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Abstract

The main goal of this work was to design and build a two axis goniometer for trans-

port measurements that can be used at low temperatures and high magnetic fields.

The goniometer should be used in a liquid He cooled gas flow cryostat equipped

with a superconducting 6 T split coil magnet. With this kind of probe the sample can

be oriented in any direction with respect to the applied magnetic field.

The probe is targeted to characterise the angular dependence of the critical cur-

rent density of patterned high temperature superconducting thin films. It is well

established that grain boundaries play a dominant role in limiting the transport crit-

ical currents in high temperature superconducting materials. Superconducting thin

films grown on bi-crystalline substrates provide an isolated grain boundary with well

defined misorientation angles and directions of the adjacent grains. Such samples in

combination with a two axis probe allow detailed studies of the transport properties

of a grain boundary in an applied magnetic field in dependence of the field direction

and temperature. Effects like vortex channeling observable only on samples with

high crystalline quality were of special interest in this work.

Transport measurements were performed on a 200 nm thick YBa2Cu3O7−δ thin

film grown by pulsed laser deposition on a 5 o [001]-tilt grain boundary bi-crystal

SrTiO3 substrate. It was prepared at the Department of Material Science at the Uni-

versity of Cambridge.

The patterned thin film provided four 10 µm wide tracks crossing the grain bound-

ary at angles of 90 ◦, 60 ◦, 45 ◦ and 30 ◦. One track, not crossing the grain boundary,

was used to compare the intergrain and intragrain critical currents achieved. Besides

the transition temperature and the self field critical current density at 77 K extensive

angular dependent measurements were performed at temperatures from 40 K to 80 K

and magnetic fields ranging from 1 to 6 T. The magnetic field was rotated in the ab

plane of the sample. The symmetrical drop of the intergrain critical current density,

when the field is aligned in the grain boundary plane, was observed on all grain
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boundary tracks. An attempt was made to describe the angular dependence with

an elastic single vortex model. Good agreement with the measured critical current

densities was achieved.
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Zusammenfassung

Der Hauptteil dieser Arbeit befasste sich mit der Planung und Umsetzung eines

Zweiachsengoniometers für Transportstrommessungen. In einem bereits bestehen-

den Messaufbau, der aus einem, mit flüssig He gekühltem Gasflußkryostaten, besteht,

welcher mit einer 6 T Helmholtzspule ausgestattet ist, ermöglicht dieser Probenstab

eine beliebige Ausrichtung einer Probe im Magnetfeld.

Der Probenstab ist in erster Linie für Niederstrommessungen an supraleitenden

Dünnfilmen ausgelegt. Der Stromtransport in Hochtemperatursupraleitern ist meist

wesentlich durch Korngrenzen bestimmt. Biaxiale Dünnschichttechnologie erlaubt

die Herstellung von isolierten und wohl definierten Korngrenzen. Sie sind her-

vorragend dazu geeignet, die Transporteigenschaften von Korngrenzen im Detail

zu studieren. Ein Zweiachsengoniometer erlaubt die Untersuchung von winkelab-

hängingen Effekten wie “vortex channelling” bei verschiedenen Feldern und Tem-

peraturen.

Die Tranportstrommessungen wurden an einer 200 nm dicken, strukturierten,

YBa2Cu3O7−δ Dünnschicht durchgeführt. Der Film wurde mit Hilfe von Laserab-

lation auf einem 5 o [001]-verkippten SrTiO3 Korngrenzensubstrat gezüchtet. Diese

Probe wurde am Institut für Materialforschung an der Universtität Cambridge hergestellt.

Der strukturierte Film hatte vier 10 µm breite Stege, welche die Korngrenze in

den Winkeln 90 o, 60 o, 45 o und 30 o kreuzten. Ein weiterer Steg, welcher nicht

über die Korngrenze verlief, wurde zum Vergleich der gemessenen Stromdichten

an den Krongrenzen herangezogen. Neben der Sprungtemperatur und der kritis-

chen Stromdichte im Selbstfeld bei 77 K wurden Rotationsmessungen bei Temper-

aturen von 40 K bis 80 K und Magnetfeldern von 1 bis 6 T gemessen. Das Feld

wurde parallel zu den ab Ebenen der Dünnschicht rotiert. Das symmetrische Ein-

brechen der kritischen Stromdichte, wenn das Feld parallel zur Korngrenzenebene

ausgerichtet ist, wurde an allen Stegen mit Korngrenze festgestellt. Es wurde ver-

sucht, die gemessene Winkelabhängigkeit mit einem Flusslinienmodell, welches die
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Elastizität einer einzelnen Flusslinie berücksichtigt, zu beschreiben. Die gemessene

Winkelabhängigkeit stimmt gut mit dem Modell überein.
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Chapter 1

Theory

1.1 Introduction

The superconducting state is usually characterised by zero electrical resistance and

by perfect diamagnetism of the superconducting material. The transition from nor-

mal conducting to superconducting behaviour takes place at a material dependent

transition temperature Tc and it is a true thermodynamic transition. In type-I supercon-

ductors the magnetic flux penetrates only a thin surface layer of thickness λ (magnetic

penetration depth) and the inner stays field free (“Meisser state”). Electrical transport

currents are restricted to this surface layer. Above a thermodynamic critical field Hc the

material becomes normal conducting.

High-Tc superconductors and also application relevant low-Tc materials are type-

II superconductors. They exhibit a different behaviour, because they allow a partial

penetration of magnetic flux in the form of flux-lines and transport currents can flow

over the whole cross section of a sample. Flux-lines carry a magnetic flux density of

Φ0 = h/2e = 2.07 · 10−15 Wb. Without pinning they can move freely in the material,

which leads to energy losses in combination with transport currents, implying a

non zero resistance. There are two critical fields, Hc1 and Hc2. Below Hc1 a type-II

superconductor is in the Meissner state and behaves like a type-I superconductor.

Between Hc1 and Hc2 flux-lines appear (“mixed state”) and above Hc2 the material is

normal conducting.

The investigation and understanding of the flux-line behaviour is a central topic

in superconductivity research.

5



THEORY 1.2. GINZBURG LANDAU MODEL

1.2 Ginzburg Landau model

The Ginzburg Landau (GL) theory is a phenomenological model. It is based on the

Landau theory for phase transitions of the second order and, therefore, is only valid

near the superconducting transition. It allows a spatial description of the super-

conducting phase. The GL theory introduces a complex order parameter Ψ(r) =

|Ψ(r)| eiϕ(r), where |Ψ(r)|2 represents the density of the superconducting charge car-

riers (Cooper pairs). The free energy density difference between the superconducting

and normal conducting state (∆ f = fs − fn) is postulated as a series expansion of the

form

∆ f (A, Ψ(r), r) = α(T) |Ψ(r)|2 +
β(T)

2
|Ψ(r)|4

+
h̄2

4 m

∣

∣

∣

∣

(i∇ +
2e

h̄
A)Ψ(r)

∣

∣

∣

∣

2

+
µ0H2

2
. (1.1)

The first two terms describe the second order phase transition, the next term rep-

resent the kinetic energy of the super-currents and the last term takes the magnetic

energy density into account. A is the vector potential (B = ∇× A), m is the effective

electron mass and e is the electron charge. A variation of ∆ f with respect to A and

Ψ(r) leads to the GL differential equations.

The GL theory introduces two characteristic length scales, the magnetic penetration

depth λ and the coherence length ξ. λ determines how far the magnetic field can

penetrate the superconductor at a normal-superconducting interface and ξ gives the

length scale for the decay of the disturbance of the order parameter. The ratio κ =

λ/ξ is the GL parameter and its value determines the behaviour of the superconductor.

For κ < 1/
√

2 the domain wall energy is positive and the superconductor is of type-I.

In type-II superconductors the domain wall energy is negative and κ > 1/
√

2.

1.2.1 Critical fields

Within GL theory the critical fields for an isotropic superconductor are [4]

Hc1 ≈
Φ0

4πµ0λ2 (ln κ + 0.5), Hc =
Φ0

2
√

2πµ0ξλ
, Hc2 =

Φ0

2πµ0ξ2 =
√

2κHc . (1.2)
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THEORY 1.2. GINZBURG LANDAU MODEL

The thermodynamic critical field Hc is defined by the condensation energy µ0H2
c /2.

At H = Hc1 the Gibbs free energy of the superconductor without a vortex and with

one vortex has to be equal, so flux lines can penetrate. Hc1 is therefore connected with

the self-energy of a single vortex, more exactly with the free energy per unit length ǫl

Hc1 =
ǫl

Φ0
. (1.3)

The self-energy derived from (1.2) would be LΦ0Hc1 = L(Φ2
0/4πµ0λ2)(ln κ + 0.5)

and represents the general result for a curved flux-line with length L. The calcu-

lation for a straight flux-line, applying the modified London equation, results in

ǫl = (Φ2
0/4πµ0λ2) ln κ.

The GL parameter κ enters the relation between the upper critical field Hc2 (field

of first nucleation of the superconducting phase in the bulk) and the thermodynam-

ical critical field Hc, Hc2 =
√

2 κ Hc. In a type-I superconductor Hc2 < Hc and the

superconductor can be “supercooled” below Hc, where the order parameter jumps

irreversibly to its bulk value (first order phase transition below Tc). In type-II super-

conductors Hc2 > Hc and |Ψ(r)|2 sets in continuously at Hc2 (second order phase

transition below Tc).

1.2.2 Isolated Abrikosov flux-line

In the centre of an Abrikosov vortex the order parameter is suppressed. Therefore,

ξ gives a measure for the core radius and λ for the distance of the decay of the

circulating shielding currents around the core.

The general GL solution for the order parameter and the field of an isolated

flux-line can only be achieved numerically. Outside the core the order parameter is

nearly constant. In the extreme type-II limit (κ ≫ 1) the core radius is far smaller

than the vortex radius and over most of the vortex the superconductor will act like

an ordinary London superconductor. As long as the vortex cores do not overlap, the

London theory can be applied (for H < 0.2Hc2 and µ0Hc2 ≈ 100 T in YBCO) [4]. A

single Abrikosov vortex can be described by the modified London equation [23]

λ2∇× J + H = e
1

µ0
Φ0δ2(r) . (1.4)

The inhomogeneity at the right hand side accounts for the magnetic flux in the core

at the position r. It is found, that the field in the flux-line centre is roughly twice the

7



THEORY 1.2. GINZBURG LANDAU MODEL

lower critical field, and the maximum vortex current is the depairing current [4].

1.2.3 Abrikosov flux-line lattice

Considerating about the interaction energy for two well separated straight vortices

(no core interaction, one vortex feels just the field of the other) at the positions r1 and

r2 leads to the result [23]

f2 = J1(r1)× êΦ0 , (1.5)

where f2 is the Lorenz force per unit length felt by the second vortex and ê is the unit

vector in the field direction. This can be generalised to

f = J × êΦ0 , (1.6)

where J is the total super-current density at the location at the core of the vortex

in question. An implication of this result is, that a flux-line can be in static equi-

librium at a given position only if the super-fluid velocity from all sources is zero

there. This can be accomplished if the vortex is surrounded by a symmetrical array

of other vortices. It turns out, that in a homogeneous superconductor the regular

hexagonal lattice configuration has the lowest energy. The vortex lattice constant for

the hexagonal lattice is

ahex =

(

4
3

)1/4 (

Φ0

B

)1/2

. (1.7)

In a general expression for the GL interaction energy of an arbitrary arrangement

of flux lines one has to sum over the contributions of each vortex. The contribution

splits up into two terms, a repulsive magnetic interaction (overlap of magnetic vortex

fields) and an attractive condensation-energy term (overlap of the vortex cores). The

core interaction is attractive, because one vortex can save condensation energy due to

the suppressed order parameter in the second core [5]. The magnetic interaction has

the same spatial dependence as the field of an isolated vortex. It decays exponentially

∝ r−1/2
12 e−r12/λ for large distances from the core and varies logarithmically at small

distances. The magnetic field of arbitrary vortex arrangements for κ ≫ 1 and H ≪
Hc2 is a linear superposition of the isolated vortex fields [4].

8



THEORY 1.2. GINZBURG LANDAU MODEL

1.2.4 Anisotropic GL description

The GL free energy equation for anisotropic superconductors is

∆ f (A, Ψ(r), r) = α(T) |Ψ(r)|2 +
β(T)

2
|Ψ(r)|4 +

h̄2

4 mab

∣

∣

∣

∣

(i∇|| +
2e

h̄
A||)Ψ(r)

∣

∣

∣

∣

2

+
h̄2

4 mc

∣

∣

∣

∣

(i∇⊥ +
2e

h̄
A⊥)Ψ(r)

∣

∣

∣

∣

2

+
B2

2 µ0
. (1.8)

Here a uni-axial symmetry along the c crystal axis is assumed which represents the

most common case of anisotropic superconductors. In equilibrium, the order param-

eter is Ψ0 =
√

|α|/β with α(T) ∝ (T − Tc) [13]. Especially in high-Tc superconductors

the weak anisotropy between the a and b direction is usually neglected. mab and mc

are the effective electron masses in the ab planes and the c direction, respectively.

Assuming the crystal c axis to be aligned with the z coordinate, A|| = (Ax, Ay, 0)

and ∇|| = (∇x,∇y, 0). The isotropic GL free energy equation is obtained by setting

m = mab = mc. The anisotropy parameter γ is defined as γ =
√

mc/mab. For high

temperature superconductors mc > mab and therefore γ > 1. γ ranges from 5 to 7 in

YBCO.

The mass anisotropy causes the coherence length ξ to be different in c and ab

direction. The isotropic thermodynamic critical field in (1.2) transfers this anisotropy

inversely proportionally to the penetration depth λ. For a uni-axial material ξab

and ξc are the coherence lengths in the ab and the c crystal directions, respectively

(ξab(0) ≈ 1.6 nm in YBCO, [24]). λab is the penetration depth referring to the shield-

ing currents in the ab planes (H||c) and λc refers to the currents in c direction (H||ab).

An Abrikosov vortex aligned with the c axis has a circular “cross section” with a core

radius of ξab and a flux penetration radius of λab corresponding to shielding currents

in the ab planes. These two length scales correspond to ξ and λ of an isotropic ma-

terial. When tilting the vortex away from the c axis, mc and the (weaker) shielding

currents flowing in c direction come into play decreasing the core dimension in the

vortex-c axis plane and increasing the field penetration along the ab planes resulting

in an ellipticly “cross section”.

The anisotropy γ and the GL parameter κ fulfil the following relations

γ =

√

mc

mab
=

ξab

ξc
=

λc

λab
(1.9)

9



THEORY 1.3. LAWRENCE DONIACH MODEL

κc =
λab

ξab
κab =

√

λab λc

ξab ξc
, (1.10)

so that κab = γκc. κc is about 100 in YBCO.

The rescaling approach suggested in [2] allows to deduce anisotropic properties

of the flux lattice from the isotropic results. By rescaling the coordinates, the vector

potential and the magnetic field

r̃ = (x, y, γ z) Ã = (Ax, Ay, Az/γ) B̃ = (Bx/γ, By/γ, Bz) , (1.11)

the two gauge invariant derivative terms in (1.8) can be rewritten in a single isotropic

term. This transformation transfers the anisotropy γ to the magnetic energy terms.

If the flux density is large enough (B ≫ µ0Hc1) the vortices overlap sufficiently and

the spatial modulation of the local B can be neglected. The macroscopic magnetic

energy can be computed by using the average field which defines the average density

of vortices. On the basis of these arguments a scaling rule is obtained [2], [23]

Q(ϑ, H, T, ξab, λab, γ, δ) = sQ Q̃(εϑ H, γT, ξab, λab, γδ) , (1.12)

where ϑ is the angle between the field and the ab plane and δ is the scalar disorder

strength. Q is the desired anisotropic quantity for which the isotropic result Q̃ is

already known. εϑ =
√

γ−2 cos2 ϑ + sin2 ϑ and the prefactor sQ depend on the quan-

tity in question. For volume, energy, temperature and action sQ = 1/γ, whereas for

the magnetic field sQ = 1/εϑ . This anisotropic rescaling can only be applied to lay-

ered superconductors, when the discreteness of the layered structure is not important

(three dimensional behaviour).

1.3 Lawrence Doniach model

A very useful phenomenological model for layered superconductors is the one pro-

posed by Lawrence and Doniach (LD). The layered superconductor is viewed as

a stack of two dimensional superconductors (within each of which the GL order

parameter Ψn(x, y) is a two dimensional function), coupled together by Josephson

tunnelling between adjacent layers. As appropriate for the high temperature super-

conductors, the superconducting layers are associated with the crystallographic ab

planes (CuO2 planes) with the c axis perpendicular to them. The z coordinate is

10



THEORY 1.3. LAWRENCE DONIACH MODEL

taken along c, s is the inter-planar distance and x, y are the coordinates in the planes.

The LD free energy is given by

F(A(r), Ψn(r⊥)) = s ∑
n

∫

d2r⊥
[

α(T) |Ψn|2 +
β(T)

2
|Ψn|4 + fJ

∣

∣

∣

∣

(i∇|| +
2e

h̄
A||)Ψn

∣

∣

∣

∣

2

+
h̄2

4 mc s2

∣

∣

∣
Ψn+1 − Ψn ei In

∣

∣

∣

2 ]

+
∫

B2

2 µ0
dr (1.13)

with In(r⊥) =
2e

h̄

∫ ns+s

ns
Az(r)dz ≈ 2e

h̄
sAz(r⊥), ns) if s ≪ λ ,

where r⊥ = (x, y), n is the layer index, ns = zn, α and β are the usual GL coefficients,

mab and mc are the effective masses of Cooper pairs moving in the ab-plane or along

c. A is the vector potential where A|| = (Ax, Ay, 0), Az = A ẑ and ∇|| = ( ∂
∂x , ∂

∂y , 0).

