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Preface

Abstract

This thesis is concerned with the realized power variation (and some generalization thereof)
of certain classes of stochastic processes (fractional stochastic integrals and integrated sta-
ble processes).

Chapter 1 introduces the concepts of fractional Brownian Motion (fBM) and realized power
variation (r.p.v.) of a stochastic process.

In Chapter 2 we consider the asymptotic behaviour of the r.p.v of processes of the form

Zt :=
∫ t

0
us dBH

s , t ∈ [0, T ] , (1)

where u = {ut , t ∈ [0, T ]} is a stochastic process with paths of finite q-variation, 0 < q < 1
1−H ,

BH =
{
BH

t , t ∈ [0, T ]
}

is an fBM with Hurst parameter H ∈ (0, 1) and the stochas-
tic integral is a pathwise Riemann-Stieltjes integral. We will show the uniform conver-
gence in probability of the r.p.v., properly normalized, to a stochastic process of the form
E
(
|BH

1 |p
) ∫ t

0 |us|p ds. The fluctuations of the normalized r.p.v. around this limit converge
in distribution to a process of the form ν1

∫ t
0 |us|p dWs, where W denotes a Brownian Mo-

tion (BM) independent of BH and ν1 is a constant. The result holds for H ∈
(
0, 3

4

)
.

For H = 3
4 a similar result can be obtained by using an additional normalizing factor

(log n)−1/2. For H > 3
4 and u constant the limit will be the Rosenblatt process, i.e., a

quadratic functional of BM. The discussion follows Corcuera et al. [CoNuWo06].

In Chapter 3 we consider the asymptotic behaviour of functionals of the form

F
(n)
g,h (Z)t :=

∫ bntc
n

0
h
(
Z(n)

s

)
g
(
Ż(n)

s nH−1
)

ds ,

where Z is given by (1), g, h are continuous functions, Z(n) denotes the broken line approx-
imation of Z and Ż

(n)
s is the derivative with respect to s. The r.p.v. considered in Chapter

1 is contained in this class. Hence, the results can be seen as a generalization of those
in Chapter 1. The functionals converge uniformly in probability to a stochastic process∫ t
0 h(Zs)EW (g(usW )) ds, where W is a standard normal random variable independent of

BH , and EW denotes the expectation with respect to W . Whenever g is an even function
and satisfies an additional condition, and for H ∈

(
1
2 , 3

4

)
, the fluctuations around the limit,

properly normalized, converge in distribution to a process of the form
∫ t
0 h(Zs)ν(us) dWs,

where W is a BM independent of BH and ν is given by

ν2(x) := lim
n→∞

V

(
1√
n

n∑
i=1

g
(
x
(
BH

i −BH
i−1

)))
.

This chapter is based on Corcuera et al. [CoNuWo08].

iii



Preface iv

In Chapter 4 we follow Corcuera et al. [CoNuWo07] and consider the asymptotic behaviour
of the r.p.v. of stochastic processes of the form∫ t

0
us dSα

s , t ∈ [0, T ] , (2)

where Sα = {Sα , t ∈ R+,0} is an α-stable Lévy process with index of stability α ∈ (0, 2),
u = {ut , t ∈ R+,0} is a stochastic process with continuous paths and, if α ≥ 1, with finite
q-variation on any finite interval for some q < α

α−1 . The integral is a pathwise Riemann-
Stieltjes integral for α ≥ 1 and a pathwise Lebesgue-Stieltjes integral for α < 1. The
normalized r.p.v. converges uniformly in probability to a process E(|Sα

1 |p)
∫ t
0 |us|p ds. The

fluctuations around this limit, properly normalized and under certain conditions on u, con-
verge in distribution to a process of the form νp

∫ t
0 |us|pWs with ν2

p := V(|Sα
1 |p).

The focus of thesis lies on Chapter 2, i.e., the r.p.v. of fractional stochastic integrals of the
form (1). Chapters 3 and 4 can be seen as outlooks on similar results that can be obtained
by modifying the setting accordingly.
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Chapter 1

Preliminaries

In this chapter we introduce the two key concepts of this thesis, namely fractional Brownian
Motion and realized power variation, and provide the required theoretical foundations.

1.1 Fractional Brownian Motion

This section is mainly based on Mishura [Mish08], Brockwell and Davis [BrDa91] and
Cheridito [Cher01a], [Cher01b].

1.1.1 Definition and Elementary Properties

In the following let (Ω,F ,P) be a complete probability space1.

Definition 1.1.1. A (two-sided, normalized) fractional Brownian motion (fBM) with
Hurst parameter (Hurst index or Hurst exponent) H ∈ (0, 1] is a continuous-time Gaussian
process BH =

{
BH

t , t ∈ R
}

on (Ω,F ,P), having the properties

(i) BH
0 = 0,

(ii) m
(1)

BH (t) : R → R : t 7→ E
(
BH

t

)
= 0,

(iii) m
(2)

BH (s, t) : R× R → R : (s, t) 7→ E
(
BH

s BH
t

)
=

1
2
(|t|2H + |s|2H − |t− s|2H).

where m
(1)

BH and m
(2)

BH denote the first and second moment functions of BH (see Definition
A.1.1).

Remark 1.1.1. A special property of Gaussian processes (see Definition A.1.6) is inherited
from the Gaussian distribution. Analogous to a Gaussian random variable whose distribu-
tion is uniquely defined by its first two moments, two Gaussian processes have the same
distribution if their first and second moment functions coincide (hence, it suffices to specify
these two functions to characterize a Gaussian process). As the finite-dimensional distri-
butions of a Gaussian process are multivariate normal (therefore itself uniquely specified
by the first and second moment functions of the process) and consistent (which can be

1Complete probability spaces are a convenient setting as some technical difficulties (like measurability
problems) do not appear (e.g., functions which are defined only up to a subset of a (measurable nullset)
may not necessarily be measurable in the incomplete setting). In fact, the assumption of completeness
is not a real restriction as every probability space (Ω,F , P) can be completed by replacing F by F∗,
the smallest σ-algebra containing F and all subsets of P-nullsets, and extending P to the new σ-algebra
correspondingly (this construction gives the ’smallest‘ (in the sense of set inclusion, F ⊆ F∗) P-complete
probability space containing (Ω,F , P)).

1



1. Preliminaries 2

seen by analyzing the characteristic functions), Kolmogorov’s extension theorem (see The-
orem A.2.1) ensures the existence of a corresponding process (provided the given first and
second moment functions specify positive semi-definite covariance matrices of the finite-
dimensional distributions. According to Proposition 2.2 of [DoOpTa03], the function in
item (iii) of Definition 1.1.1 is indeed positive semi-definite for H ∈ (0, 1].).

Remark 1.1.2. From items (ii) and (iii) of Definition 1.1.1 it follows that the covariance
function of an fBM coincides with its second moment function, i.e., γBH (s, t) = m

(2)

BH (s, t),
s, t ∈ R.

Remark 1.1.3. It is possible to consider fBM only on R+,0 (one-sided fBM) or on [0, T ]
(with finite horizon T ∈ R+) with evident changes in Definition 1.1.1.

Remark 1.1.4. For H = 1, the simple construction BH
t = B1

t := tξ, where ξ is a standard
normal random variable (i.e., ξ ∼ N(0, 1) ), gives a process satisfying the properties of fBM.
This simply corresponds to a line B1

t = tB1
1 with random slope B1

1 .

Remark 1.1.5. Since E
(
(BH

t BH
s )2

)
= |t − s|2H (as a direct calculation or Lemma A.3.1

shows) and BH is a Gaussian process, it has a continuous modification, according to
the continuity theorem of Kolmogorov-Chentsov (see Theorem A.2.2). Furthermore, this
modification can be chosen (H−ε) - Hölder continuous for all ε ∈ (0,H) (see Definition
A.1.13 and Corollary A.3.1). If the fBM is defined on a compact parameter space (e.g.,
[0, T ]), ε may be chosen from (0,H].

Remark 1.1.6. It follows directly from Definition 1.1.1 that BH
t is normally distributed

with E
(
BH

t

)
= 0 and V

(
BH

t

)
= E

(
(BH

t )2
)

= |t|2H , t ∈ R 2. As any linear combination of
components of a multivariate normal distribution is normal, the increments (BH

t − BH
s )

are normally distributed with E
(
BH

t −BH
s

)
= 0 and V

(
BH

t −BH
s

)
= |t− s|2H , t, s ∈ R.

Definition 1.1.2. A stochastic process X = {Xt, t ∈ R} is called self-similar if for any
a ∈ R+ there exists ba ∈ R+ such that

{Xat, t ∈ R} d= {baXt, t ∈ R}

in the sense of finite-dimensional distributions. It is called b-self-similar (with b ∈ R+) if
for any a ∈ R+ it holds that

{Xat, t ∈ R} d=
{

abXt, t ∈ R
}

,

i.e., the constant ba ∈ R+ is ab.

Self-similarity refers to invariance in distribution under an appropriate change of scale
(thus, the sometimes used terms stochastic or statistical self-similarity would be more
precise). Interpreting the index set of a stochastic process as time, self-similarity implies
that a change of the time scale is equivalent to a (suitable) change in the state space scale
(this definition does of course require that the process be defined in continuous time since
we must be able to scale the time axis by any positive factor a).3

2The property “normalized” in Definition 1.1.1 means that BH
t ∼ N(0, |t|2H), t ∈ R. A “non-normalized”

fBM can be defined by replacing item (iii) with

(iii)* m
(2)

BH (s, t) : R× R → R : (s, t) 7→ E(XsXt) =
σ2

2
(|t|2H + |s|2H − |t− s|2H),

for (fixed) σ2 ∈ R+,0. In this case BH
t ∼ N(0, σ2|t|2H), t ∈ R.

3The term self-similar was coined by Mandelbrot (in the 1960s) and is now standard. Mandelbrot
himself though prefers to use the term “self-affinity” now because time and space are scaled differently.
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Lemma 1.1.1. Any fBM BH =
{
BH

t , t ∈ R
}

is H-self-similar.

Proof. To show the self-similarity property we have to proof that the finite-dimensional
distributions of

{
BH

αt, t ∈ R
}

and
{
αHBH

t , t ∈ R
}

are identical for any α ∈ R+. This
can be done by proofing that the characteristic functions (see Definition A.1.12) of the
finite-dimensional distributions of the two processes are identical (hence, the distributions
itself must be identical since a characteristic function determines the corresponding distri-
bution uniquely). As fBM is a Gaussian process, all the finite-dimensional distributions are
mulivariate normal. For a finite collection of indices t = (t1, . . . , tn) ∈ Rn, n ∈ N, the char-
acteristic function of the (finite-dimensional) distribution of the corresponding multivariate
random variable (Bt1 , . . . , Btn) has the form

ϕt(λ) = E

(
exp

{
i

n∑
k=1

λkB
H
tk

})
= exp

{
−1

2
〈Ctλ , λ〉

}
, λ ∈ Rn, (1.1)

where Ct :=
(
E
(
BH

tk
BH

tl

))
1≤k,l≤n

denotes the covariance matrix of the (zero-mean) random
variable (Bt1 , . . . , Btn) and 〈 . , . 〉 is the (standard) inner product on Rn. From item (iii)
of Definition 1.1.1 and the linearity of the inner product it follows that for any α ∈ R+ the
characteristic function of the finite-dimensional distributions of the process

{
BH

αt, t ∈ R
}

has the form
ϕαt(λ) = exp

{
−1

2
α2H〈Ctλ , λ〉

}
, λ ∈ Rn. (1.2)

As E(.) is a linear operator the covariance matrix of
{
αHBH

t , t ∈ R
}

has the form α2HCt.
Consequently, the characteristic functions of the finite-dimensional distributions of this
process have the same form as (1.2), which yields the desired result.

It follows from Remark 1.1.6 that an fBM has stationary increments (weakly and strictly,
see Definitions A.1.3 and A.1.2) as their distribution only depends on the "lag", but is not
stationary itself (neither strictly nor weakly). Strict stationarity is violated as the variance
of the individual random variables of fBM is not constant. Weak stationarity is violated as
the covariance function does not have the property γBH (s+h, t+h) = γBH (s, t), t, s, h ∈ R.

As mentioned above, fBM can be seen as generalization of classical Brownian Motion (BM,
or Wiener process). For H = 1

2 the second moment function of an fBM has the form

m
(2)

B1/2(s, t) =
1
2
(|t|+ |s| − |t− s|) =

{
min(|t|, |s|), sign (t) = sign (s),
0, otherwise,

s, t ∈ R.

which coincides with the second moment function of a (two-sided, normalized) BM4 With
Remark 1.1.1 and Definition 1.1.1 it follows that B

1
2 = W , where W = {Wt, t ∈ R} de-

notes a (normalized, two-sided) BM.

4A one-sided BM W = {Wt, t ∈ R+,0} is said to be normalized, if Wt ∼ N(0, t) , t ∈ R+,0 . A (nor-
malized) two-sided BM W = {Wt, t ∈ R} can be constructed by taking two independent (normalized)
one-sided Bms W 1 =

˘
W 1

t , t ∈ R+,0

¯
, W 2 =

˘
W 2

t , t ∈ R+,0

¯
and setting

Wt :=

(
W 1

t , t < 0 ,

W 2
t , t ≥ 0 .

Since Wt ∼ N(0, |t|) , t ∈ R, W is said to be normalized.
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For H ∈ (0, 1] it holds that

E
(
(BH

t −BH
s )(BH

v −BH
u )
)

=
1
2
(|s−u|2H + |t− v|2H −|t−u|2H −|s− v|2H), s, t, u, v ∈ R,

which in the case of t1 < t2 < t3 < t4 and α := H − 1
2 can be written as

E
(
(BH

t4 −BH
t3 )(BH

t2 −BH
t1 )
)

= 2αH

∫ t2

t1

∫ t4

t3

(u− v)2α−1 du︸ ︷︷ ︸
> 0 ∀ v ∈ [t1,t2]

dv

︸ ︷︷ ︸
> 0

. (1.3)

The sign of (1.3) only depends on α (the appearing double integral is strictly positive). As
(1.3) is the covariance of two increments of an fBM over two successive (non-overlapping)
time intervals, these increments are negatively correlated for H ∈ (0, 1

2), uncorrelated
(which is for Gaussian random variables equivalent of being independent) for H = 1

2 (which
is a known property of BM) and positively correlated for H ∈ (1

2 , 1]. Consequently, fBM is
a Lévy process (see Definition A.1.10) only for H = 1

2 (for any sequence of increments of
B

1
2 the pairwise uncorrelatedness implies the mutual independence of the whole sequence,

as it is Gaussian), whereas for H ∈ (0, 1
2) ∪ (1

2 , 1] the independence of the increments is
violated.

1.1.2 Long and Short Memory

The covariance function5 γX of a weakly stationary stochastic process X = {Xt, t ∈ Z}
satisfies γX(s, t) = γX(s − t, 0), s, t ∈ Z, and can therefore be redefined as a function of
one variable

γ̂X : Z → R : k 7→ γ̂X(k) := γX(k, 0),

where γ̂X(k) is referred to as the correlation function of X at ‘lag’ k. The correlation
function6 of such a process is defined by

ρ̂X : Z → R : k 7→ ρ̂X(k) :=
γ̂X(k)
γ̂X(0)

.

