

Dissertation

Quality Prediction and Evaluation Models

for Products and Processes

in Distributed Software Development

Ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der

technischen Wissenschaften/der Naturwissenschaften unter der Leitung

von

a.o. Univ. Prof. Dr. Stefan Biffl

o. Univ. Prof. Dr. A Min Tjoa

Institut für Softwaretechnik und interaktive Systeme

Eingereicht and der Technischen Universität Wien

Fakultät für Informatik

von

Dindin Sjahril Fadjar Wahyudin

0527519

1030 Wien, Baumgasse 58/43

dindin@ ifs.tuwien.ac.at

Wien, am 5 November 2008 eigen händige Unterschrift

Die approbierte Originalversion dieser Dissertation ist an der Hauptbibliothek
der Technischen Universität Wien aufgestellt (http://www.ub.tuwien.ac.at).

The approved original version of this thesis is available at the main library of
the Vienna University of Technology (http://www.ub.tuwien.ac.at/englweb/).

ii

Deutsche Kurzfassung
Die moderne Entwicklung großer Softwaresysteme erfolgt typischerweise in einem verteilten –
häufig global ausgerichteten – Umfeld. Eine verteilte Softwareherstellung (Distributed Software
Development, DSD) ist sowohl in traditionellen Unternehmen und Organisationen als auch verstärkt
im Open Source Umfeld anzutreffen. Speziell in DSD-Projekten benötigen Projekt- und
Qualitätsleiter geeignete Methoden zur Evaluierung des aktuellen Projektfortschritts (beispielsweise
die Qualität der bisher erstellten Produkte und durchgeführten Aktivitäten) und zuverlässige
Modelle für die Einschätzung der zu erwartenden Produktqualität für neue Softwareversionen
(Releases).

Durch die globale Verteilung der Projektteams im DSD-Umfeld wird die Einschätzung des
Projektfortschritts zunehmend komplexer und unzuverlässiger, da eine persönliche Abstimmung in
Form von Meetings zur Überprüfung von (high-level) Schätzergebnissen, wie beispielsweise der
Fertigstellungsgrad einer Softwareversion, aufgrund der räumlichen Trennung meist nur schwer
realisierbar sind.

Eine zentrale Frage für Projekt- und Qualitätsleiter im Rahmen der Projektsteuerung ist, ob eine
vorliegende Softwareversion bereits freigegeben werden kann oder ob Teile des Produktes vor der
Freigabe noch überarbeitet werden müssen. Zur Unterstützung dieser Entscheidung sind
erforderlich:

(1) Evaluierungs-Framework zur Einschätzung der Produktqualität (welche Daten müssen erhoben
werden und wie können sie zu aussagekräftigen Metriken aggregiert werden)

(2) Gültigkeitsprüfung der erhobenen Daten auf unterschiedlichen Granularitätsstufen.

(3) Schätzmethoden über die zukünftige Produktqualität einschließlich einer Rückkopplung über die
Gültigkeit der Schätzergebnisse.

Die Fehlerfreiheit bzw. die Anzahl der im Produkt verbleibenden Fehler ist ein Hauptkriterium für
die Feststellung der Qualität eines Softwareproduktes im Rahmen dieser Arbeit. Ein Fehler ist dabei
definiert als eine Abweichung der Lösung von definierten Anforderungen (sowohl funktionale
Anforderungen aber auch nicht-funktionale Anforderungen, wie Zuverlässigkeit, Sicherheit,
Wartbarkeit oder Benutzerfreundlichkeit). Da Fehler in einem Softwareprodukt den realen Wert für
den Anwender reduzieren, sind Fehleraufzeichnungen und Fehlervorhersagen für künftige Releases
zentrale Kenn- und Steuergrößen für die Qualität eines Produktes bzw. für die Planung neuer
Produkte und Releases.

Fehlerzählungen und Datensammlungen aus Qualitätsverbesserungsinitiativen sind zentrale
Elemente zur Feststellung der Produktqualität (beispielsweise Fehlerkorrektur im Rahmen eines
Entwicklungsprozesses). Aufbauend auf historischen Projekt- und Fehlerdaten wird ein
Vorhersagemodell erstellt, das die Basis für Fehlerschätzungen zukünftiger Releases bildet.

In der industriellen Praxis werden Frameworks für die Evaluierung der Produkt- und Prozessqualität
für traditionelle Softwarekennzahlen eingesetzt. Diese Frameworks unterstützen jedoch keine
verteilte Entwicklung im DSD-Umfeld, wie sie im Rahmen der Entwicklung von verteilten Open
Source Software Produkten (OSS) erforderlich ist. Die Ergebnisse einer systematischen
Literaturanalyse zeigten folgende Einschränkungen bei Vorhersagemodellen in einem verteilten
Entwicklungsumfeld:

(1) Unsystematische Planung von Qualitätsvorhersagen.

iii

(2) Modelle, die ausschließlich auf Produktmetriken aufgebaut werden, sind zwar an sich
ausreichend, weisen aber eine zu geringe Zuverlässigkeit in der Fehlerschätzung bzw.
Vorhersage auf. Dieser Nachteil wirkt sich speziell bei Projekten mit kurzen
Entwicklungszeiten, wie es in zahlreichen OSS Projekten üblich ist, aus.

(3) Unzureichende Qualität der erhobenen Daten aus unterschiedlichen und heterogenen
Datenquellen.

Zentrale Forschungsfragen dieser Arbeit sind a) eines systematische Untersuchung großer OSS
Projekte im Hinblick auf wichtige Projektergebnisse und Prozessattribute, die zur Einschätzung der
Produktqualität und des Projektfortschrittes verwendet werden können und b) die Untersuchung der
Angemessenheit und Zuverlässigkeit fortgeschrittener Modelle für objektive Vorhersage der
Produktqualität im DSD Umfeld.

Zentrale Forschungsbeiträge dieser Arbeit:

1. Prozess-Qualitäts-Metriken, so genannte “Project health indicators”, erfassen
Entwicklungsaktivitäten im Rahmen der Produktverbesserung und ermöglichen die Evaluierung
dieser Indikatoren in DSD-Projekten.

2. Qualitätsindikatoren für Softwareprodukte, die einen Wahrscheinlichkeitsbereich zur Verfügung
stellen statt eines fixen Wertes ohne Berücksichtigung von Datenschwankungen.

3. Forschungs-Roadmap für die Software Fehlervorhersage basierend auf einem systematischen
Literaturreview.

4. Strukturiertes Framework für Qualitätsvorhersage für Verteilte Softwareentwicklungen.
5. Verbesserte Modelle zur Qualitätsvorhersage basierend auf Produkt- und Prozessmetriken, die

aus heterogenen Projekt-Repositories gewonnen werden können (z.B. Issue Tracker, Source
Code Management).

6. Empirische Evaluierung im Rahmen von realen Softwareprodukten in einem realen Umfeld:
Fallstudien unterschiedlicher OSS Projekte.

Der vorgestellte Forschungsansatz basiert auf den folgenden Annahmen: In einem ausreichend
stabilen Prozessumfeld können durch eine Reihe von Beobachtungen der Produktqualität im
jeweiligen Kontext a) signifikante Kontextparameter identifiziert und b) die Produktqualität zu
einem bestimmten Zeitpunkt basierend auf den gemessenen Kontextparametern vorhergesagt
werden. Dieser Ansatz wird am Beispiel von DSD (OSS) Projektumfeld vorgestellt. Eine weitere
mögliche Anwendung, die nicht im Fokus dieser Arbeit steht, umfasst die Evaluierung und
Vorhersage von Qualitätsattributen in kommerziellen (nicht OSS) Projekten.

iv

Table of Contents
ABSTRACT .. VIII

ACKNOWLEDGEMENTS .. X

LIST OF TABLES .. VII

LIST OF FIGURES .. VIII

1 INTRODUCTION ... 10

1.1 Research Issues and Research Challenges ... 11

1.1.1 Research Issues .. 11

1.2 Research Contributions ... 13

1.2.1 Evaluation of Distributed Development Processes Quality ... 15

1.2.2 Software Quality Prediction in Distributed Development Settings .. 18

1.3 Overview .. 20

2 FUNDAMENTS OF THIS WORK .. 21

2.1 Introduction to Empirical Software Engineering .. 21

2.1.1 Goal/Questions/Metrics paradigm ... 21

2.1.2 Software Metrics ... 22

2.1.3 Causal Modeling to Investigate Correlated Factors and Metrics .. 24

2.1.4 Conducting Empirical Study in Software Engineering... 26

2.2 Quality Evaluation of Distributed Software Development Processes and Product 31

2.2.1 Quality as Software Product Conformance to Requirements ... 31

2.2.2 Human Based v.s. Tool Based Evaluation Approaches.. 32

2.2.3 The Needs for OSS Product Quality Evaluation .. 33

2.2.4 Comparison of OSS Projects to Closed Source Distributed Software Projects 35

2.2.5 Open Source Software Development Structure .. 36

2.2.6 Continuous Product and Process Improvement in an OSS Projects .. 39

2.3 Software Quality Prediction .. 42

2.3.1 Objective Software Defect Prediction Methods ... 43

2.3.2 Metrics Categories for Software Defect Prediction ... 44

2.3.3 Software Quality Prediction in OSS Projects ... 44

2.4 Chapter Summary .. 46

v

3 PROCESS QUALITY EVALUATION OF DISTRIBUTED SOFTWARE DEVELOPMENT 47

3.1 Related Work .. 47

3.1.1 Concerns for OSS Project Survivability ... 48

3.1.2 Evaluation of Development Processes Quality: Measuring the Maturity Level of Development

Processes .. 48

3.2 Causal Modeling of OSS Survivability ... 50

3.2.1 Group I. OSS Developer Community Aliveness ... 51

3.2.2 Group II. OSS User Community Aliveness ... 52

3.2.3 Group III. OSS Product Quality ... 53

3.3 Stakeholder Value Proposition of OSS Product Quality Prediction and Evaluation 54

3.4 Modeling the OSS Project “Health” Indicators .. 59

3.5 Empirical Evaluation of OSS Project “Health” Indicators: Developer Contribution

Patterns and Defect Service Delay .. 62

3.5.1 Design of Empirical Study .. 62

3.5.2 Data Collection .. 67

3.5.3 Data Analysis Results ... 69

3.5.4 Discussion of Empirical Results ... 80

3.6 Finding “Health” Indicators from Aspects of Quality Assurance in OSS Projects 83

3.6.1 Quality Assurance Aspects in OSS Project... 83

3.6.2 Proposed Health Indicators Derived from QA Activities in OSS Projects............................... 86

3.6.3 Design of Empirical Study .. 87

3.6.4 Data Collection .. 90

3.6.5 Data Analysis Results ... 90

3.6.6 Discussion of Empirical Results ... 93

3.7 Chapter Summary .. 95

4 SOFTWARE QUALITY PREDICTION IN DISTRIBUTED DEVELOPMENT SETTINGS 97

4.1 Systematic Review of the Body of Literature on Defect Prediction 97

4.1.1 Systematical Literature Review Procedure .. 98

4.1.2 Extraction of Findings and Discussion .. 100

4.2 Research Roadmap of Software Quality Prediction and Evaluation in Distributed

Software Development ... 106

vi

4.2.1 Challenge 1: Needs for well planned quality prediction .. 106

4.2.2 Challenge 2: Effective and efficient data collection ... 108

4.2.3 Challenge 3: Predicting under uncertainty .. 108

4.2.4 Challenge 4: Dealing with incomplete and missing data ... 109

4.2.5 Challenge 5: Providing accurate and prompt prediction results ... 109

4.2.6 Challenge 6: Reusing and validating the existing model for upcoming releases. 110

4.3 The Software Quality Prediction Framework (SQF) .. 110

4.3.1 Phase A – Preparation ... 110

4.3.2 Phase B – Model Construction ... 112

4.3.3 Phase C – Model Usages .. 115

4.4 Using Combined Product and Process Metrics to Predict Defect Growth between

Releases in OSS Projects .. 116

4.4.1 Empirical Study Design .. 116

4.4.2 Data Collection .. 119

4.4.3 Data Analysis Results ... 123

4.4.4 Discussion of Empirical Results ... 127

4.5 Empirical Approach to Characterizing and Predicting Risk Classes of OSS Project

Releases .. 128

4.6 Research Approach .. 129

4.6.1 Design of Empirical Study .. 130

4.6.2 Data Collection .. 135

4.6.3 Data Analysis Results ... 137

4.6.4 Discussion ... 144

4.7 Chapter Summary .. 146

5 CONCLUSION AND FUTURE WORK ... 149

5.1.1 Summary of Research Issues and Results for Evaluation of Distributed Development

Processes Quality ... 149

5.1.2 Summary of Research Issues and Results for Software Quality Prediction in Distributed

Software Development Settings .. 151

5.1.3 Future Work .. 153

vii

REFERENCES .. 155

DINDIN WAHYUDIN CURRICULUM VITAE .. 162

APPENDIX ... 166

A1. Predicting the Number of Developer Mail Response for a Defect Status Change and a New

Code Submission ... 166

A1.1 Single Project Modeling using Apache Tomcat Data ... 166

A2.2 Single Project Modeling using Apache HTTPD Data ... 167

A2.3 Cross Project Modeling using Apache HTTPD and Apache Tomcat Data 168

A2.4 Single Project Modeling using Apache Xindice Data ... 168

A2.5 Single Project Modeling using Apache Slide Data ... 169

A1. Statistical Methods for Software Quality Prediction ... 171

A1.2.Multiple Linear Regression Techniques .. 171

A1.2.Classification Techniques .. 171

A3. In Time Notification Tool Support for Distributed Development Processes 175

A4. Potential Application of Quality Evaluation and Prediction Framework in Operating

Software Systems .. 181

viii

ABSTRACT

Modern large-scale software development is typically organized in distributed, often globally

dispersed, environments. Distributed Software Development (DSD) projects occur both in

traditional organizations and increasingly sophisticated open source development initiatives.

Leading roles in DSD, such as the project manager and the quality manager, need to evaluate the

actual project progress (e.g., quality of products produced and activities conducted) and trustworthy

models for the prediction of future product quality such as release candidates. However, in a DSD

context the human reporting of progress becomes increasingly complex and the reliability can

become questionable, particularly if face-to-face meetings are not possible that allow to personally

checking the validity of high-level estimates such as the readiness of a software version for release.

For steering the project, e.g., by deciding to release a current software version or to wait and re-

work parts of the software, project managers need 1. a quality evaluation framework that defines

what data to collect and convert into meaningful numbers on a higher level; 2. an approach to check

data for validity on all levels; 3. an approach to predict the quality of future products with feedback

on the likely accuracy of the prediction result.

In this work we focus on absence of defects as the major quality criterion of a software product,

where defects are deviations from requirements that need to be repaired. The focus on defect

counting and defect prediction are particularly important as defects decease value for users, and

other quality criteria (e.g. reliability, security, maintainability, usability) can be formulated as

requirements and thus defects can also cover these criteria. Hence, the terms of quality evaluation in

our context is focus on counting defects and collect data that is related to quality improvement (e.g.,

development processes that related to defect removal activities). While quality prediction consists

of collecting historical data from project data sources to construct prediction models that can be

used to estimate number of defects or defective work products prior to release.

Unfortunately, while there are quality evaluation frameworks in traditional software metrics, to our

knowledge there is no appropriate framework available that can be calibrated to modern DSD

environments such as Open Source Software (OSS) environments. Moreover, our systematical

literature review found that prediction models in distributed development settings have to cope with

the following limitations such as a) unsystematic quality prediction planning, b) models based on

product metrics alone shown sufficient accuracy but poor reliability in particular for projects with

short development cycle such as in many OSS projects c) insufficient quality of collected data

originated from heterogeneous project data sources.

ix

Key research questions of this thesis are a) to investigate for large OSS projects the most important

development artifact and process attributes that can indicate software product quality for project

progress evaluation and b) to investigate the accuracy and reliability of advanced models for

objective quality prediction in the context of DSD projects.

Main research contributions of this work are:

1. Process quality metrics, so-called project “health indicators”, which capture correlated

development activities in product quality improvement, and propose ways to evaluate such

“health indicators” in DSD projects.

2. Quality indicators for software products that provide a range for the likely value of the indicators

rather than a fixed value without indication of data volatility.

3. Research roadmap for software defect prediction based on systematical literature review

4. Structured framework for quality prediction in distributed software development settings

5. Improved quality prediction methods based on product and process metrics that can be collected

from heterogeneous project repositories (e.g. issue tracker, source code management tool).

6. Empirical evaluation in a range of real-world distributed software engineering environments:

case studies from different contexts OSS projects.

The general approach is based on the following assumption: in a sufficiently stable process context

a sequence of observations on product quality and context parameters allow a) identifying

significant context parameters and b) prediction of product quality at a point in time based on the

measured context parameters. We use this approach in the context of DSD (OSS) projects; however,

there are many other potential application areas such as quality evaluation and prediction for

operational software systems.

x

ACKNOWLEDGEMENTS

I would like to thank Professor Stefan Biffl and Prof. A Min Tjoa for guiding me through my PhD

and for spending lots of time for thorough discussions, and providing very constructive feedback for

my research topics.

Furthermore, I want to thank my colleagues Alexander Schatten, Dietmar Winkler, Mathias Heindl,

Thomas Moser, Rudolf Ramler, Richard Mordinyi, Khabib Mustofa, Munir Merdan, Jiri Kubalik,

Kamil Matousek, Michael Schadler and Benedikt Eckhard for interesting discussions, research

collaborations and experience exchanges.

Last but not least, I want to thank my wife Neni Novitasari and my parents for supporting me

during my studies.

vii

LIST OF TABLES

Table 1 Comparison of OSS Project Development with Closed Source Development..................... 35

Table 2 Comparison of Metrics Selection Impact to Prediction Results in OSS Projects 46

Table 3 Distribution of Collected Development Metrics ... 70

Table 4 Development Metrics Correlation Analysis in Four Apache Projects (Pearson Rank) 73

Table 5 Development Metrics Correlation Analysis in Four Apache Projects (Spearman Rho) 73

Table 6 Prediction Models for Four Projects using the First Group of Observation Data 74

Table 7 Validation of Prediction Model using the Second Group of Observation Data 75

Table 8 Defect Distributions in Two Healthy Apache Projects ... 76

Table 9 Defect Distributions in Two Challenged Apache Projects ... 77

Table 10 Defect Detection Frequency ... 91

Table 11 Defect Collection Effectiveness .. 91

Table 12 Defect Closure Time per Class of Severity in Days ... 92

Table 13 Study Related Factors- Preparation Phase .. 101

Table 14 Study Related Factors- Model Construction ... 102

Table 15 Study Related Factors- Model Usages .. 105

Table 16. SVN Log Command. .. 119

Table 17. Queries for Defect and Issue Data Collection. .. 119

Table 18. Collected OSS Product Metrics [71, 126]. ... 121

Table 19. Collected OSS Process Metrics. ... 122

Table 20 Top 10 Predictors Correlation Analysis .. 124

Table 21. Comparison of Prediction Models .. 127

Table 22. Release Data Grouping. .. 136

Table 23. Release Sizes and Complexity. ... 137

Table 24. Normalized Actual DLs and DR classes for 34 releases (Mean DL=100 %). 139

Table 25. Unsupervised Prediction Performance for “Higher Risk” HRR Releases. 141

Table 26. Supervised Prediction Performance Results. .. 142

viii

Table 27. Cross-Project Evaluation with Naive Bayes for Predicting “Higher Risk” DR HRR

releases. ... 143

Table 28. Tomcat Prediction Model Summary ... 166

Table 29 Tomcat ANOVA Test Results of Constructed Model .. 166

Table 30 Tomcat Coefficients and Predictors Test Results ... 166

Table 31. HTTPD Prediction Model Summary .. 167

Table 32. HTTPD ANOVA Test Results of Constructed Model ... 167

Table 33. HTTPD Coefficients and Predictors Test Results .. 167

Table 34. Cross HTTPD-Tomcat Prediction Model Summary... 168

Table 35. Cross HTTPD-Tomcat ANOVA Test Results of Constructed Model 168

Table 36. Cross HTTPD-Tomcat Coefficients and Predictors Test Results 168

Table 37. Xindice Prediction Model Summary .. 169

Table 38. Xindice ANOVA Test Results of Constructed Model ... 169

Table 39. Xindice Coefficients and Predictors Test Results .. 169

Table 40. Slide Prediction Model Summary ... 169

Table 41. Slide ANOVA Test Results of Constructed Model .. 170

Table 42. Slide Coefficients and Predictors Test Results .. 170

viii

LIST OF FIGURES

Figure 1 Simple Example of Causal Model for Software Quality Estimations (Extended from [31])

 ... 26

Figure 2 The V Research Model, refined from [9] ... 27

Figure 3 Framework for empirical study in context of OSS and DSD projects 28

Figure 4 Growth of Apache HTTP Server Market Share (Source: Netcraft Survey [93]) 34

Figure 5 The Open Source Software Structure Model. Refined from [1, 22] 37

Figure 6 Publish-Subscribe mechanism as communication pattern in OSS projects 38

Figure 7 Continuous software product improvement within an OSS project. 39

Figure 8 an Open Source Software Project Lifecycle .. 50

Figure 9 Causal Model of an OSS project Health Status ... 51

Figure 10 Expected Quality Aspects of OSS Product Releases from different Stakeholders Point of

Views ... 55

Figure 11 Deriving OSS project health indicators from basic process metrics. 61

Figure 12 Absolute number of developer contributions in Four Apache Projects in 38 months of

observation [122]. .. 71

Figure 13 Developers’ contribution patterns as proportion of different development metrics [122].

 ... 72

Figure 14 Defect Distributions in Four Apache Projects ... 78

Figure 15 Defect Service Time distribution for reviewed projects. [122] ... 79

Figure 16. Impact of a Core Committer Contribution which Motivate Other Developers

Contributions into the Developer Mailing List in a challenged project Apache Slide [121] 81

Figure 17 Framework for quality assurance processes as part of defect removal activities in an OSS

project [124]. ... 84

Figure 18 Defect closure time distributions in reviewed projects ... 92

Figure 19 Proportion of verified defect resolution .. 93

Figure 20 Software Quality Prediction Framework (SQF) ... 111

Figure 21 Data Collection and Refinement Procedure .. 113

Figure 22 Reliability Growth Models (RGM) for Myfaces Tobago and Core 125

ix

Figure 23 Ratio of monthly defect closed prior to release in MyFaces Core and Tobago 126

Figure 24. Defect Distribution from 34 releases in 3 severity classes. .. 138

Figure 25. Actual DLs and DR classes for 34 releases .. 140

Figure 26. Integrated tool support for In-time Role-Specific Notification in Agile-GSD settings

[120] .. 176

Figure 27 Overview of Extended MAST System Architecture [81] ... 182

10

1 INTRODUCTION

Today the engineering of software intensive systems (SISs) especially in medium to large

software companies has been shifted from traditional collocated development style towards

distributed software development (DSD) as it promises cost reductions, extended access to

expert pools and market proximity [102]. DSD can be defined as Software development in

geographically distributed settings [23] which can be occur both in traditional closed-source

organizations and increasingly sophisticated open source software (OSS) development initiatives.

The success of a DSD project depends among other things on the quality of the resulting product.

Thus, project manager and quality manager in DSD need a) to properly evaluate current work

products quality level and activities conducted and b) to predict the quality of future software

product (i.e., software release candidates) prior to release and to identify needs for improvement.

Prikladnicki et al. [102] as well as Sengupta et al [110] advocate that although DSD significantly

impacts of how current software products are designed, developed, tested and deployed,

nevertheless the stories of failures in distributed projects can be alarming due to poor planning,

poor quality, and cost overruns. These issues are derived from the complexity of development

process in DSD [49] such as:

1. Size and structural of the project. The more project participant involved in a project and

the more distributed their location then the more complex is the project. In globally

distributed software project (i.e., Global Software Development and Open Source

Software Development) the time zones and cultural differences limit the availability of

team member to work together at the same time, and motivate a concern of the

transparency of the development processes [120]. Nevertheless, the increased of project

complexity alleviates the challenge for project managers to plan and control the project,

organize the collaborative works, as well as monitoring project participants’ work

performance and quality.

2. Heterogeneous changing processes and products. Each project participant is working on

different processes to produce deliverables according to his assigned role. Each

distributed process uses and produces heterogeneous artifacts (e.g. requirements, code

set, test case, design elements, methods) that keep evolving throughout project lifecycle

[126]. In metrics based quality prediction method the processes and the artifacts are

11

source of data that can be used to estimate of the product prior to release. The more

functionally should be delivered means higher number of artifact and more involved

processes which consequently increase the complexity in project monitoring and quality

assurance.

3. Semantic of data collection. Ideally although project participants are distributed around

the globe they work with centralized project repositories, however in most cases project

participants have to store or communicate their work deliverables using different shared

tools such as mailing list, issue tracker, source code management (SCM), forum, etc

[124]. In some cases, these separated development teams usually owned or replicate the

project repositories locally. As the results the data collection effort has been increased

due to fragmented data that come from heterogeneous repositories, moreover the quality

often disputed due to incomplete and missing data during collection.

Thus, to efficiently evaluate and predict the quality of development processes and products in

DSD requires development of methods and technologies to address these issues.

1.1 Research Issues and Research Challenges

This section outlines the key research issue and respective research challenges that will be

addressed in this thesis.

1.1.1 Research Issues

Quality can be defined as conformance to requirements [20] or fitness to use [52] of a product.

From Software engineering domain, Kan [53] defines that software quality can be measured as

a low level of defects in the product, since a low level of defects can be translated as high level

of conformance to requirements and fitness to use. A defect can be defined as a lack of

something necessary for completeness, adequacy, or perfection (Merriam Webster Dictionary).

Florac [35] defines software defect as any flaw or imperfection in a software work product or

software process. Project and Quality manager need to evaluate the current quality of

development process and product in order to check whether the predefined requirements can be

achieved and as basis for quality prediction after the product being released.

Hence, from Empirical Software Engineering perspective [31], in this work we focus on two

quality aspects in Distributed Software Development:

1. Evaluation of distributed development processes quality (EQ): we assume that the

12

quality of product is the result of correlated distributed development processes that can be

defined, measure and evaluated throughout project life cycle. In this area we put our

attention to correlated development processes that related to defect detection, defect

validation and defect removal activities.

The research issues in this area are:

EQ1: to investigate the distributed development processes those have impact to

product quality improvement

EQ2: to propose ways to measure correlated development processes as project

“health indicators” which reflect the quality of current development processes and

may provide prognosis of project survivability

EQ3: empirical evaluation of proposed health indicators using data from large open

source projects

2. Software quality prediction in distributed software development settings (QP): good

quality software products are those with absence or low number of defects detected.

Many companies perform defect prediction. Software quality prediction in particular

defect prediction is important since it addresses crucial aspects of how software quality

can be improved prior to release with data from product and process collected during

development. In this thesis we focus on defect prediction using data collected directly

from DSD project repositories to construct objective quality prediction models.

The research issues in this area are:

QP1: to improve the accuracy and reliability of advanced models for objective

quality prediction in the context of DSD projects

QP2: to efficiently and effectively collect data from project repositories to construct

objective prediction models

QP3: empirical evaluation of proposed objective quality prediction models using

data from large open source projects

However, we notice that when challenged by the complexity of DSD projects, current

approaches of software quality evaluation and prediction have following shortcomings:

1. Traditional evaluation and controlling of development processes are typically derived

from human based reports which focuses on tracking formal achievements, manually

analyzing the collaboration between team members during certain events (e.g., meeting,

discussion, etc), and personal reports from each project team member [26, 100].

Nevertheless human based approach in complex distributed environment as in a typical

13

DSD project will likely to be biased, error-prone and expensive, moreover Keil [55]

reports that often team members do not report the actual condition when the project is in

critical situation.

2. Many studies in software quality prediction provide wide range selection of quality

assessment methods for particular project contexts. However they lack planning step that

may lead to unsystematic software quality prediction which fails to meet the business

objectives assigned to the project, inefficient data collection and models construction,

moreover the applicability of constructed quality model are often disputed [29].

3. To provide comprehensive quality evaluation in distributed development settings is still

an expensive and error-prone activity despite of the approaches reported in practice due

to several reasons such as the traditional human based reporting [55, 125] are often biased

and expensive, limited data integration that come from scattered data sources across

project sites, and collected data is often insufficient to construct good quality prediction

models.

4. Current software quality prediction approaches such as software defect prediction focus

mainly on how software quality status can be estimated using only static product metrics

(e.g. code complexity, size and volume) [29]. Although many researchers reported

product metrics can construct prediction models with certain level of accuracy, however

such approach is often (a) fail to capture important distributed development process data

(e.g. maturity level of code peer review prior to release) and (b) lack of capability in

providing early warning of certain quality status or risks due to the late data availability

(i.e. too close to system deployment date).

1.2 Research Contributions

In order to address proposed key research question, this thesis contributes the following

deliverables:

1. Novel process metrics so called DSD project “health indicators” to evaluate the quality of

development process. The concept of “health indicators” is to provide better insight of

underlying development processes that have correlation to the aliveness of the

development communities (e.g., developer communication pattern in the mailing list as

responds to a new submitted code set) product quality improvement (e.g., defect

detection effectiveness, defect resolution time), and certain risky project situation (e.g., a

core developer abandon the project which may brain drain the developer community,

14

high number of severe defects found in a release). Thus, we can consider that “health

indicators” as one quality aspect that should be evaluated continuously by a project

manager in distributed development settings.

2. Quality indicators for software products based on defect data. Project manager needs to

evaluate and predict the number of defect or likelihood of defectiveness of a work

product prior to release or deployment. In this study we construct different quality

indicators based on evaluation of defect data in release level of software product (i.e.,

defect growth between releases and likelihood of a release to have high defectiveness

level). These quality indicators provide a range for the likely value of the indicators

rather than a fixed value without indication of data volatility. In this thesis we use these

quality indicators as dependent variables (estimator) to construct advanced defect

prediction models. We also investigate the impact of particular process metrics which

capture some aspects of quality assurance information (such as maturity level of peer

review prior to release) to the accuracy of product quality predictions. We notice that the

collected number of these selected metrics may not tell the whole story, e.g., a release

manager may need to identify the reason why certain metrics have significant impact to

increase the likelihood of a release for being highly defective. Thus for we conduct two

types of analysis of empirical results: a) coefficients correlation analysis based on

constructed prediction model and b) discussion with expert from to validate the findings

and to obtain general and specific feedback.

3. Research roadmap in software quality prediction based on systematical literature review.

Derived from systematical literature review results in software quality management and

software quality prediction studies, we investigate the gap between current researches

with their applicability in practices, and indentify open issues for future research works.

4. Structured framework for objective quality prediction and evaluation in distributed

software development settings. This work proposes concepts of a structured software

quality evaluation and estimation framework (SQF) that support a project manager in a)

defining which quality aspects should be evaluated or estimated from key stakeholders

perspective, (b) prediction model calibration through selection of parameters best

correlated to model accuracy (c) evaluation of the prediction results to obtain internal and

external validation of the constructed model.

5. Improving the accuracy of quality prediction methods based on product and process

metrics. We investigate the impact of product and process metrics collected during

software product evolution. Later we perform statistical data analysis to identify most

15

promising factors for software product and process improvement. We applied advanced

parameters selection procedures and software quality prediction techniques for different

project contexts to investigate which methods provide better prediction accuracy. More

importantly we also conduct cross-projects modeling to have a robust quality prediction

model with reasonable accuracy.

6. Empirical evaluation of quality evaluation and prediction scenarios in a range of real

world distributed software engineering environment. For evaluation of the project health

indicators and the SQF concepts we use empirical data from large Open Source Software

(OSS) projects in Apache communities.

From a practitioner point of view, these research contributions significantly improve the

effectiveness and efficiency of available software quality evaluation and prediction approaches

in distributed software intensive system engineering. The following subsections outline show

cases that explain how my research contributions contribute to the improvement of product and

process in distributed software development context.

1.2.1 Evaluation of Distributed Development Processes Quality

Our study begins with the question how to improve the chances, that a distributed project can

reach success and stay „healthy” as one aspect of development process quality. Distributed

software project’s survival is a result of many underlying (correlated) processes and cannot be

easily determined and often very complex due to project characteristics (e.g. distributed project

participants, complex project structure, and heterogeneous project repositories). Hence, the

dynamic of the development process is much more difficult to understand compared to a typical

collocated development project. Thus, project and quality managers, need pertinent data from the

dynamics of distributed project consecutively to know the”health” status of the work.

Empirical studies in distributed software engineering [1, 47, 54, 55] agree that the quality of

development process (“healthiness” of a project) should be measured by means of investigating

the impact of different processes conducted by distributed project participants to the quality of

software to be produced. We address this need by proposing a concept and evaluation of “health

indicators” in distributed software projects.

Crowston et. al [21] as well as Collins and Fitzpatrick [18] define that a “healthy” distributed

project such as in a Open Source Software Project should shows active developer communities,

“a lot” of usages and feedbacks from users and rapid releases of good quality software.

However, one open issue in quality assessment of development process is to identify whether

16

current development processes in particular those related to quality assurance activities are

effective or efficient enough to produce good quality software or there are needs for

improvement [124].

Thus, project “health” status monitoring should act as a) objective indicators of current quality of

processes across project participants such as developer contributions level, maturity level of

defect reporting and removal activities, b) investigate the correlation between processes such as

defect removal activities with developer conversation in the mailing list, and c) provide

prediction of certain situation or quality level status based on statistical analysis.

As the proof of concepts, we apply proposed health indicators to several large Open Source

Software Projects from Apache Software Foundation (i.e., HTTPD, Tomcat, Slide, Xindice,

MyFaces Core, MyFaces Tobago, MyFaces Trinidad, MyFaces Tomahawk) and later discuss the

data analysis results with OSS expert to have external validation of proposed health indicators as

reported in [121, 122, 124, 125].

The following 5 papers give a concise overview on this line of work; for an overview of results

see Chapter 3.

Paper 1: Wahyudin, D., Mustofa, K., Schatten, A., Biffl, S., Tjoa, A., (2006);"Introducing

"Health" Perspective in Open Source Web-Engineering Software Projects, Based on Project Data

Analysis", Proceedings of the 8th International Conference on Information Integration, Web-

Applications and Services (IIWAS); Austrian Computer Society (ÖCG) publishing, Yogyakarta

Indonesia, 2006.

This paper proposes an evaluation process and concept for ”health” indicators i.e., developer

contributions into the mailing list, and correlated risk of a core committer abandon the project

which will brain drain the rest of the developer community. The concept of “health” indicators

can help getting an overview on a large number of OSS projects. For initial empirical evaluation

of the concept, we apply the indicators to well-known OSS projects and discuss the results with

OSS experts to investigate the external validity of the indicators.

Paper 2: Liem, L., Wahyudin, D., Schatten, A., (2006) "Data Integration: an Experience of

Information System Migration", (2006) Proceedings of the 8th International Conference on

Information Integration, Web-Applications and Services (IIWAS); Austrian Computer Society

(ÖCG) publishing, Yogyakarta Indonesia, 2006.

In this paper we present an experience of migrating and re-development of a legacy centralized

17

information system to a new distributed system. This work reports the importance of different

stakeholders’ participation and commitment during development process in order to obtain

success in a distributed software development project.

Paper 3: Wahyudin, D., Tjoa, A., (2007);"Event-Based Monitoring of Open Source Software

Projects", EBITS workshop, Proceeding of the 2nd IEEE International Conference on

Availability Reliability and Security (ARES), Vienna, Austria, 2007.

In this paper we propose a concept and an initial measurement approach for event-based

monitoring of OSS projects to better understand the actual benefit of tool-supported gathering,

correlating and analyzing processes event data from the OSS community as a supplement for

traditional software project monitoring data collection. We report on an empirical feasibility

study investigating “health” and risk indicators of five OSS projects listed in the Apache

Incubator.

Paper 4: Wahyudin, D., Mustofa, K., Schatten, A., Biffl, S., Tjoa, A., (2007); “Monitoring the

"Health" Status of Open Source Web Engineering Projects", International Journal of Web

Information Systems (IJWIS); Issue 3, Vol.1/2, Emerald, 2007.

This paper is an extension of Paper 1. Here once again we propose a concept and evaluation

of”health indicators” (original indicators as reported in Paper 1 and additional indicators based

on defect removal activities) in open source projects. The basic argument for the strategy of our

approach is derived from the analysis of literature and published studies. We propose a concept

of driving health indicators as derived measurements using an effect diagram of development

processes in OSS project. We apply the indicators to well-known OSS projects for empirical

evaluation of the concept. We perform project data analysis on the data retrieved from several

successful OSS projects (Apache Tomcat and Apache HTTPD) and the challenged ones (Apache

Slide and Apache Xindices). Similar to paper 1 in this study, we also discuss the results with

OSS experts to investigate the external validity of the indicators

Paper 5: Wahyudin, D., Schatten, A., Winkler, D., Biffl, S. (2007): Aspects of Software

Quality Assurance in Open Source Software Projects: Two Case Studies from Apache Project.

33rd EUROMICRO Conference on Software Engineering and Advanced Applications, SPPI

Track, 2007.

This paper provides an exploration to improve our understanding of software quality practices in

18

different types of OSS projects. We propose a framework of Quality Assurance (QA) in an OSS

project, elicit OSS stakeholder value propositions for QA, and derive additional “health”

indicators. For an initial empirical evaluation we apply these indicators to 5 releases of 2 large

Apache projects (Tomcat and MyFaces) to analyze the extent to which QA aspects are

commonly performed during development process.