One has ξ2
ab = h̄2/2mabα, ξ2

c = h̄2/2mcα, λ2
ab = mabβ/4µ0e2α, λ2

c = mcβ/4µ0e2α,

and the anisotropy γ = mc/mab =
√

λc/λab =
√

ξab/ξc > 1. The coupling between

the superconducting planes is determined by the prefactor of the difference fJ =
h̄2

4 mab
= h̄2/4 mc s2. A new characteristic length scale is introduced, the Josephson

penetration length

λJ = γs . (1.14)

For ξc ≫ s (λJ ≫ ξab) the difference in (1.14) may be replaced by the gradient

(i ∂
∂z + 2e

h̄ Az)Ψ(r), and the anisotropic GL theory is recovered. Because ξ → ∞ (α ∝

T − Tc) for T → Tc this limit is always realised close to Tc. In the opposite limit,

ξc ≪ s (λJ ≪ ξab) (1.14) describes weakly Josephson coupled superconducting layers.

In this regime the vortices are built up of stacks of two dimensional pancake vortices

in the superconducting layers connected by Josephson vortex strings.

The crossover between the two dimensional and the three dimensional description

occurs at a temperature Tcr. This temperature is defined by

ξab(Tcr) =
λJ√

2
, (1.15)

which is equivalent to ξc(Tcr) = s/
√

2. The crossover takes place if the parameter

ρ =
2ξ2

ab(0)

γ2s2 =
ξ2

ab(0)

ξ2
ab(Tcr)

(1.16)

is less than one, ρ < 1. With the GL temperature dependence of ξab(T) (α(T) ∝

(T − Tc)) the crossover temperature can be expressed as Tcr = Tc(1 − ρ). ρ ≈ 0.1 for

11



THEORY 1.3. LAWRENCE DONIACH MODEL

YBCO, which results in Tcr ≈ 80 K [13].

1.3.1 Pancake vortices

For strongly anisotropic high temperature superconductors, like Bi-2212 or artifi-

cial multilayers, the electronic coupling (Josephson coupling) of the layers can be

neglected. The shielding super-currents of the vortices are restricted to the supercon-

ducting layers resulting in isolated point vortices or pancake vortices in the layers. A

pancake vortex has a dipole like field which extends to a distance of the order of λab

in z-direction. Due to the symmetry of the field distribution created by each vortex,

any configuration of point vortices creates a field parallel to the c-axis. The magnetic

flux contribution of one point vortex is ≪ Φ0, only the sum of the flux contributions

along a stack of pancake vortices yields Φ0. Point vortices in the same layer repel

each other, and those in different layers attract each other, which favours their stack

like arrangement. Pancake vortices in different layers interact exclusively via their

magnetic field created in the inter-layer space. The interaction energy of a vortex

stack is logarithmic up to arbitrary large distances R, in contrast to point vortices in

an isolated thin film, where the interaction varies like 1/R for R > λ2
ab/d (d is the

film thickness) [4], [13].

In the case of a tilted field, the field component parallel to the layers cannot

be screened in absence of Josephson currents. Only the normal component of the

field, Hz, generates an Abrikosov lattice of 2D vortex stacks perpendicular to the

layers. The vortices do not tilt and the superconducting properties only depend on

the normal field Hz [18]. Deviations occur close to the layer direction and reflect a

weak electronic inter-layer coupling [13].

1.3.2 Josephson vortices

When the applied field is nearly along the ab-plane, the vortex core prefers to run

between the superconducting layers [4]. When the coupling between the layers is

weak, the vortex lines along the ab-planes are Josephson vortices or Josephson strings.

They do not have a normal conducting vortex core like Abrikosov vortices because

the order parameter is zero between the layers anyway. The dimension of the vortex

core is given by the Josephson length, λJ = γs, in ab direction and by the layer spacing

s in the c direction. The aspect ratio of the Josephson core, λJ/s = γ = ξab/ξc, is the

same as for a 3D anisotropic Abrikosov vortex along the ab-planes.
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If two pancake vortices in adjacent layers are shifted by more than a distance λJ,

a Josephson vortex will form [7].

1.3.3 Layered superconductors with Josephson coupling

For the formation of tilted vortices in layered superconductors, inter-layer Josephson

currents are required. At sufficiently high fields the vortices build up tilted stacks of

2D vortices situated at the superconducting layers and aligned along the direction of

the field. The pancakes are connected by Josephson strings between the layers. The

vortex core structure is complex and strongly depends on the tilt angle of the field.

Relevant length scales of the problem are the normal core size ξab, the Josephson

length λJ and the horizontal shift between two adjacent pancake vortices, s tan θ,

where θ is the angle between the field direction and the c axis. In contrast to a

three dimensional London model the inter-layer currents are limited by the Josephson

critical current

Jc,J =
Φ0

2πµ0λ2
cs

. (1.17)

At length scales larger min(s tan θ, λJ) away from the normal cores of the 2D vortices,

the 3D London inter-layer current is smaller than Jc,J and the 3D London model ap-

plies. Between this outer border and the normal cores the vortex can be described by

a 2D London model with purely electromagnetic interaction between 2D pancakes.

Three different angular regimes can be distinguished for the vortex core structure:

• tan θ < ξab/s: The 2D vortex cores strongly overlap and the 3D London model

is valid everywhere outside the normal cores.

• ξab/s ≤ tan θ < γ: The 2D vortex cores are displaced by more than their width,

but not enough to leave room to strings of Josephson cores joining them. Two

adjacent 2D vortices lie in one single 2D London region.

• γ ≤ tan θ: Here s tan θ > λJ and Josephson strings develop joining 2D vortices.

The cores of the vortex lines take a “staircase” form. When the field is tilted in

the xz plane, the dimension of the internal boundary of the 3D London region is

λJ in y direction and s tan θ in x direction. The 2D London regions are situated

in circles of diameter λJ around the 2D vortices and between the circles lies a

Josephson string.

At low fields well above Hc1 the vortex lattice follows the 3D London model.

Flux lines are nearly aligned with the applied field and form a distorted hexagonal
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lattice (without pinning). For tan θ ≪ γ, the intra-layer interaction of point vortices is

dominant and the pancake vortices in one layer are arranged in a regular triangular

lattice, which is shifted from one layer to the next to line up the pancake vortices with

the field direction. A cut through a bundle of seven adjacent vortices perpendicular

to the field direction gives a hexagon, squeezed in the direction of the tilt plane.

The vortex lattice in layered superconductors exhibits a large variety of different

structures because of this complex core structure. When the magnetic field is exactly

parallel to the layers, a stretched triangular lattice of Josephson vortices appears. At

a field

µ0H0 =
Φ0

2πs2γ
=

Φ0

2πsλJ
(1.18)

all inter-layer spacings are occupied by Josephson vortex nuclei. For H ≪ H0 one

obtains a distorted Abrikosov lattice of Josephson vortices situated between the su-

perconducting layers with a core section of γs2. This refers to the “lock-in” state of

the vortex lattice.

The tilted vortex state out of a “locked-in” vortex lattice takes place by forming

vortex kinks. These are connections of Josephson vortices across two adjacent layers

by Abrikosov vortex pieces. Because this kink-mediated penetration of Hz only takes

place, if λab > λJ, one can find a critical anisotropy γcr

γcr = 1.95 λab/s , (1.19)

where for γ > γcr a “combined lattice” instead of a kinked vortex lattice is expected

[6]. In this configuration parallel and perpendicular vortices coexist. [19] also points

out that at small kink densities the kinks will align along the z direction in “kink

chains”, which again form “kink walls” due to their mutual interaction.

In the combined lattice in highly anisotropic materials the weak interaction be-

tween pancake stacks and Josephson vortices should result in more complex vortex

configurations [20]. As this is not expected to be the case in YBCO, it will not be

discussed further.

1.3.4 Flux line pinning

In the presence of vortices with their magnetic induction B = µ0H = nvΦ0, a current

density J causes a Lorentz force per volume

FLF = J × B (1.20)
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on the vortex lattice. nv is the vortex area density B/Φ0. If there is no pinning force,

holding the vortices in place, they will start to move. With a drift velocity vF of the

vortex lines and considering the dissipative power density J · E = FLF · vF an electric

field E is set up

E = B × vF . (1.21)

The only opposing force to the Lorentz force in this idealised free flux flow without

pinning is an assumed viscous force per unit length proportional to vF. The losses

resulting only from moving the vortex lines through the superconductor, are repre-

sented by a flux flow resistivity ρff. It was shown, that a simple relationship between

the ρff and the normal conducting resistivity ρn holds[23],

ρff

ρn
≈ B

Bc2
. (1.22)

Therefore ρff depends linearly on the magnetic field and is constant. The flux flow IV

curve, corresponding to E = ρff J, for the zero pinning case is a straight line through

the origin. With pinning the Lorentz force has to overcome the pinning force before

flux flow can set in. This shifts the straight flux flow current-voltage (IV) response

to larger current densities. The J value, where the straight IV curve cuts the zero

voltage axis, is defined as the critical current density Jc. So far no thermal activation

of the flux lines has been considered.

IV curves from transport measurements in HTSC do not show such a straight

increase of voltage setting in sharply at the critical current density. The voltage

sets in more slowly and curved because of thermally activated depinning of vor-

tex lines already below the critical current density. This flux creep is described to

thermally activated jumps of vortices or bundles of vortices over an energy barrier

U = U(J/Jc, B, T). The probability for a jump is ∝ e−U/kBT and the energy bar-

rier vanishes at the critical current density. Without an applied current density the

thermally activated vortex jumps do not result in a netto drift of magnetic flux and

therefore no electrical field is observed. A Lorentz force favours hops in the direction

of the force, i.e. it decreases the energy barrier in the fLF direction and increases it for

jumps in the opposite direction. The electrical field is proportional to the difference

in the jump rates [23]. At J ≈ Jc the jump rate opposite to the Lorentz force can be

neglected. Using a phenomenological activation barrier, U(J) = U0 ln(Jc/J) [1], the

electrical field is given by

E ∝

(

J

Jc

)n

. (1.23)
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There are two mechanisms explaining the effectivity of defects acting as pinning

centres. The first assumes, that the order parameter is reduced or suppressed at

the defect by the disturbance in the superconducting material. A vortex can avoid

its loss of the condensation energy when its core is located at the defect. The sec-

ond mechanism of pinning is due to the scattering of quasi-particles by the defect

[22]. A scattering centre helps a superconductor to sustain deformations of the or-

der parameter up to distances of the order of the zero temperature coherence length

ξ(0). Hence, it is energetically advantageous for a region, where the order parameter

varies strongly, like in a vortex core, to coincide with a scattering centre.

In YBCO single crystals the pinning is predominantly due to randomly dis-

tributed small defects. In thin films the pinning is stronger and dominated by

correlated defects like twin-plains, anti-phase boundaries, dislocations and surface

features.

1.4 Low angle grain boundaries

The behaviour of grain boundaries in HTSC strongly depends on the misorienta-

tion angle between adjoining superconducting grains. High angle grain boundaries

(> 10 o misorientation) (HAGB) generally show a low critical current and a cur-

rent voltage characteristic exhibiting Josephson-coupled behaviour. Low angle grain

boundaries (< 10 o misorientation) (LAGB) provide a strong coupling of adjacent

grains, although the observed intergrain critical current density is usually lower than

the intragrain Jc.

To investigate the basic properties of the grain boundary interfaces, the bi-crystal

technology was invented. It allows single, well defined grain boundaries to be fabri-

cated and analysed in thin films samples. The measurements presented in this work

were performed on a 5 o [001]-tilt grain boundary grown on SrTiO3. This means, that

the misorientation angle is 5 o and the [001] crystal direction, is shared by both grains.

“Tilt” is used to refer to a rotation around an axis in the plane of the grain boundary

and “twist” to a rotation of the crystal grains around the axis perpendicular to the

grain boundary plane. In the grain boundary used in this work, both grains are c

axis oriented thin films, where the ab planes are misaligned (symmetrically) by 5 o.

On an atomic level the LAGB is formed by adding atomic layers in the grain

boundary plane resulting in edge dislocations. The length of the Burgers vector b,

measured in a transmission electron microscope (TEM) on a 10 o [001] − tilt LAGB,
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was found to be 0.38 nm [10]. It is connected, by Frank’s formula D = |b|/2 sin(θ/2),

with the dislocation distance D and the misorientation angle θ [17]. It was concluded

from TEM investigations of grain boundaries in HTSCs that the observed reduced

current densities do not result from the coarse defects in the grain boundaries, such

as voids or impurity layers. High- and low angle grain boundaries showed a clean

and well defined structure, where the grains appear unaltered right up to the bound-

ary. At larger θ, the distance between the dislocations decreases and the separate

dislocations found in LAGB merge in a continuous interface layer typical for HAGB

weak links.

Around the dislocation cores the superconducting order parameter is suppressed.

The non-superconducting core regions can result from local compositional and hole

concentration variations, additional electron scattering and significant strains near

the dislocation cores [15]. At least for LAGB the decrease of the critical current

across the grain boundary can be explained by the reduction of the superconducting

cross section.

The non superconducting dislocation cores have an effective radius of the order

of ≈ 1 nm. This is comparable to the zero temperature coherence length in YBCO

and therefore the dislocation cores can act as pinning centres [8].

The current voltage response of a LAGB is determined by the flow of vortices

along the grain boundary [17], [9]. The IV curves measured across a LAGB show a

linear rise of the voltage. For an applied magnetic field perpendicular to the plane of

the thin film (H||c) and parallel to the grain boundary plane Abrikosov vortices are

pinned by the dislocation cores. If J (J ⊥ H) is in excess of the critical current density,

a narrow line of vortices in the LAGB moves in response to the Lorentz force along

the grain boundary (flux channelling). The voltage is generated over a short distance

of the order of the vortex lattice spacing around the boundary resulting in very high

electric fields. In [9] it was assumed that only a single row of vortices moves. The

relation (1.22) could be confirmed and the derived upper critical fields were in good

agreement with the expected values.

From the electric field derived in [9] it was concluded, that only a single row

of vortices move along the grain boundary. In a strongly coupled LAGB the vortex

lattice in the grains is not much disturbed by the grain boundary and dislocation

cores should be effective pinning centres for Abrikosov vortices. Therefore it is not

clear, why Abrikosov vortices should slip in a single row along the grain boundary. In

[14] it was pointed out, that due to defects in the material a decrease of the depairing

current density to values still above than the intragrain Jc will have an effect on
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the vortex cores. So even if the LAGB does not directly limit the intergrain Jc by

decoupling the grains, the core structure of vortices located in the grain boundary

will be changed. Considering a planar defect with a reduced current density in

the direction perpendicular to the plane it was shown, that the length of the vortex

core along the defect becomes much larger than the unchanged core size, ξ, in the

transversal direction. Therefore the effectivity of pinning centres will be reduced

for the direction parallel to the defect plane. These modified vortices are called

Abrikosov-Josephson vortices.
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Chapter 2

“Grain boundary” films

2.1 Sample

The sample was a 200 nm thick YBa2Cu3O7−δ thin film grown by pulsed laser depo-

sition on a 5 o [001]-tilt grain boundary bi-crystal SrTiO3 substrate. The dimensions

of the substrate and, therefore, of the the sample are approximately 5 × 10 mm. The

film was patterned by photo-lithography and Ar ion milling. A layer of Ag followed

by a layer of Au were sputtered onto the film surface to form the contacts [11].

Fig. 2.1 shows on the left a photograph of the middle part of the sample. The pho-

tograph was taken with an optical microscope at a magnification of 50:1. The grain

boundary is vertical and marked by a dashed line. The dark stripes are YBa2Cu3O7−δ.

The pattern provides 10 µm wide tracks which connect the thick horizontal bars end-

ing at the contact pads. There are three vertical tracks parallel to the grain boundary

which could be used to obtain the intragrain Jc and four tracks traversing the grain

boundary. The tracks can be seen more clearly in the sketch provided on the right.

The tracks are numbered from 1 to 7. For the measurements presented in this work

only the grain boundary tracks 1 to 4 and one track not crossing the grain boundary,

track 5, were used. The tracks numbered from 1 to 4 form an angle of 90 ◦, 60 ◦,

45 ◦ and 30 ◦, respectively, with respect to the grain boundary. This angle is the grain

Reference a b c d e f g

d in mm 0.175 0.200 0.251 0.350 0.238 0.109 0.230

Table 2.1: Distance of the voltage contacts d. The letters refer to the dimensions in the track outline
in Figure 2.1.
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Figure 2.1: Photograph of the middle section of the pattered thin film. It was made with a magni-
fication of 50:1. The dashed red line marks the grain boundary. The dark parts are YBa2Cu3O7−δ.
The actual tracks are the thin stripes traversing the grain boundary at the given angles representing
Φgb. The green arrow symbolises the magnetic field applied in the film plane and rotated by ϕ. In the
corners the nearly quadratic gold covered contact pads with pieces of Indium on the top are visible.
On the right the outline of the tracks are shown. The numbers from 1 to 7 mark the tracks usable for
transport measurements. The data presented here was taken on tracks 1 to 5. The arrows mark the
distance of the voltage contacts for each track. The corresponding lengths are listed in Table 2.1.

boundary angle Φgb and will be used to identify the corresponding track in the text.