Definition 1.1.3. A weakly stationary stochastic process X = {Xk, k ∈ Z} is said to have
long memory or long-range dependence if there exist real constants C 6= 0 and 0 ≤ d < 1

2
such that

ρ̂X ∼ Ck2d−1 as k →∞, (1.4)

where the symbol ‘∼’ denotes ‘the same asymtotic behaviour’7. This asymptotic behaviour
of the correlation function is equivalent to

∑
k∈Z |ρ̂X(k)| = ∞. The process is said to have

short memory or short-range dependence if there exist real constants C 6= 0 and d < 0
such that (1.4) holds, which is equivalent to

∑
k∈Z |ρ̂X(k)| < ∞.

Remark 1.1.7. This is not the only possible definition for long and short range memory.
Alternative ones can be found in the literature which are not all exactly equivalent (e.g.,
cf. [DoOpTa03, pp. 16-18].

5The covariance function of a process is sometimes, especially in time series analysis, referred to as
autocovariance function.

6or autocorrelation function.
7 i.e., f ∼ g as x →∞ :⇔ |f(x)|

|g(x)| = 1 as x →∞.
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Remark 1.1.8. The equivalence in Definition 1.1.3 can be seen by noting that (1.4) implies∑
k∈Z |ρ̂X(k)| ∼

∑
k∈Z\{0} |k|2d−1 (in the sense of same convergence behaviour as k →∞)

and by recalling that the generalized harmonic series
∑

n∈N n−p, p ∈ R+ , convergences for
p > 1 and diverges for p ≤ 1 (as can be simply proofed by Cauchy’s condensation test).

By taking the correlation ρ̂X(k) of a weakly stationary process X = {Xk, k ∈ Z} as mea-
sure of dependence between any two of its random variables at lag k (i.e., Xt, Xt+k, for
some t ∈ Z), the properties of short resp. long memory get an intuitive interpretation. For
short memory processes the dependence declines rapidly (which ensures the convergence
of
∑

k∈Z |ρ̂X(k)|) whereas long memory processes exhibit dependence also for large lags
(thus, leading

∑
k∈Z |ρ̂X(k)| to diverge). This can be used to model phenomena exhibiting

dependence upon larger time-scale. The divergence of the covariance series captures the
intuition behind long memory; even though the high-lag correlations are individually small,
their cumulative effect is of importance, thus giving rise to a behavior which is markedly
different from that of processes with short memory.

As fBM has stationary increments, the stochastic process XH =
{
XH

k , k ∈ Z
}
, defined by

XH
k := BH

k − BH
k−1, k ∈ Z, is weakly stationary. In the literature this process is referred

to as fractional Gaussian noise (fGn), see Section 1.1.4. From (1.3) it follows that the
covariance function of XH has the form

γ̂XH (k) = E
(
BH

1 (BH
k+1 −BH

k )
)

= 2αH

∫ 1

0

∫ k+1

k
(u− v)2α−1 du dv, k ∈ Z, (1.5)

where α := H − 1
2 . As γ̂XH (0) = V

(
BH

1

)
= 1 the covariance function γ̂XH coincides with

the correlation function ρ̂XH . By taking a look at the exponent of the integrand in (1.5)
it follows that

ρ̂XH(k) ∼ 2αH|k|2α−1 as |k| → ∞ . (1.6)

From (1.6) and Definition 1.1.3 it follows that XH has long memory for α ∈ (0, 1
2 ] (which

is equivalent to H ∈ (1
2 , 1]) and short memory for α < 0 (equivalent to H ∈ (0, 1

2)). Since
for H = 1

2 the increments over non-overlapping time intervals of fBM are independent (and
therefore uncorrelated), X

1
2 is said to have no memory.

The concept of short and long memory (defined in 1.1.3 for weakly stationary processes in
discrete time) can be extended to processes with stationary increments in continuous time
(although the process itself need not be weakly stationary, as required in Definition 1.1.3)
by saying that a process X = {Xt, t ∈ R} has long resp. short memory if the increment
processes of X have the corresponging properties, i.e., for any h ∈ R+ the process

X(h) =
{

X
(h)
k := Xkh −X(k−1)h, k ∈ Z

}
exhibits long resp. short memory. Analogously to (1.5) it can be derived from (1.3) that
for any h ∈ R+

Cov(BH
h , BH

k+h −BH
k ) ∼ 2αHh2|k|2α−1 as |k| → ∞. (1.7)

This implies that the increments of fBM have long memory for H ∈
(

1
2 , 1
]

and short mem-
ory for H ∈

(
0, 1

2

)
. Due to this we say that fBM itself has long memory for H ∈

(
1
2 , 1
]

and short memory for H ∈
(
0, 1

2

)
.
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1.1.3 Spectral Density and Spectral Representation of fBM

Two other important concepts in the theory of stochastic processes (especially in time
series analysis) are the spectral distribution function and the spectral density function of
a stochastic process (see Theorem A.2.3 for a definition). For the spectral density function
of XH , which we denote by fH(λ), it holds that (see [BiGu96])

fH(λ) = C
(0)
H |eiλ − 1|2

∑
k∈Z

|λ + 2πk|−2H−1 , λ ∈ [−π, π],

where C
(0)
H is some constant depending on H. It holds that

fH(λ) ∼ C
(0)
H |λ|2|λ|−2H−1 = C

(0)
H |λ|−2H+1 as λ → 0.

Therefore, for H ∈ (1
2 , 1) it holds that fH(λ) → ∞ as λ → 0, and, for H ∈ (0, 1

2) it holds
that fH(λ) → 0 as λ → 0. Since this asymptotic behaviour for λ → 0 is a characteristic of
long and short memory processes, i.e., spectral densities are unbounded at λ = 0 for long
memory and bounded for short memory, this could be used as alternative (and equivalent)
frequency-domain definition of long and short memory.

According to [PiTa00] and [SaTa94], any fBM BH admits a spectral representation of the
form {

BH
t , t ∈ R

} d=
{

C
(1)
H

∫
R
(eitx − 1)(ix)−1|x|−H+ 1

2 dB̃(x), t ∈ R
}

,

where B̃ = B1 + iB2 is a complex Gaussian measure with B1(A) = B1(−A), B2(A) =
−B2(−A) and E

(
(B1(A))2

)
= E

(
(B2(A))2

)
= mesh(A)

2 for any Borel set A ∈ B of finite

Lebesgue measure mesh(A) and C
(1)
H :=

(
Γ(2H+1) sin(π/2(H+1/2))

2π

) 1
2 .

1.1.4 Fractional Gaussian Noise

Recall that fGn is the process XH =
{
XH

k , k ∈ Z
}

defined by XH
k := BH

k −BH
k−1, k ∈ Z,

and that it has long memory for H ∈
(

1
2 , 1
]

and short memory for H ∈
(
0, 1

2

)
.

A striking feature of fGn with H 6= 1
2 is that it provides a counterexample to the usual

central limit theorem. Indeed, for d−1
n

∑n
k=1 XH

k to converge in distribution, as n → ∞,
to a non-trivial limit, one cannot choose dn ∼ n

1
2 but rather dn ∼ nH : Since fGn is the

increment process of fBM, it holds that n−H
∑n

k=1 XH
k = n−HBH

n which has the same
distribution as BH

1 due to self-similarity of
{
BH

t , t ∈ R
}
. To ensure convergence, for fGn

with long memory (i.e., H > 1
2) the norming sequence d−1

n has to decrease more rapidly
than in the usual central limit theorem (whereas in the short memory case the norming
sequence may even decrease more slowly). For practical purposes this means that the
variance of time averages decreases far less rapidly than observed in usual (short memory)
models. This property is not only exhibited by fGn but is a characteristic feature of long
memory processes in general.

1.1.5 Mandelbrot-van Ness Representation of fBM

Let W = {Wt, t ∈ R} be a (two-sided, normalized) BM and denote kH(t, u) := (t− u)α
+ −

(−u)α
+ , where α = H − 1

2 . The following (more constructive) representation of fBM is due
to Mandelbrot and van Ness (see [MavN68]).
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Theorem 1.1.1 (Theorem 1.3.1 of [Mish08]). The process B
H =

{
B

H
t , t ∈ R

}
, H ∈ (0, 1),

defined by

B
H
t := C

(2)
H

∫
R

kH(t, u) dWu , t ∈ R, (1.8)

where C
(2)
H :=

(∫
R+

((1 + s)α − sα)2 ds +
1

2H

)− 1
2

=

(
2H sin(πH)Γ(2H)

) 1
2

Γ(H + 1/2)
, (1.9)

has a P-a.s.continuous modification which is a normalized two-sided fBM.

Remark 1.1.9. C
(2)
H in (1.8) is a normalizing constant to ensure that B

H
t ∼ N(0, |t|2H) (i.e.,

that B
H is a normalized fBM).

Proof. For H = 1
2 it is clear that C

(2)
H = 1 and

B
H
t =

∫
R

kH(t, u) dWu = Wt, t ∈ R.

For H ∈
(
0, 1

2

)
∪
(

1
2 , 1
)

the intergal in (1.8) can be understood as an L2-limit of linear
combinations of random variables from {Wt, t ∈ R} (see Chapter 1 of [Cher01b] for a
detailed discussion). Hence, B

H is a Gaussian process with B
H
0 = 0 and E

(
B

H
t

)
= 0.

Furthermore, it holds (by L2-isometry) that for t ≥ 0

E

((∫
R

kH(t, u) dWu

)2
)

=
∫ 0

−∞
k2

H(t, u) du +
∫ t

0
(t− u)2α du

=
∫ ∞

0

(
(t + u)α − (u)α

)2 du︸ ︷︷ ︸
=
∣∣∣∣ s := u

t
ds
du = 1

t

∣∣∣∣ = ∫∞0 t2α+1 ((1 + s)α − (s)α)2 du

+
1

2α + 1

(
(t− u)2α+1

∣∣t
u=0

)
︸ ︷︷ ︸

=
t2H

2H

= t2H

(∫
R+

((1 + s)α − sα)2 ds +
1

2H

)
. (1.10)

Analogous, for t < 0 we have that

E

((∫
R

kH(t, u) dWu

)2
)

=
∫ t

−∞
k2

H(t, u) du +
∫ 0

t
(−u)2α du

= (−t)2H

(∫
R+

((1 + s)α − sα)2 ds +
1

2H

)
. (1.11)

From (1.10) and (1.11) the normalizing constant C
(2)
H can be derived. This yields E

((
B

H
t

))
=

|t|2H , t ∈ R. Furthermore, for h > 0 it holds that

B
H
s+h −B

H
s = C

(2)
H

(∫ s

−∞
kH(s + h, u)− kH(s, u) dWu

)
+

C
(2)
H

∫ s+h

s
kH(s + h, u) dWu =: C

(2)
H (I1 + I2) . (1.12)
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As the BM W has independent and stationary increments, it follows that the terms I1 and
I2 on the right-hand side of (1.12) are independend, that

I1
d=
∫ 0

−∞
(kH(s, u)− kH(0, u)) dWu , I2

d=
∫ h

0
kH(h, u) dWu ,

and E
((

B
H
s+h −B

H
s

)2
)

= E
((

B
H
h

)2
)

= h2H . By combining these results, we obtain

that

E
(
B

H
s B

H
t

)
=

1
2

(
E
((

B
H
s

)2
)

+ E
((

B
H
t

)2
)
−E

((
B

H
t −B

H
s

)2
))

=
1
2
(
|t|2H + |s|2H − |t− s|2H

)
. (1.13)

The proof follows from Definition 1.1.1 and Remark 1.1.5. For the second equality in (1.9)
see Mishura [Mish08, pp. 363-364].

Remark 1.1.10. According to [Cher01b], for H ∈
(
0, 1

2

)
∪
(

1
2 , 1
)

the integral in (1.8) can
also be understood as P-a.s. limit in the sense that

∫
R kH(t, u) dWu(ω) exists as improper

Riemann-Stieltjes integral for P-a.a. ω ∈ Ω (see Proposition 1.3 of [Cher01b]).

Remark 1.1.11. As stated in the first paragraph of [MavN68], Mandelbrot and van Ness’
idea behind (1.8) was to represent fBM with parameter H ∈ (0, 1) as moving average of
dWs in which past increments of W are weighted by the kernel (t − s)2H−1. Due to this,
(1.8) is also referred to in the literature as ‘moving average representation’ of fBM.

It arises the question whether any fBM BH with H ∈ (0, 1) can be presented in the form
(1.8). This is indeed the case and is stated in the next theorem. To simplify the notation
we use α := H − 1

2 and define the operator

MH
− f :=

{
C

(3)
H Iα

−f , H ∈ (0, 1
2) ∪ (1

2 , 1),
f , H = 1

2 ,
(1.14)

where C
(3)
H := C

(s)
H Γ(H + 1

2) and Iα
− denotes the Riemann-Liouville left-sided fractional

integral on R of order α, i.e.,

(Iα
−f)(x) :=

1
Γ(a)

∫ ∞

x
f(t)(t− x)(α−1 dt .

As is proofed in Lemma 1.1.3 of [Mish08], for H ∈ (0, 1
2)∪ (1

2 , 1) it holds for all t ∈ R that

(Iα
−1(0,t))(x) =

1
Γ(1 + α)

(
(t− x)α

+ − (−x)α
+

)
,

where 1(.,.) denotes the general indicator function, which is given by (a, b ∈ R)

1(a,b) :=


1, a ≤ t < b,

−1, b ≤ t < a,

0, otherwise.

With this notation (1.8) can be written as

B
H
t :=

∫
R
(MH

− 1(0,t))(u) dWu , t ∈ R. (1.15)
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Theorem 1.1.2 (Corollary 1.6.11 of [Mish08]). Any fBM BH with H ∈ (0, 1) admits a
Mandelbrot-van Ness representation of the form (1.15) with respect to a suitable BM W .
(For a proof see [Mish08, pp. 9-23].)

Remark 1.1.12. As suitable BM for the Mandelbrot-van Ness representation of any fBM
BH the process W defined by

Wt := C
(4)
H

∫
R

M1−H
− 1(0,t)(u) dBH

u , t ∈ R,

where C
(4)
H :=

(
C

(3)
H C

(3)
1−H

)−1
, which is indeed a BM, can be used. The integral is a Wiener

integral with respect to BH (see [Mish08, pp. 16-23] for a construction).
Remark 1.1.13. Norros et al. [NoVaVi99] have shown that fBM also admits an inte-
gral representation analogous to (1.8) over finite intervals. Any fBM of the form BH ={
BH

t , t ∈ R+,0

}
can be written as

BH
t =

∫ t

0
l(t, u)dBu, t ∈ R+,0 , (1.16)

with

l(t, u) := C
(5)
H

[(
t

u

)α

(t− u)α − αu−α

∫ t

u
sα−1(s− u)αd s

]

with α = H − 1
2 and C

(5)
H :=

√
2HΓ(1− α)

Γ(α + 1)Γ(1− 2α)
, where Γ(.) denotes the Gamma

function and B = {Bt , t ∈ R+,0} denotes a standard BM. The integral in (1.16) can again
be understood as L2-limit.

1.1.6 Some Limit Results for fBM

In the next lemma we collect some limit results on the increments of fBM that we will
partly need in this thesis.

Lemma 1.1.2. Let BH be an fBM with H ∈ (0, 1], and T, p, q ∈ R+. Then:

(i) n−1+pH
n−1∑
j=0

∣∣∣∣BH
(j+1)

n
T
−BH

j
n

T

∣∣∣∣p a.s.−→ E
(
|BH

T |p
)

as n → ∞ and the convergence is also

in L1.

(ii) n−1+pH−q
n−1∑
j=0

∣∣∣∣BH
(j+1)

n
T
−BH

j
n

T

∣∣∣∣p a.s.−→ 0 as n →∞ and the convergence is also in L1.

