
MASTERARBEIT

Security mechanisms for low-end

embedded systems
A Proof-of-Concept for Home and Building Automation

Ausgeführt am Institut für

Rechnergestützte Automation

Arbeitsbereich Automatisierungssysteme

der Technischen Universität Wien

unter der Anleitung von

ao. Univ.-Prof. Dipl.-Ing. Dr. Wolfgang Kastner

und

Mag. Dipl.-Ing. Fritz Praus

durch

Thomas Flanitzer

Spitalgasse 5/3/7

2432 Schwadorf

Wien, 1. Juli 2008

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung

Die Verwendung von Embedded Systems (ES) in unserem täglichen Leben

nimmt ständig zu. Deswegen wird es immer wichtiger, solchen Systemen ein

gewisses Vertrauen entgegenbringen zu können, was besondere Beachtung von

Security-Aspekten erfordert. Allerdings ist es aufgrund von begrenzten Ressour-

cen und rauen Umfeldbedingungen im Allgemeinen schwierig, Security-Mecha-

nismen auf ES anzuwenden.

Heim- und Gebäudeautomationssysteme (HGA) verwenden Kontrollnetzwer-

ke, um auf Geräte innerhalb eines Gebäudes zuzugreifen und um die Effizienz,

Flexibilität und Steuerung des Gebäudes zu verbessern. Typische Anwendungsfälle

beinhalten die Steuerung von Beleuchtung, Heizung, Belüftung und Klimatisie-

rung. In solchen Systemen kann eine spezielle Geräteklasse ausgemacht wer-

den, welche die typischem Charakteristiken von low-end ES aufweisen: Sensoren,

Aktuatoren and Controller (SACs). SACs spielen eine wichtige Rolle in HGA-

systemen und werden oft in großer Zahl verwendet.

Das Ziel dieser Masterarbeit ist die Bereitstellung von allgemeiner Security in

low-end ES während es trotzdem möglich sein soll, beliebige und ungeprüfte (und

möglicherweise fehlerhafte und bösartige) Anwendungsprogramme auszuführen.

Das System und dessen Umfeld sollen vor Security-Angriffen geschützt wer-

den. Eine Vielzahl existierender Mechanismen zur Verbesserung von Security auf

der Ebende von Anwendungen werden geprüft und in ihrer Anwendbarkeit auf

low-end ES evaluiert. Geeignete Mechanismen werden ausgewählt und zu einer

Konzeptarchitektur kombiniert, welche als effiziente und sichere Lösung vorge-

stellt wird, um Resistenz gegen jede Art von Software-Attacken zu gewährleisten.

Die Umsetzbarkeit und Effektivität der Architektur wird anhand einer Proof-of-

Concept (PoC) Implementierung demonstriert, welche im Rahmen der Masterar-

beit entwickelt wurde. Der PoC ist dem funktionellen Profil eines SAC-Gerätes

sehr ähnlich. Eine Testumgebung, bestehend aus einem HGA Netzwerk, wurde

aufgebaut und mehrere Beispiele und Tests wurden durchgeführt. In diesen Tests

lieferte der PoC einige interessante und vielversprechende Ergebnisse, welche das

Potential der vorgestellten Architektur untermauern.

2

Abstract

The use of embedded systems (ES) in our daily lives is growing. Therefore, it

is becoming important to be able to put a certain amount of trust on them which

requires strong consideration of security aspects. However, due to limited re-

sources and harsh environmental conditions, it is generally difficult to apply secu-

rity mechanisms to ES.

Home and Building Automation (HBA) systems use control networks for ac-

cessing devices inside buildings to improve the building’s efficiency, flexibility

and control. Typical applications include the control of lighting, heating, ventila-

tion and air-conditioning. In such systems, a special device class called Sensors,

Actuators and Controllers (SACs) can be be identified to have the typical char-

acteristics of low-end ES. SACs play an important role in HBA systems and are

often used in large numbers.

The goal of this thesis is to provide general security in low-end ES while still

allowing to run arbitrary and uninspected (and possible erroneous and malicious)

application programs. The system as well as its environment should be protected

against security attacks. Various existing mechanisms for improving application

level security are reviewed and evaluated in terms of applicability to low-end em-

bedded systems. Suitable mechanisms are selected and combined into a concept

architecture which is introduced as an efficient and secure solution for providing

resistance to any kind of software-based attack. The feasibility and effectiveness

of the architecture is demonstrated with a Proof-of-Concept (PoC) implementa-

tion which was developed as part of the thesis. The PoC closely resembles the

typical functional profile of a SAC device. A test environment, consisting of an

HBA network, was built and several examples and tests were run. In these tests,

the PoC delivered some interesting and promising results which support the po-

tential of the proposed architecture.

3

Danksagungen

Ich möchte mich an dieser Stelle bei allen Menschen bedanken, die mich

während meines Studiums und insbesondere während dem Schreiben meiner Di-

plomarbeit unterstützt haben.

Besonderer Dank gilt meiner Mutter, Eva Flanitzer, die mir für den Großteil

meiner Studienzeit ein relativ sorgenfreies Leben ermöglicht hat und ohne deren

Unterstützung ich es auf dem Weg zum Abschluss wesentlich schwerer gehabt

hätte. Danke Mama!

Vielen Dank auch an die Mitarbeiter des Arbeitsbereichs Automatisierungs-

systeme für deren fachliche Unterstützung und freundliche Aufnahme, insbeson-

dere an meinen Betreuer Fritz Praus, Prof. Wolfgang Kastner, Wolfgang Granzer

und Christian Reinisch, welche in entspannter Atmosphäre hervorragende Arbeit

leisten.

Nicht zuletzt möchte ich mich bei Daniela für ihr Verständnis und den Bei-

stand, den sie mir in schwierigen Zeiten geleistet hat, bedanken.

4

Contents

1 Introduction 7

2 Security 11

2.1 Vulnerabilities . 11

2.2 Threats . 13

2.3 Security Mechanisms . 14

2.3.1 Implementation of security mechanisms 15

2.3.2 Common security mechanisms 15

2.4 Evaluating Security . 18

2.5 Security in low-end embedded systems 19

2.5.1 A Scenario . 19

2.5.2 Attack Classifications 20

2.5.3 Problems with traditional security mechanisms 25

2.6 Securing the Host and the Code 26

3 Home and Building Automation systems 28

3.1 Demands on HBA systems . 29

3.2 Typical system characteristics 30

3.3 System structure . 31

3.4 HBA device classes . 32

3.5 Popular open HBA standards . 33

3.5.1 LonWorks . 34

3.5.2 BACnet . 36

3.5.3 EIB/KNX . 39

4 Approaches to improve security 43

4.1 Static software techniques . 43

4.1.1 Static analysis . 43

4.1.2 Code signing . 45

4.1.3 Proof-carrying code . 46

4.2 Dynamic software techniques . 47

4.2.1 Intrusion detection . 47

4.2.2 Software Monitoring . 48

4.2.3 Sandboxing, Virtualization 49

4.2.4 Self checking code . 50

4.2.5 Attack specific counter-mechanisms 51

4.3 Evaluation . 52

4.4 Hardware supported techniques 53

5

5 Proposed architecture 54

5.1 Concept . 54

5.2 Architecture . 56

5.3 Intended advantages . 58

6 Proof-of-Concept implementation 60

6.1 Hardware platform . 62

6.1.1 ATMega168 . 63

6.1.2 Peripherials . 63

6.1.3 Assembly . 64

6.2 Software . 66

6.2.1 NanoVM . 66

6.2.2 Implemented Libraries 70

6.2.3 Configuration . 72

6.2.4 Invocation monitoring 73

6.3 Programming Framework . 74

6.3.1 Examples . 75

6.3.2 KNX library reference 79

6.3.3 seBAS library reference 81

6.3.4 File structure . 81

6.4 Tools . 83

7 Experiences/Results 87

7.1 Memory consumption . 87

7.2 Performance . 88

7.3 Stability . 89

7.4 Freebus basic circuit . 90

8 Summary and Outlook 93

List of Figures 94

List of Tables 95

References 96

6

1 Introduction

The use of embedded systems (ES) in our daily lives is growing. They are in-

tegrated into more and more devices from mobile phones to refrigerators. The

functionality of such systems is also advancing, especially when it comes to in-

terconnection and communication. A lot of tasks are overtaken by ES, including

important and critical ones. Therefore we have to be able to put a certain amount

of trust on embedded systems which requires strong consideration of security as-

pects. The systems have to be resistant against misuse and attacks.

Providing security in ES is particularly challenging. Besides common soft-

ware security threats, certain constraints complicate the task, like low resources

and processing power. This makes the implementation of traditional security

mechanisms difficult, as they usually have high demands in these areas. ES also

often have to work in a harsh and untrusted environment, which allows attackers

to penetrate them physically and by analyzing side channels.

Home and Building automation (HBA) systems use control networks for ac-

cessing devices inside buildings to improve the building‘s efficiency, flexibility

and comfort. Typical applications are the control of lighting and shading, heating,

ventilation and air conditioning (HVAC) as well as security and safety relevant

functions. The physical interaction with the environment is done by a device class

called Sensors, Actuators and Controllers (SACs). These devices typically have

to be as low cost as possible, since they are often used extensively in a build-

ing’s installation. Additional requirements include low power consumption and

fast response time. These requirements typically result in limited available pro-

cessing power and resources which makes the use of security mechanisms on such

systems particularly difficult.

In almost the same manner as SACs are important and common in HBA sys-

tem installations, they are threatened by security attacks. They need to be phys-

ically placed into an environment that often cannot be secured against malicious

intervention (for example consider a light switch in an open place). Therefore

it has to be assumed that an attacker has full physical control over the device,

making it easier to perform complex attacks and to gain secret information pos-

sibly stored in the device. This harsh environmental conditions together with the

limited resources make it particularly challenging to secure SACs and significant

simplification and adaption is needed to be able to apply traditional security con-

cepts.

The goal of this thesis is to provide general security in low-end embedded sys-

tems like the mentioned SACs while still allowing to run arbitrary and uninspected

(and possibly erroneous and malicious) application programs. In this context, ap-

plication programs refer to programs designed to perform a specific function and

7

which run on top of a system software. The system running the applications as

well as its environment should be protected against security attacks. The assump-

tion is that an attacker who has full control over the application program tries to

cause harm which is to be prohibited. Furthermore, the solution should be appli-

cable to devices consisting of standard components and not require any special

hardware modifications.

The main difficulty in accomplishing this goal is to utilize security mecha-

nisms using only very limited resources and processing power. Although a certain

performance sacrifice may be made, the solution should still be efficient and flex-

ible enough to allow its deployment in a wide range of applications. Additionally,

programming such a system should be simple, the use of any special techniques

should not be required. The programmer should be relieved of any detail knowl-

edge of the underlying security mechanisms and be able to concentrate on the

desired system functionality.

As a preparation of achieving the stated goal, security threats are classified and

analyzed. They are separated into software, physical and side-channel attacks.

The main focus is laid on protection against software attacks, while physical and

side-channel attacks are only considered to a little extent.

Various existing mechanisms for improving application level security are re-

viewed. They include static and dynamic software techniques while some hard-

ware based techniques are also considered. To provide an overview, the tech-

niques are categorized into several general approaches. The approaches are eval-

uated in terms of applicability to low-end embedded systems by analyzing their

capabilities and requirements to work efficiently. Conclusions are drawn which

approaches could be applied to such systems.

A concept architecture reasonably combining a selection of the described mech-

anisms is introduced as an efficient and secure solution for low-end embedded

systems. It combines Static Code Analysis, Anomaly-based Intrusion Detection

and Sandboxing which in this combination can provide security against any kind

of software-based attacks. Additionally, detailed instructions are given about how

such a system may be implemented. The suggested architecture enables utiliza-

tion of the same system software on different hardware platforms and therefore

high portability of application programs.

The feasibility and effectiveness of the architecture is demonstrated with a

Proof-of-Concept (PoC) implementation which was developed as part of the the-

sis. It applies all suggested techniques on a hardware platform which was built

using only minimal and cheap components to closely resemble the intended tar-

get devices. The goal was to have a working node in an HBA network which is

able to carry out control tasks. A freely available virtual machine implementation

for microcontrollers was used as the basis for the PoC and several extensions and

modifications have been applied. The PoC was utilized in a small test environment

8

consisting of a small EIB/KNX network with a number of sensors and actuators.

Access to the network was established by equipping the hardware platform with

the basic circuit of the Freebus project [1]. A programming model and a complete

tool-chain are provided and sufficiently documented.

The presented PoC delivers some interesting and promising results. Although

some limitations according to performance and stability are present, it was shown

to offer decent flexibility with a comfortable way of programming it. Several tests

and experiments were performed which have shown its significant potential. The

PoC can also can be seen as an excellent base for future improvements and studies.

The outline of the thesis is as follows:

In Section 2, some theoretical background about security is given. A distinc-

tion between vulnerabilities, attacks and threats is made. Security mechanisms

are presented as a way to enforce a security policy. As a small digression, some

common security mechanisms are described. Furthermore, specific security prob-

lems with low-end embedded systems are identified and attacks against such sys-

tems are classified. Problems related to the implementation of traditional security

mechanisms are stated.

Section 3 provides an overview of Home and Building Automation (HBA)

systems. Their application fields are outlined and typical demands on them are

listed. Typical characteristics with respect to the organization of such systems are

described. The functionality is divided into three hierarchically ordered levels, the

used device classes are classified accordingly. SACs are identified as low-end ES

which are used extensively in HBA systems. The section is wound up with some

remarks on popular open HBA standards with a detailed description of LonWorks,

BACnet and EIB/KNX.

An overview of currently available approaches to improve the security of a

system is given in Section 4. Several static and dynamic software techniques are

introduced, in some cases existing tools and methods are described. The tech-

niques are evaluated in terms of applicability to low-end ES software. In addition,

some hardware supported techniques are described.

Section 5 describes the proposed architecture aimed at providing application

security in low-end ES. The concept is explained with the used techniques and

their combination. Following, some suggestions about the possible implementa-

tion of the architecture are given. The intended advantages are listed at the end of

the section.

The implemented Proof-of-Concept is outlined in Section 6. After explaining

the big picture, a detailed description of the used hardware platform and software

is presented. A reference of the programming framework along with several ex-

ample programs is given. The used tools are explained with instructions about

their usage.

Finally, Section 7 contains an evaluation of the implemented PoC, with spe-

9

cial considerations of its usefulness in common building automation tasks. The

memory consumption is evaluated and measurements related to the performance

of the PoC are presented. Observed stability issues are analyzed. The Freebus ba-

sic circuit is evaluated in its utility in an environment of retail devices, with focus

on the produced signal levels.

10

2 Security

Generally speaking, security refers to the protection of data, services and hardware

against unauthorized access and disturbance. As stated by Tanenbaum et al [2],

security refers to properties of computer systems which are intended to provide

dependability, confidentiality and integrity which can be described as follows:

Dependability is a measure for the trust we can put in a system to deliver its

services. It can be further divided into the properties availablity, reliablity,

safety and maintainablity.

Confidentially is present if information is disclosed only to authorized parties.

That means, measures to prevent unauthorized parties from reading must be

taken, such as the use of encryption for message exchange.

Integrity refers to the certainty that alterations to a system’s data can only be

made in an authorized way. This requires that unauthorized changes are at

least detectable and, in the optimal case, recoverable.

Usually, when speaking about system security, the terms vulnerability, threat

and attack are used to describe the relation between a system’s security and a

malicious party seeking to compromise it. The terms threat and attack are often

used like synonyms although in the understanding of the author there is a signif-

icant difference. The nomenclature used in this thesis is strongly related to the

definition used by Pfleeger in [3]:

A vulnerability in the context of computer security is used to describe a weak-

ness in the implementation or the conceptual design of a system which could be

exploited by an attacker. The attempt to exploit a vulnerability, including all nec-

essary steps and prerequisites, is called attack. The risk that an attack of given

type is launched against a system is usually referred to as threat.

2.1 Vulnerabilities

There is a vast number of possible vulnerabilities a system can contain. However,

most of them can be assigned to one of only a few common vulnerability types.

In the following, a selection of them is explained and examples of their possible

exploitation are given.

A buffer overflow occurs when a buffer in a program is filled beyond its limits.

This may result in memory regions being overwritten, which may be used by

a buffer overflow attack. For example, if it is possible to overwrite the return

address of a function, an attacker may inject arbitrary code as part of the buffer

and, by manipulating the return address, make the program jump to it. Buffer

11

overflows mainly occur in low level programming languages like C/C++ which

have no integrated boundary checking.

When a program, under certain conditions, unintentionally modifies memory

locations during its execution, it is said to be vulnerable to memory corruption.

Such actions are usually caused by errors in the software. Corrupted memory

can cause a program crash or strange behaviour, depending on the value of the

data which gets overwritten. Attacks may target at exploiting memory corruption

vulnerabilities, for example to compromise the availability of a system by crashing

a service it provides.

Race conditions refer to situations in the execution of a program where the

outcome of an operation depends on the timing of other operations. Race condi-

tions are often caused by deficiencies in synchronization mechanisms. They are

often hard to trace down because they may occur in quite complex constellations.

A format string vulnerability usually refers to the careless use of a function of

the *printf() family which is part of the C standard library. These functions

take a number of variables together with a format string, describing how the vari-

ables should be formatted into a string. The resulting formatted string is returned.

The problem is that there is a special formatting operator (%n) which allows the

number of printed characters to be written to one of the variables. For instance,

printf("xxx%n", &n);would write the value 3 to the variable n. If the for-

mat string can be influenced by an attacker, this operator can be abused to write

arbitrary values to arbitrary memory locations.

Denial of Service (DoS) vulnerabilities can, when exploited, disturb or even

stop a system in delivering a service. A common example is overloading a web-

server by continuously sending a large number of fake requests, which makes the

server unresponsive to other real requests. DoS attacks sometimes benefit from

poor testing of systems under extreme workload conditions which may allow them

to crash the system.

Figure 1 shows a breakdown of the distribution of vulnerabilities. The break-

down was determined by searching the US-CERT Vulnerability Notes Database

[4]. Searches were performed over all entries of the year 2007. It should be noted

that since the search engine only allows full text searches, double recordings may

be included (and are in some cases reasonable because some reports describe a

combination of vulnerabilities). Nevertheless, the numbers should give an ade-

quate overview of the commonness of vulnerability types.

Apparently, buffer overflows have the biggest share of reported vulnerabilities.

This has been the case for several years now, for example consider the breakdown

presented in [5]. Despite a lot of efforts to eliminate them (like the use of OS-sided

protection mechanisms or boundary checking in modern languages like Java and

.NET) buffer overflows are still the biggest source of vulnerabilities.

12

Figure 1: Number of vulnerabilities reported to the US-CERT Vulnerability Notes

Database in the year 2007 for several common vulnerability types.

2.2 Threats

It has to be assumed that a system contains a number of vulnerabilities which

can be exploited. From a security point of view, a system is exposed to several

threats to a varying extent, depending on the nature and application of a system.

Generally speaking, there are four types of threats [3]:

• Interception

• Interruption

• Modification

• Fabrication

Interception occurs when an unauthorized party gains access to a service or

data. It also refers to the theft of information, for example a user’s private data.

The classical example of a related attack is an adversary eavesdropping the com-

munication between two parties. Other examples would be the use of a network

sniffer in a company’s network or the use of a so-called keylogger to record all

pressed keys on a victim’s computer.

