = , ( )
* *

*A A
x A

dD d D e D
dt dt

θ
′

= + × ,                       

* * *2
Ax AI m u= ， * * * *2

Ax Ax AD I m uθ θ= = ， ( )
*

* * * *22Ax
A

dD m u u u
dt

θ θ= + ,  

( ) ( )* * * * sin cosA A A A y z xm u e a m u a a eγ θ γ θ⎡ ⎤′ × = − + + +⎣ ⎦ ， 

( ) ( ){ }* * * * * *2sin cos 2Ax A y zM m u a a u u uγ θ γ θ θ θ⎡ ⎤= − + + + + +⎣ ⎦ .      (2.86) 

Equation (2.86) is simplified under the condition 1θ and when properly linearized, the 
moment vanishes, 

* 0AxM = ,                  (2.87) 
in contrast to Eq. (2.64) of the TLCGD.  

The equation of motion for the coupled undamped main-system can be given in matrix 
form,  

* * * *M K M gx x x P+ = − + , 

[ ]T
Tx v w u= , 0T

g g gx v w⎡ ⎤= ⎣ ⎦ , * * * *T
Ay Az x SP F F M r⎡ ⎤= − ⎣ ⎦ ,   (2.88) 

where Eqs. (2.84), (2.85) and (2.87) are considered, *P  is the linearized control force vector 
and ( ) ( )* * * *

M Mx Ax Ay A C Az A CM M F z z F y y= − − + −  is the moment about CM.  

If the floor displacements x  are expanded into modal displacements 
1

N

j j
j

x qφ
=

= ∑  on 

the left hand side, Eq. (2.88) decouples on the left hand side for all classically damped 
systems by pre-multiplication with the transposed T

jφ ,  

*

* * * *M K M
*

j j

T T T T
j j j j j j j g j

m k

q q x Pφ φ + φ φ = −φ + φ ,          (2.89) 

then Eq. (2.89) divided by the modal mass *
jm  becomes  
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*
*2 *

* *

MT T
j j

j Sj j g
j j

q q x P
m m

ω
φ φ

+ = − + , 
*

*2
*

KT
j j

Sj
jm

ω
φ φ

= , 1, 2,3j = .      (2.90) 

However, j jx qφ=  must approximately hold in the narrow frequency window around jω  
in the case of base excitation, i.e. on the right hand side to decouple the modal equations: 

1j jv q φ= , 2j jw q φ= ， 3T S j ju r qθ φ= =  are substituted in the control forces and on the right 
hand side of the TMD equation.  

Inserting the linearized coupling forces *P , Eqs. (2.84), (2.85) and (2.86), into Eq. (2.90) 
renders the approximated equation of the selected mode,  

( ) ( )

( ) ( )

*
* *2 *

*

* * * *
1 2* *

cos sin1

1 1

Aj
j j Sj j A, j A, j

j

S j Aj A, j g S j Aj A, j g
j j

m
q q v w u

m

m m v v m m w w
m m

γ γμ ω

φ φ

++ + +

= − + − +

, 

*
* *2

*
Aj

j j
j

m
V

m
μ = , *2 2 2

, ,j A j A jV v w= + ,  

( ), 1 3 MA j j j Aj C Sv z z rφ φ= − − , ( ), 2 3 MA j j j Aj C Sw y y rφ φ= + − ,     (2.91)           

where A, jv  and A, jw  denote the modal displacements of reference point A in y- and 
z-directions, respectively. Further the displacements of the main system in the equation of 
motion of TMD in Eq. (2.79) are substituted, to approximately render 
 

( )* * * * *2 *2 cos sin rT
Aj Aj Aj j S gA, j A, ju u u q xv wζ ω ω γ γ+ + = − + − ， [ ]r cos sin 0T

S γ γ= .(2.92) 

 
With light structural damping of the main system 1 2 3 0.1S S Sζ ζ ζ≤ ≤ <  added, the coupled 
equations of motion of the main system with TMD attached, in matrix notation become 
 

( )
( )

* * *

*

* * *2 * *

* ** * *2

1 cos sin

cos sin 1

2

0 0

j Aj j j

T
j jSj Sj Sj j j

Aj Aj Aj

A, j A, j

A, j A, j

m m q

u

q q L m

u u

v w

v w

μ γ γ

γ γ

ζ ω ω

ζ ω ω

⎡ ⎤+ + ⎡ ⎤⎢ ⎥ +⎢ ⎥⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤       0         0   ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥            2          ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ r

gT
S

x
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

,     (2.93) 

where the generalized participation factors are 
* * * 0T
j jy jzL L L⎡ ⎤= ⎣ ⎦ , * * *

1 ,jy S j Aj A jL m m vφ= + , * * *
2 ,jz S j Aj A jL m m wφ= + . *

Sm  is the floor mass 

of the conjugate structure. 
 
2.8.2 TLCGD attached to space frame  

The equation of motion for the coupled system considering the undamped single-storey 
space frame Eq. (2.2) and the TLCGD, Fig.2.9, Eqs. (2.36), (2.51), (2.52) and (2.64) under 
the ground excitation can be combined in matrix form 

M K M gx x x P+ = − + , 

[ ]T
Tx v w u= , 0T

g g gx v w⎡ ⎤= ⎣ ⎦ , T
Ay Az x SP F F M r⎡ ⎤= − ⎣ ⎦ ,     (2.94) 
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where P  is the control force vector and ( ) ( )M Mx Ax Ay A C Az A CM M F z z F y y= − − + − . 

If the floor displacements x  are expanded into modal displacements 
1

N

j j
j

x qφ
=

= ∑  on the 

left hand side, Eq. (2.94) decouples the left hand side for all classically damped systems by 
pre-multiplication with the transposed modal vector T

jφ , 

M K M

j j

T T T T
j j j j j j j g j

m k

q q x Pφ φ + φ φ = −φ + φ .              (2.95)           

Equation (2.95) divided by the modal mass jm  with light modal structural damping added, 
becomes  

2 M
2

T T
j j

j Sj Sj j Sj j g
j j

q q q x P
m m

ζ ω ω
φ φ

+ + = − +  , 2 KT
j j

Sj
jm

ω
φ φ

= .         (2.96) 

Modal approximations 1j jv q φ= , 2j jw q φ= ，  3T S j ju r qθ φ= =  are substituted in the 
control forces and on the right hand side of the TLCGD equation. Inserting the linearized 
coupling forces P , Eqs. (2.51), (2.52) and (2.64) modally approximated into Eq. (2.96) 
renders 

( ) ( )

( ) ( )

2

1 1 , 1 2 ,

1 2 cos sin

1 1

fj
j j Sj Sj j Sj j

j

S j fj A j g S j fj A j g
j j

A, j A, j
m

q q q u
m

m m m v v m m m w w
m m

v wμ ζ ω ω κ γ γ

φ φ

+ + + + +

⎡ ⎤ ⎡ ⎤= − + + − + +⎣ ⎦ ⎣ ⎦

, 

2fj
j j

j

m
V

m
μ = , ( )22 *2

3 3j j j SV V H rκ φ= + .             (2.97) 

Here, 3κ  and *2
jV  are given by Eq. (2.60) and (2.91). Eq. (2.36) renders the approximate 

equation in the selected mode, 
 

( )22 cos sin rT
Aj Aj Aj j S gA, j A, ju u u q xv wζ ω ω κ γ γ κ+ + = − + − .        (2.98) 

 
In matrix form the linearized coupled system of modal equations of the main system with 
TLCGD attached results by substituting the control force, 
 

( )
( )

2

2

1 cos sin

cos sin 1

2

0 2 0 r

j fj j j

T
Sj Sj Sj j jj j

gTAj Aj Aj S

A, j A, j

A, j A, j

m m q

u

L mq q
x

u u

v w

v w

μ κ γ γ

κ γ γ

ζ ω ω

ζ ω ω κ

⎡ ⎤+ + ⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦+⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤       0         0   ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥+ + = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥            ⎢ ⎥ ⎢ ⎥⎢ ⎥          ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

,       (2.99) 

where the generalized participation factors are, cf. Eq.(2.93), 
0T

j jy jzL L L⎡ ⎤= ⎣ ⎦ , ( )1 1 ,jy S j fj A jL m m m vφ= + + , ( )1 2 ,jz S j fj A jL m m m wφ= + + , 

and A, jv  and A, jw  are same as defined in Eqs. (2.91).  
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2.8.3 Analogy between TMD and TLCGD when attached to 
3DOF-main system 

We follow closely the procedure developed by Hochrainer1 for the simplest case, Section 
2.6.1. If Eqs. (2.92) and (2.98) on the right hand side have the same excitation, *u turns out 
proportional to u, same as in the case of Eq. (2.71),  

*u u κ= .                   (2.100)       
Using this result and comparing the left hand side of the second equation in Eqs. (2.93) and 
(2.99), yield at once  

*
Aj Ajω ω= , *

Aj Ajζ ζ= .                (2.101) 
The results are the same as in the case of Eq. (2.72). In a second step, substituting these 
results into the first equation in Eqs. (2.93) and (2.99) renders by inspection 

( ) ( )
*

2 * *21 1
j j

j j j jV V

μ κ μ

μ κ μ
=

+ +
, *

1 1
1 1

2 *2
Sj Sj

j j
ω ω

μ μ
=

+ +
,  

*
*

1 12 2
1 1

*
Sj Sj Sj Sj

j j
ζ ω ζ ω

μ μ
=

+ +
, 

and thus the mass ratio of the equivalent TMD-modal system is defined by 

( )
( )

2*
*

2*1 1

j j
j j j

j j j

V V

V V

κκ
μ μ μ

μ κκ
= <

⎡ ⎤+ −⎢ ⎥⎣ ⎦

,            (2.102) 

and 

( )
*

2*1 1

Sj
Sj Sj

j j jV V

ω
ω ω

μ κκ
= <

⎡ ⎤+ −⎢ ⎥⎣ ⎦

, 

( )
*

2*1 1

Sj
Sj Sj

j j jV V

ζ
ζ ζ

μ κκ
= <

⎡ ⎤+ −⎢ ⎥⎣ ⎦

.   (2.103) 

The TMD frequency ratio 
*

,*
*

Aj opt
jopt

Sj

ω
δ

ω
=  and the TLCGD frequency ratio ,Aj opt

jopt
Sj

ω
δ

ω
=  

are thus related by the more general transformation                                          

( )

*
*

2*1 1

jopt
jopt jopt

j j jV V

δ
δ δ

μ κκ
= <

⎡ ⎤+ −⎢ ⎥⎣ ⎦

.            (2.104) 

The optimal frequency ratio joptδ of the TLCGD turns out slightly lowered. The remaining 
impulsive fluid-mass must be regard as dead load of the main structure, thereby slightly 
lowering its natural frequency. 
 
2.9 Dynamic magnification factor 
 

In this Section, assuming a time harmonic horizontal ground excitation under various 
oblique angles of attack α ( 0 α π≤ ≤ with respect to the y-direction), thus 

( )0( ) cos i t
gv t a e ωα= , ( )0( ) sin i t

gw t a e ωα= , 0a  and ω  are the ground acceleration that 

is commonly assigned as a fraction of 29.81 /g m s=  and the circular forcing frequency, 
respectively. The relationship between the amplitude of the modal displacement jq  of the 
main structure and the amplitude u  of the relative liquid motion under a given forcing 
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frequency is consequently determined in the steady-state: 0
i t

j jq q e ω=  , 0
i tu u e ω=  , 0jq  

and 0u  are complex valued. The dynamic magnification factor (DMF), i.e., the ratio of 

dynamic response to static response can be determined as 0j

jstat

q
DMF

q
= ， 02

( )j
jstat

j Sj

L
q a

m

α

ω
= . 

 
2.9.1 Steady state vibration of the lightly damped main structure 
without TLCGD 

Equation (2.2) with light structural damping added is  
 

S 0

( )

M C K M

j

T T T T i t
j j j j j j j j j j

L

q q q e a e ω

α

φ φ φ φ + φ φ = −φ+ , [ ]cos sin 0T
Se α α= , 

2
0

( )
2 j i t

j Sj Sj j Sj j
j

L
q q q a e

m
ωα

ζ ω ω+ = −+ , ( )( )1 1 2( ) cos sinj S j jL m mα φ α φ α= + + ,  (2.105) 

where the modal damping ratio 1Sjζ , for convenience might be assumed constant for 

j=1,2,3 and ( )jL α denotes the classical modal participation factor. 

( )
0

2 22

1

1 2

j

jstat
Sj Sj Sj

q
DMF

q
β ζ β

= =
⎡ ⎤− +⎣ ⎦

,            (2.106) 

where Sj Sjβ ω ω=  is the ratio of the forcing frequency to the natural frequency of the main 
structure vibrating in its j mode. Sufficiently separated modes are understood. 
 
2.9.2 Steady state vibration of the main structure with TLCGD 
attached parallel to y-direction 

Inserting 0
i t

j jq q e ω= , 0
i tu u e ω=  into Eq. (2.99), the time-reduced linearized equation 

for TLCGD-main structure becomes 
 

( ) ( )
( )

( )

2

2
0

02
0

1 cos sin

cos sin 1

2

0 2 0 r

1, 2,3,

j fj j

T
Sj Sj Sj j j j

STAj Aj Aj S

A, j A, j

A, j A, j

m m

q L m
i e a

u

j

v w

v w

μ κ γ γ
ω

κ γ γ

ζ ω ω
ω

ζ ω ω κ

 

⎧ ⎡ ⎤+ +⎪ ⎢ ⎥−⎨ ⎢ ⎥+⎪ ⎢ ⎥⎣ ⎦⎩
⎫⎡ ⎤ ⎡ ⎤       0        0   ⎡ ⎤ ⎡ ⎤⎪⎢ ⎥ ⎢ ⎥+ + = −⎢ ⎥ ⎬ ⎢ ⎥            ⎢ ⎥ ⎢ ⎥⎢ ⎥          ⎣ ⎦⎪⎣ ⎦ ⎣ ⎦⎣ ⎦⎭

= [ ]cos sin 0T
Se α α=

     (2.107) 

 
Thus, the linear system of equations results, 

( ) ( )
( )

2 2 2
0

2 2 2 0

0

1 2 cos sin

cos sin 2

r

j Sj Sj fj j j

Aj Aj Aj

T
j j

sT
S

A, j A, j

A, j A, j

i m m qsj
ui

L m
e a

v w

v w

ω μ ω ζ ω ω κ γ γ ω

κ γ γ ω ω ω ζ ω ω

κ

+

+

⎡ ⎤− + − + ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥− + − ⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦

    (2.108) 
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The relative fluid motion has the complex displacement  

( )
( )

( )
2

0 0 2 2
0 22 2 2 2

r cos sin
2

4

T
S S j

Aj Aj Aj

Aj Aj Aj

A, j A, je a q
u i

v wκ κ γ γ ω
ω ω ζ ω ω

ω ω ζ ω

− + +
= − − 

− + 
.    (2.109) 

The dynamic magnification factor and the amplitude of the fluid motion are 

( )2 22
1 2 30

2 22 2 4 3
1 2 3 4 5

Sj Sjj

jstat
jstat sj Sj Sj Sj Sj

a a aq
DMF

q
q b b b b b

β β

ω β β β β

⎡ ⎤+ +⎣ ⎦= =
⎡ ⎤ ⎡ ⎤+ + + +⎣ ⎦ ⎣ ⎦

,      (2.110) 

( )
( )

2 2 2
0 0

0 22 2 2 2

r cos sin 2

4

T
S S j Aj Aj Aj

Aj Aj Aj

A, j A, je a q i
u

v wκ κ γ γ ω ω ω ζ ω ω

ω ω ζ ω

− + + − −
=

− + 
,    (2.111) 

where  
2

1 jb δ=  , ( ) 2
2 1 1 4j j Sj Aj jb μ δ ζ ζ δ= −  − + − ,  

( )2
3 1 cos sinj fj jA, j A, jb m mv wμ κκ γ γ= + − + , 2

4 2 2Sj j Aj jb ζ δ ζ δ=  + ,  

( )5 2 2 1Sj Aj j jb ζ ζ δ μ= − − + , 2
1 0

T
j S j ja L e a mδ= − ,  

( )2 0 0r cos sinT T
j S j S S fj jA, j A, ja L e a m e a m mv wκκ γ γ= − + ,  

3 02 T
j S Aj j ja L e a mζ δ= − . 

 
2.10 Numerical example 
 

In order to illustrate the control effectiveness and ability of U-shaped TLCGD to reduce 
lateral and torsional motions of the moderately asymmetric main structure, a numerical 
simulation is carried out in this section. The performance of TLCGD is discussed with respect 
to the mode shapes of buildings. The optimal frequency and damping ratio of TMD are either 
given by Den Hartog’ method, see Den Hartog12 and the TMD-TLCGD analogy, Eqs. 
(2.102)- (2.104) or subsequently even subjected to fine-tuning in state space. Two different 
types of earthquakes are applied to the structure under various oblique angles of attack. 

The single-storey mass-asymmetric structure is considered, Section 2.2. The uniformly 
distributed mass of the rectangular rigid floor a×b=4×8m is mS=16×103kg in Fig. 2.1. The 
additional point mass m1=6×103kg is considered placed in the upper right corner A1 in Fig. 
2.6. The common anisotropic stiffness of columns in y- and z-directions are calculated by Eq. 
(2.10) ky=981.2kN/m and kz=350kN/m and the length of each column is 4m, proper static 
dimensioning of the elastic columns is performed. The mass moment of inertia about the 
vertical x-axis is 2 3 2

1( ) 193.94 10x S SI m m r kg m= + = × ⋅ , 2.97Sr m= . 
 

2.10.1 Static dimensioning and a static safety criterion of the 
columns 

The buckling lengths of the cc-columns is 4cl l m= = , see e.g. Ziegler3, page 560. The 
critical load of a steel profile HEB-1605, with respect to the weak axis of buckling, becomes 

2 11 8
2 2

2
2.1 10 889 10/ 1150.43

4c y cF EI l kNππ
−× × × ×

= − = − = − , where E denotes the modulus 

of elasticity of steel 2210 /E kN mm= and Iy is the principal moment of inertia about the y axis. 
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The mass of HEB-160 per meter is 42.6 kg/m, the effective mass of a column is calculated by 
Eq. (2.8) 1 63.3m kg=  and total mass of four columns is 253kg. It is very smaller than the 
floor mass and the additional point mass, and can be neglected. 
Live load for static analysis: 24 /kq kN m= , 4 8 4 128kQ kN= × × = . 

Dead load (self weight): 3
1 16 10 9.81 156.96sG m g kN= = × × = , 

 3
2 1 6 10 9.81 58.86G m g kN= = × × = . 

Thus, the combined loads result, 
1 11.35 1.5 403.896sd kN G Q kN= − × − × = − , 2 21.35 79.461sdN G kN= − × = − . 

The combined load without TLCGD at point A1: 1
1 2 180.435

4
sd

sd
NF N kN= + = − . The 

combined load without TLCGD at points A2, A3, A4: 1
2 100.974

4
sdNF kN= = − . 

Thus 1

c

F
F

−180.435
= = 0.16 < 0.33

−1150.43
 and the geometric flexural stiffness correction can be 

applied. At point A1 with weight of the point mass considered, 

1
16 6 180.435 54.13 /

5 5 4G
Fk kN m
l

−
= = × = − . At points A2, A3, A4, 

2
26 6 100.974 30.3 /

5 5 4G
Fk kN m
l

−
= = × = − . The corrected stiffness of column at point A1 in y- 

and z-direction become 927.07 /kN m and 295.87 /kN m . The corrected stiffness of columns 
at points A2, A3, A4 in y- and z-direction become 950.9 /kN m  and 319.7 /kN m . 
 
2.10.2 Natural modes of the main structure 

Natural frequencies are calculated by solving the characteristic Eq. (2.14) by means of 
Matlab7. The result is, columns are assumed to be massless. 

 
0 0

0f
1.16⎡ ⎤

⎢ ⎥= 1.96 0⎢ ⎥
⎢ ⎥0 0 2.37⎣ ⎦

[Hz]. 

 
The orthonormalized modal matrix of the undamped main system is the output of Matlab7, 
displacements of the center of mass are used, 
 

210
0.360150

−
−0.030237 −0.563450 0.368990⎡ ⎤

⎢ ⎥φ = 0.664320 − 0.085801 −0.076579⎢ ⎥
⎢ ⎥0.110960 0.559040⎣ ⎦

. 

 
Correction of this output of orthonormalized eigenvectors might become necessary with 
respect to orthogonality, 

0,
M

1,
T
j i ij

i j
i j

δ
≠⎧

φ φ = = ⎨ =⎩
, 2

0,
K

,
T
j i ij

i

i j

i j
δ

ω

≠⎧⎪φ φ = = ⎨
=⎪⎩

. 

Test calculations render sufficient accuracy, ijδ is the Kronecker symbol. 

1 1 11M 1Tφ φ δ= = , 2 2 22M 1Tφ φ δ= = , 3 3 33M 1Tφ φ δ= = ， 



Single-storey Moderately Plan-asymmetric Space Frame with TLCGDs 

 31

17
2 1 12 21M 2.78 10Tφ φ δ δ −= = = × , 17

3 1 13 31M 5.55 10Tφ φ δ δ −= = = × ,  
16

3 2 23M 2.22 10Tφ φ δ −= = × , 16
2 3 32M 1.11 10Tφ φ δ −= = × . 

The mode shapes are exaggerated and plotted in Figs. 2.14-2.16. The motion of the 
structure in each mode consists of coupled translation and torsion. 

 
                       Fig. 2.14: First mode 1 1.16f Hz= . 

 

      
 

Fig. 2.15: Second mode 2 1.96f Hz= .    Fig. 2.16: Third mode 3 2.37f Hz= . 
   
2.10.3 Position of the center of velocity CV for the modes 
numbered j=1,2,3 

The coordinates of the modal centers of velocity CV are defined by Eq. (2.18) and 
illustrated in Figs. 2.14-2.16. All centers of velocity are outside of the floor plan thus defining 
a moderately asymmetric structure. 

 

1

16.685
0.264VCr m

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

, 
2

1.798
4.10VCr m⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 

3

1.498
2.505VCr m⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. 

 
 (i) Installation of the TLCGDs 

A single tuned liquid column damper for each mode is placed on the floor, as illustrated 
in Figure 2.17. Rendering the normal distance of its trace to CV as large as possible within the 
plan, the TLCGD are installed as follows. Suppressing the first mode TLCGD1 is installed in 
the middle with respect to the dominant horizontal displacement in z-direction. TLCGD2 can 
be installed along the long side or alternatively on the short side, tuned to effectively damp 
the second mode. We choose it parallel to the y-direction. In addition, TLCGD3 can be 
installed on the opposite side of TLCGD2, thus parallel to the y-direction, or alternatively, on 
the short side parallel to the z-direction, to be considered subsequently in Section 2.10.8. We 
will investigate both installations of TLCGD3 to compare both locations with respect to the 
effectiveness for structural control.  
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Fig. 2.17: Positioning of 3 TLCGDs, an alternative shown. Here, •  indicates the modal 
centers velocity. 
 
2.10.4 The linearized equation of motion for TLCGD 

In Equation (2.36), putting 0Ay = , 0Az = , T Su rθ= , 2γ π= renders the equation of 
motion for the TLCGD1 (z-parallel) 

( )2
1 1 1 1 1 1 (1)2

MA A A g C T Su u u w w y u rζ ω ω κ+ + = − + − . 

In Equation (2.36), putting 2 0Ay = , 3 0Ay = , T Su rθ= , 0γ =  yields the equation of 
motion for both TLCGD2 and TLCGD3 (y-parallel) 

( )2
2 2 2 2 2 2 (2) 22

MA A A g A C T Su u u v v z z u rζ ω ω κ ⎡ ⎤+ + = − + − −⎣ ⎦ , 

( )2
3 3 3 3 3 3 (3) 32

MA A A g A C T Su u u v v z z u rζ ω ω κ ⎡ ⎤+ + = − + − −⎣ ⎦ . 

 
2.10.5 The linearized control forces for TLCGD acting on the 
floor applying the substructure synthesis 
   In Equations (2.51) and (2.52)， putting 0Ay = , 0Az = , T Su rθ= , 2γ π= and 
considering Eq. (2.64) render the linearized control forces exerted by TLCGD1 on the space 
frame   

( )1 1 MAy f g C T SF m v v z u r= − + + , ( )1 1 (1) 1MAz f g C T SF m w w y u r uκ= − + − + , 
2

1 1 3(1) 1Ax f T SM m H u rκ= − . 
  The linearized control forces exerted by TLCGD 2 and TLCGD 3 become, Eqs. (2.51), 
(2.52) and (2.64) are properly considered 

( )2 2 2 (2) 2MAy f g A C T SF m v v z z u r uκ⎡ ⎤= − + − − +⎣ ⎦ , ( )2 2 MAz f g C T SF m w w y u r= − + − , 
2

2 2 3(2) 2Ax f T SM m H u rκ= − , 

( )3 3 3 (3) 3MAy f g A C T SF m v v z z u r uκ⎡ ⎤= − + − − +⎣ ⎦ , ( )3 3 MAz f g C T SF m w w y u r= − + − ,  
2

3 3 3(3) 3Ax f T SM m H u rκ= − . 
Fig. 2.18 indicates their action. 

 
          Fig. 2.18: Reaction forces and moments for TLCGD1, 2, and 3. 
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2.10.6 TLCGD design, Den Hartog’ optimization 
Since the modes of the main structure seem to be sufficiently separated, modal tuning of 

TLCGD is performed in a first step by a transformation of the classical Den Hartog formulas 
by means of the analogy between TMD and TLCGD. Optimal TMD design parameters, 
frequency ratio and damping ratio, are determined subjected to the harmonic excitation. The 
optimum tuning frequency ratio between the equivalent mechanical absorber and the main 
structure for minimum total acceleration is, see Den Hartog12, page 97 and 101 

*
*

1
1optδ

μ
=

+
,                  (2.112) 

and the corresponding optimum linear viscous damping coefficient is given by 

( )
*

*
*

3
8 1

opt
μζ

μ
=

+
.                 (2.113) 

The same parameters apply also in case of time harmonic forcing and minimizing the 
dynamic displacement magnification factor of the main system. 
 

The fluid mass is chosen as 1 770fm kg= , 2 320fm kg=  and 3 180fm kg=  of water. 
Dimensions of the three TLCGDs tuned first by means of the TMD analogy Eqs. (2.102)- 
(2.104) applying Den Hartog’s formulas are summarized in Table 2.1.  

 
 TLCGD1 TLCGD2 TLCGD3
 z-parallel y-parallel y-parallel

Horizontal length of the liquid column B [m] 3.00 2.50 3.00 
Inclined length of the liquid column H [m] 1.40 0.86 0.60 
Cross-sectional area of the pipe [m2] AH=AB 0.1330 0.0760 0.0430 

Effective length 1 2effL L H B= = +  [m], Eq. (2.34a) 5.80 4.22 4.20 

Angle of the inclined pipe section β  [rad] 4π  4π  4π  
Equivalent mathematical pendulum length L0 [m], Eq. 
(2.37) 0.19 0.07 0.05 

Geometry factorκ κ= , Eqs. (2.34a), (2.44) 0.86 0.88 0.92 

Geometry factor 3κ , Eq. (2.59) 1.20 1.77 3.83 

Equilibrium pressure head 0h  [m], n=1.2, Eq. (2.34a) 36.70 45.26 46.50 

Gas volume 0 H aV A H=  [m3], Eq. (2.38) 0.340000 0.110000 0.044000
The mass ratio of the TLCGD-main system μ , Eq. (2.97) 3.02% 2% 1.53% 

The mass ratio of the equivalent TMD-main system *μ , 
Eq. (2.102) 

2.19% 1.47% 1.20% 

Natural frequency ,A optf  [Hz] Eq. (2.104), (2.112) 1.13 1.92 2.33 

Optimal linear damping %, Eq. (2.113) 8.96 7.37 6.68 

Table 2.1: Layout of the modally tuned TLCGDs, gas volume and gas equilibrium pressure 
assigned, cf. Fig. (2.17). 
 

Fig.2.19 illustrates the scaled scheme of TLCGDs. The modal dynamic magnification 
factor (DMF) calculated with Matlab 7.07, equivalently linearized damping of the TLCGD 
considered, is illustrated in Figure 2. 20. 
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               Fig. 2.19: Scaled sketches of TLCGDs. 
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Fig. 2.20: Modal frequency response curves without and with linearized TLCGDs attached, 
Eqs. (2.106) and (2.110), TLCGDs with Den Hartog’s optimal parameters. 
 

The TLCGD in its passive mode considerably reduces steady state vibrations of lightly 
damped structures similarly to an increase of the effective structural damping. The effective 
modal damping coefficients of the system in each mode are increased from 1%Sjζ =  to 

1 5.9%effζ = , 2 4.77%effζ =  and 3 4.34%effζ = . 
 
From Table 2.2a-c it follows that all of the maximum fluid displacements for varying 

angles of attack of the time harmonic excitation, are within the acceptable limits, 0 3au H<  
(of linearized gas compression) and 0 2u H< . The maximum fluid velocities of three 
TLCGDs are calculated by Eq. (2.35) 4.81, 4.32 and 3.43m/s and are within the acceptable 
speed limit. 

1
10.48

2 2effζ
=  

1S

ω
ω

3

1 50
2 Sζ

=  

1
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2 2Sζ
=

1
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2 1effζ
=
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ω
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1
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2 1Sζ
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ω
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11.52

2 3effζ
=
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 structure TLCGD1 

Forcing direction v[mm] w[mm] T Su r θ= [mm] u0 [mm] 
CM 0 7 0α =  
A 0 6 1 27 

CM -3 76 6α π=  A -1 71 13 315 

CM -5 111 4α π=  A -2 104 19 460 

CM -6 138 3α π=  A -2 130 23 573 

CM -7 164 2α π=  A -2 154 27 678 

CM -7 145 2 3α π=  A -2 136 24 600 

CM -5 121 3 4α π=  A -2 113 20 498 

CM -4 88 5 6α π=  A -1 82 15 362 

Table 2.2a: Maximum displacements in the first mode from time-harmonic excitation in 
α -directions, a0=0.1g, 2.97Sr m= . 
 

 structure TLCGD2 
Forcing direction v[mm] w[mm] T Su r θ=  [mm] u0 [mm] 

CM -49. -7 0α =  
A -64 -19 31 358 

CM -46 -7 6α π=  A -61 -18 29 355 

CM -40 -6 4α π=  A -52 -15 25 289 

CM -31 -5 3α π=  A -40 -12 20 223 

CM -7 -1 2α π=  A -10 -3 5 52 

CM -18 -3 2 3α π=  A -24 -7 12 134 

CM -30 -5 3 4α π=  A -39 -11 19 217 

CM -39 -6 5 6α π=  A -51 -15 25 284 

Table 2.2b: Maximum displacements in the second mode from time-harmonic excitation in 
α -directions, a0=0.1g, 2.97Sr m= . 
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 structure TLCGD3 

Forcing direction v[mm] w[mm] T Su r θ=  [mm] u0 [mm] 
CM 16 -3 0α =  
A 36 -12 24 234 

CM 12 -3 6α π=  A 28 -9 18 181 

CM 9 -2 4α π=  A 21 -7 14 134 

CM 5 -1 3α π=  A 12 -4 8 78 

CM 3 -1 2α π=  A 7 -2 5 45 

CM 11 -2 2 3α π=  A 25 -8 16 156 

CM 13 -3 3 4α π=  A 31 -10 20 198 

CM 15 -3 5 6α π=  A 35 -12 23 225 

Table 2.2c: Maximum displacements in the third mode from time-harmonic excitation in 
α -directions, a0=0.1g, 2.97Sr m= . 
 
2.10.7 Optimization of single-storey space frame with 3 TLCGDs 
in the state space domain 

The equation of motion for the combined multiple degree of freedom structure (primary 
system) and several TLCGDs (secondary system) can be derived as follows 
M C K M Lgx x x x P+ + = − + , [ ]T

Tx v w u= , 0T
g g gx v w⎡ ⎤= ⎣ ⎦ ,      

1 2 3 ,T TT T T
Ayj Azj xj Sj F F M rP PP P P⎡ ⎤=   = ⎡ ⎤⎣ ⎦⎣ ⎦            (2.114) 

where [ ]M 1 1 1SM diag= is the mass matrix of the main structure, 

1 1 2 3S SM m m m m m′ ′ ′= + + + + , where 1m′ , 2m′  and 3m′  denote the mass of the rigid piping 
systems; x  is the displacement vector of the structure; C  is such a damping matrix of the 
structure that keeps the modal vectors orthogonal, light modal damping coefficients are all 
assumed to be 1%. K  is the stiffness matrix of the structure; gx  denotes the seismic ground 

acceleration vector. TP  is the control force vector and [ ]1 2 3L L LL = ; 

[ ]L 1 1 1j diag=  is the position matrix of the TLCGDs. 
The linearized control force produced by several TLCGDs takes on the hyper matrix 

form, for a single TLCGD see e.g. Eq. (2.57), ( )fM T i gP x x u= − + + κ , see section 2.9.5. 

Here, for TLCGD1 (z-parallel), TLCGD2 and TLCGD3 (both y-parallel) 
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f 1 1 1 2 2 2 3 3 3M ( , , , , , , , , )f f f f f f f f fdiag m m m m m m m m m= .       (2.115) 

[ ]1 2 3
T u u uu =  samples the relative fluid displacements. 

The equations of motion for TLCGD-main structure system by substituting the control 
force and rearranging terms, can be given as 
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， 1 2 3( , , )diagκ κ κ κ= , 

[ ]f 1 1 2 2 3 3C 2 , 2 , 2A A A A A Adiag ζ ω ζ ω ζ ω=  denotes the linearized damping matrix of TLCGDs; 
2 2 2

f 1 2 3K , ,A A Adiag ω ω ω⎡ ⎤= ⎣ ⎦  denotes the “stiffness” matrix of TLCGDs. 
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This system of second order differential equations can be lastly converted to a first order 

state space representation by introducing the state hyper vector 2(N+n), 
TT T T Tz x u x u⎡ ⎤=    ⎣ ⎦  



Single-storey Moderately Plan-asymmetric Space Frame with TLCGDs 

 38

and its time derivative, see e.g. Ziegler3, page 438 
(A BR) e ( )g gz z x t= + + ,               (2.119) 

where, in a hypermatrix notation, the system matrix remains separated,  
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The time-harmonic solution ( ) i tz t ze ω= , assuming the ground excitation to be time-harmonic 

0
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g g S
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x t w t a e e ω
⎧ ⎫
⎪ ⎪

= =⎨ ⎬
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, [ ]cos sin 0T
Se α α= ,        (2.121) 

simply becomes 
( ) [ ] 1

0, I - (A BR) g Sz i e e aα ω ω −= + .            (2.122) 
The optimal natural frequency and the damping ratios of the TLCGD are calculated by 
minimizing the following performance index, corresponding to the minimum of the area under 
the resonance curve, 

( )S ( ) 2 PT T
S SJ z z d b b Minimumω ω ω π

∞

−∞

= = →∫ , T Su r θ= ,       (2.123) 

where [ , , , , , ]TS T Tz v w u v w u=      represents the main structure’s state vector 2N. The positive 
semidefinite weighing matrix S =diag (10,10,10,1,1,1) is chosen e.g. to pronounce 
displacements. 0g Sb e e a=  is the excitation vector. P  is consequently the solution of the 

algebraic Lyapunov matrix equation, T(A + BR) P + P(A + BR) = -S . The latter is numerically 
evaluated by means of the software Matlab7. The minimization of J is performed numerically 
by calling the function fminsearch of the Matlab Optimization Toolbox. fminsearch finds the 
minimum of the scalar function J of several variables quickly, when substituting Den Hartog’s 
modal tuning parameters [ ]0 1 2 3 1 2 3, , ; , ,A A A A A Ax ω ω ω ζ ζ ζ= , for the initial estimate, e.g. 

0 [7.12,12.09,14.66;8.96%,7.37%,6.68%]x = . The optimal natural frequencies and damping 
ratios determined by this fine tuning process turn out 1 1.13Af Hz= , 2 1.90Af Hz= , 

3 2.33Af Hz= , 1 7.51%Aζ = , 2 5.72%Aζ = , 3 4.91%Aζ = , i.e. frequencies are slightly 
lowered and the damping coefficients of the fluid flow are commonly “dramatically” lowered. 
The equilibrium pressure head 0h  of the three TLCGDs are properly adjusted 34.47, 42.79 
and 45.15m, see Table 2.1 for the former slightly higher values. Figs. 2.21-2.28 show the 

frequency response of the weighed sum
6

1
( )i Si

i
s z ν

=
∑  of the building states for the original and 

the optimized system under ground acceleration with various angles of attack, in the 
logarithmic decibel scale [ ] 20log=x dB x  within the frequency window 0 3f Hz≤ ≤ . The 
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results with fine-tuning optimal parameters are somewhat better, since the curves have broader 
resonance peaks. 
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Fig. 2.21: Weighed sum of amplitude response functions for the 3-DOF linearized, 
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached 
(TLCGD3 y-parallel) and without the TLCGDs (angle of attack of the time-harmonic base 
acceleration 0α = ), maximum gain 29.98dB. 
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Fig. 2.22: Weighed sum of amplitude response functions for the 3-DOF linearized, 
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached 
(TLCGD3 y-parallel) and without the TLCGDs (angle of attack of the time-harmonic base 
acceleration 6α π= ), maximum gain 30.15dB. 
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Fig. 2.23: Weighed sum of amplitude response functions for the 3-DOF linearized, 
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached 
(TLCGD3 y-parallel) and without the TLCGDs (angle of attack of the time-harmonic base 
acceleration 4α π= ), maximum gain 33.58dB. 
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Fig. 2.24: Weighed sum of amplitude response functions for the 3-DOF linearized, 
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached 
(TLCGD3 y-parallel) and without the TLCGDs (angle of attack of the time-harmonic base 
acceleration 3α π= ), maximum gain 33.8dB. 
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Fig. 2.25: Weighed sum of amplitude response functions for the 3-DOF linearized, 
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached 
(TLCGD3 y-parallel) and without the TLCGDs (angle of attack of the time-harmonic base 
acceleration 2α π= ), maximum gain 33.78dB. 
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Fig. 2.26: Weighed sum of amplitude response functions for the 3-DOF linearized, 
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached 
(TLCGD3 y-parallel) and without the TLCGDs (angle of attack of the time-harmonic base 
acceleration 2 3α π= ), maximum gain 33.5dB. 
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Fig. 2.27: Weighed sum of amplitude response functions for the 3-DOF linearized, 
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached 
(TLCGD3 y-parallel) and without the TLCGDs (angle of attack of the time-harmonic base 
acceleration 3 4α π= ), maximum gain 33.25dB. 
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Fig. 2.28: Weighed sum of amplitude response functions for the 3-DOF linearized, 
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached 
(TLCGD3 y-parallel) and without the TLCGDs (angle of attack of the time-harmonic base 
acceleration 5 6α π= ), maximum gain 32.84dB. 
 

