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Kurzfassung

Der Fokus der vorliegenden Arbeit liegt auf dem Studium von durch Auftriebs-
und Thermokapillarkräfte getriebenen Strömungen in zylindrischen Becken und
Ringkanälen, sowie ihrer Abhängigkeit von thermischen und geometrischen Randbedin-
gungen. Besonderes Interesse gilt dabei (i) der Instabilität des Strömungsmusters die von
einem stationären axialsymmetrischen in einen dreidimensionalen Strömungszustand
führt, sowie (ii) dem Verständnis der grundlegenden physikalischen Prozesse. Die dazu
notwendige Berechnung der Hyperflächen kritischer Stabilität, sowie der zugehörigen
Störströmung erfolgt mittels linearer Stabilitätsanalyse. Eine Energieanalyse und die
damit verbundene Berechnung der Reynolds-Orr Gleichung und ihres thermischen
Äquivalents ermöglicht ein tieferes Verständnis der Instabilitätsmechanismen.

Untersucht werden die folgenden beiden Konfigurationen:

• Ein mit einem Boussinesq-Fluid gefülltes zylindrisches Becken mit nicht deformier-
barer freier Oberfläche, geheizt durch einen auf der freien Oberfläche aufgeprägten
parabolischen Wärmestrom. Um die wichtigsten auftretenden Phänomene zu
studieren, werden folgende Bereiche im Parameterraum numerisch berechnet:

– Prandtlzahlen 10−10 ≤ Pr ≤ 10 bei Aspektverhältnis Γ = 1,

– Aspektverhältnis 0.5 ≤ Γ ≤ 6.1 bei Prandtlzahlen Pr = 10−10, 0.03 und 4,

– Bondzahlen 0.01 ≤ Bd ≤ 100 bei Aspektverhältnis Γ = 1 und Prandtlzahlen
Pr = 10−10 bzw. 10.

Für die zugehörigen Kurven kritischer Stabilität wurden die physikalischen In-
stabilitätsmechanismen identifiziert, und spezifische repräsentative Spezialfälle im
Detail studiert und diskutiert.

• Ein mit Silikonöl gefüllter Zylinder mit nicht deformierbarer freier Oberfläche
geheizt mittels eines zylindrischen Heizdrahtes entlang der Zylinderachse
(geometrisch entsprechend einem Ringkanal). Numerische Rechnungen für
Prandtlzahl Pr = 27 bei Erdbeschleunigung (1g) in den Parameterbereichen

– Aspektverhältnisse 0.513 ≤ Γ ≤ 1.613 bei Heizdraht-Aspektverhältnis η =
0.079,

– Heizdraht-Aspektverhältnisse 0.0588 ≤ η ≤ 0.234 bei Aspektverhältnis Γ =
0.513,

werden mit früheren experimentellen und numerischen Ergebnissen verglichen. Für
einen repräsentativen Fall gegeben durch die Parameter Γ = 1, η = 0.1 und Pr = 27
wird der physikalische Instabilitätsmechanismus im Detail diskutiert.
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Abstract

The present work studies the buoyant-thermocapillary driven flow in annular and cylin-
drical liquid pools and its dependence on thermal conditions and geometrical con-
straints. Of particular interest are (i) the transition from steady axisymmetric to three-
dimensional flow and (ii) the underlying physical process driving this transition. The
critical stability curves and perturbation flow states are computed numerically by means
of a linear-stability analysis. In order to gain a deeper insight into the pattern formation
and the respective physical mechanisms an energy analysis by means of the Reynolds-
Orr equation and its thermal equivalent is conducted.
The following two setups investigated are

• A cylindrical pool filled with a Boussinesq fluid with a non-deformable free sur-
face on top heated by a non-uniform parabolic heat flux at the free surface is
investigated in the following parameter ranges

– Prandtl numbers 10−10 ≤ Pr ≤ 10 at aspect ratio Γ = 1,

– aspect ratios 0.5 ≤ Γ ≤ 6.1 at Prandtl numbers Pr = 10−10, 0.03 and 4,

– Bond numbers 0.01 ≤ Bd ≤ 100 at aspect ratio Γ = 1 and Prandtl numbers
Pr = 10−10 respectively 10.

For the above ranges the critical stability curves are computed and the underlying
physical mechanisms identified. In order to give a complete picture of the physical
instability mechanisms specific representative cases are selected, discussed and
explained in detail.

• An pool filled with silicone oil with a non-deformable free surface on top heated
by a submerged cylindrical heater along the axis (geometrically corresponding to
an annular pool). The configuration is studied for Prandtl number Pr = 27 and
standard gravity conditions of 1g in the following ranges

– aspect ratios 0.513 ≤ Γ ≤ 1.613 at heater aspect ratio η = 0.079,

– heater aspect ratios 0.0588 ≤ η ≤ 0.234 at aspect ratio Γ = 0.513.

The results are compared to prior experimental and numerical results, and the
physical mechanism driving the instability is explained in detail for a representative
micro-gravity case with parameters Γ = 1, η = 0.1 and Pr = 27.
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Wenn nicht mehr Zahlen und Figuren sind Schlüssel aller Kreaturen,
wenn die, so singen oder küssen, mehr als die Tiefgelehrten wissen,

wenn sich die Welt ins freie Leben und in die Welt wird zurückbegeben,
wenn dann sich wieder Licht und Schatten zu echter Klarheit werden gatten
und man in Märchen und Gedichten erkennt die wahren Weltgeschichten,

dann fliegt vor einem geheimen Wort das ganze verkehrte Wesen fort.

Novalis (aus Heinrich von Ofterdingen)

Minotaurus zu Ariadne: Ich erforsche das Labyrinth, ich suche die
Wahrheit über dieses Wunder von Schönheit und Ordnung, von

voraussagbarer Harmonie.

aus
Erwin Chargaff: Stimmen im Labyrinth.

Über die Natur und ihre Erforschung. Seite 111.
Klett-Cotta, 1. Auflage (2003).
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1 Introduction

Instability and patternformation in Marangoni flows have been in the focus of scientific
inquiry and applied technological research for many years. They are of relevance in
a whole range of scientific fields such as chemo-hydrodynamic pattern formation, the
movement of chemical fronts, interfacial flows, thin liquid films, deformation and break
of thin liquid films in microgravity, precursor films, and the transport of water and
ions across the conjunctival membrane in the eye, to name but a few. Technological
applications range from the formation of micro-droplets in the fields of chemistry, life
science and bioscience to crystal growth and fusion welding.

Now what do we mean by a Marangoni flow? How can it be described and what types
do we know? Since Marangoni flows are also known as surface tension driven flows we
will start with the concept of surface tension. A good grasp on this concept will ease
our understanding of the general concept of Marangoni flows.

1.1 Surface tension

Surface tension σ is an energy per unit area or force F per unit length L, which is due to
the attractive intermolecular forces in a liquid, called cohesiveness. While the effect of
these forces cancels for a molecule in the interior of the liquid, it creates a force towards
the interior of the liquid for molecules at and in the immediate ambience of its interface
to another liquid or gas. A liquid–liquid or liquid–gas interface has a specific shape which
is defined by the minimum of interface energy. Surface tension as a material property
of a liquid strongly depends on temperature and is very sensitive to minor changes in
the chemical composition. For most liquid–gas interfaces surface tension decreases with
temperature. A more detailed picture of surface tension as such is given in Tipler (1994)
and Kuhlmann (1999).

1.2 Marangoni convection

Flows driven by variations in surface tension are called Marangoni flows. The process
itself can be explained in terms of the local distribution of surface tension σ at the inter-
face, which varies due to gradients in temperature (thermocapillary flows) or chemical
composition (solutocapillary flows). The fluid is pulled along the gradients of surface
tension from regions of low to regions of high surface tension, the flows driven by this
effect are called surface-tension-driven flows.

Surface tension driven convection phenomena have most likely been known for a
long time. Yet the first scientific account on surface tension driven flows was given
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by Thomson (1855) in his article On certain curious Motions observable at the Surfaces
of Wine and other Alcoholic Liquors where he observed the movement of wine droplets
at the glass–air interface in the interior of a wine glass. The effect itself has been named
after the Italian physicist Carlo Marangoni (1840-1925) who studied the propagation of
oil droplets at a water–air interface in a water basin with a diameter of ≈ 70m in Paris.
In order to explain the fast propagation velocity of the oil droplets (> 2m/s) and the
different regimes observable he was the first to claim that it is due to the weak surface
tension of oil compared to water, Marangoni (1871). Similar experiments were performed
by Lüdtge (1869) who noticed that capillary convection starts if two thin layers at differ-
ent temperatures yet of the same fluid are brought into contact. A good historical review
of the work done in the context of Marangoni flow is provided by Scriven & Sternling
(1960). Note the clear distinction between to major types of flows: (i) thermocapillary
and (ii) solutocapillary flows. The first type (i) being due to a non-uniform temperature
distribution at the interface causing a non-uniform distribution of surface tension, this
type of flow was found by Lüdtge (1869). Thomson (1855) and Marangoni (1871) ob-
served the second type (ii) of flow where the non-unifom distribution of surface tension at
the interface is due to gradients in the chemical concentration. - A thorough discussion
of the thermocapillary effect is given by Kuhlmann (1999) and Nienhüser (2002).

1.3 Marangoni flows in the focus of scientific inquiry

Marangoni flows are of interest in various fields of scientific research. Of particular
interest are those flows which are important to material processing in space. Hence, in
literature we find a large body of experimental and numerical work on surface-tension-
driven flows. Very well known among them is the floating zone problem, relevant for
crystal-growth processes, which has been studied to great extent by Kuhlmann et al.
and many other authors. In the context of the present work we are mostly interested in
the investigations of the Marangoni flow in (i) weld pools during fusion welding and (ii)
in annular liquid pools heated from the in- or the outside.

1.3.1 A brief review of previous work in fusion welding

In recent years fusion welding has become an accepted and widespread practice. Many
industrial applications have been developed that make production faster and easier. A
vast number of people have contributed to a better scientific understanding of the various
physical processes one encounters in fusion welding. A good review article on the overall
flow in weld pools has been written by DebRoy & David (1995). They consider a wide
range of effects such as material composition, surface-active agents, vaporization, gas–
metal reactions, heat transfer, etc.

An illustrative article on Marangoni effects in welding has been published by
Mills et al. (1998). It is built around the Heiple–Roper theory which suggests that weld
pool penetration is controlled by the flow in the weld pool which in turn is controlled by
the direction and the magnitude of the thermocapillary forces at the liquid–gas inter-

2



face. They consider electromagnetic/Lorentz, buoyancy and aerodynamic drag forces,
material composition, etc.

Two and three dimensional numerical simulations for a cylindrical liquid pool with
flat and curved surfaces at high Prandtl numbers have been performed by Sim & Zebib
(2002). Their results show good agreement with experimental results published by
Kamotani et al. (2000). Furthermore, they found that: ”... only azimuthal waves can
generate oscillations in thermocapillary convection”. Sim & Zebib (2004) developed a
model to calculate the shape and position of the free surface during fusion welding.
Their computations performed for intermediate Prandtl number (Pr = 0.292) and low
Reynolds numbers (Re = [65.6; 6560]) revealed two distinct types of surface shapes which
look similar to either (i) a bowl bump or a (ii) Sombrero.

Experimental and numerical studies on the influence of the beam diameter and the
beam power on the flow field in a cylindrical pool filled with silicone oil have been
performed by Kamotani & Ostrach (1994).

Limmaneevichitr & Kou (2000a) experimentally studied a pool of pure liquid NaNO3

heated by a defocused CO2 laser beam in order to simulate Marangoni convection. Their
objective was a qualitative study of the dependence of the flow field on the heating mode.
They found that an increase in beam power at constant beam diameter strengthens the
Marangoni flow, yet reduces the penetration depth of the flow, if the beam diameter is
decreased at constant beam power the Marangoni convection becomes stronger and the
penetration depth of the flow increases.

In a succeeding paper Limmaneevichitr & Kou (2000b) experimentally confirmed the
theoretical assumption that surface active agents can cause a flow reversal in a liquid
NaNO3 pool heated by a defocused CO2 laser beam. Furthermore they found that the
addition of C2H5COOK leads to a decrease in the strength of the outward flow, for a
sufficiently high amount of C2H5COOK a flow reversal can be observed. They concluded
that for pure NaNO3 the pool tends to be shallow and the flow is directed outward. If
sufficient C2H5COOK is added the flow reverses to an inward directed flow and the pool
gets deeper.

Wagner et al. (1994) did three dimensional time-dependent numerical calculations of
the full nonlinear Boussinesq approximation for a cylindrical volume of fluid at high
Prandtl numbers in order to simulate Rayleigh and Marangoni convection. Their results
on Rayleigh convection show good agreement with prior work by Neumann (1990), and
the critical flow patterns and Marangoni numbers obtained for Marangoni convection
compare favorably to earlier results from linearized stability. Their model for Marangoni
convection is similar to the model considered in the present work.

Do-Quang (2004) investigated the time-dependent three-dimensional thermocapillary
flow in fusion welding considering most physical mechanisms involved in tungsten arc
welding, among them plasma effects and the movement of the workpiece. Their com-
putations show a time-dependent chaotic melt flow influencing the width and depth of
pool.

H. Du & X.Hu (2004) have devised a model for the welding process of a Titanium
alloy which takes into account plasma effects, and keyhole absorption. It shows good
agreement with experimental results.
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In a very recent publication Abderrazak et al. (2008) experimentally and numerically
investigate the thermal phenomena appearing during continuous laser keyhole welding.
In particular they tried to shed some light on the formation of the pool and the keyhole
as well as the dependence of the pool dimensions on the welding parameters.

1.3.2 A brief review of previous work on the annular pool

A setup that received quite some attention recently is the annular pool. An annular
pool is an annular volume of fluid bounded by a solid bottom, solid lateral walls and an
upper free surface. Two types of annular pools can be distinguished, those heated from
the outside and cooled from the inside and those heated from the inside and cooled from
the outside.

For the first type a series of unsteady three-dimensional numerical simulations for
thermocapillary annular pools of moderate Prandtl number and variable depth was con-
ducted by Li & Kwok (2003). Li et al. (2004a, 2005) extended the investigation to
buoyant-thermocapillary flows in shallow annular pools. A two-dimensional study and
a delineation of the critical stability curves under microgravity conditions has been per-
formed by Li et al. (2004b). Shi & Imaishi (2006) performed two and three-dimensional
simulations on high resolving grids for microgravity and earthbound gravity conditions
in order to calculate the critical stability limit for the incipience of hydrothermal waves
in terms of the critical Marangoni number, and performed an analysis of the motion
of the individual fluid elements. The above work is summarized in a review article by
Li et al. (2006). Very recently the influence of pool rotation on the transition of the flow
pattern has been investigated by Li et al. (2008b).

The second type of annular pool heated from the inside and cooled from the outside will
be considered in the present work. In the years from 1992 to 2000 Kamotani et al. pub-
lished a series of papers on the onset of flow instabilities in cylindrical test sections with
a free surface on top and filled with silicone oil. They used two different heating modes in
order to introduce free surface deformations: a CO2 laser beam and a cylindrical heater
positioned along the axis of the test section. Their work can be split in three mayor
parts: the test experiments performed under standard earthbound conditions published
in Kamotani et al. (1992) and a theoretical analysis Kamotani et al. (1996), the results
of the STDCE-1 aboard of USML-1 Spacelab in 1992, cf. Kamotani & Ostrach (1994),
and finally their publications about the STDCE-2 aboard of USML-2 spacelab during
its mission in October/November 1995, cf. Kamotani & Ostrach (1998); Kamotani et al.
(1999, 2000). Though they have done some numerical work on the unperturbed axisym-
metric flow field, almost all their work on the non-axisymmetric flow is experimental
in nature. They have measured the critical temperature difference between the outer
wall and the heater as a measure for the onset of the instability for various test sec-
tions and heaters under earthbound 1g conditions, compare Kamotani et al. (1992). In
Kamotani & Ostrach (1994) they study the velocity fields of the STDCE-1 experimen-
tally and numerically for CO2 laser heating and heating by a cylindrical heater positioned
at the axis of the test section. The corresponding temperature fields are published in
Kamotani & Ostrach (1998). In Kamotani et al. (1999) they given an extensive study
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of the heating by a CO2 laser beam and in Kamotani et al. (2000) they present the
corresponding results for the experiments with a cylindrical heater.

In 2002 Sim & Zebib (2002) performed a numerical simulation in order to verify the
space experiments of Kamotani et al., and in addition study the influence of free sur-
face heat loss and Coriolis force on the transition process. Their results show a good
agreement with the experiments of Kamotani et al.

1.4 Scope of the present work

The scope of the present work is to clarify the hydrodynamic instability and the under-
lying physical mechanisms in (i) weld pools during fusion welding and (ii) in the annular
pool heated from the inside. To that end a physical model is presented in sec. 2. The
numerical solutions strategy is provided in sec. 3 and the validation of its results is pre-
sented in sec. 4. The computed results are shown, interpreted and discussed in sec. 5.
A discussion and some concluding remarks close the thesis in sec. 6.

1.4.1 Scope in the context of fusion welding

Sofar relatively little is known about the pattern formation in weld pools during the
welding process and on its dependence on the heating mode, under conditions with and
without gravity. A major reason being the difficulties in the experimental observation
of the flow properties at high values of opacity and temperature.

In the present work we investigate the melt flow for zero-gravity conditions, relevant
to space applications of this technology, and various gravity conditions, in order to make
a step towards those terrestrial applications in which thermocapillary effects dominate
buoyancy. To be more precise, we search for sufficient conditions for an axisymmetric
basic steady flow to become unstable to a non-axisymmetric perturbation flow, and
analyze the underlying physical mechanism driving the instability. First results for zero-
gravity conditions have been published in Schoisswohl & Kuhlmann (2006), an extension
of these results and a first discussion of the underlying physical mechanisms can be
found in Schoisswohl & Kuhlmann (2007). In the present work we will discuss the most
important results of prior publications and considerably extend them, for zero-gravity
as well as gravity conditions, and a wide range of geometrical constraints.

Note that the model used for this purpose has previously been studied by Wagner et al.
(1994) and others. Yet, no accurate prediction or systematic study of the stability
boundaries of the basic axisymmetric state, and the physical mechanism driving the
instability has been performed to date.

1.4.2 Scope in the context of the annular pool

Though some results of the experiments published by Kamotani et al. have been val-
idated by Sim & Zebib (2002), up to date no systematic verification on the critical
temperature difference for the onset of non-axisymmetric motion has been performed,
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nor have the physical mechanisms for the transition process been sufficiently under-
stood. The present work closes this gap: (i) the critical temperature differences for the
onset of linear instability in zero and standard gravity conditions are computed, (ii) a
sound explanation of the physical mechanism driving the instability is given, (iii) some
information on the influence of buoyancy on the onset of non-axisymmetric motion is pre-
sented, and (iv) finally the computed results are compared with previous experimental
and numerical work.
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2 Theoretical Approach

2.1 Mathematical Formulation

The aim of the present work is to study the linear stability in a liquid pool. To that end
we consider a cylindrical volume of fluid with height d and radius R defining an aspect
ratio Γ = R/d, compare fig.(2.1). The problem is formulated in cylindrical coordinates
(r, z, ϕ). The volume of fluid is bounded by a non-deformable free surface on top and
solid non-deformable walls at the sides and bottom. This non-deformability of the free
surface is justified, because we study the configuration in the limit of asymtotically large
mean surface tension σ0

1.

2.1.1 Oberbeck–Boussinesq approximation

For the fluid we assume that its behaviour can be described by the Oberbeck-Boussinesq
approximation for a Newtonian fluid, cf. Drazin & Reid (1981) or Landau & Lifschitz
(1991), an approximation derived independently by Oberbeck (1879) and Boussinesq
(1903).
The idea is to expand the material parameters appearing in the basic equations with
respect to their values at an average temperature T0. An estimate of the linear expansion
coefficients and of the terms in which they appear shows that the material parameters
can be approximated by their value at temperature T0.

For this approximation the temperature variations ∆T0 in the flow have to be small with
respect to the average temperature T0 (∆T0 ≪ T0). Respectively variations in density
∆ρ will be very small (∆ρ≪ ρ0) and can hence be neglected, except for the contribution
of the buoyancy term to the overall flow. The conservation law of mass simplifies to

∇ ·U = 0 . (2.1)

Performing a Taylor expansion for density we get

ρ = ρ0[1 − β(T − T0)] , (2.2)

with

β = −
1

ρ0

(
∂ρ

∂T

)

P;T0

. (2.3)

1For details on the mathematical derivation compare Shiratori (2007).
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Figure 2.1: Geometry and coordinate system.

being the thermal expansion coefficient at constant pressure and average temperature.
This yields a volume force density of buoyancy which can be calculated by

b = −ρgez = −ρ0[1 − β(T − T0)]gez . (2.4)

Here gravitational acceleration is given by g = −gez. (2.4) shows that buoyancy forces
due to thermal expension are of order O(∆T). With buoyancy being of the same order of
magnitude as the inertial and the dissipative forces they have to be taken into account in
the momentum equation. Note that the constant part −ρ0gez in (2.4) can be included
in the hydrostatic pressure.

In the temperature equation the contributions of compression temperature and heat
production by dissipation drop out.

The Oberbeck-Boussinesq approximation can be summarized as follows:

• Variations in density are neglected except for their contribution to buoyancy.

• The flow is divergence free (∇ · U = 0).

• In the temperature equation we consider only the convective and the diffusive term.

A more rigorous derivation of the Oberbeck-Boussinesq approximation can be found in
Mihaljan (1962).

The above approximations lead to the following system of equations:

∂U

∂t
+ (U · ∇)U = −

1

ρ0

∇P + ν∇2U − gβTez (2.5a)

∂T

∂t
+ (U · ∇)T = κ∇2

T (2.5b)

∇ · U = 0 . (2.5c)
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(2.5a) is the equation for the conservation of momentum, (2.5b) is the temperature
equation and (2.5c) the equation for the conservation of mass. UT = (U,V,W), P, T

and ρ are the variables for the velocity field, pressure, temperature and density. κ, µ and
g are the thermal diffusivity, the dynamic viscosity and the acceleration due to gravity.

Note that the vorticity if needed is calculated by

Ω = ∇×U . (2.6)

2.1.2 Boundary Conditions

In order to close the system (2.5a)-(2.5c) we have to introduce boundary conditions for
velocity U and temperature T.

