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Preface

The main goal of my diploma thesis is the treatment of Gel®sdm of digits problems as formulated
in his papelSur les nombres qui ont des propriétés additives et nlickifives donnéeim 1968. Gelfond
showed that the sequencg(())na, Wheresy(n) denotes the sum of digits ofin baseq, is well dis-
tributed in arithmetic progressions. At the end of the papewever, he raises the question as to whether
this and related statements are still true for special spEs®es ofg,(n))new.

Though Bésineau provided an asymptotic result of Gel®fidst problem concerning the joint distribu-
tion of the sum of digits function in 1972, it still took motteen thirty years (1999) until Dong-Hyun Kim
completely solved it. He proved that under certain cond&i#{1 < n < N : s4(n) = & modm;, 1 <

i <1} = N/(myg---m) + O(N¥), wherea > 0. In particular, he derived an even stronger result by
replacing the sum of digits functions witiradditive functions. In Chapter 4, | refine Kim’s proof for
the sum of digits function, which allows me to sharpen hisilte$selfond’s second problem regards the
sequencesy(p))per- Until recently it was not even known whether there are itdigimany members
of this sequence in special arithmetic progressions. Tgirdbe achievements of Mauduit and Rivat we
now know that the sequence is actually well distributed itharetic progressions. This result and the
developed proof method will surely have a major impact onatbheks of number theorists, although it is
not published yet (to appear in Annals of Mathematics). istie solution of Gelfond’s second problem
in Chapter 5, where | simplify Mauduit's and Rivat’s proof bgapting some ideas Drmota, Mauduit,
Rivat and Stoll used in other papers. The third and last prob$ not entirely proved yet, but here again
Mauduit and Rivat showed that the sequemaer(z))neN is well distributed in arithmetic progressions (to
appear in Acta Mathematica). This result is proved in Chafite

Before Gelfond’s problems will be dealt with in detail, atbiscal survey of the sum of digits function
is provided in Chapter 1. This chapter also illuminates @walfs questions as already mentioned above
and treats his results on the distributionsgfn). Furthermore, some of his statements will be improved.
Chapter 2 is dedicated to exponential sums, which are ofcpat significance in analytic number
theory. Van der Corput’s inequality, for instance, and apontant result concerning quadratic Gauss
sums are proved. Chapter 3 finally presents an extensivenies of trigonometric products, which
turns out to be the main technical point in solving Gelfongfeblems. At the end of this diploma
thesis, a short summary of fundamental definitions andtesulnalytic number theory is enclosed (see
Appendix A).

Johannes Morgenbesser
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Chapter 1

Gelfond’s Problems

Throughout this workN, Z, Q, R andC denote the sets of natural numbers, integers, rational atsnb
real numbers and complex numbersx i$ a positive real number, we mark by Iag¢he natural logarithm
of x. If mandn are integers, thenr(, n) denotes the greatest common divisor and tanmj the lowest
common multiple omandn. g is, unless otherwise stated, an intege2 andp a prime number. For the
set of all primes, we use the common abbreviatforFurthermorey’ .y always means, that we only
sum over primes less than or equaNoWe write for a (real or complex valued) functidn

f(x) =0(g(¥) or f(x) <gx),

if there exists a consta@ > 0, such thatf(x)| < C|g(x)|. If the constant depends on a set of variables,
say for examplem andq, we write f(X) = Omqg(9(X)) or f(X) <mgq 9(X), respectively. The expression
f(X) = o(g(x)), X = o0 means, that lin,., f(X)/g(X) = 0. If xis a real number, we hav&| = maxn €
Z:n< X, [X] =min{ne Z: n > x}and||X|| = min,z|x — n| (distance fromx to the nearest integer).
Furthermore, we use the well-established abbreviati@h-eexp(2rix) for a real numbex.

1.1 The Sum of Digits Function

It is a well-known fact, that every non-negative integer banvritten uniquely in basgasn = Yo o,
where the integens, satisfy 0< ng < - 1 andny # 0 for only finitely many. The sum of digits function
in baseq is defined by

&(n) = Z Nk.

k=0

In this section we want to shed light on the historical baokgd of the sum of digits function. For
further information see [1, Chapter 3] and [31].

It seems that the first mathematician who studied the sumgitsdiunction was Prouhet (1851). He
gives in [44] a solution to the so called Prouhet-Tarry-Hspmblem (see [31]), which is the problem of
finding two distinct sets of integefs;, ..., an} and{Bs, ..., Bn} such that the sum of all theth powers
of the elements of each set is the same, wheasebounded by some integkg. Prouhet’s solution for
n = g andk < r consists in dividing the integers depending on the valueuitog of the sum of their
digits in base. If g = 2, the following result gives an answer to the Prouhet-Fa&sgott problem. For
any positive integerk andr with k < r, we have

Z nk = Z nk.

0<n<2' o<n<2'
$2(n)=0 mod 2 $(n)=1 mod 2
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The next encounter with the sum of digits function was at #giftming of the twentieth century. In 1906
and 1912, the Norwegian mathematician Axel Thue (see [5R @ked among other questions whether
it is possible to find an infinite binary sequence that comstaia cube, i.e. a sequence with no three
consecutive identical blocks. Indeed, he could show thastdguence = (sx(n) mod 2}« solves the
problem. This sequence is now known as the Thue-Morse segienProuhet-Thue-Morse sequence),
and it starts with following members

011010011001011010010110.

The Thue-Morse sequence arises in marffedent fields of mathematics and physics. For instance,
Morse rediscovered this sequence in 1921 to show a resuilffarehtial geometry (which is the reason
why it is also named after him). In particular, he proved (883 and [31]) that on a surface of negative
curvature, having at least twoftrent normal segments, there exists a set of geodesica¢haicarrrent
without being periodic (which has the power of the continju@oding the geodesics by infinite words
on the alphabefa, b} according to which boundary of the surface they meet, heeattio the problem

of constructing a non-periodic infinite word such that anly swrd of it occurs infinitely often and with
bounded gaps. By doing so, he introduced the same sequefidtaiasand showed that it solves the
problem.

Several other mathematicians rediscovered the Thue-Msggaence after its first appearance. For a
short summary and further references see [1, Notes on GhHpté/e only want to mention one other
occurrence. In 1929, the Dutch chess grandmaster and waaltigion (1935-1937) Max (Machgielis)
Euwe independently discovered the Thue-Morse sequencemutied it to a problem in chess [16]. The
so-called German rule (which is slightlyftérent to a current rule) states that a draw occurs if the same
sequence of moves occurs three times in succession. Euwedpnasing the cube-free property of the
sequences(n) mod 2)ey, that under such a rule infinite games of chess are possible.

Mabhler is the first mathematician who used the sum of digitstion in the context of harmonic analysis,
which is deeply connected to the topics in this work (see B). By a theorem of Fréchet, any

monotone functionf can be decomposed ds= f; + f, + f3, wheref; is a monotone step-function,

f, a monotone function which is the integral of its derivativeld; a monotone continuous function

which has almost everywhere a derivative zero. In [55] Wiendended the spectrum theory to the
harmonic analysis of functions defined for a denumerabl®fsatguments (that he called arrays). As
an application of some theorems proved in [55], Mahler gimd80] a construction based on the array
(-1)%™ for which f3 # 0 in the Fréchet decomposition. The crucial point is théofeing property.

Theorem 1.1 For any non-negative integer k the sequence

[ % Z(_l)sQ(m(_l)sz(mk)]
N>1

n<N

converges and its limit is non-zero for infinitely many k.

This work has paved the way for the spectral analysis of gubehal dynamical systems. L&tdenote
the shift operatoil (u,) = uny1 ONn the space of all sequences )y With values in{—1, 1} and endow
the spacél-, 1} with the metricd((Un)ner, (Vn)nery) = 2~ MNEN:ta® Wl f the two sequences areffirent
andd((Un)new, (Vn)nen) = O otherwise. This induces a substitutional dynamical systdnich is called
dynamical system of Thue-Morse (see for example [45]). bt, fthe convergence of the considered
sequence in Theorem 1.1 can be understood as a consequéheainique ergodicity of this dynamical
system.
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In the middle of the twentieth century, first results abow summatory function of the sum of digits
function were shown. In 1947, Bellman and Shapiro [2] protredfollowing relation (in basq = 2),

3 ) = XI09X . 5(xloglogx).
o2 2log 2
<N<X

S. C. Tang [50] extended this result to the general case vehisrarbitrary and improved the error term

_9-1
Z &(n) = 2|quxlogx+ o).

In 1975, Delange [11] showed the interesting result, thatsitmmatory function of the sum of digits
function can be written in the form,

~q-1 log x
Z S(n) = 2|quxlogx+ XF(_Iogq)’

O<n<x

whereF : R — R is periodic of period 1, continuous and nowherfatientiable.

Next, we want to address two related topics to the sum ofdfgitction, namely, normal numbers and
the uniform distribution modulo 1.

Normal Numbers

The notion of normal numbers was introduced&mile Borel in his paper [4] (1909). See [29, Chapter
1.8] for a short introduction and exact definitions. Follogithe introduction in Harold Davenport’s and
Paul Erdds’ paper “Note on normal decimals” [10], a real bemy, expressed as a decimal (in base
), is said to be normal in basgif every combination of digits occurs in the decimal with tw@per
frequency. Ifaja, . . . ax is any combination ok digits, andN(t) is the number of times this combination
occurs among the firstdigits, the condition is that

im NE 1

It was also Borel, who showed in [4] that almost all real nursbe the sense of Lebesgue measure are
normal in base). D.G. Champernowne [5] proved in 1933 that the number

0,1234567891011121314151617

is normal in base 10 (which is now known as Champernowne’soeunCopeland and Erdds [7] showed
in 1952 that also the number

0,23571113171923293137414347,

which digits are formed by the concatenation of all primesasmal in base 10 (Copeland-Erdés con-
stant). From these facts, one can derive results on the stonyrianction of the sum of digits function
(see next section). However, it is not known whether classidthmetical constants such ase or V2
are normal numbers.
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Uniform Distribution modulo 1

Definition 1.1 The sequencé,)nen Of real numbers is said to be uniformly distributed moduld figr
every pair ab of real numbers witld < a < b < 1 we have

. #{X:1<n< N, X, € [ab)}
lim =
N—oco N

b-a (1.1)

This common definition of the uniform distribution modulo hsvgiven by Weyl in his famous paper
“Uber die Gleichverteilung von Zahlen mod. Eins.” [54], wh&e also introduced a convenient criterion
(now known as Weyl's criterion) to check whether a sequeaamiformly distributed modulo 1 or not.
In fact, it sufices to consider the exponential SLEﬁ'zl e(hx,) for every integeth # O (for the exact
statement and a proof see Theorem A.3). We will see in Ch&ptdrat Weyl's paper also provides a
practicable method to treat such sums. Nevertheless itt&eyl’'s paper [54] which was the first work
on this topic. Some special sequences have already beaadstatlier, for example, Bohl, Sierpinski
and Weyl proved with elementary methods independently 0918910 that the sequenaen,cy is uni-
formly distributed modulo 1 for irrationat. This result also follows immediately from Weyl’s critenio
The distribution of this sequence has been studied copi@ml a lot of subsequences have been con-
sidered. For instance, Vindogradov showed (see [53]) tiaséquence of prime numbers (arranged in
ascending order) multiplied by a irrational number is umifty distributed modulo 1, too.

There exists an interesting connection between normal etsrénd the uniform distribution modulo 1.
A real numbew is normal in base, if and only if the sequence({a)ney is uniformly distributed modulo
1 (see [29, Theorem 8.1]). For further information regagdims topic see [29].

1.2 The Distribution of the Sum of Digits Function in ResidueClasses

The first work dealing with the distribution of the sum of digfunction in residue classes goes back to
Nathan Jacob Fine. He answered in [17] Stanislav Marcin Wlgurestion whether the numbermk x
for which sip(n) = n = 0 mod 13 is asymptoticallx/13. Indeed, he could even show that

.1 o 3 B
leo;(#{n<x.n=amodp, sq(n)=cmodp}_ﬁ,

wherea andc are arbitrary integers anglis a prime satisfyingp 1 (q — 1).

Nevertheless, it was the Russian mathematician Alexandigo@ich Gelfond (1906 — 1968), who could
show a more general version of this assertion. In his p&uerles nombres qui ont des propriétés
additives et multiplicatives donnégal], which was published by Acta Arithmetica in 1968, heyad
the following theorem.

Theorem 1.2 (Gelfond, 1968 [21])Let g m > 1 and 1, a be integers an¢im, q — 1) = 1, then we have
N
#{1<n<N:n=Imodr, sq(n)zamodm}:ﬁ+oq(N*), (1.2)

whered = &2 log 72622 < 1is a positive constant depending only on g and m.

Since his work is of particularly interest in the study of thstribution of the sum of digits function, we
reproduce his proof in Section 1.3. Moreover, we show in $lkeation some further results which can be
obtained from Gelfond’s theorem, and sharpen his resula@rcase = 1 (we obtain a better constaimt
and do not need the additional condition, ¢ — 1) = 1, see also [28]). We want to note at this point, that
in the case thah | g — 1 the statement is trivial. This follows from the followingsy observation.
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Lemma 1.1 Let q be an integer 2. Then we have for all & N and for all d with d| g—1

(M) =n modd.

Proof. Writing n in its unique base-q expansion and using the factghat 1 modq - 1, we have

s = > =) mod @-1).

k=0 k>0

Since the last term isandd | g - 1, we are done. [ ]

A crucial part in Gelfond’s proof is the estimation of expahal sums. At least since Vinogradov’s
work on the method of trigopnometrical sums in the theory ahbars (see [53]), exponential sums are
intrinsically tied to analytic number theory. One plaingea for it is the following simple but crucial
observation. Let us assume that we have positive integesisd n such thatm | n. Then the sum
Zh”:ol e(%h) is trivially equal tom. If, on the other handndoes not dividen, then the sum is a geometric
series and is equal to zero. For example, this allows us tet@unumbers) between 1 andl, such that
the sum of digits ofi in baseq is congruenta modulom. Since this result is of particular importance in
our work, we state it as a lemma.

Lemma 1.2 For any positive integer m and n we have
1 m-1 n .
—Ze(—k): 1 |fm|n_,
m&dAm 0 otherwise

At the end of his paper, Gelfond stated three problems whigmed to be very interesting for him.
Indeed, many mathematicians worked and still work on hisleros.

Problem 1 - The joint distribution of the sum of digits function in residue classes.

First he conjectured that @y, gz, my andnp are positive integers 2 satisfying @1, q2) = 1, (Mg, g1 —
1)=1and (m, g2 — 1) = 1, then for any integera;, a, one has

#{1<N<N:s;(n) =a modmy andsg,(n) = ap modmy} =

N
+O(NY),
mymy
with A < 1.

In 1972, Bésineau made a first, very important contributmithis problem by showing the following
asymptotic result (see [3]).

Theorem 1.3 Let,...,q and m, ..., m be positive integers 2 satisfying the conditiongy, g;) = 1
fori # jand(mj,q; — 1) = 1for 1 < j <I. Then we have
N
#ll<nsN:g(M=a modmjforl< j<l}~——— (N —> ).
{ qu() j j )<} Mo m ( )

He obtained this result as a consequence of a general themreso-called pseudo-random arithmetic
functions. But it took almost another 20 years until DongdH\Kim solved Gelfond’s conjecture. In
particular, he showed a more general result, which usesatiennof completelyg-additive functions. A
function f : N — C is calledcompletely g-additivéf f(0) = 0 andf(ad‘ + b) = f(a) + f(b) for any
integersa > 1,k > 1, and 0< b < g¥. Such functions were introduced independently by Bellmaoh a
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Shapiro [2] (1948) and Gelfond [21] (1968) and further staidby Delange, Bésineau, Coquet, Katai and
others.

In order to be able to state Kim’s result, we have to define titen of an admissible tuple of integers.
Letq = (dz,...,q) andm = (my,...,m) be tuples of integers satisfyirgy, m; > 2 and ¢, q;) = 1 for
I # j. For eachj, let f; be a completely;-additive function with integer values. Furthermore, wérte
F; = f;(1) andd; = gedim;, (g; — 1)Fj, fj(r) —=rF; (2 < r < q; = 1)} and writef = (f1,..., ). Anl-
tupleaof integers is calle@dmissible with respect to the I-tuplgsn andf if the system of congruences
Fijn=a; modd;, 1< j <I|hasasolution. Wewritél = {a: 0< a; < mj—1 (1< j <), aadmissiblg.

Theorem 1.4 (Kim [28]) Letq, m andf be given as above. For any |-tupdeof integers and all positive
integers N we have

1-6Y i ai ioai
#{0<n<N:fi(n=amodm, 1<j<l}= { g‘/w + Ogi(N"°) 'cf)tﬁésrwagg“ss'mev

wheres = 1/(120%¢3?) with g = maxXgj : 1< j <I}andm=maxm; : 1< j<I}.

One can easily see, that this really solves Gelfond’s fireblem and generalizes Bésineau’s result.
If we take for f; the sum of digits functiorsy; (which is one of the most famous representatives of
completelyqgj-additive functions), and if we additionally demand;(q; — 1) = 1 for all j, then we have

d =(1,...,1) and hence evenytuple a is admissible. Thus, we hay@l| = mym, - - - my, which proves
Gelfond’s conjecturel (= 2). In Chapter 4, we will prove Kim'’s result in the special ea$ sum of digits
functions.

Problem 2 - The distribution of the sum of digits function of primes.

Gelfond remarked that it would be interesting to find the namtif primesp less than or equal td,
such thatsy(p) = amodm.

Prime numbers fascinate mathematicians within living memand the research into particulate se-
quences of prime numbers is a classical problem in the thebnumbers. One of the most famous
theorems in number theory is the prime number theorem. GAF€2) and Legendre (1798) conjec-
tured, that lim_., 7(X)(x/logx)~ = 1. Over hundred years later, De La Vallée-Poussin and Hadhm
proved this separately in 1896. Now there are more accuesidts known (see for example Theo-
rem A.1). Dirichlet showed in 1837 (see for example [12]attthere are infinitely many primgs such
thatp = a modk whenever 4, k) = 1. This result was sharpened by Page, Siegel and Walfisz (sae T
rem A.2). In the context of prime numbers there are a lot ofdfasunsolved problems. We want to state
some important conjectures and refer to Paulo Ribenboiot& bThe little book of bigger primes” [47],
which also gives a good overview about recent records camgeprime numbers. Bernhard Riemann
conjectured in 1859 that any non-trivial zero of the zeteefion has real part/2 (Riemann hypothesis).
It is deeply connected with prime numbers, and it is considers one of the most famous problems in
mathematics. In 1742, Goldbach enunciated in a letter terizthat every integem > 5 is the sum of
three primes (which is equivalent to the fact that every eatgger> 4 is sum of two primes). Using
a modified form of the Riemann hypothesis, Hardy and Littled/showed in 1923 that everyfigient
large odd integer is the sum of three primes. In 1937, Vindgvagave a proof of this theorem without
resorting to any hypothesis [53]. In spite of this achievetseGoldbach’s conjecture is still unsolved.
Another famous problem deals with primpgsuch thatp+ 2 is also a prime. It is unknown whether there
are infinitely many such primes (called twin-primes). Neitls it shown if there are infinitely many
primes of the form 2+ 1 (Fermat numbers) and 2 1 (Mersenne numbers).
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In the analysis of the sum of digits function in combinatioithvprime numbers there are only few results
known. As mentioned earlier, one can derive from Copelaad& Erdds’ work on normal humbers that

(X = ).

1 X
%P ~ 5@ Do

o<x logq

In 1967, Katai showed in [27] that

_(g-1)x X
qu(p)— 2logq +O((IoglogX)1/3)’

p<x

but he assumed the validity of the density hypothesis forRl@mann zeta-function. Shiokawa [49]
could show this relation without any unsolved hypothesiwith an improved error term. Heppner [25]
improved and generalized Shiokawa’s result further.

Gelfond’s second problem was for a long time unsolved. If wegpese that the sum of digits of primes
is “randomly distributed”, we get the conjecture

#{p<x:sq(p)zamodm}~(mLm_1)

n(x;d, a).

To obtain this result, note that every prirpavith sy(p) = a modmalso satisfiep = a modd (this can

be easily derived from Lemmal.1). The pictures below uirteithese conjectures, where we see the
number of primes less than or eqil= 17209 @(N) = 1983), such thasy(p) is in a special residue
classes modulm. On the left hand side we hage= 26 andm = 7. AlthoughN is rather small, we can
already see that there are approximately the same numbein@épin each residue class. The second
example considers the cagg, (] — 1) # 1 and also confirms the conjecture. We have 26, m = 10,
and hencerf, q— 1) = 5 (note, thatr(17209; 50) = 1).

250 4 — ] — —

250 -
200 -

200

150
150

100 +
100 |

50 - 50

o
.
N
w
I
(8]
o
o
.
o+
w
I
ol
[o)]
~
oo
©

Table 1.1: #1 < n < N : 54(p) = amodmj
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Montgomery mentioned this problem in [37, p. 208, number &Here he stated some unsolved prob-
lems.

Let w(n) denote the number of 1's in the binary expansiom;ahis is called the binary
weight ofn. Show thatw(p) is odd for asymptotically half of the primes.

Furthermore, he noted that Olivier [40, 41] had attackesl pinoblem by using Vinogradov’s method of
prime number sums, but it seemed that the type Il sums hadrmem estimated. Mauduit, one of the
two authors who solved this problem recently, wrote in a pap2001 [31, p. 147], that it was not even
known whether or not there are infinitely many prime numbatistying s4(p) = a modm. But he and
Fouvry studied in [18, 19] the same problem where prime nusméee replaced by numbers with at most
two prime factors (denote the set of these numberBRyIn particular, they could show the following
theorem, using sophisticated linear sieve methods angtwral theory of some special quasi-compact
operators.

Theorem 1.5 Let g m be integers: 2 with (m, q — 1) = 1. Then we have for all integers a and-x co

X
#{n<< X nN=amodm, neP —

{ Sq( ) 2} >qm log x
Replacing prime numbers by numbers with at most two primfagyields also interesting results in
classical problems. For instance, Chen showed in [6] thatthre infinitely many primep, such that
p+2isinP,.

In a recent work [33], Mauduit and Rivat solved Gelfond’'s@®t problem. In particular, they could
show that

. d
#{p < x: p prime andsy(p) = amodm} = = 7(X; d, @) + Ogm(x!7am).
whered = (q - 1, m) andoqm > O is dfective. We will state and prove this result in Chapter 5.
Problem 3 - The distribution of the sum of digits function of squares.

Finally, Gelfond alluded the problem of giving an estimatéhe number of values of a polynomiBl(P
takes only integer values on the $8tsatisfying the conditiorsy(P(n)) = a modm.

In the field of integer sequences, ), Which have only few members (in the sense thak x,) are
only few results known (for example, Mauduit’s and Rivattsuion of Gelfond’'s second problem).
Concentrating on polynomials, Davenport and Erdds [10jwd in 1952 the following result. Ldt(x)
be a polynomial which takes only positive integer valuesasetN, then the decimal,(f (1) (2)f(3)...

is normal. Peter showed in [42] the related result

k k
PR OE G- INPINT N NFg (29N L o),
oSN 2 logq "\ logq

wherec € R, ¢ > 0 andFqx : R — R is periodic of period 1, continuous and nowhergatentiable.

In 1953 Piatetski-Shapiro studied in [43] the sequenng| . In particular he showed that for every
¢ € [1,12/11) the number of positive integers less thdrsuch that n®] is a prime is asymptotically
N/(clogN). By using van der Corput’s method of exponential sums (seap@r 2), Mauduit and
Rivat [34, 35] proved the following theorem.
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Theorem 1.6 If ¢c € [1,7/5), g and m are integers greater thdnthen we have for all integers a
lim 1#{n< N : s5q(Ln°]) = amodm} = 1
N—oo N ) S:I - - m'

Furthermore, they could show that the sequeg({n°]))ne is uniformly distributed modulo 1¢(e
[1,7/5)). Forc € [1, 2), these sequences are intermediate cases between pdigiofidegree 1 and 2
and the treatment of them can be considered as a first cairibio Gelfond’s third problem. Mauduit,
who solved with Rivat Gelfond’s problem in the caBf) = n?, wrote in [31, p. 149], that the method
used in the proof of Theorem 1.6 was good enough to obtaintarvai for c independent off andm,
but that it seemed that new ideas were needed to cover atteashole interval [12).

If follows from a result of Harman and Rivat [24] that we haee &lmost allc € [1, 2)
lim l#{n< N : s4(Ln°]) = amodm} = !
N N - Sl = T

but it is still a conjecture if this result holds for almoseeyc > 1 (see [31]). Nevertheless, Dartyge and
Tennenbaum could show in [9] a first result in the case2.

Theorem 1.7 Let g and m be integers 2 satisfying(m,gq — 1) = 1. Then there exists a constant
C = C(g,m) and an integer iy = Np(g, m) > 1 such that for all integers a and & Ny, we have

#{n < N : s4(n’) = amodm} > CN.

The two authors also generalized this result to sequendbe ébrm (f (N))nen, wheref is a polynomial
with integer coéficients such thaf(N) C N.

Recently, Mauduit and Rivat solved in [32] Gelfond’s prahlén the caseé?(n) = n? (using the above
notion, in the case = 2). In particular, they showed that

#{n< x: sq(nz) =amodm} = % Q(a,d) + Ogm (xl“’qvm),

whereogm > 0 is dfective andQ(a,d) = #{0<n<d: n? = amodd}. For a proof of Mauduit's and
Rivat’s results, see Chapter 6.