Figures 2.29-2.36 show the comparison of the response of three TLCGDs, alternatively 
with Den Hartog’s optimal parameters and, after fine-tuning in state space, under various 
angles of attack of the base excitation. From inspection of these figures it is apparent that the 
maximum relative fluid displacements for all cases are well within the acceptable limits. The 
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maximum fluid velocities of three TLCGDs are calculated by Eq. (2.35) 5.68, 5.37 and 
3.66m/s and are also within the acceptable speed limit. 
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Fig. 2.29: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the 3-DOF space frame (TLCGD3 y-parallel). TLCGDs either with Den Hartog’s 
optimal parameters or those resulting from fine-tuning in state space ( 0α = ). 
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Fig. 2.30: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the 3-DOF space frame (TLCGD3 y-parallel). TLCGDs either with Den Hartog’s 
optimal parameters or those resulting from fine-tuning in state space ( 6α π= ). 
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Fig. 2.31: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the 3-DOF space frame (TLCGD3 y-parallel). TLCGDs either with Den Hartog’s 
optimal parameters or those resulting from fine-tuning in state space ( 4α π= ). 
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Fig. 2.32: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the 3-DOF space frame (TLCGD3 y-parallel). TLCGDs either with Den Hartog’s 
optimal parameters or those resulting from fine-tuning in state space ( 3α π= ). 
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Fig. 2.33: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the 3-DOF space frame (TLCGD3 y-parallel). TLCGDs either with Den Hartog’s 
optimal parameters or those resulting from fine-tuning in state space ( 2α π= ). 
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Fig. 2.34: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the 3-DOF space frame (TLCGD3 y-parallel). TLCGDs either with Den Hartog’s 
optimal parameters or those resulting from fine-tuning in state space ( 2 3α π= ). 
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Fig. 2.35: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the 3-DOF space frame (TLCGD3 y-parallel). TLCGDs either with Den Hartog’s 
optimal parameters or those resulting from fine-tuning in state space ( 3 4α π= ). 
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Fig. 2.36: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the 3-DOF space frame (TLCGD3 y-parallel). TLCGDs either with Den Hartog’s 
optimal parameters or those resulting from fine-tuning in state space ( 5 6α π= ). 
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2.10.8 TLCGD3 alternatively installed on the short side of the 
floor and oriented parallel to the z-direction  

To compare the vibration control effectiveness using TLCGD3 parallel to the y-direction 
and alternatively parallel to the z-direction, the same fluid mass is used for both cases. 
Likewise to section 2.10.6, the design of TLCGD3 has the same parameters: 3HA , 3B , 3H , 

3κ , 3(3)κ  and 0(3)h . However, 3 2.42%μ = , Equation (2.102) renders *
3 1.95%μ = , the 

optimal parameters of TLCGD3 are 3, 0.979A optδ = , *
3, 3 8.46%A opt optζ ζ= = . It shows that 

the mass ratio increases and 3,A optζ  also increases. Hence, its optimal linear frequency is 

3, 3 3, 2.32A opt S A optf f Hzδ= = . 
The effective modal damping coefficient of the system in third mode is increased to 
3 5.27%effζ =  in Fig. 2.37, the gain is higher when compared to TLCGD3 oriented parallel 

to the y-direction because the normal distance to the modal center of velocity is somewhat 
larger. 

 
 structure TLCGD3 

Forcing direction v[mm] w[mm] T Su r θ= [mm] u0 [mm] 
CM 13 -3 0α =  
A 16 -36 19 181 

CM 10 -2 6α π=  A 13 -28 15 141 

CM 7 -2 4α π=  A 9 -21 11 107 

CM 5 -1 3α π=  A 6 -13 7 67 

CM 4 -1 2α π=  A 5 -10 5 59 

CM 9 -2 2 3α π=  A 12 -26 14 139 

CM 11 -2 3 4α π=  A 15 -32 17 167 

CM 13 -3 5 6α π=  A 16 -36 19 184 

Table 2.3: Maximum displacements in the third mode from time-harmonic excitation in 
α -directions, a0=0.1g, 2.97Sr m= . 
 

The data in Table 2.3 show that the maximum fluid displacement of 0 0.18u m= , at 
angle of attack 5 6α π= , is within the acceptable limits, 0 3 0.32au H m< =  (of linearized 
gas compression) , 0 2 0.3u H m< =  and max 10 /u m s= 2.68 < . When compared with 
Table 2.2c, it is noted that the maximum fluid displacement and velocity are lowered. 

The optimal natural frequencies and damping ratios are determined by fine tuning, Eq. 
(2.117) 1 1.13Af Hz= , 2 1.86Af Hz= , 3 2.17Af Hz= , 1 7.46%Aζ = , 2 5.56%Aζ = , 

3 7.45%Aζ = . The equilibrium pressure head 0h  of three TLCGDs is properly changed to 
34.51, 40.87 and 39.02m. The Figs. 2.38-2.45 contain the frequency response functions of the 

weighed sum
6

1
( )i Si

i
s z ν

=
∑  of the building states for the original and the optimized system at 

various angles of attack, in the logarithmic decibel scale within the frequency window 
0 3f Hz≤ ≤ . The resonance curve with fine-tuning optimal parameters have broader 
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resonance peak. From inspection of figures 2.46-2.53 the maximum relative fluid 
displacements and velocities for all cases are well within the acceptable limits.  

 
In conclusion, from the previous analyses, the TLCGD3 parallel to z-direction and 

alternatively parallel to y-direction can be applied in practice but TLCGD3 parallel to 
z-direction is slightly preferable.  
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Fig.2.37: Frequency response curves of the isolated third mode without and with linearized 
TLCGD3 attached, TLCGD3 parallel to z-direction with Den Hartog’s optimal parameter.  
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Fig. 2.38: Weighed sum of amplitude response functions for the 3-DOF linearized, 
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached 
(TLCGD3 z-parallel) and without the TLCGDs (angle of attack of the time-harmonic base 
acceleration 0α = ), maximum gain 33.6dB. 
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Fig. 2.39: Weighed sum of amplitude response functions for the 3-DOF linearized, 
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached 
(TLCGD3 z-parallel) and without the TLCGDs (angle of attack of the time-harmonic base 
acceleration 6α π= ), maximum gain 32.97dB. 
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Fig. 2.40: Weighed sum of amplitude response functions for the 3-DOF linearized, 
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached 
(TLCGD3 z-parallel) and without the TLCGDs (angle of attack of the time-harmonic base 
acceleration 4α π= ), maximum gain 33.67 dB. 
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Fig. 2.41: Weighed sum of amplitude response functions for the 3-DOF linearized, 
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached 
(TLCGD3 z-parallel) and without the TLCGDs (angle of attack of the time-harmonic base 
acceleration 3α π= ), maximum gain 33.9 dB. 
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Fig. 2.42: Weighed sum of amplitude response functions for the 3-DOF linearized, 
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached 
(TLCGD3 z-parallel) and without the TLCGDs (angle of attack of the time-harmonic base 
acceleration 2α π= ), maximum gain 33.9 dB. 
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Fig. 2.43: Weighed sum of amplitude response functions for the 3-DOF linearized, 
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached 
(TLCGD3 z-parallel) and without the TLCGDs (angle of attack of the time-harmonic base 
acceleration 2 3α π= ), maximum gain 33.6 dB. 
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Fig. 2.44: Weighed sum of amplitude response functions for the 3-DOF linearized, 
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached 
(TLCGD3 z-parallel) and without the TLCGDs (angle of attack of the time-harmonic base 
acceleration 3 4α π= ), maximum gain 33.33dB. 
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Fig. 2.45: Weighed sum of amplitude response functions for the 3-DOF linearized, 
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached 
(TLCGD3 z-parallel) and without the TLCGDs (angle of attack of the time-harmonic base 
acceleration 5 6α π= ), maximum gain 32.9 dB. 
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Fig. 2.46: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the 3-DOF space frame (TLCGD3 z-parallel). TLCGDs either with Den Hartog’s 
optimal parameters or those resulting from fine-tuning in state space ( 0α = ). 
 

6

1

( )i Si
i

s z v
=
∑  



Single-storey Moderately Plan-asymmetric Space Frame with TLCGDs 

 53

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0 0.5 1 1.5 2 2.5 3
frequency [Hz]

di
sp

la
ce

m
en

t[m
]

TLCGD1 Den Hartog's parameters TLCGD2 Den Hartog's parameters
TLCGD3 Den Hartog's parameters TLCGD1 fine-tuning in state space
TLCGD2 fine-tuning in state space TLCGD3 fine-tuning in state space  

Fig. 2.47: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the 3-DOF space frame (TLCGD3 z-parallel). TLCGDs either with Den Hartog’s 
optimal parameters or those resulting from fine-tuning in state space ( 6α π= ). 
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Fig. 2.48: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the 3-DOF space frame (TLCGD3 z-parallel). TLCGDs either with Den Hartog’s 
optimal parameters or those resulting from fine-tuning in state space ( 4α π= ). 
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Fig. 2.49: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the 3-DOF space frame (TLCGD3 z-parallel). TLCGDs either with Den Hartog’s 
optimal parameters or those resulting from fine-tuning in state space ( 3α π= ). 
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Fig. 2.50: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the 3-DOF space frame (TLCGD3 z-parallel). TLCGDs either with Den Hartog’s 
optimal parameters or those resulting from fine-tuning in state space ( 2α π= ). 
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Fig. 2.51: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the 3-DOF space frame (TLCGD3 z-parallel). TLCGDs either with Den Hartog’s 
optimal parameters or those resulting from fine-tuning in state space ( 2 3α π= ). 
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Fig. 2.52: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the 3-DOF space frame (TLCGD3 z-parallel). TLCGDs either with Den Hartog’s 
optimal parameters or those resulting from fine-tuning in state space ( 3 4α π= ). 
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Fig. 2.53: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the 3-DOF space frame (TLCGD3 z-parallel). TLCGDs either with Den Hartog’s 
optimal parameters or those resulting from fine-tuning in state space ( 5 6α π= ). 
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Fig. 2.54: 1940 El Centro N-S ground acceleration record in time domain, sampling time 
Δt=0.02s, http://www.eerc.berkeley.edu/. 

 
2.10.9 Original structure with the dead fluid-mass of TLCGD 
included 

Table 2.4 shows the natural frequencies and the positions of the center of velocity 
considering the dead fluid mass of the three TLCGDs when attached according to Fig.2.16. 
The dead fluid mass of the three TLCGDs is f fLM T - LM Tκκ ′ . The natural frequencies turn 
out to be slightly lowered. Consequently, Den Hartog’s modal tuning parameters are also 
slightly changed as listed in Table 2.5. 

The changing parameters are the equilibrium pressure head 0h , the proportional 
damping optζ and the optimal frequency optf . For in situ testing the non permanently 
attached TLCGD consists of a portable piping system whose parts are assembled directly at 
the desired floors. In situ tuning of frequency is done by adjusting the equilibrium pressure 

0p . 
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 original structure TLCGD3 parallel to y-direction TLCGD3 parallel to z-direction 

1fs  1.16 1.15 1.15 

2fs  1.96 1.93 1.92 

3fs  2.37 2.33 2.32 

CV1 (-16.685, -0.264) (-17.25, -0.26) (-17.16, -0.26) 

CV2 (1.798, -4.100) (1.74, -4.3) (1.76, -4.36) 

CV3 (1.498, 2.505) (1.45, 2.38) (1.46, 2.35) 

Table 2.4: Natural frequencies and the positions of the velocity center considering the dead 
fluid mass of three TLCGDs (mass of the piping system is still neglected). 

  original structure TLCGD3 parallel to 
y-direction 

TLCGD3 parallel to 
z-direction 

0h [m] 36.70 35.66 35.89 

1,A optζ [%] 8.96 8.87 8.89 TLCGD1 

1,A optf [Hz] 1.13 1.12 1.12 

0h  [m] 45.26 43.90 43.69 

2,A optζ [%] 7.37 7.25 7.24 TLCGD2 

2,A optf [Hz] 1.92 1.90 1.89 

0h  [m] 46.50 44.98  

3,A optζ [%] 6.68 6.52  
TLCGD3 
parallel to 
y-direction 

3,A optf [Hz] 2.33 2.30  

0h  [m] 46.50  44.83 

3,A optζ [%] 8.46  8.39 
TLCGD3 
parallel to 
z-direction 

3,A optf [Hz] 2.32  2.27 

Table 2.5: Parameters of TLCGD1, 2 and 3 optimized by Den Hartog’s method when 
considering the dead fluid mass of three TLCGDs. 
 

2.10.10 Dimensioning of the pipe 
For simplicity, let us consider a straight circular cylindrical pipe with radius r and wall 

thickness t r  subjected to the internal gauge pressure ( )Dp . We determine the hoop 

stress hσ  (membrane stress according to the “pressure-vessel formula”), see Ziegler3, page 
91. 

( )D
h

p r
t

σ = ,                   (2.124) 

where the maximum gauge pressure is considered, 
( )( ) 0 10 sinDp g h H pρ β ′= − + +  , 31000 /kg mρ = .         (2.125)  

If the pipe is made of steel, p′  should be non-linearly calculated for the larger stroke 
max 2 3 au H , to account for the self-controlling property of the TLCGD under overload 
and to safely keep the pipe in the linear elastic range of deformation. Thus, the maximum 
dynamic pressure p′  in this case may be defined by assuming an adiabatic gas compression 

0
0

n

p p ρ
ρ

⎛ ⎞′
′ = ⎜ ⎟

⎝ ⎠
, 1.4n = .                (2.126) 
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Since the amount of gas remains constant during compression, 0 H aV A H= , the mass ratio 
can be calculated by substituting the large stroke, 

( )0 0 0 max HV V u Aρ ρ′= − , 03ρ ρ′ = .                                     (2.127)

 Substituting Eq. (2.127) into Eq. (2.126) yields the maximum dynamic pressure 04.66p p′ =  
for consideration in Eq. (2.125), to render 

( )( ) 05.66 10 sinDp g h Hρ β= − + .              (2.128) 
For large stroke it becomes necessary to check the gauge pressure under expansion condition, 
Eq. (2.127) renders in this case 03 5ρ ρ′′ = . Hence, 00.49p p′′ =  with a negative sign this 
value is substituted for p′  in Eq. (2.125), however putting H=0,  

( )( ) 00.51 10Dp g hρ= − .                (2.129) 
Negative values of the gauge pressure in Eq. (2.129) cause compressive hoop stresses and 
require consideration of a buckling criterion. Since 0 10h m≥ , cavitation is not expected to 
occur under overload conditions. Equation (2.124) provides the wall thickness by substituting 
the conservative value of the admissible stress for steel, 6 2140 10 /a N mσ = ×  for the hoop 
stress hσ . Thus finally, the dead mass of the piping system is approximately estimated 
assuming a constant circular cylindrical cross-section over its total length, the density of steel 

3 37.8 10 /p kg mρ = ×  is inserted in Eq. (2.130), 

( )2 2 2p p am r t B H Hρ π= + + .              (2.130) 
The wall thickness and the estimated dead mass of the piping system are both listed in 

Table 2.6 resulting for the three TLCGDs, designed according to Table 2.1. 
 

 TLCGD1 TLCGD2 TLCGD3

0h  [m] 36.70 45.26 46.50 

aH  [m] 2.56 1.45 1.02 
5

( )10 Dp− [N/m²] Eq.(2.128) 16.07 20.0 20.5 
pipe diameter 2r [mm] 411.5 311.1 234.0 

t [mm] Eq.(2.124) 2.4 2.2 1.7 

pm  [kg] Eq.(2.130) 259.82 120.41 61.48 
dead fluid-mass[kg] 200.51 72.2 27.65 
5

( )10 Dp− [N/m²] Eq.(2.129) 0.53 0.89 0.94 

Table 2.6: Dimensioning of circular steel pipes. 
 

The gauge pressure under expansion conditions turns out to be positive as listed in Table 
2.6. The final dimensions of circular steel pipes must be changed according to their 
commercial availability. By considering the dead mass of the piping system the peaks of 
resonance curves move to the left. These reductions of the eigenfrequencies are not calculated 
again in this dissertation but considered in the in situ testing and final fine tuning. 
 
2.10.11 Oblique seismic excitation by the strong motion phase of 
the El Centro earthquake (1940) 

El Centro north-south seismogram in medium soil site from American Imperial Valley 
earthquake on May 18, 1940 is the input to the base of the structure, and maximum 
acceleration is set as 23.417 / 0.35m s g . These data plotted in Fig. 2.54 can be down 
loaded from the webpage, http://www.eerc.berkeley.edu/. This acceleration record is applied 



Single-storey Moderately Plan-asymmetric Space Frame with TLCGDs 

 59

with the angles of attack varied stepwise within 0 α π≤ ≤ , α = 0 , 6π , 4π , 3π , 2π , 
2 3π , 3 4π , 5 6π  to the y–direction. 

The simulated response output of Matlab 7.013 is displayed from Fig. 2.55 to Fig. 2.78, 
where the relative floor displacements with respect to the base, the relative displacements of 
the fluid in three TLCGDs, TLCGD3 parallel to the z-direction and the relative floor 
accelerations are displayed. From the numerical results, some conclusions can be drawn that 
three TLCGDs installed and tuned to the structural frequencies can effectively reduce the 
translational and torsional response of structures excited by uni-directional earthquakes. 
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Fig. 2.55: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three TLCGDs attached under 1940 El Centro earthquake, angle of attack: 0α = , 

2.97Sr m= , strong motion phase 20s. 
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Fig. 2.56: Relative displacement of the fluid in three TLCGDs under 1940 El Centro 
earthquake, angle of attack: 0α = , strong motion phase 20s.  
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Fig. 2.57: Relative acceleration of single-storey space structure, v , w  and T Su r θ=  under 
1940 El Centro earthquake, angle of attack: 0α = , 2.97Sr m= , strong motion phase 20s. 
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Fig. 2.58: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three TLCGDs attached under 1940 El Centro earthquake, angle of attack: 6α π= , 

2.97Sr m= , strong motion phase 20s. 
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Fig. 2.59: Relative displacement of the fluid in three TLCGDs under 1940 El Centro 
earthquake, angle of attack: 6α π= , strong motion phase 20s. 
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Fig. 2.60: Relative acceleration of single-storey space structure, v , w  and T Su r θ=  under 
1940 El Centro earthquake, angle of attack: 6α π= , 2.97Sr m= , strong motion phase 20s. 
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Fig. 2.61: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three TLCGDs attached under 1940 El Centro earthquake, angle of attack: 4α π= , 

2.97Sr m= , strong motion phase 20s. 
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Fig. 2.62: Relative displacement of the fluid in three TLCGDs under 1940 El Centro 
earthquake, angle of attack: 4α π= , strong motion phase 20s. 
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Fig. 2.63: Relative acceleration of single-storey space structure, v , w  and T Su r θ=  under 
1940 El Centro earthquake, angle of attack: 4α π= , 2.97Sr m= , strong motion phase 20s. 
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Fig. 2.64: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three TLCGDs attached under 1940 El Centro earthquake, angle of attack: 3α π= , 

2.97Sr m= , strong motion phase 20s. 
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Fig. 2.65: Relative displacement of the fluid in three TLCGDs under 1940 El Centro 
earthquake, angle of attack: 3α π= , strong motion phase 20s. 
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Fig. 2.66: Relative acceleration of single-storey space structure, v , w  and T Su r θ=  under 
1940 El Centro earthquake, angle of attack: 3α π= , 2.97Sr m= , strong motion phase 20s. 
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Fig. 2.67: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three TLCGDs attached under 1940 El Centro earthquake, angle of attack: 2α π= , 

2.97Sr m= , strong motion phase 20s. 
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Fig. 2.68: Relative displacement of the fluid in three TLCGDs under 1940 El Centro 
earthquake, angle of attack: 2α π= , strong motion phase 20s. 
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Fig. 2.69: Relative acceleration of single-storey space structure, v , w  and T Su r θ=  under 
1940 El Centro earthquake, angle of attack: 2α π= , 2.97Sr m= , strong motion phase 20s. 
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Fig. 2.70: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three TLCGDs attached under 1940 El Centro earthquake, angle of attack: 

2 3α π= , 2.97Sr m= , strong motion phase 20s. 
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Fig. 2.71: Relative displacement of the fluid in three TLCGDs under 1940 El Centro 
earthquake, angle of attack: 2 3α π= , strong motion phase 20s. 
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Fig. 2.72: Relative acceleration of single-storey space structure, v , w  and T Su r θ=  under 
1940 El Centro earthquake, angle of attack: 2 3α π= , 2.97Sr m= , strong motion phase 20s. 
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Fig. 2.73: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three TLCGDs attached under 1940 El Centro earthquake, angle of attack: 

3 4α π= , 2.97Sr m= , strong motion phase 20s. 
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Fig. 2.74: Relative displacement of the fluid in three TLCGDs under 1940 El Centro 
earthquake, angle of attack: 3 4α π= , strong motion phase 20s. 
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Fig. 2.75: Relative acceleration of single-storey space structure, v , w  and T Su r θ=  under 
1940 El Centro earthquake, angle of attack: 3 4α π= , 2.97Sr m= , strong motion phase 20s. 
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Fig. 2.76: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three TLCGDs attached under 1940 El Centro earthquake, angle of attack: 

5 6α π= , 2.97Sr m= , strong motion phase 20s. 
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Fig. 2.77: Relative displacement of the fluid in three TLCGDs under 1940 El Centro 
earthquake, angle of attack: 5 6α π= , strong motion phase 20s. 
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Fig. 2.78: Relative acceleration of single-storey space structure, v , w  and T Su r θ= under 
1940 El Centro earthquake, angle of attack: 5 6α π= , 2.97Sr m= , strong motion phase 20s. 
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sampled in Table 2.7a and 2.7b. It is observed that two TLCGDs installed parallel to 
z-direction provides better displacement and acceleration reduction. The maximum fluid 
displacements of 1 0.42u m= , 2 0.27u m= , 3 0.19u m=  and velocities of 1 2.98 /u m s= , 

2 3.16 /u m s= , 3 2.59 /u m s=  are within the acceptable limits. Peaks within the early period 
of the strong motion phase are hardly affected by passive damping.  

 
 original structure structure with 3 TLCGDs fluid displacement 

max v 
[mm] 

w 
[mm] 

uT 
[mm] 

v 
[mm] 

w 
[mm] 

uT 
[mm] 

u1 
[mm] 

u2 
[mm] 

u3 
[mm] 

0α =  59 13 41 52 9 30 31 266 191 

6α π=  56 92 44 49 53 32 204 248 163 

4α π=  49 134 43 43 74 31 293 212 132 

3α π=  39 166 40 33 91 27 362 163 96 

2α π=  13 196 33 9 104 19 423 42 45 

2 3α π=  23 173 36 22 92 22 382 99 115 

3 4α π=  36 143 36 34 77 26 323 161 144 

5 6α π=  46 104 41 43 57 29 241 213 163 

Table 2.7a: Maximum displacements due to 1940 El Centro earthquake, maximum ground 
acceleration 0 0.348a g =  with varying angle of attack α . Maximum values indicated in 
bold, T Su r θ= , 2.97Sr m= . 
 

 original structure structure with 3 TLCGDs 

max v g  w g  Tu g  v g  w g  Tu g  

0α =  0.96 0.15 0.71 0.92 0.11 0.50 

6α π=  0.87 0.57 0.58 0.83 0.32 0.43 

4α π=  0.74 0.77 0.48 0.70 0.44 0.37 

3α π=  0.56 0.93 0.39 0.52 0.52 0.29 

2α π=  0.16 1.08 0.23 0.11 0.58 0.16 

2 3α π=  0.45 0.95 0.47 0.41 0.55 0.27 

3 4α π=  0.69 0.80 0.58 0.63 0.48 0.35 

5 6α π=  0.88 0.60 0.65 0.81 0.38 0.43 

Table 2.7b: Maximum accelerations due to 1940 El Centro earthquake, maximum ground 
acceleration 0 0.348a g =  with varying angle of attack α . Maximum values indicated in 
bold, T Su r θ= , 2.97Sr m= . 
 
2.10.12 Kanai-Tajimi model of the ground acceleration: soil 
amplification 

The TLCGD-main structure system is subjected to a filtered white noise process of the 
Kanai-Tajimi power spectrum accounting for the soil-layer filter. The Kanai-Tajimi spectrum 

can be expressed by 
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, see e.g. Clough- Penzien6, page 613, 
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where ψω and ψζ represent the characteristic frequency and damping ratio of the soil layer 
supporting the base of the structure and thus is related to the site soil conditions. 0S  is the 
spectral intensity of the white noise process model of the earthquake. For the simulation of 
seismic motions at firm soil conditions, the soil filter parameters take on the values 

5 /rad sψω π= , 0.6ψζ = , see Kanai14. We assume 2 3
0 72.73 /S cm s=  (firm soil, 

magnitude 8° and near-field earthquake) corresponding to an RMS value of acceleration 
270 /cm s , see Ou15. The statistical character of the strong motion requires the choice of a 

modulation function: for two exponential envelopes, see Höllinger16, 17. The following 
envelope function proposed by Jennings (1964) is preferred and applied here, see Giuseppe18, 
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Where 2 1dt t t= − is the time interval where the excitation is stationary, st  is the duration 
time of strong motion and depends on the earthquake magnitude and the epicentral distance. 
We assume: 11.13st s=  (firm soil, magnitude 8° and near-field earthquake), 1 0.5 st t= , 

2 1.2 st t=  and 2.5 / sc t= , see again Ou15. The power spectral density is illustrated in Fig. 
2.79 and the corresponding 20 second time segment of the artificially created earthquake is 
shown in Fig. 2.80. The numerical simulation results are illustrated in Figs. 2.81-2.104.  
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Fig. 2.79: Power spectral density of the ground acceleration in Kanai-Tajimi representation as 
a function of frequency. 
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Fig. 2.80: Generated ground acceleration using Kanai-Tajimi model, sampling time Δt=0.02s, 
maximum ground acceleration 0 0.34a g = . 
 

2 3
( / sec )

gx cmS

[ ]f Hz



Single-storey Moderately Plan-asymmetric Space Frame with TLCGDs 

 66

0 5 10 15 20
-0.2

-0.1

0

0.1

0.2
without TLCD
with TLCD

time [s] 0 5 10 15 20
-0.2

-0.1

0

0.1

0.2
without TLCD
with TLCD

time [s] 0 5 10 15 20
-0.2

-0.1

0

0.1

0.2
without TLCD
with TLCD

time [s]  
Fig. 2.81: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three TLCGDs attached, angle of attack: 0α =  (artificial seismogram) 2.97Sr m= , 
strong motion phase 20s. 
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Fig. 2.82: Relative displacement of the fluid in three TLCGDs, angle of attack: 0α =  
(artificial seismogram), strong motion phase 20s. 

0 5 10 15 20
-15

-10

-5

0

5

10

15
without TLCD
with TLCD

time [s] 0 5 10 15 20
-15

-10

-5

0

5

10

15
without TLCD
with TLCD

time [s] 0 5 10 15 20
-15

-10

-5

0

5

10

15
without TLCD
with TLCD

time [s]  
Fig. 2.83: Relative acceleration of single-storey space structure, v , w  and T Su r θ= , angle 
of attack: 0α =  (artificial seismogram) 2.97Sr m= , strong motion phase 20s. 

0 5 10 15 20
-0.2

-0.1

0

0.1

0.2
without TLCD
with TLCD

time [s] 0 5 10 15 20
-0.2

-0.1

0

0.1

0.2
without TLCD
with TLCD

time [s] 0 5 10 15 20
-0.2

-0.1

0

0.1

0.2
without TLCD
with TLCD

time [s]  
Fig. 2.84: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three TLCGDs attached, angle of attack: 6α π=  (artificial seismogram) 

2.97Sr m= , strong motion phase 20s. 
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Fig. 2.85: Relative displacement of fluid in three TLCGDs, angle of attack: 6α π=  
(artificial seismogram), strong motion phase 20s. 
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Fig. 2.86: Relative acceleration of single-storey space structure, v , w  and T Su r θ= , angle 
of attack: 6α π=  (artificial seismogram) 2.97Sr m= , strong motion phase 20s. 
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Fig. 2.87: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three TLCGDs attached, angle of attack: 4α π=  (artificial seismogram) 

2.97Sr m= , strong motion phase 20s. 
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Fig. 2.88: Relative displacement of fluid in three TLCGDs, angle of attack: 4α π=  
(artificial seismogram), strong motion phase 20s.  
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Fig. 2.89: Relative acceleration of single-storey space structure, v , w  and T Su r θ= , angle 
of attack: 4α π=  (artificial seismogram) 2.97Sr m= , strong motion phase 20s. 
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Fig. 2.90: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three TLCGDs attached, angle of attack: 3α π=  (artificial seismogram) 

2.97Sr m= , strong motion phase 20s. 
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Fig. 2.91: Relative displacement of fluid in three TLCGDs, angle of attack: 3α π=  
(artificial seismogram), strong motion phase 20s. 
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Fig. 2.92: Relative acceleration of single-storey space structure, v , w  and T Su r θ= , angle 
of attack: 3α π=  (artificial seismogram) 2.97Sr m= , strong motion phase 20s. 
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Fig. 2.93: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three TLCGDs attached, angle of attack: 2α π=  (artificial seismogram) 

2.97Sr m= , strong motion phase 20s. 
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Fig. 2.94: Relative displacement of fluid in three TLCGDs, angle of attack: 2α π=  
(artificial seismogram), strong motion phase 20s.  
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Fig. 2.95: Relative acceleration of single-storey space structure, v , w  and T Su r θ= , angle 
of attack: 2α π=  (artificial seismogram) 2.97Sr m= , strong motion phase 20s. 
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Fig. 2.96: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three TLCGDs attached, angle of attack: 2 3α π=  (artificial seismogram) 

2.97Sr m= , strong motion phase 20s. 
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Fig. 2.97: Relative displacement of fluid in three TLCGDs, angle of attack: 2 3α π=  
(artificial seismogram), strong motion phase 20s. 
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Fig. 2.98: Relative acceleration of single-storey space structure, v , w  and T Su r θ= , angle 
of attack: 2 3α π=  (artificial seismogram) 2.97Sr m= , strong motion phase 20s. 

0 5 10 15 20
-0.2

-0.1

0

0.1

0.2
without TLCD
with TLCD

time [s] 0 5 10 15 20
-0.2

-0.1

0

0.1

0.2
without TLCD
with TLCD

time [s] 0 5 10 15 20
-0.2

-0.1

0

0.1

0.2
without TLCD
with TLCD

time [s]  
Fig. 2.99: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three TLCGDs attached, angle of attack: 3 4α π=  (artificial seismogram) 

2.97Sr m= , strong motion phase 20s. 
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Fig. 2.100: Relative displacement of fluid in three TLCGDs, angle of attack: 3 4α π=  
(artificial seismogram), strong motion phase 20s.  
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Fig. 2.101: Relative acceleration of single-storey space structure, v , w  and T Su r θ= , angle 
of attack: 3 4α π=  (artificial seismogram) 2.97Sr m= , strong motion phase 20s. 
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Fig. 2.102: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three TLCGDs attached, angle of attack: 5 6α π=  (artificial seismogram) 

2.97Sr m= , strong motion phase 20s. 
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Fig. 2.103: Relative displacement of fluid in three TLCGDs, angle of attack: 5 6α π=  
(artificial seismogram), strong motion phase 20s. 
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Fig. 2.104: Relative acceleration of single-storey space structure, v , w  and T Su r θ= , angle 
of attack: 5 6α π=  (artificial seismogram) 2.97Sr m= , strong motion phase 20s. 

 
The numerical values of the maximum response are sampled in Table 2.8a and 2.8b. The 

maximum fluid displacements of 1 0.23u m= , 2 0.23u m= , 3 0.16u m=  and velocities of 

1 1.63 /u m s= , 2 2.69 /u m s= , 3 2.18 /u m s=  are within the acceptable limits. The results 
confirm the robust performance of the TLCGDs in reducing the torsionally coupled response 
of a structure with changing damping.  
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 original structure structure with 3 TLCGDs fluid displacement 

max v 
[mm] 

w 
[mm] 

uT 
[mm] 

v 
[mm] 

w 
[mm] 

uT 
[mm] 

u1 
[mm] 

u2 
[mm] 

u3 
[mm] 

0α =  54 11 43 34 6 22 20 231 162 

6α π=  49 54 37 31 26 24 114 219 137 

4α π=  42 76 34 27 39 22 162 190 110 

3α π=  32 93 28 21 49 19 200 149 76 

2α π=  11 108 21 6 60 11 232 38 32 

2 3α π=  27 93 34 16 54 16 202 82 98 

3 4α π=  39 76 41 24 46 19 166 133 125 

5 6α π=  48 54 45 30 34 21 119 176 148 

Table 2.8a: Maximum displacements, artificial seismogram using Kanai-Tajimi model, 
maximum ground acceleration 0 0.34a g = . Varying angle of attack α . Extreme values 
indicated in bold, T Su r θ= , 2.97Sr m= . 
 

 original structure structure with 3 TLCGDs 
max v g  w g  Tu g  v g  w g  Tu g  

0α =  0.91 0.13 0.75 0.49 0.08 0.36 

6α π=  0.80 0.30 0.63 0.45 0.25 0.31 

4α π=  0.65 0.44 0.53 0.38 0.38 0.26 

3α π=  0.47 0.55 0.40 0.29 0.49 0.20 

2α π=  0.13 0.65 0.17 0.08 0.56 0.09 

2 3α π=  0.43 0.60 0.39 0.25 0.53 0.22 

3 4α π=  0.62 0.52 0.54 0.35 0.45 0.27 

5 6α π=  0.76 0.40 0.65 0.42 0.34 0.30 

Table 2.8b: Maximum accelerations, artificial seismogram using Kanai-Tajimi model, 
maximum ground acceleration 0 0.34a g = . Varying angle of attack α . Extreme values 
indicated in bold, T Su r θ= , 2.97Sr m= . 
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3. Single-storey Strongly Plan-asymmetric 
Space Frame with TTLCGDs and TLCGDs 
 
3.1 Introduction 

 
Torsional tuned liquid column gas damper (TTLCGD) is a novel type of damper that can 

control the torsional response of structures about the vertical axis. The results of free 
vibration and forced vibration simulations show that it is effective to control structural 
torsional response in Hochrainer1 , Hochrainer and Adam2 and Liang3, but the determination 
of the optimal parameters of TTLCGD for effective reduction of torsionally coupled vibration 
needs to be investigated. 

In this chapter we propose TTLCGD to reduce the coupled lateral and torsional motions 
in single-storey stiffness-asymmetric space frames subjected to uni-directional horizontal 
seismic excitation. For a strongly asymmetric building, the velocity centers of several modes 
fall inside the floor plan. In that case the TTLCGD is more effective to mitigate torsional 
motion when compared to the U-shaped TLCGD. The special design of TTLCGD with 
emphasis on the analogy in the tuning process to the equivalent torsional tuned mechanical 
damper (TTMD) is originally developed subsequently. Plan-symmetric buildings have 
isolated pure torsional modes. In those cases if their excitation is expected, the application of 
the TTLCGD is recommended too.  

 
3.2 Equation of motion for single-storey strongly 
asymmetric space frame 
 

 
          a) Plan view                      b) Front view  
       Fig. 3.1: Asymmetric space frame due to unsymmetric stiffness distribution. 
 

For simplicity, a single-storey model is reconsidered with uniformly distributed floor 
mass. The motion of its center of mass CM is defined by two horizontal displacements v and w 
in the y- and z-directions, and rotation angle θ about a vertical x-axis (Figure 3.1a). The origin 
of the coordinate system is at CM. The column at each corner has the same anisotropic 
stiffness ky and kz in y- and z-directions. However, an extra column of much stronger 
stiffness yk′  and zk ′  , referring e.g. to the elevator tube, has the eccentricity ye , . The 
center of stiffness and center of mass are well separated, see the center of stiffness C

ze

S in Fig. 
3.1a. 
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Fig. 3.2: Free-body-diagram of the floor of the strongly asymmetric space-frame, stiff 
elevator tube shown; derivation of the stiffness matrix. 
 

The free-body-diagram of single-storey structure under ground excitation as indicated in 
Fig.3.2 is subjected to the basic laws of conservation of momentum and conservation of 
angular momentum.  
(i) Conservation of momentum in the y-z plane  

MS Cm a R= , 
MC t y ta v e w= + ze  

t gv v v= + , ,                 (3.1) t gw w w= +

where  and  are the absolute accelerations in y- and z-directions, respectively and tv tw R  
is the resultant of the external forces,  

( ) ( )4 4y y y z y z z z y zR k k v k e e k k w k e eθ θ⎡ ⎤ ⎡ ⎤′ ′ ′ ′= − + − − + +⎣ ⎦⎣ ⎦ . 

Thus, neglecting structural damping, in y- and z-directions we have respectively,  
( )4 y yS y zk km v v k e m vθ′+ ′+ − = − S g

S g

,            (3.2a)           

( )4S z yz zm w w k e m wk k θ′′+ + = −+ .            (3.2b)           
 
(ii) Conservation of angular momentum with respect to the center of mass CM 

M
M

C
C

dD
M

dt
= , ,

M MC C xD D e=
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 ,
M MC C xM M e=  

MC xD I θ= .  

According to the free-body diagram in Fig. 3.2, the axial moment of the external forces 
becomes 

( )2 2 2 2
MC y z z y y y z z z yM k ve k we k b k e k a k e θ′ ′ ′ ′= − − + + + , 

( )2 2 2 2 0x y y z z z y y z z yI k b k e k a k e k ve k weθ θ′ ′ ′ ′+ + + + − + = ,        (3.2c) 

where the mass moment of inertia about the vertical x-axis of the rectangular floor is, Fig. 
3.2,  

( )2 2 /12 2
x S S SI m a b m r= + = ,  

where  denotes the radius of inertia with respect to the center of mass CSr M. 
The three coupled equations of undamped motion, Eqs. (3.2a)- (3.2c) are put in their 

matrix form. 
M K M gx x x+ = − , [ ]T

Tx v w u= , 0T
g g gx v w⎡ ⎤= ⎣ ⎦ ， Tu Srθ= .     (3.3) 

The diagonal mass- and the symmetric stiffness matrix of the 3-DOF structure are deduced 
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0

2

1 0 0
M 0 1

0 0 1
Sm

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,    (3.4) 

( )2 2 2 2

4

K 4

/

y y y z S

z z z y S

y z S z y S y z y z z y S

k k k e r

k k k e r

k e r k e r k b k a k e k e r

⎡ ⎤′ ′+ 0 − /⎢ ⎥
⎢ ⎥′ ′= 0 + /⎢ ⎥
⎢ ⎥′ ′ ′ ′− / / + + +⎢ ⎥⎣ ⎦

.        (3.5) 

 
3.3 Torsional Tuned Liquid Column Damper, TTLCGD 

 
The control performance of TTLCGD is effective for dominating torsional vibration, i.e., 

if the modal center of velocity falls within the floor plan. The configuration of TTLCGD is 
shown in Figure 3.3 and it consists of a liquid filled piping system which encloses in its 
horizontal section the “arbitrarily” shaped area pA , thus within the floor, ending with sealed 
(vertical or if suitable X-braced) columns in close neighborhood to each other. 

                                               
Fig. 3.3: Schematic representation of torsional TLCGD=TTLCGD, encircling the modal 
center of velocity of the floor. The pipe section within the floor plan encloses the area pA . 

 
A TTLCGD is fixed to the supporting floor of a single-storey building. When the center 

of velocity is in the floor as shown in Fig.3.4a, a TTLCGD moves with the structure, the 
ring-shaped pipe section on the floor enclosing the center of velocity, a relative motion of the 
viscous liquid inside the pipe is induced which can be used to reduce the torsional structural 
vibration. Two TTLCGDs with vertical pipe sections on opposite side in parallel action could 
be installed on the floor in order to somewhat balance the unwanted moments of vertical 
force components acting on the structure. When the modal center of velocity is outside of the 
floor, as shown in Fig.3.4b, a relative motion of the liquid is induced by a much smaller 
amount. As a result, a TTLCGD in the second case is less suitable to mitigate torsional 
motion and a plane U-shaped TLCGD is substituted to be set on the floor eccentrically, see 
section 2.9. 
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Fig. 3.4a: Center of velocity is in the floor area: apply the TTLCGD. Fig. 3.4b: Center of 
velocity is outside of the floor area: use plane TLCGD, not a TTLCGD. 
 

