
A Standards-Based Approach
to Dynamic Tool Integration

Using Java Business Integration

A Redesign of the ToolNet Framework
built on Enterprise Integration Standards

Gregor B. Rosenauer

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

2 Tool Integration using JBI

A Standards-Based Approach to Dynamic Tool Integration Using Java
Business Integration: A Redesign of the ToolNet Framework built on
Enterprise Integration Standards
Gregor B. Rosenauer
Supervisor: Ao.Univ.Prof. Dr. Stefan Biffl
ISIS Vienna University of Technology Institute of Software Technology and Interactive Systems
Co-Supervisor: Univ.Ass. Dr. Alexander Schatten
ISIS Vienna University of Technology Institute of Software Technology and Interactive Systems

Published October 2008

i

To Janna, my loving wife

To all who continue to strive for open standards interoperability

ii

ii

iii

Table of Contents
Preface .. xvii
1. Introduction .. 1

1.1. Overview ... 1
1.2. Related Work ... 2
1.3. Target Audience ... 4
1.4. Chapter Overview ... 4

I. Behind Integration: Challenges and Current Situation 7
2. Integration Challenges ... 9

2.1. Motivation ... 9
2.2. Defining Tool Integration .. 11

2.2.1. Integration of Commercial-off-the-shelf (COTS)-Tools 14
2.2.2. Relation to Enterprise Integration ... 15

2.3. Terminology: Levels and Patterns of Integration ... 16
2.3.1. No Integration .. 17
2.3.2. Invocation (Launch) Integration ... 17
2.3.3. Data Integration ... 18
2.3.4. Functional Integration ... 18

2.3.4.1. Application (API) Integration .. 19
2.3.4.2. Component Integration ... 19

2.3.5. Presentation Integration ... 20
2.3.6. Process Integration ... 20
2.3.7. Model-Driven Integration .. 20

2.4. Examples of Tool Integration ... 21
2.5. History of Tool Integration .. 23
2.6. A Short Introduction to Enterprise Integration .. 25

2.6.1. The Past: The EAI Legacy .. 26
2.6.2. The Present: Service Oriented Architecture and the Enterprise Service Bus 27
2.6.3. The Future: Integration Frameworks and Event Driven Architecture 28

2.7. Desktop vs. Enterprise Integration ... 28
2.8. Summary ... 30

3. Current State of Integration ... 31
3.1. Introduction .. 31
3.2. Current Approaches on the Desktop .. 32

3.2.1. OS-Level Integration .. 32
3.2.1.1. Integration on the file system level ... 32
3.2.1.2. Functional Integration and Scripting ... 34
3.2.1.3. Application-Level integration .. 37
3.2.1.4. Summary .. 38

3.2.2. Tool Integration Languages and Protocols ... 38
3.2.2.1. Tcl/Tk .. 38
3.2.2.2. Java Native Interface (JNI) ... 39

3.2.3. Component Based Integration Frameworks .. 40
3.2.3.1. OSGi Service Platform ... 41
3.2.3.2. Java Component Frameworks .. 43

3.2.4. Current Tool Integration Solutions on the Desktop .. 44
3.2.4.1. Open Source Solutions ... 44
3.2.4.2. Eclipse as an Integration Platform .. 45
3.2.4.3. Commercial Solutions .. 49

iv Tool Integration using JBI

iv

3.2.4.4. Tool Integration in other domains .. 50
3.3. Related Approaches in Enterprise Integration ... 51

3.3.1. Definitions ... 51
3.3.2. Message Based Integration .. 52
3.3.3. Service Oriented Integration .. 53

3.3.3.1. Web Services Integration .. 54
3.3.3.2. The Enterprise Service Bus ... 55
3.3.3.3. Current Service-Oriented Integration Solutions .. 57

3.3.4. Workflow and Process Integration .. 59
3.3.5. Event Driven Integration and SOA ... 60
3.3.6. Model Driven Integration .. 61
3.3.7. Standards-Based Integration ... 64

3.3.7.1. Java Connector Architecture (JCA) .. 64
3.3.7.2. WS-I and WS-* ... 65

3.4. Summary ... 66
4. Proposed Solution: Tool Integration Using Java Business Integration 67

4.1. Requirements .. 67
4.2. An Introduction to Java Business Integration .. 70

4.2.1. JBI Architecture ... 71
4.2.2. A Comparative Analysis of JBI .. 76

4.2.2.1. Relation to Event-Driven Integration .. 76
4.2.2.2. JBI Compared to JEE and JCA .. 76
4.2.2.3. Relation to SCA .. 77

4.2.3. Development and Tooling Support ... 79
4.3. Using JBI for Tool Integration ... 82

4.3.1. Tools as Composite Applications ... 83
4.3.2. Evaluation ... 84

4.4. Realization ... 85
4.4.1. Apache ServiceMix .. 87
4.4.2. Alternative Implementations Considered .. 88

4.4.2.1. Glassfish and OpenESB .. 88
4.4.2.2. PEtALS .. 88
4.4.2.3. MuleSource Mule .. 89
4.4.2.4. Comparison Matrix .. 91

4.5. Summary and Conclusion .. 93

II. Practical Integration: Redesigning the ToolNet Framework 95
5. Case Study: The ToolNet Framework ... 97

5.1. Introduction .. 97
5.2. Overview ... 97

5.2.1. ToolNet Challenges .. 98
5.2.2. Terminology .. 99

5.3. Architecture .. 100
5.3.1. ToolNet Backbone .. 101
5.3.2. The ToolNet Desktop .. 102
5.3.3. Sessions ... 103
5.3.4. Projects ... 103
5.3.5. Services ... 104
5.3.6. Relations ... 105
5.3.7. Adapters .. 106

5.4. Case Study: Integrating DOORS ... 107
5.4.1. Introducing DOORS ... 107

v

v

5.4.2. Integrating DOORS: The DOORS Adapter .. 109
5.5. Evaluation and Critique ... 110
5.6. Conclusion ... 111

6. Prototype ToolNet/JBI .. 113
6.1. Motivation and Overview ... 113
6.2. Goals ... 113

6.2.1. True COTS Integration .. 114
6.2.2. New Service Backbone ... 114
6.2.3. Redesign of the Adapter Architecture .. 114
6.2.4. Support for Non-Java Languages .. 114
6.2.5. Independent Implementation .. 114

6.3. Non-Goals .. 115
6.4. Realization ... 115

6.4.1. Analysis .. 115
6.4.1.1. JBI as the Underlying Architecture ... 116
6.4.1.2. Apache ServiceMix ESB as the Service Backbone 116
6.4.1.3. Adapter Analysis: JNI, JCA and finally JNA ... 116

6.4.2. Design ... 119
6.4.2.1. Using BindingComponents as Tool Adapters ... 120
6.4.2.2. Using ServiceEngines as ToolNet-Services .. 121
6.4.2.3. The ToolNet/JBI Backbone ... 122
6.4.2.4. The JMX Interface ... 122
6.4.2.5. Putting it all together: The ToolNet/JBI ServiceAssembly 124

6.4.3. Implementation ... 126
6.4.3.1. Evaluating the current solution for reuse ... 126
6.4.3.2. Final Solution .. 127
6.4.3.3. Comparing the two implementations ... 128
6.4.3.4. Software Requirements and Tool Chain .. 128
6.4.3.5. Iterations ... 129

6.4.4. JBI Development with ChainBuilder ESB .. 137
6.4.4.1. The ChainBuilder Common Services Layer ... 138
6.4.4.2. Implementing the Prototype using ChainBuilder ESB IDE 139
6.4.4.3. Deployment in ServiceMix .. 140

6.5. Running the Prototype ... 141
7. Critical Evaluation of the Prototype .. 145

7.1. Problems Solved ... 145
7.2. Comparing the Prototype to ToolNet ... 146
7.3. Remaining Challenges ... 150

7.3.1. Development Complexity and Tool Support ... 151
7.3.2. Ensuring Quality of Service ... 152

7.4. A Migration Scenario for ToolNet ... 154

III. The Future of Integration: Outlook and Conclusion 157
8. Outlook and Further Work .. 159

8.1. The Future of JBI ... 159
8.2. Future Trends in Data Integration: SDO ... 161
8.3. Scripting and Emerging Integration Languages ... 162
8.4. Interoperability with the Non-Java World ... 164
8.5. REST and Resource Oriented Architecture ... 164
8.6. Beyond Tool Integration .. 166

9. Conclusion ... 169
A. Prototype Source Excerpts ... 171

vi Tool Integration using JBI

vi

A.1. JBI Configuration ... 171
A.1.1. ToolNetServiceAssembly Descriptor .. 171
A.1.2. DoorsBindingComponent Descriptor .. 172
A.1.3. DoorsServiceEngine Descriptor ... 173
A.1.4. DoorsBindingComponent WSDL ... 173
A.1.5. DoorsServiceEngine WSDL .. 174

A.2. JBI Adapter Implementation .. 175
A.2.1. DoorsBindingComponent .. 175

A.2.1.1. JNA Interface used in the DoorsBindingComponent 175
A.2.1.2. DoorsEndpoint .. 177
A.2.1.3. DoorsBindingComponent (Consumer) .. 179
A.2.1.4. DoorsBindingComponent (Provider) .. 181
A.2.1.5. BindingComponentMBean Definition .. 182

A.2.2. DoorsServiceEngine ... 182
A.2.2.1. DoorsServiceEngine (Consumer) ... 182
A.2.2.2. DoorsServiceEngine (Provider) ... 184
A.2.2.3. DoorsObjectMBean (ServiceEngine MBean) ... 186

A.3. Existing Tool-Side DOORS Adapter ... 187
A.3.1. ToolNet Menu Definition .. 187
A.3.2. ToolNet IPC implementation ... 188
A.3.3. ToolNet RelationService implementation in DOORS .. 189
A.3.4. ToolNet PresentationService implementation in DOORS ... 191

B. A Prototype Walkthrough .. 193
B.1. Preconditions ... 193
B.2. Designtime ... 193
B.3. Runtime ... 205

Glossary ... 211
References .. 217
Online Resources ... 227
Index .. 233

vii

List of Figures
2.1. Mashups on the Web and in the Enterprise .. 10
2.2. tool integration dimensions and patterns .. 13
3.1. Integration solutions on the Desktop, the Web and in the Enterprise .. 32
3.2. Automator allows visual process-integration of desktop applications on MacOS X 36
3.3. JNI Overview ... 39
3.4. OSGi architecture ... 42
3.5. Eclipse RCP architecture overview ... 46
3.6. Eclipse as a Tool Integration Platform ... 47
3.7. Architectural overview of Project Swordfish .. 49
3.8. a service-oriented environment overview ... 53
3.9. Architectural view of an Enterprise Service Bus ... 55
3.10. Relationship between SOI, JBI and the ESB ... 56
3.11. The Spagic open source enterprise integration platform .. 58
3.12. Architecture of XCalia's service oriented integration layer .. 59
3.13. Workflow integration with rules-based programming ... 60
3.14. Model driven integration using metamodel transformation .. 62
3.15. Process-based tool integration using a common backbone .. 63
3.16. JCA Resource Adapter design .. 65
4.1. Java Business Integration Architectural Overview ... 71
4.2. JBI's service-based integration model relying on SOA principles .. 72
4.3. Using WSDL for service-oriented integration ... 73
4.4. Basic example of a JBI composite application processing an event .. 73
4.5. JBI Normalized Message structure .. 74
4.6. JBI packaging model ... 75
4.7. Mapping from SCA to JBI ... 78
4.8. Eclipse STP SCA Editor .. 79
4.9. Enterprise Integration Patterns in Action using Eclipse STP's EID editor .. 80
4.10. Eclipse STP editor with JBI support .. 81
4.11. Developing composite applications with the NetBeans CASA editor .. 82
4.12. Dimensions and dynamics of application composition .. 84
4.13. Design of the proposed solution .. 86
4.14. Apache ServiceMix architecture overview .. 87
4.15. PEtALS ESB Architecture .. 89
4.16. Mule ESB architecture ... 90
5.1. ToolNet Conceptual Overview .. 98
5.2. ToolNet architectural overview ... 98
5.3. Tool and Model Relations in ToolNet .. 100
5.4. ToolNet Backbone with distributed clients (overview) ... 101
5.5. The ToolNet Desktop .. 102
5.6. Project class diagram ... 104
5.7. Linking Models in ToolNet .. 105
5.8. ToolNet WSDL for integration using Web services ... 106
5.9. Adapters connected to the ToolNet Backbone ... 106
5.10. The DOORS Interface .. 108
5.11. Linking Objects in DOORS .. 108
5.12. Creating a ToolNet Link from within DOORS .. 109
6.1. A High-level view of the prototype design showing the custom DOORS Adapter 120
6.2. The DoorsBindingComponent MBean viewed in JConsole ... 123
6.3. The DoorsServiceEngine MBean viewed in JConsole .. 124

viii Tool Integration using JBI

viii

6.4. Sending a command from DOORS to the prototype .. 125
6.5. JBI ServiceAssembly for Prototype Iteration #2 .. 131
6.6. The final DoorsServiceAssembly viewed in Chainbuilder's component flow editor 135
6.7. Schematic overview of ChainBuilder ESB ... 138
6.8. Project structure of the Prototype ServiceAssembly ... 140
6.9. Runtime deployment overview .. 141
6.10. Deployment view of the ToolNetServiceAssembly in JConsole ... 143
7.1. Transactions support in Apache ServiceMix ... 153
7.2. Service Monitoring with Glassbox .. 154
7.3. Integrating existing ToolNet components with the new solution .. 156
8.1. SDO's abstract data model ... 161
8.2. DSL-based routing configuration with ApacheCamel ... 163
8.3. Application sharing in Sun's Project Wonderland .. 167
B.1. Designing the prototype ServiceAssembly in the ChainbuilderESB IDE .. 193
B.2. Adding a new DOORS ServiceEngine .. 194
B.3. Configuring the DOORS ServiceEngine as a Consumer .. 194
B.4. Configuring the DOORS ServiceEngine's MessageExchangePattern .. 195
B.5. Configuring the Chainbuilder helper library ... 195
B.6. The new ServiceEngine is displayed in the design view .. 196
B.7. Adding a new DOORS BindingComponent for sending requests to DOORS 196
B.8. Configuring the DOORS BindingComponent as a Provider .. 197
B.9. Setting the DOORS sender port .. 197
B.10. Configuring the ChainBuilder helper library ... 198
B.11. The new BindingComponent is displayed in the design view .. 198
B.12. Adding an external endpoint .. 199
B.13. Configuring the MessageExchange from ServiceEngine to BindingComponent 199
B.14. Configuring the outgoing MessageExchange from BindingComponent to DOORS 199
B.15. Adding an incoming DOORS connection ... 200
B.16. Adding a new BindingComponent for handling incoming requests from DOORS 200
B.17. Configuring the BindingComponent as Consumer ... 201
B.18. Setting the BindingComponent's MessageExchangePattern and receiver port 201
B.19. The Consumer BindingComponent is displayed in the editor .. 202
B.20. Adding a ServiceEngine to process input from DOORS ... 202
B.21. Configuring the DOORS ServiceEngine as a Provider ... 203
B.22. The Provider ServiceEngine is displayed in the editor ... 203
B.23. Configuring the incoming message flow .. 204
B.24. Building the ServiceAssembly .. 204
B.25. Deploying the ServiceAssembly ... 205
B.26. Doors Source ... 207
B.27. Highlighting a linked Object in DOORS from the prototype using JConsole 209

ix

List of Tables
2.1. Overview of Current Integration Concepts ... 16
2.2. Comparing Integration Requirements in the Enterprise and on the Desktop 29
4.1. Conceptual relations and overlap between JBI and JEE ... 77
4.2. Relation of JBI and SCA .. 78
4.3. Comparison of Open Source JBI Solutions .. 91
6.1. Mapping native functions and types to Java with JNA ... 118
6.2. Mapping the new DoorsAdapter to the existing implementation .. 128
7.1. Comparison of the proposed solution with ToolNet ... 146
7.2. Mapping ToolNet Concepts to JBI Counterparts ... 155

x

x

xi

List of Examples
3.1. A simple AppleScript that performs a calculation in Excel ... 35
6.1. Wrapping a native library in Java using Java Native Access (JNA) .. 119
6.2. Accessing native functions in Java through a Proxy interface with JNA .. 119
6.3. Sending a command to DOORS using JNA .. 129
6.4. Sending a DXL script taken from a NormalizedMessage to DOORS .. 132
6.5. Opening a simple dialog in DOORS from Java using JNA ... 132
6.6. ToolNet-command as received by the DoorsBindingComponent ... 135
6.7. The DoorsServiceEngine sends a request for highlighting an Object in DOORS 136
6.8. Apache ServiceMix starting up ... 142
8.1. Creating a sample composite application with IFL .. 163
8.2. A possible tool endpoint description in URI-notation ... 165
A.1. ServiceAssembly deployment descriptor jbi.xml ... 171
A.2. DoorsBindingComponent deployment descriptor jbi.xml ... 172
A.3. DoorsServiceEngine deployment descriptor ... 173
A.4. Provider WSDL ... 173
A.5. Consumer WSDL ... 174
A.6. JNA interface wrapper for the DOORS API .. 175
A.7. DoorsEndpoint implementation realizing the JMX connection .. 177
A.8. DoorsConsumerListener routing incoming calls to the JBI message router 179
A.9. The DoorsProviderProcessor routes JBI messages to DOORS .. 181
A.10. DoorsConfigurationMBean for configuring the DoorsBindingComponent 182
A.11. DoorsServiceEngine Consumer implementation .. 182
A.12. ServiceEngine implementation DoorsServiceEngineProviderProcessor.java 184
A.13. The DoorsObjectMBean interface ... 186
A.14. The DoorsObject implementation ... 186
A.15. ToolNet menu definition from ToolNet.idx .. 188
A.16. DXL source of ToolNet_ipc.inc ... 188
A.17. Implementation of ToolNet_startLink in ToolNet_startLink.dxl: ... 189
A.18. Implementation of ToolNet_endLink in ToolNet_endLink.dxl: ... 190
A.19. Implementation of ToolNet_PresentationClient.inc .. 190
A.20. Implementation of ToolNetPresentationService.inc ... 191

xii

xii

xiii

Kurzfassung
Die gegenseitige Integration von heterogenen Tools mit dem Ziel, den Arbeitsablauf von Benutzern zu opti-
mieren, ist Gegenstand andauernder Forschung. Die angestrebte Lösung soll Benutzern und Teams ermöglichen,
bestehende Tools auf transparente Art miteinander zu verbinden. Funktionalität und Daten von einzelnen Tools
können von jedem anderen Tool aus verwendet werden; Gemeinsamkeiten im Datenmodell werden ausgenützt,
indem man Relationen zwischen zusammengehörenden Datenelementen erzeugt.

Eine besondere Herausforderung stellt die flexible Integration von bestehenden, meist kommerziellen Tools
dar, wie sie z.B. im Ingenieurswesen vorkommen. Diese bieten oft nur proprietäre und nicht offen zugängliche
Schnittstellen an, was das Design einer Integrationslösung in vielerlei Hinsicht einschränkt. Es wurden bereits
verschiedene Frameworks und Standards entwickelt, wie z.B. CDIF, PCTE, OTIF, BOOST oder auch allge-
meine Tool-Plattformen wie z.B. Eclipse. Diese lösen aber jeweils nur einen Teil des Problems und bieten keinen
ganzheitlichen, dynamischen Ansatz für die Integration von bestehenden bzw. proprietären Tools.

Eine erfolgreiche Lösung für die Tool-Integration muss die Anforderungen verschiedener Gruppen
gleichermaßen erfüllen: Für den Endbenutzer steht eine nahtlose Integration zwischen Tools im Vordergrund,
die es ermöglicht, transparent über Tool-Grenzen hinweg zu arbeiten. Entwickler wünschen sich einen einfachen
Weg, um Tools in ein lose gekoppeltes und dynamisches System einzubinden, das leicht um neue Tools erweit-
erbar und an geänderte Schnittstellen anpassbar ist. Toolhersteller wollen unabhängig bleiben und zusätzliche
Kosten für die Neuimplementierung oder Anpassung von Tools an Integrationslösungen vermeiden, bieten aber
als Ausgleich oft Skripting- oder sprachspezifische Schnittstellen für die Anbindung an andere Anwendungen
an, die man für die Tool-Integration nützen kann.

Diese Arbeit zeigt, dass die Tool-Integration am Desktop viel mit der Enterprise Integration gemeinsam hat, wo
es bereits eine Reihe von "best practices", Mustern und Integrations-Standards wie z.B. Java Business Integra-
tion (JBI) oder die Service Component Architecture (SCA) gibt. Die Anwendung erfolgreich erprobter Lösungen
aus der Enterprise-Integration auf die Tool-Integration am Desktop ermöglicht die Umsetzung einer wiederver-
wendbaren und erweiterungsfähigen Integrationslösung, die leicht an neue Tools und Anforderungen angepasst
werden kann. Aufbauend auf einer Analyse der aktuellen Situation wird unter Verwendung von JBI ein stan-
dardbasiertes dynamisches Framework für die Tool-Integration realisiert.

Eines der wenigen existierenden Frameworks, die eine solche Integrationslösung umsetzen, ist ToolNet, ein
von der EADS CRC Deutschland entwickeltes serviceorientiertes Framework für die Tool-Integration. ToolNet
verbindet existierende kommerzielle Tools aus dem Ingenieursbereich – wie z.B. Telelogic DOORS oder Matlab
– mit Hilfe von speziell entwickelten Adaptern, die über einen gemeinsamen Nachrichtenbus kommunizieren.
Ausgehend von einer Analyse der Ist-Architektur und ihren Einschränkungen, die vor allem in der statischen und
proprietären Adapter-Architektur bestehen, werden die Forschungsergebnisse dieser Arbeit in einem Prototypen
umgesetzt, der ein Redesign der ToolNet-Architektur basierend auf dem JBI-Standard und einem dynamischen
Adapterkonzept demonstriert. Der Prototyp wird danach einer Evaluierung unterzogen und mit dem bestehenden
ToolNet-Framework verglichen.

xiv

xiv

xv

Abstract
Integrating heterogeneous software tools with each other on a peer-to-peer level for streamlining the end user's
workflow is an area of ongoing research. The ideal tool integration solution would provide users a transparent
way to integrate and connect existing tools, without leaving the native interface. Functionality of individual tools
can then be shared and commonality in data models is exploited by creating relations between corresponding
data elements.

A special problem is the flexible integration of existing, often commercial-off-the-shelf (COTS-)tools, as en-
countered e.g. in the engineering domain. These often provide only proprietary and closed APIs with limited
capabilities, posing various restrictions on the design of a prospective integration solution. Several frameworks
and standards, such as CDIF, PCTE, OTIF or BOOST have been developed, including general-purpose tool plat-
forms like Eclipse, but so far these have only solved parts of the problem, lacking a holistic, dynamic approach
for integrating existing or proprietary tools.

From a user's perspective, tight integration between tools is desired, facilitating working across tool borders in
a transparent way. From a developer's perspective, loosely-coupled integration and a dynamic way to integrate
new tools into the framework with little effort is desired, sothat the resulting solution is easily adaptable to new
tools and changing APIs. Tool vendors want to stay independent and will not accept additional cost for reimple-
menting or adapting tools to work with specific integration solutions, but often provide scripting interfaces and
language-specific APIs for connecting tools to other applications.

This work demonstrates that tool integration faces many of the same challenges encountered in enterprise inte-
gration, where already several best practices, patterns and integration-standards such as Java Business Integra-
tion (JBI) and the Service Component Architecture (SCA) have evolved. By applying successful solutions from
enterprise integration to the problem of tool integration on the desktop, a reusable and extensible integration
solution can be realized that is easily adaptable to new tools and requirements. This work examines the current
situation and demonstrates howe the JBI standard can be utilized for tool integration, propsing a standards based,
dynamic tool integration framework.

One of the few existing tool integration solutions that target this problem is ToolNet, a custom, service-oriented
integration framework developed by EADS Corporate Research Centre Germany. ToolNet connects existing,
commercial off-the-shelf engineering tools, such as Telelogic DOORS or Matlab, using custom Adapters and
a proprietary messaging backbone. After an analysis of the current architecture and its limitations, mainly the
static Adapter architecture, the findings in this work are applied in a prototype implementation that demonstrates
a redesign of ToolNet based on the JBI standard. The prototype is then evaluated and compared to the existing
ToolNet framework.

xvi

xvi

xvii

Preface
This thesis is the result of over 2 years of work – with certain distractions such as civil service, a full-time job and
finally my own wedding:) – on researching integration approaches on the desktop and in the enterprise world.
The work is both a theoretical survey on the diverse aspects of integration in order to find new solutions for
tool integration that allow keeping tools as-is, and at the same time it is also a practical work that was initiat-
ed by EADS Corporate Research, Germany. In this part, the findings gained through the theroretical analysis
are subsequently applied and evaluated in a prototype implementation, redesigning an existing tool integration
framework, ToolNet, developed by EADS. This dual approach has led to a comprehensive and relatively mature,
but hopefully insightful and approachable result, building on practical experiences reflected against a solid theo-
retical background. I hope it provides some new insights to a long-standing research problem, and sparks interest
in the field, as well as motivating the reader to end the struggle against isolated, incompatible applications, data
formats and cumbersome work“flows”.

When I started initial research on this work in June 2006, little did I know about how diverse and broad the field of
integration is, spawning several dimensions and layers, and how many integration projects, both commercial and
academic, and related standards efforts have been undertaken in the last years. It both astounding and regrettable
that after all these years, only very few solutions have emerged that are currently available for integrating tools on
end user's desktops. With the exception of a few specialized commercial offerings, and well-known but isolated
and vendor-specific tool suites, users still have to copy&paste information between applications or tediously
export and import files, because common operating systems only provide low-level data-integration as opposed
to semantic or more service-oriented integration (with the notable exception of Apple MacOS which provides
some user-oriented integration services and an interface through Automator). Even on the data level, only recently
office documents have been standardized (even twice!) to allow exchange between different office applications.

The lack of suitable, cross-platform integration standards on the desktop led me to investigating enterprise in-
tegration more closely. Because the ToolNet framework is Java-based, a Java-based solution or standard was
preferred. Also, the Java world is traditionally more open than other platforms, looking at Apache, JBoss or re-
cently even traditional industry heavyweights like IBM (Eclipse) and Sun (Open*). During my search for truely
open and multi-platform integration possibilities, struggling to keep sane in the SOA jungle, I found a promising
solution: Java Business Integration (JBI, JSR-208).

At that time, JBI was still a very young standard, largely unknown in research (common search engines yielded
zero results) and in the developer community. As a result, it was challenging to find related information besides
blogs, wikis or sample code. Following the emerging developer landscape required constant re-evaluation, further
research and trying out many different solutions and concepts. The arrival of the Service Component Architecture
(SCA)-standard in March 2007 did not make things any easier, as now there were two closely related standards
to evaluate and differentiate, which was not easy even for experts in the field, and resulted in heated discussions
on the web.

The Web was another source for inspiration – the proliferation of recent Web 2.0 mashups that are in the hands
of users, connecting disparate applications in a spontaneous and unpredictable way that is out of control of their
originators, has shown the huge mutual potential fo users, developers and companies. Every day, new solutions
are formed out of existing, autonomous applications. These composite applications are more than the sum of
their parts, and motivate a similar approach on the desktop.

So for a successful tool integration approach, we should investigate all three major application domains – the
enterprise, the web and the desktop – as there is a significant overlap in all of them, and a similar need for
integration. From enterprise integration, we can take many patterns and solutions that have evolved over the
years and applied in large scale integration projects. From the web, we gain more user-oriented, spontaneous
and dynamic integration concepts and interfaces. The desktop brings highly specialized and rich tools that can

xviii Preface

xviii

be used anywhere, online or offline, and that scale from mundane tasks like spreadsheets to highly demanding
tasks like video editing or CAD.

The resulting solution using JBI was challenging to apply in the ToolNet redesign, as ToolNet comprises a
huge codebase, and the API is very complex. Because the prototype should stay independent but at the same
time offer a migration path, only the original tool-side scripts (used to integrate Telelogic DOORS) were reused
and connected to a new implementation built around a JBI based ESB, Apache ServiceMix, which was still in
incubation when the prototype was started.

During the last years, there was a major shift towards standards in integration design (e.g., with SCA) and im-
plementation, with JBI proposing a common runtime infrastructure that facilitates open enterprise service busses
(ESBs) and reuse of composite applications across implementations unlike current, often vendor-specific imple-
mentations.

It is time to investigate how tool integration can profit from these advances, as making tools talk to each other still
remains a major challenge. This thesis strives to provide a starting point for a new generation of tool integration
frameworks, embracing open standards from Enterprise and Web 2.0, and bringing them to the desktop for the
benefit of end users.

Acknowledgements

Several parties and people were involved in this thesis and supported me on various levels:

I want to thank my supervisors Alexander Schatten and Stefan Biffl from the Vienna University of Technology,
IFS group, for providing a very exciting research topic combined with a practical project, and contacts to the
industry.

Many thanks to Andreas Keis and Martin Klaus from EADS Corporate Research Germany, for inviting me to
Munich and providing me some insight into a complex real-world integration framework, ToolNet. Especially
the subsequent technical Skype-sessions with you, Martin, were very helpful – they directed me to the relevant
parts of the framework, enlightened me on several concepts behind ToolNet and cleared up some open issues.
They also helped me in shaping my proposed solution and evaluating my design ideas.

I also want to express my gratitude to my friends Manfred Jakesch and Martin Thelian for valuable and con-
structive feedback on this work as it progressed, and generally for supporting me during this long period with
positive encouragement.

Finally, I can hardly describe the deep support and motivation my wife, Janna, has given me throughout my
work, despite writing her own thesis. To a degree, it is true that “A problem shared is a problem halved.”, but
it has been a busy time for sure.

1

Chapter 1. Introduction
Like a bridge over troubled water I will lay me down.

--Paul Simon, "Bridge Over Troubled Water"

1.1. Overview
The integration of software tools, esp. commercial off-the-shelf (COTS)-tools, is a long-standing need not only
in the enterprise and server-side world, but also on the client side, where usually a mix of isolated pre-packaged
tools is used, as for example in the engineering domain. The goal of an integrated workflow is hindered by
manifold limitations on the functional level (such as restricted APIs, missing data exchange functionality), on
the presentation level (so the user interface cannot be accessed by external tools) and on the data level (e.g.,
incompatible, closed or legacy formats). Current market offers provide mostly custom, commercial frameworks
like [BizTalk] or [OpenSpan] that bear the danger of vendor lock-in and limit users to specific integration solu-
tions and proprietary platforms. Only recently, more open, standards-based approaches like XAware [XAware]
or Xcalia [Xcalia] emerged with open source implementations for data and service integration, respectively, by
using open standards (such as Service Data Objects, SDO, see Section 8.2, and SCA or JBI (see below), which
will be explained in Chapter 4).

Although the problem of integrating applications has been identified earlier (see Chapter 2), current develop-
ments only target the enterprise domain, successfully integrating business processes and legacy applications, as
examined in [Microsoft2004], which has resulted in several best practices and patterns being available to enter-
prise integration architects, such as [EIP] and [PoEAA]. Very few of these solutions have been applied to client-
side or desktop integration. For example, [Balasubramanian2006] proposes a formal concept of model-driven
integration for integrating COTS products in the enterprise, which leads to a clean, high-level functional inte-
gration but is impractical for dynamically combining COTS products, where the deduction of models is often
hindered by missing information on the internal architecture and functionality. [Damm2000] applies a model
driven approach in the Knight whiteboard tool, using XMI (XML metadata interchange) for data integration, but
relies on COM for communicating with COTS modeling tools, which creates a tight coupling between integrat-
ed applications. Model based approaches also require specialized tools and thorough modeling knowledge for
designing the integrated meta-model.

The solution presented in this work approaches the problem domain of tool integration, including COTS tools,
using service-oriented integration (SOI, Section 3.3.3)-approach combined with message-based integration, ex-
amining existing and emerging specifications such as Java Business Integration (JBI) and the Service Compo-
nent Architecture (SCA). It shows how current integration solutions could benefit from applying recent devel-
opments in the enterprise to the desktop, using an industrial integration framework, ToolNet, as a case study.
The ToolNet-framework [Mauritz2005] was developed by EADS CRC Germany to fill this need by integrating
various applications used in the aeronautic engineering domain. The framework is loosely based on the OSGi
component framework and uses the Eclipse Rich Client Platform (Eclipse RCP) to provide a simple user inter-
face for managing integrated tools.

ToolNet connects legacy applications through the use of Adapters (see Section 5.2.2), providing a way for com-
bining previously isolated tools into an integrated tool chain. Users can then define Relations for integrating re-
lated data elements in individual tool models. By transforming legacy APIs into services available to any partic-
ipant on the framework's backbone, the original COTS tools can even be extended with new functionality such as
distributed collaboration or additional data formats. Through Relations, automatic workflows can be realized
which previously required manual steps. Connections between the integrated applications are live, so changes are
propagated between connected tools integrated in the ToolNet-infrastructure. This solution has been successfully
used to integrate COTS tools such as Telelogic DOORS (a requirements-tracing tool), Microsoft Word or Matlab.

2 Introduction

2

A more detailed analysis of the framework (provided in Chapter 5) has shown a mixed and more or less static
architecture that complicates integration of new tools and adaption to new versions of already integrated tools.
Also, custom solutions are used where already industry standards are available, but their adoption is hindered
by architectural constraints. Lastly, the user-interface of the management console (ToolNet Desktop) is limited
to local control of Tool Adapters and the definition of tool relations, but offers no lifecycle-management or
advanced remote monitoring, which is crucial for a flexible and reliable integration solution.

In this thesis, Java Business Integration (JBI) and related integration concepts are applied in an architectural
redesign of ToolNet, which is then implemented as a prototype. As with the original solution, the new solution is
then evaluated based on the requirements identified earlier, and finally compared to the current implementation
of ToolNet.

Lastly, current developments in the field, such as the recently started JBI 2.0 specification ([JSR 312]), are cov-
ered together with a look into the future of service-oriented tool-integration and related emerging architectures.

1.2. Related Work
The integration of software tools to foster interoperability and communication among (mostly software) engi-
neering teams has been an ongoing research topic since the late 1980s, when the problem was described in
[Wasserman1989], which defined several levels of integration in software engineering environments (then called
CASE tools), a definition which is still used today, in an extended form.

An excellent and extensive literature overview is given in [Wicks2006] and [Wicks2007]. The latter performs
a critical evaluation on tool integration-research on a meta-level, posing the question if the right problems have
been targeted or whether research is going in the wrong direction. As a result, a new research agenda for solving
the remaining problems is proposed, suggesting a more market-oriented approach that targets real world-prob-
lems and business requirements like increased return of investment (ROI).

The problem of COTS integration has been identified early as an important factor in tool integration, e.g., in
[BaoHorowitz1996], which evaluates the BOOST project, an EU initiative to create an open framework for
integrating existing, closed source tools in engineering processes. [Warboys2005] investigates deployment and
lifecycle issues and proposes an adaptive architecture that is capable of handling dynamically changing software
installations which include closed COTS products. Chapter 3 describes more closely related solutions that focus
on the integration of independent but related tools in a more transparent way, and concentrates on the problem
of how tools interact with each other and how the integrated system can interact with end users.

On a more general level, several standards for tool integration in engineering have been proposed. An early
example is the Portable Common Tool Environment (PCTE), which defined an open repository for tools and
acted as a shared database, providing various language bindings for adapting existing tools to connect to the
PCTE. [Anderson1993] gives a good overview and performs an evaluation the framework. PCTE was later
adopted as a standard by the ECMA (ECMA-149). There was also an ANSI standard1, which is mentioned in
early literature, but not available anymore. The Open Tool Integration Framework [OMG2004] “seeks to create
a standard for an open tool integration framework that would support separating the tools to be integrated from
the framework used to facilitate the integration.”. The suggested framework supports two scenarios:

1. tool chains (using process integration), where integrated tools are connected into a coherent workflow, where
Adapters or Translators are used for bridging different APIs and file formats (XML, XMI, or proprietary
formats)

2. ad hoc data sharing via repositories or meta models, which requires a significant overlap in data models, e.g.,
engineering tools from the same domain

1X3H6 Standard Committee, "Proposed Draft Standard Messaging Architecture", Document X3H6/93-012, July 1993

Related Work 3

3

Although the request for proposal did not reach final approval, it provides a valuable foundation for standards
based tool integration solutions and validates the approach used in similar frameworks presented below.

[IEEE2006] provides a reference model for tool interconnections, building on the CDIF (CASE Data Interchange
Format)-standard introduced in [Parker1992], who proposes a common format that facilitates data integration
among software engineering tools.

Communication in tool integration is often realized through messaging, which is a high-level form of functional
integration. [Verrall1992] is an early example for CASE tool integration using a message bus, the “software
bus”, introducing the concept of software factories (c.f. [Greenfield2004]) implemented as a Factory Support
Environment, which is defined as “a distributed communications-oriented CASE environment.”. [Arnold1995]
describes various methods of control integration and refers to the ANSI X3H6-standard, which tried to standard-
ize various inter application communication protocols such as ToolTalk (see [Sun1993] and [Julienne1994]), one
of the first approaches to provide an OS-level API for tool integration (see Section 3.2.1), as well as CORBA
and similar distributed object models.

[Guo2004] is an example for a component-based approach that integrates tools using a canonical interface (spec-
ified in IDL) and a communication backbone, modeled as a message bus, the ToolBus, using CORBA (see Sec-
tion 2.6.1 for a discussion on the problems with CORBA-based approaches, including firewalls, the inherent
performance penalty, tight coupling and bad mapping to modern programming languages like Java). Later, sim-
ilar frameworks based on Web services emerged (a recent example is ToolNet which is covered in the case study
in Chapter 5. Web-service based integration will be discussed in Section 3.3.3.1.

[Balasubramanian2006] proposes an approach using model driven integration (which is covered in Section 2.3.7
and Section 3.3.6), using a generic modeling environment (GME), where integration architects describe an inte-
gration problem at a high level using a domain-specific language (DSL), the System Integration Modeling Lan-
guage (SIML). Integration is then done at the functional level, a concept detailed in Section 2.3.4. The work
suggests that integration has to be handled at a higher level, following that “attempting integration at the wrong
level of abstraction can yield brittle integration architectures that require changes to the integration architec-
ture when changes occur to either the source or target system being integrated” [Balasubramanian2006:7]. This
demonstrates a major requirement of integration solutions: tight coupling, as existent in low-level integration
approaches, must be avoided in favor of loosely coupled integration, which reduces inter-dependencies between
integrated systems.

[Corradini2004] proposes an agent-based approach, which is well suited for process integration and supporting
users in data mining, transparently accessing different tools to gather the required information. The suggested
solution uses information integration, building ontologies of the target domain with the use of autonomous agents
that coordinate each other through messaging.

Integration frameworks like the previously mentioned Knight tool environemnt and ToolNet have tried to solve
these problems in different ways, the former using a model based approach based on COM and XMI, the latter
using a mix of custom solutions, service oriented concepts and a customized, OSGi-based plugin framework (see
Chapter 5 for a detailed analysis of ToolNet and Section 3.2.3.1 for more on OSGi).

A more standards based approach is presented in [Yap2005], where a framework for extending applications with
web services is presented at the example of the free Java editor jEdit. Web services may also be used as wrappers
for legacy services, as shown in [Sneed2005], targeting enterprise integration.

Only recently, high-level integration standards like JBI and SCA have been applied in research to solve enter-
prise integration problems, such as [Chen2007] who provides a distributed JBI environment with additional tool
support for integrating existing, isolated systems with proprietary interfaces, and [Ning2008], who examines
distributed JBI using JMS (as JBI currently does not specify distributed environments). [Ruiz2008] applies the
related SCA-standard for developing a service-oriented electronic banking architecture as part of the Spanish

4 Introduction

4

ITECBAN project adding support for missing SCA functionality such as distributed deployments and Service
versioning.

The solutions presented here demonstrate the need for standards-based application integration frameworks, but at
the same time they show the challenges caused by limited proliferation of standards suitable for tool integration
frameworks and the lack of common APIs that provide integration architects with a high-level solution to the
diverse scope of integration problems. Only recently, such integration architectures have emerged, inspired by
successful solutions in the enterprise domain, but they have not yet been applied to the desktop domain. Chapter 3
surveys current integration concepts and available standards on the desktop in more detail, drawing analogies to
related solutions in enterprise integration. Section 2.5 provides a short review on the evolution of tool integration
solutions on the desktop.

1.3. Target Audience
The topic of integration will be of natural interest to integration architects, system designers and software archi-
tects in the enterprise application domain. Chapter 3 provides some insight into COTS integration, whereas Chap-
ter 4 covers state-of-the-art integration architectures and patterns, especially but not limited to the Java-space,
namely JBI and SCA. Chapter 6 serves as a practical example of how JBI together with an enterprise service
bus (ESB) can be successfully applied to a concrete integration problem where closed source legacy applications
have to be integrated. As a case study for refactoring an existing integration solution, a look at Chapter 5 and
Chapter 4 is recommended.

Application developers will be mostly interested in how they can provide access to their own creation to outside
developers in an easy way which reaches beyond proprietary APIs or scripting interfaces. This is explained in
Chapter 4; for Java-developers, Section 4.2 might be of special interest, as well as Chapter 6, which describes how
to add monitoring and management access to Java applications using the Java Management Extensions (JMX)
API. The chapter also provides some general analysis and design insight into service-oriented development with
Java.

SOA developers will want to look at Chapter 3 for an analysis on current web-service developments targeted at
integration, which also shows the limits of a web service-only approach. Section 3.3.5 shortly introduces event-
driven architectures (EDA), a related but complementary approach that acts more indirectly and could prove a
flexible alternative to purely service-oriented architectures in various scenarios.

Lastly, system administrators will be interested in the desktop integration of COTS software, which is introduced
in Section 3.2 and detailed in Chapter 3. Also, the possibilities of remote administration and system control using
JMX might be of interest, which is covered in Section 6.4.3.5.4.

1.4. Chapter Overview
The following chapter, Chapter 2, gives a more detailed overview of the problem domain together with back-
ground information on desktop integration of COTS tools, the main focus of this work. The chapter also provides
the necessary context to enterprise integration, spanning from past integration concepts and failures in the enter-
prise (EAI) to the recent development of integration patterns and best practices, and finally hints at the current
move towards integration frameworks that combine several patterns and best practices to offer a complete solu-
tion for integration architects and developers.

Chapter 3 complements the previous chapter with an analysis on the current state of the art in desktop integration.
Open standards and concepts such as service oriented architecture (SOA) and event-driven architecture (EDA)
are introduced, leading to recent integration efforts and disciplines like Business Process Modeling (BPM), ser-
vice oriented integration (SOI) and second-generation web standards (WS-*). The chapter covers concrete inte-

Chapter Overview 5

5

gration concepts on the desktop, from Tcl/Tk to AppleScript, up to recent frameworks like OSGi and Eclipse, and
shows related approaches in enterprise integration, such as the Enterprise Service Bus(ESB), Web Service-in-
tegration , and associated standards such as WSIF, JCA. Finally, complete solutions currently available on the
desktop and in the enterprise are presented, both open-source and commercial.

In Chapter 4, the research question of integrating COTS applications based on recent developments in stan-
dards-based integration is presented, applying the findings outlined in the previous chapters. Suitable patterns
and best practices are selected and adopted to solve the research problem. Challenges and key issues in desktop
integration projects are examined, and the resulting requirements are outlined, to be later applied in the prototype,
which is covered in detail in Chapter 6. The chapter includes a survey on modern open source Enterprise Service
Bus (ESB)-implementations and evaluates the best match for the prototype. Finally, the proposed solution based
on JBI and Apache ServiceMix is presented, where the two major industry efforts on service integration and
standardization, JBI and SCA, are examined more closely.

Chapter 5 provides a detailed analysis of a current COTS integration solution as a case study. After describing the
vision, motivation and the target domain of aeronautic engineering, the current design is examined, revealing its
merits and drawbacks. Also, common use cases with successfully integrated COTS tools are shown, especially
the DOORS application, which is used for requirements engineering and serves as a practical use case in the
subsequent chapter. Special attention is being paid to the Adapter-architecture, as this is a key point in COTS
integration, taking the DOORS Adapter as an example.

Chapter 6 is the practical counterpart to Chapter 4 and presents a redesign of the previously examined integration
framework, ToolNet. The new approach resembles the ToolNet-vision but takes a different integration approach
based on the Java Business Integration-specification and standards based integration, using an open source ESB
implementation, Apache ServiceMix. The prototype makes use of enterprise integration-patterns and best-prac-
tices that have been found applicable to COTS integration in Chapter 4, such as mediated message exchange (see
Section 2.3.4), service oriented integration (SOI) or the Java Connector Architecture (JCA), which is explained
in more detail. As a practical prototype scenario analogous to the existing ToolNet setting, the aforementioned
DOORS tool is integrated using the new Adapter architecture, serving as a proof-of-concept of the new integra-
tion approach. Some use cases are provided to illustrate the features and functionality of the new implementation.

Chapter 7 performs a critical evaluation of the new approach, including a comparison to the current ToolNet
implementation, and a validation of the requirements identified earlier. Strengths and challenges of the proposed
solution are discussed, followed by a short investigation on how the existing ToolNet implementation could be
migrated step by step to the new architecture, allowing for a parallel operation by bridging the two solutions.

Chapter 8 provides a prospective view on future developments in the tool integration space, giving some insight
into coming specifications and possibilities, such as Java Business Integration 2.0 or the SDO-standard, and
emerging architectural paradigms such as resource-oriented architecture and domain-specific languages for in-
tegration. Here we also look at increasing Java-side scripting support and novel tools that strive to provide inte-
gration architects and end-users with powerful ways to design and experience next generation tool integration
solutions.

6

6

Part I. Behind Integration:
Challenges and Current Situation

Table of Contents
2. Integration Challenges ... 9
3. Current State of Integration ... 31
4. Proposed Solution: Tool Integration Using Java Business Integration ... 67

This part provides a theoretical background of integration and structures current concepts and approaches in
several levels, which are later combined to form new integration approaches.

8

9

Chapter 2. Problem Definition:
Integration Challenges

2.1. Motivation
We need techniques that allow us to take applications that were never designed to interoperate and break

down the stovepipes so we can gain a greater benefit than the individual applications can offer us.
--Martin Fowler in his foreword to Enterprise Integration Patterns [EIP]

As the now classical book on enterprise integration, Enterprise Integration Patterns [EIP], puts it in the intro-
duction: “interesting applications rarely live in isolation”, adding that “it seems that any application can be made
better by integrating it with other applications”. Although targeted at the enterprise domain, where legacy appli-
cations are connected in ways that were not anticipated when they were originally developed, these statements
are also true for the desktop, where there is an increasing demand to combine existing, often pre-packaged ap-
plications (subsequently termed commercial-off-the-shelf (COTS) applications) from different vendors in order
to facilitate a streamlined workflow that adapts to the user's needs. This problem domain is still rather young and
referred to as desktop application integration, where the aim lies in enabling users of desktop applications to step
beyond isolated tools or single-vendor "suites" that try to offer a complete solution for specific markets (e.g.,
office productivity, creative design etc.), but bear the danger of vendor lock-in, towards dynamically customized
composite applications tailored to the personal workflow and working style. Breaking the barriers imposed by
closed and isolated desktop applications in heterogeneous system landscapes through modern integration ap-
proaches can help to enhance usability and productivity, and also reduces cost by reusing existing applications
in ways that were not possible before.

The majority of integration approaches that have emerged so far mainly focus on the enterprise domain and
address the problem of integrating existing isolated applications. There has been a lot of pressure from corporate
decision makers to ensure that systems interoperate, for political, cost and performance reasons. It would be
unacceptable if a business-critical backend system (e.g. a CRM system) could not work together with a common
directory server that stores related business contacts. Consequently, during the last 10 years, a new discipline
in software engineering has evolved, called enterprise integration: Although the enterprise had moved away
from earlier, centralized and monolithic systems to more open and distributed applications, integration between
individual applications was needed to support changing business requirements and processes. Early integration
attempts resulted in monolithic and complex integration backbones that were either custom developed or ven-
dor-specific. Only in recent years, vendor-neutral standards and more high-level approaches have been estab-
lished, including service-oriented integration (see Section 3.3.3) or event-driven integration (see Section 3.3.5),
solving the integration problems at a higher level and providing more flexibility and potential for reuse.

Several solutions have been developed for combining existing software assets in heterogeneous environments,
in order to secure investments and to adjust to the needs of dynamically changing business processes (see Sec-
tion 3.3.4 for a short coverage of BPEL and related business orchestration standards). The evolution of enterprise
integration is covered in more detail in Section 2.6 at the end of the chapter. Based on the success of design
patterns in software development, as introduced by [GoF] and later [POSA], also patterns for enterprise inte-
gration ([EIP], [PofEAA]) have emerged and already been successfully applied to solve real world, large scale
integration problems. Modern integration solutions make extensive use of these patterns and enable integration
architects and developers to apply them in their own work.

Looking at the desktop domain, on the other hand, the situation is substantially different and development to-
wards a similar level of integration is lagging behind significantly, facing problems that have been addressed in

10 Integration Challenges

10

the enterprise almost 10 years ago. This has several reasons: The user interface has much higher priority than
in enterprise solutions, which mostly integrate backend systems, and there are no comparable standards for in-
teroperability such as CORBA or SOAP, and no common, platform-neutral standards for inter-application mes-
saging like in the enterprise, e.g. web services, or language-specific solutions as in JEE (such as EJB) or .NET.
Desktop applications are inherently bound to the underlying operating system, where approaches like OLE and
COM limit integration possibilities to a single platform and force integration at a low level, where applications
directly invoke functions in another application. This results in tightly coupled application “suites” that are static
and cannot be changed or recomposed on demand by users. Vendors have traditionally been reluctant to provide
open APIs or componentization facilities for their products, as that would make it easy to exchange individual
components with products from other vendors or to add missing functionality, reducing the need for upgrades.

As a result, before the proliferation of open source systems and software1, users have been depending on the
goodwill of software vendors to make the software they needed work together in a feasible way. The results were
often limited again to mostly bidirectional integration among cooperating vendor's applications (e.g., AutoCAD
and Cinema4D) that offered a preconfigured and static combination of specific applications in a more hard-wired
than “integrated” way. For these and other reasons, which are detailed in Section 2.2, only little advances –
mostly in academic areas – have been made in this area, although there is equal demand to integrate applications
on the desktop as it is in the enterprise.

In contrast, on the web, the increasingly popular “mashups” of the Web 2.0-era [O'Reilly2005] (see also Sec-
tion 4.3.1) can be seen as innovative examples of ad hoc integration solutions, as they integrate different, pre-
viously separate web applications to form new “meta-” or composite applications that combine the functionality
of previously isolated services and data by reusing existing applications, as illustrated in Figure 2.1 below (see
Section 4.2 for an example on how these two integration approaches can complement each other).

(from [Hinchcliffe2006])
Figure 2.1: Mashups on the Web and in the Enterprise

Users can freely combine existing applications, such as [GoogleMaps] and [Flickr] to build a geo-tagged photo
album. An increasing number of mashup-services like [YahooPipes] or [MicrosoftPopfly] provide visual inter-

1even open source software has not yet delivered dynamic integration solutions on the desktop that end users could freely configure, even
though KDE4's service-oriented component approach (see Section 3.2.1.3) is promising and worth to be noted.

Defining Tool Integration 11

11

faces for building composite services, whereas Google Mashup Editor [GoogleME] takes a more developer-ori-
ented approach. These services (which are listed at popular sites such as [Mashable] or [ProgrammableWeb])
even encourage users to do so by offering pre-built combinations from other users for further customization
and by providing a rich, desktop-like user interface based on Asynchronous Javascript with XML (AJAX). In
this respect, the web now offers a better integrated “desktop” experience by providing user-centric spontaneous
integration possibilities which have been created through the proliferation of an open, distributed information
architecture (i.e., the Web) using common standards for communication (HTTP), presentation (HTML) and in-
teraction (JavaScript), where the browser is the underlying platform.

To summarize, it can be shown that integration challenges on the desktop are quite similar to the enterprise world,
where already a wealth of patterns, methods and best practices have evolved over the years, and a variety of
frameworks and implementations proven to work in real world scenarios are readily available. An overview is
given in Section 2.7 at the end of this chapter. Enterprise integration has since moved away from proprietary,
closed and static integration approaches (also referred to as “stovepipe solutions”) to service-oriented and highly
dynamic approaches that adapt to rapid change as common in the business world. The Web has shown that there
is real demand from end users for integrating applications they use frequently, and they will come to expect the
same from desktop applications. It is therefore time to look at how suitable and proven patterns and solutions
from enterprise integration can be applied to the desktop in a way that is as simple and usable as web based
integrated applications. In this work, several of these solutions will be analyzed and it will be shown how the
adoption of emerging standards and best practices in enterprise integration can solve the problem of integrating
COTS tools on the desktop.

The following section will give a definition of the problem domain, then continues with an evolutionary overview
of integration strategies on the desktop, which are described in more detail in Chapter 3. Finally, we will look at
how integration is handled in the enterprise, from past to future, and how the solutions developed there could be
used to satisfy the special requirements of desktop application integration.

2.2. Defining Tool Integration
"Integrated applications are independent programs that can each run by themselves, yet that function by coor-

dinating with each other in a loosely coupled way.
--Gregor Hohpe, Enterprise Integration Patterns

As integration is a large problem domain, this work concentrates on the aspect of Tool Integration, which can be
seen as a subset of desktop application integration (sometimes also called “system integration” which may be
misleading as it does not deal with low-level integration at the operating system level). Tool integration addresses
the problem of combining software tools so as to form a dynamic, user-centric workflow, as often needed in
engineering. [Thomas1992] provides a general but concise definition of the problem domain, defining integration
as “property of tool interrelationships”, and tool integration as follows:

Tool integration is about the extent to which tools agree. The subject of these agreements may
include data format, user-interface conventions, use of common functions, or other aspects of
tool construction

—[Thomas1992]

While other definitions mainly focus on the compositional aspect of tool integration, tending towards a single
composite software engineering environment, this work investigates how existing tools can be integrated in a
loosely-coupled way, keeping the original tools as-is, but linking relevant functionality and data through the
original interface by using available tool APIs. Coupling, as defined in [Hohpe2006a], is “a measure of the
dependency between two communicating entities. The more assumptions the entities make about one another the
more tightly coupled they are.”. The main principle behind loose coupling is to enable high-level collaboration

12 Integration Challenges

12

among applications while keeping dependencies at lower levels at a minimum (c.f. [EIP], p9,39). This results
in a stable integration that allows reuse and dynamic recomposition, which enables quick adaptability to new
requirements and enhances scalability (i.e., when new tools are added).

The following diagram, Figure 2.2, provides an overview of the terminology and associated integration strategies,
which will be introduced in Section 2.3 and discussed further in Chapter 3:

An extensive up-to-date overview of recommended literature, and a good introduction to the problem domain
in general, is given in [Wicks2007].

Defining Tool Integration 13

13

(c
.f

. [
T

ho
m

as
19

92
])

F
ig

ur
e

2.
2:

 to
ol

 in
te

gr
at

io
n

di
m

en
si

on
s

an
d

pa
tte

rn
s

14 Integration Challenges

14

2.2.1. Integration of Commercial-off-the-shelf (COTS)-
Tools
In Chapter 5, a framework for integrating pre-packaged, mostly closed source commercial off-the-shelf (COTS)
applications, ToolNet, is analyzed and redesigned.

[Goose2000] defines a framework as “a software environment that simplifies the development and management
of applications by providing a reusable context for components”, which applies well to the context of tool inte-
gration in this work. A general definition of what a tool is can be found in [Terzidis2007:147]: “The word tool is
often used to describe the synergistic interaction of designers with computers. A tool is defined as an instrument
used in the performance of an operation.”

Because integration of COTS tools can only happen after the fact, it is also called a posteriori tool integration,
in contrast to a priori tool integration, where tools are designed for interoperability. These two approaches and
their merits are discussed in [Barinelli1996] who concludes:

We argue that, to effectively integrate a tool into tool integration environments, it is necessary to
conceive the tool as a collection of services since the very beginning (a priori tool integration).
A posteriori tool integration (e.g., by means of wrappers) could be less effective since a tool
is still seen as a monolithic “operator”.

Experiences from research projects and cooperations with the industry have shown that this is an idealized sce-
nario and that a priori tool integration cannot be applied on a broader basis. For example, in the engineering
domain, existing tools, which are mostly commercial standard tools, often constitute a substantial investment
in licenses, training and infrastructure. Such an established tool landscape cannot be easily replaced by custom
solutions that may be better integrated but represent new and unproven tools that users are not familiar with.
[Altheide2002] also questions the long term use of a priori integration, reasoning that “a priori tool integration
projects, in the long run, cannot compete with the pace of evolution of commercial stand-alone tools.”. Therefore,
tool integration frameworks should allow for an easy integration of existing tools and possibly facilitate a smooth
migration path to better integrated tools.

It is important to distinguish general purpose integration frameworks from concrete tool sets or software suites
which are bound to specific environments or vendors. Such solutions often give the false impression of a modular
set of loosely-coupled tools, but in reality these are tightly-coupled components of a static, monolithic system
that provides interoperability only between components of the same application suite, version and vendor. As
a result, new tools cannot be added as needed in an easy way, as the data format and tool intercommunication
mechanism is often proprietary and complex or even closed. Examples include early browser suites (Netscape/
Mozilla), office suites, software engineering environments that aid development within a predefined software
process (Rational Developer, VisualStudio, various SOA solutions), but also cross-vendor suites in the CAD or
3D domain where for example modelers are connected to a predefined set of renderers or other tools in a fixed
vendor environment.

This approach is more common in the commercial world, partly because of the lack of suitable component stan-
dards (a gap that has been closed in recent years, as shown in Section 3.2.3), but also because of market consider-
ations. By allowing interoperability only with software from one's own company or from partners, vendors have
often tried to control “their” market segment. This strategy is often accompanied with strict licensing terms of
interface definitions and intellectual property rights enforcement through copyright and patents, a common prac-
tice with major market players, reaching from operating systems to APIs and applications (see [Samuelson2006]
for a good analysis on this practice and the strategic change in direction with the example of IBM).

Only in recent years, through the increasing adoption of open source, the trend is moving towards open systems,
APIs and platforms, and modular applications composed out of lean components that tightly focus on a single

Relation to Enterprise Integration 15

15

task. Examples include the Firefox browser or Thunderbird e-mail client, which have been spun off the Mozilla
suite (the open source version of the proprietary Netscape web suite), or OpenOffice that uses an open component
specification (UNO, see Section 3.2.3) as the basis for its word processor Writer, the presentation module Impress
or the illustration module Draw. Also an increasing number of commercial solutions are being migrated from
isolated, monolithic applications to open, plugin-based components or extended with web service interfaces. For
example, software development tools like the Rational-suite or even IDEs like Borland JBuilder are moving
towards the Eclipse platform, and enterprise solutions from SAP or Oracle offer integration with Web services
(e.g., using WSIF, see Section 3.3.3.1).

In specialized markets like engineering however, current tools are still mostly monolithic by design and cannot
be refactored to facilitate integration with other tools, because access to the source code is not available or the
cost of a custom refactoring would be too high. As a result, several techniques have been developed to provide
a service façade for existing tools to the end user and also to tool integrators, wrapping tools into service based
Adapters and allowing for reuse of tool functionality in other tools.

An overview of current techniques for integrating COTS-tools is given in Chapter 3, whereas the final, service
oriented solution is proposed in Chapter 4.

2.2.2. Relation to Enterprise Integration
When viewing tool integration from a more general perspective, it can be shown that there are many similarities
to typical enterprise integration problems, e.g., taking the following definition of application integration:

Application integration […] is the process of bringing data or a function from one application
program together with that of another application program. Where these programs already exist,
the process is sometimes realized by using middleware, either packaged by a vendor or written
on a custom basis.

—from SearchSOA.com2

Although this definition is taken from sources related to enterprise integration (see Section 2.6), tool integration
on the desktop can be defined in a similar way. One important aspect that is central to this work is emphasized
in [EIP]: integrated applications stay independent, but interoperate transparently with other applications, so that
their functionality can be extended with functions provided by other integrated applications.

Whereas the related term of COTS integration is often used in the context of integrating newly acquired software
in an existing system landscape (e.g., [Guerra2003]), avoiding incompatibilities or other side effects, tool inte-
gration focuses on linking together existing applications on the desktop in new ways and strives to overcome
integration barriers imposed by third-party applications such as limited APIs or missing communication inter-
faces, in a way that enables users to connect their existing toolset in a spontaneous manner, even if the individual
tools are unaware of each other and do not interoperate per se.

As outlined in the Section 2.1, current integration approaches (see Chapter 3) are enterprise-centric and focus on
integrating custom or proprietary backend systems in a service-oriented architecture, which is usually realized
through an Enterprise Service Bus (ESB, see Section 3.3.3.2) or a thin integration layer based on web services3

or REST (see also Section 8.5). In contrast to desktop applications, the target systems usually lack a dedicated
user interface4 and operate transparently in the background, performing business logic involving database access,
network transfer and communication with other backend systems. Enterprise Integration on the desktop does not
reach beyond specialized solutions like SAP, Microsoft Office or Lotus Notes, which integrate only a limited

2 http://searchsoa.techtarget.com/sDefinition/0,,sid26_gci211586,00.html
3see Section 3.3.7.2 for related standards and Section 3.3.3.1 for a concrete example
4although there are interfaces to host-systems, these are mostly terminal based or simple web interfaces where usability requirements are
rather low, and integration either targets only a single backend system or provides a simple façade for related backend applications, which
is different from the integration requirements outlined later

http://searchsoa.techtarget.com/sDefinition/0,,sid26_gci211586,00.html
http://searchsoa.techtarget.com/sDefinition/0,,sid26_gci211586,00.html

16 Integration Challenges

16

number of related, vendor-specific backend systems with selected, proprietary desktop applications (usually by
the same vendor) in a homogeneous system landscape, leaving a gap or missing link to existing legacy applica-
tions, which is often termed the "last mile of SOA" [OpenSpan].

On the other hand, as has been mentioned before, most desktop applications are not designed for integration
with other applications that reach beyond single-vendor software conglomerates or “suites” and thus do not offer
extensive public APIs that could be used for integration with other applications. Even when they do, they allow
only limited access to the application's functionality, which may be only available to scripts that operate inside the
application, and with the limited scope that developers decided at design time. This is often not sufficient to realize
an integration solution that meets dynamically changing needs of end users, who require interoperability between
applications from different domains in a transparent and usable manner. The problem of integrating isolated
applications in a heterogeneous environment is well known wherever several related but disparate applications
are used, such as in the aforementioned customer service-domain or in medical institutions, but also in research
and engineering, as shown in the examples in Section 3.2.4.

To summarize, this work tries to solve the problem of integrating desktop applications such as COTS tools in a
direct and spontaneous manner, overcoming legacy issues and API constraints as transparently and effectively
as possible, by using a standards based, adaptive architecture that is open to changes in integrated applications
or user requirements (see Chapter 6 for a detailed description). An important distinction to enterprise integration
is that the original tools should stay autonomous and only be augmented, allowing users to continue using their
preferred tool set they are accustomed to, only in a more flexible and interoperable way. The solution presented
in this thesis allows existing tools to provide extended functionality to end users by using services offered by
other tools. Integrated Tools work together in a transparent way, interconnected through an open and extensible
integration bus. The user is freed from manual “integration” tasks such as having to export and import data using
common exchange formats supported by related tools in the tool set, compromising individual tools' strengths
and limiting the user's choice in selecting tools best suited for the task at hand.

2.3. Terminology: Levels and Patterns of Integration
[Trowbridge2004] provides a detailed analysis of the integration problem (again, looking at the enterprise do-
main, but easily applicable to desktop integration), dividing integration into corresponding layers and showing
how to connect to applications on each layer. For each layer and connection type, the work introduces several
integration patterns that can be applied to a practical integration problem. Similar classifications can also be
found in other sources, such as [Erl2004:288], which covers service-oriented architecture in more detail (see
Section 3.3.3). [Amsden2001] adds and API integration (which can be seen as a more abstract form of appli-
cation integration from the classification found in [Trowbridge2004]), which are provided, e.g., by the Eclipse
platform (see also Section 3.2.4.2.1).

Table 2.1 below tries to combine the different classifications of integration types found in literature and adds
another dimension, the integration domain, spanning from the desktop across the network to the enterprise, to
illustrate the different situations encountered across integration scenarios with their specific needs and limita-
tions. The vertical axis indicates the level of integration abstraction, which is increasing from the data layer at
the bottom to the process layer on the top. With higher levels of integration, the result is usually more effective
and provides a better unified user experience, minimizing gaps between tools and eliminating the need for man-
ually performing necessary translation or duplication of information contained within tools. The table also gives
examples of current approaches that are relevant for tool integration and detailed in the remainder of this chapter:

Layer \ Domain Desktop Network Enterprise

Process Layer Automator (MacOS X) — (no real standard out-
side of enterprise environ-
ments)

WS-BPEL, WSCI,
ebXML, WCF

No Integration 17

17

Layer \ Domain Desktop Network Enterprise

Presentation Layer OLE (MS Windows),
KParts (KDE), Replicants
(BeOS), OpenDoc (Ma-
cOS)

RDP (MS Windows), X11
(UNIX)

Portals, Dashboards (e.g.,
management consoles)

Functional Layer component (based) in-
tegration: COM/ActiveX
(MS Windows); scripting:
AppleScript (MacOS)

Distributed Object Inte-
gration: DCOM (MS Win-
dows), CORBA, RMI

JCA, Spring (JEE); OSGi;
message-oriented middle-
ware integration (MOM);
Service Oriented Integra-
tion (SOI):JBI, SCA, WSIF

Data Layer file based integration:
Pipes (UNIX), file ex-
change/common file for-
mats (CSV, XML), FTP,
ETL

file transfer (S/FTP, ETL) ODBC/ADO.NET, JDBC;
product specific or legacy
Adapters; SOI: SDO (Ser-
vice Data Objects)

Table 2.1: Overview of Current Integration Concepts

It is important to note that these layers are not strongly divided but are often combined, e.g., lower levels may be
reused to realize higher level integration: As observed in [Gautier1995], boundaries between integration forms
are blurred, e.g., process integration may be implemented using control integration, and data integration is almost
always involved as it is a prerequisite for higher-level integration. Also, the horizontal axis denoting domains
should not be seen as a strict division, as desktop integration concepts become increasingly distributed and even
incorporate concepts from enterprise integration, which is also shown in Chapter 3, Figure 3.1. This fact is later
exploited in the proposed solution and associated prototype.

The subsequent sections provide a more detailed view on the integration approaches outlined here, complement-
ing the classification with additional concepts and concrete solutions in the field.

2.3.1. No Integration

Sometimes it is not necessary to integrate a specific tool, it may be sufficient to poll for an output or similar.
For tool integration this means that the tool is not directly needed as part of a workflow but may produce some
artifacts in the background that are retrieved independently by another tool later.

2.3.2. Invocation (Launch) Integration

In this scenario, tools are launched as needed, with parameters being passed during launch. This approach is
useful for integrating existing and mostly file-based tools. E.g., for integrating Telelogic DOORS (introduced
in Section 5.4), the requirements engineering tool used in the prototype scenario, launch integration is used
to start the tool from within the prototype interface on user request. Another example is the Lean Integration
Platform (LIP) by Frauenhofer Research5, which integrates existing tools into a predefined workflow that can be
programmed using LISP. Relying solely on launch integration only provides very basic integration possibilities
and is not enough for realizing transparent collaboration among disparate tools, as existing functionality and data
is still bound to the original tools and not available to other tools in the workflow.

5see the LIP product page [http://www.pb.izm.fhg.de/lip/]

http://www.pb.izm.fhg.de/lip/
http://www.pb.izm.fhg.de/lip/

18 Integration Challenges

18

2.3.3. Data Integration

This form of integration is used when data has to be shared among several applications that need to operate on
the same data. The solution is to “integrate applications at the logical data layer by allowing the data in one
application (the source) to be accessed by other applications (the target)” [Trowbridge2004:125].

There are several ways to achieve this data exchange: examples reach from file-based interchange, preferably
through open standards such as XMI used in modeling or general XML, to databases (using abstraction layers like
ODBC/ADO.NET or JDBC), up to modern high-level data sharing such as the emerging Service Data Objects
(SDO)-standard (see also Section 8.5). This form of integration often provides the lowest common denominator
for independent tools to cooperate, and can be implemented with feasible effort. However when used as the sole
integration method, it is not the most effective solution as it integrates at a rather low level, resulting in a possible
tight coupling among integrated applications.

Although current efforts (see Section 3.2.1.1) allow new ways of working with data and exchanging information
between applications, they still face the limitations of semantic data integration, namely data source heterogene-
ity and missing tool support [Gorton2003], the performance penalty inherent to file operations, and concurrency
issues when multiple tools want to access the same data simultaneously (compare [Reiss1996]). Also, a poste-
riori tool integration is only possible through filters for importing and exporting files, which requires manual
interaction. Lastly, full integration on the user interface-level, which is a requirement for successful tool integra-
tion, is not possible. Thus, data integration alone is not sufficient for transparent and efficient tool integration;
often, a more feasible solution is functional integration.

2.3.4. Functional Integration

This form of integration (also called “control integration” in some older work) operates at the application lev-
el, accessing APIs and other interfaces exposed by the target application (c.f. [Trowbridge2004:135]). Unfor-
tunately, as previously mentioned, not all applications provide an API and if they do, the interface exposed is
often limited to certain use cases which is impractical for general purpose tool integration. Nevertheless, it is
a powerful integration mechanism that is commonly used for tool integration as it provides the most flexibility
to integration developers, while at the same time allowing to target a stable, standardized application interface.
This results in a reusable and open integration solution instead of a custom low-level integration solution that is
fragile and likely to break as the target application changes. An example for a tool integration approach using
control integration is given in [Michaels1993].

In recent years, more and more software provides APIs for high-level languages and standard scripting lan-
guages6, as opposed to legacy or C-based interfaces of previous years, and more recently service-oriented inter-
faces (see Section 3.3.3) that can be accessed as web services.

Component integration (see Section 2.3.4.2 below) is also a form of functional integration and widely used
in current architectures such as Java Enterprise Edition (JEE) or frameworks like OSGi, which is covered in
Section 3.2.3.

Message based integration (see Section 3.3.2) is a combination of functional integration and data integration, as
applications can exchange information but also send requests to other applications.

As this integration style and combinations thereof are the most commonly used approaches, many examples can
be found in desktop and also in enterprise APIs and frameworks, which are covered later in this chapter.

6traditional Windows applications tend to use VisualBasic, whereas cross-platform or open source software uses open languages such as
Python, Ruby or various Java-like languages (e.g., Groovy or Scala)

Functional Integration 19

19

2.3.4.1. Application (API) Integration

Traditionally, closed or vendor-specific APIs have been the predominant way to access applications from out-
side, mostly in the form of binary C/C++ libraries. Alternatively, a scripting interface is often exposed that al-
lows developers to write extensions or macros that run inside the application, but reach outside the application
boundary for intercommunication with a backend system or with another application.

On the system level, application-level integration is realized through a mechanism called inter-application com-
munication (IAC), which is defined as a “technology that allows different applications in a computer system
to effectively exchange data and information, which is the base of realizing software cooperation and software
system integration.” [Lan2004]. Realization is often done through messaging or scripting (e.g., AppleScript) and
provided either directly by the operating system, or by component frameworks such as ActiveX, UNO, or OSGi
(see Section 3.2.3).

A practical example for API integration in an integration framework is given in the prototype scenario (see
Chapter 6), where an existing commercial requirements engineering tool is integrated, namely Telelogic DOORS
[DOORS] (see Section 5.4). The application exposes access to requirements (stored as objects) through a scripting
API and can be accessed from outside using a C library. By wrapping the library functions inside method calls,
the C library is made available to high-level languages, e.g., using JNI in Java (or the more recent JNA library
which is much easier to use, see Section 6.4.1.3.3).

2.3.4.2. Component Integration

There has been much talk about component architectures but only one true success: Unix pipes. It should be
possible to build interactive and distributed applications from piece parts.

--Rob Pike, Bell Labs, Lucent Technologies, 2000

Component Based Software Engineering, in short CBSE7, provides a way to break up software into functional
units that can be dynamically recomposed as needed. A thorough state-of-the-art analysis of this software devel-
opment model is given in [Szyperski2002], who defines a component as follows:

A software component is a unit of composition with contractually specified interfaces and ex-
plicit context dependencies only. A software component can be deployed independently and is
subject to composition by third parties.

—from Component Software [Szyperski2002]

This technique is well suited for tool integration, as it makes available functionality in a reusable, more general
form by splitting monolithic software into modules. The provided functionality can then be recomposed in new
ways, creating new composite applications out of previously isolated and self-contained functionality. Modern
component-frameworks (further covered in Section 3.2.3) make available this composite software paradigm to
application developers and integrators. A definition is given below:

A component framework is a software entity that supports components conforming to certain
standards and allows instances of these components to be "plugged" into the component frame-
work. The component framework establishes environmental conditions for the component in-
stances and regulates the interaction between component instances.

—from Component Software [Szyperski2002]

Hence the term plugin frameworks, which emphasizes on the dynamic aspect of component based integration
frameworks, which allow recomposition of components at runtime. Dynamic composition is a key aspect related
to late binding in programming, where dependencies are resolved at runtime, not at compile time. This makes

7also called CBSD, for component based software development

20 Integration Challenges

20

component integration a viable choice for a posteriori tool integration, where existing tools or “components”
cannot be changed or adjusted but have to be integrated as is at runtime.

2.3.5. Presentation Integration

Whereas data integration (see Section 2.3.3) operates on the application level, invisible to users, this form of
integration is most visible to users, as it integrates applications at the user interface level. For this reason it is
also called (user) interface or UI integration in literature (e.g., [Brown1992], [Amsden2001]). This technique
was used in the past to integrate host systems that offer a terminal interface (e.g., IBM 3270 systems, also called
green screen systems), importing data by copying and parsing text from host screens – hence the term screen
scraping – and exporting data by simulating input over the terminal. Presentation integration is not limited to
legacy integration, but is also used in GUI testing, e.g., JMeter8, a web application test tool, or the Linux Desktop
Testing Project9), which uses existing accessibility libraries to control applications via the user interface. Also
portal integration (dashboards) can be seen a form of presentation integration.

2.3.6. Process Integration

Process integration “provides orchestration of activities across multiple applications according to predefined
business processes […]” [Trowbridge2004] but in the context of tool integration can be defined more generally
as the integration of the functional flow of processing between applications. Because a major motivation for
tool integration is to facilitate a seamless workflow for users of individual tools, this form of integration blends
naturally with many goals in tool integration. In the enterprise domain, recent XML-based standards like [WS-
BPEL] and WS-Orchestration, and to a lesser extent Wf-XML and XPDL, facilitate process integration in an SOA,
as described in more detail in Section 3.3.4. Also the Spring framework (see Section 3.2.3.2) provides several
examples of process integration, as it "wires" together JEE components in process-oriented ways, e.g., Spring
WebFlow10for web applications, Spring Batch11for batch processing, or Spring dm for OSGi-based applications.

2.3.7. Model-Driven Integration

Currently, the highest level of integration works at the model level and is a form of model-driven engineering
(also called model-driven development), as introduced, e.g., in [Voelter2006]. [Mellor2003] defines a model in
a general way as “a coherent set of formal elements describing something […] built for some purpose that is
amenable to a particular form of analysis […]”. Consequently, model-driven development is defined as “the no-
tion that systems can be developed by constructing abstract views of systems and by transforming the resulting
models, either automatically or manually, into code.”12. Model driven (or model based) integration applies this
development model to solve integration problems in a more general way, abstracting from specific implemen-
tation details:

Model-driven integration differs from the programmed integration. Programmed integration re-
lies upon hard-coding a finite, and inextensible, solution to a particular challenge. Model-driv-
en integration focuses on abstracting the information content into a model that describes the
enterprise’s information resources. This model captures the nature of the information the enter-
prise has within its systems and the way the enterprise uses data in its daily operations.

—from the article Model Driven Information Architecture by Brian J. Noggle and Michael
Lang, available at TDAN.com13

8see Apache JMeter [http://jakarta.apache.org/jmeter/]
9see Linux Desktop Testing Project Wiki [http://ldtp.freedesktop.org/wiki/]
10see the Spring WebFlow home page [http://www.springframework.org/webflow]
11see The SpringBatch home page [http://static.springframework.org/spring-batch/]
12from the call for papers for Model-Driven Development, Special Issue Publication: September/October 2003
13 http://www.tdan.com/view-articles/4989

http://www.tdan.com/view-articles/4989
http://jakarta.apache.org/jmeter/
http://jakarta.apache.org/jmeter/
http://ldtp.freedesktop.org/wiki/
http://ldtp.freedesktop.org/wiki/
http://www.springframework.org/webflow
http://www.springframework.org/webflow
http://static.springframework.org/spring-batch/
http://static.springframework.org/spring-batch/
http://www.tdan.com/view-articles/4989

Examples of Tool Integration 21

21

A major advantage of using models is seen in reusability of expert knowledge at a high level: [Mellor2003]
argues that “modeling is an appropriate formalism to formalize knowledge” and that “model-driven development
captures expert knowledge as mapping functions that transform between one model and another.”, thus decou-
pling domain knowledge from the concrete implementation and allowing reuse across different platforms and
implementations by reapplying the model and related mapping. This view is backed by [Schmidt2006], who
provides a short analysis on why earlier Computer Aided Software Engineering (CASE)-efforts failed, observing
that common languages and platforms “provided abstractions of the solution space […] rather than abstractions
of the problem space”. Model transformation is applied in many tool integration solutions for mapping between
different tool's data models and for keeping models synchronized when changes occur. [Tratt2005] provides an
introduction to model transformation and available solutions, such as the OMG standard QVT (short for Queries,
Views and Transformations), which defines languages for model-to-model transformations.

The advantages of model transformation are also emphasized in [Kramler2006] who concludes that “model
transformation techniques […] avoid the pitfalls of strongly technology-dependent solutions that suffer from
high maintenance overheads and most importantly poor scalability.”. Current solutions built with imperative,
general-purpose frameworks and APIs are seen as too complex and error-prone, because they still largely follow
an imperative paradigm and require much handcrafted “glue” code and configuration. This results in a fragmented
view that “forces developers to implement suboptimal solutions that unnecessarily duplicate code, violate key
architectural principles, and duplicate system evolution and quality assurance.”. Model-driven engineering could
provide an integrated view that closes the semantic gap between design intent and implementation, and related
integration issues (deployment, configuration and testing), following a declarative paradigm based on domain
specific modeling languages (DSMLs) that are more suited for expressing domain concepts than general-purpose
languages.

Models can again be specified using meta-models (e.g. UML itself is specified by the UML Metamodel), using
the OMG Meta-Object Facility (MOF)-standard and QVT. The MOF allows extending and adapting models (or
modeling languages itself, like UML) to different domains and usage profiles. E.g., [UMLEAI] defines a UML
profile for enterprise application integration (EAI), suitable for modeling SOA solutions (see Section 3.3.3).
These specifications are part of a general modeling standard, the model driven architecture (MDA), as specified
by the OMG14.