1.2.2 Software Quality Prediction in Distributed Development Settings

As suggested by [53] the absence of defects within a software product is one of important quality

aspects in software engineering. Hence software quality prediction in particular defect

prediction (e.g. estimates of number of defects within a release or likelihood of an software

artifact to be defective) has drawn the attention of many researchers in empirical software

engineering and software maintenance due to its importance in providing quality estimates and to

identify the needs for improvement from project management perspective.

In this research, we propose a software quality prediction framework (SQF) for systematically

conducting software defect prediction as an aid for project manager in DSD context. The

framework has been aligned with practitioners’ requirements and our findings from a

systematical literature review on software defect prediction. We provide a guide to the body of

existing studies on defect prediction by mapping the results of the systematic literature review to

the framework. Based on proposed research hypotheses and results of systematical literature

review we describe a research roadmap of software quality prediction.

As empirical evaluation of the SQF, we construct two quality indicators that should be predicted

with product and process data collected during development. The first quality indicator is defect

growth between releases while the second is the likelihood of high risk class of a release

candidate. We use data from 4 Apache Projects (MyFaces Core, MyFaces Tobago, MyFaces

Trinidad and Struts 2.0). We perform cross project modeling for different context of software

defect prediction using advanced parameter selection techniques (i.e. correlation analysis;

backward, forward and stepwise linear regression procedures) and prediction techniques

(regression techniques: such as multiple linear regression, and logistic regression and

classification techniques: such as Naïve Bayes, J48, Random Forest). Further, the results are

discussed with OSS experts and defect prediction practitioner to have better understanding the

impact of certain parameters to defect prediction accuracy, and to identify the most likely

scenarios of certain correlations of different parameters [126].

19

The following 3 papers give a brief overview on software defect prediction in distributed

software development settings; please refer to the Section 4 for an overview of the results.

Paper 6: Wahyudin, D., Ramler, R., and Biffl, S. (2008), A Framework for Defect Prediction

in Specific Software Project Contexts, in the 3rd IFIP Central and East European Conference on

Software Engineering Techniques (CEE-SET), Brno, Czech Republic, 2008.

In this paper we present the software quality prediction framework (SQF) derived from the

practitioners’ requirements and supported a systematical literature review results on software

defect prediction. Later we use the results to derive the research roadmap in software defect

prediction as guidance for future researches.

Paper 7: Wahyudin, D., Winkler, D., Schatten, A., Tjoa, A. M., and Biffl, S.(2008); “Defect

Prediction Using Combined Product and Process Metrics a Case Study from the Open Source

Apache Myfaces Project Family”; in the 34th IEEE EUROMICRO Conference on Software

Engineering and Advanced Applications, SPPI Track, Parma, Italy, 2008.

In this paper we apply SQF to investigate software defect prediction with data from a family of

widely used OSS projects based both on product and process metrics as well as on combinations

of these metrics. In this work our quality indicator (defect estimator) is defect growth between

releases which enable project or release manager to identify whether a release candidate has

potential growth of defect that may far exceed current developer capability in removing defects.

Paper 8: Wahyudin, D., Biffl, S, Schatten, A., and Tjoa, A. M. (2009); “Predicting the

Defectiveness Risk Class of a Software Release Using Product and Process Metrics An

Empirical Study Based on Data from Four Large Open Source Projects”; Submitted to the 31st

IEEE/ACM International Conference on Software Engineering (ICSE), Vancouver, Canada,

2009.

In this paper, we propose a framework to characterize and predict the defectiveness risk class of

a software release relative to the average defectiveness level of a reference set of releases. We

collected and analyzed product and process data from 4 large OSS projects to empirically

evaluate framework validity both within a project and across projects. We conduct two types of

prediction model training, first is by fitting all available metrics into the model (unsupervised

training) and second by conducting parameter selection and fitting only significantly correlated

metrics into the prediction model (supervised training). The best prediction model is later used

to predict the likelihood risk class of releases with cross project data.

20

1.3 Overview

The remainder of this thesis is structured as follows: Chapter 0 summarizes related work on

software defect prediction and quality improvement as fundaments of this work. Chapter 3

outlines the first show case, evaluation of distributed development process quality and discussion

of empirical results. Chapter 4 outlines the second show case, quality prediction in distributed

software development with following discussion of empirical results. Chapter 5 summarizes the

overall results with the proposed general research issues, and suggests future work.

21

2 FUNDAMENTS OF THIS WORK

This chapter describes a) introduction to empirical software engineering, b) quality evaluation of

distributed software development product and processes, and c) software defect prediction as

fundaments of this work

2.1 Introduction to Empirical Software Engineering

An improvement seeking organization or communities wants to assess the impact of process

changes before introducing them to improve the way of working and the quality of product.

Empirical studies are important in order to get objective and quantifiable information on the

impact of changes [128]. Such organization needs to experiment and record obtained experiences

from development process and eventually may depict the need to change the current way of

producing a software product.

When new method or technology is substantially different from the current practice, the

evaluation should be taken off-line in order to reduce risks [128]. Later, the empirical evaluation,

may take the form of a controlled experiment (for detailed evaluation in the small) [5] or of a

case study (to study the scale effects) [61]. In both cases, an approach of improvement life cycle

such as the Goal/Questions/Metrics paradigm (GQM), as described subsequently, provides a

useful empirical framework.

In this thesis we exploited and extended GQM to construct the Software Quality Prediction

Framework (SQF) which will be fully described in section 4.3 .Based on metrics classification

reported by literatures in software metrics (see section 2.1.2), we investigated the impact of

metrics selection to quality prediction performance (e.g. accuracy, and precision) using empirical

data from Open Source Software projects.

2.1.1 Goal/Questions/Metrics paradigm

The Goal Questions Metrics (GQM) [4] approach is based upon the assumption that for an

organization to measure in a purposeful way it must (1) specify the goals for itself and its

projects, (2) trace those goals to the data that are intended to define those goals operationally,

and (3) provide a framework for interpreting the data with respect to the stated goals. The result

of the application of the GQM approach is a specification of a measurement model targeting a

particular set of issues and a set of rules for the interpretation of the measurement data. The

22

resulting measurement model has three levels:

1. Conceptual level (Goal). A goal is defined for an object, for a variety of reasons, with respect

to various aspects of quality, from a range of points of view, for a particular project context.

Objects of measurement are the products, development processes, and project resources.

2. Operational level (Question). A set of questions is used to characterize the way the

assessment/achievement of a specific goal is going to be performed based on some

characterization model. Questions try to characterize the objects of measurement (product,

process, resource) with respect to a selected quality issue and to determine its quality from the

selected viewpoint.

3. Quantitative level (Metric). A set of data is associated with every question in order to answer

it in a quantitative way (either objectively or subjectively).

Practical guidelines of how to use GQM for measurement-based process improvement are given

in [15].

2.1.2 Software Metrics

Empirical studies are used to investigate the effects of some inputs to the object under study such

as accuracy of quality prediction models in an OSS project. Wohlin [128] suggests that to

control the study and to see the effects, we should measure the inputs in order to describe what

causes the effect on the output, and to measure the output. Without measurements, it is not

possible to have the desired control and therefore an empirical study cannot be conducted.

Norman Fenton in his book Software Metrics [30], defines measurement and measure as:

Measurement is a mapping from the empirical world to the formal, relational world.

Consequently, a measure is the number or symbol assigned to an entity by this mapping in order

to characterize an attribute. The study of software metrics first published in 1976, by T. Gilb [42]

since then software metrics have been heavily used in field of empirical software engineering,

software project management and software quality prediction, as published in some notable text

books [26, 30, 43, 48, 51].

The objects that are of interest in empirical software engineering can be divided into three

different classes [31]:

a. Product. The products are the artifacts, deliverables or documents that result from a

process activity.

b. Process. The process describes which activities that are needed to produce the software.

c. Resources. Resources are the objects, such as personnel, hardware, or software, needed

23

for a process activity.

In each of the classes we also make a distinction between internal and external attributes. An

internal attribute is an attribute that can be measured purely in terms of the object. The external

attributes can only be measured with respect to how the object relates to other objects. The

mapping from an attribute to a measurement value can be made in many different ways, and each

different mapping of an attribute is a scale. The most common scale types that can be used to

measure an object attributes are the following [30, 128]:

a. Nominal scale. The nominal scale is the least powerful of the scale types. It only maps

the attribute of the entity into a name or symbol. This mapping can be seen as a

classification of entities according to the attribute. Examples of a nominal scale are:

classification, labeling and defect typing.

b. Ordinal scale. The ordinal scale ranks the entities after an ordering criterion, and is

therefore more powerful than the nominal scale. Examples of ordering criteria are;

“greater than”, “better than”, and “more complex”. Examples of an ordinal scale are:

grades and software complexity.

c. Interval scale. The interval scale is used where the difference between two measures are

meaningful, but not the value itself. This scale type orders the values in the same way as

the ordinal scale but there is a notion of “relative distance” between two entities. The

scale is therefore more powerful than the ordinal scale type. Examples of an interval scale

are: temperature measured in Celsius or Fahrenheit.

d. Ratio scale. If there exists a meaningful zero value and the ratio between two measures is

meaningful, a ratio scale can be used. Examples of a ratio scale are: length, temperature

measured in Kelvin and duration of a in development phase.

Measures can also be classified in two other ways: (1) if the measure is direct or indirect, or (2)

if the measure is objective or subjective [30, 128].

a. Direct measure. A direct measurement of an attribute is directly measurable and does

not involve measurements on other attributes. Examples of direct measures are: Lines of

code, and the number of defects found in test.

b. Indirect measure. An indirect measurement involves the measurement of other

attributes. The indirect measure is derived from the other measures. Examples of indirect

measures: Defect density (Number of defects divided by the number of lines of code),

and programmers productivity (lines of code divided by the programmer’s effort).

c. Objective measure. An objective measure is a measure where there is no judgement in

the measurement value and is therefore only dependent on the object that is being

24

measured. An objective measure can be measured several times and the same value can

be obtained within the measurement error. Examples of objectives measures are: Lines of

Code (LOC), and delivery date.

d. Subjective measure. A subjective measure is the opposite of the objective measure. In

the measure lays a judgment made by the person, who is making the measurement. The

measure depends on both the object and the viewpoint from which they are taken. A

subjective measure can be different if the object is measured again. A subjective measure

is mostly of nominal or ordinal scale type. Examples of subjective measures are:

Personnel skill, and usability.

For the empirical evaluation of the proposed concepts, in this thesis we focus on objective

measure (objective modeling) which enabled both direct (basic metrics) and indirect measures

(i.e. OSS Health Indicators) to construct quality prediction models.

2.1.3 Causal Modeling to Investigate Correlated Factors and Metrics

To provide effective quality prediction and evaluation, especially in a complex system like OSS

project and DSD, first we should identify what would be the quality aspect to be assessed.

Current practices in software defect prediction used metrics obtained during development

process but often uncared for the causality of factors correlated to quality aspect that should be

predicted [29]. From a practitioner perspective such studies typically report the performance of

the prediction model (e.g. accuracy, error, precisions) without further discussions of the cause of

the results often with vague impact factors analysis.

Max Born (1949) [13] acknowledged three assumptions that dominated physics domain until the

twentieth century regarding the cause and effect [113]:

 "Causality postulates that there are laws by which the occurrence of an entity B of a

certain class depends on the occurrence of an entity A of another class, where the word

entity means any physical object, phenomenon, situation, or event. A is called the cause,

B the effect."

 "Antecedence postulates that the cause must be prior to, or at least simultaneous with, the

effect."

 "Contiguity postulates that cause and effect must be in spatial contact or connected by a

chain of intermediate things in contact."

Causal model is a model or portrayal of the theorized causal relationships between concepts or

variables. While, causal relationship is the relationship of cause and effect. The cause is the act

25

or event that produces the effect (Source: Environmental Protection Agency of United States)1.

Example of popular models are Closed Loop Causal Diagram [86], Bayesian Network [31, 50]

and Goldratt’s Reality Tree Analysis [28].

In Figure 1, outlines the causal model for estimating software quality. In a naïve model (the left

hand side figure), to predict software quality is simply by fit in the measure of software size into

the prediction model. Yet, practitioners in software quality prediction are typically want to find

better explanation of certain quality level status or risky condition, similar to a doctor who need

to diagnose different symptoms and status of different organs to identify the patient’s disease

and suggest proper treatment.

On the right hand side of Figure 1, a more comprehensive causal closed loop model is

represented. In causal model diagram, we can analyze how interrelated variables/factors affect

one another. The diagram consists of a set of nodes representing the variables connected together

through relationship. These relationships represented by arrows which labeled either as positive

or negative. Positive label of an arrow, mean that by increasing the value of the origin node may

likely increase the value of the destination node in the relationship, while negative labeling is

vice versa.

Figure 1 illustrates what would be the impact factors and their effect to the quality of product.

For example by increasing the effort in particular for conducting quality assurance activities will

likely to increase the product quality. Other positive factors are assigning competent developers

since the beginning of the project, and well planned work schedule will also impact the quality of

the product.

1 EPA glossary can be found at http://www.epa.gov/evaluate/glossary/c-esd.htm (last accessed 20 July 2008)

26

Figure 1 Simple Example of Causal Model for Software Quality Estimations (Extended from

[31])

In this thesis, we use causal modeling, prior to conducting quality prediction. Derived from

study literatures and expert interviews, we construct causal models that outline the context of

prediction with respective cause and effect of interrelated factors. Later we evaluate the

constructed model through discussion with experts of the study contexts (i.e. OSS experts and

Software Defect Prediction practitioners).

2.1.4 Conducting Empirical Study in Software Engineering

The proceeding of well conducted research can be illustrated as a V model (see Figure 2). First

in initiation phases “hurt” in particular domain of research may motivate some problem

statements. Based on the identified problems, researchers construct model that represent the real

world of the problem, and later design and develop solution ideas to address such problems. The

design then implemented as method and tool for general or specific domain applications.

The right hand side of the research v-model consists of empirical validation of the solution. The

first empirical validation is conducted using controlled experiment in order to assess the quality

of implemented tool and system test to check whether the implementation meet all aspects of the

proposed design. Errors are reported to implementation process for improvement and correction,

27

while the results of validated tools or methods are input for the empirical validation in industrial

context.

Figure 2 The V Research Model, refined from [9]

In for the industrial (real world) validation, use case is appropriate method to compare the new

solutions, method and tools compare to other/proven approaches. The case study should provide

some empirical results of benefits and challenges of the new tools/methods, and propose whether

the new tools/method should be accepted for particular context of applications or domains.

Based on the results of the case study, the new methods or tools then rolled out to the real world

for deployment. Then a survey can be conducted to test the new solution in operational, and to

identify some new “hurts” that may initiate new researches.

A structured empirical study is a must to have better control of the study process and to have

acknowledged results through real world validation. In this section we describe the proposed

research framework for conducting empirical study in an OSS project context (see Figure 3).

The framework is based on Wohlin’s [128] guide for conducting experiment in software

engineering which further simplifies the V research model with additional quality assurances

28

(QA) steps.

Figure 3 Framework for empirical study in context of OSS and DSD projects

Figure 3 shows the three-step approach: (a) empirical study design and measurement model

development (b) data collection from project repositories (c) data analysis. The sequence of

phases is partially derived from general frameworks for conducting empirical experiments in

software engineering [128] and empirical study design [4].

I. Empirical Study Design

As precondition prior to study goal definition, first we have to describe the study objects that will

be used for the experiment. Second, we need to elicit target stakeholder expectations in order to

identify their requirements and performance measures of each requirement achievement. We can

use The Goal Question Metric (GQM) Approach [4], a common methodology to identify

empirical measures and the setup an empirical study.

Step I.1 – Empirical Study Goal Definition. Following the GQM approach, the goals represent

selected stakeholders needs for certain quality aspects such as the expectation of current defect

removal performance. To identify the stakeholder value expectation one can used value

elicitation techniques suggested by Biffl et al. [10]. Basili et al. [4] suggested to define a goal for

an object with respect to various quality models from stakeholders’ points of view regarding the

particular project environment. For instance: provide an accurate estimation of the software

component quality prior to the release date from the release manager’s point of view in an OSS

project.

Step I.2 – Research Hypothesis Formulation. Based on empirical study goal, we derive

questions that define them as completely as possible to characterize the way of assessment of

29

specific goal is going to be performed. For example, how fast can the developer community

provide appropriate resolution for each reported defect? Later, we can formalize each question

into research hypotheses that can be quantitatively addressed by data collection and analysis.

Step I.3 – Variable Specification. To better focus our study, we model the context of research

which allows a) the creation of evaluation and predictive formula b) capture particular patterns

within the project based on our study interest such as developer code contribution patterns,

developer responsiveness, defect service delays [124]. The selected modeling method should

provide a basic formula to determine a dependent variable using a set of independent variables

[126]. After A3, one should perform validity check of the variable specification with the goal

and hypotheses, as well as quick feasibility study whether a research goal and hypotheses can be

addressed by the data collected from study objects (See QA1). The results of QA1 may derive a

need for study design refinement as feedback to step A.1. (See feedback line F1).

II. Data Collection

The next step is to perform data collection from the project repositories, refine the collected data

and address relevant threats of validity. The following steps were constructed based on our

experiences in data mining of a range of OSS project repositories [121, 122, 124-126].

Step II.1 – Data Collection. The empirical design proposed in the preparation phase should be

evaluated by real data collected from selected study objects (projects and project repositories).

The data collection process consists of:

1. Specifying the observation objects, observation time and level of observation detail i.e.

“Our study objects are Project X and Project Y hosted in the Apache Software

foundation, later we conducted two months of observations from 1st February 2007 to 31

March 2007 and collected a set of metrics from the observed project issue tracker”.

2. Data extraction from the project repositories is based on the observation specification and

depends on the metrics to be collected. There is a variety of OSS data mining tools such

as Eclipse-Metrics Plug-in2, Jdepend3 for static code metrics collection, and StatSVN4,

Markmail5, Jira6 and Bugzilla7 to collect development metrics.

2 Metrics project can be found at http://metrics.sourceforge.net/

3 Jdepend project can be found at http://andrei.gmxhome.de/jdepend4eclipse/

4 StatSVN project can be found at http://www.statsvn.org/

5 Markmail repositories can be found at http://markmail.org/

6 Jira for ASF can be found at https://issues.apache.org/jira/

30

3. Typically collected raw data are not immediately ready for analysis; we still need to

exclude invalid and duplicate data, or to replace missing data [71, 124]. Filtered data

needs to be grouped, refined and prepared into particular format as input for analysis

tools such as Weka8 or SPSS9.

Step II.2 –Threats to Validity Management. The objective of an empirical study is to reach a

conclusion that the selected measures reflected what we wanted them to reflect in current context

of the study [118]. A Threats to Validity reveals questions and issues on the correctness of study

claims [19]. A threat should be acknowledged and addressed appropriately during data

collection process in order to provide counter measures to elevate the validity of empirical study

results.

 Wohlin [128] suggests that threats to validity can be classified into four major classes:

1. Internal validity: is concerned with the validity within the given environment and the

reliability of the results. E.g., Ambiguity about direction of causal influence, Selection,

Statistical regression, etc

2. External validity: is a question of how general the findings are. Many times, we would

like to state that the results from an experiment are valid outside the actual context in

which the experiment was run. E.g., interaction of different treatment, interaction of

selection and treatment

3. Construct validity is a matter of judging if the treatment reflects the cause construct and

the outcome provides a true picture of the effect construct. E.g., Confounding constructs

and levels of constructs, hypothesis guessing, etc.

4. Conclusion validity is concerned with the relationship between the treatment and the

outcome of the experiment. E.g., Low statistical power, Reliability of measures, Violated

assumption of statistical tests, etc.

During validity evaluation, the process itself acts as the second data quality assurance by

validating and checking collected data based on reality of the objects of study (see QA2). The

results should outline whether collected data is sufficient enough (in quality and quantity) for

data analysis or should be improved (see Feedback F2).

7 Bugzilla project can be found at http://www.bugzilla.org/

8 Weka “data mining with open source mining tool”, can be found at: http://www.cs.waikato.ac.nz/ml/weka/, last accessed 20 July 2008

9 SPSS software packages can be found at: http://www.spss.com/de/, last accessed 20 July 2008

31

III. Data Analysis

This is the last part in our framework and an important stage to validate the constructed models

and measures with collected data.

Step III.1 – Data Analysis. Collected and refined data from the previous phase then fit in to the

measures and model and analyze by means of statistical or machine learning methods. Some

statistical tests also should be performed to validate the results, i.e. to check the distribution and

the significance of data, to check model significance and accuracy.

Step III.2 – External Validation of Data Analysis Results. The last step is to provide external

validation using different observation data or discussion with expert in the context of study to

better analyze particular patterns in observed projects which might have impact on the analysis

results.

The results of data analysis later should be used to evaluate proposed research hypotheses, and

feedback for goal adjustment (see feedback F3).

2.2 Quality Evaluation of Distributed Software Development Processes and

Product

Distributed software development (DSD) is a part of globalization where software project teams

have become geographically distributed [102]. Large software companies employ DSD style in

search for competitive advantage in terms of cost reduction, higher quality and flexibility in

software development, productivity increases, and to lessen potential risks [110]. However, the

notion of distributed software development has tradeoffs such as a highly complex, distributed

processes, comprising a large number of highly inter-dependent parallel activities [101].

2.2.1 Quality as Software Product Conformance to Requirements

Crosby [20] defines quality as “conformance to requirements”, means development processes

and delivered product should be measured continuously to determine conformance to predefined

requirements. On the other hand, Juran et al [52] defines quality as “fitness to use” which takes

customers’ requirements and their value expectation into account. Both definition are correlated

to each other, and reflect the need to measure the quality of software products and development

processes to produce such product. Kan [53] defines that the narrowest sense of software

quality is commonly recognized as lack of defects in the product. He also further mentioned that

the degree of defect freedom is the most basic meaning of conformance to requirements and

32

fitness to use, because if the software contains high number of defects it will reduce the expected

functionalities.

Project and Quality manager needs to evaluate the actual status of the project and the quality of

performed development processes to produce required products. Evaluation of distributed

development process methods are required to supply timely, accurate and comprehensive project

information as the basis for analysis and decision making.

There are several quality evaluation frameworks in traditional closed-source software projects,

e.g., Quantitative Quality Evaluation model [12], Goal Question Metrics model [4], Squid model

[11], and Gutman’s Means-End Chain model [129]. However, to our knowledge there is no

validated framework available for modern large-scale OSS [123] DSD project environments due

to the characteristics of OSS development processes: globally distributed and voluntary

participants, less formal project management (in particular, planning), often scarce

documentation, and frequent product releases [63, 122].

The second issue with current quality evaluation frameworks, is that most of them put a focus on

evaluating the quality criteria of software artefacts (work products), e.g., source code quality and

architecture, rather than development processes that are likely to have significant impact on these

quality criteria [125]. A critique from Norman Fenton of current quality evaluation frameworks

is that most of these studies try to evaluate or predict certain quality characteristics (e.g.,

maintainability, reliability, security) derived from certain quality attributes (like product size,

complexity, dependencies on management level) but most of them fail to report quantitatively

what are the correlation between these quality attributes with actual defects reported after

product release [32].

2.2.2 Human Based v.s. Tool Based Evaluation Approaches

In general, there are two evaluation approaches: tool-based and human-based monitoring. The

tool-based approach seems most suitable for monitoring frequently a large number of process

events data, or when human resources for monitoring are hard to obtain. On the other hand, the

human-based approach seems favorable for a weekly/monthly process such as personal reporting

as the summary of activities and progress status, and go to more detail if necessary by directly

interviewing the team member.

Traditional software project management [100, 106] focuses on tracking formal achievements

such as the progress and financial obligation and analyzing the merit of project participants

based on routine personal reports and deliverables. As the consequence, most of the traditional

33

project management is human-based monitoring, which often misses the process and information

during its project execution. This can be very risky; if a problem occurs, as Keil et.al [55] found,

participants tend not to report the actual condition of the project. Hence, additional data for

comprehensive balanced reporting are needed before and during a crisis for raising issues well in

advance to identify and to mitigate project risks.

Advanced applications of distributed development such as Open Source Software Project and

Global Software Development have led to new challenges regarding the scalability and

expressiveness of project monitoring methods [108], especially when the project has to face (1) a

large amount of process data to be monitored, (2) shortage of human resources for monitoring,

and (3) most importantly, the loosely coupled project community as the result of a global project

work. Consequently, monitoring such a system using only a human based approach is likely to

be costly, time consuming, and error prone.

This complexity, of course, is the motivation behind the desire a project or quality manager to

use tool supports to simplify the management and performance of the process. Tool-driven

system “health” monitoring has been successfully adopted by industries, reaching from hybrid

system to business activity process monitoring [117], which in principle can be adopted in

software engineering domain. Other study [107] suggested an OSS tools for project monitoring,

particularly for dislocated or distributed development such as in OSS projects.

During the development, [101] advocates the tool supported project evaluation should balance

the observation from (a) time relevant process data (b) product-relevant artifacts data and (c)

coordination inter-dependent activities data. This combination will provide more accurate and

less biased project information for critical decision making process [125].

Hence, this work focuses on exploiting available extensible tools to capture product and process

metrics as basis for software quality prediction and evaluation in distributed development

environment such as OSS projects. In the following subsections, we describe briefly the

characteristics and development processes in a typical OSS project.

2.2.3 The Needs for OSS Product Quality Evaluation

Open Source Software (OSS) projects can be considered as extreme form of distributed software

development as the globally distributed participants are mostly volunteers with distinguished

project management style. Eric Raymond in his famous essay “The Cathedral and The Bazaar”

[105] suggested that open source development style has several advantages compared to closed

source project such as:

34

 Rapid development and massive peer review

 Flexibility in using and modifying the source code for user interest

 Low-cost development and technology transfer

 Developer inheritance and the use of a reference implementation to help develop a

standard.

 Open code base and Open development process [95]

We used open source projects to provide empirical evaluation of proposed concepts in this thesis

due to the following reasons: a) rich availability of data from shared project repositories b)

openness in development processes which enable reasoning for certain quality achievement as

well as risk condition c) the significance of OSS product adoptions in many industry domains.

Just to give an example Netcraft Web Server Survey [93] discloses that more than 60% of the

web sites on the Internet are using Apache HTTP Server (see Figure 4).

Other OSS products such as: Apache Tomcat10 has powered large industries such as General

Motor, and Wal-Mart, from automated manufacturing domain, the application of OSS solutions

such as JADE platform has been successfully provides support for controlling a large distributed

manufacturing system [78]. It is worth noting, that currently a number of important OSS

projects are supported by companies and some participants are not volunteers (e.g., JBoss,

Apache JackRabbit, MyFaces Tobago, and OpenOffice).

Figure 4 Growth of Apache HTTP Server Market Share (Source: Netcraft Survey [93])

Furthermore, large critical avionic industries such as Airbus sponsored TOPCASED project to

10 List of Powered By Apache Tomcat can be found at: http://wiki.apache.org/tomcat/PoweredBy last accessed 23-July-2008

35

provide Eclipse based development tools for critical aerospace security systems11, while NASA

recently called for “open source specification” in Boeing's contract to build a next-generation

avionics system to guide Ares rockets which is responsible for launching the manned Orion

spacecraft into Earth orbit, and then driving it to the moon [92].

2.2.4 Comparison of OSS Projects to Closed Source Distributed Software Projects

In Table 1, which is partially based on Keil and Carmel [54] observations, we highlight some

key differences between closed source development (custom and package) and open source

software development. Given these differences, one would expect to find differences in the links

that are used across the three environments.

Although OSS development style promise some appealing benefits, however [16] suggests that

typical OSS development seizes several problems such as the lack of requirement elicitation, no

ad-hoc development process, and poor practices of project management. Moreover, many OSS

project communities are still in their initial phase, in an immature state or have reached the end

of their life cycle which means their survival seems heavily uncertain [65].

Table 1 Comparison of OSS Project Development with Closed Source Development

Development Dimension

Closed Source Development [54]

Open Source Software Projects Custom Development Package/COTS

Goal Software developed for internal

use (i.e., usually not for sale)

Software developed for external

use (i.e., for sale)

First software developed for

internal use of the core

developers later they publish the

product to larger community for

feed backs and attract new

developers [83]

Typical point at which most

customers are identified

Before development begins After development ends and the

product goes to market

Originally the customers are the

developers who initiate the

project [37, 69]

Number of customer

organization

Usually one Many Depend on the project

community, may consists single

user to large number of users in

the community[65, 124]

Physical distance between

customer and developer

Usually small (e.g. customers

are in same building as

developers)

Usually large (e.g. customers

are thousands of miles from

developers)

Typically widely spread across

the globe, and most of them

never met each other face to face

[16, 119]

11 TOPCASED project can be found at http://www.topcased.org/, last accessed 17 June 2008

36

Common types of projects New system project;

„Maintenance“ enhancements

New products; new versions

(major and minor)

New sub projects, new

versions/releases (major and

minor) [37]

Term of software consumer User; end user Customer User [16] which some of them

also act as developer within the

project

Common measures of

success

Satisfaction; acceptance Sales; market share; good

product reviews

High number of usages, active

developer contributions, rapid

releases [122]

2.2.5 Open Source Software Development Structure

Abedour [1] as well as Crowston et al [22] model the distributed development process in OSS as

an onion shape model (see Figure 5), in this model the core engine of the project is a small

group of distributed core developers (sometimes called as committers) that provides more than

80% of overall development contributions [83]. Some of the core developers also hold critical

roles such as project management and release process. Core developers have read and write

access to current body of code, as one of their responsibilities is to assure that each new code

contribution are suitable to predefined specifications and do not posses any threat to the stability

of the body of code.

On the second layer is a larger group of peripheral developers who mostly responsible in defect

removal activities and patches development, this developer group only has read access to the

current working code repository, thus for each patches developed they typically post the

contribution to shared developer tools such as mailing list or issue tracker and wait to be

reviewed by other developers before a committer can include the patches into current body of

code.

37

Figure 5 The Open Source Software Structure Model. Refined from [1, 22]

The user community can be divided based on their feedbacks of OSS product releases to the

developer community, an active user commonly contribute in defect reporting and new feature

requests, while passive users are simply end-user of a releases.

Each project participants collaborate using a set of shared development (e.g. source code

management and issue tracker) repositories and communication infrastructures (e.g. mailing list,

forum and wiki).

To extract useful information from such data repositories we need web data mining, starting with

data preparation which may involve data cleaning, data transformations, selecting subsets of

records and in case of data sets with large numbers of variables - performing some preliminary

feature selection operations to bring the number of variables to some manageable range.

The development processes in an Open Source Software (OSS) project can be modeled as multi-

agent event-based system: in this model the project participants are agents, and their interactions

38

and state changes are events (see Figure 6). During the development processes, project

participants interact and move from one state to another triggered by events. They may act as

producer who publish event through messaging middleware (i.e. mailing list, issue tracker,

source code management), which then deliver events to other agents who act as

consumers/subscriber based upon their previously specified interest.

Since most of the participants are: (a) unfamiliar with each other, (b) distributed around the

globe with different time zone and work schedules, and (c) use various technologies and

development-communication interfaces, thus make the OSS project as a system with loose

coupling in time, space and synchronization. As result most of the messages and deliverables

during development processes are made with publish/subscribe-like interaction schemas as

illustrated in Figure 6.

Figure 6 Publish-Subscribe mechanism as communication pattern in OSS projects

For example in a defect tracking process scenario, a user/developer who reports an issue can be

considered as producer who send message about a defect existence into defect tracker

(defect_reporting_event), then after performing some internal management operation,

the defect tracker broadcasts the new defect information, e.g., through a mailing list

(new_defect_notification_event). Later some subscribed user/developer may

respond by making the diagnosis of the defect and send the result into the defect tracker

(defect_diagnoses_event).

The event-based model and tool support allow to draw on process and artifact data from the

global OSS project community that can help outsiders to better understand success and risk

factors in the current state of a project and its community. This kind of data analysis can be

39

especially helpful if human-based reports are suspected to be unsystematic, incomplete, or

inconsistent.

Several studies have used process event data of the existing open source projects to better

understand the aspects of successful distributed development. These studies observed the OSS

projects by manually or by tool supported mining project repositories such as mailing lists,

defect database [82], Source code management tool (SCM) such as SVN/CVS [41], and changes

log [17]. The results clearly portrayed the development process pattern and the importance of

community involvement in OSS projects. However further works are required to better

understand the OSS project, to distinguish different status of projects and to estimate the project

survivability.

2.2.6 Continuous Product and Process Improvement in an OSS Projects

A good OSS project offers continuous improvement of software product releases. Just to give

some examples large OSS projects such as Gnome, Mozilla, Python, Subversion and Eclipse

encourage quality improvement as part of OSS community awareness.

Figure 7 Continuous software product improvement within an OSS project.

Their goals are to improve the quality of the releases by involving a larger part of the project

community based on principles [124] such as involvement of a developer to review the validity

of a defect candidate reported by a user before submitting the report into the issue tracker (see:

40

Buddy System at Subversion project12).

Our prior study [121, 122] in four large Apache OSS projects concluded that these communities

should coordinate and work together as a symbiosis mutualism to produce high-quality software.

In [122] we found that large successful projects such as Apache Tomcat and HTTPD have faster

developer response times to user community feedbacks (i.e. defect report or feature request), and

higher numbers of peer-reviews of each code set or patches submitted into the project code

versioning system.

The model depicted in Figure 7 is an extension of similar model proposed in Section 3.6 with

some additional QA aspects (e.g. design review) and their involvement to continuously improve

the software product in each release cycle. Nevertheless both model should be taken together to

have a comprehensive view of development process in a “healthy” and “quality aware” OSS

project communities.

Figure 7 illustrates a complete life cycle of an OSS project with five typical QA practices

represented as circles as partially depicted in studies such as [36, 37, 124]; some of these

practices are fully or partially observable, and thus we can measure the development activities

with these practices to derive relevant Process Metrics. Afterward we investigated the

usefulness of these Process Metrics to quality evaluation and defect prediction in our case

studies.

Design Review

Issues reported to the tracker tool trigger most of the development activities within OSS projects.

An issue can be a new requirement (feature request/new functionality, or enhancement/patch) or

software defect reported by a user. Throughout the project lifetime, there are several quality

assurance (QA) practices as part of product release continuous improvement.

When a developer has an idea for new functionality or a patch, he may construct specification

and design and then ask other developers within the community to review his specification and

design before listing them as new issues (see circle 1 in Figure 7).

The Python project13 community encourages developers to engage in a specific design process,

called Python Enhancement Proposal (PEP), which is similar to a request for comments and

design technical review meeting in commercial software projects [36]. This design review

process uses common information spaces of the project such as emails, forum, and project

12 http://subversion.tigris.org/project_issues.html

13 http://www.python.org/, last accessed on 14th February 2008.

41

documentation and involves different stakeholders across all project communities.

During design review, we can observe the developer activities in negotiation, collaboration, and

refinement of proposed design. If the design proposal gets accepted, then the developer lists

appropriate action items in the issue tracker. However, it is also common that a developer

directly jumps into implementation (with his own ideas), then submits the code set, and later

opens a discussion in developer communication channels and asks for technical review of his

code.

Code Testing

It is worth noting that a developer in an OSS project always conducts code testing before

submitting the code set into the CVS (see circle 2 in Figure 7). If the tests fail, then the developer

either continues to work until the issue is resolved or returns the issue into the tracker as “open”

with related documentations for knowledge preservation (i.e., refined bug recipes, development

issues encountered).

Although we cannot measure the testing process directly, we can measure developer

contributions from developer communication spaces (mailing list, CVS, and issue tracker) prior

to a release. Hence we can obtain the following metrics: changes to code metrics (e.g. delta,

added, deleted, modified to line of codes by developers) [89], number of committers/core

developers and number of peripheral developers [83], code and changes contribution of core and

peripheral developers [126].

Code Peer Review

In a quality-aware OSS project, an issue labeled “resolved” will attract other developers to

review the code set. A committer then should decide based on review results whether a code set

should be added into current body of code or get returned to the issue tracker (circle 3 in Figure

7).

These practices especially peer review can be observed through the project communication

space, issue tracker and project CVS. Prior to a release date, a release manager needs to identify

which patches and functionalities should be added to the next release package. Later he performs

integration testing to assure the software quality before publishing the release package.

Code peer review effectiveness can be measured as number of defects stated as “closed” prior to

42

a release [124, 126]; based on the Bugzilla14 documentation “closed” means the issue has been

resolved and has passed a peer review. For example: number of closed defects, number or

resolved defects, number of resolved defects/number of reported defects, number of closed

defects/number of reported defects.

Product Release Usage and Defect Validation

The user community obtains the new release and uses it in different work contexts, and provides

feedbacks to the developer community such as defects found and feature requests. This defect

detection practice is similar to black box testing to find defects in a software product release (see

circle 4 in Figure 7). The defect detection activities provide a list of defect candidates of a

software release and considered as the primary activities performed by developers and users

after a release in OSS project [39, 82]. Prior work [124] provides several examples of metrics

that can be used as predictors such as: number of defects reports prior to release, number of open

defects prior to release, number of invalid defects prior to release, and defect detection

effectiveness prior to release.

Most of the defects are detected through software usage and then validated by a developer by

reproducing the defect based on defect recipe report from the user (see circle 5 in Figure 7). If

the defect is valid, a developer takes ownership of the confirmed defect and performs a suitable

development process for resolution.

In the study we applied all of these Process Metrics as predictors and investigated their

correlation to defect estimates in the case study context.

2.3 Software Quality Prediction

Software quality prediction as in our case is defect prediction has drawn the attention of many

researchers in empirical software engineering and software maintenance due to its importance in

providing quality estimates and to identify the needs for improvement from project management

perspective.

14Bugzilla documentation can be found at :http://www.bugzilla.org/docs/. Last accessed 10th December 2007.