1.3 Proofs and further Results

In this section we want to prove Theorem 1.2. In order to be @bto this, we have to treat estimates of
exponential sums. The following theorem is the main parhefgdgroof and of special interest (as we see
later).

Theorem 1.8 Let mq > 1 be integers witffm,g— 1) = 1andy e R. Thenwe havefot < h<m-1

N
D) = Og(\"),

n=1

e(yn + %sq(n))

qsinr/2m) <1

__1
whered = 2logq Iog sin(r/2maq)
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Proof. Let f(n) = e(yn+ asq(n)) andN = 3;_g negk (n, # 0). Then we have

N — n,— — n,_1-1
ROE Z Z f(io +i10+ - +qu)+ Z > flio+ - +iva@ Tt + 0
n=1 10500es i,.1=0i,=0 g, i,_2=01i,.1=0
no—1
+ ..+Zf(io+n1q+---+nvqy)+f(N)—f(O).
i0=0

One can readily shows is g-additive) that we havé(ad +bg') = f(aq)f(bg') for 0< a,b < q-1and
i # j. Thus, we can write

N-1

y—1
Z f(n) = n[f(0)+ F(A)+--+ f(@- DN FO) + F(@) -+ f((n, - )]

n=0 k=0
+ ]_[[f(O) + £+ + F(@—- DANLFO) + @Y+ + (-1 - DI O F ()

+ ._.+[f(0)+ f(Q)+---+ f(ng = ]f(ma)- --- - f(n,g")
+ (o) - f(n,0) - 1

Since|f(n)| < 1 we get the following estimation

N

PRIQ)

n=1

y=1

<q

i=1

n[f(0)+ f@)+---+ f((@- 19| +a+2

k=0

Calculating the geometric series (note, ta;(a(f) =aforO<a<qg-1)

g-1

> elird + )| =

=0

g-1

> (i) =

=0

sinmq(yd< + a)
sint(ygk + a) |

we obtain the following estimate of our considered sum
v—1

qul—[

k=0

sm;rq(yq + )
sinn(ygk + @)

f(n)

, _|logN
+q+2 with v= {—Iogq J . (1.3)

The function S92+ s vitally important in this work. We study it in-depth in Gbizr 3 and only

sinz(ygk+a)
refer here to the obtained results.
We setB = yof + h/mandg; = yg<*1 + h/m, where O< h < m. First we show thalig8 — 81|l > 1/m.
We can writegB — 81 = %(q —1). f m(g-1) = hk (k € Z), the condition fn,g— 1) = 1 implies that
h > m. Thus we have proved the claim. Hence, wegell > (2mg)~ or ||1]| > (2mg~L. Indeed, if
both numbers are smaller tham{g)~%, we get a contradiction tfg3 — 81|l > 1/m. This allows us to
apply Lemma 3.1 witld = 1/(2mg) to one of the two following factors (note, that the factors tivially
bounded byg)

sinrg8  sinngs; sin(r/2m) o,
sintB  sinaBy | sin@r/2mg
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qsin(r/2m)
sin(r/2mg) *

__1
wherel = AT log

If we take these facts into consideration and use (1.3) with%, we obtain

N v=1 i ; k ,  h v—=1

sinz +4 .
Zf(n) <qZ _Lc:(}:“)+q+2<q g+ g+ 2 <q g < N
n=1 =1 koo | SINT(YA“+ ) i=1

Proof (of Theorem 1.2).LetS(N) = #{1<n< N:n=Imodr, s5(n) =amodm}. By Lemma 1.2 we
have

1 ST (n-l sm-a) 1SS (It ah\<h (nt h

S(N) :% Ze( ; t S:I m h| = % e(—? - E)Z (T + —%(n))

=0 h=0 n=1 t=0 h=0 n=
N 18 (n—l) 1 8& ( It ah) N (nt h
=+ — e|—t|+ — el-— - — e —+—sq(n)). a.4)
rm rmt:anf r rm;hzl r m; rom
Sincet/r # 0 mod 1, there exists an integdi < r, such that

1 r-1 N n—l 1 r-1 N n—l

SR

mr t=1 n=1 mr t=1 n=1 r

This follows from the fact, thag M4 e(?t) = 0 for M > 0. Exchanging the summation order, we can
apply Lemma 1.2 again

19% (n-1) 1|31 (n-1) N

a2 (T =R D el

mr t=1 n=1 r m n=1r t=0 r r
1 N 1 1 2
<—#{1<n<N1:nslmodr}+—1<—+—:—.
m mr m m m

To see the last inequality, note thagl#< n < N1 : n = I modr} < 1 sinceN; < r. Finally, applying
Theorem 1.8 to the last sum in (1.4) yields the desired efitmavith 1 as stated. [ ]

Remark. Gelfond showed additionally for the special case= m = 2, thatd can be chosen as
log 3/(21og 2).

In the case that = 1, i.e. we are interested in{f@ < n < N : 53(n) = amodmj}, we can obtain a much
better value forl than Gelfond and do not need the additional conditimng(— 1) = 1. Therefore we
prove a similar result as stated in Theorem 1.8.

Theorem 1.9 Let N> 0, g > 2and m> 2 be integers an@ € R \ Z. Then we have

N

> elrsy(m)

n=1

= Og(N"),

wherea < 1. If in addition ||| > 1/m, then we havg = ﬁ log Ssl'nn(g/nr?&) <1
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Proof. Note, that by Lemma 3. Ksinnqa)/(sinmﬂ q', whered < 1. If we havelle|| > (gm)1, then
we can apply Lemma 3.1 with= (gm)~ and we get the same estimation witk: é log Ssl'n”(l(f/r:q“g) <1.
If we use the same notation as in the proof of Theorem 1.8, vetiroll.3) (W|thy = 0). Hence, we

finally get

v—1

qZ ’smnqa
Sinta
i=1

N v—1
Z e(asy(n) +0+2<q Z g0 + g+ 2 <4 ¢ <q N,
n=1 i=1

Theorem 1.10 Let g m > 1 and a be integers. Then we have

#{1<n<N: g(n) =amodm = % + Og(NY),

_ 1 sin(r/m)
whered = o= log Sm(:/ma) <1

Proof. Let S(N) = #{0 < n < N : 54(n) = amodm}. By Lemma 1.2 we have

N 1 m-1 h
SN =Y. 2 e(h(sur) -2
n=1 h=0

Forh=0we getnﬂq. If we consider the remaining sum, we have

N m-1 m-1 N
Z Hl] Z e(%(sq(n) - a)) = % Z e(_—rih)z e(%sq(n))
h=1

n=1 h=1 n=1
1 m-1| N h
<= Z Ze(—sq(n)) < N4
m h=1 [n=1 m

The last inequality is a consequence of Theorem 1.9 w&h@ log SSI:]?S/QC)D and the desired result is

proved. [ |

Remark. In the casean = g = 2, we obtainl = 1/2, which is considerable better than Gelfond’s result
(log 3/(2log 2) ~ 0, 792). In other words, we have that the number of 1's (and 8't)é firstN members
of the Thue-Morse sequenceNg2 + O( VN).

It was first shown by Michel Mendes-France [36] (published 968), that ¢ sq(n))ne is uniformly dis-
tributed modulo 1 for irrationak. In 1980, Coquet [8] showed the interesting theorem, th@(if))nen

is uniformly distributed modulo 1, then also the sequenieq(n)))new is (Which of course also proves
Mendes-France’s result). However, we can use TheorenokBdw the same statement in an easy way.
Furthermore, we show that a special subsequencen)fds is uniformly distributed modulo 1 (stated
as a remark in Gelfond’s paper). We will see later, thed;(p)),cr (S€e chapter 5) andz(sqmz))neN
(chapter 6) also have the same property.

Theorem 1.11 For g > 2 the sequencéaSy(n))new is uniformly distributed moduld, if and only if
a€R\Q.
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Proof. If a € Q, then the sequence $y(n))nev takes modulo 1 only a finite number of values and is

therefore not uniformly distributed modulo 1. Conversédly, € R\ Q, then we have for every € Z \ {0}

thathe € R\ Z. According to Theorem 1.9, there exists< 1, such thaty,cy €(hasy(n)) = O(NY).

Using Weyl's criterion, this proves that §;(n))new is uniformly distributed modulo 1 (see Theorem A.3).
|

Theorem 1.12 Let g m and a be integers satisfyingm > 2 and (g,m - 1) = 1. Furthermore, set
M = {n € N : 4(n) = amodmj}. Then the sequendean)na is uniformly distributed moduld, if and
onlyifa e R\ Q.

Proof. As in the previous theorem, the sequener){c takes modulo 1 only a finite number of values
if @ € Q (and is therefore not uniformly distributed modulo 1). Sogp now, thatr € R \ Q. According
to Weyl’s criterion (Theorem A.3), we have to show that

Z ekan) = o(N)

1<n<N
Sy(n)=amodm

for every integek # 0. Note, that this is already ficient, since by Theorem 1.2{#<n< N : g(n) =
a modm} = N/m+ O(N4), whered < 1. Using Lemma 1.2, we can write

m-1
Z elkan) = — Ze(k n)z (h(sq(n) a))

1<n<N
Sy(n)=amodm

m—l ha N h
== Z ekan) + — Z (_E)Z e(kan + Esq(n)).
h 1 n=1
The sum in the first term is bounded for &ll# O if (and only if)a@ € R\ Q. The inner sum in the

second term is< N, with 1 < 1 (see Theorem 1.8). Hence, we finally get the desired estimand
the theorem is proved. [ |

At the end of this chapter, we want to state and prove anoiiteresting theorem, which was treated in
Gelfond’s paper.

Theorem 1.13 ([21]) Let g m, z > 1 and a be integers, then we have

+ Og(N1),
(1.5)

#{1 < n< N :nisnotdivisible by a z-th power of a primey(n) = a modm} = m?(z)

1+(z 1)1

whered; = , 4 =4A(m,q) < 1and/(.) denotes Riemann’s zeta-function.

Proof. SetT(N) as the considered expression in (1.5). Then we g = Zr’;‘zl e(ny(n), where
¢(n) = 1if 55(n) = amodmande(n) = 0 otherwise ang/(n) = 1 if nis not divisible by az-th power of
a prime andy(n) = 0 otherwise.

Using Lemma A.3, we can writ¢(n) = >4, u(d), whereu(.) denotes the Mdbius function. Therefore
we have (seN; = |[N¥/?] and choosé\, < N later)

N Ny
TIN) = " () > u(d) = > u(d) > @(dK)

n=1 d?n d=1 k<N/d?
Ny

N2
=Y @ Y e+ D oud) D e(dK). (1.6)

d=1 k<N/d? d=Np+1 k<N/d?
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Using Theorem 1.2 (witlh = d?) and the connection betwegif.) and/(.) (see Lemma A.4), we can
bound the first sum by

N2 \
D@ D el =Y (@ |+ oq(N”)]
d=1

d=1 k<N/d?
N < p(d) u(d)
d=1 d No+1

N
" @

whered = A(g,m) < 1. Lemma A.6 yields the lagD-Term in the above expression. Indeed, since the
series and the integral are convergent, we geMor oo

M M Nl—Z_Ml—Z
T T el
oz N, UZ z-1

By Lemma (A.6) again, we get for the second sum in (1.6)

+ Og(N2N*) + O(NNJ ).

il MoN Ni g N
Z u(d) Z o(d%)| < Z F < Nf SadusN_Zo = O(NNZ),
d=Nz+1 k<N/d? n=Np+1 N2

SettingN, = |[N/20/Z] (< Ny if N is big enough), we obtain

1+(z-1)

T(N) = +O(NY), Ay = — A=Amq) <1

N
m¢(2)



Chapter 2

Exponential Sums

In this chapter we consider exponential sums of speciaafimed quadratic functions. First we treat
sums with two variables, which are linear in one of them. TWerstudy so called Gauss sums, which
play a major role in proving Gelfond’s problem on the sum dfidi function of squares. Finally, we
outline a method that allows us to treat exponential suma ifacient way (Van der Corput inequality).

2.1 A First Inequality

In this section, we want to find an upper bound of

e(l(an+ b))“ 2.)
osn<m M’<I<M m

The functlon'(""’r}]*b) is linear inl and since exponential sums of linear functions are geoonsdries, they

are easy to handle. We get for the inner sum
(M-=M")(an+b)
e(—) -1 ]

m

e

< min

NCIE: b))‘ _

m

o [(an+ b))
m

O<l<M-M/ (

M’<I<M (

[sinz 22|
Hence, the following lemma provides an upper bound of (Zé¢ (33]).

Lemma2.lletame Zwithm> 1and d= (a,m). Let be R, then we have for every real number
M > 0O,

> min(M

0<h<m

1
w) < dmln( )+m|ogm.

|sinz singd || I

Proof. The inequality is trivial ford = m because in this cagsinz22| = sinz||8|| for everyn. When
d#mwehave K d< J. Puta’ = 3, n' =3, andb=b'd +rwhereb’ € Z, r e R, -§ <r < , and

S= Z min(M |sm7ra”+b|) Z min

O<n<m 0o<n<m

1
|sin% (a’n +b+ g) '

15
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The numbersXn + b, wheren takesnt consecutive values, cover all possible residual classekiimo
nY. Indeed, this follows from the fact thad’( nY) = 1. Hence we can write the suin the form

S=d Z min

o<n<mn

M
|sin%(n+ %) ]

If r is negative, we can also taken instead ofn since it covers also all residual classes modulo
Therefore, we can from now on assume that 0< d/2 and subsequently suppress the absolute values.
Isolating the first and the last term in this sum yields

1
—|+d min
sin%(l— é)J 1<n<zr;f—1

Sincet — ﬁ is convex on (0Or), we can apply Lemma A.7

M,

gl
md

S= dmin(M, SL)+dmin

1
M sinZ (n+ 5)}

_ 1 d M3 dt
S<dm|n(M, _—_ )+ : +df L
Sinfya)  sinZ (1-4) 3 sinZ(t+ )

Using again that — ﬁ is convex on (Orr) we observe in the first place that

h(x)_;_i_fm_%L
CsinEZ(1-x Ji osinE(t+X)

is convex on [01/2] and therefore attains the maximum at the endpoints ofrtteevial. Furthermore it
shows that the maximum is equalhifl/2), since

1 1 1 M-l dt 1odt
h(—)—h(O)z _— +f _—t—f —
2 siny— sing m-3 SinZ 3 singy

2

1 1 1 1
> = — Tzt . - in_T
singy  singg  2sin 2singg
1 1 1

> - - + - >
2sins  sinZ 2s|n23_rgf

L

st N turn gives

Using that{log tan%)' =

. 1 d 1 du
Sgdmln(M, . m)+ — +df —
sinZ5 ] sinot 1 Sink

T

. d 2dmf
<dmin(M, ——— |+ =—— + log cot —.
S|nm S|nﬁ T 2m

Replacingnt by m/d, using that coti < 1/u on (Q 7/2) and noticing that/d = ||b/d|| (0 < b/d-b' =
r/d < 1/2) we finally obtain

. 1 d 2m 2m )
S« dmln{M, sinn%Hg”) sing—r?] + 7Iogﬁ < dmm{M,W%”g”]+mlogm.
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2.2 Gauss Sums

In this section we want to prove an upper bound of Gauss sulmsseTsums are exponential sums and
of the form

m-1
Gal:m) = Ze(anzr: 'n),
n=0

wherea, |, m € Z with m > 1. Note, that it does not matter if we sum oveirom O tom— 1 or over any
other representation system moduio

Theorem 2.1 Let a |, m € Z, satisfying ne 1 and(a, m) = 1. Then we have

G(a,l;m)| < V2m
We follow the proof of Graham and Kolesnik [22, Chapter 7Hiist we state several lemmas.
Lemma 2.2 If (m, mp) = 1, then we have

G(a, l; mmp) = G(amy, |; mp) G(amy, |; my).

Proof. The crucial point is, that we have

mmp—1 (

. ar? + In) ”il”‘ile(a(jmz +km)? + 1(jmg + kml))_

mmp Mmmy

n=0 j=0 k=0

This follows from the fact that the integeps, + kmy, j =0,...,m —1,k=0,...,m — 1 run through
all equivalence classes modutam,. But this already implies the desired result. ]

Lemma 2.3 Suppose thafa, m) = 1. If mis odd or | is even, then we have
IG(a, I; m)| = |G(a, 0;m)|.

Proof. First we consider the case= 1 mod 2. Then we have #m) = 1 and 4 has an inverse element
modulom, sayad. Replacingn by n + 24l in the index of summation yields

m-1 m-1 952 _ox ~12y Mm=1
G(a,l;m):Ze(anzn: In)zze(a(n 2aI)nJ1rI(n Zal)):e(—%)Ze(%).

n=0 n=0 n=0

In the second case we denote the inverse elemeanwddulom by a and replacen by n + al/2 in the
index of summation. The result follows using similar cadtidns as before. [ |

In order to be able to prove the next lemma, we need the nofitired.egendre symbol. Lgi be an odd
prime number and an integer satisfying + a. Then the Legendre symb@%) is defined by

a\_[+1 ifa= x> mod p for some integex,
p/ | -1, ifthereis no such.

For further information and properties of the Legendre sgigiee for example [23, Chapter 6.5].
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Lemma 2.4 Suppose that p is an odd prime afa&lp) = 1. If r > 1, then we have

. p/2, if ris even
IG(a,0; p)l —{ p-D/2IG(1,0;p)| otherwise.

Proof. First we show that if > 2, thenG(a, 0; p') = pG(a, 0; p'~2). Indeed, we can write

p-1pi-1 r-1 2 Pl 2\ -1 :
al + Kk ak 2ajk
C(a.0:p) Z e( w2 pr ) ) Z e( pf)ze( |oJ )
j=0

j=0 k=0 k=0

Since the inner sum igif p| kand 0 otherwise, the claim follows. Furthermore this ingpliee desired
result ifr is even. Contrary, if is odd, it sdfices to show that

G(a 0;p) = (%)6(1,0; P).

If 0 < k < p, the number of solutions @i’ = k modpis 1+ (%() Hence, we have

oS5 5o IS

Using 2F ée(—g) = 0, we obtain

The last equality follows from the fact that assumes the value 0 once and the other considered values
twice. ]

Lemma 2.5 We have for any positive m,

IG(L,0;m)| = Vm.

Proof. By Poisson’s summation formula (Lemma A.8), we have

Sielz)- 5 (o5 on

Changing the variabley & x/mand subsequently= (y — k/2)), we obtain

m-1 0 1-K/2
Ze(n—r;):m Z e(—mTE@)fo e(m(y — k/2)%) dy =m Z_ ( mkz)f e(m?)dz

n=0 k=—o00 _k/2

Now we can split the last sum up into odd and even terms. Thugeatve

e(”—;) = m(L+i™™m) [: em?)dz= (i +i ™1+ i)g‘”.

m-1

n=0

Indeed, the last integral can be readily calculated usiagdkidue theorem. Hence, the desired result is
shown. [ ]
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Lemma 2.6 Suppose that a is an odd integer. If | is odd, then we hafgl®) = 2and Ga,1;2") = 0
forr > 2. If lis even, we havis(a, |; 2)| < V2 272,

Proof. Suppose thdtis odd. Then we have triviallg(a, |; 2) = 2. If r > 2, we can write

1211 r-1 2 r-1 211 2 1 ;
Gal:2) = Z Z (a(jZ +k)2-r|-|(12 +k)) Z e(akz;i- |k)ze(|§j),

j=0 k=0 k=0 j=0

which is equal to O since the inner sum vanishes. Contratysikeven, we can assume by Lemma 2.3
thatl = 0. We prove the statement by induction onif r < 3, one can readily check that the claim is
true. Hence, let us assume that 4. We can write

1271 211
_ a( 12' 14+K? ak®
G(a,0;2) = Z e( =2 Z e >
j=0 k=0 k=0
2 2
( (a(2n) ) (a(znz—fl))) 2G(a, 0; 2~ 2)+2e( )G(a,a o2
Since the last term is 0 (note, thats odd and — 2 > 2), we get the desired result using the induction
hypothesis. [ |

Proof (of Theorem 2.1).By Lemma 2.2 we only have to consider the case p', wherep is a prime
number and > 1 an integer. Ifp is an odd prime, then we have

Gal; Pl = 272
by Lemma 2.3, Lemma 2.4 and Lemma 2.5pH2, Lemma 2.6 already gives the required answer

IG(a,1;2") < V2272,

Corollary 2.1 Letal,me Z with m> 1 and set d= (a, m). Then we have
G(a, ;M) < v2dm
and

IG(a,l;m)| =0 ifd¢l.

Proof. Settingm’ = m/d, & = a/d, we can use the Euclidean algorithm= knT + r) to get

da (knf + r)2 + [(knT + r))

Gakm= > e

Oo<r<m O<k<d (

ar?+ Ly
o<r<m v O<k<d

If d 11, the inner sum is 0, and the desired inequality is triviadljiied. In the other case (dét |/d)
we haveG(a,I;m) = d G, I’; m') with (&, nY) = 1. Hence we can use Theorem 2.1 to obtain

IG(a,I; m)] = d|G(@,I";m)] < dV2mr = v2dm
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2.3 Van der Corput’s Inequality

Weyl introduced in [54] a useful transformation that arigesn squaring an exponential sum.flfs a
real-valued function, than we have

> e(f(m)

1<ngN

2

= > e(fm-fm)= > > efm+h)-f(m).

1<mn<N lhi<N 1<n<N
1<n+hgN

Van der Corput (1922) modified and improved Weyl's method. uded the simple idea, that for an
arbitrary positive integeR one haR} 1y €(f(N)) = ZrR:‘Ol > —r<n<N—r €(f(n +1)). Then he employed
the Cauchy-Schwarz inequality and Weyl's concept. Fohirinformation on van der Corput’s method
of exponential sums see [22]. The next lemma is a generalizaf van der Corput’s result, where the
special cas& = 1 is named after him.

Lemma 2.7 ([32]) Let &, ..., zy be complex numbers. For any integers K and R> 1 we have

2
Z Zn <—N+k(RR_1)Z(1—|LR|) Z ZnikrZn.

1<n<N Ir<R 1<n<N
1<n+kr<N

Proof. We take for conveniencg, = 0 for n< 0 and forn > N + 1. Then we can write

R 7= Elzzmkr = ZRElkar-

nez r=0 nezZ nezZ r=0

If the last sum is not zero, thensatisfies 1 k(R— 1) < n < N and there are at most + k(R — 1) such
values fom. Hence, applying Cauchy-Schwarz and changing the summiaiiex yields to

>z

nez

2 2

R-1

S(N+KR=1) ) 1> Zovia
nez [r=0
R-1R-1

<S(N+KR=1) D" "> Zoeke Zoviry

r1=0r,=0 nezZ
R-1 R-1

<S(N+KR=2) >° > > Zmwks-raZm

r1=0r,=0mez

<(N+KR=1)) > (R=1F) > ZmikaZm
mezZ

Irl<R

R?

The next lemma is a variant of van der Corput’s inequality @srghsed on [39] (see [32]). We consider
sums of the form a<n<g zn, Where 1< A < B < N are integers. It has the big advantage, that we can
find an upper bound where the summation domain does not depefdndB any more.

Lemma 2.8 ([32]) Let1 < A < B < N be integers andiz.. ., zy complex numbers with absolute value
< 1. Thenwe have forany R 1

>z

A<n<B

1/2

< %Z(l_%) Z ZnikrZn +

Ir<R 1<n<N
1<n+r<N

NI 7o




2.3 Van der Corput’s Inequality

21

Proof. As in the proof of the last lemma, we take for convenierce: 0 for n< 0 and forn >

Since the absolute values of the considered complex nurabess1, we obtain

B B R2
RY z- PR 2r < .

n=A -B<r<Bn=A -B<r<B

and hence
B
1 R
PAIRS ﬁz Znir| + 5
1<n<N

Using the Cauchy-Schwarz inequality, we finally get

2

Z D, || <(B- A+1)Z D, | <B-A+DY | >z

n=A __<r<R n=A __<r<R nez _2<r<R
=(B-A+1) Z Z Z ZniryZnsr,
—§<I'1<B __<|r2<R nez
=(B-A+1) Z Z Z Zmiry-rpZm
—Bari<B —Bar,c B mez

=(B-A+1) > (R- Irl)zzmrzm

-R<r<R

N+ 1.



Chapter 3

Trigonometric Products

In this chapter, we want to state and prove some averageatssirof trigonometric products which are
essential for solving Gelfond’s problems. They are a ctymaat of the later proofs and of independent
interest.

Before we begin to study these products we define and coniddollowing function, which we have
already seen in Chapter 1.

Definition 3.1 For g > 2 we definepq by

szl et e R\ Z

Soq(t) — { | sinnt|

q ifteZ. 3-1)

Lemma 3.1 Let > 2 be an integer and € [0, %]. Then,pq(t) is periodic of periodl, continuous and
continuously dferentiable orR and we have

maXeq(t) < ¢q(d) < Q.

e eq(t) < ¢q(0) <q

Furthermore pq(6) < qifé # 0.

Proof. Sinceyq(t) = |Zocv<q &(Vt)| (geometric series), we obtain that is periodic of period 1, continu-
ous and continuously fierentiable orR. We have fott > 0

(sinnqt)’ _ mgsin(rt) cosfrqt) — 7 cost) sin(zqt)
sinnt sirf(xt) '

The derivative is trivially negative if € [1/(20), 1/q). If t € (0, 1/(2q)), the derivative is negative if and
only if tannt < (1/q) tanzqt. But this is true, since tan is convex on £¢2]. Hence, we obtain thaty(t)

is strictly monotone decreasing on the intervallj@] and we have thapy(d) < qif § # 0 (¢4(0) = 0).
Moreover, it stffices to show that

2
maxgq(t) < ¢q (B_q)

>

Sincet - %‘Z‘t is decreasing on [&] (for the same reason as before) altiti> 2, we obtain
3

2T Qi T N2 ginZ
Pg(t) < 1 __1 _singsing _sing Sing y (2)
a\V) S & N GnZE T Qinf «in27 S oinf «in2r  rd )
sinnt slnq s,lnq sinz3 sing singg 3q

Remark. From the fact thapq(X) = [Ug-1(cosfrx))|, the Chebyshev polynomial of the second kind, one
can also show thatq(.) is strictly monotone decreasing on the intervalljay].