Track 5 will be referred to as “no GB”.

The arrows mark the distance of the voltage contacts for each track. The lengths

were determined from the photograph with a drawing program and are given in

Table 2.1. Each length was read off five times to get a rough error estimate which

resulted in an expected accuracy of ±0.001 mm. The lengths vary by maximal 1.5 %

from the theoretical length calculated by d(Φgb = 90 o)/ sin Φgb. In cases where two

10 µm tracks meet, the distance was taken at the middle of the track.

2.2 Transport measurements

2.2.1 Handling thin film samples

YBCO is sensitive to moisture. The samples were usually kept in a dry-box. The

exposure to moisture in normal air already leads to a steady degradation of the sam-

ple so that the handling of the sample should be kept as short as possible. If the

sample is removed from the cryostat, it has to be heated above room temperature

already in the cryostat to avoid condensation of water on the thin film. Although,

20



“GRAIN BOUNDARY” FILMS 2.2. TRANSPORT MEASUREMENTS

because of their very smooth and crack free surface, thin films are relatively resistant

to moisture, they are also quite thin. The chemical reaction of YBCO with water is

irreversible and leads to insulating reaction products. A thin layer of this reaction

products is built up shortly after the first exposition to air and passivates the rest

of the material to a certain degree. Because of the reduced cross-section of the con-

ducting YBCO, film degradation manifests itself in an increasing normal conducting

resistance and an unchanged superconducting transition temperature. During our

experiments, no essential degradation effects of the film were observed.

2.2.2 Mounting the sample

Before mounting the sample on the sample stage the probe wiring has to be checked

for proper condition. Also the current angular range settings of the stepper motors

have to be checked. The spring loaded contacts are put into the correct position in the

sample holder and the contact pins get connected to the probe. For the measurements

always four pins were used, two for the sample voltage and two for the sample

current. The sample is held in place only by the spring force of the contact pins.

There was no indication, that four pins are not enough to keep the sample reliably at

its position.

Especially the first time a sample gets mounted it has to be checked under the

optical microscope for unwanted connections. Because of imperfections in the pat-

terning process unetched YBCO often remains at the border of the substrate, which

can lead to unintended current flow between the contact pads. The remaining areas

of the thin film can be scratched with a sharp knife or a diamond tip to break these

connections.

The indium pads are slices cut from an indium wire with a razor blade. They are

put onto the contact pads of the thin film with one tip of a pair of tweezers. To avoid

the indium pads from sticking too well to the tweezers’ tip, the tip can be wrapped

with Teflon tape. After placing all the indium slices they are pressed onto the film

with the Teflon tape covered flat back of the tweezers. If some indium pieces on

adjacent contacts get too close, they can be cut with a razor blade on the film.

It is not advised to measure the resistance of grain boundary tracks with an ohm-

meter to check for the connection between the measurement setup and the film. The

output voltage or current of the ohmmeter is usually too high and may break the

sample. When putting the sample holder on the sample, it was not possible to see if

the spring loaded contacts press properly onto the indium pads. To have some feed-
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Track 90 o 60 o 45 o 30 o no GB

Tc0 in K 89.2 89.2 89.1 89.1 89.0
.

Table 2.2: Evaluated values of Tc0.

back about the connection with the sample, the two voltmeters in the measurement

setup in the auto-range mode were used. If good contact is achieved, the voltmeters

stop drifting and show a usually small, but constant offset value in the smallest

voltage range.

If the mounting procedure was successful the probe is put into the cryostat and

the sample cooled down. Usually the measurement of the transition temperature is

done at this first cool down. Next the self field critical current at 77 K was measured.

If the IV curves meet the expectations, the rotational measurements with applied

field were started.

In the present measurements the temperature control was performed with two

Oxford Instruments temperature controllers, an ITC503 for the variable temperature

insert (VTI) heater and an ITC4 for the sample heater in the sample stage. The He

gas temperature in the VTI was usually set about 10 K below the desired sample

temperature to limit the current of the probe heater. This was done to protect the

probe heater and to reduce electromagnetic interference of the heater current with

the measurement. The sample temperature was measured with the ITC4 using a

linear table in the ITC4. The temperature was calculated employing the calibration

data of the Cernox resistor (CX-1050-AA) in the measurement program. At the VTI

heat exchanger a Carbon Glass resistor (CGR-1-500) is used.

2.2.3 Transition temperature

The measurements of the superconducting transition temperature Tc are shown in

Fig. 2.2. The electrical field in the right hand plot was calculated from the distances

between the voltage contacts given in Tab. 2.1. Except for the 30 o grain boundary

the different measurements collapse approximately to one curve. No influence of

the grain boundary can be seen. Tc0 was evaluated by taking the intersection of the

tangent through the inflection point of the transition with the x axis. The results are

summarised in Table 2.2.
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Figure 2.2: Measurements of the superconducting transition temperature Tc. The left graph shows the
original sample voltage and the right plot shows the electrical field, both versus the sample temperature.
The electrical field was calculated by dividing the voltage by the lengths given in Table 2.1.

2.2.4 Self field critical current

The self field critical current density on tracks traversing the grain boundary depends

on Φgb. It is assumed, that this cannot be attributed to the difference of the distance

between the voltage contacts. The (arbitrary) voltage criterion of 0.5 µV for all critical

current evaluations presented here was chosen to cross the IV curve at a point, where

the voltage rise is already quite steep. This should avoid a strong dependence of the

evaluated Jc on the chosen voltage criterion. Secondly, the measured voltage in a IV

curve of a grain boundary track should result from a potential difference appearing

directly across the grain boundary. This is expected because of the reduced current

carrying capability of the grain boundary. The rest of the thin film (“the grains”),

including the area where the sample voltage is sensed, should not contribute an

additional potential difference.

Low angle grain boundaries (LAGB) are built from a row of dislocations to accom-

modate for the misalignment of the adjacent grains. In a simple dislocation model

the influence of the dislocation on the electrical properties is localised in a cylindri-

cal volume enclosing the dislocation reaching from the surface to the film/substrate

interface of the thin film. This cylinder is not superconducting and the rest of the

23



“GRAIN BOUNDARY” FILMS 2.2. TRANSPORT MEASUREMENTS

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  10  20  30  40  50  60  70  80  90

I c
/

I cG
B
(9

0
˚)

Φgb ( ˚)

34.6 ˚

"no GB"

Ic/Ic
GB(90 ˚)

1/sin(Φgb)

Ic
IG/Ic

GB(90 ˚)

D

r

D

D

L
w

Φgb Φgb

Figure 2.3: Normalised self field critical current in dependence of the grain boundary angle Φgb. Ic is

the self field critical current, IGB
c and IIG

c are inter- and intragrain critical currents, respectively. For
comparison with the intergrain critical currents, IIG

c /IGB
c (90 o) is plotted at Φgb = 0 o. The sketch on

the right shows the dimensions used in the text.

material behaves as an undisturbed superconductor. The dependence of the self field

critical current on the grain boundary angle, therefore, reduces to a geometrical rela-

tionship of the effective cross sections.

The geometry is also explained in the sketch in Fig. 2.3. D is the distance of

adjacent dislocations, r is the radius of the dislocation cylinder, d = D − 2r, wtrack

is the width of the track, tfilm is the thickness of the thin film and ndisloc(Φgb) =

wtrack/(D sin Φgb) is the number of dislocations in the grain boundary. For a 4 o

grain boundary D = 5.6 nm [8]. With our assumptions the current density should

not depend on the grain boundary angle, only the cross-section does. The effective

cross-section, Atrack,eff(Φgb) = ndisloc(Φgb) · d, and it follows

IGB
c (Φgb)

IGB
c (90 o)

=
1

sin Φgb
. (2.1)

This equation is plotted in Fig. 2.3. At Φgb = 0 o the value of IIG
c /IGB

c (90 o) is added

for comparison. Every self-field intergrain IGB
c is smaller than the intragrain crit-

ical current. The angle of 34.6 o marked in Fig. 2.3 is the limiting angle, where

the effective cross-section of the grain boundary is equal to the track cross-section,
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Atrack,eff(Φlimit
gb ) = wtrack tfilm. Rearranging this relation yields

sin Φlimit
gb = 1 − 2r

D
=

Ic(90 o)

IIG
c

, (2.2)

where the assumption was used, that the inter- and intragrain current densities are

equal and the observed difference in the measured current densities again only de-

pends on the different cross-sections. The equality of the inter- and intragrain critical

current density solved for the dislocation radius leads to

r =
D

2

(

1 − Ic(90 o)

IIG
c

)

. (2.3)

The evaluation of (2.3) for the measured self-field data results in r = 1.2 nm. Even

though this dislocation picture is very crude, it seems to give at least an rough ex-

planation of the measured self-field critical currents.

2.2.5 Rotational measurements

For all rotational measurements a configuration was chosen where the magnetic field

is rotated parallel to the ab-planes. On tracks without a grain boundary the critical

current is determined by intrinsic pinning and the angular dependence is attributed

to the variation of the Lorentz force. The usual explanation assumes that the de-

pinning of the vortices is caused only by the Lorentz force acting on them. When

the current density is parallel to the magnetic field the Lorentz force vanishes and

the critical current should be maximal (force free configuration). If the field is perpen-

dicular to the current direction, the Lorentz force is maximal and the critical current

at its minimum (maximum Lorentz force configuration). This behaviour was found on

the track measured without grain boundary and on most of the grain boundary

tracks. As shown earlier [12], the effect of the grain boundary is a pronounced drop

of Jc when the field is aligned with the grain boundary. The minimum of the crit-

ical current is found at an angle, where the field is exactly aligned with the grain

boundary and the critical current rises symmetrically around this angle. If the criti-

cal current determined by the intrinsic pinning is low enough, the expected angular

behaviour due to intrinsic behaviour is overlaid by the symmetric drop around the

grain boundary. In some cases of the present measurements the angular dependence

of the critical current is ruled only by the grain boundary over the whole angular

range.

25



“GRAIN BOUNDARY” FILMS 2.2. TRANSPORT MEASUREMENTS

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

-250 -200 -150 -100 -50  0  50  100  150

J c
(1

010
A

m
-2

)

ϕ ( ˚)

1 T
2 T
3 T
4 T
5 T
6 T

 1

 1.5

 2

 2.5

 3

-250 -200 -150 -100 -50  0  50  100  150

J c
/

J c
(0

˚)

ϕ ( ˚)

|cosϕ|-1

1 T
2 T
3 T
4 T
5 T
6 T

Figure 2.4: Angular dependence of the critical current density on a thin film track without a grain
boundary. The data were obtained at 60 K from 1 to 6 T. On the right panel each curve is divided by
Jc(0 o) for comparison with the angular dependence of a straight vortex description, | cos ϕ|−1.

2.2.6 Grain boundary free track

With an applied magnetic field a strong dependence of the observed critical current

density on the field direction evolves. On a track without a grain boundary the most

fundamental explanation is based on the Lorentz force acting on straight vortices in

a type II superconductor. The vortices are assumed to be aligned with the applied

magnetic field and pinned by a homogeneous and isotropic pinning force density fp.

The self field of the superconducting current and distortions of the vortices due to the

superconducting volume are ignored. Only the force balance between the Lorentz

force density and the pinning force density

JΦ0 sin α = fp (2.4)

is considered. The current density J is assumed to be parallel to the track and the

angle between J and the field direction is α. fp increases with the current density in

an IV measurement until it reaches a material specific maximum value, f ∗pm. Beyond

this point the pinning force does not suffice to hold the vortices in place and a voltage

appears along the track. The critical current density Jc is defined as the value of J,

where a certain voltage criterion (5 · 10−7 V in the Jc evaluations presented here)

is reached. The critical current density therefore defines in this simple picture the
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maximum pinning force density

JcΦ0 cos ϕ = f ∗pm . (2.5)

In (2.5) the origin of ϕ was shifted so that ϕ = 0 o corresponds to the maximum

Lorentz force configuration and ϕ = 90 o to the force free configuration. The expected

dependence of Jc on ϕ in this picture is ∝ | cos ϕ|−1. At the minimum of this curve

f ∗pm can be determined as Jc(0 o)/Φ0. This straight vortex picture fails to describe the

force free case because it produces a divergence at ϕ = 90 o.

Figure 2.4 shows on the left rotational measurements of Jc obtained at 60 K in

magnetic fields from 1 to 6 T. In the plot on the right the same curves are divided

each by Jc(0 o) for comparison with the expected angular dependence following from

the straight vortex picture. One observes, that the higher the applied magnetic field

the wider the applicable angular range of the model. The approximate angular

range around 0 o, where the normalised Jc curves coincide with the theoretical curve,

amounts to about ±20 o for a magnetic field of 1 T, ±30 o for 2 and 3 T, ±50 o for 4 T

and extends to about ±60 o above 5 T.

2.2.7 Grain boundary tracks

Figure 2.5 shows an overview of the angular dependence of Jc measured on grain

boundary thin film tracks. In the left plot measurements at 40 K from 1 to 6 T on

a 90 o grain boundary track are presented. Each curve is shifted by a certain angle

∆ϕ to emphasise the magnetic field dependence. The force free maxima do not

systematically decrease with increasing magnetic field in contrast to the decrease of

the minima, where the magnetic field is parallel to the grain boundary. It is assumed,

that the whole angular range of the Jc curves in the left plot is determined by the

flux-breaking/rejoining process of the vortices in the grain boundary, because they

were measured on a 90 o grain boundary track. The intragrain critical current curve

would have its minima and maxima at the same angular positions as the actually

measured Jc curves. But an intragrain critical current force free maximum should,

especially at higher magnetic fields, be narrower and one would expect a stronger

field dependence of the force free critical current density (see Fig. 2.4). In the right

panel of Fig. 2.5 angular dependencies of Jc measured on a 60 o thin film track at

60 K and magnetic fields of 1, 3 and 5 T are shown. They are compared to the angular

dependence at the same temperature and fields taken from the thin film track without
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Figure 2.5: Angular dependence of the critical current density on grain boundary thin film tracks. In
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certain angle ∆ϕ for better comparison. The right plot contains Jc measurements at 60 K and magnetic
fields of 1, 3 and 5 T. The curves measured on a thin film track without grain boundary (without
symbols) are compared to measurements on a 60 o grain boundary track (with symbols). No scaling is
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grain boundary and shifted by Φgb (no symbols). All grain boundary curves show

the symmetric channelling minimum at 0 o but, except for the 1 T case, the maximum

is clearly “cut off” by the minimum of the intragrain critical current. The 1 T curve

shows the same behaviour as the plots in the left graph of Fig. 2.5. The comparison

with the corresponding curve from the grain boundary free track suggests, that the

intragrain critical current density was larger than the channelling dominated one

over the whole angular range. On tracks with a grain boundary angle other than

90 o the intragrain Jc minimum is shifted closer to the angular position of the force

free maximum of the intergrain Jc. For these cases the two different critical current

regimes can usually be clearly identified.

Grain boundary angle scaling

In 2.2.4 the dependence of the self field critical current on the grain boundary angle

Φgb was discussed. If the given interpretation of a reduction of the cross section

due to non superconducting dislocation cores is correct, this effect should not vanish

when a magnetic field is applied. In Figure 2.6 the rotational measurements at 50 K
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and two magnetic fields, 1 and 6 T, for all four grain boundary tracks are shown. For

the calculation of Jc the thin film track cross-section of 2 · 10−12 m2 was employed. In

the left plot the Jc values are in addition multiplied by sin Φgb, which is the necessary

correction for the grain boundary angle dependent cross-section. The scaled Jc curves

measured on different grain boundary tracks collapse at least close to ϕ = 0 o, which

justifies this scaling approach.

For the rest of this chapter the scaling of the critical current density by sin Φgb in

combination with the track cross-section was used to eliminate effects on Jc only re-

sulting from the length difference of the grain boundary crossing the thin film track.

It should also make results obtained for different Φgb values more comparable. The

difference between the track cross-section and the effective cross-section on a grain

boundary track for Φgb = 90 o was ignored. The evaluation of the effective cross-

section (dislocation radius) as described in 2.2.4 requires the additional assumption,

that the inter- and intragrain critical current densities are equal. It was preferred to

avoid this assumption.

It should be noted, that the current flow across the grain boundary is assumed to

be perpendicular to the grain boundary plane. If this were not the case, the variation
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Figure 2.7: The left illustration shows the coordinate system and angles used for plots and in the
evaluation of the Jc transport data. The black box should represent a cutout of the track with a grain
boundary (red). The y axis is always perpendicular to the grain boundary plane. On the right the
grain boundary volume is drawn in more detail. The xyz coordinate system is the same as in the left
plot and also the one utilised in the computer program. The ∆x∆y∆z coordinate system is used in
the analytical description. The ∆x and ∆y coordinates coincide with the x and y coordinates. The ∆z
coordinate differs from the z coordinate by the maximal displacement of the vortex.

of the Lorentz force with the grain boundary angle would also lead to the described

scaling behaviour, but the dependence of the self field Jc in Φgb would not be covered

by such an alternative explanation. In addition one would expect an unsymmetrical

channelling minimum, which is not observed.