[Schmidt2006] provides a review of the current state-of-the-art in model-driven engineering, including two case
studies that show practical examples of how the model-driven approach can be applied in complex real-world
integration scenarios. Other examples for real-world solutions based on model-driven concepts will be covered
in Section 3.3.6, together with a critical evaluation of model-driven integration.

2.4. Examples of Tool Integration
Probably the most prominent example for an integrated desktop application is an Integrated Development Envi-
ronment (IDE): Previously, software developers had to resort to individual tools for each development activity,
ranging from source code editors to compilers, linkers and debuggers. Each part of the tool chain had to be
individually configured, invoked and mastered for every software project, and output from one tool had to be
manually transferred to the next tool in the chain. Software developers had to manually interpret errors in the
process from output on the console, and look up the matching location in the corresponding source file. Early
integration efforts provided ways to invoke tools from within a source code editor and jump to the corresponding
error location when available, but only recent solutions like Eclipse, IntelliJ IDEA or VisualStudio show the
possibilities and advantages that fully integrated tools (integrating at several levels including the user interface)
can provide to desktop users.

14for more information, see the MDA Guide working page [http://ormsc.omg.org/mda_guide_working_page.htm]

http://ormsc.omg.org/mda_guide_working_page.htm
http://ormsc.omg.org/mda_guide_working_page.htm

22 Integration Challenges

22

More conventional examples include integrated software suites, where applications that need to work together
are pre-assembled by software vendors to form an “integrated” application, such as an office suite that usually
combines a word processor, a spreadsheet application and a presentation program. Scripting or macro languages
and APIs provided by the suite's components are the only way for users to realize dynamic custom integration
needs despite the static configuration of the pre-assembled software composite.

It is important to note however that – except for Eclipse, to some degree (using a component-model based on
OSGi, see Section 3.2.3.1), and truly modular, component based applications like KOffice that make their com-
ponents available to other applications – even modern, “integrated” applications only offer limited ways of inter-
acting with other applications, mostly through scripting facilities that are often bound to a single vendor solution
or platform. This is not enough for enabling users to freely combine the functionality of disparate desktop appli-
cations in heterogeneous system landscapes, so as to dynamically form integrated and task-oriented workflows
according to current project needs. Also in a distributed environment, teams should be supported in collaborating
using a custom tool chain, which reaches into the discipline of computer-supported cooperative work (CSCW).

As a concrete, simple example for a desktop integration problem in the sense of this thesis, consider the following
scenario: The author uses a tool for writing this thesis in DocBook format15, and another tool for managing
references16. Although both tools are realized in the same language (Java) and run on the same platform, they
cannot be easily integrated, e.g., to allow for lookup and automatic insertion or auto-completion of references,
and the references-manager does not indicate if a reference is used in the thesis document, or how often, and in
which location17. It would be highly desirable to integrate these tools for improving and automating the author's
workflow. Although both tools are Java-based, direct integration, e.g. via scripting or RMI (Java's Remote Method
Invocation communication standard), is not desirable as it leads to a tightly coupled solution that quickly degrades
into a unmaintainable point-to-point integration that does not scale as more applications are added.

This problem was also encountered in enterprise integration (see Section 2.6.1 below) and led to the introduction
of middleware, acting as a mediation layer and providing a common bus for communication between applica-
tions. A common message bus decouples applications from static point-to-point connections, because they are
connected to a shared bus instead of directly interfacing with each other. As a conclusion, it can be seen that there
is equal need for high-level integration in the enterprise as there is on a smaller scale, on the end user's desktop,
and that there is a lot to gain from the lessons learnt in the former when applied in a suitable manner to the latter.

Another more complex, real world example is application integration in call centers, where agents usually
have to deal with a mixture of various heterogeneous applications, partly web-based and partly client-based,
maybe even mainframe-based, interfaced with terminal emulators. Such a desktop-mix has several disadvantages
which reduce productivity and raise the cost of development, maintenance and use: As older applications are
mixed with newer applications, deployments become unstable, resulting in performance hits for both groups
and conflicting operating system-dependencies (version-mismatch in libraries, or need for compatibility-layers
and other workarounds that generally degrade stability and performance). The user is faced with different inter-
face-paradigms (from console-based mainframe systems to recent web-based, AJAX-style applications, often
using isolated clip boards etc.), the need for repeated logins, duplicate data entry and lookup, and other (e.g.,
semantic) discrepancies.

A final example are hospital systems, which are mostly run on mainframes and interfaced with terminal emu-
lators. This is a poor solution for end users, who have to deal with untypical response times and archaic user
interfaces18.

In Section 3.2.4, currently available solutions will be investigated further, including a solution to the last example.

15using a free version of XMLMind's excellent XMLEditor [http://www.xmlmind.com/xmleditor/]
16the free BibTeX tool JabRef [http://jabref.sourceforge.net/]
17With version 2.4, there is now an OpenOffice plugin that aids users in citing references stored in JabRef, and JabRef provides a command
line option for inspecting LaTeX's .aux-files for references, building a list of references that are used in the document.
18The author has had the pleasure to work with such a system ("KISS") in a local hospital during civil service.

http://www.xmlmind.com/xmleditor/
http://www.xmlmind.com/xmleditor/
http://jabref.sourceforge.net/
http://jabref.sourceforge.net/

History of Tool Integration 23

23

2.5. History of Tool Integration
[…] the user's workflow becomes automated. Instead of performing one task with one application and then in-

putting the results into another application to perform the next task, users focus on solving a whole problem,
not performing a series of tasks that result in the problem's solution.

--ToolTalk Whitepaper, Sun Microsystems, Inc.

Even long before the notion of a desktop even existed, the UNIX™ operating system used a technique called
pipes to connect independent command line programs, directing the output of one program to another, which
interpreted it as input. Several programs could be daisy-chained and complex sequential actions could be realized
by using simple operators. This is one of the simplest and most effective integration solutions still used today,
which has been described as the “Pipes and Filters”-pattern in [GoF]. In terms of integration, the technique is
a basic form of file-based integration, as the operating system uses special files for realizing input and output
channels that connect individual programs to form a tool chain, much like composite applications are connected
in today's service-oriented architectures19.

For this pattern to work, software must be written with a tool-based approach, where each individual software
application solves a certain problem but offers generic interfaces to allow for composition with other applications,
facilitating a divide-and-conquer approach, where a complex problem is recursively divided into subproblems
until the resulting problems are trivial to solve. The idea or pattern of software tools was proposed as early as
1976 in [Kernighan1976], who provides various examples on how to design and implement software as tools.

However, terminal applications that used "interactive" text-based screens controlled by user input could not be
integrated with this approach, and only raw streams could be exchanged, which required knowledge of the data
format from both the source and target applications. This created a tight coupling that became problematic when
new data formats were introduced. As long as small and specialized command-line programs (like tar, gzip and
more) were used, this was an acceptable compromise, as new formats could be handled by inserting another com-
mand into the pipe that acted as a translator. With increasingly complex applications and the commercialization
of the software landscape, this solution no longer worked and users became increasingly involved in ensuring
that programs worked together as needed.

The advent of graphical user interfaces and the introduction of new operating systems and programming lan-
guages brought yet more challenges in integration, as applications could no longer assume a common data format
or communication mechanisms. They also became independent of a command line acting as a single point of
control. Various forms of user input were employed and applications exposed only a subset of the internal func-
tionality in order to simplify user interaction, which limited possibilities for inter-application communication
(IAC) and shifted responsibility to the user who now had to take care of transferring data between applications.

In the early 1990s, commercial companies like Sun identified the problem of integrating applications on the
(UNIX) desktop and the need for a transfer of control to users. They realized a distributed, object-oriented,
message-based API to enable inter-application communication [ToolTalk], that was later incorporated into the
Common Open Software Environment (COSE), a multi-vendor initiative to provide an integrated desktop API
for UNIX:

The Common Open Software Environment (COSE) Desktop offers several API's and tools to
allow application programmers to integrate their programs with Desktop services. The invention
disclosed ties all of these various Desktop tools and services together to provide one place in a
Desktop Application Builder tool where the developer can "step through" the process required
for Desktop application integration.

19this analogy is also supported by SOA expert Tin Man in his blog article SOA and UNIX [http://blogs.sun.com/tientien/entry/
the_soa_philosophy_a_new]

http://blogs.sun.com/tientien/entry/the_soa_philosophy_a_new
http://blogs.sun.com/tientien/entry/the_soa_philosophy_a_new
http://blogs.sun.com/tientien/entry/the_soa_philosophy_a_new

24 Integration Challenges

24

—from the original press release, retrieved from The Prior Art Database20

The initiative eventually resulted in the Common Desktop Environment (CDE) which was the predominant UNIX
desktop until open source alternatives such as KDE21 (which is in fact a wordplay on CDE) and later GNOME22

emerged in the late 1990s.

The introduction of networks resulted in the creation of new integration forms at a higher level, abstracting from
concrete programming languages or local communication mechanisms. RPC implementations like [CORBA]
(which was based on the remote object invocation protocol in ToolTalk) have later emerged to solve the issues of
distributed inter-application communication, but the problems of accessing graphical and packaged applications
remained.

Around the same time, the FIELD Environment [Reiss1990] tried to solve the problems of integrating desktop
applications in the software engineering domain and proposed a precursor of modern integrated development
environments: “FIELD demonstrates a simple but effective way to unite many existing tools in an integrated
programming environment” (ibid.). The framework connected several custom development tools through TCP/IP
sockets, allowing for distributed collaborative work, and provided a simple but efficient solution to inter-appli-
cation communication by using message-passing, an integration-technique which is now called message-based
integration. This concept was rather novel at that time and is still used today as part of higher-level integration
solutions. Applications could register for messages of interest (using pattern-matching) and were informed by
a central message router using a mechanism called selective broadcast. A graphical frontend allowed interac-
tive operation of the integrated development environment, and new tools could be integrated by adding suitable
functions for handling FIELD-messages.

While the FIELD-framework provided an open and extensible approach to control integration by integrating
tools through messaging, it was necessary to modify the source code so that existing tools could be extended,
for making them available to the framework and other integrated tools, which is not an option for integrating
existing, closed tools. Also, data integration was only rudimentary implemented, as tools had to convert to and
from messages from other tools by themselves; there was no abstract message format that could be handled in a
uniform way (as in modern integration frameworks like JBI which use normalized messages, see Section 4.2.1).
Data was only treated as a set of parameters for control messages, but not handled at a more semantic level,
which would allow for connecting related data elements and for providing a storage facility (or repository) for
common information shared between integrated tools.

While integrated development environments23 were the primary focus of early desktop integration efforts, also
hypermedia environments faced similar problems, as they had to enable knowledge workers to work with differ-
ent tools in a seamless and transparent way. The goal was to build a coherent information space of the target do-
main, where different artifacts could be connected with each other in a meaningful way: HyperDisco [Wiil1995]
approached this challenge by offering different levels of integration, which would “allow different tools to be
integrated in the hypermedia framework at different tool-dependent levels. Instead of providing a single model
of integration that all tools must adhere to, we allow each tool to have its own specialized model of integration
and its own specialized protocol for accessing the hypermedia services.”

Another related hypermedia framework, MicrocosmNG [Goose2000], identified early that “it's becoming in-
creasingly common for information workers to interact with a variety of applications hosted on a diverse range
of computing platforms” and proposed links as a possible solution, concluding that “such systems must support
cross-platform linking through heterogeneous application integration.” As an example, the framework was used
to integrate Microsoft Word on Windows (using a VisualBasic macro that adds a menu to the Word interface)

20 http://www.priorartdatabase.com/IPCOM/000113611/
21see The KDE home page [http://www.kde.org/]
22see The GNOME home page [http://www.gnome.org/]
23also called Software Development Environments (SDEs) in earlier work

http://www.priorartdatabase.com/IPCOM/000113611/
http://www.priorartdatabase.com/IPCOM/000113611/
http://www.kde.org/
http://www.kde.org/
http://www.gnome.org/
http://www.gnome.org/

A Short Introduction to Enterprise Integration 25

25

with Emacs on UNIX using Lisp (also adding a menu). These custom added application services then extract the
current selection and transmit the content to a Link Service, which correlates the common information managed
independently by the integrated tools. The work correctly identifies integration of existing tools as one of the
remaining challenges, which represents the primary obstacle in tool integration in general: with pre-packaged
software or legacy applications, it is not easy to add functions as needed, and without access to the source code,
alternate ways have to be found for circumventing limitations in functionality and in the API (if available at all),
so that integration of such applications becomes possible and feasible. The concept of linking together related
or corresponding information divided by tool boundaries is a major factor in successful tool integration and has
been widely used also in other integration frameworks and domains (such as the ToolNet-framework introduced
in Chapter 5).

More recent approaches to desktop and tool integration will be described in Chapter 3, including solutions from
enterprise integration, which form a major contribution to the tool integration space in general, as explained
below.

2.6. A Short Introduction to Enterprise Integration
Application integration (sometimes called enterprise application integration or EAI) is the pro-
cess of bringing data or a function from one application program together with that of another
application program. Where these programs already exist, the process is sometimes realized
by using middleware, either packaged by a vendor or written on a custom basis. An common
challenge for an enterprise is to integrate an existing (or legacy) program with a new program
or with a Web service program of another company.

—taken from SearchWebServices24

Before concentrating on the core problem of this work, desktop application or tool integration, it is important to
understand where most of the currently available integration concepts, patterns and best practices originated: the
enterprise domain was and still is a big driving force behind integration efforts for solving complex integration
problems encountered in the industry. After huge investments in large-scale integration projects, many of which
failed or did not provide a durable solution, working best practices and standards evolved, like Service Oriented
Architectures and web services, open interoperability-protocols like SOAP, and open data interchange formats
like XML.

Examples of enterprise integration spawn across all domains, especially the financial sector where banking and
insurance systems have to be integrated, often as a result of two companies merging or entering a partnership,
but recently also the mobile sector faced complex integration problems when many existing legacy systems had
to be migrated to 3G networks. A challenge in this sector is the combination of several previously disconnected
mobile services to enable value-added services like location-awareness or interactivity.

Solutions from the financial sector, especially the insurance domain, include the Enterprise Service Bus (ESB),
which is described below, and concepts like service-oriented integration (SOI). In the mobile enterprise, standard
efforts like JAIN SLEE25, strategic alliances like the OMA and solutions like OpenCloud have emerged.

While these concepts and solutions cannot be blindly applied to the problems of desktop application integration
(see Section 3.2), a lot can be learnt from the cumulative integration experience gained in the enterprise, and
existing standards and solutions can be reused (see Chapter 4).

24 http://searchwebservices.techtarget.com/
25see the article JAIN SLEE Principles [http://java.sun.com/products/jain/article_slee_principles.htmlhttp://java.sun.com/products/jain/
article_slee_principles.html]

http://searchwebservices.techtarget.com/
http://searchwebservices.techtarget.com/
http://java.sun.com/products/jain/article_slee_principles.htmlhttp://java.sun.com/products/jain/article_slee_principles.html
http://java.sun.com/products/jain/article_slee_principles.htmlhttp://java.sun.com/products/jain/article_slee_principles.html
http://java.sun.com/products/jain/article_slee_principles.htmlhttp://java.sun.com/products/jain/article_slee_principles.html

26 Integration Challenges

26

2.6.1. The Past: The EAI Legacy

In the enterprise domain, the need for integration became apparent with, among others, the Y2K problem, when
a lot of big and complex legacy systems had to be analyzed and adapted to function correctly when the year 2000
arrived. Also mergers and partnerships often caused high costs and much more effort than anticipated, because
incompatible systems had to be replaced or adapted to make them work together. In many cases, the bigger picture
of integration was yet unknown, and the organizational structure was not ready to overcome existing boundaries
and embrace the model of dynamic business processes that span across departments and management levels. The
result was a heterogeneous landscape of isolated applications with proprietary protocols and interfaces. Often,
the inner workings of these legacy systems were neither known nor extensively documented, and the people that
implemented them had long since left the company. Also, time constraints pushed for “quick and dirty” ad hoc
solutions which often resulted in hard-coded bridges that directly integrated one legacy application with another.
Over time, as more and more systems had to be integrated, this approach led to an unmaintainable, inefficient
and costly conglomerate of tightly coupled applications, a method which is now known as the anti-pattern26 of
point-to-point integration [Sutherland2002].

Even where time and money was not so constrained (e.g., large financial institutions or insurance companies),
integration methods and patterns were yet largely unknown, and big integration projects were undertaken that
resulted in expensive integration silos or stovepipes, aggregating legacy systems and putting them under control
of a “universal” broker that interfaced with all applications to be integrated. The complexity of interfacing with
an increasing number of legacy applications was thus only moved to another area, but not solved.

In absence of suitable standards, methods and best practices in integration, most early integration projects that
paid attention to design developed accidental architectures (see [ESB:28]), like “hub and spoke” [ESB:118-119],
which used mostly proprietary protocols and interfaces, thereby creating new legacy systems that would have to
be integrated again in a few years. One common approach was to use message oriented middleware (MOM, see
Section 3.3 for a current definition), an approach that facilitates data integration in heterogeneous environments
and connects existing applications using a common message format (c.f. [ESB:77]); e.g., transaction systems like
CICS (IBM) or Tuxedo (BEA) use a common, binary format to exchange information, based on strict definitions
of data boundaries. These formats were mostly proprietary and vendor-specific, which resulted in closely coupled
systems that were tailored to a specific environment.

On a more general level, common specification standards like ASN.127 provided a meta language that has been
used for defining common, industry-wide standard formats like SNMP28, the Simple Network Management Pro-
tocol. Now, these formats are only used in specific domains and in performance-critical situations, or in environ-
ments where legacy applications have to be accessed, and the new universal meta-language has become XML,
the extended markup language specified and maintained by the W3C. [ESB:60-76] provides a thorough analysis
on why XML has become the foundation of modern integration solutions, with the major advantages of being
human-readable, extensible without breaking interfaces, and facilitating a standardized data exchange among
disparate systems.

More recent integration efforts like [Maheshwari2003] tried to solve the problem of integrating legacy appli-
cations by using CORBA for protocol abstraction and the then rising XML-standard for data-abstraction. The
problem with approaches like this and CORBA in particular is that while the protocol is abstracted through a
standardized interoperability-layer (IIOP) , integration still happens at the low level, because there is a direct
mapping between function calls. This creates a tight coupling to the applications' internal architecture and thus
leads to a fragile solution that is not open to change, e.g., when two applications are merged and the internal ar-

26defined by Jim Coplien as “something that looks like a good idea, but which backfires badly when applied.” (from the c2 AntiPattern-wiki)
27see ASN.1 Organization [http://www.asn1.org/]
28as SNMP allows distributed management of various devices and networking applications through standardized messages, bridging different
OS platforms and applications, it is itself an early example for message-based integration

http://www.asn1.org/
http://www.asn1.org/

The Present: Service Oriented Architecture and the Enterprise Service Bus 27

27

chitecture is refactored. Also, CORBA mostly mandates synchronous method calls, forcing the caller to wait for
the method invoked to finish and return control, which is often undesirable in a distributed environment or when
it is unclear how long the method call takes to complete. [Henning2006] provides a thorough discussion on the
inherent problems with using CORBA for integration, which caused the once popular middleware component
standard to become largely obsolete today. The Section 2.6.2 shows how these limitations have been overcome
with the introduction of service-oriented architectures and related concepts and frameworks.

2.6.2. The Present: Service Oriented Architecture and the
Enterprise Service Bus

“By 2008, SOA will be a prevailing software engineering practice, ending the 40-year domination of monolith-
ic software architecture.”

--Gartner Group

The success of XML during the late 1990s and its wide adoption as an open interoperability standard for data ex-
change led to the development of higher-level standard based on XML. A milestone for open, standards-based in-
tegration in the enterprise was the introduction of an XML-based interoperability-protocol that led to a paradigm-
shift in enterprise integration from functional to service-oriented integration: applications were no longer seen as
a collection of objects and functions, but as services that interfaced at a higher level. These Web Services could
be described in an independent form (specified by the WSDL-specification) and once they had been published to
a central repository (which was described by the UDDI-specification), they could be accessed using a standard
protocol, SOAP, and combined as needed by current business requirements. Business processes were no longer
seen as static rules limited to organizational entities, but as agile processes that were dynamically changing.
This new way of thinking led to the creation of a new discipline known as business process modeling (BPM)29,
which is now implemented by standards like the XML-based Business Process Execution Language (BPEL), as
described in Section 3.3.4.

Together, these efforts have changed the way integration is done in the enterprise, and on a larger scale they
caused a paradigm shift from an object-oriented architecture and distributed objects of the 1990s era to a Service
Oriented Architecture (SOA), which is explained in more detail in Section 3.3.

On the implementation-side, this new architecture was supported by the advent of a high-level integration back-
end, the Enterprise Service Bus (ESB), which acts as the spine of an SOA. Although existing point-to-point ar-
chitectures could be service-enabled with web services, as described in [Erl2004:326], this is not enough when
integration is needed at a higher level and complex interaction between several applications is needed. By con-
necting legacy applications to a message-based service infrastructure using recent integration standards like JCA,
JMS, or web service-Adapters, communication can be transparently handled through a common, extensible and
open integration backbone, as described in [ESB:212].

During past integration projects, where a variety of different system architectures and interaction styles had to be
integrated, a set of patterns and best practices evolved that had proven successful and were suitable for reuse in
other integration scenarios. These patterns and strategies have been collected and described in [PofEAA], which
offers a rich collection of design patterns that can be rapidly applied to a wide array of integration challenges,
and also in [EIP], which focuses on asynchronous messaging patterns, but also acts as a thorough introduction to
enterprise integration in general. Section 2.6 describes several of these patterns in more detail and applies them
to solve the integration problems identified here in the proposed solution later.

29sometimes also called Enterprise Business Modeling, see also EnterpriseUnifiedProcess.com [http://www.enterpriseunifiedprocess.com/
essays/enterpriseBusinessModeling.html], which extends the Rational Unified Process (RUP) with seven disciplines targeted at modeling
problems in the enterprise domain

http://www.enterpriseunifiedprocess.com/essays/enterpriseBusinessModeling.html
http://www.enterpriseunifiedprocess.com/essays/enterpriseBusinessModeling.html
http://www.enterpriseunifiedprocess.com/essays/enterpriseBusinessModeling.html

28 Integration Challenges

28

2.6.3. The Future: Integration Frameworks and Event Driv-
en Architecture

As will be shown later in Chapter 4, existing standards, patterns and solutions alone are not enough to solve com-
plex integration problems, as they still require manual combination and “glue” code to form the desired integra-
tion solution, which is now often based on a service-oriented architecture. Also, not all aspects of integration are
covered by current standards, such as lifecycle management, reliability, access control or remote administration.
In the service-oriented world, the second generation web-service standards WS-* (for WS-ReliableMessaging,
WS-Security, WS-BPEL, and other related efforts) try to address some of these problems by extending existing
SOA technologies. These developments, which are often summarized under the architectural term service ori-
ented enterprise (SOE), are coordinated by the WS-I organization that defines profiles and testing tools in order
to ensure ongoing compatibility between different web service-implementations, in order to prevent a fragmen-
tation of the standard, as happened in the CORBA world (c.f. [EIP:4]).

Nonetheless, interoperability between web services alone will not be enough to solve integration at a general
level, which requires fundamental changes in architecture. Evolutionary approaches like SOI (Section 3.3.3)
apply existing SOA techniques to integration, whereas developments like the event-driven architecture (EDA,
see Section 3.3.5) represent a more radical approach that redefines the principles of communication in composite
distributed systems and inverts the flow of control by using event listeners instead of direct service or method
calls.

In the .NET-world, the ESB architecture is extended to the internet and transformed into an Internet Service
Bus (ISB), which connects geographically separated businesses through secure channels and allows distributed
orchestration of services [BizTalk2007]. Frameworks specifically targeted at service composition and integra-
tion begin to appear, such as the Windows Communication Foundation (WCF) for the Windows/.Net-platform,
and more generic, cross-platform solutions like the Service Component Architecture (SCA) and Java Business
Integration (JBI), a Java-solution that strives to solve integration at a high level but with using existing standards
and concepts, fully embracing successful enterprise integration patterns and solutions and providing them to in-
tegration developers in form of generalized but readily applicable APIs and tools.

Some of these technologies are already applied in current solutions, which are described in the following chapter,
while the latter mentioned integration frameworks are not yet widely adopted, and there is only little experience
available on applying them to real world situations. Two current examples mentioned before, SCA and JBI,
will be introduced in Section 3.3.7, whereas the proposed tool integration solution which is based on JBI will
be examined in Chapter 4. Other promising solutions that were not yet ready for adoption in the prototype are
covered in Chapter 8.

2.7. Desktop vs. Enterprise Integration
As can be seen from the previous sections, both the desktop as well as the enterprise domain have developed
special design patterns and technical solutions for individual problems, and there is a big overlap in terms of
application integration: Adapters like JCA, component frameworks, e.g., OSGi30 or Spring, and composite ap-
plication-frameworks like SCA or JBI can be used for integrating applications in the enterprise but also on the
desktop. One important difference is that enterprise integration focuses more on data integration and composi-
tion of backend systems or services, whereas integration on the desktop is about improving the user's workflow
and productivity. This results in different integration requirements on the desktop, e.g., usability and transparent
integration, which are not a major concern when accessing enterprise backend systems. For tool integration, it

30which plays a special role since it originates from the embedded systems domain, then moved to the desktop (with Eclipse as the main
driving force) and now reaches into the enterprise, see also Section 3.2.3.1

Desktop vs. Enterprise Integration 29

29

is often desired to keep the original tools as is, but extending them in order to better cooperate with other tools
so as to align more smoothly to the user's design process or task at hand.

Both domains aim at maximizing return of investment (ROI) by reusing existing applications and adapting them
to new and changing requirements with minimal effort. Replacing existing applications is usually not an option, as
this would require new acquisition of products, resulting in costly analysis, deployment, downtime, and retraining
of end users. Modification of legacy applications is also usually not an option, because the source code or the skill
set is not available, and even in the case of an open source or in-house solution, it takes developer resources and
time to develop a suitable integration path. Also, as noted before, organizational constraints often lead to “quick
and dirty” solutions that are fragile to change and have to be replaced when one of the integrated applications
changes.

The comparative overview in Table 2.231 illustrates the differences and similarities between application integra-
tion on the desktop and in the enterprise (for legacy and modern SOA environments):

Req's\Domain Enterprise (Legacy) Enterprise (SOA) Desktop Systems

Platforms CORBA, CICS/IMS,
Tuxedo, TIBCO

.NET, JEE .NET, Java SE, RCP, pro-
prietary

Programming Lan-
guages

COBOL, C++ C#, Java C#, Java, C/C++, script-
ing languages (VisualBa-
sic, Ruby, Python, Ja-
va-like languages)

Architecture monolithic/centralized distributed monolithic (changing)

Transport IIOP, MQ, TibRV, JMS,
TUX, others

HTTP, RMI/IIOPa OS specific, proprietary
protocols (COM/COM+,
UNIX sockets/pipes)

Payload binary (fixed, IIOP,
TibMsg, FML)

XML (SOAP) binary (proprietary, OS-
specific formats)

Inter-Application Mes-
saging

CICS/Tuxedo Services,
shared library calls

Web Service calls, REST;
SCA, JBI

IPC (using TCP/IP or
sockets/pipes), shared li-
brary calls

Communication mostly synchronous mostly asynchronous mostly synchronous

Latency / Short Response
Time

low / low priority (batch
updates)

medium / medium priority
(asynchronous messaging)

low / high priority (user in-
terface)

Security homegrown, LDAP,
RACFb etc.

WS-Security, Kerberos,
JAASc, etc.

varies between operat-
ing systems from none
to complex multiuser-set-
tings with ACLs, memory
and process protection and
user rights restrictions

System Management BMC Patrol, Tivoli, CA
Unicenter, NAGIOS, HP
OpenView; SNMP

WSDMd and Web Services
Management Tools (e.g.
CentraSite), JMX/JEE ap-
plication server consoles

environment specific:
JMX for Java, WMI
on Windows/.NET, propri-
etary tools for system pro-
cess control, managed sys-
tem services

31originally taken from a presentation by Jody Hunt at IONA, “Extensible Integration for Software Providers to the Mission Critical Enter-
prise”, table "The Extensibility Gap"

30 Integration Challenges

30

Req's\Domain Enterprise (Legacy) Enterprise (SOA) Desktop Systems

Session Management stateful stateless stateful

Transaction Manage-
ment

ACID transactions “fire and forget” — (no common concept of
transactions; proprietary,
application-specific solu-
tions)

Resiliency Load balancing, failover,
disaster recovery

— (vendor/product-specif-
ic, many ESBs support
at least load balancing
through clustering)

—

Standards Support proprietary vendor or “de
facto” standards; vendor
driven

built upon standards set by
international organizations
(W3C, OASIS); communi-
ty driven

OS-dependent: closed,
proprietary formats, on-
ly some common file
formats; rapidly changing
through open source adop-
tion; vendor driven (closed
source) / community driven
(open source)

asee Java RMI over IIOP [http://java.sun.com/products/rmi-iiop/]
bIBM's Resource Access Control Facility [http://www-03.ibm.com/servers/eserver/zseries/zos/racf/]
cJava Authentication and Authorization Service [http://java.sun.com/javase/6/docs/technotes/guides/security/]
dan OASIS standard, stands for Web Services Distributed Management [http://www.oasis-open.org/committees/wsdm/]

Table 2.2: Comparing Integration Requirements in the Enterprise and on the Desktop

2.8. Summary
This chapter has given an introduction to the manifold issues of integration, spanning from enterprise to desktop
integration, and investigating what can be learnt from the former to design successful solutions for the rather
new topic of desktop integration, the main topic examined in this thesis. A short overview of previous desktop
integration approaches has been provided, hinting at current solutions in the field, which are detailed in the next
chapter. Finally, an overview of enterprise integration has shown what problems have already been addressed and,
to some extent, solved in the enterprise. A look at the state-of-the-art in enterprise integration was followed by a
sneak peak into future trends and developments, which will be addressed later in this work. With this background
information, current developments described in the next chapter can be grasped more easily and the rationale for
the final integration solution investigated in the prototype-design can be seen from a broader perspective.

http://java.sun.com/products/rmi-iiop/
http://java.sun.com/products/rmi-iiop/
http://www-03.ibm.com/servers/eserver/zseries/zos/racf/
http://www-03.ibm.com/servers/eserver/zseries/zos/racf/
http://java.sun.com/javase/6/docs/technotes/guides/security/
http://java.sun.com/javase/6/docs/technotes/guides/security/
http://www.oasis-open.org/committees/wsdm/
http://www.oasis-open.org/committees/wsdm/

31

Chapter 3. Current State of Integration
“It is impossible to implement one tool that supports all activities in software development. Thus, it is impor-
tant to focus on integration of different tools, ideally giving developers the possibility to freely combine indi-

vidual tools.”
--from [Damm2000]

This chapter provides a survey of current approaches to integration, reaching from isolated, proprietary and
platform-specific desktop solutions to open and cross-platform standards based on a service oriented architecture
(SOA). Current and emerging solutions from enterprise integration are examined and evaluated for applicability to
the problems of tool integration as outlined in the previous chapter. Concrete implementations, such as [ToolNet]
(which is described in more detail in Chapter 5), as well as academic and commercial offerings are presented as
case studies for the state of the art in desktop and enterprise integration.

3.1. Introduction
Building on the analysis in Section 2.3, which divided integration concepts into horizontal layers, focusing on a
more general definition of the problem domain, this section arranges current approaches in vertical layers, em-
phasizing on concrete forms and implementations of current integration solutions, combining several strategies
and crossing different domains, reaching from the desktop (which has been the focus of most tool integration
frameworks so far) to the web and the enterprise domain.

While on the desktop, only few standards applicable to (tool) integration have been developed, and hence most
of the solutions outlined in the section below are proprietary or platform-specific, both the enterprise domain and
the web have developed rich standards for data interchange and open communication patterns, reaching beyond
traditional databases or shared repositories, by using open protocols such as SOAP or HTTP, and data formats
such as XML.

Figure 3.1 shows the increasing overlap of the three major domains relevant to integration and what solutions
are currently available. This view is also shared by [Brown1992], who concludes that “none of these levels alone
captures the complete notion of integration” and that these levels can be viewed as “independent dimensions
within an integration model”, hence the need for a holistic view of integration. The standards and implementa-
tions mentioned will be explained further in the sections below, together with an analysis of their relevance and
potential for tool integration on the desktop.

32 Current State of Integration

32

Figure 3.1: Integration solutions on the Desktop, the Web and in the Enterprise

3.2. Current Approaches on the Desktop

3.2.1. OS-Level Integration

This section discusses operating system-specific and therefore mainly proprietary integration concepts that can
be used for native tool integration and for implementing higher level integration concepts on certain platforms.
Although the solutions shown represent non-standard integration techniques tailored to specific platforms, they
provide interesting examples of how integration can be achieved between desktop applications in a relatively
loosely coupled way. This method of integration is regarded as the most stable (as mentioned in Section 2.6),
as it allows replacing or modifying individual tools without breaking integration, which is a major requirement
for tool integration (c.f. [Altheide2002]). Consequently, many characteristics of OS-level integration concepts
can also be found in other areas, up to enterprise integration, which is a result of the ongoing convergence of the
desktop, enterprise and web domain, as shown in Figure 3.1.

3.2.1.1. Integration on the file system level

As a form of data integration, common file formats allow transparent data exchange between applications, as long
as a common format is defined and available to interested parties. On the desktop, common exchange formats
have been used to a greater extent and range from CSV (comma separated values, used for tabular data and
commonly supported in spreadsheet applications) to XML-based formats like XMI for modeling applications (as
utilized in [Damm2000] for integrating modeling tools), X3D for 3d data, or the OpenDocument XML format
ODF used in office applications. Of course, proprietary and closed binary formats are also widespread and make

OS-Level Integration 33

33

it harder to integrate applications from different vendors. Here, frameworks like [ApachePOI] may be used to
circumvent limited access to these formats.

Integration through common file formats is a useful approach for closely related applications that need to oper-
ate on the same data, but has several disadvantages: exchange of information is slow compared to message- or
service-based information, as the receiver has to wait until the entire file is written. This makes file-based inte-
gration unsuitable for real-time environments where immediate user-feedback is needed, and hence less useful
for general tool integration. Also, the quality of integration relies heavily on the quality of the file format: if
it is ambiguously defined or lacks versioning information, exchange may fail because of data incompatibility.
Lastly, this form of integration bears the danger of semantic dissonance, where data is interpreted differently
across applications and contexts, e.g., numeric values may be incorrectly treated as absolute, relative or percent
values [Trowbridge2004:57].

UNIX pipes are another example of file system-based integration, but here files are treated in a special way, fol-
lowing the Pipes&Filters-pattern: special files called pipes act as communication channels and allow transparent
exchange of byte streams between two applications that want to communicate synchronously. This has been a
very effective way to build tool chains, where tools, often small system programs like grep (the textual search
tool) or awk (a string manipulation tool) are closely linked together and the receiver understands the format of
the sender. Until now, C/C++ programmers utilize a chain of compiler tools for building applications, which still
consists of separate command line tools such as gcc, configure and make that together realize a transparent build
cycle. Now, with graphical IDEs and the widespread use of 4G languages such as Java or C#, these system-level
tool chains are mostly restricted to kernel or driver development and embedded systems, but still a common way
to handle system administration tasks.

One disadvantage of this integration pattern is that the content is simply exchanged as a binary byte stream or
as raw text, but no information about the content is exchanged, so the semantics have to be interpreted by each
participant individually, which results in redundancy and possible discrepancy among tools in a (piped) tool
chain (as constituted by [Brown1992]). Pipes operate at the lowest level of integration, which is not enough for
rich tool integration in the context of this work, but may function as a prerequisite for subsequent higher level
integration (e.g., IDEs may offer a semantic layer of integration by interpreting the error output of a compiler
tool chain, directing the user to the corresponding location in the source code).

Modern file systems offer higher-level data integration, which goes beyond simply using common file formats,
by using common metadata and other shared semantics, and by offering methods to access the metadata from any
application. The BeOS file system (BFS) provided a common abstraction for various file types by providing a
MIME-type identification system and a standard set of attributes for each file type. This allows to easily exchange
e-mails or contacts between software applications because the file's content is stored in a standard format, often
plain text or a native format (an email-message conforming to RFC 822, or a PDF file), and additional information
is accessible through file attributes by using the high-level C++ API (e.g., subject, address and sender of an e-
mail, or the page count of a document):

The power of attributes […] is that many programs can share information easily. Because access
to attributes is uniform, the applications must agree on only the names of attributes. […] From
the user’s standpoint a single interface exists to information […]. [File] attributes provide an
easy way to centralize storage of information […] and to do it in a way that facilitates sharing
it between applications.

—Dominic Giampaolo, Practical File System Design with the Be File System

Recent years brought more ways of high-level data integration using metadata that is automatically extracted from
files by OS level services, e.g., the desktop search engine Spotlight1 (integrated into MacOS X), or Nepomuk, an

1which has been designed, among others, by the creator of the Be File System, Dominic Giampaolo (see previous quote)

34 Current State of Integration

34

EU project to implement the vision of a semantic desktop on Linux [Groza2007], [Sauermann2008]. Nepomuk
integrates into the KDE desktop and provides a framework based on RDF and implements several services for
extracting various metadata from files into a searchable index. This makes inherent semantics accessible to other
applications in a rich manner, and allows users to query for data based on the metadata and semantic relations
gathered. The vision behind recent approaches is to no longer view files only as simple storage units, but as
rich information sources: data is freed from the application that was used to create it so that users and other
applications are able to recompose and correlate available information on a more abstract level.

While these approaches show great advancements in making available previously hidden and inaccessible infor-
mation spread over various applications and files, they only provide a form of data integration, but do not provide
any means to integrate at a higher level. Tool integration needs more than just inspecting files after the fact, but
direct access to needed tool functionality via common interfaces, services or APIs for application developers
(both tool creators and integration architects), facilitating cooperation among tools and enabling access from
external applications. This can only be reached with higher level integration techniques detailed in subsequent
sections.

3.2.1.2. Functional Integration and Scripting

Scripting languages currently experience a renaissance due to the dynamic nature of Web 2.0, where light-weight
frameworks based on scripting languages have certain advantages, mainly time-to-market and easy extensibility,
over established and more formal, often complex frameworks. A prime example is Ruby on Rails, which pio-
neered many Web 2.0 applications that have gained wide-spread adoption, e.g. Flickr or Basecamp. Enterprise
Java (JEE) applications have been more complex to develop, at least initially, and so many Web 2.0 startups
chose more rapid approaches, albeit these often do not scale very well (e.g. Twitter) and may lead to quickly
implemented but hard to maintain applications that often lack a solid architecture.

In an effort to better support Web 2.0 development, and to combine the strengths of both worlds, Java 6 has
gained support for integrating scripting languages through [JSR223], which allows Java code to be mixed with
code written in scripting languages, e.g., for implementing the backend of a web application in Java EE and using
Ruby for implementing the frontend, but also beyond web development, for supporting existing tool integration
languages like Tcl/Tk, which is introduced in Section 3.2.2.1 below.

As mentioned in Section 2.3.4, using dynamic languages or scripting greatly facilitates tool integration, even
more so when the tool to be integrated uses a wide-spread, common scripting language such as Python, which is
used, e.g., in the 3d modeling application Blender. Only recently, common and standard scripting languages have
seen increased use and support in software tools. Previously, applications mostly provided their own scripting
language for writing in-application macros (e.g. MathScript or DXL).

To be of real use for tool integration however, scripting has to be available on a common base to every application
by default, crossing tool boundaries and providing developers with established APIs or other techniques that
facilitate building scripting support into own tools as an integral core feature, which consequently ensures that
access to other tools is always possible in return. Fortunately, scripting support is now available in most operating
systems in several ways: On Windows, VisualBasic2 has become the de facto standard in scripting, at least for
Microsoft applications like MS Office. In an effort to provide a real system-wide scripting facility, the Windows
Scripting Host (WSH) was introduced but never widely used beyond system administration scripts. In the IBM
world, REXX3 was used as the default scripting language, which originally allowed cross-application scripting
on IBM's AIX, OS/2 and zOS platforms, but has since become open source and is available for a variety of
platforms such as Linux, Solaris and Windows in the form of Open Object REXX, an object-oriented extension

2in this form more precisely VisualBasic for Applications, VBA
3REXX is an acronym for “Restructured Extended Executor Language” and has been certified as ANSI standard ANSI X3.274-1996. It is
now supported by the open Rexx Language Association [http://www.rexxla.org/]

http://www.rexxla.org/
http://www.rexxla.org/

OS-Level Integration 35

35

to REXX. The language is both suitable for programming stand-alone scripts and for using as a macro language
inside applications. On UNIX, Tcl/Tk (see Section 3.2.2.1) provides a powerful scripting language specifically
tailored for controlling tools; another widely known language useful for this purpose is Lisp, which is strongly
supported in Emacs, as shown in [Goose2000] .

Apple MacOS was the first desktop operating system to provide developers and end users with a system-wide
default scripting environment: AppleScript uses English language elements and allows even end users with basic
programming skills to control applications using scripts. The technical background and history of AppleScript
is discussed in [Cook2007], who explains the motivation behind a system wide default scripting interface: “One
benefit of a standard scripting platform is that applications can then be integrated with each other. This capability
is important because users typically work with multiple applications at the same time.”. This is a simple but
important observation and directly addresses the problems in tool integration, especially on the desktop. A simple
example using application-specific terminology is shown in Example 3.1 below:

Example 3.1: A simple AppleScript that performs a calculation in Excel

tell application “Excel”
 set formula of cell “A3” to “=A1+A2”
end tell

(from [Cook2007:17])

AppleScript is part of an event-based scripting API and enjoys widespread use in MacOS applications, which is
important to make the scripting interface really useful for both developers and end users. For connecting script-
ing-enabled applications, the Apple Application Services-framework (formerly called Inter-Application Com-
munication) provides an application-level integration approach using a common IPC layer, which also allows
asynchronous and remote communication (also via SOAP4) and basic authentication. Applications are also con-
nected on the user-interface level, albeit more simplistic, using a Services-menu: applications that want to take
part in Services-integration5 publish data types they support. When the user invokes the Services-menu, only
Services that can handle the data types supported by the application are shown.

Scripting support is not bound to a specific language like AppleScript, as the OS provides a “standard mechanism
that allows users to control multiple applications with scripts written in a variety of scripting languages” through
the Open Scripting Architecture (OSA, see [Cook2007]). This makes MacOS scripting support special as it goes
beyond a simple default scripting language by providing several OS services and APIs that are part of a unique
scripting architecture. Since MacOS X 10.4 (“Tiger”), there is also a visual designer for composing scripts, called
Automator [Apple2007], allowing end users to build workflows for controlling applications through dynamically
building scripts with application-provided Actions, as shown in Figure 3.2. This is in fact a rare example of
user-oriented process-integration on the desktop.

4Consequently, in this context, AppleScript, precisely AppleEvents, are comparable to Web Services, c.f. [Cook2007:43]
5here, the term Services refers to the Services-menu, but it is also a simple form of service-oriented integration, see Section 3.3.3

36 Current State of Integration

36

(source: [Apple2007])
Figure 3.2: Automator allows visual process-integration of desktop applications on MacOS X

In a similar way, AppleScript Studio6 allows advanced users or developers to construct new applications entirely
from AppleScript-scripts.

On the Linux desktop, KDE4 now provides a uniform scripting platform for cross-application scripting:
[KROSS], originally used in KOffice, integrates several scripting languages like Python, Ruby or JavaScript,
and recently also Java and the lesser known Falcon language7, by handling direct communication with scripting
interpreters and providing a common, transparent API to applications. For adding scripting support to an exist-
ing application, the user's script is simply passed to the KROSS backend, which then dynamically invokes the
relevant scripting interpreter.

It is worth noting that modern scripting interfaces are mostly realized through message passing, which is a concept
commonly encountered in enterprise integration, as will be shown in Section 3.3.2. This shows another overlap
between desktop and enterprise integration, as illustrated in Figure 3.1.

For general purpose tool integration, scripting integration, even if supported by the underlying OS, provides
only a partial solution, as it leaves out many important aspects such as end point abstraction (by using logical
endpoints that are resolved dynamically at runtime) and data abstraction (e.g., by using a more general, XML-
based message format that can be inspected and enriched even by outside applications that do not understand all
details of the transmitted content structure). Also, with the notable exception of AppleScript, support for security,
distributed access, and asynchronous communication is not available in OS level scripting frameworks. However
they do provide a common way for accessing tools and as such help integration developers in realizing this "last
mile of tool integration".

6see the AppleScript Studio product site [http://www.apple.com/macosx/features/applescript/studio.html]
7see The Falcon programming language [http://www.falconpl.org/]

http://www.apple.com/macosx/features/applescript/studio.html
http://www.apple.com/macosx/features/applescript/studio.html
http://www.falconpl.org/
http://www.falconpl.org/

OS-Level Integration 37

37

3.2.1.3. Application-Level integration

While scripting support through OS level APIs may be used to realize tool integration, full application integra-
tion goes one step further by enabling more fine-grained and far-reaching integration that is more transparent
for users. Some solutions even provide an integrated user experience on the presentation-level by introducing
a component integration model that divides applications into functional units that may be combined as needed.
On the Windows platform, COM/OLE and later ActiveX are prime examples of application integration that
reaches up to the user interface. On Linux, the KDE desktop offers a concept called KParts that provides similar
functionality. For example, the Kontact PIM suite is just a container for independent e-mail, contact manage-
ment, todo-list and notes-applications, and the HTML-renderer component KHTML may be embedded in other
applications as needed, e.g., inside KMail for viewing HTML-formatted mail, or as part of the web browser
Konqueror. KDE4 takes this concept even further and introduces a more service-oriented approach using KSer-
vices8. Another example which is more targeted at information integration are desktop Wikis like Tomboy9,
which allow connecting pieces of information in a semantic way using simple (textual) but “context aware”
notes. References to documents and media files are handled externally by supporting applications (a simple but
effective use of launch integration, see Section 2.3). Apple OpenDoc [Curbow1997] followed a similar vision,
aiming at higher level information integration by dividing compound documents into interchangeable parts that
are independent of the authoring application, providing abstraction of the common 1:1 binding between tools
and “their” artifacts10. Similarly, Lotus Notes pioneered information integration between contacts, mail, “todo”
items and other personal information, serving as an example for application suites, which can be defined as tool
sets that “share data formats and operating conventions that let them meaningfully interact.” [Brown1992]. Here,
close cooperation between tools is only provided inside a fixed tool set, but this shows successful tool integration
can provide true benefits to end users, making the new, interconnected “virtual” or meta tool more powerful than
the sum of its parts.

A novel example for application integration possibilities on the desktop is the Linux Desktop Testing Project
(LDTP), which uses existing accessibility libraries, scripting facilities and other features of the GNOME desktop
environment for user interface testing and automation of GNOME applications. What would otherwise be a
tedious undertaking now becomes feasible and effective, using scripting-based integration techniques (albeit
constrained to a specific desktop environment).

3.2.1.3.1. D-BUS

Whereas OS-level inter-process communication is inherently platform-bound and often isolated inside local sys-
tems, D-BUS [DBUS] provides an integration infrastructure built on a general transport-layer for cross-platform,
network-aware and protocol-agnostic inter-application communication11:

D-BUS is an Inter-Process Communication (IPC) and Remote Procedure Calling (RPC) mech-
anism originally developed for Linux to replace existing and competing IPC solutions with one
unified protocol.

—from Introduction to D-BUS12

For interfacing with endpoints (i.e., tools), there are several types of bindings13: language bindings allow access
to the bus from C, C++, Python, Ruby, Java or .NET applications, whereas protocol bindings allow communi-
cation over, e.g., TCP/IP, which extends the IPC layer by adding a remote interface. Furthermore, interface

8see KServices Tutorial [http://techbase.kde.org/Development/Tutorials/Services/Introduction]
9see the related article Tomboy and "Desktop Application Integration" [http://www.rahulgaitonde.org/2004/10/16/tomboy-and-thoughts-on-
desktop-application-integration/]
10sadly, OpenDoc was cancelled and only its PostScript-engine survived in MacOS X
11coincidentially, DEC has developed a tool integration architecture with the same name, see [VanHorn1989]
12 http://doc.trolltech.com/4.2/intro-to-dbus.html
13see the The D-BUS Bindings [http://www.freedesktop.org/wiki/Software/DBusBindings] page on the D-BUS Wiki

http://doc.trolltech.com/4.2/intro-to-dbus.html
http://techbase.kde.org/Development/Tutorials/Services/Introduction
http://techbase.kde.org/Development/Tutorials/Services/Introduction
http://www.rahulgaitonde.org/2004/10/16/tomboy-and-thoughts-on-desktop-application-integration/
http://www.rahulgaitonde.org/2004/10/16/tomboy-and-thoughts-on-desktop-application-integration/
http://www.rahulgaitonde.org/2004/10/16/tomboy-and-thoughts-on-desktop-application-integration/
http://doc.trolltech.com/4.2/intro-to-dbus.html
http://www.freedesktop.org/wiki/Software/DBusBindings
http://www.freedesktop.org/wiki/Software/DBusBindings

38 Current State of Integration

38

bindings exist for Qt (used in KDE) or GLlib (part of GNOME), providing presentation integration for various
desktop environments. Lastly, D-BUS has been ported to other platforms such as Windows or MacOS, provid-
ing true cross-platform tool integration in an open way: the project has been incorporated into FreeDesktop.org
as an open standard for inter-application communication, which is now used by KDE and the GNOME desktop,
but also Enlightenment and other projects both in the commercial and open source world, even outside the desk-
top domain14. While D-BUS provides a lightweight, platform- and protocol-agnostic abstraction from IPC with
supported applications, it does not provide the general integration infrastructure necessary for a tool integration
framework, as it lacks more abstract concepts like mediation, transformation and reuse of integration components
like Tool Adaptors. As a result, IPC-layers like D-BUS do not facilitate the realization of more general, high-
level tool integration solutions15. A good introduction to D-BUS is provided in [Burton2004].

3.2.1.4. Summary

Looking at the disadvantages of OS-level solutions presented in this section reveals that most concepts are based
on component integration (see also Section 3.2.3 below) and lack a more general API that abstracts integrated
applications from specific environment properties or platforms. They offer only tightly coupled integration be-
tween related applications, and limit developers to concrete languages or platform APIs, which actually compro-
mises the broader vision of application integration, as it does not work in heterogeneous environments.

Recent solutions allow more rapid and dynamic application level integration through visual interfaces and inte-
gration tools, but are limited to single platforms and target environments, e.g. OpenSpan, see Section 3.2.4.3.

3.2.2. Tool Integration Languages and Protocols
This section exemplarily lists two languages-oriented integration approaches: the first one represents a gener-
al-purpose tool integration language, whereas the second one is targeted at the Java platform. Both are cross-
platform, but in a different way – Tcl has been ported to various platforms and offers extensions for integrating
into target environments, whereas Java provides platform abstraction through the virtual machine.

3.2.2.1. Tcl/Tk

Tcl (short for Tool Command Language) is an early example (dating back to 1988) for a language specially
targeted at solving tool integration problems [Ousterhout1994]. A short definition and motivation is given below:

Tcl is an interpreter for a tool command language. It consists of a library package that is em-
bedded in tools (such as editors, debuggers, etc.) as the basic command interpreter. […] Tcl is
particularly attractive when integrated with the widget library of a window system: it increas-
es the programmability of the widgets by providing mechanisms for variables, procedures, ex-
pressions, etc; it allows users to program both the appearance and the actions of widgets; and it
offers a simple but powerful communication mechanism between interactive programs.

—[Ousterhout1990]

This “tool command language” can be viewed as a domain specific language (DSL) for tool integration, like,
e.g., SQL is for database access, but with a broader, more horizontal scope. A DSL can be defined as “a limited
form of computer language designed for a specific class of problems.” [Fowler2005].

Originally targeted at controlling interactive UNIX command line tools, Tcl/Tk is now available on several plat-
forms such as Linux, MacOS X and Windows, and has been extended in several ways16: The Tk extension, for

14see the D-BUS Projects [http://www.freedesktop.org/wiki/Software/DbusProjects] page on the D-BUS wiki
15The Eventuality [http://freedesktop.org/wiki/Software/eventuality] project aimed at implementing a more general purpose desktop integra-
tion framework on top of D-BUS, but has been discontinued.
16see Tcl/Tk Wiki [http://wiki.tcl.tk/940], which is part of the official Tcl/Tk web site

http://www.freedesktop.org/wiki/Software/DbusProjects
http://www.freedesktop.org/wiki/Software/DbusProjects
http://freedesktop.org/wiki/Software/eventuality
http://freedesktop.org/wiki/Software/eventuality
http://wiki.tcl.tk/940
http://wiki.tcl.tk/940

Tool Integration Languages and Protocols 39

39

example, offers presentation integration by providing various GUI elements (widgets), whereas XOTcl17 adds
an object-oriented layer on top of Tcl. The language was used for successful tool integration solutions e.g., for
the BOOST tool integration framework [Gautier1995], who concludes that “Tcl represents an approach towards
providing a standard and quite powerful basis for programmability in software tools.”. With a tool-independent,
standard language such as Tcl/Tk, it becomes possible for users to extend existing tools with new functionality
(without having to learn tool-specific languages) that may be reused across tools, while at the same time trans-
parently reusing functionality provided by tools themselves. This leads to a service-oriented view of tool inte-
gration, which was already envisioned in [Gautier1995]:

We observe that this use of Tcl treats a tool as an object with operations invoked by a messages
from elsewhere. Another way to look at this is that the tool is no more than a set of services
invoked as required.

While a general tool control language is a useful concept, it comes with the prerequisite that the target tool
has a Tcl-interface, i.e., it has to be linked against the Tcl library. This is an unacceptable restriction for a-
posteriori tool integration, because existing tools often only provide custom interfaces and may have their own,
proprietary macro language. Also, by default, Tcl provides only a C-based API, which makes accessing Tcl
from other languages complicated and prohibits more modern approaches like object-oriented or service-oriented
programming (however, basic event-based programming is possible through basic event loops).

For the graphical toolkit, Tk, there are bindings available to other languages such as Ruby, which would ease
integration of graphical user interfaces into tools that support one of the scripting languages where there are
Tk-bindings available. Lastly, with the vast amount of extensions also comes the problem of manageability and
cross-platform support: many extensions are platform-specific and so may not be available for the target tool or
environment. Nevertheless, Tcl/Tk still represents a proven and powerful approach to tool integration and with
Tk, it is specifically targeted at desktop integration.

3.2.2.2. Java Native Interface (JNI)

JNI [Liang1999] provides low-level access to the Java VM for integrating C/C++-libraries and programs (called
“native code”) by defining a standard method for bidirectional communication between both environments, as
illustrated in Figure 3.3.

(source: [Liang1999:5])
Figure 3.3: JNI Overview

Developing a JNI interface involves several steps (c.f. [Liang1999:11]):

1. create a Java class that declares the native method

2. compile the program (using javac)

3. generate the header file (with javah)

17see XOTcl.org [http://www.xotcl.org/]

http://www.xotcl.org/
http://www.xotcl.org/

40 Current State of Integration

40

4. write the C implementation of the native method

5. compile C code and generate native library

JNI is best suited for solutions where certain portions of a program need to be optimized for speed, or where
native code such as C libraries or applications are reused to minimize implementation costs or again to gain speed
for critical portions of code. Because JNI is commonly used for integrating legacy code with Java, it was also
used as part of the original ToolNet implementation, as described in Section 5.4.

As a drawback, JNI creates a tight coupling between the Java part and the native part, and introduces significant
overhead for simple problems where only a single library has to be accessed and speed is not as important as
flexibility and low maintenance cost. To address these issues, JNA, a relatively new library that wraps JNI, was
used for realizing the prototype (see Section 6.4.1.3.3).

3.2.3. Component Based Integration Frameworks

“Dynamic Component Composition allows developers to stand on the shoulders of giants.”
--Bill Joy on the Jini network technology, 1999

On the desktop, component based software development (introduced in Section 2.3.4.2) is a popular way to
modularize applications and make them platform- and location independent. Several component frameworks are
now available: The Netscape browser introduced [XPCOM] (short for Cross Platform Component Object Model),
a cross-platform application framework which is also used as the underlying component model in the Firefox
browser and its extensions, but also for stand-alone applications that use the functionality provided by available
XPCOM libraries in a platform-neutral way, e.g. for realising networking, HTTP-communication, security, File
I/O, web service access or rendering of web pages. Inter-component communication is provided via CORBA-like
remote communication (using IDL, the CORBA interface definition standard) and there are various bindings
that enable developers to develop XPCOM components or full applications using scripting languages such as
Javascript, Python or Perl. Because of the network-centric API of XPCOM, general adoption beyond e-mail or
web-applications is sparse. The API is also very complex and involves too much overhead for general-purpose
tool integration.

Also UNO (Universal Network Objects) represents a platform-independent component model used in the
OpenOffice productivity suite and associated plugins, which can be written in any language for which a UNO
language binding (or bridge) exists, such as Java (using a JNI bridge), a .NET language (CLI bridge) or C/C
++. Tooling support is provided by IDEs, e.g., NetBeans supports the development of UNO-components (and
hence OpenOffice plugins) in Java, .NET UNO components can be developed in VisualStudio. Although UNO
could be theoretically used as a general, cross-platform component model that provides dynamic scripting access
(using a VBA bridge or the native OpenOffice Script), it is closely modeled after the needs of an office suite and
lacks more general-purpose platform features. Similarily to XPCOM, the API is grown and complex to work
with, introducing a barrier for ad-hoc tool integration.

The Eclipse Rich Client Platform (RCP) [EclipseRCP] provides a modular tool platform for developing cross-
platform, component-based Java applications with graphical user interfaces. The underlying component frame-
work, Equinox [Eclipse2008], implements the now widely-used OSGi specification (see below), which provides
the needed plugin-functionality and configuration management. Components (called Bundles in OSGi) can be
dynamically installed, updated and removed18, and component inter-dependencies or versioning conflicts are

18While the OSGi specification explicitly allows dynamic configuration, this is not fully implemented in Equinox, as it is very hard to realize
without risking ClassCastExceptions when a component references a service that is not available anymore and forgets to refresh
its dependencies. As a result, Eclipse recommends the user to restart the application when installing or removing plugins. This is also a
heritage of previous Eclipse-versions (<3.0), where a proprietary component model was used that did not provide advanced configuration
management features that are now supported by OSGi.

Component Based Integration Frameworks 41

41

resolved by an intelligent classloading mechanism and automatic dependency management. The user interface
is provided by the SWT toolkit, a set of standard UI components similar to Java Swing, but using native user
interface controls on supported target platforms. A full definition of the RCP is given below:

While the Eclipse platform is designed to serve as an open tools platform, it is architected so that
its components could be used to build just about any client application. The minimal set of plug-
ins needed to build a rich client application is collectively known as the Rich Client Platform.

—from the Eclipse RCP Wiki19

The Eclipse IDE is probably the best known implementation of an RCP-application, but several other tools and
also domains outside software engineering are starting to utilize RCP, making use of common functionality and
the modular foundation provided by the RCP framework, as shown in Section 3.2.4.2.1.

From this variety of custom frameworks, one plugin framework has evolved as a de facto standard, being open-
ly developed by a cross-vendor organization and supported by an increasing number of projects (such as the
previously mentioned RCP) and products: OSGi, which is covered in the next section. Prominent examples of
component frameworks in the Java world are discussed in Section 3.2.3.2 below.

Lastly, there is even a component based operating system called ES20, which is an effort to build an operating
system that fully embraces a component based approach and integrates ECMAScript (the standardized JavaScript
variant) at the system level, allowing access of both application and system components in a uniform way using
IDL interfaces. This approach is promising since it provides scripts with full access to other applications and
also to system level functionality, however for integrating existing tools this is not an option, as it depends on
a single scripting language and operating system.

3.2.3.1. OSGi Service Platform

OSGi (specified in [OSGi2006], an overview is given in [OSGi2007]), stands for Open Services Gateway Ini-
tiative and “allows application programmers to develop small and loosely coupled components, which can adapt
to the changing environment in real time. The platform operator uses these small components to compose larger
systems.”21. OSGi defines a component framework and related services and was originally targeted at embed-
ded systems (e.g. TV settop boxes, but also automotive systems) to provide a unified, dynamic module system
that handles dependencies between components that may have been developed by different vendors and allows
on-the-fly reconfiguration and recomposition. This is in contrast to static component frameworks that require
restarting or manual reconfiguration of the environment when a component is added or removed.

OSGi components, called Bundles, are simple JAR archives containing a standard manifest file with OSGi-spe-
cific headers that define provided and consumed Packages (exposed or required by other components). A com-
mon service registry handles publishing of and querying for services based on their public interface, which can
then be used like a proxy. These three framework functions provide the basis for service oriented component
integration, which is a very powerful but simple concept that can be applied very well to solve fragmentation,
lack of reuse and poor application integration caused by version conflicts and dependency issues.

The underlying architecture of OSGi is shown in the following illustration, Figure 3.4.

19 http://wiki.eclipse.org/index.php/Rich_Client_Platform
20see Introduction to the ES operating system [http://code.google.com/p/es-operating-system/wiki/XV_Semana_Informatica]
21from OSGi technical whitepaper [http://www.osgi.org/documents/collateral/OSGiTechnicalWhitePaper.pdf]

http://wiki.eclipse.org/index.php/Rich_Client_Platform
http://wiki.eclipse.org/index.php/Rich_Client_Platform
http://code.google.com/p/es-operating-system/wiki/XV_Semana_Informatica
http://code.google.com/p/es-operating-system/wiki/XV_Semana_Informatica
http://www.osgi.org/documents/collateral/OSGiTechnicalWhitePaper.pdf
http://www.osgi.org/documents/collateral/OSGiTechnicalWhitePaper.pdf

42 Current State of Integration

42

(source: [OSGi2007:11])
Figure 3.4: OSGi architecture

OSGi became widely known in the software world when the Eclipse platform migrated from a proprietary com-
ponent model to an open source implementation of the OSGi framework, called Equinox [Eclipse2008], which
since then serves as the OSGi reference implementation; other open source implementations include [ApacheFe-
lix] or [Knopflerfish]. The adoption of OSGi across the software development industry finally created a standard
component model for desktop applications in the Java world, facilitating dynamic composition of service-based
applications and tool platforms (see also Section 3.2.3.2 below). With several OSGi-based component reposito-
ries22 available, a rich and open market place for interchangable components is currently emerging23.

Moving beyond the desktop domain, also the enterprise domain is in the process of adopting OSGi as a component
model, e.g., the Spring framework (see Section 3.2.3.2 below) has recently added support for OSGi components,
and several application servers (Glassfish, BEA Weblogic, JBoss) are adopting OSGi as the underlying module
system. The OSGi consortium formed an expert group24 to cater for this emerging target domain.

Despite the benefits of a standardized and service-oriented component framework however, there are several
limitations for applying OSGi as a tool integration framework, as it is targeted at a too low level for general
purpose integration. The main focus is on the component model, not on a general, high-level infrastructure with
reusable integration services or advanced, network-transparent message routing. Also, the manifest format is
very limiting and does not provide enough information for tool integration; using a well established standard
interface definition for services such as WSDL would have been preferable25. Although OSGi provides a Services
concept, it only supports OSGi services provided by components, Web services are not supported. Also, the
OSGi deployment model is currently limited to a single runtime, although efforts to make OSGi distributed are
underway (c.f. [Jahn2008]), as part of Enterprise OSGi, see also project Corona in Section 3.2.4.2.1).

OSGi can therefore be used as a solid foundation to build a higher level integration framework that applies
the concepts and solutions and adds necessary framework parts, as demonstrated by [Coalevo], an open source,
OSGi-based service-oriented collaboration framework: Coalevo introduces Protocol Service Bundles to bridge
communication protocols (e.g. HTTP, SSH), and Protocol Adapter Bundles to mediate between protocol and
application services (e.g., presence, messaging, or user data). While the implementation is only in an early stage,
the concepts are very similar to the Java Business Integration standard (see Section 4.2), which provides corre-
sponding BindingComponents and ServiceEngines, respectively.

22see OSGi Bundle Repository (ORB) [http://www.osgi.org/Repository/HomePage], Eclipse Orbit [http://www.eclipse.org/orbit/] and re-
cently the SpringSource Enterprise Bundle Repository [http://www.springsource.com/repository/app/]
23This could well be the component market as envisioned in Component Software [Szyperski2002], chapter 2.
24see The OSGi EEG home [http://www.osgi.org/EEG/HomePage]
25while this is currently being investigated for inclusion into a later revision, it is already supported in e.g. Java Business Integration, which
is covered in Chapter 4, but comes with it own problems

http://www.osgi.org/Repository/HomePage
http://www.osgi.org/Repository/HomePage
http://www.eclipse.org/orbit/
http://www.eclipse.org/orbit/
http://www.springsource.com/repository/app/
http://www.springsource.com/repository/app/
http://www.osgi.org/EEG/HomePage
http://www.osgi.org/EEG/HomePage

Component Based Integration Frameworks 43

43

3.2.3.2. Java Component Frameworks

In the Java world, components (or Beans) are the standard building blocks for applications and application re-
sources. They are runnable (in Java SE) or deployable (in Java EE) artifacts that adhere to component standards
and related contracts, specified through several JSRs. Examples include simple JARs for applications and li-
braries, JNLP (Java Network Launching Protocol)-packages for deployment over web browsers (termed “Java
WebStart”), JMX MBeans used for management access, Enterprise Java Beans (EJBs) for web or enterprise
applications and JCA Adaptors specified by the Java Connector Architecture (see Section 3.3.7.1) packaged as
Resource Adapter Archives (RARs).

In the same way, these concepts are also examples for component integration: from functional integration in
JARs to service-oriented integration in EARs or enterprise integration in RARs. Some solutions are more tightly
coupled (like communication between Enterprise Java Beans over RMI), while others allow loose coupling (e.g.,
accessing JMX MBeans using a web interface).

JMX reaches even further by integrating applications into management consoles, crossing network and protocol
boundaries: management standards such as SNMP are supported, allowing administrators to connect to managed
applications using existing, commercial off-the-shelf management consoles such as HP OpenView, but also open
source solutions such as OpenNMS26. Also HTTP and other bindings are provided, allowing web based access
to managed applications.

JMX combines several forms of integration in a transparent, uniform API: presentation integration in the man-
agement interface provides a combined user interface for controlling and inspecting managed applications (which
provide parts of the user interface), protocol integration through JMX Protocol Adapters bridges different access
methods and standards, such as HTTP, SNMP, WBEM27 or IIOP. On a higher level, JMX realizes application
integration by connecting managed applications to a central management application. The implementation is
realized through component integration, using JMX MBeans to provide a management façade for the managed
application.

Besides official standards, open source plugin frameworks such as the JavaPluginFramework [JPF] or Ope-
nAdaptor (see Section 3.2.4.1), which use existing Java component standards and provide additional integration
services such as pipes and also Adapters for integrating with external protocols and existing applications or other
facilities such as message queues.

In the Java enterprise domain, there has been a strong trend in recent years towards to more dynamic and open
component frameworks such as Spring and OSGi (see previous section), complementing or replacing well estab-
lished standards defined in the JEE specification. This movement has been spearheaded by the Spring framework
[Spring], an open source Java component framework. Spring realizes lightweight component integration through
dependency injection (also called Inversion of Control28), a concept which eliminates the need for hardcoding
references to data sources and other artifacts such as JCA Adapter configurations or database configurations, by
using XML configuration or metadata (Java Annotations). At runtime, the framework inspects the configuration,
resolves all references contained, and “injects” the targets into proxy (or placeholder) objects provided by the
application, using Java Reflection.

While dependency injection alone is not enough for tool integration, it provides an essential foundation and
allows connecting external sources dynamically at runtime through a loosely coupled component model. On

26see the OpenNMS.org site [http://www.opennms.org/], which also provides an example for application integration using compo-
nent integration and scripting, which is described in the white paper Hyperic Integration [http://www.opennms.org/images/3/3a/Hyper-
ic-integration3.pdf]
27for Web-Based Enterprise Management, a management standard created by the Distributed Management Task Force (DMTF), see the
DMTF WBEM page [http://www.dmtf.org/standards/wbem/]
28this concept was first introduced by Kent Beck in his essay “Inversion of Control Containers and the Dependency Injection pattern [http://
martinfowler.com/articles/injection.html]”

http://www.opennms.org/
http://www.opennms.org/
http://www.opennms.org/images/3/3a/Hyperic-integration3.pdf
http://www.opennms.org/images/3/3a/Hyperic-integration3.pdf
http://www.opennms.org/images/3/3a/Hyperic-integration3.pdf
http://www.dmtf.org/standards/wbem/
http://www.dmtf.org/standards/wbem/
http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html

44 Current State of Integration

44

this basis, external tools could be integrated as needed by changing the configuration, but in practice dynamic
reconfiguration does not work because of Java classloading restrictions that make it almost impossible to add or
remove modules at runtime. Also, the Spring framework has lacked service oriented concepts (see Section 3.3.3
below) and relied on Java Beans as the underlying component framework. Lastly, there are no integration
facilities like Adapters or Translators, and there is no declarative way to specify the desired integration structure.

These shortcomings have recently been addressed by the Spring Dynamic Modules for OSGi project [SpringDM]
and [SpringIntegration] (see Section 3.2.4.1 below). The former uses OSGi as the component model, but hides
the complexity involved in creating OSGi bundles and manifests with explicit references. By using a dynam-
ic component framework like OSGi, it solves classloading problems, enabling truly dynamic solutions which
allow installation, starting, stopping and removing of components at runtime. This allows the addition and re-
configuration of Tool Adapters as needed, which is an important requirement in adaptive integration solutions.
Higher-level integration concepts and patterns are implemented with Spring Integration, which is covered in
Section 3.2.4.1 below.

In order to retrofit current independent Java component frameworks that have become de-facto standards back
into the broader JEE-standard, several new JSRs have been issued, the most important are JSR 277, which defines
the API and deployment specifications for a dynamic Java module standard in a more static way, and JSR 291,
which directly integrates the OSGi component specification into the core platform and also covers the dynamic
aspects of the component framework. Both JSRs are planned for inclusion into Java 7, which is to be released
in the first half of 200929.

3.2.4. Current Tool Integration Solutions on the Desktop

This section provides a compact overview of currently available tool integration frameworks, which combine
several patterns and concepts presented above to provide a basis for concrete tool integration solutions, which
are covered as well.

3.2.4.1. Open Source Solutions

“Modularization of code has made software and its component parts more interchangeable, and created op-
portunities for niche market players to reassemble components to make new products and services.”

--from [Samuelson2006]

OpenAdaptor [OpenAdaptor2007], [Lachor2008] is a typical component integration framework for Java, as men-
tioned in Section 3.2.3.2 above. The lightweight enterprise integration-framework can also be used to integrate
desktop applications. Connectors realize protocol bindings for connecting input sources and output sinks
(e.g., protocols like HTTP, FTP, JMS, SOAP or simple files), whereas Processors translate between different
data formats (XML, CSV, JDBC ResultSets). The resulting solution acts as a pipeline that realizes the desired
integration functionality.

The framework has been used in commercial settings for various enterprise integration projects and has been
recently rearchitected, using Java Beans as the underlying component model and Spring for configuration. Un-
fortunately, Java Beans lack more sophisticated mechanisms for specifying dependencies and they do not sup-
port a dynamic lifecycle (see above). Consequently, most frameworks and solutions, including JEE application
servers, are currently migrating to OSGi as the underlying component model, which provides rich support for
dependencies and dynamic deployment, undeployment, start and restarting of components. Additionally, OSGi
provides a service-oriented programming model is available and offers dynamic provision, search and consump-

29for a good overview of the current status of Java component standards form past to present, including JSR 277 and JSR 291, see the article
“The case for Java modularity [http://www.javaworld.com/javaworld/jw-08-2008/jw-08-java-modularity.html]” (JavaWorld 08/2008)

http://www.javaworld.com/javaworld/jw-08-2008/jw-08-java-modularity.html
http://www.javaworld.com/javaworld/jw-08-2008/jw-08-java-modularity.html

Current Tool Integration Solutions on the Desktop 45

45

tion of Services at runtime. These aspects are missing from OpenAdaptor, which only supports hard-wired, stat-
ic configurations, where pipelines cannot be changed at runtime. Integration is only supported at the data and
functional level, and routing has to be implemented in custom Adaptors. There is also no tooling available, so
integration has to be done by hand and through manual XML configuration and coding.

Spring Dynamic Modules for OSGi [SpringDM] is a modern component integration framework for Java EE that
uses OSGi as the component model and provides a façade to JEE developers for transparent integration with
existing Spring configurations and other Java EE frameworks and standards (e.g. JPA and persistence libraries).
Closely related but targeted at higher level integration is the emerging Spring Integration [SpringIntegration]
project, which realizes the integration patterns found in [EIP] by providing various Adapters (e.g. File, remote
messaging) that can be configured via common Spring configuration mechanisms (such as XML files). Custom
Adapters can be realized as simple Java Beans that are later connected through configuration. Although this
concept enables loosely coupled integration solutions, there is also the danger of increasing complexity and
scalability problems as integration scenarios get more sophisticated, which is a major argument for model-driven
integration, see Section 3.3.6. It has to be seen when and how Spring Integration will be integrated into the
common Spring tooling platform, which is available as an Eclipse plugin.

[Apatar] is a visual data integration solution that supports the extract, transform and load (ETL)-pattern and
offers connectors for common databases and third party legacy applications. The solution is open source and
cross-platform (realized in Java), and the designer is based on the Eclipse platform. Integration architects build
so called data maps using familiar design concepts (endpoints represent applications, which are connected via
edges to Transformer components). The resulting data maps can then be embedded as a server-side application or
directly incorporated into custom solutions. The community site also acts as a repository where existing solutions
can be reused and searched for, and new contributions may be shared. Although Apatar may be used for appli-
cation integration on the desktop, like OpenAdaptor, because it is relatively lightweight and can be embedded
into custom applications, it is mainly targeted at enterprise integration, as covered in Section 3.3.3.3.1.

The remaining open source solutions mainly build on Eclipse and associated integration and modeling facilities,
which is covered in Section 3.2.4.2.1 below.

3.2.4.2. Eclipse as an Integration Platform

Eclipse is an open source community whose projects are focused on building an open develop-
ment platform comprised of extensible frameworks, tools and runtimes for building, deploying
and managing software across the lifecycle.

The [Eclipse] project is an open source development platform based on a plugin-based core, Equinox
[Eclipse2008], which is the reference implementation of the OSGi (Open Services Gateway Initiative)-specifi-
cation (specifically, the framework-part) as defined in [OSGI]. The specification defines a framework for com-
ponent-based systems, which are entirely based on reusable, loosely coupled modules (called Plugins in Eclipse
and Bundles in OSGi). Plugins are components that follow a common contract (specified by an XML configura-
tion, the plugin manifest) for defining dependencies on other plugins, and for exposing the own functionality for
reuse inside the framework. This information is separated out from the plugin implementation so that dynamic
discovery of dependent plugins is possible on demand, when a plugin is loaded into memory. OSGi concentrates
on deployment, discovery and lifecycle-management and allows dynamic reconfiguration, e.g., installing or re-
moving plugins, without having to restart the runtime.

The minimal set of plugins required to run an Eclipse-based application, including the required Java Runtime
Environment (JRE), form the Rich Client Platform (RCP), which enables the adaption of Eclipse for a wide
array of applications, far beyond the well known Java IDE, which is also realized through a set of plugins, the
Java Development Tools (JDT). This platform can be used as a foundation for plugin-based applications that run
independently of Eclipse and are tailored to custom requirements and projects, while still being able to reuse

46 Current State of Integration

46

existing plugins as part of the individual solution. Viewed from this perspective, the Eclipse Java IDE itself is just
a specialized RCP application targeted at software development, using a coherent set of development-oriented
plugins (the JDT and related extensions such as the Web Tools Platform (WTP) for JEE development).

Figure 3.5 shows an overview of the RCP architecture, denoting the essential plugins needed for an Eclipse
application-runtime.

(source: [EclipseRCP:14])
Figure 3.5: Eclipse RCP architecture overview

Examples for solutions that use the RCP include the IBM Rational product line, Lotus Notes, NASA Maestro (a
solution to remote-control space vehicles), business reporting and workflow systems (using Eclipse BIRT), or
solutions for healthcare, and of course ToolNet (see Chapter 5).

The RCP is also moving towards the embedded domain with [eRCP], which allows to build RCP applications for
mobile and embedded devices (it is already supported by Nokia's S60 OS). At the same time, the RCP is moving
towards the web and server-side applications with the Rich Ajax Platform (RAP) [EclipseRAP], following the
current trends in desktop and web convergence. RAP allows developing rich web applications based on the
Eclipse plugin model and the SWT UI toolkit: “RAP is very similar to Eclipse RCP, but instead of being executed
on a desktop computer RAP is run on a server and clients can access the application with standard browsers. This
is mainly achieved by providing a special implementation of SWT (a subset of SWT API).”31.

[EclipseRCP] provides detailed coverage on developing RCP-based applications, while [Eclipse2006] gives a
good introduction to Eclipse in general and the RCP in particular.

3.2.4.2.1. Current Tool Integration Solutions based on Eclipse

A more modern and scalable approach is to create a multi-layered interoperability framework leveraging
SOA technologies. Tools can be orchestrated to provide repeatable, efficient processes that are responsive to

changes in business needs by building upon an interoperable and collaborative collection of services and com-
ponents. The tool provider can expose as much (or as little) as they choose and the consumer of these tech-

nologies will have the ultimate control over how these technologies are orchestrated together.
--Eclipse Whitepaper Integration and Interoperability of Application Lifecycle Management tools

31from the project homepage [http://www.eclipse.org/rap/about.php]

http://www.eclipse.org/rap/about.php
http://www.eclipse.org/rap/about.php

Current Tool Integration Solutions on the Desktop 47

47

Eclipse provides a component-based framework for integrating software tools into a common working environ-
ment, as proposed in [Yang2007]: “Fundamentally, Eclipse is a framework for plug-ins. [...] Other tools plug
into this basic framework to create a usable application. Plug-ins add functionality through predefined extension
points that the Eclipse platform offers.”. This concept is illustrated in Figure 3.6 below:

(from [Yang2007])
Figure 3.6: Eclipse as a Tool Integration Platform

By using a common component model (OSGi), tools are realized as components and connected in a loosely-cou-
pled way by publishing extension points that other tool components can reuse and extend further. The OSGi-based
component model, which constitutes the Eclipse Rich Client Platform (RCP), was introduced in Section 3.2.3.

Although “Eclipse simplifies tool integration by allowing tools to integrate with the platform instead of each
other.” [Amsden2001], it only provides the base platform to build such a solution, but does not include needed
tool integration facilities like Tool Adapters, data translators or a common communication infrastructure like a
message bus. This is also noted in [OMG2004]: “[…] tool coordination frameworks, such as Eclipse, provide
tool chain integration for data and control flows, but do not take into account semantic integration issues. New
standards and facilities for formally representing and transforming tool data are required.” (one emerging standard
is JBI, which will be covered as part of the proposed solution in Section 4.2).

