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Römerweg 31

A-2801 Katzelsdorf

Wien, Jänner 2006

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 



ZUSAMMENFASSUNG

Im Rahmen dieser Magisterarbeit wurde ein Ant Colony Optimisation Algorithmus für

das durchmesserbeschränkte minimale Spannbaum Problem erarbeitet. Bei diesem Prob-

lem handelt es sich um ein NP-schweres kombinatorisches Optimierungsproblem mit zahl-

reichen praktischen Anwendungsgebieten, zum Beispiel im Netzwerkdesign. Der Algorith-

mus wurde mit einer lokalen Optimierungsheuristik, nämlich einem Variable Neighbour-

hood Descent, erweitert. Diese lokale Optimierungsheuristik arbeitet auf vier verschiedenen

Nachbarschaftsstrukturen, bei deren Entwicklung besonders auf eine effiziente Evaluierung

der Nachbarschaft einer Lösung Wert gelegt wurde. Vergleiche mit verschiedenen evolu-

tionären Algorithmen und einer variablen Nachbarschaftssuche auf euklidischen Instanzen

bis zu 1000 Knoten hinsichtlich Lösungsqualität als auch Berechnungszeit zeigen, dass

der Ant Colony Optimisation Algorithmus bei ausreichend Zeit die bisher besten bekan-

nten Ergebnisse zum Teil deutlich übertreffen kann, hingegen bei Testläufen mit starker

Zeitbeschränkung nicht die Lösungsqualität der variablen Nachbarschaftssuche erreichen

kann.

ABSTRACT

This master thesis presents an ant colony optimisation algorithm for the bounded diameter

minimum spanning tree problem, a NP-hard combinatorial optimisation problem with

various application fields, e.g. when considering certain aspects of quality in communication

network design. The algorithm is extended with local optimisation in terms of a variable

neighbourhood descent algorithm based on four different neighbourhood structures. These

neighbourhood structures have been designed in a way to enable a fast identification of

the best neighbouring solution. The proposed algorithm is empirically compared to various

evolutionary algorithms and a variable neighbourhood search implementation on Euclidean

instances based on complete graphs with up to 1000 nodes considering either solution

quality as well as computation time. It turns out that the ant colony optimisation algorithm

performs best among these heuristics with respect to quality of solution, but cannot reach

the results of the variable neighbourhood search implementation concerning computation

time.
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1. INTRODUCTION

The bounded diameter minimum spanning tree (BDMST) problem is a combinatorial op-

timisation problem. Combinatorial optimisation problems belong to the group of optimi-

sation problems, that in turn are divided into two groups. One, encoding solutions with

real-valued variables and one, encoding solutions with discrete variables. Combinatorial op-

timisation problems belong to the latter one. The definition of a combinatorial optimisation

problem given here, follows that by Blum and Roli in [6].

Definition 1: A combinatorial optimisation (CO) problem P = (f, S) has a set of vari-

ables X = {x1, . . . , xn}, variable domains D1, . . . , Dn, constraints among variables, and an

objective function to be minimised or maximised, where f : D1 × . . .×Dn → R+.

The set of all feasible assignments is S = {s = {(x1, v1), . . . , (xn, vn)} | vi ∈ Di, s satisfies

all constraints}. S is also called search or solution space.

To solve a combinatorial optimisation problem as defined above, a solution T ′ ∈ S with

either minimum objective value function, f(T ′) ≤ f(T ) ∀ T ∈ S, or maximum objective

value function, f(T ′) ≥ f(T ) ∀ T ∈ S, has to be found. T ′ is called a global optimal

solution. Representative combinatorial optimisation problems are the travelling salesman

problem, the quadratic assignment problem, timetabling and scheduling problems.

After having introduced the definition of the combinatorial optimisation problem that of

the bounded diameter minimum spanning tree problem can be given.

Definition 2: Given an undirected, connected graph G = (V,E) of n = |V | nodes and

m = |E| edges, where each edge e has associated costs ce ≥ 0, the bounded diameter

minimum spanning tree problem is defined as the spanning tree T = (V,ET ), with edge

set ET ⊆ E, of minimum weight
∑

e∈ET
ce, where the diameter D is bounded above by a

constant ≥ 2.

The eccentricity of a node v, with v ∈ V , is defined as the maximum number of edges on

a path from v to any other node in the minimum spanning tree T . The diameter bound D

is the maximum eccentricity a node is allowed to have.
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From this definition follows that the centre of T is either, in case of an even diameter

bound, the single node or, in case of an odd diameter bound, the pair of adjacent nodes of

minimum eccentricity. Thus the bounded diameter minimum spanning tree problem can

also be interpreted as the search for a minimum spanning tree rooted at an unknown centre

(having depth 0) and whose maximal depth is restricted to bD/2c.

The BDMST problem is known to be NP-hard for 4 ≤ D ≤ n−1 [15]. Within the context

of this master thesis, simply BDMST problem instances based on complete graphs are

considered, since incomplete graphs can be anytime transformed into complete graphs, by

setting the edge costs for not really available edges extremely high, so that these edges do

not surface in solutions.

The BDMST problem is not just of scientific interest, there are various real world applica-

tions, for example in communication network design. When considering certain aspects of

quality of service, e.g. a maximum communication delay or minimum noise-ratio, BDMSTs

become of great importance.

A further practical application can be found in [5]: When planning a Linear Light-wave

Network (LLN) an undirected multi-graph G = (V,E) is used, representing the network.

This multi-graph G has to be decomposed into edge disjoint trees forming at least one

spanning tree. Nevertheless, the aim of this decomposition process is to gain many spanning

trees with a small diameter.

Another application field of the BDMST problem is data compression. Bookstein et al.

have introduced a way of transferring the problem of compressing correlated bit-vectors

into the problem of finding a minimum spanning tree [7]. The decompression time of a

given bitmap vector is proportional to its depth within the tree. Thus the whole running

time depends on the height of the built tree. So a MST with a bounded diameter is

preferable.

The BDMST problem is also met in the field of mutual exclusion algorithms. When con-

sidering costs of the distributed mutual exclusion algorithm proposed in [32], the number

of messages required to enter a critical section has a major effect on these costs. As the

upper bound for these messages is 2D, where D is the diameter of the underlying tree, it is

quite obvious, that the network topology the algorithm is based on is of major importance.

Furthermore, the BDMST problem can also be found as a subproblem in other combina-

torial optimisation problems such as vehicle routing [2]. In the vehicle routing problem

a set of vehicles has to serve a set of costumers minimising a cost function like the path



1. Introduction 8

covered by the vehicles or the number of vehicles to be used. In general some additional

constraints have to be met, for example each costumer has to be visited exactly once by

exactly one vehicle. Another one could be, that the demand each vehicle has to satisfy

is not allowed to exceed the vehicle’s capacity D. Or that each vehicle has to start and

end its tour in the depot. A further constraint could be that the total tour length of each

vehicle is not allowed to exceed a bound L. From these example constraints follows that

the vehicle routing problem (VRP) is closely related to the travelling salesman problem

(TSP), as a solution for the VRP consists of several TSP solutions with common start and

end cities. Famous heuristics for solving TSP instances, e.g. the Christofides heuristic, use

minimum spanning trees. Thus, in case an additional constraint requires that the lengths

of the vehicle tours are limited to size L, for applying these heuristics to discover a tour

for a vehicle they have to be extended in terms of using BDMSTs instead of MSTs.

This master thesis will present an ant colony optimisation algorithm for the bounded di-

ameter minimum spanning tree problem. The ant colony optimisation is extended with a

local search strategy, namely a variable neighbourhood descent, to improve overall solu-

tion quality. The following chapter will give an overview of already evolved exact as well

as heuristic methods for solving a BDMST instance. In chapter 3 the basic concepts of

two metaheuristics, namely ant colony optimisation and variable neighbourhood search,

are introduced. Chapter 4 presents four different neighbourhood structures the variable

neighbourhood descent algorithm is based on. In chapter 5 the ant colony optimisation

algorithm for the BDMST problem, developed within the context of this master thesis, is

described in full details. Chapter 6 gives an overview of the implementation of the ant

colony optimisation algorithm. And finally in Chapter 7 the performance of the ant colony

optimisation algorithm compared to that of the variable neighbourhood search implemen-

tation for the BDMST, proposed by Gruber and Raidl [21], and some other state-of-the-art

metaheuristics is discussed.



2. PREVIOUS WORK

A couple of exact algorithms for the bounded diameter minimum spanning tree problem has

been designed. The majority of them relies on network flow-based multi-commodity mixed

integer linear programming (MIP) or Miller-Tucker-Zemlin (MTZ) formulations. By intro-

ducing multi-source multi-destination network flow models [27] Magnanti and Wong per-

formed fundamental work of using MIPs in the field of network design. A multi-commodity

formulation for the BDMST problem has been proposed by Achuthan and Caccetta [3].

Achuthan et al. suggested an improvement of this formulation in [4].

A couple of different advanced multi-commodity flow (MCF) formulations for the BDMST

problem, counting and limiting the hops on paths from a virtual root node to any other

node, has been introduced by Gouveia and Magnanti [18]. For the sake of achieving tight

LP-relaxation bounds, they had to accept a quite large number of variables in their models.

In [19] Gouveia et al. proposed an extended flow formulation for the BDMST problem in

case of an odd diameter D.

Santos et al. [14] used modified and lifted Miller-Tucker-Zemlin subtour elimination in-

equalities, ensuring that the diameter bound is not violated. This MTZ-based model is

claimed to work well on BDMST problem instances having a diameter bound D close to

the diameter of the unconstrained minimum spanning tree.

A compact 0-1 integer linear programming (ILP) model embedded into a branch and cut

environment has been published by Gruber and Raidl [22]. Computational results turned

out that BDMST instances, having an underlying dense graph, with small to moderate

diameter bounds, are solved significantly faster than by the MTZ-based model from Santos

et al. [14]. However the looser the diameter bound the faster the MTZ-based model

becomes. Therefore it cannot be said, that one approach dominates the other. When

comparing the ILP with various MCF formulations from Gouveia and Magnanti [18], similar

results were yielded.

Experiments turned out that all these exact approaches for solving a BDMST problem

instance can only be applied to relatively small problem instances, not more than 100



2. Previous Work 10

nodes when considering fully connected graphs. As these exact algorithms are not able to

yield the optimal solution for large problem instances in practicable time, several heuristics

have been evolved to obtain solutions for large instances, too.

One of these heuristics is the so called one time tree construction (OTTC) algorithm by

Abdalla et al. [1]. This greedy construction heuristic, based on the minimum spanning

tree algorithm of Prim, starts by selecting a single node at random and then repeatedly

extends the tree by adding the cheapest available edge, that connects a new node to the

so far built tree. To guarantee that the diameter bound is not violated it must keep track

of the eccentricities of all already appended nodes and update this information every time

a new node is connected to the tree, a time consuming procedure. It turned out that the

choice of the first node has crucial effects on the quality of the solution.

Julstrom [26] modified the OTTC approach by starting from a predetermined centre node.

This idea simplifies the OTTC algorithm significantly, as the diameter constraint can be

displaced by a height restriction of bD/2c for the spawned MST tree. This centre-based tree

construction (CBTC) provides relatively good solutions on random instances. Nevertheless,

on Euclidean instances the randomised centre-based tree construction (RTC) [31], that uses

a permutation of all nodes and connects them with the cheapest possible edge to the tree in

the order given by this permutation, whereas the centre is build by the first (two) node(s),

yields much better results.

Clementi et al. [8] describe other construction heuristics, e.g. a modification of Kruskal’s

MST algorithm, for the related height-constrained MST problem.

As the solutions obtained by these construction heuristics were still not satisfactory, dif-

ferent evolutionary algorithms (EAs) [31, 24, 25] have been developed, to further improve

the quality of these solutions. The initial population for these evolutionary algorithms is

provided by one of the greedy construction heuristics. On instances up to 1000 nodes the

evolutionary algorithms are in a position to significantly improve these initial solutions.

The best metaheuristic published so far for Euclidean instances, outperforming the EAs

mentioned above in solution quality as well as running time, is a variable neighbourhood

search by Gruber and Raidl [21]. Unfortunately it was not tested on random instances yet.



3. METAHEURISTICS

Since combinatorial optimisation (CO) problems are of major interest for the scientific

as well as for the industrial world, several algorithms have been evolved to meet them.

These algorithms can be classified into exact algorithms and heuristics. Exact algorithms

guarantee to find an optimal solution for finite size CO problems in bounded time [30].

