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Deutsche Kurzfassung 
Die moderne Entwicklung großer Softwaresysteme erfolgt typischerweise in einem verteilten – 
häufig global ausgerichteten – Umfeld. Eine verteilte Softwareherstellung (Distributed Software 
Development, DSD) ist sowohl in traditionellen Unternehmen und Organisationen als auch verstärkt 
im Open Source Umfeld anzutreffen. Speziell in DSD-Projekten benötigen Projekt- und 
Qualitätsleiter geeignete Methoden zur Evaluierung des aktuellen Projektfortschritts (beispielsweise 
die Qualität der bisher erstellten Produkte und durchgeführten Aktivitäten) und zuverlässige 
Modelle für die Einschätzung der zu erwartenden Produktqualität für neue Softwareversionen 
(Releases).  

Durch die globale Verteilung der Projektteams im DSD-Umfeld wird die Einschätzung des 
Projektfortschritts zunehmend komplexer und unzuverlässiger, da eine persönliche Abstimmung in 
Form von Meetings zur Überprüfung von (high-level) Schätzergebnissen, wie beispielsweise der 
Fertigstellungsgrad einer Softwareversion, aufgrund der räumlichen Trennung meist nur schwer 
realisierbar sind.  

Eine zentrale Frage für Projekt- und Qualitätsleiter im Rahmen der Projektsteuerung ist, ob eine 
vorliegende Softwareversion bereits freigegeben werden kann oder ob Teile des Produktes vor der 
Freigabe noch überarbeitet werden müssen. Zur Unterstützung dieser Entscheidung sind 
erforderlich:  

(1) Evaluierungs-Framework zur Einschätzung der Produktqualität (welche Daten müssen erhoben 
werden und wie können sie zu aussagekräftigen Metriken aggregiert werden)  

(2) Gültigkeitsprüfung der erhobenen Daten auf unterschiedlichen Granularitätsstufen. 

(3) Schätzmethoden über die zukünftige Produktqualität einschließlich einer Rückkopplung über die 
Gültigkeit der Schätzergebnisse. 

Die Fehlerfreiheit bzw. die Anzahl der im Produkt verbleibenden Fehler ist ein Hauptkriterium für 
die Feststellung der Qualität eines Softwareproduktes im Rahmen dieser Arbeit. Ein Fehler ist dabei 
definiert als eine Abweichung der Lösung von definierten Anforderungen (sowohl funktionale 
Anforderungen aber auch nicht-funktionale Anforderungen, wie Zuverlässigkeit, Sicherheit, 
Wartbarkeit oder Benutzerfreundlichkeit). Da Fehler in einem Softwareprodukt den realen Wert für 
den Anwender reduzieren, sind Fehleraufzeichnungen und Fehlervorhersagen für künftige Releases 
zentrale Kenn- und Steuergrößen für die Qualität eines Produktes bzw. für die Planung neuer 
Produkte und Releases. 

Fehlerzählungen und Datensammlungen aus Qualitätsverbesserungsinitiativen sind zentrale 
Elemente zur Feststellung der Produktqualität (beispielsweise Fehlerkorrektur im Rahmen eines 
Entwicklungsprozesses). Aufbauend auf historischen Projekt- und Fehlerdaten wird ein 
Vorhersagemodell erstellt, das die Basis für Fehlerschätzungen zukünftiger Releases bildet.  

In der industriellen Praxis werden Frameworks für die Evaluierung der Produkt- und Prozessqualität 
für traditionelle Softwarekennzahlen eingesetzt. Diese Frameworks unterstützen jedoch keine 
verteilte Entwicklung im DSD-Umfeld, wie sie im Rahmen der Entwicklung von verteilten Open 
Source Software Produkten (OSS) erforderlich ist. Die Ergebnisse einer systematischen 
Literaturanalyse zeigten folgende Einschränkungen bei Vorhersagemodellen in einem verteilten 
Entwicklungsumfeld:  

(1) Unsystematische Planung von Qualitätsvorhersagen. 
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(2) Modelle, die ausschließlich auf Produktmetriken aufgebaut werden, sind zwar an sich 
ausreichend, weisen aber eine zu geringe Zuverlässigkeit in der Fehlerschätzung bzw. 
Vorhersage auf. Dieser Nachteil wirkt sich speziell bei Projekten mit kurzen 
Entwicklungszeiten, wie es in zahlreichen OSS Projekten üblich ist, aus. 

(3) Unzureichende Qualität der erhobenen Daten aus unterschiedlichen und heterogenen 
Datenquellen. 

Zentrale Forschungsfragen dieser Arbeit sind a) eines systematische Untersuchung großer OSS 
Projekte im Hinblick auf wichtige Projektergebnisse und Prozessattribute, die zur Einschätzung der 
Produktqualität und des Projektfortschrittes verwendet werden können und b) die Untersuchung der 
Angemessenheit und Zuverlässigkeit fortgeschrittener Modelle für objektive Vorhersage der 
Produktqualität im DSD Umfeld. 

Zentrale Forschungsbeiträge dieser Arbeit: 

1. Prozess-Qualitäts-Metriken, so genannte “Project health indicators”, erfassen 
Entwicklungsaktivitäten im Rahmen der Produktverbesserung und ermöglichen die Evaluierung 
dieser Indikatoren in DSD-Projekten. 

2. Qualitätsindikatoren für Softwareprodukte, die einen Wahrscheinlichkeitsbereich zur Verfügung 
stellen statt eines fixen Wertes ohne Berücksichtigung von Datenschwankungen.  

3. Forschungs-Roadmap für die Software Fehlervorhersage basierend auf einem systematischen 
Literaturreview. 

4. Strukturiertes Framework für Qualitätsvorhersage für Verteilte Softwareentwicklungen. 
5. Verbesserte Modelle zur Qualitätsvorhersage basierend auf Produkt- und Prozessmetriken, die 

aus heterogenen Projekt-Repositories gewonnen werden können (z.B. Issue Tracker, Source 
Code Management). 

6. Empirische Evaluierung im Rahmen von realen Softwareprodukten in einem realen Umfeld: 
Fallstudien unterschiedlicher OSS Projekte. 

Der vorgestellte Forschungsansatz basiert auf den folgenden Annahmen: In einem ausreichend 
stabilen Prozessumfeld können durch eine Reihe von Beobachtungen der Produktqualität im 
jeweiligen Kontext a)  signifikante Kontextparameter identifiziert und b) die Produktqualität zu 
einem bestimmten Zeitpunkt basierend auf den gemessenen Kontextparametern vorhergesagt 
werden. Dieser Ansatz wird am Beispiel von DSD (OSS) Projektumfeld vorgestellt. Eine weitere 
mögliche Anwendung, die nicht im Fokus dieser Arbeit steht, umfasst die Evaluierung und 
Vorhersage von Qualitätsattributen in kommerziellen (nicht OSS) Projekten. 
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ABSTRACT 

Modern large-scale software development is typically organized in distributed, often globally 

dispersed, environments. Distributed Software Development (DSD) projects occur both in 

traditional organizations and increasingly sophisticated open source development initiatives. 

Leading roles in DSD, such as the project manager and the quality manager, need to evaluate the 

actual project progress (e.g., quality of products produced and activities conducted) and trustworthy 

models for the prediction of future product quality such as release candidates. However, in a DSD 

context the human reporting of progress becomes increasingly complex and the reliability can 

become questionable, particularly if face-to-face meetings are not possible that allow to personally 

checking the validity of high-level estimates such as the readiness of a software version for release. 

For steering the project, e.g., by deciding to release a current software version or to wait and re-

work parts of the software, project managers need 1. a quality evaluation framework that defines 

what data to collect and convert into meaningful numbers on a higher level; 2. an approach to check 

data for validity on all levels; 3. an approach to predict the quality of future products with feedback 

on the likely accuracy of the prediction result.  

In this work we focus on absence of defects as the major quality criterion of a software product, 

where defects are deviations from requirements that need to be repaired.   The focus on defect 

counting and defect prediction are particularly important as defects decease value for users, and 

other quality criteria (e.g. reliability, security, maintainability, usability) can be formulated as 

requirements and thus defects can also cover these criteria. Hence, the terms of quality evaluation in 

our context is focus on counting defects and collect data that is related to quality improvement (e.g., 

development processes that related to defect removal activities). While quality prediction consists 

of collecting historical data from project data sources to construct prediction models that can be 

used to estimate number of defects or defective work products prior to release.  

Unfortunately, while there are quality evaluation frameworks in traditional software metrics, to our 

knowledge there is no appropriate framework available that can be calibrated to modern DSD 

environments such as Open Source Software (OSS) environments. Moreover, our systematical 

literature review found that prediction models in distributed development settings have to cope with 

the following limitations such as a) unsystematic quality prediction planning, b) models based on 

product metrics alone shown sufficient accuracy but poor reliability in particular for projects with 

short development cycle such as in many OSS projects c) insufficient quality of collected data 

originated from heterogeneous project data sources.   
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Key research questions of this thesis are a) to investigate for large OSS projects the most important 

development artifact and process attributes that can indicate software product quality for project 

progress evaluation and b) to investigate the accuracy and reliability of advanced models for 

objective quality prediction in the context of DSD projects.   

Main research contributions of this work are: 

1. Process quality metrics, so-called project “health indicators”, which capture correlated 

development activities in product quality improvement, and propose ways to evaluate such 

“health indicators” in DSD projects.  

2. Quality indicators for software products that provide a range for the likely value of the indicators 

rather than a fixed value without indication of data volatility.  

3. Research roadmap for software defect prediction based on systematical literature review 

4. Structured framework for quality prediction in distributed software development settings 

5. Improved quality prediction methods based on product and process metrics that can be collected 

from heterogeneous project repositories (e.g. issue tracker, source code management tool). 

6. Empirical evaluation in a range of real-world distributed software engineering environments: 

case studies from different contexts OSS projects.  

The general approach is based on the following assumption: in a sufficiently stable process context 

a sequence of observations on product quality and context parameters allow a) identifying 

significant context parameters and b) prediction of product quality at a point in time based on the 

measured context parameters. We use this approach in the context of DSD (OSS) projects; however, 

there are many other potential application areas such as quality evaluation and prediction for 

operational software systems. 
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1 INTRODUCTION 

Today the engineering of software intensive systems (SISs) especially in medium to large 

software companies has been shifted from traditional collocated development style towards 

distributed software development (DSD) as it promises cost reductions, extended access to 

expert pools and market proximity [102].  DSD can be defined as Software development in 

geographically distributed settings [23] which can be occur both in traditional closed-source 

organizations and increasingly sophisticated open source software (OSS) development initiatives.  

The success of a DSD project depends among other things on the quality of the resulting product. 

Thus, project manager and quality manager in DSD need a) to properly evaluate current work 

products quality level and activities conducted and b) to predict the quality of future software 

product (i.e., software release candidates) prior to release and to identify needs for improvement.   

Prikladnicki et al. [102] as well as Sengupta et al [110] advocate that although DSD significantly 

impacts of how current software products are designed, developed, tested and deployed, 

nevertheless  the stories of failures in distributed projects can be alarming due to poor planning, 

poor quality,  and cost overruns. These issues are derived from the complexity of development 

process in DSD [49] such as: 

1. Size and structural of the project. The more project participant involved in a project and 

the more distributed their location then the more complex is the project.   In globally 

distributed software project (i.e., Global Software Development and Open Source 

Software Development) the time zones   and cultural differences limit the availability of 

team member to work together at the same time, and motivate a concern of the 

transparency of the development processes [120].  Nevertheless, the increased of project 

complexity alleviates the challenge for project managers to plan and control the project, 

organize the collaborative works, as well as monitoring project participants’ work 

performance and quality. 

2. Heterogeneous changing processes and products.  Each project participant is working on 

different processes to produce deliverables according to his assigned role.  Each 

distributed process uses and produces heterogeneous artifacts (e.g. requirements, code 

set, test case, design elements, methods) that keep evolving throughout project  lifecycle 

[126]. In metrics based quality prediction method the processes and the artifacts are 
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source of data that can be used to estimate of the product prior to release. The more 

functionally should be delivered means higher number of artifact and more involved 

processes which consequently increase the complexity in project monitoring and quality 

assurance.  

3. Semantic of data collection.  Ideally although project participants are distributed around 

the globe they work with centralized project repositories, however in most cases project 

participants have to store or communicate their work deliverables using different shared 

tools such as mailing list, issue tracker, source code management (SCM), forum, etc 

[124]. In some cases, these separated development teams usually owned or replicate the 

project repositories locally. As the results the data collection effort has been increased 

due to fragmented data that come from heterogeneous repositories, moreover the quality 

often disputed due to incomplete and missing data during collection. 

Thus, to efficiently evaluate and predict the quality of development processes and products in 

DSD requires development of methods and technologies to address these issues.  

1.1 Research Issues and Research Challenges  

This section outlines the key research issue and respective research challenges that will be 

addressed in this thesis.  

1.1.1 Research Issues 

Quality can be defined as conformance to requirements  [20] or fitness to use [52] of a product. 

From Software engineering domain, Kan  [53]  defines that software quality can be measured as 

a low level of defects in the product, since a low level of defects can be translated as high level 

of conformance to requirements and fitness to use. A defect can be defined as a lack of 

something necessary for completeness, adequacy, or perfection (Merriam Webster Dictionary). 

Florac [35] defines software defect as any flaw or imperfection in a software work product or 

software process. Project and Quality manager need to evaluate the current quality of 

development process and product in order to check whether the predefined requirements can be 

achieved and as basis for quality prediction after the product being released.  

Hence, from Empirical Software Engineering perspective [31], in this work we focus on two 

quality aspects in Distributed Software Development: 

1. Evaluation of distributed development processes quality (EQ): we assume that the 
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quality of product is the result of correlated distributed development processes that can be 

defined, measure and evaluated throughout project life cycle. In this area we put our 

attention to correlated development processes that related to defect detection, defect 

validation and defect removal activities.  

The research issues in this area are: 

EQ1: to investigate the distributed development processes those have impact to 

product quality improvement 

EQ2: to propose ways to measure correlated development processes as project 

“health indicators” which reflect the quality of current development processes and 

may provide prognosis of project survivability 

EQ3: empirical evaluation of proposed health indicators using data from large open 

source projects 

2. Software quality prediction in distributed software development settings (QP):  good 

quality software products are those with absence or low number of defects detected. 

Many companies perform defect prediction. Software quality prediction in particular 

defect prediction is important since it addresses crucial aspects of how software quality 

can be improved prior to release with data from product and process collected during 

development. In this thesis we focus on defect prediction using data collected directly 

from DSD project repositories to construct objective quality prediction models.  

The research issues in this area are: 

QP1: to improve the accuracy and reliability of advanced models for objective 

quality prediction in the context of DSD projects 

QP2: to efficiently and effectively collect data from project repositories to construct 

objective prediction models 

QP3: empirical evaluation of proposed objective quality prediction models using 

data from large open source projects 

However, we notice that when challenged by the complexity of DSD projects, current 

approaches of software quality evaluation and prediction have following shortcomings: 

1. Traditional evaluation and controlling of development processes are typically  derived 

from human based reports which focuses on tracking formal achievements,  manually 

analyzing the collaboration between team members during certain events (e.g., meeting, 

discussion, etc), and personal reports from each project team member [26, 100].  

Nevertheless human based approach in complex distributed environment as in a typical 
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DSD project will likely to be biased, error-prone and expensive,  moreover Keil [55] 

reports that often team members do not report the actual condition  when the project is in 

critical situation.  

2. Many studies in software quality prediction provide wide range selection of quality 

assessment methods for particular project contexts. However they lack planning step that 

may lead to unsystematic software quality prediction which fails to meet the business 

objectives assigned to the project, inefficient data collection and models construction, 

moreover the applicability of constructed quality model are often disputed [29].   

3. To provide comprehensive quality evaluation in distributed development settings is still 

an expensive and error-prone activity despite of the approaches reported in practice due 

to several reasons such as the traditional human based reporting [55, 125] are often biased 

and expensive, limited data integration that come from scattered data sources across 

project sites, and collected data is often insufficient to construct good quality prediction 

models.   

4. Current software quality prediction approaches such as software defect prediction focus 

mainly on how software quality status can be estimated using only static product metrics 

(e.g. code complexity, size and volume) [29]. Although many researchers reported 

product metrics can construct prediction models with certain level of accuracy, however 

such approach is often (a) fail to capture important distributed development process data 

(e.g. maturity level of code peer review prior to release) and (b) lack of capability in 

providing early warning of certain quality status or risks due to the late data availability 

(i.e. too close to system deployment date). 

1.2 Research Contributions 

In order to address proposed key research question, this thesis contributes the following 

deliverables:  

1. Novel process metrics so called DSD project “health indicators” to evaluate the quality of 

development process.  The concept of “health indicators” is to provide better insight of 

underlying development processes that have correlation to the aliveness of the 

development communities (e.g., developer communication pattern in the mailing list as 

responds to a new submitted code set) product quality improvement (e.g., defect 

detection effectiveness, defect resolution time), and certain risky project situation (e.g., a 

core developer abandon the project which may brain drain the developer community, 
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high number of severe defects found in a release). Thus, we can consider that “health 

indicators” as one quality aspect that should be evaluated continuously by a project 

manager in distributed development settings.  

2. Quality indicators for software products based on defect data.  Project manager needs to 

evaluate and predict the number of defect or likelihood of defectiveness of a work 

product prior to release or deployment. In this study we construct different quality 

indicators based on evaluation of defect data in release level of software product (i.e., 

defect growth between releases and likelihood of a release to have high defectiveness 

level). These quality indicators provide a range for the likely value of the indicators 

rather than a fixed value without indication of data volatility. In this thesis we use these 

quality indicators as dependent variables (estimator) to construct advanced defect 

prediction models. We also investigate the impact of particular process metrics which 

capture some aspects of quality assurance information (such as maturity level of peer 

review prior to release) to the accuracy of product quality predictions. We notice that the 

collected number of these selected metrics may not tell the whole story, e.g., a release 

manager may need to identify the reason why certain metrics have significant impact to 

increase the likelihood of a release for being highly defective. Thus for we conduct two 

types of analysis of empirical results: a) coefficients correlation analysis based on 

constructed prediction model and b) discussion with expert from to validate the findings 

and to obtain general and specific feedback. 

3. Research roadmap in software quality prediction based on systematical literature review.  

Derived from systematical literature review results in software quality management and 

software quality prediction studies, we investigate the gap between current researches 

with their applicability in practices, and indentify open issues for future research works.    

4. Structured framework for objective quality prediction and evaluation in distributed 

software development settings.  This work proposes concepts of a structured software 

quality evaluation and estimation framework (SQF) that support a project manager in a) 

defining which quality aspects should be evaluated or estimated from key stakeholders 

perspective, (b) prediction model calibration through selection of parameters best 

correlated to model accuracy (c) evaluation of the prediction results to obtain internal and 

external validation of the constructed model.   

5. Improving the accuracy of quality prediction methods based on product and process 

metrics. We investigate the impact of product and process metrics collected during 

software product evolution.  Later we perform statistical data analysis to identify most 
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promising factors for software product and process improvement. We applied advanced 

parameters selection procedures and software quality prediction techniques for different 

project contexts to investigate which methods provide better prediction accuracy. More 

importantly we also conduct cross-projects modeling to have a robust quality prediction 

model with reasonable accuracy.    

6. Empirical evaluation of quality evaluation and prediction scenarios in a range of real 

world distributed software engineering environment. For evaluation of the project health 

indicators and the SQF concepts we use empirical data from large Open Source Software 

(OSS) projects in Apache communities.      

From a practitioner point of view, these research contributions significantly improve the 

effectiveness and efficiency of available software quality evaluation and prediction approaches 

in distributed software intensive system engineering.    The following subsections outline show 

cases that explain how my research contributions contribute to the improvement of product and 

process in distributed software development context. 

1.2.1 Evaluation of Distributed Development Processes Quality 

Our study begins with the question how to improve the chances, that a distributed project can 

reach success and stay „healthy” as one aspect of development process quality. Distributed 

software project’s survival is a result of many underlying (correlated) processes and cannot be 

easily determined and often very complex due to project characteristics (e.g. distributed project 

participants, complex project structure, and heterogeneous project repositories). Hence, the 

dynamic of the development process is much more difficult to understand compared to a typical 

collocated development project. Thus, project and quality managers, need pertinent data from the 

dynamics of distributed project consecutively to know the”health” status of the work. 

Empirical studies in distributed software engineering [1, 47, 54, 55]  agree that the quality of 

development process (“healthiness” of a project) should be measured by means of investigating 

the impact of different processes conducted by distributed project participants to the quality of 

software to be produced.  We address this need by proposing a concept and evaluation of “health 

indicators” in distributed software projects.  

Crowston et. al [21] as well as  Collins and Fitzpatrick [18] define that  a “healthy” distributed 

project such as  in a Open Source Software Project should shows active developer communities, 

“a lot” of usages and feedbacks from users and rapid releases of good quality software.  

However, one open issue in quality assessment of development process is to identify whether 
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current development processes in particular those related to quality assurance activities are 

effective or efficient enough to produce good quality software or there are needs for 

improvement [124].  

Thus, project “health” status monitoring should act as a) objective indicators of current quality of 

processes across project participants such as developer contributions level, maturity level of 

defect reporting and removal activities, b) investigate the correlation between processes such as 

defect removal activities with developer conversation in the mailing list, and c) provide 

prediction of certain situation or quality level status based on statistical analysis. 

As the proof of concepts, we apply proposed health indicators to several large Open Source 

Software Projects from Apache Software Foundation (i.e., HTTPD, Tomcat, Slide, Xindice, 

MyFaces Core, MyFaces Tobago, MyFaces Trinidad, MyFaces Tomahawk) and later discuss the 

data analysis results with OSS expert to have external validation of proposed health indicators as 

reported in [121, 122, 124, 125].     

 

The following 5 papers give a concise overview on this line of work; for an overview of results 

see Chapter 3.  

Paper 1: Wahyudin, D., Mustofa, K., Schatten, A., Biffl, S., Tjoa, A., (2006);"Introducing 

"Health" Perspective in Open Source Web-Engineering Software Projects, Based on Project Data 

Analysis", Proceedings of the 8th International Conference on Information Integration, Web-

Applications and Services (IIWAS); Austrian Computer Society (ÖCG) publishing,  Yogyakarta 

Indonesia, 2006.   

This paper proposes an evaluation process and concept for ”health” indicators i.e., developer 

contributions into the mailing list, and correlated risk of a core committer abandon the project 

which will brain drain the rest of the developer community. The concept of “health” indicators 

can help getting an overview on a large number of OSS projects. For initial empirical evaluation 

of the concept, we apply the indicators to well-known OSS projects and discuss the results with 

OSS experts to investigate the external validity of the indicators. 

 

Paper 2: Liem, L., Wahyudin, D., Schatten, A., (2006) "Data Integration: an Experience of 

Information System Migration", (2006) Proceedings of the 8th International Conference on 

Information Integration, Web-Applications and Services (IIWAS); Austrian Computer Society 

(ÖCG) publishing, Yogyakarta Indonesia, 2006. 

In this paper we present an experience of migrating and re-development of a legacy centralized 
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information system to a new distributed system.  This work reports the importance of different 

stakeholders’ participation and commitment during development process in order to obtain 

success in a distributed software development project.  

 

Paper 3: Wahyudin, D., Tjoa, A., (2007);"Event-Based Monitoring of Open Source Software 

Projects", EBITS workshop, Proceeding of the 2nd  IEEE International Conference on 

Availability Reliability and Security (ARES), Vienna, Austria, 2007.   

In this paper we propose a concept and an initial measurement approach for event-based 

monitoring of OSS projects to better understand the actual benefit of tool-supported gathering, 

correlating and analyzing processes event data from the OSS community as a supplement for 

traditional software project monitoring data collection. We report on an empirical feasibility 

study investigating “health” and risk indicators of five OSS projects listed in the Apache 

Incubator. 

 

Paper 4: Wahyudin, D., Mustofa, K., Schatten, A., Biffl, S., Tjoa, A., (2007); “Monitoring the 

"Health" Status of Open Source Web Engineering Projects", International Journal of Web 

Information Systems (IJWIS); Issue 3, Vol.1/2, Emerald, 2007. 

This paper is an extension of Paper 1. Here once again we propose a concept and evaluation 

of”health indicators” (original indicators as reported in Paper 1 and additional indicators based 

on defect removal activities) in open source projects. The basic argument for the strategy of our 

approach is derived from the analysis of literature and published studies. We propose a concept 

of driving health indicators as derived measurements using an effect diagram of development 

processes in OSS project.  We apply the indicators to well-known OSS projects for empirical 

evaluation of the concept. We perform project data analysis on the data retrieved from several 

successful OSS projects (Apache Tomcat and Apache HTTPD) and the challenged ones (Apache 

Slide and Apache Xindices). Similar to paper 1 in this study, we also discuss the results with 

OSS experts to investigate the external validity of the indicators 

 

Paper 5:  Wahyudin, D., Schatten, A., Winkler, D., Biffl, S. (2007): Aspects of Software 

Quality Assurance in Open Source Software Projects: Two Case Studies from Apache Project. 

33rd EUROMICRO Conference on Software Engineering and Advanced Applications, SPPI 

Track, 2007. 

This paper provides an exploration to improve our understanding of software quality practices in 
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different types of OSS projects. We propose a framework of Quality Assurance (QA) in an OSS 

project, elicit OSS stakeholder value propositions for QA, and derive additional “health” 

indicators. For an initial empirical evaluation we apply these indicators to 5 releases of 2 large 

Apache projects (Tomcat and MyFaces) to analyze the extent to which QA aspects are 

commonly performed during development process. 

1.2.2 Software Quality Prediction in Distributed Development Settings  

As suggested by [53] the absence of defects within a software product is one of important quality 

aspects in software engineering.   Hence  software quality prediction in particular defect 

prediction (e.g. estimates of number of defects within a release or likelihood of an software 

artifact to be defective) has drawn the attention of many researchers in empirical software 

engineering and software maintenance due to its importance in providing quality estimates and to 

identify the needs for improvement from project management perspective. 

In this research, we propose a software quality prediction framework (SQF) for systematically 

conducting software defect prediction as an aid for project manager in DSD context. The 

framework has been aligned with practitioners’ requirements and our findings from a 

systematical literature review on software defect prediction. We provide a guide to the body of 

existing studies on defect prediction by mapping the results of the systematic literature review to 

the framework. Based on proposed research hypotheses and results of systematical literature 

review we describe a research roadmap of software quality prediction. 

As empirical evaluation of the SQF, we construct two quality indicators that should be predicted 

with product and process data collected during development. The first quality indicator is defect 

growth between releases while the second is the likelihood of high risk class of a release 

candidate. We use data from 4 Apache Projects (MyFaces Core, MyFaces Tobago, MyFaces 

Trinidad and Struts 2.0).  We perform cross project modeling for different context of software 

defect prediction using advanced parameter selection techniques (i.e. correlation analysis; 

backward, forward and stepwise linear regression procedures) and prediction techniques 

(regression techniques: such as multiple linear regression, and logistic regression and 

classification techniques: such as Naïve Bayes, J48, Random Forest).  Further, the results are 

discussed with OSS experts and defect prediction practitioner to have better understanding the 

impact of certain parameters to defect prediction accuracy, and to identify the most likely 

scenarios of certain correlations of different parameters [126].  
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The following 3 papers give a brief overview on software defect prediction in distributed 

software development settings; please refer to the Section 4 for an overview of the results.  

Paper 6:  Wahyudin, D., Ramler, R., and Biffl, S. (2008), A Framework for Defect Prediction  

in Specific Software Project Contexts, in the 3rd  IFIP Central and East European Conference on 

Software Engineering Techniques (CEE-SET),  Brno, Czech Republic, 2008. 

In this paper we present the software quality prediction framework (SQF) derived from the 

practitioners’ requirements and supported a systematical literature review results on software 

defect prediction.  Later we use the results to derive the research roadmap in software defect 

prediction as guidance for future researches.  

 

Paper 7: Wahyudin, D., Winkler, D., Schatten, A., Tjoa, A. M., and Biffl, S.(2008); “Defect 

Prediction Using Combined Product and Process Metrics a Case Study from the Open Source 

Apache Myfaces Project Family”; in the 34th  IEEE EUROMICRO Conference on Software 

Engineering and Advanced Applications, SPPI Track, Parma, Italy, 2008. 

In this paper we apply SQF to investigate software defect prediction with data from a family of 

widely used OSS projects based both on product and process metrics as well as on combinations 

of these metrics. In this work our quality indicator (defect estimator) is defect growth between 

releases which enable project or release manager to identify whether a release candidate has 

potential growth of defect that may far exceed current developer capability in removing defects.  

 

Paper 8: Wahyudin, D., Biffl, S, Schatten, A., and Tjoa, A. M. (2009); “Predicting the 

Defectiveness Risk Class of  a Software Release Using Product and Process Metrics  An 

Empirical Study Based on Data from Four Large Open Source Projects”; Submitted to the 31st  

IEEE/ACM International Conference on Software Engineering (ICSE), Vancouver, Canada, 

2009. 

In this paper, we propose a framework to characterize and predict the defectiveness risk class of 

a software release relative to the average defectiveness level of a reference set of releases. We 

collected and analyzed product and process data from 4 large OSS projects to empirically 

evaluate framework validity both within a project and across projects. We conduct two types of 

prediction model training, first is by fitting all available metrics into the model (unsupervised 

training) and second by conducting parameter selection and fitting only significantly correlated 

metrics into the prediction model (supervised training).  The best prediction model is later used 

to predict the likelihood risk class of releases with cross project data. 
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1.3 Overview  

The remainder of this thesis is structured as follows: Chapter 0 summarizes related work on 

software defect prediction and quality improvement as fundaments of this work. Chapter 3 

outlines the first show case, evaluation of distributed development process quality and discussion 

of empirical results. Chapter 4 outlines the second show case, quality prediction in distributed 

software development with following discussion of empirical results. Chapter 5 summarizes the 

overall results with the proposed general research issues, and suggests future work. 
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2 FUNDAMENTS OF THIS WORK  

This chapter describes a) introduction to empirical software engineering, b) quality evaluation of 

distributed software development product and processes, and c) software defect prediction as 

fundaments of this work 

2.1 Introduction to Empirical Software Engineering 

An improvement seeking organization or communities wants to assess the impact of process 

changes before introducing them to improve the way of working and the quality of product. 

Empirical studies are important in order to get objective and quantifiable information on the 

impact of changes [128]. Such organization needs to experiment and record obtained experiences 

from development process and eventually may depict the need to change the current way of 

producing a software product.  

When new method or technology is substantially different from the current practice, the 

evaluation should be taken off-line in order to reduce risks [128]. Later, the empirical evaluation, 

may take the form of a controlled experiment (for detailed evaluation in the small) [5] or of a 

case study (to study the scale effects) [61].  In both cases, an approach of improvement life cycle 

such as the Goal/Questions/Metrics paradigm (GQM), as described subsequently, provides a 

useful empirical framework.   

In this thesis we exploited and extended GQM to construct the Software Quality Prediction 

Framework (SQF) which will be fully described in section 4.3 .Based on metrics classification 

reported by literatures in software metrics (see section 2.1.2), we investigated the impact of 

metrics selection to quality prediction performance (e.g. accuracy, and precision) using empirical 

data from Open Source Software projects.  

2.1.1 Goal/Questions/Metrics paradigm 

The Goal Questions Metrics (GQM) [4] approach is based upon the assumption that for an 

organization to measure in a purposeful way it must (1) specify the goals for itself and its 

projects, (2) trace those goals to the data that are intended to define those goals operationally, 

and (3) provide a framework for interpreting the data with respect to the stated goals. The result 

of the application of the GQM approach is a specification of a measurement model targeting a 

particular set of issues and a set of rules for the interpretation of the measurement data. The 
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resulting measurement model has three levels: 

1. Conceptual level (Goal). A goal is defined for an object, for a variety of reasons, with respect 

to various aspects of quality, from a range of points of view, for a particular project context. 

Objects of measurement are the products, development processes, and project resources. 

2. Operational level (Question). A set of questions is used to characterize the way the 

assessment/achievement of a specific goal is going to be performed based on some 

characterization model. Questions try to characterize the objects of measurement (product, 

process, resource) with respect to a selected quality issue and to determine its quality from the 

selected viewpoint. 

3. Quantitative level (Metric). A set of data is associated with every question in order to answer 

it in a quantitative way (either objectively or subjectively). 

Practical guidelines of how to use GQM for measurement-based process improvement are given 

in [15].  

2.1.2 Software Metrics  

Empirical studies are used to investigate the effects of some inputs to the object under study such 

as accuracy of quality prediction models in an OSS project. Wohlin [128] suggests that to 

control the study and to see the effects, we should measure the inputs in order to describe what 

causes the effect on the output, and to measure the output. Without measurements, it is not 

possible to have the desired control and therefore an empirical study cannot be conducted. 

Norman Fenton in his book Software Metrics [30], defines measurement and measure as:  

Measurement is a mapping from the empirical world to the formal, relational world. 

Consequently, a measure is the number or symbol assigned to an entity by this mapping in order 

to characterize an attribute. The study of software metrics first published in 1976, by T. Gilb [42]  

since then software metrics have been heavily used in field of empirical software engineering, 

software project management and software quality prediction, as published in some notable text 

books [26, 30, 43, 48, 51].  

The objects that are of interest in empirical software engineering can be divided into three 

different classes [31]: 

a. Product. The products are the artifacts, deliverables or documents that result from a 

process activity. 

b. Process. The process describes which activities that are needed to produce the software. 

c. Resources. Resources are the objects, such as personnel, hardware, or software, needed 
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for a process activity. 