(iii) n−1+pH+q
n−1∑
j=0

∣∣∣∣BH
(j+1)

n
T
−BH

j
n

T

∣∣∣∣p p−→ ∞ as n → ∞, i.e., for all L ∈ R+ there exists

an n0 such that for all n ≥ n0 : P

n−1+pH+q
n−1∑
j=0

∣∣∣∣BH
(j+1)

n
T
−BH

j
n

T

∣∣∣∣p < L

 <
1
L

.

Proof. (i) The sequence
{

BH
(j+1)T −BH

jT , j ∈ N0

}
is strictly stationary (see Remark

1.1.6). Since it is Gaussian and (see (1.7))

Cov
(
BH

T −BH
0 , BH

(j+1)T −BH
jT

)
→ 0 , as j →∞ ,
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it is also mixing, hence ergodic. The Ergodic theorem (see Theorem A.2.4 and
Remark A.2.2) then implies

1
n

n−1∑
j=0

∣∣∣BH
(j+1)T −BH

jT

∣∣∣p a.s.−→ E
(
|BH

T |p
)

, as n →∞ . (1.17)

From the stationarity of the above sequence follows that E(|BH
(j+1)T − BH

jT |p) is
constant for all j ∈ N0, which, by Scheffé’s lemma, implies the convergence of (1.17)
in L1. It follows from the self-similarity of BH that for all n ∈ N

n−1+pH
n−1∑
j=0

∣∣∣∣BH
(j+1)

n
T
−BH

j
n

T

∣∣∣∣p
has the same distribution as

n−1∑
j=0

∣∣∣BH
(j+1)T −BH

jT

∣∣∣p .

This completes the proof of (i).

(ii) Follows immediately from (i).

(iii) Choose L ∈ R+. It follows from (ii) that there exists an n1 ∈ N such that

P

∣∣∣∣∣∣E
(∣∣BH

T

∣∣p)− n−1pH
n−1∑
j=0

∣∣∣∣BH
(j+1)

n
T
−BH

j
n

T

∣∣∣∣p
∣∣∣∣∣∣ > 1

2
E
(∣∣BH

T

∣∣p) <
1
L

for all n ≥ n1. This implies that for all n ≥ n1

P

n−1pH
n−1∑
j=0

∣∣∣∣BH
(j+1)

n
T
−BH

j
n

T

∣∣∣∣p <
1
2
E
(∣∣BH

T

∣∣p) <
1
L

or, equivalently,

P

n−1pH+q
n−1∑
j=0

∣∣∣∣BH
(j+1)

n
T
−BH

j
n

T

∣∣∣∣p < nq 1
2
E
(∣∣BH

T

∣∣p) <
1
L

.

This shows the existence of an n0 ∈ N such that

P

n−1pH+q
n−1∑
j=0

∣∣∣∣BH
(j+1)

n
T
−BH

j
n

T

∣∣∣∣p < L

 <
1
L

for all n ≥ n0 and (iii) is proved.
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1.1.7 The Hurst Parameter H

The Hurst parameter H divides fBM into three different classes. B
1
2 is a two-sided (nor-

malized) BM (which has independent increments). For H ∈
(
0, 1

2

)
the covariance between

two increments over non-overlapping time intervals is negative and the process has short
memory, whereas for H ∈

(
1
2 , 1
]

this covariance is positive and the process has long mem-
ory. Due to this correlation structure the paths of fBM get smoother (less zigzagged) as
H goes from 0 to 1. For H ∈

(
0, 1

2

)
any two consecutive increments of fBM tend to have

opposite signs and thus be more zigzagging because of their negative covariance (this ten-
dency increases as H approaches 0)8. For H ∈

(
1
2 , 1
]

the covariance of two consecutive
increments is positive. Hence, the increments tend to have the same signs (with increasing
tendency as H approaches 1), which leads to smoother paths9. For the case of H = 1
the paths of fBM become lines with random slope (see Remark 1.1.4). Due to this path
behaviour fBM is called antipersistent for H ∈

(
0, 1

2

)
, chaotic for H = 1

2 and persis-
tent for H ∈

(
1
2 , 1
]
. Figures 1.1 to 1.3 show simulated sample paths of fBM with varied

parameter H to illustrate its influence on the path appearance (see Appendix B for details).

Figure 1.1: Simulated sample paths (each 1000 points) of fBM with H = 0.2.

Figure 1.2: Simulated sample paths (each 1000 points) of fBM with H = 0.5.

1.1.8 FBM and the Martingale Property

Since fBM can be seen as a generalizaton of BM it arises the question whether fBM inherits
the martingale property. As it turns out, for H ∈

(
0, 1

2

)
∪
(

1
2 , 1
]

this is not the case. As
has been shown by several authors, fBM is not even a semimartingale (w.r.t. its natural

8Because of this behaviour, fBM with H ∈
`
0, 1

2

´
has been used as a model of turbulence (see [Shir99]

and references therein)
9As this positive covariance of consecutive increments persists over arbitrary long time intervals, this

leads to a rather natural and smooth appreance of sample paths which can be used in fractal landscape
generation (especially for H ∈ ( 3

4
, 1), see [Fesz05] for further information).
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Figure 1.3: Simulated sample paths (each 1000 points) of fBM with H = 0.8.

filtration, see Definition A.1.4) for H ∈
(
0, 1

2

)
∪
(

1
2 , 1
)
. Furthermore, fBM is not a weak

semimartingale10 (which is a sligthly stronger statement since the natural filtration of an
fBM does not satisfy the usual conditions). That BH is not a weak semimartingale for
H ∈

(
0, 1

2

)
∪
(

1
2 , 1
)

can be derived from the fact that in this case BH does not have the
’right’ variation. For a detailed discussion of this matter I would like to refer to [Cher01a]
where the author examines the semimartingale property of ‘mixed fractional Brownian
Motion’, i.e., a linear combination of different fractional Brownian Motions, of the special
form

MH,α := W + αBH ,

where W is a BM, BH is a fBM with H ∈
(
0, 1

2

)
∪
(

1
2 , 1
]

and α ∈ R \ {0}. The main result
of the cited paper is

Theorem 1.1.3 (Theorem 1.7 of [Cher01a]). (MH,α)t∈[0,1] is not a weak semimartingale
if H ∈

(
0, 1

2

)
∪
(

1
2 , 3

4

]
, it is equivalent to

√
1 + α2 times Brownian Motion if H = 1

2 and
equivalent to Brownian Motion if H ∈

(
3
4 , 1
]
.

(For a proof see [Cher01a].)

Remark 1.1.14. For simplicity (to avoid localization arguments) the processes considered in
the cited paper are of the form MH,α = (MH,α)t∈[0,T ] with T < ∞. Due to self-similarity
of fBM there is no loss of generality in assuming T = 1.
Remark 1.1.15. Semimartingale processes were for several decades the best model to im-
plement many ideas. For example, they provide a convenient setting to consider financial
markets as was demonstrated by various authors (see for example Delbaen and Schacher-
mayer [DeSa06]). However, in recent years it turns out that the theory of semimartingales
is insufficient to describe many phenomena. Empirical data indicates that various objects
like telecommunication connections or asset prices exhibit long memory (see Section 1.1.2).
This effect cannot be described satisfyinly by BM-type processes as they have independent
increments and therefore no memory. As an alternative, fBM could be used as a rela-
tively simple non-semimartingale model that allows to account for dependencies such as
long memory. The study of non-semimartigale processes and their use as models (e.g., in
mathematical finance) is currently an active field of research.

1.1.9 FBM as Financial Market Model

Bachelier was the first to propose a continuous-time stochastic model to describe the price
evolution of a financial asset. The model that he suggested in his thesis (1900) for the
price of a stock is as follows:

10Weak semimartingales are stochastic processes that, in contrast to semimartingales, are not required
to be a.s. right-continuous and the filtration w.r.t. which they are considered need not fulfill the usual
conditions, see Definition A.1.5. For a rigorous definition of weak semimartingales see [Cher01b].
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St = S0 + µt + σB , (1.18)

where S0, µ and σ are real constants and B is a Brownian Motion. Samuelson (1965)
introduced the model

St = S0 exp
({

µ− σ2

2

}
t + σB

)
, (1.19)

where again S0, µ and σ are real constants and B is a Brownian Motion. The Samuelson
model is often regarded as a more realistic description of the price evolution of a finan-
cial asset since, in contrast to the Bachelier model, it does not admit negative asset prices11.

Black and Scholes (1973) considered a simple financial market model of the form (S0, S) =(
(S0

t )[0,T ], (St)[0,T ]

)
, consisting of a bond whose evolution is described by S0 and a stock

whose evolution S is described by (1.19). They noticed that if there exists a positive real
constant r such that S0

t = exp(rt) the pay-off of a European call option on S can be repli-
cated by continuous trading in S0 and S. This model is often referred to as Black-Scholes
or Black-Scholes-Merton model.

Since the Samuelson model also has some deficiencies there have been many efforts to build
better models. For example, Cutland et al. [CuKoWi95] discuss the empirical evidence
that suggests that long-range dependence should be accounted for when modelling stock
price evolutions and present a fractional version of the Samuelson model.

Possibilities to define fractional versions (and therefore to account for long-range depen-
dencies) of both the Bachelier and the Samuelson model are

S0
t = 1 , St = S0 + µt + σBH

t , t ∈ [0, T ] , (1.20)

and

S0
t = exp(rt) , St = S0 exp

(
{r + µ}t + σBH

t

)
, t ∈ [0, T ] , (1.21)

where S0, µ, σ ∈ R+ and r ∈ R are constants and BH denotes a fBM. The model described
by (1.20) is called fractional Bachelier model and the model described by (1.21) is called
fractional Samuelson model or, alternatively, fractional Black-Scholes model.

A significant deficiency of the above stated fractional models is that they admit arbitrage.
As stated in Section 1.1.8 fBM is not a weak semimartingale for H ∈

(
0, 1

2

)
∪
(

1
2 , 1
)
.

Particularly, it is not a semimartingale w.r.t. FH =
{
FH

t , t ∈ [0, T ]
}

, where FH =

{Ft, t ∈ [0, T ]} denotes the natural filtration of BH =
{
BH

t , t ∈ [0, T ]
}

and FH is the
smallest σ-algebra that contains FH and satisfies the usual conditions12. It follows that
the discounted stock price S̃ := S/S0 (with S0 as numeraire) in the models (1.20) and
(1.21) is not a semimartingale either. Therefore, it follows immediately from Theorem 7.2
of [DeSa94] that (1.20) and (1.21) admit a ‘free lunch with vanishing risk’ consisting of
simple predictable integrands adapted to FH .

11For many practical purposes the possibility of negative asset prices in the Bachelier model can be
neglected as the maturity of derivatives on the corresponding asset are short and the underlying Gaussian
distribution has light tails. However, in the long run the potential occurrence of negative prices is a
drawback of the Bachelier model. For a comparison of the Bachelier and the Samuelson model see [ScTe08].

12The natural filtration of an fBM does not satisfy the usual conditions.
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Remark 1.1.16. For a detailled discussion of arbitrage in fractional Brownian Motion mod-
els see Cheridito [Cher01b]. The author discusses fBM, models of the structure (1.20) and
(1.21) and ways to regularize them, i.e., to make them arbitrage-free. Some heuristic ar-
guments are given that indicate why for H ∈

(
0, 1

2

)
∪
(

1
2 , 1
)

the behaviour of the function

φH(x) := (x)
H− 1

2
+ used in the evolution kernel kH(., .) of equation (1.8) (the Mandelbrot-

van Ness representation of fBM) near zero is responsible for the existence of arbitrage in
the fractional models (1.20) and (1.21) and how φH can be regularized to yield a process
which can be used to construct an arbitrage-free stock price model (which still allows for
taking long-range dependence into account). As an example the pricing of a European call
option in a regularized fractional Samuelson model of type (1.21) is discussed.

1.1.10 Some Notes on the History of fBM

The history of fBM goes back to 1940 when Kolmogorov [Kolm40] was the first to study
Gaussian processes in continuous time with stationary increments and the stochastic self-
similarity property (see Definition 1.1.2) in a Hilbert space framework. It can be shown
that such processes X = {Xt , t ∈ R} with the additional property of zero mean have a
special correlation structure of the form

m
(2)
X (s, t) : R× R → R : (s, t) 7→ E(XsXt) =

1
2
(|t|2H + |s|2H − |t− s|2H) , (1.22)

where H ∈ (0, 1) (for a proof see Doukhan et al. [DoOpTa03, pp. 7-8]). Obviously, (1.22) is
the second moment function of an fBM. Kolmogorov called such zero-mean Gaussion pro-
cesses “Wiener Spirals” or “Wiener screw-lines”. Later, when papers by the British hydrol-
ogist H. E. Hurst and other authors, devoted to long-term storage capacity in reservoirs,
were published, the parameter H got the name “Hurst Parameter”. In their pioneering
work (from which the stochastic calculus for processes with the above mentioned structure
originated) Mandelbrot and van Ness [MavN68] considered the intergal moving average
representation of X via Brownian Motion on an infinite intervall (see Section 1.1.5) and
called this process fractional Brownian Motion.
An intense wave of interest in fBM (and other long-memory processes) arose in the 1990s
due to various applications in teletraffic, finance, climate and weather derivatives. The
stochastic calculus for fBM was developed further continuously (which was necessary since
fBM is neither a semimartingale, except for H = 1/2, nor a Markov process) mainly based
on the “fractional integral” representation of fBM via BM (on finite and infinite intervals,
see equations (1.8) and (1.16)). This, together with the Gaussian property and the Hölder
continuity of the trajectories of fBM permits to develop an interesting and rich calculus
(as part of the theory of long-memory processes).

Remark 1.1.17. For a detailed account of the historical development of fBM and an ex-
haustive list of references to related material see the preface of Mishura [Mish08].
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1.2 Realized Power Variation

This section is mainly based on Barndorf-Nielson and Shephard [BaSh02] and Corcuera et
al. [CoNuWo06].

1.2.1 Definition and Elementary Properties

In this section let X = {Xt , t ∈ R+,0} be an arbitrary (real-valued) stochastic process.

For any δ ∈ R+ and t ∈ R+,0 define

X
(δ)
t := Xbt/δcδ , (1.23)

where bac for any a ∈ R denotes the largest integer less than or equal to a. The such
defined process X(δ) =

{
X

(δ)
t , t ∈ R+,0

}
is a discrete approximation to X.

Definition 1.2.1. For any p, δ ∈ R+ the realized power variation of order p or realized
p-tic variation (with mesh δ) (r.p.v.) of X = {Xt , t ∈ R+,0} is defined as

V δ
p (X)t :=

bt/δc∑
j=1

|X(δ)
jδ −X

(δ)
(j−1)δ|

p =
bt/δc∑
j=1

|Xjδ −X(j−1)δ|p . (1.24)

Remark 1.2.1. Definition 1.2.1 is based on Barndorf-Nielson and Shephard [BaSh02] in
which the concept of r.p.v. of order p ∈ R+ was introduced as generalization of the
realized quadratic variation of a random process. Although it could simply have been
introduced by the second expression of (1.24) the given definition stresses that r.p.v. is
based on the discrete approximation (1.23) of the underlying process.