Elastic single vortex model

To describe the angular dependence of the critical current on a thin film grain bound-

ary track, a single vortex model was proposed in [12]. It is assumed that the vortex is

a string with constant line energy ǫl (force or energy per length) situated in a continu-

ous isotropic superconducting volume. The superconductor is characterised only by

a maximum pinning force density (force per length) derived from a measured critical

current density. Without a current the vortices are assumed to align with the applied

magnetic field and distortions of the field due to the geometry of the superconduct-

ing volume are ignored. When a current flows through the sample, the Lorentz force

bends the vortex string elastically away from the straight field direction. On a vortex

line segment the Lorentz force density is counteracted by the sum of the elastic force

density and the pinning force density. The magnitude of the pinning force density

is limited by its maximum value. The maximum pinning force density inside the

grains, f ∗pm, is assumed to be much larger than the maximum pinning force density
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fpm in the grain boundary region. The bulk superconductor is therefore also referred

to as high pinning region (HPR) and the grain boundary is called the low pinning region

(LPR).

The grain boundary has a thickness dgb and the length of a straight vortex crossing

the grain boundary at an angle ϕ is D = dgb sin ϕ. The coordinate systems and angles

used in the following discussion are described in Fig. 2.7. The xyz coordinate system

is utilised in the computer programmed iteration. The ∆x∆y∆z coordinate system

is used in the analytical description in Section 2.2.7. Its origin is positioned at the

middle point of the vortex path with the most negative z coordinate. As should

become clear from the illustration in Fig. 2.7, the ∆x and ∆y coordinates coincide

with the x and y coordinates. The ∆z and z axis point in the same direction and

z − ∆z is the vortex displacement.

The basic idea of the model is, that a vortex traversing the grain boundary will

be pinned strongly in the grains and far less in the grain boundary. With an applied

current the Lorentz force density fLF will act along the whole vortex equally. When

fLF is sufficient to de-pin the vortex in the grain boundary but not in the grains,

the part of the vortex traversing the boundary will bend and eventually break. The

breaking of a vortex means, that the line tension of the vortex cannot counteract the

forces acting on it. The vortex will extend in a larger and larger growing loop until

it comes close enough to a neighbouring vortex, where it will cut and cross-join with

it. The resultant effect of this cutting and cross-joining process is a vortex movement

along the grain boundary (also referred to as vortex channelling). With respect to

the transport measurements the voltage rises linearly with the current as it would

be in the flux flow regime. Of course this elastic single vortex model cannot give

any information about the channelling mechanism itself. The expectation is to find a

boundary for the maximum possible current, where channelling sets in. This should

be close to the measured critical current.

In [12] the vortices in the grain boundary are assumed to be straight and the

effect of the line energy is taken into account by a vortex breaking force Fbreak. This is

assumed to be the force necessary to break a vortex in the absence of pinning in the

grain boundary volume. It acts on a vortex line of length D so the breaking force

density is Fbreak/D. For a current density J the absolute value of the Lorentz force

density on a single, straight vortex traversing the grain boundary at an angle ϕ is

given by

fLF = Φ0 J cos ϕ . (2.6)
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The vortex breaking sets in when fLF is sufficient to counteract Fbreak/D and fpm,

therefore at J = Jc the Lorentz force density is equal to Fbreak/D + fpm leading to

Jc(ϕ) =
Fbreak

Φ0 dgb
tan ϕ +

fpm

Φ0 cos ϕ
. (2.7)

This result was confirmed in [21] for a vortex bent to a half circle as a limiting case

for small ϕ. Therein it was also shown, that in this case Fbreak is equal to 2ǫl.

Numerical approach

In [21] the simplification of straight vortices in the grain boundary was dropped. The

analytical result (2.7) for infinite HPR pinning was achieved for the limit of ϕ → 0 by

applying the analytical form of the elastic force density

f e(t) =
ǫl

|∂tr|4
∂tr × ∂tr × (∂2

t r × ∂tr) , (2.8)

the Lorentz force density

f LF = Φ0 J × ∂tr

|∂tr|
, (2.9)

and solving the force density equation

f LF + f e + f pm = 0 (2.10)

to achieve the result (2.7). r(t) is the parametrisation of the vortex line path C (smooth

curve) with
∫

C |∂tr|dt over the vortex path being the length of the vortex.

To extend the applicable angular range a numerical approach was utilised again

assuming an infinite f ∗pm. The vortex was built up of nodes connected by straight

vortex segments. The vector sum (2.10) was solved iteratively for every node and

the contribution of ǫl and fpm was analysed. The numerically calculated angular

dependence of the current density could be described well by a fit curve containing

these two parameters [21]:

Jc(ϕ) =
2ǫl

dgbΦ0
(tan |0.78ϕ|+ 0.22 sin |ϕ|) +

fpm

Φ0
√

| cos ϕ|
. (2.11)

It should be noted, that this is not the complete result given in [21], but results from

the numerical calculation. (2.11) confirms the result (2.7) for small ϕ. It should be
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applicable for almost the angular range from 0 o to 90 o. Unfortunately, a compar-

ison with the data obtained in this work left some questions open. Of course the

divergence at ϕ = 90 o is unphysical and the authors of [21] were perfectly aware of

this fact. They proposed an upper estimate for the force free critical current density

assuming a helical vortex configuration. Some of the Jc curves in this work seem to

never leave the channelling regime and the force free maxima round off rather flatly,

almost sinusoidal. The steep rise of the tangent at larger angles is not found and the

additional divergence of the (cos ϕ)−1/2 term does not improve this. It could have

been expected, that the very general numerical approach should have covered the

force free direction better because, as shown in [21], it produces helical vortices for

angles close to 90 o. The second problem arises at ϕ close to zero because the corner

like rise was found only in a few of the measured curves. Most of the critical current

density minima round off and are broader. It does not help to correct the maximum

pinning force density below the measured channelling minimum of Jc (in (2.7) and

(2.11) Jc = fpm/Φ0 for ϕ → 0) as was done in [21], where the model was fitted to a

rotational measurement on a grain boundary. This leads to the awkward situation of

having two LPR pinning force densities: one, that stems from the picture of straight

vortices not pinned by the grains at ϕ = 0 o and which is therefore determined by

Jc(0 o), and another, that is introduced to make the fit look better. Between these two

limiting cases of ϕ the model seems to reproduce the measured curves reasonably

well.

Alternative solution for the numerical approach

During the process of re-implementing the numerical iteration proposed in [21], I

become aware of the fact that the whole problem is highly symmetrical and that

it should be possible to simplify the calculation. It turned out that this is indeed

possible for the case of zero pinning force density. The resulting equation reproduces

the results of the numerical iteration algorithm in the whole angular range and is

also in agreement with the analytic spiral vortex solution given in [21]. The effect

of a nonzero LPR pinning force density could be at least approximately included in

this equation. The advantage of this analytical result compared to (2.11) is, that it

allows an inspection of the origins of the non-physical properties and might point

out possible corrections.

Like in the numerical calculation the vortex is split up into a number of nodes

connected by straight segments. Unlike the previously described computer model,
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Figure 2.8: Projection of a numerically calculated vortex spiral (ϕ=50 o) on the xy plane (left) and on
the xz plane (right). R is the vortex radius, t is the curve parameter used in the parametrisation of the
vortex line and z0 is the z coordinate of the middle axis of the circular vortex spiral.

the length of the straight segments, l, is held constant, not the number of nodes. The

discrete form of f LF acting on the i-th node between the segment i − 1 and i is

f i
LF =

Φ0

l
J × l

êi−1
l + êi

l

|êi−1
l + êi

l|
, (2.12)

and the discrete form of f e is

f i
e =

ǫl

l
(êi

l − êi−1
l ) . (2.13)

êi
l is a unit vector in the direction of i-th segment (between the nodes with indices

i and i + 1). Looking at a usual vortex line produced by the numerical model at

intermediate angles certain features become obvious (see Fig. 2.8). Because there are

only two vectors in the calculation, the current vector and the field vector, the result

has to be point symmetric. Plotting the vortex curve projection onto the xy plane

shows that every x and y component of the tangent turns up two times along the

vortex. The projection will always go through the point x = 0, y = 0. Looking at

the curve in the yz plane reveals that the z component of the tangent is zero in the

34



“GRAIN BOUNDARY” FILMS 2.2. TRANSPORT MEASUREMENTS

middle at y = 0 and is of equal magnitude and opposite sign for two opposite y

positions of the same magnitude. With this symmetry the sum of force densities over

all points can be calculated. We are searching for the force equilibrium (2.10). If it is

fulfilled for every single node, also the sum over all nodes will fulfil this equation.

Especially (2.13) gives a very simple form, when the summation is elaborated over

several nodes, not even depending on any symmetry:

∑
nodes

f i
e =

ǫl

l
(êend

l − êstart
l ) . (2.14)

For brevity let us rename the intermediate tangent unit vector in (2.12) by êi′
l =

(êi−1
l + êi

l)/|êi−1
l + êi

l|. Note, that the i′-th segment (in the direction êi′
l ) is the tangent

at the i-th node needed for calculating the Lorentz force acting on the i-th node. J

points in the y direction, so the cross product for the i′-th segment is

f i
LF =

Φ0

l







Jl êi′
l,z

0

Jl êi′
l,x






, (2.15)

and summing the z and x components of the vortex segments starting at (∆x, ∆y, ∆z) =

(0, 0, 0) and ending at (∆x, ∆y, ∆z) results in ∑i′ lêi′
l,z = ∆z and ∑i′ lêi′

l,x = ∆x. Therefore

we have

∑
nodes

f i
LF =

JΦ0

l







∆z

0

−∆x






. (2.16)

To keep it simple, let us at first ignore the pinning force density and write down

∑i f i
LF + f i

e = 0 explicitly for a vortex piece starting at the ∆x∆y∆z origin (middle of

the vortex path inside the LPR) and an arbitrary point (∆x, ∆y, ∆z) in the positive ∆y

half space

(Φ0 J/l) ∆z + (ǫl/l) (êl,x − êc
l,x) = 0

0 + (ǫl/l) (êl,y − êc
l,y) = 0 (2.17)

−(Φ0 J/l) ∆x + (ǫl/l) (êl,z − êc
l,z) = 0 .

êc
l,x, êc

l,y and êc
l,z are the components of the tangent unit vector at the middle of the

vortex. After eliminating l and using a′ = JΦ0/ǫl and êc
l,z = 0, one arrives at three
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equations:

êl,x = êc
l,x − a′∆z êl,y = êc

l,y êl,z = a′∆x . (2.18)

Putting these components of the tangent unit vector into the normalisation equation

1 = ê2
l leads to a quadratic equation for the ∆z coordinate with the result

∆z =
êc

l,x

a′
±

√

(

êc
l,x

a′

)2

− ∆x2 . (2.19)

The solution calculated by this approach is a circular spiral with a radius of

R =
êc

l,x

a′
=

√

1 − ê2
l,y

a′
(2.20)

and a constant slope in the current direction determined by êl,y. Because êl,y is con-

stant, it is directly related to the overall vortex length L:

êl,y =
2∆y

L
. (2.21)

(∆xgb, ∆ygb, ∆zgb) refers to the point where the vortex path leaves the LPR region in

the positive y half space. ∆zgb therefore represents by definition the vortex displace-

ment in the negative z direction.

Parametrisation

For the further discussion it is helpful to introduce a parametric curve representation

of (2.18):

r(t) =







R sin t

k t

R(1 − cos t)






. (2.22)

The path of the vortex line described by r is chosen to be bent in the −z direction. The

components are again in the ∆x∆y∆z coordinate system. t is half the opening angle

of the circular projection with the radius R of the vortex line on the xz plane, where

the point with t = 0 lies on the z axis at the origin of the ∆x∆y∆z system. The central

axis of the spiral is at z = z0, see also Fig. 2.8. This should be appropriate for a field

and current vector pointing into the positive y half space. Because the force densities

only depend on derivatives of r, constants can be added to every component without

changing the force density equilibrium equation. Only shifts in the z component are
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interesting in our context. Using the definitions (2.8) and (2.9) one finds

f e = − ǫlR√
R2 + k2







sin t

0

− cos t






= −ǫl

R
(1 − ê2

l,y)







sin t

0

− cos t






and (2.23)

f LF =
JRΦ0√
R2 + k2







sin t

0

− cos t






= JΦ0

√

1 − ê2
l,y







sin t

0

− cos t






(2.24)

where êl,y = k/
√

R2 + k2 has been employed. The resulting equilibrium equation

(2.10), fpm = 0, is

J =
ǫl

Φ0
√

R2 + k2
. (2.25)

The same result can be achieved from the first or the third equation in (2.18) using

êl,x = (R cos t)/
√

R2 + k2 and êl,z = (R sin t)/
√

R2 + k2.

The dependence on the field direction ϕ comes into play by fixing the vortex line

boundary conditions:

r(t1) =







R sin t1

k t1

R(1 − cos t1)






=







∆xgb

∆ygb

∆zgb






=







(dgb cos ϕ)/(2 sin ϕ)

dgb/2

R − z0






. (2.26)

The vortex path starts at t = −t1 and reaches the other end of the grain boundary at

t = t1. The z coordinate of the midpoint of the circular projection on the xz plane of

the vortex spiral, z0, is constant:

z0 =
√

R2 − ∆x2
gb and R = z0 + ∆zgb . (2.27)

Vortex spirals will be referred to as “helical”, if t1 > π/2 or, equivalently, if the sign

of z0 is negative. ∆xgb, ∆ygb and ∆zgb are considered as distances and are always

taken as positive values.

After (2.26) t1 can be expressed in terms of k:

t1 =
dgb

2k
. (2.28)
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The vortex length inside the grain boundary is

L = 2t1

√

R2 + k2 = dgb

√

(R/k)2 + 1 . (2.29)

This shows, that the vortex length is constant if R is proportional to k. Constant

vortex length solutions have a completely different angular dependence of the critical

current from that observed in the measurements.

By straight forward geometrical considerations, expressions for R and k in terms

of ∆xgb and ∆zgb can be derived, which will be of use later.

R =
∆x2

gb + ∆z2
gb

2 ∆zgb
k =

dgb

2 arccos
∆x2

gb−∆z2
gb

∆x2
gb+∆z2

gb

. (2.30)

Inclusion of the pinning force density

Because one cannot pull longitudinally on a vortex all forces have to act perpendicu-

larly on it. Obviously the Lorentz force always points radially away from the current

direction. As long as only two force densities, f LF and f e, are considered, the elastic

force density has to oppose the Lorentz force density and, because êl,y is constant, all

forces are radial and have a constant size. If fpm = 0, the vector sum (2.10) reduces

to a single equation containing only the length of the vectors of the force densities.

A third force density complicates the situation, because now the vector character

of the involved quantities cannot be ignored any more. The force densities for every

point of the vortex line form a two dimensional vector sum parallelogram in the plane

perpendicular to the vortex line. In general a nonzero y component of the elastic and

the pinning force density can exist. This component in the current density direction

will result in a non-constant êl,y component, because it adds an non-zero term to the

second equation of (2.18). Therefore, the modulus of the Lorentz force density will

not be constant along the vortex line.

The model assumes a homogeneous, isotropic pinning force density with an up-

per limit. Therefore, additional assumptions are necessary to determine the com-

ponents of f pm. Because the pinning force density is isotropic, the influence on the

overall geometry will not be too strong. If, like in the zero pinning case, the geometry

is again a circular spiral with constant slope, then the three force densities should all

be radial and their sum should again reduce to a scalar equation. The comparison

with numerical iteration results suggests, that this is a reasonable approximation.
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For the circular spiral geometry, including fpm into the force equilibrium is straight

forward. f pm should point in the same direction as f e and, therefore, the force den-

sity equilibrium equation in parametrised form reads

JRΦ0√
R2 + k2

− ǫlR

R2 + k2 − fpm = 0 . (2.31)

Alternatively fpm can also be incorporated in the summation procedure. f pm can be

written for the i-th node as

f i
pm = − fpm

f i
LF

| f i
LF|

. (2.32)

f i
LF + f i

pm can be formulated as

f i
LF + f i

pm = f i
LF

(

1 − fpm

fLF

)

, (2.33)

where the expression in parentheses does not influence the summation over the

nodes, because | f LF| was assumed to be constant. This means, that a′ in (2.18) can be

replaced by

a =
JΦ0

ǫl

(

1 − fpm

fLF

)

(2.34)

to account for the pinning force density without changing the rest. The result from

the third equation in (2.18) solved for J reads

J =
2 ǫl

Φ0 dgb
êend

l,z tan ϕ +
fpm

Φ0

√

1 − ê2
l,y

. (2.35)

This is exactly the same as (2.31), but in this form the similarity to the published

results (2.7) and (2.11) [21] becomes more obvious. The z component of the tangent

unit vector at the vortex end (where the vortex path leaves the LPR region) shows

up in the “elastic term” containing ǫl, and the “pinning term” containing fpm is now

divided by
√

1 − ê2
l,y instead of cos ϕ or

√
cos ϕ. If we assume, that in the limit of

ϕ → 0 the vortex line is approximately a half circle with a large radius (strictly

R → ∞ because ∆x → ∞ for ϕ → 0), êend
l,z → 1, êl,y → 0, because the vortex length

L → ∞ and cos ϕ → 1 and the three results coincide.

The Lorentz force density sets with fpm ≤ fLF a lower limit for the vortex length.

For an unbent vortex êl,y = sin ϕ (the same value as in the bulk) and the inequality

reduces to fpm ≤ Φ0 J cos ϕ. This is clearly fulfilled, when bending of the vortex takes
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dgb (nm) ǫl (N) fpm (Nm−1) f ∗pm (Nm−1)

10 2.89 · 10−13 1.5 · 1010 Φ0 4 · 1011

Table 2.3: Parameter values used in the example calculation for comparisons between the numerical
iteration and the analytical result. The value for f ∗pm is large representing “infinite” HPR pinning.
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Figure 2.9: Projection of vortex spirals calculated with the numerical iteration program on the xz
plane for different magnetic field directions ϕ. For the parameters, see Table 2.3. Over the iteration
results plotted with symbols half circles without symbols are drawn.

place at all. The lower limit for the vortex length is the length of a straight vortex

line as expected.