Velocity Boundary Conditions

At the solid walls we impose no-slip velocity boundary conditions, i.e. the tangential
and the normal flow velocities must vanish at these boundaries

U = 0 . (2.7)

With the free surface being an interface between the two immiscible fluids (1) (liquid)
and (2) (gas) the effective stresses can be balanced by

S(1) · n = S(2) · n . (2.8)

Here S is the stress tensor at the interface given by the pressure and viscous forces per
unit surface. S is defined as

S = −PI + µ
[
∇U + (∇U)T

]
. (2.9)

According to Kuhlmann (1999) the stress balance for a flat interface can be expressed
by

S(1) · n − (I − nn) · ∇σ = S(2) · n . (2.10)

Expanding surface tension σ at average temperature T0

σ(T) = σ(T0) − γ(T − T0) +
1

2

∂2σ

∂T2 (T − T0)
2 +O

(
(T − T0)

3
)

, (2.11)

and truncating the expansion at the linear term, the gradient of surface tension can be
approximated by

∇σ ∼= −γ∇T . (2.12)

Neglecting higher order terms equation (2.10) can be cast into

S(1) · n + γ(I − nn)∇T = S(2) · n . (2.13)

Assuming that due to the low dynamic viscosity of gases the gas phase (2) exerts no
significant shear stress on the interface equation (2.13) can be rewritten as

µ
[
∇U + (∇U)T

]
· n + γ(I − nn)∇T = 0 . (2.14)

This is the velocity boundary condition at the free surface, compare Kuhlmann (1999)
for a more rigorous derivation.
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Thermal Boundary Conditions

At the solid walls we assume constant temperature

T = Tm = T0 . (2.15)

With Tm being the melt temperature of the liquid (1).

Considering Newtons law of cooling, radiation transport and an external heatflux the
thermal boundary condition at the free surface takes the form

− kez · ∇T = −Q(r)
︸ ︷︷ ︸

laser heating

+ h(T − Ta)
︸ ︷︷ ︸

Newtons law of cooling

+ ǫs0(T
4 − T

4
a)

︸ ︷︷ ︸

radiation transport

. (2.16)

Here Q = Q(r) is an axisymmetric heat flux due to laser heating, which is according to
Kamotani et al. (1999) absorbed within a thin layer of fluid below the free surface. k is
the thermal conductivity of the liquid, h the heat-transfer coefficient, ǫ the emissivity,
s0 the Stefan-Boltzmann constant and Ta the temperature of the ambient medium the
free surface is in contact with. Assuming that the heat transfer can be modeled to a
sufficient degree of accuracy by neglecting all terms but the heat flux Q = Q(r) we end
up with

− kez · ∇T = −Q(r) . (2.17)

The heat flux due to laser heating is modeled by an axisymmetric parabolic profile
Q = Q(r) imposed at the free surface

Q(r) = Qmax

(

1 −
r

R

)2

. (2.18)

With Qmax being the maximum heat flux Qmax = Q(r = 0) temperature is scaled by
∆T = Qmaxd/k.

2.1.3 Oberbeck-Boussinesq approximation in dimensionless Form

In order to reduce the number of parameters we cast the Oberbeck-Boussinesq approx-
imation into a dimensionless form. To that end we introduce the typical scales: d, ν/d,
d2/ν, ∆T and ρν2/d2 for length, velocity, time, temperature and pressure. We start with
the governing equations given by (2.5a)-(2.5c) and introduce the typical scales. We get

ρν2

d3

∂U

∂t
+
ρν2

d3
(U · ∇)U = −

ρν2

d3
∇P +

ρν2

d3
∇2U − g∆TβρΘez (2.19a)

ν∆T

d2

∂Θ

∂t
+
ν∆T

d2
(U · ∇)Θ =

κ∆T

d2
∇2Θ (2.19b)

ν

d2
∇ ·U = 0 , (2.19c)

with the dimensionless variables U = (U, V,W )T = (Ud)/ν for the vector of the radial,
azimuthal and axial velocity components, P = (Pd2)/(ρν2) for pressure, and Θ = (T −
T0)/∆T denoting the temperature field.
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Dividing the momentum equations (2.19a) by ρν2/d3, the temperature equation (2.19b)
by ν∆T/d2 and the continuity equation (2.19c) by ν/d2 yields

∂U

∂t
+ (U · ∇)U = −∇P + ∇2U −

β∆Tgd3

ν2
Θez (2.20a)

∂Θ

∂t
+ (U · ∇)Θ =

κ

ν
∇2Θ (2.20b)

∇ ·U = 0 . (2.20c)

Introducing the Prandtl and the Grashof number given by

Pr =
ν

κ
and Gr =

β∆Tgd3

ν2
, (2.21)

and substituting them into (2.20a)-(2.20c) the final system of equations takes the form

∂U

∂t
+ (U · ∇)U = −∇P + ∇2U − GrΘez (2.22a)

∂Θ

∂t
+ (U · ∇)Θ =

1

Pr
∇2Θ (2.22b)

∇ ·U = 0 . (2.22c)

Velocity Boundary Conditions in dimensionless Form

Introducing the scalings used to get equations (2.22a)-(2.22c) the velocity boundary
condition at the solid walls (no-slip) (2.7) takes the dimensionless form

U = 0 , (2.23)

and the boundary condition at the free surface becomes

[
∇U + (∇U )T

]
· n + Re(I − nn)∇Θ = 0 . (2.24)

Here we have introduced the new dimensionless parameter Re the thermocapillary
Reynolds number

Re =
γ∆T

ρν

d

ν
. (2.25)

Note that the term (γ∆T)/(ρν) = Uth has the dimension of a velocity. With this
definition of the Reynolds number we can define the dynamic Bond number

Bd =
Gr

Re
. (2.26)

A dimensionless number that measures the relative importance of buoyancy with respect
to thermocapillary forces.
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Thermal Boundary Conditions in dimensionless Form

Using the scales d, ∆T and Qmax = k∆T/d for length, temperature and heatflux the
dimensionless form of the thermal boundary conditions at the solid walls becomes

Θ = 0 . (2.27)

At the free surface equation (2.17) yields

∂Θ

∂z
= −

(

1 −
r

Γ

)2

. (2.28)

Note that the direction of the heat flux has been considered.

2.1.4 Remarks on the definition of the Reynolds number

Above the thermocapillary Reynolds number Re has been defined as

Re =
γ∆Td

ρν2
. (2.29)

In the floating zone problem, which uses the same definition for the thermocapillary
Reynolds number (cp. Kuhlmann (1999)), ∆T is given by the temperature difference of
the hot (h) and the cold (c) corner (∆T = Th −Tc). In the present problem formulation
the temperature difference at the free surface between the solid wall and the center of
the pool is not know apriori, rather it is part of the result. Therefore ∆T in (2.29) is
formulated as a function of the maximum heat flux Qmax to

∆T = Qmaxd/k . (2.30)

The thermocapillary Reynolds number can hence be written as

Re =
γQmaxd

2

ρν2k
. (2.31)

This difference in definition is important because it clarifies that the ∆T used in the
present nondimensionalization is not equal to the temperature difference ∆T = Tce−T0.
Here Tce is the temperature at the center of the pool and T0 the temperature of the solid
walls of the pool, which can only be computed aposteriori.

2.2 Solution Strategy

Reviewing the velocity boundary condition at the free surface (2.24)

[
∇U + (∇U )T

]
· n + Re(I − nn)∇Θ = 0 , (2.32)
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it becomes obvious that the thermocapillary Reynolds number describes the coupling of
the local shear stresses and the local temperature gradient at the free surface. Rewriting
(2.32) in cylindrical coordinates for the present problem we get

∂U

∂z
+ Re

∂Θ

∂r
= 0 ↔ radial shear stress (2.33a)

∂V

∂z
+

Re

r

∂Θ

∂ϕ
= 0 ↔ azimuthal shear stress (2.33b)

W = 0 ↔ no penetration . (2.33c)

From equation (2.31) we find

Re = Re(Qmax, ρ, ν, d, k, γ) . (2.34)

For a given setup we assume the parameters ρ, ν, d, k and γ constant, hence

Re ∝ Qmax . (2.35)

If the magnitude of heat flux stays below the limit value Qc
max the flow in the pool is

steady axisymmetric. By increasing Qmax above this threshold the flow becomes unstable
non-axisymmetric either steady or unsteady.

In the remainder of the present work it is exactly this threshold we are looking for,
and since the peak heat flux is directly proportional to the thermocapillary Reynolds
number, we will express this threshold in terms of the critical Reynolds number Rec.

In order to find the critical Reynolds number we perform a linear stability analy-
sis. A method successfully employed in prior work by Albensoeder (2004); Kuhlmann
(1999); Wanschura (1996) for the lid-driven cavity problem and the half-zone problem
of thermocapillary flow respectively.
To perform a linear stability analysis the variables of state

X T = (U , P,Θ) , (2.36)

are decomposed into a basic axisymmetric state x 0 and a perturbation x





U

P
Θ





︸ ︷︷ ︸

X

=





u0

p0

θ0





︸ ︷︷ ︸

x 0

+





u

p
θ





︸ ︷︷ ︸

x

. (2.37)

Inserting this decomposition and linearizing the governing equations (2.22a)-(2.22c) for
small perturbations x ≪ x 0 we get

∂u

∂t
+ (u · ∇)u0 + (u0 · ∇)u = −∇p + ∇2u − Grθez (2.38a)

∂θ

∂t
+ (u · ∇)θ0 + (u0 · ∇)θ =

1

Pr
∇2θ (2.38b)

∇ · u = 0 . (2.38c)
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For the perturbation x in the linearized equations an Ansatz of normal modes is chosen

x = x̂eimϕ+λt + c.c. . (2.39)

Using this Ansatz equations (2.38a)-(2.38c) and the corresponding boundary conditions
can be written as a generalized eigenvalue problem

(A− λB) · x̂ = 0 , (2.40)

compare also Albensoeder (2004) for a detailed account. Here x̂ is the amplitude vector,
m the azimuthal wave number and λ = σ+ iω. ℜ(λ) = σ corresponds to the growth rate
and ℑ(λ) = ω to the angular frequency of an eigenmode of the system (2.40). Since this
Ansatz is periodic in azimuthal direction ϕ it takes into account the ϕ-homogenity of
the system. Due to the cylindrical geometry of the weldpool only discrete wave numbers
m can be realised (m ∈ N).

Note that the system (2.40) has an infinite number of degrees of freedom. In order to
find a solution they have to be reduced to a finite number (k = 1, ..., K) by means of an
appropriate discretization.

In accordance with the Ansatz of normal modes (2.39) a normal mode can either grow
(σk > 0), decay (σk < 0) or hypothetically remain as it is (σk = 0), in the later case
it is called neutrally stable. Assuming that all eigenmodes of (2.40) decay the flow in
the pool will be steady and axisymmetric. On the other hand is a single growing mode
sufficient for the flow to become non-axisymmetric over time, compare equation (2.39)
for t → ∞. Hence in order for a flow to be linearly stable all eigenmodes need growth
rates (σk ≤ 0). In practice we are looking for an eigenmode satisfying the condition

max
k

ℜ(λk) = 0 . (2.41)

With the eigenvalues λk depending on the parameters Re, Gr, Pr, Γ and m

λk = λk(Re,Pr,Gr,Γ, m) . (2.42)

If condition (2.41) can not be satisfied by any of the eigenmodes of (2.40) its parameters
need to be changed until an eigenmode with σk = 0 is found. An eigenvalue λk satisfying
condition (2.41) is called a neutral eigenvalue λn. The curve resulting from the variation
of one out of the parameters Ξj = {Re, Gr, Pr, Γ} while assuring σk = 0 and m = const.
is called a neutral curve. The critical curve is computed as the minimum envelope of all
neutral curves with respect to wave number m.

Investigating for example the dependence of Re on Pr for constant {Gr,Γ} and a
series of wave numbers m = 1, ...,M , we can find a neutral Reynolds number Re = Ren

satisfying ℜ(λk) = σk = σn = 0 for any value of {m, Pr}. Keeping m = const. and
computing Ren as a function of Pr we get one out of M neutral curves. The minimum
envelope of the M neutral curves is equivalent to the critical curve and the corresponding
Reynolds numbers are called the critical Reynolds numbers Rec.
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2.3 Energy Analysis

In the preceeding section we have shown how to compute the curves of critical stability by
means of a linear stability analysis. The analysis yields (a) the critical Reynolds number
Rec, (b) the critical eigenvalue λc = σc + ωc with σc = 0 and the critical frequency ωc,
and (c) the corresponding perturbation mode x c.

In order to perform an energy analysis we need to start from the Reynolds-Orr equation
and its thermal equivalent, their derivation is presented in appendix B. Both equations
describe the kinetic respectively thermal energy transport of energy from the basic state
to perturbation mode and vice versa. The principle idea is to locate the regions of
influence of the specific physical effects and to quantify their relative contribution to the
energy transport.

The Reynolds–Orr equation is given by

d

dt
Ekin + 〈u2∂ru0〉

︸ ︷︷ ︸

Iv1

+ 〈uw∂zu0〉
︸ ︷︷ ︸

Iv2

+

〈
v2u0

r

〉

︸ ︷︷ ︸

Iv3

+ 〈uw∂rw0〉
︸ ︷︷ ︸

Iv4

+ 〈w2∂zw0〉
︸ ︷︷ ︸

Iv5

−

∫

S

dS(u∂zu)

︸ ︷︷ ︸

Mr

−

∫

S

dS(v∂zv)

︸ ︷︷ ︸

Mϕ

+ 〈(∇× u)2〉
︸ ︷︷ ︸

D

−〈Grθw〉
︸ ︷︷ ︸

IGr

= 0 . (2.43)

Here 〈...〉 is equivalent to
∫
... dV , the integration by volume. Ekin is the total kinetic

energy in the integration volume, D is the rate of viscous dissipation, Iv1 to Iv5 describe
the advection of basic state momentum u0 by the perturbation mode u , thus adding
to the perturbation flow itself. The quantities Mr and Mϕ represent the work done by
the Marangoni forces on the free surface in radial and azimuthal direction. Work by
buoyancy forces is given by IGr.
For further analysis we will also need the local rates of change of energy . These are the
integrands of the above integrals and will be indicated, henceforth, by lower-case letters,
e.g. mr = u∂zu or iv1 = u2∂ru0.

The thermal equivalent of the Reynolds–Orr equation is given by

d

dt
Eth + 〈Tu∂rθ0〉

︸ ︷︷ ︸

IT1

+ 〈θw∂zθ0〉
︸ ︷︷ ︸

IT2

−
1

Pr

∫

S

dS
1

2
∂z(θ

2)

︸ ︷︷ ︸

H

+
1

Pr
〈(∇θ)2〉

︸ ︷︷ ︸

DT

= 0 . (2.44)

Here Eth is the total thermal energy in the integration volume, DT is the rate of heat
diffusion, IT1 and IT2 represent the thermal energy produced by the advection of basic
state temperature θ0 by the perturbation flow u thus adding to the perturbation tem-
perature field θ. Finally H is a measure of the supply of thermal energy Eth through
the free surface. The local rates of change of thermal energy are the integrands of the
above integrals. They will again be denoted by lower-case letters, e.g. iT1 = θu∂rθ0.

A detailed discussion of the individual terms is presented in appendix B.
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Note however that the representation in polar coordinates must not necessarily be a
good one. Alternatively the local energy transfer terms can also be reformulated for
perturbation velocities tangential and normal to the local coordinates of the streamlines,
i.e. the perturbation velocity u is split into a tangential

u t =
(u · u0)u0

u2
0

(2.45)

and a normal part
un = u − u t . (2.46)

Instead of the five production terms Iv1-Iv5 in relation (2.43) we then get only four terms
I ′v1-I

′
v4. They are

I ′v1 = 〈un · (un · ∇u0)〉 (2.47a)

I ′v2 = 〈u t · (un · ∇u0)〉 (2.47b)

I ′v3 = 〈un · (u t · ∇u0)〉 (2.47c)

I ′v4 = 〈u t · (u t · ∇u0)〉 . (2.47d)

For a detailed account compare Albensoeder (2004) and Nienhüser & Kuhlmann (2002).
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3 Numerical Implementation

In this section all methods and information necessary to implement the linear stability
analysis of the 2D steady flow are presented.

In the first part all points related to the discretization procedure are addressed, in-
cluding (a) the discretization in finite volumes, (b) the staggered and (c) the stretched
grid, and (d) the interpolation of numerical data at inter-grid points.

The second part is concerned with all issues related to the linear stability analysis
and its implementation. To that end (a) the computation of the basic state and (b) the
perturbation flow, (c) the tracing of the neutral Reynolds number, and (d) the concept
of critical stability will be explained.

3.1 Discretization

The system of partial differential equations given by the governing equations (2.22a)-
(2.22a) can be written as

f (x ) = 0 . (3.1)

In order to numerically solve the above system it needs to be transformed into a system
of difference equations

A · x = b . (3.2)

In the present work a finite volume method implemented on a staggered locally stretch-
able grid is used.

The plane of computation is equivalent with the (r, z) plane. Using the symmetry
of the system all computations can be performed on a two-dimensional computational
domain composed of Nr × Nz cells. In order to implement the boundary conditions
an additional row respectively column of visual or ghost cells is needed on either side
of the computational domain. The indices i, j, k are used to mark the positions of the
variables. Here i marks the position in radial (r) and j in axial (z) direction. For the
purpose of data visualization we will need the index k, which is a discrete measure for
the azimuthal (ϕ) direction. The indices running in radial (r), axial (z) and azimuthal
(ϕ) direction are:

r : i = 0, · · · , Nr + 1 ,

z : j = 0, · · · , Nz + 1 ,

ϕ : k = 0, · · · , Nϕ + 1 . (3.3)

Here Nr, Nz, and Nϕ are the number of finite volume cells in radial, axial, and azimuthal
direction. A coordinate point is given by (ri, zj, ϕk).
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Figure 3.1: (a) A two-dimensional cell of a staggered grid belonging to the grid point (i, j).
(b) The three different control volumes used in a staggered grid: the colors stand for the
U -control-volume (red) the W -control-volume (blue) and the V -P -T -control-volume (black).
The corners of the control volumes are marked by colored dots and the centers by squares.

3.1.1 Uniform Staggered Grid

On colocated numerical grids all variables are located directly at the center of the cell
Si,j . A grid cell is defined as a geometrical domain Si,j = [ri, ri+1] × [zj , zj+1].

On a staggered grid the grid points for the velocity components are located on the
surfaces of the finite volumes and the gridpoints for pressure and temperature are located
at the center of the volumes, cp. figure 3.1a. The physical quantities pressure Pi,j,
temperature Ti,j and in case of a three-dimensional computational domain the azimuthal
velocity Vi,j are located at positions (ri+1/2, zj+1/2) where they form the center for the

corresponding pressure/temperature/azimuthal velocity control volumes SP,T
i,j or SV

i,j.
The other velocity components Ui,j and Wi,j are located at positions (ri, zj+1/2) for the
radial and (ri+1/2, zj) for the axial velocity, where they again form the centers of the
corresponding radial and axial velocity control volumes SU

i,j respectively SW
i,j . Compare

fig. 3.1b for the positions of the the different control volumes.
The respective control volumes of the variables belonging to the grid point (i, j) are

SU
i,j = [ri−1/2, ri+1/2] × [zj , zj+1] (3.4a)

SV
i,j = [ri, ri+1] × [zj , zj+1] (3.4b)

SW
i,j = [ri, ri+1] × [zj−1/2, zj+1/2] (3.4c)

SP
i,j = [ri, ri+1] × [zj , zj+1] (3.4d)

ST
i,j = [ri, ri+1] × [zj , zj+1] . (3.4e)

Note that the different control volumes and the locations of the physical variables have
to be considered in the discretization process of the governing equations (2.22a)-(2.22a).
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(a) (b) (c)

Figure 3.2: Each of the three computational grids displayed above feature Nr ·Nz = 10×10 grid
cells. (a) shows a uniform grid (NW

δr
= NE

δr
= NS

δz
= NN

δz
= 0). (b) and (c) show non-uniform

grids, with cells compressed towards the upper and the right boundary. The stretching-factors
are δr = δz = 0.7, and the number of compressed cells is given by (b) NE

δr
= NN

δz
= 5

respectively (c) NE
δr

= NN
δz

= 10.

3.1.2 Non-Uniform Staggered Grid

From theoretical considerations we expect strong variations in the solution structure
normal and close to the bounding interfaces, in particular the formation of viscous
and thermal boundary layers. Resolving these strong gradients is not an easy task,
since it can only be achieved by a massiv increase of the overall number of grid cells.
Such an approach is possible, yet is very expensive in terms of CPU-time and other
computational resources. An alternative is to provide high grid resolution locally by
refining the computational grid only in regions where grid refinement is necessary. Since
we expect the formation of boundary layers close to the free surface and the liquid–solid
interface of the pool it seems but logical to refine the computational grid here.

In the present approach the grid is stretched (compressed) along the coordinate di-
rections, hence two neighboring grid cells will have slightly different dimensions. Their
size ratios respectively stretching factors are given by

δr =
∆ri+1

∆ri

and δz =
∆zj+1

∆zj

. (3.5)

The stretching factors should not change the dimensions of two neighboring cells by
more than 5% otherwise a loss of spatial accuracy of the second order scheme can be
expected.

3.1.3 Definition of the implemented Grid

The coordinates of the grid points of the computational mesh can be expressed by

ri =







−∆r1 for i = 0
0 for i = 1
ri−1 + ∆ri−1 for i = 2, ..., Nr + 1
rNr+1 + ∆rNr for i = Nr + 2
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ri+1/2 =

{
1
2
(ri+1 + ri) for i = 0, ..., Nr + 1

2rNr+3/2 − rNr+1/2 for i = Nr + 2 ,

in radial direction, and in axial direction by

zj =







−∆z1 for j = 0
0 for j = 1
zj−1 + ∆zj−1 for j = 2, ..., Nz + 1
zNz+1 + ∆zNz for j = Nz + 2

zj+1/2 =

{
1
2
(zj+1 + zj) for j = 0, ..., Nz + 1

2zNz+3/2 − zNz+1/2 for j = Nz + 2 .

