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Abstract
To navigate successfully in an unknown environment, mobile robots have to know their
location, and they need a map of the scene. These two necessities cannot be separated and
for navigation purposes they have to be solved simultaneously. The combination of these
tasks is known within the robotics community as Simultaneous Localization and Mapping
(SLAM).

Different sensors can be used to solve SLAM, but we think that a camera is the most
appealing option, this is because it provides dense information content. Using the standard
single perspective-projective camera as the only SLAM sensor has two major disadvan-
tages. First, the depth information is immediately lost. To estimate the robot’s location
and positions’ of scene landmarks, the camera has to move and perceive the environment
from several different views. Second, the features lying at occlusion boundaries can not
be distinctively rejected. However, false features can cause SLAM to collapse.

In this thesis, a recently developed Time-of-Flight (ToF) camera is used as the only
sensor input for SLAM. The ToF sensor provides 2D images as the standard perspective-
projective camera, but it can also measure the position of the scene features directly.
Presented in this work is a new interface for a vision SLAM framework, which incorporates
ToF sensor readings in real-time. However, the ToF cameras suffer from several noise
effects, e.g. scattering, mixed pixels etc. We present how these various noise effects
influence the previously mentioned localization and mapping problem.

Initially the experimental results for the selected vision SLAM framework using the
ToF camera performed well, when enough near distant features have been available. In
case new features were not detectable, SLAM usually gets instable or lost.

To tackle the problem of false scene landmarks lying at occlusion boundaries a concept
is presented. The idea of this concept is to straightforwardly use the measured 3D informa-
tion to analyze the cornerness of a landmark. Simulated results show that landmarks can
be identified using the analysis based on the eigen decomposition, and this can improve
the real-time feature initialization.
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Chapter 1

Introduction

1.1 Motivation

An important task of a mobile robot such as autonomous ground vehicle on Mars, driverless
car or a robot at home is to localize its position in an unknown environment that the robot
is placed in. To fulfill that task the robot needs to perceive and estimate the environment

Figure 1.1: Nasa Mars Rover, courtesy NASA/JPL-Caltech; Stanley, DARPA Grand Chal-
lenge (2005); Cleaning robot, c©RoboCup Federation Suzhou (2008).

by searching for new landmarks (features) to update its position within a map. This
problem is commonly known as localization and mapping problem and can be addressed
by a sequential probabilistic approach known as Simultaneous Localization and Mapping
(SLAM). With sensors such as laser range finders, sonic sensors or digital cameras the
robot can receive information from the surrounding environment and analyze the data as
input for a SLAM algorithm. Laser scanners and sonic sensors provide typical distance
measurements in a range from approx. 1-10 metres whereas digital cameras capture the
reflected light as illumination and colour within an image sensor. They are not able to
directly measure depth information, due to their projective nature. In fact one can only
derive distance from an image by using two cameras, known as computer stereo vision or
with a single camera due to motion based on structure from motion methods. By using a
single camera multiple images are taken over time and from different position to reconstruct
three-dimensional object-information. Vision-based sensors have been compared to lasers
and shown several advantages. They are cheap, non-invasive, have no moving parts, can
be used in various scenarios and provide a perception of the entire scene.
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Chapter 1. Introduction 1.2. Problem Statement

Solving the SLAM problem with a single perspective-projective camera as sensor input
has several disadvantages regarding its missing direct depth measurement. With a single
camera system a fixed target at a known distance is required for starting the localization
and mapping process. Without a fixed landmark we have no information about the scale
of the distance, and the robot could not build up a precise map of the environment and
determine its position relative to it.To obtain depth information from the image landmarks,
we need first to detect them. To get a good estimate of a landmark position in space, we
need to observe it from different viewpoints. Therefore the camera always needs to move.
In fact, direct depth measurement as additional information would help to relax these
constraints and to improve the field of application for a single camera SLAM algorithm.

Recently developed range image cameras (RIM) measure in addition to the light inten-
sity the distance by the Time-of-Fight (ToF) method. The principle is based on modulated
light that is sent out by a signal emitter, partially reflected by an object and mapped onto
a sensor array by optics. Using this sensor as an input for a single camera SLAM algorithm
provides additional measured depth information that the algorithm can benefit from. In
this work we investigate the benefits and drawbacks of using the ToF sensor as the only
input for Simultaneous Localization and Mapping.

1.2 Problem Statement

In this work it shall be investigated if a Time-of-Flight camera can be used for Visual
Simultaneous Localization and Mapping (SLAM). The following aim is to investigate the
influence of the sensor properties onto the localization and mapping process. As a basis
the sensors 2D image and its usability is investigated. The second aspect is to analyse
how the 3D data using particular distance information can improve the localization and
mapping algorithm and how available 3D information can be incorporated to detect fea-
tures within the surrounding scene.