3.4 Equation of motion of TTLCGD 
 
3.4.1 Equation of motion of TTLCGD (the vertical segment, A (yA, 
zA, 0), 2β π= ) 

TTLCGD’s dynamics can be derived using the generalized instationary Bernoulli 
equation for moving reference frame. The generalized Bernoulli equation for such a relative 
streamline of an ideal (inviscid) fluid takes on the form, cf. Eq. (2.19) 

( ) ( )
2 2

2 1 2 1
1 1

1
g t

uds g x x p p a e ds
t ρ

′ ′

′ ′

∂ ′ = − − − − − ⋅
∂∫ ′ ′∫ ,          (3.6) 

where . The guiding acceleration of the moving frame is in the floor 

plane 

[ Tds dy dz dx′ ′ ′= ]
2ˆ

Mg C y z ya a r rθ θ′ ′ ′′ ′= + − [ ]0 T
y zr y z′ ′′ ′ ′=z′ , , [ˆ 0 T

y zr z y′ ′′ ′ ′= − ] , see also Section 
2.4.1. The absolute acceleration of the reference point CM is given in Eq. (2.1). 
The integral term comes separately over the horizontal part of the relative streamline 
(approximately a loop integral) and over its vertical parts  

1 22

1 0 0

H u H u

g t g t g t g t
B

a e ds a e ds a e ds a e ds
− +′

′

′ ′ ′ ′ ′ ′ ′ ′⋅ = ⋅ + ⋅ + ⋅∫ ∫ ∫ ∫ .                                 

For the vertical segments: ( )1 2u u u t= =  

10 s H u′≤ ≤ − : t xe e′ = − , : 20 s H u′≤ ≤ + t xe e′ = , 
1 2

'

0 0

0
M M

H u H u

C t C ta e ds a e ds
− +

′⋅ + ⋅ =∫ ∫ ′ ′ .              (3.7) 

For the horizontal curved segment: 0 s B′≤ ≤ : where B denotes the length of the nearly closed 
horizontal pipe section, 

, , 0
M M MC t C y C z

B s

a e ds a dy a dz′ ′
′ ′

′ ′ ′ ′⋅ = + =∫ ∫
s
∫

′

.           (3.8) 

The integral term  renders for the vertical segments: 
2

2

1
y z tr e dsθ

′

′ ′
′

′ ′⋅∫ ( )1 2u u u t= =  

10 s H u′≤ ≤ − : y z A y Ar y e z ez′ ′ ′ ′′ = + 0y z tr e′ ′, ′ ′⋅ = ,                                 

20 s H u′≤ ≤ + : y z A y Ar y e z ez′ ′ ′ ′′ = + 0y z tr e′ ′, ′ ′⋅ = ,                 
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⎟
⎟

⎟

′

1 2
2

0 0

0
H u H u

y z t y z tr e ds r e dsθ
− +

′ ′ ′ ′

⎛ ⎞
⎜ ′ ′ ′ ′ ′ ′⋅  + ⋅ =
⎜
⎝ ⎠

∫ ∫ .            (3.9) 

For the horizontal segment: 0 : (nearly a closed curve) s B′≤ ≤

2 2 0y z t
B s s

r e ds y dy z dzθ θ′ ′
′ ′

⎛ ⎞′′ ′ ′ ′ ′ ′⋅  = ⎜ + ⎟ =
⎜
⎝ ⎠

∫ ∫ ∫ .           (3.10)           

The path integration  is performed similarly to the aforementioned. 
2

1
ŷ z tr e dsθ

′

′ ′
′

′ ′⋅∫
For the vertical segment:  

10 s H u′≤ ≤ − : ŷ z A y A zr z e y e′ ′ ′′ = − + ˆ 0y z tr e′ ′′ , ′ ′⋅ = ,  

20 s H u′≤ ≤ + : ŷ z A y A zr z e y e′ ′ ′′ = − + ˆ 0y z tr e′ ′′ , ′ ′⋅ =

⎟
⎟

,               

1 2

0 0

ˆ ˆ 0
H u H u

y z t y z tr e ds r e dsθ
− +

′ ′ ′ ′

⎛ ⎞
⎜ ′ ′ ′ ′ ′ ′⋅  + ⋅  =
⎜
⎝ ⎠

∫ ∫ .           (3.11) 

For the horizontal segment: 0 : (nearly a closed curve) s B′≤ ≤
ˆ 2y z t p

B

r e ds Aθ θ′ ′′ ′⋅ =∫ ,               (3.12) 

where pA  is the enclosed area in the floor plan, see Fig.3.3. 
  Finally, substitution of Eqs. (3.7)- (3.12) into Eq. (3.6), the generalized Bernoulli 
equation becomes,  

( )2 1
1(2 ) 2 2H

p
B

Au H B gu p p A
A

θ
ρ

+ = − − − − ,          (3.13) 

adding the equivalently linearized damping, see Eq. (2.36) and considering the linearized gas 
compression, yield the equation of motion of the relative fluid motion in the TTLCGD for 

2β π= , 
2

02 A A A T Tu u uζ ω ω κ+ + = − Tu ,             (3.14) 

0
2 P

T
f eff

A
r L

κ = , 2 H
eff

B

A
L H B

A
= + TT f，u r θ= , 2

fx f fI m r= ,      (3.14a) 

where fxI , fr  denote the axial moment of inertia of the fluid mass and the radius of inertia 
for the fluid mass with respect to reference point CM.  
 
3.4.2 Equation of motion of TTLCGD (the inclined segment 
parallel to z-axis, A (yA, 0, 0), 4 2π β π≤ < ) 

te′  is changed for the X-braced inclined segments, cf. Eq. (3.7), 

10 s H u′≤ ≤ − : e ecos sint z xeβ β′′ = − 20 s H u, ≤ + xe: cos sint ze eβ β′′ = + , ′≤
1 2

,
0 0

2 co
M M M

H u H u

C t C t C za e ds a e ds Ha s β
− +

′′ ′ ′ ′⋅ + ⋅ =∫ ∫ .         (3.15) 

For the horizontal curved segment 0
MC t

B

a e ds′ ′⋅ =∫ .  

The integral term  renders for the horizontal segment . 
2

2

1
y z tr e dsθ

′

′ ′
′

′ ′⋅∫ ′ 2 0y z t
B

r e dsθ ′ ′′ ′⋅  =∫
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For the X-braced inclined segments: cf. Eq. (3.9), 

10 s H u′≤ ≤ − : ( )1 cos cosy z t A y zr e y e H u s eβ β′ ′ ′′ ′ ′⋅ = − − − ′⎡ ⎤⎣ ⎦ , 

( )1 cos cos cosy z tr e H u sβ β′ ′′ ′ ′⋅ = − − −⎡⎣ β⎤⎦ ,                                 

20 s H u′≤ ≤ + : cosy z A yr y e s ezβ′ ′ ′ ′′ ′= + 2cosy z tr e s, ′ ′′ ′ ′⋅ = β

2 2

,                 

1 2
2

0 0

2 cos
H u H u

y z t y z tr e ds r e ds H uθ θ
− +

′ ′ ′ ′

⎛ ⎞
⎜ ⎟′ ′ ′ ′ ′ ′⋅  + ⋅  =
⎜ ⎟
⎝ ⎠

∫ ∫ β

′

.        (3.16) 

The path integration  is performed similarly to the aforementioned, for the 

horizontal segment 

2

1
ŷ z tr e dsθ

′

′ ′
′

′ ′⋅∫
ˆ 2y z t p

B

r e ds Aθ θ′ ′′ ′⋅ =∫ . 

For the X-braced inclined segment: cf. Eq. (3.11), 

10 s H u′≤ ≤ − : ( )1
ˆ cos cosy z y A ze
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r H u s e yβ β′ ′′ ′= − − +⎡ ⎤⎣ ⎦
ˆ cosy z t Ar e y′ ′ , ′ ′′ ′⋅ = β ,  

20 s H u′≤ ≤ + : ˆ cosy z y A zr s e y eβ′ ′ ′′ ′= − + ˆ cosy z t Ar e y′ , ′ ′′ ′⋅ = β ,               

1 2

0 0

ˆ ˆ 2 cos
H u H u

y z t y z t Ar e ds r e ds Hyθ θ
− +

′ ′ ′ ′

⎛ ⎞
⎜ ⎟′ ′ ′ ′ ′ ′⋅ + ⋅ =
⎜ ⎟
⎝ ⎠

∫ ∫ β .           (3.17) 

  Finally, substitution of Eqs. (3.16), (3.17), (3.10) and (3.12) into Eq. (3.6), the Bernoulli 
type equation results, cf. Eq. (3.13), 

( )

( )
2 1 ,

2 2

1(2 ) 2 sin 2 cos

2 2 cos 2 cos

M
H

C z
B

p A

Au H B gu p p Ha
A

A Hy H u

β β
ρ

β θ θ β

′+ = − − − −

− + +
.       (3.18) 

Adding the equivalently linearized damping and considering the linearized gas compression, 
yield the parametrically forced equation of motion of the relative fluid motion in the 
TTLCGD, note the additional forcing term when compared to Eq. (3.14),  

2
2

1 22 1
M ,A A A T Tz TT T C

A
u u u u aθζ ω ω κ κ κ

ω z′
⎛ ⎞

+ + − = − −⎜ ⎟⎜ ⎟
⎝ ⎠

,        (3.19) 

2 cos
T

eff

H
L

βκ = , , 1 cosT Tκ κ β 0Tz T T A fy rκ κ κ= + , =

2 H
eff

B

A
L H B

A
= + TT fu r， θ= , 2

fx f fI m r= .          (3.19a) 

Substituting ,MC za ′ , Eq.(3.1), into Eq. (3.19), and further linearizing the forcing term, yield 
the simplified and linearized equation of motion for the relative fluid flow in the TTLCGD, 
parametric forcing is negligible with sufficient damping understood, see also Eq. (2.36),  

( )22 A A A Tz TT T gu u u u wζ ω ω κ κ+ + = − − + w .           (3.20) 

 
3.4.3 Equation of motion of TTLCGD (the inclined segment 
parallel to y-axis, A (0, zA, 0), 4 2π β π≤ < ) 
   A TTLCGD is installed on the floor and the inclined part of TTLCGD is oriented parallel 
to y axis. Equation (3.18) with  substituted for Tyκ Tzκ  still holds, when the y-component of 

acceleration ,MC ya ′  is substituted for ,MC za ′ , 
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2
2

1 22 1
M ,A A A T Ty TT T C

A
u u u u aθζ ω ω κ κ κ

ω y′
⎛ ⎞

+ + − = − +⎜ ⎟⎜ ⎟
⎝ ⎠

.         (3.21)   

Substituting , Eq. (3.1), into Eq. (3.21) and considering its linearized form with 
parametric excitation neglected, compare with Eq. (3.20),                        

,MC ya ′

( )22 A A A Ty TT T gu u u u v vζ ω ω κ κ+ + = − + + , 0Ty T T A fz rκ κ κ= +  .     (3.22) 

 
3.5 Forces and Moments of TTLCGD 
 
3.5.1 Forces and Moments (the vertical segment, A (yA, zA, 0), 

2β π= ) 
(i) The interaction forces 

MC yF , , conservation of momentum 
MC zF f fR m a= . 

The instant position of center of fluid mass Cf  with respect to reference point CM is given by 

f f xr x e′ + , where the in-plane component is 'f f fyr y e z e ′z′ ′ ′= + . Hence, 

Mf C f fr r r x e′= + + x , 

'
ˆf

f f z fy

dr
y e z e r

dt
θ′

′
′ ′= + + ′ , 

( ) ( )Mf f C f f y f f z fv r v y z e z y e x eθ θ′ ′′ ′ ′ ′= = + − + + + x ,        (3.23)           

( ) ( )2 22 2
Mf f C f f f f y f f f f z fa v a y z y z e z y z y e x eθ θ θ θ θ θ′ ′′ ′ ′ ′ ′ ′ ′ ′= = + − − − + + − + + x , (3.24)            

where fv , fa  are absolute velocity and absolute acceleration of the center of fluid mass Cf.

Considering the static mass-moments: 
( ) ( ) 2f f H A H A Hm y A H u y A H u y A Hyρ ρ ρ′ = + + − = A ,       (3.25) 

( ) ( ) 2f f H A H A Hm z A H u z A H u z A Hzρ ρ ρ′ = + + − = A ,       (3.26)           

( ) ( ) ( )2 2
2 2H H Hf f

H u H um x A H u A H u A H uρ ρ ρ+ −= + + − = + ,     (3.27) 

we determine 

3
1

2 A
f T A

Hzz z
L

κ′ = = , , 0fz′ = 0fz′ = , 1 2 B

H

AL H
A

= + B ,       (3.28) 

3
1

2 A
f T A

Hyy y
L

κ′ = = , , 0fy′ = 0fy′ = ,           (3.29) 

( ) ( )
2 2

2 2
3

1

1
2f T

H u
x H u

L H
κ

+
= = + , 3

1
f Tx uu

H
κ= , ( )2

3
1

f Tx u uu
H

κ= + .   (3.30) 

with the following geometry coefficient 3 2T H L1κ = . Substituting Eqs. (3.28)-(3.30) into 
Eq. (3.24) confirms, after multiplication with mf the resultant,  

( ) ( ) ( )2 2 2
3

1
Mf C f T A A y A A z xR m a m z y e y z e u uu e

H
κ θ θ θ θ′ ′

⎡ ⎤= + − + + − + +⎢ ⎥⎣ ⎦
.   (3.31)          

Equation (3.31) renders the horizontal components of the control force acting on the piping 
system, 

( 2
3 3cos sin

MC y f y z T A T AF m a a z y )θ θ κ θ κ θ′ = + − − ,        (3.32) 
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( 2
3 3sin cos

MC z f y z T A T AF m a a y z )θ θ κ θ κ θ′ = − + + − ,        (3.33) 

and, when rotated 

( ) ( )2 2
3 cos sin

MC y f y A A T A A TF m a z y y z 3θ θ κ θ θ θ κ θ⎡ ⎤= − + − −⎣ ⎦
,     (3.34) 

( ) ( )2 2
3 sin cos

MC z f z A A T A A TF m a z y y z 3θ θ κ θ θ θ κ θ⎡ ⎤= − + + −⎣ ⎦
.     (3.35) 

Equations (3.34) and (3.35) are simplified under the condition 1θ  and the essential 
linear parts become  

( 3MC y f g T TT A fF m v v u z rκ= + − ) ,            (3.36) 

( 3MC z f g T TT A fF m w w u y rκ= + + ) ,            (3.37)  

 
(ii) Conservation of the angular momentum of the fluid body with respect to the accelerated 
point of reference CM, see Ziegler4, page 405 

( ) ( )

( ) ( ) ( )( )
'

2 2

11

ˆ ( )

ˆ

( ) ,

M y z

y z t

C
m mf f

f fD r v

r r r e s

dm r r u dm

A s ds A s u s t

θ

ρ θ

′ ′

′ ′

′ ′

′

⎡ ⎤= ⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

′ ′×

′ ′ ′ ′ ′× ×

= × +′ ′

= +′ ′ ′ ′

∫ ∫

∫ ∫ ds′

)

   (3.38)           

( ) ( )( ) ( ) (

( )

1 22

1 0 0

, ( )

2

H u H u

t H A z A y H A z A

H
B p x H A z A y p x

BB

yA s u s t r e s ds A u y e z e ds A u y e z e ds

AA udA e A u y ue z ue A e
A

ρ ρ ρ

ρ ρ

− +′

′ ′ ′ ′
′

′ ′

′ ′ ′ ′ ′ ′ ′× = − + − +

+ = − + +

∫ ∫ ∫

∫

′

                     (3.39) 

( ) ( ) ( )

( )

2
2 2 2 2

1

22 2

ˆ( )

2

y z H A y A z

B
H y z xA A

H B

A s r r ds A H u y e H u z e

AA H r ds ey z A

ρθ ρθ

ρθ

′

′ ′ ′ ′
′

′ ′

⎡ ⎤′ ′ ′ ′× = − + − +⎣ ⎦

⎡ ⎤
′ ′+ +⎢ ⎥+

⎢ ⎥⎣ ⎦

∫

∫
,    (3.40)           

( ) ( )

( )

2 2 2 2

1 1 1 1

2
2 2

1 1 1

2 2

2 2

M

y z

A AA A
y z

pA A B B
x

H

C f
H u y H u zz yuu e uu e

L L L L

r ds
H Ay z A u e

L A L L

D m θ θ

θ
′ ′

′ ′

⎧⎛ ⎞ ⎛
⎪⎜ ⎟ ⎜⎨⎜ ⎟ ⎜⎜ ⎟ ⎜⎪⎝ ⎠ ⎝⎩

⎫⎡ ⎤⎛ ⎞
⎪⎢ ⎥⎜ ⎟
⎪⎢ ⎥⎜ ⎟ ⎬⎢ ⎥⎜ ⎟ ⎪⎢ ⎥⎜ ⎟ ⎪⎢ ⎥⎝ ⎠⎣ ⎦ ⎭

− + − +
+ + −

′ ′
+

+ + +

=

∫

⎞
⎟
⎟⎟
⎠

.  (3.41) 

Differentiating 
MC xD  renders  

( )2 2

2

1 1 1

22
M

y z
p A AC x B B

f
H

y z
r ds

dD A Am u H
dt L L A L

θ
′ ′

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟+⎢ ⎜
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

⎥⎟
′ ′

= + + +
∫

,       (3.42)          
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( ) ( )( )

( )( )

( ) ( ) }

2 2
3

2 2

1 sin cos
2

1 cos sin
2

sin cos cos sin

Mf f f x C f T y z

y z z

A y z A y z x

m r x e a m H u a a e
H

H u a a e
H

y a a z a a e

κ θ

θ θ

θ θ θ θ

′

′

⎧⎡ ⎤′ + × = − + − +⎨⎢ ⎥⎣ ⎦⎩
⎡ ⎤+ + +⎢ ⎥⎣ ⎦

⎡ ⎤+ − + − +⎣ ⎦

yθ

.   (3.43) 

The parametric forcing (3T A y A zy a z aκ− − )θ  in Eq. (3.43) is negligible with sufficient 

damping understood. The linear resultant control moment  (acting on the piping 
system) becomes finally  

MC xM

3 3
0M

T A T A
C x f f TT z y f f T

f f

y zM m r u a a m r u
r r

κ κ κ
⎛ ⎞
⎜ ⎟= + − +
⎜ ⎟
⎝ ⎠

,         (3.44) 

2
fx B y z

B

I A r dsρ ′ ′′ ′= ∫ , ( )2 22fx H fxA AA H Iy zρ= ++ , I 0 0 1T T effL Lκ κ= ,  

where  is defined in Eq.(3.14a).  0Tκ
 
3.5.2 Forces and Moments (the inclined segment parallel to z-axis, 
A (yA, 0, 0), 4 2π β π≤ < ) 
 The interaction forces 

MC yF ,  are derived by conversation of momentum 
MC zF

f fR m a= . We take into account the geometrically changed configuration and proceed 
analogously to section 3.5.1. The linear interaction forces are  

(MC y f gF m v= + )v ,                (3.45) 

( 3MC z f g T TT A f TF m w w u y rκ= + + + )uκ .          (3.46)  

The control moment is derived by conservation of the angular momentum of the fluid body 
with respect to the accelerated point CM. The linear resultanting control moment  
(acting on the piping system) becomes finally  

MC xM

3
M

T A
C x f f TT z f f Tz

f

yM m r u a m r u
r

κ κ
⎛ ⎞
⎜ ⎟= + +
⎜ ⎟
⎝ ⎠

 ,         (3.47) 

2
fx B y z

B

I A r dsρ ′ ′′ ′= ∫ ,
3 2

2 cos2
3fx H A fx

HA y H Iβρ
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

+ , I 1Tz Tz effL Lκ κ= ,  

where  is defined in Eq.(3.19a), cf. Eq. (3.44) with Tzκ 0Az = .  
 
3.5.3 Forces and Moments (the inclined segment parallel to y-axis, 
A (0, zA, 0), 4 2π β π≤ < ) 
   A TTLCD is set on the floor and the inclined segment is parallel to y axis. The interface 
forces can be obtained, cf. Eqs. (3.45) and (3.46) 

( 3MC y f g T TT A f TF m v v u z rκ= + − + )uκ

)w

,           (3.48) 

(MC z f gF m w= + .                (3.49) 

The linear resultant control moment  (acting on the piping system) becomes, cf. 
MC xM
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Eqs.(3.47)  

3
M

T A
C x f f TT y f f Ty

f

zM m r u a m r u
r

κ κ
⎛ ⎞
⎜ ⎟= − +
⎜ ⎟
⎝ ⎠

, 1Ty Ty effL Lκ κ= .      (3.50) 

 
3.6 Control of single-storey strongly plan-asymmetric 
space frame by a single TTLCGD ( 2β π= ) when compared 
to an equivalent TTMD  
 
3.6.1 Torsional Tuned Mechanical Damper, TTMD 
  An equivalent TTMD with a symmetrically distributed mass *

Am  is set on the 

single–storey asymmetric structure, shown in Fig.3.5. *
MC xI  and *

Ar  are the axial moment 
of inertia and radius of inertia with respect to the absorber’s (floor’s) center of mass. That 

radius solely depends on the geometrical, doubly symmetric shape of TTMD. 
*

*
A

u
r

 is the 

rotational angle of TTMD. 

 
Fig. 3.5: Single–storey asymmetric structure with TTMD: extended mass with rotational 
spring support. 
 
 Conservation of angular momentum with respect to its center of mass CM= O is applied:  

 82

( )* * * * *
M MC x C x TT AD I u u r= + , * *

MC x A A
*2I m r= , 

*
* *

*MC x
A

uM k
r

= − , * *
TT Au r θ= ,   (3.51) 

( )* * * *
MC x TT

*I u u k u+ = − .               (3.52) 

The equation of motion for the TTMD, viscous damping is added to Eq. (3.52), becomes, 

* * * *
TTu* * *22T T TA A Au u uζ ω ω+ + = − , 

*

*
*

MC x
A

k
I

ω = , 
*

*
* *2

MC x
A A

c
I

ζ ω = .      (3.53)   

The resulting forces are,  
(* *

MC y A gF m v= + )v

)w

,                (3.54) 

(* *
MC z A gF m w= + .                (3.55) 

The control moment is,  

( )* * * *
M MC x C x TT A

*M I u u r= + .              (3.56) 

The equations of a single storey space frame with a single TTMD attached are approximated 
by the selected mode number j 
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( ) ( ) ( )* * * * *
*

* *2 *
1 2* * *

1 11 S Aj S Aj
Aj

j j Sj j j j g j
j j j

u m m m m
m

q q v
m m m

μ ω λ φ φ+ ++ + +  = − −  gw , 

*
* *2

*
Aj

j Tj
j

m
v

m
μ =  , ( )2*2 2 2 *

1 2 3Tj j j j Aj Sv r rφ φ φ= + + , 
*

*
3

Aj
j j

S

r

r
λ φ= .         (3.57) 

 
The approximated equation of motion of TTMD (Eq. (3.53)) renders  
 

* * * * *2 * *2T Aj Aj Aj ju u u jqζ ω ω λ+ + = − .             (3.58) 
 
The right-hand side of the resulting system of modal equations decouples approximately only 
under the severe assumption of well-separated natural frequencies. With light modal damping 
of the main system added, the coupled equations of motion of main system with TTMD 
attached in matrix notation become,  
 

* * * * * * *2 * *

* * ** * * *2

1 2

1 0 0 0

T
j j jj j Aj j Sj Sj Sj Tj j

gT
j Aj Aj Aj

q q qm m L m
x

u u u

μ λ ζ ω ω

λ ζ ω ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+         0         0   ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥            2          ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, 

                    (3.59) 
where the generalized participation factors are 

* * * 0T
Tj Tjy TjzL L L⎡ ⎤= ⎣ ⎦ , ( )* * *

1Tjy jS AjL m m φ=  + , ( )* * *
2Tjz jS AjL m m φ= +  .    

The second of the coupled equations turns out to be homogenous. 
 

3.6.2 TTLCGD attached to space frame (the vertical segment, A 
(yA, zA, 0), 2β π= ) 

Inserting the linearized coupling forces P , Eqs. (3.36), (3.37) and (3.44), the equation of 
a single storey space frame with a single TTLCGD attached becomes 

 

( ) ( )

( )

2
1 1 3 3

2 2 3 3

11

1

fj
j j Sj j j S j fj j T j Aj S

j j

S j fj j T j Aj S g
j

m
q q u m m z r

m m

m m

gv

y r w
m

μ ω λ φ φ κ φ

φ φ κ φ

⎡ ⎤+ + +  = − +  −⎣ ⎦

⎡ ⎤− +  +⎣ ⎦

 

2fj
j Tj

j

m
V

m
μ = , ( )2 2

3 3 ( 0)2 12 max
j Aj AjTj Tj j T S A y zAj j Aj jV v ry zφ κ φ φ= + →− ,  

( )22 2 2
1 2 3Tj j j j fj Sv r rφ φ φ= + + , 0 3j T j fjr rλ κ φ= S , 1j j effL Lλ λ= .     (3.60)  

 
Light structural modal damping of the main system is added and Eq. (3.14) is 

approximated by the selected mode 
 

22 Aj Aj Aj j ju u uζ ω ω λ+ + = − q .              (3.61) 
 
The linearized coupled system of modal equations of the main system with TTLCGD 
attached takes on the matrix form 
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2

2

1 2

0 21 0 0

T
j j fj j Sj Sj Sjj j j Tj j

gTAj Ajj Aj

m m q q q L m
x

u u u

μ λ ζ ω ω

ζ ωλ ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+         0         0   ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + = −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥            ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥          ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
, 

                     (3.62) 
the participation factors are formally still given by Eq. (2.92), however, before their 
substitution, the modal displacements of Eq. (2.84) have to be altered by the substitutions, 

, 1 3 3A j j T j Aj Srv zφ κ φ→ − , , 2 3 3A j j T j Aj Sw y rφ κ φ→ + . 
Ideally the TTLCGD should be placed in the floor with the largest modal displacement, 

because this will maximize the modal mass ratio and thus yield the best absorbing behaviour. 
The sign of ( )2 1Aj j Aj jy zφ φ−  should be chosen design-compatible to maximize the modal 

ratio, render the best location of point A (yA, zA, 0). 
 

3.6.3 Analogy between TTMD and TTLCGD ( 2β π= ) when 
attached to 3DOF-main system 

To keep the forcing by the angular accelerationθ , apparent on the right hand side of Eq. 
(3.14) and (3.53), we require * *

TT f TT Au r u rθ θ= = = . Consequently, the first result within the 

analogy is *
Ajr r= fj . Eqs. (3.58) and (3.61) on the right hand side have the same excitation, 

turns out proportional to u,  *u
*

0Tu u κ=  since *
0j j Tλ λ κ= .             (3.63) 

Using this result and comparing the left hand side of the second equation in Eqs. (3.59) and 
(3.62), yield at once  

*
Aj Ajω= *, ω Aj Ajζ ζ= .                (3.64) 

In a second step, substituting these results into the first equation in Eqs. (3.59) and (3.62) 
renders by inspection 

( ) ( )
*

0
2 * *2

01 1
j T j

j Tj T j TjV v

μ κ μ

μ κ μ
=

+ +
, *

1 1
1 1

2 *2
Sj Sj

j j
,  ω ω

μ μ
=

+ +

*
*

1 12 2
1 1

*
Sj Sj Sj Sj

j j
ζ ω ζ ω

μ μ
=

+ +
,             (3.65) 

and thus the mass ratio of the equivalent TTMD becomes 

( )
( )

2*
0 0*

2*
0 01 1

T T Tj Tj
j j

j T T Tj Tj

v V

v V

κ κ
jμ μ

μ κ κ
=

⎡ ⎤+ −⎢ ⎥⎣ ⎦

μ< ,          (3.66) 

and further, 

( )
*

2*
0 01 1

Sj
Sj

j T T Tj Tjv V

ω
ω

μ κ κ
=

⎡ ⎤+ −⎢ ⎥⎣ ⎦

, 

( )
*

2*
0 01 1

Sj
Sj

j T T Tj Tjv V

ζ
ζ

μ κ κ
=

⎡ ⎤+ −⎢ ⎥⎣ ⎦

,  (3.67) 

The TTLCD-TMD transformation of optimal parameters is thus established 

( )

*
,

2*
0 01 1

Aj opt jopt
jopt

Sj
j T T Tj Tjv V

ω δ
δ

ω μ κ κ
= =

⎡ ⎤+ −⎢ ⎥⎣ ⎦

, *
Aj Ajζ ζ= .      (3.68) 
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3.7 Control of single-storey strongly plan-asymmetric 
space frame by a single TTLCGD ( 4 2π β π≤ < ) when 
compared to an equivalent TTMD  
 
3.7.1 TTMD attached to space frame, a point mass in y-axis 
   A TTMD is set on the single–storey asymmetric structure,  is the position coordinate 
of an additional point mass  at A (y

1y
*
1m 1, 0, 0).  

 
Fig. 3.6: Single–storey asymmetric structure with TTMD with an additional point mass . *

1m
 
  Conservation of angular momentum with respect to the accelerated point O=CM. 

( ) ( )
*

* * * * * * * * *
1*MC x TT A g TT A

A

u
1 1I u u r k m w w u u y r

r
y⎡ ⎤+ = − − + + +⎣ ⎦ ,     (3.69) 

* * *
1 1M MC x C x

2I I m= + y  is the axial moment of inertia of the total mass . * *
1Am m+

The resulting forces are, cf. Eqs. (3.54) and (3.55) for TTMD without additional mass, 

( ) ( )2* * * * * *
1MC y A g g TT A

2
1F m v v m v v u u y r⎡= + + + − +⎢⎣ ⎦

⎤
⎥ ,        (3.70) 

( ) ( )* * * * *
1MC z A g g TT A

*
1F m w w m w w u u y r⎡= + + + + +⎣

⎤
⎦

.        (3.71) 

The control moment is, cf. Eq. (3.56) for TTMD without additional mass, 

( )* * * * * * *
1 1M M MC x C x TT A g C x A

*M I u r m w w y I u r⎡ ⎤= + + +⎣ ⎦ .        (3.72) 

The equation of motion for the TTMD, viscous damping is added to Eq. (3.69), becomes, cf. 
Eq. (3.53) 
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( )* * * *
* *

* * *2 1 1
*2

M

T T TT
A

Aj Aj Aj g
C x

u u u u m r y w w
I

ζ ω ω+ + = − − +
*

*
*

MC x
A

k
I

ω = , 
*

*
* *2

MC x
A A

c
I

ζ ω = .    (3.73) ,

Assuming *
1 Ay r= , substituted in Eqs. (3.70)-(3.73). The equation of a single storey space 

frame with a single TTMD when approximated by the selected mode is 

( ) ( )

( )

* *
1* *2 * * * * *

11* *

*
* * *

2 1 2 3*

11

1

Aj j
j j Sj j j j gS Aj j

j j

Aj
S j Aj j j j g

Sj

m m
q q u vm m m

m m

r
m m m

rm

μ ω λ φ

φ φ η φ w
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

+
+ + +  = −  + +

− + +  +  

, 
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* *
1* *2

*
Aj j

j Tj
j

m m
V

m
μ

+
=  , 

*
1

* *
1

j

Aj j

m

m m
η =  

+
, 

*
*2 *2

2 32 Aj
Tj Tj j j

s

r
V v

r
η φ φ= + , 

*
*

2 3
Aj

j j j
S

r

r
λ ηφ φ= + . 

(3.74) 
The approximated equation of motion of TTMD in mode j (Eq. (3.58)) renders  
 

* * * * *2 * *2 r gxT
T Aj Aj T Aj j j S,zu u u qζ ω ω λ η+ + = − − , [ ]r 0 1 0T

S,z = .       (3.75) 
 
With light modal damping of the main system added, the coupled equations of motion of 
main system with TTMD attached in matrix notation become, cf. (3.59), , *

1 0jm =
* *

1* * * * *2 * *
*

* * ** * *2
*

1 2

0 0 r
1

Aj j T
j j j j jSj Sj Sj Tj j

j gT
Aj Aj Aj S,z

j

m m
q q q L m

m x
u u u

μ λ ζ ω ω

ζ ω ω η
λ

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

+
+         0         0   

+ + = −
            2          

, 

                     (3.76) 
where the generalized participation factors are 

( )* * * *
11Tjy jS Aj jL m m m φ=  + + , ( )

*
* * * *

2 1 2
Aj

Tjz S j Aj j j j
S

r
L m m m

r
φ φ η

⎛ ⎞
⎜ ⎟= + +  +
⎜ ⎟
⎝ ⎠

3φ ,   

here,  is given by Eq. (3.59). *T
TjL

.                                                            
3.7.2 TTLCGD attached to space frame (the inclined segment 
parallel to z-axis, A (yA, 0, 0), 4 2π β π≤ < ) 

Inserting the linearized coupling forces P , Eqs.(3.45), (3.46) and (3.47), the equation of 
a single storey space frame with a single TTLCGD renders 

( ) ( ) ( )2
1 2 2 3 3

1 11 fj
S fjj j Sj j j j g S j fj j T j Aj S

j j j

m
m mq q u v m m gy r w

m m m
μ ω λ φ φ φ κ φ⎡ ⎤+ + + +  = − − + +⎣ ⎦

 
2fj

j Tj
j

m
V

m
μ = , 2 3j T j j Tz fjr rλ κ φ φ κ= + S , 1j j effL Lλ λ= .       (3.77) 

here, ,  are given by Eq. (3.60) with 2
TjV 2

Tjv 0Ajz = . 
Light structural modal damping of the main system is added and Eq. (3.19) are approximated 
by the selected mode 
 

22 TrAj Aj Aj j j T S,z gu u u qζ ω ω λ κ+ + = − − x .           (3.78) 
 
In matrix form the linearized coupled system of equations of the main system with TTLCD 
attached becomes 

2

2

1 2

0 21 0 r

T
j j fj j Sj Sj Sj Tj jj j j

gTAj Ajj Aj T S,z

m m L mq q q
x

u u u

μ λ ζ ω ω

ζ ωλ ω κ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤+         0         0   ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + = −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥            ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥          ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
, 

                     (3.79) 
here,  is given by Eq. (3.62) with T

TjL 0Ajz = . 
                                                            



Single-storey Strongly Plan-asymmetric Space Frame with TTLCGDs and TLCGDs 
3.7.3 Analogy between TTMD and TTLCGD ( 4 2π β π≤ < ) when 
attached to 3DOF-main system 

If Eqs. (3.75) and (3.78) on the right hand side have the same excitation,  turns out 
proportional to u,  

*
Tu

* *
ju u jλ λ= .                 (3.80) 

Using this result and comparing the left hand side of the second equation in Eqs. (3.76) and 
(3.79), yield at once  
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*
Aj Ajω ω= *, Aj Ajζ ζ= , 

*
*
1 *

T Aj
j

Tz fj Aj T

m
m

r r

κ

κ κ
=

−
.          (3.81) 

In a second step, substituting these results into the first equation in Eqs. (3.76) and (3.79) 
renders by inspection 

( ) ( )
* *2

2 * *21 1
j j j j

j Tj j Tj jV V

μ λ μ λ

μ μ λ
=

+ +
, *

1 1
1 1

2 *
Sj Sj

j j

2ω ω
μ μ

=
+ +

,  

*
*

1 12 2
1 1

*
Sj Sj Sj Sj

j j
ζ ω ζ ω

μ μ
=

+ +
, 

and thus the mass ratio of the equivalent TTMD becomes 

( )
*2 *2 2

*
*2 *2 21 1

j j Tj j Tj
j j

j j j Tj j Tj

V V

V V

λ λ λ
jμ μ

μ λ λ λ
=

+ −
μ< ,             (3.82) 

and further, 

( )
*

*2 *2 21 1

Sj
Sj Sj

j j j Tj j TjV V

ω
ω ω

μ λ λ λ
=

+ −
< ,             (3.83) 

( )
*

*2 *2 21 1

Sj
Sj Sj

j j j Tj j TjV V

ζ
ζ ζ

μ λ λ λ
=

+ −
< ,           (3.84) 

The TTLCGD-TMD transformation of optimal parameters is established 

( )
*

, *
*2 *2 21 1

Aj opt jopt
jopt jopt

Sj j j j Tj j TjV V

ω δ
δ δ

ω μ λ λ λ
= = <

+ −
, *

Aj Ajζ ζ= .     (3.85) 

For TTLCGD attached to space frame, the inclined segment parallel to the y-direction, A (0, 
zA, 0), 2 2

1 3 32Tj Tj j j T Aj SV v z rφ φ κ= −  is to be substituted with 0Ajy =  above. 
 
3.8 Numerical example 
    
 The single-storey stiffness-asymmetric structure is considered. The size of the 
rectangular floor in Fig. 3.1 is unchanged and given by 4m×8m, its mass is mS=16×103kg. 
The common anisotropic stiffness of column in each corner in y- and z-directions are 
calculated by Eq. (2.10) ky=340.20kN/m and kz=125.21kN/m. The anisotropic stiffness of the 
extra column in y- and z-directions are yk′ =3402kN/m and zk ′ =1252.1kN/m, the eccentricity 
of the column with respect to CM=O is given by ey=ez=1m. The length of each column is 4m, 
proper static dimensioning of the elastic columns is also performed. The mass moment of 
inertia of the floor about the vertical x-axis is 3 2=106.67 10xI kg m× ⋅ , . 2.58Sr m=
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3.8.1 Static dimensioning and a static safety criterion of the 
columns 
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kN
The buckling length of the cc-columns is 4 . The critical load of a steel profile 

HEB-120 with respect to the weak axis of buckling becomes
m

411.5cF = − . If the live load 

of square meter is assumed to be , the live load of floor to be considered in the 
static analysis is . The dead weight of the floor is . The 
combined load of the floor is 

24 /kq kN m=
128kQ = kN

kN
156.96sm g kN=

403.896sdN = − . The combined load, without TLCGD, in 

the column is 100.974
4
sdNF kN= = − . Thus

c

F
F

−100.974
= = 0.245 < 0.33

−411.5
, the geometric 

flexural stiffness correction can be applied, 6 6 100.974 30.3 /
5 5 4G
Fk k
l

N m−
= = × = − . 

The mass of HEB-120 per meter is 26.7 kg/m, the effective mass of a column is 
calculated from Eq. (2.8) 1 39.7m = kg  and the mass of extra column is decuple of 1m . Thus, 
the total mass of columns is 555.7kg. It is very smaller than the floor mass and can be 
neglected. In the following chapters the mass of column is also neglected. 
The corrected stiffness of column in y direction becomes: 

340.2 30.3 309.9 /y y Gk k k kN m= + = − = . 
The corrected stiffness of column in z direction becomes: 

125.21 30.3 94.91 /z z Gk k k kN m= + = − = . 
 
3.8.2 Natural modes of the main structure 

The natural computed frequencies by means of Matlab 7.05 are derived as follow 1.40, 
1.84 and 2.89 Hz, prestress of the column considered and extra column comes no weight of 
the floors. The orthonormalized modal matrix of the undamped main system is the output of 
Matlab. 

 

210
0.53103

−
0.18677 0.27878 − 0.71582⎡ ⎤

⎢ ⎥φ = −0.59811 0.51506 0.04453⎢ ⎥
⎢ ⎥0.48206 0.33259⎣ ⎦

. 

 
Correction of this output of orthonormalized eigenvectors might become necessary with 
respect to orthogonality, see section 2.9.2. Test calculations render sufficient accuracy, 

11 1δ = , 22 1δ = , 33 1δ = ， 16
12 5.55 10δ −= × , , 16

13 31 2.22 10δ δ −= = × 32 0δ = , 

, 16
21 4.44 10δ −= × 17

23 5.55 10δ −= − × . 
 