22
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3.1 Fourier Transform of e(f,(.))

In this chapter, as in the rest of this work, we $61) = asy(n) and define the truncated function

) = > fnd) =a ) ni,

k<A k<n

whereA is an integer greater than zero and the integerdenote the digits ofi in basisg. As we will
see later, this last functiofy is of particular interest, since it is periodic of perigl In this section, we
turn our main attention to the discrete Fourier transforra(df(n)).

Definition 3.2 Let g > 2, « € R andA € N. The discrete Fourier transform j., @) of the function
u+— ¢(fy(u)) is defined for all he Z by

F,l(h,cx)=q—]:l > e(faw) - hug).

O<u<q!

Sincef(u) = f,(u) for 0 < u < ¢, the discrete Fourier transform offé()) is the same as of &((.)). A
crucial point of our further studies is the fact, that we capresent ,(h, @) as a trigonometric product.
Indeed, we get a recursive definition of the Fourier tramsfasing the circumstance thaj(n) is com-
pletelyg-additive. In particular, we have far= qu+ i, where 0< i < g, s4(V) = S4(U) +i. Therefore we
get forAd > 0 (assume that — hqg D e R \ Z)

1

|F/1+1(h’ a’)| = q/H_l

D> efalsy(u) +i) - hqu+ i)g D)

0<i<q O<u<q?

= |2 eli(e-nat)

0<i<q

|F/l(h’ a’)|

sinrq (cx - hq‘(“l))

|F/l(h’ a’)|

1
q| sinx (a — hgq-@+D)

Hence, we can write the following equation for ale R andh € Z

1 h
IFaci(h, )l = q ®q (0! - W) [Fa(h, @)l (3.2)
If we iterate this procedure, we obtain (note, thgth, @) = 1)

Fah.a) =a™ [ ] ¢q(e—ha). (33)

IKj<a
We can easily derive the following lemma from these facts.

Lemma 3.2 Let0 < 4 < A. Then we have

IF(a’b, @)| < [Fa_a(b, @)|.

Proof. If 8 = A, then this inequality is trivial by Lemma 3.1. If96 < A, we use (3.3) to get

IFa(ofb, )l = q* 1—[ ¥q (CV - bqg_j) 1—[ $q (“ - qu_j)'

1<j<0 0<j<A
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Sinceyq(t) is periodic of period 1, we obtain

Fae’b, ) = qq (@)’ a1 ¢qe-bq?)

1<j<a-0
=g %q (@)’ IFaze(b, @)I.

Again by Lemma 3.1¢q(t) < qfor all t € R), we finally obtain the desired result. ]

In order to get an upper bound Bf(h, @) uniformly for all h € Z, we have to prove several properties
of ¢q4(t). The following lemmas are from Mauduit's and Rivat’'s work the sum of digits function
of squares [32]. We will see in Chapter 5 that these resuitbemng more accurate, Lemma 3.6 and
Lemma 3.14 (which can be derived from the first one) are veejuligor proving not only Gelfond’s

problem on the sum of digits function of squares but also hidlem on the sum of digits function of
prime numbers.

Lemma 3.3 Let > 2 be an integer and ¢ R. Then we have

(9 — 1)t 6
et < aerp - L) por e (2

Proof. Sincegy is periodic of period 1 and symmetric with respect to 0, weydrdve to considet in
the range

_ 6
(2 - 1)

Easy calculations and the Leibniz criterion give us theofslhg estimations fou € R,

o0<t<

wwd
O<smu<u—€+@ for O<u<xm,

3
u .
0<u——6 <sinu for O0<u< Ve,

2

0O<l-u+L <1y

s
3 2

3
E<e‘“ for O<u<xg1l.

We have to show that sinqt) < gsin(rt) exp((g?—1)(rt)?)/6). Due to the fact that we haveQrqt <
and 0< 7t < V6, we can use these estimations for siif and singt) and therefore it sices to prove

mﬂW“@!%ﬁMﬂ mz()m)

6 120 6 362

Expanding the right hand side, we see that the above inggigtrue if and only if

(@)°  (@r)° | &*(r)°  29r)° o - 1PE)"
3.62 4-5-6 3.62 3.62 3.6 -

Multiplying this inequality with (3 6° - 5)/(q(xt)®) for t # 0 (t = O is trivial), we obtain
3q* + 3097 — 60 > 5(q — 1)2(nt)%.

But this inequality is true if & t < /%, since 3 + 309% - 60 > 30(¢? - 1) for q > 2. n
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Lemma 3.4 We have for gz 2and te R
) en(%)
Na) ="\ q

Proof. Sett = 6 + 1, Where—% <0< % andl € Z. If | = 0 modq, we already have the desired equality
because of the periodicity @f,. If | # 0 modqg, we have

2> lil= 1512 Gl -a) 5 %= %2 el =5
q 2q 29”7 lgl~ q°

Since siruis increasing on [Or/2], we obtain

( ) (H H) | sinné) < | sinn6) (||t||)
@ =@l — |-
a sinr 9+| Slh7r||t|| a q

Lemma 3.5 We have for ¢ 2anda € R

(9 = el
rPE%xgpq(a/ t) pgla = qt) < qgoq( q+ 1 )

Proof. Settings = ”(qq_% < 2iq andu = a — t, we have to prove

Te%xsoq((l - 1) ogla@ —qt) = TG%XSDq(U) eq(qu— (g - 1)) < geq(9).
Sinceyq(t) is always bounded by, it suffices to show that one of the factors is boundedpgly). If

lgu— (q- 1)a|| = &, we get the desired estimation for the second factor by Le@ithan the other case
we have

lI(d— L)all - llqu— (q - 1)«
(q+1)-6=00.

llqull = [lqu—- (g - 1)a + (q - 1)«

A\ARR\

Hence, we can bound the first factor using Lemma 3.4 and the@tmoy of p4(t) on the interval [01/q]

@q(u) = ¢q (qu) < ‘Pq(”qu”) < @q (qé) ©q(9).

q q q
|
Lemma3.6 Letq> 2, a €R,heZ 1> 1and G = sz (1- 7). Then we have
Fa(h, a)] < e /48 calla-tia, (3.4)

Proof. To prove this lemma, we first note that

7*(q- 1)

_ 2
e GRE ]

Te%)@q(@ - pgla —qb) < q exp| -
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This is a direct consequence of Lemma 3.5in combination hétmma 3.3 since all assumptions are

satisfied. Indeed, we ha\)@% ,‘g < 7r2(q2 ok Thus

_ 2
rpE%Xsoq(a — Dygla — qt) < deq (w) <P exp( 6(21 l))ll(q 1)a||2)

Let A > 2. We can finish the proof by using (3.3) (and noticing tpgt) < qin the case that is odd).
We have

q (a' _ q—2j) q (a' _ q—2j+1)

2
1<j<la/2] q

IFa(h, o) <

’

and finally obtain (note, thatl/2] > (1 - 1)/2)

n%(q - 1)

|F/1(h’ a’)| < exp(_ 6(q+ 1)

A/21lie - 1)a/||2) < e gella el

wherecq = Tz (1- 5%)- Sincecqll(q — 1)ell? < ggass, this inequality holds trivially fon = 1. m

Average estimates of first order

In the next lemmas, we want to study more precisgjyand some average estimatespgfin order to
find an upper bound of

> IRaha)l (3.5)
O<h<q?!
h=a modkd’

It turns out, that the casep= 2 andq > 3 are essentially éierent. We need the following function, that
has been already studied accurately by Fouvry and Maud[fi8in

Definition 3.3 Let g> 2. Then we define the functidky, onR by

1
¥oll) = > ¢ (t+ é) (3.6)

O<r<q

Lemma 3.7 Let g> 2. Then, the functio¥ is periodic of periodl/q and continuous oRR. Moreover,
we have

2 log % < logq. (3.7)

max¥q(t) < ——— +
teR q()\qsm%

Proof. First, we note that'y(t) is obviously continuous and periodic of perioghlsinceyq is continuous
and periodic of period 1. Our first claim to get (3.7) is, tha thaximum of this function is attained at
1/2q. Fouvry and Mauduit (see [18, Lemma 2]) used a ingenioustinishow thatq(t) is concave and
symmetric with respect to/{2q) for t € [0,1/q] . Using the periodicity, we only have to look at this
interval. Fort € [0, 1/q], we can write

wo(t) :% Z sinnqt q Z( )r5|n7rq(t+r/q)

o5 S|n7r(t + r/q) o sinz(t+r/q)
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If g =2n, we obtain

H

2ni cos((z i +1) (t + _) ) S (@D £) 4 grin(@in(ts £)))

j=0 j:O

n-1 n-1
_ ein(t+%) e2i7rj(t+%) + e—in(t+%) e—2i7rj(t+%)
5 )

imn(t+ - 2imn(t+
:ein(t_*_%)ez ( Zn)— (t+')e ( 2n)—1 (38)
e2i7r(t+%) _ —2I7r(t+ 2n) -1
einq(t+ﬁ) —1- e—inq(t+%) +1
ein(t+%) _ e—in(t+%)
sinzq(t + ﬁ)
©sina(t + bR
Hence, we can writ&¥(t) in the form
2n-1
Wy(t) = Z( 1y Z cos((z i+ 1)( )n)
r=0
2 nZ 2n-1 r
- < (-1) cos((zj + 1)(t + —)n).
2n = = 2n
Using the equality (which can be similar proved as (3.8))
m-1 cos(a+ 2h + ™dx) sin( 90 +
>(-1) cos@+ hr) = ( 2 zr)sin( + ¥ ), (3.9)
— cos3
we get
2 1 cos((2) + Dt + 252 25y + 20 ) sin (B 4 )
¥q(®) = o 2 cos(z“l)”
2 Z cos((zj + Dt — 2 ) (1)L (-1 (-1) (-
= n 24 Cc)S(21+1)7r
2 1 cos((2] + Lt - 2% 2 n)
= on - COS(21+1)7r

Sincej = 0,...,n-1andt € [0,1/2n], we have-7 < (2] + 1)( 4n)7r < 5. Hence,¥q(t) is a sum

of concave functlons and therefore itself a concave functiée also see from this representation, that
Wq(t) = Y4(1/g —t). Thus, we can conclude, that the maximum is attained atdhe p= 1/4n = 1/2q.
The casay = 2n + 1 is almost the same as the first case, we only have to notite tha

r r r sinmq(t+ L)
(1) +2(-1) %COS(ZJH(H—Z +1))= 1) m

This can be proved in the same way as we proved (3.8). Usirf), (he gets again a representation for
Wq(t) as a sum of concave functions where it is once more easy fdrsget is symmetric with respect
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tot =1/(4n+ 2) = 1/2g. Hence, we have proved the first claim. Thus we have
1\ 15 1
maxW¥q(t) = ¥ (—) == ) — (3.10)
ter \2q Q;sin’é(%+r)

Separating the first and the last summand in the last sum, wvaseaLemma A.7 since — 1/(sinu) is
convex on the interval [Gr]. We obtain

1 1 1 (932 dt
maxW¥q(t) < —— + — + = —_—
teR asingg gsinZ(q-3) dJuz  sinZ(3+1)

2 2 2 2q

= — Iog cot— — I og—
qsm—q 2q gsing 2 7r n’

The last inequality is obtained from the fact that §(pt< 2—7? Sinceqsinzlq > Z—f% = V2 (note, that
g = 2) we finally have

rpE%x‘I’q(t) < logq.
|

Remark. In particular, one can easily calculate that ma¥»(t) = V2 and maxg ¥3(t) = g As we
will see later, the value for max W»(t) is not suficient for our further studies. Hence we have to treat
the casa = 2 in a separate way. At first, we study the cgse 3, which allows us to state the following
lemma.

Lemma 3.8 For g > 3, we define)q by d'v = maxcr ¥q4(t). Then we have for g 4

log5
O<ng<ns and 0,4649< 73 = % ~1<0,465 (3.11)

Proof. By Lemma 3.7, we havg’ = maxer Pq(t) < qsﬁ] r +2 Iog . Since sin is concave on the

interval (Qx) andq > 4, we can write sifg. = sin(2%) > 2 sinZ. Thus we obtain

q
2q

2
8 —log— — gB.
23|n’—§+7r g;r g

q’]q _ q’].’i <
The function ing on the right hand side is decreasing &pe 4 and is approximately-0,004 < O for

g = 4. Hence we get the desired inequality in (3.11). [ |

We also need a generalization'g§ in order to handle the casg> 3.

Definition 3.4 Let q> 3and2 < R < q with R| . Then we define ford R

Wor(t) = é > ¢ (t+ %)

I<r<R

Lemma 3.9 Ifg > 3, R| g and2 < R< g, then we have

max¥qr(t) < R®
teR q,R()

wherens is defined in Lemma 3.8.
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Proof. We begin the proof with reducinfq r to the known functiont.

sinzqt| 1 ry_ R
& 2 en(t+ ) = SeanRITR) < vrh)

R
qu,R(t) == ‘
q 1<r<R

The last inequality follows from the fact that,r < g/R. We split the proof of this lemma up into two
parts. First, we consideR > 3. In this case, we have already enough information to geteaired
result. Using Lemma 3.7 and Lemma 3.8, we obtain

lPq’R(t) < PRr(t) < R < RE.

Assume now thaR = 2. Since'¥ is periodic of period 12 and satisfie®¥q> (1/2-1t) = ¥q(t), it
sufices to look at the interval [(%] To be able to find an upper bound, we split it up into threagar
First we consider the interval 1%%] From the initial estimation, we know that

Wg2(t) < Wo(t) = cosnt + sinnt.

Hence, wo obtain (note, thgt> 4)

. [ . 3
max Wqo(t) < max(cosnt + sinat) = max V1+sin2tt < /1+sin - \/j
te[0, 55 te[0, te[0,4:] 6 2

3q]

In the next step, we are interested 5%,[%4]. We know that¥,(t) < V2 andgog is decreasing on [(%]
(see Lemma 3.1). Furthermore we can use $irais concave on [Or] and derive
2 22 2\ _2V2sinj
max ‘Pq,g(t) < max —goq/2(2t)‘P2(t) —goq/z( ) 3
L4 EBL q 3q q sin2

2«/5 sing _2v2v3g _ (3

q —sm6 q 4 2

q6

On the remaining interval, we have

2 1 2v2 1 22q 3

max‘P t max — 2t)Wao(t) < max < - <4/

i q2(f) < s q<>0q/2( )¥a(t) 9 dihSnzt g snZ S q 4 >
Slnce\[ <1,23<1,38< oraal = = R, we are done. m
Lemma3.10Forg>3,a¢eR,acZ 0<6 <4, k|q'and kt g, we have

Y, Fah)l < kg IR (a, o). (3.12)
0<h<q/l

h=a modkd’

Proof. If 1 = &, then the conditiork | g*~° impliesk = 1 and the statement holds trivially. Af> &,
then we definaly = (¢, kof) andu, = o’ /dy whenever < 8 < 1. Additionally we defingoy = dg/dg_1
and it is easy to see that the following claims hgdgis an integer satisfying, | g andpg < g. Indeed,
we havedy_1 = (1, dy) | dy which implies thatoy is an integer. Sincely_1(og,q) = (dy, q0h-1) =
(o, ko, o, kef*1) = dy = pedy_1, We obtain thapy | . Finally, if we assume thaty = g, we see from
the last equation that has to be a divisor df. This contradicts our hypothedist k and proves the last
claim.
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The main idea of the proof is to find a recursion. Fet 6 < A, we can write

> Feha)= > IFe@a+ud,a)l= ) IFg(@a+ Uppdo-1,a)

O<h<qf O<u<uy O<u<uy
h=a moddy

23 IFe@+ veyg.a)l

O<v<quy-1
v=0 modpy

()

= > D, IFo@+ (u+wip)ds 1, a)l
O<u<ug-1 O<w<q

u+wWuy-1=0 modpy

In (x) we replacediog by v and used thgbguy = quy_1. In (x+) we employed the Euclidean algorithm
to obtain the last expression. Sindg1(pg, Us-1) = (g, ") = (o, kef, oY) = dyg_1, we see that
(09, Ug—1) = 1. This implies thatuy_; has an inverse modulg (sayUy-1). Thus we can rewrite the
conditionu + wuy_1 = 0 modpg tow = —ully_1 — rpy, Where 0< r < g/pg. Indeed, this follows from the
fact that we have originally & w < g. Noticing thatug_1ds,_1 = o’ and thatF,_1(., @) is periodic of
periodg’~1, we obtain by (3.2)

S Fhal= Y Fea@+uda) Y 1¢4a_31%&1_w)

0
O<h<q’ O<u<ug-1 0O<r<a/pe 9 q 9
h=a moddy w=—ullp_1—r g
a+ Uudy_y — Ullp_19"*
= Z |F9_1(a+ Udg_l, cx)l qu,q/pg (cx - 2 . (313)
O<u<ug-1 q
By Lemma 3.9, we obtain
D, Fuha)<p™q® > IFa(ha)l
O<h<q’ O<h<g??t
h=a moddy h=a moddy_1
lterating this process — ¢ times, and noticing that; = kof, we get
Y, Faha)l <ppli - PP F (8, @),
0<h<q’l
h=a modkdg’
But since
gy A d_kd
Ps+1:""PA ds d1 0 7 ,
we have proved the desired estimation. [ ]

If gis a prime, therk has to be 1K | g*=° butk 4 g). In this case, the proof is much easier. We have
do = (f,q°) = ¢ for all 6 < 6 < A and thereforg, = 1. Hence, we consider the functidifyq = ¥q
in (3.13). But this implies, that we get the better consigrginceq™ = max Wq(t).

We will see in Chapter 5 that the crucial point in this lemmthi matter of fact that we have (3.12) with
n3 < 1/2. Here we see the reason why we cannot use the same procedqre 2. If we definedy, in
the same way, we would have the same inequality wite: 1/2. The next lemma gives us an answer,
how we can deal with this problem. Actually, the simplifiednfoof the Fourier transform in casg= 2
helps us to obtain the following statement, where we defiria a completely dierent manner to get a
similar result.
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Lemma 3.11 For g = 2 we define;, by the equation
272 = (2+ V2)Y* (in particular 0,4428< 1, < 0, 4429.
Thenwe have foralk e R, ae Zand0<d < A

> IFalh )l < 2202 (h, o)

O<h<2t
h=a mod 2

Proof. If 2 = 0 we havgFq(h, )| = 1, and the desired inequality holds trivially.Af> 1 (3.2) allows us
to write

4
Fath.o)l = | | Icosr(a — h277) = | cosn(a ~ 2 )IF-a(h. ).

=1

Hence, we getfor& 6 < 4

D Fuahe)= > Fuaha)l+ > Fuah+2'0)

O<h<21+1 O<h<2t O<h<21
h=a mod 2 h=a mod 2 h=a mod 2
= Z IFa(h, @) (|COS7T (cx - hZ_(’l+l))| + |Sin7r(a - h2_(’1+1))|).
O<h<2?
h=a mod 2
We obtain from cosx| + |sinX = VI +]sin 24 < V2 that
D Fuahe)< V2 Y Fiha). (3.14)
O<h<21+1 O<h<2?
h=a mod 2 h=a mod 2

Applying this inequalitya — ¢ times would again yield an exponent2l Hence we iterate the recurrence

relation a second time and can write f8ry_, o111 [Fai1(h, @)l
h=a mod 2

Z IFa(h, @) (|COS7T (a - h2_(ﬂ+1))| + |sin7r (a - h2‘(’1+1))|)

O<h<2t-1
h=a mod 2

+ > IFah+2 )l (|COS7T (@—(h+ 2*-1)2—(ﬂ+1))| + |Sin7r(a —(h+ 24—1)2—(ﬂ+1))|)

O<h<2t-1
h=a mod 2

= >, [Fua(ha) (|com (a —h2™?) (|c057r (o = h2 D) + |sing (o h2‘(“1))|)

O<h<2-1
h=a mod 2

+ [sin (o — h2?)| (‘COSﬂ' (o= h2 D — 1/4)| + [sin (o — h2 4+ 1/4)])).

Using again [(cosx| + |sinx))? = 1 + |sin2x and its conclusiorjcosx + |sinX < V2 as well as
(Icostla + | sind|b)? < a2 + b2, we obtain

|cos;r (a- h2‘*)| (|cos:r (e - h2‘(“1))| + |sin7r (e - h2‘(“1))|)

+ |sin7r(a - h2‘”)| (|cos:r (@ — h2 (D) - 1/4)| + |sin7r(a — h2- D) _ 1/4)|)

< \/(1 + [sin 2t (& — h2-+D)|) + (1 + [cos 2r (& — h2-+D)|) < Y2+ V2
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Hence we have derived

Y, Fuaha)l <@+ V2" > Fraha)l

O<h<2tt1 O<h<2t1
h=a mod 2 h=a mod 2

Applying this inequality[”—g‘sJ—times (and ifA — 6 is odd (3.14) one more time), we finally showed the
desired estimation. ]

Average estimates of second order

Using Lemma 3.6, we can give an upper bound of the followirgraye of second order

IFah, @)

0cheg! |sin e
hz0 modq

Before we can state and prove the exact result, we illustnadaiseful observations.

Lemma 3.12 For every g= 2 and te R, we have

> ¢ (t + é) = o~ (3.15)

O<r<q

Proof. Writing ¢4 again as a geometric series, we obtain

ZAlg)- Z 2 el

2

O<r<q O<r<q
= Z Z Z e((v— u)(t+ L))
0<r<q0O<u<q O<v<q q
1 v-u
=q > > e-ups > e(—r) = o~
O<u<q 0<v<q q 0O<r<q q
Indeed, by Lemma 1.2, we get the last equality sip¢e — v only if u = v. [ ]

Lemma3.13 Letg> 2, ae Zand0 < 6 < 4. Then we have

D IFaha)P = IFs@e)’. (3.16)
0<h<q/l
h=a mod ¢’

Proof. We observe, that fat > § by Euclid’s algorithm

DRt = > > IFah+rgth )P

0<h<q! 0<r<q o<h<g'-t
h=a modq’® h=a modg’®
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Using the recursive definition ¢F y(h + rg*2, @) (see (3.2)), the periodicity of the Fourier transform
and (3.15) we get

5 ror 3 eord S8}

O<h<q? O<h<gt? O<r<q
h=a modq’® h=a mod ¢’
= > IFuaha)l
O<h<qt?
h=a mod ¢
Applying this equalityd — 6 times, we obtain (3.16). ]

The proof of the following lemma, which gives us the desir@drage estimate of second order, is
different from Mauduit’s and Rivat’s proof in [33]. It followséhdea of Drmota, Rivat and Stoll, where
they showed an analogous resulfii] (see [15, Corollary 6.5]).

Lemma 3.14 Letq> 2, @ € R such that(g— 1)a ¢ Z and ac Z with (a,q) = 1. Then we have fai > 1

2
IFa(h, @)] < q-Cal(@-Dal) (3.17)

ha
0<h<q’ |sm o

hz0 modq

where ¢ = #f)gq (1- 5%) and0 < cgli(q — Dedl? < 1.

Proof. We writeah = ig* + j, where 0< j < ¢! in a unique way, since & h < '. Becaused,q) = 1
andh # 0 modq, we havej # 0 andj # 0 modg. Hence we get
1 1 1 1 qt 1

= < <
|S|n”—h‘"‘ |Sln7rqu+J 27 ql” 2 min{j, g - j}

|sm udl

Hence, by writing agaim for j, the left hand side of (3.17) is bounded by
q Z _IFath, o)

minth ol — h
O<h _minth, gt — h}’

Let M < g' be an integer. Using Lemma 3.6 with as defined there, we can write

IFa(h, @)I? P q Z IF(h, @)? . Z &7 /2426l (A-1)elA
s _ T - Yo
0<h<q |sm’fq_hla 2 ot min{h, g* - h} odmeat minth, g! - h}
hz0 modgq min{h,q'~h}>M min{h,gt-h}<M
a1 2 | /24 - 2c4l(g-DalPd
< |u D IFah )P + € /% 2M
O<h<qgt

< qA% + g-2ealla-DalP) g

ChoosingM = g&l(@Del’4 \we obtain

2
Fath )" o(t-call(a-Dal)

ha
O<h<q’ |sm e

h0 modq

The inequalities G cql|(q - 1)e|? < 1 finally follow from the fact that§— 1) ¢ Z and||t|| < 1/2 for all
teR. [ |
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3.2 Fourier Transform of e(f,.(.)

As we will see in the proof of Gelfond’s problem on the sum @fidi function of squares, itisn't flicient
to study the truncated functiofy. Therefore we only use digits of squares from a specialvatei~or
1 < 5 < A we define the double truncated function

fra(n) = fa(n) — f,(n).
In this section, our main interest lies again on the disdretgrier transform, but this time of &(,(n)).

Definition 3.5 Letq> 2, @« € Rand1 < n < A be integers. The function,f(., @) is defined for all
he Z by

Fpa(ha) = % Z e(f,a(u) - hug ).

O<u<gt

Using the Euclidean algorithm, we can write= g7k + | for all 0 < u < ¢!, where 0< k < g7 and
0< 1 <. Since this implied, ; = fy(k), we get

Futa) = Y 3 et -t

Osk<gt=—n O<l<q?