As long as not proofed that P = NP, no polynomial time algorithms exist for NP-hard

CO problems [15]. Due to their heigh computational time complexity exact algorithms

are in general only applicable to instances of relatively small or moderate size. To attack

even bigger instances heuristics have been evolved. Heuristics abandon the guarantee of

finding an optimal solution for the sake of returning a valid solution in useable time. For

some heuristics, referenced as approximate algorithms, it has been proven, that the yielded

solution is not more (when the objective function has to be minimised) or less (when the

objective function has to be maximised) than a factor φ times the optimal solution.

Among heuristics two basic types, constructive and local search methods, are differentiated.

Constructive methods, as the name already presumes, create a solution for a CO problem

from scratch. They append step by step to an initially empty solution components until

a valid solution is reached. Local search methods start with an initial solution. They try

to replace this initial solution T by a better solution from a predefined neighbourhood of

T . Both definitions given here, either that of a neighbourhood of a solution T as well as

that of a local optimal (minimum) solution with respect to a predefined neighbourhood

structure N , follow those by Blum and Roli in [6].

Definition 3: The neighbourhood structure is a function N : S → 2S 1 that assigns each

T ∈ S a set of neighbours N (T ) ⊆ S, where S is the search or solution space. N (T ) is

called neighbourhood of T .

Definition 4: A solution T ′ is called a local optimal (minimum) solution with respect

to a neighbourhood structure N , if ∀ T ∈ N (T ′): f(T ′) ≤ f(T ), where f is the objective

1 2S is the power set of S
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function to be minimised. A solution T ′ is called a strict local optimal (minimum) solution,

if f(T ′) < f(T ) ∀ T ∈ N (T ′).

Local search algorithms are also called iterative improvement algorithms, as moves are

only performed if they result in an improvement of the existing solution. To identify an

improvement move usually one of the two main strategies, namely first improvement and

best improvement, is used. First improvement means, that the local search algorithm stops

searching the neighbourhood N (T ) of an existing solution T as soon as an improvement

move has been identified. By contrast the best improvement strategy enumerates the com-

plete neighbourhood N (T ) to identify the best improvement move. Local search algorithms

terminate as soon as a local optimal (minimum) solution has been reached.

Beside these basic heuristics so-called metaheuristics have been developed. The aim of this

concept is to build high level frameworks based on several heuristics, allowing an effective

and efficient exploration of the whole solution space. Until now no universal valid definition

of the term metaheuristic has prevailed, therefore a multitude of definitions from various

scientists and organisations exists. In my opinion, the most appropriate one is the following

from Voß et al.:

“A metaheuristic is an iterative master process that guides and modifies the operations of

subordinate heuristics to efficiently produce high-quality solutions. It may manipulate a

complete (or incomplete) single solution or a collection of solutions at each iteration. The

subordinate heuristics may be high (or low) level procedures, or a simple local search, or

just a construction method.”[35]

The term metaheuristics, that was first introduced in 1986 by Glover [16], also reflects the

aim of this concept, since it is composed of two Greek words, heuriskein, meaning “to

find” and meta, meaning “beyond, in an upper level”. Nowadays, several metaheuristics

have been proposed. Ant colony optimisation, variable neighbourhood search, evolutionary

algorithms, simulated annealing, iterated local search and tabu search, to name just a

selection.

The following two sections present the basic ideas of the variable neighbourhood search

and ant colony optimisation metaheuristic.
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3.1 Variable Neighbourhood Search

The variable neighbourhood search (VNS) metaheuristic was first proposed by Hansen and

Mladenović [28, 29]. The basic principle of VNS is to improve a given solution T by a

systematic change of different neighbourhood structures. VNS is based on following three

simple facts.

Fact 1: A local minimum T with respect to a single neighbourhood structure does not

imply that T is a local minimum to any other neighbourhood structure.

Fact 2: The optimal solution has to be a local minimum with respect to all neighbourhood

structures.

Fact 3: For many problems local minima with respect to one or more neighbourhood

structures are relatively close to each other.

It can be gathered from these three facts that in general a local optimal solution with

respect to at least one neighbourhood structure has something in common with the global

optimal solution. It is only for sure that the local minimum provides some information,

that can also be found in the global optimal solution. Unfortunately, this information

cannot be extracted from the local minimum. So an organised search in the predefined

neighbourhood structures of this local minimum is performed in order to improve it. There

are three possible ways to guide this neighbourhood search: deterministic, stochastic or

both combined.

The deterministic approach, called variable neighbourhood descent (VND), manages in

a deterministic way the change of neighbourhoods. The VND concept exploits fact one,

namely that a local optimal solution with respect to one neighbourhood structure is not

necessarily one to another neighbourhood structure. Algorithm 1 gives an overview of

the VND concept. Before executing Algorithm 1 the different neighbourhood structures

N1, . . . ,Nk have to be defined. The idea of the VND concept is to compute iteratively a

local optimum with respect to all different neighbourhood structures. Every time a new best

solution is discovered, assume by exploiting neighbourhood structure Ni with i ≤ k, the

algorithm jumps back to the first neighbourhood structure as it cannot be guaranteed that

this new best solution is also a local minimum with respect to all preceding neighbourhood

structuresNj with 1 ≤ j < i. So each time the algorithm starts searching for better solution
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Algorithm 1: Variable Neighbourhood Descent

create initial solution T ;1

i = 1;2

while i ≤ k do3

find best neighbouring solution T ′ ∈ Ni(T );4

if T ′ better than best solution found so far then5

save T ′ as new best solution T ;6

i = 1;7

else i = i + 1;8

by exploiting neighbourhood structure Ni, it is ensured that the actual best solution is a

local optimal solution with respect to all preceding neighbourhood structures Nj with j < i.

At the end the algorithm terminates in a solution T that is a local minimum with respect

to all neighbourhood structures defined for the VND.

The stochastic approach is referenced as reduced variable neighbourhood search (RVNS).

Algorithm 2 presents the basic idea of the RVNS concept. After defining the different

neighbourhood structures N1, . . . ,Nk the algorithm starts by computing an initial solution

T . In the RVNS concept each neighbourhood structure is no longer explored completely,

identifying the best move. Instead, in each iteration (lines 4 to 9), including all neigh-

bourhood structures Ni with 1 ≤ i ≤ k, a solution T ′ ∈ Ni(T ) is arbitrarily chosen and

compared if it is better than the so far best solution T . This process is called shaking.

Again, as already shown in Algorithm 1, an improvement of the best solution T terminates

the current iteration and starts a new one, beginning with neighbourhood N1.

Algorithm 2: Reduced Variable Neighbourhood Search

create initial solution T ;1

while termination condition not met do2

i = 1;3

while i ≤ k do4

select completely random a solution T ′ ∈ Ni(T );5

if T ′ better than best solution found so far then6

save T ′ as new best solution T ;7

i = 1;8

else i = i + 1;9

However, this shaking makes it impossible to guarantee that at any time the best solution

found so far is a local minimum with respect to all neighbourhood structures. Therefore a

termination condition has to be introduced, e.g. a maximum number of iterations without
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further improvement or a maximum CPU time. The RVNS method seems to be practicable

if the enumeration of a whole neighbourhood is too cost-intensive, e.g. in case of a large

neighbourhood with an exponential number of neighbouring solutions.

And finally, the approach including a deterministic as well as a stochastic component is

known as basic variable neighbourhood search. In principle the basic VNS is an extension

of the RVNS concept. Algorithm 3 presents the idea of the basic VNS. Assuming the

different neighbourhood structures N1, . . . ,Nk have been defined, the algorithm starts by

creating an initial solution, that is simultaneously the best solution T found so far. After

shaking T , that is always performed within the context of the actual neighbourhood under

consideration Ni(T ) with i ≤ k, the resulting solution T ′ ∈ Ni(T ) is tried to be further

improved by local search methods. This complete random selection of a solution T ′ ∈

Ni(T ), where T represents the best solution found so far, avoids any possible cycling.

A drawback of this behaviour is, as already mentioned for the RVNS concept, that it

cannot be assured at any time that a solution T is locally optimal with respect to all

neighbourhood structures. Therefore the use of a termination condition becomes essential.

Again if the local search methods yield an improvement of the overall best solution T found

so far, the current iteration is aborted and a new one is started, beginning by shaking T

within N1(T ). This shaking yields a solution T ′ ∈ N1(T ) as input for the local search

methods. As proposed in [23], these local search methods can be replaced by a complete

VND. However, as a consequence of using a VNS/VND combination the shaking process

has to be extended, since VND always yields a local optimal solution T with respect to

all neighbourhood structures. Therefore, within a shaking process m ≥ 2 moves based on

a single neighbourhood have to be performed to facilitate this VNS/VND combination an

escape from local optimal solutions with respect to all neighbourhood structures.

Algorithm 3: Basic Variable Neighbourhood Search

create initial solution T ;1

while termination condition not met do2

i = 1;3

while i ≤ k do4

select completely random a solution T ′ ∈ Ni(T );5

try to improve T ′ by using local search methods;6

if T ′ better than best solution found so far then7

save T ′ as new best solution T ;8

i = 1;9

else i = i + 1;10
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3.2 Ant Colony Optimisation

The ant colony optimisation (ACO) metaheuristic belongs to the class of ant algorithms.

Ant algorithms were first proposed by Dorigo et el. [10, 13] as a multi agent approach for

various difficult combinatorial optimisation problems, e.g. the travelling salesman problem

(TSP) or the quadratic assignment problem (QAP). Ant algorithms are based on the be-

haviour of real ants. Of main interest is their foraging behaviour and, in particular, their

ability to find the shortest paths between their nest and food sources.

The key component of this ability is a chemical substance, called pheromone. While

walking ants deposit pheromone on the ground, building a pheromone trail. Pheromone

can be sensed by ants. Therefore these pheromone trails enable ants to find their way back

as well as other ants to find food sources, discovered by nest-mates. Furthermore, when

ants have to choose between several trails, they tend to pick, in probability, those with high

pheromone concentration. It has been experimentally shown that in case of different trails

to the food source, this pheromone trail following behaviour is responsible for finding the

shortest path. One of these conducted experiments to study this behaviour in controlled

conditions is the binary bride experiment by Deneubourg et al. [9]. In this experiment

the nest was separated by two branches of same length from the food source. Initially the

two branches were pheromone free. Due to the fact of random fluctuations a few more

ants randomly selected one branch, in the experiment the upper one. As ants deposit

pheromone, the greater number of ants on the upper branch laid more pheromone on it,

that in turn stimulated more ants to choose the upper branch, and so on. Finally nearly

all ants chose the upper branch. A modification of this experiment, where the branches are

of different length, can be found in [17].

Remarkable is the fact that a single ant has only the capability of finding a path to the

food source. Only the coaction of the whole ant colony enables finding the shortest path

between the nest and the food source. Therefore the foraging behaviour of ant colonies

can bee seen as a distributed optimisation process, using only indirect communication,

accomplished through pheromone trails. This indirect communication between nest-mates

is known as stigmergy [20].

The key design component of the ACO metaheuristic is to portion computational resources

to a set of agents (artificial ants), that in turn provide through cooperative interaction good

solutions. As artificial ants are a reproduction of real ants, we can distinguish between

qualities adopted from real ants and those added to make them more efficient and effective:
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• Ant colony: Ant algorithms consist of a finite size colony of artificial ants. These

artificial ants, forming the colony, act as real ants independently and concurrently.

Despite this two properties artificial ants show – as their counterparts in the real

world – a cooperative behaviour.

• Stigmercy: As real ants, artificial ants deposit pheromone on the paths used for

constructing a solution. This pheromone laying behaviour modifies the problem rep-

resentation, that in turn is the basis for the indirect communication among artificial

ants. This way of indirect communication is, as already mentioned, called stigmercy.

• Local moves: Real ants are not able to jump to any position they want to. So

do artificial ants, since they only move through adjacent problem states. Therefore

artificial ants accomplish as their natural counterparts only local moves.

• State transition policy: As real ants, artificial ants apply a stochastic local de-

cision policy while moving through adjacent problem states. This decision policy is

exclusively based on local information, consisting of the pheromone trails and some-

times some a priori problem-specific information. Furthermore, local means that this

information can only be accessed from the state in which it was released. Sometimes

this condition is relaxed so that local information can also be accessed from neigh-

bouring states. So as real ants, artificial ants do not make use of lookahead concepts

to predict future states.

• Memory: Memory is a characteristic of artificial ants, that is not found in their

natural counterparts. Each artificial ant has some memory capacity to store past

activities, that in turn can be used to prevent ants from entering invalid problem

states. Another practical application of using memory capacity is to compute the

quality of the generated solution.