The goal of interruption is to corrupt or destroy data or to compromise the

availability of services. Examples would be the deletion of data files or overload-

ing of a server to make it unavailable for requests.

13

Modification refers to unauthorized changes of data or services. There are a lot

of possible uses, for instance obfuscation of information or the activation of faked

credentials. Examples for typical related attacks include SQL injections which

may alter the content in a database.

Finally, fabrication describes the generation of additional data by a malicious

party, data which would normally not exist. It includes the creation of false in-

formation as well as the generation of counterfeit communication messages. An

advanced related attack would be a so called man-in-the-middle attack, where pre-

viously recorded messages are played back to a victim to cause certain reactions.

2.3 Security Mechanisms

As a requirement for building a secure system by minimizing the risk caused by

threats, a security policy is needed. It precisely describes which rights the actors

in a systems are granted and which actions are allowed and which are prohibited.

Once a complete security policy is available, it needs to be enforced by applying

security mechanisms. In the following, four important general security mecha-

nisms will be described [2]:

• Encryption

• Authentication

• Authorization

• Auditing

Encryptionmakes information unreadable to persons who do not share a secret

key or mechanism. It is used for example to transfer secret messages or to store

confidential resources in a secure way. Encryption mechanisms can also be used

to check for changes in data.

Authentication refers to the process of verifying the identity of a claimed iden-

tity, for example of a user, a client or a server. A common way to authenticate

users is the use of passwords. Other methods include cryptographic signatures,

biometric checks or automated challenges.

Authorization is used after an identity has been authenticated. It is used to

determine the rights the identity is granted, for example to check if it is allowed

to access certain files or to execute operations.

Auditing is used to log the actions of users on a system. This includes login

times, file accesses, operations and so on. While auditing does nothing to improve

security directly, it can be extremely useful for analyzing security breaches.

14

2.3.1 Implementation of security mechanisms

In [6], a distinction is made between functional security mechanisms and the secu-

rity of their implementations. It is obvious that even the best security mechanism

cannot provide good security if it has a poor implementation. It requires a flaw-

less theoretical background as well as a proper implementation to be effective. But

even if the mechanism is proven to be secure and well implemented, it is unreal-

istic to assume that attackers will only attempt to break it directly. It is likely that

they will also look for ways around the used mechanisms, which may be found as

weaknesses in the implementation and deployment and can be used to bypass or

at least weaken the theoretical strength of security solutions.

Especially if a system’s security is considered as a whole – taking into account

its software and hardware – guaranteeing that the implementation of a system is

secure is very difficult. The more complex a system is, the more unexpected side-

effects can arise and unintended sources of information, which can be analyzed by

attackers, may be present. Therefore, the implementation of security mechanisms

can never guarantee full system security against all kinds of threats, partly because

not all possible threats are known.

2.3.2 Common security mechanisms

To provide a small survey of important security mechanisms, some common tech-

niques and implementations are explained in this section. Their basic principles

are described along with some remarks on their practical use, origin and limita-

tions.

Cryptography

Cryptography generally refers to the practice of hiding information by trans-

lating it into a form only readable for designated parties. Modern cryptographic

systems can generally be divided into two classes. If the key which is used for

encrypting a message can also be used for decrypting it, the mechanism is sym-

metric. Otherwise, if the keys for encryption and decryption are different, it is

asymmetric. Both classes have their advantages and applications [2].

In symmetric cryptosystems, the sender and the receiver share the same key to

be able to exchange encrypted messages. The key has to be kept secret, which can

be a significant problem because it has to be distributed among all participating

parties before the actual secret communication can take place.

Popular examples of symmetric cryptosystems are the Data Encrpytion Stan-

dard (DES) [2] and its successor the Advanced Encryption Standard (AES), both

standardized by the US government. Both cryptosystems use block ciphers, which

15

means they separate the clear text message into several blocks of the same size

and apply the cryptographic operations to them. AES, also known as “Rijndael”

(a portmanteau of the names of the inventors, Joan Daemen and Vincent Rijmen),

is a very popular algorithm that is used worldwide. Its implementations are fast

and require little memory.

In asymmetric cryptosystems, instead of using a single key, a pair of keys is

used. The keys have to be related to each other, making sure that if one of the

keys is used for encrypting a piece of information, it can only be decrypted with

its corresponding key. Moreover, it is important that one key does not give any hint

about the other. If this is the case, it is secure to make the key used for encryption

public, for example by putting it on a website. This way, everyone can encrypt

a message with this public key, but only the person owning the corresponding

private key can decrypt it. This concept is called public-key cryptography, it is

illustrated in Figure 2(a). The biggest benefit of public-key cryptography is that it

solves the problem of distributing secret keys. The sender and the receiver do not

have to share any secret information. Given that it is irrelevant which of the both

keys is used for encryption or for decryption, public-key cryptography can also

be used for digital signing. The sender can e.g. attach his name, encrypted with

his private key, to an e-mail. The attachment can then only be decrypted with the

senders public key, which allows the receiver to check the identity of the sender.

The concept of digital signing is illustrated in Figure 2(b).

(a) Encryption (b) Signing

Figure 2: Illustration of encryption and digital signing using public key cryptog-

raphy.

The concept of public-key cryptography was first introduced in 1976 by Whit-

field Diffie and Martin Hellman. They published a paper explaining the Diffie-

16

Hellman key exchange protocol [7] . In 1977 Ron Rivest, Adi Shamir and Leonard

Adleman publicly described RSA which was the first algorithm known to be suit-

able for signing as well as encryption [8] . RSA is based on the fact that there

is no known method to efficiently find the prime factors of large numbers. The

algorithm is still widely used today and is believed to be secure given sufficiently

long keys and the use of up-to-date implementations.

Although public-key cryptography has several advantages over traditional sym-

metric cryptography, its implementations are significantly slower and they require

more memory. For this reason it cannot be seen as a replacement for symmet-

ric cryptosystems. But the combination of the two is very powerful and has a

wide range of applications. One possibility is the use of public-key cryptography

for exchanging a secret key which is used in a symmetric algorithm to encrypt

messages. This concept was for example realized in the popular “Pretty Good

Privacy” (PGP) [9], a program originally created by Philip Zimmermann in 1991

which can be used for signing, encrypting and decrypting e-mails.

Hashing

While cryptographic techniques are usually used to keep information secret

between authorized parties, and therefore support the confidentiality of informa-

tion, hashing is intended to support the integrity. Instead of making the infor-

mation unreadable it rather aims at making even the slightest changes detectable.

Hashing functions typically process a big amount of information to create a small

hash value out of it, also simply called hash or checksum. This hash should, in

the optimal case, be unique for every combination of input data. This is of course

not possible in practice, because the generated hash should also have a practical

length. But still, a quality hashing function should be designed to avoid collisions.

Another important measure of the quality of a hashing function is its resistance

to the computation of inverses. While the generation of the checksum has to be

of low computational complexity to allow efficient implementations, the inverse

operation, i.e. finding data which results in specific hashes, should be as hard as

possible. Otherwise modified data could be prepared to result in the same hash

value as the original. In fact, most hash functions are declared insecure as soon as

the first collision attack is successful.

With a quality hashing function combining the properties described above, it

is possible to provide information with guaranteed integrity. For example, it is

a common practice on file servers to publish files along with their checksums as

separate files, which allows the users to check the files for downloading errors.

If hashing is used in combination with public key cryptography, information can

be signed, meaning that the source and the exact content can be verified by a

consumer.

17

Probably the most popular hashing function is the Message-Digest Algorithm

5 (MD5) [10] developed by Ronald L. Rivest in 1991 as a successor to MD4.

It can be used on data with arbitrary length and generates hash values with 128

bits in length. Although it was shown to be vulnerable to collision attacks by

chinese scientists in 2004, it is still widely used. Examples of more advanced

and more secure hash functions are the secure hash algorithm (SHA) in its more

recent versions (SHA-512 or better) [11] or RACE Integrity Primitives Evaluation

Message Digest (RIPEMD) [12] .

Authentication

To verify the identity of a subject, for instance a user, process or machine,

authentication mechanisms are used. In order to enable a subject to be authenti-

cated, it has to provide some kind of information related to its identity. Generally

the information can be something the subject knows, like a password, something

the subject has, for example a keycard or something the subject is, like biometrics

(e.g. an iris scan). Each of these options has its benefits and drawbacks, that is

why especially in security critical applications, a combination of authentication

mechanisms is used.

2.4 Evaluating Security

Since computer security is an ability composed of several properties, it is difficult

to measure the grade of security or in other words the resistance against attacks to

a system. Unlike, for example, safety related properties like availability, security

related properties can generally not be expressed in a numerical form. Neverthe-

less, it is often necessary to have some kind of quantitative measure about the

security of a system.

Considering only the theoretical aspect of a security mechanism, there is of-

ten a mathematical representation available. In this case, mathematical reasoning

methods can be used to prove certain properties or give an indication about the

complexity of breaking the mechanism. But as mentioned earlier, it is naive to

make any assumptions about the security of a computer system while only look-

ing at its theoretical basis.

A general approach to security evaluation is represented by existing security

standards such as the European ITSEC, the American TCSEC or the combined

international Common Criteria standard [13]. The Common Criteria standard

was developed to provide a common base for security evaluations, partly to avoid

the need for multiple certification processes of systems.

It defines a set of constructs which classify security requirements into related

sets called components. Each component identifies and defines any permitted

18

operations, the circumstances under which it may be applied and the results of

the application. The components are grouped into families of components which

share security objectives. Families are further grouped into classes which are

families which share a common intent. Eleven functionality classes are defined,

among them are “Cryptographic support”, “Identification and Authentication” and

“Privacy”.

For a specific target of evaluation, a set of components, describing the IT se-

curity objectives and requirements which should be met, may be selected. These

collected requirements are called the Security Target (ST). In the evaluation pro-

cess of a system, the requirements defined in its ST are checked using one of seven

Evaluation Assurance Levels (EAL1-7). EALs provide a increasing scale which

balances the level of assurance obtained with the related cost and feasibility. The

developer of a system is free to choose the desired EAL.

The evaluation can be performed in licensed laboratories which exist in many

countries spread all over the world.

2.5 Security in low-end embedded systems

Low-end embedded systems are typically found in areas where very strict de-

mands in terms of cost, power consumption and resources have to be met. These

requirements are also often tightened due to the large needed number of such sys-

tems. They are characterized by microcontrollers with low computational power,

few resources and a small feature set, just powerful enough to fulfill their destined

task. More specifically, in this work, systems using 8- or 16-bit microcontrollers

clocked at less than 25 MHz, and with less than 100 kilobytes of program mem-

ory, are considered being low-end embedded systems and represent the target of

the described investigations.

2.5.1 A Scenario

Due to the widespread deployment of embedded systems as well as the importance

of the tasks they take over, security flaws in such systems may have severe conse-

quences which are not obvious in the first place. For example, consider a scenario

depicted by Koopman [14], where embedded systems are used for household ther-

mostats which are connected to the Internet. The idea is interesting, as it allows

the inhabitants of a house to regulate the temperature of their flats or houses even

when they are not at home. For example, it could be used to turn off the heat-

ing during a working day and turn it back on again an hour before coming home,

resulting in an already comfortable temperature in the residence at arrival.

If an attacker is able to gain control over a household thermostat, he could

already cause serious trouble. He could waste energy by turning on the heating or

19

air conditioning when unnecessary, resulting in increased cost. But besides that,

he could disturb the comfort of the inhabitants or even do damage to the residence,

for example by completely turning off the heating in cold winters, causing pipes

to freeze.

Controlling household thermostats could also cause damage on a bigger scale.

If an attacker controls a lot of them, he could take influence in the total power

consumption of a region. For example, turning on a lot of air conditioning sys-

tems at the same time can seriously increase the demand on electricity and could

even cause power-grid failures. This example shows how serious security flaws in

embedded systems can be, even though the risks are not obvious in the first place.

2.5.2 Attack Classifications

In general, the same general threats as previously described also affect low-end

embedded systems. Additionally, they must often operate in untrusted environ-

ments where physical access by attackers is given. But due to the usually very

limited resources in such systems, traditional protection mechanisms are often

infeasible. Special requirements impose extra possibilities for attacks, like the

ability to download and execute code which is often required for maintenance. Fi-

nally, embedded systems are often designed in complex processes which includes

the consideration of many aspects of which security is not the most important at

design time. Therefore, some special security threats must be considered ([6],

[15]).

Figure 3: The embedded systems security pyramid as introduced in [15].

It is important to note that an attacker cannot be expected to only try to break

the cryptographicmechanism, especially with embedded systems. It is often much

easier to exploit implementation issues that allow bypassing or weakening the

mechanisms. Therefore the security of a system may never be considered solely

20

by its theoretical capabilities but also as a whole including its software implemen-

tation and physical realization. Hwang et al [15] defined a security pyramid as

depicted in Figure 3 which describes five levels of embedded systems security:

Protocol level: The protocols used in embedded devices.

Algorithm level: Cryptographic primitives and application specific algorithms.

Architecture level: Hardware/software partitioning and system organization.

Microarchitecture level: Hardware design of modules.

Circuit level: Transistor-level security and packaging.

They state that, in order to make an embedded system secure, the threats in all

five levels must be considered. If only one level is vulnerable to attacks, even the

strongest security mechanisms on other levels cannot be effective.

Ravi et al [6] classify attacks based on the means used to launch them. This

classification is also adapted here. Three categories are used:

Software attacks interfere with a systems software implementation.

Physical or Invasive attacks use physical intrusion or manipulation at some level.

Side-channel attacks are based on observing properties which are measurable

during operation.

In each category, attacks can be passive or active, the former only to collect

behavioural or confidential information, the latter to also manipulate a system. In

practice, attackers use a combination of various attack techniques. In the follow-

ing characteristics of the described attack categories will be explained and some

examples will be given. Figure 4 gives an overview of the attack types and their

described characteristics.

Software attacks

Software attacks use regular communication channels of a system to exploit

weaknesses in the architecture of a system. Such weaknesses are often caused by

insecure programming, e.g. the use of problematic functions or the absence of pa-

rameter validation. There are countless ways of how vulnerabilities are exploited,

but typically some form of code injection is involved. This way, an attacker can

force a system to execute operations he dictates. The most popular code injection

attack is the buffer-overflow. A vulnerability like this is particularly common in

21

Figure 4: Attacks on embedded systems.

programs written in low-level languages like C, which is naturally a very common

language in low-end embedded systems programming. Making sure that code is

without such flaws is a difficult task which requires comprehensive programming

experience. Some weaknesses can only be exploited through very complex inter-

action of several software components making the task even more difficult.

Besides implementational problems, also weaknesses in the underlying algo-

rithms can be the basis for security attacks. This may especially be the case for

adapted or self made cryptographic algorithms which are not proven to be secure.

It is generally hard for a developer to imagine how somebody may try to out-

smart his algorithms. Additionally, developers are often forced to develop their

applications rapidly, which leaves no time for extensive security analyses.

Software attacks only targeting at compromising a system’s operation, are re-

ferred to as availability attacks. Such attacks may even work in the absence of

any security flaws in the software by overstressing the available resources. For

example, a networked system could be made unavailable for processing any valid

requests by flooding it with fake requests, a typical DoS attack. Additionally, if

such a high frequency of requests is very improbable at normal operation, it may

not be very well handled (and tested) in the application code and may cause a

system to crash.

A special issue that is present in embedded systems is caused by the often

needed functionality to download and execute application code during operation.

This functionality may be abused to install malicious programs. This is especially

dangerous if the attacker has physical access to the system, which is often the

case.

22

Physical attacks

Physical attacks aim at collecting information or interfere with a system on

a physical level, by using probes or by applying modifications to the hardware.

Although often sophisticated and expensive equipment is required, they neverthe-

less represent a threat that cannot be neglected. Such attacks are to some extent

a speciality of embedded systems. Normal workstations or servers can usually be

protected against unauthorized physical access while embedded systems are very

often required to work in an untrusted environment.

The most obvious way to collect information by physical probing is by eaves-

dropping inter-component communications. If, for example, an external memory

chip or co-processor is connected to a processor, information can be collected

by listening to the connecting media. This is especially easy when standardized

protocols are used for the data transfer and the data itself is unencrypted.

Physical attacks at the chip level are harder to deploy since they require an

expensive infrastructure and considerable knowledge. These attacks may require

difficult activities like chip de-packaging, layout reconstruction or the use of e-

beammicroscopy. However, they can be used to collect important information that

can be the basis for successful non-invasive attacks. Figure 5 shows the magnified

surface of a chip which is prepared for microprobing.

Figure 5: Microprobing example: Eight data-bus lines where exposed on a chip

surface using a laser. (Source: http://www.flylogic.net/)

Instead of interfering with existing hardware components, they may also be

replaced or extended to change the behaviour of a system. This way, for example,

a ROM chip could be replaced to change certain parameters of a system. One

popular example of such attacks are so-called mod chips which are used to disable

copy protection mechanisms in video game consoles. These mod chips need to

be attached to the consoles internals and are able to modify or disable security

mechanisms.

23

Figure 6: Power consumption measurement of a smart card performing a DES

encryption operation [16].

Side-channel attacks

Side-channel attacks target at observing external parameters of a system to

collect information about its internals. These parameters include execution time,

power consumption or fault behaviour.

The basis for power analysis is that the power consumption of any hardware

circuit is a function of the switching activity at the wires inside it. The switching

activity is on the other hand data dependent, therefore it is possible to use statistics

about the power consumption of a system to determine keys used in cryptographic

algorithms. It has been shown that this analysis can be used to break embedded

systems such as smart cards in an efficient way. Figure 6 depicts an example trace

of a smart card performing a DES operation. The arrows mark visible details of

the operation, according to [16], DES key register rotations.

Listing 1: Simple (problematic) authentication example (pseudocode).

boolean Authenticate(username, password)

{

i f user_exists(username)

return check_password(username, password);

e l s e

return false;

}

Another way to collect information about a system through its behaviour is

the use of timing analysis. For example consider a simple authentication routine

as depicted in Listing 1. In the example routine, if a given user exists, the pro-

vided password will be checked, if not, the routine immediately returns. It can

be assumed that the function check password(...) takes more time than

just returning false. This way it is possible to scan for valid user names just by

analysing the time it takes the system to reply. More sophisticated analyses com-

24

bined with statistics can reveal the number of multiplications and divisions in a

cryptographic algorithm, since these operations take a variable number of cycles

based on the data inputs on many processors.

2.5.3 Problems with traditional security mechanisms

As stated before, there are several sources of problems when trying to implement

traditional security mechanisms on low-end embedded systems. Ravi et al [17]

identified a number of problems which may limit the applicability of such mech-

anisms:

Processing Gap: Security mechanisms are often complex and therefore compu-

tationally intensive or require the processing of high data rates within a rea-

sonable amount of time. Usually, embedded systems, especially low-end

ES which are focused in this work, are not powerful enough to meet these

demands.

Battery Gap: Some embedded systems are battery-drivenwhich requires the soft-

ware to be efficient in terms of power consumption. Since power consump-

tion is strongly related to the processing complexity, the use of security

mechanisms can increase the power consumption of a system significantly.

Tamper resistance: As described in Section 2.5.2, embedded systems face threats

related to the physical implementation of a system. It is therefore required

– in addition to a proper software implementation – to also consider the vul-

nerabilities exposed by the hardware implementation. It may be necessary

to use tamper resistance mechanisms to protect the software implementa-

tion.