—hl
~Fuataa? 3 e )

O<l<qr

and hence
IFpa(h, @)l = [Fasy(h, a)lg g (hg ™). (3.18)

This fact allows us to prove the following two lemmas, whidfegus upper bounds for sums of the form

> IFaha)l.

0<h<q/l
h=a mod ¢’

In the first Lemma we havé = 0, where we can only show a trivial bound. In the second lenwes,
haves > 1 — n, which allows us to give some better estimates.

Lemma 3.15 Leta be a real number and < n < 4. Then we have

D IFpa(ha)l <qna'™".
O<h<gt

Proof. Employing the Euclidean algorithnin (= kg™ + |, where 0< k < g7 and 0< | < g*™) and
using (3.18), we can write

S Futhai= YN |Fi_n(kor‘—"+I,a)|q—"soqn(quz+')

O<h<qgt O<k<gt—n O<I<q?

| k
- Z |F/1—77(|’a')|q_n Z ("4 (a + &) .

O<l<gt- O<k<q?
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By Lemma 3.7 and the trivial estimatiofi,_,(l, @)| < 1, we finally obtain

Y Fpatha)l= > IFay(.a)¥a(a™) < loga'q" ™ <q ng'".

O<h<gt Oo<l<qgt-
[ ]
Lemma 3.16 Letae Z, a e RandA —n < 6 < A. Then we have
Y IFratha)l <q na ™ egris(@q)Fay @ o)l (3.19)
0<h<q/l
h=a mod ¢’
and
DL IFpalha)l <qnlFa @)l (3.20)
O<h<qg?!
h=a mod ¢’

Proof. Since by assumption — n < 6, we haveF _,(a+ 9°)| = |F,_,(a @)I. Thus we can write

a+lqg°
> Fuhe)= )] |F,1_,7(a+|q6,a)|q_"goqn( q)

q/l
O<h<q? O<l<qgt-d
h=a mod ¢’

_ a |
= |F/1—77(aa @)|q 7 Z ("2 (@ + W)

o<l<git-

Since 0< 1 -6 < n,we have foralt e R

et +1070) = pgr s (@ t)pqs (t + 1g7HD),

Thus, we derive (using again Lemma 3.7)

A a\ - a I
Z IFpa(h, @)l = [Fasy(a a)lg 7 690q'7-11+5($)q @-5) Z 90qf1-6(—,1 + W)

O<h<qt O<l<qt-9 “
h=a mod ¢’

1 a a
=q 4 6g0qn—,1+5 (E) \Pq/l—d (@) |F4_,,(a, a)|
8 A a
< log g’ q " P pges (@)'F”‘”(a’ a)|
N a
<qnq 4 690qn—/1+6 (E) IFa—p(@ @)l

By Lemma 3.1, we haveq,rm(acr(;) < g4, Thus, (3.20) is a direct consequence of (3.19). =

We conclude this chapter with presenting two lemmas, whiitplay a crucial part in Chapter 6.

Lemma 3.17 Letae Z, meZ, a €e Rand0 < § < 12 — 5. Then we have

D IFahe)Fay(h+ma)l <q1Fs(@ a)Fs(@+ma)l.
0<h<q/l
h=a mod ¢’



3.2 Fourier Transform of @f,,,,l(.)) 36

Proof. First, we employ the Euclidean algorithih £ kg'™” + |, where 0< k < ¢’ and 0< | < gq'™).
Here we note that = a modq’ is equivalent td = a mod¢’, since by assumptiofi < 1 — . Thus we
can write

D R aF i hema)= > 3 Fuka ™ +1a)F kg + 1+ ma)

O<h<q/l 0<|<q/l—r] 0<k<ql]
h=a mod¢’ I=a mod ¢’
_ Kot + |
= Y FuaFat+ma” Y eq (T)
O<l<g*™ O<k<q?
I=a mod ¢’
I
= Z “:/l—)](l, G.’)F/l_n(l +m, (}’)|\qu ($)
O<l<gt™
I=amodq’
Therefore we get by Lemma 3.7 and the Cauchy Schwarz ineguali
Z IFya(h, @)F - (h+ m a)| < logq” Z IF 1y (1 @)F (I + M, )|
O<h<q! O<l<gt
h=a mod ¢’ I=a mod g’
172 1/2

2 2
<qn| . IFay(a)l > F(+ma)
0<|<q/177] 0<|<q/177]
I=a mod g’ I=a mod g’

<qnlFs(a a)Fs(@a+ma)l.

Lemma 3.13 finishes the proof. [ |

Lemma 3.18 Letae Z, a e RandA —n < 6 < A. Then we have

Y, [Faa(h.@)Fpa(-he.a)l <q n

O<hy,ho<qt
hi+hy=a mod

Proof. We can write

> P aFa-hpa)l= Y Fu-hea)l > [Fya(ha)

Oghl,h2<qﬁ O<hy<qgt 0<h1<q’1
hi+hy=a mod hi=—hy+a mod ¢’
<qn ), IFpa(-he,@)Fi(-ho+aa)l
0<h2<qi

To obtain the last inequality we employed Lemma 3.16. Fnalemma 3.17 withs = 0 yields the
desired result. |



Chapter 4

The Joint Distribution of the Sum of Digits
Function

In this chapter we want to prove Gelfond’s conjecture comiogr the joint distribution of the sum of
digits function. In particular, we show Kim'’s result in thase where the arbitraryadditive functions
are replaced by sum of digits functions. We follow Kim’s présee [28]), but obtain a better error term,
since we can use some special properties of the sum of digitsion.

4.1 Main Results

As in the proof of Gelfond’s theorem, the crucial part is apaential sum estimate.

Theorem 4.1 Letq be an I-tuple of pairwise coprime integers satisfying>g2, anday, ..., a be real
numbers such thdt); — 1)e; € R\ Z for at least one index i. Then we have for all positive integer

N-1 (|
Z e{z @jSy;(N) | = Og.i(N*),
n=0 j=1
o 12
whered = max<j« Hz(gélzllgg‘gj 0

The proof, which we are going to show in Section 4.2, is orgeahias follows. First we use van der
Corput's and the Holder’s inequality in order to smooth shens. In doing so, we obtain expressions of
the formajsy(n + K) — ajsq(n). If [I(0; — L)ejll € R\ Z, we show that the sum overandk of such
terms is small (see Proposition 4.1). The main idea thergby find upper bounds of some correlation
functions (Lemma 4.1 — Lemma 4.5).

Before we start the proof, we present the solution of Gelfopdblem, which is a direct consequence
of Kim’s result.

Theorem 4.2 (Kim [28]) Let g and m be I|-tuples of integers satisfying;,qn; > 2 for each j and
(g,9;)) = 1fori # j. If we setd = (mj,q; — 1), then we have for all positive integers N and for
any I|-tuplea of integers

#O<N<N:s,(n) =agmodmy,..., (N =a modm}
:{ e gy + OqI(NY™) ifa = aj mod (@, d;) for each i and |

0 otherwise

whered = 1/(2402(log @)n?) with g = maxq; : 1 < j < |} andm=maxm;: 1< j < I}

37
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Corollary 4.1 Letq andm be I-tuples of integers satisfying,qn; > 2, (m;, qj — 1) = 1 for each j and
(gi,qj) = 1fori # j. Then we have for all positive integers N and for any |-tuplef integers

#{O<N<N:su(n)=agmodmy,...,s4(N) =a modm} =

N
+ Oq (N,
m " Ca(NT)

where = 1/(2402(log g)m?) with g = maxqgj : 1 < j<l}andm=maxm; : 1< j <.

Proof (of Theorem 4.2). Let S(N) = #{0 < n < N : s,(n) = agmodmy,..., s (n) = a modm}.
If there exists a pair of indicelsand j such thata; # a; mod (@, d;), thenS(N) = 0. Indeed, let us
assume that there is an integewith s, (n) = & modm and s;;(n) = a; modm;. Lemma 1.1 implies
thatsy (n) = n modd; ands; (n) = n modd;. These congruences are also true moddlai). Thus, we
have

a=5(=n= qu(n) = a; mod (d;, d;),
which proves thaS(N) has to be zero.

Let us now assume that = a; mod (d;, d;) for all indicesi and j. Using Lemma 1.2, we can write

N-1 | 1mj—l hj
=217 2 e[t -] |

Setting

H={h=(hy,....,h):0<h; <m; - 1foreachj},
Ho={h=(hy,....,h):0<h; <m;—1andm;|d,h;for eachj },
we get
N-
SN = — ZZ {Z L (s, () - )]
': n=0 heH =1

L K.
m[ Z [ —(sq,(n) aj]+2 > e [Z%(sqjm)—aj)n. (4.1)
=1"" =1 ]

J heHo n=0 heH\Hp j=1

To estimate the first term in (4.1), we have to consider th&-getnore accurately. Since the condition
m; | hj d; is equivalent torfy;/d;) | hj, we can writeHg in the form
Ho=1{h=22n,,.... ) :0< N <dj—1foreachj}.
da d I

Hence, setting’ = {h" = (h,...,h) : 0 < I} < dj - 1 for eachij}, we have

N r
5 {5 Biwin-s]- 5 5 Hn-a)]

heHop j=1 h’eH’ j=1
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Since, by Lemma 1.15; (n) = n moddj, we can replacey, (n) by nin the last sum. We obtain

ZZ [Z:]—"j(sqj(n)—aj)}Nz__]lhzf]{/e[_z']h—’:(n—aj)% ]l_[ dZ (h:(n a,)]]

n=0 heH, \j=1 n=0 j=1|M=0

1
—
o
N
z
AN
—_— o
2|
2
DM
D
—
o| =
~~
>
|
o
N
N—

|
{ﬂ d,-]#{o <n<N:n=aj; modd; for eachj}.
j=1

The last equality is a consequence of Lemma 1.2. By our assamf = a; mod (d;, d;)) and the
Chinese remainder theorem (Theorem A.4), we obtain

> 3 el s -a) =[[ 12—y * o)
M & e, M J i1 M J\lem (dy, ... d)
N dyeed

“ o miom@n ) oW

If we can show that the second term in (4.1DEN1), we are done. The conditidne H \ Hg implies
that there exists an index such thaim; 1 d;j h;. This condition is equivalent thj(g; — 1)/m; € R\ Z
and we can employ Theorem 4.1 withh = h;j/m;. Settingq = maxq; : 1 < j < I} andm = maxm; :
1< j <1}, we havelhj(g; — 1)/m;|l > 1/mand logqg; < logq. Thus, we have

I
h.

with A = 1/(2402(log @M¥). Hence, we get the desired estimation

N-1
= Oq,l (Nl_/l)a
n=0

1

LY Y. [2—(%@) ao] W — e{‘iﬂa‘]NZ {Z sqj(n)]

1! i=1 Mj 720 hemvry =1 =1 My herv, = ') )0
1-2
= Oq,I(N )’

and the proof is finished. [ |

4.2 Proof of Theorem 4.1

The main part of the proof of Theorem 4.1 is the the followingrelation estimate, which is a quantita-
tive and more general version of a result of Bésineau [3].

Proposition 4.1 Let g, N and K be positive integers satisfying @ and VN < K < N. Furthermore,
leta € R with||(g — 1)a|| € Z. Then we have for all positive integers N

1 &
K 2

wheres = ||(q - 1)e|[?/(20 logq).

2

e aSq(n +k) - asy(n)| =ON™),

0

=z

-1

Z|H

>
1l
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Throughout this section, we suppose that 2, N andK are integers and € R. For brevity, we write
f(n) = asy4(n) where we can assume that R\ Z. The main point of the proof of this proposition is the
accurate study of the correlation functions

Dn(K) = e(f(n+k) - f(n).

2=
M=

0

>
1l

X =
M=z

D N(r) = On(K) On(K +T).

0

>
1l

Lemma4.1 Letk> 0andO < r < g be integers. Then we have

Dgn(gk+T) = e(ra)q—gr DN (K) + e - q)a)é Op(k+ 1).

Proof. First we can assume thatQr < q— 1 (if the equation holds for = 0, it also holds trivially for
r = g). Using the Euclidean algorithm and the fact teats completelyg-additive, we have

-1N-1
gNOgn(gk+ 1) = Ze(f(qn+ j+agk+r)—f(gn+j))
j=0 n=0
g-r-1N-1
= ef(n+ K+ f(j+r)—f(n) - f(}))
j=0 n=0
g-1 N-1
+ ef(n+k+1)+ f(j+r—q)— f(n)— f(})))
j=9-r n=0
q-r-1

N-1
= > e(f(j+n) - f(J) > elf(n+Kk - f(n)
n=0

j=0
N-1

g-1
+ D e(f(j+r—a) - (i) D ef(n+k+1)- f(n).
=q n=0

j=q-r

Sincesy(n) = nfor 0 < n < g, we get

g-r-1 q-r-1

N e (40 - 1) == Y efa) = efa) =",
q & q & q
and
19 15 r
o D err-a=f()=3 D elt ~da) =e( - da);.
j=or j=a-r

Hence, we finally obtain

Dgn(gk+T) = e(ra)q—c_]r DN (K) + e - q)a)é Op (K + 1).
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Lemma4.2 Letr=0orr = 1. Then we have

Dk gn(r) = efa)dr Dk n(0) + e((r — Q)a)ur Pk, n(1) + e(( + Qa)vr Pk, n(1) + O(1/K),

202-3r+1 _ P+3qr+3r-1

q?-3qr+3r-1
g K = 602 ez -

wherel, = o7

andy, =

Proof. Using the Euclidean algorithm and applying Lemma 4.1 yields

0-1K-1
gK Dk gn(r) = Dgn(gk + ) Pgn(gk+ j + 1)
=0 k=0
g-1K-1 j
_ (e(Ja)— Du(9 + €(( - o) ok + 1))
j=0 k=0
((e((J 1) I a9+ e(( + 1 - q)a)— Ou(k+ 1)))
Thus, we have
S(a-ia—i-r ji+r\s
AKPacan() =efa) . J )Z TN (k)
o qa 99 )&
q-1 K-
re(f-qa) Y ILILT Z () Ou(k + 1)
j=0 q q k=0
q-1 _ r K-1
re( +ga) S 197 Bu(k+ 1) On(K)
j=0 q q k=0
Cjj+r'S—— —
+e(ra) Z 1= (on(k+ D) @n(k+ 1) - Dn(K) On(K)).
j=0 q q k=0

Calculating the sums ovaryields

20° - 3rq+ 9 & ——
GKDa an(1) = el =—— ), Bn On(K

3 4+ 3rq2 + 3rg — g
+e(( - ) q6q2 a qu>N(k)<I>N(k+1)
- 3rg%+3rq —q K K
v+ )T o ZcDN( + 1) (k)

2q —3q +3rq +q-3rq

+e(a) o7

K-1
D (Onk+ T @n(k+ 1) - D) D (K)).
k=0

Since the last sum ovéris a telescoping series afibly(.)| < 1, the last term is< g and we obtain

Dk, gn(r) = e ) Pk n(0) + e( — a)ur Pk, n(1) + e((r + Qa)vr Pk, n(1) + O(1/K).
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The next step is to boundl gz (2n(r) for i = 1. Matrix calculations will provide us an upper bound for
arbitrary positive integers

Lemma4.3 Letr=0orr = 1. Then we have
|Dgek, en (NI < pr|Pk n(O) + o[k, N (L) + O(1/K),

. . . . — 2
wherep, ando are non-negative integers satisfyipg+ oy < 1 - w.

Proof. By Lemma 4.2, we have
(DqZK’ qu(r)
= e a)Ar Pk gN(0) + e((r — Qa)ur Pak, gn(1) + e( + Q)a)vr Pgk, gn(1) + O(1/K)
= e(ra); (Ao®x n(0) + e(-ge)uo®k n(1) + e@)vo®k n(T) + O(1/K)) + O(1/K)
+e(( - da)ur (e@) 1Pk N(0) + e((1- Pa)ur Pk, n(L) + e((L+ Qa)r1Dk (L) + O(1/K))
+ e((r + Pa)ve(e@) 1Pk, N(0) + e((1— Pa)ur®k, N(1) + e((L+ Qo)1 Dk n(D) + O(L/K)).

If we set

pr = |Ardo + e(=(q - La)ur A1 + €(@ — L)a)vr Al
or = Arpo + €((0 — Da)urpr + €(@— L)a)veval + 1Arvo + €(=(q — Da)urvi + (@ — Da)vepal,

we obtain (note that & A, ur, vy < 1)
Dok, qu(I’)| < prl @k, N(O)] + o [Pk N (D) + O(1/K).

To finish the proof of this lemma, we have to check the additigmoperty ofor + 0. In order to be able
to do this, we need the following elementary result. For aal numbers > b > 0 andd, we have

la+ be@)| < a+ b—4bjj6|2.
This follows immediately from

4a(a+b-la+be@)l) > (a+b+la+be@))(a+b-la+be@))
= (a+ b)® — |Ja+ be@)|* = 2ab(1 - cos(2b))
= 2ab(1 - cos(2||6]])) = 4ab(sinl|6||)?

2 2
> 4ab(;) 7?||6)1° = 16ab)6)|°.

Now we are able to prove the inequaljty + o < 1 - ||(q — 1)e||?/4. First, one can readily check that
Ar + ur + vy = 1. Furthermore, we havéy > A1 > 1/2, u1 > uo > 1/8 andA; > yu, (note thatg > 2).
This impliesA; Ag > urA1 and we are allowed to use the just obtained result. We have
pr < [Ardo + e((1- Q)a)ur dz| + vr Aa
< Ao + pr s = 4ur Aall(@ = Dl + veds.

Sinceu,A; > 1/16, we obtain

(9 - 1)01|I2.

por < Ao+ prdy + vl — 2
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The constandr, is trivially bounded byA,ug + prps + veve + Arvo + urva + veuz. Hence we finally get

(g — 1)l
Pr+ 0y </lr(/10+,uo+Vo)+(/Jr+vr)(/11+,ul+v1)—%
lI(@ = L)erl®
- AZ el
4

Lemma 4.4 Let a b, c and d be non-negative real numbers satisfyinglax 1-candc+d<1-¢
for somes > 0. Let

(i‘ 3) =(g g‘i) (i > 1). 4.2)

Then we have A B; < (1-¢)' and G + D; < (1 - &)' for all positive integers i.

Proof. We prove this lemma by induction an Wheni = 1, the claim holds by assumption. Suppose
now, that the result holds for all integdars 1. Since

(Ai+1 Bi+1):(Ai Bi)(a b)
Cis1 Disz) \Gi Dij/\c dJ’
we have

A1+ B = @+ DA +(C+d)B < (1-&)(A +B) < (1-¢)*,
Cis1+Disi=(@+b)Ci+(c+d)Di < (1-&)(Ci + D) < (1-8)*,

and the desired result is proved. [ |

Lemma 4.5 Forr = 0, 1 and any positive integer i we have

Dok @n(r) = O(G_Ti) ,

_ l@=1)al?
WhereT = T
Proof. Let
M = (ﬁi gi) Mi = (é gii) (i > 1),

wherep, ando-, are defined in Lemma 4.8 € 0, 1). We have by the same lemma+ o < 1 — 7 with
7= (q- 1)q||2/4. SettingP; = [®gak @n(0) and Qi = @ik zn(1)l and applying Lemma 4.4 with
g?~2K andg?-2N in place ofK andN, we obtain fori > 1

(o) <167+ olax )

where the inequality is to be interpreted componentwisgaling this estimatetimes, we get

(&)< (&) B ol ()

1=

N
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SincePy < 1 andQq < 1, we have by Lemma 4.4

i P —7i i 1 —7(i—])
) ey

The inequalitye” /g7 < 1/2 (note thaty > 2 andr < 1/16) implies

I gli-) o g .

_ i€ (_) <
z : 2(j-1 z : 2 ’
< q (i-1K K = q

and we finally obtaimdyzy 4zn(0) < €™ and®gay gzn(1) < €. n

Proof (of Proposition 4.1). By assumption we have/N < K < N. Furthermore, we can assume that
N > g™®. If we set

(4.3)

_ | 2logN
~ | 9logq |’

thent > 1 andg® < VN. Hence there exist integeh8 > 1,L > 1 and 0< R S < g%, such that
N=g®™M+R and K=¢*L+S.
Next we want to show that

2t
D) ON(K) = Dapg () Dz (K) + o(qﬁ).

We can write

ON(K) PN (K) ~ Dz (K) P (KN < [ON(K) + Do (K] - IO (K) ~ Deep (K] + 21Im Dy (K) D (K)l-

The right hand side of the last inequality<s g® /N since

1 N- 1 ZM-1
DN (K) — P (K] = NZ e(f(n+1 - () - 7 Z e(f(n+K) - f(n)
1 1 ?M-1 1 N
= (N_th_M) > e(f(n+k) ~ f(n) + > ef(n+k) - f(m) (4.4)
n=0 n=%M
1 1 -*M _ 2¢2
SNoEm M TN <
and
1 N-12M-1
1M D (K) Dty (K)] = Iquzt—MZ Z e(f(n) - f(n+K) + f(m+k) — f(m))
n=0 m=0
1 1 ¢?M-1
=Im NthMn;M ;6 e(f(n) — f(n+Kk) + f(m+ k) — £(m))

2t
<~ _Em <
Nz ¢ M(N - g™M) <
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Hence, we obtain

X

-1
D (K) On (k)

D n(0) =

Xl

=0
1

IX??

2t
Do () P (K) + o(qw).

Xl

k=0

The same calculations as in (4.4) show that

1 KL 1 *L-1 202t
< 2 Pam(®) Oqam(k) - L Z D (K) D (K)| <
k=0
which implies
K-1 o*L-1 ot
1 1 _
= " Bam® Pk = s > D D (K) + o(q?).
k=0 k=0

Combining these results and using the fact that < K < N, we obtain

q2t
(DK’N(O) = (I)thL,thM(O) + O(W) .

By Lemma 4.5 we hav@gz_qy(0) = O(€™), wherer = ||(q — 1)al?/4. SinceN > g* andt =
[2logN/(91ogq)] (see (4.3)), we have

IogN<2IogN_1<t 2logN
5logg  9logq 9logq’

which implies

ot _ploaN r l(g-D)ai?
et <@ 5bgg = N “5logda = N~ 20fogq "

and
q_2t < —— N4/9 —1/18
N N 1/2
Sincel|(q - 1)«|?/(20logq) < 1/18, we finally obtain

2

1 K [N-1
Pn(0) = 2 D 1) e(asy(n+K) —asy(m)] = ON™),
k=1 In=0
wheres = ||(q - 1)«I?/(20 logq). n

Proof (of Theorem 4.1).For brevity, we writeg(n) = e(ZJ 0@ Sy; (n)). Furthermore, we set

N-1 | N-1
s=> e[z jSy (n)] = > g,
n=0 =1 n=0
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First, we use the van der Corput inequality in order to smdléhconsidered sum. In particular, we
employ Lemma 2.7 with = 1 andR = K := [NY®) |, We can write

|SI2<N|:K Z(l—%) > gmgin+ K.
k<K

0<n<N
O<n+k<N

Separating the case= 0 and using the fact that < N and (1- |k|/K) < 1, we get

2N
y

1<k<K

2N? 2N ——
ISP < =+ 2= 2, amgn+k

0<n<N-k

> mg(n_k)‘.

1<k<K k<n<N

If we changing the variable in the last term € n — k), we obtain

2N? 4N —
2
ISP<==+1 20| 2 g(n)g(n+k)‘. (4.5)
1<k<K 10<n<N-k
Let us assume thd > max@?,....q¥) > 2%. If we sett; = |2logK/logq;] andQj = qtjj, then we
have
g <K <K%gi' < Qj <K (4.6)

Letr = (r1,ro,...,n) be anl-tuple of integers. We define
Pr={neZ:n=rymodQs, n=r, modQy,...,n=r modQ]}.

Note, that by assumption the integgrsare coprime and therefore the integ€@gtoo. The Chinese
remainder theorem (see Theorem A.4) implies, that the sysfecongruences = r; modQq, ...,n=
r mod Q, is equivalent to a single congruence mod]][l;)zl Q;. Hence, we have

N

#0<n<N:neP}=— + O(L). 4.7)
j=1 i
Next we define
R={r=(rp,ro,...,n):0<r;<Qj-1forl<j<ly,
Ro={r=(rp,ro,....,n):0<rj<Qj-K-1forl<j<l}.