1.3 Approach Description

Using the depth information as a source for additional measurement data updates within
existing Simultaneous Localization and Mapping algorithms, could help to eliminate some
restrictions as mentioned above. The approach is based on existing hard and software
components that supply: An existing MonoSLAM software framework provided by Andrew
Davidson [12] implementing an algorithm that work based on a single camera as sensor.
Including a graphical user interface displaying the robots (camera) location within a 3D
map. A Time-of-Flight camera developed by Mesa Imaging [24] delivering amplitude and
depth measurement as digital data is used to create 2D and 3D images of the recorded
scene. A standard Linux based computer processing the framework software, camera
Application and Programming Interface (API). The camera is connected via a Universal
Serial Bus (USB) cable to the computer. Because the framework only works with FireWire

2



Chapter 1. Introduction 1.4. Related Work

and Gigabit Ethernet cameras a development of a new interface is required. In the first
step the camera API is incorporated into the framework and the camera amplitude data
is transformed into illumination data to represent a 2D image. Therefore the framework
algorithm do not change and perform localization and mapping tasks only based on the
intensity image. The influence of the sensor characteristics onto the detection, initialization
and measurement of features from the acquired intensity images is evaluated. The second
step shall evaluate the use of the additional depth data measurements. In particular to
determine corners lying in the plane and corners having a 3D structure. The mathematical
calculation that has been chose is the method called ”structure tensor”. It is based on
gradient derivative of the distance data and enable it to differentiate different object
structures. Such as corners, planes and lines. If possible a method for features depth
initialization based on measured distance data shall be investigated and implemented.
Another aim is to implement a 3D corners detector based on the consideration taken by
the structure tensor analyse. It is expected that this improves the quality of the detected
feature and shall help to identify occlusion boundaries.

1.4 Related Work

Different kind of sensors can serve as input for SLAM algorithms. Weingarten and Sieg-
wart [45] demonstrate robot tracking and map building with a rotating 2D laser scanner
generating 3D point clouds. Sonar sensors mounted on a robot applied to SLAM have
been used by Zunino and Christensen [46]. Davison et al. [11] introduces a real-time
SLAM algorithm (MonoSLAM) for feature tracking and mapping based on a single cam-
era moving through an unknown scene. The algorithm calculates the camera motion and
feature position in a 3D map with a standard Extended Kalman Filter (EKF). An alter-
native implementation is based on a Particle Filter algorithm (FastSLAM) by Pupilli and
Calway [33]. Its main focus lies on effectively compensating unpredictable motion, which
violate predictive motion models as used within Davisons MonoSLAM approach. Both
approaches have in common that depth is not measured directly and thus for initialization
a known target is needed. Also the depth of new features needs to be initialized over
several image frames. Chekhlov et al. [6] introduce a SIFT-like spatial gradient feature
description capable of robust matching over a wide of viewing angles and scales in real-
time. The approach is based on an Unscented Kalman Filter (UKF). At initialization,
a number of feature descriptors need to be generated, where in subsequent frames, de-
scriptors at potential corresponding points are generated and used to predict the original
point. Recent investigations in the area of Time-of-Flight cameras by May et al. [22] using
visual odometry to estimate the camera pose based on the 3D measurements data. Map-
ping is performed by directly using the distance information from the sensor, and filtering
methods are applied to enhance the measurement precision of it. Due to the partial offline
processing of the map is the algorithm only partially suitable for online applications.
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Chapter 2

Basic Theory

2.1 Probability Concept

The principles of random variables and probability are a prominent mathematical concept
frequently used as a scientific method to analyse information in a non deterministic en-
vironment. In this section a short abstract is given this concept, this is not intended to
be exhaustive. Starting with the definition of random variables, following three impor-
tant probability concepts are explained: (1) The classical concept and its extension to the
frequency definition, (2) Kolmogorov axiomatic definitions and (3) Bayesian probability.

In probabilistic robotics measurement data is received from sensors. Environment data
like the robots or the objects position and orientation, are all described by the use of the
Bayesian probability. Based on that, the concept of belief representation is introduced in
Sec. 2.2.3 to derive the robots state and position. In this context are the distribution and
density function used to describe probability in an analytic form. Another key concept
is the conditional probability derived from the Bayes’ theorem, which is denoted as the
posterior probability.

2.1.1 Random Variables

As stated by Peebles [32] ”A random variable X can be considered to be a function that
maps all elements of the sample space into points on the real line or some parts thereof.”
A prominent example for this explanation is to toss a dice. The six possible outcomes
{x1, x2, . . . , x6} define a sample space S . To every outcome the function X(ξ) assigns the
numbers {1, 2, . . . , 6} . X(ξ) or the more common abbreviation X is than called a random
variable.