This section therefore presents relevant tool integration solutions that build on the Eclipse framework but add
advanced tool integration functionality.

With the exception of the ToolNet-framework [ToolNet], which is covered separately in Chapter 5, there are very
few Eclipse-based solutions suitable for general tool integration. Most existing solutions focus on model-based
integration (see Section 3.3.6), building on top of the Eclipse Modeling Project32 and its sub projects, such as
EMF (Eclipse Modeling Framework), GMF (Graphical Modeling Framework) or related framework projects for
model transformation and UML modeling. An example for such a solution is [OpenArchitectureWare], which
can be shortly defined as “a tool for building model-driven tools.”. The open source solution implements com-
prehensive tool support for metamodeling based on the EMF and provides a rich template language (Xpand) for
complex code generation.

TOPCASED (Toolkit In OPen source for Critical Applications and SystEms Development, [TOPCASED2008])
is a project to create an open CASE platform for engineering (mainly automotive and aeronautic engineering,

32see Eclipse Modeling Project [http://www.eclipse.org/modeling/]

http://www.eclipse.org/modeling/
http://www.eclipse.org/modeling/

48 Current State of Integration

48

project members include SiemensVDO and also EADS), based on open source technologies and formal methods.
The focus lies on ensuring long-term availability (hence the requirement for open source modules) and reliability,
both due to the target domains. Engineering tools are integrated via meta-models (using the Eclipse ECORE
meta-modeling language), and so-called “meta-tools” capture common configuration and functionality shared
between tools. Various proprietary technologies are exchanged with custom built open source solutions, e.g. for
requirements tracing or validation. TOPCASED embraces the Eclipse infrastructure and reuses existing projects
where possible. Client tools (either TOPCASED editors or proprietary tools) are connected to a service-oriented
bus that is actually a set of Eclipse-plugins providing common infrastructure services. Remote tools are connected
via a SOAP Adapter. The main goal is to provide a reliable platform for systems development, as such it is rather
static and not aimed at dynamically integrating tools (before adding new tools, a formal validation is required).

The Open System Engineering Environment (OSEE) is an Eclipse-project that “provides a tightly integrated en-
vironment that supports lean engineering. It is integrated around a simple, user-definable data model to eloquent-
ly provide bidirectional traceability across the full product life-cycle […]” (from the project homepage33). The
project aims to support the V-model, but is still in incubation phase. Like TOPCASED, it is more of a static
development platform that is not suited for dynamic, user-centric tool integration with a focus on transparent
tool-to-tool integration and user-interface integration.

The aforementioned projects show that Eclipse can provide a useful basis for building CASE platforms, but for
more general tool integration, two recent Eclipse-projects are of particular interest: Corona is a tool services
framework similar to an Enterprise Service Bus (see Section 3.3.3.2) that connects distributed Eclipse instances,
providing location transparency for Eclipse-based tools. This allows remote tool collaboration between client and
server based tools. The Application Lifecycle Framework ALF realizes an event-driven workflow integration of
tools on top of a common infrastructure, enabling tool orchestration from an integrated business process, where
events are routed between collaborating tools. Together, these frameworks provide a way to build integrated
processes and tool chains, as described in [Parker2006].

While a combination of ALF and Corona provides many features required for a general tool integration frame-
work, but lacks facilities or standards for integrating external components that are not built for the Eclipse plat-
form – tools are assumed to be OSGi components; for existing tools, Adapters have to be provided. Also, the
communication backbone in Corona adds some ESB services missing in the standard Eclipse platform, but leaves
many others up to developers, e.g., message translation, advanced routing and many other enterprise integration
patterns found in [EIP]. For remote communication, only web services are provided, which has shown to be prob-
lematic for loosely-coupled and dynamic integration in Section 3.3.3.1. Lastly, there is no common concept for
integrating existing, non-Eclipse tools using standards like JCA or other Adapters. This Eclipse or OSGi centric
view does not reflect the rich and heterogeneous tool landscape encountered in the target domain of this worok.

The Eclipse SOA Tools Platform (STP) [EclipseSTP2006], [Mos2008] is targeted at service-oriented integration
(see Section 3.3.3) and provides tool support for building composite applications for an SOA environment. The
solution consequently applies a model-based approach throughout the process, using model-transformation to
adapt to different models encountered in the SOA world, such as the Service Component Architecture (SCA)-stan-
dard. Support for Java Business Integration (JBI) is planned for a later stage. In the meantime, ChainBuilderIDE
and the NetBeans CASA editor provide visual SOA tooling for JBI, as shown in Section 4.2.3.

Project Swordfish [Swordfish] builds on the aforementioned SOA Tools Platform and provides an accompanying
runtime framework for an SOA, based on OSGi and integrating standards like JBI (using the ServiceMix kernel),
which is used to integrate with existing business applications over Adapters and for integration into BPEL pro-
cesses, and SCA, which is used for describing and packaging composite services. The architecture resembles an
OSGi-based ESB, as shown in Figure 3.7 below:

33see The Open System Engineering Environment Homepage [http://www.eclipse.org/osee/]

http://www.eclipse.org/osee/
http://www.eclipse.org/osee/

Current Tool Integration Solutions on the Desktop 49

49

(from , [Swordfish], Eclipse creation review)
Figure 3.7: Architectural overview of Project Swordfish

With the exception of the emerging Project Swordfish34, Eclipse based solutions tend to emphasize on the (cen-
tralized) orchestration of tools, whereas this work seeks to realize a framework that provides (decentralized)
choreography of tools, allowing tools working together in a peer-to-peer fashion. The “Eclipse way” is more
about integrating tools into a central workplace, whereas tool integration in this work is more about connecting
tools as-is in a service-oriented and user-centric way, sharing data and functionality, but at the same time staying
within original tools and providing a rich integrated user experience.

3.2.4.3. Commercial Solutions

While a multitude of enterprise integration solution exists today, there are still few examples of integration
solutions that specifically target the desktop. This section presents two similar solutions that use an approach
called composite service integration (CSI) or client-side integration (as opposed to enterprise- or server-side
integration), which is different from the other integration solutions presented in this chapter.

[OpenSpan2008] is a closed commercial solution that has been designed to solve integration problems on the
Windows/.NET platform and has already been successfully deployed in several projects, e.g., in the call center
domain. OpenSpan dynamically inspects target applications to be integrated and exposes the application's ob-
jects and methods as building blocks and services that can later be combined to new, composite applications.
OpenSpan provides so-called Integrators for several application types, from main frame (green screen applica-
tions) applications over Java applications to typical Win32-applications. Also web services are supported, and a
major vision of OpenSpan is to connect legacy applications to the SOA world, allowing communication between
existing applications with new, web service based applications, allowing to create mashups that reach beyond the
web, into the desktop. For integration architects, a visual designer is provided that allows inspecting the target
application's interface for needed parts (e.g., text fields) and functionality (e.g. a "Send" button), which are then
automatically extracted and exposed for later reuse in the composite application designer.

AppIntegrator35 uses a similar approach and has been used for integrating applications in several domains such
as healthcare, content management, education, or in insurance companies. Additionally, document management
capabilities can be added through a separate integration product, DocConnector, which interfaces with existing
document and content management systems.

34planned for release in October 2008
35see the company site Karoroa.com [http://www.karora.com/appconnector/appconnoview.htm]

http://www.karora.com/appconnector/appconnoview.htm
http://www.karora.com/appconnector/appconnoview.htm

50 Current State of Integration

50

While these products provide a compelling way for rich application integration on the desktop and into the en-
terprise and web domain, the costs and dangers of those seamingly easy and powerful integration approaches
are manifold: They are closed and proprietary, as there is no uniform, standards-based description of the applica-
tions' interfaces, so the resulting solutions are bound to a single integration product, bearing the danger of vendor
lock-in; also new types of applications (e.g., scripts and applications realized with dynamic languages) cannot
be added without vendor support. The resulting integration is mostly static, as new components cannot be added
on the fly without rearchitecting and redeploying the entire solution. As these solutions integrate mostly at the
method and interface level, there is a tight coupling between applications, where methods and services are called
directly, and user interface elements are accessed by their object names, rather than using dynamic lookup or
logical names as in service-oriented applications. Lastly, the proposed visual-centric integration approach may
result in “quick-and-dirty”, grown solutions that simply perform point-to-point integration, which is an anti-pat-
tern because of bad scalability, maintenance, and adaptability.

3.2.4.4. Tool Integration in other domains

Although this thesis focuses on tool integration in software engineering, it is worth noting that also other areas
have seen the need for tool integration and some standards have evolved, especially in media creation, where it is
very common to utilize a wealth of highly specialized tools for working on the many aspects of media creation.

[Verse] is an example for a successful tool integration standard in the digital media and computer graphics or
game creation domain, see [Brink2001]:

Normally the content, tools and rendering technology are very tightly interlocked. The engine
can only take specific data that is made with very specific tools. By separating the three we
create a much more dynamic pipeline where the content is stored in Verse format that is not
looked to one specific rendering technology or tool.

—from the Verse homepage36

The standard defines a common low-level network protocol, 3d data format and repository for artifacts or assets
that artists create during their work, such as models, textures, scripts or audio and video data. Artists can work on
the same data, which is connected through data linking, in a distributed environment, which is not uncommon in
the media creation space. Several 3d programs, like Blender, 3D Studio MAX or The GIMP already support the
Verse protocol. Verse is however not suitable for use in a more general tool integration context, as it is clearly
targeted at a specific domain. While it abstracts from individual tool formats and APIs, Verse introduces tight
coupling through the use of method-level control integration (e.g., via callback functions). However, the Verse
vision shows the potential of tool integration and the mutual benefit that comes from bridging disparate tools
and data.

[AutoSAR] (short for “AUTomotive Open System ARchitecture”) is a standards effort in the automotive domain
that “defines a standardized component model consisting of a clear programming language mapping (syntac-
tically) and a file format for component requirement and capability description.” (from the specification). Au-
tomotive applications are composed of components that are connected over a “Virtual Function Bus” (VFB),
which can be seen as the logical layer above hardware bus systems such as LIN or CAN, which are common in
vehicle systems. The standard “supports the way towards an integrated and tightly coupled tool chain for auto-
motive software development.”. Interestingly, the standard does not mention the OSGi component framework
(introduced in Section 3.2.3.1), which has a long history in the embedded domain, whereas AutoSAR's compo-
nent model seems to be completely independent and proprietary. OSGi, on the other hand, is investigating an
implementation targeted at the automotive domain through its OSGi Vehicle Expert Group37, as major market
players such as BMW expressed interest in adopting OSGi. Naturally, the same critique is true for this standard

36 http://www.quelsolaar.com/verse/pipeline.html
37see the web site at OSGi Vehicle Expert Group [http://www.osgi.org/Vehicle/HomePage]

http://www.quelsolaar.com/verse/pipeline.html
http://www.quelsolaar.com/verse/pipeline.html
http://www.osgi.org/Vehicle/HomePage
http://www.osgi.org/Vehicle/HomePage

Related Approaches in Enterprise Integration 51

51

as for other component centric standards, with the exception that OSGi is moving towards the enterprise space
and provides a rich Java API including service oriented concepts that make it a better candidate for using it as
a base for a tool integration solution.

3.3. Related Approaches in Enterprise Integration
“[…] you need a logical design at the integration level, just like you need a logical design at the application

level.”
--[Trowbridge2004]

The first part of this chapter has shown various integration concepts and solutions targeted at the desktop. From
this analysis, it can be concluded that a general tool integration framework needs to incorporate higher-level
standards and solutions in order to provide a more dynamic and general solution. In the enterprise domain, there
is a similar need for a reusable integration infrastructure, and several patterns and solutions are already available.

While earlier enterprise integration efforts were limited to custom built point-to-point integration solutions or
vendor-specific proprietary middleware, there are now many higher level solutions available, building on estab-
lished open standards that evolved from practical experience gained through integration projects in the industry.
This section covers concepts, patterns and best practices collected through research and through landmark work
like [PofEAA], which concentrates on designing and implementing service-oriented applications, and [EIP],
which introduces a common set of patterns that describe how to integrate applications using messaging and re-
lated concepts.

3.3.1. Definitions

Before continuing with a survey on concepts in enterprise integration that are important for understanding the
proposed solution, the general context of enterprise integration and associated terms are defined. The remainder
of this chapter presents concrete solutions that are adapted and applied to solving the problem of desktop tool
integration in Chapter 4.

First, a service-oriented architecture (SOA) is the currently most widespread design paradigm in the enterprise
domain, with the key principle of “encapsulating application logic within services that interact via a common
communications protocol.” [Erl2004:51]. Web Services are a common way to implement an SOA, but there are
other ways to adopt service-oriented principles, as shown in Section 3.3.3 below. In an SOA, service interfaces
are defined using the WSDL standard and messages are exchanged in XML-format, as specified by the SOAP
protocol standard, usually over HTTP38.

Enterprise integration, according to [EIP:39], “is the task of making disparate applications work together to
produce a unified set of functionality.”. If we replace “applications” with “tools”, it becomes clear that tool
integration has much in common with enterprise integration, thus it is worth examining exiting solutions in
enterprise integration for applicability to (desktop) tool integration.

The general term middleware has been used for various enterprise integration solutions, which have previously
been mostly message-oriented and consequently been called message-oriented middleware (MOM), which is
defined in [ESB:77] as “a concept that involves the passing of data between applications using a communication
channel that carries self-contained units of information (messages).”. The recent shift towards SOA has resulted
in more open and flexible middleware solutions, which is reflected in the definition given in [Schmidt2006]:
“In SOA middleware, software components provide reusable services to a range of application domains, which
are then composed into domain-specific assemblies for application (re)use.”. JEE, .NET, and the (now largely

38see also Thomas Erl's web site whatissoa.com [http://www.whatissoa.com/]

http://www.whatissoa.com/
http://www.whatissoa.com/

52 Current State of Integration

52

obsolete) CORBA Component Model (CCM) are then given as example. In today's integrated enterprise world,
this is a very generic definition, and the given examples are growing into application platforms that are integrated
themselves, using a modern integration infrastructure such as the Enterprise Service Bus (see Section 3.3.3.2),
which can then be viewed as a “middleware for middleware technologies” (c.f. [Juric2007]).

Recently, because of the complexity and infrastructural demands of the SOAP-protocol typically used in an SOA,
REST [Fielding2000] has emerged as a lightweight alternative and is increasingly used in small to medium-sized
web applications, forming a new paradigm of resource-oriented computing, see Section 8.5.

But there is more to SOA than a set of technical standards, as noted in [OASIS2008:10]: “From a holistic perspec-
tive, a SOA-based system is a network of independent services, machines, the people who operate, affect, use,
and govern those services as well as the suppliers of equipment and personnel to these people and services.” (c.f.
[Erl2004:476], who provides a similar view of the far-reaching scope of SOA).

In a similar way, the concepts presented below mostly work hand in hand, and integration solutions usually apply
a mix of several techniques, because, as will be demonstrated below, each approach has advantages and weak-
nesses. It is therefore necessary to evaluate current best-of-breed enterprise integration solutions and patterns
from server-side environments for applicability to client-side tool integration. Although commercial solutions
are not an option in the context of this thesis, which proposes an open tool integration platform, they are briefly
covered as a reference and evaluation of useful concepts.

3.3.2. Message Based Integration

Whereas previous approaches to enterprise integration often used synchronous, functional integration using RPC-
style method invocation or proprietary message-oriented middleware (see Section 2.6.1), modern message-based
integration solutions are based on common, open message formats (often standardized and XML-based) for
application-neutral message-exchange. A message is defined as “an atomic packet of data that can be transmitted
on a channel.”, where a message channel is “a virtual pipe that connects a sender to a receiver” [EIP:57].

Current solutions include APIs like JEE's Java Message Service ([JMS]), which implements a message queue
for realizing transparent messaging between Enterprise Java applications, as shown in [EIP:187]. The message
queue is responsible for connecting message senders to receivers and for ensuring reliable transmission of mes-
sages, even when the receiver is not available all the time. Applications can send and receive messages syn-
chronously (e.g., by implementing the request-reply pattern, see [EIP:154]), or asynchronously by subscribing
to messages of interest and sending messages to the message queue without waiting for a response, following
the publish-subscribe pattern [EIP:106], which is an implementation of the Observer-pattern ([GoF:293]). When
a message of interest arrives, a callback method is called on the subscriber. If the receiver is not available, the
message is queued and delivered as soon as the receiver becomes available again.

Using messages for integration provides many benefits and possibilities such as message inspection (e.g., for
ensuring the existence of a session token), message enrichment (e.g., adding metadata), or message transforma-
tion (e.g., between proprietary formats). Message queues also provide location transparency, eliminating the
need for explicit remote communication, and endpoint transparency through the message router pattern [EIP:78],
which enables more flexible addressing of receivers by logical names, message properties or even search criteria.
By using a canonical message format [EIP:355], application-specific formats are translated to a common format
before they are sent over the wire, thus abstracting from internal data formats and enabling collaboration between
disparate, incompatible applications.

Messaging thus allows loose coupling of interested parties using a common communication infrastructure, and
is used as the “backbone” in many tool integration solutions, such as [Karsai2003], which implements the OTIF
standard. Modern message-based integration solutions provide a message bus where applications can be plugged
in and communicate dynamically with other applications on the bus but also to common infrastructure services

Service Oriented Integration 53

53

and frontends. A recent adaptation of this concept is the Enterprise Service Bus (see Section 3.3.3.2 below), a
service oriented approach (see below) to enterprise integration facilitating a more abstract form of messaging.

3.3.3. Service Oriented Integration

As proprietary protocols, glue code, and point-to-point connections give way to more open, standards-based
protocols and interaction based on service descriptions that each system externalizes, we step into the realm of

Service-Oriented Integration (SOI).
--[Arsanjani2005], Toward a pattern language for Service-Oriented Architecture and Integration

Service-oriented integration is a novel concept that applies principles from service-oriented architectures to in-
tegration problems. In this context, integration is viewed as a “conversation between services”39. [EIP:8] de-
fines a Service as “a well-defined function that is universally available and responds to requests from ‘service
consumers’”. Abstracting from the rather narrow definition as a function, a more generic view is expressed in
[Jones2005], who defines a Service as “a discrete domain of control that contains a collection of tasks to achieve
related goals”. [Erl2004] views Services as “independent building blocks”, which in comparison to components
are deliberately limited to implementing a single functionality that is provided for reuse by other Services.

Figure 3.8 provides an overview of a typical SOA environment, the individual concepts are explained in the
following sections.

(from [Davis2009:11])
Figure 3.8: a service-oriented environment overview

[Arsanjani2005] introduces the basic concepts behind service-oriented integration and introduces several related
patterns for integrating applications according to SOA principles. In this article, an ESB is simply an implemen-
tation of the SOI-pattern. Challenges of service-oriented integration, including problems with differences be-
tween local and remote communication, or coupling, are covered in [Trowbridge2004:146]. [Juric2007] provides
a recent overview of enterprise integration concepts and patterns, in particular service-oriented integration, and
gives several examples for applying web services and related technologies to real world integration problems.

By using established, service-oriented standards like WSDL, service-oriented integration enables advanced com-
munication using interaction patterns, called Message Exchange Patterns (MEPs), which are applied in [Hoh-

39taken from the presentation slides Open ESB v2, Open ESB.next and Project Fuji [http://wiki.glassfish.java.net/attach/
GlassFishDay2008Jazoon/OpenESBv2-Project%20Fuji.pdf]

http://wiki.glassfish.java.net/attach/GlassFishDay2008Jazoon/OpenESBv2-Project%20Fuji.pdf
http://wiki.glassfish.java.net/attach/GlassFishDay2008Jazoon/OpenESBv2-Project%20Fuji.pdf
http://wiki.glassfish.java.net/attach/GlassFishDay2008Jazoon/OpenESBv2-Project%20Fuji.pdf

54 Current State of Integration

54

pe2007] to realize rich conversations between services. MEPs are also proposed in Section 4.2.1 for realizing
inter-tool-communication.

Alternatively to a web-services based implementation, a service-oriented integration can also be implemented by
providing WSDL descriptions for existing (legacy) applications that are not web service-based, but connected
through Wrappers. This approach is demonstrated by [Yap2005], using web-service wrappers for integrating
client applications (with the example of jEdit).

Recent higher level integration-frameworks like WSIF, JBI or SCA (see below) follow this approach, which has
been defined by Ron Ten-Hove40 as “Service-based integration” that “works by modeling integrated applications
as services.”. JBI consequently defines all service interfaces of both external and internal endpoints using WSDL.
This form of integration provides a very powerful way to integrate legacy or closed applications such as COTS
tools in a loosely coupled way, which makes this approach a compelling candidate for tool integration. Until
now, these standards have not yet been used to realize a tool integration solution, but web services and WSIF
have been successfully applied in large and small enterprise integration scenarios, see Section 3.3.3.1 below.

Looking at the Web, also “mash-ups” can be seen as an example of service-oriented integration, as existing
services are connected in new ways beyond the creator's original intentions, such as the prime example of
GoogleMaps and Flickr, connecting photos to geographic locations. The OpenAjax Alliance defines mashups
as “a website or web application that uses content from more than one source to create a completely new ser-
vice.” [OpenAjax]. A similar, user-oriented solution would be desirable for spontaneous tool integration that
allows end users to combine tools as needed in a simple but powerful way. The following sections will shortly
examine current solutions that may be useful for realizing web-like mashups on the desktop.

3.3.3.1. Web Services Integration

When applications are exposed as web services, it would be tempting to realize integration by simply accessing
web services as needed. This naïve approach however has several drawbacks: services are tightly coupled, as
they are directly connected; the resulting point-to-point integration does not scale well and is hard to adapt as
services are replaced, upgraded or even relocated. Lastly, performance is an issue when integrating client side
tools, and solely relying on web services would introduce a considerable overhead41. Consequently, [Erl2004]
concludes: "Introducing Web services into an environment does not replace the need for middleware and many
traditional integration technologies. Web services are not a new form of application integration or EAI, they
simply add new components that can be utilized effectively in a variety of architectures.". [Vinoski2003] inves-
tigates integration using web services as a way to bridge incompatible legacy middleware solutions, but that often
binds implementations directly to a specific SOAP stack (e.g. Axis, XFire or CXF). He then examines solutions
above the protocol level, proposing a web service-based integration framework, the Web Services Invocation
Framework (WSIF), as a high-level service-based integration solution.

Apache WSIF[ApacheWSIF] was proposed in [Duftler2001] as “an open source initiative to provide a service
oriented framework that allows both SOAP and non-SOAP services to be described in WSDL and invoked in
a common way. WSIF defines a pluggable interface […] to support new transports and protocols.”42 WSIF has
providers for POJOs (simple Java objects), EJBs, JMS message queues, JCA adaptors, and SOAP, but stays
above the protocol layer, abstracting from different service-based APIs and from a web service-centric develop-
ment view: “WSIF gives to its users a uniform API to access WSDL-described Web Services.” [Duftler2001],
where “the only requirements are that the service be described in WSDL and that a relevant protocol binding
implementation is plugged into the framework.”. By using WSDL as a common interface definition language,

40specification-lead for the Java Business Integration-standard, JSR 208 [JBI]
41see also Steve Vinoski's article Web services no interop cure-all [http://www.theserverside.net/tt/articles/showarticle.tss?
id=WSNoInteropCure]
42from the article Applying the Web services invocation framework [http://www.ibm.com/developerworks/webservices/library/ws-
appwsif.html] at the IBM DeveloperWorks site

http://www.theserverside.net/tt/articles/showarticle.tss?id=WSNoInteropCure
http://www.theserverside.net/tt/articles/showarticle.tss?id=WSNoInteropCure
http://www.theserverside.net/tt/articles/showarticle.tss?id=WSNoInteropCure
http://www.ibm.com/developerworks/webservices/library/ws-appwsif.html
http://www.ibm.com/developerworks/webservices/library/ws-appwsif.html
http://www.ibm.com/developerworks/webservices/library/ws-appwsif.html

Service Oriented Integration 55

55

also for legacy endpoints, WSIF provides existing systems with a service-façade that allows transparent integra-
tion between web services and existing systems.

While WSIF provides a high-level API needed for building protocol-agnostic service clients, there is no matching
server part, no messaging facility for providing advanced concepts like mediation or routing. This results in a
static solution that cannot easily be extended, as services are more closely coupled, even when they are based on
high-level interfaces that abstract from the underlying web service protocol.

WSIF, and web-service integration in general, therefore provide a client-side solution for small integration
projects or for building more static, composite applications (see also Section 4.3.1), when the routing and medi-
ation functionality of a full-fledged ESB (see Section 3.3.3.2) is not needed; for a tool integration framework
however, this additional mediation (or middleware) layer is essential.

3.3.3.2. The Enterprise Service Bus

The concept of an Enterprise Service Bus (ESB) was introduced by David Chappell in 2003 with his landmark
book [ESB]. An ESB provides a service-oriented integration infrastructure that applies SOA concepts through-
out, as defined in [ESB:2]: "An ESB provides the implementation backbone for an SOA. That is, it provides
a loosely ocupled, event-driven SOA with a highly distributed universe of named routing destinations across a
multiprotocol message bus. Applications (and integration components) in the ESB are abstractly decoupled from
each other, and connect together through the bus as logical endpoints that are exposed as event-driven services."
Figure 3.9 provides a schematic overview of an ESB, illustrating how existing applications are integrated using
Adapters:

from [Christudas2008:15]
Figure 3.9: Architectural view of an Enterprise Service Bus

Unlike pure web-service integration and related frameworks, services connected to an ESB do not directly call
each other, but are more decoupled and communicate by sending requests and data messages over a common
message bus. Services connect to an ESB by publishing their logical endpoint address, which is then made
available by the ESB to all services connected to the bus. Also, message senders do not have to address a concrete
target, but can rely on intelligent routing services on the ESB that direct the message to an appropriate endpoint.
Message routing is an essential part of an ESB and many enterprise integration patterns are based on routing,
which is explained in detail in [EIP:225]. On an ESB, communication may be synchronous or asynchronous,
and services do not have to actively request information, as they receive services automatically when they are
subscribed to endpoints of interest. This follows the event-driven consumer-pattern introduced in [EIP:498] and
shows that an event-driven architecture can be realized side-by-side with a service-oriented architecture, using
an ESB43.

The message bus also provides functional integration and data integration by using concepts like mediation,
where common infrastructure services or application-specific Adapters translate requests between incompatible

43see also the article Combining Service-Oriented Architecture and Event-Driven Architecture using an Enterprise Service Bus [http://
www-128.ibm.com/developerworks/webservices/library/ws-soa-eda-esb/] at IBM developerWorks

http://www-128.ibm.com/developerworks/webservices/library/ws-soa-eda-esb/
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-eda-esb/
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-eda-esb/

56 Current State of Integration

56

protocols, and message translation, using a common, canonical message format that abstracts from incompatible
data (the problem of incompatible data formats is often referred to as the “impedance mismatch”, c.f. [ESB:10]).

An ESB also enables dynamic service composition at a higher level, as shown in [ESB:2]: "Using an ESB, an
integration architect pulls together applications and discrete integration components to create assemblies of ser-
vices to form composite business processes, which in turn automate business functions in a real-time enterprise.".
Composite applications are introduced in Section 4.3.1 as a core concept of the proposed solution. For a more
detailed review of ESB characteristics and core functions, refer to [ESB:7] and also [Rademakers2008:12], which
specifically addresses application integration with ESBs using JBI.

Because an Enterprise Service Bus implements many of the integration patterns described in [EIP], it is very well
suited for a realizing dynamic tool integration, but all functionality comes at a cost: ESBs are often not easy to
set up, configure and maintain, and a full-featured ESB may introduce too much resource overhead, especially
when used for client integration. While a canonical message format provides many advantages, like decoupling
data from the original application that created it and enabling message inspection, enrichment and transformation
(c.f. [EIP:355]), the integration breaks when the canonical format evolves or has to be changed in such a way
that it becomes incompatible to the old format. This is especially a problem when the canonical message format
is proprietary, as this binds the solution to a specific ESB implementation (e.g., Mule, which is open source,
but uses a proprietary component model and messaging format). This problem can be addressed by using open
source ESB implementations that implement open standards, like Apache ServiceMix [ServiceMix] or OpenESB
[OpenESB], which implement the JBI standard.

Even though ESBs are based on standards, there has been no standard for defining what an ESB is and how
Services, Adapters connect to it, or how the message format and communication on the ESB should be imple-
mented. This has led to various incompatible implementations with each providing their own set of proprietary
Adapters, and their own canonical message format, etc. Java Business Integration (see Section 4.2) tries to solve
this situation by specifying a common architecture that ESBs can implement in a standards-based way, enabling
sharing of Adapters and other ESB components.

Figure 3.10 illustrates the relationship between service-oriented integration, JBI and ESBs, mapping the over-
lapping concepts introduced in this section as class interfaces in UML notation, and summarizing the key char-
acteristics of each approach.

Figure 3.10: Relationship between SOI, JBI and the ESB

Service Oriented Integration 57

57

Lastly, [ApacheSynapse] could be an interesting alternative for implementing more static integration tasks anal-
ogous to pipes. Synapse is more flexible than, e.g., WSIF, and incorporates several ESB concepts such as medi-
ation, translation and protocol abstraction, but does not provide advanced routing capabilities or dynamic com-
position like full-featured ESBs do. However, Synapse facilitates the design of lightweight integration solutions
that are easier to implement.

Section 8.5 introduces an alternative approach building on REST and a new paradigm called “resource-oriented
computing”.

3.3.3.3. Current Service-Oriented Integration Solutions

This section will give a short overview of existing enterprise integration solutions that show the current state-of-
the-art in service-oriented integration in the enterprise.

While standards-based containers like JCA (see Section 3.3.7.1), plugin-frameworks like OSGi (see Sec-
tion 3.2.3.1), or service-oriented frameworks like WSIF (see Section 3.3.3.1) or architectures like the ESB (Sec-
tion 3.3.3.2) provide a rich foundation for service-oriented, modular integration that reaches out to legacy sys-
tems, they still require manual composition and glue code to form a working out-of-the-box solution that can be
used for integrating various data sources and backend systems in an enterprise. There are several open source and
also commercial solutions on the market that provide an integration and orchestration layer that allows transpar-
ently combining existing systems and data sources in a service-oriented manner, as shown below.

3.3.3.3.1. Open Source Solutions

[Apatar] (as introduced in Section 3.2.4) is an open source ETL (Extract, Transform and Load)-solution that
provides a visual job designer and data mapper, connectivity to all major data sources and flexible deployment
options (embedded, GUI or server)44. With Apatar, analysts can create data maps that define systems and sources
to be integrated, and the associated workflow for gathering required data. These data maps can then be shared
on an open community platform, where also existing data maps contributed by others can be imported for reuse
in custom integration projects. [Jitterbit] offers similar data integration based on web services and also includes
a graphical designer that is targeted at business analysts and allows the creation of integration pipelines.

[XAware] is an XML based SOI integration solution that was initially closed but has become open source with
version 5.45 XAware provides an XML-based data integration layer, realizing “a heterogeneous data abstraction
environment” (David Linthicum, ZapThink LLC). This environment can be used to create “data mashups” (Bill
Miller, XAware). Disparate data from heterogeneous sources is translated into canonical XML data objects that
are made available to other sources over a uniform, message-based data layer, and previously isolated data sources
are exposed as services. Connectors provide protocol integration with HTTP, RMI, SOAP, or other protocols
using the Java API. Adapters realize semantic data integration and provide transformation of commonly used
formats such as flat text files, CSV, Excel, or COTS data sources like SAP. Integrated data is then made available
for composition as logical views (that work like a meta-model) using a graphical designer based on Eclipse,
where data and services can be composed to form the desired data integration solution. A proprietary scripting
language (XA-Script) supports conditional logic, enabling work flow-integration.

[Spagic] takes a slightly different approach, maximizing reuse of open source integration solutions and providing
a meta-platform for enterprise integration: “Spagic is a SOA Enterprise Integration Platform composed by a set
of visual tools and back-end applications to design, develop and manage SOA/BPM solutions.” (from the Spagic
web site). The open source EAI suite provides modules for designing business processes and for modeling and

44see the Apatar web page on Application Integration [http://apatar.com/for_application_integration.html]
45see also the article XML data integration for SOA goes open source [http://searchsoa.techtarget.com/news/article/
0,289142,sid26_gci1280942,00.html?track=NL-130&ad=612051&asrc=EM_USC_2564354&uid=6341833]

http://apatar.com/for_application_integration.html
http://apatar.com/for_application_integration.html
http://searchsoa.techtarget.com/news/article/0,289142,sid26_gci1280942,00.html?track=NL-130&ad=612051&asrc=EM_USC_2564354&uid=6341833
http://searchsoa.techtarget.com/news/article/0,289142,sid26_gci1280942,00.html?track=NL-130&ad=612051&asrc=EM_USC_2564354&uid=6341833
http://searchsoa.techtarget.com/news/article/0,289142,sid26_gci1280942,00.html?track=NL-130&ad=612051&asrc=EM_USC_2564354&uid=6341833

58 Current State of Integration

58

dynamically generating composite services for realizing data and process integration solutions. Existing ESBs
such as Apache ServiceMix, PEtALS, JBossESB; service components (adhering to the JBI or SCA standard), and
data sources can be integrated, and Services can be orchestrated using a visual BPM designer based on Eclipse.
Service modeling is supported by integrating the Eclipse Service Tools Platform (see Section 3.2.4.2). Also
modules for Business Activity Monitoring (BAM) and process measurement are provided. The rather complex
integration architecture is shown in Figure 3.11 below:

(source: [Spagic])
Figure 3.11: The Spagic open source enterprise integration platform

While these solutions provide flexible, service-oriented integration, they focus on the data and process level,
leaving out higher-level integration necessary for general tool integration, such as functional integration (reaching
through to the integrated tool) or interface integration (providing transparent extension of existing tools). The
focus lies on translation of data and services, not in providing a common infrastructure for tool integration. The
target domain is clearly backend integration, not user-centric integration. Spagic provides an interesting approach
and integrates with many open standards and frameworks, but is very complex and may introduce too much
overhead for the tool integration framework envisioned in Chapter 4, depending on how easily the framework
can be modularized. Although high-level standards like JBI are officially supported, integration is only possible
at deployment time, not at design time, as only the binding part of the JBI specification (see Section 4.2.1) is
currently supported.

3.3.3.3.2. Commercial Solutions

IONA (now Progress) [FUSE] is an SOA suite that adopts several open source solutions, adds enterprise features
such as advanced monitoring, management and commercial support, and provides an integrated suite including
a dedicated enterprise integration designer based on Eclipse46. The package includes an ESB (based on Apache
ServiceMix), a message router (ActiveMQ), a web service stack (Apache CXF) and an intelligent DSL-controlled
router (Apache Camel) that implements established enterprise integration patterns. Using the graphical integra-
tion designer, Apache Camel integration rules can be designed visually and then deployed to the routing engine.

[Xcalia] provides a service oriented mediation layer for enterprise integration, focusing on integrating hetero-
geneous data, using JDO and the emerging SDO standard (see Section 8.2). The platform is built on top of an
intermediation layer that implements recent standards like SDO for data integration and SCA for service-ori-
ented integration and dynamic composition at runtime. Development of custom integration code is minimized
by providing rich configuration possibilities, using a visual design-tool for object/relational data mapping and

46only available as a preview at the time of writing

Workflow and Process Integration 59

59

a metadata based approach for object/service-mapping. Existing enterprise applications can be integrated using
(proprietary and JCA) Adapters.

(source: [Xcalia])
Figure 3.12: Architecture of XCalia's service oriented integration layer

Xcalia supports both the Java and the .NET platform, and data integration can also be realized with the .NET
query language LINQ (with VisualStudio integration). While Xcalia provides an interesting approach using open
standards and dynamic service composition based on metadata-modeling, it does not provide visual support for
service oriented integration and only operates on the data level, albeit on the logical business layer. Therefore,
the same critique applies as for the open soure solutions above.

Lastly, looking at the .NET-world, solutions are usually built around Microsoft's BizTalk server that of-
fers Adapters for SAP and other enterprise applications. Internal messaging is often handled using the stan-
dard Windows Communication Foundation (WCF) which is part of .NET, and external applications or Ja-
va-application(server)s are integrated using web services.

3.3.4. Workflow and Process Integration
This integration form is another example where enterprise and desktop integration overlap and has been intro-
duced in Section 2.3.6. In the enterprise domain, process integration and the related discipline of business pro-
cess modeling (BPM) has become a major driving force behind recent standards such as BPEL (now WS-BPEL
2.0) and related extensions like BPEL4People and WS-HumanTask, which provide service-oriented integration
of non-automated, manual (or human) tasks, which have to be performed by humans (e.g., the acknowledgement
of an insurance claim by an insurance clerk).

BPEL “defines a language for business process orchestration based on web services”47 and is specified by the
OASIS standard [WS-BPEL20]. The specification extends the static WSDL interface description that models
a single service, describing its methods and properties, describing how individual services are combined to im-
plement a business process.

Current (open source) implementations include [JBoss jBPM] or the BPEL engine [Apache ODE], which pro-
vides integration layers for embedding BPEL processes into different target domains, e.g., into a web services

47taken from the WS-BPEL Primer [http://docs.oasis-open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.html]

http://docs.oasis-open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.html
http://docs.oasis-open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.html

60 Current State of Integration

60

environment (using the Apache Axis2), or into an ESB, e.g. the JBI-enabled Apache ServiceMix. Support for
the SCA-standard is already in progress and will be implemented with support for Apache Tuscany (see Sec-
tion 4.2.2.3).

Where a full-scale process definition like BPEL introduces too much complexity or there are other constraints
(e.g. a complete process definition may not be available), rules engines (see Figure 3.13) provide a lightweight
alternative both during development and also at deployment, as processing rules can be specified by using a
simple rules-language that is executed by a rules engine (e.g., JBoss Drools [Drools] or Apache Camel48) for
routing messages, e.g., on an enterprise service bus. Apache Camel additionally provides a mediation layer that
can be configured using a Java-based DSL or Spring configuration, and that can be embedded into a web-service
based environment (using Apache CXF framework) or into a JBI based ESB (with Apache ServiceMix), similar
to Apache ODE mentioned earlier.

(source: [Drools], “Features and Screenshots”)
Figure 3.13: Workflow integration with rules-based programming

Process-oriented integration is supported by a wide array of tools, which are mostly based on Eclipse projects
(e.g., BPM tools as part of the SOA Tools Platform, see Section 3.2.4.2.1), e.g., the Eclipse Java Workflow
Tooling (JWT) Project, which integrates several BPM standards and notations. Spagic (see Section 3.3.3.3.1) is an
open source enterprise integration solution that uses Eclipse STP for process integration. A related, model-based
solution, the E2E bridge, is covered in Section 3.3.6 below.

[Raj2006] gives an introduction into using WS-BPEL in Java to realize service-oriented workflows defined by
BPEL process descriptions. An extensive overview of process-oriented integration and service composition using
BPEL is provided in [Juric2007:213].

To summarize, BPEL may be used for workflow-based tool integration where a concrete process has to be
followed, and where tools interact according to well-defined rules. For realizing dynamic, ad hoc tool integration
in a more generic way, where the end user has free control over the tools' usage, a fixed process definition
is too static and limiting. For this, rules-based systems provide a flexible alternative that integrates with other
integration standards and provides users with a dynamic way to specify and adjust workflows at runtime.

3.3.5. Event Driven Integration and SOA

In [Woolf2006], event-driven architecture (EDA) is defined as “a technique for integrating components and
applications by sending and receiving event notifications.” An event is subsequently defined as “an occurrence

48see the Apache Camel page on routing [http://activemq.apache.org/camel/routes.html]

http://activemq.apache.org/camel/routes.html
http://activemq.apache.org/camel/routes.html

Model Driven Integration 61

61

in one application or component that others may be interested in knowing about.”. [Hohpe2006a] defines several
key characteristics of events, including broadcasting, timeliness (as they happen), or asynchrony, and mentions
that “these desirable benefits have already motivated some EAI […] vendors to proclaim that EDAs are the next
step in the evolution beyond Service-oriented Architectures (SOAs).”.

Analogous to service-oriented architectures, where a consumer sends a service-request to a provider that imple-
ments the desired Service functionality, in an EDA, an emitter posts an event that is received by a handler, which
decides how to react upon it and which, if any, service(s) should be invoked as a consequence. While there is a
direct relation between the service consumer and the provider in an SOA, following a request/response interac-
tion style, there is no direct mapping from an event emitter to an event handler: although an event emitter must
be connected to at least one event handler in order to be able to submit events, connections are mostly indirect,
in a publish/subscribe manner. As such, event handlers subscribe to events of interest, but the emitter does not
address a specific event handler. This allows more loose coupling than with a traditional SOA approach. JMS
message topics and queues are an example for an implementation of an event-driven infrastructure using message
queues for transmitting event messages.

SOA and EDA are both working with services but handle communication differently (service request chains vs.
event propagation). Both models are however more complimentary than competing, as noticed in [Woolf2006]:
“[…] for a sufficiently complex integration solution, one might well use both architectures.”. Advanced event-
driven concepts include complex event processing (CEP), enabling analysis of event clouds, where a multitude
of events is distributed across multiple systems, and event stream processing (ESP), providing correlation of an
infinite set of events that happen in realtime.

[Esper]49 provides a robust, open source implementation of a complex event processor. [Welsh2002] proposes
a staged event-driven architecture (SEDA), which enables the processing of massive amounts of events in a
short period of time, e.g., spikes in web site traffic, using a network of event-driven stages that are connected to
individual, structured event queues for processing incoming events.

Event-driven systems also may impose challenges regarding design and complexity, as noted in [Hohpe2006a]:
As event messages are distributed across many nodes and components, it is increasingly hard to analyze or predict
the flow of execution, which makes it hard to find the cause for problems, especially when configuration is spread
across disparate locations. The work suggests using a DSL for configuration, and underlines the need for design
tools that validates a composite event processing system for unwanted configurations (e.g., cyclic event paths).

EDA is very useful for tool integration when the emphasis lies on general tool services in loosely coupled, dy-
namic tool chains, where tools may be replaced, come online or go offline at runtime. [Liu2006] developes visual
languages and design tools for event-based tool integration using web service composition and data integration
with Abstract Data Structures (ADS).

3.3.6. Model Driven Integration
As introduced in Chapter 2, model-driven integration offers promising potential and has been subject to inten-
sive research during the last years, with first commercial products already available on the market (see below).
Because many tool integration solutions, including part of the proposed solution, are based on model-driven
concepts, esp. the process-based design pattern introduced in [Karsai2003] below, this integration technique will
be covered in more detail here.

Modeling a COTS integration solution requires a thorough understanding of the application model, which is not
easy to gain, especially from closed COTS tools where documentation on the internal structure and source code is
usually not available, which makes it impossible to automatically generate needed modules, e.g., through reverse

49see also the related introductory article [http://www.onjava.com/pub/a/onjava/2007/03/07/esper-event-stream-processing-and-
correlation.html]

http://www.onjava.com/pub/a/onjava/2007/03/07/esper-event-stream-processing-and-correlation.html
http://www.onjava.com/pub/a/onjava/2007/03/07/esper-event-stream-processing-and-correlation.html
http://www.onjava.com/pub/a/onjava/2007/03/07/esper-event-stream-processing-and-correlation.html

62 Current State of Integration

62

engineering. This is a major drawback since the automatic mapping between model and implementation is one
of the main reasons to use model-driven concepts in the first place. [Warboys2005] proposes a framework for
integrating COTS tools, introducing a dynamic modeling approach that uses an architecture modeling language
for handling constantly evolving tools.

[Balasubramanian2006] applies a model driven approach to tool integration by developing a domain-specific
modeling language called SIML, which is then applied to enterprise integration, building on the open-source
Generic Modeling environment (the GME) for visually designing the integration solution. As an advantage, no
programming is necessary, even “glue” code required for integration is created automatically; also integration
with BPEL and other orchestration standards (see Section 3.3.4) is possible. The prototype integrates with web
services and the now largely obsolete CORBA component model (CCM), but offers no integration with COTS
tools, since the approach relies on the source code to be available. While the work acknowledges this aspect
and also mentions emerging standards such as Java Business Integration or the Service Component Architecture
(described in more detail in Chapter 4) as emerging “pluggable architectures for system integration”, these find-
ings are not applied to the proposed solution.

The effort and cost involved with modeling could be reduced if existing models were reused, as proposed in
[Denno2003] who observes that “traditional integration makes little or no use of the models, which were created at
great expense and which provide valuable information about a system.”. In the same way, [Mellor2003] foresees
that a “software development environment with off-the-shelf models and mapping functions changes the way
in which we build systems.”

Related standards have been long missing from modeling approaches. This has changed with the introduction and
widespread adoption of UML, the OMG standard for models in software development. The same organization
has also proposed a standard for modeling tool integration: The Open Tool Integration Framework [OMG2004]
defines a framework and architecture for model-driven integration through integrating metamodels of individual
tools and using a shared repository for common data exchange. The standard “seeks to define an alternative to
the closed tool suite approach, via an open tool integration framework that provides a platform for integrating a
wide variety of tools, is open and extensible, and supplies generic, reusable facilities for building tool integration
solutions.” (from the OTIF RFP [OMG2004])

[Karsai2003] demonstrates how meta-model transformation could be applied to tool integration, introducing two
design patterns for tool integration: Integrated Data Models (IDM) and Integration based on process flows (see
also Section 3.3.4). The first pattern is illustrated in Figure 3.14 below:

(taken from [Karsai2003])
Figure 3.14: Model driven integration using metamodel transformation

Many model-driven tool integration approaches follow this pattern. While it is useful for tools with overlapping
data models that share common semantics, e.g., tools from the same domain, this pattern introduces a major
problem: as tool integration solutions grow over time, the number of integrated tools increases, and the resulting

Model Driven Integration 63

63

solutions do not scale well. Consequently, the work concludes that “practical experience with the IDM approach
showed that it becomes very complicated if the number of tools grows beyond three or four. To understand and
maintain the mapping […] is becoming an insurmountable task for an engineer.”.

The second design pattern, process-based integration, follows a “point-to-point” approach (but using a message
bus) and integrates individual tool models using Adapters. Data is shared using Semantic Translators connected
to a message-based backbone, as shown in Figure 3.15:

(taken from [Karsai2003])
Figure 3.15: Process-based tool integration using a common backbone

This approach “does not have these shortcomings, as the changes are always localized. Changing a metamodel
for a tool impacts only the translators that read and write models of that tool, but not others.”. The process-based
approach is therefore more suitable for general tool integration, as it is more loosely-coupled and does not assume
any semantic relationship between tools. Also the aforementioned OTIF framework is following this approach.
[Klar2008] strives to improve the design of model-based solutions and introduces a more formal process for
designing metamodel-driven tool integration solutions, also considering COTS tools.

A commercial, model-based enterprise integration solution is available with the E2E Bridge (for End-to-End), a
middleware solution that acts as a virtual machine for models specified in UML50[Baer2007]. E2E proposes a
purely model-based approach for designing enterprise integration solutions that can be automatically deployed
without manual implementation or code transformation. The concept is described as “Direct Model Execution
based on standard UML, BPMN, EPC and other modeling languages […] used […] to implement and manage
distributed software assets in support of automated business processes.”. Unlike other approaches which trans-
form models into code that is then compiled or run in a VM, E2E transforms the model into an exectutable form
that runs in its own VM, therefore eliminating the intermediate code-generation step which often introduces in-
consistencies between the model and the generated code. This results in a much more dynamic and decoupled
solution that realizes the full potential of UML.

It is important to keep in mind that model-based integration alone is not enough for a holistic tool integration
approach that transparently exposes not only the individual tools' data, but also makes available the combined
functionality provided by integrated tools to users. Model integration really only solves the data integration
problem, but does not provide other kinds of integration such as on the functional, process or the interface level.
For this, still custom Adapters and other techniques are needed, as again noted by [Karsai2003]: “The primary
motivation […] is […] to facilitate tool data interchange.”.

Also, where existing Adapters are already available, they cannot be used without first constructing metamodels
for integrating them into a model-based solution. Especially in an SOA landscape, where functionality is already

50see the E2E-Bridge web site [http://www.e2ebridge.com/]

http://www.e2ebridge.com/
http://www.e2ebridge.com/

64 Current State of Integration

64

exposed through web services, there is no need to re-model these integration points since abstract models are
already provided by WSDL definitions, which can be readily used with modern integration frameworks such
as SCA and JBI.

Another challenge is tool support: modeling environments have typically been sophisticated high-level tools that
are either commercial and costly, or academic and not available for use in production. Existing modeling tool
sets often use proprietary formats and only provide restricted interfaces, which results in isolation of model data
and workflows.The Model Driven Development integration (MDDi) project was introduced to fill this gap, as it
“produces an extensible framework and exemplary tools dedicated to integration of modeling tools in Eclipse”51.
The project was created as part of the EU ModelWare project, “an open source tool integration platform that
facilitates the customization of MDD tool chains for domain-specific needs”.52 Resulting solutions include a
Java-based QVT implementation that is now part of the Eclipse EMF project, and the ModelBus [Sriplakich2008],
which integrates heterogeneous modeling tools inside (using XMI) and outside of Eclipse (using web services
and Adapters), and supports distributed collaboration on models.

These projects could be used as a starting point to build a specialized environment for COTS integration, as
suggested in [Kramler2006] and applied for embedded systems in [NascimentoS2007], using the EMF and related
projects such as MDDi as foundation (see also Section 3.2.4.2.1 above).

Lastly, Sculptor53 provides a design environment and iterative code-generation for model-driven application
development, building on the Eclipse-based openArchitectureWare project (the see aforementioned section).

3.3.7. Standards-Based Integration

This section gives a short overview of two well known standards approaches in enterprise integration: the com-
ponent-oriented JCA standard predominant in the JEE world, and second generation web-service standards for
service-oriented integration.

Higher-level integration frameworks that build on several standards and concepts introduced in this chapter will
be covered in more detail in Chapter 4, including Java Business Integration (JBI), which focuses on integrating
existing components in a runtime environment, and the Service Component Architecture (SCA), which defines
a standard for service composition.

3.3.7.1. Java Connector Architecture (JCA)

The Connector architecture enables Java EE components to interact with enterprise information systems
(EISs) and EISs to interact with Java EE components.

--The Java EE 5 Tutorial

The Java Connector Architecture [JCA] provides integration of external resources into a JEE-environment by
providing a standard contract and API to connect legacy applications to application servers that support JCA
(e.g., JBoss, Apache Geronimo, Sun Glassfish or IBM WebSphere), using a proprietary (application-specific)
resource-adapter. Existing backend systems (like databases, but also proprietary solutions such as telephony
systems or printing facilities) are connected to the application server using a standard component, the JCA Re-
source Adapter, that implements a set of contracts specified in the JCA specification. These contracts define
various aspects important in the enterprise environment, such as security, management (lifecycle, threading) and
inbound/outbound transaction contracts that define the communication with the external system to be integrated,
as illustrated in Figure 3.16 below:

51taken from the MDDi Wiki [http://wiki.eclipse.org/Mddi], which is now archived as the project has been terminated as of August 15th, 2008
52from the ModelWare web site [http://www.modelware-ist.org/]
53see the Sculptor Wiki [http://fornax-platform.org/cp/display/fornax/Sculptor+(CSC)]

http://wiki.eclipse.org/Mddi
http://wiki.eclipse.org/Mddi
http://www.modelware-ist.org/
http://www.modelware-ist.org/
http://fornax-platform.org/cp/display/fornax/Sculptor+(CSC)
http://fornax-platform.org/cp/display/fornax/Sculptor+(CSC)

Standards-Based Integration 65

65

(source: [JEE5Tut:1020])
Figure 3.16: JCA Resource Adapter design

The Resource Adapter provides legacy integration with proprietary third party interfaces, but is embedded into
a standardized Container, which allows reuse of Resource Adapters across application servers. [ESB:187] pro-
vides a helpful analogy to another JEE middleware standard: “JCA is to applications what JDBC is to database
connectivity.”

When connected to an ESB (see Section 3.3.3.2), JCA “can also provide the standard contract for applica-
tion adapters”, acting as “the unified way of connecting between the adapter and the middleware infrastruc-
ture” [ESB:54]. More details on JCA can be found in [JEE5Tut] and in the specification [JCA]. While JCA is
widely used for integrating existing non-Java applications into JEE solutions, JBI's BindingComponents pro-
vide a more flexible way that further reduces coupling in such integration scenarios, as shown in Section 4.2.2.2.

3.3.7.2. WS-I and WS-*

The Web Services Interoperability Organization (WS-I) [WSI] is an open industry organization working on stan-
dards to ensure web services interoperability between different platforms and implementations. While these spec-
ifications standardize the protocol layer (SOAP, WSDL, UDDI), e.g., through the Basic-Profile specification54,
web service-standards are specified by the W3C, which also defined the second generation WS-* specifications
such as WS-Addressing, WS-Security or WS-Messaging. [ESB:230] gives an overview of ESB features and
corresponding WS-* specifications that are explained in more detail in [Erl2004:90], where they are defined as a
“combination of next-generation Web-services to allow for secure, reliable and collaborative service interaction
as needed in an enterprise environment. In this context, the term Service Oriented Enterprise is often used”.
A service-oriented enterprise is defined in [Erl2004:476] as thus:“Building and integrating SOAs leads to the
evolution of a service-oriented enterprise (SOE).”

The WS-* specifications were necessary to address several requirements that became apparent when web ser-
vices were increasingly used for enterprise integration, such as security, reliability or more abstract addressing
schemes, in a service-oriented manner. Due to their complexity however, they have not yet been widely adopted,
and alternative, more lightweight approaches like REST (c.f. [Fielding2000]) and the Web Oriented Architecture
are currently gaining popularity, see Section 8.5 for a short outlook on this new paradigm.

For implementing web-service integration solutions, these specifications provide advanced and often needed
higher-level communication mechanisms. Open-source implementations of WS-* standards are available from
the Apache Software Foundation's Web Services project55.

54see the WS-I Basic Profile pages [http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile]
55 http://ws.apache.org/

http://ws.apache.org/
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws.apache.org/

66 Current State of Integration

66

3.4. Summary
The current situation shows a trend towards embracing open standards at every level of integration, and from
previously isolated and tightly coupled integration approaches to higher-level integration frameworks that com-
bine several lower-level solutions and patterns. Also, visual integration tools are starting to emerge, also in the
open-source world, mainly due to efforts on the Eclipse platform, such as the Eclipse SOA Tools Platform for
designing composite service solutions and Project Swordfish as a universal SOA runtime platform. The high-
est-level of integration is promised by model-based solutions, but the potential has not yet been realized on a
general level, as several attempts to deliver integration solutions have failed in the past, like the Eclipse MDDi
project. In specialized business integration markets however, successful solutions have been deployed, which is
demonstrated by the E2E productline.

For a general, open tool integration framework that integrates up to the user interface level, current solutions are
not yet satisfactory, as has been shown for Eclipse-based and other open source solutions. Hence the need for
a solution that fully embraces recently emerging high-level integration frameworks such as JBI, which provide
a standardized infrastructure and build on proven service-oriented integration standards and patterns, as will be
shown in the following chapter.

67

Chapter 4. Proposed Solution: Tool
Integration Using Java Business
Integration

“Always design a thing by considering it in its next larger context – a chair in a room, a room in a house, a
house in an environment, an environment in a city plan.”

--Eliel Saarinen, Finnish architect and city planner

Building on successful integration solutions and best practices presented in Section 3.3 on the one hand, and
on modern, service-oriented concepts (as introduced in Section 3.3.3) on the other hand, recent years have seen
the emergence of high level integration frameworks, the main proponents being Java Business Integration (JBI,
JSR-208) and more recently, the Service Component Architecture (SCA). These frameworks specify a language-
(esp. SCA) and platform-neutral (esp. JBI) integration infrastructure that utilizes service oriented standards and
integration concepts to provide a truly open integration platform that can be easily adapted to individual needs.
This frees integration developers from having to manually hard-wire services and applications together, using
custom "glue" code, and instead allows to rapidly build standards-based, loosely coupled integration solutions.

This chapter investigates the design rationale and requirements for successful tool integration as outlined in
Chapter 2, and provides a survey on the two major integration standards, JBI and SCA, together with an evaluation
against the requirements defined. Finally, for reasons outlined below, the JBI standard is proposed as a solution,
which is then applied in designing the tool integration prototype presented in Chapter 6.

4.1. Requirements
"The essential components of an IDE are the tools which have to be integrated. Any other component must

serve for integration purposes."
--from [Altheide2002]

A general guideline for analysis of service-oriented legacy integration is given in [Erl2004:346], which may
act as a starting point for requirements-gathering. [Young2003] provides an in-depth reference for requirements
engineering in general, defining several types of requirements, roles and processes for successful requirements
design.

The remainder of this section lists several functional and non-functional requirements for tool integration, going
from general requirements to special requirements important for client-side tool integration and COTS tools.
Where applicable, analogies to ToolNet (see Chapter 5) are drawn, and findings from the proposed solution are
applied. Section 6.2 outlines specific goals for the prototype, which were identified in evaluating ToolNet.

When investigating these requirements, it is important to keep in mind that there are two perspectives in tool
integration, as identified by [Thomas1992]: tool users (“environment users”) and tool integrators (“environment
builders”). As a result, not only have the requirements to be weighted against each other in the design phase,
but also the user's and integrator's situation: while the first is looking for transparency in functions and data
and seamless workflows crossing tool borders, the latter is interested in flexible tool APIs and a framework that
facilitates integration and reuse, minimizing effort and cost.[Thomas1992] defines criteria for good integration
at each of the layers introduced in Section 2.3: presentation, data, control and process. Special attention is also
given to usability, which can be taken as a prime requirement for tool integration that affects both users and
developers of an integration framework and has a major impact on productivity and effectiveness of the solution.

68 Proposed Solution: Tool Integration Using Java Business Integration

68

According to [Trowbridge2004:2], “an enterprise's integration architecture balances the requirements of the busi-
ness and the requirements of individual applications”, concluding that “[…] the ideal [integrated] application is
a thin layer of presentation that consumes shared functionality or data at the enterprise level.”. This means that
existing functionality should be reused as much as possible, and new functions should again be exposed to other
applications for further reuse. Because the same goals also apply to desktop tool integration, as has been shown
in Section 2.3, they are adopted in the proposed solution here.

[Brown1992] defines several key requirements for tool integration, which are applied to the context of this work
below:

• Generality: The solution should not be tailored to a specific domain or tool set, but allow for broad tool support.
Although ToolNet's target domain is clearly technical engineering, this requirement was not mandatory for
the proposed solution, nevertheless a general applicability was aimed for.

• Flexibility: The solution should be flexible to support a wide range of users; this was only of minor importance
for the prototype and also for ToolNet, as users are mostly engineers. Nevertheless, care was taken so as not
to limit the proposed solution in its flexibility.

• Homogeneity: The solution should provide users with a uniform interface to different tools and services. This
can be realized by adhering to a consistent way of realizing presentation integration, e.g., by using common
terminology, symbols, layout, behaviour, and functions. Also by providing a central management and query
interface like the ToolNet Desktop, the user can interact with integrated Tools in a uniform way. The JMX
console implemented in the prototype (see Section 6.4.2.4) reaches even further by adhering to the JEE man-
agement standard, which provides transparent integration within an existing management infrastructure.

• Portability: The solution has to work on different platforms; this is also a prerequisite for generality, as some
Tools are only available for a particular platform or OS. For this reason, ToolNet and also the prototype are
realized in Java.

• Compatibility: The solution should be able to adapt to existing tools and allow for soft migration. This is most
important for COTS integration and is also identified in [Altheide2002] below.

[Altheide2002] adds the following requirements, which were the primary guideline for the realization of the
prototype in Chapter 6:

• Capability: The solution should support core integration tasks across tools in an automated way, such as data
exchange and query, maintaining consistency of data, and support for process integration

• Flexibility (or Adaptability, to differentiate from the related requirement of flexibility in [Brown1992] above):
The solution should adapt to the dynamic tool market and allow upgrading and exchanging tools as needed.
Also, it is not uncommon to have multiple versions of a tool running in parallel, e.g., during migration.

• Extensibility: The solution should allow incremental adjustment to individual development needs (e.g., tool
sets), methodologies and processes.

• Modularity: The solution should represent “no monolithic integration of tools but a framework of cooperat-
ing components” [Altheide2002:3], which is different from IDEs that generally aim at providing a meta-tool
composed of individual tools, forming a tool chain or tool “cloud”. By integrating tools as autonomous com-
ponents, the integration solution is decoupled from individual tool's needs. This makes it possible to integrate
COTS tools without compromising the flexibility of the integration framework and impeding the realization
of other requirements.

• COTS Integration: this requirement correlates with [Brown1992] and underlines the need to integrate existing
standard tools which cannot be easily replaced with “integration-friendly” or custom developed, open tools.

Requirements 69

69

• Rich data integration: Because tool integration makes no sense without data integration, this aspect should
be realized in a rich and powerful way: Users should not only be able to access data from all integrated tools,
but also define relations between data elements, thereby creating a (n:m-)mapping from data elements in one
tool to corresponding data elements in another tool. Data should be kept inside the original tools, and only
references and other metadata should be stored in a common repository. Users could then query the repository
for data and navigate relations across tool boundaries, using integration facilities within the original tools (e.g.,
scripts or other extensions). Data integration must work even if a tool is temporarily unavailable, or if a tool
becomes available during a work session.

• Presentation integration: Integration functionality must be integrated into the original tool's user-interface, so
that the user perceives a transparent workflow without leaving the original tool.

The last three requirements, COTS integration, rich data integration and presentation integration, are one of
the main features of ToolNet that set it apart from other approaches so far, and the proposed solution seeks to
stay true to this vision. Finally, [Altheide2002] also mentions that an integration solution should be generated
in a model-driven manner, using UML diagrams for data modeling and UML's Object Constraint Language
(OCL) for expressing relational constraints. This approach is still subject of ongoing research, as discussed in
Section 3.3.6, and is neither applied in ToolNet nor in the prototype.

Not explicitly mentioned but nevertheless important is transparency: end users should not perceive a notable
overhead in using the tool integration solution, they should be able to use their original tools as usual, without
having to use tools in a special way or launch them from within the integration framework. Users should be
shielded from the framework itself and the underlying communication backend, so they should not have to know
explicit endpoint addresses or have to differentiate between using local or remote tools. Developers should not
be concerned with lower levels of the framework, e.g., what implementation of a message queue is used, or how
the message format exactly is structured. They should not have to actively manage state, e.g., polling for changes
in other tool's data or user input. Instead, a high-level API should provide the necessary abstractions and logical
concepts to ensure a consistent, reusable and efficient integration solution.

Because of the many similarities between tool integration and enterprise integration, we can also apply the find-
ings in [EIP:39-41], resulting in the following requirements:

• Loose coupling: “Integrated application should minimize their dependencies on each other so that each can
evolve without causing problems to the others.”. This is a prerequisite for the requirement of flexibility in
[Altheide2002] above.

• Balanced intrusiveness: A good tool integration solution has to find a compromise between the (perceived)
degree of integration, and the amount of effort needed to realize the desired integration. Changes to applications
that are to be integrated should be minimized, for COTS applications this is usually not an option at all.
High intrusiveness results in integration overhead, which impedes flexibility and extensibility, whereas a low
intrusiveness results in insufficient integration, resulting in a poor user experience and lack of presentation
integration.

• Technology selection: Designing and implementing a tool integration solution involves several decisions that
affect how well the other requirements can be fulfilled. Choosing closed or proprietary solutions hinders porta-
bility, generality, extensibility and compatibility. Solely relying on custom solutions may have the same effect
in the end. Many problems with ToolNet result from the use of proprietary or closed solutions, and imple-
menting a custom architecture where now open standards and APIs exist (see Section 5.5).

• For successful technology selection, a closely related criteria is support, both in terms of tool support and
vendor (or community) support, but also available implementations (preferably a variety of solutions that
implement a common standard). By using a supported and visible technology, integration Adapters and

70 Proposed Solution: Tool Integration Using Java Business Integration

70

Services may already be available for reuse, and realizing new solutions becomes easier with adequate tool
support that builds on a proven, reliable development infrastructure.

• Common data format: For realizing data integration, it is essential to work with a common data format at
the integration layer. This is both a challenge and a necessity, given the number of mostly proprietary and
incompatible data formats used in COTS tools. By using a normalized data format at the integration layer, and
Adapters that convert between the tool's proprietary data format and the normalized format, this challenge can
be overcome. The proposed solution uses a standardized (JSR-208) and normalized (XML) message format to
avoid being bound to a custom format that is not supported elsewhere and may prove too limiting over time.

• Data timeliness: Integrated applications should share data in a timely manner in order to minimize the danger
of data getting out of sync. This requirement also ensures usability and transparency, as users do not perceive
latency in accessing tools, which ensures a smooth and responsive workflow.

• Functional integration: As shown in Section 2.3.3, data integration is not enough to provide the desired tool
integration. Also, the tools' functionality has to be exposed over common framework services, allowing users
to access other tools' functionality from within the tool at hand.

• Asynchronous communication: For providing an uninterrupted and transparent user experience, but also for
improving inter-tool-communication, esp. with remote communication, asynchronous communication should
be provided, e.g. using messaging or an event-driven architecture.

• Reliability: Closely related to remote and asynchronous communication, a tool integration framework should
ensure reliable communication, even when a tool is temporarily unavailable. This can be implemented using
reliable message queues, as applied in the solution below.

Finally, additional requirements for integration can be applied from [Sun2004:16]:

• Openness and Code Portability: relates to the requirement of portability above, but emphasizes on openness
of software development tools and artifacts, using open standards

• Scalability has not been explicitly mentioned above but is a result of modularity, loose coupling, asynchronous
communication and using a common data format. Scalability is a prerequisite for flexibility and extensibility.

• Business Agility means that an integration solution should be highly configurable without having to change
the implementation of components, using high-level configuration and tooling.

Security is another important aspect when dealing with sensitive data over an open network, e.g., when imple-
menting distributed tool integration across several locations. For the prototype implementation, security was not
considered in order to keep complexity low and to facilitate debugging. The selected technology however sup-
ports several aspects of security, as mentioned in Section 4.3.2 below.

With these diverse requirements in mind, and based on the review in Chapter 3, the JBI standard was found to
provide an excellent foundation for a tool integration framework that allows dynamic and collaboration among
COTS tools within a heterogeneous system landscape, as described in the following section.

4.2. An Introduction to Java Business Integration
JBI defines an architecture that allows the construction of integration systems from plug-in components, that

interoperate through the method of mediated message exchange.
--The JBI 1.0 specification [JBI]

JBI Architecture 71

71

Java Business Integration [JBI] is a relatively young specification1 by Sun, Inc., that specifies a standard API for
a service-oriented integration-architecture and associated infrastructure, in order to harmonize the fragmented
enterprise integration space and to avoid vendor lock-in that users are facing with current, proprietary ESB- and
SOI-solutions (see Section 3.2.4.3 and Section 3.3.3.3.2). JBI defines a standards-based integration layer where
components can be plugged in and work together seamlessly in a servie-oriented manner, exposing existing, ex-
ternal applications or services as Service Endpoints. Also legacy applications can be integrated in a service-ori-
ented manner by providing a standardized service description (WSDL) and an associated integration Adapter
(see Section 4.2.1 below).

JBI allows integration architects and developers to build integration solutions by combining existing components
into composite applications without the need for implementing “glue” code or for manual “plumbing”. Instead,
by relying on the JBI architecture and its messaging infrastructure, components can transparently communicate
and invoke available services without knowing any protocol or implementation details of the target endpoint.
Because JBI can be seen from the outside as an integration container that again hosts a set of specific integration
components that may again be containers (such as EJB containers or JCA Adapters), JBI is also called a “meta
container”.

As a result, JBI provides a standards-based solution for an integration middleware that overcomes problems
in existing integration solutions, such as proprietary ESBs, “by adopting a service-oriented architecture (SOA),
which maximizes the decoupling between components, and creates well-defined interoperation semantics found-
ed on standards-based messaging.” (from [JBI:1]).

4.2.1. JBI Architecture

(source: [Snyder2007])
Figure 4.1: Java Business Integration Architectural Overview

The JBI architecture defines an infrastructure for service components connected to a message router that trans-
ports normalized XML-based messages. Developers build integrated applications (called “composite applica-
tions” because they are composed of existing services) by creating a configuration that references needed service
components and includes necessary configuration and artifacts for the target component(s). Figure 4.1 gives a
high-level overview of the JBI architecture (which is also explained in [Christudas2008:39]).

1the specification was finalized in August 2005, but only recently vendor and tool support has gained momentum

72 Proposed Solution: Tool Integration Using Java Business Integration

72

JBI defines two kinds of components: BindingComponents (BCs) integrate external services into the JBI envi-
ronment by translating between application-specific communication necessary to access the external resource,
and JBI's normalized messages (see below) in both directions, realizing protocol integration. This allows inte-
grating and reusing existing assets, e.g., web services by using a SOAP BC, Enterprise Java Beans using a JavaEE
BC2, or proprietary applications like SAP using the SAP BC3 (this has been utilized in the solution for realizing
tool Adapters, as shown in Section 4.3 below). The second kind of component is the ServiceEngine (SE), which
provides application-level and process-level integration and implements application logic, like conversion (e.g.,
an XSLT SE), orchestration (e.g., a BPEL SE) or event processing (e.g., there is an IEP SE, which implements
an intelligent event processor). ServiceEngines do not perform any translation at the communication level, they
always operate on normalized messages used within the JBI environment, and its XML (meta)data.

JBI is based on the concept of service oriented integration (as introduced in Section 3.3.3). As a result, service
definitions are entirely based on WSDL. Ron Ten-Hove, the specification lead of JSR-208, motivates the ser-
vice-oriented design approach and usage of WSDL as thus:

Service-based integration works by modeling integrated applications as services. A WSDL dec-
laration of a service provides all the information about that service to the service's consumers,
such as the list of available operations, message formats, and so forth. Limiting a client's knowl-
edge of a service to that service's WSDL definition was a very deliberate choice in JBI's design.

—from [Sommers2005], section JBI versus traditional system integration approaches

ServiceEngines and BindingComponents publish the services they provide through a WSDL. When a
component wants to invoke a service (as a Service Consumer), it can do so by specifying the logical endpoint
name, a Service Type, or dynamically through a logical call-back address (c.f. [JBI:26-27]). JBI's message router
(see below) handles discovery of the Service Provider and delivers the service request to the target endpoint.
This is similar to the find–bind–invoke paradigm in a SOA, illustrated below:

(source: [Ten-Hove2006])
Figure 4.2: JBI's service-based integration model relying on SOA principles

Using a widely adopted and proven service-oriented standard such as WSDL for defining component interfaces
and message formats has several advantages, such as loose coupling between integrated applications and Ser-
vices, a common contract for enabling message exchange, and message mediation by utilizing WSDL's message
exchange patterns (c.f. [JBI:11]). Because JBI fully embraces the WSDL standard for defining Service interfaces
and their interaction, it also follows the distinction of an abstract and a concrete part. Figure 4.3 visualizes the
relation between abstract and concrete definitions in a WSDL:

2see OpenESB Wiki's JBI4EJB page [http://wiki.open-esb.java.net/Wiki.jsp?page=EJBBC]
3see OpenESB WIki's SAP BC page [https://open-esb.dev.java.net/SAPBC.html]

http://wiki.open-esb.java.net/Wiki.jsp?page=EJBBC
http://wiki.open-esb.java.net/Wiki.jsp?page=EJBBC
https://open-esb.dev.java.net/SAPBC.html
https://open-esb.dev.java.net/SAPBC.html

JBI Architecture 73

73

Illustration of the mapping between abstract and concrete part in a WSDL (source: Apache WSIF-project [WSIF])
Figure 4.3: Using WSDL for service-oriented integration

The abstract part is used for describing the protocol-neutral service aspects, such as the service interface and
service interactions, whereas the concrete part binds the service to a specific protocol and endpoint, which is
only used “pro forma”, as JBI relies on its own messaging model that is independent of low-level communication
details such as the protocol (e.g., SOAP) or the concrete endpoint address - services may specify only an endpoint
name as target, and JBI's message router (see below) determines the concrete endpoint. This decouples the calling
service (the Service Consumer) from the target service (the Service Provider); also more than one service can
implement a particular WSDL interface, allowing for dynamic service invocation based on specifc endpoint
properties (c.f. [JBI:26-27]). As a result, the caller need not know the exact target and whether it is available in
the local environment or as a remote resource, which enables full location transparency.

Figure 4.4 shows a basic example of how an external event is routed through a JBI container: first it is received
by a SOAP BindingComponent (maybe supporting WS-Eventing), which translates the incoming event into
a normalized message and creates a new inbound JBI MessageExchange to let the normalized message router
(NMR) route the message through the JBI environment. Because the BPEL ServiceEngine is configured
to be part of the composite application, it receives the message and invokes a JDBC BindingComponent as
part of a business process. The BindingComponent then transforms the normalized message to a JDBC Query,
which is sent to a CRM database.

(from the presentation Practical SOA with Open ESB4, slide 18)
Figure 4.4: Basic example of a JBI composite application processing an event

4 http://www.objectware.no/OWFilesystem/filer/Practical%20SOA%20with%20Open%20ESB-WEB.pdf

http://www.objectware.no/OWFilesystem/filer/Practical%20SOA%20with%20Open%20ESB-WEB.pdf
http://www.objectware.no/OWFilesystem/filer/Practical%20SOA%20with%20Open%20ESB-WEB.pdf

74 Proposed Solution: Tool Integration Using Java Business Integration

74

Although JBI uses the same model for service description as web services, the integration model is very different
from web-service integration (as described in Section 3.3.3.1): “WS standards only describe how a request is
represented over the wire. They don't provide for any mechanism to ‘host’ services. JBI tries to fill this gap.” (from
[Juric2007:304]). Also the messaging between components is firmly based on WSDL, using similar message
exchange patterns (MEPs), which provide a way “to abstract communication away from implementation notions
such as synchronous and asynchronous calls” [TrowBridge2004:150], standardizing a set of communication
patterns that all services agree upon. This ensures flexibility in integration, abstracting from temporal coupling
(which would impede location transparency), and provides a common understanding of conversations, a high-
level service-oriented communication concept introduced in Section 3.3.3.

All messaging in a JBI environment is handled by a common messaging backbone, the NormalizedMessageR-
outer (NMR): “The NMR can be thought of as an abstract WSDL-defined messaging system infrastructure,
where bindings [BCs] and engines [SEs] serve to provide and consume WSDL-defined services.” [JBI:21]. In
the same source, the NMR is motivated as thus: “This mediated message-exchange processing model decouples
service consumers from providers, and allows the NMR to perform additional processing during the lifetime
of the message exchange.”. At the low level, the NMR implements message-based integration, while at a more
abstract level, it provides a service-oriented communication layer. As a result, the NMR in particular and JBI in
general are often seen as a specification for an ESB, but JBI defines a more general architecture, with an ESB
being only one possible implementation of this architecture (see also Figure 3.10 in Section 3.3.3.2), as noted
by Ron Ten-Hove: “JBI was deliberately crafted to support multiple approaches to building an ESB. This has
resulted in some quite different approaches.”5.

from the article Service Oriented Integration with ServiceMix6

Figure 4.5: JBI Normalized Message structure

Messages are stored in normalized form (see Figure 4.5) and accessible through an associated API, which defines
a NormalizedMessage in XML format, including several message properties (also called the message con-
text), the message payload, and optional attachments, which is specified in [JBI:13]. It is important to note that
the message format is not canonical, where all services have to agree on a common, concrete message definition,
but only normalized, using XML and a common container format that specifies the aforementioned message
parts. The message content is service-specific and openly specified by the service's WSDL. In this way, JBI's
messaging model can be compared to e-mail: message properties (or metadata) serve a similar purpose as e-mail
headers (“From:”, “To:”), which are used by mail servers (or the NMR) for routing and may also contain custom,
service-specific information (X-Headers). The raw message payload is service-specific (the text only has to be

5from Ron Ten-Hove's blog entry Is JBI an ESB? [http://blogs.sun.com/rtenhove/entry/is_jbi_an_esb]
6 http://servicemix.apache.org/articles.data/SOIWithSMX.pdf

http://servicemix.apache.org/articles.data/SOIWithSMX.pdf
http://blogs.sun.com/rtenhove/entry/is_jbi_an_esb
http://blogs.sun.com/rtenhove/entry/is_jbi_an_esb
http://servicemix.apache.org/articles.data/SOIWithSMX.pdf

JBI Architecture 75

75

understood by the recipient) and defined by the service's WSDL, in the same way as an e-mail's content is not
parsed by transmitting systems and only subject to a common definition of semantics (i.e. a common language).
Optionally, e-mails can also contain attachments which serve the same purpose as in JBI.

Finally, the JBI specification [JBI:c6,c10], declares a set of core infrastructure services for installation, deploy-
ment and management of components, artifacts and shared libraries, and for querying components and services,
which resembles a service registry comparable to UDDI in a typical SOA environment. This management layer
is specified as a set of JMX MBeans (as defined by the Java Management Extensions (JMX) specification [JMX])
that compliant implementations must provide, thereby enforcing a standardized management access across JBI
implementations. This ensures that services can be set up and configured as needed for a particular task or use
case, from any place, and that they can be reused in any JBI-compliant runtime. The absence of a standard man-
agement access was identified by Sun and others as a major drawback of the JEE 1.4/5 specification, which did
not define any management layer. The result was that every JEE implementation realized management access
differently, reducing interoperability between JEE runtime environments and complicating deployment and ad-
ministration.

In JBI, components (ServiceEngines and BindingComponents) are installed using standard, JMX-based instal-
lation mechanisms as specified in [JBI:59]. This ensures that JBI components can be deployed into any JBI-
compliant runtime in the same way (see Section 4.4.2). For configuring these components at runtime, the spec-
ification defines a standard packaging format, the ServiceUnit, which includes needed configuration files
and optionally additional artifacts, and specifies the target component where these files should be deployed to.
Several ServiceUnits are packaged inside a ServiceAssembly, which describes an entire integrated (“composite”)
application, as illustrated below:

(from the article JBI Packaging in ServiceMix7)
Figure 4.6: JBI packaging model

The JMX interface is covered in more detail in Section 6.4.2.4, where additional, custom MBeans are used to
manage the JBI components developed for the prototype. The core management services are represented through
yellow boxes in Figure 4.1 above.

To summarize, JBI can be defined as “a loosely coupled integration model for distributed services within a
Service-Oriented Architecture (SOA)”8 that provides an environment in which plug-in components reside, with
interoperation between plug-in components using message-based service invocation described through WSDL,
and a set of services to facilitate management of the JBI environment, by defining mandatory MBeans as part of
a JMX-based management infrastructure. Although JBI runtimes may be implemented as an Enterprise Service
Bus, this is not mandated by the specification, and implementors are free to chose alternative architectures that
may be purely event-driven or resource-oriented (see also Section 8.5).