In each of the classes we also make a distinction between internal and external attributes. An 

internal attribute is an attribute that can be measured purely in terms of the object. The external 

attributes can only be measured with respect to how the object relates to other objects. The 

mapping from an attribute to a measurement value can be made in many different ways, and each 

different mapping of an attribute is a scale. The most common scale types that can be used to 

measure an object attributes are the following [30, 128]:  

a. Nominal scale. The nominal scale is the least powerful of the scale types. It only maps 

the attribute of the entity into a name or symbol. This mapping can be seen as a 

classification of entities according to the attribute. Examples of a nominal scale are: 

classification, labeling and defect typing. 

b. Ordinal scale. The ordinal scale ranks the entities after an ordering criterion, and is 

therefore more powerful than the nominal scale. Examples of ordering criteria are; 

“greater than”, “better than”, and “more complex”. Examples of an ordinal scale are: 

grades and software complexity. 

c. Interval scale. The interval scale is used where the difference between two measures are 

meaningful, but not the value itself. This scale type orders the values in the same way as 

the ordinal scale but there is a notion of “relative distance” between two entities. The 

scale is therefore more powerful than the ordinal scale type. Examples of an interval scale 

are: temperature measured in Celsius or Fahrenheit. 

d. Ratio scale. If there exists a meaningful zero value and the ratio between two measures is 

meaningful, a ratio scale can be used. Examples of a ratio scale are: length, temperature 

measured in Kelvin and duration of a in development phase. 

Measures can also be classified in two other ways: (1) if the measure is direct or indirect, or (2) 

if the measure is objective or subjective [30, 128].   

a. Direct measure. A direct measurement of an attribute is directly measurable and does 

not involve measurements on other attributes. Examples of direct measures are: Lines of 

code, and the number of defects found in test. 

b. Indirect measure. An indirect measurement involves the measurement of other 

attributes. The indirect measure is derived from the other measures. Examples of indirect 

measures: Defect density (Number of defects divided by the number of lines of code), 

and programmers productivity (lines of code divided by the programmer’s effort). 

c. Objective measure. An objective measure is a measure where there is no judgement in 

the measurement value and is therefore only dependent on the object that is being 
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measured. An objective measure can be measured several times and the same value can 

be obtained within the measurement error. Examples of objectives measures are: Lines of 

Code (LOC), and delivery date. 

d. Subjective measure. A subjective measure is the opposite of the objective measure. In 

the measure lays a judgment made by the person, who is making the measurement. The 

measure depends on both the object and the viewpoint from which they are taken. A 

subjective measure can be different if the object is measured again. A subjective measure 

is mostly of nominal or ordinal scale type. Examples of subjective measures are: 

Personnel skill, and usability. 

For the empirical evaluation of the proposed concepts, in this thesis we focus on objective 

measure (objective modeling) which enabled both direct (basic metrics) and indirect measures 

(i.e. OSS Health Indicators) to construct quality prediction models.  

2.1.3 Causal Modeling to Investigate Correlated Factors and Metrics   

To provide effective quality prediction and evaluation, especially in a complex system like OSS 

project and DSD, first we should identify what would be the quality aspect to be assessed.  

Current practices in software defect prediction used metrics obtained during development 

process but often uncared for the causality of factors correlated to quality aspect that should be 

predicted [29]. From a practitioner perspective such studies typically report the performance of 

the prediction model (e.g. accuracy, error, precisions) without further discussions of the cause of 

the results often with vague impact factors analysis.  

Max Born (1949) [13] acknowledged three assumptions that dominated physics domain until the 

twentieth century regarding the cause and effect [113]:  

 "Causality postulates that there are laws by which the occurrence of an entity B of a 

certain class depends on the occurrence of an entity A of another class, where the word 

entity means any physical object, phenomenon, situation, or event. A is called the cause, 

B the effect."  

 "Antecedence postulates that the cause must be prior to, or at least simultaneous with, the 

effect."  

 "Contiguity postulates that cause and effect must be in spatial contact or connected by a 

chain of intermediate things in contact."   

Causal model is a model or portrayal of the theorized causal relationships between concepts or 

variables. While, causal relationship is the relationship of cause and effect. The cause is the act 
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or event that produces the effect (Source: Environmental Protection Agency of United States)1. 

Example of popular models are Closed Loop Causal Diagram [86], Bayesian Network [31, 50]  

and Goldratt’s Reality Tree Analysis [28].   

In Figure 1, outlines the causal model for estimating software quality.  In a naïve model (the left 

hand side figure), to predict software quality is simply by fit in the measure of software size into 

the prediction model.  Yet, practitioners in software quality prediction are typically want to find 

better explanation of certain quality level status or risky condition, similar to a doctor who need 

to diagnose different symptoms and status of different organs  to identify the patient’s disease 

and suggest proper treatment.   

On the right hand side of Figure 1, a more comprehensive causal closed loop model is 

represented. In causal model diagram, we can analyze how interrelated variables/factors affect 

one another. The diagram consists of a set of nodes representing the variables connected together 

through relationship.  These relationships represented by arrows which labeled either as positive 

or negative.  Positive label of an arrow, mean that by increasing the value of the origin node may 

likely increase the value of the destination node in the relationship, while negative labeling is 

vice versa.   

Figure 1 illustrates what would be the impact factors and their effect to the quality of product. 

For example by increasing the effort in particular for conducting quality assurance activities will 

likely to increase the product quality. Other positive factors are assigning competent developers 

since the beginning of the project, and well planned work schedule will also impact the quality of 

the product.  

                                                 
1 EPA glossary can be found at http://www.epa.gov/evaluate/glossary/c-esd.htm (last accessed 20 July 2008) 
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Figure 1 Simple Example of Causal Model for Software Quality Estimations (Extended from 

[31]) 

In this thesis, we use causal modeling, prior to conducting quality prediction.  Derived from 

study literatures and expert interviews, we construct causal models that outline the context of 

prediction with respective cause and effect of interrelated factors. Later we evaluate the 

constructed model through discussion with experts of the study contexts (i.e. OSS experts and 

Software Defect Prediction practitioners).  

 

2.1.4 Conducting Empirical Study in Software Engineering 

The proceeding of well conducted research can be illustrated as a V model (see Figure 2). First 

in initiation phases “hurt” in particular domain of research may motivate some problem 

statements.  Based on the identified problems, researchers construct model that represent the real 

world of the problem, and later design and develop solution ideas to address such problems. The 

design then implemented as method and tool for general or specific domain applications.   

The right hand side of the research v-model consists of empirical validation of the solution. The 

first empirical validation is conducted using controlled experiment in order to assess the quality 

of implemented tool and system test to check whether the implementation meet all aspects of the 

proposed design. Errors are reported to implementation process for improvement and correction, 
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while the results of validated tools or methods are input for the empirical validation in industrial 

context. 

 

 

Figure 2  The V Research Model, refined from [9] 

 

In for the industrial (real world) validation, use case is appropriate method to compare the new 

solutions, method and tools compare to other/proven approaches. The case study should provide 

some empirical results of benefits and challenges of the new tools/methods, and propose whether    

the new tools/method should be accepted for particular context of applications or domains. 

Based on the results of the case study, the new methods or tools then rolled out to the real world 

for deployment.  Then a survey can be conducted to test the new solution in operational, and to 

identify some new “hurts” that may initiate new researches.  

A structured empirical study is a must to have better control of the study process and to have 

acknowledged results through real world validation. In this section we describe the proposed 

research framework for conducting empirical study in an OSS project context (see Figure 3).  

The framework is based on Wohlin’s [128] guide for conducting experiment in software 

engineering which further simplifies the V research model with additional quality assurances 
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(QA) steps.  

 

 

Figure 3 Framework for empirical study in context of OSS and DSD projects 

 

Figure 3 shows the three-step approach: (a) empirical study design and measurement model 

development (b) data collection from project repositories (c) data analysis. The sequence of 

phases is partially derived from general frameworks for conducting empirical experiments in 

software engineering [128] and empirical study design [4].  

I. Empirical Study Design  

As precondition prior to study goal definition, first we have to describe the study objects that will 

be used for the experiment. Second, we need to elicit target stakeholder expectations in order to 

identify their requirements and performance measures of each requirement achievement. We can 

use The Goal Question Metric (GQM) Approach [4], a common methodology to identify 

empirical measures and the setup an empirical study.   

 

Step I.1 – Empirical Study Goal Definition. Following the GQM approach, the goals represent 

selected stakeholders needs for certain quality aspects such as the expectation of current defect 

removal performance.  To identify the stakeholder value expectation one can used value 

elicitation techniques suggested by Biffl et al. [10].  Basili et al. [4] suggested to define a goal for 

an object with respect to various quality models from stakeholders’ points of view regarding the 

particular project environment. For instance: provide an accurate estimation of the software 

component quality prior to the release date from the release manager’s point of view in an OSS 

project.  

 

Step I.2 – Research Hypothesis Formulation. Based on empirical study goal, we derive 

questions that define them as completely as possible to characterize the way of assessment of 
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specific goal is going to be performed. For example, how fast can the developer community 

provide appropriate resolution for each reported defect? Later, we can formalize each question 

into research hypotheses that can be quantitatively addressed by data collection and analysis.  

 

Step I.3 – Variable Specification.  To better focus our study, we model the context of research 

which allows a) the creation of evaluation and predictive formula b) capture particular patterns 

within the project based on our study interest such as  developer code contribution patterns, 

developer responsiveness, defect service delays [124]. The selected modeling method  should 

provide a basic formula to determine a dependent variable using a set of independent variables 

[126]. After A3, one should perform validity check of the variable specification with the goal 

and hypotheses, as well as quick feasibility study whether a research goal and hypotheses can be 

addressed by the data collected from study objects (See QA1). The results of QA1 may derive a 

need for study design refinement as feedback to step A.1. (See feedback line F1). 

 

II. Data Collection  

The next step is to perform data collection from the project repositories, refine the collected data 

and address relevant threats of validity. The following steps were constructed based on our 

experiences in data mining of a range of OSS project repositories [121, 122, 124-126].  

Step II.1 – Data Collection. The empirical design proposed in the preparation phase should be 

evaluated by real data collected from selected study objects (projects and project repositories). 

The data collection process consists of:  

1. Specifying the observation objects, observation time and level of observation detail i.e. 

“Our study objects are Project X and Project Y hosted in the Apache Software 

foundation, later we conducted two months of observations from 1st February 2007 to 31 

March 2007 and collected a set of metrics from the observed project issue tracker”.   

2. Data extraction from the project repositories is based on the observation specification and 

depends on the metrics to be collected. There is a variety of OSS data mining tools such 

as Eclipse-Metrics Plug-in2, Jdepend3 for static code metrics collection, and StatSVN4, 

Markmail5, Jira6 and Bugzilla7 to collect development metrics.    

                                                 
2 Metrics project can be found at http://metrics.sourceforge.net/ 

3 Jdepend project can be found at http://andrei.gmxhome.de/jdepend4eclipse/ 

4 StatSVN project can be found at http://www.statsvn.org/ 

5 Markmail repositories can be found at http://markmail.org/ 

6 Jira for ASF can be found at https://issues.apache.org/jira/ 
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3. Typically collected raw data are not immediately ready for analysis; we still need to 

exclude invalid and duplicate data, or to replace missing data [71, 124]. Filtered data 

needs to be grouped, refined and prepared into particular format as input for analysis 

tools such as Weka8 or SPSS9.   

Step II.2 –Threats to Validity Management. The objective of an empirical study is to reach a 

conclusion that the selected measures reflected what we wanted them to reflect in current context 

of the study [118]. A Threats to Validity reveals questions and issues on the correctness of study 

claims [19].  A threat should be acknowledged and addressed appropriately during data 

collection process in order to provide counter measures to elevate the validity of empirical study 

results.  

 Wohlin [128] suggests that threats to validity can be classified into four major classes:  

1. Internal validity: is concerned with the validity within the given environment and the 

reliability of the results. E.g., Ambiguity about direction of causal influence, Selection, 

Statistical regression, etc 

2. External validity:  is a question of how general the findings are. Many times, we would 

like to state that the results from an experiment are valid outside the actual context in 

which the experiment was run. E.g., interaction of different treatment, interaction of 

selection and treatment  

3. Construct validity is a matter of judging if the treatment reflects the cause construct and 

the outcome provides a true picture of the effect construct. E.g., Confounding constructs 

and levels of constructs, hypothesis guessing, etc.  

4. Conclusion validity is concerned with the relationship between the treatment and the 

outcome of the experiment. E.g., Low statistical power, Reliability of measures, Violated 

assumption of statistical tests, etc. 

During validity evaluation, the process itself acts as the second data quality assurance by 

validating and checking collected data based on reality of the objects of study (see QA2).  The 

results should outline whether collected data is sufficient enough (in quality and quantity) for 

data analysis or should be improved (see Feedback F2).     

 

                                                                                                                                                             
7 Bugzilla project can be found at http://www.bugzilla.org/ 

8 Weka “data mining with open source mining tool”, can be found at: http://www.cs.waikato.ac.nz/ml/weka/, last accessed 20 July 2008 

9 SPSS software packages can be found at:  http://www.spss.com/de/, last accessed 20 July 2008 
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III. Data Analysis  

This is the last part in our framework and an important stage to validate the constructed models 

and measures with collected data. 

Step III.1 – Data Analysis. Collected and refined data from the previous phase then fit in to the 

measures and model and analyze by means of statistical or machine learning methods. Some 

statistical tests also should be performed to validate the results, i.e. to check the distribution and 

the significance of data, to check model significance and accuracy. 

Step III.2 – External Validation of Data Analysis Results. The last step is to provide external 

validation using different observation data or discussion with expert in the context of study to 

better analyze particular patterns in observed projects which might have impact on the analysis 

results.  

The results of data analysis later should be used to evaluate proposed research hypotheses, and 

feedback for goal adjustment (see feedback F3).    

2.2 Quality Evaluation of Distributed Software Development Processes and 

Product 

Distributed software development (DSD) is a part of globalization where software project teams 

have become geographically distributed [102]. Large software companies employ DSD style in 

search for competitive advantage in terms of cost reduction, higher quality and flexibility in 

software development, productivity increases, and  to lessen potential risks [110].  However,  the 

notion of distributed software development has tradeoffs such as a highly complex, distributed 

processes, comprising a large number of highly inter-dependent parallel activities [101].  

2.2.1 Quality as Software Product Conformance to Requirements 

Crosby [20] defines quality as “conformance to requirements”, means development processes 

and delivered product should be measured continuously to determine conformance to predefined 

requirements. On the other hand, Juran et al [52] defines quality as “fitness to use” which takes 

customers’ requirements and their value expectation into account. Both definition are correlated 

to each other, and reflect the need to measure the quality of software products and development 

processes to produce such product.  Kan [53] defines that the  narrowest sense of software 

quality is commonly recognized as lack of defects in the product.  He also further mentioned that 

the degree of defect freedom is the most basic meaning of conformance to requirements and 



  

 

32 

fitness to use, because if the software contains high number of defects it will reduce the expected 

functionalities.  

Project and Quality manager needs to evaluate the actual status of the project and the quality of 

performed development processes to produce required products. Evaluation of distributed 

development process methods are required to supply timely, accurate and comprehensive project 

information as the basis for analysis and decision making.  

There are several quality evaluation frameworks in traditional closed-source software projects, 

e.g., Quantitative Quality Evaluation model [12], Goal Question Metrics model [4], Squid model 

[11], and Gutman’s Means-End Chain model [129]. However, to our knowledge there is no 

validated framework available for modern large-scale OSS [123] DSD project environments due 

to the characteristics of OSS development processes: globally distributed and voluntary 

participants, less formal project management (in particular, planning), often scarce 

documentation, and frequent product releases [63, 122].  

The second issue with current quality evaluation frameworks, is that most of them put a focus on 

evaluating the quality criteria of software artefacts (work products), e.g., source code quality and 

architecture, rather than development processes that are likely to have significant impact on these 

quality criteria [125]. A critique from Norman Fenton of current quality evaluation frameworks 

is that most of these studies try to evaluate or predict certain quality characteristics (e.g., 

maintainability, reliability, security) derived from certain quality attributes (like product size, 

complexity, dependencies on management level) but most of them fail to report quantitatively 

what are the correlation between these quality attributes with actual defects reported after 

product release [32].  

2.2.2 Human Based v.s. Tool Based Evaluation Approaches 

In general, there are two evaluation approaches: tool-based and human-based monitoring. The 

tool-based approach seems most suitable for monitoring frequently a large number of process 

events data, or when human resources for monitoring are hard to obtain. On the other hand, the 

human-based approach seems favorable for a weekly/monthly process such as personal reporting 

as the summary of activities and progress status, and go to more detail if necessary by directly 

interviewing the team member.  

Traditional software project management [100, 106] focuses on tracking formal achievements 

such as the progress and financial obligation and analyzing the merit of project participants 

based on routine personal reports and deliverables. As the consequence, most of the traditional 
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project management is human-based monitoring, which often misses the process and information 

during its project execution. This can be very risky; if a problem occurs, as Keil et.al [55] found, 

participants tend not to report the actual condition of the project. Hence, additional data for 

comprehensive balanced reporting are needed before and during a crisis for raising issues well in 

advance to identify and to mitigate project risks. 

Advanced applications of distributed development such as Open Source Software Project and 

Global Software Development have led to new challenges regarding the scalability and 

expressiveness of project monitoring methods [108], especially when the project has to face (1) a 

large amount of process data to be monitored, (2) shortage of human resources for monitoring, 

and (3) most importantly, the loosely coupled project community as the result of a global project 

work. Consequently, monitoring such a system using only a human based approach is likely to 

be costly, time consuming, and error prone.  

This complexity, of course, is the motivation behind the desire a project or quality manager to 

use tool supports to simplify the management and performance of the process. Tool-driven 

system “health” monitoring has been successfully adopted by industries, reaching from hybrid 

system to business activity process monitoring [117], which in principle can be adopted in 

software engineering domain. Other study [107] suggested an OSS tools for project monitoring, 

particularly for dislocated or distributed development such as in OSS projects.  

During the development, [101] advocates the tool supported project evaluation should balance 

the observation from (a) time relevant process data (b) product-relevant artifacts data and (c) 

coordination inter-dependent activities data. This combination will provide more accurate and 

less biased project information for critical decision making process [125]. 

Hence, this work focuses on exploiting available extensible tools to capture product and process 

metrics as basis for software quality prediction and evaluation in distributed development 

environment such as OSS projects. In the following subsections, we describe briefly the 

characteristics and development processes in a typical OSS project.  

2.2.3 The Needs for OSS Product Quality Evaluation  

Open Source Software (OSS) projects can be considered as extreme form of distributed software 

development as the globally distributed participants are mostly volunteers with distinguished 

project management style. Eric Raymond in his famous essay “The Cathedral and The Bazaar” 

[105] suggested that open source development style has several advantages compared to closed 

source project such as:  
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 Rapid development and massive peer review 

 Flexibility in using and modifying the source code for user interest  

 Low-cost development and technology transfer 

 Developer inheritance and the use of a reference implementation to help develop a 

standard. 

 Open code base  and Open development process [95] 

We used open source projects to provide empirical evaluation of proposed concepts in this thesis 

due to the following reasons: a) rich availability of data from shared project repositories b) 

openness in development processes which enable reasoning for certain quality achievement as 

well as risk condition c) the significance of OSS product adoptions  in many industry domains.   

Just to give an example Netcraft Web Server Survey [93] discloses that more than 60% of the 

web sites on the Internet are using Apache HTTP Server (see Figure 4).   

Other OSS products such as: Apache Tomcat10 has powered large industries such as General 

Motor, and Wal-Mart,  from automated manufacturing domain, the application of OSS solutions 

such as JADE platform has been successfully provides support for controlling a large distributed 

manufacturing system [78].  It is worth noting, that currently a number of important OSS 

projects are supported by companies and some participants are not volunteers (e.g., JBoss, 

Apache JackRabbit, MyFaces Tobago, and OpenOffice).  

 

Figure 4  Growth of Apache HTTP Server Market Share (Source: Netcraft Survey [93]) 

 

Furthermore, large critical avionic industries such as Airbus sponsored TOPCASED project to 

                                                 
10 List of  Powered By Apache Tomcat can be found at: http://wiki.apache.org/tomcat/PoweredBy last accessed 23-July-2008 
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provide Eclipse based development tools for critical aerospace security systems11, while NASA 

recently called for “open source specification” in Boeing's contract to build a next-generation 

avionics system to guide Ares rockets which is responsible for launching the manned Orion 

spacecraft into Earth orbit, and then driving it to the moon [92].  

2.2.4 Comparison of OSS Projects to Closed Source Distributed Software Projects 

In Table 1, which is partially based on Keil and Carmel [54]  observations, we highlight some 

key differences between closed source development (custom and package) and open source 

software development. Given these differences, one would expect to find differences in the links 

that are used across the three environments.  

Although OSS development style promise some appealing benefits, however [16] suggests that 

typical OSS development seizes several problems such as the lack of requirement elicitation, no 

ad-hoc development process, and poor practices of project management.  Moreover, many OSS 

project communities are still in their initial phase, in an immature state or have reached the end 

of their life cycle which means their survival seems heavily uncertain [65].  

 

Table 1 Comparison of OSS Project Development with Closed Source Development 

 

Development Dimension 

Closed Source Development [54]  

Open Source Software Projects Custom Development Package/COTS 

Goal Software developed for internal 

use (i.e., usually not for sale) 

Software developed for external 

use (i.e., for sale) 

First software developed for 

internal use of the core 

developers  later they publish the 

product to larger community for 

feed backs and attract new 

developers  [83] 

Typical point at which most 

customers are identified 

Before development begins After development ends and the 

product goes to market 

Originally the customers are the 

developers who initiate the 

project [37, 69] 

Number of customer 

organization 

Usually one Many Depend on the project 

community, may consists single 

user to large number of users in 

the community[65, 124] 

Physical distance between 

customer and developer 

Usually small (e.g. customers 

are in same building as 

developers) 

Usually large (e.g. customers 

are thousands of miles from 

developers) 

Typically widely spread across 

the globe, and most of them 

never met each other face to face 

[16, 119] 

                                                 
11 TOPCASED project can be found at http://www.topcased.org/, last accessed 17 June 2008   
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Common types of projects New system project; 

„Maintenance“ enhancements 

New products; new versions 

(major and minor) 

New sub projects, new 

versions/releases (major and 

minor) [37] 

Term of software consumer User; end user Customer User  [16] which some of them 

also act as developer within the 

project 

Common measures of 

success 

Satisfaction; acceptance Sales; market share; good 

product reviews 

High number of usages, active 

developer contributions, rapid 

releases [122] 

2.2.5 Open Source Software Development Structure 

Abedour [1] as well as Crowston et al [22] model the distributed development process in OSS as 

an onion shape model (see Figure 5), in this model the core engine of the project  is a small 

group of distributed core developers (sometimes called as committers) that provides more than 

80% of overall development contributions [83]. Some of the core developers also hold critical 

roles such as project management and release process. Core developers have read and write 

access to current body of code, as one of their responsibilities is to assure that each new code 

contribution are suitable to predefined specifications and do not posses any threat to the stability 

of the body of code. 

On the second layer is a larger group of peripheral developers who mostly responsible in defect 

removal activities and patches development, this developer group only has read access to the 

current working code repository, thus for each patches developed they typically post the 

contribution to shared developer tools such as mailing list or issue tracker and wait to be 

reviewed by other developers before a committer can include the patches into current body of 

code.   



  

 

37 

 

Figure 5  The Open Source Software Structure Model. Refined from [1, 22] 

 

The user community can be divided based on their feedbacks of  OSS product releases to the 

developer community, an active user commonly contribute in defect reporting and new feature 

requests, while passive users are simply end-user of  a releases.  

Each project participants collaborate using a set of shared development (e.g. source code 

management and issue tracker) repositories and communication infrastructures (e.g. mailing list, 

forum and wiki).  

To extract useful information from such data repositories we need web data mining, starting with 

data preparation which may involve data cleaning, data transformations, selecting subsets of 

records and in case of data sets with large numbers of variables - performing some preliminary 

feature selection operations to bring the number of variables to some manageable range.  

The development processes in an Open Source Software (OSS) project can be modeled as multi-

agent event-based system: in this model the project participants are agents, and their interactions 
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and state changes are events (see Figure 6). During the development processes, project 

participants interact and move from one state to another triggered by events. They may act as 

producer who publish event through messaging middleware (i.e. mailing list, issue tracker, 

source code management), which then deliver events to other agents who act as 

consumers/subscriber based upon their previously specified interest. 

Since most of the participants are: (a) unfamiliar with each other, (b) distributed around the 

globe with different time zone and work schedules, and (c) use various technologies and 

development-communication interfaces, thus make the OSS project as a system with loose 

coupling in time, space and synchronization.  As result most of the messages and deliverables 

during development processes are made with publish/subscribe-like interaction schemas as 

illustrated in Figure 6. 

 

Figure 6  Publish-Subscribe mechanism as communication pattern in OSS projects 

For example in a defect tracking process scenario, a user/developer who reports an issue can be 

considered as producer who send message about a defect existence into defect tracker 

(defect_reporting_event), then after performing some internal management operation, 

the defect tracker broadcasts the new defect information, e.g., through a mailing list 

(new_defect_notification_event). Later some subscribed user/developer may 

respond by making the diagnosis of the defect and send the result into the defect tracker 

(defect_diagnoses_event). 

The event-based model and tool support allow to draw on process and artifact data from the 

global OSS project community that can help outsiders to better understand success and risk 

factors in the current state of a project and its community. This kind of data analysis can be 
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especially helpful if human-based reports are suspected to be unsystematic, incomplete, or 

inconsistent.  

Several studies have used process event data of the existing open source projects to better 

understand the aspects of successful distributed development. These studies observed the OSS 

projects by manually or by tool supported mining project repositories such as mailing lists, 

defect database [82], Source code management tool (SCM ) such as SVN/CVS [41], and changes 

log [17]. The results clearly portrayed the development process pattern and the importance of 

community involvement in OSS projects.  However further works are required to better 

understand the OSS project, to distinguish different status of projects and to estimate the project 

survivability. 

2.2.6 Continuous Product and Process Improvement in an OSS Projects  

A good OSS project offers continuous improvement of software product releases. Just to give 

some examples large OSS projects such as Gnome, Mozilla, Python, Subversion and Eclipse 

encourage quality improvement as part of OSS community awareness. 

 

 

Figure 7  Continuous software product improvement within an OSS project. 

 

Their goals are to improve the quality of the releases by involving a larger part of the project 

community based on principles [124] such as involvement of a developer to review the validity 

of a defect candidate reported by a user before submitting the report into the issue tracker (see: 
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Buddy System at  Subversion project12).  

Our prior study [121, 122] in four large Apache OSS projects concluded that these communities 

should coordinate and work together as a symbiosis mutualism to produce high-quality software. 

In [122] we found that large successful projects such as Apache Tomcat and HTTPD have faster 

developer response times to user community feedbacks (i.e. defect report or feature request), and 

higher numbers of peer-reviews of each code set or patches submitted into the project code 

versioning system.  

The model depicted in Figure 7 is an extension of similar model proposed in Section 3.6 with 

some additional QA aspects (e.g. design review) and their involvement to continuously improve 

the software product in each release cycle.  Nevertheless both model should be taken together to 

have a comprehensive view of development process in a “healthy” and “quality aware” OSS 

project communities.  

Figure 7 illustrates a complete life cycle of an OSS project with five typical QA practices 

represented as circles as partially depicted in studies such as [36, 37, 124]; some of these 

practices are fully or partially observable, and thus we can measure the development activities 

with these practices to derive relevant Process Metrics.  Afterward we investigated the 

usefulness of these Process Metrics to quality evaluation and defect prediction in our case 

studies.  

 

Design Review 

Issues reported to the tracker tool trigger most of the development activities within OSS projects. 

An issue can be a new requirement (feature request/new functionality, or enhancement/patch) or 

software defect reported by a user. Throughout the project lifetime, there are several quality 

assurance (QA) practices as part of product release continuous improvement.   

When a developer has an idea for new functionality or a patch, he may construct specification 

and design and then ask other developers within the community to review his specification and 

design before listing them as new issues (see circle 1 in Figure 7). 

The Python project13 community encourages developers to engage in a specific design process, 

called Python Enhancement Proposal (PEP), which is similar to a request for comments and 

design technical review meeting in commercial software projects [36]. This design review 

process uses common information spaces of the project such as emails, forum, and project 

                                                 
12 http://subversion.tigris.org/project_issues.html 

13 http://www.python.org/, last accessed on 14th February 2008. 
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documentation and involves different stakeholders across all project communities. 

During design review, we can observe the developer activities in negotiation, collaboration, and 

refinement of proposed design. If the design proposal gets accepted, then the developer lists 

appropriate action items in the issue tracker. However, it is also common that a developer 

directly jumps into implementation (with his own ideas), then submits the code set, and later 

opens a discussion in developer communication channels and asks for technical review of his 

code. 

 

Code Testing 

It is worth noting that a developer in an OSS project always conducts code testing before 

submitting the code set into the CVS (see circle 2 in Figure 7). If the tests fail, then the developer 

either continues to work until the issue is resolved or returns the issue into the tracker as “open” 

with related documentations for knowledge preservation (i.e., refined bug recipes, development 

issues encountered). 

Although we cannot measure the testing process directly, we can measure developer 

contributions from developer communication spaces (mailing list, CVS, and issue tracker) prior 

to a release. Hence we can obtain the following metrics: changes to code metrics   (e.g. delta, 

added, deleted, modified to line of codes by developers) [89], number of committers/core 

developers and number of peripheral developers [83], code and changes contribution of core and 

peripheral developers [126].  

 

Code Peer Review 

In a quality-aware OSS project, an issue labeled “resolved” will attract other developers to 

review the code set. A committer then should decide based on review results whether a code set 

should be added into current body of code or get returned to the issue tracker (circle 3 in Figure 

7). 

These practices especially peer review can be observed through the project communication 

space, issue tracker and project CVS. Prior to a release date, a release manager needs to identify 

which patches and functionalities should be added to the next release package. Later he performs 

integration testing to assure the software quality before publishing the release package. 

Code peer review effectiveness can be measured as number of defects stated as “closed” prior to 



  

 

42 

a release [124, 126]; based on the Bugzilla14 documentation “closed” means the issue has been 

resolved and has passed a peer review. For example: number of closed defects, number or 

resolved defects, number of resolved defects/number of reported defects, number of closed 

defects/number of reported defects.  

 

Product Release Usage and Defect Validation 

The user community obtains the new release and uses it in different work contexts, and provides 

feedbacks to the developer community such as defects found and feature requests. This defect 

detection practice is similar to black box testing to find defects in a software product release (see 

circle 4 in Figure 7). The defect detection activities provide a list of defect candidates of a 

software release and considered as the primary activities performed by developers and users  

after a release in OSS project [39, 82]. Prior work [124] provides several examples of metrics 

that can be used as predictors such as: number of defects reports prior to release, number of open 

defects prior to release, number of invalid defects prior to release, and defect detection 

effectiveness prior to release. 

Most of the defects are detected through software usage and then validated by a developer by 

reproducing the defect based on defect recipe report from the user (see circle 5 in Figure 7).  If 

the defect is valid, a developer takes ownership of the confirmed defect and performs a suitable 

development process for resolution.  

In the study we applied all of these Process Metrics as predictors and investigated their 

correlation to defect estimates in the case study context.  

 

2.3 Software Quality Prediction  

Software quality prediction as in our case is defect prediction has drawn the attention of many 

researchers in empirical software engineering and software maintenance due to its importance in 

providing quality estimates and to identify the needs for improvement from project management 

perspective.  

                                                 
14Bugzilla documentation can be found at :http://www.bugzilla.org/docs/. Last accessed 10th December 2007. 
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2.3.1 Objective Software Defect Prediction Methods  

Schneidewind [109] suggested two approaches for objective defect prediction: (a) time-based 

approaches and (b) metric-based approaches. A time-based approach estimates the number of 

(remaining) defects from the number of defects found in a time interval after product release and 

fit the data to form a software reliability growth model (RGM) [76]. A metrics-based approach 

uses metrics obtained from historical project data before product release (called as predictors) to 

fit a prediction model.  

The advantage of time-based approaches is a more accurate prediction compared to metrics 

based approaches, since estimations are derived from actual defect data; however, the 

availability of data for estimation purposes are mostly based on testing results. Thus the 

prediction is often too late to support in-time decision making [126] regarding an upcoming 

release. Metric-based approach promises better support for a release manager by providing 

defect forecast prior to release, often with less accuracy as the tradeoff [71].  

To address different patterns of defect prediction, numerous statistical methods and software 

metric applications exist in the software maintenance and software quality research communities. 

Currently, there are several metric-based prediction models that are commonly used by 

researchers in software defect prediction: 

 Regression methods that best fit to predict the numeric value of defect prediction target 

(estimator), e.g., the number of defects in a release. For example,  Khosgoftaar et al. [57] 

suggested as prediction models component clustering fitted to linear regression or  non-linear 

regression [56]. 

 Classification methods to predict the nominal value of defect estimators such as module or 

file defectiveness. Classification techniques such as Bayesian Network (e.g., Naive Bayes, 

Bayes Net), regression (e.g., Logistic Regression), and tree classification techniques (e.g., 

J48, Random Forest) have been widely used in software defect prediction contexts [64] and 

risk prediction in project level [130]. For example, Yasunari et al. [130] suggested a project 

to be risky if the project showed confused behavior. For each observed projects they 

measured the confusion levels based on empirical questionnaires. Later using a certain 

threshold, they classified projects into two classes “confused or risky” and “not confused” 

and constructed a logistic regression model based on empirical data collected from these 

projects.  
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2.3.2 Metrics Categories for Software Defect Prediction  

In metrics-based defect prediction, collected metrics should be selected first before fit into the 

model as independent variables or predictors. Norman Fenton [30] classified collected metrics to 

construct prediction models into three basic categories such as: 

1. Product metrics measure attributes of intermediate and final software products, e.g., 

size (LOC) and complexity metrics (McCabe Complexity metrics). Product metrics are 

the most commonly used predictors and supported by [6, 27, 84] as important predictors 

in many cases of defect prediction in closed source development. 

2. Process metrics measure attributes of development processes, e.g., project events (new 

defect reported into issue tracker), state changes (defect status changed from unresolved 

to resolved), and activities such as, number of file being changed, and LOC churned per 

developer within a release. Mockus et al. [82], Weyuker et al. [127], and Nachiappan et 

al. [89] suggested these metrics as important predictors. Some study also called this 

group of metrics as development metrics [127], Process Metrics [126] or changes 

metrics [87]. 