Random variables can be described in a discrete or continuous manner [31] . A discrete
random variable is having only discrete values as shown in the example above, whereas
for continuous variables the outcome of the function has constant values. An important
characteristic of random variables is its probability, we write it here

P (X = x) and (2.1)

P (X ≤ x). (2.2)

4
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P (X = x) denotes the probability of the random variable X for a given value x. For
example, in a game with a fair die the probability of X equals 1 is denoted P (x = 1) =
P (1) = 1/6. In case the outcome may be 1, 2 or 3, respectively {X ≤ 3} the probability
P (X ≤ 3) equals 3/6. {X ≤ x} is defined as the event of the probability P (X ≤ x). In
case of a continuous random variable an event includes all values lower than x (including
x). Therefore, if R is a set of real numbers on the x axis, then x ∈ R [31]. Note that for
continuous variables we get P (X = x) = 0.

2.1.2 Probability Definitions

The idea of probability follows several concepts. The classical definition defines probability
as favorable outcomes in ratio to possible outcomes [31],

P (x) =
Nx

N
. (2.3)

In the die experiment, this would be for the event even P (x) = 3/6. The are six possible
outcomes three are favorable to the event. As explained by Papoulis et al. [31] this
definition can only be applied to limited types of problems. Especially to those with same
probability of fundamental events. For example every single dice event {x1, x2, . . . , x6}
equals the probability 1/6. A more common approach is the relative frequency definition.
The probability is defined by the limit

P (x) = lim
n→∞

nx

n
, (2.4)

where nx is the number of occurrences of an event and n is the number of trials. The
definition is fundamental in the applications of probability. However, in a physical exper-
iment, nx and n might be large but they are only finite. To approximate the ratio to a
limit is therefore not possible. Thus, ”...the limit must be accepted as a hypothesis, not
as a number that can be determined experimentally.” [31]

The axiomatic definition is formulated by A.N. Kolmogorov and is based on the fol-
lowing three postulates:

P (A) ≤ 0, (2.5)

P (S) = 1, and (2.6)

P (A ∪B) = P (A) + P (B). (2.7)

This first postulate states that the probability of event A, in terms of random variables
for example {X ≤ x} or {X = x}, is a non-negative number. The second defines that
the probability of the certain event, which is the sample space S, equals 1. And the third
one that if the probability that two events A and B are mutually exclusive, then their
probability is the sum of their single probabilities.

Bayesian probability defines probability as the ”degree of belief”. It denotes the truth
of an event given incomplete knowledge. A prior state of knowledge is given before the ex-
periment is performed. The posterior information (after the experiment) can be expressed
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by the Bayes’ theorem as the posterior probability. There are two different interpretation
of the Bayesian probability. The ”objective” derives probability in a logical form based on
the Cox theorem that postulates three assumptions: (1) Divisibility and comparability, (2)
Common sense, (3) Consitency. The ”subjective” interpretation is based on the personal
degree of belief an individual has in the truth of the proposition.

2.1.3 Distribution and Density

Probability depends on a function called Cumulative Distribution Function (CDF) Fx(x) =
P (X ≤ x). The Probability Density Function (PDF) is defined as the derivative of the
distribution function as p(x) = dFx(x)

dx . Thus, the PDF describes the probability [32]

P (x) =

∫
p(x)dx. (2.8)

A common density function is the normal distribution with mean µ and variance σ2. The
PDF is given by the Gaussian function [44]

p(x) = (2πσ2)−
1
2 exp

{
−1

2

(x− µ)2

σ2

}
. (2.9)

The equation assumes that the random variable X, respectively x is a scalar value on one-
dimension. For multi-dimensions vector the normal distribution is called multivariate.
Following Thrun et al. [44] it is characterized by the following form

p(x) = det(2πΣ)−
1
2 exp

{
−1

2
(x− µ)T Σ−1(x− µ)

}
. (2.10)

Σ denotes a positive semidefinite and symmetric matrix called the covariance matrix. The
vector µ represents the mean. Because of its major role, normal distributions are often
abbreviated as N (x; µ, σ2) or N (x; µ, Σ). As postulated in (2.6) the PDF integrates always
to 1 (

∫
p(x)dx = 1).

