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Preface

The main goal of my diploma thesis is the treatment of Gelfond’s sum of digits problems as formulated
in his paperSur les nombres qui ont des propriétés additives et multiplicatives donnéesin 1968. Gelfond
showed that the sequence (sq(n))n∈N, wheresq(n) denotes the sum of digits ofn in baseq, is well dis-
tributed in arithmetic progressions. At the end of the paper, however, he raises the question as to whether
this and related statements are still true for special subsequences of (sq(n))n∈N.

Though Bésineau provided an asymptotic result of Gelfond’s first problem concerning the joint distribu-
tion of the sum of digits function in 1972, it still took more than thirty years (1999) until Dong-Hyun Kim
completely solved it. He proved that under certain conditions #{1 6 n 6 N : sqi (n) ≡ ai modmi , 1 6
i 6 l} = N/(m1 · · ·ml) + O(N1−λ), whereλ > 0. In particular, he derived an even stronger result by
replacing the sum of digits functions withq-additive functions. In Chapter 4, I refine Kim’s proof for
the sum of digits function, which allows me to sharpen his result. Gelfond’s second problem regards the
sequence (sq(p))p∈P. Until recently it was not even known whether there are infinitely many members
of this sequence in special arithmetic progressions. Through the achievements of Mauduit and Rivat we
now know that the sequence is actually well distributed in arithmetic progressions. This result and the
developed proof method will surely have a major impact on theworks of number theorists, although it is
not published yet (to appear in Annals of Mathematics). I show the solution of Gelfond’s second problem
in Chapter 5, where I simplify Mauduit’s and Rivat’s proof byadapting some ideas Drmota, Mauduit,
Rivat and Stoll used in other papers. The third and last problem is not entirely proved yet, but here again
Mauduit and Rivat showed that the sequence (sq(n2))n∈N is well distributed in arithmetic progressions (to
appear in Acta Mathematica). This result is proved in Chapter 6.

Before Gelfond’s problems will be dealt with in detail, a historical survey of the sum of digits function
is provided in Chapter 1. This chapter also illuminates Gelfond’s questions as already mentioned above
and treats his results on the distribution ofsq(n). Furthermore, some of his statements will be improved.
Chapter 2 is dedicated to exponential sums, which are of particular significance in analytic number
theory. Van der Corput’s inequality, for instance, and an important result concerning quadratic Gauss
sums are proved. Chapter 3 finally presents an extensive treatment of trigonometric products, which
turns out to be the main technical point in solving Gelfond’sproblems. At the end of this diploma
thesis, a short summary of fundamental definitions and results in analytic number theory is enclosed (see
Appendix A).

Johannes Morgenbesser
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Chapter 1

Gelfond’s Problems

Throughout this work,N, Z, Q, R andC denote the sets of natural numbers, integers, rational numbers,
real numbers and complex numbers. Ifx is a positive real number, we mark by logx the natural logarithm
of x. If m andn are integers, then (m, n) denotes the greatest common divisor and lcm(m, n) the lowest
common multiple ofmandn. q is, unless otherwise stated, an integer> 2 andp a prime number. For the
set of all primes, we use the common abbreviationP. Furthermore,

∑

p6N always means, that we only
sum over primes less than or equal toN. We write for a (real or complex valued) functionf

f (x) = O(g(x)) or f (x) ≪ g(x),

if there exists a constantC > 0, such that| f (x)| 6 C|g(x)|. If the constant depends on a set of variables,
say for examplem andq, we write f (x) = Om,q(g(x)) or f (x) ≪m,q g(x), respectively. The expression
f (x) = o(g(x)), x→ ∞ means, that limx→∞ f (x)/g(x) = 0. If x is a real number, we have⌊x⌋ = max{n ∈
Z : n 6 x}, ⌈x⌉ = min{n ∈ Z : n > x} and‖x‖ = minn∈Z |x − n| (distance fromx to the nearest integer).
Furthermore, we use the well-established abbreviation e(x) = exp(2πix) for a real numberx.

1.1 The Sum of Digits Function

It is a well-known fact, that every non-negative integer canbe written uniquely in baseqasn =
∑

k>0 nkqk,
where the integersnk satisfy 06 nk 6 q−1 andnk , 0 for only finitely many. The sum of digits function
in baseq is defined by

sq(n) =
∑

k>0

nk.

In this section we want to shed light on the historical background of the sum of digits function. For
further information see [1, Chapter 3] and [31].

It seems that the first mathematician who studied the sum of digits function was Prouhet (1851). He
gives in [44] a solution to the so called Prouhet-Tarry-Escott problem (see [31]), which is the problem of
finding two distinct sets of integers{α1, . . . , αn} and{β1, . . . , βn} such that the sum of all thek-th powers
of the elements of each set is the same, wherek is bounded by some integerk0. Prouhet’s solution for
n = qr andk < r consists in dividing the integers depending on the value modulo q of the sum of their
digits in baseq. If q = 2, the following result gives an answer to the Prouhet-Tarry-Escott problem. For
any positive integersk andr with k < r, we have

∑

06n<2r

s2(n)≡0 mod 2

nk
=

∑

06n<2r

s2(n)≡1 mod 2

nk.

1



1.1 The Sum of Digits Function 2

The next encounter with the sum of digits function was at the beginning of the twentieth century. In 1906
and 1912, the Norwegian mathematician Axel Thue (see [52, 51]) asked among other questions whether
it is possible to find an infinite binary sequence that contains no cube, i.e. a sequence with no three
consecutive identical blocks. Indeed, he could show that the sequencet = (s2(n) mod 2)n∈N solves the
problem. This sequence is now known as the Thue-Morse sequence (or Prouhet-Thue-Morse sequence),
and it starts with following members

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0. . . .

The Thue-Morse sequence arises in many different fields of mathematics and physics. For instance,
Morse rediscovered this sequence in 1921 to show a result in differential geometry (which is the reason
why it is also named after him). In particular, he proved (see[38] and [31]) that on a surface of negative
curvature, having at least two different normal segments, there exists a set of geodesics that are recurrent
without being periodic (which has the power of the continuum). Coding the geodesics by infinite words
on the alphabet{a, b} according to which boundary of the surface they meet, he arrived to the problem
of constructing a non-periodic infinite word such that any sub word of it occurs infinitely often and with
bounded gaps. By doing so, he introduced the same sequence asThue and showed that it solves the
problem.

Several other mathematicians rediscovered the Thue-Morsesequence after its first appearance. For a
short summary and further references see [1, Notes on Chapter 1]. We only want to mention one other
occurrence. In 1929, the Dutch chess grandmaster and world champion (1935-1937) Max (Machgielis)
Euwe independently discovered the Thue-Morse sequence andapplied it to a problem in chess [16]. The
so-called German rule (which is slightly different to a current rule) states that a draw occurs if the same
sequence of moves occurs three times in succession. Euwe proved, using the cube-free property of the
sequence (s2(n) mod 2)n∈N, that under such a rule infinite games of chess are possible.

Mahler is the first mathematician who used the sum of digits function in the context of harmonic analysis,
which is deeply connected to the topics in this work (see [31,32]). By a theorem of Fréchet, any
monotone functionf can be decomposed asf = f1 + f2 + f3, where f1 is a monotone step-function,
f2 a monotone function which is the integral of its derivative and f3 a monotone continuous function
which has almost everywhere a derivative zero. In [55] Wiener extended the spectrum theory to the
harmonic analysis of functions defined for a denumerable setof arguments (that he called arrays). As
an application of some theorems proved in [55], Mahler givesin [30] a construction based on the array
(−1)s(n) for which f3 , 0 in the Fréchet decomposition. The crucial point is the following property.

Theorem 1.1 For any non-negative integer k the sequence














1
N

∑

n<N

(−1)s2(n)(−1)s2(n+k)















N>1

converges and its limit is non-zero for infinitely many k.

This work has paved the way for the spectral analysis of substitutional dynamical systems. LetT denote
the shift operatorT(un) = un+1 on the space of all sequences (un)n∈N with values in{−1, 1} and endow
the space{1−, 1}N with the metricd((un)n∈N, (vn)n∈N) = 2− inf {n∈N:un,vn} if the two sequences are different
andd((un)n∈N, (vn)n∈N) = 0 otherwise. This induces a substitutional dynamical system which is called
dynamical system of Thue-Morse (see for example [45]). In fact, the convergence of the considered
sequence in Theorem 1.1 can be understood as a consequence ofthe unique ergodicity of this dynamical
system.
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In the middle of the twentieth century, first results about the summatory function of the sum of digits
function were shown. In 1947, Bellman and Shapiro [2] provedthe following relation (in baseq = 2),

∑

06n<x

s2(n) =
x log x
2 log 2

+O(x log logx).

S. C. Tang [50] extended this result to the general case whereq is arbitrary and improved the error term

∑

06n<x

sq(n) =
q− 1
2 logq

x log x+O(x).

In 1975, Delange [11] showed the interesting result, that the summatory function of the sum of digits
function can be written in the form,

∑

06n<x

sq(n) =
q− 1
2 logq

x log x+ x F

(

log x
logq

)

,

whereF : R→ R is periodic of period 1, continuous and nowhere differentiable.

Next, we want to address two related topics to the sum of digits function, namely, normal numbers and
the uniform distribution modulo 1.

Normal Numbers

The notion of normal numbers was introduced byÉmile Borel in his paper [4] (1909). See [29, Chapter
1.8] for a short introduction and exact definitions. Following the introduction in Harold Davenport’s and
Paul Erdős’ paper “Note on normal decimals” [10], a real number α, expressed as a decimal (in base
q), is said to be normal in baseq if every combination of digits occurs in the decimal with theproper
frequency. Ifa1a2 . . . ak is any combination ofk digits, andN(t) is the number of times this combination
occurs among the firstt digits, the condition is that

lim
t→∞

N(t)
t
=

1

qk
.

It was also Borel, who showed in [4] that almost all real numbers in the sense of Lebesgue measure are
normal in baseq. D.G. Champernowne [5] proved in 1933 that the number

0, 1234567891011121314151617. . .

is normal in base 10 (which is now known as Champernowne’s number). Copeland and Erdős [7] showed
in 1952 that also the number

0, 23571113171923293137414347. . . ,

which digits are formed by the concatenation of all primes isnormal in base 10 (Copeland-Erdős con-
stant). From these facts, one can derive results on the summatory function of the sum of digits function
(see next section). However, it is not known whether classical arithmetical constants such asπ, e or

√
2

are normal numbers.
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Uniform Distribution modulo 1

Definition 1.1 The sequence(xn)n∈N of real numbers is said to be uniformly distributed modulo 1,if for
every pair a, b of real numbers with0 6 a < b 6 1 we have

lim
N→∞

# {xn : 1 6 n 6 N, xn ∈ [a, b)}
N

= b− a. (1.1)

This common definition of the uniform distribution modulo 1 was given by Weyl in his famous paper
“Über die Gleichverteilung von Zahlen mod. Eins.” [54], where he also introduced a convenient criterion
(now known as Weyl’s criterion) to check whether a sequence is uniformly distributed modulo 1 or not.
In fact, it suffices to consider the exponential sum

∑N
n=1 e(hxn) for every integerh , 0 (for the exact

statement and a proof see Theorem A.3). We will see in Chapter2, that Weyl’s paper also provides a
practicable method to treat such sums. Nevertheless it wasn’t Weyl’s paper [54] which was the first work
on this topic. Some special sequences have already been studied earlier, for example, Bohl, Sierpiński
and Weyl proved with elementary methods independently in 1909-1910 that the sequence (αn)n∈N is uni-
formly distributed modulo 1 for irrationalα. This result also follows immediately from Weyl’s criterion.
The distribution of this sequence has been studied copiously and a lot of subsequences have been con-
sidered. For instance, Vindogradov showed (see [53]) that the sequence of prime numbers (arranged in
ascending order) multiplied by a irrational number is uniformly distributed modulo 1, too.

There exists an interesting connection between normal numbers and the uniform distribution modulo 1.
A real numberα is normal in baseq, if and only if the sequence (qnα)n∈N is uniformly distributed modulo
1 (see [29, Theorem 8.1]). For further information regarding this topic see [29].

1.2 The Distribution of the Sum of Digits Function in ResidueClasses

The first work dealing with the distribution of the sum of digits function in residue classes goes back to
Nathan Jacob Fine. He answered in [17] Stanislav Marcin Ulam’s question whether the number ofn < x
for which s10(n) ≡ n ≡ 0 mod 13 is asymptoticallyx/132. Indeed, he could even show that

lim
x→∞

1
x

# {n < x : n ≡ a mod p, sq(n) ≡ c mod p } = 1

p2
,

wherea andc are arbitrary integers andp is a prime satisfyingp ∤ (q− 1).

Nevertheless, it was the Russian mathematician Alexander Osipovich Gelfond (1906 – 1968), who could
show a more general version of this assertion. In his paperSur les nombres qui ont des propriétés
additives et multiplicatives données[21], which was published by Acta Arithmetica in 1968, he proved
the following theorem.

Theorem 1.2 (Gelfond, 1968 [21])Let q,m> 1 and r, l, a be integers and(m, q− 1) = 1, then we have

# {1 6 n 6 N : n ≡ l mod r, sq(n) ≡ a modm} = N
mr
+Oq(Nλ), (1.2)

whereλ = 1
2 logq log qsin(π/2m)

sin(π/2mq) < 1 is a positive constant depending only on q and m.

Since his work is of particularly interest in the study of thedistribution of the sum of digits function, we
reproduce his proof in Section 1.3. Moreover, we show in thatsection some further results which can be
obtained from Gelfond’s theorem, and sharpen his result in the caser = 1 (we obtain a better constantλ
and do not need the additional condition (m, q− 1) = 1, see also [28]). We want to note at this point, that
in the case thatm | q− 1 the statement is trivial. This follows from the following easy observation.
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Lemma 1.1 Let q be an integer> 2. Then we have for all n∈ N and for all d with d| q− 1

sq(n) ≡ n mod d.

Proof. Writing n in its unique base-q expansion and using the fact thatqk ≡ 1 modq− 1, we have

sq(n) =
∑

k>0

nk ≡
∑

k>0

nkq
k mod (q− 1).

Since the last term isn andd | q− 1, we are done. �

A crucial part in Gelfond’s proof is the estimation of exponential sums. At least since Vinogradov’s
work on the method of trigonometrical sums in the theory of numbers (see [53]), exponential sums are
intrinsically tied to analytic number theory. One plain reason for it is the following simple but crucial
observation. Let us assume that we have positive integersm and n such thatm | n. Then the sum
∑m−1

h=0 e
(

n
mh

)

is trivially equal tom. If, on the other hand,mdoes not dividen, then the sum is a geometric
series and is equal to zero. For example, this allows us to count all numbersn between 1 andN, such that
the sum of digits ofn in baseq is congruenta modulom. Since this result is of particular importance in
our work, we state it as a lemma.

Lemma 1.2 For any positive integer m and n we have

1
m

m−1
∑

k=0

e
( n
m

k
)

=

{

1 i f m | n,
0 otherwise.

At the end of his paper, Gelfond stated three problems which seemed to be very interesting for him.
Indeed, many mathematicians worked and still work on his problems.

Problem 1 - The joint distribution of the sum of digits functi on in residue classes.

First he conjectured that ifq1, q2, m1 andm2 are positive integers> 2 satisfying (q1, q2) = 1, (m1, q1 −
1) = 1 and (m2, q2 − 1) = 1, then for any integersa1, a2 one has

# {1 6 n 6 N : sq1(n) ≡ a1 modm1 andsq2(n) ≡ a2 modm2} =
N

m1m2
+O(Nλ),

with λ < 1.

In 1972, Bésineau made a first, very important contributionto this problem by showing the following
asymptotic result (see [3]).

Theorem 1.3 Let q1, . . . , ql and m1, . . . ,ml be positive integers> 2 satisfying the conditions(qi , q j) = 1
for i , j and (mj , q j − 1) = 1 for 1 6 j 6 l. Then we have

# {1 6 n 6 N : sqj (n) ≡ a j modmj for 1 6 j 6 l} ∼ N
m1m2 · · ·ml

(N → ∞).

He obtained this result as a consequence of a general theoremon so-called pseudo-random arithmetic
functions. But it took almost another 20 years until Dong-Hyun Kim solved Gelfond’s conjecture. In
particular, he showed a more general result, which uses the notion of completelyq-additive functions. A
function f : N → C is calledcompletely q-additiveif f (0) = 0 and f (aqk

+ b) = f (a) + f (b) for any
integersa > 1, k > 1, and 06 b < qk. Such functions were introduced independently by Bellman and
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Shapiro [2] (1948) and Gelfond [21] (1968) and further studied by Delange, Bésineau, Coquet, Kátai and
others.

In order to be able to state Kim’s result, we have to define the notion of an admissible tuple of integers.
Let q = (q1, . . . , ql) andm = (m1, . . . ,ml) be tuples of integers satisfyingq j ,mj > 2 and (qi , q j) = 1 for
i , j. For eachj, let f j be a completelyq j-additive function with integer values. Furthermore, we define
F j = f j(1) andd j = gcd{mj , (q j − 1)F j , f j(r) − rF j (2 6 r 6 q j − 1)} and writef = ( f1, . . . , fl). An l-
tuplea of integers is calledadmissible with respect to the l-tuplesq,m andf if the system of congruences
F j n ≡ a j modd j , 1 6 j 6 l has a solution. We writeA = {a : 0 6 a j 6 mj−1 (16 j 6 l), a admissible}.

Theorem 1.4 (Kim [28]) Letq,m andf be given as above. For any l-tuplea of integers and all positive
integers N we have

# {0 6 n < N : f j(n) ≡ a j modmj , 1 6 j 6 l} =
{

N/|A| +Oq,l(N1−δ) if a is admissible,
0 otherwise,

whereδ = 1/(120l2q̄3m̄2) with q̄ = max{q j : 1 6 j 6 l} andm̄= max{mj : 1 6 j 6 l}.

One can easily see, that this really solves Gelfond’s first problem and generalizes Bésineau’s result.
If we take for f j the sum of digits functionsqj (which is one of the most famous representatives of
completelyq j-additive functions), and if we additionally demand (mj , q j − 1) = 1 for all j, then we have
d = (1, . . . , 1) and hence everyl-tuplea is admissible. Thus, we have|A| = m1m2 · · ·ml, which proves
Gelfond’s conjecture (l = 2). In Chapter 4, we will prove Kim’s result in the special case of sum of digits
functions.

Problem 2 - The distribution of the sum of digits function of primes.

Gelfond remarked that it would be interesting to find the number of primesp less than or equal toN,
such thatsq(p) ≡ a modm.

Prime numbers fascinate mathematicians within living memory and the research into particulate se-
quences of prime numbers is a classical problem in the theoryof numbers. One of the most famous
theorems in number theory is the prime number theorem. Gauss(1792) and Legendre (1798) conjec-
tured, that limx→∞ π(x)(x/ log x)−1

= 1. Over hundred years later, De La Vallèe-Poussin and Hadamard
proved this separately in 1896. Now there are more accurate results known (see for example Theo-
rem A.1). Dirichlet showed in 1837 (see for example [12]), that there are infinitely many primesp, such
that p ≡ a modk whenever (a, k) = 1. This result was sharpened by Page, Siegel and Walfisz (see Theo-
rem A.2). In the context of prime numbers there are a lot of famous unsolved problems. We want to state
some important conjectures and refer to Paulo Ribenboim’s book “The little book of bigger primes” [47],
which also gives a good overview about recent records concerning prime numbers. Bernhard Riemann
conjectured in 1859 that any non-trivial zero of the zeta-function has real part 1/2 (Riemann hypothesis).
It is deeply connected with prime numbers, and it is considered as one of the most famous problems in
mathematics. In 1742, Goldbach enunciated in a letter to Euler, that every integern > 5 is the sum of
three primes (which is equivalent to the fact that every eveninteger> 4 is sum of two primes). Using
a modified form of the Riemann hypothesis, Hardy and Littlewood showed in 1923 that every sufficient
large odd integer is the sum of three primes. In 1937, Vinogradov gave a proof of this theorem without
resorting to any hypothesis [53]. In spite of this achievements, Goldbach’s conjecture is still unsolved.
Another famous problem deals with primesp such thatp+2 is also a prime. It is unknown whether there
are infinitely many such primes (called twin-primes). Neither is it shown if there are infinitely many
primes of the form 2n + 1 (Fermat numbers) and 2n − 1 (Mersenne numbers).
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In the analysis of the sum of digits function in combination with prime numbers there are only few results
known. As mentioned earlier, one can derive from Copeland’sand Erdős’ work on normal numbers that

∑

p6x

sq(p) ∼ 1
2

(q− 1)
x

logq
(x→ ∞).

In 1967, Katai showed in [27] that

∑

p6x

sq(p) =
(q− 1)x
2 logq

+O

(

x

(log logx)1/3

)

,

but he assumed the validity of the density hypothesis for theRiemann zeta-function. Shiokawa [49]
could show this relation without any unsolved hypothesis and with an improved error term. Heppner [25]
improved and generalized Shiokawa’s result further.

Gelfond’s second problem was for a long time unsolved. If we suppose that the sum of digits of primes
is “randomly distributed”, we get the conjecture

# {p 6 x : sq(p) ≡ a modm} ∼ (m, q− 1)
m

π(x; d, a).

To obtain this result, note that every primep with sq(p) ≡ a modm also satisfiesp ≡ a modd (this can
be easily derived from Lemma1.1). The pictures below underline these conjectures, where we see the
number of primes less than or equalN = 17209 (π(N) = 1983), such thatsq(p) is in a special residue
classes modulom. On the left hand side we haveq = 26 andm= 7. AlthoughN is rather small, we can
already see that there are approximately the same number of primes in each residue class. The second
example considers the case (m, q − 1) , 1 and also confirms the conjecture. We haveq = 26, m = 10,
and hence (m, q− 1) = 5 (note, thatπ(17209; 5, 0) = 1).

0
0 1 2 3 4 5 6

50

100

150

200

250

0
0 1 2 3 4 5 6 7 8 9

50

100

150

200

250

Table 1.1: #{1 6 n 6 N : sq(p) ≡ a modm}
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Montgomery mentioned this problem in [37, p. 208, number 67], where he stated some unsolved prob-
lems.

Letω(n) denote the number of 1’s in the binary expansion ofn; this is called the binary
weight ofn. Show thatω(p) is odd for asymptotically half of the primes.

Furthermore, he noted that Olivier [40, 41] had attacked this problem by using Vinogradov’s method of
prime number sums, but it seemed that the type II sums had beennever estimated. Mauduit, one of the
two authors who solved this problem recently, wrote in a paper in 2001 [31, p. 147], that it was not even
known whether or not there are infinitely many prime numbers satisfying sq(p) ≡ a modm. But he and
Fouvry studied in [18, 19] the same problem where prime numbers are replaced by numbers with at most
two prime factors (denote the set of these numbers byP2). In particular, they could show the following
theorem, using sophisticated linear sieve methods and the spectral theory of some special quasi-compact
operators.

Theorem 1.5 Let q, m be integers> 2 with (m, q− 1) = 1. Then we have for all integers a and x→ ∞

# {n 6 x : sq(n) ≡ a modm, n ∈ P2} ≫q,m
x

log x
.

Replacing prime numbers by numbers with at most two prime factors yields also interesting results in
classical problems. For instance, Chen showed in [6] that there are infinitely many primesp, such that
p+ 2 is inP2.

In a recent work [33], Mauduit and Rivat solved Gelfond’s second problem. In particular, they could
show that

# {p 6 x : p prime andsq(p) ≡ a modm} = d
m
π(x; d, a) +Oq,m(x1−σq,m).

whered = (q− 1,m) andσq,m > 0 is effective. We will state and prove this result in Chapter 5.

Problem 3 - The distribution of the sum of digits function of squares.

Finally, Gelfond alluded the problem of giving an estimate of the number of values of a polynomialP (P
takes only integer values on the setN) satisfying the conditionsq(P(n)) ≡ a modm.

In the field of integer sequences (xn)n∈N which have only few members (in the sense thatn ≪ xn) are
only few results known (for example, Mauduit’s and Rivat’s solution of Gelfond’s second problem).
Concentrating on polynomials, Davenport and Erdős [10] showed in 1952 the following result. Letf (x)
be a polynomial which takes only positive integer values on the setN, then the decimal 0, f (1) f (2) f (3) . . .
is normal. Peter showed in [42] the related result

∑

06n6N

sq(nk) =
q− 1

2
N

log Nk

logq
+ cN+ NFq,k

(

logNk

logq

)

+O(N1−ε),

wherec ∈ R, ε > 0 andFq,k : R→ R is periodic of period 1, continuous and nowhere differentiable.

In 1953 Piatetski-Shapiro studied in [43] the sequence (⌊nc⌋)n∈N. In particular he showed that for every
c ∈ [1, 12/11) the number of positive integers less thanN such that⌊nc⌋ is a prime is asymptotically
N/(c log N). By using van der Corput’s method of exponential sums (see Chapter 2), Mauduit and
Rivat [34, 35] proved the following theorem.
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Theorem 1.6 If c ∈ [1, 7/5), q and m are integers greater than1, then we have for all integers a

lim
N→∞

1
N

# {n < N : sq(⌊nc⌋) ≡ a modm} = 1
m
.

Furthermore, they could show that the sequence (αsq(⌊nc⌋))n∈N is uniformly distributed modulo 1 (c ∈
[1, 7/5)). Forc ∈ [1, 2), these sequences are intermediate cases between polynomials of degree 1 and 2
and the treatment of them can be considered as a first contribution to Gelfond’s third problem. Mauduit,
who solved with Rivat Gelfond’s problem in the caseP(n) = n2, wrote in [31, p. 149], that the method
used in the proof of Theorem 1.6 was good enough to obtain an interval forc independent ofq andm,
but that it seemed that new ideas were needed to cover at leastthe whole interval [1, 2).

If follows from a result of Harman and Rivat [24] that we have for almost allc ∈ [1, 2)

lim
N→∞

1
N

# {n < N : sq(⌊nc⌋) ≡ a modm} = 1
m
,

but it is still a conjecture if this result holds for almost every c > 1 (see [31]). Nevertheless, Dartyge and
Tennenbaum could show in [9] a first result in the casec = 2.

Theorem 1.7 Let q and m be integers> 2 satisfying(m, q − 1) = 1. Then there exists a constant
C = C(q,m) and an integer N0 = N0(q,m) > 1 such that for all integers a and N> N0, we have

# {n < N : sq(n2) ≡ a modm} > CN.

The two authors also generalized this result to sequences ofthe form (f (n))n∈N, where f is a polynomial
with integer coefficients such thatf (N) ⊆ N.

Recently, Mauduit and Rivat solved in [32] Gelfond’s problem in the caseP(n) = n2 (using the above
notion, in the casec = 2). In particular, they showed that

# {n 6 x : sq(n2) ≡ a modm} = x
m

Q(a, d) +Oq,m

(

x1−σq,m
)

,

whereσq,m > 0 is effective andQ(a, d) = # {0 6 n < d : n2 ≡ a modd}. For a proof of Mauduit’s and
Rivat’s results, see Chapter 6.

1.3 Proofs and further Results

In this section we want to prove Theorem 1.2. In order to be able to do this, we have to treat estimates of
exponential sums. The following theorem is the main part of the proof and of special interest (as we see
later).

Theorem 1.8 Let m, q > 1 be integers with(m, q− 1) = 1 andγ ∈ R. Then we have for1 6 h 6 m− 1

∣

∣

∣

∣

∣

∣

∣

N
∑

n=1

e

(

γn+
h
m

sq(n)

)

∣

∣

∣

∣

∣

∣

∣

= Oq(Nλ),

whereλ = 1
2 logq log qsin(π/2m)

sin(π/2mq) < 1.
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Proof. Let f (n) = e
(

γn+ αsq(n)
)

andN =
∑ν

k=0 nkqk (nν , 0). Then we have

N
∑

n=1

f (n) =
q−1
∑

i0,...,iν−1=0

nν−1
∑

iν=0

f (i0 + i1q+ · · · + iνq
ν) +

q−1
∑

i0,...,iν−2=0

nν−1−1
∑

iν−1=0

f (i0 + · · · + iν−1qν−1
+ nνq

ν)

+ . . . +

n0−1
∑

i0=0

f (i0 + n1q+ · · · + nνq
ν) + f (N) − f (0).

One can readily show (sq is q-additive) that we havef (aqi
+bqj ) = f (aqi ) f (bqj ) for 0 6 a, b 6 q−1 and

i , j. Thus, we can write

N−1
∑

n=0

f (n) =
ν−1
∏

k=0

[ f (0)+ f (qk) + · · · + f ((q− 1)qk)][ f (0)+ f (qν) · · · + f ((nν − 1)qν)]

+

ν−2
∏

k=0

[ f (0)+ f (qk) + · · · + f ((q− 1)qk)][ f (0)+ f (qν−1) + · · · + f ((nν−1 − 1)qν−1)] f (nνq
ν)

+ . . . + [ f (0)+ f (1)+ · · · + f (n0 − 1)] f (n1q) · · · · · f (nνq
ν)

+ f (n0) · · · · · f (nνq
ν) − 1.

Since| f (n)| 6 1 we get the following estimation

∣

∣

∣

∣

∣

∣

∣

N
∑

n=1

f (n)

∣

∣

∣

∣

∣

∣

∣

6 q
ν−1
∑

i=1

∣

∣

∣

∣

∣

∣

∣

i
∏

k=0

[ f (0)+ f (qk) + · · · + f ((q− 1)qk)]

∣

∣

∣

∣

∣

∣

∣

+ q+ 2.

Calculating the geometric series (note, thatsq(aqk) = a for 0 6 a 6 q− 1)
∣

∣

∣

∣

∣

∣

∣

∣

q−1
∑

j=0

f ( jqk)

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

q−1
∑

j=0

e(j(γqk
+ α))

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

sinπq(γqk
+ α)

sinπ(γqk + α)

∣

∣

∣

∣

∣

∣

,

we obtain the following estimate of our considered sum
∣

∣

∣

∣

∣

∣

∣

N
∑

n=1

f (n)

∣

∣

∣

∣

∣

∣

∣

6 q
ν−1
∑

i=1

i
∏

k=0

∣

∣

∣

∣

∣

∣

sinπq(γqk
+ α)

sinπ(γqk + α)

∣

∣

∣

∣

∣

∣

+ q+ 2 with ν =

⌊

logN
logq

⌋

. (1.3)

The function sinπq(γqk
+α)

sinπ(γqk+α) is vitally important in this work. We study it in-depth in Chapter 3 and only
refer here to the obtained results.

We setβ = γqk
+ h/m andβ1 = γqk+1

+ h/m, where 0< h < m. First we show that||qβ − β1|| > 1/m.
We can writeqβ − β1 =

h
m(q − 1). If m(q − 1) = hk (k ∈ Z), the condition (m, q − 1) = 1 implies that

h > m. Thus we have proved the claim. Hence, we get|| β || > (2mq)−1 or || β1|| > (2mq)−1. Indeed, if
both numbers are smaller than (2mq)−1, we get a contradiction to||qβ − β1|| > 1/m. This allows us to
apply Lemma 3.1 withδ = 1/(2mq) to one of the two following factors (note, that the factors are trivially
bounded byq)

∣

∣

∣

∣

∣

sinπqβ
sinπβ

· sinπqβ1

sinπβ1

∣

∣

∣

∣

∣

6 q
sin(π/2m)
sin(π/2mq)

= q2λ,
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whereλ = 1
2 logq log qsin(π/2m)

sin(π/2mq) .

If we take these facts into consideration and use (1.3) withα = h
m, we obtain

∣

∣

∣

∣

∣

∣

∣

N
∑

n=1

f (n)

∣

∣

∣

∣

∣

∣

∣

6 q
ν−1
∑

i=1

i
∏

k=0

∣

∣

∣

∣

∣

∣

∣

sinπq(γqk
+

h
m)

sinπ(γqk + h
m)

∣

∣

∣

∣

∣

∣

∣

+ q+ 2 6 q
ν−1
∑

i=1

qλi+1
+ q+ 2≪q qλν ≪q Nλ.

