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Kurzfassung

Die vorliegende Dissertation ,Effektive Schwingungsddmpfung von planmaBig
asymmetrischen Gebduden™ untersucht den EinfluB passiver Tilger in asymmetrischen
Gebduden bei Erdbebenbelastung, wobei insbesondere gekoppelte Torsions- und
Biegeschwingungen untersucht werden. Da der Massenmittelpunkt Cy nicht mit dem
Steifigkeitsmittelpunkt Cs der Geschof8decken iibereinstimmt, verursacht die seismische
Erregung in einer Richtung eine dreidimensionale Schwingung (schiefe Biegeschwingung und
Torsion). Die dynamische Schwingungstilgung dissipiert Energie, um strukturelle
Beschiddigung oder  Unannehmlichkeit der Bewohner zu  minimieren, mit
Gas-Fliissigkeitskombitilgern (tuned liquid column gas dampers-TLCGDs) und/ oder mit
Gas-Fliissigkeitskombi-Torsionstilgern (torsional tuned liquid column gas
dampers-TTLCGDs), mit Gasfeder Wirkung. Es wurden theoretische Studien durchgefiihrt.
Die Zielsetzung dieser Arbeit war, die optimale Installation und die optimalen Parameter von
Gas-Fliissigkeitskombitilgern und Gas-Fliissigkeitskombi-Torsionstilgern fiir seismische
Anwendungen festzustellen. Sie konnen in verschiedenen Positionen in den vorgewihlten
GeschoBldecken installiert werden, dennoch ist eine optimale Position von der Lage des
modalen Geschwindigkeitspols abhidngig. Wenn die Geschwindigkeitspole auBlerhalb der
GeschoBBdecke (méaBige Asymmetrie) liegen, dann ist die ideale Position des U-formigen
Gas-Fliissigkeitskombitilgers durch den groBtmoglichen normalen Abstand zu diesem
Geschwindigkeitspol gegeben. Wenn der modale Geschwindigkeitspol innerhalb der
Geschofidecke (starke Asymmetrie) liegt, dann wird eine neue Konstruktion vorgeschlagen:
der horizontale Abschnitt des Rohr-Systems wird gebogen, so dass der
Gas-Fliissigkeitskombi-Torsionstilger den Geschwindigkeitspol umschlieft. Die optimale
Eigenfrequenz und der lineare Dampfungskoeffizient des Gas-Fliissigkeitskombitilgers
werden mittels geometrischer  Transformation in  Analogie zum  klassischen
Feder-Masse-Tilger (tuned mass dampers -TMDs) abgeleitet. AnschlieBend fiihrt eine
Feinabstimmung mit einem im Zustandsraum definierten Giitekriterium zu einer weiteren
Verbesserung der Tilgerwirkung. Eine besondere robuste Dampfung in einem vergroBerter
Frequenzfenster ~wird durch die Aufteilung in kleine, parallele wirkende
Gas-Fliissigkeitskombitilger erreicht. Numerische Beispiele haben bereits gezeigt, dass eine
wirkungsvolle =~ Methode  zur  effektiven  Dadmpfung von  Translations-  und

Torsionsschwingungen vorgelegt wird.
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Abstract

The purpose of this dissertation is to reduce lateral flexural and torsional vibrations of
asymmetric buildings under the influence of earthquakes by means of passive absorbers. Since
the centre of mass Cy and the centre of stiffness Cg of the floors do not coincide, even the
uni-directional seismic excitation causes a three dimensional vibration (oblique bending and
torsion). Dynamic vibration absorbers dissipate energy to avoid structural damage or
discomfort of the occupants. As to tuned liquid column gas damper (TLCGD) and torsional
tuned liquid column gas damper (TTLCGD), theoretical studies have been carried out to
reduce translational and torsional vibrations of asymmetric structures. The objective of this
study was to determine optimum installation and the optimum parameters for TLCGDs and
TTLCGDs for seismic applications. They could be installed on any position of the selected
floor. Nevertheless, an optimal position is highly dependent on the position of the center of
velocity Cy in order to minimize vibration. If such a center falls outside of the floor (moderate
asymmetry), the ideal position of the trace of the mid-plane of the U-shaped TLCGD requires
its normal distance from this center maximum. If the modal center lies within the floor plan
(strong asymmetry), the TTLCGD has its horizontal curved piping section enclosing the center.
The optimal natural frequency and equivalent linear damping coeftficient of TLCGD or
TTLCGD are derived by means of geometrical transformation in analogy to the classical tuned
mass damper (TMD) or torsional tuned mass damper (TTMD), respectively. Improvements of
the performance in MDOF structures are achieved by considering the neighbouring modes in
the state space rendering the optimal parameters modified. A special robust damping to
increase frequency window is reached by the smaller, parallel action of TLCGD-units.
Numerical examples have already shown that an effective method is presented for controlling

the translational and torsional response of asymmetric structures.
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Notation

the length of the structural floor
absolute acceleration of fluid
guiding acceleration

the Coriolis acceleration

relative acceleration

area enclosed by TTLCD

cross sectional area of horizontal TLCD section
cross sectional area of inclined TLCD section
system matrix

the width of the structural floor
horizontal width of TLCD

system (TLCD) input matrix
damping coefficient of TLCD
damping matrix of structure

the mass center of the moving frame

the stiffness center of the moving frame

the center of velocity

the instant position of the fluid center of mass

angular momentum vector with respect to Cy

angular momentum vector with respect to A
dynamic magnification factor of structure response
the eccentricity

cartesian unit vectors, unit vector in tagential direction

the influence matrix of the ground excitation
the natural frequency of TLCD (Hz)

TLCD interation forces

TMD interation forces

buckling force

external force, e.g. wind

dead load

acceleration of gravity

length of inclined TLCD section
effective height

the mass moment of inertia of structure

the axial moment of inertia of the fluid mass

momentum vector, identity vector
performance index
the stiffness of column in y- or z- direction

the corrected stiffness of column in y- and z-directions

the stiffness of extra column in y- or z- direction

the geometric stiffness of c-c beam

stiffness matrix, corrected stiffness matrix conjugate
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stiffness matrix of structure

1. the length of the beam, buckling length

L position matrix

Ly length of the mathematical pendulum

L length dependent on the cross sectional area
Ly length of liquid column, effective length
mg mass of the homogenous rigid floor

my, the modal mass

m, the additional point mass

M C,, interaction moment with respect to Cy

M y interaction moment with respect to A

M » the additional moment from gravity force
M, M mass matrix, conjugate mass matrix of the structure
m,, mz fluid mass, conjugate mass

N number of floor

Ny calculating combined load

O the coordinate origin of the moving frame
P1> P25 Do pressure, pressure difference

P solution of Lyapunov equation

P the control force vector

O, live load

q;.9 modal coordinate, modal vector

v position vector

7 relative position vector

ry the radius of inertia for fluid mass

the radius of inertia with respect to the mass center Cy

static influence vector

Is

Ig

R the resultant of the external forces
R TLCD parameter matrix

s' coordinate of relative streamline
S weighing matrix

t time (s)

u relative liquid displacement

u relative flow velocity

ur rotation about x-axis

Uy the amplitude of the fluid

v the floor displacement in y-direction

v velocity vector

Vg guiding velocity

V' relative velocity vector

Vo gas volume inside TLCD

Vg the seismic ground acceleration in y-direction



the absolute acceleration in y-direction

the floor displacement in z-direction

the seismic ground acceleration in z-direction
the absolute acceleration in z-direction

total floor displacement

the displacement vector in the mass center
the seismic ground acceleration vector
state space vector

TLCD opening angle

rotation angle about x-axis (rad)

damping ratio of structure/absorber
tuning ratio

the head loss coefficient

Kronecker symbol
modal shape vector
modal matrix

the general angle of TLCD to y-direction
geometry factors of TLCD

K70, KT\ K73y, K2 KT, K30, K, K3 gEOMetry factors of TTLCD

Y7,
*
Y7,
p
®
a)}’l

absorber-structure mass ratio

conjugate absorber-structure mass ratio

mass density of fluid
the circular forcing frequency
undamped natural frequency of structure

undamped circular frequency of TLCD
the natural frequency of the main structure
conjugate natural frequency of the main structure

circular frequency of TMD
diagonal matrix with the structural circular frequency
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Introduction

1 Introduction

This chapter begins with an overview of tuned mechanical damper (TMD) and tuned
liquid column damper (TLCD). A brief literature review in the area of TLCD is made. The
motivation of the present research is presented in the next section and the organization of the
dissertation is finally laid out in detail.

1.1 Overview of passive devices

Passive devices protect a structure by increasing its energy dissipation capacity. A
supplemental damping system works by absorbing a portion of the input energy to a structure
thereby reducing energy dissipation demands and preventing damage to the primary structure.
This effect is achieved either by conversion of kinetic energy to heat or through the transfer of
energy among vibration modes. The first method utilizes devices that operate on principles
such as frictional sliding, yielding of metals, phase transformation in metals, and deformation
of viscoelastic solids or fluids, examples include metallic yield dampers, friction dampers,
viscoelastic dampers, viscous fluid dampers, etc. The second method of energy dissipation
incorporates dynamic vibration absorbers, such as tuned mechanical damper (TMD), tuned
liquid damper (TLD) and tuned liquid column damper (TLCD). The following Sections are
conceptually concerned with TMD and TLCD.

1.1.1 The tuned mechanical damper, TMD

The tuned mechanical damper is the most commonly used passive device, which consists
of a mass attached to the building through a spring and a dashpot. Alternatively, a
pendulum-type mechanical damper is used in high-rise buildings, e.g. in the Taipei 101 tower.
In order to be effective, its parameters need to be optimally tuned to the building dynamic
characteristics, thus imparting indirect damping through modification of the combined
structural system.

Den Hartog® derived expressions for the optimum damping coefficient and the tuning
ratio (i.e., ratio of the absorber frequency to the natural frequency of the undamped
single-degree-of-freedom (SDOF)-primary system) for the coupled SDOF-TMD system
subjected to harmonic excitation. The optimum absorber parameters that minimize the
displacement response of the primary system were found to be simple functions of the mass
ratio (ratio of mass of SDOF-structure and damper).

1.1.2 The tuned liquid column damper, TLCD and its extension to
include a gas-spring, TLCGD

TLCD is an effective passive energy absorbing device that has been proposed for
controlling vibrations of structures under different dynamic loading conditions, see e.g. Sakai®.
Such a TLCD consists of a rigid, U-shaped tube of rectangular, oval or circular cross-section
that is smoothly integrated into a building and partially filled with a liquid, preferably water.
Similar to the TMD, the vibration decreasing capability is based on an energy transfer from
the supporting host structure to the TLCD, thereby including a relative flow of the water
column. Finally, the energy is dissipated by viscous and turbulent fluid damping. TLCDs
provide many advantages, when compared to TMD, such as low cost, no moving mechanical
parts, relatively easy installation in new buildings or in retrofitting existing structures, simple
maintenance requirements. Indeed, a TLCD may not cause additional cost or weight if a water
tank used for water supply and fire fighting is incorporated into design of a TLCD.
Furthermore, they can be combined with active control mechanisms to function as hybrid
systems.

Hochrainer® invented the gas-spring effect. Applications of the TLCD with a sealed piping

1



Introduction

system, tuned liquid column gas damper (TLCGD), to tall buildings or slender bridges, see
Hochrainer and Ziegler*, Reiterer®, Reiterer and Ziegler®, can effectively reduce steady state
vibrations, equally well as a direct increase of the modal structural damping. In the passive
mode, a sealed piping system with gas pressure in the equilibrium state properly adjusted
extends the frequency range of application even of large sized TLCGD up to about 5 Hz and
limits the maximum speed of the fluid-gas interface.

The experimental and theoretical work by Kwok’ and further studies on TLCD in recent
years have demonstrated its high effectiveness in suppressing wind induced structural
vibration. To reduce transient vibration peaks in the initial period of the strong motion phase
of an earthquake, a novel active control by pressurising gas above the liquid column-ATLCD
is required as the cheap counterpart to the ATMD. Hochrainer® invented such an ATLCD. A
semi-active MR-TLCD control system using magnetorheological fluid was recently proposed
to counteract the vibrations of wind-excited tall buildings®.

Under the earthquake loads, plan-asymmetric buildings with irregular distributions of
mass and/or stiffness are likely to undergo torsional responses coupled with the lateral
vibrations. In this dissertation, TLCGD instead of TMD are used to mitigate bending and
torsional vibrations of tall buildings. Active control is outside of the scope of this dissertation.

In this study, the passive action of TLCGD is considered and the coupled torsional
response of plan-asymmetric structures is investigated. The dynamic model of a building is
established by assigning three-degrees-of-freedom to each floor in a first attempt of
condensation of a large system, second attempt is by modal truncation. Each floor is
represented as a rigid diaphragm that is horizontally obliquely displaced and rotated about the
vertical axis during earthquake or wind induced vibrations. Thus it has three
degrees-of-freedom. These modal expansion displacements and the small rotation combine
approximately to a rotation about the floor’s center of velocity. If such a center falls outside of
the floor, translations dominate and the ideal position of the trace of the mid-plane of the
U-shaped TLCGD requires its normal distance from this center maximum. If the modal center
lies within the floor plan, the novel torsional tuned liquid column gas damper (TTLCGD) with
its horizontal curved piping section enclosing the center for best efficiency becomes superior.
The plane TLCGD and TTLCGD are applied in numerical studies in a total of eight different
small scale building models and a 30-storey high-rise eccentric structure®.

Tuning of the TLCGD is performed in several steps. At first, the linearized model is tuned
with respect to a selected mode of the structure using the analogy to TMD tuning® with the
properly transformed Den Hartog’s optimal parameters taken into account. In a second step,
improvements of the performance in MDOF structures are achieved by considering the
neighbouring modes as well, in a state space optimization with the Den Hartog parameters as
starting values. Such a fine-tuning renders the optimal parameters modified. Final adjustments
are easily performed in the course of in-situ testing by adjusting the equilibrium gas pressure
in TLCGD.

1.2 Motivation of the research

Through intensive research and development in recent years, TLCD has been accepted as
an effective vibration control device for new and in retrofit for existing civil engineering
structures to enhance their reliability in suppressing horizontal vibrations forced by
earthquakes, wind-gusts and traffic loads, and there are relatively fewer studies in literature on
the suppression of torsional vibrations of tall buildings by using TLCD. However, a real
building usually possesses a large number of degrees of freedom and is actually asymmetric to
some degree even with a nominally symmetric plan. It will undergo coupled vibrations
simultaneously under purely translational excitations. The earthquakes acting on tall buildings
are analytically expressed as 3-D model. Meanwhile, here the 3-D responses of tall buildings
may be coupled due to the eccentricities between the stiffness and mass centers of the
buildings. Therefore, reducing the large earthquake-induced coupled torsional vibration

2
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naturally becomes a critical consideration in the design of earthquake-sensitive tall buildings.
In theses cases, when torsional responses of the buildings dominate, extensive analytical and
numerical work has been done to present the calculation method and optimize the parameters
of TLCGD systems. The low frequency modes are often prominent in the responses of tall
buildings and high-rise structures, and controlling only the first mode is not sufficient for the
expected effectiveness. Therefore, the approach for reducing the multi-modal responses of tall
buildings with multiple TLCGDs is presented here. The numerical examples show that the
spatially placed TLCGDs system can reduce lateral-torsional responses significantly with
fairly small mass ratios assigned.

1.3 Literature review

In recent years, there has been an increasing interest in the application of TLCD to the
problem of vibration suppression in civil structures. Since Sakai and his co-authors? developed
the idea of TLCD in 1989 for the purpose of structural vibration suppression, many Successors
had employed it in many civil engineering applications to verify its control effectiveness.
Some references discuss the determination of optimal parameters, such as the optimal
frequency tuning ratio and optimal head loss coefficient.

The investigations conducted by Haroun et al.*® showed that the TLCD could reduce
lateral vibration of a structure effectively if the parameters of the TLCD were properly
selected. Aiming at improving the robustness of TLCD, multiple tuned liquid column damper
(MTLCD), which consists of a series of TLCDs with distributed natural frequencies, has been
studied by Gao et al.* for reducing lateral vibration of a structure. Xue et al.** demonstrated
that the TLCD could also reduce torsional vibrations of a structure under time-harmonic
excitation, and Shum and Xu™!* theoretically and experimentally investigated the
effectiveness of TLCD in reducing torsional vibration of a structure. TLCD is thus believed to
be an effective device in controlling the lateral or torsional vibration of a building structure.
However, there is little information on whether and how TLCDs can most effectively reduce
the coupled lateral and torsional vibration of a building structure.

Huo et al.? proposed the vibration control methodology of TLCD on eccentric structures,
modelled as torsional coupled multi-storey shear structures, excited by multi-dimensional
ground motions. The equations of motion of the multi-storey eccentric structure with two
TLCDs set in orthogonal directions subjected to multi-dimensional earthquake excitation, are
derived. The main parameters such as frequency of TLCD, frequency of structure and
eccentric distance are investigated. A 30-storey high-rise eccentric structure under three
different types of earthquake records as numerical example is analyzed using TLCD control
method. Li et al.™® proposed the TLCD semi-active control of eccentric structures excited by
multi-dimensional ground motions as well. This semi-active control strategy is established and
implemented based on Artificial Neural Network (ANN). The numerical example of
five-storey eccentric structure has shown that it is an effective method presented for
controlling the coupled torsion.

The TTLCD is a type of damper that can effectively control the torsional response of
structures. The results of free vibration and forced vibration simulations show that TTLCD is
effective on the control of structural torsional response, for a first attempt see e.g. Hochrainer®.
In a later publication Huo et al.'® presented the optimal parameters of TTLCD for vibration
control of offshore platforms based on the stochastic vibration theory. The torsional vibration
and torsionally coupled vibration of platform structures are controlled by use of TTLCD. To
make frequency tuning more accessible, the sealed TTLCD is proposed in this dissertation,
exhibiting the gas-spring effect, TTLCGD.

1.4 Overview of the Dissertation
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This dissertation consists of seven chapters, focusing mainly on the couped lateral and
torsional vibration control of asymmetric buildings by means of TLCGD and TTLCGD of
various designs.

Chapter 2 provides a theoretical investigation on the performance of TLCGDs for
mitigating the couped lateral and torsional vibrations of single-storey moderately
plan-asymmetric space frames which can be modeled as a three degree-of-freedom structure.
The biaxial horizontal earthquakes are applied at the rigid foundation as a
single-point-excitation. The equation of relative fluid motion in TLCGD is derived using a
generalized Bernoulli equation of relative streamlines in a moving frame, see Ziegler*’, page
483. The interaction forces and moments between absorber and structure are determined. Then,
the optimum TLCGD parameters are derived by employing Den Hartog’s procedure followed
by fine-tuning in a state space optimization. Finally, a numerical example is given in order to
illustrate the effectiveness of TLCGD in suppressing the time-harmonic excitation and the
earthquake response under varying angles of attack as well.

The control performance of TTLCGD over coupled torsional response of single-storey
strongly plan-asymmetric space frames excited by ground motions is investigated in Chapter 3.
Strong asymmetry renders several modal centers of velocity within the floor plan. Based on
the equation of motion for TTLCGD-structure system, the optimal control parameters of
TTLCGD are given through the analogy between TTMD and TTLCGD as derived the first
time in this dissertation under general conditions. A numerical study shows that the TTLCGD
is an effective torsional response control device.

In Chapter 4, in order to enhance the understanding of TLCGD performance and its
behavior in the mitigation of coupled torsional motion of tall building, multi-storey
moderately plan-asymmetric space frames are studied. Three numerical examples of a
multi-storey moderately plan-asymmetric space frame show that TLCGD is very effective to
suppress coupled lateral and torsional vibrations under either time-harmonic excitation or
earthquake ground motion.

Chapter 5 deals with the optimum parameters of TTLCGD for multi-storey strongly
plan-asymmetric space frames under horizontal earthquake excitations. Theoretical
development and numerical results show that TTLCGD is adequate for reducing both
translations and rotation under earthquakes from any incident angle-of-attack.

In Chapter 6 a 30-storey moderately asymmetric structure described in literature under
either time-harmonic excitation or earthquake ground motion is investigated. The author
performed a model reduction to 12 degrees of freedom using the method of modal truncation
and TLCGDs are installed to mitigate the first three modes.

Finally, Chapter 7 summarizes the results drawn from the research presented in this
dissertation.

The studies reported in this dissertation are intended to provide insight into the behavior
of TLCGD and TTLCGD and their potential applications to large-scale structures using
smaller units in parallel action. This work is expected to accelerate the implementation of
these dampers in the areas of vibration mitigation in tall buildings.
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2 Single-storey Moderately Plan-asymmetric
Space Frame with TLCGDs

2.1 Introduction

In this chapter, we investigate how to reduce lateral oblique flexural and torsional
vibrations of a single-storey moderately asymmetric structure e.g. caused by earthquakes, by
means of plane U-shaped TLCGD. The modal displacements and rotation combine to a
sufficiently small rotation about the floor’s center of velocity. We define moderate asymmetry
if the modal centers of velocity are outside of the floor plan. Since the centre of mass Cy, and
the centre of stiffness Cs do not coincide for an asymmetric structure, even the uni-directional
seismic excitation in general causes a three dimensional in-plane motion of the floor. A model
of TLCGD for reducing coupled lateral and torsional motions of such a single-storey mass
asymmetric structure is developed. The coupled equations of motion of the TLCGD-main
structure are derived considering the floor and damper interaction. Such a substructure model
constitutes a theoretical basis of this dissertation and will be used for further studies on the
performance and the control effectiveness of TLCGD. The installation of TLCGD on
moderately asymmetric structures should be a successful means for reducing the effects of
dynamic excitations. In principle, the TLCGD can be set at any position of the selected floor.
However, the ideal position of the midplane of the U-shaped TLCGD requires its normal
distance from center of velocity maximum. The analogy between TMD and TLCGD when
attached to main SDOF-structure under the horizontal base acceleration has been established
by Hochrainer', see also Hochrainer and Ziegler®. It is repeated in Section 2.6 for sake of
completeness and it becomes a basic procedure for a more general analogy between TMD
and TLCGD when attached to the 3DOF-space frame structure. We also present a numerical
example to illustrate that multiple properly tuned TLCGDs in controlling multiple modes
considerably increase the effective structural damping and thus reduce the ductility demands
in the response to strong ground motions.

2.2 Equation of motion for single-storey moderately
asymmetric space frame

z T floor mass ms

— Lo o NT p K

M1V
L

} . } - -
a) Plan view b) Front view

Fig. 2.1: Single-storey moderately asymmetric space frame.

The simplest model is analyzed here: a single-storey shear-type space frame has e.g., a
rectangular base of length a and width b, as shown in Fig. 2.1. It consists of a homogenous
floor of massmg, which is supported by four symmetrically arranged clamped-clamped

“massless” and inextensible elastic columns of height / in each corner. The columns have the
same anisotropic stiffness k, and k. in y- and z-directions. An additional point mass m, is
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attached off-center on the rigid floor, e,, e, denote the eccentricity. Let V,, v'{/g denote

the free-field horizontal components of a seismic ground acceleration in y-, z-directions,
while soil-structure interaction is neglected. The lateral displacements of C), are denoted v
and w, and @ is the rotational angle about the vertical x-axis. The origin O of the Cartesian
coordinates happens to be the center of stiffness Cs in this doubly symmetric arrangement of
the columns,

K, (w-0(a/2+yeu) K (Ww+0(a/2-yeu))
+ S A
k_w-{\-'—ﬂ(b.-".?‘—zt_-u) L(v-0(b/2-Z¢w))
el < | .
C, = "W T
M Vi
— C; ! -
vg 0 2y V
ms Tﬁ,
£
ky{v_"e{b-’?;'ztm}\ﬂ r Ky(v+0(b/2+2c.))
k(w-0(a/2tyc)) ko(wHb(a/2-ycu))

Fig. 2.2: Free-body-diagram of the floor.

The free-body-diagram of single-storey structure under ground excitation as indicated in
Fig.2.2 is subjected to the basic laws of conservation of momentum and conservation of
angular momentum about the vertical x-axis, see Ziegler’, page 400-411. The coordinates of
the center of mass Cj with respect to point O are given by considering the static
mass-moments, Fig. 2.2,

m m
1 ey, zc, 1

mS +m1

e, .

Yc =
M ms+ml z

(1) Conservation of momentum in the y-z plane:
(mS +m1 )C_icM = k , C_icM = i}téy + Wtéz ,
V=V VL, W =W W,
where ¥, and i, are the absolute accelerations in y- and z-directions, respectively and R
¢9| <1,
R= —4[ky (v+ zZe,, 6’) e, +k, (w—yCM G)éZJ .
Thus, neglecting structural damping, in y- and z-directions we have respectively,
(mS +m1)i}+4kyv+4kyZCM9:—(mS +m1)\'}g, (213)

is the resultant of the external forces,

(mg +ml)v'{/+4kzw—4kaCM6’:—(mS +ml)v'{/g. (2.1b)

(i1) Conservation of angular momentum with respect to the center of mass Cy;:

:MCM’ DCM :DCMéX’ MCM ZMCMéx’ DCM =1,0.

According to Fig. 2.2, the axial moment of the external forces becomes

2 2
b 2 a 2
Mc, =—4kyzCMv+4kaCMw—4 k,, (Ej +zc, +k, (Ej +ye, 0,



Single-storey Moderately Plan-asymmetric Space Frame with TLCGDs
5 2 2 2 2
LG+ (kb +ha® + 4k, 22, +4k. 32, |0 +4k,zc, v=4k.yc, w=0, (2.1c)

where the mass moment of inertia about the vertical x-axis of the rectangular floor with point
mass m, is, Fig. 2.2,

I, =mg (a2+b2)/12+m5 (yéM +z(2;M )+ml [(ey -Ye,, )2 +(ez -z, )2} =(mg + ml)rSz ,

where 7g denotes the radius of inertia with respect to the center of mass Cy, .

The three coupled equations of undamped motion namely Egs. (2.1a)- (2.1c) are put in
the matrix form,

= ~ 3 _T 5T .. .
MX + KX =-Mx,, x :[v w uT], Xg :[vg W O], ur =0rg, (2.2)
where M and K are the mass and stiffness matrices of the structure with dimension 3x3,
both are positive definite; X means the displacement vector in the center of mass of the

structure; x, denotes the given seismic ground acceleration vector.

The diagonal mass- and the symmetric stiffness matrix of the 3-DOF (degree-of-freedom)
structure are deduced from Eqgs. (2.1a)- (2.1c) by inspection

100
00 1
k,, 0 kyzc, Irs
IS =4 0 kZ _kaCM /VS . (24)
kyzg, s Koy, s (e, b7 + k.a® + 4k, 22, +4kzyéM)/4rS2_

(i) Control of stiffness matrix by direct method, see e.g. Chopra*, page 376 and Fig.2.3:
1) v=1, w=0, up =0rg=0,2) v=0, w=1, up =0rg=0,3) v=0, w=0, uy =6rg =1
ka =0 kZZ = 4kZ kze = _4kaCM /rS

2 2 2 2 2
koy =4kyzc, [rs ko =—4k.yc, [rs koo = (kyb thoat+4kyze, +akye, )/rS

k?.l‘ [ ky Tk,(ﬂ-‘"z f Y '\I)-'fr:. ki(a{?«_,\"L '\|]-’fr:- ‘

1 - % - - | - g = | . i (b/2-70Vr
ky H k/'\_'ﬂ! ’I_ ky K {I:k\"‘ R ky(b/2Fcn)ir, € “.k#\'..._'_‘@ ]l‘y(b'2 Zeu)/ts
v=1  Cy ky M Ky Cy Ky

w=l] K(b/2 )
.!() ] - ‘k-"_ | = }.( e ﬂi"}f Is | .Is)ﬂ’".fz-'—x(\l }-’lrr:-
k, k. Fko(a/24yeu)rs kel@/2-yeu)/r

Fig. 2.3: Evaluation of stiffness matrix of single-storey moderately asymmetric space frame:
restoring forces indicated.

(i1) Control of the mass matrix by the direct “stiffness method”, see Fig.2.4:
1) ¥=1,9=0,iip =6rg =0,2) ¥=0,9=Liiy =0rg =0,3) ¥=0,%=0,iiy = Org =1

myy:mS +m1 mZZ:ms‘l'ml mee:ms +m1



Single-storey Moderately Plan-asymmetric Space Frame with TLCGDs

- | - - i1 | - L] | -
O W=
—pi 11l £ ®m, & m,
CM =1 CM CM”T =1
mg mg Mg
1 - - - 1 [

Fig. 2.4: Direct evaluation of mass matrix of single-storey moderately asymmetric space
frame: inertial forces indicated.

2.2.1 Effective mass and stiffness of a column
If we consider the mass per unit of length pA, as well as the stiffness EI of the

column both to be constant (for convenience of integration), an approximation of the equation
of motion of the flexural vibration in the first natural mode can be determined. An admissible
Ritz approximation can be always given affined to a proper static deformation. Hence, see
Ziegler’, page 611,

w(&,t)=q(t)o(S), (2.5)
where (& ) suffices to choose the Hermite shape function for the cc-beam, unit
displacement of x=/ is 1,

Hy(&)=-28 +38%, 0<&=x/I<1. (2.6)
The kinetic energy becomes simply

1 .2 1 — .2
1.
T =5jw2pA1d§ =%pA1jH§(§)d§ =9 2.7)
0 0

2

Thus, the kinetic energy is equivalent to that of a single equivalent mass
13
iy = jHS YoAldE = S5 me = pAL (2.8)

where m, 1s the mass of column.
The potential energy of the slender column (rigid in shear) is approximated by

1L e o2wY B LM aHY . kg
[ 22| de="2yg 3| dE="—, (2.9)
) el e

The effective static stiffness of the cc-column becomes
d*H 3 12EI
2« 28

The moment of inertia / for standard profiles is listed by Robert”.

(2.10)

2.2.2 Influence of the normal force on the stiffness matrix:

geometric correction
If a slender column is subjected to a large compressive force, its lateral stiffness is
significantly reduced. The geometric correction of stiffness of c-c beam is kg =6N/51,

where N <0 is the compressive axial force, / is the length of the beam. If the lateral load
is less than 0.3 of the critical buckling load, the linear geometric stiffness correction is
applicable, see e.g. Clough-Penzien’, page167 and Ziegler’, page 604. A numerical example is
studied in Section 2.9.1.

Assuming that additional point mass m, is attached on number 1 column, the column

has the corrected stiffness /;yl and k,, in y- and z-directions, and other columns have the
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same corrected stiffness l;yz =1;y3 =l;y4 and k,=k=k, in y- and z-directions, the

corrected stiffness matrix can be derived as

kiy=ky+3kyys Ky =ky =0, kiz=k3, :[(Eyl +3]€y2)ZCM +(Ey2 _Eyl)b/z}/rS’
k2 :l;zl +3l;22’ ky3 = k3 = _[(];zl +3];22)J’CM _(Ezl —];zz)a/z}/rs,

kyy = [(Eyl +3]€y2)(b2/4+z%M )+(/;21 +3/;22)<a2/4+y%M )+(l;y2 —/;yl)szM S
+(];22 _I;zl)ayCM }/FS2

1) Position of the center of stiffness

The center of stiffness Cs coincides with the origin O in the floor without considering the
geometric correction as the columns have the same anisotropic stiffness. The distance
between center of stiffness and center of mass is increased by considering the geometric
correction and the rotational response of the structure becomes more prominent. The

coordinate of the center of stiffness can be calculated by means of the static
stiftness-moments, see Fig.2.5,

o aka)a2 o (R Ka)b2 2.12)
Sk, +3k., Sk +3ky,
A
]‘T:J ]{:ll
- -—
- -
{_1.2 A11
o C
ZCEJ_COS e M >
B YCs ks
]r:ZL_| }._> l_ll

I.ii

=
-t
=

y2 2
Fig. 2.5: Position of the center of stiffness.

2.2.3 Natural modes of the main structure

The solution of the eigenvalue problem associated with the homogenous Equation (2.2)
when considering the corrected stiffness matrix provides the natural circular frequencies @,

and mode shapes gZ;,, n=1,2,3 of the undamped main system. Consequently, the undamped
free vibration is time-harmonic, see e.g. Chopra®, page 404,

X(t)=¢ A, cosw,t . (2.13)
After substituting Eq. (2.13) into the homogenous Eq. (2.2), the time-reduced equations result,
[L{’ - a),%M} ¢, = 0. The characteristic equation becomes,

det[lg'—m,flyq =0. (2.14)

The three eigenvalues a),% can be assembled into a diagonal matrix Q*

10
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of 0 0
Q’=| 0 o 0 2.15
s = 27 : (2.15)
0 0 i

The orthogonal eigenvectors é, corresponding to the natural frequencies @, can be
assembled into the modal matrix ¢

h A2 Hs
0=\ ¢ P3| (2.16)
¢ P P

él are normalized to either putting max|¢j,-| =1, rendering the modal mass by scalar product
my = (T)JTM(T)J , or ortho-normalized by requiring m;, = J)f Ma)j =1.

The numerical solution is a standard solution in Matlab 7.0", performed numerically by
calling the function eig.

2.3 Position of the modal center of velocity Cy

The point of a rigid body in-plane motion that instantly has zero velocity is called the
center of velocity Cy, the acceleration of Cy is generally nonzero. The velocity of any point P

of the body can be calculated using the equation vp=vc +t9rpc , Where 7pc is the
positively rotated orthogonal vector to 7pc, rPCM =é,xrpc, - If P=Cy, its material

position with respect to point Cy, is defined, see e.g. Ziegler’, pagel9,
‘_}CV = ‘_).CM + H‘I_ECVCM = O . (2173)

With respect to small displacements and small rotation, Eq. (2.17a) is multiplied by the time
differential to render

Sre, +80rc ¢ =0. (2.17b)

Cv

Fig. 2.6: Moderately asymmetric space-frame. Position of the center of velocity is outside
floor plan. Small displacements and small rotation |€| <« 1of the floor are understood,

exaggerated in the figure.

The centers of mass and stiffness are distant points in the floor of the space frame.
Consequently, the modal shapes are defined by rotations of the floor about the modally
resulting centers of velocity, a general position of the floor is shown in Fig.2.6. The position

vector of the center of velocity Cy i1s FCVT = [ ye, ZCV:| and the displacement of Cy for

11
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sufficiently small motions is zero. The material vector FCVCMT = [ Ye, —Ye, Zc, ~Zc, ] ,

with the rotated material vector ’_}CVCMT =|:—(ZCV —ZCM) ye, ~ yCM}, (see Fig.2.6). The

coordinates of the center of velocity can be derived under such conditions, putting 060 =6,
ov=v, ow=w,

1 1
Ye, =Y, —gw, Z¢, =Z¢,, +5v. (2.18a)

In terms of the components of the modal vector ¢,

s

953

¥
92> Zc,j = 2c, +=54.. $3%0. (2.18b)

Pi3

Ye,j =Ye,, —

2.4 The equation of relative motion of the fluid in a
TLCGD

fluid equilibrium position

Fig. 2.7: U-shaped tuned liquid column gas damper.

A TLCGD with geometry shown in Fig. 2.7 is a symmetric, U- or V-shaped rigid piping
system consisting of one horizontal and two inclined (% <p< % ), partially water-filled pipe

sections. Let p, B, H, denote the liquid density, p=1000 kg/m’ for water, the horizontal length
of the liquid column, and the length of the liquid column in the inclined pipe sections at rest,
respectively. Furthermore Az, Ay denote the cross-sectional areas of the liquid column
assumed to be constant of the horizontal and inclined pipe sections, respectively. The relative

motion of the liquid column is described by the displacement wu, =u, =u/(¢). It is important

to emphasize that u(s',t) is a relative displacement of the liquid with respect to the moving

frame. Since the ends of the piping system might be closed and filled with gas, an internal gas
pressure can build up on either side of the liquid path, denoted p; and p, with a reference
pressure py in equilibrium, see Hochrainer' and Hochrainer, Ziegler”.

Figure 2.8 shows a model of the single—storey moderately asymmetric structure (for the
main system see Section 2.2) equipped with a TLCGD, with its trace under the general angle
vy to the y-direction. The position coordinate of the reference point A of the TLCGD is (y4, z4,
0).

12
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s
(8] v

Fig. 2.8: Model of single-storey asymmetric space frame with a single TLCGD, reference
configuration. Cj, is the center of mass of the main system (without TLCGD). The mass of
the piping system is considered in the course of fine-tuning.

The motion of TLCGD during lateral and torsional vibrations is shown in Figs. 2.8 and
2.9. The liquid motion in TLCGD can be classified as two types: 1) the global motion of the
liquid with the main structure; and ii) its relative flow, assuming the piping system to be rigid.
The generalized non-stationary Bernoulli equation can be used to derive the equation of
relative fluid motion, see e.g. Ziegler’, page 483. The generalized Bernoulli equation of the
ideal fluid-flow takes on the form
R

—~ = g ! 1
[a-eds =—g(xz—xl)—;(pz—p1), (2.19)
X
where x;, x, and g denote the geodesic height of the free surface 1' and 2' and the

constant of gravity g:9.81m/ s*; d@ and € denote the absolute acceleration of a fluid
particle and the relative streamline’s tangential direction, respectively.

- %\1 -y
O | Ve |
I | )
Fig. 2.9: TLCGD under general in-plane acceleration of the floor: , w and 6. Resulting

force components Fay, Fa, and moment M, indicated in the instant configuration.

The position of a liquid particle against the center of mass of the main system Cj is
described by 7 =7,+7, where 7' denotes the relative position of a fluid particle with

respect to point 4. The relative position vector 7' is decomposed into its horizontal and

13
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vertical components, F’=Fy'vzf+z7;. 74 1is the in-plane position vector of point 4 against

origin Cyy, see e.g. Ziegler’, page 497. The velocity v can be derived straightforwardly by
differentiating 7 with respect to time

joda A g A (2.20)
dr  dt dt

ar - d7 :

— =08 XV +—=6F_ +i. 2.21

dt o dt e 22D

Here we define i = u(s',t)e;, see Fig. 2.7, as the relative velocity of the fluid particle with

respect to the moving reference frame. v, =V, +9';%y’,z, denotes the guiding velocity,

V4 =Vc +9’%AC , see Fig. 2.9. A second differentiation with respect to time renders an
M M

expression for the acceleration
L. an - odd . .,
d=d,+0r,, -0 ryrz'+206xxu+zzag+ac+a , (2.22)

with the guiding acceleration d, =d, +é7y',z,—92;7y’,z, and the Coriolis acceleration

g
d,=20e xii , the latter is perpendicular to the relative velocity i . The relative acceleration

L, dii . . . . . .
a = 7 is the relative rate of the relative velocity and with respect to the moving frame can
t

' 2
be expressed as a'-¢, = a—u+i z , see again Ziegler’, page 498.
ot 0s'| 2
Projecting absolute acceleration, Eq. (2.22), along the relative streamline’s tangent ¢&;
yields
. o 0 (i’
Q-8 =d,-é+d,-é+ad-é=d,e—-0F.&+—+ — . 2.23
t g “t co t t A %t vz %t ot ag,{ \] ( )

u;=u

“ C
> .

=1

% Slf h‘ m g e

Fig. 2.10: TLCGD in general horizontal motion. Instant position of the fluid center of
mass Cris shown.

The absolute acceleration of the reference point A (y4, z4, 0) is given by, Fig. 2.7,

o L 2 - - _ -
ag=aye, +ae, =dc, +9rACM -0 acy » Tacy _(yA Yoy )ey +(ZA ~ECy )ez’

]_/:ACM :—(ZA _ZCM )éy +(yA _yCM )éz ’ thuS,

14
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a, =vg+v—(zA—zCM)é—(yA—yCM)éz,az zwg+v'1>+(yA—yCM)é—(zA—ZCM)92(2.24)

where the seismic ground acceleration, a common time function is understood, is \'/'g in

y-direction, W, in z-direction. v, w and € are the acceleration of the floor’s center of

mass in y- and z-directions and the angular acceleration of the floor, respectively. ay
projected in €/, -direction is
EzA-é;I:aycos(y+9)+azsin(;/+6’). (2.25)
For the inclined segments, Fig. 2.10: 0<s'<H —u;: é,-€ =cosf3,

0<s'<H-+u,: é;-é =cosf.
For the horizontal segment, Fig. 2.10: 0<s'<B: é,-¢ =1.
Using u; =u, =u(¢) and the continuity equation u(s’,z) A(s")=const., the integral term,

see Eq. (2.19), becomes

R

_[ZZA -&ds' =[(H —u)cos B+ B+(H +u)cos B(d,-éy)=(B+2Hcos B)(d,-€y), (2.26)
X

For the inclined segments:

. B , ,
0<s'<H-u: rrr:—[3+(H—ul)cosﬂ—s cosﬂ}eA,

yz
il B ’

Py €, :—{E+(H—u1)cos,8—s cosﬂ}cosﬂ, (2.27)
0< '<H .opu B ' =1 =/ =1 B ’ 228

SS'SHA+uy: Fyy= E+S cos 3 |y, Ty, € = E+S cos f |cos 3. (2.28)
For the horizontal segment: 0<s'<B:
—r B 1= - - B '
ry'z':_(z_sjeA> ry'z"et:_(z_sj' (2.29)
Substituting uy =u, =u(t), the integral terms become
—GZJ- € ds' = —ézu(B cos B+ 2H cos> ,b’), (2.30)
Y
J (_j (u% _ulz)z() (symmetry), (2.31)
I
i 4 4
j ii(H —w))+iBE+ii(H +uy ) =| 2H + B2 i, (2.32)
v Ap Ap
Xy —x; =(H +uy)sin f—(H —uy )sin f=2usin . (2.33)

If the piping system is not sealed, then the air pressure at the free surface is
approximately equal to the ambient pressure p; = p, = py, Figure 2.7 and the pressure

difference vanishes. If the piping system is sealed, the gas inside the air chamber is
quasi-statically compressed, see Ziegler’, page 88 by the liquid surface in sufficiently slow
motion (piston theory). Hence, the pressure difference p, — p; in Eq. (2.19) in the range of

linearized gas compression, i.e. if the maximum fluid-stroke is limited by max|u| <H,6/3,

changes the undamped natural circular frequency of the TLCGD defined in Equation (2.34a),
Hochrainer' and Hochrainer, Ziegler’. Thus, p,—p, ~2npgu/H,, 1<n<l1.4. n is the
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polytropic index, which is determined by the type of quasi-static state-change of the gas. For
an adiabatic process of any two atomic gas n=1.4 whereas for the isothermal (slow) process
n=1.0, Ziegler’, page 88. Any other polytropic process is in between those two extreme
situations. H, denotes the effective height of the gas volume at rest V= Ay H, .

Finally, the experimentally observed averaged turbulent damping o; il must be added,

see Hochrainer', where oy = 7 is the head loss coefficient. Substitution of Egs. (2.26)-
eff

(2.33) into Eq. (2.19), adding the turbulent pressure loss and considering the linearized gas

compression yield the nonlinear and parametrically forced (< 7/2) equation of motion of

the relative fluid motion in the TLCGD,

52
i + &8, liilii + 1—z<1‘9—2 u=—x(d, &) (2.34)
@4
A
K:w, K| =Kcosf, Leﬁp =2H+-LpB,
Loy Ap
Wy = 2gsinfp (“open TLCD”, no gas-spring),
Loy
w = |—|sinff+— |, hy=np,/pg (linearized gas-spring), 1<n<14. (2.34a)
Loy H,

L.y can be considered as the length of an equivalent uniform liquid column with constant

cross sectional area Ay rendering the same natural circular frequency @, of the TLCD;
Kk, k; are geometry dependent coupling factors linking the floor acceleration and the

TLCGD excitation, respectively. Furthermore, p,, o and g denote the gas pressure in

equilibrium, the liquid density, e.g. water ,0=1000kg/m3 and the gravity constant. The
TLCGD are ideally suited to extend the frequency range of civil engineering applications by
properly adjusting the equilibrium gas-pressure p, .
32
The stiffness of TLCGD, (I—Kl e—zJ turns out to be timevariant for S < 7/2, i.e.
Wy
unwanted parametric forcing is present due to rotation about the vertical x-axis. For small
rotations|0| <1 cosf@=1,sind=6, tand =40, the right hand side of Eq. (2.34) becomes

ay

In the course of the tuning procedure, an equivalent linearized damping coefficient
Cy=2ms¢ 0, might be used to replace the nonlinear turbulent damping term, where

approximately xa,, (1 + 2 Gj for the TLCGD oriented parallel to the y-direction.

{4 =4Uy6; /37 1s the linear damping ratio proportional to the amplitude U, of a time
harmonic relative fluid flow for details of equivalent linearization. It is achieved by
Hochrainer', page 74. Approximately, we put Uy = max|u| in any motion. If the damping
coefficient ¢, exceeds the cut-off value of parametric resonance, the influence of

parametric excitation becomes negligible, see Reiterer®, page 77 and Reiterer, Ziegler’.

Ziegler'® pointed out the speed limitation of the fluid-gas interface to keep the interface
intact and thus to allow the application of the piston theory, based on Lindner-Silvester and
Schneider!! ,
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max |u| =2rf max|u| <10m/s. (2.35)

Substituting the acceleration components, Eq. (2.24) into Eq. (2.34), and further
linearizing the forcing term yield the simplified and linearized equation of motion for the
relative fluid flow in the TLCGD in proper form for tuning and to be compared to the
equivalent TMD-equation,

u+2gAa)Aa+w§u=—K{['v'g (24— 2, ) |cosy+ [, +iv+ (3, —yCM)Q}sin;/} . (2.36)

We can see that the left-hand terms in Eq. (2.36) are corresponding to the vibrational terms of
the relative liquid motion and the right-hand terms in Eq. (2.36) can be regarded as the
linearized portions of the generalized external forces causing the motion of the liquid.