Comparison with the numerical iteration

The parameters applied in the example calculation for the comparison between the

numerical iteration and the analytical result are summarised in Table 2.3. For f ∗pm

an arbitrary, but large value was chosen that corresponds to “infinite” HPR pinning.

The iteration was started with a straight vortex line.

Figure 2.9 illustrates the projections of the vortex spirals calculated with the nu-

merical iteration on the xz plane for different values of ϕ. To compensate for the

shape distortion of the plots, half circles are drawn over the vortex spirals without

symbols. This demonstrates, that also the numerical iteration results are circular

spirals to a good approximation.

The geometry of the vortex paths determined by the numerical iteration deviated

in two respects from the circular spiral vortex with constant slope assumed in the

analytical result. First, the vortex displacment ∆zgb differed up to about 20 %. The

observed difference stays below about 6 % for intermediate angular values of ϕ from

30 o to 60 o and is maximal at the lowest (ϕ = 3 o) and highest ϕ values (ϕ = 80 o for
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fpm = 1.5 · 1010 Φ0 Nm−1 and ϕ = 88 o for fpm = 0 Nm−1). The observed differences

in ∆zgb are similar for the case of zero- and non-zero LPR pinning.

The second geometrical deviation is the non-constant vortex spiral slope in the

numerical iteration results. It is only observed for non-zero fpm values as shown

in the left plot of Figure 2.10. The right graph of Fig. 2.10 contains the normalised

y component of the pinning force density fp,y/ fpm in the negative y half space for

all calculated rotational angles (without symbols). fp,y has an odd functional de-

pendence on y, fp,y(−y) = fp,y(y). The y component of the pinning force density

calculated by the numerical iteration is largest at ϕ = 60 o, where it reaches about

25 % of fpm, which seems a bit too large to be neglected, as is done in the analytical

result. On the other hand the relative error between the full fpm of the numerical

result and the pinning force density calculated with fp,y = 0,

√

f 2
p,x + f 2

p,y + f 2
p,z

f 2
p,x + f 2

p,z
− 1 ≈ 1

2

f 2
p,y

f 2
pm − f 2

p,y
, (2.36)

usually amounts only to a few percent. It is plotted in the right graph of Fig. 2.10 with

symbols. For the given example at ϕ = 60 o this relative error is 3.3 %. From (2.36)

follows, that even if fp,y = 0.4 fpm the relative error of the approximation fp,y = 0

stays below 10 %. Furthermore the relative error estimate of 3.3 % was calculated for

the maximum value of fp,y reached only at the boundary of the LPR region. For the

most part of the calculated vortex line it will be smaller.

The second force directly affected by a nonzero fp,y is the elastic force density.

fe,y = − fp,y, and because the modulus of fe will (for relevant current densities)

always be larger than fpm, the relative error will be smaller than in the case of the

pinning force density.

As can be seen in the left panel of Figure 2.10, êl,y changes at certain angles

up to an absolute value of about 0.1 along the vortex line if the iteration is started

with a straight vortex. Also when êl,y is not constant any more, it is still at least

approximately connected to the vortex length.

The described differences between the numerical iteration results and the an-

alytical description for infinite HPR pinning do not have a strong impact on the

derived critical current densties. Figure 2.11 shows in the left panel a comparision

between the angular dependence of Jc calculated in two different ways for the zero

pinning case (“n.p.” for “no pinning”) and for an applied pinning force density

of fpm = 1.5 · 1010 Φ0 Nm−1. The curves resulting from the numerical iteration are
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named “iter.” and data calculated by the analytical solution (2.31) are named “calc.”.

The details of the evaluation of the analytical solution are given in the next section.

The agreement between the numerical iteration Jc and the analytical result is very

good. Except for single points, the difference stays below 0.2 %. The reason is ex-

plained by the right hand graph of Fig. 2.11. This graph compares the force densities

fe and fLF logged during the numerical iteration for a single critical current density

point at ϕ = 30 o with fe and fLF evaluated with (2.23) and (2.24). In the calculation

of fLF with (2.24) the current density, J = 3.11 · 1010 Am2 from the numerical itera-

tion was used. The horizontal axis is the vortex displacement ∆zgb, which increases

during the iteration. The pinning force density employed for plotting fLF − fpm is

in both cases the constant fpm value from Table 2.3. The pinning force density was

not logged during the iteration. The fe and fLF values for the numerical iteration are

the arithmetic averages of the force density norms from 37 vortex nodes inside the

LPR. The iteration was stopped, when the vectorial sum of all force densities of the

same 37 vortex fell below a certain limit. At the end of the iteration the averaged

force densities from the numerical iteration and the analytical force densities meet

at one point. This means, that (2.24) and (2.23) resemble in good approximation

the averaged force densities appearing along the vortex line during the numerical

iteration. This behaviour was found only for numerical iterations performed with

“infinite” HPR pinning. If a value of f ∗pm was considered, that was low enough to

allow movement of vortices outside the LPR, the agreement was not satisfying.

It should be noted, that the sign of fpm is connected to the magnetic hysteresis

arising due to pinning. There are two vortex spiral configurations related to the same

current density depending on how the current density was reached. Subtracting fpm

in (2.31) is appropriate for an increasing current density, which also corresponds to

the experimental situation. By decreasing the current density from a larger value,

the solution with the opposite sign of fpm has to be realised. This interpretation was

confirmed by the numerical program by starting the iteration once with a straight

vortex line and a second time with a sufficiently large vortex spiral shrinking to the

hysteretic solution.

Vortex breaking limit

The analytical result (2.31) for the current density is not of much use in the given

general form. Even though the shape of the vortex line is fixed to be a circular

spiral with constant slope, all combinations of R and k that fulfil (2.31) for a given

43



“GRAIN BOUNDARY” FILMS 2.2. TRANSPORT MEASUREMENTS

 0

 2

 4

 6

 8

 10

 0  5  10  15  20  25  30

J c
(1

010
 A

m
-2

)

∆zgb (nm)

10˚
20˚
30˚
40˚
50˚
60˚
70˚
80˚

elastic limit

 0

 2

 4

 6

 8

 10

 0  10  20  30  40  50  60  70  80  90

J c
(1

010
 A

m
-2

)

ϕ ( ˚)

elasic limit w.p.
(2.11) w.p.

elasic limit n.p.
(2.11) n.p.

Figure 2.12: The left plot shows critical current densities calculated with (2.31) and (2.30) for different
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J are valid vortex geometries for this current density. This is quite obvious for the

analytical result, but is also true for the numerical iteration algorithm.

This claim was tested by starting the iteration with a specific vortex spiral. For a

given ǫl the starting configuration fixes êl,y and fe. The choice of a current density

J determines fLF and the development of the vortex line during the iteration. The

vortex spiral will expand without limits, if the initial fLF is larger than fe + fpm

derived for the starting configuration. The vortex line stays nearly unmodified, if the

starting fLF lies in between fe − fpm and fe + fpm, and it shrinks, if fLF is chosen to

be smaller than fe − fpm. As long as there is a nonzero pinning force density, the

vortex cannot shrink to a straight line. Therefore, also for the numerical iteration,

one can easily construct more than one vortex spiral that are stable (or unstable) for

one current density.

By starting the iteration with a straight vortex, the solutions that can be achieved

are already restricted. Under this condition there is a single limiting value of the

current density that is taken as Jc. Below and at Jc the vortex spiral is stable and

for current densities above Jc the force equilibrium equation cannot be fulfilled any

more. Jc is evaluated according to this criterion in the numerical iteration used in this
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work and also in [21]. The critical current density defined in this way will be referred

to as the elastic limit Jc or the vortex breaking limit Jc. The elastic limit critical current

density does not necessarily correspond to the measured Jc, because it assumes an

undisturbed expansion of the vortex spiral.

Taking only the analytical result, it is not clear, why an elastic limit should exist

at all. For example, the force equilibrium (2.31) is a quadratic equation in
√

1 − ê2
l,y.

The solution of this quadratic equation contains J and R and, as long as it exists at

all, it defines a wide range of current densities and vortex radii, which fulfil the force

equilibrium equation by construction. Like in the numerical case, without additional

geometric restrictions, there are no reasons for a elastic limit and a vortex would be

able to handle nearly every current density.

A quite successful and simple example of a geometrical assumption about the

vortex line is, that it breaks after having developed about a half turn spiral. For this

half turn spiral solution t1 is equal to π/2 and constant. From the boundary conditions

follows R = ∆xgb, z0 = 0 and k = dgb/π. Putting this into (2.25) results in

Jc =
ǫl

Φ0 dgb

sin ϕ
√

(cos ϕ/2)2 + (sin ϕ/π)2
+

2 fpm

Φ0

√

(cos ϕ/2)2 + (sin ϕ/π)2

cos ϕ
. (2.37)

This angular dependence of the critical current agrees very well with the fit to the

numerical data given in [21]. Up to an angle ϕ of 80 o it deviates by less than 4 %

from (2.11). It also suffers from the same problems as (2.11). It diverges at ϕ = 90 o

and rises too steeply at ϕ = 0 o. The half turn solution already gives the correct hints

about the behaviour of the calculated Jc angular dependence.

A second, more general assumption about the vortex geometry only requires that

0 ≤ t1 ≤ π and employs (2.30). It produces about the same vortex configurations as

the numerical iteration, but is more general, because it also includes a full turn spiral

vortex at ϕ = 90 o. ∆zgb and ∆xgb define for a given ǫl and fpm the actual shape of

the vortex spiral, where ∆xgb is fixed by the field direction. This leaves ∆zgb as a free

variable. Interestingly, the critical current density plotted versus ∆zgb by applying

(2.31) with R and k from (2.30) has a single maximum as shown in the left panel of

Figure 2.12. Again the parameters listed in Table 2.3 are used. With the geometrical

restrictions for the vortex it is therefore plausible to define the elastic vortex breaking

limit as the vortex configuration at the maximal critical current density. The elastic

limit Jc, evaluated in this way with the analytical result, agrees well with the one

derived with the numerical iteration (see left graph in Fig. 2.11) and also with (2.11)
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as illustrated in the right panel of Fig. 2.12.

As can be seen in left panel of Fig. 2.12, ∆zgb → ∞ for ϕ → 0 o for the elastic

limit. For this limit R → ∞ and t1 → 90 o. This is the same behaviour of the half

turn solution (2.37), it is produced by the numerical iteration and it was also derived

analytically for small values of ϕ in [21]. Although this is not a very realistic vortex

spiral geometry, it seems to be typical for the elastic limit case. It is the reason

for the corner like shape of the channeling minimum in the calculated Jc angular

dependencies. According to (2.23), the elastic force denstiy goes to zero for R → ∞,

which suggests a straight vortex. For ϕ → 90 o it was found that ∆zgb → 0, R → 0 and

t1 → 180 o. This corresponds to a straight vortex and is the reason for the divergence

in this force free configuration. Again the elastic force density goes to zero. This

behaviour seems to be typical for the elastic limit Jc, because it is also produced by

the half turn solution and the numerical iteration.

It should be noted, that the vortex displacement ∆zgb at the Jc maximum coincides

with the ∆zgb position of the minimum of the force density sum in (2.31). The force

density sum was used in the evaluation of the ∆zgb values, in order to get solutions,

where the force density sum goes to zero. The force density sum only is zero in

the elastic limit case at its minimum, but, as long as the minium lies below zero,

∆zgb values can also be evaluated for smaller Jc values. One can also fix the value

of ∆zgb and search for the possible current densities. This would correspond to an

interpretation, where the vortex spiral cannot elongate in an undisturbed way. If the

vortex line comes close to another vortex in the process of an elastic expansion, flux

cutting and cross joining is likely to occur [3]. The elastic limit critcal current would

never be realised in this case.

Because the geometrical restriction (2.30) is quite general and gives also good

agreement with the numerical iteration, it is used for the interpretation of the data.

Evaluation of ǫl

In [21] it was suggested, that ǫl should be (in combination with fpm) evaluated by a

least square fit of (2.11) to the critical current density angular dependence. This does

not work very well with the data presented in this work. First of all, as mentioned

already, I refuse to consider fpm a fit parameter. Despite the fact, that it does not make

much sense to introduce a second pinning force density, there is also the problem,

that the current density minima at ϕ = 0 o are quite broad in some cases. With the

relatively steep and corner like rise of (2.11) one ends up with very small values of
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Figure 2.13: The left plot shows angular dependence of ǫl calculated from a measured critical current
density of a 90 o track at 40 K. ǫl was evaluated at the elastic limit using (2.24) in combination with
(2.30). The pinning force density was taken directly form the measured data at ϕ = 0 o. The right
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starts at ∆zgb = 0 nm with the value JΦ0 cos(ϕ) − fpm and decreases first because of the elastic
contribution. If JΦ0 cos(ϕ) < fpm, it is impossible to get for any positive value of ǫl a minimum at
fLF + fe + fpm = 0 as required for the elastic limit Jc.

fpm. A second problem with a curve derived from the elastic limit is, that it is not

very likely to properly describe the angular dependence around ϕ = 0 o properly.

Of course, the half turn solution cannot be correct for arbitrarily large vortex radii,

because the vortex would not fit into the grain boundary any more. Note that for

a half turn vortex spiral R = ∆xgb and at ϕ =1.43 o, 2.86 o and 5.71 o ∆xgb = tfilm,

tfilm/2, tfilm/4, where tfilm = 200 nm is the film thickness. At a magnetic induction

B of 1 T the approximate vortex distance
√

Φ0/B ≈ 45 nm, so there is room for four

layers of vortices in the thin film. Therefore a half turn vortex spiral is unlikely to be

realized below ≈ 5 o.

Another problem with a least square fit of the elastic limit curve (2.11) for ǫl

is, that there are often some critical current density data points, situated above the

calculated curve. This gets even worse, if one chooses to take fpm below the Jc

minimum at ϕ = 0 o. The elastic limit curve should represent already the maximal

possible critical current density resulting from pinning and from the elasticity of the

vortices. Therefore there should be no Jc values above the elastic limit curve.

To account for these problems and to not restrict the result, the evaluation of ǫl

was split up in serveral steps. First the force equilibrium equation (2.31) with R and
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Figure 2.14: The left graph shows an example of the evaluated ∆zgb values of the Jc measurement

at 1 T and 40 K on a 90 o track. ǫl was set to the maximum value of 1.75 · 10−13 N. Plotted are

the two solutions of the force density equilibrium equation, ∆zleft
gb and ∆z

right
gb both referring to the

same current density. The middle curve is the ∆zmin.
gb value of the minimum of the force density

sum. ∆z
right
gb continues approximately ∆zleft

gb and one can define a single ∆zgb value for the whole

angular range. Also shown is the calculated critical current density predicted by the elastic limit
(2.11) in comparison to the current density calculated with (2.31) and (2.30) by using the evaluated
∆zgb. On the right the force density equilibrium equation for a single point in the critical current

angular dependence measured at 1 T and 40 K on a 90 o track is plotted. fpm = 3.156 · 10−5 Nm−1,
J = 2.117 · 1010 Am−2, ϕ = 20.47 o and ǫl = 1.56 · 10−13 N for curve “(1)” and ǫl = 1.75 · 10−13 N
for curve “(2)”. Curve “(1)” represents an evaluation for the elastic limit where ǫl and ∆zgb was
calculated for an extremal solution (first evaluation step). The maximum ǫl value was taken to plot
curve “(2)” and evaluate the two ∆zgb values right and left of the minimum.
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k given by (2.30) is solved at the elastic limit for every Jc value of the experimental

data. fpm can be read directly off the current density angular dependence and is

fixed for every measured curve leaving only ǫl as a variable. This results in an

angular dependence of ǫl as an intermediate result, as shown for a measurement

on an 90 o track at 1–6 T and 40 K in the left graph of Figure 2.13. The value of the

line energy derived in this way varies with ϕ and it is not constant as demanded

by the model. Around ϕ = 0 o the data is noisy, because the value of ∆xgb gets

very large at low angles and it is not defined for ϕ = 0 o. In a certain angular range

around ϕ = 90 o the force equilibrium equation does not have a solution at the elastic

limit and a meaningless small constant value is plotted in Fig. 2.13. This behavior is

explained in the right illustration of Fig. 2.13. It is similar to the numerical iteration

started with a straight vortex, where at sufficiently large angles the Lorentz force

density acting on the straight vortex line falls below the pinning force density. Note

that for ∆zgb = 0 the elastic force density is zero and (2.31) resembles the equation

for a straight vortex with infinite vortex radius. Therefore, the force density sum

starts at ∆zgb = 0 nm with the value of JΦ0 cos(ϕ) − fpm. If JΦ0 cos(ϕ) < fpm, it is

impossible to get a minimum at fLF + fe + fpm = 0 for any positive value of ǫl which

would be required for the elastic limit Jc. The elastic term in (2.31) is negative, so the

force density sum gets even more negative for small ∆zgb.

In a second step, the maximum of the calculated ǫl values is taken (ignoring the

noisy part around ϕ = 0 o) as the constant ǫl for the whole angular range. The

force density equilibrium plotted for a single point of the critical current density

has now two solutions at two different values of ∆zgb (see right graph in Fig. 2.14).