Where

∆ri =







drδ
NW

δr −i
r for i = 1, ..., NW

δr

dr for i = NW
δr + 1, ..., Nr −NE

δr

drδ
i+NE

δr−Nr

r for i = Nr −NE
δr + 1, ..., Nr

with

dr =
Γ

Nr − (NW
δr +NE

δr) +

i=NW
δr +NE

δr∑

i=1

δi
r

, (3.6)

is the distance between two neighboring radial grid points ri and ri+1. In axial direction
the distance between the two grid points zj and zj+1 is computed by

∆zj =







dzδ
NS

δz
−j

z for j = 1, ..., NS
δz

dz for j = NS
δz + 1, ..., Nz −NN

δz

dzδ
j+NN

δz−Nz

z for j = Nz −NN
δz + 1, ..., Nz

with

dz =
1

Nz − (NS
δz +NN

δz) +

j=NS
δz+NN

δz∑

j=1

δj
z

. (3.7)

NW
δr , NE

δr, N
S
δz , and NN

δr give the number of cells compressed towards the left (W), right
(E), lower (S) and upper (N) boundary of the computational domain. As an illustration
some examples are shown in figure 3.2.

Note that with this approach the solution can be computed either on a uniform or on a
non-uniform staggered grid. For computations on a non-uniform staggered grid we can
decide along which coordinate direction, to what extent, and on which side we want to
stretch the computational cells.
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3.1.4 Interpolation of Numerical Data

In course of the discretization process the value of a variable is frequently needed at
positions other then its original location. The necessary interpolation is performed by
means of Linear Interpolation (CDS)1. Compare Ferziger & Perić (2002) for details.

A variable X which is originally located at position (j, i) is interpolated to positions
(i+ 1/2, j) and (i, j + 1/2) by

X̄i+1/2,j = ξXi+1,j + (1 − ξ)Xi,j (3.8a)

X̄i,j+1/2 = ηXi,j+1 + (1 − η)Xi,j . (3.8b)

Here X̄ is the value of the variable at its new position, while X denotes its value at its
original position. ξ and η are interpolation coefficients given by

ξU =
ri+1/2 − ri

ri+1 − ri
ηU =

zj+1 − zj+1/2

zj+3/2 − zj+1/2

(3.9a)

ξW =
ri+1 − ri+1/2

ri+3/2 − ri+1/2

ηW =
zj+1/2 − zj

zj+1 − zj
(3.9b)

ξP = ξT =
ri+1 − ri+1/2

ri+3/2 − ri+1/2
ηP = ηT =

zj+1 − zj+1/2

zj+3/2 − zj+1/2
(3.9c)

Note that since the interpolation is performed on a staggered grid the interpolation co-
efficients differ with the variable. The indices in the above definition of the interpolation
coefficients show for which variable(s) the coefficients apply.

3.1.5 Finite Volume Method

The discretization of the governing equations (2.22a)-(2.22a) is performed by means of
a finite volume method (FVM)2. It was chosen for three major reasons: (a) it is widely
used and well tested in fluid dynamics, (b) according to R. J. LeVeque & Müller (1998)
its advisable to use finite volumes rather than finite differences for conservation laws,
and (c) it is easy to implement on non-uniform grids.

In order to implement the FVM the computational domain is decomposed into small
finite volumes. For an one-dimensional domain these finite volumes are intervals Ci,
for a two-dimensional domain surfaces Sij and for a three-dimensional domain they are
volumes Vijk. After the decomposition the governing equations are evaluated in their
integral form for the corresponding finite volumes.

As an example the FVM is implemented for the continuity equation (2.5c)

∇ ·U = 0 , (3.10)

1According to Ferziger & Perić (2002) this is the simplest second-order interpolation scheme. The
acronym CDS is used because it corresponds to the central-difference approximation of the first
derivative in Finite Differences (FD).

2Compare Ferziger & Perić (2002); R. J. LeVeque & Müller (1998) or Versteeg & Malalasekera (1995)
for a detailed account on the Finite Volume Method.
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on a two-dimensional computational domain.

The discretization procedure consists of the following steps:

1. Integration of the two-dimensional form of the continuity equation

∂(rU)

∂r
+ r

∂(W )

∂z
= 0 (3.11)

for the finite surface Sji = [rj, rj+1] × [zi, zi+1], since the computational domain is
two-dimensional the finite volume is a surface. The integral takes the form

∫ zi+1

zi

dz

∫ rj+1

rj

dr

(
∂(rU)

∂r
+ r

∂(W )

∂z

)

= 0 . (3.12)

2. Integration with respect to r respectively z yields

∫ zi+1

zi

dz [rU ]∆r +

∫ rj+1

rj

dr r[W ]∆z = 0 . (3.13)

Here [...] indicates a difference as a jump in the value of an expression and the
subscripts ∆r and ∆z indicate the coordinate direction of this jump.

3. Approximating the integral by the midpoint-rule approximation3, we get

∆zi [rU ]∆r + ∆rj r[W ]∆z = 0 . (3.14)

4. Evaluation of the differences by means of a first order difference scheme gives

∆zi [rj+1Uj+1,i − rjUj,i] + ∆rj rj+1/2[Wj,i+1 −Wj,i] = 0 . (3.15)

This is the finite volume formulation of the continuity equation on a staggered grid.
The formulations of the remaining governing equations and boundary conditions can be
constructed in a similar way. Note that due to the use of a staggered grid (cp. sec. 3.1.1)
every variable has its own finite (control) volume.

3.2 Linear Stability Analysis

The linear stability analysis can be split into four major steps (cp. fig. 3.3)

1. A first guess of the thermocapillary Reynolds number Re = Restart for which we
expect neutral stability.

2. Computation of the steady axisymmetric basic flow x 0 by means of a Newton-
Raphson-Iteration, cp. sec. 3.2.1.

3Compare Ferziger & Perić (2002) p.74 for the midpoint rule.
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Figure 3.3: Flow chart of the linear stability analysis.

3. Computation of the strongest growing non-axisymmetric perturbation mode x

with growth rate σ = σmax = maxi σi. The computation for the corresponding
eigenvalue λ = σ+iω is performed by means of an Inverse Iteration, cp. sec. 3.2.2.

4. Evaluation of the termination criterion |σ| = |ℜ(λ)| < ǫev, cp. sec. 3.2.3.

a) For |σ| < ǫev we have found the point of neutral stability up to the prescribed
accuracy ǫev. In that case λ = λn is the neutral eigenvalue, Re = Ren the
neutral Reynolds number, x = xn the neutral perturbation mode, and x 0

the corresponding basic flow state.

b) For |σ| > ǫev we calculate a new Reynolds number Re = Renew by means of a
secant method, and resume the computation at step 2.

In what follows a detailed account of the separate steps is given.

3.2.1 Computation of the Basic State Flow

For a steady and axisymmetric basic state flow

∂t = ∂ϕ = v0 ≡ 0 (3.16)

the governing equations (2.22a)-(2.22c) in cylindrical coordinates are

u0
∂u0

∂r
+ w0

∂u0

∂z
= −

∂p0

∂r
+

1

r

∂

∂r

(

r
∂u0

∂r

)

+
∂2u0

∂z2
(3.17a)

u0
∂w0

∂r
+ w0

∂w0

∂z
= −

∂p0

∂z
+

1

r

∂

∂r

(

r
∂w0

∂r

)

+
∂2w0

∂z2
(3.17b)

u0
∂θ0
∂r

+ w0
∂θ0
∂z

=
1

Pr

[
1

r

∂

∂r

(

r
∂θ0
∂r

)

+
∂2θ

∂z2

]

(3.17c)

1

r

∂(ru0)

∂r
+
∂w0

∂z
= 0 . (3.17d)
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In order to implement the finite volume method and the staggered grid the equa-
tions (3.17a)-(3.17b) have to be written in their integral form. Integration over the
2-dimensional volume

∫
dS =

∫
rdrdz yields

∫

[ru2
0]∆rdz +

∫

[w0u0]∆zr dr =

∫

[2u0 + r∂ru0]∆rdz+

+

∫

[∂zu0]∆z rdr + 2

∫

[w0]∆zdr −

∫

[rp0]∆rdz +

∫

p0drdz (3.18a)
∫

[ru0w0]∆rdz +

∫

[w2
0]∆zr dr =

∫

[r∂rw0]∆rdz+

+

∫

[∂zw0]∆z rdr −

∫

[p0]∆z rdr + Gr

∫

θ0rdrdz (3.18b)
∫

[ru0θ0]∆rdz +

∫

[w0θ0]∆zr dr =

=
1

Pr

(∫

[r∂rθ0]∆rdz +

∫

[∂zθ0]∆z rdr

)

(3.18c)

0 =

∫

[u0r]∆rdz +

∫

r[w0]∆zdr . (3.18d)

The above integrals are approximated by the midpoint-rule and the variables evaluated
by means of a first order difference scheme, compare sec. 3.1.5 where the procedure is
explained in detail for the continuity equation.

The resulting system of four algebraic difference equations for every grid point (i, j)
can be written as

A(x ) · x = b , (3.19)

with x T = (u0,0, w0,0, p0,0, θ0,0, u0,1, v0,1, · · · θNr+1,Nz+1). (3.19) is solved by means of the
Newton-Raphson-Iteration-Method (cp. J. H. Mathews (2004)). The iteration process
is considered converged as soon as the 2-norm ‖...‖2 of the residual

r = A(x ) · x − b , (3.20)

satisfies
‖r‖2 < ǫ , (3.21)

where ǫ is of the order of O(10−7). - As a result of the Newton-Raphson-Iteration-
Method we get the basic flow x 0. For more details on the iteration procedure check the
gray box below.
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Newton-Raphson-Method

The Newton-Raphson-Iteration-Method is composed of the following
steps:

1. Calculation of the residual

r (k) = A(x (k)) · x (k) − b . (3.22)

For the first iteration step (k = 0) the vector x (k) = x (0) is
chosen at random.

2. Computation of the Jacobi for x (k)

J
(k)
j,i =

∂rj

∂xi

∣
∣
∣
∣
x=x (k)

. (3.23)

3. The linear system

J (k) · δx (k) = −r (k) , (3.24)

is solved by means of a LAPACKa routine.

4. Calculation of the new vector x (k+1),

x (k+1) = x (k) + δx (k) . (3.25)

5. Calculation of the new residual r (k+1),

r (k+1) = A(x (k+1)) · x (k+1) − b . (3.26)

a) If the norm of the residual is sufficiently small or the max-
imum number of iterations Kmax exceeded, i.e.

‖r (k+1)‖2 < ǫ or k > Kmax , (3.27)

the iteration is terminated, and x (k+1) is the approxima-
tion of the solution vector.

b) Otherwise the iteration process is resumed at step 2.

aLAPACK, the Linear Algebra PACKage, is an open-source software li-
brary for numerical computing written in Fortran 77. Available at
http://www.netlib.org/lapack/.
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3.2.2 Discretization of the Perturbation Flow

The perturbation mode x and the corresponding eigenvalue λ are computed along the
lines of the solution strategy discussed in section 2.2. To that end the perturbation
equations 2.38a-2.38c are written for cylindrical coordinates

∂u

∂t
= −

(

u0
∂

∂r
+
v0

r

∂

∂ϕ
+ w0

∂

∂z

)

u−

(

u
∂

∂r
+
v

r

∂

∂ϕ
w
∂

∂z

)

u0

−
∂p

∂r
+

1

r

∂

∂r

(

r
∂u

∂r

)

+
1

r2

∂2u

∂ϕ2
+
∂2u

∂z2
(3.28a)

∂v

∂t
= −

(

u0
∂

∂r
+
v0

r

∂

∂ϕ
+ w0

∂

∂z

)

v −

(

u
∂

∂r
+
v

r

∂

∂ϕ
+ w

∂

∂z

)

v0

−
1

r

∂p

∂ϕ
+

1

r

∂

∂r

(

r
∂v

∂r

)

+
1

r2

∂2v

∂ϕ2
+
∂2v

∂z2
(3.28b)

∂w

∂t
= −

(

u0
∂

∂r
+
v0

r

∂

∂ϕ
+ w0

∂

∂z

)

w −

(

u
∂

∂r
+
v

r

∂

∂ϕ
+ w

∂

∂z

)

w0

−
∂p

∂z
+

1

r

∂

∂r

(

r
∂w

∂r

)

+
1

r2

∂2w

∂ϕ2
+
∂2w

∂z2
(3.28c)

∂θ

∂t
= −

(

u0
∂

∂r
+
v0

r

∂

∂ϕ
+ w0

∂

∂z

)

θ −

(

u
∂

∂r
+
v

r

∂

∂ϕ
+ w

∂

∂z

)

θ0

+
1

r

∂

∂r

(

r
∂θ

∂r

)

+
1

r2

∂2θ

∂ϕ2
+
∂2θ

∂z2
(3.28d)

0 =
1

r

∂(ru)

∂r
+

1

r

∂v

∂ϕ
+
∂w

∂z
. (3.28e)

Equations (3.28a)-(3.28e) are a system of 5 equations in 5 variables (u, v, w, p, θ) and 4
dimensions - 3 space (r, z, ϕ) and one time dimension (t). The general solution can be
written as a superposition of normal modes

(u , p, θ)T (r, ϕ, z, t) = (û , p̂, θ̂)T (r, z) eimϕeλt , (3.29)

with wave number m and complex growth rate λ = σ + iω. Here λ is composed of a
growth rate σ and an angular frequency ω. Using the normal mode Ansatz (3.29) and
considering the axisymmetry of the basic flow

∂ϕx 0 = v0 ≡ 0 (3.30)

equations (3.28a)-(3.28e) become

λû = −

(

u0
∂

∂r
+ w0

∂

∂z

)

û−

(

û
∂

∂r
+ ŵ

∂

∂z

)

u0 −
∂p̂

∂r
+

1

r

∂

∂r

(

r
∂û

∂r

)

−
m2

r2
û+

∂2û

∂z2
(3.31a)

λv̂ = −

(

u0
∂

∂r
+ w0

∂

∂z

)

v̂ −
im

r
p̂+

1

r

∂

∂r

(

r
∂v̂

∂r

)

−
m2

r2
v̂ +

∂2v̂

∂z2
(3.31b)
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λŵ = −

(

u0
∂

∂r
+ w0

∂

∂z

)

ŵ −

(

û
∂

∂r
+ ŵ

∂

∂z

)

w0 −
∂p̂

∂z
−
m2

r2
ŵ

+
1

r

∂

∂r

(

r
∂ŵ

∂r

)

+
∂2ŵ

∂z2
(3.31c)

λθ̂ = −

(

u0
∂

∂r
+ w0

∂

∂z

)

θ̂ −

(

û
∂

∂r
+ ŵ

∂

∂z

)

θ0 +
1

r

∂

∂r

(

r
∂θ̂

∂r

)

−
m2

r2
θ̂ +

∂2θ̂

∂z2
(3.31d)

0 =
1

r

∂(rû)

∂r
+

im

r
v̂ +

∂ŵ

∂z
. (3.31e)

To numerically implement equations (3.31a)-(3.31e) they need to be integrated over the
volume dS = rdrdz. The integrated equations are

∫

r

∫

z

rλûdrdz + 2

∫

z

[rûu0]∆rdz +

∫

r

[rûw0]∆zdr +

∫

r

[rŵu0]∆zdr+

+

∫

z

[rp̂]∆rdz −

∫

r

∫

z

pdrdz −

∫

z

[r∂rû]∆rdz +

∫

r

∫

z

û

r
(m2 + 1)drdz−

−

∫

r

r[∂zû]∆zdr + i

∫

r

∫

z

v̂

(
2

r
+ u0

)

drdz = 0 (3.32a)

∫

r

∫

z

rλv̂drdz +

∫

z

[rv̂u0]∆rdz +

∫

r

[rv̂w0]∆zdr +

∫

r

∫

z

u0v̂dzdr+

+ i

∫

z

∫

r

mp̂drdz −

∫

z

[r∂rv̂]∆rdz − i

∫

z

∫

r

2

r
ûmdrdz +

∫

r

∫

z

v̂

r
m2drdz−

−

∫

r

r[∂z v̂]∆zdr +

∫

r

∫

z

v̂

r
drdz = 0 (3.32b)

∫

r

∫

z

rλŵdrdz +

∫

z

[rûw0]∆rdz + 2

∫

r

[rŵw0]∆zdr +

∫

z

[rŵu0]∆rdz+

+ i

∫

r

∫

z

mw0v̂dzdr +

∫

r

[p̂]∆zdr −Gr

∫

r

∫

z

rθ̂drdz −

∫

z

[r∂rŵ]∆rdz+

+

∫

r

∫

z

ŵ

r
m2drdz −

∫

r

r[∂zŵ]∆zdr = 0 (3.32c)
∫

r

∫

z

rλθ̂drdz +

∫

z

[rθ̂u0]∆rdz +

∫

r

r[θ̂w0]∆zdr +

∫

z

[rûθ0]∆rdz+

+

∫

r

r[ŵθ0]∆zdr + i

∫

r

∫

z

θ̂mv̂drdz−

−
1

Pr

(∫

z

[r∂r θ̂]∆rdz +

∫

r

∫

z

m2

r
θ̂drdz −

∫

r

r[∂z θ̂]∆zdr

)

= 0 (3.32d)

∫

[rû]∆rdz + i

∫ ∫

mv̂drdz +

∫

r[ŵ]∆zdr = 0 . (3.32e)

Equations (3.32a)-(3.32e) then need to be transformed into a system of algebraic differ-
ence equations by means of finite volumes. To that end the integrals are approximated
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by the midpoint-rule and the variables evaluated by means of a first order difference
scheme, compare sec. 3.1.5.

The system is completed by the boundary conditions for the perturbation equations. In
in sec. 2.1.3 these boundary conditions have been given in terms of the total flow state

X = x 0 + x . (3.33)

Inserting (3.33) into these boundary conditions and taking into account that they are
satisfied for x 0, we get their formulation for the perturbation state x .

The boundary conditions at the solid walls are

u = v = w = θ = 0 , (3.34)

we assume no-slip and constant temperature at undeformable liquid–solid interface.

Inserting (3.33) into (2.33a)-(2.33c) and (2.28) we get the boundary conditions at the
free surface

∂zu+ Re ∂rθ = 0 ↔ radial shear stress (3.35a)

∂zv + Re
m

r
θ = 0 ↔ azimuthal shear stress (3.35b)

w = 0 ↔ no penetration (3.35c)

∂zθ = 0 ↔ insulating . (3.35d)

Here the Ansatz of normal modes (3.29) was used. Conditions (3.35a) and (3.35b)
represent the shear stress balance, while condition (3.35c) has to be satisfied to guarantee
that the free surface is non-deformable. Note from condition (3.35d) that we assume no
perturbation in the heat flux at the free surface, and neglect flow and heat transfer in
the ambient gas phase.

The boundary conditions at the axis are given by

∂ru = v = ∂rw = ∂rθ = 0 for m = 0 (3.36a)

∂ru = v = w = θ = 0 for m = 1 (3.36b)

u = v = w = θ = 0 for m > 1 . (3.36c)

Here the radial perturbation flow depends on the wave number m. For the derivation of
these boundary conditions compare Kuhlmann & Rath (1993) and Xu & Davis (1984).

The system of algebraic difference equations resulting from the discretization of equa-
tions (3.32a)-(3.32e) and the corresponding boundary conditions (3.34)-(3.36) can be
restated in the mathematical form of a classical generalized eigenvalue problem

(A− λB) · x̂ = 0 . (3.37)

The eigenvalues of (3.37) are computed by means of an inverse iteration4, which gives
the eigenvalue λ closes to an initial guess λ(0). See also the gray box below.

4For more information on the inverse iteration compare Golub & van Loan (1989)
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Inverse Iteration

(3.37) can be reformulated to give

(A− λB) · ŷ = Bx̂ . (3.38)

The Inverse Iteration consists of the following steps:

1. In the first step the system

(A− λ(k)B) · ŷ (i+1) = Bx̂ (i) (3.39)

is solved for ŷ (i+1) by means of a LU-decomposition followed
by back substitution. In the first iteration step the eigenvalue
λ(0) and eigenvector x̂ (0) are chosen at random.

2. In the next step the new residual x̂ (i+1) is calculated by

x̂ (i+1) =
ŷ (i)

‖ŷ (i)‖2

. (3.40)

3. Steps 1 and 2 are repeated until the exit condition

|‖(x̂ (i+1))∗ · x̂ (i)‖2 − 1| < ǫev (3.41)

is satisfieda.

4. As soon as condition (3.41) is satisfied the new eigenvalue λ(k+1)

is computed by

λ(k+1) = λ(k) +
1

(x̂ (i))∗ · ŷ (i+1)
. (3.42)

5. Steps 1 through 4 are repeated until

|λ(k+1) − λ(k)|

|λ(k+1)|
< ǫev . (3.43)

Once (3.43) is satisfied an eigenvalue λ and the corresponding
eigenvector x̂ has been found.

aNote that the order of magnitude of ǫev is O(10−7).
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3.2.3 Secant Method - Tracing of the neutral Reynolds number

For the purpose of the present work it is not necessary to compute the full spectrum
of eigenvalues, the eigenvalue with the largest real part ℜ(λmax) = maxi ℜ(λi) suffices.
In order to find this eigenvalue λmax and the corresponding eigenvector x̂ for a first
estimate of the neutral Reynolds number a series of eigenvalues is computed by the
inverse iteration for a sufficient number of random initial guesses λ

(0)
i . The eigenvalue

λ(n−1) with ℜ(λ(n−1)) = maxi ℜ(λ
(0)
i ) = ℜ(λmax) can then be considered the complex

growth rate of the estimated Reynolds number Re(n−1). If |ℜ(λ(n−1))| > ǫev we perform
a second inverse iteration5 for a slightly larger Reynolds number Re(n) = Re(n−1) + ǫ
and use the computed eigenvalue λ(n) to calculate a new estimate Re(n+1) for the neutral
Reynolds number by means of a secant method6,

Re(n+1) = Re(n) − σ(Re(n))
Re(n) − Re(n−1)

σ(Re(n)) − σ(Re(n−1))
. (3.44)

The advantage of the secant method is that in contrast to the Newton-Iteration-Method
we don’t necessarily need an explicit function to perform the root-finding. It is sufficient
to know the function values σ(n) = ℜ(λ(n)), σ(n−1) = ℜ(λ(n−1)) at the two points Re(n),
Re(n−1) at different iteration steps (n), (n − 1) to start the iteration. The iteration is
stopped as soon as the variation of Re for two consecutive iteration steps is sufficiently
small7, i.e.

|Re(n+1) − Re(n)| < ǫRe . (3.45)

The secant method can be derived from the classical Newton-Iteration-Method by
substituting the tangent by a secant passing through the points (Re(n), σ(n)) and
(Re(n−1), σ(n−1)). It converges not as swift as the classical method but it is easier to
implement.