2.5 The natural frequency of TLCGD in relation to the
linear frequency of the mathematical pendulum

The frequency of the mathematical pendulum (rigid massless rod with a point-mass,
attached at a pivot point) for small angular motion is approximately constant and solely

g/;z2

depends on its length Ly, f, = (Hz). Thus, its length is related to a given frequency

0
by a hyperbola, Fig. 2.11,

L0=(g/;z2)/(4fj). (2.37)

2
logL0
LO[m]
1071 \
0

\\

2 0.5 1 15 2 2.5/

Fig. 2.11: Relation of length and frequency of the mathematical pendulum, f, =1Hz,

The natural frequency of the open TLCD, i.e. without a gas-spring is, Eq. (2.34a),

2
glr
fi= Da _ usin £ (Hz). If TLCD and the pendulum have the same frequency, we
4
27 \[4(Ly /2)

can write the relation L., =2L,sin f. The natural frequency of the TLCD is thus practically

limited to frequencies below 0.5 Hz. The length of a pendulum that would have a frequency of
0.5 Hz is about L,=1m and thus the effective length of the equivalent TLCD is just

Ly =14m for f=n/4.

Taking into account Eq. (2.34a), the frequency of a TLCGD, with linearized gas-spring
effect is rewritten as

17



Single-storey Moderately Plan-asymmetric Space Frame with TLCGDs

2
4 _ _Qif_l(
2 \4(Ly /2)
If the TLCGD and the mathematical pendulum have the same frequency, we can determine the

parameters of the gas-spring, crucial for frequency tuning, in terms of the effective liquid
column length L, as

Equation (2.38) determines the gas volume Ay H, if for some reasons the equilibrium

f4 sinﬂ+Z—0].

a

pressure p, and thus 7, is assigned. In some applications the atmosphere pressure is a

suitable choice.

2.6 Control forces of TLCGD

To couple the TLCGD with the main structure it becomes important to know the interface
reactions. Assuming that the dead weight of a rigid piping system has been added to the
corresponding floor mass, only the interaction forces between the massless, rigid, liquid filled
piping system and the supporting floor are considered. Fay, Fa, and May the control forces in y,
z and @ directions are derived by conservation of momentum and angular momentum of the
moving fluid.

—

(1) Instant coordinates of center of fluid mass Cy, conservation of momentum R=m a, .
The instant position of Cy with respect to reference point 4 is given by 7y +x,é,, 7y =s"€,,

see again Fig. 2.10. Hence, 7, =7, +7; +x/€,,

d’_;]'( <1 = rAS - dl_;f - 1 = ' A5 .=

—tzsfeA+SfﬁeA, vf:E:vA+sfeA+sfHeA+xfex, (2.39)
L dve o, e

ds :7 =dy +(sf -5’0 )eA +(2sf0+sf0)eA +Xre,, (2.40)

and by means of the static fluid mass-moments

B H+u B H-u
mes'e = pAy (H+u)| —+ cosf |—pAy (H—-u)| —+ cos
o7 =04 )(2 ﬁj P )(2 ﬂJ, (241)
= pAHu(B+2H cosﬂ)
H+u H—-u

sin f+ pAy (H—u)

I’)’Ifo :pAH (H+u)

Hence, we define

sin 8 = pAy (H2 +u2)sin 5. (242)

, B+2Hcosf  _ g
sf—L—u—Ku, Sy =Ku, y=Ki,
1
(H2+u2)smﬂ 1 1 1
_ = 2 2 o= b e = L0 .
Xp= L =K, 2H(H +u ), xf—KQHuu, Xy KzH(u +uu). (2.43)
with the following two geometry coefficients and the total fluid mass,
2/
. — . A !/ A
K=xLy [L, i =(2H/L)sin B, mfzp.[A(S)dS = pAy Ly, l4:2H+A—BB. (2.44)
1/

H
Ly equals L,y inthecaseof Ay =Ap.
Substituting Eq. (2.43) into Eq. (2.40) confirms, after multiplication with my the result, Eq.

(2.45).
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= - _ 1/, AP —{ .. 22\ o — (A =\ 2,
R:mfaA+me2E(u +uu)ex+mf1<(u—ul9 )eA+me(2ul9+u6’)eA, (2.45)
where

EzA=[aycos(;/+t9)+azsin(7+¢9)]é'A+[—aysin(7+0)+a2cos(7/+0)]é’A. (2.46)

It must be mentioned, that static dead weight loading of fluid mass is not included in the
unwanted vertical reaction force component Fax However, when working with framed
structures, this vertical force is generally negligible. Equation (2.45) renders the components
of the control forces acting on the piping system, Fig. 2.9,

Fyéy=my; [a cos(y+0)+a, sin(7+6)]+mf (Ei[—/?uéz), (2.47)
Fé, = mf[ ysin(y+60)+a, cos(7+9)]+mf(21cu€+l(u9) (2.48)
and when rotated

Fay=mp| a, +(Rii - Rub? ) cos(+0) - (276 + ub )sin (7 +6) . (2.49)
Fyo =my | a +(Fii—Fu6? Jsin (y-+0) + (27i-+ Fub)cos (y+6) | (2.50)

Equations (2.49) and (2.50) are simplified under the condition |6’| <1 and the essential
linear parts become

Foy=my| g +9=(z4-2c, )0 |+ Rmyiicosy, 2.51)

FAZ=mf[wg+W+(yA—yCM)é}+Emfasiny. (2.52)

(ii) Use of the law of conservation of the angular momentum of the fluid body, see Ziegler’,
page 405.

The resultant of the acting moments can be calculated by, with respect to the accelerated
point of reference 4,
dD, -, S\ - - dD, dD
7+mf(rf +xfex)><aA =M, 7;4:7‘4
relative angular momentum

ﬁA = I (F’xﬁ')dmf = [F'X(H';%y'vzr+ﬁ)}dmf

mp un (2.54)
_plele(s)(r ><r )dS +J.A S f)(V'XE;’(S )) }

+6(e.xDy), (2.53)

= B . - - B . A
0<s'<H-u: r’xet’:—zsmﬂeg, 0<s'<H-+u,: r’xe'Tz—Esm,Be'A,

0<s'<B: F'x& =0
4 B
pIA (s1)(F'xé(s"))ds" = —kym EueA (2.55)
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H—-u 2
pé’J.A(s)‘ru = pB Ay J. {—(§+(H—ul)cosﬂ—s'cosﬂﬂ ds
0
‘ B 2 H+u B 2
+p04g | {—(E—S'ﬂ ds' + p Ay j ( +5'cos ,Bj , (2.56)
= pOA A—BB—3+B—2H+B(H2+u2)cosﬂ+[EH3+2Hu2jcosz[)’
T4, 12" 2 3

0<s'<H-u:
FLx Py =—[ (H —uy )sin B - ssmﬂ]{( +(H —uy)cos - scosﬂﬂ

A ) B .

0<s'<H-+u,: F);xfy’lzf:—(s’smﬂ)(znts’cosﬂje/l,
2/

pHIA(s)(r xr )ds ——pHAH[HBus1nﬂ+(3u +2H2u)smﬂcos,6’}e/1, (2.57)

L 3L L

3 2 2 2 3 2 '
W Ae B B gl H cos f+ 207 o Hu cos? 3 |0e.
4, 120, 20 L L 3L L

2 A
DA mf{ [HB+(EM—+2H—Jcosﬂ}uesmﬁeA Kzlj ue',
(2.58)

Dy =my(RyH? + ). (2.59)
with the following two geometry coefficients

2 3

A L

i =Ky B s (B 1.8 cosﬂ+lc0s2ﬂ , ik =r L, Emzﬁ,
21) 34, \20) " 2H 3 L

dD 4,
dt
where x; i1s defined in Eq. (2.34a).

Substituting Egs. (2.43) and (2.46) into Eq. (2.53), yields,
~ ~\o = _ 1 2,2 : i
mys (rf +xfex)><aA =my {—K‘ZE<H +u )[—ay sin(y +0)+a, cos(y+6?)]eA

=m, [@Hzé +5 (420 +2ud9)] (2.60)

+I?2%<H2 +u2)[ay cos(y+0)+a, sin(7+9)}é'A +Eu[—ay sin(y +6)+a, cos(7+0)]éx}

(2.61)

The undesired additional moment M p from gravity force with respect to the reference point
Ais

M, ==m g (Fy+x,8 |x&, =mgkué,. (2.62)

The undesired axial moment M, about é’A direction is the sum of the TLCGD-floor

interaction, Eq. (2.58) and a second contribution resulting from gravity force acting at the
(displaced) center of fluid-mass mgicu, Eq. (2.62). The latter is similar to that of a TMD.
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The axial moments My about é’A and €', directions are generally both found negligible in

their action on the structure. The nonlinear resultant control moment My (acting on the
piping system) becomes finally, adding Eq. (2.60) and the proper component of Eq. (2.61),
see again Fig. 2.9,

M, =m, {Eu[—ay sin(y +0)+a, cos(y+0)]+E3H29+z?l(u29+2uu9)} : (2.63)
Equation (2.63) is simplified under the condition |t9| <1 and, when properly linearized,
becomes

M 4 =m i H6. (2.64)

2.7 Control of SDOF main structure by a single TLCGD
when compared to an equivalent TMD

The modal tuning of liquid column damper can be presented from the purely geometric
analogy between the classical tuned mechanical damper and the tuned liquid column damper,
Hochrainer', page 98. In this Section the representative model under both base and force
(wind) excitation in purely horizontal translation is investigated, thus repeating the derivation
of Hochrainer'.

10
Fig. 2.12: U-shaped TLCGD rigidly attached to the floor of a horizontally displaced
SDOF-main system, ground acceleration 1, and wind force F(t). Total floor displacement

w, =w, +w. Action of the control force F, shown.

A TLCGD installed on the floor is illustrated in Fig. (2.18). The equations of motion for
the TLCGD-main structure interaction, w is the relative horizontal displacement of the floor,
become

Mw+Cw+ Kw=—-Mw, + F(t)+ F, control force: F, =—m (Wg +w+ l?ij) , (2.65)
see Hochrainer', page 97, and the properly simplified Eq. (2.36) with y = z/2,
i+ 2 40 41 + @ = —xc g +). (2.66)

Combining Egs. (2.65) and (2.66), the matrix form of the coupled system of linearized
equations results

1 o s e M
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m K
yzﬁf<6%, a)zzﬁ, 2§Sa)S:%, (2.67)

where i1,{g,wg and o, are the mass ratio, the light structural damping ({¢ <1), the

circular natural frequency of the main structure and the TLCGD’s circular natural frequency,
respectively. Substituting the “equivalent” tuned mechanical damper TMD for the TLCGD
changes also the main system, see again Hochrainer', page 38, the parameters carry a star,

Mo+ Cot K w=—M"iog + F()+ F, , F, ==y (i, +3v+ii"), (2.68)
i +2¢ 4w+ wgu =~ (i +v). (2.69)

Combining equations (2.68) and (2.69), the TMD-structure interactive equation takes on its
matrix form

1+,u* ,u* W N 25;0’; 0 W N 60;2 0 ||w _ 1+u* - I/M* F(r)
1 1| 0 200 |l 0 w?|u 1 £ 0

* m* *) K* S C*
H=—4, oy =—, 250¢=—,
M M M

where ,u*,a); and a)z are the alternative mass ratio, the natural frequency of the main

(2.70)

structure and the TMD’s natural frequency (indicated by the superscript *), respectively. A
strong indication for existence of an analogy is the fact that the TMD behaviour can be
derived from the corresponding TLCGD by setting x=x =1.

2.7.1 Analogy between TMD and TLCGD when attached to

SDOF-main structure

Hochrainer', page 98 established such an analogy. We repeat his derivation to form the
basis for the more general case of a space-structure. The first step is to define the relationship

between u and u .If Egs. (2.66) and (2.69) on the right hand side have the same excitation,
' turns out proportional to u,
u =ulk. (2.71)

Substituting this result and comparing the left hand side of the second equation in Egs. (2.67)
and (2.70), yield at once

wy=w,, 4=C,4. (2.72)
In a second step, substituting these results into the first equation in Egs. (2.67) and (2.70)
renders by inspection

1 w1

K : 1 1 -
- _F )0 a)§: 05 , —— 2005 = +20505,
I+ u K<1+#) 1+ pu 1+ u 1+ u I+ u

1 1

M (1+ ) M*(lw*)’

and thus the mass ratio of the equivalent TMD-main system becomes

= <u, we= <wg, = <{yg, 2.73
) S T (e s Ji+ u(1=x) s @)
and
M =M (1+pu(1-x))> M , my=xicmg<m;. (2.74)

The conjugate main structural mass includes the dead fluid mass of the TLCD, m (1 - K/?) ,

22



Single-storey Moderately Plan-asymmetric Space Frame with TLCGDs

1.e. xx should be maximal.

2.8 Control of single-storey moderately plan-asymmetric
space frame by a single TLCGD when compared to an
equivalent TMD

2.8.1 TMD attached to space frame

A model of the single-storey asymmetric structure with the mass matrix M and the

stiffness matrix K is considered, analogous to Section 2.4. A TMD is set with the general
angle vy to y-direction. The position coordinate of TMD is (y4, z4, 0).

R

Fig. 2.13: TMD under general in-plane acceleration of the floor: #, W and 6.

The instant coordinate position of the point mass Cy is u*é’A , for its TLCGD
counterpoint Cr. Hence,
Fo, =Fgtu 8y, Ve, =V, i &y +u 08, (2.75)
Ge, =iy +ii'ey + 2" 08, +u' 0, ~u'0°¢ = a, + (il —u"0 )&, + (2 0+u'd)e,,  (276)
R=miyic, =mya,+my (i —u'6% )&, +my(20"0+u"d)e, . (2.77)
Equation (2.77) compares favorably with Eq. (2.45), TMD has not relative displacement in x
direction. The equation of motion for the TMD, viscous damping is added subsequently, is
derived by considering the 4' component and inserting Eq. (2.46) for a,,
mydc €y +ci +ku =0,

dc,-€4=a,cos(y+0)+a, sin(y+0)+ii —u 6%,

my [ay cos(y +80)+a,sin(y+80)+ii —u*@'ﬂ +cu +ku =0 (2.78)

and takes on its linearized form with parametric forcing neglected, related to Eq. (2.35) of the
linearized TLCGD,

ii*+2§2a)2g*+a)22u* :_[i;g +i)—(zA—zCM)t9Jcos;/—[Wg +v'{/+(yA—yCM )H}Siny,

k* *
O = [ 2 = (2.79)
mA mA
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The control forces are, see Egs. (2.47)- (2.50) for the TLCGD

F@y=my [ay cos(y+0)+a,sin(y+0) +ii —u*@'z} , (2.80)
Fiéy =my| ~a,sin(y+0)+a cos(y+0)+2d"6+u'd |, 2.81)
and when rotated become

Fay=my| ay+(ii" =u"0% cos (y+0)~(2i"6-+u"0)sin(7+0) |. (2.82)
Fio =] a+ (il =u'0% )sin(y+0) + (240 +u"8)cos (y + 0) | (2.83)
Equations (2.82), (2.83) are simplified under the condition|6’| < land the essential linear parts
are

FAy mA[v +V - (zA—zCM)é}+m;ii*cos7, (2.84)
F;Z:mA[v'{/g+W+(yA—yCM)9}+mZii*sin)/. (2.85)

Conservation of angular momentum of the point mass mz requires, compare with Eq.
(2. 63)

%+m/1u & xd, =My, % d£A+0(e xDA)

Lp=mu'®, Dy =I0=mu"0, dg;’;x_m (2u""0+u™0),

Mo € xd, =mu [—ay sin(y +6)+a, cos(y+¢9)]éx ’

My =my{u”[~a, sin(y+6)+a, cos(y+6) |+ 2u"i"0+u"d). (2.86)

Equation (2.86) is simplified under the condition |9| < land when properly linearized, the
moment vanishes,

My, =0, (2.87)
in contrast to Eq. (2.64) of the TLCGD.

The equation of motion for the coupled undamped main-system can be given in matrix
form,
M¥+K ¥=-M X, +P,
=%

szuT,}?T:ii w, 0|, PT
[ ] % =Y

: =F E M), (2.8

where Eqgs. (2.84), (2.85) and (2.87) are considered, P is the linearized control force vector
and M* =Mj;x —ij (ZA —zc, )+F:Z (yA -Yc, ) is the moment about Cy,.

If the floor displacements X are expanded into modal displacements X = Z¢ g, on

the left hand side, Eq. (2.88) decouples on the left hand side for all class1ca11y damped

systems by pre-multiplication with the transposed d). ,

GIM GG+ Kb q;=—¢ M x,+] P, (2.89)
H*'—’ %;—/
m. k.

J J

then Eq. (2.89) divided by the modal mass mj becomes
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TTar* =T ST *T
* M. . . ‘Ko,
41*“’5]2‘112——% * fg+¢’* ; wsf=¢’ ”*(b’, Jj=123. (2.90)
J mj m;

However, X = q;jq ; must approximately hold in the narrow frequency window around ®;

in the case of base excitation, i.e. on the right hand side to decouple the modal equations:
v=q,;pj1, wW=4q;@;5, up=rst=q;¢;3 are substituted in the control forces and on the right
hand side of the TMD equation.

Inserting the linearized coupling forces 2 Egs. (2.84), (2.85) and (2.86), into Eq. (2.90)
renders the approximated equation of the selected mode,
*

1 *\ .. *) mAj . LK
+1u] q]-+C()qu]'+7(VA’J'COS}/+WAJSID}/)U
J

b

= __*(mS¢j1 +mAjVA,j)Vg i (mS¢j2 +mAjWAJ)Wg
m m
J J
*
x Myj s ¥ 2 2
My =V Vim =Vt wa g,
m;
Vaj =9 _¢j3(ZAj_ZCM )/FS’ Wa,j :¢jz+¢13(ij‘yCM )/r : @91

where v, ; and w,; denote the modal displacements of reference point 4 in y- and

z-directions, respectively. Further the displacements of the main system in the equation of
motion of TMD in Eq. (2.79) are substituted, to approximately render

ii*+2§:;ja)zju*+a)2u*:—(VAJ COSy +Wy siny)'q'j—fST).'c:g, iy =[cosy siny 0].2.92)

With light structural damping of the main system {g; <¢¢) < g3 <0.1 added, the coupled
equations of motion of the main system with TMD attached, in matrix notation become

1+ 4 (VAJcosy+wA)jsin;/)mAj/mj q;
+
(VA,jcosy%—wA’jsin}/) 1 U 2.9%)
B * * . *) — * ’ .
g5 014 jos 0 14 L' [mi |
* * * == X
0 2yl |lit] | 0 @i O

where the generalized participation factors are

“*T * * * % % * % % * .

of the conjugate structure.

2.8.2 TLCGD attached to space frame

The equation of motion for the coupled system considering the undamped single-storey
space frame Eq. (2.2) and the TLCGD, Fig.2.9, Egs. (2.36), (2.51), (2.52) and (2.64) under
the ground excitation can be combined in matrix form

M;+I§£:_Wg+l3a
=v w ou], jégT:[vg g o], PTz—[FAy F,. Mx/rs], (2.94)
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where P is the control force vectorand M, =M, —Fy, (ZA -Zc, )+ Fy. (yA - e, ) :

N
If the floor displacements X are expanded into modal displacements X =z¢jq ; on the
j=1

left hand side, Eq. (2.94) decouples the left hand side for all classically damped systems by

pre-multiplication with the transposed modal vector (T)JT ,

& MG, i + 6] Kb, 4, =—0; Mx, +4; P. (2.95)
— —V
m- k.

J J

Equation (2.95) divided by the modal mass m; with light modal structural damping added,

becomes
o7 o7 T T
y .9 oM. b o, oK
§;+2gwgq; +05q; =——~L—x, +—LP 05 =—L—7"L. (2.96)
nj My My
Modal approximations v=q;¢,;, w=q;$,,, ur=rs0=q;p;3 are substituted in the

control forces and on the right hand side of the TLCGD equation. Inserting the linearized

coupling forces P, Egs. (2.51), (2.52) and (2.64) modally approximated into Eq. (2.96)
renders

1 T . 2 mg _ . ..
( +,uj)qj+ (SJ.a)quj+a)quj+—K V4, jCOSYy +Wy ;siny i
m.
J

b

1 . 1 ..
=——[(ms +ml)¢j1 +mﬁvA,j]vg ——[(ms +ml)¢j2 +mﬁwA’j}wg
m; m;

Mg o o % 2
/ujz_fJVj , Vj =Vj +K3(¢j3H/rS) . (297)

J
Here, k3 and V;z are given by Eq. (2.60) and (2.91). Eq. (2.36) renders the approximate

equation in the selected mode,
U+28 404 +a)f1ju = —K‘(VAJ Cosy + W, ;sin }/)qj —KFSTig . (2.98)

In matrix form the linearized coupled system of modal equations of the main system with
TLCGD attached results by substituting the control force,

1+yj /?(VA’]-cosy+wA’jsiny)mﬁ/mj [%}
p

K(VA’jCOS}/+WA’jSin]/) 1

. 2
0 2yoyllu | |0 o | il | ¢

where the generalized participation factors are, cf. Eq.(2.93),
7T

: (2.99)

and v, ; and w,; aresame as defined in Egs. (2.91).
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2.8.3 Analogy between TMD and TLCGD when attached to
3DOF-main system

We follow closely the procedure developed by Hochrainer' for the simplest case, Section

2.6.1. If Egs. (2.92) and (2.98) on the right hand side have the same excitation, i turns out
proportional to u, same as in the case of Eq. (2.71),

u =ufk. (2.100)
Using this result and comparing the left hand side of the second equation in Egs. (2.93) and
(2.99), yield at once

*

The results are the same as in the case of Eq. (2.72). In a second step, substituting these
results into the first equation in Egs. (2.93) and (2.99) renders by inspection

UK ﬂ; 1 2 1 *2
(1+,uj)Vj K‘(1+/Jj)Vj TH 1+,uj
1

1 * *
—— 25005, = 1+ﬂ* — 2050,

1+ M .
J
and thus the mass ratio of the equivalent TMD-modal system is defined by
i KK\V: |V
( f/ ) <p;, (2.102)
1+ y7i J[ . / V. }
and
* Ws; * S5y
w5 = ) — <0y, {o= / - <{g.  (2.103)
\/H”f[l_""(VJ/Vj) } \/H”f[l_""(Vj/Vj) }
The TMD frequency ratio &, opt = O 9 and the TLCGD frequency ratio s iopt = Caj.opt
@sj @sj
are thus related by the more general transformation
S
Sjopt = L <ot - (2.104)

S 17 7, ]

The optimal frequency ratio ¢,, of the TLCGD turns out slightly lowered. The remaining

impulsive fluid-mass must be regard as dead load of the main structure, thereby slightly
lowering its natural frequency.

2.9 Dynamic magnification factor

In this Section, assuming a time harmonic horizontal ground excitation under various
oblique angles of attack o ( 0<a <7 with respect to the y-direction), thus

V, (1) =(ag cos ) !

, Wy ()=(agsina)e™’, a, and o are the ground acceleration that

is commonly assigned as a fraction of g =9.81m/ s% and the circular forcing frequency,
respectively. The relationship between the amplitude of the modal displacement ¢; of the

main structure and the amplitude u of the relative liquid motion under a given forcing
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frequency is consequently determined in the steady-state: g; =g &l u =u &l g 0

and u, are complex valued. The dynamic magnification factor (DMF), i.e., the ratio of

| | | 90| Li(@)
dynamic response to static response can be determined as DMF =-——, qy,, = 54 -
49 jstar m ;g

2.9.1 Steady state vibration of the lightly damped main structure

without TLCGD
Equation (2.2) with light structural damping added is

TTaAT s o 7T ed o o 7T r T\ 12 ' =T -
0; Mo;G; +9;Ch;q,;+0; Kd;g; =—¢; Még age'", €s z[cosa sino 0],

;V—J

Li(a)

L;(a)
.. . )
§j + 25054, + 059, =————
Mj

where the modal damping ratio{s; <1, for convenience might be assumed constant for

age’", Lj(a)=(ms+’”1)(¢j1°030‘+¢j25m“)’ (2.105)

J=1.2,3and L;(a)denotes the classical modal participation factor.

q.
pMF =200 _ ! (2.106)

4 jstat \/[l—ﬂéj T +(2§Sjﬁ3j )2 )

where [ = a)/ wg; 1s the ratio of the forcing frequency to the natural frequency of the main

structure vibrating in its j mode. Sufficiently separated modes are understood.

2.9.2 Steady state vibration of the main structure with TLCGD
attached parallel to y-direction

t

Inserting ¢; =¢ joeim , u=uye'" into Eq. (2.99), the time-reduced linearized equation

for TLCGD-main structure becomes

(_a)z I+ p; E(VAJcos;/+wA’jsin7/)mﬁ/mj
K(VA’jcosy+wA,jsin7/) 1
2o 0 oz 0 70 I m; |
+(ia)){ 0’ ’2 } S = J{Tf ésay (2.107)
C4j@y; 0wy ||L% KTg

J=L23, ést[cosa sina 0]

Thus, the linear system of equations results,

2 2 ; i 1 2
oy ~(1+ 1) + 2L googieo ‘K(VAJ COSY+Wa,j SW)” mﬁ/mj {qjo
. 2 2 2 .
—K‘(VA)]'COS]/-FWA,]'SIH]/)&) a)Aj_(U +2§A]a)A]la) uO (2 108)
7T
~ [Lj / mj}
= — esao
=T
KTg
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The relative fluid motion has the complex displacement

—KT égay +K(VA,J~ COSy + Wy ; sin}/)a)ijo 5 L
Uy = 3 (a)Aj - —2z§Aja)Aja)). (2.109)
2 2 2 2

The dynamic magnification factor and the amplitude of the fluid motion are

ol o] sl

DMF = > = (2.110)
q; 2 2 4 3
‘—KfSTéSaO + K(VAJ cosy+wy ;sin y)a)ijo‘ ‘a)ij —w’ - ZiCAJ-a)Aja)‘
juo| = e : @2.111)
where

2 2
bi=67 , by=—1-(1+u;)5; -4 5¢ 46,
2
b3:1+,uj—/?7((VA,jc057/+wA,jsmy) mﬁ/mj, by =2Cg; 5}—1—2{14]-5]-,
7T o2
a2=I:§é’Sa0/mj—EKTSTéSaO(VA’jcosy+wA’jsin]/)mﬁ/mj,

=T
a3 :—2LJeSgAj5jao/mJ .

2.10 Numerical example

In order to illustrate the control effectiveness and ability of U-shaped TLCGD to reduce
lateral and torsional motions of the moderately asymmetric main structure, a numerical
simulation is carried out in this section. The performance of TLCGD is discussed with respect
to the mode shapes of buildings. The optimal frequency and damping ratio of TMD are either
given by Den Hartog’ method, see Den Hartog'? and the TMD-TLCGD analogy, Egs.
(2.102)- (2.104) or subsequently even subjected to fine-tuning in state space. Two different
types of earthquakes are applied to the structure under various oblique angles of attack.

The single-storey mass-asymmetric structure is considered, Section 2.2. The uniformly
distributed mass of the rectangular rigid floor axb=4x8m is ms=16x10’kg in Fig. 2.1. The
additional point mass m,=6x10°kg is considered placed in the upper right corner A, in Fig.
2.6. The common anisotropic stiffness of columns in y- and z-directions are calculated by Eq.
(2.10) £,=981.2kN/m and k=350kN/m and the length of each column is 4m, proper static
dimensioning of the elastic columns is performed. The mass moment of inertia about the

vertical x-axis is [, = (mg +m1)r52 =193.94x10°kg - m?, rg =2.97m.

2.10.1 Static dimensioning and a static safety criterion of the
columns

The buckling lengths of the cc-columns is /[, =/ =4m, see e.g. Ziegler’, page 560. The
critical load of a steel profile HEB-160°, with respect to the weak axis of buckling, becomes

2 11 -8
F. = —72'2E[y /1*=— zx 2'IXIO42X889X10 =—1150.43kN , where E denotes the modulus
of elasticity of steel £ = 210kN / mm? and I, is the principal moment of inertia about the y axis.
29




Single-storey Moderately Plan-asymmetric Space Frame with TLCGDs

The mass of HEB-160 per meter is 42.6 kg/m, the effective mass of a column is calculated by
Eq. (2.8) m; =63.3kg and total mass of four columns is 253kg. It is very smaller than the

floor mass and the additional point mass, and can be neglected.
Live load for static analysis: ¢q; = 4kN | m?, O =4x8x4=128kN .

Dead load (self weight): G} =m g =16x 10° x9.81=156.96kN ,

G, = myg =6x10° x9.81=58.86kN .
Thus, the combined loads result,
Ny =-1.35xG, —1.5xQ, =—403.896kN , N5 =—1.35xG, =-79.461kN .

S

The combined load without TLCGD at point A;: F = Nfl + N, 4, =—180.435kN . The

combined load without TLCGD at points A,, A3 As: F, = % =-100.974kN .
Thus % = % =0.16<0.33 and the geometric flexural stiffness correction can be

c
applied. At point A; with weight of the point mass considered,

61:651;1 :gx_183'435:—54.13kN/m : At points As, As, As,

g = 0F, =§>< -100.974
2 5/ 5
and z-direction become 927.07kN /mand295.87kN /m . The corrected stiffness of columns
at points A,, A3, A4 in y- and z-direction become 950.9AN/m and 319.7kN/m.

=—-30.3kN /m. The corrected stiffness of column at point A; in y-

2.10.2 Natural modes of the main structure

Natural frequencies are calculated by solving the characteristic Eq. (2.14) by means of
Matlab’. The result is, columns are assumed to be massless.

116 0 0
f=| 0 196 0 |[Hz]
0 0 237

The orthonormalized modal matrix of the undamped main system is the output of Matlab’,
displacements of the center of mass are used,

—-0.030237 -0.563450 0.368990
o= 1072| 0.664320 —0.085801 —0.076579 |.
0.110960  0.360150  0.559040

Correction of this output of orthonormalized eigenvectors might become necessary with

respect to orthogonality,

- 0,i#j] -7 - 0,i#j
T e _ Y T e

b MG ‘5’7‘{1,1-:1’ 6K ‘5”‘{@,.2,1-:;'

Test calculations render sufficient accuracy, & is the Kronecker symbol.

A M =8,=1, ¢ Mg, =65, =1, ¢ Mgy =553 =1,
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@TM& = 512 = 521 =2.78x 10_17 , (ngM&l = 513 = 531 =5.55x%x 10_17 .
i Mgy =6,,=2.22x107"%, ¢/ Mg, =6;, =1.11x107'¢.

The mode shapes are exaggerated and plotted in Figs. 2.14-2.16. The motion of the
structure in each mode consists of coupled translation and torsion.

Cy

0.04
—%

Fig. 2.14: First mode f; =1.16Hz.

4

“Cv

Fig. 2.15: Second mode f, =1.96Hz. Fig. 2.16: Third mode f; =2.37Hz.

2.10.3 Position of the center of velocity C,, for the modes
numbered j=1,2,3

The coordinates of the modal centers of velocity Cy are defined by Eq. (2.18) and
illustrated in Figs. 2.14-2.16. All centers of velocity are outside of the floor plan thus defining
a moderately asymmetric structure.

- —16.685 - 1.798 - 1.498
I’C = m, I’C = m, VC = m.
& —-0.264 2 1 -4.10 3 12.505

(1) Installation of the TLCGDs

A single tuned liquid column damper for each mode is placed on the floor, as illustrated
in Figure 2.17. Rendering the normal distance of its trace to Cy as large as possible within the
plan, the TLCGD are installed as follows. Suppressing the first mode TLCGDI1 is installed in
the middle with respect to the dominant horizontal displacement in z-direction. TLCGD2 can
be installed along the long side or alternatively on the short side, tuned to effectively damp
the second mode. We choose it parallel to the y-direction. In addition, TLCGD3 can be
installed on the opposite side of TLCGD?2, thus parallel to the y-direction, or alternatively, on
the short side parallel to the z-direction, to be considered subsequently in Section 2.10.8. We
will investigate both installations of TLCGD3 to compare both locations with respect to the
effectiveness for structural control.
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Z Cy
[

., TLCGD2
Cy TLOGD? or 3} HTLC GDI %

0]

TLCGD3
[ 1

Cyz

Fig. 2.17: Positioning of 3 TLCGDs, an alternative shown. Here, ® indicates the modal
centers velocity.

2.10.4 The linearized equation of motion for TLCGD

In Equation (2.36), putting y,=0, z,=0, u; =0rg, y=/2renders the equation of
motion for the TLCGDI1 (z-parallel)
il + 24 31 g1ty + @yt = —K) (Vg + 0=y, dir /75 ).

In Equation (2.36), putting y,, =0, y,3=0, up =0rg, y=0 yields the equation of
motion for both TLCGD2 and TLCGD?3 (y-parallel)

.. . 2 P ..
Uy +2§A2a)A2u2 +0)A2u2 = _K(z) |:Vg +V—(ZA2 _ZCM )UT/I"S:|,

. ) b B e .
Uj +2§A3CUA3H3 +CUA3M3 ——K(3) |:Vg +V_(ZA3 _ZCM )HT/I"S:| .

2.10.5 The linearized control forces for TLCGD acting on the
floor applying the substructure synthesis

In Equations (2.51) and (2.52), putting y,=0, z,=0, up=6ry, y=x/2 and
considering Eq. (2.64) render the linearized control forces exerted by TLCGDI1 on the space
frame

Eapr==my, (vg ””CM”'T/FS) > Bz ==myy (Wg =y, iz [1s +’?(1)ﬁ1)=

_ 2..
M gy =—mp K3y Hy iy [rs .
The linearized control forces exerted by TLCGD 2 and TLCGD 3 become, Egs. (2.51),
(2.52) and (2.64) are properly considered

FAyZ=_mf2|:vg'H}._(ZAZ_ZCM)IL"T/VS+’?(2)ﬁ2} , FAZZZ—mfz(Wg+W—yCMuT/Vs) ,
M 4pp =—msrK35) sziir/rs ;
Fis=-ms [vg +i= (2,5 -2¢, )iir [ +;?(3)a3], F oy ==mys (3o +30 = ye, iy 15 ).

_ 2..
M 43 =—m p3k33) H3 ”T/”S .

Fig. 2.18 indicates their action.
a2 —}:{d A«sz
I TLCGD2 I

Fan T Mg
—

F,qaﬂ LCGD1

TLCGD3M 4y img
1 1

1
A

Fig. 2.18: Reaction forces and moments for TLCGDI, 2, and 3.
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2.10.6 TLCGD design, Den Hartog’ optimization

Since the modes of the main structure seem to be sufficiently separated, modal tuning of
TLCGD is performed in a first step by a transformation of the classical Den Hartog formulas
by means of the analogy between TMD and TLCGD. Optimal TMD design parameters,
frequency ratio and damping ratio, are determined subjected to the harmonic excitation. The
optimum tuning frequency ratio between the equivalent mechanical absorber and the main
structure for minimum total acceleration is, see Den Hartog'?, page 97 and 101

x 1

= e (2.112)
opt 1+ P
and the corresponding optimum linear viscous damping coefficient is given by
. 3
Copt = | - (2.113)
8(1+4")

The same parameters apply also in case of time harmonic forcing and minimizing the
dynamic displacement magnification factor of the main system.

The fluid mass is chosen as m, =770kg, m;, =320kg and m 3 =180kg of water.

Dimensions of the three TLCGDs tuned first by means of the TMD analogy Egs. (2.102)-
(2.104) applying Den Hartog’s formulas are summarized in Table 2.1.

TLCGD1 | TLCGD2 | TLCGD3
z-parallel | y-parallel | y-parallel
Horizontal length of the liquid column B [m] 3.00 2.50 3.00
Inclined length of the liquid column A [m] 1.40 0.86 0.60
Cross-sectional area of the pipe [m’] Ay=Ag 0.1330 0.0760 0.0430
Effective length Le/,f =L, =2H + B [m], Eq. (2.34a) 5.80 4.22 4.20
Angle of the inclined pipe section B [rad] ;;/ 4 ;r/ 4 ;;/ 4
Equivalent mathematical pendulum length Ly [m], Eq. 0.19 0.07 0.05
(2.37)
Geometry factor K = K , Egs. (2.34a), (2.44) 0.86 0.88 0.92
Geometry factor k5 , Eq. (2.59) 1.20 1.77 3.83
Equilibrium pressure head /4, [m], n=1.2, Eq. (2.34a) 36.70 45.26 46.50
Gas volume V, = 4, H, [m’], Eq. (2.38) 0.340000 | 0.110000 | 0.044000
The mass ratio of the TLCGD-main system x, Eq. (2.97) 3.02% 204 1.53%
The mass ratio of the equivalent TMD-main system ,u* , 2.19% 1.47% 1.20%
Eq. (2.102)
Natural frequency f, opt [Hz] Eq. (2.104), (2.112) 1.13 1.92 2.33
Optimal linear damping %, Eq. (2.113) 8.96 7.37 6.68

Table 2.1: Layout of the modally tuned TLCGDs, gas volume and gas equilibrium pressure
assigned, cf. Fig. (2.17).

Fig.2.19 illustrates the scaled scheme of TLCGDs. The modal dynamic magnification

factor (DMF) calculated with Matlab 7.0, equivalently linearized damping of the TLCGD
considered, is illustrated in Figure 2. 20.
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™ F 0.8m am
=1.4m H=1.4m 1=0.86m [1=0.86
A":{}.] 33m* “:(:'133“11 A”:(I_I 33“11A|| 00,07 6m? + AH:G'O?t’ .-':t“ 0.076m?
_ pd5° peds®
p=45° =45 :
+—B=3m B2 sm
am AN
H=0.6m  H=0.6m
Ay=0.043m? *A.; (0,04 3m? Ay=0.043m*
pa prds’
—A—B - i——s]
Fig. 2.19: Scaled sketches of TLCGDs.
50 \ 50 I
= original structure = original structure
— TLCGDI installed = TLCGD 2 installed
40 1 40—
—=30 —=50
30126581 3012652
DMF DMF
20 20
10 1 10 1
'k‘*_ L 8.49 =10.48
Rl o 2 o
00 0.5 1 1.5 2041 00 0.5 1 1.5 209>
50 I
= original structure
— TLCGD3 installed
40 i
=5
30 2("2
DMF
20
10 |
\ =11.52
w
0 / —_
0 0.5 1 L5 2 053

Fig. 2.20: Modal frequency response curves without and with linearized TLCGDs attached,
Egs. (2.106) and (2.110), TLCGDs with Den Hartog’s optimal parameters.

The TLCGD in its passive mode considerably reduces steady state vibrations of lightly
damped structures similarly to an increase of the effective structural damping. The effective

modal damping coefficients of the system in each mode are increased from {g =1% to

Cop1 =5.9%., Coppa =477% and &5 =4.34%.

From Table 2.2a-c it follows that all of the maximum fluid displacements for varying
angles of attack of the time harmonic excitation, are within the acceptable limits, wu, < H,/3

(of linearized gas compression) and u, < H/2. The maximum fluid velocities of three

TLCGDs are calculated by Eq. (2.35) 4.81, 4.32 and 3.43m/s and are within the acceptable
speed limit.
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structure TLCGD1

Forcing direction v[mm] w[mm] u; =rg60 [mm] Uy [mm]
azo ol 0 1 1 2
=16 S 2 2 13 315
a=n/4 S > L 19 460
a=r/3 (fo :g }gg 23 573
a=n/2 (fo :; 123 27 678
a =213 S - 35 24 600
o =31/4 S > 2 20 498
a=57/6 (fo :‘1‘ gg 15 362

Table 2.2a: Maximum displacements in the first mode from time-harmonic excitation in
a -directions, ap=0.1g, r¢ =2.97m.

structure TLCGD2

Forcing direction v[mm] w[mm] u, =r,60 [mm] Uy [mm]
a=0 N = - 31 358
a=r/6 (2“ :2? _'178 29 355
o =r/4 (2“ :;“2) _'165 25 289
a=r/3 (2“ jé _'152 20 223
a=x/2 (2“ _'170 :; 5 52
=213 L s = 12 134
a=3r/4 (2“ :gg _'151 19 217
a=57/6 (2“ :g? _'165 25 284

Table 2.2b: Maximum displacements in the second mode from time-harmonic excitation in

a -directions, ag=0.1g, r¢ =2.97m .
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structure TLCGD3

Forcing direction v[mm] w[mm] up, =r;0 [mm] Uy [mm]
a=0 N ég _'132 24 234
a=r/6 (;;M éé :3 18 181
a=rxf4 (;;M 291 :i 14 134
a=r/3 (ij 152 :411 8 78
a= 7r/ 2 CAM ; :; 5 45
a =213 Eu ¥ P 16 156
o =31/4 Eu 2 = 20 198
a=51/6 Eu = = 23 225

Table 2.2c: Maximum displacements in the third mode from time-harmonic excitation in

a -directions, ag=0.1g, r¢ =2.97m.

2.10.7 Optimization of single-storey space frame with 3 TLCGDs

in the state space domain

The equation of motion for the combined multiple degree of freedom structure (primary
system) and several TLCGDs (secondary system) can be derived as follows

ME+CE+ KT =-MF +LP . 7 <[y wour] BT =[5, i, 0],

pl _[sr pr pr| pl—

PU=[F B Bl] P =[Fay Fug My/rs] (2.114)
where M =Mgdiag[l 1 1] is the mass matrix of the main structure,
Mg =mg+m; +m +m5+my, where mj, m) and m; denote the mass of the rigid piping
systems; X 1is the displacement vector of the structure; C is such a damping matrix of the
structure that keeps the modal vectors orthogonal, light modal damping coefficients are all

assumed to be 1%. K is the stiffness matrix of the structure; X, denotes the seismic ground

acceleration vector. P’ is the control force vector and L=[L, L, Ls] ;
L, =diag[l 1 1] is the position matrix of the TLCGDs.

The linearized control force produced by several TLCGDs takes on the hyper matrix
form, for a single TLCGD see e.g. Eq. (2.57), 15=—1\~/If (I}?#i)'?‘g +Kﬁ) , see section 2.9.5.
Here, for TLCGD1 (z-parallel), TLCGD2 and TLCGD3 (both y-parallel)

I e
T=[T. T, Ty,]. .= ° ! (va=ye,)/rs

Zcy, /rs (yA —Ye, )/’”S [(J’A —-Ye, )2 +ZéM +’?3H2}/r52
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1 0 —(ZA—ZCM)/FS
T, = 0 ! —J’CM/I”S ’
ezl vl [(eamat, ek, o] f
I 1 : 0 |
i"=[i. by k] i= 0 1 0
2, /s (yA—ycM)/rs 0
1 0 0
0 1 0

0 0 0
=T _[3 < < = _ K 0 0
K =K Ky ]S3y]> Ky, = 1 ,

yAl—ycM)’?l/”S 00

0 K, 0 0 0 K3
sz: 0 0 0 ’ K3y: 0 0 0 ’

O _(ZAz_ZCM)Ez/rS 0 O O —(ZA3—ZCM)E3/”S
Mf:diag(mflamflamflamfZ:m‘fZamf2smf3amf3:mf3)- (2.115)

ii" =[u; u, us] samples the relative fluid displacements.

The equations of motion for TLCGD-main structure system by substituting the control
force and rearranging terms, can be given as

M+LMT LMk ||%| [C 0 ][x| [K O ][%] [M+LMi] . e
T I il lo o il Tloke laf T i %} (2.116)

0 1 (yAl -Yc, )/”S

0 0
where T'=|1 0 —(ZAz—ZCM)/I’S , 1'=|1 0|, x=diag(k,Kk,y,K3),
1 0

_1 0 _(ZA3—ZCM)/V5_
Cr =diag|2¢ 410 ,41,2¢ 40 45,2¢ ;3043] denotes the linearized damping matrix of TLCGDs;
K¢ =diag [a)fﬂ, a)iz, 0)1243} denotes the “stiffness” matrix of TLCGDs.
M+IM,T LM;x
M' = , ,
kT I

¥ a[C o x| L alKOT[R] a[ MM (-
Lr=-M M M ) (2.118)
1 0 Cr]lu 0 Ky |(u K1

This system of second order differential equations can be lastly converted to a first order

e T
state space representation by introducing the state hyper vector 2(N+n), Z = [)?T al xTal ]

(2.117)
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and its time derivative, see e.g. Ziegler’, page 438

Z=(A+BR)Z+¢,X, (1), (2.119)
where, in a hypermatrix notation, the system matrix remains separated,
09 10 00 09
A= 09 0L |, B= 00 00 |,
M{ Q} _M,-I[GQ} ! 19} _M,-{l Q}
LT oo 7 00 Toorp 7ol
[0 000
PR 0
R=|? 1000 0 . (2.120)
0000 | -
000¢ -M'{wa\ﬂﬂ
K1
The time-harmonic solution Z(¢) = Z¢™®’ assuming the ground excitation to be time-harmonic
i, (1)
X ()=, () p =apese’®’, & =[cosa sina 0], (2.121)
0
simply becomes
Z(a,0)=[iol-(A+BR)]| e,&sdp. (2.122)

The optimal natural frequency and the damping ratios of the TLCGD are calculated by
minimizing the following performance index, corresponding to the minimum of the area under
the resonance curve,

J = j 2l (w)Szg(0)dw = 2720 TP — Minimum , uy = rs0 (2.123)
where Zg =[v, w,ur,v, W, aT]T represents the main structure’s state vector 2N. The positive
semidefinite weighing matrix S =diag (10,10,10,1,1,1) is chosen e.g. to pronounce

displacements. b =e,€ga, 1s the excitation vector. P is consequently the solution of the

algebraic Lyapunov matrix equation, (A + BB)T P+P(A+BR)=-S. The latter is numerically

evaluated by means of the software Matlab’. The minimization of J is performed numerically
by calling the function fminsearch of the Matlab Optimization Toolbox. fininsearch finds the
minimum of the scalar function J of several variables quickly, when substituting Den Hartog’s

modal tuning parameters Xo =[@,®2,@43:¢ 41, 42,4 43| » for the initial estimate, e.g.
x, =[7.12,12.09,14.66;8.96%,7.37%,6.68%] . The optimal natural frequencies and damping
ratios determined by this fine tuning process turn out f, =1.13Hz, f,,=190Hz ,
Si3=233Hz , {=751%, ¢4n=572%, ¢3=491%, ie. frequencies are slightly

lowered and the damping coefficients of the fluid flow are commonly “dramatically” lowered.
The equilibrium pressure head /4, of the three TLCGDs are properly adjusted 34.47, 42.79

and 45.15m, see Table 2.1 for the former slightly higher values. Figs. 2.21-2.28 show the

6
frequency response of the weighed sustl- |le-(1/)| of the building states for the original and
i=1
the optimized system under ground acceleration with various angles of attack, in the
logarithmic decibel scale x[dB]=20logx within the frequency window 0< f <3Hz. The
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results with fine-tuning optimal parameters are somewhat better, since the curves have broader
resonance peaks.