The three mode shapes are amplified and plotted in Figs. 3.7-3.9. The motion of the 
structure in each mode consists of coupled translation and torsion. 
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1 1.40f Hz= 2 1.84f Hz=Fig. 3.7: Basic mode .      Fig. 3.8: Second mode . 

       CV within floor-plan                  CV within floor-plan 

      
3 2.89f Hz=Fig. 3.9: Third mode , CV outside floor-plan. 

 
3.8.3 Position of the modal centers of velocity CV  

The coordinates of the centers of velocity CV for each mode is defined by Eq. (2.18), two 
of the three modal centers of velocity lie within the floor plan. 

 

1

3.2
1VCr m⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, , 
2

2.5
1.36VCr m
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦ 3

0.35
5.56VCr m

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

. 

 
 (i) Selection of the absorbers and positioning 

The building is equipped with two TTLCGDs to suppress the first two modes (CV1and 
CV2 lie in the floor, planstrong asymmetry) and one plane TLCGD parallel to y-direction for 
third mode (CV3 is outside floor plan), as shown in Fig. 3.10. 

 

               
•  indicates the centers of velocity CFig. 3.10: Installation of absorbers, Vj. 
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= 2 500fm kg
3.8.4 TTLCGD and TLCGD design, Den Hartog’ optimization 

The fluid mass , 1 500fm kg =  and 3 200fm kg=  of water is chosen. 
Dimensions of three absorbers tuned first by means of the mechanical damper analogies 
applying Den Hartog’s formulas, Eqs. (3.66)- (3.68) for TTLCGD and Eqs. (2.102)-(2.104) 
for TLCGD are summarized in Table 3.1. 

  
 TTLCGD1 TTLCGD2 TLCGD3
Horizontal length of the liquid column B [m] 24.00 24.00 2.50 
Length of the upright  liquid column H [m] 1.40 0.90 0.80 
Cross-sectional area of the pipe [m2] AH=ABB 0.0187 0.0194 0.0410 
Effective length  [m], Eq. (2.34a)1 2effL L H= = + B 26.80 25.80 4.10 

Angle of the inclined pipe section β  [rad] 2π  2π  4π  
Equivalent mathematical pendulum length L0[m] Eq. 
(2.37) 0.13 0.08 0.03 

Geometry factorκ κ=  or 0T Tκ κ= 0 , Eqs. (2.34a), 
(2.44),(3.14a),(3.44) 

0.67 0.70 0.89 

Equilibrium pressure head  [m], n=1.2, Eq. (2.34a)0h 220.00 208.00 85.63 

Gas volume 0 H aV A H=  [m3], Eq. (2.38) 0.041000 0.025000 0.053000
The mass ratio of the TLCGD-main system μ , Eqs. 
(2.97), (3.60) 

4.74% 4.75% 1.94% 

The mass ratio of the equivalent TMD-main 

system *μ , Eqs. (2.102), (3.66) 
1.81% 2.09% 1.48% 

Natural frequency  [Hz] Eq. (2.104), (2.112) ,A optf 1.36 1.78 2.84 

Optimal linear damping %, Eq. (2.113) 8.17 8.76 7.40 

Table 3.1: Layout of the modally tuned absorbers, gas volume and gas equilibrium pressure 
assigned. Note the relatively high gas pressure in TTLCGD. 
 

Due to its long effective horizontal length, the equilibrium gas-pressure in TTLCGD 
becomes rather high, as shown in Table 3.1. Fig.3.11 illustrates the scaled scheme of 
TTLCGD1.The dynamic magnification factor (DMF) calculated with Matlab 7.05, linearized 
damping of the absorbers considered, is illustrated in Figure 3. 12.  

  
Fig.3.11: Scaled sketch of TTLCGD1. 
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Fig. 3.12: Modal frequency response curves without and with linearized absorbers attached, 
Den Hartog’s optimal parameters.  
 

The effective modal damping coefficients of the system are increased from 1% to 
1 5.34%effζ = , 2 5.14%effζ = , 3 5.02%effζ = . From Table 3.2a-c it follows that all the 

maximum fluid displacements resulting by varying the angles of attack, are within the 
acceptable limits, 0 3au H<  (of linearized gas compression) and 0 2u H< . The maximum 
fluid velocities of three absorbers are calculated by Eq. (2.35) 3.86, 2.57 and 3.35m/s and are 
within the acceptable speed limit. 

 
 structure TTLCGD1 

Forcing direction v[mm] w[mm] T Su r θ= [mm] u0 [mm] 

0α =  CM 9 -30 24 138 

6α π=  CM 7 -22 18 101 

4α π=  CM 15 -47 38 215 

3α π=  CM 21 -69 55 313 

2α π=  CM 30 -97 78 442 

2 3α π=  CM 31 -99 80 452 

3 4α π=  CM 28 -90 73 410 

5 6α π=  CM 23 -75 60 341 

Table 3.2a: Maximum displacements in the first mode from time-harmonic excitation in 
α -directions, a0=0.1g, . 2.58Sr m=
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 structure TTLCGD2 

Forcing direction v[mm] w[mm] T Su r θ= [mm] u0 [mm] 

0α =  CM 11 20 20 110 

6α π=  CM 19 35 36 196 

4α π=  CM 21 39 41 221 

3α π=  CM 22 41 42 230 

2α π=  CM 20 36 37 203 

2 3α π=  CM 12 21 22 121 

3 4α π=  CM 6 12 12 66 

5 6α π=  CM 1 1 1 6 

Table 3.2b: Maximum displacements in the second mode from time-harmonic excitation in 
α -directions, a0=0.1g, . 2.58Sr m=
 

 structure TLCGD3 
Forcing direction v[mm] w[mm] T Su r θ= [mm] u0 [mm] 

CM -26 2 0α =  
A -35 2 12 188 

CM -21 1 6α π=  
A -29 1 10 157 

CM -17 1 4α π=  
A -23 1 8 125 

CM -11 1    3α π=  
A -16 1 5 85 

CM -2 0 2α π=  
A -2 0 1 11 

CM -14 1 2 3α π=  
A -19 1 7 103 

CM -19 1 
3 4α π=  

A -26 1 9 141 

CM -23 1 5 6α π=  
A -31 1 11 168 

Table 3.2c: Maximum displacements in the third mode from time-harmonic excitation in     
α -directions, a0=0.1g, . 2.58Sr m=
 
3.8.5 Optimization of the TTLCGD-, TLCGD-main structure 
system in the state space domain 

Again the numerical optimization was performed with the very robust fminsearch procedure 
available in Matlab Optimization Toolbox, see explanations in Section 2.9.7. Calling 
fminsearch with the initial DenHartog parameter 0 [8.52,11.16,17.82;8.17%,8.76%,7.40%]x =  
given, immediately renders the fine tuned optimal natural frequencies and damping ratios 

1 1.35Af Hz= , 2 1.73Af Hz= , 3 2.76Af Hz= , 1 5.65%Aζ = , 2 6.61%Aζ = , 3 5.89%Aζ = , i.e. 
frequencies are slightly lowered and the damping coefficients of the fluid flow turn out 
commonly “dramatically” lowered. Frequency fine tuning is simply achieved by adjusting the 
equilibrium gas pressure head  in absorbers, 203.41, 184.39 and 78.38m. Figs. 3.13-3.20 

show the frequency response of the weighed sum

0h
6

1
( )i Si

i
s z ν

=
∑  of the building states for the 

original and the optimized system under various angles of attack, in the logarithmic decibel 
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scale [ ] 20 log=x dB x  within the relevant frequency window 0 3f Hz≤ ≤ .The resonance 
curves with fine-tuning optimal parameters have broader peaks rendering a more robust control. 
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original structure including the dead fluid mass of absorbers
linearized absorbers with Den Hartog's optimal parameters
linearized absorbers with optimal parameters fine tuning in the state space domain  

Fig. 3.13: Weighed sum of amplitude response functions for the 3-DOF linearized, 
single-storey, strongly asymmetric space frame, with three linearized absorbers attached and 
without the absorbers (angle of attack of the time-harmonic base acceleration 0α = ), 
maximum gain 29.56 dB. 
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Fig. 3.14: Weighed sum of amplitude response functions for the 3-DOF linearized, 
single-storey, strongly asymmetric space frame, with three linearized absorbers attached and 
without the absorbers (angle of attack of the time-harmonic base acceleration 6α π= ), 
maximum gain 30.35dB. 
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Fig. 3.15: Weighed sum of amplitude response functions for the 3-DOF linearized, 
single-storey, strongly asymmetric space frame, with three linearized absorbers attached and 
without the absorbers (angle of attack of the time-harmonic base acceleration 4α π= ), 
maximum gain 30.83 dB. 
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Fig. 3.16: Weighed sum of amplitude response functions for the 3-DOF linearized, 
single-storey, strongly asymmetric space frame, with three linearized absorbers attached and 
without the absorbers (angle of attack of the time-harmonic base acceleration 3α π= ), 
maximum gain 30.33 dB. 
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Fig. 3.17: Weighed sum of amplitude response functions for the 3-DOF linearized, 
single-storey, strongly asymmetric space frame, with three linearized absorbers attached and 
without the absorbers (angle of attack of the time-harmonic base acceleration 2α π= ), 
maximum gain 29.70 dB. 
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Fig. 3.18: Weighed sum of amplitude response functions for the 3-DOF linearized, 
single-storey, strongly asymmetric space frame, with three linearized absorbers attached and 
without the absorbers (angle of attack of the time-harmonic base acceleration 2 3α π= ), 
maximum gain 29.21 dB. 
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Fig. 3.19: Weighed sum of amplitude response functions for the 3-DOF linearized, 
single-storey, strongly asymmetric space frame, with three linearized absorbers attached and 
without the absorbers (angle of attack of the time-harmonic base acceleration 3 4α π= ), 
maximum gain 28.93 dB. 
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Fig. 3.20: Weighed sum of amplitude response functions for the 3-DOF linearized, 
single-storey, strongly asymmetric space frame, with three linearized absorbers attached and 
without the absorbers (angle of attack of the time-harmonic base acceleration 5 6α π= ), 
maximum gain 28.55 dB. 

Figures 3.21-3.28 show the comparison of the response of three absorbers, alternatively 
with Den Hartog’s optimal parameter and after fine-tuning in state space, under various 
angles of attack. The maximum fluid displacement amplitudes of three absorbers are well 
within the acceptable limits. The maximum fluid velocities of three absorbers are calculated 
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by Eq. (2.35) 4.33, 2.93 and 3.99m/s and are also within the acceptable speed limit. 
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uFig. 3.21: Amplitude response curves of fluid displacement  of three linearized absorbers 
attached to the 3-DOF space frame. Absorbers either with Den Hartog’s optimal parameters 
or those resulting from fine-tuning in state space ( 0α = ). 
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uFig. 3.22: Amplitude response curves of fluid displacement  of three linearized absorbers 
attached to the 3-DOF space frame. Absorbers either with Den Hartog’s optimal parameters 
or those resulting from fine-tuning in state space ( 6α π= ). 
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uFig. 3.23: Amplitude response curves of fluid displacement  of three linearized absorbers 
attached to the 3-DOF space frame. Absorbers either with Den Hartog’s optimal parameters 
or those resulting from fine-tuning in state space ( 4α π= ). 
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uFig. 3.24: Amplitude response curves of fluid displacement  of three linearized absorbers 
attached to the 3-DOF space frame. Absorbers either with Den Hartog’s optimal parameters 
or those resulting from fine-tuning in state space ( 3α π= ). 
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uFig. 3.25: Amplitude response curves of fluid displacement  of three linearized absorbers 
attached to the 3-DOF space frame. Absorbers either with Den Hartog’s optimal parameters 
or those resulting from fine-tuning in state space ( 2α π= ). 
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uFig. 3.26: Amplitude response curves of fluid displacement  of three linearized absorbers 
attached to the 3-DOF space frame. Absorbers either with Den Hartog’s optimal parameters 
or those resulting from fine-tuning in state space ( 2 3α π= ). 
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uFig. 3.27: Amplitude response curves of fluid displacement  of three linearized absorbers 
attached to the 3-DOF space frame. Absorbers either with Den Hartog’s optimal parameters 
or those resulting from fine-tuning in state space ( 3 4α π= ). 
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uFig. 3.28: Amplitude response curves of fluid displacement  of three linearized absorbers 
attached to the 3-DOF space frame. Absorbers either with Den Hartog’s optimal parameters 
or those resulting from fine-tuning in state space ( 5 6α π= ). 
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The wall thickness and the estimated dead mass of the piping system are listed in Table 

3.3 for the three absorbers, designed according to Table 3.1. 
 

 TTLCGD1 TTLCGD2 TLCGD3

0h  [m] 220 208 85.63 

aH  [m] 2.19 1.29 1.29 
5

( )10 Dp− [N/m²] Eq.(2.128) 100.81 95.23 38.65 
pipe diameter 2r [mm] 154.3 157.2 228.5 

t [mm] Eq.(2.124) 5.6 5.3 3.2 

pm  [kg] Eq.(2.130) 655.08 584.17 118.03 
dead fluid-mass[kg] 275.55 255 41.58 
5

( )10 Dp− [N/m²] Eq.(2.129) 8.19 7.69 2.58 

Table 3.3: Dimensioning of circular steel pipes. 
 
The gauge pressure under expansion conditions turns out to be positive as listed in Table 3.3. 
The final dimensions of circular steel pipes must be changed according to their commercial 
availability. 
 

3.8.6 Oblique seismic excitation by the strong motion phase of the 
El Centro earthquake (1940) 

The N-S El Centro earthquake acceleration record with a peak ground acceleration of 
0.35g, see Section 2.9.10, is again applied to the strongly asymmetric structure under 
different angles of attack. The 3 absorbers with fine-tuned parameters are considered in their 
linearized modal damping assigned. 

 
The numerical values of the maximum response observed in Figs.3.29 to 3.52 are 

sampled in Table 3.4a and 3.4b. The maximum fluid displacements of 
, ,  and velocities of 1 0.19u m= 2 0.18u m= 3 0.10u = m 1 1.61 /u m s= 2 1.96 /u m s=
s

, , 
 are within the acceptable limits. 3 1.73 /u m=

 
 original structure structure with 3 absorbers fluid displacement 

Max v 
[mm] 

w 
[mm] 

uT
[mm] 

v 
[mm] 

w 
[mm] 

uT
[mm] 

u1 
[mm] 

u2 
[mm] 

u3 
[mm] 

0α =  29 29 35 21 21 25 64 91 104 

6α π=  37 44 49 25 33 37 84 140 88 

4α π=  37 50 55 27 41 42 120 163 71 

3α π=  36 56 60 27 48 46 153 177 48 

2α π=  30 60 69 22 55 53 186 179 10 

2 3α π=  26 50 62 18 53 50 171 133 57 

3 4α π=  25 48 52 19 48 43 145 96 76 

5 6α π=  22 44 38 21 42 33 120 69 89 

Table 3.4a: Maximum displacements due to 1940 El Centro earthquake, maximum ground 
acceleration 0 0.35a g =  with varying angle of attack α . Maximum values indicated in 
bold, T Su r θ= , 2.58Sr m= . 
 

 

 101



Single-storey Strongly Plan-asymmetric Space Frame with TTLCGDs and TLCGDs 
0.2

 102

0 5 10 15 20
-0.2

-0.1

0

0.1

0.2
without absorbers
with absorbers

time [s] 0 5 10 15 20
-0.2

-0.1

0

0.1

0 5 10 15 20
-0.2

-0.1

0

0.1

0.2
without absorbers
with absorbers

time [s]              

without absorbers
with absorbers

[ ]Tu m[ ]v m [ ]w m

time [s]

Fig. 3.29: Relative floor displacements of center of mass, v, w and rotation u =rT Sθ without 
and with three absorbers attached under 1940 El Centro earthquake 0 0.35a g = , angle of 
attack: α = 0 , 2.58Sr m= . 
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Fig. 3.30: Relative displacement of the fluid in three absorbers under 1940 El Centro 
earthquake α = 00 0.35a g = , angle of attack: , 2.58Sr m= . 
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1940 El Centro earthquake α = 00 0.35a g = , angle of attack: , . 2.58Sr m=
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Fig. 3.32: Relative floor displacements of center of mass, v, w and rotation u =rT Sθ without 
and with three absorbers attached under 1940 El Centro earthquake 0 0.35a g = , angle of 
attack: α = 6π , . 2.58Sr m=
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Fig. 3.33: Relative displacement of the fluid in three absorbers under 1940 El Centro 
earthquake α = 6π0 0.35a g = , angle of attack: , 2.58Sr m= .  
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Fig. 3.35: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three absorbers attached under 1940 El Centro earthquake 0 0.35a g = , angle of 
attack: α = 4π , . 2.58Sr m=
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Fig. 3.36: Relative displacement of the fluid in three absorbers under 1940 El Centro 
earthquake α = 4π0 0.35a g = , angle of attack: , 2.58Sr m= .  

0 5 10 15 20
-15

-10

-5

0

5

10

15
without absorbers
with absorbers

time [s] 0 5 10 15 20
-15

-10

-5

0

5

10

15
without absorbers
with absorbers

time [s] 0 5 10 15 20
-15

-10

-5

0

5

10

15
without aborbers
with absorbers

time [s]  

2
[ / ]w m s

2
[ / ]v m s 2

[ / ]Tu m s

T Su r θ=Fig. 3.37: Relative acceleration of single-storey space structure, ,  and v w  under 
1940 El Centro earthquake α = 4π0 0.35a g = , angle of attack: , . 2.58Sr m=
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Fig. 3.38: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three absorbers attached under 1940 El Centro earthquake 0 0.35a g = , angle of 
attack: α = 3π , . 2.58Sr m=
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Fig. 3.39: Relative displacement of the fluid in three absorbers under 1940 El Centro 
earthquake α = 3π0 0.35a g = , angle of attack: , 2.58Sr m= . 
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T Su r θ=Fig. 3.40: Relative acceleration of single-storey space structure, ,  and v w  under 
1940 El Centro earthquake α = 3π0 0.35a g = , angle of attack: , . 2.58Sr m=
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Fig. 3.41: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three absorbers attached under 1940 El Centro earthquake 0 0.35a g = , angle of 
attack: α = 2π , . 2.58Sr m=
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Fig. 3.42: Relative displacement of the fluid in three absorbers under 1940 El Centro 
earthquake α = 2π0 0.35a g = , angle of attack: , 2.58Sr m= .  
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Fig. 3.44: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three absorbers attached under 1940 El Centro earthquake 0 0.35a g = , angle of 
attack: α = 2 3π , . 2.58Sr m=
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Fig. 3.45: Relative displacement of the fluid in three absorbers under 1940 El Centro 
earthquake α = 2 3π0 0.35a g = , angle of attack: , 2.58Sr m= . 
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T Su r θ=Fig. 3.46: Relative acceleration of single-storey space structure, ,  and v w  under 
1940 El Centro earthquake α = 2 3π0 0.35a g = , angle of attack: , . 2.58Sr m=
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Fig. 3.47: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three absorbers attached under 1940 El Centro earthquake 0 0.35a g = , angle of 
attack: α = 3 4π , . 2.58Sr m=
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Fig. 3.48: Relative displacement of the fluid in three absorbers under 1940 El Centro 
earthquake α = 3 4π0 0.35a g = , angle of attack: , 2.58Sr m= .  
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Fig. 3.50: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three absorbers attached under 1940 El Centro earthquake 0 0.35a g = , angle of 
attack: α = 5 6π , . 2.58Sr m=
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Fig. 3.51: Relative displacement of the fluid in three absorbers under 1940 El Centro 
earthquake α = 5 6π0 0.35a g = , angle of attack: , 2.58Sr m= .  
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Fig. 3.53: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three absorbers attached, angle of attack: 0α =  (artificial seismogram) 
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 original structure structure with 3 absorbers 

Max v g  w g  Tu g  v g  w g  Tu g  

0α =  0.72 0.33 0.57 0.61 0.27 0.41 

6α π=  0.69 0.61 0.68 0.60 0.59 0.53 

4α π=  0.60 0.78 0.72 0.53 0.76 0.59 

3α π=  0.49 0.89 0.71 0.27 0.88 0.61 

2α π=  0.33 0.94 0.66 0.30 0.94 0.54 

2 3α π=  0.49 0.73 0.51 0.44 0.74 0.41 

3 4α π=  0.54 0.56 0.41 0.48 0.57 0.36 

5 6α π=  0.60 0.35 0.34 0.49 0.37 0.33 

Table 3.4b: Maximum accelerations due to 1940 El Centro earthquake, maximum ground 
acceleration 0 0.35a g =  with varying angle of attack α . Maximum values indicated in 
bold, T Su r θ= , . 2.58Sr m=
 
3.8.7 Kanai-Tajimi model of the ground acceleration: soil 
amplification 

An artificial seismogram is generated from Kanai-Tajimi model for the modeling of 
hypothetical ground acceleration, the numerical simulation are done analogous to section 
2.9.11. 

The numerical values of the maximum response observed in Figs.3.53 to 3.76 are 
sampled in Table 3.5a and 3.5b. The maximum fluid displacements of 1 0.18u m= , 

,  and velocities of 2 0.15u m= 3 0.15u = m 1 1.53 /u m s= 2 1.63 /u m, s= 3 2.60 /u m s=,  
are within the acceptable limits. 

 
 original structure structure with 3 absorbers fluid displacement 

Max v 
[mm] 

w 
[mm] 

uT
[mm] 

v 
[mm] 

w 
[mm] 

uT
[mm] 

u1 
[mm] 

u2 
[mm] 

u3 
[mm] 

0α =  44 25 32 26 15 18 52 73 153 
6α π=  44 39 39 26 24 25 67 128 128 

4α π=  42 50 47 24 29 27 99 144 102 

3α π=  36 59 53 19 32 30 133 150 69 

2α π=  26 64 56 15 40 37 183 132 122 

2 3α π=  34 54 55 15 38 35 183 95 85 

3 4α π=  37 48 50 19 33 31 165 67 114 

5 6α π=  37 40 42 23 28 27 135 44 135 

Table 3.5a: Maximum displacements, artificial seismogram using Kanai-Tajimi model, 
maximum ground acceleration 0 0.34a g = . Varying angles of attack α . Extreme values 
indicated in bold, T Su r θ= , . 2.58Sr m=
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Fig. 3.56: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three absorbers attached, angle of attack: 6α π=  (artificial seismogram) 
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Fig. 3.59: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three absorbers attached, angle of attack: 4α π=  (artificial seismogram) 

. 2.58Sr m=

0 5 10 15 20
-0.4

-0.2

0

0.2

0.4

time [s] 0 5 10 15 20
-0.4

-0.2

0

0.2

0.4

time [s] 0 5 10 15 20
-0.4

-0.2

0

0.2

0.4

time [s]  

1[ ]u m 2 [ ]u m 3[ ]u m

4α π=Fig. 3.60: Relative displacement of fluid in three absorbers, angle of attack:  
(artificial seismogram) .  2.58Sr m=

0 5 10 15 20
-15

-10

-5

0

5

10

15
without absorbers
with absorbers

time [s] 0 5 10 15 20
-15

-10

-5

0

5

10

15
without absorbers
with absorbers

time [s] 0 5 10 15 20
-15

-10

-5

0

5

10

15
without absorbers
with absorbers

time [s]  

2
[ / ]Tu m s2

[ / ]w m s2
[ / ]v m s

T Su r θ=Fig. 3.61: Relative acceleration of single-storey space structure, ,  and v w , angle 
of attack: 4α π= 2.58Sr m= (artificial seismogram) . 

0 5 10 15 20
-0.2

-0.1

0

0.1

0.2
without absorbers
with absorbers

time [s] 0 5 10 15 20
-0.2

-0.1

0

0.1

0.2
without absorbers
with absorbers

time [s] 0 5 10 15 20
-0.2

-0.1

0

0.1

0.2
without absorbers
with absorbers

time [s]  

[ ]v m [ ]Tu m[ ]w m

Fig. 3.62: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three absorbers attached, angle of attack: 3α π=  (artificial seismogram) 
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Fig. 3.63: Relative displacement of fluid in three absorbers, angle of attack: 3α π=  
(artificial seismogram) . 2.58Sr m=
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of attack: 3α π= 2.58Sr m= (artificial seismogram) . 
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Fig. 3.65: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three absorbers attached, angle of attack: 2α π=  (artificial seismogram) 
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Fig. 3.68: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three absorbers attached, angle of attack: 2 3α π=  (artificial seismogram) 
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Fig. 3.69: Relative displacement of fluid in three absorbers, angle of attack: 2 3α π=  
(artificial seismogram) . 2.58Sr m=
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T Su r θ=Fig. 3.70: Relative acceleration of single-storey space structure, ,  and v w , angle 
of attack: 2 3α π= 2.58Sr m= (artificial seismogram) . 
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Fig. 3.71: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three absorbers attached, angle of attack: 3 4α π=  (artificial seismogram) 
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Fig. 3.72: Relative displacement of fluid in three absorbers, angle of attack: 3 4α π=  
(artificial seismogram) .  2.58Sr m=
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T Su r θ=Fig. 3.73: Relative acceleration of single-storey space structure, ,  and v w , angle 
of attack: 3 4α π= 2.58Sr m= (artificial seismogram) . 
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Fig. 3.74: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without 
and with three absorbers attached, angle of attack: 5 6α π=  (artificial seismogram) 
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Fig. 3.75: Relative displacement of fluid in three absorbers, angle of attack: 5 6α π=  
(artificial seismogram) . 2.58Sr m=
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T Su r θ=Fig. 3.76: Relative acceleration of single-storey space structure, ,  and v w , angle 
of attack: 5 6α π= 2.58Sr m= (artificial seismogram) . 
 

 original structure structure with 3 absorbers 
Max v g  w g  Tu g  v g  w g  Tu g  

0α =  1.21 0.29 0.72 0.71 0.16 0.34 

6α π=  1.09 0.59 0.73 0.61 0.36 0.42 

4α π=  0.94 0.73 0.72 0.49 0.43 0.41 
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3α π=  0.72 0.83 0.68 0.35 0.54 0.38 

2α π=  0.29 0.84 0.53 0.16 0.63 0.34 

2 3α π=  0.73 0.69 0.58 0.38 0.56 0.27 

3 4α π=  0.90 0.60 0.63 0.50 0.46 0.31 

5 6α π=  1.04 0.48 0.65 0.61 0.33 0.35 

Table 3.5b: Maximum accelerations, artificial seismogram using Kanai-Tajimi model, 
maximum ground acceleration 0 0.34a g = . Varying angle of attack α . Extreme values 
indicated in bold, T Su r θ= , . 2.58Sr m=
 
 
3.9 Single-storey symmetric space frame 

 
Consider a special case of a single-storey building with uniformly distributed mass and 

stiffness in both the y- and z-directions. The symmetric-plan building can be analyzed 
independently in the two lateral directions and rotation. The center of velocity CV of the 
rotational mode coincides with both mass- and stiffness center. When the idealized system is 
subjected to a biaxial, horizontal earthquake excitation, the participation factor ( )jL α  of the 
rotational mode vanishes, and two TLCGDs are set in orthogonal directions intersecting in 
the mass- and stiffness center to control the translational responses of the structure. When the 
system is expected to vibrate in the torsional mode, the TTLCGD is proposed to lessen the 
purely torsional response. 
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4. Multi-storey Moderately Plan-asymmetric 
Space Frame with TLCGDs 
 
4.1 Introduction 

 
In Chapter2, the simplest model of U-shaped TLCGD for suppressing coupled lateral and 

torsional vibrations of a 3-DOF single-storey moderately asymmetric building has been 
analyzed. The TLCGD-main system coupled equations have been formulated by substructure 
synthesis. Time-harmonic loading was applied to the system to analyze the dynamic 
performance of the 3DOF-structure. In this chapter the dynamic problem is extended to 
moderately asymmetric multi-storey space frames. Two-storey, three-storey and four-storey 
buildings are consecutively analyzed to demonstrate the design procedure and vibration control 
effectiveness of the proposed optimal TLCGDs. Modally tuned TLCGDs attached to the top 
floor of the structure control the movement of the structure during the strong motion phase of 
an earthquake. For higher order modes, however, a floor at intermediate height might become 
suitable. The root-mean square (RMS) responses1 of the relative floor displacement and the 
floor accelerations under El Centro seismogram for a four-storey building are also illustrated. 
The RMS value is the square root of the mean-square value in a strong motion phase. These 
useful conclusions are obtained for guiding the positioning and the practical design of 
TLCGDs in the lateral and torsional vibration control. 

 
4.2 Equation of motion for multi-storey moderately 
asymmetric space frame  

 
The equation of motion are developed first for a simple multi-storey building, a 

two-storey space frame is selected to permit easy visualization of the direct method. 
Subsequently, a general formulation is presented for multi-storey buildings subjected to 
earthquake-induced ground motion. 
 
4.2.1 Equation of motion for two-storey moderately asymmetric 
space frame 

A two-storey moderately asymmetric space frame is considered with six DOFs and the 
positioning and optimal design of TLCGDs to minimize the lateral and torsional vibrations 
when excited by earthquakes are discussed. At first, we need to develop a model to accurately 
portray the equations of motion for the building while an earthquake is switched on. 
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a) Plan view                              b) Front view 

          Fig. 4.1: Two-storey moderately asymmetric space frame. 
 

A two-storey building with a rectangular base of the length a and the width b, is shown in 
Fig. 4.1, see also Fig.2.1. It consists of a homogenous floor of mass Sim  (i=1, 2), which is 
supported by four symmetrically arranged clamped-clamped “massless” and inextensible 
columns in each corner. The columns have the same anisotropic stiffness kyi and kzi in y- and 
z-directions. Additional point masses 1im  are attached off-center on the rigid floors, yie  and 

zie  denote their eccentricity. The height of the floor is li. Let gv&& , gw&&  denote the free-field 
horizontal components of a seismic ground accelerations in y-, z-directions, while 
soil-structure interaction remains to be neglected. The origin of the moving frame in each floor 
is the center of mass CMi. The lateral displacements of CMi are denoted vi and wi, and θi is the 
rotational angle about the vertical x-axis. The positions of CMi may vary for the two floors. The 
coordinates of the center of mass CMi with respect to CSi and the geometric center are 
(Fig.4.1a) 
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(i) The stiffness matrix derived by the direct method: see e.g. Chopra1, page 358 
1) 1 1v = , 1 0,w =  1 1 1 0T Su rθ= = , 2) 1 0,v =  1 1w = , 1 1 1 0T Su rθ= = , 3) 1 0,v =  1 0w = , 

1 1 1 1T Su rθ= =  

First floor: 
( )1 1 1 24y y y yk k k= +           1 1 0y zk =                ( )1 1 2 1 14

My y y C Sk k k z rθ1 = +  

1 1 0z yk =                      ( )1 1 1 24z z z zk k k= +      ( )1 1 2 1 14
Mz z z C Sk k k y rθ1 = − +  

( )1 1 2 1 14
My y y C Sk k k z rθ1 = +   ( )1 1 2 1 14

Mz z z C Sk k k y rθ1 = − +   

( ) ( ) ( ) ( )2 2 2 2 2
1 2 1 2 1 2 1 1 2 1 14 4

M My y z z y y C z z C Sk k k b k k a k k z k k y rθ1θ1 ⎡ ⎤= + + + + + + +⎣ ⎦     (4.1a) 
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Fig. 4.2a: Evaluation of stiffness matrix of two-storey asymmetric space frame: restoring 
forces indicated. 

 
Second floor: 

2 1 24y y yk k= −            2 1 0y zk =                           1 2 1 14
My y C Sk k z r2θ = −  

2 1 0z yk =                 2 1 24z z zk k= −                      1 2 1 14
Mz z C Sk k y r2θ =  

1 2 2 24
My y C Sk k z rθ2 = −    1 2 2 24

Mz z C Sk k y rθ2 =    

( )2 2
2 2 2 1 2 2 1 2 1 24 4

M M M My z y C C z C C S Sk k b k a k z z k y y r rθ2θ1 = − − − −         (4.1b) 
 

   
Fig. 4.2b: Evaluation of stiffness matrix of two-storey asymmetric space frame: restoring 
forces indicated. 
 

4) 2 1v = , 2 0,w =  2 2 2 0T Su rθ= = , 5) 2 0,v =  2 1w = , 2 2 2 0T Su rθ = = , 6) 2 0,v =  2 0w = , 

2 2 2 1T Su rθ= =  
First floor: 

1 2 24y y yk k= −            1 2 0y zk =                          2 2 2 24
My y C Sk k z r1θ = −  

1 2 0z yk =                 1 2 24z z zk k= −                      2 2 2 24
Mz z C Sk k y r1θ =  

1 2 1 14
My y C Sk k z rθ 2 = −     2 2 1 14

Mz z C Sk k y rθ1 =     

( )2 2
2 2 2 1 2 2 1 2 1 24 4

M M M My z y C C z C C S Sk k b k a k z z k y y r rθ1θ2 = − − − −       (4.1c) 

   
Fig. 4.2c: Evaluation of stiffness matrix of two-storey moderately asymmetric space frame: 
restoring forces indicated. 

 
Second floor: 

2 2 24y y yk k=            2 2 0y zk =                        2 2 2 24
My y C Sk k z rθ2 =  

2 2 0z yk =               2 2 24z z zk k=                      2 2 2 24
Mz z C Sk k y rθ2 = −  

2 2 2 24
My y C Sk k z rθ2 =    2 2 2 24

Mz z C Sk k y rθ2 = −       

( )2 2 2 2 2
2 2 2 2 2 2 24 4

M My z y C z C Sk k b k a k z k y rθ2θ2 = + + +           (4.1d) 
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Fig. 4.2d: Evaluation of stiffness matrix of two-storey moderately asymmetric space frame: 
restoring forces indicated. 

 
Here, the radius of inertia of the second floor ( )2 2 2 12S x Sr I m m= + , the total mass moment 
of inertia about the vertical x-axis is 

( ) ( ) ( ) ( ) ( )
2 22 2 2 2 2

2 2 2 2 2 12 2 2 2 2 2 12 212
M M M Mx S S C C y C z C S SI m a b m y z m e y e z m m r⎡ ⎤= + + + + − + − = +⎢ ⎥⎣ ⎦

 
(ii) Mass matrix by the direct “stiffness method”: 
1) 1 1v =&& , 1 0,w =&&  1 1 1 0T Su rθ= =&&&& , 2) 1 0,v =&&  1 1w =&& , 1 1 1 0T Su rθ= =&&&& , 3) 1 0,v =&&  1 0w =&& , 

1 1 1 1T Su rθ= =&&&&  

1 1 1 11y y Sm m m= +              1 1 1 11z z Sm m m= +             1 11Sm m mθ1θ1 = +    (4.2a) 

     
Fig. 4.3a: Evaluation of mass matrix of two-storey moderately asymmetric space frame: 
inertial forces indicated. 

 
4) 2 1v =&& , 2 0,w =&&  2 2 2 0T Su rθ= =&&&& , 5) 2 0,v =&&  2 1w =&& , 2 2 2 0T Su rθ = =&&&& , 6) 2 0,v =&& 2 0w =&& , 

2 2 2 1T Su rθ= =&&&&  

2 2 2 12y y Sm m m= +            2 2 2 12z z Sm m m= +            2 12Sm m mθ2θ2 = +    (4.2b) 

     
Fig. 4.3b: Evaluation of mass matrix of two-storey moderately asymmetric space frame: 
inertial forces indicated. 

 
The equation of motion of the undamped two-storey mass asymmetric space frame are 

given in hypermatrix form, cf. Eq. (2.2), 

2M K M gx x x+ = −
r r r&& &&

% % %
, 1 2

T T Tx x x⎡ ⎤= ⎣ ⎦
r r r , [ ]T

i i i Tix v w u=
r ,  

2 2= Eg gx xr r&& &&
%

, 0T
g g gx v w⎡ ⎤= ⎣ ⎦
r&& && && , Ti i Siu rθ= , 

2

1 0 0 1 0 0
E = 0 1 0 0 1 0

0 0 0 000

T
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

%
,                 (4.3) 

where 2E 6 3= ×
%

 is the influence matrix of the ground excitation for two-storey asymmetric 
space frame.  
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The diagnal mass- and the stiffness matrices of the six DOFs (degrees-of-freedom) space 
frame are deduced from Eqs. (4.1a)-(4.1d) and (4.2a)-(4.2b) by inspection  

[ ]1 2M M Mdiag=
% % %

,                  (4.4) 
where 

( )
( )

( ) ( )

1 2 1 2 1 1

11 1 2 1 2 1 1

1 2 1 1 1 2 1 1 1 1

0

k 4 0

4

M

M

M M

y y y y C S

z z z z C S

y y C S z z C S

k k k k z r

k k k k y r

k k z r k k y r kθ θ

⎡ ⎤+ +⎢ ⎥
⎢ ⎥= + − +
⎢ ⎥
⎢ ⎥+ − +⎣ ⎦

%
,
       (4.5)

 

2 2 2 2

12 2 2 2 2

2 1 1 2 1 1 1 2

0

k 4 0

4

M

M

M M

y y C S

z z C S

y C S z C S

k k z r

k k y r

k z r k y r kθ θ

⎡ ⎤− −
⎢ ⎥

= −⎢ ⎥
⎢ ⎥
−⎢ ⎥⎣ ⎦

%
,
          (4.6) 

2 2 1 1

21 2 2 1 1

2 2 2 2 2 2 2 1

0

k 4 0

4

M

M

M M

y y C S

z z C S

y C S z C S

k k z r

k k y r
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2 2 2 2

22 2 2 2 2

2 2 2 2 2 2 1 1

0

k 4 0

4

M

M

M M

y y C S

z z C S

y C S z C S

k k z r

k k y r
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⎡ ⎤
⎢ ⎥

= −⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦
%

,         
(4.8) 

and 11 12

21 22

k k
K

k k
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
% %

%
% %

 is possibly unsymmetric in its stiffness hypermatrix form, 

[ ]i 1 1 1M 3 3si i si i si idiag m m m m m m= + + + = ×
%

 mass submatrix, i=1,2. 
 
4.2.2 Equation of motion for N-storey moderately asymmetric 
space frame 

The equation of motion of the undamped N-storey moderately asymmetric space frame are 
given in hypermatrix form, cf. Eq. (4.3), 
M K M gNx x x+ = −
r r r&& &&

% % %
, 1

T T T T
i Nx x x x⎡ ⎤=   ⎣ ⎦

r r r r
L L , [ ]T

i i i Tix v w u=
r , Ti i Siu rθ= , 

= EgN N gx xr r&& &&
%

, 0T
g g gx v w⎡ ⎤= ⎣ ⎦
r&& && && , 

1 0 0 1 0 0 1
E = 0 1 0 0 1 0 0

0 0 0 0 0 0 0

T

N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L
%

L

,           (4.9) 

where M
%

 is the mass matrix of the structure, K
%

 its stiffness matrix, both are positive definite; 
xr  is the displacement vector of the floors, E 3 3N N= ×

%
 is the influence matrix of the ground 

excitation for N-storey structure see Eq. (4.1) and gxr&&  denotes the seismic ground acceleration 
vector, respectively.  