�

Proof (of Theorem 1.2).Let S(N) = # {1 6 n 6 N : n ≡ l mod r, sq(n) ≡ a modm}. By Lemma 1.2 we
have

S(N) =
1

rm

r−1
∑

t=0

m−1
∑

h=0

N
∑

n=1

e

(

n− l
r

t +
sq(n) − a

m
h

)

=
1

rm

r−1
∑

t=0

m−1
∑

h=0

e

(

− lt
r
− ah

m

) N
∑

n=1

e

(

nt
r
+

h
m

sq(n)

)

=
N
rm
+

1
rm

r−1
∑

t=1

N
∑

n=1

e

(

n− l
r

t

)

+
1

rm

r−1
∑

t=0

m−1
∑

h=1

e

(

− lt
r
− ah

m

) N
∑

n=1

e

(

nt
r
+

h
m

sq(n)

)

. (1.4)

Sincet/r . 0 mod 1, there exists an integerN1 < r, such that

∣

∣

∣

∣

∣

∣

∣

1
mr

r−1
∑

t=1

N
∑

n=1

e

(

n− l
r

t

)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

1
mr

r−1
∑

t=1

N1
∑

n=1

e

(

n− l
r

t

)

∣

∣

∣

∣

∣

∣

∣

.

This follows from the fact, that
∑M+r−1

n=M e
(

n
r t
)

= 0 for M > 0. Exchanging the summation order, we can
apply Lemma 1.2 again

∣

∣

∣

∣

∣

∣

∣

1
mr

r−1
∑

t=1

N1
∑

n=1

e

(

n− l
r

t

)

∣

∣

∣

∣

∣

∣

∣

=
1
m

∣

∣

∣

∣

∣

∣

∣

N1
∑

n=1

1
r

r−1
∑

t=0

e

(

n− l
r

t

)

− N1

r

∣

∣

∣

∣

∣

∣

∣

6
1
m

# {1 6 n 6 N1 : n ≡ l mod r} + N1

mr
<

1
m
+

1
m
=

2
m
.

To see the last inequality, note that #{1 6 n 6 N1 : n ≡ l mod r} 6 1 sinceN1 < r. Finally, applying
Theorem 1.8 to the last sum in (1.4) yields the desired estimation with λ as stated. �

Remark. Gelfond showed additionally for the special caseq = m = 2, that λ can be chosen as
log 3/(2 log 2).

In the case thatr = 1, i.e. we are interested in #{0 6 n < N : sq(n) ≡ a modm}, we can obtain a much
better value forλ than Gelfond and do not need the additional condition (m, q − 1) = 1. Therefore we
prove a similar result as stated in Theorem 1.8.

Theorem 1.9 Let N> 0, q > 2 and m> 2 be integers andα ∈ R \ Z. Then we have
∣

∣

∣

∣

∣

∣

∣

N
∑

n=1

e(αsq(n))

∣

∣

∣

∣

∣

∣

∣

= Oq(Nλ),

whereλ < 1. If in addition ||α|| > 1/m, then we haveλ = 1
logq log sin(π/m)

sin(π/mq) < 1.
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Proof. Note, that by Lemma 3.1|(sinπqα)/(sinπα)| 6 qλ, whereλ < 1. If we have||α|| > (qm)−1, then
we can apply Lemma 3.1 withδ = (qm)−1 and we get the same estimation withλ = 1

logq log sin(π/m)
sin(π/mq) < 1.

If we use the same notation as in the proof of Theorem 1.8, we obtain (1.3) (withγ = 0). Hence, we
finally get

∣

∣

∣

∣

∣

∣

∣

N
∑

n=1

e
(

αsq(n)
)

∣

∣

∣

∣

∣

∣

∣

6 q
ν−1
∑

i=1

∣

∣

∣

∣

∣

sinπqα
sinπα

∣

∣

∣

∣

∣

i+1

+ q+ 2 6 q
ν−1
∑

i=1

qλ(i+1)
+ q+ 2≪q qνλ ≪q Nλ.

�

Theorem 1.10 Let q,m> 1 and a be integers. Then we have

# {1 6 n 6 N : sq(n) ≡ a modm} = N
m
+Oq(Nλ),

whereλ = 1
logq log sin(π/m)

sin(π/mq) < 1.

Proof. Let S(N) = # {0 6 n < N : sq(n) ≡ a modm}. By Lemma 1.2 we have

S(N) =
N

∑

n=1

1
m

m−1
∑

h=0

e

(

h
m

(sq(n) − a)

)

.

Forh = 0 we getN
m. If we consider the remaining sum, we have

∣

∣

∣

∣

∣

∣

∣

N
∑

n=1

1
m

m−1
∑

h=1

e

(

h
m

(sq(n) − a)

)

∣

∣

∣

∣

∣

∣

∣

=
1
m

∣

∣

∣

∣

∣

∣

∣

m−1
∑

h=1

e

(

−ah
m

) N
∑

n=1

e

(

h
m

sq(n)

)

∣

∣

∣

∣

∣

∣

∣

6
1
m

m−1
∑

h=1

∣

∣

∣

∣

∣

∣

∣

N
∑

n=1

e

(

h
m

sq(n)

)

∣

∣

∣

∣

∣

∣

∣

≪ Nλ.

The last inequality is a consequence of Theorem 1.9 withλ = 1
logq log sin(π/m)

sin(π/mq) , and the desired result is
proved. �

Remark. In the casem = q = 2, we obtainλ = 1/2, which is considerable better than Gelfond’s result
(log 3/(2 log 2)≈ 0, 792). In other words, we have that the number of 1’s (and 0’s) in the firstN members
of the Thue-Morse sequence isN/2+O(

√
N).

It was first shown by Michel Mendès-France [36] (published in 1968), that (αsq(n))n∈N is uniformly dis-
tributed modulo 1 for irrationalα. In 1980, Coquet [8] showed the interesting theorem, that if(λ(n))n∈N
is uniformly distributed modulo 1, then also the sequence (λ(sq(n)))n∈N is (which of course also proves
Mendès-France’s result). However, we can use Theorem 1.9 to show the same statement in an easy way.
Furthermore, we show that a special subsequence of (αn)n∈N is uniformly distributed modulo 1 (stated
as a remark in Gelfond’s paper). We will see later, that (αsq(p))p∈P (see chapter 5) and (αsq(n2))n∈N
(chapter 6) also have the same property.

Theorem 1.11 For q > 2 the sequence(αsq(n))n∈N is uniformly distributed modulo1, if and only if
α ∈ R \ Q.
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Proof. If α ∈ Q, then the sequence (αsq(n))n∈N takes modulo 1 only a finite number of values and is
therefore not uniformly distributed modulo 1. Conversely,if α ∈ R\Q, then we have for everyh ∈ Z\ {0}
that hα ∈ R \ Z. According to Theorem 1.9, there existsλ < 1, such that

∑

n6N e
(

hαsq(n)
)

= O(Nλ).
Using Weyl’s criterion, this proves that (αsq(n))n∈N is uniformly distributed modulo 1 (see Theorem A.3).

�

Theorem 1.12 Let q, m and a be integers satisfying q,m > 2 and (q,m− 1) = 1. Furthermore, set
M = {n ∈ N : sq(n) ≡ a modm}. Then the sequence(αn)n∈M is uniformly distributed modulo1, if and
only if α ∈ R \ Q.

Proof. As in the previous theorem, the sequence (αn)n∈M takes modulo 1 only a finite number of values
if α ∈ Q (and is therefore not uniformly distributed modulo 1). Suppose now, thatα ∈ R \ Q. According
to Weyl’s criterion (Theorem A.3), we have to show that

∑

16n6N
sq(n)≡a modm

e(kαn) = o(N)

for every integerk , 0. Note, that this is already sufficient, since by Theorem 1.2 #{1 6 n 6 N : sq(n) ≡
a mod m} = N/m+O(Nλ), whereλ < 1. Using Lemma 1.2, we can write

∑

16n6N
sq(n)≡a modm

e(kαn) =
1
m

N
∑

n=1

e(kαn)
m−1
∑

h=0

e

(

h(sq(n) − a)

m

)

=
1
m

N
∑

n=1

e(kαn) +
1
m

m−1
∑

h=1

e

(

−ha
m

) N
∑

n=1

e

(

kαn+
h
m

sq(n)

)

.

The sum in the first term is bounded for allk , 0 if (and only if) α ∈ R \ Q. The inner sum in the
second term is≪ Nλ, with λ < 1 (see Theorem 1.8). Hence, we finally get the desired estimation and
the theorem is proved. �

At the end of this chapter, we want to state and prove another interesting theorem, which was treated in
Gelfond’s paper.

Theorem 1.13 ([21]) Let q,m, z> 1 and a be integers, then we have

# {1 6 n 6 N : n is not divisible by a z-th power of a prime, sq(n) ≡ a modm} = N
mζ(z)

+Oq(Nλ1),

(1.5)

whereλ1 =
1+(z−1)λ

z , λ = λ(m, q) < 1 andζ(.) denotes Riemann’s zeta-function.

Proof. SetT(N) as the considered expression in (1.5). Then we haveT(N) =
∑N

n=1 ϕ(n)ψ(n), where
ϕ(n) = 1 if sq(n) ≡ a modm andϕ(n) = 0 otherwise andψ(n) = 1 if n is not divisible by az-th power of
a prime andψ(n) = 0 otherwise.

Using Lemma A.3, we can writeψ(n) =
∑

dz|n µ(d), whereµ(.) denotes the Möbius function. Therefore
we have (setN1 = ⌊N1/z⌋ and chooseN2 < N1 later)

T(N) =
N

∑

n=1

ϕ(n)
∑

dz|n
µ(d) =

N1
∑

d=1

µ(d)
∑

k6N/dz

ϕ(dzk)

=

N2
∑

d=1

µ(d)
∑

k6N/dz

ϕ(dzk) +
N1
∑

d=N2+1

µ(d)
∑

k6N/dz

ϕ(dzk). (1.6)



1.3 Proofs and further Results 14

Using Theorem 1.2 (withr = dz) and the connection betweenµ(.) andζ(.) (see Lemma A.4), we can
bound the first sum by

N2
∑

d=1

µ(d)
∑

k6N/dz

ϕ(dzk) =
N2
∑

d=1

µ(d)
[ N
mdz +Oq(Nλ)

]

=
N
m

∞
∑

d=1

µ(d)
dz
+Oq(N2Nλ) − N

m

∞
∑

d=N2+1

µ(d)
dz

=
N

mζ(z)
+Oq(N2Nλ) +O(NN1−z

2 ).

whereλ = λ(q,m) < 1. Lemma A.6 yields the lastO-Term in the above expression. Indeed, since the
series and the integral are convergent, we get forM → ∞

∣

∣

∣

∣

∣

∣

∣

∣

M
∑

d=N2+1

µ(d)
dz

∣

∣

∣

∣

∣

∣

∣

∣

6

M
∑

d=N2+1

1
dz
6

∫ M

N2

1
uz

du=
N1−z

2 − M1−z

z− 1
.

By Lemma (A.6) again, we get for the second sum in (1.6)
∣

∣

∣

∣

∣

∣

∣

∣

N1
∑

d=N2+1

µ(d)
∑

k6N/dz

ϕ(dzk)

∣

∣

∣

∣

∣

∣

∣

∣

6

N1
∑

n=N2+1

N
dz
6 N

∫ N1

N2

1
uz

du6 N
N1−z

2

z− 1
= O(NN1−z

2 ).

SettingN2 = ⌊N/1−λ)/z⌋ (< N1 if N is big enough), we obtain

T(N) =
N

mζ(z)
+O(Nλ1), λ1 =

1+ (z− 1)λ
z

, λ = λ(m, q) < 1.

�



Chapter 2

Exponential Sums

In this chapter we consider exponential sums of special linear and quadratic functions. First we treat
sums with two variables, which are linear in one of them. Thenwe study so called Gauss sums, which
play a major role in proving Gelfond’s problem on the sum of digits function of squares. Finally, we
outline a method that allows us to treat exponential sums in an efficient way (Van der Corput inequality).

2.1 A First Inequality

In this section, we want to find an upper bound of
∣

∣

∣

∣

∣

∣

∣

∑

06n<m

∑

M′<l6M

e

(

l(an+ b)
m

)

∣

∣

∣

∣

∣

∣

∣

. (2.1)

The functionl(an+b)
m is linear inl and since exponential sums of linear functions are geometric series, they

are easy to handle. We get for the inner sum

∣

∣

∣

∣

∣

∣

∣

∑

M′<l6M

e

(

l(an+ b)
m

)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∑

06l<M−M′
e

(

l(an+ b)
m

)

∣

∣

∣

∣

∣

∣

∣

6 min



















M − M′,

∣

∣

∣

∣

∣

∣

∣

∣

e
(

(M−M′)(an+b)
m

)

− 1

e
(

an+b
m

)

− 1

∣

∣

∣

∣

∣

∣

∣

∣



















6 min















M,
1

∣

∣

∣sinπan+b
m

∣

∣

∣















.

Hence, the following lemma provides an upper bound of (2.1) (see [33]).

Lemma 2.1 Let a,m ∈ Z with m > 1 and d= (a,m). Let b ∈ R, then we have for every real number
M > 0,

∑

06n<m

min















M,
1

∣

∣

∣sinπan+b
m

∣

∣

∣















≪ dmin















M,
1

sinπ d
m

∣

∣

∣

∣

∣

∣

b
d

∣

∣

∣

∣

∣

∣















+mlogm.

Proof. The inequality is trivial ford = m because in this case
∣

∣

∣sinπan+b
m

∣

∣

∣ = sinπ
∣

∣

∣

∣

∣

∣

b
d

∣

∣

∣

∣

∣

∣ for everyn. When
d , m, we have 16 d 6 m

2 . Puta′ = a
d , m′ = m

d , andb = b′d + r whereb′ ∈ Z, r ∈ R, −d
2 < r 6 d

2, and

S =
∑

06n<m

min















M,
1

∣

∣

∣sinπan+b
m

∣

∣

∣















=

∑

06n<m

min





















M,
1

∣

∣

∣

∣

sin π
m′

(

a′n+ b′ + r
d

)

∣

∣

∣

∣





















.
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The numbersa′n + b′, wheren takesm′ consecutive values, cover all possible residual classes modulo
m′. Indeed, this follows from the fact that (a′,m′) = 1. Hence we can write the sumS in the form

S = d
∑

06n<m′
min





















M,
1

∣

∣

∣

∣

sin π
m′

(

n+ r
d

)

∣

∣

∣

∣





















.

If r is negative, we can also take−n instead ofn since it covers also all residual classes modulom′.
Therefore, we can from now on assume that 06 r 6 d/2 and subsequently suppress the absolute values.
Isolating the first and the last term in this sum yields

S = dmin

(

M,
1

sin πr
m′d

)

+ dmin

















M,
1

sin π
m′

(

1− r
d

)

















+ d
∑

16n<m′−1

min

















M,
1

sin π
m′

(

n+ r
d

)

















.

Sincet 7→ 1
sint is convex on (0, π), we can apply Lemma A.7

S 6 dmin

(

M,
1

sin πr
m′d

)

+
d

sin π
m′

(

1− r
d

) + d
∫ m′− 3

2

1
2

dt

sin π
m′

(

t + r
d

) .

Using again thatt 7→ 1
sint is convex on (0, π) we observe in the first place that

h(x) =
1

sin π
m′ (1− x)

+

∫ m′− 3
2

1
2

dt
sin π

m′ (t + x)

is convex on [0, 1/2] and therefore attains the maximum at the endpoints of the interval. Furthermore it
shows that the maximum is equal toh(1/2), since

h

(

1
2

)

− h(0) =
1

sin π
2m′
− 1

sin π
m′
+

∫ m′−1

m′− 3
2

dt

sin πt
m′
−

∫ 1

1
2

dt

sin πt
m′

>
1

sin π
2m′
− 1

sin π
m′
+

1

2 sin 3π
2m′
− 1

2 sin π
2m′

>
1

2 sin π
2m′
− 1

sin π
m′
+

1

2 sin 3π
2m′
> 0.

Using that
(

log tan t
2

)′
=

1
sint in turn gives

S 6 dmin

(

M,
1

sin πr
m′d

)

+
d

sin π
2m′
+ d

∫ m′−1

1

du
sin πu

m′

6 dmin

(

M,
1

sin πr
m′d

)

+
d

sin π
2m′
+

2dm′

π
log cot

π

2m′
.

Replacingm′ by m/d, using that cotu 6 1/u on (0, π/2) and noticing thatr/d = ||b/d|| ( 0 6 b/d − b′ =
r/d 6 1/2) we finally obtain

S 6 dmin















M,
1

sinπ d
m

∣

∣

∣

∣

∣

∣

b
d

∣

∣

∣

∣

∣

∣















+
d

sin πd
2m

+
2m
π

log
2m
πd
≪ dmin















M,
1

sinπ d
m

∣

∣

∣

∣

∣

∣

b
d

∣

∣

∣

∣

∣

∣















+mlogm.
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2.2 Gauss Sums

In this section we want to prove an upper bound of Gauss sums. These sums are exponential sums and
of the form

G(a, l; m) =
m−1
∑

n=0

e

(

an2
+ ln

m

)

,

wherea, l,m ∈ Z with m> 1. Note, that it does not matter if we sum overn from 0 tom− 1 or over any
other representation system modulom.

Theorem 2.1 Let a, l,m ∈ Z, satisfying m> 1 and(a,m) = 1. Then we have

|G(a, l; m)| 6
√

2m.

We follow the proof of Graham and Kolesnik [22, Chapter 7.4].First we state several lemmas.

Lemma 2.2 If (m1,m2) = 1, then we have

G(a, l; m1m2) = G(am1, l; m2) G(am2, l; m1).

Proof. The crucial point is, that we have

m1m2−1
∑

n=0

e

(

an2
+ ln

m1m2

)

=

m1−1
∑

j=0

m2−1
∑

k=0

e

(

a( jm2 + km1)2
+ l( jm2 + km1)

m1m2

)

.

This follows from the fact that the integersjm2 + km1, j = 0, . . . ,m1 − 1, k = 0, . . . ,m2 − 1 run through
all equivalence classes modulom1m2. But this already implies the desired result. �

Lemma 2.3 Suppose that(a,m) = 1. If m is odd or l is even, then we have

|G(a, l; m)| = |G(a, 0;m)|.

Proof. First we consider the casem≡ 1 mod 2. Then we have (4a,m) = 1 and 4a has an inverse element
modulom, sayã. Replacingn by n+ 2ãl in the index of summation yields

G(a, l; m) =
m−1
∑

n=0

e

(

an2
+ ln

m

)

=

m−1
∑

n=0

e

(

a(n− 2ãl)2
+ l(n− 2ãl)

m

)

= e

(

− ãl2

m

) m−1
∑

n=0

e

(

an2

m

)

.

In the second case we denote the inverse element ofa modulom by ā and replacen by n + āl/2 in the
index of summation. The result follows using similar calculations as before. �

In order to be able to prove the next lemma, we need the notion of the Legendre symbol. Letp be an odd
prime number anda an integer satisfyingp ∤ a. Then the Legendre symbol

(

a
p

)

is defined by

(

a
p

)

=

{

+1, if a ≡ x2 mod p for some integerx,
−1, if there is no suchx.

For further information and properties of the Legendre symbol see for example [23, Chapter 6.5].
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Lemma 2.4 Suppose that p is an odd prime and(a, p) = 1. If r > 1, then we have

|G(a, 0; pr )| =
{

pr/2, if r is even
p(r−1)/2|G(1, 0; p)| otherwise.

Proof. First we show that ifr > 2, thenG(a, 0; pr ) = pG(a, 0; pr−2). Indeed, we can write

G(a, 0; pr ) =
p−1
∑

j=0

pr−1−1
∑

k=0

e

(

a( jpr−1
+ k)2

pr

)

=

pr−1−1
∑

k=0

e

(

ak2

pr

) p−1
∑

j=0

e

(

2a jk
p

)

.

Since the inner sum isp if p | k and 0 otherwise, the claim follows. Furthermore this implies the desired
result if r is even. Contrary, ifr is odd, it suffices to show that

G(a, 0; p) =

(

a
p

)

G(1, 0; p).

If 0 6 k < p, the number of solutions ofan2 ≡ k mod p is 1+
(

ak
p

)

. Hence, we have

G(a, 0; p) =
p−1
∑

n=0

e

(

an2

p

)

=

p−1
∑

k=0

e

(

k
p

) (

1+

(

ak
p

))

=

(

a
p

) p−1
∑

k=0

e

(

k
p

) (

k
p

)

.

Using
∑p−1

k=0 e
(

k
p

)

= 0, we obtain

p−1
∑

k=0

e

(

k
p

) (

k
p

)

= 1+ 2
∑

0<k<p
(

k
p

)

=1

e

(

k
p

)

=

p−1
∑

n=0

e

(

n2

p

)

.

The last equality follows from the fact thatn2 assumes the value 0 once and the other considered values
twice. �

Lemma 2.5 We have for any positive m,

|G(1, 0;m)| =
√

m.

Proof. By Poisson’s summation formula (Lemma A.8), we have

m−1
∑

n=0

e

(

n2

m

)

=

∞
∑

k=−∞

∫ m

0
e

(

x2

m
− kx

)

dx.

Changing the variables (y = x/m and subsequentlyz= (y− k/2)), we obtain

m−1
∑

n=0

e

(

n2

m

)

= m
∞
∑

k=−∞
e

(

−mk2

4

) ∫ 1

0
e(m(y− k/2)2) dy= m

∞
∑

k=−∞
e

(

−mk2

4

) ∫ 1−k/2

−k/2
e(mz2) dz.

Now we can split the last sum up into odd and even terms. Thus weget

m−1
∑

n=0

e

(

n2

m

)

= m(1+ i−m)
∫ ∞

−∞
e(mz2) dz= (i + i−m)(1+ i)

√
m

2
.

Indeed, the last integral can be readily calculated using the residue theorem. Hence, the desired result is
shown. �
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Lemma 2.6 Suppose that a is an odd integer. If l is odd, then we have G(a, l; 2) = 2 and G(a, l; 2r ) = 0
for r > 2. If l is even, we have|G(a, l; 2r )| 6

√
2 2r/2.

Proof. Suppose thatl is odd. Then we have triviallyG(a, l; 2) = 2. If r > 2, we can write

G(a, l; 2r ) =
1

∑

j=0

2r−1−1
∑

k=0

e

(

a( j2r−1
+ k)2

+ l( j2r−1
+ k)

2r

)

=

2r−1−1
∑

k=0

e

(

ak2
+ lk

2r

) 1
∑

j=0

e

(

l j
2

)

,

which is equal to 0 since the inner sum vanishes. Contrary, ifl is even, we can assume by Lemma 2.3
that l = 0. We prove the statement by induction onr. If r 6 3, one can readily check that the claim is
true. Hence, let us assume thatr > 4. We can write

G(a, 0; 2r ) =
1

∑

j=0

2r−1−1
∑

k=0

e

(

a( j2r−1
+ k)2

2r

)

= 2
2r−1−1
∑

k=0

e

(

ak2

2r

)

= 2
2r−2−1
∑

n=0

(

e

(

a(2n)2

2r

)

+ e

(

a(2n+ 1)2

2r

))

= 2G(a, 0; 2r−2) + 2 e
( a
2r

)

G(a, a; 2r−2).

Since the last term is 0 (note, thata is odd andr − 2 > 2), we get the desired result using the induction
hypothesis. �

Proof (of Theorem 2.1).By Lemma 2.2 we only have to consider the casem = pr , wherep is a prime
number andr > 1 an integer. Ifp is an odd prime, then we have

|G(a, l; pr )| = 2r/2

by Lemma 2.3, Lemma 2.4 and Lemma 2.5. Ifp=2, Lemma 2.6 already gives the required answer

|G(a, l; 2r )| 6
√

2 2r/2.

�

Corollary 2.1 Let a, l,m ∈ Z with m> 1 and set d= (a,m). Then we have

|G(a, l; m)| 6
√

2dm,

and

|G(a, l; m)| = 0 if d ∤ l.

Proof. Settingm′ = m/d, a′ = a/d, we can use the Euclidean algorithm (n = km′ + r) to get

G(a, l; m) =
∑

06r<m′

∑

06k<d

e

(

da′(km′ + r)2
+ l(km′ + r)

dm′

)

=

∑

06r<m′
e















a′r2
+

l
dr

m′















∑

06k<d

e

(

lk
d

)

.

If d ∤ l, the inner sum is 0, and the desired inequality is trivially satisfied. In the other case (setl′ = l/d)
we haveG(a, l; m) = d G(a′, l′; m′) with (a′,m′) = 1. Hence we can use Theorem 2.1 to obtain

|G(a, l; m)| = d |G(a′, l′; m′)| 6 d
√

2m′ =
√

2dm.

�
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2.3 Van der Corput’s Inequality

Weyl introduced in [54] a useful transformation that arisesupon squaring an exponential sum. Iff is a
real-valued function, than we have

∣

∣

∣

∣

∣

∣

∣

∑

16n6N

e(f (n))

∣

∣

∣

∣

∣

∣

∣

2

=

∑

16m,n6N

e(f (n) − f (m)) =
∑

|h|<N

∑

16n6N
16n+h6N

e(f (n+ h) − f (n)).

Van der Corput (1922) modified and improved Weyl’s method. Heused the simple idea, that for an
arbitrary positive integerR one hasR

∑

16n6N e(f (n)) =
∑R−1

r=0
∑

−r<n6N−r e(f (n+ r)). Then he employed
the Cauchy-Schwarz inequality and Weyl’s concept. For further information on van der Corput’s method
of exponential sums see [22]. The next lemma is a generalization of van der Corput’s result, where the
special casek = 1 is named after him.

Lemma 2.7 ([32]) Let z1, . . . , zN be complex numbers. For any integers k> 1 and R> 1 we have
∣

∣

∣

∣

∣

∣

∣

∑

16n6N

zn

∣

∣

∣

∣

∣

∣

∣

2

6
N + k(R− 1)

R

∑

|r |<R

(

1− |r |
R

)

∑

16n6N
16n+kr6N

zn+krzn.

Proof. We take for conveniencezn = 0 for n6 0 and forn > N + 1. Then we can write

R
∑

n∈Z
zn =

R−1
∑

r=0

∑

n∈Z
zn+kr =

∑

n∈Z

R−1
∑

r=0

zn+kr .

If the last sum is not zero, thenn satisfies 1− k(R− 1) 6 n 6 N and there are at mostN + k(R− 1) such
values forn. Hence, applying Cauchy-Schwarz and changing the summation index yields to

R2

∣

∣

∣

∣

∣

∣

∣

∑

n∈Z
zn

∣

∣

∣

∣

∣

∣

∣

2

6 (N + k(R− 1))
∑

n∈Z

∣

∣

∣

∣

∣

∣

∣

R−1
∑

r=0

zn+kr

∣

∣

∣

∣

∣

∣

∣

2

6 (N + k(R− 1))
R−1
∑

r1=0

R−1
∑

r2=0

∑

n∈Z
zn+kr1zn+kr2

6 (N + k(R− 1))
R−1
∑

r1=0

R−1
∑

r2=0

∑

m∈Z
zm+k(r1−r2)zm

6 (N + k(R− 1))
∑

|r |<R

(R− |r |)
∑

m∈Z
zm+krzm.

�

The next lemma is a variant of van der Corput’s inequality andis based on [39] (see [32]). We consider
sums of the form

∑

A6n6B zn, where 16 A 6 B 6 N are integers. It has the big advantage, that we can
find an upper bound where the summation domain does not dependon A andB any more.

Lemma 2.8 ([32]) Let 1 6 A 6 B 6 N be integers and z1, . . . , zN complex numbers with absolute value
6 1. Then we have for any R> 1

∣

∣

∣

∣

∣

∣

∣

∑

A6n6B

zn

∣

∣

∣

∣

∣

∣

∣

6



























B− A+ 1
R

∑

|r |<R

(

1− |r |
R

)

∑

16n6N
16n+r6N

zn+krzn



























1/2

+
R
2
.
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Proof. As in the proof of the last lemma, we take for conveniencezn = 0 for n6 0 and forn > N + 1.
Since the absolute values of the considered complex numbersare6 1, we obtain

∣

∣

∣

∣

∣

∣

∣

∣

∣

R
B

∑

n=A

zn −
∑

−R
2<r6R

2

B
∑

n=A

zn+r

∣

∣

∣

∣

∣

∣

∣

∣

∣

6

∑

−R
2<r6R

2

2|r | 6 R2

2
,

and hence

∣

∣

∣

∣

∣

∣

∣

∑

16n6N

zn

∣

∣

∣

∣

∣

∣

∣

6
1
R

B
∑

n=A

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

−R
2<r6R

2

zn+r

∣

∣

∣

∣

∣

∣

∣

∣

∣

+
R
2
.

Using the Cauchy-Schwarz inequality, we finally get























B
∑

n=A

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

−R
2<r6R

2

zn+r

∣

∣

∣

∣

∣

∣

∣

∣

∣























2

6 (B− A+ 1)
B

∑

n=A

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

−R
2<r6R

2

zn+r

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

6 (B− A+ 1)
∑

n∈Z

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

−R
2<r6R

2

zn+r

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

= (B− A+ 1)
∑

−R
2<r16

R
2

∑

−R
2<r26

R
2

∑

n∈Z
zn+r1zn+r2

= (B− A+ 1)
∑

−R
2<r16

R
2

∑

−R
2<r26

R
2

∑

m∈Z
zm+r1−r2zm

= (B− A+ 1)
∑

−R<r<R

(R− |r |)
∑

m∈Z
zm+rzm.

�



Chapter 3

Trigonometric Products

In this chapter, we want to state and prove some average estimates of trigonometric products which are
essential for solving Gelfond’s problems. They are a crucial part of the later proofs and of independent
interest.

Before we begin to study these products we define and considerthe following function, which we have
already seen in Chapter 1.

Definition 3.1 For q > 2 we defineϕq by

ϕq(t) =











| sinπqt|
| sinπt| if t ∈ R \ Z

q if t ∈ Z.
(3.1)

Lemma 3.1 Let q> 2 be an integer andδ ∈ [0, 2
3q]. Then,ϕq(t) is periodic of period1, continuous and

continuously differentiable onR and we have

max
||t||>δ

ϕq(t) 6 ϕq(δ) 6 q.

Furthermore,ϕq(δ) < q if δ , 0.

Proof. Sinceϕq(t) =
∣

∣

∣

∑

06v<q e(vt)
∣

∣

∣ (geometric series), we obtain thatϕq is periodic of period 1, continu-
ous and continuously differentiable onR. We have fort > 0

(

sinπqt
sinπt

)′
=
πqsin(πt) cos(πqt) − π cos(πt) sin(πqt)

sin2(πt)
.

The derivative is trivially negative ift ∈ [1/(2q), 1/q). If t ∈ (0, 1/(2q)), the derivative is negative if and
only if tanπt < (1/q) tanπqt. But this is true, since tan is convex on [0, π/2]. Hence, we obtain thatϕq(t)
is strictly monotone decreasing on the interval [0, 1/q] and we have thatϕq(δ) < q if δ , 0 (ϕq(0) = q).
Moreover, it suffices to show that

max
||t||> 1

q

ϕq(t) 6 ϕq

(

2
3q

)

.

Sincet 7→ sint
sin 2

3 t
is decreasing on [0, π2] (for the same reason as before) and||t|| > 1

q, we obtain

ϕq(t) 6
1

sinπt
6

1
sin π

q

=
sin 2π

3

sin π
q

sin π
2

sin 2
3
π
2

6
sin 2π

3

sin π
q

sin π
q

sin 2π
3q

= ϕq

(

2
3q

)

.

�

Remark. From the fact thatϕq(x) = |Uq−1(cos(πx))|, the Chebyshev polynomial of the second kind, one
can also show thatϕq(.) is strictly monotone decreasing on the interval [0, 1/q].

22
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3.1 Fourier Transform of e( fλ( .))