If n € Py with r € Ry, we have by definitiom = r; modqtjj and 0< rj +k < qtjj for1 < k< Kand
1< j <. Thisimplies (where; are appropriate integers, such that rj + uthjj)

[
gngn+k)=e Zaj (sqj(n+ k) — qu(n))]
j=0
= | D arj (s (1 + uja) +K) - s, + qutjj))]

=€l ) «; (SQJ(rJ' +K) - qu'(ri))] = l_[ e(“i (qu'(ri +K) - qu'(rj)))’

=1
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where we used thg-additivity of the sum of digits funciton. Hence, splittinge inner sum in (4.5)
according to the residue classromodulo Q, ..., Q) yields

D gman+k=>" > gmgn+k

0<n<N-k rerR Osn<N-k
neP;

|
> {g(n)g(n+k) [ Je(ei(sorj + 4 - sqj(r,-)))]
=1

reR 0O<n<N-k
neP;,

+ Z Z ll_[ e(ai (qu'(ri +k - Sql'(rj)))

reR O<sn<N-k j=1
neP;

|
>y {mg(m SR B CCICIGRINE sqj(rj)))]

reR\Ro O<n<N-k j=1
neP,

# 3 [ Tefor (st + 0 -s) Y, L

rer j=1 0<n<N-k
neP;

In order to be able to bound this sum, we use the fact|tfa}] < 1 and employ (4.7). Thus, we can
write

g(n) g(n + k)
0<n<N-k
| Q-1 N
<2 Z Z 1+ ]—[ Z e(aj (sq(rj + k) - sqj(r,-)))[l— +0(1)
reR\Ro o<rr]1€<Fr)\1—k j=1 r;=0 Hj:l Qj
N | |
<2 ) [ | +O(1)+Nl_[ Z aj (sg,(rj +K) - 5,(r)) + O ]—[QJ
reR\Ro Hj:l Qj =1
Using (4.6), we have
|
R\ Rol < ) #r:0<ri<Q-10#)).Q-K<rj<Q-1
J:
| |
<Sk[]a ZQﬁ Q.\M]—[Q.
j=1 1§J<I j=1 1<ig I<i<l

Since (again by (4.6) and the definitionkoj HI‘=1 Qj < K2 < N/K, we finally obtain

|
> gmen+k = N]_[ Z @ (54,1 +K) - sqj(r,)))+oq|()

0<n<N-k rJ =0

Hence, we get (see (4.5))

| 2
< 1_[— e (Sq;(rj + k) — 54,(r))) +Oq|(|\|l<)
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Employing Holder’s inequality yields

1/(1+1)

1+1 )
N

Ogi|—1.

| e

Using the fact thajQ;™ Zr i e(ozJ (sq,(rj + k) — 55,(r))) 1 < 1, we get

K

ISP < 4N? K1/(|+1)1—[[Z

J

Qi Z aj (55,1 + K) - 5,(r))))

2 1/(1+1)
2 _ aN2 S T N2
|SI> < 4N ]_[ Z —Z‘s (o) (8g;(rj + K) = 5,1p))) +oq,|(?),
=
Let us consider now that indeix say j = i, such that|(g; — 1)a,-||2/ log gi is maximal. By assumption,

this number is positive and we can employ Proposition 4.h Wit= Q;. Formula (4.6) assures that
V@ < K < Q. Furthermore, we can bound the other factgrg () trivially by 1. Thus, we obtain

|S|2 — O(NZQi—5/(|+1)) + Oq,l (NZK—l) ,

_ I(@i—=1)aill? ; ; . _ i Nnla@)
wheres = 201090~ > 0. Since the second term is smaller than the first oneQre K = [N 1=

(1/2)NY@) (note, that we have assumed that 2%'), we finally get

|S|2 _ O(Nz—a/(3|(|+1))) = Oq.| (NZ(l—é/(lzz))),

and Theorem 4.1 is shown. ]



Chapter 5

The Sum of Digits Function of Prime
Numbers

5.1 Main Theorems

The main contribution of solving Gelfond’s problem is théldaiing theorem, which gives a non-trivial
upper bound of a sum involving von Mangoldfisfunction and the sum of digits function.

Theorem 5.1 (Mauduit, Rivat [33]) Let g> 2 be an integer and a real number with the property, that
(@-1)a € R\ Z. Then there exists a constang(a) > 0, such that

Z A(n)e(asy(n)) = Oge(x70(). (5.1)

n<x

The proof of this theorem given in Section 5.2 — Section 5.8ue to Mauduit and Rivat [33]. Using
results Mauduit and Rivat obtained in [32] and Drmota, Rasad Stoll showed in [15] (see Chapter 3),
we are able to determine the constagfa) and get a simpler proof of Theorem 5.1.

The proof is organized as follows. In Section 5.2, we use ¥aun identity to handle the problem which
arises when treating sums of the fofa<, A(n)g(n). We transform them into threeftgrent sums that
are from type | and type Il. Sums of type | are in general edsiélandle and we deal with them briefly
in Section 5.2. Estimates of sums of type Il are much moffécdit to obtain and are the hardest part of
proving Theorem 5.1. Using the Cauchy-Schwarz inequality van der Corput’s inequality, we have
to consider expressions of the founsy(m(n + r)) — asg(Mn). The main idea in treating thisfierences

is to work with a truncated sum of digits function which does sum over digits of high weight and is
periodic. It allows us to use the results obtained in Chaptpout trigopnometric products. Adding the
obtained facts together, we draw the final conclusions iti@e8.5.

Before we start the proof, we present the solution of Gel®pdoblem concerning the sum of digits

function of prime numbers. Using summation by parts and Erppoperties of exponential sums (al-

ready studied in the first chapter), it is a direct consege@id heorem 5.1. Furthermore, we show that
the sequencer&y(p)) per is uniformly distributed modulo 1 for any irrational numher

Theorem 5.2 (Mauduit, Rivat [33]) Let g and m be integers 2 and set d= (q — 1, m). Then there
exists a constantqm > 0, such that for every & Z

#{p < x: pprimeand gp) =amodm} = %n(x; d,a) + Oq,m(xl“’qvm).

49
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Proof. By Lemma 1.2 we have
. 1 j
#{p< Xx: rime and =amodm} = — e(— —a).
p<X:pp 5(P) pZ; m0<Zj<:m —(sa(P) -~ 2)

Ifweputd=(mq-1), m=3, J=(tkm:0<k<d}, Y={0,.... m-\JI={knT+r:0<k<
d,1 < r <}, than we have fofj = kmf € J

1 ) _ e[ < o)) = e[Ksp) = of K
e(msq(p) = e(dm Sq(p)) = e(dsq(p) =e(5P|-
Indeed, Lemma 1.1 gives $g(p) = p modd, which establishes the last equality. Hence,
1 j 1 k d
Z m Z e(m(sq(p) - a)) = Z m Z e(a(p— a)) = EN(K d, a).
p<x jed p<x O<k<d
The last equality can again be derived from Lemma 1.2. If wetbarefore show that
1 aj i B 1-oqm
) o m)ng;e(msqm)) = O(x7m) (5.2)

whereoqm > 0, we are done. 19" = 0, which corresponds to the degenerated case wheg- 1, then

we have an error term equal to zero. Therefore we assume natd’ t+ 0. Puttingq’ = q%l we have
(d,n") =1, and hence fof = knT +r e J

@-Dj _da@knt+n) _ o dr
m dm m

¢Z.

By Theorem 5.1 and Lemma A.9, there exists a constg(/m) for every j € J’, such that
> e(Lsm) = o),
p<X

Puttingoqm = minjey oq(j/m) > 0 (recall, that)’” # 0), we get the desired estimation in (5.2). [ |

Theorem 5.3 (Mauduit, Rivat [33]) For q > 2 the sequenc@rSy(p))per is uniformly distributed mod-
ulol, if and only ife € R\ Q.

Proof. If o € Q, then the sequencery(p))per takes modulo 1 only a finite number of values and is
therefore not uniformly distributed modulo 1. If in retutre R \ Q, then for everyh € Z with h # 0 we
have @ — 1)ha € R\ Q and according to Theorem 5.1 there existéha) > 0, such that

D" A)e(hersy(n)) = Og g (xt-79),

n<x

Lemma A.9 allows us to write

5" efhs0) = 740 + (R,

p<x

which proves thatdsy(p))per is uniformly distributed modulo 1 (see Theorem A.3). [ |
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5.2 Vaughan's Method

In order to prove Theorem 5.1 we have to deal with sums of the {8, A(n)g(n), whereg(n) is an
arithmetic function. A classical method to handle such sgoes back to Vinogradov. The main idea is
to decompose the von Mangoldt function (or sometimes theitdfunction) judiciously into a sum of
a small number of other functions, i.e.

k
Z A(Ng(n) = Z Sj, whereS; = Z Z ambng(mn).
n j=1 m n

Traditionally, one calls the multiple sunt; including at least one “smooth” variable sums of type
I, the other sums of type Il. In general, it is mordhdiult to estimate sums of type Il. Vinogradov’s
method is often associated with sieve methods. Followidm B®. Friedlander [20], the sieve begins
with the sieve of Eratosthenes. This method is based on dyswhpervation. 11 not a prime number,
then it has a divisok +/n. Are all primesp < +/x known, then one can easy determine the primes
between+/x and x. You only have to cancel out (“sieve”) all numbers betweg¢xr and x which have

a prime divisorp < +/x. But it needed more than two thousand years until the sieVeratosthenes
has grown fundamentally. Subsequently Brun discoveredesoonsiderably more refined sieves and
amongst others, Buchstab, Selberg, Bombieri and lwanipcaved this theory. But with Vinogradov’'s
work, the sieve theory grew also in a somewhat distinct dac although the name “sieve methods”
is usually applied to the direction Brun initiated. Vauglgave an elegant formulation of Vinogradov’s
method, which was subsequently deepened by Heath-Browme $ther mathematicians who worked
on this method are Linnik and Gallagher. The sieve introduag Friedlander and Iwaniec (see for
instance [26, Theorem 13.12]) can be used to derive upperdsdior sums analogous to those of type |
and type I, but on dferent summation intervals. Mauduit and Rivat use a versimwk as Vaughan’'s
method (see for instance [26, Proposition 13.4]) to provecfém 5.1 which avoids the appearance of
divisor functions which cannot be bounded individually bipgarithmic factor. The main idea comes
from the following trivial identity forRg(s) > 1

4C) R4ON
- = F(3) = £'(9G(9) = L(IF(G(s) + {(5) | 75 — G(9) F(9)). (5.3)
£(s) ' (S) £(s)

whereF(s) andG(s) are arbitrary functions defined dRg(s) > 1. But if we choose foF andG also
Dirichlet series, comparing cfiecients gives us a decomposition &fn). Indeed, the corresponding
Dirichlet series ot (s)/£(s) is by Lemma A.4Y .1 A(n)n~®. Multiplying this decomposition witly(n)
and summing up Yyields a decomposition Xof A(n)g(n). In particular, we choose for £ u < x and
Regs) > 1

G()_Z#(S)’ F()_ZArEn)

n<u n<u

Note, thatG(s) and F(s) are the partial sums oj— respectlvely—% (see Lemma A.4) and that
’(9) = - Y ns1lognn~s. Hence, we can write (5.3) as

Sl (nm)s (mumpn)s (mmpn)s
ml<u u<m1
me<u u<mp

D A(n) _ Z An) Z p(m) log(n) Z HmA(My) Z (M) A(mp)

If we consider this equality with ¥ u < g by comparison of cd&cients and summing overfollows

> A(Mg(n) = S1-S; + Ss,

§<n<x
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where

Si= >, u(mlogg(mn),
m<u
X/g<mngx

Sa= D, u(m)A(mp)g(mimen), (5.4)
m<u
mMy<u
X/q<my Mmpn<x

Ss= > u(mA(m)gmmny).
u<m<x
u<ni<x
X/g<mm na<X

One can also derive this combinatorial identity withouihgsDirichlet series. Therefore we follow the
presentation in the book of lwaniec and Kowalski [26, Chap84]. We start with the relation

A(n) = E A(b)u(c),
b,c
bdn

which is a direct consequence of Lemma A.3 (wath 1). In order to obtain the desired decomposition
we need the following relation

Z A(d) = Z vp(n) log p = log 1_[ p?™ = |ogn. (5.5)

din pin pin

Let 1 < u < x/g. We split the sum up according to the sizeébaindc

AW = ), ABuE@+ Y, ADuE+ Y, AL+ ) AbKO).
b<u,c<u b<u,c>u b>,c<u b>u,c>u
bdn bdn bdn bdn

If n> u, we have by Lemma A.3

D, AOLE+ > ADW(©) = ) AD) Y (@) =0

b<u,c<u b<u,c>u b<u q n
bdn bdn
and by (5.5)
n
> ABHO+ Y ABWE) = Y 4@ Y. Ab) = ) u(@)log(3).
b<u,c<u b>,c<u c<u b|2 c<u
bdn bdn cn ¢ cn

Hence, taking these facts into account, we finally obtair (1)

A = Y u@log(2)- Y AGHO + Y ABME)
csu b<u,c<u b>u,c>u
cn bdn ban

Weighting byg(n) and summing ovex/q < n < xwe get the same representationzg)ﬁj‘<n<x A(n)g(n) as
before. Now we can state the key lemma for Theorem 5.1.
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1
Lemmab5.1 Let > 2 be an integer) < 81 < %% < B2 < lreal numbers and ¥ g%72. Let g be an
arithmetic function. Suppose that uniformly for all realmibers M< x and all complex numbers,ab,
with |aq|, |bn| < 1, we have

max Z gmn|<U for M < (type I), (5.6)
u<t<w M Cmem | g n<t
Z Z ambng(mn)| < U for X' < M <2 (type II). (5.7)
M<m<M g Fo<n< A
Then
Z A(Mg(n) < U(log X)%
X<ngx

q

Proof. As the preceding discussion has shown, we have

> A(M(n) = S1- Sz + Ss,

§<n<x

whereS;, S, andS; are defined in (5.4). We can choase- ¥*1, since 1< U < /X < x/q (note, that

X2 qﬁz-—llf2 > ¢%). The sunSy is of type | and can be estimated by summation by parts (se@rizef5).
We have

S S [log( x) ¥

m<u

g(mn) - f Z gmn S ]

Fo<n<d am X <n<t

Thus, taking the absolute value and splitting the sum uprdaug to the powers odj, we obtain

CECEDY DWECIEDY f o) <

m<u ql<n<x am —<n<t

< (logx) max (log x) Z g(mn)| + f Z (mn)th

M <m<M q—m<n< X M <m<M qm<n<t
Employing (5.6) we deriv&; < U (log x)°.

To boundS; we first observe that (see (5.5))

D, Hm)AM)| < > A(d) = logm
My, Mpsu dm
m=m

Therefore we get

Sad< D0 | D) smAm)|| > gmn| < > (ogm)| > g(mn).

m<u? ml mz;]lzl qim<n<% m<u? X g X
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Splitting again the summation up overaccording to the powers gfwe obtain

S,| < (log x)2 max Z Z g(mn)] .

X
<m<M qm<n<

Let Mo be a value ofM for which the maximum is attained. Mg < u (= %) oru < Mg < X3 we
can employ (5.6) in the first case or (5.7) in the second caderiveS, <« U(log x)?. In the case that
Xz < Mg < U? we can choose complex numbegs such that

DD amnl= > > ang(mn.

M
0<|'T\<M0 qm<n< qO <m<Mg qm<n<

Settingay, = 0 if m> Mg or m < Mg/q, we are able to change the order of summation and get

> D) gmn Z D0 angmn+ > > ang(mn

°<m<Mo qm<n< <n\M—0 ﬁ<m\Mo —<n< ,az Mo <meX
= D, 2, awmgmi+ ) ) ang(mn.
X X
Mo <n< 2 Mo qn<m\ _<”<h3|_ an<m<q

1 .
If we defineM; = - andM; = ,\’jl—‘(‘) and use the fact tha < Mg < U2 = X%t andx > g2, we derive

1 1
< x P <My < x2 <2 and ¥ < M, < x2q < ¥R

Thus we can employ the type Il estimation (5.7) to the first svith M = M; and to the second with
M = M, and we obtairS, <« U(log x)2.
To boundSs we write

S3 = log x Z Z ambng(mn),

u<m<X qim<n< X

wherean = u(m) andbn = o5 3 un A(M), satisfyinglam| < 1 and 0< by < o5 San A(d) = :ggz <
n=niny
1. Splitting the summation up ovemaccording to the powers gfwe obtain

1S3 < (logx)* max Z Z ambng(mn)| .

usM<j M<m<M X<n<

Let Mg be agaln avalue a¥l for which the maximum is attained. Uf< Mg < X3 we can employ (5 7). In
the case thatz < Mo 2 we can carry out the same procedure asSipnote, thavds < MO &

andx: < X9 < x3q < ¥2). Thus, we obtainSz| < U(log x)? and therefore finally

Z A(Mg(n) < U(log )%

§<n<x
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5.3 Sums of Type |

Lemma 5.1 shows that the key in proving Theorem 5.1 lies ineaghg upper bounds for type | and
type Il sums. Mauduit and Rivat treated type | sums using datktdeveloped by Fouvry and Mauduit
[18, 19]. They could give an upper bound of (5.6) with = 1/3 which allowed them to get a better
exponentog(a) in Theorem 5.1. In this work we want to show a shorter prooGetfond’s problem
and seeing that, we treat type | sums more crudely. If we ahgpsuficiently small, we can show a
negligible upper bound for type | sums in a much simpler wayrder to compensate this loss, we have
to get estimates of type Il sums for a bigger domain. Thisltesua worse exponerntq(a), but has not

a notable fect on proving Gelfond’s problem.

Proposition 5.1 Let g 2 be an integer and a real number, such thgtj— 1)a € R \ Z. Then we have
—1)a|2
forl< M < xLqun H
1 Salla-Dei?

max Z e(asg(mn)| <g X7,

X q
<t

MSIS™M M X

a q<m<M qm<n<t

where g = andO < ¢qll(q - 1)all? < 1.

2
127|Togq (1 q+1)
In order to be able to use results from Chapter 3, we need tlosvfog lemma.
Lemma 5.2 Let f be a completely g-additive function. Then we have feneg> 2, e R, N > 1

kI kI
el f(1) + —) @-1) (f(l)+ —) .
0<I2<N ( m Z 0<|Z<qv m

Iog N

(5.8)

Proof. Writing i = ['O%EJ we haveN = yq + N’ with0 < y < q-1and 0< N’ < ¢. Hence, ad is

completely g-additive, the left hand side is bounded by

5 o1+ 9] 5 of o0+ 040

O<l<yq O<I<N’
< Z e(f(l) + E) + Z (f(l) + —')|
<Y _ m
O<l<qg O<I<N’
Now we apply this procedure ' and after finite many steps we get our result. [ |

Proof (of Proposition 5.1). Taking the diference, it sffices to prove that

max, ), | ), elas(mn)

QM TS M M<m<M osngt

- cqli(a-L)all?
<q X z .

According to Lemma 1.2, we can write

Z Z e(asy(mn)| = Z %Z Z e(asq(l)+g)‘

%<m<M o<n<t M O<k<m O<l<mt
Kl
as() + —1||.
> elosi+ i

wed ¥y

E<m<M
%<m<M O<k<m |0<l<mt
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The first termM only exists whemntis an integer. Next, we employ Lemma 5.2

S efesm)|<m+ XD 55> Ze(asqa>+g)|.

MemeM |gm<nst A< "’ogg“;t M <cmem Osk<m |o<i<q!

By Definition 3.2 (Fourier transform) and Lemma 3.6, we have

> e(asq(l) + %)

O<l<gt

= qUF(=(k/m)q, @)| < qt-GallE-Dal®)a,

where 0< cqll(q - 1)a|l? < 1 since - 1) ¢ Z and<2:q < 1. Furthermore we have forg ’lf,l—q andm< M,
cqli(@-2)el|
Tz )

SIS e(asymn)| < M+% S Meg-alla- e

M mgM qim<n<t 1<'09xa

q ogq

thatmt < xg. Hence we finally obtainNl < x

1\ 2 _ cqlita-1)al?
<gq MGl @Dal™ o x1 :

5.4 Sums of type

In order to estimate the type Il sums we will reduce the pnobte a slightly simpler one. We use
therefore a version of a classical procedure of separaftiorarables which allows us to remove the
multiplicative constraints.

Lemma 5.3 Let g be an arithmetic function, g 2,0 < § < 81 < 1/3,1/2 < B> < 1. Suppose that,
uniformly for all complex numbers,twith |by| < 1, we have

2

o lamea
for all positive integerg: andy with o'*” <4 x and

> bag(mn)

qvfl<n<qv

<V, (5.9

Bi-6< —t_<p+a. (5.10)
u+v

Then for x> X9 = max@Y/1#2), g¥¢) we have uniformly in M such thafix< M < ¥*2 the estimate

Z Z ambng(mn)| < (log X)V.

X X
%<m<M am <<

Lemma 5.4 For every sequence of complex numh@gnay and all integers iy < N; < N> < N3, we

have
: 1
<f min<{ Ny — Ny, —
-1 | sinzé|

Moreover, we have for % 2

fl min< x ! d log x
_ K .
. Toinmg] | % <109

> ae)

No<n<N3

an dé.

N1 <n<N2

N
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1

Proof. As le e(m¢) d¢ = 1 for every integess # O (in the case that = O the integral is clearly 1), we
2

have

PNCENIDY [ ane(ng)}[ 3 e(—n’f)Jd
N1<n<N; 2 \Np<n<N3

N1<n’<N2

But for -3 <& < 3, £ # 0, we can write

Z e-né)| = <min{N2—Nl, _1 }

N1<n’<N2 |S|nﬂ-§|

‘sin(Ng — Ny)ré
sinné

which establishes the first inequality. Using the fact thatintegrand is an even function and splitting
at , We obtain

1
. 1 & 2 2 1\ 2 2
dé <2 2 -1 fl—]<—-+-log2x <
j:% mm{x’ |sin7r§|} g f X+ fl sinzé “xtn CO(ZX) 7t pogasiogx

Here we use the fact that ank % on the interval [Qx/2]. ]

NI

Proof (of Lemma 5.3). We assume that > max@Y®#2), g3%) and¥’* < M < ¥2. It follows easily

from these assumptions thit > g andy; > g (note, that1 < § smce6 < ,81) Hence, there exist

integersu, v > 1 such that
X

¢ <M<g’*t and q’ < o < q (5.11)

For ¥ <m< M we haveq”~* < & < X < g”*?and hence we can apply Lemma 5.4 with= q" ' <

Ny = [qu <N, = [—J N3 = g”*2. Thus we obtain

- 1
MZ LZLbng(mn) < MZ f_ ; mln{Nz— No. g Sinﬁa} ,_12 | zbne(nf)g(mn) de
E<m<M am<"<m E<m<M 2 - Lan<q’*
W+1v 42
Z Zfl { |sm7rg|} Z 72 bhe(&)g(mn)| dé.
p=p’ v=v' 2 1m<q“qV1<n<qV

Indeed, after estlmatlnglz - Nl < X, we can interchange the sum and the integral and split theugum
overm, because’ 1 < M <« M < ¢“*1. Here we possibly add only a few terms. If we now can show
condition (5.10) for,(z, v), we are able to apply inequality (5.9) with replaced byb,e(né). Hence we

? |Sln7rf|} d¢é < (logx)V (Lemma 5.4).

1
are done since we can bound the last expressiorvof%min{
2
We have for g, v) e {u/, i/ + L} x{V',v' + 1,V + 2}

u—2 K W+ 3
W+ ,u+v w+v +2

and hence it dices to show

ﬁ1—5<”_2 ang M3

< ———— < B2 +0.
w+v w+v +2 P2
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Using»®t < M < ¥%2 and employing (5.11) we get

Iogx , , logx log x
< < —— Su < .
Iogq m2suty logq and ’Bllo q ﬁzlogq

x> g% impliess > 3'0gq and we finally obtain

log x
w =2 lBllogq _ 3|09q 1-6
v © T logx _ﬁl logx =~
H Togq g
and
log x
W +3 'leogq+3 logq
b +3—— < 1+6.
log x
w+v +2 = log x

Proposition 5.2 Let g > 2 be an integer andr a real number satisfyingg — 1)a € R \ Z. Then there
existp1, 52 ands with 0 < § < B1 < ¢qll(q — L)ell? < 1/3and 1/2 < B, < 1 and a constantq(a), such
that for everye > 0

2

o lamea

> brefesy(mn)| <q gt 2@, (5.12)

qvfl<n<qv

for all positive integerg: andv such that
o)
P1—0< —— < B2+,
u+v
uniformly for all complex numbers,tfor which|b,| < 1

The proof of Proposition 5.2 is the hardest part of provingdiem 5.1. We will therefore state and
prove several lemmas. Let us assume thatl, v > 1 andp be an integers with

0<p<v/2

Recall that we have definen) = asy(n). We can assume thate R \ Z, since | — 1)a € R\ Z. For
convenience, we use the following abbreviation for theheftd side of (5.12)

= ¥

g l<mgg

Z bre(@sy(mn)|.

qv—1<n<qv

First of all, we use the Cauchy-Schwarz inequality and aeeisf van der Corput’s inequality introduced
in Chapter 2 to smooth this sums. The Cauchy-Schwarz inigggales us

ISP<a ),

¢ l<mgo

2

> brefsy(mn)

Q- l<n<qv
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Now we employ Lemma 2.7 witR = ¢, N = @' - @2, z, = by-1,qe(f(m(@'~ + n))) andk = 1. In the
next step we split the sum up overin r = 0 andr # 0 and use the fact that< v — 1.

q-qt+ r —
steq Y TEEE S (1-8) S o) - fm)
¢ l<mgop Irl<cp ql<n<q’
o t<ntr<qg’

(1 - g) Z bnsrbne(f(m(n + 1)) — f(mn)|.
1<Irl<ep qt<n<g’
P len+r<q’

< qu+v—p Z qv +
¢ lamgy
q

SinceX1qyic (1- &) = F—1 < of We get an eror termi gt meq S1crice (1 - 1) Il < G2 < g+
when removing the summation conditiofr® < n+r < . Furthermore we can change the order of
summation and consider the maximum opéto get

SE <@ agre S Y (1—ﬂ) S bubre(H(m(n + 1) - 1(mn)
o~ L<mgop I<Irl<ep ¥

< 2q2(;1+v)—p + qu+v—p Z (1 _ g._J) Z

I<Irf<ep q-l<n<oy

o t<n<g
g l<n+r<q”

>0 e(f(mn+r) - f(mn)

¢ lamg

2(u+v)—p +v
< + max E
q q“ 1<Ir|<op

Z e(f(m(n+r)) - f(mn)|.

o L<meer

qv 1<n<qv

To continue the proof we are going to show that the digits ghhieight in the dierencef(m(n +
r)) — f(mn) do not contribute significantly and are negligible. Therefwe work with the notion of the
truncated sum of digits function which we have already iticed in Chapter 3. Actually, we defined
for any integent > 0

fam = > fnd) =a ) ni,

k<A k<A

where the integers, denote the digits of in basisg. This function is clearly periodic of periogl' and
arises in a dferent setting in [14] where Drmota and Rivat studied cepagperties off (n?) when is
of order logn. The next lemma shows that we can replace the truncatedduriotthe estimation o8,
since this yields an negligible error term.