The mass matrix M
%

of the system with dimension of 3 3N N× , derived by the direct 
“stiffness method” referring to 3 DOFs becomes, see e.g. Chopra1, page 358 

1M M M Mi Ndiag ⎡ ⎤= ⎣ ⎦L L
% % % %

,   (4.10) 

The stiffness matrix K
%

of the system with dimension of 3 3N N× , derived by the direct 
method becomes with, referring to 3 DOFs 
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11 12
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k k
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K k k k
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         •    •     •
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                       •     •     •
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% % % %

% % %
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,           (4.11)  
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4

M

M
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where, 

( ) ( ) ( ) ( )2 2 2 2 2
1 1 1 14 4

M Mi i yi yi zi zi yi yi C i zi zi C i Sik k k b k k a k k z k k y rθ θ + + + +⎡ ⎤= + + + + + + +⎣ ⎦ , 

(i=1―N-1) 

( )2 2 2 2 24 4
M Mi i yi zi yi C i zi C i Sik k b k a k z k y rθ θ = + + + , (i=N) 

( )2 2
1 1 1 1 1 1 1 14 4

M M M Mi i yi zi yi C i C i zi C i C i Si Sik k b k a k z z k y y r rθ θ + + + + + + + += − − − − , (i=1―N-1) 

( )2 2
1 1 1 14 4

M M M Mi i yi zi yi C i C i zi C i C i Si Sik k b k a k z z k y y r rθ θ − − − −= − − − − . (i=2―N) 
 

4.3 Control of N-storey moderately plan-asymmetric space 
frame by a single TLCGD when compared to an equivalent 
TMD 
 
4.3.1 TMD attached on the i-th floor  
   The analogy between TMD and TLCGD for single-storey structure is presented in Section 
2.7. Here a single TMD is installed on the i-th floor of the N-storey moderately 
plan-asymmetric space frame with the general angle γ to y-direction, reference point A (yA, zA, 
0). The equation of motion for the coupled undamped main-system can be given in 
hypermatrix form, cf. Eq. (2.88), 
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* * * *M K M gNx x x P+ = − +
rr r r&& &&

% % %
, * * * *

1 i NM M M M 3 3diag N N⎡ ⎤= = ×⎣ ⎦L L
% % % %

,  

1
T T T T

i Nx x x x⎡ ⎤=   ⎣ ⎦
r r r r

L L , [ ]T
i i i Tix v w u=
r , N= EgN gx xr r&& &&

%
, 0T

g g gx v w⎡ ⎤= ⎣ ⎦
r&& && && ,  

N

1 0 0 1 0 0 1
E = 0 1 0 0 1 0 0

000 0 0 0 0

T
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L
%

L

, * * * *
,0, , , , ,0T

Aiy Aiz xi SiP F F M r⎡ ⎤= − ⎣ ⎦
r

L L , 

( )* * * * cos
MAiy A g i Aij C i Ti Si AF m v v z z u r m u γ⎡ ⎤= + − − +⎣ ⎦&& && && && ,  

( )* * * * sin
MAiz A g i Aij C i Ti Si AF m w w y y u r m u γ⎡ ⎤= + + − +⎣ ⎦&& && && && , 

* 0AixM = , ( ) ( )* * * *
M Mxi Aix Aiy Aij C i Aiz Aij C iM M F z z F y y= − − + − .      (4.16) 

   If the floor displacements xr  are expanded into modal displacements 
1

N

j j
j

x qφ
=

= ∑
rr  on the 

left hand side, Eq. (4.16) decouples on the left hand side for all classically damped systems 
by pre-multiplication with the transposed T

jφ
r

and when divided by *
jm  becomes  

*
*2 *

* *

MT T
j j

j Sj j gN
j j

q q x P
m m

ω
φ φ

+ = − +

r r
rr&&&& % , 

*
*2

*

KT
j j

Sj
jm

ω
φ φ

=

r r

% , 1, ,j N= L .     (4.17) 

Isolated modal displacement (3 2)i j j iv q φ −= , (3 1)i j j iw q φ −= ， 3Ti Si i j j iu r qθ φ= =  are 
substituted in the control forces and on the right hand side of the TMD equation. Inserting the 
coupling forces *P

r
 into Eq. (4.17) renders the approximated equation of the selected mode, 

( ) ( )
*

* *2 * * *
(3 2)* *

1

* *
(3 1)*

1

11 cos sin

1

N
Aj

j j Sj j Sn j n Aj Ai, j g
nj j

N

Sn j n Aj Ai, j g
nj

Ai, j Ai, j
m

q q u m m v v
m m

m m w w
m

v wμ ω γ γ φ

φ

−
=

−
=

⎛ ⎞
+ + +  + = − +⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞
− +  ⎜ ⎟⎜ ⎟

⎝ ⎠

∑

∑

&& && &&

&&

,

*
* *2

*
Aj

j ij
j

m
V

m
μ = , *2 2 2

, ,ij Ai j Ai jV v w= + ,  

( ), (3 2) 3 MAi j j i j i Aij C i Siv z z rφ φ−= − − , ( ), (3 1) 3 MAi j j i j i Aij C i Siw y y rφ φ−= + − ,  (4.18)           

where Ai, jv  and Ai, jw  denote the modal displacements of reference point Ai in y- and 
z-directions, respectively. Further the approximated linearized equation of motion of TMD in 
the i-th storey is, Eq.(2.92) properly generalized,   
 

( )* * * * *2 *2 cos sin rT
Aj Aj Aj j S gAi, j Ai, ju u u q xv wζ ω ω γ γ+ + = − + −

r r&&&& & && ， [ ]r cos sin 0T
S γ γ=
r . (4.19)

                     
With light structural damping of the main system added, the coupled modal equations of 
motion of the main system with TMD attached, in matrix notation in the above mentioned 
approximation become, natural frequencies must be well separated, 
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⎢ ⎥
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,     (4.20) 

where the generalized participation factors are 
* * * 0T
j jy jzL L L⎡ ⎤= ⎣ ⎦
r

, * * *
(3 2) ,

1

N

jy Sn j n Aj Ai j
n

L m m vφ −
=

= +∑ , * * *
(3 1) ,

1

N

jz Sn j n Aj Ai j
n

L m m wφ −
=

= +∑ . 

 
4.3.2 TLCGD attached on the i-th floor  
   A single TLCGD is installed on the i-th floor of N-storey moderately plan-asymmetric 
space frame with the general angle γ to y-direction, reference point A (yA, zA, 0). The equation 
of motion for the coupled undamped main-system can be given in hypermatrix form, cf. Eq. 
(2.94), 
M K M gNx x x P+ = − +

rr r r&& &&
% % %

, 0, , , , , ,0T
Aiy Aiz xi SiP F F M r⎡ ⎤= − ⎣ ⎦

r
L L , 

( ) cos
MAiy f g i Aij C i Ti Si fF m v v z z u r m uκ γ⎡ ⎤= + − − +⎣ ⎦&& && && && ,  

( ) sin
MAiz f g i Aij C i Ti Si fF m w w y y u r m uκ γ⎡ ⎤= + − − +⎣ ⎦&& && && && , 

2
3Aix f Ti SiM m H u rκ= && , ( ) ( )M Mxi Aix Aiy Aij C i Aiz Aij C iM M F z z F y y= − − + − .   (4.21) 

If the floor displacements xr  are expanded into modal displacements 
1

N

j j
j

x qφ
=

= ∑
rr  on 

the left hand side, Eq. (4.21) decouples on the left hand side for all classically damped 
systems by pre-multiplication with the transposed modal vector T

jφ
r

 and when divided by the 

modal mass jm  becomes 
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% .         (4.22) 

Inserting the linearized coupling forces P
r

 into Eq. (4.22) renders the approximated 
equation of the selected mode, 
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m
V
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μ =  , ( )22 *2

3 3ij ij j i SiV V H rκ φ= + .          (4.23) 

 
Here, *2

ijV  is given by Eq. (4.18). Light structural modal damping of the main system is 
added and the approximated linearized equation of motion of TLCGD is considered 

 

( )22 cos sin rT
Aj Aj Aj j S gAi, j Ai, ju u u q xv wζ ω ω κ γ γ κ+ + = − + −

r r&&&& & && .      (4.24) 
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In matrix form the linearized coupled system of modal equations of the main system with 
TLCGD attached becomes, within the approximation discussed above 

( )
( )

2

2

1 cos sin

cos sin 1

2

0 2 0 r

j fj j j

T
Sj Sj Sj j jj j

TAj Aj Aj S

Ai, j Ai, j

Ai, j Ai, j

m m q

u

L mq q

u u

v w

v w

μ κ γ γ

κ γ γ

ζ ω ω

ζ ω ω κ

⎡ ⎤+ +  ⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦+⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤       0         0   ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥+ + = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥            ⎢ ⎥ ⎢ ⎥⎢ ⎥          ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

&&

&&

r
& r

r&
gx&&

,    (4.25) 

where the generalized participation factors are 

0T
j jy jzL L L⎡ ⎤= ⎣ ⎦
r

, ( ) (3 2) ,1
1

N

jy j n fj Ai jSn n
n

L m vm m φ −
=

= ++∑ , 

( ) (3 1) ,1
1

N

jz j n fj A jSn n
n

L m wm m φ −
=

= ++∑ ,           

and rS
r  is the same as defined in Eq. (4.19). 

 
4.3.3 Analogy between TMD and TLCGD when attached to 
N-storey space frame 

Comparing the approximated modal equations of motion for coupled system consisting of 
an N-storey structure, see Section 2.8 for single-storey, the result about the 
relationship *

jμ and jμ , the optimal absorber tuning ratio joptδ and the damping ratio are 
exactly the same as in the single-storey structure discussed above Eqs. (2.102)- (2.104) are still 
valid when generalized by adding the storey number, subscript i where appropriate. 

 
4.4 Two-storey moderately asymmetric space frame: 
numerical example 
 

   The two-storey mass asymmetric structure is considered as a numerical example. The mass 
of each floor is 16×103kg. The additional point mass on the second floor m12=8×103kg is also 
considered to be placed in the upper right corner A1, Fig.4.1. The common stiffness of columns 
in y- and z-directions of each storey calculated by Eq. (2.10) kyi=2242.8kN/m and 
kzi=788.68kN/m. The identical storey heights are 4m, and proper static dimensioning of elastic 
columns is performed in Subsection 4.4.1. The mass moment of inertia about the vertical x-axis 
of the second floor is calculated: 3 2

2 =213.33 10xI kg m× ⋅ , 2 2.98Sr m= . The other properties 
of the building are listed in Section 2.9. 
 

4.4.1 Static dimensioning and a static safety criterion of the 
columns 

The critical load of a steel profile HEB-200 with respect to the weak axis of buckling 
becomes 2592.027cF kN= − . The combined load without TLCGD of the second floor at point 
A1 is 12 206.922F kN= −   and that at points A2, A3, A4 22 100.974F kN= − . The combined 
load without TLCGD of the first floor at point A1 is 11 387.357F kN= − and that at points A2, 

A3, A4 21 201.948F kN= − . Thus 11

c

F
F

−387.357 1
= = 0.15 <

−2592.027 3
, consequently, a geometric 

correction of the stiffness is applicable.  
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The corrected stiffness at point A1 in y-direction becomes: 
21 22

1 1
1

22 22

1 1

2 4369.3929 2180.72346k /
2180.7234 2180.72345

y y
y

y y

F F
k k l l

kN m
k k F F

l l

⎡ ⎤−⎢ ⎥−⎡ ⎤ −⎡ ⎤⎢ ⎥= − =⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦ −⎢ ⎥
⎣ ⎦

%
. 

The corrected stiffness at point A1 in z-direction becomes: 
21 22

1 1
1

22 22

1 1

2 1461.1529 726.60346k /
726.6034 726.60345

z z
z

z z

F F
l lk k

kN m
k k F F

l l

⎡ ⎤−⎢ ⎥− −⎡ ⎤ ⎡ ⎤⎢ ⎥= − =⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎣ ⎦⎣ ⎦ −⎢ ⎥
⎣ ⎦

%
. 

The corrected stiffness at points A2, A3, and A4 in y-direction becomes: 
11 12

1 1
2 3 4

12 12

1 1

2 4425.0156 2212.50786k k k /
2212.5078 2212.50785

y y
y y y

y y

F F
k k l l

kN m
k k F F

l l

⎡ ⎤−⎢ ⎥−⎡ ⎤ −⎡ ⎤⎢ ⎥= = = − =⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦ −⎢ ⎥
⎣ ⎦

% % %
. 

The corrected stiffness at points A2, A3, and A4 in z-direction becomes: 
11 12

1 1
2 3 4

12 12

1 1

2 1516.7756 758.38786k k k /
758.3878 758.38785

z z
z z z

z z

F F
l lk k

kN m
k k F F

l l

⎡ ⎤−⎢ ⎥− −⎡ ⎤ ⎡ ⎤⎢ ⎥= = = − =⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎣ ⎦⎣ ⎦ −⎢ ⎥
⎣ ⎦

% % %
. 

 
4.4.2 Natural modes of the main structure 

   The natural frequencies computed by means of Matlab 7.02 become 1.07, 1.78, 2.21, 2.88, 
4.78 and 5.83 Hz. Columns are assumed to be massless. The orthonormalized modal matrix of 
the undamped main system with respect to M

%
 is the output of Matlab 7.02. 

 

210−

  0.017391      0.279390      0.193230   − 0.023691       0.491810     − 0.310500
−0.328010      0.067991  − 0.083310       0.569980       0.076364       0.068429
−0.061186   − 0.173220     0.278960 

φ =
% 0.174940

0.071957

      0.125340    − 0. 307540   − 0.482380
  0.033474      0.473310     0.292630       0.021224    − 0.273560       
−0.550020        − 0.047072   − 0.321480     − 0.043216    − 0.039274
−0.10 0.290130 0.280270

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

3430   −      0.465720   − 0.012174        0.161860       ⎣ ⎦

. 

Correction of this output of orthonormalized eigenvectors might become necessary with 
respect to orthogonality, see also Section 2.9.2. However, test calculations render sufficient 
accuracy,  

11 1δ = , 16
12 1.8 10δ −= × , 16

13 1.7 10δ −= × , 17
14 5.4 10δ −= × , 17

15 7.6 10δ −= − × , 
16

16 3.6 10δ −= − × , 16
21 1.94 10δ −= × , 22 1δ = , 16

23 1.11 10δ −= − × , 16
24 1.3 10δ −= − × , 

16
25 5.27 10δ −= − × , 17

26 5.55 10δ −= × , 16
31 1.7 10δ −= × , 32 0δ = , 33 1δ = , 18

34 8.67 10δ −= − × , 
17

35 5.55 10δ −= × , 36 0δ = , 19
41 8.7 10δ −= − × , 12

42 1.4 10δ −= − × , 18
43 5.2 10δ −= − × , 44 1δ = , 

17
45 7.5 10δ −= − × , 16

46 2.12 10δ −= − × , 17
51 9.7 10δ −= − × , 16

52 5.3 10δ −= − × , 16
53 1.11 10δ −= × , 

17
54 6.16 10δ −= − × , 55 1δ = , 16

56 2.22 10δ −= − × , 16
61 3.75 10δ −= − × , 17

62 5.55 10δ −= × , 

63 0δ = , 16
64 2.12 10δ −= − × , 16

65 1.53 10δ −= − × , 66 1δ = . 
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The six mode shapes of the two-storey asymmetric space frame are illustrated in the 
scaled Figure 4.4-4.9, the modal centers of velocity of first floor ○, that of second floor   . In 
the first mode the two floors displace in z-direction. In the second and third mode the floors 
displace obliquely in y- and z-directions and rotate in the same direction. In the fourth mode, 
the two floors displace in opposite z-directions.The motion in the fifth and sixth mode consists 
of oblique translational motions in opposite y- and z-directions with opposite torsional 
motions. 

 
Fig. 4.4: First mode 1 1.07f Hz= .           Fig. 4.5: Second mode 2 1.78f Hz= . 

 
 
 
 
 
 
 
 
 
 
 
Fig. 4.6: Third mode 3 2.21f Hz= .        Fig. 4.7: Forth mode 4 2.88f Hz= . 

 
     
 
 
 
 
 
 
 
 

Fig. 4.8: Fifth mode 5 4.78f Hz= .      Fig. 4.9: Sixth mode 6 5.83f Hz= . 
 
4.4.3 Position of the modal centers of velocity CV  

The coordinates of the modal centers of velocity CV with corrected column stiffness taken 
into account are defined by Eq. (2.18), all fall outside of the floor plan. 

 
mode 1 2 3 4 5 6 

Floor 1 (-14.83,-0.30) (2.26,-4.24) (1.98,2.60) (-12.41,-0.02) (1.83,-4.20) (1.51,2.46)
Floor 2 (-14.52,-0.30) (2.07,-4.20) (1.63,2.54) (-77.40,-4.53) (2.13,-4.37) (1.75,2.53)

Table 4.1: The coordinates of the centers of velocity CV for six modes.  
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 (i) Installation of the TLCGDs 
Three tuned liquid column gas dampers are placed on the top floor to counteract the first 

three natural modes, since the numerical study shows that higher modes are not remarkably 
excited by the earthquakes. For the first mode TLCGD1 is installed in the middle. TLCGD2 is 
installed along the long side suppressing the second mode and TLCGD3 on the short side 
tuned to the third mode, according to Fig. 4.10 and the positions of the relevant centers of 
velocity are considered. 

 
Fig. 4.10: Installation of TLCGD1, 2, 3,   the modal centers of velocity of top floor. 

 
4.4.4 TLCGD design, Den Hartog’ optimization 

The fluid mass is chosen as 1 1160fm kg= , 2 480fm kg=  and 3 160fm kg=  of water. 
Dimensions of the three TLCGDs tuned at first by means of the TMD analogy Eqs. (2.102)- 
(2.104), applying Den Hartog’s formulas are summarized in Table 4.2.  

 
 TLCGD1 TLCGD2 TLCGD3 

Horizontal length of the liquid column B [m] 3.00 3.00 3.00 

Inclined length of the liquid column H [m] 2.00 1.00 0.80 

Cross-sectional area of the pipe [m2] AH=AB 0.1660 0.0960 0.0350 

Effective length 1 2effL L H B= = +  [m], Eq. (2.34a) 7.00 5.00 4.60 

Angle of the inclined pipe section β  [rad] 4π  4π  4π  

Equivalent mathematical pendulum length L0 [m], Eq. (2.37) 0.23 0.08 0.05 

Geometry factorκ κ= , Eqs. (2.34a), (2.44) 0.833 0.883 0.898 

Geometry factor 3κ , Eq. (2.59) 0.80 1.84 2.51 

Equilibrium pressure head 0h  [m], n=1.2, Eq. (2.34a) 51.37 57.49 67.20 

Gas volume 0 H aV A H=  [m3], Eq. (2.38) 0.587000 0.183000 0.054000 
The mass ratio of the TLCGD-main system μ , Eq. (2.97) 3% 2% 1.55% 

The mass ratio of the equivalent TMD-main system *μ , Eq. 
(2.102) 

2.02% 1.51% 1.20% 

Natural frequency ,A optf  [Hz] Eq. (2.104), (2.112) 1.04 1.75 2.18 

Optimal linear damping %, Eq. (2.113) 8.62 7.46 6.67 

Table 4.2: Layout of the modally tuned TLCGDs, gas volume and gas equilibrium pressure 
assigned, cf. Fig. (4.10). 
 

The modal dynamic magnification factor (DMF) calculated with Matlab 7.02, linearized 
damping of the TLCGD considered, is illustrated in Figure 4.11.  
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Fig. 4.11: Individual frequency response curves without and with linearized TLCGDs 
attached, TLCGDs with Den Hartog’s optimal parameters. 
 

The effective modal damping coefficients of the system is increased from 1% to 

1 5.7%effζ = , 2 4.82%effζ =  and 3 4.25%effζ = . The results of all maximum structural and 
liquid response with varying angles of attack of the time-harmonic excitation are given in 
Table 4.3a-c. The maximum fluid displacements are within the acceptable limits, 0 3au H<  
(of linearized gas compression) and 0 2u H< . The maximum fluid velocities of three 
TLCGDs are calculated by Eq. (2.35) 6.06, 5.40 and 5.18m/s and are within the acceptable 
speed limit. 

 
 structure TLCGD1 

Forcing 
direction 

v1 
[mm] 

w1 
[mm] 

1 1 1T Su r θ=

[mm] 
v2  

[mm] 
w2 

[mm] 
2 2 2T Su r θ=

[mm] 
u0  

[mm] 
CM2 1 -12 0α =  0 -7 -1 A 0 -11 -2 49 

CM2 6 -104 6α π=  3 -62 -12 A 2 -95 -20 422 

CM2 9 -153 4α π=  5 -91 -17 
A 3 -140 

-29 622 

CM2 12 -192    3α π=  6 -115 -21 A 4 -176 -36 779 

CM2 14 -229 2α π=  7 -137 -26 A 4 -210 -43 928 

CM2 12 -205 2 3α π=  6 -122 -23 A 4 -188 -39 828 

CM2 10 -171 3 4α π=  5 -102 -19 A 3 -157 -32 690 

CM2 8 -125 5 6α π=  4 -75 -14 A 2 -115 -24 506 

Table 4.3a: Maximum displacements of two-storey structure in the first mode from 
time-harmonic excitation in α -directions, a0=0.1g, 1 2.97Sr m= , 2 2.98Sr m= . 
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=
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 structure TLCGD2 
Forcing 
direction 

v1 
[mm] 

w1 
[mm] 

1 1 1T Su r θ=

[mm] 
v2 

[mm] 
w2 

[mm] 
2 2 2T Su r θ=

[mm] 
u0 

[mm] 
CM2 70 11 0α =  41 10 -26 A 89 30 -43 491 

CM2 67 10 6α π=  39 10 -24 A 85 28 -41 468 

CM2 58 9 4α π=  34 8 -21 
A 74 25 

-36 408 

CM2 46 7 3α π=  27 7 -17 A 58 20 -28 320 

CM2 13 2 2α π=  7 2 -5 A 16 5 -8 87 

CM2 24 4 2 3α π=  14 3 -9 A 31 10 -15 171 

CM2 41 6 3 4α π=  24 6 -15 A 52 17 -25 286 

CM2 54 8 5 6α π=  32 8 -20 A 69 23 -33 382 

Table 4.3b: Maximum displacements of two-storey structure in the second mode from 
time-harmonic excitation in α -directions, a0=0.1g, 1 2.97Sr m= , 2 2.98Sr m= . 
 

 structure TLCGD3 
Forcing 
direction 

v1 
[mm] 

w1  
[mm] 

1 1 1T Su r θ=

[mm] 
v2 

[mm] 
w2 

[mm] 
2 2 2T Su r θ=

[mm] 
u0 

[mm] 
CM2 20 -3 0α =  13 -6 19 A 27 -59 31 369 

CM2 14 -2 6α π=  10 -4 14 A 20 -43 23 274 

CM2 10 -2 4α π=  7 -3 10 
A 14 -31 

17 199 

CM2 6 -1 3α π=  4 -2 5 A 8 -17 9 112 

CM2 6 -1 2α π=  4 -2 6 A 8 -18 10 123 

CM2 15 -2 2 3α π=  10 -4 14 A 20 -45 24 287 

CM2 18 -3 3 4α π=  12 -5 17 A 24 -54 29 344 

CM2 20 -3 5 6α π=  13 -6 19 A 27 -60 32 378 

Table 4.3c: Maximum displacements of the two-storey structure in the third mode from 
time-harmonic excitation in α -directions, a0=0.1g, 1 2.97Sr m= , 2 2.98Sr m= . 
 
4.4.5 Optimization of the two-storey space frame with 3TLCGDs 
in the state space domain 

The fine tuned optimal natural frequencies and damping ratios by calling the function 
fminsearch of the performance index J, Eq. (2.123), are found to be 1 1.04Af Hz= , 

2 1.71Af Hz= , 3 2.08Af Hz= , 1 7.64%Aζ = , 2 5.70%Aζ = , 3 5.95%Aζ = . The equilibrium 
pressure head 0h  of three TLCGDs are thus changed accordingly to 48.61, 53.21 and 
59.84m. Figs. 4.12-4.19 illustrate the weighed sum of the frequency response function 
12

1
( )i Si

i
s z ν

=
∑ , S

%
=diag (10,10,10,10,10,10,1,1,1,1,1,1) of the building states for the original 
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and the optimized system under various angles of attack, in the logarithmic decibel scale 
within the relevant frequency window 0 3f Hz≤ ≤ . The resonance curves with fine-tuning 
optimal parameters have broader peaks.  

   

-80

-60

-40

-20

0

20

40

60

80

0 0.5 1 1.5 2 2.5 3

frequency [Hz]

[dB]

original structure including the dead fluid mass of TLCGDs
linearized TLCGDs with Den Hartog's optimal parameters
linearized TLCGDs with optimal parameters fine tuning in the state space domain  

Fig. 4.12: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey, 
moderately asymmetric space frame with three linearized TLCGDs attached and without the 
TLCGDs (angle of attack of the time-harmonic base acceleration 0α = ), maximum gain 
31.6dB. 
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Fig. 4.13: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey, 
moderately asymmetric space frame with three linearized TLCGDs attached and without the 
TLCGDs (angle of attack of the time-harmonic base acceleration 6α π= ), maximum gain 
31.4dB. 
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Fig. 4.14: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey, 
moderately asymmetric space frame with three linearized TLCGDs attached and without the 
TLCGDs (angle of attack of the time-harmonic base acceleration 4α π= ), maximum gain 
33.5dB. 
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Fig. 4.15: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey, 
moderately asymmetric space frame with three linearized TLCGDs attached and without the 
TLCGDs (angle of attack of the time-harmonic base acceleration 3α π= ), maximum gain 
33.7dB. 
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Fig. 4.16: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey, 
moderately asymmetric space frame with three linearized TLCGDs attached and without the 
TLCGDs (angle of attack of the time-harmonic base acceleration 2α π= ), maximum gain 
33.6dB. 
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Fig. 4.17: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey, 
moderately asymmetric space frame with three linearized TLCGDs attached and without the 
TLCGDs (angle of attack of the time-harmonic base acceleration 2 3α π= ), maximum gain 
33.4dB. 
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Fig. 4.18: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey, 
moderately asymmetric space frame with three linearized TLCGDs attached and without the 
TLCGDs (angle of attack of the time-harmonic base acceleration 3 4α π= ), maximum gain 
33.1dB. 
 

   

-80

-60

-40

-20

0

20

40

60

80

0 0.5 1 1.5 2 2.5 3

frequency [Hz]

[dB]

original structure including the dead fluid mass of TLCGDs
linearized TLCGDs with Den Hartog's optimal parameters
linearized TLCGDs with optimal parameters fine tuning in the state space domain  

Fig. 4.19: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey, 
moderately asymmetric space frame with three linearized TLCGDs attached and without the 
TLCGDs (angle of attack of the time-harmonic base acceleration 5 6α π= ), maximum gain 
32.7dB. 
 

From inspection of figures 4.20-4.27 it is apparent that the maximum relative fluid 
displacements for all cases are well within the acceptable limits. The maximum fluid 
velocities of three TLCGDs are calculated by Eq. (2.35) 6.86, 6.45 and 6.53m/s and are also 
within the acceptable speed limit. 
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Fig. 4.20: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the two-storey moderately asymmetric space frame. TLCGDs either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 0α = ). 
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Fig. 4.21: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the two-storey moderately asymmetric space frame. TLCGDs either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 6α π= ). 
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Fig. 4.22: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the two-storey moderately asymmetric space frame. TLCGDs either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 4α π= ). 
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Fig. 4.23: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the two-storey moderately asymmetric space frame. TLCGDs either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 3α π= ). 
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Fig. 4.24: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the two-storey moderately asymmetric space frame. TLCGDs either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 2α π= ). 
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Fig. 4.25: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the two-storey moderately asymmetric space frame. TLCGDs either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 2 3α π= ). 
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Fig. 4.26: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the two-storey moderately asymmetric space frame. TLCGDs either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 3 4α π= ). 
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Fig. 4.27: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the two-storey moderately asymmetric space frame. TLCGDs either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 5 6α π= ). 

 
The wall thickness and the estimated dead mass of the piping system are listed in Table 
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4.4 for the three absorbers, designed according to Table 4.2. 
 

 TLCGD1 TLCGD2 TLCGD3

0h  [m] 51.37 57.49 67.20 

aH  [m] 3.54 1.91 1.54 
5

( )10 Dp− [N/m²] Eq.(2.128) 22.89 25.65 30.13 
pipe diameter 2r [mm] 459.7 349.6 211.1 

t [mm] Eq.(2.124) 3.8 3.2 2.3 

pm  [kg] Eq.(2.130) 595.80 241.79 90.30 
dead fluid-mass[kg] 355.09 105.75 30.98 
5

( )10 Dp− [N/m²] Eq.(2.129) 1.15 1.40 1.81 

Table 4.4: Dimensioning of circular steel pipes. 
 

The gauge pressure under expansion conditions turns out to be positive as listed in Table 4.4. 
The final dimensions of circular steel pipes must be changed according to their commercial 
availability. 
 
4.5 Three-storey moderately asymmetric space frame: 
numerical example 

 
The additional point mass on the third floor is m13=10×103kg. The common stiffness of 

columns in y- and z-directions of each storey are increased to kyi=4433.23kN/m and 
kzi=1544.68kN/m. The mass moment of inertia about the vertical x-axis of the third floor is 
calculated: 3 2

3=229.74 10xI kg m× ⋅ , 3 2.97Sr m= . The other properties of the building are 
listed in Sections 2.9 and 4.4. 

 
4.5.1 Static dimensioning and a static safety criterion of the 
columns 

The critical load of a steel profile HEB-240 with respect to the weak axis of buckling 
becomes 5076.65cF kN= − . The combined load without TLCGD of the first floor at point A1 
is 11 620.77F kN= −  and that at points A2, A3, A4 21 302.92F kN= − . Thus 

11

c

F
F

−620.77 1
= = 0.12 <

−5076.65 3
, consequently, a geometric correction of the stiffness is 

applicable. 
The corrected stiffness at point A1 in y-direction becomes: 

1

8750.3 4371.2 0
k 4371.2 8734.4 4363.2 /

0 4363.2 4363.2
y kN m

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

%
. 

The corrected stiffness at point A1 in z-direction becomes: 

1

2973.2 1482.6 0
k 1482.6 2957.3 1474.7 /

0 1474.7 1474.7
z kN m

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

%
. 

The corrected stiffness at points A2, A3, and A4 in y-direction becomes: 
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2 3 4

8805.9 4402.9 0
k k k 4402.9 8805.9 4402.9 /

0 4402.9 4402.9
y y y kN m

−⎡ ⎤
⎢ ⎥= = = − −⎢ ⎥
⎢ ⎥−⎣ ⎦

% % %
. 

The corrected stiffness at points A2, A3, and A4 in z-direction becomes: 

2 3 4

3028.8 1514.4 0
k k k 1514.4 3028.8 1514.4 /

0 1514.4 1514.4
z z z kN m

−⎡ ⎤
⎢ ⎥= = = − −⎢ ⎥
⎢ ⎥−⎣ ⎦

% % %
. 

 
4.5.2 Natural modes of the main structure 
   The natural frequencies are computed 1.05, 1.74, 2.22, 3.04, 4.41, 5.06, 6.29, 7.35 and 
9.09 Hz. Columns are assumed to be massless. The orthonormalized modal matrix of the 
undamped main system with respect to M

%
 is the output of Matlab 7.02. 
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The nine mode shapes are amplified and plotted in Fig. 4.28-4.36, the modal centers of 
velocity of first floor ○, that of second floor   and of third floor +. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                       Fig. 4.28: First mode 1 1.05f Hz= . 
 

 
 
           
 
 
 
 
 
 
 
 
 
                                 
 
 
 
 
 
 
                      Fig. 4.29: Second mode 2 1.74f Hz= . 
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                Fig. 4.30: Third mode 3 2.22f Hz= .  

                    
 
  
  

 
 
 
 
 
 
 
 
 
 
 
     
 
 
 
 

 
                   Fig. 4.31: Forth mode 4 3.04f Hz= . 
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                      Fig. 4.32: Fifth mode 5 4.41f Hz= . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                    Fig. 4.33: Sixth mode 6 5.06f Hz= . 
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                Fig. 4.34: Seventh mode 7 6.29f Hz= . 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                Fig. 4.35: Eighth mode 8 7.35f Hz= . 
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                    Fig. 4.36: Ninth mode 9 9.09f Hz= . 

 
4.5.3 Position of the modal centers of velocity CV  

The coordinates of the modal centers of velocity CV with corrected column stiffness taken 
into account are defined by Eq. (2.18), all fall outside of the floor plan. 

 
mode 1 2 3 4 5 
floor 1 (-13.42,-0.32) (2.59,-4.33) (2.27,2.66) (-12.10,-0.06) (-28.37,0.73) 
floor 2 (-13.22,-0.32) (2.46,-4.30) (2.01,2.61) (-7.71,0.18) (-11.80,-0.59) 
floor 3 (-13.05,-0.32) (2.33,-4.27) (1.79,2.57) (-39.16,-2.14) (-6.35,-0.81) 
mode 6 7 8 9  
floor 1 (1.42,-4.19) (1.42,2.48) (1.84,-4.08) (1.52,2.46)  
floor 2 (3.13,-4.52) (2.04,2.47) (2.19,-4.37) (1.78,2.54)  
floor 3 (2.71,-4.52) (2.04,2.55) (2.49,-4.60) (1.99,2.58)  

       Table 4.5: The coordinates of the centers of velocity CV for 9 modes. 
 
(i) Installation of TLCGDs 

For the first mode the center of velocity CV lies far away, consequently the TLCGD1 
might be installed in the middle of the floor. TLCGD2 will be installed along the long side for 
the second mode and TLCGD3 on the right side for the third mode in order to maximize the 
normal distance between TLCGD and the corresponding center of velocity CV. 

           
Fig. 4.37: Installation of TLCGD1, 2, 3, + the modal centers of velocity of third floor. 

 

4.5.4 TLCGD design, Den Hartog’ optimization 
The fluid mass is chosen as 1 1710fm kg= , 2 670fm kg=  and 3 210fm kg=  of water. 

Dimensions of the three TLCGDs tuned first by means of the TMD analogy Eqs. (2.102)- 
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(2.104), applying Den Hartog’s formulas are summarized in Table 4.6.  
 

 TLCGD1 TLCGD2 TLCGD3 

Horizontal length of the liquid column B [m] 3.00 3.00 3.00 

Inclined length of the liquid column H [m] 2.0 1.2 0.9 

Cross-sectional area of the pipe [m2] AH=AB 0.2440 0.1240 0.0440 

Effective length 1 2effL L H B= = +  [m], Eq. (2.34a) 7.00 5.40 4.80 

Angle of the inclined pipe section β  [rad] 4π  4π  4π  

Equivalent mathematical pendulum length L0 [m], Eq. (2.37) 0.23 0.08 0.05 

Geometry factorκ κ= , Eqs. (2.34a), (2.44) 0.833 0.87 0.89 

Geometry factor 3κ , Eq. (2.59) 0.80 1.45 2.12 

Equilibrium pressure head 0h  [m], n=1.2, Eq. (2.34a) 48.92 64.80 73.39 

Gas volume 0 H aV A H=  [m3], Eq. (2.38) 0.800000 0.250000 0.069000 

The mass ratio of the TLCGD-main system μ , Eq. (2.97) 3% 2% 1.5% 

The mass ratio of the equivalent TMD-main system *μ , Eq. 
(2.102) 

2.02% 1.45% 1.17% 

Natural frequency ,A optf  [Hz] Eq. (2.104), (2.112) 1.02 1.71 2.19 

Optimal linear damping %, Eq. (2.113) 8.62 7.31 6.58 
Table 4.6: Layout of the modally tuned TLCGDs, gas volume and gas equilibrium pressure 
assigned, cf. Fig. (4.37). 
 

The modal dynamic magnification factor (DMF) calculated with Matlab 7.02, linearized 
damping of the TLCGD considered, is illustrated in Figure 4.38.  
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Fig.4.38: Individual frequency response curves without and with linearized TLCGDs 
attached, TLCGDs with Den Hartog’s optimal parameters.  
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The effective modal damping coefficients of the system are increased from 1% to 
1 5.73%effζ = , 2 4.7%effζ =  and 3 4.3%effζ = . The results of all maximum structural and 

liquid response with varying angles of attack of the time-harmonic excitation are given in 
Table 4.7a-c. The maximum fluid displacements are within the acceptable limits, 0 3au H<  
(of linearized gas compression) and 0 2u H< . The maximum fluid velocities of three 
TLCGDs are calculated by Eq. (2.35) 6.23, 5.82 and 5.89m/s and are within the acceptable 
speed limit. 

 
 structure TLCGD1

Forcing direction v3 [mm] w3 [mm] 3 3 3T Su r θ= [mm] u0 [mm] 
CM3 1 -16 0α =  
A 0 -14 -3 62 

CM3 8 -109 6α π=  A 2 -98 -22 433 

CM3 12 -163 4α π=  A 4 -145 -33 644 

CM3 15 -205 3α π=  A 5 -183 -42 811 

CM3 18 -246 2α π=  A 5 -220 -50 972 

CM3 17 -221 2 3α π=  A 5 -198 -45 872 

CM3 14 -185 3 4α π=  A 4 -166 -38 730 

CM3 10 -137 5 6α π=  A 3 -123 -28 539 

Table 4.7a: Maximum displacements of three-storey structure in the first mode from 
time-harmonic excitation in α -directions, a0=0.1g, 1 2.97Sr m= , 2 2.98Sr m= , 

3 2.97Sr m= . 
 

 structure TLCGD2
Forcing direction v3 [mm] w3 [mm] 3 3 3T Su r θ= [mm] u0 [mm] 

CM3 -78 -12 0α =  
A -97 -36 46 542 

CM3 -76 -12 6α π=  A -94 -35 45 523 

CM3 -67 -11 4α π=  A -83 -31 39 459 

CM3 -53 -8 3α π=  A -66 -24 31 364 

CM3 -16 -3 2α π=  A -20 -7 9 108 

CM3 -25 -4 2 3α π=  A -32 -12 15 178 

CM3 -44 -7 3 4α π=  A -55 -20 26 307 

CM3 -60 -9 5 6α π=  A -74 -28 35 415 

Table 4.67: Maximum displacements of three-storey structure in the second mode from 
time-harmonic excitation in α -directions, a0=0.1g, 1 2.97Sr m= , 2 2.98Sr m= , 

3 2.97Sr m= . 
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 Structure TLCGD3
Forcing direction v3 [mm] w3 [mm] 3 3 3T Su r θ= [mm] u0 [mm] 

CM3 15 -4 0α =  
A 21 -50 24 391 

CM3 11 -3 6α π=  A 15 -36 18 284 

CM3 7 -2 4α π=  A 11 -25 12 202 

CM3 4 -1 3α π=  A 6 -13 6 108 

CM3 5 -1 2α π=  A 7 -17 8 140 

CM3 12 -3 2 3α π=  A 17 -39 19 314 

CM3 14 -4 3 4α π=  A 20 -47 23 372 

CM3 15 -4 5 6α π=  A 22 -51 25 406 

Table 4.7c: Maximum displacements of three-storey structure in the third mode from 
time-harmonic excitation in α -directions, a0=0.1g, 1 2.97Sr m= , 2 2.98Sr m= , 

3 2.97Sr m= . 
 
4.5.5 Optimization of the three-storey space frame with 3 
TLCGDs in the state space domain 

The fine tuned optimal natural frequencies and damping ratios by calling the function 
fminsearch of the performance index J, Eq. (2.123), are found to be 1 1.02Af Hz= , 

2 1.68Af Hz= , 3 2.10Af Hz= , 1 8.50%Aζ = , 2 5.72%Aζ = , 3 6.2%Aζ = . The equilibrium 
pressure head 0h  of three TLCGDs are consequently adjusted to 46.39, 60.25 and 65.82m. 