In this chapter, as in the rest of this work, we setf (n) = αsq(n) and define the truncated function

fλ(n) =
∑

k<λ

f (nkq
k) = α

∑

k<n

nk,

whereλ is an integer greater than zero and the integersnk denote the digits ofn in basisq. As we will
see later, this last functionfλ is of particular interest, since it is periodic of periodqλ. In this section, we
turn our main attention to the discrete Fourier transform ofe(fλ(n)).

Definition 3.2 Let q > 2, α ∈ R and λ ∈ N. The discrete Fourier transform Fλ(., α) of the function
u 7→ e( fλ(u)) is defined for all h∈ Z by

Fλ(h, α) =
1
qλ

∑

06u<qλ

e
(

fλ(u) − huq−λ
)

.

Since f (u) = fλ(u) for 0 6 u < qλ, the discrete Fourier transform of e(f (.)) is the same as of e(fλ(.)). A
crucial point of our further studies is the fact, that we can representFλ(h, α) as a trigonometric product.
Indeed, we get a recursive definition of the Fourier transform using the circumstance thatsq(n) is com-
pletelyq-additive. In particular, we have forv = qu+ i, where 06 i < q, sq(v) = sq(u) + i. Therefore we
get forλ > 0 (assume thatα − hq−(λ+1) ∈ R \ Z)

|Fλ+1(h, α)| = 1

qλ+1

∣

∣

∣

∣

∣

∣

∣

∣

∑

06i<q

∑

06u<qλ

e
(

α(sq(u) + i) − h(qu+ i)q−(λ+1)
)

∣

∣

∣

∣

∣

∣

∣

∣

=
1
q

∣

∣

∣

∣

∣

∣

∣

∣

∑

06i<q

e
(

i
(

α − hq−(λ+1)
))

∣

∣

∣

∣

∣

∣

∣

∣

|Fλ(h, α)|

=
1
q

∣

∣

∣

∣

∣

∣

∣

∣

sinπq
(

α − hq−(λ+1)
)

sinπ
(

α − hq−(λ+1))

∣

∣

∣

∣

∣

∣

∣

∣

|Fλ(h, α)|.

Hence, we can write the following equation for allα ∈ R andh ∈ Z

|Fλ+1(h, α)| = 1
q
ϕq

(

α − h

qλ+1

)

|Fλ(h, α)|. (3.2)

If we iterate this procedure, we obtain (note, thatF0(h, α) = 1)

|Fλ(h, α)| = q−λ
∏

16 j6λ

ϕq

(

α − hq− j
)

. (3.3)

We can easily derive the following lemma from these facts.

Lemma 3.2 Let0 6 θ 6 λ. Then we have

|Fλ(q
θb, α)| 6 |Fλ−θ(b, α)|.

Proof. If θ = λ, then this inequality is trivial by Lemma 3.1. If 06 θ < λ, we use (3.3) to get

|Fλ(q
θb, α)| = q−λ

∏

16 j6θ

ϕq

(

α − bqθ− j
)

∏

θ< j6λ

ϕq

(

α − bqθ− j
)

.
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Sinceϕq(t) is periodic of period 1, we obtain

|Fλ(q
θb, α)| = q−θϕq (α)θ q−(λ−θ)

∏

16 j6λ−θ
ϕq

(

α − bq− j
)

= q−θϕq (α)θ |Fλ−θ(b, α)|.

Again by Lemma 3.1 (ϕq(t) 6 q for all t ∈ R), we finally obtain the desired result. �

In order to get an upper bound ofFλ(h, α) uniformly for all h ∈ Z, we have to prove several properties
of ϕq(t). The following lemmas are from Mauduit’s and Rivat’s work on the sum of digits function
of squares [32]. We will see in Chapter 5 that these results, or being more accurate, Lemma 3.6 and
Lemma 3.14 (which can be derived from the first one) are very useful for proving not only Gelfond’s
problem on the sum of digits function of squares but also his problem on the sum of digits function of
prime numbers.

Lemma 3.3 Let q> 2 be an integer and t∈ R. Then we have

ϕq(t) 6 qexp

(

− (q2 − 1)π2||t||2
6

)

for ||t|| 6
√

6
π2(q2 − 1)

.

Proof. Sinceϕq is periodic of period 1 and symmetric with respect to 0, we only have to considert in
the range

0 6 t 6

√

6

π2(q2 − 1)
.

Easy calculations and the Leibniz criterion give us the following estimations foru ∈ R,

0 6 sinu 6 u− u3

6
+

u5

120
for 0 6 u 6 π,

0 6 u− u3

6
6 sinu for 0 6 u 6

√
6,

0 6 1− u+
u2

3
6 1− u+

u2

2
− u3

6
6 e−u for 0 6 u 6 1.

We have to show that sin(πqt) 6 qsin(πt) exp(−(q2−1)(πt)2)/6). Due to the fact that we have 06 πqt 6 π
and 06 πt 6

√
6, we can use these estimations for sin(πqt) and sin(πt) and therefore it suffices to prove

πqt− (πqt)3

6
+

(πqt)5

120
6 q

(

πt − (πt)3

6

) (

1− q2 − 1
6

(πt)2
+

(q2 − 1)2

3 · 62
(πt)4

)

.

Expanding the right hand side, we see that the above inequality is true if and only if

(qπt)5

3 · 62
− (qπt)5

4 · 5 · 6 +
q3(πt)5

3 · 62
− 2q(πt)5

3 · 62
− q(q2 − 1)2(πt)7

3 · 63
> 0.

Multiplying this inequality with (3· 63 · 5)/(q(πt)5) for t , 0 (t = 0 is trivial), we obtain

3q4
+ 30q2 − 60> 5(q2 − 1)2(πt)2.

But this inequality is true if 06 t 6
√

6
π2(q2−1), since 3q4

+ 30q2 − 60> 30(q2 − 1) for q > 2. �
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Lemma 3.4 We have for q> 2 and t∈ R

ϕq

(

t
q

)

6 ϕq

(

||t||
q

)

.

Proof. Sett = θ + l, where−1
2 < θ 6 1

2 andl ∈ Z. If l ≡ 0 modq, we already have the desired equality
because of the periodicity ofϕq. If l . 0 modq, we have

1
2
>

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t
q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θ + l
q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

>

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

l
q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

θ

q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

>
1
q
− 1

2q
=

1
2q
>

∣

∣

∣

∣

∣

θ

q

∣

∣

∣

∣

∣

=
||t||
q
.

Since sinu is increasing on [0, π/2], we obtain

ϕq

(

t
q

)

= ϕq

(
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t
q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

)

=
| sinπθ|

sinπ
∣

∣

∣

∣

∣

∣

∣

∣

θ+l
q

∣

∣

∣

∣

∣

∣

∣

∣

6
| sinπθ|
sinπ ||t||q

= ϕq

(

||t||
q

)

.

�

Lemma 3.5 We have for q> 2 andα ∈ R

max
t∈R

ϕq(α − t)ϕq(α − qt) 6 qϕq

(

||(q− 1)α||
q+ 1

)

.

Proof. Settingδ = ||(q−1)α||
q+1 6

1
2q andu = α − t, we have to prove

max
t∈R

ϕq(α − t)ϕq(α − qt) = max
u∈R

ϕq(u)ϕq(qu− (q− 1)α) 6 qϕq(δ).

Sinceϕq(t) is always bounded byq, it suffices to show that one of the factors is bounded byϕq(δ). If
||qu− (q− 1)α|| > δ, we get the desired estimation for the second factor by Lemma3.1. In the other case
we have

||qu|| = ||qu− (q− 1)α + (q− 1)α|| > ||(q− 1)α|| − ||qu− (q− 1)α||
> (q+ 1)δ − δ = qδ.

Hence, we can bound the first factor using Lemma 3.4 and the monotony ofϕq(t) on the interval [0, 1/q]

ϕq(u) = ϕq

(

qu
q

)

6 ϕq

(

||qu||
q

)

6 ϕq

(

qδ
q

)

= ϕq(δ).

�

Lemma 3.6 Let q> 2, α ∈ R, h ∈ Z, λ > 1 and cq = π2

12 logq

(

1− 2
q+1

)

. Then we have

|Fλ(h, α)| 6 eπ
2/48q−cq||(q−1)α||2λ. (3.4)

Proof. To prove this lemma, we first note that

max
t∈R

ϕq(α − t)ϕq(α − qt) 6 q2 exp

(

−π
2(q− 1)

6(q+ 1)
||(q− 1)α||2

)

.
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This is a direct consequence of Lemma 3.5 in combination withLemma 3.3 since all assumptions are

satisfied. Indeed, we have||(q−1)α||
q+1 6

1
2q 6

√
3

πq 6

√

3
π2(q2−1). Thus

max
t∈R

ϕq(α − t)ϕq(α − qt) 6 qϕq

(

||(q− 1)α||
q+ 1

)

6 q2 exp

(

−π
2(q− 1)

6(q+ 1)
||(q− 1)α||2

)

.

Let λ > 2. We can finish the proof by using (3.3) (and noticing thatϕq(t) 6 q in the case thatλ is odd).
We have

|Fλ(h, α)| 6
∏

16 j6⌊λ/2⌋

ϕq

(

α − q−2 j
)

ϕq

(

α − q−2 j+1
)

q2
,

and finally obtain (note, that⌊λ/2⌋ > (λ − 1)/2)

|Fλ(h, α)| 6 exp

(

−π
2(q− 1)

6(q+ 1)
⌊λ/2⌋||(q− 1)α||2

)

6 eπ
2/48q−cq||(q−1)α||2λ,

wherecq =
π2

12 logq

(

1− 2
q+1

)

. Sincecq||(q− 1)α||2 6 π2

48 logq, this inequality holds trivially forλ = 1. �

Average estimates of first order

In the next lemmas, we want to study more preciselyϕq and some average estimates ofϕq in order to
find an upper bound of

∑

06h<qλ

h≡a modkqδ

|Fλ(h, α)|. (3.5)

It turns out, that the casesq = 2 andq > 3 are essentially different. We need the following function, that
has been already studied accurately by Fouvry and Mauduit in[18].

Definition 3.3 Let q> 2. Then we define the functionΨq onR by

Ψq(t) =
1
q

∑

06r<q

ϕq

(

t +
r
q

)

. (3.6)

Lemma 3.7 Let q> 2. Then, the functionΨq is periodic of period1/q and continuous onR. Moreover,
we have

max
t∈R
Ψq(t) 6

2
qsin π

2q

+
2
π

log
2q
π
≪ logq. (3.7)

Proof. First, we note thatΨq(t) is obviously continuous and periodic of period 1/q, sinceϕq is continuous
and periodic of period 1. Our first claim to get (3.7) is, that the maximum of this function is attained at
1/2q. Fouvry and Mauduit (see [18, Lemma 2]) used a ingenious ideato show thatΨq(t) is concave and
symmetric with respect to 1/(2q) for t ∈ [0, 1/q] . Using the periodicity, we only have to look at this
interval. Fort ∈ [0, 1/q], we can write

Ψq(t) =
1
q

∑

06r<q

sinπqt
sinπ(t + r/q)

=
1
q

∑

06r<q

(−1)r
sinπq(t + r/q)
sinπ(t + r/q)

.
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If q = 2n, we obtain

2
n−1
∑

j=0

cos
(

(2 j + 1)
(

t +
r

2n

)

π

)

=

n−1
∑

j=0

(

eiπ((2 j+1)(t+ r
2n)) + e−iπ((2 j+1)(t+ r

2n))
)

= eiπ(t+ r
2n)

n−1
∑

j=0

e2iπ j(t+ r
2n) + e−iπ(t+ r

2n)
n−1
∑

j=0

e−2iπ j(t+ r
2n)

= eiπ(t+ r
2n) e2iπn(t+ r

2n) − 1

e2iπ(t+ r
2n) − 1

+ e−iπ(t+ r
2n) e−2iπn(t+ r

2n) − 1

e−2iπ(t+ r
2n) − 1

(3.8)

=
eiπq(t+ r

2n) − 1− e−iπq(t+ r
2n) + 1

eiπ(t+ r
2n) − e−iπ(t+ r

2n)

=

sinπq(t + r
q)

sinπ(t + r
q)
.

Hence, we can writeΨq(t) in the form

Ψq(t) =
2
2n

2n−1
∑

r=0

(−1)r
n−1
∑

j=0

cos
(

(2 j + 1)
(

t +
r

2n

)

π

)

=
2
2n

n−1
∑

j=0

2n−1
∑

r=0

(−1)r cos
(

(2 j + 1)
(

t +
r

2n

)

π

)

.

Using the equality (which can be similar proved as (3.8))

m−1
∑

r=0

(−1)r cos(a+ hr) =
cos

(

a+ m−1
2 h+ m−1

2 π
)

sin
(

mh
2 +

mπ
2

)

cosh
2

, (3.9)

we get

Ψq(t) =
2
2n

n−1
∑

j=0

cos
(

(2 j + 1)πt + 2n−1
2

2 j+1
2n π + 2n−1

2 π
)

sin
(

n(2 j+1)π
2n + nπ

)

cos(2 j+1)π
4n

=
2
2n

n−1
∑

j=0

cos
(

(2 j + 1)πt − 2 j+1
4n π

)

(−1) j+1(−1)n+1(−1) j(−1)n

cos(2 j+1)π
4n

=
2
2n

n−1
∑

j=0

cos
(

(2 j + 1)πt − 2 j+1
4n π

)

cos(2 j+1)π
4n

.

Since j = 0, . . . , n − 1 andt ∈ [0, 1/2n], we have−π2 < (2 j + 1)
(

t − 1
4n

)

π < π
2. Hence,Ψq(t) is a sum

of concave functions and therefore itself a concave function. We also see from this representation, that
Ψq(t) = Ψq(1/q− t). Thus, we can conclude, that the maximum is attained at the point t = 1/4n = 1/2q.
The caseq = 2n+ 1 is almost the same as the first case, we only have to notice that

(−1)r + 2(−1)r
n

∑

j=0

cos
(

2 jπ
(

t +
r

2n+ 1

))

= (−1)r
sinπq

(

t + r
q

)

sinπ
(

t + r
q

) .

This can be proved in the same way as we proved (3.8). Using (3.9), one gets again a representation for
Ψq(t) as a sum of concave functions where it is once more easy to see, that it is symmetric with respect



3.1 Fourier Transform of e( fλ( .)) 28

to t = 1/(4n+ 2) = 1/2q. Hence, we have proved the first claim. Thus we have

max
t∈R
Ψq(t) = Ψq

(

1
2q

)

=
1
q

q−1
∑

r=0

1

sin π
q

(

1
2 + r

) . (3.10)

Separating the first and the last summand in the last sum, we can use Lemma A.7 sinceu 7→ 1/(sinu) is
convex on the interval [0, π]. We obtain

max
t∈R
Ψq(t) 6

1
qsin π

2q

+
1

qsin π
q

(

q− 1
2

) +
1
q

∫ q−3/2

1/2

dt

sin π
q

(

1
2 + t

)

=
2

qsin π
2q

+
2
π

log cot
π

2q
6

2
qsin π

2q

+
2
π

log
2q
π
.

The last inequality is obtained from the fact that cotπ
2q 6

2q
π

. Sinceqsin π
2q > q2

√
2

π
π
2q =

√
2 (note, that

q > 2) we finally have

max
t∈R
Ψq(t) ≪ logq.

�

Remark. In particular, one can easily calculate that maxt∈RΨ2(t) =
√

2 and maxt∈RΨ3(t) = 5
3. As we

will see later, the value for maxt∈RΨ2(t) is not sufficient for our further studies. Hence we have to treat
the caseq = 2 in a separate way. At first, we study the caseq > 3, which allows us to state the following
lemma.

Lemma 3.8 For q > 3, we defineηq by qηq = maxt∈RΨq(t). Then we have for q> 4

0 < ηq < η3 and 0, 4649< η3 =
log 5
log 3

− 1 < 0, 465. (3.11)

Proof. By Lemma 3.7, we haveqηq = maxt∈RΨq(t) 6 2
qsin π

2q
+

2
π

log 2q
π

. Since sin is concave on the

interval (0, π) andq > 4, we can write sinπ2q = sin
(

4
q
π
8

)

>
4
q sin π

8. Thus we obtain

qηq − qη3 6
1

2 sin π
8

+
2
π

log
2q
π
− qη3.

The function inq on the right hand side is decreasing forq > 4 and is approximately−0, 004 < 0 for
q = 4. Hence we get the desired inequality in (3.11). �

We also need a generalization ofΨq in order to handle the caseq > 3.

Definition 3.4 Let q> 3 and2 6 R6 q with R| q. Then we define for t∈ R

Ψq,R(t) =
1
q

∑

16r6R

ϕq

(

t +
r
R

)

.

Lemma 3.9 If q > 3, R | q and2 6 R6 q, then we have

max
t∈R
Ψq,R(t) 6 Rη3,

whereη3 is defined in Lemma 3.8.
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Proof. We begin the proof with reducingΨq,R to the known functionΨq.

Ψq,R(t) =
R
q

∣

∣

∣

∣

∣

sinπqt
sinπRt

∣

∣

∣

∣

∣

1
R

∑

16r6R

ϕR

(

t +
r
R

)

=
R
q
ϕq/R(Rt)ΨR(t) 6 ψR(t).

The last inequality follows from the fact thatϕq/R 6 q/R. We split the proof of this lemma up into two
parts. First, we considerR > 3. In this case, we have already enough information to get ourdesired
result. Using Lemma 3.7 and Lemma 3.8, we obtain

Ψq,R(t) 6 ΨR(t) 6 Rηq 6 Rη3.

Assume now thatR = 2. SinceΨq,2 is periodic of period 1/2 and satisfiesΨq,2 (1/2− t) = Ψq,2(t), it
suffices to look at the interval [0, 1

4]. To be able to find an upper bound, we split it up into three parts.
First we consider the interval [0, 1

3q]. From the initial estimation, we know that

Ψq,2(t) 6 Ψ2(t) = cosπt + sinπt.

Hence, wo obtain (note, thatq > 4)

max
t∈[0, 1

3q ]
Ψq,2(t) 6 max

t∈[0, 1
3q ]

(cosπt + sinπt) = max
t∈[0, 1

3q ]

√
1+ sin 2πt 6

√

1+ sin
π

6
=

√

3
2
.

In the next step, we are interested in [1
3q ,

1
q]. We know thatΨ2(t) 6

√
2 andϕ q

2
is decreasing on [0, 2

q]
(see Lemma 3.1). Furthermore we can use thatsin is concave on [0, π] and derive

max
t∈[ 1

3q ,
1
q ]
Ψq,2(t) 6 max

t∈[ 1
3q ,

1
q ]

2
q
ϕq/2(2t)Ψ2(t) 6

2
√

2
q

ϕq/2

(

2
3q

)

=
2
√

2
q

sin π
3

sin 4
q
π
6

6
2
√

2
q

sin π
3

4
q sin π

6

=
2
√

2
q

√
3q
4
=

√

3
2
.

On the remaining interval, we have

max
t∈[ 1

q ,
1
4 ]
Ψq,2(t) 6 max

t∈[ 1
q ,

1
4 ]

2
q
ϕq/2(2t)Ψ2(t) 6

2
√

2
q

max
t∈[ 1

q ,
1
4 ]

1
sin 2πt

=
2
√

2
q

1

sin 2π
q

6
2
√

2
q

q
4
6

√

3
2
.

Since
√

3
2 < 1, 23< 1, 38< 2

log 5
log 3−1

= Rη3, we are done. �

Lemma 3.10 For q > 3, α ∈ R, a ∈ Z, 0 6 δ 6 λ, k | qλ−δ and k∤ q, we have
∑

06h<qλ

h≡a modkqδ

|Fλ(h, α)| 6 k−η3qη3(λ−δ)|Fδ(a, α)|. (3.12)

Proof. If λ = δ, then the conditionk | qλ−δ implies k = 1 and the statement holds trivially. Ifλ > δ,
then we definedθ = (qθ, kqδ) anduθ = qθ/dθ wheneverδ 6 θ 6 λ. Additionally we defineρθ = dθ/dθ−1

and it is easy to see that the following claims hold:ρθ is an integer satisfyingρθ | q andρθ < q. Indeed,
we havedθ−1 = (qθ−1, dθ) | dθ which implies thatρθ is an integer. Sincedθ−1(ρθ, q) = (dθ, qdθ−1) =
(qθ, kqθ, qθ, kqθ+1) = dθ = ρθdθ−1, we obtain thatρθ | q. Finally, if we assume thatρθ = q, we see from
the last equation thatq has to be a divisor ofk. This contradicts our hypothesisq ∤ k and proves the last
claim.
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The main idea of the proof is to find a recursion. Forδ < θ 6 λ, we can write

∑

06h<qθ

h≡a moddθ

|Fθ(h, α)| =
∑

06u<uθ

|Fθ(a+ udθ, α)| =
∑

06u<uθ

|Fθ(a+ uρθdθ−1, α)|

(∗)
=

∑

06v<quθ−1
v≡0 modρθ

|Fθ(a+ vdθ−1, α)|

(∗∗)
=

∑

06u<uθ−1

∑

06w<q
u+wuθ−1≡0 modρθ

|Fθ(a+ (u+ wuθ−1)dθ−1, α)|.

In (∗) we replaceduρθ by v and used thatρθuθ = quθ−1. In (∗∗) we employed the Euclidean algorithm
to obtain the last expression. Sincedθ−1(ρθ, uθ−1) = (dθ, qθ−1) = (qθ, kqδ, qθ−1) = dθ−1, we see that
(ρθ, uθ−1) = 1. This implies thatuθ−1 has an inverse moduloρθ (say ũθ−1). Thus we can rewrite the
conditionu+wuθ−1 ≡ 0 modρθ to w = −uũθ−1 − rρθ, where 06 r < q/ρθ. Indeed, this follows from the
fact that we have originally 06 w < q. Noticing thatuθ−1dθ−1 = qθ−1 and thatFθ−1(., α) is periodic of
periodqθ−1, we obtain by (3.2)

∑

06h<qθ

h≡a moddθ

|Fθ(h, α)| =
∑

06u<uθ−1

|Fθ−1(a+ udθ−1, α)|
∑

06r<q/ρθ
w=−uũθ−1−rρθ

1
q
ϕq

(

α − a+ udθ−1

qθ
− w

q

)

=

∑

06u<uθ−1

|Fθ−1(a+ udθ−1, α)| Ψq,q/ρθ

(

α − a+ udθ−1 − uũθ−1qθ−1

qθ

)

. (3.13)

By Lemma 3.9, we obtain
∑

06h<qθ

h≡a moddθ

|Fθ(h, α)| 6 ρ−η3
θ

qη3
∑

06h<qθ−1

h≡a moddθ−1

|Fθ−1(h, α)|.

Iterating this processλ − δ times, and noticing thatdλ = kqδ, we get
∑

06h<qλ

h≡a modkqδ

|Fλ(h, α)| 6 ρ−η3
δ+1 · · · ρ

−η3
λ

qη3(λ−δ)|Fδ(a, α)|.

But since

ρδ+1 · · · ρλ =
dδ+1

dδ
· · · dλ

dλ−1
=

dλ
dδ
=

kqδ

qδ
= k,

we have proved the desired estimation. �

If q is a prime, thenk has to be 1 (k | qλ−δ but k ∤ q). In this case, the proof is much easier. We have
dθ = (qθ, qδ) = qδ for all δ 6 θ 6 λ and thereforeρθ = 1. Hence, we consider the functionΨq,q = Ψq

in (3.13). But this implies, that we get the better constantηq sinceqηq = maxt Ψq(t).

We will see in Chapter 5 that the crucial point in this lemma isthe matter of fact that we have (3.12) with
η3 < 1/2. Here we see the reason why we cannot use the same procedure for q = 2. If we definedη2 in
the same way, we would have the same inequality withη2 = 1/2. The next lemma gives us an answer,
how we can deal with this problem. Actually, the simplified form of the Fourier transform in caseq = 2
helps us to obtain the following statement, where we defineη2 in a completely different manner to get a
similar result.
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Lemma 3.11 For q = 2 we defineη2 by the equation

2η2 = (2+
√

2)1/4 (in particular 0, 4428< η2 < 0, 4429).

Then we have for allα ∈ R, a ∈ Z and0 6 δ 6 λ
∑

06h<2λ

h≡a mod 2δ

|Fλ(h, α)| 6 2η2(λ−δ)+1/2|Fδ(h, α)|.

Proof. If λ = 0 we have|F0(h, α)| = 1, and the desired inequality holds trivially. Ifλ > 1 (3.2) allows us
to write

|Fλ(h, α)| =
λ

∏

j=1

| cosπ(α − h2− j)| = | cosπ(α − h2−λ)||Fλ−1(h, α)|.

Hence, we get for 06 δ 6 λ
∑

06h<2λ+1

h≡a mod 2δ

|Fλ+1(h, α)| =
∑

06h<2λ

h≡a mod 2δ

|Fλ+1(h, α)| +
∑

06h<2λ

h≡a mod 2δ

|Fλ+1(h+ 2λ, α)|

=

∑

06h<2λ

h≡a mod 2δ

|Fλ(h, α)
(∣

∣

∣

∣

cosπ
(

α − h2−(λ+1)
)

∣

∣

∣

∣

+

∣

∣

∣

∣

sinπ
(

α − h2−(λ+1)
)

∣

∣

∣

∣

)

.

We obtain from| cosx| + | sinx| =
√

1+ | sin 2x| 6
√

2 that
∑

06h<2λ+1

h≡a mod 2δ

|Fλ+1(h, α)| 6
√

2
∑

06h<2λ

h≡a mod 2δ

|Fλ(h, α). (3.14)

Applying this inequalityλ− δ times would again yield an exponent 1/2. Hence we iterate the recurrence
relation a second time and can write for

∑

06h<2λ+1

h≡a mod 2δ
|Fλ+1(h, α)|

∑

06h<2λ−1

h≡a mod 2δ

|Fλ(h, α)|
(∣

∣

∣

∣
cosπ

(

α − h2−(λ+1)
)

∣

∣

∣

∣
+

∣

∣

∣

∣
sinπ

(

α − h2−(λ+1)
)

∣

∣

∣

∣

)

+

∑

06h<2λ−1

h≡a mod 2δ

|Fλ(h+ 2λ−1, α)|
(∣

∣

∣

∣

cosπ
(

α − (h+ 2λ−1)2−(λ+1)
)

∣

∣

∣

∣

+

∣

∣

∣

∣

sinπ
(

α − (h+ 2λ−1)2−(λ+1)
)

∣

∣

∣

∣

)

=

∑

06h<2λ−1

h≡a mod 2δ

|Fλ−1(h, α)|
(∣

∣

∣

∣

cosπ
(

α − h2−λ
)

∣

∣

∣

∣

(∣

∣

∣

∣

cosπ
(

α − h2−(λ+1)
)

∣

∣

∣

∣

+

∣

∣

∣

∣

sinπ
(

α − h2−(λ+1)
)

∣

∣

∣

∣

)

+

∣

∣

∣

∣

sinπ
(

α − h2−λ
)

∣

∣

∣

∣

(
∣

∣

∣

∣

cosπ
(

α − h2−(λ+1) − 1/4
)

∣

∣

∣

∣

+

∣

∣

∣

∣

sinπ
(

α − h2−(λ+1) − 1/4
)

∣

∣

∣

∣

))

.

Using again (| cosx| + | sinx|)2
= 1 + | sin 2x| and its conclusion| cosx| + | sinx| 6

√
2 as well as

(| cosθ|a+ | sinθ|b)2
6 a2

+ b2, we obtain
∣

∣

∣

∣

cosπ
(

α − h2−λ
)

∣

∣

∣

∣

(∣

∣

∣

∣

cosπ
(

α − h2−(λ+1)
)

∣

∣

∣

∣

+

∣

∣

∣

∣

sinπ
(

α − h2−(λ+1)
)

∣

∣

∣

∣

)

+

∣

∣

∣

∣

sinπ
(

α − h2−λ
)

∣

∣

∣

∣

(
∣

∣

∣

∣

cosπ
(

α − h2−(λ+1) − 1/4
)

∣

∣

∣

∣

+

∣

∣

∣

∣

sinπ
(

α − h2−(λ+1) − 1/4
)

∣

∣

∣

∣

)

6

√

(

1+
∣

∣

∣sin 2π
(

α − h2−(λ+1))
∣

∣

∣

)

+

(

1+
∣

∣

∣cos 2π
(

α − h2−(λ+1))
∣

∣

∣

)

6

√

2+
√

2.
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Hence we have derived
∑

06h<2λ+1

h≡a mod 2δ

|Fλ+1(h, α)| 6 (2+
√

2)1/2
∑

06h<2λ−1

h≡a mod 2δ

|Fλ−1(h, α)|.

Applying this inequality
⌊

λ−δ
2

⌋

-times (and ifλ − δ is odd (3.14) one more time), we finally showed the
desired estimation. �

Average estimates of second order

Using Lemma 3.6, we can give an upper bound of the following average of second order

∑

06h<qλ

h.0 modq

|Fλ(h, α)|2
∣

∣

∣

∣

sin πha
qλ

∣

∣

∣

∣

.

Before we can state and prove the exact result, we illustratetwo useful observations.

Lemma 3.12 For every q> 2 and t∈ R, we have

∑

06r<q

ϕ2
q

(

t +
r
q

)

= q2. (3.15)

Proof. Writing ϕq again as a geometric series, we obtain

∑

06r<q

ϕ2
q

(

t +
r
q

)

=

∑

06r<q

∣

∣

∣

∣

∣

∣

∣

∣

∑

06v<q

e

(

v

(

t +
r
q

))

∣

∣

∣

∣

∣

∣

∣

∣

2

=

∑

06r<q

∑

06u<q

∑

06v<q

e

(

(v− u)

(

t +
r
q

))

= q
∑

06u<q

∑

06v<q

e((v− u)t)
1
q

∑

06r<q

e

(

v− u
q

r

)

= q2.

Indeed, by Lemma 1.2, we get the last equality sinceq | u− v only if u = v. �

Lemma 3.13 Let q> 2, a ∈ Z and0 6 δ 6 λ. Then we have
∑

06h<qλ

h≡a modqδ

|Fλ(h, α)|2 = |Fδ(a, α)|2. (3.16)

Proof. We observe, that forλ > δ by Euclid’s algorithm
∑

06h<qλ

h≡a modqδ

|Fλ(h, α)|2 =
∑

06r<q

∑

06h<qλ−1

h≡a modqδ

|Fλ(h+ rqλ−1, α)|2.
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Using the recursive definition of|Fλ(h + rqλ−1, α)| (see (3.2)), the periodicity of the Fourier transform
and (3.15) we get

∑

06h<qλ

h≡a modqδ

|Fλ(h, α)|2 =
∑

06h<qλ−1

h≡a modqδ

|Fλ−1(h, α)|2 1

q2

∑

06r<q

ϕ2
q

(

α − h

qλ
− r

q

)

=

∑

06h<qλ−1

h≡a modqδ

|Fλ−1(h, α)|2.

Applying this equalityλ − δ times, we obtain (3.16). �

The proof of the following lemma, which gives us the desired average estimate of second order, is
different from Mauduit’s and Rivat’s proof in [33]. It follows the idea of Drmota, Rivat and Stoll, where
they showed an analogous result inZ[i] (see [15, Corollary 6.5]).

Lemma 3.14 Let q> 2, α ∈ R such that(q− 1)α < Z and a∈ Z with (a, q) = 1. Then we have forλ > 1
∑

06h<qλ

h.0 modq

|Fλ(h, α)|2
∣

∣

∣

∣

sin πha
qλ

∣

∣

∣

∣

≪ q(1−cq||(q−1)α||2)λ. (3.17)

where cq = π2

12 logq

(

1− 2
q+1

)

and0 < cq||(q− 1)α||2 < 1.

Proof. We writeah = iqλ + j, where 06 j < qλ in a unique way, since 06 h < qλ. Because (a, q) = 1
andh . 0 modq, we havej , 0 and j . 0 modq. Hence we get

1
∣

∣

∣

∣

sin πha
qλ

∣

∣

∣

∣

=
1

∣

∣

∣

∣

sinπ iqλ+ j
qλ

∣

∣

∣

∣

=
1

∣

∣

∣

∣

sin π j
qλ

∣

∣

∣

∣

6
1

2
π
π

∣

∣

∣

∣

∣

∣

∣

∣

j
qλ

∣

∣

∣

∣

∣

∣

∣

∣

6
qλ

2
1

min{ j, qλ − j} .