Lemma 5.5 For all integersu, v,p withu > 0,v > 0,0 < p < v/2and for all r € Z with |r] < ¢f, we
denote by &, u, v, p) the number of pairg§m n) € Z? such that 4> < m< o, < n< ¢ and

f(m(n+r)) - f(mn) # fo(MN+1)) = f0(mn).
Then we have fog > 0
E(r, i1, v, p) <, qU+e)p,

Proof. Suppose & r < ¢. In this case we have € mr < ¢***. When we compute the sumn+ mr,
the digits of the productnof index> u + p cannot be modified unless there is a carry propagation.
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Hence we must count the number of paims i) such that the digita; in basisq of the producta = mn
satisfya; = q— 1 foru+p < j < u+ 2p. Therefore grouping the produatsnaccording to their valua,
we obtain

E(r,u,v,p) < Z T(a)x(a),
qy+1/72<a<qu+v

wheret(a) denotes the number of divisors afand y(a) = 1 if the digitsa; in basisq of a satisfy
aj=q-1foru+p<j<pu+2pandy(a) = 0inthe opposite case. The number of integesaitisfying
these conditions is bounded by~ sincea < ¢**” andp digits are fixed. But by Lemma A.2, we have
7(a) <, & <, q¥+*)¢ and the desired estimation is proved. In the case-th@t< r < 0, the same
reasoning applies. We have to count the pamgnj of integers for which the digitg; of the product
a=mnsatisfya; = 0 foru + p < j < u + 2p, and we obtain the same estimation. [ |

Remark. Drmota, Mauduit and Rivat showed in [13] thafr, u, v, p) < (u+v)logq g whenu/(u +
v) > 27/82. Based on that fact, they obtain a slightly better resuRroposition 5.2.

In order to get a manageable notation we put u + 20. Replacing the functiorf by the truncated
function , yields, according to Lemma 5.5, a total error@f(q(®+*)¢-+)). Hence we obtain

|S)? <, gl C‘WJP% Sa(r, 1, v, p), (5.13)

where we put

Sawwp)= >, | D, e(famn+n) - fi(mn).

g-l<n<q (¢ T<mo
Our next goal is to show that
Sa(r, i1, v, p) <q (u + V)77 (5.14)

Therefore we are going to use in a first lemma the importantguty of f, to be periodic of periodt.
It will allow us to apply the theory of trigonometric prodsdntroduced in Chapter 3.

Lemma 5.6 With the same notation and assumptions as before, we have

2

sZ<<q(1+qv-*)ZdZmin{ RN ”)} 2, IFaha) (5.15)

digt O<a<d O<h<q?
h=a modd

2
+A(1+qH)q”{ > |Fﬂ(h,a)|] :

O<h<qgt

Proof. SettingS,(n) = ¥ g-1cmeq €(fa(M(n + 1)) — f1(mn)), we derive (; is periodic of periody!)

Si) = o = S elfuw) - fuw)

O<u <t O<up <t

Z Z Z e(hl(m(n +r) - L;L/? + hp(mn-— Ug))

O<hy <t O<hp <t g 1<mg o
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Now we can use the definition of the Fourier transfgFg(h, «)| (see Chapter 3) to obtain

M= Y Y, FlaFhaa Y, e PrrEmehm),

A
O<hy<gt O<hp<gt g l<mg 4

The last sum is a geometric serieqirand we get

’ i 1
|Sz(n)| < Z Z IFa(hy, @)Fa(=ha, @)l min [qu’ : (he+ho)n+hyr
|Sm(”T)

O<h; <gt O<hy<gt

Since|Sy| = Y g-1cn<q 1S5(N)], We have to sum the last expression ovem order to be able to employ
Lemma 2.1, we sum in blocks of lengtf (and add a few terms if < 1). Arranging the summation
over the values ofl = (hy + hy, ') therefore yields

- . 1
S, < (1+g7™ Z Z IFa(hy, @)Fa(=hg, @)ld mm[q”, WJ
dlqﬂ O<h;|_,hz<q/l S|n(ﬂ'$ ||T||)
(hy+he,q')=d
+ @+ Nalog@) > IFahy, @)Fa(-hp, )l
O<hy,ha<gt

Since the conditionhy + hy, g') = d is not easy to handle, we replace it by the less restrictivelition
h; + h, = 0 modd. We can separate this condition irtt = amodd andh, = —a modd, wherea
covers all residual classes modualoFurthermore, it is easy to see from the definition, tRath, a)| =
|[F.(=h, @)]. Hence we obtain the desired result

Sz <q (1+qv—/l)Zd Z min[ sm( n ” ”)] Z [Fa(h, @)

digt O<a<d O<h<qt
h=a modd

2
+A(1+qH)q”[ > |F1(h,a)|] :

O<h<gt

If d | g, we haved = ko wheres = vq(d) andk | g*~° butk + g. According to Lemma 3.10 fag > 3
and Lemma 3.11 fog = 2, we have

D, IFah o)l < kKPgIFy(a, o).
O<h<q?
h=a modkg’

Here we used the fact, thiat= 1 if g = 2 and thaty, < 0,4429< 0,4649 < 3. For our further studies
we define the constant

2

_ T _ 2 _ 2
) = To70aq (1~ 77 @~ Dol

which depends og anda. We recall that§ — 1) ¢ Z and hence & ||(g — 1)a|| < 1/2. Thus we have

0 < cql) < P o1 <0,0349 (5.16)
“l%) S 102 4logq S 102-4log2 =~ '
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and consequently
1-cy(@) S 1-0,0349
2 7 2
Hence we can write

= 0,482553 1s.

S Faha)l < kg F 0@ a). (5.17)

0<h<q’l
h=a modkdg’

Mauduit and Rivat worked in [33] witly3 whenq > 3 andn, whenq = 2. Using the constant(a)
yields a little worse result, but it makes it much easier tovprthe proposition. Furthermore we can
give an exact value of the constant used in (5.12). The keynenwhich makes it so comfortable to
work with cy(@), is Lemma 3.6. It was stated and proved by Mauduit and Rivg82]. Note, that
Cq(a) < cqll(g - 1)a||?, which will allow us to use Lemma 3.6 and Lemma 3.14 Wigle) instead of
Cqll(q— 1)e|. If gis a prime, we could even use the constainstead ofy3. Mauduit and Rivat derived
for example a slightly better estimation $% in caseq = 2. Employing inequality (5.17) to (5.15) (note,
that in the second teri= 0, k = 1 and thatFq(a, )| = 1), we obtain

. 1
82 <<q (l + qv_/l) Z Z k1_2773q5+(1—0q(a'))(/1—6) Z min qu’ “:(S(a, a/|2
0<0<d Ko~ O<a<d sin(zrqu o )
(ka)<qg

+ A1 + @)@ Cal@),

Before we study the sum over we prove the following lemma in order to eliminate the fadtb 2.
Note that ifq is prime, therk = 1 and the statement of the lemma is trivial.

log 2

Togq: We have

Lemma 5.7 Letns, § and be as already defined. Fasg = (3 - n3)

q5+2n3(1—5) Z K1-2n3 <q q/l—wq(/l—é)‘

qu/l—(s
(ka)<q

Proof. First, we note thak can be bounded with respectqpA andé. Indeed, sincek; q) is a proper
divisor of q it follows that (, q) < q/2. But this impliesk = (k, ') < (k, q)*® < (q/2)*"¢. Further-

more, we can also give an upper bound of the number of adri@gstiegersk. It is clearly bounded by
the number of divisors off'=°. Hence Lemma A.2 shows that the number of considered irgdgier

bounded byr(q'~%) <4 q*“-9. Using this facts, we finally have

ofr2m-9) Z 1213 < q5+2n3(1—5)qwq(4—5)(9

(1-213)(1-0)
2) <

< q/l+wq(/l—6)—2wq(/l—6) <q q/l—wq(/l—ﬁ).

k| qd—b

n 1 1 1 1
Cq(a’) < 102. 4m < O, 024%@ < O, 0242%@1 < (E — ]’]3) @ = wgq-

Using this fact, we can write

So<q L+ > g0 max Sa(k,6) + AL+ G, (5.18)
Ososd Ko<a
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with

1

Sak.0)= ) IFs(aa)?min|q,
O<a<kdf sm(nkqﬁ 4

ar ) '
kep
Our next step is to find an upper bound $f(k,5). Since the function sin is concave on 40 and
1<k<g?, we have

sm(nkq‘5 kq5) > ko sin|x

Thus, we obtain

mar
sin—|.

ke

kqu ™

. 1

Ss(k.0) <k g ) IFa(a,a)Izmm[kq‘s‘z’)
O<a<kep |S|n ﬁ—gar
The next lemma provides an upper estimatiorsglk, 6), which will be important to prove the proposi-

tion in the case that is small.

Lemma 5.8 We have for all K g*=° with kt q and forall0 < § < A
Sa(k, 8) <q Aq". (5.19)
Proof. To prove this lemma we use th§(., @) is o’ -periodic. This puts us in the situation of employing

Lemma 2.1 witm=k,n=i,a=r andb = (ar)/¢’. But since troubles arise from the common factors
of r andg, we only use the crudely estimation mikof{~%, (sinz(r, k)/Kl|(ar)/((r, )1 < kef=%,

Sa(k, 6) < kgt Z IF5(a, @) Z min[kqﬁ—zp, ;]

O<a<q? O<i<k |sin ”_(a;('fqb)r
< k_lqﬁ—ﬁ Z |Fs(a, a/)|2 ((l‘, k)kaS_ZP + klog k) '
O<a<q’

Using Lemma 3.13 witlt = 6 andé = 0, the sum above is bounded by 1. Taking into account that
(r,k) < r < of andk < g, we finally obtain

Ss(k,6) < q'°(g°* + Alogq) <q gt

Now we have the problem, that if we sum (5.19) o¥drom 0 to 1 (see (5.18)), we do not get a useful
upper bound (even if we use the better estima8efk, 6) < '~°(q°* — 1log q), which we have actually
proved). Hence, we have to find a better bound for large vaitiésif we set

Iogq

Iog 2|’
we will see later, that this choice d&fis already sfficient, that the sum overin (5.18) from 0 toA yields
a negligible upper bound. In fact, we have

1 1 logq
Cq(a)A < 0,024 —A 0,0 zlogqlogzp <p, (5.20)

which will be the cruual condition. Furthermore, the ddfom of A allows as to state the following
lemma.
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Lemma 5.9 We have for all K g~ with k4 g and for allA < 6 < A

Sa(k, §) <q Aq~Ca(@3*e, (5.21)

Proof. Settings’ = 6 — A, we can employ the Euclidean algorithm to get

Ss(ko) <kg TN |F5(a+iq5',a)|2min[kq5‘2",;].

- (a+ig®)r
O<a<q®” O<i<kg® |S|n7r—kq§

We havelFs(., @)| < |Fg (., )| trivially by (3.2) and Lemma 3.1. Sindey (., @) is periodic of periody”,
we get

1
-1,.1-6 2 ; -20
Ss(ko) <kq ) Fy@a)? ) min|ke ™, ——g
O<a<q®” O<i<kg? Sinﬂqu;

Now we can again employ Lemma 2.1, but this time witk- ko®* ,n=i,a=r andb = (ar)/q’ .

Sa(k.8) < kg Y (@ a)f? [(r, ket min

O<a<q”

kef %, = + kg logke) .
Sinﬂ(r’kqA) ar
ka® ] (rkat)g”

Takingr’ = (7 and using thatr( ko) <r < o, ka* < ¢t < g* and again the concavity of sin on

[0, 7], we obtain

ar
o’

Sa(k,0) < k'™ > IFy(ae)? [kqA min[(r, k)24

O<a<q”

] + ke Iog(q”)]

|sin7r
1

sinngTrf
The sum in the second term is, by Lemma 3.13, equal to 1 @akes’ ands = 0). If ais 0 in the
first term, then the minimum ig’ * and by Lemma 3.6, we hav€s (0, ) < gq %@ (note, that
Cq(@) < cqli(g = 1)al?). Thus we can write

]MqH’ > Fe@a)?.

O<a<q”

<q @ ) IFy(a,a)zmin[q‘S'p,|

O<a<q”

/ A , 1 , ,
Sa(k,6) <q '™ Z IFs (a, o) min| o’ *, —— | + q P 2@ | -0
1<a<q” |S|n7r%
4 . ’ 1 ,
<q ' Z IFs(a, @) min| o, — |+ Aqt (@)’
Leacq’ [sinr2

lo
Next we claim thatr(, ) = 1. Indeed, ifpis a prime withp” | r, thenp’ = qvﬁ < ¢, sincer < ¢f.

Therefore, we get < p% < p:g%g and hencer < A. Thus, we haver(,q) = (r(r,kq®)™L, q)

(r. k) (r o, ka)) = (r. ke®)~H(r. ar.ket*) = 1.



5.4 Sums of type Il 65

This implies that thesin term cannot be zero. Organizing the summatiora@tcording to the powers
of g by takinga = ¢’b, we can write

0 2
1-5 |F6’ (q b, CY)|
S3(k,0) <qq Z T
0<6<¢’ 1<b<q® Smﬂ'w
b0 modq

+ Aqts@

Lemma 3.2 gives us (q’b, )| < |[Fs—g(b, @)| and employing Lemma 3.14 yields

Fsro(b.a)? _ @) -0)

1<b<g” |Sin” qg'r-e|
b0 modq

Thus,

S3(k, ) <q qﬂ—é’ Z q(l—Cq(CY))(tsl—@) +/lq/1—cqw)6’
0<6<¢’
<q q/l—Cq(a)gf + Aqﬂ—cq(a)ts' <4 /lq/l—cqw)(é—A).

Usingcq(@)A < p (see (5.20)), we finally obtain our desired result. n

Proof (of Proposition 5.2). Now we can derive the desired upper boun&gf{see (5.14)). Using (5.18)
and the upper bounds &(k, 6) (see (5.19) and (5.21)), we have

So<q L+ > g0 max Sg(k,6) + A1+ g )gE
Ko™
0o (k)<
<q (1+ qv—/l)q/l Z q—%(d)(ﬂ—ﬁ)/lq/l + Z q—Cq(a)(/l—5)/lq/l—Cq(a)6+p + /1(1-1- qV_’l)q(z_Cq(a))/l‘
0<o<A A<s<A

Calculating the geometric series, using agaif@)A < p and the definition oft (1 = u+2p < u+v), we
obtain

S, <q /l(l + qV_’l)q(z_Cq(CY))/1 (q%(af)A i Ac{))
<q 21+ q @@t
<q (u+ v)2 (q(Z—Cq(a))ﬂ+(5—20q(a))p + q(l—%(a))u+v+(3—2cq(a))p)

<q (u+ v)2 (q(Z—Cq(a))ﬂ+5p + q(l—Cq(a))u+V+3p) )
To show (5.14) $, < (u + v)’q*+' ), the inequalities
2-cq@)I)u+50<pu+v-p and (I-cyl@))u+v+3p<u+v-p
have to be satisfied. It is easy to see that these conditiensuey if
4-L 1-6-2

/m< MU p+v

@@ Saty S 2-c@

(5.22)

2
Now we can fix the still undefined parameters. &) = ngfl) , 0= %, B1= 4&“7(5)) +0, B2 =
1—6&1(“)

7=o@ 0 and finallyp = [£q(a)(u + v)].
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All pairs (u, v) satisfyingB1 — 6 < u/(u +v) < B2 + ¢ also satisfy (5.22). Using the upper boundcgfr)
(see (5.16)) ang < v(B2 + 6)/(1 — (B2 + 0)), it can be readily shown that< v/2. Furthermore we have
for all pairs (4, v) (see (5.13))

|SI? <, gy gt max Sa(r, . v.p)
<qe q(2+.9)(,u+v)—p + q“ﬂ’(/l + V)un+v—p
<<q,8 q(2+8)(/l+V)—,D

<qe q(2+§q(a)+s)(,u+v) )

Hence, the proof of Proposition 5.2 is finished, since théofdhg inequalities can be easily derived
from the definitions ob, 81 andg,

Coll(@ = L)all?

0<¢
<o0<p1< >

1
andz <pB2< 1

Corollary 5.1 Let g > 2 be an integera a real number, such thafg — 1) € R\ Z and g(a) =

10805 (1 - 5&) I6a — Dell?. If x > g3, then we have for’ < M < Xz

Z Z ambng(mn)| <q.o xLoq(@)

—<m<M —<n< X

whereo(a) = 105" 5 42‘}53)% B2 = 1260?(%) ~sands = 4(20“:()a)) Furthermore, these constants

satisfy0 < 1 < cqll(a— Lell® < 1/3and1/2 < By < 1, where g = o= (1 - 5%7).

Proof. Defines, B1, B2 andéq(a) as in the proof of the last proposition. We hagge< 1 - 6 and hence
1/(1-p82) < 1/6 < 3/6. Thus, Corollary 5.1 is the direct consequence of Promrs#i2 and Lemma 5.3.
We obtain

E fa() £q(@)
2 ambng(Mn)| <q. (I0gx)g "z 6™ <., (log x)x*"7 *,
<m<M qm<n< X

as soon as > Xy = ¢°/%. Here we used that we only need to consjdendy satisfyingg**” <q X(see

Lemma 5.3). Setting(e) = ;ggf“(") we finally obtain

Z Z ambng(Mmn)| <q.0 xt=o4(@)

—<m<M am<n<m

5.5 Proof of Theorem 5.1

Let us definecy(), 6, B1 andB; as in Corollary 5.1 and sé¢ = ['c’i‘ -2 -1]. If we assume that
x> /%, we can write

ko
ZA(n)e(asq(n)): Z A(n)e(asy(n) +Z Z A(n)e(asy(n).

n<x ns—?v k=0 k—
q

xl
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Since we have fok < kg

X X 3 12(2-cg(a)) 4(2-cq(@)) 1
i =q W@ > qEeTe@) = qf2 172,

we can use Proposition 5.1 (type | sums) and Corollary 5de(tysums) to employ Lemma 5.1 with
andp. as defined and/q* instead ofx. We finally obtain

>, Ae(osy () <q0 (090 gy + i (log(q_xk))z (q_xk)l_%(a)

n<x k=0

ko

<qa 10g X+ (log x)? xE74(@) Z qK(-4(@)
k=0

<q (logx)* x1-74()

1_
<ga X 7q(@)

whereog(a) is defined in Corollary 5.1 aneq(e) = %a&(a) = %%?2. This finally ends the proof of

Theorem 5.1. [ ]

Remark. It follows from the proof of Theorem 5.1, that we can choose

99 1 72 2 o\
7q(@) = ﬁ)4_8(102 logq (l g+ 1) 1@ = L)all ) '

As already mentioned before, we can essentially improwedbnstant by using a better estimation for
type | sums. Actually, using the estimates Mauduit and Rieaived in their work (and Lemma 3.6), we

only have to makg; smaller than 13 instead ofq||(g— 1)|I?. This allows us to choosg(a) in the proof
2

of Theorem 5.1 agq(@) = cq(e)/25, which finally yields targ(a) = %&,m (1 - qul) (g — 1)el?.



Chapter 6

The Sum of Digits Function of Squares

6.1 Main Theorems

The main contribution of Mauduit’'s and Rivat’s work is thdléeving theorem, which is the analogous
statement to Theorem 5.1.

Theorem 6.1 (Mauduit, Rivat) Let g > 2 be an integer and a real number with(q — 1)a € R \ Z.
Then there exists a constamg(a) > 0, such that

Z e(asy (%)) = Oga (x4, (6.1)

n<x

The proof of this theorem given in Section 6.2 — Section 6exisilated Mauduit's and Rivat's work [32].
Contrary to them, we do not care about the constant dependiggnda, which yields a more assessable
proof. Furthermore we obtain an insignificant worse expbog(r) than Mauduit and Rivat to shorten
the proof. In particular, they showed

2, elos())

n<x

1 4
x) 2@ KL-oa(@).

< 4q2(log ) (@2 1+ ¢

wherew(q) denotes the number of distinct prime factorgj¢gee [32]).

The proof is organized as follows. In Section 6.2, we use thecBy-Schwarz inequality and a variant
of van der Corput’s inequality to be able to work with the tated sum of digits function (similar to
the work on the prime numbers - see Chapter 5). Bfiedint to the previous chapter, we also have to
use the notion of double truncated functions. Well knownilteon Gauss sums allow us to concentrate
on sums of Fourier transforms of these double truncatedtifums; in order to be able to prove the
theorem (Section 6.3 and Section 6.4). Adding the obtaiaet$ together, we finally prove the theorem
in Section 5.5.

Before we start the proof, we present the solution of Gel®pdoblem concerning the sum of digits
function of squares, which is a direct consequence of Thedel. Furthermore, we show that the
sequencea(sq(nz))neN is uniformly distributed modulo 1 for any irrational number

Theorem 6.2 Let g and m be integets 2. Setd= (q—1, m)and Qa,d) = #{0<n<d: n?=amodd}.
Then there exists a constamg,, > 0 such that for all ac Z

#{n < X: (n?) = amodm} = %Q(a, d) + Oq’m(xl—‘fq-m). (6.2)

68
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Proof. By Lemma 1.2 we have
#{n < X: (n?) = amodm} = Z % Z e(nl](sq(nz) - a)).
n<x o 0<j<m

Ifweputd=(mq-1), m=3, J=(tkm:0<k<d}, Y={0,....m-\JI={knT+r:0<k<
d,1 < r <}, than we have fofj = kmf € J

b afkmt oo (Ko o) (K
4a%m))—{aa%m))-{d%m))_%dn)
Indeed, Lemma 1.1 gives @(nz) = n? modd, which establishes the last equality. Hence,
1 j 1 k d
S adelpem-a)- 25 5 ofGer-a) -5 X1

N<X jed n<x  O<k<d N<X
n?=a modd

9 (X4 Ogm(1)) Q@ d) = (2 + Ogm(1)) Q2. d).
m\d m

If we can therefore show that

%ée(—%j)ée(%%<n2>)=oq,m<x1-“q’m>, (6.3)

whereoqm > 0, we are done. 19" = 0, which corresponds to the degenerated case wheg- 1, then

we have an error term equal to zero. Therefore we assume natd’ t+ 0. Puttingq’ = q%l we have
(d,n) =1, and hence fof = knT +r e J

@-Dj _dd(knt+r) _, qr

m dn 114 #Z.

By Theorem 6.1 there exists a constag(j/m) for everyj € J’, such that

2, &{(07) = Ot
n<x m
Puttingogm = minjey oq(j/m) > 0 (recall, thatd” # 0), we get the desired estimation in 6.1. [ ]

Theorem 6.3 For g > 2 the sequenccéasq(nz))neN is uniformly distributed moduld, if and only if
a€R\Q.

Proof. If @ € Q, then the sequence/$q(n2))n€N takes modulo 1 only a finite number of values and is
therefore not uniformly distributed modulo 1. If in retutre R \ Q, then for everyh € Z with h = 0 we
have (1 — 1)ha € R \ Q and according to Theorem 6.1 there exists a constgffia) > 0, such that

n<x

2, elos (nz))‘ = Oga (7).

This proves thatdsq(nz))neN is uniformly distributed modulo 1 (see Theorem A.3). ]
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6.2 Truncated Functions and Gauss Sums

In order to be able to show Theorem 6.1, we need the follownggsition which is the hardest part of
proving Gelfond’s problem on the sum of digits function ofiaces.

Proposition 6.1 There exist constantg = vo(g, @) > 1 andog(a) > 0, such that for all > vo

Z e(@sy(n?) <q v¥@/2qlt-oa@),

gl<ngx

uniformly for all x satisfying y* < x < g, wherew(q) denotes the number of distinct prime factors of
g.

It needs several steps to prove this proposition. Recdllfthiis the sum of digits function in basg
multiplied by «. In order to get a manageable notation, we set

s= > e(f(m)
g~ l<n<x

First we smooth the sum by using a variant of Van der Corpuagsgjiality. In particular, we employ
Lemma2.8withA=1 B=[x|-q L N=g -qL, z =e(f(q*+n)?)andR = ¢, wherep is
an integer satisfying £ g < v/3. We obtain

1/2

_ -1
Sl < LXJTq D (1-%) 3 e -ty +
Iri<gr

N[

qv—1<n<qv
ql<n+r<g’

Taking into account thdtx] < q” and separating the case- 0 andr # 0, we get

1/2

si<d2lqe 3 (1-8) S e -ty
1<r|<op

NI

qv—1<n<qv
q-t<n+r<g’
We havey 1 < (1 - &) = o =1 < ¢f. Therefore we get an error terfh < (1 - &) Irl < 6% when

removing the summation conditiaf~> < n+r < ¢”. Since Va+b < va+ Vb for non-negative real
numbersa andb, we obtain

1/2
Sl< a2+ g2+ L4 g2 max > e(f((n+1)?) - f(n?)
2 I<ri<ep | 4
'~ t<n<g”
1/2
< q*?+qg’? max Z e(f((n+r)?) - f(nd)) (6.4)
I<Irl<ep q-Lensq’

As in the proof of Theorem 5.1, we continue with using theatf the truncated sum of digits function
which was already used in Chapter 3 and Chapter 5. Similaetorha 5.5, we show in the following
lemma that the digits of high weight in thefiéirencef ((n + r)?) — f(n?) do not contribute significantly

and are negligible.
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Lemma 6.1 For all integersv andp withv > 0and2 < p < v/3and for all r € Z with |r| < ¢, we
denote by &, v, p) the number of integers n such that< n < g” and

f((n+1)%) = £(0?) # fuz((N+1)%) = fraz ().
Then we have

E(r,v,p) <q Q7.