Note that the growth rate σ depends on the parameters Ξj = {Re, Gr, Pr, Γ}, hence
so does the eigenvalue λ = λ(Ξj). The tracing for the zero-growth rate σ = ℜ(λ) = 0
described above can be performed for any parameter Ξj as long as all other parameters
are kept constant. If more than one parameter is variable it is advisable to switch to a
multidimensional secant method.

5Note that before the inverse iteration can be performed the basic state x 0 needs to be updated for
the new Reynolds number Re(n).

6A detailed account on the secant method is given in J. H. Mathews (2004).
7Note that the order of magnitude of ǫRe is O(10−7).

30



4 Validation of the Numerical Code

In order to assure that a numerical code gives correct results it must be validated. In
case of the present problem formulation we do not have any experimental or numerical
data to compare with. However results for a related problem, the half-zone problem
are readily available. To that end compare Leypoldt (1999); Nienhüser (2002) and
Wanschura (1996). Leypoldt (1999) treated the half-zone problem by means of a time-
dependent three-dimensional simulation, a linear stability analysis was performed by
Nienhüser (2002) and Wanschura (1996). Note that the linear stability analysis of the
half-zone problem differs from the present analysis in terms of the boundary conditions
only. To test the present code its boundary conditions are changed to suit the half-zone
problem and its results compared to prior work on the half-zone problem.

In addition, the grid convergence of the computed results is evaluated. To that end
some of the result expected for an infinite resolution are computed by means of a Richard-
son extrapolation. Its basic idea is the assumption that our numerical solution φh differs
from the exact solution Φ by a discretization error ǫdh, mathematically speaking

Φ = φh + ǫdh , (4.1)

where h is the size of a grid cell. We can approximate the discretization error ǫdh by

ǫdh ≈

φh − φαh

αp − 1
, (4.2)

with p being defined by

p =
log
(

φαh−φα2h

φh−φαh

)

logα
, (4.3)

and α being the ratio of the two different cell sizes used in the extrapolation; for a
detailed account compare Ferziger & Perić (2002).

4.1 Validation of the results for the Half-Zone

The half-zone model was originally devised in the context of crystal growth as a
model for the floating-zone process. It has been extensively studied and many au-
thors have contributed to a better understanding of the processes involved, to name
but a few Chen & Hu (1997); Hyer et al. (1991); Kuhlmann (1996); Lappa et al. (2000,
2001b,a); Lappa & Savino (2002); Lappa (2005); Leypoldt (1999); Li et al. (2008a);
Neitzel et al. (1993); Nienhüser (2002); Nienhüser & Kuhlmann (2002); Tang & Hu
(1992); Wanschura et al. (1995b,a); Wanschura (1996); Wanschura et al. (1996). In the
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Figure 4.1: Geometry and coordinate system of the half-zone.

half-zone model we consider a cylindrical volume of fluid with height d and radius R
defining an aspect ratio Γ = R/d, compare figure 4.1. The volume of fluid is bounded
by a non-deformable free surface at the sides, a heated wall on top and a cooled wall
below. The boundary conditions are given by

U = 0 ↔ no-slip (4.4a)

T = T +
∆T

2
↔ heated wall (4.4b)

for the heated wall, and

U = 0 ↔ no-slip (4.5a)

T = T −
∆T

2
↔ cooled wall (4.5b)

for the cooled wall. At the free surface they are

−
1

r
V + ∂rV +

Re

r
∂ϕT = 0 ↔ azimuthal shear stress (4.6a)

∂rW + Re∂zT = 0 ↔ axial shear stress (4.6b)

∂rT = 0 ↔ insulating . (4.6c)

The governing equations for the half-zone model (Boussinesq-approximation) are equiv-
alent to equations (2.5a)-(2.5c) respectively (2.22a)-(2.22c) (dimensionless form) derived
in sec. 2. For detailed picture of the problem formulation and the choice of boundary
conditions compare Kuhlmann (1996) and Wanschura et al. (1995b).
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Figure 4.2: (a) Basic state temperature field θ0(r) along the midplane (z = 0). (b) Basic state
axial velocity w0 at the free surface (r = 1). The parameters for (a) and (b) are: Pr = 4,
Γ = 1 and Re = 1047. - The solid line (—) corresponds to the result of Domesi (2005) the
dashed line (- - -) to the result of the present work. All solutions are computed on a uniform
mesh with Nr ×Nz = 75 × 75 cells.
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Figure 4.3: (a) Basic state temperature field θ0(r) along the midplane (z = 0). (b) Basic state
axial velocity w0 at the free surface (r = 1). The parameters for (a) and (b) are: Pr = 4,
Γ = 1 and Re = 1047. The grid stretching factors are δr = δz = 0.96. - The solid line (—)
corresponds to the result of Domesi (2005) the dashed line (- - -) to the result of the present
work. All solutions are computed on a non-uniform mesh with Nr ×Nz = 75 × 75 cells.

4.1.1 Validation of the basic state

Data for validation of the basic state was provided by Domesi (2005). Available data
features the basic state temperature field θ0 at the midplane (z = 0) as a function of
the radius, and the axial basic flow velocity component w0 at the free surface (r = 1)
as a function of z. These results were computed both on a uniform and a non-uniform
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Figure 4.4: (a) Basic state temperature field θ0(r) along the midplane, (z = 0). (b) Basic
state axial velocity w0 at the free surface (r = 1). The parameters for (a) and (b) are: Pr = 4,
Γ = 1 and Re = 1047. - The solid line (—) corresponds to a resolution of Nr ×Nz = 140× 140
cells and the dashed line (- - -) to Nr ×Nz = 70 × 70 respectively.
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Figure 4.5: (a) Basic state temperature field θ0(r) along the midplane (z = 0). (b) Basic state
axial velocity w0 at the free surface (r = 1). The parameters for (a) and (b) are: Pr = 4,
Γ = 1 and Re = 1047. The grid stretching factors are δr = δz = 0.96. - The solid line
(—) corresponds to a resolution of Nr × Nz = 140 × 140 cells and the dashed line (- - -) to
Nr ×Nz = 70 × 70 respectively.

grid with Nr × Nz = 75 × 75 computational cells for parameters Re = 1047, Pr = 4,
Gr = Bi = 0 and Γ = 1. Computations performed with the present code display very
good agreement, compare in figures 4.2 and 4.3. Stretching factors δr = δz = 0.96 were
used for the non-uniform grid. In radial direction all cells are compressed towards the
free surface. In axial direction half of the cells are compressed towards the bottom and
the other half towards the top.

For a test of the influence of the grid resolution on the above profiles computations on
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Re 1000 3000 5000 7000 Reference
Pr= 0.02 8.87 7.18 6.31 5.71 Wanschura (1996)

8.93 7.18 6.31 5.65 Leypoldt (1999)
8.88 7.15 6.26 5.66 present work

Pr= 4.00 2.33 2.05 1.95 1.88 Wanschura (1996)
2.35 2.09 1.97 1.86 Leypoldt (1999)
2.36 2.10 1.97 1.86 present work

Table 4.1: Minimum of the basic state stream function ψmin
0 ×

(
−103/Re

)
for parameters

Bi = Gr = 0, Γ = 1 and Pr = 0.02 respectively Pr = 4. - The results of Leypoldt (1999) and
the present work have been computed on a grid with Nr ×Nz = 30 × 30 cells.

both uniform and non-uniform grids were performed for resolutions Nr×Nz = 70×70 and
Nr × Nz = 140 × 140. The results are displayed in figures 4.4 and 4.5. The agreement
of the solutions for resolutions Nr × Nz = 70 × 70 and Nr × Nz = 140 × 140, with
‖ θ70

0 − θ140
0 ‖< 0.05 and ‖ w70

0 − w140
0 ‖< 0.05, is very good1. On a uniform grid the

results are still good yet there are some deviations in the peak values of the free surface
axial velocity.
The minimum value of the basic state stream function ψmin

0 was computed for Reynolds
numbers Re = 1000, 3000, 5000 and 7000 and parameters Γ = 1, Bi = Gr = 0 and
Pr = 0.02 respectively Pr = 4 on a uniform grid with Nr ×Nz = 30× 30 computational
cells2. The results were compared to those computed by Leypoldt (1999); Wanschura
(1996). Again we find very good agreement, compare table 4.1.

4.1.2 Validation of the stability analysis

For the validation of the linear stability analysis we compare with available data and
check grid convergence.

Table 4.2 shows that the results compare very well to those of Nienhüser (2002) and
Wanschura (1996). For both low (Pr=0.02) and high Prandtl numbers (Pr=4) the de-
viation of the neutral Reynolds numbers Ren and frequencies ωn from reference data is
less than 5%, in most cases less than 1%.

To check grid convergence, a series of neutral Reynolds numbers and frequencies has
been computed for resolutions ranging from Nr ×Nz = 25× 25 to Nr ×Nz = 100× 100
cells and Prandtl numbers Pr = 0.02 respectively Pr = 4, compare table 4.3. The de-
pendence of the neutral quantities on the resolution is depicted in figures 4.6 and 4.7a,b.

1 Note that in general a solution is considered well converged if the distance between the two curves
yn and y2n is sufficiently small ‖ yn − y2n ‖< ǫnum. Here n is the grid resolution and ǫnum = 0.05
the numerical error which is typically considered acceptable.

2Though the low resolution of Nr × Nz = 30 × 30 is not sufficiently fine to consider the computed
solution well converged the agreement is very good. No other data is available for comparison of the
minimum of the basic state stream function ψmin

0 .
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Pr Ren deviation ωn deviation reference
0.02 2067 0.0 present work

2060 -0.3% 0.0 -0.0% Nienhüser (2002)
2062 -0.2% 0.0 -0.0% Wanschura et al. (1995b)

4.00 1006 28.8 present work
1010 +0.4% 28.5 -1.0% Nienhüser (2002)
1047 +4.1% 27.9 -3.1% Wanschura et al. (1995b)

Table 4.2: Neutral frequencies ωn and Reynolds numbers Ren for a neutral mode with wave
number m = 2, aspect ratio Γ = 1 and Prandtl numbers Pr = 0.02 respectively Pr = 4.
The results of Nienhüser (2002) and the present work have been extrapolated by means of the
Richardson extrapolation (4.1). The results of Wanschura et al. (1995b) are obtained applying
a Chebychev collocation method with M = 25 points in radial direction and a second-order-
difference scheme with N = 80 points in axial direction.

Ren
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2150

2200

(Nr ×Nz)
−1 · 103

0.00 0.25 0.50 0.75 1.00 1.25

Figure 4.6: Neutral Reynolds number Ren for Prandtl number Pr = 0.02 (ωc = 0 for Pr = 0.02)
as a function of the grid resolution (Nr × Nz)

−1. - The solid black line (—) represents the
solution on a uniform grid, and the dotted red line (· · ·) on a non-uniform grid with stretching
factors δr = δz = 0.98.

All solutions were computed on uniform and non-uniform grids in order to make visible
the effect of the local grid refinement on the accuracy of the solution.

From the results presented in table 4.3 and figures 4.6 and 4.7a,b we conclude that a
non-uniform grid with a resolution of Nr ×Nz = 70 × 70 cells is sufficient for a quanti-
tative stability analysis of the half-zone problem.
Note that the linear dependence on the uniform grid reflects the 2nd order of the numeri-
cal scheme. Grid stretching, though formally reducing the order of the scheme, improves
the convergence due to the local refinement.
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Figure 4.7: (a) Neutral Reynolds numbers Ren and (b) neutral frequency ωn for Prandtl
number Pr = 4 as a function of the grid resolution (Nr × Nz)

−1. - The solid black line (—)
represents the solution on a uniform grid, and the dotted red line (· · ·) on a non-uniform grid
with stretching factors δr = δz = 0.98.

Pr = 0.02 Pr = 4
Nr ×Nz

Ren ωn Ren ωn

25×25 1059 29.04 2170 0.0
30×30 1032 28.80 2136 0.0
40×40 1014 28.60 2104 0.0
50×50 1009 28.52 2089 0.0
60×60 1007 28.49 2082 0.0
70×70 1007 28.48 2077 0.0
80×80 1006 28.48 2075 0.0
90×90 1006 28.48 2073 0.0

100×100 1006 28.48 2072 0.0
p -5.15 -5.09 -2.20

Table 4.3: Neutral frequencies ωn and neutral Reynolds number Ren of the neutral mode with
wave number m = 2, aspect ratio Γ = 1 and Prandtl number Pr = 0.02 respectively Pr = 4.
Computations have been performed on a non-uniform grid with Nr ·Nz grid cells and stretching
factor δr = δz = 0.98. p is the calculated order of convergence (4.3), compare Ferziger & Perić
(2002).

4.2 Validation of the present code

Since there do not exist prior investigations of the stability boundaries of the problem
studied in the present work, we can only perform a convergence study.
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4.2.1 Validation of the basic state

For the validation of the basic state we have decided to study the radial basic state
velocity u0 at the free surface and along a line parallel to the axis at a radial position
of r = 0.25. Computations performed on uniform and non-uniform grids for parameters
Γ = 1, Gr = Bi = 0 and Pr = 0.0316 respectively Pr = 3.98 at resolutions of Nr ×Nz =
60 × 60 and Nr ×Nz = 120 × 120 cells are shown in figures 4.8 and 4.9.

Figure 4.8 shows that the convergence of the radial basic state velocity u0 as a function
of the axial position z is captured very well on both unifom grids for low and high Prandtl
numbers, yet can still be significantly increased by using a non-uniform grid. Note that
the solution on a non-uniform grid with Nr ×Nz = 60× 60 cells is almost as good as on
a uniform grid with Nr ×Nz = 120 × 120 cells.

A comparison of the radial basic state velocity u0 at the free surface gives similar
results, cp. figure 4.9a,b. For a low Prandtl number (Pr = 0.0316) all non-uniform
grids and the uniform grid with resolution Nr × Nz = 120 × 120 capture the solution
very well, compare figure 4.9a, while a uniform grid with Nr ×Nz = 60× 60 cells is too
coarse-mesh. For high Prandtl number (Pr = 3.98) fig. 4.9b shows a peak in the solution
structure close to the cold corner. A feature appearing also in the floating zone problem
where it has been studied by Wanschura (1996)3.
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Figure 4.8: Radial basic state velocity u0 in axial direction at radial position r = 0.25 at
neutral Reynolds number Ren. (a) Results for low Prandtl number (Pr = 0.0316) and (b) high
Prandtl number (Pr = 3.98) - Black and red lines depict a resolution of Nr ×Nz = 120 × 120
respectively Nr×Nz = 60×60 cells. Solid and dotted lines indicate a uniform grid respectively
non-uniform grid with stretching factor δr = δz = 0.98.

A solution is considered well converged (resolution-independent) if it does not change
due to an increase in resolution. Theoretically solutions computed on a uniform grid
should be identical to those on a non-uniform grid for Nr → ∞, Nz → ∞. Both solutions
should converge towards the same limit solution. In practice the resolution remains finite,
with it the numerical error ǫnum, and hence the solutions will not be identical.

3Wanschura (1996) gives details on how the peak can be treated by means of regularization functions.
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Figure 4.9: Radial basic state velocity u0 in radial direction at the free surface z = 0.5 at
neutral Reynolds number Ren. (a) For low Prandtl number Pr = 0.0316, and (b) high Prandtl
number Pr = 3.98 respectively. - Black and red lines depict a resolution of Nr×Nz = 120×120
respectively Nr × Nz = 60 × 60 cells. Solid lines indicate a uniform grid, while dotted lines
indicate a non-uniform grid with stretching factor of δr = δz = 0.98.
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Figure 4.10: Minimum of the basic state streamfunction ψmin
0 as a function of the grid reso-

lution (Nr ·Nz)
−1. (a) For low Prandtl number (Pr = 0.0316) and (b) high Prandtl number

(Pr = 3.98). - The solid black and dotted red lines represent the solution on a uniform grid
respectively non-uniform grid with stretching factor δr = δz = 0.98.

In figures 4.10a,b the minimum of the basic state stream function ψmin
0 is shown as a

function of the inverse of the grid resolution (Nr ·Nz)
−1 for a uniform (solid black line)

and a non-uniform grid (dotted red line). For both Prandtl numbers ψmin
0 features a

clear trend of convergence towards the same limit value of ψmin
0 for the uniform and the

non-uniform grid in the limit Nr → ∞, Nz → ∞. Note that the ratios of the minimum
stream function on the non-uniform and the uniform grid (ψ̃nu,u

0 = ψmin,nu
0 /ψmin,u

0 ) for
a resolution of Nr · Nz & 125 × 125 cells are ψ̃nu,u

0 . 1.005 (for Pr = 0.0316) and
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Figure 4.11: Neutral Reynolds number Ren for Prandtl number Pr = 0.0316 (ωc = 0 for
Pr = 0.0316) as a function of the grid resolution (Nr · Nz)

−1. - The solid black line (—)
represents the solution on a uniform grid, and the dotted red line (· · ·) on a non-uniform grid
with stretching factors δr = δz = 0.98.
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Figure 4.12: (a) Neutral Reynolds number Ren and (b) neutral frequency ωn for Prandtl
number Pr = 3.98 as a function of the grid resolution (Nr ·Nz)

−1. - The solid black line (—)
represents the solution on a uniform grid, and the dotted red line (· · ·) on a non-uniform grid
with stretching factors δr = δz = 0.98.

ψ̃nu,u
0 . 1.017 (for Pr = 3.98). Hence convergence is satisfactory.

4.2.2 Validation of the stability analysis

Without reference data we must restrict ourselves to a validation of the convergence of
the neutral Reynolds number Ren and frequency ωn. The results computed on a non-
uniform grid for a series of resolutions from Nr ×Nz = 30× 30 to Nr ×Nz = 160× 160
and parameters Γ = 1, Bd = 0, m = 3, and Pr = 0.0316 respectively Pr = 3.98 are
shown in table 4.4 and figures 4.11 and 4.12a,b. In all cases the convergence is very
good.
The high accuracy of the data is easily seen from figures 4.11 and 4.12a,b if the ratios
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Pr = 0.0316 Pr = 3.98
Nr ×Nz Ren ωn Ren ωn

30×30 45988 0.00 127265 59.42
40×40 42088 0.00 126200 59.26
50×50 40584 0.00 123845 58.97
60×60 39854 0.00 122063 58.71
70×70 39468 0.00 120830 58.51
80×80 39248 0.00 119989 58.37
90×90 39114 0.00 119419 58.27

100×100 39029 0.00 119032 58.20
110×110 38972 0.00 118770 58.15
120×120 38934 0.00 118592 58.12
130×130 38907 0.00 118471 58.09
140×140 38888 0.00 118389 58.08
150×150 38874 0.00
160×160 38863 0.00 118293 58.06

Φ 38817 0.00 118125 58.05
p 3.23 3.54 5.26
ǫdh -46.25 -168.604 -0.02

Table 4.4: Grid resolution dependence of the neutral Reynolds number Ren and neutral fre-
quency ωn. The parameters are: m = 3, Γ = 1, Pr = 0.0316 respectively Pr = 3.98 . The
values are given for a fully stretched non-uniform grid (δr = δz = 0.98). Φ was calculated
using three grids with resolutions 90×90, 120×120 and 160×160. p is the calculated order of
convergence, and ǫdh the discretization error calculated according to Ferziger & Perić (2002).

of the neutral Reynolds numbers and frequencies on non-uniform and uniform grids are
compared for Nr ×Nz = 140× 140 grid cells. The ratios are R̃e

nu,u

n = Reu
n/Renu

n . 1.01
(for Pr = 0.0316) and R̃e

nu,u

n = Reu
n/Renu

n . 1.02 respectively ωnu,u = ωu
n/ω

nu
n . 1.007

(for Pr = 3.98).

We conclude that grid convergence of the neutral Reynolds numbers and frequencies is
very satisfying.

4.3 Conclusions on the validation process

The code developed in the course of the present work is suitable for our purpose. Grid
convergence is very satisfying and the results computed for the halz-zone model show
very good agreement to prior work by other authors. Hence, the code can be expected
to yield suitably converged results.
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4.4 Some remarks on the magnitude of the

thermocapillary Reynolds number

As mentioned in sec. 2.1.4 the temperature difference ∆T in the definition of the ther-
mocapillary Reynolds number

Re =
γ∆Td

ρν2
(4.7)

is given in terms of the maximum heat flux ∆T
Q = Qmaxd/k for the present problem

and in terms of the temperature difference between the hot and the cold free-surface
corner ∆T

HZ = Tc − T0 for the half-zone model. Hence due to the choice of ∆T the
magnitude of the critical Reynolds numbers

ReQ =
γ∆T

Q

ρν

d

ν
and ReHZ =

γ∆T
HZ

ρν

d

ν
, (4.8)

will not necessarily be of the same order in both problems. Reformulation of (4.8) gives
the relation

ReHZ =
∆T

HZ

∆T
Q

ReQ , (4.9)

which can be used to check whether choosing ∆T as temperature difference between the
center and the rim of the pool4 yields Reynolds numbers comparable to those computed
in prior work for the half-zone model. Indeed typical neutral Reynolds numbers ReHZ

are in the range of O(103) to O(104). An order of magnitude corresponding very well
to order of magnitude of the neutral Reynolds numbers in the floating zone problem,
compare Kuhlmann (1999); Wanschura (1996).

4This is equivalent to the difference between the hottest and the coldest value of temperature at the
free surface.
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5 Results

The presentation and discussion of the results is split in two parts. The results com-
puted for the liquid-pool model of fusion welding are presented in sec. 5.1. A standard
configuration is defined and a wide range of parameters studied. In sec. 5.2 we present
some results on the annular pool problem and give a detailed comparison with prior
experimental and numerical work by Kamotani et al. (1992).

5.1 Results on the liquid-pool model

5.1.1 The standard configuration

To explore the dependence of the critical Reynolds number on the parameters Γ and
Bd respectively Gr we define a reference system. The reference configuration is defined
by unit aspect ratio Γ = 1 and zero-gravity conditions Bd = 0. Computations for this
configuration have been performed for Prandtl numbers ranging from Pr = 10−3 to 10.
The resulting basic states, stability boundaries, and physical instability mechanisms are
discussed in the following.

Basic states at low and high Prandtl numbers

The parabolic heat-flux profile on the free surface creates a non-uniform temperature
distribution which drives a free-surface flow away from the central hot region to the
periphery via the thermocapillary effect. At the periphery of the pool the free-surface
flow is forced downwards into the bulk by continuity, the basic flow pattern typically
is a toroidal vortex. It will be called, henceforth, the primary vortex. In case of flow
separation a secondary counter-rotating vortex may appear.