Flexibility: Security mechanisms are often evolving, since new threat scenarios

arise over time. A system should be flexible enough to be adapted to new

and extended techniques. On the other hand, increased flexibility may make

the assurance of a system’s security unnecessarily difficult.

Assurance Gap: Secure systems are required to work reliably under the presence

of dedicated attacks which seek to exploit vulnerabilities contained in the

system. It is therefore significantly more complex to design a secure system

than one which just works as it is required to. The task is also complicated

due to the increasing complexity of embedded systems.

Cost: As stated before, security mechanisms are often of high complexity. There-

fore, the design and implementation are also time-consuming and cost in-

tensive tasks. Especially if implemented on an embedded system, where

25

many surrounding factors have to be considered in judging a systems secu-

rity, cost may also be increased due to the requirement of special protection

and testing.

2.6 Securing the Host and the Code

With the evolving concept of mobile code, which is code that gets migrated be-

tween and executed on different hosts, the security of both the executing host as

well as the code together with its data has to be considered (Figure 7). On the one

hand, the code may contain confidential data which the host should not be able to

read. On the other hand, the code should not be able to carry out any undesired

actions on the host or collect secret information stored on it [2].

Figure 7: With mobile code, the code as well as the host executing it have to be

protected.

The protection of the code is especially difficult because it can never be guar-

anteed that the host behaves as it is expected. Code signing and encryption mech-

anisms cannot be used effectively since the host naturally has full access to every

piece of the code.

Protecting the host is the more common problem one is faced when dealing

with mobile code. The host is exposed to several security risks. For one thing,

secret information like cryptographic keys may be stored in some memory regions

on the host. If code being executed on the host is able to access the same address

space without any restrictions, it can easily acquire this kind of information. If

it is also able to access functions for output or some kind of communication, this

information can be gained by an attacker. Besides the risk of stolen information,

the downloaded code may also disturb the operation of the host, or in case the host

is part of a communication network, a network of several nodes.

According to [18], there are three practical techniques for securing mobile

code execution. The first and nowadays very popular method is to restrict the

26

downloaded code in its actions. This is done by limiting its permissions and pro-

viding only a small set of functions the code can issue. This approach is typically

referred to as the sandbox model. Code signing is a technique which extends code

with information about its source and its trustworthiness. With this information,

the executing host can decide if the downloaded code should be executed or not.

The third approach, firewalling, uses specific rules which refer to executable prop-

erties to determine if and how downloaded code is executed as they enter a trusted

domain.

27

3 Home and Building Automation systems

Home and Building automation (HBA) systems are generally concerned with im-

proving the interaction between in-house devices and carrying out control tasks

[19]. The devices taking part in these systems are connected via a shared medium,

often a physical bus line or radio in modern systems.

In this thesis, HBA systems are presented as a case study of a growing field

of technology which is in its current state does not consider security aspects to a

large extent. Furthermore, a device class which consists of low-level embedded

systems is identified and used as a reasonable application area of the presented

investigations and developments.

Automation of large scale functional buildings (like company buildings with

extended functionality and possibly many occupants) is of particular interest for

the application of HBA technology because it offers big potential for cost and en-

ergy savings. Although the construction costs of such installations compared to

standard electrical installations are significantly higher, extensive savings can be

identified when considering the whole building lifespan. According to [19], the

operational cost of a building over its lifetime is about seven times the initial cost

for the construction. Therefore, even small savings can justify the increased finan-

cial investments and effort which is required for the installation of such systems,

especially when considering the increased comfort and flexibility that is provided.

The following list describes some common domains to be replaced by or ex-

tended with HBA technology.

• Lighting and shading

• Heating, ventilation and air conditioning (HVAC)

• Household devices (“White goods”)

• Home-Entertainment devices (“Brown goods”)

• Communication systems

• Security and access control

• Safety alarm systems

A distinction between homes and buildings is made. Homes typically refer to

personal houses and flats, with limited size and with only a few inhabitants. On the

other hand, buildings in this context refer to large scale functional buildings, usu-

ally company buildings with extended functionality and possibly many occupants,

like day time workers. While HVAC, lighting and shading are the “traditional”

28

applications for building automation systems, the integration of household and

home-entertainment devices is becoming more attractive for home automation.

Music and light that follows a user while moving through a residence is a

good example for an interesting scenario that could be made possible with HBA

technology. Remote administration of building functions using, for example, the

Internet is another tempting application. Additionally, HBA systems may also be

used to increase the safety and security by integrating alarm systems and access

control. Besides the mentioned improvements in efficiency, comfort and cost,

it should not be forgotten to also look at the potential such systems have as a

supporting technology. They can be used to enable or support an independent life

for handicapped or elderly people.

3.1 Demands on HBA systems

A number of general demands on HBA systems can be identified. These demands

are described in this section with some comments about how to meet them.

Dependability: Since HBA systems are often intended as a replacement for tra-

ditional electrical installation equipment, it is important to provide compa-

rable dependability and lifetime. Since relatively complex systems are used

(for example, consider a simple light switch compared to its microcontroller-

driven, bus compatible counterpart), extensive testing of the components

and quality assurance is needed. A system should also be designed in a way

to provide graceful degradation. This means that upon failure of parts of the

system it continues to operate, providing a reduced level of service rather

than failing completely.

Flexibility: As stated before, the integration of HBA systems is particularly in-

teresting in big office buildings which have a high power and resource sav-

ing potential. Depending on the size of the building, such systems can

grow very complex. Besides, the demands on the functionality are likely

to change over some years. Thus, the systems need to scale and should be

easy to extend. These demands are usually met by dividing an automation

network into several subsections, utilizing the implied spatial locality of

such systems. For instance, sensors and actuators which are situated on the

same floor of a building are in most cases related and require only little com-

munication to systems on other floors or to centralized structures. Another

important demand is the possibility to connect a companies IT-infrastructure

(e.g. Intranet) to the automation system.

Response time: HBA systems are intended for the transmission of control sig-

nals. For this reason, their focus is set on responsibility and reliability.

29

Therefore, the data rates being used for communication are usually rela-

tively slow which makes such systems unsuitable for the transmission of

large amounts of data (which is not their purpose anyway). Nevertheless,

a reasonable response time, even in situations of high activity, is often de-

sirable and in case of critical applications, a must. For example, while it

may acceptable for a centralized building control center to receive temper-

ature values of rooms within minutes, a light should be turned on within

a second at the latest when a light switch is pressed. Therefore, an HBA

system needs to be able to function even in situations with high traffic by

prioritizing different types of signals.

Interoperability: Different building automation technologies may be used for

different tasks and purposes. For example, for fire alarms and other critical

event reporting, it is often necessary to operate a separate network for safety

reasons. To this end, an HBA system should offer interoperability with

other common standards. There are several ways to achieve this, the most

desirable one being the adherence to open standards.

Usability: Since it cannot be expected that the users of HBA systems receive

extensive training on the operation of HBA devices, their usage should be

as simple and self-explanatory as possible. This is especially the case for

private tenements.

3.2 Typical system characteristics

Typically, HBA systems consist of a collection of embedded devices along with

some control nodes, couplers and gateways. They are connected via a communi-

cation medium, in many cases this medium would be a common physical bus line.

Depending on the size of the system, it is often also separated into several inter-

connected control networks. Especially in new buildings, installation wiring using

twisted pair cables is usually the cheapest and most stable interconnection solu-

tion. It also has the benefit that bus lines can transport the required energy for the

connected devices along with the communication signals. Since it is sometimes

necessary to upgrade existing buildings and also due to their ease of installation,

wireless solutions become more popular. Other possibilities include the use of

power lines.

The nodes in such networks communicate via a common protocol. Usually a

Carrier Sense, Multiple Access (CSMA) mechanism is applied to deal with colli-

sions. As stated before, in order to maintain a system’s scalability, a network may

be subdivided. For this purpose, subnetworks need to be interconnected by special

coupler nodes carrying out filtering tasks. In heterogeneous networks, gateways

30

can be used for protocol and name space translation. If control networks are

spatially separated, high-performance network backbones may be used for their

interconnection.

Nodes in the control networks store and exchange process data values. These

values can represent boolean values (e.g. switch states), numerical values (e.g.

temperature, luminance) or other data types like floating point numbers or strings

for various purposes. As a layer of abstraction, usually the concept of a data point

is used. A data point is a logical representation of a value contained in the network

and is associated with a unique identifier and data type. It may refer to an actual

physical setting or an abstract value.

Each node can be associated with one or more data points. These assignments

and the interactions between the data points are usually configured at installation

time. Simply put, this includes settings like which switch should control which

light. To allow such settings, there must be a way to either directly address a

node with a configuration tool or the node implements some sort of configuration

mechanism itself. A configuration tool can also help managing complex systems.

3.3 System structure

The system functionality of an HBA system can be divided into three hierarchi-

cally ordered levels [19]:

1. the field level,

2. the automation level and

3. the management level.

At the field level, interaction with the physical environment is done. Sensors

are used to collect information, like measurement data, and actuators are used to

take influence, e.g. controlling devices. The automation level is used to control

the sensors and actuators and to realize interrelations. Global configuration and

management tasks are carried out in the management level.

According to [20], in modern HBA, a two level model is more appropriate

to realize such systems, where the tasks of the automation level are split and to-

gether with the field level form the control level and with the management level

the backbone level. This division as depicted in Figure 8 is reasonable since field

devices become more powerful and can take over more advanced functionality.

On the other hand, cheap IT hardware can be used to take over management tasks,

making specialized automation hardware obsolete in many cases.

31

Figure 8: A two level architecture for HBA [20].

3.4 HBA device classes

Likewise, the devices used in HBA systems can be classified. In the field level

Sensors, Actuators and Controllers (SACs) performmeasurements of environmen-

tal data, affect physical parameters and hold controller functionality. Examples for

such devices are switches, light sensors, temperature sensors, door openers or con-

trollers for window shutters. SACs are usually characterized by cheap low-profile

components with minimized functionality and degrees of freedom.

In the backbone level Interconnection Devices (ICDs) link different networks

or different segments of a network together and Configuration and Management

devices (CMDs) are used to maintain and configure the system. Tools used for

the diagnosis of errors and misconfiguration in the network can also be classified

as CMDs. Besides specialized (and therefore often expensive) components like

gateways and bus couplers, standard IT technology (e.g. IP infrastructure) is often

adapted in modern networks in the backbone level. The main benefit of IT tech-

nology is that it is cheap and well-engineered and can satisfy high performance

demands.

SAC devices play an important role in HBA systems and are usually very large

in number. This is one reason why, in order to be profitable, strict requirements are

applied to them. They have to be cheap, both in the production as well as in oper-

ation, asking for low power consumption and long lifetime. These requirements

hamper the adoption of computational powerful and resource rich processors, due

to their usually implied complexity and cost. Therefore, SACs are in most cases

devices with very limited processing power and memory, featuring only necessary

functionality.

In [20], the requirements on SACs are summarized. A low cost 8 or 16 bit

microcontroller unit equipped with a few kilobytes of memory is stated as being

32

sufficient for such a device. Additionally, a point to point interface for configura-

tion and application uploading is required along with interfaces for communica-

tion. Also, low power consumption is of major concern as well as small size and

robustness.

3.5 Popular open HBA standards

Several open home and building automation standards are available for varying

purposes. Some have been developed for specific application areas while others

are intended to provide complete solutions.

A popular example for a specific standard is the Digital Addressable Lighting

Interface (DALI) [21] published as an IEC standard, which is widely accepted

for lighting applications. It can be used to control up to 64 dimmable flourescent

lights in a loop. Another example is M-Bus [22], a European standard which is

designed for remote reading of gas or electricity meters. Since such solutions of-

ten carry out only specific tasks and do not necessarily require a high degree of

flexibility they may be designed to be very efficient. This efficiency can generate

several technical and economical advantages over general solutions, for example

lower cost and energy consumption. For such specialized systems it is very im-

portant to be able to interoperate with other systems, possibly operating above

them. Therefore, openness, in the sense that everybody can interact with a system

without having to rely on the original manufacturer, is an important feature.

Among open standards which aim at providing complete solutions for HBA,

LonWorks, BACnet and EIB with its successor KNX are the most popular ones

[19]. While BACnet and LonWorks have considerable importance in the world-

wide market, KNX is particularly successful in Europe. These standards have

different origins and initial purposes which is also reflected in the application

area they are focused on today. In principle, these standards aim at providing a

complete solution on all HBA levels and could be designed entirely non-open.

However, openness has some significant advantages for the customers, integrators

as well as the manufacturers of such systems and is therefore an important factor

for the commercial success of such systems. The customer is protected of the

so-called vendor lock-in, meaning that he does not need to rely on a single manu-

facturer. Given that interoperability is assured, integrators are able to mix devices

from different manufacturers for increased performance and cost efficiency. An-

other advantage is that small manufacturers have the possibility to concentrate on

niche products.

The application areas of complete solution standards are widespread which

makes them an interesting target for security improvements. In the following, an

overview of LonWorks, BACnet and KNX/EIB is given.

33

3.5.1 LonWorks

LonWorks [23, 19] is a networking solution for automation and control applica-

tions developed by the Echelon corporation. It is suitable for building and oper-

ating powerful and widely ramified networks. The basic rules for communication

in a LonWorks network are defined by the LonTalk protocol which has to be sup-

ported by any device used in such a network. It is implemented in the so called

Neuron chips designed by Echelon as well as on devices by some other manufac-

turers (e.g. Loytec).

The LonTalk protocol was accepted as a standard for control networking (ANSI

/ CEA-709.1-B) in 1999. The standard was used in many subsequent standards in

the fields of train service, semiconductor manufacturing and, in 2005, for build-

ing automation in the European building automation standard. It has also been

adapted as transport protocol for the BACnet ASHREA/ANSI standard for build-

ing automation.

LonTalk was designed for applications involving sense, monitor, control and

identification functions. Its key features are high reliability, variety of communi-

cation media and low response time. It was also created to allow low cost pro-

duction of compatible devices. While the LonTalk protocol is an open standard,

interoperability among LonWorks devices by different manufacturers is enabled

by guidelines and profiles defined by the LonMark Interoperability Association.

A certification program has been put in place by Echelon to assure compatibility

between devices.

In a LonWorks network, a domain describes the entire routable address space.

It consists of up to 255 subnets with a maximum of 127 nodes each, which makes

a maximum number of 32.385 nodes in a domain. All nodes in a subnet must ei-

ther be on the same communication channel or on channels connected by bridges.

Subnets can be connected by routers, usually with a fast bus topology as a back-

bone.

Individual nodes in a LonWorks network are addressed by their unique 48-

bit identifier, which is carried by all devices and assigned during manufacturing.

This addressing mode is particularly important for management and configuration

tasks. Regular unicast communication is handled through logical subnet and node

addresses. Additionally, nodes can be part of multicast groups which may be used

to group several nodes of similar or related functionality. A domain can host up

to 256 multicast groups and each node can be a member of up to 15 groups.

Communication between the nodes can be either implicit or explicit. The pre-

ferred way of data exchange is the implicit way by using network variables (NV).

NVs can be defined in the node application programs and logically interrelated

across the whole network. Each node can hold up to 62 NVs with a maximum

length of 31 bytes. They can be either input or output variables. Writing to output

34

variables in the application program triggers the distribution of the new value to

all related input variables in the network automatically. There are different ways

of how NVs are related to each other. In some systems this happens at manu-

facturing, or using a configuration system at installation time. In homogeneous

networks it is possible to use automatic configuration techniques (ISI protocol).

In some cases the use of NVs is insufficient, for instance when data with a

length of more than 31 bytes needs to be exchanged or when a response message

is required. With explicit messaging, it is possible to send messages with a length

of up to 229 bytes and an additional request/response mechanism is provided. The

communication process is carried out in the application program.

For the exchange of NV values as well as explicit messaging, the protocol

features several message services, to meet varying requirements:

Unacknowledged: In unacknowledgedmode, messages are sent whenever a node

determines it is appropriate. No responses from receiving nodes are per-

ceived. This the most commonly used message service and requires the

minimum network bandwidth.

Unacknowledged/Repeated: Identical to the unacknowledged mode, but each

message is repeated a configurable number of times.

Acknowledged: Messages are sent and acknowledgements are collected from

each receiving node, possibly resulting in a retransmission if not all ac-

knowledgements are received. This service is used in applications where

certainty about message reception is important. The available bandwidth is

reduced. If acknowledged service is used with multicast groups, the group

may have a maximum of 63 members.

Priority: Several priority slots can be allocated on a channel and assigned to

nodes for transmission of critical messages. Only one node should be as-

signed to a slot. With this service, communication bandwidth is reduced

because in the priority time slots block the transmission of spontaneous

messages and it should therefore be used rarely.

Several physical media are generally supported for communication using the

LonTalk protocol. They include:

• Twisted pair (TP)

• Power line (powered and unpowered)

• Radio frequency (RF)

35

• Coaxial cabling

• Fiber optics

In LonTalk these media are referred to as channels, they can be split up into

several segments. The 78.1 kb/s free topology TP profile is the most popular

channel. It enables physical segments of up to 500 meters using low cost TP cable

and can also provide link power.

Since many protocol parameters are free to choose for the designer, channel

profiles have been defined to describe the use of certain communication chan-

nels more specifically. This way, by dedicating to the profiles, interoperability on

certain communication channels can be achieved by different manufacturers.

The Neuron chip is a powerful component which includes almost all essential

parts of a network-enabled device. It is a system-on-a-chip composed of three

interconnected processors with internal ROM, RAM and EEPROM. It features an

11 bit wide I/O connector along with a 5 bit wide communication interface for

connection to a LonWorks network. Only one of the three processors actually

executes the application program while the other two are used for handling the

LonTalk protocol processing. Applications running on a Neuron chip only need to

implement the application layer of the network stack, everything else is taken care

of by the LonTalk implementation on the chip. A large family of Neuron Chips is

available with differing speeds, memory type and capacity, and interfaces. Most

LonWorks devices are equipped with a Neuron chip, which ensures compatibility.

To ensure interoperability of devices from differing manufacturers in LonTalk

networks, a common application framework is defined, using the concept of Stan-

dard Network Variable Types (SNVTs). SNVTs are described as an extensive

list of common physical measurement types. They can be accessed in a standard

way in a LonTalk network. When two devices refer to the same SNVTs in their

implementation, they can be bound together.

Additionally, standard configuration property types (SCPTs) define a com-

mon way of accessing configuration parameters and standard functional profile

templates (SFPTs) are used to describe application specific interaction of NVs,

configuration properties, defaults and power-up behaviours. All these definitions

and guidelines are not part of a formal standard but are freely available.

3.5.2 BACnet

BACnet [24, 19] is a data communication protocol for building automation and

control networks. It is equally applicable for management and automation tasks,

it can for example be used for HVAC, lighting control, building security and fire

detection systems. The protocol defines the application and network layer, the

36

underlying layers can be handled by several different technologies. BACnet is an

ISO global standard, can be used by anyone and is free of any licence fees.

The development of BACnet started in 1987 by the American Society of Heat-

ing, Refrigerating and Air-Conditioning (ASHRAE). The standard was originally

published in 1995 as ANSI/ASHRAE standard. After some updates in 2001, it

was approved as ISO standard 16484-5 in 2003. It has thereafter also been ac-

cepted as a CEN standard.

BACnet was designed to be applicable to the general needs of building au-

tomation systems. One of its main goals was to establish a vendor-independent

standard for data communication in systems for building automation and as a con-

sequence eliminating the fear of being bound to a single hardware vendor. It was

designed with special regard to the communication model without defining rules

for the transportation of data and rather adapting existing physical, data link and

networking standards.