• Amount of pheromone: In contrast to real ants, artificial ants are able to evaluate

the fitness of the solution found. Depending on this value they are able to bias

the amount of pheromone laid on the paths forming the solution. In general the

amount of pheromone deposited by an ant is proportional to the fitness of the solution

constructed by this ant.

• Time of pheromone laying: Artificial ants are not only capable of regulating

the amount of pheromone they deposit, they are also able to influence the time

of pheromone laying. Real ants deposit pheromone while walking. By contrast ant
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algorithms adapt the time when pheromone is laid to the problem. For many problems

the deposition of pheromone after generating the solution turned out to be more

practical.

• Additional capabilities: The basic capabilities can be extended to improve overall

performance. Lookahead, backtracking or local optimisation are examples of these

extra capabilities, to name just a few.

On principle the activity of the ant colony optimisation metaheuristic can be described as

follows. In each iteration of an ACO algorithm an ant colony, consisting of a finite size of

artificial ants, equipped with the above listed characteristics, tries to find good solutions to

a difficult combinatorial optimisation problem. A solution is a minimum cost path through

the different problem states. It should be clear that this path has to satisfy all problem

constraints. The basic ACO concept envisions two tasks for each artificial ant. The first

one is constructing either whole solutions or parts of a solution. Important is that while

accomplishing this task ants only move through adjacent problem states. Each time an

artificial ant moves from one state to the next, it uses a stochastic local decision policy,

based solely on local information, that is information that can be only accessed from the

actual state. To avoid ants to enter invalid problem states this local decision policy can

be extended with private information of the artificial ant. The second task each artificial

ant has to achieve is depositing pheromone. This can be arranged in several ways. The

one extreme is that while moving through adjacent problem states ants deposit pheromone

on the paths used. The other is that after finishing task one, thus the whole solution

or a part of it has been constructed, ants evaluate the fitness of the solution and deposit

pheromone depending on its quality. Combinations and variations of these two extremes are

also possible pheromone depositing strategies. This pheromone laying behaviour is the key

component of the ACO metaheuristic, since it changes the representation of the problem,

more precisely the way how the problem is experienced by other artificial ants, and therefore

influences the further search process. After accomplishing these two tasks, creating or

improving a solution and depositing pheromone, the artificial ant “dies”, respectively is

deleted from the colony.

Beside these two basic tasks of artificial ants, two further procedures can be used to en-

hance the performance of the ACO metaheuristic, pheromone trail evaporation and daemon

activities. The process of decreasing intensity of pheromone trails, assuming no further

pheromone is deposited on them, is called pheromone trail evaporation. Pheromone trail
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evaporation becomes essential when prohibiting a too fast convergence. The strength of

pheromone trail evaporation and pheromone depositing on the one hand, as well as the

stochasticity of the local decision policy on the other hand are responsible that the ant

colony optimisation metaheuristic is not trapped soon in a local optimum, but exploits

already accumulated knowledge. To find the right balance between the pheromone update

process and the stochasticity of the decision policy is essential, since only then an explo-

ration of many different search areas of the solution space is possible. Daemon activities

describe actions that cannot be accomplished by a single ant. Therefore they are executed

by a global guard, called a daemon. A typical activity is biasing the search process by

depositing some additional pheromone on paths forming an especially good solution.

Over the years many different ACO metaheuristics have evolved. More or less they all have

their roots in the first ACO algorithm developed, the so called ant system (AS) proposed

in 1991 by Dorigo [10, 13]. Three ant system algorithms have been introduced, that differ

only in the pheromone update process. In ant-density (constant amount of pheromone)

and ant-quantity (amount of pheromone inversely proportional to the costs of the chosen

trail) algorithms ants deposit pheromone while constructing the solution. On the contrary

to this two approaches, in ant-cycle algorithms ants lay pheromone after having finished

building a solution. Computations on a set of benchmark problems [10, 13] showed, that

the performance of ant-cycle algorithms was superior to those of ant-density and ant-

quantity algorithms. So research concentrated on the characteristics of ant-cycle, which is

nowadays known as ant system, whereas the two other algorithms were abandoned. Other

remarkable characteristics of ant system algorithms are that every ant deposits pheromone

and that the amount of pheromone is proportional to the fitness of the solution found. AS

algorithms do not make use of daemon activities, since the pheromone trail evaporation

process is delegated to every ant. So each artificial ant is not only responsible for depositing

pheromone on the paths used, but also for decreasing pheromone on all paths, either those

used as well as those not. The memory capability is used to prohibit ants from entering

invalid problem states. In general, before starting an AS algorithm, each path, connecting

two adjacent problem states, is initialised with a small positive amount of pheromone.

Experimental results on small TSP instances [13] showed that the AS approach reached

and sometimes even exceeded the performance of some general purpose heuristics compared

to. Unfortunately, on larger problem instances it could not keep up with other heuristics.

So several other ACO metaheuristics have evolved to improve the performance of the ant

system.
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One of this refined approaches was proposed by Stützle and Hoos [34, 33] in 1997. They

presented a MAX −MIN ant system (MMAS) for the travelling salesman problem, that

is in the main an ant system with three slightly differences. First, the pheromone trails are

updated by a daemon that deposits extra pheromone on the best discovered tour. Second,

the amount of pheromone on each path connecting two adjacent problem states has to be

within a given interval [τMin, τMax]. The pheromone amount τ is not allowed to fall under

τMin, nor to exceed τMax. And finally, as a third difference, the pheromone amount on

each path is initialised to the maximum τMax.

Another ACO metaheuristic developed to improve the poor performance of the basic AS

is the ant colony system (ACS) introduced by Dorigo and Gambardell in 1996 [12, 11].

The main difference to the ant system is the daemon activity guarding the pheromone

update. It picks within one iteration only the best solution constructed by an ant and

deposits pheromone only on the paths forming this solution. So only a single artificial ant

of the whole colony deposits its pheromone. Furthermore, the daemon is responsible for

the pheromone trail evaporation process. Another difference can be found in the details of

the local decision policy.

To conclude, the basic concepts of the ant colony optimisation heuristic are quite simple,

inspired by nature. Nevertheless, for a concrete ACO implementation various problem

specific decisions have to be made, for example the number of artificial ants the colony

should consist of, the kind of pheromone update to be used, including depositing as well as

evaporation, the usage of a local decision policy and a-priori problem-specific local infor-

mation. Another problem dependent key component is the initialisation of the pheromone

amount on the paths, connecting adjacent problem states. Experience shows that the ACO

metaheuristic can only yield good results when applied to problems where each state in

the search space does not have a large number of neighbouring solutions. Otherwise the

probability that artificial ants will visit the same state is marginal due to the huge number

of possible moves. As a consequence the key component of an ACO, making local decisions

based on pheromone information, does not work anymore because of the small pheromone

differences on the various paths.



4. NEIGHBOURHOOD STRUCTURES

This chapter will present the four different neighbourhood structures, namely Edge Ex-

change, Node Swap, Centre Exchange and Level Change. These neighbourhood structures

have been developed together with Gruber and Raidl, who used already improved ver-

sions of some of them in their VNS for the BDMST [21]. Beside the definitions and data

structures for these neighbourhood structures also pseudo-code to completely enumerate

the different neighbourhoods is introduced, since the local search strategy used by the

ant colony optimisation approach, presented in this master thesis, follows a best improve-

ment strategy. As already explained in the previous chapter using a best improvement

strategy requires to explore the whole neighbourhood of a given solution T to identify the

most profitable move. An incremental enumeration of a neighbourhood, after having it

completely explored once, depends on the neighbourhood structure. Precondition for an

incremental enumeration is the possibility to store information during the exploration of a

neighbourhood that allows a faster identification of the successive best move, as well as a

locally restricted influence on this information of an executed move. Such an incremental

enumeration of the neighbourhood is introduced for Node Swap and Level Change.

A solution T is interpreted as a directed outgoing arborescence, i.e a directed tree rooted

at a centre to be determined. The following data structures are used:

• For all nodes v ∈ V a list succ(v), storing all immediate successors of node v.

• An array pred, containing the direct predecessor for each node. For the centre node(s)

the value will be NULL.

• An array lev, storing for each node v ∈ V the level v is assigned to. Valid levels, nodes

can be assigned to, are within the range [0, ..., bD/2c], where a level of 0 denotes a

centre node. Note, that the level a node v is assigned to is not always equal to the

depth of v in the tree with respect to the centre.

• For each level l = 0, ..., bD/2c a set Vl ⊂ V , storing all nodes at level l.
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For representing a valid solution, for example the successor lists or the predecessor array

would be sufficient. The appreciation for using additional data structures is to speed up

computation in various situations.

The four different neighbourhood structures can be separated into two groups according

to the data structures the neighbourhood enumeration is based on. On the one hand

there are Edge Exchange and Node Swap concentrating on the predecessor and successor

relationships of the nodes. As these relationships are usually associated with trees, we

denote this group as tree based. Whereas on the other hand for Centre Exchange and

Level Change the level a node is assigned to is of major interest. We will refer to this group

as level based.

Another important difference between the four neighbourhood structures is their ability

to change the centre of a solution T . This is quite an important fact, since we never

know (assuming we are dealing with instances that cannot be solved by exact algorithms

in pleasing time) if the current centre is the best choice for a certain instance. As the name

already presumes Centre Exchange concentrates its neighbourhood enumeration on finding

a new centre, but also Node Swap includes the possibility of a centre change.

4.1 Tree Based Neighbourhoods

Edge Exchange and Node Swap operate on a tree structure, since they use basically the

successor lists and the predecessor array. The lev array is utilised to store the depth of

a node v with respect to the centre. From the level sets only V0 is of interest, since it

facilitates immediate access to the centre node(s).

4.1.1 Edge Exchange Neighbourhood

The Edge Exchange neighbourhood of a feasible solution T is defined as follows: Neighbours

are all feasible solutions T ′ that differ only in a single directed edge. In other words, Edge

Exchange simply cuts off a subtree S and reconnects this subtree S at any other feasible

place of T , see Figure 4.1.

To fully and efficiently explore the neighbourhood of the current solution T we introduce

some additional data structures:

• A static n× (n− 1) array, named sorted neighbour list, storing for each node v ∈ V

all adjacent nodes in the order of ascending connection costs.
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v

uv u

Fig. 4.1: Edge Exchange neighbourhood

• An array h storing for each node v ∈ V the height of the subtree rooted at v. For

leaf nodes this value will be 0.

The idea behind this sorted neighbour list is to consider only nodes as new predecessor for

a disconnected subtree, that are cheaper than the current one. This static array can be

computed in advance in O(n2). The height array is calculated in O(n).

Since a best improvement strategy is used, the complete enumeration of the neighbourhood

of a given solution T can be described as in Algorithm 4. For each node v, except those

forming the centre, a cheaper predecessor is tried to be found using the sorted neighbour

list of v. The actual move is saved as new best move if three conditions (line 7) are met.

First, only the most profitable move is saved. Second, it has to be guaranteed that the

diameter bound is not violated when moving the whole subtree S rooted at v. Third, it

has to be assured that after reconnecting subtree S no circle has been introduced. So the

third condition ensures that the subtree S is not appended to any node u within S.

Algorithm 4: Edge Exchange Neighbourhood Search

∆c∗ = 0;1

for each node v ∈ V \ V0 do2

i = 0;3

while c(Ni(v), v) < c(pred(v), v) do4

u = Ni(v);5

∆c = c(pred(v), v)− c(u, v);6

if7 (
∆c > ∆c∗

)
∧

(
lev(u)+1+h(v) ≤ bD/2c

)
∧

(
lev(u) ≤ lev(v)∨v /∈ path(V0, u)

)
then

store this move as new best move m∗ = (u, v) and update ∆c∗ = ∆c;8

i = i + 1;9

The total size of the Edge Exchange neighbourhood is O(n2). For computing the new

objective value when evaluating a move only cost differences have to be considered, this
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can be done in constant time. Thus, the total time to explore the whole neighbourhood

and to identify the best move is also O(n2).

An incremental enumeration of the neighbourhood after executing the most profitable move

seemed not to be practicable, as the information collected while computing the best im-

provement move cannot be exploited efficiently. So for reaching a local optimal solution

Algorithm 4 has to be called as long as it yields a profitable move. After the best im-

provement move has been identified it is performed and the data structures are updated

accordingly. Therefore node v is deleted from the successor list of its old predecessor and

appended to the successor list of its new one. Furthermore, the predecessor of node v is

actualised. Moreover, the height value of the new and old predecessor has to be updated

and – if necessary – the depth for all nodes, that are part of the moved subtree S rooted

at v.