These two solutions are plotted for a critical current measurement at 1 T and 40 K

on a 90 o track in the left plot of Fig. 2.14. The lower value of ∆zgb is approximately

continued by its larger value. This makes it possible to define a single ∆zgb for

the whole angular range. The lower value of ∆zgb is zero at around 90 o, which

would correspond to a straight vortex solution. By switching to the second solution

of the force density equilibrium, one avoids the divergence of the current density

at 90 o. Also shown is the current density for the elastic limit predicted by (2.11)

in comparison to that calculated from (2.31) in combination with (2.30) using the

constant ∆zgb. As expected, also the critical current of the elastic limit touches the

curve for the constant ∆zgb current density where the three ∆zgb values meet.
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Results and discussion

The measured critical current density can be fitted very well by the constant ∆zgb

solution. In some cases the calculated current density deviates partly from the mea-

sured data, mainly because the measured curves are not symmetric around ϕ = 0 o.

Still the rounding off at zero rotation angle and the critical current at the force free

direction (where available) is predicted reasonably well. It became already clear from

Figure 2.13, that for most of the curves two possible choices of the maximum ǫl ex-

ist: one in the angular range from 0 o to 90 o and a little bit larger one between 90 o

and 180 o. Whichever maximum ǫl one picks, the corresponding slopes will be fitted

best by the final constant ∆zgb curve. It is presumed, that the periodic asymmetry

between −90 o and 90 o results from a slight misalignment of the sample in a way,

that the magnetic field is not rotated perfectly parallel to the ab planes of the thin

film. A second source of error in this evaluation comes from data, where only a

relativly small part of the angular dependence can be attributed to the channeling

minimum. The intermediate results for finding the maximum ǫl and ∆zgb are always

noisy around ϕ = 0 o leaving only a small part of the curves for determining the

evaluation parameters. In this case some repetitive attempts by slightly varying the

original parameters and checking on the final critical current density curves (which

are never noisy) can still give satisfactory results.

The present evaluation suggests, that the measured angular dependence of the

critical current density is not determined by the elastic limit of the vortices. A spec-

ulative scenario would be, that the expanding vortex gets close to another vortex

pinned by a defect in the grain boundary, thus initiating a cutting/crossjoining pro-

cess. In this case, the vortex elongation should show a dependence on the defect

denstiy. Neutron irradiation allows the introduction of additional point defects in

the material, where the defect density depends on the neutron fluence applied. One

would expect, that the change of the average distance of the point defects is reflected

by a decrease in the vortex elongation ∆zgb.

The evaluated line energy ǫl suffers from the same problem as the results pub-

lished in [21], [12]. With the line energy estimate given in [21],

ǫl ≈ 0.38
Φ2

0

4πµ0λ2
ab

(2.38)

and a temperature dependence λab(T) = λab(0 K)(1 − T/Tc)−1/2 one can fit the

evaluated ǫl values at constant a magnetic field. λab(0 K) was used as a fit parameter.
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The largest values of λab(0 K) are obtained by fits on the data of the 60 o track and

the lowest on data of the 30 o. The fit results range from 3.3 up to 4.2 times the

theoretical λab(0 K) of 140 nm. As already ponted out in [21] most likely a more

refined treatment of the vortex elasticity would be needed to resolve this descrepancy.
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Tables and figures of the evaluation results

B (T) T (K) Φgb ( o) fpm (10−6 Nm−1) ǫl (10−13 N) ∆zgb (nm) Remark

1 40 90 31.56 1.75 4.89 Fig. 2.15

2 40 90 20.86 2.23 4.67 Fig. 2.15

3 40 90 16.41 2.54 4.80 Fig. 2.15

4 40 90 13.44 2.60 4.80 Fig. 2.15

5 40 90 11.70 2.53 4.80 Fig. 2.15

6 40 90 9.991 2.50 4.80 Fig. 2.15

1 50 90 18.41 1.45 4.74 Fig. 2.15

2 50 90 11.21 1.81 4.62 Fig. 2.15

3 50 90 7.942 1.94 4.62 Fig. 2.15

4 50 90 6.268 1.99 4.62 Fig. 2.15

5 50 90 5.103 1.98 4.65 Fig. 2.15

6 50 90 4.518 1.91 4.65 Fig. 2.15

1 60 90 9.859 0.958 4.60 Fig. 2.16

2 60 90 4.860 1.25 4.64 Fig. 2.16

3 60 90 3.678 1.25 4.64 Fig. 2.16

4 60 90 2.844 1.22 4.64 Fig. 2.16

5 60 90 2.114 1.18 4.82 Fig. 2.16

6 60 90 1.958 1.17 4.75 Fig. 2.16

1 70 90 3.700 0.524 4.73 Fig. 2.16

2 70 90 1.779 0.595 4.08 Fig. 2.16

3 70 90 1.279 0.571 4.19 Fig. 2.16

4 70 90 1.134 0.523 3.90 Fig. 2.16

5 70 90 0.8062 0.49 4.39 Fig. 2.16

6 70 90 0.6341 0.455 4.58 Fig. 2.16

1 80 90 0.8696 0.11 4.34 Fig. 2.17

2 80 90 0.3485 0.108 4.28 Fig. 2.17

3 80 90 0.2769 0.0836 4.42 Fig. 2.17

4 80 90 0.2455 0.0667 4.03 Fig. 2.17

5 80 90 0.2341 0.0462 3.29 Fig. 2.17

6 80 90 0.2455 0.0318 3.31 Fig. 2.17

Table 2.4
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Figure 2.15: Measured critical current density on a 90 o track at 40 and 50 K each from 1–6 T
(symbols) and the calculated current density following from the evaluation (without symbols). The
curves are shifted in y direction for better comparison.
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Figure 2.16: Measured critical current density on a 90 o track at 60 and 70 K each from 1–6 T
(symbols) and the calculated current density following from the evaluation (without symbols). The
curves are shifted in y direction for better comparison.
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Figure 2.17: Measured critical current density on a 90 o track at 80 K and a 60 o track at 40 K
each from 1–6 T (symbols) and the calculated current density following from the evaluation (without
symbols). The curves are shifted in y direction for better comparison.
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Figure 2.18: Measured critical current density on a 60 o track at 50 and 60 K each from 1–6 T
(symbols) and the calculated current density following from the evaluation (without symbols). The
curves are shifted in y direction for better comparison.
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Figure 2.19: Measured critical current density on a 60 o track at 70 and 80 K each from 1–6 T
(symbols) and the calculated current density following from the evaluation (without symbols). The
curves are shifted in y direction for better comparison.
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Figure 2.20: Measured critical current density on a 30 o track at 50 and 60 K each from 1–6 T
(symbols) and the calculated current density following from the evaluation (without symbols). The
curves are shifted in y direction for better comparison.
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Figure 2.21: Measured critical current density on a 30 o track at 70 and 80 K each from 1–6 T
(symbols) and the calculated current density following from the evaluation (without symbols). The
curves are shifted in y direction for better comparison.
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Figure 2.22: Measured critical current density on a 45 o track at 50 K from 1–6 T and 60 K each from
4–6 T (symbols) and the calculated current density following from the evaluation (without symbols).
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B (T) T (K) Φgb ( o) fpm (10−6 Nm−1) ǫl (10−13 N) ∆zgb (nm) Remark

1 40 60 27.53 1.78 6.68 Fig. 2.17

2 40 60 18.47 1.95 7.16 Fig. 2.17

3 40 60 14.47 1.94 7.54 Fig. 2.17

4 40 60 12.13 1.93 7.82 Fig. 2.17

5 40 60 10.39 1.81 7.87 Fig. 2.17

6 40 60 9.321 1.72 7.75 Fig. 2.17

1 50 60 17.28 1.35 5.86 Fig. 2.18

2 50 60 9.581 1.66 7.02 Fig. 2.18

3 50 60 8.118 1.57 7.24 Fig. 2.18

4 50 60 5.648 1.61 7.57 Fig. 2.18

5 50 60 4.569 1.53 7.33 Fig. 2.18

6 50 60 3.876 1.47 7.21 Fig. 2.18

1 60 60 9.119 0.868 6.32 Fig. 2.18

2 60 60 4.725 0.972 6.72 Fig. 2.18

3 60 60 3.620 0.967 7.43 Fig. 2.18

4 60 60 2.586 0.923 7.18 Fig. 2.18

5 60 60 1.940 0.915 7.00 Fig. 2.18

6 60 60 1.337 0.909 7.39 Fig. 2.18

1 70 60 3.279 0.459 6.41 Fig. 2.19

2 70 60 1.666 0.482 7.08 Fig. 2.19

3 70 60 1.478 0.416 5.93 Fig. 2.19

4 70 60 0.9626 0.407 6.48 Fig. 2.19

5 70 60 0.6947 0.375 6.90 Fig. 2.19

6 70 60 0.6719 0.339 6.82 Fig. 2.19

1 80 60 0.8510 0.118 6.80 Fig. 2.19

2 80 60 0.4355 0.0982 6.52 Fig. 2.19

3 80 60 0.2563 0.0868 5.55 Fig. 2.19

4 80 60 0.2658 0.0565 5.55 Fig. 2.19

Table 2.5
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B (T) T (K) Φgb ( o) fpm (10−6 Nm−1) ǫl (10−13 N) ∆zgb (nm) Remark

1 50 30 18.25 1.78 3.88 Fig. 2.20

2 50 30 10.63 2.21 4.83 Fig. 2.20

3 50 30 7.133 2.44 5.62 Fig. 2.20

4 50 30 5.588 2.51 4.95 Fig. 2.20

5 50 30 4.423 2.46 5.33 Fig. 2.20

6 50 30 3.410 2.44 5.56 Fig. 2.20

1 60 30 9.402 1.30 4.28 Fig. 2.20

2 60 30 5.473 1.45 5.18 Fig. 2.20

3 60 30 3.486 1.44 6.25 Fig. 2.20

4 60 30 2.608 1.48 5.27 Fig. 2.20

5 60 30 2.074 1.41 6.17 Fig. 2.20

6 60 30 1.760 1.38 5.71 Fig. 2.20

1 70 30 3.820 0.631 4.73 Fig. 2.21

2 70 30 2.088 0.624 5.97 Fig. 2.21

3 70 30 1.313 0.587 7.57 Fig. 2.21

4 70 30 0.9737 0.547 7.23 Fig. 2.21

5 70 30 0.8368 0.507 6.83 Fig. 2.21

6 70 30 0.6924 0.453 8.66 Fig. 2.21

1 80 30 0.9273 0.101 9.59 Fig. 2.21

2 80 30 0.4648 0.0897 10.4 Fig. 2.21

3 80 30 0.3131 0.0534 11.9 Fig. 2.21

4 80 30 0.2153 0.0388 12.2 Fig. 2.21

Table 2.6

B (T) T (K) Φgb ( o) fpm (10−6 Nm−1) ǫl (10−13 N) ∆zgb (nm) Remark

1 50 45 16.67 1.71 4.36 Fig. 2.22

2 50 45 9.893 2.01 4.43 Fig. 2.22

3 50 45 7.197 2.05 4.73 Fig. 2.22

4 50 45 5.644 2.05 5.40 Fig. 2.22

5 50 45 4.569 2.03 5.42 Fig. 2.22

6 50 45 3.966 1.92 5.43 Fig. 2.22

4 60 45 2.551 1.36 5.14 Fig. 2.22

5 60 45 2.084 1.34 4.72 Fig. 2.22

6 60 45 1.678 1.29 5.14 Fig. 2.22

Table 2.7
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Chapter 3

Two axis probe

3.1 Introduction

The transport measurements are all performed with a standard four probe configu-

ration, where the current leads are separated from the voltage wires.

The setup in use was originally designed to characterise the transport anisotropy

of superconducting tapes. To measure the angular dependence of the critical current

the available maximum magnetic field of 6 T is sufficient. The magnetic field orien-

tation of the split coil magnet is horizontal. Rotational measurements at a maximum

Lorentz force configuration (magnetic field perpendicular to the transport current)

can be performed relatively easily by rotating the whole probe in the variable tem-

perature insert (VTI). In this case the sample is mounted vertically and the inner

diameter of the sample space (30 mm) does not limit the sample length.

The main part of this thesis was to design and build a two axis probe allowing to

orient a sample in arbitrary orientation relative to the magnetic field.

3.2 Initial design considerations

The basic design criteria can be summarised as follows

• Two axes for the orientation of the sample.

• Fully automated measurement process because of the extended parameter space

(temperature, magnetic field, two angles).
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• Incorporation in the current measurement setup. Especially the existing probe

for tape samples should still be fully operatonal and exchanging the probes

should be easy.

• Variable probe length to make it adaptable to different VTIs.

The technically equivalent goniometer presented in [16] was designed with simi-

lar objectives as the one built in this thesis. The goniometer head in [16] is built up

of a fixed frame hosting the whole rotation mechanics. With the horizontal axis the

second rotational axis perpendicular to the sample surface is tilted. This mechani-

cally complex configuration was chosen because the probe is operated in a cryostat

with a vertical field orientation (solenoid) and the sample space diameter is about

50 mm. In our case the much smaller sample space diameter of the VTI dictated

simpler mechanics of the head. Due to the horizontal magnetic field it was possible

to realise one rotational axis by rotating the whole probe. So only the movement

of the horizontal axis had to be built into the goniometer head. It was decided to

make the sample stage normal perpendicular to the horizontal axis. This simplified

the construction of the horizontal axis and was expected to make the mounting and

contacting of a sample easier. When contacting a sample the probe usually lies hor-

izontally on a table and the sample stage can also be rotated to be horizontal. In

addition with this design it would still be possible to screw a small metal block onto

the sample stage to tilt the sample normal towards the horizontal rotational axis.

Originally it was planned to manufacture the hole goniometer head from brass to

avoid any mechanical problems due to different temperature expansion coefficients

of the materials. During the manufacturing process it was decided to make the frame

from stainless steel and only the horizontal axis from brass. The stainless steel frame

was chosen to improve the mechanical stability and robustness of the goniometer

head. The relatively complicated horizontal axis was built from brass to simplify

the machining of its parts. The mixture of brass and stainless steel proved to work

without mechanical problems.

The sample stage itself was to a certain degree inspired by [16]. The temperature

sensor (in our case a Cernox sensor with a copper case) is located directly below

the sample inside the sample stage. Like in [16] it is possible to heat the sample

stage by a resistive heater. The sample stage is in direct contact with the sample and

should determine the sample temperature. It should have a high thermal conductiv-

ity to ease the heat exchange between the sample and the sensor. This was another

argument to build the horizontal axis from brass: The low thermal conductivity of
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stainless steel rules out to use it as a material for the sample stage. A combination

of a stainless steel frame with a copper sample stage for the horizontal axis seemed

to be too complicated and using only copper for the horizontal axis would have in-

creased the difference of the thermal expansion coefficients between the head frame

and the axis even further (linear thermal expansion coefficient of brass ≈19 µm/K, of

stainless steel ≈19 µm/K). In addition copper is relatively ductile and not easy to ma-

chine. Brass was considered to be a reasonable compromise. In the very first version

each axis was also equipped with a Hall probe. The Hall-probe for the horizontal

axis was placed in the same housing as the heater with the active area perpendicular

to the sample surface.

The wiring of the probe is first of all determined by the devices in the probe. In the

original design it was planned to incorporate two Hall probes (at least two current

wires and four voltage wires), a Cernox temperature sensor (two current and two

voltage wires) and a sample heater (two current wires). For the sample one current

and two voltages lines (two current wires and four voltage wires) were foreseen. The

default sample voltage would be connected to the nanovoltmeter and the second one

could be used to gain extra information like the contact resistance of one contact.

This sums up to eight current lines and ten voltage lines. The electrical connections

to the probe have to be plug-able and are realised by vacuum tight 10-way low

temperature PEEK (polyetheretherketone) connectors. Two of them are necessary.

The default sample voltage lines should go from the sample to the nanovoltmeter

directly avoiding plugs and soldering connections as much as possible. In this way

it was expected to improve the voltage signal quality. These two voltage cables are

supported by an extra vacuum tight feed through. From previous experience on

other transport probes in use at our lab, all voltage lines were realized with ultra

miniature coaxial cables from Lakeshore. Two highly flexible types with stranded

conductors of these cables are available, one with copper strands for low conductor

resistance and one with stainless steel strands for lower thermal losses. These cables

are designed for use at low temperatures. The low resistance copper cables are used

for the sample voltages to keep the Nyquist noise as small as possible. The Hall

probes and the temperature sensor are measured with a digital multimeter with a

minimal voltage resolution in the order of microvolts, so stainless steel cables can

be used (the resistance of the stainless steel cables at room temperature over the

length of the probe is of the order of 100 Ω). The shielding of all coaxial cables was

connected together at the top of the probe and accessible at a pin of the 10-way

PEEK connector. In the first approach, the current wiring was done with pairwise
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twisted varnish coated copper wires. To protect the wiring and also to make it

simpler to bring the wires into the probe the whole wiring was distributed into

several PTFE (polytetrafluoroethene, Teflon) hoses. At the bottom of the probe the

wires are soldered to terminal tags screwed to a plastic plate.