BACnet systems are divided into segments. Segments can be coupled by re-

peaters and bridges and form networks. Routers can be used to connect several

networks together to form an internetwork. There is only one path allowed be-

tween any two devices in an internetwork.

A BACnet system may also consist of several networks based on different

underlying technologies. The routers used for interconnecting different networks

need to be able to learn the topology they are situated in. Figure 9 shows an

example of such a heterogenous configuration.

Each device is assigned an address which consists of two parts: the first two

bytes specify the network number. Routers route packets based on the network

numbers. The second part is the local address which is up to 255 bytes long. The

format of the local address depends on the underlying link layer medium, it can

for example be an IP address if BACnet/IP is used.

In BACnet, objects represent physical inputs, outputs and software processes.

They are a collection of information related to a particular function and can be

uniquely identified and accessed over a network. Objects hold all information

available in a BACnet network, including measurements of physical conditions as

well as abstract information like calculations. BACnet objects can be accessed in

a transparent way over the network.

To describe an objects behaviour and to affect its operation, it provides a set

of properties. Some properties are read only, others can be altered.

In BACnet, 23 standard object types are defined, specifying their behaviour

and which properties they provide. The set of objects represents much of the

functionality typically found in building automation and control systems. The

only object a BACnet device is required to implement is the special Device object.

Other objects may be freely chosen by the manufacturer to achieve the desired

device functionality.

37

Figure 9: Example of a heterogenous BACnet network [24].

For accessing and manipulation objects, BACnet services specify messages

for exchanging information and for more advanced functions. The most common

services are ReadProperty and WriteProperty for accessing properties.

In this context, devices hosting information which is used by other devices are

referred to as servers, for example sensors offering a quantified physical value.

The devices which request such information are called clients. Typical clients

would be operator controls or management stations. A number of services for

accessing properties of objects are specified, among them are services for reading

and writing properties as well as for object management.

Although the BACnet standard is in principle independent of its message trans-

portation, several network types have been standardized for the exchange of BAC-

net messages:

• Ethernet

• ARCNET

• Master-Slave/Token-Passing (MS/TP) protocol

• Point-to-Point (PTP) protocol

38

• LonTalk

The MS/TP and PTP were defined as part of the standard for low-cost and

dial-up communications. BACnet/IP was standardized to transport BACnet mes-

sages over the Internet Protocol by extending the protocol stack with the “BACnet

Virtual Link Layer” (BVLL) which allows the use of underlying protocols as vir-

tual datalink layers. This virtual datalink layer also enables simple adaption of

other new networking technologies.

BACnet was from its beginning designed to allow interoperability of devices

supplied by different manufacturers. Since for typical devices, only a subset of all

available services is required, BACnet Interoperability Building Blocks (BIBBs)

are defined. They define sets of services a device must implement to enable partic-

ular functional capabilities. On top of the BIBBs, BACnet device profiles, specify

collections of BIBBs which correspond to the functionality of typical building au-

tomation device classes. Manufacturers may claim conformance of their devices

to a given profile, if at least the included BIBBs are implemented. It is however

still possible to add additional functionality.

To ensure interoperability between devices of different manufacturers, inter-

operability testing and certification programs have been established by both the

BMA and BIG-EU.

3.5.3 EIB/KNX

EIB/KNX [25, 26, 19] is an open specification for home and building automation

and part of the KNX standard, maintained by the Konnex association. EIB stands

for European Installation Bus which was the original fieldbus standard which was

later merged into KNX. EIB/KNX is intended to specify ways of how sensors and

actuators can be interconnected in a home or building. It separates the supply of

devices from the transmission of control information. The standard is in principle

open. To receive all necessary rights and resources to manufacture EIB/KNX

devices, a company must join the Konnex Association which requires the annual

payment of a membership fee.

The EIB standard was originally created by the European Installation Bus As-

sociation (EIBA) in 1991. It was successful and in wide use especially in German

speaking and northern European countries. In 2002, EIB, Batibus and EHS (Euro-

pean Home System) were merged into the KNX standard, with the goal to create

a single European home and building electronic system standard. After being

accepted as an European standard (EN 13321-1 and EN 13321-2), in November

2006 the KNX protocol, including all transmission media (TP, PL, RF and IP) was

approved for publication as the ISO/IEC 14543-3-x International Standard.

EIB was designed to enhance electrical installations in homes and buildings.

Its initial application areas were lighting, shading and HVAC but the design is

39

powerful enough to fulfill complex automation tasks with tens of thousands of de-

vices and over a large areas. A decentralized architecture was chosen to provide

failure resistance by design. The standard was intended to offer a complete solu-

tion for the interconnection of home automation devices, from the physical data

signaling in the field level to the high-level protocol parameters in the application-

level.

In EIB/KNX up to 254 devices may be connected to a physical line in free

topology. Up to 15 lines may be connected to a main line via a router, in this con-

text called coupler, to form a zone. The lines may be arranged in a tree structure,

loops are not allowed. Finally up to 15 zones may be coupled by a backbone line.

Therefore, the maximum number of devices an EIB/KNX network can contain is

15 x 15 x 254 = 57150.

The levels of the hierarchy in such a network are usually mapped to the struc-

tural divisions of a building or site. Since the traffic on the backbone lines can be

significant, often high speed connections like Ethernet (EIBnet) are used for these

lines.

Every device contained in the network has a unique identifier, its individual

address, which reflects the position this device has in the network. It is usually

represented as a 16-bit number and contains the zone, line and device number.

The individual address is only used for unicast communication, it is reserved for

client-server style communication.

To enable a free configuration of sensors and actuators, so called group ad-

dresses are used. They allow the logical connection of devices in the network. For

example, an actuator can be configured to react to messages sent to a certain group

address. Devices can be associated with several group addresses, enabling flexible

grouping and configuration of the network. Group addresses are defined globally

for the whole network. However the specific location allows local and global

group addresses by defining in each message the maximum number of Routers to

be crossed.

The transport layer of the EIB/KNX network stack provides services for broad-

cast, multicast and unicast datagram transmission as well as reliable point-to-point

connections.

In EIB/KNX a shared variable model is used for exchanging data between

devices. The functionality a device implements is offered by group objects which

can be read or written (or both) by other devices. Each group object must have

a distinct group address assigned. The data exchange happens in an event driven

manner. As soon as a data source changes its value, it is reported by pushing the

new value to the network with the assigned group address. Since messages sent

to group addresses are transported to all devices in a network, the knowledge of

a group address is sufficient for a listening node to gain information about value

changes. Additionally, there are also mechanisms to query group objects.

40

In addition to group objects, system interface objects allow accessing informa-

tion like system management data or the loaded application program. Application

interface objects offer user application related data, including fixed application

parameters as well as run time values. The information in interface objects will

typically be accessed by a PC-based tool or controller.

For the communication between nodes in an EIB/KNX network, several trans-

mission media are standardized. Most common is the use of a twisted pair cable,

which is known as KNX TP1. It is operated at a voltage of 29 V for signaling

which may also power connected devices. The maximum length of segments us-

ing TP1 cabling is 1000m, up to four segments can be concatenated. The used data

transfer rate is 9600 b/s, which is well enough for several thousand devices, if used

correctly. To regulate the concurrent access of several devices to this common bus

line, bit-wise arbitration and priorities are used.

Other media which are specified for EIB/KNX include:

• Powerline communication

• KNX-RF for wireless communication

• EIBnet

• KNXnet/IP

EIBnet transmits EIB messages using Ethernet technology, basically enabling

the fusion of EIB/KNX and Ethernet LAN networks. KNXnet/IP further allows

the extension of EIB/KNX lines over IP networks.

EIB/KNX not only specifies the protocol for communication but also some

standard system components. There are three types of specified devices:

Bus Coupling Units (BCUs) implement a complete network stack and applica-

tion environment. BCUs are intended to provide a mounting platform for

application modules but may also host small application programs them-

selves. They are often flush mounted in electrical installations.

Bus Interface Modules (BIMs) enable the communicationwith an EIB/KNX net-

work. BIMs are functionally reduced BCUs without casing, allowing tight

integration into devices.

TP-UARTs (Twisted Pair - Universal Asynchronous Receive Transmit) are in-

tegrated circuits with the sole purpose of connecting devices to EIB/KNX

TP1 cabling. They are fed via a UART interface and translate received mes-

sages to EIB/KNX bus telegrams, taking care of timing and voltage levels.

TP-UARTs allow the highest level of integration into a device, but require

the most engineering effort since no network stack is provided.

41

KNX is designed as a vendor-neutral standard, allowing products which ad-

here to the standard to interwork in the same system, even if they are from different

vendors or application fields. This approach has several technical and commercial

advantages which contributed to a large extent to the success of KNX. Such an in-

terworking is made possible by the definition of functional blocks, which specify

data types, data points and communication mechanisms to be used. KNX defines

such functional blocks for a whole set of functions, covering typical building au-

tomation tasks.

To guarantee the interworking ability of devices, the KNX Association runs a

certification scheme for products. The KNX Association’s Certification Depart-

ment is responsible for managing the certification process and granting the KNX

logo. For testing of the products, a number of KNX accredited test labs can be

used.

42

4 Approaches to improve security

There is a broad range of approaches which target at improving application level

security in the presence of programming flaws or untrusted code, from static and

dynamic software to hardware supported methods. Such methods have one thing

in common: they are never able to offer full protection and often human prepara-

tion or interaction is required to make them useful.

In this section, research related to software attack countermeasures is pre-

sented. Several general techniques are introduced along with some existing meth-

ods and tools.

The presented methods are categorized into static software methods, dynamic

software methods and hardware supported methods as suggested in [27]. Further

categorization is used where appropriate.

Figure 10: General stages of an attack [6].

The list of techniques presented does not claim completeness. Considering

the attack model depicted in Figure 10, the focus is on techniques which address

attack prevention and attack detection. In some cases, the focus was further nar-

rowed on methods related or possibly applicable to embedded systems.

4.1 Static software techniques

4.1.1 Static analysis

Static code analysis (SCA) generally refers to analyses of program code to detect

certain properties of a program without executing it [28]. In security, it is used to

detect programming flaws that result in vulnerabilities. This includes manual as

well as automated checking using special tools.

43

Manual checking by humans requires extensive knowledge by the auditing

person. A programmer usually does it automatically while programming but is

often unable to find some of his faults. Manual checking by other persons in a

review fashion can be very effective in eliminating flaws but is highly time con-

suming and thus expensive.

Automated tools use pattern matching to detect common program flaws. This

may be as simple as using a program like grep to find usages of dangerous func-

tions in a set of source files. More sophisticated tools combine techniques like

annotations, heuristics and modeling the execution state. Commonly possible

programming flaws are identified and printed in a human readable form. Such

tools can be well integrated in the development process and may provide valuable

feedback to the programmers.

Automated SCA can be carried out on program source code as well as on

already compiled binaries. If carried out on compiled binaries, decoding the in-

structions can be difficult. Especially in the area of embedded systems, varying

instruction set architectures hamper the use of general binary code SCA tools. On

account of this, most recent publications on binary static analysis focus on the

Intel x86 architecture, like [29], [30].

A lot of SCA tools work on program source code, especially on low-level lan-

guages like C where programming flaws can easily result in exploitable security

problems. Since the analysis takes place before the compilation process, it can

be portable across different target architectures, although on the other hand, not

every architecture is vulnerable to the same attacks.

A problem of SCA is that for languages with if-statements, loops, dynamic

storage and dynamic data structures some fundamental questions are undecidable

or uncomputable [31]. That means the results of an SCA tool are always only

approximate and can never be sound and complete. Therefore it will always be

uncertain if some of the detected flaws are false positives, or some real flaws

remain undetected.

Available open SCA tools

In the following, a selection of available tools for SCA will be described.

Splint is a quite popular open source tool based on lint for statically analysing

C source code. According to its development homepage (http://www.splint.org/),

“Splint is a tool for statically checking C programs for security vulnerabilities

and coding mistakes. With minimal effort, Splint can be used as a better lint. If

additional effort is invested adding annotations to programs, Splint can perform

stronger checking than can be done by any standard lint.”. The annotations that

44

can be used with Splint make it possible to explicitly add information about the

intended behaviour of a program. They have been introduced in [32], and provide

an interesting tool for experienced programs to write secure code.

ASTRÉE is a static program analyzer developed at the Laboratoire d’Infor-

matique of the École Normale Supérieure (LIENS) [33]. It is intended to prove the

absence of run time errors in C programs. ASTRÉE is able to analyze structured

C programs with complex memory usages, although no dynamic memory usage

and recursion is allowed. But even with these restrictions it is still able to analyze

most programs written for embedded systems where such complex techniques are

usually not present. ASTRÉE has been in use for several important applications,

for instance in the field of aerospace.

Sparse is a semantic parser for ANSI C which also includes a static analyzer

[34]. Originally started by Linus Torvalds in 2003, it is now maintained by Josh

Triplett. It supports the use of annotations which can be used to include semantic

information about data types or the intended use of function into the program.

4.1.2 Code signing

In code-signing, executables are signed by their producers to confirm the software

author and to guarantee that it has not been altered or corrupted [3] . The user can

on reception of the code check its correctness and determine the identity of the

producer. With this information, the user can decide if the source of the code is

trustworthy and therefore probably secure to execute. Usually, instead of deciding

about the trustworthiness every time a program is received, the user manages a list

of trusted entities or trusts a certification authority which does that.

Typically, a combination of a high quality hash function and public key cryp-

tography is used for the generation of the signatures. Since public-key algorithms

would be too slow for signing big documents, a hash value of the data is gener-

ated instead which is then signed and appended to the document. In addition to

the hash, other information about the program and its producer can be added.

A problem with code signing is that it requires the user to have some common

sense about whom should be trusted or not. This means, code signing does not

provide automatic security for downloaded programs.

Somewhat similar to code signing, but with different purposes, is software

watermarking [35]. It is used to embed secret (and intentionally non-removable)

information into a piece of data, usually to assure that the rights of the creator are

not hurt. A common application is media watermarking, where information about

the owner and the copyright of a creation is embedded into it, for example a movie

or a picture. Watermarking can also be applied to program software.

45

The injected watermarks are intended to be resilient to removal attempts (de-

watermarking attacks), but also exhibit a trade-off between data-rate, cost and

stealth.

4.1.3 Proof-carrying code

Proof-carrying code (PCC) [36] is a technique where a code producer provides a

proof along with a program which allows the user to check, with certainty, that

the code is secure to execute. For example, some programs can be proven not

to contain any buffer overflows. To use PCC, the user needs to specify a set of

rules that guarantee secure behaviour of programs. The code producer, on the

other hand, has to create a formal proof which proves adherence to these rules. To

check the proof correctness, the user is be able to utilize a simple and fast proof

validator.

PCC has applications in many systems whose trusted computing base is dy-

namic. For example, it may be used in systemswhere the execution of downloaded

code is allowed like in web browsers or embedded systems. As advantage to cryp-

tographic code signing, PCC does not require any trust relationships between the

code producer and the user. All information needed for determining that the code

is secure is contained in the code and the proof.

If modifications have been applied to the code, PCC guarantees that there are

only three possible outcomes when validating the proof:

1. The proof is no longer valid, the user can reject the execution of the pro-

gram.

2. The proof is valid but does not correspond to the program anymore.

3. The proof is still valid.

In the third case, the program is still proven to be secure although the be-

haviour of the program may have been changed.

Although the concept of PCC sounds very promising, there are a number of

problems which still need to be solved. The biggest source of problems is the

generation and encoding of the proofs. The proofs can be checked efficiently

by the user, but the generation is a complex task. Although automated proof

generators have been developed, they have difficulties in generating proofs for all

types of programs and against complex security policies. In [18] it is even stated

that “there are properties related to information flow and confidentiality that can

never be proved this way”. Another problem with the proofs is that they often

have a significant size, which can be an order of magnitude larger than the code.

46

4.2 Dynamic software techniques

Dynamic software techniques for application security generally try to hamper soft-

ware attacks by applying security mechanisms at runtime, either by hindering at-

tacks a priori, or by detecting malicious or undesirable actions and reacting to

them according to a given policy. A wide range of approaches fall into this cate-

gory. There are techniques which are targeted at very specific attack conditions as

well as ones which are supposed to provide general means of security.

While in the IT world, operating systems (OS) typically limit what an appli-

cation is allowed to do, the targeted microcontrollers do not provide the necessary

hardware support (e.g., memory management units to separate the address spaces

processes can access are often lacking). Traditional OS for such lean ES thus can-

not provide comparable protection or are not even designed to provide security

measures. Moreover, in general trusted software such as an OS cannot be guar-

anteed to contain no flaws. For completeness, it has to be noted that possibilities

exist to overcome the lack of memory management units [37].

Here, dynamic software techniques are organized in five categories: intrusion

detection, attack specific techniques, software monitoring, sandboxing and code

signing. Additionally, approaches which do not fit well into any of these cate-

gories are presented in the end of this section.

4.2.1 Intrusion detection

Intrusion detection systems (IDs) monitor the behaviour of a system and use the

collected information to detect malicious modes or actions [38] [39]. There are

several ways to collect this kind of information: tracing system calls, file system

operations or network traffic are common.

Two general approaches for intrusion detection can be distinguished: signa-

ture based intrusion detection (SID) and anomaly based intrusion detection (AID).

SID systems rely on a collection of signatures describing known attacks. The

signatures can for example describe parts of files, memory regions, system call se-

quences or more abstract attack representations. By matching these signatures to

information collected at runtime, malicious actions can be detected. Most modern

antivirus software use SID to detect malware.

SID systems have a high degree of accuracy and can be implemented effi-

ciently. If an appropriate abstraction is used, SID systems are to some extent also

able to detect new attacks which are similar to known patterns. But they are unable

to detect truly novel attacks. Therefore the signature database has to be updated as

soon as new attacks are discovered which may be difficult in some installations.

SID systems are also vulnerable against attack variations, for example worms that

change their own code.

47

The goal of AID systems is to detect unusual system behaviour or data which

is assumed to be part of software attacks. This is done by comparing program be-

haviour or network traffic to a representation of “normal” operation. The principle

is to some extent similar to the human immune system.

AID methods use models that describe normal behaviour. They are built upon

feature vectors which contain parameters from various sources of information.

The observed data is characterized as normal or abnormal, using mechanisms

from simple statistical analysis to neural networks and other AI techniques. The

models used in AID have to be trained with normal system behaviour to be able

to distinguish it from anomalies.

AID is able to detect novel intrusions but suffers from high false alarm rates. It

is difficult to distinguish attacks from natural changes in the system (e.g. different

users, different applications). On the other hand, intrusive activities that appear to

be normal remain undetected. Also, due to the uncertain nature of AID systems,

it is problematic to apply them to high speed systems.

4.2.2 Software Monitoring

Software Monitoring techniques generally observe the execution of programs. By

identifying and reacting to certain security relevant events they can check if pro-

grams behave according to a given security policy. On the detection of malicious

behaviour, actions can be taken to prevent it or to stop the program. The used

policies can be defined by a security expert or automatically generated using static

analysis of the monitored programs. Monitoring usually takes place at instruction

level by checking some or all instructions which are to be executed by a program.

Program shepherding by Kiriansky et al [40] specifically monitors control

flow transfers in a program and prevents transfers to data or modified code re-

gions. This is done by verifying every branch instructions a program is about to

execute to ensure that each satisfies a given security policy. To this end it is pos-

sible to specify a security policy at a fine-grained level, allowing the definition of

restrictions regarding code origins as well as control transfers. To make sure these

restrictions cannot be ingnored a technique called un-circumventable sandboxing

is used.