3. Resource metrics, which further can be classified as [70]: 

a. Project participant metrics, measure attributes of involved project participants such 

as number of core developers, number of peripheral developers, number of active 

user etc [126, 127].  

b. Deployment and usage metrics measure attributes of the deployment context and 

usage patterns of software releases, e.g., time since first release and time to next 

release [73, 75].  

c. Configuration metrics measure attributes of software and hardware configuration that 

interact with the software product/release during operation e.g. operating system 

supported by the release and type of software application [84]. 

Some of these metrics as well as some novel metrics proposed by us in this thesis will be used 

for quality prediction modeling, and to better understanding which set of metrics can provide 

better prediction results.  

2.3.3 Software Quality Prediction in OSS Projects  

The nature of open source software (OSS) development [16], such as highly distributed 

development by volunteer contributors; cultural and time zone differences of contributors; 

informal project management and modest consideration of quality assurance (QA) and 
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documentation during development, makes product QA a major concern to potential users of 

new releases. Empirical studies [1, 38] suggest that some OSS projects have created software 

products with quality levels similar to closed source commercial development. Ben Collins and 

Brian Fitzpatrick15, committers and co-founders of the OSS Subversion project, suggested 

constant product improvements and releases as indicators for a “healthy” OSS project [18].  

Product improvements in OSS project are directed by a strong feedback from the user 

community (e.g., bug reports and feature requests)16 and active developers’ contributions [37] 

see Figure 7. 

In OSS projects, where formal QA practices such as inspection are less practicable, one feasible 

approach for assessing the quality of a software product is to predict the defect between releases. 

In a closed source software development, the prediction of defects between releases can provide 

benefits such as to guide testing of the next release [7], to improve maintenance resource 

allocation and adjust deployment [84], to guide development process improvement [27], and to 

enable the selection among different product releases [70].  

However, Fenton [29] reported most prediction models to be based on product metrics (e.g., size 

and complexity metrics) obtained after product release, which seems rather late for guiding 

development [109] and release process [84]. Another type of metrics, which is not as popular as 

product metrics, is process metrics. Process metrics are measures for development activities (e.g. 

developer source code contributions, developer email contributions) which can be monitored and 

obtained through all project life cycle [30].  

The quality evaluation of open source software (OSS) products, e.g., defect estimation and 

prediction approaches of individual releases, gains importance with increasing OSS adoption in 

industry applications. Most empirical studies on the accuracy of defect prediction and software 

maintenance focus on product metrics as predictors that are available only when the product is 

finished. Only few prediction models consider information on the development process (Process 

Metrics) that seems relevant to quality improvement of the software product.  

Metrics based prediction models which enable product metrics as defect predictor are the most 

common prediction model in closed source software project [73]. In a short-release-cycle 

environment such as in many successful OSS projects, product metrics signified low value 

variability and weak correlation to predicted defect pattern. Li et al. [71] Moser et al. [87] and 

                                                 
15 Google Speaker Series: Successful Open Source Projects can be found at http://www.youtube.com/watch?v=ZtYJoatnHb8. Last accessed 1st 

March 2008 

16 E. Raymond. The cathedral and the bazaar. http://www.catb.org/esr/writings/cathedralbazaar/cathedral-bazaar/, 2003. Last accessed 1st March 

2008 
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Wahyudin et al. [126] confirmed that prediction models that are based only on product metrics 

have worse performance compared to models which enable process metrics signify by lower 

number of ‘+’ as shown in Table 2 

Table 2 Comparison of Metrics Selection Impact to Prediction Results in OSS Projects 

Estimators 
Observation 

Entity 

Project 

Context 

Impact of  Metrics to 

Prediction Accuracy 

Reference 

Product 

Metrics 

Process 

Metrics 

Combined 

Metrics 

Defect occurrence 

over time  

Product 

Releases 

OpenBSD + ++ ++ Li et al. [71]  

File  

defect-proneness 

Java Files Eclipse + ++ N/A Moser et al. 

[87] 

Defect growth  

between releases 

Product 

Releases 

Apache 

MyFaces 

+ ++ +++ Wahyudin et 

al.  [126] 

The findings of these studies confirm other reports that data captured from developer activities 

contain more discriminatory and meaningful information about the defect distribution and defect 

removal capacity in software project than the static product metrics [87, 104, 127]. Hence, in this 

study we evaluated different types of product and process metrics and investigate the potential 

contribution of these metrics combination to improve the accuracy of the prediction results. 

2.4 Chapter Summary 

In this chapter we describe the methods for conducting empirical study in software engineering. 

The chapter also mentions several types of metrics which later we use for evaluating and 

predicting software product in our study contexts.  Further we illustrate the current state of the 

art in software quality evaluation.   

We also describe the needs for quality evaluation and prediction for OSS products which 

currently have become more widely adopted in many industry domains.  

At the end of this chapter we describe the state of the art in software quality prediction in 

particular objective defect prediction, and typical types of metrics utilized by researches in 

software defect prediction.   

We later enable the methods and techniques described in this chapter to answer predefined 

research issues with empirical data in our case studies.  
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3 PROCESS QUALITY EVALUATION OF DISTRIBUTED SOFTWARE 

DEVELOPMENT  

To ensure a project’s survival, a decision maker needs to continuously evaluate health status and 

recognize early symptoms of illness or risky situation (e.g. particular core committer leave the 

project can brain drain the rest of developer community). Such indication could be obtained by 

correlating measures that are available during the development.  

This chapter presents models and research issues for DSD process quality evaluation. It starts 

with concerns for OSS project survivability as the show case of the study. Further it builds on 

causal modeling process to elaborate on process and influence factors for project “health” status.  

Project “health” status is defined as quality measures of current development processes.  

The evaluation of project “health” indicators attempts to have well planned quality evaluation 

which address, to enclose prompt status of current development process status and early warning 

based on prediction models for certain risky conditions that typically occur in OSS projects.   

For evaluation of the concept, we perform two of empirical studies. In the first study (see 3.5), 

two project “health” indicators (developer contribution patterns and defect service delay) were 

modeled and evaluated using cross-project data as attempt to obtain robust models that can hold 

more than one project context. The second study (see Section 3.6) focuses on identification of 

more health indicators that correlated with quality assurance aspects which are commonly 

performed by a healthy OSS project community. Finding health indicators from current quality 

assurance practices will provide insight whether current practices are good enough or depict 

needs for improvement.  Additionally, dealing with handful yet focused health indicators 

consequently increase the efficient and effectiveness of the evaluation effort and data collection. 

3.1 Related Work 

This section outlines a) the concern for OSS project survivability which derives the motivation 

for conducting evaluation of development process quality in OSS project contexts and b) the 

current approach conducted by project management and project sponsor to evaluate the quality 

of development process of OSS projects.   
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3.1.1 Concerns for OSS Project Survivability  

Open source software (OSS) has caught our attention by the success and quality of its projects on 

the market, despite the fact, that its development does not follow traditional software 

development principles such as mostly voluntarily project participants, informal project 

management, open code and open development process [16].  

In certain software product classes OSS offers comparable or even better quality than “closed 

source” commercial software products, making OSS a considerable alternative in many domains 

reaching from operating systems over web-frameworks and databases to critical mission 

applications [24].   

OSS project management needs to assess the developments processes quality and to recognize 

early some risky conditions that may endanger the survivability of the project. While a 

prospective OSS end-user needs to evaluate the quality of product release and identify whether a 

new release is worth for deployment. 

In OSS, the project survival is a result of many underlying (connected) processes and cannot be 

easily determined. Just to give an example: developers are typically not paid for their work, but 

contribute voluntarily on their own motivation basis. Hence, the dynamic of the development 

process is much more difficult to estimate compared to that of a typical commercial project. This 

issue is problematic for certain stakeholders in OSS community to fulfill their goals such as 

prospective customers of OSS products in order to decide which products will provide long-term 

warranty and enhancements; the hosting project (e.g. Apache, Sourceforge, Eclipse and 

Codehaus) to provide or to continue support for some projects under their umbrella, and for the 

project leading teams who steer the project’s direction based on project status in timely fashion. 

The scale of the problem is escalating when a large number of projects should be monitored in 

parallel. The resulting OSS project monitoring faces ever-increasing demands to provide 

pertinent data from the dynamics of the projects, to help stakeholders cope with complex masses 

of data/information, to provide competitive discriminators based on the stakeholder values; and 

to provide the ”health” status of the project.  

3.1.2 Evaluation of Development Processes Quality: Measuring the Maturity Level of 

Development Processes 

Sourceforge [111] evaluate the maturity level of a project based on product downloads and  

project site hits, intensity of commits and file releases, and community communication traffics 
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i.e. in mailing list, forum and issue tracker [112].  

Our observations on 178951 projects listed in Sourceforge   at March 2007, reveals that the top 5 

project categories are Internet application (15.4%), Software development (15.1%), System 

(12.4%), Communication (10%), and Game/Entertainment (9.3%). Sourceforge ranks these 

projects into several categories which are: Planning (18156 projects), Pre-Alpha (15314 

projects), Alpha (17190 projects), Beta (23198 projects), Production/Stable (19531 projects), 

Mature (1675 projects), and Inactive (2124 projects). 

This fact depicts that most of the projects are still in early stages or already at the end of their 

lifecycle, and only a small portion (less than 2%) of the projects in SourceForge have reached 

their maturity.  

To elevate new project initiatives survivability level, the Apache Software Foundation (ASF) set 

up an incubation process called Apache Incubator as the entry path for each project initiatives 

called as podling to become part of the Foundation’s efforts. As stated in ASF Incubator 

guideline [2], the role of incubation process is to provide guidance and support to help each 

podling engender their own collaborative community, educating new developers in the 

philosophy and guidelines for collaborative development as defined by the members of the 

Foundation, and proposing to the board the promotion of such products once their community has 

reached maturity.  

A project considered as mature in ASF after it’s graduated from the Incubator after it shows self-

sustaining and self-governing communities to the Foundation board members. Such community 

can be achieved by having an open and diverse meritocratic community which proven to be more 

robust and productive compare to closed ones.   

In Figure 8   an Open Source Software Project Lifecycle, we illustrate a model of an OSS project 

lifecycle. In this model, after a project was born, it starts its infancy states (i.e. within the 

Incubator for new project in ASF), depend on where this new project hosted the project initiators 

should attract more participants and adhere to sponsor guidelines in order to achieve its maturity 

status.   



  

 

50 

 

Figure 8   an Open Source Software Project Lifecycle 

An OSS project that has reached its maturity basically is entering a free market, where it should 

compete against similar projects to attract more participants (developers and users) and to evolve 

its products over the time.   

Both SourceForge and Apache Software Foundation have similarity regarding the concept of 

project healthiness which should be based on the aliveness of the community and how it should 

grown by attracting more active participants and produce stable releases with good quality.   

In a healthy project typically has highly motivated developer community who eager to produce 

quality software in order to get more attention of potential participants to their project in term of 

development participations or at least feedbacks of product releases [18].  

3.2 Causal Modeling of OSS Survivability 

Crowston et al [21] suggested the success factors of an OSS project consisting of software 

creation/developer contribution, software use intensity and software quality.  

To better illustrate the impact of these factors and typical risks during development process, in 

our context; we modeled the OSS project as a body consisting of three major components: the 

developer community, the user community and the software product.  

Figure 9 outlines the success factors and risks as interrelated states and activities which indicate 

the project component status.  

We assumed that the survivability of the project is the result of the state of well being (aliveness) 

of both communities indicated by facilitating rapid creation and deployment of the incremental 

product releases or patches.  Furthermore, this release should satisfy relevant user needs. The 

following subsections describe more detail analysis about our causal model, based on literature 

review and web observation.  
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Figure 9 Causal Model of an OSS project Health Status 

3.2.1 Group I. OSS Developer Community Aliveness  

Successful OSS projects are not one time event. It is a process of a long life cycle which was 

first coined by Eric Raymond [105] as “scratching the developer itch”. The developer 

community continues to contribute, develop, enhance, maintain and release the products 

developer contribution. Iteratively in a typical OSS project management style. Therefore, in 

order to survive a project should attract more developers and boost their motivation.  

Studies from the projects listed in Sourceforge by [65, 77] signify that the developer community 

may consist of a single fighter up to more than 200 active developers at one time. They also 

disclosed that 86.2 % of the projects employ less than 6 developers during the development 

processes. A survey from The Boston Consulting Group [8] disclosed that the developer 

motivations to join an OSS project are to stimulate their intellectual, to enhance their skills or to 

have access to the source code and user needs. As most of the developers join the OSS project 

for their self satisfaction, the degradation of developer motivation are not trivial and very likely 
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cause project into deep problems if there is no appropriate counter measure. Lerner et.al [69] 

suggested that developer loyalty can be obtained by giving some incentives such as opportunity 

to contribute, community attention and recognition based on merit to the project.  

The nature of OSS community is a social structure that provides some hierarchy of management 

and controlling based on self-organizing patterns [119].  According to Gacek and Arief [39], 

developer in OSS project consists of code/peripheral developers and core developers which also 

called as committers.  

A project can be generally well developed and provide regular releases, which are appreciated by 

the user community, but it might actually be driven by very few active committers (dependencies 

to key committers). In the worst case, the project might depend on one particular person. This is 

obviously a risky situation for the project and its users as the key committers may leave which 

then brain drained the project, and de-motivate other developers such as in Apache Slide [121].   

The dominance of the key committers may also reduce opportunities to contribute by peripheral 

developers, can be considered as a hostile action. This dependency has been considered as a 

major issue by Apache Software Foundation which should be comprehended by all new project 

initiatives under the Apache incubation process. Other typical risky situation that may threaten 

OSS project is the shift of market or the change of technology which cause project disorientation 

and consequently de-motivates the developers to abandon the project (Like Native XML 

Database).  

3.2.2 Group II. OSS User Community Aliveness  

The second groups in OSS project community are the users who observe, download and then use 

the software product for certain objectives (e.g. curiosity, work functions, and user needs). The 

level of software use intensity will be amplified when certain quality attributes of the software 

product satisfy the user value expectation.  

Compared to those of commercial software products, the users in OSS project are expected to be 

more active to provide feedback for functionalities of product release. Some studies [1, 82, 124] 

reported that most of the defect reports and the feature requests came from the user community, 

which were then responded by the developer community by submitting patches or new features.  

Eventually, these practices caused rapid changes into the code and documentation. However the 

user needs and expectations may change over the time due to the technology evolution, the shift 

of needs or some other reason. Eventually these changes may imply the trend and demand of the 

market of the OSS product. Hence, it is fair to say that the user community has significant impact 
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on the OSS project community aliveness in the whole and the quality of the software product 

released.  

3.2.3 Group III. OSS Product Quality  

The typical characteristic of OSS such as open code based and no formal project management 

has raised some debates about the quality of the released products. However a survey from BCG 

[8] suggested that open source community is mostly comprised of highly skilled IT professionals 

who have, on average, over 10 years of programming experience and it is not exaggerated to 

assume that these people are well knowledgeable to produce a good quality code which is 

contrary to popular belief about hackers.  

Recent study in OSS quality [1] suggests several software engineering quality model that 

typically practiced in OSS project community such as peer review to assess whether a 

contribution merits from developer acceptance into the codebase.  

In a large project such as Apache Server, peer review practiced not only for assessing the quality 

of contributed code but also applied for a new idea/solutions submitted to the developer 

community which need to be discussed, and reviewed before being planned for development. 

The bazaar style of OSS development facilitates rapid releases which make the implementation 

of peer review. The existence of quick response to reviewers comments and code keeps the 

contributor involved and interested [105].  

The second typical quality practices are people management in reporting, reviewing, detecting 

and resolving issues and defects (more details discussed in section 5). Abernour (2007) 

advocates on this practice to include establishing an effective environment and culture which is 

as important as system design.  

This means there should be a pre-defined coordination mechanism [34], conflict 

management(such as voting) [94], encouraging innovation and creativity [68], and affectionate 

attention from the community [69]. With respect to software quality assurance terms, hence for 

the rest of this thesis we refer to defect as bug reported about particular OSS product. 

The third and most prominent quality practice is defect tracking activity. In traditional project, 

defect tracking is similar to inspection which is effective but also expensive quality assurance.  

Mockus et al. [82] enclosed after a product release the user and larger part of the OSS 

community typically shift their roles in reporting, reviewing and resolving defects or issues. 

These practices of SE quality model influences the community aliveness by encouraging project 

participants to be involved and motivated to contribute and results in a product that extends 
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rapidly and reaches high quality, here we conclude that only a healthy community can produce a 

high quality software.  

3.3 Stakeholder Value Proposition of OSS Product Quality Prediction and 

Evaluation  

As mentioned in section 3.1, the survivability of the OSS project is the result of the state of well 

being (aliveness) [121] of developer community indicated by facilitating rapid construction, 

defect-fixing and deployment of the incremental product releases or patches. Furthermore, the 

current release should satisfy relevant user needs triggered by feedback information from the 

user community [122].  

The stakeholders in OSS projects are represented by each individual in the community connected 

through project environment. Based on their role they have different expectations and 

(subjective) indicators of product quality [125]. Hence, to better understand their quality 

expectations in OSS projects we need to elicit their values, starting with eliciting their win 

conditions based on their roles in the project and define quality performance measures [10].  

We interviewed OSS experts in January 2006 to find out the stakeholder’ needs for good quality 

OSS product, we conduct the interview in two session first is by direct interviewing the experts 

with some open questions and second by asking more quality assurances (QAs) focused 

questions through emails such as what are the quality expectation of different project 

stakeholders (see Figure 10), what typical QA aspects that typically performed by developer 

community. In this chapter we focused on defect lifecycle as the prominent part of software 

product and process improvement in OSS project [105]. 
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Figure 10 Expected Quality Aspects of OSS Product Releases from different Stakeholders Point 

of Views 

 

As extensions to the results presented in [122, 124] and experience reports on OSS Projects [37], 

we elicited different stakeholders with their expected value of quality evaluation and estimation 

of OSS products:  

1. End User. The user community applies OSS product releases and provides feedbacks to 

the developer community [16]. The results showed two typical user groups: (a) common 

users focus on high quality releases (i.e., more features, fewer defects, faster defect 

resolution time, better usability and documentations) as their primary objects of interest 

or win condition; (b) more professional users, such as an IT manager, need more 

information on stability and safety of the new release deployment to current running 

system and list of potential problems with relevant troubleshooting.  

2. Project Sponsor. Project hosting sites such as Apache Software Foundation (ASF), 
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Sourceforge, and commercial companies such as IBM and SUN that provide support for 

OSS projects can be considered as project sponsors with different types of sponsorship 

and involvement within the hosted projects. ASF for example provides an incubation 

process called Apache Incubator[2] including guidance and support for each new OSS 

product initiative, stimulating the collaborative community, educating new developers, 

and proposing whether a product has reached maturity. To appraise whether a project 

initiative requires additional support, project sponsors need to have sufficient 

information of the aliveness of the project community, the quality of the provided 

product, and the community set-up including a strategy for stable releases (i.e., voting 

mechanism for release and feature candidates).   

3. Peripheral Developers. Peripheral developers are the largest group of developer in the 

developer community, as they are mostly active in defect removal activities and patches 

development [83]. The meritocracy system in OSS project such as in all Apache 

projects put peripheral developers in the lower level of the project structure, as they do 

not have high level privileges such as writing access to current code base. Therefore 

every defect resolution and patch submitted into the issue tracker should be reviewed by 

other developers or a committer prior to code base modification and deployment. The 

larger group of developers working on the head and incorporating the current version in 

their productive applications, and when they do, they really find out about problems in 

the OSS product as well.  Hence, two prominent quality sources of information of 

current release are: (a) defect reports including traceability of reported defects and (b) 

defect status reports using an issue tracker, as it is very typical that different developers 

work in defect report validation, defect resolution development, and peer-reviewing of 

submitted resolution. In quality aware communities such as MyFaces, Python, Gnome 

and Mozilla, a reported and implemented issue and corrected defect passes several QA 

activities which are similar to  design review, code testing, and code peer review before 

deployment [122, 126]. The win conditions of developer are to have proper access to 

current development repositories and collaboration tools to support their works, merit 

based incentive from the community,  less invalid defect report , adequate information 

of reported defect, and flexible time to resolve defect. 

4. Committers. Committers or core developers have responsibility for assuring the quality 

of the software product before product release and deployment and have full access to 

the code base stored in the project’s source code management system (SCM), i.e., CVS 

or SVN [1]. Typical tasks of committers are to review any defect resolutions and to 
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decide whether a patch should be added to the release log. A committer may expect to 

have adequate information of (a) valid reported defects including their severity and 

impact on the overall product behavior, (b) new patches to review whether every defect 

were solved properly according to defect specifications, and (c) test results of new 

patches. Therefore, they can assure that a new contribution will not possess any threat to 

current code base and ensure compliance of the new piece of software and the code 

quality standards of the developer community.  

5. The Project Leading Team comprises of elected committers with roles in daily project 

management. According to the Apache Software Foundation [3], the main roles of the 

project leading team are to ensure that all legal issues are addressed, that the procedure 

is followed, the alleviation of any bottlenecks and conflicts, the overall technical 

success of the project and that each and every release is the product of the community as 

a whole. They also responsible to give strategic decision, to further the long term 

development and health of the community as a whole, and to ensure that balanced and 

wide scale peer review and collaboration do happen. Hence, they need to monitor the 

development process and to ensure appropriate quality assurance activities (patch 

discussions, unit and integration testing, and peer-review) are well performed [124].  

They also need to estimate the quality level of the current developed code and identify 

potential project risks, e.g., portion of reported defect remaining unresolved after a 

certain period of development and high number of failed code tests near to release 

deadline. 

6. Release Manager is an assigned committer to guide and manage release process, for 

example selecting stable patches, new features that should be added to the upcoming 

release package, and selection the best potential release candidate [37]. Typically, the 

release manager is a member of the project leading team. A release manager has to 

perform the selection based on defined quality criteria i.e. only peer reviewed and tested 

improvements (patches and new features) can be added to the next release. Additionally, 

as the tradeoff of short release cycle, release manager needs to estimate whether there 

will be significant growth of defects that potentially reside within a release candidate 

with regards to the current developer capability in solving defects after the planned 

release.  

These roles depict the need to monitor the health of the community in timely fashion, and to 

quickly respond appropriately against certain status during project execution.  

This study focuses on providing health indicators as prompt quality prediction and evaluation in 
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OSS projects. From project leading team and release manager perspective, the detailed win 

conditions of OSS project “health” indicators assessment are:  

1. To retrieve comprehensive indicators which indicate the actual status of project 

performance. As the project may produce significant number of data, artifacts and 

project information which can be further processed as indicators, however due 

limitation of observers in OSS project as they are not a full timer, thus to compact the 

indicators with respect to quality of enclosed information are necessity, the key 

measures of this win condition probably to have a small set of indicators based on 

observer’s own priority selection, just to give an example from IT system monitoring, 

our interviews with a group of system administrators result that the group daily 

monitor from 8 to 10 indicators, as to have more may overwhelm and mislead the 

observer analysis.  

2. Availability of performance metrics that provide the necessary information for 

different levels of detail. This second condition is the result of the first one, as in a 

project we may start to monitor higher level indicator and then go deeper for better 

understanding the nature of development process or track back the symptoms of 

illness. We suggest to divide the metrics into three layers: (1) the direct metrics, which 

are the lowest layer consist of metrics directly obtained from project repositories such 

as number of developer email contributions, time stamps when a defect is resolved, 

number of defect resides in the defect database etc. (2) the derived metrics, which are 

the aggregation of several direct metrics such as the average time to resolve defects in 

certain time, average number of developer email contribution in one semester, etc. (3) 

the indicators, which are the highest level and provide comprehensive view of certain 

status of the project, e.g. the service delay within a release which depicted as a 

function of average time to respond and average time to resolve of defects within a 

release. Figure 4 illustrates the examples of retrieving health indicators from a 

hierarchy of metrics.  

3. Early availability-time relevant project information status. The third win condition is 

to have quality information in a short time, as the project indicators represent the 

current status which is not merely historical data. Time relevant information will give 

more accurate indication of the project, and if the project is considered unhealthy, then 

the appropriate treatment can be applied to change the project into healthy one before 

it is to late or getting worse. To get valid information status, thus project manager 

should set a retrieval time constrain for each indicator he wants to monitor i.e. within 
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hours, days, or months.  

The stakeholder values are varying based on the stakeholder roles, domain of the project 

application and project scales. The value elicitations will define the selection of to-be-monitored 

health indicators to assess the project health status.  

For better illustrating the QA aspects and interaction among project community during 

development process, we proposed a framework of QA aspect in OSS project, which described 

in following section.   

3.4 Modeling the OSS Project “Health” Indicators 

In the previous subsections many different parameters had been taken into consideration to get 

an impression of the status of a project which is actually not an easy task. This is particularly 

problematic if a large number of projects need to be monitored. Based on the described success 

factor there are some indicators that experts routinely use to assess an open source project, such 

as the following data.  

1. Proportions. We calculate the proportions of activity in the community of e.g., volume of 

mailing list postings, defects status changes per time slot, updates in the SCM, and use 

these metrics to compare projects to try to learn what ”healthy” relationships are. Based 

on data from healthy projects we can identify whether there are correlations between 

different types of developer contributions, and how the likely impact of one contribution 

metrics to another.   

2. Service delays. By measuring the time between a defect reported to the issue tracker with 

time of a developer responds the report we can calculate the response time, we can also 

calculate the defect closure time as time between reporting with time a defect state as 

resolved with positive resolution (fixed or resolved).  

3. Communication and Use intensity. If a project has a healthy community there is 

indication of strong relationship between some measures such as number of downloads 

compared to mailing list postings and active developer interaction in (different) mailing 

lists.  

4. In a distributed project, a set of certain Software Engineering (SE) methods and tool 

standards have been established to support open source projects. The tools are used 

where activities of developers can be interpreted as events (time-stamped date points).  

Typical important tools are: source code repositories, documentation systems (source, user), 

defect tracking, mailing lists, forum software (web, newsgroup), and Wiki content management. 
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These tools provide informative but scattered pools of data during the project life-cycle. 

Obviously, developers use these tools and data for coordination, communication, and 

configuration management.  

We propose an approach by unifying the data coming from different systems into a coherent 

format for analysis. We expect not only data for historical analysis but also for daily or weekly 

monitoring and analysis. If it is achieved, it is possible to monitor the status of project health 

regularly and receive early warning signals, if bad smells occur.  

For analysis it is necessary to collect, filter, and correlate these data elements. While a human 

expert has to do the analysis by looking into the different systems, only little tool support is 

readily available for automatic and continuous ”real time” analysis of project status.  

In today practices, health indicators and healthy community of OSS projects have become more 

important issue. Just to give an example, the Apache Incubator defined that a new project 

initiative may graduate from the incubation process by fulfilling some requirements: the project 

must have a healthy community indicated by an active collaborative works within a community 

and it consists of diverse core developers.  

For the diversity of core developers’ measurement, we can quantify the number of independent 

core developers based on their background profile. The diversity is important because: (a) it 

guarantees a sustainable development, as the project will be less dependent on a single 

developer, (b) it brings variety of competencies to enrich the quality, however our interview with 

OSS expert suggest that this indicator is best to be obtained manually by retrieving each 

committers personal data and analyzing the project profile.  

Active collaborative works are indicated by several health indicators such as the coordination 

activities, conflict resolutions (number of voting), intensity of usage, defect service delays, and 

the proportion of the developer contribution to the project repositories. In this paper we focused 

on the last two health indicators: 

1. Developer Contribution Patterns, the first health indicator is a function of proportion 

metrics which capture the ratio between email conversation with defect status changes 

and ratio between SCM commits with defect status changes. Within a healthy project 

most of developer activities are correlated with each other, for example is that a code 

submission into an SCM may trigger an email conversation within the developer mailing 

list which warrant a concern from other developers to peer-review submitted code. 

Another example is that defect status changes may also trigger an email conversation 

regarding the changes that for particular interested developer.  Hence, this indicator is 

very important to obtain an outlook of software creation performance and the current 
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developer motivation state.   

2. The Service Delay, in a commercial project, is the time interval to respond a service 

request from a customer and time to fulfill the service, while in OSS project; we define 

the service delay as a function of time to respond and time to resolve an issue/defect.  The 

defect/issue service delay is important as most of the activities in OSS project derived 

from defect or issue report, eventually a project which has slow response and resolution 

time will face problems such as user dissatisfaction and bottleneck in the development 

process.  

 

Both indicators derived from aggregation of metrics, which at the lowest level the metrics are 

obtained by mining the project repositories as illustrated in Figure 11.  

 

 

Figure 11  Deriving OSS project health indicators from basic process metrics. 

 

The measurement selection for monitoring project status depends on the stakeholder values. The 

Operative level measure direct metrics from project repositories which are then transformed into 

higher level metrics. Project manager analysis the health indicators as the results of correlation of 

these aggregated metrics.  

Managing and monitoring health in open source software (OSS) projects is a complex challenge, 

due to the typical characteristics of OSS development model. Important indicators such as 

activity of developers and performance of Defects’ management are easier to measure as they 

have become part of the development nature itself. However, for the comprehensive 

determination of health measurement one has to consider other indicators which needs be 

formulated and further explored.   
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In the next section, we applied the proposed health indicators to well-known OSS Apache 

projects for empirical evaluation of the concept.  

3.5 Empirical Evaluation of OSS Project “Health” Indicators: Developer 

Contribution Patterns and Defect Service Delay  

This section describes the empirical evaluation process of the health indicator concepts and the 

initial empirical result from some projects under the Apache umbrella.  

Following the systematic empirical study framework in OSS projects, it starts with design of 

empirical study, reports the data collection process and data analysis.  Empirical data were 

retrieved from several successful OSS projects and the challenged ones. We compared the results 

to provide better understanding of project state of well being. 

 Later the results were discussed with OSS experts to investigate the external validity of the 

indicators. 

3.5.1 Design of Empirical Study 

The following subsections present the goal definition of the study, selected study objects, 

variables specification and research hypotheses formulation.  

1. Goals of Empirical Study 

Using goal structure in GQM model [4], we defined the goal of our research study as: 

The purpose of our study is to have better knowledge of indication of project “healthiness” 

derived from metrics obtained from developer activities, from project manager point of view.   

2. Study Objects 

We apply the proposed health indicators to four cases of large-matured Apache web engineering 

projects indicated by more than 20 contributors (core and peripheral developers) per project 

which three times outsized the average number of developer in most of OSS and has already at 

least one major release (1.x, 2.x, etc). The set consists of two well-known Apache projects 

(Tomcat v.5 and HTTP Server/ HTTPD v.2), and two challenged projects (Xindice and Slide). 

We focused our evaluation process on the two health indicators: the proportion of developers’ 

participation and the defect service delay. As described in Section III these indicators are very 

worth noted by a project manager to assure that a project is still actively running and both 

indicators are simple to be evaluated. 



  

 

63 

Apache Tomcat17 is a servlet container that is used in the official Reference Implementation for 

the Java Servlet and Java Server Pages technologies whose code base and specifications are 

donated by Sun under the Java Community Process in 1999. The first Apache release was 

version 3.0. Since then, multiple volunteers from Sun and numerous other organizations have 

contributed to the product. Currently Tomcat has several major releases, employs 17 active 

committers and more than 50 emeritus committers. In 2005, Tomcat became its own top-level 

Apache project and powered numerous industries and organizations such as Wall Mart and 

General Motors. A survey by TheServerSide.com 18 pointed Tomcat as one among the 

market leaders in its application domain. 

Apache HTTP Server19 is an effort to develop and maintain an open-source HTTP server for 

modern operating systems including UNIX and Windows NT. The development started in 1994 

when Brian Behlendorf and a number of users for internet servers which are developed by the 

National Center for Supercomputer Applications (NCSA) encountered the increasing frustration 

in getting NCSA to respond to their suggestion. They decided to collaborate and integrate 

patches to the NCSA server software. In August 1995, the group released Apache 0.8. Since then 

the product was called as Apache HTTPD. Later it is well-known as Apache HTTP server and 

has been the most popular web server on the Internet since April 1996. The HTTP server project 

employs 56 core contributors and hundreds of peripheral contributors. The project latest release 

is the version 2.2.4.  Apache Tomcat and HTTP Server are considered successful large projects. 

Hence by examining the dynamics of both project communities, we improve our knowledge 

about the indication of a healthy community. 

Apache Xindice20 is a database tool designed from the ground-up for storing XML data or what 

is more commonly referred to as a native XML database. Xindice is the continuation of the 

project that used to be called the dbXML Core. The dbXML’s source code was donated to the 

Apache Software Foundation in December 2001. During the development, the developer 

community consists of 8 active committers, 7 inactive and emeritus committers, and 19 

contributors. Xindice has its first stable release of version 1.0 around March 2002 and continues 

with several milestone releases, such as version 1.1b4 at 8 April 2004. 

Apache Slide21 is part of the Apache Jakarta project. Slide is a content repository which can 

                                                 
17 http://tomcat.apache.org/ ( accessed at 20/02/2007) 

18 http://www.theserverside.com/ (accessed at 10/01/2007) 

19 http://httpd.apache.org/ (accessed at 20/02/2007) 

20 http://xml.apache.org/xindice/  (accessed at 20/02/2007) 

21 http://jakarta.apache.org/slide/ (accessed at 20/02/2007) 
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serve as a basis for a content management system / framework and other purposes. The original 

Slide codebase (Slide 0.7) was donated by Intalio Inc during May 2000. Slide has reached its 

maturity after release 1.x and 2.x. The project employs 14 active committers, 14 

inactive/emeritus committers, 20 contributors and 3 project sponsors. However after its 2.1 

release (at 12/26/2004), the project seemed to be disposed, although we still recorded some 

activities in the developer mailing list. Our interview with OSS expert indicates that Apache 

Xindice and Slide are in difficulties. This case can be taken as a fine comparison to successful 

ones and reveal the symptom of illness of a project. 