43

2.3.1 Objective Software Defect Prediction Methods

Schneidewind [109] suggested two approaches for objective defect prediction: (a) time-based

approaches and (b) metric-based approaches. A time-based approach estimates the number of

(remaining) defects from the number of defects found in a time interval after product release and

fit the data to form a software reliability growth model (RGM) [76]. A metrics-based approach

uses metrics obtained from historical project data before product release (called as predictors) to

fit a prediction model.

The advantage of time-based approaches is a more accurate prediction compared to metrics

based approaches, since estimations are derived from actual defect data; however, the

availability of data for estimation purposes are mostly based on testing results. Thus the

prediction is often too late to support in-time decision making [126] regarding an upcoming

release. Metric-based approach promises better support for a release manager by providing

defect forecast prior to release, often with less accuracy as the tradeoff [71].

To address different patterns of defect prediction, numerous statistical methods and software

metric applications exist in the software maintenance and software quality research communities.

Currently, there are several metric-based prediction models that are commonly used by

researchers in software defect prediction:

 Regression methods that best fit to predict the numeric value of defect prediction target

(estimator), e.g., the number of defects in a release. For example, Khosgoftaar et al. [57]

suggested as prediction models component clustering fitted to linear regression or non-linear

regression [56].

 Classification methods to predict the nominal value of defect estimators such as module or

file defectiveness. Classification techniques such as Bayesian Network (e.g., Naive Bayes,

Bayes Net), regression (e.g., Logistic Regression), and tree classification techniques (e.g.,

J48, Random Forest) have been widely used in software defect prediction contexts [64] and

risk prediction in project level [130]. For example, Yasunari et al. [130] suggested a project

to be risky if the project showed confused behavior. For each observed projects they

measured the confusion levels based on empirical questionnaires. Later using a certain

threshold, they classified projects into two classes “confused or risky” and “not confused”

and constructed a logistic regression model based on empirical data collected from these

projects.

44

2.3.2 Metrics Categories for Software Defect Prediction

In metrics-based defect prediction, collected metrics should be selected first before fit into the

model as independent variables or predictors. Norman Fenton [30] classified collected metrics to

construct prediction models into three basic categories such as:

1. Product metrics measure attributes of intermediate and final software products, e.g.,

size (LOC) and complexity metrics (McCabe Complexity metrics). Product metrics are

the most commonly used predictors and supported by [6, 27, 84] as important predictors

in many cases of defect prediction in closed source development.

2. Process metrics measure attributes of development processes, e.g., project events (new

defect reported into issue tracker), state changes (defect status changed from unresolved

to resolved), and activities such as, number of file being changed, and LOC churned per

developer within a release. Mockus et al. [82], Weyuker et al. [127], and Nachiappan et

al. [89] suggested these metrics as important predictors. Some study also called this

group of metrics as development metrics [127], Process Metrics [126] or changes

metrics [87].

3. Resource metrics, which further can be classified as [70]:

a. Project participant metrics, measure attributes of involved project participants such

as number of core developers, number of peripheral developers, number of active

user etc [126, 127].

b. Deployment and usage metrics measure attributes of the deployment context and

usage patterns of software releases, e.g., time since first release and time to next

release [73, 75].

c. Configuration metrics measure attributes of software and hardware configuration that

interact with the software product/release during operation e.g. operating system

supported by the release and type of software application [84].

Some of these metrics as well as some novel metrics proposed by us in this thesis will be used

for quality prediction modeling, and to better understanding which set of metrics can provide

better prediction results.

2.3.3 Software Quality Prediction in OSS Projects

The nature of open source software (OSS) development [16], such as highly distributed

development by volunteer contributors; cultural and time zone differences of contributors;

informal project management and modest consideration of quality assurance (QA) and

45

documentation during development, makes product QA a major concern to potential users of

new releases. Empirical studies [1, 38] suggest that some OSS projects have created software

products with quality levels similar to closed source commercial development. Ben Collins and

Brian Fitzpatrick15, committers and co-founders of the OSS Subversion project, suggested

constant product improvements and releases as indicators for a “healthy” OSS project [18].

Product improvements in OSS project are directed by a strong feedback from the user

community (e.g., bug reports and feature requests)16 and active developers’ contributions [37]

see Figure 7.

In OSS projects, where formal QA practices such as inspection are less practicable, one feasible

approach for assessing the quality of a software product is to predict the defect between releases.

In a closed source software development, the prediction of defects between releases can provide

benefits such as to guide testing of the next release [7], to improve maintenance resource

allocation and adjust deployment [84], to guide development process improvement [27], and to

enable the selection among different product releases [70].

However, Fenton [29] reported most prediction models to be based on product metrics (e.g., size

and complexity metrics) obtained after product release, which seems rather late for guiding

development [109] and release process [84]. Another type of metrics, which is not as popular as

product metrics, is process metrics. Process metrics are measures for development activities (e.g.

developer source code contributions, developer email contributions) which can be monitored and

obtained through all project life cycle [30].

The quality evaluation of open source software (OSS) products, e.g., defect estimation and

prediction approaches of individual releases, gains importance with increasing OSS adoption in

industry applications. Most empirical studies on the accuracy of defect prediction and software

maintenance focus on product metrics as predictors that are available only when the product is

finished. Only few prediction models consider information on the development process (Process

Metrics) that seems relevant to quality improvement of the software product.

Metrics based prediction models which enable product metrics as defect predictor are the most

common prediction model in closed source software project [73]. In a short-release-cycle

environment such as in many successful OSS projects, product metrics signified low value

variability and weak correlation to predicted defect pattern. Li et al. [71] Moser et al. [87] and

15 Google Speaker Series: Successful Open Source Projects can be found at http://www.youtube.com/watch?v=ZtYJoatnHb8. Last accessed 1st

March 2008

16 E. Raymond. The cathedral and the bazaar. http://www.catb.org/esr/writings/cathedralbazaar/cathedral-bazaar/, 2003. Last accessed 1st March

2008

46

Wahyudin et al. [126] confirmed that prediction models that are based only on product metrics

have worse performance compared to models which enable process metrics signify by lower

number of ‘+’ as shown in Table 2

Table 2 Comparison of Metrics Selection Impact to Prediction Results in OSS Projects

Estimators
Observation

Entity

Project

Context

Impact of Metrics to

Prediction Accuracy

Reference

Product

Metrics

Process

Metrics

Combined

Metrics

Defect occurrence

over time

Product

Releases

OpenBSD + ++ ++ Li et al. [71]

File

defect-proneness

Java Files Eclipse + ++ N/A Moser et al.

[87]

Defect growth

between releases

Product

Releases

Apache

MyFaces

+ ++ +++ Wahyudin et

al. [126]

The findings of these studies confirm other reports that data captured from developer activities

contain more discriminatory and meaningful information about the defect distribution and defect

removal capacity in software project than the static product metrics [87, 104, 127]. Hence, in this

study we evaluated different types of product and process metrics and investigate the potential

contribution of these metrics combination to improve the accuracy of the prediction results.

2.4 Chapter Summary

In this chapter we describe the methods for conducting empirical study in software engineering.

The chapter also mentions several types of metrics which later we use for evaluating and

predicting software product in our study contexts. Further we illustrate the current state of the

art in software quality evaluation.

We also describe the needs for quality evaluation and prediction for OSS products which

currently have become more widely adopted in many industry domains.

At the end of this chapter we describe the state of the art in software quality prediction in

particular objective defect prediction, and typical types of metrics utilized by researches in

software defect prediction.

We later enable the methods and techniques described in this chapter to answer predefined

research issues with empirical data in our case studies.

47

3 PROCESS QUALITY EVALUATION OF DISTRIBUTED SOFTWARE

DEVELOPMENT

To ensure a project’s survival, a decision maker needs to continuously evaluate health status and

recognize early symptoms of illness or risky situation (e.g. particular core committer leave the

project can brain drain the rest of developer community). Such indication could be obtained by

correlating measures that are available during the development.

This chapter presents models and research issues for DSD process quality evaluation. It starts

with concerns for OSS project survivability as the show case of the study. Further it builds on

causal modeling process to elaborate on process and influence factors for project “health” status.

Project “health” status is defined as quality measures of current development processes.

The evaluation of project “health” indicators attempts to have well planned quality evaluation

which address, to enclose prompt status of current development process status and early warning

based on prediction models for certain risky conditions that typically occur in OSS projects.

For evaluation of the concept, we perform two of empirical studies. In the first study (see 3.5),

two project “health” indicators (developer contribution patterns and defect service delay) were

modeled and evaluated using cross-project data as attempt to obtain robust models that can hold

more than one project context. The second study (see Section 3.6) focuses on identification of

more health indicators that correlated with quality assurance aspects which are commonly

performed by a healthy OSS project community. Finding health indicators from current quality

assurance practices will provide insight whether current practices are good enough or depict

needs for improvement. Additionally, dealing with handful yet focused health indicators

consequently increase the efficient and effectiveness of the evaluation effort and data collection.

3.1 Related Work

This section outlines a) the concern for OSS project survivability which derives the motivation

for conducting evaluation of development process quality in OSS project contexts and b) the

current approach conducted by project management and project sponsor to evaluate the quality

of development process of OSS projects.

48

3.1.1 Concerns for OSS Project Survivability

Open source software (OSS) has caught our attention by the success and quality of its projects on

the market, despite the fact, that its development does not follow traditional software

development principles such as mostly voluntarily project participants, informal project

management, open code and open development process [16].

In certain software product classes OSS offers comparable or even better quality than “closed

source” commercial software products, making OSS a considerable alternative in many domains

reaching from operating systems over web-frameworks and databases to critical mission

applications [24].

OSS project management needs to assess the developments processes quality and to recognize

early some risky conditions that may endanger the survivability of the project. While a

prospective OSS end-user needs to evaluate the quality of product release and identify whether a

new release is worth for deployment.

In OSS, the project survival is a result of many underlying (connected) processes and cannot be

easily determined. Just to give an example: developers are typically not paid for their work, but

contribute voluntarily on their own motivation basis. Hence, the dynamic of the development

process is much more difficult to estimate compared to that of a typical commercial project. This

issue is problematic for certain stakeholders in OSS community to fulfill their goals such as

prospective customers of OSS products in order to decide which products will provide long-term

warranty and enhancements; the hosting project (e.g. Apache, Sourceforge, Eclipse and

Codehaus) to provide or to continue support for some projects under their umbrella, and for the

project leading teams who steer the project’s direction based on project status in timely fashion.

The scale of the problem is escalating when a large number of projects should be monitored in

parallel. The resulting OSS project monitoring faces ever-increasing demands to provide

pertinent data from the dynamics of the projects, to help stakeholders cope with complex masses

of data/information, to provide competitive discriminators based on the stakeholder values; and

to provide the ”health” status of the project.

3.1.2 Evaluation of Development Processes Quality: Measuring the Maturity Level of

Development Processes

Sourceforge [111] evaluate the maturity level of a project based on product downloads and

project site hits, intensity of commits and file releases, and community communication traffics

49

i.e. in mailing list, forum and issue tracker [112].

Our observations on 178951 projects listed in Sourceforge at March 2007, reveals that the top 5

project categories are Internet application (15.4%), Software development (15.1%), System

(12.4%), Communication (10%), and Game/Entertainment (9.3%). Sourceforge ranks these

projects into several categories which are: Planning (18156 projects), Pre-Alpha (15314

projects), Alpha (17190 projects), Beta (23198 projects), Production/Stable (19531 projects),

Mature (1675 projects), and Inactive (2124 projects).

This fact depicts that most of the projects are still in early stages or already at the end of their

lifecycle, and only a small portion (less than 2%) of the projects in SourceForge have reached

their maturity.

To elevate new project initiatives survivability level, the Apache Software Foundation (ASF) set

up an incubation process called Apache Incubator as the entry path for each project initiatives

called as podling to become part of the Foundation’s efforts. As stated in ASF Incubator

guideline [2], the role of incubation process is to provide guidance and support to help each

podling engender their own collaborative community, educating new developers in the

philosophy and guidelines for collaborative development as defined by the members of the

Foundation, and proposing to the board the promotion of such products once their community has

reached maturity.

A project considered as mature in ASF after it’s graduated from the Incubator after it shows self-

sustaining and self-governing communities to the Foundation board members. Such community

can be achieved by having an open and diverse meritocratic community which proven to be more

robust and productive compare to closed ones.

In Figure 8 an Open Source Software Project Lifecycle, we illustrate a model of an OSS project

lifecycle. In this model, after a project was born, it starts its infancy states (i.e. within the

Incubator for new project in ASF), depend on where this new project hosted the project initiators

should attract more participants and adhere to sponsor guidelines in order to achieve its maturity

status.

50

Figure 8 an Open Source Software Project Lifecycle

An OSS project that has reached its maturity basically is entering a free market, where it should

compete against similar projects to attract more participants (developers and users) and to evolve

its products over the time.

Both SourceForge and Apache Software Foundation have similarity regarding the concept of

project healthiness which should be based on the aliveness of the community and how it should

grown by attracting more active participants and produce stable releases with good quality.

In a healthy project typically has highly motivated developer community who eager to produce

quality software in order to get more attention of potential participants to their project in term of

development participations or at least feedbacks of product releases [18].

3.2 Causal Modeling of OSS Survivability

Crowston et al [21] suggested the success factors of an OSS project consisting of software

creation/developer contribution, software use intensity and software quality.

To better illustrate the impact of these factors and typical risks during development process, in

our context; we modeled the OSS project as a body consisting of three major components: the

developer community, the user community and the software product.

Figure 9 outlines the success factors and risks as interrelated states and activities which indicate

the project component status.

We assumed that the survivability of the project is the result of the state of well being (aliveness)

of both communities indicated by facilitating rapid creation and deployment of the incremental

product releases or patches. Furthermore, this release should satisfy relevant user needs. The

following subsections describe more detail analysis about our causal model, based on literature

review and web observation.

51

Figure 9 Causal Model of an OSS project Health Status

3.2.1 Group I. OSS Developer Community Aliveness

Successful OSS projects are not one time event. It is a process of a long life cycle which was

first coined by Eric Raymond [105] as “scratching the developer itch”. The developer

community continues to contribute, develop, enhance, maintain and release the products

developer contribution. Iteratively in a typical OSS project management style. Therefore, in

order to survive a project should attract more developers and boost their motivation.

Studies from the projects listed in Sourceforge by [65, 77] signify that the developer community

may consist of a single fighter up to more than 200 active developers at one time. They also

disclosed that 86.2 % of the projects employ less than 6 developers during the development

processes. A survey from The Boston Consulting Group [8] disclosed that the developer

motivations to join an OSS project are to stimulate their intellectual, to enhance their skills or to

have access to the source code and user needs. As most of the developers join the OSS project

for their self satisfaction, the degradation of developer motivation are not trivial and very likely

52

cause project into deep problems if there is no appropriate counter measure. Lerner et.al [69]

suggested that developer loyalty can be obtained by giving some incentives such as opportunity

to contribute, community attention and recognition based on merit to the project.

The nature of OSS community is a social structure that provides some hierarchy of management

and controlling based on self-organizing patterns [119]. According to Gacek and Arief [39],

developer in OSS project consists of code/peripheral developers and core developers which also

called as committers.

A project can be generally well developed and provide regular releases, which are appreciated by

the user community, but it might actually be driven by very few active committers (dependencies

to key committers). In the worst case, the project might depend on one particular person. This is

obviously a risky situation for the project and its users as the key committers may leave which

then brain drained the project, and de-motivate other developers such as in Apache Slide [121].

The dominance of the key committers may also reduce opportunities to contribute by peripheral

developers, can be considered as a hostile action. This dependency has been considered as a

major issue by Apache Software Foundation which should be comprehended by all new project

initiatives under the Apache incubation process. Other typical risky situation that may threaten

OSS project is the shift of market or the change of technology which cause project disorientation

and consequently de-motivates the developers to abandon the project (Like Native XML

Database).

3.2.2 Group II. OSS User Community Aliveness

The second groups in OSS project community are the users who observe, download and then use

the software product for certain objectives (e.g. curiosity, work functions, and user needs). The

level of software use intensity will be amplified when certain quality attributes of the software

product satisfy the user value expectation.

Compared to those of commercial software products, the users in OSS project are expected to be

more active to provide feedback for functionalities of product release. Some studies [1, 82, 124]

reported that most of the defect reports and the feature requests came from the user community,

which were then responded by the developer community by submitting patches or new features.

Eventually, these practices caused rapid changes into the code and documentation. However the

user needs and expectations may change over the time due to the technology evolution, the shift

of needs or some other reason. Eventually these changes may imply the trend and demand of the

market of the OSS product. Hence, it is fair to say that the user community has significant impact

53

on the OSS project community aliveness in the whole and the quality of the software product

released.

3.2.3 Group III. OSS Product Quality

The typical characteristic of OSS such as open code based and no formal project management

has raised some debates about the quality of the released products. However a survey from BCG

[8] suggested that open source community is mostly comprised of highly skilled IT professionals

who have, on average, over 10 years of programming experience and it is not exaggerated to

assume that these people are well knowledgeable to produce a good quality code which is

contrary to popular belief about hackers.

Recent study in OSS quality [1] suggests several software engineering quality model that

typically practiced in OSS project community such as peer review to assess whether a

contribution merits from developer acceptance into the codebase.

In a large project such as Apache Server, peer review practiced not only for assessing the quality

of contributed code but also applied for a new idea/solutions submitted to the developer

community which need to be discussed, and reviewed before being planned for development.

The bazaar style of OSS development facilitates rapid releases which make the implementation

of peer review. The existence of quick response to reviewers comments and code keeps the

contributor involved and interested [105].

The second typical quality practices are people management in reporting, reviewing, detecting

and resolving issues and defects (more details discussed in section 5). Abernour (2007)

advocates on this practice to include establishing an effective environment and culture which is

as important as system design.

This means there should be a pre-defined coordination mechanism [34], conflict

management(such as voting) [94], encouraging innovation and creativity [68], and affectionate

attention from the community [69]. With respect to software quality assurance terms, hence for

the rest of this thesis we refer to defect as bug reported about particular OSS product.

The third and most prominent quality practice is defect tracking activity. In traditional project,

defect tracking is similar to inspection which is effective but also expensive quality assurance.

Mockus et al. [82] enclosed after a product release the user and larger part of the OSS

community typically shift their roles in reporting, reviewing and resolving defects or issues.

These practices of SE quality model influences the community aliveness by encouraging project

participants to be involved and motivated to contribute and results in a product that extends

54

rapidly and reaches high quality, here we conclude that only a healthy community can produce a

high quality software.

3.3 Stakeholder Value Proposition of OSS Product Quality Prediction and

Evaluation

As mentioned in section 3.1, the survivability of the OSS project is the result of the state of well

being (aliveness) [121] of developer community indicated by facilitating rapid construction,

defect-fixing and deployment of the incremental product releases or patches. Furthermore, the

current release should satisfy relevant user needs triggered by feedback information from the

user community [122].

The stakeholders in OSS projects are represented by each individual in the community connected

through project environment. Based on their role they have different expectations and

(subjective) indicators of product quality [125]. Hence, to better understand their quality

expectations in OSS projects we need to elicit their values, starting with eliciting their win

conditions based on their roles in the project and define quality performance measures [10].

We interviewed OSS experts in January 2006 to find out the stakeholder’ needs for good quality

OSS product, we conduct the interview in two session first is by direct interviewing the experts

with some open questions and second by asking more quality assurances (QAs) focused

questions through emails such as what are the quality expectation of different project

stakeholders (see Figure 10), what typical QA aspects that typically performed by developer

community. In this chapter we focused on defect lifecycle as the prominent part of software

product and process improvement in OSS project [105].

55

Figure 10 Expected Quality Aspects of OSS Product Releases from different Stakeholders Point

of Views

As extensions to the results presented in [122, 124] and experience reports on OSS Projects [37],

we elicited different stakeholders with their expected value of quality evaluation and estimation

of OSS products:

1. End User. The user community applies OSS product releases and provides feedbacks to

the developer community [16]. The results showed two typical user groups: (a) common

users focus on high quality releases (i.e., more features, fewer defects, faster defect

resolution time, better usability and documentations) as their primary objects of interest

or win condition; (b) more professional users, such as an IT manager, need more

information on stability and safety of the new release deployment to current running

system and list of potential problems with relevant troubleshooting.

2. Project Sponsor. Project hosting sites such as Apache Software Foundation (ASF),

56

Sourceforge, and commercial companies such as IBM and SUN that provide support for

OSS projects can be considered as project sponsors with different types of sponsorship

and involvement within the hosted projects. ASF for example provides an incubation

process called Apache Incubator[2] including guidance and support for each new OSS

product initiative, stimulating the collaborative community, educating new developers,

and proposing whether a product has reached maturity. To appraise whether a project

initiative requires additional support, project sponsors need to have sufficient

information of the aliveness of the project community, the quality of the provided

product, and the community set-up including a strategy for stable releases (i.e., voting

mechanism for release and feature candidates).

3. Peripheral Developers. Peripheral developers are the largest group of developer in the

developer community, as they are mostly active in defect removal activities and patches

development [83]. The meritocracy system in OSS project such as in all Apache

projects put peripheral developers in the lower level of the project structure, as they do

not have high level privileges such as writing access to current code base. Therefore

every defect resolution and patch submitted into the issue tracker should be reviewed by

other developers or a committer prior to code base modification and deployment. The

larger group of developers working on the head and incorporating the current version in

their productive applications, and when they do, they really find out about problems in

the OSS product as well. Hence, two prominent quality sources of information of

current release are: (a) defect reports including traceability of reported defects and (b)

defect status reports using an issue tracker, as it is very typical that different developers

work in defect report validation, defect resolution development, and peer-reviewing of

submitted resolution. In quality aware communities such as MyFaces, Python, Gnome

and Mozilla, a reported and implemented issue and corrected defect passes several QA

activities which are similar to design review, code testing, and code peer review before

deployment [122, 126]. The win conditions of developer are to have proper access to

current development repositories and collaboration tools to support their works, merit

based incentive from the community, less invalid defect report , adequate information

of reported defect, and flexible time to resolve defect.

4. Committers. Committers or core developers have responsibility for assuring the quality

of the software product before product release and deployment and have full access to

the code base stored in the project’s source code management system (SCM), i.e., CVS

or SVN [1]. Typical tasks of committers are to review any defect resolutions and to

57

decide whether a patch should be added to the release log. A committer may expect to

have adequate information of (a) valid reported defects including their severity and

impact on the overall product behavior, (b) new patches to review whether every defect

were solved properly according to defect specifications, and (c) test results of new

patches. Therefore, they can assure that a new contribution will not possess any threat to

current code base and ensure compliance of the new piece of software and the code

quality standards of the developer community.

5. The Project Leading Team comprises of elected committers with roles in daily project

management. According to the Apache Software Foundation [3], the main roles of the

project leading team are to ensure that all legal issues are addressed, that the procedure

is followed, the alleviation of any bottlenecks and conflicts, the overall technical

success of the project and that each and every release is the product of the community as

a whole. They also responsible to give strategic decision, to further the long term

development and health of the community as a whole, and to ensure that balanced and

wide scale peer review and collaboration do happen. Hence, they need to monitor the

development process and to ensure appropriate quality assurance activities (patch

discussions, unit and integration testing, and peer-review) are well performed [124].

They also need to estimate the quality level of the current developed code and identify

potential project risks, e.g., portion of reported defect remaining unresolved after a

certain period of development and high number of failed code tests near to release

deadline.

6. Release Manager is an assigned committer to guide and manage release process, for

example selecting stable patches, new features that should be added to the upcoming

release package, and selection the best potential release candidate [37]. Typically, the

release manager is a member of the project leading team. A release manager has to

perform the selection based on defined quality criteria i.e. only peer reviewed and tested

improvements (patches and new features) can be added to the next release. Additionally,

as the tradeoff of short release cycle, release manager needs to estimate whether there

will be significant growth of defects that potentially reside within a release candidate

with regards to the current developer capability in solving defects after the planned

release.

These roles depict the need to monitor the health of the community in timely fashion, and to

quickly respond appropriately against certain status during project execution.

This study focuses on providing health indicators as prompt quality prediction and evaluation in

58

OSS projects. From project leading team and release manager perspective, the detailed win

conditions of OSS project “health” indicators assessment are:

1. To retrieve comprehensive indicators which indicate the actual status of project

performance. As the project may produce significant number of data, artifacts and

project information which can be further processed as indicators, however due

limitation of observers in OSS project as they are not a full timer, thus to compact the

indicators with respect to quality of enclosed information are necessity, the key

measures of this win condition probably to have a small set of indicators based on

observer’s own priority selection, just to give an example from IT system monitoring,

our interviews with a group of system administrators result that the group daily

monitor from 8 to 10 indicators, as to have more may overwhelm and mislead the

observer analysis.

2. Availability of performance metrics that provide the necessary information for

different levels of detail. This second condition is the result of the first one, as in a

project we may start to monitor higher level indicator and then go deeper for better

understanding the nature of development process or track back the symptoms of

illness. We suggest to divide the metrics into three layers: (1) the direct metrics, which

are the lowest layer consist of metrics directly obtained from project repositories such

as number of developer email contributions, time stamps when a defect is resolved,

number of defect resides in the defect database etc. (2) the derived metrics, which are

the aggregation of several direct metrics such as the average time to resolve defects in

certain time, average number of developer email contribution in one semester, etc. (3)

the indicators, which are the highest level and provide comprehensive view of certain

status of the project, e.g. the service delay within a release which depicted as a

function of average time to respond and average time to resolve of defects within a

release. Figure 4 illustrates the examples of retrieving health indicators from a

hierarchy of metrics.

3. Early availability-time relevant project information status. The third win condition is

to have quality information in a short time, as the project indicators represent the

current status which is not merely historical data. Time relevant information will give

more accurate indication of the project, and if the project is considered unhealthy, then

the appropriate treatment can be applied to change the project into healthy one before

it is to late or getting worse. To get valid information status, thus project manager

should set a retrieval time constrain for each indicator he wants to monitor i.e. within

59

hours, days, or months.

The stakeholder values are varying based on the stakeholder roles, domain of the project

application and project scales. The value elicitations will define the selection of to-be-monitored

health indicators to assess the project health status.

For better illustrating the QA aspects and interaction among project community during

development process, we proposed a framework of QA aspect in OSS project, which described

in following section.

3.4 Modeling the OSS Project “Health” Indicators

In the previous subsections many different parameters had been taken into consideration to get

an impression of the status of a project which is actually not an easy task. This is particularly

problematic if a large number of projects need to be monitored. Based on the described success

factor there are some indicators that experts routinely use to assess an open source project, such

as the following data.

1. Proportions. We calculate the proportions of activity in the community of e.g., volume of

mailing list postings, defects status changes per time slot, updates in the SCM, and use

these metrics to compare projects to try to learn what ”healthy” relationships are. Based

on data from healthy projects we can identify whether there are correlations between

different types of developer contributions, and how the likely impact of one contribution

metrics to another.

2. Service delays. By measuring the time between a defect reported to the issue tracker with

time of a developer responds the report we can calculate the response time, we can also

calculate the defect closure time as time between reporting with time a defect state as

resolved with positive resolution (fixed or resolved).

3. Communication and Use intensity. If a project has a healthy community there is

indication of strong relationship between some measures such as number of downloads

compared to mailing list postings and active developer interaction in (different) mailing

lists.

4. In a distributed project, a set of certain Software Engineering (SE) methods and tool

standards have been established to support open source projects. The tools are used

where activities of developers can be interpreted as events (time-stamped date points).

Typical important tools are: source code repositories, documentation systems (source, user),

defect tracking, mailing lists, forum software (web, newsgroup), and Wiki content management.

60

These tools provide informative but scattered pools of data during the project life-cycle.

Obviously, developers use these tools and data for coordination, communication, and

configuration management.

We propose an approach by unifying the data coming from different systems into a coherent

format for analysis. We expect not only data for historical analysis but also for daily or weekly

monitoring and analysis. If it is achieved, it is possible to monitor the status of project health

regularly and receive early warning signals, if bad smells occur.

For analysis it is necessary to collect, filter, and correlate these data elements. While a human

expert has to do the analysis by looking into the different systems, only little tool support is

readily available for automatic and continuous ”real time” analysis of project status.

In today practices, health indicators and healthy community of OSS projects have become more

important issue. Just to give an example, the Apache Incubator defined that a new project

initiative may graduate from the incubation process by fulfilling some requirements: the project

must have a healthy community indicated by an active collaborative works within a community

and it consists of diverse core developers.

For the diversity of core developers’ measurement, we can quantify the number of independent

core developers based on their background profile. The diversity is important because: (a) it

guarantees a sustainable development, as the project will be less dependent on a single

developer, (b) it brings variety of competencies to enrich the quality, however our interview with

OSS expert suggest that this indicator is best to be obtained manually by retrieving each

committers personal data and analyzing the project profile.

Active collaborative works are indicated by several health indicators such as the coordination

activities, conflict resolutions (number of voting), intensity of usage, defect service delays, and

the proportion of the developer contribution to the project repositories. In this paper we focused

on the last two health indicators:

1. Developer Contribution Patterns, the first health indicator is a function of proportion

metrics which capture the ratio between email conversation with defect status changes

and ratio between SCM commits with defect status changes. Within a healthy project

most of developer activities are correlated with each other, for example is that a code

submission into an SCM may trigger an email conversation within the developer mailing

list which warrant a concern from other developers to peer-review submitted code.

Another example is that defect status changes may also trigger an email conversation

regarding the changes that for particular interested developer. Hence, this indicator is

very important to obtain an outlook of software creation performance and the current

61

developer motivation state.

2. The Service Delay, in a commercial project, is the time interval to respond a service

request from a customer and time to fulfill the service, while in OSS project; we define

the service delay as a function of time to respond and time to resolve an issue/defect. The

defect/issue service delay is important as most of the activities in OSS project derived

from defect or issue report, eventually a project which has slow response and resolution

time will face problems such as user dissatisfaction and bottleneck in the development

process.

Both indicators derived from aggregation of metrics, which at the lowest level the metrics are

obtained by mining the project repositories as illustrated in Figure 11.

Figure 11 Deriving OSS project health indicators from basic process metrics.

The measurement selection for monitoring project status depends on the stakeholder values. The

Operative level measure direct metrics from project repositories which are then transformed into

higher level metrics. Project manager analysis the health indicators as the results of correlation of

these aggregated metrics.

Managing and monitoring health in open source software (OSS) projects is a complex challenge,

due to the typical characteristics of OSS development model. Important indicators such as

activity of developers and performance of Defects’ management are easier to measure as they

have become part of the development nature itself. However, for the comprehensive

determination of health measurement one has to consider other indicators which needs be

formulated and further explored.

62

In the next section, we applied the proposed health indicators to well-known OSS Apache

projects for empirical evaluation of the concept.

3.5 Empirical Evaluation of OSS Project “Health” Indicators: Developer

Contribution Patterns and Defect Service Delay

This section describes the empirical evaluation process of the health indicator concepts and the

initial empirical result from some projects under the Apache umbrella.

Following the systematic empirical study framework in OSS projects, it starts with design of

empirical study, reports the data collection process and data analysis. Empirical data were

retrieved from several successful OSS projects and the challenged ones. We compared the results

to provide better understanding of project state of well being.

 Later the results were discussed with OSS experts to investigate the external validity of the

indicators.

3.5.1 Design of Empirical Study

The following subsections present the goal definition of the study, selected study objects,

variables specification and research hypotheses formulation.

1. Goals of Empirical Study

Using goal structure in GQM model [4], we defined the goal of our research study as:

The purpose of our study is to have better knowledge of indication of project “healthiness”

derived from metrics obtained from developer activities, from project manager point of view.

2. Study Objects

We apply the proposed health indicators to four cases of large-matured Apache web engineering

projects indicated by more than 20 contributors (core and peripheral developers) per project

which three times outsized the average number of developer in most of OSS and has already at

least one major release (1.x, 2.x, etc). The set consists of two well-known Apache projects

(Tomcat v.5 and HTTP Server/ HTTPD v.2), and two challenged projects (Xindice and Slide).

We focused our evaluation process on the two health indicators: the proportion of developers’

participation and the defect service delay. As described in Section III these indicators are very

worth noted by a project manager to assure that a project is still actively running and both

indicators are simple to be evaluated.

63

Apache Tomcat17 is a servlet container that is used in the official Reference Implementation for

the Java Servlet and Java Server Pages technologies whose code base and specifications are

donated by Sun under the Java Community Process in 1999. The first Apache release was

version 3.0. Since then, multiple volunteers from Sun and numerous other organizations have

contributed to the product. Currently Tomcat has several major releases, employs 17 active

committers and more than 50 emeritus committers. In 2005, Tomcat became its own top-level

Apache project and powered numerous industries and organizations such as Wall Mart and

General Motors. A survey by TheServerSide.com 18 pointed Tomcat as one among the

market leaders in its application domain.

Apache HTTP Server19 is an effort to develop and maintain an open-source HTTP server for

modern operating systems including UNIX and Windows NT. The development started in 1994

when Brian Behlendorf and a number of users for internet servers which are developed by the

National Center for Supercomputer Applications (NCSA) encountered the increasing frustration

in getting NCSA to respond to their suggestion. They decided to collaborate and integrate

patches to the NCSA server software. In August 1995, the group released Apache 0.8. Since then

the product was called as Apache HTTPD. Later it is well-known as Apache HTTP server and

has been the most popular web server on the Internet since April 1996. The HTTP server project

employs 56 core contributors and hundreds of peripheral contributors. The project latest release

is the version 2.2.4. Apache Tomcat and HTTP Server are considered successful large projects.

Hence by examining the dynamics of both project communities, we improve our knowledge

about the indication of a healthy community.

Apache Xindice20 is a database tool designed from the ground-up for storing XML data or what

is more commonly referred to as a native XML database. Xindice is the continuation of the

project that used to be called the dbXML Core. The dbXML’s source code was donated to the

Apache Software Foundation in December 2001. During the development, the developer

community consists of 8 active committers, 7 inactive and emeritus committers, and 19

contributors. Xindice has its first stable release of version 1.0 around March 2002 and continues

with several milestone releases, such as version 1.1b4 at 8 April 2004.

Apache Slide21 is part of the Apache Jakarta project. Slide is a content repository which can

17 http://tomcat.apache.org/ (accessed at 20/02/2007)

18 http://www.theserverside.com/ (accessed at 10/01/2007)

19 http://httpd.apache.org/ (accessed at 20/02/2007)

20 http://xml.apache.org/xindice/ (accessed at 20/02/2007)

21 http://jakarta.apache.org/slide/ (accessed at 20/02/2007)

64

serve as a basis for a content management system / framework and other purposes. The original

Slide codebase (Slide 0.7) was donated by Intalio Inc during May 2000. Slide has reached its

maturity after release 1.x and 2.x. The project employs 14 active committers, 14

inactive/emeritus committers, 20 contributors and 3 project sponsors. However after its 2.1

release (at 12/26/2004), the project seemed to be disposed, although we still recorded some

activities in the developer mailing list. Our interview with OSS expert indicates that Apache

Xindice and Slide are in difficulties. This case can be taken as a fine comparison to successful

ones and reveal the symptom of illness of a project.

3. Variables Specifications

In this study we evaluate two health indicators with empirical data collected from project

repositories which are:

First Health Indicator: Developer Contribution Patterns

A commit into SCM can be different forms of contribution such as changes in code, new defect

patches, or release documentations. In an OSS project, the developer mailing list is the main

collaborative communication tool, where everyone who wants to participate in the project

development can observe or join in. In Apache projects, the email archives commonly consist of

three major contents: the notification of developer commits to the SCM, notification of defect

status report (the change of defect state) as a developer may work on something for the defect,

and development-related short messages/email conversation i.e. problem reports, solution

recommendation, polling for opinions, and technical discussion.

Hence for the first health indicator, we define dependent variables are: a) monthly number of

commits into the SCM, b) monthly number of defect status changes in the issue tracker and c)

the intensity of email conversation within a month which can be triggered either by a new

code/patches submission or a change of defect status.

The dependent variable is developer contribution patterns as the ratio between number of email

conversation, SCM Commits and defect status changes.

To observe the relationships among the measures, we employ bivariate correlation analysis and

analyze the likely impact of one variable to another. Later we perform vector analysis by

constructing a multiple linear regression model to investigate whether the intensity of email

conversation within the developer mailing list can be estimated using number of commits and

defect status changes as predictor variables which can be formulated as:

65

 22110 XXY
Eq. 1

Where Y is number of email conversation as vector of response, the predictor variables or

parameters are: X1 is number of SCM commits and X2 is number of Defect status changes. While

β0 is intercept of the prediction model and β1, β2 are estimated parameters of the predictor

variables X1 and X2, and ɛ is a vector of independent normal random variables with expectation

for the constructed model.

As measure the prediction model performance, we applied average absolute error (AAE) and

average relative error (ARE) which are suggested by [56].

Lets denote dependent variable (Y); and Y’ as estimator of Y. Then AAE is the magnitude of the

difference between the exact value and the approximation, which can be formulated as:

1
| |

Eq. 2

While ARE is the absolute error divided by the magnitude of the exact value:

1

Eq. 3

Since our observation involved different projects, hence to compare the performance of each

models used ARE as the primary accuracy measure, while AAE can be used to better understand

the accuracy level within the individual context of each project.

Second Health Indicator: Defect Service Delay

Although in an OSS project, the community voluntarily plays significant role in the defect

tracking, and resolve the financial barrier as in traditional project, nevertheless a healthy project

should employ proven defect management practices offer fast defect response and to reduce the

service delay in removing defects.