Hence, by writing againh for j, the left hand side of (3.17) is bounded by

qλ

2

∑

06h<qλ

|Fλ(h, α)|2
min{h, qλ − h} .

Let M < qλ be an integer. Using Lemma 3.6 withcq as defined there, we can write

∑

06h<qλ

h.0 modq

|Fλ(h, α)|2
∣

∣

∣

∣

sin πha
qλ

∣

∣

∣

∣

6
qλ

2



































∑

06h<qλ

min{h,qλ−h}>M

|Fλ(h, α)|2
min{h, qλ − h} +

∑

06h<qλ

min{h,qλ−h}<M

eπ
2/24q−2cq||(q−1)α||2λ

min{h, qλ − h}



































6
qλ

2



















1
M

∑

06h<qλ

|Fλ(h, α)|2 + eπ
2/24q−2cq||(q−1)α||2λ2M



















≪ qλ
1
M
+ q(1−2cq||(q−1)α||2)λM.

ChoosingM = qcq||(q−1)α||2λ, we obtain
∑

06h<qλ

h.0 modq

|Fλ(h, α)|2
∣

∣

∣

∣
sin πha

qλ

∣

∣

∣

∣

≪ q(1−cq||(q−1)α||2)λ.

The inequalities 0< cq||(q− 1)α||2 < 1 finally follow from the fact that (q− 1)α < Z and||t|| 6 1/2 for all
t ∈ R. �
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As we will see in the proof of Gelfond’s problem on the sum of digits function of squares, it isn’t sufficient
to study the truncated functionfλ. Therefore we only use digits of squares from a special interval. For
1 6 η < λ we define the double truncated function

fη,λ(n) = fλ(n) − fη(n).

In this section, our main interest lies again on the discreteFourier transform, but this time of e(fη,λ(n)).

Definition 3.5 Let q > 2, α ∈ R and 1 6 η < λ be integers. The function Fη,λ(., α) is defined for all
h ∈ Z by

Fη,λ(h, α) =
1
qλ

∑

06u<qλ

e
(

fη,λ(u) − huq−λ
)

.

Using the Euclidean algorithm, we can writeu = qηk + l for all 0 6 u < qλ, where 06 k < qλ−η and
0 6 l < qη. Since this impliesfη,λ = fλ(k), we get

Fη,λ(h, α) = q−λ
∑

06k<qλ−η

∑

06l<qη
e

(

fλ(a) − h
qηk + l

qλ

)

= Fλ−η(h, α)q−η
∑

06l<qη
e

(

−hl

qλ

)

,

and hence

|Fη,λ(h, α)| = |Fλ−η(h, α)|q−ηϕqη(hq−λ). (3.18)

This fact allows us to prove the following two lemmas, which give us upper bounds for sums of the form
∑

06h<qλ

h≡a modqδ

|Fη,λ(h, α)|.

In the first Lemma we haveδ = 0, where we can only show a trivial bound. In the second lemma,we
haveδ > λ − η, which allows us to give some better estimates.

Lemma 3.15 Letα be a real number and1 6 η < λ. Then we have
∑

06h<qλ

|Fη,λ(h, α)| ≪q ηq
λ−η.

Proof. Employing the Euclidean algorithm (h = kqλ−η + l, where 06 k < qη and 06 l < qλ−η) and
using (3.18), we can write

∑

06h<qλ

|Fη,λ(h, α)| =
∑

06k<qλ−η

∑

06l<qη
|Fλ−η(kqλ−η + l, α)|q−ηϕqη

(

kqλ−η + l

qλ

)

=

∑

06l<qλ−η

|Fλ−η(l, α)|q−η
∑

06k<qη
ϕqη

(

l

qλ
+

k
qη

)

.
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By Lemma 3.7 and the trivial estimation|Fλ−η(l, α)| 6 1, we finally obtain
∑

06h<qλ

|Fη,λ(h, α)| =
∑

06l<qλ−η

|Fλ−η(l, α)|Ψqη (lq
−λ)≪ logqηqλ−η ≪q ηq

λ−η.

�

Lemma 3.16 Let a∈ Z, α ∈ R andλ − η 6 δ 6 λ. Then we have
∑

06h<qλ

h≡a modqδ

|Fη,λ(h, α)| ≪q ηq
−η+λ−δϕqη−λ+δ(aq−δ)|Fλ−η(a, α)|, (3.19)

and
∑

06h<qλ

h≡a modqδ

|Fη,λ(h, α)| ≪q η|Fλ−η(a, α)|. (3.20)

Proof. Since by assumptionλ − η 6 δ, we have|Fλ−η(a+ lqδ)| = |Fλ−η(a, α)|. Thus we can write

∑

06h<qλ

h≡a modqδ

|Fη,λ(h, α)| =
∑

06l<qλ−δ

|Fλ−η(a+ lqδ, α)|q−ηϕqη

(

a+ lqδ

qλ

)

= |Fλ−η(a, α)|q−η
∑

06l<qλ−δ

ϕqη

(

a

qλ
+

l

qλ−δ

)

.

Since 06 λ − δ 6 η, we have for allt ∈ R

ϕqη(t + lq−(λ−δ)) = ϕqη−λ+δ(q
(λ−δ)t)ϕqλ−δ(t + lq−(λ−δ)).

Thus, we derive (using again Lemma 3.7)

∑

06h<qλ

h≡a modqδ

|Fη,λ(h, α)| = |Fλ−η(a, α)|q−η+λ−δϕqη−λ+δ

(

a

qδ

)

q−(λ−δ)
∑

06l<qλ−δ

ϕqλ−δ

(

a

qλ
+

l

qλ−δ

)

= q−η+λ−δϕqη−λ+δ

(

a
qδ

)

Ψqλ−δ

(

a
qλ

)

|Fλ−η(a, α)|

≪ logqλ−δq−η+λ−δϕqη−λ+δ

(

a

qδ

)

|Fλ−η(a, α)|

≪q ηq
−η+λ−δϕqη−λ+δ

(

a

qδ

)

|Fλ−η(a, α)|.

By Lemma 3.1, we haveϕqη−λ+δ(aq−δ) 6 qη−λ+δ. Thus, (3.20) is a direct consequence of (3.19). �

We conclude this chapter with presenting two lemmas, which will play a crucial part in Chapter 6.

Lemma 3.17 Let a∈ Z, m ∈ Z, α ∈ R and0 6 δ 6 λ − η. Then we have
∑

06h<qλ

h≡a modqδ

|Fη,λ(h, α)Fλ−η(h+m, α)| ≪q η|Fδ(a, α)Fδ(a+m, α)|.
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(

fη,λ(.)
)
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Proof. First, we employ the Euclidean algorithm (h = kqλ−η + l, where 06 k < qη and 06 l < qλ−η).
Here we note thath ≡ a modqδ is equivalent tol ≡ a modqδ, since by assumptionδ 6 λ − η. Thus we
can write

∑

06h<qλ

h≡a modqδ

|Fη,λ(h, α)Fλ−η(h+m, α)| =
∑

06l<qλ−η

l≡a modqδ

∑

06k<qη
|Fη,λ(kqλ−η + l, α)Fλ−η(kqλ−η + l +m, α)|

=

∑

06l<qλ−η

l≡a modqδ

|Fλ−η(l, α)Fλ−η(l +m, α)|q−η
∑

06k<qη
ϕqη

(

kqλ−η + l
qλ

)

=

∑

06l<qλ−η

l≡a modqδ

|Fλ−η(l, α)Fλ−η(l +m, α)|Ψqη

(

l

qλ

)

.

Therefore we get by Lemma 3.7 and the Cauchy Schwarz inequality
∑

06h<qλ

h≡a modqδ

|Fη,λ(h, α)Fλ−η(h+m, α)| ≪ logqη
∑

06l<qλ−η

l≡a modqδ

|Fλ−η(l, α)Fλ−η(l +m, α)|

≪q η



































∑

06l<qλ−η

l≡a modqδ

|Fλ−η(l, α)|2



































1/2 

































∑

06l<qλ−η

l≡a modqδ

|Fλ−η(l +m, α)|2



































1/2

≪q η|Fδ(a, α)Fδ(a+m, α)|.

Lemma 3.13 finishes the proof. �

Lemma 3.18 Let a∈ Z, α ∈ R andλ − η 6 δ 6 λ. Then we have
∑

06h1,h2<qλ

h1+h2≡a modqδ

|Fη,λ(h1, α)Fη,λ(−h2, α)| ≪q η
2.

Proof. We can write
∑

06h1,h2<qλ

h1+h2≡a modqδ

|Fη,λ(h1, α)Fη,λ(−h2, α)| =
∑

06h2<qλ

|Fη,λ(−h2, α)|
∑

06h1<qλ

h1≡−h2+a modqδ

|Fη,λ(h1, α)|

≪q η
∑

06h2<qλ

|Fη,λ(−h2, α)Fλ−η(−h2 + a, α)|.

To obtain the last inequality we employed Lemma 3.16. Finally, Lemma 3.17 withδ = 0 yields the
desired result. �



Chapter 4

The Joint Distribution of the Sum of Digits
Function

In this chapter we want to prove Gelfond’s conjecture concerning the joint distribution of the sum of
digits function. In particular, we show Kim’s result in the case where the arbitraryq-additive functions
are replaced by sum of digits functions. We follow Kim’s proof (see [28]), but obtain a better error term,
since we can use some special properties of the sum of digits function.

4.1 Main Results

As in the proof of Gelfond’s theorem, the crucial part is an exponential sum estimate.

Theorem 4.1 Let q be an l-tuple of pairwise coprime integers satisfying qj > 2, andα1, . . . , αl be real
numbers such that(q j − 1)α j ∈ R \ Z for at least one index i. Then we have for all positive integers N

N−1
∑

n=0

e



















l
∑

j=1

α j sqj (n)



















= Oq, l(N
1−λ),

whereλ = max16 j6l
‖(qj−1)α j ‖2
240l2 logqj

> 0.

The proof, which we are going to show in Section 4.2, is organized as follows. First we use van der
Corput’s and the Hölder’s inequality in order to smooth thesums. In doing so, we obtain expressions of
the formα j sqj (n + k) − α j sqj (n). If ‖(q j − 1)α j‖ ∈ R \ Z, we show that the sum overn andk of such
terms is small (see Proposition 4.1). The main idea thereby is to find upper bounds of some correlation
functions (Lemma 4.1 – Lemma 4.5).

Before we start the proof, we present the solution of Gelfond’s problem, which is a direct consequence
of Kim’s result.

Theorem 4.2 (Kim [28]) Let q and m be l-tuples of integers satisfying qj , mj > 2 for each j and
(qi , q j) = 1 for i , j. If we set dj = (mj , q j − 1), then we have for all positive integers N and for
any l-tuplea of integers

# {0 6 n < N : sq1(n) ≡ a1 modm1, . . . , sql (n) ≡ al modml}

=

{ N
m1···ml

d1···dl
lcm (d1,...,dl )

+Oq,l(N1−λ) if ai ≡ a j mod (di , d j) for each i and j,
0 otherwise,

whereλ = 1/(240l2(log q̄)m̄2) with q̄ = max{q j : 1 6 j 6 l} andm̄= max{mj : 1 6 j 6 l}.
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Corollary 4.1 Let q andm be l-tuples of integers satisfying qj , mj > 2, (mj , q j − 1) = 1 for each j and
(qi , q j) = 1 for i , j. Then we have for all positive integers N and for any l-tuplea of integers

# {0 6 n < N : sq1(n) ≡ a1 modm1, . . . , sql (n) ≡ al modml} =
N

m1 · · ·ml
+Oq,l(N

1−λ),

whereλ = 1/(240l2(log q̄)m̄2) with q̄ = max{q j : 1 6 j 6 l} andm̄= max{mj : 1 6 j 6 l}.

Proof (of Theorem 4.2). Let S(N) = # {0 6 n < N : sq1(n) ≡ a1 modm1, . . . , sql (n) ≡ al modml}.
If there exists a pair of indicesi and j such thatai . a j mod (di , d j), thenS(N) = 0. Indeed, let us
assume that there is an integern with sqi (n) ≡ ai modmi and sqj (n) ≡ a j modmj. Lemma 1.1 implies
thatsqi (n) ≡ n moddi andsqj (n) ≡ n modd j . These congruences are also true modulo (di , d j). Thus, we
have

ai ≡ sqi (n) ≡ n ≡ sqj (n) ≡ a j mod (di , d j),

which proves thatS(N) has to be zero.

Let us now assume thatai ≡ a j mod (di , d j) for all indicesi and j. Using Lemma 1.2, we can write

S(N) =
N−1
∑

n=0

l
∏

j=1



















1
mj

mj−1
∑

hj=0

e

(

h j

mj
(sqj (n) − a j)

)



















.

Setting

H = {h = (h1, . . . , hl) : 0 6 h j 6 mj − 1 for eachj },
H0 = {h = (h1, . . . , hl) : 0 6 h j 6 mj − 1 andmj | d j h j for each j },

we get

S(N) =
1

∏l
j=1 mj

N−1
∑

n=0

∑

h∈H
e



















l
∑

j=1

h j

mj
(sqj (n) − a j)



















=
1

∏l
j=1 mj



















N−1
∑

n=0

∑

h∈H0

e



















l
∑

j=1

h j

mj
(sqj (n) − a j)



















+

N−1
∑

n=0

∑

h∈H\H0

e



















l
∑

j=1

h j

mj
(sqj (n) − a j)





































. (4.1)

To estimate the first term in (4.1), we have to consider the setH0 more accurately. Since the condition
mj | h j d j is equivalent to (mj/d j) | h j , we can writeH0 in the form

H0 =

{

h =
(

m1

d1
h′1, . . . ,

ml

dl
h′l

)

: 0 6 h′j 6 d j − 1 for eachj

}

.

Hence, settingH ′ = {h′ = (h′1, . . . , h
′
l ) : 0 6 h′j 6 d j − 1 for eachj}, we have

∑

h∈H0

e



















l
∑

j=1

h j

mj
(sqj (n) − a j)



















=

∑

h′∈H ′
e



















l
∑

j=1

h′j
d j

(sqj (n) − a j)



















.
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Since, by Lemma 1.1,sqj (n) ≡ n modd j , we can replacesqj (n) by n in the last sum. We obtain

N−1
∑

n=0

∑

h∈H0

e



















l
∑

j=1

h j

mj
(sqj (n) − a j)



















=

N−1
∑

n=0

∑

h′∈H ′
e



















l
∑

j=1

h′j
d j

(n− a j)



















=

N−1
∑

n=0

l
∏

j=1























dj−1
∑

h′j=0

e













h′j
d j

(n− a j)



































=



















l
∏

j=1

d j



















N−1
∑

n=0

l
∏

j=1























1
d j

dj−1
∑

h′j=0

e













h′j
d j

(n− a j)



































=



















l
∏

j=1

d j



















# {0 6 n < N : n ≡ a j modd j for each j}.

The last equality is a consequence of Lemma 1.2. By our assumption (ai ≡ a j mod (di , d j)) and the
Chinese remainder theorem (Theorem A.4), we obtain

1
∏l

j=1 mj

N−1
∑

n=0

∑

h∈H0

e



















l
∑

j=1

h j

mj
(sqj (n) − a j)



















=



















l
∏

j=1

d j

mj



















(

N
lcm (d1, . . . , dl)

+O(1)

)

=
N

m1 · · ·ml

d1 · · · dl

lcm (d1, . . . , dl)
+O(1).

If we can show that the second term in (4.1) isO(N1−λ), we are done. The conditionh ∈ H \H0 implies
that there exists an indexj, such thatmj ∤ d j h j . This condition is equivalent toh j(q j − 1)/mj ∈ R \ Z
and we can employ Theorem 4.1 withα j = h j/mj. Settingq̄ = max{q j : 1 6 j 6 l} andm̄ = max{mj :
1 6 j 6 l}, we have‖h j(q j − 1)/mj‖ > 1/m̄ and logq j 6 log q̄. Thus, we have

N−1
∑

n=0

e



















l
∑

j=1

h j

mj
sqj (n)



















= Oq,l(N
1−λ),

with λ = 1/(240l2(log q̄)m̄2). Hence, we get the desired estimation

1
∏l

j=1 mj

N−1
∑

n=0

∑

h∈H\H0

e



















l
∑

j=1

h j

mj
(sqj (n) − a j)



















=
1

∏l
j=1 mj

∑

h∈H\H0

e



















−
l

∑

j=1

h j

mj
a j



















N−1
∑

n=0

e



















l
∑

j=1

h j

mj
sqj (n)



















= Oq,l(N
1−λ),

and the proof is finished. �

4.2 Proof of Theorem 4.1

The main part of the proof of Theorem 4.1 is the the following correlation estimate, which is a quantita-
tive and more general version of a result of Bésineau [3].

Proposition 4.1 Let q, N and K be positive integers satisfying q> 2 and
√

N 6 K 6 N. Furthermore,
let α ∈ R with ‖(q− 1)α‖ < Z. Then we have for all positive integers N

1
K

K
∑

k=1

∣

∣

∣

∣

∣

∣

∣

1
N

N−1
∑

n=0

e
(

αsq(n+ k) − αsq(n)
)

∣

∣

∣

∣

∣

∣

∣

2

= O(N−δ),

whereδ = ‖(q− 1)α‖2/(20 logq).
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Throughout this section, we suppose thatq > 2, N andK are integers andα ∈ R. For brevity, we write
f (n) = αsq(n) where we can assume thatα ∈ R \Z. The main point of the proof of this proposition is the
accurate study of the correlation functions

ΦN(k) =
1
N

N
∑

n=0

e( f (n+ k) − f (n)) ,

ΦK,N(r) =
1
K

N
∑

n=0

ΦN(k)ΦN(k + r).

Lemma 4.1 Let k> 0 and0 6 r 6 q be integers. Then we have

ΦqN(qk+ r) = e(rα)
q− r

q
ΦN(k) + e((r − q)α)

r
q
ΦN(k+ 1).

Proof. First we can assume that 06 r 6 q− 1 (if the equation holds forr = 0, it also holds trivially for
r = q). Using the Euclidean algorithm and the fact thatsq is completelyq-additive, we have

qNΦqN(qk+ r) =
q−1
∑

j=0

N−1
∑

n=0

e( f (qn+ j + qk+ r) − f (qn+ j))

=

q−r−1
∑

j=0

N−1
∑

n=0

e(f (n+ k) + f ( j + r) − f (n) − f ( j))

+

q−1
∑

j=q−r

N−1
∑

n=0

e(f (n+ k+ 1)+ f ( j + r − q) − f (n) − f ( j))

=

q−r−1
∑

j=0

e(f ( j + r) − f ( j))
N−1
∑

n=0

e(f (n+ k) − f (n))

+

q−1
∑

j=q−r

e(f ( j + r − q) − f ( j))
N−1
∑

n=0

e(f (n+ k+ 1)− f (n)).

Sincesq(n) = n for 0 6 n < q, we get

1
q

q−r−1
∑

j=0

e(f ( j + r) − f ( j)) =
1
q

q−r−1
∑

j=0

e(rα) = e(rα)
q− r

q
,

and

1
q

q−1
∑

j=q−r

e(f ( j + r − q) − f ( j)) =
1
q

q−1
∑

j=q−r

e((r − q)α) = e((r − q)α)
r
q
.

Hence, we finally obtain

ΦqN(qk+ r) = e(rα)
q− r

q
ΦN(k) + e((r − q)α)

r
q
ΦN(k+ 1).

�
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Lemma 4.2 Let r = 0 or r = 1. Then we have

ΦqK, qN(r) = e(rα)λr ΦK,N(0)+ e((r − q)α)µr ΦK,N(1)+ e((r + q)α)νr ΦK,N(1)+O(1/K),

whereλr =
2q2−3r+1

3q2 , µr =
q2
+3qr+3r−1

6q2 andνr =
q2−3qr+3r−1

6q2 .

Proof. Using the Euclidean algorithm and applying Lemma 4.1 yields

qKΦqK, qN(r) =
q−1
∑

j=0

K−1
∑

k=0

ΦqN(qk+ j)ΦqN(qk+ j + r)

=

q−1
∑

j=0

K−1
∑

k=0

(

e(jα)
q− j

q
ΦN(k) + e((j − q)α)

j
q
ΦN(k+ 1)

)

·
(

(e((j + r)α)
q− j − r

q
ΦN(k) + e((j + r − q)α)

j + r
q
ΦN(k+ 1))

)

.

Thus, we have

qKΦqK, qN(r) = e(rα)
q−1
∑

j=0

(

q− j
q

q− j − r
q

+
j
q

j + r
q

) K−1
∑

k=0

ΦN(k)ΦN(k)

+ e((r − q)α)
q−1
∑

j=0

q− j
q

j + r
q

K−1
∑

k=0

ΦN(k)ΦN(k+ 1)

+ e((r + q)α)
q−1
∑

j=0

j
q

q− j − r
q

K−1
∑

k=0

ΦN(k + 1)ΦN(k)

+ e(rα)
q−1
∑

j=0

j
q

j + r
q

K−1
∑

k=0

(

ΦN(k+ 1)ΦN(k+ 1)− ΦN(k)ΦN(k)
)

.

Calculating the sums overj yields

qKΦqK, qN(r) = e(rα)
2q3 − 3rq + q

3q2

K−1
∑

k=0

ΦN(k)ΦN(k)

+ e((r − q)α)
q3
+ 3rq2

+ 3rq − q

6q2

K−1
∑

k=0

ΦN(k)ΦN(k + 1)

+ e((r + q)α)
q3 − 3rq2

+ 3rq − q

6q2

K−1
∑

k=0

ΦN(k+ 1)ΦN(k)

+ e(rα)
2q3 − 3q2

+ 3rq2
+ q− 3rq

6q2

K−1
∑

k=0

(

ΦN(k+ 1)ΦN(k+ 1)− ΦN(k)ΦN(k)
)

.

Since the last sum overk is a telescoping series and|ΦN(.)| 6 1, the last term is≪ q and we obtain

ΦqK, qN(r) = e(rα)λrΦK,N(0)+ e((r − q)α)µrΦK,N(1)+ e((r + q)α)νrΦK,N(1)+O(1/K).

�
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The next step is to boundΦq2i K, q2i N(r) for i = 1. Matrix calculations will provide us an upper bound for
arbitrary positive integersi.

Lemma 4.3 Let r = 0 or r = 1. Then we have

|Φq2K,q2N(r)| 6 ρr |ΦK,N(0)| + σr |ΦK,N(1)| +O(1/K),

whereρr andσr are non-negative integers satisfyingρr + σr 6 1− ‖(q−1)α‖2
4 .

Proof. By Lemma 4.2, we have

Φq2K, q2N(r)

= e(rα)λrΦqK, qN(0)+ e((r − q)α)µrΦqK, qN(1)+ e((r + q)α)νrΦqK, qN(1)+O(1/K)

= e(rα)λr

(

λ0ΦK,N(0)+ e(−qα)µ0ΦK, N(1)+ e(qα)ν0ΦK,N(1)+O(1/K)
)

+O(1/K)

+ e((r − q)α)µr

(

e(α)λ1ΦK,N(0)+ e((1− q)α)µ1ΦK,N(1)+ e((1+ q)α)ν1ΦK,N(1)+O(1/K)
)

+ e((r + q)α)νr

(

e(α)λ1ΦK,N(0)+ e((1− q)α)µ1ΦK,N(1)+ e((1+ q)α)ν1ΦK,N(1)+O(1/K)
)

.

If we set

ρr = |λrλ0 + e(−(q− 1)α)µrλ1 + e((q− 1)α)νrλ1|,
σr = |λrµ0 + e(−(q− 1)α)µrµ1 + e((q− 1)α)νrν1| + |λrν0 + e(−(q− 1)α)µrν1 + e((q− 1)α)νrµ1|,

we obtain (note that 06 λr , µr , νr 6 1)

|Φq2K,q2N(r)| 6 ρr |ΦK,N(0)| + σr |ΦK,N(1)| +O(1/K).

To finish the proof of this lemma, we have to check the additional property ofρr +σr . In order to be able
to do this, we need the following elementary result. For any real numbersa > b > 0 andθ, we have

|a+ be(θ)| 6 a+ b− 4b‖θ‖2.

This follows immediately from

4a(a+ b− |a+ be(θ)|) > (a+ b+ |a+ be(θ)|)(a + b− |a+ be(θ)|)
= (a+ b)2 − |a+ be(θ)|2 = 2ab(1− cos(2πθ))

= 2ab(1 − cos(2π‖θ‖)) = 4ab(sinπ‖θ‖)2

> 4ab

(

2
π

)2

π2‖θ‖2 = 16ab‖θ‖2.

Now we are able to prove the inequalityρr + σr 6 1− ‖(q − 1)α‖2/4. First, one can readily check that
λr + µr + νr = 1. Furthermore, we haveλ0 > λ1 > 1/2, µ1 > µ0 > 1/8 andλr > µr (note thatq > 2).
This impliesλrλ0 > µrλ1 and we are allowed to use the just obtained result. We have

ρr 6 |λrλ0 + e((1− q)α)µrλ1| + νrλ1

6 λrλ0 + µrλ1 − 4µrλ1‖(q− 1)α‖2 + νrλ1.

Sinceµrλ1 > 1/16, we obtain

ρr 6 λrλ0 + µrλ1 + νrλ1 −
‖(q− 1)α‖2

4
.
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The constantσr is trivially bounded byλrµ0 + µrµ1 + νrν1 + λrν0 + µrν1 + νrµ1. Hence we finally get

ρr + σr 6 λr (λ0 + µ0 + ν0) + (µr + νr )(λ1 + µ1 + ν1) − ‖(q− 1)α‖2
4

= 1− ‖(q− 1)α‖2
4

.

�

Lemma 4.4 Let a, b, c and d be non-negative real numbers satisfying a+ b 6 1− ε and c+ d 6 1− ε
for someε > 0. Let

(

a b
c d

)i

=

(

Ai Bi

Ci Di

)

(i > 1). (4.2)

Then we have Ai + Bi 6 (1− ε)i and Ci + Di 6 (1− ε)i for all positive integers i.

Proof. We prove this lemma by induction oni. Wheni = 1, the claim holds by assumption. Suppose
now, that the result holds for all integersi > 1. Since

(

Ai+1 Bi+1

Ci+1 Di+1

)

=

(

Ai Bi

Ci Di

) (

a b
c d

)

,

we have

Ai+1 + Bi+1 = (a+ b)Ai + (c+ d)Bi 6 (1− ε)(Ai + Bi) 6 (1− ε)i+1,

Ci+1 + Di+1 = (a+ b)Ci + (c+ d)Di 6 (1− ε)(Ci + Di) 6 (1− ε)i+1,

and the desired result is proved. �

Lemma 4.5 For r = 0, 1 and any positive integer i we have

Φq2i K, q2i N(r) = O
(

e−τi
)

,

whereτ = ‖(q−1)α‖2
4 .

Proof. Let

M =

(

ρ0 σ0

ρ1 σ1

)

, Mi
=

(

Ai Bi

Ci Di

)

(i > 1),

whereρr andσr are defined in Lemma 4.3 (r = 0, 1). We have by the same lemmaρr + σr 6 1− τ with
τ = ‖(q − 1)α‖2/4. SettingPi = |Φq2i K, q2i N(0)| andQi = |Φq2i K, q2i N(1)| and applying Lemma 4.4 with
q2i−2K andq2i−2N in place ofK andN, we obtain fori > 1

(

Pi

Qi

)

6 M

(

Pi−1

Qi−1

)

+O

(

1

q2i−2K

) (

1
1

)

,

where the inequality is to be interpreted componentwise. Iterating this estimatei times, we get

(

Pi

Qi

)

6 Mi
(

P0

Q0

)

+

i
∑

j=1

O

(

1

q2( j−1)K

)

Mi− j
(

1
1

)

.
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SinceP0 6 1 andQ0 6 1, we have by Lemma 4.4

Mi
(

P0

Q0

)

6

(

e−τi

e−τi

)

and Mi− j
(

1
1

)

6

(

e−τ(i− j)

e−τ(i− j)

)

.

The inequalityeτ/q2
6 1/2 (note thatq > 2 andτ 6 1/16) implies

j
∑

i=1

e−τ(i− j)

q2( j−1)K
= e−τi

eτ

K

i−1
∑

j=0

(

eτ

q2

)i

≪ e−τi ,

and we finally obtainΦq2i K, q2i N(0)≪ e−τi andΦq2i K,q2i N(1)≪ e−τi . �

Proof (of Proposition 4.1). By assumption we have
√

N 6 K 6 N. Furthermore, we can assume that
N > q45. If we set

t =

⌊

2 logN
9 logq

⌋

, (4.3)

thent > 1 andq2t
6

√
N. Hence there exist integersM > 1, L > 1 and 06 R, S < q2t, such that

N = q2t M + R and K = q2tL + S.

Next we want to show that

ΦN(k)ΦN(k) = Φq2t M(k)Φq2t M(k) +O

(

q2t

N

)

.

We can write

|ΦN(k)ΦN(k) − Φq2t M(k)Φq2t M(k)| 6 |ΦN(k) + Φq2t M(k)| · |ΦN(k) − Φq2t M(k)| + 2|ImΦN(k)Φq2t M(k)|.

The right hand side of the last inequality is≪ q2t/N since

|ΦN(k) − Φq2t M(k)| =

∣

∣

∣

∣

∣

∣

∣

∣

1
N

N−1
∑

n=0

e(f (n+ k) − f (n)) − 1

q2tM

q2t M−1
∑

n=0

e(f (n+ k) − f (n))

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

(

1
N
− 1

q2t M

) q2t M−1
∑

n=0

e(f (n+ k) − f (n)) +
1
N

N−1
∑

n=q2t M

e(f (n+ k) − f (n))

∣

∣

∣

∣

∣

∣

∣

∣

(4.4)

6

∣

∣

∣

∣

∣

∣

1
N
− 1

q2tM

∣

∣

∣

∣

∣

∣

q2t M +
N − q2t M

N
6

2q2t

N
,

and

|ImΦN(k)Φq2t M(k)| =

∣

∣

∣

∣

∣

∣

∣

∣

Im
1

Nq2t M

N−1
∑

n=0

q2t M−1
∑

m=0

e(f (n) − f (n+ k) + f (m+ k) − f (m))

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

Im
1

Nq2t M

N−1
∑

n=q2t M

q2t M−1
∑

m=0

e(f (n) − f (n+ k) + f (m+ k) − f (m))

∣

∣

∣

∣

∣

∣

∣

∣

6
1

Nq2t M
q2tM(N − q2t M) 6

q2t

N
.
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Hence, we obtain

ΦK,N(0) =
1
K

K−1
∑

k=0

ΦN(k)ΦN(k)

=
1
K

K−1
∑

k=0

Φq2t M(k)Φq2t M(k) +O

(

q2t

N

)

.

The same calculations as in (4.4) show that
∣

∣

∣

∣

∣

∣

∣

∣

1
K

K−1
∑

k=0

Φq2t M(k)Φq2t M(k) − 1

q2tL

q2tL−1
∑

k=0

Φq2t M(k)Φq2t M(k)

∣

∣

∣

∣

∣

∣

∣

∣

6
2q2t

K
,

which implies

1
K

K−1
∑

k=0

Φq2t M(k)Φq2t M(k) =
1

q2tL

q2tL−1
∑

k=0

Φq2t M(k)Φq2t M(k) +O

(

q2t

K

)

.

Combining these results and using the fact that
√

N 6 K 6 N, we obtain

ΦK,N(0) = Φq2t L,q2t M(0)+O

(

q2t

√
N

)

.

By Lemma 4.5 we haveΦq2t L,q2t M(0) = O(e−τt), whereτ = ‖(q − 1)α‖2/4. SinceN > q45 and t =
⌊2 logN/(9 logq)⌋ (see (4.3)), we have

log N
5 logq

6
2 logN
9 logq

− 1 6 t 6
2 logN
9 logq

,

which implies

e−τt 6 e−τ
logN
5 logq = N−

τ
5 logq = N−

‖(q−1)α‖2
20 logq

and

q2t

N
6

N 4/9

N 1/2
= N−1/18.