 

3. Variables Specifications  

In this study we evaluate two health indicators with empirical data collected from project 

repositories which are: 

First Health Indicator: Developer Contribution Patterns 

A commit into SCM can be different forms of contribution such as changes in code, new defect 

patches, or release documentations.  In an OSS project, the developer mailing list is the main 

collaborative communication tool, where everyone who wants to participate in the project 

development can observe or join in. In Apache projects, the email archives commonly consist of 

three major contents: the notification of developer commits to the SCM, notification of defect 

status report (the change of defect state) as a developer may work on something for the defect, 

and development-related short messages/email conversation i.e. problem reports, solution 

recommendation, polling for opinions, and technical discussion. 

Hence for the first health indicator, we define dependent variables are:  a) monthly number of 

commits into the SCM,  b) monthly number of defect status changes in the issue tracker and c) 

the intensity of email conversation within a month which can be triggered either by a new 

code/patches submission or a change of defect status.  

The dependent variable is developer contribution patterns as the ratio between number of email 

conversation, SCM Commits and defect status changes. 

To observe the relationships among the measures, we employ bivariate correlation analysis and 

analyze the likely impact of one variable to another.  Later we perform vector analysis by 

constructing a multiple linear regression model to investigate whether the intensity of email 

conversation within the developer mailing list can be estimated using number of commits and 

defect status changes as predictor variables which can be formulated as:  
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  22110 XXY  
Eq. 1 

Where Y is number of email conversation as vector of response, the predictor variables or 

parameters are: X1 is number of SCM commits and X2 is number of Defect status changes. While 

β0 is intercept of the prediction model and β1, β2 are estimated parameters of the predictor 

variables X1 and X2, and ɛ is a vector of independent normal random variables with expectation 

for the constructed model.  

As measure the prediction model performance, we applied average absolute error (AAE) and 

average relative error (ARE) which are suggested by [56].  

Lets denote dependent variable (Y); and Y’ as estimator of Y. Then AAE is the magnitude of the 

difference between the exact value and the approximation, which can be formulated as: 

    

1
| | 

Eq. 2 

 

While ARE is the absolute error divided by the magnitude of the exact value:                                                    

1
 

Eq. 3 

      

Since our observation involved different projects, hence to compare the performance of each 

models used ARE as the primary accuracy measure, while AAE can be used to better understand 

the accuracy level within the individual context of each project. 

 

Second Health Indicator: Defect Service Delay 

Although in an OSS project, the community voluntarily plays significant role in the defect 

tracking, and resolve the financial barrier as in traditional project, nevertheless a healthy project 

should employ proven defect management practices offer fast defect response and to reduce the 

service delay in removing defects.  

To measure the defect response time and defect removal time, we used independent variables:  

time when a defect report filled into the issue tracker (Treport), time when a defect status 

confirmed as new defect (Tresponse) and time when a defect stated as resolved (Tremoved).  

Therefore we can calculate the responsiveness of the developer community for each reported 

defect i for n number of reported defects as: 
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∑
  

 Eq. 4 

 

While the service delay performed by developer community in removing each defect i, for n 

number of reported defects can be calculated as: 

  

4. Research Questions and Hypotheses Formulation 

RI.4.5.1. the Developer Contributions Pattern. We addressed two questions for measuring the 

healthiness of developer contribution pattern: 1) Are there any significant correlations among 

developers’ contribution components (email contributions, defect status changes, and SCM 

commits)?. We believe that in healthy OSS project that put strong consideration regarding the 

quality of contribution, for each submitted patches, code set or defect state changes should be 

reviewed by other developer or at least discussed in the mailing list.   

Let’s denote that r is a correlation function to check whether there is a significant correlation 

between variables (x1, x2) ϵ Pr and dependent variables y, where x1 is number of commits to 

SCM by developers, x2 is number of defect status changes, pr is a set of development metrics, 

and y is number of submitted emails to the developer mailing list, then the respective null 

hypothesis can be formulated as:  

H04.5.1.a:     | ,  

Our second question is that 2) can we predict the potential number of email contribution from the 

developer as function to code submission and defect resolution activities?. Here we want to in-

depth checking, whether significant correlated variables can be used as predictor variables for 

developer email contribution pattern.  For this purpose, a linear regression method (see equation 

4.1) is employed and tests the significance of constructed models using standard F-test.   

The hypothesis is that in healthy project such as Tomcat and HTTPD there are linear correlations 

between variables. Thus to estimate the intensity of developer email conversations as one 

measure of project healthiness  one can construct a prediction model with higher level of 

accuracy compare to challenged projects.  

Therefore we proposed following Null hypothesis:       

Let’s denote ℮ is estimates from a trained prediction model using development metrics either 

 
∑      Eq. 5 
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from a healthy project (Ph) or challenged project (Pc) then: 

 

H04.5.1.b:  ARE(℮(Ph)) > ARE(℮(Pc) ) 

     

RI4.5.2. Defect Response Time and Defect Service Delay. The defect status reports are also 

important to illustrate the project service throughput. However we suggest that monitoring the 

dynamics of the defect status report should be further correlated with other variables in the defect 

tracking activities such as the number of defect per reporter, defect response per reviewer, defect 

assignment per contributor, service delay (response and closure time), defect validation time etc. 

Here we address 3 questions for assessing defect management in an OSS project:  (2.) Is there 

any appropriate defect reporting and monitoring in place? (3.) Is there any appropriate rating of 

defects?, and (4.) What is the distribution of response time and closure time of defect reports?.  

We assume that a healthy project with dynamic developer community can promise a better level 

of defect service delay, both in responding to a new defect report or resolving a valid defect. 

Therefore we can propose two null hypotheses:  

H04.5.2.a: Responsiveness (Tomcat, HTTPD) < Responsiveness (Slide, Xindice) 

H04.5.2.b: Service Delay (Tomcat, HTTPD) < Service Delay (Slide, Xindice) 

3.5.2 Data Collection  

This section describes the data collection process, data refinement as preparation prior to 

analysis, and threat validity of collected data.  

1. Data Collection and Data Refinement 

To answer the above mentioned research questions, we need to collect empirical data about some 

existing OSS projects.  For the purpose of measuring the developer contributions, I developed a 

tool for mining the web based developers mailing list (hosted by Mailing list Archive, MARC22) 

of each selected project.  

The tool uses the approach of a wrapper which retrieves project data web pages and then parses 

them to extract the information required. It retrieves the emails data (sender, subject, thread, time 

stamp) based on some given time interval as the input parameter.  

The whole outcome is represented as XML and then using XSLT is further transformed to finally 

result in performance metrics, such as number of emails, number of commits to project SCM and 
                                                 
22 Mailing list ARChives, MARC can be found at:  http://marc.info/ (last accessed 20 July 2008) 
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number of defect status changes.  

For each project we selected and examined 38 months of projects’ life time with at least one 

major stable release. To support viewing the dynamics of the projects, these emails are then 

grouped into monthly archives and the proportion are calculated. We illustrate the ratio of 

developers’ contribution over the time and compare the result between the successful projects 

and the challenged ones. Later, we chose Apache HTTPD as the role model of a healthy project 

and employs linear regression to figure out the correlation between email conversation, code 

contribution and defect report status.  

Apache Project has centralized it defects tracking within repositories managed by GNATS and 

later moved to Bugzilla and Jira. The Bugzilla offers more features like transaction logs (history) 

and search facility either simple or advanced search on descriptive information of defects. This 

makes the dynamics of defects are relatively easy to trace.  

It is not surprising that Bugzilla became very popular and widely used by 550 projects or 

companies23. This indicates that each Apache project being evaluated implements appropriate 

defect tracking tools.  

In order to evaluate the project service delays based on defect’s statistics for one stable release of 

each project, we retrieved each project’s defect reports, measure quantitative data items, and 

depict the result within one software major release.  

Unfortunately, some data needs pre-processing due to inappropriate or illegal values. The pre-

processing steps involve: removing records indicated as “INVALID” and ”DUPLICATED” in the 

resolution field and excluding records containing invalid date (either in the open-date or change-

date).  

We retrieved and examined change logs from the defect database (Issue tracker) of Apache 

Tomcat 5, HTTP Server 2.0, Xindice and Slide, using BugZilla 3.0rc1 query commands. 

Furthermore, in measuring the distribution of response time and closure time of defect reports, 

we formulate the calculation using the criteria: (a) response time is the length of time interval 

between open date and last change date for the defects having status field set to ”NEW”, which 

means the defect is confirmed and accepted by the community for further processing, and (b) 

closure time is time to resolve a defect, calculated by measuring the length of time interval 

between open date and last change for defects having status ”RESOLVED”, which means the 

defect is already went through the development processes. 

                                                 
23 http://www.Bugzilla.org/installation-list/  (accessed at 25/02/2007) 
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2. Threats to Validity 

Internal Validity. In this empirical study data were obtained from 40 months of development 

(Ended at April 2007), we found that in the latest two months of observation, there is no 

significant number of development data collected for Slide and Xindice (as for Xindice already 

reveals that the project is in a dire situation), while in Apache HTTPD and Tomcat we also found 

large number of “Invalid” and “Duplicated” defects, therefore to maintain the validity and 

quality of data we just focused on 38 months of development (Ended at February 2007).  

Construct Validity. The second threat derived from our discussion with an OSS expert who 

advised that in a large and very active project such as Tomcat and HTTPD, there is a common 

practice in developer community to re-open resolved defect, however in this study we assume 

that to re-open a resolved defect is also part of defect removal activities as the final resolution 

has not been reached yet, therefore for service delay calculation we ignore the re-open status of a 

defect which may increase the average defect service delay of a project.  

3. Data Grouping 

The collected data were divided into two groups; the first group consist of 34 months of 

observation of each projects will be used to perform the correlation analysis and to construct a 

prediction model. The second group consists of 4 months observation data from each project 

which will be used to validate the prediction model. 

3.5.3 Data Analysis Results 

This section describes the empirical result which is composed of data collection from the four 

Apache projects and data analysis. 

A. The Developer Contribution Level 

As described in our empirical study design section, all projects can be considered as large project 

(based on definition from [66]) as they employed more than 10 active developers at least for the 

first quarter of the development.   

 

 

 

Table 3 shows the distribution of collected development metrics used to analyze the patterns of 

developer contributions in healthy and challenged projects. 
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Table 3 Distribution of Collected Development Metrics 

 Collected Metrics from 38 Months of Observation 

SCM commits (X1) Defect status changes (X2) Email Conversations (Y) 

Total  Mean STD Total Mean STD Total Mean STD 

HTTPD 14199 373.63 99.42 8757 230.42 106.12 157814 415.22 135.90 

Tomcat 9793 257.71 110.08 17816 468.84 179.70 16574 436.16 156.23 

Slide 3617 95.18 93.78 1383 36.39 36.66 4479 117.87 107.68 

Xindice 201 5.29 8.67 187 4.92 5.85 818 21.53 36.18 

   

Figure 12 exhibits the absolute number of developer contribution within 38 months of 

development of the reviewed projects.  

The developers’ contribution patterns are distinguished into three line categories: the code 

contribution into the project SCM (number of SVN/CVS commit), the Defect status changes 

(number of Bug status changes in the Bugzilla), and the developer email conversation (number 

of email submitted into the developer mailing list). 

Our  prior study [121] found that in the two successful projects (HTTPD and Tomcat) a positive 

trend line of developers’ email contributions during project life time exists (see Figure 12). On 

the contrary, the two challenged projects (Xindice and Slide) reveal a dire situation as revealed 

by diminishing developer contributions.   

In this section we look further the cause of the illness symptoms and what a healthy relation 

should look like between components in the developer contributions. 
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(a) HTTPD (b) Tomcat 

 

 

 (c) Slide  (d) Xindice 

 

Figure 12 Absolute number of developer contributions in Four Apache Projects in 38 months of 

observation [122]. 

 

a.1) Developers’ Contribution Patterns in the Four Reviewed Projects:  

To better understand the developer contribution patterns within different types of project, we 

examine the retrieved data set, and calculate the ratio between code contribution (number of 

CVS commits), and reports of Defect status (number of Defect status change notification) with 

the developer email conversations.  

We argue that in a healthy community the project should exhibit more uniform ratio among these 

metrics, i.e. every CVS commit ideally should be followed up by the developer discussion in the 

mailing list before inserted into the body of code. We found the both challenged projects exhibit 

more fluctuation and higher ratios as illustrated in Figure 13. It means, the developer community 

retrieved more notification of code contributions and Defect reports but responded less in the 

mailing list.  
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(a) HTTPD 

 

(b) Tomcat 

 

(c) Slide (d) Xindice 

 

Figure 13  Developers’ contribution patterns as proportion of different development metrics 

[122]. 

 

This situation may indicate illness symptoms. We considered some of the illnesses are the facts 

that the developer community pays less attention to project status’ changes; the project employs 

small proportion of active developers which also signify developer de-motivation which further 

needs to be investigated by experts in OSS Community.  

On the contrary, both the HTTPD and Tomcat signify more reasonable proportion in the ratio of 

developer contribution. This can be interpreted that most of the developer code contributions and 

changes of defect status may trigger some responses from the developer community. 

In the healthy projects (Figure 13 (a) and (b)) the number of commits contributions per defect 

status changes and the ratio between numbers of email contributions per defect status changes 

tend to be normally distributed.  On the contrary, the challenged projects (see Figure 13 (c) and 

(d)) show fluctuations which signify the imbalance between code contributions/developer email 

submissions and Defect status reports/developer email submissions. 
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a.2)  Developers’ Contribution Correlation Analysis 

We analyzed the observation data from all projects and performed two types bivariate analysis to 

investigate the correlations of defect status changes, SCM commits to Email conversations.  As 

shown in  

Table 4 and Table 5 present that for HTTPD, Tomcat and Slide there are positive significant 

correlations between defect status changes, SCM commits with email conversations.  

Table 4 Development Metrics Correlation Analysis in Four Apache Projects (Pearson Rank) 

Pearson Rank  

Correlation Analysis 

Email Conversations 

Correlation p-value N 

Defect  Status 

Changes 

  

  

HTTPD   0.679** 0.000 34 

TOMCAT 0.686** 0.000 34 

XINDICE -0.41 0.808 34 

SLIDE 0.661** 0.000 34 

SCM Commits 

  

  

HTTPD 0.630** 0.000 34 

TOMCAT 0.777** 0.000 34 

XINDICE 0.576** 0.000 34 

SLIDE 0.856** 0.000 34 

 

Table 5 Development Metrics Correlation Analysis in Four Apache Projects (Spearman Rho) 

Spearman Rho  

Correlation Analysis 

Email Conversations 

Correlation p-value N 

Defect  Status 

Changes 

  

  

HTTPD 0.741** 0.000 34 

TOMCAT 0.606** 0.000 34 

XINDICE 0.009 0.958 34 

SLIDE 0.505** 0.000 34 

SCM Commits 

  

  

HTTPD 0.582** 0.000 34 

TOMCAT 0.736** 0.000 34 

XINDICE 0.239 0.148 34 

SLIDE 0.905** 0.000 34 

**  Correlation is significant at the 0.01 level (2-tailed). 

Statistically we can assume that an increase in defect status changes as well as SCM commits 

will significantly increase the number of emails sent by the developers into the developer 

mailing list. However in dying project such as Xindice there is no significant correlation with 
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email contributions, means the developer community has no customs in responding a code 

submission or changes of defect status collectively or simply the project has been abandoned by 

the majority of the developers. 

As outlined in some statistical literatures [33, 88], a bivariate correlation analysis can signify the 

impact of one variables to another,  however, we still need to assure the direction of an impact, 

for example, a correlation analysis results that x has a positive significant correlation with y, we 

can interpret this result as by increasing x will increase the value of y, however statistically we  

can also say that the impact may come in different direction where by increasing value y may 

likely increase the value of x (another potential threat to construct validity). Of course, one can 

reason based on his own knowledge to interpret a relation between variables, nevertheless we 

can employ more formal methods to check the variables relationship, such as by fit in the 

variables into a prediction model. If the constructed model tested as significant, then we can 

conclude that these variables have correlations and impacts to the dependent variable in the 

model.      

 

a.3) Email conversation as a function of SCM commits and Defect Status Changes 

As described above, a successful project community exhibits more normal distribution of 

developer activities metrics during the development process. The next step, we want to find out 

whether we can create a prediction model based on the correlations among these metrics.   

For the purpose, we performed a multiple linear regression analysis with 34 months data from all 

projects.  The results are shown in  

Table 6 signify that in healthy projects such as HTTPD and Tomcat have higher linear 

correlation (note higher value of R2) between the independent variables SCM Commits (X1), 

Defect status changes (X2) with dependent variable Developer Email Contributions (Y).   

Table 6 Prediction Models for Four Projects using the First Group of Observation Data 

 Model Coefficients Model Test Results 

Constant X1 X2 R2 F-test P-value N 

P
ro

je
ct

 

HTTPD 42.267 0.583 0.637 0.590 28.205 0.000 34 

Tomcat 62.853 0.323 0.862 0.669 35.382 0.000 34 

Slide 54.599 1.609 1.328 0.524 27.382 0.000 34 

Xindice 17.133 -2.623 3.270 0.338 5.408 0.000 34 

 

We tested the regression model to assess its internal validity with confidence interval is 95%, 
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where Ftable or F0.05,34= 4.11, here for all constructed models we can conclude their significance 

as all of them has F-test value higher than the table value of F0.05,34  and p-value < 0.001 level.   

The above results conceal that in a healthy project (such as HTTPD or Tomcat) the code 

contribution has significant impact to amplify the number of email conversations in the 

developer mailing list such that the ratio between these two variables are kept in proportional 

during the development process which signifies one healthy status. Please refer to Appendix A1 

for detail of the data analysis results.  

To have external validation i.e. to check model robustness with different observation data, later 

the prediction models were fitted to the second group of observation data. Here we used the 

average absolute error (AAE) and average relative error (ARE) to evaluate the models 

performance. 

In Table 7 outlines the result of prediction model validation for each project using the last 4 

months data of observation which were not used during the model training process.   

 

Table 7 Validation of Prediction Model using the Second Group of Observation Data 

Project Mean (AAE) StDev (AAE) Mean (ARE) StdDev (ARE) N 

HTTPD 20.373 9.656 0.061 0.026 4 

Tomcat 100.572 52.229 0.124 0.059 4 

Slide 51.385 31.520 2.460 2.940 4 

Xindice 91.533 31.531 13.239 15.299 4 

 

We can see that ARE values for Apache HTTPD and Apache Tomcat are lower than Slide and 

Xindice, additionally the prediction model of Xindice suffers the lowest accuracy. Performance 

of prediction model of HTTPD and Tomcat indicate that the trained model can hold new 

observation data which is necessary in predicting the future of project “health status”. 

B. Defect Service Delay 

Based on the measurement scenario on defect service delay as mentioned in Section 4, we 

present these following quantitative results. The first measurement is to see the distribution of 

the Defects’ severity on each project.  

In the Apache projects, the defects are categorized based on their severities related to security 

(critical) and fault (blocker), related to feature (major, minor, enhancement, normal) and related 

to cosmetic works (regression and trivial).  Later, for further processing, the community put the 

development priority (P1 to P5) for each Defect, where the P1 means the top priority and needs 



  

 

76 

to be resolved as soon as possible. We retrieved the defect data from Apache Tomcat 5 (2891 

Defects), HTTPD 2 (3663 Defects), Xindice (152 Defects) and Slide (420 Defects). On the data, 

we examine the distribution of the Defects based on severity and priority to find the proportion 

of defect assignment.  

 

Table 8 Defect Distributions in Two Healthy Apache Projects 

 Tomcat                                                                 (b) HTTPD 

 

  

     PRIORITY (%) 

P1 P2 P3 P4 P5 

S
E

V
E

R
IT

Y
 (

%
) 

Blocker 0.7 0.9 4.3 0.1 0.1

critical 1.2 1.9 6.8 0.1 0.1

enhancement 0.1 2.7 6.5 0.1 0.5

major 1.0 4.3 9.3 0.0 0.0

minor 0.0 1.7 6.6 0.2 0.5

normal 0.9 17.3 30.3 0.2 0.2

regression 0.0 0.5 0.0 0.0 0.0

trivial 0.1 0.5 0.1 0.1 0.2

     PRIORITY (%) 

P1 P2 P3 P4 P5 

S
E

V
E

R
IT

Y
 (

%
) 

blocker 0.7 0.8 2.1 0.0 0.0

critical 1.4 2.0 4.1 0.1 0.1

enhancement 0.1 5.3 5.6 0.2 0.7

major 0.8 5.7 9.7 0.1 0.1

minor 0.1 1.8 3.8 0.4 0.3

normal 0.7 26.7 24.4 0.5 0.3

regression 0.0 0.2 0.0 0.0 0.0

trivial 0.0 0.7 0.1 0.2 0.5
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Table 9 Defect Distributions in Two Challenged Apache Projects 

(c) Slide                                                                  (b) Xindice 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

We also observed a situation that the distribution of the defects based on severity is almost 

”normal”  in all observed projects, as illustrated in Table 8  as well as in Table 9 (see the figures 

in italic bold), in the sense that most of the defect reports coming from the user community are 

feature requests, functionality errors or decorative ones.  

Furthermore, from the tables we can see that although the user community reports defects and 

considers the defects of high severity (such as “blocker”), the priority assignment by developer 

does not always follow the “user needs”. In other words, the developer does not always assign 

high severity (according to user) with high priority (see Figure 14). 

 

     PRIORITY (%) 

P1 P2 P3 P4 P5 

S
E

V
E

R
IT

Y
 (

%
) 

blocker 0.7 1.3 3.3 0.0 0.0 

critical 0.7 0.7 7.2 0.0 0.0 

enhancement 0.0 0.7 5.9 0.0 0.7 

major 0.7 1.3 14.5 0.0 0.0 

minor 0.0 0.7 4.6 0.0 0.0 

normal 0.0 7.2 48.0 0.7 0.0 

regression 0.0 0.7 0.7 0.0 0.0 

trivial 0.7 1.3 3.3 0.0 0.0 

     PRIORITY (%) 

P1 P2 P3 P4 P5 

S
E

V
E

R
IT

Y
 (

%
) 

Blocker 0.5 0.2 1.7 0.0 0.0

Critical 1.0 2.6 4.5 0.0 0.0

Enhancement 0.0 1.9 7.4 0.0 0.2

Major 1.2 5.7 5.5 0.0 0.0

Minor 0.0 0.5 6.9 0.2 0.0

normal 0.5 17.6 41.7 0.0 0.0

regression 0.0 0.2 0.0 0.0 0.0

trivial 0.5 0.2 1.7 0.0 0.0
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(a )HTTPD defects distribution per priority (b)Tomcat defect distribution per priority  

(c ) Slide defects distribution per priority 
 

             (d) Xindice defects distribution per priority 

Figure 14  Defect Distributions in Four Apache Projects 

To measure the performance of defect service delay in a project, we measure the defect response 

time (time to respond) and the defect closure time (time to resolve). We categorized such service 

delay into several time interval scales as shown in Figure 15. 
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(a) Defect response time 

 

 

(b) Defect closure time 

Figure 15 Defect Service Time distribution for reviewed projects. [122] 

 

Figure 15 shows the distribution of defect response time (Tr) and defect closure time (Tc) from 

the four reviewed projects. From the figure it is obvious that Tomcat has the most responsive 

community, as 60% of the reported defects are responded less than 7 days, 79% are responded 

within 100 days. On the other hand, Xindice exhibits poor performance as the majority of the 

Defect reports (72%) were responded by the community in more than 100 days. 

Our result also found intriguing fact that more than 20% of the defects were resolved more than a 

year in HTTPD and Tomcat. We investigated this issue by measuring the absolute number of the 
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resolved Defects and correlated with the assigned priority.  

For HTTPD, among the 999 resolved defects, 24% are latent since they were resolved more than 

a year; 88% of these latent Defects are categorized as lower priority (P3, P4, P5) and 45% are 

considered as cosmetic work or minor feature error. For Tomcat, from 2063 resolved defects, 

27% are latent defects with only 9% of top priority Defects (P1 and P2), and less than 15% are 

severe defects (critical and blocker).  Thus, we conclude that in both successful projects, the 

community offers faster response to a defect with higher priority, and tends to delay the less 

important ones. 

3.5.4 Discussion of Empirical Results 

For many OSS developers, challenge is what really motivates them and it makes the project 

more active. Once they are drawn to a problem, they feel that they could create a better solution 

themselves, rather than using the existing ones. Over the time, the projects may evolve and so 

does the motivation of the developer.  

Developer Contribution Patterns. Our study in OSS project community health revealed two 

extreme trend lines in the developer participation: (1) lively developers’ activity as shown by 

Tomcat and HTTPD, (2) non responsive or dying developers’ community, which we observed in 

particular Apache Xindice. 

The developer community in the challenged projects shows less uniform proportion of 

developers’ contribution metrics (such as code submissions, Defect status changes and email 

conversations). This condition is considered to signify situation in which the community is less 

responsive to the status changes within the project. Our empirical study results show that for 

Apache Tomcat, HTTPD and Slide, development metrics such as SCM commits and defect 

status changes have significant correlations to the number of email submitted in the developer 

mailing list. We can imply that statistically for each contribution by a developer whether in form 

of code submission, or defect patches will likely be responded by other developers in the 

community through discussion in the mailing list. We concluded that there is a development 

metrics (x) that has significant correlation with developer email contribution (y),  

| _   _ , , hence we can reject our null hypothesis H04.5.1a 

Xindice obviously reveals a very fluctuating proportion of developer contribution (see Figure 16) 

which means that there are significant imbalances between the contribution and the response 

from the developers’ community. Furthermore based on the absolute number of the developers’ 

contribution, Xindice indicates a”dying” project, which can be seen in Figure 16. In its last 33 
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months, the developers’ contribution levels were low compared to its first 5 months under 

observation. When we discussed with some experts, according to them, the reasons behind the 

condition are: (a) Xindice has been abandoned by its key developer, which also proves that 

diversity of core developers is important (b) the changes of market demand and technology trend 

caused the developers’ community to recognize that proposed plan and the results not to evolve 

expected.  

 

 

Figure 16. Impact of a Core Committer Contribution which Motivate Other Developers 

Contributions into the Developer Mailing List in a challenged project Apache Slide [121] 

 

Slide has a different story as shown in Figure 16. The project exhibits proportional developer 

contribution, however based on the result of measuring the absolute number, on the beginning 

Slide was very promising, but since October 2004 the project was hit by catastrophic illness 

indicated by the decrement of its developer contributions.  

The experts participating in the Slide project mentioned that Slide was once in a dormant state. 

The project woke up after a talented expert got involved in November 2003, and significantly 

contributed for the peak performance of Slide.  

However after several months, he decided to leave the project, leading to the collapse of Slide. 

Our prior study on this case [121] validated this statement by measuring this experts’ mail 

conversation and suggest the fluctuation in developers’ mail follows the dynamics in ”The 

Expert” mails. 

 Around March 2004, as the expert decided to leave the project, Slide developers’ mailing list 

still showed notable activity for several months, before their number finally collapsed. Our 

observation in February 2007 disclosed although there are still some developer activities, the 
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level is relatively low compared to the zenith period when ”the Expert” was still actively 

involved in the project. 

We performed prediction process based on collected development metrics. Prediction model is 

necessary to have better understanding of impact factors for developer contribution pattern 

(email contributions as a liner function of code submission into the SCM and defect removal 

activities reported in issue tracker).  

As shown in  

Table 6, all trained prediction models are significant (with p-value < 0.001) however when we 

extrapolated the prediction with data from the latest 4 months of observation of each projects, we 

found that models constructed for the healthy projects Apache Tomcat and Apache HTTPD 

outperformed  the accuracy of models for Apache Xindice and Apache Slide, since we can state 

that ARE(℮(Ph)) < ARE(℮(Pc) ), where {Tomcat, HTTPD}  Ph and {Xindice, Slide}  Pc,  so 

then we can reject the proposed null hypothesis  H04.5.1.b. 

Defect Response Time and Defect Service Delay. Our study also reveals that a healthy 

community will be more responsive and more eager to resolve issues or defects introduced to 

them. Tomcat and HTTPD outperformed Slide and Xindice, as the largest portion of defects 

reported in were responded less than a week (Tomcat=70%; HTTPD=42%; Slide=40.5% and 

Xindice 12.4%)  which state that a healthy project signify by faster reponse time compare to 

challenged ones,  Responsiveness (Tomcat, HTTPD) > Responsiveness (Slide, Xindice).  

Hence, we can reject our null hypothesis H04.5.2.a. The successful projects also provide faster 

service as their defect closure times are shorter compared to those of Xindice and Slide.  

The results show that about 46% of the defects in Tomcat and 59 % of the defects in HTTPD are 

resolved within 100 days, while most of the defects reported for the challenged projects are 

resolved within or more than a year  or Service Delay (Tomcat, HTTPD) > Service Delay (Slide, 

Xindice), therefore H04.5.2.b  can be rejected.  

However the empirical result of defect severity distributions argued that the more severe defect 

does not always mean to be of higher priority, since most of the top priority defects are the 

normal ones as illustrated in Figure 15.  

It is likely that the response time is affected also by priority set by developers due to some 

consideration. For example, a blocker might be given lower priority when it occurs very rarely 

and it is planned not to be resolved in the current release. This practice exhibits value tradeoffs 

between the users who report the defect, assign the defect severity and expecting quick response, 

with the community who assess, assign, develop and resolve the defect.   
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3.6 Finding “Health” Indicators from Aspects of Quality Assurance in OSS 

Projects 

In this section we seek to make deeper exploration of aspects of quality assurances (QAs) in an 

open source software project. We identify several QA activities that commonly performed by a 

healthy OSS project community such as defect reporting, defect validation, defect removal, code 

testing, integration testing, code peer-review, etc.    

This research is based on an argumentation that such exploration is important for the OSS project 

stakeholders in order to achieve better quality OSS products, and as basis for future work in 

process and product improvement of similar development style.  

Identification and measuring quality assurance aspects in OSS project is necessary to assess 

current quality of OSS development process and product, which can be viewed as indication of 

project “health status”.   

3.6.1 Quality Assurance Aspects in OSS Project 

Here, we propose a framework of quality assurance (QA) aspects in OSS project as an extension 

of stakeholder roles and activities as shown in Figure 17.  

This subsection described the detail of our proposed framework of QA aspect in OSS project 

based on typical processes performed by different roles of project participant during defect life 

cycle. In this work we define defect as an error, flaw, mistake, failure, or fault in software that 

prevents it from behaving as intended.  

A defect reported by user (or developer) at user community; however its existence should be 

proven and validated as defect before further processed by the developer community as 

illustrated in Figure 17.  This framework is derived from continuous product and process 

improvement in OSS projects as described previously in Section 2.2.6. 
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Figure 17 Framework for quality assurance processes as part of defect removal activities in an 

OSS project [124]. 

 

Process Group I: Defect Detection  

The detection and reporting process, provide information of a defect existence, and sometime 

accompanies with early assessment of a defect, accompanying with early defect analysis. The 

results of process group I is an unverified defect list which will be further examined by the 

developer community. In detail process group I consist of following activities.  

Process 1: Defect detection, in open source is more like black box testing, as the user (common 

user or developer) have been using particular features of software release and spotted a defect, 

error or failure.  

Process 2(a,b,c): reporting a defect into the project issue tracker heavily relies on the motivation 

of the user, as he may just (2a) ignore the defect and continue using the software, or (2c) he fills 

the issue into the tracker, accompanied with defect summary, defect description and other 

information needed by the tracker.  

However as most of the common users are partially unknown to the project hence most common 
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practices in defect reporting are to (2b) notify other users or developers about the finding and ask 

for their opinion in the mailing list or forum. A more experience developer who noticed the issue 

then perform some early analysis, locates the defect and roughly estimates its effect(severity) if 

the defect is valid then he fills a report in, otherwise he notifies the community to ignore as it is a 

false defect.  

Process Group II: Defect Verification  

The defect verification consists of defect collection and defect fixing/correction.  Both processes 

are very important and similar to the same named processes in commercial software inspection. 

The objective of group II is to validate the existence of a defect as defect of particular software 

release, and later perform necessary actions to correct the defect.  

Process 3: Defect Collection. The defect collection begins after a defect report listed into the 

tracker. The process is similar to white box testing, here defects are first stated as “open”, since it 

is unverified and there is no action has been taken yet. One or more developer may read the 

report, add some comments and ask for more information from the reporter.  

Later in order to validate defect existence, he needs to reproduce the defect, and then analyze 

defect location and its effect (severity) to the software product. Once a defect successfully 

reproduced and analyzed, the developer may confirm the defect existence (defect stated as 

„new”), the defect already reported by others (”duplicate”) or false defect (”invalid”) which 

should be ignored. The expected result from sub process 3 is to have a list of verified defect with 

enriched description and specification.  

Process 4: Defect Fixing is a set of activities to correct a defect. A developer who has interest in 

a verified defect may take ”ownership” of the defect, create a short term plan which announce 

that he is working on a particular defect and set of code files and expecting other developers to 

avoid them or attempt to synchronize their changes.   

If succeed, the process may deliver a set of code which should be first self reviewed later to be 

submitted to the mailing list, or tracker further review by other developers or committers.   

 

Process Group III: Defect Solution Verification  

Process 5:  Patches self-review.   During defect solution development an assigned developer 

produces a set of code locally and submits the results. It is worth noting that in OSS project it is 

very unlikely for a patch to be submitted without first being self-reviewed in order to evaluate its 

technical content and quality.  

Eventually after self review the developer may decide (see decision: D1) to submit the results as 
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patch into the developer community (e.g through tracker and mailing list) or it is possible that the 

development of a solution will impose some new defects in the code, which should be reported  

as a feedback input for process  3.     

Process 6:  Patches Peer-review.  Almost every code contribution, patch or commit is cross-

checked by attentive people (e.g. other developers or committers) in the developer community. 

In a large project such as Apache HTTP Server, peer review performed not simply to assess the 

quality of contributed code but also applied for a new idea/solutions submitted to the developer 

community which need to be discussed before put into plan for development.  

