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Kurzfassung

Obwohl virtuelle Methoden in objektorientierten Programmiersprachen beim
Aufruf an viele unterschiedliche Definitionen gebunden werden können, wird oft
nur eine Methodendefinition wirklich verwendet. Der Einsatz von Analyseal-
gorithmen zur Bestimmung des statischen Typs in einer Java Virtual Machine
(JVM), um konservativ die erreichbaren Klassen und Methoden abzuschätzen,
kann einem Übersetzer mehr Möglichkeiten zur Optimierung geben. Das Laden
von Klassen bei Bedarf in der JVM hat dynamische Analyse mit Profiling zur
Laufzeit gefordert.

Die Typ-Analyse Algorithmen CHA, RTA, XTA, und VTA wurden in CA-
CAO verglichen. CACAO ist eine Forschungs-JVM, die an der Technischen
Universität Wien entwickelt wird. Drei Modi wurden getestet: statische Anal-
yse (SA), dynamische Analyse (DA), und eine neue hybride Analyse (HPA).
Alle Algorithmen bauen ihre Klassendatenflussdiagramme (CFGs) dynamisch
während der Analyse auf. Klassen werden nach Bedarf geladen. Daher müssen
alle Analysen das Einfügen von zusätzliche Klassen in ihre Klassenhierarchien
behandeln. Die Notwendigkeit von Devirtualization für Inlining und die Imple-
mentierung von Inlining in CACAO wird diskutiert.

Je weniger überflüssige Klassen geladen sind, desto besser ist die Genauig-
keit der Analysen und desto kürzer die Laufzeit der Analysealgorithmen. VTA
ist am genausten mit der kleinsten Zahl unnötig geladener Klassen und erreich-
barer Methoden. HPA lädt weniger Klassen und liefert genauere Ergebnisse als
SA. Zwischen RTA, XTA, und VTA war es nicht entscheidbar, welcher Algo-
rithmus am schnellsten ist, aber XTA verwendet am wenigsten Instruktionen.
Höhere Kosten, um mehr Genauigkeit aus der Analyse zu holen, werden durch
eine geringere Zahl erreichbarer Methoden ausgeglichen.



Abstract

Although in object-oriented programming (OOP) languages, virtual methods
may resolve to multiple method definitions during runtime, often only one
method definition is actually used. Use of static type analysis algorithms in
the Java Virtual Machine (JVM) to conservatively estimate classes used and
methods reachable can give more opportunities for optimizations like inlining.
Lazy loading of classes by the JVM has encouraged dynamic analysis with pro-
filing during an application run.

The type analysis algorithms, CHA, RTA, XTA, and VTA are compared in
CACAO, a research Java Virtual Machine (JVM) developed at Technical Uni-
versity of Vienna, in three modes: static analysis (SA) mode, dynamic analysis
(DA) mode, and a new hybrid pickup analysis (HPA) mode. All algorithms
build their class flow graphs (CFGs) on-the-fly during the analysis. Classes are
loaded on-demand as needed, so all modes and algorithms must handle classes
inserted into their class hierarchy. The usefulness of devirtualization for use by
inlining based on the implementation of inlining in CACAO is discussed.

Fewer extra classes loaded gives better precision and improved runtime. VTA
is most precise with the fewest unneeded classes loaded and methods found
reachable in all three analysis modes. HPA loaded fewer classes and yields more
precise results than SA. Between RTA, XTA and VTA, there is no clear fastest
algorithm, but XTA used the least instructions. Costs to make the analysis
more precise were offset by having fewer reachable methods to analyze and vice
versa for less precision and more reachable methods.
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Chapter 1

Introduction

The challenge of static type analysis in object-oriented languages is without
compiling or before compilation to accurately compute information found dy-
namically at runtime for use by optimizations. Runtime optimizations must
have little overhead. Dynamic analysis must use the information available at a
specific point during an application run to decide, if an optimization is useful
enough to risk the costs of it being invalidated and backed out later in the same
run.

Additionally the call graph (CG) information gathered while performing
static or dynamic type analysis are useful for many optimizations. Some devir-
tualization client applications are: inlining ([TP00], [SHR+00]); smaller library
jar files ([TSL03]); garbage collection ([Hir04]); and program verifiers with test
case generators ([RMR03],[ZR07]). Indirectly the CGs have been used for escape
analysis and side effect analysis.

1.1 Static and Dynamic Type Binding

Programming languages bind a variable with its type attributes. Statically
typed languages require the program to declare the types of all variables. Dy-
namically typed languages can determine a variable’s type from the program’s
context at runtime, however this takes more runtime. If the compiler’s optimizer
can determine that a variable only has one type, the type can be statically bound
to the variable before runtime even though the language is dynamically typed.

1.1.1 Polymorphic

A

B

FE

C D

Figure 1.1: Ĉ, class
cone of C

In modern object-oriented programming languages
(OOPL), like Java, the declared type is a class with at-
tribute fields and methods directly related to the class.
A class can be extended to have more methods in a sub-
class. And a sub-class can either inherit or override its
super classes’ methods depending on what the subclass
requires. The class cone (fig. 1.1) includes the class and
all its sub-classes [DGC95]. A variable may be assigned
any class type within its class cone.

1



CHAPTER 1. INTRODUCTION 2

Interface classes define a common way to define methods to do a specific
set of tasks. A class using an interface must define all the interface methods in
addition to any methods the class defines, so the interface is complete for its
task. In Java if a variable is declared to be an interface class, then the variable
may resolve to any class type, which uses the interface class.

Variables in OOPLs are considered polymorphic, since they can be dynam-
ically assigned to a variable typed to any class in their class cone. Class types
using an interface class may not even be in the same class hierarchy, an interface
method call may even resolve to methods in different class cones. Since methods
are associated with a variable, method calls are actually virtual calls and also
considered polymorphic. Resolving method calls at run-time due to OOPLs
being dynamically typed also costs runtime.

Java allows variables, methods, and classes to be explicitly declared to one
static class, which can be called monomorphic.

1.1.2 Dynamically monomorphic

If a virtual method call will always resolve to the same method definition,
then the method could be devirtualized and statically bound once at run-
time. This may allow other optimizations, which polymorphic method calls
rule out, to be applied. Typical clients of the analysis in a JVM are: inlin-
ing, dynamic dispatch, side-effect analysis, def-use and escape analysis ([Hir04];
[RK02], [LAM07], [DRS07]; [MRR05]; [MRR05]; [ZR07]). It has also been used
for garbage collection. Related clients of the analysis outside the JVM are ap-
plication extractors and testing (verification). A number of static type analysis
algorithms have been developed to conservatively determine such dynamically
monomorphic method invocations.

Although a Java method may be invoked via virtual or interface calls, a
program run may actually only use one method definition.

Object design fits two styles: similar environment, similar objects.
They either are designed so the environment can change, such as printer hard-
ware used, or so the similar objects can be used in different forms, such as
shapes used in a geometry program. Usually only one environment is used at
a time, so although the method calls are virtual or interface calls, they are of-
ten dynamically monomorphic. Similar objects of different forms are used,
then the method calls are usually truly polymorphic. (ex: x.area(), where x is
a Square and later a Circle). The greater challenge is when an application’s
design requires it to use classes with both design styles.

1.2 Java Virtual Machine (JVM)

A Java compiler creates a class file with machine independent bytecode for each
class. The Java Virtual Machine (JVM) loads the classes the program needs,
and creates executable code. Various kinds of JVMs exist:

• online JVM compilers create and run the executable code every time.

– bytecode JVM interpreter, which translates and executes byte-
code, line by line;
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– a Just-In-Time, JIT, JVM compiler which compiles methods as
needed and immediately executes them;

– hot-spot JVM, which is a mixture between an interpreter and a
JIT. A profiler identifies hot-spot methods, which are executed often
and compiles hotspot methods, while continuing interpretation until
the compilation is finished.

• offline or ahead-of-time JVM compiles bytecode once to binary code,
which may be run multiple times.

The optimizer for an a compiler may use optimizations that use more run-
time than an online JVM compiler, where the user is waiting for immediate
results. Sometimes optimizations for online JVMs are performed as an inter-
mediate pre-processing step for online JVMs. Whether static or dynamic, type
analysis results collected for optimizations must result in more runtime savings
than extra analysis overhead. The Static Analysis algorithms tested were im-
plemented in CACAO, the an open source research JVM developed at the TU
Vienna [Kra98].

1.3 Static, Dynamic, Hybrid Type Analysis

Type analysis is used to determine dynamically monomorphic method invoca-
tions by finding all classes a method call may resolve to. Results of bytecode
analysis may be used by tools, such as Eclipse and test case generators before
invocation of a JVM or by the JVM for optimizations such as devirtualization
for inlining.

Static Type Analysis (SA), (sec.5.1), or offline analysis gathers informa-
tion before any executable code is produced. SA examines all possible reachable
methods as defined by the analysis algorithm. The SA can gather information
for multiple paths through the code or must be supplied with information from
a previous run(s). Before run the exact path through the code is not known. SA
is challenged to find only the paths through the code that are truly reachable.

Hendren et.al. point out in [QH04] that ”dynamic class hierarchy informa-
tion can be used to build a conservative CG at runtime. However, it is desirable
to have a more precise CG for most interprocedural analyses.” Dynamic Type
Analysis (DA), (sec.5.1), or online analysis is performed during the run of
the JVM. Only one run is analyzed. Only the information available at a spe-
cific point in the run is known, so analysis is not completed until the run is
finished. DA is challenged to know when there is enough information to for a
valid analysis.

Hybrid Analysis, HPA ([Ern03]) or Blended Analysis ([DRS07]) uses SA and
DA in tandem, where one analysis is used as a pre-analysis and the other as post-
processing of the first analysis. Hybrid Pickup Analysis (HPA), (sec.5.1)
as implemented here combines SA and DA into one application run in the JVM
as explained in detail in Chapter 5. HPA combines three runs into one run.

An analysis may only look at the types within a method, intra-procedural:
or inter-procedural (IPTA), which also look at types between methods for the
whole program. SAs and DAs discussed here are both inter-procedural analysis,
IPTA, which look at type information. IPTA will be used in this work to refer
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to an analysis, where it is not important for the statement whether it is SA or
DA or possible to use for both.

The ideal type analysis algorithm would quickly analyze only the exact same
code reachable dynamically by the program run. Common characteristics found
among IPTA algorithms can be used and compared to find, which benefits
certain algorithm traits bring.

SA is appropriate when all paths through the program should be
analyzed and runtime is not critical. DA requires a quick analysis,
but only needs to analyze the actual path through the program.

1.4 Whole program Problems

Whole program analysis for Java, whether static or dynamic, is a challenge,
since the Java program is formed at runtime from available class files as needed
by the bytecode and by using dynamic language features of Java. IPTA analyzes
information from the bytecode.

But methods and classes used through the Java Native Interface (JNI) are
not available through bytecode. Java also allows classes to be dynamically
loaded through input at runtime. Reflection allows information about a class to
be asked, which indirectly causes this class to be loaded. The whole program is
not known before runtime nor by following the program flow through the code.
Program entry points must be provided or captured.

1.5 Classes Loaded

How many and when classes are loaded affects Java program analysis, since it
affects if a single or multiple method definitions are available. Static analysis
must load as many classes as are needed to determine all possible reachable
methods during runtime. Dynamic analysis must work with the classes the
application run currently has loaded. However DA must handle the case where
a class with it method definitions are inserted into the class hierarchy.

1.6 Notation

Italics is used for definitions, terms and code. Bold is used for emphasis to help
the reader find an important term or point easier.

A wide hat like Ĉ indicates the class cone of the class or classes. When
C.m is used, C is the declared type of the variable invoking the method, m.
The method name, m, implies the method’s unique signature, which includes
its class, name, parameters and return type. Methods in the main method’s
class are referenced without reference to their class.

Variables are referred to with v as a subscript of what the variable is associ-
ated with. For example: C1.m1.v.from refers to a variable,v, in method C1.m1.
The v.from indicates from is a part of the variable.
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1.7 Overview

The remainder of this work is organized as follows: Chapter 2 gives an overview
of important related theory and well-known Static and Dynamic Analysis algo-
rithms. The algorithms compared are explained in section 2.6.1. To complete
the background information needed, the chapter ends with an overview of the
Java bytecodes used by IPTAs. Chapter 3 summarizes work related to applica-
tions of IPTA algorithms in Java.

Chapter 4 uses a motivating test case with virtual method calls to demon-
strate when specific tests and algorithms (simple tests, CHA, RTA, XTA, VTA,
Andersen Points-To) can determine when a method is (dynamically) monomor-
phic. The effect of using the class load scheme on the algorithms is also demon-
strated via the test case. Chapter 5 describes the design decisions, the im-
plementation and testing in CACAO of the three modes, SA, HPA, and DA,
and the algorithms RTA, XTA and VTA. Chapter 6 reports the results. Chap-
ter 7 summarizes conclusions from the results compared to other related work.
Appendix A contains a pseudo code overview comparison of the algorithms im-
plemented (CHA, RTA, XTA, VTA). Rather than duplicating information in
the same place Appendix B contains some tables for results reported as only as
graphs in Chapter 6.



Chapter 2

Type analysis algorithms

This chapter gives an overview of requirements which all Inter-procedural Type
Analysis (IPTA) must fulfill to be usable. IPTA characteristics are explained
along with algorithms having the characteristic described. The chapter ends
with an explanation of the Java bytecodes important for IPTA of Java bytecode.

Structures analyzed by IPTA algorithms vary from a simple class hierarchy
and the program’s call graph (CG), to call flow graphs (CFG) with context
information on individual expressions. Although simpler IPTA algorithms were
tested, the more detailed IPTAs use a simpler IPTA’s call graph (CG) as a
starting point or to prune their CG. A more precise CG makes static analysis
(SA) faster and makes decisions based on dynamic analysis (DA) more exact.

The best acceptable solution for a data flow analysis algorithms lies between
the largest safe solution, meet over all points (MOP), and the smallest sound
solution, maximum fixed point(MFP). The MOP and MFP are equal for the
ideal solution. IPTA algorithms like RTA, XTA and VTA are compared to see
which one is the MFP of those tested. CHA will be used as the MOP for testing.
Having an overview of additional IPTAs helps order where the algorithms tested
fit in overall.

The best acceptable solution for a data flow analysis algorithms lies between
the largest safe solution, which are equal for the ideal solution. IPTA algorithms
like RTA, XTA and VTA are compared to see which one is the MFP of those
tested. CHA will be used as the MOP for testing. Having an overview of
additional IPTAs helps order where the algorithms tested fit in overall.

Many SA algorithms were designed before Java and later adapted and tested
with Java. Type and reference analysis algorithms used for IPTAs are rooted
in basic data flow techniques ([Kil73]) and reachability ([Sri92]).

SA and DA have many of the same characteristics and properties, as Ernst
in [Ern03] points out. He encourages researching using SA algorithms for DA
and vice versa, as well as Hybrid analysis, using combinations of both. The
applications of SA and DA differ. SA is used with Java for program extraction,
verification and testing. DA is used for online compiler optimizations.

This chapter ends with an overview of the Java bytecodes used by IPTAs
and referenced throughout the rest of this thesis.

6



CHAPTER 2. TYPE ANALYSIS ALGORITHMS 7

2.1 Algorithm requirements

The following section formally defines an IPTA algorithm’s goals of delivering
an ideal solution with only reachable methods for the lowest cost. The ideal
solution for this thesis is explained. Factors that affect IPTA characteristics are
explained. It ends with descriptions of better known SA algorithms that have
been studied previously.

2.1.1 The ideal solution

The ideal solution ([Bin07]) can formally be described as:

• sound, delivering the expected results;

• complete, including all the information expected and needed;

• and precise or exact, containing no extra classes or methods.

In short the ideal solution is exact, having neither too little nor too much.
Realistically type analysis (TAs) are only an approximation of runtime in-

formation, since unknowns like program inputs can vary.

• Pessimistic (conservative, safe) TAs may include and analyze extra
information, but are sound and complete. Algorithms prune out
unneeded information to come closer to the ideal solution.

• Ideal TAs have the same exact solution as the program run.

• Optimistic (incomplete, unsafe) TAs approximate and miss information.
Algorithms add to the information to get closer to the ideal solution.

An algorithm may start optimistic, but add too much information to
achieve a safe (pessimistic) end solution.

IPTAs are evaluated against the ideal solution definition. Decisions made
on DA results during runtime may be made on an incomplete solution, since
information is not complete until the end of the program run.

SA sound pessimistic complete all code imprecise
(safe) paths (too much)

DA unsound optimistic incomplete until 1 code precise
(unsafe) program ends path (exact)

Table 2.1: Comparison of SA vs. DA

This thesis considered solutions usable to identify dynamically monomorphic
methods as candidates to be inlined. Inlining requires a sound solution, where
it is known if a method is really polymorphic at runtime. Complete is desired,
incompleteness must be recognized. If a method is analyzed as dynamically
monomorphic and inlined, but found to be actually polymorphic during runtime,
the optimization must be corrected. Precision is desired, but if too few methods
are inlined, then an optimization was missed, but no corrections are required. So
a pessimistic solution is required for the MFP when the inlined code is executed.

Ideally exactly all dynamically monomorphic methods that exist should be
found and resolved by the IPTA algorithm.
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rapid

fast==2
bounded

K−bounded

Figure 2.1: Algorithm classifications by iterations cf. [Ryd07] Lecture 1 pp.15-16

2.1.2 Reachable methods

Resolving virtual method calls are the SA algorithm’s challenge. Based on some
program entity, like a method, instantiation, or expression, the IPTA algorithm
determines if a statement, and subsequently a method call, is reachable . This
affects how precise a SA algorithm is. A worklist solution ([CHK02], [Ryd07])
is often used. Methods are taken from a method worklist (mWL) and analyzed.

This mWL needs a starting point for its CFG. In Java the most inexact, but
safe SA would initialize its mWL CFG pessimistically to analyze all methods in
all available class files 1 and prune out unreachable methods. Alternatively and
more exact in the end, it may start optimistically with the main method and
on-the-fly work to a sound CFG by adding reachable methods to be analyzed
to the method mWL. Besides main, Java has entry point methods determined
by the JVM implementation.