Since‖(q− 1)α‖2/(20 logq) 6 1/18, we finally obtain

ΦK,N(0) =
1
K

K
∑

k=1

∣

∣

∣

∣

∣

∣

∣

N−1
∑

n=0

e
(

αsq(n+ k) − αsq(n)
)

∣

∣

∣

∣

∣

∣

∣

2

= O(N−δ),

whereδ = ‖(q− 1)α‖2/(20 logq). �

Proof (of Theorem 4.1).For brevity, we writeg(n) = e
(

∑l
j=0α j sqj (n)

)

. Furthermore, we set

S =
N−1
∑

n=0

e



















l
∑

j=1

α j sqj (n)



















=

N−1
∑

n=0

g(n).
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First, we use the van der Corput inequality in order to smooththe considered sum. In particular, we
employ Lemma 2.7 withk = 1 andR= K := ⌊N1/(3l)⌋. We can write

|S|2 6 N + K
K

∑

|k|<K

(

1− |k|
K

)

∑

06n<N
06n+k<N

g(n) g(n+ k).

Separating the casek = 0 and using the fact thatK 6 N and (1− |k|/K) 6 1, we get

|S|2 6 2N2

K
+

2N
K

∑

16k<K

∣

∣

∣

∣

∣

∣

∣

∑

06n<N−k

g(n) g(n+ k)

∣

∣

∣

∣

∣

∣

∣

+
2N
K

∑

16k<K

∣

∣

∣

∣

∣

∣

∣

∑

k6n<N

g(n) g(n− k)

∣

∣

∣

∣

∣

∣

∣

.

If we changing the variable in the last term (m= n− k), we obtain

|S|2 6 2N2

K
+

4N
K

∑

16k6K

∣

∣

∣

∣

∣

∣

∣

∑

06n<N−k

g(n) g(n+ k)

∣

∣

∣

∣

∣

∣

∣

. (4.5)

Let us assume thatN > max(q3l
1 , . . . , q

3l
l ) > 23l . If we sett j = ⌊2 logK/ logq j⌋ andQ j = q

t j

j , then we
have

q j 6 K 6 K2q−1
j 6 Q j 6 K2. (4.6)

Let r = (r1, r2, . . . , r l) be anl-tuple of integers. We define

Pr = {n ∈ Z : n ≡ r1 modQ1, n ≡ r2 modQ2, . . . , n ≡ r l modQl}.

Note, that by assumption the integersp j are coprime and therefore the integersQ j too. The Chinese
remainder theorem (see Theorem A.4) implies, that the system of congruencesn ≡ r1 modQ1, . . . , n ≡
r l modQl is equivalent to a single congruence modulo

∏l
j=1 Q j . Hence, we have

# {0 6 n < N : n ∈ Pr } =
N

∏l
j=1 Q j

+O(1). (4.7)

Next we define

R = {r = (r1, r2, . . . , r l) : 0 6 r j 6 Q j − 1 for 16 j 6 l},
R0 = {r = (r1, r2, . . . , r l) : 0 6 r j 6 Q j − K − 1 for 16 j 6 l}.

If n ∈ Pr with r ∈ R0, we have by definitionn ≡ r j modq
t j

j and 06 r j + k < q
t j

j for 1 6 k 6 K and

1 6 j 6 l. This implies (whereu j are appropriate integers, such thatn = r j + u jq
t j

j )

g(n) g(n+ k) = e



















l
∑

j=0

α j

(

sqj (n+ k) − sqj (n)
)



















= e



















l
∑

j=0

α j

(

sqj (r j + u jq
t j

j + k) − sqj (r j + u jq
t j

j )
)



















= e



















l
∑

j=0

α j

(

sqj (r j + k) − sqj (r j)
)



















=

l
∏

j=1

e
(

α j

(

sqj (r j + k) − sqj (r j)
))

,
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where we used theq-additivity of the sum of digits funciton. Hence, splittingthe inner sum in (4.5)
according to the residue class ofn modulo (Q1, . . . ,Ql) yields

∑

06n<N−k

g(n) g(n+ k) =
∑

r∈R

∑

06n<N−k
n∈Pr

g(n) g(n+ k)

=

∑

r∈R

∑

06n<N−k
n∈Pr



















g(n) g(n+ k) −
l

∏

j=1

e
(

α j

(

sqj (r j + k) − sqj (r j)
))



















+

∑

r∈R

∑

06n<N−k
n∈Pr

l
∏

j=1

e
(

α j

(

sqj (r j + k) − sqj (r j )
))

=

∑

r∈R\R0

∑

06n<N−k
n∈Pr



















g(n) g(n+ k) −
l

∏

j=1

e
(

α j

(

sqj (r j + k) − sqj (r j)
))



















+

∑

r∈R

l
∏

j=1

e
(

α j

(

sqj (r j + k) − sqj (r j)
))

∑

06n<N−k
n∈Pr

1.

In order to be able to bound this sum, we use the fact that|g(n)| 6 1 and employ (4.7). Thus, we can
write

∑

06n<N−k

g(n) g(n+ k)

6 2
∑

r∈R\R0

∑

06n<N−k
n∈Pr

1+
l

∏

j=1

Q j−1
∑

r j=0

e
(

α j

(

sqj (r j + k) − sqj (r j )
))

















N
∏l

j=1 Q j
+O(1)

















6 2
∑

r∈R\R0

















N
∏l

j=1 Q j
+O(1)

















+ N
l

∏

j=1

1
Q j

Q j−1
∑

r j=0

e
(

α j

(

sqj (r j + k) − sqj (r j )
))

+O



















l
∏

j=1

Q j



















.

Using (4.6), we have

|R \ R0| 6
l

∑

j=1

# {r : 0 6 r i 6 Qi − 1(i , j),Q j − K 6 r j 6 Q j − 1}

6

l
∑

j=1

K
∏

16i6l
i, j

Qi 6

l
∑

j=1

K
Q j

∏

16i6l

Qi 6
(max16 j6l q j) l

K

∏

16i6l

Qi .

Since (again by (4.6) and the definition ofK)
∏l

j=1 Q j 6 K2l
6 N/K, we finally obtain

∑

06n<N−k

g(n) g(n+ k) = N
l

∏

j=1

1
Q j

Q j−1
∑

r j=0

e
(

α j

(

sqj (r j + k) − sqj (r j )
))

+Oq, l

(N
K

)

.

Hence, we get (see (4.5))

|S|2 6 4N2

K

K
∑

k=1

∣

∣

∣

∣

∣

∣

∣

∣

l
∏

j=1

1
Q j

Q j−1
∑

r j=0

e
(

α j

(

sqj (r j + k) − sqj (r j )
))

∣

∣

∣

∣

∣

∣

∣

∣

+Oq, l

(

N2

K

)

.
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Employing Hölder’s inequality yields

|S|2 6 4N2

K
K1/(l+1)

l
∏

j=1





















K
∑

k=1

∣

∣

∣

∣

∣

∣

∣

∣

1
Q j

Q j−1
∑

r j=0

e
(

α j

(

sqj (r j + k) − sqj (r j)
))

∣

∣

∣

∣

∣

∣

∣

∣

l+1


















1/(l+1)

+Oq, l

(

N2

K

)

.

Using the fact that|Q−1
j

∑Q j−1
r j=0 e

(

α j

(

sqj (r j + k) − sqj (r j)
))

| 6 1, we get

|S|2 6 4N2
l

∏

j=1





















1
K

K
∑

k=1

∣

∣

∣

∣

∣

∣

∣

∣

1
Q j

Q j−1
∑

r j=0

e
(

α j

(

sqj (r j + k) − sqj (r j)
))

∣

∣

∣

∣

∣

∣

∣

∣

2


















1/(l+1)

+Oq, l

(

N2

K

)

.

Let us consider now that indexj, say j = i, such that‖(q j − 1)α j‖2/ logqi is maximal. By assumption,
this number is positive and we can employ Proposition 4.1 with N = Qi. Formula (4.6) assures that√

Qi 6 K 6 Qi. Furthermore, we can bound the other factors (j , i) trivially by 1. Thus, we obtain

|S|2 = O
(

N2Q−δ/(l+1)
i

)

+Oq, l

(

N2K−1
)

,

whereδ = ‖(qi−1)αi‖2
20 logqi

> 0. Since the second term is smaller than the first one andQi > K = ⌊N1/(3l)⌋ >
(1/2)N1/(3l) (note, that we have assumed thatN > 23l), we finally get

|S|2 = O
(

N2−δ/(3l(l+1))
)

= Oq, l

(

N2(1−δ/(12l2))
)

,

and Theorem 4.1 is shown. �



Chapter 5

The Sum of Digits Function of Prime
Numbers

5.1 Main Theorems

The main contribution of solving Gelfond’s problem is the following theorem, which gives a non-trivial
upper bound of a sum involving von Mangoldt’sΛ-function and the sum of digits function.

Theorem 5.1 (Mauduit, Rivat [33]) Let q> 2 be an integer andα a real number with the property, that
(q− 1)α ∈ R \ Z. Then there exists a constantσq(α) > 0, such that

∑

n6x

Λ(n)e
(

αsq(n)
)

= Oq,α(x1−σq(α)). (5.1)

The proof of this theorem given in Section 5.2 – Section 5.5 isdue to Mauduit and Rivat [33]. Using
results Mauduit and Rivat obtained in [32] and Drmota, Rivatand Stoll showed in [15] (see Chapter 3),
we are able to determine the constantσq(α) and get a simpler proof of Theorem 5.1.

The proof is organized as follows. In Section 5.2, we use Vaughan’s identity to handle the problem which
arises when treating sums of the form

∑

n6xΛ(n)g(n). We transform them into three different sums that
are from type I and type II. Sums of type I are in general easierto handle and we deal with them briefly
in Section 5.2. Estimates of sums of type II are much more difficult to obtain and are the hardest part of
proving Theorem 5.1. Using the Cauchy-Schwarz inequality and van der Corput’s inequality, we have
to consider expressions of the formαsq(m(n+ r)) − αsq(mn). The main idea in treating this differences
is to work with a truncated sum of digits function which does not sum over digits of high weight and is
periodic. It allows us to use the results obtained in Chapter3 about trigonometric products. Adding the
obtained facts together, we draw the final conclusions in Section 5.5.

Before we start the proof, we present the solution of Gelfond’s problem concerning the sum of digits
function of prime numbers. Using summation by parts and simple properties of exponential sums (al-
ready studied in the first chapter), it is a direct consequence of Theorem 5.1. Furthermore, we show that
the sequence (αsq(p))p∈P is uniformly distributed modulo 1 for any irrational numberα.

Theorem 5.2 (Mauduit, Rivat [33]) Let q and m be integers> 2 and set d= (q − 1,m). Then there
exists a constantσq,m > 0, such that for every a∈ Z

# {p 6 x : p prime and sq(p) ≡ a modm} = d
m
π(x; d, a) +Oq,m(x1−σq,m).

49
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Proof. By Lemma 1.2 we have

# {p 6 x : p prime andsq(p) ≡ a modm} =
∑

p6x

1
m

∑

06 j<m

e
( j
m

(sq(p) − a)
)

.

If we put d = (m, q− 1), m′ = m
d , J = {km′ : 0 6 k < d}, J′ = {0, . . . ,m− 1} \ J = {km′ + r : 0 6 k <

d, 1 6 r < m′}, than we have forj = km′ ∈ J

e
( j
m

sq(p)
)

= e

(

km′

dm′
sq(p)

)

= e

(

k
d

sq(p)

)

= e

(

k
d

p

)

.

Indeed, Lemma 1.1 gives ussq(p) ≡ p modd, which establishes the last equality. Hence,

∑

p6x

1
m

∑

j∈J
e
( j
m

(sq(p) − a)
)

=

∑

p6x

1
m

∑

06k<d

e

(

k
d

(p− a)

)

=
d
m
π(x; d, a).

The last equality can again be derived from Lemma 1.2. If we can therefore show that

1
m

∑

j∈J′
e
(

−a j
m

)

∑

p6x

e
( j
m

sq(p)
)

= O(x1−σq,m), (5.2)

whereσq,m > 0, we are done. IfJ′ = ∅, which corresponds to the degenerated case wherem | q− 1, then
we have an error term equal to zero. Therefore we assume now, that J′ , ∅. Puttingq′ = q−1

d , we have
(q′,m′) = 1, and hence forj = km′ + r ∈ J′

(q− 1) j
m

=
dq′(km′ + r)

dm′
= q′k+

q′r
m′
< Z.

By Theorem 5.1 and Lemma A.9, there exists a constantσq( j/m) for every j ∈ J′, such that

∑

p6x

e
( j
m

sq(p)
)

= O(x1−σq( j/m)).

Puttingσq,m = min j∈J′ σq( j/m) > 0 (recall, thatJ′ , ∅), we get the desired estimation in (5.2). �

Theorem 5.3 (Mauduit, Rivat [33]) For q > 2 the sequence(αsq(p))p∈P is uniformly distributed mod-
ulo 1, if and only ifα ∈ R \ Q.

Proof. If α ∈ Q, then the sequence (αsq(p))p∈P takes modulo 1 only a finite number of values and is
therefore not uniformly distributed modulo 1. If in returnα ∈ R \ Q, then for everyh ∈ Z with h , 0 we
have (q− 1)hα ∈ R \ Q and according to Theorem 5.1 there existsσq(hα) > 0, such that

∑

n6x

Λ(n)e
(

hαsq(n)
)

= Oq,hα(x1−σq(hα)).

Lemma A.9 allows us to write
∑

p6x

e
(

hαsq(n)
)

= Oq,hα(x1−σq(hα)) +O(
√

x),

which proves that (αsq(p))p∈P is uniformly distributed modulo 1 (see Theorem A.3). �
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5.2 Vaughan’s Method

In order to prove Theorem 5.1 we have to deal with sums of the form
∑

nΛ(n)g(n), whereg(n) is an
arithmetic function. A classical method to handle such sumsgoes back to Vinogradov. The main idea is
to decompose the von Mangoldt function (or sometimes the Möbius function) judiciously into a sum of
a small number of other functions, i.e.

∑

n

Λ(n)g(n) =
k

∑

j=1

S j , whereS j =

∑

m

∑

n

ambng(mn).

Traditionally, one calls the multiple sumsS j including at least one “smooth” variable sums of type
I, the other sums of type II. In general, it is more difficult to estimate sums of type II. Vinogradov’s
method is often associated with sieve methods. Following John B. Friedlander [20], the sieve begins
with the sieve of Eratosthenes. This method is based on a simply observation. Isn not a prime number,
then it has a divisor6

√
n. Are all primesp 6

√
x known, then one can easy determine the primes

between
√

x and x. You only have to cancel out (“sieve”) all numbers between
√

x and x which have
a prime divisorp 6

√
x. But it needed more than two thousand years until the sieve ofEratosthenes

has grown fundamentally. Subsequently Brun discovered some considerably more refined sieves and
amongst others, Buchstab, Selberg, Bombieri and Iwaniec improved this theory. But with Vinogradov’s
work, the sieve theory grew also in a somewhat distinct direction, although the name “sieve methods”
is usually applied to the direction Brun initiated. Vaughangave an elegant formulation of Vinogradov’s
method, which was subsequently deepened by Heath-Brown. Some other mathematicians who worked
on this method are Linnik and Gallagher. The sieve introduced by Friedlander and Iwaniec (see for
instance [26, Theorem 13.12]) can be used to derive upper bounds for sums analogous to those of type I
and type II, but on different summation intervals. Mauduit and Rivat use a version known as Vaughan’s
method (see for instance [26, Proposition 13.4]) to prove Theorem 5.1 which avoids the appearance of
divisor functions which cannot be bounded individually by alogarithmic factor. The main idea comes
from the following trivial identity forRe(s) > 1

−ζ
′(s)
ζ(s)

= F(s) − ζ′(s)G(s) − ζ(s)F(s)G(s) + ζ(s)

(

1
ζ(s)
−G(s)

) (

−ζ
′(s)
ζ(s)

− F(s)

)

, (5.3)

whereF(s) andG(s) are arbitrary functions defined onRe(s) > 1. But if we choose forF andG also
Dirichlet series, comparing coefficients gives us a decomposition ofΛ(n). Indeed, the corresponding
Dirichlet series ofζ′(s)/ζ(s) is by Lemma A.4

∑

n>1Λ(n)n−s. Multiplying this decomposition withg(n)
and summing up yields a decomposition of

∑

nΛ(n)g(n). In particular, we choose for 16 u 6 x and
Re(s) > 1

G(s) =
∑

n6u

µ(s)
ns , F(s) =

∑

n6u

Λ(n)
ns .

Note, thatG(s) and F(s) are the partial sums of1
ζ(s) , respectively− ζ

′(s)
ζ(s) (see Lemma A.4) and that

ζ′(s) = −∑

n>1 logn n−s. Hence, we can write (5.3) as

∑

n>1

Λ(n)
ns =

∑

n6u

Λ(n)
ns +

∑

n>1
m6u

µ(m) log(n)
(nm)s −

∑

n>1
m16u
m26u

µ(m1)Λ(m2)
(m1m2n)s +

∑

n>1
u<m1
u<m2

µ(m1)Λ(m2)
(m1m2n)s .

If we consider this equality with 16 u 6 x
q, by comparison of coefficients and summing overn follows

∑

x
q<n6x

Λ(n)g(n) = S1 − S2 + S3,
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where

S1 =

∑

m6u
x/q<mn6x

µ(m) log(n)g(mn),

S2 =

∑

m16u
m26u

x/q<m1m2n6x

µ(m1)Λ(m2)g(m1m2n), (5.4)

S3 =

∑

u<m6x
u<n16x

x/q<mn1n26x

µ(m)Λ(n1)g(mn1n2).

One can also derive this combinatorial identity without using Dirichlet series. Therefore we follow the
presentation in the book of Iwaniec and Kowalski [26, Chapter 13.4]. We start with the relation

Λ(n) =
∑

b,c
bc|n

Λ(b)µ(c),

which is a direct consequence of Lemma A.3 (withz= 1). In order to obtain the desired decomposition
we need the following relation

∑

d|n
Λ(d) =

∑

p|n
νp(n) log p = log

∏

p|n
pνp(n)

= logn. (5.5)

Let 16 u < x/q. We split the sum up according to the size ofb andc

Λ(n) =
∑

b6u,c6u
bc|n

Λ(b)µ(c) +
∑

b6u,c>u
bc|n

Λ(b)µ(c) +
∑

b>,c6u
bc|n

Λ(b)µ(c) +
∑

b>u,c>u
bc|n

Λ(b)µ(c).

If n > u, we have by Lemma A.3
∑

b6u,c6u
bc|n

Λ(b)µ(c) +
∑

b6u,c>u
bc|n

Λ(b)µ(c) =
∑

b6u

Λ(b)
∑

c| nb
µ(c) = 0

and by (5.5)

∑

b6u,c6u
bc|n

Λ(b)µ(c) +
∑

b>,c6u
bc|n

Λ(b)µ(c) =
∑

c6u
c|n

µ(c)
∑

b| nc
Λ(b) =

∑

c6u
c|n

µ(c) log
(n
c

)

.

Hence, taking these facts into account, we finally obtain (n > u)

Λ(n) =
∑

c6u
c|n

µ(c) log
(n
c

)

−
∑

b6u,c6u
bc|n

Λ(b)µ(c) +
∑

b>u,c>u
bc|n

Λ(b)µ(c).

Weighting byg(n) and summing overx/q < n 6 x we get the same representation of
∑

x
q<n6xΛ(n)g(n) as

before. Now we can state the key lemma for Theorem 5.1.
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Lemma 5.1 Let q> 2 be an integer,0 < β1 <
1
3,

1
2 < β2 < 1 real numbers and x> q

1
β2−1/2 . Let g be an

arithmetic function. Suppose that uniformly for all real numbers M6 x and all complex numbers am, bn

with |am|, |bn| 6 1, we have

max
x

qM<t6 xq
M

∑

M
q <m6M

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

x
qm<n6t

g(mn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

6 U for M 6 xβ1 (type I), (5.6)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

M
q <m6M

∑

x
qm<n6 x

m

ambng(mn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

6 U for xβ1 6 M 6 xβ2 (type II). (5.7)

Then
∑

x
q<n6x

Λ(n)g(n) ≪ U(log x)2.

Proof. As the preceding discussion has shown, we have
∑

x
q<n6x

Λ(n)g(n) = S1 − S2 + S3,

whereS1,S2 andS3 are defined in (5.4). We can chooseu = xβ1, since 16 u 6
√

x 6 x/q (note, that

x > q
1

β2−1/2 > q2). The sumS1 is of type I and can be estimated by summation by parts (see Lemma A.5).
We have

S1 =

∑

m6u

µ(m)























log
( x
m

)

∑

x
qm<n6 x

m

g(mn) −
∫ x

m

x
qm

∑

x
qm<n6t

g(mn)
dt
t























.

Thus, taking the absolute value and splitting the sum up according to the powers ofq, we obtain

|S1| 6 (log x)
∑

m6u

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

x
qm<n6 x

m

g(mn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∑

m6u

∫ x
m

x
qm

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

x
qm<n6t

g(mn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

dt
t

≪ (log x) max
M6u

























(log x)
∑

M
q <m6M

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

x
qm<n6 x

m

g(mn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∫ x
m

x
qm

∑

M
q <m6M

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

x
qm<n6t

g(mn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

dt
t

























.

Employing (5.6) we deriveS1 ≪ U(log x)2.

To boundS2 we first observe that (see (5.5))
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

m1,m26u
m=m1m2

µ(m1)Λ(m2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6

∑

d|m
Λ(d) = logm.

Therefore we get

|S2| 6
∑

m6u2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

m1,m26u
m=m1m2

µ(m1)Λ(m2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

x
qm<n6 x

m

g(mn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

6

∑

m6u2

(logm)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

x
qm<n6 x

m

g(mn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.
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Splitting again the summation up overmaccording to the powers ofq we obtain

|S2| ≪ (log x)2 max
M6u2

∑

M
q <m6M

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

x
qm<n6 x

m

g(mn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Let M0 be a value ofM for which the maximum is attained. IfM0 6 u (= xβ1) or u < M0 6 x
1
2 we

can employ (5.6) in the first case or (5.7) in the second case toderiveS2 ≪ U(log x)2. In the case that
x

1
2 < M0 6 u2 we can choose complex numbersam such that

∑

M0
q <m6M0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

x
qm<n6 x

m

g(mn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∑

M0
q <m6M0

∑

x
qm<n6 x

m

amg(mn).

Settingam = 0 if m> M0 or m6 M0/q, we are able to change the order of summation and get

∑

M0
q <m6M0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

x
qm<n6 x

m

g(mn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∑

x
M0q<n6 x

M0

∑

x
qn<m6M0

amg(mn) +
∑

x
M0
<n6 qx

M0

∑

M0
q <m6 x

n

amg(mn)

=

∑

x
M0q<n6 x

M0

∑

x
qn<m6 x

n

amg(mn) +
∑

x
M0
<n6 qx

M0

∑

x
qn<m6 x

n

amg(mn).

If we defineM1 =
x

M0
andM2 =

xq
M0

and use the fact thatx
1
2 < M0 6 u2

= x2β1 andx > q
1

β2−1/2 , we derive

xβ1 6 x1−2β1 6 M1 6 x
1
2 6 xβ2 and xβ1 6 M2 6 x

1
2 q 6 xβ2.

Thus we can employ the type II estimation (5.7) to the first sumwith M = M1 and to the second with
M = M2 and we obtainS2 ≪ U(log x)2.
To boundS3 we write

S3 = log x
∑

u<m6 x
u

∑

x
qm<n6 x

m

ambng(mn),

wheream = µ(m) andbn =
1

log x

∑

u<n1
n=n1n2

Λ(n1), satisfying|am| 6 1 and 06 bn 6
1

log x

∑

d|nΛ(d) = logn
log x 6

1. Splitting the summation up overmaccording to the powers ofq we obtain

|S3| ≪ (log x)2 max
u6M6 x

u

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

x
M<m6M

∑

x
qm<n6 x

m

ambng(mn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Let M0 be again a value ofM for which the maximum is attained. Ifu < M0 6 x
1
2 we can employ (5.7). In

the case thatx
1
2 < M0 6

x
u we can carry out the same procedure as forS2 (note, thatxβ1 6

x
M0
6 x

1
2 6 xβ2

andxβ1 6
xq
M0
6 x

1
2 q 6 xβ2). Thus, we obtain|S3| ≪ U(log x)2 and therefore finally

∑

x
q<n6x

Λ(n)g(n) ≪ U(log x)2.

�
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5.3 Sums of Type I

Lemma 5.1 shows that the key in proving Theorem 5.1 lies in achieving upper bounds for type I and
type II sums. Mauduit and Rivat treated type I sums using a method developed by Fouvry and Mauduit
[18, 19]. They could give an upper bound of (5.6) withβ1 = 1/3 which allowed them to get a better
exponentσq(α) in Theorem 5.1. In this work we want to show a shorter proof ofGelfond’s problem
and seeing that, we treat type I sums more crudely. If we choose β1 sufficiently small, we can show a
negligible upper bound for type I sums in a much simpler way. In order to compensate this loss, we have
to get estimates of type II sums for a bigger domain. This results in a worse exponentσq(α), but has not
a notable effect on proving Gelfond’s problem.

Proposition 5.1 Let q> 2 be an integer andα a real number, such that(q− 1)α ∈ R \ Z. Then we have

for 1 6 M 6 x
cq||(q−1)α||2

2

max
x

qM<t6 xq
M

∑

M
q <m6M

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

x
qm<n6t

e
(

αsq(mn)
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

≪q x1− cq||(q−1)α||2
2 ,

where cq = π2

12 logq

(

1− 2
q+1

)

and0 < cq||(q− 1)α||2 < 1.

In order to be able to use results from Chapter 3, we need the following lemma.

Lemma 5.2 Let f be a completely q-additive function. Then we have for every q> 2, α ∈ R,N > 1
∣

∣

∣

∣

∣

∣

∣

∑

06l<N

e

(

f (l) +
kl
m

)

∣

∣

∣

∣

∣

∣

∣

6 (q− 1)
∑

ν6
log N
logq

∣

∣

∣

∣

∣

∣

∣

∣

∑

06l<qν
e

(

f (l) +
kl
m

)

∣

∣

∣

∣

∣

∣

∣

∣

. (5.8)

Proof. Writing i =
⌊

log N
logq

⌋

, we haveN = yqi
+ N′ with 0 6 y 6 q − 1 and 06 N′ < qi . Hence, asf is

completely q-additive, the left hand side is bounded by
∣

∣

∣

∣

∣

∣

∣

∣

∑

06l<yqi

e

(

f (l) +
kl
m

)

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∑

06l<N′
e

(

f (yqi
+ l) +

k(yqi
+ l)

m

)

∣

∣

∣

∣

∣

∣

∣

6y

∣

∣

∣

∣

∣

∣

∣

∣

∑

06l<qi

e

(

f (l) +
kl
m

)

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∑

06l<N′
e

(

f (l) +
kl
m

)

∣

∣

∣

∣

∣

∣

∣

.

Now we apply this procedure toN′ and after finite many steps we get our result. �

Proof (of Proposition 5.1).Taking the difference, it suffices to prove that

max
x

qM6t6 xq
M

∑

M
q <m6M

∣

∣

∣

∣

∣

∣

∣

∑

06n6t

e
(

αsq(mn)
)

∣

∣

∣

∣

∣

∣

∣

≪q x1− cq||(q−1)α||2
2 .

According to Lemma 1.2, we can write

∑

M
q <m6M

∣

∣

∣

∣

∣

∣

∣

∑

06n6t

e
(

αsq(mn)
)

∣

∣

∣

∣

∣

∣

∣

=

∑

M
q <m6M

∣

∣

∣

∣

∣

∣

∣

1
m

∑

06k<m

∑

06l6mt

e

(

αsq(l) +
kl
m

)

∣

∣

∣

∣

∣

∣

∣

6 M +
q
M

∑

M
q <m6M

∑

06k<m

∣

∣

∣

∣

∣

∣

∣

∑

06l<mt

e

(

αsq(l) +
kl
m

)

∣

∣

∣

∣

∣

∣

∣

.



5.4 Sums of type II 56

The first termM only exists whenmt is an integer. Next, we employ Lemma 5.2

∑

M
q <m6M

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

x
qm<n6t

e
(

αsq(mn)
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

6 M +
q(q− 1)

M

∑

λ6
logmt
logq

∑

M
q <m6M

∑

06k<m

∣

∣

∣

∣

∣

∣

∣

∣

∑

06l<qλ

e

(

αsq(l) +
kl
m

)

∣

∣

∣

∣

∣

∣

∣

∣

.

By Definition 3.2 (Fourier transform) and Lemma 3.6, we have
∣

∣

∣

∣

∣

∣

∣

∣

∑

06l<qλ

e

(

αsq(l) +
kl
m

)

∣

∣

∣

∣

∣

∣

∣

∣

= qλ|F(−(k/m)qλ, α)| 6 q(1−cq||(q−1)α||2)λ,

where 0< cq||(q− 1)α||2 < 1 since (q− 1)α < Z andcq < 1. Furthermore we have fort 6 xq
M andm6 M,

thatmt6 xq. Hence we finally obtain (M 6 x
cq||(q−1)α||2

2 )

∑

M
q <m6M

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

x
qm<n6t

e
(

αsq(mn)
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

≪q M +
1
M

∑

λ6
log xq
logq

M2q(1−cq||(q−1)α||2)λ

≪q Mx1−cq||(q−1)α||2 ≪q x1− cq||(q−1)α||2
2 .

�

5.4 Sums of type II

In order to estimate the type II sums we will reduce the problem to a slightly simpler one. We use
therefore a version of a classical procedure of separation of variables which allows us to remove the
multiplicative constraints.

Lemma 5.3 Let g be an arithmetic function, q> 2, 0 < δ < β1 < 1/3, 1/2 < β2 < 1. Suppose that,
uniformly for all complex numbers bn with |bn| 6 1, we have

∑

qµ−1<m6qµ

∣

∣

∣

∣

∣

∣

∣

∣

∑

qν−1<n6qν

bng(mn)

∣

∣

∣

∣

∣

∣

∣

∣

6 V, (5.9)

for all positive integersµ andν with qµ+ν ≪q x and

β1 − δ 6
µ

µ + ν
6 β2 + δ. (5.10)

Then for x> x0 = max(q1/(1−β2), q3/δ) we have uniformly in M such that xβ1 6 M 6 xβ2 the estimate
∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

M
q <m6M

∑

x
qm<n6 x

m

ambng(mn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

≪ (log x)V.

Lemma 5.4 For every sequence of complex numbers(an)n∈N and all integers N0 6 N1 < N2 6 N3, we
have

∣

∣

∣

∣

∣

∣

∣

∑

N1<n6N2

an

∣

∣

∣

∣

∣

∣

∣

6

∫ 1
2

− 1
2

min

{

N2 − N1,
1

| sinπξ|

}

∣

∣

∣

∣

∣

∣

∣

∣

∑

N0<n6N3

ane(nξ)

∣

∣

∣

∣

∣

∣

∣

∣

dξ.

Moreover, we have for x> 2
π

∫ 1
2

− 1
2

min

{

x,
1

| sinπξ|

}

dξ ≪ log x.
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Proof. As
∫ 1

2

− 1
2

e(mξ) dξ = 1 for every integers , 0 (in the case thats = 0 the integral is clearly 1), we

have

∑

N1<n6N2

an =

∫ 1
2

− 1
2

















∑

N0<n6N3

ane(nξ)

































∑

N1<n′6N2

e(−n′ξ)

















dξ.