To measure the defect response time and defect removal time, we used independent variables:

time when a defect report filled into the issue tracker (Treport), time when a defect status

confirmed as new defect (Tresponse) and time when a defect stated as resolved (Tremoved).

Therefore we can calculate the responsiveness of the developer community for each reported

defect i for n number of reported defects as:

66

∑

 Eq. 4

While the service delay performed by developer community in removing each defect i, for n

number of reported defects can be calculated as:

4. Research Questions and Hypotheses Formulation

RI.4.5.1. the Developer Contributions Pattern. We addressed two questions for measuring the

healthiness of developer contribution pattern: 1) Are there any significant correlations among

developers’ contribution components (email contributions, defect status changes, and SCM

commits)?. We believe that in healthy OSS project that put strong consideration regarding the

quality of contribution, for each submitted patches, code set or defect state changes should be

reviewed by other developer or at least discussed in the mailing list.

Let’s denote that r is a correlation function to check whether there is a significant correlation

between variables (x1, x2) ϵ Pr and dependent variables y, where x1 is number of commits to

SCM by developers, x2 is number of defect status changes, pr is a set of development metrics,

and y is number of submitted emails to the developer mailing list, then the respective null

hypothesis can be formulated as:

H04.5.1.a: | ,

Our second question is that 2) can we predict the potential number of email contribution from the

developer as function to code submission and defect resolution activities?. Here we want to in-

depth checking, whether significant correlated variables can be used as predictor variables for

developer email contribution pattern. For this purpose, a linear regression method (see equation

4.1) is employed and tests the significance of constructed models using standard F-test.

The hypothesis is that in healthy project such as Tomcat and HTTPD there are linear correlations

between variables. Thus to estimate the intensity of developer email conversations as one

measure of project healthiness one can construct a prediction model with higher level of

accuracy compare to challenged projects.

Therefore we proposed following Null hypothesis:

Let’s denote ℮ is estimates from a trained prediction model using development metrics either

∑ Eq. 5

67

from a healthy project (Ph) or challenged project (Pc) then:

H04.5.1.b: ARE(℮(Ph)) > ARE(℮(Pc))

RI4.5.2. Defect Response Time and Defect Service Delay. The defect status reports are also

important to illustrate the project service throughput. However we suggest that monitoring the

dynamics of the defect status report should be further correlated with other variables in the defect

tracking activities such as the number of defect per reporter, defect response per reviewer, defect

assignment per contributor, service delay (response and closure time), defect validation time etc.

Here we address 3 questions for assessing defect management in an OSS project: (2.) Is there

any appropriate defect reporting and monitoring in place? (3.) Is there any appropriate rating of

defects?, and (4.) What is the distribution of response time and closure time of defect reports?.

We assume that a healthy project with dynamic developer community can promise a better level

of defect service delay, both in responding to a new defect report or resolving a valid defect.

Therefore we can propose two null hypotheses:

H04.5.2.a: Responsiveness (Tomcat, HTTPD) < Responsiveness (Slide, Xindice)

H04.5.2.b: Service Delay (Tomcat, HTTPD) < Service Delay (Slide, Xindice)

3.5.2 Data Collection

This section describes the data collection process, data refinement as preparation prior to

analysis, and threat validity of collected data.

1. Data Collection and Data Refinement

To answer the above mentioned research questions, we need to collect empirical data about some

existing OSS projects. For the purpose of measuring the developer contributions, I developed a

tool for mining the web based developers mailing list (hosted by Mailing list Archive, MARC22)

of each selected project.

The tool uses the approach of a wrapper which retrieves project data web pages and then parses

them to extract the information required. It retrieves the emails data (sender, subject, thread, time

stamp) based on some given time interval as the input parameter.

The whole outcome is represented as XML and then using XSLT is further transformed to finally

result in performance metrics, such as number of emails, number of commits to project SCM and

22 Mailing list ARChives, MARC can be found at: http://marc.info/ (last accessed 20 July 2008)

68

number of defect status changes.

For each project we selected and examined 38 months of projects’ life time with at least one

major stable release. To support viewing the dynamics of the projects, these emails are then

grouped into monthly archives and the proportion are calculated. We illustrate the ratio of

developers’ contribution over the time and compare the result between the successful projects

and the challenged ones. Later, we chose Apache HTTPD as the role model of a healthy project

and employs linear regression to figure out the correlation between email conversation, code

contribution and defect report status.

Apache Project has centralized it defects tracking within repositories managed by GNATS and

later moved to Bugzilla and Jira. The Bugzilla offers more features like transaction logs (history)

and search facility either simple or advanced search on descriptive information of defects. This

makes the dynamics of defects are relatively easy to trace.

It is not surprising that Bugzilla became very popular and widely used by 550 projects or

companies23. This indicates that each Apache project being evaluated implements appropriate

defect tracking tools.

In order to evaluate the project service delays based on defect’s statistics for one stable release of

each project, we retrieved each project’s defect reports, measure quantitative data items, and

depict the result within one software major release.

Unfortunately, some data needs pre-processing due to inappropriate or illegal values. The pre-

processing steps involve: removing records indicated as “INVALID” and ”DUPLICATED” in the

resolution field and excluding records containing invalid date (either in the open-date or change-

date).

We retrieved and examined change logs from the defect database (Issue tracker) of Apache

Tomcat 5, HTTP Server 2.0, Xindice and Slide, using BugZilla 3.0rc1 query commands.

Furthermore, in measuring the distribution of response time and closure time of defect reports,

we formulate the calculation using the criteria: (a) response time is the length of time interval

between open date and last change date for the defects having status field set to ”NEW”, which

means the defect is confirmed and accepted by the community for further processing, and (b)

closure time is time to resolve a defect, calculated by measuring the length of time interval

between open date and last change for defects having status ”RESOLVED”, which means the

defect is already went through the development processes.

23 http://www.Bugzilla.org/installation-list/ (accessed at 25/02/2007)

69

2. Threats to Validity

Internal Validity. In this empirical study data were obtained from 40 months of development

(Ended at April 2007), we found that in the latest two months of observation, there is no

significant number of development data collected for Slide and Xindice (as for Xindice already

reveals that the project is in a dire situation), while in Apache HTTPD and Tomcat we also found

large number of “Invalid” and “Duplicated” defects, therefore to maintain the validity and

quality of data we just focused on 38 months of development (Ended at February 2007).

Construct Validity. The second threat derived from our discussion with an OSS expert who

advised that in a large and very active project such as Tomcat and HTTPD, there is a common

practice in developer community to re-open resolved defect, however in this study we assume

that to re-open a resolved defect is also part of defect removal activities as the final resolution

has not been reached yet, therefore for service delay calculation we ignore the re-open status of a

defect which may increase the average defect service delay of a project.

3. Data Grouping

The collected data were divided into two groups; the first group consist of 34 months of

observation of each projects will be used to perform the correlation analysis and to construct a

prediction model. The second group consists of 4 months observation data from each project

which will be used to validate the prediction model.

3.5.3 Data Analysis Results

This section describes the empirical result which is composed of data collection from the four

Apache projects and data analysis.

A. The Developer Contribution Level

As described in our empirical study design section, all projects can be considered as large project

(based on definition from [66]) as they employed more than 10 active developers at least for the

first quarter of the development.

Table 3 shows the distribution of collected development metrics used to analyze the patterns of

developer contributions in healthy and challenged projects.

70

Table 3 Distribution of Collected Development Metrics

 Collected Metrics from 38 Months of Observation

SCM commits (X1) Defect status changes (X2) Email Conversations (Y)

Total Mean STD Total Mean STD Total Mean STD

HTTPD 14199 373.63 99.42 8757 230.42 106.12 157814 415.22 135.90

Tomcat 9793 257.71 110.08 17816 468.84 179.70 16574 436.16 156.23

Slide 3617 95.18 93.78 1383 36.39 36.66 4479 117.87 107.68

Xindice 201 5.29 8.67 187 4.92 5.85 818 21.53 36.18

Figure 12 exhibits the absolute number of developer contribution within 38 months of

development of the reviewed projects.

The developers’ contribution patterns are distinguished into three line categories: the code

contribution into the project SCM (number of SVN/CVS commit), the Defect status changes

(number of Bug status changes in the Bugzilla), and the developer email conversation (number

of email submitted into the developer mailing list).

Our prior study [121] found that in the two successful projects (HTTPD and Tomcat) a positive

trend line of developers’ email contributions during project life time exists (see Figure 12). On

the contrary, the two challenged projects (Xindice and Slide) reveal a dire situation as revealed

by diminishing developer contributions.

In this section we look further the cause of the illness symptoms and what a healthy relation

should look like between components in the developer contributions.

71

(a) HTTPD (b) Tomcat

 (c) Slide (d) Xindice

Figure 12 Absolute number of developer contributions in Four Apache Projects in 38 months of

observation [122].

a.1) Developers’ Contribution Patterns in the Four Reviewed Projects:

To better understand the developer contribution patterns within different types of project, we

examine the retrieved data set, and calculate the ratio between code contribution (number of

CVS commits), and reports of Defect status (number of Defect status change notification) with

the developer email conversations.

We argue that in a healthy community the project should exhibit more uniform ratio among these

metrics, i.e. every CVS commit ideally should be followed up by the developer discussion in the

mailing list before inserted into the body of code. We found the both challenged projects exhibit

more fluctuation and higher ratios as illustrated in Figure 13. It means, the developer community

retrieved more notification of code contributions and Defect reports but responded less in the

mailing list.

72

(a) HTTPD

(b) Tomcat

(c) Slide (d) Xindice

Figure 13 Developers’ contribution patterns as proportion of different development metrics

[122].

This situation may indicate illness symptoms. We considered some of the illnesses are the facts

that the developer community pays less attention to project status’ changes; the project employs

small proportion of active developers which also signify developer de-motivation which further

needs to be investigated by experts in OSS Community.

On the contrary, both the HTTPD and Tomcat signify more reasonable proportion in the ratio of

developer contribution. This can be interpreted that most of the developer code contributions and

changes of defect status may trigger some responses from the developer community.

In the healthy projects (Figure 13 (a) and (b)) the number of commits contributions per defect

status changes and the ratio between numbers of email contributions per defect status changes

tend to be normally distributed. On the contrary, the challenged projects (see Figure 13 (c) and

(d)) show fluctuations which signify the imbalance between code contributions/developer email

submissions and Defect status reports/developer email submissions.

73

a.2) Developers’ Contribution Correlation Analysis

We analyzed the observation data from all projects and performed two types bivariate analysis to

investigate the correlations of defect status changes, SCM commits to Email conversations. As

shown in

Table 4 and Table 5 present that for HTTPD, Tomcat and Slide there are positive significant

correlations between defect status changes, SCM commits with email conversations.

Table 4 Development Metrics Correlation Analysis in Four Apache Projects (Pearson Rank)

Pearson Rank

Correlation Analysis

Email Conversations

Correlation p-value N

Defect Status

Changes

HTTPD 0.679** 0.000 34

TOMCAT 0.686** 0.000 34

XINDICE -0.41 0.808 34

SLIDE 0.661** 0.000 34

SCM Commits

HTTPD 0.630** 0.000 34

TOMCAT 0.777** 0.000 34

XINDICE 0.576** 0.000 34

SLIDE 0.856** 0.000 34

Table 5 Development Metrics Correlation Analysis in Four Apache Projects (Spearman Rho)

Spearman Rho

Correlation Analysis

Email Conversations

Correlation p-value N

Defect Status

Changes

HTTPD 0.741** 0.000 34

TOMCAT 0.606** 0.000 34

XINDICE 0.009 0.958 34

SLIDE 0.505** 0.000 34

SCM Commits

HTTPD 0.582** 0.000 34

TOMCAT 0.736** 0.000 34

XINDICE 0.239 0.148 34

SLIDE 0.905** 0.000 34

** Correlation is significant at the 0.01 level (2-tailed).

Statistically we can assume that an increase in defect status changes as well as SCM commits

will significantly increase the number of emails sent by the developers into the developer

mailing list. However in dying project such as Xindice there is no significant correlation with

74

email contributions, means the developer community has no customs in responding a code

submission or changes of defect status collectively or simply the project has been abandoned by

the majority of the developers.

As outlined in some statistical literatures [33, 88], a bivariate correlation analysis can signify the

impact of one variables to another, however, we still need to assure the direction of an impact,

for example, a correlation analysis results that x has a positive significant correlation with y, we

can interpret this result as by increasing x will increase the value of y, however statistically we

can also say that the impact may come in different direction where by increasing value y may

likely increase the value of x (another potential threat to construct validity). Of course, one can

reason based on his own knowledge to interpret a relation between variables, nevertheless we

can employ more formal methods to check the variables relationship, such as by fit in the

variables into a prediction model. If the constructed model tested as significant, then we can

conclude that these variables have correlations and impacts to the dependent variable in the

model.

a.3) Email conversation as a function of SCM commits and Defect Status Changes

As described above, a successful project community exhibits more normal distribution of

developer activities metrics during the development process. The next step, we want to find out

whether we can create a prediction model based on the correlations among these metrics.

For the purpose, we performed a multiple linear regression analysis with 34 months data from all

projects. The results are shown in

Table 6 signify that in healthy projects such as HTTPD and Tomcat have higher linear

correlation (note higher value of R2) between the independent variables SCM Commits (X1),

Defect status changes (X2) with dependent variable Developer Email Contributions (Y).

Table 6 Prediction Models for Four Projects using the First Group of Observation Data

 Model Coefficients Model Test Results

Constant X1 X2 R2 F-test P-value N

P
ro

je
ct

HTTPD 42.267 0.583 0.637 0.590 28.205 0.000 34

Tomcat 62.853 0.323 0.862 0.669 35.382 0.000 34

Slide 54.599 1.609 1.328 0.524 27.382 0.000 34

Xindice 17.133 -2.623 3.270 0.338 5.408 0.000 34

We tested the regression model to assess its internal validity with confidence interval is 95%,

75

where Ftable or F0.05,34= 4.11, here for all constructed models we can conclude their significance

as all of them has F-test value higher than the table value of F0.05,34 and p-value < 0.001 level.

The above results conceal that in a healthy project (such as HTTPD or Tomcat) the code

contribution has significant impact to amplify the number of email conversations in the

developer mailing list such that the ratio between these two variables are kept in proportional

during the development process which signifies one healthy status. Please refer to Appendix A1

for detail of the data analysis results.

To have external validation i.e. to check model robustness with different observation data, later

the prediction models were fitted to the second group of observation data. Here we used the

average absolute error (AAE) and average relative error (ARE) to evaluate the models

performance.

In Table 7 outlines the result of prediction model validation for each project using the last 4

months data of observation which were not used during the model training process.

Table 7 Validation of Prediction Model using the Second Group of Observation Data

Project Mean (AAE) StDev (AAE) Mean (ARE) StdDev (ARE) N

HTTPD 20.373 9.656 0.061 0.026 4

Tomcat 100.572 52.229 0.124 0.059 4

Slide 51.385 31.520 2.460 2.940 4

Xindice 91.533 31.531 13.239 15.299 4

We can see that ARE values for Apache HTTPD and Apache Tomcat are lower than Slide and

Xindice, additionally the prediction model of Xindice suffers the lowest accuracy. Performance

of prediction model of HTTPD and Tomcat indicate that the trained model can hold new

observation data which is necessary in predicting the future of project “health status”.

B. Defect Service Delay

Based on the measurement scenario on defect service delay as mentioned in Section 4, we

present these following quantitative results. The first measurement is to see the distribution of

the Defects’ severity on each project.

In the Apache projects, the defects are categorized based on their severities related to security

(critical) and fault (blocker), related to feature (major, minor, enhancement, normal) and related

to cosmetic works (regression and trivial). Later, for further processing, the community put the

development priority (P1 to P5) for each Defect, where the P1 means the top priority and needs

76

to be resolved as soon as possible. We retrieved the defect data from Apache Tomcat 5 (2891

Defects), HTTPD 2 (3663 Defects), Xindice (152 Defects) and Slide (420 Defects). On the data,

we examine the distribution of the Defects based on severity and priority to find the proportion

of defect assignment.

Table 8 Defect Distributions in Two Healthy Apache Projects

 Tomcat (b) HTTPD

 PRIORITY (%)

P1 P2 P3 P4 P5

S
E

V
E

R
IT

Y
 (

%
)

Blocker 0.7 0.9 4.3 0.1 0.1

critical 1.2 1.9 6.8 0.1 0.1

enhancement 0.1 2.7 6.5 0.1 0.5

major 1.0 4.3 9.3 0.0 0.0

minor 0.0 1.7 6.6 0.2 0.5

normal 0.9 17.3 30.3 0.2 0.2

regression 0.0 0.5 0.0 0.0 0.0

trivial 0.1 0.5 0.1 0.1 0.2

 PRIORITY (%)

P1 P2 P3 P4 P5

S
E

V
E

R
IT

Y
 (

%
)

blocker 0.7 0.8 2.1 0.0 0.0

critical 1.4 2.0 4.1 0.1 0.1

enhancement 0.1 5.3 5.6 0.2 0.7

major 0.8 5.7 9.7 0.1 0.1

minor 0.1 1.8 3.8 0.4 0.3

normal 0.7 26.7 24.4 0.5 0.3

regression 0.0 0.2 0.0 0.0 0.0

trivial 0.0 0.7 0.1 0.2 0.5

77

Table 9 Defect Distributions in Two Challenged Apache Projects

(c) Slide (b) Xindice

We also observed a situation that the distribution of the defects based on severity is almost

”normal” in all observed projects, as illustrated in Table 8 as well as in Table 9 (see the figures

in italic bold), in the sense that most of the defect reports coming from the user community are

feature requests, functionality errors or decorative ones.

Furthermore, from the tables we can see that although the user community reports defects and

considers the defects of high severity (such as “blocker”), the priority assignment by developer

does not always follow the “user needs”. In other words, the developer does not always assign

high severity (according to user) with high priority (see Figure 14).

 PRIORITY (%)

P1 P2 P3 P4 P5

S
E

V
E

R
IT

Y
 (

%
)

blocker 0.7 1.3 3.3 0.0 0.0

critical 0.7 0.7 7.2 0.0 0.0

enhancement 0.0 0.7 5.9 0.0 0.7

major 0.7 1.3 14.5 0.0 0.0

minor 0.0 0.7 4.6 0.0 0.0

normal 0.0 7.2 48.0 0.7 0.0

regression 0.0 0.7 0.7 0.0 0.0

trivial 0.7 1.3 3.3 0.0 0.0

 PRIORITY (%)

P1 P2 P3 P4 P5

S
E

V
E

R
IT

Y
 (

%
)

Blocker 0.5 0.2 1.7 0.0 0.0

Critical 1.0 2.6 4.5 0.0 0.0

Enhancement 0.0 1.9 7.4 0.0 0.2

Major 1.2 5.7 5.5 0.0 0.0

Minor 0.0 0.5 6.9 0.2 0.0

normal 0.5 17.6 41.7 0.0 0.0

regression 0.0 0.2 0.0 0.0 0.0

trivial 0.5 0.2 1.7 0.0 0.0

78

(a)HTTPD defects distribution per priority (b)Tomcat defect distribution per priority

(c) Slide defects distribution per priority

 (d) Xindice defects distribution per priority

Figure 14 Defect Distributions in Four Apache Projects

To measure the performance of defect service delay in a project, we measure the defect response

time (time to respond) and the defect closure time (time to resolve). We categorized such service

delay into several time interval scales as shown in Figure 15.

79

(a) Defect response time

(b) Defect closure time

Figure 15 Defect Service Time distribution for reviewed projects. [122]

Figure 15 shows the distribution of defect response time (Tr) and defect closure time (Tc) from

the four reviewed projects. From the figure it is obvious that Tomcat has the most responsive

community, as 60% of the reported defects are responded less than 7 days, 79% are responded

within 100 days. On the other hand, Xindice exhibits poor performance as the majority of the

Defect reports (72%) were responded by the community in more than 100 days.

Our result also found intriguing fact that more than 20% of the defects were resolved more than a

year in HTTPD and Tomcat. We investigated this issue by measuring the absolute number of the

80

resolved Defects and correlated with the assigned priority.

For HTTPD, among the 999 resolved defects, 24% are latent since they were resolved more than

a year; 88% of these latent Defects are categorized as lower priority (P3, P4, P5) and 45% are

considered as cosmetic work or minor feature error. For Tomcat, from 2063 resolved defects,

27% are latent defects with only 9% of top priority Defects (P1 and P2), and less than 15% are

severe defects (critical and blocker). Thus, we conclude that in both successful projects, the

community offers faster response to a defect with higher priority, and tends to delay the less

important ones.

3.5.4 Discussion of Empirical Results

For many OSS developers, challenge is what really motivates them and it makes the project

more active. Once they are drawn to a problem, they feel that they could create a better solution

themselves, rather than using the existing ones. Over the time, the projects may evolve and so

does the motivation of the developer.

Developer Contribution Patterns. Our study in OSS project community health revealed two

extreme trend lines in the developer participation: (1) lively developers’ activity as shown by

Tomcat and HTTPD, (2) non responsive or dying developers’ community, which we observed in

particular Apache Xindice.

The developer community in the challenged projects shows less uniform proportion of

developers’ contribution metrics (such as code submissions, Defect status changes and email

conversations). This condition is considered to signify situation in which the community is less

responsive to the status changes within the project. Our empirical study results show that for

Apache Tomcat, HTTPD and Slide, development metrics such as SCM commits and defect

status changes have significant correlations to the number of email submitted in the developer

mailing list. We can imply that statistically for each contribution by a developer whether in form

of code submission, or defect patches will likely be responded by other developers in the

community through discussion in the mailing list. We concluded that there is a development

metrics (x) that has significant correlation with developer email contribution (y),

| _ _ , , hence we can reject our null hypothesis H04.5.1a

Xindice obviously reveals a very fluctuating proportion of developer contribution (see Figure 16)

which means that there are significant imbalances between the contribution and the response

from the developers’ community. Furthermore based on the absolute number of the developers’

contribution, Xindice indicates a”dying” project, which can be seen in Figure 16. In its last 33

81

months, the developers’ contribution levels were low compared to its first 5 months under

observation. When we discussed with some experts, according to them, the reasons behind the

condition are: (a) Xindice has been abandoned by its key developer, which also proves that

diversity of core developers is important (b) the changes of market demand and technology trend

caused the developers’ community to recognize that proposed plan and the results not to evolve

expected.

Figure 16. Impact of a Core Committer Contribution which Motivate Other Developers

Contributions into the Developer Mailing List in a challenged project Apache Slide [121]

Slide has a different story as shown in Figure 16. The project exhibits proportional developer

contribution, however based on the result of measuring the absolute number, on the beginning

Slide was very promising, but since October 2004 the project was hit by catastrophic illness

indicated by the decrement of its developer contributions.

The experts participating in the Slide project mentioned that Slide was once in a dormant state.

The project woke up after a talented expert got involved in November 2003, and significantly

contributed for the peak performance of Slide.

However after several months, he decided to leave the project, leading to the collapse of Slide.

Our prior study on this case [121] validated this statement by measuring this experts’ mail

conversation and suggest the fluctuation in developers’ mail follows the dynamics in ”The

Expert” mails.

 Around March 2004, as the expert decided to leave the project, Slide developers’ mailing list

still showed notable activity for several months, before their number finally collapsed. Our

observation in February 2007 disclosed although there are still some developer activities, the

82

level is relatively low compared to the zenith period when ”the Expert” was still actively

involved in the project.

We performed prediction process based on collected development metrics. Prediction model is

necessary to have better understanding of impact factors for developer contribution pattern

(email contributions as a liner function of code submission into the SCM and defect removal

activities reported in issue tracker).

As shown in

Table 6, all trained prediction models are significant (with p-value < 0.001) however when we

extrapolated the prediction with data from the latest 4 months of observation of each projects, we

found that models constructed for the healthy projects Apache Tomcat and Apache HTTPD

outperformed the accuracy of models for Apache Xindice and Apache Slide, since we can state

that ARE(℮(Ph)) < ARE(℮(Pc)), where {Tomcat, HTTPD} Ph and {Xindice, Slide} Pc, so

then we can reject the proposed null hypothesis H04.5.1.b.

Defect Response Time and Defect Service Delay. Our study also reveals that a healthy

community will be more responsive and more eager to resolve issues or defects introduced to

them. Tomcat and HTTPD outperformed Slide and Xindice, as the largest portion of defects

reported in were responded less than a week (Tomcat=70%; HTTPD=42%; Slide=40.5% and

Xindice 12.4%) which state that a healthy project signify by faster reponse time compare to

challenged ones, Responsiveness (Tomcat, HTTPD) > Responsiveness (Slide, Xindice).

Hence, we can reject our null hypothesis H04.5.2.a. The successful projects also provide faster

service as their defect closure times are shorter compared to those of Xindice and Slide.

The results show that about 46% of the defects in Tomcat and 59 % of the defects in HTTPD are

resolved within 100 days, while most of the defects reported for the challenged projects are

resolved within or more than a year or Service Delay (Tomcat, HTTPD) > Service Delay (Slide,

Xindice), therefore H04.5.2.b can be rejected.

However the empirical result of defect severity distributions argued that the more severe defect

does not always mean to be of higher priority, since most of the top priority defects are the

normal ones as illustrated in Figure 15.

It is likely that the response time is affected also by priority set by developers due to some

consideration. For example, a blocker might be given lower priority when it occurs very rarely

and it is planned not to be resolved in the current release. This practice exhibits value tradeoffs

between the users who report the defect, assign the defect severity and expecting quick response,

with the community who assess, assign, develop and resolve the defect.

83

3.6 Finding “Health” Indicators from Aspects of Quality Assurance in OSS

Projects

In this section we seek to make deeper exploration of aspects of quality assurances (QAs) in an

open source software project. We identify several QA activities that commonly performed by a

healthy OSS project community such as defect reporting, defect validation, defect removal, code

testing, integration testing, code peer-review, etc.

This research is based on an argumentation that such exploration is important for the OSS project

stakeholders in order to achieve better quality OSS products, and as basis for future work in

process and product improvement of similar development style.

Identification and measuring quality assurance aspects in OSS project is necessary to assess

current quality of OSS development process and product, which can be viewed as indication of

project “health status”.

3.6.1 Quality Assurance Aspects in OSS Project

Here, we propose a framework of quality assurance (QA) aspects in OSS project as an extension

of stakeholder roles and activities as shown in Figure 17.

This subsection described the detail of our proposed framework of QA aspect in OSS project

based on typical processes performed by different roles of project participant during defect life

cycle. In this work we define defect as an error, flaw, mistake, failure, or fault in software that

prevents it from behaving as intended.

A defect reported by user (or developer) at user community; however its existence should be

proven and validated as defect before further processed by the developer community as

illustrated in Figure 17. This framework is derived from continuous product and process

improvement in OSS projects as described previously in Section 2.2.6.

84

Figure 17 Framework for quality assurance processes as part of defect removal activities in an

OSS project [124].

Process Group I: Defect Detection

The detection and reporting process, provide information of a defect existence, and sometime

accompanies with early assessment of a defect, accompanying with early defect analysis. The

results of process group I is an unverified defect list which will be further examined by the

developer community. In detail process group I consist of following activities.

Process 1: Defect detection, in open source is more like black box testing, as the user (common

user or developer) have been using particular features of software release and spotted a defect,

error or failure.

Process 2(a,b,c): reporting a defect into the project issue tracker heavily relies on the motivation

of the user, as he may just (2a) ignore the defect and continue using the software, or (2c) he fills

the issue into the tracker, accompanied with defect summary, defect description and other

information needed by the tracker.

However as most of the common users are partially unknown to the project hence most common

85

practices in defect reporting are to (2b) notify other users or developers about the finding and ask

for their opinion in the mailing list or forum. A more experience developer who noticed the issue

then perform some early analysis, locates the defect and roughly estimates its effect(severity) if

the defect is valid then he fills a report in, otherwise he notifies the community to ignore as it is a

false defect.

Process Group II: Defect Verification

The defect verification consists of defect collection and defect fixing/correction. Both processes

are very important and similar to the same named processes in commercial software inspection.

The objective of group II is to validate the existence of a defect as defect of particular software

release, and later perform necessary actions to correct the defect.

Process 3: Defect Collection. The defect collection begins after a defect report listed into the

tracker. The process is similar to white box testing, here defects are first stated as “open”, since it

is unverified and there is no action has been taken yet. One or more developer may read the

report, add some comments and ask for more information from the reporter.

Later in order to validate defect existence, he needs to reproduce the defect, and then analyze

defect location and its effect (severity) to the software product. Once a defect successfully

reproduced and analyzed, the developer may confirm the defect existence (defect stated as

„new”), the defect already reported by others (”duplicate”) or false defect (”invalid”) which

should be ignored. The expected result from sub process 3 is to have a list of verified defect with

enriched description and specification.

Process 4: Defect Fixing is a set of activities to correct a defect. A developer who has interest in

a verified defect may take ”ownership” of the defect, create a short term plan which announce

that he is working on a particular defect and set of code files and expecting other developers to

avoid them or attempt to synchronize their changes.

If succeed, the process may deliver a set of code which should be first self reviewed later to be

submitted to the mailing list, or tracker further review by other developers or committers.

Process Group III: Defect Solution Verification

Process 5: Patches self-review. During defect solution development an assigned developer

produces a set of code locally and submits the results. It is worth noting that in OSS project it is

very unlikely for a patch to be submitted without first being self-reviewed in order to evaluate its

technical content and quality.

Eventually after self review the developer may decide (see decision: D1) to submit the results as

86

patch into the developer community (e.g through tracker and mailing list) or it is possible that the

development of a solution will impose some new defects in the code, which should be reported

as a feedback input for process 3.

Process 6: Patches Peer-review. Almost every code contribution, patch or commit is cross-

checked by attentive people (e.g. other developers or committers) in the developer community.

In a large project such as Apache HTTP Server, peer review performed not simply to assess the

quality of contributed code but also applied for a new idea/solutions submitted to the developer

community which need to be discussed before put into plan for development.

Later reviewed patch may be added to the body of code or written as change into release change

log by the committers, however if the patches could not satisfied the majority reviewers for

several reasons such as the patch does not meet the defect specification or some new defects

were found, in these cases most likely the defect will be returned to the issue tracker and stated

as “re-open” or “new”.

3.6.2 Proposed Health Indicators Derived from QA Activities in OSS Projects

Following the health indicator construction described in section 3.4, we need to identify the

expected quality aspects and investigate how to measure those using metrics that can be obtained

easily from different QA activities in OSS projects.

In this study I proposed three new health indicators which are defect detection frequency, defect

collection effectiveness and proportion of verified solution. I also incorporated defect closure

time which already evaluated in previous section to have more comprehensive indication of QA

activities in OSS projects.

1. Defect Detection Frequency: A defect detection frequency signifies average number of

defect report filled into the issue tracker by group of reporter in certain time (monthly).

2. Defect Collection Effectiveness: Effectiveness is probability of valid defects against

overall reported defects into the tracker during case study period.

3. Defect Closure Time: defect closure time is similar to service delay in commercial

project. We expect hybrid projects should perform slower closure time of defect solution

compare to pure project due their rigid documentation, guidelines and defect resolution

policies.

4. Proportion of Verified Solution: verification after a defect has a positive resolution (e.g.

patches) is important to make sure the quality of the solution meet the specification and

not endangered current body of code of the software.

87

3.6.3 Design of Empirical Study

The design of study comprises of goal definition, brief description of study objects, variables

specifications and hypotheses construction.

1. Goals

From project manager point of view, QA is very important in order to produce high quality

software which satisfy user needs, and make sure current QA performance meet stakeholder win

condition as depicted in section 3.3. One focus of our research is shaping performance indicators

to observe QA aspect status in a pure (Tomcat) and hybrid (MyFaces) OSS project.

Therefore, from OSS project and quality manager point of view, the part of analysis has two

goals: (a) to add further evidence to the validity of QA performance differences between diverse

types of project, (b) to empirically evaluates the QA performance indicators that are directly

applicable in every OSS project without specific expert know-how.

In general we expect QA performance in pure voluntarily project will be overall less effective

than hybrid project, as in hybrid project most likely have better guidelines for QA, more rigid

specification and documentation, as compulsory from their sponsor.

2. Study Objects

These projects are considered as large projects as they employ more than 20 committers and

more than 50 developers and already have more than one major release when the study was

conducted. Both projects were different in senses of their sponsorship, as Tomcat24 is pure OSS

project supported by volunteers, while MyFaces25 is partly sponsored by commercial

organization. The case study objects are two major releases of Apache Tomcat and two projects

in MyFaces community.

The first project Apache Tomcat is a network server (system) application with a very large and

diverse community background. Tomcat is pure volunteer work with 4 major releases; in this

work we investigate Tomcat 5 and Tomcat 6 as the older releases (version 3 and 4) have already

been abandoned by the community.

The second project is Apache MyFaces, an application considered as web framework (Internet

application), the project employs more homogenous participants compared to Tomcat. Apache

MyFaces consists of 4 subprojects; 3 of them (Tobago, Trinidad, and Tomahawk) are extended

components that offer more functionality and flexibility than using standard Core components.

24 Apache Tomcat Project can be found at: http://tomcat.apache.org/ (last accessed 20 July 2008)

25 Apache MyFaces Projects can be found at: http://myfaces.apache.org/ (last accessed 20 July 2008)

88

Project Trinidad is a donation from Oracle to ASF, while Tobago is a hybrid project as some

developers are paid and closely supported by commercial organizations.

3. Variables Specifications

The types of variables defined for the experiment are independent and dependent variables. The

independent variable is the type of project (either pure voluntarily or hybrid).

The dependent variables capture the QA performance in different project type. Following

standard practice in empirical studies we focus on time variables and performance measures.

(a) Defect closure time, which we defined as time spent on defect stated as “open” until the

same defect stated as “resolved” in the tracker. The formula of defect closure time is presented in

section 3. This indicator represent how well the developer community in responding and provide

solution for each reported defect of particular software product.

(b) Defect detection frequency, defined as how many defect reported (Dr) by how many

reporter (Rr) over the time into the tracker, this indicator shows how active the user community

in reporting defect, which can reflect the usage of particular release

_ _
Eq. 6

(c) Defect collection effectiveness, we defined as: ratio between number of valid defect (VD)

after reviewed by some developers per number of defect reported (Dr) by users in certain time,

this indicator tells us the how many false alarm that reported by the user community which in

some level can be annoying from the developer point of view.

_ _
Eq. 7

 (d) Proportion of verified solution, defined as ratio between defects resolved with resolution

closed (CD) per number of defect resolved with resolution fixed (RD), this indicator signify the

willingness of the community to resolve defect properly (e.g. by peer review every solution)

before a release.

_ _ _
Eq. 8

In a while to better understand the QA emphasize on defect severity, we also classified collected

defects into three class of severity based on Bugzilla documentation which are Class 1 is the

highest priority which related to security (critical) and fault (blocker); Class 2 those which

89

related to feature (major, minor, enhancement, normal) and; Class 3 are those related to

cosmetics work (regression and trivial). Defect severity is typically set by the developer who

reviews the defect into the tracker, hence we use defect severity to draw the red line between

developer value expectations with evaluated QA performance indicators.

4. Research Questions and Research Hypotheses Formulation

In the case study we will evaluate the following research hypotheses:

RI4.6.1 Defect Detection Frequency: We expect in much larger and heterogeneous community

such as Tomcat, has higher number of defect detection activities than MyFaces. Hence we

replicated a negative hypothesis as:

H04.6.1: Defect detection frequency (Tomcat) ≤ Defect detection frequency (MyFaces)

RI4.6.2 Defect Collection Effectiveness: We expect higher defect collection effectiveness in

MyFaces, as a hybrid project should have more documentation to prevent invalid defect report

and the reporter may have deeper knowledge of the project compare to pure OSS project. Hence

our replicated hypothesis is

H04.6.2: Defect collection effectiveness (Tomcat) ≥ Defect collection effectiveness (MyFaces)

RI4.6.3 Defect Closure Time: We expect hybrid projects should perform slower closure time of

defect solution compare to pure project due their rigid documentation, guidelines and defect

resolution policies. We proposed a negative hypothesis

H04.6.3: Defect closure time (Tomcat) ≤ Defect closure time (MyFaces)

RI4.6.4 Proportion of Verified Solution: We expect in less formal project environment such as

Tomcat, a defect resolution will likely to be resolved faster but less frequent to be peer-reviewed

(defect stated as ”closed”) compare to MyFaces. Thus we proposed following negative

hypothesis:

H04.6.4: Proportion of verified solution (Tomcat) ≥ Proportion of verified solution (MyFaces).

90

3.6.4 Data Collection

This section describes the proceeding of data collection, the data refinement actions, and

potential Threats to Validity.

1. Data Collection and Data Refinement

The case study was performed in March to April 2007. First we designed to be conducted

empirical study which consists of case study goals definition, study variables definition, and

derived research questions and following hypotheses to be evaluated by collected data.

In this work we examined both projects during their last 5 months of development (1/10/2006 to

1/02/2007). We retrieved SVN logs from each project’s defect database.

We classified defects into three classes of severity derived from Bugzilla bug classification. We

calculated the proposed performance indicator based on retrieved data. We use descriptive

statistic analysis to compare the QA performance of both projects and discuss the results to

answer our second research question.

For data refinement, similar to previous study reported in Section 3.5.2 , in this study we also

removed several missing, invalid and duplicate defect data. Since the number of such missing

data is quite very low (less than 2 %) compared to the number of valid data collected, hence we

believe that missing data removal is reasonable in this context.

2. Threats to Validity

Construct validity. The first threat is that in Apache communities it is a common practice in

developer community to re-open resolved defect in order to increase the quality of the patches.