Later reviewed patch may be added to the body of code or written as change into release change 

log by the committers, however if the patches could not satisfied the majority reviewers for 

several reasons such as the patch does not meet the defect specification or some new defects 

were found, in these cases most likely the defect will be returned to the issue tracker and stated 

as “re-open” or “new”.   

3.6.2 Proposed Health Indicators Derived from QA Activities in OSS Projects 

Following the health indicator construction described in section 3.4, we need to identify the 

expected quality aspects and investigate how to measure those using metrics that can be obtained 

easily from different QA activities in OSS projects.   

In this study I proposed three new health indicators which are defect detection frequency, defect 

collection effectiveness and proportion of verified solution.  I also incorporated defect closure 

time which already evaluated in previous section to have more comprehensive indication of QA 

activities in OSS projects.  

1. Defect Detection Frequency: A defect detection frequency signifies average number of 

defect report filled into the issue tracker by group of reporter in certain time (monthly).  

2. Defect Collection Effectiveness: Effectiveness is probability of valid defects against 

overall reported defects into the tracker during case study period.  

3. Defect Closure Time: defect closure time is similar to service delay in commercial 

project. We expect hybrid projects should perform slower closure time of defect solution 

compare to pure project due their rigid documentation, guidelines and defect resolution 

policies.   

4. Proportion of Verified Solution: verification after a defect has a positive resolution (e.g. 

patches) is important to make sure the quality of the solution meet the specification and 

not endangered current body of code of the software.  
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3.6.3 Design of Empirical Study 

The design of study comprises of goal definition, brief description of study objects, variables 

specifications and hypotheses construction.  

1. Goals  

From project manager point of view, QA is very important in order to produce high quality 

software which satisfy user needs, and make sure current QA performance meet stakeholder win 

condition as depicted in section 3.3. One focus of our research is shaping performance indicators 

to observe QA aspect status in a pure (Tomcat) and hybrid (MyFaces) OSS project.   

Therefore, from OSS project and quality manager point of view, the part of analysis has two 

goals: (a) to add further evidence to the validity of QA performance differences between diverse 

types of project, (b) to empirically evaluates the QA performance indicators that are directly 

applicable in every OSS project without specific expert know-how.   

In general we expect QA performance in pure voluntarily project will be overall less effective 

than hybrid project, as in hybrid project most likely have better guidelines for QA, more rigid 

specification and documentation, as compulsory from their sponsor.  

2. Study Objects 

These projects are considered as large projects as they employ more than 20 committers and 

more than 50 developers and already have more than one major release when the study was 

conducted. Both projects were different in senses of their sponsorship, as Tomcat24 is pure OSS 

project supported by volunteers, while MyFaces25 is partly sponsored by commercial 

organization.  The case study objects are two major releases of Apache Tomcat and two projects 

in MyFaces community. 

The first project Apache Tomcat is a network server (system) application with a very large and 

diverse community background. Tomcat is pure volunteer work with 4 major releases; in this 

work we investigate Tomcat 5 and Tomcat 6 as the older releases (version 3 and 4) have already 

been abandoned by the community.  

The second project is Apache MyFaces, an application considered as web framework (Internet 

application), the project employs more homogenous participants compared to Tomcat. Apache 

MyFaces consists of 4 subprojects; 3 of them (Tobago, Trinidad, and Tomahawk) are extended 

components that offer more functionality and flexibility than using standard Core components. 

                                                 
24 Apache Tomcat Project can be found at: http://tomcat.apache.org/ (last accessed 20 July 2008) 

25 Apache MyFaces Projects can be found at: http://myfaces.apache.org/ (last accessed 20 July 2008) 
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Project Trinidad is a donation from Oracle to ASF, while Tobago is a hybrid project as some 

developers are paid and closely supported by commercial organizations.  

3. Variables Specifications 

The types of variables defined for the experiment are independent and dependent variables. The 

independent variable is the type of project (either pure voluntarily or hybrid).  

The dependent variables capture the QA performance in different project type.  Following 

standard practice in empirical studies we focus on time variables and performance measures.  

(a) Defect closure time, which we defined as time spent on defect stated as “open” until the 

same defect stated as “resolved” in the tracker. The formula of defect closure time is presented in 

section 3.  This indicator represent how well the developer community in responding and provide 

solution for each reported defect of particular software product.   

(b) Defect detection frequency,  defined as how many defect reported  (Dr) by how many 

reporter  (Rr) over the time into the tracker, this indicator shows how active the user community 

in reporting defect, which can reflect the usage of particular release  

 

_ _  
Eq. 6 

 

(c) Defect collection effectiveness, we defined as: ratio between number of valid defect (VD) 

after reviewed by some developers per number of defect reported (Dr) by users  in certain time, 

this indicator tells us the how many false alarm that reported by the user community which in 

some level can be annoying from the developer point of view.  

 

_ _  
Eq. 7 

 

 (d) Proportion of verified solution, defined as ratio between defects resolved with resolution 

closed (CD) per number of defect resolved with resolution fixed (RD), this indicator signify the 

willingness of the community to resolve defect properly (e.g. by peer review every solution) 

before a release.    

 

_ _ _  
Eq. 8 

 

In a while to better understand the QA emphasize on defect severity, we also classified collected 

defects into three class of severity based on Bugzilla documentation which are Class 1 is the 

highest priority which related to security (critical) and fault (blocker); Class 2 those which 
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related to feature (major, minor, enhancement, normal) and; Class 3 are those related to 

cosmetics work (regression and trivial). Defect severity is typically set by the developer who 

reviews the defect into the tracker, hence we use defect severity to draw the red line between 

developer value expectations with evaluated QA performance indicators.  

 

4. Research Questions and Research Hypotheses Formulation 

 

In the case study we will evaluate the following research hypotheses:  

RI4.6.1 Defect Detection Frequency: We expect in much larger and heterogeneous community 

such as Tomcat, has higher number of defect detection activities than MyFaces. Hence we 

replicated a negative hypothesis as: 

 

H04.6.1: Defect detection frequency (Tomcat) ≤ Defect detection frequency (MyFaces) 

 

RI4.6.2 Defect Collection Effectiveness: We expect higher defect collection effectiveness in 

MyFaces, as a hybrid project should have more documentation to prevent invalid defect report 

and the reporter may have deeper knowledge of the project compare to pure OSS project.  Hence 

our replicated hypothesis is  

 

H04.6.2: Defect collection effectiveness (Tomcat) ≥ Defect collection effectiveness (MyFaces) 

 

RI4.6.3 Defect Closure Time: We expect hybrid projects should perform slower closure time of 

defect solution compare to pure project due their rigid documentation, guidelines and defect 

resolution policies.  We proposed a negative hypothesis  

 

H04.6.3: Defect closure time (Tomcat) ≤ Defect closure time (MyFaces) 

 

RI4.6.4 Proportion of Verified Solution: We expect in less formal project environment such as 

Tomcat, a defect resolution will likely to be resolved faster but less frequent to be peer-reviewed 

(defect stated as ”closed”) compare to MyFaces. Thus we proposed following negative 

hypothesis: 

 

H04.6.4: Proportion of verified solution (Tomcat) ≥ Proportion of verified solution (MyFaces). 
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3.6.4 Data Collection 

This section describes the proceeding of data collection, the data refinement actions, and 

potential Threats to Validity.  

1. Data Collection and Data Refinement 

The case study was performed in March to April 2007.  First we designed to be conducted 

empirical study which consists of case study goals definition, study variables definition, and 

derived research questions and following hypotheses to be evaluated by collected data.    

In this work we examined both projects during their last 5 months of development (1/10/2006 to 

1/02/2007).  We retrieved SVN logs from each project’s defect database.  

We classified defects into three classes of severity derived from Bugzilla bug classification.  We 

calculated the proposed performance indicator based on retrieved data. We use descriptive 

statistic analysis to compare the QA performance of both projects and discuss the results to 

answer our second research question. 

For data refinement, similar to previous study reported in Section 3.5.2 , in this study we also 

removed several missing, invalid and duplicate defect data. Since the number of such missing 

data is quite very low (less than 2 %) compared to the number of valid data collected, hence we 

believe that missing data removal is reasonable in this context.  

2. Threats to Validity  

Construct validity. The first threat is that in Apache communities it is a common practice in 

developer community to re-open resolved defect in order to increase the quality of the patches. 

In this study we hold our assumption that to re-open a resolved defect is also part of defect 

removal activities. Therefore for defect closure time calculation we ignore the re-open status of a 

defect which of course may significantly increase the closure time.   

External validity. The quality assurance aspects presented in this study is derived from QA 

practices in Apache project communities, thus we expect the results can be applied for  projects 

under Apache Software Foundation or at least those which have similar characteristic to Apache 

projects.  

3.6.5 Data Analysis Results 

In this section we present empirical result and evaluate the research questions. The comparison 

of results from different reviewed projects is also included in following discussion.  
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Defect Detection Frequency  

Table 10  displays average and standard deviation of monthly effort in 6 reviewed major 

releases. Tomcat 5 has the highest average number of defect report and reporter, which signify 

the project has larger reporter community. The ratio of each project exhibits that most of the time 

there are more than one defect report filled by a single reporter. The table shows that based on 

mean of reported defects and number of reporter, Tomcat 5 outsized all other project releases, 

which means the project has more active and heterogeneous reporter community.  

 
Table 10 Defect Detection Frequency 

Defect Severity  

Major Releases 

Tobago Trinidad Tomahawk Core Tomcat5  Tomcat6 

Mean    reported defects  
         active reporter  

15.20  20.80  23.80  13.00 31.80  8.20  

7.40  13.00  19.60  11.60 27.40  6.20  

Stdev     reported defects  
          active reporter  

4.82  5.12  5.26  5.43  7.12  4.09  

1.82  2.45  4.98  5.13  6.95  2.28  

 

Defect Collection Effectiveness 

All projects in this study show low level of report invalidity, as the majority of reported defects 

had been validated and listed as positive defect instead of false ones.  As we expected in five 

months of observation all MyFaces releases has less invalid defect (closer to “1”) which 

illustrated more effective defect collection compare to Tomcat 5 and Tomcat 6.   

Table 11 Defect Collection Effectiveness 

Defect Severity  

Major Releases 

Tobago  Trinidad Tomahawk Core Tomcat5  Tomcat6 

Class 1 1 0.75 0.9 0.63 0.2 0.33 

Class 2 0.94 0.94 0.95 0.92 0.63 0.87 

Class 3 0.67 1 1 1 0.82 1 

Defect Closure Time  

Table 12 illustrates the average of defect closure time (in days) for each major release, where ”0” 

means a defect is resolved within the same day after the report filled in the tracker and ”N/A” 

means there is no resolved defect in certain severity class.    

In Table 12, in average all MyFaces subprojects need more time to solve class 1 defects compare 

to Tomcat releases. However the standard deviations in Tomcat releases show more diverge time 
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to closure a defect than in MyFaces, hence it will be more complicated for project manager in 

Tomcat to decide when a defect is delayed.   

 
Table 12 Defect Closure Time per Class of Severity in Days 

Defect Severity  
Major Releases

Tobago  Trinidad  Tomahawk  Core  Tomcat5  Tomcat6  
Mean     Class 1  
             Class 2  
              Class 3  

62  34  11.17  43  4  0 
45  13  9  39  22.37  4.5  
33  2  29  N/A  13  N/A  

Stdev     Class 1  
            Class 2  
             Class 3  

24.79  40.8  16.44  57.38  7.98  0 
27.39  26.82  76  47.48  11  9  

39.47  0  32.99  N/A  28.72  N/A  

Furthermore to better understand the defect closure time, instead of categorized defect into 

severity classes, we distributed defects into several class of closure time as illustrated in Figure 

18 

.   

Figure 18 Defect closure time distributions in reviewed projects 

In this figure  MyFaces Tomahawk, and both Tomcat releases show higher performance in 

resolving defect, as the more than 50% of validated defects were fixed within one day. In 

contrary 66% defects listed in Tobago were fixed in more than 30 days which signify slower 

service time. 

Proportion of Verified Solution  

Figure 19 shows that in all projects some of reported defect have been fixed with particular 

resolution. Compare to both Tomcat releases, all four My Faces subprojects signify higher QA 

activities from assigned developer as more than 50% of resolved defect have been self reviewed 
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and tested (defect resolved as “fixed”).  

.  
Figure 19 Proportion of verified defect resolution   

Furthermore higher effectiveness of peer review illustrated by My Faces Core, and Tobago, as in 

both project, most of ”fixed” defect (≥ 50%) were also stated as ”Closed” means the defect has 

passed several QA processes by attentive developers or committers in the developer community.   

3.6.6 Discussion of Empirical Results 

In this section we summarize the empirical result from our case study concerning QA aspects in 

two Apache projects. Analyzing our empirical results, we derive following implications for 

performance measurement of QA processes in similar OSS projects. 

 

Defect detection frequency. The result shows that in homogenous hybrid project community 

such as MyFaces obtain less number of defect reports over the time submitted by only particular 

people in the community compare to large and heterogeneous project such as Tomcat. In 

summary the data signify disagreement with our hypothesis H04.3.  Since,  

 

Defect detection frequency (Tomcat) ≥ Defect detection frequency (MyFaces) 

 

It is worth noting that in Tomcat, we also found that more project participants involved in 

Tomcat 5 defect collection activities rather than in Tomcat 6. The reason is in particular critical 

application such as web-server, instead of using the latest release (Tomcat 6), more users are still 
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using the previous version (Tomcat 5) for several considerations such as security, set-up 

overhead, etc. 

 

Defect collection effectiveness, the results exhibit higher probability of invalid defect reports in 

Tomcat releases compare to MyFaces subprojects especially in defect class 1 and class 2.  For 

these classes of defects we can reject hypothesis H04.4., Since,   

 

Defect collection effectiveness (Tomcat) ≤ Defect collection effectiveness (MyFaces) 

 
Here we can expect in more formal/structured hybrid project such as MyFaces, the community is 

has more knowledge about the software releases, thus most of the time the defect reports are 

valid and should be taken into consideration by the developer community.    

 

Defect closure time. In this work we define defect closure time as time to resolve a reported 

defect. The results show that majority of projects resolved defect in less than 30 days (See Figure 

2) and signify a responsive developer community. In case of MyFaces Tobago exhibits more 

fixing time were needed, which rejects our hypothesis H04.5. Since,  

 

Defect closure time (Tomcat) ≥ Defect closure time (MyFaces) 

 

One possible reason is that most of the defect were also required to be properly peer-reviewed by 

other developers (Figure 18) which eventually took more time before a defect stated as ”closed” 

or ”verified”.  Most of these delayed defects are in middle to lower severity classes (class 2 and 

class 3), which have less significant impact and tends to be delayed by the developers.  

 

Proportion of Verified Solution.  Code review at the end of defect life cycle consist of self-

reviewed and team review. Due to limitation of investigation period, although in most of the 

projects we found practices of code self review (defect stated as “fixed”), however in both 

Tomcat releases we barely found any evidences of code team review, as all of fixed defects are 

only stated as ”resolved” instead of ”closed” or ”verified”. The result also enclosed in MyFaces 

Tobago, the ratio of closed defect per fixed defect is very high (96%), means most of the fixed 

defects had been peer-reviewed. Therefore we have to reject our replicated hypothesis H04.6.  

Since,  
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Proportion of verified solution (Tomcat) ≤ Proportion of verified solution (MyFaces). 

Hence we assume the hybrid community is more responsive to each patch/code submission and 

highly aware about its quality.  We asked expert in Apache foundation, it is probably due to 

complexity, maturity of its releases, and releases policy that the Tomcat’s developers need to 

spend more time to review and verify a code or patch contribution which could not be captured 

within our case study time limitation.  As the tradeoff of slower solution verification, Tomcat 

offers less re-open defects (stable solutions) compare to smaller OSS projects, however we still 

need to investigate this claim by providing empirical evidence, which we considered as future 

work. 

3.7 Chapter Summary 

In this chapter we deliver following research contributions:  

Causal Model of OSS Projects Survivability. We proposed a model of OSS project life cycle 

and how the survivability of OSS project is depend on the aliveness of developer and user 

community and the quality of product releases.  

“Health Indicators” for OSS Projects.  Later we proposed a concept of “health indicators” of 

OSS project. “Health indicators” are quality evaluation measures of distributed development 

process in OSS projects, thus our proposed “health indicators” are the first quality indicator in 

our study context.  From project management perspective to evaluate project “health indicators” 

in time is not only to obtain overview of project status but more importantly as early warnings of 

certain risks that have to be addressed to ensure the survivability of the project.    

Some of these to-be-formulated indicators are “hidden” behind the development process. Hence, 

effectively, it is the core stakeholder who should make the decision about which indicators 

should be employed, based on the projects initial needs.  

Empirical Evaluation of Proposed Health Indicators. On the second steps we performed 

empirical studies to evaluate the proposed health indicator concepts in Apache Projects. Our 

brief interview with an OSS expert considered that two of them as healthy projects (HTTPD and 

Tomcat) and two challenged projects (Slide and Xindice).  The challenged projects were in dire 

situation, as Xindice for example shows a dying period since most of its developers left the 

project, while Slide shows early symptom of sickness due to a core committer suddenly 

abandoned the project which consequently collapses the rest of development activities.  

In this chapter we outlined how such health indicators can provide more insight of development 

activities that correlated to each others, we also succeed in providing prediction models that can 
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actually predict the likely measures of developer contribution patterns for the next 4 months of 

development.  

The second health indicator represents the capability of developer community in defect 

management, as in our empirical investigations reveals that one indication of a healthy project is 

responsiveness of developer community for newly reported defects and faster defect fixing time, 

which of course also address the win condition of the end user of the OSS products.  

Deriving Health Indicators from Quality Assurance Activities and Defect Status Changes 

Data. In the second study, we focused on certain aspects of quality assurances in OSS project, in 

particular for projects under Apache umbrella. By correlating metrics obtained from QA 

activities during development processes and defect status changes data, we defined additional 

health indicators and evaluated empirically with data from a pure and a hybrid OSS projects. We 

compared the results and discuss them with an OSS expert.  

Quality assurance (QA) methods such as software testing and peer review are very important to 

reduce the adverse effects of defects in software engineering. In this study we explore current 

practices of QA and possibilities for their extension in open source software (OSS) projects.  

This study presented a framework for QA aspects in OSS project based on our observation from 

typical OSS projects. Beyond the framework we performed case study on 2 large Apache 

projects Tomcat and MyFaces.   

Our main results were (1) base on expert interviews and literature review we found different 

value expectations from the members of development community for performing QA activities 

in an OSS project. Based on their win condition we can derived some performance measurement 

of QA processes which need to be monitored by the project leading teams, to address typical 

questions such as “Are we doing good enough in assuring our product quality?”, “How much 

effort should we spend to increase the quality of our next release?”, and “How can we predict 

the quality of our software product?”.   (2)  Different types of project may display a variety of 

QA activities which depend on the nature of the developer community (e.g. size of the 

development team, type of project sponsorship, project complexity, and release policies). For 

example Tomcat which is a pure OSS project signifies defect detection activities with faster 

defect closure time.   

However the proportion of verified solution in Tomcat is lower than MyFaces, which we can 

assume in hybrid project, people tend to close and verified the defect solution properly.  

Generally spoken the results from OSS project should be compared to proprietary or closed 

source project of equivalent size, which unfortunately may seem difficult to do, and we consider 

as future work.  



  

 

97 

 

4 SOFTWARE QUALITY PREDICTION IN DISTRIBUTED DEVELOPMENT 

SETTINGS  

This chapter outlines the second quality aspect in my research. It presents models and research 

issues for software quality prediction in distributed development.   

Start with process modeling to describe software product and process improvement in OSS 

projects and ways to measure the level of quality assurance (QA) activities in form of process 

metrics. Some of these process metrics are “health indicators” presented earlier in previous 

chapter. 

This research focuses on defect prediction as one quality aspect of distributed software 

development. It builds on Software Quality Prediction Framework (SQF) proposed in Section 

4.2.  For empirical evaluation,  

In, this chapter we offer two scenarios in software quality prediction with two different quality 

indicators. First scenario attempts to predict the defect growth between releases based on 

objective estimates on the number of defects in a release and the currently reasonable defect 

removal capacity of the developers.   The second scenario propose a framework to characterize 

and predict the defectiveness risk class of a software release relative to the average defectiveness 

level of a reference set of releases. 

For both scenarios, we investigate the potential contributions of process metrics in combination 

with traditional product metrics to improve the performance of quality prediction models.  We 

collected and analyzed product and process data from 4 large OSS projects in two Apache 

project communities with similar characteristics to conduct an empirical evaluation of the 

framework across projects and across communities. 

4.1 Systematic Review of the Body of Literature on Defect Prediction  

The rationale for identifying defective components of a software system prior to applying 

analytical quality assurance (QA) measures like inspection or testing has been summarized by 

Nagappan et al.: “During software production, software quality assurance consumes a 

considerable effort. To raise the effectiveness and efficiency of this effort, it is wise to direct it to 

those which need it most. We therefore need to identify those pieces of software which are the 
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most likely to fail  and therefore require most of our attention.” [91] A wide range of studies 

provide evidence about successful prediction of defects and various scenarios on how to exploit 

defect prediction have been proposed, for example, focusing testing and QA activities, making 

informed release decisions, mitigating risks, allocating resources in maintenance planning, and 

supporting process improvement efforts.  

These studies also provide valuable advice and share lessons learned important for those who 

want to adopt defect prediction in practice. Currently there are many approaches to perform 

defect prediction [71] and respective validation methods [56, 97]. However, Koru et al. [64] 

advise that in practice, the most appropriate prediction method has to be selected for the current 

project context and the type of defect pattern to be predicted. Thereby, a good defect prediction 

model has to be constructed using a set of predictor variables that represents the actual measures 

of the software product and process [87, 88, 126]. Furthermore, several measures to evaluate the 

quality of a prediction are recommended, e.g. [80], and calibrating the prediction model to align 

false alarm rates with prediction goals and business scenarios is recommended [79].  

Despite the many findings and the comprehensive information provided by the existing studies, 

there still is a wide gap between published research results and their adoption in real-world 

projects. Studies sharing insights about the application of defect prediction in practice are rare. 

Li et al. [72] discuss experiences and results from initiating defect prediction at ABB Inc. for 

product test prioritization and maintenance resource planning. Ostrand et al. [98] describe 

automating algorithms for the identification of fault-prone files to support the application of 

defect prediction in a wide range of projects. These studies show that in many cases, research 

results on defect prediction cannot directly be translated to practice. Adaptation and 

interpretation in the context of a particular project or organization is required. Furthermore, 

many studies focus on specific research questions. While these studies provide a valuable 

contribution to defect prediction research, this contribution remains an isolated piece of a bigger 

picture without following the entire track of research.  

4.1.1 Systematical Literature Review Procedure 

Numerous empirical studies on software defect prediction have been published in journals and 

conference proceedings. In order to provide a systematic guide to the existing body of literature, 

relevant studies have been searched and selected following the approach for a systematic 

literature review proposed by Kitchenham et al. [58].  

A systematic literature review is defined as “a form of secondary study that uses a well-defined 



  

 

99 

methodology to identify, analyze and interpret all available evidence related to a specific 

research question in a way that is unbiased and (to a degree) repeatable” [58].  

Staples and Niazi [114] summarize the characteristics of a systematic literature review: (a) a 

systematic review protocol defined in advance of conducting the review, (b) a documented 

search strategy, (c) explicit inclusion and exclusion criteria to select relevant studies from the 

search results, (d) quality assessment mechanisms to evaluate each study, (e) review and cross-

checking processes to control researcher bias.  

A key element of a systematic literature review is the review protocol, which documents all other 

elements constituting the systematic literature review. They include the research questions, the 

search process, the inclusions and exclusion criteria, and the quality assessment mechanisms. 

 

Research Questions. The research questions summarize the questions frequently addressed in 

empirical studies. These questions contribute essential findings from research to the application 

of defect prediction in practice and are mapped to the phases of the framework. According to the 

framework, we emphasize three research questions to guide the systematical literature review 

process:  

RI3.1. How do successful studies in defect prediction design the prediction process prior to 

model construction? 

RI3.2. How do successful studies in defect prediction construct the prediction model from 

collected data? 

RI3.3. How can external validation of the prediction model be provided for future 

predictions? 

 
Search Process. The search process describes the process to identify the list of candidate 

studies. Following search process advocated by Barbara Kitchenham et al. [62], the search 

process was organized into two separate phases. The initial search phase identified candidate 

primary studies based on searches of electronic digital libraries from IEEE, ACM, Elsevier, 

Springer, and Wiley. Search strings have been composed from search terms such as defect, error, 

fault, bug, prediction, and estimation. The secondary search phase is to review the references in 

each of the primary studies identified in the first phase looking for more candidate primary 

sources which repeated until no further relevant papers can be found.  

Inclusion and Exclusion Criteria. The criteria for including a primary study comprised any 

study that compared software defect predictions which enables metric-based approaches based 

on analysis of project data. We excluded studies where data collected from a small number of 
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observations (less than 5 observations). We also excluded studies where models constructed only 

based on historical data of defects with no other metrics as predictor variables. The third 

exclusion criterion is that we only consider studies that performed internal validation and 

external validation of constructed prediction model. Formal inclusion criteria are that papers 

have to be peer reviewed and document empirical research. Regarding the contents, inclusion 

requires that the study addresses at least one of the defined research questions.  

Quality Assessment Mechanism. This systematic literature review has been based on a 

documented and reviewed protocol established in advance of the review. Furthermore, in this 

study two researchers were involved in conducting the systematic literature review and cross 

validation of the results. For example, one researcher queried a digital library and extracted 

candidate studies while the second researcher verified the search terms, search results, and the 

list of identified candidate studies. Thereby we minimized researcher bias and assured the 

validity of the findings of the review. As suggested by [60] that a systematical literature review 

doesn’t necessary to summarize hundreds of findings but rather to focus on small number of 

most related studies thus for the next step we discuss the most relevant studies that may answer 

our research questions properly. By following this approach we identified 12 studies on defect 

prediction providing findings from a total of more than 200 studies found in abovementioned 

digital libraries. 

4.1.2 Extraction of Findings and Discussion 

This section maps the findings from the systematic literature review to the phases and tasks of 

the framework for defect prediction. The findings summarize the contributions extracted from 

the studies with respect to the research questions 1 to 3 used to drive our systematic literature 

review.  

Table 13 lists information about how current research defines the goals of defect prediction 

studies, questions and hypotheses, as well as how variables are specified to describe each 

question. 

Note that Explicit mean the study describes the following terms (goal, hypotheses, etc) clearly as 

a separate part from surrounding texts and adhere to our term definitions in the framework. 

Implicit mean we need to extract the information from the text to identify a term definition. As 

N/A reveals that there is no information contains the definition of an expected term in the study.     
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Table 13 Study Related Factors- Preparation Phase 

Study Preparation Steps 

A.1 A.2 A.3 

Goal definition Research questions Variables Specification 

Moser et al [87] Goal is  implicitly 

described  

Questions proposed 

with respective Null 

Hypotheses 

Implicit variables 

specifications  to predict 

module defect 

proneness 

Li et al [71] Goal is implicitly 

described 

Explicit research 

question with no 

hypotheses 

Explicit variables 

specification to predict 

defect intensity of a 

release 

Zimmermann et 

al [131] 

Goal is  implicitly 

described 

Implicit research 

question with no 

hypotheses 

Implicit variables 

specifications  to predict  

module defect 

proneness 

Koru et al [64] Implicit goal 

description 

Implicit research 

question with no 

hypotheses 

Implicit variables 

specifications  to predict  

module defect 

proneness 

Nagappan et al 

[89] 

Implicit goal 

description  

Explicit research 

hypotheses 

Explicit variables 

specification 

Li et al [73] Goal is implicitly 

described 

Explicit research 

question with no 

hypotheses 

Explicit variables 

specification  to predict 

defect intensity of  a 

release 

Weyuker et al 

[127] 

Explicit goal 

description in later 

section 

Implicit Research 

questions with 

hypotheses 

Implicit variable 

specification to predict 

file defect proneness 

Menzies et al 

[80] 

Implict goal 

description 

Implicit research 

question, hypotheses 

described later in the 

Explicit variables 

specification for module 

defect proneness 
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paper 

Graves et al 

[44] 

Goal is implicitly 

described 

Implicit research 

questions with no 

hypotheses 

Explicit variables 

specification for module 

defect proneness 

Sunghun et al 

[115] 

Implicit goal 

description 

Explicit research 

hyptoheses 

Explicit variables 

specification of file 

defect proneness 

Pai et al [99] Implicit goal 

description 

Explicit research 

question with no 

hypotheses 

Explicit variables  

specification for number 

of defect per class and 

class defect proneness 

Olague et al 

[96] 

Explicit goal 

statement  

Explicit  research 

hypotheses to 

describe proposed 

goal 

Implicit variable 

specification to predict 

class defect proneness 

 

Most of the studies do not explicitly describe the goal of the study and there is no single study 

which identifies the target stakeholders of the results with their values expectations. 7 out of 12 

studies explicitly stated the research questions and/or respective hypotheses, which provide 

guidance for the remaining empirical study process. Most of the study specified the variables as 

part of the prediction model construction prior to data collection.  Thus, we assert that the 

preparation phase which consists of goal definition, research questions and hypotheses 

formulation, and variable specifications is a common practice in conducting defect prediction 

with different levels of detail and presentation.   

 

Table 14 Study Related Factors- Model Construction 

Study Model Construction Steps 

B.1 B.2 B.3 

Parameters Selection Prediction 

Methods 

Internal 

Validation 

Model 

Performance 

Measures 

Moser et al product and process Naïve Bayess, 10 Fold cross Number of False 
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[87] metrics with  no 

parameter selection 

Logistic 

regression and 

J48 with 

validation and 

Performance 

measure: 

 

positive and 

Recall 

Li et al [71] Product and process 

metrics with no 

parameter selection  

16 modeling 

methods 

N/A Average relative 

error  

Zimmermann 

et al  [131] 

Product metrics with  

selection by 

Spearman bivariate 

correlation analysis 

Naïve Bayess, 

Logistic 

regression and 

J48 

10 Fold cross 

validation.  

 

Performance 

measures: 

Accuracy, recall 

and precision 

Koru et al [64] Product (Design) 

metrics with  no 

parameter selection 

J48  10 Fold cross 

validation  

Performance 

measures Recall, 

Precision and F-

Measure 

Nagappan et 

al  [89] 

Process (code churn) 

metrics  with selection 

by Spearman 

correlation   

Multiple 

regression, Step-

wise regression 

and Principal 

Component 

Analysis (PCA) 

Coefficient of 

determination 

analysis, F-

test  

Discriminate 

analysis  

Li et al [73] Product and process 

metrics with no prior 

selection 

16 modeling 

methods 

N/A Average relative 

error 

Weyuker et al 

[127] 

Process (developer) 

metrics   with  no 

parameter selection 

Negative 

binomial 

regression  

N/A Correctly 

identified files 

Menzies et al 

[80] 

Product (static code) 

metrics  with  no 

parameter selection 

Naïve Bayes  

with log 

transform, J48, 

OneR 

10 Fold cross 

validation   

Accuracy, Number 

of false positive, 

Receiver operator 

curves 

Graves et al Product (changes 

code) metrics with  no 

General linear N/A Error measure  
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Table 14 outlines steps taken to construct the prediction model of these studies used variable 

selection prior to model construction. Methods such as Spearman bivariate correlation analysis 

and linear regression with selected methods (backward, stepwise, remove) are considered as 

common methods for parameters selection prior to fit them into the prediction model.  

The selection of prediction methods is based on what kind of defect pattern to be predicted, i.e., 

classification techniques such as logistic regression can be used to predict file defect-proneness 

but will obtain poor performance to predict file defect rates. Similar to prediction method 

selection, one should also choose appropriate internal validation methods and model 

performance measures. We conclude that preparation and model construction phases have been 

identified as commonly performed by researchers in defect prediction.  

  

[44] parameter selection models 

Sunghun et al 

[115] 

Process (change) 

metrics  with no 

parameter selection 

FixCache 

prediction 

method 

Cross 

validation for 

all data set  

Accuracy  

Pai et al [99] Product metrics with 

variable selection by 

correlation analysis 

and backward linear 

regression  

Multiple linear 

regression, 

Logistic 

regression, 

Bayesian 

network model  

10 Fold cross 

validation   

False positive rate, 

precision , 

specificity, 

sensitivity 

Olague et al 

[96] 

Product (Object 

Oriented) Metrics 

with parameter 

selection by 

Spearman bivariate 

correlation analysis 

Univariate and 

Multivariate 

binary logistic 

regression 

Hold out 

method 

Percentage of 

correctly classified 

classes  
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Table 15 Study Related Factors- Model Usages 

Study Model Usages Steps 

C.1 C.2 

External validation Robustness Analysis 

Moser et al [87] Cross validation with different releases 

with low performance results 

N/A 

Li et al [71] Constructed model were used to predict a 

certain period of defect growth per release  

Proposed framework were used 

for commercial context [73] 

Zimmermann et 

al [131] 

Cross validation of trained prediction 

model in different releases and levels of 

observation 

N/A 

Koru et al [64] Cross validation of trained prediction 

model with different class of data 

Depicts the need for model 

calibration or refinement  

Nagappan et al 

[89] 

State briefly with no data N/A 

Li et al [73] Cross validation with different releases N/A 

Weyuker [127] N/A N/A 

Menzies [80] N/A N/A 

Graves [44] N/A N/A 

Sunghun[115] N/A N/A 

Pai et al [99] N/A N/A 

Olague et al [96] N/A N/A 

 

For the third phase Model Usages (see Table 15), we found only two studies providing 

appropriate results of the two involved steps. This finding confirms the critique from Norman 

and Fenton [29] that most of the existing studies on defect prediction do not provide empirical 

prove whether the model can be generalized for different observations.  

There are several reasons why many studies did not report the external validation and robustness 

analysis of constructed prediction model such as the availability of new observation data [99] 

and external validation results which signify poor performance of the model [87] for which many 

of the authors do not wish to report.   However from practitioners’ perspective such conditions 
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should be addressed properly by data collection process refinement and model calibrations until 

the model can be proven for its usefulness for prediction in particular context.   Later we use the 

results of systematical literature review to derive the research roadmap in software quality 

prediction and evaluation (see Section 4.2) and to construct a systematic framework for 

conducting software quality prediction in distributed software development settings (see Section 

4.3 ). 