Janus, by Goldberg et al [41], was built as secure environment for untrusted

helper applications. They identified helper applications (e.g. in browsers) as

source of security concerns. Therefore the hosting application is secured by inter-

cepting and filtering dangerous system calls. Janus, still under development, runs

in user-mode and can be applied to pre-existing applications.

48

4.2.3 Sandboxing, Virtualization

According to a definition by Tanenbaum [2], “a sandbox is a technique by which

a downloaded program is executed in such a way that each of its instructions

can be fully controlled”. A sandbox is often used to execute untrusted programs

or untested code. The essential benefit of executing code in a sandbox is that

the system outside the sandbox is protected from malicious actions by the user

application. Additionally, the behaviour of the program in the sandbox can be

monitored and controlled.

As an extension to sandboxing, the concept of a virtual machine (VM) is used

to execute so called applets. Applets are self-contained programs which run in the

context of other programs (e.g. web browsers).

Virtual machines can be classified into process and system VMs [42]. Pro-

cess VMs apply their virtualization mechanisms between the operating system

and processes. Most modern operating systems implement similar mechanisms

by supporting multiple user processes. This way, a process can be given the il-

lusion of having the whole machine to itself. In system VMs, the virtualization

software is situated between the operation system(s) and the hardware. This al-

lows several operation systems to coexist on the same hardware.

Today the term sandbox is often associated with the Java runtime system,

where it is an essential part of the security architecture. The Java sandbox model

can be described as a collection of mechanisms [43]:

• Java class files are verified for correctness.

• Only a restricted API is available to untrusted code.

• Class loading mechanisms are part of the VM and cannot be bypassed.

• The native functionality of the VM is closed.

The sandbox model in Java also evolved over time and contains several ad-

vanced security mechanisms to date. For example, a security manager class checks

and restricts actions performed by untrusted code. An advanced class loader en-

sures that untrusted applets cannot interfere with the operation of other java pro-

grams.

Sandboxing in embedded systems

Especially targeted at mobile embedded systems, Scylla [44] is a is simple,

fast and robust virtual machine architecture It offers the capability to run code

compiled for a common instruction set architecture (ISA), independently from

the underlying hardware. The basic instruction set is closely matched to popular

49

processor architectures to allow efficient on-the-fly compilation. Additionally, in-

structions for inter-device communication, power management and error recovery

are provided.

There are also a number of Java virtual machines available for embedded sys-

tems. Sun offers the official Java Micro Edition (Java ME) [45] for embedded

devices, targeted at mobile phones, personal digital assistants (PDAs) and similar.

Although strictly reduced in size and overhead, it still features powerful program-

ming interfaces, robust security and built-in network protocols. But due to this

relatively comprehensive feature set, the minimum system requirements specify

the need for 160-512 kilobytes of total memory and a 16 bit processor clocked at

16 MHz or higher. Especially the memory requirements are slightly beyond the

limitations of low-end embedded systems which were set in Section 2.5.

Besides the official Java versions, there is a number of implementations avail-

able which are targeted at systems with very low resources. These implementa-

tions often come at the price of only offering a subset of the full Java functional-

ity. Only two such solutions shall be presented here: NanoVM [46] and TinyVM

[47]. Both virtual machine implementations allow the execution of standard Java

bytecode, at least after preparation with an automated tool. They target very low-

profile embedded systems. The NanoVMwas originally written for the Atmel AT-

Mega8 microcontroller included in the Asuro robot, and has a memory footprint

of approximately 7 kilobytes. The TinyVM operates on Lego Mindstorms RCX

programmable bricks which are equipped with a Hitachi H8 microcontoller. It has

memory requirements of around 10 kilobytes. Both VMs have some limitations

regarding the provided Java language features. For example the NanoVM does

not support multithreading. The TinyVM is generally more advanced (of course

also due to the more powerful hardware it runs on), and supports multithreading,

exceptions and synchronization but for example misses floating point operations.

But despite these limitations both VMs have their possible applications, since the

omitted functionality is often not required for their intended uses.

4.2.4 Self checking code

Self checking code (SCC) usually describes techniques where programs check

themselves for modifications. Assuming that modifications are unwanted and

probably malicious, software attacks can be detected in this way. Static and dy-

namic self checking code can be distinguished. Static techniques check the pro-

gram integrity once before the program starts while dynamic techniques do so at

runtime.

A simple approach for SCC would be to generate hash values over parts of

the program and compare them to stored values, usually determined at compile

time. This way, changes in the program code can be detected by regenerating

50

these values at runtime and comparing them to the stored values. One drawback

of this simple approach is that the added SCC mechanisms can easily be distin-

guished from normal program code and could be bypassed by an attacker. There-

fore, measures have to be taken to hamper the discovery and modification of the

included SCC mechanisms in order to make them effective. For example, SCC

could be used in conjunction with watermarking, obfuscation and anti-debugging

techniques.

Horne et al [48] describe a technique where several so called testers and cor-

rectors are injected into programs. Every tester has an assigned block of code that

it generates a hash value of. Correctors are inserted into these blocks to make the

testers hash their intervals to a fixed value. This approach is claimed to be more

secure than storing the expected hash value in the testers.

Oblivious hashing by Chen et al [49] is a somewhat similar approach but it

has a special focus on the obfuscation of the checking mechanisms. They state

that it is very easy for an attacker to identify and in succession disable or bypass

normal checking routines, since they are quite different to common program code.

Programs usually do not read their own code sections. Therefore they introduced

a technique that continuously calculates a hash value based on the dynamic exe-

cution context of the host code. This way operational correctness can be checked

at any point in the program. The main benefit of this approach is that the checking

code can be blended seamlessly into the application code, since is uses similar

instructions and is therefore hard to detect.

4.2.5 Attack specific counter-mechanisms

There is a number of security attack types which often exploit vulnerabilities in

a similar way. For example, buffer overflow attacks usually overwrite parts of an

application’s memory to change its behaviour, often to gain some sort of control

over the hosting machine. Format string vulnerabilities rely on the insecure uses

of C format strings, used in the *printf family of functions of the standard

library. In such cases, the assumed attack type requirements are narrowed to a set

of conditions, and mechanisms to mitigate them are installed.

On this account, several approaches exist which focus solely on protecting

against specific attacks. StackGuard [50] was an early method to hamper buffer

overflow attacks. It applied several techniques to detect or prevent buffer over-

flows, for example storing return addresses for comparison or placing known val-

ues (canaries) between structure variables for detecting overwrites. Thereafter

some similar but more advanced methods like StackShield and ProPolice evolved.

The development of FormatGuard [51] was a response to the relatively new for-

mat string attacks. It includes function argument counting, replaces the printf()

function in libc with a more secure implementation. Similarly, RaceGuard is an

51

approach to circumvent the exploitation of race conditions.

Such approaches can be effective in some cases but since they use some as-

sumptions on the attack type, they cannot always catch all attacks. For example, in

a comparison in [52], even the best buffer overflow prevention method only works

in 50% of all tested cases. Furthermore, since the inner workings of such methods

are usually publicly available, attackers can easily try to find ways to bypass them.

4.3 Evaluation

Method

compile-/

runtime
Attack
types

Updates

required

Applicable to

low-end ES

Static Code Analysis ct known yes +

Code signing ct / no ∼

Proof Carrying Code ct all no ∼

Signature based ID rt known yes -

Anomaly based ID rt all no +

SW Monitoring rt all no +

Sandboxing rt all no ∼

Self checking code both all no ∼

Attack specific both specific no ∼

Table 1: Comparison of described software methods to improve application secu-

rity.

In Table 1, an overview of all described methods is given. Every method is

evaluated in terms of applicability to low-end embedded systems software. The

evaluation presented here is to a large extent only the opinion of the author.

Static Code Analysis is assumed to be easily applicable because it is only used

at compile time and does therefore not use any resources of the target system. The

same argument can in principal be used for Proof carrying code, although it may

be questionable if it can be of use in securing an embedded system. It could be

useful, for example, when programs are written by an untrusted party and the user

wants to make sure that the program does not contain any backdoors. Code sign-

ing could be quite effective to prevent the installation of malicious programs by

simply refusing to execute not properly signed ones. On the other hand, checking

the digital signature is a quite complex operation and may overextend the pro-

cessing power of an embedded system. Also, the public keys of the trusted source

must not be allowed to be overwritten.

Signature based ID is not well suited as it depends on a usually large database

and requires constant updates which would be difficult for many embedded sys-

52

tems installations. Anomaly based ID, Software Monitoring as well as Self Check-

ing Code may be efficiently implemented and could therefore be quite appropriate.

Attack specific mechanisms could also work well, but are not generally applicable

due to differing processor and memory architectures. The applicability of Sand-

boxing strongly depends on its feature set. While a basic sandbox could easily

be deployed, an architecture like the Java VM with its vast execution and security

mechanisms imposes a big overhead.

4.4 Hardware supported techniques

There is one problem common to all dynamic software mechanisms for improv-

ing security: they are usually executed on the same underlying processing hard-

ware. Therefore, themechanisms are often exposed to security attacks themselves.

Mechanisms implemented in hardware are certainly not secure by definition ei-

ther, but they may pose an extra barrier to attackers that is not easily bypassed

with conventional techniques.

There are several approaches that use hardware mechanisms to provide secu-

rity enhancements. A common technique is to attach a coprocessor to the pro-

cessor executing the program which performs security checks at runtime, like de-

scribed in [53], [27]. This often involves static analysis of the executing programs,

to e.g. generate call graphs that can at runtime be compared to the monitored pro-

gram behaviour. The coprocessor needs to be closely attached to the monitored

processor to enable extensive low-level monitoring.

The increasing use of multicore architectures allow their usage for security

mechanisms. Physical partitioning [54] may be used to improve a systems relia-

bility as well as its resistance against security attacks.

Processors implementing the Harvard Architecture provide resistance against

code injection attacks by design. The separation of instruction and data memory

makes it impossible to execute injected code. Riley et al propose a change to the

memory architecture of modern processors to imitate the Harvard architecture on

modern von Neumann processors. The want to split the memory virtually into

code and data memory, therefore a processor would never be able to fetch injected

code execution. In their latest paper [55], they even introduce a software only

patch which could be applied to operation systems running on x86 architectures.

A recent security technique is the no execute (NX) bit, introduced by AMD

[56]. It is now present in most modern processor architectures, only with differ-

ent names, e.g. Intels XD bit (eXecute Disable). It allows memory regions to

be designated as being non executable. That means they may only be used to

store data making traditional code injection attack like exploing buffer overflows

impossible.

53

5 Proposed architecture

As an approach to provide comprehensive security in low-end embedded systems,

a secure architecture for such systems is proposed in this section. It is intended

to deal with the problems described in Section 2.5 by applying some of the tech-

niques described in Section 4. The focus is on the resistance against software

attacks, while hardware and side-channel attacks are only considered to a little

extent.

The main goal of the architecture is to create a secure software architecture

which allows uploading and executing arbitrary, uninspected and uncertified (and

possibly erroneous or malicious) software without compromising the overall sys-

tem security. Not only the security of the hosting system but also of its environ-

ment, like its surrounding network, is to be protected. At the same time, sufficient

flexibility for a wide range of applications should be provided.

It is important to note that not only problematic behaviour evolving from ac-

cidental software faults is tried to be prevented but also attacks resulting from

intentional malicious user applications. The assumption is that an attacker who

has full control of the user applications is trying to harm the system or its envi-

ronment. The architecture should guarantee that under any circumstances, he is

unable to do so.

The solution shall be efficient and not rely on any special hardware modifica-

tions, thus allowing easy integration into existing embedded networks. It should

require only a proportional amount of resources to enable its application in low-

profile systems. Additionally, it should provide a decent usability, meaning that

writing applications for such an architecture should remain simple and not require

the use of adapted programming techniques.

5.1 Concept

The idea is to reasonably combine the advantages of different methods presented

in Section 4 to create a system software which is resistant against software at-

tacks. As outlined in Figure 11 the presented architecture uses three mechanisms

to increase this resistance: Static code analysis, anomaly based intrusion detection

and a sandboxing solution for controlled user application execution. Each of the

adapted mechanisms imposes an additional security barrier to the overall security

and limits possible attack points:

Static code analysis: A simple, tight and secure system software provides con-

trolled access to system resources. Its security is analyzed using inspection,

code reviews as well as automated SCA using software tools. This long-

lasting process has to be done very thoroughly since mistakes in this stage

54

Figure 11: Secure software architecture.

may easily squash any later efforts in developing a secure platform. How-

ever, this (extra) effort is not for nothing since such an established common

system software for a particular architecture/processor, may – once consid-

ered secure – serve as a common code base for any other ES.

Sandboxing: A sandbox restricts the execution of a customizable user applica-

tion. This uploadable code shall, in addition to basic operations like calcu-

lations, only be allowed to perform a defined set of actions. The set needs to

be well chosen to allow the user applications to carry out their desired func-

tionality on the one hand but on the other hand prevent it from doing any

damage to the system and its environment. The actions could be defined in

the form of a restricted software library to be used by the user application.

Its methods may depend on the desired application area of the system.

Execution of applications could be further limited to those being signed

and containing valid cryptographical signatures (CS) to provide support for

DRM.

The sandbox may also be designed to support the rapid development of ap-

plications. A clear abstraction of the underlying hardware and interfaces

to the system software could be provided. The application designer would

then be relieved of any hardware or device specific details and could fo-

cus on the application development itself. This would allow portability of

applications between devices offering the same sandbox.

Invocation monitoring: An AID-like protection mechanism is used which mon-

itors the execution of the user application and compares it to a given pol-

icy. It is necessary because allowing the user application to only invoke

a restricted set of actions (through sandboxing) may not always be enough.

Some methods which are needed for delivering normal functionality may be

used to harm a system or its environment by invoking them too frequently

55

(DoS attacks). For example, if a method to send a message is invoked con-

tinuously it could impede bus communication. Therefore, a set of rules

defining the maximum invocation of certain methods is used. This way,

objectionable invocations can simply be ignored or more serious reactions

may be taken. Halting or restarting the system would be thinkable or, in

more advanced implementations, a policy violation could be reported to a

centralized management entity.

It is important to note, that the set of rules forms a major part regarding secu-

rity since it allows to enforce complex security policies if properly designed.

Obviously, an application designer has to provide reasonable values along

with an application. However, it is always possible for the user to deny the

execution of an application if the rule set is not restrictive enough. Besides,

it is possible for a wide range of ES to define generic device profiles, which

may be shared among applications of the same purpose. In such a way the

device class of sensors may share a single profile with generic limits and the

application designer does not have to provide an individual configuration.

Instead, the rule set could be fixed for a specific device class.

Summarizing, the overall security of the proposed architecture relies on

• the system software not containing any flaws (e.g., buffer overflows) and

not being modifiable to the user applications,

• the interfaces to the system software being restricted and being non-bypass-

able, and

• the system software being able to determine during runtime, whether the

behavior of an application is malicious.

5.2 Architecture

How such a secure architecture could be realized is outlined in Figure 12, which

depicts the combination and interaction of its related components.

The user application is run in a secure execution environment, the sandbox. It

is executed in a controlled way, where every operation may be reviewed before it

gets processed. The sandbox has to be designed in such a way that an application

inside it cannot randomly access memory regions or resources outside it. Such

access should exclusively be possible through a restricted user API. For all these

demands, a virtual machine, interpreting application code, would probably be the

best solution. It offers surpassing control over the execution of an application and

can be used to restrict functionality to an arbitrary level.

56

Figure 12: Outline of the proposed architecture.

The user API serves as an interface between the system software and the user

application and provides various secure services (e.g., networking, access to on-

chip peripherals such as timers, process interaction). Besides allowing to limit the

possibilities of a user application such a generic API also supports portability and

compatibility of applications on different platforms. The demands on the user API

will of course vary for different application fields. Instead of trying to provide a

general API to fulfill a wide range of demands, a specialized version could be

composed for each application field. This would save space and further limit the

number of actions a malicious application may abuse.

In addition to invoking certain services, a user application often has to be

able to react to external influences. For example, it may respond to an incoming

message or execute certain actions on pressing a button. Therefore, external events

have to be detected and signaled to the user application via the user API.

In the ideal case, the user API should operate at the highest level possible.

For example, in the case of networking, only valid incoming messages shall be

reported to the user application, while erroneous receptions will automatically be

discarded and negatively acknowledged. This way, the user applications could

be kept simple and at the same time have less possibilities to perform unintended

actions.

The system software is the glue between all participating components of the

architecture. Besides taking care of initialization tasks and managing the available

resources of the system, it. . .

• . . . runs the sandbox, manages its required memory and provides an inter-

face to the environment.

57

• . . . implements the invocation monitoring of the user application being exe-

cuted in the sandbox. Therefore it manages a set of rules to compare it with

the monitored behaviour.

• . . . provides a network stack and libraries for accessing further system com-

ponents, for example for controlling peripherals.

• . . . provides an external interface, the management API, through which it is

possible to upload the user application and related configuration.

To access the hardware in an independent and modular way, a Hardware Ab-

straction Layer (HAL) is used. It allows simple utilization of the developed soft-

ware on different hardware architectures enabling flexibility in design and to fulfill

the differing resource requirements of ESs.

The management API interfaces with a management tool, which allows access

to the system software to support the total replacement and download of the user

applications. For the API to be secure, it has to be very restrictive and allow only

minimal capabilities for possible attackers to directly access resources.

The hardware platform running the architecture should be chosen to further

support the overall security of the system. For this reason, a processor implement-

ing the Harvard architecture would be a significant benefit. In such processors the

memory for instructions and data are separated, making code injection attacks

impossible. A number of currently available microcontrollers implement the Har-

vard architecture. Resistance against physical and side channel attacks may also

be considered when building the hardware platform. For this reason it should for

example be avoided to store any confidential information on an external storage

since buses connecting them can often easily be eavesdropped.

5.3 Intended advantages

The following list describes the intended advantages the proposed architecture

provides:

• User applications can only issue a defined set of operations.

• User applications have no access to low-level functions or random memory

locations.

• The operations can be limited in terms of issuing frequency.

• Information invisible and unaccessible to the user application can be stored

and used on the system (e.g. cryptographic keys).

58

• User application development is simplified.

• Portability of user applications can be achieved.

• It can be ensured that all (bus-)communication is standard compliant.

• Vulnerabilities caused by incalculable side effects are minimized by the use

of static code analysis.

• Code injection attacks are impossible if a Harvard architecture is used.

Maybe the most important benefit is the execution of the user application in

a controlled sandbox. While this approach may at first seem inappropriate for

a low-end embedded system, due to the relatively high resource requirements of

such techniques, it offers outstanding possibilities. Besides, the resource require-

ments can be lowered to a significant extent with the acceptance of certain limita-

tions. The sandbox does not need to support fully fledged programming models,

since the desired operations, especially in controlling tasks, are often quite sim-

ple. For such purposes, user applications more or less consisting of a sequence of

simple operations may be sufficient which can be supported by a resource-saving

sandboxing implementation.

59

6 Proof-of-Concept implementation

To demonstrate the flexibility and usefulness of the concept proposed in Section

5, a Proof-of-Concept (PoC) implementation was developed as part of the thesis.

It follows the proposed concept as close as possible while using only minimal and

cheap resources as a basis. While some limitations have to be accepted in terms

of speed and stability, the present PoC delivers some interesting and promising

results.