The IPTA gathers information used for optimizations like devirtualization.
Post-processing may be used to show the whole program CFG. A DA algorithm
analyses only methods actually invoked during runtime. DA builds a CFG only
when an optimization or post processing analysis requires it.

2.1.3 Costs

IPTA algorithms have 2 major costs: time and memory. Runtime can be mea-
sured for specific benchmarks for particular implementation. The time needed
by algorithms can also be estimated by various characteristics of the algorithm,
such as the number of iterations through the code.

Time costs for IPTA algorithms can be estimated by how many iterations
over the code are needed ([FKU75], [KU76]) to converge to the smallest accept-
able solution 2 Ryder in [Ryd07] summarizes the convergence costs for data flow
algorithms for reference analysis as:

• K-bounded : The analysis converges in K iterations to a solution.

• Fast : One pass around a cycle is enough to summarize its contribution to
the data-flow solution but there may be data-flow between nodes.

• Rapid : One pass around the cycle is enough, since there is no flow of data
between nodes.

Using the number of iterations a SA algorithm for ordering allows the SA al-
gorithms can be placed into a partially order set (POSET). This allows SA algo-
rithms to be compared mathematically using a lattice as presented in ([GDDC97]
and [GC01]). Acceptable algorithms can be chosen from a lattice knowing the

1 All available classes are usually classes in a classfile’s constant pool.
2 [Ryd07] and [KS92] explain further.
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usable range of solutions lies between the largest safe solution and the smallest
acceptable solution.

Memory costs determine the scalability of an algorithm. The number of
sets kept is a measure of the memory costs. The number of sets needed is
determined by the number of details kept by the algorithm. The characteristics
of the application analyzed determine how often specific details are found and
stored. Using more memory incurs a secondary overhead, by causing the garbage
collector to be invoked more often.

IPTA algorithms should use as little memory as possible, since they keep
information for use by the optimizer. Where possible, to save space Flags and
Binary Decision Diagrams (BDD) vectors are preferable to a full pointer
based Call Graph (CG) set based algorithm.

2.1.4 Java Whole Program Challenges

Whether static or dynamic, not all classes used by a Java application can be
determined through the bytecode alone due to certain Java language features
([Hir04], [TP00],[Ryd03]):

• Dynamic class loading during runtime based on program request;

• Java Native Interface, (JNI) class loading and method invocation
outside the bytecode;

• Reflection is using methods, like those in the package java.lang.reflect,
to ask for information about a class, method, or field.

Classes loaded and method invoked outside the bytecode must be found out
([Hir04]) or provided to the SA ([TP00]); or the reference analysis for Java will
be neither sound, nor complete.

DA requires the JVM to be able to handle updating of the analysis as classes
are lazily loaded, which may invalidate optimization decisions made as the pro-
gram proceeds ([HvDDH05]).

2.1.5 Common Characteristics

Common characteristics, which affect precision and indirectly speed, among
reference and type analysis algorithms are noted in [Ryd03] and [Hin01]. Com-
binations of these characteristics have been explored by various algorithms and
are being used to design new algorithms. Some frameworks like Vortex ([GC01])
and Sable soot ([VRCG+99]) have been implemented to easily use and test some
characteristics alone or in combination.

Flow-sensitive algorithms follow the order of code flow (statement order).
“A solution is computed for each program point ([Hin01]).” A program point
may be higher-level than just a statement. Flow-insensitive algorithms are
faster since they can analyze code linearly, without regard to branch or specific
returns from method calls, but not as precise.

Context-sensitive algorithms associate solutions with a specific invocation
(calling) context. Enclosing calling contexts may also be considered. Context-
insensitive algorithms group all calling contexts together, so the method is either
called (i.e. reachable) or not called (i.e. not reachable). Again keeping less
information is faster, but more imprecise.
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Object representation An object may be represented by one abstract ob-
ject for the whole program or some program construct such as a method, variable
or instantiation site. Many IPTAs are set-based, keeping type (type-based) or
reference (flow-based) information sets based on some attribute like a method,
field, variable, or instantiation site. Some type analysis implementations use
just flags, BDD with vector bit sets ([Mil07], [MRR05], [SGSB05]), or compute
the information when needed ([SGSB05]) saving on the total memory needed.

2.2 Type-based Unification

IPTA algorithms keep the type information based on some program point. In-
sensitive algorithms unify all the types for the program to a specific program
entity, such as: class hierarchy, variables, and creation site. Flow and context
information is only available at the level of the unification point. If the unifi-
cation entity contains no detail of the flow inside a method, the algorithm is
precise enough to build a CG, but too imprecise to build a CFG. Especially for
SA a CG is useful to limit an initial analysis to only the reachable methods.

2.3 Call Graph Building

A call graph is built start with the main method (or other program entry points)
and adding methods determined reachable by the IPTA algorithm. This limits
the analysis to only the reachable, as methods, which the algorithm determines
to be reachable, rather than all methods in a class file. CG algorithms are not
considered precise enough for many optimizations ([Ryd07]).

The program representation ([Ryd03]) may either start with a simple CG
and update this CG via pruning or additions; or build the CG lazily on-the-fly.
A simple CG may consist of all methods in the constant pool of the class file
for classes referenced in the class constant pool or built by a fast, but imprecise
algorithm. Research in [GC01] recommends on-the-fly because fewer methods
must be analyzed. Fast algorithms can use one algorithm for the first iteration
and a more precise algorithm for their follow-up pass.3

2.4 Field-sensitive

In Java type flow within and between methods is not only through the method’s
CG and CFG, but also fields. [Ryd03] explains field-sensitive as distinguishing
between different fields of an abstract object.

2.5 Design Characteristics

The needs of the client application ([Hin01], [HDDH07]) and how easy the in-
formation is available drive which characteristics are favored when designing an
analysis algorithm.

3 The VTA implementation in [SHR+00] used RTA to create an initial CG. However this
thesis created the CG for VTA lazily on-the-fly.
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[HDDH07] adds the additional analysis requirement of ease-of-use with few
to no user inputs. Realistically users in a production environment will avoid a
tool or optimization which requires inputs.

2.6 Interprocedural Type Analysis Algorithms

The IPTA algorithms determine which methods are reachable based on the
class types the type analysis algorithm considers used. The following explains
the most common IPTAs grouped by characteristics.

2.6.1 Context-Insensitive algorithms

Context-insensitive algorithms have been popular to build CGs due to their
speed, but are often not a final solution, due to no flow graph, resulting in less
precision. A CG is built starting with all program entry points, like main, and
analyzing all methods reachable from the entry point.

Class Hierarchy Analysis (CHA) All classes in the loaded class hi-
erarchy are considered used. If a method, C.m, is invoked from a reachable
bytecode, then all method definitions of m in the Ĉ are considered reachable
([DGC95]). CHA is context- and flow-insensitive; it uses 1 abstract reference
variable per class throughout the program and it uses 1 abstract object to rep-
resent all possible instantiations of a class ([Ryd07]).

CHA used with Java is defined by the class loading scheme, for example:
SA uses all classes in the class file constant pool as in the CHA example in
[BMA03] and DA uses a smaller class hierarchy of all classes actually used
during runtime ([QH05]). CHA performs better with a smaller class hierarchy
since fewer classes usually means fewer available method definitions resulting in
more monomorphic method definitions.

Static Unification Algorithms

These algorithms analyze only reachable methods. They collect or unify all class
types to a specific scope within the program flow (program, method, variable,
expression) (Table 2.2).

Algorithm CHA RTA XTA VTA CFA-0 Pts-To
Program class instantiated methods, variables, expressions creation
Entity hierarchy classes fields fields site

Table 2.2: Algorithm Node Entities

Rapid Type Analysis (RTA) – RTA only considers classes instantiated
via new as used and method definitions in these classes as reachable ([BS96]).
The algorithm requires only one pass, by marking reachable methods in unused
classes, so they can be changed to used should the class be instantiated later.
In RTA a program uses classes and has a reachable method set.

Static RTA can also be affected by the class loading scheme. If the class load-
ing is done as a separate pass then classes instantiated in unreachable methods
may be loaded. [BMA03] shows such an example.

eXtended Type Analysis (XTA) – XTA narrows the context of class
information to a method. A class type set is kept for each method and field.
The method class set contains classes:



CHAPTER 2. TYPE ANALYSIS ALGORITHMS 12

• instantiated in the method via new;

• passed in via parameters;

• passed back via a return from method calls;

• written to static fields via a method variable or field.

The field class set contains classes:

• instantiated in via new

• of variables or fields written into the field.

Only called methods, whose class is in the calling method’s class set are consid-
ered reachable. XTA is (type propagation) flow-sensitive between methods and
fields, but context-insensitive, since all method invocations are grouped together
([TP00]). So a method’s bytecode can still be analyzed linearly.

Variable Type Analysis, VTA, keeps a class set per field and variable.
Only expressions that use reference variables (methods, this, parameters, local,
return) and fields are analyzed. Circular assignments are unified in the original
VTA to just one variable to speed analysis. A starting CFG can be given
by another CG analysis (CHA, RTA, VTA)([SHR+00]). It is flow-sensitive
between methods using a type propagation graph, but context-insensitive, since
all method invocations are grouped together. VTA is the first of the CFG
algorithms complex enough that SA implementations start with a CFG from a
simpler algorithm, rather than creating its CFG on-the-fly.

The algorithm proceeds in the following steps [BMA03]:

1. Initialize variable nodes;

2. Initialize edges between variables in the type propagation graph.

3. Initialize types of the variable nodes;

4. Unify and collapse variable paths with circular assignments.

5. Propagate types

0-CFA (Call flow analysis) – In 0-CFA classes used by the current ex-
pression are considered. So type sets are kept for each expression. Type propa-
gation is between expressions.

Points-to style analysis

Points-to style analysis keeps class type information about per object instanti-
ations (creation site), either as a group by class or single creation site. Sets of
references to the allocation sites are kept.

Steenguaard style Points-to (unification, equality, symmetric) –
([Ste96]) algorithm uses unification of class type information for assignments.
It is good for circular assignments, otherwise flow information is lost and the
type set is too large.
PtsTo(A) == PtsTo(B) after an assignment of A = B.
If before: PtsTo(A) = {A} and PtsTo(B) = {B},
then after: PtsTo(A) = {A, B} = PtsTo(A) ∪ PtsTo(B) = PtsTo(B).



CHAPTER 2. TYPE ANALYSIS ALGORITHMS 13

Andersen style Points-to algorithms (inclusion, subset, directional)
– ([And94]), where class type information flows into the assignee by assign-
ments. PtsTo(A) ⊂ PtsTo(B). It is flow-sensitive, but context-insensitive.
After assignment PtsTo(A) contains PtsTo(B). So PtsTo(A) = {A, B} =
PtsTo(A) + PtsTo(B) and PtsTo(B) = {B} remains unchanged.

A detailed example, comparing CHA, RTA, XTA, VTA and Andersen Points-
To, will be explained in Chapter 4.

2.6.2 Sensitive algorithms

Flow-sensitive and context-sensitive have been considered unable to size well in
the past because of multiple iterations of the code to follow all possible code
flows and the memory needed to store the contexts. Use of Binary Decision
Diagrams, BDD, has improved the efficiency for context-sensitivity ([LH06]).
Some better known “sensitive” algorithms are:

k-CFA and k-l-CFA –([Shi91], [GC01]) keep calling contexts to a depth
of k for l previous statements. RCFA is a scalable version of CFA reported as
twice as precise as RTA in [Pro02].

Cartesian Product Analysis, CPA – ([AH95]) analyzes all class type
combinations of a method, i.e. Cartesian product of the class types. Return
type is the union of the analyzed method’s class types ([KH02]). CPA is faster
than k-CFA, because calling contexts with the same parameter type contexts
are grouped together ([KC07]).

Object sensitive – OBA is a context- and field-sensitive analysis which
uses the receiver object for the “calling” context ([MRR02], [MRR05]).

Comparing two k-CFA algorithms and Object Sensitive, Lhotak in [LH06]
found that context sensitivity improved call graph precision by a small amount,
improved the precision of virtual call resolution by a more significant amount
and enabled a major precision improvement in cast safety analysis.

There is no one best analysis algorithm for finding dynamically monomorphic
virtual method calls in Java for all optimizations. The right analysis must be
used or designed for specific applications or cost goals ([Hin01]), [HDDH07].
More algorithms are now being researched in combination with the well-known
IPTA “non-sensitive” algorithms ([KC07], [DRS07], [Mil07], [HDDH07]) for a
balance between precision and costs for use by multiple client optimizations or
program understanding applications like test and verification.

2.7 Overview of Java bytecodes

IPTAs gather the most information by analyzing the fewest bytecodes possible.
This section gives an overview of which bytecodes are needed to gather type
and points-to information. Although not bytecodes, constructor methods are
briefly explained. A full description of JVM bytecodes is in [LY99].

2.7.1 The new bytecode

The Java new bytecode is used when an object is to be instantiated. Type
analysis uses the new bytecode to know a class is used by the program and for
creation sites. This includes arrays, since arrays use new to instantiate all their
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elements ([LY99] section 7.9 Thread example) and the analysis does not have
to allocate space for the array itself.

2.7.2 Method Invocation

There are four invoke bytecodes (invokestatic, invokespecial, invokevirtual, in-
vokeinterface) which cause a method to be called.

Non-virtual invocation

The following method invocations, grouped by bytecodes, are always mono-
morphic since the methods may not be overridden by subclasses:

• all invokestatic invoked methods, which are all methods declared static;

• all invokespecial invoked methods, which include the instantiation con-
structor, <init>, and private methods;

• invokevirtual invoked methods which are also declared final.

Virtual invocation

The invokevirtual bytecode is used when multiple target methods are allowed
(i.e. polymorphic), based on the class of method call and its subtypes. IPTAs
look at what types are used as defined by the analysis algorithm to determine
if such a method call is really dynamically monomorphic.

The invokeinterface bytecode is used when a method from an interface
class is invoked. Interface calls may also be polymorphic. Resolving an interface
method requires looking at the classes that implement the interface. The IPTA
may have to look at multiple class cones to determine, if the method invocation
is dynamically monomorphic. So devirtualizing interface methods, where the
interface has multiple implementing classes will have higher costs for an IPTA.

2.7.3 Constructors and finalize

There two kinds of constructors, class and instance. The instance constructor
uses the name of the class in the Java code and the name <init> in the bytecode.
When a class is instantiated via new ; via dynamic instantiation; or because the
class is a super class to an instantiated class. The instance constructor is invoked
by invokespecial.

The class constructor initializes static fields for a class and is always
named, <clinit> with no parameters. The class constructor is invoked di-
rectly from the JVM when the class is instantiated or when a static method or
static field is used.

The finalize method for a class is also invoked by JVM, if the class instan-
tiation is garbage collected.

2.7.4 Casting

The checkcast and instanceof bytecodes also reference classes and can be
used by an IPTA to determine if a class can be used by the program.
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2.7.5 Assignment

Type flow occurs through assignment statements, which have been translated
to the appropriate Java bytecode. In Java all bytecodes, which use reference
classes start with an a. So the aloads and astores bytecodes indicate to an
analysis flow between local variables in a method. The other xloads and xstores
bytecodes use default classes like istore for integer store.

Local fields use putfield and getfield to write to and read from local fields
respectively. Static fields use putstatic and getstatic to write to and read
from static fields respectively.

Loads and gets push on to and stores and puts pop off the JVM stack.

2.7.6 Other Bytecodes

Other bytecodes are only used by IPTAs for stack analysis, so the correct item
is pushed and popped for later use by one of the above bytecodes. The Java
bytecode may be translated to 3 address code, like add a, b, c, such as is done
for VTA by Sable Soot in [SHR+00]. Java bytecode is a stack machine or 0
address code, like load C, load B, add, store C ([Gea74]).



Chapter 3

Related Works

Type information gathered using an IPTA with a CFG includes SA, DA, and
Hybrid analysis. SA and DA algorithms do not differ, but the results are affected
by the class loading differences and information availability between SA and DA.
SA typically looks at all possible runs of a program, so for a specific application
run it will have more spurious methods and give a less accurate analysis. DA
looks only at one specific application run.

IPTA using CFG algorithms is useful for program understanding and a num-
ber of optimizations. [GC01] names: class analysis (side effect of IPTA), what
static fields and instances are modified by a method call; exception detection;
escape analysis; tree shaking of reachable methods (side effect of IPTA). Class
analysis and tree shaking are actually side-effects of IPTA, which can give a
Java application smaller footprint.

First SA algorithms were adapted or developed for Java, then these algo-
rithms were further adapted for DA for a variety of client applications:

• CHA static [DGC95] then dynamic[IKY+99], [QH05];

• RTA static [BS96][TP00] then dynamic [QH05] (inlining);

• XTA static[TP00] then dynamic [QH04] (inlining);

• VTA static[SHR+00] then dynamic [QH05] (inlining);

• Points-To Andersen static [And94] then dynamic [HDDH07] plus many
other client applications including: Garbage collection (GC) [Hir04]; Es-
cape analysis [RK02], [LAM07], [DRS07]; Def-use, side-effect analysis
[MRR05]; Def-use [MRR05];and program slicing [ZR07].

Figure 3.1 shows the basic Java process, where in this process IPTA can be
applied, and examples of where IPTA has been applied based on the applications
needs. Some IPTA results from test tools are of interest for optimizations, since
test tools also want to know exactly what classes and fields are used and which
methods are reachable by an application.

3.1 Pre-processing Analysis

Pre-processing SAs run before the JVM starts to speed-up the JVM. Their
input and output are the application’s classfiles for an iterating application.

16
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Figure 3.1: Overview where IPTA occurs in Java process

IBM Jikes Application eXtractor (JAX) ([TLSS99], [TSL03]), and Sable Soot
framework [SHR+00] use pre-processing IPTA to reduce the applications size
and to perform static optimizations to the bytecode. Limitations of preprocessor
optimizations are briefly discussed. [KVM00] uses pre-processing analysis to
perform class verification before the runtime.