In this study we hold our assumption that to re-open a resolved defect is also part of defect

removal activities. Therefore for defect closure time calculation we ignore the re-open status of a

defect which of course may significantly increase the closure time.

External validity. The quality assurance aspects presented in this study is derived from QA

practices in Apache project communities, thus we expect the results can be applied for projects

under Apache Software Foundation or at least those which have similar characteristic to Apache

projects.

3.6.5 Data Analysis Results

In this section we present empirical result and evaluate the research questions. The comparison

of results from different reviewed projects is also included in following discussion.

91

Defect Detection Frequency

Table 10 displays average and standard deviation of monthly effort in 6 reviewed major

releases. Tomcat 5 has the highest average number of defect report and reporter, which signify

the project has larger reporter community. The ratio of each project exhibits that most of the time

there are more than one defect report filled by a single reporter. The table shows that based on

mean of reported defects and number of reporter, Tomcat 5 outsized all other project releases,

which means the project has more active and heterogeneous reporter community.

Table 10 Defect Detection Frequency

Defect Severity

Major Releases

Tobago Trinidad Tomahawk Core Tomcat5 Tomcat6

Mean reported defects
 active reporter

15.20 20.80 23.80 13.00 31.80 8.20

7.40 13.00 19.60 11.60 27.40 6.20

Stdev reported defects
 active reporter

4.82 5.12 5.26 5.43 7.12 4.09

1.82 2.45 4.98 5.13 6.95 2.28

Defect Collection Effectiveness

All projects in this study show low level of report invalidity, as the majority of reported defects

had been validated and listed as positive defect instead of false ones. As we expected in five

months of observation all MyFaces releases has less invalid defect (closer to “1”) which

illustrated more effective defect collection compare to Tomcat 5 and Tomcat 6.

Table 11 Defect Collection Effectiveness

Defect Severity

Major Releases

Tobago Trinidad Tomahawk Core Tomcat5 Tomcat6

Class 1 1 0.75 0.9 0.63 0.2 0.33

Class 2 0.94 0.94 0.95 0.92 0.63 0.87

Class 3 0.67 1 1 1 0.82 1

Defect Closure Time

Table 12 illustrates the average of defect closure time (in days) for each major release, where ”0”

means a defect is resolved within the same day after the report filled in the tracker and ”N/A”

means there is no resolved defect in certain severity class.

In Table 12, in average all MyFaces subprojects need more time to solve class 1 defects compare

to Tomcat releases. However the standard deviations in Tomcat releases show more diverge time

92

to closure a defect than in MyFaces, hence it will be more complicated for project manager in

Tomcat to decide when a defect is delayed.

Table 12 Defect Closure Time per Class of Severity in Days

Defect Severity
Major Releases

Tobago Trinidad Tomahawk Core Tomcat5 Tomcat6
Mean Class 1
 Class 2
 Class 3

62 34 11.17 43 4 0
45 13 9 39 22.37 4.5
33 2 29 N/A 13 N/A

Stdev Class 1
 Class 2
 Class 3

24.79 40.8 16.44 57.38 7.98 0
27.39 26.82 76 47.48 11 9

39.47 0 32.99 N/A 28.72 N/A

Furthermore to better understand the defect closure time, instead of categorized defect into

severity classes, we distributed defects into several class of closure time as illustrated in Figure

18

.

Figure 18 Defect closure time distributions in reviewed projects

In this figure MyFaces Tomahawk, and both Tomcat releases show higher performance in

resolving defect, as the more than 50% of validated defects were fixed within one day. In

contrary 66% defects listed in Tobago were fixed in more than 30 days which signify slower

service time.

Proportion of Verified Solution

Figure 19 shows that in all projects some of reported defect have been fixed with particular

resolution. Compare to both Tomcat releases, all four My Faces subprojects signify higher QA

activities from assigned developer as more than 50% of resolved defect have been self reviewed

93

and tested (defect resolved as “fixed”).

.
Figure 19 Proportion of verified defect resolution

Furthermore higher effectiveness of peer review illustrated by My Faces Core, and Tobago, as in

both project, most of ”fixed” defect (≥ 50%) were also stated as ”Closed” means the defect has

passed several QA processes by attentive developers or committers in the developer community.

3.6.6 Discussion of Empirical Results

In this section we summarize the empirical result from our case study concerning QA aspects in

two Apache projects. Analyzing our empirical results, we derive following implications for

performance measurement of QA processes in similar OSS projects.

Defect detection frequency. The result shows that in homogenous hybrid project community

such as MyFaces obtain less number of defect reports over the time submitted by only particular

people in the community compare to large and heterogeneous project such as Tomcat. In

summary the data signify disagreement with our hypothesis H04.3. Since,

Defect detection frequency (Tomcat) ≥ Defect detection frequency (MyFaces)

It is worth noting that in Tomcat, we also found that more project participants involved in

Tomcat 5 defect collection activities rather than in Tomcat 6. The reason is in particular critical

application such as web-server, instead of using the latest release (Tomcat 6), more users are still

94

using the previous version (Tomcat 5) for several considerations such as security, set-up

overhead, etc.

Defect collection effectiveness, the results exhibit higher probability of invalid defect reports in

Tomcat releases compare to MyFaces subprojects especially in defect class 1 and class 2. For

these classes of defects we can reject hypothesis H04.4., Since,

Defect collection effectiveness (Tomcat) ≤ Defect collection effectiveness (MyFaces)

Here we can expect in more formal/structured hybrid project such as MyFaces, the community is

has more knowledge about the software releases, thus most of the time the defect reports are

valid and should be taken into consideration by the developer community.

Defect closure time. In this work we define defect closure time as time to resolve a reported

defect. The results show that majority of projects resolved defect in less than 30 days (See Figure

2) and signify a responsive developer community. In case of MyFaces Tobago exhibits more

fixing time were needed, which rejects our hypothesis H04.5. Since,

Defect closure time (Tomcat) ≥ Defect closure time (MyFaces)

One possible reason is that most of the defect were also required to be properly peer-reviewed by

other developers (Figure 18) which eventually took more time before a defect stated as ”closed”

or ”verified”. Most of these delayed defects are in middle to lower severity classes (class 2 and

class 3), which have less significant impact and tends to be delayed by the developers.

Proportion of Verified Solution. Code review at the end of defect life cycle consist of self-

reviewed and team review. Due to limitation of investigation period, although in most of the

projects we found practices of code self review (defect stated as “fixed”), however in both

Tomcat releases we barely found any evidences of code team review, as all of fixed defects are

only stated as ”resolved” instead of ”closed” or ”verified”. The result also enclosed in MyFaces

Tobago, the ratio of closed defect per fixed defect is very high (96%), means most of the fixed

defects had been peer-reviewed. Therefore we have to reject our replicated hypothesis H04.6.

Since,

95

Proportion of verified solution (Tomcat) ≤ Proportion of verified solution (MyFaces).

Hence we assume the hybrid community is more responsive to each patch/code submission and

highly aware about its quality. We asked expert in Apache foundation, it is probably due to

complexity, maturity of its releases, and releases policy that the Tomcat’s developers need to

spend more time to review and verify a code or patch contribution which could not be captured

within our case study time limitation. As the tradeoff of slower solution verification, Tomcat

offers less re-open defects (stable solutions) compare to smaller OSS projects, however we still

need to investigate this claim by providing empirical evidence, which we considered as future

work.

3.7 Chapter Summary

In this chapter we deliver following research contributions:

Causal Model of OSS Projects Survivability. We proposed a model of OSS project life cycle

and how the survivability of OSS project is depend on the aliveness of developer and user

community and the quality of product releases.

“Health Indicators” for OSS Projects. Later we proposed a concept of “health indicators” of

OSS project. “Health indicators” are quality evaluation measures of distributed development

process in OSS projects, thus our proposed “health indicators” are the first quality indicator in

our study context. From project management perspective to evaluate project “health indicators”

in time is not only to obtain overview of project status but more importantly as early warnings of

certain risks that have to be addressed to ensure the survivability of the project.

Some of these to-be-formulated indicators are “hidden” behind the development process. Hence,

effectively, it is the core stakeholder who should make the decision about which indicators

should be employed, based on the projects initial needs.

Empirical Evaluation of Proposed Health Indicators. On the second steps we performed

empirical studies to evaluate the proposed health indicator concepts in Apache Projects. Our

brief interview with an OSS expert considered that two of them as healthy projects (HTTPD and

Tomcat) and two challenged projects (Slide and Xindice). The challenged projects were in dire

situation, as Xindice for example shows a dying period since most of its developers left the

project, while Slide shows early symptom of sickness due to a core committer suddenly

abandoned the project which consequently collapses the rest of development activities.

In this chapter we outlined how such health indicators can provide more insight of development

activities that correlated to each others, we also succeed in providing prediction models that can

96

actually predict the likely measures of developer contribution patterns for the next 4 months of

development.

The second health indicator represents the capability of developer community in defect

management, as in our empirical investigations reveals that one indication of a healthy project is

responsiveness of developer community for newly reported defects and faster defect fixing time,

which of course also address the win condition of the end user of the OSS products.

Deriving Health Indicators from Quality Assurance Activities and Defect Status Changes

Data. In the second study, we focused on certain aspects of quality assurances in OSS project, in

particular for projects under Apache umbrella. By correlating metrics obtained from QA

activities during development processes and defect status changes data, we defined additional

health indicators and evaluated empirically with data from a pure and a hybrid OSS projects. We

compared the results and discuss them with an OSS expert.

Quality assurance (QA) methods such as software testing and peer review are very important to

reduce the adverse effects of defects in software engineering. In this study we explore current

practices of QA and possibilities for their extension in open source software (OSS) projects.

This study presented a framework for QA aspects in OSS project based on our observation from

typical OSS projects. Beyond the framework we performed case study on 2 large Apache

projects Tomcat and MyFaces.

Our main results were (1) base on expert interviews and literature review we found different

value expectations from the members of development community for performing QA activities

in an OSS project. Based on their win condition we can derived some performance measurement

of QA processes which need to be monitored by the project leading teams, to address typical

questions such as “Are we doing good enough in assuring our product quality?”, “How much

effort should we spend to increase the quality of our next release?”, and “How can we predict

the quality of our software product?”. (2) Different types of project may display a variety of

QA activities which depend on the nature of the developer community (e.g. size of the

development team, type of project sponsorship, project complexity, and release policies). For

example Tomcat which is a pure OSS project signifies defect detection activities with faster

defect closure time.

However the proportion of verified solution in Tomcat is lower than MyFaces, which we can

assume in hybrid project, people tend to close and verified the defect solution properly.

Generally spoken the results from OSS project should be compared to proprietary or closed

source project of equivalent size, which unfortunately may seem difficult to do, and we consider

as future work.

97

4 SOFTWARE QUALITY PREDICTION IN DISTRIBUTED DEVELOPMENT

SETTINGS

This chapter outlines the second quality aspect in my research. It presents models and research

issues for software quality prediction in distributed development.

Start with process modeling to describe software product and process improvement in OSS

projects and ways to measure the level of quality assurance (QA) activities in form of process

metrics. Some of these process metrics are “health indicators” presented earlier in previous

chapter.

This research focuses on defect prediction as one quality aspect of distributed software

development. It builds on Software Quality Prediction Framework (SQF) proposed in Section

4.2. For empirical evaluation,

In, this chapter we offer two scenarios in software quality prediction with two different quality

indicators. First scenario attempts to predict the defect growth between releases based on

objective estimates on the number of defects in a release and the currently reasonable defect

removal capacity of the developers. The second scenario propose a framework to characterize

and predict the defectiveness risk class of a software release relative to the average defectiveness

level of a reference set of releases.

For both scenarios, we investigate the potential contributions of process metrics in combination

with traditional product metrics to improve the performance of quality prediction models. We

collected and analyzed product and process data from 4 large OSS projects in two Apache

project communities with similar characteristics to conduct an empirical evaluation of the

framework across projects and across communities.

4.1 Systematic Review of the Body of Literature on Defect Prediction

The rationale for identifying defective components of a software system prior to applying

analytical quality assurance (QA) measures like inspection or testing has been summarized by

Nagappan et al.: “During software production, software quality assurance consumes a

considerable effort. To raise the effectiveness and efficiency of this effort, it is wise to direct it to

those which need it most. We therefore need to identify those pieces of software which are the

98

most likely to fail and therefore require most of our attention.” [91] A wide range of studies

provide evidence about successful prediction of defects and various scenarios on how to exploit

defect prediction have been proposed, for example, focusing testing and QA activities, making

informed release decisions, mitigating risks, allocating resources in maintenance planning, and

supporting process improvement efforts.

These studies also provide valuable advice and share lessons learned important for those who

want to adopt defect prediction in practice. Currently there are many approaches to perform

defect prediction [71] and respective validation methods [56, 97]. However, Koru et al. [64]

advise that in practice, the most appropriate prediction method has to be selected for the current

project context and the type of defect pattern to be predicted. Thereby, a good defect prediction

model has to be constructed using a set of predictor variables that represents the actual measures

of the software product and process [87, 88, 126]. Furthermore, several measures to evaluate the

quality of a prediction are recommended, e.g. [80], and calibrating the prediction model to align

false alarm rates with prediction goals and business scenarios is recommended [79].

Despite the many findings and the comprehensive information provided by the existing studies,

there still is a wide gap between published research results and their adoption in real-world

projects. Studies sharing insights about the application of defect prediction in practice are rare.

Li et al. [72] discuss experiences and results from initiating defect prediction at ABB Inc. for

product test prioritization and maintenance resource planning. Ostrand et al. [98] describe

automating algorithms for the identification of fault-prone files to support the application of

defect prediction in a wide range of projects. These studies show that in many cases, research

results on defect prediction cannot directly be translated to practice. Adaptation and

interpretation in the context of a particular project or organization is required. Furthermore,

many studies focus on specific research questions. While these studies provide a valuable

contribution to defect prediction research, this contribution remains an isolated piece of a bigger

picture without following the entire track of research.

4.1.1 Systematical Literature Review Procedure

Numerous empirical studies on software defect prediction have been published in journals and

conference proceedings. In order to provide a systematic guide to the existing body of literature,

relevant studies have been searched and selected following the approach for a systematic

literature review proposed by Kitchenham et al. [58].

A systematic literature review is defined as “a form of secondary study that uses a well-defined

99

methodology to identify, analyze and interpret all available evidence related to a specific

research question in a way that is unbiased and (to a degree) repeatable” [58].

Staples and Niazi [114] summarize the characteristics of a systematic literature review: (a) a

systematic review protocol defined in advance of conducting the review, (b) a documented

search strategy, (c) explicit inclusion and exclusion criteria to select relevant studies from the

search results, (d) quality assessment mechanisms to evaluate each study, (e) review and cross-

checking processes to control researcher bias.

A key element of a systematic literature review is the review protocol, which documents all other

elements constituting the systematic literature review. They include the research questions, the

search process, the inclusions and exclusion criteria, and the quality assessment mechanisms.

Research Questions. The research questions summarize the questions frequently addressed in

empirical studies. These questions contribute essential findings from research to the application

of defect prediction in practice and are mapped to the phases of the framework. According to the

framework, we emphasize three research questions to guide the systematical literature review

process:

RI3.1. How do successful studies in defect prediction design the prediction process prior to

model construction?

RI3.2. How do successful studies in defect prediction construct the prediction model from

collected data?

RI3.3. How can external validation of the prediction model be provided for future

predictions?

Search Process. The search process describes the process to identify the list of candidate

studies. Following search process advocated by Barbara Kitchenham et al. [62], the search

process was organized into two separate phases. The initial search phase identified candidate

primary studies based on searches of electronic digital libraries from IEEE, ACM, Elsevier,

Springer, and Wiley. Search strings have been composed from search terms such as defect, error,

fault, bug, prediction, and estimation. The secondary search phase is to review the references in

each of the primary studies identified in the first phase looking for more candidate primary

sources which repeated until no further relevant papers can be found.

Inclusion and Exclusion Criteria. The criteria for including a primary study comprised any

study that compared software defect predictions which enables metric-based approaches based

on analysis of project data. We excluded studies where data collected from a small number of

100

observations (less than 5 observations). We also excluded studies where models constructed only

based on historical data of defects with no other metrics as predictor variables. The third

exclusion criterion is that we only consider studies that performed internal validation and

external validation of constructed prediction model. Formal inclusion criteria are that papers

have to be peer reviewed and document empirical research. Regarding the contents, inclusion

requires that the study addresses at least one of the defined research questions.

Quality Assessment Mechanism. This systematic literature review has been based on a

documented and reviewed protocol established in advance of the review. Furthermore, in this

study two researchers were involved in conducting the systematic literature review and cross

validation of the results. For example, one researcher queried a digital library and extracted

candidate studies while the second researcher verified the search terms, search results, and the

list of identified candidate studies. Thereby we minimized researcher bias and assured the

validity of the findings of the review. As suggested by [60] that a systematical literature review

doesn’t necessary to summarize hundreds of findings but rather to focus on small number of

most related studies thus for the next step we discuss the most relevant studies that may answer

our research questions properly. By following this approach we identified 12 studies on defect

prediction providing findings from a total of more than 200 studies found in abovementioned

digital libraries.

4.1.2 Extraction of Findings and Discussion

This section maps the findings from the systematic literature review to the phases and tasks of

the framework for defect prediction. The findings summarize the contributions extracted from

the studies with respect to the research questions 1 to 3 used to drive our systematic literature

review.

Table 13 lists information about how current research defines the goals of defect prediction

studies, questions and hypotheses, as well as how variables are specified to describe each

question.

Note that Explicit mean the study describes the following terms (goal, hypotheses, etc) clearly as

a separate part from surrounding texts and adhere to our term definitions in the framework.

Implicit mean we need to extract the information from the text to identify a term definition. As

N/A reveals that there is no information contains the definition of an expected term in the study.

101

Table 13 Study Related Factors- Preparation Phase

Study Preparation Steps

A.1 A.2 A.3

Goal definition Research questions Variables Specification

Moser et al [87] Goal is implicitly

described

Questions proposed

with respective Null

Hypotheses

Implicit variables

specifications to predict

module defect

proneness

Li et al [71] Goal is implicitly

described

Explicit research

question with no

hypotheses

Explicit variables

specification to predict

defect intensity of a

release

Zimmermann et

al [131]

Goal is implicitly

described

Implicit research

question with no

hypotheses

Implicit variables

specifications to predict

module defect

proneness

Koru et al [64] Implicit goal

description

Implicit research

question with no

hypotheses

Implicit variables

specifications to predict

module defect

proneness

Nagappan et al

[89]

Implicit goal

description

Explicit research

hypotheses

Explicit variables

specification

Li et al [73] Goal is implicitly

described

Explicit research

question with no

hypotheses

Explicit variables

specification to predict

defect intensity of a

release

Weyuker et al

[127]

Explicit goal

description in later

section

Implicit Research

questions with

hypotheses

Implicit variable

specification to predict

file defect proneness

Menzies et al

[80]

Implict goal

description

Implicit research

question, hypotheses

described later in the

Explicit variables

specification for module

defect proneness

102

paper

Graves et al

[44]

Goal is implicitly

described

Implicit research

questions with no

hypotheses

Explicit variables

specification for module

defect proneness

Sunghun et al

[115]

Implicit goal

description

Explicit research

hyptoheses

Explicit variables

specification of file

defect proneness

Pai et al [99] Implicit goal

description

Explicit research

question with no

hypotheses

Explicit variables

specification for number

of defect per class and

class defect proneness

Olague et al

[96]

Explicit goal

statement

Explicit research

hypotheses to

describe proposed

goal

Implicit variable

specification to predict

class defect proneness

Most of the studies do not explicitly describe the goal of the study and there is no single study

which identifies the target stakeholders of the results with their values expectations. 7 out of 12

studies explicitly stated the research questions and/or respective hypotheses, which provide

guidance for the remaining empirical study process. Most of the study specified the variables as

part of the prediction model construction prior to data collection. Thus, we assert that the

preparation phase which consists of goal definition, research questions and hypotheses

formulation, and variable specifications is a common practice in conducting defect prediction

with different levels of detail and presentation.

Table 14 Study Related Factors- Model Construction

Study Model Construction Steps

B.1 B.2 B.3

Parameters Selection Prediction

Methods

Internal

Validation

Model

Performance

Measures

Moser et al product and process Naïve Bayess, 10 Fold cross Number of False

103

[87] metrics with no

parameter selection

Logistic

regression and

J48 with

validation and

Performance

measure:

positive and

Recall

Li et al [71] Product and process

metrics with no

parameter selection

16 modeling

methods

N/A Average relative

error

Zimmermann

et al [131]

Product metrics with

selection by

Spearman bivariate

correlation analysis

Naïve Bayess,

Logistic

regression and

J48

10 Fold cross

validation.

Performance

measures:

Accuracy, recall

and precision

Koru et al [64] Product (Design)

metrics with no

parameter selection

J48 10 Fold cross

validation

Performance

measures Recall,

Precision and F-

Measure

Nagappan et

al [89]

Process (code churn)

metrics with selection

by Spearman

correlation

Multiple

regression, Step-

wise regression

and Principal

Component

Analysis (PCA)

Coefficient of

determination

analysis, F-

test

Discriminate

analysis

Li et al [73] Product and process

metrics with no prior

selection

16 modeling

methods

N/A Average relative

error

Weyuker et al

[127]

Process (developer)

metrics with no

parameter selection

Negative

binomial

regression

N/A Correctly

identified files

Menzies et al

[80]

Product (static code)

metrics with no

parameter selection

Naïve Bayes

with log

transform, J48,

OneR

10 Fold cross

validation

Accuracy, Number

of false positive,

Receiver operator

curves

Graves et al Product (changes

code) metrics with no

General linear N/A Error measure

104

Table 14 outlines steps taken to construct the prediction model of these studies used variable

selection prior to model construction. Methods such as Spearman bivariate correlation analysis

and linear regression with selected methods (backward, stepwise, remove) are considered as

common methods for parameters selection prior to fit them into the prediction model.

The selection of prediction methods is based on what kind of defect pattern to be predicted, i.e.,

classification techniques such as logistic regression can be used to predict file defect-proneness

but will obtain poor performance to predict file defect rates. Similar to prediction method

selection, one should also choose appropriate internal validation methods and model

performance measures. We conclude that preparation and model construction phases have been

identified as commonly performed by researchers in defect prediction.

[44] parameter selection models

Sunghun et al

[115]

Process (change)

metrics with no

parameter selection

FixCache

prediction

method

Cross

validation for

all data set

Accuracy

Pai et al [99] Product metrics with

variable selection by

correlation analysis

and backward linear

regression

Multiple linear

regression,

Logistic

regression,

Bayesian

network model

10 Fold cross

validation

False positive rate,

precision ,

specificity,

sensitivity

Olague et al

[96]

Product (Object

Oriented) Metrics

with parameter

selection by

Spearman bivariate

correlation analysis

Univariate and

Multivariate

binary logistic

regression

Hold out

method

Percentage of

correctly classified

classes

105

Table 15 Study Related Factors- Model Usages

Study Model Usages Steps

C.1 C.2

External validation Robustness Analysis

Moser et al [87] Cross validation with different releases

with low performance results

N/A

Li et al [71] Constructed model were used to predict a

certain period of defect growth per release

Proposed framework were used

for commercial context [73]

Zimmermann et

al [131]

Cross validation of trained prediction

model in different releases and levels of

observation

N/A

Koru et al [64] Cross validation of trained prediction

model with different class of data

Depicts the need for model

calibration or refinement

Nagappan et al

[89]

State briefly with no data N/A

Li et al [73] Cross validation with different releases N/A

Weyuker [127] N/A N/A

Menzies [80] N/A N/A

Graves [44] N/A N/A

Sunghun[115] N/A N/A

Pai et al [99] N/A N/A

Olague et al [96] N/A N/A

For the third phase Model Usages (see Table 15), we found only two studies providing

appropriate results of the two involved steps. This finding confirms the critique from Norman

and Fenton [29] that most of the existing studies on defect prediction do not provide empirical

prove whether the model can be generalized for different observations.

There are several reasons why many studies did not report the external validation and robustness

analysis of constructed prediction model such as the availability of new observation data [99]

and external validation results which signify poor performance of the model [87] for which many

of the authors do not wish to report. However from practitioners’ perspective such conditions

106

should be addressed properly by data collection process refinement and model calibrations until

the model can be proven for its usefulness for prediction in particular context. Later we use the

results of systematical literature review to derive the research roadmap in software quality

prediction and evaluation (see Section 4.2) and to construct a systematic framework for

conducting software quality prediction in distributed software development settings (see Section

4.3).

4.2 Research Roadmap of Software Quality Prediction and Evaluation in

Distributed Software Development

A number of empirical studies provide evidence of successful prediction of defects using data

from real-world projects conducted in an industrial or open-source context. However,

practitioners are confronted with additional requirements when they try to replicate the success

of these studies within the context of their specific projects and organizations. Derived from

systematical literature review result reported in Section 4.1, we found several issues relevant for

applying quality prediction in practice, which are currently not adequately addressed by the

existing body of literature. Related future works are encouraged in order to make software

quality prediction a commonly accepted and valuable aid in practice.

4.2.1 Challenge 1: Needs for well planned quality prediction

Quality prediction and evaluation remain a risky endeavor for practitioners as long as upfront

investments for data collection and model construction are high and a return on these

investments has to be expected late or never [64]. Thus to conduct quality prediction should

adhere to these following requirements:

1. Aligning defect prediction with project and business goals. Empirical studies tend to

focus on prevalent research questions. Practitioners, however, have to align defect

prediction with the goals of their specific project. Concentrating testing on defect-prone

components or planning the effort for maintenance activities are examples for such goals.

Defining the goals first is therefore an important requirement as an appropriate budget

has to be allocated for defect prediction and, moreover, the investment has to be justified

according to estimated savings and benefits.

2. Creating a project-specific prediction model. Prediction models are constructed from a

project’s historical data. A prediction model, thus, models the context of a particular

107

project. As a consequence, predictors obtained from one project are usually not

applicable to other projects. Nagappan et al. [90], for example, showed that predictors are

accurate only when obtained from the same or similar projects and that there is no single

set of metrics that is applicable to all projects. These findings were supported by Koru

and Liu [64] when analyzing the PROMISE repository containing data about projects

conducted at different sites. “Normally, defect prediction models will change from one

development environment to another according to specific defect patterns.” [64]

3. Evaluating the feasibility in the project or organizational context. Despite the success

reported by many studies, the prediction of defects in a particular project may not be

possible. Typical reasons are the poor quality of the available data [59] or the effort

required to extract and collect the necessary data [103]. Most published studies report

solely successful cases of defect prediction. Only few studies point toward limitations,

for example, Li et al. [72] comment on the poor accuracy in predicting field defects for

one of the studied products. Most projects and organizations cannot afford this

investment under such adverse conditions. Thus, means are required a) to identify the

most important quality indicators, b) to conduct an early and quick estimation of the

feasibility of predicting quality with acceptable performance in the context of a specific

project or organization [97]. In short, the feasibility of predicting defects has to be

estimated early to confirm that the defined goals will be met.

4. Striving for fast results. Even when the feasibility is positively evaluated, defect

prediction is required to produce results fast. Defect prediction is relatively new in the

software development arena, and practitioners face a high level of uncertainty concerning

the return on the investment in defect prediction. Thus, when results cannot be obtained

within one or a few iterations the chance defect prediction will be applied in a real-world

project is low. The general concerns of practitioners have also been described by Ostrand

et al. [98]: “In our experience, practitioners won't even consider using a new technology

without evidence that it has worked on a substantial number of real systems of varying

types. It is very unlikely that practitioners will be convinced that a new tool is worth

learning and evaluating merely on the basis of its demonstration on toy systems or on

systems much smaller than the ones they normally develop and maintain.” If the

prediction study seems feasible then a sound plan should be assembled in order to have

better controlled prediction model construction and validation, as well as to adhere to

cost benefit constraints.

108

In Section 4.3, we describe framework that can be used to have a well planned quality prediction

and evaluation which adhere to abovementioned requirements. The frameworks have been

evaluated by means of systematical literature review, later we apply this framework with

empirical data from different contexts of distributed software development, and reported in

Section 3 and Section 4.

4.2.2 Challenge 2: Effective and efficient data collection

DSD comprised of complex distributed processes and heterogeneous project repositories.

Metrics for as input parameters for prediction model are obtained through collection and

correlation from these data sources. Ostrand et al. [98] found that “it is very time consuming to

do the required data extraction and analysis needed to build the models, and few projects have

the luxury of extra personnel to do these tasks or the extra time in their schedules that will be

needed. In addition, statistical expertise was needed to actually build the models, and that is rare

to find on most development projects“. As a consequence, it should be possible to organize data

extraction and model creation separately so it can be outsourced or – if tool support permits –

automated.

Current practices are commonly using a specific data mining tool for each data sources, however

different data sources and tools often means incompatible format and need for data integration.

Manual reformatting and integration of data before fitting into the prediction model are time

consuming and error prone tasks. Hence, most of defect prediction studies reported only a very

limited number of data sources, often with only observing a single project repository.

More researches for data collection in DSD are necessary to increase the quantity and quality of

data with reasonable efforts. One approach if to exploit available data mining tools that enable

interfacing with a number of project repositories and store the results as a set of metrics in

uniform format [125]. Another approach is to investigate the semantic relationship between data

across projects which enable integration of development tools and project repositories (e.g. by

using semantic web technology, ontology for integrated data modeling and data collection) [46,

67].

4.2.3 Challenge 3: Predicting under uncertainty

Fenton and Neil [29] remind that “Project managers make decisions about software quality using

best guesses; it seems to us that will always be the case and the best that researchers can do is 1)

109

recognize this fact and 2) improve the ‘guessing’ process. We, therefore, need to model the

subjectivity and uncertainty that is pervasive in software development.” Uncertainty exists

besides limitations resulting from incomplete, insufficient data. It arises often about how the data

has to be interpreted, which reflects the peculiarities of a project such as individual project

regulations, discontinuities in workflows and processes or specific use of tools. Practitioners

therefore rely on expert judgment and have to make assumptions. These assumptions should be

made explicit and – as a positive side-effect – the prediction model should provide information

to verify these assumptions.

4.2.4 Challenge 4: Dealing with incomplete and missing data

Existing studies on software quality prediction neglect the fact that information is often missing

or incomplete in real world settings. Practitioners therefore require methods to deal with missing

or incomplete information.

Treating incomplete and missing data are common practices in statistical domain. Typically if

the data set is large with only small number of random value are missing the problem is not

severe. On the other hand, a smaller data set which has significant missing values that are non

randomly distributed will need serious attentions [116].

Li et al. [73] reported: “We find that by acknowledging incomplete information and collecting

data that capture similar ideas as the missing information, we are able to produce more accurate

and valid models and motivate better data collection." Hence this is imperative that future

researches in software quality prediction should take closely to missing and invalid data issues

using well established statistic methods.

4.2.5 Challenge 5: Providing accurate and prompt prediction results

Our systematic literature review reported that most of software defect prediction studies still put

their focus on exploiting product metrics to construct good prediction model. However, as

mentioned in related work, recent studies such [70, 87, 126] reported that in DSD project with

short release cycle such as OSS project, prediction models which enabled only product metrics

were outperformed by those that enable process metrics or combination of both classes of

metrics.

In this study, we focus on metric based prediction models, as they offered early availability of

data compared to time based approach (e.g. reliability growth model) with tradeoff in accuracy

110

of the results [73, 74]. Yet, another raised issue is that current studies are typically tried to fit all

collected metrics into the prediction model without prior knowledge whether these metrics have

significant correlation to the estimator (e.g. number of defects, or module defectiveness). From

statistical best practices it is not wise to construct a model with a lot of weakly correlated metrics

as they will reduce the performance of the constructed model [33]. For this reason, future work

in quality prediction should take into account of this issue such as by comparing the results of

prediction with different types of metrics as well as prediction with and without parameter

selection, one should distinguish the differences and take the best option.

4.2.6 Challenge 6: Reusing and validating the existing model for upcoming releases.

To optimize the return on the investment in model creation, the model has to be reused for

upcoming releases with minimal additional effort. However, over time, the project’s context and

the defect patterns can change. As a consequence, prediction results for a new release derived

from a model created and verified with historical data have to be validated. Practitioners need a

measure of reliability when they make decisions based on prediction results. Furthermore, Koru

and Liu [64] point out that “as new measurement and defect data become available, you can

include them in the data sets and rebuild the prediction model.” As adjusting or rebuilding the

model requires additional effort, the validation results should serve as an indicator when

adjusting or rebuilding becomes necessary.

4.3 The Software Quality Prediction Framework (SQF)

In this section we describe a framework for software defect prediction which consists of three

phases – (A) preparation, (B) model creation and (C) model usage – as well as seven steps (see

Figure 20). This framework is in line with the requirements outlined in the previous section and

has been derived from our experience and existing body literature on software defect prediction.

SQF is an extension from framework for conducting empirical study proposed in Section 2.1.3,

but with more focus for conducting software quality prediction.

4.3.1 Phase A – Preparation

As first phase in conducting a defect prediction, one should start by preparing the necessary

preconditions prior to model construction. The intention of the preparation phase is to create a

clear focus of what results should be provided by the prediction, to appropriately design the

111

prediction approach, and to have quick analysis whether such design will accomplish the

expected results within project and organizational context.

Figure 20 Software Quality Prediction Framework (SQF)

A.1. Define defect prediction goal, which represents the objective of defect prediction with

respect to a particular stakeholder perspective and the current project context.

A.2. Specify questions and hypotheses. Questions are derived from the defect prediction goals.

112

They are used to identify relevant models of the objects of study and, then, to more precisely

define the expected achievement of a specific goal. The questions can be reframed as hypotheses

about the observed situation or defect pattern. We recommend specifying hypotheses that are

easily measurable to enable the falsification or acceptance of the hypotheses for a sound

assessment of the prediction results

A.3. Quick feasibility study and variables specification. A quick feasibility study is essential

to assess whether the initial goals of the prediction can be achieved using the available data from

the observation objects. A negative assessment indicates the initial goals are not feasible and

shows the need for adjusting the goals and questions. After conducting a feasibility study, the set

of metrics that should be collected and estimated in the prediction model is collected. These

metrics act as independent variables and dependent variables in the prediction model to be

constructed in the next phase.

4.3.2 Phase B – Model Construction

Constructing the prediction model is the core phase in defect prediction, here, based on the

variables and the defect prediction method specified in the previous phase, data collection, model

training, and model evaluation are performed.

B.1. Data collection for model training. As part of a close investigation of the available data

sources, the period of observation and relevant project repositories and databases are specified.

Based on the previously selected variables the data is collected from the observation objects.

Invalid and missing data is thereby filter or refined. For making a sound prediction, potential

threats to validity are recorded.

Collected Data Quality Assurances. One of research challenges in software defect prediction as

shown in our research roadmap is the validity and sufficient quality of data prior to prediction

model construction. There are some typical cases which reduce the quality of data such as

missing and invalid value of data, invalid data extraction (e.g. wrong data query, wrong data

source, etc), error during data integration that come from different sources, etc. In our study prior

to model construction, all input parameters for the model are derived from integrated data that

come from difference sources (see Figure 21). In this study we propose two quality assurance

(QA) gates that should be conducted hence to assure the sufficient quality of data prior to

prediction modeling.

In Figure 21, the raw data come from project repositories such as Source Code Management (i.e.,

SVN and CVS), Issue Tracker (i.e., Bugzilla and Jira), Mailing List (Developer Mailing List and

113

User Mailing List) and other repositories (e.g., Project Website, Project Wiki, Forum, etc).

Figure 21 Data Collection and Refinement Procedure

These project repositories are sources for raw data that should be further extracted (see Step 1)

by certain queries command or data mining tools (see Chapter 3 and Chapter 4 for overview of

data mining tools we utilize in this thesis) to obtain basic metrics such as product metrics, basic

process metrics and defect data.

The first QA (see circle QA1) are a) to check the validity of query performed, and b) the origin

correctness of data sources. For example to retrieve the process metrics of a historical release

from typical Apache project, one should perform the data extraction from the TRUNK directory

of the SCM with specific preset date that represents the life span of the release (release date to

release date of the next release version). While the product metrics should be collected from the

historical releases directory of the SCM (sometimes called as BRANCHES directory), in this

directory the community will keep the originality of code source, thus we can assure that the

collected product metrics are come from source code that has not been through additional

114

changes since its release date. The results of QA1 are validated metrics or needs for data

refinements (recollection of particular data) see feedback loop F1.

To construct the prediction model (model training), we need certain number of data points

depends on the prediction techniques we use, for example for most of regression procedure we

will need n+1 data points where n is number of parameters within the model. A data point

represents one level of observation (e.g., in files level, module level, or release level) in study

context. Hence to derive a data point we need to integrate data (see Step 2) built from metrics

that previously we collected in step 1.

The second QA (see circle QA2), are a) to check if there is missing or invalid value in data point,

b) to check whether all data points represent the uniform level of observation required in our

prediction modeling c) to check if number of data points are sufficient to construct required

prediction model d) as additional QA, one can also perform parameters correlation analysis or

selection procedure to indentify which parameters can only be noise and reduce the accuracy of

to be constructed prediction model (see Chapter 4 for overview of these procedures). Note, that

there are some common treatments in statistic [33, 85] for missing data that can be used in

software quality prediction such as:

 Obliterating missing or incomplete cases, if a case has missing values it may be removed

from observation. Deleting data with missing value is typically the default option with

statistical software.

 Estimate missing values and use these values during consequent data analysis. Estimates

may be obtained from prior knowledge, mean values, regression techniques and spatially

autoregressive models.

 Treating missing values as data which may indicate some form of behavior.

 Compare the quality prediction results with and without missing data, if they are

noticeably different then try to discern the reason for the difference.