[dB] 80

60

40

frequency [Hz]

—— original structure including the dead fluid mass of TLCGDs
—— linearized TLCGDs with Den Hartog's optimal parameters
linearized TLCGDs with optimal parameters fine tuning in the state space domain

Fig. 2.21: Weighed sum of amplitude response functions for the 3-DOF linearized,
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached
(TLCGD3 y-parallel) and without the TLCGDs (angle of attack of the time-harmonic base
acceleration ¢ = 0 ), maximum gain 29.98dB.

[dB] 80

60

frequency [Hz]

——original structure including the dead fluid mass of TLCGDs
—— linearized TLCGDs with Den Hartog's optimal parameters
linearized TLCGD with optimal parameters fine tuning in the state space domain

Fig. 2.22: Weighed sum of amplitude response functions for the 3-DOF linearized,
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached
(TLCGD3 y-parallel) and without the TLCGDs (angle of attack of the time-harmonic base

acceleration « = 7/6), maximum gain 30.15dB.
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[dB] 80

60

frequency [Hz]

—— original structure including the dead fluid mass of TLCGDs
—— linearized TLCGDs with Den Hartog's optimal parameters

linearized TLCGDs with optimal parameters fine tuning in the state space domain

Fig. 2.23: Weighed sum of amplitude response functions for the 3-DOF linearized,
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached
(TLCGD3 y-parallel) and without the TLCGDs (angle of attack of the time-harmonic base

acceleration « = 7/4), maximum gain 33.58dB.

[dB] 80

60

frequency [Hz]

—— original structure including the dead fluid mass of TLCGDs
—— linearized TLCGDs with Den Hartog's optimal parameters

linearized TLCGDs with optimal parameters fine tuning in the state space domain

Fig. 2.24: Weighed sum of amplitude response functions for the 3-DOF linearized,
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached
(TLCGD3 y-parallel) and without the TLCGDs (angle of attack of the time-harmonic base

acceleration « = z/3), maximum gain 33.8dB.
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[dB] 80

60

/) LY

/A ——
A Y v
- -

frequency [Hz]

—— original structure including the dead fluid mass of TLCGDs
—— linearized TLCGDs with Den Hartog's optimal parameters
linearized TLCGDs with optimal parameters fine tuning in the state space domain

Fig. 2.25: Weighed sum of amplitude response functions for the 3-DOF linearized,
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached
(TLCGD3 y-parallel) and without the TLCGDs (angle of attack of the time-harmonic base

acceleration « = 7/2), maximum gain 33.78dB.

A

[dB] 80
60

40
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isl.‘zg(v)(o ‘ / \ S .
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0.5 1

T~

frequency [Hz]

—— original structure including the dead fluid mass of TLCGDs
—— linearized TLCGDs with Den Hartog's optimal parameters
linearized TLCGDs with optimal parameters fine tuning in the state space domain

Fig. 2.26: Weighed sum of amplitude response functions for the 3-DOF linearized,
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached
(TLCGD3 y-parallel) and without the TLCGDs (angle of attack of the time-harmonic base

acceleration « =27/3), maximum gain 33.5dB.
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[dB] 80

60

6 20 .-’ H \
;Sz-\zg(v)( 0 Ny /1/ \\N_/L&j\yj \5\ .;

frequency [Hz]

—— original structure including the dead fluid mass of TLCGDs
—— linearized TLCGDs with Den Hartog's optimal parameters
linearized TLCGDs with optimal parameters fine tuning in the state space domain

Fig. 2.27: Weighed sum of amplitude response functions for the 3-DOF linearized,
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached
(TLCGD3 y-parallel) and without the TLCGDs (angle of attack of the time-harmonic base

acceleration o =37/4), maximum gain 33.25dB.

[dB] 80
60

40

frequency [Hz]

—— original structure including the dead fluid mass of TLCGDs
—— linearized TLCGDs with Den Hartog's optimal parameters
linearized TLCGDs with optimal parameters fine tuning in the state space domain

Fig. 2.28: Weighed sum of amplitude response functions for the 3-DOF linearized,
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached
(TLCGD3 y-parallel) and without the TLCGDs (angle of attack of the time-harmonic base

acceleration « = 57/6), maximum gain 32.84dB.

Figures 2.29-2.36 show the comparison of the response of three TLCGDs, alternatively
with Den Hartog’s optimal parameters and, after fine-tuning in state space, under various
angles of attack of the base excitation. From inspection of these figures it is apparent that the
maximum relative fluid displacements for all cases are well within the acceptable limits. The
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maximum fluid velocities of three TLCGDs are calculated by Eq. (2.35) 5.68, 5.37 and
3.66m/s and are also within the acceptable speed limit.
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frequency [Hz]

—— TLCGDI Den Hartog's parameters
TLCGD3 Den Hartog's parameters
—— TLCGD2 fine-tuning in state space

—— TLCGD2 Den Hartog's parameters
TLCGD1 fine-tuning in state space
—— TLCGD3 fine-tuning in state space

Fig. 2.29: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

attached to the 3-DOF space frame (TLCGD?3 y-parallel). TLCGDs either with Den Hartog’s
optimal parameters or those resulting from fine-tuning in state space (a =0).
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—— TLCGD2 fine-tuning in state space

—— TLCGD2 Den Hartog's parameters
TLCGD] fine-tuning in state space
—— TLCGD3 fine-tuning in state space

Fig. 2.30: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

attached to the 3-DOF space frame (TLCGD3 y-parallel). TLCGDs either with Den Hartog’s
optimal parameters or those resulting from fine-tuning in state space (« = 7/6).
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—— TLCGDI Den Hartog's parameters —— TLCGD2 Den Hartog's parameters
TLCGD3 Den Hartog's parameters TLCGD1 fine-tuning in state space
—— TLCGD2 fine-tuning in state space —— TLCGD3 fine-tuning in state space

Fig. 2.31: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs
attached to the 3-DOF space frame (TLCGD3 y-parallel). TLCGDs either with Den Hartog’s

optimal parameters or those resulting from fine-tuning in state space (« = 7/4).
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TLCGD3 Den Hartog's parameters TLCGD] fine-tuning in state space
—— TLCGD2 fine-tuning in state space —— TLCGD3 fine-tuning in state space

Fig. 2.32: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs
attached to the 3-DOF space frame (TLCGD?3 y-parallel). TLCGDs either with Den Hartog’s

optimal parameters or those resulting from fine-tuning in state space (& = 7/3).
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TLCGD! fine-tuning in state space
—— TLCGD3 fine-tuning in state space

Fig. 2.33: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

attached to the 3-DOF space frame (TLCGD3 y-parallel). TLCGDs either with Den Hartog’s
optimal parameters or those resulting from fine-tuning in state space (« = 7/2).
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Fig. 2.34: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

attached to the 3-DOF space frame (TLCGD?3 y-parallel). TLCGDs either with Den Hartog’s
optimal parameters or those resulting from fine-tuning in state space (a =27/3).
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—— TLCGD2 fine-tuning in state space —— TLCGD3 fine-tuning in state space

Fig. 2.35: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs
attached to the 3-DOF space frame (TLCGD3 y-parallel). TLCGDs either with Den Hartog’s

optimal parameters or those resulting from fine-tuning in state space (a =37/4).
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Fig. 2.36: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs
attached to the 3-DOF space frame (TLCGD?3 y-parallel). TLCGDs either with Den Hartog’s

optimal parameters or those resulting from fine-tuning in state space (a = 57/6).
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2.10.8 TLCGD3 alternatively installed on the short side of the

floor and oriented parallel to the z-direction

To compare the vibration control effectiveness using TLCGD?3 parallel to the y-direction
and alternatively parallel to the z-direction, the same fluid mass is used for both cases.
Likewise to section 2.10.6, the design of TLCGD?3 has the same parameters: Ay3, By, Hj,

K3, K33y and hy3) . However, 5 =2.42% , Equation (2.102) renders ,u; =1.95% , the
optimal parameters of TLCGD3 are 643 ,,, =0.979, 43, =, :pt3 =8.46%. It shows that
the mass ratio increases and ¢ 43, also increases. Hence, its optimal linear frequency is
S 3.0pt = J530 43 0pr =2.32Hz .

The effective modal damping coefficient of the system in third mode is increased to
Cer3 =5.27% 1n Fig. 2.37, the gain is higher when compared to TLCGD3 oriented parallel

to the y-direction because the normal distance to the modal center of velocity is somewhat
larger.

structure TLCGD3

Forcing direction v[mm] w[mm] u; =rg6 [mm] up [mm]
a=0 N T = 19 181
a=x/6 (;;M ig _'228 15 141
a=rxf4 (;;M ; _'221 11 107
a=r/3 (/iM 2 _'113 7 67
a=rf2 (/iM ‘5‘ _'110 5 59
a=2z/3 (/iM 192 _'226 14 139
a=3x[4 (/iM g _'322 17 167
o =51/6 N = = 19 184

Table 2.3: Maximum displacements in the third mode from time-harmonic excitation in

a -directions, ag=0.1g, r¢ =2.97m.

The data in Table 2.3 show that the maximum fluid displacement of u, =0.18m, at
angle of attack « =57/6, is within the acceptable limits, uy, < H,/3=0.32m (of linearized
gas compression) , uy<H/2=03m and max|1)t|:2.68<10m/s. When compared with

Table 2.2c¢, it is noted that the maximum fluid displacement and velocity are lowered.

The optimal natural frequencies and damping ratios are determined by fine tuning, Eq.
¢ 43 =7.45% . The equilibrium pressure head 7, of three TLCGDs is properly changed to
34.51, 40.87 and 39.02m. The Figs. 2.38-2.45 contain the frequency response functions of the

6
weighed sustl- |le- (v)| of the building states for the original and the optimized system at
i=1
various angles of attack, in the logarithmic decibel scale within the frequency window
0< f<3Hz. The resonance curve with fine-tuning optimal parameters have broader
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resonance peak. From inspection of figures 2.46-2.53 the maximum relative fluid
displacements and velocities for all cases are well within the acceptable limits.

In conclusion, from the previous analyses, the TLCGD3 parallel to z-direction and
alternatively parallel to y-direction can be applied in practice but TLCGD3 parallel to
z-direction is slightly preferable.

50 Y w
= original structure
= TLCGD3 installed
40 |
=5(
302653
DMF
20 }
10 AT 1
‘ =948
% [
0 —_—
0 0.5 1 1.5 2 wg3

Fig.2.37: Frequency response curves of the isolated third mode without and with linearized
TLCGD3 attached, TLCGD3 parallel to z-direction with Den Hartog’s optimal parameter.
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frequency [Hz]

—— original structure including the dead fluid mass of TLCGDs
—— linearized TLCGDs with Den Hartog's optimal parameters
linearized TLCGDs with optimal parameters fine tuning in the state space domain

Fig. 2.38: Weighed sum of amplitude response functions for the 3-DOF linearized,
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached
(TLCGD3 z-parallel) and without the TLCGDs (angle of attack of the time-harmonic base
acceleration « =0), maximum gain 33.6dB.

48



Single-storey Moderately Plan-asymmetric Space Frame with TLCGDs
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—— original structure including the dead fluid mass of TLCGDs
—— linearized TLCGDs with Den Hartog's optimal parameters

linearized TLCGDs with optimal parameters fine tuning in the state space domain

Fig. 2.39: Weighed sum of amplitude response functions for the 3-DOF linearized,
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached
(TLCGD3 z-parallel) and without the TLCGDs (angle of attack of the time-harmonic base

acceleration « = 7/6), maximum gain 32.97dB.
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linearized TLCGDs with optimal parameters fine tuning in the state space domain

Fig. 2.40: Weighed sum of amplitude response functions for the 3-DOF linearized,
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached
(TLCGD3 z-parallel) and without the TLCGDs (angle of attack of the time-harmonic base

acceleration « = 7z/4), maximum gain 33.67 dB.
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—— original structure including the dead fluid mass of TLCGDs
—— linearized TLCGDs with Den Hartog's optimal parameters

linearized TLCGDs with optimal parameters fine tuning in the state space domain

Fig. 2.41: Weighed sum of amplitude response functions for the 3-DOF linearized,
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached
(TLCGD3 z-parallel) and without the TLCGDs (angle of attack of the time-harmonic base

acceleration « = 7/3), maximum gain 33.9 dB.
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Fig. 2.42: Weighed sum of amplitude response functions for the 3-DOF linearized,
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached
(TLCGD3 z-parallel) and without the TLCGDs (angle of attack of the time-harmonic base

acceleration « = 7/2), maximum gain 33.9 dB.
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—— original structure including the dead fluid mass of TLCGDs

—— linearized TLCGDs with Den Hartog's optimal parameters
linearized TLCGDs with optimal parameters fine tuning in the state space domain

Fig. 2.43: Weighed sum of amplitude response functions for the 3-DOF linearized,
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached
(TLCGD3 z-parallel) and without the TLCGDs (angle of attack of the time-harmonic base

acceleration « =27/3), maximum gain 33.6 dB.
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Fig. 2.44: Weighed sum of amplitude response functions for the 3-DOF linearized,
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached
(TLCGD3 z-parallel) and without the TLCGDs (angle of attack of the time-harmonic base

acceleration « =37/4), maximum gain 33.33dB.
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—— original structure including the dead fluid mass of TLCGDs
—— linearized TLCGDs with Den Hartog's optimal parameters
linearized TLCGDs with optimal parameters fine tuning in the state space domain

Fig. 2.45: Weighed sum of amplitude response functions for the 3-DOF linearized,
single-storey, moderately asymmetric space frame, with three linearized TLCGDs attached
(TLCGD3 z-parallel) and without the TLCGDs (angle of attack of the time-harmonic base
acceleration « =57/6), maximum gain 32.9 dB.
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Fig. 2.46: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

attached to the 3-DOF space frame (TLCGD3 z-parallel). TLCGDs either with Den Hartog’s
optimal parameters or those resulting from fine-tuning in state space (a =0).
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Fig. 2.47: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

attached to the 3-DOF space frame (TLCGD3 z-parallel). TLCGDs either with Den Hartog’s
optimal parameters or those resulting from fine-tuning in state space (« = 7/6).
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Fig. 2.48: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

attached to the 3-DOF space frame (TLCGD3 z-parallel). TLCGDs either with Den Hartog’s
optimal parameters or those resulting from fine-tuning in state space (« = 7/4).
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Fig. 2.49: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

attached to the 3-DOF space frame (TLCGD3 z-parallel). TLCGDs either with Den Hartog’s
optimal parameters or those resulting from fine-tuning in state space (& = 7/3).
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Fig. 2.50: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

attached to the 3-DOF space frame (TLCGD3 z-parallel). TLCGDs either with Den Hartog’s
optimal parameters or those resulting from fine-tuning in state space (« = 7/2).
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Fig. 2.51: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs
attached to the 3-DOF space frame (TLCGD3 z-parallel). TLCGDs either with Den Hartog’s

optimal parameters or those resulting from fine-tuning in state space (a = 27/3).
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Fig. 2.52: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs
attached to the 3-DOF space frame (TLCGD3 z-parallel). TLCGDs either with Den Hartog’s

optimal parameters or those resulting from fine-tuning in state space (a =37/4).
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Fig. 2.53: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

attached to the 3-DOF space frame (TLCGD3 z-parallel). TLCGDs either with Den Hartog’s
optimal parameters or those resulting from fine-tuning in state space (a = 57/6).
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Fig. 2.54: 1940 El Centro N-S ground acceleration record in time domain, sampling time
At=0.02s, http://www.eerc.berkeley.edu/.

2.10.9 Original structure with the dead fluid-mass of TLCGD
included

Table 2.4 shows the natural frequencies and the positions of the center of velocity
considering the dead fluid mass of the three TLCGDs when attached according to Fig.2.16.
The dead fluid mass of the three TLCGDs is LM, T - LM;xxT". The natural frequencies turn

out to be slightly lowered. Consequently, Den Hartog’s modal tuning parameters are also
slightly changed as listed in Table 2.5.

The changing parameters are the equilibrium pressure head /4, , the proportional
damping ¢, and the optimal frequency f,, . For in situ testing the non permanently

attached TLCGD consists of a portable piping system whose parts are assembled directly at
the desired floors. In situ tuning of frequency is done by adjusting the equilibrium pressure

Po -
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original structure TLCGD3 parallel to y-direction TLCGD3 parallel to z-direction
fs1 1.16 1.15 1.15
fs2 1.96 1.93 1.92
/53 2.37 2.33 2.32
Cvi (-16.685, -0.264) (-17.25,-0.26) (-17.16, -0.26)
Cvz (1.798, -4.100) (1.74, -4.3) (1.76, -4.36)
Cvs (1.498, 2.505) (1.45,2.38) (1.46, 2.35)

Table 2.4: Natural frequencies and the positions of the velocity center considering the dead
fluid mass of three TLCGDs (mass of the piping system is still neglected).

.. TLCGD3 parallel to TLCGD3 parallel to
original structure o N
y-direction z-direction
hy [m] 36.70 35.66 35.89
TLCGDI & a1,ope [%0] 8.96 8.87 8.89
ftt.op [HZ] 1.13 1.12 1.12
hy [m] 45.26 43.90 43.69
TLCGD2 | ¢ 43 0p [%] 737 7.25 7.24
S42.0p [HZ] 1.92 1.90 1.89
hy [m] 46.50 44.98
TLCGD3
parallel to S a3,0pe [70] 6.68 6.52
-direction
g S 43,0p [HZ] 2.33 2.30
hy [m] 46.50 44.83
TLCGD3
parallel to 3.0t [70] 8.46 8.39
z-direction
S 3,0p 1HZ] 2.32 227

Table 2.5: Parameters of TLCGDI, 2 and 3 optimized by Den Hartog’s method when
considering the dead fluid mass of three TLCGDs.

2.10.10 Dimensioning of the pipe
For simplicity, let us consider a straight circular cylindrical pipe with radius » and wall
thickness ¢ < r subjected to the internal gauge pressure p ). We determine the hoop

: - 3
stress o0, (membrane stress according to the “pressure-vessel formula™), see Ziegler’, page

91.
r
o, =2 (2.124)
t
where the maximum gauge pressure is considered,
Py =pPg(hy—10+Hsin B)+p’ , p=1000kg/m’. (2.125)

If the pipe is made of steel, p'

should be non-linearly calculated for the larger stroke

maxu =2/3H,, to account for the self-controlling property of the TLCGD under overload

and to safely keep the pipe in the linear elastic range of deformation. Thus, the maximum
dynamic pressure p’ in this case may be defined by assuming an adiabatic gas compression

' n
p'=p0[£] , n=14.
£o

(2.126)
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Since the amount of gas remains constant during compression, V, = Ay H,, the mass ratio

can be calculated by substituting the large stroke,

poVo =p' (Vo —maxfu| 4 ), p'=3py. (2.127)
Substituting Eq. (2.127) into Eq. (2.126) yields the maximum dynamic pressure p'=4.66p,
for consideration in Eq. (2.125), to render

P(D) = pg(5.66hy —10+ H sin j3). (2.128)
For large stroke it becomes necessary to check the gauge pressure under expansion condition,
Eq. (2.127) renders in this case p"=3/5p,. Hence, p"=0.49p, with a negative sign this
value is substituted for p’ in Eq. (2.125), however putting H=0,

Doy = Pg(0.51-10). (2.129)
Negative values of the gauge pressure in Eq. (2.129) cause compressive hoop stresses and
require consideration of a buckling criterion. Since /4, >10m, cavitation is not expected to
occur under overload conditions. Equation (2.124) provides the wall thickness by substituting

2

the conservative value of the admissible stress for steel, o, = 140x10° N /m* for the hoop

stress o, . Thus finally, the dead mass of the piping system is approximately estimated
assuming a constant circular cylindrical cross-section over its total length, the density of steel
p,=18x10°kg/m’ is inserted in Eq. (2.130),

m,=p,2xrt(B+2H+2H,) . (2.130)

The wall thickness and the estimated dead mass of the piping system are both listed in
Table 2.6 resulting for the three TLCGDs, designed according to Table 2.1.

TLCGD1 | TLCGD2 | TLCGD3
hy [m] 36.70 45.26 46.50
H, [m] 2.56 1.45 1.02
107 P(py IN/m’] Eq.(2.128) 16.07 20.0 20.5
pipe diameter 2r [mm)] 411.5 311.1 234.0
t [mm] Eq.(2.124) 24 22 1.7
m,, [kg] Eq.(2.130) 259.82 120.41 61.48
dead fluid-mass[kg] 200.51 72.2 27.65
107 P(py [N/m*] Eq.(2.129) 0.53 0.89 0.94

Table 2.6: Dimensioning of circular steel pipes.

The gauge pressure under expansion conditions turns out to be positive as listed in Table
2.6. The final dimensions of circular steel pipes must be changed according to their
commercial availability. By considering the dead mass of the piping system the peaks of
resonance curves move to the left. These reductions of the eigenfrequencies are not calculated
again in this dissertation but considered in the in situ testing and final fine tuning.

2.10.11 Oblique seismic excitation by the strong motion phase of
the EI Centro earthquake (1940)

El Centro north-south seismogram in medium soil site from American Imperial Valley
earthquake on May 18, 1940 is the input to the base of the structure, and maximum

acceleration is set as 3.417m/s> =0.35g . These data plotted in Fig. 2.54 can be down
loaded from the webpage, http://www.eerc.berkeley.edu/. This acceleration record is applied
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with the angles of attack varied stepwise within 0<a <7z, a=0, z/6, z/4, z/3, x/2,
27/3, 3x/4, 57/6 to the y—direction.

The simulated response output of Matlab 7.0" is displayed from Fig. 2.55 to Fig. 2.78,
where the relative floor displacements with respect to the base, the relative displacements of
the fluid in three TLCGDs, TLCGD3 parallel to the z-direction and the relative floor
accelerations are displayed. From the numerical results, some conclusions can be drawn that
three TLCGDs installed and tuned to the structural frequencies can effectively reduce the
translational and torsional response of structures excited by uni-directional earthquakes.
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Fig. 2.55: Relative floor displacements of center of mass, v, w and rotation u7y=rs without
and with three TLCGDs attached under 1940 El Centro earthquake, angle of attack: « =0,

rg =2.97m, strong motion phase 20s.
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Fig. 2.56: Relative displacement of the fluid in three TLCGDs under 1940 El Centro
earthquake, angle of attack: « =0, strong motion phase 20s.
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Fig. 2.57: Relative acceleration of single-storey space structure, ¥, W and ii, =7;0 under
1940 El Centro earthquake, angle of attack: a =0, rg =2.97m, strong motion phase 20s.
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Fig. 2.58: Relative floor displacements of center of mass, v, w and rotation ur=rs0 without
and with three TLCGDs attached under 1940 El Centro earthquake, angle of attack: « = 7/6,

rg =2.97m , strong motion phase 20s.
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Fig. 2.59: Relative displacement of the fluid in three TLCGDs under 1940 El Centro
earthquake, angle of attack: « = 7/6, strong motion phase 20s.
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Fig. 2.60: Relative acceleration of single-storey space structure, #, i and ii; = 7,6 under

1940 El Centro earthquake, angle of attack: a =7z/6, ry =2.97m, strong motion phase 20s.
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Fig. 2.61: Relative floor displacements of center of mass, v, w and rotation ury=rs without
and with three TLCGDs attached under 1940 El Centro earthquake, angle of attack: « = 7/4,

rg =2.97m , strong motion phase 20s.
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Fig. 2.62: Relative displacement of the fluid in three TLCGDs under 1940 El Centro
earthquake, angle of attack: « = z/4, strong motion phase 20s.
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Fig. 2.63: Relative acceleration of single-storey space structure, #, W and ii; =7, under

1940 El Centro earthquake, angle of attack: « =7z/4, ry =2.97m, strong motion phase 20s.
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Fig. 2.64: Relative floor displacements of center of mass, v, w and rotation ur=rs0 without
and with three TLCGDs attached under 1940 El Centro earthquake, angle of attack: « = 7/3,

rg =2.97m , strong motion phase 20s.
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Fig. 2.65: Relative displacement of the fluid in three TLCGDs under 1940 El Centro
earthquake, angle of attack: « = 7/3, strong motion phase 20s.
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Fig. 2.66: Relative acceleration of single-storey space structure, #, i and ii; =7, under
1940 El Centro earthquake, angle of attack: « =7x/3, rg =2.97m, strong motion phase 20s.
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Fig. 2.67: Relative floor displacements of center of mass, v, w and rotation ury=rs0 without
and with three TLCGDs attached under 1940 El Centro earthquake, angle of attack: « = 7/2,

rg =2.97m , strong motion phase 20s.
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Fig. 2.68: Relative displacement of the fluid in three TLCGDs under 1940 El Centro
earthquake, angle of attack: « = 7/2, strong motion phase 20s.
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Fig. 2.69: Relative acceleration of single-storey space structure, ¥, w and ii; =7;6 under
1940 El Centro earthquake, angle of attack: a =7/2, rg=2.97m, strong motion phase 20s.
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Fig. 2.70: Relative floor displacements of center of mass, v, w and rotation ur=rs0 without
and with three TLCGDs attached under 1940 El Centro earthquake, angle of attack:

a=2r/3, rg=2.97m, strong motion phase 20s.
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Fig. 2.71: Relative displacement of the fluid in three TLCGDs under 1940 El Centro
earthquake, angle of attack: « =27/3, strong motion phase 20s.
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Fig. 2.72: Relative acceleration of single-storey space structure, #, #w and ii; =70 under
1940 El Centro earthquake, angle of attack: « =27/3, r; =2.97m, strong motion phase 20s.
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Fig. 2.73: Relative floor displacements of center of mass, v, w and rotation uy=rs¢ without
and with three TLCGDs attached under 1940 El Centro earthquake, angle of attack:

a=3r1/4, rg=2.97m, strong motion phase 20s.
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Fig. 2.74: Relative displacement of the fluid in three TLCGDs under 1940 El Centro
earthquake, angle of attack: « =37/4, strong motion phase 20s.
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Fig. 2.75: Relative acceleration of single-storey space structure, #, # and i, =70 under
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1940 El Centro earthquake, angle of attack: « =37/4, ry =2.97m, strong motion phase 20s.
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Fig. 2.76: Relative floor displacements of center of mass, v, w and rotation ury=rs without
and with three TLCGDs attached under 1940 El Centro earthquake, angle of attack:
a=57/6, rg=2.97m, strong motion phase 20s.
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Fig. 2.77: Relative displacement of the fluid in three TLCGDs under 1940 El Centro
earthquake, angle of attack: « = 57/6, strong motion phase 20s.
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Fig. 2.78: Relative acceleration of single-storey space structure, #, W and i, =rgf under

1940 El Centro earthquake, angle of attack: « =57/6, rg=2.97m, strong motion phase 20s.

The numerical values of the maximum response observed in Figs.2.55 to 2.78 are
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sampled in Table 2.7a and 2.7b. It is observed that two TLCGDs installed parallel to
z-direction provides better displacement and acceleration reduction. The maximum fluid
displacements of wu; =0.42m, u, =0.27m, u3;=0.19m and velocities of u; =2.98m/s,

uy, =3.16m/s, 1y =2.59m/s are within the acceptable limits. Peaks within the early period
of the strong motion phase are hardly affected by passive damping.

original structure structure with 3 TLCGDs fluid displacement
max A\ w Ur v w ur U Uy U3
[mm)] [mm] [mm)] [mm)] [mm] [mm] [mm] [mm] [mm]
a=0 59 13 41 52 9 30 31 266 191
a= 7z/6 56 92 44 49 53 32 204 248 163
a= 7[/4 49 134 43 43 74 31 293 212 132
a= 7r/3 39 166 40 33 91 27 362 163 96
a= 7r/2 13 196 33 9 104 19 423 42 45
a= 27[/3 23 173 36 22 92 22 382 99 115
a= 37r/4 36 143 36 34 77 26 323 161 144
a= 571/6 46 104 41 43 57 29 241 213 163

Table 2.7a: Maximum displacements due to 1940 El Centro earthquake, maximum ground
acceleration a,/g =0.348 with varying angle of attack «. Maximum values indicated in

bold, u, =r@, rg=2.97m.

original structure structure with 3 TLCGDs

max V/g /g iir /g V/g /g iir /g

a=0 0.96 0.15 0.71 0.92 0.11 0.50
a=r/6 0.87 0.57 0.58 0.83 0.32 0.43
a=rl4 0.74 0.77 0.48 0.70 0.44 0.37
a=z/3 0.56 0.93 0.39 0.52 0.52 0.29
a=r/2 0.16 1.08 0.23 0.11 0.58 0.16
a=2x/3 0.45 0.95 0.47 0.41 0.55 0.27
a=37/4 0.69 0.80 0.58 0.63 0.48 0.35
a=57/6 0.88 0.60 0.65 0.81 0.38 0.43

Table 2.7b: Maximum accelerations due to 1940 El Centro earthquake, maximum ground
acceleration a,/g =0.348 with varying angle of attack «. Maximum values indicated in

bold, u; =rs@, rg=2.97m.

2.10.12 Kanai-Tajimi model of the ground acceleration: soil
amplification

The TLCGD-main structure system is subjected to a filtered white noise process of the
Kanai-Tajimi power spectrum accounting for the soil-layer filter. The Kanai-Tajimi spectrum

1+4¢2 (a)ﬁ)2

can be expressed by Sjc'g(a)) =So 5 Y , see e.g. Clough- Penzien®, page 613,
@ @
(1) +44, ()
o, @,
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where @, and ¢, represent the characteristic frequency and damping ratio of the soil layer

supporting the base of the structure and thus is related to the site soil conditions. S, is the

spectral intensity of the white noise process model of the earthquake. For the simulation of
seismic motions at firm soil conditions, the soil filter parameters take on the values

@, =5zrad/s , ¢,=006, sece Kanai'®. We assume So =72.73cm? / s° (firm soil,
magnitude 8° and near-field earthquake) corresponding to an RMS value of acceleration

70cm/s*, see Ou®. The statistical character of the strong motion requires the choice of a
modulation function: for two exponential envelopes, see Hollinger'® '". The following
envelope function proposed by Jennings (1964) is preferred and applied here, see Giuseppe'®,

) sy

Where t; =t, —#is the time interval where the excitation is stationary, 7, is the duration
time of strong motion and depends on the earthquake magnitude and the epicentral distance.
We assume: ¢, =11.13s (firm soil, magnitude 8° and near-field earthquake), # =0.5z,,
t, =1.2¢t, and c=2.5/t, see again Ou". The power spectral density is illustrated in Fig.
2.79 and the corresponding 20 second time segment of the artificially created earthquake is
shown in Fig. 2.80. The numerical simulation results are illustrated in Figs. 2.81-2.104.
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Fig. 2.79: Power spectral density of the ground acceleration in Kanai-Tajimi representation as
a function of frequency.
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Fig. 2.80: Generated ground acceleration using Kanai-Tajimi model, sampling time At=0.02s,
maximum ground acceleration a,/g =0.34.

65



Single-storey Moderately Plan-asymmetric Space Frame with TLCGDs

0.2 0.2 0.2
v[m —— without TLCD —— without TLCD u.[m —— without TLCD

[ — with TLCD wim] — with TLCD rl — with TLCD

0.1 0.1 0.1

0 VAR A”ﬂvﬂyﬂHﬂN UﬂUm Mﬂ%% 0 A 0 AL VAVWVﬂURHﬁUﬂU% WU%M
0.1 0.1 0.1
0.2 0.2 0.2
0 5 time [s] 10 15 20 0 5 time [s] 10 15 20 0 5 time [s] 10 15 20

Fig. 2.81: Relative floor displacements of center of mass, v, w and rotation ur=rs0 without
and with three TLCGDs attached, angle of attack: o =0 (artificial seismogram) ry =2.97m,

strong motion phase 20s.
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Fig. 2.82: Relative displacement of the fluid in three TLCGDs, angle of attack: a =0
(artificial seismogram), strong motion phase 20s.
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Fig. 2.83: Relative acceleration of single-storey space structure, ¥, w and ii; =g, angle

of attack: « =0 (artificial seismogram) r; =2.97m, strong motion phase 20s.
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Fig. 2.84: Relative floor displacements of center of mass, v, w and rotation ury=rs0 without
and with three TLCGDs attached, angle of attack: «=7/6 (artificial seismogram)

rg =2.97m, strong motion phase 20s.
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Fig. 2.85: Relative displacement of fluid in three TLCGDs, angle of attack: « =7/6
(artificial seismogram), strong motion phase 20s.
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Fig. 2.86: Relative acceleration of single-storey space structure, ¥, W and ii, = @, angle

of attack: « =7/6 (artificial seismogram) rg =2.97m, strong motion phase 20s.
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Fig. 2.87: Relative floor displacements of center of mass, v, w and rotation ur=rs0 without
and with three TLCGDs attached, angle of attack: «=7x/4 (artificial seismogram)

rg =2.97m, strong motion phase 20s.
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Fig. 2.88: Relative displacement of fluid in three TLCGDs, angle of attack: « =7/4
(artificial seismogram), strong motion phase 20s.
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Fig. 2.89: Relative acceleration of single-storey space structure, ¥, w and ii; =rg6, angle

of attack: « =7/4 (artificial seismogram) rg =2.97m, strong motion phase 20s.
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Fig. 2.90: Relative floor displacements of center of mass, v, w and rotation ury=rs without
and with three TLCGDs attached, angle of attack: a=7/3 (artificial seismogram)

rg =2.97m, strong motion phase 20s.
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Fig. 2.91: Relative displacement of fluid in three TLCGDs, angle of attack: «=7z/3

(artificial seismogram), strong motion phase 20s.
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Fig. 2.92: Relative acceleration of single-storey space structure, ¥, W and ii, = @, angle
of attack: « =7/3 (artificial seismogram) 7, =2.97m, strong motion phase 20s.
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Fig. 2.93: Relative floor displacements of center of mass, v, w and rotation ur=rs0 without
and with three TLCGDs attached, angle of attack: «=7x/2 (artificial seismogram)

rg =2.97m, strong motion phase 20s.
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Fig. 2.94: Relative displacement of fluid in three TLCGDs, angle of attack: o =7/2
(artificial seismogram), strong motion phase 20s.
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Fig. 2.95: Relative acceleration of single-storey space structure, ¥, w and ii; =g, angle
of attack: « =7/2 (artificial seismogram) ry =2.97m, strong motion phase 20s.
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Fig. 2.96: Relative floor displacements of center of mass, v, w and rotation ur=rs0 without
and with three TLCGDs attached, angle of attack: «=27/3 (artificial seismogram)

rg =2.97m, strong motion phase 20s.
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Fig. 2.97: Relative displacement of fluid in three TLCGDs, angle of attack: o =27z/3
(artificial seismogram), strong motion phase 20s.
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Fig. 2.98: Relative acceleration of single-storey space structure, ¥, w and ii; =g, angle

of attack: « =27z/3 (artificial seismogram) 7, =2.97m, strong motion phase 20s.
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Fig. 2.99: Relative floor displacements of center of mass, v, w and rotation ur=rs0 without
and with three TLCGDs attached, angle of attack: «=37/4 (artificial seismogram)
rg =2.97m, strong motion phase 20s.
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Fig. 2.100: Relative displacement of fluid in three TLCGDs, angle of attack: « =37/4
(artificial seismogram), strong motion phase 20s.
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Fig. 2.101: Relative acceleration of single-storey space structure, ¥, w and ii, = .6, angle

of attack: « =37/4 (artificial seismogram) ry =2.97m, strong motion phase 20s.
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Fig. 2.102: Relative floor displacements of center of mass, v, w and rotation uy=rsf without
and with three TLCGDs attached, angle of attack: a=57/6 (artificial seismogram)

rg =2.97m, strong motion phase 20s.
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Fig. 2.103: Relative displacement of fluid in three TLCGDs, angle of attack: a =57/6
(artificial seismogram), strong motion phase 20s.
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Fig. 2.104: Relative acceleration of single-storey space structure, #, v and ii; =0, angle

of attack: « =57/6 (artificial seismogram) 7, =2.97m, strong motion phase 20s.

The numerical values of the maximum response are sampled in Table 2.8a and 2.8b. The
maximum fluid displacements of wu; =0.23m, u, =0.23m, u3 =0.16m and velocities of

u =1.63m/s, 1, =2.69m/s, 13 =2.18m/s are within the acceptable limits. The results

confirm the robust performance of the TLCGDs in reducing the torsionally coupled response
of a structure with changing damping.
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original structure structure with 3 TLCGDs fluid displacement
max v w ur v w U u; u; u3
[mm)] [mm)] [mm)] [mm] [mm] [mm] [mm] [mm)] [mm]
a=0 54 11 43 34 6 22 20 231 162
a:ﬂ/6 49 54 37 31 26 24 114 219 137
a= 72'/4 42 76 34 27 39 22 162 190 110
a= 7[/3 32 93 28 21 49 19 200 149 76
a= 7r/2 11 108 21 6 60 11 232 38 32
a= 27[/3 27 93 34 16 54 16 202 82 98
a= 37[/4 39 76 41 24 46 19 166 133 125
a= 57r/6 48 54 45 30 34 21 119 176 148

Table 2.8a: Maximum displacements, artificial seismogram using Kanai-Tajimi model,
maximum ground acceleration a,/g =0.34. Varying angle of attack «. Extreme values

indicated in bold, u, =70, ry =2.97m.

original structure structure with 3 TLCGDs

max V/g /g iir /g V/g /g iir /g

a=0 0.91 0.13 0.75 0.49 0.08 0.36
a= 7r/6 0.80 0.30 0.63 0.45 0.25 0.31
a= 71/4 0.65 0.44 0.53 0.38 0.38 0.26
a= 72'/3 0.47 0.55 0.40 0.29 0.49 0.20
a= 72'/2 0.13 0.65 0.17 0.08 0.56 0.09
a= 27[/3 0.43 0.60 0.39 0.25 0.53 0.22
a= 37r/4 0.62 0.52 0.54 0.35 0.45 0.27
a= 57[/6 0.76 0.40 0.65 0.42 0.34 0.30

Table 2.8b: Maximum accelerations, artificial seismogram using Kanai-Tajimi model,
maximum ground acceleration a,/g=0.34. Varying angle of attack «. Extreme values

indicated in bold, u, =70, ry =2.97m.
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3. Single-storey Strongly Plan-asymmetric
Space Frame with TTLCGDs and TLCGDs

3.1 Introduction

Torsional tuned liquid column gas damper (TTLCGD) is a novel type of damper that can
control the torsional response of structures about the vertical axis. The results of free
vibration and forced vibration simulations show that it is effective to control structural
torsional response in Hochrainer' , Hochrainer and Adam? and Liang®, but the determination
of the optimal parameters of TTLCGD for effective reduction of torsionally coupled vibration
needs to be investigated.

In this chapter we propose TTLCGD to reduce the coupled lateral and torsional motions
in single-storey stiffness-asymmetric space frames subjected to uni-directional horizontal
seismic excitation. For a strongly asymmetric building, the velocity centers of several modes
fall inside the floor plan. In that case the TTLCGD is more effective to mitigate torsional
motion when compared to the U-shaped TLCGD. The special design of TTLCGD with
emphasis on the analogy in the tuning process to the equivalent torsional tuned mechanical
damper (TTMD) is originally developed subsequently. Plan-symmetric buildings have
isolated pure torsional modes. In those cases if their excitation is expected, the application of
the TTLCGD is recommended too.

3.2 Equation of motion for single-storey strongly
asymmetric space frame

floor mass ms

. | - y
;‘35 3" I
ms
R . | - )
X Vg
| g | T—"
! _ | - v 7
a) Plan view b) Front view

Fig. 3.1: Asymmetric space frame due to unsymmetric stiffness distribution.

For simplicity, a single-storey model is reconsidered with uniformly distributed floor
mass. The motion of its center of mass C), is defined by two horizontal displacements v and w
in the y- and z-directions, and rotation angle & about a vertical x-axis (Figure 3.1a). The origin
of the coordinate system is at Cy, The column at each corner has the same anisotropic
stiffness ky and k, in y- and z-directions. However, an extra column of much stronger
stiffnessk; and k. , referring e.g. to the elevator tube, has the eccentricity e,, e.. The

z !
center of stiffness and center of mass are well separated, see the center of stiffness Cs in Fig.
3.1a.
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Fig. 3.2: Free-body-diagram of the floor of the strongly asymmetric space-frame, stiff
elevator tube shown; derivation of the stiffness matrix.

The free-body-diagram of single-storey structure under ground excitation as indicated in
Fig.3.2 is subjected to the basic laws of conservation of momentum and conservation of
angular momentum.

(i) Conservation of momentum in the y-z plane

deCM =R y ﬁCM = i}téy + Wtéz

V=V HV, W =W W, (3.1)
where ¥ and v, are the absolute accelerations in y- and z-directions, respectively and R
is the resultant of the external forces,

R=—|(4k,+k,)v-Kye.0 e, ~[ (4, + k) w+K.e,0]e. .
Thus, neglecting structural damping, in y- and z-directions we have respectively,
mgv+ (4, +ky )v—kje.0 =—mg,, (3.22)

mSv'{/+(4kZ+k;)w+k;eyt9:—m5v'f/g. (3.2b)

(i) Conservation of angular momentum with respect to the center of mass Cy,

= M, =Mc é., D¢, =1.6.
According to the free-body diagram in Fig. 3.2, the axial moment of the external forces

becomes
' ' 2 r 2 2 ' 2
Me,, =kjve, —k.we, ~(kb> +kye? + k.a® +k.e? |0,
10+ (kb +kye? + k.a® + k.2 ) 0~ Ky ve, + K,we, =0, (3.2¢)
where the mass moment of inertia about the vertical x-axis of the rectangular floor is, Fig.
3.2,
1. =mg (a? +b2)/12:msr52,
where rg denotes the radius of inertia with respect to the center of mass Cy,.

The three coupled equations of undamped motion, Egs. (3.2a)- (3.2c) are put in their
matrix form.

MX + KX = —Mx,, =lv ow our], ’%gTz[vg We O]’ ur = 0rs. (33)

The diagonal mass- and the symmetric stiffness matrix of the 3-DOF structure are deduced
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from Eqgs. (3.2a)- (3.2¢) by inspection

1 00
M=mg|O 1 0f, (3.4)
0 01
4k, +k;, 0 —kye./rg
K= 0 Ak, + k., k.e,/rs : (3.5)

—kye./rs  kie,lrs (kyb2 +k.a®+ k)',ezz +k;e§ )/rS2

3.3 Torsional Tuned Liquid Column Damper, TTLCGD

The control performance of TTLCGD is effective for dominating torsional vibration, i.e.,
if the modal center of velocity falls within the floor plan. The configuration of TTLCGD is
shown in Figure 3.3 and it consists of a liquid filled piping system which encloses in its
horizontal section the *“arbitrarily” shaped area 4, , thus within the floor, ending with sealed

(vertical or if suitable X-braced) columns in close neighborhood to each other.

Fig. 3.3: Schematic representation of torsional TLCGD=TTLCGD, encircling the modal
center of velocity of the floor. The pipe section within the floor plan encloses the area 4,.

A TTLCGD is fixed to the supporting floor of a single-storey building. When the center
of velocity is in the floor as shown in Fig.3.4a, a TTLCGD moves with the structure, the
ring-shaped pipe section on the floor enclosing the center of velocity, a relative motion of the
viscous liquid inside the pipe is induced which can be used to reduce the torsional structural
vibration. Two TTLCGDs with vertical pipe sections on opposite side in parallel action could
be installed on the floor in order to somewhat balance the unwanted moments of vertical
force components acting on the structure. When the modal center of velocity is outside of the
floor, as shown in Fig.3.4b, a relative motion of the liquid is induced by a much smaller
amount. As a result, a TTLCGD in the second case is less suitable to mitigate torsional
motion and a plane U-shaped TLCGD is substituted to be set on the floor eccentrically, see
section 2.9.