3.1.1 Smaller application footprint

Besides optimizing the bytecode itself, unused classes are removed out of the
classpath or jar file and unreferenced methods and fields removed out of the
classfiles. A smaller application footprint:

• reduces the class hierarchy ([TSL03]);

• lower class loading time ([Fol07], [LAM07]);

• allows a Java application to fit into an embedded system ([Fol07]);

• reduces time to pass a Java application over networks ([TLSS99]).

The result must be sound and complete, so the classes, methods and fields
left will be a superset of what any program runtime needs. The more precise
the algorithm used by the preprocessor, the smaller a classpath jar can be.

Unused interface methods must be implemented, so JAX replaces the method
code with a return.
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Libraries for Java applications contain more class files and methods, than
used by any one program. Static fields are often used for constants, all of which
are not used by one program. JAX reduced the class libraries needed with
SPECjvm98 to 37.5% of their original size using XTA [TSL03]. The HyperJ
benchmark program, which heavily uses interfaces, was reduced to around a
fourth of its original size (27.8%). The major size reduction (53.3%) came from
IPTA reachability analysis. Bytecode optimization (dead code removal, inlining,
devirtualization, class hierarchy compression, and name compression) accounted
for remaining the 18.9% of the application size reduction.

3.1.2 Bytecode Optimizing

Not all bytecode optimizations can be performed statically. A preprocessor can
only communicate with the JVM through its classfile, so some optimizations,
like inline opportunities, are communicated indirectly by changing attributes or
the bytecodes used.

To communicate inlining opportunities to the JVM, JAX changed methods
attributes to final when a method was never overwritten in its class hierar-
chy. Also where legal, invokevirtual was changed to invokespecial, if a method
was determined to be dynamically monomorphic. Where not legal the analysis
results are lost or must be reanalyzed at runtime.

3.1.3 User-defined Classfile attributes

Additionally [LY99] section 4.7.1 allows adding user defined classfile attributes.
For mobile devices, the CDLC Hotspot pre-verifier adds a stack map attribute
when performing class verification before delivering an application. This at-
tribute tells the CDLC Hotspot the results [KVM00]. However classfiles grew
by 5%.

3.1.4 Algorithm comparisons

CHA is used as the standard largest solution for context-insensitive algorithms
and 0-CFA as the smallest solution for O(n3) algorithms [GC01]. [TLSS99]
tested JAX with RTA and CHA with real Java applications such as large reser-
vation system developed by a customer. RTA removed 18.6% more classes and
16.8% more methods than CHA.

[TP00] looked at optimistic algorithms with type collection points (class,
field, method, fields and methods (XTA)) between RTA and 0-CFA to see
which had the fewest extraneous calling edges to unreached methods. XTA,
which considers both fields and methods, was 0.8% more precise than RTA at
eliminating spurious polymorphic method calls. XTA ran up to 8.3 times slower
than RTA.

[SHR+00] sought to design a 1 iteration algorithm that scales linearly and
improves on RTA. In Sable Soot framework ([VRCG+99]), [SHR+00] starts
with a conservative CFG from an initial IPTA and improves the CFG with
VTA by pruning unused methods using VTA. To create the conservative CFG
on all methods in a classfile, they used, in order of measured precision, CHA,
pessimistic pRTA, optimistic oRTA and VTA. VTA+VTA pruned the most
class type nodes (10-65%) and call edges(17-65%). They observed an runtime
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improvement of 0% for javac and 1% for soot (written in Java) with CHA and
a 1% and 3% improvement respectively with VTA.

[BMA03] presents a version of VTA with multiple iterations and type
intersection to improve precision of the CFG even more. They found the
number of fewer classes used vs. CHA was 13% for RTA, for standard VTA
23%, and VTA with the two variations 32%.

[Mil07] looked at inter-class dependencies (inheritance, sub-classes, fields)
for a test case generator which uses Soot for its CFG. They found inter-class
dependencies of 56% for standard VTA; 32% for 0-CFA; 25% for OB, points-to
on method objects; and 24% for OBR, points-to data flow to resolve library call-
backs. VTA used its standard pessimistic implementation. CHA was used for its
first conservative CFG. The other algorithms created their CFGs optimistically
on-the-fly.

Object-sensitive points-to found reductions in spurious edges of 34.2% com-
pared to 75.1% by plain points-to.

3.1.5 Static XTA vs. VTA

Both XTA and VTA are k-iteration algorithms, since there is type flow between
the nodes. XTA’s first iteration builds class sets and eagerly propagated types
during its pass over the program’s bytecode. XTA then propagates in further
iterations until nothing changes or a practical limit ([TP00]).

The original VTA ([SHR+00]) has five passes over the data, however only the
last pass does an end type propagation. [BMA03] shows multiple propagation
iterations using VTAn improve the results. Dynamic VTA in [QH05] eager and
batch propagation is used. Propagation is covered in more detail in section 3.3.

[TP00] states JAX was never tested with VTA because of the stack analysis
required for bytecode analysis was considered too costly in the JAX architecture.
VTA is designed to use a single iteration to size linearly. [SHR+00] did not test
XTA, but comments ”the XTA solver may require iterations”.

The SA implementations of JAX’s best reported algorithm, XTA, and Sable’s
best reported algorithm, VTA, are not directly comparable, since:

Analysis is performed in different phases. XTA performed its analysis
directly on bytecode (before any stack analysis). VTA was performed on Jimble
intermediate code (after stack analysis with variable labels).

XTA produced its CFG on-the-fly and VTA pruned its CFG. XTA
starting CFG added reachable methods toward a sound solution. VTA started
with a sound CFG and pruned out as many unreachable spurious classes and
methods as possible. Due to difficulties in comparing IPTAs and CFGs from
various tools, [Lho07] has designed a tool to compare CFGs.

3.2 Analysis in the JVM

The challenge of IPTA is to analyse only truly reachable methods. The initial
challenge is when and how to get the smallest sound CFG and class hierarchy.
The when is determined by whether the analysis is SA, DA or hybrid analysis
as shown in figure 3.1.

SA in JVM must have a low overhead. DA generates a precise solution,
but only for one specific run. Hybrid analysis has been most looked at for
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generating test case solutions, but not in the JVM. SA in the JVM can be used
for optimizers. Both SA and Hybrid analysis are used for software verifiers and
test code generators. [Fol07] points out that for this reason some have suggested
or used a modified classfile formats such as stackmap in Java 1.6.

3.2.1 Static Analysis in JVM

[GC01] built and tested a parameterized framework for IPTA algorithms in the
Vortex compiler for Java and Cecil. The parameters (method, instance, class,
environment (scope)) and their attributes indicated how much type and context
information they kept. Initialization parameters determined the starting CFG.
For worst cases, CHA was used as a base to compare context insensitive algo-
rithms and 0-CFA was used as a base to compare context-sensitive algorithms
for improvements. The result was a lattice of the relative precisions of the CFGs
the algorithms produced and as well as scalability information.

3.2.2 Dynamic Analysis in JVM

[QH04] comments that although IPTA is popular, DA IPTA has not yet been
widely adopted, but an exception is dynamic devirtualization in JITs.

[QH04] tested dynamic versions of CHA and XTA to eliminate unused
fields in the Jikes RVM. They tested inlining with lazy loading by adding CG
profiling code. This type analysis code was invoked when a method was invoked.
Nodes and edges for the called and called by information was gathered, before
allowing the JVM to continue to compile or execute the method. For interfaces
two approaches were used to resolve possible receiver methods. The first more
exact approach kept a caller index and the second approach used dynamic CHA.
Due to few interfaces in their test cases, they used the dynamic CHA approach
for final tests. Invalidation techniques were used to determine if the inlined
code was still valid whenever the parent method was invoked. The results were
mixed. They report 20% to 50% fewer call edges with dynamic XTA than
dynamic CHA and a performance degradation in the SPECjvm98 benchmarks.

[QH05] builds on these results. [QH05] reported that comparing dynamic
versions CHA, RTA, XTA and VTA against the actual runtime results,
that CHA gave almost perfect resolution for all invokevirtual dynamically mono-
morphic methods, but not for invokeinterface. VTA performed best for resolving
invokeinterface dynamically monomorphic methods. However there were few
opportunities in the standard benchmarks to improve over CHA since they are
mostly monomorphic. Only the results for CHA and VTA are reported, since
RTA and XTA did not improve on CHA.

VTA was implemented in stages where the nodes and edges were created
during the bytecode parse in the Jikes RVM optimizing front-end. Following
the design in [QH04] the type resolution occurs from the type information block
stub when the method is invoked. The VTA collapsing strongly connected
components step did not occur for dynamic VTA.

[Hir04] explores connectivity-based garbage collection (GC) using
Andersen points-to DA. Since objects, which reference each other, are likely
to be no longer needed at the same time, such objects were allocated to a
partition. When all objects in a partition were no longer used, the partition
could be freed. The hope was that freeing partitions of memory earlier might
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avoid triggering a full GC of the whole program at once because the analysis
was almost out of memory.

3.2.3 Hybrid Analysis

Ernst in [Ern03] encourages exploration of hybrid analysis, using of both SA
and DA, in either order, where one analysis gathers the information and the
other refines the information for a more precise end analysis.

DA to SA Ryder refers to DA feeding into SA as blended analysis. [DRS07]
uses a blended analysis, which feeds a CG from a trace of a single DA into a SA
tool to load only classes actually used. The main client application is escape
analysis of types using points-to object representation for heap analysis and test
case coverage. Whole program problems are avoided since all classes loaded and
methods called are logged.

DA to SA to DA (DSD) Hybrid analysis can feed information back and
forth to gather information, use the information, and verify the resulting use
of the information. Csallner et.al in [CS06] use (step 1) DA to capture correct
information about a program’s run. Step 2 feeds the the captured CG into a
SA to use as its starting CG. The step 2 SA results are used to generate test
cases. Step 3 DA verifies the SA results. They found DSD to be more precise
than tools using just SA or DA and to be especially helpful for avoiding false
positives when evaluating exceptions.

3.2.4 No Analysis

[LYK+00] used no analysis for inline devirtualization, but used polymorphic
inline caches (PICs), instead of a virtual method table (VMT) to
dispatch methods. A method stub may be the inlined method, a switch test for
multiple inlined methods, or jump to the method. The methods are compiled
for the one type as if they were static and cache executes the compiled version
based on the type. [LYK+00] found a speed up as much as a geometric mean
of 3% for monomorphic inline caches and 9% for polymorphic inline caches.
That inline caches match hardware branch prediction in newer hardware gave
an extra performance boost over VMTs. Finding in the SPECjvm98 about 85%
of virtual calls use a monomorphic type and about 90% have a single target
method, they inlined without testing and backed out as needed.

Hind et.al. in [LAHC06] uses statistical profiling, but no traditional SA.
The results varied from 10-20% improvement to 10% degradegation. Using
hardware performance monitors (hpm) counter and timer statistical profiling to
identify method candidates for optimization reports a 5.7% average improve-
ment in [BGH+07]. They considered direct application to inlining as a future
application. Using polling as part of the profiling can mediate optimizations
applied to a method in a loop, which for inlining may be invalidated when the
loop is run a second time.

3.3 Propagation

In [HDDH07] several type propagations were tried with a points-to analysis:

• eager propagates as soon as a type change is found;



CHAPTER 3. RELATED WORKS 22

• batch propagates at a specific program point like garbage collection;

• end propagates types at the end of the program.

Using SA points-to analysis, propagating types at the end was faster. Using DA
points-to analysis the batch propagation point was just before GC. In [QH05]
dynamic VTA found ”both eager and batch propagation efficient.”

[QH05] found eager propagation with dynamic VTA was faster
than batch propagation.

3.4 Class Loading affect on Analysis

[LAM07] tested eager pre-loading of classes for SA in JVM, because their anal-
ysis was being invalidated and repeated too often. They found a better solution
was to batch the analysis by delaying any needed analysis until the program was
no longer “frequently” loading classes. Batched analysis was invalidated often
only if the program gradually loaded classes.

For real-time (RT) Java, [Fol07] reiterates how important keeping the class
loading to a minimum for RT systems is. [Fol07] uses an application extractor,
Websphere, a second generation tool of JAX, which uses Iteration Type Analysis
(ITA) a version of XTA which ignores classes which are set to Null.

Lazy loading delays loading classes until the class is needed, causing the
analysis to have to handle classes inserted into a class cone [QH05].

A problem with DA, is it only validate up to the current point in the program
due to lazy loading. So DA can be invalidated later in the program and must
be redone. [LAM07] found that for javac and jack programs that classes were
loaded gradually throughout the program, caused the IPTA with lazy loading or
non-preloading (NP) to be redone 72 and 18 times respectively. Tests showed
a 1.87 times average performance improvement for IPTA when classes were
pre-loaded.

A non-preloading delayed (NPD) IPTA was introduced, which profiles the
time between class loads and delays IPTA until the pattern says no new class
loads are expected to immediately invalidate the IPTA. NPD brought significant
saving for the programs that gradually loaded classes like javac and jack and
overall an average of 2.30 times performance improvement over non-preloading
(NP) lazy loading. However for programs like compress and mtrt, where all
classes are loaded at the beginning of the program, there was a low, in com-
parison to reanalyze costs, IPTA performance penalty of 25% due keeping the
class loading history and delaying IPTA when it was not needed. For jack with
NPD, the IPTA was only performed once. For javac with NPD the IPTA was
recalculated 4 times rather than 72 times with NP.

3.5 Whole Program Solutions

Bytecode analysis starting from the main method will not be complete. Tomcat
servlet programs are a well-known example of use of application class loader.
SPECjvm98 invokes the main method of its benchmarks dynamically.

The Java ME KVM solution ([KVM00]) is to not allow reflection, dynamic
class loading or method invocation, even from native methods. The KNI requires
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the classes and methods to be loaded to be supplied to the KVM. JAX supplies
dynamically invoked methods as entry points [TLSS99].

3.5.1 Supplied Inputs in Static Analysis

XTA ([TP00]) and VTA ([SHR+00])supplied a hand coded analysis of classes
and methods missed by the analysis due to Java whole program problems. How-
ever CGs relying on a user-provided specification to obtain a conservative CG
had 1.43 to 6.58 times more methods than the actual CG ([LWL05]).

3.5.2 String Analysis

For a SA, [LWL05] using points-to analysis looked in the bytecode for a pattern
of: the method that performed reflection (Class.forName), an instanceOf in
the bytecode, and invocation of method.invoke as hints that reflection was used.
They were able to resolved 95% of reflective calls.

For DA, [Hir04] for GC used a similar approach, plus examining the contents
of strings for dynamically loaded classes and dynamically invoked methods.
They used these hints, together with what classes were actually loaded and what
methods were invoked to surmise what methods were called due to reflection or
by a native method.

JNI calls can only be examined via their inputs and return values, since
the analysis cannot be generalized for all languages and hardware. Jikes is
implemented in Java and uses Java reflection calls to implement JNI, so Jikes
can gather information from JNI using the same technique used for handling
reflection.[HDDH07]

3.5.3 Entry Methods

Jikes optimizes its boot process with the Jikes boot image tool [AAB+05].
Besides the main method, dynamically loaded methods are treated as entry
methods[TLSS99]. The boot process is optimized and the classes and methods
used are compiled and saved in a boot image. This boot image is loaded at
program begin, rather than repeating optimizations and compilation of the same
start-up code for every run.

3.6 Benchmarks Characteristics

[QH05] found in general the commonly used Java Benchmarks have few poly-
morphic methods. [QH05] test results (with no hot method profiling) showed
CHA found most monomorphic methods (99%) and VTA found most of the few
monomorphic interface calls (86%-99%) in db, javac, jack and SPECjbb2000.
Lee et.al. [LYK+00] noted most methods in the SPECjvm98 benchmark were
monomorphic and ”type feedback cannot improve further over polymorphic in-
line caches and even degrades the performance for some programs.”.
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Motivating Examples

The precision and overhead of a IPTA algorithm determines its usefulness for
optimizations. This usefulness is challenged by method polymorphism through
virtual methods. Traditional tests ([Dea96]) have been used to determine if a
method is monomorphic without using an extensive analysis.

A test case demonstrates how the three CFG type analysis algorithms, (RTA,
XTA, VTA) compared in this thesis, as well the algorithm used for comparison
(CHA), handle the challenge of resolving virtual method calls. Andersen points-
to was not implemented, but is included here for comparison, since it is the basis
for many current IPTA algorithms.

The test class hierarchy used for this chapter is:

class E extends class D extends class C extends class B extends class A
class X extends class A

Every class has a method m1( ). Class A has a method m2( ).

The test case for virtual calls in table 4.1 contains the test code, bytecode
call, method actually called and what methods each algorithm consider reach-
able for each method call. Each new is labeled as Objects 1-4 or O1-O4 for the
Points-To algorithm.

Use of an optimistic or a pessimistic class hierarchy affects both the precision
and overhead of IPTA algorithms. First the use of the optimistic class hierarchy
with virtual calls is examined in section 4.2 and then the use of a pessimistic
class hierarchy is examined in section 4.3.

4.1 Simple Tests

Some traditional ([Dea96]) simple tests to prove a method, C.m, is monomorphic
are:

1. language constructs (non-virtual);

2. no sub-classes exist (leaf );

3. only 1 available definition of the method, m in Ĉ.

A non-virtual method can be recognized by the appropriate invoke bytecode:
(sec. 2.7.2)(static, special, virtual for final methods);

24
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A method in a leaf class, like E, has no subclasses, which could override
the method. So a leaf method, like E.m1, is always monomorphic. If relative
numbering schemes of the class hierarchy are used, which use a base value and
depth as described in [KH02] and used in CACAO, a leaf class has a depth of
zero.

Only 1 definition in Ĉ of m occurs when the method is only defined in C
or a super class of C. For example, invokevirtual X.m1 has only 1 method
definition of foo in X̂ and always resolves to X.m1. Similarly invokevirtual
Y.m1 finds no definition of foo in Y and resolves to X.m1 in Y ’s super class.