4.1.2 Node Swap Neighbourhood

The Node Swap neighbourhood of a feasible solution T is defined as follows: Neighbours

are all feasible solutions T ′ where a node v and one of its immediate successors u ∈ succ(v)

have changed their position within the tree. In other words, node v that was predecessor

of node u before the move is now an immediate successor of node u. Furthermore, node

u inherits all successors of node v and the successor list of node v, succ(v), is cleared.

Reconnecting all immediate successors of v to u ensures that the diameter bound is not

violated. Figure 4.2 illustrates this issue.

v

u v

u

Fig. 4.2: Node Swap neighbourhood

For this neighbourhood it is possible to implement an incremental exploration after having

identified the most profitable move. Therefore we introduce additional data structures:

• For every profitable move the following information is saved: The old root node v,

the new root node u, the predecessor pred(v) and successor list succ(v) of the old

root node, the cost difference ∆c that will be saved if node u and v are swapped,
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and finally a list l of all nodes that have to be checked once again when the move

is performed, since only their situation alters if node u and v change their position.

Members of this list l are pred(v), u, and all nodes n ∈ succ(v)\{u}.

• A priority queue Q containing all profitable moves, including the information saved

for each move. The priority queue Q has always the most lucrative move on top.

After having explored the whole neighbourhood and identified the most profitable

move, this priority queue plays the key role for computing the successive best move

within the neighbourhood.

Using again a best improvement strategy the full exploration of the Node Swap neighbour-

hood of a solution T can be described as in Algorithm 5. Already the first line points out

a major difference to the Edge Exchange neighbourhood. The Node Swap neighbourhood

does not exclude the centre nodes, enabling neighbouring solutions T ′ having a different

centre. After having selected a node v the algorithm computes in lines 3 to 8 the current

costs cv of the connections from v to its immediate successors, succ(v), and, if v /∈ V0,

also the current costs from v to its predecessor. Then each node u ∈ succ(v) is tried

to be swapped with node u. Lines 10 to 15 calculate the costs cu of this potential new

arrangement. This time the connections from u to each node in succ(v) \ u are essential

plus the connection from u to v. And again, if v /∈ V0, also the costs from u to v’s current

predecessor. In case the diameter is odd the costs from u to the second centre node have to

be taken into account. In line 16 the costs saved by a node swap of v and u are computed.

If this leads to an improvement greater than the best found so far then node u is marked

as best node for a swap with node v. After having tested every node u ∈ succ(v) line 20

checks if a profitable move has been identified. If so the move and the corresponding data

is put into the priority queue Q.

The total size of the Node Swap neighbourhood is O(n). The evaluation of a single neigh-

bouring solution depends on the degree of the node under consideration. Therefore the

time required to completely enumerate the whole neighbourhood is O(n · dmax), where

dmax denotes the maximum degree of any node in the current solution.

For reaching a local optimal solution with respect to the Node Swap neighbourhood an

incremental enumeration can be applied after having explored the whole neighbourhood

once. Since the worst case scenario has to be taken into account the incremental enumer-

ation still requires time in O(n · dmax), nevertheless, it speeds up computation in practice

significantly.
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Algorithm 5: Node Swap

for each node v ∈ V do1

∆c∗ = 0; bestNode = NULL;2

if v ∈ V0 then3

cv =
∑

m∈succ(v) c(v,m);4

if diameter D is odd then5

cv += c(v, other centre node);6

else7

cv = c(pred(v), v) +
∑

m∈succ(v) c(v,m);8

for each u ∈ succ(v) do9

if v ∈ V0 then10

cu =
∑

m∈(succ(v)∪{v})\{u} c(u, m);11

else12

cu = c(pred(v), u) +
∑

m∈(succ(v)∪{v})\{u} c(u, m);13

if diameter D is odd ∧ v ∈ V0 then14

cu += c(u, other centre node);15

∆c = cv − cu;16

if (∆c > ∆c∗) then17

∆c∗ = ∆c;18

bestNode = u;19

if ∆c∗ > 0 then20

put move into priority queue Q;21

Incremental enumeration of the neighbourhood of solution T

After executing the most lucrative move, only certain nodes have to be checked in order to

have once again all possible improvement moves stored in the priority queue Q. The nodes

affected when executing an improvement move are part of the data stored for it in Q, they

can be found in list l. So for an incremental enumeration of the Node Swap neighbourhood

only a slight modification of Algorithm 5 is required: Instead of executing it for all nodes,

as stated in the first line, it is only executed for those affected when performing the best

move received from Q.

The complete algorithm to reach a local optimal solution is now as follows: First the whole

neighbourhood is explored as described in Algorithm 5 to identify the first best move.

Afterwards, the priority queue Q contains all profitable moves, having the best one on top.

Then, as long as the priority queue Q is not empty, the first element, containing the best

improvement move, is received from Q. In the following it has to be checked if this move

is still valid. Therefore the current local situation is compared to the situation when the
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move was evaluated. This means that it is verified, if node v, that will be replaced by one

of its successors u, still has the same predecessor and the same successors. Only in this

case the move is considered to be still valid and will be executed. Otherwise it is ignored

and the next move is fetched from the priority queue Q. Therefore the set of immediate

successors of node v, succ(v), and its predecessor, pred(v), are saved along with the move.

Assuming a move turns out to be valid it is executed immediately: The successor list of

pred(v) has to be updated, by deleting node v and adding node u. Furthermore, each node

that was a direct successor of node v before performing the move has to be deleted from

the successor list of node v and added, excluding node u, to the successor list of node u. In

addition the predecessors of all rearranged nodes have to be set accordingly: Node v gets

node u as its new predecessor, u gets the old predecessor of node v, pred(v), and all old

successors of node v, succ(v), get node u as their new predecessor. The last step before

fetching the next move from the priority queue Q is the update of all affected nodes as

described above. A local optimal solution is reached when the priority queue Q is empty.

At this place it has to be mentioned that Gruber and Raidl demonstrated in [21] that

the exploration of this Node Swap neighbourhood can be implemented more efficiently by

directly manipulating the moves stored in the priority queue when updates are required.

As a consequence Q always contains only valid moves and so there is no need for the

corresponding validity test and list l.

4.2 Level Based Neighbourhoods

The Centre Exchange and Level Change neighbourhood structures are not based on the pre-

decessor and successor relationships of the nodes but on the levels (0 ≤ lev(v) ≤ bD/2c, v ∈

V ) the nodes are assigned to. There are always exactly 1+D mod 2 nodes with a level of 0,

building the centre. From the level information a local optimal tree can easily be derived:

Each node v ∈ V \ V0 is connected to the least cost predecessor p with lev(p) < lev(v). If

there are multiple potential predecessors for a node v with the same minimum edge costs,

v always connects to one with minimum level.

4.2.1 Centre Exchange Neighbourhood

The Centre Exchange neighbourhood of a feasible solution T is defined as follows: Neigh-

bours are all feasible solutions T ′ where exactly one centre node c ∈ V0 is replaced by any

other node u ∈ V \ V0 and set to level bD/2c, see Figure 4.3. This maximises the number
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of potential predecessors for c. As a consequence, all immediate successors of c have to find

a new predecessor.

u

H = bD
2 c

0

1

c2

. . .. . .

H − 1

c1

Fig. 4.3: Centre Exchange neighbourhood

Again, for a full and especially efficient exploration of the whole neighbourhood some

additional data structures are advantageous:

• For each move the old and the new centre nodes are stored. Furthermore, a list

l of new successor ↔ predecessor relations ((u, v): node u will get node v as new

predecessor).

Algorithm 6 describes the complete enumeration of the Centre Exchange neighbourhood.

As the name suggests this neighbourhood focuses on finding a new centre. This is quite an

important fact, since beside Centre Exchange there is only the Node Swap neighbourhood

that is able to change the centre, but not on this scale. In line 3 the centre node c is

assigned to level bD/2c. Afterwards, a new predecessor has to be found for c. Candidates

are all nodes v with 0 ≤ lev(v) < bD/2c. Note that a potential predecessor for the moved

centre node c at level 0 exists only in case of an odd diameter. In addition, for all successors

u ∈ succ(c) with lev(u) > 1 new predecessors have to be found (lines 5, 6). Everything

happened so far is only computed once. In lines 8 to 19 each node, excluding those forming

the (old) centre, is tried as new centre node. For each node u ∈ V1 it has to be checked

in case of an odd diameter if it is cheaper to connect u to the new centre node v or the

remaining second centre node. The even diameter case is much simpler since all nodes

u ∈ V1 have to be appended to v, because v is their only available predecessor. This

happens in lines 11 to 14. For all nodes at the levels 2 to the old level of v it has to be

checked if now v is a cheaper predecessor than their current one. In line 16 the attempt

installing node v as new centre node is evaluated. If it turns out that moving node v to the

centre is the most profitable move found so far it is saved as new best move (lines 17-19).

The total size of this neighbourhood is O(n). The worst-case time complexity to evaluate a

single neighbouring solution is also O(n) when only considering cost differences. Therefore
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Algorithm 6: Centre Exchange Neighbourhood Search

for node c ∈ V0 do1

∆c∗ = 0;2

assign c to level bD/2c;3

find least cost predecessor p for c with 0 ≤ lev(p) < bD/2c; add (c, p) to l;4

for each node v ∈ succ(c) with lev(u) > 1 do5

find a new predecessor p for node v with lev(p) < lev(v); add (v, p) to l;6

helperList = l;7

for each node v ∈ V \ V0 do8

l = helperList;9

for each node u ∈ V1 do10

if diameter D is odd ∧ c(u, second centre node) < c(u, v) then11

add (u, second centre node) to l;12

else13

add (u, v) to l;14

check for all nodes at the levels 2 to lv if u would be a cheaper predecessor15

than their current one; if yes add the corresponding pair to l;
evaluate ∆c of whole move;16

if ∆c > ∆c∗ then17

save move as new best move using c, v, l;18

∆c∗ = ∆c;19

a complete exploration of the neighbourhood of a given solution T , including identifying

the most lucrative move, can only be done in O(n2).

An incremental enumeration of the neighbourhood is not presented here, since an im-

plementation is not straightforward and we assume that the solution this neighbourhood

structure is applied to is already of some good quality. Therefore it is unlikely to have a

longer chain of consecutive improvement moves. A local optimal solution can be reached

by calling Algorithm 6 as long as it yields an improvement move. After having identified

the most profitable move of the whole neighbourhood it is executed by deleting the old

centre node c from the set V0 and the new centre node v from the set Vlev(v). Then they are

appended to their new level sets, c to VbD/2c and v to V0. Furthermore, the level array lev is

updated by setting lev(c) = bD/2c and lev(v) = 0. To complete the move the predecessor

array and successor lists are updated based on the information stored in the list l. In case

of an odd diameter the algorithm is executed consecutively on both centre nodes.
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4.2.2 Level Change Neighbourhood

The Level Change neighbourhood of a feasible solution T is defined as follows: Neighbours

are all feasible solutions T ′ where the level of exactly one node v ∈ V \ V0 is either decre-

mented or incremented. 1 ≤ lev(v) ≤ bD/2c must hold after moving node v. Figure 4.4

visualises the Level Change neighbourhood.

H = bD
2 c
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Fig. 4.4: Level Change neighbourhood

The Level Change neighbourhood is the second one for which an incremental enumeration,

after having explored the whole neighbourhood once, is presented. As for the incremental

enumeration of the Node Swap neighbourhood again additional data structures are required.

• For every profitable move the following information has to be stored: First the direc-

tion of the move, indicating if it is an increment or decrement one. Furthermore, the

costs ∆c saved by it, and finally a list l representing new successor ↔ predecessor

relations.

• A priority queue Q always having the most profitable move on top.

• An array dec, saving for each node a pointer to its decrement move within Q, and one

array inc, storing a pointer to its increment move. These two arrays are necessary to

have immediate access to all moves saved in the priority queue Q.