The Figures 4.39-4.46 show the weighed sum of the frequency responses 
18

1
( )i Si

i
s z ν

=
∑ , 

S
%

=diag (10,10,10,10,10,10,10,10,10,1,1,1,1,1,1,1,1,1) of the building states for the original 
and the optimized system, in the logarithmic decibel scale, defined by [ ] 20log=x dB x  
within the relevant frequency window 0 3f Hz≤ ≤ . The resonance curves with fine-tuning 
optimal parameters have broader peaks. From inspection of figures 4.47-4.54 it is apparent 
that the maximum relative fluid displacements for all cases are well within the acceptable 
limits. The maximum fluid velocities of three TLCGDs are calculated by Eq. (2.35) 6.54, 6.86 
and 6.86m/s and are also within the acceptable speed limit. 
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Fig. 4.39: Weighed sum of amplitude response functions for the 9-DOF linearized, 
three-storey, moderately asymmetric space frame, with three linearized TLCGDs attached and 
without the TLCGDs (angle of attack of the time-harmonic base acceleration 0α = ), 
maximum gain 31dB. 
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Fig. 4.40: Weighed sum of amplitude response functions for the 9-DOF linearized, 
three-storey, moderately plan asymmetric space frame, with three linearized TLCGDs 
attached and without the TLCGDs (angle of attack of the time-harmonic base acceleration 

6α π= ), maximum gain 31dB.  
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Fig. 4.41: Weighed sum of amplitude response functions for the 9-DOF linearized, 
three-storey, moderately asymmetric space frame, with three linearized TLCGDs attached and 
without the TLCGDs (angle of attack of the time-harmonic base acceleration 4α π= ), 
maximum gain 33.9dB.  
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Fig. 4.42: Weighed sum of amplitude response functions for the 9-DOF linearized, 
three-storey, moderately asymmetric space frame, with three linearized TLCGDs attached and 
without the TLCGDs (angle of attack of the time-harmonic base acceleration 3α π= ), 
maximum gain 34.1dB.  
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Fig. 4.43: Weighed sum of amplitude response functions for the 9-DOF linearized, 
three-storey, moderately asymmetric space frame, with three linearized TLCGDs attached and 
without the TLCGDs (angle of attack of the time-harmonic base acceleration 2α π= ), 
maximum gain 34dB.  
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Fig. 4.44: Weighed sum of amplitude response functions for the 9-DOF linearized, 
three-storey, moderately asymmetric space frame, with three linearized TLCGDs attached and 
without the TLCGDs (angle of attack of the time-harmonic base acceleration 2 3α π= ), 
maximum gain 33.8dB.  
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Fig. 4.45: Weighed sum of amplitude response functions for the 9-DOF linearized, 
three-storey, moderately asymmetric space frame, with three linearized TLCGDs attached and 
without the TLCGDs (angle of attack of the time-harmonic base acceleration 3 4α π= ), 
maximum gain 33.5dB.  
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Fig. 4.46: Weighed sum of amplitude response functions for the 9-DOF linearized, two-storey, 
moderately asymmetric space frame, with three linearized TLCGDs attached and without the 
TLCGDs (angle of attack of the time-harmonic base acceleration 5 6α π= ), maximum gain 
33.2dB.  
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Fig. 4.47: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the three-storey moderately asymmetric space frame. TLCGDs either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 0α = ). 
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Fig. 4.48: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the three-storey moderately asymmetric space frame. TLCGDs either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 6α π= ). 
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Fig. 4.49: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the three-storey moderately asymmetric space frame. TLCGDs either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 4α π= ). 
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Fig. 4.50: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the three-storey moderately asymmetric space frame. TLCGDs either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 3α π= ). 
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Fig.4.51: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the three-storey moderately asymmetric space frame. TLCGDs either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 2α π= ). 
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Fig. 4.52: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the three-storey moderately asymmetric space frame. TLCGDs either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 2 3α π= ). 
 



Multi-storey Moderately Plan-asymmetric Space Frame with TLCGDs 

 153

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

0 0.5 1 1.5 2 2.5 3
frequency [Hz]

di
sp

la
ce

m
en

t[m
]

TLCGD1 Den Hartog's parameters TLCGD2 Den Hartog's parameters
TLCGD3 Den Hartog's parameters TLCGD1 fine-tuning in state space
TLCGD2 fine-tuning in state space TLCGD3 fine-tuning in state space  

Fig. 4.53: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the three-storey moderately asymmetric space frame. TLCGDs either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 3 4α π= ). 
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Fig. 4.54: Amplitude response curves of fluid displacement u  of three linearized TLCGDs 
attached to the three-storey moderately asymmetric space frame. TLCGDs either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 5 6α π= ). 
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The wall thickness and the estimated dead mass of the piping system are listed in Table 
4.8 for the three absorbers, designed according to Table 4.6. 
 

 TLCGD1 TLCGD2 TLCGD3

0h  [m] 48.92 64.80 73.39 

aH  [m] 3.28 2.02 1.57 
5

( )10 Dp− [N/m²] Eq.(2.128) 21.76 29.04 32.99 
pipe diameter 2r [mm] 557.4 397.3 236.7 

t [mm] Eq.(2.124) 4.3 4.1 2.8 

pm  [kg] Eq.(2.130) 801.95 378.51 128.38 
dead fluid-mass[kg] 523.45 162.88 43.66 
5

( )10 Dp− [N/m²] Eq.(2.129) 1.04 1.71 2.07 

Table 4.8: Dimensioning of circular steel pipes. 
 
The gauge pressure under expansion conditions turns out to be positive as listed in Table 4.8. 
The final dimensions of circular steel pipes must be changed according to their commercial 
availability. 
 
4.6 Four-storey moderately asymmetric space frame: 
numerical example 
    
   The additional point mass on the fourth floor is m14=6×103kg. The common stiffness of 
columns in y- and z-directions of each storey are further increased to kyi=5874.4kN/m and 
kzi=2021.9kN/m. The mass moment of inertia about the vertical x-axis of the fourth floor is 
calculated: 3 2

4 =193.94 10xI kg m× ⋅ , 4 2.97Sr m= . The other properties of the building are 
listed in Sections 2.9, 4.4 and 4.5. 

 
4.6.1 Static dimensioning and a static safety criterion of the 
columns 

The critical load of a steel profile HEB-260 with respect to the weak axis of buckling 
becomes 6645.06cF kN= − . The combined load without TLCGD of the first floor at point A1 
is 11 801.2F kN= −  and that at points A2, A3, A4 21 403.9F kN= − . Thus 

11

c

F
F

−801.201 1
= = 0.12 <

−6645.06 3
. 

The corrected stiffness at point A1 in y-direction becomes: 

1

11633 5812.3 0 0
5812.3 11617 5804.3 0

k /
0 5804.3 11625 5820.2
0 0 5820.2 5820.2

y kN m

−⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥−⎣ ⎦

%
. 

The corrected stiffness at point A1 in z-direction becomes: 

1

3927.6 1959.8 0 0
1959.8 3911.7 1951.9 0

k /
0 1951.9 3919.7 1967.8
0 0 1967.8 1967.8

z kN m

−⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥−⎣ ⎦

%
. 

The corrected stiffness at points A2, A3, and A4 in y-direction becomes: 



Multi-storey Moderately Plan-asymmetric Space Frame with TLCGDs 

 155

2 3 4

11688 5844.1 0 0
5844.1 11688 5844.1 0

k k k /
0 5844.1 11688 5844.1
0 0 5844.1 5844.1

y y y kN m

−⎡ ⎤
⎢ ⎥− −⎢ ⎥= = =
⎢ ⎥− −
⎢ ⎥−⎣ ⎦

% % %
. 

The corrected stiffness at points A2, A3, and A4 in z-direction becomes: 

2 3 4

3983.2 1991.6 0 0
1991.6 3983.2 1991.6 0

k k k /
0 1991.6 3983.2 1991.6
0 0 1991.6 1991.6

z z z kN m

−⎡ ⎤
⎢ ⎥− −⎢ ⎥= = =
⎢ ⎥− −
⎢ ⎥−⎣ ⎦

% % %
. 

 
4.6.2 Natural modes of the main structure 
   The computed natural frequencies are 0.97, 1.61, 2.01, 2.88, 4.32, 4.78, 5.21, 5.85 7.18, 
8.68, 8.90 and 10.84Hz. Columns are assumed to be massless. The orthonormalized modal 
matrix of the undamped main system with respect to M

%
 is the output of Matlab 7.02. 

,1 ,2 ,3 ,4
T

i i i i iφ φ φ φ φ= ⎡ ⎤⎣ ⎦
r r r r r

, 

[ ]2
1,1 10 0.0077267 0.14299 0.027177 Tφ −= −
r

, [ ]2
1,2 10 0.016826 0.27473 0.051979 Tφ −= −
r

, 

[ ]2
1,3 10 0.02516 0.37555 0.070057 Tφ −= −
r

, [ ]2
1,4 10 0.022059 0.40984 0.077589 Tφ −= −
r

; 

[ ]2
2,1 10 0.12157 0.027548 0.076558 Tφ −= − −
r

, [ ]2
2,2 10 0.23589 0.038324 0.14576 Tφ −= − −
r

; 

[ ]2
2,3 10 0.32495 0.038032 0.19606 Tφ −= − −
r

, [ ]2
2,4 10 0.34805 0.082576 0.21859 Tφ −= − −
r

; 

[ ]2
3,1 10 0.084013 0.026433 0.12277 Tφ −= − −
r

, [ ]2
3,2 10 0.14849 0.027249 0.2329 Tφ −= − −
r

, 

[ ]2
3,3 10 0.18938 0.016374 0.3128 Tφ −= − −
r

, [ ]2
3,4 10 0.24215 0.08805 0.35065 Tφ −= − −
r

; 

[ ]2
4,1 10 0.017538 0.36367 0.056849 Tφ −= − −
r

, [ ]2
4,2 10 0.021729 0.38289 0.057978 Tφ −= − −
r

, 

[ ]2
4,3 10 0.0010327 0.015485 0.015836 Tφ −= −
r

, [ ]2
4,4 10 0.01705 0.38372 0.080747 Tφ −= −
r

; 

[ ]2
5,1 10 0.018457 0.39719 0.079344 Tφ −= − −
r

, [ ]2
5,2 10 0.003049 0.070442 0.0094247 Tφ −= − −
r

, 

[ ]2
5,3 10 0.023368 0.3838 0.044369 Tφ −= −
r

, [ ]2
5,4 10 0.018004 0.31364 0.094244 Tφ −= − −
r

; 

[ ]2
6,1 10 0.30299 0.092471 0.18757 Tφ −= − −
r

, [ ]2
6,2 10 0.327 0.0013993 0.21046 Tφ −= −
r

, 

[ ]2
6,3 10 0.015775 0.037525 0.015627 Tφ −= − −
r

, [ ]2
6,4 10 0.32466 0.070279 0.20358 Tφ −= −
r

; 

[ ]2
7,1 10 0.075091 0.3542 0.046025 Tφ −= − −
r

, [ ]2
7,2 10 0.037632 0.41567 0.088759 Tφ −=
r

, 

[ ]2
7,3 10 0.021294 0.28544 0.054357 Tφ −= − −
r

, [ ]2
7,4 10 0.075184 0.12425 0.036045 Tφ −= −
r

; 

[ ]2
8,1 10 0.20462 0.0068593 0.32101 Tφ −= − −
r

, [ ]2
8,2 10 0.19772 0.086944 0.30961 Tφ −= − −
r

, 

[ ]2
8,3 10 0.0044371 0.02826 0.0013258 Tφ −= − −
r

, [ ]2
8,4 10 0.20782 0.034615 0.32978 Tφ −= −
r

; 

[ ]2
9,1 10 0.3422 0.048712 0.21753 Tφ −= −
r

, [ ]2
9,2 10 0.060279 0.00051957 0.035414 Tφ −= −
r

, 

[ ]2
9,3 10 0.33046 0.063644 0.19184 Tφ −= − −
r

, [ ]2
9,4 10 0.27161 0.048904 0.17005 Tφ −= −
r

; 

[ ]2
10,1 10 0.30764 0.047971 0.1851 Tφ −= −
r

, [ ]2
10,2 10 0.36363 0.063506 0.21683 Tφ −= − −
r

, 

[ ]2
10,3 10 0.24919 0.048667 0.15678 Tφ −= −
r

, [ ]2
10,4 10 0.10776 0.022034 0.078028 Tφ −= − −
r

; 
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[ ]2
11,1 10 0.22793 0.049772 0.36598 Tφ −= −
r

, [ ]2
11,2 10 0.055825 0.010111 0.10809 Tφ −= − −
r

, 

[ ]2
11,3 10 0.19652 0.047766 0.30758 Tφ −= − −
r

, [ ]2
11,4 10 0.16558 0.03917 0.24662 Tφ −= −
r

; 

[ ]2
12,1 10 0.17028 0.03767 0.25976 Tφ −= − −
r

, [ ]2
12,2 10 0.22757 0.054171 0.35643 Tφ −= −
r

, 

[ ]2
12,3 10 0.17708 0.044044 0.28638 Tφ −= − −
r

, [ ]2
12,4 10 0.081351 0.02018 0.12272 Tφ −= −
r

. 
 
4.6.3 Position of the modal centers of velocity CV 

   The coordinates of the centers of velocity CV with corrected column stiffness taken into 
account are listed in Table 4.9, all fall outside of the floor plan. 
 

mode 1 2 3 4 5 
floor 1 (-14.53,-0.30) (2.16,-4.17) (1.73,2.58) (-17.9,-0.37) (-13.77,-0.15)
floor 2 (-14.43,-0.30) (2.12,-4.16) (1.68,2.57) (-18.36,0.45) (23.62,1.63) 
floor 3 (-14.40,-0.30) (2.12,-4.16) (1.69,2.57) (-1.37,0.58) (-24.18,-0.8) 
floor 4 (-14.59,-0.30) (2.21,-4.18) (1.84,2.60) (-13.02,-0.08) (-8.79,-0.02) 
mode 6 7 8 9 10 
floor 1 (2.55,-4.25) (-21.76,-4.30) (1.15,2.44) (1.76,-4.13) (1.86,-4.39) 
floor 2 (1.31,-3.97) (-12.63,1.93) (2.17,2.57) (1.29,-4.41) (2.21,-4.33) 
floor 3 (-5.60,-2.23) (-14.07,-0.40) (-61.82,-9.18) (2.52,-4.35) (2.46,-3.95) 
floor 4 (2.12,-4.19) (-9.14,-5.65) (1.40,2.42) (1.94,-4.2) (1.93,-3.56) 
mode 11 12    
floor 1 (1.49,2.39) (1.52,2.49)    
floor 2 (1.61,2.21) (1.79,2.57)    
floor 3 (2.00,2.67) (2.00,2.61)    
floor 4 (1.56,2.54) (1.58,2.51)    

           Table 4.9: The coordinates of the centers of velocity CV for 12 modes. 
 

 (i) Installation of TLCGDs 
Four tuned liquid column gas dampers are installed to counteract the first four natural 

modes. We investigate the two cases of TLCGD installation and compare the effectiveness of 
them for structural control. First case: four TLCGDs are placed on the top floor, TLCGD1 and 
4 are installed in the middle, respectively tuned to the first and fourth modes. TLCGD2 is 
installed along the long side suppressing the second mode and TLCGD3 on the short side 
tuned to the third mode. In second case TLCGD4 is alternatively installed in the middle of the 
second floor. 
First case: fourth floor 

 
Second case: fourth floor 
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Second floor 

 
Fig. 4.55: Installation of TLCGD1, 2, 3, 4,  the modal centers of velocity of second floor,          
  the modal centers of velocity of fourth floor. 

 
4.6.4 TLCGD design, Den Hartog’ optimization 

The fluid mass is chosen as 1 2030fm kg= , 2 810fm kg= , 3 250fm kg=  and 

4 400fm kg=  of water. Dimensions of the three TLCGDs tuned first by means of the TMD 
analogy Eqs. (2.102)- (2.104), applying Den Hartog’s formulas are summarized in Table 4.10. 
The modal dynamic magnification factor (DMF) calculated with Matlab 7.02, linearized 
damping of the TLCGD considered, is illustrated in Figure 4.56.  

 
 TLCGD1 TLCGD2 TLCGD3 TLCGD4

Horizontal length of the liquid column B [m] 3.00 3.00 3.00 3.50 

Inclined length of the liquid column H [m] 2.4 1.4 1.4 0.5 

Cross-sectional area of the pipe [m2] AH=AB 0.26 0.14 0.048 0.088 

Effective length 1 2effL L H B= = +  [m], Eq. (2.34a) 7.8 5.8 5.8 4.5 

Angle of the inclined pipe section β  [rad] 4π  4π  4π  4π  
Equivalent mathematical pendulum length L0 [m], Eq. 
(2.37) 0.27 0.10 0.06 0.03 

Geometry factorκ κ= , Eqs. (2.34a), (2.44) 0.82 0.859 0.876 0.935 

Geometry factor 3κ , Eq. (2.59) 0.665 1.198 1.62 6.485 

Equilibrium pressure head 0h  [m], n=1.2, Eq. (2.34a) 56.28 69.72 86.88 88.08 

Gas volume 0 H aV A H=  [m3], Eq. (2.38) 1.040000 0.330000 0.100000 0.110000
The mass ratio of the TLCGD-main system μ , Eq. 
(2.97) 

3% 2% 1.5% 0.51% 

The mass ratio of the equivalent TMD-main 

system *μ , Eq. (2.102) 
1.96% 1.39% 1.09% 0.44% 

Natural frequency ,A optf  [Hz] Eq. (2.104), (2.112) 0.945 1.585 1.982 2.86 

Optimal linear damping %, Eq. (2.113) 8.5 7.16 6.35 4.04 
Table 4.10: Layout of the modally tuned TLCGDs, gas volume and gas equilibrium pressure 
assigned, cf. Fig. (4.55). 
 

The effective modal damping coefficients of the system are increased from 1% to 
1 5.6%effζ = , 2 4.67%effζ = , 3 4.2%effζ =  and 4 3.2%effζ = . The results of all maximum 

structural and liquid response with varying angles of attack of the time-harmonic excitation 
are given in Table 4.11a-d. The maximum fluid displacements are within the acceptable limits, 

0 3au H<  (of linearized gas compression) and 0 2u H< . The maximum fluid velocities of 
three TLCGDs are calculated by Eq. (2.35) 7.10, 6.55, 6.40 and 2.73m/s and are within the 
acceptable speed limit. 
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Fig.4.56: Individual frequency response curves without and with linearized TLCGDs 
attached, TLCGDs with Den Hartog’s optimal parameters.  

 
 structure TLCGD1 

Forcing 
direction 

v2  
[mm] 

w2  
[mm] 

2 2 2T Su r θ=

[mm] 
v4 

[mm] 
w4  

[mm] 
4 4 4T Su r θ=

[mm] 
u0  

[mm] 
CM4 -1 17 0α =  -1 11 2 A 0 15 3 65 

CM4 -7 132 6α π=  -5 88 17 A -3 123 25 541 

CM4 -10 195 4α π=  -8 131 25 
A -4 181 

37 799 

CM4 -13 245    3α π=  -10 164 31 A -5 228 46 1003 

CM4 -16 292 2α π=  -12 196 37 A -6 272 55 1195 

CM4 -14 261 2 3α π=  -11 175 33 A -5 243 49 1068 

CM4 -12 218 3 4α π=  -9 146 28 A -4 203 41 891 

CM4 -9 160 5 6α π=  -7 107 20 A -3 149 30 654 

Table 4.11a: Maximum displacements of four-storey structure in the first mode from 
time-harmonic excitation in α -directions, a0=0.1g, 1 2.97Sr m= , 2 2.98Sr m= , 3 2.97Sr m= , 

4 2.97Sr m= . 
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 structure TLCGD2 
Forcing 
direction 

v2  
[mm] 

w2  
[mm] 

2 2 2T Su r θ=

[mm] 
v4 

[mm] 
w4  

[mm] 
4 4 4T Su r θ=

[mm] 
u0  

[mm] 
CM4 -90 -21 0α =  -61 -10 38 A -118 -42 57 658 

CM4 -86 -20 6α π=  -58 -9 36 A -112 -40 54 626 

CM4 -75 -18 4α π=  -51 -8 31 
A -98 -35 

47 544 

CM4 -59 -14    3α π=  -40 -6 25 A -77 -27 37 426 

CM4 -16 -4 2α π=  -11 -2 7 A -21 -7 10 113 

CM4 -31 -7 2 3α π=  -21 -3 13 A -41 -15 20 232 

CM4 -53 -12 3 4α π=  -36 -6 22 A -69 -25 33 386 

CM4 -70 -17 5 6α π=  -48 -8 29 A -92 -33 44 514 

Table 4.11b: Maximum displacements of four-storey structure in the second mode from 
time-harmonic excitation in α -directions, a0=0.1g, 1 2.97Sr m= , 2 2.98Sr m= , 3 2.97Sr m= , 

4 2.97Sr m= . 
 

 structure TLCGD3 
Forcing 
direction 

v2  
[mm] 

w2  
[mm] 

2 2 2T Su r θ=

[mm] 
v4 

[mm] 
w4  

[mm] 
4 4 4T Su r θ=

[mm] 
u0  

[mm] 
CM4 -28 10 0α =  -17 3 -27 A -36 80 -41 513 

CM4 -21 8 6α π=  -13 2 -20 A -27 60 -31 388 

CM4 -16 6 4α π=  -10 2 -15 
A -20 44 

-22 287 

CM4 -9 3    3α π=  -5 1 -9 A -11 25 -13 168 

CM4 -8 3 2α π=  -5 1 -7 A -10 22 -11 150 

CM4 -21 7 2 3α π=  -13 2 -20 A -26 58 -30 381 

CM4 -25 9 3 4α π=  -15 3 -24 A -32 72 -36 463 

CM4 -28 10 5 6α π=  -17 3 -27 A -36 80 -41 514 

Table 4.11c: Maximum displacements of four-storey structure in the third mode from 
time-harmonic excitation in α -directions, a0=0.1g, 1 2.97Sr m= , 2 2.98Sr m= , 3 2.97Sr m= , 

4 2.97Sr m= . 
 
 
 
 
 
 
 
 
 
 
 



Multi-storey Moderately Plan-asymmetric Space Frame with TLCGDs 

 160

 structure TLCGD4 
Forcing 
direction 

v2  
[mm] 

w2  
[mm] 

2 2 2T Su r θ=

[mm] 
v4 

[mm] 
w4  

[mm] 
4 4 4T Su r θ=

[mm] 
u0  

[mm] 
CM4 0 1 0α =  0 -1 0 A 0 1 0 9 

CM4 0 7 6α π=  0 -7 -1 A 0 7 2 69 

CM4 0 11 4α π=  1 -11 -2 
A 0 10 

2 102 

CM4 -1 13    3α π=  1 -13 -2 A 0 12 3 128 

CM4 -1 16 2α π=  1 -16 -2 A 0 15 3 152 

CM4 -1 14 2 3α π=  1 -14 -2 A 0 13 3 136 

CM4 -1 12 3 4α π=  1 -12 -2 A 0 11 3 113 

CM4 0 9 5 6α π=  1 -9 -1 A 0 8 2 83 

Table 4.11d: Maximum displacements of four-storey structure in the forth mode from 
time-harmonic excitation in α -directions, a0=0.1g, 1 2.97Sr m= , 2 2.98Sr m= , 3 2.97Sr m= , 

4 2.97Sr m= . 
 
4.6.5 Optimization of the four-storey space frame with 4 TLCGDs 
in the state space domain 

The fine tuned optimal natural frequencies and damping ratios by calling the function 
fminsearch of the performance index J, Eq. (2.123), are found to be 1 0.941Af Hz= , 

2 1.552Af Hz= , 3 1.89Af Hz= , 4 2.78Af Hz= ; 1 7.82%Aζ = , 2 5.75%Aζ = , 3 5.78%Aζ = , 

4 3.65%Aζ = . The equilibrium pressure head 0h  of four TLCGDs are consequently changed 
to 53.07, 64.48, 76.79 and 82.59m.  The Figures 4.57-4.64 show the frequency response of 

the weighed sum
24

1
( )i Si

i
s z ν

=
∑ , S

%
=diag (10,10,10,10,10,10,10,10,10,10,10,10,1,1,1,1,1,1,1,1, 

1,1,1,1) of the building states for the original and the optimized system, in the logarithmic 
decibel scale, defined by [ ] 20log=x dB x  within the relevant frequency window 
0 3f Hz≤ ≤ . The resonance curves with fine-tuning optimal parameters have broader peaks. 
From inspection of figures 4.65-4.72 it is apparent that the maximum relative fluid 
displacements for all cases are also well within the acceptable limits. From inspection of these 
figures 4.65-4.72 it is apparent that the maximum relative fluid displacements for all cases are 
well within the acceptable limits. The maximum fluid velocities of four TLCGDs are 
calculated by Eq. (2.35) 7.69, 7.61, 8.08 and 2.62m/s and are also within the acceptable speed 
limit. 
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Fig. 4.57: Weighed sum of amplitude response functions for the 12-DOF linearized, 
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached 
(TLCGD4 on the fourth floor) and without the TLCGDs (angle of attack of the 
time-harmonic base acceleration 0α = ), maximum gain 30.9dB. 
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Fig. 4.58: Weighed sum of amplitude response functions for the 12-DOF linearized, 
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached 
(TLCGD4 on the fourth floor) and without the TLCGDs (angle of attack of the 
time-harmonic base acceleration 6α π= ), maximum gain 30.8dB.  
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Fig. 4.59: Weighed sum of amplitude response functions for the 12-DOF linearized, 
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached 
(TLCGD4 on the fourth floor) and without the TLCGDs (angle of attack of the 
time-harmonic base acceleration 4α π= ), maximum gain 33.1dB.  
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Fig. 4.60: Weighed sum of amplitude response functions for the 12-DOF linearized, 
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached 
(TLCGD4 on the fourth floor) and without the TLCGDs (angle of attack of the 
time-harmonic base acceleration 3α π= ), maximum gain 33.3dB.  
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Fig. 4.61: Weighed sum of amplitude response functions for the 12-DOF linearized, 
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached 
(TLCGD4 on the fourth floor) and without the TLCGDs (angle of attack of the 
time-harmonic base acceleration 2α π= ), maximum gain 33.2dB.  
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Fig. 4.62: Weighed sum of amplitude response functions for the 12-DOF linearized, 
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached 
(TLCGD4 on the fourth floor) and without the TLCGDs (angle of attack of the 
time-harmonic base acceleration 2 3α π= ), maximum gain 33dB.  
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Fig. 4.63: Weighed sum of amplitude response functions for the 12-DOF linearized, 
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached 
(TLCGD4 on the fourth floor) and without the TLCGDs (angle of attack of the 
time-harmonic base acceleration 3 4α π= ), maximum gain 32.7dB.  
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Fig. 4.64: Weighed sum of amplitude response functions for the 12-DOF linearized, 
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached 
(TLCGD4 on the fourth floor) and without the TLCGDs (angle of attack of the 
time-harmonic base acceleration 5 6α π= ), maximum gain 32.3dB.  
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Fig. 4.65: Amplitude response curves of fluid displacement u  of four linearized TLCGDs 
attached to the 12-DOF space frame (TLCGD4 on the fourth floor). TLCGDs either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 0α = ). 
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Fig. 4.66: Amplitude response curves of fluid displacement u  of four linearized TLCGDs 
attached to the 12-DOF space frame (TLCGD4 on the fourth floor). TLCGDs either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 6α π= ). 
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Fig. 4.67: Amplitude response curves of fluid displacement u  of four linearized TLCGDs 
attached to the 12-DOF space frame (TLCGD4 on the fourth floor). TLCGDs either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 4α π= ). 
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Fig. 4.68: Amplitude response curves of fluid displacement u  of four linearized TLCGDs 
attached to the 12-DOF space frame (TLCGD4 on the fourth floor). TLCGDs either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 3α π= ). 
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Fig. 4.69: Amplitude response curves of fluid displacement u  of four linearized TLCGDs 
attached to the 12-DOF space frame (TLCGD4 on the fourth floor). TLCGDs either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 2α π= ). 
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Fig. 4.70: Amplitude response curves of fluid displacement u  of four linearized TLCGDs 
attached to the 12-DOF space frame (TLCGD4 on the fourth floor). TLCGDs either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 2 3α π= ). 
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Fig. 4.71: Amplitude response curves of fluid displacement u  of four linearized TLCGDs 
attached to the 12-DOF space frame (TLCGD4 on the fourth floor). TLCGDs either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 3 4α π= ). 
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Fig. 4.72: Amplitude response curves of fluid displacement u  of four linearized TLCGDs 
attached to the 12-DOF space frame (TLCGD4 on the fourth floor). TLCGDs either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 5 6α π= ). 
 

The wall thickness and the estimated dead mass of the piping system are listed in Table 
4.12 for the four absorbers, designed according to Table 4.10. 



Multi-storey Moderately Plan-asymmetric Space Frame with TLCGDs 

 169

 TLCGD1 TLCGD2 TLCGD3 TLCGD4 

0h  [m] 56.28 69.72 86.88 88.08 

aH  [m] 4 2.36 2.08 1.25 
5

( )10 Dp− [N/m²] Eq.(2.128) 25.19 31.33 39.27 39.76 
pipe diameter 2r [mm] 575.4 422.2 247.2 334.7 

t [mm] Eq.(2.124) 5.2 4.7 3.5 4.8 

pm  [kg] Eq.(2.130) 1152.9 513.91 209.31 272.90 
dead fluid-mass[kg] 665.03 212.32 58.16 50.31 
5

( )10 Dp− [N/m²] Eq.(2.129) 1.35 1.91 2.63 2.68 

Table 4.12: Dimensioning of circular steel pipes. 
 
The gauge pressure under expansion conditions turns out to be positive as listed in Table 4.12. 
The final dimensions of circular steel pipes must be changed according to their commercial 
availability. 
 

4.6.6 TLCGD4 alternatively installed on the second floor 
   Since the same fluid weight of TLCGD4 is considered, the mass ratio is 4 0.51%μ = . The 
optimal parameters of TLCGD4 are 4 0.996optδ = , 4 4.08%optζ = . The optimal frequency is 

4 2.86Af Hz= . 
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Fig.4.73: Frequency response curves of the fourth mode without and with linearized 
TLCGD4 attached, TLCGD4 with Den Hartog’s optimal parameters.  
 

The effective modal damping coefficient of the system is 4 3.1%effζ = , the gain is 
slightly lower when compared to TLCGD4 oriented on the fourth floor. 
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 structure TLCGD4

Forcing 
direction 

v2 
[mm] 

w2  
[mm] 

2 2 2T Su r θ=

[mm] 
v4  

[mm] 
w4  

[mm] 
4 4 4T Su r θ=   
[mm] 

u0  
[mm] 

CM2 0 -1 0α =  
A 0 -1 0 0 1 0 9 

CM2 0 -8 6α π=  A 0 -7 -1 0 8 0 74 

CM2 1 -11 4α π=  A 0 -10 -2 -1 11 2 110 

CM2 1 -14 3α π=  A 0 -13 -2 -1 14 3 137 

CM2 1 -17 2α π=  A 0 -16 -3 -1 17 4 163 

CM2 1 -15 2 3α π=  A 0 -14 -2 -1 15 3 146 

CM2 1 -12 3 4α π=  A 0 -12 -2 -1 12 3 122 

CM2 1 -9 5 6α π=  A 0 -9 -1 0 9 2 89 

Table 4.10: Maximum displacements of four-storey structure in the forth mode from 
time-harmonic excitation in α -directions, a0=0.1g, 1 2.97Sr m= , 2 2.98Sr m= , 3 2.97Sr m= , 

4 2.97Sr m= . 
 

The optimal natural frequencies and damping ratios are found to be 1 0.941Af Hz= , 

2 1.552Af Hz= , 3 1.893Af Hz= , 4 2.87Af Hz= , 1 7.81%Aζ = , 2 5.75%Aζ = , 

3 5.81%Aζ = , 4 3.62%Aζ = . The equilibrium pressure head 0h  of four TLCGDs are 52.91, 
64.41, 77.10 and 87.59m. The Figures 4.74-4.81 show the frequency response of the weighed 

sum
24

1
( )i Si

i
s z ν

=
∑  of the building states for the original and the optimized system, in the 

logarithmic decibel scale within the relevant frequency window 0 3f Hz≤ ≤ . The resonance 
curves with fine-tuning optimal parameters also have broader peaks. From inspection of these 
figures 4.82-4.89 it is apparent that the maximum relative fluid displacements for all cases are 
well within the acceptable limits. The maximum fluid velocities of four TLCGDs are 
calculated by Eq. (2.35) 7.69, 7.61, 7.61 and 3.25m/s and are also within the acceptable speed 
limit. 
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Fig. 4.74: Weighed sum of amplitude response functions for the 12-DOF linearized, 
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached 
(TLCGD4 on the second floor) and without the TLCGDs (angle of attack of the 
time-harmonic base acceleration 0α = ), maximum gain 30.8dB. 
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Fig. 4.75: Weighed sum of amplitude response functions for the 12-DOF linearized, 
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached 
(TLCGD4 on the second floor) and without the TLCGDs (angle of attack of the 
time-harmonic base acceleration 6α π= ), maximum gain 30.7dB.  
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Fig. 4.76: Weighed sum of amplitude response functions for the 12-DOF linearized, 
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached 
(TLCGD4 on the second floor) and without the TLCGDs (angle of attack of the 
time-harmonic base acceleration 4α π= ), maximum gain 33.1dB.  
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Fig. 4.77: Weighed sum of amplitude response functions for the 12-DOF linearized, 
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached 
(TLCGD4 on the second floor) and without the TLCGDs (angle of attack of the 
time-harmonic base acceleration 3α π= ), maximum gain 33.3dB.  
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Fig. 4.78: Weighed sum of amplitude response functions for the 12-DOF linearized, 
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached 
(TLCGD4 on the second floor) and without the TLCGDs (angle of attack of the 
time-harmonic base acceleration 2α π= ), maximum gain 33.2dB.  
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Fig. 4.79: Weighed sum of amplitude response functions for the 12-DOF linearized, 
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached 
(TLCGD4 on the second floor) and without the TLCGDs (angle of attack of the 
time-harmonic base acceleration 2 3α π= ), maximum gain 33dB.  
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Fig. 4.80: Weighed sum of amplitude response functions for the 12-DOF linearized, 
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached 
(TLCGD4 on the second floor) and without the TLCGDs (angle of attack of the 
time-harmonic base acceleration 3 4α π= ), maximum gain 32.7dB.  
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Fig. 4.81: Weighed sum of amplitude response functions for the 12-DOF linearized, 
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached 
(TLCGD4 on the second floor) and without the TLCGDs (angle of attack of the 
time-harmonic base acceleration 5 6α π= ), maximum gain 32.3dB.  
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Fig. 4.82: Amplitude response curves of fluid displacement u  of four linearized TLCGDs 
attached to the 12-DOF space frame (TLCGD4 on the second floor). TLCGD either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 0α = ). 
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Fig. 4.83: Amplitude response curves of fluid displacement u  of four linearized TLCGDs 
attached to the 12-DOF space frame (TLCGD4 on the second floor). TLCGD either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 6α π= ). 
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Fig. 4.84: Amplitude response curves of fluid displacement u  of four linearized TLCGDs 
attached to the 12-DOF space frame (TLCGD4 on the second floor). TLCGD either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 4α π= ). 
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Fig. 4.85: Amplitude response curves of fluid displacement u  of four linearized TLCGDs 
attached to the 12-DOF space frame (TLCGD4 on the second floor). TLCGD either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 3α π= ). 
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Fig. 4.86: Amplitude response curves of fluid displacement u  of four linearized TLCGDs 
attached to the 12-DOF space frame (TLCGD4 on the second floor). TLCGD either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 2α π= ). 
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Fig. 4.87: Amplitude response curves of fluid displacement u  of four linearized TLCGDs 
attached to the 12-DOF space frame (TLCGD4 on the second floor). TLCGD either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 2 3α π= ). 
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Fig. 4.88: Amplitude response curves of fluid displacement u  of four linearized TLCGDs 
attached to the 12-DOF space frame (TLCGD4 on the second floor). TLCGD either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 3 4α π= ). 
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Fig. 4.89: Amplitude response curves of fluid displacement u  of four linearized TLCGDs 
attached to the 12-DOF space frame (TLCGD4 on the second floor). TLCGD either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 5 6α π= ). 
 

Comparing the results of the two cases all four TLCGDs on top and alternatively 
TLCGD4 placed on the second floor, the latter arrangement achieves a somewhat better result 
in the vibration reduction.  
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4.6.7 Forcing by the NS-El Centro seismogram under varying 
angles of attack 

The maximum acceleration of the NS-El Centro earthquake record is set as 0.35g . 
Varying the angle of attack refers to the effect of bidirectional forcing of the four-storey 
moderately asymmetric space frame. Four TLCGDs are installed to counteract the first four 
natural modes and TLCGD 4 is installed on the second floor. The results are presented 
graphically in Fig. 4.90-Fig. 4.97, where the relative floor displacements with respect to the 
base and the relative floor accelerations for the root mean square (RMS) responses1 are 
displayed. The RMS value is given by  

2

0

1 T
RMS i dt

T
= ∫ , 20T s= .              (4.26) 

where T is the strong motion phase of the NS-El Centro earthquake record. The rotation 
displacement about x-axis is Ti i Siu rθ= , where 1 2.97Sr m= , 2 2.98Sr m= , 3 2.97Sr m= , 

4 2.97Sr m= . 
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Fig. 4.90: RMS responses for floor displacement and acceleration of the four-storey 
moderately asymmetric building (El Centro 0.35g , angle of attack 0α = ). 
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Fig. 4.91: RMS responses for floor displacement and acceleration of the four-storey 
moderately asymmetric building (El Centro 0.35g , angle of attack 6α π= ). 
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Fig. 4.92: RMS responses for floor displacement and acceleration of the four-storey 
moderately asymmetric building (El Centro 0.35g , angle of attack 4α π= ). 
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Fig. 4.93: RMS responses for floor displacement and acceleration of the four-storey 
moderately asymmetric building (El Centro 0.35g , angle of attack 3α π= ). 
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Fig. 4.94: RMS responses for floor displacement and acceleration of the four-storey 
moderately asymmetric building (El Centro 0.35g , angle of attack 2α π= ). 
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Fig. 4.95: RMS responses for floor displacement and acceleration of the four-storey 
moderately asymmetric building (El Centro 0.35g , angle of attack 2 3α π= ). 
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Fig. 4.96: RMS responses for floor displacement and acceleration of the four-storey 
moderately asymmetric building (El Centro 0.35g , angle of attack 3 4α π= ). 
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Fig. 4.97: RMS responses for floor displacement and acceleration of the four-storey 
moderately asymmetric building (El Centro 0.35g , angle of attack 5 6α π= ). 
 

It is seen that all RMS response are reduced for earthquake excitation from any angle of 
incidence. Thus, it is concluded that the optimal TLCGDs are adequate for asymmetric 
buildings in seismic active zones. 
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5 Multi-storey Strongly Plan-asymmetric Space 
Frame with TTLCGDs and TLCGDs 
 
5.1 Introduction 

 
In Chapter 3, torsional TLCGD=TTLCGD is described as an effective damper to reduce 

the coupled lateral and torsional vibration in the case where the center of velocity is located in 
the floor-plan according to the results derived for the single-storey model when subjected to 
horizontal seismic excitation. In this chapter such results should be re-checked for multi-storey 
strongly asymmetric buildings. Based on the equation of motion for the TTLCGD-structure 
system, the optimal control parameters of TTLCGD are given using the analogy to 
TTMD-tuning with the properly transformed Den Hartog’s optimal parameters, and 
subsequently, in a state space optimization with the Den Hartog parameters as starting values. 
The performance of TTLCGD ( 2β π= ) is studied numerically using 2-storey, 3-storey and 
4-storey building models with asymmetric stiffness distribution.  
 