In table 4.1 extra analysis information gathered only when using the pes-
simistic algorithm and class hierarchy are shown in blue.

These simple tests are independent of a specific IPTA algorithm.

4.2 Virtual Calls

Although multiple method definitions exist in reachable classes, only one method
definition may be actually reachable by the program. An IPTA must be used
to heuristically determine, if only 1 method definition is used in Ĉ. An IPTA
gathers class information, which is used to determine which classes can be used
by a method invocation. If only 1 class with the method definition is considered
used by the IPTA, then the method is monomorphic. Further if there is only
one method definition in the classes used, then the method is monomorphic.

The following examines optimistic versions (section 2.1.2) of the five algo-
rithms using an optimistic class hierarchy. The optimistic class hierarchy loads
only classes found reachable, as found in DA due to lazy loading by the JVM.
Optimistic IPTA builds its CFG on-the-fly starting with main. Methods found
reachable by the IPTA are added to the mWL during the analysis and are
analyzed until the mWL is empty.

4.2.1 CHA

Class Hierarchy Analysis (CHA) considers all classes in the class hierarchy used.
In the JVM the class hierarchy is all loaded classes. A method reachable and is
added to the mWL, if the invoked method is defined in Ĉ of the invoking class
of the method. The scope of the method CG is: “program calls”. There are no
edges between methods.

In the example in method f, a2.m1 is A.m1 in the bytecode. Classes
A,B,D,E are loaded because they are instantiated. Class C is loaded because
it is the super class of classes D and E. Since all classes in the Â have method
definitions for foo, all five methods definitions of foo (A.m1, B.m1, C.m1, D.m1,
E.m1 ) are considered reachable by CHA. In method g, variable b4 has a type
of B. Class B has a method definition for foo. Using B̂, CHA finds for the
call b4.m1 that 4 methods are reachable as shown in figure 4.1.

4.2.2 RTA

RTA improves on CHA, by only considering classes instantiated {A,B,D,E} as
used. So in method f, the call a2.m1 resolves to 4 methods. The abstraction is
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public class Testcase invoke Calls CHA RTA XTA VTA Pts
{ virtual -To
public static main()
{A a1;
B b1 = new B( ); O1

g(b1); g(A) g(B) b1(B,C,D,E) b1(B,D,E) b1(B) b1(B)
f(b1); f(B) f(B) b1 (B,C,D,E) b1 (B,D,E) b1(B) b1(B)
}

static void f(A a2)
{A a1 = new A( ); O2

a2.m1( ); A.m1 B.m1 A,B,C,D,E,X A,B,D,E,X A,B B B
a2.m2( ); A.m2 A.m2 A A A A A
}
static void g(B b2)
{B b3 = b2;
B b4 = new E( ); O3

b3.m1( ); B.m1 B.m1 B,C,D,E B,D,E B,D,E B,D B,D
b3 = new D( ); O4

b3.m1( ); B.m1 D.m1 B,C,D,E B,D,E B,D,E B,D B,D
b4.m1( ); B.m1 E.m1 B,C,D,E B,D,E B,D,E E E
}
// not called
static void h( ) {
X x1 = new X( ); O5

x1.m1( ); X.m1
} }

Table 4.1: Example Program with IPTA reachable Methods Comparison
Algorithm Pgm Classes
CHA {A,B,C,D,E}
RTA {A,B,D,E}

Table 4.2: CHA and RTA type propagation set for b4.m1

still “program calls”. In method g, the first b3.m1 call marks C.m1 and D.m1,
since neither class C or D have been instantiated yet. D.m1 is added to the
reachable mWL after class D is instantiated by new D(). Since Class C is never
instantiated, C.m1 is never added to the reachable mWL. Figure 4.1 shows that
since b4 is of type B, that RTA finds 3 methods reachable for the call b4.m1.
RTA finds 1 less reachable method, than CHA for all method calls in
the example program.

B.foo

A.foo

C.foo

D.foo

E.foo

B.foo

A.foo

C.foo

D.foo

E.foo

B.foo

A.foo

C.foo

D.foo

E.foo

b4.foo

{B,C,D,E}

CHA RTA XTA

b4.foo b4.foo

{B,D,E} {B,D,E}

Figure 4.1: CHA, RTA, XTA for b4.m1

4.2.3 XTA

XTA improves on RTA by keeping a set of classes used for each reachable method
and a field. Classes can be added to a method’s type set via parameters in,
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B.foo

A.foo

C.foo

D.foo

E.foo

B.foo

A.foo

C.foo

D.foo

E.foo

a2.foo

{A,B,C,D,E}

B.foo

A.foo

C.foo

D.foo

E.foo

a2.foo

{A,B,D,E}

a2.foo

{A,B}

CHA RTA XTA

Figure 4.2: CHA, RTA, XTA for a2.m1
Method ParamSet Rtn Method Classes
main { } {B}
f {B} { } {A, B}
g {B} { } {B,D,E}

Table 4.3: XTA type propagation set

return value out or fields. In the example for method f, class B is added to
type set via an input parameter and class A is added via the new instantiation.
So the class set for method f is {A,B} making only A.m1 and B.m1 reachable
from f. For method g the class set is {B,D,E}. So for b4.m1, as shown in figure
4.1, there are three reachable methods. XTA finds 1 less reachable method
for the a2.m1 (figure 4.2) than RTA, but has no improvement over RTA
for other method calls in this example.
4.2.4 VTA

VTA Andersen Points−toB b1 = new B();

g.b4 {E}

g.b2 {B}

g.b3 {B,D}

B b4 = new E();

b3 = new D();

static void g(B b2) {

B b3 = b2;

b3.foo();

b4.foo();

}

b3 = new D();

static void g(B b2) {

B b3 = b2;

b3.foo();

b3.foo();

b4.foo();

}

main.b1 {B}g(b1); g(b1);

B b4 = new E(); O {g.b4}

O {g.b3}3

b3.foo();

2

O{main.b1,g.b2,g.b3}
1

Figure 4.3: VTA and Andersen Points-to for method g

VTA follows the flow of types through variables. In method f, class B is
added to f.b2 ’s class set from main.b1 through the parameter list. Class A is
instantiated in method f, but never used by b2. So the b2.m1 call finds only
B.m1 reachable.

As shown in figure 4.3 in method g, variables b3 and b4 have different
type sets of {B,D} and {E} respectively. VTA finds b4.m1 to be dynamically
monomorphic since VTA finds only E.m1 reachable here. So VTA allows E.m1
to be a candidate to be inlined. VTA finds 1 less reachable method than XTA for
all method calls in the example program. VTA finds 1 method invocation,
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b4.m1() that can be devirtualized. VTA is the MFP (sec.2) of algorithms
tested.

Variable Classes FlowsTo FlowsFrom
main.b1 {B} {f.a2, g.b2} { }
f.a1, f.a2, g.b4 {B} { } { }
g.b2 {B} {f.b2} { }
g.b3 {B} { } {f.b2}

Table 4.4: VTA type propagation set

4.2.5 Andersen Points-to

Andersen points-to was not implemented, but is included for comparison since it
is the basis for many current IPTA algorithms. Each new is an object reference
or creation site. The creation sites are labeled in table 4.1 as Objects 1-4 or
O1-O4. O1 is the object created by newB() in the main method. O1 is pointed
to by variables: main.b1 through a new object assignment, f.b2 as a parameter,
g.b2 as a parameter and g.b3 through assignment. The points-to set for the
newA() creation site, O2, has an empty points-to set { }. O3, an instantiation
of class E, is pointed to by the variable g.b4. O4, an instantiation of class D is
pointed to by g.b3.

Methods are considered reachable by Andersen Points-To, if the variable
used to invoke a method are in an object’s points-to set. As shown in figure 4.3,
for method g, the variable b3 points to both O1 of type B and O4 of type D.
So the b3.m1 call consider two methods reachable. Variable g.b4 points to O3

of type E. The call b4.m1 only considers 1 method reachable, so E.m1
could be devirtualized by Andersen points-to like VTA.

It interesting to note the roles of the nodes and sets are reversed for VTA
and Andersen Points-To analysis. For this example both VTA and Points-To
were able to find 1 dynamically monomorphic method. CHA had the most
spurious methods. The next chapter will explain how RTA, XTA and VTA
were specifically implemented in CACAO.

Variable v PointsTo(v) Object O FlowsTo(O)
main.b1 {O1} O1 {main.b1, f.a2, g.b2, g.b3 }
f.a2 {O1} O2 {f.a1}
f.a1 {O2} O3 {g.b4}
g.b2 {O1} O4 {g.b3}
g.b3 {O1, O4}
g.b4 {O3}

Table 4.5: Andersen Points-to type propagation sets

4.3 Pessimistic vs. Optimistic Class Hierarchy

A pessimistic class hierarchy starts with all classes and methods, that might
be used when the class is used, which is all classes in a classfile’s constant
pool. Method h is never called, but the class X will still be loaded and in the
pessimistic class hierarchy. Therefore although class X is never used, pessimistic
CHA (pCHA) will find X.m1 reachable whenever A.m1 is invoked since X is
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in Â. Similarly since there is a new X() in h pessimistic RTA (pRTA) will find
X.m1 reachable whenever A.m1 is invoked.

Pessimistic versions of XTA, VTA and Points-To will start with both h and
X.m1 in their CFGs and in the end prune both methods out of their CFGs.
Additionally VTA is a pessimistic algorithm and would allocate variable nodes
for the local variable x1. Variables are not shown in the testcase table. Similarly
a pessimistic Andersen Points-To would allocate an object, O5, node due to the
new X(), which will also not be used.

Existing IPTA implementations use a pessimistic class hierarchy for SA and
an optimistic class hierarchy for DA.

CHA ([Dea96]) and VTA ([SHR+00]) are pessimistic algorithms, although
dynamic CHA is optimistic ([QH05]) due to lazy loading by the JVM. Even in a
dynamic implementation VTA prunes a CHA CFG ([QH05]). Both pessimistic
and optimistic versions of RTA ([BS96], [SHR+00]) and Andersen’s Points-To
([And94],[HDDH07]) are used. XTA is an optimistic algorithm ([TP00]) even
when used for SA.



Chapter 5

Analysis in CACAO

This chapter addresses the major issues implementing the three CFG type anal-
ysis algorithms, RTA, XTA, and VTA, in four analysis modes (static (SA), hy-
brid pickup (HPA-SA, HPA-DA), dynamic (DA)) in CACAO. The choice of an
optimistic class loading scheme, delayed class loading, and class usage by the
algorithms is explained next. All algorithms are implemented with same general
method worklist (mWL) algorithm to process the methods they find reachable.
However there are mWL usage differences between modes.

Figure A.1 shows the three algorithms implemented and highlights their
similarities and differences. A method is reachable, if the class is used, as defined
by the analysis algorithm. The algorithms differ in the scope and discovery of
used classes and reachable methods. A major distinction between algorithms is
the program entity that types are collected on, which results in differences in
how the algorithms recognize and propagate reachable types.

SA whole program approach is explained. The chapter concludes with in-
formation about how the devirtualization statistics are gathered and how the
implementation is tested.

An overview of the bytecodes was given in section 2.7. In the rest of this
thesis, a calling method will always have a lower subscript number than the
method it calls. So C.m1 is called by C.m0 and calls C.m2.

5.1 Analysis Modes

Figure 5.1 extends figure 3.1 to show where in CACAO this implementation of
static analysis (SA), dynamic analysis (DA), and hybrid pickup analysis (HPA)
modes occur in the Java application process.

5.1.1 One source, multiple modes

The analysis modes were implemented in the same source code, but as separate
modules by using three C language #define macro flags to compile or exclude
the mode specific code. These compile-time flags match the mode definitions.

ANALMODE STATIC, the SA flag, includes code to cause the whole static
analysis to occur before any code is compiled.

30
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Figure 5.1: Where IPTA in CACAO occurs in Java process (extends fig.3.1)

ANALMODE DYNAMIC, the DA flag, includes code to cause the dynamic
analysis of just one method, just before its normal JIT parse.

ANALMODE PICKUP MISSED, the HPA flag, includes or excludes code to
cause an analysis to start with this method at runtime, when a method to be JIT
parsed has not yet been analyzed. This defines both a static pickup (SA-HPA)
and dynamic mixed mode (DA-HPA).

The analysis code must be compiled with either the SA flag or DA flag
defined, but not both. The HPA flag may be defined to enable code for a
hybrid analysis, which picks up entry points to begin an analysis round.

5.1.2 Static Analysis Location in CACAO

Factors to be considered when deciding where the algorithms are located in
CACAO, in order of influence, are:

• the first pass of optimizations using the analysis,

• cost of using a specific compiler pass,

• input suitability and cost to the algorithms,

• the comparability of the algorithms.

The CACAO JIT compiler basic phases consist of a bytecode parser, stack ana-
lyzer, type checker, register allocation, and code generation followed by running
the method as described in [Kra98] and [Ste07]. Each pass refines its input to
an intermediate representation closer to the machine code.

Inlining in CACAO was being implemented in the parse pass at the time
this implementation started, making parse the first compiler pass needing the
analysis. A limiting characteristic of SA is that it must be completed
for the whole program before any code is generated, so the analysis:

• must be implemented as a separate first compiler pass, which
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Figure 5.2: Analysis in CACAO Passes

• has bytecode as input and

• could not be mixed in with the code of another compiler pass.

So SA is implemented as a separate pass before the first JIT parse (fig.5.2).

5.1.3 Bytecode or Intermediate code input

The SA pass could still translate its bytecode input into intermediate code
like Sable’s Jimple ([VRCG+99]) before analysis. Bytecode input is enough for
an analysis algorithm, when the type information needed is available in just
one bytecode. If type information from more than one bytecode is needed, then
reachable types of variables loaded on the stack must be examined. Assignments
(sec. 2.7.5) and the variables passed as parameters are examples of code, which
in the JVM require stack analysis.

RTA and XTA ignore type flow within a method and only require a trimmed-
down bytecode parse, since only bytecodes with information needed by the algo-
rithm to determine reachable methods need to be parsed by the algorithm. VTA
additionally needs a stack analysis for the type flow between variables. However
translation to intermediate code adds to the runtime costs. This implementa-
tion is in a JIT, so low runtime overhead is considered important. Using an
intermediate translation for RTA and XTA, when it is not needed did not seem
justified. Adding the extra overhead of translating bytecode to intermediate
code for just VTA, did not seem like a fair comparison of the algorithms, if it
could be avoided.

A compromise was chosen and a trimmed-down stack analysis is imple-
mented for VTA. The trimmed-down stack analysis ignored non-reference types
except to track their affect on the stack depth. VTA is able to build its CG and
CFG optimistically on-the-fly instead of depending on less precise pessimistic
starting CG and CFG (sec.s 2.1.2, 4.3), like RTA and XTA.

5.1.4 Method Worklist

Each analysis algorithm takes a method from the worklist of reachable methods
(mWL), and performs an analysis parse. Methods found to be reachable from
the method being analyzed are added to the mWL. This process continues until
all methods in the mWL have been analyzed, which can occur when no new
methods are found to be reachable. Methods are added to the mWL in the
following three phases for SA:
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Phase 1: Initialization The mWL is initialized with main method and the
entry methods that the JVM boot image invokes directly.

Phase 2: Reachable by analysis Starting with the entry methods all meth-
ods in the mWL are analyzed and methods found reachable by the
analysis algorithm are added to the mWL. Any iteration over the mWL
by the algorithm occurs in this phase.

Phase 3: User Supplied Analysis After halt method, any methods sup-
plied by the user that are known to be missed by the analysis are added
to the mWL and analyzed.

Phases one and three are required for a sound SA, but optional in HPA
modes and not used in DA mode. In HPA mode the missed method is added to
the mWL like an entry method and an analysis starts. Methods found reachable
are added to the wML and are analyzed until the mWL is empty. This process
is repeated again, if another method is missed by the analysis. DA adds no
methods to mWL except itself, but it does add edges and keeps track of class
usage.

5.1.5 Static Analysis with completeness checks

SA should be complete before the first method is JVM JIT parsed. In CACAO
regular parse code before the JIT bytecode parse starts, a test is made to see if
the method has been statically analyzed. If the method had not been analyzed
the method is logged to a missed file. This feedback helps the SA user know
what methods they need to supply as inputs to analyze the whole program.
Missed methods only need their method flags, like PUBLIC deleted for the
missed method to be in the correct input format. If the SA is complete, then
the missed file will be empty.

Additionally this completeness test in parse served as a starting point to
start both the HPA and DA modes of analysis for the method to be parsed
(fig.5.2).

5.1.6 Hybrid analysis: Picking up Entry Points

Rather than just logging that a method has not been statically analyzed before
the parse pass, a HPA is started with this method as an entry method. SA-
HPA analyzes all methods reachable from this entry method and is still finished
before the originally missed method is parsed. HPA results are available to any
optimizations needing them like pure SA. And whole program issues are handled
trivially, since a dynamically invoked method must be parsed by the JVM. For
SA-HPA entry methods may be optionally supplied, but are not required. An
entry point may reduce precision if not used by the current run. DA-HPA
works the same but ignores any inputs, so all entry points are always picked-up.

5.1.7 Dynamic analysis of the ideal Call Graph

In the parse pass, rather than logging or starting a SA of all reachable methods,
a DA of just the method to be parsed is started. Since only methods executed
are analyzed, the CG used for analysis is the ideal CG of the whole application
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run. DA mode matches what the JVM JIT has available up to the parse phase
of the method analyzed, however the complete analysis is not finished until the
program finishes.

5.2 Classes

5.2.1 When to Load

The class loading scheme ([QH05],[HDH04]) affects the size of the class hierar-
chy. CACAO class loader evolved from eager class loading to lazy class loading
with an in-between step of on-demand class loading. The in-between step in CA-
CAO loaded classes on-demand, as needed during the JIT parse of a method’s
bytecode. If a class is instantiated in a code branch that is never reached, then a
class could be loaded that is not needed. The actual lazy loading implementation
delays class loading until just before runtime. No unused classes are loaded.