The joint distribution combines the occurrence of two events mapped onto two random
variables. P (x, y) denotes the joint probability event that random variable X and Y appear
concurrently. In case of statistical independency the probability and density is given by

P (x, y) = P (x)P (y), and (2.11)

p(x, y) = p(x)p(y). (2.12)

2.1.4 Conditional Probability and Bayes’ Theorem

Conditional probability reflects the fact that the probability of an event may depend on a
second event [32]. For two different random variables X and Y it is defined as

P (x|y) = P (X = x|Y = x) =
P (x, y)

P (y)
, and (2.13)

p(x|y) = p(X = x|Y = y) =
p(x, y)

p(y)
. (2.14)
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Note that the term for the density function p(x|y) only show the discrete case for two single
events x and y. The term for point conditioning density function and interval conditioning
is in more detail explained by Peebles [32] and is not further considered. The Bayes’
theorem is derived from the conditional probability and can be written

P (x|y) =
P (y|x)P (x)

P (y)
=

P (y|x)P (x)∑
x′ P (y|x′)P (x′)

(discrete), and (2.15)

P (x|y) =
P (y|x)P (x)

P (y)
=

P (y|x)P (x)∫
P (y|x′)p(x′)dx′

(continuous). (2.16)

P (x) is denoted as prior probability distribution whereas P (x|y) is called the posterior
probability distribution over X, P (y|x) the inverse probability and the event y is related
in robotics to the acquired measurement data. To determine the posterior distribution, we
are evaluating the inverse probability, which specifies the probability of the measurement
data y assuming that a certain event x was true [44].

If we introduce another random variable Z with the given values Z = z we can formu-
late the Bayes’ theorem as

P (x|y, z) =
P (y|x, z)P (x|z)

P (y|z)
. (2.17)

Considering the conditional independence P (x|z) = P (x|y, z) and P (y|z) = P (y|x, z) the
equation can be written as P (x|y, z) = P (x|z).
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2.2 Environment Representation

The mobile robot is surrounded by the real world. To operate safely, it needs to gather
knowledge about its environment. It does this by using an abstract model describing the
interaction between itself and the environment.

This section defines some basic characteristics of the robot and its environment. The
state, control and measurement are introduced as some of the basic terms. Based on that
a structured dynamic system is defined explaining the robot interaction with its environ-
ment. Finally, the definition of the posterior probability, it is derived from the Bayes’
theorem as denoted in Sec. 2.1.4, and represents the robots belief about the environmental
state.

2.2.1 State, Control, Measurement

In mobile robotics the robot and the environment is described by its state. A state can be
either static, such as the location of walls, or dynamic such as moving people in a room [44].
The robot postion and orientation is considered as a dynamic state. This is commonly
known as the robot’s pose (if it is given relative to a global coordinate framework). The size
of the state is not limited in its pose dimension. Location of objects in the environment,
robot velocity or odometry and configuration of robot’s actuators can be included into
the state variables [44]. The state variable xt is time dependent, with time discrete steps
t ∈ {0, 1, 2, 3, . . . }.

Control actions are changes to the robots environment. During the interaction with
the real world the robot performs different actions. For example, moving from one location
to another or transporting an object from on postion to another. Therefore control data
ut denotes information about the change of state in the environment with the control
sequence ut1:t2 = ut1 , . . . , ut2 [44].

Senor data processing is used by the robot to obtain information about its environ-
ment. For example, range scan or camera image data is acquired to perform distance
measurements. This step is called observation or perception. Following measurement data
is denoted as zt with the measurement zt1:t2 = zt1 , . . . , zt2 [44].

2.2.2 Dynamical System

In theory, the interaction between the robot and it’s environment is described as a dynamic
system [35]. It can be viewed as two independent automatons as depicted in Fig. 2.1. The
environment automaton, which obtains input or actions and transforms them into output
signals. The controller automaton (robot), that gathers the environment output to perform
actions.

We now divide the environment into an environment and sensor process. The more
commonly used terms are system or motion model and measurement or observation
model [35]. The environment process changes and updates the state of the environment,
according to the input actions. The sensor process maps the current state of the envi-
ronment into an output information that can be received by the controller. Likewise the
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Chapter 2. Basic Theory 2.2. Environment Representation

controller consists of a state estimation and an action selection process. Commonly called
inverse observation or measurement model and action selection model [35]. When receiv-
ing a measurement input the process tries to estimate x̂t the state of the environment.
Once performed the action selection process uses the estimation x̂t to derive the output
actions ut.

Environment

Controller

Sensor processEnvironment process

State estimation processAction selection process

Action,

Input,

Control

Signal,

Measurement,

Observation,

Sensor Data

Figure 2.1: State estimation model as used in structured dynamical systems [5].

Formally, following mathematical notation is considered:1

xt = ft(xt−1, ut, vt) (system model), (2.18)

zt = ht(xt, wt) (measurement model), (2.19)

x̂t = et(zt) (inverse measurement model), and (2.20)

ut = atx̂t (action selection model). (2.21)

2.2.3 Belief Representation

The belief indicates the robot’s internal knowledge about the state of the environment [44].
The robot infers its belief about its postion and orientation (pose) indirect from measure-
ment data. Therefore the posterior probability or density function is assigned, which
conditions all measurement, control data and hypothesis over the robot state. We denote
the belief as

bel(x̂t) = p(x̂t|z1:t, u1:t). (2.22)

Further explained by Siegwart et al. [37] it can be distinguished between a single-hypothesis
bel(x̂t) and multiple-hypothesis belief bel(x̂t|H). A single hypothesis H represents the
direct possible proposition. For example the belief of a single-hypothese about the robot
position is represented as a single unique point on the map. Whereas a multiple-hypothesis
belief has more than one possible representation. Consequently there is more than one
hypothesis about the robot postion [37].