75



Single-storey Strongly Plan-asymmetric Space Frame with TTLCGDs and TLCGDs

=

TTLCGD

TTLCGD 2 -8
O
Cv
Fig. 3.4a: Center of velocity is in the floor area: apply the TTLCGD. Fig. 3.4b: Center of
velocity is outside of the floor area: use plane TLCGD, nota TTLCGD.

3.4 Equation of motion of TTLCGD

3.4.1 Equation of motion of TTLCGD (the vertical segment, A (Ya,
Zn, 0), p=7/2)

TTLCGD’s dynamics can be derived using the generalized instationary Bernoulli
equation for moving reference frame. The generalized Bernoulli equation for such a relative
streamline of an ideal (inviscid) fluid takes on the form, cf. Eq. (2.19)

o 1
igds =—g(x, - x1)—;(192 P) i[ o €ds’ (3.6)

where ds'=[dy’ dZ’ dx]T. The guiding acceleration of the moving frame is in the floor

plane d, =dc, +9r 1 —6? Pty Py =[y =z O]T, l%y"z' =[-Z' ) O]T, see also Section
2.4.1. The absolute acceleration of the reference point Cy, is given in Eq. (2.1).

The integral term comes separately over the horizontal part of the relative streamline
(approximately a loop integral) and over its vertical parts

2 H-uy H+u,

- = r __ - = ! - el ! - el !
J-ag -6,ds’ = I dg - €ds +q5ag -€,ds’ + J. dg -€ds’.
r 0 B 0

For the vertical segments: u; =u, =u(¢)
0<s'<H-uw: é=—¢, 0<s'<H+u,: é=¢

X!

H—uy H+u,
[ dc,-eds+ | dc,-eds'=0. 3.7)
0 0

For the horizontal curved segment: 0 < s’ < B: where B denotes the length of the nearly closed
horizontal pipe section,

$ac, -gds'=ac, ,y'sﬁdy'JraCM 2Pz =0. (3.8)
B s’

The integral term 92.[ . -€,ds’ renders for the vertical segments: u; =u, =u(¢)
l!
0<s'<H-uw: 77)',21 =V 46y +24€., Foo-e =0,

’ Loz - - = = _
O<s'<H+up: Fpr=y ey+z8,, ry-6=0,
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] H—wy H+u,
0| | Fogds'+ | Fnoeds|=0. (3.9)
0 0
For the horizontal segment: 0 <s'< B (nearly a closed curve)
e'zcﬁ Pl 8] ds =6° [95 ydy' + qﬁ Z’dz’J =0. (3.10)
B s' s'

2/

The path integration 6 '[ Py - €ds’ is performed similarly to the aforementioned.
1/

For the vertical segment:

! - > > = =1
0<s'<H-u: Fypr=-z€,+y, e, Iy ¢=0,

0SS SH+up: Py ==2,8,+ V8, i€ =0,

y 'z
H—uy ~ H+u, ~
o| [ Fpo-eds+ [ Fp-gds'|=0. (3.11)
0 0
For the horizontal segment: 0 < s’ < B: (nearly a closed curve)
0§ 7y -eds =24,0, (3.12)
B

where 4, is the enclosed area in the floor plan, see Fig.3.3.

Finally, substitution of Egs. (3.7)- (3.12) into Eq. (3.6), the generalized Bernoulli
equation becomes,

ii(2H+A—HB):—Zgu—l(pz—pl)—ZApé, (3.13)
Ap P
adding the equivalently linearized damping, see Eq. (2.36) and considering the linearized gas
compression, yield the equation of motion of the relative fluid motion in the TTLCGD for

p=x/2,

ii + 2 40 i+ 05U = —Kpgipy (3.14)
24 A ..

KTO:—P, LeﬁZZH'f‘_HB’ I;l.TT:rfe, ]fx:m]rr}, (314&)
rfLeﬁ AB

where Ifx ry denote the axial moment of inertia of the fluid mass and the radius of inertia
for the fluid mass with respect to reference point C,,.

3.4.2 Equation of motion of TTLCGD (the inclined segment
parallel to z-axis, A (ya, 0, 0), z/4<p<z/2)

e, is changed for the X-braced inclined segments, cf. Eq. (3.7),

0<s'<H-uy:¢é =cospfe,—sinpe,,0<s"<H+u,:é =Ccos fe, +sin pe,,

H-uy H+u,

[ dc, -gds'+ [ ac, -€ds'=2Hac, s cosp. (3.15)
0 0
For the horizontal curved segment ngCM -€,ds'=0.
B
>
The integral term ézjfyﬁz, -€,ds" renders for the horizontal segment ézcﬁfy’rz/ -6, ds=0.
v B
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For the X-braced inclined segments: cf. Eq. (3.9),
0<s'<H-uw: Fp-&=y4e,—[(H-u)cosf—s"cos B]e.,

P8 =—[(H —uy)cos B—s'cos B |cos 3,

0<s'<H-+uy: Fyy=y,€,+5C0SHes, Iy e[':S'COSZ,B,

H+u,

1
[ #gds+ [ Fgds' |=2H6ucos® . (3.16)
0

2/
The path integration 9.[ . -€ds’ is performed similarly to the aforementioned, for the

horizontal segment 9(}5 Py - €ds = 2Apé :
B
For the X-braced inclined segment: cf. Eq. (3.11),

0<s'<H-uw: rrzr— (H—ul)cosﬁ—s'cosﬂ]é/+yAéZ/, oo € =y,C08L,

y yz
0<s'<H-+uy: ryu:—s'cosﬂé’erryAéZr, ryrzr € =y,C08f3,
H—uy H+u2
I ry’z -e,ds’+ I Y €ds' |=2Hy 40c08 . (3.17)

Flnally, substltutlon of Egs. (3.16), (3.17), (3.10) and (3.12) into Eq. (3.6), the Bernoulli
type equation results, cf. Eq. (3.13),

iW(2H +A—HB) =-2gusin ,B—i(pz -p)- 2Hagc, . COS
Ag p . (3.18)
—(2Ap +2Hy, cos/})é +2H6%ucos? B
Adding the equivalently linearized damping and considering the linearized gas compression,

yield the parametrically forced equation of motion of the relative fluid motion in the
TTLCGD, note the additional forcing term when compared to Eq. (3.14),

32

1+ 2§AwAu + a)i {1_/('7'1@—2}” = _KTZI;iTT _KTaCM,Z’ y (319)
@4

2H cos j
Kp =——————, Kpp =kpCOSS, Ky, =Krg+Kpy,/rs,
Loy
A . .. 2
Lef:2H+ﬁB; uTTZI’fQ, [fxszrf (319&)

Substituting ac,, ' Eq.(3.1), into Eq. (3.19), and further linearizing the forcing term, yield

the simplified and linearized equation of motion for the relative fluid flow in the TTLCGD,
parametric forcing is negligible with sufficient damping understood, see also Eq. (2.36),

i+ 24 40 g+ wqu = ~Kpiipy — iy (g +0). (3.20)

3.4.3 Equation of motion of TTLCGD (the inclined segment
parallel to y-axis, A (0, za, 0), z/4<p<x/2)

A TTLCGD is installed on the floor and the inclined part of TTLCGD is oriented parallel
to y axis. Equation (3.18) with «;, substituted for &, still holds, when the y-component of

acceleration ac,, .y is substituted forac .,
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12

ii +2¢ 4 41+ 0 (l— K71 0—2}: =—Kplirp + Kpdc,, /- (3.21)
Wy

Substituting ac,, .y EQ. (3.1), into Eq. (3.21) and considering its linearized form with

parametric excitation neglected, compare with Eq. (3.20),

3.5 Forces and Moments of TTLCGD

3.5.1 Forces and Moments (the vertical segment, A (Ya, Za, 0),
p=x/2)

(i) The interaction forces F¢, ,, F, ., conservation of momentum R=ma,.
The instant position of center of fluid mass C, with respect to reference point Cy is given by
Fp+x,é, , where the in-plane component is ?],r=y}'éy'+2,fézv . Hence,

L, .
Fr=Tcy TTrtXrex,

df} ey - ! = ':!
? = yfeyv +zipe + 9rf ,
V=i =i, +( 9 - 20)e, +(2 + yy0)es +x 8, (3.23)

dy =¥y =dc, +() — 20~y 07 ~22,0)é, +(2) + 0~ 267 + 2566, + 7,2, , (3:24)

where v, a, are absolute velocity and absolute acceleration of the center of fluid mass C;.
Considering the static mass-moments:
mfy}:pAH(H+u)yA+pAH(H—u)yA=2pAHHyA, (3.25)
mex,p = pAy (H+u)H+u +pAy (H—u)Hz_u = pAy (H2 +u2), (3.27)
we determine
= 2Ed _goo 220, 220, po2m+28p, (3.28)
A Ay
. 2Hy, _ g
yf: li)A =KT3yA, yf=0, yf=0, (329)
(H2 +u2) 1 1 1
Xp=r——T = Ry (H? +u?), & = Kpg—wii , % ; = Rpg — (1 +uii ). 3.30
1 L T32H( ) f =Ryt Xy TBH( ) (3.30)

with the following geometry coefficient i3 =2H/L; . Substituting Egs. (3.28)-(3.30) into
Eq. (3.24) confirms, after multiplication with m:,the resultant,

R=mac, +meT3[—(zAé+yA92)éyr +(yAé—zA9'2)éZ, +%(u2 +uii)é'x} . (3.31)

Equation (3.31) renders the horizontal components of the control force acting on the piping
system,

Feyy =my (ay c0s 0 +a, Sin 0 - Kr3z 40 _’?TSyAéZ) : (3.32)
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Fe o=my (—ay Sin@+a,_ Cos O+ Krqy 40— I?T3ZA92) : (3.33)
and, when rotated
FCMy = mf |:Cly _(ZAé+yA92)ET3 COSH—(yAé—ZAéz)ETg Sin 9:| ) (334)

Equations (3.34) and (3.35) are simplified under the condition |<9| <1 and the essential
linear parts become

FCMJ/ = mf (Vg +‘.}_’?T31.’2TT Zy rf) ) (336)

Fe, = =my (g + 30+ Rpgiiy yafry), (3.37)

(if) Conservation of the angular momentum of the fluid body with respect to the accelerated
point of reference Cy,, see Ziegler®, page 405

DCM = I (F'xV')dm = I [r x(@r +u)}dmf
:f " ) (3.38)

=p QIA(S (r ><r )ds +J-A (s',2)(7'x&(s") Sl
1

2 H—u H+u,
plA(s)i(s')(Fx&(s))ds' = pdptc [ (48 ~z48, s+ pAyii [ (-y4+2.48, s’
1 0 0

+pAB<ﬁ—udA é, —2pAHu( —y quéy + 2z uéy + A e)

B B
(3.39)
o
p6"J. A(s')(?'xF)',rzv)ds' = pOAy, [—(H2 +u2)yAéyf —(H2 +u2)zAéer
| : (3.40)
+,00.AH{2(J;A—|—ZA H+ :l
_ —(H? +u? Va4 . —(H? +u? Z4 .
De =m ( ) O+224 (3, + (—)H—Zy—Auu €,
w I Lo | I I
$lfas -
2 .2 V7
N 2(y +ZA)H+AB B 5. Z,
L 4y L A
Differentiating D¢, , renders
2
w” dsr
2, 2 Pl
dDc,, —m, 24, it Z(J/A +ZA)H++ Ap B gl (3.42)
a L L Ay
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mg (FJL +x /8, )xaCM =m Kr3 {—%(HZ +u2)<—ay sinf+a, cose)}éy,

+{%(H2+u2)(ay cosf+a, sin 9)}@ : (3.43)

+[yA(—aysin9+az cos@)—zA(aycosé’+azsine)}éx}
The parametric forcing —z?Tg(yAay—zAaz)H in Eq. (3.43) is negligible with sufficient

damping understood. The linear resultant control moment Mc, (acting on the piping
system) becomes finally

Me, c=mgry {iiTT +Xr8)4 a,— KTs24 ayJ +mrpKpoi (3.44)

rf }"f
2 ’ 2 2 — _
ds , IﬁczszHH(yA'i'ZA)—i_Ifx’ KTOZKTOLeff/Ll’

fo = pABC.H?y’,Z,
B

where xrq Is defined in Eq.(3.14a).

3.5.2 Forces and Moments (the inclined segment parallel to z-axis,
A (yAs 01 0)1 7[/4S/B<7Z-/2)

The interaction forces Fr ,, [, . are derived by conversation of momentum

z
R:mfaf. We take into account the geometrically changed configuration and proceed
analogously to section 3.5.1. The linear interaction forces are

Fe, , =my (¥, +7), (3.45)

Fe, o =my (g +3o+ Rrgiiry yufry + Ry ). (3.46)
The control moment is derived by conservation of the angular momentum of the fluid body
with respect to the accelerated point Cy. The linear resultanting control moment Mc .
(acting on the piping system) becomes finally

Kr

Mc =merp| tipr +

4 aZ}+mfrfl?TZii , (3.47)
" o

+fo’ ’?Tz :KTZLeﬁ/li’

) 3 n0e2
ds' 14 =2pAy (yiH+HCTOSﬂ

Ty = pAglFy.
B
where xr. is defined in Eq.(3.19a), cf. Eq. (3.44) with z, =0.

3.5.3 Forces and Moments (the inclined segment parallel to y-axis,
A (0, zp, 0), z/4<p<n/2)

A TTLCD is set on the floor and the inclined segment is parallel to y axis. The interface
forces can be obtained, cf. Egs. (3.45) and (3.46)

ey :mf(\'}g ¥ — Kopglipy 2 4 rf+;zTiz), (3.48)
Fe .=m; (wg +w) . (3.49)
The linear resultant control moment Mc . (acting on the piping system) becomes, cf.
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Eqs.(3.47)

Kr3Z4

MCMX szl"f [iiTT - ayJ—merfl?Tyii, ET_)/ :KTyLeﬁ/lﬂ . (350)

Ty
3.6 Control of single-storey strongly plan-asymmetric
space frame by a single TTLCGD (g=z/2) when compared
to an equivalent TTMD

3.6.1 Torsional Tuned Mechanical Damper, TTMD

An equivalent TTMD with a symmetrically distributed mass mz IS set on the
single-storey asymmetric structure, shown in Fig.3.5. I_ng and r; are the axial moment
of inertia and radius of inertia with respect to the absorber’s (floor’s) center of mass. That
radius solely depends on the geometrical, doubly symmetric shape of TTMD. u—* is the

T4
rotational angle of TTMD.

Fig. 3.5: Single-storey asymmetric structure with TTMD: extended mass with rotational
spring support.

Conservation of angular momentum with respect to its center of mass Cy= O is applied:

*

* —% * Lx * —* *  *D * * U Lx * e
DCMx:[CMx(uTT+u )/l"A , ICMx=mAI’A y MCMx:_k r_*, uTT:}"Ae, (351)
A
16, i +il" ) = Ku". (3.52)
The equation of motion for the TTMD, viscous damping is added to Eq. (3.52), becomes,
Lx EE *) x K3 * k* *  * C*
C,x Cyx

The resulting forces are,

Fe, , =my (Vg +7), (3.54)
Fe, . =miy (g +90). (3.55)
The control moment is,

M, =T, (i +i") /1) (3.56)

The equations of a single storey space frame with a single TTMD attached are approximated
by the selected mode number ;
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*\ .. *9 My % .x 1 * * .. 1 * * .
J J J
* My s w2 9 N Ty
ty=—3vip v =g+ by [rs ) A=y (3.57)

The approximated equation of motion of TTMD (Eq. (3.53)) renders

*

The right-hand side of the resulting system of modal equations decouples approximately only
under the severe assumption of well-separated natural frequencies. With light modal damping
of the main system added, the coupled equations of motion of main system with TTMD
attached in matrix notation become,

* *  * * .. * * . *) T *
2 1 i 0 2y ]| 0 @i |lu o | ¢

(3.59)
where the generalized participation factors are

—*T * * * * * * * *
The second of the coupled equations turns out to be homogenous.

3.6.2 TTLCGD attached to space frame (the vertical segment, A

(yAl Zp, 0)1 ﬂ=72'/2)
Inserting the linearized coupling forces P, Egs. (3.36), (3.37) and (3.44), the equation of
a single storey space frame with a single TTLCGD attached becomes

(1+4,)d; +ofq, +m—]’11'” Z_m_[msf’jjl*mﬁ (¢1-Fra ¢132AJ/FS)}Vg
j j

1 _ .
_m_|:mS¢j2 +mg (¢j2 +Kp39i3V 45 75 )} Wy
J

mpg o 2 2 _
)y :_m{ Vii o Viy = v + 29 ;3kr3 (ij¢j2 _ZAj¢j1)/rS - maX‘Aj(ij 2y 0)
J
2 2 2 2 -
vn:¢jl+¢j2+(¢j3rﬁ/rs) . Ap =kpobjary s, A = ALy L. (3.60)

Light structural modal damping of the main system is added and Eg. (3.14) is
approximated by the selected mode

ii+2¢ 40,0+ @3 == ;. (3.61)

The linearized coupled system of modal equations of the main system with TTLCGD
attached takes on the matrix form
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= ) . 2
Lty Aymg/ m, {%’}L 20505 0 {‘1/‘} @y 0 {%}:_ Ly /m; F
A; 1 u 0 28 404 || u 0 wjj u o’ ¢

(3.62)
the participation factors are formally still given by Eq. (2.92), however, before their
substitution, the modal displacements of Eq. (2.84) have to be altered by the substitutions,

1 g jl—’?T3¢j3ZAj/V y Wy j2+ET3¢j3ij/rS'

Ideally the TTLCGD should be placed in the floor with the largest modal displacement,
because this will maximize the modal mass ratio and thus yield the best absorbing behaviour.

The sign of (ijqﬁjz —zAj¢j1) should be chosen design-compatible to maximize the modal
ratio, render the best location of point A (ya, Za, 0).

3.6.3 Analogy between TTMD and TTLCGD (pg=#/2) when
attached to 3DOF-main system

To keep the forcing by the angular accelerationd , apparent on the right hand side of Eq.
(3.14) and (3.53), we requireiiyy = rfé = ii;T = rjé. Consequently, the first result within the

analogy is r;j =ry. EGgs. (3.58) and (3.61) on the right hand side have the same excitation,
u” turns out proportional to u,
u"=ufkp since A;=A4; K. (3.63)

Using this result and comparing the left hand side of the second equation in Egs. (3.59) and
(3.62), yield at once

Oy =0y Siy =Sy (3.64)
In a second step, substituting these results into the first equation in Egs. (3.59) and (3.62)
renders by inspection

*

HiKro Hj 1 -, 1
1 V2 & N2 Teg, VT
( +'uj) Tj KT0(1+/uj)VTj M TH;
1 1 * ok
1+, 1+ u;
and thus the mass ratio of the equivalent TTMD becomes
* 2
« KT0KT0 VT'/ Vi
i =u ol <u, (3.66)

J _ . 2
1+ Hj [1_KT0KTO (VTj/VTj) }
and further,

Wg; = =k Csj = —= (3.67)
\/14‘/,[] |:1_KTO’?T0 (VTJ/VT]) j| \/1+;u] |:1_KTO’?T0 (V])/VTJ) j|
The TTLCD-TMD transformation of optimal parameters is thus established
@ 4; opt S, t *
Sjopt =—— == LL C4j =S4 (3.68)

Ws; \/1+ U [1— K70KT0 (V;j/VTj )2}
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3.7 Control of single-storey strongly plan-asymmetric
space frame by a single TTLCGD (#/4<p<x/2) when
compared to an equivalent TTMD

3.7.1 TTMD attached to space frame, a point mass in y-axis
A TTMD is set on the single-storey asymmetric structure, y, is the position coordinate

of an additional point mass m, atA (yi, 0, 0).

‘wg+w

Fig. 3.6: Single-storey asymmetric structure with TTMD with an additional point mass s, .

Conservation of angular momentum with respect to the accelerated point O=C,,.
—* LK Lx * * U > .. . L* g *
Ie, « (uTT + 1 )/rA =—k ———my |:Wg +w+(uTT +1i )M/”AJJ’L (3.69)
T4
IZMX = I_ng + mfyf is the axial moment of inertia of the total mass m , +m, .
The resulting forces are, cf. Egs. (3.54) and (3.55) for TTMD without additional mass,

* * (.. .. x| .. .. Lx L* 2 *9
FCMy:mA(vg+v)+m1 vg+v—(uTT+u ) yl/rA , (3.70)
FSMZ =m:1(wg+w)+mf[wg+W+(ii;T+ii*)y1/rﬂ. (3.71)
The control moment is, cf. Eq. (3.56) for TTMD without additional mass,
Mc,x = [[chiiTT/rA +my (V"Vg + W)Y1}+[chii /FA : (3.72)

The equation of motion for the TTMD, viscous damping is added to Eq. (3.69), becomes, cf.
Eq. (3.53)

* *

* *
L kX x x YT L * % C
ICMx C,x Cyx

Assuming y, =7, substituted in Egs. (3.70)-(3.73). The equation of a single storey space
frame with a single TTMD when approximated by the selected mode is

* *
mA'+m]_' *,* 1 * * *

(] j LK .
—*ﬁju —_?(ms+mAj+mlj)¢j1Vg
J

(l+y;)qj+a)§qu+

*
Ty

1] . . J .
——|mgPio+\my+my; || Pio+n—"03 || W
mj[ S¢]2 ( Aj 1])£¢]2 n rs ¢]3]] g
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* mA +I’141 *9 ”n/l *9 )
1= #VTJ , = J , VTj _VZ} +277 ¢12¢]3 77¢j2+ ¢3
m; mA]—i-mij I's

(3.74)
The approximated equation of motion of TTMD in mode j (Eq. (3.58)) renders

X * * L x *2 * * .. _.T g .

With light modal damping of the main system added, the coupled equations of motion of
main system with TTMD attached in matrix notation become, cf. (3.59), mf ; =0,

* mz +m; * .. * * . *
1+,Uj #,1]. G; ZC:SJ'CUSJ' 0 q; a)S]2 0 q]' Lzy /m
m] LK + 0 2 *  x LK + 0 *7
ﬂ; 1 u Q’Aja)Aj u a)A] 17I’SZ

(3.76)
where the generalized participation factors are

* * * * r:;
Ly = (mg 4y i) . Lo =midya +(my +’”11){¢12 "¢ J
s
here, ZkTJT is given by Eq. (3.59).

3.7.2 TTLCGD attached to space frame (the inclined segment
parallel to z-axis, A (Ya, 0, 0), z/4<p<x/2)

Inserting the linearized coupling forces P, Egs.(3.45), (3.46) and (3.47), the equation of
a single storey space frame with a single TTLCGD renders

.. 2 meg — 1 . 1 _ ..
(14 2)d; + @5, +m—]/11 i = —m—(’"s )i —m—[’"sf”jz gy (b0 +Rradjayy ) VS)]Wg
j j j

==Ly2, 2= A =L 3.77

ﬂj—m Tj - j_KT¢j2+¢j3KTzrﬁ/rS’ =4 eﬁ/li' (3.77)
J

here, Vé, v%- are given by Eq. (3.60) with z,; =0.

Light structural modal damping of the main system is added and Eq. (3.19) are approximated

by the selected mode

In matrix form the linearized coupled system of equations of the main system with TTLCD
attached becomes

= . . 2
Lip; Zymy/m, {%‘} 20505 0 {‘li} V5 {%}__ L/ m, E
2. 1 i 0 28 40 4; || i 0 a)ij u KTFSZ:Z ¢

J
(3.79)

(e

here, ZTT] is given by Eq. (3.62) with z,; =0.
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3.7.3 Analogy between TTMD and TTLCGD (#/4<p<x/2) when
attached to 3DOF-main system

If Egs. (3.75) and (3.78) on the right hand side have the same excitation, u; turns out
proportional to u,
u' =2 ufa; . (3.80)
Using this result and comparing the left hand side of the second equation in Egs. (3.76) and
(3.79), yield at once
Krm y;

* *

*
g =Oyiy S gj =6 yps My =

= : (3.81)
KTzrﬁ/rAj —Kr
In a second step, substituting these results into the first equation in Egs. (3.76) and (3.79)
renders by inspection

* %

2~ \p27 ' 1 Wsj = =P
1 1 . %
—— 2oy =—— 20 G0y,
14, 5 @sj L il 5 Psj
and thus the mass ratio of the equivalent TTMD becomes
. AA Vit | 22VE
#J =u J J / J J </uj’ (382)

"1+ Hj (1"11/@ VJ;Z/E;ZVI;)

and further,

of; = it <o, (3.83)
J T2 ) 4%20,2 4
Csj

<l (3.84)

{ =
T %2 [ 0%2,,2
L (-7 ViR R
The TTLCGD-TMD transformation of optimal parameters is established

C()A-’ 0, * *
S _ Ydjopt Jjopt < 5jopt' ;Aj = é/Aj' (385)

jOpl a - _ * *
D \/l+,uj(l—/1j/1j v A7)
For TTLCGD attached to space frame, the inclined segment parallel to the y-direction, A (0,
zp,0), VE =% —20.1¢.5R52,; |15 is to be substituted with y,; =0 above.

3.8 Numerical example

The single-storey stiffness-asymmetric structure is considered. The size of the
rectangular floor in Fig. 3.1 is unchanged and given by 4mx8m, its mass is ms=16x10%kg.
The common anisotropic stiffness of column in each corner in y- and z-directions are
calculated by Eq. (2.10) k,=340.20kN/m and £.=125.21kN/m. The anisotropic stiffness of the

extra column in y- and z-directions are k:v =3402kN/m and k. =1252.1kN/m, the eccentricity

of the column with respect to C)=0 is given by e,=e.=1m. The length of each column is 4m,
proper static dimensioning of the elastic columns is also performed. The mass moment of

inertia of the floor about the vertical x-axis is 7,=106.67x10%g -m?, rg =2.58m.
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3.8.1 Static dimensioning and a static safety criterion of the
columns

The buckling length of the cc-columns is 4m. The critical load of a steel profile
HEB-120 with respect to the weak axis of buckling becomes F,. = -411.5kN . If the live load
of square meter is assumed to be ¢, = 4kN I m?, the live load of floor to be considered in the
static analysis is O, =128kN . The dead weight of the floor is m,g =156.96kN . The
combined load of the floor is N ; =—-403.896kN . The combined load, without TLCGD, in
N, F  —-100.974

the column is F = =-100.974kN . Thus— = alls 0.245<0.33, the geometric
c - .
flexural stiffness correction can be applied, %; = i—f = gxw =-30.3kN/m.

The mass of HEB-120 per meter is 26.7 kg/m, the effective mass of a column is
calculated from Eq. (2.8) m =39.7kg and the mass of extra column is decuple of . Thus,

the total mass of columns is 555.7kg. It is very smaller than the floor mass and can be
neglected. In the following chapters the mass of column is also neglected.
The corrected stiffness of column in y direction becomes:

ky, =k, +kg =340.2-30.3=309.9kN /'m .

The corrected stiffness of column in z direction becomes:
k, =k, +kg =125.21-30.3=94.91kN / m .

3.8.2 Natural modes of the main structure

The natural computed frequencies by means of Matlab 7.0° are derived as follow 1.40,
1.84 and 2.89 Hz, prestress of the column considered and extra column comes no weight of
the floors. The orthonormalized modal matrix of the undamped main system is the output of
Matlab.

0.18677 0.27878 —0.71582
(1)210_2 —-0.59811 0.51506 0.04453
0.48206 0.53103 0.33259

Correction of this output of orthonormalized eigenvectors might become necessary with
respect to orthogonality, see section 2.9.2. Test calculations render sufficient accuracy,

Syu=1, Op=1, S;=1, &,=555x10"0 | G3=06;=222x10"1%  55,=0,
5y =4.44x1071°, 5,3 =-5.55x107"7.

The three mode shapes are amplified and plotted in Figs. 3.7-3.9. The motion of the
structure in each mode consists of coupled translation and torsion.
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Z

O
Cv o,sz_r
oXe
=X
0.21
Fig. 3.7: Basic mode f; =1.40Hz. Fig. 3.8: Second mode f, =1.84Hz.
Cv within floor-plan Cv within floor-plan

O
Fig. 3.9: Third mode f; =2.89Hz, Cy outside floor-plan.

3.8.3 Position of the modal centers of velocity Cy
The coordinates of the centers of velocity Cy for each mode is defined by Eqg. (2.18), two
of the three modal centers of velocity lie within the floor plan.

321 251 _ [-035
ST | TG T 136 " s T | 56|

(i) Selection of the absorbers and positioning
The building is equipped with two TTLCGDs to suppress the first two modes (Cyiand
Cv2 lie in the floor, planstrong asymmetry) and one plane TLCGD parallel to y-direction for
third mode (Cys is outside floor plan), as shown in Fig. 3.10.

As |7 TTLCGDI

9 I 1 9
Cv2z TLCGD3 Cvl}

O
TTLCGD2 AzJJJJ

V<

Al

Cv3

[ ]
Fig. 3.10: Installation of absorbers, ® indicates the centers of velocity Cy;.
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3.8.4TTLCGD and TLCGD design, Den Hartog’ optimization
The fluid mass m =500kg, m;, =500kg and m,3=200kg of water is chosen.

Dimensions of three absorbers tuned first by means of the mechanical damper analogies

applying Den Hartog’s formulas, Egs. (3.66)- (3.68) for TTLCGD and Egs. (2.102)-(2.104)
for TLCGD are summarized in Table 3.1.

TTLCGD1 | TTLCGD2 | TLCGD3

Horizontal length of the liquid column B [m] 24.00 24.00 2.50
Length of the upright liquid column H [m] 1.40 0.90 0.80
Cross-sectional area of the pipe [m*] Au=Ag 0.0187 0.0194 0.0410
Effective length Ly=L= 2H + B [m], Eq. (2.34a) 26.80 25.80 4.10
Angle of the inclined pipe section B [rad] ;r/z ;;/2 ;;/4
Equivalent mathematical pendulum length Lo[m] Eq. 013 008 0.03
(2.37)
Geometry factorx =k or xpq = kpq, EQs. (2.34a), 0.67 0.70 0.89
(2.44),(3.14a),(3.44)
Equilibrium pressure head 4, [m], n=1.2, Eq. (2.34a) 220.00 208.00 85.63
Gas volume ¥V, = 4, H, [m?], Eq. (2.38) 0.041000 0.025000 | 0.053000
Th io of the TLCGD-mai Egs.

e mass ratio of the TLCGD-main system «, Egs 4.74% 4.75% 1.94%
(2.97), (3.60)
The mass ratio of the equivalent TMD-main

* 1.81% 2.09% 1.48%

system u , Egs. (2.102), (3.66)
Natural frequency S topt [Hz] Eq. (2.104), (2.112) 1.36 1.78 284
Optimal linear damping %, Eq. (2.113) 8.17 8.76 7.40

Table 3.1: Layout of the modally tuned absorbers, gas volume and gas equilibrium pressure
assigned. Note the relatively high gas pressure in TTLCGD.

Due to its long effective horizontal length, the equilibrium gas-pressure in TTLCGD
becomes rather high, as shown in Table 3.1. Fig.3.11 illustrates the scaled scheme of
TTLCGD1.The dynamic magnification factor (DMF) calculated with Matlab 7.0°, linearized
damping of the absorbers considered, is illustrated in Figure 3. 12.

[]1.0m
H=1.4m
Ag=0.0187m> |
JIZ
‘M ¥
Al

Ap=0.0187m?> B=24m
Fig.3.11: Scaled sketch of TTLCGD1.
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50

50 T : x ‘
= original structure = original structure
= TTLCGD1 installed = TTLCGD?2 installed
40 1 40 1
— =50 =50
30 24/‘?1 30 2(?7
DMF DMF
20 20
10 10 =1
1 =9.36 X = 973
o N2oeft 2 @
% 05 1 15 2981 % 0.5 1 15 2 wgp

50 :

= original structure

= TLCGD3 installed|
40

1
— =50
2
30,2653
DMF

20

1
10 ~9.96

2, ®
N3 @
% 0.5 1 15 2953

Fig. 3.12: Modal frequency response curves without and with linearized absorbers attached,
Den Hartog’s optimal parameters.

The effective modal damping coefficients of the system are increased from 1% to
Co1 =5.38%, C,5p =5.14%, (3 =5.02%. From Table 3.2a-c it follows that all the

maximum fluid displacements resulting by varying the angles of attack, are within the
acceptable limits, uy < H,/3 (of linearized gas compression) and uy < H/2. The maximum

fluid velocities of three absorbers are calculated by Eq. (2.35) 3.86, 2.57 and 3.35m/s and are
within the acceptable speed limit.

structure TTLCGD1
Forcing direction v[mm] w[mm] up =rgd [mm] Uo [mm]

a=0 Cw 9 -30 24 138
a=r/6 Cwu 7 -22 18 101
a=r/4 Cwm 15 -47 38 215
a=7/3 Cwu 21 -69 55 313
a=x/2 Cwu 30 -97 78 442
a=2x/3 Cwu 31 -99 80 452
a=37/4 Cwm 28 -90 73 410
a=57/6 Cw 23 -75 60 341

Table 3.2a: Maximum

o -directions, a,=0.1g9, r¢ =2.58m.

displacements in the first mode from time-harmonic excitation in
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structure TTLCGD2
Forcing direction v[mm] w[mm] up = rgd [mm] Uo [mm]

a=0 Cwu 11 20 20 110
a=rx/6 Cwu 19 35 36 196
a=rxl4 Cwu 21 39 41 221
a=x/3 Cwu 22 41 42 230
a=x/2 Cwu 20 36 37 203
a=2x/3 Cwu 12 21 22 121
a =37/4 Cwu 6 12 12 66
a =576 Cwu 1 1 1 6

Table 3.2b: Maximum displacements in the second mode from time-harmonic excitation in
a -directions, a;=0.19, rg =2.58m.

structure TLCGD3

Forcing direction v[mm] w[mm] up = re6 [mm] Uo [mm]
@=0 i“\” gg g 12 188
o= /6 (f;\ﬂ g; 1 10 157
o= x4 (f;\ﬂ g 1 8 125
o3 (f;\ﬂ ié 1 5 85
«=nf2 ?&A :g 8 1 11
o =27/3 (f;\ﬂ jg 1 7 103
o =314 i“\” ;2 i 9 141
o ~52/6 iM gi 1 11 168

Table 3.2c: Maximum displacements in the third mode from time-harmonic excitation in
a -directions, ag=0.19, rg =2.58m.

3.8.5 Optimization of the TTLCGD-, TLCGD-main structure

system in the state space domain

Again the numerical optimization was performed with the very robust fminsearch procedure
available in Matlab Optimization Toolbox, see explanations in Section 2.9.7. Calling
fminsearch with the initial DenHartog parameter x, =[8.52,11.16,17.82;8.17%,8.76%,7.40%)]
given, immediately renders the fine tuned optimal natural frequencies and damping ratios
fu=135Hz, f,,=173Hz, f;3=276Hz, {4=565%, {,»=6.61%, £, 43=5.89%, ie.
frequencies are slightly lowered and the damping coefficients of the fluid flow turn out
commonly “dramatically” lowered. Frequency fine tuning is simply achieved by adjusting the
equilibrium gas pressure head /4, in absorbers, 203.41, 184.39 and 78.38m. Figs. 3.13-3.20

6
show the frequency response of the weighed sum ZS,. |zS,.(v)| of the building states for the
i=1
original and the optimized system under various angles of attack, in the logarithmic decibel
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scale x[dB]=20logx within the relevant frequency window 0< f <3Hz .The resonance
curves with fine-tuning optimal parameters have broader peaks rendering a more robust control.

[dB] 60

40

(-

20
6 S|z (v ‘ / M\
g‘l‘ ot ){O 0.5 3 5

-60
frequency [Hz]

——original structure including the dead fluid mass of absorbers

—— linearized absorbers with Den Hartog's optimal parameters
linearized absorbers with optimal parameters fine tuning in the state space domain

Fig. 3.13: Weighed sum of amplitude response functions for the 3-DOF linearized,
single-storey, strongly asymmetric space frame, with three linearized absorbers attached and
without the absorbers (angle of attack of the time-harmonic base acceleration a=0),
maximum gain 29.56 dB.

[dB] 60

f

) | /\ A

20 | /_\Ill
g&\zg(\/)\ ° | - ) /j_\\/f \\

-20 | /

-60
frequency [HZ]

——original structure including the dead fluid mass of absorbers

—— linearized absorbers with Den Hartog's optimal parameters
linearized absorbers with optimal parameters fine tuning in the state space domain

Fig. 3.14: Weighed sum of amplitude response functions for the 3-DOF linearized,
single-storey, strongly asymmetric space frame, with three linearized absorbers attached and

without the absorbers (angle of attack of the time-harmonic base acceleration « =7/6),
maximum gain 30.35dB.
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[dB] 60

'y

-60
frequency [Hz]

——original structure including the dead fluid mass of absorbers
—— linearized absorbers with Den Hartog's optimal parameters
linearized absorbers with optimal parameters fine tuning in the state space domain

Fig. 3.15: Weighed sum of amplitude response functions for the 3-DOF linearized,
single-storey, strongly asymmetric space frame, with three linearized absorbers attached and
without the absorbers (angle of attack of the time-harmonic base acceleration « =7x/4),

maximum gain 30.83 dB.

[dB] 60
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-60
frequency [Hz]

——original structure including the dead fluid mass of absorbers

—— linearized absorbers with Den Hartog's optimal parameters
linearized absorbers with optimal parameters fine tuning in the state space domain

Fig. 3.16: Weighed sum of amplitude response functions for the 3-DOF linearized,
single-storey, strongly asymmetric space frame, with three linearized absorbers attached and

without the absorbers (angle of attack of the time-harmonic base acceleration a = 7/3),
maximum gain 30.33 dB.
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[dB] 60

40

-60
frequency [Hz]

——original structure including the dead fluid mass of absorbers
—— linearized absorbers with Den Hartog's optimal parameters
linearized absorbers with optimal parameters fine tuning in the state space domain

Fig. 3.17: Weighed sum of amplitude response functions for the 3-DOF linearized,
single-storey, strongly asymmetric space frame, with three linearized absorbers attached and
without the absorbers (angle of attack of the time-harmonic base acceleration « =7/2),

maximum gain 29.70 dB.
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——original structure including the dead fluid mass of absorbers

—— linearized absorbers with Den Hartog's optimal parameters
linearized absorbers with optimal parameters fine tuning in the state space domain

Fig. 3.18: Weighed sum of amplitude response functions for the 3-DOF linearized,
single-storey, strongly asymmetric space frame, with three linearized absorbers attached and
without the absorbers (angle of attack of the time-harmonic base acceleration « =27/3),

maximum gain 29.21 dB.
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[dB] 60

40

-60
frequency [Hz]

——original structure including the dead fluid mass of absorbers
—— linearized absorbers with Den Hartog's optimal parameters
linearized absorbers with optimal parameters fine tuning in the state space domain

Fig. 3.19: Weighed sum of amplitude response functions for the 3-DOF linearized,
single-storey, strongly asymmetric space frame, with three linearized absorbers attached and

without the absorbers (angle of attack of the time-harmonic base acceleration « =37/4),
maximum gain 28.93 dB.
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-60
frequency [HZ]

——original structure including the dead fluid mass of absorbers
—— linearized absorbers with Den Hartog's optimal parameters
linearized absorbers with optimal parameters fine tuning in the state space domain

Fig. 3.20: Weighed sum of amplitude response functions for the 3-DOF linearized,
single-storey, strongly asymmetric space frame, with three linearized absorbers attached and
without the absorbers (angle of attack of the time-harmonic base acceleration « =57/6),
maximum gain 28.55 dB.

Figures 3.21-3.28 show the comparison of the response of three absorbers, alternatively
with Den Hartog’s optimal parameter and after fine-tuning in state space, under various
angles of attack. The maximum fluid displacement amplitudes of three absorbers are well
within the acceptable limits. The maximum fluid velocities of three absorbers are calculated
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by Eq. (2.35) 4.33, 2.93 and 3.99m/s and are also within the acceptable speed limit.
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frequency [HZ]
—— TTLCGD1 Den Hartog's parameters —— TTLCGD2 Den Hartog's parameters
TLCGD3 Den Hartog's parameters TTLCGD1 fine-tuning in state space
—— TTLCGD?2 fine-tuning in state space = —— TLCGD3 fine-tuning in state space

Fig. 3.21: Amplitude response curves of fluid displacement |u| of three linearized absorbers

attached to the 3-DOF space frame. Absorbers either with Den Hartog’s optimal parameters
or those resulting from fine-tuning in state space (« =0).
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—— TTLCGD2 fine-tuning in state space = —— TLCGD3 fine-tuning in state space

Fig. 3.22: Amplitude response curves of fluid displacement |u| of three linearized absorbers

attached to the 3-DOF space frame. Absorbers either with Den Hartog’s optimal parameters
or those resulting from fine-tuning in state space (« = 7/6).
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Fig. 3.23: Amplitude response curves of fluid displacement [u| of three linearized absorbers

attached to the 3-DOF space frame. Absorbers either with Den Hartog’s optimal parameters
or those resulting from fine-tuning in state space (« = z/4).
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Fig. 3.24: Amplitude response curves of fluid displacement |u| of three linearized absorbers
attached to the 3-DOF space frame. Absorbers either with Den Hartog’s optimal parameters

or those resulting from fine-tuning in state space (& = 7/3).
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Fig. 3.25: Amplitude response curves of fluid displacement |u| of three linearized absorbers

attached to the 3-DOF space frame. Absorbers either with Den Hartog’s optimal parameters
or those resulting from fine-tuning in state space (a = 7/2).
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Fig. 3.26: Amplitude response curves of fluid displacement |u| of three linearized absorbers

attached to the 3-DOF space frame. Absorbers either with Den Hartog’s optimal parameters
or those resulting from fine-tuning in state space (« = 27/3).
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Fig. 3.27: Amplitude response curves of fluid displacement |u| of three linearized absorbers
attached to the 3-DOF space frame. Absorbers either with Den Hartog’s optimal parameters

or those resulting from fine-tuning in state space (« =37/4).
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Fig. 3.28: Amplitude response curves of fluid displacement |u| of three linearized absorbers
attached to the 3-DOF space frame. Absorbers either with Den Hartog’s optimal parameters

or those resulting from fine-tuning in state space (« =57/6).
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The wall thickness and the estimated dead mass of the piping system are listed in Table
3.3 for the three absorbers, designed according to Table 3.1.

TTLCGD1 | TTLCGD2 | TLCGD3
hy [m] 220 208 85.63
H, [m] 2.19 1.29 1.29
107 P(py [IN/m?] Eq.(2.128) 100.81 95.23 38.65
pipe diameter 2r [mm] 154.3 157.2 228.5
t [mm] Eq.(2.124) 5.6 5.3 3.2
m,, [kg] Eq.(2.130) 655.08 584.17 118.03
dead fluid-mass[kg] 275.55 255 41.58
10’51‘9(,3) [N/m?] Eq.(2.129) 8.19 7.69 2.58

Table 3.3: Dimensioning of circular steel pipes.

The gauge pressure under expansion conditions turns out to be positive as listed in Table 3.3.
The final dimensions of circular steel pipes must be changed according to their commercial
availability.

3.8.6 Oblique seismic excitation by the strong motion phase of the
El Centro earthquake (1940)

The N-S El Centro earthquake acceleration record with a peak ground acceleration of
0.35g, see Section 2.9.10, is again applied to the strongly asymmetric structure under
different angles of attack. The 3 absorbers with fine-tuned parameters are considered in their
linearized modal damping assigned.