Remark 1.2.2. The use of the term power variation is not consistent throughout the liter-
ature. Some authors refer to r.p.v. simply as power variation. Others denote with power
variation the limit (in probability) of r.p.v. as the mesh of the partition tends to zero
(where they consider all partitions of a given (finite) interval, not only equidistant ones as
used in Definition 1.2.1), i.e., taking

∑
i |Xti − Xti−1 |p as maxi |ti − ti−1| → 0. This two

concepts are, obviously, closely related. For p = 2, r.p.v. is referred to as quadratic r.p.v.
and the described limit concept is referred to as quadratic variation. For a process X it
holds that

V δ
2 (X)t

p−→ [X]t , t ∈ R+,0 , as δ → 0 ,

where [X]t denotes the quadratic variation process of X and the convergence is in proba-
bility. Note also that

V δ
2 (X) =

[
X(δ)

]
,

i.e., the two processes coincide.

Remark 1.2.3. In recent years, in finance the concept of power variation (in the above
described limit sense, where Xt denotes the log-price process), as an estimate for the
integrated volatility, became popular as a measure for the change in the volatility, because
stochastic volatility models play an important role in overcoming the problems of the
Black-Scholes world, especially being able to fit skews and smiles (see, e.g., [Woer05]).
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1.2.2 p-Variation of a real-valued Function

The concept of r.p.v. should not be confused with the similarly-named p-variation (or
strong variation) of a function which will also play an important role in this thesis.

Definition 1.2.2. For a a real-valued function f on an interval [a, b] the p-variation,
p ∈ R+, is defined by

varp(f ; [a, b]) := sup
π

(
n∑

i=1

|f(ti)− f(t(i−1)|p
)1/p

,

where the supremum is taken over all partitionsπ = {a = t0 < t1 < · · · < tn = b} of [a, b].
If this expression is finite then f is said to have bounded p-variation on [a, b].

Remark 1.2.4. The case of p = 1 in Definition 1.2.2 gives the usual definition of bounded
variation.

Remark 1.2.5. The concept of p-variation applied to stochastic processes has been studied
in probability literature by various authors, see, for example, the work of Lyons [Lyons94]
and Mikosch and Norvaisa [MiNo00]. In the course of this thesis we will also consider
stochastic processes with paths of finite p-variation.

Remark 1.2.6. As can be checked easily, α-Hölder continuity, α ∈ R+, of a real-valued
function f on a finite interval [a, b] implies its finite (1/α)-variation on [a, b] (see Lemma
A.3.2).



Chapter 2

Realized Power Variation of some
Fractional Stochastic Integrals

This chapter is concerned with the asymptotic behaviour of the r.p.v of some stochas-
tic processes of the form

∫ t
0 us dBH

s , i.e., fractional stochastic integrals1 w.r.t. fBM. The
discussion follows Corcuera et al. [CoNuWo06] and presents the main results therein.

2.1 The Setting

We consider fractional stochastic integrals of the form∫ t

0
us dBH

s , t ∈ [0, T ] , (2.1)

where T ∈ R+ is fixed, u = {ut , t ∈ [0, T ]} is a stochastic process with paths of finite q-
variation, 0 < q < 1

1−H , BH =
{
BH

t , t ∈ [0, T ]
}

is an fBM with Hurst parameter H ∈ (0, 1)
and the stochastic integral is a pathwise Riemann-Stieltjes integral.
Young [Young36] proved that it is sufficient for the existence of the Riemann-Stieltjes
integral

∫ b
a f dg that f and g have finite p-variation and finite q-variation, respectively, in

the interval [a, b] and 1/p + 1/q > 1. Furthermore, the following inequality holds:∣∣∣∣∫ b

a
f dg − f(a)(g(b)− g(a))

∣∣∣∣ ≤ cp,q varp(f ; [a, b]) varq(g; [a, b]) , (2.2)

where cp,q := ζ(1/q + 1/p), with ζ(s) :=
∑

n≥1 n−s. Since the trajectories of BH have
finite 1/(H − ε)-variation, ε ∈ R+, on any finite interval (see Lemma A.3.2 and Corollary
A.3.1), Young’s result ensures the existence of the pathwise integrals

∫ t
0 us dBH

s provided
the trajectories of the process u = {ut , t ∈ [0, T ]} have finite q-variation on [0, T ] for some
q < 1/(1−H).
In the following we are interested in the asymptotic behaviour of a renormalized version
of the r.p.v. of the above specified fractional stochastic integrals, i.e., the behaviour of the
process ξ(n) =

{
ξ
(n)
t , t ∈ [0, T ]

}
, n ∈ N, defined by (p ∈ R+)

ξ
(n)
t := n−1+pH V 1/n

p (u)t = n−1+pH

bntc∑
i=1

∣∣∣∣∣
∫ 1/n

(i−1)/n
us dBH

s

∣∣∣∣∣
p

, t ∈ [0, T ] , (2.3)

1In the probability literature stochastic integrals w.r.t. fBM are usually called fractional stochastic
integrals.
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as n tends to infinity. The additional renormalizing constant n−1+pH in (2.3) is required
to obtain non-trivial limit theorems (i.e., with other limits than 0 or ∞). The types of
convergence used in the asymptotic analysis of (2.3) are uniform convergence in proba-
bility2(denoted by u.c.p.) in the interval [0, T ] and convergence in law. For a function
f : [a, b] → R and α ∈ R+,0 we denote by ‖f‖α the expression

‖f‖α := sup
a≤ s < t≤ b

|f(t)− f(s)|
|t− s|α

. (2.4)

2.2 A Law of Large Numbers for the Realized Power Varia-
tion

The following theorem is one of the main results in Corcuera et al. [CoNuWo06] and can
be understood as a law of large numbers for the r.p.v. of the stochastic integrals (2.1).
The essential tool for the proof of the theorem will be the Ergodic theorem (which itself
can be interpreted as a law of large numbers for dependent random variables).

Theorem 2.2.1 (Theorem 1 of [CoNuWo06]). Suppose that u = {ut , t ∈ [0, T ]} is a stochas-
tic process with paths of finite q-variation, where 0 < q < 1

1−H , and BH =
{
BH

t , t ∈ [0, T ]
}

is an fBM with Hurst parameter H ∈ (0, 1). Define a stochastic process Z = {Zt , t ∈ [0, T ]}
by

Zt :=
∫ t

0
us dBH

s , t ∈ [0, T ]. (2.5)

Then, for p ∈ R+,

ξ
(n)
t = n−1+pH V 1/n

p (Z)t
u.c.p.−→ cp

∫ t

0
|us|p ds ,

as n →∞, where

cp := E
(
|BH

1 |p
)

=
2p/2Γ((p + 1)/2)

Γ(1/2)
.

Remark 2.2.1. For the equality in the definition of cp see Lemma A.3.1.

Proof. We first consider the case p ≤ 1. For any m,n ∈ N with m ≥ n we can write
2A sequence of random variables (Xn)n∈N on (Ω,F , P) is said to converge in probability to a random

variable X on (Ω,F , P), Xn
p→ X, if lim

n→∞
P (|Xn −X| ≥ ε) → 0 ∀ε ∈ R+. A sequence of stochastic

processes (Xn)n∈N , where each Xn is a stochastic process Xn = {Xn,t , t ∈ [a, b]} with some common pa-
rameter space [a, b], is said to converge uniformely in probability to a stochastic process X = {Xt , t ∈ [a, b]}
in [a, b] if ‖Xn,t −Xt‖∞

p→ 0, where ‖.‖∞ denotes the supremum norm on the interval [a, b].
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m−1+pH V 1/m
p (Z)t − cp

∫ t

0
|us|p ds

= m−1+pH

bmtc∑
j=1

(∣∣∣∣∣
∫ j/m

(j−1)/m
us dBH

s

∣∣∣∣∣
p

−
∣∣∣u(j−1)/m(BH

j/m −BH
(j−1)/m)

∣∣∣p)

+m−1+pH

bmtc∑
j=1

∣∣∣u(j−1)/m(BH
j/m −BH

(j−1)/m)
∣∣∣p−bntc∑

i=1

∣∣u(j−1)/n

∣∣p ∑
j∈In(i)

∣∣∣BH
j/m −BH

(j−1)/m

∣∣∣p


+m−1+pH

bntc∑
i=1

∣∣u(j−1)/n

∣∣p ∑
j∈In(i)

∣∣∣BH
j/m −BH

(j−1)/m

∣∣∣p − cpn
−1

bntc∑
i=1

∣∣u(i−1)/n

∣∣p
+ cp

n−1

bntc∑
i=1

∣∣u(i−1)/n

∣∣p − ∫ t

0
|us|p ds


=: A

(m)
t + B

(n,m)
t + C

(n,m)
t + D

(n)
t ,

where
In(i) :=

{
j ∈ N

∣∣∣∣ j

m
∈
(

i− 1
n

,
i

n

]}
, 1 ≤ i ≤ bntc .

We obtain

∥∥∥∥m−1+pH V 1/m
p (Z)t − cp

∫ t

0
|us|p ds

∥∥∥∥
∞
≤ ||A(m)

t ||∞+ ||B(n,m)
t ||∞+ ||C(n,m)

t ||∞+ ||D(n)
t ||∞ .

For any fixed n the term C
(n,m)
t converges in probability in zero, uniformly in t, as m →∞.

In fact, by the triangle inequality,

||C(n,m)
t ||∞ ≤

bnT c∑
i=1

∣∣u(j−1)/n

∣∣p ∣∣∣∣∣∣m−1+pH
∑

j∈In(i)

∣∣∣BH
j/m −BH

(j−1)/m

∣∣∣p − cpn
−1

∣∣∣∣∣∣
and by the self-similarity of the fBM, the term∣∣∣∣∣∣m−1+pH

∑
j∈In(i)

∣∣∣BH
j/m −BH

(j−1)/m

∣∣∣p − cpn
−1

∣∣∣∣∣∣
has the same distribution as∣∣∣∣∣∣ 1

m

∑
j∈In(i)

∣∣BH
j −BH

j−1

∣∣p − cpn
−1

∣∣∣∣∣∣ ,

which by the Ergodic theorem converges to zero in L1 (hence in probability) as m → ∞
(see Lemma 1.1.2).

For the term B(n,m) we have the upper estimate
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||B(n,m)
t ||∞ ≤ m−1+pH

bnT c∑
i=1

∑
j∈In(i)

| |u(i−1)/n|p − |u(j−1)/m|p| |BH
j/m −BH

(j−1)/m|
p

+ ‖ |u|p ‖∞ sup
0≤t≤T

m−1+pH
∑

mn−1bntc≤j≤mn−1(bntc+1)

|BH
j/m −BH

(j−1)/m|
p

≤ m−1+pH

bnT c∑
i=1

sup
s∈In(i)∪In(i−1)

| |u(i−1)/n|p − |us|p|
∑

j∈In(i)

|BH
j/m −BH

(j−1)/m|
p

+ sup
0≤t≤T

‖ |u|p ‖∞ m−1+pH
∑

mn−1bntc≤j≤mn−1(bntc+1)

|BH
j/m −BH

(j−1)/m|
p ,

where we denote
In(i) :=

(
i− 1

n
,

i

n

]
, 1 ≤ i ≤ bntc .

As m →∞, again by the Ergodic theorem, this converges in probability to

En :=
cp

n

bnT c∑
i=1

sup
s∈In(i)∪In(i−1)

| |u(i−1)/n|p − |us|p|+ ‖ |u|p ‖∞

 .

The term En, in turn, tends to zero almost surely (and therefore in probability) as n →∞.
In fact, since the trajectories of the process |u|p are regulated (as they have finite q-
variation3) they admit right and left limits at each point of the interval [0, T ]. Hence, for
any ε ∈ R+, there exists n0 such that for all n > n0 and 1 ≤ i ≤ [nT ]

sup
s∈In(i)∪In(i−1)

| |u(i−1)/n|p−|us|p| < ε + | |u(i−1)/n|p−|u((i−1)/n)−|p|+| |u(i−1)/n|p−|u((i−1)/n)+|p|,

where u(.)− and u(.)+ denote the left and right limits, respectively. Also because |u|p has
regulated trajectories, by an application of the Bolzano-Weierstrass theorem, the number
of their jumps bigger than ε is finite. Therefore,

En ≤

3Tε +
1
n

∑
| |u(i−1)/n|p−|u((i−1)/n)−|p|>ε

| |u(i−1)/n|p − |u((i−1)/n)−|p|

+
1
n

∑
| |u(i−1)/n|p−|u((i−1)/n)+|p|>ε

| |u(i−1)/n|p − |u((i−1)/n)+|p|+
‖ |u|p ‖∞

n

 ,

which implies

lim sup
n→∞

En ≤ 3cpTε ,

and the convergence of En follows by letting ε tend to zero.

3If a function f : [a, b] → R with a, b ∈ R , a < b , has bounded p-variation for some p ∈ R+ then
it is regulated on [a, b]. That is, there exist the limits f(t+) := limu↓t f(u) for each t ∈ [a, b) and
f(t−) := limu↑t f(u) for each t ∈ (a, b].
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For the term D
(n)
t we have limn→∞ ||D(n)

t ||∞ = 0 , which implies its convergence in proba-
bility to zero. In fact,

||D(n)
t ||∞ ≤ cpn

−1

bnT c∑
i=1

sup
s∈In(i)

| |u(i−1)/n|p − |us|p| + cp
‖ |u|p ‖∞

n
.

For the term A
(m)
t , and for p ≤ 1 (hence ||x|p − |y|p| ≤ |x − y|p, ∀x, y ∈ R), we can write

by Young’s inequality (2.2)

|A(m)
t | = m−1+pH

∣∣∣∣∣∣
bmtc∑
j=1

(∣∣∣∣∣
∫ j/m

(j−1)/m
us dBH

s

∣∣∣∣∣
p

−
∣∣∣u(j−1)/m(BH

j/m −BH
(j−1)/m)

∣∣∣p)
∣∣∣∣∣∣

≤ m−1+pH

bmtc∑
j=1

∣∣∣∣∣
∫ j/m

(j−1)/m
us dBH

s − u(j−1)/m(BH
j/m −BH

(j−1)/m)

∣∣∣∣∣
p

≤ cp∗,q

bmtc∑
j=1

(
varq(u; Im(j))var1/(H−ε)(B

H ; Im(j))
)p

︸ ︷︷ ︸
=:Fm

= cp∗,qFm ,

where p∗ := 1/(H − ε), 0 < ε < H. Fix δ ∈ R+ and consider the decomposition

Fm ≤ m−1+pH
∑

j : varq(u;Im(j)) > δ

(
varq(u; Im(j))var1/(H−ε)(B

H ; Im(j))
)p

+ δpm−1+pH

bmtc∑
j=1

(
var1/(H−ε)(B

H ; Im(j))
)p

.

It holds that

bmtc∑
j=1

(varq(u; Im(j)))q ≤ (varq(u; [0, T ]))q < ∞ ,

and, as a consequence, the number of indices j for which varq(u; Im(j)) > δ is bounded by
(varq(u; [0, T ]))q/δq =: M . Hence,

Fm ≤ Mm−1+pH max
1≤j≤bmT c

var1/(H−ε)(B
H ; Im(j))p(varq(u; [0, T ]))p

+ δpm−1+pH

bmT c∑
j=1

(
var1/(H−ε)(B

H ; Im(j))
)p

.

The first summand in the above estimate goes to zero when m →∞ if ε < 1/p since

m−1+pHvar1/(H−ε)(B
H ; Im(j))p ≤ m−1+pH ||BH ||pH−εm

−p(H−ε) = m−1+εp||BH ||pH−ε ,
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where ||BH ||H−ε denotes (see (2.4))

||BH ||H−ε := sup
0≤s<t≤T

∣∣BH
t −BH

s

∣∣
|t− s|H−ε

,

which is finite (by the Kolmogorov-Chentsov continuity theorem and the compactness of
[0, T ]) and independent of m.