As a representative low-Prandtl-number case we consider Pr = 0.02. The basic flow
and temperature field are shown in figs. 5.1a,b at the critical Reynolds number Rec =
34, 709. The basic vortex is essentially confined to the cold upper corner. The flow in
the bottom half consists of a weak secondary vortex. At criticality transport of basic
state temperature is dominantly conductive at this low value of Prandtl number. The
apparently high Reynolds number results from the current scaling, cp. sec. 4.4. The
relative importance of the convective to the conductive heat transport is given by the
Peclet or Marangoni number

Ma =
Uthd

κ
= Pr Re. (5.1)
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(a) ψ0, Pr = 0.02, Rec =
34, 709

(b) θ0, Pr = 0.02, Rec =
34, 709

(c) ψ0, Pr = 4, Rec =
110, 362

(d) θ0, Pr = 4, Rec =
110, 362

Figure 5.1: Stream function ψ0 and temperature isolines θ0 of the basic state at the critical
Reynolds number Re = Rec for unit aspect ratio Γ = 1, Bd = 0, and Pr = 0.02 (∆ψ0 =
2.046, ∆θ0 = 0.0301) (a,b) and Pr = 4 (∆ψ0 = 0.588, ∆θ0 = 0.0015)(c,d). The flow is
clockwise (ψ0 < 0).

Hence, the critical Marangoni number1 is only Mac = 694.
As a representative high-Prandtl-number case we show the basic state at criticality in

figs. 5.1c,d. The critical Reynolds number Rec = 110, 362 is about three times as high
as for Pr = 0.02. The toroidal vortex does not differ much from the one for Pr = 0.02.
Since it extends deeper into the liquid pool, the streamlines are somewhat closer to
circular and the separated flow region is absent. However, the critical Marangoni number
Mac = PrRec = 441, 448 is about three orders of magnitude larger than for Pr = 0.02
indicating the dominating convective effect on the temperature field. This is clearly seen

1Note that the critical Marangoni number is still high due to the scaling of the temperature difference
∆T by the heat flux ∆T = Qmaxd/k. Compare sec. 2.1.4.
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Figure 5.2: Prandtl number dependence of the (a) neutral Reynolds numbers Ren (b) neutral
frequencies ωn for the standard configuration with parameters Γ = 1 and Bd = 0. - The neutral
wave number m = mn are m = 2:· · ·, m = 3:- - - -, and m = 4:·-·-·-.

Figure 5.3: Perturbation flow (arrows) and perturbation temperature field (isolines) on the free
surface at z = 0.5 for Pr = 0.02. Negative values are indicated by gray lines. The parameters
are mc = 3 and Rec = 34, 709.

in fig. 5.1d: The isotherms exhibit a strong convective crowding and thermal boundary
layers are about to develop on the free surface and along the side wall.
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Figure 5.4: Terms of the kinetic energy balance (2.43) for Γ = 1, Pr = 0.02, and m = 3 at the
critical Reynolds number Rec = 34, 709. The different terms are referred to in the text.

Stability boundaries

Neutral stability boundaries (the neutral Reynolds numbers Ren) have been computed
for wave numbers m = 1 to 7. The most dangerous ones, i.e. m = 2, 3, and 4, are
shown in fig. 5.2a. Their lower envelope yields the critical stability boundary. From the
critical curve it is seen that the asymptotic range for Pr → 0 has been reached, which
has been confirmed by additional calculations for Pr = 10−10. The neutral frequencies
ωn for Pr & 2 are displayed in figure 5.2b.

The neutral Reynolds numbers are of the order of O(Re) ≈ 105. The magnitude
results from the temperature scale ∆T = Qmax/k. It is directly defined by the boundary
conditions. If we had used the de-facto temperature drop from the center of the pool to
the rim the neutral Reynolds numbers would be of the order of O(Re) ≈ 103. However,
the surface temperature drop is part of the solution and can only be determined a
posteriori, cp. sec. 2.1.4.

From fig. 5.2 two ranges can be distinguished: For low Prandtl numbers (Pr . 1)
the basic state flow is unstable to a stationary non-axisymmetric perturbation mode,
the critical wave number being either mc = 2 or 3, depending on Prandtl number.
For high Prandtl numbers (Pr & 1) the basic state is unstable to a time-dependent
non-axisymmetric mode with critical wave number mc = 2.

Low-Prandtl-number instability mechanism

For the stationary instability at Pr = 0.02 the critical Reynolds number is Rec = 34, 709
with a critical wave number mc = 3. Figure 5.3 shows the critical perturbation velocity
field u and the perturbation temperature T at the free surface at z = 0.5. Strong and
weak temperature extrema arise near the axis and the rim of the pool, respectively. The
radial surface flow between two neighboring strong and weak extrema is consistent with
the thermocapillary effect, i.e. radial perturbation flow and surface forces caused by the
perturbation temperature field are parallel (γ > 0). The azimuthal perturbation flow
between adjacent strong temperature extrema, however, is opposite to the azimuthal
thermocapillary stresses. Hence, the azimuthal motion cannot be created by the ther-
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Figure 5.5: Vertical cut along the axis of the cylinder showing regions with Φ(r) < 0 as gray-
shading for Pr = 0.02, mc = 3, and Re = Rec = 34, 709. Isolines indicate the basic-state stream
function ψ0 (left side) and the total local production iv restricted to positive values (right side).
The latter is shown at an azimuthal angle for which the maximum local production takes its
absolute maximum.

mocapillary effect. In the low-Prandtl-number regime where heat diffusion is stronger
than heat convection such a mechanism should be inertial. This hypothesis is supported
by the kinetic energy balance (fig. 5.4) which shows that the kinetic energy production
Iv is the dominating destabilizing process. The integral contribution of the Marangoni
stresses M acts even stabilizing and it is, furthermore, vanishingly small compared to
Iv.

For the inertial instability of the axisymmetric toroidal thermocapillary vortex flow in
low-Prandtl-number liquid bridges Nienhüser (2002) have shown that vortex straining
as well as centrifugal effects may contribute to an inertial destabilization of the basic
flow (for the lid-driven cavity, see Albensoeder et al., 2001). In the following we shall
argue that the centrifugal mechanism is dominant for the present low-Prandtl-number
instability for Γ = 1. To that end we utilize the generalized Rayleigh criterion of
Bayly (1988). It states that the flow of an inviscid fluid is centrifugally unstable if a
closed convex streamline exists along which the magnitude of the circulation decreases
outwards. This criterion has been reformulated by Sipp & Jacquin (2000) as follows. A
two-dimensional inviscid flow is centrifugally unstable if

Φ(r) :=
|u0|Ω0

R
< 0 (5.2)

along a closed convex streamline. Here Ω0 is the vorticity of the basic flow and R is the
local radius of curvature of a streamline which can be calculated as (see Sipp & Jacquin,
2000)

R =
|u0|

3

(∇ψ0) · (u0 · ∇u0)
. (5.3)

Even though the criterion is valid for inviscid flows only, we have evaluated (5.2) for the
present viscous basic flow. The result is shown in fig. 5.5.

The criterion (5.2) holds true in the gray-shaded areas. Most notably, the regions
which would favor a centrifugal instability in an inviscid flow are aligned with the outer
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streamlines of the viscous toroidal vortex (left side of fig. 5.5). The region extends from
the cold corner where the accelerated free-surface flow is deflected downward and along
the sidewall until it separates and turns radially inward at about mid-height of the pool.

It is interesting to notice that the local production rate of kinetic energy iv has a strong
peak well within the regions in which (5.2) is satisfied (right side of fig. 5.5). Thus most
of the kinetic energy of the perturbation is produced in a region that would be subject
to a centrifugal-type instability if the flow were inviscid. The mechanism of self-induced
vortex straining due to the bending of the vortex core that destabilizes ring vortices
(Widnall & Tsai, 1977) seems to be of minor importance since the corresponding local
peak of energy production near the center of the streamlines is relatively weak.

We conclude, that the low-Prandtl-number flow in a cylindrical thermocapillary pool
of unit aspect ratio driven by a parabolic heat flux is unstable to a centrifugal insta-
bility. This behavior is very similar to the centrifugal instabilities in lid-driven cavities
(Albensoeder et al., 2001) and the Taylor–Görtler instability of the boundary layer flow
along convex walls Drazin & Reid (1981).

The total local kinetic energy production rate iv can be decomposed into iv = i−v + i+v ,
where i−v and i+v represent the total local production in the region where (5.2) holds and
where (5.2) is not satisfied, respectively, I−v and I+

v being the corresponding integral
rates. For the present case |I−v | ≫ |I+

v | (fig. 5.4). This observation further supports the
interpretation in terms of a centrifugal instability.

High-Prandtl-number instability mechanism

As a representative case for high Prandtl numbers we consider Pr = 4. The critical
wave number is mc = 2 and the the critical Reynolds number is Rec = 110, 362. The
perturbation temperature on the free surface at z = 0.5 is shown in fig. 5.6a. It exhibits
four extrema, two maxima and two minima. Since the perturbation flow is directed
from the hot to the cold perturbation temperature spots, thermocapillary forces drive
the perturbation flow. In fact, all other driving forces are insignificant since the total
inertial energy production is vanishingly small compared to the Marangoni production
Iv ≪M (fig. 5.7).

The question arises of how the surface temperature extrema are created. Since the
rate of diffusion of perturbation temperature (cp. equation (2.44)) is much smaller for
high than for low Prandtl numbers, the surface spots could possibly be created by the
vertical component of the perturbation flow which must arise due to conservation of mass
(similar as in the classical Marangoni problem, see Pearson, 1958). Such a mechanism
cannot hold, however, since the vertical basic state temperature gradient has the wrong
sign: the free surface is hotter than the fluid below it (cf. fig. 5.1d).

The only remaining possibility is heat conduction from much stronger temperature
extrema in the bulk.2 As fig. 5.8a illustrates such extrema do exist in the bulk. The
figure shows the perturbation temperature maxima in a vertical plane through the axis

2Theoretically the perturbation temperature θ spots at the free surface could also be created by means
of convection (u0 · ∇)θ of the perturbation temperature field θ by the basic state flow u0. Further
and more detailed analysis is necessary.
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(a) (b)

Figure 5.6: (a)Perturbation flow (arrows) and perturbation temperature (isolines) on the free
surface (z = 0.5) at critical conditions (mc = 2, Rec = 110, 362, ωc = 54.54) and for Pr = 4
and Γ = 1. Negative values are indicated by gray lines. (b) Perturbation flow (arrows),
perturbation temperature field (color), and local thermal energy production rate iT (lines) at
midplane (z = 0). The straight solid line indicates the cut in fig. 5.8a and the straight dashed
line the cut in fig. 5.8b. The pattern rigidly rotates in clockwise direction.
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Figure 5.7: Magnitude of terms of the kinetic energy balance (2.43) for Γ = 1, Pr = 4, and
m = 2 at the critical Reynolds number Rec = 110, 362.

for which the perturbation temperature takes its absolute maximum. The corresponding
azimuthal angle is indicated by the solid line in fig. 5.6b.

The strong temperature extrema in the bulk are created by the thermal production.
The extrema of the local thermal production rate iT are located in close vicinity of those
of the perturbation temperature (fig. 5.8b). The vertical plane through the axis of the
cylinder in which the maximum energy production arises is indicated by a dashed line
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(a) (b)

Figure 5.8: (a) Perturbation velocity (arrows), perturbation temperature (color), and local
thermal production iT (lines) in a vertical plane at an azimuthal angle for which the temper-
ature perturbation takes its absolute maximum (solid line in fig. 5.6b). (b) Perturbation flow
(arrows), local thermal production iT (lines), and basic temperature field (color) in a vertical
cut at an azimuthal angle for which the maximum local thermal energy production takes its
absolute maximum (dashed line in fig. 5.6b). The color scale is a range from blue to red,
corresponding to a range cold to hot. The parameters are Pr = 4, Re = Rec = 110, 362, and
m = mc = 2 in both cases (a,b).

in fig. 5.6b. The same mechanisms apply to the orthogonal vertical planes in which the
flow direction and the temperature perturbations are reversed.

Figure 5.6b, which displays the fields in the midplane z = 0 as viewed from above,
shows that the production extrema arise slightly ahead in clockwise direction of the
temperature extrema. This is an indication for the clockwise rotation of the pattern and
consistent with the negative phase velocity which, for m > 0 and together with (3.29) is
determined by the positive critical angular frequency ωc = 54.54 for the case presented.
Of course, the critical modes arise as pairs with ω = ±ωc.

The above mechanisms are essentially the same as for hydrothermal waves in plane
thermocapillary layers (Smith & Davis, 1983) or in thermocapillary liquid bridges
(Wanschura et al., 1995b). We thus conclude the the instability at high Prandtl numbers
is due to hydrothermal waves.

Prandtl-number dependence of the energy budget for Γ = 1

The dependence of the kinetic energy budget on Pr for the standard configuration is
shown in figure 5.9. The full range of computed Prandtl numbers can be separated into
a low- (Pr . 1) and a high-Prandtl-number range (Pr & 1).

The low-Prandtl-number range can be further subdivided at Pr ≈ 0.04. For Pr . 0.04
the kinetic energy budget is entirely dominated by the inertial production term Iv. For
the intermediate Prandtl numbers Pr & 0.04 we find an increasing influence of the
Marangoni term M , while the overall budget is still dominated by Iv. The absolute
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Figure 5.9: Components of the kinetic-energy balance (2.43) for unit aspect ratio Γ = 1 as
functions of the Prandtl number in the range 10−3 ≤ Pr ≤ 10. The critical wave number mc is
provided by the black numbers. The components displayed are the dissipation D —, buoyant
production IGr —, inertial production Iv —, its decomposition I−v - - - - and I+

v · · ·, Marangoni
production M —, and the total kinetic energy production rate ∂tEkin —.

value of the contribution by the Marangoni term reaches a maximum for Pr ≈ 0.246 and
decreases to a vanishingly small value for higher values of Prandtl number.

In the high-Prandtl-number range Marangoni productionM increasingly strongly with
the Prandtl number. While there is still a sizable amount of kinetic energy produced
by inertial processes (Iv) in the range of Pr ≈ 2, its contribution decreases rapidly for
higher Prandtl numbers.

5.1.2 Aspect-ratio dependence in the limit of asymptotically small

Prandtl numbers

In the limit of small Prandtl numbers Pr → 0 temperature transport is conductive and
the dynamics are solely inertial. The basic state temperature field merely serves to drive
the basic flow. For practical reasons3 we have studied the behavior for Pr = 10−10. This
value is an excellent approximation of the zero-Prandtl-number limit if the Reynolds
number satisfies Re ≪ 1010 which is certainly the case for the parameters considered. In
the following we focus on the aspect-ratio dependence of the two-dimensional flow and
its stability.

Basic flow

To discuss the basic flow we consider the basic-state stream function ψ0 at the criti-
cal Reynolds number for the aspect-ratio range Γ ∈ [0.5, 6.1]. The stream function is
displayed in figure 5.10a-i for selected aspect ratios.

3Note that in the numerical implementation a Prandtl number Pr → 0 reduces the temperature
equation to ∇2Θ = 0, and the advection term Pr(U · ∇)Θ drops out.
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(a) (b) (c) (d) (e) (f)
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Figure 5.10: Basic state stream function ψ0 of the critical mode for Prandtl number Pr = 10−10.
Note that only the negative values of the basic state stream function are provided. The
plots feature (a) Γ = 0.5, mc = 3, Re = Rec = 114, 705, (b) Γ = 1, mc = 3, Re = Rec =
29, 084, (c) Γ = 1.5, mc = 3, Re = Rec = 20, 206, (d) Γ = 2, mc = 7, Re = Rec = 33, 389,
(e) Γ = 2.5, mc = 7, Re = Rec = 35, 375, (f) Γ = 3, mc = 7, Re = Rec = 65, 958, (g)
Γ = 4, mc = 3, Re = Rec = 120, 635, (h) Γ = 5.1, mc = 5, Re = Rec = 142, 872, and (i)
Γ = 6.1, mc = 7, Re = Rec = 170, 343.

Since the driving radial gradient of the surface temperature vanishes at the axis and
attains its maximum at the cold side wall, the flow is primarily driven near the outer cold
wall. For deep cavities Γ ≪ 1 the ring vortex has a diameter slightly less than 2R. As
a result the flow does not significantly penetrate in axial direction. At the small aspect
ratio Γ = 0.5 the primary toroidal vortex has a vertical extension of about one third of
the cavity height. The toroidal vortex in the upper portion of the cavity drives a slow
counter-rotating secondary vortex4. In the limit Γ → 0 a sequence of counter-rotating
weak viscous vortices is expected from theoretical assumptions in the lower parts of the
cavity5. The behavior of the sequence of viscous vortices is similar as for rectangular
geometry (Rybicki & Floryan, 1987). In the limit Γ → 0 one expects an asymptotic
structure of the vortices and an exponential decay of their strengths.

4Note that the secondary vorticies are a few orders of magnitude weaker than the primary vortex.
The isolines of ψ0 of the secondary vorticies are therefore omitted in figure 5.10a-i. Only the ψ0 = 0
isoline is plotted to mark the location of the counter-rotating vorticies.

5Note however that these vorticies could not be observed in the numerical results. This is most likely
due to the limited resolution of the grid
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Figure 5.11: Aspect ratio dependence of the (a) neutral Reynolds numbers Ren (b) frequencies
ωn in the limit asymtotically small Prandtl number for parameters Bd = 0 and Pr = 10−10.
- The neutral wave number m = mn are m = 1:—, m = 2:· · ·, m = 3:- - - -, m = 4:·-·-·-,
m = 5:·-··-·, m = 6:-·- -·, and m = 7:– – –.

Increasing the aspect ratio to Γ = 1 the size of the weak separated vortex in the lower
part of the cavity shrinks and will even be further reduced, at Γ = 1.5, to a toroidal
corner vortex confined to the outer corner at the bottom of the domain. As the aspect
ratio grows further, the primary vortex collides with the bottom wall. As a result, an
additional separated flow region arises at the bottom wall near the axis of the cylinder
(Γ = 2). Now the diameter of the primary vortex is no longer determined by the radial
extent over which the surface temperature varies, but rather by the height of the cylinder.
For even larger aspect ratios the thermocapillary vortex is confined to the cold wall and
there exists a wider radial range along the free surface over which the flow is driven.
The situation now is similar to the case of a shallow rectangular thermocapillary cavity
as considered by Ben Hadid & Roux (1990). Therefore, we can expect a sequence of
thermocapillary vortices staggered radially. For the present Reynolds numbers, apparent
only a single primary vortex exist (see e.g. fig. 5.10i for Γ = 6.1). The major interior
part of the cavity is governed by a thermocapillary-driven entrance flow. Different
from Ben Hadid & Roux (1990) and in addition to the cylindrical geometry, however,
the driving force depends on the radial coordinate through the conducting temperature
field. For the present parameters the large and weak secondary vortex at the bottom of
the pool grows in size with Γ until the primary vortex reattaches to the bottom of the
pool near the axis when the aspect ratio is in the range 5.1 ≤ Γ ≤ 6.1. Note, however,
that we always consider the flow at the critical Reynolds number Re = Rec.
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Aspect-ratio dependence of the stability boundary

Figure 5.11a shows the neutral stability curves (neutral Reynolds numbers Ren) for wave
numbers m = 3, 4, 5, 6, and 7 over the aspect-ratio range Γ ∈ [0.5, 7]6. The corresponding
neutral frequencies ωn are displayed in figure 5.11b7.

Three ranges can be distinguished: for low aspect ratio Γ . 1.91 we find a stationary
critical mode with a wave number mc = 3. The mechanism of this instability is the
same as for aspect ratio Γ = 1 and low Prandtl numbers Pr . 1 discussed in sec. 5.1.1,
i.e., primarily centrifugal effects are destabilizing the basic flow. In the intermediate
aspect-ratio range 1.91 . Γ . 3.31 a qualitatively different type of instability occurs.
The different nature is obvious, since the critical mode with wave number mc = 7 is
time-dependent. In yet another aspect-ratio range Γ & 3.31 we find a further type of
instability. The perturbation flow is again stationary. Furthermore, the critical mode in
this large-aspect-ratio range the critical wave number increases with aspect ratio.

Instability mechanisms in the intermediate-aspect-ratio-range 1.91 . Γ . 3.31

Figure 5.12a shows the perturbation flow u and the temperature field θ at the free
surface (z = 0.5) for Γ = 2 and Pr = 10−10. The critical Reynolds number is Rec =
33, 389 for mc = 7. The perturbation temperature field exhibits 7 minima and maxima
which are extended in radial direction. The critical mode is oscillatory and it rotates
about the axis in clockwise direction with angular frequency ωc = 156.70. Since the
azimuthal component of the surface flow is essentially directed from the cold to the hot
surface temperature spots (compare fig. 5.12b) the perturbation flow cannot be driven
by thermocapillary stresses (the same argument was used in section 5.1.1). This is
confirmed by the small Marangoni number Mac = PrRec = 3.34 × 10−6. Figure 5.13
shows that this is indeed the case. The Marangoni production M is negligible. Most of
the kinetic energy is produced by the inertial term Iv, in particular by I−v .

Evaluating the criterion (5.2) we obtain the grey-shaded area of figure 5.14. It is seen
that the region which favors a centrifugal instability for inviscid flow is aligned with
the outer streamlines of the toroidal basic flow vortex. Similar as in fig. 5.5 the region
extends from the cold corner along the outer wall to the separation point of the basic
flow from where it continues somewhat further radially inward. The total local inertial
energy production rate iv is significantly peaked in that region and near the separation
point (compare fig. 5.15). Since most of the kinetic energy is produced in this region,
conclude that the instability is centrifugal in nature.

Note that in a central region close to the axis the perturbation flow and temperature
fields are very small. Since the perturbation mode is driven by an instability of the basic
state vortex flow it seems but logical that the perturbation mode will be locally very
weak near the axis where the basic state flow is weak too. - In other words we have a
travelling wave on the basic state vortex fed by a centrifugal effect.

6Note that the individual data points in fig. 5.11 have been omitted due to the high resolution of the
graph. - ∆Γ = 0.05 for two consecutive data points.