The numerical values of the maximum response observed in Figs.3.29 to 3.52 are
sampled in Table 3.4a and 3.4b. The maximum fluid displacements of
w =0.19m , u, =0.18m , u3=0.10m and velocities of u =1.6lm/s , u,=1.96ml/s ,

u3 =1.73m/s are within the acceptable limits.

original structure structure with 3 absorbers fluid displacement
Max v w Ur v w ur Uy Uz U3
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]
a=0 29 29 35 21 21 25 64 91 104
o= 7z'/ 6 37 44 49 25 33 37 84 140 88
o= 7Z'/ 4 37 50 55 27 41 42 120 163 71
o= 7z'/ 3 36 56 60 27 48 46 153 177 48
o= 7Z'/ 2 30 60 69 22 55 53 186 179 10
o= 271'/ 3 26 50 62 18 53 50 171 133 57
a= 3;:/ 4 25 48 52 19 48 43 145 96 76
a= 57z/ 6 22 44 38 21 42 33 120 69 89

Table 3.4a: Maximum displacements due to 1940 El Centro earthquake, maximum ground
acceleration ay/g =0.35 with varying angle of attack «. Maximum values indicated in

bOId, Z/IT:"Sa, r's =2.58m.
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Fig. 3.29: Relative floor displacements of center of mass, v, w and rotation u;=rs¢ without
and with three absorbers attached under 1940 El Centro earthquake a,/g =0.35, angle of

attack: =0, rg=2.58m.
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Fig. 3.30: Relative displacement of the fluid in three absorbers under 1940 EI Centro
earthquake ay/g =0.35, angle of attack: a =0, rg=2.58m.
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Fig. 3.31: Relative acceleration of single-storey space structure, ¥, v and iy =r@ under
1940 EI Centro earthquake ay/g =0.35, angle of attack: a =0, rg =2.58m.
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Fig. 3.32: Relative floor displacements of center of mass, v, w and rotation u;=rs¢ without
and with three absorbers attached under 1940 El Centro earthquake ay/g =0.35, angle of

attack: a=7/6, rg=2.58m.
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Fig. 3.33: Relative displacement of the fluid in three absorbers under 1940 EI Centro
earthquake a,/g =0.35, angle of attack: a =7/6, ry=2.58m.
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Fig. 3.34: Relative acceleration of single-storey space structure, i, w and ii; =76 under
1940 EI Centro earthquake a;/
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Fig. 3.35: Relative floor displacements of center of mass, v, w and rotation u7=rs0 without
and with three absorbers attached under 1940 El Centro earthquake a,/g=0.35, angle of

attack: a=7/4, rg=2.58m.
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Fig. 3.36: Relative displacement of the fluid in three absorbers under 1940 EI Centro

earthquake a,/g =0.35, angle of attack: a = 7z/4, ry=2.58m.
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Fig. 3.37: Relative acceleration of single-storey space structure, i, w and ii; =76 under

1940 EI Centro earthquake ay/g =0.35, angle of attack: « = 7z/4, ry=2.58m .
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Fig. 3.38: Relative floor displacements of center of mass, v, w and rotation u;y=rs6 without
and with three absorbers attached under 1940 El Centro earthquake ay/g =0.35, angle of

attack: « = /3, rg=2.58m.
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Fig. 3.39: Relative displacement of the fluid in three absorbers under 1940 El Centro
earthquake a/g =0.35, angle of attack: a = 7/3, ry =2.58m.
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Fig. 3.40: Relative acceleration of single-storey space structure, i, w and ii; =76 under
1940 EI Centro earthquake ay/g =0.35, angle of attack: « = /3, rg=2.58m.
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Fig. 3.41: Relative floor displacements of center of mass, v, w and rotation uzy=rs60 without
and with three absorbers attached under 1940 El Centro earthquake a,/g =0.35, angle of

attack: a=7/2, rg=258m.
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Fig. 3.42: Relative displacement of the fluid in three absorbers under 1940 EI Centro
earthquake a;/g =0.35, angle of attack: a = 7/2, rg=2.58m.
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Fig. 3.43: Relative acceleration of single-storey space structure, ¥, v and ii; =16 under
1940 El Centro earthquake ay/g =0.35, angle of attack: « = 7/2, ry =2.58m.
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Fig. 3.44: Relative floor displacements of center of mass, v, w and rotation u;=rs¢ without
and with three absorbers attached under 1940 El Centro earthquake a,/g =0.35, angle of

attack: « =27/3, rg=2.58m.

0.4 0.4 0.4
uy[m] uplm uy[m]
0.2 0.2 0.2

0 /\\JAAA /\ARM\M (\A/\Mﬂ NMMU\ 0 AM\M /\Mﬂ AN AM A A Ol —apd
T O I

-0.2 -0.2 -0.2

—
=
=
=

0.4 0.4 0.4
0 5 time [s] 10 15 20 0 5 time [s] 10 15 20 0 5 time [s] 10 15 20

Fig. 3.45: Relative displacement of the fluid in three absorbers under 1940 EI Centro
earthquake a,/g =0.35, angle of attack: « =27/3, rg=2.58m.
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Fig. 3.46: Relative acceleration of single-storey space structure, i, w and ii; =76 under
1940 El Centro earthquake ay/g =0.35, angle of attack: « =27/3, ry =2.58m.
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Fig. 3.47: Relative floor displacements of center of mass, v, w and rotation uzy=rs0 without
and with three absorbers attached under 1940 El Centro earthquake a,/g =0.35, angle of

attack: a=3x/4, rg=258m.
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Fig. 3.48: Relative displacement of the fluid in three absorbers under 1940 El Centro
earthquake a/g =0.35, angle of attack: «=37/4, rg=2.58m.
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Fig. 3.49: Relative acceleration of single-storey space structure, i, w and ii; =76 under
1940 EI Centro earthquake ay/g =0.35, angle of attack: « =37z/4, ry =2.58m.
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Fig. 3.50: Relative floor displacements of center of mass, v, w and rotation uz=rs0 without
and with three absorbers attached under 1940 El Centro earthquake a,/g=0.35, angle of

attack: a=57/6, rg=2.58m.
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Fig. 3.51: Relative displacement of the fluid in three absorbers under 1940 EI Centro

earthquake a/g =0.35, angle of attack: @ =57/6, rg=2.58m.

15

Z Z
V[lm [ s 2 ] ——without absorbers wlm{ s ] ——without absorbers ijT [mihs ] —— without absorbers
10 —with absorbers 10 | —with absorbers 10 | — with absorbers
5
0 AMAAAL A ke R0 AadhAR
UL AR AN
-5
-10 -10 -10
-1 -1 -1!
% 5 time [s] 10 15 20 % 5 time [s] 10 15 20 % 5 time [s] 10 15 20

15

15

Fig. 3.52: Relative acceleration of single-storey space structure, ¥, w and iy =16 under

1940 EI Centro earthquake a;/

0.2 . 0.2
v[m] fw!thout absorbers w[m] fw!lhout absorbers u [m] fw!thoul absorbers
— with absorbers — with absorbers — with absorbers
0.1 0.1 0.1
0 ) o T VTS 0 AAanARANAAS AR o AN 0 VR N [ ETY R YY)
LA ) WUV Ty Vv VVV)VV\]\/ AR AT YV VT WVU‘NVV AAl Tl
-0.1 -0.1 -0.1
0% 5 time [s] 10 15 20 0% 5 time [s] 10 15 20 0% 5 time [s] 10 15 20

g=0.35, angle of attack: «

=57/6, rg =2.58m.

Fig. 3.53: Relative floor displacements of center of mass, v, w and rotation u;y=rs6 without
and with three absorbers attached, angle of attack: « =0 (artificial seismogram)
rg =2.58m .
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original structure structure with 3 absorbers

Max /g /g i [g /g /g ii; /g

a=0 0.72 0.33 0.57 0.61 0.27 041
a= 7z/6 0.69 0.61 0.68 0.60 0.59 0.53
a= 7z/4 0.60 0.78 0.72 0.53 0.76 0.59
a= 7z/3 0.49 0.89 0.71 0.27 0.88 0.61
a= 7z/2 0.33 0.94 0.66 0.30 0.94 0.54
a= 27[/3 0.49 0.73 0.51 0.44 0.74 0.41
a= 37z/4 0.54 0.56 041 0.48 0.57 0.36
a= 57[/6 0.60 0.35 0.34 0.49 0.37 0.33

Table 3.4b: Maximum accelerations due to 1940 El Centro earthquake, maximum ground
acceleration a;/g =0.35 with varying angle of attack «. Maximum values indicated in

bOId, Ur =I”S9, I’S :258m .

3.8.7 Kanai-Tajimi model of the ground acceleration: soil

amplification

An artificial seismogram is generated from Kanai-Tajimi model for the modeling of
hypothetical ground acceleration, the numerical simulation are done analogous to section
2.9.11.

The numerical values of the maximum response observed in Figs.3.53 to 3.76 are
sampled in Table 3.5a and 3.5b. The maximum fluid displacements of wu; =0.18m ,

up, =0.15m, u3=0.15m and velocities of u =1.53m/s, 1, =1.63m/s, 1u3=2.60mls
are within the acceptable limits.

original structure structure with 3 absorbers fluid displacement

Max v w Ut v w ur U Uy Us
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

a=0 44 25 32 26 15 18 52 73 153
o=r/6 44 39 39 26 24 25 67 128 128
a=rlb 42 50 47 24 29 27 99 144 102

a= 72'/ 3 36 59 53 19 32 30 133 150 69
a= 7z/ 2 26 64 56 15 40 37 183 132 122

a= 27[/ 3 34 54 55 15 38 35 183 95 85
a=3z/4 | 37 48 50 19 33 31 165 67 114
a=5z/6 | 37 40 42 23 28 27 135 44 135

Table 3.5a: Maximum displacements, artificial seismogram using Kanai-Tajimi model,
maximum ground acceleration aq/g =0.34. Varying angles of attack « . Extreme values

indicated in bold, u; =r¢8, rg =2.58m.
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Fig. 3.54: Relative displacement of the fluid in three absorbers, angle of attack: o =0
(artificial seismogram) rg =2.58m .
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Fig. 3.55: Relative acceleration of single-storey space structure, v, w and iiy = rsé, angle
of attack: a =0 (artificial seismogram) rg =2.58m .
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Fig. 3.56: Relative floor displacements of center of mass, v, w and rotation u;=rs¢ without
and with three absorbers attached, angle of attack: a=7x/6 (artificial seismogram)
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Fig. 3.57: Relative displacement of fluid in three absorbers, angle of attack: a=7/6
(artificial seismogram) rg =2.58m .
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Fig. 3.58: Relative acceleration of single-storey space structure, ¥, w and iy =@, angle
of attack: « =7/6 (artificial seismogram) rg =2.58m .
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Fig. 3.59: Relative floor displacements of center of mass, v, w and rotation u;=rs¢ without
and with three absorbers attached, angle of attack: a=7x/4 (artificial seismogram)

rg =2.58m .
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Fig. 3.60: Relative displacement of fluid in three absorbers, angle of attack: a=7x/4
(artificial seismogram) rg =2.58m .
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Fig. 3.61: Relative acceleration of single-storey space structure, ¥, w and iy =@, angle
of attack: « =7x/4 (artificial seismogram) rg =2.58m .
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Fig. 3.62: Relative floor displacements of center of mass, v, w and rotation u;=rs¢ without
and with three absorbers attached, angle of attack: «=7/3 (artificial seismogram)
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Fig. 3.63: Relative displacement of fluid in three absorbers, angle of attack: « =7/3
(artificial seismogram) rg =2.58m .
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Fig. 3.64: Relative acceleration of single-storey space structure, ¥, w and iy =@, angle
of attack: « =7/3 (artificial seismogram) rg =2.58m .
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Fig. 3.65: Relative floor displacements of center of mass, v, w and rotation uy=rs6 without
and with three absorbers attached, angle of attack: «=7z/2 (artificial seismogram)
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Fig. 3.66: Relative displacement of fluid in three absorbers, angle of attack: a=7/2
(artificial seismogram) rg =2.58m .
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Fig. 3.67: Relative acceleration of single-storey space structure, ¥, w and ii; = g0, angle
of attack: « =7x/2 (artificial seismogram) rg =2.58m .
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Fig. 3.68: Relative floor displacements of center of mass, v, w and rotation ur=rs0 without
and with three absorbers attached, angle of attack: «=27/3 (artificial seismogram)
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Fig. 3.69: Relative displacement of fluid in three absorbers, angle of attack: « =27/3
(artificial seismogram) rg =2.58m .
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Fig. 3.70: Relative acceleration of single-storey space structure, ¥, w and iy =@, angle
of attack: « =27/3 (artificial seismogram) rg =2.58m .
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Fig. 3.71: Relative floor displacements of center of mass, v, w and rotation u;=rs¢ without
and with three absorbers attached, angle of attack: «=3xz/4 (artificial seismogram)
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Fig. 3.72: Relative displacement of fluid in three absorbers, angle of attack: « =37/4
(artificial seismogram) rg =2.58m .
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Fig. 3.73: Relative acceleration of single-storey space structure, ¥, w and iy =@, angle
of attack: « =37z/4 (artificial seismogram) rg =2.58m .
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Fig. 3.74: Relative floor displacements of center of mass, v, w and rotation u;y=rs6 without
and with three absorbers attached, angle of attack: « =>57/6 (artificial seismogram)
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Fig. 3.75: Relative displacement of fluid in three absorbers, angle of attack: « =57/6
(artificial seismogram) rg =2.58m .
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Fig. 3.76: Relative acceleration of single-storey space structure, v, w and iiy = rsé, angle
of attack: « =57/6 (artificial seismogram) rg =2.58m .

original structure structure with 3 absorbers
Max i/g g iir /g i/g il g iir [
a=0 1.21 0.29 0.72 0.71 0.16 0.34
a= 7;/6 1.09 0.59 0.73 0.61 0.36 0.42
a=rx/4 0.94 073 0.72 0.49 043 0.41
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a= 71'/3 0.72 0.83 0.68 0.35 0.54 0.38
a= 71'/2 0.29 0.84 0.53 0.16 0.63 0.34
o= 27[/3 0.73 0.69 0.58 0.38 0.56 0.27
o= 371'/4 0.90 0.60 0.63 0.50 0.46 0.31
o= 57[/6 1.04 0.48 0.65 0.61 0.33 0.35

Table 3.5b: Maximum accelerations, artificial seismogram using Kanai-Tajimi model,
maximum ground acceleration ay/g =0.34. Varying angle of attack «. Extreme values

indicated in bold, u; =10, rg =2.58m.

3.9 Single-storey symmetric space frame

Consider a special case of a single-storey building with uniformly distributed mass and
stiffness in both the y- and z-directions. The symmetric-plan building can be analyzed
independently in the two lateral directions and rotation. The center of velocity Cy of the
rotational mode coincides with both mass- and stiffness center. When the idealized system is
subjected to a biaxial, horizontal earthquake excitation, the participation factor Z; () of the

rotational mode vanishes, and two TLCGDs are set in orthogonal directions intersecting in
the mass- and stiffness center to control the translational responses of the structure. When the
system is expected to vibrate in the torsional mode, the TTLCGD is proposed to lessen the
purely torsional response.
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4. Multi-storey Moderately Plan-asymmetric
Space Frame with TLCGDs

4.1 Introduction

In Chapter2, the simplest model of U-shaped TLCGD for suppressing coupled lateral and
torsional vibrations of a 3-DOF single-storey moderately asymmetric building has been
analyzed. The TLCGD-main system coupled equations have been formulated by substructure
synthesis. Time-harmonic loading was applied to the system to analyze the dynamic
performance of the 3DOF-structure. In this chapter the dynamic problem is extended to
moderately asymmetric multi-storey space frames. Two-storey, three-storey and four-storey
buildings are consecutively analyzed to demonstrate the design procedure and vibration control
effectiveness of the proposed optimal TLCGDs. Modally tuned TLCGDs attached to the top
floor of the structure control the movement of the structure during the strong motion phase of
an earthquake. For higher order modes, however, a floor at intermediate height might become
suitable. The root-mean square (RMS) responses1 of the relative floor displacement and the
floor accelerations under El Centro seismogram for a four-storey building are also illustrated.
The RMS value is the square root of the mean-square value in a strong motion phase. These
useful conclusions are obtained for guiding the positioning and the practical design of
TLCGDs in the lateral and torsional vibration control.

4.2 Equation of motion for multi-storey moderately
asymmetric space frame

The equation of motion are developed first for a simple multi-storey building, a
two-storey space frame is selected to permit easy visualization of the direct method.
Subsequently, a general formulation is presented for multi-storey buildings subjected to
earthquake-induced ground motion.

4.2.1 Equation of motion for two-storey moderately asymmetric

space frame

A two-storey moderately asymmetric space frame is considered with six DOFs and the
positioning and optimal design of TLCGDs to minimize the lateral and torsional vibrations
when excited by earthquakes are discussed. At first, we need to develop a model to accurately
portray the equations of motion for the building while an earthquake is switched on.
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Fig. 4.1: Two-storey moderately asymmetric space frame.

A two-storey building with a rectangular base of the length @ and the width b, is shown in
Fig. 4.1, see also Fig.2.1. It consists of a homogenous floor of mass mg; (i=1, 2), which is

supported by four symmetrically arranged clamped-clamped “massless” and inextensible
columns in each corner. The columns have the same anisotropic stiffness ky; and k,; in y- and

z-directions. Additional point masses mj; are attached off-center on the rigid floors, e, and

e,; denote their eccentricity. The height of the floor is /. Let v denote the free-field

g "g
horizontal components of a seismic ground accelerations in y-, z-directions, while
soil-structure interaction remains to be neglected. The origin of the moving frame in each floor
is the center of mass Cyy;. The lateral displacements of C); are denoted v; and w;, and 6; is the
rotational angle about the vertical x-axis. The positions of C); may vary for the two floors. The
coordinates of the center of mass Cj; with respect to Cs; and the geometric center are
(Fig.4.1a)

M M

€yi» ZCyi =, -

Yeyi =
Mmg; +my; Mmg; +my;

(i) The stiffness matrix derived by the direct method: see e.g. Chopra', page 358
1) Vlzl, WIZO, un:Hll”Sl:O, 2) v1=0, lel, ”TIZHIFSIZ()’ 3) VIZO, WIZO,
ury = Grs; =1

First floor:
kyiy1 = 4(ky1 +ky2> kyiz1=0 kyi1 = 4(kyl +ky2)ZcM1/’”Sl
k1y1 =0 ko =4k +k.y) k1o =—4(kzy k., )yCMl/rSl

ko1y1 = 4(ky1 +ky2)ZcM1/VS1 ko121 =_4(kzl +kzz)J’cM1/r51

Koo =| (1 +Ky2 )0+ (e + g ) @ +4(kyy +hyp) 28, 1+ 4y +k22)ng1}/r§1 (4.1a)
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Fig. 4.2a: Evaluation of stiffness matrix of two-storey asymmetric space frame: restoring
forces indicated.

Second floor:

kyZyl = _4ky2 ky2zl =0 ky291 = —4kyzsz1/r31
k.2y1 =0 ko1 =—4k,, k201 = 4k22yCM1 / Ts1

koay1 = _4ky2ZCM2/rS2 kop21 = 4kzzycM2/Vsz

_ 2 2

koop1 = (_ky2b —kppa” =4k yzc, 12c,0 =4k Ve, 1Vc, 2 )/r51rsz (4.1b)

-Kz R —kzz -kﬂ{a/2+ycm)/rs| -kzz(;d/z-ycm)/]ts]
- Koy Kooyt = k2 [ k221 Kooe: - T — R
v = L= g 'kyZ(b/z' o)/l ‘\zel—ky (b/2-Zcw1 )11
Cw Koyt Caiz Ky2zr o Gy Ko
wy =1

o :x h = - y2(b/2+Z_Crl)/rsl 1}@ lﬁrzczm)/rsl

Ka Ry -ka(8/2+y o)/ -kn(a2-you/ra

Fig. 4.2b: Evaluation of stiffness matrix of two-storey asymmetric space frame: restoring
forces indicated.

4) V2:1, WZZO, uTzzezrsz:O, 5) V2:0, W2:1, MTZZQZFSZZO’ 6) V2:0, W2:0,

ury =6;rg, =1

First floor:
ky1y2 = _4ky2 kylzZ =0 ky192 = _4ky2ZCM2/rS2
k.12 =0 k120 =4k, k102 =4k 2yc,, 2 / T's2

kg2 = _4kyZZCM1/rSl ko122 = 4kzzJ/cM1/”S1

2 2
ko162 :(_kbe —koya” =4k pzc 12c,0 —4kzz)’cM1J’cM2)/rs1rsz (4.1c)

-kzz N -k22 —kzj(a/2+y(;M2)/rsg —k22(4a/2—ycmz)/tsz

kg Ka1y2 L :k; — K12 — k, ==

’ NG M. (2 ol SN RS (P EnT
Can kyny2 Cypy 12 ur=1 > Cyy Kyio2
Wy =1
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*e ke B -] =

=Ko -kzg‘ -kzz®/2+Yc~«z)/rsz -kzz(a/Z-yCMi,)/rsg

Fig. 4.2c: Evaluation of stiffness matrix of two-storey moderately asymmetric space frame:
restoring forces indicated.

Second floor:

ky2y2 = 4ky2 kyZzZ =0
k2> y2 = 0 k.p.o =4k,

koayo =4kyrzc,, 2/”32

ko2 = —4kzz)’CM2/”32

2 2 2 2 2
ko202 = (kyzb +hopa” +4kpze 5+ 4k, Ye, o )/”S2

k

y

202 = 4kyzsz2/rsz

k202 = —4kzzJ’cM 2 / Ts2

(4.1d)
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Fig. 4.2d: Evaluation of stiffness matrix of two-storey moderately asymmetric space frame:

restoring forces indicated.

Here, the radius of inertia of the second floor rg, = \/ I, / (mg, +my, ), the total mass moment
of inertia about the vertical x-axis is

2 2
I =m52(a2+b2)/12+m52 (y%M2+z(2;M2)+m12 [(eyZ_yCMZ) +(ezz_ZCM2) }Z(msﬁmlz)rszz

(i1) Mass matrix by the direct “stiffness method™:

1) \./;1:1, W1=O, ZZT1=917’SI=0,2) \./.120, lel, ZZT1=917’S1=0, 3) \.}1:0, WIZO,
i) = Ors; =1
My, = Mgy + My M.y, = Mgy +myy My1g1 = Mgy + My (4.22)
- O 9 - II 0O (= (-
W, =
._1;1‘111 1 om ;'\.__muiu
CM[ ‘vl =1 CM] CM[”TI =
My Mgy myg;

1 [ - [ 1 [

Fig. 4.3a: Evaluation of mass matrix of two-storey moderately asymmetric space frame:

inertial forces indicated.

4) v, =1, w, =0,

lipy = 6yrgy =1

iiTzzéerZZO,S) \'/;2:0, WZzl,

iy =byrgy =0, 6) ¥, =0, ¥, =0,

My o = Mgy + My M.y = Mgy + My Mgy = Mgy + My (4.2b)
- O 9 - o I O
eom i, =1 em, v\o mi,
CM2 }3 :]'I CMZ C ”T-: 7]_
mg» mg mg»
M o o -

Fig. 4.3b: Evaluation of mass matrix of two-storey moderately asymmetric space frame:

inertial forces indicated.

The equation of motion of the undamped two-storey mass asymmetric space frame are
given in hypermatrix form, cf. Eq. (2.2),

M¥+KF = -Mi,,, ¥ =[ %

s _p: ST [ .
Xo0 ~2xg,x —Vg w

g
1001001"
E,=/010010
000000

2

T =T T
X xz] X —[Vi

w,

0]’ ug; = Ors;,

i ”Ti]’

(4.3)

where E, =6x3 is the influence matrix of the ground excitation for two-storey asymmetric

space frame.
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The diagnal mass- and the stiffness matrices of the six DOFs (degrees-of-freedom) space
frame are deduced from Egs. (4.1a)-(4.1d) and (4.2a)-(4.2b) by inspection

M =diag[M; M,]. (4.4)
where )
Ky + s 0 (ki +ky2 ) ze,1 11
k=4 0 ki+k.o ~(kay +k0)ve, 1 /151 (4.5)
_(kyl +hkyo )Zch/rm ~(kzy +k22) e, 1 /71 ko1 /4 ’
I _kyZ 0 _kyZZCM 2 /rsz
kip =4 0 —k22 kzave,2[7s2 (4.6)
—kyzszl/’”Sl kzzyCMl/”Sl kor92/4 ’
I _ky2 0 —kyzzCMl/’”Sl
kyy =4 0 —k» kzaye,1 /7 (4.7)
_—kyzszz/rsz kzZyCMZ/rSZ kgae1/4 ’
ky2 0 kyzsz2/’”52
kyp =4 0 k. ~k2¥e,2 /752 (4.8)
kyzzCMz/’”sz - zzJ’cMz/Vsz koro1 /4 ’
and K= [11211 :::j is possibly unsymmetric in its stiffness hypermatrix form,

M; =diag[mg+my; mg+my; mg+my;|=3x3 mass submatrix, i=1,2.

4.2.2 Equation of motion for N-storey moderately asymmetric

space frame
The equation of motion of the undamped N-storey moderately asymmetric space frame are
given in hypermatrix form, cf. Eq. (4.3),

S e ; =T _[=T =T =T =T
MXJFKJC:_ngN’ X :[x XXy J, X =[Vi Wi ”Ti]’ ur; =0Ors;

1 1

1001001--- |
’%gN:ENJ% ; ';_C:gT:[‘.}g Wy 0], Ey=/0100100--- | , (4.9)
0000000---

where M is the mass matrix of the structure, K its stiffness matrix, both are positive definite;
x 1s the displacement vector of the floors, E, =3Nx3 is the influence matrix of the ground
excitation for N-storey structure see Eq. (4.1) and );c'g denotes the seismic ground acceleration

vector, respectively.
The mass matrix M of the system with dimension of 3N x3N, derived by the direct

“stiffness method” referring to 3 DOFs becomes, see e.g. Chopra', page 358
M = diag| M -+ M, My | (4.10)

The stiffness matrix K of the system with dimension of 3N x3N, derived by the direct
method becomes with, referring to 3 DOFs
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RSIRSE
Ky Ky kos
e o o
K= Kiin Kii K
o« o o , (4.11)
knane  Knana Knaw
i [SENAIN SUNI
—ky; 0 —kyizc,, i1 / Tsi-1
Kigy =4 0 —k; kive, a1 [Tsiz
—kyizc,,i / i kuive,,i / Tsi koikgi-1/4 » (i22—N) (4.12)
kyi +kyi 0 (kyi +kyi+1)ZCMi/rSi
ki =4 0 kit ki —(kyi + kit ) ve i [1si
_(kyi + kyi+1)ZCMi/’”Si —(kzi ki )yCMi/rSi koioi /4 ’
(i=1—N-1) (4.13)
I ki 0 kinCMi/’”Si
ki =4 0 ki ~k.ive,i [Tsi
_kinCMi / Tsi _kzinMi / Tsi koioi |4 > (i=N) (4.14)
—kyis 0 —kyinzc,iv / Tsi+1
Kig+y =4 0 —ki kYo, i [Tsiv1 |»
~kyinze,i [Tsi Kanve,i[Tsi koikgis /4 (i=1—N-1) (4.15)
where,
koioi = |:(kyi + ki )b2 + (kzi ki )az + 4(kyi + Ky )ZéMi + 4(kzi +kin )J%Mi]/”sgi ,
(i=1—N-1)

2 2 2 2 2 i
Koipi = (kyib +k,a +4kinCMi +4kziycMi)/’”Si , (iI=N)
2 2 .
koigi+1 = (_kyi+1b —kipa” —4kygzc, iZc,in —4kzinYe, iV, iv ) / rsil'siy1 » (1S1—N-1)

2 2 _
kojgi—1 = (_kyib —ka® —4kzc iz, _4kzz‘yCMi—1yCMi) / rsi-itsi - (IF2—N)

4.3 Control of N-storey moderately plan-asymmetric space
frame by a single TLCGD when compared to an equivalent
TMD

4.3.1 TMD attached on the i-th floor

The analogy between TMD and TLCGD for single-storey structure is presented in Section
2.7. Here a single TMD is installed on the i-th floor of the N-storey moderately
plan-asymmetric space frame with the general angle y to y-direction, reference point A (y4, z4,
0). The equation of motion for the coupled undamped main-system can be given in

hypermatrix form, cf. Eq. (2.88),
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M¥+K ¥=-M X,y +P, M —dlag[Ml MT~--1\~/I*N}:3NX3N,

=T ~T ——T 4 3 ST .. ..

X = x . ] [v w; uTi], Xgn =EnXg. X :[vg Wy OJ,
1001001 |
0100100+ |, PT ==L 0,0+, Fyy, Fii, My frg+,0],
0000000--

FAly V +V ZAl-j—ZCMl')L.l.Ti/rSi}+mAl;l. cosy,

Fliz =my [Wg W+ (yAij =Yy, )Wi/’”&}f myii" siny

Mjlix =0, M;‘ = Mj:lix B F:iy (ZAij T ZCyi ) + F;lkiz (yAij - yCMi) : (4.16)
If the floor displacements X are expanded into modal displacements X = iéﬁ;qj on the

left hand side, Eq. (4.16) decouples on the left hand side for all classically de;rzrllped systems

by pre-multiplication with the transposed <T)~T and when divided by mj becomes

TTar* =T
) '™M" .. A K
i;+wgq; = (I)f—~?c ¢J*P, w5 = (I)f o , j=1-,N. (4.17)
m; mj mj

Isolated modal displacement v, =qj¢j(3l~_2) , W =qj¢j(3i_1) y Uup =150, = qj¢j3l~ are
substituted in the control forces and on the right hand side of the TMD equation. Inserting the
coupling forces P’ into Eq. (4.17) renders the approximated equation of the selected mode,

*
My . . * * ..
(1+ﬂ,)qj +0)sjqj — (VAi,jCOS7/+WAi,j51n7)“ = ZmSn¢j(3n—2)+mAiji,j Vg
m; m ; =1
J Jj\n
b
1 (& . . .
——| D M5B aut) T4 Wi | Vg
mj n=1
%
« My s w9 2
Mj=—Vi" Vi =Vyi i+ Wi s
m.
j
Vai =9iGi-2) — Pj3i (ZAij —Zc,,i )/”Si s Wi =izioy T 93 (yAij _yCMi)/rSi ; (4.18)

where v,;; and wy, ; denote the modal displacements of reference point 4; in y- and

z-directions, respectively. Further the approximated linearized equation of motion of TMD in
the i-th storey is, Eq.(2.92) properly generalized,

i 420 00" + o = _(VAi,j COS ¥ + Wy, ; sin ;/)c'jj ~%{ X, 1§ =[cosy siny 0].(4.19)

With light structural damping of the main system added, the coupled modal equations of
motion of the main system with TMD attached, in matrix notation in the above mentioned
approximation become, natural frequencies must be well separated,
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1+ p; (VAZ-’]-cosy+wAl~!jsin7)mAj/mj {q]]
V4 i COSY+W --sin;/) 1 i
( Aij Aij (4.20)
*ox . *) =T *

+ * ok Lk + *7) x| -7 xg

where the generalized participation factors are
N N

—‘*T sk sk * * * * * *

L; = |:Ljy L 0] s Ly =D mein-a) +MaVaij> Ly =D MsuBiGauty +MgWai ;-
n=l1 n=l

4.3.2 TLCGD attached on the i-th floor

A single TLCGD is installed on the i-th floor of N-storey moderately plan-asymmetric
space frame with the general angle y to y-direction, reference point A (y4, z4, 0). The equation

of motion for the coupled undamped main-system can be given in hypermatrix form, cf. Eq.
(2.94),

MX + KX =— ~:gN+13’ pr :_[0,,,,’FAiy,FAiZ,Mxi/rSi,...,0],

Faiy :mf[vg+i}i_(ZAij_ZCMi)iiTi/rSiJ""’?mfiiCOS?/a

Fy. =mf[wg+v'1'/l~—(yAij—yCMi)iiTi/rSi}+l?mfiisin7/,

M i = mf’?3H2iiTi/’”Si » My =M 4y —Fyyy (ZAij _ZCMi)+FAiz (yAij _yCMi) : (4.21)

N
If the floor displacements X are expanded into modal displacements X = Z(ﬁjq ; on
J=l

the left hand side, Eq. (4.21) decouples on the left hand side for all classically damped

systems by pre-multiplication with the transposed modal vector (T)JT and when divided by the

modal mass m : becomes

s, ML ¢; K¢,
G +5G;=———3X+-P, w5=-"—" (4.22)
mnj mnj nj

Inserting the linearized coupling forces P into Eq. (4.22) renders the approximated
equation of the selected mode,

N
.. 2 mg _ . .. 1 .
(1+u,-)q,~ +ws,-q,~+m—’K(VAi,j0087+WAi,jsm7)u :_m_|:2(mSn+m1n)¢j(3"—2)+mﬁvf4i;j:|vg
J j Ln=1
1 [
— Z(msn +m1n)¢j(3n—2) TMWaij | We
mj n=1
mg o 20— 2
;uj:_ﬁVij » Vi =V +K3(¢j3iH rSi) . (4.23)

J

Here, V;Z is given by Eq. (4.18). Light structural modal damping of the main system is

added and the approximated linearized equation of motion of TLCGD is considered

U+20 4,0 41 + a)jju = —K(VAl-’j COsy +Wy; ;sin 7/)%- - KfST)._C:g . (4.24)
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In matrix form the linearized coupled system of modal equations of the main system with
TLCGD attached becomes, within the approximation discussed above

K‘(VAi’j COSy +Wy; ; siny/) 1 u

. 2
0 2yoyllu | |0 o |l il | ¢

where the generalized participation factors are

N
.
Ly = [Ljy L. O} o Ly = Z(””’Sn +my, >¢J' (Gn-2) T Vi

n=l1

, (4.25)

N
Lj, =" (g, +my, ) Bjcuny +mswa s
n=l1

and Ty is the same as defined in Eq. (4.19).

4.3.3 Analogy between TMD and TLCGD when attached to

N-storey space frame
Comparing the approximated modal equations of motion for coupled system consisting of
an N-storey structure, see Section 2.8 for single-storey, the result about the

relationship ,u; and 4, the optimal absorber tuning ratio J,,, and the damping ratio are

exactly the same as in the single-storey structure discussed above Egs. (2.102)- (2.104) are still
valid when generalized by adding the storey number, subscript i where appropriate.

4.4 Two-storey moderately asymmetric space frame:
numerical example

The two-storey mass asymmetric structure is considered as a numerical example. The mass
of each floor is 16x10°kg. The additional point mass on the second floor m,=8x10°kg is also
considered to be placed in the upper right corner A, Fig.4.1. The common stiffness of columns
in y- and z-directions of each storey calculated by Eq. (2.10) £,=2242.8kN/m and
k-=788.68kN/m. The identical storey heights are 4m, and proper static dimensioning of elastic
columns is performed in Subsection 4.4.1. The mass moment of inertia about the vertical x-axis
of the second floor is calculated: 7, =213.33x10°kg - m* rg5 =2.98m . The other properties

of the building are listed in Section 2.9.

4.4.1 Static dimensioning and a static safety criterion of the

columns

The critical load of a steel profile HEB-200 with respect to the weak axis of buckling
becomes F,, =—2592.027kN . The combined load without TLCGD of the second floor at point
A; isFj, =-206.922kN  and that at points A, Az, Ay F,, =—100.974kN . The combined
load without TLCGD of the first floor at point A; is Fj; =—387.357kN and that at points A,,
£y _ —387.357 o1
F, -2592.027
correction of the stiffness is applicable.

As, Ay F,; =-201.948kN . Thus 5<%, consequently, a geometric
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The corrected stiffness at point A; in y-direction becomes:

Iy Iy
_ 2k, —k,| 6| | I 4369.3929 -2180.7234
lgyl = —— = kN /m
—ky ky 5 _i i -2180.7234 2180.7234
l L
The corrected stiffness at point A in z-direction becomes:
o Iy
T 2k, —k,| 6] I [ 1461.1529 -726.6034 N/
_ _2 = m
=2l -k, k, 5 _@ i -726.6034 726.6034
l L]
The corrected stiffness at points A,, Az, and A4 in y-direction becomes:
o
_ _ _ 2ky —ky 6| A 4425.0156 —-2212.5078
1SyZ :15)/3 :15)/4 = T = /m
—ky ky 5 _i & -2212.5078 2212.5078
h I
The corrected stiffness at points A,, A3, and A4 in z-direction becomes:
o
_ _ _ 2k, —k,| 6| A 1516.7756 —758.3878
1522 = 1523 = 1524 = - = m
-k, k, 5 _i i —758.3878 758.3878

h L

4.4.2 Natural modes of the main structure

The natural frequencies computed by means of Matlab 7.0% become 1.07, 1.78, 2.21, 2.88,
4.78 and 5.83 Hz. Columns are assumed to be massless. The orthonormalized modal matrix of
the undamped main system with respect to M is the output of Matlab 7.0,

[ 0.017391  0.279390  0.193230 -0.023691  0.491810 —0.310500 |
—-0.328010  0.067991 —0.083310  0.569980  0.076364  0.068429
=10 —-0.061186 —0.173220 0.278960  0.125340 -0.307540 —0.482380 .
~ 0.033474  0.473310 0.292630  0.021224 -0.273560  0.174940

—-0.550020  0.071957 —0.047072 —0.321480 -0.043216 -0.039274
| —0.103430 -0.290130 0.465720 —0.012174 0.161860  0.280270

Correction of this output of orthonormalized eigenvectors might become necessary with

respect to orthogonality, see also Section 2.9.2. However, test calculations render sufficient
accuracy,

S,=1, 6,=18x10" , 45,=17x10" , §,=54x10" , &,=-7.6x10"
8,=-3.6x10"" , 6,,=194x10" , &,=1, 6,=-111x10" , §,=-13x10"° ,
s =—527x107"°, 5, =5.55x10"", &,=1.7x10", 5,=0, &,=1, &, =-8.67x107",
5, =555x10", &,=0, &,=-87x10", §,=-14x10", §,=-52x10", &5, =1,
8,5 =-15x10", 8, =-2.12x107"°, &, =-9.7x10"", &,=-53x10", §,=1.11x107"°,
S, =—6.16x107"7 |, S,=1, &,=-222x10", §,=-3.75x10"", &,=5.55x10",
5,=0, &,=-2.12x10"", 5,=-1.53x10"°, &, =1.
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The six mode shapes of the two-storey asymmetric space frame are illustrated in the
scaled Figure 4.4-4.9, the modal centers of velocity of first floor o, that of second floor® . In
the first mode the two floors displace in z-direction. In the second and third mode the floors
displace obliquely in y- and z-directions and rotate in the same direction. In the fourth mode,
the two floors displace in opposite z-directions.The motion in the fifth and sixth mode consists
of oblique translational motions in opposite y- and z-directions with opposite torsional

z
Z
-0.1

motions.

Cv
€O}
Fig. 4.4: First mode f, =1.07Hz. Fig. 4.5: Second mode f, =1.78Hz .
Z
g
CV @ ~ 0.04 - ? ‘
5 \ 0.57
p5 \ Cv J— l@C 1
o -y
Cs 032
— v
CE
Fig. 4.6: Third mode f, =2.21Hz. Fig. 4.7: Forth mode f, =2.88Hz.
z
0.49 )
/ 0.04 ® -0.08 -
-~ 2.2
0.05 -~
CyCe
Fig. 4.8: Fifth mode f, =4.78Hz. Fig. 4.9: Sixth mode f, =5.83/z.

4.4.3 Position of the modal centers of velocity Cy
The coordinates of the modal centers of velocity Cy with corrected column stiffness taken
into account are defined by Eq. (2.18), all fall outside of the floor plan.

mode 1 2 3 4 5 6
Floor | | (-14.83,-0.30) | (2.26,4.24) | (1.98.2.60) | (-12.41,-0.02) | (1.83,4.20) | (1.51,2.46)
Floor2 | (-14.52,-0.30) | (2.07,-4.20) | (1.63,2.54) | (-77.40,-4.53) | (2.13,-437) | (1.75,2.53)

Table 4.1: The coordinates of the centers of velocity Cy for six modes.
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(1) Installation of the TLCGDs

Three tuned liquid column gas dampers are placed on the top floor to counteract the first
three natural modes, since the numerical study shows that higher modes are not remarkably
excited by the earthquakes. For the first mode TLCGD1 is installed in the middle. TLCGD?2 is
installed along the long side suppressing the second mode and TLCGD3 on the short side
tuned to the third mode_according to Fig. 4.10 and the positions of the relevant centers of

velocity are considered.

b 7 C\F3
@

Fig. 4.10: Installation of TLCGDI1, 2, 3, ® the modal centers of velocity of top floor.

Cvz

4.4.4 TLCGD design, Den Hartog’ optimization
The fluid mass is chosen as m, =1160kg, m;, =480kg and m 3 =160kg of water.

Dimensions of the three TLCGDs tuned at first by means of the TMD analogy Egs. (2.102)-
(2.104), applying Den Hartog’s formulas are summarized in Table 4.2.

TLCGD1 | TLCGD2 | TLCGD3

Horizontal length of the liquid column B [m] 3.00 3.00 3.00
Inclined length of the liquid column H [m] 2.00 1.00 0.80
Cross-sectional area of the pipe [m’] Ay=Ag 0.1660 0.0960 0.0350
Effective length Leff =L, =2H +B [m], Eq. (2.34a) 7.00 5.00 4.60
Angle of the inclined pipe section S [rad] /4 /4 /4
Equivalent mathematical pendulum length Ly [m], Eq. (2.37) 0.23 0.08 0.05
Geometry factor K = K , Egs. (2.34a), (2.44) 0.833 0.883 0.898
Geometry factor x5 , Eq. (2.59) 0.80 1.84 2.51
Equilibrium pressure head /4, [m], n=1.2, Eq. (2.34a) 51.37 57.49 67.20
Gas volume V, = 4, H [m’], Eq. (2.38) 0.587000 | 0.183000 | 0.054000
The mass ratio of the TLCGD-main system £, Eq. (2.97) 3% 2% 1.55%
The mass ratio of the equivalent TMD-main system ,u* , Eq. 2.02% 1.51% 1.20%
(2.102)
Natural frequency fA,opl [Hz] Eq. (2.104), (2.112) 1.04 1.75 2.18
Optimal linear damping %, Eq. (2.113) 8.62 7.46 6.67

Table 4.2: Layout of the modally tuned TLCGDs, gas volume and gas equilibrium pressure

assigned, cf. Fig. (4.10).

The modal dynamic magnification factor (DMF) calculated with Matlab 7.0, linearized
damping of the TLCGD considered, is illustrated in Figure 4.11.
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50 ; 50
= original structure = original structure
—TLCGDI installed —TLCGD?2 installed
40— A0
—— =50 2— =50
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30| 2651 30| 2252
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20 20
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00 0.5 1 1.5 2 wgq 00 0.5 1 1.5 2 Wgo
50 :
= original structure
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=11.77
@
00 0.5 1 1.5 2 @53

Fig. 4.11: Individual frequency response curves without and with linearized TLCGDs
attached, TLCGDs with Den Hartog’s optimal parameters.

The effective modal damping coefficients of the system is increased from 1% to
Copr1 =5.7%., Gy =4.82% and ¢,y =4.25%. The results of all maximum structural and

liquid response with varying angles of attack of the time-harmonic excitation are given in
Table 4.3a-c. The maximum fluid displacements are within the acceptable limits, u, < H, /3
(of linearized gas compression) and u, < H/2. The maximum fluid velocities of three

TLCGDs are calculated by Eq. (2.35) 6.06, 5.40 and 5.18m/s and are within the acceptable
speed limit.

structure TLCGD1

Forcing Vi Wi upy = rg0, V2 W) ury =rs265  Ug
direction [mm)] [mm] [mm] [mm)] [mm] [mm] [mm]

a=0 0 -7 -1 CXZ (1) ﬁ 2 49
o= f6 3 .62 12 CXZ g '_19054 20 422
P 5 91 17 sz 2 j 2(3) 29 622
a=z/3 6 -115 21 CXZ 142 :igé -36 779
a=x/2 7 -137 -26 Cff 144 jig -43 928
=213 6 a2 | » sz ! 42 fgg 39 828
o =374 5 102 | -19 sz 130 g; 32 690
« =576 4 75 14 sz g ﬁ; 24 506

Table 4.3a: Maximum displacements of two-storey structure in the first mode from

time-harmonic excitation in « -directions, ap=0.1g, rg; =2.97m, ry, =2.98m .
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structure TLCGD2

Forcing Vi Wi upy =rg,0, V2 W) ury =756 U

direction [mm)] [mm] [mm] [mm)] [mm] [mm] [mm]
a=0 41 10 -26 sz ;g ;(1] -43 491
o= f6 39 10 24 CXZ gz ;g 41 468
a=rl4 34 8 21 sz gj 295 -36 408
a=x/3 27 7 -17 CXZ ‘5‘2 270 -28 320
a=x/2 7 2 -5 CXZ }Z g -8 87
a=2x/3 14 3 -9 CXZ 3‘1‘ 140 -15 171
a=3z/4 24 6 -15 CXZ ‘5‘; 167 -25 286
a=5z/6 32 8 20 sz gg 283 -33 382

Table 4.3b: Maximum displacements of two-storey structure in the second mode from
time-harmonic excitation in ¢« -directions, ag=0.1g, rg; =2.97m, rg, =2.98m.

structure TLCGD3

Forcing Vi Wi urpy =116, V2 W) ury =752t ug
direction [mm] [mm] [mm] [mm] [mm] [mm] [mm]
a=0 13 -6 19 sz ;‘7) _'539 31 369
a=x/6 10 -4 14 sz ;3 _'423 23 274
o4 7 3 10 CXZ }2 _'321 17 199
a=z/3 4 2 5 sz g _'117 9 112
a=x/2 4 2 6 sz g _'118 10 123
a=2x/3 10 -4 14 sz ;(5) _'425 24 287
a=3r/4 12 -5 17 sz ;j _'534 29 344
a=51/6 13 -6 19 sz ;‘7’ _'630 32 378

Table 4.3c: Maximum displacements of the two-storey structure in the third mode from

time-harmonic excitation in « -directions, ap=0.1g, r; =2.97m, ry, =2.98m.