For the second summand we use the fact that it has the same law (by the self-similarity
of fBM) as

δp m−1

bmT c∑
j=1

(
var1/(H−ε)(B

H ; [j − 1, j])
)p

which, by the Ergodic theorem, converges almost surely and in L1 to

δp T E
((

var1/(H−ε)(B
H ; [0, 1])

)p)
< ∞

as m →∞. In fact, the functional
(
var1/(H−ε)(BH ; [0, 1])

)
is a seminorm on the trajectories

of the fBM which is finite almost surely. Hence, we have that

E
((

var1/(H−ε)(B
H ; [0, 1])

)p)
< ∞

for any p ∈ R+ by Fernique’s theorem (see Fernique [Fern75]), and we can indeed apply
the Ergodic theorem. Finally, it suffices to let δ tend to zero.

For p > 1 we can proceed similarly (using Minkowski’s inequality) by the following upper
estimate:

∣∣∣∣∣(m−1+pH V 1/m
p (Z)t

)1/p
−
(

cp

∫ t

0
|us|p ds

)1/p
∣∣∣∣∣

≤ m−1/p+H

bmtc∑
j=1

∣∣∣∣∣
∫ j/m

(j−1)/m
us dBH

s − u(j−1)/m(BH
j/m −BH

(j−1)/m)

∣∣∣∣∣
p
1/p

+m−1/p+H

bntc∑
i=1

∑
j∈In(i)

∣∣∣(u(j−1)/m − u(i−1)/m)(BH
j/m −BH

(j−1)/m)
∣∣∣p
1/p

+

∣∣∣∣∣∣∣m−1/p+H

bntc∑
i=1

∣∣u(i−1)/n

∣∣p ∑
j∈In(i)

∣∣∣BH
j/m −BH

(j−1)/m

∣∣∣p
1/p

−

cpn
−1

bntc∑
i=1

∣∣u(i−1)/n

∣∣p1/p
∣∣∣∣∣∣∣

+ c1/p
p

∣∣∣∣∣∣∣
n−1

bntc∑
i=1

∣∣u(i−1)/n

∣∣p1/p

−
(∫ t

0
|us|p ds

)1/p

∣∣∣∣∣∣∣ .
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The previous theorem can be generalized in the following way.

Corollary 2.2.1 (Corollary 2 of [CoNuWo06]). Assume the same conditions as in Theorem
2.2.1. Consider a stochastic process Y = {Yt , t ∈ [0, T ]} such that

n−1+pHV 1/n
p (Y )t

u.c.p.−→ 0 (2.6)

as n →∞. Then, for p ∈ R+,

n−1+pH V 1/n
p (Z + Y )t

u.c.p.−→ cp

∫ t

0
|us|p ds ,

as n →∞.

Remark 2.2.2. The process Y can be interpreted as additional “noise” that is added to the
fractional integral process Z. Under condition (2.6) this does not disturb the asymptotic
behaviour of the r.p.v. of Z. Condition (2.6) is for instance satisfied if Y is a process whose
trajectories are γ-Hölder for some γ ∈ (H, 1], i.e., a process which possesses slightly more
regularity than fBM.

Proof. Again, we first consider the case p ≤ 1. By the triangle inequality we obtain

∣∣∣∣n−1+pH V 1/n
p (Z + Y )t − cp

∫ t

0
|us|p ds

∣∣∣∣
≤

∣∣∣n−1+pH V 1/n
p (Z + Y )t − n−1+pH V 1/n

p (Z)t

∣∣∣
+
∣∣∣∣n−1+pH V 1/n

p (Z)t − cp

∫ t

0
|us|p ds

∣∣∣∣
≤ n−1+pH V 1/n

p (Y )t +
∣∣∣∣n−1+pH V 1/n

p (Z)t − cp

∫ t

0
|us|p ds

∣∣∣∣ .

The first summand tends to zero by the assumption and the second by Theorem (2.2.1).
For p > 1 the proof can be done similarly using Minkowski’s inequality instead.

2.3 Central Limit Theorems for the Realized Power Variation

In this section we will analyze the asymptotic fluctuations of the r.p.v. of the intergals
(2.1) around its limit, i.e., we will derive central limit theorems. For H ∈ (0, 3

4 ] these
fluctuations, properly normalized, have Gaussian asymptotic distributions. For H > 3

4 the
problem is more complicated and only the special case where the integrand process u is
constant will be considered. In this case the the limit of the fluctuations will be a quadratic
functional of BM (Rosenblatt process).
In the beginning we have to introduce some notation.
For any p ∈ R+, we set

δp := 2p

(
1√
π

Γ
(

p +
1
2

)
− 1

π
Γ
(

p + 1
2

)2
)

and
ν2
1 := δp + 2

∑
j≥1

(γp(ρH (j))− γp(0)) ,
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where Γ(.) denotes the Gamma function, γp(x) for any x ∈ (−1, 1) is given by

γp(x) := (1− x2)p+1/22p
∞∑

k=0

(2x)2k

π(2k)!
Γ
(

p + 1
2

+ k

)2

,

and
ρH (n) :=

1
2
(
(n + 1)2H − (n− 1)2H − 2n2H

)
.

Remark 2.3.1. As can be shown (see [CoNuWo06, Lemma 9]), for (U , V ) ∼ N2

(
0,

0B@1 σ
σ 1

1CA
)

with |σ| < 1 it holds that
E(|U |p|V |p) = γp(σ).

By L−→ we denote convergence in law and by D([0, T ]) the Skorohod space on [0, T ] (i.e.,
the space of all functions f : [0, T ] → R that are right-continuous with left limits), equipped
with the Skorohod topology (see Bilingsley [Bill68] for a definition). FH

t , t ∈ [0, T ], denotes
the σ-algebra generated by the random variables {BH

s , s ∈ [0, t]} and the null sets.

We will first consider a functional limit theorem for the r.p.v. of fBM (which can be
interpreted as stochastic integral of the form (2.1) with ut = 1, t ∈ [0, T ]).

Theorem 2.3.1 (Theorem 3 of [CoNuWo06]). Fix p ∈ R+ and assume 0 < H < 3
4 . Then(

BH
t ,
(
n−1/2+pHV 1/n

p (BH)t − cptn
1/2
))

L−→
(
BH

t , ν1Wt

)
, (2.7)

as n → ∞, where W = {Wt , t ∈ [0, T ]} is a BM independent of the process BH (i.e.,
independent of FH

T ), and the convergence is in the product space D([0, T ])2 equipped with
the Skorohod topology.

Proof. The proof will be done in two steps. Set

Z
(n)
t := n−1/2+pHV 1/n

p (BH)t − cptn
1/2 .

Step 1. We first show the convergence of the finite-dimensional distributions. Let
Jk = (ak, bk], k = 1, . . . , N , be pairwise disjoint intervals contained in [0, T ]. Define the
random vectors B := (BH

b1
−BH

a1
, . . . , BH

bN
−BH

aN
) and X(n) := (X(n)

1 , . . . , X
(n)
N ), where

X
(n)
k := n−1/2+pH

∑
bnakc<j≤bnbkc

|BH
j/n −BH

(j−1)/n|
p − n1/2cp|Jk| ,

k = 1, . . . , N , and |Jk| = bk − ak. We claim that

(B , X(n)) L−→ (B , V ) , (2.8)

where B and V are independent and V is a Gaussian random vector with zero mean and
independent components of variance ν2

1 |Jk|.
By the self-similarity of fBM, the sequence

(
npH |BH

j/n −BH
(j−1)/n|

p − cp

)
1≤ j≤n

has the

same law as
(
|BH

j −BH
j−1|p − cp

)
1≤ j≤n

. Set Xj := BH
j − BH

j−1 and H(x) := |x|p − cp.

Then {Xj , j ∈ N} is a stationary Gaussian sequence with zero mean, unit variance and
E(Xj Xj+n) = ρH (n).
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Thus, the convergence (2.8) is equivalent to the convergence in distribution of (B(n) , Y (n))
to (B , V ), where

B
(n)
k := n−H

∑
bnakc< j≤bnbkc

Xj , 1 ≤ k ≤ N,

and
Y

(n)
k := n−1/2

∑
bnakc< j≤bnbkc

H(Xj) , 1 ≤ k ≤ N.

For a proof of the convergence (B(n) , Y (n)) L−→ (B , V ) I would like to refer, for example, to
Proposition (10) in Corcuera et al. [CoNuWo06] where the authors use a direct argument
based on a recent central limit theorem for stochastic integrals (see Nualart and Peccati
[NuPe05]; Peccati and Tudor [PeTu]; Hu and Nualart [HuNu05]).
Remark 2.3.2. By taking into account that H(x) = |x|p−cp has Hermite rank4 2, and that

∞∑
n=1

ρ2
H

(n) < ∞

due to ρH (n) = O(n2H−2), the (one-dimensional) convergence of the sequence of vectors
Y (n) to the vector V would also follow from Breuer and Major [BrMa83, Theorem 1] or
Giraitis and Surgailis [GiSu85, Theorem 5].

Step 2. To establish the convergence in D([0, T ]) we have to show that the sequence of
processes Z(n) is tight in this space. To do so, we calculate, for s < t,

E
(
|Z(n)

t − Z(n)
s |4

)
= n−2E

∣∣∣∣∣∣
bntc∑

j=bnsc+1

H(Xj)

∣∣∣∣∣∣
4 .

By Taqqu [Taqqu77, Proposition 4.2] we know that for all N ≥ 1

1
N2

E

∣∣∣∣∣∣
N∑

j=1

H(Xj)

∣∣∣∣∣∣
4 ≤ K

( ∞∑
u=0

ρ2
H

(u)

)2

.

As a consequence,

sup
n∈N

E
(
|Z(n)

t − Z(n)
s |4

)
≤ C|t− s|2,

and by Billingsley [Bill68, Theorem 15.6] we obtain the desired tightness property.

Remark 2.3.3. Theorem 2.3.1 can easily be adopted to derive limit results for any constant
integrand process of the form ut = c, t ∈ [0, T ] , for some fixed c ∈ R.

Remark 2.3.4. The convergence established in Theorem 2.3.1 can also be expressed in terms
of the concept of stable convergence (see Aldous and Eagleson [AlEa78] for a discussion).
In fact, for any bounded random variable X measurable with respect to the σ-algebra FH

T

and for any continuous and bounded function φ on the skorohod space D([0, T ]) we have

lim
n→∞

E
(
X φ(Z(n))

)
= E(X)E(φ(W )) .

4The Hermite rank of a function f is the index of the first non-zero coefficient in the expansion of f in
Hermite polynomials.
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If X is a continuous functional of BH =
{
BH

t , t ∈ [0, T ]
}

this convergence is an imme-
diate consequence of Theorem 2.3.1. In the general case the convergence follows by an
approximation argument.

As a consequence of Theorem 2.3.1 we can derive the following central limit theorem for
the r.p.v. of the stochastic integrals studied in this chapter. Here an additional Hölder
continuity condition on the trajectories and the measurability of the integrand process u
are required.

Theorem 2.3.2 (Theorem 4 of [CoNuWo06]). Fix p ∈ R+. Let BH =
{
BH

t , t ∈ [0, T ]
}

be
an fBM with H ∈ (0, 3

4). Suppose that u = {ut , t ∈ [0, T ]} is a stochastic process measur-
able with respect to FH

T and with Hölder continuous trajectories of order a > 1/(2(p ∧ 1)).
Then, for Z = {Zt , t ∈ [0, T ]}, defined by Zt :=

∫ t
0 us dBH

s , it holds that(
BH

t , n−1/2+pHV 1/n
p (Z)t − cp

√
n

∫ t

0
|us|p ds

)
L−→
(

BH
t , ν1

∫ t

0
|us|p dWs

)
,

as n →∞, where W = {Wt , t ∈ [0, T ]} is a BM independent of FH
T , and the convergence

is in D([0, T ])2.

Proof. The proof will be based on Theorem 2.3.1. For any m ≥ n and with the same
notation as in Theorem 2.3 we can write

m−1/2+pHV 1/m
p (Z)t − cp

√
m

∫ t

0
|us|p ds = A

(m)
t + B

(n,m)
t + C

(n,m)
t + D

(m)
t ,

where

A
(m)
t = m−1/2+pH

bmtc∑
j=1

(∣∣∣∣∣
∫ j/m

(j−1)/m
us dBH

s

∣∣∣∣∣
p

−
∣∣∣u(j−1)/m(BH

j/m −BH
(j−1)/m)

∣∣∣p) ,

B
(n,m)
t = m−1/2+pH

bmtc∑
j=1

∣∣∣u(j−1)/m(BH
j/m −BH

(j−1)/m)
∣∣∣p −m−1/2cp

bmtc∑
j=1

|u(j−1)/m|p

−
bntc∑
i=1

|u(i−1)/n|p
∑

j∈In(i)

m−1/2+pH |BH
j/m −BH

(j−1)/m|
p +

√
m

n
cp

bntc∑
i=1

|u(i−1)/n|p,

C(n,m) =
bntc∑
i=1

|u(i−1)/n|p
∑

j∈In(i)

m−1/2+pH |BH
j/m −BH

(j−1)/m|
p −

√
m

n
cp

bntc∑
i=1

|u(i−1)/n|p

and

D(m) = m−1/2cp

bmtc∑
j=1

|u(j−1)/m|p −
√

mcp

∫ t

0
|us|ds .

First we show that ||D(m)||∞
a.s.−→ 0 as m → ∞, where a.s.−→ denotes convergence almost

surely. Using the Hölder continuity of u we can write
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|D(m)
t | ≤ cpm

−1/2

bmtc∑
j=1

| |u(j−1)/m|p − |ut̃mj−1
|p |+ cp√

m
‖ |u|p ‖∞

≤ cpm
−1/2(p ∨ 1) ‖u‖(p−1)+

∞

bmtc∑
j=1

|u(j−1)/m − ut̃mj−1
|p∧1 +

cp√
m
‖ |u|p ‖∞

≤ cpT (p ∨ 1) ‖u‖p∧1
a ‖u‖(p−1)+

∞ m−1/2−a(p∧1) +
cp√
m
‖ |u|p ‖∞

where t̃mj−1 ∈ Im(j) and (x)+ denotes the positive part of any x ∈ R. Hence
∥∥D(m)

∥∥
∞

a.s.−→ 0
as m →∞ because a(p ∧ 1) > 1

2 .

Let us now consider the term C
(n,m)
t . Set

Y i
n,m :=

∑
j∈In(i)

m−1/2+pH |BH
j/m −BH

(j−1)/m|
p −

√
m

n
cp .

By Theorem 2.3.1 and by taking into account that it implies the stable convergence of{
Y 1

n,m, Y 2
n,m, . . . , Y n

n,m

}
m≥1

for any n (see Remark 2.3.4 and Aldous and Eagleson [AlEa78,
Proposition 1], we have that for any FH

T -measurable random variable |u(i−1)/n|p, as m →
∞, (

|u(i−1)/n|p , Y i
n,m

)
a≤ i≤bntc

L−→
(
|u(i−1)/n|p , ν1(Wi/n −W(i−1)/n)

)
1≤ i≤bntc ,

where W is a BM independent of FH
T . Hence,

C
(n,m)
t

L−→ ν1

bntc∑
i=1

|u(i−1)/n|p(Wi/n −W(i−1)/n)

as m →∞, and this convergence is also stable (see Aldous and Eagleson [AlEa78, Theorem 1’]).
On the other hand,

bntc∑
i=1

|u(i−1)/n|p(Wi/n −W(i−1)/n)
u.c.p.−→

∫ t

0
|us|p dWs ,

as n →∞. This implies, by first letting m and then n to infinity, that

C
(n,m)
t

L−→ ν1

∫ t

0
|us|p dWs

in D([0, T ]).