It is worth noting that the belief distributions are based on the Bayesian objective
definition of probability using the Bayes’ theorem to determine its value as highlighted in
Sec. 2.1.4.

1Note that process noise vt and measurement noise wt are commonly added as the model is assumed
to be stochastically.
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2.3 Basic Filter Algorithms

The following section introduces the subject, how the robot can calculate its state by
using the method of belief representation as explained in Sec. 2.2.3. It starts with the
characterization of the Bayes Filter as the most general algorithm for calculating the
belief distribution [44]. The main features are the prediction and update step, restricted
by the Markov assumptions defining the boundary conditions of the filter performance.
The following Kalman Filter, invented by Swerling (1958) and Kalman (1960) shows the
most common implementation of a Bayes Filter. The Kalman Filter presumes that all
processes are linear and thus the probability density distributions are following a gaussian
distribution as introduced in Sec. 2.1.3. Further it is only applied to continuous state
random variables and not to discrete ones [44].

The concept of Kalman gain and innovation defines the main advantage of this filtering
method. Its major downside is that it is for real problems not applicable, because system
and observation models derived from the real world are in most cases not linear. E.g.
a robot moving with constant translational and rotational velocity follows a trajectory,
which can not be described by a linear model [44]. The Extended Kalman Filter (EKF),
e.g. proposed by Jazwinski (1970), tries to overcome this by linearization that finally
determines the performance of the EKF [35].

It is worth noting that further variants to the Bayes Filter exist like the Iterated
(nonlinear) Kalman Filter, the Unscented (nonlinear) Kalman Filter (UKF), the Multiple
Hypothesis Kalman Filter and Monte Carlo Bayes Filter, which are explained in further
detailed in e.g. Thrun et al. [44] and Schmitt [35].

2.3.1 Bayes Filter

The idea for this filter is based on the recursive state estimation. The state is considered
as a estimated belief, modeled as probability density like in Eq. 2.22. Each calculation
step of the algorithm is time discret using previous belief and measurement data as input
derived from the observed environment state. The Bayes Filter calculates then the current
belief bel(x̂t), from the prior belief bel(x̂t−1), based on the input from measurement zt and
action ut. For the next state estimation bel(x̂t+1) the previous calculated belief bel(x̂t) is
used as the new input for the next iteration step.

The Bayes Filter algorithm requires an initial belief bel(x̂0) [44]. If not known it can
be initialized by using a uniform distribution. Considering how the algorithm perform
its calculations, we derive the following main steps [44]: (1) A prediction step based on
the prior state belief bel(x̂t−1) and the probability that the robot takes control step ut as
next action from state x̂t−1 to x̂t. (2) A measurement update that weights the estimated
prediction by the probability that the observation zt may be true. This is obtained [44]
from the following two equations:

bel(x̂t) =

∫
p(x̂t|ut, x̂t−1) bel(x̂t−1) dx̂t−1 (prediction step), and (2.23)

bel(x̂t) = η p(zt|x̂t) bel(x̂t) (update step). (2.24)
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As pointed out by Schmitt [35] the conditioned probability density p(x̂t|ut, x̂t−1) in
Eq. 2.23 is derived from the environmental process as defined by Eq. 2.18 and the known
statistics of the process noise vt. Hence, it refers to the system or motion model as intro-
duced in Sec. 2.2.2, and can be denoted as a state transition probability/density as noted
by Thrun et al. [44]. Further the density p(zt|x̂t) (measurement probability/density [44])
derived from Eq. 2.19 and the measurement noise wt, can be considered to refer to the
observation or measurement model in this context.

Bayes filtering requires that the process follows the Markov assumption. It postulates
that the past and future data is independent if one knows the current state xt [44]. Thus,
a state x̂t is called complete if all the past measurements and controls have no influence
on future states xt+1,t+2,.... In practice this assumption is violated and therefore mainly
theoretically important. In this case a state is called incomplete. For example not consid-
ered dynamics of moving objects have an effect on the future measurement statistics or
unmodeled control variables, which may influence the robot target pose.

2.3.2 Kalman Filter

The Kalman Filter assumes that the observed system is a linear Gaussian system. There-
fore it represents the beliefs about the estimated environment state x̂t as multivariate nor-
mal distribution N (xt; µt, Σt) as defined in Eq. 2.10. Furthermore refering to Eq. 2.18, 2.19,
the system and observation model is expressed by the following linear equation [35] as

xt = Atxt−1 + Btut + vt (system model), and (2.25)

zt = Ctxt + wt (measurement model). (2.26)

Where At and Bt are matrixes that describe the system behaviour with dimension n× n
and Ct describes the measurement system with dimension k × n. Size n denotes the
dimension of the state vector xt, whereas k the dimension of the measurement vector zt.
The Gaussian random variables xt, ut, zt, vt, wt represents the state, action respectively
the system and measurement noise [35].