4.2 Research Roadmap of Software Quality Prediction and Evaluation in 

Distributed Software Development 

A number of empirical studies provide evidence of successful prediction of defects using data 

from real-world projects conducted in an industrial or open-source context. However, 

practitioners are confronted with additional requirements when they try to replicate the success 

of these studies within the context of their specific projects and organizations. Derived from 

systematical literature review result reported in Section 4.1, we found several issues relevant for 

applying quality prediction in practice, which are currently not adequately addressed by the 

existing body of literature. Related future works are encouraged in order to make software 

quality prediction a commonly accepted and valuable aid in practice. 

4.2.1 Challenge 1: Needs for well planned quality prediction  

Quality prediction and evaluation remain a risky endeavor for practitioners as long as upfront 

investments for data collection and model construction are high and a return on these 

investments has to be expected late or never [64]. Thus to conduct quality prediction should 

adhere to these following requirements: 

1. Aligning defect prediction with project and business goals. Empirical studies tend to 

focus on prevalent research questions. Practitioners, however, have to align defect 

prediction with the goals of their specific project. Concentrating testing on defect-prone 

components or planning the effort for maintenance activities are examples for such goals. 

Defining the goals first is therefore an important requirement as an appropriate budget 

has to be allocated for defect prediction and, moreover, the investment has to be justified 

according to estimated savings and benefits.  

2. Creating a project-specific prediction model. Prediction models are constructed from a 

project’s historical data. A prediction model, thus, models the context of a particular 
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project. As a consequence, predictors obtained from one project are usually not 

applicable to other projects. Nagappan et al. [90], for example, showed that predictors are 

accurate only when obtained from the same or similar projects and that there is no single 

set of metrics that is applicable to all projects. These findings were supported by Koru 

and Liu [64] when analyzing the PROMISE repository containing data about projects 

conducted at different sites. “Normally, defect prediction models will change from one 

development environment to another according to specific defect patterns.” [64] 

3. Evaluating the feasibility in the project or organizational context. Despite the success 

reported by many studies, the prediction of defects in a particular project may not be 

possible. Typical reasons are the poor quality of the available data [59] or the effort 

required to extract and collect the necessary data [103]. Most published studies report 

solely successful cases of defect prediction. Only few studies point toward limitations, 

for example, Li et al. [72] comment on the poor accuracy in predicting field defects for 

one of the studied products. Most projects and organizations cannot afford this 

investment under such adverse conditions. Thus, means are required a) to identify the 

most important quality indicators, b) to conduct an early and quick estimation of the 

feasibility of predicting quality with acceptable performance in the context of a specific 

project or organization [97]. In short, the feasibility of predicting defects has to be 

estimated early to confirm that the defined goals will be met. 

4. Striving for fast results. Even when the feasibility is positively evaluated, defect 

prediction is required to produce results fast. Defect prediction is relatively new in the 

software development arena, and practitioners face a high level of uncertainty concerning 

the return on the investment in defect prediction. Thus, when results cannot be obtained 

within one or a few iterations the chance defect prediction will be applied in a real-world 

project is low. The general concerns of practitioners have also been described by Ostrand 

et al. [98]: “In our experience, practitioners won't even consider using a new technology 

without evidence that it has worked on a substantial number of real systems of varying 

types. It is very unlikely that practitioners will be convinced that a new tool is worth 

learning and evaluating merely on the basis of its demonstration on toy systems or on 

systems much smaller than the ones they normally develop and maintain.” If the 

prediction study seems feasible then a sound plan should be assembled in order to have 

better controlled prediction model construction and validation, as well as to adhere to 

cost benefit constraints. 
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In Section 4.3, we describe framework that can be used to have a well planned quality prediction 

and evaluation which adhere to abovementioned requirements.   The frameworks have been 

evaluated by means of systematical literature review, later we apply this framework with 

empirical data from different contexts of distributed software development, and reported in 

Section 3 and Section 4.  

4.2.2 Challenge 2: Effective and efficient data collection 

DSD comprised of complex distributed processes and heterogeneous project repositories.   

Metrics for as input parameters for prediction model are obtained through collection and 

correlation from these data sources. Ostrand et al. [98] found that “it is very time consuming to 

do the required data extraction and analysis needed to build the models, and few projects have 

the luxury of extra personnel to do these tasks or the extra time in their schedules that will be 

needed. In addition, statistical expertise was needed to actually build the models, and that is rare 

to find on most development projects“. As a consequence, it should be possible to organize data 

extraction and model creation separately so it can be outsourced or – if tool support permits – 

automated. 

Current practices are commonly using a specific data mining tool for each data sources, however 

different data sources and tools often means incompatible format and need for data integration.  

Manual reformatting and integration of data before fitting into the prediction model are time 

consuming and error prone tasks. Hence, most of defect prediction studies reported only a very 

limited number of data sources, often with only observing a single project repository. 

More researches for data collection in DSD are necessary to increase the quantity and quality of 

data with reasonable efforts. One approach if to exploit available data mining tools that enable 

interfacing with a number of project repositories and store the results as a set of metrics in 

uniform format [125]. Another approach is to investigate the semantic relationship between data 

across projects which enable integration of development tools and project repositories (e.g. by 

using semantic web technology, ontology for integrated data modeling and data collection) [46, 

67].      

4.2.3 Challenge 3: Predicting under uncertainty  

Fenton and Neil [29] remind that “Project managers make decisions about software quality using 

best guesses; it seems to us that will always be the case and the best that researchers can do is 1) 
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recognize this fact and 2) improve the ‘guessing’ process. We, therefore, need to model the 

subjectivity and uncertainty that is pervasive in software development.” Uncertainty exists 

besides limitations resulting from incomplete, insufficient data. It arises often about how the data 

has to be interpreted, which reflects the peculiarities of a project such as individual project 

regulations, discontinuities in workflows and processes or specific use of tools. Practitioners 

therefore rely on expert judgment and have to make assumptions. These assumptions should be 

made explicit and – as a positive side-effect – the prediction model should provide information 

to verify these assumptions.  

4.2.4 Challenge 4: Dealing with incomplete and missing data 

Existing studies on software quality prediction neglect the fact that information is often missing 

or incomplete in real world settings. Practitioners therefore require methods to deal with missing 

or incomplete information.  

Treating incomplete and missing data are common practices in statistical domain. Typically if 

the data set is large with only small number of random value are missing the problem is not 

severe. On the other hand, a smaller data set which has significant missing values that are non 

randomly distributed will need serious attentions [116].  

Li et al. [73] reported: “We find that by acknowledging incomplete information and collecting 

data that capture similar ideas as the missing information, we are able to produce more accurate 

and valid models and motivate better data collection."  Hence this is imperative that future 

researches in software quality prediction should take closely to missing and invalid data issues 

using well established statistic methods.  

4.2.5 Challenge 5: Providing accurate and prompt prediction results  

Our systematic literature review reported that most of software defect prediction studies still put 

their focus on exploiting product metrics to construct good prediction model. However, as 

mentioned in related work, recent studies such [70, 87, 126] reported that in DSD project with 

short release cycle such as OSS project, prediction models which enabled only product metrics 

were outperformed by those that enable process metrics or combination of both classes of 

metrics. 

In this study, we focus on metric based prediction models, as they offered early availability of 

data compared to time based approach (e.g. reliability growth model) with tradeoff in accuracy 
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of the results [73, 74]. Yet, another raised issue is that current studies are typically tried to fit all 

collected metrics into the prediction model without prior knowledge whether these metrics have 

significant correlation to the estimator (e.g. number of defects, or module defectiveness). From 

statistical best practices it is not wise to construct a model with a lot of weakly correlated metrics 

as they will reduce the performance of the constructed model [33].  For this reason, future work 

in quality prediction should take into account of this issue such as by comparing the results of 

prediction with different types of metrics as well as prediction with and without parameter 

selection, one should distinguish the differences and take the best option. 

4.2.6 Challenge 6:  Reusing and validating the existing model for upcoming releases. 

To optimize the return on the investment in model creation, the model has to be reused for 

upcoming releases with minimal additional effort. However, over time, the project’s context and 

the defect patterns can change. As a consequence, prediction results for a new release derived 

from a model created and verified with historical data have to be validated. Practitioners need a 

measure of reliability when they make decisions based on prediction results. Furthermore, Koru 

and Liu [64] point out that “as new measurement and defect data become available, you can 

include them in the data sets and rebuild the prediction model.” As adjusting or rebuilding the 

model requires additional effort, the validation results should serve as an indicator when 

adjusting or rebuilding becomes necessary.  

4.3 The Software Quality Prediction Framework (SQF)   

In this section we describe a framework for software defect prediction which consists of three 

phases – (A) preparation, (B) model creation and (C) model usage – as well as seven steps (see 

Figure 20). This framework is in line with the requirements outlined in the previous section and 

has been derived from our experience and existing body literature on software defect prediction. 

SQF is an extension from framework for conducting empirical study proposed in Section 2.1.3, 

but with more focus for conducting software quality prediction.  

4.3.1 Phase A – Preparation 

As first phase in conducting a defect prediction, one should start by preparing the necessary 

preconditions prior to model construction. The intention of the preparation phase is to create a 

clear focus of what results should be provided by the prediction, to appropriately design the 
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prediction approach, and to have quick analysis whether such design will accomplish the 

expected results within project and organizational context.  

 

Figure 20  Software Quality Prediction Framework (SQF) 

 

A.1. Define defect prediction goal, which represents the objective of defect prediction with 

respect to a particular stakeholder perspective and the current project context.  

A.2. Specify questions and hypotheses. Questions are derived from the defect prediction goals. 
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They are used to identify relevant models of the objects of study and, then, to more precisely 

define the expected achievement of a specific goal. The questions can be reframed as hypotheses 

about the observed situation or defect pattern. We recommend specifying hypotheses that are 

easily measurable to enable the falsification or acceptance of the hypotheses for a sound 

assessment of the prediction results 

A.3. Quick feasibility study and variables specification. A quick feasibility study is essential 

to assess whether the initial goals of the prediction can be achieved using the available data from 

the observation objects. A negative assessment indicates the initial goals are not feasible and 

shows the need for adjusting the goals and questions. After conducting a feasibility study, the set 

of metrics that should be collected and estimated in the prediction model is collected. These 

metrics act as independent variables and dependent variables in the prediction model to be 

constructed in the next phase. 

4.3.2 Phase B – Model Construction 

Constructing the prediction model is the core phase in defect prediction, here, based on the 

variables and the defect prediction method specified in the previous phase, data collection, model 

training, and model evaluation are performed.  

B.1. Data collection for model training. As part of a close investigation of the available data 

sources, the period of observation and relevant project repositories and databases are specified. 

Based on the previously selected variables the data is collected from the observation objects. 

Invalid and missing data is thereby filter or refined. For making a sound prediction, potential 

threats to validity are recorded.  

Collected Data Quality Assurances. One of research challenges in software defect prediction as 

shown in our research roadmap is the validity and sufficient quality of data prior to prediction 

model construction. There are some typical cases which reduce the quality of data such as 

missing and invalid value of data, invalid data extraction (e.g. wrong data query, wrong data 

source, etc), error during data integration that come from different sources, etc. In our study prior 

to model construction, all input parameters for the model are derived from integrated data that 

come from difference sources (see Figure 21). In this study we propose two quality assurance 

(QA) gates that should be conducted hence to assure the sufficient quality of data prior to 

prediction modeling.  

In Figure 21, the raw data come from project repositories such as Source Code Management (i.e., 

SVN and CVS), Issue Tracker (i.e., Bugzilla and Jira), Mailing List (Developer Mailing List and 
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User Mailing List) and other repositories (e.g., Project Website, Project Wiki, Forum, etc).     

 

Figure 21 Data Collection and Refinement Procedure 

 

These project repositories are sources for raw data that should be further extracted  (see Step 1) 

by certain queries command or data mining tools (see Chapter 3 and Chapter 4 for overview of 

data mining tools we utilize in this thesis) to obtain basic metrics such as product metrics, basic 

process metrics and defect data.  

The first QA (see circle QA1) are a) to check the validity of query performed, and b) the origin 

correctness of data sources. For example to retrieve the process metrics of a historical release 

from typical Apache project, one should perform the data extraction from the TRUNK directory 

of the SCM with specific preset date that represents the life span of the release (release date to 

release date of  the next release version).  While the product metrics should be collected from the 

historical releases directory of the SCM (sometimes called as BRANCHES directory), in this 

directory the community will keep the originality of code source, thus we can assure that the 

collected product metrics are come from source code that has not been through additional 
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changes since its release date. The results of QA1 are validated metrics or needs for data 

refinements (recollection of particular data) see feedback loop F1.  

To construct the prediction model (model training), we need certain number of data points 

depends on the prediction techniques we use, for example for most of regression procedure we 

will need n+1 data points where n is number of parameters within the model. A data point 

represents one level of observation (e.g., in files level, module level, or release level) in study 

context. Hence to derive a data point we need to integrate data (see Step 2) built from metrics 

that previously we collected in step 1.   

The second QA (see circle QA2), are a) to check if there is missing or invalid value in data point,  

b) to check whether all data points represent the uniform level of observation required in our 

prediction modeling  c)  to check if number of data points are sufficient to construct required 

prediction model d) as additional QA, one can also perform parameters correlation analysis or 

selection procedure to indentify which parameters can only be noise and reduce the accuracy of 

to be constructed prediction model (see Chapter 4 for overview of these procedures).  Note, that 

there are some common treatments in statistic [33, 85] for missing data that can be used in 

software quality prediction such as:  

 Obliterating missing or incomplete cases, if a case has missing values it may be removed 

from observation. Deleting data with missing value is typically the default option with 

statistical software. 

 Estimate missing values and use these values during consequent data analysis. Estimates 

may be obtained from prior knowledge, mean values, regression techniques and spatially 

autoregressive models. 

 Treating missing values as data which may indicate some form of behavior. 

 Compare the quality prediction results with and without missing data, if they are 

noticeably different then try to discern the reason for the difference. 

Feedback loop F2 contains information of the need for data refinement such as treatment for 

missing value. Later the validated input parameters are fit in to the prediction model (model 

training). A project manager can decide whether the performance of the prediction model is 

sufficient in term of accuracy and reliability or he may trigger the need for model calibration to 

improve the model performance.   

For the following empirical evaluation of concepts in this thesis, we use this schema of data 

collection to ensure that the constructed models are valid with adequate quality for prediction.  
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B.2. Prediction model training. Parameter selection is used to identify the parameters with a 

significant impact on the dependent variables. These parameters are used in training the model, 

usually applying standard statistical or machine learning tools. Depends on the type of quality 

indicator we need to select best available technique for prediction model training.  

As described above, in this study we propose two quality indicators:  a) defect growth between 

releases which is predicted using multi linear regression methods such as Stepwise and Forward 

regression procedures and b) class risk of a release which is predicted using classification 

techniques such as Logistic Regression, Naive Bayess,  J48 and Random Forest (please refer to 

Appendix for detailed descriptions of these selected techniques).   

 

B.3. Prediction model validation. The trained model needs to be validated for its performance, 

i.e., accuracy, recall and precision. Unsatisfying results should trigger a feedback loop back to 

the step data collection, as it will not make sense to proceed with a low-performance model that, 

e.g., has a high number of false positives or errors. 

4.3.3 Phase C – Model Usages 

A major concern from a practitioner’s point of view is that many studies reported a trained defect 

prediction model which show a good performance by means of cross validation with historical 

data [29]. Only limited studies reported the robustness of the model with different observations. 

This, however, is a necessity in practical usages for predicting the quality for a certain time 

period in the future.  

C.1. Project defect prediction. In this step the model trained in the previous phase is actually 

used, i.e. the model is parameterized with observations form new releases to predict defects in 

these releases.  

C.2. Analysis for prediction model robustness. Based on the results of step C.1, the robustness 

of the model is analyzed. Thereby, the reliability of the current prediction results are estimated to 

determine how to apply the prediction results in the project, e.g., to safely rely on them or to be 

careful. If the analysis indicates low reliability, a feedback loop back to re-creating or calibrating 

the model should be triggered as well as suggestions for refinement of the prediction hypotheses 

should be provided. 
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4.4 Using Combined Product and Process Metrics to Predict Defect Growth 

between Releases in OSS Projects 

The quality evaluation of open source software (OSS) products, e.g., defect estimation and 

prediction approaches of individual releases, gains importance with increasing OSS adoption in 

industry applications. Most empirical studies on the accuracy of defect prediction and software 

maintenance focus on product metrics as predictors that are available only when the product is 

finished.  

Only few prediction models consider information on the development process (Process Metrics) 

that seems relevant to quality improvement of the software product. In this paper, we investigate 

defect prediction with data from a family of widely used OSS projects based both on product and 

Process Metrics as well as on combinations of these metrics.  

In this study we proposed our two-step predictor selection procedure. First, we use correlation 

analysis as suggested in [89] to identify predictors with strong correlation to potential defect 

growth between releases.   

In this study, we call the potential defect growth between releases “delta defects”.  Estimates of 

delta defects are important indicators to evaluate the quality improvement of the current 

development process (e.g., potential contribution of defects of the next release) compared to 

prior releases.  

In the second step, we use stepwise regression and backward elimination for selecting a subset of 

independent variables (predictors) from the strong correlated list to form a linear prediction 

model [56].  

For evaluation, we cross validate the prediction model  by comparing the average relative error 

(ARE) [56] of each prediction model to select which variant provides better estimates of delta 

defects. 

4.4.1 Empirical Study Design  

In this section, we describe our case study objects, define independent and dependent variables, 

and formulate research hypotheses for evaluation.   

1. Goals of Empirical Study  

For a release manager and project leading team in an OSS project,  defect prediction between 

releases is important as decision support for release candidates such as: a) is the a release 
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candidate good enough for deployment or whether there is another QA cycle necessary before 

delivery;  b) input for planning the next release cycle based on the prediction results.  

The goal of this study is to investigate different metrics contributions to the accuracy of defect 

prediction in OSS projects and provide robust prediction model to support release process from 

project and quality manager point of view.   

2. Study Objects 

For an empirical evaluation we collected data from 11 releases of 2 Apache MyFaces project 

family (Tobago and Core), and analyzed the potential contribution of combination of product 

and Process Metrics for defect prediction model in OSS project context.  

The objects of our case study are releases in the family of the OSS Apache MyFaces project26. 

We selected MyFaces Core and MyFaces Tobago for the study because Core is the main project 

of MyFaces and a pure OSS project (all voluntarily developers) while Tobago is a hybrid project 

where some developers are paid and well supported by commercial organizations.   

Later we applied defect prediction models to six releases of Core (C.1.1, C.1.2, C.1.3, C.1.4, 

C.1.5, and C.1.6) and six releases of Tobago (T.1.1, T.1.2, T.1.3, T.1.4, T.1.5, T.1.6). Our 

selection criteria are: all releases should be announced after both projects have left the incubation 

process from the Apache Software Foundation27. Later we can regard our selected study objects 

as mature releases and have been promoted for larger user and developer community; therefore, 

we can observe more activities within the project community compare to the activities during the 

incubation process.  

3. Variables Specifications 

The measurement model defined for the empirical study consists of independent and dependent 

variables. Following standard practice in empirical studies  we define the independent variables 

as: a) selection of input parameters (product, project or combination of both) and b) context 

parameters consisting of deployment metrics, configuration metrics, project origin, project 

sponsorship (pure or hybrid) and period of case study. The dependent variable in our case study 

is growth of defect between releases called as delta defect (DG).  DG signifies the number of 

defects reported after release (d) in comparison to accumulative defect reported prior to release 

(do) and d (see Eq. 9).  

 

                                                 
26 Apache MyFaces Project website can be found at http://myfaces.apache.org/. Last accessed at 10th January 2008. 

27 http://incubator.apache.org/ Last accessed at 10th January 2008. 
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Eq. 9 

Using DG as dependent variable we can directly assess current quality of release in term of 

defect reported in comparison to prior release, for example if DG > 50% means current release 

contributes more defects than in prior to release and signify the need for higher resource 

allocation for defect removal. 

To select which predictors have strong correlation with independent variables, we employ the 

Pearson bivariate correlation model [91, 131], and we use multiple linear regressions to exclude 

insignificant predictors [130] and to develop prediction models with different combination of 

predictors (product metrics only, Process Metrics only, and combination of both types of 

metrics). 

To evaluate the accuracy of the linear regression prediction models we fit the model to historical 

data of releases, we use the average relative error (ARE) to evaluate forecast accuracy.  We 

apply the ARE definition as suggested by [56] to DG instead of absolute number of defects 

reported (d); and DG’ as estimator of DG (see Eq. 10) 

1
 

Eq. 10 

 

4. Research Questions and Research Hypotheses Formulation 

In the case study we will evaluate following hypotheses in order to address the research issues:  

RI.5.3.1 Contribution of Process Metrics: Goal of this research issue is to investigate whether 

an increase of QA effort is correlated with a decrease of defects in the next release. Therefore we 

propose the null hypothesis as:     

H0.5.3.1: There is no Process Metrics (pr) that has statistically significant impact to dependent 

variable DG compare to product metrics (pd).  

If r is a function to check whether there is a strong correlation between variables  pr  and 

dependent variable DG, then the respective null hypothesis can be formulated as  

 

H0.5.3.1:      | ,  

 

RI.5.3.2 Accuracy of Defect Prediction using Combined Project and Product Metrics: A 

combination of process and product metrics should be able to predict the defect growth in the 

next release with lower ARE value compared to prediction based on the traditional product 

metrics alone. Then we proposed following null hypothesis as: 
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H0.5.3.2: A prediction model that used combination of process and product metrics has higher 

ARE value compare to prediction model that used only product metrics. If the estimate of defect 

prediction model (℮) is a function of product (pd) and/or process metrics (pr), then the 

respective null hypothesis can be formulated as: 

 

H0.5.3.2:  ARE(℮(pr,pd)) > ARE(℮(pd) ) 

4.4.2 Data Collection 

This section describes the data collection proceeding and threat to validity of collected data. 

1. Data Collection and Refinement  

In this work, we examined both projects during 6 months of recent development (1/10/2007 to 

01/03/2008). The observed projects employ SVN as their SCM tool, and Jira for issue tracker. 

Hence, to measure the code development activities before release, we retrieved 24 months 

historical code collections using StatSVN v.0.4.1, SVN log and diff commands from the trunk 

directory of each project.  

For each release observation, we created a snapshot with a specific time range (i.e., the first time 

a release being announced until the announcement of succeeding release). For example a release 

R1 was first announced in 2007-02-12 which later followed by R2 in 2007-04-19, then the 

snapshot for observing the development activity prior to R2 is (in SVN log creation command):  

Table 16.  SVN Log Command. 

svn log -v --xml -r {2007-04-19}:{2007-02-12}>log.xml 

 

After collecting the snapshot log, we applied the StatSVN tool28 to collect code development 

metrics from each project SVN repository based on the given snapshot log. 

 

Table 17.  Queries for Defect and Issue Data Collection. 

Addressed defects and issues prior to a release:  

SELECT <issue|defect> FIX FOR <release> 

Number of defects after a release:  

SELECT defect AFFECT VERSION <release> 

Resolved and peer-reviewed data: 

SELECT defect WITH STATUS <resolved|closed> 

                                                 
28 StatSVN tool can be found at: http://www.statsvn.org/  
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For defect and issue removal data evaluation, we used Jira v. 3.12.3 query commands29 to collect 

(see Table 17) and evaluate the defect and issue data. We exclude the INVALID and 

DUPLICATE defects; therefore we only include valid defect data for model construction.  

Using specific Jira query commands and SVN snapshot logs, we assure the validity of collected 

data and assure that for each release observation all collected metrics are derived from developer 

activities prior to observed release date.  

We applied the Eclipse Metrics v. 1.3.6 tool plug-in30 to measure product metrics of the study 

objects. We used a check style plug-in31 to analyze style violations in the source code32. We 

analyzed the collected data using SPSS v.14 for performing Pearson correlation analysis and 

linear regressions procedures (Stepwise and Backward). Table 18 describes collected product 

metrics as suggested by [30, 40, 71] with two additional code quality metrics.  

Table 19 outlines 23 process and resource metrics as suggested by [30, 71, 124, 127] and newly 

proposed metrics (italic font). For deployment and usage metrics we used following metrics: 

type of release (major release, minor release and service pack), months since the 1st release, 

months since the previous release, month to the next release, months from release date to the end 

of case study.  

                                                 
29 Jira Query Commands for ASF can be found at https://issues.apache.org/jira/  

30 Metrics plug-in for Eclipse: http://metrics.sourceforge.net/. Last accessed at 15th December 2007. 

31 Check style plug-in for Eclipse: at http://eclipse-cs.sourceforge.net/.  Last accessed at 10th December 2007. 
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Table 18.  Collected OSS Product Metrics [71, 126]. 

Source of Variation Metrics collected Abbr. 

Volume or size Total Lines of Code  

Method Lines of Code  

Number of packages 

Number of classes  

Number of children  

Number of attributes 

Number of  methods  

Number of interfaces 

Average of the class specialization index 

Number of overridden methods 

Number of static methods 

Number of static attributes 

Average number of parameters 

LOC 

MLC 

NOP 

NCL 

NOC 

ATT 

NMH 

NOI 

ASI 

NOM 

NSM 

NSA 

ANP 

Control complexity 

 

Average McCabe Cyclomatic Complexity  

Weighted Methods per Class  

NPath Complexity  

MCC 

WMC 

NPC 

Modularity  Average Lack of Cohesion of Methods  

Average Afferent Coupling (for each class: number of classes that 

uses the class) 

Average Efferent Coupling (for each class: number of classes used 

by the class)  

Average Instability (AEC/(AEC+AAC)) 

Abstractness  

Average Normalized Distance from Main Sequence  

Average Depth Inheritance Tree 

Average Nested Block Depth  

Average Specialization Index 

ACM 

AAC 

 

AEC 

 

AIS 

ABS 

AND 

DIT 

NBP 

ASI 

Code quality Number of check style violation  

Ratio of check style violations per number of check style methods   

CSV 

RCV 
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Table 19.  Collected OSS Process Metrics. 

Source of Variation Metrics collected  Abbr. 

Defect and issue removal 

prior to release [122, 124, 

126] 

Number of targeted defects (reported defect that 

should be solved prior to the next release) 

Number of resolved defects 

Number of peer-reviewed defects 

Number  of open defects  

Number of targeted issues  

Number of resolved issues 

Number of peer-reviewed issues 

Number  of open issues 

Defect resolution level= RD/TD 

Defect peer review level = CD/TD 

Issue resolution level = RI/TI  

Issue peer review level = CI/TI 

Number of invalid defect reports;  

Number of invalid issue reports;  

Number of defect reporter,  

Number of issue reporter,  

Avg Number of defects reported by a  reporter 

TD 

 

RD 

CD 

OD 

TI 

RI 

CI 

OI 

RDTD 

CDTD 

RITI 

CITI 

NIDR 

NISR 

NDR 

NIR 

NDRR 

Code development prior to 

release [87, 126, 127] 

Number of Commits  

Total Changes  

Total Lines of Code Deleted 

Total Lines of Code Added  

Churned LOC (Sum of added and changed LOC) 

Total Files Changed 

Average Changed File Size 

Changes by peripheral developers/total changes  

Average Revision per Changed File 

Total Commits per Core developer 

Churned LOC per Core developer 

Total changes made per core developer 

CM 

TC 

TFD 

TFA 

LOM 

TFC 

   AVS 

CBD 

ARF 

CMACD 

LOMAD 

TCACD 

Context of a release [71, 126] Number of Active core developer prior to release 

Months from previous release 

ACD 

MPR 
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Months to the next release 

Type of project (hybrid or pure) 

Type of release (major or minor) 

MNR 

TPR 

TRS 

 

2. Threat to Validity 

As in any empirical study there are threats to the validity of data collection and analysis that need 

to be acknowledged and addressed appropriately. 

Internal Validity. To reopen a resolved defect is common practice in OSS projects [124] thus 

there is high possibility that some of new defects reported are old defect from prior releases 

which most of them could not be observed. Our observation using reliability growth models (see 

Figure 22), reveals that a large proportion of accumulated defects originated from the incubator 

process hence prior to the early mature releases the developers were heavily preoccupied to 

resolve these defects.  As the results in the first mature releases of both projects reveal very large 

number of defects reported which significantly increase the data skewness especially in MyFaces 

Core. 

To address such issues in this paper after collecting valid defect data (by excluding invalid and 

duplicate defects) using Jira query we classified defect as a) “defect prior to release”: a defect 

from prior release that has been targeted to be resolved for the next release, and b) “defect 

reported after release”: a release defect that has been reported into the issue tracker after release.  

Later we normalized the number of defects data reported after release with accumulative number 

of defects prior to release. Later we called this normalized data as defect growth between 

releases or delta defects.  

External Validity. In this work, we focus in one OSS community only; therefore, we consider 

the results would be valid for the projects in MyFaces and similar community in Apache family. 

However, we still need to validate the robustness of proposed estimation model with different 

OSS project communities.  

4.4.3 Data Analysis Results 

In this section, we outline the reliability growth model for MyFaces Core and Tobago derived 

from the whole life span of both projects. Later we perform the predictor selection procedures 

and estimate the defect growth between releases using variants of metrics (product metrics, 

Process Metrics, and combination). 

Our two-step predictor selection process starts with predictor correlation analysis to find out a set 
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of the strongest correlated predictor to DG and then we use stepwise and backward linear 

regression to exclude some insignificant predictors.    

Predictor Correlation Analysis 

Table 20 shows the Pearson rank correlation among predictors with the dependent variable DG. 

In a first step we analyze predictors with Core data, and then we compare the results to Tobago 

data. 

Table 20 Top 10 Predictors Correlation Analysis33 

Predictors Abbreviation Project Correlation
Sig. 

 

Resolved Defects/Targeted Defects RDTD 
Core 0.927* 0.024

Tobago 0.967* 0.020

Closed Defects/Targeted Defects CDTD 
Core -0.879* 0.005

Tobago -0.969* 0.001

Closed Issues prior to release/Targeted issue CITI 
Core 0.901* 0.037

Tobago 0.695 0.125

Changes by peripheral developers/total 

changes 
CBD 

Core -0.768 0.042

Tobago -0.465 0.132

NPath Complexity NPC 
Core -0.734 0.158

Tobago -0.272 0,602

Resolved defects prior to release RD 
Core 0.681 0.205

Tobago 0.955* 0.030

Avg. McCabe Cyclomatic Complexity MCC 
Core 0.613 0.272

Tobago 0.212 0.686

Abstractness  ABS 
Core 0.582 0.303

Tobago 0.243 0.064

Depth Inheritance Tree  DIT 
Core 0.580 0.305

Tobago 0.616 0.193

Method LOC MLC 
Core 0.460 0.012

Tobago 0.345 0.155

 

                                                 
33 *) correlation is significant with p-value < 0.05 level (2-tailed) 
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From Table 20, Process Metrics such as RDTD, CDTD and CITI considered have significant 

correlation to DG. CDTD has negative correlation with DG that means every peer-reviewed 

defect resolution may reduce the possibility of defect reported in the next release. While RDTD 

and CITI has positive correlation to DG which means that resolved defects and number of issue 

patched prior to a release may increase number of defects.  

 

Reliability Growth Models 

We collected defect occurrences data and use quadratic curve estimation to construct reliability 

growth models (RGMs) of Core and Tobago as can be seen in Figure 22. 

The RGMs are useful to outline defect growth through all project life cycle, later using data from 

Table 20; we can perform analysis based on correlation of strong predictors with defect growth 

between releases.  We discuss the results with an OSS expert to identify potential scenarios of 

the outlined RGMs  

Using correlation Table 20, there are at least two scenarios that potentially accelerate the defect 

growth in Core as estimated in Figure 22 a as a stepwise linear defect growth which are a) new 

defects found in new features and patches b) a curious developer takes resolved defect prior to 

release and reports as new defect in current release.  

 

 

RGM for MyFaces Core RGM for MyFaces Tobago 

Figure 22 Reliability Growth Models (RGM) for Myfaces Tobago and Core 

 

Tobago has a gradual hyperbolic curve, which means potential deceleration of defect growth 

after 5 releases.   The RGM shape of Tobago could be derived by higher number of defects 

closed prior to release. Using correlation data from Table 20, we can assume that that in Tobago, 
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the developer community spends more effort for peer reviewing defect resolutions compare to 

Core (see Figure 23), in which after five releases have been paid off by slower defects growth. 

Figure 23 depicts the monthly performances of peer review of defect resolution (represented as 

defect closed per defect reported prior to release) for My Faces Core and Tobago.  In average 

Tobago has highest level of peer review activities (Mean: 0.82) compare to Core (Mean: 0.67).  

The variability of peer review practices in Core releases is higher (data are not normally 

distributed especially C114 with one outlier) than Tobago. The results depict in a pure OSS 

community such as Core although peer review of defect resolution are common practices and 

significantly growth over the time, however the intensity were fluctuated depend on the 

developers’ motivation.  

 

 

Figure 23 Ratio of monthly defect closed prior to release in MyFaces Core and Tobago 

 

Parameters Selection and Prediction Models Construction 

Stepwise regression and backward elimination procedure support selecting a subset of 

independent variables (predictors) from the top-ten list to form a linear model. We grouped the 

predictors into three groups: product, project and combination metrics, and employ the 

procedures for each group. Each estimation procedure was used with the three groups to fit a 

linear modeling expressing program defect growth in a release (DG).  

In this case, each procedure led to selection of these following metrics: product metrics (ABS, 

DIT), Process Metrics (CD, RDTD, CDTD, CBD) and combination metrics (MCC, DIT, CBD, 
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ABS, RDTD, CDTD). We use these variants of metric sets from historical release and fit the data 

into the regression model.  