Algorithm 7 describes the exploration of the whole Level Change neighbourhood. As stated

in line one this algorithm is executed for all nodes, excluding those forming the centre. The

algorithm is split into two parts. In the first one (lines 2 to 11) the algorithm decrements

the level of node v and saves this move if profitable. A decrement move is only possible if

lev(v) > 1, since this neighbourhood does not effect the centre, but decrementing a node u

with l(u) = 1 would put this node u into the centre. After decrementing the level of v for

each node u at the old level of v it has to be checked if it is now cheaper to reconnect u to

become successor of v (lines 4 to 6). If the level of v’s predecessor is less than the new level
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Algorithm 7: Level Change Neighbourhood Search

for node v ∈ V \ V0 do1

if lev(v) > 1 then2

levnew(v) = lev(v)− 1;3

for each node u ∈ Vlev(v) do4

if c(u, v) < c(u, pred(u)) then5

append (u, v) to list l;6

if lev(pred(v)) == levnew(v) then7

find new predecessor p for node v with lev(p) < levnew(v); add (v, p) to l;8

evaluate ∆c of whole move;9

if ∆c ≥ 0 then10

put move into priority queue Q;11

if lev(v) < bD/2c then12

levnew(v) = lev(v) + 1;13

helper = pred(v);14

for each node u ∈ Vlev(v) do15

if c(u, v) < c(helper, v) then helper = u;16

if helper 6= pred(v) then17

add (v, helper) to l;18

for each node u ∈ succ(v) do19

find new predecessor p for node u with lev(p) < lev(u); add (u, p) to l;20

evaluate ∆c of whole move;21

if ∆c > 0 then22

put move into priority queue Q;23

of v, v’s predecessor is kept. Otherwise, a new predecessor has to be found (lines 7, 8) in

the appropriate levels. In line 9 the costs of this move are evaluated. If it turns out that

decrementing v will improve the solution this move is put into the priority queue Q. Even

if the move does not change the objective value instantly (∆c = 0) it is put into the priority

queue since a node at a lower level can act as potential predecessor for a larger number of

other nodes, this could be valuable for subsequent iterations. Such a move, where the level

of a node is decremented but the tree derived from the level information does not change,

is called a null move in the following.

In the second part (lines 12 to 23) the algorithm increments the level and saves this move

if profitable. An increment of the level of node v is only possible if lev(v) < bD/2c, since

after incrementing a node u with lev(u) = bD/2c the diameter bound would be violated in

general. So when incrementing node v a node at the old level of v has to be found where
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v can be connected as successor in a cheaper way (lines 15, 16). If no such predecessor

can be found an improvement is impossible. Assuming a cheaper predecessor was found,

in lines 18 to 20 the algorithm assigns to all old successors u of v (u ∈ succ(v), with

lev(u) = levnew(v)) a new predecessor with an appropriate level, since u and v are now on

the same level and so cannot be connected any longer. In line 21 the increment move of v

is evaluated and if it gains an improvement it is put into the priority queue Q.

As the Level Change neighbourhood is of size O(n) and in the worst-case scenario for each

decrement or increment move a node has to be compared with nearly every other node, a

complete enumeration of it requires time in O(n2).

A local optimal solution has been reached when the priority queue Q is empty. In the fol-

lowing section an incremental enumeration of the Level Change neighbourhood is presented

that can be applied after having explored a whole neighbourhood once. In this section it

will also be described how to efficiently update information stored in Q when executing a

move which has local impact on other nodes and their ability to improve the solution with a

level increment or decrement. The incremental enumeration cannot reduce the worst-time

complexity of O(n2), but still speeds up the computation time essential in practice.

Incremental enumeration of the neighbourhood of solution T

Assuming the whole neighbourhood has been explored applying Algorithm 7 and all im-

provement moves are saved in the priority queue Q, now the best move is fetched and

performed. Therefore the node to be moved is deleted from its old and added to its new

level: According to the direction of the move it is assigned either to the higher level, in case

of an increment move, or to the lower level in case of a decrement move. Furthermore, the

predecessor array and successor lists are updated based on the list l included in the data

stored for a move in Q.

In order to have again all possible improvement moves in a valid state in the priority queue

Q, the following rechecks and updates have to be done after executing a move. We have to

distinguish between a decrement and increment move.

Case 1: The performed move decremented the level of node v from l + 1 to l.

• If there is an increment move for node v in the priority queue, delete it (it would be

no longer valid).

• Reevaluate the following moves:
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Fig. 4.5: Decrement move of node v (case 1)

1. Decrement the level of node v.

Node v continues moving one level down, as this move was not possible before.

2. Increment the level of the new predecessor of v, prednew(v), if its level is l − 1

and if this move is already in the priority queue Q. To verify if this move is

already in the priority queue Q the inc array is used.

The case that prednew(v) loses v as successor is new. So a new predecessor for v

has to be found, this information must be added to the successor ↔ predecessor

list and the costs saved by this improvement ∆c have to be updated accordingly.

If the improvement ∆c becomes negative or equal to zero after the update, the

corresponding increment move can be removed from the priority queue Q (this

holds true for every following increment move, too).

3. Decrement the level of each old successor u of v with lev(u) = l + 2. Note that

these nodes will remain successors of v.

This move might not change the represented tree and therefore the objective

value, but as already mentioned it should be considered as an improvement

move since it may allow further nodes to decrement their level leading to other

improvement moves.

If such a move is already in the priority queue Q only the predecessor of u and

the costs saved ∆c have to be updated.



4. Neighbourhood Structures 34

Otherwise this move has to be evaluated from scratch with the exception that

there is no need to search for a predecessor for u, since it can keep v for sure.

4. Decrement the level of each node u at level l+2 having its predecessor pred(u) 6=

v at level l + 1.

Node u will lose its current predecessor and now v might become its new one.

If such a move can be found in the priority queue Q only the predecessor of u

stored in this move has to be checked against v. In case v would be the better

choice, the predecessor of u and ∆c have to be updated accordingly.

Otherwise, the decrement move of u has to be evaluated completely new includ-

ing the search for a new predecessor.

5. Decrement the level of each node u being a new successor of v (note that all

these new successors are on level l + 1) if such a decrement move is already in

the priority queue Q.

Before moving v to level l node u had another predecessor, assume w. So the

calculated ∆c of this move was based on the connection between u and w. Now

u has v as its predecessor (c(u, v) has to be less than c(u, w)). In addition, the

move can contain the information that u would have become the new predecessor

of v at its old level l + 1, but after moving v to level l this is no longer possible.

Furthermore, the move can include new successors of u now connected to v; they

have to be checked if still u would be the better predecessor for them.

So there are three possible impacts to ∆c and the successor ↔ predecessor list

of the move that have to be updated accordingly.

6. Decrement the level of each node u at level l + 1 not being a new successor of v

if there is already a corresponding move in the priority queue Q.

The situation is more or less the same as above with the restriction that the

predecessor of u does not change when moving v to level l.

So there are only two possible impacts to ∆c and the successor ↔ predecessor

list. In this case the objective value gain can only decrease, making this move

worse.

7. Increment the level of each node u being a new successor of v if such a move is

already in the priority queue Q.

The only possibility for an increment move to be profitable is that afterwards

the node incremented can be connected much cheaper to a node at its old level.
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There are two cases:

(a) In the move stored in Q, v would have become the new predecessor of u.

After moving v to level l this is already the case so the move can be deleted

without any further investigations.

(b) Otherwise u is now connected cheaper than it was before when the move was

evaluated so ∆c of the corresponding move has to be updated accordingly.

8. Decrement the level of each node u at level l, excluding v, if u would be a cheaper

predecessor for v than its current predecessor, i.e. c(v, u) < c(v, prednew(v)).

If a decrement move for u is already found in Q only the new connection between

u and v has to be added. Furthermore, ∆c of the corresponding move has to be

updated.

Otherwise, the move has to be calculated from scratch.

9. Increment the level of each node u at level l excluding v.

Now node v could be a new predecessor for u and for all old successors of u at

level l + 1, as they lose their predecessor.

If there is already an increment move for u in the priority queue two things have

to be checked:

(a) The move contains another new predecessor, assume w, for u. If v would be

a cheaper predecessor than w, update the corresponding information and

the improvement ∆c.

(b) Old successors of u at level l + 1 will lose their predecessor. For all of these

nodes there will be a new predecessor stored in the move.

– In the meantime (after the decrement move of v) it is possible that an

old successor, assume w, of u is now successor of v. In this case w will

not lose its predecessor, the corresponding information stored in the

move record of u must be removed and ∆c has to be updated.

– For all nodes still successors of u (after performing the move of v) the

new predecessor stored in the move has to be compared to v if v would

be a better choice and if so, the corresponding information and ∆c must

be updated.

– In case u is the old predecessor of v there will be a new predecessor for

v stored in the move. This information can be removed and ∆c has to

be updated accordingly.
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If no increment move for u can be found in the priority queue Q, the move has

to be calculated completely new.

Case 2: The performed move incremented the level of node v from l − 1 to l.
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Fig. 4.6: Increment move of node v (case 2)

• If there is a decrement move of node v in the priority queue, delete it (it would be

no longer valid).

• Reevaluate the following moves:

1. Increment the level of v.

Node v continues moving a level up, as this move was not possible before.

2. Increment the level of the old predecessor of v, predold(v), if its level is equal to

l − 2.

Note that in this case v will not lose its predecessor. Therefore, if the move is

already in the priority queue Q, only the objective value gain ∆c will change

and the new connection of v to another predecessor can be deleted.

Otherwise, the move has to be evaluated from scratch.

3. Decrement the level of each node u at level l − 1 if such a move is already in

the priority queue Q and u would be a cheaper predecessor for v than the old

predecessor of v, i.e. c(v, u) < c(v, predold(v)).
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If this move is not in the priority queue Q it still has not to be considered,

as nothing changed to make this move profitable. Nevertheless, if the move is

already in Q the costs saved by this move ∆c include the benefit of connecting

v to u instead of connecting it to predold(v). Therefore, ∆c and the fact that v

is already connected to u have to be updated.

4. Increment the level of each node u at level l− 1 if such a move is already in the

priority queue Q.

The move of v to level l has a lot of side effects on already existing increment

moves of other nodes from level l − 1 to l. For example v is no longer available

as predecessor for u and all old successors of u at level l. In addition, v and

some old successors of v at level l could now have u as their new predecessor

and so would require to find a new node they can connect to. Due to these

various special cases an increment move of u already found in Q is evaluated

from scratch.

5. Decrement the level of each node u at level l excluding v.

In case such a move is found in the priority queue Q two things have to be

checked.

(a) Node v could become a new successor of u if u is a cheaper predecessor for

v than its new one, i.e. c(u, v) < c(prednew(v), v).

(b) Old successors of v at level l have lost their predecessor. Node u could now

be attractive as new predecessor, if this connection is not already saved in

the decrement move of u.

In both cases the objective value gain ∆c and the successor ↔ predecessor list

of the move object have to be updated accordingly.

If such a move is not found in the priority queue Q it has to be evaluated

from scratch. For efficiency the computation can be split into two steps. The

only things changed are the two points described above, u is a possible new

predecessor for v and for old successors of v. If the evaluation of these changes

does not lead to a positive ∆c the move cannot be valuable. Therefore, the

computation can already be aborted at this point.

6. Increment the level of each old successor u of v at level l.

After executing the move of node v from level l − 1 to l node u has got a new

predecessor and is now connected with higher costs. With an increment move u
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can get back its old and cheaper predecessor v.

If such a move is already in the priority queue Q then only ∆c has to be updated

accordingly, since before v’s increment move u was successor of v and u has now

a different predecessor. The increment move of u stored in the priority queue

Q means that there is another, cheaper predecessor for u at level l so it is not

necessary to check the new predecessor of u stored in the move record against v.

If no such move can be found in the priority queue Q the increment move of u

has to be evaluated completely new.

7. Decrement the level of each successor u of v at level l + 1 if such a move is

already in the priority queue.

If no such move is found in Q it can be ignored since nothing happened that

would now make a decrement of node u profitable.

In case there is such a move, u will lose v as predecessor so a new predecessor

has to be found leading to a different objective value gain ∆c. The rest of the

move can be taken without any change.

8. Decrement the level of each node u at level l + 1 with predecessors at level l,

excluding successors of v, if such a move is already stored in the priority queue

Q and u would have become successor of v.

Node u will lose its best predecessor v after performing its decrement move.

Again, the move itself can keep unchanged, only a new predecessor has to be

found and the improvement ∆c must be updated accordingly.



5. ANT COLONY OPTIMISATION FOR THE BDMST PROBLEM

In this chapter the concrete design of the ant colony optimisation algorithm for the bounded

diameter minimum spanning tree problem, developed within the context of this master

thesis, is presented. As already mentioned, ACO algorithms can be extended with extra

capabilities to improve overall system efficiency, e.g. lookahead, local optimisation or back-

tracking strategies, to name just a few. The ACO algorithm introduced here is equipped

with a local optimisation heuristic, namely a variable neighbourhood descent. So before

going into the details of the ACO algorithm for the BDMST problem itself, first a VND

for the BDMST is introduced, as this VND plays an important role within the ant colony

optimisation algorithm.