Analysis algorithms need the class file loaded to resolve reachable methods
and parse its bytecode. The analysis information is assumed to be used with
one application run in a JIT and not for all possible application runs. So only
the classes needed by this particular run are needed. Smaller class hierarchies
reduce the number of spurious methods being analyzed.

An offline JVM compiler requires an analysis be valid for all possible appli-
cation paths. Unless all methods are used by every possible application code
path, the analysis CG will have spurious methods. But for a JIT JVM, where
only one code path is used, considering all code paths causes the number of
spurious methods to increase and the analysis precision to decrease.

The design issues for choosing between the three class loading options are:
Eager loading of all possible classes from the class file constant pool, can

cause extra classes to be loaded. Extra classes in the class hierarchy can mean
extra spurious method definitions in the analysis CG, if a parent class is the
method’s invocation type as shown by example in section 4.2. The analysis may
appear to take less time, because the classes have been preloaded. If all classes
in the constant pool are not actually used, this pre-load could increases the total
time used for class loading.

On-demand loading of a class by the analysis when a method or field in
the class is determined reachable, creates a more precise class hierarchy for a
run. The analysis must take time to load a class, but the classes will be pre-
loaded for the JIT JVM. However any pre-loading of classes, due to spurious
reachable methods in SA or HPA mode, should be hidden from the JVM until
the class is actually used by the JVM.

Lazy loading (at runtime) of a class when its constructor is to be com-
piled and immediately executed means the class is available too late for SA. Any
class type analysis and verification is delayed until just before runtime. Class
analysis cannot be performed earlier for predictive optimizations because the
class has not yet been loaded. DA implementation works because the method
has to be parsed before it is executed and DA does not analyze any spurious
methods. Analysis information could be collected during type analysis after a
used class is loaded. Hotspot profilers can add optimizations for hot methods
later using the actual analysis information stand for an on-demand analysis.
On-demand class loading was chosen, since it allows both SA and DA, as
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well as limiting the class hierarchy to reachable classes for the analyzed pro-
gram. This implementation used the last version of CACAO that considered
any kind of pre-loading acceptable with no attempt to hide extra classes loaded.

5.2.2 Identifying Used Classes

Each algorithm finds a class to be used for a specific scope within the program
as summarized in table 5.1. Classes are considered used by TA algorithms when
a new bytecode instantiates the class. In CHA if a class is used in bytecode
reachable by the analysis, the class is loaded and considered used.

A flag is used by RTA (fig.5.3) to distinguish between classes in the class
hierarchy, which have been directly instantiated via a new bytecode and loaded
for other reasons, like being a super-class of a used class. The RTA class flag is
initialized to notused when the class is loaded. When a class is instantiated via
new (or dynamically) the class flag is changed to used. For classes which use a
static method or field, the class flag is set to partused, so not all methods in this
class are considered used. The partused state may later be changed to used, if
a non-static method from the class is found reachable.

NOTUSED USED

via static part used
PARTUSED

via instantiation

via instantiation

Figure 5.3: RTA Class Flag States

A partused flag indicates something in the class is used, but the class has
not been instantiated. A class is considered partused for:

• non-virtual invokes (static, special, virtual for final methods);

• static field bytecodes (getstatic, putstatic);

• cast bytecodes (checkcast, instanceof );

• default super constructor because the class has not been instantiated,
but its default instance constructor, <init>, is invoked by a subclass in-
stance constructor which has been instantiated.

XTA adds instantiated classes to its method class set. A method’s class set,
C.mcs, may be added to via type propagation of its parameters in or a return
value out from a method call.

VTA adds instantiated classes to the class set of the variable. Class types
are propagated to other variables via the stack. The VTA analysis stack pushes
a VTA analysis variable pointer with all information about the variable.

For all three algorithms, when a class is instantiated, it is added to an
implemented by list of all interface classes it implements. This allows faster
resolution of interface classes during analysis. Additionally for XTA interface
classes are kept separately to make class searches faster since classes for multiple
variables are grouped together. VTA uses the basic variable class attributes to
determine, if the classes are interface classes or not.
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5.2.3 Instantiation, Constructors and Destructor

The static class constructor, <clinit>, and finalize methods are invoked directly
from the JVM [LY99]. Except for DA, this must be simulated by analysis. When
the analysis finds a class is used by the analysis the class constructor <clinit>
and finalize methods are added to the mWL, if they exist. All classes considered
used or partused in CACAO invoke their class constructor.

5.3 Building the Type propagation graph

Algo. Scope Class Sets CFG edges
RTA program class flag, method flag,

C1.classflag C1.m1.methflag

XTA field field,
C.fx.cs

method method, (calls, calledBy) sets,
C1.m1.cs (C1.m1.calledBy ,

parameter, C1.m1.calls)
C1.m1.pcs (marked, markedBy) sets,

(C1.m1.markedBy ,
C1.m1.marks)

interfaceCalls set
C1.m1.interfaceCalls

fldsUsed set
C1.m1.fldsUsed

VTA variable variable (to, from) sets
� fields, C.fx.v C.fx.v.cs (C.fx.v.to, C.fx.v.from)
� method, C1.m1.v C1.m1.v.cs (C1.m1.v.to, C1.m1.v.from)
� local, C1.m1.v.loc[n].v C1.mv.1.vCallsites

� parameter, C1.mv.1.iCallsites

C1.m1.v.p[i] = C1.m1.v.loc[i].v

� return, C1.m1.v .r.v

Table 5.1: Class sets and CFG edge sets by algorithm

Flags and sets used by the algorithms are summarized in the table 5.1.
RTA identifies classes and methods by the use of its classUsed and methUsed

flag respectively in the class information and method information structures.
RTA keeps no call edges, since the class type scope is global over the whole
program.

XTA and VTA must propagate types between methods and variables respec-
tively. For XTA and VTA, a pointer to a structure with the analysis information
is needed in the method information structure by the algorithm for the analysis.
After the first iteration only the propagation graph is used.

XTA uses a class set for the methods and edges, (Called, CalledBy), for
type propagation. Since on-demand loading is used, additional sets were needed
which record all method calls. Virtual and interface calls and interface classes
used are kept separately to speed their resolution. These are needed due to
allowing inserted classes. A method keeps a list of fields it uses, C1.m1.fldsUsed.

A method parameter set, C.m.p, is kept with all classes used by a method.
A pointer into the method’s class set and a change flag let the second iteration
know if any propagation is needed. For XTA for each field, C.fx, a set of used
classes, C.fx.cs, is kept.
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VTA keeps (To, From) sets for variables’ type propagation for a method, its
local variables, C1.m1.v.loc[n].v, parameters, fields, C.fx.v, and return, C1.m1.v.r.v,
variables. Parameter 0 for virtual methods is this variable. Since parameters
map to local variables, after VTA initialization of a method the parameters are
treated as local variables.

The base VTA pointer in methinfo points to a method variable, which has lo-
cal variables and a return variable, C1.m1.v.r.v and may use fields, C.m1.v.fldsUsed.
Virtual, C1.mv.1.Callsites, and interface, C1.mv.1.iCallsites, method callsites are
kept as variables. Callsites are needed due to on-demand loading and inserted
classes and because a method may be invoked with a class instantiation, which
is never stored in a local or return variable.

5.4 Method reachability

Algo. add C2.m2 to mWL when analyzing C1.m1

RTA
C2.m2 = used
mWL+ = C2.m2

XTA

C2.m2 = used
mWL+ = C2.m2

C1.m1.calls+ = C2.m2

C2.m2.calledBy+ = C1.m1

VTA

C2.m2 = used
mWL+ = C2.m2

C1.m1.v.to+ = C2.m2.v

C2.m2.v.from+ = C1.m1.v

Table 5.2: Algorithm comparison for adding any reachable method to mWL

5.4.1 Non-virtual methods

Table 5.2 compares how the three algorithms add methods to the mWL by
the three algorithms. Non-virtual or instance methods always resolve to one
method definition [LY99]. All analysis algorithms use the non-virtual (static,
special, final) test as described in section 4.1. Invoked non-virtual methods are
immediately added to the mWL.

5.4.2 Virtual and interface methods

Virtual methods are invoked by either invokevirtual or invokeinterface. When
C1.m1 is invoked, all method definitions of m in Ĉ whose subclass is considered
used by the algorithm are added to the mWL. Table 5.3 summarizes the algo-
rithm actions for RTA, XTA and VTA. The same basic technique is used for
both kinds of invokes, but invokeinterface must consider multiple class cones
and is summarized in table 5.4.

The class set associated with the method called is used to resolve a virtual
call site. The greater the scope of the class set (table 5.1), the more classes it will
have, which can result in more spurious methods. In CACAO, class inclusion
checks within a class cone can use a fast range check as described in [KH02]. For
both RTA and XTA the class set is a super set of the virtual method’s calling
class cone and may require a type check over multiple class cones. VTA had a
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invokevirtual C2.m2 during analysis of C1.m1

RTA

For each subclass Csub.m2

in Ĉ2,
where Csub.m2 is defined,

⇒
if Csub.classflag = used
then add Csub.m2 to mWL;
else Csub.m2 = marked

XTA

For each subclass Csub

in (C1.m1.cs ∩ Ĉ2),
⇒ add Csub.m2 to mWL;

C1.m1.marks+ = Csub.m2

Csub.m2.markedBy+ = C1.m1

VTA
C1.m1.v.virtcall+ = C2.m2

For each subclass Csub

in C1.m1.v.cs,
⇒ add Csub.m2 to mWL;

Table 5.3: Algorithm comparison for invokevirtual

class set that is limited to a class cone already. So as the scope lessened, the
complexity of resolving a virtual call lessened as the following explains closer
and as summarized in table 5.3.

RTA could look to see if every used class is within Ĉ of C.m or look for the
method definition, m, via the CACAO function to resolve method in every class
in Ĉ of C.m. Since class cone is smaller than all classes used by a program, the
second option is used. Method definitions are added to the mWL, if the class
is used or marked when the class is notused or partused.

XTA keeps classes used by the method in a class set and edges for type
propagation via a list of methods it is called by and calls. The method’s class
set contains more classes than those in the class cone of the method’s type.
Propagation must use an intersection of the called method’s class cone, Ĉ2, and
the called by method’s used class set, C1.m1.cs. The resulting temporary class
set is used to resolve reachable method definitions. Using the CACAO class
numbering scheme made checking if a class is within the class cone a simple
compare.

VTA has a used class sets for each variable. Since the class set, v.cs, contains
only classes in the class cone of the variable’s type, an intersection between the
variable types is enough to determine the possible used classes with reachable
virtual method definitions.

invokeinterface CI2.mi2 during the analysis of C1.m1

RTA
For each class Cn implementing CI,

process like invokevirtual Cn.m2

XTA
C1.m1.interfaceCalls+ = CI2.mi2
For each class Cn implementing CI,

process like invokevirtual Cn.m2

VTA
C1.m1.v.iCallsites+ = CI2.mi2
For each class Cn implementing CI,

process like invokevirtual Cn.m2

Table 5.4: Algorithm comparison for invokeinterface

5.4.3 Method invocation before class used

A virtual or interface method call, C.m, may occur before the analysis has found
all classes in Ĉ to be used. Using on-demand class loading means a class may not
be even loaded when the method call would be found reachable in the analysis.
The technique used by [QH04] and [QH05] for DA is used in this implementation
for inserted classes in SA and HPA.
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A method flag added to the class information structure indicates if a class
is:

notused The initial value when a class is loaded. Class not yet used at all.

marked The virtual method is reachable, but class is not yet used. So a method
is not added to mWL yet, but will be if the class is used when the class is
instantiated.

used A path to the method exists, so it’s definitely reachable

Using delayed class loading for SA a method can be marked only if the class
is loaded only because it is the super class of a used class.

In XTA and VTA, the equivalent to marking a method is keeping a list of
virtual and interface method calls. In VTA the method variable keeps a list
of variables used to invoke a method. When a class is found to be used for a
method this list is checked, and reachable methods in the new classes are added
to the mWL. Intersections of class sets as explained in the previous section can
be used to determine reachable methods in the class added to the method or
variable class set.

Classes inserted into the class hierarchy for RTA can have a hefty penalty.
The only way to know if a method was called before the class was inserted into
the class hierarchy is to check for the first super class where the methodUsed flag
is set for all methods defined in the inserted class. XTA and VTA add methods
from newly instantiated classes with the same process they use for adding virtual
and interface methods using the list of methods previously invoked. The other
option for RTA would be to keep a list of all call sites.

5.5 Field and Variable assignment

Table 5.5 summaries field and variable type propagation for the 3 algorithms.

5.5.1 Analysis Information gathered

RTA keeps no separate information on fields. XTA and VTA add a pointer to
the CACAO field information structure to the analysis information gathered for
a field. XTA keeps the field’s base class type information and a set of classes
actually used by the field. VTA keeps the field’s base class type information
and variable information structure.

5.5.2 Kinds of variables

In VTA all analysis information is kept in the form of a variable.
The following kinds of variables can be stored:

• method (C.m.v)

• local variables, (C.m.l[n].v)which may be associated with a parameter,

• static fields (C.fx),

• local fields(C.fy),
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• return variable(C.m.r.v).

Virtual and interface Method callsites are kept as a variable:

• virtual invocation sites, (C.m.vCallsites.v),

• interface invocation call sites, (C.m.iCallsites.v),

Virtual and interface methods are invoked with a variable, whose class set deter-
mines which method definitions are actually reachable. As stated earlier these
callsites are used to determine reachable virtual and interface methods when a
class is inserted into the class hierarchy. They also make an Andersen points-to
analysis easy to change to or to expand the design for later optimizations.

A variable with reference information is any information that may be stored
into a reference type variable or may use reference type information. When
pushed on the stack the following kinds of reference types are not associated
with an actual VTA variable:

• a new object contains the new type,

• a null object, so assignments are valid when aconst null, ifnull, ifnonnull
bytecodes are used,

• string constant, so the variable is given a String type.

Local variables have a positive identifier and other variable types have a negative
identifier corresponding to the kind of variable.

5.5.3 Field assignment

C.f Field and Variable assignment (C1.m1 , C.r)

RTA ”global” so, no action taken

XTA
PUTs: C.fx.cs+ = C1.m1.cs ∩ Ĉ.fx

GETs: C1.m1.cs+ = C.fx.cs

VTA

PUTs (writes) : C1.fx.v.cs+ = C1.m1.vcs ∩ Ĉ.f
C.fx.v.from+ = C1.m1.v
C1.m1.vto+ = C.fx.v

GETs (reads): C1.m1.vcs+ = C.fx.v.cs

C1.m1.vfrom+ = C.fx.v

C.fx.v.to+ = C1.m1.v

Table 5.5: Field and Variable propagation comparison

Only fields with a reference (class) type are needed for analysis. A write
(put) indicates the fields is actually stored into. A read (get) indicates actual
use of the field’s type information.

RTA stores no separate information for fields. Static fields are initialized in
the class initiator method <clinit>, so the class initiator is always added to the
mWL when putstatic and getstatic are parsed. If notused previously, the static
field’s class is considered partused. It is possible only a static field will be used
from this class, but none of its methods. Local fields can be ignored since they
are used by a reachable method within their class and they must instantiated
via new.
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XTA keeps a list of used static fields with a virtual type. So getstatic causes
the types of the static field to flow into the method. And putstatic causes any
classes used by the method, which are part of the field type’s class cone to be
added to the field’s class set.

VTA field information, both static (getstatic, putstatic) and local (getfield,
putfield), is kept as a variable node. The types used by the from variable and
in the class cone of the to variable flow into the to variable.

5.5.4 VTA Variable assignment

Reference variable assignments use store bytecodes for reads and load bytecodes
for writes. Additionally for VTA a pseudo VTA reference variable only stack
is kept with just the type of the variable pushed and popped. The VTA stack
depth and JVM stack depths are needed to know when a variable should be
popped.

For example, table 5.6 shows the VTA reference stack before the invocation
of virtual method with 3 parameters, where 2 parameters are reference types
and 1 parameter is integer. Assuming nothing was previously on the stack, the
VTA reference stack depth is 3, but JVM stack depth is 4 because of the integer
parameter has also been pushed on to the stack. After the invoked method pops
the parameters into local variables, both stacks are empty.

A separate bytecode pass was needed by VTA to determine basic blocks and
their predecessors and successors and entry and exit stack depths.

When the variable is popped, the types in its class set flow into the variable
or field it is assigned to. Method invocation and VTA reachability tests use the
variable’s class set to know what methods are reachable.

newobj A
L1
C.F

Table 5.6: VTA reference stack before invokevirtual A.m(int, A, B)

VTA assignments must handle the following storing into and loading from
combinations:

• only load from:

– new object;

– NULL object;

– return variable;

– string constant (always of type: class.java.lang.String);

• both load from and store to:

– local field variable

– static field variable

– local variable

• store only

– return variable
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5.6 Type Propagation

RTA does not have to explicitly do type propagation since its type scope is the
program. For XTA and VTA, type propagation, when analyzing C1.m1, occurs:

• between methods, via parameters in, return value out;

• within a method, via fields and local variables;

• between and within methods via static fields.

A method’s class set is used to identify reachable methods, preferably during
the first analysis iteration. Type propagation could occur eagerly or batch as
explained in (sec. 3.3) or a combination of both.

Eager propagation will propagate the classes in the calling method’s class
set, which are known at the time in the analysis of the call, whenever the method
is found reachable by the analysis. Changes to the calling method’s class set
will be propagated to the called method in the next iteration.

Batch propagation would propagate types later at a logical point, if one
exists, as a group. A logical point to batch propagate would be when a method’s
class set is more current and least likely to change. A method’s class set will
change most due its analysis, so a batch propagation of its types should occur
after the method’s analysis. Still the method’s class set can change after this,
so immediately before use by a called method a logical point to batch type
propagation.