We now show that
∥∥B(n,m)

∥∥
∞

p−→ 0 as n, m →∞. We may rewrite B(n,m) as
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B(n,m) =
bntc∑
i=1

∑
j∈In(i)

|u(j−1)/m|p
(
m−1/2+pH |BH

j/m −BH
(j−1)/m|

p −m−1/2cp

)

−
bntc∑
i=1

|u(i−1)/n|p
 ∑

j∈In(i)

m−1/2+pH |BH
j/m −BH

(j−1)/m|
p −

√
m

n
cp


+

bmtc∑
j≥ m

n
bntc

∣∣u(j−1)/m

∣∣p (m−1/2+pH
∣∣∣BH

j/m −BH
(j−1)/m

∣∣∣p −m−1/2cp

)
.

As a consequence, by the mean value theorem, we get

|B(n,m)| ≤

∣∣∣∣∣∣
bntc∑
i=1

|us̃|p
∑

j∈In(i)

(
m−1/2+pH |BH

j/m −BH
(j−1)/m|

p −m−1/2cp

)

−
bntc∑
i=1

|u(i−1)/n|p
 ∑

j∈In(i)

m−1/2+pH |BH
j/m −BH

(j−1)/m|
p −

√
m

n
cp

∣∣∣∣∣∣
+ sup

0≤ t≤T

bmtc∑
m
n
bntc≤ j≤bmtc

∣∣∣ ∣∣u(j−1)/m

∣∣p (m−1/2+pH
∣∣∣BH

j/m −BH
(j−1)/m

∣∣∣p −m−1/2cp

)∣∣∣
≤

bnT c∑
i=1

sup
s∈In(i)∪In(i−1)

∣∣ |us|p − |u(i−1)/n|p
∣∣ |Y i

n,m|+
cp√
m
‖ |u|p ‖∞

+ sup
0≤ t≤T

∣∣∣∣∣∣
bmtc∑

m
n
bntc≤ j≤bmtc

∣∣u(j−1)/m

∣∣p (m−1/2+pH
∣∣∣BH

j/m −BH
(j−1)/m

∣∣∣p −m−1/2cp

)∣∣∣∣∣∣
where s̃(ω) ∈ In(i) ∪ In(i− 1). Then, by Theorem 2.3.1, for any ε ∈ R+ we obtain

lim sup
m→∞

P
(∥∥∥B(n,m)

∥∥∥
∞

> ε
)
≤ P

ν1

bnT c∑
i=1

sup
s∈In(i)∪In(i−1)

∣∣ |us|p − |u(i−1)/n|p
∣∣ |Wi/n −W(i−1)/n|

+ ν1 ‖ |u|p ‖∞
1
n

sup
0≤ t≤T

|Wt −Wbntc/n| > ε

)
.

The Hölder continuity of the trajectories of u and the condition a(p ∧ 1) > 1
2 imply

bnT c∑
i=1

sup
s∈In(i)∪In(i−1)

∣∣ |us|p − |u(i−1)/n|p
∣∣ |Wi/n −W(i−1)/n|

≤ (p ∨ 1) T ‖u‖p∧1
a ‖u‖(p−1)+

∞ 2a(p∧1)n−a(p∧1)+1/2−ε ,

which converges to zero as n →∞. Moreover

1
n

sup
0≤ t≤T

|Wt −Wbntc/n|
a.s.−→ 0
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as n →∞, and we deduce the desired result.

Finally, we have to show that
∥∥A(m)

∥∥
∞

p−→ 0 as m →∞. From

|A(m)
t | ≤m−1/2+pH(p ∨ 1)2(p−2)+

bmtc∑
j=1

∣∣∣u(j−1)/m(BH
j/m −BH

(j−1)/m)
∣∣∣(p−1)+

×

∣∣∣∣∣
∫ j/m

(j−1)/m
us dBH

s − u(j−1)/m(BH
j/m −BH

(j−1)/m)

∣∣∣∣∣
p∧1

m−1/2+pH(p ∨ 1)2(p−2)+

bmtc∑
j=1

∣∣∣∣∣
∫ j/m

(j−1)/m
us dBH

s − u(j−1)/m(BH
j/m −BH

(j−1)/m)

∣∣∣∣∣
p

and by using Young’s inequality (2.2), as in Theorem 2.2.1, we get

|A(m)
t | ≤ (p ∨ 1)2(p−2)+cp

1/(H−ε),1/a

∥∥BH
∥∥(p−1)+

H−ε
‖u‖(p−1)+

∞ m−1/2+pH−(H−ε)(p−1)+

×
bmT c∑
j=1

(
var1/a(u; Im(j))var1/(H−ε)(B

H ; Im(j))
)p∧1

+ (p ∨ 1)2(p−2)+cp
1/(H−ε),1/am

−1/2+pH

×
bmT c∑
j=1

(
var1/a(u; Im(j))var1/(H−ε)(B

H ; Im(j))
)p

≤ (p ∨ 1)2(p−2)+cp
1/(H−ε),1/a T

∥∥BH
∥∥p

H−ε
‖u‖p∧1

a ‖u‖(p−1)+
∞ m1/2−a(p∧1)+pε

+ (p ∨ 1)2(p−2)+cp
1/(H−ε),1/a T

∥∥BH
∥∥p

H−ε
‖u‖p

a m1/2−ap+pε ,

which converges to zero as m → ∞, provided ε < p−1(a(p ∧ 1) − 1
2). This completes the

proof.

Analogously to Corollary 2.2.1 the previous theorem can be generalized by adding an
additional noise process satisfying a regularity condition to the integral process Z.

Corollary 2.3.1 (Corollary 5 of [CoNuWo06]). Assume the same conditions as in Theorem
2.3.2. Consider a stochastic process Y = {Yt , t ∈ [0, T ]} such that

n−1/2+pHV 1/n
p (Y )t

p−→ 0 ,

as n →∞. Then

(
BH

t , n−1/2+pHV 1/n
p (Z + Y )t − cp

√
n

∫ t

0
|us|p ds

)
L−→
(

BH
t , ν1

∫ t

0
|us|p dWs

)
,

as n →∞, where W = {Wt , t ∈ [0, T ]} is a BM independent of FH
T , and the convergence

is in D([0, T ])2.

For H = 3
4 the fluctuations of the r.p.v. still converge to a Gaussian process, but with

a different normalization. First we will again consider a functional limit theorem for the
r.p.v. of fBM.
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Theorem 2.3.3 (Theorem 6 of [CoNuWo06]). Suppose that H = 3
4 . Then(

BH
t , (log n)−1/2

(
n−1/2+pHV 1/n

p (BH)t − cpt
√

n
))

L−→
(
BH

t , ν2Wt

)
,

as n →∞, where W = {Wt , t ∈ [0, T ]} is a BM independent of FH
T and ν2 is given by

ν2 := lim
n→∞

2
log n

n∑
j=1

n− j

n
γp(ρH (j)) . (2.9)

Proof. In this case we have
n∑

j=1

ρ2
H

(j) ∼ c

n∑
j=1

j−1 ∼ c log n .

As a consequence, we can apply the same arguments as in the proof of Theorem 2.3.1. For
example, the convergence of the finite-dimensional distributions of the process (log n)−1/2Z

(n)
t

would follow from Breuer and Major [BrMa83, Theorem 1’].

For the fluctuations of the r.p.v. of stochastic integrals (2.1) with ut = 1, t ∈ [0, T ] , the
following (one-dimensional) convergence in law holds true in the case H = 3

4 .

Theorem 2.3.4 (Theorem 7 of [CoNuWo06]). Suppose that BH =
{
BH

t , t ∈ [0, T ]
}

is an
fBM with H = 3

4 and u = {ut , t ∈ [0, T ]} is a stochastic process measurable with respect
to FH

T and with Hölder continuous trajectories of order a > 1/(2(p ∧ 1)). Consider a
stochastic process Y = {Yt , t ∈ [0, T ]} such that

n−1/2+pHV 1/n
p (Y )t

p−→ 0 ,

as n →∞. Then, for Z = {Zt , t ∈ [0, T ]}, defined by Zt :=
∫ t
0 us dBH

s , it holds that

(log n)−1/2

(
n−1/2+pHV 1/n

p (Z + Y )t − cp

√
n

∫ t

0
|us|p ds

)
L−→ ν2

∫ t

0
|us|dWs ,

as n → ∞, where W = {Wt , t ∈ [0, T ]} is a BM independent of FH
T and ν2 is given by

(2.9).

In the case H > 3
4 the fluctuations of the r.p.v. converge to a process which is called the

Rosenblatt process. In fact, we have the following result.

Theorem 2.3.5 (Theorem 8 of [CoNuWo06]). Fix p > 0 and assume that 3
4 < H < 1.

Then
n2−2H(n−1+pHV 1/n

p (BH)t − cpt)
L−→ Zt ,

where

Zt :=
1

Γ(2− 2H) cos((1−H)π)
dp

×
∫ ∞

0

∫ ∞

0

ei(x1+x2)t − 1
i(x1 + x2)

|x1|1/2−H |x2|1/2−H dWx1 dWx2 ,

is the Rosenblatt process, W = {Wt , t ∈ [0, T ]} is a standard BM,

dp :=
(
E
(
|BH

1 |2+p
)
−E

(
|BH

1 |p
))

,

and the convergence is in D([0, T ]).

Proof. Since ρH (n) = O(n2h−2), 3
4 < H < 1 and

(
|BH

j −BH
j−1|p − cp

)
1≤ j≤n

is an L2-functional,

with Hermite rank 2, of a stationary zero mean Gaussian sequence, we can apply Taqqu
[Taqqu79, Theorem 5.6].



Chapter 3

Convergence of Some Functionals of
Fractional Stochastic Integrals

This chapter is concerned with the asymptotic behaviour of functionals of fractional stochas-
tic integrals of the form (2.1). The r.p.v. discussed in the last chapter is contained in the
considered class of functionals, i.e., we will generalize the results of Chapter 2 by considering
a greater class of integrand processes. The discussion follows Corcuera et al. [CoNuWo08]
and presents the main results therein.

Remark 3.0.5. The theorems in this chapter are given without proof (or just with a short
sketch of the proof) as they are extensive and (structurally) quite analogous to the corre-
sponding proofs given in Chapter 2. The presented material therefore has to be understood
simply as an outlook on the generalization of the previous results.

3.1 The Setting

Again we consider fractional stochastic integrals of the form
∫ t
0 us dBH

s , t ∈ [0, T ], where
T ∈ R+ is fixed, u = {ut , t ∈ [0, T ]} is a stochastic process with paths of finite q-variation,
0 < q < 1

1−H , BH =
{
BH

t , t ∈ [0, T ]
}

is an fBM with Hurst parameter H ∈ (0, 1) and
the stochastic integral is a pathwise Riemann-Stieltjes integral. Hence, the setting and the
notation of Section 2.1 apply throughout this chapter as well. Additionally, we have to
introduce some new notation.
For any real-valued stochastic process X = {Xt , t ∈ R+,0} and for each n ∈ N we denote
by

X
(n)
t := X i−1

n
+ n

(
t− i− 1

n

)(
X i

n
−X (i−1)

n

)
,

i− 1
n

≤ t <
i

n
, (3.1)

the broken line approximation of X of order n.
Instead of the r.p.v. we are now interested in the asymptotic behaviour of functionals of
the form

F
(n)
g,h (Z)t :=

∫ bntc
n

0
h
(
Z(n)

s

)
g
(
Ż(n)

s nH−1
)

ds (3.2)

=
bntc∑
i=1

g

(
nH

∫ i
n

i−1
n

uν dBH
ν

)∫ i
n

i−1
n

h
(
Z(n)

s

)
ds ,
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where Z = {Zt , t ∈ [0, T ]} is given by Zt :=
∫ t
0 us dBH

s , Z(n) is the broken line approxima-
tion (3.1) of Z and g, h are continuous functions. Ż

(n)
s denotes the (pathwise) right-sided

derivative of the broken line approximation Z
(n)
s with respect to s, i.e.,

Ż(n)
s = n

(
Z i

n
− Z (i−1)

n

)
,

i− 1
n

≤ s <
i

n
.

Remark 3.1.1. The right-sided derivative of Z
(n)
s is used in (3.2) to avoid gaps in the

definition, since Z
(n)
s is not differentiable at k

n , k ∈ N. Equivalently, the left-sided derivative
could be used since we consider (path-wise) Riemann integrals which are invariant to
changes of the integrand at finitely many points.

Remark 3.1.2. In the particular case g(x) = |x|p, p ∈ R+, and h ≡ 1, F
(n)
g,h (Z)t is the

(properly normalized) r.p.v. of order p considered in Chapter 2. In fact,

∫ bntc
n

0

∣∣∣Ż(n)
s nH−1

∣∣∣p ds =
bntc∑
i=1

∫ i
n

i−1
n

∣∣∣n(Z i
n
− Z (i−1)

n

)
nH−1

∣∣∣p ds =

=
1
n

bntc∑
i=1

∣∣∣(Z i
n
− Z (i−1)

n

)
nH
∣∣∣p =

=n−1+pH

bntc∑
i=1

∣∣∣(Z i
n
− Z (i−1)

n

)∣∣∣p ,

and the results in this chapter have already been established in Chapter 2 in this case.

Remark 3.1.3. Functionals of the form (3.2) have been studied by León and Ludeña
[LeLu04] assuming that Z is the solution of a stochastic differential equation driven by
an fBM with H > 1/2 of the form:

Zt = zo +
∫ t

0
b(Zs) ds +

∫ t

0
σ(Zs) dBH ,

under certain restrictions on b and σ.

In the following let cg(z) = EW (g(zW )) for any z ∈ R, where W is a N(0, 1) random
variable and EW (.) denotes the expectation w.r.t. W .

3.2 A Functional Law of Large Numbers

Let us impose the following condition on the function g:

(H) There exist constants α ∈ (0, 1], a, b ∈ R+,0 and p ∈ [0, 2) such that for all x < y
we have

|g(y)− g(x)| ≤ C(ξ)|y − x|α,

where ξ ∈ [x, y] and the function C satisfies 0 ≤ C(u) ≤ aeb|u|p .

Then we have the following result, which can be interpreted as generalization of Theorem 2.2.1
(and again can be understood as a law of large numbers).
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Theorem 3.2.1 (Theorem 1 of [CoNuWo08]). Assume (H), suppose that u = {ut , t ∈ [0, T ]}
is a stochastic process with paths of finite q-variation,0 < q < 1

1−H , and BH=
{
BH

t , t ∈ [0, T ]
}

is an fBM with Hurst parameter H ∈ (0, 1). Define a stochastic process Z = {Zt , t ∈ [0, T ]}
by

Zt :=
∫ t

0
us dBH

s , t ∈ [0, T ].

Then,

F
(n)
g,h (Z)t

u.c.p.−→
∫ t

0
h(Zs)cg(us) ds

as n →∞.

Remark 3.2.1. The proof of Theorem 3.2.1 follows the proof of Theorem 2.2.1, i.e., using
an upper estimate of the form∣∣∣∣F (n)

g,h (Z)t −
∫ t

0
h(Zs)cg(us)

∣∣∣∣ ≤ A
(m)
t + B

(n,m)
t + C

(n,m)
t + D

(n)
t

and showing that the terms on the right side converge to zero in probability, uniformly
in t. Again, the Ergodic theorem (in Banach spaces) plays a central role. For details see
[CoNuWo08, Theorem 1].