5.1 Variable Neighbourhood Descent

In Chapter 3.1 various strategies to guide a search within a certain neighbourhood have

been described. For the ACO the deterministic variable neighbourhood descent (VND)

framework is used. The different neighbourhood structures for this VND are those four

presented in the preceding chapter, namely Edge Exchange, Node Swap, Centre Exchange

and Level Change.

The VND algorithm introduced here varies a little from the general VND framework as

proposed by Hansen and Mladenović [23]. When following this general VND framework,

the algorithm stops exploring a certain neighbourhood of a solution T , Ni(T ) with i > 1,

after identifying the best neighbouring solution of T with respect to this neighbourhood

structure, T ′ ∈ Ni(T ). It sets T to T ′ and switches back immediately to the first neigh-

bourhood structure N1. However, as a best improvement strategy is used to identify an

improvement move, the whole neighbourhood has to be enumerated. Depending on the de-

finition of the neighbourhood structure it is sometimes possible to store information while

exploring the whole neighbourhood (as shown in the previous chapter). This information

allows a faster computation of the successive best move when a move has only local impact

on it. Such an incremental enumeration has been introduced for the Node Swap and Level
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Algorithm 8: VND(T )

k = 1;1

while k ≤ 4 do2

improve T until local optimum reached with respect to neighbourhood . . .3

switch k do4

case 1 : Edge Exchange;5

case 2 : Node Swap;6

case 3 : Centre Exchange;7

case 4 : Level Change;8

if T improved and k 6= 1 then k = 1; else k = k + 1;9

Change neighbourhood structures. To benefit from this incremental exploration the VND

algorithm presented here does not switch back to the first neighbourhood after having

identified the best improvement move. Instead it computes a local optimal solution with

respect to the current neighbourhood structure under consideration and only jumps back

to the first neighbourhood N1, in case the solution could be improved.

After defining the different neighbourhood structures the VND is based on, the order these

neighbourhoods should by applied to a solution has to be determined. This decision has

crucial impact either on the computation time as well as on the quality of solutions obtained.

The neighbourhood order for this VND algorithm has been taken from the VNS for the

BDMST proposed by Gruber and Raidl [21], as the neighbourhood structures used in their

VNS algorithm are basically the same as those utilised within this VND framework.

Algorithm 8 gives an overview of the VND framework used within the context of this master

thesis. Starting from a solution T , first the Edge Exchange neighbourhood tries to improve

T by moving around whole subtrees. When a local minimum with respect to the Edge

Exchange neighbourhood is reached, T is tried to be further improved by optimising the

arrangement of every node and its immediate successors (Node Swap). This is again done

– as already mentioned and in contrast to the general VND – until a local optimal solution

T ′ is found. Afterwards, in case T ′ is better than T , T ′ is saved as new so far best solution

T within this VND and the algorithm jumps back to the first neighbourhood structure.

If T was already a local minimum due to these two neighbourhoods the Centre Exchange

neighbourhood tempts to further improve it by changing the centre node(s). Again, if

the Centre Exchange neighbourhood yields an improvement move, the algorithm does not

switch back immediately to the Edge Exchange neighbourhood. Instead, it computes a

local minimum T ′ due to the Centre Exchange neighbourhood structure and jumps back
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afterwards. And finally, if T is a local minimum with respect to the Edge Exchange,

Node Swap and Centre Exchange neighbourhood, Level Change tries to optimally arrange

all non-centre nodes within the level structure. When this VND algorithm terminates it

reached a local optimal solution with respect to all four different neighbourhood structures.

5.2 Ant Colony Optimisation

As already presented in Chapter 3.2, several different ant algorithms have been developed.

The ACO for the BDMST problem, proposed within the context of this master thesis, is

based on the ant colony system (ACS), first proposed by Dorigo et al. in 1996 [12, 11]. A

property taken from the ACS for the travelling salesman problem (TSP) is the pheromone

initialisation process. Another adapted characteristic is that every artificial ant is only

responsible for constructing a solution, since the pheromone update process is managed

by a daemon. This daemon identifies, as it is representative for ACS algorithms, the best

solution found by the whole colony in one iteration and updates the pheromone information

proportional to the fitness of this best solution found. Pheromone trail evaporation is also

performed by the daemon. A main difference between the ACS concept and the ant colony

optimisation metaheuristic presented here lies in the local decision policy. In general the

decision policy of ACS algorithms includes a heuristic component when computing a state

transition. This heuristic component for the local decision policy is completely omitted for

this ACO algorithm.

For the implementation of the ACO algorithm some data structures are required, most of

them already known from the four different neighbourhoods:

• Again the successor lists succ, storing for each node its immediate successors, the

predecessor array pred, saving for each node its predecessor in the directed tree from

the centre to the leaves, the level information lev, stating the level a node is assigned

to and the level sets Vl with l = 0, . . . , bD/2c, containing all nodes at the level l, are

used.

• In addition, a two dimensional n× (bD/2c+ 1) pheromone matrix is needed to keep

one pheromone entry for each combination of a node and a level. The value τi,j

reflects the desirability of assigning node i to level j.

The level information lev and level sets Vl ⊂ V are of major interest, as the ant colony opti-

misation algorithm developed in the context of this master thesis uses a different approach
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regarding pheromone deposition in comparison to the basic ACO concept for the TSP pro-

posed by Dorigo [10, 13]. There they operate on a graph G = (V,E) where pheromone is

deposited – either by ants themselves or by a daemon – on edges e ∈ E contained in the

solution. The ACO algorithm presented here does not deposit pheromone on edges but

exploits the fact that once given the level information lev(v) for all nodes v ∈ V an optimal

solution for the bounded diameter spanning tree problem with respect to this level infor-

mation lev can be easily derived. Therefore simply for each non centre node v the least cost

predecessor p with lev(p) < lev(v) has to be found. In case of several possible least cost

predecessors, always one with minimum level is selected. Thus ants construct a solution

not by “running” through the graph structure, but by assigning nodes to levels, building

the level information lev. So the pheromone information reflects instead of the desirability

of using an edge the desirability of assigning a node to a certain level. Algorithm 9 gives an

overview of the ant colony optimisation algorithm developed in the context of this master

thesis.

To be able to construct a solution based on the information stored in the pheromone matrix,

it has to be first initialised. This initial amount of pheromone for each combination of node

and level has to be in relation to those values the pheromone update process is going to write

into the matrix. E.g., if the initial values are too big compared to those, the pheromone

update process is going to deposit, it will last very long until the ant colony will be capable

of exploiting the information stored in the pheromone matrix. To guarantee that ants are

able to use the collected information very soon the pheromone initialisation process follows

the scheme of ACS algorithm for the TSP [12, 11], where the initial amount of pheromone

deposited is proportional to the product of an initial solution value and the total number

of nodes of the instance graph. Therefore in the first line of Algorithm 9 a solution S using

the randomised tree construction (RTC) heuristic [31] is computed. The solution value

obtained from the RTC heuristic, together with the total number of nodes n is used to

initialise the pheromone matrix with τi,j = 1/(S ∗n), i = 0, . . . , n−1 and j = 0, . . . , bD/2c.

Until no termination condition is met (line 3), which can be either a time limit, a maximum

number of iterations without further improvement or both combined, in each iteration an

colony of a finite number of artificial ants tries to find good solutions based on the so far

collected information on the problem instance.

Each artificial ant builds a solution based on the information stored in the pheromone

matrix. As already mentioned, the solution construction process exploits the fact that a

given level information lev for each node is enough to construct the local optimal tree.
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Algorithm 9: ACO for the BDMST

create an initial solution S using the RTC heuristic;1

initialise the pheromone matrix with 1/(S ∗ n);2

while termination condition not met do3

for each ant of the colony do4

create a solution T , based on the information saved in the pheromone matrix;5

VND(T );6

determine best solution T ′ found by the whole colony;7

update pheromone matrix using T ′;8

if T ′ better than bestSolution then9

bestSolution = T ′;10

So each ant simply sets each node to a certain level. The level a node is assigned to is

selected randomly with a probability proportional to the pheromone information stored for

this node, i.e. Pi,l is the probability that node i is assigned to level l.

Pi,l =
τi,l∑bD
2
c

l′=1 τi,l′

In general – due to the stochastic level selection process – each node can be assigned to

any level as long as no entry in the pheromone matrix is zero. This is a desirable behaviour

except for level 0, where the number of nodes is fixed in advance based on the diameter

bound. Therefore the centre node(s) is (are) selected separately based on the information

stored in the first column of the pheromone matrix (the pheromone values of level 0 for

each node). As said above this local decision policy has no heuristic component, every node

is assigned to a certain level independently from all other nodes, only the decoding step –

deriving a tree from the level information – makes use of a problem specific heuristic when

using for each non centre node its cheapest available predecessor.

To improve solutions built by artificial ants the variable neighbourhood descend for the

BDMST, presented in the previous section, is applied to these solutions. Thus each ant

constructs a solution based on the information stored in the pheromone matrix. Afterwards

the VND algorithm tries to improve this solution (lines 5 to 6).

The daemon is responsible for collecting all solutions found by the ant colony in the current

iteration (line 7). From this pool of solutions it selects the best one T ′ and determines

the amount of pheromone, that is proportional to the fitness of this best solution, going

to be written into the pheromone matrix for the appropriate node/level combinations.
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This behaviour, that only the best ant deposits pheromone, was first proposed for ACS

algorithms. The quantity of pheromone deposited is determined as follows:

∆τi,j =

 1/T ′ if lev(i) == j in T ′

0 otherwise

After having calculated the amount of pheromone to be deposited, the pheromone matrix is

updated (line 8). This update process combines the pheromone laying and the pheromone

evaporation process and follows the scheme introduced for ACS algorithms:

τi,j = (1− ρ)τi,j + ρ∆τi,j

The parameter ρ, with 0 ≤ ρ ≤ 1 has a crucial impact on the convergence of the ant colony.

The greater ρ the faster the ant colony commits itself to a certain solution, it converges

faster, perhaps too fast. On the contrary, the smaller ρ the later the ant colony is able

to exploit already collected knowledge of the problem instance, in terms of the pheromone

matrix, to construct good solutions, but therefore the solution space is explored in more

detail. So using this parameter the behaviour of this ant colony optimisation algorithm

can be influenced substantially and adjusted for different applications.

In line 9 and 10 the daemon verifies if the best solution found by the ant colony in the

current iteration is better than the best solution found so far. If so this solution is saved

as new best solution.



6. IMPLEMENTATION

The ant colony optimisation metaheuristic, introduced in this master thesis, is implemented

in C++, following the C++ coding standard, e.g. representing each class through a header

file, stating the attribute and method declarations, and an implementation file, stating the

program code. The only non-standard class library used is LEDA (Library of Efficient Data

Types and Algorithms) in terms of version 5.0.1. The aim of the LEDA project, launched

in 1988, was to build a small, but extendable library of data structures and algorithms

for combinatorial computing in a form making them easy to use. Since February 1st,

2001, Algorithmic Solutions Software GmbH is responsible for maintaining and developing

LEDA1.

Figure 6.1 shows the UML class diagram of the major classes, their relationships as well as

the most important attributes and methods of the respective classes.

The Instance class encapsulates all relevant information concerning a BDMST problem

instance that does not change during computations, e.g. the underlying graph or the

diameter bound. Due to this fact, each run of the ant colony optimisation algorithm has

exactly one Instance object.

The InstanceParser is responsible for parsing the input file and storing the relevant

information in the corresponding data structures. The InstanceParser is able to parse

various file formats, e.g. GNUplot or EA graph instances. GNUplot files were created at

the Institute of Computer Graphics and Algorithms for testing and visualising purposes.

EA files are instances from the Beasley’s OR-Library2 which haven been originally intended

for Euclidean Steiner tree problems. As in [31, 25, 21] these instances have been used for

comparing this ACO with other state-of-the-art metaheuristics.