5.6.1 Propagation phases

The propagation phases for C1.m1 are:

1. pre- (batch) Parameter types in from all calling methods (table 5.7);

2. during (eager) Fields and variable assignments (table 5.5);

3. post- (batch) (tables 5.7,5.8)

(a) (XTA only) Reiteration using the propagation graph after the initial
analysis;

(b) Return type sent to each calledBy methods.

When all the mWL has been processed both XTA and VTA do 1 extra propa-
gation iteration.

5.6.2 Pre-analysis propagation

Before bytecode analysis, the method to be analyzed has been called by one or
more methods, which will have already been analyzed.

A batch propagation of parameters types into a method, C1.m1, from all
calledBy methods, C0.m0, as a pre-analysis step. This starts a method’s analysis
with the most current parameter class set(s).
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5.6.3 Eager Field and Variable propagation

Field and variable read propagation is performed during the analysis to keep
the analysis class sets current.

5.6.4 Post-analysis propagation

Although both XTA and VTA had only 1 extra iteration pass, a batch propaga-
tion occurred at the end of each method analysis. After analysis the method’s
class set should change less often.

For XTA the class set has been added to during analysis without type prop-
agation, so the classes in the class sets of the following are propagated:

• used fields to fields and classes using the field;

• parameters are passed to all methods it calls as a kind of initialization;

• the most current return value back to its calledBy methods;

• adding all marked methods for classes added since the method was in-
voked.

For VTA, the return type flow back via to edges of the method. The local
variable types mapped to the parameters flow into a called method via the from
edges of the analyzed method.

pn Parameters in pre-analysis of C1.m1

RTA ”global” so no action taken
XTA for all C0.m0[n] in C1.m1.calledBy ⇒ C1.m1.cs+ = ∪

n
(C0.m0.cs[n] ∩ C1.m1.p̂cs)

VTA C1.m1.v.cs+ = ∪
n

(C0.m0.v.cs[n] ∩ Ĉ1)

Table 5.7: Pre-analysis Parameters propagation in comparison

pn Post-bytecode analysis of C1.m1

RTA ”global” so no action taken
XTA for each C.m.f in C1.m.f1.fldused ⇒ C.m.fcs+ = C1.m1.cs

for each C2.m2[n] in C1.m1.calls ⇒ C1.m1.cs[n]+ = C2.m2.cs[n] ∩ C1.m1.p̂cs

for each C0.m0 in C1.m1.calledBy ⇒ C0.m0.cs+ = C1.m1.cs ∩ C1.m1.r̂
VTA for each C.m.f in C1.m.f1.v.fldused ⇒ C.m.fv.cs+ = C1.m1.v.cs

for each C2.m2, n a parameter ⇒ C2.m2.v.cs+ = ∪
n

(C1.m1.v.cs[n] ∩ C2)

for each C0.m0 in C1.m1.v.to ⇒ C0.m0.v.cs+ = C1.m1.v.cs

Table 5.8: By algorithm: Post-bytecode analysis propagation

5.7 Whole Program Approach

A sound SA must account for classes loaded and methods invoked outside of the
bytecode. This implementation attempted to keep user inputs to a minimum.
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5.7.1 User Supplied inputs and Feedback

The simplest solution to implement depends on the user providing user supplied
inputs from hand analysis introduced in sec. 5.1.5. Besides requiring extra
work by the user, system methods can change as the system libraries and JVM
further develop along with Java. This causes changes to hand inputs. Examples
of changes experienced during implementation that affect user inputs are:

• various system libraries and versions,

• updates to CACAO JNI,

• updates to CACAO boot methods.

It did not seem reasonable to expect every user to supply the methods used
during CACAO startup. So a Java program with just an empty main method
(null program), (In0), is used to create a list of system methods always missed
by the analysis and read in from the file a xxxMissedIn0, where xxx is rt, xta,
or vta for the algorithm used. The instance class initiator, <init>, as input,
indicates dynamically loaded classes.

class In0 { public static void main(String[] s) { } }

Figure 5.4: The null Java program, In0.java

RTA - no edges

RTA user inputs consist of just the class and method called.
Application inputs were supplied in the directory rtIn in a file with the name

of the main class. If the main was in a package, then the directory structure
must be supplied like for package source code. The rtMissed log of missed
methods can aid a user creating and testing their input list of missed methods
for their application. Even for user application, it may be system classes which
cause methods to be missed.

XTA - with edges

For XTA and VTA, a CFG is built. XTA required both the called method and
the called-by method as inputs. A method called from multiple methods might
need to be included multiple times in the XTA user input. The test in JIT JVM
parse could not catch a specific method call missed by XTA, since it only tests
if the method has been analyzed at least once. For XTA reachable methods
without a visible caller is supplied with an empty caller and treated as an entry
method.

VTA - with edges

VTA would have required all variable references as inputs. VTA reverted back
to RTA inputs since local variables in the bytecode cannot be mapped exactly
to sources from outside in other languages.

To help the user with inputs, feedback of methods missed by an analysis are
logged in a format easy to edit and use as input. However the caller information
of the missed method is not available for XTA and VTA.
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NATIVE methods

Initially NATIVE methods were hand analyzed and the results used when a na-
tive method was found to be reachable. However this approach was abandoned
when it was found most native methods dynamically loaded classes or invoked
methods specific to the application. Classes loaded and methods invoked via
JNI are now included in the application specific user supplied inputs.

JNI methods may be included in the RTA mWL via TA NATIVE flag.

5.7.2 Hybrid Pickup analysis - trivial solution

This implementation used HPA to completely avoid user inputs for a specific
application run as explained in sec. 5.1.6. Because all methods are analyzed
before any code is generated this hybrid analysis still performs a static analysis of
a method before any code has been generated for the method. Type propagation
proceeds dynamically during the run and is up-to-date to the current place in
the application run.

In HPA mode these JVM invoked methods are seen at parse time as not
yet analyzed, added to the mWL, and SA is performed until no more reachable
methods are found. Using HPA mode makes the Java whole program challenges
transparent to the user for SA.

5.7.3 Bytecode hints for dynamic invocation

Patterns in the bytecode provide some hints, but they are incomplete.
String value hints were not used. Use of (Class.forName), an instanceOf

in the bytecode, and invocation of method.invoke as hints requires the value of
the String parameters be known. However this is only known at runtime and is
not available to SA and HPA. Since the DA here is basically a simulation, the
information is not available for this implementation of DA.

The <init> method is always invoked when a class is instanciated whether
by new or dynamically. Instantiation tells the analysis context, that this class’
methods are reachable. However <init> is also invoked when a subclass is
instantiated, requiring the super <init> test described in 5.2.2.

A hint that a class has been dynamically loaded is that the instance con-
structor, <init>, is used for a not used class and it is not invoked from a subclass
initiator. When this occurs the class may be considered used.

Accuracy is important since adding just one method or class can add many
more reachable methods, which will be discussed by example in the results
chapter. If an instantiated class is not recognized all virtual invoked methods
in the class are missed. However used wrongly this hint will cause all classes to
be considered used causing RTA to reverts to CHA.

Using super <init> and other bytecode hints for dynamically loaded classes
will be examined further in sec. 6.2.5. Initial tests favored its use to minimize
the number of methods names read in from user supplied inputs.

5.7.4 Boot image and entry methods

Java programs do not start with invocation of the main method; instead the
JVM directly invokes boot methods first. The JVM’s boot entry and exit
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methods are not reachable from main, not standardized by [LY99] and are
JVM implementation dependent. They varied during implementation. These
methods could be picked up via a HPA, but those methods required by any im-
plementation are hard coded via a C include file for easy modification. CACAO
requires the boot image be compiled each time.

The mWL is initialized with JVM’s boot methods not reachable from main
nor other boot methods:

• the first method to be parsed;

• main method;

• java/lang/system/exit(int i).

Use of threads requires two more boot methods be added to the mWL :

• the instance constructor, java/lang/Thread.<init>
(java/lang/VMThread t, java/lang/String s, int i) and

• java/lang/ThreadGroup.addThread(java/lang/Thread t)

for the default thread which CACAO thread initiator adds during the JVM
boot.

5.8 Devirtualization statistics and tests

5.8.1 Statistics to gather

The CG built should be useful for devirtualization optimizations. When the
program halts a post-processing analysis of the information gathered by the
algorithm occurs (TA STATS ).

Information to compare algorithm analysis results include:

• spurious methods via number of methods analyzed vs. number of methods
executed (jit used flag);

• class hierarchy via number of classes loaded with analysis vs. number of
classes loaded without analysis (via separate runs) using cacao –stat ;

• devirtualization statistics about simple tests (sec. 4.1) to determine how
many more dynamically monomorphic the tested analysis algorithm could
find.

• methods only determined to be dynamically monomorphic by the algo-
rithm using the 1 method used test (sec. 4.2).

Optionally a summary count (TA CNTONLY ) or the whole mWL, class
hierarchy with method used flags (TA CLASSHEIRARCHY ), and for XTA
and VTA, the mWL with sets information (TA SETS ) could be printed.
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5.8.2 Devirtualization tests

Post-processing tested each method in the CG if it was monomorphic or poly-
morphic. The easiest test to determine, if the method monomorphic was recorded.
Tests used were:

1. non-virtual (sec. 4.1)

(a) language constructs (non-virtual);

(b) no sub-classes exist (leaf );

(c) only 1 available definition of the method, m in Ĉ.

2. 1 method definition used in context of RTA, XTA, or VTA

To aid these tests the first bytecode to invoke the method was recorded dur-
ing analysis. For system supplied, missed and picked-up methods the invoking
method is unknown. For these methods the method names were examined for
<init> and <clinit> and the method flags were examined for STATIC and
FINAL. Similarly interface methods were examined to see if they were FINAL.
Virtual methods were tested if they were FINAL when they were invoked.

The post-processing statistics ta stats function is invoked after the halt
method has run, if -stat cacao option is used. The option to the statistics func-
tion is hard-coded. The statistic function is called with TA STATS including
the mWL or totals only with TA CNTONLY. The other options were used for
more verbose information during testing (TA CLASSHEIRARCHY, TA SETS )
to verify the the mWL, CFG and set information were correct.

Along with the name of methods in the mWL two flags were printed. A
J indicates the method was actually executed by the JIT, making spurious
methods easy to identify in the mWL. The kind of bytecode which invoked first
the method is also printed. This flag was also used to gather statistics about
whether language constructs were enough to identify a method as monomorphic.
Totals were reported and compared for each devirtualization test two ways using
by saving the bytecode invoked with and method flags. 1

5.9 Testing

5.9.1 Algorithm invocation

The algorithms could be invoked one at a time using the cacao runtime options:
(–cha,) –rt, –xta, –vta. The modes (SA, DA, HPA) are determined at compile
time, so only one mode is available in a specific cacao binary. To ensure the
binary for each mode was tested with the current code, test scripts built the
executable binary. The script copied a file with the correct flag setting for the
mode to be tested and then built the binary to be tested. The binary was copied
to name matching the mode, so tests could be repeated with the same binary.

Initially only methods reachable from main were analyzed to be sure the
analysis worked for smaller test cases with no output so no system methods
were called. First in DA mode to be sure the code ran, then in SA mode.

1A method can be invoked by multiple invokes - invokeinterface, invokevirtual, invokespe-
cial.
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Next system methods invoked via prints in a hello world program. Finally all
methods reachable from all boot entry points were analyzed and the analysis
checked for completeness by comparing SA results to HPA results. Methods
called by the JVM were flagged and the analysis mWL had to contain all JVM
invoked methods. The methods flagged as compiled by the JVM in SA and
HPA were compared again against the DA results.

A bytecode trace in both the analysis and CACAO parse was used to see
both opcodes used and the exact method invocations. The -tracecall option was
used for XTA to hand check and verify the final user inputs.

5.9.2 Addresses, complete, exact

Addresses The most basic test is that the same bytecodes are analyzed and JIT
parsed for a method. The address calculation in the analysis parse differed from
the JIT parse because fewer bytecodes were parsed. So the bytecodes parsed by
the algorithm were compared to the JIT via opcode traces. The classes loaded
and invoked were also compared between the two.

Complete If the analysis missed a method it was logged to the Missed
file for the algorithm. HPA and DA were very useful during initial testing for
finding the minimum numbers of SA entry points, incremental testing of the
invoke bytecodes, and debugging reachable methods.

Exactness A log of all methods JIT parsed was compared against the mWL
and the missed log. For SA with user inputs all methods invoked by the JIT
had to be in the mWL and the rtMissed file had to be empty for RTA. For XTA
and VTA the xxxMissed file had to be empty for the NULL program, but no
user inputs were supplied for individual programs except for RTA. 2 A program
trace was used verify any method missed was due to a Native method, dynamic
loading or invocation from the code, or reflection.

5.9.3 Unit Testing

Unit test cases first tested the non-virtual test (static, special, virtual final)
described in section 4.1. Next methods invoked by invokevirtual were tested
with test cases similiar to the section 4.2. Then similar test cases were used to
test methods invoked by invokeinterface.

XTA needed additional test cases to test parameter passing in and return
values out. Interface test cases were added where at least one parameter and
the return value were variables with interface types.

For VTA the test cases were expanded to test first local variable assign-
ments and then combinations of the various kinds ”variables” as described in
section 5.5. VTA test cases with branches to method calls and explicit exception
handling via try-catch achieved stack misalignments at basic block boundaries.

5.9.4 System library test

The first test with system library methods test was empty main program, In0
and then a HelloWorld like program, which included input/output system li-
braries dynamically invoked.

2XTA application inputs was abandoned when GNU classpath was being updated fre-
quently, changing the user system library inputs.So HPA-SA was then used.
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5.9.5 Mode testing

Pick-up mode with inputs should also have no Missed methods. Without inputs
the Missed list should only contain entry methods as identified by a program
call trace. Dynamic mode should match the executed methods exactly. All
methods analyzed are identified as Missed since the analysis is for one method
only at the beginning of parse. So the missed list and mWL should match.

5.9.6 Benchmark Testing

SPECjvm98 invokes each benchmark program application main dynamically, so
all benchmarks needed at least their main as part their Ins input. The program
class invoked is always the same, so the inputs needed by each method were
copied into the Ins file for the benchmark main by a script. A script executed
the algorithm for all benchmarks, plus the Null program and another script
gathered the statistics.

Mode flags were kept in an C source code include. The test script copied a
file with flags for the mode to be tested into this C include file and built the
cacao executable. So the most current source code was always tested with the
appropriate mode.

5.9.7 Devirtualization

Totals were reported and compared for each devirtualization test two ways us-
ing the first bytecode invoked with and method flags. The total of language
constructs (non-virtual) must match the total of static, special, final, and con-
structors methods. The virtual total must match the total of the virtual and
interface invokes without final methods.

The unknown total reported is the sum of the user supplied and default
methods. Optionally the unknown bytecode inferred by using the method flags.
However interface methods cannot be detected after they have been resolved
during execution.

Differing sums from calculating the devirtualization total two ways uncov-
ered an interface method which invoked as an interface in the actual application
run, but in a reachable method is invoked via invokevirtual. A interface method
may be invoked via an instance of the implementing class, not just via the in-
terface class. Also a virtual method may be invoked via invokespecial, if called
in source code using super.



Chapter 6

Experimental Results

This chapter reports the test results of the RTA, XTA and VTA algorithms
against requirements given in section 2.1 and each other. Early tests that af-
fected design and implementation are noted.

JIT refers to the CACAO JVM, which is a JIT compiler and indicates the
compiler environment of the analysis. HPA-SA is sometimes referred to as just
HPA. Any result of the SPECjvm98 benchmark tests are reported together are
their geometric mean. CHA results are used as a maximum solution and JIT
results are used as the minimum solution for comparison of how many classes
were loaded and how many methods are found reachable.

6.1 Environment Factors

When analyzing the test results, it’s important to note that, depending on the
programming language they are written in, the JVM and Java system libraries
become a part of the test case. The boot loading of the JVM is not standard,
so it also affects the analysis. The results of various studies cannot be directly
compared unless they use the same JVM and Java system libraries or ignore all
system calls.

6.1.1 JVM implementation language

If the JVM is written in Java, then the JVM and its programming characteristics
and style will become a part of the test case results. The number of classes
loaded will be greater than when testing with a JVM not written in Java. Both
Jikes and Sable are written in Java. Jikes optimizes itself beforehand [TP00], so
there is no analysis of the Jikes code although it is written in Java. The CACAO
JIT JVM is written in C, so all the benchmarks should load fewer total classes
than reported in Jikes [TP00] and Sable [SHR+00] articles.

6.1.2 Java System class libraries

Java’s system class libraries are mostly written in Java. The parts of the sys-
tem libraries not written in Java have use to the JNI, which hides what types
and fields a method uses. [TP00] excluded the system libraries in their analy-
sis results. [SHR+00] used system libraries, but also reported results without

50
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libraries. This work used GNU Classpath Java libraries version 0.14, but has
been run recently with version 97.2 also.

The benchmark program tends to be the smallest part of an application run.
Including the system libraries in the analysis tests will include more Java code
in the tests. The test results will also indicate how polymorphic the system
libraries methods used by the benchmarks are.

6.1.3 Null Program analysis results

The question is open to whether including system methods in the analysis deliv-
ers a performance enhancement due to potential optimizations or a performance
degradation because it brings unnecessary overhead.

The results for CACAO 0.92 using GNU classpath 0.14 analyzing a null
Java program (fig.5.4) consisting of an empty do-nothing main method running
was that 194 classes are loaded and 342 methods are called.1 Of these 60 (17%)
methods were invoked via invokevirtual and 18 (3%) methods via invokeinterface
of which 7 interfaces methods were declared final. Most methods could be
proven to be monomorphic via simple leaf (50) and 1 definition tests (18). Only
1 additional method is actually proven monomorphic by the analysis over the
simple tests. Only 2 methods remained as possibly polymorphic.

Type analysis algorithms have been shown to be very useful for pre-processing
bytecode analysis and significantly reducing jar file sizes. However spurious
methods in a pre-processor inflate the results and the algorithms were not com-
pared to the traditional simple tests. The CGs created are useful for other
optimizations.