Feedback loop F2 contains information of the need for data refinement such as treatment for

missing value. Later the validated input parameters are fit in to the prediction model (model

training). A project manager can decide whether the performance of the prediction model is

sufficient in term of accuracy and reliability or he may trigger the need for model calibration to

improve the model performance.

For the following empirical evaluation of concepts in this thesis, we use this schema of data

collection to ensure that the constructed models are valid with adequate quality for prediction.

115

B.2. Prediction model training. Parameter selection is used to identify the parameters with a

significant impact on the dependent variables. These parameters are used in training the model,

usually applying standard statistical or machine learning tools. Depends on the type of quality

indicator we need to select best available technique for prediction model training.

As described above, in this study we propose two quality indicators: a) defect growth between

releases which is predicted using multi linear regression methods such as Stepwise and Forward

regression procedures and b) class risk of a release which is predicted using classification

techniques such as Logistic Regression, Naive Bayess, J48 and Random Forest (please refer to

Appendix for detailed descriptions of these selected techniques).

B.3. Prediction model validation. The trained model needs to be validated for its performance,

i.e., accuracy, recall and precision. Unsatisfying results should trigger a feedback loop back to

the step data collection, as it will not make sense to proceed with a low-performance model that,

e.g., has a high number of false positives or errors.

4.3.3 Phase C – Model Usages

A major concern from a practitioner’s point of view is that many studies reported a trained defect

prediction model which show a good performance by means of cross validation with historical

data [29]. Only limited studies reported the robustness of the model with different observations.

This, however, is a necessity in practical usages for predicting the quality for a certain time

period in the future.

C.1. Project defect prediction. In this step the model trained in the previous phase is actually

used, i.e. the model is parameterized with observations form new releases to predict defects in

these releases.

C.2. Analysis for prediction model robustness. Based on the results of step C.1, the robustness

of the model is analyzed. Thereby, the reliability of the current prediction results are estimated to

determine how to apply the prediction results in the project, e.g., to safely rely on them or to be

careful. If the analysis indicates low reliability, a feedback loop back to re-creating or calibrating

the model should be triggered as well as suggestions for refinement of the prediction hypotheses

should be provided.

116

4.4 Using Combined Product and Process Metrics to Predict Defect Growth

between Releases in OSS Projects

The quality evaluation of open source software (OSS) products, e.g., defect estimation and

prediction approaches of individual releases, gains importance with increasing OSS adoption in

industry applications. Most empirical studies on the accuracy of defect prediction and software

maintenance focus on product metrics as predictors that are available only when the product is

finished.

Only few prediction models consider information on the development process (Process Metrics)

that seems relevant to quality improvement of the software product. In this paper, we investigate

defect prediction with data from a family of widely used OSS projects based both on product and

Process Metrics as well as on combinations of these metrics.

In this study we proposed our two-step predictor selection procedure. First, we use correlation

analysis as suggested in [89] to identify predictors with strong correlation to potential defect

growth between releases.

In this study, we call the potential defect growth between releases “delta defects”. Estimates of

delta defects are important indicators to evaluate the quality improvement of the current

development process (e.g., potential contribution of defects of the next release) compared to

prior releases.

In the second step, we use stepwise regression and backward elimination for selecting a subset of

independent variables (predictors) from the strong correlated list to form a linear prediction

model [56].

For evaluation, we cross validate the prediction model by comparing the average relative error

(ARE) [56] of each prediction model to select which variant provides better estimates of delta

defects.

4.4.1 Empirical Study Design

In this section, we describe our case study objects, define independent and dependent variables,

and formulate research hypotheses for evaluation.

1. Goals of Empirical Study

For a release manager and project leading team in an OSS project, defect prediction between

releases is important as decision support for release candidates such as: a) is the a release

117

candidate good enough for deployment or whether there is another QA cycle necessary before

delivery; b) input for planning the next release cycle based on the prediction results.

The goal of this study is to investigate different metrics contributions to the accuracy of defect

prediction in OSS projects and provide robust prediction model to support release process from

project and quality manager point of view.

2. Study Objects

For an empirical evaluation we collected data from 11 releases of 2 Apache MyFaces project

family (Tobago and Core), and analyzed the potential contribution of combination of product

and Process Metrics for defect prediction model in OSS project context.

The objects of our case study are releases in the family of the OSS Apache MyFaces project26.

We selected MyFaces Core and MyFaces Tobago for the study because Core is the main project

of MyFaces and a pure OSS project (all voluntarily developers) while Tobago is a hybrid project

where some developers are paid and well supported by commercial organizations.

Later we applied defect prediction models to six releases of Core (C.1.1, C.1.2, C.1.3, C.1.4,

C.1.5, and C.1.6) and six releases of Tobago (T.1.1, T.1.2, T.1.3, T.1.4, T.1.5, T.1.6). Our

selection criteria are: all releases should be announced after both projects have left the incubation

process from the Apache Software Foundation27. Later we can regard our selected study objects

as mature releases and have been promoted for larger user and developer community; therefore,

we can observe more activities within the project community compare to the activities during the

incubation process.

3. Variables Specifications

The measurement model defined for the empirical study consists of independent and dependent

variables. Following standard practice in empirical studies we define the independent variables

as: a) selection of input parameters (product, project or combination of both) and b) context

parameters consisting of deployment metrics, configuration metrics, project origin, project

sponsorship (pure or hybrid) and period of case study. The dependent variable in our case study

is growth of defect between releases called as delta defect (DG). DG signifies the number of

defects reported after release (d) in comparison to accumulative defect reported prior to release

(do) and d (see Eq. 9).

26 Apache MyFaces Project website can be found at http://myfaces.apache.org/. Last accessed at 10th January 2008.

27 http://incubator.apache.org/ Last accessed at 10th January 2008.

118

Eq. 9

Using DG as dependent variable we can directly assess current quality of release in term of

defect reported in comparison to prior release, for example if DG > 50% means current release

contributes more defects than in prior to release and signify the need for higher resource

allocation for defect removal.

To select which predictors have strong correlation with independent variables, we employ the

Pearson bivariate correlation model [91, 131], and we use multiple linear regressions to exclude

insignificant predictors [130] and to develop prediction models with different combination of

predictors (product metrics only, Process Metrics only, and combination of both types of

metrics).

To evaluate the accuracy of the linear regression prediction models we fit the model to historical

data of releases, we use the average relative error (ARE) to evaluate forecast accuracy. We

apply the ARE definition as suggested by [56] to DG instead of absolute number of defects

reported (d); and DG’ as estimator of DG (see Eq. 10)

1

Eq. 10

4. Research Questions and Research Hypotheses Formulation

In the case study we will evaluate following hypotheses in order to address the research issues:

RI.5.3.1 Contribution of Process Metrics: Goal of this research issue is to investigate whether

an increase of QA effort is correlated with a decrease of defects in the next release. Therefore we

propose the null hypothesis as:

H0.5.3.1: There is no Process Metrics (pr) that has statistically significant impact to dependent

variable DG compare to product metrics (pd).

If r is a function to check whether there is a strong correlation between variables pr and

dependent variable DG, then the respective null hypothesis can be formulated as

H0.5.3.1: | ,

RI.5.3.2 Accuracy of Defect Prediction using Combined Project and Product Metrics: A

combination of process and product metrics should be able to predict the defect growth in the

next release with lower ARE value compared to prediction based on the traditional product

metrics alone. Then we proposed following null hypothesis as:

119

H0.5.3.2: A prediction model that used combination of process and product metrics has higher

ARE value compare to prediction model that used only product metrics. If the estimate of defect

prediction model (℮) is a function of product (pd) and/or process metrics (pr), then the

respective null hypothesis can be formulated as:

H0.5.3.2: ARE(℮(pr,pd)) > ARE(℮(pd))

4.4.2 Data Collection

This section describes the data collection proceeding and threat to validity of collected data.

1. Data Collection and Refinement

In this work, we examined both projects during 6 months of recent development (1/10/2007 to

01/03/2008). The observed projects employ SVN as their SCM tool, and Jira for issue tracker.

Hence, to measure the code development activities before release, we retrieved 24 months

historical code collections using StatSVN v.0.4.1, SVN log and diff commands from the trunk

directory of each project.

For each release observation, we created a snapshot with a specific time range (i.e., the first time

a release being announced until the announcement of succeeding release). For example a release

R1 was first announced in 2007-02-12 which later followed by R2 in 2007-04-19, then the

snapshot for observing the development activity prior to R2 is (in SVN log creation command):

Table 16. SVN Log Command.

svn log -v --xml -r {2007-04-19}:{2007-02-12}>log.xml

After collecting the snapshot log, we applied the StatSVN tool28 to collect code development

metrics from each project SVN repository based on the given snapshot log.

Table 17. Queries for Defect and Issue Data Collection.

Addressed defects and issues prior to a release:

SELECT <issue|defect> FIX FOR <release>

Number of defects after a release:

SELECT defect AFFECT VERSION <release>

Resolved and peer-reviewed data:

SELECT defect WITH STATUS <resolved|closed>

28 StatSVN tool can be found at: http://www.statsvn.org/

120

For defect and issue removal data evaluation, we used Jira v. 3.12.3 query commands29 to collect

(see Table 17) and evaluate the defect and issue data. We exclude the INVALID and

DUPLICATE defects; therefore we only include valid defect data for model construction.

Using specific Jira query commands and SVN snapshot logs, we assure the validity of collected

data and assure that for each release observation all collected metrics are derived from developer

activities prior to observed release date.

We applied the Eclipse Metrics v. 1.3.6 tool plug-in30 to measure product metrics of the study

objects. We used a check style plug-in31 to analyze style violations in the source code32. We

analyzed the collected data using SPSS v.14 for performing Pearson correlation analysis and

linear regressions procedures (Stepwise and Backward). Table 18 describes collected product

metrics as suggested by [30, 40, 71] with two additional code quality metrics.

Table 19 outlines 23 process and resource metrics as suggested by [30, 71, 124, 127] and newly

proposed metrics (italic font). For deployment and usage metrics we used following metrics:

type of release (major release, minor release and service pack), months since the 1st release,

months since the previous release, month to the next release, months from release date to the end

of case study.

29 Jira Query Commands for ASF can be found at https://issues.apache.org/jira/

30 Metrics plug-in for Eclipse: http://metrics.sourceforge.net/. Last accessed at 15th December 2007.

31 Check style plug-in for Eclipse: at http://eclipse-cs.sourceforge.net/. Last accessed at 10th December 2007.

121

Table 18. Collected OSS Product Metrics [71, 126].

Source of Variation Metrics collected Abbr.

Volume or size Total Lines of Code

Method Lines of Code

Number of packages

Number of classes

Number of children

Number of attributes

Number of methods

Number of interfaces

Average of the class specialization index

Number of overridden methods

Number of static methods

Number of static attributes

Average number of parameters

LOC

MLC

NOP

NCL

NOC

ATT

NMH

NOI

ASI

NOM

NSM

NSA

ANP

Control complexity

Average McCabe Cyclomatic Complexity

Weighted Methods per Class

NPath Complexity

MCC

WMC

NPC

Modularity Average Lack of Cohesion of Methods

Average Afferent Coupling (for each class: number of classes that

uses the class)

Average Efferent Coupling (for each class: number of classes used

by the class)

Average Instability (AEC/(AEC+AAC))

Abstractness

Average Normalized Distance from Main Sequence

Average Depth Inheritance Tree

Average Nested Block Depth

Average Specialization Index

ACM

AAC

AEC

AIS

ABS

AND

DIT

NBP

ASI

Code quality Number of check style violation

Ratio of check style violations per number of check style methods

CSV

RCV

122

Table 19. Collected OSS Process Metrics.

Source of Variation Metrics collected Abbr.

Defect and issue removal

prior to release [122, 124,

126]

Number of targeted defects (reported defect that

should be solved prior to the next release)

Number of resolved defects

Number of peer-reviewed defects

Number of open defects

Number of targeted issues

Number of resolved issues

Number of peer-reviewed issues

Number of open issues

Defect resolution level= RD/TD

Defect peer review level = CD/TD

Issue resolution level = RI/TI

Issue peer review level = CI/TI

Number of invalid defect reports;

Number of invalid issue reports;

Number of defect reporter,

Number of issue reporter,

Avg Number of defects reported by a reporter

TD

RD

CD

OD

TI

RI

CI

OI

RDTD

CDTD

RITI

CITI

NIDR

NISR

NDR

NIR

NDRR

Code development prior to

release [87, 126, 127]

Number of Commits

Total Changes

Total Lines of Code Deleted

Total Lines of Code Added

Churned LOC (Sum of added and changed LOC)

Total Files Changed

Average Changed File Size

Changes by peripheral developers/total changes

Average Revision per Changed File

Total Commits per Core developer

Churned LOC per Core developer

Total changes made per core developer

CM

TC

TFD

TFA

LOM

TFC

 AVS

CBD

ARF

CMACD

LOMAD

TCACD

Context of a release [71, 126] Number of Active core developer prior to release

Months from previous release

ACD

MPR

123

Months to the next release

Type of project (hybrid or pure)

Type of release (major or minor)

MNR

TPR

TRS

2. Threat to Validity

As in any empirical study there are threats to the validity of data collection and analysis that need

to be acknowledged and addressed appropriately.

Internal Validity. To reopen a resolved defect is common practice in OSS projects [124] thus

there is high possibility that some of new defects reported are old defect from prior releases

which most of them could not be observed. Our observation using reliability growth models (see

Figure 22), reveals that a large proportion of accumulated defects originated from the incubator

process hence prior to the early mature releases the developers were heavily preoccupied to

resolve these defects. As the results in the first mature releases of both projects reveal very large

number of defects reported which significantly increase the data skewness especially in MyFaces

Core.

To address such issues in this paper after collecting valid defect data (by excluding invalid and

duplicate defects) using Jira query we classified defect as a) “defect prior to release”: a defect

from prior release that has been targeted to be resolved for the next release, and b) “defect

reported after release”: a release defect that has been reported into the issue tracker after release.

Later we normalized the number of defects data reported after release with accumulative number

of defects prior to release. Later we called this normalized data as defect growth between

releases or delta defects.

External Validity. In this work, we focus in one OSS community only; therefore, we consider

the results would be valid for the projects in MyFaces and similar community in Apache family.

However, we still need to validate the robustness of proposed estimation model with different

OSS project communities.

4.4.3 Data Analysis Results

In this section, we outline the reliability growth model for MyFaces Core and Tobago derived

from the whole life span of both projects. Later we perform the predictor selection procedures

and estimate the defect growth between releases using variants of metrics (product metrics,

Process Metrics, and combination).

Our two-step predictor selection process starts with predictor correlation analysis to find out a set

124

of the strongest correlated predictor to DG and then we use stepwise and backward linear

regression to exclude some insignificant predictors.

Predictor Correlation Analysis

Table 20 shows the Pearson rank correlation among predictors with the dependent variable DG.

In a first step we analyze predictors with Core data, and then we compare the results to Tobago

data.

Table 20 Top 10 Predictors Correlation Analysis33

Predictors Abbreviation Project Correlation
Sig.

Resolved Defects/Targeted Defects RDTD
Core 0.927* 0.024

Tobago 0.967* 0.020

Closed Defects/Targeted Defects CDTD
Core -0.879* 0.005

Tobago -0.969* 0.001

Closed Issues prior to release/Targeted issue CITI
Core 0.901* 0.037

Tobago 0.695 0.125

Changes by peripheral developers/total

changes
CBD

Core -0.768 0.042

Tobago -0.465 0.132

NPath Complexity NPC
Core -0.734 0.158

Tobago -0.272 0,602

Resolved defects prior to release RD
Core 0.681 0.205

Tobago 0.955* 0.030

Avg. McCabe Cyclomatic Complexity MCC
Core 0.613 0.272

Tobago 0.212 0.686

Abstractness ABS
Core 0.582 0.303

Tobago 0.243 0.064

Depth Inheritance Tree DIT
Core 0.580 0.305

Tobago 0.616 0.193

Method LOC MLC
Core 0.460 0.012

Tobago 0.345 0.155

33 *) correlation is significant with p-value < 0.05 level (2-tailed)

125

From Table 20, Process Metrics such as RDTD, CDTD and CITI considered have significant

correlation to DG. CDTD has negative correlation with DG that means every peer-reviewed

defect resolution may reduce the possibility of defect reported in the next release. While RDTD

and CITI has positive correlation to DG which means that resolved defects and number of issue

patched prior to a release may increase number of defects.

Reliability Growth Models

We collected defect occurrences data and use quadratic curve estimation to construct reliability

growth models (RGMs) of Core and Tobago as can be seen in Figure 22.

The RGMs are useful to outline defect growth through all project life cycle, later using data from

Table 20; we can perform analysis based on correlation of strong predictors with defect growth

between releases. We discuss the results with an OSS expert to identify potential scenarios of

the outlined RGMs

Using correlation Table 20, there are at least two scenarios that potentially accelerate the defect

growth in Core as estimated in Figure 22 a as a stepwise linear defect growth which are a) new

defects found in new features and patches b) a curious developer takes resolved defect prior to

release and reports as new defect in current release.

RGM for MyFaces Core RGM for MyFaces Tobago

Figure 22 Reliability Growth Models (RGM) for Myfaces Tobago and Core

Tobago has a gradual hyperbolic curve, which means potential deceleration of defect growth

after 5 releases. The RGM shape of Tobago could be derived by higher number of defects

closed prior to release. Using correlation data from Table 20, we can assume that that in Tobago,

126

the developer community spends more effort for peer reviewing defect resolutions compare to

Core (see Figure 23), in which after five releases have been paid off by slower defects growth.

Figure 23 depicts the monthly performances of peer review of defect resolution (represented as

defect closed per defect reported prior to release) for My Faces Core and Tobago. In average

Tobago has highest level of peer review activities (Mean: 0.82) compare to Core (Mean: 0.67).

The variability of peer review practices in Core releases is higher (data are not normally

distributed especially C114 with one outlier) than Tobago. The results depict in a pure OSS

community such as Core although peer review of defect resolution are common practices and

significantly growth over the time, however the intensity were fluctuated depend on the

developers’ motivation.

Figure 23 Ratio of monthly defect closed prior to release in MyFaces Core and Tobago

Parameters Selection and Prediction Models Construction

Stepwise regression and backward elimination procedure support selecting a subset of

independent variables (predictors) from the top-ten list to form a linear model. We grouped the

predictors into three groups: product, project and combination metrics, and employ the

procedures for each group. Each estimation procedure was used with the three groups to fit a

linear modeling expressing program defect growth in a release (DG).

In this case, each procedure led to selection of these following metrics: product metrics (ABS,

DIT), Process Metrics (CD, RDTD, CDTD, CBD) and combination metrics (MCC, DIT, CBD,

127

ABS, RDTD, CDTD). We use these variants of metric sets from historical release and fit the data

into the regression model.

The predictive quality for each estimation procedure was determined by determining the ARE

values from all project releases to perform cross validation of the model. Table 21 shows the

prediction results using linear regression and conclude that using Stepwise linear regression with

combination metrics is superior to other prediction models.

Table 21. Comparison of Prediction Models

Prediction Model Project Mean

(ARE)

StdDev

linear regression with product metrics Core 0.93 1.18

Tobago 0.12 0.08

linear regression with process Metrics Core 0.24 0.26

Tobago 0.06 0.05

linear regression with combination metrics Core 0.02 0.01

Tobago 0.04 0.01

4.4.4 Discussion of Empirical Results

Analyzing the empirical results, we derive the following implications for defect prediction in

comparable OSS projects.

Contributions of Process Metrics. The results show for both MyFaces Core and Tobago that

process Metrics, which are related to issue and defect resolution prior to release, have strong

correlation to defect growth between releases (DG). Data analysis for both projects agreed for

RDTD and CDTD to have strong and significant correlation with dependent variables DG.

For example, the increase of peer reviewed defect resolution prior to a release significantly

reduces the likely number of defects in a release; while a higher number of resolved defects prior

to a release are correlated to stronger defect growth. In an OSS project, this can be a result of

practices such as reopening resolved defects or adding defect prior to release as a new defect in

current release.

In Core CITI is strongly positively correlated to DG (p-value <0.05), this means statistically the

increase of closed issues in form of patches or new features may significantly carry new defects

into the next release. In summary, the correlation rank data signifies that | ,

128

, thus we reject hypothesis H0.5.3.1.

Accuracy of Defect Prediction using Combined Process and Product Metrics. The results in

table 3 exhibit that the prediction model using combination of process and product metrics

(consists of MCC, DIT, CBD, ABS, RDTD and CDTD) offers lower ARE value than using either

type of metrics. Since ARE(℮(pj,pd)) < (ARE(℮(pd)) thus we can reject H0.5.3.2.

In case of Apache MyFaces Core and Tobago we found strong linear correlation between

selected independent variables and the dependent variable DG, consequently the two steps

predictors’ selection procedure seems straight forward to provide good prediction with only a

small number of selected predictors.

4.5 Empirical Approach to Characterizing and Predicting Risk Classes of

OSS Project Releases

IT managers need support in selecting OSS products based on their overall quality as well as on

the quality of individual releases. From an OSS project management point of view, a typical

risky situation in a software project can occur if the defectiveness level (DL) of a (planned)

release is higher than the average DL of a set of reference releases. We define the DL as the

weighted sum of the number of defects reported in three severity classes (critical defects, major

defects and minor defects).

In this study we propose a model to characterize the defectiveness risk (DR) class of a software

release based on the (predicted) DL of the release compared to the average DL of a reference set

of releases, which were used for prediction model training.

We define two DR classes: 1. release candidates with higher DR (i.e., a release with a DL above

the average DL of a set of reference releases) which may warrant a closer look for product

improvement before actual release; and 2. Release candidates with lower DR.

We identify and evaluate as predictors several types of product metrics and development process

metrics that can be efficiently collected from project repositories (e.g., issue tracker and SCM)

and investigate the potential contribution of these metrics to increase the accuracy of DR class

prediction models.

We conducted the empirical evaluation of the performance of prediction models (a) with several

sets of metrics, (b) with parameter selection prior to model training, and (c) with data from 4

large projects listed in 2 communities of the Apache Software Foundation. For external

validation we discussed the results with an OSS expert.

129

4.6 Research Approach

Following the Software Quality Prediction Framework in section 4.3, in this study we apply a

three-step approach as framework for defect prediction of releases in the context of OSS

projects.

Step 1: Design of the Empirical Study. Select the appropriate study objects and specify

prediction model variables (see Section 2). Based on specified variables we collect and validate

data from project data sources to ensure sufficient quality to construct a prediction model. Then

we create two groups of data for model training and model evaluation. Common practice in

software estimation is to use only one set of data to both train the model and provide internal

validation, e.g., with cross validation [64, 87] or random percentage split [89, 91].

However, in practice the goal is to predict the quality of a future software release. Thus, the

trained model should be externally validated with a different data set. In this study we divided

the data into two groups before and after a point in time: The first group for model training

consists of 70% data from older releases, while the second group for model evaluation consists

of 30% of newer releases. Hence we can assure that the model is not validated with historic

project data that has already been used for training. We used a 70:30 ratio following common

practice in validation techniques in software estimation [91], in practice one can shift the ratios

depending on the volume of data collected and the desired level of training for the prediction

model.

Step 2: Defect Prediction Models Training. We fit the collected data to prediction models

using statistical or machine learning techniques and measure the performance of each prediction

model. The prediction models were trained using 4 classification techniques: Logistic

Regression (LG) [87], Naive Bayes (NB) [64], and two tree classification techniques: J48 [64,

87] and Random Forest (RF) [45]. During the training session we internally validated the

prediction models with 10-fold cross validation [64, 87] by partitioning the data set into 10 equal

segments. This method uses each portion once as the test set to evaluate the model built using the

remaining nine segments.

One consideration from statistics is often neglected in software estimation: avoid using all

collected metrics as input parameters for different prediction techniques, as the model may

contain a number of weak parameters (parameters with no significant correlation to the

dependent variable) which may actually reduce prediction performance [33]. In this paper we

compare the performance of “unsupervised” prediction models that are trained without parameter

selection with “supervised” prediction models that use a selected set of metrics. We use Stepwise

130

and Forward Multi-Linear Regression as parameter selection procedures following Yasunari et

al. [130].

Step 3: Trained Prediction Models Evaluation. The last step in our framework is to evaluate

the robustness of a trained model with data that is different from the data used for model training

(“training set”). Accordingly, we evaluate the trained model with the second data set in our study

(“evaluation set”). In addition to model validation, we can discuss the results with OSS experts

for external validation of the prediction model results.

4.6.1 Design of Empirical Study

1. Goal

The purpose of our study is to investigate the accuracy of advanced software defect prediction

models in the context of OSS projects using product and process metrics.

2. Study Objects

The study objects consist of four large Apache projects from two OSS project communities

(MyFaces and Struts). Each project has been graduated from the Apache Software Foundation

(ASF) Incubator process and is considered as mature project. Based on classification of the

developer size in mature OSS projects by [65], all projects in MyFaces and Struts communities

are categorized as large projects as they currently employ ±10 active committers (core

developers) per release. These projects have been producing more than five releases within the

last two years, which indicates healthy projects [1, 126]. According to these measures we assume

that all study objects have sufficiently similar characteristics for cross-project validation.

Apache MyFaces34, is a community that focuses on web-framework development; the project

employs more homogeneous participants compared to Struts. Apache MyFaces consists of 4

subprojects; 3 of them (Tobago, Trinidad, and Tomahawk) are extended components that offer

more functionality and flexibility than using standard Core components. Project Trinidad is a

donation from Oracle to ASF, while Tobago is a hybrid project as some developers are paid and

closely supported by commercial organizations. In previous section, we used MyFaces Core and

MyFaces Tobago data for predicting defect growth between releases. In this study we extend the

object studies into all projects within MyFaces community.

Apache Struts35 is a Java web applications framework; in April 2008 the project offered two

34 Apache MyFaces projects website: http://myfaces.apache.org/

35 Apache Struts project website: http://struts.apache.org/

131

major versions: Struts 1 and Struts 2. Struts 1 has been recognized as the most popular web

application framework for Java with proven solutions to common problems. Struts 2 was

originally known as WebWork 2. After working independently for several years, the WebWork

and Struts communities joined forces to create Struts 2. For this study we selected Struts 2

releases as a study object.

Our observation focuses on process and product metrics and defect data on release level. All

metrics were collected from a total of 34 releases. From these 34 releases, we use 24 (70%) older

releases for prediction model training and the remaining 10 (30%) releases for evaluation of the

trained model.

3. Variable Specifications

The measurement model defined for the empirical study consists of independent and dependent

variables (see Tables 3 and 4). We define the independent variables as: (a) selection of input

parameters from a group of collected metrics (product and process metrics) and (b) context

parameters consisting of project sponsorship type (pure or hybrid), release type, number of active

core developers and period of release.

The variable specification in this study followed similar practices in defect and risk prediction in

project level [130] which define the dependent variables (estimators) as likelihood of falling into

a class representing certain level of project quality (i.e., defectiveness level).

Dependent Variables

As in our context of study, from a project management point of view, we define the

defectiveness level (DL) of a release with relation to the number and severity of defects of the

release. We characterize the risk of a release in one of two defect risk (DR) classes: the class of

“lower-risk releases” (or LRR) consists of releases with a DL that is not higher than the average

DL in a set of reference releases; the class “higher-risk releases” (or HRR) consists of releases

with higher DL than the reference release set average.

Independent Variables

We focus on investigating the impact of different classes of metrics on DR class prediction. A

prediction model can be generalized as P(Y|x1,…,xn) and predicts the dependent variable Y as

the likelihood of a release for being in the “higher risk” HRR, using a set of independent

variables (x1,…,xn), i.e., product metrics, process metrics or combined metrics. To construct the

dependent variable, first, we need to calculate the DL based on the number of defects in a set of

3 defect severity classes. From defect categories in the Jira documentation36 we classify the

36 Jira documentation can be found at http://www.atlassian.com/software/jira/docs/v3.12.3/

132

reported defects based on their severity into 3 classes: Critical, Major, and Minor. Defect

severity is typically set by the developers in an OSS project, who review and validate the

reported defects in the issue tracker.

As the basic metrics to measure DL of a software release (see eqn. 1), we calculate the number

of defects in each severity class: D1 is the number of reported severe defects that related to

security (critical) and fault (blocker) which may endanger system stability; D2 is the number of

major or normal defects; and D3 is the number of defects related to minor and trivial (cosmetics)

work. Later we assign weight factors (α1, α2, α3) for each severity class to calculate the overall

defectiveness level (DL) of a release:

 Eq. 11

To determine the DR class we cluster the release data (ri) into 2 classes based on the average DL

in a set of reference releases (see eqn. 2), similar to the experiment procedure in [130] for

estimating risky projects.

, , … , 1 Eq. 12

Metrics to Evaluate Prediction Models Performance

For measuring the performance of a defect prediction model, we use the standard measures

Precision, Recall, and F-Measure commonly used in the machine learning and data mining

communities [64].

a. Precision (PC) is defined as the ratio of the number of releases predicted correctly as

HRR release or true positives (TP) and the total number of releases predicted as HRR in

the study (TP+FP), where FP is the number of false positives.

Eq. 13

b. Recall (RC) is defined as the ratio of the number of releases correctly predicted as HRR

(TP) to the actual number of releases classified as HRR in the data set (TP+TN), where

TN is the number of true negatives.

133

Eq. 14

To perform well, a model must achieve both high precision and high recall. The higher

the precision is, the less effort is wasted on testing and inspecting low-risk software

releases; and the higher recall is, the fewer defects go undetected in high-risk releases

[64].

c. F-Measure (FM) is defined as the weighted harmonic mean of precision and recall,

which considers precision and recall equally important.

2
Eq. 15

Often, there a trade-off can be observed between precision and recall. For example, if a

model predicts very few, e.g., only one release as HRR and the prediction turns out to be

correct, the model’s precision will be 1 but recall will be lower; in contrast if a prediction

model predicts all releases in HRR; its recall will be 1 however the precision will be

lower. Hence, in this study, we also apply the F-measure to evaluate the performance of

prediction models, and rate model prediction with F-Measure > 0.6 as sufficiently

accurate as suggested by Koru et al. [64].

4. Research Issues and Research Hypotheses Formulation

From contributions of and limitations in related work we derive the following research issues

(RIs).

RI5.4.1: Prediction model accuracy to identify higher risk releases increases when using both

product and process metrics. In an OSS project context with high release frequency, we expect

defect prediction performance to be more accurate based on a combination of process and

product metrics than based on only either type of metrics.

The corresponding null hypothesis H05.4.1 is: There is no significant difference between the F-

Measure (see section 3.3) of higher DR class predictions from models that use a combination of

process and product metrics and from models that use only process or product measures.

If {y1,…,yn} is a set of either only n product metrics (PD) or only n process metrics (PR), and

{x1,…,xm} is a set of m combined metrics (C), and P is likelihood of Y defectiveness risk class of

a release, then the respective null hypothesis can be formulated as:

134

H05.4.1:

 | , … ,

 | , … , | , … ,

RI5.4.2: Supervised defect prediction of higher risk releases is more accurate than unsupervised

defect prediction. Derived from best practice in statistics for estimation [33], we expect

supervised defect prediction to improve defect prediction performance and robustness by

calibrating the models by selecting metrics that have significant correlation in the OSS context to

the prediction target, in our case the defectiveness risk (DR) class of a release. Supervised defect

prediction also can reduce the effort for data collection and analysis as a project manager can

focus only on a smaller set of metrics.

The corresponding null hypothesis H05.4.2 is: There is no significant difference between the F-

Measures of supervised and unsupervised defect prediction models for higher DR class releases.

check whether a selected set of n combined metrics {x1,…,xn} can provide better accuracy (i.e.

predicting defectiveness risk class 1) compared to fit all available m combined metrics {x1,…,xm}

into the model. Denotes that , … , , … , , thus we can formulate the null

hypothesis H05.4.2 as:

H05.4.2:
| , … ,

| , … ,

RI5.4.3: Cross-project defect prediction using results from RI 1 and RI 2. In OSS development a

project manager often steers several projects at a time and wants to compare the quality of

products and processes under his supervision with similar projects [122]. Consequently, we

investigate whether the findings of RI 1 and RI 2 hold a) only within the training release data set;

b) with new release data from the same project; or even c) for data from similar projects that

share characteristics such as size. We define sufficient prediction model accuracy with a

threshold of 0.6 for the F-Measure for predicting higher risk releases and observe data sets for

training, evaluation within a project, and evaluation across projects.

Hence the corresponding null hypothesis H0.5.4.3 is: there is at least one project where the best

selected prediction model has insufficient performance, i.e., an F-Measure < 0.6 for higher risk

releases. Lets denote that S as the set of observed projects {p1,…,pm}, and for each project i

where 1≤i≤m is described with following combined metrics {pix1,…pixn} C, hence we can

formulate following null hypothesis:

135

H05.4.3: | , … , 0.60

4.6.2 Data Collection

1. Data Collection Procedure and Data Refinement

The observed projects employ SVN as their SCM tool, and Jira as issue tracker. Hence, to

measure the code development activities before release, we retrieved 24 months of historical

code using the StatSVN v.0.4.1 tool. For each release observation, we created a snapshot with a

specific time range (i.e., the first time a release being announced until the announcement of

succeeding release) similar to experiment in Section 4.4.2. Similar to the first study in defect

prediction, after collecting the snapshot log, we also apply the StatSVN tool to collect code

development metrics from each project SVN repository (Trunk directory) based on the given

snapshot log, and we use Jira query commands to retrieve defect and issue data.

Following the procedure to improve the quality of collected data as described in Section 4.3 we

refine the collected data by deleting invalid or duplicate issues and defects.

We apply the Eclipse Metrics v. 1.3.6 tool plug-in to collect the product metrics of the study

objects (see Table 18). We use check style plug-in to collect style violations in the source code

which reflects the current code quality. We perform validation of integrated data to identify there

is incorrectness of data collection level that come from such heterogeneous sources.

Later, we analyze the collected data using Weka Explorer 3.4 37 for prediction model

construction and evaluation.

In total we collected 27 product metrics and 28 process metrics (including the project context

metrics) that can be obtained from each project issue tracker and source code management tool

(i.e., SVN). Collected metrics in this study are similar to those we used in the first case study as

described in the Previous Section.

2. Creating Training and Evaluation Sets

Training sets consist of older releases for train the prediction models, evaluation sets consist of

newer releases (each project donates 2 or 3 of their newest releases) that are not involved in

model training but for performance evaluation.

Table 22 outlines that we trained the prediction model by using four older releases of Core (C1

to C4), six releases of Tobago (TB1 to TB6), five releases of Trinidad (TR1 to TR5), and nine

37 Weka project can be found at: http://www.cs.waikato.ac.nz/~ml/weka/index.html, Last accessed at 10th August 2008

136

releases of Struts (S1 to S9).

Later we use the trained model to predict risky releases (HRR) in the later releases of the

projects including 2 Core releases (C5, C6), 3 Tobago releases (TB7 to TB9), 2 Trinidad releases

(TR6, TR7), and 3 Struts releases (S10 to S12). We use the notation such as CR1, TB1, etc for

simplification reasons instead of the usual versioning names in OSS projects. For each release

data set we further construct three data sets: a) with only product metrics, b) process metrics data

set, and c) combined metrics data set. Consequently, in total we have 6 data sets prior to

unsupervised model training and evaluation.

Table 22. Release Data Grouping.

Projects Releases for

model training

data set

Releases for

model evaluation

data set

Core C1,…,C4 C5, C6

Struts 2.0 S1,…,S9 S10,…, S12

Tobago TB1,…,TB6 TB7,…,TB9

Trinidad TR1,…,TR5 TR6,…,TR7

3. Threats to Validity

As every empirical study we identified and addressed threats to internal and external validity of

the study results.

Threats to internal validity. DL weight factors. We use data from our prior work [121, 124] to

assign the weight factors to construct the DL model, which we assume fit to represent the

severity level of different classes of defects. We addressed this threat by performing sensitivity

analysis of DL and DR and investigate the further impact to prediction results.

We investigated two scenarios by increasing the range between weight factors by 10% and 30%,

however, the results remained stable. A reason may be that the majority of defects came from D2

(major defects) which far exceeded the number of D1 (severe defects) and D3 (minor defects) in

our study context (see also Figure 1).

Threat to external validity. In this study we focused on four large Apache projects with similar

size and characteristics. The selection of these homogeneous OSS projects may raise concerns

whether results on the prediction models and process are also valid for other project contexts.

137

While we assume our approach to hold for projects similar to our study objects (i.e. under

Apache umbrella, short release cycle, with active and large developer community), further work

is necessary to investigate projects with strongly differing characteristics.

4.6.3 Data Analysis Results

In this section we report descriptive statistics on the empirical study objects, performance of

prediction models for unsupervised (RI 5.4.1) and supervised prediction (RI 5.4.2), and finally,

results from cross-project evaluation (RI 5.4.3).

1. Descriptive Statistics

Project context characterization. The observed projects in this paper are similar in the size of

releases (KLOC), the involved number of active core developers/committers per release (ACD),

and number of packages (NOP) as can be seen in Table 23.

Table 23. Release Sizes and Complexity.

Project KLOC Active Core

Developers

#Packages

Mean StdDev Mean StdDev Mean StdDev

Core 27.8 7.9 8.7 3.7 55.7 11.5

Struts 2.0 24.7 2.3 6.7 3.2 28.9 5.0

Tobago 25.5 1.1 6.2 2.9 37.1 4.0

Trinidad 26.3 2.5 6.6 2.1 30.7 0.6

In average Core produces larger-size releases compared to other projects, nevertheless the size

differences of Core with other projects is less than 15%. As reported by [1, 83] although the

number of core developers (ACD) per project release is typically ± 20% of overall developer

community, nevertheless 80% of contributions within a release originate from this group.