The predictive quality for each estimation procedure was determined by determining the ARE 

values from all project releases to perform cross validation of the model. Table 21 shows the 

prediction results using linear regression and conclude that using Stepwise linear regression with 

combination metrics is superior to other prediction models.  

 

Table 21.  Comparison of Prediction Models 

Prediction Model Project Mean 

(ARE) 

StdDev 

linear regression with product metrics Core 0.93 1.18 

Tobago 0.12 0.08 

linear regression with process Metrics Core 0.24 0.26 

Tobago 0.06 0.05 

linear regression with combination metrics Core 0.02 0.01 

Tobago 0.04 0.01 

 

4.4.4 Discussion of Empirical Results 

Analyzing the empirical results, we derive the following implications for defect prediction in 

comparable OSS projects.  

Contributions of Process Metrics. The results show for both MyFaces Core and Tobago that 

process Metrics, which are related to issue and defect resolution prior to release, have strong 

correlation to defect growth between releases (DG). Data analysis for both projects agreed for 

RDTD and CDTD to have strong and significant correlation with dependent variables DG.   

For example, the increase of peer reviewed defect resolution prior to a release significantly 

reduces the likely number of defects in a release; while a higher number of resolved defects prior 

to a release are correlated to stronger defect growth.  In an OSS project, this can be a result of 

practices such as reopening resolved defects or adding defect prior to release as a new defect in 

current release.  

In Core CITI is strongly positively correlated to DG (p-value <0.05), this means statistically the 

increase of closed issues in form of patches or new features may significantly carry new defects 

into the next release. In summary, the correlation rank data signifies that   | ,
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, thus we reject hypothesis H0.5.3.1.  

Accuracy of Defect Prediction using Combined Process and Product Metrics. The results in 

table 3 exhibit that the prediction model using combination of process and product metrics 

(consists of MCC, DIT, CBD, ABS, RDTD and CDTD) offers lower ARE value than using either 

type of metrics.  Since ARE(℮(pj,pd)) < (ARE(℮(pd)) thus we can reject H0.5.3.2.  

In case of Apache MyFaces Core and Tobago we found strong linear correlation between 

selected independent variables and the dependent variable DG, consequently the two steps 

predictors’ selection procedure seems straight forward to provide good prediction with only a 

small number of selected predictors.   

4.5 Empirical Approach to Characterizing and Predicting Risk Classes of 

OSS Project Releases 

IT managers need support in selecting OSS products based on their overall quality as well as on 

the quality of individual releases. From an OSS project management point of view, a typical 

risky situation in a software project can occur if the defectiveness level (DL) of a (planned) 

release is higher than the average DL of a set of reference releases. We define the DL as the 

weighted sum of the number of defects reported in three severity classes (critical defects, major 

defects and minor defects).   

In this study we propose a model to characterize the defectiveness risk (DR) class of a software 

release based on the (predicted) DL of the release compared to the average DL of a reference set 

of releases, which were used for prediction model training.  

We define two DR classes: 1. release candidates with higher DR (i.e., a release with a DL above 

the average DL of a set of reference releases) which may warrant a closer look for product 

improvement before actual release; and 2. Release candidates with lower DR.  

We identify and evaluate as predictors several types of product metrics and development process 

metrics that can be efficiently collected from project repositories (e.g., issue tracker and SCM) 

and investigate the potential contribution of these metrics to increase the accuracy of DR class 

prediction models.   

We conducted the empirical evaluation of the performance of prediction models (a) with several 

sets of metrics, (b) with parameter selection prior to model training, and (c) with data from 4 

large projects listed in 2 communities of the Apache Software Foundation. For external 

validation we discussed the results with an OSS expert.  
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4.6 Research Approach 

Following the Software Quality Prediction Framework in section 4.3, in this study we apply a 

three-step approach as framework for defect prediction of releases in the context of OSS 

projects. 

Step 1: Design of the Empirical Study. Select the appropriate study objects and specify 

prediction model variables (see Section 2).  Based on specified variables we collect and validate 

data from project data sources to ensure sufficient quality to construct a prediction model. Then 

we create two groups of data for model training and model evaluation. Common practice in 

software estimation is to use only one set of data to both train the model and provide internal 

validation, e.g., with cross validation [64, 87] or random percentage split [89, 91].   

However, in practice the goal is to predict the quality of a future software release. Thus, the 

trained model should be externally validated with a different data set. In this study we divided 

the data into two groups before and after a point in time: The first group for model training 

consists of 70% data from older releases, while the second group for model evaluation consists 

of 30% of newer releases. Hence we can assure that the model is not validated with historic 

project data that has already been used for training. We used a 70:30 ratio following common 

practice in validation techniques in software estimation [91], in practice one can shift the ratios 

depending on the volume of data collected and the desired level of training for the prediction 

model. 

Step 2: Defect Prediction Models Training. We fit the collected data to prediction models 

using statistical or machine learning techniques and measure the performance of each prediction 

model. The prediction models were trained using 4 classification techniques:  Logistic 

Regression (LG) [87], Naive Bayes (NB)  [64], and two tree classification techniques: J48 [64, 

87] and Random Forest (RF) [45].  During the training session we internally validated the 

prediction models with 10-fold cross validation [64, 87] by partitioning the data set into 10 equal 

segments. This method uses each portion once as the test set to evaluate the model built using the 

remaining nine segments.  

One consideration from statistics is often neglected in software estimation: avoid using all 

collected metrics as input parameters for different prediction techniques, as the model may 

contain a number of weak parameters (parameters with no significant correlation to the 

dependent variable) which may actually reduce prediction performance [33]. In this paper we 

compare the performance of “unsupervised” prediction models that are trained without parameter 

selection with “supervised” prediction models that use a selected set of metrics. We use Stepwise 
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and Forward Multi-Linear Regression as parameter selection procedures following Yasunari et 

al. [130].   

Step 3: Trained Prediction Models Evaluation. The last step in our framework is to evaluate 

the robustness of a trained model with data that is different from the data used for model training 

(“training set”). Accordingly, we evaluate the trained model with the second data set in our study 

(“evaluation set”). In addition to model validation, we can discuss the results with OSS experts 

for external validation of the prediction model results.   

4.6.1 Design of Empirical Study 

1. Goal 

The purpose of our study is to investigate the accuracy of advanced software defect prediction 

models in the context of OSS projects using product and process metrics.  

2. Study Objects 

The study objects consist of four large Apache projects from two OSS project communities 

(MyFaces and Struts). Each project has been graduated from the Apache Software Foundation 

(ASF) Incubator process and is considered as mature project.  Based on classification of the 

developer size in mature OSS projects by [65], all projects in MyFaces and Struts communities 

are categorized as large projects as they currently employ ±10 active committers (core 

developers) per release. These projects have been  producing more than five releases within the 

last two years, which indicates healthy projects [1, 126]. According to these measures we assume 

that all study objects have sufficiently similar characteristics for cross-project validation.  

Apache MyFaces34, is a community that focuses on web-framework development; the project 

employs more homogeneous participants compared to Struts. Apache MyFaces consists of 4 

subprojects; 3 of them (Tobago, Trinidad, and Tomahawk) are extended components that offer 

more functionality and flexibility than using standard Core components. Project Trinidad is a 

donation from Oracle to ASF, while Tobago is a hybrid project as some developers are paid and 

closely supported by commercial organizations.  In previous section, we used MyFaces Core and 

MyFaces Tobago data for predicting defect growth between releases.  In this study we extend the 

object studies into all projects within MyFaces community. 

Apache Struts35 is a Java web applications framework; in April 2008 the project offered two 

                                                 
34 Apache MyFaces projects website: http://myfaces.apache.org/ 

35 Apache Struts project website: http://struts.apache.org/ 
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major versions: Struts 1 and Struts 2. Struts 1 has been recognized as the most popular web 

application framework for Java with proven solutions to common problems. Struts 2 was 

originally known as WebWork 2. After working independently for several years, the WebWork 

and Struts communities joined forces to create Struts 2. For this study we selected Struts 2 

releases as a study object.  

Our observation focuses on process and product metrics and defect data on release level. All 

metrics were collected from a total of 34 releases. From these 34 releases, we use 24 (70%) older 

releases for prediction model training and the remaining 10 (30%) releases for evaluation of the 

trained model.  

3. Variable Specifications 

The measurement model defined for the empirical study consists of independent and dependent 

variables (see Tables 3 and 4). We define the independent variables as: (a) selection of input 

parameters from a group of collected metrics (product and process metrics) and (b) context 

parameters consisting of project sponsorship type (pure or hybrid), release type, number of active 

core developers and period of release.  

The variable specification in this study followed similar practices in defect and risk prediction in 

project level [130] which define the dependent variables (estimators) as likelihood of falling into 

a class representing certain level of project quality (i.e., defectiveness level).   

Dependent Variables 

As in our context of study, from a project management point of view, we define the 

defectiveness level (DL) of a release with relation to the number and severity of defects of the 

release. We characterize the risk of a release in one of two defect risk (DR) classes:  the class of 

“lower-risk releases” (or LRR) consists of releases with a DL that is not higher than the average 

DL in a set of reference releases; the class “higher-risk releases” (or HRR) consists of releases 

with higher DL than the reference release set average.  

Independent Variables 

We focus on investigating the impact of different classes of metrics on DR class prediction. A 

prediction model can be generalized as P(Y|x1,…,xn) and predicts the dependent variable Y as  

the likelihood of a release for being in the “higher risk” HRR, using a set of  independent 

variables (x1,…,xn), i.e., product metrics, process metrics or combined metrics. To construct the 

dependent variable, first, we need to calculate the DL based on the number of defects in a set of 

3 defect severity classes. From defect categories in the Jira documentation36 we classify the 

                                                 
36 Jira documentation can be found at http://www.atlassian.com/software/jira/docs/v3.12.3/  
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reported defects based on their severity into 3 classes: Critical, Major, and Minor. Defect 

severity is typically set by the developers in an OSS project, who review and validate the 

reported defects in the issue tracker.  

As the basic metrics to measure DL of a software release (see eqn. 1), we calculate the number 

of defects in each severity class: D1 is the number of reported severe defects that related to 

security (critical) and fault (blocker) which may endanger system stability; D2 is the number of 

major or normal defects; and D3 is the number of defects related to minor and trivial (cosmetics) 

work. Later we assign weight factors (α1, α2, α3) for each severity class to calculate the overall 

defectiveness level (DL) of a release: 

 

                         Eq. 11 

 

To determine the DR class we cluster the release data (ri) into 2 classes based on the average DL 

in a set of reference releases (see eqn. 2), similar to the experiment procedure in [130] for 

estimating risky projects.  

 

,        , … , 1   Eq. 12 

  

 

Metrics to Evaluate Prediction Models Performance 

For measuring the performance of a defect prediction model, we use the standard measures 

Precision, Recall, and F-Measure commonly used in the machine learning and data mining 

communities [64].    

a. Precision (PC) is defined as the ratio of the number of releases predicted correctly as 

HRR release or true positives (TP) and the total number of releases predicted as HRR in 

the study (TP+FP), where FP is the number of false positives. 

 
Eq. 13

 

 

 
b. Recall (RC) is defined as the ratio of the number of releases correctly predicted as HRR 

(TP) to the actual number of releases classified as HRR in the data set (TP+TN), where 

TN is the number of true negatives. 
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Eq. 14

 

 

 
To perform well, a model must achieve both high precision and high recall. The higher 

the precision is, the less effort is wasted on testing and inspecting low-risk software 

releases; and the higher recall is, the fewer defects go undetected in high-risk releases 

[64].  

 
c. F-Measure (FM) is defined as the weighted harmonic mean of precision and recall, 

which considers precision and recall equally important.   

 

2  
Eq. 15 

 
Often, there a trade-off can be observed between precision and recall. For example, if a 

model predicts very few, e.g., only one release as HRR and the prediction turns out to be 

correct, the model’s precision will be 1 but recall will be lower; in contrast if a prediction 

model predicts all releases in HRR; its recall will be 1 however the precision will be 

lower. Hence, in this study, we also apply the F-measure to evaluate the performance of 

prediction models, and rate model prediction with F-Measure > 0.6 as sufficiently 

accurate as suggested by Koru et al. [64].  

 

4. Research Issues and Research Hypotheses Formulation 

From contributions of and limitations in related work we derive the following research issues 

(RIs).   

RI5.4.1: Prediction model accuracy to identify higher risk releases increases when using both 

product and process metrics. In an OSS project context with high release frequency, we expect 

defect prediction performance to be more accurate based on a combination of process and 

product metrics than based on only either type of metrics.  

The corresponding null hypothesis H05.4.1 is: There is no significant difference between the F-

Measure (see section 3.3) of higher DR class predictions from models that use a combination of 

process and product metrics and from models that use only process or product measures. 

If {y1,…,yn} is a set of either only n product metrics (PD) or only n process metrics (PR),  and 

{x1,…,xm} is a set of m combined metrics (C), and  P is likelihood of Y defectiveness risk class of 

a release,  then the respective null hypothesis can be formulated as: 
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H05.4.1: 

           
  | , … ,

  | , … ,   | , … ,
 

 

RI5.4.2: Supervised defect prediction of higher risk releases is more accurate than unsupervised 

defect prediction.  Derived from best practice in statistics for estimation [33], we expect 

supervised defect prediction to improve defect prediction performance and robustness by 

calibrating the models by selecting metrics that have significant correlation in the OSS context to 

the prediction target, in our case the defectiveness risk (DR) class of a release. Supervised defect 

prediction also can reduce the effort for data collection and analysis as a project manager can 

focus only on a smaller set of metrics.  

The corresponding null hypothesis H05.4.2 is: There is no significant difference between the F-

Measures of supervised and unsupervised defect prediction models for higher DR class releases.  

check whether a selected set of n combined metrics {x1,…,xn} can provide better accuracy (i.e. 

predicting  defectiveness risk class 1) compared to fit all available m combined metrics {x1,…,xm}  

into the model. Denotes that  , … ,   , … , ,  thus  we can formulate the null 

hypothesis H05.4.2 as: 

H05.4.2:     
| , … ,

| , … ,
 

RI5.4.3: Cross-project defect prediction using results from RI 1 and RI 2. In OSS development a 

project manager often steers several projects at a time and wants to compare the quality of 

products and processes under his supervision with similar projects [122]. Consequently, we 

investigate whether the findings of RI 1 and RI 2 hold a) only within the training release data set; 

b) with new release data from the same project; or even c) for data from similar projects that 

share characteristics such as size. We define sufficient prediction model accuracy with a 

threshold of 0.6 for the F-Measure for predicting higher risk releases and observe data sets for 

training, evaluation within a project, and evaluation across projects.  

Hence the corresponding null hypothesis H0.5.4.3 is: there is at least one project where the best 

selected prediction model has insufficient performance, i.e., an F-Measure < 0.6 for higher risk 

releases. Lets denote that S as the set of observed projects {p1,…,pm}, and for each project i  

where 1≤i≤m  is described with following combined metrics {pix1,…pixn}   C,  hence we can 

formulate following null hypothesis:    
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H05.4.3:       | , … , 0.60  

4.6.2 Data Collection 

1. Data Collection Procedure and Data Refinement  

The observed projects employ SVN as their SCM tool, and Jira as issue tracker. Hence, to 

measure the code development activities before release, we retrieved 24 months of historical 

code using the StatSVN v.0.4.1 tool. For each release observation, we created a snapshot with a 

specific time range (i.e., the first time a release being announced until the announcement of 

succeeding release) similar to experiment in Section 4.4.2.  Similar to the first study in defect 

prediction, after collecting the snapshot log, we also apply  the StatSVN tool to collect code 

development metrics from each project SVN repository  (Trunk directory) based on the given 

snapshot log, and we use Jira query commands to retrieve defect and issue data.  

Following the procedure to improve the quality of collected data as described in Section 4.3 we 

refine the collected data by deleting invalid or duplicate issues and defects.  

We apply the Eclipse Metrics v. 1.3.6 tool plug-in to collect the product metrics of the study 

objects (see Table 18). We use check style plug-in to collect style violations in the source code 

which reflects the current code quality. We perform validation of integrated data to identify there 

is incorrectness of data collection level that come from such heterogeneous sources.  

Later, we analyze the collected data using Weka Explorer 3.4 37 for prediction model 

construction and evaluation.    

In total we collected 27 product metrics and 28 process metrics (including the project context 

metrics) that can be obtained from each project issue tracker and source code management tool 

(i.e., SVN).  Collected metrics in this study are similar to those we used in the first case study as 

described in the Previous Section. 

 

2. Creating Training and Evaluation Sets 

Training sets consist of older releases for train the prediction models, evaluation sets consist of 

newer releases (each project donates 2 or 3 of their newest releases) that are not involved in 

model training but for performance evaluation.  

Table 22 outlines that we trained the prediction model by using four older releases of Core (C1 

to C4), six releases of Tobago (TB1 to TB6), five releases of Trinidad (TR1 to TR5), and nine 

                                                 
37 Weka project can be found at: http://www.cs.waikato.ac.nz/~ml/weka/index.html, Last accessed at 10th August  2008 
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releases of Struts (S1 to S9).  

Later we use the trained model to predict risky releases (HRR) in the later releases  of the 

projects including 2 Core releases (C5, C6), 3 Tobago releases (TB7 to TB9), 2 Trinidad releases 

(TR6, TR7), and 3 Struts releases (S10 to S12). We use the notation such as CR1, TB1, etc for 

simplification reasons instead of the usual versioning names in OSS projects.  For each release 

data set we further construct three data sets: a) with only product metrics, b) process metrics data 

set, and c) combined metrics data set. Consequently, in total we have 6 data sets prior to 

unsupervised model training and evaluation. 

 

Table 22.  Release Data Grouping. 

Projects Releases for 

model training 

data set 

Releases for 

model evaluation  

data set 

Core C1,…,C4 C5, C6 

Struts 2.0 S1,…,S9 S10,…, S12 

Tobago  TB1,…,TB6 TB7,…,TB9 

Trinidad TR1,…,TR5 TR6,…,TR7 

 

3. Threats to Validity 

As every empirical study we identified and addressed threats to internal and external validity of 

the study results. 

Threats to internal validity. DL weight factors. We use data from our prior work [121, 124]  to 

assign the weight factors to construct the DL model, which we assume  fit to represent the 

severity level of different classes of defects. We addressed this threat by performing sensitivity 

analysis of DL and DR and investigate the further impact to prediction results.  

We investigated two scenarios by increasing the range between weight factors by 10% and 30%, 

however, the results remained stable. A reason may be that the majority of defects came from D2 

(major defects) which far exceeded the number of D1 (severe defects) and D3 (minor defects) in 

our study context (see also Figure 1).  

Threat to external validity.  In this study we focused on four large Apache projects with similar 

size and characteristics. The selection of these homogeneous OSS projects may raise concerns 

whether results on the prediction models and process are also valid for other project contexts.  



  

 

137 

While we assume our approach to hold for projects similar to our study objects (i.e. under 

Apache umbrella, short release cycle, with active and large developer community), further work 

is necessary to investigate projects with strongly differing characteristics. 

4.6.3 Data Analysis Results 

In this section we report descriptive statistics on the empirical study objects, performance of 

prediction models for unsupervised (RI 5.4.1) and supervised prediction (RI 5.4.2), and finally, 

results from cross-project evaluation (RI 5.4.3). 

 

1. Descriptive Statistics  

Project context characterization. The observed projects in this paper are similar in the size of 

releases (KLOC), the involved number of active core developers/committers per release (ACD), 

and number of packages (NOP) as can be seen in Table 23.  

 

Table 23.  Release Sizes and Complexity. 

Project KLOC Active Core 

Developers 

#Packages 

Mean StdDev Mean StdDev Mean StdDev 

Core 27.8 7.9 8.7 3.7 55.7 11.5 

Struts 2.0 24.7 2.3 6.7 3.2 28.9 5.0 

Tobago 25.5 1.1 6.2 2.9 37.1 4.0 

Trinidad 26.3 2.5 6.6 2.1 30.7 0.6 

 

In average Core produces larger-size releases compared to other projects, nevertheless the size 

differences of Core with other projects is less than 15%.  As reported by [1, 83] although the 

number of core developers  (ACD) per project release is typically ± 20% of overall developer 

community, nevertheless 80% of contributions within a release originate from this group.  

All projects in our study have more than 5 committers involved per release; accordingly they 

were assisted by a larger number of peripheral developers which can be identified in each project 

website or release log. For the number of packages (NOP or modules), Struts 2.0 in average has 

the lowest number of packages per release compared to other projects in particular to Core 

releases. Nevertheless the total KLOC per release of each project are more and less similar, thus 
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a project with lower NOP typically has bigger packages.      

 

Actual defect, DL, and DR class distributions. For training of the model we included 973 valid 

defects and 587 valid issues (enhancements or new feature requests) from 24 older releases. For 

the prediction of”higher risk” releases, we used 357 valid defects and 303 valid issues from the 

later 10 releases. In all observed projects, the majority of defects come from Major Defect class 

(D2) (> 50%) as shown in Figure 24.  

 

 

Figure 24. Defect Distribution from 34 releases in 3 severity classes. 

 

The share of critical defects (D1) is on average lower than 20% for all projects, where Struts has 

the highest proportion of critical defects (Mean:19%, StdDev: 18%) while Tobago has the lowest 

one  (Mean: 6% , StdDev: 8%). This can be one indication that in a hybrid project community 

such as Tobago, the community has higher awareness for release quality which results in lower 

numbers of critical defects compared to pure OSS projects such as Struts and Core. To identify 

the defectiveness risk (DR) class of each release in our study, first, we calculate the 

defectiveness level (DL) of each release in the first group of data. In this study we assign as 

weight factors: α1 = 15; α2 = 10; and α3, = 5 (see eqn. 1).    
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These weight values were based on our prior work [121, 124]  on “healthy” Apache projects 

(such as Apache MyFaces, Apache HTTPD and Apache Tomcat projects) taking into account the 

average service time to resolve a more severe defect (to state Fixed or Closed) compared to a less 

severe defect. We take the average DL of the training set as threshold between DR classes (see 

eqn. 2).  

As result, 8 releases out of 24 were classified as “higher risk” HRR (33.3%).  Using the same 

threshold we characterized the remaining releases in the evaluation set: here 3 out of 10 (30%) 

are classified as “higher risk” HRR.  

 

Table 24 outlines the average value of DLs per project (normalized by mean value as 100%) and 

number releases actually classified as LRR and HRR. 

 

Table 24.  Normalized Actual DLs and DR classes  for 34 releases (Mean DL=100 %). 

Projects Actual Release DR  

Classification 

Actual LRR  

Release DLs (%) 

Actual HRR  

Release DLs (%) 

LRR HRR Mean StdDev Mean StdDev  

Core 3 3 52 22 232 86 

Struts 2.0 9 3 69 27 195 42 

Tobago 6 3 70 27 245 0 

Trinidad 5 2 59 31 165 0 

 

Figure 25 illustrates the distribution of releases’ defectiveness risk score in each project 

(normalized by mean value as 100%).  
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Figure 25. Actual DLs and DR classes for 34 releases 

 

2. Unsupervised Risk Class Prediction   

We perform unsupervised model training and to compare prediction model performances in our 

study context. Table 25 outlines the results of unsupervised training and evaluation for predicting 

“higher risk” HRR releases; this table compares the contribution of several types of metrics sets: 

product metrics (PD), process metrics (PR) and combined metrics (C) for each prediction model, 

i.e., Logistic Regression (LG), Naive Bayes (NB), Tree classification J48, and Random Forest 

(RF).  

For each combination of metrics set and prediction model we calculate the evaluation measures: 

Recall (RC), Precision (PC), and F-Measure (FM). Highlighted cells (bold font) mark sufficient 

prediction accuracy (FM >= 0.6).  

During training PR metrics outperformed the traditional PD metrics for most models. For three 

models (NB, J48 and RF) C metrics improved the prediction accuracy compared to only using 

either PD or PR metrics.  
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Table 25.  Unsupervised Prediction Performance for “Higher Risk” HRR Releases.  

Prediction 

Models 

Unsupervised 

Models 

Training Data 

Set 

Unsupervised 

Models 

Evaluation Data 

Set 

PD PR C PD PR C 

LG RC 0.00 0.67  0.33  0.67  0.67  0.67  

PC 0.00 0.80  0.67  0.33  0.25  0.40  

FM 0.00 0.73  0.44  0.44  0.36  0.50  

NB RC 0.50  0.50  0.67  0.67  1.00 0.67  

PC 0.60  0.75  0.67  0.33  0.38  0.50  

FM 0.55  0.60  0.67  0.44  0.55  0.57  

J48 RC 0.33  0.67  1.00 0.33  0.33  0.33  

PC 1.00 0.67  0.83  0.50  0.50  0.50  

FM 0.50  0.67  0.91  0.40  0.40  0.40  

RF RC 0.33  0.33  0.50  0.00 0.33  0.33  

PC 0.50  0.67  1.00 0.00 0.50  0.50  

FM 0.40  0.44  0.67  0.00 0.40  0.40  

 

For LG surprisingly PR metrics have better accuracy than C metrics; (Note that in this case PD 

show the worst possible performance in this case). Overall, J48 with PR and C metrics sets 

provided the best accuracy with unsupervised training.  

On the second step we evaluate all trained models with the evaluation data set. However, all 

unsupervised models did not provide sufficient accuracy to predict DR HRR. In this case NB 

with combined metrics (C) offers the best performance (FM= 0.571).  

3. Supervised Risk Class Prediction  

Next, we investigated whether supervised modeling training and evaluation can improve 

prediction performance. We use two linear regression procedures (Stepwise and Forward) for 

parameter selection from each group of metrics (PR metrics, PD metrics, and C metrics).  

From the results of each regression procedure, we selected only a significant regression model 

(Ftest p-value<0.05) with the highest R_Square. In this case, the procedures led to the selection 

of the following metrics: product metrics (NOP, AND), process metrics (CDTD, RDTD) and 

combined metrics (CDTD, AND, RDTD, NOM, AVS, ASI).  
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Note, that all of these metrics were not strongly correlated to each other (i.e., Pearson rank 

correlation > 0.8 and p-value <0.05), hence, we can say that these selected parameters are 

statistically independent and it is valid to include these parameters into the trained models [33].   

We use these variants of metric sets from historical releases and fit the training set data to 

calibrate the prediction models.  Later we evaluate the calibrated models using the evaluation 

release data set as shown in Table 26. 

 

Table 26.  Supervised Prediction Performance Results.  

Prediction 

Models 

Supervised 

Models 

Training Data 

Set 

Supervised 

Models 

Evaluation Data 

Set 

PD PR C PD PR C 

LG   RC 0.36  0.63  0.83  0.33  0.33  0.67  

PC 0.50  0.83  0.71  1.00 0.50  0.67  

FM 0.43 0.71  0.77  0.50  0.40  0.67  

NB   RC 0.38  0.38  1.00 0.33  0.33  1.00 

PC 0.75  0.60  0.86  0.50  1.00 0.75  

FM 0.50  0.46  0.92  0.40  0.50  0.86  

J48 RC 0.82 0.75  0.83  0.33  0.33  0.67  

PC 0.25  0.86  1.00  0.50  0.50  0.67  

FM 0.17  0.80  0.91  0.40  0.40  0.67  

RF   RC 0.25  0.88  1.00  0.67  0.67  0.67  

PC 0.25  0.70  0.86  0.67  1.00 1.00 

FM 0.25  0.78  0.92  0.67  0.80  0.80  

 

Table 26 shows that with C metrics and parameter selection all prediction models and all data 

sets show sufficient prediction accuracy in our study context, which seems to be a very 

promising result. 

For predicting a HRR release using combined metrics (C) is better for all but one prediction 

models compared to only using PR or PD.  

Using combined metrics, the prediction models RF and NB provide the best performance during 

model training (FM= 0.923 and RC =1) means that all HRR releases were correctly classified. 
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J48 comes in second with lower RC but offers the highest PC =1, i.e., there are no false 

positives.   In evaluation phase, once again NB with combined metrics offers the best 

performance which reflects the ability for better data extrapolation compared to other models.  

The results also depicts that Tree classification techniques (i.e., J48 and Random Forest) are only 

better during the training phase (data interpolation), while the results are often weaker for 

software defect prediction.  

4.  Cross-Project Evaluation of Prediction Model 

To investigate whether the results in Sections 5.2 and 5.3 hold for cross-project defect prediction, 

we select the best model (supervised Naive Bayes with C metrics) to predict higher risk releases 

across projects in our study.  

For this purpose we restructure the data used in RI2 into four releases group based on projects 

(Core, Struts, Tobago and Trinidad) and use this data set to once again validate the trained 

model.  

 

Table 27.  Cross-Project Evaluation with Naive Bayes for Predicting “Higher Risk” DR HRR 

releases. 

Projects Model  

Performance for  

Predicting HRR 

releases 

RC PC FM 

Core 1.00 1.00 1.00 

Struts 2.0 1.00 1.00 1.00 

Tobago 1.00 1.00 1.00 

Trinidad 1.00 0.50 0.67 

 

Once again, we use FM > 0.6 as the threshold for sufficient prediction model accuracy, here in 

Table 27 shows that using NB with selected combined metrics can be used to sufficiently 

accurately predict the DR classes in all projects.  

The selected model can predict fully correctly risky releases in three projects: Core, Struts, and 

Tobago, i.e., without false positives or false negatives. The model shows somewhat lower 

performance for predicting risky releases in project Trinidad (which warrants more detailed 

investigation on the causes of this variance) but still with sufficient accuracy (FM > 0.6).   
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4.6.4 Discussion  

In this section we discuss the results of the empirical study regarding research issues (RIs) and 

corresponding null hypotheses with related work and on OSS expert. 

RI 5.4.1.  Prediction model accuracy for higher risk releases increases when using both product 

and process metrics. To answer the first research question, we build distributions from the FM of 

prediction models (average FM) from the training and evaluation results that used the PD (PR) 

metrics and C metrics as reported in Table 25 and Table 26; then we compare these FM 

distributions for significances differences using Mann-Whitney test (with confidence level 95%) 

to evaluate whether there is a significant difference between models performance with different 

metrics sets. The results are a) overall, combined metrics improved the models performance 

during training session compared to product metrics from (Mean FM=0.38, StdDev 0.19) to 

(Mean FM= 0.70, StdDev= 0.18), with the Mann-Whitney p-value = 0.01 showing a significant 

performance difference; b) in the evaluation phase, combined metrics once again significantly 

improved the FM distribution of the model compared to process metrics from (Mean FM=0.58, 

StdDev 0.16) to (Mean FM= 0.70, StdDev= 0.18) with p-value=0.049. Based on these results, 

we conclude that using combined (C) metrics significantly improved the prediction model, thus 

we reject the null hypothesis H01. 

The results also depict that although majority of models can be improved using C metrics there 

are several exceptions such as: a) in case unsupervised training of LG using combined metrics 

has lower performance to process metrics. One possible reason is that product metrics with LG 

in Table 25 indicates very poor performance (RC=PC=FM=0) which may impact the 

performance of the model when using combined metrics. b) In some model evaluation cases, i.e., 

the results of unsupervised evaluation of JF and RF, and supervised evaluation of RF, we found 

that process metrics offer the same accuracy as combined metrics. Further,  the results outline 

that on average the performance of prediction models that use PR metrics outperformed those 

using PD, accordingly we confirm the finding from [87, 126] and suggest that in short-release-

cycle environments such as OSS projects, product metrics are correlated to poor defect 

prediction performance. 

RI 5.4.2.  Supervised defect prediction of higher risk releases is more accurate than 

unsupervised defect prediction. As we know that from RI1 that combined metrics provides better 

accuracy for prediction models, hence, we investigate whether parameter selection (Supervised 

training) of combined metrics can further improve the performance of unsupervised models. 

Using data from Table 25 and Table 26, we build distributions of the F-Measure of all prediction 
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models that used combined metrics and compared the unsupervised and supervised results with 

each other by data set (training and evaluation).  

Supervised training with combined metrics improves the performance of prediction models from 

(Mean FM =0.67, StdDev= 0.19) to (Mean FM=0.88, StdDev=0.08) with p-value=0.046, i.e., 

significant average improvement.   The models performances using the evaluation data set are 

also significantly improved from (Mean FM=0.47, StdDev=0.08) to (Mean FM=0.75, 

StdDev=0.09) with p-value 0.038. Note that even the supervised evaluation with combined 

metrics show better performance than corresponding unsupervised results with the training set in 

our study context.  Overall, the results indicate that model calibration with parameter selection 

significantly increased the average of F-Measure (in each case by at least 20%) for predicting 

HRR releases. Thus we reject the null hypothesis H02.    

Revisiting prior work from Moser et al [87] and critique from Norman Fenton [29] regarding the 

poor performance of defect prediction models for data extrapolation, hence in this paper we 

address this issue by proposing following improvement for advanced prediction models in an 

OSS project context: a) improvement through combination of product and process metrics and b) 

model calibration by conducting parameter selection prior to training. Parameter selection 

denotes that a release manager or project leading team in OSS projects can focus their work on 

collecting and analyzing a rather small set of representative metrics. The selection of 

significantly correlated metrics and data collection will require less effort compared to collect all 

metrics from the project repositories. In this study we conducted parameters selections across 

projects, in future work we consider to compare sensitivity of selecting parameters in individual 

projects.   

The parameters selection procedures for all projects using combined metrics resulted in six 

parameters  (see bold lines in Table 18 and Table 19) that originated from defect resolution 

activities (CDTD, RDTD),  one parameter came from code development activities (AVS), two 

parameters originated  from modularity of the release (AND, ASI), and only one parameter 

represents the size of release (NOM).   

We also notice that the collected number of these selected metrics may not tell the whole story, 

e.g., a release manager may need to identify the reason why certain metrics have significant 

impact to increase the likelihood of a release for being highly defective. Thus for this study we 

conduct a discussion with an OSS expert from Apache to validate the findings in order to obtain 

feedbacks of the results. In general the expert suggests the magnitude to put focus on the 

improvement on particular development processes to achieve better quality products in OSS 

context. Later we discuss the results of impact factors analysis to obtain specific feedbacks 
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regarding the likely reasons for these metrics selection.  We use a trained Logistic Regression 

model for impact factor analysis. In this discussion session, we found that the coefficient 

correlation (odd ratio) of CDTD is 0.778, the likely reason   is that an increase of maturity level 

of peer-reviewed defects prior to release will decrease the likelihood of a release to be in the 

higher risk HRR or have less defectiveness level. RDTD has coefficient correlation of more than 

1, means that an increase of defect resolution level that is not properly peer reviewed can be 

observed with increased likelihood of a higher risk release. The Expert also mentioned that 

resolved defects which were not appropriately closed through a peer review process were likely 

to be re-opened by developers after feedback from the community (i.e., as new defect reports). 