7 http://servicemix.apache.org/5-jbi.html#5.JBI-JBIpackaging
8from The OpenESB Wiki [http://wiki.open-esb.java.net/Wiki.jsp?page=AOSD]

http://servicemix.apache.org/5-jbi.html#5.JBI-JBIpackaging
http://servicemix.apache.org/5-jbi.html#5.JBI-JBIpackaging
http://wiki.open-esb.java.net/Wiki.jsp?page=AOSD
http://wiki.open-esb.java.net/Wiki.jsp?page=AOSD

76 Proposed Solution: Tool Integration Using Java Business Integration

76

4.2.2. A Comparative Analysis of JBI

The following sections relate JBI to existing and complementing standards, showing differences to the new
approach and the advantages provided for realizing the solution outlined in Section 4.3 below.

4.2.2.1. Relation to Event-Driven Integration

The concept of an event-driven architecture has been introduced in Section 3.3.5, where several relations be-
tween SOA and EDA are identified. As a result, also JBI allows event-driven integration by using corresponding
ServiceEngines, such as the IEP SE, an open source complex event-processing engine used in OpenESB (see
Section 4.4.2)9.

Also, the JBI specification does not mandate a concrete implementation of the NormalizedMessageR-
outer. As a result, different message-based communication patterns may be realized. This can be either mod-
eled as request/reply, as common in an SOA, but also as publish/subscribe, as used in message- or event-driven
systems. Currently available JBI implementations mostly support more than one communication style in order to
support a variety of integration solutions. For example, ServiceMix, the JBI implementation chosen for realizing
the prototype, provides an advanced message queue (ActiveMQ) for reliable and fault-tolerant messaging, but
also supports a staged event-driven architecture (SEDA, see Section 3.3.5 for a short introduction). Most JBI im-
plementations also provide a JMS BindingComponent, which allows integration of existing messaging systems.

As a result, integration architects do not have to chose between SOA and EDA, but can freely apply both archi-
tectural styles as needed, thereby combining advantages of both approaches. [Balasbanmugam2008] provides an
example that applies the concepts of an event-driven architecture to realize a business intelligence application
for fraud detection, using the IEP event-processor engine provided by OpenESB (see below) running inside the
open source JEE GlassFish application server.

4.2.2.2. JBI Compared to JEE and JCA

JCA (introduced in Section 3.3.7.1) has been the standard way to integrate external applications in the JEE world.
Compared to the approach used in JBI, it has several deficiencies (c.f. [Christudas2008:56]), which result from
JCA targeting deployment, not runtime management – for this, it relies on JEE application servers, which do not
provide advanced integration facilities covered in JBI.

JCA realizes a low-level protocol-integration between the Adapter and an external system, but offers no means
for integrated components to communicate with each other in a standard way, as there is no common messag-
ing infrastructure. Although version 1.5 of the JCA specification added a “Message Inflow Contract” to enable
ResourceAdapters sending messages to message-driven beans, possibilities for communication are limited
and the resulting solution is more tightly coupled. A fully service-oriented approach as with JBI enables highly
dynamic and peer-to-peer collaboration while at the same time ensuring transparency and loose coupling between
components by building on a service oriented architecture and using related standards.

JBI relies on the WSDL standard and offers advanced message routing and translation capabilities, using a com-
mon XML-based message-format (the NormalizedMessage) and a common message routing backbone (the Nor-
malizedMessageRouter). Capabilities can be added by installing additional ServiceEngines for advanced mes-
sage transformation, enrichment, or encryption, and additional external resources can be integrated by adding
BindingComponents for, e.g., SNMP, FTP, CICS, or packaged applications like SAP, databases like Oracle etc.

9the Wiki page Event Driven Architecture in Open ESB [http://swik.net/GlassFish/The+Aquarium/Event+Driven+Architecture+in+Open
+ESB+-+ESBs+ain't+just+for+SOA+anymore/cc0x2] gives a good overview and provides further reading on the subject

http://swik.net/GlassFish/The+Aquarium/Event+Driven+Architecture+in+Open+ESB+-+ESBs+ain't+just+for+SOA+anymore/cc0x2
http://swik.net/GlassFish/The+Aquarium/Event+Driven+Architecture+in+Open+ESB+-+ESBs+ain't+just+for+SOA+anymore/cc0x2
http://swik.net/GlassFish/The+Aquarium/Event+Driven+Architecture+in+Open+ESB+-+ESBs+ain't+just+for+SOA+anymore/cc0x2

A Comparative Analysis of JBI 77

77

Also, maintenance of JCA Adapters is more complicated than with JBI: JCA does not fully specify a common
packaging format that allows auto-deployment10. While the JCA specification defines ResourceArchives (RAR),
it only demands an informal (though XML-based) description and leaves much room for implementors, both
application server vendors and application developers. The option to deploy ResourceAdapters in an application
server or standalone adds even more room for proprietary extensions and results in more work on installation
and updates. JBI specifies a JMX-based management layer and offers MBeans for installation, maintenance and
runtime-configuration of components. Individual components may also offer extended configuration by using
a standard ConfigurationMBean, allowing developers to implement advanced integration solutions without lim-
iting ease of administration: components can be deployed automatically by using hot folders or any JMX-com-
pliant management console.

To summarize, Table 4.1 shows the relations between JBI and existing Java EE standards when viewed from
a conceptual perspective.

JEE concept JEE JBI Equivalent

Web tier Web Archive (WAR) – (JBI does not include any web pre-
sentation besides indirect web ac-
cess through MBeans)

Service tier Enterprise Java Bean (EJB) (stati-
cally configured with packaged de-
scriptors)

ServiceEngine (dynamically config-
ured through descriptors and arti-
facts in a matching ServiceUnit)

Composite Application Enterprise Archive (EAR) ServiceAssembly

Integration of External Components Resource Adapter (RAR) (through
JCA)

BindingComponent

External Communication based on contracts (as defined in the
JCA specification)

message based mediation (internal-
ly using a canonical message for-
mat, external format is proprietary
and system-dependent)

Management - (JBoss offers a proprietary concept
of ServiceArchives (SARs) based on
JMX MBeans)

ComponentMBeans (JBI specifica-
tion mandates a set of standard JMX
MBeans)

asee also [JEE5Tut:53], Packaging Applications

Table 4.1: Conceptual relations and overlap between JBI and JEE

The relation of JBI and existing standards in the Java EE world from an architectural perspective is summarized
by the JBI specification lead Ron Ten-Hove as follows:

JBI works at a different level than Java connectors. JBI allows services and protocols to inter-
operate using a WSDL-described model, whereas Java connectors provide a Java-centric way
of interacting with EISs. Java connector architecture fits into JBI as a particular type of binding
component. JMS also fits into JBI this way.

—Ron Ten-Hove (answering a question in Sun's JBI forum)

4.2.2.3. Relation to SCA

The Service Component Architecture (SCA) is a relatively young standards effort originating from IBM, but
contributed to OASIS as an open standard under governance of the OpenCSA board (Open Composite Services

10e.g. JEE application servers use different deployment schemes for shared libraries, resulting in ClassLoader-issues during deployment

78 Proposed Solution: Tool Integration Using Java Business Integration

78

Architecture), which defines SCA as “a set of specifications which describe a model for building applications
and systems using a Service-Oriented Architecture (SOA). […] SCA provides a model both for the composition
of services and for the creation of service components, including the reuse of existing application function within
SCA compositions.” [OpenCSA2008].

A good introduction to the standard is given in [Chappell2007], who defines the motivation behind SCA as “a
way to create components and a mechansim for describing how those components work together.”. An important
aspect of SCA is language and platform independence, as SCA only defines a common assembly mechanism.
Language bindings provide the mapping from specification to a concrete implementation. Currently there are
mappings for C++, Java (including specifications integrating EJB, JMS and JEE), PHP, BPEL and Spring, web
services and others. The specification is currently at version 1.011.

While SCA is often seen as an alternative or competitor to the JBI standard12, both approaches are actually com-
plimentary, as they take a different perspective on integration, but both build on service-oriented integration and
provide a loosely-coupled component model (c.f. [OSOA2007]). SCA concentrates on the architectural aspects
of designing composite applications out of service components (hence the name), whereas JBI standardizes an
integration infrastructure and defines a runtime environment where services are integrated and communicate
over a message bus. Thus, a composite application could be designed as an SCA model and deployed into a JBI
runtime. This is the approach currently taken in the Eclipse Service Tools Platform, which implements a mapping
from the SCA design model to JBI's runtime model. The convergence of JBI and SCA is demonstrated with an
example in [Mos2008], who suggests the following mapping of SCA artifacts to JBI counterparts:

SCA artifact JBI counterpart

Component ServiceEngine

Composite ServiceAssembly

Binding Type BindingComponent

Wire Configuration in ServiceUnits, or MessageExchange
a(according to [Mos2008])

Table 4.2: Relation of JBI and SCA

This relation is also illustrated in Figure 4.7 below:

(source: [Mos2008], originally taken from the Eclipse STP Wiki [EclipseSCA])
Figure 4.7: Mapping from SCA to JBI

11Unlike other specifications, the SCA specifications are quite compact and written in a straight forward manner, making them approachable
with reasonable effort…
12This perception is led by the standards coming from two competitors in the industry, IBM and Sun, and from the fact that IBM (and BEA)
sustained from its vote on JBI and left the corresponding JCR expert group.

Development and Tooling Support 79

79

Current implementations include Apache Tuscany, which is introduced together with SCA in [Christudas2008],
[Fabric3] and [SCOrWare].

Tool support for designing SCA composite applications is currently provided mainly by the Eclipse Service Tools
Platform, with the SCA subproject [EclipseSCA], which is part of the official Ganymede release. The editor is
shown in Figure 4.8 below:

(source: [EclipseSCA])
Figure 4.8: Eclipse STP SCA Editor

An important limitation that makes SCA unsuitable for tool integration is that SCA is essentially limited to a
single domain or runtime implementation of a single vendor. There is no support for wiring together SCA-com-
posites across domains; they can only interact using common interoperable protocols such as web service com-
munication. This is explicitly noted in [Chappell2007], who clarifies that “an SCA application communicating
with another SCA application in a different domain sees that application just like a non-SCA application; its
use of SCA isn't visible outside its domain.”. As the communication protocol among SCA composites is imple-
mentation-dependent and not standardized, components cannot be interchanged between different runtime im-
plementations (e.g., Fabric3 and Tuscany), which inhibits component reuse across SCA implementations. This is
a serious and unacceptable limitation for the proposed tool integration framework, besides the complete absence
of needed ESB-like infrastructure services in the SCA specification, which results from the standard's focus on
a design-time architecture.

To summarize, there is much potential in combining the two standards, taking the advantages of language inde-
pendence and a very straightforward, easy to use API from SCA, and utilizing JBI's runtime interoperability and
rich integration infrastructure, which is already implemented in several ESB-like solutions. Where the two stan-
dards overlap, the JBI 2.0 specification [JBI2], JSR-312, aims to differentiate the two and clarify any ambiguity.
Also, tool support for both solutions is quickly improving, with Eclipse providing support for designing SCA
solutions (which indicates the roots of both projects), and NetBeans providing rich JBI support. In Chapter 8,
SCA will be shortly revisited together with the related Service Data Objects (SDO)-standard for high-level data
integration.

4.2.3. Development and Tooling Support

While it is possible to develop JBI components and ServiceAssemblies without IDE support by using XML edi-
tors and writing deployment descriptors and configuration files by hand, additional tool support greatly improves
development productivity and reduces the likelihood of errors that may be hard to find later, given the rather
complex configuration of JBI. An overview of the steps involved in developing custom JBI components is given
in [Kieviet2007], who also examines current tool support.

80 Proposed Solution: Tool Integration Using Java Business Integration

80

The first level of tool support is provided by using Maven2 archetypes provided by Apache ServiceMix13, which
are essentially project templates for the popular Java build tool. These can be used, e.g., in Eclipse using the
Maven integration plugin. Sadly, no visual editors are provided and configuration has to be done by hand. In
ServiceMix, this is eased by providing a lightweight XML-based format for configuring JBI components and
assemblies (using XBeans with xbean.xml configuration files), and by supporting the deployment of POJOs
(Plain Old Java Objects) as JBI components through ServiceMix XBeans.

Advanced and visual configuration of JBI assemblies is now supported as part of the Eclipse ServiceToolsPlat-
form (introduced in Section 3.2.4.2.1), developed as a separate project originally called CIMERO. The editor
(shown in Figure 4.9) allows rapid development of integration solutions using existing integration components,
following enterprise integration patterns (using the patterns and symbols introduced in [EIP]). The resulting con-
figuration can then be deployed to Apache ServiceMix or PEtALS ESB, two JBI implementations covered in
Section 4.4.2.

(taken from [EclipseSTP], EID subproject)
Figure 4.9: Enterprise Integration Patterns in Action using Eclipse STP's EID editor

Unfortunately, neither CIMERO nor the ServiceToolsPlatform support the development or use of custom JBI
components, but only provide a set of preinstalled messaging and routing components. Integrating custom com-
ponents is supported by using extension points provided by the editor, but this requires manual coding and con-
figuration and is more targeted at STP/CIMERO developers. Currently, full development support for visual cre-
ation of composite applications is only provided for the SCA standard, which is shortly covered in Section 4.2.2.3.
Recently, support for adding JBI components to a SCA assembly has been added, and the resulting composite
application can be deployed to a JBI runtime, such as ServiceMix or PEtALS, but no full design time support
(e.g., for developing ServiceEngines) is yet provided for JBI.

13see the tutorial Using Maven to develop JBI applications [http://servicemix.apache.org/2-beginner-using-maven-to-develop-jbi-
applications.html]

http://servicemix.apache.org/2-beginner-using-maven-to-develop-jbi-applications.html
http://servicemix.apache.org/2-beginner-using-maven-to-develop-jbi-applications.html
http://servicemix.apache.org/2-beginner-using-maven-to-develop-jbi-applications.html

Development and Tooling Support 81

81

(taken from [EclipseSTP], EID subproject)
Figure 4.10: Eclipse STP editor with JBI support

[Swordfish] is an emerging open source project donated by SOPERA (introduced in Section 3.2.4.2.1). The
project aims at providing a runtime integration infrastructure based on OSGi, using JBI for protocol and service
integration, but is not yet available in open form and does not yet provide any design time support; for this, it
relies on the aforementioned ServiceToolsPlatform.

FUSE (see Section 3.3.3.3.2) is a commercial solution that builds on ServiceMix and provides additional features
and tool support, e.g., the recently introduced visual integration designer14. Being commercial, it could not be
used for the proposed solution, and support for developing custom components is still limited.

The NetBeans Java IDE provides design and runtime support for creating and deploying composite JBI applica-
tions from within the IDE, through the CASA (Composite Application Service Assembly) visual editor, associ-
ated project types and related wizards15, illustrated in Figure 4.11 below.

There is also a commercial variant called JavaCAPS16 that provides a full integration stack for enterprise cus-
tomers, including the Glassfish application server and management tooling. While the CASA editor provides
rich support for configuring composite applications using existing components, support for developing custom
plugins is limited to a wizard that creates the necessary skeleton and configuration, and simple deployment test-
ing. For integrating custom components into the CASA editor, it is necessary to develop a NetBeans plugin,
which is a documented but tedious procedure17. Also, JBI development with NetBeans is tied to the Glassfish
ESB (see Section 4.4.2.1 below), although components developed with NetBeans can be deployed into any JBI-
compliant solution.

14for an analysis on the mixture of open source and commercial ESBs, see the article Open source/commercial ESB hybrid
reflects SOA reality [http://searchsoa.techtarget.com/originalContent/0,289142,sid26_gci1285526,00.html?track=NL-110&ad=615708&
asrc=EM_NLN_2731874&uid=774931]
15see the OpenESB Wiki page on JBI component development support [http://wiki.open-esb.java.net/Wiki.jsp?
page=JbiComponentDevTools] and the official NetBeans SOA home [http://www.netbeans.org/features/soa/index.html]
16see Sun's web page on JavaCAPS [http://developers.sun.com/javacaps/]
17e.g., see Chad Gallemore's blog entry Creating a Binding Component Deployment Plug-In for Netbeans [http://gallemore.blogspot.com/
2007/05/creating-binding-component-deployment.html]; according to [Kieviet2007], there is now a wizard to achieve the same

http://searchsoa.techtarget.com/originalContent/0,289142,sid26_gci1285526,00.html?track=NL-110&ad=615708&asrc=EM_NLN_2731874&uid=774931
http://searchsoa.techtarget.com/originalContent/0,289142,sid26_gci1285526,00.html?track=NL-110&ad=615708&asrc=EM_NLN_2731874&uid=774931
http://searchsoa.techtarget.com/originalContent/0,289142,sid26_gci1285526,00.html?track=NL-110&ad=615708&asrc=EM_NLN_2731874&uid=774931
http://searchsoa.techtarget.com/originalContent/0,289142,sid26_gci1285526,00.html?track=NL-110&ad=615708&asrc=EM_NLN_2731874&uid=774931
http://wiki.open-esb.java.net/Wiki.jsp?page=JbiComponentDevTools
http://wiki.open-esb.java.net/Wiki.jsp?page=JbiComponentDevTools
http://wiki.open-esb.java.net/Wiki.jsp?page=JbiComponentDevTools
http://www.netbeans.org/features/soa/index.html
http://www.netbeans.org/features/soa/index.html
http://developers.sun.com/javacaps/
http://developers.sun.com/javacaps/
http://gallemore.blogspot.com/2007/05/creating-binding-component-deployment.html
http://gallemore.blogspot.com/2007/05/creating-binding-component-deployment.html
http://gallemore.blogspot.com/2007/05/creating-binding-component-deployment.html

82 Proposed Solution: Tool Integration Using Java Business Integration

82

(originally taken from [Kieviet2007])
Figure 4.11: Developing composite applications with the NetBeans CASA editor

ChainBuilder provides a visual JBI component development platform based on Eclipse. Like the aforementioned
solutions, it comes with a designer for constructing ServiceAssemblies and for configuring individual compo-
nents. Unlike those solutions however, ChainBuilder also provides an API and necessary tooling for developing
and deploying custom JBI components, which can be easily integrated into the visual editor, thus enabling a co-
herent visual design and development workflow for efficiently realizing custom integration solutions. For these
reasons, ChainBuilder was used for realizing the prototype, as shown in Section 6.4.4.

The current tooling landscape reflects the evolutionary state and enterprise-centric focus of the JBI 1.0 standard,
providing integration architects with a way to compose new, integrated applications out of existing services and
Adapters available from third parties. It does not yet provide a comfortable environment for individual developers
that need to create new Adapters for custom solutions.

4.3. Using JBI for Tool Integration
“The application, in effect, becomes a microcosm of the web, in that it's using many of the same composition

techniques internally that the network is using externally.”
--Mike Hapner in an Interview about SOA best practices20

As mentioned in Section 4.2.1, JBI provides standards-based mediation and composition of existing components
by providing a high level abstraction mechanisms and by integrating various container and protocol standards,
as often encountered in typical enterprise integration scenarios. This makes it possible to design an integration
architecture which combines previously incompatible protocol and data formats, as often the case in heteroge-
neous tool landscapes, in a loosely-coupled way. JBI solves existing issues in legacy integration, as outlined in
Section 2.2.1, by providing a service-based façade (WSDL), enabling integration of existing applications into a
service-oriented, standards-based integration middleware, avoiding the need for implementing yet another cus-
tom integration framework with proprietary container and communication formats. It is therefore possible and

20 http://java.sun.com/developer/technicalArticles/Interviews/hapner_qa.html

http://java.sun.com/developer/technicalArticles/Interviews/hapner_qa.html
http://java.sun.com/developer/technicalArticles/Interviews/hapner_qa.html

Tools as Composite Applications 83

83

feasible to use Java Business Integration concepts for legacy integration, e.g. BindingComponents for client-
side tool integration, even if this is not the original target domain of the enterprise-oriented JBI standard. The
wide scope of application is also noted by the “inventor” of JBI:

The ability of JBI to integrate disparate applications as WSDL-described services is only limited
by the expressive power of WSDL itself, and the ability of the component author to map the
application to such a model.

—Ron Ten-Hove, JBI specification lead, in an interview [Sommers2005]

Integration of existing applications in the enterprise domain faces similar challenges as integrating off-the-shelf
tools on the client side. By using JBI's concept of BindingComponents, any tool that can send or receive messages
or function calls over an external interface can be integrated. This enables previously isolated tools to consume
or provide services to other framework components (and so other tools) in a transparent manner. For a tool to be
integrated, only a BindingComponent has to be developed that translates between the proprietary tool interface
and JBI's normalized message format. This enables transparent data integration without having to change existing
tools or investing effort in developing models for mapping the tool's data model to a common representation,
which can be problematic as shown in Section 3.3.6. Functional integration at the logical level is realized by
implementing a corresponding ServiceEngine that exposes the tool's functionality as a set of services inside the
JBI environment.

4.3.1. Tools as Composite Applications

In the context of JBI, the term composite application is often used to describe the desired outcome of an integrated
application, which is composed of existing (where possible), independent service components that are combined
in new ways to solve current (business) needs. More precisely, it can be defined as “a collection of existing and
independently developed applications and new business logic orchestrated together into a brand new solution of
a business problem that none alone can solve.”19. A good overview is also given in [Altman2007].

Viewing a set of tools as a composite application leads to a holistic perspective on tool integration, where in-
dividual tools grow together, increasingly overlapping in functionality and data, resulting in a transparent but
significant advance in user experience:

A composite programming model has also interesting consequences in terms of “application
boundaries”: there are no visible technical or physical boundaries, only logical ones. A com-
posite programming model typically exhibits a federated and collaborative point of usage where
users can initiate, work on and complete any number of user activities irrespective of the in-
formation services or business processes they participate in. This point of usage can even be
different for different users and support clients of any type (mobile, desktop…) more easily. In
other words, different user activity containers may implement the same user tasks.

—from the book Composite Software Construction [Dubray2007:22]

[Raj2007] shows how Java Business Integration-standard can be applied to process integration in an enterprise
setting, using a WS-BPEL ServiceEngine: “Service-enabled applications create the opportunity to compose func-
tions from disparate and cross-functional applications to model business processes that transcend application and
enterprise boundaries.”

Figure 4.12 provides an overview of the different dimensions in application composition, dividing the integration
landscape into four quadrants, spawning a diagonal line of evolution from statically designed, monolithic enter-
prise backend systems to highly dynamic and user-centric mashups on the web. Enterprise 2.0 applications (e.g.,
portals) can be viewed as frontends to carefully integrated backend systems, whereas composite applications

19from the OpenESB Wiki page on Composite Applications [http://wiki.open-esb.java.net/Wiki.jsp?page=CompositeApplications]

http://wiki.open-esb.java.net/Wiki.jsp?page=CompositeApplications
http://wiki.open-esb.java.net/Wiki.jsp?page=CompositeApplications

84 Proposed Solution: Tool Integration Using Java Business Integration

84

are dynamically combined out of existing backend services and are mainly used to realize integrated business
processes.

Figure 4.12: Dimensions and dynamics of application composition

Returning to the comparison of enterprise integration solutions to mashups from Section 2.1, this relation, which
may seem far-fetched at first, is already implemented in the form of an Enterprise Data Mashup ServiceEngine20

that facilitates development of mashups, e.g., for combining data from different databases or spreadsheet files.
This shows the wide area of integration possibilities provided by JBI, which is of great advantage in tool inte-
gration.

While JBI is a Java-based integration infrastructure, it is not limited to integrating Java applications: being based
on open industry standards such as WSDL, JBI allows integration of non-Java applications, web services and
legacy systems through BindingComponents. Additionally, semantic integration is provided by using common
integration services realized as ServiceEngines, as demonstrated by the prototype in Chapter 6.

4.3.2. Evaluation
A closer evaluation of JBI based on the requirements outlined in Section 4.1 shows that JBI fulfills the key
requirements of generality and flexibility, as JBI is designed to accommodate heterogeneous enterprise environ-
ments with greatly varying needs and challenges, from proprietary backend systems to modern service-oriented
applications. As a Java standard, JBI solutions are inherently portable to a wide array of platforms, which also
facilitates the realization of uniform user interfaces, by using cross-platform UI frameworks like Swing, SWT
or Java-based application platforms like Eclipse RCP (see Section 3.2.3), and thus fulfills the requirement of
homogeneity.

BindingComponents support several requirements for tool integration: they realize compatibility and COTS in-
tegration as mentioned above, they provide adaptability, extensibility and modularity because they enable loose
coupling of tool interfaces to the integration framework, and they translate from a tool's proprietary data model
to the common, normalized message format used on the JBI message bus.

ServiceEngines, on the other hand, provide the necessary functional integration, which is abstracted from the
original tool interface by a corresponding BindingComponent, and also support the realization of higher-level
services for rich data integration, such as managing Relations or other general framework services like session
or user management.

The NormalizedMessageRouter supports instantaneous (corresponding to data timeliness), asynchronous and
reliable communication, whereas several implementations exist that allow fine grained weighting between var-
ious communication requirements.

20see the Glassfish Wiki page Enterprise Data Mashup [http://wiki.open-esb.java.net/Wiki.jsp?page=EnterpriseDataMashup]

http://wiki.open-esb.java.net/Wiki.jsp?page=EnterpriseDataMashup
http://wiki.open-esb.java.net/Wiki.jsp?page=EnterpriseDataMashup

Realization 85

85

Regarding transparency, JBI provides the necessary abstraction from communication details, protocol formats
and framework internals, and is designed according to the needs of integration developers by providing a rich API
that covers several important aspects of application integration. The only “overhead” introduced is the mandatory
use of WSDL and XML messaging, but with the advantages this brings, it is a minor cost to pay. Once suitable
BindingComponents and ServiceEngines are provided (for many use cases these do already exist), integration
architects can now rely on tooling support in several forms (see Section 4.2.3), which provides the needed flex-
ibility in building or adjusting integration solutions.

For end users, the solution is fully transparent, but presentation integration still has to be implemented by hand.
Existing tools have to be extended with suitable interface code, so that users gain access to additional integration
functionality provided through BindingComponents and ServiceEngines. This “last mile of integration” cannot
be bridged by JBI alone, but the necessary foundation is already provided. Custom interface code in the integrat-
ed tool can now communicate with an accompanying BindingComponent in a straightforward and lightweight
manner, without the need for custom integration code bound to the framework. It is sufficient to implement a
channel for sending and receiving commands and associated data, e.g., using TCP/IP, as is done in the prototype.
Communication with the integration backbone and API integration is fully handled by the BindingComponent,
which provides all necessary mediation and further translation functionality (see also Section 6.4.1.3).

Because JBI also specifies a management infrastructure based on the JMX standard, a JBI based integration
solution is inherently exposed for local and remote management using any management interface supported by
the JMX implementation (e.g. SNMP for legacy management applications, HTTP for web based, distributed
management, etc.).

Cross-cutting functionality like security can be realized through suitable technology selection, e.g., by selecting a
message bus implementation that supports secure transmission and encryption of messages, or by implementing
a ServiceEngine that validates user roles and privileges21. Scalability is supported by using a JBI implementation
that supports distribution, e.g. PEtALS (see Section 4.4.2 below).

Concluding, JBI provides a modern and standards-based solution that provides service-oriented integration of
previously isolated applications. Although being targeted at enterprise integration, there is a considerable over-
lap in challenges and a striking similarity in the problem domain with typically isolated and heterogeneous ap-
plication landscapes in tool integration, which makes JBI a perfect match for tool integration on the desktop.
This rationale is also supported by [Touzi2007]: “Service Oriented Architecture (SOA) seems to be the perfect
support for applications interoperability […]. The chosen technical framework is based on a SOA implemented
by a JBI (Java Business Integration) compliant ESB (Enterprise Service Bus).”

4.4. Realization
The proposed tool integration solution is entirely built on the foundation of the JBI standard, using custom JBI
components to integrate COTS tools: BindingComponents provide the needed low-level integration and realize
bridging from proprietary tool interfaces and protocols to normalized messages used in the JBI environment.
Where existing web service interfaces or standards-based Adapters (e.g. JCA Adapters) are available, they can
be reused as there are already corresponding BindingComponents available for various JBI implementations22.

Semantic integration (e.g., data transformation, finding related tools, routing information to interested tools) and
common tool services (e.g., common services for object and data manipulation supported by several Adapters)
are implemented as ServiceEngines, which rely on BindingComponents to deliver and send data and to perform

21The selected JBI implementation, Apache ServiceMix, supports authentication, authorization and transport security using available stan-
dards such as JAAS or WS-Security, see the ServiceMix Security page [http://servicemix.apache.org/security.html]
22Although standards-conformant JBI components should work on every JBI implementation, there is a certain overlap in the market, and
often more than one implementation is available for a particular Binding, e.g. HTTP, FTP or File.

http://servicemix.apache.org/security.html
http://servicemix.apache.org/security.html

86 Proposed Solution: Tool Integration Using Java Business Integration

86

corresponding actions in the target tools. The separation of low-level protocol integration from higher-level
semantic integration results in a highly adaptable tool integration solution that can be easily adapted to different
usage scenarios as needed, enabling dynamic workflows across heterogeneous and isolated tools.

The general design of the proposed solution is illustrated in Figure 4.13 below, using familiar icons from [EIP]
to demonstrate the consequent use of enterprise integration standards and patterns. The general design using
Adapters and Translators may seem reminiscent of Figure 3.15 in Tool Integration Patterns [Karsai2003] or
even the existing ToolNet architecture, but it differs in several key aspects: it does not rely on model-integra-
tion and hence is not limited to data integration, it does not use low-level or proprietary communication in the
messaging backbone (JBI's NormalizedMessageRouter instead of CORBA23 or a custom messaging backbone),
and there is a common, standardized API for the components. ToolAdapters are realized as JBI BindingCom-
ponents (in this figure, the DOORS BC communicates with a Doors Adapter – a set of tool-specific scripts –
inside the DOORS application). Semantic translation is realized through ServiceEngines, which convert between
tool specific commands and standardized, common service requests (similar to ToolNet Services). The manager
or desktop component is represented by a JMX-based management console which holds tool-specific MBeans
exposed by the ServiceEngine (e.g., data objects or tool functionality). Metadata is handled in a standards-based
way using existing metadata fields in NormalizedMessages. Finally, workflows can be implemented by using an
existing BPEL ServiceEngine, but this is not shown here for the sake of clarity.

Figure 4.13: Design of the proposed solution

Using the JBI standard as a foundation for tool integration not only provides a common API and reusable in-
frastructure, but also enables to build on existing standards in enterprise integration, from backend integration
standards like JCA to service-oriented integration using web services or REST, up to process-integration stan-
dards like BPEL.

The following sections provide a short evaluation of available JBI implementations, beginning with the one that
was chosen for the prototype implementation, Apache ServiceMix.24A good starting point for evaluating ESBs
is also provided in [Rademakers2008:23], which focuses on Mule and ServiceMix and shows how different in-
tegration scenarios can be implemented using these ESBs, and [Christudas2008:63], who provides some back-
ground on JBI and service-orientation in general, using Apache ServiceMix for practical examples.

23The solution in [Karsai2003] is not bound to a specific middleware, but CORBA was the predominant middleware standard in 2003 and
JBI not available then.
24see also the ServiceMix page How to Evaluate an ESB [http://servicemix.apache.org/how-to-evaluate-an-esb.html]

http://servicemix.apache.org/how-to-evaluate-an-esb.html
http://servicemix.apache.org/how-to-evaluate-an-esb.html

Apache ServiceMix 87

87

4.4.1. Apache ServiceMix

“Apache ServiceMix is an open source ESB (Enterprise Service Bus) that combines the functionality of a
Service Oriented Architecture (SOA) and an Event Driven Architecture (EDA) to create an agile, enterprise

ESB.”
--from The Apache ServiceMix homepage27

Apache ServiceMix [Christudas2008:57] realizes a modular integration infrastructure completely based on the
JBI specification. All components are based on the JBI standard and can be exchanged or adapted as needed,
even the message router itself can be configured to custom needs: depending on requirements and constraints –
such as latency, scalability or reliability – different message flows can be configured. Most message flows are
implemented using Apache ActiveMQ, an open source JMS implementation. ServiceMix comes with a variety of
ServiceEngines for message transformation, routing or security, and dedicated BindingComponents for support-
ing protocols like TCP/IP or JMS. Where possible, existing open source implementations (mostly from other
Apache projects) are reused, e.g. Apache CXF for web service integration, Jencks for integrating JCA Adaptors,
or Apache Camel for dynamic routing based on a simple DSL (see also Section 8.3). Figure 4.14 shows the
ServiceMix architecture and some components available:

(from [Rademakers2008:25])
Figure 4.14: Apache ServiceMix architecture overview

Development tooling is provided through Ant tasks and Eclipse project templates, using Maven archetypes for
building BindingComponents and ServiceEngines. A visual designer is available (CIMERO, now part of the
Eclipse STP project), but as mentioned in Section 4.2.3, ChainBuilder provides a more complete solution that
uses ServiceMix as the underlying JBI implementation.

There is a rich community and developer support around ServiceMix, and the development community quickly
adopts and incorporates new standards and solutions in service oriented and message based integration, such as
JBI 2.0 [JBI2] or OSGi with the upcoming version 4 (see Section 8.1 for more on the future of ServiceMix and
JBI). An excellent introduction to JBI, ServiceMix and their combination is given in [Snyder2007], who also
provides some insight into the next generation of JBI and ServiceMix.

Several other solutions use ServiceMix as a foundation, including a commercial variant, the FUSE integration
suite, which is a pre-packaged and advanced (“enterprise-hardened”) version of ServiceMix with additional tool-
ing and enterprise-level support. [GASwerk] is an open source solution that provides an integrated SOA stack
based on Apache ServiceMix, using ApacheCamel for implementing dynamic rules-based routing, Geronimo as
the underlying application server, JMS for distributed messaging and Spring for lightweight configuration.

27 http://servicemix.apache.org/home.html

http://servicemix.apache.org/home.html
http://servicemix.apache.org/home.html

88 Proposed Solution: Tool Integration Using Java Business Integration

88

ServiceMix was selected for the prototype implementation in Section 6.4.1.2 because of the open source nature
combined with good developer support (Wikis, newsgroups, articles) and fidelity to the JBI specification. The
project, being an Apache effort, enjoys high visibility and support in the open source Java community and is
progressing steadily towards stability and standards support. While developing the prototype, it was accepted
as a top level Apache project, which is a strong sign of commitment, stability and viability, making a strong
foundation for building an integration solution on. Missing high-level tool support, esp. visual design of Ser-
viceAssemblies and support for implementing custom components, is compensated by independent projects that
use ServiceMix as a runtime, and add the necessary tooling and additional API support. Because FUSE is a
commercial project, and Eclipse STP does not yet support the full JBI specification, ChainBuilder was used for
designing and implementing the proposed solution.

4.4.2. Alternative Implementations Considered

Several implementations were evaluated for applicability to the requirements outlined in Section 4.1, esp. for tool
integration using custom components, as necessary for realizing the prototype. All solutions presented here are
open source and based on the JBI standard, with the notable exception of Mule, which only provides an external
JBI binding and does not support JBI ServiceEngines. Mule is nevertheless included as a reference to widen the
scope of this short open source ESB comparison, and because of its popularity26. In the following sections, the
solutions considered will be introduced, and at the end, a feature matrix is provided for easier comparison of the
individual ESB's support for the key criteria evaluated.

4.4.2.1. Glassfish and OpenESB

Project [OpenESB] is Sun's reference implementation of JBI and is also used in the open source GlassFish JEE
application server (which serves as a reference implementation for the JEE specification). There is a central
community hub (the OpenESB wiki) where already many JBI components are available, also for integrating
legacy applications like SAP or protocols like CICS. Rich visual tooling is provided as part of the NetBeans
“SOA pack”, which integrates Glassfish as a JBI runtime environment and supports design and deployment of
ServiceAssemblies from within the IDE, as illustrated in Figure 4.11 above.

There is growing support for developing custom components, but their integration into the visual editor is not
as simple as with ServiceMix (using the ChainBuilderIDE), which also has broader community and developer
support, both in terms of documentation and help, but also in terms of practical experience and installed user
base. Also, ServiceMix is more an independent project, whereas OpenESB is still closely tied to Sun.

4.4.2.2. PEtALS

A lesser known but advanced JBI implementation is provided by the OW2 consortium: [PEtALS]27(“the Euro-
pean open source ESB”) has been designed for enterprise-grade deployments with support for distribution, secu-
rity and modularity at its core, and a rich web-based management and instrumentation interface28. The container
is based on a custom, language-neutral component model (“Fractal”29), which allows porting to other platforms
(e.g., embedded systems using the C implementation). PEtALS is used in several large-scale deployments (e.g.,
for the French social security system bank ACOSS) and in the research project SOA4All32, which aims at pro-

26JBossESB [https://www.jboss.org/jbossesb/] is the latest addition to the stack of open source ESBs. It was not available when the prototype
was realized, and JBI support is equally limited as in Mule, which is much more wide spread and mature. For these reasons, it is not included
in this survey.
27documentation is also available at ebmwebsourcing [http://www.ebmwebsourcing.com/produits/documents.html], the company behind
PEtALS
28recently, support for multi-node configuration using JASMINe [http://wiki.jasmine.objectweb.org/xwiki/bin/view/Main/] was added
29see the Fractal homepage [http://fractal.objectweb.org/]; the name suggests a recursive component model, where components are composed
out of components that expose several services, a model that fits well with JBI's composite application concept
32 http://www.soa4all.org

http://www.soa4all.org
https://www.jboss.org/jbossesb/
https://www.jboss.org/jbossesb/
http://www.ebmwebsourcing.com/produits/documents.html
http://www.ebmwebsourcing.com/produits/documents.html
http://wiki.jasmine.objectweb.org/xwiki/bin/view/Main/
http://wiki.jasmine.objectweb.org/xwiki/bin/view/Main/
http://fractal.objectweb.org/
http://fractal.objectweb.org/
http://www.soa4all.org

Alternative Implementations Considered 89

89

viding a semantically integrated “web of services”, merging SOA with the WWW. The basic architecture is
shown in Figure 4.15 below:

(from Case study : deploying PEtALS on a national scale (ACOSS)33)
Figure 4.15: PEtALS ESB Architecture

The Component Development Kit (CDK) provides a JBI-compatible extended API that eases development of
components. Tooling is provided via an Eclipse plugin32 that originates from the CIMERO editor (see Sec-
tion 4.2.3) and supports configuration and deployment of ServiceAssemblies. Integrating custom components in
the visual designer requires manual coding. Community and developer support is limited, and it is hard to find
additional information for PEtALS outside the project's web site; also, downloading PEtALS requires registra-
tion, although the project itself is open source.

4.4.2.3. MuleSource Mule

As mentioned in the section's introduction, [Mule] plays a special role, as it is not a full JBI implementation,
but only provides external JBI connectors, which can be used to integrate with other JBI environments like Ser-
viceMix. It is also not a typical ESB, as is often stated, e.g., in [Menge2007], because it does not provide a
common messaging backbone and associated backend services, but more a freely combinable mediation layer
where components are not plugged in but sticked together as needed33. This is seen as an advantage over tradi-
tional ESBs, stating that “One difference between Mule and a traditional ESB is that Mule only converts data
as needed. With a typical ESB, you have to create an adapter for every application you connect to the bus and
convert the application's data into a single common messaging format. […] Mule increases performance and
reduces development time over a traditional ESB.”

As a result, Mule uses a proprietary API and message format and does not embrace JBI or SCA as its underlying
integration model. Service components (previously called Universal Mule Objects or UMOs) implement custom
application logic and operate on the content of a message on a logical level, similar to JBI's ServiceEngines: they
are decoupled from specific messaging or protocol formats required for communicating with other components
or external applications. This is performed by Transformers, which convert between different data formats and
wrap them in Mule messages, whereas Transports handle protocol conversion as needed, bridging between com-
munication protocols such as JMS, SOAP, HTTP, File or proprietary protocols, similar to JBI's BindingCompo-
nents. Finally, Routers are used to deliver incoming messages to Service components and for sending outgoing

33 http://www.ebmwebsourcing.com/images/stories/media/ow2-casestudy_petals_acoss.pdf
32see PEtALS-Eclipse [http://www.ebmwebsourcing.com/projects/petals-eclipse/]
33The Mule Getting Started Guide [Mule], chapter Understanding the Messaging Framework, itself states that “Mule is based on ideas from
Enterprise Service Bus (ESB) architectures.” (emphasis added), making clear that not all ESB principles are implemented or supported. See
also the interview with IONA [http://blogs.zdnet.com/open-source/?p=2286], where Mule is more related to ApacheCamel than to an ESB,
being only a part of the integration puzzle.

http://www.ebmwebsourcing.com/images/stories/media/ow2-casestudy_petals_acoss.pdf
http://www.ebmwebsourcing.com/images/stories/media/ow2-casestudy_petals_acoss.pdf
http://www.ebmwebsourcing.com/projects/petals-eclipse/
http://www.ebmwebsourcing.com/projects/petals-eclipse/
http://blogs.zdnet.com/open-source/?p=2286
http://blogs.zdnet.com/open-source/?p=2286

90 Proposed Solution: Tool Integration Using Java Business Integration

90

messages to the target component according to the configuration. In JBI, there is a central, shared router that
handles messaging and connects all endpoints, the NormalizedMessageRouter. Routers can perform additional
logic such as filtering or message composition/decomposition, implementing the message routing-patterns from
[EIP:225]. The basic architecture and message flow is illustrated in Figure 4.16 below:

(from [Mule])
Figure 4.16: Mule ESB architecture

Mule uses a compact XML-format for describing the configuration and supports Spring for lightweight specifi-
cation of the desired integration. Development support is provided via Ant and Maven-scripts, there is also an
Eclipse-plugin (MuleIDE) for basic configuration and deployment from within the IDE. Recently, the MuleIDE
has been extended to provide a visual editor for designing integration maps, but this has not yet been ported to
the new Mule 2.0 release.

Compared to a full JBI solution, Mule is easier to get started with and provides a more lightweight, configura-
tion-centric integration model with little restrictions on architecture or message format. Components may be
simple Java objects or Spring Beans, which can be directly integrated without code changes by writing a suitable
configuration. This simple approach allows to quickly set up a prototypes and reduces time-to-market for small to
medium size projects, but allows the solution to grow to enterprise scale when needed, because of the clustering
support in Mule. Especially in small or performance-critical settings, Mule provides an advantage by transform-
ing messages only when needed at the last possible moment, which is sometimes compared to late binding in
programming languages. Mule has recently been integrated into an integration stack with various components
working together, called Mule Galaxy36. Integration into existing environments is possible in several ways, ei-
ther as a component inside a JEE application server or by connecting to an existing message bus over JMS or
a similar protocol supported by Mule.

The deviation from open APIs, common messaging formats and core ESB principles also has significant disad-
vantages and bears the danger of vendor lock-in (Mule is the only implementation available) and “spaghetti-in-
tegration”, as components are still tightly coupled and statically configured, which can result in highly complex
configurations as every possible message path has to be explicitly designed, catering for required translations
and transports. In this way, Mule really only realizes component integration and not service-oriented integration,
which would require the consistent usage of standards-based interfaces, such as WSDL, which is utilized in JBI.
Also, because endpoints have to explicitly specified, there is no real location transparency, which is a core prin-

36 http://mulesource.com/products/galaxy_features.php

http://mulesource.com/products/galaxy_features.php
http://mulesource.com/products/galaxy_features.php

Alternative Implementations Considered 91

91

ciple behind SOA. Moreover, Mule does not support hot deployment or reconfiguration on-the-fly. This has been
a long standing point of criticism and will be addressed in an upcoming version by using OSGi as the underlying
component model.

Much of Mule's unique advantages proclaimed in [Mule] (section What Is Mule?), can be also realized with JBI
in a standards-compliant manner, without incurring the disadvantages of Mule, as shown below:

• any component type is supported: In JBI, components can be easily wrapped into ServiceEngines or Binding-
Components. ServiceMix also supports POJOs (Plain Old Java Objects) directly through API extensions and
provides a lightweight configuration model using XBeans (JBI 2.0 will also support OSGi components).

• better component reuse and less API overhead: JBI components can be reused across different runtimes,
which is out of scope for Mule. This comes at the price of added API complexity, which is why many JBI
implementations introduce more lightweight API-layers that allow easier development of JBI components but
are not always fully JBI compatible, restricting reuse across JBI containers. JBI 2.0 will however refactor the
API where it is overly complex or restrictive, and make the specification more developer-friendly in general.
Recoding is also not necessary in JBI, as ServiceUnits provide rich ways of reconfiguration, even at runtime.

• no restrictions on the message format: JBI requires transformation into a normalized (but not canonical, see
Section 4.2.1) XML-format on purpose: this reduces complexity of the integration solution and minimizes
the risk of tight coupling and point-to-point integration, which can easily happen with Mule. Implementations
are free to optimize message flow where possible, so transformation is not performed when communicating
endpoints use the same protocol. Also, binary formats and proprietary extensions are supported through at-
tachments and metadata, respectively.

• support for various topologies besides ESB: The JBI specification does not restrict implementations to an ESB
topology, but allows the implementation to chose any topology that makes sense in the target environment,
which has been already shown in Section 4.2.1 and previously in Chapter 3, Figure 3.10. The next version of
OpenESB will support peer-to-peer messaging using JXTA, and other JBI implementations support various
messaging and clustering forms such as JMS, SEDA or Proxying.

The disadvantages identified above and the restrictions imposed by the proprietary Mule API make it unsuitable
for sustainable tool integration, esp. when comparing against the requirements and alternatives outlined before.
Also, Mule 1.x has been previously tried for a ToolNet redesign in a case study, but was found to be too restrictive
with regard to endpoint addresses, as it did not support dynamic endpoints (e.g., when tools come online or go
offline). This limitation to static configuration impedes dynamic tool reconfiguration and agile workflows.

Mule does not fully apply best practices in SOI and enterprise integration, which may result in complex solutions
that are easy to build initially but hard to maintain later. However the straightforward approach to integration,
easy configurability (maximizing reuse of existing service components) and low API overhead (maximizing
performance and easing development) are key advantages that should be followed in JBI 2.0 where possible.

4.4.2.4. Comparison Matrix

Table 4.3 summarizes the features identified in open source JBI implementations considered and also includes
Mule for reference:

Feature \ Solution Mule ServiceMix OpenESB PEtALS

open source yes

open standard no (proprietary API) yes (JBI)

common data for-
mat

no yes (JBI normalized messages)

92 Proposed Solution: Tool Integration Using Java Business Integration

92

Feature \ Solution Mule ServiceMix OpenESB PEtALS

adherence to SOA/
SOI principles

partially fully (WSDL interfaces and XML messaging)

API complexity low, simple compo-
nent model, allows
easy reuse of exist-
ing service objects

complex specification, working with the bare API requires thor-
ough understanding of several concepts, components have to fol-
low the API paradigms

Configuration straightforward, al-
lows reconfigura-
tion without coding,
Spring support

more complex, requires editor support, reconfiguration possible
(even at runtime); ServiceMix offers lightweight configuration
using XBeans

Dynamic high design time dy-
namic (components
can be easily added),
no runtime dynamic
(no hot deployment)

medium design time dynamic (many correlated configurations,
more complex API), high runtime dynamic (full support for hot
deployment)

Scalability high, provided out of
the box

medium, supported
through JMS

medium, optional high, designed for
enterprise scalability

Integration in exist-
ing environments

excellent (stan-
dalone, various JEE
app servers and mes-
sage queues)

very good (stan-
dalone, JEE app
server (Geronimo)
or message queue)

good (JEE app serv-
er (JBoss) and mes-
sagequeue)

good (standalone,
JEE app server
(JOnAS) and mes-
sagequeue)

Components Avail-
ability

medium, many third
party and still in de-
velopment

very good, many components available in the JBI ecosystem,
many provided out of the box, many additional components in
development

Developer Support
(Docs, Community)

good (Wiki with
some information,
but documentation
requires free regis-
tration)

very good, Wiki
and forums, Chain-
Builder provides full
manuals

good, many exam-
ples in the OpenESB
wiki

medium, manual
available but incom-
plete, requires free
registration

Community Adop-
tion

high (also commer-
cial)

high (commercial
through FUSE prod-
uct)

low, but gaining
traction through tool
support, see below

medium (mainly
used in some Euro-
pean institutions and
research projects,
but gaining recogni-
tion)

Tool support medium (only an
Eclipse plugin pro-
vided, in develop-
ment)

medium (relies on
increasing JBI sup-
port in emerging
Eclipse STP), but
ChainBuilder adds
an excellent IDE to
ServiceMix

very good (full sup-
port for designing,
configuring and de-
ploying JBI Service-
Assemblies)

medium (Eclipse
plugin for designing
and deploying JBI
ServiceAssemblies,
only just released,
not as powerful as
NetBeans)

Maturity Very high and
proven, used in sev-
eral commercial

high (stable version
3.2, version 4 in de-
velopment)

high (used in com-
mercial variant,
Glassfish ESB)

high (used in
widescale industry
and research set-
tings)

Summary and Conclusion 93

93

Feature \ Solution Mule ServiceMix OpenESB PEtALS
settings (e.g., Wal
Mart)

Table 4.3: Comparison of Open Source JBI Solutions

JBI implementations show similar advantages but differ in tooling and developer support (API, community,
documentation) and offer unique advantages in certain target environments. Mule is a very mature and reliable
product, being on the market for the longest time and deployed in large banks, but limited to a single vendor in
terms of support, innovation and development capacity. The ChainBuilderIDE, based on Eclipse and ServiceMix,
currently provides the most capable platform for developing standards-compliant JBI assemblies, and was chosen
for the prototype realization in Chapter 6.

4.5. Summary and Conclusion
JBI today is already a solid standard to support interoperable, enterprise-capable, and practical integration

solutions. The use of WSDL for service description, XML for message payload and the JBI specification itself
promote the standardization of state-of-the-art integration even when Java is not the language of choice of the

applications to be integrated.
--from the keynote to Jazoon'0737

Kristen Puckett, marketing director at Bostech (Chainforge) concluded in his blog36: “You are working with
interchangeable, vendor-independent building components that plug-in natively without special integration.”. As
shown in this chapter, an open, cross-vendor standard combined with an open source implementation is pivotal for
successful tool integration. By fully embracing the concepts and best practices in service-oriented integration and
also supporting event-driven integration, JBI provides a perfect environment for dynamic, scalable and extensible
tool integration, including the integration of legacy or COTS applications, while still facilitating reuse among
components through a loosely coupled design model that cleanly separates individual integration layers.

The following chapter will introduce a case study of an existing tool integration framework, ToolNet, which will
then be rearchitected by applying the findings of this chapter in the course of a prototype based on JBI.

37 http://jazoon.com/en/conference/presentationdetails.html
36see the article Why choose a JBI-compliant ESB? [http://chainforge.net/pLog/index.php?op=ViewArticle&articleId=5&blogId=2]

http://jazoon.com/en/conference/presentationdetails.html
http://jazoon.com/en/conference/presentationdetails.html
http://chainforge.net/pLog/index.php?op=ViewArticle&articleId=5&blogId=2
http://chainforge.net/pLog/index.php?op=ViewArticle&articleId=5&blogId=2

94

94

Part II. Practical Integration:
Redesigning the ToolNet Framework

Table of Contents
5. Case Study: The ToolNet Framework ... 97
6. Prototype ToolNet/JBI .. 113
7. Critical Evaluation of the Prototype .. 145

The practical part presents a concrete integration framework as a case study and performs an evaluation based
on the findings in the proposed solution, which is then applied in the redesign of ToolNet.

A prototype demonstrates the viability of the new concepts proposed, which are carefully evaluated for problems
solved and remaining challenges.

96

97

Chapter 5. Case Study: The ToolNet
Framework
The system development process is characterised increasingly by its heterogeneous tool landscape. In the case

of this mixture from commercial tools, legacy systems and, in-house tools a completely integrated data view
can not be guaranteed. By a common backbone like ToolNet, to which all necessary tools are connected, such

a fully integrated data view can be established.
--The Integration Framework ToolNet - Vision, Architecture and related Approaches

5.1. Introduction
The ToolNet-framework [Altheide2003] is a constantly evolving prototype solution that has served as the topic
for several theses already, such as [Doerfel2002], [Beyer2005] and [Walter2006], which describe various parts of
the framework and several refactorings of the system's architecture. This chapter therefore focuses on ToolNet's
key concepts and features, in order to generate a general understanding of the framework's purpose, aims and
functionality, and refers to relevant literature for further details on aspects which are not covered in this work.
Then, the current architecture and implementation is analyzed, followed by a critique which examines drawbacks
and limitations of the current solution. The prototype described in Chapter 6 will then try to provide solutions
to the problems identified in this chapter.

5.2. Overview
ToolNet [Altheide2003] is a custom integration framework with service-oriented concepts developed by EADS
Corporate Research Centre Germany to overcome the problem of isolated tools and heterogeneous data models
commonly encountered in the aeronautic engineering domain: In this field, various prepackaged software appli-
cations (mostly COTS tools) are used for autonomous but closely related engineering-tasks in product develop-
ment. Ideally, these tools could be connected as needed to form an integrated tool chain where data and func-
tionality is shared among tools related to a certain task, allowing visualization and manipulation of common data
elements across individual tools in a service-oriented way. In reality, these tools are developed independently,
mostly by third parties, and thus are not aware of each other. This creates a discrepancy between the way tools
are designed and distributed, and the way end users actually use these tools to suit their needs or meet certain
requirements such as company guidelines or development processes.

There is no easy solution to this problem, as conventional approaches cannot be applied here. One option would
be to adapt the tools to suit the needs above by modifying the source code. For COTS Tools, access to the source
code is usually not available, but even if it was, considerable development efforts would be required to adapt such
complex tools as used in aeronautic engineering, outweighing the advantages of tool integration. This also rules
out replacing the tools entirely with custom implementations that offer a rich API, or building “integration-aware”
components that are plugged into a central integration core and use a common design based on a shared data
model, such as IPSE (Integrated Process Support Environment, c.f. [Mitschke2005:6-7]).

The solution chosen by EADS was to develop a loosely coupled integration framework, ToolNet, that acts as a
mediator between existing, disparate applications, providing the missing functional and data integration within a
service-oriented architecture. This is realized by Adapters (see Section 5.3.7) that wrap the original tools' isolated
functionality inside common services and make them available to all participants of the ToolNet framework.
Figure 5.1 illustrates the logical design of the ToolNet framework:1

1all figures in this chapter, except for the DOORS screenshots, were taken from ToolNet documentation and presentations kindly provided
by EADS CRC Germany

98 Case Study: The ToolNet Framework

98

Figure 5.1: ToolNet Conceptual Overview

The framework enables users to link together existing software tools using a graphical desktop (see Section 5.3.2).
This is done by manually defining the relations between the tools' data models, as detailed in Section 5.3.6. These
relations are stored in a database, which also holds information about Projects (see Section 5.3.4 and Sessions
(see Section 5.3.3). Tools can run on any platform and communicate with the ToolNet backbone via web services,
whereas ToolNet-components use RPC for intra-framework communication (see Section 5.3.1).

As usage of cross-platform technologies and open standards is a primary requirement for integration-frameworks,
ToolNet is realized in Java and tries to embrace existing standards and solutions where applicable: web services
are used for communicating with tools, and the previously proprietary Adapter architecture and the ToolNet
Desktop have been refactored to utilize the Eclipse Rich Client Platform (RCP) which is based on the open
plugin-standard OSGi (see Section 3.2.4.2). Currently, the remaining ToolNet components are being refactored as
Eclipse-plugins to migrate from the custom ToolNet-backbone to a fully plugin-based, standardized architecture.

Figure 5.2: ToolNet architectural overview

5.2.1. ToolNet Challenges

An integration framework like ToolNet that is targeted at COTS tools has to work around various limitations
imposed by closed tools, as mentioned in Chapter 2. Challenges include restricted interaction with tools through
vendor-specific APIs (if they are available at all), proprietary communication mechanisms and data formats (this
includes storage formats as well as in-memory data), and language barriers: tools may be realized in .NET or
scripting languages like Python or proprietary dialects like DXL (in the case of DOORS, see Section 5.4), or

Terminology 99

99

even as browser-based applications. From a user's perspective, the tools should be integrated transparently: the
framework should provide access to other services from within the original tool, and allow seamless editing of
common data throughout the entire tool chain, using tools as required for particular tasks or processes. Also,
performance of neither the individual tools, nor the integration framework, should degrade when more tools are
added. Lastly, the framework should allow users to cooperate in a workflow over the network, using tools and
their services in a distributed manner. This neccessitates a scalable, dynamic and distributed framework which
has find a balance between the requirements outlined before, working around the challenges mentioned without
sacrificing the goal of the solution.

An important distinction to other integration scenarios, especially from the enterprise domain and backend inte-
gration, is that with a desktop integration-approach like ToolNet, existing tools are not fused into a new meta
tool that virtually replaces all individual tools integrated. Instead, users continue to work with existing tools they
are used to and gain additional functionality by being able to relate the tools in such a way that an integrated
workflow is possible, without having to care for data exchange or having to duplicate information in several
tools. The original tools stay autonomous but they can be extended by the means of Adapters that expose the
tools' API as a set of services within the ToolNet framework.

Integration at the user interface-level also raises special demands regarding responsiveness, usability and trans-
parency (for seamless integration), blending into the original tool so that additional functionality available
through the integration framework appears to the user as a natural extension to the tool at hand, and not as a
separate, external application that has to be used in addition to the original tool (which would complicate the
workflow instead of making it easier and more integrated). This is radically different to integration in enterprise
applications, where the user is commonly exposed to an interface-façade (e.g., a web application) that presents a
unified view on a business domain-level, and directs user requests to several, disparate backend systems, com-
bining the results and sending them back to the user in combined and revised form.

5.2.2. Terminology

The following definitions are based on [Mauritz2005] and provide some clarification on common terms which
are used in a special context in ToolNet (esp., Tools vs. Components, Services), and also give some insight into
the key aspects of the framework's architecture and functionality:

Tool a software application used in the target domain (engineering) which is
required as part of a model-based product development process. Usually,
tools are well-known COTS-products, such as the requirements manage-
ment tool Telelogic DOORS (see Section 2.2.1 for a general definition)

Adapter a tool-specific wrapper to convert requests transferred via the ToolNet
backbone into a tool's proprietary interface. An Adapter may also use ser-
vices from other tools or ToolNet components, thereby extending the in-
tegrated tool's functionality.

TeT (ToolNet-enabled-Tool) The combination of a tool and a corresponding Adapter that together en-
able the integration of a tool in the ToolNet environment.

Component in ToolNet, a component is a self-contained functional unit that provides
services to the outside environment

Service the interface of a TeT or component, describing the operations provided.
ToolNet defines 10 common Services that can be implemented by any
framework component or TeT.

100 Case Study: The ToolNet Framework

100

5.3. Architecture
ToolNet's system architecture provides a well-considered and up-to-date foundation that facilitates an exten-

sible and flexible framework for integrating decoupled and isolated tools in a distributed product development
environment.

--The Integration Framework ToolNet - Vision, Architecture and related Approaches

ToolNet was originally based on a proprietary, monolithic architecture that is being migrated to a standards-based
component architecture based on Eclipse RCP, which is described in [Walter2006]. By using OSGi (specifically,
Eclipse Equinox, see Section 3.2.4.2) as the underlying component architecture, ToolNet represents an adaptive
and modular framework that is open to changing (integration) needs, utilizing a plugin-based, standards-based
platform that has proven itself in a variety of application domains (see Section 3.2.3 for an introduction to OSGi
and other component integration frameworks).

The core of the ToolNet architecture is represented by a communication backend, the ToolNet backbone, that
connects the framework's components (like the Relation-, Project- and SessionManager explained
below), providing communication inside ToolNet, and also integrates external applications through Adapters
(see Section 5.3.7) that expose the Tool's functionality as services. This allows ToolNet to use services
provided by external tools but also vice versa, giving tools access to services provided by other tools. This flexible
approach resembles a service-oriented architecture with loosely-coupled components, overcoming the challenges
and limitations outlined in Section 5.1.

Adapters not only provide a functional integration by exposing as much of the Tool's functionality as possible,
but also realize data integration by exposing the Tool's data model to other tools connected to the ToolNet infras-
tructure. ToolNet avoids the complexity of model-driven integration and the inherent danger of inconsistencies
when building metamodels from data models that are likely to change (as is the case with most COTS tools
when upgrading to a newer version) by linking individual data elements from one tool's model to corresponding
elements of another tool's model (see Figure 5.3). As model elements are only referenced, not copied, the origi-
nal tool retains control over the data and there is no need for involving advanced synchronization or replication
techniques. This approach also facilitates an incremental tool integration, allowing users to gradually evolve the
integration as circumstances (e.g., time, effort or the Tool's API) permit.

Figure 5.3: Tool and Model Relations in ToolNet

An ideal integration solution would silently work behind the scenes, connecting tools as needed and allowing the
user to seamlessly work from within the original tools, editing related data and invoking functions of interest,

ToolNet Backbone 101

101

regardless of what tool actually provides that function. In reality, there is still a need to interact with the integration
framework, such as performing management tasks or controlling the lifecycle of individual components. Also,
aspects that cannot be integrated into the tools themselves have to be exposed through other means in order
to provide the needed integration functionality. For example, when a tool does not allow extension of its user
interface in a suitable manner, the data linking functionality needs to be presented in an alternate way so that the
user can still create relations between the tool's data models.

To fill this gap, the ToolNet Desktop (see Section 5.3.2) was created to provide a central user interface for
interacting with the integration framework itself and also with integrated Tools (TeTs). It is also implemented as
an RCP application to follow the Eclipse-based architecture of the remaining framework. The desktop is covered
in more detail in Section 5.3.2.

Finally, a database (PostgreSQL) is used for storing configuration data and for caching Objects and Relations
created by users. Relations are not persisted and have to be recreated in subsequent ToolNet sessions.

The remainder of this section provides an insight into the individual ToolNet components and how they work
together. Section 5.4 provides a sample use case that shows the current approach with integrating the COTS tool
DOORS. This use case is later used as a reference in the prototype implementation in Chapter 6.

5.3.1. ToolNet Backbone

The framework's core is a server component implemented as an Eclipse RCP application that bootstraps the
framework by setting up the other ToolNet components (originally implemented as custom components, which
are now being refactored to OSGi bundles). The backbone implements a general, SOAP-based communication
layer currently realized with the now proprietary web services-framework GLUE, enabling a distributed collab-
oration among tools and users. Other ToolNet components communicate over the backbone by sending SOAP-
messages, using it as a Channel to transmit service requests and receive responses. Adapters could technically
bypass the backbone and call other Adapter's services directly, but for security reasons this is usually discouraged
in favor of using a Proxy (Mediator) that propagates service requests to remote targets.

The backbone is also responsible for database access, providing a common storage interface which is abstracted
from the underlying PostgreSQL-database with Hibernate. Lastly, it provides infrastructure services like com-
ponent management, keeping a Context of active Components and their related Sessions and Projects, as well
as caching which is used for speeding up ToolNet Services such as the Preview-Service (see Section 5.3.5).
Figure 5.4 provides an overview of the ToolNet backbone.

Figure 5.4: ToolNet Backbone with distributed clients (overview)

102 Case Study: The ToolNet Framework

102

When the ToolNet server is started, it discovers available Adapters, which then register the provided functionality
with the SessionManager (see Section 5.3.3) as common ToolNet Services (see Section 5.3.5). Following the
classification introduced in Chapter 2, the backbone constitutes the functional integration layer by integrating
the Tool's Services as provided by the ToolNet Adapters.

5.3.2. The ToolNet Desktop

The ToolNet Desktop (shown in Figure 5.5) is also implemented as an Eclipse RCP application and acts as a
graphical user interface to ToolNet. The primary function of the ToolNet Desktop is to provide a user interface
for Adapters so that users can discover and invoke services from available TeTs (e.g., requesting a preview from
a tool's data element). This way, limited integration possibilities in the original tool, where the addition of custom
menus or functions may not be supported, can be overcome and a unified user interface can be provided as an
alternative, embedded into the ToolNet Desktop.

The desktop is divided into Views (Eclipse SWT GUI components) which show all active Sessions and the
containing Services. An error log is provided for diagnostics and shows system events such as starting and
stopping of Services and related errors. Through the plugin-based architecture of RCP-applications, the ToolNet
Desktop can be extended with additional functionality by adding plugins (in the same way as ToolNet itself can
be extended by adding new plug-ins such as Adapters). This mechanism is used in Adapters to expose tool-
specific functions inside a common user interface.

Figure 5.5: The ToolNet Desktop

The interface also provides access to common Services (see Section 5.3.5) such as the RelationService, allowing
users to create and navigate Relations between tools' data models (see Section 5.3.6), which are visualized in
different forms (e.g., as a tree or graph). Data elements can be previewed or highlighted in the corresponding
tool, Projects (see Section 5.3.4) can be loaded or created, and InteractionSessions can be initiated for
collaboration between ToolNet users.

Basic lifecycle management is provided, allowing Adapters and Tools to be started or stopped, as well as basic
system maintenance functions such as shutting down the ToolNet server. In summary, the ToolNet Desktop can
be seen as a tool dashboard, integrating the individual tools' data views in a centralized, composite user interface,

Sessions 103

103

thereby providing integration at the presentational level (see Section 2.3.5). At the same time, the Desktop acts
as a management console by providing functions for system administration and maintenance.

5.3.3. Sessions

The SessionManager (c.f. [Walter2006:16]) acts as a service-repository where Adapters register Services they
provide, wrapping the functionality of the integrated tool and mapping it to one or more of the common ToolNet
Services defined in Section 5.3.5 below. More precisely, the SessionManager holds three Sessions that group
ToolNet Services according to the context:

• CoreSession: this Session is a Singleton that holds the global registry containing Services that should be avail-
able to all ToolNet Components, e.g., the ObjectPreview-Service (see below).

• ProjectSession: Services related to individual Projects are grouped under a single ProjectSession that manages
service requests specific to the active Project the user is working in. For example, requesting information about
a model element will trigger all ObjectInformation-Services in the current ProjectSession.

• InteractionSession: this Session contains user-related Services within a ProjectSession, e.g., when creating
Links between two Tool's models, a RelationCreation-Service is used within the active InteractionSession.

The SessionManager implements a central Service called ManageSessionService that provides access to a global
ToolNet-repository, which realizes a common abstraction from Services provided Tools (through Adapters) and
other ToolNet-Components and facilitates a unified lookup and usage of Services throughout the framework.

Sessions are not persisted and have to be set up each time ToolNet is started. The CoreSession is started auto-
matically by the ToolNet Server, whereas ProjectSessions and InteractionSessions have to be manually set up
by the user for every Project she wants to collaborate in.

5.3.4. Projects

In order to meet the requirement for transparent tool integration and to attain the goal of an integrated workflow,
ToolNet abstracts from individual tools by viewing tools in the context of Projects, which aligns with the project-
based workflow that users commonly follow. The ProjectManager acts as a Service-repository for Services
that manage Objects and their relations, such as the ObjectPreview-Service. These Services do not belong into
the global Service repository because they are only useful in a Tool/Project-specific context. The necessary
information is provided by Adapters, which register Tools and their Objects in the ProjectManager, where they
are integrated as abstract data sources and connected to other data sources using Relations (see Section 5.3.6).
The relation between Projects, ToolNetObjects and Links is illustrated in the UML diagram shown in Figure 5.6
below:

104 Case Study: The ToolNet Framework

104

Figure 5.6: Project class diagram

The ProjectManager-component provides the necessary application-level integration (see Section 2.3.4.1) that
is essential for a successful desktop integration solution.

5.3.5. Services

ToolNet defines several CoreServices that can be used globally throughout the ToolNet infrastructure (see [Do-
erfel2002:97-101] for an overview and appendices C, D (ibid.) for a complete list). Adapters provide an imple-
mentation for each CoreService they support by mapping proprietary tool functionality to these common Tool-
Net interfaces. ToolNet Services are implementations of one of the three common Service-Interfaces that map
to the Session types mentioned in Section 5.3.3: CoreSessionService, ProjectSessionService and InteractionSes-
sionService. Examples for Services include:

• ObjectInformation-Service:

returns a textual description or a visual preview of a linked data element, which is passed to the ToolNet
Desktop as XML with an associated XSLT, wrapped in a SOAP-message

• Presentation-Service:

provides the ability to highlight individual data elements in a related Tool, e.g., the user could select a require-
ment in the ToolNet Desktop and request the PresentationService to highlight the element in the DOORS
application

• RelationCreation-Service:

This is a fundamental Service that allows users to create a Link between two corresponding data elements
from separate models, each owned by a different tool (see Section 5.3.6).

ToolNet Adapters are implemented as OSGi plugins and can thus be managed as modular components from
within the ToolNet desktop, resulting in a dynamic system where Adapters can be started and stopped as needed.

Relations 105

105

The dynamic installation of new Adapters or uninstalling unneeded Adapters is currently not supported by the
framework.

By defining new Service types, the functionality and usefulness of the ToolNet framework can be extended and
adapted to new requirements. Adapters that want to provide these new Services have to implement the new
ServiceInterfaces, and for CoreServices, the ToolNet Desktop has to be extended in order to provide an interface
for the additional functionality. In the same way, Adapters have to be adjusted when a tool is upgraded and new
features are to be integrated, or the API has changed and previously integrated functions cannot be accessed with
the existing Adapter interface.

The concept of generic ServiceTypes that are transparently realized by Adapters provides a common, serivce-
based interface across the ToolNet-infrastructure. This allows for dynamic queries that allow users to access
Services in a transparent way. Instead of addressing concrete endpoint URIs, it is possible to specify the desired
functionality or Service, and the ToolNet-framework transparently queries all available Adapters that implement
the requested Service. Results are then sent back to the user over the ToolNet-desktop or they are received by
a Tool Adapter which displays them in a form suitable for the tool it integrates. The search scope is specified
through the hierarchical organization of ToolNet-Sessions and Projects, so only related Adapters are queried.

5.3.6. Relations

Relations are the cornerstone of the ToolNet integration framework, bridging the gaps that isolate autonomous
tools and impede a project-centric, dynamic workflow. This is also reflected in [Beyer2005], where it is made
clear that ToolNet's “primary aim is to integrate autonomous tools […] by offering a logical linking between
their data-models.”.

As already mentioned, an important distinction that sets ToolNet apart from model-based integration-approaches
is that ToolNet does not construct a meta-model that combines all data models of integrated tools, but only
references selected model elements using abstract ToolObjectReferences, which are used as a common
data description in ToolNet. Through the use of a RelationCreationService, users are able to link model
elements from one tool to related elements in another, which is illustrated in Figure 5.7 below:

(source: [Walter2006])
Figure 5.7: Linking Models in ToolNet

The mapping from abstract ToolObjectReferences to the Tool's proprietary data representation is realized
by the already mentioned Adapters in cooperation with a core ToolNet Service, the IDMapper, which are both
described below. When a data element is changed in one tool, a ChangeEvent is fired by an infrastructure
service, the EventService, to inform other Components of the modification and subsequently update correspond-
ing data elements in related tools. Events are transmitted to all registered Components. A fine grained change
propagation is not supported, also synchronization is not provided.

[Mitschke2005:13-16] shows some examples and illustrations of using Relations with the example of the DOORS
application, which is described in Section 5.4 below.

106 Case Study: The ToolNet Framework

106

5.3.7. Adapters
Adapters provide a service-oriented interface to prepackaged tools by exposing the Tool's functionality as com-
pletely as possible to the ToolNet infrastructure and consequently to other Adapters. Through this functional
integration, Adapters hide proprietary communication mechanisms necessary to interact with external tools, like
vendor-specific APIs realized as C, C++, Java or scripting-interfaces. More enterprise-oriented products, such
as SAP, increasingly offer web service-based interfaces, which are easier to access and integrate since they are
already designed in a service-oriented fashion. As a consequence, for each tool and API, there is a separate
Adapter-implementation available in ToolNet that integrates as good as possible with the target technology, e.g.,
in Java, C# or a (mostly tool-specific) scripting language such as DXL, which is provided by Telelogic DOORS,
or M-Script for Matlab, but also through web services where applicable, as illustrated by the example of the
ToolNet WSDL in Figure 5.8 below.

Figure 5.8: ToolNet WSDL for integration using Web services

Besides exposing the tools' functionality as common ToolNet Services, Adapters also have to integrate the tool-
specific data model by mapping individual model elements to common ToolNet ObjectReferences. This map-
ping, which realizes the actual data integration, is the foundation of the Relation-Service introduced above, and
is managed centrally by a framework component, the IDMapper. This component holds a lookup-table that
translates between common references (ToolNetIDs) and tool-specific data elements, which are accessible
to all registered and active Adapters. By providing a mapping from ToolNetIDs to individual data elements
in integrated tools, Adapters make them accessible to other Adapters that perform an analogous mapping to a
related data element in another tool. This mapping also works for 1:n and n:m-relations.

Data mapping and integration at the user level through Adapters are the key features of ToolNet. Figure 5.9
shows a conceptual view of the Adapter architecture and its relation to the Toolnet backbone:

Figure 5.9: Adapters connected to the ToolNet Backbone

Adapters face the challenge of divergent requirements: On the one hand, they should abstract from individual
tools and provide their functionality as common services inside the integration solution, but on the other hand,

Case Study: Integrating DOORS 107

107

they should allow full access to tool-specific functionality and data. This design dilemma is solved by dividing
the Adapter in two parts: one part, the ToolSideAdapter, is connected to the tool, the other part, the ToolNet-
SideAdapter, is connected to the ToolNet backbone. This separation is also necessary from a technical aspect,
because integrating a tool could require an Adapter to be implemented in a different language (e.g., .NET) than
ToolNet (Java).

The ToolSideAdapter is responsible for the functional integration and can be realized as best suits the tool,
e.g., as a C++ plugin or even as a script. Some tools allow direct integration into the user interface, such as custom
menus or buttons, while others only provide a limited API that has to be accessed from outside the tool.

The ToolNetSideAdapter is realized as a ToolNet Component that runs inside the ToolNet environment. It
translates the functions exposed by the ToolSideAdapter into Services that can be used by other ToolNet com-
ponents. Conversely, it may also use Services provided by other Adapters, thereby extending the functionality
originally provided by the tool. This part of the Adapter is usually responsible for data integration, mapping from
tool-specific data elements to common ToolNet-Objects by implementing the RelationService.

Through ToolLinks, the two Adapter-parts can communicate with each other using techniques such as in-
ter-process-communication (for local applications), distributed communication over sockets or RMI (for inte-
grating backend tools), or simply shared files (see also [ESB] for related integration strategies), and thus provide
a transparent but at the same time highly flexible and adaptable solution to users.

Adapters usually provide a part of their user interface inside the external tool (as the tool's API allows), and the
other part is realized as a plugin inside the ToolNet desktop. The user interface allows for starting and stopping
tools and for accessing tool-specific functionality. The ToolNet API does not mandate a specific organization of
Adapters in this respect: in case of backend tools, where usually no user interface is needed, the Adapter does not
have to implement a separate user interface in order to integrate the Tool; the functionality is made available to the
backbone in the form of Services that can be accessed by ToolNet Services or Adapters without user-interaction.
For the opposite case, where tools are open enough to allow for full customization of the user interface, the
ToolSide Adapter can realize the complete user interface directly inside the original tool, without the need for a
ToolNet Desktop-plugin. For most cases however, a mixed approach is usually the most feasible solution.

As can be seen, the quality and user experience of ToolNet is highly dependent on the available Adapters and
their implementation. Together with Relations, they represent the foundation of the ToolNet vision. In order to
adapt to the divergent needs of integration developers, ToolNet provides a flexible Adapter design that leaves
enough room for tool-specific integration-approaches without sacrificing the framework's unified approach.

5.4. Case Study: Integrating DOORS
There are things known, and there are things unknown, and in between are the Doors.

--Jim Morrison, The Doors

As an example for tool integration with ToolNet, this section introduces a requirements-management tool that has
successfully been integrated with ToolNet, Telelogic DOORS [DOORS], and shows how the necessary Adapter
has been realized. This example will also serve as a use case for the prototype (see Chapter 6) later.

5.4.1. Introducing DOORS
DOORS (short for “Dynamic Object Oriented Requirements System”) is a widely used commercial applica-
tion for requirements engineering, a field in software development that ensures a product's conformance to the
customer's requirements and to relevant standards and regulations. [REH] discusses this topic thoroughly from
a general perspective; a good introduction is provided together with DOORS by Telelogic, Get it Right the First
Time: Writing Better Requirements).

108 Case Study: The ToolNet Framework

108

Figure 5.10: The DOORS Interface

DOORS represents individual requirements in a Project as a hierarchical structure of attributed Objects and
Modules. Objects consist of a leaf node that contains a heading, and a text node with some content, which can
be comprised of text, images, diagrams or embedded documents linked to an external application (using OLE or
ActiveX). Related Objects are grouped into Modules, which hold information common to all contained Objects. A
Project acts as a container for all modules and also implements user rights management and other administrative
tasks. Using system-defined and custom Attributes, Objects and Modules can be annotated and typed, e.g., with
a Priority or Approval-status, as shown in Figure 5.10. Attributes can be later used for filtering, which helps
organize Projects in task-oriented Views.

A key feature of DOORS is linking, which is illustrated in Figure 5.11: Related requirements can be connected
by linking together Objects. This way, requirement interdependencies and hierarchies can be expressed and the
user is supported in managing the resulting requirement networks which can become very complex for large
projects, as common in the aeronautic domain. Changes in requirements can be traced so that dependent Objects
can be identified and updated, which also allows the user to better understand the impact resulting from that
change. This ensures consistency of requirements throughout large, dynamic long-term projects that are likely
change over time.

Figure 5.11: Linking Objects in DOORS

Another important feature of DOORS is rich support for importing and exporting various document formats,
such as extracting requirements from plain text, Word documents, spreadsheets (in CSV, TSV or XLS format)
or project management tools like Microsoft Project. Once imported, requirements can be edited, annotated and
linked in DOORS, complemented with additional information (textual or graphical), and finally exported into
a supported format.

Integrating DOORS: The DOORS Adapter 109

109

The Import- and export-functionality is realized through a powerful scripting interface, which is very important
for integration into ToolNet: DXL (DOORS eXtension Language), which is covered in detail in [DXL] and de-
fined as “an easy-to-learn scripting language that you can use to control and extend DOORS functionality.” (see
[DOORS], Using DXL). The C/C++-like language exposes the functionality of DOORS to external applications
and provides a comprehensive API for controlling most aspects of the DOORS interface, allowing for manipu-
lation of Objects, Modules, Projects, as well as any associated Attributes or Links.

In addition to the scripting interface, a C-library is provided for socket-based inter-process communication (IPC).
This interface can be used by other applications that wish to interact with DOORS by sending DXL-commands
over a TCP/IP socket-connection or a UNIX pipe. This library is used in ToolNet's DOORS-Adapter (see below)
as well as in the prototype (see Section 6.4.2).

More information about DOORS and its API is available in [DOORS].