4.4.5 Optimization of the two-storey space frame with 3TLCGDs

in the state space domain
The fine tuned optimal natural frequencies and damping ratios by calling the function
fminsearch of the performance index J, Eq. (2.123), are found to be [, =1.04Hz,

fp=171Hz, f;3=2.08Hz, {4 =7.64%, {4 =5.70%, & 43=5.95%. The equilibrium
pressure head #h, of three TLCGDs are thus changed accordingly to 48.61, 53.21 and
59.84m. Figs. 4.12-4.19 illustrate the weighed sum of the frequency response function

12
Zsi |ZSi (v)
i=1

, S=diag (10,10,10,10,10,10,1,1,1,1,1,1) of the building states for the original
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and the optimized system under various angles of attack, in the logarithmic decibel scale
within the relevant frequency window 0< f <3Hz. The resonance curves with fine-tuning

optimal parameters have broader peaks.
[dB] 80

: A
Ay,

N
B

12
28
i=1

z;)o ‘ i

frequency [Hz]
—— original structure including the dead fluid mass of TLCGDs
—— linearized TLCGDs with Den Hartog's optimal parameters
linearized TLCGDs with optimal parameters fine tuning in the state space domain

Fig. 4.12: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey,
moderately asymmetric space frame with three linearized TLCGDs attached and without the
TLCGDs (angle of attack of the time-harmonic base acceleration  =0), maximum gain
31.6dB.
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linearized TLCGDs with optimal parameters fine tuning in the state space domain
Fig. 4.13: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey,
moderately asymmetric space frame with three linearized TLCGDs attached and without the
TLCGDs (angle of attack of the time-harmonic base acceleration a = 7/6), maximum gain

31.4dB.
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linearized TLCGDs with optimal parameters fine tuning in the state space domain
Fig. 4.14: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey,
moderately asymmetric space frame with three linearized TLCGDs attached and without the
TLCGDs (angle of attack of the time-harmonic base acceleration « = 7/4), maximum gain

33.5dB.
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—— linearized TLCGDs with Den Hartog's optimal parameters
linearized TLCGDs with optimal parameters fine tuning in the state space domain

Fig. 4.15: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey,
moderately asymmetric space frame with three linearized TLCGDs attached and without the
TLCGDs (angle of attack of the time-harmonic base acceleration « = 7/3), maximum gain

33.7dB.
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—— original structure including the dead fluid mass of TLCGDs
—— linearized TLCGDs with Den Hartog's optimal parameters
linearized TLCGDs with optimal parameters fine tuning in the state space domain
Fig. 4.16: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey,
moderately asymmetric space frame with three linearized TLCGDs attached and without the
TLCGDs (angle of attack of the time-harmonic base acceleration « = 7/2), maximum gain

33.6dB.
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—— linearized TLCGDs with Den Hartog's optimal parameters
linearized TLCGDs with optimal parameters fine tuning in the state space domain

Fig. 4.17: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey,
moderately asymmetric space frame with three linearized TLCGDs attached and without the
TLCGDs (angle of attack of the time-harmonic base acceleration « =27/3), maximum gain
33.4dB.
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linearized TLCGDs with optimal parameters fine tuning in the state space domain

Fig. 4.18: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey,
moderately asymmetric space frame with three linearized TLCGDs attached and without the
TLCGDs (angle of attack of the time-harmonic base acceleration « =37/4), maximum gain

33.1dB.

[dB] 80

60

o s )

12
ZSl. ‘z& (v)( 0
=l

20 =

40 -

-60

-80
frequency [Hz]
—— original structure including the dead fluid mass of TLCGDs
—— linearized TLCGDs with Den Hartog's optimal parameters
linearized TLCGDs with optimal parameters fine tuning in the state space domain

Fig. 4.19: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey,
moderately asymmetric space frame with three linearized TLCGDs attached and without the
TLCGDs (angle of attack of the time-harmonic base acceleration « =57/6), maximum gain

32.7dB.

From inspection of figures 4.20-4.27 it is apparent that the maximum relative fluid
displacements for all cases are well within the acceptable limits. The maximum fluid
velocities of three TLCGDs are calculated by Eq. (2.35) 6.86, 6.45 and 6.53m/s and are also

within the acceptable speed limit.
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TLCGD3 Den Hartog's parameters TLCGDI fine-tuning in state space
—— TLCGD?2 fine-tuning in state space —— TLCGD3 fine-tuning in state space
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Fig. 4.20: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

attached to the two-storey moderately asymmetric space frame. TLCGDs either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (o =0).
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Fig. 4.21:

attached to the two-storey moderately asymmetric space frame. TLCGDs either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (& = 7/6).
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——TLCGD1 Den Hartog's parameters —— TLCGD2 Den Hartog's parameters
TLCGD3 Den Hartog's parameters TLCGD] fine-tuning in state space
—— TLCGD2 fine-tuning in state space —— TLCGD3 fine-tuning in state space

Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

2.5
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—— TLCGD?2 fine-tuning in state space —— TLCGD3 fine-tuning in state space

Fig. 4.22: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

attached to the two-storey moderately asymmetric space frame. TLCGDs either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (« = 7/4).
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Fig. 4.23: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

attached to the two-storey moderately asymmetric space frame. TLCGDs either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (« = 7/3).
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—— TLCGD?2 fine-tuning in state space —— TLCGD3 fine-tuning in state space

Fig. 4.24: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

attached to the two-storey moderately asymmetric space frame. TLCGDs either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (& = 7/2).
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—— TLCGD?2 fine-tuning in state space —— TLCGD3 fine-tuning in state space

Fig. 4.25: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

attached to the two-storey moderately asymmetric space frame. TLCGDs either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (a =27/3).
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—— TLCGD?2 fine-tuning in state space —— TLCGD3 fine-tuning in state space

Fig. 4.26: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

attached to the two-storey moderately asymmetric space frame. TLCGDs either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (& =37/4).
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Fig. 4.27: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

attached to the two-storey moderately asymmetric space frame. TLCGDs either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (a =57/6).

The wall thickness and the estimated dead mass of the piping system are listed in Table
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4.4 for the three absorbers, designed according to Table 4.2.

TLCGD! | TLCGD2 | TLCGD3
hy [m] 51.37 57.49 67.20
H, [m] 3.54 1.91 1.54
107 P(py [IN/m’] Eq.(2.128) 22.89 25.65 30.13
pipe diameter 2r [mm] 459.7 349.6 211.1
¢t [mm] Eq.(2.124) 3.8 3.2 23
m,, [kg] Eq.(2.130) 595.80 241.79 90.30
dead fluid-mass[kg] 355.09 105.75 30.98
10_51_7@) [N/m?] Eq.(2.129) 1.15 1.40 1.81

Table 4.4: Dimensioning of circular steel pipes.

The gauge pressure under expansion conditions turns out to be positive as listed in Table 4.4.
The final dimensions of circular steel pipes must be changed according to their commercial
availability.

4.5 Three-storey moderately asymmetric space frame:
numerical example

The additional point mass on the third floor is m13=10><103kg. The common stiffhess of
columns in y- and z-directions of each storey are increased to k,=4433.23kN/m and
k.=1544.68kN/m. The mass moment of inertia about the vertical x-axis of the third floor is

calculated: 1x3=229.74x103kg-m2, r¢3 =2.97m. The other properties of the building are
listed in Sections 2.9 and 4.4.

4.5.1 Static dimensioning and a static safety criterion of the

columns
The critical load of a steel profile HEB-240 with respect to the weak axis of buckling
becomes F, =—-5076.65kN . The combined load without TLCGD of the first floor at point A

is F;=-620.77kN and that at points A, Az, Az F5=-302.92kN . Thus

i:ﬂ: . 2<l, consequently, a geometric correction of the stiffness is
F, -5076.65 3
applicable.

The corrected stiffness at point A; in y-direction becomes:
8750.3 —4371.2 0 |

Eﬂ: —4371.2 87344 43632 |kN/m.
0 -4363.2 4363.2

The corrected stiffness at point A; in z-direction becomes:
29732 -1482.6 0 |

k., =|-1482.6 29573 —1474.7 |kN/m.
0 14747 14747 |

The corrected stiffness at points A,, Az, and A4 in y-direction becomes:

136



Multi-storey Moderately Plan-asymmetric Space Frame with TLCGDs

ianl

8805.9 —4402.9 0
:Ey4 =|-4402.9 8805.9 —4402.9 |kN/m.
0 —4402.9 4402.9
The corrected stiffness at points A, A3, and A4 in z-direction becomes:
3028.8 -—1514.4 0
o =k=k,=|-15144 3028.8 —1514.4|kN/m.
0 -15144 15144

4.5.2 Natural modes of the main structure

The natural frequencies are computed 1.05, 1.74, 2.22, 3.04, 4.41, 5.06, 6.29, 7.35 and
9.09 Hz. Columns are assumed to be massless. The orthonormalized modal matrix of the
undamped main system with respect to M is the output of Matlab 7.0°.

h
¢71 = @1,2
h3
X

| ha
X
5 = (’;3,2
_53,3
_54’1 -
Py = 54,2
| 445 |
5. |
s = ¢75,2
455 |
_¢;6’1 Z
Ps = ¢76,2
| fo3
_(37,1 Z
bs

[ #13 ]
.1

, =107

- e )
=\ by |5 Py=10

, 53,1 1072

. By =107

5 55,1 = 10_2

0.011623 0.024604 0.034769
~0.1938 |, ,=107]-036125 |, ¢3=10"]-0.46386 |;
~0.039662 ~0.074022 ~0.094532
~0.16611 ~0.31213 ~0.40344 ]
~0.051189 |, ¢, =107|-0.070527 |, @5 =107|-0.06367 |;
0.10112 0.18739 0.238
0.11966 0.20277 0.23856
~0.066607 |, @5 =107| -0.070966 |, 53 =10"|-0.033281|;
0.16837 0.31078 0.39368
[0.020778 0.01415 ~0.026801
~0.45006 |, @y, =107|-026369 |, d43=107]036252 |;
| -0.1013 ~0.086885 0.026479
[0.0028248 0.041799 ~0.031189
0.44545 |, ¢, =107|-0.43638 |, d5=107|0.15541 |;
| 0.044889 ~0.099064 0.058538
[-0.39352 ~0.2283 0.31057 |
~0.027237 |, ¢, =107 -0.07911|, 3 =107|0.068662 |;
| 0.24682 0.13113 ~0.17458 |
[-0.26424 ~0.11862 0.18606
0.045519 |, ¢, =107|0.046454 |, ¢ 5 =107|-0.052125 |;
| ~0.40599 ~0.19562 031092
~0.37095 0.38513 ~0.14557

b=| s |, ey =107]-0.060162 |, ¢k, =107]0.065584 |, dy3=107|-0.025865 |;

b5

0.23797 —-0.22794 0.080603
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9,1 —V. . —V.

¢ 0.22311 0.24709 0.09888

by=|dos |, oy =107]0.05017 |, ¢y, =107|-0.058981|, ¢h3=1070.024752 .
b+ ~0.34604 0.39333 ~0.1621

The nine mode shapes are amplified and plotted in Fig. 4.28-4.36, the modal centers of
velocity of first floor o, that of second floor ® and of third floor +.

z

-0.36 10.46

-0.06
* — m:’;
CS bt -G.D?'—y
S
\L —_ -
L I <8

Fig. 4.29: Second mode f, =1.74Hz .
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Fig. 4.30: Third mode f, =2.22Hz.

Fig. 4.31: Forth mode f, =3.04Hz .
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Fig. 4.33: Sixth mode f, =5.06/z .
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Fig. 4.34: Seventh mode f, =6.29Hz.
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Fig. 4.35: Eighth mode f;, =7.35Hz.
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Fig. 4.36: Ninth mode f, =9.09Hz.

4.5.3 Position of the modal centers of velocity Cy
The coordinates of the modal centers of velocity Cy with corrected column stiffness taken

into account are defined by Eq. (2.18), all fall outside of the floor plan.

mode 1 2 3 4 5
floor 1 | (-13.42,-0.32) | (2.59,-4.33) | (2.27,2.66) | (-12.10,-0.06) | (-28.37,0.73)
floor 2 | (-13.22,-0.32) | (2.46,-4.30) | (2.01,2.61) | (-7.71,0.18) | (-11.80,-0.59)
floor 3 | (-13.05-0.32) | (2.33,-427) | (1.79.2.57) | (-39.16,-2.14) | (-6.35,-0.81)
mode 6 7 8 9
floor 1 | (1.42,-4.19) | (1.422.48) | (1.84,-4.08) | (1.52,2.46)
floor 2 | (3.13,-4.52) | (2.042.47) | (2.19,4.37) | (1.78,2.54)
floor3 | (2.71,-4.52) | (2.042.55) | (2.49,-4.60) | (1.99,2.58)
Table 4.5: The coordinates of the centers of velocity Cy for 9 modes.

(1) Installation of TLCGDs
For the first mode the center of velocity Cy lies far away, consequently the TLCGD1

might be installed in the middle of the floor. TLCGD2 will be installed along the long side for
the second mode and TLCGD3 on the right side for the third mode in order to maximize the

normal distance between TLCGD and the corresponding center of velocity Cy;
bz Cys

CV] 3 3

Cw2
Fig. 4.37: Installation of TLCGDI, 2, 3, + the modal centers of velocity of third floor.

4.5.4 TLCGD design, Den Hartog’ optimization
The fluid mass is chosen as m, =1710kg, my, =670kg and m, 3 =210kg of water.

Dimensions of the three TLCGDs tuned first by means of the TMD analogy Egs. (2.102)-
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(2.104), applying Den Hartog’s formulas are summarized in Table 4.6.

TLCGD1 TLCGD2 TLCGD3

Horizontal length of the liquid column B [m] 3.00 3.00 3.00
Inclined length of the liquid column A [m] 2.0 1.2 0.9
Cross-sectional area of the pipe [mz] Ap=Ag 0.2440 0.1240 0.0440
Effective length Leﬁ,. =L, =2H + B [m], Eq. (2.34a) 7.00 5.40 4.80
Angle of the inclined pipe section A [rad] /4 /4 /4

Equivalent mathematical pendulum length Ly [m], Eq. (2.37) 0.23 0.08 0.05
Geometry factor K = K , Egs. (2.34a), (2.44) 0.833 0.87 0.89
Geometry factor x5 , Eq. (2.59) 0.80 1.45 2.12
Equilibrium pressure head /4, [m], n=1.2, Eq. (2.34a) 48.92 64.80 73.39
Gas volume V, = 4, H [m’], Eq. (2.38) 0.800000 0.250000 0.069000
The mass ratio of the TLCGD-main system z , Eq. (2.97) 3%, 2% 1.5%
The mass ratio of the equivalent TMD-main system y* , Eq. 2.02% 1.45% 1.17%
(2.102)
Natural frequency fA,opt [Hz] Eq. (2.104), (2.112) 1.02 1.71 2.19
Optimal linear damping %, Eq. (2.113) 8.62 7.31 6.58

Table 4.6: Layout of the modally tuned TLCGDs, gas volume and gas equilibrium pressure

assigned, cf. Fig. (4.37).

The modal dynamic magnification factor (DMF) calculated with Matlab 7.0, linearized
damping of the TLCGD considered, is illustrated in Figure 4.38.

50 \ 50 I
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Fig.4.38: Individual frequency response curves without and with linearized TLCGDs

attached, TLCGDs with Den Hartog’s optimal parameters.
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The effective modal damping coefficients of the system are increased from 1% to
Copp1 =5.73%, Coypo =4.7% and {53 =4.3%. The results of all maximum structural and

liquid response with varying angles of attack of the time-harmonic excitation are given in
Table 4.7a-c. The maximum fluid displacements are within the acceptable limits, u, < H, /3
(of linearized gas compression) and uy, < H/2. The maximum fluid velocities of three

TLCGDs are calculated by Eq. (2.35) 6.23, 5.82 and 5.89m/s and are within the acceptable
speed limit.

structure TLCGD1
Forcing direction v; [mm] w3 [mm)] upy = rg;05 [Mm] |y, [mm]
a=0 Cu ; -1 3 62
a=r/6 Cg“ § '_19089 22 433
a=rl4 Cg“ 142 :ifé -33 644
a=r/3 Cg“ 155 fgg -42 811
a=r/2 Cg“ 158 j‘z'g -50 972
a=2n/3 Cg“ 157 fgé -45 872
a=3z/4 Cg“ 144 :}22 -38 730
a=57/6 Cg“ 130 Bz -28 539
Table 4.7a: Maximum displacements of three-storey structure in the first mode from
time-harmonic excitation in « -directions, ap=0.1g, 7q=2.97m , r¢;=298m ,
rg3 =2.97m.
structure TLCGD2
Forcing direction v; [mm] w3 [mm] upy = rg;03 [Mm] |y, [mm]
@ =0 G - = 46 542
a=1/6 G e 2 45 523
a=x/4 G . = 39 459
a=1/3 G =2 2 31 364
a=r/2 C/g“ :ég :; 9 108
o =213 G = = 15 178
o =37/4 G = - 26 307
a=57/6 C/g“ :gg _'298 35 415

Table 4.67: Maximum displacements of three-storey structure in the second mode from

time-harmonic  excitation in « -directions, a¢=0.1g, rq=2.97m , r¢; =2.98m ,
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Structure TLCGD3
Forcing direction v; [mm] w3 [mm)] upy = rg;03 [Mm] | yy [mm]
a=0 Lo o = 24 391
a=r/6 Cg“ }; _'336 18 284
a=rl4 Cg“ 171 _‘225 12 202
a=n/3 C[:“ 2 _'113 6 108
a=n/2 C[:“ ; _'117 8 140
a=2zr/3 C[:“ }% _'339 19 314
a=37n/4 C[:“ ég _;‘47 23 372
o =51/6 Lo > 2 25 406
Table 4.7c: Maximum displacements of three-storey structure in the third mode from
time-harmonic  excitation in « -directions, a¢=0.1g, rq =297m , r¢; =298m ,
rg3 =2.97m.

4.5.5 Optimization of the three-storey space frame with 3
TLCGDs in the state space domain

The fine tuned optimal natural frequencies and damping ratios by calling the function
fminsearch of the performance index J, Eq. (2.123), are found to be f, =1.02Hz,

fA2 =1.68Hz , fA3 =2.10Hz , CAI =8.50% . élAz :572%, é,A?) =6.2%. The equﬂibrium
pressure head /4, of three TLCGDs are consequently adjusted to 46.39, 60.25 and 65.82m.

18
The Figures 4.39-4.46 show the weighed sum of the frequency responses Zsl-|zsl-(v)
i=1
S =diag (10,10,10,10,10,10,10,10,10,1,1,1,1,1,1,1,1,1) of the building states for the original
and the optimized system, in the logarithmic decibel scale, defined by x[dB]=20logx
within the relevant frequency window 0< f <3Hz. The resonance curves with fine-tuning

2

optimal parameters have broader peaks. From inspection of figures 4.47-4.54 it is apparent
that the maximum relative fluid displacements for all cases are well within the acceptable
limits. The maximum fluid velocities of three TLCGDs are calculated by Eq. (2.35) 6.54, 6.86
and 6.86m/s and are also within the acceptable speed limit.
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Fig. 4.39: Weighed sum of amplitude response functions for the 9-DOF linearized,
three-storey, moderately asymmetric space frame, with three linearized TLCGDs attached and
without the TLCGDs (angle of attack of the time-harmonic base acceleration a=0),
maximum gain 31dB.
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Fig. 4.40: Weighed sum of amplitude response functions for the 9-DOF linearized,
three-storey, moderately plan asymmetric space frame, with three linearized TLCGDs
attached and without the TLCGDs (angle of attack of the time-harmonic base acceleration

a = /6), maximum gain 31dB.
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Fig. 4.41: Weighed sum of amplitude response functions for the 9-DOF linearized,
three-storey, moderately asymmetric space frame, with three linearized TLCGDs attached and
without the TLCGDs (angle of attack of the time-harmonic base acceleration « =7x/4),

maximum gain 33.9dB.
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Fig. 4.42: Weighed sum of amplitude response functions for the 9-DOF linearized,
three-storey, moderately asymmetric space frame, with three linearized TLCGDs attached and
without the TLCGDs (angle of attack of the time-harmonic base acceleration « = 7/3),

maximum gain 34.1dB.
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Fig. 4.43: Weighed sum of amplitude response functions for the 9-DOF linearized,
three-storey, moderately asymmetric space frame, with three linearized TLCGDs attached and
without the TLCGDs (angle of attack of the time-harmonic base acceleration « =7/2),

maximum gain 34dB.
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Fig. 4.44: Weighed sum of amplitude response functions for the 9-DOF linearized,
three-storey, moderately asymmetric space frame, with three linearized TLCGDs attached and

without the TLCGDs (angle of attack of the time-harmonic base acceleration o =27/3),
maximum gain 33.8dB.
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Fig. 4.45: Weighed sum of amplitude response functions for the 9-DOF linearized,
three-storey, moderately asymmetric space frame, with three linearized TLCGDs attached and
without the TLCGDs (angle of attack of the time-harmonic base acceleration « =37/4),

maximum gain 33.5dB.

[dB] 100

80
60

40

0 /\\ /AR N/ AN

| ? N N
S| TN

-20 A

40 -

-60

-80
frequency [Hz|
—— original structure including the dead fluid mass of TLCGDs
—— linearized TLCGDs with Den Hartog's optimal parameters
linearized TLCGDs with optimal parameters fine tuning in the state space domain
Fig. 4.46: Weighed sum of amplitude response functions for the 9-DOF linearized, two-storey,
moderately asymmetric space frame, with three linearized TLCGDs attached and without the
TLCGDs (angle of attack of the time-harmonic base acceleration « =357/6), maximum gain

33.2dB.
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Fig. 4.47: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

attached to the three-storey moderately asymmetric space frame. TLCGDs either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (a =0).
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Fig. 4.48: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

attached to the three-storey moderately asymmetric space frame. TLCGDs either with Den

Hartog’s optimal parameters or those resulting from fine-tuning in state space (& = 7/6).
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Fig. 4.49:

attached to the three-storey moderately asymmetric space frame. TLCGDs either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (& = 7/4).
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Fig. 4.50: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

attached to the three-storey moderately asymmetric space frame. TLCGDs either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (« = 7/3).

151



Multi-storey Moderately Plan-asymmetric Space Frame with TLCGDs

displacement[m]

1.10
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

L5

2 25 3

frequency [Hz]

—— TLCGD1 Den Hartog's parameters
TLCGD3 Den Hartog's parameters
—— TLCGD2 fine-tuning in state space

—— TLCGD2 Den Hartog's parameters
TLCGD1 fine-tuning in state space
—— TLCGD3 fine-tuning in state space

Fig.4.51: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

attached to the three-storey moderately asymmetric space frame. TLCGDs either with Den

Hartog’s optimal parameters or those resulting from fine-tuning in state space (& = 7/2).
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Fig. 4.52: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

attached to the three-storey moderately asymmetric space frame. TLCGDs either with Den

Hartog’s optimal parameters or those resulting from fine-tuning in state space (& =27/3).
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Fig. 4.53: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

attached to the three-storey moderately asymmetric space frame. TLCGDs either with Den

Hartog’s optimal parameters or those resulting from fine-tuning in state space (a =37/4).
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Fig. 4.54: Amplitude response curves of fluid displacement |u| of three linearized TLCGDs

attached to the three-storey moderately asymmetric space frame. TLCGDs either with Den

Hartog’s optimal parameters or those resulting from fine-tuning in state space (o =57/6).
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The wall thickness and the estimated dead mass of the piping system are listed in Table
4.8 for the three absorbers, designed according to Table 4.6.

TLCGD1 | TLCGD2 | TLCGD3
hy [m] 48.92 64.80 73.39
H, [m] 3.28 2.02 1.57
107519(1)) [N/m?] Eq.(2.128) 21.76 29.04 32.99
pipe diameter 2r [mm] 557.4 397.3 236.7
¢t [mm] Eq.(2.124) 4.3 4.1 2.8
m,, [kg] Eq.(2.130) 801.95 378.51 128.38
dead fluid-mass[kg] 523.45 162.88 43.66
107 P(py [IN'm?] Eq.(2.129) 1.04 1.71 2.07

Table 4.8: Dimensioning of circular steel pipes.

The gauge pressure under expansion conditions turns out to be positive as listed in Table 4.8.
The final dimensions of circular steel pipes must be changed according to their commercial
availability.

4.6 Four-storey moderately asymmetric space frame:
numerical example

The additional point mass on the fourth floor is m14=6><103kg. The common stiffness of
columns in y- and z-directions of each storey are further increased to k,=5874.4kN/m and
k.=2021.9kN/m. The mass moment of inertia about the vertical x-axis of the fourth floor is

calculated: Ix4=193.94><103kg-m2, rs4 =2.97m. The other properties of the building are
listed in Sections 2.9, 4.4 and 4.5.

4.6.1 Static dimensioning and a static safety criterion of the

columns
The critical load of a steel profile HEB-260 with respect to the weak axis of buckling
becomes F, = —6645.06kN . The combined load without TLCGD of the first floor at point A

is Fj;=-801.2kN and that at points A, Az, Ay F,; =-403.9kN . Thus
i:—801.201_012 1

F.  —6645.06 3’

C
The corrected stiffness at point A; in y-direction becomes:

11633 -5812.3 0 0
— -5812.3 11617 —-5804.3 0
k.= kN /m.
Y 0 -5804.3 11625 —-5820.2
0 0 -5820.2 5820.2 |
The corrected stiffness at point A in z-direction becomes:
3927.6 —1959.8 0 0 |
— -1959.8 3911.7 -1951.9 0
1521 = kN/m .
0 -1951.9 3919.7 -1967.8
0 0 -1967.8 1967.8 |

The corrected stiffness at points A,, Az, and A4 in y-direction becomes:
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11688 —5844.1 0 0
T T % —5844.1 11688 —5844.1 0 N im
Sz Ryd e 0  —5844.1 11688 —5844.1
0 0 —5844.1 5844.1
The corrected stiffness at points A,, Az, and A4 in z-direction becomes:
3983.2 -1991.6 0 0
_ - _ -1991.6 39832 -1991.6 0
kK.r=ks3=ky4= kN /m .
0 -1991.6 39832 -1991.6
0 0 -1991.6 1991.6

4.6.2 Natural modes of the main structure

The computed natural frequencies are 0.97, 1.61, 2.01, 2.88, 4.32, 4.78, 5.21, 5.85 7.18,
8.68, 8.90 and 10.84Hz. Columns are assumed to be massless. The orthonormalized modal
matrix of the undamped main system with respect to M 1is the output of Matlab 7.0%

6-[6y b2 b5 6]

1 =107[-0.0077267 0.14299 0.027177]", ¢, =107[-0.016826 0.27473 0.051979]",

-

3=102[-0.02516 037555 0.070057]", @ 4=102[-0.022059 0.40984 0.077589]";
1 =102[-0.12157 —0.027548 0.076558] , ¢, =107 [-0.23589 —0.038324 0.14576]";
by; =107°[-032495 -0.038032 0.19606]", 4,, =107[-0.34805 —0.082576 0.21859]";
$y1 =107 [-0.084013 0.026433 —0.12277]", ¢y, =107[-0.14849 0.027249 —0.2329]",
$i3=107[-0.18938 0.016374 -03128]", &, =107[-0.24215 0.08805 -0.35065]";
31 =107[0.017538 -0.36367 —0.056849]', @, =10"[0.021729 -0.38289 -0.057978] ,
@33 =107 [-0.0010327 0.015485 0.015836]", @, =107[-0.01705 0.38372 0.080747] ;
@1 =107[0.018457 -0.39719 -0.079344]", g5, =107[-0.003049 0.070442 -0.0094247]",
s =107[-0.023368 0.3838 0.044369]", g5 4 =107[0.018004 031364 -0.094244]" ;
o1 =107[-0.30299 —0.092471 0.18757]", ¢, =107[-0.327 0.0013993 0.21046]",
o3 =107°[0.015775 0037525 -0.015627], x4 =107[032466 0.070279 -0.20358]";
¢, =107[0.075091 -0.3542 —0.046025]", @, =107[0.037632 0.41567 0.088759] ,
$,3=107[0.021204 028544 —0.054357]", &, 4 =107[-0.075184 0.12425 0.036045] ;
o1 =107°[-0.20462  0.0068593 -0.32101]", ¢, =102[-0.19772 0.086944 -0.30961] ,
o3 =107[0.0044371 —0.02826 —-0.0013258]", d, =107[0.20782 —0.034615 0.32978]';
oy =107[03422 0.048712 —0.21753], fy, =107[-0.060279 0.00051957 0.035414]",
o3 =107[-033046 -0.063644 0.19184]", dy, =107[0.27161 0.048904 —0.17005]";
o1 =107[0.30764 0047971 -0.1851]", hoo =107[-0.36363 ~0.063506 0.21683]",

oz =107[0.24919  0.048667 ~0.15678]", Bo4 =107 [-0.10776  —0.022034 0.078028]";
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h1 =107[0.22793  -0.049772 0.36598]" 1, =107 [-0.055825 0.010111 ~0.10809]",

h13 =107[-0.19652 0.047766 -0.30758]", h14=107[0.16558 —0.03917 0.24662]" ;
oy =107[-0.17028  0.03767 -0.25976]" Bon =107[0.22757 -0.054171 0.35643]",

B =1072[-0.17708 0.044044 —O.28638T, b, =107[0.081351 —0.02018 0.12272]".
23 2.4

4.6.3 Position of the modal centers of velocity Cy
The coordinates of the centers of velocity Cy with corrected column stiffness taken into
account are listed in Table 4.9, all fall outside of the floor plan.

mode 1 2 3 4 5

floor 1 (-14.53,-0.30) (2.16,-4.17) (1.73,2.58) (-17.9,-0.37) (-13.77,-0.15)
floor 2 (-14.43,-0.30) (2.12,-4.16) (1.68,2.57) (-18.36,0.45) (23.62,1.63)
floor 3 (-14.40,-0.30) (2.12,-4.16) (1.69,2.57) (-1.37,0.58) (-24.18,-0.8)
floor 4 (-14.59,-0.30) (2.21,-4.18) (1.84,2.60) (-13.02,-0.08) (-8.79,-0.02)
mode 6 7 8 9 10
floor 1 (2.55,-4.25) (-21.76,-4.30) (1.15,2.44) (1.76,-4.13) (1.86,-4.39)
floor 2 (1.31,-3.97) (-12.63,1.93) (2.17,2.57) (1.29,-4.41) (2.21,-4.33)
floor 3 (-5.60,-2.23) (-14.07,-0.40) | (-61.82,-9.18) (2.52,-4.35) (2.46,-3.95)
floor 4 (2.12,-4.19) (-9.14,-5.65) (1.40,2.42) (1.94,-4.2) (1.93,-3.56)
mode 11 12

floor 1 (1.49,2.39) (1.52,2.49)

floor 2 (1.61,2.21) (1.79,2.57)

floor 3 (2.00,2.67) (2.00,2.61)

floor 4 (1.56,2.54) (1.58,2.51)

(1) Installation of TLCGDs

Table 4.9: The coordinates of the centers of velocity Cy for 12 modes.

Four tuned liquid column gas dampers are installed to counteract the first four natural
modes. We investigate the two cases of TLCGD installation and compare the effectiveness of
them for structural control. First case: four TLCGDs are placed on the top floor, TLCGD1 and
4 are installed in the middle, respectively tuned to the first and fourth modes. TLCGD?2 is
installed along the long side suppressing the second mode and TLCGD3 on the short side
tuned to the third mode. In second case TLCGD4 is alternatively installed in the middle of the

second floor.

First case: fourth floor

Cyi Cyy
e ©®

Cyz
Second case: fourth floor
A7 C\»‘g
*
L ]
2
Cyi
. 3 1
Cvz
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Second floor
Tz

Cys y

Fig. 4.55: Installation of TLCGD1, 2, 3, 4,® the modal centers of velocity of second floor,
e the modal centers of velocity of fourth floor.

4.6.4 TLCGD design, Den Hartog’ optimization
The fluid mass is chosen as m, =2030kg , m,, =810kg , m,3=250kg and

m g, =400kg of water. Dimensions of the three TLCGDs tuned first by means of the TMD

analogy Eqgs. (2.102)- (2.104), applying Den Hartog’s formulas are summarized in Table 4.10.
The modal dynamic magnification factor (DMF) calculated with Matlab 7.0°, linearized
damping of the TLCGD considered, is illustrated in Figure 4.56.

TLCGD1 | TLCGD2 | TLCGD3 | TLCGD4

Horizontal length of the liquid column B [m] 3.00 3.00 3.00 3.50
Inclined length of the liquid column A [m] 24 1.4 1.4 0.5
Cross-sectional area of the pipe [m’] Ay=Ag 0.26 0.14 0.048 0.088
Effective length Leﬁ- =L, =2H + B [m], Eq. (2.34a) 7.8 5.8 5.8 4.5
Angle of the inclined pipe section B [rad] ;;/ 4 7z/ 4 77/ 4 77/ 4
g?gégalent mathematical pendulum length Ly [m], Eq. 027 010 0.06 0.03
Geometry factor K = K , Egs. (2.34a), (2.44) 0.82 0.859 0.876 0.935
Geometry factor x5 , Eq. (2.59) 0.665 1.198 1.62 6.485
Equilibrium pressure head /4, [m], n=1.2, Eq. (2.34a) 56.28 69.72 86.88 88.08
Gas volume ¥, = 4, H, [m’], Eq. (2.38) 1.040000 | 0.330000 | 0.100000 | 0.110000
The mass ratio of the TLCGD-main system £, Eq.
2.97) 3% 2% 1.5% 0.51%

The mass ratio of the equivalent TMD-main

* 1.96% 1.39% 1.09% 0.44%
system 1 , Eq. (2.102)

Natural frequency fA,opt [Hz] Eq. (2.104), (2.112) 0.945 1.585 1.982 2.86

Optimal linear damping %, Eq. (2.113) 8.5 7.16 6.35 4.04

Table 4.10: Layout of the modally tuned TLCGDs, gas volume and gas equilibrium pressure
assigned, cf. Fig. (4.55).

The effective modal damping coefficients of the system are increased from 1% to
Cof1 =5.6%, Copr =4.67%, Cop3 =4.2% and (54 =3.2%. The results of all maximum

structural and liquid response with varying angles of attack of the time-harmonic excitation
are given in Table 4.11a-d. The maximum fluid displacements are within the acceptable limits,
uy < H,/3 (of linearized gas compression) and u, < H/2. The maximum fluid velocities of
three TLCGDs are calculated by Eq. (2.35) 7.10, 6.55, 6.40 and 2.73m/s and are within the
acceptable speed limit.
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Fig.4.56: Individual frequency response curves without and with linearized TLCGDs
attached, TLCGDs with Den Hartog’s optimal parameters.

structure TLCGD1

Forcing V2 Wr ury =756, \Z! Wy ury =rs40 Uo
direction [mm)] [mm] [mm] [mm] [mm] [mm] [mm]

@=0 . 11 2 CX“ '01 }; 3 65
o= f6 v 88 17 CX“ :; Bg 25 541
a=nl4 -8 131 25 CX“ '_140 igi 37 799

o3 10 164 31 CX“ '_153 i;‘é 46 1003
a=x/2 -12 196 37 CX“ '_166 igi 55 1195
=213 11 175 33 CX“ '_154 ;2; 49 1068
o314 9 146 28 CX“ '_142 i}ﬁ 41 891
a=5z/6 -7 107 20 CX“ :2 }28 30 654

Table 4.11a: Maximum displacements of four-storey structure in the first mode from
time-harmonic excitation in ¢« -directions, ag=0.1g, rg; =2.97m, rg, =2.98m, rg3 =2.97m,

rs4 = 2.97m .

158



Multi-storey Moderately Plan-asymmetric Space Frame with TLCGDs

structure TLCGD2

Forcing Va W2 ury =rgy60, V4 Wy ury =rs40 Uo
direction [mm)] [mm] [mm] [mm] [mm] [mm] [mm]
a=0 -61 -10 38 CX“ _'191‘;; j; 57 658
o= f6 .58 -9 36 CX“ _'18162 jg 54 626
a=rl4 -51 -8 31 CX“ ;g ;2 47 544
o3 40 -6 25 CX“ :32 :5‘7‘ 37 426
- 11 2 7 CX“ :é? :‘7‘ 10 113
=213 21 3 13 CX“ f’& _'175 20 232
o314 36 -6 2 CX“ :23 é‘z 33 386
o =516 48 8 29 CX“ :;g g 44 514

Table 4.11b: Maximum displacements of four-storey structure in the second mode from

time-harmonic excitation in ¢« -directions, ag=0.1g, rg; =2.97m, rg, =2.98m, rg3 =2.97m,

rg4 =2.97m.
structure TLCGD3

Forcing V2 W3 ury =156, \Z! Wy ury =rg40 Up
direction [mm] [mm] [mm] [mm] [mm] [mm] [mm]

@=0 17 3 27 CX“ gz ég 41 513
a=r/6 -13 2 -20 CX“ 5; 680 -31 388
a=zl4 -10 2 -15 CX“ :;g 464 22 287

a=x/3 -5 1 9 CX“ _'191 235 -13 168
a=z/2 -5 1 -7 CX“ _'180 232 -11 150
o =213 13 2 20 CX“ ié 578 30 381
a=3r/4 -15 3 24 CX“ g; 792 -36 463
a=51/6 -17 3 27 CX“ jﬁ ,1;3 -41 514

Table 4.11c: Maximum displacements of four-storey structure in the third mode from

time-harmonic excitation in ¢« -directions, ag=0.1g, rq; =2.97m, rg, =2.98m, r¢3=2.97m,

rs4 == 2.977}’1 .
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structure TLCGD4
Forcing V2 Wr ury =rgy60, \Z! Wy ury =rs40 Uo
direction [mm] [mm] [mm] [mm] [mm] [mm] [mm]
a=0 0 -1 0 CX“ 8 } 0 9
o= f6 0 7 . CX“ 8 . 2 69
a=rl4 1 -11 2 CX“ 8 1(1) 2 102
o3 1 13 2 CX“ '01 B 3 128
a=x/2 1 -16 -2 CX“ '(} 1‘55 3 152
=213 1 14 2 CX“ '01 };‘ 3 136
o =314 1 12 2 CX“ '01 ﬁ 3 113
o =516 1 -9 1 CX“ 8 z 2 83

Table 4.11d: Maximum displacements of four-storey structure in the forth mode from

time-harmonic excitation in o -directions, ag=0.1g, rg; =2.97m, rg, =2.98m, rg3 =2.97m,

rs4 = 2.971’1’1 .

4.6.5 Optimization of the four-storey space frame with 4 TLCGDs

in the state space domain
The fine tuned optimal natural frequencies and damping ratios by calling the function
fminsearch of the performance index J, Eq. (2.123), are found to be [, =0.941Hz,

fA2 :1552HZ, fA3 =1.89Hz . fA4 :278HZ, é/Al :782% , §A2 = 575%, é/A3 :578% N
¢ 44 =3.65% . The equilibrium pressure head /4, of four TLCGDs are consequently changed
to 53.07, 64.48, 76.79 and 82.59m. The Figures 4.57-4.64 show the frequency response of

24
the weighed sustl- |le- )
i=1
1,1,1,1) of the building states for the original and the optimized system, in the logarithmic
decibel scale, defined by x[dB]=20logx within the relevant frequency window

0 < f <3Hz. The resonance curves with fine-tuning optimal parameters have broader peaks.

, S=diag(10,10,10,10,10,10,10,10,10,10,10,10,1,1,1,1,1,1,1,1,

From inspection of figures 4.65-4.72 it is apparent that the maximum relative fluid
displacements for all cases are also well within the acceptable limits. From inspection of these
figures 4.65-4.72 it is apparent that the maximum relative fluid displacements for all cases are
well within the acceptable limits. The maximum fluid velocities of four TLCGDs are
calculated by Eq. (2.35) 7.69, 7.61, 8.08 and 2.62m/s and are also within the acceptable speed
limit.
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linearized TLCGDs with optimal parameters fine tuning in the state space domain

Fig. 4.57: Weighed sum of amplitude response functions for the 12-DOF linearized,
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached
(TLCGD4 on the fourth floor) and without the TLCGDs (angle of attack of the
time-harmonic base acceleration o =0 ), maximum gain 30.9dB.
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linearized TLCGDs with optimal parameters fine tuning in the state space domain

Fig. 4.58: Weighed sum of amplitude response functions for the 12-DOF linearized,
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached
(TLCGD4 on the fourth floor) and without the TLCGDs (angle of attack of the
time-harmonic base acceleration « = 7/6 ), maximum gain 30.8dB.
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—— original structure including the dead fluid mass of TLCGDs
—— linearized TLCGDs with Den Hartog's optimal parameters
linearized TLCGDs with optimal parameters fine tuning in the state space domain
Fig. 4.59: Weighed sum of amplitude response functions for the 12-DOF linearized,
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached
(TLCGD4 on the fourth floor) and without the TLCGDs (angle of attack of the

time-harmonic base acceleration « = 7/4), maximum gain 33.1dB.
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Fig. 4.60: Weighed sum of amplitude response functions for the 12-DOF linearized,
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached
(TLCGD4 on the fourth floor) and without the TLCGDs (angle of attack of the

time-harmonic base acceleration « = 7/3), maximum gain 33.3dB.
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—— original structure including the dead fluid mass of TLCGDs
—— linearized TLCGDs with Den Hartog's optimal parameters
linearized TLCGDs with optimal parameters fine tuning in the state space domain
Fig. 4.61: Weighed sum of amplitude response functions for the 12-DOF linearized,
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached
(TLCGD4 on the fourth floor) and without the TLCGDs (angle of attack of the

time-harmonic base acceleration « = 7/2), maximum gain 33.2dB.
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Fig. 4.62: Weighed sum of amplitude response functions for the 12-DOF linearized,
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached
(TLCGD4 on the fourth floor) and without the TLCGDs (angle of attack of the

time-harmonic base acceleration « =27/3), maximum gain 33dB.
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60

frequency [Hz]
—— original structure including the dead fluid mass of TLCGDs
—— linearized TLCGDs with Den Hartog's optimal parameters
linearized TLCGDs with optimal parameters fine tuning in the state space domain
Fig. 4.63: Weighed sum of amplitude response functions for the 12-DOF linearized,
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached
(TLCGD4 on the fourth floor) and without the TLCGDs (angle of attack of the

time-harmonic base acceleration « =37/4 ), maximum gain 32.7dB.
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Fig. 4.64: Weighed sum of amplitude response functions for the 12-DOF linearized,
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached
(TLCGD4 on the fourth floor) and without the TLCGDs (angle of attack of the

time-harmonic base acceleration « =57/6 ), maximum gain 32.3dB.
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—— TLCGD3 fine-tuning in state space —— TLCGD4 fine-tuning in state space

Fig. 4.65: Amplitude response curves of fluid displacement |u| of four linearized TLCGDs

attached to the 12-DOF space frame (TLCGD4 on the fourth floor). TLCGDs either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (a =0).
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Fig. 4.66: Amplitude response curves of fluid displacement |u| of four linearized TLCGDs

attached to the 12-DOF space frame (TLCGD4 on the fourth floor). TLCGDs either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (« = 7/6).
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Fig. 4.67: Amplitude response curves of fluid displacement |u| of four linearized TLCGDs
attached to the 12-DOF space frame (TLCGD4 on the fourth floor). TLCGDs either with Den

Hartog’s optimal parameters or those resulting from fine-tuning in state space (& = 7/4).
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Fig. 4.68: Amplitude response curves of fluid displacement |u| of four linearized TLCGDs
attached to the 12-DOF space frame (TLCGD4 on the fourth floor). TLCGDs either with Den

Hartog’s optimal parameters or those resulting from fine-tuning in state space (« = 7/3).
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Fig. 4.69: Amplitude response curves of fluid displacement |u| of four linearized TLCGDs

attached to the 12-DOF space frame (TLCGD4 on the fourth floor). TLCGDs either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (& = 7/2).
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Fig. 4.70: Amplitude response curves of fluid displacement |u| of four linearized TLCGDs

attached to the 12-DOF space frame (TLCGD4 on the fourth floor). TLCGDs either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (& =27/3).
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Fig. 4.71: Amplitude response curves of fluid displacement |u| of four linearized TLCGDs

attached to the 12-DOF space frame (TLCGD4 on the fourth floor). TLCGDs either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (« =37/4).

1.40
1.20
1.00
E
g 0.80
g
Q
3
e 0.60
2
0.40
0.20
0.00
0 0.5 1 frequel%'csy [Hz] 2 2.5 3
——TLCGD1 Den Hartog's parameters —— TLCGD2 Den Hartog's parameters
TLCGD3 Den Hartog's parameters —— TLCGD4 Den Hartog's parameters
TLCGDLI fine-tuning in state space —— TLCGD2 fine-tuning in state space
—— TLCGD?3 fine-tuning in state space —— TLCGD4 fine-tuning in state space

Fig. 4.72: Amplitude response curves of fluid displacement |u| of four linearized TLCGDs

attached to the 12-DOF space frame (TLCGD4 on the fourth floor). TLCGDs either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (& =57/6).

The wall thickness and the estimated dead mass of the piping system are listed in Table
4.12 for the four absorbers, designed according to Table 4.10.
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TLCGD! | TLCGD2 | TLCGD3 | TLCGD4
hy [m] 56.28 69.72 86.88 88.08
H, [m] 4 2.36 2.08 1.25
107 ppy [N/m?] Eq.(2.128) 25.19 31.33 39.27 39.76
pipe diameter 2r [mm] 5754 422.2 247.2 334.7
t [mm] Eq.(2.124) 5.2 4.7 35 4.8
m,, [kg] Eq.(2.130) 1152.9 513.91 209.31 272.90
dead fluid-mass[kg] 665.03 212.32 58.16 5031
107 By [N/m?] Eq.(2.129) 1.35 1.91 2.63 2.68

Table 4.12: Dimensioning of circular steel pipes.

The gauge pressure under expansion conditions turns out to be positive as listed in Table 4.12.

The final dimensions of circular steel pipes must be changed according to their commercial
availability.