The wiring for the sample, the temperature sensor, the heater and a Hall probe

is situated inside the horizontal axis and will move relative to the rest of the sample

head during operation. Therefore also the electrical connections to the devices will

be permanently moved at low temperatures, making them less durable. The first

approach was to connect the temperature sensor and Hall probe wires directly to the

terminal board and to put them together with the sample wiring into a shrink hose

for protection. There are basically two solutions for the wiring between the moving

devices and the terminal plate on the probe, an open and a closed wiring. In the open

wiring long wires enter the sample space directly from the top, where as in a closed

wiring the wires are led through a closed channel to the height of the horizontal

axis and enter axially the sample space. The simpler open wiring approach was

not chosen, because it was considered to be too error-prone with the arrangement

of the bevel gears given in the present design. It was expected, that long wires not

restricting the movable angular range, will also easily get caught by the gear wheels

and might break. In the probe design the wires are led through a hole in a side part

of the goniometer head down to the horizontal axis. They enter the sample space

at the height of the rotation axis. With small modifications it would still be possible

to combine this closed wiring with an open one, at least for the sample connections.

This could for example be desirable when high sample currents (several amperes)

are required. Some simple kind of guidance to keep the wires away from the gears

could prevent them from being caught by the bevel gears.

Two stepper motors with a reduction gear box are used to drive the two axis

of the probe. Stepper motors can easily be controlled by a computer, the gear box

provides a high angular resolution and high torque of the drives and stepper motors

can hold their axis at a certain position. The limited rotational speed of stepper

motors is not important for the present application because it does not require a fast

positioning of the sample. For the mechanical transfer of the rotation down to the

horizontal axis one finds different approaches in the literature, like worm gears [16],

strings and bevel gears. A worm gear would save space, because it can be situated

beside the sample space and it would fix the position of the gear wheel by its design.

One disadvantage is the off centered axis, which would have required some extra

guidance because of the length of the probe. Another difficulty might be to get a
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worm gear with proper dimensions (the probe described in [16] utilizes custom worm

gears designed and built for this probe). Using a string reel combination also saves

space but the not predictable length variation of the string due to the combination

of varying string tension and temperature in the given application would make a

angular position feedback of the horizontal axis unavoidable. A high resolution

angular position feedback with a resolution below 0.1 o was considered to be too

complicated in the low temperature environment and therefore ruled out. In the

current design a centered vertical axis transfers the rotation down to the sample

space and the vertical rotation is turned to a horizontal one by two bevel gears. The

vertical axis is protected and guided by an extra stainless steel pipe inside the shaft

and the bevel gears are slightly modified standard gears used in technical model-

making. This design was considered to be simpler than a worm gear solution and in

addition the bevel gears were low cost and instantly available.

3.3 Current design

In this section the current design of the probe is described and discussed.

3.3.1 Top mount

The top mount connects the probe mechanically with the VTI and axially stabilises

and rotates the probe shaft. It is manufactured from aluminium and consists of

round, about 10 mm thick plate, carrying one stepper motor with a tooth belt drive,

a belt spanner and the limit switches. The metal plate has a hole for the transfer-

tube, which has to be aligned with the helium input port of the cryostat, when the

probe is mounted in the VTI. A conical aluminum part is screwed on to the bottom

of the plate. It ends in a KF40 small flange for mounting the probe to the VTI. Its

axially centred bore hole contains two well separated ball bearings to ensure the

axial stability of the probe shaft. Directly accessible below the lower ball bearing

sits a vacuum tight shaft seal. The length of the probe reaching into the VTI can be

adjusted by shifting it up or down in the ball bearings. The vertical position is fixed

with a metal clamp above the top ball bearing. Attached to this metal clamp resides

the toothed wheel for the tooth belt transferring the rotation from the stepper motor

to the shaft. Two grub screws at the circumference of the metal clamp at different

height are arranged to operate the limit switches.
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3.3.2 Probe shaft

The body of the probe shaft is made from stainless steel to reduce thermal losses

and to ensure its mechanical stability. It is built up of two stainless steel tubes, a

short top piece, that tightly fits into the ball bearings with its diameter, and a longer

thinner tube at the bottom. Inside this body, there are two other stainless steel tubes

with smaller diameter extending over the whole length of the probe. The innermost

tube is the vertical axis transferring the rotation of the second stepper motor down to

the two axis head. He gas can flow through the vertical axis to improve the cooling

of the shaft when the probe is operated. It is surrounded by another stainless steel

tube to protect the axis rotation. PTFE tubes containing the wiring of the probe are

situated between the outer two stainless steel tubes. The middle steel tube makes

sure, that the wiring does not press onto the vertical axis and also allows that the

vertical axis can be removed easily for maintenance. In the bottom end of the probe’s

body sticks a nearly half open stainless steel turned part carrying the plastic terminal

plate with screwed on soldering eyelets. The bottom ends of the wires in the probe

are soldered to the eyelets on the terminal plate. At the bottom of the turned part the

two axis head of the probe can be mounted centered with four screws on the outer

circumference. Also at the bottom is the feed through with a PTFE bearing for the

small bevel gear wheel.

In the top of the shaft body sticks an aluminum block, which carries the second

stepper motor for the horizontal axis movement. Its centred bore hole is equipped

with a ball bearing and a vacuum seal for the vertical axis. The stepper motor with

planetary gear box is attached to an aluminium frame that can be removed easily by

opening four screws. When the motor is removed the vertical axle can be rotated by

hand to check for mechanical problems. The gear box axle is mechanically connected

to the vertical axle by an oldham coupling. The piece of the oldham coupling clamp-

ing the vertical axle is slightly modified to increase the clamping force on the axle to

avoid slipping. The vertical axis ends in a brass piece protruding about 10 mm when

the axle is mounted.

3.3.3 Goniometer head

The frame of the goniometer head is built up of four stainless steel parts, a top and

bottom plate and two side parts with holes and bearings for the horizontal axle. The

top plate has a large centred drill hole fitting precisely onto the lower end piece of
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the probe shaft. It is fixed to the probe shaft by four grub screws directed to the

probe’s axis. Four countersunk bolts, two for each side, connect the two side parts

with the top. The same arrangement of screws through the bottom part stabilize

the side pieces and make the frame rigid. An additional drill hole in the top plate

is continued in one side part to take up the wiring for the probe stage. The heads

of the countersunk screws would protrude the outer diameter of the goniometer

head and have to be filed down to the head circumference. Therefore one has to

take care not to mix up the eight screws when taking the goniometer head apart,

because each screw can just be used in its original position. It should be noted, that,

because the countersunk hole is cut off at the circumference of the head, there is a

force perpendicular to the screw axis when the countersunk screw is tightened. This

leads to a bending of the screw head, which reduces the precision of the centering of

the screw and can influence the positioning of the side parts. The alignment of the

side parts determines the alignment of the bearings and is therefore crucial for the

movement of the horizontal axis. Worn-out screws should be replaced. It also has

to be noted, that the flat inner surface of the side parts is not machined to perfectly

planar, so the alignment of the side parts cannot be checked easily on the assembled

frame by measuring the inner bore of the frame. Holes in the bottom plate ensure an

unimpeded He gas flow to the sample stage. It is possible to mount a Hall probe in

a slit at the centre of the bottom piece for probing the angular position.

The horizontal axle is made from four brass parts, the sample stage, the heater,

the large bevel gear wheel and the end piece of the axle. The stage has a central

drilling along the rotation axis containing the temperature sensor. Samples up to an

area of 1 cm2 can be mounted on it. In direct neighborhood to the area reserved for

the sample are two threaded holes to fix a sample holder. Four countersunk drill

holes at the corners of the sample stage take up the screws to mount the heater on

the side of the stage opposite the sample. The composition of heater and sample

stage form the middle part of the horizontal axle. The two end pieces screwed to the

two faces perpendicular to the axial direction of the sample stage fit into the bearings

of the side parts of the goniometer frame. The larger end piece is a modified bevel

gear with a lathed bearing shaft at its back and a centre hole for the incoming wires.

The smaller end piece is a cylinder with a rim. The heater can be removed from the

sample stage without unscrewing the end pieces to allow simplified maintenance.

The top surface of the sample stage is lowered relative to the rotational axis to account

for the typical thickness of a thin film sample substrate. A mounted thin film should

lie directly in the rotational axis.
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The first version of the horizontal axle was built up from three parts. The sample

stage and the smaller end piece were originally machined from a single lathe piece.

The arrangement of the bevel gear and the heater was basically the same. Because

the machining introduces additional tension in the material, it can cause an increased

bending of the sample stage with varying temperatures. The end pieces rotating

in the bearings are connected to the sample stage and therefore their alignment is

influenced directly by this bending. The alignment of the end pieces is crucial for

a flawless movement of the horizontal axle and should depend as little as possible

on the temperature during operation. To improve this situation, the second version

of the sample stage was made from a cuboid brass piece that was slightly rounded

at the edges. Still the surfaces had to be machined but to a far lesser extent and all

working steps where done in exactly the same manner on every opposing pair of

surfaces of the cuboid to preserve its symmetry. In this way the temperature induced

bending of the stage could be reduced in comparison to the original design, but did

not vanish completely.

Experience has shown that the horizontal axis has to move without appreciable

resistance when mounted in the frame. This should also not change when the probe

is cooled down. To achieve this, the horizontal axis needs a small play in the axial

direction to compensate for unavoidable mechanical imperfections. After assembling

the goniometer head, it is advisable to check the easy movement of the horizontal

axle by hand with the probe mounted in the VTI. The very high momentum of the

stepper motor with gear box would of course overcome a resistance in the movement

of the axis. On the other hand such a brute force approach would probably damage

parts of the probe in case of a technical failure. In the current design the momentum

of the motor drive is limited by the clamping strength of the top half of the oldham

coupling. It simply slips when the horizontal axis blocks mechanically. Also great

care has to be taken in assembling the frame of the goniometer head. All countersunk

screws should be fixed partly, one after the other in several rounds.

3.3.4 Sample holder and spring loaded contacts

For the electrical contacts of the thin film samples spring loaded contacts are used.

Besides contacting the sample the spring force of the contacts holds the thin film

in place. The sample holder therefore is a fixture for the spring loaded contacts,

which defines the position and the spring force of the contacts. It is built up of three

plastic pieces glued together by superglue forming a small bridge over the sample.
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A plastic plate with drill holes for the spring contacts resides on two small plastic

bars. The position of the drill holes has to fit to the contact pads of the patterned

film so a sample holder can only be used fro one contact pattern. To minimize the

contact resistance the height of the bars is dimensioned to achieve the maximum

spring force of the spring loaded contacts. Two 2 mm diameter bore holes on each

end are necessary to attach the sample holder to the sample stage.

Spring loaded contacts come in a lot of different shapes and sizes depending on

the field of application like PCB (printed circuit board) test pins, battery contacts and

HF test pins for IC sockets. There are two determining dimensions for choosing the

spring loaded contacts, the pitch distance (distance between two adjacent contacts)

and the length of the contact pin. Because of the limited room above the sample the

maximum length of the contacts is ≈ 11 mm. The pitch distance on the thin films

measured so far is 1.7 mm. This requirement rules out most of the commercially

available spring contacts. Fortunately a battery contact with an outer barrel diameter

of 0.86 mm and an overall uncompressed length of 9.47 mm was found. It comes with

a spherical plunger tip, which is appropriate for our purpose. The barrel of the pins

is thickened near the plunger end to hold the pin at a fixed height, when its back

end sticks in a mounting hole and a force is applied to the plunger. The bore holes

for mounting the pins were simply drilled with a 0.9 mm spiral drill in a fiberglass

plastic plate. The thickness of the plastic plate should not be less than about 2 mm to

avoid a sidewards tilt of the barrel.

The contact pins were stuck into the drill holes of the sample holder from the film

side and the contact wires were soldered to the barrel on the film side. Solder on

the barrel cannot be removed residue-free and thickens the pin shaft, so it does not

fit through the sample holder bore holes. Soldering the wires on the film side made

it possible to mount and remove the contact pins easily from the sample holder and

reuse them on a different position. The sample is only held in place by the spring

force of the contact pins.

With the sample holder mounted on the sample stage, it is not possible to rotate

the horizontal axle over the full 360 o, because the mounting screws hit the small

bevel gear. Therefore, just a angular range of ≈190 o of the half circle opposite to the

top bevel gear is usable.
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Figure 3.1: Description of the goniometer geometry and the coordinate axes used in the text. The
coordinate system xyz is attached to the the horizontal axle. The xz-plane is aligned with the sample
stage. B points in the direction of the magnetic field. ϕ and ϑ show the positive rotation directions
for the two goniometer axes. ϕ refers to the rotation of the whole probe and ϑ represents the rotation
around the horizontal axis. ϑstep, the small arrow at the top, describes the sense of rotation for an
increasing stepper motor angle. This positive sense is transferred by the bevel gears to a negative
one with respect to the horizontal axis as shown by -ϑstep. The small bevel gear should symbolise the
localisation of the probe’s shaft. The position of the horizontal axes with the ẑ axis aligned with the
magnetic field corresponds to the “zero” position ϑstep = ϑ0 and ϕstep = ϕ0.
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Figure 3.2: Diagram of the angles describing the direction of the magnetic field in the coordinate
system xyz attached to the horizontal axle. B points in the direction of the magnetic field and the two
big rings should symbolise the static split coil magnet. The probe’s shaft is directed to the bottom of
the graph to make the sample stage visible. A positive rotation of the stepper motor for the horizontal
axle leads to a positive rotation by ϑstep of the magnetic field in the stage coordinate system. A positive
rotation of the probes head appears as a negative angle −ϕstep between the z axis and the magnetic
field. ϕ0 and ϑ0 are assumed to be zero here for simplicity.
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3.3.5 Goniometer geometry

The basic goniometer geometry is show in Fig. 3.1. The coordinate system is chosen

in a way that the horizontal axis is aligned with the z-axis pointing away from the

bevel gear and the y-axis has the same direction as the sample stage normal. The xz-

plane is parallel to the sample stage surface and the y axis is directed to the bottom

end of the probe. Per convention the absolute stepper motor angle of the horizontal

and the vertical axle are named ϑstep and ϕstep, respectively. It should be noted, that

an increasing stepper motor angle refers to a clockwise rotation of the stepper motor

axle when one looks at the back of the motor. This is the positive sense of rotation

regarding to the right hand rule if the motor would be enclosed by the fingers and the

axle points in the direction of the thumb. In the following a positive sign of an angle

always refers to a positive sense of rotation regarding the right hand rule. It follows

that an increasing ϕstep corresponds to a negative rotation of the magnetic field vector

in the given coordinate system (see Fig. 3.2). −ϕstep appears as the positive angle

between the magnetic field and the z-axis. The positive rotation of the ϑstep axis is

reversed at the bevel gear and finally results in a positive rotation of the field vector

around the z axis. ϑstep is the angle spanned by the x-axis and the projection of the

magnetic field onto the xy-plane.

The magnetic field direction, B̂, at certain stepper motor angles can be written as

B̂ = Uz(ϑstep − ϑ0)Uy(−ϕstep + ϕ0) ẑ , (3.1)

where Uy and Uz are orthogonal matrices describing the rotation around the y and

the z axis, ẑ is the unit vector in z direction. ϑ0 and ϕ0 are the stepper motor angles

where the magnetic field is aligned with ẑ and the probe’s axis is aligned with x̂.

Their values are usually not known and have to be determined by alignment mea-

surements. For convenience, angles φstage = −ϕstep + ϕ0 and θstage = ϑstep − ϑ0 are

introduced, which include the angle offsets of stepper motors. (3.1) describes a vector

in sperical coordinates, where, contrary to the usual convention, φstage is the angle

between the z axis and the vector and θstage is the angle between the x axis and the

projection of the vector onto the xy plane.

The second relevant vector for transport measurements is the orientation of the

track or the current direction. With the chosen coordinates this would be a vector in

the xz-plane.
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3.3.6 Sample alignment and goniometer inconsistencies

In general the procedure for the sample alignment depends on the sample properties

and the requirements of the measurements to be performed. The method given in

this section was used to check for geometrical inconsistencies of the goniometer.

It was seen already on measurements with the Hall probes incorporated in the

first design that it is not possible to align the horizontal axle with the magnetic field.

For no ϕstep value the Hall voltage become independent of ϑstep. This observation

can be explained either by a tilt of the magnetic field relative to the VTI sample

space, a tilt of the whole probe inside the VTI or a tilt between the goniometer head

and the probe’s shaft. The result of this tilt is, that during a rotation around the

vertical axis the magnetic field vector describes a cone instead of a circular disk. As a

consequence the expected 180 o symmetry of a sample tilted arbitrarily with respect

to the sample stage is broken. A broad class of high temperature superconductors

show an intrinsic pinning effect, when the magnetic field is aligned with the ab-

plane of the mono-crystalline sample. The critical current varies usually strongly in

the neighbourhood of the intrinsic pinning direction. In this geometry, already small

angular deviations introduced by the goniometer or a tilt of the sample can result in

observable distortions in the measured angular dependence of the critical current.

To model the expected geometrical distortions, (3.1) has to be extended to account

for the additional tilt, αft of the magnetic field with respect to the sample stage:

B̂ = Uz(θstage)Uy(φstage)Ux(αft) ẑ . (3.2)

At φstage = 0 or ϕstep = ϕ0 the horizontal axis encloses now an angle of αft with the

magnetic field direction. To keep matters simple it is still assumed, that the horizontal

axis is perpendicular to the vertical axis or equivalently there is no misalignment of

the goniometer head with the probe’s shaft and the bearings of the horizontal axis are

at the same height. For the sample position one can start with a coordinate frame,

where the y axis is aligned with the sample surface normal and the x and z axes

are roughly oriented like in the sample stage coordinate system. A vector valued

function B̂samp(φsamp,θsamp) should describe the field direction in the sample frame

of reference. The sample coordinate system is transformed into the sample stage

coordinate system by two tilt angles βt1 and βt2:

B̂ = Uz(βt2)Ux(βt1) B̂samp(φsamp, θsamp) . (3.3)
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Conflating (3.3) and (3.2) delivers equations for ϕstep(φsamp, θsamp) and ϑstep(φsamp, θsamp)

which can be used to determine the stepper motor movements for an angular mea-

surement defined in the sample coordinate system:

Uz(ϑstep − ϑ0)Uy(−ϕstep + ϕ0)Ux(αft) ẑ = Uz(βt2)Ux(βt1) B̂samp . (3.4)

One tilt of the sample can be balanced by the horizontal rotation axis, as can be seen

in equation (3.4) by joining Uz(βt2) with Uz(ϑstep − ϑ0) and fusing the tilt parameter

βt2 with ϑ0. The rotation by βt2 is therefore eliminated in the following equations.