Derived from this linear model, and the presence of Gaussian noise, the Kalman Filter
algorithm represents the belief bel(x̂t) at time t by the mean µt and the covariance Σt [44].
Likewise the Bayes Filter, is the input to the Kalman Filter the previous belief bel(x̂t−1)
represented by µt−1 and Σt−1. Further the control ut and measurement zt are required to
calculate the state transition density p(x̂t|ut, x̂t−1) ∼ N (x̂t; Atx̂t−1 + Btut, Rt) and mea-
surement density p(zt|x̂t) ∼ N (zt; Ctx̂t, Qt). Considering the two main steps prediction
and measurement update the algorithm and hence the belief can be derived as

µt = Atµt−1 + Btut

Σt = AtΣt−1A
T
t + Rt

}
bel(x̂t) (prediction step), and (2.27)

Kt = ΣtC
T
t (CtΣtC

T
t + Qt)

−1

µt = µt + Kt(zt − Ctµt)

Σt = (I −KtCt)Σt





bel(x̂t) (update step). (2.28)
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As pointed out by Thrun et al. [44], the predicted mean µt is obtained by inserting the
previous mean µt−1 in the deterministic version of Eq. 2.25. The predicted covariance Σt

depends on the previous state represented by Σt−1, which is transformed to the current
state by the system matrix At and the covariance Rt, that defines the state transition
density as explained in Sec. 2.3.1.

In the measurement update step the measurement zt is incorporated into the predicted
belief bel(x̂t) to obtain the final belief bel(x̂t) [44]. Therefore the Kalman gain Kt is cal-
culated. It weights the measurement that influences the new estimation. The desired
belief distribution represented by µt and Σt is finally obtained by adjusting the predicted
covariance Σt and mean µt. The goal is to calculate the difference between the actual mea-
surement zt and the expected measurement Ctµt or CtΣt. This step is called innovation.
To obtain the next state estimation bel(x̂t+1) the iteration starts again with the prediction
step. Thus, the previous calculated belief bel(x̂t) is used as the new input.

2.3.3 Extended Kalman Filter

The Extended Kalman Filter (EKF) upgrades the Kalman Filter to a nonlinear Gaus-
sian system. System (cf. Eq. 2.25, 2.18) and measurement (cf. Eq. 2.26, 2.19) model are
now defined as nonlinear functions g(ut, xt−1) and h(xt). The key idea of the EKF is the
approximation of g(ut, xt−1) and h(xt) by the Taylor series, which is the first-order ap-
proximation derivative. This method is called first order Taylor expansion. The prediction
and measurement update are now defined by

µt = g(ut, µt−1)

Σt = GtΣt−1G
T
t + Rt

}
bel(x̂t) (prediction step), and (2.29)

Kt = ΣtH
T
t (HtΣtH

T
t + Qt)

−1

µt = µt + Kt(zt − h(µt))

Σt = (I −KtHt)Σt





bel(x̂t) (update step). (2.30)

The predicted mean µt is now approximated through the first term of the Taylor expansion
at the posterior mean µt−1. That is, g(ut, xt−1) ≈ g(ut, µt−1) + Gt(xt−1 − µt−1) [44].
Considering the predicted covariance Σt the linear matrix A is replaced by its nonlinear
equivalent. Further the Jacobian Gt (size n×n, state dimension), which corresponds to the
derivation of the nonlinear system function at state xt−1 = µt−1 (thus, Gt = g′(ut, µt−1)).

Comparing the update step of the EKF with the Kalman Filter, the linear measurement
function is replaced with the approximation of its non linear pendant h(xt) ≈ h(µt) +
Ht(xt − µt) [44]. Ht = h′(µ̂) denotes the Jacobian matrix, that corresponds to the linear
measurement matrix Ct.
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2.4 Motion

The section starts with an introduction to a common definition of the robot’s motion
model. We explain the uncertainty about the robots pose and how it is modeled in
probabilistic terms. An important insight is to show that multible robot movements
reduce the uncertainty of the robots pose.

2.4.1 Motion Model

In mobile robotic the motion model can be infered from the dynamic system, as introduced
in Sec. 2.2.2. The interaction with the environment is described through the environmental
process with respect to the robot’s motion. It describes the dependency of the state
variable xt on the robots locomotion. The robot action (cf. Fig. 2.1) performs a movement
step that changes the pose of the state xt, in an environment that is assumed to be rigid.