5.4.2. Integrating DOORS: The DOORS Adapter
With the DXL scripting interface, DOORS is well suited for integration with other software tools, such as Ra-
tional Rose, which has been demonstrated by IBM in [PLUSS]. In this project, DOORS was integrated with
the software modeling tool Rational Rose using DXL to provide a combined tool chain for the PLUSS use case
modeling approach. For ToolNet, a more general solution was needed to utilize the framework's service oriented
integration-approach, which required the realization of a ToolAdapter that would utilize the DXL scripting-in-
terface for controlling DOORS and the necessary TCP/IP-based IPC, which is provided by a C-library included
with DOORS. [Doerfel2002:G] covers analysis, design and implementation of a ToolNet-prototype which inte-
grates DOORS on one end over the ToolNet backbone with MatLab on the other end, using application-specific
scripting interfaces (DXL for DOORS and M-Script for MatLab) for accessing the tools' functionality and user
interfaces. For integrating ToolNet with DOORS, a JNI-based Java-wrapper (see Section 3.2.2.2 for an introduc-
tion to JNI) was implemented to access the C-library provided by DOORS, and DXL-scripts were realized to
extend the DOORS user interface with custom menus and functionality. For example, a ToolNet window was
added where users can easily access ToolNet-provided functionality like inspecting and linking Objects. The
result of the integration is shown in Figure 5.12 below.

(from [Doerfel2002:133])
Figure 5.12: Creating a ToolNet Link from within DOORS

In detail, the previously mentioned DOORS C library provides a higher level interface to the TCP/IP-based
communication with DOORS through the functions apisend() and apireceive(). Although direct com-
munication using sockets is possible and has been tested (as shown in Section 6.4.3.5.3), using the library func-
tions has additional benefits: the socket communication is handled by the library and possible errors are captured

110 Case Study: The ToolNet Framework

110

and transparently reported to the application as status codes. Also, callback functions for errors and other events
can be registered, even the definition of custom DXL-like scripting languages is possible in order to facilitate a
seamless integration with other tools and environments. The DOORS C API is described in [DOORSAPI:7-15],
integration is covered in [DOORSAPI:c5].

The ToolNet DOORS Adapter's IPC connection to DOORS is realized with JNI in a separate wrapper class,
the DoorsCAPIWrapper. This wrapper is written in Java and realizes a Java native interface that contains
stub functions implemented by a custom C library (DoorsCAPIWrapper.dll), which acts as a bridge to
the DOORS C library (dxlapi.dll). Outgoing communication with DOORS is done by calling the library's
apiSend-function (using the native wrapper), listening for incoming DOORS commands is implemented as
a normal Socket.listen() operation in Java, as there is no matching C API function for receiving input
from the IPC channel.

The existing DOORS Adapter was also taken as a starting point for the prototype implementation of the proposed
solution, which is covered in Chapter 6, although a different approach was used for the final prototype imple-
mentation (as described in Section 6.4.1.3).

5.5. Evaluation and Critique
ToolNet has grown from a prototype, as introduced in [Altheide2003], to a mid-sized, distributed tool integration
framework with Adapters for several proprietary COTS tools. This evolution has led to a grown architecture that
is gradually being migrated from a proprietary hub-and-spoke architecture to the OSGi-framework and Eclipse
RCP. Using Eclipse as an integration platform has been shown to be insufficient, as detailed in Section 3.2.4.2.
An integration solution of this scale and flexibility needs an additional layer of abstraction, but OSGi/RCP only
provide component abstraction. The Eclipse platform does not address integration of non-Eclipse or COTS com-
ponents, e.g., by providing a standard Adapter design. Neither does it provide any service-oriented integration
for integrating on the application level beyond functional integration. Also, higher-level integration issues like
semantic data integration and advanced messaging facilities – e.g., using a common message format that allows
translation, extension (through metadata), or routing – are missing. The framework is thus rather static and cannot
be reconfigured at runtime, making it impossible to add, update or remove Adapters as needed. Also, tools have
to be started from within the framework, which breaks integration transparency from a user's point of view.

The Adapter architecture tries to separate tool-specific Adapter functionality from general framework function-
ality, but the design is based on proprietary interfaces that do not provide much common functionality. This
results in poor reuse, e.g., each Adapter has to implement web service communication if communicating with
external Adapter endpoints. Because endpoints can be accessed directly using the target address or class name,
there is no location transparency (Adapters have to decide whether to use the Proxy or directly communicate with
the target endpoint). The Adapter design also does not provide a clean separation of integration layers, such as
business or application logic (that reflects how a tool works), data semantics (translating the tool's data format)
or protocol logic (describing how the tool can be accessed). This results in Adapters growing more complex and
inflexible as tools provide or migrate to different interfaces or data formats, because all combinations have to
be hard coded: several versions of a tool might be used at the same time, and dependent on the project's needs,
different interfaces of a tool may have to be integrated. A separation of integration levels would allow dynamic
configuration between tools as needed.

The core communication architecture still relies on a custom backbone with close dependencies on the remaining
framework, including a proprietary web service stack (GLUE). The description in Section 5.3.1 closely resembles
an Enterprise Service Bus, but there are some major differences between the custom solution encountered in
ToolNet and a standards-based messaging backbone of an ESB, as defined in Section 3.3.3.2, including advanced
routing, mediation, location transparency and dynamic Service discovery (only broadcasts to all Adapters that
implement a specific ServiceType is supported). While basic event-driven concepts are supported, a full EDA
supports more advanced concepts like complex event-processing or event streaming (see Section 3.3.5). This

Conclusion 111

111

functionality is already available as proven open source implementations that can be reused in existing ESB
implementations, so there is no need to reimplement an EDA using a custom API.

Lastly, instead of standards-based management access, ToolNet provides a custom management UI, the ToolNet
desktop, which is based on Eclipse RCP but uses a custom UDDI-like approach for querying Adapters and Ser-
vices. Migrating to the JMX standard, exposing Adapters and Services as MBeans, would open up ToolNet to
web based access and enable integration into an existing management infrastructure based on standard manage-
ment-protocols like SNMP (see Section 3.2.3.2).

5.6. Conclusion
The ToolNet framework provides an interesting case study for COTS tool integration and shows several promis-
ing approaches that have been noted in literature. The vision of keeping tools decoupled from the framework
and using tool-specific Adapters allows for both transparent and deep integration of tools, tightly integrating
with the original tool's interface, all the way up to the user interface. This sets ToolNet apart from purely mod-
el-based solutions that concentrate on data integration but leave out interface integration, resulting in additional
efforts necessary for analyzing and designing a metamodel, and for applying formal methods to generate needed
Adapters (which impedes reuse of existing COTS Adapters).

ToolNet proposes a novel approach for data integration: data is kept in the original tools but connected through
user-defined Relations which can be navigated in both ways. This allows users to link tools based on common
data objects as needed, without having to create a complete metamodel, which is often impossible in a heteroge-
neous tool landscape where data models do not overlap sufficiently. Functional integration is provided by Tool
Adapters, which allow users to operate on integrated tool's data across tool borders, by using existing Relations.
This enables transparent workflows without manual integration work necessary to bridge data and functionality
between incompatible tools.

The design and implementation of ToolNet faces several challenges and limitations, as has been noted in the
previous section. The solution represents a custom Adapter-framework with high inter-dependencies, and facil-
itates tightly coupled hub-and-spoke integration. During the lifetime of the project, several standards and solu-
tions from enterprise integration have become available: from Adapter-standards like JCA to service-oriented
integration frameworks like WSIF and recent higher level integration solutions like SCA or JBI. Current ESB
implementations provide a much richer and more advanced communication backbone based on service-oriented
messaging and event-driven architecture, whereas the current, custom solution is based on a proprietary, static
API. This view is also shared by [Mauritz2005], who concludes that “a similar architecture with the ToolNet's
bus for constructing integration systems from plug-in components is emerging in the J2EE world through Java
Business Integration”. Because some newer ToolNet Adapters already use WSDL for exposing their interfaces,
a move to JBI would be feasible and provide a smooth migration path (see also Section 7.4).

The ToolNet framework needs to be refactored and retrofitted to embrace existing standards, including emerging
standards like SDO for data integration and high-level integration standards that can be used for service-oriented,
dynamic tool integration. A possible solution is presented in the next chapter, using Java Business Integration
and Apache ServiceMix.

112

112

113

Chapter 6. Prototype ToolNet/JBI
In theory, there is no difference between theory and practice. But, in practice, there is.

--Jan L. A. van de Snepscheut

6.1. Motivation and Overview
To demonstrate the findings outlined in previous chapters, and to show a possible solution that overcomes
the problems of current desktop integration approaches such as ToolNet (see Section 5.5), a prototype (“Tool-
Net/JBI”) has been developed that applies the main concepts and technologies from enterprise integration to a
concrete integration problem on the desktop. The prototype implements a subset of the new architecture (see
Section 6.4), using the Java Business Integration (JBI)-standard for integrating the commercial requirements
engineering tool Telelogic DOORS (see Section 5.4), which serves as a typical example for integration of COTS
tools on the desktop.

The prototype acts as a proof of concept, showing the advantages and challenges of the proposed JBI-based ar-
chitecture, as outlined in Chapter 4 and shown in Figure 4.13, with the example of an integration scenario that has
been previously implemented with the ToolNet framework, which is described in Chapter 5. The prototype stays
true to the original vision of transparent desktop integration over a common backbone between COTS applica-
tions, enabling users to access objects in one tool from the other, while retaining the original interface the user
is accustomed to. In order to demonstrate the flexibility of the new approach and to present a possible migration
path, the original ToolNet Adapter-scripts have been reused and transparently communicate with the new imple-
mentation. Also, a basic UI is available in the form of a JMX management interface (see Section 6.4.3.5.4), which
mimics the core functionality of the ToolNet desktop and allows basic interaction with the Adapter and DOORS.

In order to stay within the scope of a thesis project and to allow for easily comparing the new solution to exist-
ing approaches, the prototype only implements a single Service from ToolNet, HIGHLIGHT_OBJECT, that is
exposed over the JMX interface (which substitutes the ToolNet desktop). When the user invokes the Service,
the corresponding requirement object is brought into focus in the DOORS application. These objects are con-
nected to the prototype by invoking certain operations in the ToolNet-menu in the DOORS interface, namely
Select Object as Source or Select Object as Target. This creates a relation, as defined in Section 5.3.6, that is
visualized as an MBean that representing the Object in the prototype interface and providing the aforementioned
HIGHLIGHT-operation.

The remainder of this chapter outlines the original requirements and what has been identified as out of scope
for the prototype. Later, the design and implementation is analyzed and the rationale for the concrete solution is
covered, which is finally put to work in a showcase that realizes the use case described above. An evaluation of
the chosen approach follows in Chapter 7, which also provides a detailed comparison between the new solution
and the existing ToolNet implementation.

6.2. Goals
To address the shortcomings and problems of the current ToolNet-architecture, as outlined in Section 5.5, the
prototype should introduce a possible solution by addressing the problems and requirements defined below. Due
to the limited scope of this thesis, the proposed solution can merely serve as a demonstration of the core concepts
introduced by the new architecture, which is described in Section 6.4.2. Section 6.3 discusses limitations and
missing parts of the prototype, which would be necessary for migrating the complete ToolNet-framework. The
main goal of the prototype implementation is to show that the proposed architecture can be implemented with
the selected technologies, and that it has potential to offer a practical solution to the limitations and problems of

114 Prototype ToolNet/JBI

114

the current ToolNet architecture and implementation. For a survey on general requirements in tool integration,
see Section 4.1. The following sections describe the goals for the prototype in more detail.

6.2.1. True COTS Integration
First and foremost, the prototype should follow the ToolNet vision and offer a solution for integrating COTS tools,
so it should not assume the availability of Java interfaces (e.g., in the form of Beans) or web services. To match
this requirement, the prototype should integrate the DOORS tool (see Section 5.4 for a detailed description).
Telelogic DOORS is a good test case for an integration scenario, being a closed-source, commercial off the shelf-
application with a public API and a proprietary scripting interface.

6.2.2. New Service Backbone
To address the shortcomings of the existing, proprietary ToolNet backbone, an existing, standards-based, dy-
namic and powerful service backbone shall be evaluated. The new backbone should offer dynamic registration
and installation of services, understand the notion of ServiceTypes (as described in Section 5.3.5), provide sup-
port for orchestration, management and security, as well as clustering. This requirement is best met by using an
ESB implementation that supports common standards for web services and offers some integration facilities. As
proposed in this thesis, JBI provides a standard for service-oriented integration and a Java API for realizing such
a solution, thus a JBI-enabled ESB-implementation was chosen, as described in Section 6.4.

6.2.3. Redesign of the Adapter Architecture
The Adapter-architecture should be refactored to facilitate reuse and allow more rapid integration of new tools.
The new architecture should provide Adapters with more runtime-flexibility by offering location-transparency:
Adapters should be able to run on the server- or client side, whichever is more appropriate for the tool to be
integrated. Adapters should be easily extensible, allowing for adding new services or adapting existing ones
when new tool versions become available. This should be possible in a timely manner in order to utilize new
or changed tool functionality as quickly as possible. When new Service(Type)s are added to ToolNet, Adapters
should be able to maintain compatibility as far as possible, while at the same time a quick adoption of new
ToolNet functionality should be facilitated. With the current solution, this is hard to achieve, since there is no
common core functionality or API that Adapters could utilize, and as a result they are implemented rather isolated
(see Section 5.5).

The aforementioned points are an important step in finding a common architecture which combines the rich
and varied set of goals and integration-scenarios a framework like ToolNet has to support (see Section 5.2.1 for
further discussion).

6.2.4. Support for Non-Java Languages
Tools that offer an API often target different languages than Java, either more system-level languages like C,
high-level alternatives to Java like .NET, or scripting languages like Python, Perl or Ruby, or even proprietary
languages like DXL in the case of DOORS, or M-Script in the case of Matlab. Although the ToolNet framework
itself is realized in Java, it should be possible to implement Adapters in and for other languages, so that available
APIs can be utilized without having to reimplement the API or provided libraries in Java, which would unnec-
essarily hinder integration of tools and complicate the development of Adapters.

6.2.5. Independent Implementation
The prototype should be realized as a standalone solution in order to provide a clean implementation of the
proposed architecture, and so that it can be better compared to the current ToolNet implementation. As a result,

Non-Goals 115

115

the prototype also serves as a conceptual base for an incremental migration at a later stage: functional or logical
overlaps may be identified more easily and possibilities for connecting existing parts of ToolNet with the JBI-
based architecture become apparent. This allows for the definition of a migration plan where the most needed
features of the new architecture are implemented first and connect to the existing solution using a bridge (thus
integrating two integration frameworks, creating a meta-integration-framework…). This aspect is covered in
more detail by Section 7.4

6.3. Non-Goals
This section briefly discusses goals that were identified as beyond scope and not feasible for a prototype imple-
mentation.

In order to keep the implementation effort in scope, the prototype only implements one Adapter to integrate a
single application, Telelogic DOORS. This way, some key concepts of the new architecture are applied to provide
a new approach to an integration scenario that has been implemented in the current ToolNet release. This makes
it easier to compare the implementations and evaluate strengths and challenges of the proposed solution.

At the same time, this means that one of ToolNet's key feature, Relations (detailed in Section 5.3.6), cannot be
fully realized in the prototype. The implementation of these inter-tool links that connect common information
in separate data models of integrated tools depends on several parts of the ToolNet infrastructure, including the
IDMapper, the RelationManager, and finally the ToolNet Desktop, which is well beyond the scope of a simple
prototype. On the other hand, implementing only one Adapter would limit the prototype scenario to unidirectional
integration, and much of the integration and interaction possibilities would be unavailable. As a solution, the new
Adapters expose their functionality via JMX MBeans, allowing for user interaction using a JMX console, which
acts as a replacement for the ToolNet Desktop. This part of the prototype is described in Section 6.4.3.5.4.

Further, advanced concepts such as Sessions (see Section 5.3.3) or Projects (see Section 5.3.4) have been left out,
because this would require migrating core ToolNet components such as the SessionManager or ProjectManager,
which means a significant reengineering effort. On the other hand, the ToolNet/JBI-architecture is designed for
extensibility and facilitates a smooth migration of the ToolNet framework in an incremental manner, component
by component, as mentioned in Section 6.2.5 before.

Another aspect that is covered only rudimentary is the dynamic query functionality combined with generic Ser-
viceTypes in ToolNet, as described in Section 5.3.5. The prototype supports only one CoreService, the Presen-
tationService OBJECT_HIGHLIGHT, which is supported by the DOORS Adapter and the prototype UI. Being
limited to one Adapter and a single Service leaves almost no room for ToolNet's query-functionality, except for
the DOORS ServiceEngine (see Section 6.4.2.2), which uses a JBI Endpoint Query to find the DOORS Bind-
ingComponent (see Section 6.4.2.1).

6.4. Realization
The following sections describe how the goals identified above were solved with the new, JBI-based architecture
and how it was successfully applied to a concrete integration scenario with the example of a prototype. While this
section focuses on the parts and concepts needed for integrating COTS applications like Telelogic DOORS in a
standards-based way, they can easily be reapplied for integrating tools with entirely different interfaces, while
still benefiting from the new architecture and its standards-based approach. This will be covered in Chapter 7,
together with a comparison to the current ToolNet architecture.

6.4.1. Analysis
Based on the requirements gathered in Section 4.1 and the goals outlined in Section 6.2, and looking at the
current move from a proprietary component-architectures to OSGi (also ToolNet follows this direction), it was

116 Prototype ToolNet/JBI

116

a clear consequence that the new architecture should be based on open enterprise integration standards where
possible. As elaborated in Section 3.3 and Chapter 4, the problems faced by desktop tool integration solutions like
ToolNet are not uncommon in the enterprise, and while there are differences, there is much advantage in applying
proven standards and solutions from enterprise integration to the special problems of desktop tool integration.
This allows reusing existing integration solutions as a base for the new solution, and concentrating on those parts
and concepts that are special to the desktop domain, like integration at the user interface level or Tool Adapters
that wrap proprietary interfaces to COTS applications.

6.4.1.1. JBI as the Underlying Architecture

At the core of the new architecture lies the Java Business Integration (JBI)-standard, which is introduced in
Section 4.2. JBI allows the integration of existing COTS applications to a common service backbone by expos-
ing proprietary interfaces as common services. By moving to a higher level integration standard, the existing,
proprietary ToolNet Service infrastructure can be fully transformed into a standards-based and open integration
backbone. JBI builds on existing standards like WSDL for service description and lookup, and applies WSDL
message exchange patterns. JBI uses XML for interoperable message exchange and makes use of enterprise in-
tegration patterns for COTS integration.

JBI also facilitates a more loosely coupled and reusable Adapter architecture: External applications like Telelogic
DOORS can be accessed by implementing a custom Binding Component, which resembles the ToolNetSide
Adapter in ToolNet, and one or more Service Engines, which relate to ToolNet Services (see Section 6.4.3).

The architecture can be easily implemented by using an open-source ESB with support for JBI-components as a
runtime. Apache ServiceMix is the leading open source JBI ESB that was designed around the JBI specification
and supports all aspects of the standard. This made it an ideal choice for the prototype implementation, as detailed
below.

6.4.1.2. Apache ServiceMix ESB as the Service Backbone

Apache ServiceMix [ServiceMix] is an open source JBI implementation by the Apache Software foundation that
uses JMS (through Apache's ActiveMQ message queue) for implementing the messaging backbone. It features
support for all four JBI MessageExchangePatterns and already provides a wide array of JBI BindingComponents
and ServiceEngines that can be reused for implementing integration solutions. It is important to note that these
components can be deployed into any server-runtime that supports the JBI standard, and at the same time, com-
ponents from other JBI-compliant runtimes can be used with ServiceMix. As long as components follow the JBI
specification, which is verified and enforced by any compliant runtime, the developer (and user) is free to chose
the JBI implementation that best meets project needs.

ServiceMix was chosen over alternative implementations because of the reasons given in Section 4.4.2, most im-
portantly because it is designed from the ground up to embrace JBI, whereas alternatives like Mule or JBossESB
just connect JBI-components as external endpoints or as additional service layers modeled upon a proprietary
backbone. Also, alternative implementations like OpenESB or PEtALS offer limited tooling and community
support for developing custom components.

6.4.1.3. Adapter Analysis: JNI, JCA and finally JNA

There are two standard ways in Java to integrate external, non-Java resources, covering the “last mile of integra-
tion” and reaching through to existing COTS tools: the Java Native Interface (JNI) for integrating native (C/
C++) code, and the Java Connector Architecture JCA for integrating enterprise applications and external data
resources.

In the first stage of the prototype design, both approaches were considered, but as shown below, they did not
meet the requirements regarding increased reusability and adaptability to cater for changes in tools or ToolNet

Analysis 117

117

Services. Also, both approaches impose additional rules and requirements that did not align well with the JBI-
based service-oriented Adapter architecture. Finally, a third approach, Java Native Access (JNA), was success-
fully pursued, which is described at the end of this section.

6.4.1.3.1. Using the Java Native Interface (JNI)

JNI [Liang1999] is introduced in Section 3.2.2.2 and its usage in ToolNet is covered in Section 5.4. Therefore it
is covered only briefly here, showing the current implementation and evaluating its relation to the prototype.

Using JNI limits flexibility of Adapters as it requires the development of a non-Java wrapper that accesses the
native library or application. This creates a tight coupling to the tool interface and impedes reuse of Adapters.
Using JNI in Adapters also results in a static architecture that prohibits quick adaptation to changes in require-
ments, tools, or the ToolNet framework itself, as new Services are introduced or tool interfaces change in the
course of upgrades. As a result, other options were considered and the current implementation of the ToolNet-
Side Adapter was not reused.

6.4.1.3.2. Using the Java Connector Architecture (JCA)

Developing a JCA Resource Adapter (see Section 3.3.7.1 for a general introduction to JCA) is not as complicated
as writing a JNI wrapper and native library by hand, as only Java is involved, but the JCA specification limits
the possibilities of tool Adapters by imposing strict contracts, and it is mainly targeted at enterprise information
systems like databases. By having to follow certain security, threading and communication contracts, Adapter
developers are not really free in choosing the integration method best suited for a particular tool. Also, installa-
tion of JCA Adapters is not fully standardized, as they can either be run in managed mode inside an application
server or standalone, in unmanaged mode. This requires manual adaptation of individual Adapters to the target
environment, which would result in a less dynamic, less transparent, and more tightly coupled integration archi-
tecture, which conflicts with the requirements defined in Section 6.2.

The main reason not to use JCA is however is of evolutionary nature, as explained in Section 4.2.2.2: The Java
Connector Architecture was designed to solve specific integration problems in the enterprise Java world, target-
ing Enterprise Information Systems (EIS) like SAP or databases. The realization of external connectivity is fully
covered in the JBI specification by introducing a more general concept of BindingComponents (see Section 4.2).
By implementing a BindingComponent that connects to the tool's API, existing tools can be integrated with a
maximum of flexibility, while still retaining a common, service oriented architecture, which is represented by
the JBI infrastructure. This is made possible by the twofold role of BindingComponents: One part is directed
at the external tool and implements whatever proprietary mechanisms are necessary to enable communication
using the tool's proprietary protocol, whereas the other part is realized a common JBI component that provides a
service-oriented façade for the tool's functionality, making it accessible to other JBI components in a transparent
way as a set of services.

While JCA might not be the right choice for a general ToolAdapter as part of the new architecture, it is certainly
possible to use JCA Resource Adapters together with the proposed solution where it makes sense, such as in
situations where JCA-Adapters are already provided by tool vendors, or where existing implementations could
be reused. This is possible by accessing the JCA Adapter through a corresponding JCA BindingComponent that
exposes the ResourceAdapter as an additional binding in the JBI infrastructure. As a BindingComponent, it
translates NormalizedMessages received from other JBI components via the NormalizedMessageRouter
to method invocations on the JCA Adapter, and at the same time it provides call back functions or listener
Threads for receiving messages from the JCA Adapter, which are then translated into NormalizedMessages
that can be transmitted inside the JBI environment. Apache ServiceMix provides a JCA container1 that acts
as a “lightweight” ServiceEngine and communicates via JMS message queues. Sun provides a complete JEE
ServiceEngine [Sun2006] that integrates existing EJBs into a JBI infrastructure.

1using Jencks, see http://servicemix.apache.org/jca.html

http://servicemix.apache.org/jca.html

118 Prototype ToolNet/JBI

118

6.4.1.3.3. Using the Java Native Architecture (JNA): Final solution

JNA's design aims to provide native access in a natural way with a minimum of effort. No boilerplate or gener-
ated code is required. While some attention is paid to performance, correctness and ease of use take priority.

--from the JNA project homepage

A less known but very efficient solution for realizing interoperability between Java and native code (such as C
or C++-libraries) is provided by the Java Native Architecture ([JNA]). Integrating a native library only requires
the definition of a Java interface that contains the methods and structures provided by the library. For every
native type, a corresponding Java type is used. More complicated mappings, such as complex types, pointers to
pointers, by-reference arguments or function pointers are handled as special types provided by the JNA library.
Also call-back functions are supported by defining an interface which extends JNA's Callback interface and
contains a single method named callback(). JNA is already successfully applied in several projects such as
[JRuby] or a gstreamer-java2.

Internally, JNA uses a small JNI-stub, jnidispatch, to dynamically access native library functions and struc-
tures at runtime. The native library is transparently loaded into memory, and different forms of function mapping
are applied, depending on the operating system and library. For the low-level work of determining the actual
function names from symbols exported by the native library, the libffi library3 is used. FFI stands for For-
eign Function Interface and provides an abstraction for various calling conventions used in different operating
system environments, e.g., the Win32StdCall calling-convention.The resulting function and structure names
are then mapped to the Java interface defined earlier, and made available through a Proxy object that is used
as a reference for the native library on the Java side. This eliminates the need to write native wrapper code or
having to generate headers and native library stubs, which makes integration much more straightforward and
significantly reduces development time and maintenance cost.

An overview of mappings provided by JNA is given in Table 6.1 below.

Native Type Java Type

char byte

char* String

int int

long NativeLong

long long long

void* Pointer

size_t IntegerType(Pointer.SIZE)

struct Structure

function(char **buffer_p, int* len_p) function(PointerByReference buffer_p, IntByRefer-
ence len_p)

Table 6.1: Mapping native functions and types to Java with JNA

Compared to the necessary steps involved with JNI (see Section 3.2.2.2), which also requires writing a wrapper
for the native library in C, JNA reduces the complexity and eliminates the need for writing non-Java code.
Example 6.1 shows an example for accessing the system C library using JNA:

2see the gstreamer-java project home [http://code.google.com/p/gstreamer-java/] at GoogleCode
3An introduction to libffi is available at The libffi Home Page [http://sources.redhat.com/libffi/], recent versions are distributed with the
GNU Compiler Collection [http://gcc.gnu.org/]. Libffi is also bundled with the JNA distribution, including some documentation.

http://code.google.com/p/gstreamer-java/
http://code.google.com/p/gstreamer-java/
http://sources.redhat.com/libffi/
http://sources.redhat.com/libffi/
http://gcc.gnu.org/
http://gcc.gnu.org/

Design 119

119

Example 6.1: Wrapping a native library in Java using Java Native Access (JNA)

public interface CLibrary extends Library {
 CLibrary INSTANCE = (CLibrary)Native.loadLibrary("c",
 CLibrary.class);
 int atol(String s);
}

extend the Library interface to define a standard library with the target system's default calling convention
set up an instance of the native library using JNA's Native class, and cast the result to the wrapper interface
for later use
define a method that maps to an equivalent native library function

It is not necessary to define a complete mapping for the native library, only the needed functionality has to be
mapped. Also, custom names for methods and structures may be used, e.g., to accomodate the Java naming
convention using CamelCase. This can be achieved by implementing a custom TypeMapper that is passed to
the Native.loadLibrary() call.

Once the library interface is defined, library methods, structures and constants can be used just like normal Java
class members, utilizing JNA's native mapping. For example, the following code in Example 6.2 can be used to
access a function from the C library included above:

Example 6.2: Accessing native functions in Java through a Proxy interface with JNA

public class MyClass {
 CLibrary clib = CLibrary.INSTANCE;
 int num = clib.atol("42");
 System.out.println("The magic number is: " + num);
}

get an instance of the native library, wrapped in a stub provided by JNA (as defined in Example 6.1 before)
invoke a method declared in the interface, which results in a transparent invocation of the native function
by JNA

Relevant source code excerpts for wrapping the native DOORS library to be used in the prototype can be found
in Appendix A.

6.4.2. Design
The design of the ToolNet/JBI-prototype is firmly based on the JBI specification [JBI] and applies the concepts
defined therein where possible, aiming at a straightforward redesign of the current ToolNet architecture. This
approach enables successful adoption of enterprise integration paradigms such as service-oriented integration
and architectures like the Enterprise Service Bus (ESB) to desktop tool integration, solving the problems of the
current ToolNet implementation, while staying true to the original vision and general design. This allows for
a clean, gradual migration path (as shown in Section 7.4) and solves many of the goals defined in Section 6.2
without unnecessarily breaking the existing architecture by departing from existing and working design concepts
and paradigms. This section describes the redesign of the ToolNet framework into a JBI-based solution, and how
the individual parts of the current ToolNet architecture are mapped to the new solution for implementing the
prototype integration scenario.

As illustrated in Figure 6.1 below, the core components of ToolNet can be directly translated into JBI coun-
terparts: The external application Telelogic DOORS communicates with the ToolSide Adapter-part (see Sec-
tion 5.3.7), which is modeled as a BindingComponent (named “DOORS BC”). The ToolNetSide Adapter-part,
on the other hand, maps the tool's functionality to a common set of ToolNet services (see Section 5.3.5) and is

120 Prototype ToolNet/JBI

120

realized as a ServiceEngine (named “DOORS SE”). Users interact with the prototype using a JMX management
console, which acts as a replacement for the ToolNet Desktop that was not used for the prototype.

In the same way that ToolAdapters were realized as JBI BindingComponents and ServiceEngines, the Core-
Services in ToolNet can be retrofitted into ServiceEngines that provide common services to other components
connected to the JBI backbone. For example, the RelationCreationService could be realized as a Re-
lationCreationServiceEngine that manages data relations in a database (e.g., using a JdbcBinding-
Component to handle the external connection) and provides the existing ToolNet-Services addAnchor(), re-
moveAnchor(), etc. (see Section 6.4.2.5 below). ServiceEngines realizing ToolNetSide Adapters would then
call the corresponding services provided by the RelationCreationServiceEngine whenever they need to serve an
incoming user-request (received by the ToolSideAdapter) for creating or navigating relations.

This design is strongly supported by the JBI specification and ensures loose coupling between integrated com-
ponents, allowing for easier adaption to changes on the tool side (e.g., new functionality or a different interface
like a .NET-DLL) and also in the ToolNet-backend (e.g., new ToolNet-Services implemented by additional Ser-
viceEngines). This results in a clean separation of protocol-level integration, making communication with tools
possible in the first place, from application-level integration, which integrates at the logical level and translates
between tool-specific commands and common framework services. The end result is a combined workflow for
the end user, realizing the main goal of tool integration (see Section 2.3).

Figure 6.1: A High-level view of the prototype design showing the custom DOORS Adapter

As described in Section 6.4.1.3.3, JNA is used as a mediation layer between the external interface, provided
through the DOORS C library, and the JBI-based prototype. Communication with external tools is an essential
part of a desktop integration framework, and the way it is done strongly affects the quality, reliability, and de-
veloper acceptance as well as user satisfaction of the entire solution. For applications like Telelogic DOORS
that provide a C-library for accessing the API (a common situation on the desktop, where web services-based or
service-oriented interfaces are still rare), a thin native layer like JNA provides a simple but powerful solution.

The following sections elaborate on the design of the individual components and their role in the new architecture.
The implementation is examined later in Section 6.4.3.

6.4.2.1. Using BindingComponents as Tool Adapters

BindingComponents are responsible for translating between the standardized, service-oriented communication,
using XML-based NormalizedMessages inside the JBI infrastructure, and any proprietary communication nec-
essary to interact with external tools. They realize integration on a protocol level and act as a mediator between
non-JBI resources and the JBI message bus. Incoming data received from external applications is transformed

Design 121

121

into NormalizedMessages and sent over JBI's NormalizedMessageRouter, whereas NormalizedMessages are
converted into an appropriate form for communicating with the external application. The actual content of the
message is never interpreted in any way other than necessary for transmission – BindingComponents only deal
with messages and convert them into the target format, in the same sense that a router only works with packages
and looks at their headers, leaving the actual content (here: the “message payload”) untouched (e.g., an outgoing
DXL script, or an incoming ToolNet ServiceName, when viewed from the JBI runtime). Further processing on
the logical level is handled by ServiceEngines, which are explained in the next section.

Realizing ToolNet-Adapters as JBI BindingComponents is a straightforward solution since JBI does not assume a
homogeneous or Java-only infrastructure. The specification explicitly defines components that integrate external
resources and protocols, but at the same time they are fully integrated into the common service bus and able
to participate in message exchanges with other JBI-components in a service-oriented manner. When connecting
tools to the ToolNet/JBI-infrastructure using BindingComponents, the tool's functionality is exposed in the form
of Services using WSDL-mappings, as defined in the JBI specification (and also explained in Section 4.2), so
that other components on the bus can transparently lookup and utilize the functionality provided by integrated
tools. Because BindingComponents are normal JBI components that just have a special role of bridging from
internal to external communication channels, they can also make use of other Services available on the bus as
needed, e.g., for message translation, processing or routing. This level of integration is not possible, for example,
with JCA ResourceAdapters, as mentioned in Section 4.2.2.2.

In the prototype, the ToolSide DOORS-Adapter is realized as a custom BindingComponent that communicates
with the DOORS application using the C-library interface provided by DOORS through the JNA library, which
was introduced in Section 6.4.1.3.3 (see Section 6.4.3.5.1 for implementation details). Inside the JBI contain-
er, the BindingComponent provides a service (specified again by a WSDL-definition) for sending commands
to DOORS, thus hiding the necessary proprietary communication-mechanisms under a service-oriented façade.
This part of the communication, from JBI to DOORS, is handled by the Provider-part of the BindingComponent,
as shown in the callout box in Figure 6.1. Incoming commands, on the other hand, are first translated to Nor-
malizedMessages and then propagated to the message bus for further processing by ServiceEngines described
below. This part is depicted as Consumer (Listener).

6.4.2.2. Using ServiceEngines as ToolNet-Services

Whereas BindingComponents are logically situated between the JBI infrastructure and the external application
(DOORS), acting as a message translator, ServiceEngines, on the other hand, are responsible for interpreting,
routing and transforming messages on the JBI message bus (called the NormalizedMessageRouter). They rely
on BindingComponents (see previous section) for handling message exchange with external resources and only
communicate with internal components connected to the NormalizedMessageRouter, using service invocations.
ServiceEngines therefore offer a façade to the common set of ToolNet Services (which would be implemented
by other ServiceEngines in a full implementation) and implement the MessageRouter and MessageTranslator
patterns as defined in [EIP].

In the prototype, ToolAdapters (precisely, the ToolNetSide Adapter-part, as explained in Section 5.3.7), are real-
ized as ServiceEngines and are responsible for translating between ToolNet Services provided by the framework
and corresponding functionality available in external tools. Consequently, the ToolNetSide DOORS-Adapter is
realized as a ServiceEngine that translates DOORS commands received from the DoorsBindingComponent
to respective ToolNet service calls and vice versa. As an example, the HIGHLIGHT_OBJECT-Service was im-
plemented to demonstrate a ToolNet service invocation in DOORS (see Section 6.5 for a complete description
of the prototype use case).

The DoorsServiceEngine also realizes the JMX management interface mentioned earlier, allowing inter-
action with linked DOORS RequirementObjects using a graphical interface. The JMX-interface is covered in
more detail in Section 6.4.3.5.4.

122 Prototype ToolNet/JBI

122

The application of ServiceEngines is not limited to ToolAdapters: also common ToolNet Services provided by
the backbone (described in Section 5.3.5) can be realized with ServiceEngines, such as the RelationService,
Project- or SessionManagement-Service or the Presentation-Service. ToolNet Services provided by Adapters are
exposed as WSDL endpoints, so that they can be identified as targets for the implemented services upon user
request, e.g., for creating relations or highlighting an object in the integrated Tool. Adapters, on the other hand,
may use ToolNet Services that support them in realizing provided Services: the RelationManager-ServiceEngine
would provide services for adding or removing objects to or from a relation or for querying possible targets,
and Adapters would then call these services when receiving user requests to link objects through the ToolNet
operations “Add as Source” or “Add as Target” in the integrated tool. This form of communication resembles
the Publish/Subscribe-pattern described in Section 4.2.2.1.

6.4.2.3. The ToolNet/JBI Backbone

The current ToolNet backbone was identified as a limiting factor of the existing architecture in Section 5.5.
Today, much of the custom and partially proprietary infrastructure can be replaced by mature and standards-based
implementations provided by open source projects: The custom ToolNet backbone resembles an ESB but it is
not as flexible and extensible in terms of message routing, clustering, security or protocol support. As a result,
currently available open source ESB solutions that implement the JBI specification fully meet the requirements
for the backbone of the new solution and provide ample potential for future extension.

In Section 4.4.1, Apache ServiceMix [ServiceMix] was chosen as runtime platform for the prototype, as it pro-
vides a mature and feature rich implementation that can extend and eventually replace the current ToolNet back-
bone. ServiceMix is also used as the runtime environment for ChainBuilderESB [CBESB], which provides a
visual development environment for JBI components and is presented in Section 6.4.4.

6.4.2.4. The JMX Interface

As mentioned in Section 4.2, the JBI specification defines JMX MBeans for component management in a stan-
dardized way. In addition, custom components may add their own MBeans for advanced management access
and to expose custom functionality for management. The specification defines a ConfigurationMBean that
components should provide for additional configuration and control.

In the prototype, JMX MBeans are provided to start and stop the DOORS application, and for controlling DOORS
Objects linked to ToolNet/JBI: The DOORS BindingComponent provides a ConfigurationMBean for configuring
the DXL Server port where DOORS listens for incoming connections from clients, and for adjusting the DOORS
client port which is used by DOORS DXL scripts (as part of the ToolNet DoorsAdapter) to connect to the
prototype. The DOORS ServiceEngine uses MBeans to represent DOORS RequirementObjects that have been
linked from DOORS to ToolNet, exposing Object attributes as MBean attributes and providing operations to
invoke ToolNet Services on the Objects; in the prototype, the HIGHLIGHT_OBJECT-Service is exposed as a
managed operation and is accessible as an MBean operation.

For interacting with the JMX interface, any JMX-compliant management console can be used, such as JConsole4

, which is part of the Java5 SDK, or alternative solutions like [MC4J] or web consoles like jManage5 . Finally, Sun
also open sourced the previously commercial Java Dynamic Management Kit (JDMK) with Project [OpenDMK],
which includes a HTML interface and SNMP interoperability. Figure 6.2 shows the JMX management interface
when accessed with JConsole:

4see the Java SE Monitoring and Management Guide [http://java.sun.com/javase/6/docs/technotes/guides/management/toc.html] for an in-
troduction to JMX and chapter 3, Using JConsole [http://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html], for doc-
umentation on JConsole
5see jManage Open Source Application Management [http://www.jmanage.org/]

http://java.sun.com/javase/6/docs/technotes/guides/management/toc.html
http://java.sun.com/javase/6/docs/technotes/guides/management/toc.html
http://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html
http://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html
http://www.jmanage.org/
http://www.jmanage.org/

Design 123

123

Figure 6.2: The DoorsBindingComponent MBean viewed in JConsole

As can be seen in the screenshot above, the standard Service MBeans defined in the JBI specification such as
SystemService, SharedLibrary and ServiceAssembly are available alongside the custom MBeans
defined by the DoorsBindingComponent and DoorsServiceEngine. The SystemService can be used
for startup and shutdown of ServiceMix components including ServiceMix itself, the SharedLibrary is used for
installing or removing shared libraries that are accessible to all JBI components on the bus. Lastly, the Service-
Assembly is used to control the lifecycle of JBI ServiceAssemblies (see below), such as the prototype which is
packaged as a ServiceAssembly.

The DoorsBindingComponent MBean (named “ToolNet-BC-DOORS” in the screenshot, to comply with
the naming scheme for custom components used in ChainBuilderESB) in the previous screenshot offers three
operations:

1. sendMessage() sends DXL-commands to DOORS using the DoorsBindingComponent – this
method was mainly used for testing

2. startDoors() offers an easy way for starting the DOORS application from within the prototype interface.
Invoking this operation launches the DOORS application and automatically logs in with the default user and
password, which is acceptable for a prototype but would need to be made configurable and secure for a real
implementation.

3. stopDoors() was designed but not implemented because DOORS currently offers no way to quit the
application using DXL-scripting, and killing the process is easily achieved by shutting down ServiceMix,
which is the preferred way to quit the prototype. Of course, DOORS can also be quit from the application's
main window by invoking File#Quit.

The DoorsBindingComponent MBean also exposes properties for management, available through the at-
tributes item in the tree-view on the left. Users can change the ports used for communication with DOORS, as
mentioned in the beginning of this section. These settings are only applied upon startup of the BindingCompo-
nent or DOORS, respectively (this is a limitation of the prototype, but not JMX).

The DoorsServiceEngine MBean in Figure 6.3 holds MBeans for Objects that have been linked from
within DOORS, by invoking the ToolNet menu operation Select Object as source or Select Object as target,
which defines an endpoint for a Relation between any two data model elements in ToolNet (see Section 5.3.6

124 Prototype ToolNet/JBI

124

for an explanation of this concept). Every linked Object is mapped to a custom MBean that is grouped under the
ServiceEngine and named after the Object ID in DOORS. The MBean attributes describe the link type, the
corresponding link description, as well as the Object ID and Module ID, which designates the DOORS
Module containing the Object. The AnchorType can be either 0 (for link targets) or 1 (for link sources), as
reflected by the AnchorTypeName attribute. The attributes Description and Name are currently not passed
in by the ToolNet DXL-scripts in DOORS and are left blank in the attribute view.

Each ObjectMBean under the DoorsServiceEngine MBean implements a single operation, high-
light(), that maps the ToolNet Service provided by the prototype to the corresponding DXL command,
which is sent to the DoorsBindingComponent from where it is transmitted to DOORS as described in Sec-
tion 6.4.2.1. More information on the implementation of the JMX interface can be found in Section 6.4.3.5.4.

Figure 6.3: The DoorsServiceEngine MBean viewed in JConsole

6.4.2.5. Putting it all together: The ToolNet/JBI ServiceAssembly

While the previous sections focused on the individual JBI components and supporting technologies like JNA,
this section examines how these components work together, viewing the prototype in its entirety, and describing
the message flow from end to end.

To understand the composite solution, it is important to know that JBI BindingComponents and ServiceEngines
can act as a Consumer, a Provider, or both (see Section 4.2.1). These roles are defined in the JBI configura-
tion descriptor of the ServiceAssembly, which acts as a container that describes all components required for the
composite application and defines the message flow between Service Endpoints (see the “connection”-elements
in Example A.1 for an example). The ServiceAssembly consists of ServiceUnits that reference required target
components installed in the JBI container and supply them with dynamic configuration at runtime, together
with optional artifacts for installation into the target components (like custom DXL scripts for the DoorsSer-
viceEngine). The composite application represented by the ServiceAssembly is ultimately deployed to the
JBI runtime as a single package in ZIP format, including standardized JBI descriptors in XML. Figure 6.6 shows
a visual representation of the prototype's ServiceAssembly. For details regarding packaging and deployment
please refer to Section 6.4.4.3.

Figure 6.4 illustrates the path of a user request sent from DOORS to the prototype, showing all processing steps
involved until the result is presented in the prototype's JMX interface:

Design 125

125

F
ig

ur
e

6.
4:

 S
en

di
ng

 a
 c

om
m

an
d

fr
om

 D
O

O
R

S
to

 th
e

pr
ot

ot
yp

e

126 Prototype ToolNet/JBI

126

When the user invokes the ToolNet-menu items Select Object as Source or Select Object as Target, the corre-
sponding DXL script is executed and connects to a user-defined IPC port (by default, port 5094) by opening
a TCP/IP connection, which is provided by the DOORS DXL API. The script sends the ToolNet-request ad-
dAnchor() as plain text over the channel, where it is received by the listening DoorsBindingComponent,
which acts as a Consumer in this message flow, because it consumes Services (provided by the DoorsSer-
viceEngine) from the JBI bus. There, the request is packaged into a NormalizedMessage, without be-
ing interpreted, and a new InOnly MessageExchange is initiated. The message is then routed to the target
component as defined in the ServiceAssembly descriptor, which is the DoorsServiceEngine. The ServiceEngine,
acting as a Provider, is responsible for extracting the original request by denormalizing the message, parsing and
interpreting the request and required arguments. With this information, it creates a new MBean to represent the
requirement object selected in DOORS, and sets the MBean attributes to the arguments received. The MBean's
name is set to the ObjectID used in DOORS, sothat the new Relation can be easily indentified.

Communication in the reverse direction, sending the highlight() request from the prototype to DOORS,
happens analogous to receiving and processing requests from DOORS: When the user invokes the operation
highlight() on a DOORS ObjectMBean in the prototype's JMX interface, the request and required argu-
ments (e.g., the ObjectID) are propagated to the DoorsServiceEngine, which now acts as a Consumer,
because it consumes Services provided by the DoorsBindingComponent. Now the ServiceEngine is respon-
sible for translating the user request highlight() into a corresponding DOORS DXL command, showOb-
ject(), and for initiating a new JBI MessageExchange. In the other direction, the mapping was done by the
custom ToolNet menu extension in DOORS, and the MessageExchange was initiated by the BindingComponent
because it received the request from DOORS. The NormalizedMessage containing the DXL command is
then routed over the NormalizedMessageRouter to the DoorsBindingComponent, which now acts as a
Provider, because it provides the necessary functionality to transmit the request to the DOORS application, us-
ing the DOORS API as described in Section 6.4.3.5.3. When the ToolNet script listening for connections inside
DOORS receives the request, it parses the request's arguments and calls the corresponding DOORS API function
to display and highlight the designated Object in the DOORS interface. The implementation of this usecase is
described in Section 6.4.3.5.5.

6.4.3. Implementation

It’s all talk until the code runs.
--Ward Cunningham

When implementing the prototype, several goals were kept in mind to ensure a successful end result: To stay
within a reasonable time frame and to avoid unnecessary reimplementation of existing artifacts, the current solu-
tion was analyzed for source fragments that could be reused in the prototype, or concepts that could be translated
to the new architecture, especially regarding the communication with Telelogic DOORS using DXL scripting
and socket-based inter-process communication provided by the DOORS C library. By reusing existing parts and
staying with the core principles of a proven solution, a later migration would also be easier. At the same time,
the new solution should meet the goals defined in Section 6.2, and demonstrate the advantages of the new ar-
chitecture (as introduced in Chapter 4) in the form of an independent implementation, which is firmly based on
the findings in this work (see Part I) and the technologies selected during analysis and design of the prototype.
Consequently, the existing ToolNet implementation, in particular the DoorsAdapter (ServerSideAdapter and
ClientSideAdapter), and the ToolNet DXL scripts used in DOORS were inspected for possible reuse, carefully
weighting the benefits and drawbacks against the requirements set out above. The end result is a mixed approach
were one part of the Adapter was reused and the other part was completely replaced.

6.4.3.1. Evaluating the current solution for reuse

The DoorsAdapter currently used in ToolNet follows the general design principles of the Adapter architec-
ture outlined in Section 5.3.7 and is divided into two logical components: a ToolSideAdapter, which realizes the

Implementation 127

127

actual integration with DOORS using socket-communication and DXL, and a ToolNetSide Adapter, which com-
municates with the ToolNet backbone. The ToolSideAdapter is realized as a set of DXL scripts (DOORS' native
scripting language) that are integrated into the DOORS interface: a ToolNet menu provides ToolNet Services to
the user over a familiar interface, and a ToolNet window acts as an additional palette that offers quick access
to common ToolNet commands and displays information about selected requirements Objects. By registering
custom ToolNet DXL scripts in DOORS, the Adapter automatically is called when DOORS receives commands
from the ToolNetSide Adapter.

The ToolNetSide DoorsAdapter consists of several parts: the class DoorsAsServerLink opens a client con-
nection to the DOORS DXL server, using the Java Native Interface (JNI, see Section 6.4.1.3.1) to access a
wrapper DLL that calls the native DOORS C library, which provides the necessary API functions for inter-pro-
cess communication with DOORS. This part of the Adapter is tightly coupled to the current ToolNet architec-
ture and backbone (implementing several ToolNet interfaces and following certain implementation patterns),
which was also identified in Section 5.5 as one of the major problems in the current implementation. The class
DoorsSocketToolAsClientLink realizes the server connection and processes incoming requests from
DOORS (sent by the ToolSideAdapter, that is the custom DXL client scripts).

Support for custom scripting languages in DOORS

It is worth noting that the DOORS 7.1 API provides functions for implementing a custom DXL-like
language that could be used to build a scripting host on the ToolNet side similar to DOORS. Using
this method, the Doors Adapter on the ToolNet side would register functions and data types needed
for integration with ToolNet, and the DOORS-side Adapter (the DXL scripts) would then utilize these
functions to access ToolNet Services. This creates links between DOORS and ToolNet, following a
client/server model, where active links relate to the client side and passive links constitute the server side
of the connection, as explained in [DOORSAPI]. While this method allows function-based integration
using native data types, it has not been used in the current ToolNet-communication.

The ToolSide DoorsAdapter sends ToolNet method-invocations as Strings to the ToolNetSide DoorsAdapter,
which parses them and calls the matching ToolNetService. In the other direction, the ToolNetSide DoorsAdapter
implements the ToolNetServices supported (by extending the appropriate ToolNet interfaces provided by the
framework), translates them to corresponding DXL scripts, and sends them to the DOORS DXL server for further
processing by the ToolSide DoorsAdapter. An example of the communication between ToolNet and DOORS
is given in Section 6.5.

6.4.3.2. Final Solution

Because the ToolSide DoorsAdapter only consists of DXL scripts that communicate over Sockets, independently
of the existing ToolNet API, the existing DXL scripts and the ToolNet commands exchanged by both Adapter
parts can be fully reused in the new implementation. The existing ToolSide DoorsAdapter communicates trans-
parently with the new prototype. This eases migration, as no changes are required to work with the new imple-
mentation, and also avoids the duplicated effort of reimplementing the DXL scripts and interface elements for
DOORS integration.

The ToolNetSide Adapter part however was entirely replaced by a new implementation, as it could not easily be
integrated into the prototype without drawing in many dependencies of the current ToolNet implementation. This
would have sacrificed several goals defined in Section 6.2, mainly that of a independent implementation, and also
would have made it harder to show the advantages of the new approach, such as ease of Adapter development. By
contrast, a clean JBI-based approach, using a dedicated DoorsBindingComponent (see Section 6.4.3.5.3)
and DoorsServiceEngine (see Section 6.4.3.5.5), allowed a fresh implementation of the needed custom

128 Prototype ToolNet/JBI

128

components, designed from the ground up to embrace service-oriented concepts and message-based integration.
The new Adapter implementation also serves as a reference implementation for further ToolAdapters, as they
can be adapted to other needs with reasonable effort, which is shown in Section 7.1.

6.4.3.3. Comparing the two implementations

Migrating the current implementation of the DoorsAdapter and other parts of the ToolNet framework was iden-
tified as a potential goal but left as a separate project as it was too complex for the initial prototype implemen-
tation (see Section 7.4). However, because the new implementation follows similar patterns and concepts from
a high-level perspective, migration should be straightforward, as the architecture is “compatible” to the exist-
ing ToolNet architecture: e.g., the concept of a ToolSide and a ToolNetSide (JBI) Adapter part is common to
both approaches. Also, the new implementation of the ToolNetSide Adapter part can be mapped onto the old
approach: the existing DoorsAdapter is logically subdivided into a Tool-specific and a ToolNet-specific part: the
first part handles communication with the external tool, whereas the latter translates between ToolNet Services
and DOORS commands. This separation can be found in a similar way in the new implementation, with the no-
table difference that now a standardized approach is applied, using JBI BindingComponents as the Tool-specific
part, handling external communication on the protocol level, and ServiceEngines as the ToolNet-specific part,
acting as a translator on the semantic level. A detailed example for the mapping from the old implementation to
the new solution is shown in Table 6.2 below.

Functionality Existing implementation New implementation

sending commands to DOORS DoorsAsServerLink DoorsBindingComponent (Provider
part)

receiving commands from DOORS DoorsSocket-
ToolAsClientLink

DoorsBindingComponent (Con-
sumer part)

translating ToolNet Services into
DOORS DXL calls

DoorsCommandEncoder DoorsServiceEngine (Consumer
part)

translating DOORS DXL calls into
ToolNet Services

DoorsCommandParser DoorsServiceEngine (Provider part)

Table 6.2: Mapping the new DoorsAdapter to the existing implementation

6.4.3.4. Software Requirements and Tool Chain

The prototype was realized in Java, using JDK 5, however no Java5-specific features or libraries were used, so the
implementation should be highly portable across Java-versions from version 1.4 upwards, depending on the JBI
runtime and development environment used. For Apache ServiceMix 3.x, JDK 1.5 is the minimum requirement.
For the JBI runtime, Apache ServiceMix 3.2.1 was used, which implements version 1.0 of the JBI specification,
the latest version available.

ChainBuilderESB 1.1 (introduced in Section 6.4.4) was used as a development environment, because it offers
a visual editor for ServiceAssemblies with automatic code-generation for JBI deployment descriptors and WS-
DL definitions, and a wizard for creating new custom JBI components. Especially the latter was important for
developing the prototype, a feature that is missing from alternatives such as NetBeans with SOA Enterprise pack
(see Section 4.2.3 for a short evaluation of available JBI tooling). ChainBuilder is actually a prepackaged devel-
opment environment for developing JBI-solutions: it is based on the Eclipse IDE (version 3.2) and adds plugins
for a visual ServiceAssembly (“Component Flow”)-editor and JBI component-wizards for creating and config-
uring BindingComponents, ServiceEngines and message flows. Also, custom components are included such as
the TCP/IP-BindingComponent used in an iteration of the prototype implementation (see Section 6.4.3.5.2). For
build automation, Apache Ant scripts are included, which generate the necessary deployment artifacts and per-

Implementation 129

129

form the actual deployment of components by copying them to a destination from where they are picked up dur-
ing startup of the JBI runtime, Apache ServiceMix (see Section 6.5 for a description on running the prototype).

The DoorsBindingComponent was developed and tested in conjunction with Telelogic DOORS 7.16 for Linux,
the included C library api.so was used to access the DOORS API over a TCP/IP-based IPC channel (see
Section 6.4.3.5.3).

6.4.3.5. Iterations

Realization of the prototype was a complex project that incorporates several new technologies and solutions
yet unproven for desktop tool integration (see also Section 7.3). Consequently, the realization of the final use
case was done in several iterations, each acting as a proof-of-concept for a specific part of the solution, and as a
milestone before advancing to the next part. The following sections each describe a part of the implementation
separately, providing a partial view on a specific aspect of the implementation, culminating in the final iteration
which realizes the full use case, building on the previous iterations.

6.4.3.5.1. Iteration 1: Proof-of-concept using JNA

The first iteration was necessary for validating the design decision to use JNA as a native bridge to DOORS,
which constitutes an elemental part of the prototype. As a test, a simple Java application was implemented that
sends a command passed in over the command line to DOORS using the JNA library interface, and then waits for
a reply on the default port for incoming DOORS commands. The latter was realized using simple Java sockets, as
there is no matching API functionality in DOORS. The sending part was realized as shown in Example 6.3 below:

Example 6.3: Sending a command to DOORS using JNA

// initialize DOORS API library
doorslib = (DoorsLibrary) Native.loadLibrary("api", DoorsLibrary.class);
// call API to connect to DOORS
doorslib.apiInitLibrary(null, null, null);
// send command over the IPC channel and close connection
doorslib.apiConnectSock(port, host);
doorslib.apiSend(args[0]);
doorslib.apiSend("quit_");
// shutdown DOORS API
doorslib.apiFinishLibrary();

The DOORS API is accessed using the appropriate functions of the DOORS C library, which is described in
[DOORSAPI] and used in the current ToolNet DOORS Adapter (where JNI is used to access the native library).
The steps involved are:

use JNA's Native class to load the DOORS C library into memory, automatically mapping the C functions
to the Java methods defined in the DoorsLibrary-interface; from now on, the C-library functions can be
called by invoking the matching methods in the Java interface.
initialize the DOORS C library to set up the environment by calling the Java interface method defined in
DoorsLibrary
set up a TCP/IP based IPC channel to DOORS (using the default DOORS DXL server port 5093 on local-
host)
send the command String provided by the user on the command line, e.g., ack "Hello DOORS!" opens
a dialog box with the given text in DOORS; the connection has to be closed because the IPC channel is
synchronous, causing DOORS to wait.

6see the DOORS product site [http://www.telelogic.com/products/doors/doors/index.cfm] for information on DOORS and for obtaining an
evaluation version to use with the prototype

http://www.telelogic.com/products/doors/doors/index.cfm
http://www.telelogic.com/products/doors/doors/index.cfm

130 Prototype ToolNet/JBI

130

wind down the DOORS library environment

The complete Java interface to the DOORS library is available in Example A.6. As expected from research
results during design, JNA proved to be a viable solution for seamless access to native libraries for use in the new
DoorsAdapter. However, the underlying operating system has to be taken into account when wrapping native
libraries, as function calling conventions vary between operating systems, and different libraries have to be used
for the Linux and the Windows version. A common approach with JNA is to wrap the library loading in the
interface and transparently provide a JNA stub that references the library appropriate for the target platform,
which is illustrated in the JNA sample programs [JNA].

6.4.3.5.2. Iteration 2: Socket communication using a JBI TCP/IP BC

In the second iteration, a basic JBI setup was tested to verify the main concepts of the new, JBI-based architecture.
It is possible to connect to DOORS using normal socket-based communication not only for receiving, but also for
sending DXL commands. Using an existing TcpIpBindingComponent from Bostech that was committed to
the open-source JBI components repository7, a proof of concept for a JBI-based integration of DOORS was re-
alized in a short time, as no custom component had to be developed. In this iteration, the prototype communicates
directly with the DOORS DXL server using a TCP/IP-connection, without using the DOORS C library at all.

Strings can be sent and received, but they must be terminated with a carriage return, which is a requirement
imposed by the BindingComponent. In the first case, the input string is read from a file, as no direct user-in-
teraction is possible, and sent to a running DOORS instance listening on port 5093 (the default DOORS IPC
port for client-connections). In the second case, input is received from DOORS on port 5094 and written to a
file. The file handling is realized by a separate FileBindingComponent which is included by default in the
ChainBuilderIDE. This component provides Services for writing out NormalizedMessages it receives over the
JBI NormalizedMessageRouter to the filesystem (when configured as a Provider), and for polling directories
for input (when configured as Consumer), converting the file's content to a NormalizedMessage and sending it
over the JBI message bus.

The corresponding JBI ServiceAssembly is illustrated in below, where FileIn is acting as a Provider, reading
files from an input-directory and transferring it to the TCP/IP-BindingComponent DoorsOut which sends the file
content as a DXL script to DOORS. DoorsIn and FileOut realize the opposite direction of the communication be-
tween the prototype and DOORS, with the Provider and Consumer-roles swapped between the two components:

7see the project's homepage at Open JBI Components [https://open-jbi-components.dev.java.net/] and JBIWiki-Components [http://
wiki.open-esb.java.net/Wiki.jsp?page=Jbicomps] for a list of downloadable components, including the TCP/IP-BC [http://wiki.open-
esb.java.net/Wiki.jsp?page=TCPIPBC]

https://open-jbi-components.dev.java.net/
https://open-jbi-components.dev.java.net/
http://wiki.open-esb.java.net/Wiki.jsp?page=Jbicomps
http://wiki.open-esb.java.net/Wiki.jsp?page=Jbicomps
http://wiki.open-esb.java.net/Wiki.jsp?page=Jbicomps
http://wiki.open-esb.java.net/Wiki.jsp?page=TCPIPBC
http://wiki.open-esb.java.net/Wiki.jsp?page=TCPIPBC
http://wiki.open-esb.java.net/Wiki.jsp?page=TCPIPBC

Implementation 131

131

Communication with DOORS using an existing JBI TCP/IP BindingComponent
Figure 6.5: JBI ServiceAssembly for Prototype Iteration #2

6.4.3.5.3. Iteration 3: Implementing a custom DOORS BindingComponent

In this iteration, the connection to DOORS is implemented using a custom JBI BindingComponent that handles
the communication with DOORS over the proprietary C-API interface using JNA. This was the most important
and also the most complex iteration as it combines the previous two iterations, building on the successful use of
JNA in the first iteration and on the JBI ServiceAssembly developed in the second iteration.

Integration with other Tools is described in the DOORS API Manual [DOORSAPI:21]. The prototype (like the
original ToolNet implementation) only communicates over the library-function apiSend() and uses normal
Java Sockets for receiving commands from DOORS. For this iteration, a simple test script was used that sends
a message from DOORS to the prototype, to verify that incoming DOORS commands are correctly received.

For sending commands to DOORS, the corresponding DXL script is placed in a folder that is watched by a
FileBindingComponent. This existing BindingComponent takes the contents of the File, wraps them in-
to a JBI NormalizedMessage and sends it to the MessageRouter. The folder-location and other parameters can
be configured either during designtime in the ChainBuilder “ComponentFlow”-editor, or at runtime by using
a JMX management console like JConsole for adjusting the BindingComponent's managed attributes (see Sec-
tion 6.4.3.5.4).

The JBI ServiceAssembly is set up sothat outgoing messages from the existing FileBindingComponent
are routed to the new DoorsBindingComponent, from where they are sent over the wire to the external
endpoint. The component flow diagram looks similar to , only now a custom DoorsBindingComponent is used
instead of the existing TCP/IP-BindingComponent.

132 Prototype ToolNet/JBI

132

Outgoing communication is implemented in the Provider part of the custom DoorsBindingComponent as shown
in Example 6.4 below (error handling and unused parameters were left out for the sake of clarity):

Example 6.4: Sending a DXL script taken from a NormalizedMessage to DOORS

public void processInMessage(NormalizedMessage in) throws Exception {
 doorslib.apiConnectSock(5093, "127.0.0.1");
 // get message content string
 NormalizedMessageHandler nmh = new NormalizedMessageHandler(in);
 Source src = nmh.getRecordAtIndex(0);
 if (src instanceof StringSource) {
 StringSource strsrc = (StringSource) src;
 String dxl = strsrc.getText();
 // send in message to DOORS
 DoorsEndpoint.doorslib.apiSend(dxl);
 } else {
 // got unexpected Source format, not a DXL-command
 }
}

When the Provider receives messages from the JBI MessageRouter, the method processInMessage is
called by the JBI runtime. For this, the BindingComponent extends the ProviderProcessor superclass
from the ChainBuilder CCSL-library (see Section 6.4.4 for details on development with the ChainBuilderIDE).
The superclass handles communication details of JBI NormalizedMessage-processing, like DOM transformation
and XML processing, and passes on the generated JBI InOnly Message for further processing. This saves
component developers from some of the ground work necessary to handle JBI MessageExchanges and helps
them focus on the actual application logic.

For connecting to DOORS, the BindingComponent sets up a socket connection to the DXL server port using
the JNA library wrapper. The actual DXL command that should be sent to DOORS is attached to the JBI Nor-
malizedMessage, so the method uses the NormalizedMessageHandler helper class (again provided by the Chain-
Builder CCSL library) to process the input message . From the message, it retrieves the message attachment

, and extracts the contained DXL command . Finally, the command string is sent to DOORS using the API
function apiSend .

Receiving commands from DOORS is handled by the Consumer part of the DoorsBindingComponent in a sepa-
rate Receiver-Thread, the DoorsConsumerListener, which implements a Server connection for incom-
ing DOORS requests using normal Java ServerSockets and then reads the input using Java Sockets. When the
BindingComponent is started by the runtime, the Receiver-Thread starts listening for incoming socket connec-
tions from DOORS. Everytime a new connection is established, a new JBI MessageExchange is set up and the
command received is wrapped in a NormalizedMessage that is sent over the NormalizedMessageRouter to
the FileBindingComponent, as configured in the ServiceAssembly. When the FileBindingComponent re-
ceives new input, it writes the String contained in the NormalizedMessage to a file, which can then be viewed by
the user. The command itself is not interpreted in this iteration, only message transport and translation is realized.

On the DOORS side, a DXL script has to be executed to open up a server connection for incoming requests sent
by the prototype. This is done using a startup DXL script which has to be placed in the $DOORSHOME/lib/
dxl. To send a command to the prototype, the user has to invoke the menu command Tools#Edit DXL and then
load or type in a valid DXL-script such as the following simple echo-command in Example 6.5 below, which
sends a simple text to the prototype listening on port 5094.

Example 6.5: Opening a simple dialog in DOORS from Java using JNA

IPC javaSocket;
javaSocket = client(5094, "127.0.0.1");
if(! null javaSocket) {

Implementation 133

133

 send(javaSocket, "Hello JBI!\n\r");
 delete(javaSocket);
} else {
 infoBox("no network connection");
}

The source code of the DoorsBindingComponent (including the Listener that has been omitted here) is
shown in Section A.2.1. The article [JBIDev] in the OpenESB-Wiki gives a detailed description of the steps
necessary to create a custom BindingComponent, including an example with full source code.

6.4.3.5.4. Iteration 4: Implementing the JMX interface

This iteration implements a user interface to make the prototype more realistic and to allow for direct user in-
teraction. The interface used in the current ToolNet implementation, the RCP-based ToolNet desktop (see Sec-
tion 5.3.2), was too complex and would have created too much dependencies on the current implementation. In-
stead, JMX was chosen as a lightweight and straightforward solution that allowed to add user interaction without
having to write user interface code just for the prototype. The solution is described in Section 6.4.2.4 and has
been successfully validated in this iteration.

As mentioned in Section 4.2.1, and defined in the JBI specification, chapter 6 “Management”, components may
register optional ExtensionMBeans to provide additional possibilities for management and configuration at
runtime. In JBI, JMX is mainly used for administrative tasks like component lifecycle management or installation
of shared libraries, which is handled by explicitly defined MBeans like the InstallationServiceMBean,
DeploymentServiceMBean or ComponentLifeCycleMBean. This allows for runtime configuration of
BindingComponents, ServiceEngines and other infrastructure components available in the JBI runtime imple-
mentation, e.g., Apache ServiceMix8.

The prototype relies on standard installation and deployment services implemented by the runtime as required by
the specification, and implements additional MBeans for configuration and control of the DoorsBindingCompo-
nent. As the JBI specification does not define standard conventions for custom component MBeans regarding
naming and how the configuration and advanced capabilities should be exposed to management, the current
practice promoted by Sun is to use a ConfigurationMBean9 that provides advanced functionality not ac-
cessible over the standard MBeans.

In this iteration, the DoorsBindingComponent from the previous iteration has been extended to provide
a custom MBean that is registered as an ExtensionMBean as required by the specification. The new Doors-
BindingComponent MBean (called “ToolNet-BC-DOORS”) exposes the configuration necessary to interact with
DOORS and allows the user to send DXL commands over the IPC channel to the external application.

The custom MBean is registered with the JBI MBeanServer during component initialization, in the
ComponentLifeCycle.init() method, and from then on it is immediately accessible from JMX manage-
ment consoles like JConsole. In the ComponentLifeCycle.shutdown() method, the MBean is unregis-
tered again, so after the BindingComponent is stopped, configuration and control is no longer possible.

The DoorsBindingComponent MBean provides an operation startDoors() for starting DOORS from the
JMX console, using System.execute(), which launches the DOORS application and passes in sever-
al DOORS command line switches to allow auto-login with a supplied user and password, as described in
[DOORS:379]. It also implements an operation sendMessage() that takes a String argument and sends it in
raw form as a DXL command to the DOORS DXL server, as implemented in the previous interation.

8see the page JMX Console [http://cwiki.apache.org/confluence/display/SM/JMX+Console] in the Apache ServiceMix Wiki for more infor-
mation on JMX access
9see the article The HTTP/SOAP JBI Binding Component [http://blogs.sun.com/gopalan/entry/the_http_soap_binding_component] in
Gopalan Suresh Raj's blog “Web Cornucopia” for more background information on managing custom components with the example of the
HTTP/SOAP-BindingComponent, which is also explained in the article.

http://cwiki.apache.org/confluence/display/SM/JMX+Console
http://cwiki.apache.org/confluence/display/SM/JMX+Console
http://blogs.sun.com/gopalan/entry/the_http_soap_binding_component
http://blogs.sun.com/gopalan/entry/the_http_soap_binding_component

134 Prototype ToolNet/JBI

134

This iteration realizes only the outgoing communication in the BindingComponent, as it served mainly as a
testbed for the JMX user interface. The complete use case with in- and outgoing communication and control was
realized in the final iteration described below.

6.4.3.5.5. Final Iteration: Implementing the use case

The iterations described earlier lay the foundation for a service-oriented, JBI-based communication with the
external DOORS application. This iteration builds on the prototype components developed in previous iterations
and realizes the use case described in Section 6.4.2.5, for which it relies on the JMX interface developed in the
previous iteration.

In the final implementation, protocol-level integration for connecting the external application DOORS is cleanly
separated from the application-level integration of the service-oriented ToolNet interface and functional DOORS
interface using DXL calls. Protocol-level integration is realized by the DoorsBindingComponent as de-
scribed and implemented in Section 6.4.3.5.3, translating between the service-oriented communication using
NormalizedMessages inside the JBI container and socket-based IPC for connecting to external Tools. For ap-
plication-level integration, a new DoorsServiceEngine has been implemented, which replaces the simple
FileBindingComponent from earlier iterations with a custom JBI ServiceEngine that translates ToolNet Service
requests sent by other ToolNet-components10 into corresponding DXL calls. The new component also allows
direct user interaction, as required by the use case, by providing methods for JMX-based management-access
via JMX-enabled management-consoles such as JConsole, thereby using existing management consoles as a
replacement for the ToolNet desktop within the scope of the prototype use case (see the previous iteration for
information on the JMX implementation in the BindingComponent, and Section 6.4.2.4 for a detailed overview
of the design-aspects). Together with the custom DoorsBindingComponent and associated Extension-
MBean, communication in both directions is possible at the presentation level, which resembles the original
ToolNet vision using the concepts developed in this thesis.

For sending commands from DOORS to the prototype, the original ToolNet DXL scripts have been reused, only
this time they transparently send ToolNet commands to the new implementation. For the prototype use case, only
a few of the ToolNet scripts are needed: the common ToolNet configuration script that declares global variables
for IPC and ToolNet-Adapter options, a script realizing the ToolNet window, the IPC implementation itself,
and the script implementing the RelationCreationService (sending ToolNet-commands for creating links), and
finally the PresentationService providing the highlightCurrentObject() method, which changes the
module view in DOORS to focus on the specified Object, as needed for the use case. In the existing ToolNet im-
plementation, this function is also available in the reverse direction and realized in the RelationCreationClient's
highlightObject() method, which sends a highlight() request from DOORS to ToolNet. The cor-
responding Service has not been implemented in the prototype, as it would require manipulating the JConsole
interface for implementing the necessary functionality to highlight a specific MBean, which would have bound
the prototype to JConsole. Details on the scripts used in DOORS and their function are given in Section A.3.

For implementing the use case, a JBI ServiceAssembly (illustrated in Figure 6.6) has been developed that includes
two instances of the custom DoorsBindingComponent developed in iteration 3 and two instances of the new
DoorServiceEngine described below11. One instance always acts as a Consumer that processes an incoming
request and then invokes a Service provided by the other component to complete its task. The other instance
acts as a Provider and implements a higher level Service that is called by the Consumer instance and published

10In the prototype, the request comes from the ServiceEngine's associated JMX MBean that represents the target Object in DOORS, which
directly calls the highlight()-method in the ServiceEngine. A message-based, service-oriented communication is only implemented for the
ServiceEngine-Provider that receives DXL-messages from the DoorsBindingComponent.
11To be more precise, the ServiceAssembly contains JBI ServiceUnits that hold the required custom configuration described for later de-
ployment to the target components. The component flow editor provides a high level design view which sees JBI components as building
blocks, without the packaging details required for deployment. When building the ServiceAssembly, the editor plugin translates the design
into corresponding artifacts that can be deployed to the target environment at runtime when the ServieAssembly is started in ServiceMix
(see Section 6.5).

Implementation 135

135

inside the JBI infrastructure. In the first case, the DoorsBindingComponent Consumer handles incoming
requests from DOORS and then consumes a Service of the DoorsServiceEngine for translating the received
command into a ToolNet Service. In the other case, the DoorsServiceEngine Consumer uses the send()
Service provided by the DoorsBindingComponent to route the DXL command to the external application.

Figure 6.6: The final DoorsServiceAssembly viewed in Chainbuilder's component flow editor

As outlined in the use case description in Section 6.4.2.5, Objects in DOORS can be defined as source or target of
Links by using the ToolNet-menu commands Set object as source and Set object as target. The menu commands
are implemented as DXL scripts (see Section A.3) that comprise the tool-side Adapter part and are configured in
the menu definition file shown in Example A.15. Because only one application is integrated with the prototype,
the “source” and “target” links have no special meaning, but the link nature is reflected in an MBean attribute
“anchorType” later.

When the user invokes one of the menu operations to create a Relation, the corresponding DXL script is execut-
ed and generates a request-String that is then sent over the IPC channel to the DoorsBindingComponent's Re-
ceiver-Thread, the DoorsConsumerListener. For a Source-Link, this request looks similar to Example 6.6
below:

Example 6.6: ToolNet-command as received by the DoorsBindingComponent

org.toolnet.core.model.services.IRelationCreation:addAnchor((id)["00000661","356","__NULL__","__NULL__"],
(AddAsType)"1")

The request is not interpreted by the DoorsBindingComponent but translated into a Normal-
izedMessage for transmission over the JBI NormalizedMessageRouter. The BindingComponent speci-
fies the target Endpoint ToolNetServiceAssembly_DoorsAdapter_In_Consumer, which is the
DoorsServiceEngine (introduced in Section 6.4.2.2) acting as a Consumer, and the target Service

136 Prototype ToolNet/JBI

136

ToolNetServiceAssembly_DoorsAdapter_In_Service (the ServiceEngine only provides a single
Service that interprets ToolNet commands) so that the request is propagated to the other part of the ToolNetSide
DoorsAdapter, from the BindingComponent that received the request to the ServiceEngine that interprets the
request.

When the DoorsServiceEngine receives an incoming JBI message in the
DoorsServiceEngineProviderProcessor's processInMessage() method, it extracts the ToolNet re-
quest-String and interprets the request and its arguments by using simple String parsing12. In the prototype, only
the addAnchor() request is implemented, as required by the use case. The arguments specify the module
ID and the ObjectID, which are needed to reference the linked Objects in DOORS later. The __NULL__
arguments contain an optional name and description but are unused in this scenario. After successfully parsing
the ToolNet request, the DoorsServiceEngine creates an ExtensionMBean and stores the Object ID
and link type in MBean attributes. The new DoorsObjectMBean is registered under a descriptive name that
includes the ObjectID, e.g., “DOORS Object #356”, allowing easy identification of the linked Object in the
JMX console by the user. Internally, the MBean keeps a reference to the ServiceEngine's Endpoint sothat it can
initiate a MessageExchange when it receives user input, using the Endpoint's highlightObject()-method.

In addition to the managed attributes that identify the linked Object and that are displayed in JConsole's at-
tributes-view (see Figure 6.3), the MBean also provides a managed operation, highlight(), which imple-
ments the ToolNet PresentationService method SHOWOBJECT. When the user invokes this operation using
a JMX management console, the MBean's highlight()-method calls the corresponding Endpoint method
highlightObject() that implements the necessary request and JBI message handling. First, a DXL script
is generated that calls the appropriate function provided by the ToolSide DoorsAdapter, shown in Example 6.7
below:

Example 6.7: The DoorsServiceEngine sends a request for highlighting an Object in DOORS

public void highlightObject(String module, int no) {
 String dxl="#include <addins/ToolNet/ToolNet_PresentationService.inc>;" +
 "ToolNet_IPresentation_showObject(\"" + module + "\",\"" + no + "\"," +
 "\"null\",\"null\",\"HIGHLIGHT_OBJECT\")";
 sendMessage(dxl);
}

In the sendMessage() method, the DXL script is embedded into a JBI NormalizedMessage which is then
sent to the DoorsBindingComponent by specifying the corresponding Endpoint and Service name as message
target, analogous to the processing necessary when propagating ToolNet commands to the JBI message bus in
the DoorsBindingComponent, as described above. An important difference is that the Component's roles are
now reversed, as the DoorsServiceEngine now acts as a Consumer because it invokes a Service provided by the
DoorsBindingComponent (which is now a Provider), for sending the request to DOORS.

When receiving the message that contains the ToolNet-request, the DoorsBindingComponent does not interpret
the request in any way, but only extracts the request containing the DXL script, as necessary for transmission
over the IPC channel, and sends the highlight-command to DOORS, as described in Section 6.4.3.5.3. When
the message is received by the DOORS DXL server, it calls the corresponding DXL-script ToolNetPresen-
tationService provided by the ToolNet-Adapter (see Example A.20), which brings the selected Object into
focus by using the DOORS API function setSelection().

For a walkthrough from the end user perspective, see Section 6.5. A comparison to the current ToolNet imple-
mentation is given in Section 7.2, which also evaluates strengths and open issues of the new solution.

12In the current ToolNet implementation, the ANTLR [http://www.antlr.org/] grammar parsing library is used which provides advanced
parsing features that were not needed for the prototype implementation, therefore it was left out to keep the prototype simple and focused
on the use case at hand.

http://www.antlr.org/
http://www.antlr.org/

JBI Development with ChainBuilder ESB 137

137

6.4.4. JBI Development with ChainBuilder ESB

“The development time and maintenance cost to manage diverse applications are reduced when business inte-
gration components are built on standards like Java Business Integration (JBI), but don't confuse the ease of

using the standardized run-time components with the creation of those run-times.”
--Kristen Puckett

For developing the prototype, [ChainBuilder], [CBESB] (introduced In Section 4.2.3) was selected for the fol-
lowing reasons:

1. common development platform:

ChainBuilder is based on the Eclipse platform that is also used as the base for the current ToolNet implemen-
tation: the Java IDE is used for ToolNet development, and the RCP platform is used for the ToolNet desktop,
so a possible migration is eased and existing plugins or other artifacts can be reused.

2. rich design-time support:

The IDE offers a visual editor for creating composite applications out of existing and custom components,
thereby greatly simplifying the error-prone configuration of JBI ServiceAssemblies by providing palettes and
wizards for component configuration, and automatically generating the necessary deployment descriptors
during build time.

3. code generation:

ChainBuilder provides wizards for creating custom components and automatically generates associated source
templates and build scripts, which reliefs developers from having to write boilerplate code and XML config-
uration files, allowing them to concentrate on implementing the application and business logic necessary to
solve the integration problem at hand.

4. support for implementing custom components:

Development of custom JBI BindingComponents and ServiceEngines is simplified by the included CCSL
shared library as explained in Section 6.4.4.1.

5. open source solution:

ChainBuilder is a pure open source solution based on open source components such as Eclipse and Apache
ServiceMix. Also, the modifications and additional components (e.g., the ChainBuilder Eclipse plugins for
the visual editor, or the CCSL library) are freely available under the GPL license13. This aligns closely with
the ToolNet vision of using open standards and solutions, resulting in a stable and durable development en-
vironment.