The Solution class is used for representing solutions for a certain problem instance. To ex-

press a valid solution the attribute successorVector, storing for each node its immediate

successors, would be sufficient, but to enable faster computations additional attributes
1 http://www.algorithmic-solutions.com/enleda.htm
2 http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/esteininfo.html
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+Solution(in inst : Instance)
+ValidateSolution() : bool
+CalcSolValue() : int

Solution
+inst : Instance
+centreNode : int
+centreNode2 : int
+sucessorVector
+predecessor+main()

+ConstructSolution(inout Solution : Solution)

Aco
+pheromoneMatrix

+Instance()

Instance
+graph
+diameter : int

+LocalSearch(inout currSol : Solution)
+Execute() : bool

Local Search

+currentSolution : Solution

+EdgeExchange(inout currSol : Solution)
+Execute() : bool

EdgeExchange

+LevelBased(inout currSol : Solution)

LevelBased

+nodesAtLevel

+CentreExchange(inout currSol : Solution)
+Execute() : bool

CentreExchange

+LevelChange(inout currSol : Solution)
+Execute() : bool

LevelChange

+NodeSwap(inout currSol : Solution)
+Execute() : bool

NodeSwap

1 1

creates

1 1..*

has

1..*

1uses

+InstanceParser()

InstanceParser

1..*

1

calls
Fig. 6.1: Class diagram

are used. The predecessor attribute stores for each node its direct predecessor and

centreNode keeps the centre node. In case of an odd diameter centreNode2 saves the

second one. To express the correlation between a Solution object and the instance it be-

longs to, a pointer to the Instance object is passed to in the constructor of the Solution

class. This pointer enables the Solution object to access instance specific information,

like number of nodes, diameter bound or connection costs between two nodes. Impor-

tant methods of the Solution class are ValidateSolution() and CalcSolValue(). The

ValidateSolution() method verifies if the solution represented by this Solution object

contains all nodes of the problem instance, if the diameter bound is not violated and if

the solution is free of circles. If it turns out that the Solution object represents a valid

BDMST true is returned, otherwise false. The CalcSolValue() method calculates the

total costs of the solution represented by the object and returns this objective value.

The LocalSearch class is an abstract class and merges common attributes and meth-

ods of the implementation of the four different neighbourhood structures, namely Edge

Exchange, Node Swap, Centre Exchange and Level Change. In the constructor of the
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LocalSearch class a reference to a Solution object is passed to. This enables different

LocalSearch objects, in case they are referencing the same object, to operate on the same

Solution object in a sequential order. Additional instance specific information can be

accessed via this reference to the Solution object and its pointer to the Instance object.

The Execute() method, each subclass of LocalSearch has to implement, starts the im-

provement process, stopping in a local optimal solution with respect to the neighbourhood

structure implemented by this subclass. In case the objective value of the solution passed

to the constructor of the LocalSearch class has been improved, Execute() returns true,

otherwise false.

EdgeExchange is a subclass of the abstract LocalSearch class and implements the Edge

Exchange neighbourhood. All improvement moves found by the Execute() method are

executed directly on the Solution object passed to it in the constructor. This holds true

for all other subclasses of the abstract LocalSearch class, too.

Node Swap, another subclass of LocalSearch, implements the second neighbourhood struc-

ture based on the successor and predecessor relationships of the nodes, beside Edge Ex-

change, namely – as the name already presumes – Node Swap.

The LevelBased class is abstract and summarises attributes and methods used by its

two subclasses, CentreExchange and LevelChange, implementing neighbourhoods based

on the level representation of a solution. An example for such an additional attribute is

nodesAtLevel which stores for each level all nodes assigned to it.

As already mentioned CentreExchange and LevelChange are subclasses of LevelBased.

The Execute() method of CentreExchange computes a local optimal solution with re-

spect to the Centre Exchange neighbourhood, whereas LevelChange implements the Level

Change neighbourhood.

The Aco class is the core of this ant colony optimisation program. It is responsible for

creating all the required objects, as there are for example the sole object of the Instance

class, objects of Solution and subclasses of the abstract LocalSearch class. Furthermore,

it administrates – strictly speaking initialises and updates – the pheromone matrix. Based

on the information stored in this pheromone matrix each artificial ant builds a solution

by calling the CreateSolution() method. These solutions are then tried to be locally

improved by a variable neighbourhood descent algorithm using the four different neigh-

bourhood structures implemented as subclasses of LocalSearch.
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6.1 User Manual

The proposed ant colony optimisation metaheuristic, implemented in C++, is a simple

command line program, named Aco. The program was developed under Linux 2.4.21.

The program was compiled using gcc in version 3.3.1 under glibc in version 2.3.2. To

start the program some mandatory parameters have to be specified. If they are missing

the program will prompt an error message followed by a usage instruction. Furthermore,

Aco has some optional parameters, that can be omitted when starting the ant colony

optimisation program. In the following a synopsis of the program parameters is shown.

./Aco -t graphtype -d diameter -i instancefile [-g instancefile] [-r rho]

[-s time_limit] [-l iteration_limit] [-a ants]

Here in alphabetical order the list describing all optional as well as mandatory parameters

of the Aco program in detail:

• a is an optional parameter. It indicates the number of artificial ants forming the ant

colony. If it is omitted a default colony size of 10 ants is used.

• d is a mandatory parameter, since it specifies the diameter bound. The number

declared has to be a positive integer number greater or equal to 4, otherwise an error

message is prompted.

• i has also to be specified, stating the path to the instance file.

• g is only a mandatory parameter when a GNUplot graph instance is used, since

GNUplot instances consist of two files, a point and a line file. So in case of a GNUplot

graph instance the parameter g takes the line file, the corresponding point file has to

be specified using parameter i. In case of all other graph types this parameter has to

be omitted, otherwise an error message is prompted.

• l specifies the maximum number of iterations without an improvement of the best

solution found so far. As it is an optional parameter it can be omitted, in this case

the program sets it per default to 1000.

• r is an optional parameter, with 0 ≤ r ≤ 1. This parameter represents the ρ value

used in the pheromone update process. The greater ρ, the faster the ant colony

commits itself to a certain solution. If omitted a default value of 0.5 is used.
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• s is an optional parameter indicating the time limit in seconds, otherwise no time

limit is set. Only positive integer numbers are valid values for this parameter, all

other specifications will result in a corresponding error message.

• t is a mandatory parameter and specifies the type of the instance file. The instance

parser used by this program is able to read in four different file formats:

– 0 GNUplot graph

– 1 CostMatrix graph (Gouveia and Magnanti [18])

– 2 EA graph

– 3 Santos graph (Santos et al. [14])

The output of the Aco program is sent to standard out (std::cout) per default, but it can

easily be redirected to any file with the help of the appropriate Unix operator “>”. The

output starts with a summary of all instance relevant information, e.g. instance file, number

of nodes or diameter bound. Then a summary of each iteration follows, containing various

information on every ant of the colony. Each ant builds a solution exploiting the knowledge

stored in the pheromone matrix. Afterwards, this solutions is tried to be improved by a

VND algorithm using four different neighbourhood structures. This iteration summary

states for each artificial ant the total costs of the solution found after local improvement

by VND, the total costs of the best solution found so far, time needed so far and finally an

indicator if the current best solution was achieved by this ant. Finally, when a termination

condition is met – either time limit or x rounds without further improvement of the best

found solution – a complete summary of the optimisation process is printed, containing

again all instance relevant information plus total costs of the best solution found and the

time in seconds until the program was terminated. Note, that it in general the time stated

at the end of this summary is not the time required to achieve the best solution. In the

following a sample output of an Aco run is presented:

-------------------------------------------------------------------------
Bounded diameter minimum spanning tree problem: ACO [ver. 1.0 / 10.2005]
-------------------------------------------------------------------------

Reading in instance ...
Successfully read in EA instance... ../../data/ea/estein500_01.eu

number of nodes: 500
number of edges: 124750
diameter: 20
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Creating Solution object to save best solution ... done
Creating Solution object for computations ... done
Creating EdgeExchange object ... done
Creating NodeSwap object ... done
Creating CentreExchange object ... done
Creating LevelChange object ... done

Creating starting solution value ... done

Creating Aco object ... done
build time: 0.35 sec.
objective value: 2215672

-------------------------------------------------------------------------

Starting Ant Colony Optimisation:
objective value (starting solution): 2215672
neighbourhood order: escl
number of ants (colony size): 10
rho: 0.1000
maximum number of iterations without improvement: 1000
time limit (in seconds, 0 for no time limit): 4000

-------------------------------------------------------------------------
* Ant 0 found 1877464 [vnd] 1877464 [ACO] 1.75 sec.
* Ant 1 found 1858671 [vnd] 1858671 [ACO] 3.65 sec.

Ant 2 found 1885506 [vnd] 1858671 [ACO] 5.30 sec.
Ant 4 found 1918045 [vnd] 1836331 [ACO] 8.92 sec.
Ant 5 found 1884828 [vnd] 1836331 [ACO] 11.30 sec.
Ant 6 found 1887286 [vnd] 1836331 [ACO] 13.10 sec.
Ant 7 found 1945281 [vnd] 1836331 [ACO] 15.31 sec.
Ant 8 found 1876021 [vnd] 1836331 [ACO] 18.13 sec.
Ant 9 found 1918894 [vnd] 1836331 [ACO] 20.05 sec.

-------------------------------------------------------------------------
Updating pheromone matrix... 1836331 [ACO] 20.05 sec.

-------------------------------------------------------------------------
Ant 0 found 1844813 [vnd] 1836331 [ACO] 21.46 sec.

.

.

.
* Ant 8 found 1676033 [vnd] 1676033 [ACO] 2726.53 sec.

.

.

.
-------------------------------------------------------------------------
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Summary of optimisation:

instance: ../../data/ea/estein500_01.eu
number of nodes: 500
number of edges: 124750
diameter: 20
starting solution: 2215672
best solution: 1676033
improvement: 539639
time (starting solution): 0.35 sec.
time (ACO/VND): 4000.27 sec.
time (total): 4000.62 sec.

-------------------------------------------------------------------------



7. COMPUTATIONAL RESULTS

This chapter takes a closer look at the performance of the ACO algorithm for the BDMST

problem, developed within the context of this master thesis, and compares it to that of

other heuristics for the BDMST problem. Three state-of-the-art metaheuristics have been

selected for this comparison, a VNS implementation by Gruber and Raidl [21], a permu-

tation coded EA as well as a random-key coded EA from [25]. Of major interest is the

comparison of the ACO presented here and the VNS by Gruber and Raidl, since they use

in principle the same neighbourhood structures for their VND as it is done in the ACO,

especially because the VNS is the so far leading metaheuristic for the BDMST problem.

For comparison the same instances, diameter bounds, time limits and termination condi-

tions as in [21] were used. The instances were taken from the Beasley’s OR-Library1 and

have been originally proposed for the Euclidean Steiner tree problem. All nodes of a graph

are settled within the unit square and the Euclidean distance between any pair of nodes

corresponds to the edge costs between these two nodes. Furthermore, as in [21], the tests

were grouped into long-term and short-term runs. The long-term runs concentrated on

achieving as good results as possible. In the short-term runs the different algorithms had a

relatively short time with respect to the instance size for yielding good solutions. The size

of the ant colony was set to ten artificial ants for all test categories. Before presenting the

computational results it should be noted, that all test runs were performed on a PentiumR©4

2.8GHz system using Linux 2.4.21 as operating system.

First the results of the long-term runs are discussed. As in [21] the first five instances of

each size n =100, 250, 500 available in the OR-Library were used and the diameter bound

was set to 10 for instances with 100 nodes, to 15 for instances with 250 nodes, and to 20 for

instances with 500 nodes. Two different termination conditions were introduced for these

long-term runs for the ACO, adopted from [21]: The ACO algorithm terminated either if

the last 1000 iterations yielded no improvement of the best found solution so far or if a time

limit was reached. This time limit was set to 2000 seconds for instances with 100 nodes,

to 3000 seconds for instances with 250 nodes, and to 4000 seconds for instances with 500
1 http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/esteininfo.html
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Instance permutation coded EA random-key coded EA VNS ACO
n D nr. best mean stddev best mean stddev best mean stddev ρ best mean stddev time (sec.)

100 10 1 7.818 7.919 0.07 7.831 7.919 0.05 7.759 7.819 0.03 0.01 7.759 7.771 0.007 196.06
2 7.873 8.017 0.08 7.853 8.043 0.09 7.852 7.891 0.03 7.849 7.869 0.004 126.43
3 7.990 8.139 0.08 7.982 8.137 0.09 7.904 7.962 0.04 7.907 7.946 0.014 200.40
4 8.009 8.143 0.07 7.996 8.122 0.06 7.979 8.046 0.03 7.979 7.995 0.005 200.15
5 8.193 8.335 0.08 8.198 8.313 0.08 8.165 8.203 0.03 8.164 8.168 0.002 158.37

250 15 1 12.440 12.602 0.08 12.448 12.580 0.08 12.301 12.430 0.05 0.05 12.245 12.333 0.013 1159.08
2 12.237 12.432 0.10 12.222 12.393 0.10 12.024 12.171 0.06 12.023 12.097 0.015 1219.32
3 12.117 12.282 0.08 12.178 12.315 0.07 12.041 12.112 0.04 12.017 12.058 0.009 1034.92
4 12.572 12.824 0.11 12.632 12.802 0.07 12.507 12.615 0.06 12.474 12.559 0.011 1108.55
5 12.358 12.608 0.12 12.382 12.623 0.10 12.281 12.423 0.07 12.228 12.360 0.016 1152.07

500 20 1 17.216 17.476 0.10 17.156 17.429 0.10 16.974 17.129 0.07 0.1 16.909 17.028 0.018 2346.49
2 17.085 17.311 0.11 17.097 17.291 0.10 16.879 17.052 0.07 16.760 16.875 0.019 2726.73
3 17.173 17.449 0.11 17.164 17.369 0.11 16.975 17.148 0.07 16.929 16.990 0.014 2433.62
4 17.215 17.484 0.13 17.266 17.432 0.09 16.992 17.166 0.06 16.908 17.071 0.026 2384.56
5 16.939 17.137 0.11 16.872 17.092 0.11 16.572 16.786 0.07 16.512 16.640 0.022 2890.01

Tab. 7.1: Long-term runs on Euclidean instances

nodes.