Proof. First, we note that & [2nr + r?| < 2q"(f — 1) + 9% < q"***1. We start with considering the
case 0< r < ¢°. When we compute the sumt + 2nr + r2, the digits ofn? of index> v + p + 1 cannot
be modified unless there is a carry propagation. Hence wecoust the number of integerssuch that
the digitsa; in basisq of n? satisfya; = q-1forv+p+ 1< j<v+2Zp, orequivalent, that there exists
an integem, such thatn?/q"***1| = ¢Im- 1. This can be readily verified, and is equivalent to

2

dm-1< <o tm (6.5)

qv+p+1

Using this inequality, we derive (note, thak q")
2
qV+2p

2

0< T

<m< { + q‘p+1J <q¥.

For each such fixernh, there can only be

1+ ‘/qv+2/3m(1— w/l—q—P+1m—1)

integersn satisfying (6.5). Since we have-1 Vi-u = § + %fou(u -1 -t)"¥2dt < § + u? for
O<u<3/4andg?tml<1/2(m>1, v>2), we obtain

1
E(r, Vv, p) < Z (1 + (Eq—pﬂm—l + q—2p+2m—2) qv/2+pm1/2)
O<m<qr~2

. , 1 o 1
<quergq/z Z WJrqzq/zp Z —5-

O<mq—% 0<m<q’-%

Sincex /2 is convex for positivex, we employ Lemma A.7 to obtain the estimati®p.meq-2 —1z <
209"/?7P. Thus, we finally get

E(r,v,p) <@ % +0d™" + ?q747£(3/2) <q 4.

In the case thatg® < r < 0, the same reasoning applies and similar calculations twabe done.
We have to count the number of integersuch that the digit®; in basisq of n? satisfya; = 0 for
v+p+1<j<v+ 2. Thisis equivalent to the existence of an integesuch that

o tm< < m+1, (6.6)

= qv+p+1

and we obtain 0< m < g"%. If m # 0, there are ¥ @*»m(1+q»*Im1- 1) integersn
satisfying (6.6). Separating the case: 0 from the rest of the sum and using the inequatty + u—1 <
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5 for positiveu, we finally obtain (by assumption, we have< v/3)

E(r,v,p) < U2 Z (1 4 qu/z 1/2)

0<m<qr-2

< QU2 4 g gqv/z Z
O<m<qr—%

1 -
miz <ad"
|

In order to get a manageable notation we put v + 20. Replacing the functiorf by the truncated
function f, yields, according to Lemma 6.1, an erkag 9. By (6.4), we obtain

ISI < @2+ g% max (ISa(r, v, p)| + E(r, v, p))*?

I<Irj<op
<q QP +q? max [S(r, v p)Y2, (6.7)
where
Sivp)= ., e(ful(n+n?) - fum?).
q-l<n<q

Our next step in proving the proposition is to use the doubledated sum of digits functiofy , = f,—f,,
which was treated in Chapter 3. In order to be able to work thithfunction, we employ a generalization
of a Van der Corput inequality. Therefore we introduce apetarn satisfying

1<p<v-2p-1, (6.8)

andsetN = 9" - L, R= 0%, z, = e(((* + n+r)?) — f,((~* + n)?) andk = g’. Employing
Lemma 2.7 yields to

v _ v—1+ n+20
B ) (1—(;—1)I32(r,s,v,p,n)l

Isi<g®
<q¥ Z (1——)|Sz(r S, v,p: 1)l
Isi<q®
<) +q" max |Sy(r. s v.p.1). (6.9)
1<|s/<g®
where
Sasvem) =y e(f(+r+sd)?) = fu((n+1)?) = fu(n+ sA)?) + Ta(r?).
qv—l<n<qv

g~ t<n+sd’<q’
Here we separated (as in the other cases where we had empldggdder Corput inequality) the case
s=0ands # 0 and used the inequality ;jgqz (1 - I9/9%) < g%¥. Sincef, is periodic of periody’,
we derive
fa((m+ sdf)?) — fa(mP) = f,.a((M+ s¢)?) — f,.(MP).
Thus we can write

Sasvpm = Y. e(ful(+ 1+ SA)D) — fal(n+1?) — a0+ SEYD) + fa(0)).

o t<n<g
g~ l<n+sd’<q’
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Since the new functior, , is periodic of periody!, we have (by Lemma 1.2)

1
Se=gm 2y el - ) = ha) @) Y
0<u,Up,U3,Us<q! qlv’l<n<qv
g <n+sqi<g”
e(hl((n +1 4+ 5072 — uy) + ho((n+1)2 = W) + h3((N + sq')? — U3) + hy(n? — u4))
A .
0<hy,hp,ha,ha<qt q

Using the definitiorF, 1(h, @) = g™ 2 0<u<q! e(f,,,,l(u) - hucr”) (see Chapter 3), we can write

Sa= Y Fpalhn,)Fa(hy,0) Fya(=hs, a)F, a(hs, o)
Oghl,hz,h;g,,h4<q’l
Z o hi(n+r + sd)? + ho(n + 1) + ha(n + sd’)? + h4n2)
9! '

o t<n<q’

g t<n+sd’<q”

The following lemma will allow us to use quadratic Gauss suntsch we have considered in Chapter 2.
Itis at least known since Vinogradov, and makes it possibiim ovemn on a more practicable interval.

Lemma 6.2 Let m be an integer 2 and(z,)nez complex numbers periodic of period m. Then we have
foral M,NezZwithl<N<m

M+N m-1 In
Z Z, < (logm) Org% ZZ”G(E) .
n=M+1 n=0

Proof. Using Lemma 1.2 and the periodicity of the considered corplenbers, we can write

M+N m-1 M+N 1m—1 |( —k)
PIEEDIHAEIIE =)
k=M+1 n=0 k=M+1 1=0
M+N Ik m-1 In
DERIR T et

First we note that the middle sum is a geometric series, aréfitre we have

M+N _Ik 1
Z e(—) < min{N —)
komer VM [sinz |

Furthermore, Lemma A.7 yields (note, that the functien (sint)~* is convex on [0n])

=1 mY2 gt 2m n
Z — <f — = — log cot——
=7 SIinm, 1/2 SINm s am

2m 4m

s T
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Thus, we have
T MY kY N 2 4m
Z— Z e[—|<—=+-log— < logm,
0 Midvzr M m z n
and the desired result follows. [ ]

Ifwe setm=qg'andN =#neN: gt <n<qgandg! <n+sq < g} <q < g, applying the
previous lemma yields

S, < logq? Z IFp.a(he, @)Fya(=h2, @)F; a(=hs, @)F; a(ha, @)l
0O<hy,hp,hg,ha <t

Z e(hl(n +1 + 502 + ho(n+ r)2 + ha(n + sg)? + han? + In)

ma>§ g
O<l<g O<n<gt 4
<gdmax ), ), [Pl @)Fpal-he a)Fya-hs )F (e o)

digt  0<hy,hp,hg,ha<qt
(h1+h2+h3+h4,q/l):d

IG(hy + ho + hg + hg, 2r(hy + hy) + 2sd(hy + h3) + 1; qY)I.
Here we used the notion of the quadratic Gauss sums. Cgr@llaryields

Sy <q 49?2 max » d*? Z [F (e, @)F (=2, @)F; a(=hs, @)F;, a(hs, @)l

O<l<qt
<d digt 0<hy,ho,hs,hy<qt
(h1+h2+h3+h4,q’l):d
di2r (h1+h)+2sd! (g +h3)+l

since the considered Gauss sums are only non—zeros(avfﬁqu) if d|2r(hy + hy) + 2sd'(hy + hg) + 1.

The condition k1 + hy, + hz + hs,q') = d is not easy to handle, therefore we replace it by the less
restrictive conditionh; + h, + hs + hy = 0 modd. Furthermore, there arise some problems with the
greatest common divisor ofr 2andd, respectively with handling the summation conditionsyfd) is
small. Thus, we consider the last sum odeseparately fowy(d) < A andvg(d) > A, whereA is an
integer satisfying K A < n. We write

Sz <q 4q"? max(Sz + Sa), (6.10)
O<l<qgt
where
Sg= » d¥? > IFya(he, @)F a(=hg, @)F  a(~h3, @)F a(ha, @),
digt 0<hy,hp,hs,ha<gt
vg(d)<A h1+ho+hz+hs=0 modd
2r (hy+hy)+2sg’(hy+h3)+1=0 modd
and
Se= ) d'? > IFpa(hs, @)F a(=he, @)F . a(=ha, @)F . a(he, o).
dig O<hy,hy,hg,ha<q?
vq(d)>A hy+hy+hz+hs=0 modd

2r (hy+hp)+2sd! (hy+h3)+1=0 modd

In order to derive an upper estimate ®f andS,4, we need the following lemma, which deals with the
square root expressions in these sums.
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Lemma 6.3 Let0 < 6; < 4 be integers and € [-log 2/(2logq) + 1/(100 logQg), 0] a real number. Then
we have

Z d%qBVq(d) <q T(q’l)q%Mlg_z_l%(/l_‘sl).

dig’
vo(d)<61

Proof. We can writed in the formkdf, where 0< 6 < 61, k| ¢*~° and k, ) < g. Thus we have

Z d%qevq(d) _ Z q(%+9)5 Z k%.
dig? 0<6<61 k<gt=9
vg(d)<d1 (k.a)<qg

Since k, ) is strict smaller them, we have K, q) < g/2 and hencé = (k, ') < (k, g)*™° < (g/2)*°.

Furthermore the number of admissible intedeis trivially bounded by the numbers of divisorsaf.
Thus we finally obtain

Z d%qé)vq(d)< Z q(%w)éT(qﬁ_ﬁ)(g)%

dlg? 0<6<61
vq(d)<dy

A_ 4 log2 log 2 ! _log2 .,
< 7(q')q2 7 Z q5(9+m) <q (qh)g2 ZTogg (1-61)

0<6<61

6.3 Estimate ofS;

In order to find an upper bound &3, we ignore the additional conditions for the indides. .., hs.
Using Lemma 3.15, we derive

Ss< Y d”2 Y |y, @)Fya(-ha, @)Fya(=hs, @)F (s, )]

d|q/l Oghl,hz,hg,h4<q’l
va(d)<A
< Z d1/27]4q4(/1_n)-
dig’
va(d)<A

Employing Lemma 6.3 witld; = A andé = 0, we get

S3 <q T(q/l)n4q%_2l?ngzq(/l_A)+4(ﬂ_7l)‘

In order to find a feasible upper bound, we have to chdoset to large andy not to small. We set

log qJ

A=21-n+pg Wwith pq:{?:p@

where we have to impose the following condition (note thaiassumed\ < 7)

pq<2n—A=2n-v-2p. (6.11)

Moreover, we choose
v+Zp

n= log2 °
g2
1+ 8logq

(6.12)
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We will show later, that these choices are reasonable agithleli Usingd = v + 2o therefore yields
S3 <q T(q*)n“q%—%%(n—pq)ﬂ(vﬂp—n)
<q T(q/l)n4q%—4p+4v—(4+2—l%)q+277p

<q T(@)ntqz . (6.13)

6.4 Estimate ofS,

To find an upper bound @4, we transform the summation conditions regarding . ., h in such a way,
that we can employ the results about the discrete Fouriesfwemation of ef;, ) proved in Chapter 3.
We setd = (d,2[r]). If pis a prime factor ofd (and therefore also dj, sinced | d | q'), we have
p’»@ < 2r| < 2¢f. Thus we getp(d) < [(ologq+ log 2)/ log p] < pg. This yields

d=[]p"@ 1 [T 1ae.
pid pld
By the imposed condition (6.11), we hasté o’ and hence
2r(hy + hp) + 2sd’(hy + h3) + 1 = 0 modd
impliesd | I. Thus, the above equation is equivalent to
r'(hy + hp) + S *4(hy + hg) + 1" = 0 modd’,

wherer’ = 2r/d, s= 2sdfa/d, I’ = I/d andd’ = d/d. The integer’ has an inverse element moduwo
since ¢/, d’) = 1. Ifwe call itr”” and set” = r”l" ands” = r”<, we can write the last equation as

hi + hy + s”q”“’q(hl + hg) + |” = 0 modd'.

Furthermore, we havey(d’) = v4(d) — vq(d) > vq(d) — pq, which impliesge@-»a | o, If we replaced’
andd by ga@-ra we have a less restrictive but much easier to handle conditiVe will see that this
proceeding is justified. For the purpose of finding an uppendmfS,, we split the sum up ovet into
three diferent sums.

S4 <S5+ S+ Sy, (6.14)
where
1/2
Ss= . dv > IFpa(hy, @)Fya(=he, @)F ;. 1(~ha, @) a(ha, o),
d|q/l 0<h1,h2,h3,h4<q4
A<S=vq(d)<n hy +hy+h3+hs=0 modg?—*a
hy+ha-+8" 174 (hy +hg)+1” =0 modg’
1/2
Se= », dY > IFpalhe, @)Fy a(=ho, @)F  a(~hg, @)Fy a(ha, @),
diot O<hy,hp,hg,ha<q?
d=vq(d)>n hy+ho+h3+hs=0 modg?—*d

hi+ho+8” g4 (hy+h3)+1”” =0 modg®—d

’h1+s”q'lipq(h1+h3)+l” >q"7+’1‘5+ﬁq+4’>

¢>d
1/2
S7= >, dv > IFpalhe, @)Fy a(=ha, @)F a(~hs, @)F a(ha, )]
diot O<hy,hp,hg,ha<q?
d=vq(d)>n hy+ho+hz+hs=0 modgf—+a

hy+ho+8” 7774 (hy +h3)+1”” =0 mod g’
hy+s” 7P (hy +hg)+l”
g>d

' <qfr]+/lfr$+pq+4p
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Estimate of Sg

At first we considelSs. Sinces = vq(d) < i, we can conclude that the conditions+ hy + s”q"*a(hy +
hs) + 1” = 0 modg’*a andhy + hy + hs + hy = 0 modg’ 4 are equivalent téy + hy, = —I”” mod ®*a
andhz + hs = 1”7 mod®*4. Hence, we have (using Lemma 3.18)

2
Ss= . d'? > Frah, @)Fpa(-ha, )l | <qu* > d'2
dig’ 0<hy,hp<q! dig’
A<s=vq4(d)<n hy+hp=—1” mod g’ A<6=vq(d)<n
Now we can employ Lemma 6.3 and obtain
log 2
Ss <q 7*7(q)g oo, (6.15)

Estimate of Sg

To estimateSg, we note that the conditiorts + hy + hs + hy = 0 modg® e andhy + hy + s”g7Pa(hy +

hs) + 1”7 = 0 modg®*a are equivalent tdy + hy + s’g7*a(hy + h3) + 1”7 = 0 modg®*a andhz + hy —

s’q"Pa(hy + hg) —1” = 0 modg’ 9. LetH™ be the pairs of integer$yq, hz) satisfying

hy + s"gPa(hy + hg) + 1"
QP

> AT Pat A (6.16)

Sinces = v4(d) > n and by (6.11) we havé-pq > n—pq > A —n. Thus the assumptions of Lemma 3.16
are satisfied and we obtain (using (3.19))

> IFya(=ho, @)| <q lF 1y (e + S"q774(hy + hg) + 17, )|
0<h2<q/l
hy+ha+s” g7*d(hy+hg)+1””=0 mod g’ *d

q_n+/l_6+pq90q’l—ﬁ+6—pq (hl - S”qn_pq(hl * h3) i IH) .

Qs
Sincen — pq > 1 —n, we have thafF _, is also periodic of period’*4. Using the fact thapy(t) <
(sinalitl)~t < (2t~ for all k > 2 andt € R \ Z and (6.16), we obtain

> IFpa(=ha, @) <q nlFacy(hn + 17, @)la™.
0<h2<q/‘
hi+ho+8” P4 (hy+h3)+1”=0 mod g’

In a similar way (employing (3.20) instead of (3.19)) we get

> IFyalha, @) <q nlFay(=hs +17, a).
0<h4<q/l
hz+hg—s”’q"P4(hy +hz)-1""=0 modq‘s‘Pq

Thus we have

So<a?d® S Y IF, () iyt + 1) yu(-he @)F iy (e + 1, a)
digt (ha,hg)eH*
6=vq(d)=n
2

<qnPq® > d?| 3 IFpahe)Fa,th+17,a)l

digt O<h<qt
S=vg(d)=n

<q g% Z d*2,
dlq/l
6=vq(d)=n
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where we used Lemma 3.17 to obtain the last inequality. Le®w@aviths; = A2 andd = O finally yields

Se <q n*r(q)qE . (6.17)

Estimate of S,

The last crucial step in proving Proposition 6.1 is the eatiom of S;. To be in line with the previous
studies, letH~ be the pairs of integers, h3) satisfying

hy + SqPa(hy + hg) + 17
QP

< q Aot (6.18)

Similar calculations as fd8g show, that

St<qn? Y, A2 Y Ryl @)Fay(n + 17, @), a(-hs,@)Fay(-hs +17,a)l.  (6.19)

dig? (ha,hg)eH*
6=vq(d)=n

The only ditference exists therein, that we employ (3.20) for the sum byenstead of (3.19). We
impose the condition
n+20q <A (6.20)

We distinguish two cases. #f(d) = 6 < 1 + 2oq, We remove the additional summation conditions to
sum over all < hy, hs < g, employ Lemma 3.17 and subsequently Lemma 6.3.

2

> dP Y Fpaha)F s (h+1”,a)

digt O<h<qgt
n<6=vq(d)<n+2pq
A_log2 .y
<q7" Z "2 <q n*r(qh)gz Zew 1), (6.21)
dg’

n<d=vq(d)<n+2pq

Inthe converse case{d) = 6 < n+2pq), we have to be more careful, since the trivial estimatesnged
before do not yield the desired result. We impose the carditi

2> A+pg+dp+1l=v+pg+6p+1, (6.22)
which allows us to obtain a better upper bound. In particul@ can show the following lemma.

Lemma 6.4 With the same notation as before, ig(d) = 6 > n+ 2pq and2y < A+ pq+ 4o + 1
(condition(6.22). Furthermore, let hbe a fixed integer anthy, hs) € ™. Then there exists an integer
a(hy), satisfying0 < a(hy) < q5—77—2.0q and

hs = a(hy) mod o~ %a.

Proof. Clearly, we only have to prove that two integégsandhs, satisfying (1, hg) € H~ and y, ) €
9H~ are congruent 0 modulg ~7-%4, Indeed, we have

S"(hs =)\ ||hy + s Pa(hy + hg) + 17 o+ S"q7a(hy + hy) +17
(o U] B q5—Pq B q5—ﬂq
hy + s’gPa(hy + ha) + 1”7]| | e+ s"gq"Pa(hy + hg) + 17

<

|

Q- | " Q-

< 2q—n+/1—6+pq+4p < qn—é‘
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s’ (hs—h7)
-1

= 0. Taking into account the definition of

s’, this is equivalent to

r'’2s hs — 1) = 0 modg® ™.
@ gy~ =0 moda
By definition, r”” is relatively prime tod’. Recall thatvg(d) > 6 — pq > 0 which implies thag | d'.
Hence,r” is also relatively prime t@’ and therefore invertible modulg?~". Furthermore, we have
for all prime factorsp of g which also divide 8, that p»@% < 2| < 2¢%. But sincevp(2ls) <
[(20logq + log 2)/(log p)] < pg, we finally can conclude

hg — h = 0 modg %,

]
After (6.19) and the previous lemma, we have
S7 <q 1’ Z d'/2 Z IFya(he, @)F i, (hy + 17, @)F; a(=hs, @)F 1 (=h3 + 17, @)
dig? (ha,hg)eH*
n+20q<d=vg(d)<1
+ tr(q)gE T
<qn® D, A R a)F s+ 17, a)
dlqﬂ O<h1<qﬂ
n+2pq<d=vg(d)<1
)y IFa(~ha. @)F iy (=hs + 1. @)] + ni*r(e)omatt-1-20),
0<h3<C|’1
hs=a(h1) mod gé-n-2pq
Now we can employ Lemma 3.17 to the last sum.
Sy <qn® Z dY2|F 5 u—2p, (—a(N1), @) Fs_p-20,(—a(m) + 17, @)|
dl A
n+2pq<6(:1vq(d)</l
A_log2 h
D IFpalhe, @)F ay(hy +17, @) + nr(gt)g? Zosa20),
0<h1<qd
Using Lemma 3.6 and again Lemma 3.17 to the remaining surdsyiel
— — 2(6-n— 1
S7 <q 7 Z d%2q 2¢qll(g-1)all*(6-n-20q) Z IF,a(hy, @)F 1y (g + 17, )]
dlq/l 0<h1<qd
n+2pq<é=vq(d)<a
+ ()t~
1_ log2
<qn* Z dL/2q2call@-DelP0-n-20q) 4 47 ()2 2ioga 71-2a).
dlq/l
n+2pq<6=vq(d)<a
We introduce the following constant
n? 2 n® 0,329 0,346 log?2
) =2 1- (g - Vel < 2 < < <28 (6.23)
15logq g+1 15-4logq logq logg 2logq
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In particular, we havej(e) = 12/15- 2cqll(q—1)el?. Sinces—n—2pq > 0, we can replacecgl|(q—1)all?
by c;(@) and apply Lemma 6.3 withy = 1 andé = —cy(a). Thus, we get

Sy <q ntr(gY)g2G@An-20q) () gE P 20,
Because(a) satisfiescy(e) < log 2/(2logq), we finally obtain
Sy <q ne(ql)qECal@A-1-200), 620

Conclusion

According to (6.14), we have to sum up the derived upper beon8s, (see (6.15))S¢ (see (6.17)) and
S7 (see (6.24))

S <cq r*r(@)at TR 1 yr(q)at Y + (g SO,

The first sum is negligible sinag(e) < log 2/(2logq). Furthermore we have by the definitionsioénd
pqthatd —n-2pq>v-n-6logq/log 2. Hence, we get

S4 <q 774T (qi)q%_“” (1 + q_q‘(a)(v_")+(4+6%("){%)p )
To eliminate the last term in the brackets, we impose

4 'Oiq) 0. (6.25)

77<v—(—ca(a/)—i—6log2

We will see in the next chapter, that we really can chapsatisfying this inequality. Thus, we finally
obtain

S4 <q n*r(q)qz . (6.26)

6.5 Proof of Proposition 6.1 and Theorem 6.1

After estimating the crucial suntSz andS4, we are in the situation of proving Proposition 6.1. After
(6.10), (6.13) and (6.24), we have

S «q At (gt
Sincer(.) is multiplicative (see Appendix A), we have

(@) = [ =™ @) = [ [(vp(@) + 1) < [ [(avp(@) + 2) = 2°D(q).

pla pla pla

We assumeg < v/3, which impliesp < 2 = v + 20 <« v. Thus we have
becausev(q) > 1. Inserting this estimate in (6.9) and combining with (6/&lds

S <<q V3w(Q)/2qV—P/2‘
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In order to finish the proof, we have to choose<2p < v/3 andp in such a way, that all imposed
conditions from the last sections are satisfied argh/2 = v(1 - og(a)), with og(a) > 0. By (6.12) and
(6.25),n has to fulfill

27
+_
l<n<v—( 4 +6|qu)

1+ B'?ggzq h cy(@)  log2
If we choose
log 2
p<y(Qa)y:= g e
27logq + (8logq + log 2)(%(0) 6Iog 2)

we havep < v/3. If vis big enough, we have & p in addition. Since; has to be an integer, the
considered interval has to be strictly greater than zeraledd, one can readily show that the above
choice ofp is suficient. The nearep is by the given bound, the greatehas to be. If we fixp (say

o = 1(199/200)y(q, @)v]) we have to restrict to be greater than a suitablg(q, @), such that we can
really choose; as an integer and such that= 2. It remains to show, that the following conditions are
fulfilled:

(6.8):1<n<v-2p-1,
(6.11) :pg < 2n—v—-2p,
(6.20) :n+20q < v+ 2p,
(6.22) : 1> v+pq+6p+1

By our choice, (6.8) is trivially satisfied. To show (6.20) wnly have to note that

Jogg logq
N+ 20q <Y 1I092p 6Iog

since~2~ + 61299 > 141%99 py (6.23). Ify > 27, we have (using the given boundsyaindp very crude)

qu(") log 2 > Iog 2

logq logq log2 6 1 37 v
6o+1<v+3——p+6p+1<v|l+ —<2—— <29,
YEPa T IS VE S T V( log227logq * 27 27) 27511 =
which proves (6.22) and (6.11). Hence we have shown Propo$t]. [ |

Proof of Theorem 6.1

The proof of Theorem 6.1 is a direct consequence of Propas@il. Letd be that integer, such that
g1 < x < g'. Moreover, consider only numbers such thatl > vy, whereyg is defined in Proposi-
tion 6.1. Then we can write

doe(fm)= > e(ftd)+ > > e(fd)+ > e(f()

1<n<x 1<n<Qq'0~ 1 vosv<4 gr-l<ngoy gt-l<n<x
N e CUSSUL N OF

yo<v<d
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SinceA < [log x/ logq + 1], we finally obtain

Z (f(nz)) <q (log x)3(@/2(1-0g(@) <q o xA-a@)

1<n<x

whereoq(@) = 198/19%(a). Thus, the proof of Theorem 6.1 is finished. [ |

Remark. It follows from the proof of Theorem 6.1, that we can choose

99 log 2

oql@) =
100 (27 logg + (8logq + log 2)( + 6:832))

wherecg(a) = l5logq (1 q+1)||(q 1)el?. In comparison to this result, Mauduit and Rivat obtained

(@ = 99 log 2
Y100, 551 l0g
gq + (8logq + log 2) (a) + 3|og2

— o) l(a - L)all?, 282, Note, thatz2 (1~ 22;)1i(q - Dall? > 1232

Wherec’ (0[) - mm(elogq( > 2logq 12logq Z 2logq

only in the case thalq — 1)a|| is near ¥2.