ChainBuilder ESB provides an integrated solution for developing composite applications based on the JBI spec-
ification. The included IDE is based on Eclipse (version 3.2 as of ChainBuilder version 1.1) with additional plu-
gins for providing advanced design-time support like a visual editor for designing JBI ServiceAssemblies (see
Section 6.4.2.5) or wizards for custom component creation and configuration. Apache Ant is used for building
the final JBI ServiceAssembly that is then deployed to Apache ServiceMix, the JBI runtime described in Sec-
tion 4.4.1. The individual components that make up the ChainBuilder ESB solution are illustrated in Figure 6.7
and described below.

138 Prototype ToolNet/JBI

138

(from [ChainBuilder])
Figure 6.7: Schematic overview of ChainBuilder ESB

As ChainBuilder ESB is entirely Java-based, it should work on any platform with Java5 (required by Apach-
eServiceMix 3), but Windows and Linux are the officially supported platforms. The JBI-compliant container is
provided by Apache ServiceMix 3.1 (during development, ServiceMix was upgraded up to version 3.2.1 without
problems). ChainBuilder ESB Common Service Layer (CCSL) is implemented by the CCSL shared library that
is deployed to the JBI runtime and explained in Section 6.4.4.1 below. For many integration scenarios, Chain-
Builder provides suitable BindingComponents (such as the TCP/IP-BindingComponent used in Section 6.4.3.5.2
or the FileBindingComponent that was used in iterations 2-4), and ServiceEngines for message transformation
and advanced (rule-based) routing. The prototype was however developed using custom components that were
necessary for accessing the proprietary DOORS API and for translating between ToolNet requests and corre-
sponding DXL scripts (see Section 6.4.3.5.5). For monitoring, ChainBuilder provides a web based management
console that offers a streamlined interface for administration and control of the JBI runtime and deployed com-
ponents, with additional statistics and alerting, similar to but more advanced than the simple web interface pro-
vided by ServiceMix14. The prototype does not use any web interface and relies solely on the JMX management
interface provided by Apache ServiceMix, which makes the prototype independent of the runtime used, as JMX
management access is required by the JBI specification (see Section 6.4.2.4 for the design of the JMX manage-
ment layer and Section 6.4.3.5.4 for additional details on the implementation).

6.4.4.1. The ChainBuilder Common Services Layer

Development of custom components is described in the Custom Components Reference [CBESBCC], which
shows the steps necessary to implement a simple ServiceEngine. Additional documentation is rare and has been
gathered from ChainBuilder and ServiceMix community forums or from existing sources such as the Chain-
Builder HttpBindingComponent, the TcpIpBindingComponent, and the detailed description given in Sun's Ope-
nESB-Wiki15.

14see the article ServiceMix-Web [http://servicemix.apache.org/servicemix-web.html] in the ServiceMix Wiki
15see the article Developing JBI Components [https://open-esb.dev.java.net/public/jbi-comp-examples/Developing_JBI_Components.html]

http://servicemix.apache.org/servicemix-web.html
http://servicemix.apache.org/servicemix-web.html
https://open-esb.dev.java.net/public/jbi-comp-examples/Developing_JBI_Components.html
https://open-esb.dev.java.net/public/jbi-comp-examples/Developing_JBI_Components.html

JBI Development with ChainBuilder ESB 139

139

Because developing custom components is not covered in detail in the JBI specification16, and requires extensive
knowledge of the runtime implications of the specification, ChainBuilder ESB offers a utility library, CCSL, that
aids in component development by providing extensions to the JBI API:

ChainBuilder Common Services Layer (CCSL) is a software module in ChainBuilder ESB.
CCSL provides a general service layer between JBI components and a JBI container. General
services are things like centralized error handling and user-defined scripting. CCSL is designed
to be inserted transparently between a JBI compliant component and contianer. This makes
CCSL services available to components from other vendors.

CCSL provides helper classes and custom interfaces that makes developing JBI components more straightforward
and avoids having to reimplement commonly needed functionality for every custom component. For example, the
prototype implements the ProviderProcessor-interface and overrides CCSL methods that are transparently
triggered on certain JBI events and preprocessed by the library, e.g., processInMessage() transparently
parses the NormalizedMessage and returns the contained information as arguments. Also, parsing input messages
and extracting attachments is simplified, avoiding the need to traverse the NormalizedMessage's DOM, as well
as interacting with JBI's NormalizedMessageRouter (providing simplified send() methods). The CCSL library
is similar to but more extensive than the Component Helper Classes provided by Apache ServiceMix18, whereas
the latter offers the possibility to implement lightweight components19 that are easier to write than full-featured
JBI components, but only available in ServiceMix and not standardized by the JBI specification.

6.4.4.2. Implementing the Prototype using ChainBuilder ESB IDE

The prototype was developed as a set of Eclipse projects, as described in [CBESBCC]: for the DoorsBinding-
Component and the DoorsServiceEngine, custom component projects were created with ChainBuilder's
custom component wizard. The generated templates and configuration files were adapted as needed, e.g. the
jbi.xml descriptor had to be extended for including the additional shared library jna.jar required for native
access to the DOORS C library (see Section 6.4.1.3.3). Finally, the generated class skeletons were extended with
custom functionality required for the use case. This included overriding the abstract message processing methods
for routing DOORS input from the DoorsBindingComponent to the DoorsServiceEngine and back.
Also, additional classes had to be introduced for implementing a custom Listener Thread that receives requests
from DOORS using Sockets (see Section 6.4.3.5.3). Custom MBeans were added for managing the DoorsBind-
ingComponent and for interacting with the DoorsServiceEngine to access the external tool DOORS. For these
additional tasks that were necessary to integrate DOORS, ChainBuilder provided useful support through the
CCSL library, but implementing custom JBI message handling and integrating external libraries is still complex
and error-prone. As no runtime support is provided for debugging individual components or the complete Ser-
viceAssembly, errors in the implementation are hard to identify and require extensive logging and testing.

After the custom components were finished, a ServiceAssembly-project was created that wraps the custom com-
ponent projects realizing the DoorsBindingComponent and DoorsSerivceEngine into a composite application
that can be deployed into the JBI runtime, Apache ServiceMix. For this, ChainBuilder provides a wizard that sets
up the ServiceAssembly-project and associated runtime configuration, including the JBI deployment descriptor
jbi.xml. The project structure is illustrated in Figure 6.8 and shows the composite application that includes the
individual components developed earlier and the necessary configuration files for configuration and deployment.

Finally, the wizard creates an empty component flow diagram that represents the ServiceAssem-
bly, including component configuration and associated ServiceUnits for deployment (see src/sa/
ToolNetServiceAssembly.componentflow_diagram in the figure). The diagram is edited using a

16this was identified as one of the weak spots of JBI 1.0 and is to be rectified in version 2.0 of the specification, see [JBI2]
18see the Component Helper Classes [http://servicemix.apache.org/component-helper-classes.html] page in the Apache ServiceMix Wiki
19see the page Lightweight components [http://servicemix.apache.org/lightweight-components.html] in the Apache ServiceMix Wiki

http://servicemix.apache.org/component-helper-classes.html
http://servicemix.apache.org/component-helper-classes.html
http://servicemix.apache.org/lightweight-components.html
http://servicemix.apache.org/lightweight-components.html

140 Prototype ToolNet/JBI

140

visual editor that allows adding the custom components developed earlier by selecting them from the component
palette and clicking on the diagram. Using a component wizard, additional properties provided by custom com-
ponents can be configured, as specified in the component's GUI-template, which is defined by the ChainBuilder
environment. These settings can be modified later in property palettes common in the Eclipse IDE. Lastly, mes-
sage flow between components is defined by drawing connections in the associated direction, according to the
component's role which is set in the component wizard (or in the property palette) as either Consumer or Provider.
To summarize, the ServiceAssembly-editor is an elemental and powerful part of the ChainBuilder IDE, as it
provides a visual representation of the underlying JBI modules, and rich manipulation possibilities that enable
dynamic configuration of needed components according to the use case at hand.

Figure 6.8: Project structure of the Prototype ServiceAssembly

For a complete walkthrough of the associated design-time development activities please refer to Section B.2,
which lists the steps involved in creating and configuring the JBI ServiceAssembly for the prototype using the
visual ServiceAssembly-editor of the ChainBuilderESB IDE.

6.4.4.3. Deployment in ServiceMix

Before the prototype can be run in the JBI environment provided by Apache ServiceMix, the required custom
components DoorsBindingComponent and DoorsServiceEngine have to be installed into the JBI run-
time. For this, they have to be packaged as defined in the JBI specification (section 6.3 “Packaging”, see also
Section 4.2.1). The component creation wizard in the ChainBuilder IDE generates the required JBI component
descriptor, jbi.xml, that identifies the component together with a short description, and defines provided ser-
vices and implementation dependencies, like required shared libraries, the main class that bootstraps the compo-
nent, or the classpath itself. For the DoorsBindingComponent, the JNA library needed for integrating the
native DOORS C library had to be manually added to the configuration.

The wizard also generates Ant scripts that perform the actual build of the component as a JAR, and packages the
result, including the aforementioned jbi.xml descriptor as a ZIP file that can then be copied into the ServiceMix

Running the Prototype 141

141

install-folder, which installs the component into the JBI environment. The build is initiated by selecting the
component's Ant-script build.xml and invoking the standard Eclipse operation for running external Tools
like Ant through the Run As#Ant Build menu operation.

When the components have been successfully built, they can be added to a JBI ServiceAssembly that defines the
relationships and responsibilities of each component (as described in the previous section), acting as a contain-
er that represents a composite application, which can then be deployed as a whole in the JBI runtime, Apache
ServiceMix. In the component flow editor, a shortcut menu is available that provides a Build operation for the
ServiceAssembly. When invoked, the components of the ServiceAssembly are translated into corresponding
ServiceUnits that contain the component properties and roles configured earlier. ServiceUnits are packaged as
individual ZIP files, together with the JBI deployment descriptor for each ServiceUnit. Invoking Deploy in the
same menu finally creates a single ZIP file containing the ServiceUnit-archives created before, and adds a de-
ployment-descriptor (jbi.xml) for the ServiceAssembly. The created packages are then copied to target direc-
tories in the ChainBuilder installation from where they are picked up later when ServiceMix is started using the
ChainBuilder cbesb_run script. This has to be done from the console, as there is no debugging or runtime
support from within the IDE (see Section 6.5), which is one of the drawbacks of ChainBuilderIDE and JBI de-
velopment in general (see Section 7.3.1).

Figure 6.9 shows a deployment diagram of the prototype runtime and associated execution environments, such
as the JMX management console and the external application DOORS integrated by the prototype:

Package

UMLPrimitiveTypes ::Boolean
UMLPrimitiveTypes ::S tring
UMLPrimitiveTypes ::UnlimitedNatura l
UMLPrimitiveTypes ::Intege r

«executionEnvironment»

JBI ESB
a rtifacts

DOORS SE
DOORS BC

«executionEnvironment»

DOORS
a rtifacts

ToolNe t Scripts

«device»

JMX Management Console

Te le logic DOORS is the
exte rna l Tool to be integra ted

Apache Se rviceMix
as integra tion runtime

any JMX-enabled management
console can be used for inte raction

IPC over TCP/IP

JMX RMI

Figure 6.9: Runtime deployment overview

6.5. Running the Prototype
Apache ServiceMix can be either started standalone or embedded inside a JEE application server such as JBoss
or Apache Geronimo20, which results in a flexible approach to integration by being able to take advantage of
existing resources when needed but also offering a lightweight JBI runtime where no JEE or other application
server features are required, and any overhead is to be avoided, like here.

The prototype is started from the console from within the ChainBuilder install directory. First, the environment
properties have to be set up by issuing the command

. set_cbesb.sh

20see the pages Running Apache ServiceMix [http://cwiki.apache.org/confluence/display/SM/Running] and War Deployment [http://
cwiki.apache.org/confluence/display/SM/WAR+Deployment] in the ServiceMix Wiki

http://cwiki.apache.org/confluence/display/SM/Running
http://cwiki.apache.org/confluence/display/SM/Running
http://cwiki.apache.org/confluence/display/SM/WAR+Deployment
http://cwiki.apache.org/confluence/display/SM/WAR+Deployment
http://cwiki.apache.org/confluence/display/SM/WAR+Deployment

142 Prototype ToolNet/JBI

142

Then, the prototype ServiceAssembly is started by executing the following command:

cbesb_run ToolNetServiceAssembly

This starts up Apache ServiceMix and sets up the prototype's ToolNetServiceAssembly, as shown in Example 6.8
(log output is shortened to relevant information from the ToolNetServiceAssembly):

Example 6.8: Apache ServiceMix starting up

Starting Apache ServiceMix ESB: 3.2.1

Loading Apache ServiceMix from file: servicemix.xml
INFO - JBIContainer - ServiceMix 3.2.1 JBI Container (ServiceMix) is starting
INFO - ConnectorServerFactoryBean - JMX connector available at: service:jmx:rmi:///jndi/rmi://localhost:10
99/jmxrmi
INFO - DeploymentService - Restoring service assemblies
INFO - JBIContainer - ServiceMix JBI Container (ServiceMix) started
INFO - AutoDeploymentService - Directory: install: Archive changed: processing ToolNet-BC-DOORS-1.0.jar ...
INFO - ComponentMBeanImpl - Starting component: ToolNet-BC-DOORS
INFO - ComponentMBeanImpl - Initializing component: ToolNet-BC-DOORS
INFO - AutoDeploymentService - Directory: install: Finished installation of archive: ToolNet-BC-DOORS-1.0.jar
INFO - AutoDeploymentService - Directory: install: Archive changed: processing ToolNet-SE-Doors-1.0.jar ...
INFO - ComponentMBeanImpl - Starting component: ToolNet-SE-Doors
INFO - ComponentMBeanImpl - Initializing component: ToolNet-SE-Doors
INFO - AutoDeploymentService - Directory: install: Finished installation of archive: ToolNet-SE-Doors-1.0.jar
INFO - AutoDeploymentService - Directory: deploy: Archive changed: processing ToolNetServiceAssembly.zip ...
INFO - ServiceAssemblyLifeCycle - Starting service assembly: ToolNetServiceAssembly
INFO - ServiceUnitLifeCycle - Initializing service unit: ToolNetServiceAssembly_DoorsServiceEngine
INFO - ServiceUnitLifeCycle - Initializing service unit: ToolNetServiceAssembly_DoorsAdapter_Out
INFO - ServiceUnitLifeCycle - Initializing service unit: ToolNetServiceAssembly_DoorsAdapter_In
INFO - ServiceUnitLifeCycle - Initializing service unit: ToolNetServiceAssembly_DoorsServiceEngine_In
INFO - ServiceUnitLifeCycle - Initializing service unit: ToolNetServiceAssembly_Installer
INFO - ServiceUnitLifeCycle - Starting service unit: ToolNetServiceAssembly_DoorsServiceEngine
INFO - DoorsServiceEngineConsumerHandler - doStart()
INFO - ServiceUnitLifeCycle - Starting service unit: ToolNetServiceAssembly_DoorsAdapter_Out
INFO - ServiceUnitLifeCycle - Starting service unit: ToolNetServiceAssembly_DoorsAdapter_In
INFO - DoorsConsumerListener - using default port 5094
INFO - DoorsConsumerHandler - ConsumerHandler started.
INFO - ServiceUnitLifeCycle - Starting service unit: ToolNetServiceAssembly_DoorsServiceEngine_In
INFO - ServiceUnitLifeCycle - Starting service unit: ToolNetServiceAssembly_Installer
INFO - AutoDeploymentService - Directory: deploy: Finished installation of archive: ToolNetServiceAssembly.zip

During startup of Apache ServiceMix, the JBI environment is set up and the prototype components contained in
the ServiceAssembly are started in several steps:

Upon launch, the core ServiceMix configuration is applied, which contains internal settings for Spring
configuration, the classpath, JBI container configuration, as well as security and network settings
After ServiceMix configured itself, it starts up the JBI container, which includes the message flow to be
used (e.g. ActiveMQ, SEDA or JMS), and initializes the management infrastructure required by the JBI
specification, including MBeans for managing the JBI container itself and for installing and starting addi-
tional components
When the JMX MBeans provided by ServiceMix are set up, the connector URL is published. Using a JMX
management console, users can now connect to ServiceMix using this URL. This is the intended way to
interact with the prototype in the use case described in Section 6.4.2.5.
ServiceMix supports restoring the state of a previous run, e.g., after a network failure, Adapter problem
or even a server crash. Upon restart, ServiceMix will resend any Messages still in the queue, depending
on the message flow used.

Running the Prototype 143

143

After internal and ChainBuilder components (not shown) have been started, the custom BindingCom-
ponent (ToolNet-BC-Doors) and ServiceEngine (ToolNet-SE-Doors) are installed, started and ini-
tialized, as specified in the JBI deployment life cycle in [JBI], section 6.2.4 “Deployment Life Cycle”.
Lastly, the ServiceAssembly that realizes the prototype is started and the contained ServiceUnits are initial-
ized and started, providing the custom components set up previously with custom configuration as required
by the use case (see Section 6.4.4.2)
When the components have finished internal startup procedures such as registering the JBI MessageEnd-
point and setting up JMX MBeans, the custom Consumer Thread starts its work by registering a Server-
Socket and listening for input from DOORS.

At this point, interaction with DOORS is possible by using the ToolNet extensions inside DOORS, or by invoking
MBean operations on the custom prototype MBeans using JConsole, as explained in Section 6.4.2.4. A graphical
representation of the deployed prototype ServiceAssembly when viewed with JConsole is shown in Figure 6.10
below:

Figure 6.10: Deployment view of the ToolNetServiceAssembly in JConsole

For a full walkthrough accompanied with screenshots showing the complete use case, please refer to Section B.3.

144

144

145

Chapter 7. Critical Evaluation of the
Prototype

“When I am working on a problem I never think about beauty I think only of how to solve the problem. But
when I have finished, if the solution is not beautiful, I know it is wrong.”

--R. Buckminster Fuller

7.1. Problems Solved
JBI provides a standards-based, service-oriented integration platform that fits well into the tool integration do-
main, as has been examined in Section 4.3.2. Although being a Java standard for enterprise integration, JBI
does not assume a homogeneous Java landscape, but embraces heterogeneity in systems and software, as often
encountered in the enterprise domain and also in typical tool integration scenarios.

By consequently applying JBI concepts throughout the solution, many problems of existing tool integration
approaches, esp. ToolNet, have been successfully solved: Where [Mauritz2005:12] identified the demand for a
common plugin-standard for integrating tools, stating that “Currently there is no standard available for supporting
general ‘plugins - tools interaction’ and consequently these plug-ins are fully dependent on specific tools.”, and
suggesting JCA as a possible solution, there is now a standardized way beyond JCA, which was found to bee
too limiting in Section 4.2.2.2: in JBI, BindingComponents and ServiceEngines provide a rich foundation for a
standards based, dynamic and extensible tool integration framework, which has been shown in the prototype.

BindingComponents have proven to be a good choice for integrating external tools in a loosely coupled, ser-
vice-oriented way, using uniform WSDL descriptions to expose tool functionality as services and abstracting
from tool-specific interfaces and protocols. Where necessary, BindingComponents allow the usage of native li-
braries, e.g., using JNA, in a cross-platform way, as shown in the prototype with the DoorsBindingComponent
(see Section 6.4.2.1). The use of JNA in favor of directly using the low-level JNI layer has proven to be very
straightforward and efficient, as no header code has to be generated (and maintained), but only a Java interface
that corresponds to the native functionality. This results in a lightweight, homogeneous Adapter design that al-
lows for efficient integration of tools that provide a library interface.

The Adapter-based approach follows the design principle of “integration by encapsulation”, as proposed in [Gau-
tier1995] and is also identified as an enterprise integration pattern, the Channel Adapter, in [EIP:127].

For higher-level integration above the protocol layer, which was realized with a custom BindingComponent,
ServiceEngines have been successfully used to interact with tools, e.g., using scripting to integrate DOORS in
the prototype. While the prototype does not support configuration of scripting commands, a full solution could
use ServiceUnits for deploying updated scripts to accommodate changes in tools, e.g., after an update to a new
version.

While the JBI standard and associated API is complex, it is based on open service-oriented standards and is very
consistent, thus easier to work with than proprietary APIs like ToolNet, where much knowledge of the framework
internals is necessary for building Adapters or adding new Services. Recent advances in tool support will make
it easier to work with JBI as a component developer and provide more support during all stages of integration
development – something which is impossible to achieve with custom built solutions.

The JBI message bus (NormalizedMessageRouter) represents a major evolution in handling communication
among integrated components, as it standardizes the core concepts of a message bus (c.f. [EIP:137]), but leaves
enough room for implementations to choose the concrete topology for realizing the messaging backbone: from

146 Critical Evaluation of the Prototype

146

a central enterprise service bus to distributed buses, or more agile peer-to-peer topologies like Grids (see Sec-
tion 8.5). Existing tool integration solutions are often limited to CORBA middleware, custom solutions, or direct
web service-integration, which has been shown to be insufficient in Section 3.3.3.1.

Using normalized messages (c.f. [EIP:352]) provided a convenient way to handle functional and data integration,
e.g., for sending commands and associated parameters to integrated tools, and for receiving requests together
with data from tools. Command scripts, requests and data were packaged inside the message's XML DOM and
the actual tool communication was handled transparently by a custom BindingComponent. Because translation
between tool-specific formats and the normalized XML message format is handled by the BindingComponent,
tools are loosely coupled to the integration backbone, so other components can simply operate on the XML
message, handling data they are interested in (e.g., metadata or attachments).

By consequently using a common, standardized and widely adopted service definition format, WSDL, tools
are exposed as a collection of services, which greatly simplifies integration with existing services and allows
transparent combination with web services, e.g., for accessing a shared repository (see also Section 8.6 that shows
some advanced possibilities that result from this design). WSDL is perfectly aligned with JBI's separation of
protocol level vs. application level integration, which greatly supported the goals of the ToolNet architecture
redesign, and also helped building the prototype because tooling is very similar to common SOA tools based
on web service technologies.

The use of ChainBuilderIDE for developing the prototype and the bundled Apache ServiceMix JBI runtime
provided a rich and well integrated solution, both during design time and runtime. The visual integration designer
in the ChainBuilderIDE provided a straightforward way to construct the demo scenario (see also Appendix B)
including custom components, which were directly available from within the designer. Automatic generation
of JBI skeleton code and associated configuration helped in coping with the complexities in developing custom
JBI components.

Finally, JMX proved to be a simple but effective way for adding a user interface to the tool integration prototype,
with the positive side effect of enabling standards-based manageability of integrated tools. The management
interface is not bound to a particular platform or UI toolkit, which is a current limitation of the RCP-based
ToolNet Desktop1, and can be accessed using a web interface or any JMX-compliant client console, such as
MX4J or JConsole2. Both can be extended with custom tabs and views, allowing for advanced interfaces tailored
to tool integration needs. For end users, the tool's native interface, enriched through Tool Adapters, remains the
primary focus of interaction, so the possibilities for extension of current JMX consoles should provide sufficient
ways for exposing the integration framework's functionality to users and administrators in a suitable form (e.g.,
for Service-, Adapter- or Session management).

7.2. Comparing the Prototype to ToolNet
An implementation specific comparison of the two approaches was given in Chapter 6. Table 7.1 shows a high-
level comparison of both solutions, illustrating the key characteristics of both solutions in a compact comparison
matrix:

Aspect \Solution ToolNet/Eclipse Comment ToolNet/JBI Comment

Architecture plugin-based
(Eclipse/OSGi)

partially stan-
dards-based

fully service-orient-
ed

fully stan-
dards-based

1Although the ToolNet Desktop is based on a standard UI toolkit, RCP, it is still limited to a specific client technology; only recently, RCP
has moved beyond the desktop with eRCP and RAP, but does not provide any management functionality.
2the recently released VisualVM [http://marxsoftware.blogspot.com/2008/08/from-jconsole-to-visualvm.html] allows even broader cus-
tomization and is fully based on plugins, see the migration guide From JConsole to VisualVM [http://marxsoftware.blogspot.com/2008/08/
from-jconsole-to-visualvm.html]

http://marxsoftware.blogspot.com/2008/08/from-jconsole-to-visualvm.html
http://marxsoftware.blogspot.com/2008/08/from-jconsole-to-visualvm.html
http://marxsoftware.blogspot.com/2008/08/from-jconsole-to-visualvm.html
http://marxsoftware.blogspot.com/2008/08/from-jconsole-to-visualvm.html
http://marxsoftware.blogspot.com/2008/08/from-jconsole-to-visualvm.html

Comparing the Prototype to ToolNet 147

147

Aspect \Solution ToolNet/Eclipse Comment ToolNet/JBI Comment

Event-Driven partially some support for
Events, but not very
scalable/advanced

full support for EDA
including complex
event processing

various Event Pro-
cessors available:
IEP, SEDA, …

API custom API low reusabili-
ty, much manual
(re)coding needed

JBI defines a stan-
dard infrastruc-
ture with Binding-
Components, Ser-
viceEngines and a
message router

loose coupling, clean
separation of con-
cerns, high reuse,
rich component
community and mar-
ket

Language Platform Java fully Java-based,
not easy to integrate
non-Java Adapters
or scripting

Java/Web services interoperates
through Web Ser-
vices, WSIT, Script-
ing-ServiceEngine,
JSR-223

Data Integration API-based, via cus-
tom Links/Rela-
tion-Service

Adapters map Tool-
Objects to Tool-
Net-Objects, stores
Links in database;
Object-mapping not
always possible, no
updates, custom Ob-
ject-definitions

high-level data in-
tegration using JBI
ServiceEngines,
low-level data inte-
gration through JBI
BindingComponents

clean separation be-
tween semantic layer
and protocol layer,
abstracts from data
sources, can reuse
many JBI compo-
nents for conver-
sion/mappinga

External Bindings proprietary fully Tool-dependent
and custom built into
Adapters

existing or custom
BindingComponents
or JCA Adapters;
some external JBI
connectors available
(e.g., SAP, CICS,
CORBA, JCA)

standardized integra-
tion of external sys-
tems, custom exten-
sions added as need-
ed (yields high reuse
and clean design)

Messaging proprietary ToolNet backbone JBI NormalizedMes-
sageRouter

different implemen-
tations available
(ActiveMQ, JMS,
…) for different in-
teraction styles (sim-
ple, SEDA,…)

Adapter Design heavyweight,
Adapter is tight-
ly-coupled to the in-
tegration framework

weak separation of
ToolSide and Tool-
NetSide-Adapter,
much knowledge
about the frame-
work internals, man-
ual support code in
Adapters

lightweight, loosely
coupled, embraces
SOA: WSDL inter-
faces, XML message
format, integration
of web standards

location transparen-
cy and separation
of business logic
(in ServiceEngines)
from transport-log-
ic (BindingCom-
ponents); external
functionality trans-
parently exposed as
Services

148 Critical Evaluation of the Prototype

148

Aspect \Solution ToolNet/Eclipse Comment ToolNet/JBI Comment

Interface Design custom API with
some Web-Service
support

API-centric, not re-
ally service-oriented

uses WSDL as the
standard component
interface

not limited to Web-
Services, but uses
WSDL as a common
interface description
schema for all com-
ponents (also exter-
nal systems)

Implementation closed/mixed using open source or
closed/custom APIs
as available

open specification
using open standards

fully based on SOA
standards and con-
cepts, Adapters may
need to include pro-
prietary code

Reuse only with access to
Adapter source

not much reuse of
Adapter(-service)s,
service endpoints
called directly

high reuse of Ser-
vices and Compo-
nents

Adapters can trans-
parently reuse other
Adapter's services,
components can be
reused (across run-
times)

Relations supported through
custom RelationSer-
vice

user manually de-
fines Relations, are
stored in a database,
Adapter has to sup-
port Linking func-
tionality

not targeted by JBI,
but dynamic lookup
of Services is sup-
ported

could be imple-
mented as a Ser-
viceEngine that ap-
plies the SDO stan-
dardb

User Interface custom Eclipse
RCP-application

needed to define Re-
lations, controlling
Adapters (no lifecy-
cle-management),
accessing the Tools

any JMX-based
management con-
sole; many JBI im-
plementations also
provide a rich web
interface

no special tools
needed, uses exist-
ing tools and tech-
nologies: JMX en-
ables rich manage-
ment access for life-
cycle-management,
Tool and Adapter
control; graphical
and command line
access

Tool Integration semi-transparent Tools have to be
started from within
ToolNet

transparent Tools connected by
Adapter when online

Management Ac-
cess

standalone ToolNet
Desktop, based on
Eclipse RCP

uses proprietary
management access,
cannot be integrat-
ed into existing man-
agement infrastruc-
ture

using JMX extensible, stan-
dards-based manage-
ment architecture,
can be controlled
from any JMX in-
terface (JBI speci-
fies required JMX
MBeans)

Comparing the Prototype to ToolNet 149

149

Aspect \Solution ToolNet/Eclipse Comment ToolNet/JBI Comment

Lifecycle Support simple/static Adapter-states de-
fined in API, can be
controlled via the
Desktop

fully standardized in
JBI/dynamic

standard component
lifecycle, exposed
for management ac-
cess

Development Sup-
port

custom API complex API with
many external de-
pendencies, few doc-
umentation

open, stan-
dards-based API

API well document-
ed but complex, not
easy to write cus-
tom components but
source code avail-
able

Runtime availabili-
ty

ToolNet (single) only one runtime
available (integrated
solution)

any JBI-compliant
runtime environment

e.g., ServiceMix,
OpenESB, PEtALS,
Mule or commercial

Integration Into
Existing Systems

none (static, precom-
piled package)

RCP-application,
custom server and
custom Adapters,
static integration so-
lution

standalone, in JEE
app server, connect-
ed to message queue
(depends on imple-
mentation)

supports complex
and large scale se-
tups

Web-Services Inte-
gration

possible through
Adapters

Web-Services not
supported native-
ly, but used in some
Adapters

native support for
web services (WS-
DL used as service
interface in JBI)

web services can be
integrated directly

Dynamic Deploy-
ment

no static, precompiled
package

yes, fully dynamic dynamic lifecycle
model in JBI sup-
ports hot deploy-
ment of Adapters
and dynamic recon-
figuration at runtime

Configuration static/custom some Adapters of-
fer configuration us-
ing Property-files,
no support for con-
figuration of tool-re-
lationships

dynamic/standard-
ized (XML-configu-
ration and container
model)

concept of compos-
ite applications (Ser-
viceAssemblies),
configured via Ser-
viceUnits, supported
at runtime

Workflow Support none only custom-cod-
ed cooperation of
Adapters

standards-based
(BPEL Ser-
viceEngine, dynam-
ic integration lan-
guages)

e.g., ApacheCamel,
Rules-engines (see
Section 8.3)

Tooling none no integration de-
signer or other edi-
tors available, only
XML editor or Java
IDE

any editor that sup-
ports the JBI-model
and XSL

e.g., Eclipse STP,
ChainBuilderIDE,
NetBeans, FUSE, …

Distribution explicit not transparent, via
Proxy interfaces

implicit; support de-
pends on JBI imple-

transparent, often re-
alized with JMS

150 Critical Evaluation of the Prototype

150

Aspect \Solution ToolNet/Eclipse Comment ToolNet/JBI Comment
mentation (not stan-
dardized)

Routing partially/custom some support, but
not transparent, has
to be hard coded into
Adapter

full routing support
(part of the specifi-
cation, as one of the
core NMR features)

various routing en-
gines available, al-
so support for DSLs
(ApacheCamel,
IFLc)

asee also Section 8.2
bsee Section 8.2
csee also Section 8.3

Table 7.1: Comparison of the proposed solution with ToolNet

The comparison clearly shows the advantages of the new approach, being standards based and fully based on
service-oriented integration using messaging and common WSDL-based interfaces instead of a proprietary API
with the need for inheritance and direct method-invocation in Adapters. However, with JBI being a relatively
young standard that has never been used for tool integration before, and service-oriented integration still being an
emerging field, the new approach is not without its own challenges and limitations, esp. for Adapter developers,
which will be examined in the next section.

7.3. Remaining Challenges
Everything is a compromise. That's what you learn. We're always trading off content and date and resources.

Nothing we do is ever perfect, because if it was perfect, it would be late, and being late would make it not per-
fect.

--Bill Shannon, in an interview on Java EE 6

Although JBI 1.0 was released in August 2005, it is only now being adopted by integration vendors and develop-
ers, which provide the needed development and tool support. E.g., ChainbuilderIDE was only released in August
2007, 2 years after the specification had been released. JBI has not yet been used outside the enterprise integration
domain, even less for a general approach to desktop tool integration. Also JNA, used for communicating with a
C library interface in the prototype, is still largely unknown, although being used in some projects successfully
and aleady at release 3.0.

Only Apache ServiceMix, the JBI runtime, is already a widely adopted and proven product at version 3.2 (with a
release of version 4.0 being imminent). Because it builds on existing, reliable components such as the ActiveMQ
messaging backbone, it served as the first reference implementation of the JBI specification and is widely used
in various integration products such as IONA FUSE.

Because BindingComponents communicate directly with the tool to be integrated, they are an integral part of
the integration framework and directly affect the rest of the system. So, a certain level of quality, stability and
performance has to be ensured so as not to compromise other components and subsequently degrading the user
experience or even affecting runtime stability. For example, the DOORS API, by default, issues an exit()-
call when an error is encountered. This resulted the prototype to crash unexpectedly, as the ServiceMix runtime
was simply shut down with an error that did not indicate the origin at first, being the DOORS library itself. After
some investigation, it showed that the API provides a function, api_exitOnError(bool), for controlling
the behaviour in error conditions. By disabling this questionable automatic, the problem was solved and errors
could be caught by the Adapter accordingly. It is therefore advisable to perform thorough testing of Binding-
Components before including them into a production-level implementation of the proposed solution, as errors or
instability in tool interfaces are directly propagated to the Adapter (BindingComponent) that integrates the tool.
The following sections shortly cover development issues and another important aspect, quality of service.

Development Complexity and Tool Support 151

151

7.3.1. Development Complexity and Tool Support
As mentioned before, a major challenge in developing with JBI was the complexity of the API, resulting in
a notable initial development cost. The lack of tool and developer support for building custom components
adds even more to the initial complexity when starting with JBI development. JBI 1.0 and most tool support is
targeted at enterprise integration designers that wish to access disparate services from within business processes,
using Adapters available in a prepackaged JBI solution. As a result, most examples and documentation focus on
integrating web services, XML transformation, event routing and business process management using existing
JBI components.

On the specification level, JBI defines an API for running custom components but not for their implementation,
which results in much hand written code although being based on common patterns. While there is source code
available for several BindingComponents and ServiceEngines, it cannot be easily reused and often depends on
particular API extensions, e.g. ServiceMix's JBI Component Framework (JCF)3 or ChainBuilder's Common Ser-
vices Layer (CCSL, c.f. [CBESB:44]), that are often not fully JBI compliant (i.e. do not run unmodified in an-
other JBI implementation or introduce additional dependencies like custom libraries)4. This was not acceptable
for a prototype that should demonstrate a general JBI-based approach to tool integration. A complete example
for implementing components with the JBI API is given in [JBIDev], which was used as a basis for the custom
component but had to be adapted for the selected ChainBuilder IDE and API.

Another challenging aspect of JBI development is messaging: parsing and creating messages is not trivial, as
the XML DOM has to be inspected and manipulated for handling custom message parts; there are no standard
methods defined for operating on the message at a higher level, above the data level. Also the construction of
a MessageExchange has some pitfalls, which were partially due to the ChainBuilder API, but also due to the
complexity of setting up a MessageExchange and implementing required callback methods as expected by the
JBI runtime.

Also, depending on the JBI runtime used, debugging custom components can be difficult, as relevant logging
information for runtime diagnosis is not always available in the desired detail, e.g., for tracing the message
flow through the NormalizedMessageRouter. A simulation of the composite application without involving a
real runtime would be very helpful and speed up development, but is not yet available.5As a result, developing
the BindingComponent or Tool Adapter in general will be the most involving part when realizing the proposed
solution on a greater scale6. Also, because of the project scope and the complexity with messaging and handling
endpoint resolution, the current prototype does not fully explore the dynamic configuration and query possibilities
in JBI.

The API complexity and related problems are also identified by Guillaume Nodet, a ServiceMix developer and
principal engineer at IONA (now Progress), in his foreword to [Rademakers2008]: “JBI 1.0 has some shortcom-
ings: the JBI packaging and classloader architecture, the mandatory use of XML everywhere in the bus, and the
fact that writing a JBI component isn’t easy.”.7 For the major target group of integration designers however,
these shortcomings are acceptable since they do not have to implement custom components and message flows,
but can rely on third party support. In the context of this thesis, these challenges were outweighed by the unique
service-oriented approach to integration, which allowed to realize a high-level standards based tool integration
solution that builds on existing and proven APIs and implementations.

3see the web page Apache JBI Component Framework [http://servicemix.apache.org/jbi-component-framework.html]
4PEtALS, according to the project homepage, offers API extensions that do not break JBI compatibility, but had no tool support when the
prototype was developed.
5an Interceptor-based approach, the Message Tracking Aspect Interceptor [http://wiki.open-esb.java.net/Wiki.jsp?
page=ProjectFujiAspectInterceptorsOverview], is currently underway for the next version of OpenESB, implementing JBI 2.0 Interceptors,
see also Section 8.1
6This is also noted in the ServiceMix FAQ for Component Developers [http://servicemix.apache.org/should-i-create-my-own-jbi-
components.html]
7see also the blog article fun facts to know and tell about JBI [http://coverclock.blogspot.com/2007/01/fun-facts-to-known-and-tell-java.html]

http://servicemix.apache.org/jbi-component-framework.html
http://servicemix.apache.org/jbi-component-framework.html
http://wiki.open-esb.java.net/Wiki.jsp?page=ProjectFujiAspectInterceptorsOverview
http://wiki.open-esb.java.net/Wiki.jsp?page=ProjectFujiAspectInterceptorsOverview
http://wiki.open-esb.java.net/Wiki.jsp?page=ProjectFujiAspectInterceptorsOverview
http://servicemix.apache.org/should-i-create-my-own-jbi-components.html
http://servicemix.apache.org/should-i-create-my-own-jbi-components.html
http://servicemix.apache.org/should-i-create-my-own-jbi-components.html
http://coverclock.blogspot.com/2007/01/fun-facts-to-known-and-tell-java.html
http://coverclock.blogspot.com/2007/01/fun-facts-to-known-and-tell-java.html

152 Critical Evaluation of the Prototype

152

It is expected that most of the shortcomings outlined here will be addressed in JBI 2.0 and with currently emerg-
ing second generation tool support, e.g., Eclipse ServiceToolsPlaform (introduced in Section 3.2.4.2), which
integrates several integration standards, including SCA and JBI, and common enterprise integration patterns in
a unified visual editor with design and runtime development support. In the meantime, documentation and gen-
eral developer support through communities and Wikis is getting better, and several JBI implementations are
preparing for the next major release, such as the imminent release of ServiceMix 4.0 or ChainBuilder 2.0.

7.3.2. Ensuring Quality of Service

The requirements in Section 4.1 include reliability, scalability and security, which was not covered in the previous
sections, as it was out of scope for the prototype and is not fully specified by JBI. However, the selected runtime,
Apache ServiceMix, and the underlying message queue [ActiveMQ], support many advanced requirements not
fully addressed by the JBI specification, but necessary for large-scale deployments and for a production quality
tool integration solution.

The JBI specification supports manageability through the JMX standard (see Section 4.2.1), allowing lifecycle
management and monitoring of components, but also monitoring of the runtime, including used CPU time and
memory usage down to thread-level (c.f. [Rademakers2008:386]). By adding custom MBeans for ToolAdapters
(i.e. BindingComponents) and higher-level integration services (i.e. ServiceEngines), additional parameters can
be exposed for diagnosis and control, such as response time of tool interactions, or the possibility to start and
stop Tools, Adapters and Services from a central console.

[JBI:207-214] also proposes a way to handle reliable transactions, ensuring Quality of Service. The specification
identifies the following key parameters, which are accompanied with possible solutions using the selected JBI
implementation, Apache ServiceMix:

• reliability: messages have to be delivered with a certain level of reliability, depending on the solution. For
tool integration, the requirement depends on the Service invoked. While a lost SHOW_OBJECT request would
remain almost unnoticed, users would not be forgiving when a SAVE request was not transmitted. ServiceMix
offers reliable messaging through the ActiveMQ message queue implementation, which also supports cluster-
ing, persistence, and distributed failover (see below)

• transactions: composite applications or services may need to share context information when exchanging
messages, which is usually handled by using transactions. JBI provides the basis for transactions by defin-
ing four MessageExchangePatterns (MEPs), but leaves the implementation of related transactional context to
NMR implementors. ServiceMix (see the project's page on ServiceMix Transactions) offers support for syn-
chronous and asynchronous transactions by using the SEDA or JCA flow, respectively. Figure 7.1 illustrates
a synchronous transaction using a SEDA message flow.

JBI 1.0 does not address distributed transactions, as at that time, it was found that “standards for such trans-
actions are not yet mature enough to be incorporated by JBI directly” [JBI:208]. As mentioned above, Ser-
viceMix does support distributed transactions using ActiveMQ.

Ensuring Quality of Service 153

153

(from [ServiceMix], page Transactions)
Figure 7.1: Transactions support in Apache ServiceMix

• persistence: in the context of JBI, persistence is defined as “the ability to persist the state of a Message Ex-
change at [a] defined point during the Message Exchange lifetime.”. Persistence of message exchanges is only
indirectly supported in ServiceMix to realize recoverability, see below.

• recoverability: in the JBI specification, recoverability is defined as “the ability of an active Message Exchange
to be recovered during restart recovery to some consistent point in its lifetime.”. The underlying message
queue in ServiceMix, which is ActiveMQ by default, keeps messages in a message store (or a JDBC-enabled
database) until they have been successfully delivered to the target (see the ActiveMQ persistence page for more
information). When the message cannot be sent to its destination because a component is not reachable within
the timeout period, or the component or runtime crashes, the message exchange is restored as soon as the target
component becomes available again, or when the runtime is restarted. This has been tested successfully in the
prototype, when the BindingComponent caused a runtime crash.

• secrecy: this aspect ensures “protection of information from being disclosed to outside parties”, and is left
to JBI implementations as it only affects storage of information outside the NMR. As noted in Section 4.3.2,
ServiceMix supports core security concepts such as authentication, authorization and message encryption,
which makes the proposed solution applicable to scenarios where confidential data is shared between tools
(e.g., licensing information, login information for tools, company confidential information), even in distributed
settings. [Rademakers2008:272] explains how to implement security with ServiceMix, using the WS-Security
web standard.

To summarize, most of the manageability and quality of service-features can be satisfied with Apache Ser-
viceMix, including support for high availability and clustering8.

Sometimes however, more formal processes need to be satisfied, such as Service Level Agreements (SLAs).
[Glassbox] is an open source solution that adds support for service-level management and monitoring, integrating
with JMX and utilizing aspect-oriented programming concepts9. The Glassbox container is installed into the
application server's directory and runs in the same JVM as the components to be monitored. Using aspect-oriented
programming (AOP), all transactions are monitored for several fault patterns, which can be adjusted to monitor
SLA violations, as shown in Figure 7.2 below:

8see the ServiceMix page on Clustering [http://servicemix.apache.org/clustering.html]
9see the article Glassbox: How it works [http://www.glassbox.com/glassbox/HowItWorks.html]

http://servicemix.apache.org/clustering.html
http://servicemix.apache.org/clustering.html
http://www.glassbox.com/glassbox/HowItWorks.html
http://www.glassbox.com/glassbox/HowItWorks.html

154 Critical Evaluation of the Prototype

154

(from [Glassbox])
Figure 7.2: Service Monitoring with Glassbox

ChainBuilderESB [CBESB:33] supports QoS monitoring and SLA enforcement by monitoring for user-defin-
able alert conditions (e.g., resonse time or error count), logging alerts to a database, and resending messages as
necessary10.

Also, external monitoring with existing service administration systems such as Nagios is possible11, other man-
agement consoles such as HP OpenView or web based solutions such as Zenoss are supported via the normal
JMX management layer. In comparison to tightly integrated solutions such as Glassbox, these systems provide
only coarse-grained monitoring, as they have no access to internal information about the JBI runtime or the JVM
itself, thus they can only track defects explicitly exposed for management by JBI components.

On a more general level, WSLA [Keller2003] is a framework developed by IBM research, which specifies a
language based on XML schema and an associated runtime for monitoring service-level agreements in a web
services environment. The framework is applied in [Fung2005], who extends BPEL4WS (which has now become
WS-BPEL) with attributes to support QoS metrics, and integrates the standard with WSLA. [Nepal2008] adds
extensions to WSLA for coping with collaboration among multiple parties, and proposes WSLA+ as a result.

Related concepts such as business activity monitoring are supported through Apache Camel, which is shortly
introduced in Section 8.3.

7.4. A Migration Scenario for ToolNet
A migration concept for the current ToolNet implementation was defined as a goal of the prototype in Sec-
tion 6.2.5. A conceptual mapping between the existing DoorsAdapter and the new BindingComponent used in
the prototype has been provided in Table 6.2 before. A general comparison of the concepts follows inTable 7.2
below:

10see also the blog entry by Eric Lu, CTO Bostech Corporation, on Why choose ChainBuilder ESB over other Open Source ESBs? [http://
chainforge.net/pLog/index.php?op=ViewArticle&articleId=21&blogId=1]
11see the article ActiveMQ stomp end to end test for Nagios [http://just-another.net/2008/09/03/activemq-stomp-end-end-test-nagios/]

http://chainforge.net/pLog/index.php?op=ViewArticle&articleId=21&blogId=1
http://chainforge.net/pLog/index.php?op=ViewArticle&articleId=21&blogId=1
http://chainforge.net/pLog/index.php?op=ViewArticle&articleId=21&blogId=1
http://just-another.net/2008/09/03/activemq-stomp-end-end-test-nagios/
http://just-another.net/2008/09/03/activemq-stomp-end-end-test-nagios/

A Migration Scenario for ToolNet 155

155

ToolNet ToolNet/JBI Migration Strategy

ToolSideAdapter (integration with
Tool interface)

— (no modification required) Tool-side extensions can be reused
as is

ToolSideAdapter (connection to
ToolNet)

BindingComponent has to be retrofitted into a JBI Bind-
ingComponent, Tool-side commu-
nication code can be reused

ToolNet Services ServiceEngines have to be transformed into Ser-
viceEngines and exposed via WSDL

API calls normalized messages JBI is message-based, not method-
based: API has to be redesigned to
be service-oriented

Extension Points (OSGi/Eclipse) Endpoints (Bindings) as part of component migration

ToolNet backbone — (obsoleted by NormalizedMes-
sageRouter)

as soon as Adapters are migrated,
the ToolNet backbone is no longer
needed; until then, a BindingCom-
ponent can be used as a bridge

Table 7.2: Mapping ToolNet Concepts to JBI Counterparts

As mentioned in Section 5.3.7, ToolNet already provides WSDL definitions for some of the framework com-
ponents and for Adapters that integrate with Web services or with Tools that provide a WSDL interface (e.g.
ToolNet's Word 2003 Adapter uses web service integration). As these endpoint definitions are already based on
WSDL, they could be refactored with relative little effort into JBI ServiceEngines (in case of ToolNet Services)
or BindingComponents (for Adapters).

For a smooth migration path, or If some of the existing ToolNet components cannot or should not be changed,
the two message buses could be bridged and two new components would realize API-level translation of service
calls, one on the ToolNet side and the other on the JBI side, as illustrated in Figure 7.3, using familiar enterprise
integration pattern icons from [EIP]: a BindingComponent connects the existing ToolNet backbone with the JBI
NMR by communicating with a corresponding Adapter on the ToolNet side, following the message bridge-pat-
tern [EIP:133]. The BindingComponent performs protocol-level translation between JBI's normalized messages
and ToolNet service requests, notification events or results returned by ToolNet Adapters. A new ToolNet Ser-
viceEngine performs API-level integration between the new Adapters on the JBI side and existing Adapters or
Services on the ToolNet side, acting as a mediator that propagates relevant service calls to the ToolNet backbone
and forwards ToolNet service calls to corresponding JBI Adapters. This would allow transparently calling ex-
isting ToolNet Services or Adapters from the new solution. On the ToolNet side, a new Adapter is introduced
that wraps ToolNet service requests and events into remote calls to the new BindingComponent on the JBI side,
acting as a mediator in the same manner as the JBI SE, thus allowing ToolNet Services and other Adapters to
access JBI Services in a transparent way.

156 Critical Evaluation of the Prototype

156

Integrating ToolNet with the new JBI solution: the desired integration between existing and new Adapters is
indicated by the dashed horizontal line on the top, while the physical integration is shown below
Figure 7.3: Integrating existing ToolNet components with the new solution

Subsequently, core ToolNet services and functionality could be translated into the new architecture: ToolLinks
used in ToolNet for linking data elements in tool models could be realized by a RelationServiceEngine that
provides Services for managing and querying relations between tools, in the same way as done by the current
ToolNet RelationService, but with the added advantage of location and protocol transparency, which means that
also web services or other service-enabled systems could easily be extended with relational capabilities.

In a similar manner, Project(Session)s used for managing project-specific collaborative workflows could be
realized by a ProjectServiceEngine, with the added benefit that Sessions could be easily made persistent and
restored in a subsequent session. A possible way to achieve this would be to implement custom MBean.load()
and save() methods that are invoked on startup and shutdown of the component, respectively. In the save()
method, Sessions are persisted to a database, and on load(), the Session data is restored and the Session is
initialized accordingly. This happens transparently inside the ProjectServiceEngine, so there is no need for other
components to cater for Session initialization or storage.

Lastly, the ToolNet Desktop could be replaced by JConsole, as noted earlier in Section 7.1. All ToolNet/JBI
components and their custom attributes and methods are automatically exposed for management by any JBI-
compliant runtime, such as Apache ServiceMix. Custom dashboards or other UI (e.g., the relation viewer) could
be added by implementing suitable plugins, as shown by several examples on the JConsole (now VisualVM)
homepage.

As ToolNet is currently in the process of migrating the underlying component model to OSGi, it is already
aligning with open standards and also with JBI, which will use OSGi as its component model in version 2.0
of the specification. Moving right to JBI now would therefore represent a more effective migration path, since
manual migration to OSGi would not be necessary, and exchanging only the component layer would still lack
the additional high-level advantages and integration facilities of the JBI solution (see also Section 3.2.3.1).

Part III. The Future of Integration:
Outlook and Conclusion

Table of Contents
8. Outlook and Further Work .. 159
9. Conclusion ... 169

The final part provides insights into emerging and future trends in integration, ending with a conclusion that
reflects on the findings in this work.

158

159

Chapter 8. Outlook and Further Work
“There's a better way to do it. Find it.”

--Thomas A. Edison

Integration is a vast domain, and only a small part could been shown in this work and in the prototype. While
working on this thesis, development has not stopped – JBI implementations and tooling have improved, new
possibilities in integration have emerged and even another integration standard was born, SCA (shortly intro-
duced in Section 4.2.2.3). This chapter will look at emerging integration standards, beginning with the next major
release of JBI, and shortly point out relevant developments not covered in this work, because they were out of
scope for the proposed solution, such as advanced data integration with SDO or dynamic scripting and DSLs for
integration. We will then look at the bigger picture in tool integration, beyond software.

8.1. The Future of JBI
While JBI has been successfully used to realize the proposed solution in a prototype scenario (see Chapter 6),
as analyzed in the previous chapter, several challenges and open issues were identified in Section 7.3, which
is understandable since the standard tries to cover a large and complex field and is only at version 1.0. The
specification acknowledges some room for improvement and provides a look at prospective advances in version
2.0 [JBI:205], including the following key areas, which are shortly examined for applicability to tool integration
and accompanied by examples of current non-standard extensions in JBI implementations that try to fill the gaps
in JBI 1.0:

• J2ME support: An embedded JBI implementation would allow mobile access to integrated tools, e.g., remote
control of repositories or acknowledgment of long-lasting tool operations. No implementations of this kind
are currently available, but several signs indicate the feasibility of embedded JBI, especially since JBI 2.0 will
be based on OSGi, which has its origin in the embedded space.

• custom message exchange patterns: this would allow more complex conversation patterns and could also
be used to integrate human tasks, i.e., activities carried out by people (see Section 8.6 below), but could be
realized alternatively with custom workflows like BPEL processes or using dynamic routing languages (see
next section)

• long-lived message exchanges: currently, message exchange is not optimized for memory footprint, which
could be a problem for long-running message exchanges, which would effect, e.g., long running business
processes or transactions, or long running tool functions that are called synchronously

• persistent message exchanges: persistence on shutdown or failure is already supported by, e.g., Apache Ser-
viceMix, but a standardized way to persist messages and message exchanges would be desirable

• API improvements and advanced support for shared libraries: this would remedy a major point of critique, as
also identified in Section 7.3, and is a prerequisite for efficient and dynamic development of Tool Adapters,
the main component in any tool integration framework

• distribution: this was early identified as an important but missing feature of JBI. Nevertheless, many JBI
implementations already do support distribution, such as Apache ServiceMix or PEtALS. As distribution is
not part of the standard, individual JBI runtimes may chose different ways to implement distribution, making
it impossible to mix runtimes or to rely on distribution when developing components.

• handlers (now called interceptors): these would allow for unobtrusive filtering of messages before they reach
the target component, allowing for dynamically adding functionality as needed in a more aspect-oriented man-

160 Outlook and Further Work

160

ner, without changing the component itself; possible uses include security, auditing and logging, transactions,
compression (useful for long-lived message exchanges above) or policies (see below)

• policy support:: allowing for specification of required and provided capabilities, ensuring Quality of Service
to monitor service-level agreements (introduced in Section 7.3.2)

• security: the specification should require advanced support for security in implementations, reusing existing
standards such as JAAS or SAML.

In the meantime, JBI 2.0 has been approved as JSR-312 [JBI2], but not much public information is yet available
except for a few presentations (e.g., [Walker2007] who was the co-spec lead of JBI 1.0) and informal blog entries.
From these sources, the following main goals for JBI 2.0 can be deduced in addition to the goals outlined above:

• utilization of OSGi as the underlying component model, solving component dependencies, class loading issues
and providing service versioning

• clearer alignment with SCA, standardizing the deployment of SCA artifacts in JBI runtimes

• re-organizing the specification for multiple audiences, e.g., component developers, integration designers, JBI
runtime implementors

• support for POJOs (normal Java objects), easing component development: many runtimes support this but
in a non-standard way, rendering such components incompatible to the JBI specification and limiting reuse
across runtimes

• better runtime and configuration management : extension of the JMX management layer, presumably utilizing
new features in JMX 2.0, and providing an easier installation method for components, perhaps like Maven or
Debian's APT (automatic retrieval and installation of components, including resolving dependencies) – this has
been suggested in [O'Neill2007]; also, Apache ServiceMix provides hot-deployment through the filesystem,
whereas the Spring framework recently introduced a repository for OSGi components [SpringRepository],
which is closer to the APT analogy.

• less web services/WSDL dependency: full dependency on WSDL has proven to be problematic in certain
situations, as the web services metaphor cannot be easily mapped to all systems, and WSDL documents tend
to be complex in structure – an alternative model is proposed in [WSPER2007], which defines a framework
consisting of a metamodel and programming language for developing composite applications, building on
WSDL, SCA and BPEL.

• less message normalization: for improving performance, esp. among closely related components, where the
normalization step could be left out (like it is possible with Mule, see Section 4.4.2.3)

• better support for tooling: with additional hooks from runtimes, support for debugging could be realized, see
also the next point

• diagramming support: similar to how SCA defines a UML model for composite applications [SCAUML].

Some proposed features of JBI 2.0 are already partially supported in upcoming versions of current JBI imple-
mentations, such as [ProjectFuji] (codename of version 3 of OpenESB, the JBI reference implementation), which
is based on OSGi and will support several Interceptors, e.g., for simulation of message exchanges. Apache Ser-
viceMix 4 is already available in milestone 1 and is completely based on an OSGi-based runtime kernel, using
[ApacheFelix] as the underlying OSGi implementation.

In the tooling landscape, Eclipse STP is quickly becoming an integrated meta-modeling tool for service-oriented
integration, providing support for the SCA composite applications and increasingly also JBI, albeit only as a
runtime at the moment. IONA provides design-time support for JBI with the FUSE Integration Designer, which

Future Trends in Data Integration: SDO 161

161

is based on Eclipse STP. Another solution based on Eclipse is ChainBuilderIDE, which will move to version 2.0
soon and was used for the prototype realization. Sun's NetBeans IDE provides excellent integrated tooling support
for JBI development. from design to deployment, but focuses more on the design of composite applications that
reuse existing components. Support for developing custom components is currently being improved (available
with version 6) by providing suitable project types and configuration wizards.

8.2. Future Trends in Data Integration: SDO
According to [SDO2007a], “Service Data Objects (SDO) are designed to simplify and unify the way in which
applications handle data. Using SDO, application programmers can uniformly access and manipulate data from
heterogeneous data sources, including relational databases, XML data sources, Web services, and enterprise
information systems.”

The SDO specification comprises several parts: SDO Core defines an architecture for high-level data access,
abstracting from data sources and representing data objects using disconnected data graphs. Data can be accessed
and manipulated in various ways, including XPath expressions, even when data sources are not available. When
the data source comes online again, data can be synchronized when updating or storing data, including efficient
change propagation across services. A rich metadata API allows to store and query additional properties (even
DataObjects) with DataObjects. The data model is illustrated in Figure 8.1 below:

(from [SDO2007b])
Figure 8.1: SDO's abstract data model

The SDO standard also specifies runtime implementations for all major languages, including Java, C++, PHP
and others (see relevant specifications at [SDO2007a]). With Apache Tuscany [Tuscany2008], an open source
SDO (and SCA) implementation for Java is available.

Accessing and managing data from heterogeneous sources is one of the key problems in tool integration (c.f.
[Gorton2003]), but a closer examination and inclusion into the proposed solution was out of scope for this work.
The SDO specification represents a standards-based effort in data integration that would be very well suited
for tool integration, and the proposed solution could be extended to utilize SDO for rich data integration. As a
case study, Xcalia (see Section 3.3.3.3.2) uses SDO for integrating external data sources. Also, the Virtual Data
Access mentioned in [SDO2007b:10] can be viewed as a standards-based implementation of the Virtual Object
Space (VOS) used in ToolNet (c.f. [Geissler2001]).

Although the SDO specification is often related to the SCA standard, because the two standards align well,
both can be used independently. SDO could be supported in JBI as a ServiceEngine1, although that has not yet

1see the answer Re: Does JBI support SDO [http://osdir.com/ml/java.servicemix.user/2006-06/msg00070.html] from ServiceMix developer
Guillaume Nodet on the ServiceMix mailing list

http://osdir.com/ml/java.servicemix.user/2006-06/msg00070.html
http://osdir.com/ml/java.servicemix.user/2006-06/msg00070.html

162 Outlook and Further Work

162

happened. The development teams of Apache Tuscany and ServiceMix are working together to facilitate reuse
of SCA composites in JBI runtimes, and SDO would also fit this model very well. Tooling for SDO is provided
by [EclipseLink2008] as part of the Eclipse project. EclipseLink is an open source persistence framework based
on SDO and JPA (Java Persistence Architecture, a Java-specific persistence standard), which can be embedded
as a set of OSGi services. This would facilitate inclusion into a JBI 2.0 runtime, which is also based on OSGi
(see previous section), forming a coherent, standards-based integration solution.

To conclude, SDO/Java could be used together with JBI to realize dynamic data integration with support for
incremental updates, consistency and transparent, disconnected synchronization (i.e., when a tool goes offline
and later comes online), and would be worth further investigation for inclusion into a future prototype.

8.3. Scripting and Emerging Integration Languages
In the prototype, only one Adapter has been realized, using the proprietary DOORS scripting language DXL
for invoking tool functions. Other tools may provide a standardized scripting interface using Python, Ruby or
PHP, for which Java bindings or ports exist, e.g. Jython, JRuby or Quercus [Quercus] (or the php/Java bridge
[pjb]), respectively.

As mentioned in Section 3.2.1.2, [JSR223] provides a standard API for integrating scripting languages into Java
applications (part of Java6). The standard is already integrated into JBI implementations as a ServiceEngine, e.g.
[ServiceMixScript2008] or [OpenESBScriptingSE], which makes it possible to call a script in a message flow
and get the return value of the execution for further processing.

The DaVinci VM [JSR292] moves support for scripting languages directly into the virtual machine, resulting in
improved performance and transparency in combining scripting languages with Java. The new VM is currently
developed as part of the OpenJDK in [DaVinciVM2008].

Generally, there is currently a renaissance of dynamic programming or language oriented programming (LOP,
c.f. [Dmitriev2004]), which is realized through domain-specific languages (DSLs), introduced in Section 3.2.2.
This allows for easier and more lightweight service composition and configuration of composite applications than
using conventional, imperative programming languages such as Java. Other advantages include easier support
for tooling and validation of integration solutions.

This programming paradigm may be implemented as a routing engine, such as the open source Apache Camel
[ApacheCamel], which supports classic enterprise integration patterns (see Figure 8.2)2. Camel provides an API
and a Java-based DSL for describing typical enterprise integration scenarios like composite applications in an
ESB.

2see Apache Camel DSL support [http://activemq.apache.org/camel/dsl.html] for an example

http://activemq.apache.org/camel/dsl.html
http://activemq.apache.org/camel/dsl.html

Scripting and Emerging Integration Languages 163

163

(from [Snyder2007])
Figure 8.2: DSL-based routing configuration with ApacheCamel

As part of Project Fuji (OpenESB v3), a more abstract DSL is being developed for specifying the message flow in
a composite application, the Integrated Flow Language (IFL) [IFL2008], which is still under active development
and motivated as thus: “Starting with a rapid, top-down development language, IFL (Integration Flow Language),
developers can quickly and easily generate composite applications using a domain-specific grammar.” (from the
project page). An example is provided in Example 8.1 below:

Example 8.1: Creating a sample composite application with IFL

rss "cnnfeed"
jruby "filter"
xmpp "IM"
file "archive"

route do
 from "cnnfeed"
 to "filter"
 broadcast do
 route to "IM"
 route to "archive"
 end
end

(from [IFL2008])

Spring Integration (see Section 3.2.3.2) provides another way to describe the configuration of integrated appli-
cations, building on the wide-spread Spring XML-schema and the consistent use of dependency injection (ibid.).

For describing more complex runtime logic or for implementing expert systems, rule-based systems like [Drools]
offer an efficient, lightweight approach: Drools allows defining several rules that are evaluated dynamically at
runtime, which is an implementation of the Dynamic Router-pattern [EIP:243]. Separating application logic from
data results in better reusability and facilitates more visual tool support than forcing implementation of hard-
coded, implicit rules in application code.

While these concepts would be an excellent choice for further improving reusability and agility in tool integra-
tion, these languages and frameworks are still rapidly evolving and largely proprietary. Although some imple-
mentations comply to standards like [JSR94], which specifies a common API for rule engines, there is still no
standard for defining a common rules language itself. As a result, many different and overlapping languages are

164 Outlook and Further Work

164

currently available, which are bound to specific implementations, hindering reuse and interoperability. In order to
fill this gap, a W3C working group proposes a standard for a Rules Interchange Format (RIF) in [RIFWG2008],
which is in public review at the time of writing.

8.4. Interoperability with the Non-Java World
Although this work focuses on Java and proposes a Java standard (JBI) for tool integration, this does not mean
the solution is tied to the Java platform and only Java Adapters or systems can be integrated. The choice of Java
and JBI were in part motivated by the goals set out for the ToolNet redesign, with ToolNet being implemented in
Java. This made JBI a good fit and is also an advantage for a possible migration (see Section 7.4). Also, the Java
world provides many open source solutions that could be used for realizing the proposed solution, and there is
no comparable standard available for other platforms such as .NET. The only alternative is the language-neutral
SCA standard, but also there, the Java implementation is currently the most mature and widely used.

For client-side integration of proprietary tool interfaces, JNA has been successfully used from within a custom
BindingComponent, as shown in Section 6.2.4. This makes it easy to bridge from Java to native or legacy lan-
guages, as long as a library interface is provided. When a .NET-based client interface is available, the commer-
cial solution JNBridgePro [JNBridgePro2008] provides tooling (for Eclipse, VisualStudio or stand-alone) and
code generation for transparently communicating with .NET applications from within Java applications and vice
versa. After selecting the classes that need to be accessed in the target application, JNBridgePro automatically
generates relevant proxies that can be used in the client application. This approach is comparable to JNA but
works at a more abstract level and also provides automation and visual tooling. In a similar way, Codemesh
[Codemesh2006] provides solutions for interoperability with .NET (through JuggerNET), C/C++ (JunC++ion),
and CORBA, and also allows C/C++ and .NET clients to access JMS message queues (through JMS Courier).

Message-based integration is still a viable solution for cross-platform interoperability, when distributed integra-
tion is needed but service-oriented integration is not applicable. In addition to the commercial solutions men-
tioned before, the ActiveMQ message queue (which is also used in ServiceMix) also supports clients written in
other languages and platforms, such as .NET3

. On the server side, Sun is working together with Microsoft to ensure web services interoperability of second
generation Web Services, under the umbrella of the Web Services Interoperability Technologies [WSIT], a set
of Java integration technologies that “enable interoperability between the Java platform and Windows Commu-
nication Foundation (WCF) (aka Indigo).” (from the project page). On the Java side, the Metro stack implements
several of the WS-* standards (introduced in Section 3.3.7.2), whereas on the Windows side, .NET's WCF per-
forms this role. WSIT also conforms to the WS-I standards, ensuring high-level web service interoperability. To
use WSIT functionality, no runtime API and hence no code modification is required, but only a configuration
file which can be automatically generated by IDEs like NetBeans.

WSIT is an example for service-oriented integration of heterogeneous platforms (using web services). While
targeted at web service-integration, WSIT can also be used for tool integration on the desktop, as shown in
[Carr2007], where MS Excel is connected to a JEE web service to communicate with a backend storage system.
[Neward2007] provides a thorough overview of .NET and Java interoperability, including sample code and more
details on the use case involving client integration with Microsoft Excel 2007.

8.5. REST and Resource Oriented Architecture
A tool integration framework should introduce only a thin, lightweight layer that provides dynamic, ad hoc
combination of tools and facilitates rich communication among integrated tools. Although JBI is very scalable

3see the page ActiveMQ Cross-Language Clients [http://activemq.apache.org/cross-language-clients.html] and the article Messaging
with .NET and ActiveMQ [http://remark.wordpress.com/articles/messaging-with-net-and-activemq/] for an example

http://activemq.apache.org/cross-language-clients.html
http://activemq.apache.org/cross-language-clients.html
http://remark.wordpress.com/articles/messaging-with-net-and-activemq/
http://remark.wordpress.com/articles/messaging-with-net-and-activemq/
http://remark.wordpress.com/articles/messaging-with-net-and-activemq/

REST and Resource Oriented Architecture 165

165

(see Section 8.1 above), a full service-oriented software stack often introduces some overhead, resulting in less
transparent operation and degraded user experience.

A new paradigm is currently emerging, resource oriented architecture (or web oriented architecture (WOA),
resource oriented computing (ROC)), where the distinction between services and data sources is blurred, allowing
a uniform and direct access of mixed resources, as common in enterprise settings (and again tool integration).

Resource-Oriented Computing solves system and application integration issues by leveraging
ESB, domain-specific languages, and shared memory mechanisms for integrating coupling
points, not the applications themselves, by promoting event-driven interactions between system
components, and by creating logical mappings of resources such as data or computations that
are abstracted from the physical manifestation of the system deployment.

—Eugene Ciurana in [Ciurana2008]

The key idea behind this trend is to take successful integration strategies from the web, which faces similar
challenges regarding distributed and heterogeneous systems, and apply them to application integration.

Accessing components is possible by simply accessing an URI, in the same way as resources are accessed on the
web. By abstracting from the protocol and operating on logical endpoints instead of physical endpoints, a much
more dynamic and stable integration can be realized. This concept is not too different from JBI's abstract inte-
gration model, but JBI introduces a considerable overhead with its WSDL-centric endpoint description, service
assembly configuration and normalized message exchanges. In a resource-oriented way, tools, their operations
and data could be viewed as resources and accessed in a simple way, as demonstrated in Example 8.2:

Example 8.2: A possible tool endpoint description in URI-notation

toolnet://research.eads.de/doors/highlight/requirement-881

ROC can be seen as a generalization of REST [Fielding2000], as it shares the same design principles but provides
a more abstract way for accessing resources, adapting to dynamic integration needs. ROC is not bound to HTTP
for transmitting requests, or a DNS server for resolving endpoints. This enables a richer vocabulary than the few
predefined verbs in HTTP (GET, POST, PUT, DELETE, …), which is essential for integrating existing systems.

There are several ways to implementing a ROC architecture. IBM is currently adopting REST for implementing
application mashups in WebSphere with ProjectZero4, and a general Java framework for REST-based applica-
tions is available at RESTlet.org5.

For massively distributed systems and large-scale deployments, a Grid topology is a possible solution, e.g.
[GridGain] (open source) or [GigaSpaces] (free community version available, restricted to a single node). A
spaces-based open source Java ESB using JBI is currently in progress with the [Anageda] project.

Looking at existing JBI implementations, [OpenESB2008] currently adds REST support to the OpenESB JBI
implementation, with the goal to “enable OpenESB components to consume/provide web services other than
using SOAP/XML. [The] ability to interact REST fully allows OpenESB components to leverage a variety of
web services such as Google Apps, Amazon WS, salesforce.com, etc.”. REST is also supported in ServiceMix
through REST POJOs6, building on ActiveMQ's REST support7

This would enable integration of existing tools into a new, resource-oriented tool integration architecture.

4 http://www.projectzero.org/
5 http://www.restlet.org/
6see Apache ServiceMix page on REST POJOs [http://servicemix.apache.org/rest-pojos.html]
7see the article ActiveMQ and REST [http://p-st.blogspot.com/2007/12/activemq-and-rest.html] for an example

http://www.projectzero.org/
http://www.restlet.org/
http://www.projectzero.org/
http://www.restlet.org/
http://servicemix.apache.org/rest-pojos.html
http://servicemix.apache.org/rest-pojos.html
http://p-st.blogspot.com/2007/12/activemq-and-rest.html
http://p-st.blogspot.com/2007/12/activemq-and-rest.html

166 Outlook and Further Work

166

Users increasingly utilize web based applications as part of their work, and many services nowadays offer a
REST interface (e.g., Amazon, GoogleApps, eBay). However, these are isolated applications that incur similar
problems as encountered in desktop integration, with isolated and proprietary APIs that bind data to the original
application and make reuse and combination difficult, as noted earlier in [Burcham2005]: “While these web ap-
plications are manipulating domain-specific information they are doing precious little to expose that information
in interoperable form.”. The article proposes a “web clipboard”, where information can be easily shared among
web applications just like between desktop applications. This is however still a low-level form of integration
and requires manual intervention, but high-level information sharing is hindered by several other obstacles, such
as authentication or proprietary APIs. This need has been addressed in part by introducing a common authenti-
cation scheme, [OpenID], and by proposing common domain-specific APIs, such as Google OpenSocial API
[OpenSocial] and Amazon A9 [OpenSearch].

By integrating web applications into a common tool integration framework using emerging APIs and architec-
tures, a rich and location-transparent end user experience could be provided, reusing existing online resources
but adding semantic integration, and combining online with offline applications, thus following the ongoing con-
vergence of desktop and web based applications. [Chen2007b] proposes such a collaborative, resource-oriented
environment, termed the universal virtual workspace (UVW), integrating an existing application, Matlab, in a
service-oriented integration framework but utilizing resource-oriented concepts.

This trend is also reflected in the conventional software development landscape, most prominently the Eclipse
IDE, which is increasingly embracing web based development through sub projects like RAP (see Section 3.2.4.2)
and the work on the next major release in the Eclipse E4 project [EclipseE4].

8.6. Beyond Tool Integration
A successful tool integration solution must also address the needs of people working with tools. Recent web
service standards like WS-HumanTask [WS-BPEL2007] allow to model the coordination of tasks performed
by humans in combination with web services. The WS-BPEL extension BPEL4PPL (ibid.), which was recent-
ly submitted to the OASIS standards consortium, applies WS-HumanTask to address the integration of human
activities into automated business processes. These standards could be applied to tool integration for realizing
complex, semi-automatic workflows in a task-oriented way, in combination with employing specialized tools,
e.g., for building a complex system in a distributed team. Participants of such a workflow could then collaborate
more efficiently, with artifacts shared between tools and authors, as dependencies between people, tools (regard-
ing provided functionality) and data is modeled in a clear and easy-to-follow manner.

The collaborative nature of Web 2.0 – and recently Enterprise 2.0, which can be seen as an adoption of Web 2.0 to
enterprise needs, such as security or business functionality – shows the potential of user-controlled recomposition
of existing services, assets and information to form new, composite services that serve a specific and spontaneous
need. The result is a highly dynamic and rapid workflow that improves problem solving and information sharing,
avoiding duplication and isolation of data or functionality. This spontaneous reuse and composition of existing
assets is a prime motivation in tool integration and a good solution should therefore strive to apply proven tech-
niques and concepts, such as the consequent use of open standards, to create a flexible and dynamic platform for
integrating tools in a user-friendly and user-controlled way.

Project Wonderland [Slott2008] provides an early look at the possibilities of visualizing collaboration among
people that work together with different, existing tools on common artifacts shared in a 3d world, as illustrated
in Figure 8.3 below:

Beyond Tool Integration 167

167

from the article Project Wonderland Go ahead, make a scene.8

Figure 8.3: Application sharing in Sun's Project Wonderland

This standards-based open source 3d framework shows the potential of collaborative work in the Web 2.0 era,
building on the foundation of composite services. A precondition for this novel collaboration experience however
is that tools in the real world are integrated into a loosely coupled extensible system, e.g., using OpenESB9. Just
as Web 2.0 is a collaborative platform for web applications, Tool Integration 2.0 could be a new, dynamic and
collaborative platform for integrating tools in a user-centric environment, be it the desktop, the web, or whatever
the future will bring.

In a more automated manner, such an “integrated tools environment” could automatically combine tools based on
current user demands, as envisioned in [Grigonis2008] on IBM's secure mashup technology, called “SMashup”:
“The best mashup would resemble a biological organism, a sort of shape-shifting chimera – the user would
simply specify the kind of application he or she needed, and the components would intelligently figure out among
themselves how to assemble themselves in a way that satisfies the need.”

8 http://research.sun.com/spotlight/2008/2008-08-19_project_wonderland.html
9as shown in this blog entry on OpenESB in Wonderland [http://blogs.sun.com/jason/entry/openesb_in_wonderland]

http://research.sun.com/spotlight/2008/2008-08-19_project_wonderland.html
http://research.sun.com/spotlight/2008/2008-08-19_project_wonderland.html
http://blogs.sun.com/jason/entry/openesb_in_wonderland
http://blogs.sun.com/jason/entry/openesb_in_wonderland

168

168

169

Chapter 9. Conclusion
With the increasing proliferation of JBI and other integration standards such as SCA, there is now a viable open
integration market evolving, with rich design-time support through integration designers and runtime support
through an open market for integration components and runtime implementations. This facilitates the realization
of solutions that focus on the core task of tool integration, providing additional functionality and flexibility to
end users and integrating at the semantic level. There is no need anymore to build custom APIs or to use lega-
cy architectures such as CORBA, resulting in proprietary and complex communication backends that impede
development of light-weight and dynamic tool integration solutions, causing high development cost for Adapter
development and maintenance. Fortunately, the enterprise world has moved to a more standards-based approach
and several patterns and best practices have evolved over the years. It has been shown that applying these stan-
dards and frameworks to the problem of tool integration is worthwhile and leads to a flexible and solid framework
design for dynamic and open tool integration.

The proposed solution is highly portable and adaptable, meaning that any JBI-compliant solution can be used as
a runtime and all Services and Adapters can be reused without change. The design minimizes cost in Adapter
development and maximizes reuse of components and sharing of data and functionality. JNA has been success-
fully used for realizing the low-level protocol bridge to an existing COTS tool, Telelogic DOORS, without re-
quiring complex and error-prone low-level integration code in the Adapter, despite being bound to the C library
interface provided by DOORS. Also, existing scripts used to extend the DOORS interface and to connect to the
integration framework (originally, ToolNet) could be reused without modification, demonstrating the flexibility
and abstraction potential in the new, standards-based architecture.

The prototype's JMX-interface, originally used as a proxy for the ToolNet Desktop and seen more as a compro-
mise, proved to be a viable replacement that could be extended to a full management console for administration
and user control, providing rich access to framework services and configuration, including the installation, up-
grade or removal of Adapters. Finally, Apache ServiceMix has shown to be a solid JBI implementation that pro-
vides a highly dynamic foundation for tool integration, with support for event-driven as well as service-oriented
integration concepts and advanced, distributed and reliable messaging.

For real-world use of the proposed solution however, tool support still needs to improve, esp. during design time
and debugging, in order to simplify Adapter development. This needs to happen in a standards-based way, so that
development is not limited to particular JBI implementations with proprietary API extensions or special tooling.
For this, the JBI standard itself needs to be revised, so as to redesign the API for easier component development,
which is currently underway as part of JSR-312 [JBI20].

The example of ToolNet has shown that realizing tool integration with a proprietary architecture built around
the Eclipse framework introduces several limits in adaptability and dynamic, resulting in a more tightly coupled
solution that is not easily portable, even among different Eclipse versions (see also Section 5.5). There is only
one implementation of Eclipse (also the RCP framework used in the ToolNet desktop is inherently bound to
the Eclipse project), which limits choice and makes the solution subject to design decisions and limitations of a
single implementation and target group, without any alternatives. Also, despite its undisputed reputation as a tool
integration platform, Eclipse follows the meta-tool approach, integrating tools into a central work environment,
requiring refactoring of existing tools or relying on platform-specific facilities like OLE. This is not desired for
a more transparent tool integration platform that keeps existing tools largely unchanged and also works with
legacy COTS tools. Lastly, Eclipse does not provide an infrastructure for solving tool integration problems in this
way, such as a common messaging backbone or extended Service querying, or a common concept for wrapping
external systems beyond web services.

As a result of the research performed in the course of the prototype design and implementation, much of the
custom design and proprietary solutions in current tool integration approaches can be replaced with standard

170 Conclusion

170

technologies and service-oriented integration concepts, as provided by JBI, building on best practices and exist-
ing standards in enterprise integration. These include WSDL-based component interfaces, loosely-coupled ser-
vices and XML-based normalized messaging with rich routing and translation capabilities, which are also core
concepts of an enterprise service bus. Consequently, many JBI implementations are based on an ESB-like mes-
sage bus, but the JBI specification is open enough to allow for alternative, advanced topologies in a distributed
environment, like Grids or peer-to-peer communication, and offers a transparent combination of service-orient-
ed and event-driven architectures. Corresponding components and solutions are already available and provide
integration designers and developers with a rich choice based on individual project requirements.