The PoC was intended to represent a low-end device of an HBA system. The

goal was to be able to carry out HBA control tasks while offering a high degree of

security against malicious application software. Additionally, the solution should

offer decent flexibility with an adaptable configuration. The system software run-

ning on the device should be separated from the application programs and the

node configuration. Ideally, the system software should not be alterable. On suc-

cessful integration of the device, a test application was ought to be written to

demonstrate the capabilities of the system and get a feeling for its characteristics.

EIB/KNX was chosen as the HBA standard as it is widely spread in European

countries and extensive documentation is available. Additionally, a suitable test

environment for EIB/KNX was seizable in the A-Lab of the Institute of Computer

Aided Automation (TU Vienna).

A custom hardware platformwas designed to resemble SAC-like devices using

only standard low-cost components. As the focus of the thesis is set on low-level

embedded systems, a microcontroller with very little power consumption and low

processing power was chosen. In addition to the basic circuiting required for the

operation of the microcontroller, EIB/KNX bus connection was established using

a slightly adapted version of the basic circuit of the Freebus project [1]. It allows

EIB/KNX bus interaction with only a few basic components. Inquiries about its

usefulness in real life applications were a small side goal of the thesis.

As basis for the software, a freely available virtual machine which allows sim-

ple modifications and extensions was to be chosen. NanoVM, a heavily reduced

implementation of a Java virtual machine for the Atmel AVR processor family,

was found to fulfill the stated requirements very well. It is developed by Till

Harbaum and its code is released as open source software under the GNU Gen-

eral Public Licence (GPL). It offers a complete software framework for writing

custom libraries. A standard Java compiler can be used together with a provided

conversion tool to prepare the application code for execution on the NanoVM.

Application programs can be stored in non-volatile memory and uploaded via

an integrated bootloader. This allows changing the application program without

touching the virtual machine software.

Although the NanoVM is a very powerful basis for the PoC software, signifi-

60

cant modifications and extensions of the present software system had to be done to

achieve the targeted level of functionality. Software libraries had to be written to

access peripherals of the hardware platform and to enable EIB/KNX compatible

data exchange in application programs. Especially for the latter, the developed

EIB/KNX library posed several difficulties, for example, quite strict timing re-

quirements had to be met. Another challenge was the decided goal to have a

flexible solution for configuring the EIB/KNX node parameters. To have the pos-

sibility of changing the configuration during operation, it is stored in non-volatile

memory and managed by the system software.

Since applications running on the PoC are only able to use the provided library

methods for any kind of interaction with other devices, a certain level of security

could already be established by reducing the provided library functionality to a

minimum. Additionally, to further prohibit unwanted behaviour, an AID-like in-

vocation monitoring mechanism was implemented.

NanoVM

Program storage

Configuration

Java Interpreter

I/O library KNX library

Invocation monitor

KNX

BTN

LED

Target System

Figure 13: Sequence diagram of the PoC software components.

Figure 13 outlines the flow of information between the software components

of the PoC. Java bytecode instructions are fetched from the program storage and

are interpreted by the Java interpreter. The instructions may be operations on in-

ternal Java variables or calls to library methods. In the latter case, if methods of

native libraries are called, they are being checked by the invocation monitor. Only

if the method calls pass the checks, they get executed. The library methods ex-

ecute their designated functions on the hardware platform or by communicating

with peripherals. The KNX library also reads the configuration for some of its

operations. Some events are only registered at the level of the library implemen-

61

tations, like pressed buttons or incoming messages, which are then signalled back

to the application program.

The test environment was a small KNX network consisting only of the PoC,

three pushbuttons and two lamps all connected to the same line. Two of the push-

buttons were configured to toggle switch the lamps. A desktop computer was also

attached to allow comfortable bus monitoring using the Engineering Tool Soft-

ware (ETS). Figure 14 depicts the test environment. The PoC was used in various

test cases, for example to switch one of the lamps, listening to the pushbutton

commands or combined interactions like switching a lamp when a command of a

pushbutton was received.

Figure 14: The test environment for the PoC.

In the following, the parts of the PoC are described in greater detail. This

includes the hardware platform, the system software, the implemented libraries

and the used tools.

6.1 Hardware platform

The hardware platform was developed and assembled as part of the thesis. It

is mainly a collection of cheap standard components, equipped and soldered by

hand. While it appeared reliable during development and testing of the software

running on it, it is not intended for real-life use.

62

6.1.1 ATMega168

The core component of the hardware platform is an Atmel ATMega168 microcon-

troller, featuring 16 kilobytes flash memory, 512 bytes EEPROM and 1 kilobyte

SRAM. Among others, the controller provides the following peripheral features:

• 23 programmable I/O lines.

• Two 8-bit Timer/Counters and one 16-bit Timer/Counter with various com-

pare modes.

• A programmable serial USART.

• A byte-oriented 2-wire serial interface.

• Two external interrupts.

Additionally, it has a low power consumption while offering a decent through-

put of up to 20 MIPS (at 20 MHz). In the PoC it is clocked at 8 MHz, the clock

is generated using an external quartz oscillator. Power is supplied by an LM317T

voltage regulator, the operating voltage is 3.3V in order to minimize the power

consumption.

6.1.2 Peripherials

In addition to the necessary circuiting required for the operation of the microcon-

troller, some external components are equipped to provide additional functional-

ity:

• For debugging, testing and basic interfacing an LED and a pushbutton are

attached.

• An additional external EEPROM (MICROCHIP 24LC16B/P) with a mem-

ory size of 2048 bytes is used to provide extra non-volatile memory. It

is connected via the 2-wire serial interface supported by the ATMega168,

which is actually an I2C connection (the naming is different due to licensing

reasons). The connection is clocked at 400 kHz, which is the fastest possible

with the external EEPROM. It still limits the data rate significantly, espe-

cially since there is some overhead contained in the required data exchange

protocol.

• AMAXIMMAX 3232CPE dual channel driver/receiver chip is equipped to

convert controller signals to RS-232 levels to enable serial communication,

for example with a PC. On the side of the microcontroller, it is directly

connected to the USART pins of the ATMega168.

63

For accessing KNX bus lines, a slightly adapted version of the basic circuit

of the Freebus project [1] is used. Freebus is an open source project maintained

by hobbyists which basically aims at providing a free and affordable system for

home automation. The developers try to build devices with similar functionality

as it is provided by retail manufacturers while using only a minimum number of

parts to remain as cheap as possible. Additionally, compatibility with EIB/KNX

bus systems is achieved to some extent. On top of the basic circuit, the project has

already produced a number of powerful devices which are continuously improved.

However for the PoC, only the basic circuit for the conversion of microcontroller

signals to EIB/KNX signals and for the power supply using the bus line is used.

Figure 15 shows its schematic as published on the project website at the time of

this writing. This is also the version which was used for the realization of the PoC

hardware platform.

Figure 15: The basic circuit of the Freebus project. [1]

Figure 16 depicts the schematic of the hardware platform. Figure 17 shows

the extension circuit with the MAX 3232 which was connected for serial commu-

nication.

6.1.3 Assembly

The hardware was assembled on a stripboard (2.54mm grid) using standard DIL

components and wires for interconnections. The board was mounted on a lab

panel for easy interconnection with other devices. Figure 18 shows a picture of

64

Figure 16: Schematic of the Proof-of-Concept.

65

Figure 17: Extension circuit with the MAX 3232 for serial communication.

the assembled board. The ribbon cable which can be seen on the left hand side is

used to interconnect the microcontroller to the MAX 3232. The pin assignment of

this connection is compatible to the Freebus interconnection interface which can

be seen in Figure 19. This makes it possible to connect application boards to the

current controller circuit for more advanced applications.

6.2 Software

In this section the system software of the PoC will be described in greater detail.

The software builds upon existing solutions with some significant extensions and

modifications. The working title for the software solution is seBAS, an abbrevia-

tion of secure BAS. It is chosen to reflect its intended use as a secure solution for

building automation systems.

Since all existing software used is released under an open source license, the

PoC software is also planned to be released under an open license.

6.2.1 NanoVM

The core component of the PoC system software is based on the NanoVM, a Java

interpreter designed which is able to run specially prepared Java bytecode. It is

66

Figure 18: A picture of the Proof-of-Concept target system. The connectors on the

top can be used to connect to an EIB/KNX bus, the board itself is wired underside.

targeted at embedded platforms and was developed to run on the Atmel AVR CPU

family. It is being developed by Till Harbaum [46] and released under the GPL.

NanoVM is written in C and designed to be portable and extensible. Currently,

it runs under Linux, Windows, some AVRCPUs and offers some specialized func-

tionality for small robots. It provides Java interface classes enabling applications

to control target hardware features like ports and timers. On an AVR controller,

the NanoVM is intended to reside in volatile flash memory while the application

Java program has to be put in non-volatile internal EEPROM. This allows chang-

ing the application program without touching the system software. The NanoVM

original memory concept is depicted in Figure 20.

Among others, NanoVM includes the following features:

1. Configurable 15/31 bit integer arithmetic

2. Optional floating point support

3. Garbage collection

4. Boot loader for simple application upload

5. Support of inheritance mechanisms

6. Unified stack and heap architecture

7. About 20k Java opcodes per second on 8 Mhz AVR

67

Figure 19: The Freebus interconnection interface.

Figure 20: The original NanoVM memory concept. [46]

It has to be noted, however, that the NanoVM cannot be considered as a full-

fledged Java VM. Basically it is just an interpreter of bytecode instructions. Since

the code size of the NanoVM is targeted to be as small as possible, it lacks several

mechanism of a full blown Java virtual machine. It does, for example, not support

exceptions, multithreading and callback methods. Especially the latter is quite

limiting as it hinders external events recorded by the processor to be reported to

the application program in an asynchronous way. Such event information has to

be polled by the application program.

The current version (1.4) compiled for an AVR ATMega168 results in about 7

kilobytes code memory and uses only 256 Bytes application RAM. All available

EEPROM is used to store the Java programs. Thus 9 kilobyte code memory, 768

bytes RAM and 512 bytes EEPROM remain free on an ATMega168.

As mentioned before, the NanoVM runs only specially prepared Java byte-

code. An application program can be compiled using a standard Java compiler

68

but it must be prepared using the provided NanoVMTool before it can be loaded

by the NanoVM. These preparations include stripping unnecessary and unsup-

ported instructions from the binary as well as mapping native Java library calls to

their corresponding implementations in C. The tool is written in Java. In addition

to the required preparation, using the tool has several advantages:

• The total file size is reduced.

• All depending class files are combined into one big file.

• Code optimizations can take place.

Considering the security of the NanoVM, since the code interpreter misses cer-

tain boundary and validity checks due to performance reasons, it can be crashed by

intentionally prepared irregular code. However, there is no way that a malicious

application program can inject code, damage or take over control of the system

software. Partially, this is ensured by the used AVR microcontrollers which im-

plement the Harvard Architecture.

Modifications

For its use with the PoC, considerable modification had to be applied to the

NanoVM. Since the internal EEPROM of the AtMega168 was ought to be used

for the EIB/KNX node configuration, the program storage had to be moved to the

external EEPROM. For this purpose, a C library was created for accessing the

contents of the external EEPROM in a comfortable way. This library was then

used in the NanoVM program file implementation to load instructions. Although

this approach resulted in a significant slowdown in the fetching of instructions, it

had the benefit that the available program memory was quadrupled from 512 bytes

to 2048 bytes.

As indicated before, it was intended to place certain software components of

the PoC in memory types with different access modes. Figure 21 depicts the re-

sulting memory concept. It shows the used memory types in general, the memory

types of the implementation and the software components matched to their des-

ignated locations. Additionally, the parties who are allowed to modify them are

indicated.

The invocation of native library methods had to be modified to allow moni-

toring of the invocation frequency. Basically, before a native method is invoked,

it is checked if its method identifier matches a set of predefined security rules.

If it matches, the invocation is recorded and it is verified that it does not exceed

one of the limits defined by the rules. Otherwise, certain predefined consequences

follow. In addition to checks at the time of invocation, a timing routine is also

required to measure the timespan between the method calls.

69

Read only

storage

Changeable

storage

Transient

memory

Conceptual Implementat ion

Flash memory

Internal EEPROM

External EEPROM

SRAM

Software

Java bytecode

Configuration

NanoVM

Invocation

rules

VM runt ime

variables

Java runtime

variables

manufacturer system

integrator
programmer

Accessed/Modif ied by:

Figure 21: Overview of the PoC memory layout.

6.2.2 Implemented Libraries

Native Java libraries had to be written to provide the PoC with the needed func-

tionality for its intended usage scenario. The NanoVM provides an easy and well

documented way to do so. Classes are simply defined in Java by specifying all de-

sired methods and variables. Method implementations have to be omitted. Instead

a mapping between the Java methods and numerical identifiers has to be defined.

These identifiers are then used in the C implementation to determine the intended

method invocation whereupon the corresponding C code is executed.

In the following subsections the implemented libraries are described in a gen-

eral way. A reference of its included methods and variables is given in Section

6.3.

seBAS I/O library

A basic I/O library was written for accessing the peripheral components of the

hardware platform. It allows fetching the state of the attached pushbutton as well

70

as controlling the LED on the hardware platform. Additionally, a method to wait

a certain timespan is provided.

EIB/KNX library

A much more complex library was developed for allowing EIB/KNX bus in-

teraction in application programs which can be used for comfortable reception

and transmission of messages. For this purpose, an EIB/KNX network stack was

written. Although the Freebus community provides a similar stack, it was not used

but rather written from scratch.

The library offers two interface modes:

1. A high-level mode where communication is done by solely reading and

writing group objects. Messaging related tasks are carried out by the library

implementation.

2. A low-level mode where almost the entire messages can be accessed in a

byte-wise order. In this mode, message composition and handling has to be

done by the application program.

The desired mode can be chosen by the application program. Of course the

mode can also be fixed in the system software at the time of compilation if, for

example, low-level processing should be forbidden. It is also possible to use the

low-level mode as fallback for messages which cannot be automatically processed

by the library. This is for example the case if the received message does not con-

tain a standard KNX command or if the message is addressed to the individual

address of the node instead of a group address. In such a case, the reception is

signalled via the low-level interface if the fallback option is set. The user appli-

cation may then process the message byte wise. Without fallback, such messages

are simply discarded.

The actual message transmission is taken care of by the library. This includes

checksum generation and checking as well as handling of acknowledgements and

retransmission in case of errors. Figure 22 indicates the responsibilities of the

application program and the EIB/KNX library with reference to the OSI 7-layer

communication model.

Due to limited available resources of the hardware platform, the current im-

plementation of the EIB/KNX library allows only the transmission and reception

of one message at a time. If, for example, a message arrives and the last received

message has not been processed, it will simply be discarded.

71

7 Application

6 Presentation

5 Session

4 Transport

3 Network

2 Data l ink

1 Physical

OSI model layers PoC KNX implementation

EIB/KNX library

Application

program

Figure 22: OSI model layer assignment between the application program and the

EIB/KNX library.

6.2.3 Configuration

Especially when group objects are used, it is necessary to have a way for defining

the EIB/KNX node configuration including the node’s individual address, group

objects, group addresses and the associations between them:

Individual address: The zone, line and device number of a device.

Group objects define the data points a node contains. A data type and an initial

value needs to be specified.

Group addresses define the addresses which a node reacts to. The address con-

sisting of the main group, optional mid group and sub group needs to be

specified along with the permissions of this group address (read, write or

both).

Associations are used to link group addresses to group objects. E.g. if a write

message is received for a certain group address with the adequate permis-

sions, the value is written to all associated group objects.

This information is stored in the internal EEPROM of the ATMega168 and

loaded to SRAM at runtime. Figure 23 shows the memory layout of the config-

uration. A, B and C indicate the number of present entities in the configuration.

72

In the typical test setup only A = B = C = 8 was used (i.e. 8 group objects,

8 group addresses and 8 associations) as it was more than sufficient. However,

the number of entities can easily be changed in the sources of the NanoVM and

the configuration converter. Due to the binary representation of the associations,

a maximum of 2
4
− 1 = 15 (one pattern is used to indicate an unused association)

group objects and group addresses is supported. The number of associations is

only limited by the target memory.

Figure 23: Memory layout of the configuration.

The configuration can be defined in an XML file which is used by a conversion

tool to generate a binary representation of it which can be downloaded to the

controller. The input format as well as the conversion tool is described in Section

6.4.

6.2.4 Invocation monitoring

As an attempt to make the execution of programs more controllable, an invocation

monitor was developed as an extension of the NanoVM. It monitors the number

of invocations of Java library methods and compares the recorded numbers to

a set of rules defined at compile time. These rules can be used to specify the

maximum number of invocations of a method during a defined timespan. If a rule

is hurt, several actions may be taken, from simply ignoring the method call to

halting the program. It would also be conceivable to have some kind of reporting

to centralized entities in future versions of the monitoring implementation.

73

In the present version, the invocation rules have to be defined as a C array in a

source file of the VM (sec policy.c). The rules have to be defined as elements

of an array of type policy rule t. A rule consists of a class reference, a

method reference, an action, invocation limit and time limit. Each rule basically

specifies how often a method may be invoked in the given time limit. Listing 2

shows an example for such a set of rules. Here, the method txSend may for

example only be called at most 5 times in a timespan of 1 second. The listing

also shows the use of the helper macro COMPOSE RULEwhich simplifies the rule

definition as the parameters are tightly packed. It has the following format:

COMPOSE RULE(invocation limit, time limit, action)

where the time limit has to specified in tenths of a second and the action may

currently be one of:

• RULE ACTION IGNORE

• RULE ACTION HALT

• RULE ACTION RESET

The rule checking was implemented to be as efficient as possible but due to the

limited processing power of the underlying hardware it still causes a significant

slowdown. This is primarily caused by the fact that every rule needs to be checked

on each library method invocation. Additionally, a timing mechanism is required

to keep track of the time spans between the invocations. The timing resolution

was chosen at tenths of a second as a compromise between performance loss and

flexibility. In general, the number of rules should be kept as low as possible in

order not to slow down the execution of the VM too much.

Listing 2: Example of a small set of invocation rules.

policy_rule_t sebas_sec_policy_rules[SEBAS_SEC_POLICY_RULES_CNT] =

{

{NATIVE_CLASS_KNX, NATIVE_METHOD_TX_SEND, COMPOSE_RULE(5, 100,

RULE_ACTION_HALT)},

{NATIVE_CLASS_KNX, NATIVE_METHOD_GO_SET_VALUE, COMPOSE_RULE(3, 100,

RULE_ACTION_HALT)},

};

6.3 Programming Framework

In this section, the programming framework will be described. First, a few exam-

ples of simple programs will be described to demonstrate the use of the program-

ming libraries. Then, a reference for both the EIB/KNX as well as the seBAS I/O

library will be given.

74

6.3.1 Examples

First, a simple example realizing a blinking LED will be presented. Afterwards,

the group object and low-level interfacing mode will be compared by presenting

two examples implementing the same functionality by using one of the interfaces

respectively. The last example will demonstrate the combined use of the low-level

and the high-level interface by using the fallback option.

Blinking LED

This example is intended to demonstrate the simplicity of programming user

applications for the PoC. In general, the code in NanoVM programs is only related

to the intended functionality and does not require any system specific initializa-

tion or management code. In Listing 3 it can be seen that only the main method

is defined. First, a descriptive string is printed using System.out, which in the

NanoVM standard I/O is mapped to the USART. This way, if a PC or other ter-

minal device is connected, the successful loading of the correct program can be

checked. Then in an infinite loop, the LED is continuously toggled, with a pause

of half a second between each turning.