Remark 3.2.2. For g(x) = |x|p, p ∈ R+, and h ≡ 1 (see Remark 3.1.2) we get indeed the
result of Theorem 2.2.1. In this case we have∫ t

0
h(Zs)cg(us) =

∫ t

0
EW (|usW |p) ds = EW (|W |p)︸ ︷︷ ︸

=E(|BH
1 |p)

∫ t

0
|us|p ds ,

since W is independent of u.

3.3 Functional Central Limit Theorems

In this section we take a look at the asymptotic fluctuations of the functionals (3.2) around
their limit accorting to Theorem 3.2.1.
We first consider the case where the process u takes a constant value z ∈ R, i.e., Zt = zBH

t ,
and h ≡ 1. In this case

F
(n)
g,1 (zBH)t =

bntc∑
i=1

g
(
znH

(
BH

i
n

−BH
i−1
n

))
and it suffices to consider the process

bntc∑
i=1

g
(
z
(
BH

i −BH
i−1

))
which has the same distribution, due to the self-similarity of fBM.
Let ν(x), x ∈ R, be defined by

ν2(x) := lim
n→∞

V

(
1√
n

n∑
i=1

g
(
x
(
BH

i −BH
i−1

)))
.

We have the following theorem.
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Theorem 3.3.1 (Theorem 2 of [CoNuWo08]). Fix T ∈ R+. Assume that H ∈
(
0, 3

4

)
, g is

even, i.e., g(x) = g(−x), x ∈ R, and satisfies condition (H). Then(
BH

t ,
√

n
(
F

(n)
g,1 (zBH)t − cg(z) t

))
L→
(
BH

t , ν(z)Wt

)
,

as n → ∞, where W = {Wt , t ∈ R+,0} is a BM independent of the process BH , and the
convergence is in the product space D([0, T ])2 equipped with the Skorohod topology.

Remark 3.3.1. The proof goes along the same lines as in Theorem 2.3.1. The first step
is to show the convergence of the finite-dimensional distributions. By the self-similarity
property of fBM it suffices to prove the convergence of

(
B(n) , Y (n)

) L→
(
BH , V

)
, where

the components of the first vector are

B
(n)
k := n−H

∑
bnakc< j≤bnbkc

Xj , 1 ≤ k ≤ N,

and
Y

(n)
k := n−1/2

∑
bnakc< j≤bnbkc

H(Xj , z) , 1 ≤ k ≤ N,

where Xj := BH
j − BH

j−1 and H(x, y) is defined by H(x, y) := g(yx)− cg(y), x, y ∈ R. By
Jk = (ak, bk], k = 1, . . . , N , we denote pair-wise disjount intervals contained in [0, T ] with
|Jk| := bk − ak. The limiting vector is centered Gaussian, BH is an fBM independent of
V , and V has independent components with variances ν2(z)|Jk|. The finiteness of ν2(z)
is ensured by H < 3

4 . The proof for this convergence is analogous to Proposition 10 of
[CoNuWo06]. The additional condition of g being even, together with (H), ensures that
EW

(
H(W, z)2

)
< ∞, which is required for this convergence result.

The second step is to show the tightnes of the sequence Z
(n)
t :=

√
n
(
F

(n)
g,1 (zBH)t − cg(z) t

)
in D([0, T ]). Again, the desired tightness property follows from Billingsley [Bill68, Theorem
15.6].

For a general process u the following theorem holds.

Theorem 3.3.2 (Theorem 4 of [CoNuWo08]). Suppose that u = {ut , t ∈ [0, T ]} is a
stochastic process measurable with respect to FH

T and with Hölder continuous trajectories
of order α > 1

2 and that BH =
{
BH

t , t ∈ [0, T ]
}

is an fBM with H ∈
(

1
2 , 3

4

)
. Assume that

g is even and satisfies condition (H) and that h is Hölder continuous of order β ∈
(

2
3 , 1
]

and βH > 1
2 . Define Z = {Zt , t ∈ [0, T ]} by Zt :=

∫ t
0 us dBH

s , t ∈ [0, T ]. Then(
BH

t ,
√

n

(
F

(n)
g,h (Z)t −

∫ t

0
h(Zs)cg(us) ds

))
L→
(

BH
t ,

∫ t

0
h(Zs)ν(us) dWs

)
,

as n → ∞, where W = {Wt , t ∈ R+,0} is a BM independent of the process BH , and the
convergence is in the product space D([0, T ])2.

Remark 3.3.2. The proof of Theorem 3.3.2 follows similar steps as in Theorem 2.3.2. For
details see [CoNuWo08, Theorem 4].



Chapter 4

The Realized Power Variation of
some Integrated Stable Processes

This chapter is concerned with the asymptotic behaviour of the r.p.v. of some stochastic
processes of the form

∫ t
0 us dSα

s where Sα denotes an α-stable process with index of stability
α ∈ (0, 2). The discussion follows Corcuera et al. [CoNuWo07] and presents their main
results.

Remark 4.0.3. As in Chapter 3, the theorems here are without proof (due to the same
reasons, see Remark 3.0.5). Again, the presented material has to be understood as an
outlook on results similar to those in Chapter 3 that can be obtained by replacing the
stochastic integral

∫ t
0 us dBH

s with
∫ t
0 us dSα

s .

4.1 The Setting

We consider stochastic integrals of the form∫ t

0
us dSα

s , t ∈ [0, T ] , (4.1)

where T ∈ R+ is fixed, Sα = {Sα , t ∈ R+,0} is an α-stable Lévy process (see Definition-
levy) with index of stability α ∈ (0, 2), u = {ut , t ∈ R+,0} is a stochastic process with
continuous paths and, if α ≥ 1, with finite q-variation on any finite interval for some
q < α

α−1 . The integral is a pathwise Riemann-Stieltjes integral for α ≥ 1 and a pathwise
Lebesgue-Stieltjes integral for α < 1.

Any α-stable Lévy process is a pure jump Lévy process and may be characterized by the
Lévy-Khintchine formula

E
(
eiuSα

t
)

= exp

(
t

∫
R\{0}

(
eiux − 1− iuh(x)

)
ν(dx)

)
,

where h = 0 if α < 1, h = 1 if α > 1 and h = 1{|x|<1} if α = 1. The Lévy measure ν has
the form

ν(dx) = rx−1−α
1{x>1}(x) + q(−x)−1−α

1{x<1}(x) ,

with r, p ≥ 0 and r + p > 0, and where r = q for α = 1. From the form of the Lévy
measure we can deduce some properties that we will need in the following. Any α-stable
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Lévy process is self-similar (see Definition 1.1.2) and satisfies a scaling relation of the form

t−1/αSα
t

d= Sα
1 . (4.2)

The process possesses all moments of order less than α. For α < 1 the trajectories are of
bounded variation, whereas for α ≥ 1 they are of unbounded variation.

For pure jump Lévy processes without drift component it is known that the Blumenthal-
Getoor index β, defined by

β := inf
γ≥0

∫
R\{0}

(1 ∧ |x|γ) ν(dx) < ∞ ,

determines the behaviour of the p-variation of the trajectories. It is finite if p > β. Hence,
for α-stable Lévy processes it is finite for p > α. By Young’s result and the statments about
the existence of Riemann-Stieltjes integrals in Section 2.1, for α ≥ 1 the Rieman-Stieltjes
integrals 4.1 will exist if the process u has paths of finite q-variation on any finite interval
for some q < α

α−1 .

Fα
t , t ∈ R+,0, denotes the σ-algebra generated by the random variables {Sα

s , s ∈ [0, t]}
and the null sets. The same notation as in Section 2.1 applies.

Remark 4.1.1. Corcuera et al. [CoNuWo07] consider a more general setting by replacing
the integral process 4.1 with

∫ t
0 us− dSα

s , where u.− denotes the (pathwise) left sided limit
of u. The integrand u is a stochastic process with càdlàg trajectories (and the same
regularity conditions as stated above). For α ≥ 1 the intergal is a pathwise Refinement-
Riemann-Stieltjes integral (see for a definition) which allows for common discontinuities,
as long as they are not one-sided. To avoid such difficulties we consider only integrands
with continuous paths here (and can use Riemann-Stieltjes integrals therefore).

4.2 A Law of Large Numbers for the Realized Power Varia-
tion

We now consider the asymptotic behaviour of the r.p.v. of
∫ t
0 us dSα

s . In the following we
will only consider the case p < α, where the non-normalized r.p.v. tends to infinity and
we therefore need a norming sequence that converges to zero in an appropriate way.

Remark 4.2.1. For p > α it is known that the non-normed r.p.v. tends to the p-th power
of the absolute values of the jumps of the underlying integral process (4.3).

The following result is the analogon to Theorem 2.2.1 in the previous setting.

Theorem 4.2.1 (Theorem 1 of [CoNuWo07]). Fix T ∈ R+. Suppose that u = {ut , t ∈ R+,0}
is a stochastic process continuous trajectories and, if α ≥ 1, with finite q-variation on any
finite interval, where q < α

α−1 . Define a stochastic process Z = {Zt , t ∈ [0, T ]} by

Zt :=
∫ t

0
us dSα

s , t ∈ [0, T ]. (4.3)

Assume that Y = {Yt , t ∈ [0, T ]} is a stochastic process satisfying

n−1+p/αV 1/n
p (Y )t

u.c.p.−→ 0 (4.4)

as n →∞. Then, for any p < α
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n−1+p/α V 1/n
p (Z + Y )t

u.c.p.−→ cp

∫ t

0
|us|p ds ,

as n →∞, where cp := E(|Sα
1 |p).

Remark 4.2.2. The proof of Theorem 4.2.1 follows the same steps as in Theorem 2.2.1,
using the scaling relation for stable Lévy processes (4.2) and the law of large numbers
instead of the Ergodic theorem. For details see [CoNuWo07, Theorem 1].

Remark 4.2.3. The generalization of adding an additional “noise” process Y that satisfies a
regularity condition (4.4) to Z (analogous to Theorem 2.2.1) is already included in Theorem
4.2.1.

4.3 Central Limit Theorems for the Realized Power Variation

For p ∈
(
0, α

2

]
the fluctuations of the r.p.v., properly normalized, have Gaussian asymp-

totic distributions. For the formulation of the result we introduce some notation.

For any p ∈
(
0, α

2

]
we set

ν2
p := V(|Sα

1 |p) .

The following functional limit theorem is the analogon of Theorem 2.3.1 for the r.p.v. of
an α-stable Lévy process Sα.

Theorem 4.3.1 (Theorem 2 of [CoNuWo07]). Fix p ∈
(
0, α

2

]
and assume α ∈ (0, 2). Then(

Sα
t ,
(
n−1/2+p/αV 1/n

p (Sα)t − cptn
1/2
))

L−→ (Sα
t , νpWt) , (4.5)

as n → ∞, where W = {Wt , t ∈ [0, T ]} is a BM independent of the process Sα (i.e.,
independent of Fα

T ), and the convergence is in the product space D([0, T ])2 equipped with
the Skorohod topology.

Remark 4.3.1. Analogous to Theorem 2.3.1 the result follows in two steps by first showing
the convergence of the finite-dimensional distributions (using Theorem 2 in [AlEa78]) and a
following tightness argument (using Theorem 16.1 in [Bill68]). For details see [CoNuWo07,
Theorem 2].

From Theorem 4.3.1 a functional central limit theorem for the r.p.v of the stochastic
integrals (4.1) can be derived. For this we need an additional condition on the integrand
process u.

(K) Assume that u satisfies: for γ ∈ R+

1√
n

n∑
j=1

| |u|γ(ηn,j)− |u|γ(χn,j)|
a.s.−→ 0,

as n →∞, for any ηn, j and χn, j such that

0 ≤ χn,1 ≤ ηn,1 ≤
1
n

χn,2 ≤ ηn,2 ≤
2
n
≤ · · · ≤ χn,n ≤ ηn,n ≤ T.
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We then have the following result (the analogon to Theorem 2.3.2).

Theorem 4.3.2. Let Sα be an α-stable Lévy process with α ∈ (0, 2). Fix p ∈
(
0, α

2

]
and

suppose that u = {ut , t ∈ [0, T ]} is a stochastic process with continuous paths, measurable
w.r.t. Fα

T , satisfying (K) with γ = p and, if α ≥ 1, with finite q-variation on any finite
interval for q < 2p. We also assume that the stochastic process Y = {Yt , t ∈ [0, T ]} satisfies

n−1+p/αV 1/n
p (Y )t

u.c.p.−→ 0 (4.6)

as n →∞. Then, for Zt :=
∫ t
0 us dSα

s , t ∈ [0, T ] we have

(
Sα

t ,

(
n−1/2+p/αV 1/n

p (Z + Y )t − cpn
1/2

∫ t

0
|us|p ds

))
L−→
(

Sα
t , νp

∫ t

0
|us|pWs

)
,

(4.7)
as n → ∞, where W = {Wt , t ∈ [0, T ]} is a BM independent of the process Sα (i.e.,
independent of Fα

T ), and the convergence is in the product space D([0, T ])2 equipped with
the Skorohod topology.

Remark 4.3.2. For a proof see [CoNuWo07, Theorem 3].



Appendix A

Miscellaneous

A.1 Definitions

In the following definitions, if not stated otherwise, all random variables and stochastic
processes are defined on a complete probability space (Ω,F ,P) , are real-valued
(i.e., with state space (R,B), where B denotes the Borel sigma-algebra on R) with an
arbitrary parameter space (index set) T .

Definition A.1.1. If X = {Xt, t ∈ T} is a stochastic process such that E(Xt) < ∞
∀t ∈ T , then the first moment function (or Expected value function) m

(1)
X (.) of X is defined

by
m

(1)
X (t) : T → R : t 7→ E(Xt) .

If E
(
X2

t

)
< ∞ ∀t ∈ T (which is equal to V(Xt) < ∞ ∀t ∈ T and yields, by Hölder’s

inequality, that E(XsXt) < ∞ ∀s, t ∈ T ), then the second moment function m
(2)
X (., .) of

X is defined by
m

(2)
X (s, t) : T × T → R : (s, t) 7→ E(XsXt) .

The (auto)covariance function γX(., .) of X is then defined by

γX(s, t) :

{
T × T → R,

(s, t) 7→ Cov(Xs, Xt) = m
(2)
X (s, t)−m

(1)
X (s) m

(1)
X (t),

where Cov(Xs, Xt) := E((Xs −E(Xs))(Xt −E(Xt))) , s, t ∈ T .

Definition A.1.2. A stochastic process X = {Xt, t ∈ T} with T ⊆R is called (weakly)
stationary if

(i) E
(
|Xt|2

)
< ∞, ∀t ∈ T

(ii) m
(1)(t)
X = µ, t ∈ T,

(iii) m
(2)
X (s, t) = m

(2)
X (s + h, t + h), s, t ∈ T, h ∈ R such that s + h, t + h ∈ T .

Note: This type of stationarity is frequently referred to in the literature as covariance
stationarity, stationarity in the wide sense, second-order stationarity or stationarity.

Definition A.1.3. A stochastic process X = {Xt, t ∈ T} with T ⊆R is called (strictly)
stationary if the joint distributions of (Xt1 , . . . , Xtn) and (Xt1+h, . . . , Xtn+h) are the same
for all t1, . . . , tn ∈ T , n ∈ N and all h ∈ R such that t1 + h, . . . , tn + h ∈ T .
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Definition A.1.4. For a stochastic process X = {Xt, t ∈ T} with totally ordered index
set (T,≤) and state space (S, Σ) the natural filtration F = {Ft, t ∈ T} is defined by

Ft := σ (Xs| s ≤ t) = σ
{
X−1

s (A)|A ∈ Σ, s ≤ t
}

,

where σ(.) denotes the σ-operator.