Kinematics is describing the effect of this control actions onto the robot state, respec-
tively the pose in an analytic mathematical form. As stated by Thrun et al. [44], the
pose for a rigid mobile robot is commonly described by six variables, its three-dimensional
Cartesian coordinates x, y, z and its three Euler angles Ψ, Θ, Φ (yaw, pitch, roll). To
simplify matters, it is assumed that the robot is restricted to operate in a plane. The pose
(x, y, Θ) is reduced to two-dimensional planar coordinates relative to an external coordi-
nate frame, along with its angular orientation [44].

!

heading direction

X‘X(0,0)

Y

Y‘
!‘

Figure 2.2: Robot current (x, y, Θ) and next (x′, y′, Θ′) pose, shown in a global coordinate
system.

To determine motion parameters the robot action is commonly considered as velocity or
odometry model. While the velocity is defined by translational and rotational variables
(vt, wt)T , the odometry comprises wheel information. With odometry it is possible to de-
rive the robot pose relative to its starting point based on the integrated wheel rotation,
respectively wheel encoder. The main difference between this two models is that odom-
etry information (such as traveled distance) is only available after executing the action,
where as the given speed is adjusted by the given control command. In the following, only
the velocity motion model is considered. Due to the missing relevance for this thesis, the
description of the odometry motion model is referred to [44].
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2.4.2 Motion Probabilistic

The probabilistic motion approach considers that the outcome of a action implicates a
certain degree of uncertainty, due to the control noise or unmodeled external effects. The
deterministic motion model is enhanced by adding noise variables, that models the uncer-
tainty. As noted in Sec. 2.3.1 the system, respectively the motion model can be defined
in probabilistic terms as state transition density p(x̂t, ut, x̂t−1). Here it states xt and xt−1

defining the robot poses and ut = (vt, wt) the motion control that is assumed to change
the robots velocity.

Real robot motion differs from deterministic control commands due to inaccurate ex-
ecution. This additive errors are modeled with zero-mean Gaussian distribution. Fig.2.3
shows two different robot movements and the probability distribution of the robot’s pose
after some control actions.

(a) (b)

Figure 5.2 The motion model: Posterior distributions of the robot’s pose upon ex-
ecuting the motion command illustrated by the solid line. The darker a location,
the more likely it is. This plot has been projected into 2-D. The original density is
three-dimensional, taking the robot’s heading direction θ into account.

(a)

(a) (b)

Figure 5.2 The motion model: Posterior distributions of the robot’s pose upon ex-
ecuting the motion command illustrated by the solid line. The darker a location,
the more likely it is. This plot has been projected into 2-D. The original density is
three-dimensional, taking the robot’s heading direction θ into account.

(b)

Figure 2.3: Two posterior pose distributions provided by [44]. (a) Forward movement and
(b) more complicated motion with a larger spread of uncertainty. Darker poses are more
likely. The plot has been projected into a 2D plane. It is worth noting that in (b) the
vertical uncertainty is smaller than as for (a). This is due to the fact that the different
control steps reduce the vertical uncertainty
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2.5 Perception

The Measurement Model as introduced in Sec. 2.2.2 designs the process of generating
sensor data in the real world. The section begins with a short overview of a variety of
different sensor methods, such as range sensors, camera, or tactile sensors. The type of
the sensor has an influence on the characteristics of the measurement model. An image is
described by projective geometry best, whereas sonic models reflection on surfaces in the
environment [37].

In the following section a short introduction into the probabilistic of perception is
provided. Measurements always have errors, therefore uncertainty associated with them
needs to be defined in probabilistic terms. Next, feature extraction is explained as useful
methode for object recognition. It reduces a large quantity of measurement information
to detectable landmarks. As an example for a vision based sensor the camera sensor
is explained. Finally the Time-of-Flight concept is introduced as a prominent sensor
approach for distance measurement.

2.5.1 Sensors

There is a large selection of senors available in mobile robotics. They can be divided
into two main groups [37]. Sensors that are measuring internal values like, motor speed,
wheel postion or robot temperature and external senors gathering information like object
distance or intensity. External senors are used by the robot to extract information about
its environment and objects respectively features.