Appendix A

Number Theoretical Fundamentals

In this chapter we want to introduce the notion of arithmdticctions. We define a couple of impor-
tant representatives and state some fundamental resoltgurkher information and definitions see for
example [26, 23].

Definition A.1 (Arithmetic function) A complex valued function a defineddns called an arithmetic
function.

Arithmetic functions play an important role in analytic noen theory and can be also understood as
sequences of complex numbers. To every function correspaifibrmal) generating series

A(s) = i an).

s
n=1 n

It is called aDirichlet seriesand one of the most famous representativéRiénann’s zeta-function

(o0

(9=> =

S
n=1 n

It is absolutely convergent fdRgs) > 1 and the corresponding arithmetic functiord{g) = 1 forn > 1.
It was Euler, who first considered this series. He showed that

(9=[]==
:

peP

for some reak > 1 and deduced from that, that there have to be infinitely mainygs. Riemann was the
first who studied the zeta-function also for complex valudis. ideas brought a fulminant development
in analytic number theory.

The arithmetic functions form an integral domain. Therefae define the following operations.
Definition A.2 Let a and b two arithmetic functions. Then we define the sum

c(n) = (a+ b)(n) := a(n) + b(n),
and the Dirichlet convolution

¢ = @b =Y a(d)b(g).

din

83
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The corresponding (formal) Dirichlet series &) = A(n) + B(n) andC’(n) = A(n) - B(n).
Now we can state the following lemma, which can be readilyfiest.

Lemma A.1 The arithmetic functions, equipped with these operatiémsn an integral domain. The
additive identity is the function H such thaij = 0 for any integer r= 1. The multiplicative identity is
the function | with (1) = 1 and I(n) = 0 for any n> 1. The units are those arithmetic functions f, such
that (1) # 0.

From particular interest are such functions, that satisfitiplicative properties.
Definition A.3 An arithmetic function a is multiplicative, if

a(mn) = a(m)a(n) for m and n relatively prime. (A.1)
It is completely multiplicative, if (A.1) holds for all m amd

Some important arithmetic functions. Now we introduce some arithmetic functions, which are msse
tial in the theory of numbers.

Euler’s ¢ - function. It occurs in diferent fields of number theory, is multiplicative and is dediirethe
following way:

en) =#HKL< k<n, (kn) =1}

The number of divisors ofn. 7(n) = g, 1 is the number of divisors of. If we write n = pf* p3? - - - p¥,

then the divisors oh are of the formp?1 p'z’2 e pEk where 0< by < ag,...0 < by < a. Hence, we can

also write

() = [ |0p(m) + 1), (A.2)

pin

wherevp(n) is the integerr, such thatp” | n but p*! 1 n. This calculation also shows, that.) is
multiplicative. Furthermore, we can bound the number ofsgirs in the following way.

LemmaA.2 Lets > 0. Then we have

7(n) = O5(r°).

Proof. By (A.2) we can write
(n) _ vp(n) +1
nw 1_[( pvp(n)(s )
pin

st(g()n;l < Vg(rp?:)l < 1. Contrary, ifp < 2%, we have to look a little bit more

carefully. Sincerp(n)dlog 2 < expp(n)slog 2) = 20 < p*e9 we obtain

If p> 29, we have

vp(n) +1 vp(n)
preMo = " pYe(9 s §log 2 S ep slog2)’
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Thus, we get
7(n) 1 21/6 _
o l_[ _ exp(é‘log 2) = eXp(élog 2] Os(L)
p<2L/o

von Mangoldt function A(n). Especially for questions concerning primes and sums ovareg: the
von Mangoldt function is very helpful. It is defined as follew

A() = logp if n= p*for some primep and integek
10 otherwise.

The Mobius function u(n). Following function is named after the German mathematiéiagust Fer-
dinand Mobius,

1 ifn=1
u(n) =4 (-1 if nis a product ok distinct primes
0 otherwise.

Lemma A.3 The Mobius function has the property that foe 2

Z'“(d) B { 1 if nis not divisible by a z-th power of a prime

0 otherwise.
din

Proof. This identity is trivial if n is not divisible by az-th power of a prime. In this case, there is only
one summando_(: 1). If n > 1, we can writen = p{* - -- p*ps - - P v_vhe_re_p_l, ..., Ppm are pairwise
distinct primes in such an order, that- - - ax > zanday,1 - - - am < z If nis divisible by az-th power of

a prime, therk > 1. Then

Dy =1+ DT up)+ D p(pipy) + e+ p(pr-ee o)

@in 1<i<k 1<i<j<k

=1—k+(k)+.-.+(—1)":(1-1)":0,

2

and hence, we have the stated result. ]

Remark. If z= 1, then we have the more common asserfigp u(d) = 1 if n = 1 and} gz, u(d) = 0
otherwise. Using the notion of the Dirichlet convolutiohjstis equivalent tq« + J = |, whereJ is
the arithmetic function corresponding to the zeta-funci{d(1) = 1 for all n > 1) andl denotes the
multiplicative inverse in the ring of arithmetic functiandence we have for the corresponding Dirichlet
series

Cun) 1

whereRgs) > 1. In addition, we can show the following lemma.
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LemmaA.4 If s= o +itis a complex number with real pasnt > 1 and imaginary part t, we have

p(n) (9 < Al
as) Z NTC) =2, ns

n=1

Proof. Sincel(s) = []pep (1 - é)_l (the infinite product is absolutely convergent for- 1), we get
51105
— = 1-—).
Q) H» pe

Carrying out the multiplication (first only for all primgs< P and then going with? — o), we exactly
get the desired Dirichlet series fofZAs). We also see from Euler’s representation’ (), that

logl(s) = Z Iog(l —1p—5) .

peP

Differentiating with respect tg we obtain

29 log p
9 st (1 p-) Z|os—1'

peP

The diferentiation is legitimate because the derived series foumly convergent foo- > 1+ 6 > 1.
Moreover, we can write

&'(9) ms _ ms A(n)
55" Zlngp Zp logp = Zn?

peP

where the last equality follows from the definition &fn). [ |

Prime counting function. n(x) = 3 ,<x1 counts all primes, which are less or equaktdhe function

n(x;k,a) = p<«x 1 counts all primes, which are less or equaktand are congruera modulok.
p=a modk

Now we state without proof two very important and famous teats. The first one is thérime Number

Theoremand the second one is tfgime Number Theorem for Arithmetic Progressiof®r proofs of

the theorems, see [26].

Theorem A.1 (Prime Number Theorem) There exists a positive constant C, such that for

m(X) = f —— + O(xexp(-C(log x)*>(log log ) ~*/%)).

Theorem A.2 (Page-Siegel-Walfisz)_et a and k be integers satisfyirfg, k) = 1 and A> 0. Then we
have for x> 2

Lo 1 ™ du X
mcked) = 2% J, ogu +OA((|09X)A)-

Remark. Sincefzx(log u)~1du = x/log x + o(x/ log x), one can derive from the previous Theorems

1 X X

X
——), and n(xka) = 2 logx + o(Iog ~

n(X) = + o(Iog ~ ).

log x
Next, we state and prove some fundamental summation foenula
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Lemma A.5 (Summation by parts) Let (an)neny be @ sequence of complex numbers aad< 1, <
-+- < Ap — oo be real numbers. Suppose that the complex-valued funci®oantinuous and piecewise
continuously dferentiable on the intervdll,, X]. Then we have

D ang(n) = 909 ) an - f:[z anJ g'(u)du
1 \An<u

An<X An<X

Proof. Let | be the appropriate index, such that< X < Aj,1. Then

Y ag@du- [ aga

An<u A dp<u

i-1
=> [ > av} (9(4i) = g(di+a)) + [ >, av] (9(4;) - 9(¥)
i=1

A, <A Ay<A

i
=-g() Y an+ Y { da- > av} 9(4i) + a19(41),

Ap<X i=2 | 1,<4 Ay<Aj-1

_fx Z ang’(u)du = _:;Zif:ﬂ

A <

and the assertion follows. [

Lemma A.6 Let a and b be integers. If g is a monotone not increasing fandtom the intervala, b]
into the real numbers, then we have

° b
fag(U)du< Z gin) and Z g(n)gL g(u) du

asn<b a<n<b

Proof. Because of the additivity of the integral and the monotong, efe have

b b-1  n+1 b-1 n+1
f g(u) du = Zf g(u) du < Zf gdu= > g(n).
a n=avn n=a vn a<n<b
Analogously, one can prove the second statement. [ |

LemmaA.7 Let a and b be integers and f a continuous, continuogfemintiable and convex function
on[a-1/2, b+ 1/2]. Then we have

b
n=

2

a

b+3
f(n) < f f(t) dt.

Proof. Using the trapezoid method and the convexityf pfve have

n+d

f(n):fnf f(n)+f’(n)(n—t)dt<f C@at

2 2
Summing oven, we obtain

1

Zbl f(n) < zblfmz F(t) dt = fbj% F(t)dt.

2
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Next we state a generalization of Poisson’s summation ftami proof can be found for example
in [46].

Lemma A.8 Let f(x) be of bounded variation faxl < M and let f(x) be twice dfferentiable forix| > M
Assume thaf” f(x)dx, [" 1T (x)|dx andf |£(x)| dx exist. If we put f(x) = 3(f(x+0)+ f(x-0)),
then} > _., f*(n) is convergent and

i £*(n) = i fwf(x)e(—kx)dx
)

N=—oo

A lot of problems in analytic number theory dealing with pemumbers, need estimates of sums of the
form 3 p<x f(p). In many cases (for example the prime number theorem, wi{eje-= 1), itis cleverer to
study the sun} «x A(n) f(n) since one can transmit results from this sum to the othebgrsaimmation

by parts. This emphasizes the importance of von Mangaldffanction. In particular, we can show the
following lemma as a consequence of the prime number theorem

Lemma A.9 ([33]) Let g be an arithmetic function such tHgtn)| < 1 for any integer n. Then

> up

p<x

+O(VX).

< —— max
Iogx t<x

> AM)gn)
n<t

Proof. Using Lemma A.5, we can write

> 0lF) = o5 X (09 Pate) + [ [ZU gp)g(p)]

p<x p<x p<t

Note, that by the Prime Number Theoref,; log p < X p<t logt = O(t). Hence, slicing the integral at
VX, we get

X dt
;(g(p) (Iogx ff @) max %‘(Iog P)a(p)| + O(VX)
2
= Togx max g{(log PY(p)| + O(VX).

But, using the Prime Number Theorem again, we obtain

D" Ao - > (log P)g(p)| <

n<t p<t

Dologp > 1<a(vx)logx = O(VX).

P< VX 2<a<| ;2|

This proves the desired result. |

Next we state and prove Weyl’s criterion (see [54]). Therefoe recall, that a sequence, X Of real
numbers is uniformly distributed modulo 1, if for every paib of real numbers with & a< b < 1 we
have

im #{Xn 1 1< n< N, X € [ab)}

Jim N =b-a
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Theorem A.3 (Weyl Criterion) The sequencb)ney is uniformly distributed moduld, if and only if
for all integers h# 0

N

ehx,) = o(N). (A.3)
n=1

Proof. We use the following common notation for the fractional pdra real numbex: {x} = x— [ X].
Let us first note, that ifi5 ) is the characteristic function of the interval p), we can write (1.1) in the
form

18 1
. M) = [ taneax (A4)

The first step to prove the theorem is to show th@}£w is uniformly distributed modulo 1 if and only
if for every real-valued continuous functidndefined on the unit interval [Q] we have

N

o1 1
Nngwwﬁn;f«xn}): fo F(x) dx (A5)

Let (Xn)neny be uniformly distributed modulo 1, and Ié{x) = Z!‘z‘ol di 1[5 4.,)(X) be a step function on
the unit interval, where G= ag < a; < --- < & = 1. It follows directly from (A.4) that for such a
function the desired equality holds. Since the step funsti@re dense in the continuous functions, (A.5)
holds also for all real-valued continuous functions. Cosely, let a sequence{)nen be given, and
suppose that (A.5) holds for every continuous functforiVe have to show that (A.5) holds also for a
characteristic function of a half-open interval. But thisly density of step functions again clear.

We can now easily extend our claim to a complex-valued cantis functionf onR with period 1. The
same argumentation as above for the real and imaginary paryields (A.5), but where the fractional
part of x is replaced by (periodicity of f). Hence, the following claim is true: Thequence X,)ney IS
uniformly distributed modulo 1, if and only if for every comem-valued continuous functiohonR with
period 1 we have

1 1
nll'LnooNn;f(x”):fo f(x) dx (A.6)

Now we are in the situation to prove the theorem. Xf){cx is uniformly distributed modulo 1, we

get (A.3) using (A.6) and the fact, thﬁ)t1 e(hx)dx = 0if h# 0. Vice versa, if (A.3) holds for all integers
h # 0, we have to show that (A.6) is true for all complex-valuedtowous functions with period 1. But
since the functionx — e(xh), h € Z are dense in the complex-valued continuous function® arith
period 1, there exists a trigopnometric polynormagéX) such that for everg > 0

sup [f(X) —g(X)| < &.

O<x<1

Hence we have

1 1 N
fo fgdx— D (%)

n=1

<

1
fo (F(x) - g(x))d{

L 1
fo g(xX) dx— N

Using againfo1 ehX)dx=0ifh+0 andfo1 ehxX)dx = 1if h = 0, we readily derive the desired result.
|

N

+ +

1 N
9001+ ;(g(xn) - f(xn»‘.

n=
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Finally, we prove the Chinese remainder theorem (see fanpla[48, Theorem 5.4.3)).

Theorem A.4 (Chinese remainder theorem)Let my,...,m and a,...,a be integers. The system of
simultaneous congruences
n=ga modm;, 1 <i < |has an integer solution, if and only if

g =a;mod @,d;) forl<i,j<l. (A.7)

All solutions n are then congruetdm (dy, ..., d).

Proof. First we observe that there cannot be a solution if (A.7) tssatisfied. Indeed, ih = a modm
andn = a; modm;, than it follows that; = n = a; mod @, d;).

Let us assume now, that the integess 1 < i < | are pairwise coprime and (A.7) is satisfied. If we set
M; = mij [1._, m, then we haveN1;, m;) = 1. But this implies that there exists an integgr such that
bjM; = 1 modm;. Thus, we obtain

[
n:.= Za;biMi = aibjM; = 3y modm
i=1

for eachi.

If n, andny are two solutions, then we hawg — n, = 0 modm; for 1 < j < |. Since the integers); are
pairwise coprime, we obtaim, = n, modmy ---m.

Now we consider the general casemit= p{* - - - pi*, then the previous result shows, that the congruence
n = amodmis equivalent to the system of congruences a mod p". Using this observation, we split
the system of congruences= 3 modm;, 1 < i < | up into a bigger system. Ifi(,d;) # 1, then there
are some congruences trivially satisfied (by (A.7)). Dabptihese congruences yields a new system
of congruences where the moduli are pairwise coprime. Theiqus result assures that there exists a
solution which is unique modulo Icnd{, ..., d). [ |



Index

Admissible tuple of integers, 6

Arithmetic function, 83
completely multiplicative, 84
multiplicative, 84

Champernowne’s number, 3

Chinese remainder theorem, 39, 46, 90
Completelyg-additive function, 5
Copeland-Erdés constant, 3

Dirichlet convolution, 83

Dirichlet series, 83

Discrete Fourier transform, 23, 34
Double truncated functiofy, ,, 34, 72

Euler's ¢- function, 84
Exponential sums, 15

Fermat numbers, 6

Gauss sums, 17, 74

Gelfond’s first problem, 5, 38
Gelfond’s second problem, 6, 49
Gelfond’s third problem, 8, 68
Goldbach’s conjecture, 6

Harmonic analysis, 2
Legendre symbol, 17

Maobius functionu(n), 85
Mersenne numbers, 6

Normal numbers, 3
Number of divisor functiorr(n), 84

Poisson summation formula, 18, 88
Prime counting functiom(x), 86
Prime counting functiom(x; k, a), 86
Prime number theorem, 6, 86
Prouhet-Tarry-Escott problem, 1

Riemann hypothesis, 6
Riemann’s zeta-function, 13, 83

Separation of variables, 56

Sieve theory, 51

Substitutional dynamical systems, 2
Sum of digits function, 1
Summation by parts, 87

Sums of type 1, 51, 55

Sums of type I, 51, 56

Theorem of Page-Siegel-Walfisz, 86
Thue-Morse sequence, 2, 12
Trigonometric products, 23
Truncated functiorf,, 23, 59, 70
Twin-primes, 6

Uniform distribution modulo one, 4, 12, 13, 50, 69

Van der Corput’s inequality, 20
Vaughan's method, 51
Von Mangoldt functionA(n), 85

Weyl Criterion, 89

91



Bibliography

[1] J.-P. Allouche and J. Shallidutomatic sequence€ambridge University Press, 2003.

[2] R. Bellman and H. N. Shapiro. On a problem in additive nemiineory. Annals of Mathematics
49(2):333-340, 1948.

[3] J. Bésineau. Indépendence statistique d’ensemi@esilla fonction “sommes des €@ines”. Acta
Arithmeticg 20:401-416, 1972.

[4] E. Borel. Les probabilites denombrables et leurs igpfibns arithmétiques.Rend. Circ. Mat.
Palermq 27:247-271, 1909.

[5] D. G. Champernowne. The construction of decimals norimé#he scale of tenJ. London Math.
Soc, 8:254-260, 1933.

[6] J.-R. Chen. On the representation of a large even in@géne sum of a prime and a product of at
most two primesScientia Sinical6:157-176, 1973.

[7] A. H. Copeland and P. Erdés. Note on normal numbBrdl. Amer. Math. So¢52:857—-860, 1946.

[8] J. Coquet. Sur certaines suites uniformément épaitées modulo 1 Acta Arithmetica 36:157—
162, 1980.

[9] C. Dartyge and G. Tennenbaum. Congruences de sommesifieglie valeurs polynomiales.
Bulletin of the London Mathematical Socig88:61-69, 2006.

[10] H. Davenport and P. Erdés. Note on normal decim@snadian J. Math.4:58-63, 1952.

[11] H. Delange. Sur la fonction sommatoire de la fonctionrisne des clfires”. Enseign. Math.
21:31-47, 1975.

[12] G. L. Dirichlet. Mathematische Werke. Bande 1,11, Herausgegeben auf \&ssung der Koniglich
Preussischen Akademie der Wissenschaften von L. Krondthelsea Publishing Co., Bronx, N.Y.,
1969.

[13] M. Drmota, C. Mauduit, and J. Rivat. Primes with an ageraum of digits. preprint.

[14] M. Drmota and J. Rivat. The sum of digits function of smpgJ. London Math. Soc72,2:273-292,
2005.

[15] M. Drmota, J. Rivat, and T. Stoll. The sum of digits ofrpgs inZ[i]. Monatshefte fir Mathematik,
to appear.

[16] M. Euwe. Mengentheoretische Betrachtungen uber daadispiel. Proc. Konin. Acad. Weten-
schappen Amsterdgr2:633—642, 1929.

92



BIBLIOGRAPHY 93

[17] N. J. Fine. The distribution of the sum of digits (mod Bull. Amer. Math. Sqc71:651-652, 1965.

[18] E. Fouvry and C. Mauduit. Méthodes de crible et fonesis@ommes des dfiies. Acta Arithmetica
77,4:339-351, 1996.

[19] E. Fouvry and C. Mauduit. Sommes desftrigis et nombres presques premiekdathematische
Annalen 305:571-599, 1996.

[20] J. B. Friedlander, D. R. Heath-Brown, H. lwaniec, ané&dczorowski. Analytic Number Theory,
Lecture Notes in Mathematics vol. 188pringer-Verlang, 2006.

[21] A. O. Gelfond. Sur les nombres qui ont des propriétdditives et multiplicatives donnéeg\cta
Arithmeticg 13:259-265, 1968.

[22] S. Graham and G. Kolesnik/an der Corput’s Method of Exponential Surhendon Mathematical
Society Lecture Note Series vol. 126, Campridge UniveBigss, 1991.

[23] G. H. Hardy and E. M. WrightAn Introduction to the Theory of Numbers - Fifth Editic@xford
University Press, 2005.

[24] G. Harman and J. Rivat. Primes of the forpf]and related questionsGlasgow Mathematical
Journal 37:131-141, 1995.

[25] E. Heppner.Uber die Summe der #ern natiirlicher ZahlenAnnales Uiv. Sci. Budapest, Sectio
Math, 19:41-43, 1976.

[26] H. Iwaniec and E. KowalskiAnalytic Number Theory, American Mathematical Societydgoiium
Publications vol. 53 American Mathematical Society Providence. Rhode Is|2004.

[27] 1. Katai. On the sum of digits of prime numbernnales Uiv. Sci. Budapest, Sectio Matt0:89—
93, 1967.

[28] D.-H. Kim. On the joint distribution of g-additive futions in residue classedournal of Number
Theory 74:307-336, 1999.

[29] L. Kuipers and H. Niederreitetniform Distribution of Sequence$®Viley-Interscience Publication,
1974.

[30] K. Mahler. The spectrum of an array and its applicatiorihe study of the translation porperties
of a simple class of arithmetical functions Il. On the tratisih properties of a simple class of
arithmetical functions.J. Math. and Physi¢$6:158-163, 1927.

[31] C. Mauduit. Multiplicative properties of the Thue-Mwar sequencePeriodica Mathematica Hun-
garica, 43,1-2:137-153, 2001.

[32] C. Mauduit and J. Rivat. La somme desfiiteis des carrés. Acta Mathematica, to appear.

[33] C. Mauduit and J. Rivat. Sur un probleme de Gelfondplase des cliires des nombres premiers.
Annals of Mathematics, to appear.

[34] C. Mauduit and J. Rivat. Répartition des foncti@psultiplicatives dans la suiterf]), ¢ > 1. Acta
Arithmeticg 71,2:171-179, 1995.

[35] C. Mauduit and J. Rivat. Propriéetgsmultiplicatives de la suite (F]), ¢ > 1. Acta Arithmetica
118,2:187-203, 2005.



BIBLIOGRAPHY 94

[36] M. Mendes-France. Nombres normaux applications aunctions pseudo-aléatoiresJournal
d’Analyse Mathématique0:1-56, 1967.

[37] H. L. Montgomery. Ten lectures on the interface between analytic number thand harmonic
analysis, CBMS Regional Conference Series in Mathem#tios\ber 84 American Mathematical
Society, 1994,

[38] M. Morse. Recurrent geodesics on a surface of negatiseature. Trans. Amer. Math. Sac22:84—
100, 1921.

[39] H. Niederreiter and I. E. Shparlinski. On the distribat of inversive congruential pseudorandom
numbers in parts of the perio#flath. Comput.70(236):1569-1574, 2001.

[40] M. Olivier. Répartition des valeurs de la fonction fsme des clifres”. Séminaire de Théorie des
Nombres 1970-1971, Exp. No. 16 p.7.

[41] M. Olivier. Sur le développement en bagedes nombres premier§. R. Acad. Sci. Paris Sér. A-B
272:A937-A939, 1971.

[42] M. Peter. The summatroy function of the sum-of-digitedtion on polynomial sequencesécta
Arithmetica 104,1:85-96, 2002.

[43] 1. I. Piatetski-Shapiro. On the distribution of primambers in sequences of the forii(ih)]. Mat.
Sbornik N.S.33(75):559-566, 1953.

[44] E. Prouhet. Mémoire sur quelques relations entre lgsspnces des nombrds. R. Acad Sc. Parjs
33:31, 1851.

[45] M. QuefTélec. Substitution Dynamical Systems - Spectral Analysis, kediotes in Mathematics
vol. 1294 Springer-Verlag, 1987.

[46] H. RademacheiTopics in Analytic Number Theargpringer-Verlag Berlin Heidelberg New York,
1973.

[47] P. Ribenboim.The little book of bigger primes, Second Editi@&pringer-Verlag New York, 2004.
[48] H. N. Shapiro.Introduction to the Theory of Numbergviley, New York, 1983.
[49] I. Shiokawa. On the sum of digits of prime numbePsoc. Japan Acad50:551-554, 1974.

[50] S. C. Tang. An improvement and generalization of Betim&hapiro’s theorem on a problem in
additive number theoryProc. Amer. Math. Soc14:199-204, 1963.

[51] A. Thue. Uber die gegenseitige Lage gleicher Teile gewisser Zeidlileen (1912). Reprinted:
Selected mathematical papers of Axel Thue Universitdesjet, 1977 413-478.

[52] A. Thue.Uber unendliche Zeichenreihen (1906). Reprinted: Sedeti@thematical papers of Axel
Thue Universitetsforlaget, 1977 139-158.

[53] I. M. Vinogradov. The method of trigonometrical sums in the theory of numbeenslated from
the Russian, revised and annotated by K. F. Roth and A. Daverpterscience Publisher, 1954.

[54] H. Weyl. Uber die Gleichverteilung von Zahlen mod. Eildath. Ann, 77:313-352, 1916.

[55] N. Wiener. The spectrum of an array and its applicatetine study of the translation porperties of a
simple class of arithmetical functions I. The spectrum odaay.J. Math. and Physi¢$:145-157,
1927.