All projects in our study have more than 5 committers involved per release; accordingly they

were assisted by a larger number of peripheral developers which can be identified in each project

website or release log. For the number of packages (NOP or modules), Struts 2.0 in average has

the lowest number of packages per release compared to other projects in particular to Core

releases. Nevertheless the total KLOC per release of each project are more and less similar, thus

138

a project with lower NOP typically has bigger packages.

Actual defect, DL, and DR class distributions. For training of the model we included 973 valid

defects and 587 valid issues (enhancements or new feature requests) from 24 older releases. For

the prediction of”higher risk” releases, we used 357 valid defects and 303 valid issues from the

later 10 releases. In all observed projects, the majority of defects come from Major Defect class

(D2) (> 50%) as shown in Figure 24.

Figure 24. Defect Distribution from 34 releases in 3 severity classes.

The share of critical defects (D1) is on average lower than 20% for all projects, where Struts has

the highest proportion of critical defects (Mean:19%, StdDev: 18%) while Tobago has the lowest

one (Mean: 6% , StdDev: 8%). This can be one indication that in a hybrid project community

such as Tobago, the community has higher awareness for release quality which results in lower

numbers of critical defects compared to pure OSS projects such as Struts and Core. To identify

the defectiveness risk (DR) class of each release in our study, first, we calculate the

defectiveness level (DL) of each release in the first group of data. In this study we assign as

weight factors: α1 = 15; α2 = 10; and α3, = 5 (see eqn. 1).

139

These weight values were based on our prior work [121, 124] on “healthy” Apache projects

(such as Apache MyFaces, Apache HTTPD and Apache Tomcat projects) taking into account the

average service time to resolve a more severe defect (to state Fixed or Closed) compared to a less

severe defect. We take the average DL of the training set as threshold between DR classes (see

eqn. 2).

As result, 8 releases out of 24 were classified as “higher risk” HRR (33.3%). Using the same

threshold we characterized the remaining releases in the evaluation set: here 3 out of 10 (30%)

are classified as “higher risk” HRR.

Table 24 outlines the average value of DLs per project (normalized by mean value as 100%) and

number releases actually classified as LRR and HRR.

Table 24. Normalized Actual DLs and DR classes for 34 releases (Mean DL=100 %).

Projects Actual Release DR

Classification

Actual LRR

Release DLs (%)

Actual HRR

Release DLs (%)

LRR HRR Mean StdDev Mean StdDev

Core 3 3 52 22 232 86

Struts 2.0 9 3 69 27 195 42

Tobago 6 3 70 27 245 0

Trinidad 5 2 59 31 165 0

Figure 25 illustrates the distribution of releases’ defectiveness risk score in each project

(normalized by mean value as 100%).

140

Figure 25. Actual DLs and DR classes for 34 releases

2. Unsupervised Risk Class Prediction

We perform unsupervised model training and to compare prediction model performances in our

study context. Table 25 outlines the results of unsupervised training and evaluation for predicting

“higher risk” HRR releases; this table compares the contribution of several types of metrics sets:

product metrics (PD), process metrics (PR) and combined metrics (C) for each prediction model,

i.e., Logistic Regression (LG), Naive Bayes (NB), Tree classification J48, and Random Forest

(RF).

For each combination of metrics set and prediction model we calculate the evaluation measures:

Recall (RC), Precision (PC), and F-Measure (FM). Highlighted cells (bold font) mark sufficient

prediction accuracy (FM >= 0.6).

During training PR metrics outperformed the traditional PD metrics for most models. For three

models (NB, J48 and RF) C metrics improved the prediction accuracy compared to only using

either PD or PR metrics.

141

Table 25. Unsupervised Prediction Performance for “Higher Risk” HRR Releases.

Prediction

Models

Unsupervised

Models

Training Data

Set

Unsupervised

Models

Evaluation Data

Set

PD PR C PD PR C

LG RC 0.00 0.67 0.33 0.67 0.67 0.67

PC 0.00 0.80 0.67 0.33 0.25 0.40

FM 0.00 0.73 0.44 0.44 0.36 0.50

NB RC 0.50 0.50 0.67 0.67 1.00 0.67

PC 0.60 0.75 0.67 0.33 0.38 0.50

FM 0.55 0.60 0.67 0.44 0.55 0.57

J48 RC 0.33 0.67 1.00 0.33 0.33 0.33

PC 1.00 0.67 0.83 0.50 0.50 0.50

FM 0.50 0.67 0.91 0.40 0.40 0.40

RF RC 0.33 0.33 0.50 0.00 0.33 0.33

PC 0.50 0.67 1.00 0.00 0.50 0.50

FM 0.40 0.44 0.67 0.00 0.40 0.40

For LG surprisingly PR metrics have better accuracy than C metrics; (Note that in this case PD

show the worst possible performance in this case). Overall, J48 with PR and C metrics sets

provided the best accuracy with unsupervised training.

On the second step we evaluate all trained models with the evaluation data set. However, all

unsupervised models did not provide sufficient accuracy to predict DR HRR. In this case NB

with combined metrics (C) offers the best performance (FM= 0.571).

3. Supervised Risk Class Prediction

Next, we investigated whether supervised modeling training and evaluation can improve

prediction performance. We use two linear regression procedures (Stepwise and Forward) for

parameter selection from each group of metrics (PR metrics, PD metrics, and C metrics).

From the results of each regression procedure, we selected only a significant regression model

(Ftest p-value<0.05) with the highest R_Square. In this case, the procedures led to the selection

of the following metrics: product metrics (NOP, AND), process metrics (CDTD, RDTD) and

combined metrics (CDTD, AND, RDTD, NOM, AVS, ASI).

142

Note, that all of these metrics were not strongly correlated to each other (i.e., Pearson rank

correlation > 0.8 and p-value <0.05), hence, we can say that these selected parameters are

statistically independent and it is valid to include these parameters into the trained models [33].

We use these variants of metric sets from historical releases and fit the training set data to

calibrate the prediction models. Later we evaluate the calibrated models using the evaluation

release data set as shown in Table 26.

Table 26. Supervised Prediction Performance Results.

Prediction

Models

Supervised

Models

Training Data

Set

Supervised

Models

Evaluation Data

Set

PD PR C PD PR C

LG RC 0.36 0.63 0.83 0.33 0.33 0.67

PC 0.50 0.83 0.71 1.00 0.50 0.67

FM 0.43 0.71 0.77 0.50 0.40 0.67

NB RC 0.38 0.38 1.00 0.33 0.33 1.00

PC 0.75 0.60 0.86 0.50 1.00 0.75

FM 0.50 0.46 0.92 0.40 0.50 0.86

J48 RC 0.82 0.75 0.83 0.33 0.33 0.67

PC 0.25 0.86 1.00 0.50 0.50 0.67

FM 0.17 0.80 0.91 0.40 0.40 0.67

RF RC 0.25 0.88 1.00 0.67 0.67 0.67

PC 0.25 0.70 0.86 0.67 1.00 1.00

FM 0.25 0.78 0.92 0.67 0.80 0.80

Table 26 shows that with C metrics and parameter selection all prediction models and all data

sets show sufficient prediction accuracy in our study context, which seems to be a very

promising result.

For predicting a HRR release using combined metrics (C) is better for all but one prediction

models compared to only using PR or PD.

Using combined metrics, the prediction models RF and NB provide the best performance during

model training (FM= 0.923 and RC =1) means that all HRR releases were correctly classified.

143

J48 comes in second with lower RC but offers the highest PC =1, i.e., there are no false

positives. In evaluation phase, once again NB with combined metrics offers the best

performance which reflects the ability for better data extrapolation compared to other models.

The results also depicts that Tree classification techniques (i.e., J48 and Random Forest) are only

better during the training phase (data interpolation), while the results are often weaker for

software defect prediction.

4. Cross-Project Evaluation of Prediction Model

To investigate whether the results in Sections 5.2 and 5.3 hold for cross-project defect prediction,

we select the best model (supervised Naive Bayes with C metrics) to predict higher risk releases

across projects in our study.

For this purpose we restructure the data used in RI2 into four releases group based on projects

(Core, Struts, Tobago and Trinidad) and use this data set to once again validate the trained

model.

Table 27. Cross-Project Evaluation with Naive Bayes for Predicting “Higher Risk” DR HRR

releases.

Projects Model

Performance for

Predicting HRR

releases

RC PC FM

Core 1.00 1.00 1.00

Struts 2.0 1.00 1.00 1.00

Tobago 1.00 1.00 1.00

Trinidad 1.00 0.50 0.67

Once again, we use FM > 0.6 as the threshold for sufficient prediction model accuracy, here in

Table 27 shows that using NB with selected combined metrics can be used to sufficiently

accurately predict the DR classes in all projects.

The selected model can predict fully correctly risky releases in three projects: Core, Struts, and

Tobago, i.e., without false positives or false negatives. The model shows somewhat lower

performance for predicting risky releases in project Trinidad (which warrants more detailed

investigation on the causes of this variance) but still with sufficient accuracy (FM > 0.6).

144

4.6.4 Discussion

In this section we discuss the results of the empirical study regarding research issues (RIs) and

corresponding null hypotheses with related work and on OSS expert.

RI 5.4.1. Prediction model accuracy for higher risk releases increases when using both product

and process metrics. To answer the first research question, we build distributions from the FM of

prediction models (average FM) from the training and evaluation results that used the PD (PR)

metrics and C metrics as reported in Table 25 and Table 26; then we compare these FM

distributions for significances differences using Mann-Whitney test (with confidence level 95%)

to evaluate whether there is a significant difference between models performance with different

metrics sets. The results are a) overall, combined metrics improved the models performance

during training session compared to product metrics from (Mean FM=0.38, StdDev 0.19) to

(Mean FM= 0.70, StdDev= 0.18), with the Mann-Whitney p-value = 0.01 showing a significant

performance difference; b) in the evaluation phase, combined metrics once again significantly

improved the FM distribution of the model compared to process metrics from (Mean FM=0.58,

StdDev 0.16) to (Mean FM= 0.70, StdDev= 0.18) with p-value=0.049. Based on these results,

we conclude that using combined (C) metrics significantly improved the prediction model, thus

we reject the null hypothesis H01.

The results also depict that although majority of models can be improved using C metrics there

are several exceptions such as: a) in case unsupervised training of LG using combined metrics

has lower performance to process metrics. One possible reason is that product metrics with LG

in Table 25 indicates very poor performance (RC=PC=FM=0) which may impact the

performance of the model when using combined metrics. b) In some model evaluation cases, i.e.,

the results of unsupervised evaluation of JF and RF, and supervised evaluation of RF, we found

that process metrics offer the same accuracy as combined metrics. Further, the results outline

that on average the performance of prediction models that use PR metrics outperformed those

using PD, accordingly we confirm the finding from [87, 126] and suggest that in short-release-

cycle environments such as OSS projects, product metrics are correlated to poor defect

prediction performance.

RI 5.4.2. Supervised defect prediction of higher risk releases is more accurate than

unsupervised defect prediction. As we know that from RI1 that combined metrics provides better

accuracy for prediction models, hence, we investigate whether parameter selection (Supervised

training) of combined metrics can further improve the performance of unsupervised models.

Using data from Table 25 and Table 26, we build distributions of the F-Measure of all prediction

145

models that used combined metrics and compared the unsupervised and supervised results with

each other by data set (training and evaluation).

Supervised training with combined metrics improves the performance of prediction models from

(Mean FM =0.67, StdDev= 0.19) to (Mean FM=0.88, StdDev=0.08) with p-value=0.046, i.e.,

significant average improvement. The models performances using the evaluation data set are

also significantly improved from (Mean FM=0.47, StdDev=0.08) to (Mean FM=0.75,

StdDev=0.09) with p-value 0.038. Note that even the supervised evaluation with combined

metrics show better performance than corresponding unsupervised results with the training set in

our study context. Overall, the results indicate that model calibration with parameter selection

significantly increased the average of F-Measure (in each case by at least 20%) for predicting

HRR releases. Thus we reject the null hypothesis H02.

Revisiting prior work from Moser et al [87] and critique from Norman Fenton [29] regarding the

poor performance of defect prediction models for data extrapolation, hence in this paper we

address this issue by proposing following improvement for advanced prediction models in an

OSS project context: a) improvement through combination of product and process metrics and b)

model calibration by conducting parameter selection prior to training. Parameter selection

denotes that a release manager or project leading team in OSS projects can focus their work on

collecting and analyzing a rather small set of representative metrics. The selection of

significantly correlated metrics and data collection will require less effort compared to collect all

metrics from the project repositories. In this study we conducted parameters selections across

projects, in future work we consider to compare sensitivity of selecting parameters in individual

projects.

The parameters selection procedures for all projects using combined metrics resulted in six

parameters (see bold lines in Table 18 and Table 19) that originated from defect resolution

activities (CDTD, RDTD), one parameter came from code development activities (AVS), two

parameters originated from modularity of the release (AND, ASI), and only one parameter

represents the size of release (NOM).

We also notice that the collected number of these selected metrics may not tell the whole story,

e.g., a release manager may need to identify the reason why certain metrics have significant

impact to increase the likelihood of a release for being highly defective. Thus for this study we

conduct a discussion with an OSS expert from Apache to validate the findings in order to obtain

feedbacks of the results. In general the expert suggests the magnitude to put focus on the

improvement on particular development processes to achieve better quality products in OSS

context. Later we discuss the results of impact factors analysis to obtain specific feedbacks

146

regarding the likely reasons for these metrics selection. We use a trained Logistic Regression

model for impact factor analysis. In this discussion session, we found that the coefficient

correlation (odd ratio) of CDTD is 0.778, the likely reason is that an increase of maturity level

of peer-reviewed defects prior to release will decrease the likelihood of a release to be in the

higher risk HRR or have less defectiveness level. RDTD has coefficient correlation of more than

1, means that an increase of defect resolution level that is not properly peer reviewed can be

observed with increased likelihood of a higher risk release. The Expert also mentioned that

resolved defects which were not appropriately closed through a peer review process were likely

to be re-opened by developers after feedback from the community (i.e., as new defect reports).

AVS has coefficient correlation of 0.842 which portrays that file revisions are most likely done

to increase the quality of the code or to resolve reported defects after a release which confirm the

finding of [82].

RI 5.4.3. Cross-project defect prediction using results from RI 5.4.1 and RI 5.4.2. To address

RI1 and RI2 we mixed the data from all projects and divided into training and evaluation data

set. The purpose is to identify which prediction model with a set of metrics can offer the best

accuracy. In our case the best model is to use Naive Bayes technique with selected combined

metrics. We applied this model to predict all releases in each project.

The results are surprisingly fully accurate for three projects (Core, Tobago and Struts) as shown

in Table 27. We also notice that applying the selected model to project Trinidad raised concern

of slightly worse model precision for this particular project. In Trinidad, although all HRR

releases are predicted fully correctly, nevertheless the model suffers 50% of false positives rate,

hence depicts the need for further model sensitivity analysis prior to usage in project monitoring.

In overall we can conclude that the best prediction model as results of RI 1 and RI 2 can be

generalized for cross project defect prediction. Hence, the corresponding null hypothesis H03 is

rejected.

4.7 Chapter Summary

Whilst a large number of studies address defect prediction, our initial literature survey found

there is no specific research roadmap for software defect prediction, additionally only little

support is provided about the application of defect prediction for practitioners. The second issue

in software defect prediction research community is how to improve the accuracy and the

reliability of prediction model in different context of projects. Hence, in this chapter we

delivered following contributions:

147

Software Quality Prediction Research Roadmap. We conducted a systematical literature

review for software defect prediction using data from several major digital libraries such as

ACM Portal, IEEE Explore, and Springer. Based on the results of the review we draw a research

roadmap by identifying open issues in defect prediction and provide guidelines for future

research with regards to practitioners’ requirements. Some of these open issues were adopted as

key research issues in this thesis and later we proposed methods and conducted empirical studies

to address these selected research issues.

Software Quality Prediction Framework. In this chapter we proposed a framework for

conducting software defect prediction as an aid for the practitioner establishing defect prediction

in the context of a particular project or organization and as a guide to the body of existing studies

on defect prediction.

More importantly, the framework has been aligned with practitioners’ requirements and

supported by our findings from a systematical literature review on software defect prediction.

The systematic literature review also served as an initial empirical evaluation of the proposed

framework by showing the co-existence of the key elements of the framework in existing

research on software defect prediction. The mapping of findings from empirical studies to the

phases and steps of the framework show that the existing literatures can be easily classified using

the framework and verifies that each of the steps is attainable.

Improving the Accuracy and Reliability of Software Defect Prediction Models. We

conducted two empirical studies to evaluate our proposed Software Quality Framework (SQF)

with goals a) to investigate the important factors (e.g. product and process metrics) that have

strong correlation to quality improvement of a work product (e.g. to reduce the level of

defectiveness of a release candidate) and b) to improve the accuracy and reliability of trained

defect prediction models.

In the first case study we perform defect prediction to predict defect growth between releases

with different combination of metrics to investigate which combination can provide better

prediction results. As for the second case we perform unsupervised and supervised model

training to investigate whether a handful set of metrics with strong correlation to quality

indicator can improve the accuracy of the model. Later we performed cross project prediction,

which is necessary to check the robustness of the model and its general applicability to a set of

148

different projects.

Current studies on the accuracy of defect prediction mostly focus on product metrics and only a

few prediction models consider information on the development process. In this paper we

reported on an empirical study of software defect prediction using combined product and Process

Metrics from Apache MyFaces project family, following the project life over a period of two

years. Process Metrics can be obtained from several QA practices in OSS project that can be

observed and measured. Most of these QA practices were performed to improve the quality of

the next release and to overcome each defect reported.

Our case studies reveal that in a quality-aware OSS project such as the MyFaces and Strusts

community, a selected group of Process Metrics has strong correlation to defect growth between

releases compared to the traditional product metrics. Furthermore, the combination of selected

process and product metrics may provide more accurate prediction model, hence provide better

guide the release process or indicate areas for process improvement in context of OSS project.

Major results of the empirical study were:

1. In our study context, a combination of product and process metrics provided a reasonably

accurate estimation approach for both quality indicators: a) defect growth between releases

and b) identifying higher risk releases. More importantly the combined metrics

significantly increased the performance of the majority of the prediction models.

2. In the second case study, we found that by calibrating prediction models with parameter

selection improved prediction accuracy by at least 20% for all models. The data analysis

results suggested that some models which have good performance during model training

but poorly performed during model evaluation can be calibrated by means of parameter

selection to obtain a higher level of robustness. We also found that all supervised models

with combined metrics offered sufficient accuracy (F-Measure>=0.6) during both model

training and evaluation.

3. Empirical results of the second case study imply that the best prediction model (in our

case, Naïve Bayes) trained from cross-project data can be used as general model to predict

higher risk releases from these projects with full accuracy for most projects and with

sufficient accuracy for all projects. Such prediction model generalization is particularly

useful for a project manager who needs to supervise several projects.

149

5 CONCLUSION AND FUTURE WORK

From project manager point of view, the goal of quality evaluation is to objectively assess

current quality of work product and process and to identify typical risk conditions that may occur

and take necessary countermeasure to address such risks. Meanwhile, the goal of quality

prediction is to predict the likely quality of candidate product for a certain time point based on

current and historical data, further the prediction results act as basis for necessary product and

process improvement and strategic decision process such as release decision.

In this work we focused on quality evaluation and prediction in large Open Source Software

projects as these type of projects offer “openness” in both work product data and distributed

processes [95]. Moreover many of OSS products have been widely recognized to have better or

at least comparable quality to commercial products hence motivated many industry domains to

adopt OSS products as an alternative solution.

5.1.1 Summary of Research Issues and Results for Evaluation of Distributed

Development Processes Quality

One challenge for quality evaluation in a distributed development environment such as in large

OSS projects context, is that the human reporting of progress becomes increasingly complex and

the reliability can become doubtful [55], particularly if direct communications between project

participants are not possible [25] that prohibit personal checking of the validity of high-level

estimates such as the readiness of a software version for release or depict needs for further

improvement. Thus for steering distributed projects, project managers need objective and

trustworthy models for quality evaluation with objective data directly come from project

repositories. The second challenge as suggested by Norman Fenton [29, 31] and Tim Menzies

[80] is that most of current approaches are focused on assessing the software quality based on

product metrics (i.e., static code metrics). They further mentioned that although static code

metrics have some merits such as assessing particular quality criteria such as maintainability,

security and reliability of software product, however static code metrics contain very limited

information of related development processes to produce such product.

In OSS projects, many experts agree that in order to survive OSS initiatives should focus on

improving the development processes with assumption that the improvement of product quality

should follow. It is normal for a new OSS initiative to have a large number of defects reported

for their early releases; this doesn’t indicate that the project is in a bad shape, but rather indicates

150

that the community is active and has concern for the further product improvement. Hence in this

thesis despite a concern for the product data we also put more attention to OSS development

processes and to investigate these processes contributions to OSS product quality for progress

evaluation.

We conducted case studies with empirical data from large OSS project under the Apache

umbrella as reported in Chapter 3. In Chapter 3, based on OSS expert suggestion, we compared

data from two large healthy OSS project to two challenged projects to identify what would be the

symptom of “illnesses” that typically occur in an OSS project and may endanger its survivability.

The first research hypothesis that we want to investigate is that product quality improvement

should be a result of correlated development processes conducted by the project participants

(e.g., developers and users).

EQ1. Mockus et al [82] suggested that in large successful OSS projects, after a product release

typically most of the project participants involve in defect detection/reporting, defect validation

and defect fixing. Hence our first research issue is to investigate the distributed development

processes which have impact to product quality improvement in term of reduction of defect

counts. Based on literature survey and expert interviews, we identified several development

processes and quality assurance practices that typically conducted by OSS developer and user

communities (please refer to Chapter 3).

EQ2. Later we proposed several “health indicators” that can be used to assess quality of current

development process in OSS projects and may provide diagnosis of current project health status.

A health indicator is derived measures of two or more correlated development process (see

Chapter 3) that have impact to product quality improvement.

EQ3. We conducted some intensive case studies with data from large Apache projects, and

divided these projects into successful ones (healthy) and challenged ones (sick or dead) based on

two OSS experts interview. Our empirical results found that in healthy projects such as Apache

Tomcat and Apache HTTPD, these quality assurance activities such as defect removal or defect

reporting will likely trigger some responses from the developer community i.e. through email

conversations. Other improvement activity such as new code submissions will likely trigger

similar responses in healthy projects, but on the other hand similar pattern could not be found in

challenged projects in our study. This result signifies that in a healthy project in order to improve

the quality of a “to be released” software product, it should go through several interconnected

development processes or quality assurance activities which typically involved more than one

project participant.

We also found several typical risks for project survivability, for example in one challenged

151

project the development activities were mostly triggered and steered by one core developer

(committer) as the result when this committer decided to leave the project, his decision has brain

drained the rest of developer community which led the project into “sickness” state before it’s

finally “dying”.

The assessment of development process quality is important for project monitoring or to capture

current project status; nevertheless from project point of view another important issue is to

predict the quality of the product based on current status data, in order to identify the needs for

improvement prior to product release date.

5.1.2 Summary of Research Issues and Results for Software Quality Prediction in

Distributed Software Development Settings

Software quality prediction in particular defect prediction currently is one important topic in

empirical software engineering community. Researchers in this area are typically dealing with

issues regarding a) the accuracy of prediction results, and efficiency and effectiveness of

prediction model constructions.

From project management point of view, defect prediction is also important to provide estimate

of software quality such as to identify software components that will likely to be defective or to

estimate how many defects will likely to be found in particular release candidate. This

information is particularly important for product improvement prior to release, or to delay a

release schedule.

In this thesis we conducted a systematical literature review to provide a profound basis for

conducting defect prediction in DSD / OSS contexts. Derived from the systematic review results

we outlined a research roadmap which briefly described several open research issues that still

need to be further investigate by researcher in software defect prediction. Later we also use the

findings to derive a systematic Software Quality Prediction Framework (SQF) which we applied

to some scenarios of defect prediction with empirical data from selected large OSS projects.

QP1. In a short development cycle environment such as in many OSS projects, product metrics

have weak correlation to defect count between releases, as the results recent studies in software

defect prediction reported poor performances of prediction models that enabled only product

metrics [87, 126]. Based on our prior investigation of development processes within OSS

projects, we derived some process metrics and employed them as input parameters for the

prediction models along with the traditional product metrics as reported in Chapter 4. We also

investigated the potential contributions of these process metrics to software quality.. To improve

152

the accuracy and reliability of advanced models for objective quality prediction in the context of

DSD projects we propose two steps approaches, 1) by combining development process metrics

with tradition code static (product) metrics and 2) calibrating constructed model with parameter

selection techniques. Our empirical results show that a) combination of product and process

metrics significantly increased the performance of the majority of the prediction models and in

short release cycle environment as in many OSS projects b) prediction models calibration with

parameter selection improved prediction accuracy by at least 20% for all prediction models. We

also found that the reliability of prediction models (model capability for data extrapolation)

significantly improved by applying these two approaches (see Chapter 4). Hence the results can

be used by project or release manager as early guidance for product and process improvement

QP2. To efficiently and effectively collect data from project repositories to construct objective

prediction models. The efficiency of data collection can be measured by how much effort one

should spend to collect and to refine data prior to model construction, to address this issue, we

exploited several available data mining tools which can directly extract process and product

metrics from project repositories (see Section 4.4.2). Later the parameter selection as described

in QP1, can also increase the efficiency of data collection, as a data collector now can only focus

on collecting a handful set of metrics instead of collecting and refining a lot of metrics with less

accurate results. Data collection effectiveness refers to sufficient data quality to construct a

prediction model. To address this issue we conducted two steps of data quality assurances, first

by checking the quality of metrics collected directly from project repositories by data mining

tools, second by checking the quality of integrated metrics in the same level of observation (data

point) such as in release level or component level (see Section 4.4.2).

QP3. Empirical evaluation of proposed objective quality prediction models using data from large

open source projects. We conducted two scenarios of defect prediction: 1) predicting defect

growth between releases and 2) predicting risk classes of a release candidate. We used data from

large “healthy” OSS projects such as Apache MyFaces Core, Tobago, Trinidad, Tomahawk and

Apache Struts 2.0. The analysis of empirical results, in addition to improvement of prediction

models accuracy and reliability as mentioned in QP1, we also found that there are several

development processes that statistically have significant impact to increase or to decrease the

quality of a release candidate. Hence release manager or project manager in OSS project can use

this information to adjust certain development processes in order to improve to be released

software product.

153

5.1.3 Future Work

Evaluation of distributed development processes quality. The concept of “health status”

evaluation attempts to complement the current project monitoring model in OSS projects based

on health indicators (quality) of development processes. However, major challenges for future

work were identified: a) how to better formulate such indicators as the basis of meaningful

notifications about the status of product quality for different stakeholders, b) how much effort

seems reasonable to spend on creating, maintaining and monitoring the indicators in OSS project

context; c) the need for empirical evaluation of the concept using larger set of OSS projects; and

d) application of proposed concept in closed source distributed software developments. In

principle our approach is applicable for commercial project, however further work should

investigate the commercial project structure and the culture within the team development to

reveal appropriate health indicators.

The investigation of important health indicators is just the beginning. The next step is the

development of assessment methods that allow observers to get semi-quantitative measures of

project health itself. This will help people to learn how these processes work in-depth, allow to

enhance cooperation and give monitoring and ”early-warning” capabilities to the project

stakeholders. Nevertheless more works should be done to define relevant dynamics indicators,

empirical rules and measurement metrics for an ongoing OSS project quality and project

community assessment

Software quality prediction in distributed software development settings. In this thesis we

proposed a research roadmap based on systematical literature review, nevertheless the findings

should be further evaluated by external experts in software quality engineering or by involving

larger collection of literatures in order to externally validate and to derive more fine grained

explanation of each open research issue.

For a release manager or project leading team in an OSS project, the proposed software quality

prediction framework, the predictor selection approach and defect prediction model can be a

starting point for evaluating a product before release, release decisions or needs for

improvements. For example to boost performance level of peer review of defect resolutions

before release, or to select which release candidate should be considered for further improvement

and which candidates should be dismantled.

While the initial empirical results in the study context are promising, nevertheless further work is

necessary to strengthen the external validity of the findings with data from a wider range of

154

project types and OSS communities.

Additionally, a growing number of commercial projects focus on global software development

within a professional and commercial environment, which might be comparable to highly

distributed OSS projects with volunteer contributors. Thus, the continuous product improvement

approach within OSS projects might be a promising approach for closed source commercial

projects. As closed source commercial products usually can have a similar structure of (short)

releases in a quality-aware environment, similar project and process metrics might be used for

quality prediction. This approach might be a second major direction for future work based on the

results of this study.

Our experiences suggest that the effort for data collection, data integration and data quality

analysis using data originated from heterogeneous sources (e.g., SCM, Issue tracker, mailing list)

are time consuming, and error prone tasks. Although we already utilized available data mining

tools still the effort are high, thus as future work a more efficient and effective ways for data

collection and data quality validation that come from multi sources are needed. One approach is

by using a Semantically-enable data warehouse with capability for automatic data collection and

data quality validation.

155

REFERENCES

1. Aberdour, M.: Achieving quality in open-source software. IEEE Software 24 (2007) 58–
64

2. ASF: Apache Software Foundation Incubation Process can be found at
http://incubator.apache.org/. (2008)

3. ASF: Apache Software Foundation, Meritocracy in Action, can be found
at:http://www.apache.org/. (2008)

4. Basili, V., Caldiera, G., Rombach, H.D.: The Goal Question Metric Approach. . 2 (1994)
5. Basili, V.R.: The Experimental Paradigm in Software Engineering”. Experimental

Software Engineering Issues: Critical Assessment and Future Directives. Springer-
Verlag, #706, Lecture Notes in Computer Science (1993)

6. Basili, V.R., Perricone, B.T.: Software Errors and Complexity: An Empirical
Investigation. Communications of the ACM 27 (1984) 42-52.

7. Bassin, K.A., Santhanam, P.: Use of software triggers to evaluate software process
effectivenessand capture customer usage profiles. The Eighth International Symposium
on Software Reliability Engineering - Case Studies (1997)

8. BCG: Boston Consulting Group: The "Hacker Survey". (2002)
9. Beer, A., Ramler, R.: The Role of Experience in Software Testing Practice. 34th

EUROMICRO Conference on Software Engineering and Advanced Applications SPPI
Track Parma Italy (2008)

10. Biffl, S., Aurum, A., Boehm, B., Erdogmus, H., Gruenbacher, P.: Value-Based Software
Engineering. Springer Verlag (2005)

11. Boegh, J., Depanfilis, S., Kitchenham, B., Pasquini, A.: A method for software quality
planning, control, and evaluation. Software, IEEE 16 (1999) 69-77

12. Boehm, B.W., Brown, J.R., Lipow, M.: Quantitative evaluation of software quality.
Proceedings of the 2nd international conference on Software engineering. IEEE
Computer Society Press, San Francisco, California, United States (1976)

13. Born, M.: Natural Philosophy of Cause and Chance. Dover Publications New York.
(1949)

14. Breiman, L.: Random Forests. Machine Learning 45, (2001)
15. Briand, L.C., Differding, C.M., Rombach, H.D.: Practical Guidelines for Measurement-

Based Process Improvement. Software Process Improvement and Practice 2 (1996)
16. Capiluppi, A., Lago, P., Morisio, M.: Characteristics of open source projects. . In

Proceeding of the 7th European Conf. Software Maintenance and Reengineering (CSMR
03). IEEE CS Press (2003)

17. Chen, K., Schach, S.R., Yu, L., Offutt, J., Heller, G.Z.: Open-Source Change Logs.
Empirical Softw. Engg. 9 (2004) 197-210

18. Collins, B., Fitzpatrick, B.: Successful Open Source Projects. Google Speaker Series
(2008)

19. Cook, T.D., Campbell, D.T.: Quasi-Experimentation: Design and Analysis Issues for
Field Settings. . Houghton Mifflin, Boston (1979)

20. Crosby, P.B.: Quality is Free: The Art of Making Quality Certain. McGraw-Hill (1979)
21. Crowston, K., Annabi, H., Howison, J.: Defining Open Source Software Project Success.

The 24th International Conference on Information Systems. (2003)
22. Crowston, K., Howison, J.: The social structure of Free and Open Source software

development. First Monday 10 (2005)

156

23. Damian, D., Dustdar, S.: International Workshop on Distributed Software Development.
13th IEEE Requirements Engineering Conference (2005)

24. David, P., Waeselynck, H., Crouzet, Y.: Open Source Software in Critical Systems.
Building the Information Society (2004) 667-677

25. de Souza, C., Basaveswara, S., D., R.: Supporting Global Software Development with
Event Notification Servers. Int. Workshop on Global Software Develop-ment, ICSE
IEEE (2002)

26. DeMarco, T.: Controlling Software Projects. Yourden Press, New York (1982)
27. Denaro, G., Pezze, M.: An Empirical Evaluation of Fault-Proneness Models.

International Conf on Software Engineering (ICSE2002) IEEE, Miami, USA (2002)
28. Dettmer, H.: Goldratt’s Theory of Constraints: A System Approach to Continuous

Improvement. Quality Press (1997)
29. Fenton, N., Neil, M.: A Critique of Software Defect Prediction Models. IEEE Trans.

Softw. Eng. 25 (1999) 15
30. Fenton, N., Pfleeger, S.L.: Software metrics (2nd ed.): a rigorous and practical approach.

PWS Publishing Co. (1997)
31. Fenton, N.E., Neil, M.: Software metrics: roadmap. the Conference on The Future of

Software Engineering. ACM, Limerick, Ireland (2000)
32. Fenton, N.E., Ohlsson, N.: Quantitative Analysis of Faults and Failures in a Complex

Software System. IEEE Trans. on Software Engineering 26 (2000) pp. 797-814.
33. Field, A.: Discovering Statistics Using SPSS (Introducing Statistical Methods S.). Sage

Publications Ltd (2005)
34. Fielding, R.T.: Shared leadership in the Apache project. Commun. ACM 42 (1999) 42-43
35. Florac, W.A.: Software Quality Measurement: A Framework for Counting Problems and

Defects. CMU-SEI (1992)
36. Flore, B., Fran, oise, D., tienne, Jean-Marie, B., Warren, S.: A socio-cognitive analysis of

online design discussions in an Open Source Software community. Interact. Comput. 20
(2008) 141-165

37. Fogel, K.: Producing Open Source Software How to Run a Successful Free Software
Project. O'Reilly (2005)

38. Fuggetta, A.: Open source software--an evaluation. Journal of Systems and Software 66
(2003) 77-90

39. Gacek, C., Arief, B.: The Many Meanings of Open Source. IEEE Softw. 21 (2004) 34-40
40. Galorath, D.D., Evans, M.W.: Software Sizing, Estimation, and Risk Management: When

Performance is Measured Performance Improves Auerbach (2006)
41. German, D.M.: Mining cvs repositories, the softchange experience the 1st International

Workshop on Mining Software Repositories (MSR2004) (2004)
42. Gilb, T.: Software Metrics. Chartwell-Bratt (1976)
43. Grady, R., Caswell, D.: Software Metrics: Establishing a Company-wide Program.

Prentice Hall Engiewood Cliffs, New Jersey (1987)
44. Graves, T.L., Karr, A.F., Marron, J.S., Siy, H.: Predicting fault incidence using software

change history. IEEE Transactions on Software Engineering 26 (2000) 8
45. Guo, L., Ma, Y., Cukic, B., Singh, H.: Robust prediction of fault-proneness by random

forests. 15th International Symposium on Software Reliability Engineering (ISSRE 2004)
(2004)

46. Happel, H.-J., Maalej, W., Stojanovi, L.: Team: towards a software engineering semantic
web. Proceedings of the 2008 international workshop on Cooperative and human aspects
of software engineering. ACM, Leipzig, Germany (2008)

47. Heng, C.-S., Tan, B.C.Y., Wei, K.-K.: De-escalation of commitment in software projects:
Who matters? What matters? Information & Management 41 (2003) 99-110

48. Humphrey, W.: Managing the Software Process. Addison-Wesley Reading,

157

Massachusetts, (1989)
49. IEEE: IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer

Glossaries. Institute of Electrical and Electronics Engineers., New York, NY (1990)
50. Jensen, F.: An Introduction to Bayesian Networks. UCL Press (1996)
51. Jones, C.: Applied Software Measurement. McGraw Hill (1991)
52. Juran, J.M., Gryna, F.M.: Quality Planning and Analysis: From Product Development

Through Use. McGraw-Hill (1970)
53. Kan, S.H.: Metrics and Models in Software Quality Engineering Addison-Wesley

Professional (1995)
54. Keil, M., Carmel, E.: Customer-developer links in software development. Commun.

ACM 38 (1995) 33-44
55. Keil, M., Smith, H.J., Pawlowski, S., Jin, L.: 'Why didn't somebody tell me?': climate,

information asymmetry, and bad news about troubled projects. SIGMIS Database 35
(2004) 65-84

56. Khoshgoftaar, T., Bhattacharyya, B., Richardson, G.: Predicting Software Errors, During
Development, Using Nonlinear Regression Models: A Comparative Study. IEEE
Transaction On Reliability 41 (1992) 5

57. Khoshgoftaar, T., John Munson, Lanning, D.: A Comparative Study of Predictive Models
for Program Changes during System Testing and Maintenance. International Conference
on Software Maintenance (1993) 72-79.