Listing 3: Blinking LED example.

package examples.sebas;

import nanovm.sebas.seBAS;

class LED {

public s t a t i c vo id main(String[] args) {

System.out.println("seBAS LED example");

whi le(true) {

seBAS.greenLED(seBAS.ON);

seBAS.wait(50);

seBAS.greenLED(seBAS.OFF);

seBAS.wait(50);

}

}

}

Simple Bus Interaction 1 - Group objects

The first version of the simple bus interaction in Listing 4 uses group objects

for communicating with the EIB/KNX bus system. For this example, a node con-

figuration defining two group objects (0 and 1) is assumed (like in Listing 9).

Both with a binary data type, group object 0 is used as a sink object controlling

the LED and group object 1 as source object switched by the pushbutton. How

75

the group objects are associated with group addresses can be arbitrarily defined in

the configuration.

Again, first a descriptive string is printed. Then the interface mode is set to

group objects only, which is actually unnecessary since it is the default mode. The

main application code is again placed in an infinite loop. Here, first group object

0 is checked for changes which could be present if an related EIB/KNX message

had been received. If there are any, the value is read and simply used to set the

LED accordingly. Next it is checked if the pushbutton has been pressed. If yes,

the boolean variable toggle is inverted and its value is written to group object

1. This value is then automatically sent to all associated group addresses.

Listing 4: Simple bus interaction using the group objects interface.

package examples.sebas;

import nanovm.sebas.seBAS;

import nanovm.knx.KNX;

class GroupObjects {

public s t a t i c vo id main(String[] args) {

System.out.println("seBAS group objects example");

boolean toggle = false;

// Set interface mode to group objects

KNX.setInterfaceMode(KNX.GO_ONLY);

whi le(true) {

i f (KNX.goChanged(0)) {

seBAS.greenLED(KNX.goReadValue(0));

}

i f (seBAS.buttonPressed()) {

toggle = !toggle;

i f (toggle)

KNX.goWriteValue(1, 1);

e l s e

KNX.goWriteValue(1, 0);

}

}

}

}

Simple Bus Interaction 2 - Low level interface

The second version of the simple bus interaction in Listing 5 uses the low-

level interface of the KNX library. After the interface mode is set to low-level

only, the outgoing message is prepared. It is reset, the receiver is specified and the

data length is set to 2. Then, again in an infinite loop, on the one hand the library

is checked for received messages and on the other hand the state of the button

is monitored. If a message with a data length of 2 was received (standard KNX

76

commands for binary values always consist of 2 bytes) the LED is set according

to the received command. Afterwards the received message is discarded, which

is an important operation. Because as long as a received message has not been

discarded, all incoming messages are ignored. In case the button was pressed, the

message for transmission with the alternating value of the toggle variable as

data is completed and sent.

Listing 5: Simple bus interaction using the low-level interface.

package examples.sebas;

import nanovm.sebas.seBAS;

import nanovm.knx.KNX;

class LowLevel {

public s t a t i c vo id main(String[] args) {

System.out.println("seBAS low-level interface example");

boolean toggle = false;

// Set interface mode to group objects

KNX.setInterfaceMode(KNX.LL_ONLY);

// prepare message

KNX.txReset();

KNX.txSetReceiver((shor t)0x1155);

KNX.txSetDataLength(2);

whi le(true) {

// check if a message was received

i f (KNX.rxReceived()) {

i f (KNX.rxGetDataLength() == 2) {

shor t s = KNX.rxGetByte(1);

i f (s == 0x81)

seBAS.greenLED(seBAS.ON);

e l s e i f (s == 0x80)

seBAS.greenLED(seBAS.OFF);

}

KNX.rxDiscard();

}

i f (seBAS.buttonPressed()) {

toggle = !toggle;

i f (toggle)

KNX.txSetByte(1, 0x81);

e l s e

KNX.txSetByte(1, 0x80);

KNX.txSend();

}

}

}

}

77

Simple Bus Interaction 3 - Combined interfaces(fallback mode)

The combined version of the simple bus interaction example is depicted in

Listing 6. The interface mode is set to low-level fallback. After that the example

is similar to the one solely using the group objects interface. The only difference is

that after polling the group object value for changes, it is also checked if the low-

level interface signalizes the reception of a message. This will only be the case if

a message was received which could not be processed by the high-level interface.

If signalled, the message can then be processed with the low-level interface (only

indicated in the example).

Listing 6: Simple bus interaction using both the high-level and low-level interfaces

in fallback mode.

package examples.sebas;

import nanovm.sebas.seBAS;

import nanovm.knx.KNX;

class Fallback {

public s t a t i c vo id processCustomMessage() {

// if (KNX.rxGetByte(0) == ...

// Implementation omitted

}

public s t a t i c vo id main(String[] args) {

System.out.println("seBAS fallback example");

boolean toggle = false;

// Set interface mode to group objects

KNX.setInterfaceMode(KNX.LL_FALLBACK);

whi le(true) {

i f (KNX.goChanged(0)) {

seBAS.greenLED(KNX.goReadValue(0));

}

// check if a message could not be processed

// by the group object interface

i f (KNX.rxReceived()) {

// process received message bytewise

processCustomMessage();

// Important, otherwise both low-level and high-level

// interface are blocked

KNX.rxDiscard();

}

i f (seBAS.buttonPressed()) {

toggle = !toggle;

i f (toggle)

KNX.goWriteValue(1, 1);

e l s e

KNX.goWriteValue(1, 0);

}

78

}

}

}

6.3.2 KNX library reference

Variables

int GO ONLY = 1;

int LL FALLBACK = 2;

int LL ONLY = 3;

General

void setInterfaceMode(int mode);

Can be used for defining the desired messaging interface mode (GO ONLY,

LL FALLBACK or LL ONLY). Default is GO ONLY.

Group object interface

boolean goChanged(int index);

Returns the state of the group object with the specified index. Returns true

if the group objects was changed since the last call to goChanged.

short goReadValue(int index);

Reads and returns the current value of the group object with the specified

index. The current value in memory is read, the operation does not cause

any messages to be sent.

void goWriteValue(int index, int value);

Writes the value of the group object with the specified index. If group ad-

dresses with write access are associated with the group object, the value is

sent to the bus.

void goRequestUpdate(int index);

Requests updating the group object with the specified index. Causes send-

ing of a read message for each associated group address with write access.

79

Low-level interface

void txSetByte(int index, int data);

Sets the byte with the specified index in the outgoing message data buffer.

void txSetDataLength(int len);

Sets the data length of the data buffer of the outgoing message.

void txAddByte(int data);

Adds a byte to the data buffer of the outgoing message. Writes a byte to the

current end of the data buffer and increases the data length by 1.

void txSetReceiver(short receiver);

Sets the receiver for the outgoing message.

void txSetPriority(short receiver);

Sets the priority for the outgoing message.

void txSend();

Blocking send of the outgoing message.

void txReset();

Resets the outgoing message.

short rxGetByte(int index);

Returns the byte with the specified index of the incoming message data

buffer.

byte rxGetDataLength();

Returns the length of the incoming message data.

short rxGetSender();

Returns the sender address of the incoming message.

byte rxGetPriority();

Returns the priority of the incoming message.

boolean rxReceived();

Polls for received messages waiting to be processed.

void rxDiscard();

Discards the current stored received message. Should be invoked as soon as

a received message has been processed. As long as a message is in the re-

ceive buffer and has not been discarded, all incoming messages are ignored

(but counted, see rxMissedCount()).

80

byte rxMissedCount();

Returns the number of missed messages due to a blocked incoming message

buffer.

Configuration related

short nodeIndividualAddress();

Returns the configured individual address of the node.

Debugging

void signalBus();

Can be used to signal a bit on the bus (solely for debugging purposes).

6.3.3 seBAS library reference

Variables

int OFF = 0;

int ON = 1;

Peripherals

void greenLED(int state);

Controls the green led on the PoC board. The state parameter can be

either ON or OFF.

boolean buttonPressed();

Checks if the button has been pressed since the last call to this function.

Other

void wait(int hsec);

Waits the specified time (in hundreths of a second).

6.3.4 File structure

The file structure of the Proof-of-Concept software solution is outlined in Listing

7. In the listing, only the PoC-relevant directories are shown. The base directory

has only two subdirectories, nanovm and hardware. Since the PoC software

is basically a modified version of the NanoVM, the file structure in the nanovm

81

directory is for the most part the same as in the current version of the NanoVM

code distribution. Only a few additions are present, like the configuration direc-

tory. The hardware folder currently only holds the schematics of the assembled

hardware platform, along with part lists.

Listing 7: Directory structure of the PoC software.

../poc/

|-- hardware

| ‘-- schematics

‘-- nanovm

|-- config

| |-- desc

| |-- examples

| | ‘-- simple

| ‘-- src

|-- doc

|-- java

| |-- examples

| | ‘-- sebas

| ‘-- nanovm

| |-- io

| |-- knx

| |-- sebas

| ‘-- util

|-- mybin

|-- tool

| |-- config

| ‘-- src

‘-- vm

|-- build

| |-- avr_mega168

| |-- sebas

| ‘-- unix

‘-- src

‘-- sebas

In the following, the relevant subdirectories of the nanovm directory are de-

scribed:

config holds configuration related files. desc contains the XML schema for

configuration definitions in XSD format. src holds the conversion script

for generating binary representations of a configuration. Example configu-

rations are situated in examples.

doc includes the NanoVM documentation.

java holds all Java resources of the PoC. nanovm contains the Java packages of

the native library. In sebas the PoC I/O library and in knx the EIB/KNX

library is located.

mybin contains some helper scripts for uploading application programs to the

PoC.

82

tool holds the NanoVMTool. config contains the configuration including

the mapping of Java methods to numerical identifiers. The tool source is

situated in src.

vm holds the VM implementation. The C sources are located in in src, the

subdirectory sebas contains PoC related code. The relevant files are:

• native.h defines the method identifiers.

• native impl.c NanoVM integration file for the native libraries.

• native knx.(c,h) holds the EIB/KNX library implementation.

• native sebas.(c,h) holds the PoC I/O library implementation.

• exteep.(c,h) for accessing the external EEPROM.

• sec.(c,h) for the invocation monitoring.

• sec policy.(c,h) defines the invocation monitoring rules.

The build directory holds makefiles for building the VM.

6.4 Tools

A number of standard tools are necessary used for compiling, preparing and run-

ning the PoC. For compilation of the VM, avr-gcc 4.2.2 with its provided tools

(avr-objdump, avr-objcopy) and GNU Make 3.81 have to be used. The Java pro-

grams are compiled using javac 1.6.0 06. Binary files are loaded into the micro-

controller’s memory using the AVR Downloader/UploaDEr (avrdude) 5.5-1.

Additionally, the NanoVMTool, as provided by the NanoVM distribution, is

required for preparing and uploading Java application programs. For converting

the EIB/KNX node configuration to a binary format, a conversion tool was devel-

oped, its working title is currently seBASConf. These tools shall be described in

greater detail in this section.

Most tasks are automated, either using flexible makefiles or small scripts. For

example, compiling and uploading the VM is simply done by executing make

install in the working directory. The same is valid for the configuration. For

uploading application programs, a small script is provided in nanovm/mybin/inst

which simply takes the class name to be uploaded as a parameter. This requires

that the corresponding Java file is placed in the nanovm/java/examples di-

rectory.

83

NanoVMTool

Since the NanoVM cannot handle standard Java class files, the NanoVMTool

is required. It combines the program code of all used classes into a so-called NVM

file. Additionally, it strips all unnecessary data from class files to save memory

on the target system. The NanoVMTool can then upload the file to the directly

to a running NanoVM for which it uses the RXTX libraries (www.rxtx.org). File

transmission on the side of the NanoVM is handled by the built-in bootloader

which listens for incoming transmissions at system start.

The NanoVMTool is distributed as translated JAR binary ready for use. It has

the following synopsis:

java -jar NanoVMTool.jar <system config> <root dir>

<class name>

The first parameter is the location of a config file which is required for defining

various settings like maximum code size, the device for uploading the program

along with the baud rate and files containing native mappings to be included.

These mappings are used for relating Java library methods to numerical identifiers

which are used by the C implementation. The second parameter sets the base

directory for the Java class to be uploaded and the third parameter names the

class.

seBASConf - Configuration

seBASConf is a script written for parsing an EIB/KNX configuration in XML

format and converting it to Intel hex format. It was written in Python which pro-

vides powerful built-in XML handling mechanisms. The required XML schema

for the configuration is defined in an XSD template which is provided with the

tool. The schema is for validating the configuration by the user. In the current

release, it is not automatically validated by the tool. This functionality may be

added in future versions. However, invalid XML will nevertheless lead to errors

during parsing.

The synopsis for the tool (given execution permissions of the script) is the

following:

seBASConf.py <XML Configuration> <output size>

<output file>

The first parameter has to be the path of the EIB/KNX configuration descrip-

tion. The second parameter is the desired output size which depends on the mem-

ory which will be used for storing the configuration. In the PoC it is the internal

EEPROM of the ATMega168 which is 512 bytes large. The output is padded with

zeros to fill up the specified size as the tool used for uploading requires the .hex

file to be the same size as the target memory. The last parameter is the filename

84

of the destination .hex file.

Once the configuration has been processed, the resulting .hex file can directly

be uploaded to the target system. During the development of the PoC, avrdude

was used for this task.

The configuration consists of an individual address, group objects, group ad-

dresses and associations between the latter two. The parameters have already been

described in Section 6.2.3. The XML schema is quite straightforward, its current

version is shown in Listing 8.

Listing 8: XML schema for the configuration.

<?xml version="1.0" encoding="UTF-8"?>

<schema targetNamespace="http://www.auto.tuwien.ac.at/seBASConfigurationSchema"

xmlns="http://www.w3.org/2001/XMLSchema" xmlns:sebasconf="http://www.auto.

tuwien.ac.at/seBASConfigurationSchema">

<complexType name="seBASConfigurationType">

<sequence>

<element name="individualAddress" type="sebasconf:IndividualAddressType"

></element>

<element name="groupObjects" type="sebasconf:GroupObjectSequenceType"></

element>

<element name="groupAddresses" type="sebasconf:GroupAddressSequenceType"

></element>

<element name="associations" type="sebasconf:AssociationSequenceType"></

element>

</sequence>

</complexType>

<complexType name="GroupObjectSequenceType">

<sequence>

<element name="groupObject" type="sebasconf:GroupObjectType" minOccurs="0

" maxOccurs="8"></element>

</sequence>

</complexType>

<complexType name="GroupAddressSequenceType">

<sequence>

<element name="groupAddress" type="sebasconf:GroupAddressType" minOccurs=

"0" maxOccurs="8"></element>

</sequence>

</complexType>

<complexType name="AssociationSequenceType">

<sequence>

<element name="association" type="sebasconf:AssociationType" minOccurs="0

" maxOccurs="8"></element>

</sequence>

</complexType>

<complexType name="GroupObjectType">

<attribute name="id" type="integer" use="required"></attribute>

<attribute name="dataType" type="string" use="required"></attribute>

<attribute name="value" type="integer" use="required"></attribute>

</complexType>

<complexType name="GroupAddressType">

<attribute name="id" type="integer" use="required"></attribute>

85

<attribute name="mainGroup" type="short" use="required"></attribute>

<attribute name="midGroup" type="short"></attribute>

<attribute name="subGroup" type="short" use="required"></attribute>

<attribute name="access" type="string" use="required"></attribute>

</complexType>

<complexType name="AssociationType">

<attribute name="groupObjectId" type="integer" use="required"></attribute>

<attribute name="groupAddressId" type="integer" use="required"></attribute>

</complexType>

<complexType name="IndividualAddressType">

<attribute name="zone" type="short" use="required"></attribute>

<attribute name="line" type="short" use="required"></attribute>

<attribute name="device" type="short" use="required"></attribute>

</complexType>

<element name="seBASConfiguration" type="sebasconf:seBASConfigurationType"></

element>

</schema>

Listing 9 shows an example for a very simple configuration file to be used with

seBASConf. In this example two group objects (0 and 1) are defined and each is

associated with a group address, one with writing and one with reading access.

Listing 9: A simple configuration example.

<?xml version="1.0" encoding="UTF-8"?>

<sebasconf:seBASConfiguration xmlns:sebasconf="http://www.auto.tuwien.ac.at/

seBASConfigurationSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:schemaLocation="http://www.auto.tuwien.ac.at/

seBASConfigurationSchema seBASConfigurationSchema.xsd ">

<individualAddress zone="5" line="5" device="85"/>

<groupObjects>

<groupObject id="0" dataType="DTP_BOOL" value="1"/>

<groupObject id="1" dataType="DTP_BOOL" value="0"/>

</groupObjects>

<groupAddresses>

<groupAddress id="0" mainGroup="0" midGroup="0" subGroup="3" access="r"

/>

<groupAddress id="1" mainGroup="0" midGroup="0" subGroup="1" access="w"/>

</groupAddresses>

<associations>

<association groupObjectId="0" groupAddressId="0"/>

<association groupObjectId="1" groupAddressId="1"/>

</associations>

</sebasconf:seBASConfiguration>

86

7 Experiences/Results

The Proof-of-Concept was shown to offer decent flexibility which enables its use

in many applications. In its current state it could be used to carry out typical

functionality of a standard EIB/KNX bus coupling unit (BCU). With its attached

peripherals it could already be used to implement a number of simple applications.

The standard example is a toggling light switch which was already tested during

development. More complex switching tasks with several binary in- and outputs

would easily be possible.

If external equipment would be attached to the PoC, which can be done via the

provided Freebus interface, the possible uses are even more diversified. For exam-

ple, with a temperature sensor attached it could be setup as a heating controller.

With more pushbuttons attached it could control dimmed lights or sun-blinds.

7.1 Memory consumption

In order to check how much resources the implemented Proof-of-Concept re-

quires, some investigations were done regarding its memory consumption. The

NanoVM uses a virtual heap architecture to provide the necessary memory for

the Java programs. Because it is difficult to measure how much memory was re-

ally used on such a system, the data provided by the heap managing part of the

NanoVM was evaluated. In its original version, the heap size the NanoVM pro-

vides on an ATMega168 is 768 bytes, leaving 256 bytes for the operation of the

NanoVM itself, which should be enough under all circumstances (according to the

author of the NanoVM). With the extensions that have been implemented in the

Proof-of-Concept, approximately 70 bytes of extra initialized memory are used.

To be on the save side, the heap size was reduced by 100 bytes, to 668 bytes.

The following experiment was used to get an approximation of the actual

memory consumption of a typical Java program. At first a number of actions,

involving switching of the LED, EIB/KNX reception and transmission, were exe-

cuted and then the remaining heap size was inspected. This was repeated several

times. As expected, the heap size was shrinking every cycle until it reached zero.

Then the built-in garbage collector was run, freeing all the unused heap memory.

The heap size which is freed in this step is considered to be the actual unused

heap memory which is available to applications. In the experiment with the fully

implemented Proof-of-Concept, this size was around 580 bytes, which makes a

program memory use of around 90 bytes. This indicates that there is quite a lot of

room left for complex programs.