4.6.6 TLCGD4 alternatively installed on the second floor

Since the same fluid weight of TLCGD4 is considered, the mass ratio is g4 =0.51%. The
optimal parameters of TLCGD4 are 6,4 =0.996, ¢4 =4.08% . The optimal frequency is
fus =2.86Hz.

50 A [
= original structure
== TLCGD4 installed
40
T
30 S4
DMF
20
A
10 \ 1 16
24
; N o
0 0.5 1 1.5 2 954

Fig.4.73: Frequency response curves of the fourth mode without and with linearized
TLCGD4 attached, TLCGD4 with Den Hartog’s optimal parameters.

The effective modal damping coefficient of the system is (.44 =3.1%, the gain is
slightly lower when compared to TLCGD4 oriented on the fourth floor.
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structure TLCGD4

Forcing V2 Wy | U =750, \Z Wy Ury = rg40, Uy
direction [mm] [mm] [mm] [mm] [mm] [mm] [mm]

a=0 |[Sep 3 — 0 0 1 0 9
a=r/6 Cg“ 8 :g -1 0 8 0 74
a=r/4 Cg“ (1) :1(1) 2 -1 11 2 110
a=r/3 CXQ (1) :1‘3‘ -2 -1 14 3 137
a=zf2 (A1 3 1 17 4 163
a=2zf3 {12 2 , 15 3 146
a=3zf4 (e 1 -2 2 , 12 3 122
a=5zf6 [N ¥ . 0 9 2 89

Table 4.10: Maximum displacements of four-storey structure in the forth mode from

time-harmonic excitation in ¢« -directions, ap=0.1g, 7rg; =2.97m, rg, =2.98m, rg3 =2.97m,

rs4 == 2.97m .

The optimal natural frequencies and damping ratios are found to be f, =0.941Hz,
fip=1552Hz , f;3=1893Hz , f,;4=287THz , (4=781% , (40=575% ,
¢ 43 =5.81%, & 44 =3.62%. The equilibrium pressure head #, of four TLCGDs are 52.91,
64.41, 77.10 and 87.59m. The Figures 4.74-4.81 show the frequency response of the weighed

24
sustl- |z S (v)| of the building states for the original and the optimized system, in the
i=1
logarithmic decibel scale within the relevant frequency window 0< f <3Hz. The resonance
curves with fine-tuning optimal parameters also have broader peaks. From inspection of these
figures 4.82-4.89 it is apparent that the maximum relative fluid displacements for all cases are
well within the acceptable limits. The maximum fluid velocities of four TLCGDs are
calculated by Eq. (2.35) 7.69, 7.61, 7.61 and 3.25m/s and are also within the acceptable speed
limit.
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—— linearized TLCGDs with Den Hartog's optimal parameters
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Fig. 4.74: Weighed sum of amplitude response functions for the 12-DOF linearized,
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached
(TLCGD4 on the second floor) and without the TLCGDs (angle of attack of the
time-harmonic base acceleration o =0 ), maximum gain 30.8dB.
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Fig. 4.75: Weighed sum of amplitude response functions for the 12-DOF linearized,
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached
(TLCGD4 on the second floor) and without the TLCGDs (angle of attack of the

time-harmonic base acceleration « = 7/6), maximum gain 30.7dB.
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Fig. 4.76: Weighed sum of amplitude response functions for the 12-DOF linearized,
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached
(TLCGD4 on the second floor) and without the TLCGDs (angle of attack of the

time-harmonic base acceleration « = 7/4 ), maximum gain 33.1dB.
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Fig. 4.77: Weighed sum of amplitude response functions for the 12-DOF linearized,
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached
(TLCGD4 on the second floor) and without the TLCGDs (angle of attack of the

time-harmonic base acceleration « = 7/3), maximum gain 33.3dB.
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Fig. 4.78: Weighed sum of amplitude response functions for the 12-DOF linearized,
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached
(TLCGD4 on the second floor) and without the TLCGDs (angle of attack of the

time-harmonic base acceleration « = 7/2), maximum gain 33.2dB.
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Fig. 4.79: Weighed sum of amplitude response functions for the 12-DOF linearized,
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached
(TLCGD4 on the second floor) and without the TLCGDs (angle of attack of the

time-harmonic base acceleration « =27/3), maximum gain 33dB.
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Fig. 4.80: Weighed sum of amplitude response functions for the 12-DOF linearized,
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached
(TLCGD4 on the second floor) and without the TLCGDs (angle of attack of the

time-harmonic base acceleration « =37/4 ), maximum gain 32.7dB.
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Fig. 4.81: Weighed sum of amplitude response functions for the 12-DOF linearized,
four-storey, moderately asymmetric space frame, with four linearized TLCGDs attached
(TLCGD4 on the second floor) and without the TLCGDs (angle of attack of the

time-harmonic base acceleration « =57/6 ), maximum gain 32.3dB.
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Fig. 4.82: Amplitude response curves of fluid displacement |u| of four linearized TLCGDs

attached to the 12-DOF space frame (TLCGD4 on the second floor). TLCGD either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (o =0).
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Fig. 4.83: Amplitude response curves of fluid displacement |u| of four linearized TLCGDs

attached to the 12-DOF space frame (TLCGD4 on the second floor). TLCGD either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (& = 7/6).
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Fig. 4.84: Amplitude response curves of fluid displacement |u| of four linearized TLCGDs
attached to the 12-DOF space frame (TLCGD4 on the second floor). TLCGD either with Den

Hartog’s optimal parameters or those resulting from fine-tuning in state space (« = 7/4).
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Fig. 4.85: Amplitude response curves of fluid displacement |u| of four linearized TLCGDs
attached to the 12-DOF space frame (TLCGD4 on the second floor). TLCGD either with Den

Hartog’s optimal parameters or those resulting from fine-tuning in state space (« = 7/3).
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Fig. 4.86: Amplitude response curves of fluid displacement |u| of four linearized TLCGDs

attached to the 12-DOF space frame (TLCGD4 on the second floor). TLCGD either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (a = 7/2).
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Fig. 4.87: Amplitude response curves of fluid displacement |u| of four linearized TLCGDs

attached to the 12-DOF space frame (TLCGD4 on the second floor). TLCGD either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (a =27/3).
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Fig. 4.88: Amplitude response curves of fluid displacement |u| of four linearized TLCGDs

attached to the 12-DOF space frame (TLCGD4 on the second floor). TLCGD either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (a =37/4).
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Fig. 4.89: Amplitude response curves of fluid displacement |u| of four linearized TLCGDs

attached to the 12-DOF space frame (TLCGD4 on the second floor). TLCGD either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (& =57/6).

Comparing the results of the two cases all four TLCGDs on top and alternatively
TLCGDA4 placed on the second floor, the latter arrangement achieves a somewhat better result

in the vibration reduction.
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4.6.7 Forcing by the NS-El Centro seismogram under varying

angles of attack

The maximum acceleration of the NS-El Centro earthquake record is set as 0.35g.
Varying the angle of attack refers to the effect of bidirectional forcing of the four-storey
moderately asymmetric space frame. Four TLCGDs are installed to counteract the first four
natural modes and TLCGD 4 is installed on the second floor. The results are presented
graphically in Fig. 4.90-Fig. 4.97, where the relative floor displacements with respect to the
base and the relative floor accelerations for the root mean square (RMS) responses' are
displayed. The RMS value is given by

T
RMS = % [ide, T=20s. (4.26)
0

where T is the strong motion phase of the NS-El Centro earthquake record. The rotation

displacement about x-axis is uz; =0rg;, where rg; =2.97m, rg, =2.98m, rg3=2.97m,

rs4 = 2.97m .
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Fig. 4.90: RMS responses for floor displacement and acceleration of the four-storey
moderately asymmetric building (El Centro0.35g , angle of attacka =0).
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Fig. 4.91: RMS responses for floor displacement and acceleration of the four-storey
moderately asymmetric building (El Centro0.35g , angle of attack & = 7/6).
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Fig. 4.92: RMS responses for floor displacement and acceleration of the four-storey
moderately asymmetric building (El Centro0.35g , angle of attack & = 7/4).
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Fig. 4.93: RMS responses for floor displacement and acceleration of the four-storey
moderately asymmetric building (El Centro0.35g , angle of attack a = 7/3).
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Fig. 4.94: RMS responses for floor displacement and acceleration of the four-storey
moderately asymmetric building (El Centro0.35g , angle of attack & = 7/2).
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Fig. 4.95: RMS responses for floor displacement and acceleration of the four-storey
moderately asymmetric building (El Centro0.35g , angle of attack @ = 27/3).
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Fig. 4.96: RMS responses for floor displacement and acceleration of the four-storey
moderately asymmetric building (El Centro0.35g , angle of attack @ = 37/4).
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Fig. 4.97: RMS responses for floor displacement and acceleration of the four-storey
moderately asymmetric building (El Centro0.35g , angle of attack @ = 57/6).

It is seen that all RMS response are reduced for earthquake excitation from any angle of
incidence. Thus, it is concluded that the optimal TLCGDs are adequate for asymmetric
buildings in seismic active zones.
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5 Multi-storey Strongly Plan-asymmetric Space
Frame with TTLCGDs and TLCGDs

5.1 Introduction

In Chapter 3, torsional TLCGD=TTLCGD is described as an effective damper to reduce
the coupled lateral and torsional vibration in the case where the center of velocity is located in
the floor-plan according to the results derived for the single-storey model when subjected to
horizontal seismic excitation. In this chapter such results should be re-checked for multi-storey
strongly asymmetric buildings. Based on the equation of motion for the TTLCGD-structure
system, the optimal control parameters of TTLCGD are given using the analogy to
TTMD-tuning with the properly transformed Den Hartog’s optimal parameters, and
subsequently, in a state space optimization with the Den Hartog parameters as starting values.
The performance of TTLCGD (8 =7/2) is studied numerically using 2-storey, 3-storey and

4-storey building models with asymmetric stiffness distribution.

5.2 Equation of motion for multi-storey strongly
asymmetric space frame

The equation of motion of the undamped multi-storey asymmetric space frame is
described in Section 4.2.2, see Eq. (4.9). The mass matrix is the same in Eq. (4.10). However,
the symmetric stiffness matrix K of the system with asymmetric stiffness distribution, derived

by the direct method becomes, cf. Egs. (4.12)- (4.15),

—4ky;i —kyi 0 kjie, /Ts
Kig1y = 0 —4k,i =Ky —kgey /rs
& /Ts kzey/ts  Kpigio1 |’ (i=2—N) (5.1
4(kyi +kyi+1) (k' +ky|+1) 0 k' +kyl+1 /rS
ki = 0 4 (Kyi +Kipy )+ (Kyi + Ky ) k;, +Ki)ey /Fs
k’ + kyl+1 /rS (kél T k2|+1 y/rS Kgioi ’
(i=1—N-1) (5.2)
4kyi +ky; 0 — k;/iez/rS
ki = 0 Ak +kyi o kyey /1
—kjie; /rs - kziey /rs koigi | N (5.3)
—4Kyis1 = Kyipg 0 Kyin€s /Ts
Kigivn) = 0 ~Akgi K kg /Ts
Ky [Ts —Kziiy /15 Kgigia |- OF1—N-D) (5.4)

where,
keieiz[(k Ky )07 4+ (kg + kg )@ + (KK ) &2 + (K + K e ]/rg,(izl—N-l)

ko = (kyib? + kyia + kjje? + ke §)/r§,(i=N)
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2 2 ’ 2 ' 2 2 i
k6i6i+1 = (_kyi+1b - kzi+1a -k i+1ez - I(zi+1ey )/rs , (I=1—N-1)
2 ' ' 2 2 e
Kogi—1 = (—kyib? — kya® ~Kjze? —ke] / 2 (i=2—N)

5.3 Control of N-storey strongly plan-asymmetric space
frame by a single TTLCGD (p=7/2) when compared to an
equivalent TTMD

5.3.1 TTMD attached to space frame
The analogy between an equivalent TTMD and TTLCGD for single-storey structure is
presented in Section 3.5. Here a single TTMD is installed on the i-th floor of the N-storey

strongly plan-asymmetric space frame. The equation of motion for the coupled undamped
main-system can be given in hypermatrix form, cf. Eq. (2.88),

M +K R =Migy + P, M =diag Mj M My |, &= %R gy .

=T = _ S > T .y .
% =[vi Wi Uug], Xgv =EnXg. X :[vg W 0],
1001001+ '
=T * * *
En =[0100100- |, BT =—[ 0, F i FE 2. M&, i /sioe++50
0000000---
Fe, iy =M (Vg +¥i ). Fe,in =My (Wy +W ), M, ix=Tc ,X(uTT,+u )/rAi. (5.5)

The equation of the N-storey space frame with a single TTMD attached to the i-th floor
are approximated by the selected mode, cf. Eq. (3.57) and subscript the floor number i,

* * m*' * % 1 N * * l N * *
. 2 Aj . .. .
(1+ﬂj )qj +sj qj +?ﬂ1‘ju =T LE,mSn + mAj]¢j(3i—2)Vg _E[E:mSn + mAjJ¢j(3i—l)Wg ;
j j

j \n=l1 n=1

:u] m VTIJ 5 VTij = ¢j(3i—2) + ¢j(3i—l) +(¢j3i rAij /I’Si ) R ﬂ” = _r ¢13| . (56)
J Si

The approximated equation of motion of TTMD renders, cf. Eq. (3.58) with floor number I
considered,

U +2¢ popl” + U =4t - (5.7)

With light structural damping of the main system added, the coupled approximated equations
of motion of the main system with TTMD attached, in matrix notation become, cf. Eq. (3.59),

Lea Agmag/my 47 12cse5 0 [ay] fest 0 [fa]_ LT,/ i, 69)
A 1 U 0 20ajwpj | LU 0w |u

where the generalized participation factors are
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N
Gk'I :[L?jy I—;jz 0} Lij [ZmSn +mAJJ¢](3I 2)» I-sz :(Z m;n +ijJ¢j(3i-l)-
n=l1 n=1
5.3.2 TTLCGD attached to space frame (the vertical segment, A
(yA1 Zp, O)’ ﬁ:”/z)

A single TTLCGD is installed on the i-th floor of N-storey moderately plan-asymmetric
space frame, the equation of motion for the coupled undamped main-system can be given in
matrix form, cf. Eq. (2.94),

> = = ~ =T
MX+KX=-MXgy +P, P Z—[Oa'“»FcMiyaFcMistcMix/rSia“'sO]a

Fe, iy = Mg (Vg + Vi — iy 3lirTi ZAi/rfi ) Fe, iz =My (Wg +W; + & 3T yAi/rfi)v

o, KT3Yai K73ZAj —
Mc, ix = MgFsi [UTTi + . a, — . ay |+MgrekToU. (5.9)
fi f

The equation of a N-storey space frame with a single TTLCGD are approximated by the
selected mode, cf. Eq. (3.60),

mg — 1| _ y
(1+ﬂj)q + 050 +— A U —_m_l:ZmSn¢j(3i—2)+mfj (¢j(3i—2)_KT3¢j3iZAij/rSi)}Vg
m;

n=l1

[ _ o
—m—{z Mg @ity + M (¢j(3i—1) + K73 9531 Y A /rSi )} Wy

n=l1

M2 2 o2 _
Hj :—mj Vrij» Vrij = Vi +2¢j3iKT3(yAij¢j(3i-1) _ZAij¢j(3i-2))/rSia Aj = Kr0®3iT5ij [Tsi »
i
2 2 2 2 -
VTij =¢j(3i—2)+¢j(3i—1)+(¢j3i rfij/rSi) o Aij = AijLent /'—1- (5.10)

Light structural modal damping of the main system is added and the equation of motion of
TTLCGD is approximated by the selected mode cf. Eq. (3.61)

Ui+ 24 pjopjli + ;U = — ;4. (5.11)

In matrix form the linearized coupled approximated system of equations of the main
system with TTLCGD attached becomes, cf. Eq. (3.62)

Lpy Zymg/ m, Pj} 2Wsjo5 O {qj} o5 0 {q,}:_ G /mj |
pa 1 ] 0 28 pjwp LU 0 oy |Lu o |

(5.12)
The participation factors are formally still given by Eq. (4.25), however, before their
substitution, the modal displacements of Eq. (4.18) have to be altered by the substitutions,

Vai,j = 9jGi2) — K73 ¢j3iZAij/r5i s Wai j = PjGin + K13 23 Y aij /rSi :
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5.3.3 Analogy between TTMD and TTLCGD when attached to

N-storey space frame
Comparing the approximated equations of motion for coupled system consisting of a
N-storey structure, see Section 3.6.3 for the single-storey space frame, the result about the

relationship of modal mass ratios ,ujf and 4, the optimal absorber tuning ratio Jj,y and

the damping ratio are exactly the same as in the single-storey structure discussed, Eqs.(3.66)-
(3.68) still hold true for a well separated mode. The analogy between TTMD and TTLCGD
(/4 < B < x/2) has the same result, Egs. (3.82)- (3.84).

5.4 Two-storey strongly asymmetric space frame:
numerical example

The two-storey stiffness asymmetric structure is considered as a first numerical example.
The homogenous distributed mass of each floor is ms=16x10’kg. The common stiffness of
columns in y- and z-directions of each storey are kyi=594.17kN/m and k;=216.56kN/m. The
anisotropic stiffness of the additional column of each storey is k;,i =6.54x10°kN/m

andk}; =2.38x10° kN/m, the eccentricity of the column with respect to C,,=O is assumed

e,=e,=Im. The mass moment of inertia about the vertical X-axis of each floor is
calculated: Ixi=106.67><103kg m?, g =2.58m.

5.4.1 Static dimensioning and a static safety criterion of the

columns
The critical load of a steel profile HEB-140 length 4m, is calculated F, =—711.74kN .

The combined load without TLCGD in column of first floor is F =—-201.948kN , thus

i:M:O. 8<l. Consequently, a geometric correction of the stiffness is
F. -711.74 3

applicable.

The corrected stiffness of column in y-direction becomes:
{ 1127.8  —563.88]

—563.88  563.88 |

The corrected stiffness of column in z-direction becomes:

372.54 —186.27
;= kKN /m.
~186.27 186.27 |

1l

y= kKN/m.

U

5.4.2 Natural modes of the main structure

The computed natural frequencies by means of Matlab 7.0' become 1.2, 1.57, 2.46, 3.13,
4.1 and 6.44 Hz, prestress of the column considered and extra column comes no weight of the
floors. The orthonormalized modal matrix of the undamped main system with respect to M is

the output of Matlab 7.0".
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[~0.101130 0.146810 0.375450  —0.163630 —0.237550  0.607490 |
0.310810 0.274910 -0.023778 0.502900 -0.444820 -0.038474
=10 —-0.256740 0.274980 —0.176680 —0.415410 -0.444930 -0.285870 .
~ -0.163630 0.237550 0.607490 0.101130  0.146810 —0.375450
0.502900 0.444820 —0.038474 —-0.310810  0.274910  0.023778
| —0.415410 0.444930 —0.285870 0.256740  0.274980  0.176680 |

Correction of this output of orthonormalized eigenvectors might become necessary with
respect to orthogonality, also see section 2.9.2. However, test calculations render sufficient

accuracy,

o,=1, 6,=33x10" , &,=28x10" , §,=-11x10" , 5,=64x10"" ,
5, =32x10" | 5, =39x10" , 5,=1, 6,=56x10" , &,=-1.7x10"° ,
5, =3.6x10" | §,=-28x10" | &,=-2.8x10" , &,=56x10" , 5,=1,
5, =2.5x107", 5,=3.9x10"", §,=-32x10"", &,=-1.1x10"", &, =-1.1x107",
5,=22x10" | §5,=1, &,=-29x10"" , &,=-83x10"" , &, =6.1x10"" ,
5,=3.6x10" , &,=39x10"" , &,=-32x10"" , &,=1, J,=29x107" ,

5, =3.5x10"°, 6,=0, &,=-32x10", &,=-1.1x10", §5,=2.6x10"", &, =1.

5.4.3 Position of the modal centers of velocity Cy

The coordinates of the modal centers of velocity Cy with corrected column stiffness taken
into account are defined by Eq. (2.12).

mode 1 2 3 4 5 6
Floor 1 | (3.13,1.02) (-2.58,1.38) | (-0.35,-5.49) | (3.13,1.02) (-2.58,1.38) | (-0.35,-5.49)
Floor2 | (3.13,1.02) (-2.58,1.38) | (-0.35,-5.49) | (3.13,1.02) (-2.58,1.38) | (-0.35,-5.49)

Table 5.1: The coordinates of the centers of velocity Cy for 6 modes.

Cy1 and Cy; are inside the floor plan, Cys lies outside. Consequently, two TTLCGDs and one
plane TLCGD parallel to y-axis are positioned on the top floor. The installation of absorbers is
the same as in the section 3.8.3.

5.4.4TTLCGD and TLCGD design, Den Hartog’ optimization

The fluid mass mg; =700kg, ms, =700kg and m;; =300kg of water is chosen.
Dimensions of three absorbers tuned first by means of the TMD analogy applying Den
Hartog’s formulas, Egs. (3.66)- (3.68) for TTLCGDs ( 8 =7/2) and Egs. (2.102)- (2.04) for
TLCGD (S =7x/4) are summarized in Table 5.2. The dynamic magnification factor (DMF)

calculated with Matlab 7.0, linearized damping of the absorbers considered, is illustrated in
Figure 5. 1.

The effective modal damping coefficients of the system are increased from 1% to
Cetf1 =4.85% , Coffn =4.73% , Cets3 =5.32% . From Table 5.3a-c it follows that all

maximum fluid displacements resulting for various angles of attack, are within the acceptable
limits, uy <H,/3 (of linearized gas compression) and Uy <H/2. The maximum fluid

velocities of three absorbers are calculated by Eq. (2.35) 5.18, 3.55 and 4.15m/s and are within
the acceptable speed limit.
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TTLCGDI | TTLCGD2 | TLCGD3
Horizontal length of the liquid column B [m] 24.00 24.00 2.50
Length of the upright liquid column H [m] 1.50 0.90 0.60
Cross-sectional area of the pipe [m’] Ay=Ag 0.0260 0.0270 0.0810
Effective length Ly =L, =2H +B [m], Eq. 2700 25.80 370
(2.34a)
Angle of the inclined pipe section A3 [rad] ;;/ 2 ;;/ 2 ;r/ 4
Equivalent mathematical pendulum length Lo[m] Eq. 017 010 0.04
(2.37)
Geometry factorx = k¥ or &7 = K7, Egs. (2.34a), 0.66 0.70 0.91
(2.44),(3.142),(3.44)
Equilibrium pressure head h, [m], n=1.2, Eq. 161 152.9 4526
(2.34a)
Gas volume V, = A H, [m?], Eq. (2.38) 0.055000 | 0.033000 | 0.080000
The mass ratio of the TLCGD-main system £, Egs.
4.88% 4.77% 2.1%

(2.97), (3.60)
The mass ratio of the equivalent TMD-main

* 1.82% 2.10% 1.69%
system 1 , Egs. (2.102), (3.66)
Natural frequency fpopt [Hz] Eq. (2.104), (2.112) 1.16 1.51 241
Optimal linear damping %, Eq. (2.113) 8.18 8.78 7.88

Table 5.2: Layout of the modally tuned absorbers, gas volume and gas equilibrium pressure
assigned, note the rather high gas pressure in TTLCGD.

50 x I 50 y x I
= original structure = original structure
=——TTLCGDI1 installed = TTLCGD?2 installed

40 1 40 1

—=130 =50
3012651 3012652

DMF DMF
20 20
10 +——1 10 1
—=10.31 =10.56
NCeff | @ ff2 o
% 0.5 1 1.5 205] % 0.5 1 1.5 2952
50 I
= original structure
=—TLCGD3 installed

40 1

— =5

2
3012653

DMF
20
10 I
=94
% 0.5 1 15 2 °
‘ ‘ @3

Fig. 5.1: Individual frequency response curves without and with linearized absorbers attached
with Den Hartog’s optimal parameter.
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structure TTLCGDI

Forcing v wi Ury =516 P W) Ury =526, Uo
direction [mm] [mm] [mm] [mm] [mm] [mm] [mm]

=0 | Cw| -10 30 25 16 49 40 225
a=xf6 Cwmi -7 20 -17 -11 33 =27 150
a=ald | Cy | -4 44 36 23 71 59 329
a=x/3 Cwmi -21 65 -54 -34 105 -87 486
a=z/2 Cuwi -30 92 -76 -49 149 -123 691
a=2x/3 Cwmi -31 95 -78 -50 154 -127 711
a=37/4 | Cwi | -28 87 71 -46 140 116 648
a=5z/6 Cwmi -23 72 -60 -38 117 -96 541

Table 5.3a: Maximum displacements of two-storey structure

time-harmonic excitation in « -directions, ap=0.1g, I5; =2.58m.

in the first mode from

structure TTLCGD2

Forcing \7 Wi Uy = 15,6, \%) W2 Ury =520, Uo
direction [mm] [mm] [mm] [mm] [mm] [mm] [mm]
a=0 Cwi 11 20 20 17 32 32 176
a=rx/6 Cwi 19 36 36 31 58 58 317
a=rxl4 Cwi 22 41 41 35 66 66 358
a=xf3 Cwi 23 42 42 37 69 69 374
a=xf2 Cwmi 20 37 37 32 61 61 330
a=2x/3 Cwi 12 22 22 19 36 36 198
a=3z/4 Cwi 7 12 12 11 20 20 109

a=57/6 | Cy 1 1 1 1 2 2 12

Table 5.3b: Maximum displacements of two-storey structure in the second mode from

time-harmonic excitation in ¢ -directions, ap=0.1g, Ig; =2.58m.

structure TLCGD3

Forcing \7 4 Ury =r516 v W2 Uy =T520, Uo
direction [mm] [mm] [mm] [mm] [mm] [mm] [mm]
a=0 24 -2 -11 CXZ 22 :; -18 274
Ry 20 1 9 CXZ ii j 15 229
a=nl4 16 -1 -7 CXZ ig ; -12 182
o= /3 11 1 v CXZ 5471 :} 8 123

a=x/2 1 0 -1 CXZ § 8 -1 16
@ =21/3 13 1 6 CXZ gé :} 110 151
o - 31/4 18 1 8 CXZ ig j 14 205
o= 51f6 21 1 110 CXZ i; j 16 246

Table 5.3c: Maximum displacements of two-storey structure in

time-harmonic excitation in ¢« -directions, ag=0.1g, Ig; =2.58m.

the third mode from
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5.4.5 Optimization of the TTLCGD-, TLCGD-structure system in

the state space domain
The fine tuned optimal natural frequencies and damping ratios by calling the function
fminsearch of the performance index J, Eq. (2.123), are found to be f, =1.15Hz,

fAZ =1.47Hz , fA3 =2.35Hz , é/Al =5.97% , é/Az =7% , §A3 =6.49% . Frequency fine

tuning is achieved by adjusting the equilibrium gas pressure:149.12, 134.91 and 41.33m .Figs.
12
5.2-5.9 illustrate the weighed sum of the frequency response function Zsi |ZSi v)

i=l
(10,10,10,10,10,10,1,1,1,1,1,1) of the building states for the original and the optimized
system under various angles of attack, in the logarithmic decibel scale in the relevant
frequency window 0< f <3Hz. The resonance curves with fine-tuning optimal parameters
have broader peaks. The maximum fluid displacement amplitudes of three absorbers in Figs.
5.9-5.16 are well within the acceptable limits. The maximum fluid velocities of three

absorbers are calculated by Eq. (2.35) 5.64, 3.79 and 5.17m/s and are also within the
acceptable speed limit.

, S=diag

The wall thickness and the estimated dead mass of the piping system are listed in Table
5.4 for the three absorbers, designed according to Table 5.2.

TTLCGDI | TTLCGD2 | TLCGD3
h, [m] 161 152.9 45.26
H, [m] 2.12 1.22 1.00
107 p(py [N/m?] Eq.(2.128) 73.54 69.75 20
pipe diameter 2r [mm] 181.9 185.4 321.1
t [mm] Eq.(2.124) 4.8 4.6 2.3
Mp kel Eq.(2.130) 665.4 592.74 102.28
dead fluid-mass[kg] 395.08 357 51.57
107 Ppy [N/m?”] Eq.(2.129) 5.72 5.39 0.89

Table 5.4: Dimensioning of circular steel pipes.

The gauge pressure under expansion conditions turns out to be positive as listed in Table 5.4.
The final dimensions of circular steel pipes must be changed according to their commercial
availability.
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—— original structure including the dead fluid mass of absorbers
—— linearized absorbers with Den Hartog's optimal parameters
linearized absorbers with optimal parameters fine tuning in the state space domain
Fig. 5.2: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey,
strongly asymmetric space frame with three linearized absorbers attached and without the
absorbers (angle of attack of the time-harmonic base acceleration o =0), maximum gain
28.96dB.
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Fig. 5.3: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey,
strongly asymmetric space frame with three linearized absorbers attached and without the
absorbers (angle of attack of the time-harmonic base acceleration « = 7/6), maximum gain

30.32dB.
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—— linearized absorbers with Den Hartog's optimal parameters
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Fig. 5.4: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey,
strongly asymmetric space frame with three linearized absorbers attached and without the
absorbers (angle of attack of the time-harmonic base acceleration « = 7/4), maximum gain

30.77dB.
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Fig. 5.5: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey,
strongly asymmetric space frame with three linearized absorbers attached and without the
absorbers (angle of attack of the time-harmonic base acceleration « = 7/3), maximum gain

30.78dB.
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linearized absorbers with optimal parameters fine tuning in the state space domain

Fig. 5.6: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey,
strongly asymmetric space frame with three linearized absorbers attached and without the
absorbers (angle of attack of the time-harmonic base acceleration « =7/2), maximum gain

30.16dB.
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Fig. 5.7: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey,
strongly asymmetric space frame with three linearized absorbers attached and without the
absorbers (angle of attack of the time-harmonic base acceleration « =27/3), maximum gain

29.68dB.
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linearized absorbers with optimal parameters fine tuning in the state space domain

Fig. 5.8: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey,
strongly asymmetric space frame with three linearized absorbers attached and without the
absorbers (angle of attack of the time-harmonic base acceleration « =37/4), maximum gain

29.41dB.
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Fig. 5.9: Weighed sum of amplitude response functions for the 6-DOF linearized, two-storey,
strongly asymmetric space frame with three linearized absorbers attached and without the
absorbers (angle of attack of the time-harmonic base acceleration « =57/6), maximum gain

29.03dB.
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TLCGD3 Den Hartog's parameters TTLCGDI fine-tuning in state space
—— TTLCGD?2 fine-tuning in state space =~ —— TLCGD3 fine-tuning in state space

Fig. 5.10: Amplitude response curves of fluid displacement |u| of three linearized absorbers

attached to the two-storey strongly asymmetric space frame. Absorbers either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (a =0).
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Fig. 5.11: Amplitude response curves of fluid displacement |u| of three linearized absorbers

attached to the two-storey strongly asymmetric space frame. Absorbers either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (& = 7/6).
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—— TTLCGD2 fine-tuning in state space = —— TLCGD3 fine-tuning in state space

Fig. 5.12: Amplitude response curves of fluid displacement |u| of three linearized absorbers

attached to the two-storey strongly asymmetric space frame. Absorbers either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (& = 7/4).
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Fig. 5.13: Amplitude response curves of fluid displacement |u| of three linearized absorbers

attached to the two-storey strongly asymmetric space frame. Absorbers either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (« = 7/3).
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Fig. 5.14: Amplitude response curves of fluid displacement |u| of three linearized absorbers

attached to the two-storey strongly asymmetric space frame. Absorbers either with Den

Hartog’s optimal parameters or those resulting from fine-tuning in state space (& = 7/2).
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Fig. 5.15: Amplitude response curves of fluid displacement |u| of three linearized absorbers

attached to the two-storey strongly asymmetric space frame. Absorbers either with Den

Hartog’s optimal parameters or those resulting from fine-tuning in state space (a =27/3).
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Fig. 5.16: Amplitude response curves of fluid displacement |u| of three linearized absorbers

attached to the two-storey strongly asymmetric space frame. Absorbers either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (« =37/4).
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Fig. 5.17: Amplitude response curves of fluid displacement |u| of three linearized absorbers

attached to the two-storey strongly asymmetric space frame. Absorbers either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (@ =57/6).
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5.5 Three-storey strongly asymmetric space frame:
numerical example

The three-storey stiffness asymmetric structure serves as another numerical example. The
common stiffness of columns in y- and z-directions of each storey are increased to
kyi=981.23kN/m and k;=350.04kN/m. The anisotropic stiffness of an extra column of each

storey are k;,i=11.78X103kN/m andk};=4.2x10°kN/m. The other properties of building are

listed in Section 5.4.

5.5.1 Static dimensioning and a static safety criterion of the
columns
The critical load of a steel profile HEB-160 length 4m, is calculated F, =—1150.43kN .

The combined load without TLCGD in column of first floor is F =-302.92kN , thus
F -302.92 026 1

F. -115043 3
The corrected stiffness in y-direction becomes:

1901.9 -950.93 0
Ey: —950.93 1901.9 -950.93 [kN/m.
0 -950.93 950.93

The corrected stiffness in z-direction becomes:
639.5 -319.75 0 |

EZ: -319.75 639.5 -319.75|kN/m.
0 -319.75  319.75 |

5.5.2 Natural modes of the main structure

The computed natural frequencies are 1.13, 1.49, 2.36, 3.17, 4.16, 4.57, 6.01, 6.61 and 9.55
Hz, prestress of the column considered and extra column comes no weight of the floors. The
orthonormalized modal matrix of the undamped main system with respect to M 1is the output

of Matlab 7.0.

b 0.065177 0.11744 0.14645
b=\, |, hi=107]-0.18953 |, d,=107|-034151, ¢3=10"|-0.42586 ;
4 0.16452 0.29645 0.36967
b, ~0.089444 ~0.16117 ~0.20098
b= by |, 1 =107]-0.17636 |, $,=107|-031778|, F3=10"|-0.39627 |;
b5 ~0.16773 ~0.30223 ~0.37688
41 ~0.23449 ~0.42254 ~0.5269
b =|ds |, F31=107]0.01459 |, g5 =107]0.026291 |, ¢y3=10"]0.032784 |;
. 0.10971 0.19768 0.24651
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4 | 0.14645 0.065177 ~0.11744
b=\ bir |» Bay =107 042586 |, 4, =107| -0.18953 |, ¢hy5 =107[0.34151 |;
b5 0.36967 0.16452 ~0.29645
b5 | [~0.20098 | [-0.089444 0.16117
bi=| dss |, P51 =107]-0.39627 |, ds5=107|-0.17636 |, ¢3=107] 031778 |;
b | -0.37688 | -0.16773 0.30223
i1 | [0.11744] [0.14645 ~0.065177
b =| bo |» Bo1 =107 034151 |, g5 =107|-0.42586 |, @3 =10"]0.18953 |;
b | 0.29645 | | 0.36967 ~0.16452
6, ] 0.16117 ~0.20098 0.089444
b=\ b, |, 611=107]031778 |, ¢, =10"]-0.39627 |, ¢ 3=107|0.17636 |;
4, 0.30223 ~0.37688 0.16773
4 | [0.5269 0.23449 | ~0.42254
bo=| s |, o1 =107]-0.032784 |, dk,=107]-0.01459 |, d3=107|0.026291 |;
& s | -0.24651 ~0.10971 | 0.19768
o | [-0.42254 0.5269 | —0.23449
by=| s |, o) =107]0.026291 |, dhy, =107|-0.032784 |, ¢k 5=107]0.01459
b5 0.19768 ~0.24651 | 0.10971

5.5.3 Position of the modal centers of velocity Cy

The coordinates of the modal centers of velocity Cy with corrected column stiffness
considered are listed in Table 5.5 for the first three relevant modes. Two TTLCGDs tuned to
the first two (mainly torsional) modes and one plane TLCGD parallel to y-axis tuned to the
mainly translational third mode are located on the top floor.

mode 1 2 3

Floor 1 (2.97,1.02) | (2.71,1.38) | (-0.34,-5.52)
Floor2 | (2.97,1.02) | (-2.71,1.38) | (-0.34,-5.52)
Floor3 | (2.97,1.02) | (-2.71,1.38) | (-0.34,-5.52)

Table 5.5: The coordinates of the centers of velocity Cy for 3 relevant modes.

5.5.4 TTLCGD and TLCGD design, Den Hartog’ optimization
The fluid mass is chosen mg; =1100kg, m;, =1100kg and m;; =500kg of water.

Dimensions of three absorbers tuned first by means of the TMD analogy applying Den
Hartog’s formulas, Egs. (3.66)- (3.68) for TTLCGDs (8 =7/2) and Egs. (2.102)- (2.104) for
TLCGD (8 =r/4) are summarized in Table 5.6. The dynamic magnification factor (DMF)

calculated with Matlab 7.0, linearized damping of the absorbers considered, is illustrated in
Figure 5. 18. The effective modal damping coefficients of the system are increased from 1% to
Ceff1 =5.45%, Cotfr =5.23%, Ceff3 =5.85% . From Table 5.7a-c it follows that all maximum

fluid displacements occuring for various angles of attack, are within the acceptable limits,
Uy <H,/3 (of linearized gas compression) and U, < H/2. The maximum fluid velocities of
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three absorbers are calculated by Eq. (2.35) 4.81, 3.48 and 3.71m/s and are within the

acceptable speed limit.

TTLCGDI1|TTLCGD2| TLCGD3
Horizontal length of the liquid column B [m] 24.00 24.00 2.50
Length of the upright liquid column H [m] 1.40 0.80 0.60
Cross-sectional area of the pipe [m’] Ay=Ag 0.0410 0.0430 0.1350
Effective length Ly =L, =2H +B [m], Eq. (2.34a) | 26.80 25.60 3.70
Angle of the inclined pipe section S [rad] ;;/ 2 ;;/ 2 ;;/ 4
Equivalent mathematical pendulum length Ly[m] Eq. 0.19 0.11 0.04
(2.37)
Geometry factorx = Kk or &7 = K7, Egs. (2.34a), 0.67 071 0.91
(2.44),(3.142),(3.44)
Equilibrium pressure head h; [m], n=1.2, Eq. (2.34a) | 146.79 134.56 36.70
Gas volume V, = A H, [m’], Eq. (2.38) 0.089000 | 0.050000 | 0.120000
The mass ratio of the TLCGD-main system z, Egs.
5.78% 5.50% 2.63%

(2.97), (3.60)
The mass ratio of the equivalent TMD-main

* 2.20% 2.48% 2.10%
system 1 , Egs. (2.102), (3.66)
Natural frequency f Aopt [Hz] Eq. (2.104), (2.112) 1.09 1.43 23
Optimal linear damping %, Eq. (2.113) 8.98 9.52 8.79

Table 5.6: Layout of the modally tuned absorbers, gas volume

assigned, note again the rather high gad pressure in TTLCGD.

50 x \
= original structure
= TTLCGDI installed
40—
— =50
2
302651
DMF
20
10 1
=9.18
w
0 el
0 0.5 1 1.5 2 wg]
50 I
= original structure
=——TLCGD3 installed
40
1
=5
30l 2683
DMF
20
10 I
=8.54
w
0 ¥ —
0 0.5 1 1.5 2 g3

and gas equilibrium pressure

50 x ‘
= original structure
= TTLCGD?2 installed
40 I
—=130
2
30| 282
DMF
20
10 Nr 1
=9.56
Vet @
0
0 0.5 1 1.5 2059

Fig. 5.18: Individual frequency response curves without and with linearized absorbers
attached, with Den Hartog’s optimal parameter.
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structure TTLCGD1
Forcing direction v3 [mm] ws3[mm] Urs = 3505 [mm] Up [mm]

a=0 Cus 18 -52 45 233
a=x/6 Cys 11 -31 27 136
a=z/4 Cas 24 -70 61 314
a=x/3 Cys 36 -105 91 469
a=x/2 Cus 52 -152 132 677
a=2x/3 Cus 54 -158 137 702
a=3z/4 Cus 50 -144 125 643
a=57/6 Cws 42 -121 105 540

Table 5.7a: Maximum

displacements of three-storey structure in the first mode from

time-harmonic excitation in ¢« -directions, ag=0.1g, rIg; =2.58m.

structure TTLCGD2
Forcing direction v; [mm] w;[mm] Urs = 3505 [mm] Uy [mm]

a=0 Cus -18 -36 -35 175
a=x/6 Cws -34 -67 -64 325
a=rx/4 Cas -39 -76 -73 368
a=x/3 Cws -41 -80 -76 387
a=xf2 Cus -36 -72 -68 346
a=2x/3 Cws 22 -44 -42 212
a=3z/4 Cus -13 -25 24 120
a=57/6 Cys 2 -4 -4 21

Table 5.7b: Maximum displacements of three-storey structure in the second mode from

time-harmonic excitation in ¢ -directions, ag=0.1g, rg; =2.58m.

structure TLCGD3

Forcing direction v3 [mm] wi[mm)] Urs = 3365 [mm] Up [mm]
@=0 Cg“ :‘S‘g g 19 257
- Cgﬁ :2‘6‘ ; 16 215
o= x4 Cgﬁ j; ; 13 171
o3 Cgﬁ ;2 i 8 115
o= 12 Cgﬁ j (0) 1 15
=213 Cg“ jf) i 10 141
o =3r/4 Cg“ j (1) ; 14 192
a = 51f6 C[;M jg ; 17 230

Table 5.7c: Maximum displacements of three-storey structure in the third mode from

time-harmonic excitation in « -directions, ag=0.1g, I; =2.58m.
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5.5.5 Optimization of the TTLCGD-, TLCGD-structure system in

the state space domain

The fine tuned optimal natural circular frequencies and damping ratios by calling the
function fminsearch of the performance index J, Eq. (2.123), are found to be f,; =1.08Hz,
faop=138Hz , fp3=223Hz , {5 =755%, {p,=889% , {p3=7.77% . Tuning is
achieved by properly adjusting the equilibrium gas pressure: 134, 115.82 and 32.93m. The

, S=diag

18
Figures 5.19-5.26 show the weighed sum of the frequency responses Zsi |ZSi v)

i=l
(10,10,10,10,10,10,10,10,10,1,1,1,1,1,1,1,1,1) of the building states for the original and the
optimized system, in the logarithmic decibel scale in the relevant frequency window
0< f <3Hz. The resonance curves with fine-tuning optimal parameters have broader peaks.
The maximum fluid displacement amplitudes of three absorbers in Figs. 5.27-5.34 are well
within the acceptable limits. The maximum fluid velocities of three absorbers are calculated by
Eq. (2.35) 4.89, 3.47 and 4.20m/s and are also within the acceptable speed limit.

The wall thickness and the estimated dead mass of the piping system are listed in Table
5.8 for the three absorbers, designed according to Table 5.6.

TTLCGD1 | TTLCGD2 | TLCGD3
h, [m] 146.79 134.56 36.70
H, [m] 2.17 1.16 0.89
107 P(py [N/m?] Eq.(2.128) 66.96 61.27 16.01
pipe diameter 2r [mm] 228.5 234.0 414.6
t [mm] Eq.(2.124) 5.5 5.1 24
Mp kel Eq.(2.130) 952.71 819.79 131.92
dead fluid-mass[kg] 606.21 545.49 85.95
107 P(p) [N/m?] Eq.(2.129) 5.13 4.62 0.53

Table 5.8: Dimensioning of circular steel pipes.
The gauge pressure under expansion conditions turns out to be positive as listed in Table 5.8.

The final dimensions of circular steel pipes must be changed according to their commercial
availability.
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—— linearized absorbers with Den Hartog's optimal parameters
linearized absorbers with optimal parameters fine tuning in the state space domain

Fig. 5.19: Weighed sum of amplitude response functions for the 9-DOF linearized,
three-storey, strongly asymmetric space frame with three linearized absorbers attached and
without the absorbers (angle of attack of the time-harmonic base acceleration o =0),
maximum gain 29.90dB.
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Fig. 5.20: Weighed sum of amplitude response functions for the 9-DOF linearized,
three-storey, strongly plan asymmetric space frame with three linearized absorbers attached
and without the absorbers (angle of attack of the time-harmonic base acceleration « =7/6),

maximum gain 31.50dB.

206



Multi-storey Strongly Plan-asymmetric Space Frame with TTLCGDs and TLCGDs

[dB] 100

80

60

40

20 *\\

-20

-40
frequency [Hz]

—— original structure including the dead fluid mass of absorbers
—— linearized absorbers with Den Hartog's optimal parameters
linearized absorbers with optimal parameters fine tuning in the state space domain

Fig. 5.21: Weighed sum of amplitude response functions for the 9-DOF linearized,
three-storey, strongly asymmetric space frame with three linearized absorbers attached and
without the absorbers (angle of attack of the time-harmonic base acceleration o =7/4),

maximum gain 31.82dB.
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Fig. 5.22: Weighed sum of amplitude response functions for the 9-DOF linearized,
three-storey, strongly asymmetric space frame with three linearized absorbers attached and
without the absorbers (angle of attack of the time-harmonic base acceleration « = 7/3),

maximum gain 32.47dB.