5.2 Equation of motion for multi-storey strongly 
asymmetric space frame  

 
The equation of motion of the undamped multi-storey asymmetric space frame is 

described in Section 4.2.2, see Eq. (4.9). The mass matrix is the same in Eq. (4.10). However, 
the symmetric stiffness matrix K of the system with asymmetric stiffness distribution, derived 
by the direct method becomes, cf. Eqs. (4.12)- (4.15), 

i(i-1)

1

4 0

k 0 4
yi yi yi z S

zi zi zi y S

yi z S zi y S i i

k k k e r

k k k e r

k e r k e r kθ θ −

⎡ ⎤′ ′− −
⎢ ⎥

′ ′= − − −⎢ ⎥
⎢ ⎥′ ′−⎢ ⎥⎣ ⎦

, (i=2―N)      (5.1)    

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

1 1 1

ii 1 1 1

1 1

0

k 0
yi yi yi yi yi yi z S

zi zi zi zi zi zi y S

yi yi z S zi zi y S i i

k k k k k k e r

k k k k k k e r

k k e r k k e r kθ θ

+ + +

+ + +

+ +

⎡ ⎤′ ′ ′ ′4 + + + − +
⎢ ⎥
⎢ ⎥′ ′ ′ ′= 4 + + + +
⎢ ⎥
⎢ ⎥′ ′ ′ ′− + +⎣ ⎦

,
          

                                                               (i=1―N-1)    (5.2)           

ii

4 0

k 0 4
yi yi yi z S

zi zi zi y S

yi z S zi y S i i

k k k e r

k k k e r

k e r k e r kθ θ

⎡ ⎤′ ′+ − 
⎢ ⎥

′ ′= +⎢ ⎥
⎢ ⎥′ ′− ⎢ ⎥⎣ ⎦

, (i=N)            (5.3) 

1 1 1

i(i+1) 1 1 1

1 1 1

4 0

k 0 4
yi yi yi z S

zi zi zi y S

yi z S zi y S i i

k k k e r

k k k e r

k e r k e r kθ θ

+ + +

+ + +

+ + +

⎡ ⎤′ ′− −
⎢ ⎥

′ ′= − − −⎢ ⎥
⎢ ⎥′ ′ −⎢ ⎥⎣ ⎦

, (i=1―N-1)       (5.4)
          

where, 

( ) ( ) ( ) ( )2 2 2 2 2
1 1 1 1i i yi yi zi zi yi yi z yi zi y Sk k k b k k a k k e k k e rθ θ + + + +⎡ ⎤′ ′ ′ ′= + + + + + + +⎣ ⎦ , (i=1―N-1) 

( )2 2 2 2 2
i i yi zi yi z zi y Sk k b k a k e k e rθ  θ ′ ′= + + + , (i=N) 
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( )2 2 2 2 2
1 1 1 1 1i i yi zi yi z zi y Sk k b k a k e k e rθ θ + + + + +′ ′= − − − − , (i=1―N-1) 

( )2 2 2 2 2
1i i yi zi yi z zi y Sk k b k a k e k e rθ θ − ′ ′= − − − − . (i=2―N) 

 

5.3 Control of N-storey strongly plan-asymmetric space 
frame by a single TTLCGD ( 2β π= ) when compared to an 
equivalent TTMD 
 
5.3.1 TTMD attached to space frame 
   The analogy between an equivalent TTMD and TTLCGD for single-storey structure is 
presented in Section 3.5. Here a single TTMD is installed on the i-th floor of the N-storey 
strongly plan-asymmetric space frame. The equation of motion for the coupled undamped 
main-system can be given in hypermatrix form, cf. Eq. (2.88), 
 

* * * *M K M gNx x x P+ = − + , * *
1M M M M* *

i Ndiag ⎡ ⎤= ⎣ ⎦ , 1
T T T T

i Nx x x x⎡ ⎤=   ⎣ ⎦ ,  

[ ]T
i i i Tix v w u= , = EgN N gx x , 0T

g g gx v w⎡ ⎤= ⎣ ⎦ ,  

1 0 0 1 0 0 1
E = 0 1 0 0 1 0 0

000 0 0 0 0

T

N

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, * * * *
,0, , , , ,0

M M M

T
C iy C iz C i SixP F F M r⎡ ⎤= − ⎣ ⎦ ,  

( )* *
MC y Aj g iiF m v v= + , ( )* *

MC z Aj g iiF m w w= + , ( )* * * * *
M MC C ix TTi AiixM I u u r= + .   (5.5) 

 
The equation of the N-storey space frame with a single TTMD attached to the i-th floor 

are approximated by the selected mode, cf. Eq. (3.57) and subscript the floor number i, 
 

( )
*

* *2 * * * * * *
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1 11
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(3 2) (3 1) 3Tij j i j i j i Aij Siv r rφ φ φ− −= + + , 
*

*
3

Aij
ij j i

Si

r

r
λ φ= .     (5.6) 

                                                                                     
The approximated equation of motion of TTMD renders, cf. Eq. (3.58) with floor number I 
considered, 
 

* * 2 * *2 A A A ij ju u u qζ ω ω λ+ + = − .                (5.7) 
 
With light structural damping of the main system added, the coupled approximated equations 
of motion of the main system with TTMD attached, in matrix notation become, cf. Eq. (3.59), 
 

* ** * * * *2 * *

* * ** * * *2

1 2

1 0 0 0

Aj j

T

T
j j jj ij Sj Sj Sj Tj j

g
ij Aj Aj Aj

m m q q q L m
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u u u

μ λ ζ ω ω

λ ζ ω ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

+        0         0   
+ + = −

            2          
,  (5.8) 

                      
where the generalized participation factors are 
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* * * 0T
Tj Tjy TjzL L L⎡ ⎤= ⎣ ⎦ , * * *

(3 -2)
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Tjy Sn Aj j i
n

L m m φ
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⎛ ⎞
= + ⎜ ⎟⎜ ⎟
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∑ .  

       
5.3.2 TTLCGD attached to space frame (the vertical segment, A 
(yA, zA, 0), 2β π= ) 
   A single TTLCGD is installed on the i-th floor of N-storey moderately plan-asymmetric 
space frame, the equation of motion for the coupled undamped main-system can be given in 
matrix form, cf. Eq. (2.94), 
 
M K M gNx x x P+ = − + , 0, , , , , ,0

M M M

T
C iy C iz C ix SiP F F M r⎡ ⎤= − ⎣ ⎦ , 

( )3MC y fj g i T TTi Ai fiiF m v v u z rκ= + − , ( )3MC z fj g i T TTi Ai fiiF m w w u y rκ= + + , 
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C x fj fi TTi z y fj fi T
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i

y zM m r u a a m r u
r r

κ κ
κ

⎛ ⎞
⎜ ⎟= + − +
⎜ ⎟
⎝ ⎠

.        (5.9) 

 
The equation of a N-storey space frame with a single TTLCGD are approximated by the 

selected mode, cf. Eq. (3.60),  
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( )22 2 2
(3 2) (3 1) 3Tij j i j i j i fij Siv r rφ φ φ− −= + + , 1ij ij effL Lλ λ= .       (5.10) 

 
Light structural modal damping of the main system is added and the equation of motion of 
TTLCGD is approximated by the selected mode cf. Eq. (3.61) 
 

22 Aj Aj Aj ij ju u u qζ ω ω λ+ + = − .              (5.11) 
 
In matrix form the linearized coupled approximated system of equations of the main 

system with TTLCGD attached becomes, cf. Eq. (3.62) 
 

2

2

1 2
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T
j ij fj j Sj Sj Sjj j j Tj j

gTAj Ajij Aj

m m q q q L m
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. 

                    (5.12) 
The participation factors are formally still given by Eq. (4.25), however, before their 
substitution, the modal displacements of Eq. (4.18) have to be altered by the substitutions, 

, (3 2) 3 3Ai j j i T j i Aij Siv z rφ κ φ−→ − , , (3 1) 3 3Ai j j i T j i Aij Siw y rφ κ φ−→ + . 
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5.3.3 Analogy between TTMD and TTLCGD when attached to 
N-storey space frame 

Comparing the approximated equations of motion for coupled system consisting of a 
N-storey structure, see Section 3.6.3 for the single-storey space frame, the result about the 
relationship of modal mass ratios *

jμ  and jμ , the optimal absorber tuning ratio joptδ  and 
the damping ratio are exactly the same as in the single-storey structure discussed, Eqs.(3.66)- 
(3.68) still hold true for a well separated mode. The analogy between TTMD and TTLCGD 
( 4 2π β π≤ < ) has the same result, Eqs. (3.82)- (3.84).  
 
5.4 Two-storey strongly asymmetric space frame: 
numerical example  
    
    The two-storey stiffness asymmetric structure is considered as a first numerical example. 
The homogenous distributed mass of each floor is mS=16×103kg. The common stiffness of 
columns in y- and z-directions of each storey are kyi=594.17kN/m and kzi=216.56kN/m. The 
anisotropic stiffness of the additional column of each storey is yik′ =6.54×103kN/m 

and zik ′ =2.38×103 kN/m, the eccentricity of the column with respect to =MC O  is assumed 
ey=ez=1m. The mass moment of inertia about the vertical x-axis of each floor is 
calculated: 3 2=106.67 10xiI kg m× ⋅ , 2.58Sir m= . 
 
5.4.1 Static dimensioning and a static safety criterion of the 
columns 

The critical load of a steel profile HEB-140 length 4m, is calculated 711.74cF kN= − . 
The combined load without TLCGD in column of first floor is 201.948F kN= − , thus 

c

F
F

−201.948 1
= = 0.28 <

−711.74 3
. Consequently, a geometric correction of the stiffness is 

applicable. 
The corrected stiffness of column in y-direction becomes: 

1127.8 563.88
k /

563.88 563.88y kN m
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
. 

The corrected stiffness of column in z-direction becomes: 
372.54 186.27

k /
186.27 186.27z kN m

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

. 

 
5.4.2 Natural modes of the main structure 
   The computed natural frequencies by means of Matlab 7.01 become 1.2, 1.57, 2.46, 3.13, 
4.1 and 6.44 Hz, prestress of the column considered and extra column comes no weight of the 
floors. The orthonormalized modal matrix of the undamped main system with respect to M  is 
the output of Matlab 7.01. 
 



Multi-storey Strongly Plan-asymmetric Space Frame with TTLCGDs and TLCGDs 

 189

210−

−0.101130   0.146810        0.375450       − 0.163630    − 0.237550      0.607490
  0.310810    0.274910     − 0.023778         0.502900    − 0.444820    − 0.038474
−0.256740    0.274980     − 0.176680

φ =
0.375450

0.444820

      − 0.415410    − 0. 444930   − 0.285870
−0.163630    0.237550        0.607490         0.101130       0.146810    − 
  0.502900         − 0.038474      − 0.310810       0.274910       0.

0.444930 0.176680

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥023778
⎢ ⎥
−0.415410         − 0.285870         0.256740       0.274980       ⎣ ⎦

. 

 
Correction of this output of orthonormalized eigenvectors might become necessary with 
respect to orthogonality, also see section 2.9.2. However, test calculations render sufficient 
accuracy,  

11 1δ = , 16
12 3.3 10δ −= × , 17

13 2.8 10δ −= × , 16
14 1.1 10δ −= − × , 16

15 6.4 10δ −= × , 
16

16 3.2 10δ −= × , 16
21 3.9 10δ −= × , 22 1δ = , 17

23 5.6 10δ −= × , 16
24 1.7 10δ −= − × , 

16
25 3.6 10δ −= × , 17

26 2.8 10δ −= − × , 17
31 2.8 10δ −= − × , 17

32 5.6 10δ −= × , 33 1δ = , 
16

34 2.5 10δ −= × , 16
35 3.9 10δ −= × , 16

36 3.2 10δ −= − × , 16
41 1.1 10δ −= − × , 16

42 1.1 10δ −= − × , 
16

43 2.2 10δ −= × , 44 1δ = , 16
45 2.9 10δ −= − × , 17

46 8.3 10δ −= − × , 16
51 6.1 10δ −= × , 

16
52 3.6 10δ −= × , 16

53 3.9 10δ −= × , 16
54 3.2 10δ −= − × , 55 1δ = , 16

56 2.9 10δ −= × , 
16

61 3.5 10δ −= × , 62 0δ = , 16
63 3.2 10δ −= − × , 16

64 1.1 10δ −= − × , 16
65 2.6 10δ −= × , 66 1δ = . 

 
5.4.3 Position of the modal centers of velocity CV  
   The coordinates of the modal centers of velocity CV with corrected column stiffness taken 
into account are defined by Eq. (2.12). 
 

mode 1 2 3 4 5 6 
Floor 1 (3.13,1.02) (-2.58,1.38) (-0.35,-5.49) (3.13,1.02) (-2.58,1.38) (-0.35,-5.49)
Floor 2 (3.13,1.02) (-2.58,1.38) (-0.35,-5.49) (3.13,1.02) (-2.58,1.38) (-0.35,-5.49)

Table 5.1: The coordinates of the centers of velocity CV for 6 modes.  
 
CV1 and CV2 are inside the floor plan, CV3 lies outside. Consequently, two TTLCGDs and one 
plane TLCGD parallel to y-axis are positioned on the top floor. The installation of absorbers is 
the same as in the section 3.8.3. 
 
5.4.4 TTLCGD and TLCGD design, Den Hartog’ optimization 

The fluid mass 1 700fm kg= , 2 700fm kg=  and 3 300fm kg=  of water is chosen. 
Dimensions of three absorbers tuned first by means of the TMD analogy applying Den 
Hartog’s formulas, Eqs. (3.66)- (3.68) for TTLCGDs ( 2β π= ) and Eqs. (2.102)- (2.04) for 
TLCGD ( 4β π= ) are summarized in Table 5.2. The dynamic magnification factor (DMF) 
calculated with Matlab 7.01, linearized damping of the absorbers considered, is illustrated in 
Figure 5. 1. 

The effective modal damping coefficients of the system are increased from 1% to 
1 4.85%effζ = , 2 4.73%effζ = , 3 5.32%effζ = . From Table 5.3a-c it follows that all 

maximum fluid displacements resulting for various angles of attack, are within the acceptable 
limits, 0 3au H<  (of linearized gas compression) and 0 2u H< . The maximum fluid 
velocities of three absorbers are calculated by Eq. (2.35) 5.18, 3.55 and 4.15m/s and are within 
the acceptable speed limit. 
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 TTLCGD1 TTLCGD2 TLCGD3 

Horizontal length of the liquid column B [m] 24.00 24.00 2.50 
Length of the upright  liquid column H [m] 1.50 0.90 0.60 
Cross-sectional area of the pipe [m2] AH=AB 0.0260 0.0270 0.0810 

Effective length 1 2effL L H B= = +  [m], Eq. 
(2.34a) 

27.00 25.80 3.70 

Angle of the inclined pipe section β  [rad] 2π  2π  4π  

Equivalent mathematical pendulum length L0[m] Eq. 
(2.37) 0.17 0.10 0.04 

Geometry factorκ κ=  or 0 0T Tκ κ= , Eqs. (2.34a), 
(2.44),(3.14a),(3.44) 

0.66 0.70 0.91 

Equilibrium pressure head 0h  [m], n=1.2, Eq. 
(2.34a) 

161 152.9 45.26 

Gas volume 0 H aV A H=  [m3], Eq. (2.38) 0.055000 0.033000 0.080000 
The mass ratio of the TLCGD-main system μ , Eqs. 
(2.97), (3.60) 

4.88% 4.77% 2.1% 

The mass ratio of the equivalent TMD-main 

system *μ , Eqs. (2.102), (3.66) 
1.82% 2.10% 1.69% 

Natural frequency ,A optf  [Hz] Eq. (2.104), (2.112) 1.16 1.51 2.41 

Optimal linear damping %, Eq. (2.113) 8.18 8.78 7.88 
Table 5.2: Layout of the modally tuned absorbers, gas volume and gas equilibrium pressure 
assigned, note the rather high gas pressure in TTLCGD. 
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Fig. 5.1: Individual frequency response curves without and with linearized absorbers attached 
with Den Hartog’s optimal parameter.  
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 structure TTLCGD1

Forcing 
direction 

v1  
[mm] 

w1 
[mm] 

1 1 1T Su r θ=

[mm] 
v2  

[mm] 
w2  

[mm] 
2 2 2T Su r θ=  
[mm] 

u0  
[mm] 

0α =  CMi -10 30 -25 -16 49 -40 225 
6α π=  CMi -7 20 -17 -11 33 -27 150 
4α π=  CMi -14 44 -36 -23 71 -59 329 

  3α π=  CMi -21 65 -54 -34 105 -87 486 
2α π=  CMi -30 92 -76 -49 149 -123 691 

2 3α π=  CMi -31 95 -78 -50 154 -127 711 
3 4α π=  CMi -28 87 -71 -46 140 -116 648 
5 6α π=  CMi -23 72 -60 -38 117 -96 541 

Table 5.3a: Maximum displacements of two-storey structure in the first mode from 
time-harmonic excitation in α -directions, a0=0.1g, 2.58Sir m= . 
 

 structure TTLCGD2
Forcing 
direction 

v1  
[mm] 

w1 
[mm] 

1 1 1T Su r θ=

[mm] 
v2  

[mm] 
w2  

[mm] 
2 2 2T Su r θ=  
[mm] 

u0  
[mm] 

0α =  CMi 11 20 20 17 32 32 176 
6α π=  CMi 19 36 36 31 58 58 317 
4α π=  CMi 22 41 41 35 66 66 358 

  3α π=  CMi 23 42 42 37 69 69 374 
2α π=  CMi 20 37 37 32 61 61 330 

2 3α π=  CMi 12 22 22 19 36 36 198 
3 4α π=  CMi 7 12 12 11 20 20 109 
5 6α π=  CMi 1 1 1 1 2 2 12 

Table 5.3b: Maximum displacements of two-storey structure in the second mode from 
time-harmonic excitation in α -directions, a0=0.1g, 2.58Sir m= . 
 

 structure TLCGD3
Forcing 
direction 

v1 
[mm] 

w1  
[mm] 

1 1 1T Su r θ=

[mm] 
v2  

[mm] 
w2 

[mm] 
2 2 2T Su r θ=

[mm] 
u0  

[mm] 
CM2 39 -2 0α =  24 -2 -11 A 53 -2 -18 274 

CM2 32 -2 6α π=  20 -1 -9 A 44 -2 -15 229 

CM2 26 -2 4α π=  16 -1 -7 
A 35 -2 

-12 182 

CM2 17 -1    3α π=  11 -1 -5 A 24 -1 -8 123 

CM2 2 0 2α π=  1 0 -1 A 3 0 -1 16 

CM2 21 -1 2 3α π=  13 -1 -6 A 29 -1 -10 151 

CM2 29 -2 3 4α π=  18 -1 -8 A 40 -2 -14 205 

CM2 35 -2 5 6α π=  21 -1 -10 A 47 -2 -16 246 

Table 5.3c: Maximum displacements of two-storey structure in the third mode from 
time-harmonic excitation in α -directions, a0=0.1g, 2.58Sir m= . 
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5.4.5 Optimization of the TTLCGD-, TLCGD-structure system in 
the state space domain 

The fine tuned optimal natural frequencies and damping ratios by calling the function 
fminsearch of the performance index J, Eq. (2.123), are found to be 1 1.15Af Hz= , 

2 1.47Af Hz= , 3 2.35Af Hz= , 1 5.97%Aζ = , 2 7%Aζ = , 3 6.49%Aζ = . Frequency fine 
tuning is achieved by adjusting the equilibrium gas pressure:149.12, 134.91 and 41.33m .Figs. 

5.2-5.9 illustrate the weighed sum of the frequency response function 
12

1
( )i Si

i
s z ν

=
∑ , S =diag 

(10,10,10,10,10,10,1,1,1,1,1,1) of the building states for the original and the optimized 
system under various angles of attack, in the logarithmic decibel scale in the relevant 
frequency window 0 3f Hz≤ ≤ . The resonance curves with fine-tuning optimal parameters 
have broader peaks. The maximum fluid displacement amplitudes of three absorbers in Figs. 
5.9-5.16 are well within the acceptable limits. The maximum fluid velocities of three 
absorbers are calculated by Eq. (2.35) 5.64, 3.79 and 5.17m/s and are also within the 
acceptable speed limit. 

 
The wall thickness and the estimated dead mass of the piping system are listed in Table 

5.4 for the three absorbers, designed according to Table 5.2. 
 

 TTLCGD1 TTLCGD2 TLCGD3

0h  [m] 161 152.9 45.26 

aH  [m] 2.12 1.22 1.00 
5

( )10 Dp− [N/m²] Eq.(2.128) 73.54 69.75 20 
pipe diameter 2r [mm] 181.9 185.4 321.1 

t [mm] Eq.(2.124) 4.8 4.6 2.3 

pm  [kg] Eq.(2.130) 665.4 592.74 102.28 
dead fluid-mass[kg] 395.08 357 51.57 
5

( )10 Dp− [N/m²] Eq.(2.129) 5.72 5.39 0.89 

Table 5.4: Dimensioning of circular steel pipes. 
 
The gauge pressure under expansion conditions turns out to be positive as listed in Table 5.4. 
The final dimensions of circular steel pipes must be changed according to their commercial 
availability. 
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Fig. 5.2: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey, 
strongly asymmetric space frame with three linearized absorbers attached and without the 
absorbers (angle of attack of the time-harmonic base acceleration 0α = ), maximum gain 
28.96dB. 
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Fig. 5.3: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey, 
strongly asymmetric space frame with three linearized absorbers attached and without the 
absorbers (angle of attack of the time-harmonic base acceleration 6α π= ), maximum gain 
30.32dB. 
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Fig. 5.4: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey, 
strongly asymmetric space frame with three linearized absorbers attached and without the 
absorbers (angle of attack of the time-harmonic base acceleration 4α π= ), maximum gain 
30.77dB. 
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Fig. 5.5: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey, 
strongly asymmetric space frame with three linearized absorbers attached and without the 
absorbers (angle of attack of the time-harmonic base acceleration 3α π= ), maximum gain 
30.78dB. 
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Fig. 5.6: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey, 
strongly asymmetric space frame with three linearized absorbers attached and without the 
absorbers (angle of attack of the time-harmonic base acceleration 2α π= ), maximum gain 
30.16dB. 
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Fig. 5.7: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey, 
strongly asymmetric space frame with three linearized absorbers attached and without the 
absorbers (angle of attack of the time-harmonic base acceleration 2 3α π= ), maximum gain 
29.68dB. 
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Fig. 5.8: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey, 
strongly asymmetric space frame with three linearized absorbers attached and without the 
absorbers (angle of attack of the time-harmonic base acceleration 3 4α π= ), maximum gain 
29.41dB. 
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Fig. 5.9: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey, 
strongly asymmetric space frame with three linearized absorbers attached and without the 
absorbers (angle of attack of the time-harmonic base acceleration 5 6α π= ), maximum gain 
29.03dB. 
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Fig. 5.10: Amplitude response curves of fluid displacement u  of three linearized absorbers 
attached to the two-storey strongly asymmetric space frame. Absorbers either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 0α = ). 
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Fig. 5.11: Amplitude response curves of fluid displacement u  of three linearized absorbers 
attached to the two-storey strongly asymmetric space frame. Absorbers either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 6α π= ). 
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Fig. 5.12: Amplitude response curves of fluid displacement u  of three linearized absorbers 
attached to the two-storey strongly asymmetric space frame. Absorbers either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 4α π= ). 
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Fig. 5.13: Amplitude response curves of fluid displacement u  of three linearized absorbers 
attached to the two-storey strongly asymmetric space frame. Absorbers either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 3α π= ). 
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Fig. 5.14: Amplitude response curves of fluid displacement u  of three linearized absorbers 
attached to the two-storey strongly asymmetric space frame. Absorbers either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 2α π= ). 
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Fig. 5.15: Amplitude response curves of fluid displacement u  of three linearized absorbers 
attached to the two-storey strongly asymmetric space frame. Absorbers either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 2 3α π= ). 
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Fig. 5.16: Amplitude response curves of fluid displacement u  of three linearized absorbers 
attached to the two-storey strongly asymmetric space frame. Absorbers either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 3 4α π= ). 
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Fig. 5.17: Amplitude response curves of fluid displacement u  of three linearized absorbers 
attached to the two-storey strongly asymmetric space frame. Absorbers either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 5 6α π= ). 
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5.5 Three-storey strongly asymmetric space frame: 
numerical example  
    
    The three-storey stiffness asymmetric structure serves as another numerical example. The 
common stiffness of columns in y- and z-directions of each storey are increased to 
kyi=981.23kN/m and kzi=350.04kN/m. The anisotropic stiffness of an extra column of each 
storey are yik′ =11.78×103kN/m and zik ′ =4.2×103kN/m. The other properties of building are 
listed in Section 5.4.   
 
5.5.1 Static dimensioning and a static safety criterion of the 
columns 

The critical load of a steel profile HEB-160 length 4m, is calculated 1150.43cF kN= − . 
The combined load without TLCGD in column of first floor is 302.92F kN= − , thus 

c

F
F

−302.92 1
= = 0.26 <

−1150.43 3
.  

The corrected stiffness in y-direction becomes: 
1901.9 950.93 0

k 950.93 1901.9 950.93 /
0 950.93 950.93

y kN m
−⎡ ⎤

⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

The corrected stiffness in z-direction becomes: 
639.5 319.75 0

k 319.75 639.5 319.75 /
0 319.75 319.75

z kN m
−⎡ ⎤

⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

 
5.5.2 Natural modes of the main structure 
   The computed natural frequencies are 1.13, 1.49, 2.36, 3.17, 4.16, 4.57, 6.01, 6.61 and 9.55 
Hz, prestress of the column considered and extra column comes no weight of the floors. The 
orthonormalized modal matrix of the undamped main system with respect to M  is the output 
of Matlab 7.0. 
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0.10971

φ −=

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
5.5.3 Position of the modal centers of velocity CV  
   The coordinates of the modal centers of velocity CV with corrected column stiffness 
considered are listed in Table 5.5 for the first three relevant modes. Two TTLCGDs tuned to 
the first two (mainly torsional) modes and one plane TLCGD parallel to y-axis tuned to the 
mainly translational third mode are located on the top floor. 
 

mode 1 2 3 
Floor 1 (2.97,1.02) (-2.71,1.38) (-0.34,-5.52)
Floor 2 (2.97,1.02) (-2.71,1.38) (-0.34,-5.52)
Floor 3 (2.97,1.02) (-2.71,1.38) (-0.34,-5.52)

  Table 5.5: The coordinates of the centers of velocity CV for 3 relevant modes. 
 
5.5.4 TTLCGD and TLCGD design, Den Hartog’ optimization 

The fluid mass is chosen 1 1100fm kg= , 2 1100fm kg=  and 3 500fm kg=  of water. 
Dimensions of three absorbers tuned first by means of the TMD analogy applying Den 
Hartog’s formulas, Eqs. (3.66)- (3.68) for TTLCGDs ( 2β π= ) and Eqs. (2.102)- (2.104) for 
TLCGD ( 4β π= ) are summarized in Table 5.6. The dynamic magnification factor (DMF) 
calculated with Matlab 7.01, linearized damping of the absorbers considered, is illustrated in 
Figure 5. 18. The effective modal damping coefficients of the system are increased from 1% to 

1 5.45%effζ = , 2 5.23%effζ = , 3 5.85%effζ = . From Table 5.7a-c it follows that all maximum 
fluid displacements occuring for various angles of attack, are within the acceptable limits, 

0 3au H<  (of linearized gas compression) and 0 2u H< . The maximum fluid velocities of 
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three absorbers are calculated by Eq. (2.35) 4.81, 3.48 and 3.71m/s and are within the 
acceptable speed limit.  

 
 TTLCGD1 TTLCGD2 TLCGD3 
Horizontal length of the liquid column B [m] 24.00 24.00 2.50 
Length of the upright  liquid column H [m] 1.40 0.80 0.60 
Cross-sectional area of the pipe [m2] AH=AB 0.0410 0.0430 0.1350 

Effective length 1 2effL L H B= = +  [m], Eq. (2.34a) 26.80 25.60 3.70 

Angle of the inclined pipe section β  [rad] 2π  2π  4π  

Equivalent mathematical pendulum length L0[m] Eq. 
(2.37) 0.19 0.11 0.04 

Geometry factorκ κ=  or 0 0T Tκ κ= , Eqs. (2.34a), 
(2.44),(3.14a),(3.44) 

0.67 0.71 0.91 

Equilibrium pressure head 0h  [m], n=1.2, Eq. (2.34a) 146.79 134.56 36.70 

Gas volume 0 H aV A H=  [m3], Eq. (2.38) 0.089000 0.050000 0.120000 
The mass ratio of the TLCGD-main system μ , Eqs. 
(2.97), (3.60) 

5.78% 5.50% 2.63% 

The mass ratio of the equivalent TMD-main 

system *μ , Eqs. (2.102), (3.66) 
2.20% 2.48% 2.10% 

Natural frequency ,A optf  [Hz] Eq. (2.104), (2.112) 1.09 1.43 2.3 

Optimal linear damping %, Eq. (2.113) 8.98 9.52 8.79 
Table 5.6: Layout of the modally tuned absorbers, gas volume and gas equilibrium pressure 
assigned, note again the rather high gad pressure in TTLCGD. 
 

 0 0.5 1 1.5 2
0

10

20

30

40

50
original structure
TTLCGD1 installed

DMF

 0 0.5 1 1.5 2
0

10

20

30

40

50
original structure
TTLCGD2 installed

DMF

  

0 0.5 1 1.5 2
0

10

20

30

40

50
original structure
TLCGD3 installed

DMF

 
Fig. 5.18: Individual frequency response curves without and with linearized absorbers 
attached, with Den Hartog’s optimal parameter.  
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 structure TTLCGD1 

Forcing direction v3 [mm] w3[mm] 3 3 3T Su r θ= [mm] u0 [mm] 
0α =  CM3 18 -52 45 233 

6α π=  CM3 11 -31 27 136 

4α π=  CM3 24 -70 61 314 

3α π=  CM3 36 -105 91 469 

2α π=  CM3 52 -152 132 677 

2 3α π=  CM3 54 -158 137 702 

3 4α π=  CM3 50 -144 125 643 

5 6α π=  CM3 42 -121 105 540 

Table 5.7a: Maximum displacements of three-storey structure in the first mode from 
time-harmonic excitation in α -directions, a0=0.1g, 2.58Sir m= . 
 

 structure TTLCGD2 
Forcing direction v3 [mm] w3[mm] 3 3 3T Su r θ= [mm] u0 [mm] 

0α =  CM3 -18 -36 -35 175 
6α π=  CM3 -34 -67 -64 325 

4α π=  CM3 -39 -76 -73 368 

3α π=  CM3 -41 -80 -76 387 

2α π=  CM3 -36 -72 -68 346 

2 3α π=  CM3 -22 -44 -42 212 

3 4α π=  CM3 -13 -25 -24 120 

5 6α π=  CM3 -2 -4 -4 21 

Table 5.7b: Maximum displacements of three-storey structure in the second mode from 
time-harmonic excitation in α -directions, a0=0.1g, 2.58Sir m= . 
 

 structure TLCGD3 
Forcing direction v3 [mm] w3[mm] 3 3 3T Su r θ= [mm] u0 [mm] 

CM3 -40 3 0α =  
A -55 3 19 257 

CM3 -34 2 6α π=  
A -46 2 16 215 

CM3 -27 2 4α π=  
A -36 2 13 171 

CM3 -18 1    3α π=  
A -25 1 8 115 

CM3 -2 0 2α π=  
A -3 0 1 15 

CM3 -22 1 2 3α π=  
A -30 1 10 141 

CM3 -30 2 
3 4α π=  

A -41 2 14 192 

CM3 -36 2 5 6α π=  
A -49 2 17 230 

Table 5.7c: Maximum displacements of three-storey structure in the third mode from 
time-harmonic excitation in α -directions, a0=0.1g, 2.58Sir m= . 
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5.5.5 Optimization of the TTLCGD-, TLCGD-structure system in 
the state space domain 

The fine tuned optimal natural circular frequencies and damping ratios by calling the 
function fminsearch of the performance index J, Eq. (2.123), are found to be 1 1.08Af Hz= , 

2 1.38Af Hz= , 3 2.23Af Hz= , 1 7.55%Aζ = , 2 8.89%Aζ = , 3 7.77%Aζ = . Tuning is 
achieved by properly adjusting the equilibrium gas pressure: 134, 115.82 and 32.93m. The 

Figures 5.19-5.26 show the weighed sum of the frequency responses 
18

1
( )i Si

i
s z ν

=
∑ , S =diag 

(10,10,10,10,10,10,10,10,10,1,1,1,1,1,1,1,1,1) of the building states for the original and the 
optimized system, in the logarithmic decibel scale in the relevant frequency window  
0 3f Hz≤ ≤ . The resonance curves with fine-tuning optimal parameters have broader peaks. 
The maximum fluid displacement amplitudes of three absorbers in Figs. 5.27-5.34 are well 
within the acceptable limits. The maximum fluid velocities of three absorbers are calculated by 
Eq. (2.35) 4.89, 3.47 and 4.20m/s and are also within the acceptable speed limit. 

 
The wall thickness and the estimated dead mass of the piping system are listed in Table 

5.8 for the three absorbers, designed according to Table 5.6. 
 

 TTLCGD1 TTLCGD2 TLCGD3

0h  [m] 146.79 134.56 36.70 

aH  [m] 2.17 1.16 0.89 
5

( )10 Dp− [N/m²] Eq.(2.128) 66.96 61.27 16.01 
pipe diameter 2r [mm] 228.5 234.0 414.6 

t [mm] Eq.(2.124) 5.5 5.1 2.4 

pm  [kg] Eq.(2.130) 952.71 819.79 131.92 
dead fluid-mass[kg] 606.21 545.49 85.95 
5

( )10 Dp− [N/m²] Eq.(2.129) 5.13 4.62 0.53 

Table 5.8: Dimensioning of circular steel pipes. 
 
The gauge pressure under expansion conditions turns out to be positive as listed in Table 5.8. 
The final dimensions of circular steel pipes must be changed according to their commercial 
availability. 

 



Multi-storey Strongly Plan-asymmetric Space Frame with TTLCGDs and TLCGDs 

 206

   

-40

-20

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3

frequency [Hz]

[dB]

original structure including the dead fluid mass of absorbers
linearized absorbers with Den Hartog's optimal parameters
linearized absorbers with optimal parameters fine tuning in the state space domain  

Fig. 5.19: Weighed sum of amplitude response functions for the 9-DOF linearized, 
three-storey, strongly asymmetric space frame with three linearized absorbers attached and 
without the absorbers (angle of attack of the time-harmonic base acceleration 0α = ), 
maximum gain 29.90dB. 
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Fig. 5.20: Weighed sum of amplitude response functions for the 9-DOF linearized, 
three-storey, strongly plan asymmetric space frame with three linearized absorbers attached 
and without the absorbers (angle of attack of the time-harmonic base acceleration 6α π= ), 
maximum gain 31.50dB.  
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Fig. 5.21: Weighed sum of amplitude response functions for the 9-DOF linearized, 
three-storey, strongly asymmetric space frame with three linearized absorbers attached and 
without the absorbers (angle of attack of the time-harmonic base acceleration 4α π= ), 
maximum gain 31.82dB.  
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Fig. 5.22: Weighed sum of amplitude response functions for the 9-DOF linearized, 
three-storey, strongly asymmetric space frame with three linearized absorbers attached and 
without the absorbers (angle of attack of the time-harmonic base acceleration 3α π= ), 
maximum gain 32.47dB.  
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Fig. 5.23: Weighed sum of amplitude response functions for the 9-DOF linearized, 
three-storey, strongly asymmetric space frame with three linearized absorbers attached and 
without the absorbers (angle of attack of the time-harmonic base acceleration 2α π= ), 
maximum gain 32.23dB.  
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Fig. 5.24: Weighed sum of amplitude response functions for the 9-DOF linearized, 
three-storey, strongly asymmetric space frame with three linearized absorbers attached and 
without the absorbers (angle of attack of the time-harmonic base acceleration 2 3α π= ), 
maximum gain 31.79dB.  
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Fig. 5.25: Weighed sum of amplitude response functions for the 9-DOF linearized, 
three-storey, strongly asymmetric space frame with three linearized absorbers attached and 
without the absorbers (angle of attack of the time-harmonic base acceleration 3 4α π= ), 
maximum gain 31.53dB.  
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Fig. 5.26: Weighed sum of amplitude response functions for the 9-DOF linearized, 
three-storey, strongly asymmetric space frame with three linearized absorbers attached and 
without the absorbers (angle of attack of the time-harmonic base acceleration 5 6α π= ), 
maximum gain 31.17dB.  
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Fig. 5.27: Amplitude response curves of fluid displacement u  of three linearized absorbers 
attached to the three-storey strongly asymmetric space frame. Absorbers either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 0α = ). 
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Fig. 5.28: Amplitude response curves of fluid displacement u  of three linearized absorbers 
attached to the three-storey strongly asymmetric space frame. Absorbers either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 6α π= ). 
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Fig. 5.29: Amplitude response curves of fluid displacement u  of three linearized absorbers 
attached to the three-storey strongly asymmetric space frame. Absorbers either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 4α π= ). 
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Fig. 5.30: Amplitude response curves of fluid displacement u  of three linearized absorbers 
attached to the three-storey strongly asymmetric space frame. Absorbers either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 3α π= ). 
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Fig. 5.31: Amplitude response curves of fluid displacement u  of three linearized absorbers 
attached to the three-storey strongly asymmetric space frame. Absorbers either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 2α π= ). 
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Fig. 5.32: Amplitude response curves of fluid displacement u  of three linearized absorbers 
attached to the three-storey strongly asymmetric space frame. Absorbers either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 2 3α π= ). 
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Fig. 5.33: Amplitude response curves of fluid displacement u  of three linearized absorbers 
attached to the three-storey strongly asymmetric space frame. Absorbers either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 3 4α π= ). 
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Fig. 5.34: Amplitude response curves of fluid displacement u  of three linearized absorbers 
attached to the three-storey strongly asymmetric space frame. Absorbers either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 5 6α π= ). 
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5.6 Four-storey strongly asymmetric space frame: 
numerical example 
    

The properties of building are: stiffness of corner cc-columns of each storey in y- and 
z-directions kyi=1508.5kN/m and kzi=536.68kN/m, stiffness of an additional cc-column of each 
storey yik′ =18.10×103kN/m and zik ′ =6.44×103kN/m. The eccentricity is ey=ez=1m. Floor 
mass unchanged, mS=16×103kg. 
  
5.6.1 Static dimensioning and a static safety criterion of the 
columns 

The critical load of a steel profile HEB-180 length 4m, is calculated 1763.82cF kN= − . 
The combined load without TLCD in column of first floor is 403.896F kN= − , thus 

c

F
F

−403.896 1
= = 0.23 <

−1763.82 3
.  

The corrected stiffness of column in y-direction becomes: 
2956.3 1478.2 0 0
1478.2 2956.3 1478.2 0

k /
0 1478.2 2956.3 1478.2
0 0 1478.2 1478.2

y kN m

−⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥−⎣ ⎦

. 

The corrected stiffness of column in z-direction becomes: 
1012.8 506.39 0 0
506.39 1012.8 506.39 0

k /
0 506.39 1012.8 506.39
0 0 506.39 506.39

z kN m

−⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥−⎣ ⎦

. 