AVS has coefficient correlation of 0.842 which portrays that file revisions are most likely done 

to increase the quality of the code or to resolve reported defects after a release which confirm the 

finding of [82].   

RI 5.4.3. Cross-project defect prediction using results from RI 5.4.1 and RI 5.4.2. To address 

RI1 and RI2 we mixed the data from all projects and divided into training and evaluation data 

set. The purpose is to identify which prediction model with a set of metrics can offer the best 

accuracy. In our case the best model is to use Naive Bayes technique with selected combined 

metrics. We applied this model to predict all releases in each project.  

The results are surprisingly fully accurate for three projects (Core, Tobago and Struts) as shown 

in Table 27.  We also notice that applying the selected model to project Trinidad raised concern 

of slightly worse model precision for this particular project.  In Trinidad, although all HRR 

releases are predicted fully correctly, nevertheless the model suffers 50% of false positives rate, 

hence depicts the need for further model sensitivity analysis prior to usage in project monitoring. 

In overall we can conclude that the best prediction model as results of RI 1 and RI 2 can be 

generalized for cross project defect prediction. Hence, the corresponding null hypothesis H03 is 

rejected.  

4.7 Chapter Summary 

Whilst a large number of studies address defect prediction, our initial literature survey found 

there is no specific research roadmap for software defect prediction, additionally only little 

support is provided about the application of defect prediction for practitioners. The second issue 

in software defect prediction research community is how to improve the accuracy and the 

reliability of prediction model in different context of projects. Hence, in this chapter we 

delivered following contributions: 
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Software Quality Prediction Research Roadmap. We conducted a systematical literature 

review for software defect prediction using data from several major digital libraries such as 

ACM Portal, IEEE Explore, and Springer. Based on the results of the review we draw a research 

roadmap by identifying open issues in defect prediction and provide guidelines for future 

research with regards to practitioners’ requirements. Some of these open issues were adopted as 

key research issues in this thesis and later we proposed methods and conducted empirical studies 

to address these selected research issues.  

 

Software Quality Prediction Framework. In this chapter we proposed a framework for 

conducting software defect prediction as an aid for the practitioner establishing defect prediction 

in the context of a particular project or organization and as a guide to the body of existing studies 

on defect prediction.  

More importantly, the framework has been aligned with practitioners’ requirements and 

supported by our findings from a systematical literature review on software defect prediction.  

The systematic literature review also served as an initial empirical evaluation of the proposed 

framework by showing the co-existence of the key elements of the framework in existing 

research on software defect prediction.  The mapping of findings from empirical studies to the 

phases and steps of the framework show that the existing literatures can be easily classified using 

the framework and verifies that each of the steps is attainable.  

 

Improving the Accuracy and Reliability of Software Defect Prediction Models. We 

conducted two empirical studies to evaluate our proposed Software Quality Framework (SQF) 

with goals a) to investigate the important factors (e.g. product and process metrics) that have 

strong correlation to quality improvement of a work product (e.g. to reduce the level of 

defectiveness of a release candidate) and b) to improve the accuracy and reliability of trained 

defect prediction models.  

In the first case study we perform defect prediction to predict defect growth between releases 

with different combination of metrics to investigate which combination can provide better 

prediction results. As for the second case we perform unsupervised and supervised model 

training to investigate whether a handful set of metrics with strong correlation to quality 

indicator can improve the accuracy of the model. Later we performed cross project prediction, 

which is necessary to check the robustness of the model and its general applicability to a set of 
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different projects.  

Current studies on the accuracy of defect prediction mostly focus on product metrics and only a 

few prediction models consider information on the development process. In this paper we 

reported on an empirical study of software defect prediction using combined product and Process 

Metrics from Apache MyFaces project family, following the project life over a period of two 

years. Process Metrics can be obtained from several QA practices in OSS project that can be 

observed and measured. Most of these QA practices were performed to improve the quality of 

the next release and to overcome each defect reported.  

Our case studies reveal that in a quality-aware OSS project such as the MyFaces and Strusts 

community, a selected group of Process Metrics has strong correlation to defect growth between 

releases compared to the traditional product metrics. Furthermore, the combination of selected 

process and product metrics may provide more accurate prediction model, hence provide better 

guide the release process or indicate areas for process improvement in context of OSS project. 

Major results of the empirical study were:  

1. In our study context, a combination of product and process metrics provided a reasonably 

accurate estimation approach for both quality indicators: a) defect growth between releases 

and b) identifying higher risk releases. More importantly the combined metrics 

significantly increased the performance of the majority of the prediction models.    

2. In the second case study, we found that by calibrating prediction models with parameter 

selection improved prediction accuracy by at least 20% for all models. The data analysis 

results suggested that some models which have good performance during model training 

but poorly performed during model evaluation can be calibrated by means of parameter 

selection to obtain a higher level of robustness. We also found that all supervised models 

with combined metrics offered sufficient accuracy (F-Measure>=0.6) during both model 

training and evaluation.      

3. Empirical results of the second case study imply that the best prediction model (in our 

case, Naïve Bayes) trained from cross-project data can be used as general model to predict 

higher risk releases from these projects with full accuracy for most projects and with 

sufficient accuracy for all projects.  Such prediction model generalization is particularly 

useful for a project manager who needs to supervise several projects.  
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5 CONCLUSION AND FUTURE WORK  

From project manager point of view, the goal of quality evaluation is to objectively assess 

current quality of work product and process and to identify typical risk conditions that may occur 

and take necessary countermeasure to address such risks.  Meanwhile, the goal of quality 

prediction is to predict the likely quality of candidate product for a certain time point based on 

current and historical data, further the prediction results act as basis for necessary product and 

process improvement and strategic decision process such as release decision. 

In this work we focused on quality evaluation and prediction in large Open Source Software 

projects as these type of projects offer “openness” in both work product data and distributed 

processes  [95]. Moreover many of OSS products have been widely recognized to have better or 

at least comparable quality to commercial products hence motivated many industry domains to 

adopt OSS products as an alternative solution.  

5.1.1 Summary of Research Issues and Results for Evaluation of Distributed 

Development Processes Quality 

One challenge for quality evaluation in  a distributed development environment such as in large 

OSS projects context, is that  the human reporting of progress becomes increasingly complex and 

the reliability can become doubtful  [55], particularly if direct communications between project 

participants are not possible [25] that prohibit personal checking of the validity of high-level 

estimates such as the readiness of a software version for release or depict needs for further 

improvement. Thus for steering distributed projects, project managers need objective and 

trustworthy models for quality evaluation with objective data directly come from project 

repositories.  The second challenge as  suggested by Norman Fenton  [29, 31] and Tim Menzies 

[80] is that most of current approaches are focused on assessing the software quality  based on 

product metrics (i.e., static code metrics). They further mentioned that although static code 

metrics have some merits such as assessing particular quality criteria such as maintainability, 

security and reliability of software product, however static code metrics contain very limited 

information of related development processes to produce such product.  

In OSS projects, many experts agree that in order to survive OSS initiatives should focus on 

improving the development processes with assumption that the improvement of product quality 

should follow. It is normal for a new OSS initiative to have a large number of defects reported 

for their early releases; this doesn’t indicate that the project is in a bad shape, but rather indicates 
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that the community is active and has concern for the further product improvement. Hence in this 

thesis despite a concern for the product data we also put more attention to OSS development 

processes and to investigate these processes contributions to OSS product quality for progress 

evaluation.   

We conducted case studies with empirical data from large OSS project under the Apache 

umbrella as reported in Chapter 3.  In Chapter 3, based on OSS expert suggestion, we compared 

data from two large healthy OSS project to two challenged projects to identify what would be the 

symptom of “illnesses” that typically occur in an OSS project and may endanger its survivability.   

The first research hypothesis that we want to investigate is that product quality improvement 

should be a result of correlated development processes conducted by the project participants 

(e.g., developers and users).   

EQ1.  Mockus et al  [82] suggested that in large successful OSS projects,  after a product release 

typically most of the project participants involve in defect detection/reporting, defect validation 

and defect fixing.  Hence our first research issue is to investigate the distributed development 

processes which have impact to product quality improvement in term of reduction of defect 

counts. Based on literature survey and expert interviews, we identified several development 

processes and quality assurance practices that typically conducted by OSS developer and user 

communities (please refer to Chapter 3).   

EQ2. Later we proposed several “health indicators” that can be used to assess   quality of current 

development process in OSS projects and may provide diagnosis of current project health status.  

A health indicator is derived measures of two or more correlated development process (see 

Chapter 3) that have impact to product quality improvement.  

EQ3. We conducted some intensive case studies with data from large Apache projects, and 

divided these projects into successful ones (healthy) and challenged ones (sick or dead) based on 

two OSS experts interview.   Our empirical results found that in healthy projects such as Apache 

Tomcat and Apache HTTPD, these quality assurance activities such as defect removal or defect 

reporting will likely trigger some responses from the developer community i.e. through email 

conversations. Other improvement activity such as new code submissions will likely trigger 

similar responses in healthy projects, but on the other hand similar pattern could not be found in 

challenged projects in our study. This result signifies that in a healthy project in order to improve 

the quality of a “to be released” software product, it should go through several interconnected 

development processes or quality assurance activities which typically involved more than one 

project participant. 

We also found several typical risks for project survivability, for example in one challenged 
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project the development activities were mostly triggered and steered by one core developer 

(committer) as the result when this committer decided to leave the project, his decision has brain 

drained the rest of developer community which led the project into “sickness” state before it’s 

finally “dying”. 

The assessment of development process quality is important for project monitoring or to capture 

current project status; nevertheless from project point of view another important issue is to 

predict the quality of the product based on current status data, in order to identify the needs for 

improvement prior to product release date.     

5.1.2 Summary of Research Issues and Results for Software Quality Prediction in 

Distributed Software Development Settings 

Software quality prediction in particular defect prediction currently is one important topic in 

empirical software engineering community. Researchers in this area are typically dealing with 

issues regarding a) the accuracy of prediction results, and   efficiency and effectiveness of 

prediction model constructions. 

From project management point of view, defect prediction is also important to provide estimate 

of software quality such as to identify software components that will likely to be defective or to 

estimate how many defects will likely to be found in particular release candidate. This 

information is particularly important for product improvement prior to release, or to delay a 

release schedule.   

In this thesis we conducted a systematical literature review to provide a profound basis for 

conducting defect prediction in DSD / OSS contexts.  Derived from the systematic review results 

we outlined a research roadmap which briefly described several open research issues that still 

need to be further investigate by researcher in software defect prediction. Later we also use the 

findings to derive a systematic Software Quality Prediction Framework (SQF) which we applied 

to some scenarios of defect prediction with empirical data from selected large OSS projects.  

QP1. In a short development cycle environment such as in many OSS projects, product metrics 

have weak correlation to defect count between releases, as the results recent studies in software 

defect prediction reported poor performances of prediction models that enabled only product 

metrics [87, 126]. Based on our prior investigation of development processes within OSS 

projects, we derived some process metrics and employed them as input parameters for the 

prediction models along with the traditional product metrics as reported in Chapter 4. We also 

investigated the potential contributions of these process metrics to software quality.. To improve 
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the accuracy and reliability of advanced models for objective quality prediction in the context of 

DSD projects we propose two steps approaches, 1) by combining development process metrics 

with tradition code static (product) metrics and 2) calibrating constructed model with parameter 

selection techniques.  Our empirical results show that a) combination of product and process 

metrics significantly increased the performance of the majority of the prediction models and in 

short release cycle environment as in many OSS projects b) prediction models calibration with 

parameter selection improved prediction accuracy by at least 20% for all prediction models. We 

also found that the reliability of prediction models (model capability for data extrapolation) 

significantly improved by applying these two approaches (see Chapter 4). Hence the results can 

be used by project or release manager as early guidance for product and process improvement 

QP2. To efficiently and effectively collect data from project repositories to construct objective 

prediction models. The efficiency of data collection can be measured by how much effort one 

should spend to collect and to refine data prior to model construction, to address this issue, we 

exploited several available data mining tools which can directly extract process and product 

metrics from project repositories (see Section 4.4.2). Later the parameter selection as described 

in QP1, can also increase the efficiency of data collection, as a data collector now can only focus 

on collecting a handful set of metrics instead of collecting and refining a lot of metrics with less 

accurate results.  Data collection effectiveness refers to sufficient data quality to construct a 

prediction model.  To address this issue we conducted two steps of data quality assurances, first 

by checking the quality of metrics collected directly from project repositories by data mining 

tools, second by checking the quality of integrated metrics in the same level of observation (data 

point) such as in release level or component level (see Section 4.4.2). 

QP3. Empirical evaluation of proposed objective quality prediction models using data from large 

open source projects. We conducted two scenarios of defect prediction: 1) predicting defect 

growth between releases and 2) predicting risk classes of a release candidate. We used data from 

large “healthy” OSS projects such as Apache MyFaces Core, Tobago, Trinidad, Tomahawk and 

Apache Struts 2.0.  The analysis of empirical results, in addition to improvement of prediction 

models accuracy and reliability as mentioned in QP1, we also found that there are several 

development processes that statistically have significant impact to increase or to decrease the 

quality of a release candidate. Hence release manager or project manager in OSS project can use 

this information to adjust certain development processes in order to improve to be released 

software product.  
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5.1.3 Future Work  

Evaluation of distributed development processes quality. The concept of “health status” 

evaluation attempts to complement the current project monitoring model in OSS projects based 

on health indicators (quality) of development processes. However, major challenges for future 

work were identified: a) how to better formulate such indicators as the basis of meaningful 

notifications about the status of product quality for different stakeholders, b) how much effort 

seems reasonable to spend on creating, maintaining and monitoring the indicators in OSS project 

context; c) the need for empirical evaluation of the concept using larger set of OSS projects; and 

d) application of proposed concept in closed source distributed software developments.  In 

principle our approach is applicable for commercial project, however further work should 

investigate the commercial project structure and the culture within the team development to 

reveal appropriate health indicators.   

The investigation of important health indicators is just the beginning. The next step is the 

development of assessment methods that allow observers to get semi-quantitative measures of 

project health itself. This will help people to learn how these processes work in-depth, allow to 

enhance cooperation and give monitoring and ”early-warning” capabilities to the project 

stakeholders. Nevertheless more works should be done to define relevant dynamics indicators, 

empirical rules and measurement metrics for an ongoing OSS project quality and project 

community assessment 

 

Software quality prediction in distributed software development settings.  In this thesis we 

proposed a research roadmap based on systematical literature review, nevertheless the findings 

should be further evaluated by external experts in software quality engineering or by involving 

larger collection of literatures in order to externally validate and to derive more fine grained 

explanation of each open research issue.  

For a release manager or project leading team in an OSS project, the proposed software quality 

prediction framework, the predictor selection approach and defect prediction model can be a 

starting point for evaluating a product before release, release decisions or needs for 

improvements. For example to boost performance level of peer review of defect resolutions 

before release, or to select which release candidate should be considered for further improvement 

and which candidates should be dismantled. 

While the initial empirical results in the study context are promising, nevertheless further work is 

necessary to strengthen the external validity of the findings with data from a wider range of 
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project types and OSS communities.  

Additionally, a growing number of commercial projects focus on global software development 

within a professional and commercial environment, which might be comparable to highly 

distributed OSS projects with volunteer contributors. Thus, the continuous product improvement 

approach within OSS projects might be a promising approach for closed source commercial 

projects. As closed source commercial products usually can have a similar structure of (short) 

releases in a quality-aware environment, similar project and process metrics might be used for 

quality prediction. This approach might be a second major direction for future work based on the 

results of this study.  

Our experiences suggest that the effort for data collection, data integration and data quality 

analysis using data originated from heterogeneous sources (e.g., SCM, Issue tracker, mailing list) 

are time consuming, and error prone tasks. Although we already utilized available data mining 

tools still the effort are high, thus as future work a more efficient and effective ways for data 

collection and data quality validation  that come from multi sources are needed. One approach is 

by using a Semantically-enable data warehouse with capability for automatic data collection and 

data quality validation.  
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APPENDIX 

A1. Predicting the Number of Developer Mail Response for a Defect Status 

Change and a New Code Submission   

In this section we describe the detailed empirical data analysis of proposed health indicators with 

data from four large Open Source projects in Apache Community.  

A1.1 Single Project Modeling using Apache Tomcat Data  

The following tables ( 

Table 28 to Table 30) show the summary of linear regression model to predict the number of 

developer mail response using Tomcat data, and test results of constructed model and predictors’ 

significance.  

 

Table 28.  Tomcat Prediction Model Summary 

R R Square Adjusted R Square Std. Error of the Estimate 

0.818(a) 0.669 0.650 95.20320 

a  Predictors: (Constant), SCM, Defect 

 

Table 29 Tomcat ANOVA Test Results of Constructed Model 

Model Sum of Squares df Mean Square F Sig. 

Regression 641295.848 2 320647.924 35.377 0.000(a) 

 Residual 317227.731 35 9063.649     

 Total 958523.579 37       

a  Predictors: (Constant), SCM, Defect 

b  Dependent Variable: Email 

 

Table 30 Tomcat Coefficients and Predictors Test Results 

Model 

  

  

Unstandardized  

Coefficients 

Standardized 

Coefficients 

t 

Sig. 

  

  B Std. Error Beta 
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 (Constant) 62.853 47.209   1.331 0.192 

 Defect 0.323 0.124 0.327 2.613 0.013 

 SCM 0.862 0.188 0.572 4.577 0.000 

a  Dependent Variable: Email 

A2.2 Single Project Modeling using Apache HTTPD Data  

The following tables (Table 31 to Table 33) show the summary of linear regression model to 

predict the number of developer mail response using HTTPD data, and test results of constructed 

model and predictors’ significance.  

 

Table 31.  HTTPD Prediction Model Summary 

R R Square Adjusted R Square Std. Error of the Estimate 

0.768(a) 0.590 0.567 87.22455 

a  Predictors: (Constant), SCM, Defect 

 

Table 32.  HTTPD ANOVA Test Results of Constructed Model 

 Mode 

Sum of 

Squares df 

Mean 

Square F Sig. 

Regression 383527.466 2 191763.733 25.205 0.000(a) 

Residual 266284.245 35 7608.121     

Total 649811.711 37       

a  Predictors: (Constant), SCM, Defect 

b  Dependent Variable: Email 

 

Table 33.  HTTPD Coefficients and Predictors Test Results 

Model 

   

 Unstandardized  

Coefficients 

Standardized 

Coefficients 

t 

Sig. 

 B Std. Error Beta 

 (Constant) 42.267 56.430   0.749 0.459 

Defect 0.637 0.157 0. 495 4.069 0.000 
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 SCM 0.583 0.176 0.404 3.318 0.002 

a  Dependent Variable: Email 

A2.3 Cross Project Modeling using Apache HTTPD and Apache Tomcat Data  

The following tables (Table 34 to Table 36) show the summary of linear regression model to 

predict the number of developer mail response using HTTPD and Tomcat data, and test results of 

constructed model and predictors’ significance.  

Table 34.  Cross HTTPD-Tomcat Prediction Model Summary 

R R Square Adjusted R Square Std. Error of the Estimate 

0.783(a) 0.612 0.602 92.43275 

a  Predictors: (Constant), SCM, Defect 

 

Table 35.  Cross HTTPD-Tomcat  ANOVA Test Results of Constructed Model 

 Model Sum of Squares df Mean Square F Sig. 

Regression 985766.478 2 492883.239 57.689 0.000(a) 

Residual 623698.403 73 8543.814     

Total 1609464.882 75       

a  Predictors: (Constant), SCM, Defect 

b  Dependent Variable: Email 

Table 36. Cross HTTPD-Tomcat  Coefficients and Predictors Test Results 

 Model 

  

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

(Constant) 76.195 34.890   2.184 0.032 

Defect 0.413 0.094 0.389 4.388 0.000 

SCM 0.726 0.130 0.493 5.563 0.000 

a  Dependent Variable: Email 

A2.4 Single Project Modeling using Apache Xindice Data  

The following tables (Table 37 to Table 39) show the summary of linear regression model to 

predict the number of developer mail response using Xindice data, and test results of constructed 



  

 

169 

model and predictors’ significance.  

 Table 37.  Xindice Prediction Model Summary 

R R Square Adjusted R Square Std. Error of the Estimate 

0.684(a) 0.468 0.438 27.13077 

a  Predictors: (Constant). CVS. defect 

  

Table 38.  Xindice  ANOVA Test Results of Constructed Model 

 Model Sum of Squares df Mean Square F Sig. 

Regression 22682.721 2 11341.360 15.408 0.000(a) 

Residual 25762.753 35 736.079     

Total 48445.474 37       

a  Predictors: (Constant). CVS. defect 

b  Dependent Variable: Email 

 Table 39. Xindice Coefficients and Predictors Test Results 

 Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t 

Sig. 

   B Std. Error Beta 

(Constant) 17.133 5.873   2.917 0.006 

defect -2.623 0.875 -0.424 -2.998 0.005 

CVS 3.270 0.590 0.783 5.541 0.000 

a  Dependent Variable: Email 

A2.5 Single Project Modeling using Apache Slide Data  

The following tables (Table 40 to Table 42) show the summary of linear regression model to 

predict the number of developer mail response using Slide data, and test results of constructed 

model and predictors’ significance.  

 Table 40.  Slide Prediction Model Summary 

R R Square Adjusted R Square Std. Error of the Estimate 

0.875(a) 0.766 0.753 98.34407 

a  Predictors: (Constant). CVS. defect 
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 Table 41.  Slide ANOVA Test Results of Constructed Model 

 Model Sum of Squares df Mean Square F Sig. 

Regression 1109904.916 2 554952.458 57.380 0.000(a) 

Residual 338504.479 35 9671.557     

Total 1448409.395 37       

a  Predictors: (Constant). CVS. defect 

b  Dependent Variable: Email 

 

Table 42. Slide Coefficients and Predictors Test Results 

 Model 

Unstandardized  

Coefficients 

Standardized 

Coefficients 

t Sig.   B Std. Error Beta 

(Constant) 54.599 25.054   2.179 0.036 

defect 1.329 0.589 0.207 2.258 0.030 

CVS 1.609 0.193 0.762 8.328 0.000 

a  Dependent Variable: Email 
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A1. Statistical Methods for Software Quality Prediction  

In this section we describe briefly the statistical methods used for conducting software quality 

prediction with empirical data from OSS projects.  

A1.2.Multiple Linear Regression Techniques 

Multiple linear regression38 attempts to model the relationship between two or more explanatory 

variables and a response variable by fitting a linear equation to observed data. Every value of the 

independent variable x is associated with a value of the dependent variable y.  Formally, the 

model for multiple linear regressions, given n observations, is [88] 

 

1,2, … , . Eq. 16 

In the least-squares model, the best-fitting line for the observed data is calculated by minimizing 

the sum of the squares of the vertical deviations from each data point to the line (if a point lies on 

the fitted line exactly, then its vertical deviation is 0). Because the deviations are first squared, 

then summed, there are no cancellations between positive and negative values. The least-squares 

estimates β0, β 1, ... β p are usually computed by statistical software.  

The values fit by the equation β 0 + β 1xi1 + ... + β pxip are denoted ŷi, and the residuals ei are equal 

to yi - ŷi, the difference between the observed and fitted values. The sum of the residuals is equal 

to zero.  

A1.2.Classification Techniques  

Logistic Regression  

Logistic regression is a model used for prediction of the probability of occurrence of an event by 

fitting data to a logistic curve.  Logistic Regression has been proven to have sufficient capability 

for data extrapolation which are necessary for prediction with different dataset that are not used 

during the training session.  Yasunari et al,  [130] outlined the basic model of logistic regression 

which is based on following equation (see eq. 17). 

 

                                                 
38Multiple Linear Regression Manual  can be found at the  http://www.stat.yale.edu/Courses/1997-98/101/linmult.htm (Last Accessed 20 January 

2008) 



  

 

172 

| , , . . ,
1

 
Eq. 17 

x1 … xn represent the independent variables, which are collected candidate predictors for defect 

estimation. While, bo,…,bn define regression coefficients of the independent variables. Y 

represents the predicted dependent variable as a binary value such as a module for being 

defective or not.  

 

J48 

J48 is a decision-tree learner Decision-tree learners generate a simple tree structure where 

nonterminal nodes represent tests on one or more attributes and terminal nodes reflect decision 

outcomes. As described in J48 Manual39, J48 has the useful feature of generating tree-based 

models that human experts can easily interpret. We can summarize the general approach, as the 

following:  

1. Choose an attribute that best differentiates the output attribute values.  

2. Create a separate tree branch for each value of the chosen attribute.  

3. Divide the instances into subgroups so as to reflect the attribute values of the chosen 

node.  

4. For each subgroup, terminate the attribute selection process if:  

a. All members of a subgroup have the same value for the output attribute, 

terminate the attribute selection process for the current path and label the 

branch on the current path with the specified value.  

b. The subgroup contains a single node or no further distinguishing attributes can 

be determined. As in (a), label the branch with the output value seen by the 

majority of remaining instances.  

5. For each subgroup created in (3) that has not been labeled as terminal, repeat the 

above process.  

The algorithm is applied to the training data. The created decision tree is tested on a test data set, 

provided on is available. If test data is not available, J48 performs a cross-validation using the 

training data. The created decision tree is then output in the Model section of the Learner Model 

Output.  

 

                                                 
39 J48 Decision Tree Manual can be found at the:  http://grb.mnsu.edu/grbts/doc/manual/J48_Decision_Trees.html#sec:dtso (Last Accessed 20 

January 2008) 
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Random Forest 

A random forest is a classifier consisting of a collection of tree-structured classifiers [45]. The 

random forest classifies a new object from an input vector by examining the input vector on each 

tree in the forest. Each tree casts a unit vote at the input vector by giving a classification. The 

forest selects the classification having the most votes over all the trees in the forest40. Each tree is 

grown as follows: 

 If the number of cases in the training set is N, sample N cases at random, with 

replacement from the original data. This sample will be the training set for growing 

the tree. 

 At each node, m predictors are randomly selected out of the M input variables (m _ 

M) and the best split on these m predictors is used to split the node. The value of m is 

held constant during the forest growing. By default, m = √M (to achieve near optimal 

results). 

 Each tree is grown to the largest extent possible. There is no pruning. When the 

training set for the current tree is drawn by sampling with replacement, about one-

third of the cases are left out of the sample. This oob (out-of-bag) data is used as a 

test set to get an unbiased estimate of the classification error. Therefore, there is no 

need for cross-validation or a separate test set to get an unbiased estimate of the test 

set error. The out-of-bag estimates are unbiased [14]. 

Random forest is a good candidate for software quality prediction, especially for large-scale 

systems, because [45]: 

 It is reported to be consistently accurate when compared with current classification 

algorithms. 

 It runs efficiently on large data sets. 

 It has an efficient method for estimating missing data and retains accuracy when a 

large portion of the data is missing. 

 It gives estimates of which attributes are important in the classification. 

 

 

 

                                                 
40 Random Forest Manual can be found at the http://www.stat.berkeley.edu/users/breiman/RandomForests (Last Accessed 20 January 

2008) 
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Naive Bayes 

From the Naive Bayes clasiffier manual41 defines Naive Bayes as a rule generator based on 

Bayes's rule of conditional probability. It uses all attributes and allows them to make 

contributions to the decision as if they were all equally important and independent of one 

another, with the probability denoted by the equation: 

Pr  |
Pr | . Pr | …Pr |

Pr
 

Eq. 18 

 

Where Pr[A] denotes the probability of event A, Pr[A|B] denotes the probability of event A 

conditional on event B , En is the n th attribute of the instance, H is the outcome in question, and 

E is the combination of all the attribute values.  

In the case of categorical input for evidence class Ei, Pr[Ei|H] is simply the number of instances 

in the data where the evidence in category Ei divided by the total number of instances in the 

dataset.  

Characteristic of Naive Bayes: 

 Simple technique results in high accuracy, especially when combined with other 

methods.  

 Treats variable as independent and equally important, which can cause skewed results, 

especially if many of the variables are interrelated, as that relation will have a greater 

effect on the decision, for better or for worse.  

 Naive Bayes classification does not allow for categorical output attributes  

                                                 
41 Naive Bayes Manual can be found at the http://grb.mnsu.edu/grbts/doc/manual/Naive_Bayes.html (Last Accessed 20 January 2008) 
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A3. In Time Notification Tool Support for Distributed Development Processes   

In highly distributed software development environment, demands effective collaboration and 

communication among the team members to deliver good quality software.  Project manager 

may need summarized reports on project performance, software quality status and quality 

predictions of future product, a quality assurance (QA) person may want to monitor detailed 

reports test performance over the time to determine the quality status of software artifacts before 

an approaching release; a developer should receive immediate feedback if a change in his work 

causes a quality problem with other (concurrently evolving) components of the software product.  

In this line of work we adopt the concept of role-specific in-time notification on the status of 

project artifacts supported by an event-driven monitoring infrastructure. We extend this concept 

with providing the team members with relevant notifications in the set of tools they typically use, 

e.g., as part of the software development environment rather than in a separate management or 

collaboration tool. We argue that by providing such notification well represented as part of team 

member’s work tools will better support collaboration among the team members during 

distributed development process (see Figure 26).  
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Figure 26. Integrated tool support for In-time Role-Specific Notification in Agile-GSD settings 

[120] 

 

The following two papers outline our contributions in providing data collection and notification 

tool in globally distributed software development;  

Paper 9: Wahyudin D., Heindl, M.,  Berger, R.,  Biffl, S.,  Schatten, A. (2007); “In-Time 

Project Status Notification for All Team Members in Global Software Development as Part of 

Their work environments”, International Conference on Global Software Engineering (ICGSE), 

Workshop on Measurement-based Cockpits for Distributed Software and Systems Engineering 

Projects (SOFTPIT), Munich, August 2007. 

In this paper we suggest the needs and propose an initial concept to allow keeping all relevant 

roles informed using in-time notification on significant project events. Distributed team members 

can subscribe to specific notification services provided by project infrastructure. In a typical 

usage scenario these notification services promise to provide information for more effective and 

efficient change impact analysis and quality analysis in concurrently evolving software 
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development artifacts. 

 

Paper 10: Wahyudin D., Heindl, M.,  Eckhard, B.,  Schatten, A.,  and Biffl, S. (2007) ; “In-time 

role-specific notification as formal means to balance agile practices in global software 

development settings”, in the 2nd IFIP Central and East European Conference on Software 

Engineering Techniques (CEE-SET), Springer LNCS, Poznan, Poland, 2007. 

In this paper we extend the contributions of Paper 9 by introducing a framework to define in time 

notification for distributed development team members that allows a) measurement of 

notification effectiveness, efficiency, and cost; b) formalizing key communication in an agile 

distributed environment i.e., as in agile DSD and OSS projects; and c) providing a method and a 

tool to implement communication support. We illustrate, with an example scenario from an 

industry background, the concept and report results from an initial empirical evaluation.  
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A4. Potential Application of Quality Evaluation and Prediction Framework in 

Operating Software Systems   

In this line of work we bring the knowledge and experiences in conducting quality evaluation 

and prediction in distributed software development into different context of application. The 

work is originated from development of an agile multi agent simulation tool (MAST) for 

production automation in cooperation with Rockwell Automation, Czech Technical University, 

and Automation and Control Institute, Vienna University of Technology.   MAST was first 

developed by Rockwell Automation to simulate a new configuration of workshop floor prior to 

real implementation in hardware based systems.  One requirement of MAST extension which has 

become our research focus is to have the capability to automatically measure the quality 

(performance) of the system when enabling new configuration.  

From DSD point of view, MAST can be seen as distributed development environment where the 

agents (e.g., Machines, Conveyor belts, robots, storages, etc.) as can be seen in Figure 27 are the 

project participants while the work order consists of products to produce through cooperation of 

these agents. Using this analogy, we use the SQF approach to define the quality indicators of the 

system (e.g., system throughput, production effectiveness and efficiency, etc.), and to investigate 

the most promising parameters (e.g., workflow scheduling strategies, number of pallets, 

redundancy of machine functions, etc.) that have significant impact to the quality indicator using 

advanced statistical analysis.  
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Figure 27 Overview of Extended MAST System Architecture [81] 

 

The following two papers outline our contributions in application of quality evaluation and 

prediction models in MAST environment  

 

Paper 11: Merdan, M., Moser, T., Wahyudin, D., Biffl, S., (2008); “Performance Evaluation of 

Workflow Scheduling Strategies Considering Transportation Times and Conveyor Failures”, The 

International Conference on Industrial Engineering and Engineering Management (IEEM), IEEE 

Comp Soc, Singapore. 

 In this paper we report on a test management system for the evaluation of a range of workflow 

scheduling strategies based on multi-agent negotiation, where each resource agent performs local 

scheduling using dispatching rules. The newly developed test management system runs test cases 

on the Multi Agent Simulation Tool (MAST), which provides comprehensive support for 

performance measurement and data analysis reporting.  

 

Paper 12: Merdan, M.,  Moser, T.,  Wahyudin, D., Biffl, S.,  Vrba, P., (2008); “Simulation of 

Workflow Scheduling Strategies Using the MAST Test Management System”. In The IEEE 10th   
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International Conference on Control, Automation, Robotics and Vision (ICARCV), IEEE Comp 

Soc, Hanoi, Vietnam, 2008.  

In this paper we augment the scheduling calculations to explicitly consider the transportation 

durations between the machines. In addition, we introduce scenarios with failures of the transport 

system, e.g., conveyors, which influence the variation of transport durations and evaluate the 

robustness of workflow scheduling strategies regarding these variations. 

 

 