Choosing the RTA mWL as a worse case example in HPA-SA mode with
no user supplied inputs for In0, there are 974 methods analyzed. Of these
288 (30%) methods were invoked via invokevirtual and 131 (13%) methods via
invokeinterface. For SA with inputs the results are slightly more inflated. There
are 1000 methods analyzed and 146 (15%) methods via invokeinterface. The
results per mode and algorithm will be compared for benchmarks.

6.2 Whole program issues

The SA algorithm premise that starting with main, all invoked methods are
reachable from the bytecode is invalid for Java, due to boot methods and dy-
namic method invocation. If the SA is incomplete, then the analysis may be
wrong. Decisions made by a SA for an ahead of time compiler cannot be backed
out.2 This section explains the tests used to prove how complete the analyzes
were.

6.2.1 Completeness

For reachability the log of methods missed by the initial SA pass was checked.

• For SA (sec.5.1) no methods should be missed.

1With GNU classpath version 97.2, a null program uses 435 methods.
2Analysis algorithms are not sound if not complete in the face of whole program issues.
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• For HPA (sec.5.1) all methods in the missed method list must be invoked
dynamically.

• For DA (sec.5.1) the missed list is the list of all methods executed.

There is one mismatch with the CACAO JIT that still exists. In dynamic
mode the analysis lists 3 fewer methods than processed by JIT. These 3 methods
(list methods) were called by the JIT for the bootstrap loader and the regular
loader since a class is identified by the class loader and the class ([LY99]).
However these 3 methods were only JIT parsed and compiled once, but CACAO
statistics counted them twice.

6.2.2 CACAO boot initialization

A modified trace identified the 8 boot methods used by CACAO JIT boot
initialization, after it stabilized. While CACAO booting was stabilizing, HPA
mode was used. It was observed that all CACAO JIT boot invoked methods
did not have be to explicitly invoked. Section 5.7.4 explains the four boot entry
and exit methods expected.

The first method to be invoked (String class initiator) 3 starts the analysis,
so it did not have to be hard coded. The remaining 3 boot invoked methods,
dynamic loading methods, were found reachable by the previous 5 methods and
added to the mWL by the analysis without being hardcoded.

6.2.3 Feedback Help

The log of methods missed by the SA of mWL from main and other initial
start methods was used to test the completeness of SA and provide information
necessary for user supplied inputs. The missed methods were analyzed to find
the top level method missed, which caused other methods to be missed. It was
important that <init> methods are in the CG, otherwise all the methods in that
class were considered unreachable and also missed. However too many <init>
methods can cause more spurious methods.

Table 6.2 Supplied Methods column 2 shows the number of user supplied
methods for RTA (and VTA), the minimum inputs was a manageable 7-16
methods for a Java program with an empty main, which will be referred to as
In0. VTA still had 14 picked-up methods for In0 since only missed methods
were supplied and not variable references.

Five of the six supplied methods were called from Native methods and one
method was due to reflection. The table shows the rtIns application specific
inputs for each benchmark program. SA with no supplied inputs will miss these
dynamically or JNI invoked methods and all methods they invoke. The main
methods of the benchmarks are dynamically invoked, so all benchmarks must
include their main method in user supplied inputs, at a minimum.

Most missed methods were due to the whole program issues in system meth-
ods. The benchmark jess misses more methods because it dynamically creates
classes based on inputs, causing their <init> to not be seen by the analysis
algorithms as reachable.

3It is interesting to note an early version CACAO did not call String class initiator before
main, if main did not have any inputs. Since Thread.addGroup has String as a parameter,
this is no longer possible.
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Boot rtaIn0 xtaIn0 vtaIn0
Methods

4 6 16 6 (14)

Table 6.1: User Supplied Methods for JIT Boot

Algorithm check compress db jack javac jess mpegaudio mtrt
RTA 4 1 1 1 1 44 1 2
XTA 23 18 21 32 55 142 40 29
VTA 52 43 48 69 372 187 81 80

Table 6.2: Benchmark Methods Missed and picked-up

6.2.4 Class constructors and destructors

Class constructors can also be used as a secondary test, that all classes used
by the JIT for an application were loaded. The number of JIT used class
constructors in the mWL matched the number of class constructors that a non-
analysis -stat CACAO JVM run of the application shows.

The analysis must add the destructor method, finalize, to the mWL if it
exists. However finalize is only invoked by the JIT if garbage collection recov-
ers the class instantiation. If the class instantiation is never recovered by the
garbage collector, the finalize is a spurious method in the mWL. The finalize
method was included unnecessarily 3 times from system classes used by the
JVM boot. The benchmarks additionally used 3 system classes with finalize
defined. Jack, finalize is defined for an application class. The garbage collector
releases these object instantiations, so these finalize methods were invoked by
the JIT. Fortunately finalize is not used often or the mWL could have many
extra spurious methods.

6.2.5 Varying classes considered used

Each class loaded by the analysis could be taken as a hint that a class is used.
To test the possible benefits RTA was tested where: casts, <init>s, putstatic,
both putstatic and gettstatic and with all variations. The results are reported
for the SPECjvm98 benchmarks in table 6.3. However the number of spurious
methods grew and the number of missed methods did not decrease by more than
one method. So the parent init test is not included in the end implementation.
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Figure 6.1: Effects of varying when a class is added to class hierarchy
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Add Marked When RTA orig casts <init> flds flds all
orig PUT PUT/GET

classes loaded 502 503 505 505 514 521
reachable methods 2398 2407 2437 2430 2503 2577
missed methods 3 3 2 3 3 2

Table 6.3: Effects of varying when a class is added to class hierarchy

Leaving out the PARTUSED flag caused a geometric mean of 20 more meth-
ods to be RTA analyzed for the benchmark tests. For In0 only 3 more methods
were RTA analyzed.

The original RTA ignores fields completely. A static field could be used and
the class constructor would not be added to the mWL. If the class constructor
invoked other methods these will also be missed. In SPECjvm98, without adding
the class constructor for getstatic, there was an improvement of 45 fewer methods
analyzed, and 2-3 class constructors were missed and up to 6 more total missed
methods. Further tests showed all class constructors missed were due to getstatic
and the application missed methods due to putstatic.

The other option would be to include the missed <CLINT> methods in
the user supplied inputs. Adding the class constructor when a static field is
referenced was kept in the final implementation, since it was thought a method
invoked by the JVM should not be a user supplied input.

6.2.6 Native Methods

Native methods are not included in the overall reachable methods statistics
because:

• classes are loaded and methods called by native methods are not available
to the analysis [HDH04];

• Java classes and methods invoked often differ between applications due to
dynamic class loading and method invocation;

• user supplied inputs include classes loaded and methods invoked by native
methods.

Native methods can be seen as reachable in the analysis parse via the method
flag, TA NATIVE, for RTA. For SPECjvm98, 80 Native methods were found
reachable. Native methods are not JIT parsed, so are not flagged as missed.
However examining a trace for In0 found 21 native methods are actually in-
voked, but the analysis found 45 reachable native JNI methods.

6.3 Analysis Mode Comparison

Mode: SA HPA DA-HPA DA
User Input static static pickup dynamic mixed dynamic
Both=wIns 1 complete 5 complete 9 complete 10 complete
SysBoot=In0 2 incomplete 6 complete 9 complete 10 complete
App In=rtIn 3 too incomplete 7 complete 9 complete 10 complete
None=noIns 4 too incomplete 8 complete 9 complete 10 complete

Table 6.4: Summary of Modes
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Figure 6.2: By mode: classes and methods analyzed (RTA)
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Figure 6.5: How method added to mWL

Ten combinations of the four modes (sec.5.1) and user supplied inputs were
tested for RTA as shown in table 6.4. In0 refers to the user supplied inputs
(sec.5.7.1) for system boot in rtMissedIn0 and rtIn to the user supplied inputs
for the applications in rtIn directory. Each of the four modes could be tested
with any of the four combinations of user inputs as shown in the table. Test
results are shown in graphs in figures 6.2, 6.3 and 6.4 and tables B.1 and B.2.

Dynamic mode ignores inputs so all four HPA-DA and all four DA combina-
tions are equivalent. SA with inputs and HPA-SA with inputs deliver the same
results. Each mode has its applications, so no one mode is chosen. More likely
comparing modes, especially the HPA introduced here, can help with a decision
between a JIT and off-compiler or combination for an application.

DA and HPA-SA are used to report algorithm comparison. DA is equivalent
to the JIT and is always reported. HPA-SA allows a form of SA without the
bother of supplying user inputs if the application or system classes change.

6.3.1 Classes loaded

The graph in figure 6.2a shows the classes loaded for each mode compared
against each other and In0. Figure 6.6 shows RTA supplied inputs and figure 6.7
shows a sample of XTA supplied inputs. In0 gives an indication of how many
of the classes loaded are system methods due to boot initialization. Within
SA and HPA-SA modes the classes loaded only differ by 4 classes even when
methods are missed or picked-up. HPA-DA loads 3% less classes than HPA-SA,
but 45% more than the DA, which is equal to the JIT ideal.

In DA mode the system boot is two-thirds of the classes loaded, showing the
overhead the system boot brings to the JIT for benchmarks.

gnu/java/io/encode/Encoder8859 1 <init> (Ljava/io/OutputStream;)V

Figure 6.6: Sample of supplied rtMissedIn0 inputs

java/lang/reflect/Constructor constructNative ([Ljava/lang/Object;Ljava/lang/Class;I)Ljava/lang/Object;
gnu/java/io/encode/Encoder8859 1 <init> (Ljava/io/OutputStream;)V

Figure 6.7: Sample supplied xtaMissedIn0 input (calledBy / called)
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6.3.2 Methods found reachable

The graphs in figures 6.2b and 6.3 and tables B.1 and B.2 report test results
for methods in all 10 combinations. Figure 6.4b compares the number of total
methods found reachable by each mode against the system boot initialization.
Figure 6.3a shows the total number of methods analyzed by mode and what
part of the methods come from analysis, user inputs or are picked-up. Figure
6.3b compares the number of methods supplied in SA and number of method
picked-up in HPA closer since the totals are small compared to the total number
of methods. No methods are found reachable by the DA so it is not included,
all methods analyzed are picked-up in JIT parse for analysis. Figure 6.3c shows
the methods supplied for analysis. The 4 hard coded boot methods are included
in the supplied method totals.

As expected, the more supplied inputs the more methods are found reach-
able. The class of a supplied method is considered used causing more spurious
methods to be reachable.

For SA, missing methods means the analysis is invalid (combinations 2,3,4).
However combination 2 is still small enough to be useful to help a user create
their SA user supplied inputs. Combinations 3 and 4 will have methods which
are not entry points in their missed files, but called by entry points. Making non-
entry point method’s classes reachable will cause even more spurious methods
to be analyzed and should be avoided.

The graph in figure 6.5 shows how methods were added to mWL. This is also
an indication of devirtualization possibilities by how many invokevirtuals and
invokeinterfaces were used, as well as what adds the most spurious methods.

6.3.3 Methods devirtualization

The graph in figure 6.5 shows how methods were added to mWL. This is also
an indication of devirtualization possibilities by how many invokevirtuals and
invokeinterfaces were used, as well as what adds the most spurious methods.
The graph in figure 6.4a shows how many methods are non-virtual due to lan-
guage constructs. The graph in figure 6.4b shows which test proves a method to
be monomorphic. Methods which are monomorphic due to language constructs
are also leaf methods. HPA-DA not only has the fewest methods analyzed, but
also fewer virtual methods.

6.4 Algorithm Precision Comparison

The algorithms precision matched the progression of the program
entity the types were collected on. The algorithm precision for classes and
methods is compared in figure 6.8 for the individual SPECjvm98 benchmarks.
CHA varies more wildly than the IPTA algorithms. The difference between
the other algorithms is similar and would be predictable. If all classes in most
branches of the class hierarchy are used, then RTA precision will be the same
as CHA.

The SPECjvm98 combined class (fig.6.9) and method (fig.6.10) precision
comparison is presented in three graphs: as the totals in first graph (a); spu-
rious classes and methods in the second graph (b); and the percent savings
over the next closest algorithm in third graph (c).
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Figure 6.8: By algorithm/benchmark: Methods Analyzed and Classes loaded
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Figure 6.9: Classes loaded, Cost over JIT, and Savings over next algorithm

The classes loaded are only 1.6 to 2.2 times more than without IPTA. More
classes loaded make more methods reachable. This causes a higher cost for the
analyzed reachable methods, which vary from 2.2 to 4.3 times more than with
no analysis. The variations presented in section 6.2.5 would fit between RTA
and CHA.

Savings over the next closed algorithm is measured by (algo1−algo2)/algo1.
Savings for classes analyzed is:

• RTA had a 20% saving over CHA

• XTA had a 6% saving over RTA

• VTA had a 8% saving over XTA

• JIT JVM had a 63% saving over VTA

Savings for methods analyzed is:
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Figure 6.10: Methods analyzed, Cost over JIT, and Savings over next algorithm

• RTA had a 23% saving over CHA;

• XTA had a 25% saving over RTA;

• VTA had a 13% saving over XTA;

• JIT JVM had a 54% saving over VTA.

The results emphasize how many more classes and methods a SA uses over both
the JIT JVM with no analysis and a DA.

6.5 How virtual is SPECjvm98?
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Figure 6.11: By algorithm: Virtual vs. Non-Virtual

As noted in section 3.6, SPECjvm98 is not very virtual, which explains why
CHA often works almost as well as the more precise CG algorithms for DA. Only
1-2 methods were found to be monomorphic by the analysis algorithms over the
traditional non-virtual simple tests (sec.4.1). But what are the characteristics of
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the SPECjvm98 method definitions that prove these methods are monomorphic?
This question is answered in detail in the graphs in figure 6.11 and tables B.3
and B.4.

Method calls were broken-down into: system called methods; <clinit>;
<init>; invokestatic; invokespecial (not <init>), which includes private and
protected methods; final methods; simple virtual, which are dynamically mono-
morphic methods; invokeinterface; and default flag, which indicates a method
was picked-up and caller is not known from the bytecode. Methods supplied
to the system(SY), picked-up(DF), or application user supplied(MI) are not
counted as monomorphic. All other methods categories, (<clinit> (CL), <init>
(IN), static(ST), special(SP), virtual final(VF)), except the invokevirtual (VS)
and invokeinterface (II) are known to be static due Java language constructs.

To summarize, 98% of the SPECjvm98 methods invoked are monomorphic.
The largest part (82%) can be proven to be monomorphic through Java language
constructs as being non-virtual. Of the 18% remaining methods, 90% are in a
leaf class that was not declared final or the method has no methods definitions
in a subclass. This left 2%(pickup SA)-0.1%(DA)1 of methods to need further
examination by an IPTA to determine if the method is monomorphic.

Since SA and HPA analysis find more classes used and more methods reach-
able than are really in the JIT JVM, reporting only the analysis results skews
the results. For example, 98% of methods in the benchmark with library meth-
ods are monomorphic. But for RTA and XTA, monomorphic reachable methods
are respectively only 96% and 95%. The geometric mean of how many meth-
ods can be recognized through Java language constructs to be monomorphic is
actually 66%, but 54% using RTA results.

6.6 Algorithm Costs

Algorithms costs vary in the number of bytecodes that must be parsed, the
number and size of CG and CFG related sets, and the runtime or number of
instructions run.

6.6.1 Parse Costs

One indication of how well an algorithm’s runtime costs will size is how many
bytecodes must be analyzed during the analysis parse[TP00]. Figure 6.12 and
table 6.5 shows the number of bytecodes an algorithm must analyze during its
parse compared to the JIT JVM parse.

The analysis bytecode parse may separated into bytecodes requiring only
an address calculation and those analyzing the type flow information (sec.2.7).
RTA and XTA must only analyze nine bytecodes. VTA must parse almost all
bytecodes the JIT JVM must parse (116 vs. 131), which indicates VTA might
not size well.

Some bytecodes require the same analysis and can be grouped together. The
number of unique analyzes indicates the size of the code needed to implement
the algorithm. RTA must uniquely analyze the invokes bytecodes. RTA must
only simulate the class initiator invocation for other analyzed bytecodes(sections
5.2.3,6.2.4). XTA must uniquely analyze the class flow for static field references.
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Algorithm Unique Bytecodes Address Total
Analyses analyzed calculation

RTA 5 9 16 25
XTA 6 9 16 25
VTA 44 115 1 116
CACAO JIT 55 130 1 131

Table 6.5: Algorithm costs by number of bytecodes parsed

Figure 6.12: Algorithm Parse Costs png

Although there are 201 defined bytecodes, the CACAO JIT JVM first pro-
cesses some bytecodes during stack analysis. VTA must analyze bytecodes for
local variables with a reference type and perform a scaled down stack analysis.
This reduced stack analysis can be viewed as extra cost when compared to RTA
and XTA or savings over the SOOT VTA [SHR+00], which performs a full stack
analysis when translating to Jimple.

6.6.2 Sets and Edges

The number of sets is stated in [TP00] as factor for the IPA’s scalability. All
3 algorithms cost on the order of O(n3) = O(n2)×C where C is the number of
classes in the program. Again VTA costs the most.

n=#sets Description
CHA 0 no sets all loaded classes are used
RTA 1 set of used classes by the program
XTA M + F + 1 set of types used for each reachable method

and field, plus 1 parameter class set
VTA 2M + F (+P ) + L set of types for each:

reachable method(this+return)
fields, (parameters) and local variables.

Table 6.6: Set Costs

VTA’s extra memory requirements were evident. CACAO does an explicit
garbage collection at the end of each major pass. VTA required an explicit
recovery of dump memory after its analysis. RTA’s and XTA’s memory require-
ments fit into the parse phase, even for SA where the whole program is analyzed
before the CACAO parse of the first method.
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Table 6.6 summaries the class set costs for each algorithm. CHA has no
explicit class set. Methods in loaded classes are considered reachable. RTA has
one class set for the whole program, which is implemented by one flag in the
class information in this implementation. XTA has class sets for each class used
by all reachable methods with edges between the reachable methods. For type
propagation to and from fields, XTA keeps a class set for each field in a method
reachable by the analysis. One combined class set is kept for parameters. Return
types are propagated via an intersection with the return type.