Definition A.1.5. A filtration F = {Ft, t ∈ [0, T ]}, where T ∈ R+, is said to satisfy the
usual conditions if

(i) F is right-continuous, i.e.,
⋂

s>tFs = Ft , t ∈ [0, T ),
(ii) FT is complete w.r.t. the underlying measure and
(iii) F0 contains all null sets of FT .

Definition A.1.6. A stochastic process X = {Xt, t ∈ T} is called a Gaussian process if
for any finite subset of indices {t1, . . . , tn} ⊆ T, n ∈ N, the multivariate random variable

Xt1,...,tn := (Xt1 , . . . , Xtn)

has a multivariate normal distribution (sometimes also called multivariate Gaussian distri-
bution). A Gaussian process is called centered (or normalized), if its first moment function
is the zero function on T (i.e., m

(1)
X ≡ 0).

Definition A.1.7. A stochastic process X = {Xt, , t ∈ T} is said to have independent
increments if for all t1 < t2 < · · · < tn ∈ T, n ∈ N, the corresponding increments of X, i.e.,
the random variables Xt2 −Xt1 , . . . , Xtn −Xtn−1 , are independent.

A stochastic process X = {Xt, , t ∈ T} is said to have stationary increments if for all
t1 < t2 < · · · < tn ∈ T, n ∈ N, the increments Xt1+h−Xt1 , . . . , Xtn+h−Xtn have the same
distribution for all h ∈ R+.

Definition A.1.8. A random variable X (or, more precisely, its distribution PX) is called
infinitely divisible if for any n ∈ N there exist independent and identically distributed
random variables X1, . . . , Xn such that

X1 + · · ·+ Xn
d= X ,

where d= denotes “same distribution”.

Definition A.1.9. An infinitely divisible random variable X (or, more precisely, its dis-
tribution PX) is called α-stable if for any n ∈ N there exist independent random variables
X1, . . . , Xn such that Xi

d= X, i = 1, . . . , n , and

X1 + · · ·+ Xn
d= n1/αX + dn ,

where d= denotes “same distribution”, and α ∈ (0, 2] and dn ∈ R are some constants. α is
called the index of stability of X (or its distribution).

Definition A.1.10. A stochastic process X = {Xt, t ∈ T} is called Lévy process if
(i) X0 = 0 ,
(ii) X has independent and stationary increments (see Definition A.1.7)
(iii) and the trajectories of X are P-a.s. right continuous with left limits, i.e., càdlàg.

It is called α-stable Lévy process if X1 has an α-stable distribution (see Definition A.1.9).
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Definition A.1.11. The Gamma function (on the positive reals) is defined as

Γ : R+ → R : z 7→
∫ ∞

0
tz−1e−t dt .

The domain of the Gamma function can be extended to the complex plane, excepting the
non-positive integers.

Definition A.1.12. If X is a multivariate random variable taking values in Rn , n ∈ N,
then its characteristic function is defined as

ϕX : Rn → C : t 7→ E
(
e i 〈 t , X 〉

)
,

where 〈 . , . 〉 denotes the (standard) inner product on Rn (i.e., 〈x , y 〉 =
∑n

i=1 xiyi ,
x, y ∈ Rn).

Definition A.1.13. Let f : (X, dX) → (Y, dY) be a mapping between any two metric
spaces. f(.) is α-Hölder continuous (or simply α-Hölder), or satisfies a Hölder condition
of order α, if there are constants α, C ∈ R+,0 such that

dY(f(x), f(y)) ≤ C dX(x, y)α ∀x, y ∈ X,

where α is called the Hölder exponent.
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A.2 Theorems

The following theorems are used in this thesis and are stated just for the sake of complete-
ness (and therefore without proofs).

Theorem A.2.1 (Kolmogorov‘s extension theorem, see Def. 1.2.1 in [BrDa91]). For an
arbitrary index set T let I(T ) denote the set of all n-tupel t = (t1, . . . , tn), n ∈ N, whose
components are pairwisely distinct elements of T . The probability distribution functions
{Ft(.), t ∈ I(T )} are the finite-dimensional distribution functions of some (real-valued)
stochastic process with index set T (i.e., there exists a process with these finite-dimensional
distributions) if and only if for any t ∈ I(T ) and any 1 ≤ i ≤ n

lim
xi→∞

Ft(x) = Ft(i)(x(i)) , (A.1)

where xi denotes the ith component of x and t(i) and x(i) are the (n−1)-component vectors
obtained by deleting the ith components of t and x respectively. By using the characteristic
functions of the finite-dimensional distributions, (A.1) may be restated in the equivalent
form

lim
xi→0

ϕt(x) = ϕt(i)(x(i)) . (A.2)

Conditions (A.1) and (A.2) are simply the ‘consistency’ requirements that each function
Ft(.) should have marginal distributions which coincide with the specified lower dimensional
distribution functions.

Theorem A.2.2 (Kolmogorov-Chentsov continuity theorem). Let X = {Xt, t ∈ T} be
a stochastic process whose index set T is dense in an open subset D ⊆ Rd, d ∈ N, with
state space S = (S, ρ), where S is a polish space (i.e., a separable, completely metrizable
topological space) with metric ρ. Suppose that there are positive constants α, β, C such that

E( (ρ(Xs, Xt))α ) ≤ C ||s− t||β+d
2 , ∀s, t ∈ T,

where ||.||2 denotes the Euclidean norm on Rd. Then there exists a (P -a.s.) continuous
modification of X (i.e., a stochastic process X̃ = {X̃t, t ∈ T}, such that P(Xt = X̃t) =
1, ∀t ∈ T , for which the mapping t 7→ X̃t(ω) is continuous for P -a.a. ω ∈ Ω). Furthermore,
this modification is γ - Hölder continuous P -a.s. for all γ ∈ (0, β

α). For every compact
subset of T this modification is even γ - Hölder continuous P -a.s. for all γ ∈ [0, β

α).

Theorem A.2.3 (Corollary 4.3.1 in [BrDa91]). A real-valued function γ : Z → R is the
(auto)covariance function of a weakly stationary stochastic process X = {Xt, t ∈ Z} if and
only if either

(i) γ(k) =
∫
(−π,π] cos(kz) dFX(z), ∀k ∈ Z,, where F is a right-continuous, non-decreasing,

bounded function on [−π, π] with F (−π) = 0 (i.e., a generalized distribution function
assigning all its mass to (−π, π]), or (equivalently)

(ii)
∑n

i,j=1 aiγ(i− j)aj ≥ 0 ∀(a1, . . . , an) ∈ Rn, ∀n ∈ N.

The equivalence of (i) and (ii) is asserted by Herglotz’s theorem (e.g., see Theorem 4.3.1 in
[BrDa91]). F (.) is referred to as the spectral distribution function of X (and of γ(.) anal-
ogously). If there exists a function f : [−π, π] → R+,0 such that F (z) =

∫ z
−π f(x) dx, −π ≤

z ≤ π, then f(.) is referred to as the spectral density function of X (and of γ(.) analo-
gously).
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Theorem A.2.4 (Ergodic theorem (formulation of Birkhoff)). Let X be a real-valued ran-
dom variable on (Ω,F ,P) with E(X) < ∞ and T : (Ω,F) → (Ω,F) a measure-preserving
mapping (i.e., P

(
T−1(A)

)
= P(A) , ∀A ∈ F). Then

1
n

n∑
i=1

X ◦ T i−1(ω) a.s.−→ E(X |T )

as n →∞, where T denotes the σ-algebra generated by the T -invariant sets (i.e., the sets
A ∈ F with T−1(A) = A) and E(X |T ) denotes the conditional expectation of X w.r.t. T .
If T is ergodic then

1
n

n∑
i=1

X ◦ T i−1(ω) a.s.−→ E(X)

as n →∞.

Remark A.2.1. There are other theorems which are also referred to as Ergodic theorem
in the literature. The formulation of Theorem A.2.4 is sometimes referred to as strong
Ergodic theorem of pointwise Ergodic theorem.

Remark A.2.2. By chosing an appropriate Ω′ and mappings X, T any strictly stationary
sequence Y = {Yn n ∈ N} on (Ω,F ,P) can be represented in the form Yn = X ◦ Tn−1 ,
n ∈ N. If E(Yn) < ∞ and Y is ergodic then, by the Ergodic theorem,

1
n

n∑
i=1

Yi
a.s.−→ E(Yj) , for an arbitrtary j ∈ N .
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A.3 Additional Results

This section contains some calculations and proofs for results that were used in this thesis
(but were moved to the appendix to tighten the representation).

Lemma A.3.1. Let BH =
{
BH

t , t ∈ R
}

be an fBm. Then, for all p > 0 it holds that

E
(
|BH

t −BH
s |p
)

=
2

p
2

√
π
|t− s|pHΓ(

p + 1
2

), t, s ∈ R,

where Γ(.) denotes the Gamma function (see Definition A.1.11).

Proof. As (BH
t −BH

s ) ∼ N(0, |t− s|2H) , it follows that

E
(
|BH

t −BH
s |p
)

=

∞∫
−∞

|x|p 1√
2π|t− s|H

exp
{
− x2

2|t− s|2H

}
dx

=
2√

2π|t− s|H

∞∫
0

xp exp
{
− x2

2|t− s|2H

}
dx

=

∣∣∣∣∣ u := x2

2|t−s|2H

du
dx = x

|t−s|2H =
√

2u1/2

|t−s|H

∣∣∣∣∣ =
=

2√
2π|t− s|H

|t− s|H√
2

∞∫
0

(√
2|t− s|Hu

1
2

)p

u
1
2

exp (−u) du

=
2

p
2

√
π
|t− s|pH

∞∫
0

u
p−1
2 exp (−u) du

︸ ︷︷ ︸
=Γ( p−1

2
+1)=Γ( p+1

2 )

=
2

p
2

√
π
|t− s|pHΓ(

p + 1
2

) .

Corollary A.3.1. Any fBm BH has a modification B̃H whose paths are γ - Hölder for all
γ ∈ (0,H). If BH is defined on a compact index set, γ may be chosen from [0,H).

Proof. From Lemma A.3.1 and the Kolmogorov-Chentsov theorem (see Theorem A.2.2) it
follows that there exists a modification B̃H whose paths are γ - Hölder for all γ ∈ (0,H− 1

p)
and all p > 0. Letting p →∞ yields the desired result. According to Kolmogorov-Chentsov
γ may be chosen from [0,H) for a compact index set (this is obvious, as every continuous
function on a compact domain is bounded, which is equivalent to 0 - Hölder).

Lemma A.3.2. Any α-Hölder continuous function f : [a, b] → R with a, b ∈ R ,
a < b , and α ∈ R+ has finite (1/α)-variation on [a, b].

Proof. Since f is α-Hölder continuous it holds that (see Definition A.1.13)

|f(x)− f(y)|
1
α ≤ C

1
α |x− y| , ∀x, y ∈ [a, b] ,
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for some fixed C ∈ R+. Therefore,

var1/α(f ; [a, b]) = sup
π

(
n∑

i=1

|f(ti)− f(t(i−1))|
1
α

)α

≤ sup
π

(
C

1
α

n∑
i=1

|ti − t(i−1)|

)α

= sup
π

(
C

1
α (b− a)

)α

= C(b− a)α < ∞ ,

where the supremum is taken over all partitions of [a, b] of the form
π = {a = t0 < t1 < · · · < tn = b}, hence

∑n
i=1 |ti − t(i−1)| = (b− a).
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A.4 Notation

This section contains notation used in this thesis that was (usually) not defined explicitly
in the text.

Symbol Meaning
N the natural numbers (i.e., N = {1, 2, 3, . . . })
N0 the natural numbers including zero (i.e., N = {0, 1, 2, 3, . . . })
Z the integers (i.e., Z = {0,±1,±2,±3, . . . })
R+ the reals
R+ the positive reals (i.e., R+ = {x ∈ R|x > 0})
R+,0 the non-negative reals (i.e., R+,0 = {x ∈ R|x ≥ 0})
C the complex numbers
i the imaginary unit (i.e., i ∈ C and i2 = −1)
B the σ-algebra of Borel sets on R
E(.) Expectation
V(.) Variance
N(µ, σ2) Gaussian (or Normal) distribution with mean µ ∈ R and variance σ ∈ R+
d= equality in distribution
2Ω the power set of some set Ω
1A the indicator function of a set A
σ(.) the σ-operator (i.e., for A ⊆ 2Ω for some set Ω, σ(A) denotes the smallest

σ-algebra on Ω that contains A)
a.a. almust all
a.s. almust surely
a.s.→ almost sure convergence
p→ convergence in probability

u.c.p→ uniform convergence in probability
w.r.t with respect to



Appendix B

Simulating Sample Paths of fBM

Sample paths (or, more precisely, discrete approximations to sample paths) of an fBM
can be obtained, for example, by simulating points of a realization of a process with the
corresponding properties over a discrete grid with constant (and small) mesh. To simulate
a number of n ∈ N (discrete) sample points (b1, . . . , bn) at times t1 < t2 < · · · < tn, ti ∈ R,
of an fBM BH =

{
BH

t , t ∈ R
}

with Hurst parameter H ∈ (0, 1):

• Form the covariance matrix of (Bt1 , . . . , Btn), i.e., the n×n matrix Σ = (σij)n
i,j=1

where σij := γBH (BH
ti , BH

tj ) =
1
2
(|ti|2H + |tj |2H − |ti − tj |2H), 1 ≤ i, j ≤ n .

• Compute a square root, say A, of Σ, i.e., a matrix A for which Σ = AA holds.
The existence of such a matrix is ensured by the positive semi-definiteness of Σ (see
Remark 1.1.1).

• Construct a vector r := (r1, . . . , rn) whose components are n numbers drawn from a
standard normal distribution.

• Applying A to this vector yields the desired sample points, i.e., Ar = (b1, . . . , bn).

Remark B.0.1. This algorithm can easily be implemented, e.g., using MATLAB. Figures
1.1 to 1.3 in Section 1.1.7 were generated by the following MATLAB function:

function fbm(H, k )

for i =1:k ,
for j =1:k ,
c ( i , j )= 1/2 ∗ ( ( ( i −1)/k )^(2∗H) + . . .

( ( j −1)/k )^(2∗H) − abs ( ( i −1)/k − ( j −1)/k )^(2∗H) ) ;
end

end

subplot ( 1 , 3 , 1 ) ; plot ( ( 0 : 1 / k:1−1/k ) , sqrtm( c ) ∗ randn(k , 1 ) ) ;
subplot ( 1 , 3 , 2 ) ; plot ( ( 0 : 1 / k:1−1/k ) , sqrtm( c ) ∗ randn(k , 1 ) ) ;
subplot ( 1 , 3 , 3 ) ; plot ( ( 0 : 1 / k:1−1/k ) , sqrtm( c ) ∗ randn(k , 1 ) ) ;

Listing B.1: MATLAB function to generate sample paths of fBM

Remark B.0.2. Calling the above function with parameters H = 0.5 and k = 1000 would
generate three times 1000 sample points (over [0, 1]) of an fBM with H = 0.5.
Remark B.0.3. The described algorithm (slightly modified) can be used to simulate sample
paths of any Gaussian process of known first and second moment functions.
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