Table 7.1 shows the computational results of the long-term runs. It lists for each instance

the number of nodes, the diameter bound, the instance number, and for each metaheuristic

the objective values of the best and mean solutions found. Furthermore, the standard

deviation of 50 (EAs) and 30 (VNS, ACO) independent runs is presented.

In addition, for the ACO the mean times for identifying the best solutions are given. As

indicated in Table 7.1 ρ varies among the different instance sizes in order to obtain better

solutions. The results for the EAs as well as those for the VNS are taken from [21].

Like the VNS implementation the ACO algorithm outperforms the two EAs concerning

either best as well as mean solution values. Comparing the ACO with the VNS it can

be seen that on instances with 100 nodes the ACO algorithm is still close to the VNS

implementation concerning best solutions, but is already better regarding mean values.

The greater the instances the larger the gap between the ACO algorithm and the VNS.

While on instances of size n = 250 the ACO performs already clearly better than the VNS

concerning best as well as mean solutions, on instances with 500 nodes the mean objective

value of the solutions found by the ACO is close to – in one case it is even better than –

the best solution identified by the VNS. In addition, the standard deviation of the ACO

algorithm is much smaller than those of the three other metaheuristics. Furthermore, it is

interesting to observe, that the time limit was never reached. For each instance size 1000

iterations without further improvement terminated the ACO algorithm, in contrast to, for

example, the VNS, which requires the whole 4000 seconds to compute the solutions listed

for the instances with 500 nodes.

As in [21] for the short-term tests the permutation coded EA was replaced by an edge-
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set coded EA from [31], since it makes use of operators with linear time complexity and

therefore scales much better with larger instances. The same tests should be performed

but for the 1000 node instances the time limit turned out to be really though for the ACO.

When using the time limit of 100 seconds no useful results could be achieved due to the

following reason: In the first iteration of the colony with its ten artificial ants every solution

constructed by an artificial ant is more or less random, as the pheromone matrix contains no

practical information yet (it is initialised uniformly). Therefore the variable neighbourhood

descent part of the ACO algorithm can substantially improve these solutions, but this

improvement process requires a lot of time due to the fact that the quality of the solution

constructed by an ant is very poor. As a consequence only four to six solutions could

be processed within the time limit of 100 seconds. Since not even one iteration could be

finished within this time limit, thus no update of the pheromone matrix was performed,

no relevant results for the ACO can be presented here for the 1000 nodes instances in

combination with a time limit of 100 seconds. Using a time limit of 1000 seconds enables

the ACO algorithm to finish at least five to eight complete iterations.

Table 7.2 presents the results of the short-term runs. It shows the number of nodes, the

diameter bound, the instance number, and the time limit in seconds. Furthermore, for

each metaheuristic the objective values of the best solutions found, the mean values and

the standard deviations are listed. For each instance 50 (EAs) respectively 30 (VNS, ACO)

independent runs have been performed.

In addition for the ACO algorithm the parameter ρ used for the experiments is given, since

varying it depending on the time limit and instance size yielded better results. Again the

results for the EAs as well as those for the VNS are taken from [21].

From Table 7.2 it can be seen that the ACO algorithm consistently outperforms the two

EAs. Considering the 500 node instances, the mean values of the ACO with tighter time

limits, as well as those of the VNS, are even better than the objective values of the best

solutions found by any of the EAs. Unfortunately, the good results of the VNS cannot be

reached by the ACO. Looking at the 500 node instances it can be seen that when using

a time limit of 500 seconds the ACO algorithm comes closer to the results of the VNS

but cannot really exceed them. Just on two instances the ACO yields a better solution,

and it beats the VNS only one time concerning the mean values. The main reason for

this behaviour is – as already mentioned above – that the ACO algorithm starts with very

poor, more or less random solutions, since in the first iteration the solutions constructed by

the artificial ants are based on a uniformly initialised pheromone matrix. In the following
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Instance time edge-set coded EA random-key coded EA VNS ACO
n D nr. limit (sec.) best mean stddev best mean stddev best mean stddev ρ best mean stddev

500 20 1 50 19.368 19.830 0.17 21.223 21.440 0.07 17.753 18.108 0.12 0.5 17.905 18.199 0.035
2 19.156 19.522 0.13 20.836 21.097 0.09 17.688 17.966 0.10 17.832 18.083 0.037
3 19.321 19.888 0.16 21.042 21.304 0.11 17.799 18.114 0.10 17.990 18.202 0.027
4 19.464 19.866 0.19 21.129 21.432 0.09 17.930 18.161 0.11 18.181 18.308 0.023
5 19.209 19.477 0.17 20.728 21.017 0.11 17.464 17.863 0.12 17.660 18.008 0.047

500 20 1 500 18.470 18.976 0.13 19.658 19.908 0.14 17.290 17.460 0.08 0.16 17.347 17.507 0.019
2 18.442 18.810 0.22 19.332 19.651 0.13 17.215 17.373 0.08 17.111 17.333 0.027
3 18.619 19.056 0.18 19.618 19.887 0.10 17.252 17.464 0.05 17.270 17.485 0.033
4 18.745 19.116 0.17 19.654 19.905 0.11 17.318 17.514 0.07 17.294 17.571 0.029
5 18.197 18.685 0.20 19.312 19.635 0.10 16.932 17.139 0.09 17.031 17.159 0.029

1000 25 1 100 28.721 29.265 0.16 30.996 31.288 0.11 25.850 26.188 0.13 - - - -
2 28.607 29.105 0.19 30.832 31.132 0.11 25.501 25.981 0.17 - - -
3 28.410 28.905 0.17 30.515 30.856 0.12 25.340 25.705 0.09 - - -
4 28.695 29.263 0.21 30.966 31.277 0.08 25.562 26.128 0.17 - - -
5 28.396 28.882 0.19 30.633 31.010 0.10 25.504 25.826 0.15 - - -

1000 25 1 1000 26.494 26.936 0.14 30.097 30.401 0.13 25.177 25.572 0.14 0.4 25.414 25.709 0.034
2 26.300 26.789 0.24 29.924 30.261 0.12 25.015 25.342 0.14 25.281 25.527 0.028
3 25.762 26.556 0.21 29.586 29.981 0.12 24.816 25.086 0.11 24.895 25.443 0.051
4 26.470 26.816 0.15 29.946 30.329 0.13 25.289 25.572 0.11 25.391 25.716 0.038
5 26.117 26.606 0.19 29.782 30.151 0.12 25.026 25.254 0.12 24.975 25.405 0.039

Tab. 7.2: Short-term runs on Euclidean instances

these solutions can be improved significantly by the variable neighbourhood descent, but

at the expense of a high running time. Another aspect that has to be taken into account

in the short-term runs is the value chosen for the parameter ρ which controls how much

influence the best solution identified within one iteration shall have on the pheromone and

– consequently – on the probabilities calculated based on this pheromone information for

the following iterations. Remember, that based on these probabilities all artificial ants

construct solutions. The greater the ρ value the higher the probability to assign node v to

level l also in a subsequent iteration (if this combination was part of the best solution) since

the pheromone value for this combination of node and level will dominate the other ones

relatively fast. As a consequence the ACO algorithm converges to a certain solution after

only a small number of iterations. As the first solutions are in general of a poor quality

(even after the VND local improvement step), a great ρ value will not yield good solutions

at all, since a solution close to these bad solutions will be favoured very soon. On the other

hand, if the value of the parameter ρ is chosen too low the pheromone updates written into

the pheromone matrix are so small compared to the values already stored there that they

have only marginal effects on the probabilities calculated from the pheromone information.

So within the next iteration nearly the same probabilities can be met. When using a too

tough time limit with respect to the ρ value it is likely to occur that the already collected

information cannot be exploited at all. Table 7.2 indicates this effect. For instances with

500 nodes and a time limit of 50 seconds a relatively great ρ value has been used in order

to make use of the information already written to and stored in the pheromone matrix. By
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decupling the time limit an obviously smaller ρ can be applied. This smaller ρ is responsible

for the behaviour that the algorithm does not favour – as fast as in the prior test category

– a certain solution, but explores a greater part of the solution space before preferring a

certain solution. This leads inevitably to much better results.

Generally it can be noted, that the ACO algorithm is very slow in the beginning of the

computation process, as the solutions constructed in this phase are very poor and the

variable neighbourhood descent part can substantially improve these solutions, but this

local improvement step is very time consuming. As time proceeds the artificial ants will

construct better and better solutions, due to the information stored in the pheromone

matrix. As a consequence the neighbourhood descent part needs less and less time to

improve these solutions. So the time required for one iteration decreases over the whole

runtime of the ACO algorithm, as the time needed by an artificial ant to build a solution

is constant.



8. CONCLUSIONS

This master thesis proposed an ant colony optimisation algorithm for the bounded diam-

eter minimum spanning tree problem. Its main characteristic is that it makes use of a

local optimisation heuristic, namely a variable neighbourhood descent, to improve overall

solution quality. This VND approach is based on four different neighbourhood structures

for the BDMST problem, namely Edge Exchange, Node Swap, Centre Exchange and Level

Change. When developing these neighbourhood structures main focus was on an efficient

and fast exploration of a certain neighbourhood, for example computing only cost differ-

ences when evaluating a solution. For two of them, namely Node Swap and Level Change,

an incremental enumeration, applied after having identified and executed the most prof-

itable move, was presented. This incremental exploration could not reduce the theoretical

worst case time complexity, but accelerated computation essential in practise.

Another important characteristic of the ant colony optimisation algorithm, developed

within the context of this master thesis, is the way artificial ants construct solutions. A tree

is not built by starting from a single node and successive connecting the remaining ones,

but ants distribute the nodes to various levels, since given this level information always a

local optimal minimum spanning tree ensuring the diameter bound can be derived in an

easy and straightforward way.

To evaluate the overall performance of the ant colony optimisation algorithm it was com-

pared to the so-far-leading variable neighbourhood search implementation for the BDMST,

that operates on the same neighbourhood structures, as well as to three evolutionary algo-

rithms, namely a permutation, a random-key and a edge-set coded EA. Results on complete

Euclidean instances turned out, that when considering solution quality the ACO algorithm

is not only superior to the EAs but also to the VNS, especially on larger instances. In case

the computation time is highly restricted the solutions provided by the ACO algorithm are

in-between those of the EAs and those of the VNS.

To conclude, the ant colony optimisation algorithm, proposed within the context of this

master thesis, has its strengths when operating on large complete Euclidean instances
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without a time limit. A starting point for further research activities could be to adapt

this ACO approach in a way that it also works on instances where the underlying graph

is incomplete or, since the ACO algorithm was only compared to other metaheuristics on

Euclidean instances, to test its effectiveness on random instances.
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[20] P. P. Grassé. La reconstruction du nid et les coordinations interindividuelles

chez bellicositermes natalensis et cubitermes sp. la théorie de la stigmergie: essai

d´interprétation du comportement des termites constructeurs. Insectes Sociaux, 6:41–

81, 1959.

[21] M. Gruber and Günther. R. Raidl. Variable Neighborhood Search for the Bounded Di-

ameter Minimum Spanning Tree Problem. PhD thesis, Institute of Computer Graphics

and Algorithms, Vienna University of Technology, 2005.



Bibliography 61

[22] Martin Gruber and Günther R. Raidl. A new 0–1 ILP approach for the bounded di-

ameter minimum spanning tree problem. In L. Gouveia and C. Mourão, editors, Pro-

ceedings of the 2nd International Network Optimization Conference, volume 1, pages

178–185, Lisbon, Portugal, 2005.
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