A different choice for the rotations describing the sample tilt in (3.3) would not have

allowed to remove βt2. Because βt1 is expected to be a small angle, the rotation by

βt2 and ϑ0 (or ϑstep) would still be around approximately the same axis. This would

have resulted in a strong correlation of βt1 and ϑ0 in the following least square fit on

the Hall-voltage data, where the misorientation angles act as fitting parameters.

To describe the restriction of the field direction to a certain sample plane, one can

use the scalar product of (3.2) with the normal vector of the plane tilted according to

(3.3). For the zero voltage of a Hall-probe measurement, the normal vector is in the

y direction, resulting in

0 =
[

Uz(θstage)Uy(φstage)Ux(αft) ẑ
]

· [Ux(βt1) ŷ] . (3.5)

To derive an explicit function for θstage in dependence of φstage the terms in the ex-

panded equation (3.5) can be ordered in the general form

a cos(θstage) + b sin(θstage) = c , (3.6)

where a, b and c are linear combinations of sines and cosines of the tilt angles in the

rotational matrices. (3.6) describes the projection of a two dimensional unit vector

onto the vector (a, b)T . Therefore, except in the case of c2 = a2 + b2, there are two

solutions for θstage in the φstage interval [−π, π] (assuming the arctan function applied

is aware of the quadrant its arguments lie in)

tan(θstage)1,2 =
b c ± a

√
a2 + b2 − c2

a c ∓ b
√

a2 + b2 − c2
where c ≤

√

a2 + b2 (3.7)

and between θstage for solution 1 (2) at a certain c and the angle of solution 2 (1) for
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Figure 3.3: Example for a fit of the calculated field rotation in a declined sample plane after (3.5). The
data is measured with a Hall probe mounted on the sample stage. At several ϕstep positions ϑstep was
rotated from −30 o to +30 o and the Hall voltage was recorded. The data points represent the ϑstep

values, where the Hall voltage is zero (without zero field voltage correction).
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Figure 3.4: The final result of the fit of the calculated field rotation against Hall probe data. The
model described by (3.2) was refined to account also for a tilt of the horizontal rotation axis by an
angle αat. The graph is plotted with αat = 0.43 o. Besides the zero Hall voltage data used for fitting
(bold lines) it contains additional curves for field rotations at a constant angle between the field vector
and the sample normal. This angle is given as a parameter. The curves with symbols are evaluated at
a constant voltage corresponding to the field-normal angles from the same Hall measurement, where
also the zero voltage points are taken from. The curves without symbols are calculated from the model
simply by setting the left hand side of the modified equation (3.5) to the cosine of the angle between the
sample normal and the field vector.
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−c is a difference of 180 o. Solutions appropriate for our geometry are achieved by

θstage =











θstage1 for φstage > 0 ,

θstage2 for φstage < 0 ,

0 for φstage = 0 .

(3.8)

φstage has to be restricted to the interval [−π, π], which can be achieved by a periodic

sawtooth function

φstage =

{

((|φ′
stage| + π) mod 2π) − π for φ′

stage > 0 ,

π − ((|φ′
stage|+ π) mod 2π) for φ′

stage < 0 .
(3.9)

As an example Figure 3.3 shows the fit of the derived ϑstep(ϕstep,ϕ0,ϑ0,αft,βt1) func-

tion against data measured with a Hall probe (HHP-NP, sensitivity 178.8 mV/T at

100 mA) mounted at the sample stage. The Hall probe current was 20 mA, the field

was 1 T and the temperature was not controlled. At several ϕstep positions ϑstep was

rotated from −30 o to +30 o and the Hall voltage was recorded. Without any tilts,

one would expect a constant Hall voltage for ϕstep = ϕ0 in this geometry.

The data points represent the ϑstep values, where the Hall voltage is zero (without

zero field voltage correction). The measured curve reproduces the distorted arctan

shape expected from the model. All four parameters are necessary to achieve this fit.

The fit in Figure 3.3 is slightly better for θstage > 0 than for the negative half circle.

This suggests that another deviation from the ideal goniometer is not included in the

model yet. A plausible choice introducing a different kind of distortion would be

a tilt of the horizontal rotation axis relative to the vertical axis by an angle αat. To

test the effect of this tilt Uz(θstage) in (3.2) was replaced by Ux(αat)Uz(θstage)Ux(−αat).

This modification only tilts the horizontal rotation axis and not the whole horizontal

axle with the sample stage and the sample. The declination of the sample normal is

still only covered by βt1. The attempt to fit the data of Fig. 3.3 with the refined model

was only partly successful. A fit with a full set of parameters leads to unreasonably

large values of αat the order of 10 o. On the other hand testing the effect of small

values of αat on the fitted function with the parameter set of Fig. 3.3 shows at least a

slight improvement. A least square fit with the parameter αat alone and keeping all

other parameters constant gives a value for αat of 0.43 o.

The final result including αat is shown in Fig. 3.4. Besides the zero Hall voltage

data used for fitting it contains additional curves for field rotations at the given

angles between the field vector and the sample normal. The lines with symbols are
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evaluated at a constant voltage corresponding to the field-normal angles from the

same Hall measurement, where also the zero voltage points are taken from. The

lines without symbols are calculated from the model simply by setting the left hand

side of equation (3.5) to the cosine of the angle between the sample normal and the

field vector.

3.3.7 Wiring

In the original design the current wires were pairwise twisted varnish coated copper

wires. After about half a year of operation of the probe the lacquer insulation of these

wires became brittle resulting in a high resistance electrical connection (of the order

of MΩ) to the probe’s shaft. The current wires were replaced by twisted standard

electronic PTFE coated wires.

The wiring between the soldering tags on the bottom terminal plate of the probe

to the devices inside the goniometer head needed some additional considerations.

The first approach to protect them from abrasion on metal corners and to give the

bundle of wires some guidance consisted of putting the wires into a shrink tub-

ing. This attempt was not successful. The varnish coating became brittle due to the

movement, the partly small bending radius required, and because of thermal stress.

Assuming that wires with lacquer insulation will not be very durable under these cir-

cumstances, a quick and easy replacement of the wiring between the terminal plate

and the horizontal axle was desirable. Therefore a second terminal board fixed to the

horizontal axis was introduced, where all the devices in the axle were connected to.

Only the wiring between the two terminals is affected by the relative movement and

should be replaceable.

The advantage of lacquer insulation is that it is space saving and also very thin

and flexible copper wires are available. Stranded wires were considered to take up

too much space. Experience showed, that a copper wire with a diameter of 50 µm

is not vulnerable to the permanent motion during the operation of the probe. It is

used for all voltage and for low current leads, like the current supply for the Hall

probes and the temperature sensor. The sample current and the heater supply wires

are made from three to four 100 µm copper wires braided together. All voltage and

current leads are pairwise twisted. The final bundle of wires is still quite thin and

fits easily into the wire channel of the probe head. For further protection it is led

through a PTFE hose down to the height of the horizontal rotational axis. Before the

wires enter the probe’s sample space they are wound several times to a loose spiral
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and put between two plastic discs. The spiral compensates for the rotation motion

of the axle. From there the wire bundle goes through a hole in the inner plastic

disc and enters the sample space of the probe with the second terminal plate. Some

experimentation was necessary to set this wiring up, but it now works quite reliably

and is surprisingly durable.

The described wiring scheme breaks the concept of the direct voltage wires from

the sample to the voltmeter. The experimental practice showed that it is desirable

to have the possibility of shorting the sample without unplugging the voltage or the

current lines when no measurements are performed. In the first approach the low

temperature coax was directly connected to the nanovoltmeter plug, so this was not

possible for the voltage wires. This was changed after some time, so that also the

voltage coax where plugged into a simple switch box with BNC connectors. The

voltage noise did not increase in comparison to the direct connection.

3.3.8 Stepper motors

The driving motors are two equal standard stepper motors (full step 1.8 o) with 45.56 :

1 planetary gears providing high momentum. Including an additional 2 : 1 reduction

for each drive given by the toothed belt transfer and the bevel gears the resulting

angular resolution is lower than 0.02 o per full step. The motors are attached to

two ETM245 micro stepping controllers working in a 1/8 step mode increasing this

theoretical resolution down to ≈ 0.0025 o per rising edge of the step signal. The

EMT245 are interfaced to the standard parallel port of a PC by a self made stepping

motor control unit.

3.3.9 Sample heater

The sample heater is made from a resistance wire loop twisted together and wound

up as small as possible that it fits into the brass heater housing of the probe. After

putting the wire into the housing it is filled up with a highly temperature conducting

glue taking care to get an even contact surface on the open side. Care has to be taken

not to scratch the varnish insulation of the wire when putting it into the housing.

In the currently used heater, the heater wire had a diameter of 0.19 mm and a re-

sistance of 33.5 Ω/m. With a starting length of ≈ 1.2 m a heater resistance of 40 Ω

was achieved. The heater was controlled by a second ITC4 Oxford Instruments

temperature controller, where the maximum output voltage was limited to 6 V. The
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maximum heater power was therefore 0.9 W.

3.3.10 Electrical grounding

The grounding in the measurement setup is based on the protection earth (PE) of

the wall plug. An extra grounding point was available at the site of the setup, but

it seemed to be spoiled by some characteristic noise of unknown source and was

therefore not used as a separate measurement ground.

The instrumentation rig is grounded by the metal housings of the 150 A and

the 25 A current supplies. All digital ground lines of a personal computer (PC) are

directly connected to the protection earth of these devices. Also the IEEE interface

and the digital and analog output cards in the measurement PC, employed to control

the measurement instrumentation, do not offer a separate zero volt signal ground. It

is common practice to avoid ground loops to keep the ground lines free from voltages

induced by varying magnetic fields emitted from practically all electrical devices.

The ground wiring has therefore usually a star like topology starting at one or more

well defined grounding points. In the current setup this concept could not be realised

with the IEEE devices, because (besides their supply cables) the shielding of the IEEE

cables introduces a second connection to PE over the PC housing. Instrumentation

designed for measurement purposes usually separate the internal electronics strictly

from protection earth and leave the grounding to PE as a user option. Therefore,

it should be possible to keep the grounding loops out of the measurement circuit.

For all other shielded cables inside the probe, between the probe, the rig and the

control computer the shielding is always just contacted on one end. Especially ready

made computer cables should be checked for their shielding connections before they

are used in the measurement setup. On the side of the rig an electrically isolated

copper bar was mounted to serve as a central grounding point, where the source of

the ground line can be chosen according to the need of the operator.

For some time it was also tried to use a separation transformer to hold off dis-

turbances from the main lines. The available separation transformer was specified

for a power of ≈ 800 W, which is not sufficient for the whole setup. It was decided

to connect only the current sources used for the very sensitive low current thin film

samples to the transformer. IEEE devices were not powered by the transformer be-

cause they would have brought the already mentioned ground loops built up by the

IEEE cable shieldings directly into the measurement circuit. The main disadvantage

of this approach was, that it was necessary to have a low ohmic ground connection
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in the measurement circuit. Because of this and the questionable protective value of

the separation transformer it was removed from the setup after some time.

Currently the measurement circuit is not grounded at all. It can be connected to

PE by a 1 MΩ resistor, but this did not seem necessary up to now. When the current

source and the nanovoltmeter are connected to the sample, it is not possible to touch

any wire of the measurement circuit directly. This is considered to be important

to avoid voltage peaks on the measurement wires due to electrostatic discharges by

touching the cryostat or the measurement rig which easily can damage a thin film

sample.

3.3.11 Bearings

In the original design no special bearings for the moving parts in the goniometer

head were provided. The smaller brass end piece of the horizontal axle and the

smaller brass bevel gear were running directly on the stainless steel bore hole of

the frame and the stainless steel bottom end part of the probe shaft. Brass is softer

than stainless steel and should therefore deliver some dry lubrication for the bearing.

Because of the relatively small diameter of the rotating part the difference in thermal

expansion was considered not to be a problem. Only the large bevel gear was guided

by a brass ring set into the side part of the goniometer frame because of its larger

diameter.

In the first design the horizontal axis was blocking from time to time. To resolve

this problem it was tried to use PTFE inserts in the stainless steel parts and to replace

the brass ring by a PTFE ring. The brass parts were now running on softer PTFE

bearings instead of stainless steel. It turned out that this did not solve the problem at

all, but also did not make things worse, so the PTFE bearing were left on their place.

Only the PTFE ring for the large bevel gear was exchanged by the previously used

brass ring.

3.3.12 Hall probes

In the first design it was planned to equip the goniometer head with two Hall probes,

one for each rotation axis. They should give at least an approximate feedback of the

current position of the probe. This was desirable because especially the position

of the horizontal axle cannot be checked from outside, when the probe is mounted

in the VTI. This approach did not work well, because it complicated the operation
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and maintenance of the probe. The main reason was the increased number of wires

required for the Hall probes. A failure in the wiring of the goniometer head became

more probable. The Hall probe for the horizontal axle was situated in the same

housing as the heater, thus reducing the available volume for the heater and made

the installation or replacement of the heater wire far more difficult. Finally, the only

positional information one is interested in refers to the sample and therefore usually

the measurements on the sample deliver the positional feedback anyway.

3.3.13 Measurement program

The original measurement program written for the high current probe was a simple

sequencer. It allowed to define a sequence of predefined commands. Every command

could be customized by a fixed set of constant parameters. The program was written

in the C programming language and run under the DOS operating system.

It was considered to be easier to extend the existing program and to adopt it for

the new probe. To use this program with the new probe, a new software module

to access the stepper motor controller was necessary. This module features (not too

accurate) software controlled stepper motor frequency with ramping at start and

end of the motion, single and concurrent drive of the motors, automatic backlash

correction, software limits for minimal and maximal angles and reading out of the

end limit switches. Because the stepper motor control unit does not store the current

angular positions of the motors, all bookkeeping has to done by the PC. To reduce the

risk of loosing the current state of the stepper-motors due to unpredictable program

crashes the data is written to the hard-disk after every change of stepper angles.

The original concept of a simple sequencer leads to very long sequences espe-

cially for angular measurements. These sequences were tedious to write and, be-

cause of the constant command parameters, could not be easily reused for different

samples. Therefore, the sequencer was subsequently modified and extended, finally

resulting in an interpreted programming language. The major extensions were the

introduction of variables, preprocessed command arguments containing mathemati-

cal expressions and string operations, a loop command and conditionals to influence

the program flow and functions for grouping commands together under a new name.

Also some commands for a direct access of the IEEE interface, the serial port, the dig-

ital and the analog output boards and the servo motor controller were added. This

made it possible to implement the software interfaces for devices in the measure-

ment setup directly in the new programming language without modifications on the
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C source code, which simplifies the incorporation of new devices in the setup.

3.4 Measurement setup

The main parts of the setup are a He gas flow cryostat with a split coil magnet,

an experimental rig containing the measurement electronics and a standard PC for

process control. The split coil magnet is situated in the He bath of the cryostat and

delivers a horizontal magnetic field of up to 6 T. It is driven by an Oxford Instru-

ments magnet power supply IPS 120-10. The variable temperature insert (VTI) in

the magnet is supplied with a strong heater and allows sample temperatures from

≈ 3 K to more than 300 K. The inner diameter of the sample space is about 30 mm

and the temperature is set by an Oxford Instruments ITC 503 temperature con-

troller. Four externally programmable current supplies are available for the sample

current, EA-PS 150 A, Heinzinger 25 A, Heinzinger 1 A (each with analog 0–10 V

inputs) and a Keithley 224 with a maximal output current of 100 mA programmed

over its IEEE interface. For constant sample currents up to 150 mA a Knick preci-

sion current source can be used. The sample voltage is measured with a Keithley

182 nanovoltmeter and all other voltage sources like He level-meter, the voltage on

the sample current shunt or the voltage of the sample temperature sensor, are read

out by a digital multimeter Keithley 199 with an eight channel scanner. A second

Oxford Instruments ITC 4 temperature controller can be used for reading or even

controlling the sample temperature alternatively. Two precision resistors, one with

1 Ω@1 W and one with 0.01 Ω@70 W are available as sample current shunt resistors.

The Heinzinger 1 A current supply has a high electromagnetic emission level (no

grounded housing) and must not be placed near the nanovoltmeter.

Besides its standard interfaces the process control PC is equipped with an IEEE

card, an Burr Brown PCI carrier board and an DMC400 servo motor controller (one

axis, high current probe). Via the PCI board the PC can deliver two 12 Bit analog

output voltages (unfortunately grounded) and 16 digital in- and output channels.

Voltmeters, magnet power supply, ITC 503 and the Keithley 224 current source are

connected to the IEEE bus interface. The ITC4 communicates over the serial RS232

line and the stepper motor controller is attached to the parallel port. The analog

output voltages can be used freely to program sample power supplies and are made

ground free by a (self built) separation amplifier.
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