With all advances in integration standards and frameworks, one challenge in tool integration will always remain,
as long as tools are not fully service-oriented and modularized themselves, as found by [Goose2000], who had
similar problems integrating closed tools in the Microcosm-framework, in that “it is not possible to integrate
closed tools in a general way. Each tool must be carefully analyzed and, depending on its nature, integrated in
its own special way.”. This dilemma can only be solved in an effective and sustainable way by fully embracing
open integration standards, patterns and frameworks that offer a flexible and lightweight Adapter architecture
for integrating tools as-is, decoupling proprietary tool interfaces from the remaining, standards-based and open
solution.

171

Appendix A. Prototype Source
Excerpts
A.1. JBI Configuration

A.1.1. ToolNetServiceAssembly Descriptor
Example A.1: ServiceAssembly deployment descriptor jbi.xml

<?xml version="1.0" encoding="UTF-8"?>
<jbi xmlns="http://java.sun.com/xml/ns/jbi"
 xmlns:su1="http://bostechcorp.com/SU/ToolNetServiceAssembly_DoorsServiceEngine"
 xmlns:su2="http://bostechcorp.com/SU/ToolNetServiceAssembly_DoorsAdapter_Out"
 xmlns:su3="http://bostechcorp.com/SU/ToolNetServiceAssembly_DoorsAdapter_In"
 xmlns:su4="http://bostechcorp.com/SU/ToolNetServiceAssembly_DoorsServiceEngine_In"
 xmlns:su5="http://bostechcorp.com/SU/ToolNetServiceAssembly_Installer"
 version="1.0">
 <service-assembly>
 <identification>
 <name>ToolNetServiceAssembly</name>
 <description>ToolNetServiceAssembly</description>
 </identification>
 <service-unit>
 <identification>
 <name>ToolNetServiceAssembly_DoorsServiceEngine</name>
 <description>provides common ToolNet-services for DOORS</description>
 </identification>
 <target>
 <artifacts-zip>ToolNetServiceAssembly_DoorsServiceEngine.zip</artifacts-zip>
 <component-name>ToolNet-SE-Doors</component-name>
 </target>
 </service-unit>
 <service-unit>
 <identification>
 <name>ToolNetServiceAssembly_DoorsAdapter_Out</name>
 <description>realizes a socket-connection to Telelogic DOORS</description>
 </identification>
 <target>
 <artifacts-zip>ToolNetServiceAssembly_DoorsAdapter_Out.zip</artifacts-zip>
 <component-name>ToolNet-BC-DOORS</component-name>
 </target>
 </service-unit>
 <service-unit>
 <identification>
 <name>ToolNetServiceAssembly_DoorsAdapter_In</name>
 <description>realizes a socket-connection to Telelogic DOORS</description>
 </identification>
 <target>
 <artifacts-zip>ToolNetServiceAssembly_DoorsAdapter_In.zip</artifacts-zip>
 <component-name>ToolNet-BC-DOORS</component-name>
 </target>
 </service-unit>
 <service-unit>
 <identification>
 <name>ToolNetServiceAssembly_DoorsServiceEngine_In</name>

172 Prototype Source Excerpts

172

 <description>provides common ToolNet-services for DOORS</description>
 </identification>
 <target>
 <artifacts-zip>ToolNetServiceAssembly_DoorsServiceEngine_In.zip</artifacts-zip>
 <component-name>ToolNet-SE-Doors</component-name>
 </target>
 </service-unit>
 <service-unit>
 <identification>
 <name>ToolNetServiceAssembly_Installer</name>
 <description />
 </identification>
 <target>
 <artifacts-zip>ToolNetServiceAssembly_Installer.zip</artifacts-zip>
 <component-name>ChainBuilderESB-SE-Installer</component-name>
 </target>
 </service-unit>
 <connections>
 <connection>
 <consumer service-name="su1:ToolNetServiceAssembly_DoorsServiceEngine_Service"
 endpoint-name="ToolNetServiceAssembly_DoorsServiceEngine_Consumer" />
 <provider service-name="su2:ToolNetServiceAssembly_DoorsAdapter_Out_Service"
 endpoint-name="ToolNetServiceAssembly_DoorsAdapter_Out_Provider" />
 </connection>
 <connection>
 <consumer service-name="su3:ToolNetServiceAssembly_DoorsAdapter_In_Service"
 endpoint-name="ToolNetServiceAssembly_DoorsAdapter_In_Consumer" />
 <provider service-name="su4:ToolNetServiceAssembly_DoorsServiceEngine_In_Service"
 endpoint-name="ToolNetServiceAssembly_DoorsServiceEngine_In_Provider" />
 </connection>
 </connections>
 </service-assembly>
</jbi>

A.1.2. DoorsBindingComponent Descriptor

Example A.2: DoorsBindingComponent deployment descriptor jbi.xml

<?xml version="1.0" encoding="UTF-8"?>
<jbi xmlns="http://java.sun.com/xml/ns/jbi" version="1.0">
 <component type="binding-component">
 <identification>
 <name>ToolNet-BC-DOORS</name>
 <description>realizes a socket-connection to Telelogic DOORS</description>
 </identification>

 <component-class-name>com.bostechcorp.cbesb.runtime.ccsl.base.CcslComponent</component-class-name>
 <component-class-path>
 <path-element>com.bostechcorp.cbesb.runtime.ccsl-base.jar</path-element>
 <path-element>DoorsBindingComponent.jar</path-element>
 <path-element>jna.jar</path-element>
 <path-element>com.bostechcorp.cbesb.runtime.component.util.jar</path-element>
 </component-class-path>

 <bootstrap-class-name>at.ac.tuwien.toolnet.adapter.doors.DoorsBootstrap</bootstrap-class-name>
 <bootstrap-class-path>
 <path-element>DoorsBindingComponent.jar</path-element>
 <path-element>com.bostechcorp.cbesb.runtime.ccsl-base.jar</path-element>
 </bootstrap-class-path>

DoorsServiceEngine Descriptor 173

173

 <shared-library>CCSL</shared-library>
 </component>
</jbi>

A.1.3. DoorsServiceEngine Descriptor
Example A.3: DoorsServiceEngine deployment descriptor

<?xml version="1.0" encoding="UTF-8"?>
<jbi xmlns="http://java.sun.com/xml/ns/jbi" version="1.0">
 <component type="service-engine">
 <identification>
 <name>ToolNet-SE-Doors</name>
 <description>provides common ToolNet-services for DOORS</description>
 </identification>

 <component-class-name>com.bostechcorp.cbesb.runtime.ccsl.base.CcslComponent</component-class-name>
 <component-class-path>
 <path-element>com.bostechcorp.cbesb.runtime.ccsl-base.jar</path-element>
 <path-element>DoorsServiceEngine.jar</path-element>
 <path-element>com.bostechcorp.cbesb.runtime.component.util.jar</path-element>
 </component-class-path>

 <bootstrap-class-name>at.ac.tuwien.toolnet.adapter.doors.DoorsServiceEngineBootstrap</bootstrap-class-name>
 <bootstrap-class-path>
 <path-element>DoorsServiceEngine.jar</path-element>
 <path-element>com.bostechcorp.cbesb.runtime.ccsl-base.jar</path-element>
 </bootstrap-class-path>

 <shared-library>CCSL</shared-library>
 </component>
</jbi>

A.1.4. DoorsBindingComponent WSDL
Example A.4: Provider WSDL

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:de="http://cbesb.bostechcorp.com/dataenvelope/1.0"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://bostechcorp.com/SU/ToolNetServiceAssembly_DoorsAdapter_Out"
 xmlns:DoorsAdapter="http://www.tuwien.ac.at/doors/1.0"
 name="ToolNetServiceAssembly_DoorsAdapter_Out"
 targetNamespace="http://bostechcorp.com/SU/ToolNetServiceAssembly_DoorsAdapter_Out">
 <types>
 <xsd:schema xmlns:ref="http://ws-i.org/profiles/basic/1.1/xsd"
 targetNamespace="http://cbesb.bostechcorp.com/dataenvelope/1.0">
 <xsd:import namespace="http://ws-i.org/profiles/basic/1.1/xsd" />
 <xsd:element name="DataEnvelope">
 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="XMLRecord" type="xsd:anyType" />
 <xsd:element name="StringRecord" type="xsd:swaRef" />
 <xsd:element name="BinaryRecord" type="xsd:swaRef" />
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>

174 Prototype Source Excerpts

174

 </xsd:schema>
 </types>
 <message name="DataEnvelopeMessage">
 <part name="body" element="de:DataEnvelope" />
 </message>
 <portType name="ToolNetServiceAssembly_DoorsAdapter_Out_Interface">
 <operation name="ToolNetServiceAssembly_DoorsAdapter_Out_Operation">
 <input message="tns:DataEnvelopeMessage" />
 </operation>
 </portType>
 <binding name="ToolNetServiceAssembly_DoorsAdapter_Out"
 type="tns:ToolNetServiceAssembly_DoorsAdapter_Out_Interface">
 <DoorsAdapter:binding />
 </binding>
 <service name="ToolNetServiceAssembly_DoorsAdapter_Out_Service">
 <port name="ToolNetServiceAssembly_DoorsAdapter_Out_Provider"
 binding="tns:ToolNetServiceAssembly_DoorsAdapter_Out">
 <DoorsAdapter:provider role="provider" DOORS_sender_port="5093" />
 </port>
 </service>
</definitions>

A.1.5. DoorsServiceEngine WSDL

Example A.5: Consumer WSDL

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:de="http://cbesb.bostechcorp.com/dataenvelope/1.0"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://bostechcorp.com/SU/ToolNetServiceAssembly_DoorsServiceEngine"
 xmlns:DoorsServiceEngine="http://www.tuwien.ac.at/toolnet/doorsserviceengine/1.0"
 name="ToolNetServiceAssembly_DoorsServiceEngine"
 targetNamespace="http://bostechcorp.com/SU/ToolNetServiceAssembly_DoorsServiceEngine">
 <types>
 <xsd:schema xmlns:ref="http://ws-i.org/profiles/basic/1.1/xsd"
 targetNamespace="http://cbesb.bostechcorp.com/dataenvelope/1.0">
 <xsd:import namespace="http://ws-i.org/profiles/basic/1.1/xsd" />
 <xsd:element name="DataEnvelope">
 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="XMLRecord" type="xsd:anyType" />
 <xsd:element name="StringRecord" type="xsd:swaRef" />
 <xsd:element name="BinaryRecord" type="xsd:swaRef" />
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 </types>
 <message name="DataEnvelopeMessage">
 <part name="body" element="de:DataEnvelope" />
 </message>
 <portType name="ToolNetServiceAssembly_DoorsServiceEngine_Interface">
 <operation name="ToolNetServiceAssembly_DoorsServiceEngine_Operation">
 <input message="tns:DataEnvelopeMessage" />
 <output message="tns:DataEnvelopeMessage" />
 </operation>
 </portType>
 <binding name="ToolNetServiceAssembly_DoorsServiceEngine"

JBI Adapter Implementation 175

175

 type="tns:ToolNetServiceAssembly_DoorsServiceEngine_Interface">
 <DoorsServiceEngine:binding />
 </binding>
 <service name="ToolNetServiceAssembly_DoorsServiceEngine_Service">
 <port name="ToolNetServiceAssembly_DoorsServiceEngine_Consumer"
 binding="tns:ToolNetServiceAssembly_DoorsServiceEngine">
 <DoorsServiceEngine:consumer role="consumer" triggerInterval="5000"
 dxlCommandSend="ack "Hello DOORS from JBI!""
 defaultMep="in-only" />
 </port>
 </service>
</definitions>

A.2. JBI Adapter Implementation
This section shows relevant parts of the custom JBI component implementation, comprising the DoorsBinding-
Component and the DoorsServiceEngine. Logging and error handling has been stripped to make the code more
readable and easier to follow.

A.2.1. DoorsBindingComponent

A.2.1.1. JNA Interface used in the DoorsBindingComponent

Example A.6: JNA interface wrapper for the DOORS API

package at.ac.tuwien.toolnet.adapter.doors;

import com.sun.jna.*;

public interface DoorsLibrary extends Library {
 public final static int DOORS_API_OK = 0;
 public final static int DOORS_API_PARSE_BAD_DXL = 1;
 public final static int DOORS_API_SEND_BAD_DXL = 2;
 public final static int DOORS_API_CONNECT_FAILED = 3;
 public final static int DOORS_API_ERROR = 4;

 /**
 * sends error message to DOORS
 *
 * @param format
 * error message
 */
 public void apiError(String format);

 /**
 * initializes DOORS C-API
 *
 * @param n
 * name of the resulting language, Null for DXL
 * @param ext
 * name of scripts filename extension, Null for .cdi
 * @param include
 * searchpath for include files, Null value defaults current
 * directory
 */
 public void apiInitLibrary(final String n, final String ext,
 final String include);

176 Prototype Source Excerpts

176

 /**
 * Sets whether the API functions produce error messages on the command
 * line. By default, the functions produce command line errror messages, but
 * you can prevent that using this function
 *
 * @param onOFF
 */
 public void apiQuietError(final int onOFF);

 /**
 * Sets whether the API functions exit on error. by default, the functions
 * exit, but you can prevent that using this function
 *
 * @param onOFF
 */
 public void apiExitOnError(final int onOFF);

 /**
 * opens TCP/IP Socket connection to DXL-server
 *
 * @param portNum
 * port number
 * @param hostAdress
 * host name of remote machine
 */
 public void apiConnectSock(final int portNum, String hostAdress);

 /**
 * sends string to open socket connection, which is interpreted as script by
 * DOORS
 *
 * @param format
 * the script to be interpreted by doors
 */
 public void apiSend(final String format);

 /**
 * sends string to open socket connection, which is interpreted as script by
 * DOORS
 *
 * @param tmt
 * timeout in seconds
 * @param format
 * the script to be interpreted by doors
 */
 public void apiSendTimesout(final int tmt, final String format);

 /**
 * winds down the C-API
 */
 public void apiFinishLibrary();

 /**
 * returns the error that occured most recently
 *
 * @see DoorsCAPIWrapper#DOORS_API_OK
 * @see DoorsCAPIWrapper#DOORS_API_PARSE_BAD_DXL
 * @see DoorsCAPIWrapper#DOORS_API_SEND_BAD_DXL
 * @see DoorsCAPIWrapper#DOORS_API_CONNECT_FAILED

DoorsBindingComponent 177

177

 * @see DoorsCAPIWrapper#DOORS_API_ERROR
 */
 public int apiGetErrorState();
}

A.2.1.2. DoorsEndpoint

Example A.7: DoorsEndpoint implementation realizing the JMX connection

package at.ac.tuwien.toolnet.adapter.doors;

[import related DoorsAdapter Java classes]
import com.bostechcorp.cbesb.runtime.ccsl.jbi.messaging.*;
[import javax...]

public class DoorsEndpoint extends ScheduledEndpointProcessor {
/**
 * JNA interface to the DOORS API library
 */
protected ComponentContext context;
protected String doorsPort = "";
private DoorsConsumerListener doorsListenerThread = null;
/**
 * reference to the JMX MBean of this BindingComponent,
 * can be either a ProviderMBean or a ConsumerMBean
 */
private DoorsConfiguration configurationMBean = null;
/**
 * the JMX ObjectName of the Configuration MBean
 */
private ObjectName configurationMBeanName = null;
/**
 * MBean allowing configuration of the Doors BC-Provider
 *
 * allows to set the Listener and Sender port when connecting
 * to the Telelogic DOORS application
 */
private static final int MBEAN_PROVIDER = 0;
/**
 * sets up the endpoint handler and JMX MBean
 */
public DoorsEndpoint() {
 super();
}
/* Setter for the DOORS_receiver_port */
public void setDoorsPort(String value) {
 this.doorsPort = value;
}
/* Getter for the DOORS_receiver_port*/
public String getDoorsPort() {
 return this.doorsPort;
}

protected IComponentProcessor createProviderProcessor() {
 DoorsProviderProcessor provider = new DoorsProviderProcessor(this);
 provider.setMessageExchangeFactory(exchangeFactory);
 provider.setChannel(channel);
 provider.setContext(context);
 return provider;

178 Prototype Source Excerpts

178

}

protected IComponentProcessor createConsumerProcessor() {
 setHandler(new DoorsConsumerHandler(this));
 return new CbEmbeddedSchedulerConsumerProcessor(this);
}

public void setContext(ComponentContext context) {
 this.context = context;
}

@Override
public void start() throws Exception {
 // perform Role-specific configuration and setup
 if (getRole() == MessageExchange.Role.CONSUMER) {
 // if Consumer, start DOORS listener Thread
 doorsListenerThread = new DoorsConsumerListener(this);
 doorsListenerThread.start();
 } else {
 // register this endpoint for management access
 registerConfigurationMBean(MBEAN_PROVIDER);
 }
}

@Override
public void stop() throws Exception {
 // unregister JMX MBean
 unregisterConfigurationMBean();
 if (doorsListenerThread != null) {
 doorsListenerThread.shutdown();
 }
}

public DoorsConsumerListener getDoorsListenerThread() {
 return doorsListenerThread;
}
// JMX management methods
/**
 * sets up a new MBean for configuring the DOORS component
 * @return
 */
private ObjectName createConfigurationMBeanName(String name) {
 logger.debug("creating ConfigurationMBean " + name + " in context " + this.context);
 return this.context.getMBeanNames().createCustomComponentMBeanName(name);
}
/**
 * make available configuration and control
 * of the DOORS Adapter for JMX management access
 * @throws JBIException
 * @see #start()
 */
private void registerConfigurationMBean(int type) throws JBIException {
 // set up MBean if necessary
 if (configurationMBeanName == null) {
 if (type == MBEAN_PROVIDER) {
 configurationMBeanName = createConfigurationMBeanName("DOORS-Sender");
 configurationMBean = new DoorsConfiguration(this);
 } else {
 configurationMBeanName = createConfigurationMBeanName("DOORS-Receiver");
 configurationMBean = new DoorsConfiguration(this);

DoorsBindingComponent 179

179

 }
 }
 StandardMBean mbean = new StandardMBean(configurationMBean, DoorsConfigurationMBean.class);
 server.registerMBean(mbean, this.configurationMBeanName);
}
/**
 * remove MBean from management access
 * @see #stop()
 */
private void unregisterConfigurationMBean() {
 // unregister Configuration-MBean
 MBeanServer server = this.context.getMBeanServer();
 if (server.isRegistered(this.configurationMBeanName)) {
 server.unregisterMBean(this.configurationMBeanName);
 }
}

A.2.1.3. DoorsBindingComponent (Consumer)

Example A.8: DoorsConsumerListener routing incoming calls to the JBI message router

/**
* The Consumer part listens for incoming commands from the Tool-Side DOORS Adapter
*/
package at.ac.tuwien.toolnet.adapter.doors.processors;

[imports...]
import at.ac.tuwien.toolnet.adapter.doors.DoorsEndpoint;
// Chainbuilder extensions
import com.bostechcorp.cbesb.runtime.ccsl.lib.ExternalInput;
import com.bostechcorp.cbesb.runtime.component.util.wsdl.WsdlMepConstants;
/**
* waits for incoming DOORS connections
* and translates calls into normalized messages, creating a new NormalizedMessageExchange
*/
public class DoorsConsumerListener extends Thread {
 private static final String SENDER_ENDPOINT_PROPERTY = "org.apache.servicemix.senderEndpoint";
 private boolean isRunning = true;
 private DoorsEndpoint endpoint;
 ServerSocket doorsSocket = null;
 Socket s = null;
 int doorsPort = 0;

 public DoorsConsumerListener(DoorsEndpoint endpoint) {
 this.endpoint = endpoint;
 }
 /*
 * Thread main method
 */
 public void run() {
 StringBuffer dxlbuffer = null;
 String line;
 // now setup socket and wait for "response"
 doorsSocket = new ServerSocket(doorsPort);
 while (isRunning) {
 // wait for new connection from DOORS
 s = doorsSocket.accept();

 InputStreamReader is = null;

180 Prototype Source Excerpts

180

 BufferedReader reader = null;
 // we received input from DOORS
 is = new InputStreamReader(s.getInputStream());
 reader = new BufferedReader(is);
 dxlbuffer = new StringBuffer();
 while (!s.isClosed() && (line = reader.readLine()) != null) {
 dxlbuffer.append(line);
 }
 s.close();
 // create inbound message exchange from input received
 createInbound(dxlbuffer.toString().getBytes());
 } // while
 // shut down
 doorsSocket.close();
 doorsSocket = null;
 }
 public void shutdown() {
 isRunning = false;
 }
 public void forceStop() {
 isRunning = false;
 doorsSocket.close();
 }
 /**
 * create inbound message exchange for external input from socket
 */
 public byte[] createInbound(byte[] bytes) throws MessagingException, Exception {
 byte[] returnBytes = null;
 MessageExchange me = null;
 DeliveryChannel channel = endpoint.getChannel();
 ComponentContext context = endpoint.getServiceUnit().getComponent().getComponentContext();

 // create a message exchange
 URI defaultMep = endpoint.getDefaultMep();
 if (defaultMep.compareTo(WsdlMepConstants.IN_ONLY) == 0) {
 me = channel.createExchangeFactory().createInOnlyExchange();
 } else if (defaultMep.compareTo(WsdlMepConstants.IN_OUT) == 0) {
 me = channel.createExchangeFactory().createInOutExchange();
 } else if (defaultMep.compareTo(WsdlMepConstants.ROBUST_IN_ONLY) == 0) {
 me = channel.createExchangeFactory().createRobustInOnlyExchange();
 } else
 throw new Exception("trying to process unknown MEP \""+defaultMep+"\"");

 // populate the exchange and send it into the container
 me.setOperation(endpoint.getDefaultOperation()); // there is no getOperationQName();
 String endpointKey = "{" + endpoint.getService().getNamespaceURI() + "}"+
 endpoint.getService().getLocalPart() + ":" + endpoint.getEndpoint();
 me.setProperty(SENDER_ENDPOINT_PROPERTY, endpointKey);
 ExternalInput ext = new ExternalInput(new ByteArrayInputStream(bytes),
 "UTF-8", "raw", "string", 0);
 // now create a new JBI NormalizedMessage and send it to the bus
 NormalizedMessage msg = me.createMessage();
 ext.populateMessage(msg);
 // create a new IN exchange
 me.setMessage(msg, "in");
 // set the target endpoint (could be queried dynamically)
 ServiceEndpoint linkedEndpoint = context.getEndpoint(endpoint.getService(), endpoint.getEndpoint());
 me.setEndpoint(linkedEndpoint);
 me.setService(endpoint.getService());

DoorsBindingComponent 181

181

 // do an asynchronous send, no return bytes
 channel.send(me);
 return returnBytes;
 }
}

A.2.1.4. DoorsBindingComponent (Provider)

Example A.9: The DoorsProviderProcessor routes JBI messages to DOORS

package at.ac.tuwien.toolnet.adapter.doors.processors;
[imports...]
import at.ac.tuwien.toolnet.adapter.doors.DoorsEndpoint;
import at.ac.tuwien.toolnet.adapter.doors.DoorsLibrary;
import at.ac.tuwien.toolnet.adapter.doors.DoorsLibraryFactory;

import com.bostechcorp.cbesb.runtime.ccsl.jbi.messaging.CbProviderProcessor;
import com.bostechcorp.cbesb.runtime.ccsl.lib.DumpNormalizedMessage;
import com.bostechcorp.cbesb.runtime.ccsl.nmhandler.NormalizedMessageHandler;
import com.bostechcorp.cbesb.runtime.ccsl.nmhandler.StringSource;

public class DoorsProviderProcessor extends CbProviderProcessor {
 private DeliveryChannel channel;
 private MessageExchangeFactory messageExchangeFactory;
 protected ComponentContext context;
 DoorsEndpoint endpoint;
 /**
 * default client port for client-connections to DOORS
 */
 int doorsPort = 5093;
 [component setup methods...]
 /**
 * transmits a DXL-script contained in a JBI message to DOORS
 * using the DOORS C API for communicating over a TCP/IP socket
 */
 @Override
 public void processInMessage(QName service, QName operation,
 NormalizedMessage in, MessageExchange exchange) throws Exception {
 // get the JNA library stub for the DOORS lib
 DoorsLibrary lib = DoorsLibraryFactory.getInstance();
 // open IPC connection to DOORS @todo make host configurable, too
 lib.apiConnectSock(doorsPort, "127.0.0.1");
 int stat = lib.apiGetErrorState();
 if (stat == DoorsLibrary.DOORS_API_OK) {
 // get message content string using ChainBuilder's utility class
 NormalizedMessageHandler nmh = new NormalizedMessageHandler(in);
 Source src = nmh.getRecordAtIndex(0);
 if (src instanceof StringSource) {
 StringSource strsrc = (StringSource) src;
 String dxl = strsrc.getText();
 // send in message to DOORS
 lib.apiSendTimesout(300, dxl);
 // close connection again
 lib.apiSendTimesout(100, "quit_");
 // check return status
 stat = lib.apiGetErrorState();
 if (stat == DoorsLibrary.DOORS_API_OK) {
 /*
 * exchange.setStatus(ExchangeStatus.DONE);

182 Prototype Source Excerpts

182

 */
 } else {
 // something went wrong
 }
 } else {
 // unknown format
 }
 } else {
 // process any errrs that may haved occured
 }
 }
 // [processing other MessageExchangePatterns like IN_OUT stripped]
}

A.2.1.5. BindingComponentMBean Definition

This MBean allows configuration of the DoorsBindingComponent, e.g. DOORS server and port.

Example A.10: DoorsConfigurationMBean for configuring the DoorsBindingComponent

package at.ac.tuwien.toolnet.adapter.doors;

public interface DoorsConfigurationMBean {
 /**
 * start DOORS from the management console
 */
 public void startDoors();
 /**
 * stop the running DOORS instance
 */
 public void stopDoors();
 /**
 * sends a message to a running DOORS instance
 * at the port configured
 * @return <code>true</code> if the message was sent successfully
 */
 public String sendMessage(String message);
 public int getClientPort();
 public void setClientPort(int clientPort);
 public int getServerPort();
 public void setServerPort(int serverPort);
}

A.2.2. DoorsServiceEngine

A.2.2.1. DoorsServiceEngine (Consumer)

The class DoorsServiceEngineConsumerListener.java implements a simple translator that receives
Service requests from the JMX console that acts as a ToolNetDesktop-replacement and forwards it to the Doors-
BindingComponent.

Example A.11: DoorsServiceEngine Consumer implementation

package at.ac.tuwien.toolnet.adapter.doors.processors;
[import ...]
/**
 * handles commands received from JMX, i.e. user input from the ToolNet/JBI "console"
 */

DoorsServiceEngine 183

183

public class DoorsServiceEngineConsumerHandler extends ScheduledProcessHandler {
 DoorsServiceEngineEndpoint endpoint;
 /**
 * constant for creating the MessageExchange in {@link #sendMessage(String)}
 */
 private static final String SENDER_ENDPOINT_PROPERTY = "org.apache.servicemix.senderEndpoint";
 private static final String DOORS_ENDPOINT_BASE = "ToolNetServiceAssembly_DoorsAdapter_Out";
 private static final String DOORS_ENDPOINT_NAME = DOORS_ENDPOINT_BASE + "_Provider";
 private static final String DOORS_SERVICE_NAME = DOORS_ENDPOINT_BASE + "_Service";
 private static final String DOORS_SERVICE_URL = "http://bostechcorp.com/SU/" + DOORS_ENDPOINT_BASE;

 public DoorsServiceEngineConsumerHandler(DoorsServiceEngineEndpoint endpoint) {
 super(endpoint);
 this.endpoint = endpoint;
 }
 // here we translate from the common ToolNet Service to the tool-specific action, using DOORS DXL
 public void highlightObject(String module, int no) {
 String dxl = "#include <addins/ToolNet/ToolNet_PresentationService.inc>;" +
 "ToolNet_IPresentation_showObject(\"" + module + "\",\"" + no + "\"," +
 "\"null\",\"null\",\"HIGHLIGHT_OBJECT\")";
 sendMessage(dxl);
 }
 /**
 * send message to DOORS BC
 */
 public void sendMessage(String message) {
 MessageExchange me = null;
 NormalizedMessage msg = null;
 DeliveryChannel channel = endpoint.getChannel();
 ComponentContext context = endpoint.getServiceUnit().getComponent().getComponentContext();
 // target endpoint (=DOORS BC Out)
 ServiceEndpoint linkedEndpoint = context.getEndpoint(
 new QName(DOORS_SERVICE_URL, DOORS_SERVICE_NAME),
 DOORS_ENDPOINT_NAME);
 try {
 // create a message exchange (only IN-ONLY supported)
 me = channel.createExchangeFactory().createInOnlyExchange();
 msg = me.createMessage();
 me.setOperation(endpoint.getDefaultOperation());
 String endpointKey = "{" + endpoint.getService().getNamespaceURI() + "}"+
 endpoint.getService().getLocalPart() + ":" + endpoint.getEndpoint();
 me.setProperty(SENDER_ENDPOINT_PROPERTY, endpointKey);
 // the CBESB-Helperclass NormalizedMessageHandler wraps the NormalizedMessage
 NormalizedMessageHandler msghandler = new NormalizedMessageHandler(msg);
 // Add the Source as a record
 msghandler.addRecord(new StringSource(message));
 msg = msghandler.generateMessageContent();
 me.setMessage(msg, "in");
 me.setEndpoint(linkedEndpoint);
 me.setService(endpoint.getService());
 /*
 * do asynchronous send
 * (better would be synchronous send to check reply from DOORS-BC,
 * but in non-batch-mode, DOORS blocks on a dialog boxes and
 * thus produces a timeout during MessageExchange, anyway)
 */
 channel.send(me);
 } catch (MessagingException e) {
 logger.fatal("Could not send message due to a messaging error: ", e);
 } catch (Exception e) {

184 Prototype Source Excerpts

184

 logger.fatal("Could not send message due to error: ", e);
 }
 }
}

A.2.2.2. DoorsServiceEngine (Provider)

Example A.12 below shows the relevant parts of the prototype DoorsAdapter ServiceEngine, automatically gen-
erated getter and setter methods were ommitted, as well as parsing the input String received from DOORS, and
error handling was minimized for the sake of clarity.

Example A.12: ServiceEngine implementation DoorsServiceEngineProviderProcessor.java

package at.ac.tuwien.toolnet.adapter.doors.processors;
[...]
public class DoorsServiceEngineProviderProcessor extends CbProviderProcessor {
 private DeliveryChannel channel;
 private MessageExchangeFactory messageExchangeFactory;
 protected ComponentContext context;
 DoorsServiceEngineEndpoint endpoint;
 /**
 * holds references to managed DOORS Object-MBeans
 * for later lookup on showObject-requests from the DOORS Adapter
 */
 HashMap<Integer, ObjectName> doorsMBeanNames = new HashMap<Integer, ObjectName>();
 public static final String TOOLNET_TOOL_STARTED =
 "org.toolnet.core.model.other.ILocalToolNet:toolStarted()";
 public static final String ToolNet_PresentationService_SHOWOBJECT =
 "org.toolnet.core.model.services.IPresentation:showObject";
 public static final String ToolNet_RelationCreationInterface =
 "org.toolnet.core.model.services.IRelationCreation";
 public static final String ToolNet_RelationCreationClient_ADDANCHOR = "addAnchor";
 public static final String ToolNet_RelationCreationClient_REMOVEANCHORS = "removeAnchors";

 public DoorsServiceEngineProviderProcessor(
 DoorsServiceEngineEndpoint endpoint) {
 super(endpoint);
 this.endpoint = endpoint;
 }
 @Override
 /**
 * processes an incoming DOORS-call and translates it the
 * corresponding ToolNet Service-invocation
 */
 public void processInMessage(QName service, QName operation,
 NormalizedMessage in, MessageExchange exchange) throws Exception {
 // get message content string (standard JBI way: DOM-Transformer-variant from ServiceMix-project)
 NormalizedMessageHandler nmh = new NormalizedMessageHandler(in);
 Source src = nmh.getRecordAtIndex(0);
 if (! (src instanceof StringSource)) {
 // unexpected format
 return;
 }
 // extract ToolNet service
 StringSource strsrc = (StringSource) src;
 String request = strsrc.getText();
 // parse input command and react on it
 if (request.equalsIgnoreCase(TOOLNET_TOOL_STARTED)) {
 logger.debug("DOORS Adapter started successfully");

DoorsServiceEngine 185

185

 } else if (request.startsWith(ToolNet_PresentationService_SHOWOBJECT)) {
 logger.debug("Show Object requested - not implemented yet.");
 } else if (request.contains(ToolNet_RelationCreationClient_ADDANCHOR)) {
 logger.debug("DOORS Adapter addAnchor requested:");
 // parse request from DOORS Adapter, looks like:
 // addAnchor((id)["00000661","34","__NULL__","__NULL__"],(AddAsType)"1")
 String module;
 // parse module = 1st parameter inside brackets
 ...
 // scan from second parameter inside brackets: ["first","second"...
 ...
 // parse Type
 ...
 // register MBean for accessing the DOORS Object from a JMX-console
 registerDoorsMBean(module, id, type);
 } else if (request.contains(ToolNet_RelationCreationClient_REMOVEANCHORS)) {
 logger.debug("DOORS Adapter addAnchor requested:");
 // parse ID
 // register MBean for accessing the DOORS Object from a JMX-console
 unregisterDoorsMBean(id);
 } else if (request.startsWith("return")) {
 // parse return operation
 logger.debug("DOORS-Adapter successfully invoked operation: " + op);
 } else {
 logger.warn("Unknown command received and ignored.");
 }
 // done with ME
 logger.debug("DONE with MessageExchange");
 /*
 * JBI spec requires manually setting status, but
 * Chainbuilder-lib does this automatically:
 * exchange.setStatus(ExchangeStatus.DONE);
 */
 }
 ...
 /**
 * make available configuration and control
 * of a DOORS Object for JMX management access
 *
 * @throws JBIException
 * @see #start()
 */
 private void registerDoorsMBean(String module, int id, int type) throws JBIException {
 // set up MBean if necessary
 ObjectName mbn = this.context.getMBeanNames().createCustomComponentMBeanName("DOORS Object #"+id);
 // first register in internal registry
 doorsMBeanNames.put(new Integer(id), mbn);
 // then register in MBeanServer
 StandardMBean mbean = new StandardMBean(new DoorsObject(
 (DoorsServiceEngineEndpoint) getEndpoint(), module, id, type),
 DoorsObjectMBean.class);
 if (mbean != null) {
 MBeanServer server = this.context.getMBeanServer();
 server.registerMBean(mbean, mbn);
 }
 }
 /**
 * remove MBean from management access
 * @see #stop()
 */

186 Prototype Source Excerpts

186

 private void unregisterDoorsMBean(int id) {
 // get ObjectName for ID
 ObjectName mbn = doorsMBeanNames.get(id);
 // unregister Configuration-MBean
 MBeanServer server = this.context.getMBeanServer();
 if (server.isRegistered(mbn)) {
 server.unregisterMBean(mbn);
 }
 }
}

A.2.2.3. DoorsObjectMBean (ServiceEngine MBean)

This MBean represents a requirements object in DOORS and allows viewing and changing the object's proper-
ties. Also the highlight()-service can be invoked on the selected requirement object (MBean), as needed for the
prototype scenario.

Example A.13: The DoorsObjectMBean interface

package at.ac.tuwien.toolnet.adapter.doors.ui;

public interface DoorsObjectMBean {
 public int getId();
 public String getModule();
 public String getName();
 public void setName(String name);
 public String getDescription();
 public int getAnchorType();
 public String getAnchorTypeName();
 /**
 * brings this object into focus
 */
 public void highlight();
}

Example A.14: The DoorsObject implementation

package at.ac.tuwien.toolnet.adapter.doors.ui;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import at.ac.tuwien.toolnet.adapter.doors.DoorsServiceEngineEndpoint;

public class DoorsObject implements DoorsObjectMBean {
 public static final int ToolNet_RelationCreation_TARGET = 0;
 public static final int ToolNet_RelationCreation_SOURCE = 1;
 public static final int ToolNet_RelationCreation_IDENTITY = 2;
 protected final transient Log logger = LogFactory.getLog(getClass());
 DoorsServiceEngineEndpoint endpoint;
 private int id;
 private String module;
 private int anchorType;
 private String name;
 private String description;

 /**
 * connects to the endpoint to be managed by this MBean
 * @param endpoint

Existing Tool-Side DOORS Adapter 187

187

 */
 public DoorsObject(DoorsServiceEngineEndpoint endpoint,
 String module, int id, int type, String name, String description) {
 logger.debug("init ObjectMBean for ConsumerHandler (" +
 "ID="+id+", type=" +type+")");
 assert(endpoint != null):"No connection to endpoint!";
 this.endpoint = endpoint;
 this.module = module;
 this.id = id;
 this.anchorType = type;
 this.name = name;
 this.description = description;
 }
 public DoorsObject(DoorsServiceEngineEndpoint endpoint, String module, int id, int type) {
 this(endpoint, module, id, type, "unknown", "empty");
 }
 public String getDescription() {
 return description;
 }
 public int getId() {
 return id;
 }
 public String getName() {
 return name;
 }
 public int getAnchorType() {
 return anchorType;
 }
 public String getAnchorTypeName() {
 if (this.anchorType == ToolNet_RelationCreation_TARGET)
 return "Target";
 else if (this.anchorType == ToolNet_RelationCreation_SOURCE)
 return "Source";
 else if (this.anchorType == ToolNet_RelationCreation_IDENTITY)
 return "Identity";
 else
 return "unknown";
 }
 public void highlight() {
 this.endpoint.getHandler().highlightObject(getModule(), getId());
 }
 public void setName(String name) {
 this.name = name;
 }
 public String getModule() {
 return this.module;
 }
}

A.3. Existing Tool-Side DOORS Adapter
The following sections show existing scripting code as part of the Tool-side Adapter that is integrated into the
DOORS interface.

A.3.1. ToolNet Menu Definition
For integrating the ToolNet-Adapter into the DOORS-interface, a custom menu is defined as shown in Exam-
ple A.15 below, according to the specification of the menu definition format described in [DXL], chapter DOORS

188 Prototype Source Excerpts

188

window control: Each line (except for the separators) starts with a function name that implements the menu op-
eration, then a shortcut can be defined, and lastly the menu item label is defined.

Example A.15: ToolNet menu definition from ToolNet.idx

ToolNet_startLink s _ Set object as source
ToolNet_endLink e _ Set object as target

ToolNet_relation R _ Get relations for object
ToolNet_markLinked M _ Mark linked object

ToolNet_showObject o _ Goto object
ToolNet_highlightObject h _ Highlight object

ToolNet_addObjectToGroup A _ Add object to group
ToolNet_markGroupObjects K _ Mark objects of the group
ToolNet_markGroupLinkedObjects J _ Mark Objects linked to the group
ToolNet_groupRelation L _ Get relations for group objects

ToolNet_callWindow w _ ToolNet window

ToolNet_DoorsRelationCreationClient1 Q _ Export Links

The prototype use case covers the creation of Relations, which are represented by the first two menu commands
covered in Section A.3.3.

A.3.2. ToolNet IPC implementation

The TCP/IP-based inter-process communication between DOORS and the JBI prototype is implemented in Ex-
ample A.16 below (helper methods omitted). Other ToolNet-scripts rely on the functions defined therein to send
requests to the ToolNetSide DOORS-Adapter (realized by the DoorsBindingComponent in the prototype).

Example A.16: DXL source of ToolNet_ipc.inc

/**
* Script: IPC-communication for ToolNet-Framework
*
* Datum * Änderungsbeschreibung * Autor *
* 31.10.01 Ersterstellung Jürgen Großmann
*/
// NEW TOOL <> TOOLADAPTER COMMU
// ipc functions
void ToolNet_ipc_send(string);
void ToolNet_ipc_sendRequest(string, string, string);
void ToolNet_ipc_sendReturn(string, string);
void ToolNet_ipc_sendVoidReturn(string);

/**
 * The given message is sent to the ToolAdapter.
 */
void ToolNet_ipc_send(string i_message) {
 ToolNet_ack("\nSENDING:\n" i_message "\n");
 IPC javaSocket;
 javaSocket = client(ToolNet_client_port,ToolNet_client_localhost);
 if(! null javaSocket) {
 send(javaSocket, i_message "\n");
 delete(javaSocket);

ToolNet RelationService implementation in DOORS 189

189

 } else {
 // communication error
 }
}

/**
 * Creates a request to be handled by the given method of the given interface.
 * The resulting message is sent to the ToolAdapter.
 */
void ToolNet_ipc_sendRequest(string i_interface, string i_method, string i_parameters) {
 string message = i_interface ":" i_method "(" i_parameters ")";
 ToolNet_ipc_send(message);
}

/**
 * Creates a parameterless request to be handled by the given method of the given interface.
 * The resulting message is sent to the ToolAdapter.
 */
void ToolNet_ipc_sendVoidRequest(string i_interface, string i_method) {
 ToolNet_ipc_sendRequest(i_interface,i_method,"");
}

/**
 * Creates a return message with the given message identifier (ACT).
 * The resulting message is sent to the ToolAdapter with parameters.
 */
void ToolNet_ipc_sendReturn(string i_identifier, string i_parameters) {
 string message = "return " i_identifier ": " i_parameters "";
 ToolNet_ipc_send(message);
}

/**
 * Creates a void return message with the given message identifier (ACT).
 */
void ToolNet_ipc_sendVoidReturn(string i_identifier) {
 string message = "return " i_identifier;
 ToolNet_ipc_send(message);
}

A.3.3. ToolNet RelationService implementation in DOORS

The menu operation ToolNet_startLink calls the DXL-function addCurrentObjectAsAnchor()-function
to create a Link Source as shown below:

Example A.17: Implementation of ToolNet_startLink in ToolNet_startLink.dxl:

// sets ToolNet Link
/*
 This script sets the source of a ToolNet Link
*/
//# main
#include <addins/ToolNet/ToolNet_RelationCreationClient.inc>

ToolNet_RelationCreationClient_addCurrentObjectAsAnchor(ToolNet_RelationCreation_SOURCE);

Similarly, the menu operation ToolNet_endLink calls the addCurrentObjectAsAnchor()-function to de-
fine a Link Target:

190 Prototype Source Excerpts

190

Example A.18: Implementation of ToolNet_endLink in ToolNet_endLink.dxl:

// sets ToolNet Link
/*
 This script sets the target of ToolNet Link
*/
//# main
#include <addins/ToolNet/ToolNet_RelationCreationClient.inc>

ToolNet_RelationCreationClient_addCurrentObjectAsAnchor(ToolNet_RelationCreation_TARGET);

The following source shows the implementation of the function addCurrentObjectAsAnchor() that
eventually sends a ToolNet-request over the IPC-channel to the prototype:

Example A.19: Implementation of ToolNet_PresentationClient.inc

/**
* Script: Manage relation client for ToolNet-Framework,
* creates relation in ToolNet-Framework

* Datum * Änderungsbeschreibung * Autor *

* 31.10.01 Ersterstellung Jürgen Großann
* 21.07.03 Implementing new Tool / Tool-Adapter communiation
* Stephan Weiß
***/
const string ToolNet_RelationCreationInterface = "org.toolnet.core.model.services.IRelationCreation"

const string ToolNet_RelationCreationClient_ADDANCHOR = "addAnchor"
const string ToolNet_RelationCreationClient_REMOVEANCHORS = "removeAnchors"

const string ToolNet_RelationCreation_TARGET = "0"
const string ToolNet_RelationCreation_SOURCE = "1"
const string ToolNet_RelationCreation_IDENTITY = "2"

/**
* Funktionsname: ToolNet_RelationCreationClient_addAnchor
* Zweck: adds an anchor for a link

* Datum * Änderungsbeschreibung * Autor *

* 23.09.03 Ersterstellung Stephan Weiss
**/
void ToolNet_RelationCreationClient_addAnchor(string refTokens[], string anchorType) {

 string parameters = ToolNet_arg_asTypedStringArray(refTokens,"id")
 parameters = parameters "," ToolNet_arg_asTypedString(anchorType,"AddAsType");
 ToolNet_ipc_sendRequest(ToolNet_RelationCreationInterface,
 ToolNet_RelationCreationClient_ADDANCHOR,
 parameters);
}

/**
* Funktionsname: ToolNet_RelationCreationClient_addAnchor
* Zweck: adds an anchor for a link

* Datum * Änderungsbeschreibung * Autor *

* 23.09.03 Ersterstellung Stephan Weiss
**/

ToolNet PresentationService implementation in DOORS 191

191

void ToolNet_RelationCreationClient_addAnchor(Module mod, Object obj,
 string anchorType) {
 string refTokens[4];
 ToolNet_idmap_writeObjectID(mod,obj,refTokens);
 ToolNet_RelationCreationClient_addAnchor(refTokens, anchorType);
}

/**
* Funktionsname: ToolNet_RelationCreationClient
* _addCurrentObjectAsAnchor
* Zweck: adds an anchor for a link

* Datum * Änderungsbeschreibung * Autor *

* 23.09.03 Ersterstellung Stephan Weiss
**/
void ToolNet_RelationCreationClient_addCurrentObjectAsAnchor(string anchorType) {
 ToolNet_RelationCreationClient_addAnchor(current Module, current Object, anchorType);
}

A.3.4. ToolNet PresentationService implementation in
DOORS
Example A.20 shows the implementation of the ToolNet SHOWOBJECT-Service provided by the DoorsAdapter,
which highlights an Object in the DOORS interface:

Example A.20: Implementation of ToolNetPresentationService.inc

/**
* Script: Presentation service for ToolNet-Framework,
* receive presentation commands

* Datum * Änderungsbeschreibung * Autor *

* 31.10.01 Ersterstellung Jürgen Großmann
*
***/

/**
* Funktionsname: ToolNet_PresentationService_showObject
* Eingang: string i_modID,
* string i_objID,
* string i_attribute,
* string i_offset
* Ausgang: -
* Zweck: gets request for SHOWOBJECT an shows
* specified object

* Datum * Änderungsbeschreibung * Autor *

* 31.10.01 Ersterstellung Jürgen Großmann
* 07.01.03 changed for use with filters and views Stephan Weiss
**/
void ToolNet_IPresentation_showObject (string i_modID, string i_objID,
 string i_attribute, string i_offset,
 string i_act) {
 Object objToShow;
 Module mdlToWorkIn;

192 Prototype Source Excerpts

192

 ToolNet_ack ("showObject " i_modID ", " i_objID ", " i_attribute ", " i_offset "\n");
 if (i_modID == "null" || i_objID == "null") {
 ToolNet_ack("TN_PS_showObject has received null module or object parameters.");
 return;
 }
 // dereference ToolNetID
 string mode = "dontCloseLast";
 mdlToWorkIn = ToolNet_idmap_getModuleForID(i_modID, true, mode);
 current = mdlToWorkIn;
 if (filtering mdlToWorkIn) {
 filtering off;
 }
 objToShow = ToolNet_idmap_getObjectForID(mdlToWorkIn, i_objID);
 // no object, do nothing
 if (null(objToShow)){
 ToolNet_ack ("showObject: failed - could not find object\n");
 return;
 }
 current = objToShow;
 string absNum = i_objID;
 string attName = i_attribute;
 string offSet = i_offset;
 if (attName == "null")
 attName = null;
 // create filter
 Filter f1 = (attribute "Absolute Number" == absNum);
 // show object
 if (canModify(mdlToWorkIn)) {
 setSelection(objToShow);
 }
 ...
 set f1;
 filtering on;
 // show ancestors ?
 ancestors(false);
 // refresh module window
 refresh mdlToWorkIn;
 // bring module window to front
 ToolNet_moduleWinToFront(mdlToWorkIn);
 // ToolNet window
 if (ToolNet_blnWindow) {
 ToolNet_window_updateModule(ToolNet_window_dbMain, current());
 ToolNet_window_updateObject(ToolNet_window_dbMain, current(), current());
 ToolNet_window_updateAttribute(ToolNet_window_dbMain, current(), current(),
 attName);
 // window is hidden and we have non interaction modus
 if (! showing(ToolNet_window_dbMain)) {
 //realize(ToolNet_window_dbMain);
 }
 }
 ToolNet_ipc_sendVoidReturn(i_act);
}

193

Appendix B. A Prototype Walkthrough

B.1. Preconditions
For designing the prototype ServiceAssembly, the requirements outlined in Section 6.2 have to be met. For
running the prototype, a valid license for the commercial application DOORS is needed (evaluation licenses are
available from Telelogic on request).

For DOORS, it is assumed that a database with at least one formal module containing one or more objects is
loaded. For this, the demo database was used throughout development and for walking through the prototype
use case.

B.2. Designtime

Figure B.1: Designing the prototype ServiceAssembly in the ChainbuilderESB IDE

194 A Prototype Walkthrough

194

Figure B.2: Adding a new DOORS ServiceEngine

Figure B.3: Configuring the DOORS ServiceEngine as a Consumer

Designtime 195

195

Figure B.4: Configuring the DOORS ServiceEngine's MessageExchangePattern

Figure B.5: Configuring the Chainbuilder helper library

196 A Prototype Walkthrough

196

Figure B.6: The new ServiceEngine is displayed in the design view

Figure B.7: Adding a new DOORS BindingComponent for sending requests to DOORS

Designtime 197

197

Figure B.8: Configuring the DOORS BindingComponent as a Provider

Figure B.9: Setting the DOORS sender port

198 A Prototype Walkthrough

198

Figure B.10: Configuring the ChainBuilder helper library

Figure B.11: The new BindingComponent is displayed in the design view

Designtime 199

199

Figure B.12: Adding an external endpoint

Figure B.13: Configuring the MessageExchange from ServiceEngine to BindingComponent

Figure B.14: Configuring the outgoing MessageExchange from BindingComponent to DOORS

200 A Prototype Walkthrough

200

Figure B.15: Adding an incoming DOORS connection

Figure B.16: Adding a new BindingComponent for handling incoming requests from DOORS

Designtime 201

201

Figure B.17: Configuring the BindingComponent as Consumer

Figure B.18: Setting the BindingComponent's MessageExchangePattern and receiver port

202 A Prototype Walkthrough

202

Figure B.19: The Consumer BindingComponent is displayed in the editor

Figure B.20: Adding a ServiceEngine to process input from DOORS

Designtime 203

203

Figure B.21: Configuring the DOORS ServiceEngine as a Provider

Figure B.22: The Provider ServiceEngine is displayed in the editor

204 A Prototype Walkthrough

204

Figure B.23: Configuring the incoming message flow

Figure B.24: Building the ServiceAssembly

Runtime 205

205

Figure B.25: Deploying the ServiceAssembly

B.3. Runtime
In the shell, set up the Chainbuilder environment:

. set_cbesb.sh

Start the ServiceAssembly with the command:

cbesb_run ToolNetServiceAssembly

The ServiceAssembly has to be located in ChainBuilder's installation directory under runtimes/test, which
is the default location for ServiceAssemblies developed with the ChainBuilder IDE.

Wait until ServiceMix has started and finished installing the ServieAssembly:

Starting Apache ServiceMix ESB: 3.2.1
Loading Apache ServiceMix from file: servicemix.xml
INFO - JBIContainer - ServiceMix 3.2.1 JBI Container (ServiceMix) is starting
...
INFO - ServiceAssemblyLifeCycle - Starting service assembly: ToolNetServiceAssembly
INFO - ServiceUnitLifeCycle - Initializing service unit: ToolNetServiceAssembly_DoorsServiceEngine
INFO - ServiceUnitLifeCycle - Initializing service unit: ToolNetServiceAssembly_DoorsAdapter_Out
INFO - ServiceUnitLifeCycle - Initializing service unit: ToolNetServiceAssembly_DoorsAdapter_In
INFO - ServiceUnitLifeCycle - Initializing service unit: ToolNetServiceAssembly_DoorsServiceEngine_In
INFO - ServiceUnitLifeCycle - Initializing service unit: ToolNetServiceAssembly_Installer
INFO - ServiceUnitLifeCycle - Starting service unit: ToolNetServiceAssembly_DoorsServiceEngine
INFO - DoorsServiceEngineConsumerHandler - doStart()
INFO - ServiceUnitLifeCycle - Starting service unit: ToolNetServiceAssembly_DoorsAdapter_Out
INFO - ServiceUnitLifeCycle - Starting service unit: ToolNetServiceAssembly_DoorsAdapter_In
ERROR - DoorsConsumerListener - Got invalid port: null - using default port 5094
INFO - DoorsConsumerHandler - ConsumerHandler started.
INFO - ServiceUnitLifeCycle - Starting service unit: ToolNetServiceAssembly_DoorsServiceEngine_In
INFO - ServiceUnitLifeCycle - Starting service unit: ToolNetServiceAssembly_Installer
INFO - AutoDeploymentService - Directory: deploy: Finished installation of archive: ToolNetServiceAssembly.zip

206 A Prototype Walkthrough

206

Verify that all ServiceUnits have been started correctly and the DoorsConsumerListener Thread has started lis-
tening on the incoming DXL port configured.

Then open jconsole in a second Terminal, connecting to the local ServiceMix instance:

jconsole service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi &

In JConsole, switch to the MBeans-tab and navigate to ServiceMix#Components#Toolnet-BC-Doors, then open
the treeview and select DOORS-Sender#Operations. In the right view, Operation invocation, click on Start
DOORS , as shown in the screenshot below:

The application DOORS is started by the DOORS MBean , and the DOORS-side ToolNet-Adaptor is initial-
ized automatically when DOORS starts up. The Adaptor immediately connects to the prototype using a socket
connection provided by the DOORS API and send the command "toolStarted()" for acknowledging successful
initialization of the ToolNetAdapter. The response is received by the DOORS BindingComponent and handed
over to the DoorsServiceEngine , where it is interpreted accordingly (see log output below):

DEBUG - DoorsConfiguration - Starting DOORS over JMX with command: /home/grexe/apps/doors71/bin/doors7
INFO - DoorsConsumerListener - Received input from DOORS:
INFO - DoorsConsumerListener - org.toolnet.core.model.other.ILocalToolNet:toolStarted()
DEBUG - DoorsConsumerListener - createInbound, DefaultMEP: http://www.w3.org/2004/08/wsdl/in-only
DEBUG - DoorsServiceEngineComponent - Received exchange: status: Active, role: provider
DEBUG - DoorsServiceEngineProviderProcessor - Received In Message:
 org.toolnet.core.model.other.ILocalToolNet:toolStarted()
DEBUG - DoorsServiceEngineProviderProcessor - parsing request
DEBUG - DoorsServiceEngineProviderProcessor - DOORS Adapter started successfully

In the DOORS main window, open the formal module Easy Start and select the submodule Continue here by
doubleclicking the item, as illustrated below:

Runtime 207

207

A new window opens, showing the contents of the formal module. Now select any object (text) in the right view,
then invoke the menu option ToolNet#Set object as source (notice that this menu is only available when a formal
module is open, it is not visible in the main window at startup):

Figure B.26: Doors Source

208 A Prototype Walkthrough

208

Invoking the menu operation triggers the corresponding ToolNet-DXL-script of the DOORS ToolNet-Adapter,
which sends a ToolNet-message over the IPC channel, containing the module ID, object ID and link type, along
with the command that was invoked. This message is received by the DOORS BindingComponent on the pro-
totype end (see the log below) and converted into a NormalizedMessage, which is sent to the ServiceEngine
for further processing . When the message is received by the DoorsServiceEngine , it is propagated to the
Provider which parses the request and associated arguments . This information is then used to create a new
MBean to represent the requested link to the DOORS Object .

INFO - DoorsConsumerListener - Received input from DOORS:
DEBUG - DoorsConsumerListener - org.toolnet.core.model.services.IRelationCreation:addAnchor((id)
["00000661","356","__NULL__","__NULL__"],(AddAsType)"1")
DEBUG - DoorsConsumerListener - createInbound, DefaultMEP :http://www.w3.org/2004/08/wsdl/in-only
DEBUG - DoorsConsumerListener - Consumer endpoint service=...
DEBUG - DoorsConsumerListener - Got target endpoint...
DEBUG - DoorsServiceEngineComponent - Received exchange: status: Active, role: provider
INFO - DoorsServiceEngineProviderProcessor - Received In Message:
org.toolnet.core.model.services.IRelationCreation:addAnchor((id)["00000661","356","__NULL__","__NULL__"],
(AddAsType)"1")

DEBUG - DoorsServiceEngineProviderProcessor - parsing request:
 org.toolnet.core.model.services.IRelationCreation:addAnchor((id)["00000661","356","__NULL__","__NULL__"],
(AddAsType)"1")
DEBUG - DoorsServiceEngineProviderProcessor - DOORS Adapter addAnchor requested:
DEBUG - DoorsServiceEngineProviderProcessor - parsed module: 00000661
DEBUG - DoorsServiceEngineProviderProcessor - parsed ID: 356
DEBUG - DoorsServiceEngineProviderProcessor - setting up DOORS Object MBean for ID 356
DEBUG - DoorsServiceEngineProviderProcessor - Registering DOORS Object MBean
 'org.apache.servicemix:ContainerName=ServiceMix,Type=Component,Name=ToolNet-SE-Doors,SubType=DOORS Object
 #356'
DEBUG - DoorsObject - init ObjectMBean for ConsumerHandler (ID=356, type=1)
DEBUG - DoorsServiceEngineProviderProcessor - successfully registered MBean
 org.apache.servicemix:ContainerName=ServiceMix,Type=Component,Name=ToolNet-SE-Doors,SubType=DOORS Object
 #356
DEBUG - DoorsServiceEngineProviderProcessor - DONE with MessageExchange

The new MBean is displayed as "DOORS Object #" including the ObjectID as received from DOORS. The
screenshot below shows the updated MBean view in JConsole:

Runtime 209

209

Each DOORS Object MBean also includes an operation to highlight the corresponding Object in DOORS. In
the JMX console, navigate to ServiceMix#Components#Toolnet-SE-DOORS. Go to Operations and click on the
highlight button:

Figure B.27: Highlighting a linked Object in DOORS from the prototype using JConsole

When the method is invoked on the DoorsMBean, it calls the DoorsServiceEngine's highlightObject()-
method that sends a DXL-script to the DoorsBindingComponent. Upon receiving the request message , the
DOORS BindingComponent opens a socket connection to the DXL server in DOORS and sends the DXL
over the wire . The ToolNet-Adapter in DOORS interprets the script and executes the commands accordingly,
changing the active view to show only the object specified in the script. Then it sends an acknowledgement back
to the prototype to inform about the successful operation, which is received on the prototype end , again by
the DoorsBindingComponent, and parsed accordingly by the DoorsServiceEngine , which registers the success
response .

DEBUG - DoorsServiceEngineConsumerHandler - Got message over JMX...
DEBUG - DoorsServiceEngineConsumerHandler - Sending to the NMR...
DEBUG - DoorsServiceEngineConsumerHandler - create IN-ONLY
DEBUG - DoorsServiceEngineConsumerHandler - Normalized Message:
#include <addins/ToolNet/ToolNet_PresentationService.inc>;
ToolNet_IPresentation_showObject("00000661","356","null","null","HIGHLIGHT_OBJECT")
DEBUG - DoorsServiceEngineConsumerHandler - message sent successfully to NMR.
DEBUG - DoorsComponent - Received exchange: status: Active, role: provider

210 A Prototype Walkthrough

210

DEBUG - DoorsProviderProcessor - Received in message.
WARN - DoorsProviderProcessor - using default port: 5093
DEBUG - DoorsProviderProcessor - Connecting to DOORS @5093
INFO - DoorsProviderProcessor - Successfully Connected to DOORS.
DEBUG - DoorsProviderProcessor - sending DXL: ...
INFO - DoorsConsumerListener - Received input from DOORS:
DEBUG - DoorsConsumerListener - return HIGHLIGHT_OBJECT
DEBUG - DoorsConsumerListener - createInbound, DefaultMEP :http://www.w3.org/2004/08/wsdl/in-only
...
INFO - DoorsServiceEngineProviderProcessor - Received In Message: return HIGHLIGHT_OBJECT
DEBUG - DoorsServiceEngineProviderProcessor - parsing request: return HIGHLIGHT_OBJECT
DEBUG - DoorsServiceEngineProviderProcessor - DOORS-Adapter successfully invoked operation: HIGHLIGHT_OBJECT
DEBUG - DoorsProviderProcessor - Command sent to DOORS successfully.

To reset the view in DOORS, click on the active filter-icon in the Toolbar (2nd row, left to the sorting icon "A-
Z"). You can now link more Objects and invoke the highlight-operation from the additional MBeans that come
up in the JConsole MBeans-view, following the previous steps again.

211

Glossary

List of Terms and Abbreviations
BPEL (Business Process Exe-
cution Language)

an XML language for defining business work flows, often used in ESB
See Also BPM.

BPM (Business Process Man-
agement)

a disipline that covers the analysis, design and optimization of business pro-
cesses in an enterprise, working together with enterprise architects and inte-
gration designers

COTS (commercial of the
shelf software)

pre-packaged software acquired from an external vendor; mostly closed-
source applications using proprietary interfaces and data formats, optionally
provide an API, making the software accessible to other applications
See Also ToolNet.

CORBA (Common Request
Broker Architecture)

an open, vendor-independent specification defined by the OMG consortium;
defines an architecture and infrastructure to provide interoperability between
distributed, heterogeneous applications using the standard protocol IIOP.

COM (Component Object
Model)

a proprietary component API introduced by Microsoft in Windows during
the 1990s, later became COM+ and DCOM, then ActiveX, now superseded
by .NET

Composite Application an application that is composed of independent, often service-oriented applica-
tions; unlike past component approaches, composite applications are designed
for distributed interoperability using abstract interfaces, and allow for dynam-
ic and spontaneous integration by integration designers or even normal end
users.
See Also COM.

CRM (Customer Relationship
Management)

business discipline for integrating customer information with other relevant
data, like past and present inquiries (mail), orders or appointments; this is a
classical candidate for integration in the enterprise domain

DI (Dependency Injection) The term was coined by Martin Fowler to describe a pattern first called in-
version of control, which can be seen as an implementation of the Holly-
wood-principle (“don't call us, we'll call you”). Following this method, depen-
dencies are not directly resolved by the application at designtime, but dynam-
ically injected into placeholders, e.g. configuration classes, during runtime,
using a framework and associated configuration, e.g. Spring. This allows late
binding of data sources or other needed resources, without tying the imple-
mentation to specific dependencies, allowing easier unit testing and adapting
to changing requirements.

DocBook an open XML-based standard for writing technical documentation, books and
articles, similar to (La)TeX but with the advantages of using a well-defined
XML-format and flexible XSL-stylesheets. DocBook, now at version 5, helps
the author to focus on the semantic aspect of writing by providing a rich set of
notations and automates formatting for various output-formats by using suit-

212 Glossary

212

able stylesheets (such as OpenDocument, HTML, FO/PDF or PS). Also trans-
lation to legacy documentation formats such as Word (DOC) or TeX is pos-
sible.

DXL (DOORS eXtension
Language)

a scripting language to access the DOORS API from external applications,
used for integrating DOORS into ToolNet
See Also DOORS.

DOORS (Dynamic Object
Oriented Requirements Sys-
tem)

a widely used commercial application for requirements-tracing developed by
Telelogic, used as a prime example for integration of COTS tools with ToolNet
See Also COTS software, ToolNet.

Eclipse an extensible and cross-platform open source IDE1 and application plat-
form originally developed by IBM. Based on Java and OSGi, it provides a
flexible plugin-based extension architecture to facilitate adoption of the IDE
for a wide array of usage scenarios in various software and system engineer-
ing domains.
See Also NetBeans, OSGi, Rich Client Platform.

EAI (Enterprise Application
Integration)

describes the general domain of integrating applications, mostly legacy back-
end systems, in an enterprise environment to allow reusing existing software
together with new technologies, such as SOA, and newly added applications

EJB (Enterprise Java Beans) a JEE component standard tailored to enterprise needs, including support for
transactions and distributed communication, e.g., using Web Services

ESB (Enterprise Service Bus) an integration solution providing a flexible communication backbone that sup-
ports conversion to and from multiple protocols used by existing applications
to be connected.
See Also Java Business Integration.

EDA (Event Driven Architec-
ture)

Whereas in an SOA, service calls are issued by services themselves in an im-
parative fashion, the principle notion of an event-driven architecture is the
Event, which can be generated by an external source, a connected application,
or triggered as a result of another Event. This indirect communication enables
developers to build more flexible and dynamic real-world solutions that can
intelligently process massive requests in an automated way. In practice, both
approaches complement each other and are often used together.
See Also SOA.

ETL (Extract, Transfer and
Load)

a common integration pattern in the enterprise domain for connecting and syn-
chronizing large data sources, mostly realized as nightly batch jobs in trans-
national organizations

IPC (Inter Process Communi-
cation)

a mechanism that allows separate applications to communicate with each oth-
er, typically using an OS-level facility like sockets (enabling distributed com-
munication) or pipes (on UNIX)

JBI (Java Business Integra-
tion)

a specification by Sun (JSR 208) that defines a standards-based service-ori-
ented integration framework based on Java technology that can also incorpo-
rate non-Java applications.
See Also Service Component Architecture.

http://www.eclipse.org/

213

213

JCA (Java Connector Archi-
tecture)

a specification by Sun (JSR 16) that defines a standard architecture and
interface contracts for integrating existing legacy applications using Re-
sourceAdapters.
See Also Java Business Integration.

JEE (Java Enterprise Edition) (called J2EE prior to JEE5) specifies a standard platform for developing en-
terprise applications in Java, defining several standard APIs for working with
legacy systems (JCA), databases (JDBC), XML (SAX, JAXB, StAX), web
services (JAX-WS), web interfaces (JSF) and remote applications (EJB, JSR
220). Several versions of the platform have been defined through the Java
Community Process (JCP) in JSRs 58 (J2EE 1.3), 151 (J2EE 1.4), 244 (JEE
5), 316 (JEE 6).
See Also Enterprise Java Beans.

JMX (Java Management Ex-
tensions)

defines a standard architecture, API and services for local and remote man-
agement and instrumentation of Java applications and management of the Java
Virtual Machine through JSRs 3 (JMX Specification), 77 (Management for
J2EE), 160 (remote management) and 255 (JMX 2.0). See Sun's JMX Tech-
nology Homepage2 for more details.

JNA (Java Native Access) an open source Java library that wraps access to native code over JNI by pro-
viding a proxy that implements a custom interface written by the user, thereby
avoiding the effort necessary to write custom header files and stub classes for
integrating non-Java code; see [JNA]
See Also JNI.

JNI (Java Native Interface) the standard way to access native (non-Java) code from Java, e.g. for integrat-
ing C libraries or legacy code; requires developers to write special headers and
Java stubs – an easier way to integrate native doe is available with JNA

Mashup The compounding (“mashing”) of two or more pieces of complement-
ing web functionalities to create a powerful web application. This is
usually achieved through the use of APIs. (taken from A Quick Web
2.0 Glossary, http://www.brownbatterystudios.com/sixthings/2006/02/24/a-
quick-web-20-glossary/)

MOM (Message-Oriented
Middleware Integration)

a kind of functional integration where systems are connected through mes-
sage queues using proprietary messaging middleware (see [Trowbridge2004],
p115)

NetBeans a Java-based open source IDE developed by Sun.
See Also Eclipse.

OLE (Object Linking and Em-
bedding)

a Microsoft Windows standard for component-based application integration,
allowing embedding (parts of) applications into other applications, e.g., a
spreadsheet component into a text document, forming so called compound
documents. Now mostly superseded by ActiveX.

OMG (Object Management
Group)

an industry consortium that develops open standards for software developers
and end users, sample OMG standards include UML or CORBA

CSA (Open Composite Ser-
vices Architecture)

open collaboration led by OASIS Consortium to continue development of the
Service Component Architecture (SCA)- and Service Data Objects (SDO)-
specifications

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

214 Glossary

214

See Also Service Component Architecture.

OSGi (Open Services Gate-
way Initiative)

an industry-wide open component standard originally used in the embedded
and automotive domain, but became widespread on the desktop with the adop-
tion by Eclipse, using it as the basis for its plugin-framework; currently in-
creasingly used in enterprise environments, replacing proprietary application
server module architectures

OASIS (Organization for the
Advancement of Structured
Information Standards)

member consortium working on open (mostly document related) standards,
see the OASIS web site http://www.oasis-open.org/
See Also WS-I.

REST (Representational State
Transfer)

a distributed communication architecture that solely relies on HTTP for defin-
ing a set of common operations understood by all participating services, there-
by avoiding the overhead in usual SOA implementations introduced by com-
plex XML-based protocols and interface definitions
See Also SOAP.

RCP (Rich Client Platform) an application platform based on Eclipse and SWT to facilitate rapid creation
of plugin-based portable applications with standard user interfaces.
See Also Eclipse.

SCA (Service Component Ar-
chitecture)

a standard for a service-oriented composite application framework originally
developed by IBM, which is now being continued as an open standards effort
called Open Composite Services Architecture under the umbrella of the OA-
SIS Consortium3.
See Also CSA.

SDO (Service Data Objects) an XML-based standard for data-integration in heterogenous environments in-
cluding enterprise information systems, web services and relational databases.
Initially developed by IBM, now an open standard which is further developed
as part of the Open Composite Services Architecture.
See Also Service Component Architecture.

SOA (Service Oriented Archi-
tecture)

a design principle that uses design patterns, best practices and open interoper-
ability standards to facilitate the realization of modular systems that expose
their functionality as a set of independent Services described using a common
interface schema (e.g., WSDL). A common facility (e.g., UDDI) allows other
Services to query for registered Services and transparently invoke them (e.g.,
using SOAP), reusing existing functionality. SOA facilitates loose coupling
between applications and maximizes reuse.

SOE (Service Oriented Enter-
prise (also Enterprise 2.0))

a marketing moniker for describing the adoption of Web 2.0 concepts in an
enterprise environment, e.g. enterprise wikis or corporate application Mashup

SOI (Service Oriented Inte-
gration)

Unlike MOM, this integration form uses open, service-oriented standards to
connect systems in a portable, loosely coupled way that is not bound to pro-
prietary protocols or implementations.
See Also ESB.

SOAP (Simple Object Access
Protocol)

now only called SOAP, an open XML-based interoperability standard real-
izing remote communication among software components or Services, often
used as part of an SOA

http://www.oasis-open.org/
http://www.oasis-open.org/

215

215

SWT (Standard Widget
Toolkit)

an open source UI-framework4 for Java developed by IBM mainly for use
in the Eclipse IDE. Provides support for native widgets of the underlying op-
erating system, unlike Swing (up to including JSE5 with limited support for
native widgets in JSE6), the standard widget toolkit for Java.

ToolNet a service-oriented framework for desktop application integration developed
by EADS Germany for connecting heterogenous and COTS engineering tools
to allow for data exchange and improved workflow for engineers
See Also COTS.

UDDI (Universal Description,
Discovery and Integration)

acts as a central directory in an SOA to manage registered services and handle
queries (c.f. [Erl2004:80])
See Also SOA.

Web Service application services exposed over the Web for distributed operation, using
open standards for describing the interface (e.g., WSDL) and for communica-
tion (e.g. SOAP); recently, REST-based web services are emerging that rely
only on HTTP methods like PUT, GET and DELETE, and avoid the overhead
in using XML-based protocols and interface descriptions
See Also SOA, REST.

WSDL (Web Service Descrip-
tion Language)

an XML-based standardized interface description format generally used in an
SOA for defining Service interfaces
See Also SOA.

WS-I (Web Services Interop-
erability)

open consortium that works on interoperability standards for web services,
defining several profiles that represent levels of interoperability

WCF (Windows Communica-
tion Foundation)

a Web Service based distributed communication infrastructure for the Mi-
crosoft .NET framework
See Also SOA.

XMI (XML Metadata Inter-
change)

an open, XML-based standard for interoperability between modeling applica-
tions, implementing a meta-model by the OMG
See Also OMG.

http://www.eclipse.org/swt/

216

216

217

References
[Altheide2002] Frank Altheide, Heiko Dörr, and Andy Schürr. “Requirements to a Framework for sustainable

Integration of System Development Tools”. AFIS PC Chairs. 53-57. 2002.

[Altheide2003] Frank Altheide, Sven Dörfel, Heiko Dörr, and Jan Kanzleiter. “An Architecture for a Sustainable
Tool Integration”. Workshop on Tool Integration in System Development at ESEC/FSE 2003. 29–32.
2003.

[Amsden2001] J. Amsden. “Levels of Integration: Five Ways You Can Integrate with the Eclipse Platform”.
2001.

[Anderson2000] K. Anderson, R. Taylor, and E. Whitehead. “Chimera: Hypermedia for Heterogeneous Software
Development Environments”. 2000.

[Anderson1993] M.J. Anderson and B.D. Bird. “An evaluation of PCTE as a portable tool platform”. Software
Engineering Environments Conference, 1993. Proceedings. 96-100. 1993.

[Apple2007] Apple. “Automator Programming Guide”. 2007.

[Apple1993] Apple. “Inside Macintosh: Interapplication Communication”. Addison-Wesley. 1st. 1993.

[Arnold1995] John E. Arnold. “Control integration: a briefly annotated bibliography”. SIGSOFT Softw. Eng.
Notes. ACM. 20. 62–67. 1995.

[Arsanjani2005] Ali Arsanjani. “Toward a pattern language for Service-Oriented Architecture and Integration”.
IBM DeveloperWorks. 2005.

[Balasubramanian2006] Krishnakumar Balasubramanian, Douglas C. Schmidt, Zoltán Molnár, and Ákos
Lédeczi. “System Integration using Model-Driven Engineering”. 2006.

[Bandinelli1996] S. Bandinelli, E. Di Nitto, and A. Fuggetta. “Supporting cooperation in the SPADE-1 environ-
ment”. Software Engineering, IEEE Transactions on. 22. 841-865. 1996.

[BaoHorowitz1996] Yimin Bao and Ellis Horowitz. “A new approach to software tool interoperability”. ACM.
500–509. 1996.

[Barrett1996] Daniel J. Barrett, Lori A. Clarke, Peri L. Tarr, and Alexander E. Wise. “A framework for event-
based software integration”. ACM Trans. Softw. Eng. Methodol.. ACM. 5. 378–421. 1996.

[Beyer2005] Thomas Beyer. “Concept and Implementation of Integrating the Open-Source Platform Eclipse into
an Information Integration Framework for Systems Engineering (ToolNet)”. 2005.

[BizTalk2007] Microsoft. “Introducing "BizTalk Services''”. 2007.

[Brink2001] Emil Brink. “The Verse Networked 3D Graphics Platform”. 2001.

[Brown1994] Alan W. Brown, David J. Carney, Edwin J. Morris, Dennis B. Smith, and Paul F. Zarrella. “Prin-
ciples of CASE tool integration”. Oxford University Press, Inc.. 1994.

[Brown1992] Alan W. Brown and John A. McDermid. “Learning From IPSE's Mistakes”. IEEE Softw.. IEEE
Computer Society Press. 9. 23–28. 1992.

218 References

218

[Caselli2008] Vincenzo Caselli, Malhar Barai, and Binildas A. Christudas. “Service Oriented Architecture with
Java”. Packt Publishing. 2008.

[CBESB] Bostech. “ChainBuilder ESB Reference Guide”. 2007.

[CBESBCC] Bostech. “ChainBuilder ESB Custom Component Guide”. 2007.

[Chappell2007] David Chappell. “Introducing SCA”. 2007.

[Chappell1996] David Chappell. “Understanding ActiveX and OLE: a guide for developers and managers”.
Microsoft Press. 1996.

[Cheng2006] Feng Chen, Shaoyun Li, Hongji Yang, Ching-Huey Wang, and William Cheng-Chung Chu. “Fea-
ture Analysis for Service-Oriented Reengineering”. 2006.

[CoreJ2EE] Deepak Alur, John Crupi, and Dan Malks. “Core J2EE Patterns: Best Practices and Design Strate-
gies”. Prentice Hall International. 2nd. 650. 2003.

[Chen2007] Hanwei Chen, Jianwei Yin, Lu Jin, Ying Li, and Jinxiang Dong. “JTang Synergy: A Service Oriented
Architecture for Enterprise Application Integration”. Computer Supported Cooperative Work in Design,
2007. CSCWD 2007. 11th International Conference on. 502-507. 2007.

[Chen2007b] Chen, Jing-Ying. “Resource-Oriented Computing: Towards a Univeral Virtual Workspace”. Ad-
vanced Information Networking and Applications Workshops, 2007, AINAW '07. 21st International Con-
ference on. 2. 993-1000. 2007.

[Christudas2008] Binildas A Christudas. “Service-Oriented Java Business Integration”. Packt Publishing. 2008.

[Ciurana2007] Eugene Ciurana. “Mule: A Case Study”. 2007.

[Cohen2006] Frank Cohen and Brian Bartel. “Service Governance and Virtualization For SOA”. 2006.

[Cook2007] William R. Cook. “AppleScript”. ACM. 1-1–1-21. 2007.

[Corradini2004] F. Corradini, L. Mariani, and E. Merelli. “An agent-based approach to tool integration”. 2004.

[Curbow1997] Dave Curbow and Elizabeth Dykstra-Erickson. “Designing the OpenDoc human interface”.
ACM. 83–95. 1997.

[Damm2000] C. H. Damm, K. M. Hansen, M. Thomsen, and M. Tyrsted. “Tool integration: experiences and
issues in using XMI and component technology”. Technology of Object-Oriented Languages, 2000.
TOOLS 33. Proceedings. 33rd International Conference on. 94–107. 2000.

[Dan2004] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler, H. Ludwig, M. Polan, M. Spreitzer,
and A. Youssef. “Web services on demand: WSLA-driven automated management”. IBM Syst. J.. IBM
Corp.. 43. 136–158. 2004.

[Davis2009] . “Open Source SOA”. Manning Publications Co.. 2009.

[Denno2003] Denno, P., Steves, M.P., Libes, D., and Barkmeyer, E.J.. “Model-driven integration using existing
models”. Software, IEEE. 20. 59-63. 2003.

[Dmitriev2004] Sergey Dmitriev. “Language Oriented Programming: The Next Programming Paradigm”. 2004.

219

219

[Doerfel2002] Sven Dörfel and Jürgen Großmann. “Werkzeug zur Generierung von Austauschdaten in einer
verteilten Umgebung”. 2002.

[DOORS] Telelogic. “Using DOORS”. 2005.

[DOORSAPI] Telelogic. “Telelogic DOORS API Manual Release 7.1”. Telelogic. 2007.

[Dubray2007] Jean-Jacques Dubray. “Composite Software Construction”. InfoQ. 2007.

[Dubray2005] Jean-Jacques Dubray. “Comparing SCA, Java EE and JBI”. 2005.

[Duftler2001] Matthew J. Duftler, Nirmal K. Mukhi, Aleksander Slominski, and Sanjiva Weerawarana. “Web
Services Invocation Framework (WSIF)”. 2001.

[DXL] Telelogic. “DXL Reference Manual”. Release 8.2. 2007.

[Eclipse2006] Eclipse.org. “Eclipse Platform Technical Overview”. 2006.

[Eclipse2008] . “Component Oriented Development And Assembly (CODA) with Equinox”. 2008.