7Note that the abscissa has been shifted in order to make the data points with ωn = 0 visible.
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(a) (b)

Figure 5.12: Critical flow fields on the free surface z = 0.5 for Γ = 2, Pr = 10−10, and m = 7
at Rec = 33, 389. (a) Perturbation flow (arrows) and perturbation temperature field (lines).
Negative values are indicated by gray lines. (b) Azimuthal velocity (lines) and perturbation
temperature (contours). Note that the v = 0 isolines pass through the center of the pool. The
closed isolines represent the extrema of the azimuthal perturbation velocity, the sign of the
extrema can be easily seen from the direction of the perturbation flow (arrows). The pattern
rigidly propagates in clockwise direction.
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Figure 5.13: Terms of the kinetic energy balance (2.43) for parameters Γ = 2, Pr = 10−10 and
m = 7 at critical Reynolds number Rec = 33, 389.

Instability mechanisms in the high-aspect-ratio-range Γ & 3.31

For aspect ratios Γ & 3.31 a stationary critical mode arises. As a representative case
we select Γ = 4.5 and Prandtl number 10−10. The critical Reynolds number is Rec =
128, 487 with mc = 4. The perturbation flow u and temperature field θ at the free
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Figure 5.14: Vertical cut along the axis of the cylinder showing the isolines of the basic-state
stream function ψ0 (left side), the isolines of the total local kinetic-energy-production rate iv
(integrand of Iv) restricted to positive values (right side) and the regions for which Φ(r) < 0
holds (gray-shading). The cut is shown at an azimuthal angle for which the maximum local
kinetic energy production rate takes its absolute maximum. The parameters are Pr = 10−10,
Γ = 2, mc = 7, and Rec = 33, 389. Note that iv has twice the azimuthal period of the critical
mode.

Figure 5.15: Vertical cut along the axis of the cylinder showing the perturbation flow (arrows,
interpolated from the numerical data), the total local kinetic-energy-production rate iv (inte-
grand of Iv), and the basic-state stream function ψ0 (lines). The cut is shown at an azimuthal
angle for which the maximum local kinetic energy production rate takes its absolute maximum.
The parameters are Pr = 10−10, Γ = 2, mc = 37, and Rec = 33, 389.

surface is shown in fig. 5.16. The perturbation temperature field exhibits 4 minima and
4 maxima. Apart from a small zone near the periphery the surface flow u is nearly
perfectly aligned in radial direction. It is inward in the region of the cold spot and
outward in the hot-spot region. The very weak azimuthal flow near r = R is directed
from the hot to the cold perturbation temperature spots.

It’s quite clear that the mode cannot be excited by Marangoni stresses (see fig. 5.17).
As for all asymptotically small Prandtl number cases the kinetic energy balance is dom-
inated by Iv, in particular I−v .

Figure 5.18 displays the region in which the criterium (5.2) holds. Like in the foregoing
centrifugal instability it arises in the same region of the basic state, in particular along
the outer streamlines of the toroidal vortex which exists at the outer periphery of the
cavity. Figure 5.18 displays a small area on the inner side of the vortex in which energy
is produced and might be attributed to a centrifugal effect. An additional contribution
to the kinetic energy growth comes from a region near the axis and in the upper half
of the cavity. In this area the peak of iv is located and Φ < 0 (indicated by the grey
shading). Note that since the basic state velocities are relatively small in this area the
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Figure 5.16: Perturbation flow (arrows) and perturbation temperature field (lines) on the
free surface for z = 0.5 and Pr = 10−10. Negative values are indicated by gray lines. The
parameters are Γ = 4.5, mc = 4 and Rec = 128, 487.
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Figure 5.17: Terms of the kinetic energy balance (2.43) for parameters Γ = 4.5, Pr = 10−10

and m = 4 at critical Reynolds number Rec = 128, 487.

contributions need to be explained by a process other than a centrifugal mechanism.
A more detailed picture is obtained by considering the individual terms iv1 to iv5

8

In the vertical cut displayed in figure 5.19 most of the kinetic energy transfer9 due to
iv1 takes place close to the axis of the pool, with its minima located in a surface layer,
and the maxima in a more extended subsurface layer. The converging basic state flow
u0 decelerates as it approaches the axis in the surface layer. Here the local minima

8Note that the integrand of the total inertial energy transfer can be written as iv =
∑5

i=1 ivi. We are
henceforth interested in the individual contributions.

9Figure 5.19 displays the total inertial kinetic energy transfer iv. To give the reader an idea where the
individual terms ivi are most pronounced the approximate location of their maxima and minima are
indicated.
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Figure 5.18: Vertical cut along the axis of the cylinder showing the isolines of the basic-state
stream function ψ0 (left side), the isolines of the total local kinetic-energy-production rate iv
(integrand of Iv) restricted to positive values (right side) and the regions for which Φ(r) < 0
holds (gray-shading). The cut is shown at an azimuthal angle for which the maximum local
kinetic energy production rate takes its absolute maximum. The parameters are Pr = 10−10,
Γ = 4.5, mc = 4, and Rec = 128, 487. The arrows indicate the direction of the basic state flow
field.
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Figure 5.19: Vertical cut along the axis of the cylinder showing the perturbation flow (arrows),
the total local kinetic-energy-production rate iv (integrand of Iv) (color), and the basic-state
stream function ψ0 (lines). The cut is shown at an azimuthal angle for which the maximum local
kinetic energy production rate takes its absolute maximum. The parameters are Pr = 10−10,
Γ = 4.5, mc = 4, and Rec = 128, 487.

of iv1 is located. The diverging outward basic state flow accelerates in the subsurface
layer, here the local maxima of iv1 can be found. In both locations the local inertial
production term iv1 drives a outward directed perturbation flow u . The local minima
of iv2 is located in the deceleration region of the basic state vortex flow u0 in a surface
layer close to the axis where we have already found the minima of iv1. The local maxima
of iv2 is found in the separated flow region at the bottom of the pool in a region shifted
slightly from the centre of counter-rotating basic state vortex towards the axis, creating
a radially outward directed perturbation flow u . The influence of iv3 is to weak to yield a
significant contribution to the driving of the perturbation flow. The inertial production
by iv4 and iv5 is located in the outer streamlines of the upflow region of the primary
vortex, cp figure 5.19. Their minima and maxima are interchanged and nearly cancel
each other out so that the residual inertial production drives only a comparably weak
local perturbation flow u .

Note that due to periodicity of the perturbation mode (mc = 4) the local max-
ima/minima of inertial production rates ivi are interchanged with a periodicity of π/4,
and the corresponding radial perturbation flow u is reversed with the same periodicity.
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We therefore conclude that the instability is primarily a property of the turning flow10

near the the axis: In a surface (subsurface) layer decelerating fluid is approaching the
axis nearly radially. In a turning zone this converging surface (subsurface) flow diverges
radially outward in a subsurface (surface) layer below (atop) of the converging surface
(subsurface) flow.

It is interesting to note that a similar instability occurs in solutocapillary driven
thin layers when small amounts of solute are added concentrically at the free surface
which reduce the surface tension. The flow structure near the axis is qualitatively sim-
ilar (Pshenichnikov & Yatsenko, 1974). The type of instability has been analyzed by
Shtern & Hussain (1993) (compare Shtern & Hussain (1999)) who considered the sta-
bility of two-dimensional similarity solutions in a half space. This type of flow (solutal-
driven) was originally discovered by Thomson (1855) and similar (solutal) experiments
have been made by Pshenichnikov & Yatsenko (1974) (figures in Shtern & Hussain
(1993)). For the instability of this type of flow he coined the term diverging insta-
bility. In the absence of any detailed energetic analysis of the diverging instability it
is tempting to speculate that the present instability is of the same origin.11 At least,
the deceleration effect of the radial surface flow contributed a significant amount to the
energy growth of the most unstable mode.

5.1.3 Aspect-ratio dependence of the flow and its stability for
Pr = 0.03

So far we have considered the aspect-ratio dependence of the standard configuration in
the limit of asymptotically small Prandtl numbers. We now turn to realistic Prandtl
numbers of liquid metals and semi-conductors. As a typical Prandtl number we consider
Pr = 0.03 - the Prandtl number of liquid silicon close to its melting-temperature Tm.
In the same range of Prandtl number we find: liquid gallium (Pr = 0.02), mercury
(Pr = 0.025), and germanium (Pr = 0.006). We start the discussion of the aspect-ratio
dependence of the basic state flow and continue with the stability curve and the change
it is subject to with respect to the stability curve for Prandtl number Pr = 10−10.

Basic state

The basic state near the critical onset for Pr = 0.03 is very similar to that for Pr = 10−10.
Differences arise mainly in the structure of the separated zone near the bottom. Compare
the basic state stream function ψ0 for aspect ratio Γ = 2 in figures 5.10d (Pr = 10−10)
and 5.20a (Pr = 0.03). In sec. 5.1.2 we saw that in the range of aspect ratios Γ = 1.5 to
2 the primary vortex collides with the bottom wall and a separated flow region forms at
the bottom stretching from the axis outwards. For Pr = 0.03 the primary vortex collides
with the bottom in the same range of aspect ratio, yet the separated flow region is smaller
in extent and confined to a region in the middle between the axis of the pool and the

10Respectively the acceleration and deceleration of the basic state flow u0 in a region close to the axis.
11Further analysis is necessary.
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(a) (b)

Figure 5.20: Basic state stream function ψ of the critical mode for parameters Prandtl number
Pr = 0.03, Bond number Bd = 0. Note that only the negative values of the basic state
stream function are provided. The plots feature (a) Γ = 2, mc = 3, Re = Rec = 28, 449, (b)
Γ = 6.1, mc = 6, Re = Rec = 45, 124.
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Figure 5.21: Aspect ratio dependence of neutral Reynolds numbers Ren in the small-Prandtl-
number-range for Pr = 0.03. - The wave numbers are m = 1:—, m = 2:· · ·, m = 3:- - - -,
m = 4:·-·-·-, m = 5:·-··-·, m = 6:-·- -·, and m = 7:– – –.

primary vortex. For higher values of aspect ratio (Γ = 6.1) the differences are even more
obvious, compare figures 5.10i (Pr = 10−10) and 5.20b (Pr = 0.03). The separated flow
extending from the primary vortex inwards almost towards the axis for Pr = 10−10 is
confined to comparably small region close to the primary vortex for Pr = 0.03. At the
same time the outer streamlines of the primary vortex penetrate deeper into the pool
and slightly further towards the axis. Note that the differences in the basic state flow
field are connected to the increased (weak) convective effect of the temperature field,
which are due to the increase in Prandtl number showing up in the temperature equation
(2.5b) and hence resulting in a higher coupling of momentum and temperature equation
by means of the thermocapillary free surface boundary condition (2.24).
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Figure 5.22: Components of the kinetic energy balance according to (2.43) for Prandtl number
Pr = 0.03. The critical wave number mc is given by the black numbers in the diagram. The
components are dissipation D —, Grashof term IGr —, inertial energy production Iv —, and
its decomposition I−v - - - - and I+

v · · ·, Marangoni terms M —, and ∂tEkin —.

Aspect-ratio dependence of the stability boundary

The aspect ratio dependence of the neutral stability curves is shown in figure 5.21 for
Prandtl number Pr = 0.03 and aspect ratios Γ = 0.5 to 6.1. In the limit of asymptoti-
cally small Prandtl number (Pr = 10−10) three distinct regions could be identified: an
oscillatory aspect-ratio-range and two stationary ranges. For Pr = 0.03 the critical mode
is always stationary, neither an oscillatory nor a stationary high-aspect-ratio-range can
be found.

Figure 5.21 shows that the critical Reynolds number decreases for small aspect ratio
Γ . 1.55. For these small aspect ratios (deep cavities) the basic vortex does not depend
much on the depth d.

When the aspect ratio approaches Γ ≈ 1.55 Marangoni forces start to yield a desta-
bilizing contribution while the inertial mechanisms become less effective such that the
critical Reynolds number increases and the basic state flow is slightly stabilized. This
trend continues as the aspect ration is further increased. The critical wave number also
increases with Γ.

Figure 5.22 shows that the Marangoni driving which is important for intermediate
aspect ratios becomes less important for aspect ratios beyond Γ ≈ 4. Hence, inertial
mechanisms are most dominant for deep (Γ . 1.55) and shallow (Γ & 4) pools. Moreover,
the production takes place essentially in the region where (5.2) holds. This is indicated
by the fact that the total inertial production is approximately equal to the magnitude
of I−v while I+

v turns slightly positive (stabilizing). We conclude that the instability
mechanism is dominantly centrifugal with a significant destabilizing contribution due to
Marangoni forces in the range Γ & 1.55 to 6.1.

To completet the picture the perturbation flow u and temperature θ at the free sur-
face displayed in fig. 5.23 for aspect ratios Γ = 0.5 to 6.1 and z = 0.5 need to be
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(a) Γ = 0.5 (b) Γ = 2 (c) Γ = 3

(d) Γ = 4 (e) Γ = 5.1 (f) Γ = 6.1

Figure 5.23: Perturbation flow (arrows, interpolated from the numerical data) and perturba-
tion temperature field (lines) on the free surface for z = 0.5 and Pr = 0.03. Negative values
are indicated by gray lines. The parameters are (a) Γ = 0.5, mc = 3 and Rec = 155, 210, (b)
Γ = 2, mc = 3 and Rec = 28, 449, (c) Γ = 3, mc = 4 and Rec = 34, 514, (d) Γ = 4, mc = 4 and
Rec = 35, 097, (e) Γ = 5.1, mc = 5 and Rec = 38, 994, (f) Γ = 6.1, mc = 6 and Rec = 45, 125.

explained. For Γ = 0.5 the free-surface-perturbation flow looks similar to the one dis-
cussed in sec. 5.1.1. Noteworthy, the flow between the strong peripheral cold and hot
spots is opposing the Marangoni forces. Upon an increase of Γ the inner free-surface-
perturbation-temperature extrema increase in size and strength relative to the outer
extrema, until the latter completely vanish between Γ = 3 and 4. The surface flow from
the remaining (previously inner and weak) perturbation temperature spots behaves like
a Marangoni flow, connecting the temperature extrema by a flow from the hot to the
cold extrema. The free surface flow weakens with a further increase of aspect ratio.

The internal structure of the basic state flow field u0 in a vertical plane is shown in
fig. 5.20. One can observe that the minimum of the basic state stream function ψmin

0
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of the primary vortex is shifted downwards with increasing aspect ratio. In-between
Γ = 3 and Γ = 4 the downward movement of ψmin

0 halts12. Note that it is exactly
this range in which the weak outer temperature extrema disappear and the free surface
perturbation flow shows a pattern attributed to a Marangoni flow. This behaviour
can be explained if one considers that the centrifugal instability is an instability of the
primary basic state vortex. The perturbation flow is due to this instability and hence
coupled to and fed by the primary basic state vortex. Hence if the primary vortex
shifts downwards so does the perturbation flow. Now if the perturbation flow fed by the
instability of the primary basic state vortex shifts downwards its contribution to the free
surface flow becomes weaker and the free-surface-pertubation flow due to Marangoni
forces becomes more important13. Basic state temperature transport is dominated by
conductive temperature transport convective effects are weak. The basic temperature
field θ0 serves only to drive the basic flow u0.

5.1.4 Aspect ratio dependence of the flow and its stability for high
Prandtl number Pr = 4

Another relevant range of Prandtl numbers is Pr > 1 which applies to transparent liquid
used in model experiments, like ethanol (Pr ≈ 17), silicone oil (Pr & 10), or molten
sodium nitrate (Pr ≈ 7).

Aspect-ratio dependence of the basic state for high Prandtl numbers

The basic stream function ψ0 and temperature fields θ0 for Pr = 4 and aspect ratios
in the range of Γ = 0.5 to 6.1 are shown in figs. 5.24 and 5.25. The strong convective
effect on the temperature field is obvious, and can be understood along the lines of the
discussion of the high Prandtl number basic state presented in sec. 5.1.1.

The basic state flow field for high Prandtl numbers is characterized by the following
features: The influence of the primary clockwise rotating vortex on the basic state
temperature field is more pronounced in the high Prandtl number case14. The outer
secondary vortex is small and its relative size decreases even further with increasing
aspect ratio. Furthermore, no inner secondary vortex can be found. The primary vortex
is deformed yet in contrast to low Prandtl number basic states (Pr . 1) this deformation
is featured by all the streamlines of the primary basic state vortex (compare fig. 5.24)
and not only by the outer streamlines (compare figs. 5.10 and 5.20). Selected plots
of the basic state temperature field θ0 are presented in figure 5.25. The basic state
temperature field is convected by the basic flow and in turn the basic flow field modified
via the Marangoni effect.

12ψmin
0 has reached its lowest position z = zmin.

13One could also argue that the Marangoni flow at the free surface becomes more visible, since it is less
disturbed by the perturbation flow driven by the centrifugal instability mechanism.

14In accordance with equation (2.22b) the temperature transport in a stationary basic state flow can
be described by Pr(u0 · ∇θ0) = ∇2θ0. Hence convective transport dominates the flow for Pr → ∞,
while conductive transport plays only a minor role.
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Figure 5.24: Basic state stream function ψ0 of the critical mode for parameters: Prandtl
number Pr = 4 and Bond number Bd = 0. Note that only the negative values of the basic
state stream function are provided. The plots feature (a) Γ = 0.5, mc = 2, Re = Rec =
471, 760, (b) Γ = 1, mc = 2, Re = Rec = 110, 363, (c) Γ = 1.5, mc = 3, Re = Rec = 54, 033,
(d) Γ = 2, mc = 3, Re = Rec = 46, 486, (e) Γ = 2.5, mc = 4, Re = Rec = 50, 808, (f)
Γ = 3, mc = 4, Re = Rec = 59, 882, (g) Γ = 4, mc = 5, Re = Rec = 83, 481, (h) Γ = 5.1, mc =
5, Re = Rec = 104, 180, and (i) Γ = 6.1, mc = 6, Re = Rec = 129, 494.
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(a) (b) (c)

(d)

Figure 5.25: Basic state temperature field θ0 of the critical mode for parameters Prandtl
number Pr = 4. The plots feature (a) Γ = 0.5, mc = 2, Re = Rec = 471, 760, (b) Γ = 1, mc =
2, Re = Rec = 110, 363, (c) Γ = 3, mc = 4, Re = Rec = 59, 882, and (d) Γ = 6.1, mc =
6, Re = Rec = 129, 494.
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Figure 5.26: Aspect ratio dependence of the (a) neutral Reynolds numbers Ren (b) neutral
frequencies ωn in the high-Prandtl-number-range for Pr = 4. - The neutral wave number
m = mn are m = 1:—, m = 2:· · ·, m = 3:- - - -, m = 4:·-·-·-, m = 5:·-··-·, m = 6:-·- -·, and
m = 7:– – –.

Aspect ratio dependence of the stability boundary

Figure 5.26a displays the neutral Reynolds number curves for aspect ratios from Γ = 0.5
to 6.1 and for the moderately high Prandtl number Pr = 4. In order to better visualize
the intersections of the neutral curves the vertical Reynolds-number axis is stretched in
the inset. The critical mode is oscillatory for all aspect ratios and wave numbers. The
critical frequencies ωc(Γ) are displayed in figure 5.26b.
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Figure 5.27: Components of the kinetic energy balance according to (2.43) for Prandtl number
Pr = 4. The critical wave number mc is given by the black numbers in the graph. The
components are dissipation D —, Grashof term IGr —, inertial energy production Iv —, and
its decomposition I−v - - - - and I+

v · · ·, Marangoni terms M —, and ∂tEkin —.

As discussed in section 5.1.1 the instability is basically caused by a hydrothermal-wave
mechanism. Note however that the impact of the inertial terms increases with aspect
ratio. The aspect-ratio dependence of the kinetic energy balance (2.43) is shown in fig.
5.27. For all computed aspect ratios Marangoni forces yield the dominant contribution
to the destabilization of the basic flow. Inertial terms also act destabilizing, yet to much
smaller extent. The relative contributions of the inertial to the Marangoni production
terms remain almost constant for a given critical wave number mc. As the aspect
ratio increases, and with it the critical wave number, the balance is shifted in favor of
the inertial terms. If this tendency is extrapolated the instability might possibly be
dominated by inertial production for sufficiently high aspect ratios.

5.1.5 The effect of gravity

To study the effect of gravitational acceleration on the linear stability of the flow we use
the dynamic Bond number Bd defined in (2.26) to measure the importance of buoyancy.
We shall consider the effect of the dynamic Bond number on the flow and stability for
a liquid pool with unit aspect ratio (Γ = 1) and an asymptotically small (Pr = 10−10)
and a high Prandtl number (Pr = 10).

Basic thermocapillary-buoyant flow

Figure 5.28 shows a sequence of stream-function isolines for increasing dynamic Bond
numbers. Buoyancy forces directed downward in the vicinity of the cold sidewall cause
an increase in size of the primary clockwise rotating vortex. The separation from the
cold sidewall is delayed and even completely suppressed for sufficiently high Bd. For
Pr ≪ 1 there is hardly any coupling of the temperature field to the flow. Hence, the
temperature field is almost conducting as in fig. 5.1c for Bd = 0.
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(a) (b) (c) (d)

Figure 5.28: Basic state stream function ψ of the critical mode for parameters Prandtl number
Pr = 10−10, aspect ratio Γ = 1. Note that only the negative values of the basic state stream
function are provided. The plots feature (a) Bd = 0.1, mc = 3, Re = Rec = 29, 011, (b)
Bd = 1, mc = 3, Re = Rec = 28, 435, (c) Bd = 6.31, mc = 3, Re = Rec = 27, 905, and (d)
Bd = 794, mc = 2, Re = Rec = 1, 505.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.29: Basic state stream function ψ and temperature field θ0 of the critical mode
for parameters Prandtl number Pr = 10, aspect ratio Γ = 1. Note that only the negative
values of the basic state stream function are provided. Plots (a)-(d) show the basic state
streamfunction and (e)-(h) the basic state temperature field. The parameters are (a), (e)
Bd = 0.1, mc = 2, Re = Rec = 56, 872, (b), (f) Bd = 1, mc = 2, Re = Rec = 59, 722, (c),
(g) Bd = 6.31, mc = 2, Re = Rec = 87, 640, and (d), (h) Bd = 12.58, mc = 1, Re = Rec =
280, 951.