But for −1
2 6 ξ 6

1
2, ξ , 0, we can write

∣

∣

∣

∣

∣

∣

∣

∑

N1<n′6N2

e(−n′ξ)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

sin(N2 − N1)πξ
sinπξ

∣

∣

∣

∣

∣

6 min

{

N2 − N1,
1

| sinπξ|

}

,

which establishes the first inequality. Using the fact that the integrand is an even function and splitting
at 1

πx, we obtain

∫ 1
2

− 1
2

min

{

x,
1

| sinπξ|

}

dξ 6 2
∫ 1

πx

0
x dξ + 2

∫ 1
2

1
πx

dξ
sinπξ

=
2
π
+

2
π

log cot

(

1
2x

)

6
2
π
+

2
π

log 2x≪ log x.

Here we use the fact that cotu 6 1
u on the interval [0, π/2]. �

Proof (of Lemma 5.3). We assume thatx > max(q1/(1−β2), q3/δ) and xβ1 6 M 6 xβ2. It follows easily
from these assumptions thatM > q and x

M > q (note, that 1
β1
6

3
δ
, sinceδ < β1). Hence, there exist

integersµ, ν > 1 such that

qµ
′
< M 6 qµ

′
+1 and qν

′
<

x
M
6 qν

′
+1. (5.11)

For M
q < m6 M we haveqν

′−1
6

x
qm < x

m 6 qν
′
+2 and hence we can apply Lemma 5.4 withN0 = qν

′−1
6

N1 =
⌊

x
qm

⌋

< N2 =
⌊

x
m

⌋

6 N3 = qν
′
+2. Thus we obtain

∑

M
q <m6M

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

x
qm<n6 x

m

bng(mn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

6

∑

M
q <m6M

∫ 1
2

− 1
2

min

{

N2 − N1,
1

| sinπξ|

}

∣

∣

∣

∣

∣

∣

∣

∣

∑

qν′−1<n6qν′+2

bne(nξ)g(mn)

∣

∣

∣

∣

∣

∣

∣

∣

dξ

6

µ′+1
∑

µ=µ′

ν′+2
∑

ν=ν′

∫ 1
2

− 1
2

min

{

x,
1

| sinπξ|

}

∑

qµ−1<m6qµ

∣

∣

∣

∣

∣

∣

∣

∣

∑

qν−1<n6qν

bne(nξ)g(mn)

∣

∣

∣

∣

∣

∣

∣

∣

dξ.

Indeed, after estimatingN2 − N1 6 x, we can interchange the sum and the integral and split the sumup
overm, becauseqµ

′−1 < M
q < M 6 qµ

′
+1. Here we possibly add only a few terms. If we now can show

condition (5.10) for (µ, ν), we are able to apply inequality (5.9) withbn replaced bybne(nξ). Hence we

are done since we can bound the last expression by 6V
∫ 1

2

− 1
2

min
{

x, 1
| sinπξ|

}

dξ ≪ (log x)V (Lemma 5.4).

We have for (µ, ν) ∈ {µ′, µ′ + 1} × {ν′, ν′ + 1, ν′ + 2}

µ′ − 2
µ′ + ν′

6
µ

µ + ν
6

µ′ + 3
µ′ + ν′ + 2

,

and hence it suffices to show

β1 − δ 6
µ′ − 2
µ′ + ν′

and
µ′ + 3

µ′ + ν′ + 2
6 β2 + δ.
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Usingxβ1 6 M 6 xβ2 and employing (5.11) we get

log x
logq

− 2 6 µ′ + ν′ 6
log x
logq

and β1
log x
logq

− 1 6 µ′ 6 β2
log x
logq

.

x > q3/δ impliesδ > 3 logq
log x and we finally obtain

µ′ − 2
µ′ + ν′

>

β1
log x
logq − 3

log x
logq

= β1 − 3
logq
log x

> 1− δ

and

µ′ + 3
µ′ + ν′ + 2

6

β2
log x
logq + 3

log x
logq

= β2 + 3
logq
log x

6 1+ δ.

�

Proposition 5.2 Let q> 2 be an integer andα a real number satisfying(q − 1)α ∈ R \ Z. Then there
existβ1, β2 andδ with 0 < δ 6 β1 < cq||(q − 1)α||2 < 1/3 and1/2 < β2 < 1 and a constantξq(α), such
that for everyε > 0

∑

qµ−1<m6qµ

∣

∣

∣

∣

∣

∣

∣

∣

∑

qν−1<n6qν

bne(αsq(mn))

∣

∣

∣

∣

∣

∣

∣

∣

≪q,ε q(1− 1
2ξq(α)+ε)(µ+ν), (5.12)

for all positive integersµ andν such that

β1 − δ 6
µ

µ + ν
6 β2 + δ,

uniformly for all complex numbers bn for which |bn| 6 1.

The proof of Proposition 5.2 is the hardest part of proving Theorem 5.1. We will therefore state and
prove several lemmas. Let us assume thatµ > 1, ν > 1 andρ be an integers with

0 6 ρ 6 ν/2.

Recall that we have definedf (n) = αsq(n). We can assume thatα ∈ R \ Z, since (q − 1)α ∈ R \ Z. For
convenience, we use the following abbreviation for the lefthand side of (5.12)

S =
∑

qµ−1<m6qµ

∣

∣

∣

∣

∣

∣

∣

∣

∑

qν−1<n6qν

bne(αsq(mn))

∣

∣

∣

∣

∣

∣

∣

∣

.

First of all, we use the Cauchy-Schwarz inequality and a version of van der Corput’s inequality introduced
in Chapter 2 to smooth this sums. The Cauchy-Schwarz inequality gives us

|S|2 6 qµ
∑

qµ−1<m6qµ

∣

∣

∣

∣

∣

∣

∣

∣

∑

qν−1<n6qν

bne(αsq(mn))

∣

∣

∣

∣

∣

∣

∣

∣

2

.



5.4 Sums of type II 59

Now we employ Lemma 2.7 withR= qρ,N = qν − qν−1, zn = bqν−1+ne
(

f (m(qν−1
+ n))

)

andk = 1. In the
next step we split the sum up over|r | in r = 0 andr , 0 and use the fact thatρ 6 ν − 1.

|S|2 6 qµ
∑

qµ−1<m6qµ

qν − qν−1
+ qρ

qρ

∑

|r |<qρ

(

1− |r |
qρ

)

∑

qν−1<n6qν

qν−1<n+r6qν

bn+rbne( f (m(n+ r)) − f (mn))

6 qµ+ν−ρ
∑

qµ−1<m6qµ



































qν +
∑

16|r |<qρ

(

1− |r |
qρ

)

∑

qν−1<n6qν

qν−1<n+r6qν

bn+rbne( f (m(n+ r)) − f (mn))



































.

Since
∑

16|r |<qρ
(

1− |r |qρ

)

= qρ−1 6 qρ we get an error term
∑

qµ−1<m6qµ
∑

16|r |<qρ
(

1− |r |qρ

)

|r | 6 qµ+2ρ
6 qµ+ν

when removing the summation conditionqν−1 < n + r 6 qν. Furthermore we can change the order of
summation and consider the maximum over|r | to get

|S|2 6 q2(µ+ν)−ρ
+ qµ+ν−ρ

∑

qµ−1<m6qµ

∑

16|r |<qρ

(

1− |r |
qρ

)

∑

qν−1<n6qν

qν−1<n+r6qν

bn+rbne( f (m(n+ r)) − f (mn))

6 2q2(µ+ν)−ρ
+ qµ+ν−ρ

∑

16|r |<qρ

(

1− |r |
qρ

)

∑

qν−1<n6qν

∣

∣

∣

∣

∣

∣

∣

∣

∑

qµ−1<m6qµ

e( f (m(n+ r)) − f (mn))

∣

∣

∣

∣

∣

∣

∣

∣

≪ q2(µ+ν)−ρ
+ qµ+ν max

16|r |<qρ

∑

qν−1<n6qν

∣

∣

∣

∣

∣

∣

∣

∣

∑

qµ−1<m6qµ

e( f (m(n+ r)) − f (mn))

∣

∣

∣

∣

∣

∣

∣

∣

.

To continue the proof we are going to show that the digits of high weight in the difference f (m(n +
r)) − f (mn) do not contribute significantly and are negligible. Therefore we work with the notion of the
truncated sum of digits function which we have already introduced in Chapter 3. Actually, we defined
for any integerλ > 0

fλ(n) =
∑

k<λ

f (nkq
k) = α

∑

k<λ

nk,

where the integersnk denote the digits ofn in basisq. This function is clearly periodic of periodqλ and
arises in a different setting in [14] where Drmota and Rivat studied certainproperties offλ(n2) whenλ is
of order logn. The next lemma shows that we can replace the truncated function in the estimation ofS,
since this yields an negligible error term.

Lemma 5.5 For all integersµ, ν, ρ with µ > 0, ν > 0, 0 6 ρ 6 ν/2 and for all r ∈ Z with |r | < qρ, we
denote by E(r, µ, ν, ρ) the number of pairs(m, n) ∈ Z2 such that qµ−1 < m6 qµ, qν−1 < n 6 qν and

f (m(n+ r)) − f (mn) , fµ+2ρ(m(n+ r)) − fµ+2ρ(mn).

Then we have forε > 0

E(r, µ, ν, ρ) ≪ε q(µ+ν)(1+ε)−ρ.

Proof. Suppose 06 r < qρ. In this case we have 06 mr < qµ+ρ. When we compute the summn+mr,
the digits of the productmn of index> µ + ρ cannot be modified unless there is a carry propagation.



5.4 Sums of type II 60

Hence we must count the number of pairs (m, n) such that the digitsa j in basisq of the producta = mn
satisfya j = q− 1 for µ + ρ 6 j < µ + 2ρ. Therefore grouping the productsmnaccording to their valuea,
we obtain

E(r, µ, ν, ρ) 6
∑

qµ+ν−2<a6qµ+ν

τ(a)χ(a),

whereτ(a) denotes the number of divisors ofa andχ(a) = 1 if the digits a j in basisq of a satisfy
a j = q− 1 for µ + ρ 6 j < µ + 2ρ andχ(a) = 0 in the opposite case. The number of integersa satisfying
these conditions is bounded byqµ+ν−ρ sincea 6 qµ+ν andρ digits are fixed. But by Lemma A.2, we have
τ(a) ≪ε aε ≪ε q(µ+ν)ε and the desired estimation is proved. In the case that−qρ < r < 0, the same
reasoning applies. We have to count the pairs (m, n) of integers for which the digitsa j of the product
a = mnsatisfya j = 0 for µ + ρ 6 j < µ + 2ρ, and we obtain the same estimation. �

Remark. Drmota, Mauduit and Rivat showed in [13] thatE(r, µ, ν, ρ) 6 (µ+ ν) logq qµ+ν−ρ whenµ/(µ+
ν) > 27/82. Based on that fact, they obtain a slightly better result in Proposition 5.2.

In order to get a manageable notation we putλ = µ + 2ρ. Replacing the functionf by the truncated
function fλ yields, according to Lemma 5.5, a total error ofOε

(

q(2+ε)(µ+ν)−ρ
)

. Hence we obtain

|S|2 ≪ε q(2+ε)(µ+ν)−ρ
+ qµ+ν max

16|r |<qρ
S2(r, µ, ν, ρ), (5.13)

where we put

S2(r, µ, ν, ρ) =
∑

qν−1<n6qν

∣

∣

∣

∣

∣

∣

∣

∣

∑

qµ−1<m6qµ

e( fλ(m(n+ r)) − fλ(mn))

∣

∣

∣

∣

∣

∣

∣

∣

.

Our next goal is to show that

S2(r, µ, ν, ρ) ≪q (µ + ν)2qµ+ν−ρ. (5.14)

Therefore we are going to use in a first lemma the important property of fλ to be periodic of periodqλ.
It will allow us to apply the theory of trigonometric products introduced in Chapter 3.

Lemma 5.6 With the same notation and assumptions as before, we have

S2 ≪q (1+ qν−λ)
∑

d|qλ
d

∑

06a<d

min



















qµ,
1

sin
(

π d
qλ

∣

∣

∣

∣

∣

∣

ar
d

∣

∣

∣

∣

∣

∣

)

















































∑

06h<qλ

h≡a modd

|Fλ(h, α)|































2

(5.15)

+ λ(1+ qν−λ)qλ



















∑

06h<qλ

|Fλ(h, α)|



















2

.

Proof. SettingS′2(n) =
∑

qµ−1<m6qµ e( fλ(m(n+ r)) − fλ(mn)), we derive (fλ is periodic of periodqλ)

S′2(n) =
1

q2λ

∑

06u1<qλ

∑

06u2<qλ

e( fλ(u1) − fλ(u2))

∑

06h1<qλ

∑

06h2<qλ

∑

qµ−1<m6qµ

e

(

h1(m(n+ r) − u1) + h2(mn− u2)
qλ

)

.
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Now we can use the definition of the Fourier transform|Fλ(h, α)| (see Chapter 3) to obtain

S′2(n) =
∑

06h1<qλ

∑

06h2<qλ

Fλ(h1, α)Fλ(−h2, α)
∑

qµ−1<m6qµ

e

(

(h1 + h2)mn+ h1mr

qλ

)

.

The last sum is a geometric series inmand we get

|S′2(n)| 6
∑

06h1<qλ

∑

06h2<qλ

|Fλ(h1, α)Fλ(−h2, α)|min





















qµ,
1

∣

∣

∣

∣

sin
(

π
(h1+h2)n+h1r

qλ

)

∣

∣

∣

∣





















.

Since|S2| =
∑

qν−1<n6qν |S′2(n)|, we have to sum the last expression overn. In order to be able to employ
Lemma 2.1, we sum in blocks of lengthqλ (and add a few terms ifν < λ). Arranging the summation
over the values ofd = (h1 + h2, qλ) therefore yields

S2 ≪ (1+ qν−λ)
∑

d|qλ

∑

06h1,h2<qλ

(h1+h2,qλ)=d

|Fλ(h1, α)Fλ(−h2, α)|d min



















qµ,
1

sin
(

π d
qλ

∣

∣

∣

∣

∣

∣

h1r
d

∣

∣

∣

∣

∣

∣

)



















+ (1+ qν−λ)qλ log(qλ)
∑

06h1,h2<qλ

|Fλ(h1, α)Fλ(−h2, α)|.

Since the condition (h1 + h2, qλ) = d is not easy to handle, we replace it by the less restrictive condition
h1 + h2 ≡ 0 modd. We can separate this condition intoh1 ≡ a modd andh2 ≡ −a modd, wherea
covers all residual classes modulod. Furthermore, it is easy to see from the definition, that|Fλ(h, α)| =
|Fλ(−h, α)|. Hence we obtain the desired result

S2 ≪q (1+ qν−λ)
∑

d|qλ
d

∑

06a<d

min



















qµ,
1

sin
(

π d
qλ

∣

∣

∣

∣

∣

∣

ar
d

∣

∣

∣

∣

∣

∣

)

















































∑

06h<qλ

h≡a modd

|Fλ(h, α)|































2

+ λ(1+ qν−λ)qλ



















∑

06h<qλ

|Fλ(h, α)|



















2

.

�

If d | qλ, we haved = kqδ whereδ = νq(d) andk | qλ−δ but k ∤ q. According to Lemma 3.10 forq > 3
and Lemma 3.11 forq = 2, we have

∑

06h<qλ

h≡a modkqδ

|Fλ(h, α)| ≪ k−η3qη3(λ−δ)|Fδ(a, α)|.

Here we used the fact, thatk = 1 if q = 2 and thatη2 < 0, 4429< 0, 4649< η3. For our further studies
we define the constant

cq(α) =
π2

102 logq

(

1− 2
q+ 1

)

||(q− 1)α||2,

which depends onq andα. We recall that (q− 1)α < Z and hence 0< ||(q− 1)α|| 6 1/2. Thus we have

0 < cq(α) 6
π2

102· 4
1

logq
6

π2

102· 4 log 2
< 0, 0349, (5.16)
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and consequently

1− cq(α)

2
>

1− 0, 0349
2

= 0, 48255> η3.

Hence we can write
∑

06h<qλ

h≡a modkqδ

|Fλ(h, α)| ≪ k−η3q
1−cq(α)

2 (λ−δ)|Fδ(a, α)|. (5.17)

Mauduit and Rivat worked in [33] withη3 whenq > 3 andη2 whenq = 2. Using the constantcq(α)
yields a little worse result, but it makes it much easier to prove the proposition. Furthermore we can
give an exact value of the constant used in (5.12). The key lemma, which makes it so comfortable to
work with cq(α), is Lemma 3.6. It was stated and proved by Mauduit and Rivat in [32]. Note, that
cq(α) < cq||(q − 1)α||2, which will allow us to use Lemma 3.6 and Lemma 3.14 withcq(α) instead of
cq||(q−1)α||2. If q is a prime, we could even use the constantηq instead ofη3. Mauduit and Rivat derived
for example a slightly better estimation ofS2 in caseq = 2. Employing inequality (5.17) to (5.15) (note,
that in the second termδ = 0, k = 1 and that|F0(a, α)| = 1), we obtain

S2 ≪q (1+ qν−λ)
∑

06δ6λ

∑

k|qλ−δ
(k,q)<q

k1−2η3qδ+(1−cq(α))(λ−δ)
∑

06a<d

min

























qµ,
1

sin
(

πkqδ−λ
∣

∣

∣

∣

∣

∣

∣

∣

ar
kqδ

∣

∣

∣

∣

∣

∣

∣

∣

)

























|Fδ(a, α|2

+ λ(1+ qν−λ)q(2−cq(α))λ.

Before we study the sum overa, we prove the following lemma in order to eliminate the factor k1−2η3.
Note that ifq is prime, thenk = 1 and the statement of the lemma is trivial.

Lemma 5.7 Letη3, δ andλ be as already defined. Forωq =
(

1
2 − η3

)

log 2
logq, we have

qδ+2η3(λ−δ)
∑

k|qλ−δ
(k,q)<q

k1−2η3 ≪q qλ−ωq(λ−δ).

Proof. First, we note thatk can be bounded with respect toq, λ andδ. Indeed, since (k, q) is a proper
divisor of q it follows that (k, q) 6 q/2. But this impliesk = (k, qλ−δ) 6 (k, q)λ−δ 6 (q/2)λ−δ. Further-
more, we can also give an upper bound of the number of admissible integersk. It is clearly bounded by
the number of divisors ofqλ−δ. Hence Lemma A.2 shows that the number of considered integers k is
bounded byτ(qλ−δ) ≪q qωq(λ−δ). Using this facts, we finally have

qδ+2η3(λ−δ)
∑

k|qλ−δ
(k,q)<q

k1−2η3 ≪q qδ+2η3(λ−δ)qωq(λ−δ)
(q
2

)(1−2η3)(λ−δ)
≪q qλ+ωq(λ−δ)−2ωq(λ−δ) ≪q qλ−ωq(λ−δ).

�

We obtain from (5.16) and from the fact thatη3 < 0, 465 (see Lemma 3.8) that

cq(α) 6
π2

102· 4
1

logq
< 0, 0242

1
log q

< 0, 02426
1

log q
<

(

1
2
− η3

)

log 2
logq

= ωq.

Using this fact, we can write

S2 ≪q (1+ qν−λ)qλ
∑

06δ6λ

q−cq(α)(λ−δ) max
k|qλ−δ

(k,q)<q

S3(k, δ) + λ(1+ qν−λ)q(2−cq(α))λ, (5.18)
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with

S3(k, δ) =
∑

06a<kqδ

|Fδ(a, α)|2 min

























qµ,
1

sin
(

πkqδ−λ
∣

∣

∣

∣

∣

∣

∣

∣

ar
kqδ

∣

∣

∣

∣

∣

∣

∣

∣

)

























.

Our next step is to find an upper bound ofS3(k, δ). Since the function sin is concave on [0, π] and
1 6 k 6 qλ−δ, we have

sin

(

πkqδ−λ
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ar

kqδ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

)

> kqδ−λ sin

(

π

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ar

kqδ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

)

= kqδ−λ
∣

∣

∣

∣

∣

∣

sin
πar

kqδ

∣

∣

∣

∣

∣

∣

.

Thus, we obtain

S3(k, δ) 6 k−1qλ−δ
∑

06a<kqδ

|Fδ(a, α)|2 min





















kqδ−2ρ,
1

∣

∣

∣

∣

sin πar
kqδ

∣

∣

∣

∣





















.

The next lemma provides an upper estimation ofS3(k, δ), which will be important to prove the proposi-
tion in the case thatδ is small.

Lemma 5.8 We have for all k| qλ−δ with k ∤ q and for all0 6 δ 6 λ

S3(k, δ) ≪q λqλ. (5.19)

Proof. To prove this lemma we use thatFδ(., α) is qδ-periodic. This puts us in the situation of employing
Lemma 2.1 withm= k , n = i , a = r andb = (ar)/qδ. But since troubles arise from the common factors
of r andq, we only use the crudely estimation min(kqδ−2ρ, (sinπ(r, k)/k‖(ar)/((r, k)qδ)‖)−1) 6 kqδ−2ρ,

S3(k, δ) 6 k−1qλ−δ
∑

06a<qδ

|Fδ(a, α)|2
∑

06i<k

min





















kqδ−2ρ,
1

∣

∣

∣

∣

sin π(a+iqδ)r
kqδ

∣

∣

∣

∣





















≪ k−1qλ−δ
∑

06a<qδ

|Fδ(a, α)|2
(

(r, k)kqδ−2ρ
+ k logk

)

.

Using Lemma 3.13 withλ = δ andδ = 0, the sum above is bounded by 1. Taking into account that
(r, k) 6 r 6 qρ andk 6 qλ, we finally obtain

S3(k, δ) ≪ qλ−δ(qδ−ρ + λ logq) ≪q λqλ.

�

Now we have the problem, that if we sum (5.19) overδ from 0 toλ (see (5.18)), we do not get a useful
upper bound (even if we use the better estimationS3(k, δ) ≪ qλ−δ(qδ−ρ−λ logq), which we have actually
proved). Hence, we have to find a better bound for large valuesof δ. If we set

∆ =

⌊

ρ
logq
log 2

⌋

,

we will see later, that this choice of∆ is already sufficient, that the sum overδ in (5.18) from 0 to∆ yields
a negligible upper bound. In fact, we have

cq(α)∆ 6 0, 0242
1

logq
∆ 6 0, 0242

1
log q

logq
log 2

ρ 6 ρ, (5.20)

which will be the crucial condition. Furthermore, the definition of ∆ allows as to state the following
lemma.
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Lemma 5.9 We have for all k| qλ−δ with k ∤ q and for all∆ < δ 6 λ

S3(k, δ) ≪q λqλ−cq(α)δ+ρ. (5.21)

Proof. Settingδ′ = δ − ∆, we can employ the Euclidean algorithm to get

S3(k, δ) 6 k−1qλ−δ
∑

06a<qδ′

∑

06i<kq∆

|Fδ(a+ iqδ
′
, α)|2 min





















kqδ−2ρ,
1

∣

∣

∣

∣

sinπ (a+iqδ′ )r
kqδ

∣

∣

∣

∣





















.

We have|Fδ(., α)| 6 |Fδ′(., α)| trivially by (3.2) and Lemma 3.1. SinceFδ′(., α) is periodic of periodqδ
′
,

we get

S3(k, δ) 6 k−1qλ−δ
∑

06a<qδ′
|Fδ′(a, α)|2

∑

06i<kq∆

min



































kqδ−2ρ,
1

∣

∣

∣

∣

∣

∣

sinπ
ir+ qr

qδ
′

kq∆

∣

∣

∣

∣

∣

∣



































.

Now we can again employ Lemma 2.1, but this time withm= kq∆ , n = i , a = r andb = (ar)/qδ
′
.

S3(k, δ) ≪ k−1qλ−δ
∑

06a<qδ′
|Fδ′(a, α)|2





















(r, kq∆) min





















kqδ−2ρ,
1

sinπ (r,kq∆)
kq∆

∣

∣

∣

∣

∣

∣

∣

∣

ar
(r,kq∆)qδ′

∣

∣

∣

∣

∣

∣

∣

∣





















+ kq∆ log(kq∆)





















.

Takingr′ = r
(r,kq∆)

and using that (r, kq∆) 6 r < qρ, kq∆ 6 qλ−δ+∆ 6 qλ and again the concavity of sin on
[0, π], we obtain

S3(k, δ) ≪ k−1qλ−δ
∑

06a<qδ′
|Fδ′(a, α)|2





















kq∆min





















(r, kq∆)qδ−2ρ−∆,
1

∣

∣

∣

∣
sinπar′

qδ′

∣

∣

∣

∣





















+ kq∆ log(qλ)





















≪q qλ−δ
′ ∑

06a<qδ′
|Fδ′(a, α)|2 min





















qδ
′−ρ,

1
∣

∣

∣

∣

sinπar′

qδ′

∣

∣

∣

∣





















+ λqλ−δ
′ ∑

06a<qδ′
|Fδ′(a, α)|2.

The sum in the second term is, by Lemma 3.13, equal to 1 (takeλ = δ′ andδ = 0). If a is 0 in the
first term, then the minimum isqδ

′−ρ and by Lemma 3.6, we have|Fδ′(0, α)| ≪ q−cq(α)δ′ (note, that
cq(α) 6 cq||(q− 1)α||2). Thus we can write

S3(k, δ) ≪q qλ−δ
′ ∑

16a<qδ′
|Fδ′(a, α)|2 min





















qδ
′−ρ,

1
∣

∣

∣

∣
sinπar′

qδ′

∣

∣

∣

∣





















+ qλ−ρ−2cq(α)δ′
+ λqλ−δ

′

≪q qλ−δ
′ ∑

16a<qδ′
|Fδ′(a, α)|2 min





















qδ
′−ρ,

1
∣

∣

∣

∣

sinπar′

qδ′

∣

∣

∣

∣





















+ λqλ−cq(α)δ′ .

Next we claim that (r′, q) = 1. Indeed, ifp is a prime withpν | r, thenpν = qν
log p
logq 6 qρ, sincer 6 qρ.

Therefore, we getν 6 ρ
logq
log p 6 ρ

logq
log 2 and henceν 6 ∆. Thus, we have (r′, q) = (r(r, kq∆)−1, q) =

(r, kq∆)−1(r, q(r, kq∆)) = (r, kq∆)−1(r, qr, kq∆+1) = 1.
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This implies that thesin term cannot be zero. Organizing the summation ona according to the powers
of q by takinga = qθb, we can write

S3(k, δ) ≪q qλ−δ
′ ∑

06θ<δ′

∑

16b6qδ
′−θ

b.0 modq

|Fδ′(qθb, α)|2
∣

∣

∣

∣

sinπ br′

qδ′−θ

∣

∣

∣

∣

+ λqλ−cq(α)δ′ .

Lemma 3.2 gives us|Fδ′(qθb, α)| 6 |Fδ′−θ(b, α)| and employing Lemma 3.14 yields

∑

16b6qδ
′−θ

b.0 modq

|Fδ′−θ(b, α)|2
∣

∣

∣

∣

sinπ br′

qδ′−θ

∣

∣

∣

∣

≪ q(1−cq(α))(δ′−θ).

Thus,

S3(k, δ) ≪q qλ−δ
′ ∑

06θ<δ′
q(1−cq(α))(δ′−θ)

+ λqλ−cq(α)δ′

≪q qλ−cq(α)δ′
+ λqλ−cq(α)δ′ ≪q λqλ−cq(α)(δ−∆).

Usingcq(α)∆ 6 ρ (see (5.20)), we finally obtain our desired result. �

Proof (of Proposition 5.2).Now we can derive the desired upper bound ofS2 (see (5.14)). Using (5.18)
and the upper bounds ofS3(k, δ) (see (5.19) and (5.21)), we have

S2 ≪q (1+ qν−λ)qλ
∑

06δ6λ

q−cq(α)(λ−δ) max
k|qλ−δ

(k,q)<q

S3(k, δ) + λ(1+ qν−λ)q(2−cq(α))λ

≪q (1+ qν−λ)qλ
















∑

06δ6∆

q−cq(α)(λ−δ)λqλ +
∑

∆<δ6λ

q−cq(α)(λ−δ)λqλ−cq(α)δ+ρ

















+ λ(1+ qν−λ)q(2−cq(α))λ.

Calculating the geometric series, using againcq(α)∆ 6 ρ and the definition ofλ (λ = µ+ 2ρ 6 µ+ ν), we
obtain

S2 ≪q λ(1+ qν−λ)q(2−cq(α))λ
(

qcq(α)∆
+ λqρ

)

≪q λ
2(1+ qν−λ)q(2−cq(α))λ+ρ

≪q (µ + ν)2
(

q(2−cq(α))µ+(5−2cq(α))ρ
+ q(1−cq(α))µ+ν+(3−2cq(α))ρ

)

≪q (µ + ν)2
(

q(2−cq(α))µ+5ρ
+ q(1−cq(α))µ+ν+3ρ

)

.

To show (5.14) (S2 ≪ (µ + ν)2qµ+ν−ρ), the inequalities

(2− cq(α))µ + 5ρ 6 µ + ν − ρ and (1− cq(α))µ + ν + 3ρ 6 µ + ν − ρ

have to be satisfied. It is easy to see that these conditions are true if

4 ρ

µ+ν

cq(α)
6

µ

µ + ν
6

1− 6 ρ

µ+ν

2− cq(α)
. (5.22)

Now we can fix the still undefined parameters. Setξq(α) =
cq(α)2

24 , δ =
cq(α)

4(2−cq(α)) , β1 =
4ξq(α)
cq(α) + δ, β2 =

1−6ξq(α)
2−cq(α) − δ and finallyρ = ⌊ξq(α)(µ + ν)⌋.
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All pairs (µ, ν) satisfyingβ1 − δ 6 µ/(µ + ν) 6 β2 + δ also satisfy (5.22). Using the upper bound ofcq(α)
(see (5.16)) andµ 6 ν(β2 + δ)/(1− (β2 + δ)), it can be readily shown thatρ 6 ν/2. Furthermore we have
for all pairs (µ, ν) (see (5.13))

|S|2 ≪ε q(2+ε)(µ+ν)−ρ
+ qµ+ν max

16|r |<qρ
S2(r, µ, ν, ρ)

≪q,ε q(2+ε)(µ+ν)−ρ
+ qµ+ν(µ + ν)2qµ+ν−ρ

≪q,ε q(2+ε)(µ+ν)−ρ

≪q,ε q(2+ξq(α)+ε)(µ+ν).

Hence, the proof of Proposition 5.2 is finished, since the following inequalities can be easily derived
from the definitions ofδ, β1 andβ2

0 < δ < β1 <
cq||(q− 1)α||2

2
and

1
2
< β2 < 1.

�

Corollary 5.1 Let q > 2 be an integer,α a real number, such that(q − 1)α ∈ R \ Z and cq(α) =
π2

102 logq

(

1− 2
q+1

)

||(q− 1)α||2. If x > q3/δ, then we have for xβ1 6 M 6 xβ2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

M
q <m6M

∑

x
qm<n6 x

m

ambng(mn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

≪q,α x1−σ′q(α),

whereσ′q(α) = 199
200

cq(α)2

48 , β1 =
4ξq(α)
cq(α) +δ, β2 =

1−6ξq(α)
2−cq(α) −δ andδ =

cq(α)
4(2−cq(α)) . Furthermore, these constants

satisfy0 < β1 < cq||(q− 1)α||2 < 1/3 and1/2 < β2 < 1, where cq = π2

12 logq

(

1− 2
q+1

)

.

Proof. Defineδ, β1, β2 andξq(α) as in the proof of the last proposition. We haveβ2 < 1− δ and hence
1/(1−β2) < 1/δ < 3/δ. Thus, Corollary 5.1 is the direct consequence of Proposition 5.2 and Lemma 5.3.
We obtain

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

M
q <m6M

∑

x
qm<n6 x

m

ambng(mn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

≪q,ε (log x)q(1− ξq(α)
2 +ε)(µ+ν) ≪q,ε (log x)x1− ξq(α)

2 +ε,

as soon asx > x0 = q3/δ. Here we used that we only need to considerµ andν satisfyingqµ+ν ≪q x (see

Lemma 5.3). Settingσ′q(α) = 199
200

ξq(α)
2 , we finally obtain

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

M
q <m6M

∑

x
qm<n6 x

m

ambng(mn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

≪q,α x1−σ′q(α).