87

Matrix dimension Native C
Java (NanoVM)
int. EEPROM

Java (NanoVM)
ext. EEPROM

2 31 µ s 13.2 ms 216 ms

4 440 µ s 20ms 1.34 s

8 3.92 ms 595 ms 9.60 s

16 32.80 ms 4.64 s -

Table 2: Measured durations of a square matrix multiplication with different ma-

trix dimensions using different implementations.

7.2 Performance

The performance of the Proof-of-Concept implementation was evaluated from

several points of view. When it comes to raw calculation capacity, the implemen-

tation is, as expected, very slow. Table 2 shows some performance measurements

of a square matrix multiplication with different matrix dimensions1. Implemen-

tations in C and Java, running in the NanoVM using either internal or external

EEPROM as program storage, are compared.

The measured durations of the native C implementation are always three to

four orders of a magnitude smaller than the corresponding Java versions. Mem-

ory access operations have been identified as a major reason for slowdown in

NanoVM programs. But even if such operations are removed, basically making

the operation only correspond in the number of multiplications and additions, the

overall operation durations are nowhere near the native C implementations.

It can be argued though, that the purpose of the system has never been the

maximization of performance but rather security and, to some extent, flexibil-

ity. Therefore, it is acceptable that the performance is poor, as long as it is good

enough to enable the system to fulfill the required tasks. In the special case of

our Proof-of-Concept implementation, these tasks are control functions, which

are usually not very computationally expensive. For example consider a heat con-

troller, one of the more complex devices in a building automation system. If such

a device is realized as a PID controller, every controller cycle requires only a few

additions and multiplications.

The performance is also good enough to enable a decent responsiveness in

applications with user interaction, for example when the tapping of a pushbutton

triggers certain operations. It also has to be noted that the current clock of 8

MHz is really on the lower end of the considered target systems. Even the current

microcontroller could be clocked at up to 20 MHz which would probably double

1The 16x16 matrix multiplication was not measurable with the used oscilloscope when the

external EEPROM was used as program storage. The maximum measurable duration was 50

seconds. The multiplication takes roughly 75 seconds.

88

the performance.

Finally, it is of course possible to implement performance critical functionality

in C and make it available to the user application through API methods. This

would reduce the overhead imposed by the Java interpretation significantly.

7.3 Stability

During all tests carried out during the development of the PoC, its stability was

generally satisfactory. Several times, a Java program was running actively for

several days without any noticed errors. The transmission of messages over the

EIB/KNX bus was very stable, no message losses could be detected.

Some stability problems related to the reception of messages were observed

during testing. Only about 5 of 6 messages are received without errors while one

usually contains a few bit errors all roughly at the same part of the message. The

issue was analyzed by making visible the times where the value of a bit is taken

from the bus. Before storing the value, the LED on the PoC board was lit and

afterwards it was turned off. While the timespan is too short for the human eye, it

was made visible using an oscilloscope.

Figure 24: Analyzing the stability problems in the reception of messages.

Figure 24 shows such a visualization of a received erroneous message, in this

example the message had one wrong bit. In the figure, the time of the storage of

this bit is highlighted. The problem is obvious: due to some reason, the storage

89

is delayed until slightly after the positive flank of this bit. The exact voltage level

on the bus at this time cannot be determined, but apparently it was already high

enough to be detected as a logical one.

The reason for the delay was traced back to the heavy utilization of the mi-

crocontroller. The detection of a starting data frames is implemented with an

external interrupt triggered by a falling edge. At the same time several other

non-interruptible interrupt service routines (ISR) may be in use. For example,

the NanoVM reads its instruction from the external EEPROM attached via I2C

bus which requires regular calls of an ISR. The invocation monitoring also uses

a timer ISR. If a falling edge or a timer overrun is detected while another ISR is

currently being processed, for example when the next instruction is read from the

external EEPROM, it will not be handled until the routine is finished.

Since the system is only a PoC, not too much effort was used to solve this

issue, although several ideas have been tried out without much success. A more

efficient implementation or more clever use of timers may improve the situation.

The problem may be subject to future improvements.

7.4 Freebus basic circuit

A side goal the Proof-of-Concept development was to evaluate the usefulness of

the Freebus basic circuit in an environment of retail devices. In the PoC test envi-

ronment, some reasonable comparisons were made and interoperability could be

tested. This actually only concerns the signal levels produced since the EIB/KNX

stack was developed from ground up. Although the basic circuit generally works

as promised, early tests showed a slight problem. An EIB/KNX bus line holds

a voltage of almost 30 V when idle. This state corresponds to a logical one. To

signal a logical zero, a device may pull down the bus voltage to a minimum of

19 V, according to the EIB/KNX specification. The problem observed in the tests

occurs when the basic circuit is used to signal a zero. In this case the voltage is

pulled down to 16 V which is too low.

Figure 25 shows some measurements taken with the original basic circuit and

with some modifications. A voltage characteristic as produced by a retail device

(in this case a pushbutton by Siemens) is shown in yellow. The red characteristic is

produced by the PoC board. The difference in the minimum level is obvious (there

are also slight timing differences which can be neglected in these measurements).

As a first approach to fix this issue, it was tried to limit the voltage drop by using

a series resistor at the base of the 2N7000 MOS-FET. The blue characteristic was

recorded with a 15 kOhm series resistor and green with 20 kOhm. It can be seen

that with the series resistors, the voltage drops only to the desired levels but at cost

of the steepness of the flanks.

Better results were obtained without series resistors by just lowering the oper-

90

Figure 25: Voltage characteristics comparison.

Figure 26: Voltage characteristics comparison.

91

ation voltage of the microcontroller. In Figure 26, measurements taken with such

a setup are shown. The yellow curve again shows the characteristic of a retail

device. Here, the red characteristic is taken with an operation voltage of 3.1 V,

the blue one as comparison with a series resistor of 20 kOhm and 3.2 V operation

voltage. The red characteristic looks very much like an original one, with decent

steepness of its flanks.

However it has to be noted, that the circuit without any modifications was used

for the major time of experimenting with the PoC. And although the signal char-

acteristics fall slightly out of the specifications, no problems with the transmission

of signals could be observed.

92

8 Summary and Outlook

The proposed architecture as introduced in this thesis represents a promising ap-

proach for providing application security in low-end embedded systems. It is

a reasonable combination of adapted security mechanisms which allows fine-

grained control over the execution of a user application. At the same time, a

decent flexibility is provided to enable its utilization for many typical building au-

tomation tasks. Furthermore, other benefits like program portability and program-

ming simplicity can be achieved. The architecture has already been published at

the 13th IEEE International Conference on Emerging Technologies and Factory

Automation [57].

A Proof-of-Concept was implemented to demonstrate the possibilities which

can be enabled with the described secure architecture. It has a significant potential

which was shown in a number of tests and experiments. The PoC is, naturally, not

a complete solution ready to be used. Therefore, there is of course a number of

improvements which are thinkable. Some of the ideas which emerged during the

development are described here:

• The implementation of the system software could be optimized to achieve a

more efficient microcontroller utilization. So far, not much effort was used

for this task. It may increase the performance and improve the stability of

the networking functions (especially message reception).

• Currently, the rules for the invocation monitoring have to be placed in a C

file as part of an array. A more comfortable solution would be desirable.

For example, an XML file could be used for the definition of the rules and a

conversion utility could be used as part of the building process of the VM.

• The EIB/KNX node configuration, after it has been converted into binary

form, is currently uploaded to the ATMega168’s internal EEPROM by us-

ing the controller’s In-System-Programming interface. This means that full

access to the all memory regions is given. However, the system software

situated in the flash memory should remain untouchable during the task of

changing the configuration. Therefore, it would be optimal if the configura-

tion could be uploaded through the NanoVM bootloader, just like the user

application.

• Even though the Freebus basic circuit was shown to enable access to an

EIB/KNX bus system, the use of a TP-UART for EIB/KNX interaction

would have several advantages. The microcontroller would be relieved of

the performance consuming low-level networking and the produced signals

would be guaranteed to be standard compliant.

93

List of Figures

1 Number of vulnerabilities reported to the US-CERT Vulnerability

Notes Database in the year 2007 for several common vulnerability

types. 13

2 Illustration of encryption and digital signing using public key cryp-

tography. 16

3 The embedded systems security pyramid as introduced in [15]. . . 20

4 Attacks on embedded systems. 22

5 Microprobing example: Eight data-bus lines where exposed on a

chip surface using a laser. (Source: http://www.flylogic.net/) . . . 23

6 Power consumption measurement of a smart card performing a

DES encryption operation [16]. 24

7 With mobile code, the code as well as the host executing it have

to be protected. 26

8 A two level architecture for HBA [20]. 32

9 Example of a heterogenous BACnet network [24]. 38

10 General stages of an attack [6]. 43

11 Secure software architecture. 55

12 Outline of the proposed architecture. 57

13 Sequence diagram of the PoC software components. 61

14 The test environment for the PoC. 62

15 The basic circuit of the Freebus project. [1] 64

16 Schematic of the Proof-of-Concept. 65

17 Extension circuit with the MAX 3232 for serial communication. . 66

18 A picture of the Proof-of-Concept target system. The connectors

on the top can be used to connect to an EIB/KNX bus, the board

itself is wired underside. 67

19 The Freebus interconnection interface. 68

20 The original NanoVM memory concept. [46] 68

21 Overview of the PoC memory layout. 70

22 OSI model layer assignment between the application program and

the EIB/KNX library. 72

23 Memory layout of the configuration. 73

24 Analyzing the stability problems in the reception of messages. . . 89

25 Voltage characteristics comparison. 91

26 Voltage characteristics comparison. 91

94

List of Tables

1 Comparison of described software methods to improve applica-

tion security. 52

2 Measured durations of a square matrix multiplication with differ-

ent matrix dimensions using different implementations. 88

95

References

[1] FreeBus website. http://www.freebus.org/.

[2] A. S. Tanenbaum and M. van Steen, Distributed Systems - Principles and

Paradigms. Prentice-Hall, 2002.

[3] C. P. Pfleeger and S. L. Pfleeger, Security in Computing. Prentice Hall Pro-

fessional Technical Reference, 2002.

[4] US-CERT Vulnerability Notes Database. http://www.kb.cert.org/vuls.

[5] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, “Hardware-assisted run-

time monitoring for secure program execution on embedded processors,”

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 14,

no. 12, pp. 1295–1308, 2006.

[6] S. Ravi, A. Raghunathan, and S. Chakradhar, “Tamper resistance mecha-

nisms for secure embedded systems,” in 17th International Conference on

VLSI Design, 2004. Proceedings., pp. 605–611, 2004.

[7] W. Diffie andM. E. Hellman, “New directions in cryptography,” IEEE Trans-

actions on Information Theory, vol. IT-22, no. 6, pp. 644–654, 1976.

[8] R. L. Rivest, A. Shamir, and L. M. Adelman, “A method for obtaining digi-

tal signatures and public-key cryptosystems,” Tech. Rep. MIT/LCS/TM-82,

1977.

[9] P. Zimmermann, PGP source code and internals. Cambridge, MA, USA:

MIT Press, 1995.

[10] R. Rivest, “The md5 message-digest algorithm,” 1992.

[11] U.S. Department of Commerce, National Institute of Standards and Technol-

ogy (NIST), Information Technology Laboratory (ITL)., Secure Hash Stan-

dard, August 2002. Federal Information Processing Standards Publication

180-2.

[12] H. Dobbertin, A. Bosselaers, and B. Preneel, “Ripemd-160: A strengthened

version of ripemd,” in Fast Software Encryption, pp. 71–82, 1996.

[13] Common Criteria Portal. http://www.commoncriteriaportal.org/.

[14] P. Koopman, “Embedded system security,” Computer, vol. 37, no. 7, pp. 95–

97, July 2004.

96

[15] D. Hwang, P. Schaumont, K. Tiri, and I. Verbauwhede, “Securing embed-

ded systems,” IEEE Security & Privacy Magazine, vol. 4, no. 2, pp. 40–49,

March-April 2006.

[16] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” Lecture Notes

in Computer Science, vol. 1666, pp. 388–397, 1999.

[17] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, “Security in embed-

ded systems: Design challenges,” Transactions on Embedded Computing

Systems, vol. 3, no. 3, pp. 461–491, 2004.

[18] A. D. Rubin and D. E. Geer, Jr., “Mobile code security,” IEEE Internet Com-

puting, vol. 2, no. 6, pp. 30–34, 1998.

[19] W. Kastner, G. Neugschwandtner, S. Soucek, and H. Newmann, “Commu-

nication systems for building automation and control,” Proceedings of the

IEEE, vol. 93, no. 6, pp. 1178–1203, June 2005.

[20] W. Granzer, W. Kastner, G. Neugschwandtner, and F. Praus, “A modular

architecture for building automation systems,” in IEEE International Work-

shop on Factory Communication Systems, pp. 99–102, June 2006.

[21] DALI Website. http://www.dali-ag.org/.

[22] M-Bus Website. http://www.m-bus.com/.

[23] D. Loy, D. Dietrich, and H. Schweinzer, Open Control Networks. Kluwer

Academic Publishers, 2002.

[24] BACnet Website. http://www.bacnet.org.

[25] KNX Website. http://www.knx.org/.

[26] W. Kastner and G. Neugschwandtner, “EIB: European installation bus,” in

The Industrial Communication Technology Handbook (R. Zurawski, ed.),

vol. 1 of The Industrial Information Technology Series, ch. 34, pp. 34–1 —

34–18, Boca Raton: CRC Press, February 2005.

[27] D. Arora, S. Ravi, A. Raghunathan, and N. Jha, “Secure embedded process-

ing through hardware-assisted run-time monitoring,” in Design, Automation

and Test in Europe, 2005. Proceedings, vol. 1, pp. 178–183, 2005.

[28] B. Chess and G. McGraw, “Static analysis for security,” IEEE Security and

Privacy, vol. 2, no. 6, pp. 76–79, 2004.

97

[29] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Automating

mimicry attacks using static binary analysis,” in SSYM’05: Proceedings of

the 14th conference on USENIX Security Symposium, (Berkeley, CA, USA),

pp. 11–11, USENIX Association, 2005.

[30] M. Cova, V. Felmetsger, G. Banks, and G. Vigna, “Static detection of vulner-

abilities in x86 executables,” Computer Security Applications Conference,

2006. ACSAC ’06. 22nd Annual, vol. 22nd Annual, pp. 269–278, December

2006.

[31] W. Landi, “Undecidability of static analysis,” ACM Letters on Programming

Languages and Systems, vol. 1, pp. 323–337, December 1992.

[32] D. Larochelle and D. Evans, “Statically detecting likely buffer overflow vul-

nerabilities,” in SSYM’01: Proceedings of the 10th conference on USENIX

Security Symposium, (Berkeley, CA, USA), pp. 14–14, USENIX Associa-

tion, 2001.

[33] ASTRÉE website. http://www.astree.ens.fr/.

[34] Sparse website. http://www.kernel.org/pub/software/devel/sparse/.

[35] C. S. Collberg and C. Thomborson, “Watermarking, tamper-proofing, and

obfuscation - tools for software protection,” in IEEE Transactions on Soft-

ware Engineering, vol. 28, pp. 735–746, August 2002.

[36] G. C. Necula and P. Lee, “Safe, untrusted agents using proof-carrying code,”

in Mobile Agents and Security, (London, UK), pp. 61–91, Springer-Verlag,

1998.

[37] L. Gu and J. A. Stankovic, “t-kernel: providing reliable os support to wire-

less sensor networks,” in SenSys ’06: Proceedings of the 4th international

conference on Embedded networked sensor systems, (New York, NY, USA),

pp. 1–14, ACM, 2006.

[38] J. McHugh, “Intrusion and intrusion detection,” International Journal of In-

formation Security, vol. 1, no. 1, pp. 14–35, 2001.

[39] Z. Li, A. Das, and J. Zhou, “Theoretical basis for intrusion detection,” in Pro-

ceedings of 6th IEEE Information Assurance Workshop (IAW), (West Point,

NY, USA), IEEE SMC Society, June 2005.

[40] V. Kiriansky, D. Bruening, and S. Amarasinghe, “Secure execution via pro-

gram shepherding,” in Proceedings of the 11th USENIX Security Symposium,

August 2002.

98

[41] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer, “A secure environ-

ment for untrusted helper applications,” in Proceedings of the 6th Usenix

Security Symposium, (San Jose, CA, USA), 1996.

[42] J. E. Smith and R. Nair, “The architecture of virtual machines,” Computer,

vol. 38, no. 5, pp. 32–38, 2005.

[43] M. Debbabi, M. Saleh, C. Talhi, and S. Zhioua, “Security evaluation of j2me

cldc embedded java platform.,” Journal of Object Technology, vol. 5, no. 2,

pp. 125–154, 2006.

[44] P. Stanley-Marbell and L. Iftode, “Scylla: A smart virtual machine for mo-

bile embedded systems,” in 3rd IEEE Workshop on Mobile Computing Sys-

tems and Applications, WMCSA2000, December 2000.

[45] Java Platform Micro Edition website. http://java.sun.com/javame.

[46] T. Harbaum, The NanoVM - Java for the AVR.

http://www.harbaum.org/till/nanovm/index.shtml.

[47] J. H. Solorzano, TinyVM- Java for LEGO Mindstorms.

http://tinyvm.sourceforge.net/.

[48] B. Horne, L. R. Matheson, C. Sheehan, and R. E. Tarjan, “Dynamic self-

checking techniques for improved tamper resistance,” inDigital Rights Man-

agement Workshop, pp. 141–159, 2001.

[49] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and M. H. Jakubowski,

“Oblivious hashing: A stealthy software integrity verification primitive,” in

IH ’02: Revised Papers from the 5th International Workshop on Information

Hiding, (London, UK), pp. 400–414, Springer-Verlag, 2003.

[50] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wa-

gle, Q. Zhang, and H. Hinton, “StackGuard: Automatic adaptive detection

and prevention of buffer-overflow attacks,” in Proc. 7th USENIX Security

Conference, (San Antonio, Texas), pp. 63–78, jan 1998.

[51] C. Cowan, M. Barringer, S. Beattie, G. Kroah-Hartman, M. Frantzen, and

J. Lokier, “Formatguard: Automatic protection from printf format string vul-

nerabilities,” in SSYM’01: Proceedings of the 10th conference on USENIX

Security Symposium, (Berkeley, CA, USA), pp. 15–15, USENIX Associa-

tion, 2001.

99

[52] J. Wilander and M. Kamkar, “A comparison of publicly available tools

for dynamic buffer overflow prevention,” in Proceedings of the 10th Net-

work and Distributed System Security Sym posium, (San Diego, California),

pp. 149–162, February 2003.

[53] S. Mao and T. Wolf, “Hardware support for secure processing in embed-

ded systems,” in Design Automation Conference, 2007. DAC ’07. 44th

ACM/IEEE, pp. 483–488, 4-8 June 2007.

[54] I. Hiroaki, M. Edahiro, and J. Sakai, “Towards scalable and secure execution

platform for embedded systems,” in Design Automation Conference, 2007.

ASP-DAC ’07. Asia and South Pacific, pp. 350–354, January 2007.

[55] R. Riley, X. Jiang, and D. Xu, “An architectural approach to preventing code

injection attacks,” in DSN ’07: Proceedings of the 37th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks, (Washing-

ton, DC, USA), pp. 30–40, IEEE Computer Society, 2007.

[56] AMD website. http://www.amd.com.

[57] F. Praus, T. Flanitzer, and W. Kastner, “Secure and customizable software

applications in embedded networks,” in 13th IEEE International Workshop

on Emerging Technologies and Factory Automation, 2008.

100