For the moderately high Prandtl number Pr = 10 the effect of buoyancy is more intri-
cate. Generally, increasing buoyancy promotes the formation of thermal stratification.
This tendency is clearly visible and has also been observed in an annular geometry by
Schwabe (2002) and according to Kuhlmann (2008) also in rectangular cavities. Owing
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Figure 5.30: Dynamic Bond number dependence of the neutral Reynolds number Ren of the
most important neutral modes for parameters: aspect ratio Γ = 1 and Prandtl numbers (a)
Pr = 10−10 and (b) Pr = 10. - - •: m = 1, � : m = 2, and �: m = 3.

to the low thermal diffusivity hot surface fluid turns downward near the cold sidewall,
but cannot penetrate deep into the pool owing to upward buoyancy forces. The radial
return flow continues to rise towards the top. This leads to a flattening of the vortex
which is more pronounced near the cold sidewall resulting in a rounded triangular shape
of the stream lines. Within the nearly stagnant lower part of the pool a weak counter-
rotating ring vortex can arise as the remains of the larger separation zone in the lower
half of the pool.

Impact of buoyancy on the linear stability boundary

Figures 5.30a (5.31a) and 5.30b (5.31b) show the dynamic Bond number (Grashof num-
ber) dependence of the most important neutral modes for aspect ratio Γ = 1 and Prandtl
number Pr = 10−10 and Pr = 10, respectively. The neutral frequencies ωn for Pr = 10
are displayed in fig. 5.32. Note that the basic flow is stabilized by buoyancy forces
for high Prandtl number Pr = 10, while it is destabilized in the limit of asymtotically
small Prandtl number Pr = 10−10. The corresponding kinetic energy balances (2.43)
are shown in figures 5.33a and 5.33b. Since Bd = Gr/Re we get a clearer picture of
the stability boundary if we discuss its Grashof number dependence instead of its Bond
number dependence.

For asymptotically small Prandtl number (Pr = 10−10, fig. 5.31a) and Gr . 2.2 × 105

the flow is unstable to a stationary perturbation mode with wave number mc = 3. This
range can be again subdivided in two ranges for Gr . 105 and Gr & 105. For Gr . 105

the flow is destabilized as Gr increases, while it is stabilized for Gr & 105. With the
selection of a stationary critical mode (mc = 2) for Gr & 2.2 × 105 buoyancy forces
increasingly destabilize the flow, and the stability curve approaches a limiting value
Grc ≈ 1.25 × 106 for Re → 0. In this limiting case the basic flow is driven by buoy-
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Figure 5.31: Grashof number dependence of the neutral Reynolds number Ren of the most
important neutral modes for parameters: aspect ratio Γ = 1 and Prandtl numbers (a) Pr =
10−10 and (b) Pr = 10. - - •: m = 1, � : m = 2, and �: m = 3.
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Figure 5.32: Grashof number dependence of the neutral frequency ωn of the most important
neutral modes for parameters: aspect ratio Γ = 1 and Prandtl number Pr = 10. - - •: m = 1
and � : m = 2.

ancy forces only. The value has been linearly interpolated from the trend of the critical
stability curve in figure 5.31a. Figure 5.33a shows that I−v is the most important term
contributing to the instability of the flow, hence the instability is inertial.

For high Prandtl number (Pr = 10, fig. 5.31b) the Grashof number range can be
separated into a range unstable to a mc = 2 oscillatory perturbation mode and a range
for Gr & 4× 106 with a linear instability to a mc = 1 oscillatory perturbation mode. In
both ranges the axisymmetric flow is clearly stabilized by an increase in Gr, according
to Kuhlmann (2008) the stabilization is due to increasing thermal stratification. The
importance of the contribution of the buoyancy term to the stability of the basic state
flow is displayed in the corresponding kinetic energy balance given in figure 5.33b.

For Gr . 4×106 the relative contribution of the Marangoni forces to the overall kinetic
energy balance decreases simultaneously with the stabilization of the basic flow while
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Figure 5.33: Components of the kinetic energy balance according to (2.43) versus the Grashof
number Gr for Prandtl number Pr = 10−10 and Pr = 10. The critical wave number mc is given
by the black numbers in the diagram. The components are dissipation D —, Grashof term
IGr —, inertial energy production Iv —, and its decomposition I−v - - - -and I+

v · · ·, Marangoni
terms M —, and ∂tEkin —.

the contribution of the buoyancy forces increases. With the selection of the mc = 1-
mode for Gr & 4 × 106 the trend towards a further stabilization of the basic flow with
increasing Grashof number continues. Yet at the same time we find a significant change
in the kinetic energy balance, while the trend found for the destabilizing contributions
of thbuoyancycy and Marangoni forces continues, the contribution of the inertial terms
changes sign. Hence the inertial production terms act stabilizing for Gr & 4× 106. This
sudden change in sign of the inertial production terms is compensated for by a shift of
the relative contribution of the Marangoni forces.

Note that an increase in the relative stabilizing/destabilizing contribution of the buoy-
ancy term, does not account for a stabilization/destabilization of the basic state flow.
It describes a change in the relative contributions of various forces to the kinetic energy
budget.
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5.2 Results on the annular pool problem

Prior to the computation of the solutions to the annular pool problem some modifications
of the geometry and the boundary conditions presented for the liquid-pool model in
sections 2 and 3 are necessary. A detailed account on these modifications is presented
in appendix A15.

In sec. 5.2.1 some remarks on the comparability of the computed results to experimen-
tal data provided by Kamotani et al. (1992) are addressed, and the necessary information
for a comparison is given. A discussion of the basic state flow follows in sec. 5.2.2. In
sec. 5.2.3 the critical stability boundaries for the annular pool flow are presented and
compared to prior experimental data. Finally, a sound explanation of the underlying
physical instability mechanism is given in sec. 5.2.4.

5.2.1 Comparison with the conditions of previous investigations

Experiments for the annular system heated from the inside have been carried out by
several investigators. For a comparison we shall focus on the experimental results of
Kamotani et al. (1992). In the ground-based experiments, which are described in detail
in Kamotani et al. (1992) and Kamotani et al. (2000), using Dow Corning silicone oil
of 2 cSt with Pr = 27 at 25◦C the free surface was found to be almost flat in the
full experimental range. Moreover, according to the numerical computations cited in
Kamotani et al. (2000) the total heat loss from the free surface by radiation and forced
convection has been less than 5% of the total heat transfer rate, and can hence be
neglected16. The Teflon bottom provides a good thermal insulation and the outer wall
from copper and cooled at a constant ambient temperature of T0 = 25◦C guarantees
a good approximation of the constant temperature conditions. The inner wall was
a temperature controlled heating rod. Hence, the boundary conditions presented in
appendix A should be a good approximation of the experimental conditions.

A certain problem is posed by the Boussinesq approximation, since the experimen-
tal temperature variations have been as large as ∆T ≈ 50◦C which causes corre-
sponding variations of the material parameters17. To determine constant approxima-
tions to the material parameters we interpolated tabulated data (Obermeier-GmbH,
2007; Wacker-Silikonöle-AK, 2001) by taking their values at the average temperature
T̄ = T0 + ∆T/2. Another error source is of course the experimental uncertainty of the
temperature measurement for which Kamotani et al. (1992) specify a relative error of
5%. An error of 5% is an upper bound for our numerical computations as well (see
section 4). In order to estimate the variability of the results we use the Gaussian error
σf of a dependent function f which depends on a set of variables x which is defined as

15The passionate reader is well advised to read it now!
16According to Sim & Zebib (2002) the free surface heat loss must not be neglected. Still it is neglected

in the context of the present work since its scope is on the comparison and validation of the results
presented by Kamotani et al. (1992)

17Note that the Boussinesq approximation we assume that ∆T ≪ T0. Compare also sec. 2.1.1
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Table 5.1: Summary of the experimental setup.

Kamotani et al. (1992) (exp.)

geometry cylindrical
η = Ri/R, Ar = Γ−1

free surface almost adiabatic & flat

side walls heating rod, copper wall

bottom Teflon

fluid 2 cSt silicone oil at 25◦C

the root of the sum of the squared individual errors σxj

σf =

√
√
√
√

M∑

j=1

(
∂f(x )

∂xj
σxj

)2

. (5.4)

For instance with f = Rec and xT = (∆Tc, γ, d, ν, ρ) we compute the possible variation
of the critical Reynolds number Rec for the onset of three-dimensional flow. In the
absence of any information on the error of the input data we assume σxj

= 0.05xj, i.e.
a relative error of 5%18.

To extract the dynamic Bond number Bd from the experimental data we have calcu-
lated the static Bond number Bo = ρgd2/σ0 with the help of the geometrical information
given in Kamotani et al. (1992) and our knowledge of the material data. We obtain the
dynamic Bond number from

Bd =
σ0β

γ
Bo . (5.5)

For future reference we note that the aspect ratio Ar = d/R = Γ−1 which has been
used by, e.g. Kamotani et al. (1992), is the inverse of the aspect ratio Γ defined in the
present investigation. For an overview, we provide a brief summary of the different
approaches/setups in tables 5.1 and 5.2.

Numerical computations for the non-perturbed steady axisymmetric flow have been
performed by Kamotani et al., compare Kamotani et al. (1992) for a detailed reference.
Their computations are performed on a non-uniform grid with a resolution of 46 × 41
points (Nr × Nz) with a code based on a SIMPLER algorithm of Patankar (1980). In
terms of the numerical model they assume a flat non-deformable, adiabatic free surface,
solid walls at constant temperature T0, a heater temperature T1 = T0 + ∆T, and a
fluid with a temperature dependent kinematic viscosity ν. Besides that they give no
information. A short summary of their numerical conditions can be found in table 5.2.

18The computational error of the critial Reynolds number Rec is difficult to estimate. In sec. 4 we
found that the critical Reynolds number computed for the half-zone model by means of the present
numerical code deviates from prior results by about 4.1%. Assuming a computational error of
the same order ≈ 5% for the annular pool model seems reasonable, in particular since the critical
Reynolds numbers are of the same order of magnitude.
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Table 5.2: Summary of the different numerical approaches/setups.

this work Kamotani et al. (1992) (num.)

geometry cylindrical
η = Ri/R, Γ = R/d

cylindrical
η = Ri/R, Ar = Γ−1

free surface adiabatic & flat adiabatic & flat

side walls constant temperature constant temperature

bottom adiabatic has not been specified

fluid Boussinesq fluid variable viscosity model

Note that the overall agreement with the results of Kamotani et al. (1992) (their figure
2) is very good. Some deviations can be found in temperature field θ0 for aspect ratio
Γ = 0.5. While the thermal boundary layer in figure 2 of Kamotani et al. (1992) is quite
thin in the lower half of the cylinder despite of the slow motion there, it is much thicker
in the present case (figure 5.34d). These deviations might possibly be explained by
the differences of the numerical model. Kamotani et al. (1992) used a variable viscosity
model. Therefore, the viscosity is likely to be smaller near the heating rod and thus
giving rise to somewhat thinner boundary layers.

5.2.2 Axisymmetric basic state flow

The temperature difference ∆T between the heater and the outer wall causes a non-
uniform distribution of temperature at the free surface (fig. 5.34b,d) and, in turn, a
non-uniform distribution of surface tension. The thermocapillary effect drives a radial
fluid motion from the heater to the outer wall. At the wall a return flow below the free
surface is formed. A toroidal vortex develops. Examples are provided in fig. 5.34. The
rotation of the vortex is clockwise, i.e. the basic state streamfunction has a minimum
ψ0 < 0 at the vortex center. The corresponding isotherms exhibit boundary layers on
the surface of the heater and on the top free surface due to the high Marangoni number
Ma = RePr which is 37,800 and 783,000 for fig. 5.34a,b and 5.34c,d, respectively.

5.2.3 Stability boundaries under normal gravity

The basic two-dimensional flow exists for all Reynolds numbers. However, it may become
unstable at a critical Reynolds number Rec. In a first step we consider the flow stability
for Pr = 27 and a heater radius ratio η = 0.079. These parameters correspond to the
ones used in the experiments of Kamotani et al. (1992). The dynamic Bond number is
obtained using (5.5).

Within the aspect ratio range Γ ∈ [0.513, 1.613], corresponding to Ar ∈ [0.62, 1.95] we
find that modes with wave numbers m = 2, 3, or 4 can be critical. The neutral stability
curves are given in fig. 5.35. A list of the critical parameters is given in table 5.3.
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(a) (b)

(c) (d)

Figure 5.34: Axisymmetric streamfunction ψ0 (a,c) and temperature field θ0 (b,d) for Pr = 27,
Gr = 1000, and η = 0.08. Results are shown for Γ = 1 and Re = 1, 400 (a,b) and for Γ = 0.5
and Re = 29, 000 (c,d).

In order to compare our stability results with those of Kamotani et al. (1992) we cal-
culated the critical Reynolds numbers Reexp

c from the measured temperature differences
∆T

exp
c using the material data provided. The critical Reynolds numbers Rec are shown

in table 5.4 along with the experimental data.
The deviation ∆ = Renum

c −Reexp
c , and the Gaussian error σRec

calculated by equation
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Figure 5.35: Neutral Reynolds numbers Ren of the most dangerous neutral modes as a function
of the aspect ratio Γ. Parameters are η = 0.079 and Pr = 27. For Bd, see table 5.3. The wave
numbers are m = 2 (�, full line), m = 3 (◦, dashed line), and m = 4 (N, dotted line).

Table 5.3: Geometrical, setup and critical parameters for Prandtl number Pr = 27 and heater
radius ratio η = 0.079.

Γ Ar Bo Bd Rec ωc mc

1.613 0.62 2.6239 0.9424 3,790 21.35 3
1.205 0.83 2.5982 0.9455 3,440 27.63 3
1.000 1.00 2.5914 0.9461 3,512 37.23 2
0.800 1.25 2.5836 0.9468 4,356 53.42 2
0.625 1.60 2.5765 0.9473 6,067 87.11 2
0.513 1.95 2.5776 0.9477 7,874 129.83 2

(5.4) are also given. Figure 5.36 displays both results together with the corresponding
error margins.

In view of the shortcomings and uncertainties the agreement is satisfactory. We can
thus conclude that the instability mechanism that can be deduced from the numerical
calculations (section 5.2.4) indeed represents the mechanisms at work in the experimental
realization.

Even though the radius ratio of the heater is rather small, it effects the critical onset.
To that end we computed the critical Reynolds number for a constant aspect ratio
Γ = 0.513 for various radius ratios η. The results are shown in fig. 5.37 for the most
dangerous modes. The aspect ration has been selected in order to compare our results to
the measurements of Kamotani et al. (1992) for Ar = 1.95. A list of critical parameters
is given in table 5.5.

It is seen that the neutral stability boundaries for m = 2 and m = 3 are very close.
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Table 5.4: Aspect ratio dependence of the numerical (present) and experimental
(Kamotani et al., 1992) critical Reynolds number for silicone oil of Pr = 27 and a heater
radius ratio η = 0.079 under normal gravity conditions. Also given is the deviation ∆ and the
Gaussian uncertainty computed by (5.4).

present Kamotani et al. (1992)
Γ Renum

c Reexp
c ∆ σRec

1.613 3,790 2,856 934 ±410
1.205 3,440 2,941 499 ±429
1.000 3,512 3,334 178 ±488
0.800 4,356 3,871 486 ±569
0.625 6,067 4,753 1,314 ±701
0.513 7,874 5,568 2,306 ±824

Γ

Rec/103
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Figure 5.36: Critical Reynolds number Rec as a function of the aspect ratio Γ. The param-
eters are η = 0.079 and Pr = 27. For Bd, see table 5.3. Shown are experimental results of
Kamotani et al. (1992) (◦, dashed line) and the present numerical stability boundary data (�,
solid line). The experimental uncertainty due to the surface-temperature measurement and the
possible numerical variation σRec

are indicated as dark and light grey shading, respectively,
and by dotted lines.

The numerical stability analysis predicts m = 2 to be the critical wave number in the
range of radius ratios investigated.

A comparison of the numerical data with the experiments of Kamotani et al. (1992)
is provided in fig. 5.38 showing the predicted and measured critical Reynolds numbers
Rec as function of the heater radius ratio, as well as the uncertainties resulting from
the measurement, numerical inaccuracies, and the uncertainty of the material parame-
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Figure 5.37: Neutral Reynolds numbers as a functions of the heater radius ratio η. The
parameters are Γ = 0.513 and Pr = 27. For Bd, see table 5.5. The wave numbers are m = 2
(�, full line), m = 3 (◦, dashed line), and m = 4 (N, dotted line).

Table 5.5: Critical data for Pr = 27 and Γ = 0.513.

η Bo Bd Rec ωc mc

0.0588 3.9005 1.4340 9,602 135.53 2
0.0671 3.9007 1.4341 9,026 135.58 2
0.0918 3.8907 1.4350 7,863 136.06 2
0.1800 3.8684 1.4375 6,271 141.54 2
0.2340 3.8512 1.4395 6,043 148.57 2

ters. In view of the uncertainties and the approximations made, the agreement is quite
satisfactory.

Table 5.6 gives the numerical data for the critical temperature differences as a function
of the radius ratio, the difference of the results ∆ = Renum

c − Reexp
c , and the Gaussian

error. The influence of buoyancy on the onset of the non-axisymmetric flow state has
been studied for a representative case with aspect ratio Γ = 1, heater radius ratio
η = 0.1, Prandtl number Pr = 27. The dynamic Bond number has been varied in the
range Bd ∈ [0, 3.87]. Critical Reynolds numbers for the three most dangerous modes
with wave numbers m = 2, 3, and 4 are presented in fig. 5.39. Mode m = 2 turns out
to be the critical one in the range considered. The critical Reynolds number increases
monotonically with the dynamic Bond number. Therefore, buoyancy acts stabilizing in
the range of dynamic Bond numbers Bd ≤ 3.87.
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Figure 5.38: Critical Reynolds number Rec as function of the radius ratio η for Γ = 0.513
and Pr = 27. For Bd, see table 5.5. Shown are experimental results of Kamotani et al.

(1992) (◦, dashed line) and the present numerical stability boundary data (�, solid line).
The experimental uncertainty due to the surface-temperature measurement and the possible
numerical variation σRec

are indicated as dark and light grey shading, respectively, and by
dotted lines.

Table 5.6: Numerical (present) and experimental (Kamotani et al., 1992) critical Reynolds
numbers for Pr = 27 and Γ = 0.513.

present Kamotani et al. (1992)
η Renum

c Reexp
c ∆ σRec

0.0588 9,602 6,846 2,755 ±1,013
0.0671 9,026 6,826 2,200 ±1,011
0.0918 7,863 6,477 1,386 ±964
0.1800 6,271 5,451 819 ±824
0.2340 6,043 4,659 1,384 ±715

5.2.4 Instability mechanism

It is instructive to first analyze the instability mechanism for Bd = 0, i.e. for zero gravity
conditions. These conditions also apply to the STDCE-2 experiment (Pline et al., 1996;
Kamotani et al., 2000). As a representative case we consider Γ = 1, η = 0.1, and
Pr = 27. The critical wave number is m = 2 with a critical Reynolds number of
Rec = 2, 762. The critical mode is a time-dependent azimuthally traveling wave with
critical circular frequency ωc = 32.68.

The critical temperature and velocity field θ and u , respectively, at the free surface
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Figure 5.39: Neutral Reynolds numbers as functions of the dynamic Bond number Bd for
Pr = 27, Γ = 1, and η = 0.1. The wave numbers are m = 2 (�, full line), m = 3 (◦, dashed
line), and m = 4 (N, dotted line).

are shown in fig. 5.40a.
Eight surface temperature extrema exist. Four small and strong ones are located close

to the heater, while the other larger but weaker ones occupy the remainder of the free
surface. The perturbation flow at the free surface is directed mainly from the weak hot
to the weak cold perturbation temperature spots. As fig. 5.41 proves, the flow is nearly
entirely driven by Marangoni stresses.

Apart from the azimuthal surface flow there is also a considerable radial perturbation
flow driven by Marangoni stresses from the large hot surface spots to the small but
intense cold surface spots.

As can be seen from fig. 5.42ls part of the stream descending radially outwards from
the small surface spots close to the axis turns radial inward in the bulk such that the
perturbation flow is almost perpendicular to the isolines of the basic state temperature
field. By convecting the basic-downward and radially inward (in the plane shown) per-
turbation flow creates the perturbation temperature field. It arises in form of a elongated
cigar-shaped temperature perturbation aligned parallel and in close vicinity of the heated
inner cylinder (blue in fig. 5.42ls). The effect is significant despite of the relatively weak
perturbation flow, but the thermal boundary layer on the heater is quite strong. At an
angle of ±π/2 with respect to the plane plotted in figure 5.42 the perturbation flow u is
directed outwards, hence, perturbation temperature maxima occur there. Perturbation
temperature of opposite sign is created in the same azimuthal plane by convecting the
basic-state temperature with opposite gradient which is associated with the convective
deformation of the isotherm due to the basic vortex (red in fig. 5.42ls). In fact, the
temperature perturbation is produced in the volume of the annulus, the maximum of iT
being located in the plane z ≈ −0.03 near the midplane of the pool. The location of the
maximum thermal production is shifted by ∆ϕ = 15◦ in clockwise direction with respect
to the perturbation temperature extrema. The relevant cuts are given in figures 5.42
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(a) (b)

Figure 5.40: Critical mode with m = 2 for Γ = 1, η = 0.1, Bd = 0, and Pr = 27 at Rec = 2, 762
at the free surface z = 0.5 (a) and near the midplane z = −0.03 (b). The mode rotates clockwise
with ωc = 32.68. Shown is the perturbation flow u (arrows) and the perturbation temperature
θ (color). Both fields are scales identically. In addition, θ is also indicated by isoline in (a)
while isolines in (b) show the local thermal energy production iT at z = −0.03 where iT has
local maxima in the bulk. The straight and the dashed line indicate the angles at which the
cuts of figs. 5.42ls,rs are taken.

and their location is indicated in figure 5.40b. The internal perturbation temperature
extrema are created by advection of the basic state temperature field θ0 by means of the
perturbation flow u (fig. 5.42ls).

The temperature perturbation spots at the free surface themselves are created by the
advection u0 · ∇θ of the perturbation temperature field θ by means of the basic flow
field u0. This can be recognized from fig. 5.43.

The isosurfaces of the perturbation temperature extrema of large volume are stretched
along the basic-state streamlines: axially upward near heating cylinder and radially
outward along the free surface. From fig. 5.43 one can also see that the temperature
perturbation θ in the bulk occurs slightly clockwise ahead of the perturbation at the free
surface. This shift is explained by the clockwise rotation of the perturbation mode. The
surface spots lag behind the bulk spots due to the finite time required for the basic flow
u0 to advect the bulk perturbation temperature to the free surface. Consistent with the
pattern rotation the local thermal energy production iT reaches its maximum slightly
clockwise ahead of the perturbation temperature extrema (cf. fig. 5.40b).