�

5.5 Proof of Theorem 5.1

Let us definecq(α), δ, β1 andβ2 as in Corollary 5.1 and setk0 =
⌊

log x
logq −

3
δ
− 1

⌋

. If we assume that

x > q3/δ, we can write

∑

n6x

Λ(n)e
(

αsq(n)
)

=

∑

n6 x

qk0+1

Λ(n)e
(

αsq(n)
)

+

k0
∑

k=0

∑

x
qk+1<n6 x

qk

Λ(n)e
(

αsq(n)
)

.
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Since we have fork 6 k0

x

qk
>

x

qk0
>

x

q−
3
δ x
= q

3
δ = q

12(2−cq(α))
cq(α) > q

4(2−cq(α))
cq(α)(1−cq(α)) = q

1
β2−1/2 ,

we can use Proposition 5.1 (type I sums) and Corollary 5.1 (type II sums) to employ Lemma 5.1 withβ1

andβ2 as defined andx/qk instead ofx. We finally obtain

∑

n6x

Λ(n)e
(

αsq(n)
)

≪q,α (log x)
x

qk0+1
+

k0
∑

k=0

(

log

(

x

qk

))2 (

x

qk

)1−σ′q(α)

≪q,α log x+
(

log x
)2 x1−σ′q(α)

k0
∑

k=0

q−k(1−σ′q(α))

≪q,α
(

log x
)2 x1−σ′q(α)

≪q,α x1−σq(α),

whereσ′q(α) is defined in Corollary 5.1 andσq(α) = 198
199σ

′
q(α) = 99

100
cq(α)2

48 . This finally ends the proof of
Theorem 5.1. �

Remark. It follows from the proof of Theorem 5.1, that we can choose

σq(α) =
99
100

1
48

(

π2

102 logq

(

1− 2
q+ 1

)

||(q− 1)α||2
)2

.

As already mentioned before, we can essentially improve this constant by using a better estimation for
type I sums. Actually, using the estimates Mauduit and Rivatderived in their work (and Lemma 3.6), we
only have to makeβ1 smaller than 1/3 instead ofcq||(q−1)||2. This allows us to chooseξq(α) in the proof

of Theorem 5.1 asξq(α) = cq(α)/25, which finally yields toσq(α) = 99
100

1
50

π2

102 logq

(

1− 2
q+1

)

||(q− 1)α||2.



Chapter 6

The Sum of Digits Function of Squares

6.1 Main Theorems

The main contribution of Mauduit’s and Rivat’s work is the following theorem, which is the analogous
statement to Theorem 5.1.

Theorem 6.1 (Mauduit, Rivat) Let q > 2 be an integer andα a real number with(q − 1)α ∈ R \ Z.
Then there exists a constantσq(α) > 0, such that

∑

n6x

e
(

αsq

(

n2
))

= Oq,α(x1−σq(α)). (6.1)

The proof of this theorem given in Section 6.2 – Section 6.5 isemulated Mauduit’s and Rivat’s work [32].
Contrary to them, we do not care about the constant dependingonqandα, which yields a more assessable
proof. Furthermore we obtain an insignificant worse exponent σq(α) than Mauduit and Rivat to shorten
the proof. In particular, they showed

∣

∣

∣

∣

∣

∣

∣

∑

n6x

e
(

αsq

(

n2
))

∣

∣

∣

∣

∣

∣

∣

6 4q7/2(logq)5/2τ(q)5/2
(

1+
x
q

)
1
2ω(q)+4

x1−σq(α),

whereω(q) denotes the number of distinct prime factors ofq (see [32]).

The proof is organized as follows. In Section 6.2, we use the Cauchy-Schwarz inequality and a variant
of van der Corput’s inequality to be able to work with the truncated sum of digits function (similar to
the work on the prime numbers - see Chapter 5). But different to the previous chapter, we also have to
use the notion of double truncated functions. Well known results on Gauss sums allow us to concentrate
on sums of Fourier transforms of these double truncated functions, in order to be able to prove the
theorem (Section 6.3 and Section 6.4). Adding the obtained facts together, we finally prove the theorem
in Section 5.5.

Before we start the proof, we present the solution of Gelfond’s problem concerning the sum of digits
function of squares, which is a direct consequence of Theorem 5.1. Furthermore, we show that the
sequence (αsq(n2))n∈N is uniformly distributed modulo 1 for any irrational numberα.

Theorem 6.2 Let q and m be integers> 2. Set d= (q−1,m) and Q(a, d) = # {0 6 n < d : n2 ≡ a modd}.
Then there exists a constantσq,m > 0 such that for all a∈ Z

# {n 6 x : sq(n2) ≡ a modm} = x
m

Q(a, d) +Oq,m

(

x1−σq,m
)

. (6.2)

68
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Proof. By Lemma 1.2 we have

# {n 6 x : sq(n2) ≡ a modm} =
∑

n6x

1
m

∑

06 j<m

e
( j
m

(sq(n2) − a)
)

.

If we put d = (m, q− 1), m′ = m
d , J = {km′ : 0 6 k < d}, J′ = {0, . . . ,m− 1} \ J = {km′ + r : 0 6 k <

d, 1 6 r < m′}, than we have forj = km′ ∈ J

e
( j
m

sq(n2)
)

= e

(

km′

dm′
sq(n2)

)

= e

(

k
d

sq(n2)

)

= e

(

k
d

n2
)

.

Indeed, Lemma 1.1 gives ussq(n2) ≡ n2 modd, which establishes the last equality. Hence,

∑

n6x

1
m

∑

j∈J
e
( j
m

(sq(n2) − a)
)

=

∑

n6x

1
m

∑

06k<d

e

(

k
d

(n2 − a)

)

=
d
m

∑

n6x
n2≡a modd

1

=
d
m

( x
d
+Oq,m(1)

)

Q(a, d) =
( x
m
+Oq,m(1)

)

Q(a, d).

If we can therefore show that

1
m

∑

j∈J′
e
(

−a j
m

)

∑

n6x

e
( j
m

sq(n2)
)

= Oq,m(x1−σq,m), (6.3)

whereσq,m > 0, we are done. IfJ′ = ∅, which corresponds to the degenerated case wherem | q− 1, then
we have an error term equal to zero. Therefore we assume now, that J′ , ∅. Puttingq′ = q−1

d , we have
(q′,m′) = 1, and hence forj = km′ + r ∈ J′

(q− 1) j
m

=
dq′(km′ + r)

dm′
= q′k+

q′r
m′
< Z.

By Theorem 6.1 there exists a constantσq( j/m) for every j ∈ J′ , such that

∑

n6x

e
( j
m

sq(n2)
)

= Oq,m(x1−σq( j/m)).

Puttingσq,m = min j∈J′ σq( j/m) > 0 (recall, thatJ′ , ∅), we get the desired estimation in 6.1. �

Theorem 6.3 For q > 2 the sequence(αsq(n2))n∈N is uniformly distributed modulo1, if and only if
α ∈ R \ Q.

Proof. If α ∈ Q, then the sequence (αsq(n2))n∈N takes modulo 1 only a finite number of values and is
therefore not uniformly distributed modulo 1. If in returnα ∈ R \ Q, then for everyh ∈ Z with h , 0 we
have (q− 1)hα ∈ R \ Q and according to Theorem 6.1 there exists a constantσq(hα) > 0, such that

∣

∣

∣

∣

∣

∣

∣

∑

n6x

e
(

αsq

(

n2
))

∣

∣

∣

∣

∣

∣

∣

= Oq,hα(x1−σq(hα)).

This proves that (αsq(n2))n∈N is uniformly distributed modulo 1 (see Theorem A.3). �
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6.2 Truncated Functions and Gauss Sums

In order to be able to show Theorem 6.1, we need the following proposition which is the hardest part of
proving Gelfond’s problem on the sum of digits function of squares.

Proposition 6.1 There exist constantsν0 = ν0(q, α) > 1 andσ′q(α) > 0, such that for allν > ν0

∑

qν−1<n6x

e(αsq(n2)) ≪q ν
3ω(q)/2q(1−σ′q(α))ν,

uniformly for all x satisfying qν−1 < x 6 qν, whereω(q) denotes the number of distinct prime factors of
q.

It needs several steps to prove this proposition. Recall that f (.) is the sum of digits function in baseq
multiplied byα. In order to get a manageable notation, we set

S =
∑

qν−1<n6x

e(f (n2)).

First we smooth the sum by using a variant of Van der Corput’s inequality. In particular, we employ
Lemma 2.8 withA = 1, B = ⌊x⌋ − qν−1, N = qν − qν−1, zn = e(f ((qν−1

+ n)2)) andR = qρ, whereρ is
an integer satisfying 26 q 6 ν/3. We obtain

|S| 6



































⌊x⌋ − qν−1

qρ

∑

|r |<qρ

(

1− |r |
qρ

)

∑

qν−1<n6qν

qν−1<n+r6qν

e(f ((n+ r)2) − f (n2))



































1/2

+
qρ

2
.

Taking into account that⌊x⌋ 6 qν and separating the caser = 0 andr , 0, we get

|S| 6 q(ν−ρ)/2



































qν +
∑

16|r |<qρ

(

1− |r |
qρ

)

∑

qν−1<n6qν

qν−1<n+r6qν

e(f ((n+ r)2) − f (n2))



































1/2

+
qρ

2
.

We have
∑

16|r |<qρ
(

1− |r |qρ

)

= qρ−1 6 qρ. Therefore we get an error term
∑

16|r |<qρ
(

1− |r |qρ

)

|r | 6 q2ρ when

removing the summation conditionqν−1 < n+ r 6 qν. Since
√

a+ b 6
√

a+
√

b for non-negative real
numbersa andb, we obtain

|S| 6 qν−ρ/2 + q(ν+ρ)/2
+

qρ

2
+ qν/2 max

16|r |<qρ

∣

∣

∣

∣

∣

∣

∣

∣

∑

qν−1<n6qν

e(f ((n+ r)2) − f (n2))

∣

∣

∣

∣

∣

∣

∣

∣

1/2

≪ qν−ρ/2 + qν/2 max
16|r |<qρ

∣

∣

∣

∣

∣

∣

∣

∣

∑

qν−1<n6qν

e(f ((n+ r)2) − f (n2))

∣

∣

∣

∣

∣

∣

∣

∣

1/2

. (6.4)

As in the proof of Theorem 5.1, we continue with using the notion of the truncated sum of digits function
which was already used in Chapter 3 and Chapter 5. Similar to Lemma 5.5, we show in the following
lemma that the digits of high weight in the differencef ((n + r)2) − f (n2) do not contribute significantly
and are negligible.
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Lemma 6.1 For all integersν and ρ with ν > 0 and 2 6 ρ 6 ν/3 and for all r ∈ Z with |r | < qρ, we
denote by E(r, ν, ρ) the number of integers n such that qν−1 < n 6 qν and

f ((n+ r)2) − f (n2) , fν+2ρ((n+ r)2) − fν+2ρ(n
2).

Then we have

E(r, ν, ρ) ≪q qν−ρ.

Proof. First, we note that 06 |2nr + r2| < 2qν(qρ − 1) + q2ρ < qν+ρ+1. We start with considering the
case 06 r < qρ. When we compute the sumn2

+ 2nr + r2, the digits ofn2 of index> ν + ρ + 1 cannot
be modified unless there is a carry propagation. Hence we mustcount the number of integersn such that
the digitsa j in basisq of n2 satisfya j = q− 1 for ν + ρ + 1 6 j < ν + 2ρ, or equivalent, that there exists
an integerm, such that⌊n2/qν+ρ+1⌋ = qρ−1m− 1. This can be readily verified, and is equivalent to

qρ−1m− 1 6
n2

qν+ρ+1
< qρ−1m. (6.5)

Using this inequality, we derive (note, thatn 6 qν)

0 <
n2

qν+2ρ
< m6

⌊

n2

qν+2ρ
+ q−ρ+1

⌋

6 qν−2ρ.

For each such fixedm, there can only be

1+
√

qν+2ρm

(

1−
√

1− q−ρ+1m−1

)

integersn satisfying (6.5). Since we have 1−
√

1− u = u
2 +

1
4

∫ u

0
(u − t)(1 − t)−3/2 dt 6 u

2 + u2 for
0 6 u 6 3/4 andq−ρ+1m−1

6 1/2 (m> 1, ν > 2), we obtain

E(r, ν, ρ) 6
∑

0<m6qν−2ρ

(

1+

(

1
2

q−ρ+1m−1
+ q−2ρ+2m−2

)

qν/2+ρm1/2
)

6 qν−2ρ
+

q
2

qν/2
∑

0<m6qν−2ρ

1

m1/2
+ q2qν/2−ρ

∑

0<m6qν−2ρ

1

m3/2
.

Sincex−1/2 is convex for positivex, we employ Lemma A.7 to obtain the estimation
∑

0<m6qν−2ρ
1

m1/2 6

2qν/2−ρ. Thus, we finally get

E(r, ν, ρ) 6 qν−2ρ
+ qqν−ρ + q2qν/2−ρζ(3/2)≪q qν−ρ.

In the case that−qρ < r < 0, the same reasoning applies and similar calculations haveto be done.
We have to count the number of integersn such that the digitsa j in basisq of n2 satisfy a j = 0 for
ν + ρ + 1 6 j < ν + 2ρ. This is equivalent to the existence of an integerm, such that

qρ−1m6
n2

qν+ρ+1
< qρ−1m+ 1, (6.6)

and we obtain 06 m 6 qν−2ρ. If m , 0, there are 1+
√

qν+2ρm
( √

1+ q−ρ+1m−1 − 1
)

integersn

satisfying (6.6). Separating the casem, 0 from the rest of the sum and using the inequality
√

1+ u−1 6
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u
2 for positiveu, we finally obtain (by assumption, we haveρ 6 ν/3)

E(r, ν, ρ) 6 q(ν+ρ+1)/2
+

∑

0<m6qν−2ρ

(

1+
q
2

qν/2m−1/2
)

6 q(ν+ρ+1)/2
+ qν−2ρ

+
q
2

qν/2
∑

0<m6qν−2ρ

1

m1/2
≪q qν−ρ.

�

In order to get a manageable notation we putλ = ν + 2ρ. Replacing the functionf by the truncated
function fλ yields, according to Lemma 6.1, an error≪q qν−ρ. By (6.4), we obtain

|S| ≪ qν−ρ/2 + qν/2 max
16|r |<qρ

(|S1(r, ν, ρ)| + E(r, ν, ρ))1/2

≪q qν−ρ/2 + qν/2 max
16|r |<qρ

|S1(r, ν, ρ)|1/2, (6.7)

where

S1(r, ν, ρ) =
∑

qν−1<n6qν

e
(

fλ((n+ r)2) − fλ(n
2)
)

.

Our next step in proving the proposition is to use the double truncated sum of digits functionfη,λ = fλ− fη,
which was treated in Chapter 3. In order to be able to work withthis function, we employ a generalization
of a Van der Corput inequality. Therefore we introduce a parameterη satisfying

1 6 η 6 ν − 2ρ − 1, (6.8)

and setN = qν − qν−1, R = q2ρ, zn = e(fλ((qν−1
+ n + r)2) − fλ((qν−1

+ n)2)) andk = qη. Employing
Lemma 2.7 yields to

|S1(r, ν, ρ)|2 6 qν − qν−1
+ qη+2ρ

q2ρ

∑

|s|<q2ρ

(

1− |s|
q2ρ

)

|S2(r, s, ν, ρ, η)|

6 qν−2ρ
∑

|s|<q2ρ

(

1− |s|
q2ρ

)

|S2(r, s, ν, ρ, η)|

6 q2(ν−ρ)
+ qν max

16|s|<q2ρ
|S2(r, s, ν, ρ, η)|, (6.9)

where

S2(r, s, ν, ρ, η) =
∑

qν−1<n6qν

qν−1<n+sqη6qν

e
(

fλ((n+ r + sqη)2) − fλ((n+ r)2) − fλ((n+ sqη)2) + fλ(n
2)
)

.

Here we separated (as in the other cases where we had employeda Van der Corput inequality) the case
s = 0 ands , 0 and used the inequality

∑

16|s|<q2ρ (1 − |s|/q2ρ) 6 q2ρ. Since fη is periodic of periodqη,
we derive

fλ((m+ sqη)2) − fλ(m
2) = fη,λ((m+ sqη)2) − fη,λ(m

2).

Thus we can write

S2(r, s, ν, ρ, η) =
∑

qν−1<n6qν

qν−1<n+sqη6qν

e
(

fη,λ((n+ r + sqη)2) − fη,λ((n+ r)2) − fη,λ((n+ sqη)2) + fη,λ(n
2)
)

.
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Since the new functionfη,λ is periodic of periodqλ, we have (by Lemma 1.2)

S2 =
1

q4λ

∑

06u1,u2,u3,u4<qλ

e(fη,λ(u1) − fη,λ(u2) − fη,λ(u3) + fη,λ(u4))
∑

qν−1<n6qν

qν−1<n+sqη6qν

∑

06h1,h2,h3,h4<qλ

e

(

h1((n+ r + sqη)2 − u1) + h2((n+ r)2 − u2) + h3((n+ sqη)2 − u3) + h4(n2 − u4)
qλ

)

.

Using the definitionFη,λ(h, α) = q−λ
∑

06u<qλ e
(

fη,λ(u) − huq−λ
)

(see Chapter 3), we can write

S2 =

∑

06h1,h2,h3,h4<qλ

Fη,λ(h1, α)Fη,λ(−h2, α) Fη,λ(−h3, α)Fη,λ(h4, α)

∑

qν−1<n6qν

qν−1<n+sqη6qν

e

(

h1(n+ r + sqη)2
+ h2(n+ r)2

+ h3(n+ sqη)2
+ h4n2

qλ

)

.

The following lemma will allow us to use quadratic Gauss sums, which we have considered in Chapter 2.
It is at least known since Vinogradov, and makes it possible to sum overn on a more practicable interval.

Lemma 6.2 Let m be an integer> 2 and (zn)n∈Z complex numbers periodic of period m. Then we have
for all M,N ∈ Z with 1 6 N 6 m

M+N
∑

n=M+1

zn ≪ (logm) max
06l<m

∣

∣

∣

∣

∣

∣

∣

m−1
∑

n=0

zn e

(

ln
m

)

∣

∣

∣

∣

∣

∣

∣

.

Proof. Using Lemma 1.2 and the periodicity of the considered complex numbers, we can write

M+N
∑

k=M+1

zk =

m−1
∑

n=0

zn

M+N
∑

k=M+1

1
m

m−1
∑

l=0

e

(

l(n− k)
m

)

=

m−1
∑

l=0

1
m

M+N
∑

k=M+1

e

(

−lk
m

) m−1
∑

n=0

zn e

(

ln
m

)

.

First we note that the middle sum is a geometric series, and therefore we have

M+N
∑

k=M+1

e

(

−lk
m

)

6 min















N,
1

∣

∣

∣sinπ l
m

∣

∣

∣















.

Furthermore, Lemma A.7 yields (note, that the functiont 7→ (sint)−1 is convex on [0, π])

m−1
∑

l=1

1

sinπ l
m

6

∫ m−1/2

1/2

dt

sinπ t
m

=
2m
π

log cot
π

4m

6
2m
π

log
4m
π
.
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Thus, we have

m−1
∑

l=0

1
m

M+N
∑

k=M+1

e

(

−lk
m

)

6
N
m
+

2
π

log
4m
π
≪ logm,

and the desired result follows. �

If we setm = qλ andN = #{n ∈ N : qν−1 < n 6 qν andqν−1 < n + sqη 6 qν} 6 qν 6 qλ, applying the
previous lemma yields

S2 ≪ logqλ
∑

06h1,h2,h3,h4<qλ

|Fη,λ(h1, α)Fη,λ(−h2, α)Fη,λ(−h3, α)Fη,λ(h4, α)|

max
06l<qλ

∣

∣

∣

∣

∣

∣

∣

∣

∑

06n<qλ

e

(

h1(n+ r + sqη)2
+ h2(n+ r)2

+ h3(n+ sqη)2
+ h4n2

+ ln

qλ

)

∣

∣

∣

∣

∣

∣

∣

∣

≪q λ max
06l<qλ

∑

d|qλ

∑

06h1,h2,h3,h4<qλ

(h1+h2+h3+h4,qλ)=d

|Fη,λ(h1, α)Fη,λ(−h2, α)Fη,λ(−h3, α)Fη,λ(h4, α)|

|G(h1 + h2 + h3 + h4, 2r(h1 + h2) + 2sqη(h1 + h3) + l; qλ)|.

Here we used the notion of the quadratic Gauss sums. Corollary 2.1 yields

S2 ≪q λqλ/2 max
06l<qλ

∑

d|qλ
d1/2

∑

06h1,h2,h3,h4<qλ

(h1+h2+h3+h4,qλ)=d
d|2r(h1+h2)+2sqη(h1+h3)+l

|Fη,λ(h1, α)Fη,λ(−h2, α)Fη,λ(−h3, α)Fη,λ(h4, α)|,

since the considered Gauss sums are only non-zero (and6

√

2dqλ) if d | 2r(h1 + h2) + 2sqη(h1 + h3) + l.
The condition (h1 + h2 + h3 + h4, qλ) = d is not easy to handle, therefore we replace it by the less
restrictive conditionh1 + h2 + h3 + h4 ≡ 0 modd. Furthermore, there arise some problems with the
greatest common divisor of 2r andd, respectively with handling the summation conditions, ifνq(d) is
small. Thus, we consider the last sum overd separately forνq(d) < ∆ andνq(d) > ∆, where∆ is an
integer satisfying 16 ∆ < η. We write

S2 ≪q λqλ/2 max
06l<qλ

(S3 + S4), (6.10)

where

S3 =

∑

d|qλ
νq(d)<∆

d1/2
∑

06h1,h2,h3,h4<qλ

h1+h2+h3+h4≡0 modd
2r(h1+h2)+2sqη(h1+h3)+l≡0 modd

|Fη,λ(h1, α)Fη,λ(−h2, α)Fη,λ(−h3, α)Fη,λ(h4, α)|,

and

S4 =

∑

d|qλ
νq(d)>∆

d1/2
∑

06h1,h2,h3,h4<qλ

h1+h2+h3+h4≡0 modd
2r(h1+h2)+2sqη(h1+h3)+l≡0 modd

|Fη,λ(h1, α)Fη,λ(−h2, α)Fη,λ(−h3, α)Fη,λ(h4, α)|.

In order to derive an upper estimate ofS3 andS4, we need the following lemma, which deals with the
square root expressions in these sums.
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Lemma 6.3 Let0 < δ1 6 λ be integers andθ ∈ [− log 2/(2 logq)+1/(100 logq), 0] a real number. Then
we have

∑

d|qλ
νq(d)6δ1

d
1
2 qθνq(d) ≪q τ(q

λ)q
λ
2+δ1θ− log 2

2 logq (λ−δ1)
.

Proof. We can writed in the formkqδ, where 06 δ 6 δ1, k | qλ−δ and (k, q) < q. Thus we have
∑

d|qλ
νq(d)6δ1

d
1
2 qθνq(d)

=

∑

06δ6δ1

q( 1
2+θ)δ

∑

k<qλ−δ

(k,q)<q

k
1
2 .

Since (k, q) is strict smaller thenq, we have (k, q) < q/2 and hencek = (k, qλ−δ) 6 (k, q)λ−δ 6 (q/2)λ−δ.
Furthermore the number of admissible integersk is trivially bounded by the numbers of divisors ofqλ−δ.
Thus we finally obtain

∑

d|qλ
νq(d)6δ1

d
1
2 qθνq(d)

6

∑

06δ6δ1

q( 1
2+θ)δτ

(

qλ−δ
)

(q
2

) λ−δ
2

6 τ(qλ)q
λ
2−λ

log 2
2 logq

∑

06δ6δ1

qδ
(

θ+
log 2

2 logq

)

≪q τ(q
λ)q

λ
2+δ1θ− log 2

2 logq(λ−δ1)
.

�

6.3 Estimate ofS3

In order to find an upper bound ofS3, we ignore the additional conditions for the indicesh1, . . . , h4.
Using Lemma 3.15, we derive

S3 6

∑

d|qλ
νq(d)<∆

d1/2
∑

06h1,h2,h3,h4<qλ

|Fη,λ(h1, α)Fη,λ(−h2, α)Fη,λ(−h3, α)Fη,λ(h4, α)|

6

∑

d|qλ
νq(d)<∆

d1/2η4q4(λ−η).

Employing Lemma 6.3 withδ1 = ∆ andθ = 0, we get

S3 ≪q τ(q
λ)η4q

λ
2−

log 2
2 logq (λ−∆)+4(λ−η)

.

In order to find a feasible upper bound, we have to choose∆ not to large andη not to small. We set

∆ = λ − η + ρq with ρq =

⌊

3ρ
logq
log 2

⌋

,

where we have to impose the following condition (note that weassumed∆ < η)

ρq < 2η − λ = 2η − ν − 2ρ. (6.11)

Moreover, we choose

η >
ν + 27

8 ρ

1+ log 2
8 logq

. (6.12)
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We will show later, that these choices are reasonable and eligible. Usingλ = ν + 2ρ therefore yields

S3 ≪q τ(q
λ)η4q

λ
2−

log 2
2 logq (η−ρq)+4(ν+2ρ−η)

≪q τ(q
λ)η4q

λ
2−4ρ+4ν−

(

4+ log 2
2 logq

)

η+ 27
2 ρ

≪q τ(q
λ)η4q

λ
2−4ρ. (6.13)

6.4 Estimate ofS4

To find an upper bound ofS4, we transform the summation conditions regardingh1, . . . , h4 in such a way,
that we can employ the results about the discrete Fourier transformation of e(fη,λ) proved in Chapter 3.
We setd̃ = (d, 2|r |). If p is a prime factor ofd̃ (and therefore also ofq, sinced̃ | d | qλ), we have
pνp(d̃)

6 2|r | 6 2qρ. Thus we getνp(d̃) 6 ⌊(ρ logq+ log 2)/ log p⌋ 6 ρq. This yields

d̃ =
∏

p|d̃
pνp(d̃) |

∏

p|d̃
pρq | qρq.

By the imposed condition (6.11), we haved̃ | qη and hence

2r(h1 + h2) + 2sqη(h1 + h3) + l ≡ 0 modd

implies d̃ | l. Thus, the above equation is equivalent to

r′(h1 + h2) + s′qη−ρq(h1 + h3) + l′ ≡ 0 modd′,

wherer′ = 2r/d̃, s = 2sqρq/d̃, l′ = l/d̃ andd′ = d/d̃. The integerr′ has an inverse element modulod′

since (r′, d′) = 1. If we call it r′′ and setl′′ = r′′l′ ands′′ = r′′s′, we can write the last equation as

h1 + h2 + s′′qη−ρq(h1 + h3) + l′′ ≡ 0 modd′.

Furthermore, we haveνq(d′) = νq(d) − νq(d̃) > νq(d) − ρq, which impliesqνq(d)−ρq | d′. If we replaced′

andd by qνq(d)−ρq, we have a less restrictive but much easier to handle condition. We will see that this
proceeding is justified. For the purpose of finding an upper bound ofS4, we split the sum up overd into
three different sums.

S4 6 S5 + S6 + S7, (6.14)

where

S5 =

∑

d|qλ
∆6δ=νq(d)<η

d1/2
∑

06h1,h2,h3,h4<qλ

h1+h2+h3+h4≡0 modqδ−ρq

h1+h2+s′′qη−ρq(h1+h3)+l′′≡0 modqδ−ρq

|Fη,λ(h1, α)Fη,λ(−h2, α)Fη,λ(−h3, α)Fη,λ(h4, α)|,

S6 =

∑

d|qλ
δ=νq(d)>η

d1/2
∑

06h1,h2,h3,h4<qλ

h1+h2+h3+h4≡0 modqδ−ρq

h1+h2+s′′qη−ρq(h1+h3)+l′′≡0 modqδ−ρq
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h1+s′′qη−ρq (h1+h3)+l′′

qδ−ρq

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

>q−η+λ−δ+ρq+4ρ

|Fη,λ(h1, α)Fη,λ(−h2, α)Fη,λ(−h3, α)Fη,λ(h4, α)|,

S7 =

∑

d|qλ
δ=νq(d)>η

d1/2
∑

06h1,h2,h3,h4<qλ

h1+h2+h3+h4≡0 modqδ−ρq

h1+h2+s′′qη−ρq(h1+h3)+l′′≡0 modqδ−ρq
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h1+s′′qη−ρq (h1+h3)+l′′

qδ−ρq

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

<q−η+λ−δ+ρq+4ρ

|Fη,λ(h1, α)Fη,λ(−h2, α)Fη,λ(−h3, α)Fη,λ(h4, α)|.
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Estimate ofS5

At first we considerS5. Sinceδ = νq(d) < η, we can conclude that the conditionsh1 + h2 + s′′qη−ρq(h1 +

h3) + l′′ ≡ 0 modqδ−ρq andh1 + h2 + h3 + h4 ≡ 0 modqδ−ρq are equivalent toh1 + h2 ≡ −l′′ modqδ−ρq

andh3 + h4 ≡ l′′ modqδ−ρq. Hence, we have (using Lemma 3.18)

S5 =

∑

d|qλ
∆6δ=νq(d)<η

d1/2



































∑

06h1,h2<qλ

h1+h2≡−l′′ modqδ−ρq

|Fη,λ(h1, α)Fη,λ(−h2, α)|



































2

≪q η
4

∑

d|qλ
∆6δ=νq(d)<η

d1/2.

Now we can employ Lemma 6.3 and obtain

S5 ≪q η
4τ(qλ)q

λ
2−

log 2
2 logq (λ−η)

. (6.15)

Estimate ofS6

To estimateS6, we note that the conditionsh1 + h2 + h3 + h4 ≡ 0 modqδ−ρq andh1 + h2 + s′′qη−ρq(h1 +

h3) + l′′ ≡ 0 modqδ−ρq are equivalent toh1 + h2 + s′′qη−ρq(h1 + h3) + l′′ ≡ 0 modqδ−ρq andh3 + h4 −
s′′qη−ρq(h1 + h3) − l′′ ≡ 0 modqδ−ρq. LetH+ be the pairs of integers (h1, h3) satisfying

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h1 + s′′qη−ρq(h1 + h3) + l′′

qδ−ρq

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> q−η+λ−δ+ρq+4ρ. (6.16)

Sinceδ = νq(d) > η and by (6.11) we haveδ−ρq > η−ρq > λ−η. Thus the assumptions of Lemma 3.16
are satisfied and we obtain (using (3.19))

∑

06h2<qλ

h1+h2+s′′qη−ρq(h1+h3)+l′′≡0 modqδ−ρq

|Fη,λ(−h2, α)| ≪q η|Fλ−η(h1 + s′′qη−ρq(h1 + h3) + l′′, α)|

q−η+λ−δ+ρqϕqη−λ+δ−ρq

(

h1 + s′′qη−ρq(h1 + h3) + l′′

qδ−ρq

)

.

Sinceη − ρq > λ − η, we have thatFλ−η is also periodic of periodqη−ρq. Using the fact thatϕk(t) 6
(sinπ||t||)−1

6 (2||t||)−1 for all k > 2 andt ∈ R \ Z and (6.16), we obtain
∑

06h2<qλ

h1+h2+s′′qη−ρq(h1+h3)+l′′≡0 modqδ−ρq

|Fη,λ(−h2, α)| ≪q η|Fλ−η(h1 + l′′, α)|q−4ρ.

In a similar way (employing (3.20) instead of (3.19)) we get
∑

06h4<qλ

h3+h4−s′′qη−ρq(h1+h3)−l′′≡0 modqδ−ρq

|Fη,λ(h4, α)| ≪q η|Fλ−η(−h3 + l′′, α)|.