 
5.6.2 Natural modes of the main structure 

The computed natural frequencies are 1.10, 1.44, 2.28, 3.17, 4.16, 4.85, 5.97, 6.37, 6.58, 
7.81, 10.08, 12.36 Hz, prestress of the column considered and extra column comes no weight 
of the floors. The natural vibration modes, which have been orthonormalized to obtain 

0,
M

1,
T
j i ij

i j
i j

δ
≠⎧

φ φ = = ⎨ =⎩
, are ,1 ,2 ,3 ,4

T
i i i i iφ φ φ φ φ= ⎡ ⎤⎣ ⎦ , 

[ ]2
1,1 10 0.044763 0.13334 0.112740 Tφ −= − , [ ]2

1,2 10 0.084127 0.25059 0.211890 Tφ −= − , 

[ ]2
1,3 10 0.113340 0.33763 0.285470 Tφ −= − , [ ]2

1,4 10 0.128890 0.38393 0.324630 Tφ −= − ; 

[ ]2
2,1 10 0.063041 0.120880 0.117930 Tφ −= , [ ]2

2,2 10 0.118480 0.227180 0.221640 Tφ −= , 

[ ]2

2,3 10 0.159630 0.306080 0.298610 Tφ −= , [ ]2

2,4 10 0.181520 0.348060 0.339570 Tφ −= ; 

[ ]2
3,1 10 0.1628400 0.010143 0.076649 Tφ −= − − , [ ]2

3,2 10 0.3060300 0.019063 0.144050 Tφ −= − − , 

[ ]2
3,3 10 0.4123200 0.025683 0.194080 Tφ −= − − , [ ]2

3,4 10 0.4688700 0.029206 0.220700 Tφ −= − − ; 

[ ]2

4,1 10 0.11334 0.337630 0.28547 Tφ −= − − , [ ]2

4,2 10 0.11334 0.337630 0.28547 Tφ −= − − , 

[ ]2

4,3 10 0 0 0 Tφ −= , [ ]2

4,4 10 0.113340 0.33763 0.285470 Tφ −= − ; 

[ ]2

5,1 10 0.15963 0.30608 0.29861 Tφ −= , [ ]2

5,2 10 0.15963 0.30608 0.29861 Tφ −= , 
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[ ]2

5,3 10 0 0 0 Tφ −= , [ ]2

5,4 10 0.15963 0.30608 0.29861 Tφ −= − − − ; 

[ ]2

6,1 10 0.12889 0.38393 0.32463 Tφ −= − , [ ]2

6,2 10 0.044763 0.13334 0.11274 Tφ −= − − , 

[ ]2

6,3 10 0.11334 0.33763 0.28547 Tφ −= − − , [ ]2

6,4 10 0.084127 0.25059 0.21189 Tφ −= − ; 

[ ]2

7,1 10 0.084127 0.25059 0.21189 Tφ −= − , [ ]2

7,2 10 0.12889 0.38393 0.32463 Tφ −= − − , 

[ ]2

7,3 10 0.11334 0.33763 0.28547 Tφ −= − , [ ]2

7,4 10 0.044763 0.13334 0.11274 Tφ −= − − ; 

[ ]2

8,1 10 0.18152 0.34806 0.33957 Tφ −= , [ ]2

8,2 10 0.063041 0.12088 0.11793 Tφ −= − − , 

[ ]2

8,3 10 0.15963 0.30608 0.29861 Tφ −= − − − , [ ]2

8,4 10 0.11848 0.22718 0.22164 Tφ −= ; 

[ ]2

9,1 10 0.41232 0.025683 0.19408 Tφ −= − , [ ]2

9,2 10 0.41232 0.025683 0.19408 Tφ −= − , 

[ ]2

9,3 10 0 0 0 Tφ −= , [ ]2

9,4 10 0.41232 0.025683 0.19408 Tφ −= − − ; 

[ ]2

10,1 10 0.11848 0.22718 0.22164 Tφ −= − − − , [ ]2

10,2 10 0.18152 0.34806 0.33957 Tφ −= , 

[ ]2

10,3 10 0.15963 0.30608 0.29861 Tφ −= − − − , [ ]2

10,4 10 0.063041 0.12088 0.11793 Tφ −= ; 

[ ]2

11,1 10 0.46887 0.029206 0.2207 Tφ −= − , [ ]2

11,2 10 0.16284 0.010143 0.076649 Tφ −= − − , 

[ ]2

11,3 10 0.41232 0.025683 0.19408 Tφ −= − − , [ ]2

11,4 10 0.30603 0.019063 0.14405 Tφ −= − ; 

[ ]2

12,1 10 0.30603 0.019063 0.14405 Tφ −= − − , [ ]2

12,2 10 0.46887 0.029206 0.2207 Tφ −= − , 

[ ]2

12,3 10 0.41232 0.025683 0.19408 Tφ −= − − , [ ]2

12,4 10 0.16284 0.010143 0.076649 Tφ −= − . 
 
5.6.3 Position of the modal centers of velocity 

The coordinates of the modal centers of velocity CV with corrected column stiffness are 
shown in Table 5.9 for the relevant first four modes subjected to effective damping. 

 
mode 1 2 3 4 
floor 1 (3.05,1.03) (-2.65,1.38) (-0.34,-5.49) (3.05,1.03) 
floor 2 (3.05,1.03) (-2.65,1.38) (-0.34,-5.49) (3.05,1.03) 
floor 3 (3.05,1.03) (-2.65,1.38) (-0.34,-5.49) (2.03,-0.77) 
floor 4 (3.05,1.03) (-2.65,1.38) (-0.34,-5.49) (3.05,1.03) 

           Table 5.9: The coordinates of the centers of velocity CV for 4 modes.  
 
(i) Installation of the absorbers 

With the first four modal centers of velocity considered, two TTLCGDs to suppress the 
first and second mode, one plane TLCGD on the long side tuned to the third mode are 
positioned on the top floor. With respected to the fourth mode one TLCGD is installed along 
the short side on the second floor. 
Fourth floor:                         Second floor: 

                 
Fig. 5.35: Installation of absorbers,  the centers of velocity of second floor, 
  the centers of velocity of fourth floor.  
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 TTLCGD1 TTLCGD2 TLCGD3 TLCGD4
Horizontal length of the liquid column B [m] 24.00 24.00 2.50 3.00 
Length of the upright  liquid column H [m] 1.50 1.00 0.80 0.50 

Cross-sectional area of the pipe [m2] AH=AB 0.0520 0.0540 0.1700 0.0380 

Effective length 1 2effL L H B= = +  [m], Eq. 
(2.34a) 

27.00 26.00 4.10 4.09 

Angle of the inclined pipe section β  [rad] 2π  2π  4π  4π  

Equivalent mathematical pendulum length L0[m] 
Eq. (2.37) 0.20 0.12 0.05 0.02 

Geometry factorκ κ=  or 0 0T Tκ κ= , Eqs. 
(2.34a), (2.44),(3.14a),(3.44) 

0.66 0.69 0.89 0.93 

Equilibrium pressure head 0h  [m], n=1.2, Eq. 
(2.34a) 

146.79 159.00 51.38 57.49 

Gas volume 0 H aV A H=  [m3], Eq. (2.38) 0.120000 0.080000 0.200000 0.030000
The mass ratio of the TLCGD-main system μ , Eqs. 
(2.97), (3.60) 

5.85% 5.71% 2.94% 0.95% 

The mass ratio of the equivalent TMD-main 

system *μ , Eqs. (2.102), (3.66) 
2.17% 2.43% 2.24% 0.80% 

Natural frequency ,A optf  [Hz] Eq. (2.104), (2.112) 1.06 1.39 2.23 3.15 

Optimal linear damping %, Eq. (2.113) 8.92 9.42 9.06 5.45 

Table 5.10: Layout of the modally tuned absorbers, gas volume and gas equilibrium pressure 
assigned, note the rather high gas pressure in TTLCGD. 
 

5.6.4 TTLCGD and TLCGD design, Den Hartog’ optimization 
The fluid mass is chosen 1 1400fm kg= , 2 1400fm kg= , 3 700fm kg= and 

4 150fm kg=  of water. Dimensions of four absorbers tuned first by means of the TMD 

analogy applying Den Hartog’s formulas, Eqs. (3.66)- (3.68) for TTLCGDs ( 2β π= ) and 
Eqs. (2.102)- (2.104) for TLCGDs ( 4β π= ) are summarized in Table 5.10.  

 
 structure TTLCGD1

Forcing 
direction 

v2 
[mm] 

w2  
[mm]

2 2 2T Su r θ=

[mm] 
v4 

[mm]
w4 

[mm]
4 4 4T Su r θ=

[mm] 
u0 [mm]

0α =  CMi 12 -37 31 19 -57 48 248 

6α π=  CMi 8 -23 20 12 -35 30 154 

4α π=  CMi 17 -52 44 27 -80 67 345 

3α π=  CMi 26 -77 65 40 -118 100 514 

2α π=  CMi 37 -111 94 57 -170 143 736 

2 3α π= CMi 38 -114 97 59 -175 148 761 

3 4α π= CMi 35 -104 88 54 -160 135 696 

5 6α π= CMi 29 -88 74 45 -134 113 583 

Table 5.11a: Maximum displacements of four-storey structure in the first mode from 
time-harmonic excitation in α -directions, a0=0.1g, 2.58Sir m= . 
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Fig. 5.36: Individual frequency response curves without and with linearized absorbers 
attached, with Den Hartog’s optimal parameters.  

 
The dynamic magnification factor (DMF) calculated with Matlab 7.01, linearized 

damping of the absorbers considered, is illustrated in Figure 5. 36. The effective modal 
damping coefficients of the system are increased from 1% to 1 5.19%effζ = , 2 4.97%effζ = , 

3 6.64%effζ =  and 4 3.9%effζ = , illustrated in Fig. 5.36. From Table 5.11a-d it follows that 
all maximum fluid displacements occuring for various angles of attack, are within the 
acceptable limits, 0 3au H<  (of linearized gas compression) and 0 2u H< . The maximum 
fluid velocities of four absorbers are calculated by Eq. (2.35) 5.07, 3.61, 3.62 and 2.30m/s and 
are within the acceptable speed limit. 
 

 Structure TTLCGD2
Forcing 
direction 

v2 
[mm] 

w2  
[mm]

2 2 2T Su r θ=

[mm] 
v4  

[mm]
w4 

[mm]
4 4 4T Su r θ=  
[mm] 

u0 [mm]

0α =  CMi 13 25 25 20 39 38 191 

6α π=  CMi 24 46 45 37 71 69 349 

4α π=  CMi 27 52 51 42 80 78 394 

3α π=  CMi 29 55 54 44 84 82 413 

2α π=  CMi 25 49 48 39 75 73 366 

2 3α π= CMi 15 29 29 24 45 44 222 

3 4α π= CMi 9 16 16 13 25 25 124 

5 6α π= CMi 1 2 2 2 4 4 18 

Table 5.11b: Maximum displacements of four-storey structure in the second mode from 
time-harmonic excitation in α -directions, a0=0.1g, 2.58Sir m= . 
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 Structure TLCGD3
Forcing 
direction 

v2  
[mm] 

w2  
[mm] 

2 2 2T Su r θ=

[mm] 
v4 

[mm] 
w4  

[mm] 
4 4 4T Su r θ=

[mm] 
u0  

[mm] 
CM4 42 -3 0α =  28 -2 -13 A 58 -3 -20 258 

CM4 36 -2 6α π=  23 -1 -11 A 48 -2 -17 216 

CM4 28 -2 4α π=  18 -1 -9 
A 39 -2 

-13 172 

CM4 19 -1    3α π=  12 -1 -6 A 26 -1 -9 116 

CM4 3 0 2α π=  2 0 -1 A 3 0 -1 150 

CM4 23 -1 2 3α π=  15 -1 -7 A 32 -1 -11 142 

CM4 32 -2 3 4α π=  21 -1 -10 A 43 -2 -15 193 

CM4 38 -2 5 6α π=  25 -2 -12 A 52 -2 -18 231 

Table 5.11c: Maximum displacements of four-storey structure in the third mode from 
time-harmonic excitation in α -directions, a0=0.1g, 2.58Sir m= . 
 

 Structure TLCGD4 
Forcing 
direction 

v2  
[mm] 

w2 
[mm]

2 2 2T Su r θ=

[mm] 
v4  

[mm]
w4 

[mm]
4 4 4T Su r θ=

[mm] 
u0  

[mm] 
CM2 -1 2 0α =  
A -1 4 -2 1 -2 2 34 

CM2 -1 1.49 6α π=  A -1 3.45 -1 1 -1 1 29 

CM2 -1 3.10 4α π=  A -1 7.15 -3 1 -3 3 58 

CM2 -2 4.49 3α π=  A -2 10.38 -4 2 -4 4 83 

CM2 -2 6.30 2α π=  A -2 14.55 -5 2 -6 5 114 

CM2 -2 6.42 2 3α π=  A -2 14.83 -5 2 -6 5 116 

CM2 -2 5.82 3 4α π=  A -2 13.44 -5 2 -6 5 104 

CM2 -2 4.82 5 6α π=  A -2 11.14 -4 2 -5 4 86 

Table 5.11d: Maximum displacements of four-storey structure in the fourth mode from 
time-harmonic excitation in α -directions, a0=0.1g, 2.58Sir m= . 
 
5.6.5 Optimization of the TTLCGD-, TLCGD-mainstructure 
system in the state space domain 

The fine tuned optimal natural frequencies and damping ratios by calling the function 
fminsearch of the performance index J, Eq. (2.123), of the Matlab Optimization Toolbox are 
found to be 1 1.05Af Hz= , 2 1.34Af Hz= , 3 2.16Af Hz= , 3 3.09Af Hz= , 1 7.35%Aζ = , 

2 8.65%Aζ = , 3 8.39%Aζ = , 3 5.41%Aζ = . Fine tuning requires the equilibrium gas pressure 
adjusted to 132.80, 136.80, 45.77 and 54.85m. Figs. 5.37-5.44 illustrate the weighed sum of the 

frequency response functions 
24

1
( )i Si

i
s z ν

=
∑ , S =diag (10,10,10,10,10,10,10,10,10,10,10,10,1,1, 
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1,1,1,1,1,1,1,1,1,1) of the building states for the original and the optimized system under 
various angles of attack, in the logarithmic decibel scale in the relevant frequency window 
0 3.5f Hz≤ ≤ . The resonance curves with fine-tuning optimal parameters have broader peaks. 
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Fig. 5.37: Weighed sum of amplitude response functions for the 12 DOF linearized, 
four-storey, strongly asymmetric space frame with four linearized absorbers attached and 
without the absorbers (angle of attack of the time-harmonic base acceleration 0α = ), 
maximum gain 30.17dB. 
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Fig. 5.38: Weighed sum of amplitude response functions for the 12 DOF linearized, 
four-storey, strongly asymmetric space frame with four linearized absorbers attached and 
without the absorbers (angle of attack of the time-harmonic base acceleration 6α π= ), 
maximum gain 31.50dB. 
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Fig. 5.39: Weighed sum of amplitude response functions for the 12 DOF linearized, 
four-storey, strongly asymmetric space frame with four linearized absorbers attached and 
without the absorbers (angle of attack of the time-harmonic base acceleration 4α π= ), 
maximum gain 31.83dB. 
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Fig. 5.40: Weighed sum of amplitude response functions for the 12 DOF linearized, 
four-storey, strongly asymmetric space frame with four linearized absorbers attached and 
without the absorbers (angle of attack of the time-harmonic base acceleration 3α π= ), 
maximum gain 32.65dB. 
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Fig. 5.41: Weighed sum of amplitude response functions for the 12 DOF linearized 
four-storey, strongly asymmetric space frame with four linearized absorbers attached and 
without the absorbers (angle of attack of the time-harmonic base acceleration 2α π= ), 
maximum gain 32.11dB. 
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Fig. 5.42: Weighed sum of amplitude response functions for the 12 DOF linearized, 
four-storey, strongly asymmetric space frame with four linearized absorbers attached and 
without the absorbers (angle of attack of the time-harmonic base acceleration 2 3α π= ), 
maximum gain 31.68dB. 
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Fig. 5.43: Weighed sum of amplitude response functions for the 12 DOF linearized, 
four-storey, strongly asymmetric space frame with four linearized absorbers attached and 
without the absorbers (angle of attack of the time-harmonic base acceleration 3 4α π= ), 
maximum gain 31.43dB. 
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Fig. 5.44: Weighed sum of amplitude response functions for the 12 DOF linearized, 
four-storey, strongly asymmetric space frame with four linearized absorbers attached and 
without the absorbers (angle of attack of the time-harmonic base acceleration 5 6α π= ), 
maximum gain 31.08dB. 

The maximum fluid displacement amplitudes of three absorbers in Figs.5.45-5.52 are 
well within the acceptable limits. The maximum fluid velocities of four absorbers are 
calculated by Eq. (2.35) 5.15, 3.45, 4.07 and 1.94m/s and are also within the acceptable speed 
limit. 
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Fig. 5.45: Amplitude response curves of fluid displacement u  of four linearized absorbers 
attached to the four-storey strongly asymmetric space frame. Absorbers either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 0α = ). 
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Fig. 5.46: Amplitude response curves of fluid displacement u  of four linearized absorbers 
attached to the four-storey strongly asymmetric space frame. Absorbers either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 6α π= ). 
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Fig. 5.47: Amplitude response curves of fluid displacement u  of four linearized absorbers 
attached to the four-storey strongly asymmetric space frame. Absorbers either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 4α π= ). 
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Fig. 5.48: Amplitude response curves of fluid displacement u  of four linearized absorbers 
attached to the four-storey strongly asymmetric space frame. Absorbers either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 3α π= ). 
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Fig. 5.49: Amplitude response curves of fluid displacement u  of four linearized absorbers 
attached to the four-storey strongly asymmetric space frame. Absorbers either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 2α π= ). 
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Fig. 5.50: Amplitude response curves of fluid displacement u  of four linearized absorbers 
attached to the four-storey strongly asymmetric space frame. Absorbers either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 2 3α π= ). 
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Fig. 5.51: Amplitude response curves of fluid displacement u  of four linearized absorbers 
attached to the four-storey strongly asymmetric space frame. Absorbers either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 3 4α π= ). 
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Fig. 5.52: Amplitude response curves of fluid displacement u  of four linearized absorbers 
attached to the four-storey strongly asymmetric space frame. Absorbers either with Den 
Hartog’s optimal parameters or those resulting from fine-tuning in state space ( 5 6α π= ). 
 
The wall thickness and the dead mass of the piping system are listed in Table 5.12 for the four 
absorbers, designed according to Table 5.10. The gauge pressure under expansion conditions 
turns out to be positive as listed in Table 5.12. The final dimensions of circular steel pipes 
must be changed according to their commercial availability. 
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 TLCGD1 TLCGD2 TLCGD3 TLCGD4 

0h  [m] 146.79 159.00 51.38 57.49 

aH  [m] 2.31 1.48 1.18 0.80 
5

( )10 Dp− [N/m²] Eq.(2.128) 66.97 72.58 22.81 25.62 

pipe diameter 2r [mm] 257.3 262.2 465.2 220 
t [mm] Eq.(2.124) 6.2 6.8 3.8 2.0 

pm  [kg] Eq.(2.130) 1226.8 1265 278.83 60.51 

dead fluid-mass[kg] 790.16 733.46 145.53 20.27 
5

( )10 Dp− [N/m²] Eq.(2.129) 5.13 5.64 1.15 1.40 

Table 5.12: Dimensioning of circular steel pipes. 
 

5.6.6 Forcing by the NS-El Centro seismogram under varying 
angles of attack 
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Fig. 5.53: RMS responses for floor displacement and acceleration of four-storey strongly 
asymmetric building (El Centro 0.35g , angle of attack 0α = , 2.58Sir m= ). 
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Fig. 5.54: RMS responses for floor displacement and acceleration of four-storey strongly 
asymmetric building (El Centro 0.35g , angle of attack 6α π= , 2.58Sir m= ). 
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Fig. 5.55: RMS responses for floor displacement and acceleration of four-storey strongly 
asymmetric building (El Centro 0.35g , angle of attack 4α π= , 2.58Sir m= ). 
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Fig. 5.56: RMS responses for floor displacement and acceleration of four-storey strongly 
asymmetric building (El Centro 0.35g , angle of attack 3α π= , 2.58Sir m= ). 
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Fig. 5.57: RMS responses for floor displacement and acceleration of four-storey strongly 
asymmetric building (El Centro 0.35g , angle of attack 2α π= , 2.58Sir m= ). 
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Fig. 5.58: RMS responses for floor displacement and acceleration of four-storey strongly 
asymmetric building (El Centro 0.35g , angle of attack 2 3α π= , 2.58Sir m= ). 
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Fig. 5.59: RMS responses for floor displacement and acceleration of four-storey strongly 
asymmetric building (El Centro 0.35g , angle of attack 3 4α π= , 2.58Sir m= ). 
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Fig. 5.60: RMS responses for floor displacement and acceleration of four-storey strongly 
asymmetric building (El Centro 0.35g , angle of attack 5 6α π= , 2.58Sir m= ). 

 
This Section illustrates the vibration control effectiveness of TLCGDs for the four-storey 

strongly asymmetric building under bi-directional horizontal NS-El Centro earthquake. Figs. 
5.53-5.82 show the displacements and accelerations for the root mean square (RMS) 
responses2 of structure with and without absorbers for four floors. The RMS value is defined in 
Eq. (4.26).  
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2 N m

N m

rad

A 30-storey high-rise asymmetric structure is analysed using passive TLCGD control. The 
building data were obtained by Huo L.S.1. The homogenously distributed mass of each storey is 

, the moment of inertia with respect to the mass center of each storey is 

, resulting shear stiffness in y and z direction is  and 

, respectively. The torsional stiffness of a storey is 

. The eccentric distance of the center of shear from the mass center is 
e

3384 10 kg×
65.96 10 kg m× ⋅ 58.64 10 /yk k= ×

57.8 10 /zk k= ×
81.38 10 /tk kN m= × ⋅

y=4m and ez=3m. Since every storey has three degrees of freedom assigned, the structure is 
described by 90 DOF. The first 12 (undamped) natural frequencies are 0.348, 0.384, 1.042, 
1.151, 1.343, 1.734, 1.915, 2.421, 2.673, 3.102, 3.425 and 3.774 Hz, respectively.  

 
6.1 Installation of the TLCGD  

 
The first three mode shapes are exaggerated and plotted in Figs. 6.1-6.3.  

            
Fig. 6.1: First mode , 30th floor. Fig. 6.2: Second mode , 30th floor. 1 0.348f Hz= 2 0.384f Hz=

       CV1 (34.87, 14.94)                       CV2 (-50.48, 116.78) 

 
Fig. 6.3: Third mode , 10th floor . C  (34.87, 14.94). 3 1.042f Hz= V3

   
Three modal centers of velocity fall outside the floor plan, the structure is considered to 

be moderately asymmetric. Two TLCGDs are installed on top of the structure to mitigate the 
fundamental and second vibration mode. TLCGD1 is installed z-parallel in the left side. 
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TLCGD2 can be installed y-parallel at the lower edge. TLCGD3 is installed at floor level ten 
and z-parallel in the left side, as illustrated in Figure 6.4. A model reduction from 90 to 12 
degrees of freedom using the method of modal truncation is generated by keeping the first 12 
vibration modes, see Clough-Penzien2, page 158. The relevant first three mode shapes are 
calculated and given by Eq. (2.18). 

30th floor                                  10th floor 

                 
Fig. 6.4: Installation of TLCGD1, 2, 3,   the modal centers of velocity of 10th floor,          
  the modal centers of velocity of 30th floor. 
 
6.2 TLCGD design, Den Hartog’ optimization 

The fluid mass is chosen as 3
1 270 10fm kg= × , 3

2 250 10fm kg= ×  and 
3

3 50 10fm kg= ×  of water. Dimensions of the three TLCGDs tuned first by means of the 
TMD analogy Eqs. (2.102)- (2.104) applying Den Hartog’s formulas are summarized in Table 
6.1. The modal dynamic magnification factor (DMF) calculated with Matlab 7.03, 
equivalently linearized damping of the TLCGD considered, is illustrated in Figure 6.5. 

 
 TLCGD1 TLCGD2 TLCGD3

Horizontal length of the liquid column B [m] 10.00 10.00 3.00 
Inclined length of the liquid column H [m] 5.40 5.00 1.00 
Cross-sectional area of the pipe [m2] AH=ABB 12.98 12.50 10.00 

Effective length  [m], Eq. (2.34a) 1 2effL L H= = + B 20.80 20.00 5.00 

Angle of the inclined pipe section β  [rad] 4π  4π  4π  
Equivalent mathematical pendulum length L0 [m], Eq. 
(2.37) 2.06 1.69 0.23 

Geometry factorκ κ= , Eqs. (2.34a), (2.44) 0.85 0.85 0.88 

Geometry factor 3κ , Eq. (2.59) 1.00 1.10 1.84 

Equilibrium pressure head  [m], n=1.2, Eq. (2.34a) 0h 35.47 39.14 30.00 

Gas volume 0 H aV A H=  [m3], Eq. (2.38) 105.88 93.75 30.10 
The mass ratio of the TLCGD-main system μ , Eq. (2.97) 5.84% 4.58% 1.06% 

The mass ratio of the equivalent TMD-main system *μ , 
Eq. (2.102) 

4.12% 3.29% 1.23% 

Natural frequency ,A optf  [Hz] Eq. (2.104), (2.112) 0.33 0.37 1.03 

Optimal linear damping %, Eq. (2.113) 12.09 10.93 5.55 

Table 6.1: Layout of the modally tuned TLCGDs, gas volume and gas equilibrium pressure 
assigned, cf. Fig. (6.4). 
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Fig. 6.5: Modal frequency response curves without and with linearized TLCGDs attached, 
Eqs. (2.106) and (2.110), TLCGDs with Den Hartog’s optimal parameters. 
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ω

 
The TLCGD in its passive mode considerably reduces steady state vibrations of lightly 

damped structures similarly to an increase of the effective structural damping. The effective 
modal damping coefficients of the system in each mode are increased from 1%Sjζ =  to 

1 7.08%effζ = , 2 6.47%effζ =  and 3 3.77%effζ = . 
 

 structure TLCGD1 

Forcing direction v30[mm] w30 [mm] 30T Su r θ= [mm] u0 [mm] 
CM 113 -263 0α =  
A 113 -301 30 979 

CM 42 -98 6α π=  A 42 -112 11 421 

CM 116 -271 4α π=  A 116 -309 31 1080 

CM 183 -427 3α π=  A 183 -488 48 1673 

CM 276 -644 2α π=  A 276 -736 73 2488 

CM 295 -688 2 3α π=  A 295 -787 78 2639 

CM 274 -640 3 4α π=  A 274 -732 72 2445 

CM 235 -549 5 6α π=  A 235 -627 62 2085 

Table 6.2a: Maximum displacements in the first mode from time-harmonic excitation in 
α -directions, a0=0.04g, . 3.94Sr m=
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 structure TLCGD2 

Forcing direction v30[mm] w30 [mm] 30T Su r θ= [mm] u0 [mm] 
CM 584 252 0α =  
A 609 252 20 2294 

CM 626 271 6α π=  A 653 271 21 2442 

CM 583 252 4α π=  A 608 252 20 2267 

CM 501 216 3α π=  A 522 216 17 1937 

CM 242 105 2α π=  A 252 105 8 920 

CM 85 -37 2 3α π=  A 89 37 3 374 

CM 243 105 3 4α π=  A 253 105 8 984 

CM 385 166 5 6α π=  A 402 166 13 1534 

Table 6.2b: Maximum displacements in the second mode from time-harmonic excitation in 
α -directions, a0=0.04g, . 3.94Sr m=
 

 structure TLCGD3 

Forcing direction v10[mm] w10 [mm] 10T Su r θ= [mm] u0 [mm] 
CM -8 18 0α =  
A -8 21 -2 154 

CM -3 7 6α π=  A -3 8 -1 73 

CM -8 19 4α π=  A -8 23 -2 178 

CM -13 31 3α π=  A -13 35 -3 272 

CM -20 46 2α π=  A -20 53 -5 401 

CM -21 49 2 3α π=  A -21 56 -6 423 

CM -20 46 3 4α π=  A -20 52 -5 390 

CM -17 39 5 6α π=  A -17 45 -4 332 

Table 6.2c: Maximum displacements in the third mode from time-harmonic excitation in 
α -directions, a0=0.04g, . 3.94Sr m=
 
From Table 6.2a-c it follows that all of the maximum fluid displacements for varying angles 
of attack of the time harmonic excitation, are within the acceptable limits, 0 3au H<  (of 
linearized gas compression) and 0 2u H< . The maximum fluid velocities of three TLCGDs 
are calculated by Eq. (2.35) 5.47, 5.68 and 2.74m/s and are within the acceptable speed limit. 
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The wall thickness and the estimated dead mass of the piping system are listed in Table 

6.3 for the three TLCGDs, designed according to Table 6.1 
 

 TLCGD1 TLCGD2 TLCGD3

0h  [m] 35.47 39.14 30.00 

aH  [m] 8.16 7.50 3.01 
5

( )10 Dp− [N/m²] Eq.(2.128) 15.77 17.44 12.94 
pipe diameter 2r [mm] 4065 3990 3568 

t [mm] Eq.(2.124) 22.9 24.9 16.5 

pm  [kg] Eq.(2.130) 48.47 10× 48.50 10× 41.59 10×

dead fluid-mass[kg] 47.49 10× 46.94 10× 41.13 10×
5

( )10 Dp− [N/m²] Eq.(2.129) 0.48 0.64 0.25 

Table 6.3: Dimensioning of circular steel pipes. 
 
The gauge pressure under expansion conditions turns out to be positive as listed in Table 6.3. 
The final dimensions of circular steel pipes must be changed according to their commercial 
availability. 
 

6.3 Smaller TLCGD-units in parallel action, fine-tuning in 
state space 
 

Since the cross-sectional areas of the TLCGDs listed in Table 6.1 are much too large for 
practical applications, small units in parallel action must be considered. For TLCGD1 and 
TLCGD2, six units with cross sections of  and 2.08m22.16H BA A m= = 2, respectively and for 

TLCGD3 four units with a cross section of  are proposed. Thus, all together 
16 TLCGDs are to be installed, and the numerical optimization in state space is performed with 
respect to the 32 free parameter 

22.5H BA A m= =

if  and iζ , i=1-16, where initially all natural frequencies and 
damping ratios were chosen according the Den Hartog optimization of Table 6.1 to be 

0.33if Hz= , 9.53iζ = % , i=1-6, 0.37if Hz= , 9.62iζ = % , i=7-12, and 1.03if Hz= , 
5.55iζ = % , i=13-16.  
Minimization of the performance index J, Eq. (2.123), is performed numerically by calling 

the function fminsearch of the Matlab Optimization Toolbox. The fine tuned optimal natural 
circular frequencies, damping ratios and the equilibrium pressure head  of 16 TLCGD-units 
turn out as listed in Table 6.4. The Figures 6.6-6.13 show the frequency response of the 

weighed sum

0h

24

1
( )i Si

i
s z ν

=
∑ , =diag (10,10,10,10,10,10,10,10,10,10,10,10,1,1,1,1,1,1,1,1,1,1,1, S

1) of the building states for the original and the optimized and fine tuned system, in the 
logarithmic decibel scale, defined by [ ] 20 log=x dB x  in the relevant frequency window 
0 1.2f Hz≤ ≤ .The resonance curves with fine-tuning optimal parameters have broader peaks. 
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 TLCGD1 
 1 2 3 4 5 6 

if [Hz] 0.383 0.361 0.329 0.306 0.309 0.340

iζ [%] 14.85 9.39 5.75 5.61 15.09 11.06

0h [m] 44.38 38.65 31.11 26.06 26.81 33.67
 TLCGD2 
 1 2 3 4 5 6 

if [Hz] 0.360 0.362 0.381 0.332 0.370 0.425

iζ [%] 15.62 11.11 14.14 5.77 4.60 5.89

0h [m] 33.85 34.20 38.51 27.96 36.03 49.14
 TLCGD3   
 1 2 3 4   

if [Hz] 1.088 1.117 1.028 0.990   

iζ [%] 2.71 1.30 1.86 1.80   

0h [m] 33.72 35.66 29.87 27.55   

Table 6.4: Fine tuned optimal parameters and the equilibrium pressure head of TLCGDs. 
 
It is obvious that the parameter optimization reduced the vibration amplitude at the resonant 
peaks tremendously. 
 
6.4 Forcing of the 30 storey moderately asymmetric 
building by the NS-El Centro seismogram under varying 
angles of attack 

 
The maximum acceleration of the NS-El Centro earthquake record is set to 0. . 

Varying the angle of attack refers to the effect of bidirectional forcing of the thirty-storey 
moderately asymmetric space frame without and with 16 small TLCGD-units. The results are 
presented graphically in Figs. 6.14- 6.21, where the relative floor displacements with respect to 
the base and the relative floor accelerations for the root mean square (RMS) response

35g

4 are 
displayed. The RMS value is defined in Eq. (4.26). 
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Fig. 6.6: Weighed sum of amplitude response functions for the 90-DOF linearized, 
thirty-storey asymmetric space frame, with linearized TLCGDs attached and without the 
TLCGDs (angle of attack of the time-harmonic base acceleration 0α = ), maximum gain 
34.89dB.  
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Fig. 6.7: Weighed sum of amplitude response functions for the 90-DOF linearized, 
thirty-storey asymmetric space frame, with linearized TLCGDs attached and without the 
TLCGDs (angle of attack of the time-harmonic base acceleration 6α π= ), maximum gain 
37.10dB.  
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Fig. 6.8: Weighed sum of amplitude response functions for the 90-DOF linearized, 
thirty-storey asymmetric space frame, with linearized TLCGDs attached and without the 
TLCGDs (angle of attack of the time-harmonic base acceleration 4α π= ), maximum gain 
34.86dB.  
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Fig. 6.9: Weighed sum of amplitude response functions for the 90-DOF linearized, 
thirty-storey asymmetric space frame, with linearized TLCGDs attached and without the 
TLCGDs (angle of attack of the time-harmonic base acceleration 3α π= ), maximum gain 
32.01dB.  
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Fig. 6.10: Weighed sum of amplitude response functions for the 90-DOF linearized, 
thirty-storey asymmetric space frame, with linearized TLCGDs attached and without the 
TLCGDs (angle of attack of the time-harmonic base acceleration 2α π= ), maximum gain 
37.46dB.  
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Fig. 6.11: Weighed sum of amplitude response functions for the 90-DOF linearized, 
thirty-storey asymmetric space frame, with linearized TLCGDs attached and without the 
TLCGDs (angle of attack of the time-harmonic base acceleration 2 3α π= ), maximum gain 
36.26dB.  
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Fig. 6.12: Weighed sum of amplitude response functions for the 90-DOF linearized, 
thirty-storey asymmetric space frame, with linearized TLCGDs attached and without the 
TLCGDs (angle of attack of the time-harmonic base acceleration 3 4α π= ), maximum gain 
35.36dB.  
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Fig. 6.13: Weighed sum of amplitude response functions for the 90-DOF linearized, 
thirty-storey asymmetric space frame, with linearized TLCGDs attached and without the 
TLCGDs (angle of attack of the time-harmonic base acceleration 5 6α π= ), maximum gain 
34.15dB.  
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Fig. 6.14: RMS responses for floor displacement and acceleration of the thirty-storey 
asymmetric building (El Centro , angle of attack 0α = ). 0.35g
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Fig. 6.15: RMS responses for floor displacement and acceleration of the thirty-storey 
asymmetric building (El Centro , angle of attack 6α π= ). 0.35g
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Fig. 6.16: RMS responses for floor displacement and acceleration of the thirty-storey 
asymmetric building (El Centro , angle of attack 4α π= ). 0.35g
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Fig. 6.17: RMS responses for floor displacement and acceleration of the thirty-storey 
asymmetric building (El Centro , angle of attack 3α π= ). 0.35g
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Fig. 6.18: RMS responses for floor displacement and acceleration of the thirty-storey 
asymmetric building (El Centro , angle of attack 2α π= ). 0.35g
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Fig. 6.19: RMS responses for floor displacement and acceleration of the thirty-storey 
asymmetric building (El Centro , angle of attack 2 3α π= ). 0.35g
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Fig. 6.20: RMS responses for floor displacement and acceleration of the thirty-storey 
asymmetric building (El Centro , angle of attack 3 4α π= ). 0.35g

0

5

10

15

20

25

30

0 0.1 0.2 0.3
RMS displacement 
in y-direction [m]

flo
or

original structure
TLCD installed

0

5

10

15

20

25

30

0 0.1 0.2 0.3
RMS displacement 
in z-direction [m]

flo
or

original structure
TLCD installed

0

5

10

15

20

25

30

0 0.02 0.04 0.06
RMS rotation about
 x-axis[m] rs=3.94m

flo
or

original structure
TLCD installed

 



Thirty-storey Moderately Asymmetric Structure 

 248

0

5

10

15

20

25

30

0 0.1 0.2 0.3
RMS acceleration 
in y-direction [g]

flo
or

original structure
TLCD installed

0

5

10

15

20

25

30

0 0.1 0.2 0.3
0

5

10

15

20

25

30

0 0.02 0.04 0.06
RMS acceleration about
x-axis [g] rs=3.94m

flo
or

original structure
TLCD installed

 

RMS acceleration 
in z-direction [g]

flo
or

original structure
TLCD installed

Fig. 6.21: RMS responses for floor displacement and acceleration of the thirty-storey 
asymmetric building (El Centro , angle of attack 5 6α π= ). 0.35g
 
  From these numerical results, TLCGDs installed and tuned to the structural frequency 
can effectively reduce the translational and torsional response of structures. 
 

Comparing the time histories of structural seismic response with those given by Huo 
L.S.1, namely the top floor displacements are illustrated in Fig.6.22, achieved in this section, 
ground action of El Centro 0. and angle of attack35g 3α π= . The figure clearly indicates the 
superiority of the fine tuned 16 TLCGDs, effective damping is much larger. 
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Fig. 6.22: Relative top floor displacements of center of mass, v, w and rotation u =rT Sθ 
without and with TLCGDs attached, 3.94Sr m= . 
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7 Conclusions  
 

In this dissertation, a detailed investigation of the coupled torsional vibration control of 
asymmetric structures by using tuned liquid column gas damper (TLCGD) and torsional 
tuned liquid column gas damper (TTLCGD) has been performed. Theoretical studies and 
computer simulations have been carried out to investigate the control performance and 
effectiveness of these absorbers. Many useful conclusions were obtained within the 
dissertation, which may be considered as guidelines for future applications of the damper. 
The main contributions and conclusions made in this dissertation are summarized as follows: 

1. We define moderate asymmetry if the modal centers of velocity fall outside of the 
floor plan. The ideal position of the trace midplane of the U-shaped TLCGD 
requires its normal distance to the center of velocity maximum. For a strongly 
asymmetric building, the velocity centers of several modes fall inside the floor 
plan. The novel TTLCGD with its horizontal curved piping section enclosing the 
center for best efficiency becomes superior.  

2. The equations of relative fluid motion in TLCGD and TTLCGD are derived using 
a generalized Bernoulli equation of relative streamlines in a moving frame. The 
interaction forces between the moving supporting floor and damper are 
determined for structural synthesis in the dynamic analysis. 

3. The general analogy between TMD and TLCGD, TTMD and TTLCGD when 
attached to main single storey- and multi storey structures under the horizontal 
base acceleration has been established the first time in this dissertation. Thus, the 
classical tuning procedure can be applied. Adjusting the equilibrium gas pressure 
allows easy frequency tuning and makes final tuning possible in a most simple 
way. 

4. It is concluded from the numerical studies that TLCGD is very promising in the 
moderately asymmetric structure and TTLCGD can be used in the strongly 
asymmetric structure to mitigate translational and torsional vibration. The 
frequency limit of application of these absorbers is discussed in connection with 
the maximum fluid stroke to keep the fluid-gas interface intact and the piston 
theory applicable. 
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