The critical mode is an azimuthally propagating wave. It is characterized by strong
temperature extrema in the bulk and weaker temperature extrema at the free surface,
lagging behind the bulk extrema. The perturbation flow necessary for the thermal
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Figure 5.41: Terms of the kinetic (a) and the thermal energy balance (b) for Bd = 0, η = 0.1,
Γ = 1, Pr = 27, and m = 2 at Rec = 2, 762.

Figure 5.42: Flow and temperature fields (m = 2) for Bd = 0, η = 0.1, Pr = 27, and
Re = Rec = 2, 762 in a vertical cut at which the critical temperature perturbation takes its
absolute maximum. All fields are mirror-symmetric with respect to r = 0 for m = 2. (left
side - ls) Critical velocity field u (arrows), critical temperature field θ (color), and basic-state
temperature field θ0 (lines). (right side - rs) Local thermal production rate iT > 0 (lines) and
basic state temperature field θ0 for the same parameters as in (left side). The vertical cut
is shifted by ∆ϕ = 15◦ in clockwise direction to an azimuthal angle where the local thermal
production iT (color) takes its maximum.

production in the bulk is generated by the surface temperature extrema. These key
features of the instability are identical to those of high-Prandtl-number hydrothermal
waves. They have been originally been discovered by Smith (1986) but also exist in
other thermocapillary systems such as liquid bridges Wanschura et al. (1995b).

In the earth-bound experiments of Kamotani et al. (1992) the dynamic Bond number
was of the order of Bd = O(1) to O(1.5) . From fig. 5.39 we notice that the critical
Reynolds number differs only by 15% to 20% relative to zero-gravity conditions. This
suggests that the instability mechanism in the laboratory experiments have been essen-
tially the same as under weightlessness conditions. But even for Bd = 4 the difference
is only about 40% and therefore we expect only a slight modification of the instability

81



(a) (b)

Figure 5.43: Isosurfaces of the perturbation temperature field θ alone (a) and together with
an Isosurface of the basic-state stream function ψ0 for Bd = 0, η = 0.1, Pr = 27, Re = Rec =
2, 762, and m = 2.

mechanism.
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6 Concluding remarks

In the present work the thermocapillary flows in (i) a cylindrical liquid pool heated by
a parabolic heat flux from above and (ii) an annular pool heated by a cylindrical heater
along its axis have been studied. Of particular interest were the necessary conditions
for the onset of non-axisymmetric fluid motion, and the underlying physical mechanism
driving the transition process.

A physical model including the governing equations for the axisymmetric basic state,
the linear stability problem and sound boundary conditions has been developed and
presented in sec. 2. The concept of neutral and critical stability has been introduced
and the equations for the energy analysis have been derivated and adapted to the specific
geometry of the problems.

The numerical implementation of the equations and the corresponding boundary con-
ditions stated in sec. 2 was treated in sec. 3. The discretization process by means of
finite volumes on an optionally uniform or non-uniform staggered grid has been explained
and all methods necessary for the computation of the neutral and critical stability curves
discussed.

Considerable effort was put into the validation of the numerical code developed for
the present work. To that end the boundary conditions of the problem were modified to
compute solutions to the floating zone problem, a problem well documented and cited
in literature. The results given in sec. 4 show very good agreement to previous works.
As a second test the convergence behaviour (resolution dependence) of the computed
solutions was studied. Again the results were very satisfying.

6.1 Concluding remarks on the results of the liquid-pool

model

The results computed for the liquid-pool model, a cylindrical volume of fluid with a
non-deformable free surface on top, heated by a parabolic heat flux on its free surface,
have been presented in sec. 5.1. The configuration has been studied for various Prandtl
numbers Pr, aspect ratios Γ and dynamic Bond numbers Bd.

For parameters aspect ratio Γ = 1 and a Prandtl numbers from Pr = 10−10 to 10,
we found a distinct separation into a small- (Pr . 1) and a high-Prandtl-number-range
(Pr & 1). In the low-Prandtl-number-range the perturbation flow is stationary in nature
and the basic flow is unstable to a combination of centrifugal effects and vortex strain-
ing1. In the range 0.04 . Pr . 1 there is also a noticeable contribution by Marangoni

1
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forces, compare sec. 5.1.1. The perturbation mode in the high-Prandtl-number-range
is oscillatory in nature, the kinetic energy budget dominated by the Marangoni terms,
and the physical instability mechanism turns out to be a hydrothermal-wave-mechanism
(HTW-mechanism), cp. Smith (1986) and sec. 5.1.1.

The aspect ratio dependence was presented in three sections each for a well selected
significant Prandtl number. Sec. 5.1.2 studies the aspect ratio dependence in the limit of
asymtotically small Prandtl number (Pr = 10−10), sec. 5.1.3 in the low Prandtl number
range (Pr = 0.03) and sec. 5.1.4 for high Prandtl number (Pr = 4).

The results presented in sec. 5.1.2 (Pr = 10−10) feature three distinct regions: (i) a
low aspect-ratio-range 0.5 ≤ Γ . 1.91 with a stationary perturbation mode and physics
like in sec. 5.1.1 (ii) an intermediate aspect-ratio-range 1.91 . Γ . 3.31 showing an
oscillatory perturbation mode. The instability mechanism is centrifugal and features
similarities to the mechanism discussed in sec. 5.1.1, finally (iii) a high aspect-ratio-
region Γ & 3.31 with a basic flow unstable to a stationary perturbation mode. The
instability mechanism differs from the earlier discussed centrifugal mechanism, in which
most of the local kinetic energy transfer from the basic flow to the perturbation mode
took place in the downflow region along the outer streamlines of the primary vortex of
the basic flow where criteria (5.2) was satisfied. In the high-aspect-ratio-range there is
still some local kinetic energy production in the upflow region of the primary vortex yet
most of the kinetic energy is produced in a region close to the axis of the pool. We
concluded that the mechanism which features similarities with a divergent instability is
primarily a property of the turning flow near the axis of the pool. Further comparison
is needed to sufficiently clarify this issue.

In sec. 5.1.3 (Pr = 0.03) we found that the critical mode is always stationary for
low Prandtl number. Of the three branches (two stationary, one oscillatory) found for
Pr = 10−10 only one stationary branch remains for small Prandtl number. The critical
curve features an increase of the critical wave number mc with aspect ratio. From the
kinetic energy budget we found that for Pr = 0.03 the contribution of the Marangoni
forces (inertial effects) increases (decreases) with aspect ratio for Γ . 4.3. For Γ & 4.3
the contribution of the Marangoni forces decreases while at the same time inertia effects
get more important for the instability of the basic state flow. Note however that the
perturbation flow at the free surface is increasingly dominated by Marangoni effects
for increasing aspect ratio. A possible explanation would be the downward shift of
the vortex center, and hence of the region of inertial kinetic energy production, with
increasing aspect ratio. I.e. we find a situation where the perturbation flow at the free
surface is dominated by inertial effects for low aspect ratio and by the Marangoni effect
for large aspect ratio.

The aspect-ratio-dependence of the critical stability boundary for high Prandtl number
(Pr = 4) was presented in sec. 5.1.4, and the instability mechanism identified as a
hydrothermal wave mechanism, compare sec. 5.1.1 and Smith (1986). In terms of the
kinetic energy balance we found that the relative significance of the inertial kinetic
energy production with respect to the Marangoni terms increases with aspect ratio. If
this tendency continues for even higher values of Γ we might find a situation very similar
to the one found for Pr = 0.03 and sufficiently high values of Γ. I.e. while the prior
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instability mechanism is surely a hydrothermal wave mechanism in the computed range,
the instability might be dominated by centrifugal effects for larger aspect ratios.

Finally the effect of gravitational acceleration on the stability of the overall flow was
studied in sec. 5.1.5. To that end the stability curves for Prandtl numbers Pr = 10−10

and Pr = 10 in the dynamic Bond number range from Bd = 0.0398 to 50.1 have been
computed. We found that buoyancy effects destabilize the flow for asymptotically small
Prandtl number Pr = 10−10 and stabilize it for high Prandtl number Pr = 10.

6.2 Concluding remarks on the results of the annular

pool

Some experimental and numerical results presented by Kamotani et al. (1992) have been
studied and recomputed with the authors numerical code. In detail the dependency of
the critical temperature difference for the onset of a non-axisymmetric flow on the aspect
ratio of the test section as well as the radius ratio of the heater has been studied for a
Boussinesq fluid with Prandtl number Pr = 27. All results of Kamotani et al. could
be verified to a reasonable degree. If one considers the simplicity of the used numerical
approach the agreement of the results is really very good.

The dependence of the neutral and the critical Reynolds number on the dynamic
Bond number has been studied. A shift of the critical stability limit to higher values
of Reynolds number with increasing dynamic Bond number has been found. Hence the
authors conclude that buoyancy yields a stabilizing effect on the flow field.

The structure of the pair of oscillating perturbation modes has been intensively stud-
ied. The mechanism responsible for the instability has been identified as a hydrothermal
wave, Smith (1986).

6.3 Concluding with a few general remarks

The present work succeeded in the effort to increase the understanding of the underly-
ing physical mechanisms which render an axisymmetric flow unstable to a three dimen-
sional perturbation mode. Surprisingly enough the basic flow structures and also the
instability mechanism found in both problems feature strong similarities to those found
in prior studies of thermocapillary liquid bridges (half-zone model) (Nienhüser, 2002;
Wanschura et al., 1995b). A similarity stressed also in prior publications on the pattern
formation process in buoyant-thermocapillary liquid pools heated by a parabolic heat
flux from above (Schoisswohl & Kuhlmann, 2006, 2007).
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A Modifications for the annular pool

In order to compute the results presented in sec. 5.2 some modifications of the theoretical
approach (sec. 2) and the numerical implementation (sec. 3) are necessary.

A.1 Modifications in the Theoretical Approach

Sofar we have studied a cylindrical pool filled with a Boussinesq fluid. Now with the
cylindrical heater submerged into the pool along its axis we get what we could basically
call an open cylindrical annulus with inner radius Ri and outer radius R in an axial
gravity field. Together with the height d of the container its geometry is defined by the
radius ratio η = Ri/R and an unchanged aspect ratio Γ = R/d. The outer and inner
cylindrical sidewalls are kept at constant temperature T0 and T0 + ∆T, respectively.
The setup is sketched in figure A.1.

Owing to the temperature variation across the gap the fluid motion is driven by
thermocapillary and buoyancy forces. We assume the temperature difference ∆T to
be small such that the capillary number Ca = γ∆T/σ0 ≪ 1 is small, where γ is the
surface tension coefficient and σ0 the mean surface tension. In this limit dynamic surface
deformations are absent and we can approximate the fluid motion using the equations
of the Boussinesq approximation in cylindrical coordinates (r, ϕ, z) in non-dimensional
(2.22a)-(2.22c) presented in sec. 2

∂U

∂t
+ (U · ∇)U = −∇P + ∇2U − GrΘez (A.1a)

∂Θ

∂t
+ (U · ∇)Θ =

1

Pr
∇2Θ (A.1b)

∇ ·U = 0 , (A.1c)

where U = (U, V,W )T is the vector radial, azimuthal and axial velocity components, P
is the pressure, and Θ = (T − T0)/∆T denotes the temperature field. The scales are d,
d2/ν, ν/d, ρν2/d2, and ∆T for length, time, velocity, pressure, and temperature.

To complete the mathematical formulation we assume no-slip conditions on the solid
walls and adiabatic top and bottom boundaries. Hence, we require

U (r = ηΓ, z) = U (r = Γ, z) = U (r, z = −1/2) = 0 , (A.2)

Θ(r = ηΓ, z) − 1 = Θ(r = Γ, z) =
∂Θ

∂z

∣
∣
∣
∣
z=±1/2

= 0 . (A.3)
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Figure A.1: Geometry and coordinate system.

On the free surface at z = 1/2 we require no deformation W (r, z = 1/2) = 0 and neglect
the viscosity of the ambient gas in the stress balance which leads to (see, e.g. Kuhlmann,
1999)

∂U ‖

∂z
+ Re∇‖Θ = 0 , (A.4)

where U ‖ = Uer + V eϕ is the surface velocity and ∇‖ = er∂r + eϕr
−1∂ϕ the horizontal

Nabla operator.
The problem is governed by three independent dimensionless parameters. The ther-

mocapillary Reynolds, Prandtl, and Grashof numbers are defined as

Re =
γ∆Td

ρν2
, Pr =

ν

κ
and Gr =

β∆Tgd3

ν2
, (A.5)

where κ is the thermal diffusivity, ν the kinematic viscosity, and β the thermal expansion
coefficient of the liquid at constant pressure. It is useful to define, in addition, the
(dependent) dynamic Bond number

Bd =
Gr

Re
=
βρgd2

γ
. (A.6)

A.2 Modifications in the Numerical Implementation

In terms of numerical implementation the computational mesh needs to be adapted to
the new geometrical constraints. Sofar the innermost column of computational cell was
situated at the axis with an inner radial coordinate of r1 = 0, compare sec. 3.1.2. Its
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new position is r1 = ηΓ and the new radial coordinates are hence given by

rj =







−∆r1 + ηΓ for j = 0
ηΓ for j = 1
rj−1 + ∆rj−1 for j = 2, ..., Nr + 1
rNr+1 + ∆rNr for j = Nr + 2

,

with cell sizes ∆rj defined in sec. 3.1.2.
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B Derivation of the energy analysis

In this section we present a derivation of the rate of change of kinetic and thermal energy
in the cylindrical volume V for cylindrical coordinates and the boundary conditions of
the present problem defined in sec. 2.

B.1 Reynolds-Orr equation

Assuming that the flow state X can be decomposed into a combination of a axisymmetric
basic state x 0 and a perturbation mode x equation (2.22a) takes the form

∂t(u0 +u)+[(u0 + u) · ∇] (u0 +u) = −∇(p0 +p)+∆(u0 +u)+Gr(θ0 +θ)ez . (B.1)

In the next step equation (2.22a) is rewritten solely for the basic state x 0 and in this
new form substracted from equation (B.1). A linearisation with respect to higher order
terms in the perturbation gives

∂tu + u · ∇u0 + u0 · ∇u = −∇p + ∆u +Grθez . (B.2)

A multiplication by the perturbation velocity vector u from the left-hand side, followed
by an integration by volume and a reformulation in tensor notation yields

1

2
〈∂tu

2
i 〉 + 〈ui(u0,j∂j)ui〉 + 〈ui(uj∂j)u0,i〉 = −〈ui∂ip〉 + 〈ui∂j∂jui〉 + 〈Grθuiδi3〉 . (B.3)

Here 〈...〉 is equivalent to
∫
... dV , the integration by volume. In what follows we use the

boundary conditions and continuity (∇ · u = 0) to cast equation (B.3) into a simpler
form.

The first term in equation (B.3)

1

2
〈∂tu

2
i 〉 =

∂Ekin

∂t
. (B.4)

is equivalent to the temporal change of kinetic energy. Since we study a stationary
system this term should vanish.

Using partial integration the first nonlinear term is reformulated to

〈ui(u0,j∂j)ui〉 = 〈uiu0,jejui〉S − 〈∂j(uiu0,j)ui〉 (B.5a)

= 〈ui u0,jej
︸ ︷︷ ︸

=0

ui〉S − 〈ui(∂ju0,j
︸ ︷︷ ︸

=0

)ui〉 − 〈u0,j(∂jui)ui〉 . (B.5b)
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Here ej is the unity normal vector at the free surface. Due to the assumption of a
non-deformable free surface the axial velocity component w0 of u0 vanishes at the free
surface. Obviously the same is true for its projection eju0,j. Since our flow is divergence
free ∂ju0,j drops out as well and equation (B.5) is reduced to

〈ui(u0,j∂j)ui〉 = −〈u0,j(∂jui)ui〉 . (B.6)

A condition only satisfied if
〈ui(u0,j∂j)ui〉 = 0 , (B.7)

and hence the first nonlinear term in (B.3) drops out altogether.

Reformulation of the second nonlinear term for cylinder coordinates gives

〈ui(uj∂j)u0,i〉 =
〈
(eru+ eϕv + ezw) ·

[(
u∂r + v

r
∂ϕ + w∂z

)
(eru0 + ezw0)

]〉

= 〈u2∂ru0〉 + 〈uw∂zu0〉 +
〈

v2u0

r

〉

+ 〈uw∂rw0〉 + 〈w2∂zw0〉 . (B.8)

Note that the derivations of the unity coordinate vectors in cylindrical coordinates are
∂ϕer = eϕ and ∂ϕeϕ = −er.

Let us now consider the terms on the right hand side of equation (B.3). For the pressure
term partial integration shows that

〈ui(∂ip)〉 = 〈uiei
︸︷︷︸

=0

p〉S − 〈∂iui
︸︷︷︸

=0

p〉 = 0 . (B.9)

Here the line of argumentation is the same as in equation (B.5b).

Partial integration of the dissipative term shows that it is equivalent to a combination
of a surface and a volume term

〈ui∂j∂jui〉 = 〈uiej∂jui〉S − 〈(∂jui)(∂jui)〉 . (B.10)

The surface term can be rewritten to

〈uiej∂jui〉S =

∫

S

dSu · [(n · ∇)u ]
n≡ez=

∫

S

dS(u∂zu+ v∂zv) , (B.11)

with n being the unity normal vector at the free surface. Reformulation of the volume
term in equation (B.10) by means of a vector identity taken from Bronstein & Mühlig
(2001) yields

〈(∂jui)(∂jui)〉 = 〈(∇u)(∇u)〉 = 〈(∇× u)2〉 + 〈∇ · [(u · ∇)u ]〉 . (B.12)

In cylindrical coordinates (∇× u)2 takes the form

(∇× u)2 =

(
1

r

∂w

∂ϕ
−
∂v

∂z

)2

+

(
∂u

∂z
−
∂w

∂r

)2

+

(
1

r

∂(rv)

∂r
−

1

r

∂u

∂ϕ

)2

. (B.13)
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The second term in equation (B.12) can be restated as a surface term

〈∇ · [(u · ∇)u ]〉 = 〈n · (u · ∇)u〉S , (B.14)

which vanishes for a flat free surface (n = ez)
∫

S

dSn · [(u · ∇)u ]
n≡ez=

∫

S

dS(u∂rw +
v

r
∂ϕw + w∂zw) = 0 . (B.15)

Finally the buoyancy term in equation (B.3) is rewritten to

〈Grθuiδi3〉 = 〈Grθw〉 . (B.16)

Collecting all the terms the Reynolds-Orr equation takes its final shape

∂tEkin + 〈u2∂ru0〉
︸ ︷︷ ︸

Iv1

+ 〈uw∂zu0〉
︸ ︷︷ ︸

Iv2

+

〈
v2u0

r

〉

︸ ︷︷ ︸

Iv3

+ 〈uw∂rw0〉
︸ ︷︷ ︸

Iv4

+ 〈w2∂zw0〉
︸ ︷︷ ︸

Iv5

−

∫

S

dS(u∂zu)

︸ ︷︷ ︸

Mr

−

∫

S

dS(v∂zv)

︸ ︷︷ ︸

Mϕ

+ 〈(∇× u)2〉
︸ ︷︷ ︸

D

−〈Grθw〉
︸ ︷︷ ︸

IGr

= 0 . (B.17)

Here D is the rate of viscous dissipation, Iv1 to Iv5 describe the advection of basic state
momentum u0 by the perturbation mode u , thus adding to the perturbation flow itself.
The quantities Mr and Mϕ represent the work done by the Marangoni forces on the
free surface in radial and azimuthal direction. Contribution of buoyancy are taken into
account by IGr.

B.2 Thermal equivalent of the Reynolds-Orr equation

In order to study the transfer of thermal energy from the basic state x 0 to the perturba-
tion mode x and vice versa, we need an equation similar to the Reynolds-Orr equation
yet for thermal instead of kinetic energy. Let’s look at the temperature equation (2.22b)
for a start. Following the lines of sec. B.1 we (a) rewrite equation (2.22b) for an overall
flow decomposed into an axisymmetric basic state x 0 and a perturbation mode x, (b)
substract the temperature equation (2.22b) rewritten solely for the basic state, and (c)
linearise with respect to higher order terms in the perturbation. That way we get the
equation

∂tθ + (u0 · ∇)θ + (u · ∇)θ0 =
1

Pr
∆θ , (B.18)

an equation similar to (B.2). A multiplication by the perturbation temperature θ from
the left-hand side, followed by an integration by volume and a reformulation in tensor
notation yields

〈θ∂tθ〉 + 〈θ(u0,i∂i)θ〉 + 〈θ(ui∂i)θ0〉 − 〈
θ

Pr
∂i∂iθ〉 = 0 . (B.19)
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Let’s study equation (B.19) in detail: the first term

〈θ∂tθ〉 = ∂tEth . (B.20)

is time-dependent, dynamic and equivalent to the temporal change of thermal energy of
the system. It should vanish, since the system is stationary.

Following the train of thought illustrated for equations (B.5)-(B.8) the first convective
term drops out, while the second can be rewritten to

〈θ(ui∂i)θ0〉 = 〈θ
(
u∂r + v

r
∂ϕ + w∂z

)
θ0〉

= 〈θu∂rθ0 + θw∂zθ0〉 . (B.21)

Partial integration of the diffusion term yields

1

Pr
〈θ∂i∂iθ〉 =

1

Pr
〈θei∂iθ〉S −

1

Pr
〈(∂iθ)(∂iθ)〉 . (B.22)

For cylindrical coordinates and a normal vector n = ez at the free surface the first term
on the right hand side can be reformulated to

1

Pr
〈θei∂iθ〉S =

1

Pr

∫

S

dS θ(n · ∇)θ (B.23a)

n≡e z=
1

Pr

∫

S

dS
1

2
∂z(θ

2) . (B.23b)

While the second term on the right hand side is obviously equal to

1

Pr
〈(∇θ)2〉 . (B.24)

Collecting all the terms we get the thermal equivalent of the Reynolds-Orr equation

∂tEth + 〈θu∂rθ0〉
︸ ︷︷ ︸

IT1

+ 〈θw∂zθ0〉
︸ ︷︷ ︸

IT2

−
1

Pr

∫

S

dS
1

2
∂z(θ

2)

︸ ︷︷ ︸

H

+
1

Pr
〈(∇θ)2〉

︸ ︷︷ ︸

DT

= 0 . (B.25)

Here DT is the rate of heat diffusion, IT1 and IT2 represent the thermal energy produced
by the advection of basic state temperature θ0 by the perturbation flow u thus adding
up to the perturbation temperature field θ.
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