Thus we have

S6 ≪q η
2q−4ρ

∑

d|qλ
δ=νq(d)>η

d1/2
∑

(h1,h3)∈H+
|Fη,λ(h1, α)Fλ−η(h1 + l′′, α)Fη,λ(−h3, α)Fλ−η(−h3 + l′′, α)|

≪q η
2q−4ρ

∑

d|qλ
δ=νq(d)>η

d1/2



















∑

06h<qλ

|Fη,λ(h, α)Fλ−η(h+ l′′, α)|



















2

≪q η
4q−4ρ

∑

d|qλ
δ=νq(d)>η

d1/2,
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where we used Lemma 3.17 to obtain the last inequality. Lemma6.3 withδ1 = λ andθ = 0 finally yields

S6 ≪q η
4τ(qλ)q

λ
2−4ρ. (6.17)

Estimate ofS7

The last crucial step in proving Proposition 6.1 is the estimation ofS7. To be in line with the previous
studies, letH− be the pairs of integers (h1, h3) satisfying

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h1 + s′′qη−ρq(h1 + h3) + l′′

qδ−ρq

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

< q−η+λ−δ+ρq+4ρ. (6.18)

Similar calculations as forS6 show, that

S7 ≪q η
2

∑

d|qλ
δ=νq(d)>η

d1/2
∑

(h1,h3)∈H+
|Fη,λ(h1, α)Fλ−η(h1 + l′′, α)Fη,λ(−h3, α)Fλ−η(−h3 + l′′, α)|. (6.19)

The only difference exists therein, that we employ (3.20) for the sum overh2 instead of (3.19). We
impose the condition

η + 2ρq 6 λ. (6.20)

We distinguish two cases. Ifνq(d) = δ 6 η + 2ρq, we remove the additional summation conditions to
sum over all 06 h1, h3 < qλ, employ Lemma 3.17 and subsequently Lemma 6.3.

η2
∑

d|qλ
η6δ=νq(d)6η+2ρq

d1/2



















∑

06h<qλ

|Fη,λ(h, α)Fλ−η(h+ l′′, α)|



















2

≪q η
4

∑

d|qλ
η6δ=νq(d)6η+2ρq

d1/2 ≪q η
4τ(qλ)q

λ
2−

log 2
2 logq (λ−η−2ρq)

. (6.21)

In the converse case (νq(d) = δ < η+2ρq), we have to be more careful, since the trivial estimates arranged
before do not yield the desired result. We impose the condition

2η > λ + ρq + 4ρ + 1 = ν + ρq + 6ρ + 1, (6.22)

which allows us to obtain a better upper bound. In particular, we can show the following lemma.

Lemma 6.4 With the same notation as before, letνq(d) = δ > η + 2ρq and 2η < λ + ρq + 4ρ + 1
(condition(6.22)). Furthermore, let h1 be a fixed integer and(h1, h3) ∈ H−. Then there exists an integer
a(h1), satisfying0 6 a(h1) < qδ−η−2ρq and

h3 ≡ a(h1) modqδ−η−2ρq.

Proof. Clearly, we only have to prove that two integersh3 andh′3, satisfying (h1, h3) ∈ H− and (h1, h′3) ∈
H− are congruent 0 moduloqδ−η−2ρq. Indeed, we have

∥

∥

∥

∥

∥

∥

s′′(h3 − h′3)

qδ−η

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

h1 + s′′qη−ρq(h1 + h3) + l′′

qδ−ρq
−

h1 + s′′qη−ρq(h1 + h′3) + l′′

qδ−ρq

∥

∥

∥

∥

∥

∥

6

∥

∥

∥

∥

∥

∥

h1 + s′′qη−ρq(h1 + h3) + l′′

qδ−ρq

∥

∥

∥

∥

∥

∥

+

∣

∣

∣

∣

∣

∣

h1 + s′′qη−ρq(h1 + h′3) + l′′

qδ−ρq

∥

∥

∥

∥

∥

∥

< 2q−η+λ−δ+ρq+4ρ < qη−δ.
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The last inequality is a result of (6.22) and implies
∥

∥

∥

∥

s′′(h3−h′3)
qδ−η

∥

∥

∥

∥

= 0. Taking into account the definition of
s′′, this is equivalent to

r′′2s
qρq

(d, 2|r |) (h3 − h′3) ≡ 0 modqδ−η.

By definition, r′′ is relatively prime tod′. Recall thatνq(d′) > δ − ρq > 0 which implies thatq | d′.
Hence,r′′ is also relatively prime toqδ−η and therefore invertible moduloqδ−η. Furthermore, we have
for all prime factorsp of q which also divide 2s, that pνp(2|s|)

6 2|s| < 2q2ρ. But sinceνp(2|s|) 6
⌊(2ρ logq+ log 2)/(log p)⌋ 6 ρq, we finally can conclude

h3 − h′3 ≡ 0 modqδ−η−2ρq.

�

After (6.19) and the previous lemma, we have

S7 ≪q η
2

∑

d|qλ
η+2ρq<δ=νq(d)6λ

d1/2
∑

(h1,h3)∈H+
|Fη,λ(h1, α)Fλ−η(h1 + l′′, α)Fη,λ(−h3, α)Fλ−η(−h3 + l′′, α)|

+ η4τ(qλ)q
λ
2−

log 2
2 logq (λ−η−2ρq)

≪q η
2

∑

d|qλ
η+2ρq<δ=νq(d)6λ

d1/2
∑

06h1<qλ

|Fη,λ(h1, α)Fλ−η(h1 + l′′, α)|

∑

06h3<qλ

h3≡a(h1) modqδ−η−2ρq

|Fη,λ(−h3, α)Fλ−η(−h3 + l′′, α)| + η4τ(qλ)q
λ
2−

log 2
2 logq(λ−η−2ρq)

.

Now we can employ Lemma 3.17 to the last sum.

S7 ≪q η
3

∑

d|qλ
η+2ρq<δ=νq(d)6λ

d1/2|Fδ−µ−2ρq(−a(h1), α)Fδ−η−2ρq(−a(h1) + l′′, α)|

∑

06h1<qλ

|Fη,λ(h1, α)Fλ−η(h1 + l′′, α)| + η4τ(qλ)q
λ
2−

log 2
2 logq (λ−η−2ρq)

.

Using Lemma 3.6 and again Lemma 3.17 to the remaining sum yields

S7 ≪q η
3

∑

d|qλ
η+2ρq<δ=νq(d)6λ

d1/2q−2cq||(q−1)α||2(δ−η−2ρq)
∑

06h1<qλ

|Fη,λ(h1, α)Fλ−η(h1 + l′′, α)|

+ η4τ(qλ)q
λ
2−

log 2
2 logq (λ−η−2ρq)

≪q η
4

∑

d|qλ
η+2ρq<δ=νq(d)6λ

d1/2q−2cq||(q−1)α||2(δ−η−2ρq)
+ η4τ(qλ)q

λ
2−

log 2
2 logq (λ−η−2ρq)

.

We introduce the following constant

c′q(α) ≔ 2
π2

15 logq

(

1− 2
q+ 1

)

||(q− 1)α||2 6 2
π2

15 · 4 logq
<

0, 329
logq

<
0, 346
logq

<
log 2

2 logq
. (6.23)
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In particular, we havec′q(α) = 12/15·2cq||(q−1)α||2. Sinceδ−η−2ρq > 0, we can replace 2cq||(q−1)α||2
by c′q(α) and apply Lemma 6.3 withδ1 = λ andθ = −c′q(α). Thus, we get

S7 ≪q η
4τ(qλ)q

λ
2−c′q(α)(λ−η−2ρq)

+ η4τ(qλ)q
λ
2−

log 2
2 logq(λ−η−2ρq)

.

Becausec′q(α) satisfiesc′q(α) 6 log 2/(2 logq), we finally obtain

S7 ≪q η
4τ(qλ)q

λ
2−c′q(α)(λ−η−2ρq). (6.24)

Conclusion

According to (6.14), we have to sum up the derived upper bounds ofS5, (see (6.15)),S6 (see (6.17)) and
S7 (see (6.24))

S4 ≪q η
4τ(qλ)q

λ
2−

log 2
2 logq (λ−η)

+ η4τ(qλ)q
λ
2−4ρ
+ η4τ(qλ)q

λ
2−c′q(α)(λ−η−2ρq).

The first sum is negligible sincec′q(α) 6 log 2/(2 logq). Furthermore we have by the definitions ofλ and
ρq thatλ − η − 2ρq > ν − η − 6 logq/ log 2. Hence, we get

S4 ≪q η
4τ(qλ)q

λ
2−4ρ

(

1+ q−c′q(α)(ν−η)+
(

4+6c′q(α) logq
log 2

)

ρ
)

.

To eliminate the last term in the brackets, we impose

η 6 ν −
(

4
c′q(α)

+ 6
logq
log 2

)

ρ. (6.25)

We will see in the next chapter, that we really can chooseη satisfying this inequality. Thus, we finally
obtain

S4 ≪q η
4τ(qλ)q

λ
2−4ρ. (6.26)

6.5 Proof of Proposition 6.1 and Theorem 6.1

After estimating the crucial sumsS3 andS4, we are in the situation of proving Proposition 6.1. After
(6.10), (6.13) and (6.24), we have

S2 ≪q λη
4τ(qλ)qλ−4ρ.

Sinceτ(.) is multiplicative (see Appendix A), we have

τ(qλ) =
∏

p|q
τ(pλνp(q)) =

∏

p|q
(λνp(q) + 1) 6

∏

p|q
(λνp(q) + λ) = λω(q)τ(q).

We assumedρ 6 ν/3, which impliesη 6 λ = ν + 2ρ ≪ ν. Thus we have

S2 ≪q ν
5+ω(q)qν−ρ ≪q ν

6ω(q)qν−2ρ,

becauseω(q) > 1. Inserting this estimate in (6.9) and combining with (6.7)yields

S≪q ν
3ω(q)/2qν−ρ/2.
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In order to finish the proof, we have to choose 26 ρ 6 ν/3 andη in such a way, that all imposed
conditions from the last sections are satisfied andν− ρ/2 = ν(1−σ′q(α)), with σ′q(α) > 0. By (6.12) and
(6.25),η has to fulfill

ν + 27
8 ρ

1+ log 2
8 logq

6 η 6 ν −
(

4
c′q(α)

+ 6
logq
log 2

)

ρ.

If we choose

ρ < γ(q, α)ν ≔
log 2

27 logq+ (8 logq+ log 2)
(

4
c′q(α) + 6 logq

log 2

) ν,

we haveρ 6 ν/3. If ν is big enough, we have 26 ρ in addition. Sinceη has to be an integer, the
considered interval has to be strictly greater than zero. Indeed, one can readily show that the above
choice ofρ is sufficient. The nearerρ is by the given bound, the greaterν has to be. If we fixρ (say
ρ = ⌊(199/200)γ(q, α)ν⌋) we have to restrictν to be greater than a suitableν0(q, α), such that we can
really chooseη as an integer and such thatρ > 2. It remains to show, that the following conditions are
fulfilled:

(6.8) : 16 η 6 ν − 2ρ − 1,

(6.11) :ρq < 2η − ν − 2ρ,

(6.20) :η + 2ρq 6 ν + 2ρ,

(6.22) : 2η > ν + ρq + 6ρ + 1.

By our choice, (6.8) is trivially satisfied. To show (6.20), we only have to note that

η + 2ρq 6 ν − 14
logq
log 2

ρ + 6
logq
log 2

ρ,

since 4
c′q(α) + 6 logq

log 2 > 14logq
log 2 by (6.23). Ifν > 27, we have (using the given bounds ofη andρ very crude)

ν + ρq + 6ρ + 1 6 ν + 3
logq
log 2

ρ + 6ρ + 1 6 ν

(

1+ 3
logq
log 2

log 2
27 logq

+
6
27
+

1
27

)

= ν
37
27
6 2

ν

1+ 1
8

< 2η,

which proves (6.22) and (6.11). Hence we have shown Proposition 6.1. �

Proof of Theorem 6.1

The proof of Theorem 6.1 is a direct consequence of Proposition 6.1. Letλ be that integer, such that
qλ−1 < x 6 qλ. Moreover, consider only numbersx, such thatλ > ν0, whereν0 is defined in Proposi-
tion 6.1. Then we can write

∑

16n6x

e
(

f (n2)
)

=

∑

16n6qν0−1

e
(

f (n2)
)

+

∑

ν06ν<λ

∑

qν−1<n6qν

e
(

f (n2)
)

+

∑

qλ−1<n<x

e
(

f (n2)
)

≪q

∑

ν06ν6λ

ν3ω(q)/2q(1−σ′q(α))ν ≪q λ
3ω(q)/2q(1−σ′q(α))λ.
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Sinceλ 6 ⌊log x/ logq+ 1⌋, we finally obtain
∑

16n6x

e
(

f (n2)
)

≪q (log x)3ω(q)/2x(1−σ′q(α)) ≪q,α x(1−σq(α)),

whereσq(α) = 198/199σ′q(α). Thus, the proof of Theorem 6.1 is finished. �

Remark. It follows from the proof of Theorem 6.1, that we can choose

σq(α) =
99
100

log 2

2
(

27 logq+ (8 logq+ log 2)
(

4
c′q(α) + 6 logq

log 2

)) ,

wherec′q(α) = 2π2

15 logq

(

1− 2
q+1

)

||(q− 1)α||2. In comparison to this result, Mauduit and Rivat obtained

σq(α) =
99
100

log 2

2
(

25 logq+ (8 logq+ log 2)
(

4
c′′q (α) + 3 logq

log 2

)) ,

wherec′′q (α) = min
(

π2

6 logq

(

1− 2
q+1

)

||(q− 1)α||2, log 2
2 logq

)

. Note, that 2π2

12 logq

(

1− 2
q+1

)

||(q − 1)α||2 > log 2
2 logq

only in the case that||(q− 1)α|| is near 1/2.



Appendix A

Number Theoretical Fundamentals

In this chapter we want to introduce the notion of arithmeticfunctions. We define a couple of impor-
tant representatives and state some fundamental results. For further information and definitions see for
example [26, 23].

Definition A.1 (Arithmetic function) A complex valued function a defined onN is called an arithmetic
function.

Arithmetic functions play an important role in analytic number theory and can be also understood as
sequences of complex numbers. To every function corresponds a (formal) generating series

A(s) =
∞
∑

n=1

a(n)
ns .

It is called aDirichlet seriesand one of the most famous representatives isRiemann’s zeta-function

ζ(s) =
∞
∑

n=1

1
ns.

It is absolutely convergent forRe(s) > 1 and the corresponding arithmetic function isJ(n) = 1 for n > 1.
It was Euler, who first considered this series. He showed that

ζ(s) =
∏

p∈P

1

1− 1
ps

for some reals> 1 and deduced from that, that there have to be infinitely many primes. Riemann was the
first who studied the zeta-function also for complex values.His ideas brought a fulminant development
in analytic number theory.

The arithmetic functions form an integral domain. Therefore we define the following operations.

Definition A.2 Let a and b two arithmetic functions. Then we define the sum

c(n) = (a+ b)(n) ≔ a(n) + b(n),

and the Dirichlet convolution

c′(n) = (a ∗ b)(n) ≔
∑

d|n
a(d)b

(n
d

)

.
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The corresponding (formal) Dirichlet series areC(n) = A(n) + B(n) andC′(n) = A(n) · B(n).

Now we can state the following lemma, which can be readily verified.

Lemma A.1 The arithmetic functions, equipped with these operations,form an integral domain. The
additive identity is the function H such that H(n) = 0 for any integer n> 1. The multiplicative identity is
the function I with I(1) = 1 and I(n) = 0 for any n> 1. The units are those arithmetic functions f , such
that f(1) , 0.

From particular interest are such functions, that satisfy multiplicative properties.

Definition A.3 An arithmetic function a is multiplicative, if

a(mn) = a(m)a(n) for m and n relatively prime. (A.1)

It is completely multiplicative, if (A.1) holds for all m andn.

Some important arithmetic functions. Now we introduce some arithmetic functions, which are essen-
tial in the theory of numbers.

Euler’s φ - function. It occurs in different fields of number theory, is multiplicative and is defined in the
following way:

ϕ(n) = #{k|1 6 k 6 n, (k, n) = 1}.

The number of divisors ofn. τ(n) =
∑

d|n 1 is the number of divisors ofn. If we write n = pa1
1 pa2

2 · · · p
ak
k ,

then the divisors ofn are of the formpb1
1 pb2

2 · · · p
bk
k where 06 b1 6 a1, . . .0 6 bk 6 ak. Hence, we can

also write

τ(n) =
∏

p|n
(νp(n) + 1), (A.2)

whereνp(n) is the integerr, such thatpr | n but pr+1 ∤ n. This calculation also shows, thatτ(.) is
multiplicative. Furthermore, we can bound the number of divisors in the following way.

Lemma A.2 Letδ > 0. Then we have

τ(n) = Oδ(n
δ).

Proof. By (A.2) we can write

τ(n)
nδ
=

∏

p|n

(

νp(n) + 1

pνp(n)δ

)

.

If p > 21/δ, we have
νp(n)+1

pνp(n)δ 6
νp(n)+1

2νp(n) 6 1. Contrary, if p 6 21/δ, we have to look a little bit more

carefully. Sinceνp(n)δ log 26 exp(νp(n)δ log 2)= 2νp(n)δ
6 pνp(n)δ, we obtain

νp(n) + 1

pνp(n)δ
6 1+

νp(n)

pνp(n)δ
6 1+

1
δ log 2

6 exp

(

1
δ log 2

)

.
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Thus, we get

τ(n)
nδ
6

∏

p621/δ

exp

(

1
δ log 2

)

< exp

(

21/δ

δ log 2

)

= Oδ(1).

�

von Mangoldt function Λ(n). Especially for questions concerning primes and sums over primes, the
von Mangoldt function is very helpful. It is defined as follows:

Λ(n) =

{

log p if n = pk for some primep and integerk
0 otherwise.

The Möbius function µ(n). Following function is named after the German mathematicianAugust Fer-
dinand Möbius,

µ(n) =



















1 if n = 1
(−1)k if n is a product ofk distinct primes
0 otherwise.

Lemma A.3 The Möbius function has the property that for z∈ N
∑

dz|n
µ(d) =

{

1 if n is not divisible by a z-th power of a prime
0 otherwise.

Proof. This identity is trivial if n is not divisible by az-th power of a prime. In this case, there is only
one summand (d = 1). If n > 1, we can writen = pα1

1 · · · p
αk
k pαk+1

k+1 · · · p
αm
m wherep1, . . . , pm are pairwise

distinct primes in such an order, thatα1 · · ·αk > zandαk+1 · · ·αm < z. If n is divisible by az-th power of
a prime, thenk > 1. Then

∑

dz|n
µ(d) = 1+

∑

16i6k

µ(pi) +
∑

16i< j6k

µ(pi p j) + · · · + µ(p1 · · · pk)

= 1− k+

(

k
2

)

+ · · · + (−1)k = (1− 1)k = 0,

and hence, we have the stated result. �

Remark. If z = 1, then we have the more common assertion
∑

d|n µ(d) = 1 if n = 1 and
∑

dz|n µ(d) = 0
otherwise. Using the notion of the Dirichlet convolution, this is equivalent toµ ∗ J = I , whereJ is
the arithmetic function corresponding to the zeta-function (J(1) = 1 for all n > 1) and I denotes the
multiplicative inverse in the ring of arithmetic functions. Hence we have for the corresponding Dirichlet
series

∞
∑

n=1

µ(n)
ns ·

∞
∑

n=1

1
ns = 1,

whereRe(s) > 1. In addition, we can show the following lemma.
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Lemma A.4 If s = σ + it is a complex number with real partσ > 1 and imaginary part t, we have

1
ζ(s)
=

∞
∑

n=1

µ(n)
ns and − ζ

′(s)
ζ(s)

=

∞
∑

n=1

Λ(n)
ns .

Proof. Sinceζ(s) =
∏

p∈P
(

1− 1
ps

)−1
(the infinite product is absolutely convergent forσ > 1), we get

1
ζ(s)
=

∏

p∈P

(

1− 1
ps

)

.

Carrying out the multiplication (first only for all primesp 6 P and then going withP→ ∞), we exactly
get the desired Dirichlet series for 1/ζ(s). We also see from Euler’s representation ofζ(s), that

logζ(s) =
∑

p∈P
log

(

1
1− p−s

)

.

Differentiating with respect tos, we obtain

−ζ
′(s)
ζ(s)

=

∑

p∈P

d
ds

log

(

1
1− p−s

)

=

∑

p∈P

log p
ps − 1

.

The differentiation is legitimate because the derived series is uniformly convergent forσ > 1 + δ > 1.
Moreover, we can write

−ζ
′(s)
ζ(s)

=

∑

p∈P
log p

∞
∑

m=1

p−ms
=

∑

p,m

p−mslog p =
∞
∑

n=1

Λ(n)
ns ,

where the last equality follows from the definition ofΛ(n). �

Prime counting function. π(x) =
∑

p6x 1 counts all primes, which are less or equal tox. The function
π(x; k, a) =

∑

p6x
p≡a modk

1 counts all primes, which are less or equal tox and are congruenta modulok.

Now we state without proof two very important and famous theorems. The first one is thePrime Number
Theoremand the second one is thePrime Number Theorem for Arithmetic Progressions. For proofs of
the theorems, see [26].

Theorem A.1 (Prime Number Theorem) There exists a positive constant C, such that for x> 3

π(x) =
∫ x

2

du
logu

+O
(

xexp
(

−C(log x)3/5(log logx)−1/5
))

.

Theorem A.2 (Page-Siegel-Walfisz)Let a and k be integers satisfying(a, k) = 1 and A> 0. Then we
have for x> 2

π(x; k, a) =
1
ϕ(k)

∫ x

2

du
logu

+OA

(

x
(log x)A

)

.

Remark. Since
∫ x

2 (logu)−1 du= x/ log x+ o(x/ log x), one can derive from the previous Theorems

π(x) =
x

log x
+ o(

x
log x

), and π(x; k, a) =
1
ϕ(k)

x
log x

+ o(
x

log x
).

Next, we state and prove some fundamental summation formulas.
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Lemma A.5 (Summation by parts) Let (an)n∈N be a sequence of complex numbers andλ1 < λ2 <

· · · < λn→ ∞ be real numbers. Suppose that the complex-valued function gis continuous and piecewise
continuously differentiable on the interval[λ1, x]. Then we have

∑

λn6x

ang(λn) = g(x)
∑

λn6x

an −
∫ x

λ1

















∑

λn<u

an

















g′(u) du.

Proof. Let j be the appropriate index, such thatλ j 6 x < λ j+1. Then

−
∫ x

λ1

∑

λn6u

ang′(u) du= −
j−1
∑

i=1

∫ λi+1

λi

∑

λn6u

ang′(u) du−
∫ x

λ j

∑

λn6u

ang′(u) du

=

j−1
∑

i=1

















∑

λν6λi

aν

















(g(λi ) − g(λi+1)) +



















∑

λν6λ j

aν



















(g(λ j ) − g(x))

= −g(x)
∑

λn6x

an +

j
∑

i=2



















∑

λν6λi

aν −
∑

λν6λi−1

aν



















g(λi ) + a1g(λ1),

and the assertion follows. �

Lemma A.6 Let a and b be integers. If g is a monotone not increasing function from the interval[a, b]
into the real numbers, then we have

∫ b

a
g(u) du6

∑

a6n<b

g(n) and
∑

a<n6b

g(n) 6
∫ b

a
g(u) du.

Proof. Because of the additivity of the integral and the monotony ofg, we have

∫ b

a
g(u) du=

b−1
∑

n=a

∫ n+1

n
g(u) du 6

b−1
∑

n=a

∫ n+1

n
g(n) du=

∑

a6n<b

g(n).

Analogously, one can prove the second statement. �

Lemma A.7 Let a and b be integers and f a continuous, continuous differentiable and convex function
on [a− 1/2, b+ 1/2]. Then we have

b
∑

n=a

f (n) 6
∫ b+ 1

2

a− 1
2

f (t) dt.

Proof. Using the trapezoid method and the convexity off , we have

f (n) =
∫ n+ 1

2

n− 1
2

f (n) + f ′(n)(n− t) dt 6
∫ n+ 1

2

n− 1
2

f (t) dt.

Summing overn, we obtain

b
∑

n=a

f (n) 6
b

∑

n=a

∫ n+ 1
2

n− 1
2

f (t) dt =
∫ b+ 1

2

a− 1
2

f (t) dt.

�
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Next we state a generalization of Poisson’s summation formula. A proof can be found for example
in [46].

Lemma A.8 Let f(x) be of bounded variation for|x| 6 M and let f(x) be twice differentiable for|x| > M.
Assume that

∫ ∞
−∞ f (x) dx,

∫ ∞
M
| f ′′(x)|dx and

∫ −M

−∞ | f
′′(x)|dx exist. If we put f∗(x) = 1

2( f (x+0)+ f (x−0)),
then

∑∞
n=−∞ f ∗(n) is convergent and

∞
∑

n=−∞
f ∗(n) =

∞
∑

k=−∞

∫ ∞

−∞
f (x)e(−kx) dx.

A lot of problems in analytic number theory dealing with prime numbers, need estimates of sums of the
form

∑

p6x f (p). In many cases (for example the prime number theorem, wheref (n) = 1), it is cleverer to
study the sum

∑

n6xΛ(n) f (n) since one can transmit results from this sum to the other oneby summation
by parts. This emphasizes the importance of von Mangoldt’sΛ-function. In particular, we can show the
following lemma as a consequence of the prime number theorem.

Lemma A.9 ([33]) Let g be an arithmetic function such that|g(n)| 6 1 for any integer n. Then
∣

∣

∣

∣

∣

∣

∣

∑

p6x

g(p)

∣

∣

∣

∣

∣

∣

∣

6
2

log x
max
t6x

∣

∣

∣

∣

∣

∣

∣

∑

n6t

Λ(n)g(n)

∣

∣

∣

∣

∣

∣

∣

+O(
√

x).

Proof. Using Lemma A.5, we can write

∑

p6x

g(p) =
1

log x

∑

p6x

(log p)g(p) +
∫ x

2

















∑

p6t

(log p)g(p)

















dt

t log2 t
.

Note, that by the Prime Number Theorem,
∑

p6t log p 6
∑

p6t log t = O(t). Hence, slicing the integral at√
x, we get
∣

∣

∣

∣

∣

∣

∣

∑

p6x

g(p)

∣

∣

∣

∣

∣

∣

∣

6

(

1
log x

+

∫ x

√
x

dt

t log2 t

)

max√
x<t6x

∣

∣

∣

∣

∣

∣

∣

∑

p6t

(log p)g(p)

∣

∣

∣

∣

∣

∣

∣

+O(
√

x)

=
2

log x
max√
x<t6x

∣

∣

∣

∣

∣

∣

∣

∑

p6t

(log p)g(p)

∣

∣

∣

∣

∣

∣

∣

+O(
√

x).

But, using the Prime Number Theorem again, we obtain

∣

∣

∣

∣

∣

∣

∣

∑

n6t

Λ(n)g(n) −
∑

p6t

(log p)g(p)

∣

∣

∣

∣

∣

∣

∣

6

∑

p6
√

x

log p
∑

26a6
⌊

log x
log p

⌋

1 6 π(
√

x) log x = O(
√

x).

This proves the desired result. �

Next we state and prove Weyl’s criterion (see [54]). Therefore we recall, that a sequence (xn)n∈N of real
numbers is uniformly distributed modulo 1, if for every paira, b of real numbers with 06 a < b 6 1 we
have

lim
N→∞

# {xn : 1 6 n 6 N, xn ∈ [a, b)}
N

= b− a.
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Theorem A.3 (Weyl Criterion) The sequence(xn)n∈N is uniformly distributed modulo1, if and only if
for all integers h, 0

N
∑

n=1

e(hxn) = o(N). (A.3)

Proof. We use the following common notation for the fractional partof a real numberx: {x} = x− ⌊x⌋.
Let us first note, that if1[a,b) is the characteristic function of the interval [a, b), we can write (1.1) in the
form

lim
N→∞

1
N

N
∑

n=1

1[a,b)({xn}) =
∫ 1

0
1[a,b)(x) dx. (A.4)

The first step to prove the theorem is to show that (xn)n∈N is uniformly distributed modulo 1 if and only
if for every real-valued continuous functionf defined on the unit interval [0, 1] we have

lim
N→∞

1
N

N
∑

n=1

f ({xn}) =
∫ 1

0
f (x) dx. (A.5)

Let (xn)n∈N be uniformly distributed modulo 1, and letf (x) =
∑k−1

i=0 di1[ai ,ai+1)(x) be a step function on
the unit interval, where 0= a0 < a1 < · · · < ak = 1. It follows directly from (A.4) that for such a
function the desired equality holds. Since the step functions are dense in the continuous functions, (A.5)
holds also for all real-valued continuous functions. Conversely, let a sequence (xn)n∈N be given, and
suppose that (A.5) holds for every continuous functionf . We have to show that (A.5) holds also for a
characteristic function of a half-open interval. But this is by density of step functions again clear.
We can now easily extend our claim to a complex-valued continuous functionf onR with period 1. The
same argumentation as above for the real and imaginary part of f yields (A.5), but where the fractional
part of x is replaced byx (periodicity of f). Hence, the following claim is true: The sequence (xn)n∈N is
uniformly distributed modulo 1, if and only if for every complex-valued continuous functionf onRwith
period 1 we have

lim
N→∞

1
N

N
∑

n=1

f (xn) =
∫ 1

0
f (x) dx. (A.6)

Now we are in the situation to prove the theorem. If (xn)n∈N is uniformly distributed modulo 1, we

get (A.3) using (A.6) and the fact, that
∫ 1

0
e(hx) dx = 0 if h , 0. Vice versa, if (A.3) holds for all integers

h , 0, we have to show that (A.6) is true for all complex-valued continuous functions with period 1. But
since the functionsx 7→ e(xh), h ∈ Z are dense in the complex-valued continuous functions onR with
period 1, there exists a trigonometric polynomialg(x) such that for everyε > 0

sup
06x61

| f (x) − g(x)| 6 ε.

Hence we have
∣

∣

∣

∣

∣

∣

∣

∫ 1

0
f (x) dx− 1

N

N
∑

n=1

f (xn)

∣

∣

∣

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

∣

∫ 1

0
( f (x) − g(x)) dx

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∫ 1

0
g(x) dx− 1

N

N
∑

n=1

g(xn)

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

1
N

N
∑

n=1

(g(xn) − f (xn))

∣

∣

∣

∣

∣

∣

∣

.

Using again
∫ 1
0 e(hx) dx = 0 if h , 0 and

∫ 1
0 e(hx) dx = 1 if h = 0, we readily derive the desired result.

�
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Finally, we prove the Chinese remainder theorem (see for example [48, Theorem 5.4.3]).

Theorem A.4 (Chinese remainder theorem)Let m1, . . . ,ml and a1, . . . , al be integers. The system of
simultaneous congruences
n ≡ ai modmi, 1 6 i 6 l has an integer solution, if and only if

ai ≡ a j mod (di , d j) for 1 6 i, j 6 l. (A.7)

All solutions n are then congruentlcm (d1, . . . , dl).

Proof. First we observe that there cannot be a solution if (A.7) is not satisfied. Indeed, ifn ≡ ai modmi

andn ≡ a j modmj, than it follows thatai ≡ n ≡ a j mod (di , d j).

Let us assume now, that the integersmi , 1 6 i 6 l are pairwise coprime and (A.7) is satisfied. If we set
M j := 1

mj

∏l
i=1 mi, then we have (M j ,mj) = 1. But this implies that there exists an integerb j , such that

b j M j ≡ 1 modmj . Thus, we obtain

n :=
l

∑

i=1

aibi Mi ≡ aibi Mi ≡ ai modmi

for eachi.

If n1 andn2 are two solutions, then we haven1 − n2 ≡ 0 modmj for 1 6 j 6 l. Since the integersmj are
pairwise coprime, we obtainn1 ≡ n2 modm1 · · ·ml .

Now we consider the general case. Ifm= pα1
1 · · · p

αk
k , then the previous result shows, that the congruence

n ≡ a modm is equivalent to the system of congruencesn ≡ a mod pαi
i . Using this observation, we split

the system of congruencesn ≡ ai modmi, 1 6 i 6 l up into a bigger system. If (di , d j) , 1, then there
are some congruences trivially satisfied (by (A.7)). Deleting these congruences yields a new system
of congruences where the moduli are pairwise coprime. The previous result assures that there exists a
solution which is unique modulo lcm (d1, . . . , dl). �
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