[EclipseRCP] Jeff McAffer and Jean-Michel Lemieux. “Eclipse Rich Client Platform - Designing, Coding, and
Packaging Java Applications”. Addison-Wesley. 1st. 552. 2005.

[EclipseSTP] Rob Cernich. “Eclipse SOA Tools Platform Project”. 2006.

[EIP] Gregor Hohpe and Bobby Woolf. “Enterprise Integration Patterns: designing, building, and deploying
messaging solutions”. Addison-Wesley Professional. 1st. 686. 2003.

[Emmerich2007] Wolfgang Emmerich, Mikio Aoyama, and Joe Sventek. “The impact of research on middleware
technology”. SIGSOFT Softw. Eng. Notes. ACM. 32. 21–46. 2007.

[Erl2004] Thomas Erl. “Service-oriented architecture : a field guide to integrating XML and Web services”.
Prentice Hall. 536. 2004.

[ESB] David Chappell. “Enterprise Service Bus. Theory in Practice.”. O'Reilly. 1st. 352. 2004.

[Farrell2002] Willy Farrell. “Introduction to the J2EE Connector Architecture”. 2002.

[Fielding2000] Roy Thomas Fielding. “Architectural Styles and the Design of Network-based Software Archi-
tectures”. 2000.

[FowlerIOC] Martin Fowler. “Inversion of Control Containers and the Dependency Injection pattern”. 2004.

[Fowler1999] Martin Fowler. “Refactoring. Improving the Design of Existing Code”. Addison-Wesley. 431.
1999.

[Fremantle2002] Paul Fremantle, Sanjiva Weerawarana, and Rania Khalaf. “Enterprise services”. Commun.
ACM. ACM Press. 45. 77–82. 2002.

[Freude2003] René Freude and Alexander Königs. “Tool integration with consistency relations and their visu-
alisation”. 6–10. 2003.

[Fung2005] Fung, C.K., Hung, P.C.K., Linger, R.C., and Walton, G.H.. “Extending Business Process Execu-
tion Language for Web Services with Service Level Agreements Expressed in Computational Quality
Attributes”. System Sciences, 2005. HICSS '05. Proceedings of the 38th Annual Hawaii International
Conference on. 166a-166a. 2005.

220 References

220

[Gautier1995] R.J. Gautier, C.W. Loftus, E.M. Sherratt, and L. Thomas. “Tool integration: experiences from
the BOOST project”. Software Engineering Environments [Conference], 1995., Proceedings. 171-181.
1995.

[Geissler2001] Hans-Ulrich Geißler. “Automatisierte Datenkopplung von Softwarewerkzeugen am Beispiel
Matlab und Doors”. 2001.

[Georgalas2005] Nektarios Georgalas and Manooch Azmoodeh. “Model Driven Integration of Standard Based
OSS Components”. Eurescom Summit 2005 on Ubiquitous Services and Applications. 2005.

[Gerety1989] C Gerety. “HP Softbench: A new generation of software development tools”. 1989.

[Giampaolo1999] Dominic Giampaolo. “Practical File System Design with the Be File System”. Morgan Kauf-
mann Publishers. 1st. 65–67. 1999.

[GOF] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. “Design Patterns. Elements of
Reusable Object-Oriented Software”. Addison-Wesley. 395. 1995.

[Goose2000] S.; Hall W.; Reich S. Goose. “Microcosm TNG: a framework for distributed open hypermedia”.
IEEE Multimedia. 7. 52 - 60. 2000.

[Gorton2003] Ian Gorton, Dave Thurman, and Judi Thomson. “Next Generation Application Integration: Chal-
lenges and New Approaches”. IEEE Computer Society. 27. 2003.

[Greenfield2004] Jack Greenfield and Keith Short. “Software Factories: Assembling Applications with Patterns,
Frameworks, Models & Tools”. John Wiley & Sons. 2004.

[Groza2007] Tudor Groza, Siegfried Handschuh, Knud Müller, Gunnar Grimnes, LeoSauermann, Enrico Mi-
nack, Mehdi Jazayeri, Cédric Mesnage, Gerald Reif, and Rósa Gudjónsdóttir. “The NEPOMUK Project
- On the way to the Social Semantic Desktop”. 2007.

[Gulledge2006] Gulledge and Thomas. “What is integration?”. Industrial Management & Data Systems. Emerald
Group Publishing Limited. 106. 5–20. 2006.

[Guo2004] Bing Guo, Yan Shen, Jun Xie, Yong Wang, and Guang-Ze Xiong. “A kind of new ToolBus model
research and implementation”. SIGSOFT Softw. Eng. Notes. ACM. 29. 5–5. 2004.

[Haase2003] Thomas Haase. “Semi-automatic Wrapper Generation for a-posteriori Integration”. 84–88. 2003.

[Henning2006] Michael Henning. “The Rise and Fall of CORBA”. ACM Queue Magazine. 4. 2006.

[Hohpe2007] Gregor Hohpe. “Let's Have a Conversation”. Internet Computing, IEEE. 11. 78–81. 2007.

[Hohpe2006a] Gregor Hohpe. “Programming Without a Call Stack - Event-driven Architectures”. 2006.

[Hohpe2006b] Gregor Hohpe. “Workshop Report: Conversation Patterns”. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany. 2006.

[Holt2006] R. Holt, A. Schürr, S. Sim, and A. Winter. “GXL: A Graph-Based Standard Exchange Format for
Reengineering”. Science of Computer Programming. Elsevier Science Publ.. 60. 149-170. 2006.

[IEEE2006] IEEE. “IEEE Recommended Practice for CASE Tool Interconnection: Characterization of Intercon-
nections”. IEEE Std 1175.2-2006. c1-36. 2007.

[JBI] Sun Microsystems. “Java Business Integration Specification 1.0 (JSR-208)”. 2005.

221

221

[JBI2] Sun Microsystems. “Java Business Integration Specification 2.0 (JSR-312)”.

[JCA15] Sun. “J2EE™ Connector Architecture Specification”. Sun Microsystems, Inc.. 2003.

[JEE5Tut] Eric Jendrock, Jennifer Ball, Debbie Carson, Ian Evans, Scott Fordin, and Kim Haase. “The Java EE
5 Tutorial”. Sun Microsystems, Inc.. 2007.

[JMS] Richard Monson-Haefel and David Chappell. “Java Message Service”. O'Reilly & Associates, Inc.. 220.
2000.

[JNBridgePro2008] JNBridge, LLC.. “A Technical Overview of JNBridgePro”. 2008.

[Jones2005] Steve Jones. “Toward an Acceptable Definition of Service”. IEEE Software. 22. 2005.

[Julienne1994] Astrid M. Julienne and Brian Holtz. “ToolTalk and open protocols: inter-application communi-
cation”. Prentice-Hall, Inc.. 1994.

[Juric2007] Matjaz B. Juric, Ramesh Loganathan, Poornachandra Sarang, and Frank Jennings. “SOA Approach
to Integration: XML, Web services, ESB, and BPEL in real-world SOA projects”. Packt Publishing.
2007.

[Kacmar1991] Charles J. Kacmar and John J. Leggett. “PROXHY: a process-oriented extensible hypertext ar-
chitecture”. ACM Trans. Inf. Syst.. ACM. 9. 399–419. 1991.

[Karsai2003] Gabor Karsai, Andras Lang, and Sandeep Neema. “Tool integration patterns”. 9th European Soft-
ware Engineering Conference and 11th ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE). 2003.

[Kaye2003] Doug Kaye. “Loosely Coupled: The Missing Pieces of Web Services”. RDS Press. 2003.

[Keller2003] Keller, Alexander and Ludwig, Heiko. “The WSLA Framework: Specifying and Monitoring Ser-
vice Level Agreements for Web Services”. Journal of Network and Systems Management. 11. 57–81.
2003.

[Kernighan1976] Brian W. Kernighan and P. J. Plauger. “Software Tools”. Addison Wesley. 1976.

[Klar2008] Felix Klar, Sebastian Rose, and Andy Schürr. “A Meta-model-Driven Tool Integration Development
Process”. 201-212. 2008.

[Kramler2006] G. Kramler, G. Kappel, T. Reiter, E. Kapsammer, W. Retschitzegger, and W. Schwinger. “To-
wards a semantic infrastructure supporting model-based tool integration”. ACM. 43–46. 2006.

[Lan2004] Qingguo Lan, Shufen Liu, Lu Han, and Ming Qu. “Study and realization of the inter-application
communication methods”. Computer Supported Cooperative Work in Design, 2004. Proceedings. The
8th International Conference on. 2. 124-127 Vol.2. 2004.

[Liang1999] Sheng Liang. “The Java™ Native Interface”. Addison-Wesley. 318. 1999.

[Linthicum1999] David S. Linthicum. “Enterprise Application Integration”. Addison-Wesley Professional.
1999.

[Liu2006] Na Liu. “Visual languages for event integration specification”. ACM. 969–972. 2006.

[Maheshwari2003] Piyush Maheshwari. “Enterprise Application Integration using a Component-based Archi-
tecture”. COMPSAC. 27. 2003.

222 References

222

[Mauritz2005] Axel Mauritz, Andreas Keis, Daniel Ratiu, and Andreas Günzler. “The Integration Framework
ToolNet - Vision, Architecture and related Approaches”. 2005.

[McAfee2006] Andrew P. McAfee. “Enterprise 2.0: The Dawn of Emergent Collaboration”. MIT Sloan Man-
agement Review. 47. 21–28. 2006.

[Medvidovic2002] Nenad Medvidovic. “On the role of middleware in architecture-based software development”.
ACM. 299–306. 2002.

[Mellor2003] Mellor, S.J., Clark, A.N., and Futagami, T.. “Model-driven development - Guest editor's introduc-
tion”. Software, IEEE. 20. 14-18. 2003.

[Menge2007] Falko Menge. “Enterprise Service Bus”. FREE AND OPEN SOURCE SOFTWARE CONFER-
ENCE 2007. 2007.

[Meyer2001] Bertrand Meyer. “What to Compose - Going beyond the defintion of components as units of com-
position requires asking what and how we compose.”. DDJ. 2001.

[Michaels1993] K. Michaels. “Defining an architecture for control integration”. Software Engineering Environ-
ments Conference, 1993. Proceedings. 63-71. 1993.

[Microsoft1996] Microsoft. “OLE Automation programmer's reference: creating programmable 32-bit applica-
tions”. Microsoft Press. 1996.

[Mitschke2005] Andreas Mitschke. “Aircraft system definition with a flexible integrated tool infrastructure”.
2005.

[Mos2008] Adrian Mos, Alain Boulze, Samuel Quaireau, and Claude Meynier. “Multi-layer perspectives and
spaces in SOA”. ACM. 69–74. 2008.

[Murthy2004] Sudarshan Murthy, David Maier, Lois Delcambre, and Shawn Bowers. “Putting integrated infor-
mation in context: superimposing conceptual models with SPARCE”. Australian Computer Society,
Inc.. 71–80. 2004.

[NascimentoS2007] Francisco Assis M. do Nascimento, Marcio F. S. Oliveira, and Flavio Rech Wagner.
“ModES: Embedded Systems Design Methodology and Tools based on MDE”. Model-Based Method-
ologies for Pervasive and Embedded Software, 2007. MOMPES '07. Fourth International Workshop
on. 67-76. 2007.

[Nepal2008] Nepal, Surya, Zic, John, and Chen, Shiping. “WSLA+: Web Service Level Agreement Language for
Collaborations”. Services Computing, 2008. SCC '08. IEEE International Conference on. 2. 485-488.
2008.

[Neward2007] Ted Neward. “Best of Both Worlds: Java & .NET for Fun & Profit”. 2007.

[Niblett2005] P. Niblett and S. Graham. “Events and service-oriented architecture: The OASIS Web Services
Notification specifications”. IBM Systems Journal. 44. 669–886. 2005.

[Ning2008] Fu Ning, Zhou Xingshe, Wang Kaibo, and Zhan Tao. “Distributed Enterprise Service Bus Based
on JBI”. Grid and Pervasive Computing Workshops, 2008. GPC Workshops '08. The 3rd International
Conference on. 292-297. 2008.

[O'Reilly2005] Tim O'Reilly. “What Is Web 2.0 - Design Patterns and Business Models for the Next Generation
of Software”. 2005.

223

223

[OASIS2006] C. Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F Brown, and Rebekah Metz. “OA-
SIS Reference Model for Service Oriented Architecture 1.0”. 2006.

[OASIS2008] Jeff A. Estefan, Ken Laskey, Francis G. McCabe, and Danny Thornton. “OASIS Reference Ar-
chitecture for Service Oriented Architecture 1.0”. 2008.

[OMG] The Object Management Group. “OMG Specifications and Process: The Big Picture”. 2007.

[OMG2004] Object Management Group. “Open Tool Integration Framework”. 2004.

[OpenAdaptor2007] OpenAdaptor.org. “OpenAdaptor Whitepaper”. 2007.

[OpenESB] Sun. “Project OpenESB”.

[OpenSpan2008] Inc. OpenSpan. “OpenSpan Whitepaper”. 2008.

[OSGi2006] OSGi. “OSGi Service Platform Core Specification”. OSGi Alliance. 2006.

[OSGi2007] . “OSGi 4.1 Technical Whitepaper”. 2007.

[Ousterhout1994] John K. Ousterhout. “Tcl and the Tk Toolkit”. Addison-Wesley Professional. 1994.

[Ousterhout1990] John K. Ousterhout. “Tcl: An embeddable Command Language”. 133–146. 1990.

[Parker1992] B. Parker. “Introducing EIA-CDIF: the CASE Data Interchange Format Standard”. Assessment of
Quality Software Development Tools, 1992., Proceedings of the Second Symposium on. 74-82. 1992.

[Parker2006] K. Parker. “Integration and Interoperability of Application Lifecycle Management Tools”. 2. 2006.

[Perry1992] Dewayne E. Perry and Alexander L. Wolf. “Foundations for the Study of Software Architecture”.
Software Enginnering Notes. 17. 13. 1992.

[Pesola2008] Pesola, J P., Eskeli, J., Parviainen, P., Kommeren, R., and Gramza, M.. “Experiences of Tool
Integration: Development and Validation”. Enterprise Interoperability III. 499–510. 2008.

[PofEAA] Martin Fowler. “Patterns of Enterprise Application Architecture”. Addison-Wesley Professional. 1st.
560. 2002.

[Pohl1999] Klaus Pohl, Klaus Weidenhaupt, Ralf Dömges, Peter Haumer, Matthias Jarke, and Ralf Klamma.
“PRIME — toward process-integrated modeling environments”. ACM Trans. Softw. Eng. Methodol..
ACM. 8. 343–410. 1999.

[PLUSS] Magnus Eriksson, Henrik Morast, Jürgen Börstler, and Kjell Borg. “The PLUSS Toolkit - Extending
Telelogic DOORS and IBM Rational Rose to Support Product Line Use Case Modeling”. ASE. ACM
Press. 300–304. 2005.

[POSA] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. “Pattern-Ori-
ented Software Architecture”. Wiley. 1. 2001.

[POSA4] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. “Pattern-Oriented Software Architecture:
A Pattern Language for Distributed Computing”. Wiley & Sons. 2007.

[Rademakers2008] Tijs Rademakers and Jos Dirksen. “Open Source ESBs in Action”. Manning. 2008.

[Raj2006] Gopalan Suresh Raj, Binod PG, Keith Babo, and Rick Palkovic. “Implementing Service-Oriented
Architectures (SOA) with the Java EE 5 SDK”. Sun Microsystems, Inc.. 65. 2006.

224 References

224

[Reiss1990] S.P. Reiss. “Connecting Tools Using Message Passing in the Field Environment”. Software, IEEE.
7. 57–66. 1990.

[Ruiz2008] Ruiz, J.L., Duenas, J.C., and Cuadrado, F.. “A Service Component Deployment Architecture for e-
Banking”. Advanced Information Networking and Applications - Workshops, 2008. AINAW 2008. 22nd
International Conference on. 1369-1374. 2008.

[Rymer2007] Rymer. “Web services no interop cure-all”. 2007.

[SAIP] Len Bass, Paul Clements, and Rick Kazman. “Software Architecture in Practice”. Addison-Wesley. 2nd.
512. 2003.

[Salter2008] David Salter and Frank Jennings. “Building SOA Composite Applications using NetBeans6”. Packt
Publishing. 2008.

[Samuelson2006] Pamela Samuelson. “IBM's pragmatic embrace of open source”. Commun. ACM. ACM. 49.
21–25. 2006.

[Sauermann2008] Leo Sauermann and Sebastian Trüg. “Case Study: KDE 4.0 Semantic Desktop Search and
Tagging”. 2008.

[SCA] Various. “Service Component Architecture - Building Systems using a Service Oriented Architecture”.
2005.

[Schmidt2006] Schmidt, D.C.. “Guest Editor's Introduction: Model-Driven Engineering”. Computer. 39. 25-31.
2006.

[Schmietendorf2004] Schmietendorf, A., Dumke, R., and Reitz, D.. “SLA management - challenges in the con-
text of Web-service-based infrastructures”. Web Services, 2004. Proceedings. IEEE International Con-
ference on. 606-613. 2004.

[SDO2007b] . “Service Data Objects White Paper”. 2007.

[SEDA2001] Matt Welsh, David Culler, and Eric Brewer. “SEDA: An Architecture for Well-Conditioned, Scal-
able Internet Services”. 2001.

[Sharma2001] Rahul Sharma, Beth Stearns, and Tony Ng. “J2EE Connector Architecture and Enterprise Appli-
cation Integration”. Pearson Education. 416. 2001.

[Slott2008] Jordan Slott. “Project Wonderland Software Architecture”. 2008.

[Sneed2005] Harry M. Sneed. “Wrapping Legacy Software for Reuse in a SOA”. 2005.

[Sriplakich2008] Prawee Sriplakich, Xavier Blanc, and Marie-Pierre Gervals. “Collaborative software engineer-
ing on large-scale models: requirements and experience in ModelBus”. ACM. 674–681. 2008.

[Sun1993] Inc. Sun Microsystems. “The ToolTalk Service: an inter-operability solution”. Sun Microsystems,
Inc.. 1993.

[Sun2004] Inc. Sun Microsystems. “Java Business Integration Vision”. 2004.

[SunGlassFish] Sun. “GlassFish Community”. 2007.

[Sutherland2002] Jeff Sutherland and Willem-Jan van den Heuvel. “Enterprise Application Integration and Com-
plex Adaptive Systems”. Commun. ACM. ACM Press. 45. 59–64. 2002.

225

225

[Szyperski2002] Clemens Szyperski. “Component Software”. Addison-Wesley. 2nd. 2002.

[Ten-Hove2006] Ron Ten-Hove. “Using JBI for Service-Oriented Integration (SOI)”. 11. 2006.

[Terzidis2007] Kostas Terzidis. “Algorithmic Architecture”. Architectural Press. 147. 2006.

[Thomas1992] I. Thomas and B.A. Nejmeh. “Definitions of tool integration for environments”. Software, IEEE.
9. 29-35. 1992.

[Touzi2007] Touzi, Jihed, Lorré, Jean-Pierre, Bénaben, Frédérick, and Pingaud, Hervé. “Interoperability through
Model-based Generation: The Case of the Collaborative Information System (CIS)”. Enterprise Inter-
operability. 407–416. 2007.

[Tratt2005] Laurence Tratt. “Model transformations and tool integration”. Software and Systems Modeling. 4.
112–122. 2005.

[Trowbridge2004] David Trowbridge, Ulrich Roxburgh, Gregor Hohpe, Dragos Manolescu, and E.G. Nadhan.
“Integration Patterns”. Microsoft Corporation. 3. 2004.

[UMLEAI] OMG. “UML Enterprise Application Integration, V1.0”. 2004.

[VanHorn1989] VanHorn, E.C. and Rezac, R.R.. “Experience with the D-BUS Architecture for a Design Au-
tomation Framework”. Design Automation, 1989. 26th Conference on. 209-214. 1989.

[Verrall1992] M.S. Verrall and L. Morgan. “Tool integration in CASE environments: the Software Bus”. Com-
puter-Aided Software Engineering, 1992. Proceedings., Fifth International Workshop on. 46-49. 1992.

[Vinoski2003] Steve Vinoski. “Integration with Web Services”. IEEE Internet Computing. 75–77. 2003.

[Vinoski2005] Steve Vinoski. “Java Business Integration”. IEEE Internet Computing. 9. 89-91. 2005.

[Voelter2006] Markus Völter and Thomas Stahl. “Model-Driven Software Development”. Wiley & Sons. 1st.
2006.

[Waldo1994] Jim Waldo, Geoff Wyant, Ann Wollrath, and Samuel C. Kendall. “A Note on Distributed Com-
puting”. 1994.

[Walter2006] Torsten Walter. “Konzept und Umsetzung für das Reengineering eines Informations-Integra-
tions-Frameworks zur System-Entwicklung (ToolNet) als Eclipse-Anwendung”. 2006.

[Warboys2005] B. Warboys, B. Snowdon, R. M. Greenwood, Wykeen Seet, I. Robertson, R. Morrison, D. Bal-
asubramaniam, G. Kirby, and K. Mickan. “An Active-Architecture Approach to COTS Integration”.
Software, IEEE. 22. 20–27. 2005.

[Wasserman1989] Anthony I. Wasserman. “Tool integration in software engineering environments”. Springer-
Verlag New York, Inc.. 137–149. 1989.

[Welsh2002] Matthew David Welsh. “An Architecture for Highly Concurrent, Well-Conditioned Internet Ser-
vices”. 2002.

[Wicks2006] M. N. Wicks. “Tool Integration within Software Engineering Environments: An Annotated Bibli-
ography”. 2006.

[Wicks2007] M.N. Wicks and R.G. Dewar. “A new research agenda for tool integration”. Journal of Systems
and Software. 80. 1569–1585. 2007.

226 References

226

[Wiil1995] U. K. Wiil. “HyperDisco: An Object-Oriented Hypermedia Framework for Flexible Software System
Integration”. COMPSAC'95. IEEE CS Press. 19. 298-305. 1995.

[Williams1995] David Williams and Timothy O'BrienT. “Software without borders: applications that collabo-
rate”. MIT Press. 127–156. 1995.

[Woolf2006] Bobby Woolf. “Event-Driven Architecture and Service-Oriented Architecture”. 2006.

[WS-BPEL20] OASIS. “Web service business Process Execution Language Version 2.0 Specification”. 2007.

[Yang2007] Zhihui Yang and Michael Jiang. “Using Eclipse as a Tool-Integration Platform for Software Devel-
opment”. IEEE Softw.. IEEE Computer Society Press. 24. 87–89. 2007.

[Yap2005] N. Yap, H.C. Chiong, J. Grundy, and R. Berrigan. “Supporting dynamic software tool integration
via Web service-based components”. Software Engineering Conference, 2005. Proceedings. 2005 Aus-
tralian. 160-169. 2005.

[Young2003] Ralph R. Young. “The Requirements Engineering Handbook”. Artech House. 2003.

[Zahavi1999] Ron Zahavi. “Enterprise Application Integration with CORBA”. Wiley & Sons. 1st. 560. 1999.

[Zou2006] Zhile Zou and Zhenhua Duan. “Building Business Processes or Assembling Service Components:
Reuse Services with BPEL4WS and SCA”. Web Services, 2006. ECOWS '06. 4th European Conference
on. 138-147. 2006.

227

Online Resources
[ActiveMQ] Apache Software Foundation. Apache ActiveMQ. “Apache ActiveMQ”. http://

activemq.apache.org/. 2008.

[Altman2007] Ross Altman. Sun Microsystems, Inc.. What is a Composite Application?. “What
is a Composite Application?”. http://www.sun.com/third-party/global/layer7/collateral/r-altman-soa-
discoverydays.pdf. 2007.

[Anageda] Anageda. “Anageda”. https://anegada.dev.java.net/. 2008.

[ApacheFelix] Apache Software Foundation. Apache Felix. “Apache Felix”. http://felix.apache.org/site/
index.html.

[ApacheODE] Apache Software Foundation. Apache ODE. “Apache ODE”. http://ode.apache.org/.

[ApachePOI] Apache Software Foundation. Apache POI - Java API To Access Microsoft Format Files. “Apache
POI - Java API To Access Microsoft Format Files”. http://poi.apache.org/.

[ApacheSynapse] Apache Synapse Enterprise Service Bus. “Apache Synapse Enterprise Service Bus”. http://
synapse.apache.org/.

[ApacheWSIF] Apache Software Foundation. Apache Web Services Invocation Framework. “Apache Web Ser-
vices Invocation Framework”. http://ws.apache.org/wsif/. 2006.

[Apatar] Apatar, Inc.. Apatar Open Source Data Integration. “Apatar Open Source Data Integration”. http://
www.apatarforge.org/.

[AutoSAR] Automotive Open System Architecture. “Automotive Open System Architecture”. http://
www.autosar.org/.

[Baer2007] Tony Baer. Computerwire. Swiss Software Firm Introduces Executable UML.
“Swiss Software Firm Introduces Executable UML”. http://www.computerwire.com/industries/re-
search/?pid=AFDE00B6-6F8E-4901-A9FB-F13E671BA592&type=CW%20News. 2007-04.

[Balasbanmugam2008] Prabhu Balashanmugam and Yanbing Lu. The Role of Event-Driven Architecture in Busi-
ness Applications. “The Role of Event-Driven Architecture in Business Applications”. http://java.sys-
con.com/author/6791. 2008-08.

[Burcham2005] Bill Burcham. Baby Steps to Synergistic Web Apps. “Baby Steps to Synergistic Web Apps”.
http://lesscode.org/2005/10/21/baby-steps-to-synergistic-web-apps/. 2005-10.

[Burton2004] Ross Burton. IBM Corp.. Connect desktop apps using D-BUS. “Connect desktop apps using D-
BUS”. http://www-128.ibm.com/developerworks/linux/library/l-dbus.html. 2004-07.

[Carr2007] Harold Carr and Arun Gupta. Sun Microsystems, Inc.. Takes two to Tango: Java Web Ser-
vices and .NET Interoperability. “Takes two to Tango: Java Web Services and .NET Inter-
operability”. TS-4865 at JavaOne2007. http://developers.sun.com/learning/javaoneonline/2007/pdf/
TS-4865.pdf. 2007-05.

[ChainBuilder] Bostech Corp.. ChainBuilder ESB. “ChainBuilder ESB”. http://www.chainforge.net/. 2008-08.

228 Online Resources

228

[Ciurana2008] Eugene Ciurana. Son of SOA: Resource-Oriented Computing and Event Driven Architectures.
“Son of SOA: Resource-Oriented Computing and Event Driven Architectures”. http://www.ciurana.eu/
TSSJS2008/ROC.pdf. 2008-03.

[Codemesh2006] Codemesh, Inc.. Codemesh Technology comparison. “Codemesh Technology comparison”.
http://codemesh.com/technology.html. 2006.

[Coalevo] Verein zur Förderung der Internetkommunikation (VFI). The Coalevo Project. “The Coalevo Project”.
http://www.coalevo.net/.

[DaVinciVM2008] Sun Microsystems, Inc.. The Da Vinci Machine Project. “The Da Vinci Machine Project”.
http://openjdk.java.net/projects/mlvm/. 2008.

[D-BUS] freedesktop.org. D-BUS. “D-BUS”. http://dbus.freedesktop.org/. 2008.

[Drools] JBoss.org. JBoss Drools. “JBoss Drools”. http://www.jboss.org/drools/. 2008.

[EclipseE4] Eclipse Foundation. Eclipse E4. “Eclipse E4”. http://wiki.eclipse.org/E4. 2008.

[EclipseLink2008] The Eclipse Foundation. Eclipse Persistence Services Project (EclipseLink). “Eclipse Persis-
tence Services Project (EclipseLink)”. http://www.eclipse.org/eclipselink/. 2008.

[EclipseRAP] Eclipse Rich Ajax Platform. “Eclipse Rich Ajax Platform”. http://www.eclipse.org/rap. 2008.

[EclipseSCA] Eclipse Foundation. The Eclipse STP/SCA Subproject. “The Eclipse STP/SCA Subproject”. http://
www.eclipse.org/stp/sca/.

[eRCP] Eclipse Embedded Rich Client Platform. “Eclipse Embedded Rich Client Platform”. http://
www.eclipse.org/ercp/. 2008.

[Esper] Espertech. Event Stream Intelligence: Esper & NEsper. “Event Stream Intelligence: Esper & NEsper”.
http://esper.codehaus.org/.

[Fabric3] Codehaus.org. Fabric3. “Fabric3”. http://fabric3.codehaus.org/.

[Flickr] Flickr. “Flickr”. http://www.flickr.com/.

[Fowler2005] Martin Fowler. http://www.martinfowler.com/articles/languageWorkbench.html. 2005-06.

[FUSE] Progress. FUSE Open Source Community. “FUSE Open Source Community”. http://fusesource.com/.
2008.

[GASwerk] GASwerk - Geronimo Application Server Assemblies. “GASwerk - Geronimo Application Server
Assemblies”. http://gaswerk.sourceforge.net/.

[Gigaspaces] Gigaspaces Technologies. GigaSpaces eXtreme Application Platform (XAP). “GigaSpaces eX-
treme Application Platform (XAP)”. http://www.gigaspaces.com/.

[Glassbox] Glassbox. “Glassbox”. http://www.glassbox.com/glassbox/Home.html. 2008.

[GoogleMaps] Google Maps. “Google Maps”. http://maps.google.com/.

[GoogleME] Google, Inc.. Google Mashup Editor. “Google Mashup Editor”. http://code.google.com/gme/docs/
gettingstarted.html.

[GridGain] GridGain. GridGain Grid Computing. “GridGain Grid Computing”. http://www.gridgain.com/.

229

229

[Grigonis2008] Richard Grigonis. IP Communications Group. IBM Secures Web 2.0 Mashups with SMash. “IBM
Secures Web 2.0 Mashups with SMash”. http://opensourcepbx.tmcnet.com/topics/development-tools/
articles/22834-ibm-secures-web-20-mashups-with-smash.htm. 2008-03.

[Hinchcliffe2006] Dion Hinchcliffe. Making the Most of the Web: Creating Great Mashups. “Mak-
ing the Most of the Web: Creating Great Mashups”. http://web2.socialcomputingmagazine.com/
making_the_most_of_the_web_creating_great_mashups.htm. 2006-05.

[IFL2008] Mark Saunders. Sun Microsystems, Inc.. Integration Flow Language
Overview. “Integration Flow Language Overview”. http://wiki.open-esb.java.net/Wiki.jsp?
page=IntegrationFlowLanguageOverview. 2008-10.

[Jahn2008] Mirko Jahn. Some thought on the OSGi R4.2 early draft. “Some thought on the OSGi R4.2 early
draft”. http://osgi.mjahn.net/2008/08/28/some-thought-on-the-osgi-r42-early-draft/. 2008-08.

[JavaRules2008] Various. The Java Business Rules Community. “The Java Business Rules Community”. http://
www.javarules.org/. 2008.

[JBIDev] Sun. Developing JBI Components. “Developing JBI Components”. https://open-esb.dev.java.net/pub-
lic/jbi-comp-examples/Developing_JBI_Components.html.

[JBossJBPM] JBoss.org. JBoss jBPM. “JBoss jBPM”. http://www.jboss.org/jbossjbpm/. 2007.

[Jitterbit] Jitterbit. Jitterbit Enterprise Integration. “Jitterbit Enterprise Integration”. http://www.jitterbit.com/
Product/enterprise-integration.

[JNA] Sun Microsystems, Inc.. Java Native Access (JNA): Pure Java Access to native libraries. “Java Native
Access (JNA): Pure Java Access to native libraries”. https://jna.dev.java.net/.

[JPF] Java Plugin Framework. “Java Plugin Framework”. http://jpf.sourceforge.net/.

[JRuby] Codehaus Foundation. JRuby - Java powered Ruby implementation. “JRuby - Java powered Ruby im-
plementation”. http://jruby.codehaus.org/. 2006.

[JSR94] Daniel Selman. JSR 94: Java Rule Engine API. “JSR 94: Java Rule Engine API”. http://jcp.org/en/jsr/
detail?id=94. 2004-08.

[JSR223] Sun Microsystems, Inc.. JSR 223: Scripting for the Java Platform. “JSR 223: Scripting for the Java
Platform”. http://jcp.org/en/jsr/detail?id=223.

[JSR292] Danny Coward. Sun Microsystems, Inc.. JSR 292: Supporting Dynamically Typed Languages on the
Java Platform. “JSR 292: Supporting Dynamically Typed Languages on the Java Platform”. http://
jcp.org/en/jsr/detail?id=292. 2008-05.

[Kieviet2007] Frank Kieviet, Alex Fung, Sherry Weng, and Srinivasan Chikkala. Sun Microsystems, Inc.. De-
veloping Components for Java Business Integration: Binding Components and Service Engines. “De-
veloping Components for Java Business Integration: Binding Components and Service Engines”. http://
mediacast.sun.com/users/Frank.Kieviet/media/JavaOne07-BOF8847-JBIComponents.pdf. 2007.

[Kinnumpurath2005] Meeraj Kinnumpurath. JBI - A Standard-Based Approach for SOA in Java. “JBI -
A Standard-Based Approach for SOA in Java”. http://www.theserverside.com/tt/articles/article.tss?
l=JBIforSOA. 2005-12.

[Knopflerfish] The Knopflerfish Project. Knopflerfish Open Source OSGi. “Knopflerfish Open Source OSGi”.
http://www.knopflerfish.org/.

230 Online Resources

230

[KROSS] KDE Community. The KROSS Vision. “The KROSS Vision”. http://kross.dipe.org/vision.html.

[Lachor2008] Kris Lachor. Systems Integration with Openadaptor. “Systems Integration with Openadaptor”.
http://java.sys-con.com/node/535350. 2008-10.

[LDTP] Linux Desktop (GUI Application) Testing Project (LDTP). “Linux Desktop (GUI Application) Testing
Project (LDTP)”. http://ldtp.freedesktop.org/wiki/.

[Mashable] Mashable - All that's New on the Web. “Mashable - All that's New on the Web”. http://
www.mashable.com/.

[MC4J] MC4J Management Console. “MC4J Management Console”. http://mc4j.org/.

[MicrosoftPopfly] Microsoft Corp.. Popfly. “Popfly”. http://www.popfly.com/.

[Mule] MuleSource Inc.. Mule 2.0 Getting Started Guide. “Mule 2.0 Getting Started Guide”. http://
www.mulesource.org/display/MULE2INTRO/Home. 2008.

[OpenAjax] OpenAjax. OpenAjax Alliance. Next-Generation Applications Using Ajax
and OpenAjax. “Next-Generation Applications Using Ajax and Ope-
nAjax”. http://www.openajax.org/whitepapers/Next-Generation%20Applications%20Using%20Ajax
%20and%20OpenAjax.php#Mashups.2C_dashboards_and_other_composite_applications.

[OpenArchitectureWare] Eclipse. OpenArchitectureWare. “OpenArchitectureWare”. http://www.eclipse.org/
gmt/oaw/.

[OpenCSA2008] OASIS. OASIS Open Composite Services Architecture (CSA) Member Section. “OASIS Open
Composite Services Architecture (CSA) Member Section”. http://www.oasis-opencsa.org/. 2008.

[OpenDMK] Sun Microsystems, Inc.. Project OpenDMK. “Project OpenDMK”. https://opendmk.dev.java.net/.
2007.

[OpenESB2008] Derek Frankforth. REST support in OpenESB. “REST support in OpenESB”. http://wiki.open-
esb.java.net/Wiki.jsp?page=RESTSupport. 2008-09.

[OpenESBScriptingSE] Sun Microsystems, Inc.. OpenESB Scripting SE. “OpenESB Scripting SE”. http://
wiki.open-esb.java.net/Wiki.jsp?page=ScriptingSE. 2008-06.

[OpenID] OpenID Foundation. OpenID. “OpenID”. http://openid.net/.

[OpenSearch] A9.com, Inc.. OpenSearch. “OpenSearch”. http://www.opensearch.org/Home. 2008.

[OpenSocial] Google, Inc.. OpenSocial. “OpenSocial”. http://code.google.com/apis/opensocial/. 2008.

[OSOA2007] Relationship of SCA and JBI. “Relationship of SCA and JBI”. http://www.osoa.org/display/Main/
Relationship+of+SCA+and+JBI. 2007.

[Petals] PEtALS Open Source ESBs. “PEtALS Open Source ESBs”. http://petals.objectweb.org/.

[pjb] php/Java bridge. “php/Java bridge”. http://php-java-bridge.sourceforge.net/pjb/.

[ProgrammableWeb] ProgrammableWeb - Mashups, APIs, and the Web as Platform. “ProgrammableWeb -
Mashups, APIs, and the Web as Platform”. http://www.programmableweb.com/.

[ProjectFuji] Sun Microsystems, Inc.. Project Fuji. “Project Fuji”. https://fuji.dev.java.net/.

231

231

[Quercus] Caucho. Quercus PHP 5 Java port. “Quercus PHP 5 Java port”. http://quercus.caucho.com/.

[Raj2007] Gopalan Suresh Raj. How to Deliver Composite Applications with Java, WS-BPEL & SOA. “How to
Deliver Composite Applications with Java, WS-BPEL & SOA”. http://java.sys-con.com/node/358049.
2007-04.

[RIFWG2008] W3C. RIF Working Group. “RIF Working Group”. http://www.w3.org/2005/rules/wi-
ki/RIF_Working_Group.

[SCAUML] OpenSOA. SCA Expressed as a UML Model. “SCA Expressed as a UML Model”. http://
www.osoa.org/display/Main/SCA+Expressed+as+a+UML+Model.

[SCOrWare] SCOrWare. “SCOrWare”. http://www.scorware.org/projects/en.

[SDO2007a] Graham Barber. OpenSOA. Service Data Objects Home. “Service Data Objects Home”. http://
www.osoa.org/display/Main/Service+Data+Objects+Home. 2007-11.

[ServiceMix] Apache Software Foundation. Apache ServiceMix, the Agile Open Source ESB. “Apache Ser-
viceMix, the Agile Open Source ESB”. http://servicemix.apache.org/. 2008.

[ServiceMixScript2008] Lars Heinemann. Apache Software Foundation. Servicemix Scripting Component. “Ser-
vicemix Scripting Component”. http://servicemix.apache.org/servicemix-scripting.html.

[Snyder2007] Bruce Snyder. IONA Technologies. Service Oriented Integration With Apache ServiceMix.
“Service Oriented Integration With Apache ServiceMix”. http://servicemix.apache.org/articles.data/
SOIWithSMX.pdf. 2007.

[Sommers2005] Frank Sommers. Service-Oriented Java Business Integration. “Service-Oriented Java Business
Integration”. http://www.artima.com/lejava/articles/jbi.html. 2005-08.

[Spagic] Engineering. Spagic SOA Enterprise Integration Platform. “Spagic SOA Enterprise Integration Plat-
form”. http://www.spagic.org/ecm/faces/public/guest/home/solutions/spagic.

[Spring] SpringSource. Spring. “Spring”. http://www.springframework.org/.

[SpringDM] SpringSource. Spring Dynamic Modules for OSGi. “Spring Dynamic Modules for OSGi”. http://
www.springframework.org/osgi.

[SpringIntegration] SpringSource. Spring Integration. “Spring Integration”. http://www.springframework.org/
spring-integration.

[SpringRepository] SpringSource. SpringSource Launches Enterprise Bundle Repository for OSGi. “Spring-
Source Launches Enterprise Bundle Repository for OSGi”. http://www.springsource.com/node/734.
2008.

[Sun2006] Sun Microsystems, Inc.. Java EE Service Engine Overview. “Java EE Service Engine Overview”.
http://download.java.net/general/open-esb/docs/jbi-components/jee-se.html. 2006.

[Swordfish] Eclipse Foundation. Swordfish SOA Runtime Framework Project. “Swordfish SOA Runtime Frame-
work Project”. http://www.eclipse.org/swordfish/. 2008.

[Tuscany2008] Apache Software Foundation. Apache Tuscany. “Apache Tuscany”. http://tuscany.apache.org/.
2008-05.

[Verse] Quelsolaar. Verse. “Verse”. http://www.quelsolaar.com/verse/.

232 Online Resources

232

[Walker2007] Peter Walker. Sun Microsystems, Inc.. What's coming with JBI 2.0. “What's coming with JBI 2.0”.
presentation. http://jazoon.com/download/presentations/1841.pdf. 2007-06.

[WS-BPEL2007] IBM Corp.. WS-BPEL Extension for People (BPEL4People), Version 1.0. “WS-BPEL Ex-
tension for People (BPEL4People), Version 1.0”. http://www.ibm.com/developerworks/webservices/li-
brary/specification/ws-bpel4people/. 2007-06.

[WSI] Web Services Interoperability Organization. “Web Services Interoperability Organization”. http://
www.ws-i.org/.

[WSIT] Sun Microsystems, Inc.. WSIT: Project Tango. “WSIT: Project Tango”. https://wsit.dev.java.net/. 2008.

[WSPER2007] Jean-Jacques Dubray. WSPER.org. WSPER: An abstract SOA framework. “WSPER: An abstract
SOA framework”. http://www.wsper.org/primer.html. 2007-08.

[XAware] XAware. XAware.org. XAware Open Source Data Integration. “XAware Open Source Data Integra-
tion”. http://www.xaware.org/.

[Xcalia] Xcalia. Xcalia S.A.. Xcalia Dynamic Data Integration Software. “Xcalia Dynamic Data Integration
Software”. http://www.xcalia.com/.

[XPCOM] The Mozilla Foundation. Mozilla Cross Platform Component Object Model developer site. “Mozilla
Cross Platform Component Object Model developer site”. http://developer.mozilla.org/en/XPCOM.

[YahooPipes] Yahoo, Inc.. Yahoo Pipes. “Yahoo Pipes”. http://pipes.yahoo.com/pipes/.

233

Index
A
abstract

data structure (ADS), 61
accidental architecture, 26

(see also anti-pattern)
ActiveMQ (see Apache)
ActiveX, 19, 37
Adapter, 1, 15, 38, 48, 55, 63, 70, 76, 85, 97, 99, 106,
114, 117, 126, 145

(see also component)
(see also ToolNet)

ad hoc
integration, 10, 60, 164

agent
based integration, 3

AJAX, 11
(see also Web 2.0)

anti-pattern, 26
Apache

ActiveMQ, 58, 76, 87, 116, 152, 164
Ant, 128, 140
Camel, 58, 87, 162
CXF, 58, 87
Geronimo, 87, 141
JMeter, 20
POI, 33
ServiceMix, 5, 48, 56, 58, 76, 80, 87, 116, 122, 128,
137, 138, 146, 159

(see also JBI)
JCF, 151

Synapse, 57
Tuscany, 60, 79, 161

(see also SCA)
WSIF (see WSIF)

Apatar, 45, 57
(see also data integration)

API
integration, 16, 85

(see also application integration)
a posteriori

integration (see tool)
AppIntegrator, 49

(see also desktop integration)
Apple

MacOS, 35
Spotlight, 33

AppleScript, 19, 35
Studio, 36

application
integration, 15, 19, 22, 35, 37, 43, 72, 104, 120, 134,
146, 165
services framework, 35
suite (see suite)

a priori
integration (see tool, integration)

architecture
event-driven (see EDA)
service-oriented (see SOA)

asynchronous
communication, 70
messaging, 52

automation, 37
Automator, 35
AutoSAR, 50

B
backbone, 101, 114

(see also ESB)
(see also middleware)
(see also ToolNet)

backend
tool, 107

BeOS
file system (see BFS)

best practices, 25
BFS, 33
bidirectional

integration, 10
BindingComponent, 42, 72, 83, 84, 89, 117, 120, 145

(see also component)
(see also JBI)
(see also ServiceEngine)

BizTalk, 59
(see also enterprise integration)
(see also ESB)

Blender, 34
BOOST, 2, 39

(see also OTIF)
(see also PCTE)
(see also tool)
(see also ToolNet)
(see also tool, integration)

BPEL, 48, 59, 62, 83, 86, 159
4People, 59

BPM, 4, 58, 59
bridge, 115, 121

(see also pattern)
broker, 26

(see also pattern)

234 Index

234

bus, 22, 52
(see also ESB)
(see also message bus)

business
activity monitoring (BAM), 58
process, 26, 27, 48

execution language (see BPEL)
modeling (see BPM)

process modeling (see BPM)

C
canonical

data object, 57
interface, 3
message format, 56

CASE, 2, 21, 47
(see also tool)

CBSD (see CBSE)
CBSE, 19
CDIF, 3

(see also data integration)
CEP, 61
ChainBuilder, 48, 82, 87, 137, 146

(see also JBI)
CCSL, 132, 139

ChainBuilderESB, 122, 128
Channel, 101

(see also pattern)
choreography

of tools, 49
CICS, 26
CIMERO, 80

(see also Eclipse STP)
COM, 1, 10, 37

(see also component)
(see also framework)

commercial off-the-shelf (see COTS)
common

data format, 70
(see also data integration)

open software environment (see COSE)
communication

pattern, 74
(see also MEP)
(see also pattern)

complex
event processing (see CEP)

component, 19, 42, 71, 121
(see also BindingComponent)
(see also ServiceEngine)
based

application, 22
operating system, 41
software development, 19, 40
(see also CBSE)
software engineering, 19
(see also CBSE)

development, 82
(see also JBI)

framework, 1, 19, 40, 41, 45
(see also OSGi)

integration, 1, 3, 19, 37, 38, 43, 90
service-oriented, 41

repository, 42
standard, 42

composite
application, 9, 10, 19, 22, 48, 49, 55, 56, 71, 78, 80,
83, 124, 137, 139, 141, 152, 160, 162

(see also JBI)
(see also suite)
framework, 28
(see also framework)
(see also JBI)
(see also SCA)
simulation, 151

service, 11, 48, 166
(see also composite application)
integration (CSI), 49
(see also OpenSpan)

composition, 57, 58, 82
(see also data integration)
(see also service composition)

compound document, 37
computer

supported cooperative work (see CSCW)
consumer, 61

(see also SOA)
Consumer, 121, 126, 134

(see also pattern)
(see also SOA)

container, 65
(see also pattern)

control
integration, 24, 50

convergence
desktop, web and enterprise, 32, 166

(see also integration, overlap)
conversation, 74

pattern, 159
(see also MEP)

CORBA, 3, 10, 26, 28
component model (CCM), 52, 62

235

235

IDL, 40
COSE, 23
COTS, 1, 9, 11, 14, 16, 43, 54, 97, 98, 113, 116

integration, 2, 14, 15, 61, 68, 85
(see also tool)

coupling, 11
loose, 3, 11, 14, 32, 41, 43, 47, 52, 54, 61, 72, 76,
97, 116, 120, 167
temporal, 74
tight, 3, 14, 18, 22, 23, 26, 26, 40, 43, 50, 54, 76,
90, 117, 127

CSCW, 22, 24
CSV, 32

(see also data integration)
(see also file exchange formats)

D
data

abstraction, 36
exchange, 16

(see also CDIF)
integration, 1, 2, 17, 18, 24, 26, 28, 32, 45, 55, 57,
69, 100, 106, 107, 111, 146, 161
linking, 50, 100
mapping, 58, 106
mashup, 57

(see also mashup)
D-BUS, 37

(see also IAC)
(see also open source)

declarative programming, 21, 44
(see also imparative programming)

dependency injection, 43, 163
(see also pattern)

design patterns, 9
(see also pattern)
tool integration, 62

desktop, 9, 23, 31, 102
(see also ToolNet)
application integration, 9, 11, 25

(see also IAC)
integration, 1, 4, 16, 22, 32, 49, 99, 113
search, 33
Wiki, 37

distributed
IAC (see IAC)

divide-and-conquer, 23
(see also pattern)

DocBook, 22
domain-specific language (see DSL)
DOORS, 1, 17, 19, 98, 105, 107, 113, 119, 145

(see also COTS integration)
Adapter

ToolNetSide, 121
ToolSide, 121

Attribute, 108
BindingComponent, 115, 121, 123

MBean, 123
DXL (see DXL)
IPC, 109

(see also IPC)
link, 108
Module, 108
Object, 108
Project, 108
scripting, 109
ServiceEngine, 115, 121, 123

MBean, 123
Doors

Adapter
ToolNetSide, 127
ToolSide, 127

BindingComponent
MBean, 133

DSL, 3, 38, 58, 60, 61, 87, 162
DSML, 21
SIML, 3, 62

DXL, 34, 98, 109, 122, 123, 127
(see also DOORS)
(see also scripting)

dynamic
composition, 42
service invocation, 73

E
E2E, 63

(see also enterprise integration)
(see also model driven integration)

EAI, 4
Eclipse, 15, 16, 21, 40, 45, 58, 128, 137, 166

(see also OSGi)
(see also RCP)
ALF, 48
Corona, 48
EclipseLink, 162
Graphical Modeling Framework (see GMF)
Modeling Framework (see EMF)
Modeling Project, 47
RAP, 166
Rich Ajax Platform (see RAP)
Rich Client Platform, 1
SOA Tools Platform, 48

236 Index

236

(see also STP)
STP, 58, 60, 78, 80, 152, 160
Workflow Tooling Project, 60
WTP, 46

ECMAScript (see JavaScript)
ECORE, 48

(see also Eclipse)
EDA, 4, 4, 28, 39, 60, 70, 76, 110

(see also SOA)
staged (see SEDA)

EIS, 117
EJB, 10, 43, 117

(see also JEE)
EMF, 47, 64

(see also Eclipse)
emitter, 61

(see also EDA)
endpoint

transparency, 52
enterprise, 9, 25, 31, 42

2.0, 83
application integration, 21 (see EAI)

(see also EAI)
(see also enterprise)

information
system (see EIS)

integration, 3, 9, 11, 15, 16, 22, 25, 27, 36, 43, 44,
51, 65, 71, 84, 99, 111, 116, 145

(see also EAI)
patterns, 9, 27, 28, 45, 55, 80, 86, 116, 145, 152,
162

Java Beans (see EJB)
service bus (see ESB)

Enterprise
Java Beans (see EJB)

Enterprise 2.0, 166
(see also SOE)

Equinox, 40, 45, 100
(see also Eclipse)
(see also OSGi)

ESB, 4, 15, 25, 27, 28, 48, 52, 53, 55, 58, 65, 88, 89,
110, 114, 119, 122, 146

(see also SOA)
open source, 56

ESP, 61
Esper, 61

(see also CEP)
ETL, 45, 57
event, 60

(see also EDA)
based scripting, 35

cloud, 61
driven

architecture (see EDA)
consumer, 55
(see also pattern)
integration, 9, 48, 76
(see also EDA)

propagation, 61
queue, 61

(see also SEDA)
stream processing (see ESP)

extension
point, 47

(see also Eclipse)
extract, transform and load, 45

(see also ETL)
(see also pattern)

F
facade, 15, 82, 117

(see also pattern)
FFI, 118
FIELD environment, 24

(see also tool integration)
file

based integration, 18, 23, 33
(see also CDIF)
(see also XMI)
(see also Pipes and Filters)

exchange formats, 32
(see also CSV)
(see also ODF)
(see also X3D)
(see also XMI)

metadata, 33
system integration, 33

find, bind, invoke, 72
(see also pattern)
(see also SOA)

Fractal component model, 88
(see also component integration)
(see also Petals)

framework, 14, 24, 28, 34
service, 70

function
mapping, 118

functional
integration, 3, 18, 27, 43, 55, 100, 102, 106, 107,
111, 146

FUSE, 87, 160

237

237

G
Generic Modeling Environment (GME), 62

(see also DSL, SIML)
GlassFish, 76, 88

(see also JBI)
(see also JEE)

GLUE, 101
(see also ToolNet)
(see also web service)

GMF, 47
GNOME, 37

(see also desktop)
(see also Linux)

green screen
application, 49

grid, 146, 165

H
handler, 61

(see also EDA)
heterogeneous

integration, 16
high-level

integration, 24
host

integration, 20
(see also legacy)

hub and spoke, 26, 110
(see also anti-pattern)
(see also enterprise integration)

HyperDisco, 24
(see also hypermedia)

hypermedia, 24

I
IAC, 3, 19, 23

(see also IPC)
IDE, 21, 24, 33
IDEA, 21
IDL, 3

(see also canonical)
(see also CORBA)

IDMapper, 106
(see also ToolNet)

IEP, 72, 76
(see also EDA)

IIOP, 26
imparative programming, 21

(see also declarative programming)
impedance mismatch, 56

information
integration, 37

(see also desktop, Wiki)
(see also semantic, integration)

integrated
application, 71

(see also composite application)
data model (IDM), 62

(see also design patterns, tool integration)
development environment, 21

(see also IDE)
process support environment (see IPSE)

Integrated Flow Language (IFL), 163
(see also DSL)

integration
by encapsulation, 145
classification, 16
component, 71
container, 71
domains, 16
framework, 3, 14
functional, 34

(see also integrationscripting)
human activities, 159, 166
last mile of, 85, 116
layers, 16
middleware, 71, 82
overhead, 69
overlap, 31
patterns, 16

(see also pattern)
scripting,
silo, 26

(see also anti-pattern)
standard, 27

intelligent
event processing, 72

(see also IEP)
inter

tool communication, 70
inter application communication (see IAC)
Internet Service Bus (ISB), 28

(see also ESB)
interoperability, 10, 14, 16, 26, 118, 164

(see also JNA)
(see also JNI)
(see also WSIT)
web service (see web service, interoperability)

inversion of control, 43
(see also dependency injection)
(see also pattern)

238 Index

238

invocation
integration, 16

IPC, 19, 35, 37, 107, 126, 127, 134
IPSE, 97

J
J2EE (see JEE)
J2ME, 159
JAIN SLEE, 25

(see also mobile integration)
JAR, 41, 43

(see also Java)
Java, 3, 22, 43, 68, 84, 98, 107, 114, 138, 164

archive (see JAR)
Bean, 43, 44

message-driven, 76
Business Integration (see JBI)
Connector Architecture (see JCA)
Enterprise Edition (see JEE)
Java 6, 34
JSR 223, 34
Management Extensions (see JMX)
Message Service (see JMS)
Native Access (see JNA)
Native Interface (see JNI)
Plugin Framework, 43
Reflection, 43
scripting, 162
SE, 43

JavaScript, 11
(see also AJAX)
Asynchronous (see AJAX)

JBI, 1, 3, 24, 28, 42, 48, 54, 56, 58, 62, 64, 71, 111,
113, 116, 145, 159

2.0, 79, 87, 91, 159
Interceptor, 159
packaging, 75
tooling, 48, 79

JBoss, 141
ESB, 58, 116

(see also ESB)
jBPM, 59

JCA, 5, 27, 28, 43, 59, 64, 76, 86, 111, 116, 117, 145
(see also enterprise integration)
BindingComponent, 117
managed mode, 117
Resource Adapter, 121
unmanaged mode, 117

JConsole, 122, 134
(see also JMX)

JDO, 58

(see also Java)
JDT, 45
jEdit, 3
JEE, 10, 18, 34, 43, 64, 75

(see also enterprise)
(see also Spring)
ServiceEngine, 117

(see also JBI)
Jencks, 117

(see also Apache)
(see also JCA)

JMS, 3, 27, 52, 61, 76, 87, 116
(see also message)

JMX, 4, 43, 68, 75, 77, 85, 113, 120, 121, 133, 146, 160
MBean, 43, 122

JNA, 19, 40, 117, 118, 129, 145
JNI, 19, 39, 109, 116, 127, 145
JNLP, 43
JXTA, 91

K
KDE, 34, 36

(see also Linux)
KOffice, 22
KPart, 37

(see also KDE)
KROSS, 36

(see also KDE)
KService, 37

(see also KDE)

L
language

oriented
integration, 38
programming (LOP), 162

late binding, 90
launch

integration, 17, 37
legacy

application, 9, 29
integration, 16, 26, 40, 49, 54, 64, 67, 71, 88
migration, 26

lifecycle
management, 28

linking, 24
(see also data integration)

LINQ, 59
(see also data integration)
(see also Microsoft .NET)

Linux, 34

239

239

desktop, 36
Desktop Testing Project (LDTP), 37

Lisp, 35
location

transparency, 48, 73
location transparency, 52, 90
Lotus Notes, 37
low-level

integration, 3, 10, 26

M
macro

language, 39
(see also scripting)

mashup, 10, 49, 54, 83, 165
(see also Web 2.0)

MathScript, 34
(see also scripting)

MDA, 21
MDDi, 64

(see also Eclipse)
MDI, 20
mediation, 22, 55, 58, 85, 120

(see also ESB)
(see also pattern)
layer, 89
standards-based, 82

(see also ESB)
(see also JBI)

Mediator, 101, 155
(see also pattern)
(see also Proxy)

MEP, 72, 74, 152
(see also message exchange pattern)
(see also WSDL)

message, 52
attachment, 132
based integration, 1, 18, 23, 24, 52, 74, 164
bus, 3, 47, 52, 55, 78, 120

(see also message)
(see also ESB)
(see also pattern)

channel, 52
enrichment, 52
exchange, 72

mediated, 5
(see also JBI)
(see also message)

flow, 87
(see also Apache ServiceMix)

inspection, 52

mediation, 72
(see also mediation)

oriented
integration, 51
middleware (see middleware)

passing, 24, 36
queue, 52, 76
router, 24, 52, 71, 121

(see also pattern)
routing, 55, 76
transformation, 52
translation, 121, 121

message exchange
pattern, 53

(see also MEP)
(see also pattern)

messaging, 70, 74, 151
backbone, 74, 116

(see also bus)
(see also pattern)

inter-application, 10
(see also IAC)

meta
container, 71
model, 21, 47, 62, 105, 111

(see also model)
transformation, 62

object facility (see MOF)
tool, 48, 99

(see also tool)
MicrocosmNG, 24

(see also HyperDisco)
Microsoft

.NET, 10, 28, 59, 98, 107, 164
middleware, 22, 27, 51, 63, 65

(see also component)
(see also EAI)
legacy, 54

MIME, 33
mobile

integration, 25
model

based
integration (see model driven integration)

driven
architecture (see MDA)
development, 20
(see also model)
engineering, 20
integration, 1, 3, 20, 45, 61, 100, 105
(see also MDI)

240 Index

240

tool integration, 62, 69
transformation, 21, 47, 48

(see also MOF)
(see also QVT)
model-to-model transformation, 21

ModelBus, 64
(see also model driven integration)

ModelWare project, 64
(see also model driven integration)

MOF, 21
MOM, 51 (see middleware)
M-Script, 106

(see also DXL)
(see also scripting)

Mule, 56, 89, 116
(see also ESB)

N
NetBeans, 40, 48, 79, 81, 88, 161, 164

(see also IDE)
NMR, 73, 74, 117, 121, 126, 130, 135, 145, 152
normalized

data format, 70
message, 24, 146

format (in JBI), 74
router (see NMR)

NormalizedMessage, 117, 120, 126, 135
(see also JBI)
(see also NMR)

O
Observer, 52

(see also pattern)
OCL, 69
ODF, 32
OLE, 10, 37
OMA, 25
OMG, 21
openAdaptor, 43
openArchitectureWare, 47, 64

(see also Eclipse)
(see also model driven integration)

OpenCSA (see SCA)
OpenDoc, 37
OpenDocument (see ODF)
OpenESB, 76, 88, 116, 165

(see also JBI)
open mobile alliance (see OMA)
Open Scripting Architecture (OSA), 35
open source, 1, 5, 10, 14, 42, 47, 88, 93, 137

desktop integration, 44

OpenSpan, 38, 49
Open Systems Engineering Environment (OSEE), 48

(see also Eclipse)
Open Tool Integration Framework, 2

(see also OTIF)
operating system

level integration, 32
orchestration

of tools, 49
OSGi, 1, 3, 19, 22, 28, 40, 41, 48, 81, 91, 98, 100, 104,
115, 156, 160

(see also component)
(see also component framework)

OTIF, 2, 52, 62
(see also standard)

P
pattern

Adapter (see Adapter)
divide-and-conquer, 23
facade (see facade)
message exchange (MEP), 53
Observer, 52
Pipes and Filters, 23 (see Pipes and Filters)
publish-subscribe, 52
request-reply, 52
Router, 52
tool, 23
Wrapper, 54

PCTE, 2
persistence, 153
Petals, 58, 85, 88, 116, 159

(see also ESB)
(see also JBI)

pipe, 33
pipeline, 44

(see also pattern)
(see also pipe)

Pipes and Filters, 33
(see also pattern)

plugin, 15, 45, 75
dependency, 45
framework, 19, 43

(see also framework)
point-to-point

integration, 22, 26, 50, 54
(see also anti-pattern)

POJO, 54, 80, 160
(see also Java)
(see also Java Bean)

Portable Common Tool Environment (see PCTE)

241

241

portal, 83
integration, 20

presentation
integration, 20, 38, 39, 43, 68, 85, 103

process
integration, 2, 17, 20, 35, 59, 63, 72, 83

(see also integration classification)
(see also tool integration)

protocol
Adapter, 42

(see also Adapter)
integration, 43, 57, 72, 76, 86, 120, 134, 146

prototype, 113
comparison, 128
implementation, 126

Provider, 61, 121, 126, 134
(see also pattern)
(see also SOA)

Proxy, 41, 43, 101, 118, 164
(see also pattern)

publish-subscribe, 52, 76, 122
(see also pattern)
pattern, 61

(see also EDA)
Python, 34

(see also scripting)

Q
quality of service, 152, 160

(see also Service Level Agreement (SLA))
QVT, 21, 64

(see also model transformation)
(see also OMG)

R
RAP, 46

(see also Eclipse)
(see also RCP)

RAR, 43, 77
RCP, 1, 40, 98, 100, 102, 133, 146

(see also Eclipse)
eRCP, 46

RDF, 34
recoverability, 153
relation, 69, 98, 102, 105, 115, 120

(see also data integration)
(see also ToolNet)
(see also ToolNet Relation)

reliability, 152
Remote

Method Invocation (see RMI)

remote procedure call (see RPC)
repository, 42, 45, 50, 62, 69, 103

(see also component repository)
(see also service registry)
(see also ToolNet)

request-reply, 52, 76
(see also pattern)
pattern, 61

(see also SOA)
requirements, 115

divergent, 106
engineering, 67, 107
gathering, 67

resource
oriented

architecture, 5, 165
computing (ROC), 52, 57, 165
tool integration, 165

Resource Adapter, 65
(see also JCA)

respository, 24
REST, 15, 52, 65, 164

(see also SOA)
return of investment (see ROI)
reverse engineering, 61
REXX, 34

(see also scripting)
RMI, 22, 107
ROI, 29
router, 52, 89, 121

(see also pattern)
routing

engine, 162
RPC, 24, 98

(see also distributed)
Ruby, 39

on Rails, 34
(see also scripting)
(see also Web 2.0)

rules engine, 60, 163
Rules Interchange Format (RIF), 164

S
SCA, 1, 3, 28, 48, 58, 62, 64, 77, 111, 160

tooling, 79
screen scraping, 20

(see also host)
scripting, 16, 22, 40, 57, 98, 145

event-based (see event, based scripting)
integration, 19
languages, 18, 34

242 Index

242

Sculptor, 64
SDE (see IDE)
SDO, 1, 18, 58, 79, 111, 161
security, 70, 85, 153, 160
SEDA, 61, 76, 152
selective broadcast, 24
semantic

desktop, 34
dissonance, 33
integration, 18, 33, 57, 84, 85, 110

service, 53, 104, 116
(see also ToolNet)
component, 71, 83
composition, 60
consumer, 73
orchestration, 28
oriented

architecture (see SOA)
enterprise, 28
(see also SOE)
integration (see SOI)

provider, 73
registry, 41, 75

(see also repository)
request, 61

chain, 61
value-added, 25

ServiceAssembly, 75, 123, 124, 130, 139
(see also JBI)

Service Component Architecture (see SCA)
Service Data Objects (see SDO)
ServiceEngine, 42, 72, 83, 84, 89, 121, 145

(see also component)
(see also BindingComponent)
(see also JBI)
Enterprise Data Mashup, 84

Service Level Agreement (SLA), 153, 160
(see also quality of service)

ServiceMix, 5
(see also Apache)

ServiceUnit, 75, 124, 139, 141
(see also JBI)
(see also ServiceAssembly)

Session, 103
(see also ToolNet)

shared
files, 107

simple
network management protocol (see SNMP)

SNMP, 26, 43, 85, 122
(see also JMX)

SOA, 4, 15, 25, 27, 31, 48, 51, 63, 72, 75, 89, 97, 100,
117

last mile of, 16
SOAP, 10, 25, 31, 35, 48, 101

(see also web service)
SOE, 28, 65
software factories, 3
SOI, 1, 4, 9, 23, 25, 27, 28, 39, 41, 42, 43, 48, 53, 67,
72, 86, 90, 97, 109, 119, 145, 160, 164

(see also SOA)
spaces

based
architecture, 165
(see also Grid)

Spagic, 57
(see also SOI)

Spring, 20, 28, 42, 43, 60, 87, 90
(see also framework)
(see also JEE)
(see also OSGi)
Dynamic Modules for OSGi, 44, 45
Integration, 44, 45, 163

staged
event-driven architecture (see SEDA)

standard
based integration, 5

(see also JBI)
(see also SCA)
(see also SDO)

stovepipe, 11, 26
(see also anti-pattern)

STP, 48
(see also Eclipse)

suite, 9, 10, 14, 16, 22, 37
cross-vendor, 14

Swordfish, 81
(see also Eclipse STP)

SWT, 41, 46
(see also Eclipse)

synchronous
communication, 27
messaging, 52

T
Tcl/Tk, 35, 38

(see also DSL)
testing

user interface (see user interface)
TeT (ToolNet-enabled Tool), 99, 102

(see also ToolNet)
tool, 47

243

243

Adapter, 86, 111
chain, 21, 33, 48, 97, 109
cloud, 68
integrated, 16

(see also CASE)
integration, 1, 11, 14, 15, 18, 19, 25, 28, 31, 34, 36,
37, 38, 47, 50, 51, 58, 67, 79, 82, 85, 88, 91, 145

a posteriori, 14, 18, 20, 39
a priori, 14
client-side, 83
cross-platform, 38
desktop, 35, 44, 116, 119, 129, 164
dynamic, 56
event-based, 61
examples, 21
framework, 2, 42, 70, 97, 110, 145
(see also BOOST)
(see also OTIF)
(see also PCTE)
(see also ToolNet)
incremental, 100
language, 38
requirements, 67
spontaneous, 54
(see also ad hoc)
standard, 50
workflow-based, 60

integrator, 67
orchestration, 48
pattern, 23

(see also pattern)
platform, 40
user, 67

Tool
Adapter, 121

ToolBus, 3
(see also framework)
(see also tool)

ToolLink (see ToolNet)
ToolNet, 1, 2, 31, 40, 46, 67, 97, 113, 119, 126, 145

(see also tool)
Adapter, 100, 105, 106, 113, 121
backbone, 100, 101, 114, 122

(see also backbone)
Desktop, 2, 68, 98, 101, 102, 120, 133, 146, 156
DoorsAdapter, 126
IDMapper, 105
JBI (see prototype)
migration, 154
Project, 103
Relation, 105

RelationService, 107
Service, 102, 103, 104
ServiceAssembly, 142
Session, 103
SessionManager, 103
ToolLink, 107, 156
ToolNetSide Adapter, 107, 117, 119, 127

(see also Adapter)
ToolSide Adapter, 107, 119, 126

(see also Adapter)
ToolTalk, 3, 23

(see also COSE)
(see also IAC)
(see also tool)

TOPCASED, 47
(see also Eclipse)
(see also ToolNet)

transaction, 152
translation, 86
transparency, 69, 99

(see also requirements)
Tuxedo, 26

U
UDDI, 75
UML, 21, 47, 62

(see also model)
UMO (see Mule)
UNO, 15, 19, 40

(see also component, framework)
usability

requirements, 67
user interface

integration, 35, 99 (see presentation)
(see also presentation integration)

testing, 20, 37

V
vendor lock-in, 50, 71, 90

(see also anti-pattern)
Verse, 50

(see also tool integration)
virtual

function bus, 50
Virtual Object Space (VOS), 161

(see also ToolNet)
VisualBasic, 34
VisualStudio, 21, 59

W
W3C, 65

244 Index

244

(see also web service)
WCF, 28, 59, 164
web, 31

application integration, 166
oriented

architecture (WOA), 165
Web 2.0, 10, 34, 166
web service, 4, 15, 18, 25, 27, 28, 48, 49, 51, 53, 57,
62, 65, 74, 79, 98, 114, 146

(see also SOA)
based integration, 3, 5
integration, 54
interoperability, 28, 164

(see also WSIT)
Windows

Communication Foundation (see WCF)
Scripting Host (WSH), 34

WOA, 65
workflow, 22, 28, 35, 48, 57, 67, 86, 99, 120, 156, 166

integration, 57, 59
(see also process integration)

Wrapper, 54
(see also pattern)

WS-*, 28, 65
(see also web service)

WS-BPEL, 20
(see also process)
(see also SOI)
(see also web service)

WSDL, 42, 53, 54, 59, 64, 71, 116, 145, 160
(see also SOA)
(see also web service)
abstract part, 73
concrete part, 73
mapping, 121

WS-I, 28, 65
(see also web service)
(see also WSIF)
(see also interoperability)
(see also web services)

WSIF, 5, 15, 54, 111
(see also Apache)
(see also web service)

WSIT, 164

X
X3D, 32
XAware, 57

(see also SOI)
XBeans, 80

(see also Apache ServiceMix)

(see also Java Bean)
Xcalia, 161
XMI, 1, 18, 32, 64
XML, 25, 26, 27
XML Metadata Interchange (see XMI)
XPCOM, 40

(see also component, framework)

245

Colophon
In the spirit of this work, this work was almost entirely produced using open source or free tools and technology1,
using Kubuntu Linux 8.04 as operating system.

The source documents were written in DocBook5 XML using XML Mind's free Java-based XML editor (XXE
4.1.0). Apache FOP (0.95) was used to render the output as PDF, using the XSL stylesheets (1.74) from
docbook.org with custom extensions.

Illustrations were done using Inkscape (0.46) and OpenOffice Draw (3). The Zim desktop wiki (0.26-2) proved
to be a valuable tool for organizing or at least categorizing and connecting my thoughts.

For managing references, the open source Java tool JabRef 2.4 was used, together with bib2db5 for formatting
online references.

1with the notable exception of Microsoft Visio2003, which was necessary to work with the EnterpriseIntegrationPatterns-template kindly
provided by Gregor Hohpe.

246

246

	A Standards-Based Approach to Dynamic Tool Integration Using Java Business Integration
	Table of Contents
	Kurzfassung
	Abstract
	Preface
	Chapter 1. Introduction
	1.1. Overview
	1.2. Related Work
	1.3. Target Audience
	1.4. Chapter Overview

	Part I. Behind Integration: Challenges and Current Situation
	Chapter 2. Problem Definition: Integration Challenges
	2.1. Motivation
	2.2. Defining Tool Integration
	2.2.1. Integration of Commercial-off-the-shelf (COTS)-Tools
	2.2.2. Relation to Enterprise Integration

	2.3. Terminology: Levels and Patterns of Integration
	2.3.1. No Integration
	2.3.2. Invocation (Launch) Integration
	2.3.3. Data Integration
	2.3.4. Functional Integration
	2.3.4.1. Application (API) Integration
	2.3.4.2. Component Integration

	2.3.5. Presentation Integration
	2.3.6. Process Integration
	2.3.7. Model-Driven Integration

	2.4. Examples of Tool Integration
	2.5. History of Tool Integration
	2.6. A Short Introduction to Enterprise Integration
	2.6.1. The Past: The EAI Legacy
	2.6.2. The Present: Service Oriented Architecture and the Enterprise Service Bus
	2.6.3. The Future: Integration Frameworks and Event Driven Architecture

	2.7. Desktop vs. Enterprise Integration
	2.8. Summary

	Chapter 3. Current State of Integration
	3.1. Introduction
	3.2. Current Approaches on the Desktop
	3.2.1. OS-Level Integration
	3.2.1.1. Integration on the file system level
	3.2.1.2. Functional Integration and Scripting
	3.2.1.3. Application-Level integration
	3.2.1.3.1. D-BUS

	3.2.1.4. Summary

	3.2.2. Tool Integration Languages and Protocols
	3.2.2.1. Tcl/Tk
	3.2.2.2. Java Native Interface (JNI)

	3.2.3. Component Based Integration Frameworks
	3.2.3.1. OSGi Service Platform
	3.2.3.2. Java Component Frameworks

	3.2.4. Current Tool Integration Solutions on the Desktop
	3.2.4.1. Open Source Solutions
	3.2.4.2. Eclipse as an Integration Platform
	3.2.4.2.1. Current Tool Integration Solutions based on Eclipse

	3.2.4.3. Commercial Solutions
	3.2.4.4. Tool Integration in other domains

	3.3. Related Approaches in Enterprise Integration
	3.3.1. Definitions
	3.3.2. Message Based Integration
	3.3.3. Service Oriented Integration
	3.3.3.1. Web Services Integration
	3.3.3.2. The Enterprise Service Bus
	3.3.3.3. Current Service-Oriented Integration Solutions
	3.3.3.3.1. Open Source Solutions
	3.3.3.3.2. Commercial Solutions

	3.3.4. Workflow and Process Integration
	3.3.5. Event Driven Integration and SOA
	3.3.6. Model Driven Integration
	3.3.7. Standards-Based Integration
	3.3.7.1. Java Connector Architecture (JCA)
	3.3.7.2. WS-I and WS-*

	3.4. Summary

	Chapter 4. Proposed Solution: Tool Integration Using Java Business Integration
	4.1. Requirements
	4.2. An Introduction to Java Business Integration
	4.2.1. JBI Architecture
	4.2.2. A Comparative Analysis of JBI
	4.2.2.1. Relation to Event-Driven Integration
	4.2.2.2. JBI Compared to JEE and JCA
	4.2.2.3. Relation to SCA

	4.2.3. Development and Tooling Support

	4.3. Using JBI for Tool Integration
	4.3.1. Tools as Composite Applications
	4.3.2. Evaluation

	4.4. Realization
	4.4.1. Apache ServiceMix
	4.4.2. Alternative Implementations Considered
	4.4.2.1. Glassfish and OpenESB
	4.4.2.2. PEtALS
	4.4.2.3. MuleSource Mule
	4.4.2.4. Comparison Matrix

	4.5. Summary and Conclusion

	Part II. Practical Integration: Redesigning the ToolNet Framework
	Chapter 5. Case Study: The ToolNet Framework
	5.1. Introduction
	5.2. Overview
	5.2.1. ToolNet Challenges
	5.2.2. Terminology

	5.3. Architecture
	5.3.1. ToolNet Backbone
	5.3.2. The ToolNet Desktop
	5.3.3. Sessions
	5.3.4. Projects
	5.3.5. Services
	5.3.6. Relations
	5.3.7. Adapters

	5.4. Case Study: Integrating DOORS
	5.4.1. Introducing DOORS
	5.4.2. Integrating DOORS: The DOORS Adapter

	5.5. Evaluation and Critique
	5.6. Conclusion

	Chapter 6. Prototype ToolNet/JBI
	6.1. Motivation and Overview
	6.2. Goals
	6.2.1. True COTS Integration
	6.2.2. New Service Backbone
	6.2.3. Redesign of the Adapter Architecture
	6.2.4. Support for Non-Java Languages
	6.2.5. Independent Implementation

	6.3. Non-Goals
	6.4. Realization
	6.4.1. Analysis
	6.4.1.1. JBI as the Underlying Architecture
	6.4.1.2. Apache ServiceMix ESB as the Service Backbone
	6.4.1.3. Adapter Analysis: JNI, JCA and finally JNA
	6.4.1.3.1. Using the Java Native Interface (JNI)
	6.4.1.3.2. Using the Java Connector Architecture (JCA)
	6.4.1.3.3. Using the Java Native Architecture (JNA): Final solution

	6.4.2. Design
	6.4.2.1. Using BindingComponents as Tool Adapters
	6.4.2.2. Using ServiceEngines as ToolNet-Services
	6.4.2.3. The ToolNet/JBI Backbone
	6.4.2.4. The JMX Interface
	6.4.2.5. Putting it all together: The ToolNet/JBI ServiceAssembly

	6.4.3. Implementation
	6.4.3.1. Evaluating the current solution for reuse
	6.4.3.2. Final Solution
	6.4.3.3. Comparing the two implementations
	6.4.3.4. Software Requirements and Tool Chain
	6.4.3.5. Iterations
	6.4.3.5.1. Iteration 1: Proof-of-concept using JNA
	6.4.3.5.2. Iteration 2: Socket communication using a JBI TCP/IP BC
	6.4.3.5.3. Iteration 3: Implementing a custom DOORS BindingComponent
	6.4.3.5.4. Iteration 4: Implementing the JMX interface
	6.4.3.5.5. Final Iteration: Implementing the use case

	6.4.4. JBI Development with ChainBuilder ESB
	6.4.4.1. The ChainBuilder Common Services Layer
	6.4.4.2. Implementing the Prototype using ChainBuilder ESB IDE
	6.4.4.3. Deployment in ServiceMix

	6.5. Running the Prototype

	Chapter 7. Critical Evaluation of the Prototype
	7.1. Problems Solved
	7.2. Comparing the Prototype to ToolNet
	7.3. Remaining Challenges
	7.3.1. Development Complexity and Tool Support
	7.3.2. Ensuring Quality of Service

	7.4. A Migration Scenario for ToolNet

	Part III. The Future of Integration: Outlook and Conclusion
	Chapter 8. Outlook and Further Work
	8.1. The Future of JBI
	8.2. Future Trends in Data Integration: SDO
	8.3. Scripting and Emerging Integration Languages
	8.4. Interoperability with the Non-Java World
	8.5. REST and Resource Oriented Architecture
	8.6. Beyond Tool Integration

	Chapter 9. Conclusion

	Appendix A. Prototype Source Excerpts
	A.1. JBI Configuration
	A.1.1. ToolNetServiceAssembly Descriptor
	A.1.2. DoorsBindingComponent Descriptor
	A.1.3. DoorsServiceEngine Descriptor
	A.1.4. DoorsBindingComponent WSDL
	A.1.5. DoorsServiceEngine WSDL

	A.2. JBI Adapter Implementation
	A.2.1. DoorsBindingComponent
	A.2.1.1. JNA Interface used in the DoorsBindingComponent
	A.2.1.2. DoorsEndpoint
	A.2.1.3. DoorsBindingComponent (Consumer)
	A.2.1.4. DoorsBindingComponent (Provider)
	A.2.1.5. BindingComponentMBean Definition

	A.2.2. DoorsServiceEngine
	A.2.2.1. DoorsServiceEngine (Consumer)
	A.2.2.2. DoorsServiceEngine (Provider)
	A.2.2.3. DoorsObjectMBean (ServiceEngine MBean)

	A.3. Existing Tool-Side DOORS Adapter
	A.3.1. ToolNet Menu Definition
	A.3.2. ToolNet IPC implementation
	A.3.3. ToolNet RelationService implementation in DOORS
	A.3.4. ToolNet PresentationService implementation in DOORS

	Appendix B. A Prototype Walkthrough
	B.1. Preconditions
	B.2. Designtime
	B.3. Runtime

	Glossary
	References
	Online Resources
	Index