For VTA each variable has a class set. A method is a variable with a class
set of what classes it is invoked with plus other method variables it uses (return,
locals, fields). Parameters are mapped to local variables. So each parameter
has its own class set. VTA uses (flowTo, flowFrom) edges between variables
for type propagation. Unless all reachable methods have no more than
one parameter and no return variables, VTA has more class sets than
XTA. This holds true even for the original VTA implementation in [SHR+00],
where circular assignments caused variables to be combined within a method.

VTA propagation chains at the end of return were short with the majority
less than 3 variables long. However in one case a propagation chain was 46
variables long!

6.6.3 Instructions Used

Using perfex profiler ([SGI],[Ert]) to find the number of instructions used with
HPA, XTA always used the fewest instructions. However VTA was second 5
times and RTA 3 times and almost the same once for the 9 test cases (see table
6.7 and fig.6.7). The geometric means show:

• XTA uses 14% more instructions than the cacao JVM with no analysis

• RTA uses 13% more instructions than XTA

• VTA uses 1.5% more instructions than RTA

The instruction count standard deviation was zero except for mtrt. The instruc-
tion count standard deviation for mtrt, which uses threads, was between 0.5%
and 1.5% of the total instructions. For Null program and check the instruction
counts were close and in some cases less than the JVM without analysis.

Instructions JIT RTA XTA VTA Fewest
In0 181 277 225 266 XTA

check 283 721 472 706 XTA
compress 14718 15173 14980 15172 XTA

db 21438 22014 21920 22035 XTA
jack 9191 9680 9506 9742 XTA

javac 18623 18623 17974 21767 XTA
jess 11358 12233 11616 13134 XTA

mpegaudio 19142 19570 19324 19562 XTA
mtrt 230 666 420 643 XTA

geomean 3726 4990 4354 5066 XTA

Table 6.7: By algorithm (HPA): Comparison of the number of instructions in millions

DA compares how the algorithms compare when the algorithms analyze the
same number of methods with the same class hierarchy. However with DA, XTA
always used the most instructions. RTA used the fewest instructions except for
jess (see table 6.8 and fig.6.8). For the smaller programs the difference was more
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Figure 6.13: Algorithm Instruction Costs - HPA

noticeable. VTA had a propagation problem with mtrt due to not all classes
loaded when needed as expected sometimes for DA.

Instructions JIT RTA XTA VTA Fewest
In0 181 206 225 222 RTA

check 283 337 472 365 RTA
compress 14718 14772 14980 14814 RTA

db 21438 21489 21920 21694 RTA
jack 9191 9249 9532 9297 RTA

javac 17681 17801 18707 18517 RTA
jess 11358 11493 11795 11380 VTA

mpegaudio 19142 19194 19324 19228 RTA
mtrt 230 273 420 269 VTA

geomean 3726 3919 4382 4002 RTA

Table 6.8: By algorithm (DA): Comparison of the number of instructions in millions

6.7 CACAO inlining

Initially the CG algorithms tested were for devirtualization for use with inlining
in CACAO. CACAO has tested two inlining implementations. After examining
the two inlining implementations, the usefulness of IPTA for inlining in CACAO
will be discussed.

6.7.1 Inlining in parse

The first attempt at inlining in CACAO was implemented as part of the parse
phase. The heuristic used to select methods to inline was the first n methods,
which were smaller than a specific size, determined by the number of bytecodes
a method had. This first implementation of inlining was also tested with the
SA implementations of RTA and XTA. No dynamically monomorphic methods
were inlined by any of the JVM benchmarks. With or without IPTA analysis,
this implementation of inlining was always slower than without inlining. The
heuristic was picking non-critical methods to inline and reaching its limit for
the number of methods to inline before finding any dynamically monomorphic
virtual method to inline.
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6.7.2 Inlining with online stack replacement

An important improvement in the current implementation of inlining [Ste07]
in CACAO is finding critical methods with a profiler. No IPTA was used. If
there is only one method in the dynamic dispatch table, then it is considered
dynamically monomorphic and a candidate to be inlined. The information avail-
able to the JVM is the same as dynamic CHA test with the traditional simple
tests (see Chap.4). Since a method has been executed often enough to be a hot
method, the probability is higher, if a method is polymorphic, it is known when
making the inline decision. Wrong decisions were corrected with online stack
replacement.

This version of inlining with no IPTA did bring runtime savings with SPEC
jvm98 benchmark programs. The SPECjvm98 characteristics in section 6.11
show that few methods, require a more extensive analysis to prove they are
dynamically monomorphic.

6.7.3 Inlining with dynamic inter-procedural type analy-
sis

The test results of inlining in CACAO agree with [LYK+00] that when using a
Virtual Method Table, like CACAO uses, an adaptive optimization framework
using a hot-spot profiler is needed to avoid performance degradation.

Although IPTA can be used by other optimizations and IPTA is needed for
type analysis, it’s doubtful IPTA can improve inlining CACAO performance.
Further performance improvement in CACAO due to inlining in SPECjvm98
cannot be expected due to XTA and VTA. The analysis of SPECjvm98 in
section 6.5, shows most virtual and interface methods invoked can be proven
to be monomorphic using traditional simple tests (sec.4.1) as documented by
[Dea96].

Currently CACAO 99.2 explicitly uses the language construct test for its
leaf test. Implicitly the JVM compiler sees when only one method definition
has been used so far via the VMT. This is different from the second and third
simple tests. Checking for no subclass proves the method cannot currently be
overridden and is fast. No check is made if only one method definition exists,
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however this test and IPTA (RTA, XTA, VTA) tests are more costly. The
VMT test used shows a method is currently monomorphic. CHA class and
method costs are less predictable from the actual number used than the IPTA
algorithms(fig. 6.8). Using IPTA tests would show if an inlined method might
have to be backed out, but not if it will be backed-out.



Chapter 7

Summary

7.1 Modes and class loading

DA in the JVM is appropriate for an online JVM compiler such as CACAO
JVM JIT. The analysis information can be collected at runtime, but only used
on-demand ([QH05]). Only DA mode is compatible with lazy loading in an
online JVM. Both SA and HPA modes must load classes, before its known if
the class is really needed by the application run.

SA and HPA in the JVM are appropriate for use in an off-line compiler or
for test and verification applications. Offline applications still need the smallest
set of reachable methods, since spurious classes and methods decrease analy-
sis precision. On-demand class loading limits the class hierarchy to reachable
classes.

The differences found between this implementation and traditional pre-processing
SA and other hybrid analysis implementations (fig.s 7.1, 3.1, 5.1) are:

• in the JVM so all IPTA information not just hints are available for opti-
mizations;

• smaller class hierarchy by using on-demand class loading instead pre-
loading all classes in the classfile constant pool;

• no separate trace run needed for test tools;

• HPA picks-up all entry methods without user supplied inputs;

• HPA starts a SA analysis immediately from an entry method; 1

• DA mode uses the ideal CG;

For SPECjvm98 most methods are monomorphic, so few corrections due to DA
having incomplete information would be expected. More generally, use of the
DA information by an optimizer can be improved by using characteristics of the
application to delay optimizations to a logical time when more information will
be known. (see sec.s 6.7, 3.4)

1Since this SA is finished before the method’s parse, the results may be used by optimiza-
tions of all methods reachable from this entry method.
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Figure 7.1: HPA combines the 3 stages of DSD / Blended analysis into 1 step

7.2 Algorithm Comparison

7.2.1 CHA and simple tests enough?

[QH05] found it surprising for DA, that dynamic CHA found dynamic monomor-
phic virtual methods almost as well as dynamic VTA. It is not surprising, since
unlike SA, DA has a more precise class hierarchy with no spurious classes loaded.
CHA precision is determined by the class loading scheme, whether DA or SA.
Methods definitions visible varied more wildly and making it be less easy to
generalize its costs and precision, section6.3.2. More precise algorithms have
fewer spurious methods to mark.

CHA will perform best with the smallest possible class hierarchy, as with
lazy loading and DA. However CHA is not precise enough to find dynamically
monomorphic interface method calls from both [QH05] and the tests here. But
a more expensive analysis is only needed if the program has hot methods, which
are interfaces. This is not true of SPECjvm98 from the tests here nor SPEC2000
and other standard Java benchmarks [QH05].

The tests here showed most singleton method definitions can be found using
leaf tests (90%). Only 2% for Pickup SA and 0.1% for DA of the SPECjvm98
methods require more extensive IPTA like RTA, XTA and VTA to determine
if they are dynamically monomorphic. Showing leaf tests with CHA is
enough for SPECjvm98.

None of the algorithms found more than 2 method callsites, which only used
1 definition. The rest could be proven to be monomorphic using one of the
non-virtual tests.

7.2.2 Costs

XTA used fewer instructions, but VTA was second 5 times and RTA 3 times.
Less detailed information gathered caused more spurious methods to be ana-
lyzed. More detailed information gathered, gained back time by analyzing fewer
methods. VTA can distinguish better between types within a method.

As the precision of the entity the class set is associated with increased(table
2.2), the number of spurious classes and methods decreased (sec.6.4).

Spurious classes/methods VTA < XTA < RTA < CHA

As the precision of the entity the class set is associated with increased, the
number of sets needed and bytecodes analyzed increases. (sec. 6.6).

Precision /Implementation costs VTA > XTA > RTA > CHA
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When spurious classes and methods are in the analysis results, the effective-
ness of the algorithms is inflated. The runtime tests suggest, that gathering
the type information for an analysis is often small compared to the total run-
time and might be able to be run on demand, if a profiler deemed the analysis
information to be useful.

7.3 An algorithm for Dynamic Analysis?

A DA is not always needed. More expensive CG IPTA algorithms are only
needed, if multiple methods called at the program level being used (examples:
graphic program, visitor pattern). The more precise the class hierarchy is the
fewer false positive for used classes and reachable methods.

Each of the algorithms fits a specific style best as shown in Chapter 4. If the
application is mostly monomorphic then traditional simple tests are enough. If
the application has similar objects as described in section 1.1.2, then the extra
precision RTA, XTA, and VTA bring is important enough to be worth their
costs.

If there is a need, rather than choosing just one algorithm a framework
would be suggested, set-up like Vortex ([GDDC97], [CDG96]) and Sable’s cur-
rent framework or at least multiple options would be suggested.

7.4 Future work

Promising areas for future work are:

• monomorphic statistics for CACAO boot with various classpath libraries,

• gather DA information during required type analysis,

• the use of IPTA for other optimizations perhaps in a framework to allow
testing of various IPTA algorithms;

• to recognize the patterns in the hotspot methods which implement multi-
ple interfaces, which might be monomorphic;

• the use of CACAO generated information for program verification.

HPA mode with delayed class loading looks promising for application with off-
line compilers and test tools.
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Appendix A

Algorithm Comparison

Figure A.1 contains a high level comparison in pseudo code of the algorithms
implemented. CHA and RTA are based on figures in [KH02]. Actions that are
same or similiar are on the same line. So differences are easily seen additions or
deletions by an algorithm are on different lines. Symbols are explained on the
right in comments.

More details of the algorithm implementations are contained in chap. 5.

A-1
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Figure A.1: CHA, RTA, XTA, VTA algorithms as implemented



Appendix B

Detailed Statistics

B.1 Graph data

Classes loaded Reachable methods Missed methods Picked–up methods
spec- spec- spec- spec-

JVM98 In0 JVM98 In0 JVM98 In0 JVM98 In0
SA wIns 547 (252) 2682 (1000) 0 (0) 0 (0)
SA wIn0 547 (252) 2638 (1000) 5 (0) 0 (0)
SA rtIns 543 (255) 2575 (943) 46 (29) 0 (0)
SA noIns 543 (255) 2531 (943) 65 (29) 0 (0)
HPA wIns 547 (252) 2682 (1000) 0 (0) 0 (0)
HPA wIn0 547 (252) 2672 (1000) 0 (0) 0 (0)
HPA rtIns 543 (255) 2614 (961) 3 (0) 20 (13)
HPA noIns 543 (255) 2601 (961) 0 (0) 27 (13)
DA-HPA 531 (254) 2513 (961) 0 (0) 38 (19)
DA 293 (196) 0 (0) 0 (0) 811 (342)

Table B.1: By mode/inputs: classes / methods(reachable, missed, picked-up)

Test Leaf 1 Def 1 Used Poly = Virtual Non-Virtual
SA wIns 707 330 2 105 1147 1529
SA wIn0 685 325 2 105 1119 1513
SA rtIns 690 303 2 97 1094 1475
SA noIns 668 297 2 97 1066 1460
HPA wIns 707 330 2 105 1147 1529
HPA wIn0 696 330 2 105 1135 1528
HPA rtIns 698 317 2 103 1122 1506
HPA noIns 687 317 2 103 1111 1505
DA-HPA 646 301 3 92 1044 1491
DA 175 68 6 9 260 536

Table B.2: By mode/inputs: mono (by test) vs. poly (fig.6.4)

Test Leaf 1 Def 1 Used Poly
CHA 1060 414 2 156
RTA 787 332 2 105
XTA 407 239 15 63
VTA 307 220 18 37
JIT 178 68 6 9

Table B.3: By algorithm: mono (by test) vs. poly (fig.6.11a)

B-1



APPENDIX B. DETAILED STATISTICS B-2

Non-virtual Virtual Unknown
CHA 3309 (95.2%) 162 (4.7%) 5 (0.1%)
RTA 2546 (91.7%) 116 (4.2%) 116 (4.2%)
XTA 1911 (95.5%) 64 (3.2%) 25 (1.3%)
VTA 1541 (88.5%) 4 (0.3%) 196 (11.2x%)
JIT 777 (96.6%) 9 (1.2%) 18 (2.3%)

Table B.4: By algorithm: Non-virtual vs. Virtual (fig.6.11b)

Total
Time In0 check compress db jack javac jess mpega mtrt geomean
SA wIns 0.19 0.48 9.36 21.13 8.74 13.49 8.78 10.29 8.34 7.35
SA wIn0 0.19 0.48 9.35 21.22 8.71 13.12 8.75 10.26 8.28 7.31
SA rtIn 0.18 0.47 9.35 21.04 8.65 13.2 8.77 10.3 8.15 7.27
SA noIns 0.18 0.47 9.43 21.21 8.65 13.2 8.67 10.26 8.41 7.31
HPA wIns 0.19 0.48 9.36 20.94 8.72 13.05 8.78 10.26 8.49 7.32
HPA wIn0 0.19 0.48 9.33 20.91 8.71 13.12 8.81 10.28 8.23 7.29
HPA rtIn 0.18 0.47 9.37 21.12 8.67 13.19 8.77 10.30 8.42 7.31
HPA noIns 0.18 0.47 9.42 21.05 8.67 13.19 8.67 10.28 8.12 7.27
DA-HPA 0.18 0.40 9.25 20.75 8.6 13.17 8.65 10.17 8.26 7.08
DA 0.16 0.27 9.16 20.60 8.45 13.84 8.57 10.51 7.67 7.62

Table B.5: By mode: Run times in seconds

classes In0 check compress db jack javac jess mpega mtrt geomean
CHA 560 611 730 715 605 640 715 605 640 656
RTA 252 508 498 492 543 664 647 537 511 547
XTA 258 476 466 460 511 632 612 505 485 515
VTA 229 439 428 424 476 599 580 467 443 478
JIT 196 258 245 241 295 416 396 284 260 293

Table B.6: By classes by benchmark and algorithm (fig.6.8a)

methods In0 check compress db jack javac jess mpega mtrt geomean
CHA 2979 3206 4132 3563 3162 3628 3563 3162 3628 3492
RTA 1000 2458 2385 2417 2641 3566 2996 2599 2524 2675
XTA 818 1784 1728 1768 1985 2919 2251 1917 1921 2006
VTA 635 1555 1498 1539 1756 2434 2101 1682 1650 1753
JIT 342 675 594 630 851 1412 1076 766 750 811

Table B.7: By methods by benchmark and algorithm (fig.6.8b)



APPENDIX B. DETAILED STATISTICS B-3

B.2 Run-time comparison

Table B.8 shows the runtime comparisons of RTA, XTA, VTA and the JIT in
SA-HPA mode with In0 inputs in seconds on 1.5GHz centrino with 496 MB
RAM using -time cacao option. Bold means cacao was faster with the analysis,
than without.

Run times were measured two ways (cacao -time, perfex time stamp counter
(tsc) ([Cha01])) and gave similar results. However the runtime standard devi-
ations, shown in parenthesis, were too high to use. Sometimes the geometric
mean runtime with the analysis ran faster than without analysis. The geometric
mean runtime of the algorithm with the least instructions was sometimes slower.

The benchmarks which ran sometimes faster without analysis than with it,
may be due I/O patterns when loading classes in spurts or gradually [LAM07].

JIT=no Min.
RTA XTA VTA analysis Algo

In0 0.164(.003) 0.171 (.003) 0.159 (.002) 0.135(.002) VTA
check 0.273(.003) 0.370 (.005) 0.346 (.004) 0.219(.003) RTA

compress 9.178 (.208) 9.320 (.097) 9.200 (.131) 9.476 (.257) RTA
db 20.645 (.241) 20.854 (.218) 20.593(.201) 20.763 (.276) VTA

jack 8.408 (.008) 8.586 (.093) 7.263 (.231) 8.230 (.063) VTA
javac 13.344 (.097) 12.621 (.133) 12.611 (.041) 12.630 (.118) VTA
jess 8.519 (.014) 8.659 (.094) 8.688 (.009) 8.474 (.092) RTA

mpegaudio 10.404 (.139) 10.208 (.103) 10.397 (.379) 10.167 (.235) XTA
mtrt 7.749 (.248) 7.995 (.301) 8.118 (.336) 7.658 (.182) RTA

geomean
(SPECjvm98) 6.68 6.96 6.77 6.44 RTA
num. wins 1st 4 1 4 tie

2nd 3 3 3 tie
3rd 2 5 2 XTA

Table B.8: By algorithm: Run time comparisons in seconds