58. Kitchenham, B.: Guidelines for performing Systematic Literature Reviews in Software
Engineering. (2007)

59. Kitchenham, B., Kutay, C., Jeffery, R., Connaughton, C.: Lessons learnt from the
analysis of large-scale corporate databases. Proceedings of the 28th international
conference on Software engineering. ACM, Shanghai, China (2006)

60. Kitchenham, B., Mendes, E.: A Comparison of Cross-company and Single-company
Effort Estimation Models for Web Applications. EASE 2004 (2004)

61. Kitchenham, B., Pickard, L.M.: Evaluating Software Engineering Methods and Tools,
Part 9: Quantitative Case Study Methodology. Software Engineering Notes 23 (1998)

62. Kitchenham, B.A., Mendes, E., Travassos, G.H.: Cross versus Within-Company Cost
Estimation Studies: A Systematic Review. Software Engineering, IEEE Transactions on
33 (2007) 316-329

63. Kogut, B.M., Metiu, A.: Open-Source Software Development and Distributed Innovation.
Oxford Review of Economic Policy 17 (2001)

64. Koru, A.G., Hongfang, L.: Building Defect Prediction Models in Practice. IEEE Softw.
22 (2005) 23-29

65. Krishnamurthy, S.: Cave or community?: An empirical examination of 100 mature open
source projects. First Monday (2002)

66. Krishnamurthy, S.: Cave or community?: An empirical examination of 100 mature open
source projects.: First Monday (2002)

67. Lanubile, F., Mallardo, T.: Tool Support for Distributed Inspection. Proceedings of the
26th International Computer Software and Applications Conference on Prolonging
Software Life: Development and Redevelopment. IEEE Computer Society (2002)

68. Lawrie, T., Gacek, C.: Issues of dependability in open source software development.
SIGSOFT Softw. Eng. Notes 27 (2002) 34-37

69. Lerner, J., Triole, J.: The simple economics of open source. Journal of Industrial
Economics 52 (2002) 37

70. Li, P.L., Herbsleb, J., Shaw, M.: Finding Predictors of Field Defects for Open Source
Software Systems in Commonly Available Data Sources: A Case Study of OpenBSD.
Proceedings of the 11th IEEE International Software Metrics Symposium. IEEE
Computer Society (2005)

158

71. Li, P.L., Herbsleb, J., Shaw, M.: Forecasting Field Defect Rates Using a Combined Time-
Based and Metrics-Based Approach: A Case Study of OpenBSD. the 16th IEEE
International Symposium on Software Reliability Engineering. IEEE Computer Society
(2005)

72. Li, P.L., Herbsleb, J., Shaw, M., Robinson, B.: Experiences and results from initiating
field defect prediction and product test prioritization efforts at ABB Inc. Proceedings of
the 28th international conference on Software engineering. ACM, Shanghai, China
(2006)

73. Li, P.L., Herbsleb, J., Shaw, M., Robinson, B.: Experiences and results from initiating
field defect prediction and product test prioritization efforts at ABB Inc. the 28th
International Conference on Software engineering. ACM, Shanghai, China (2006)

74. Li, P.L., Nakagawa, R., Montroy, R.: Estimating the Quality of Widely Used Software
Products Using Software Reliability Growth Modeling: Case Study of an IBM Federated
Database Project. the First International Symposium on Empirical Software Engineering
and Measurement. IEEE Computer Society (2007)

75. Li, P.L., Shaw, M., Herbsleb, J., Ray, B., Santhanam, P.: Empirical evaluation of defect
projection models for widely-deployed production software systems. SIGSOFT Softw.
Eng. Notes 29 (2004) 263-272

76. Lyu, M.: Handbook of Software Reliability Engineering. McGraw-Hill (1996)
77. Manenti, F., Comino, S., Parisi, M.: From planning to mature: on the determinants of

open source take-off. Discusion Paper. Universita Degli Studi Di Trento (2005)
78. Marik, V., Vrba, P., Hall, K.H., Maturana, F.P.: Rockwell automation agents for

manufacturing. Proceedings of the fourth international joint conference on Autonomous
agents and multiagent systems. ACM, The Netherlands (2005)

79. Menzies, T., Di Stefano, J., Ammar, K., McGill, K., Callis, P., Chapman, R., Davis, J.:
When Can We Test Less? : Proceedings of the 9th International Symposium on Software
Metrics. IEEE Computer Society (2003)

80. Menzies, T., Greenwald, J., Frank, A.: Data Mining Static Code Attributes to Learn
Defect Predictors. Software Engineering, IEEE Transactions on 33 (2007) 2-13

81. Merdan, M., Moser, T., Wahyudin, D., Biffl, S.: Performance Evaluation of Workflow
Scheduling Strategies Considering Transportation Times and Conveyor Failures. The
International Conference on Industrial Engineering and Engineering Management
(IEEM). IEEE, Singapore. (2008)

82. Mockus, A., Fielding, R.T., Herbsleb, J.: Two case studies of open source software
development: Apache and Mozilla. ACM Trans. Softw. Eng. Methodol. 11 (2002) 309-
346

83. Mockus, A., Fielding, R.T., Herbsleb, J.: A case study of open source software
development: the Apache server. The 22nd International Conference on Software
Engineering (ICSE) (2000)

84. Mockus, A., Weiss, D., Zhang, P.: Understanding and Predicting Effort in Software
Projects. International Conference on Software Engineering (ICSE), IEEE (2003)

85. Moore, D., McCabe, G.: Introduction to the Practice of Statistics. W.H. Freeman and
Company, New York (1993)

86. Moray, N., King, B., Turksen, B., Waterton, K.: A closed-loop causal model of workload
based on a comparison of fuzzy and crisp measurement techniques. Hum. Factors 29
(1987) 339-348

87. Moser, R., Pedrycz, W., Succi, G.: A Comparative Analysis of the Efficiency of Change
Metrics and Static Code Attributes for Defect Prediction the 30th International
Conference on Software Engineering. ACM, Leipzig, Germany (2008)

88. Nachtsheim, C.J., Kutner, M.H.: Applied Linear Regression Models. McGraw-Hill
Education (2004)

159

89. Nagappan, N., Ball, T.: Use of relative code churn measures to predict system defect
density. the 27th International Conference on Software Engineering. ACM, St. Louis,
MO, USA (2005)

90. Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures.
Proceedings of the 28th international conference on Software engineering. ACM (2006)
452-461

91. Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures. the 28th
International Conference on Software Engineering. ACM, Shanghai, China (2006)

92. NASA: NASA OPEN SOURCE AGREEMENT VERSION 1.3. (2007)
93. Netcraft: Web Server Survey, can be found at

http://news.netcraft.com/archives/web_server_survey.html. (2008)
94. O'Reilly, T.: Lessons from open-source software development. Commun. ACM 42

(1999) 32-37
95. O'Reilly, T.: What Is Web 2.0, Design Patterns and Business Models for the Next

Generation of Software, can be found at
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html.
(2005)

96. Olague, H.M., Etzkorn, L.H., Gholston, S., Quattlebaum, S.: Empirical Validation of
Three Software Metrics Suites to Predict Fault-Proneness of Object-Oriented Classes
Developed Using Highly Iterative or Agile Software Development Processes. Software
Engineering, IEEE Transactions on 33 (2007) 402-419

97. Ostrand, T.J., Weyuker, E.J.: How to measure success of fault prediction models. Fourth
international workshop on Software quality assurance: in conjunction with the 6th
ESEC/FSE joint meeting. ACM, Dubrovnik, Croatia (2007)

98. Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Automating algorithms for the identification of
fault-prone files. Proceedings of the 2007 international symposium on Software testing
and analysis. ACM, London, United Kingdom (2007)

99. Pai, G.J., Dugan, J.B.: Empirical Analysis of Software Fault Content and Fault Proneness
Using Bayesian Methods. Software Engineering, IEEE Transactions on 33 (2007) 675-
686

100. Phillips, J.: IT Project Management: On Track from Start to Finish. McGraw-Hill,
Osborne Media. (2005)

101. Pocock, J.N.: Distributed software development and VSF. IEE Colloquium on
Architectures for Distributed Development Support Environments (1991) 6/1-6/5

102. Prikladnicki, R., Audy, J.L.N., Damian, D., de Oliveira, T.C.: Distributed Software
Development: Practices and challenges in different business strategies of offshoring and
onshoring. Global Software Engineering, 2007. ICGSE 2007. Second IEEE International
Conference on (2007) 262-274

103. Ramler, R., Wolfmaier, K.: Issues and Effort in Integrating Data from Heterogeneous
Software Repositories and Corporate Databases. 2nd International Symposium on
Empirical Software Engineering and Measurement (ESEM'08), Kaiserslautern, Germany
(forthcoming)

104. Ratzinger, J., Pinzger, M., Gall, H.: EQ-Mine: Predicting Short-Term Defects for
Software Evolution. FASE’07 Braga, Portugal (2007) 14

105. Raymond, E.S.: The cathedral and the bazaar. Can be found at:
http://www.catb.org/esr/writings/cathedralbazaar/. (2003)

106. Royce, W.: Software Project Management: A Unified Framework. Pearson Education
(2000)

107. Schatten, A., Tjoa, A., Andjomshoa, A., Shafazand, M.: Conference invited spech:
Building a web-based open source tool to enhance project management, monitoring, and
collaboration in scientific projects.: the third International Conference on Information

160

Integration, Web-Applications and Services (2001)
108. Schewe, K., Thalheim, B.: The co-design approach to web information systems

development. Journal of Web Information System 1 (2005) 9
109. Schneidewind, N.F.: Body of Knowledge for Software Quality Measurement. IEEE

Computer vol. 35 (2002) 77-83.
110. Sengupta, B., Chandra, S., Sinha, V.: A research agenda for distributed software

development. Proceedings of the 28th international conference on Software engineering.
ACM, Shanghai, China (2006)

111. SourceForge: SourceForge Open Source Software Projects can be found at
http://sourceforge.net/. (2008)

112. SourceForge: SourceForge Statistics, DocumentD04. Can be found at
http://sourceforge.net/docs/D04/en/, 12.03.2008. (2008)

113. Sowa, J.F.: Processes and Causality. (2000)
114. Staples, M., Niazi, M.: Experiences using systematic review guidelines. Journal of

Systems and Software 80 (2007) 1425-1437
115. Sunghun, K., Thomas, Z., E. James Whitehead, J., Andreas, Z.: Predicting Faults from

Cached History. Proceedings of the 29th International Conference on Software
Engineering. IEEE Computer Society (2007)

116. Tabachnick, B., Fidell, L.: Using Multivariate Statistics. Harper & Row Publishers, New
York (1989)

117. Thai, J., Pekilis, B., Lau, A., Seviora, R.: Aspect-oriented implementation of software
health. The Eighth Asia-Pacific Software Engineering Conference (APSEC’01) (2001)

118. Trochim, W.: Threats to Construct Validity. Research Methods Knowledge Base (2006)
119. Valverde, S., Theraulaz, G., Gautrais, J., Fourcassie, V.A.F.V., Sole, R.V.A.S.R.V.: Self-

organization patterns in wasp and open source communities. Intelligent Systems, IEEE 21
(2006) 36-40

120. Wahyudin, D., Heindl, M., Berger, R., Schatten, A., Biffl, S.: In-Time Project Status
Notification for All Team Members in Global Software Development as Part of Their
Work Environments. Software Cockpit (SOFTPIT) Workshop at the 1st IEEE
International Conference on Global Software Engineering (ICGSE), Munich, Germany
(2007)

121. Wahyudin, D., Mustofa, K., Schatten, A., Biffl, S., Tjoa, A.M.: Introducing Health
Perspective In Open Source Web-Engineering Software Projects, Based On Project Data
Analysis.: The 8th International Conference on Information Integration and Web-based
Applications & Services (IIWAS2006). ÖCG, Yogyakarta, Indonesia (2006)

122. Wahyudin, D., Mustofa, K., Schatten, A., Biffl, S., Tjoa, A.M.: Monitoring the “health”
status of open source web-engineering projects. International Journal of Web Information
Systems 3 (2007) 116 - 139

123. Wahyudin, D., Ramler, R., Biffl, S.: A Framework for Defect Prediction in Specific
Software Project Contexts. the 3rd IFIP Central and East European Conference on
Software Engineering Techniques (CEE-SET) Brno, Czech Republic, 2008 (2008)

124. Wahyudin, D., Schatten, A., Winkler, D., Biffl, S.: Aspects of Software Quality
Assurance in Open Source Software Projects: Two Case Studies from Apache Project.
33rd EUROMICRO Conference on Software Engineering and Advanced Applications,
SPPI Track (2007)

125. Wahyudin, D., Tjoa, A.M.: Event-Based Monitoring of Open Source Software Projects.
In: Tjoa, A.M. (ed.): The Second International Conference on Availability, Reliability
and Security, 2007. ARES 2007. (2007) 1108

126. Wahyudin, D., Winkler, D., Schatten, A., Tjoa, A.M., Biffl, S.: Defect Prediction using
Combined Product and Project Metrics A Case Study from the Open Source “Apache”
MyFaces Project Family. 34th EUROMICRO Conference on Software Engineering and

161

Advanced Applications SPPI Track Parma Italy (2008)
127. Weyuker, E.J., Ostrand, T.J., Bell, R.M.: Using Developer Information as a Factor for

Fault Prediction. the Third International Workshop on Predictor Models in Software
Engineering. IEEE Computer Society (2007)

128. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.:
Experimental Software Engineering -- An Introduction. Kluwer Academic Publishers
(2000)

129. Wong, B., Jeffery, R.: A Framework for Software Quality Evaluation. Product Focused
Software Process Improvement (2002) 103-118

130. Yasunari, T., Osamu, M., Tohru, K.: An Empirical Approach to Characterizing Risky
Software Projects Based on Logistic Regression Analysis. Empirical Softw. Engineering
10 (2005) 495-515

131. Zimmermann, T., Premraj, R., Zeller, A.: Predicting Defects for Eclipse. International
Workshop on Predictor Models in Software Engineering, 2007. PROMISE'07: ICSE
Workshops 2007 (2007) 9-9

162

DINDIN WAHYUDIN CURRICULUM VITAE

Dindin Wahyudin, MBA conducted his PhD at the Institut für

Softwaretechnik und interaktive Systeme (ISIS) with an ASEA UniNet

scholarship since November 2005. He received his master degree in

business management at the Bandung Institute of Technology,

Indonesia, where he also received his bachelor degree in Informatics.

Later, he works as a researcher in the area of software process and

product quality evaluation and estimation in distributed software-intensive systems and software

engineering since 2005 at ISIS. His main research interests are empirical software engineering

and advanced data analysis such as software defect prediction from project data and software

quality management. In addition, Dindin Wahyudin participated in several research projects such

as Open Source Software Health Status Monitoring, in-time notification in global software

development, and quality measurement of multi-agent systems for production automation.

1. Personal Information

Parentage Born on 26th August 1976 in Bandung, Indonesia, married

Indonesia citizen

Home address Baumgasse 58/43, A-1030, Vienna, Austria

Phone:+43-650-470-1644

eMail: dindin@ifs.tuwien.ac.at

2. Education

PhD

(Doctor of

technical Sciences)

Started in November 2005, Vienna University of Technology

Focus of education: Software Quality Evaluation and Prediction Models,

Empirical Software Engineering, Advanced data analysis, Distributed Software

Development

MBA

(Master of

Business

Administration)

2000-2002, Bandung Institute of Technology, Indonesia

Focus of education: E-Government Concept and Application for Municipalities

Government Offices in Indonesia

163

BSc

(Bachelor of

Science)

1994-1999, Bandung Institute of Technology, Indonesia

Focus of education: Informatics, Software Engineering, Information System

High-School 1991-1994, High School, Bandung, Indonesia

Focus of education: General education, Foreign Languages (English, Arabic)

3. Work experience

Vienna University

of Technology,

Austria

2005-Now. Main duties:

1. Scientific research in software quality evaluation and prediction in

distributed development settings, empirical software engineering

2. Supervisor for master thesis and praktika in field of empirical software

engineering and software quality management

Bandung Institute

of Technology,

Indonesia

1999-2004. Main Duties:

1. Scientific research in software engineering, and software project

management

2. Tutor for software engineering, software project management,

information system and enterprise information architecture

PT LAPI Divusi,

Indonesia

(a Medium Scale

IT consulting

company)

1999-2004. Main Duties:

1. IT Consultant for many GOs and NGOs in Indonesia

2. Project manager for software developments

3. Business Analysis for software developments

During my PhD study, I have authored more than 10 international publications in the areas of

information system, software engineering, quality management, software process and product

improvement and software management.

 International Journal and Book Chapter

1. "Monitoring "Health" Status of Open Source Web Engineering Projects", Dindin

Wahyudin, Khabib Mustofa, Alexander Schatten, Stefan Biffl, A Min Tjoa (2007)

International Journal of Web Information System IJWIS vol 3 (1/2): 116-139

2. "In-Time Role-Specific Notification as Formal Means to Balance Agile Practices in

Global Software Development Settings", Dindin Wahyudin, Matthias Heindl,

164

Benedikt Eckhard, Alexander Schatten, Stefan Biffl (2007) at the 2nd Central and East

European Conference for Software Engineering Techniques (CEE-SET), Springer-

Lecture Notes on Computer Science (LNCS), Poznan Poland

 International Peer-Refeered Conferences

3. “Predicting the Defectiveness Risk Class of a Software Release Using Product and

Process Metrics An Empirical Study Based on Data from Four Large Open Source

Projects”; Wahyudin, D., Biffl, S, Schatten, A., and Tjoa, A. M. (2009); Submitted to

the 31st IEEE/ACM International Conference on Software Engineering (ICSE),

Vancouver, Canada, 2009.

4. “A Framework for Defect Prediction in Specific Software Project Contexts”, Dindin

Wahyudin, Rudolf Ramler, and Stefan Biffl. (2008), in the 3rd IFIP Central and East

European Conference on Software Engineering Techniques (CEE-SET) Brno, Czech

Republic, 2008.

5. “Performance Evaluation of Workflow Scheduling Strategies Considering

Transportation Times and Conveyor Failures”, Munir Merdan, Thomas Moser,

Dindin Wahyudin, Stefan Biffl, (2008). The International Conference on Industrial

Engineering and Engineering Management (IEEM), Singapore. (Nominated for Best

Paper Award), in print

6. “Simulation of Workflow Scheduling Strategies Using the MAST Test Management

System“, Munir Merdan, Thomas Moser, Dindin Wahyudin, Stefan Biffl, Pavel Vrba

(2008). The 10th International Conference on Control, Automation, Robotics and

Vision (ICARCV), Hanoi, Vietnam. In print

7. “Reconfiguration Process Improvement with UML and Ontology” Thomas Moser,

Kamil Matousek, Klemens Kunz, Dindin Wahyudin (2008). the 24th IEEE Euromicro

Software Process and Product Improvement Conference, Parma Italy. In Print

8. “Defect Prediction Using Combined Product and Project Metrics, A Case Study from

Apache Myfaces OSS Project Family“, Dindin Wahyudin, Alexander Schatten,

Dietmar Winkler, Stefan Biffl (2008), the 24th IEEE Euromicro Software Process and

Product Improvement Conference, Parma Italy.

9. “Ontology Based Software Quality Assurance for Component Based Configuration“,

Stefan Biffl, Richard Mordinyi, Thomas Moser, Dindin Wahyudin (2008) Workshop

on Software Quality (WoSQ) in IEEE/ACM International Conference on Software

Engineering (ICSE), Leipzig, Germany.

165

10. “Model-Driven Development of Intelligent Mass Customization Systems“, Kamil

Matousek, Dindin Wahyudin, Stefan Biffl (2008) The 19th European Meeting in

Cybernetics and System Researches (EMCSR08), Vienna Austria.

11. "In-Time Project Status Notification for All Team Members in Global Software

Development as Part of Their Work Environments", Dindin Wahyudin, Matthias

Heindl, Ronald Berger, Alexander Schatten, Stefan Biffl (2007), Software Cockpit

(SOFTPIT) Workshop at the 1st IEEE International Conference on Global Software

Engineering (ICGSE), Munich, Germany

12. "Aspects of Software Quality Assurance in Open Source Software Projects: Two

Case Studies from the Apache Project", Dindin Wahyudin, Alexander Schatten,

Dietmar Winkler, Stefan Biffl (2007) Proceedings of the 23rd IEEE Euromicro

Software Process and Product Improvement Conference; Munich, Germany

13. "Event-Based Monitoring of Open Source Software Projects", Dindin Wahyudin, A

Min Tjoa (2007) EBITS workshop, Proceeding of the 2nd IEEE International

Conference on Availibility Reliability and Security (ARES), Vienna, Austria

14. "Introducing "Health" Perspective in Open Source Web-Engineering Software

Projects, Based on Project Data Analysis", Dindin Wahyudin, Alexander Schatten,

Khabib Mustofa, Stefan Biffl, A Min Tjoa (2006) Proceedings of the 8th International

Conference on Information Integration, Web-Applications and Services; Yogyakarta

Indonesia

15. "Data Integration: an Experience of Information System Migration", Inggriani Liem,

Dindin Wahyudin, Alexander Schatten (2006) Proceedings of the 8th International

Conference on Information Integration, Web-Applications and Services; Yogyakarta

Indonesia.

166

APPENDIX

A1. Predicting the Number of Developer Mail Response for a Defect Status

Change and a New Code Submission

In this section we describe the detailed empirical data analysis of proposed health indicators with

data from four large Open Source projects in Apache Community.

A1.1 Single Project Modeling using Apache Tomcat Data

The following tables (

Table 28 to Table 30) show the summary of linear regression model to predict the number of

developer mail response using Tomcat data, and test results of constructed model and predictors’

significance.

Table 28. Tomcat Prediction Model Summary

R R Square Adjusted R Square Std. Error of the Estimate

0.818(a) 0.669 0.650 95.20320

a Predictors: (Constant), SCM, Defect

Table 29 Tomcat ANOVA Test Results of Constructed Model

Model Sum of Squares df Mean Square F Sig.

Regression 641295.848 2 320647.924 35.377 0.000(a)

 Residual 317227.731 35 9063.649

 Total 958523.579 37

a Predictors: (Constant), SCM, Defect

b Dependent Variable: Email

Table 30 Tomcat Coefficients and Predictors Test Results

Model

Unstandardized

Coefficients

Standardized

Coefficients

t

Sig.

 B Std. Error Beta

167

 (Constant) 62.853 47.209 1.331 0.192

 Defect 0.323 0.124 0.327 2.613 0.013

 SCM 0.862 0.188 0.572 4.577 0.000

a Dependent Variable: Email

A2.2 Single Project Modeling using Apache HTTPD Data

The following tables (Table 31 to Table 33) show the summary of linear regression model to

predict the number of developer mail response using HTTPD data, and test results of constructed

model and predictors’ significance.

Table 31. HTTPD Prediction Model Summary

R R Square Adjusted R Square Std. Error of the Estimate

0.768(a) 0.590 0.567 87.22455

a Predictors: (Constant), SCM, Defect

Table 32. HTTPD ANOVA Test Results of Constructed Model

 Mode

Sum of

Squares df

Mean

Square F Sig.

Regression 383527.466 2 191763.733 25.205 0.000(a)

Residual 266284.245 35 7608.121

Total 649811.711 37

a Predictors: (Constant), SCM, Defect

b Dependent Variable: Email

Table 33. HTTPD Coefficients and Predictors Test Results

Model

 Unstandardized

Coefficients

Standardized

Coefficients

t

Sig.

 B Std. Error Beta

 (Constant) 42.267 56.430 0.749 0.459

Defect 0.637 0.157 0. 495 4.069 0.000

168

 SCM 0.583 0.176 0.404 3.318 0.002

a Dependent Variable: Email

A2.3 Cross Project Modeling using Apache HTTPD and Apache Tomcat Data

The following tables (Table 34 to Table 36) show the summary of linear regression model to

predict the number of developer mail response using HTTPD and Tomcat data, and test results of

constructed model and predictors’ significance.

Table 34. Cross HTTPD-Tomcat Prediction Model Summary

R R Square Adjusted R Square Std. Error of the Estimate

0.783(a) 0.612 0.602 92.43275

a Predictors: (Constant), SCM, Defect

Table 35. Cross HTTPD-Tomcat ANOVA Test Results of Constructed Model

 Model Sum of Squares df Mean Square F Sig.

Regression 985766.478 2 492883.239 57.689 0.000(a)

Residual 623698.403 73 8543.814

Total 1609464.882 75

a Predictors: (Constant), SCM, Defect

b Dependent Variable: Email

Table 36. Cross HTTPD-Tomcat Coefficients and Predictors Test Results

 Model

Unstandardized

Coefficients

Standardized

Coefficients

t Sig. B Std. Error Beta

(Constant) 76.195 34.890 2.184 0.032

Defect 0.413 0.094 0.389 4.388 0.000

SCM 0.726 0.130 0.493 5.563 0.000

a Dependent Variable: Email

A2.4 Single Project Modeling using Apache Xindice Data

The following tables (Table 37 to Table 39) show the summary of linear regression model to

predict the number of developer mail response using Xindice data, and test results of constructed

169

model and predictors’ significance.

 Table 37. Xindice Prediction Model Summary

R R Square Adjusted R Square Std. Error of the Estimate

0.684(a) 0.468 0.438 27.13077

a Predictors: (Constant). CVS. defect

Table 38. Xindice ANOVA Test Results of Constructed Model

 Model Sum of Squares df Mean Square F Sig.

Regression 22682.721 2 11341.360 15.408 0.000(a)

Residual 25762.753 35 736.079

Total 48445.474 37

a Predictors: (Constant). CVS. defect

b Dependent Variable: Email

 Table 39. Xindice Coefficients and Predictors Test Results

 Model

Unstandardized

Coefficients

Standardized

Coefficients

t

Sig.

 B Std. Error Beta

(Constant) 17.133 5.873 2.917 0.006

defect -2.623 0.875 -0.424 -2.998 0.005

CVS 3.270 0.590 0.783 5.541 0.000

a Dependent Variable: Email

A2.5 Single Project Modeling using Apache Slide Data

The following tables (Table 40 to Table 42) show the summary of linear regression model to

predict the number of developer mail response using Slide data, and test results of constructed

model and predictors’ significance.

 Table 40. Slide Prediction Model Summary

R R Square Adjusted R Square Std. Error of the Estimate

0.875(a) 0.766 0.753 98.34407

a Predictors: (Constant). CVS. defect

170

 Table 41. Slide ANOVA Test Results of Constructed Model

 Model Sum of Squares df Mean Square F Sig.

Regression 1109904.916 2 554952.458 57.380 0.000(a)

Residual 338504.479 35 9671.557

Total 1448409.395 37

a Predictors: (Constant). CVS. defect

b Dependent Variable: Email

Table 42. Slide Coefficients and Predictors Test Results

 Model

Unstandardized

Coefficients

Standardized

Coefficients

t Sig. B Std. Error Beta

(Constant) 54.599 25.054 2.179 0.036

defect 1.329 0.589 0.207 2.258 0.030

CVS 1.609 0.193 0.762 8.328 0.000

a Dependent Variable: Email

171

A1. Statistical Methods for Software Quality Prediction

In this section we describe briefly the statistical methods used for conducting software quality

prediction with empirical data from OSS projects.

A1.2.Multiple Linear Regression Techniques

Multiple linear regression38 attempts to model the relationship between two or more explanatory

variables and a response variable by fitting a linear equation to observed data. Every value of the

independent variable x is associated with a value of the dependent variable y. Formally, the

model for multiple linear regressions, given n observations, is [88]

1,2, … , . Eq. 16

In the least-squares model, the best-fitting line for the observed data is calculated by minimizing

the sum of the squares of the vertical deviations from each data point to the line (if a point lies on

the fitted line exactly, then its vertical deviation is 0). Because the deviations are first squared,

then summed, there are no cancellations between positive and negative values. The least-squares

estimates β0, β 1, ... β p are usually computed by statistical software.

The values fit by the equation β 0 + β 1xi1 + ... + β pxip are denoted ŷi, and the residuals ei are equal

to yi - ŷi, the difference between the observed and fitted values. The sum of the residuals is equal

to zero.

A1.2.Classification Techniques

Logistic Regression

Logistic regression is a model used for prediction of the probability of occurrence of an event by

fitting data to a logistic curve. Logistic Regression has been proven to have sufficient capability

for data extrapolation which are necessary for prediction with different dataset that are not used

during the training session. Yasunari et al, [130] outlined the basic model of logistic regression

which is based on following equation (see eq. 17).

38Multiple Linear Regression Manual can be found at the http://www.stat.yale.edu/Courses/1997-98/101/linmult.htm (Last Accessed 20 January

2008)

172

| , , . . ,
1

Eq. 17

x1 … xn represent the independent variables, which are collected candidate predictors for defect

estimation. While, bo,…,bn define regression coefficients of the independent variables. Y

represents the predicted dependent variable as a binary value such as a module for being

defective or not.

J48

J48 is a decision-tree learner Decision-tree learners generate a simple tree structure where

nonterminal nodes represent tests on one or more attributes and terminal nodes reflect decision

outcomes. As described in J48 Manual39, J48 has the useful feature of generating tree-based

models that human experts can easily interpret. We can summarize the general approach, as the

following:

1. Choose an attribute that best differentiates the output attribute values.

2. Create a separate tree branch for each value of the chosen attribute.

3. Divide the instances into subgroups so as to reflect the attribute values of the chosen

node.

4. For each subgroup, terminate the attribute selection process if:

a. All members of a subgroup have the same value for the output attribute,

terminate the attribute selection process for the current path and label the

branch on the current path with the specified value.

b. The subgroup contains a single node or no further distinguishing attributes can

be determined. As in (a), label the branch with the output value seen by the

majority of remaining instances.

5. For each subgroup created in (3) that has not been labeled as terminal, repeat the

above process.

The algorithm is applied to the training data. The created decision tree is tested on a test data set,

provided on is available. If test data is not available, J48 performs a cross-validation using the

training data. The created decision tree is then output in the Model section of the Learner Model

Output.

39 J48 Decision Tree Manual can be found at the: http://grb.mnsu.edu/grbts/doc/manual/J48_Decision_Trees.html#sec:dtso (Last Accessed 20

January 2008)

173

Random Forest

A random forest is a classifier consisting of a collection of tree-structured classifiers [45]. The

random forest classifies a new object from an input vector by examining the input vector on each

tree in the forest. Each tree casts a unit vote at the input vector by giving a classification. The

forest selects the classification having the most votes over all the trees in the forest40. Each tree is

grown as follows:

 If the number of cases in the training set is N, sample N cases at random, with

replacement from the original data. This sample will be the training set for growing

the tree.

 At each node, m predictors are randomly selected out of the M input variables (m _

M) and the best split on these m predictors is used to split the node. The value of m is

held constant during the forest growing. By default, m = √M (to achieve near optimal

results).

 Each tree is grown to the largest extent possible. There is no pruning. When the

training set for the current tree is drawn by sampling with replacement, about one-

third of the cases are left out of the sample. This oob (out-of-bag) data is used as a

test set to get an unbiased estimate of the classification error. Therefore, there is no

need for cross-validation or a separate test set to get an unbiased estimate of the test

set error. The out-of-bag estimates are unbiased [14].

Random forest is a good candidate for software quality prediction, especially for large-scale

systems, because [45]:

 It is reported to be consistently accurate when compared with current classification

algorithms.

 It runs efficiently on large data sets.

 It has an efficient method for estimating missing data and retains accuracy when a

large portion of the data is missing.

 It gives estimates of which attributes are important in the classification.

40 Random Forest Manual can be found at the http://www.stat.berkeley.edu/users/breiman/RandomForests (Last Accessed 20 January

2008)

174

Naive Bayes

From the Naive Bayes clasiffier manual41 defines Naive Bayes as a rule generator based on

Bayes's rule of conditional probability. It uses all attributes and allows them to make

contributions to the decision as if they were all equally important and independent of one

another, with the probability denoted by the equation:

Pr |
Pr | . Pr | …Pr |

Pr

Eq. 18

Where Pr[A] denotes the probability of event A, Pr[A|B] denotes the probability of event A

conditional on event B , En is the n th attribute of the instance, H is the outcome in question, and

E is the combination of all the attribute values.

In the case of categorical input for evidence class Ei, Pr[Ei|H] is simply the number of instances

in the data where the evidence in category Ei divided by the total number of instances in the

dataset.

Characteristic of Naive Bayes:

 Simple technique results in high accuracy, especially when combined with other

methods.

 Treats variable as independent and equally important, which can cause skewed results,

especially if many of the variables are interrelated, as that relation will have a greater

effect on the decision, for better or for worse.

 Naive Bayes classification does not allow for categorical output attributes

41 Naive Bayes Manual can be found at the http://grb.mnsu.edu/grbts/doc/manual/Naive_Bayes.html (Last Accessed 20 January 2008)

175

A3. In Time Notification Tool Support for Distributed Development Processes

In highly distributed software development environment, demands effective collaboration and

communication among the team members to deliver good quality software. Project manager

may need summarized reports on project performance, software quality status and quality

predictions of future product, a quality assurance (QA) person may want to monitor detailed

reports test performance over the time to determine the quality status of software artifacts before

an approaching release; a developer should receive immediate feedback if a change in his work

causes a quality problem with other (concurrently evolving) components of the software product.

In this line of work we adopt the concept of role-specific in-time notification on the status of

project artifacts supported by an event-driven monitoring infrastructure. We extend this concept

with providing the team members with relevant notifications in the set of tools they typically use,

e.g., as part of the software development environment rather than in a separate management or

collaboration tool. We argue that by providing such notification well represented as part of team

member’s work tools will better support collaboration among the team members during

distributed development process (see Figure 26).

176

Figure 26. Integrated tool support for In-time Role-Specific Notification in Agile-GSD settings

[120]

The following two papers outline our contributions in providing data collection and notification

tool in globally distributed software development;

Paper 9: Wahyudin D., Heindl, M., Berger, R., Biffl, S., Schatten, A. (2007); “In-Time

Project Status Notification for All Team Members in Global Software Development as Part of

Their work environments”, International Conference on Global Software Engineering (ICGSE),

Workshop on Measurement-based Cockpits for Distributed Software and Systems Engineering

Projects (SOFTPIT), Munich, August 2007.

In this paper we suggest the needs and propose an initial concept to allow keeping all relevant

roles informed using in-time notification on significant project events. Distributed team members

can subscribe to specific notification services provided by project infrastructure. In a typical

usage scenario these notification services promise to provide information for more effective and

efficient change impact analysis and quality analysis in concurrently evolving software

177

development artifacts.

Paper 10: Wahyudin D., Heindl, M., Eckhard, B., Schatten, A., and Biffl, S. (2007) ; “In-time

role-specific notification as formal means to balance agile practices in global software

development settings”, in the 2nd IFIP Central and East European Conference on Software

Engineering Techniques (CEE-SET), Springer LNCS, Poznan, Poland, 2007.

In this paper we extend the contributions of Paper 9 by introducing a framework to define in time

notification for distributed development team members that allows a) measurement of

notification effectiveness, efficiency, and cost; b) formalizing key communication in an agile

distributed environment i.e., as in agile DSD and OSS projects; and c) providing a method and a

tool to implement communication support. We illustrate, with an example scenario from an

industry background, the concept and report results from an initial empirical evaluation.

178

A4. Potential Application of Quality Evaluation and Prediction Framework in

Operating Software Systems

In this line of work we bring the knowledge and experiences in conducting quality evaluation

and prediction in distributed software development into different context of application. The

work is originated from development of an agile multi agent simulation tool (MAST) for

production automation in cooperation with Rockwell Automation, Czech Technical University,

and Automation and Control Institute, Vienna University of Technology. MAST was first

developed by Rockwell Automation to simulate a new configuration of workshop floor prior to

real implementation in hardware based systems. One requirement of MAST extension which has

become our research focus is to have the capability to automatically measure the quality

(performance) of the system when enabling new configuration.

From DSD point of view, MAST can be seen as distributed development environment where the

agents (e.g., Machines, Conveyor belts, robots, storages, etc.) as can be seen in Figure 27 are the

project participants while the work order consists of products to produce through cooperation of

these agents. Using this analogy, we use the SQF approach to define the quality indicators of the

system (e.g., system throughput, production effectiveness and efficiency, etc.), and to investigate

the most promising parameters (e.g., workflow scheduling strategies, number of pallets,

redundancy of machine functions, etc.) that have significant impact to the quality indicator using

advanced statistical analysis.

179

Figure 27 Overview of Extended MAST System Architecture [81]

The following two papers outline our contributions in application of quality evaluation and

prediction models in MAST environment

Paper 11: Merdan, M., Moser, T., Wahyudin, D., Biffl, S., (2008); “Performance Evaluation of

Workflow Scheduling Strategies Considering Transportation Times and Conveyor Failures”, The

International Conference on Industrial Engineering and Engineering Management (IEEM), IEEE

Comp Soc, Singapore.

 In this paper we report on a test management system for the evaluation of a range of workflow

scheduling strategies based on multi-agent negotiation, where each resource agent performs local

scheduling using dispatching rules. The newly developed test management system runs test cases

on the Multi Agent Simulation Tool (MAST), which provides comprehensive support for

performance measurement and data analysis reporting.

Paper 12: Merdan, M., Moser, T., Wahyudin, D., Biffl, S., Vrba, P., (2008); “Simulation of

Workflow Scheduling Strategies Using the MAST Test Management System”. In The IEEE 10th

180

International Conference on Control, Automation, Robotics and Vision (ICARCV), IEEE Comp

Soc, Hanoi, Vietnam, 2008.

In this paper we augment the scheduling calculations to explicitly consider the transportation

durations between the machines. In addition, we introduce scenarios with failures of the transport

system, e.g., conveyors, which influence the variation of transport durations and evaluate the

robustness of workflow scheduling strategies regarding these variations.