207



Multi-storey Strongly Plan-asymmetric Space Frame with TTLCGDs and TLCGDs

[dB] 100

80

60

40

20

DRlap |

20 -

-40
frequency [Hz]

—— original structure including the dead fluid mass of absorbers
—— linearized absorbers with Den Hartog's optimal parameters
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Fig. 5.23: Weighed sum of amplitude response functions for the 9-DOF linearized,
three-storey, strongly asymmetric space frame with three linearized absorbers attached and
without the absorbers (angle of attack of the time-harmonic base acceleration o =7/2),

maximum gain 32.23dB.
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Fig. 5.24: Weighed sum of amplitude response functions for the 9-DOF linearized,
three-storey, strongly asymmetric space frame with three linearized absorbers attached and
without the absorbers (angle of attack of the time-harmonic base acceleration « =27x/3),

maximum gain 31.79dB.
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Fig. 5.25: Weighed sum of amplitude response functions for the 9-DOF linearized,
three-storey, strongly asymmetric space frame with three linearized absorbers attached and
without the absorbers (angle of attack of the time-harmonic base acceleration « =37/4),

maximum gain 31.53dB.
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Fig. 5.26: Weighed sum of amplitude response functions for the 9-DOF linearized,
three-storey, strongly asymmetric space frame with three linearized absorbers attached and
without the absorbers (angle of attack of the time-harmonic base acceleration « =57/6),

maximum gain 31.17dB.
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Fig. 5.27: Amplitude response curves of fluid displacement |u| of three linearized absorbers

attached to the three-storey strongly asymmetric space frame. Absorbers either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (o =0).

0.80

0.70

0.60 [

0.50

0.40

displacement[m]

030 [

0.20

0.10

0.00

0 0.5 1 frequenl(':sy [HZ] 2 25 3

—— TTLCGD1 Den Hartog's parameters —— TTLCGD2 Den Hartog's parameters
TLCGD3 Den Hartog's parameters TTLCGDI fine-tuning in state space
—— TTLCGD?2 fine-tuning in state space =~ —— TLCGD3 fine-tuning in state space

Fig. 5.28: Amplitude response curves of fluid displacement |u| of three linearized absorbers

attached to the three-storey strongly asymmetric space frame. Absorbers either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (& = 7/6).
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Fig. 5.29: Amplitude response curves of fluid displacement |u| of three linearized absorbers

attached to the three-storey strongly asymmetric space frame. Absorbers either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (& = 7/4).
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Fig. 5.30: Amplitude response curves of fluid displacement |u| of three linearized absorbers

attached to the three-storey strongly asymmetric space frame. Absorbers either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (« = 7/3).
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Fig. 5.31: Amplitude response curves of fluid displacement |u| of three linearized absorbers

attached to the three-storey strongly asymmetric space frame. Absorbers either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (& = 7/2).
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Fig. 5.32: Amplitude response curves of fluid displacement |u| of three linearized absorbers

attached to the three-storey strongly asymmetric space frame. Absorbers either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (a =27/3).
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Fig. 5.33: Amplitude response curves of fluid displacement |u| of three linearized absorbers

attached to the three-storey strongly asymmetric space frame. Absorbers either with Den

Hartog’s optimal parameters or those resulting from fine-tuning in state space (o =37/4).
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Fig. 5.34: Amplitude response curves of fluid displacement |u| of three linearized absorbers

attached to the three-storey strongly asymmetric space frame. Absorbers either with Den

Hartog’s optimal parameters or those resulting from fine-tuning in state space (@ =57/6).
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5.6 Four-storey strongly asymmetric space frame:
numerical example

The properties of building are: stiffness of corner cc-columns of each storey in y- and
z-directions Kyi=1508.5kN/m and k;;=536.68kN/m, stiffness of an additional cc-column of each

storey  ky; =18. 10x10°kN/m and k}; =6.44x10°kN/m. The eccentricity is e,~e,~Im. Floor
mass unchanged, ms=16x10’kg.

5.6.1 Static dimensioning and a static safety criterion of the
columns
The critical load of a steel profile HEB-180 length 4m, is calculated F, = —-1763.82kN .

The combined load without TLCD in column of first floor is F =-403.896kN , thus
F -403.896 023 1

F. -1763.82 3’
The corrected stiffness of column in y-direction becomes:
2956.3 —1478.2 0 0
— —-1478.2 29563 —1478.2 0
ky = kKN /m.
0 —-1478.2 29563 -1478.2
0 0 —1478.2 1478.2
The corrected stiffness of column in z-direction becomes:
1012.8 -506.39 0 0
— -506.39 1012.8 —-506.39 0
k, = KN /m.
0 -506.39 1012.8 -506.39
0 0 -506.39 506.39

5.6.2 Natural modes of the main structure

The computed natural frequencies are 1.10, 1.44, 2.28, 3.17, 4.16, 4.85, 5.97, 6.37, 6.58,
7.81, 10.08, 12.36 Hz, prestress of the column considered and extra column comes no weight
of the floors. The natural vibration modes, which have been orthonormalized to obtain

- 0,i# ] - e - -
¢JTM¢- :5”:{1' _J,are ¢|:[¢‘|,l bo s ¢‘|,4T’

4, =107[0.044763 -0.13334 0.112740]', 4, =107[0.084127 -0.25059 0.211890]',

4, =107[0.113340 -0.33763 0.285470], ¢, =107[0.128890 —0.38393 0.324630]';

@, =107[0.063041 0.120880 0.117930]", @,,=107[0.118480 0.227180 0.221640]',

@, =107[0.159630 0.306080 0.298610]", ¢, =107[0.181520 0.348060 0.339570]';

@, =107[0.1628400 —0.010143 —-0.076649] 4, , =107[0.3060300 ~0.019063 —0.144050]",

q? ~107[0.4123200 —0.025683 —0.194080]" ,, , =10°[0.4688700 —0.029206 —0.220700] ;
L =10"[-0.11334 0337630 -0.28547]', @,,=10"[-0.11334 0337630 -0.28547]',

,=10°[0 0 0], 4,,=10"[0.113340 —-0.33763 0.285470] ;

., =107[0.15963 030608 0.29861]", ¢, =107[0.15963 0.30608 0.29861] ,
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~10°[0 0 0], &,=10"[-0.15963 -0.30608 —0.29861] ;

10°[0.12889  —0.38393 0.32463]", 4, =10°[-0.044763 0.13334 -0.11274]',
10°[-0.11334 033763 -0.28547] , ¢, =10°[0.084127 —0.25059 0.21189] ;

55,3
b
56,3
4, =107[0.084127 025059 0.21189], @ ,=10"[-0.12889 038393 -0.32463]",
¢, =107[0.11334 —0.33763 0.28547] , @, =107[-0.044763 0.13334 —0.11274]';
¢, =107[0.18152 034806 0.33957]", 4, =107[0.063041 —0.12088 ~0.11793] ,
B, =107[-0.15963 -0.30608 —0.29861] , ¢, =107[0.11848 022718 0.22164] ;
d, =10°[-0.41232 0.025683 0.19408]', ¢, =107[-0.41232 0.025683 0.19408]',
h,=10"[0 0 0], ¢, =10"[0.41232 —0.025683 —0.19408]';

510,1:10’2[—0.11848 -0.22718 —0.22164]T, ¢310,2:10’2[0.18152 0.34806 0.33957]T,
o, =107 [-0.15963  ~0.30608 —O.29861]T, ¢310A=10*2[0.063041 0.12088 0.11793]T;
B, =107 [-0.46887 0.029206 0.2207], ¢, =107[0.16284 —-0.010143 —0.076649] ,
#,,=107[0.41232 -0.025683 ~0.19408] , &, =10"[-0.30603 0.019063 0.14405] ;
@, =10°[0.30603 —0.019063 —0.14405]", 4, =10"[-0.46887 0.029206 0.2207]',

By =10°[0.41232 —0.025683 —0.19408] , @,, =10°[-0.16284 0.010143 0.076649] .

5.6.3 Position of the modal centers of velocity

The coordinates of the modal centers of velocity Cy with corrected column stiffness are
shown in Table 5.9 for the relevant first four modes subjected to effective damping.

mode 1 2 3 4

floor 1 (3.05,1.03) (-2.65,1.38) (-0.34,-5.49) (3.05,1.03)
floor 2 (3.05,1.03) (-2.65,1.38) (-0.34,-5.49) (3.05,1.03)
floor 3 (3.05,1.03) (-2.65,1.38) (-0.34,-5.49) | (2.03,-0.77)
floor 4 (3.05,1.03) (-2.65,1.38) (-0.34,-5.49) (3.05,1.03)

Table 5.9: The coordinates of the centers of velocity Cy for 4 modes.

(1) Installation of the absorbers

With the first four modal centers of velocity considered, two TTLCGDs to suppress the
first and second mode, one plane TLCGD on the long side tuned to the third mode are
positioned on the top floor. With respected to the fourth mode one TLCGD is installed along
the short side on the second floor.
Fourth floor: Second floor:

4 F
TLCGD3 T‘

[]

C ‘ Qv

- ’ y v
TTLCGD2  © TLCGD4 :!7—-

TTLCGD]

Cvs

Fig. 5.35: Installation of absorbers,® the centers of velocity of second floor,
e the centers of velocity of fourth floor.
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TTLCGDI | TTLCGD2 | TLCGD3 | TLCGD4
Horizontal length of the liquid column B [m] 24.00 24.00 2.50 3.00
Length of the upright liquid column H [m] 1.50 1.00 0.80 0.50
Cross-sectional area of the pipe [mz] Ag=Agp 0.0520 0.0540 0.1700 0.0380
Effective length Ly =L, =2H +B Eq.
ective length Ly =1, =2H +8 [m]. Eq 27.00 26.00 4.10 4.09
(2.34a)
Angle of the inclined pipe section S [rad] 71/ 2 ;;/ 2 ;;/ 4 ;;/ 4
Equivalent mathematical pendulum length Lo[m] 0.20 0.12 0.05 0.02
Eq. (2.37)
Geometry factorx =k or &y =7, Egs. 0.66 0.69 0.89 0.93
(2.34a), (2.44),(3.142),(3.44)
Equilibrium pressure head h, [m], n=1.2, Eq. 146.79 159.00 5138 5749
(2.34a)
Gas volume V; = A, H, [m’], Eq. (2.38) 0.120000 | 0.080000 | 0.200000 | 0.030000
The mass ratio of the TLCGD-main system g, Egs.
5.85% 5.71% 2.94% 0.95%
(2.97), (3.60)
The mass ratio of the equivalent TMD-main
* 2.17% 2.43% 2.24% 0.80%
system 1 , Egs. (2.102), (3.66)
Natural frequency fa opt [Hz] Eq. (2.104), (2.112) 1.06 1.39 2.23 3.15
Optimal linear damping %, Eq. (2.113) 8.92 9.42 9.06 5.45

Table 5.10: Layout of the modally tuned absorbers, gas volume and gas equilibrium pressure

assigned, note the rather high gas pressure in TTLCGD.

5.6.4 TTLCGD and TLCGD design, Den Hartog’ optimization
The fluid mass is chosen m¢; =1400kg ,

ms, =1400kg ,

Egs. (2.102)- (2.104) for TLCGDs ( B = /4 ) are summarized in Table 5.10.

m¢3 =700kg and
Mm¢4 =150kg of water. Dimensions of four absorbers tuned first by means of the TMD
analogy applying Den Hartog’s formulas, Egs. (3.66)- (3.68) for TTLCGDs (8 =r/2) and

structure TTLCGDI1

Forcing V2 Wy | Urp =Tsabfh| vy Wy | Urg =540,
direction [mm] [mm] [mm] [mm] | [mm] [mm] Uo [mm]

a=0 Cvi| 12 -37 31 19 -57 48 248
a= 7r/6 Cvi| 8 -23 20 12 -35 30 154
a=zx/4 |Cwl| 17 -52 44 27 -80 67 345
a= 72'/3 Cwmi| 26 -77 65 40 -118 100 514
a:ﬂ/z Cwmi| 37 -111 94 57 -170 143 736
a= 27[/3 Cwvi| 38 -114 97 59 -175 148 761
a= 37[/4 Cwmi| 35 -104 88 54 -160 135 696
a= 57[/6 Cwmi| 29 -88 74 45 -134 113 583

Table 5.11a: Maximum displacements of four-storey structure in the first mode from

time-harmonic excitation in ¢« -directions, ag=0.1g, Ig; =2.58m.
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Fig. 5.36: Individual frequency response curves without and with linearized absorbers
attached, with Den Hartog’s optimal parameters.

The dynamic magnification factor (DMF) calculated with Matlab 7.0', linearized
damping of the absorbers considered, is illustrated in Figure 5. 36. The effective modal
damping coefficients of the system are increased from 1% to (et51 =5.19%, Cefin =4.97%,

Coff3 = 6.64% and (g4 =3.9%, illustrated in Fig. 5.36. From Table 5.11a-d it follows that
all maximum fluid displacements occuring for various angles of attack, are within the

acceptable limits, u, <H,/3 (of linearized gas compression) and U, < H/2. The maximum

fluid velocities of four absorbers are calculated by Eq. (2.35) 5.07, 3.61, 3.62 and 2.30m/s and
are within the acceptable speed limit.

Structure TTLCGD2

Forcing V2 Wy Uy =Ts0, | vy Wy | Urg =T540,
direction [mm] [mm] [mm] [mm] | [mm] [mm] Uo [mm]

a=0 |Cu| 13 25 25 20 39 38 191
a=7z/6 |Cu| 24 46 45 37 71 69 349
a=zx/4 |Cwil| 27 52 51 42 80 78 394
a=7x/3 | Cwi| 29 55 54 44 84 82 413
a=7x/2 |Cwl| 25 49 48 39 75 73 366
a=2x/3 | Cwi| 15 29 29 24 45 44 222
a=3z/4 [ Cwi| 9 16 16 13 25 25 124
a=57/6 |Cwil| 1 2 2 2 4 4 18

Table 5.11b: Maximum displacements of four-storey structure in the second mode from
time-harmonic excitation in ¢« -directions, apg=0.1g, Ig; =2.58m.
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Structure TLCGD3

Forcing Va W Uy =520, \Z Wy Upy = Tg40 Ug
direction [mm] [mm] [mm] [mm] [mm] [mm] [mm]

a=0 28 -2 -13 CX“ gé :g -20 258
a=x/6 23 -1 -11 CX“ ig j -17 216
a=rl4 18 -1 -9 CX“ §§ ; -13 172

a=r/3 12 -1 -6 CX“ éz :} -9 116
- 2 0 1 CX4 g 8 1 150
=213 15 1 7 CA“ g; :} 11 142
o =34 21 1 10 C/i“ fé j 15 193
a =576 25 2 12 C/i“ 25 j 18 231

Table 5.11c: Maximum displacements of four-storey structure in the third mode from

time-harmonic excitation in « -directions, ag=0.1g, Ig; =2.58m.

Structure TLCGD4

Forcing \p) Wy |Ura=T520) vy Wy | Uy =T540, o
direction [mm] [mm] [mm] [mm] [mm] [mm] [mm]

a=0 CXZ :i i 2 1 2 2 34
a=rx/6 ch :} ;:32 -1 1 -1 1 29
a=rl4 Cg“ :} ;:}2 3 1 3 3 58
a=1f3 T 2 4 4 83
a=rxf2 Cg“ j 164.3505 5 2 6 5 114
a=27f3 |2 S8 s 2 | 6 5 116
a=3x/4 Cg“ j 153'?424 -5 2 -6 5 104
a=>57/6 Cg“ j 141'?13 -4 2 -5 4 86

Table 5.11d: Maximum displacements of four-storey structure in the fourth mode from

time-harmonic excitation in « -directions, ag=0.1g, Is;j =2.58m.

5.6.5 Optimization of the TTLCGD-, TLCGD-mainstructure

system in the state space domain

The fine tuned optimal natural frequencies and damping ratios by calling the function
fminsearch of the performance index J, Eq. (2.123), of the Matlab Optimization Toolbox are
found to be fu =1.05Hz, fo,=134Hz, fo3=2.16Hz, fa3=3.09Hz, {p =735%,

Cpr =8.65%, {p3=8.39%, {p3=5.41%. Fine tuning requires the equilibrium gas pressure

adjusted to 132.80, 136.80, 45.77 and 54.85m. Figs. 5.37-5.44 illustrate the weighed sum of the
24

frequency response functions Z S; |ZSi )
i=1

, S=diag (10,10,10,10,10,10,10,10,10,10,10,10,1,1,
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1,1,1,1,1,1,1,1,1,1) of the building states for the original and the optimized system under
various angles of attack, in the logarithmic decibel scale in the relevant frequency window
0< f <3.5Hz. The resonance curves with fine-tuning optimal parameters have broader peaks.

[dB] 100

80

60

40

frequency [Hz]
—— original structure including the dead fluid mass of absorbers
—— linearized absorbers with Den Hartog's optimal parameters
linearized absorbers with optimal parameters fine tuning in the state space domain
Fig. 5.37: Weighed sum of amplitude response functions for the 12 DOF linearized,
four-storey, strongly asymmetric space frame with four linearized absorbers attached and
without the absorbers (angle of attack of the time-harmonic base acceleration a=0),

maximum gain 30.17dB.
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frequency [Hz]

—— original structure including the dead fluid mass of absorbers
—— linearized absorbers with Den Hartog's optimal parameters
linearized absorbers with optimal parameters fine tuning in the state space domain

Fig. 5.38: Weighed sum of amplitude response functions for the 12 DOF linearized,
four-storey, strongly asymmetric space frame with four linearized absorbers attached and
without the absorbers (angle of attack of the time-harmonic base acceleration « =7/6),

maximum gain 31.50dB.
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[dB] 100

80

60

40

frequency [Hz]

—— original structure including the dead fluid mass of absorbers
—— linearized absorbers with Den Hartog's optimal parameters
linearized absorbers with optimal parameters fine tuning in the state space domain

Fig. 5.39: Weighed sum of amplitude response functions for the 12 DOF linearized,
four-storey, strongly asymmetric space frame with four linearized absorbers attached and
without the absorbers (angle of attack of the time-harmonic base acceleration o =7/4),

maximum gain 31.83dB.
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—— original structure including the dead fluid mass of absorbers
—— linearized absorbers with Den Hartog's optimal parameters
linearized absorbers with optimal parameters fine tuning in the state space domain

Fig. 5.40: Weighed sum of amplitude response functions for the 12 DOF linearized,
four-storey, strongly asymmetric space frame with four linearized absorbers attached and
without the absorbers (angle of attack of the time-harmonic base acceleration a =7/3),

maximum gain 32.65dB.
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[dB] 100

80

60

40

frequency [Hz]

—— original structure including the dead fluid mass of absorbers
—— linearized absorbers with Den Hartog's optimal parameters
Iniearized absorbers with optimal parameters fine tuning in the state space domain

Fig. 5.41: Weighed sum of amplitude response functions for the 12 DOF linearized
four-storey, strongly asymmetric space frame with four linearized absorbers attached and
without the absorbers (angle of attack of the time-harmonic base acceleration « =7/2),

maximum gain 32.11dB.
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40 R /\

frequency [Hz]

—— original structure including the dead fluid mass of absorbers
—— linearized absorbers with Den Hartog's optimal parameters
linearized absorbers with optimal parameters fine tuning in the state space domain

Fig. 5.42: Weighed sum of amplitude response functions for the 12 DOF linearized,
four-storey, strongly asymmetric space frame with four linearized absorbers attached and
without the absorbers (angle of attack of the time-harmonic base acceleration « =27x/3),

maximum gain 31.68dB.
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[dB] 100

80

60

40 .
A

T T T \\._‘
2 2.5 3 3

0.5 1 1.5

frequency [Hz]

—— original structure including the dead fluid mass of absorbers
—— linearized absorbers with Den Hartog's optimal parameters
linearized absorbers with optimal parameters fine tuning in the state space domain

Fig. 5.43: Weighed sum of amplitude response functions for the 12 DOF linearized,
four-storey, strongly asymmetric space frame with four linearized absorbers attached and
without the absorbers (angle of attack of the time-harmonic base acceleration « =37/4),

maximum gain 31.43dB.
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—— original structure including the dead fluid mass of absorbers
—— linearized absorbers with Den Hartog's optimal parameters
linearized absorbers with optimal parameters fine tuning in the state space domain

Fig. 5.44: Weighed sum of amplitude response functions for the 12 DOF linearized,
four-storey, strongly asymmetric space frame with four linearized absorbers attached and
without the absorbers (angle of attack of the time-harmonic base acceleration « =57/6),
maximum gain 31.08dB.

The maximum fluid displacement amplitudes of three absorbers in Figs.5.45-5.52 are
well within the acceptable limits. The maximum fluid velocities of four absorbers are
calculated by Eq. (2.35) 5.15, 3.45, 4.07 and 1.94m/s and are also within the acceptable speed
limit.
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—— TLCGD3 fine-tuning in state space —— TLCGD4 fine-tuning in state space

Fig. 5.45: Amplitude response curves of fluid displacement |u| of four linearized absorbers

attached to the four-storey strongly asymmetric space frame. Absorbers either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (@ =0).
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Fig. 5.46: Amplitude response curves of fluid displacement |u| of four linearized absorbers

attached to the four-storey strongly asymmetric space frame. Absorbers either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (& = 7/6).
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Fig. 5.47: Amplitude response curves of fluid displacement |u| of four linearized absorbers

attached to the four-storey strongly asymmetric space frame. Absorbers either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (& = 7/4).
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Fig. 5.48: Amplitude response curves of fluid displacement |u| of four linearized absorbers

attached to the four-storey strongly asymmetric space frame. Absorbers either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (« = 7/3).
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Fig. 5.49: Amplitude response curves of fluid displacement |u| of four linearized absorbers

attached to the four-storey strongly asymmetric space frame. Absorbers either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (& = 7/2).
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Fig. 5.50: Amplitude response curves of fluid displacement |u| of four linearized absorbers

attached to the four-storey strongly asymmetric space frame. Absorbers either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (« = 27/3).
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Fig. 5.51: Amplitude response curves of fluid displacement |u| of four linearized absorbers

attached to the four-storey strongly asymmetric space frame. Absorbers either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (« =37/4).

0.80

0.60

0.40

displacement[m]

0.20

0.00

Fig. 5.52:

0 0.5 1 L5 2 2.5 3 35

frequency [Hz]

—— TTLCGD1 Den Hartog's parameters —— TTLCGD2 Den Hartog's parameters
TLCGD3 Den Hartog's parameters —— TLCGD4 Den Hartog's parameters
TTLCGDL fine-tuning in state space =~ —— TTLCGD2 fine-tuning in state space

—— TLCGD3 fine-tuning in state space —— TLCGDA4 fine-tuning n state space

Amplitude response curves of fluid displacement |u| of four linearized absorbers

attached to the four-storey strongly asymmetric space frame. Absorbers either with Den
Hartog’s optimal parameters or those resulting from fine-tuning in state space (o =57/6).

The wall thickness and the dead mass of the piping system are listed in Table 5.12 for the four

absorbers,

designed according to Table 5.10. The gauge pressure under expansion conditions

turns out to be positive as listed in Table 5.12. The final dimensions of circular steel pipes
must be changed according to their commercial availability.
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TLCGDI | TLCGD2 | TLCGD3 | TLCGD4
h, [m] 146.79 159.00 51.38 57.49
H, [m] 2.31 1.48 1.18 0.80
107 p(py [N/m?] Eq.(2.128) 66.97 72.58 22.81 25.62
pipe diameter 2r [mm] 2573 262.2 465.2 220
t [mm] Eq.(2.124) 6.2 6.8 3.8 2.0
Mp kgl Eq.(2.130) 1226.8 1265 278.83 60.51
dead fluid-mass[kg] 790.16 733.46 145.53 20.27
107 Py [N/m?] Eq.(2.129) 5.13 5.64 1.15 1.40

Table 5.12: Dimensioning of circular steel pipes.

5.6.6 Forcing by the NS-EI Centro seismogram under varying
angles of attack
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Fig. 5.53: RMS responses for floor displacement and acceleration of four-storey strongly
asymmetric building (El Centro 0.359, angle of attack o =0, r5; =2.58m).
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Fig. 5.54: RMS responses for floor displacement and acceleration of four-storey strongly
asymmetric building (El Centro 0.359, angle of attack a =7/6, rg =2.58m).
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Fig. 5.55: RMS responses for floor displacement and acceleration of four-storey strongly

asymmetric building (El Centr
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Fig. 5.56: RMS responses for floor displacement and acceleration of four-storey strongly
asymmetric building (El Centro 0.35g, angle of attack « =7/3, rg =2.58m).
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Fig. 5.57: RMS responses for floor displacement and acceleration of four-storey strongly
asymmetric building (El Centro 0.359, angle of attack a =7/2, rg =2.58m).
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Fig. 5.58: RMS responses for floor displacement and acceleration of four-storey strongly

asymmetric building (El Centro 0.359, angle of attack a =27/3, rg =2.58m).
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Fig. 5.59: RMS responses for floor displacement and acceleration of four-storey strongly
asymmetric building (El Centro 0.35g, angle of attack a =37/4, rg =2.58m).
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Fig. 5.60: RMS responses for floor displacement and acceleration of four-storey strongly
asymmetric building (El Centro 0.359, angle of attack « =57/6, Ig =2.58m).

This Section illustrates the vibration control effectiveness of TLCGDs for the four-storey
strongly asymmetric building under bi-directional horizontal NS-El Centro earthquake. Figs.
5.53-5.82 show the displacements and accelerations for the root mean square (RMS)
responses” of structure with and without absorbers for four floors. The RMS value is defined in
Eq. (4.26).
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6 Thirty-storey Moderately Asymmetric
Structure

A 30-storey high-rise asymmetric structure is analysed using passive TLCGD control. The
building data were obtained by Huo L.S.". The homogenously distributed mass of each storey is

384x10° kg , the moment of inertia with respect to the mass center of each storey is

5.96><106kg-m2, resulting shear stiffness in y and z direction is &, =8.64x10°kN /m and

k, =78x10°kN/m respectively.  The  torsional stiffness of a storey is

k, =1.38x 104N -m/ rad . The eccentric distance of the center of shear from the mass center is

e,=4m and e.=3m. Since every storey has three degrees of freedom assigned, the structure is
described by 90 DOF. The first 12 (undamped) natural frequencies are 0.348, 0.384, 1.042,
1.151, 1.343, 1.734, 1.915, 2.421, 2.673, 3.102, 3.425 and 3.774 Hz, respectively.

6.1 Installation of the TLCGD

The first three mode shapes are exaggerated and plotted in Figs. 6.1-6.3.
Cvz
°

0.012 Y 0.01pA~ \03? Y
0.001 »% .
0000
Fig. 6.1: First mode f; = 0.348Hz, 30th floor. Fig. 6.2: Second mode f, = 0.384Hz , 30th floor.
Cvi (34.87, 14.94) Cvz (-50.48, 116.78)
Cuys

.016
[ )
0.038
1
a e
Y

-0.001
"\‘—4‘_‘_
Fig. 6.3: Third mode f; =1.042Hz, 10th floor . Cy3 (34.87, 14.94).

Three modal centers of velocity fall outside the floor plan, the structure is considered to
be moderately asymmetric. Two TLCGDs are installed on top of the structure to mitigate the

fundamental and second vibration mode. TLCGDI is installed z-parallel in the left side.
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TLCGD2 can be installed y-parallel at the lower edge. TLCGD3 is installed at floor level ten

and z-parallel in the left side, as illustrated in Figure 6.4. A model reduction from 90 to 12

degrees of freedom using the method of modal truncation is generated by keeping the first 12

vibration modes, see Clough-Penzien®, page 158. The relevant first three mode shapes are

calculated and given by Eq. (2.18).
30th floor

[
Cvz

10th floor

* Cyvs

1 % % 0
Cwm 3 C A
CM
2

Fig. 6.4: Installation of TLCGDI, 2, 3, O the modal centers of velocity of 10th floor,
e the modal centers of velocity of 30th floor.

6.2 TLCGD design, Den Hartog’ optimization

The fluid mass is chosen as mf1=270><103kg , mf2=250><103kg and

mpy = 50x10°kg of water. Dimensions of the three TLCGDs tuned first by means of the

TMD analogy Egs. (2.102)- (2.104) applying Den Hartog’s formulas are summarized in Table
6.1. The modal dynamic magnification factor (DMF) calculated with Matlab 7.0°

equivalently linearized damping of the TLCGD considered, is illustrated in Figure 6.5.

TLCGD1 | TLCGD2 | TLCGD3

Horizontal length of the liquid column B [m] 10.00 10.00 3.00
Inclined length of the liquid column A [m] 5.40 5.00 1.00
Cross-sectional area of the pipe [m’] Ay=Ag 12.98 12.50 10.00
Effective length Leff =L, =2H + B [m], Eq. (2.34a) 20.80 20.00 5.00
Angle of the inclined pipe section B [rad] ;;/ 4 ;z-/ 4 ;;/ 4

Equivalent mathematical pendulum length Ly [m], Eq. 206 1.69 0.23

(2.37)
Geometry factor K = K, Egs. (2.34a), (2.44) 0.85 0.85 0.88
Geometry factor x; , Eq. (2.59) 1.00 1.10 1.84
Equilibrium pressure head 4, [m], n=1.2, Eq. (2.34a) 35.47 39.14 30.00
Gas volume V = 4, H [m*], Eq. (2.38) 105.88 93.75 30.10
The mass ratio of the TLCGD-main system (£, Eq. (2.97)| 5.84% 4.58% 1.06%
The mass ratio of the equivalent TMD-main system ,u* , 4.12% 3.29% 1.23%
Eq. (2.102)
Natural frequency f, opt [Hz] Eq. (2.104), (2.112) 0.33 037 1.03
Optimal linear damping %, Eq. (2.113) 12.09 10.93 5.55

Table 6.1: Layout of the modally tuned TLCGDs, gas volume and gas equilibrium pressure

assigned, cf. Fig. (6.4).
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Fig. 6.5: Modal frequency response curves without and with linearized TLCGDs attached,
Egs. (2.106) and (2.110), TLCGDs with Den Hartog’s optimal parameters.

The TLCGD in its passive mode considerably reduces steady state vibrations of lightly
damped structures similarly to an increase of the effective structural damping. The effective
modal damping coefficients of the system in each mode are increased from Jg =1% to

g@?‘l =7.08%, g“eﬁ,z =6.47% and g“eﬁp3 =3.77%.

structure TLCGD1

Forcing direction V3o[mm] W30 [mm] up = rgbhy [mm] Ug [mm)]
" :iﬁi 0 |
a=x/6 (;;M fé 19182 11 421
a=rl4 (/iM ﬂg :%é 31 1080
a=r/3 (/iM igg :j;g 48 1673
a=r/2 (/iM ;;2 :2‘3“6‘ 73 2488
=213 S = S38 78 2639
a=37/4 (;;M g;i :ggg 72 2445
a=57/6 (/iM ;gg :2‘2‘2 62 2085

Table 6.2a: Maximum displacements in the first mode from time-harmonic excitation in

a -directions, ag=0.04g, rg =3.94m.
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structure TLCGD2

Forcing direction V3o[mm] W30 [mm] uy = ry03¢ [mm] Up [mm]
a=0 CAM 23‘9‘ ;2; 20 2294
a=x/6 CAM ggg i;i 21 2442
o=/ CAM ggg ;2; 20 2267
a=n/3 CAM ggé ;}2 17 1937
T e e R
o =213 L > = 3 374
o =31/4 L =% 1 8 984
a=51/6 L -2 o0 13 1534

Table 6.2b: Maximum displacements in the second mode from time-harmonic excitation in

a -directions, ag=0.04g, rg =3.94m.

structure TLCGD3

Forcing direction Vip[mm] Wio [mm] u; =rg0)( [mm] Up [mm]
a=0 Eu = 3 2 154
a= ﬂ/ 6 CAM g ; -1 73
a =74 CAM :S g 2 178
a=x/3 CAM g g; 3 272
a=rf2 CAM :58 ‘S‘g -5 401
o =213 CAM ;i ‘5'2 -6 423
a=37/4 CAM :58 ‘S‘g -5 390
a=51/6 S - > 4 332

Table 6.2¢: Maximum displacements in the third mode from time-harmonic excitation in

«a -directions, ag=0.04g, rg =3.94m.

From Table 6.2a-c it follows that all of the maximum fluid displacements for varying angles
of attack of the time harmonic excitation, are within the acceptable limits, uy <H,/3 (of

linearized gas compression) and u, < H/2. The maximum fluid velocities of three TLCGDs
are calculated by Eq. (2.35) 5.47, 5.68 and 2.74m/s and are within the acceptable speed limit.
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The wall thickness and the estimated dead mass of the piping system are listed in Table
6.3 for the three TLCGDs, designed according to Table 6.1

TLCGD! | TLCGD2 | TLCGD3
hy [m] 35.47 39.14 30.00
H, [m] 8.16 7.50 3.01
107 ppy [N/m?] Eq.(2.128) 15.77 17.44 12.94
pipe diameter 2r [mm] 4065 3990 3568
t [mm] Eq.(2.124) 22.9 24.9 16.5
m, [kg] Eq.(2.130) 8.47x10* | 8.50x10* | 1.59x10*
dead fluid-mass[kg] 749x10* | 6.94x10* | 1.13x10*
107 By [N/m?] Eq.(2.129) 0.48 0.64 0.25

Table 6.3: Dimensioning of circular steel pipes.

The gauge pressure under expansion conditions turns out to be positive as listed in Table 6.3.
The final dimensions of circular steel pipes must be changed according to their commercial
availability.

6.3 Smaller TLCGD-units in parallel action, fine-tuning in
state space

Since the cross-sectional areas of the TLCGDs listed in Table 6.1 are much too large for
practical applications, small units in parallel action must be considered. For TLCGD1 and

TLCGD?2, six units with cross sections of Ay = Ap = 2.16m* and 2.08m’, respectively and for

TLCGD3 four units with a cross section of A4y = Az = 2.5m* are proposed. Thus, all together
16 TLCGDs are to be installed, and the numerical optimization in state space is performed with
respect to the 32 free parameter f; and ¢, i=1-16, where initially all natural frequencies and
damping ratios were chosen according the Den Hartog optimization of Table 6.1 to be
f;=033Hz , §;=953%, i=1-6, f;,=037Hz, {;=9.62% , i=7-12, and f;=1.03Hz,
¢; =5.55%,i=13-16.

Minimization of the performance index J, Eq. (2.123), is performed numerically by calling
the function fminsearch of the Matlab Optimization Toolbox. The fine tuned optimal natural
circular frequencies, damping ratios and the equilibrium pressure head 4, of 16 TLCGD-units

turn out as listed in Table 6.4. The Figures 6.6-6.13 show the frequency response of the

24
weighed sustl- |le- v)
i=1
1) of the building states for the original and the optimized and fine tuned system, in the
logarithmic decibel scale, defined by x[dB]=20logx in the relevant frequency window

0 < f <1.2Hz .The resonance curves with fine-tuning optimal parameters have broader peaks.

, S=diag(10,10,10,10,10,10,10,10,10,10,10,10,1,1,1,1,1,1,1,1,1,1,1,
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TLCGDI1
1 2 3 4 5 6

J;[Hz] | 0383 0.361| 0.329| 0.306 | 0.309 | 0.340
& (%] 14.85| 939 | 575 | 5.61 | 15.09| 11.06

ho[m] | 44.38 | 38.65| 31.11| 26.06 | 26.81 | 33.67

TLCGD2
1 2 3 4 5 6

J;i[Hz] | 0360 | 0.362| 0.381| 0.332| 0.370 | 0.425
¢ [%] 15.62 | 11.11| 14.14| 5.77 | 4.60 | 5.89

ho[m] | 33.85 | 34.20| 38.51| 27.96 | 36.03 | 49.14

TLCGD3
1 2 3 4

fi[Hz] | 1.088 | 1.117| 1.028| 0.990
$i%] | 271 | 130 | 1.86 | 1.80

hO [m] | 33.72 | 35.66| 29.87| 27.55
Table 6.4: Fine tuned optimal parameters and the equilibrium pressure head of TLCGDs.

It is obvious that the parameter optimization reduced the vibration amplitude at the resonant
peaks tremendously.

6.4 Forcing of the 30 storey moderately asymmetric
building by the NS-ElI Centro seismogram under varying
angles of attack

The maximum acceleration of the NS-El Centro earthquake record is set to 0.35g.

Varying the angle of attack refers to the effect of bidirectional forcing of the thirty-storey
moderately asymmetric space frame without and with 16 small TLCGD-units. The results are
presented graphically in Figs. 6.14- 6.21, where the relative floor displacements with respect to
the base and the relative floor accelerations for the root mean square (RMS) response4 are
displayed. The RMS value is defined in Eq. (4.26).
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—— 3 linearized TLCGDs with Den Hartog's optimal parameters
16 linearized TLCGDs with optimal parameters fine tuning in the state space domain

Fig. 6.6: Weighed sum of amplitude response functions for the 90-DOF linearized,
thirty-storey asymmetric space frame, with linearized TLCGDs attached and without the
TLCGDs (angle of attack of the time-harmonic base acceleration o =0), maximum gain

34.89dB.
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Fig. 6.7: Weighed sum of amplitude response functions for the 90-DOF linearized,
thirty-storey asymmetric space frame, with linearized TLCGDs attached and without the
TLCGDs (angle of attack of the time-harmonic base acceleration o =7/6), maximum gain

37.10dB.
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16 linearized TLCGDs with optimal parameters fine tuning in the state space domain

Fig. 6.8: Weighed sum of amplitude response functions for the 90-DOF linearized,
thirty-storey asymmetric space frame, with linearized TLCGDs attached and without the
TLCGDs (angle of attack of the time-harmonic base acceleration « = 7/4), maximum gain
34.86dB.
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Fig. 6.9: Weighed sum of amplitude response functions for the 90-DOF linearized,
thirty-storey asymmetric space frame, with linearized TLCGDs attached and without the
TLCGDs (angle of attack of the time-harmonic base acceleration a = 7/3), maximum gain
32.01dB.
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Fig. 6.10: Weighed sum of amplitude response functions for the 90-DOF linearized,
thirty-storey asymmetric space frame, with linearized TLCGDs attached and without the
TLCGDs (angle of attack of the time-harmonic base acceleration o =7/2), maximum gain

37.46dB.
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Fig. 6.11: Weighed sum of amplitude response functions for the 90-DOF linearized,
thirty-storey asymmetric space frame, with linearized TLCGDs attached and without the
TLCGDs (angle of attack of the time-harmonic base acceleration « =27/3), maximum gain

36.26dB.
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16 linearized TLCGDs with optimal parameters fine tuning in the state space domain

Fig. 6.12: Weighed sum of amplitude response functions for the 90-DOF linearized,
thirty-storey asymmetric space frame, with linearized TLCGDs attached and without the
TLCGDs (angle of attack of the time-harmonic base acceleration « =37/4), maximum gain
35.36dB.
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Fig. 6.13: Weighed sum of amplitude response functions for the 90-DOF linearized,
thirty-storey asymmetric space frame, with linearized TLCGDs attached and without the
TLCGDs (angle of attack of the time-harmonic base acceleration « =57/6 ), maximum gain
34.15dB.
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Fig. 6.14: RMS responses for floor displacement and acceleration of the thirty-storey
asymmetric building (El Centro 0.35g, angle of attacka =0).
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Fig. 6.15: RMS responses for floor displacement and acceleration of the thirty-storey
asymmetric building (El Centro 0.35g, angle of attack & = 7/6).
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Fig. 6.16: RMS responses for floor displacement and acceleration of the thirty-storey

asymmetric building (El Centro 0.

35g, angle of attack @ = 77/4).
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Fig. 6.17: RMS responses for floor displacement and acceleration of the thirty-storey
asymmetric building (El Centro 0.35g, angle of attack & = 7/3).
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Fig. 6.18: RMS responses for floor displacement and acceleration of the thirty-storey
asymmetric building (El Centro 0.35g, angle of attack & = 7/2).
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Fig. 6.19: RMS responses for floor displacement and acceleration of the thirty-storey
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Fig. 6.20: RMS responses for floor displacement and acceleration of the thirty-storey
asymmetric building (El Centro 0.35g, angle of attack & =37/4).
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Fig. 6.21: RMS responses for floor displacement and acceleration of the thirty-storey
asymmetric building (El Centro 0.35g , angle of attack @ =57/6).

From these numerical results, TLCGDs installed and tuned to the structural frequency
can effectively reduce the translational and torsional response of structures.

Comparing the time histories of structural seismic response with those given by Huo
L.S.", namely the top floor displacements are illustrated in Fig.6.22, achieved in this section,
ground action of El Centro0.35g and angle of attack & = /3. The figure clearly indicates the

superiority of the fine tuned 16 TLCGDs, effective damping is much larger.
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Conclusions

7 Conclusions

In this dissertation, a detailed investigation of the coupled torsional vibration control of
asymmetric structures by using tuned liquid column gas damper (TLCGD) and torsional
tuned liquid column gas damper (TTLCGD) has been performed. Theoretical studies and
computer simulations have been carried out to investigate the control performance and
effectiveness of these absorbers. Many useful conclusions were obtained within the
dissertation, which may be considered as guidelines for future applications of the damper.
The main contributions and conclusions made in this dissertation are summarized as follows:

1.

We define moderate asymmetry if the modal centers of velocity fall outside of the
floor plan. The ideal position of the trace midplane of the U-shaped TLCGD
requires its normal distance to the center of velocity maximum. For a strongly
asymmetric building, the velocity centers of several modes fall inside the floor
plan. The novel TTLCGD with its horizontal curved piping section enclosing the
center for best efficiency becomes superior.

The equations of relative fluid motion in TLCGD and TTLCGD are derived using
a generalized Bernoulli equation of relative streamlines in a moving frame. The
interaction forces between the moving supporting floor and damper are
determined for structural synthesis in the dynamic analysis.

The general analogy between TMD and TLCGD, TTMD and TTLCGD when
attached to main single storey- and multi storey structures under the horizontal
base acceleration has been established the first time in this dissertation. Thus, the
classical tuning procedure can be applied. Adjusting the equilibrium gas pressure
allows easy frequency tuning and makes final tuning possible in a most simple
way.

It is concluded from the numerical studies that TLCGD is very promising in the
moderately asymmetric structure and TTLCGD can be used in the strongly
asymmetric structure to mitigate translational and torsional vibration. The
frequency limit of application of these absorbers is discussed in connection with
the maximum fluid stroke to keep the fluid-gas interface intact and the piston
theory applicable.
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	Fig. 2.88: Relative displacement of fluid in three TLCGDs, angle of attack:   (artificial seismogram), strong motion phase 20s.  
	Fig. 2.89: Relative acceleration of single-storey space structure,  ,   and  , angle of attack:   (artificial seismogram)  , strong motion phase 20s. 
	Fig. 2.90: Relative floor displacements of center of mass, v, w and rotation uT=rSθ without and with three TLCGDs attached, angle of attack:   (artificial seismogram)  , strong motion phase 20s. 
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	Fig. 5.38: Weighed sum of amplitude response functions for the 12 DOF linearized, four-storey, strongly asymmetric space frame with four linearized absorbers attached and without the absorbers (angle of attack of the time-harmonic base acceleration  ), maximum gain 31.50dB. 
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	Fig. 5.43: Weighed sum of amplitude response functions for the 12 DOF linearized, four-storey, strongly asymmetric space frame with four linearized absorbers attached and without the absorbers (angle of attack of the time-harmonic base acceleration  ), maximum gain 31.43dB. 
	Fig. 5.44: Weighed sum of amplitude response functions for the 12 DOF linearized, four-storey, strongly asymmetric space frame with four linearized absorbers attached and without the absorbers (angle of attack of the time-harmonic base acceleration  ), maximum gain 31.08dB. 
	Fig. 5.45: Amplitude response curves of fluid displacement   of four linearized absorbers attached to the four-storey strongly asymmetric space frame. Absorbers either with Den Hartog’s optimal parameters or those resulting from fine-tuning in state space ( ). 
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	Fig. 5.47: Amplitude response curves of fluid displacement   of four linearized absorbers attached to the four-storey strongly asymmetric space frame. Absorbers either with Den Hartog’s optimal parameters or those resulting from fine-tuning in state space ( ). 
	Fig. 5.48: Amplitude response curves of fluid displacement   of four linearized absorbers attached to the four-storey strongly asymmetric space frame. Absorbers either with Den Hartog’s optimal parameters or those resulting from fine-tuning in state space ( ). 
	Fig. 5.49: Amplitude response curves of fluid displacement   of four linearized absorbers attached to the four-storey strongly asymmetric space frame. Absorbers either with Den Hartog’s optimal parameters or those resulting from fine-tuning in state space ( ). 
	Fig. 5.50: Amplitude response curves of fluid displacement   of four linearized absorbers attached to the four-storey strongly asymmetric space frame. Absorbers either with Den Hartog’s optimal parameters or those resulting from fine-tuning in state space ( ). 
	Fig. 5.51: Amplitude response curves of fluid displacement   of four linearized absorbers attached to the four-storey strongly asymmetric space frame. Absorbers either with Den Hartog’s optimal parameters or those resulting from fine-tuning in state space ( ). 
	Fig. 5.52: Amplitude response curves of fluid displacement   of four linearized absorbers attached to the four-storey strongly asymmetric space frame. Absorbers either with Den Hartog’s optimal parameters or those resulting from fine-tuning in state space ( ). 
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	Fig. 5.58: RMS responses for floor displacement and acceleration of four-storey strongly asymmetric building (El Centro  , angle of attack  ,  ). 
	Fig. 5.59: RMS responses for floor displacement and acceleration of four-storey strongly asymmetric building (El Centro  , angle of attack  ,  ). 
	Fig. 5.60: RMS responses for floor displacement and acceleration of four-storey strongly asymmetric building (El Centro  , angle of attack  ,  ). 
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