There exist various types of external sensors with different physical properties. For
example, laser range finder or sonic sensors, which perform an active range measurement.
Vision based sensors like CCD/CMOS cameras, that perform a passive measurement are
applicable for object recognition and object tracking. A more comprehensive overview
about sensors in mobile robotic can be found in Siegwart et al. [37]

2.5.2 Perception Probabilistic

Perception data are imprecise due to measurement noise introduced by the sensor. The
measurement process, confer Eq. 2.19, is general assumed as Gaussian distribution. Mea-
surement data consists of more than one numerical value. For example, cameras generat-
ing an entire array of values (intensity, color per pixel). Following Thrun et al. [44], the
measurement values and probability densities, which are assumed to be independent, are
extended to Sec.2.2.1 as

zt = {z1
t , . . . , z

K
t }, and (2.31)

p(zt|x̂t) = p(z1
t |x̂t) · p(z2

t |x̂t) · . . . · p(zK
t |x̂t). (2.32)

2.5.3 Feature Extraction

Feature extraction is commonly used for map building and localization tasks. Uncertainty
is always associated with Sensor measurements. To minimize it, features are extracted

15



Chapter 2. Basic Theory 2.5. Perception

from the environment. Features are structures of elements in the environments that can
be recognized by processing the sensor data [37], e.g. lines, circles (low level) or edges,
doors and tables (high level). This abstracted information can be incorporated easily into
the robots’s system or motion model to calculate the next selected action. By contrast,
raw measurements are direct applied to the model and therefore infer directly unprocessed
actions. For example, close obstacles, avoidance tasks or an emergency stop.

In case of vision based systems, features are extracted only from subregions of the
image [37]. This is commonly used due to mobile robots requirement of the real time
processing. Thus, the amount of data is reduced by the feature detection algorithms. A
feature can be represented by a feature vector [44] as

y(zt) = {y1
t , y

2
t , . . . , } (2.33)

with its uncertainty given by the posterior measurement density

p(yt|x̂t) = p(y1
t |x̂t) · p(y2

t |x̂t) · . . . · p(yK
t |x̂t). (2.34)

2.5.4 Camera as Sensor

Camera as a vision-based sensor is a common passive sensoring device. The image acquisi-
tion is based on CCD (Charged Couple Device) and CMOS (Complementary Metal Oxide
Semiconductor) senors. The basic idea of both methods is that for light-sensitive elements
(pixels) incoming photons free electrons for each element of the array. Integrating the
total numbers of electrons over a period of time results in a certain amount of electric
charge per pixel. It finally determines the intensity or colour of the incoming light and
thus the digital image of the scene. There are certain differences and limitations due to
that kind of used senors. First, CCD are more sensitive than CMOS devices. Second,
CMOS chips are cheaper in production, much simpler in their design and therefore less
power consuming.

Both technologies are limited through their dynamic range, and light capture parame-
ters e.g. iris position or shutter time. The dynamic range specifies the electron capacity per
pixel, thus their sensitivity, whereas maximum, minimum iris postion and shutter speed
regulate the amount of incoming light. Camera output is inherently digital and therefore
easily transfered through common standard transport protocols as IEEE 1394 (FireWire)
and USB (1.1, 2.0) onto preprocessing robot hardware. A more detailed description about
that topic can be found in Siegwart et al. [37].

2.5.5 Time-of-Flight Principle

The Time-of-Flight (ToF) principle uses the propagation of electromagnetic waves or sound
waves [37] to measure the distance of perceived objects. A source emits a wave that is
reflected back from the target object. The receiving sensor then measures directly or
indirectly the runtime of the signal. ToF with sonic sensor is based on the propagating of
sound waves. The distance is directly calculated by the measured time of flight and the
propagation speed of sound [37]. The low propagation speed of sound compared to light
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(∼ 300 vs. 300 · 106 m/s), restricts the robot locomotion to certain speed. The maximum
speed is reached, when the robot has just enough time to detect and process the signal
to avoid obstacles. Systems based on Laser light or light-emitting diodes (LED) are not
limited by this.

According to Siegwart et al. [37] three measuring ToF principles can be applied. (1)
The direct measuring of the runtime of the light beam, e.g. when a pulse laser is used.
The need of a receiver that works at a time resolution in picosecond is a downside of
this. (2) Measuring the beat frequency of a frequency modulated signal, emitted by the
sensor source and its received reflection. (3) Measuring the phase shift of the reflected
light that is perceived by the sensor. Only the latter method in the following is considered
due to its relevance to the sensor used in this thesis. As shown by Oggier et al. [28], the
indirect calculated distance is proportional to the phase difference φ and the modulation
wavelength λ. Eq. 2.35 and 2.36 depicts the proportional relation between the distance
and the derived signal proporties.

D = L
φ

2π
(2.35)

L =
c

2 · f =
λ

2
(2.36)

Where L is the non-ambiguity distance defined by the modulation frequency and the speed
of light. The factor 2 in the denominator considers the fact that the traveled distance
comprise the round-tip that is twice the object distance.
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2.6 Localization and Mapping

Localization and mapping enables the robot to navigate in its environment. It can be
treated as different tasks, where for localization the map is given and the map building
can be considered independently. On the other hand, if the robot tries to navigate in an
unknown environment with unknown pose and map, the localization and mapping needs
to be solved simultaneously.

This section starts with the introduction to the localization problem. Further the
section Map Representation introduces the concept of feature based maps, landmarks and
correspondence variables. Following that, the Markov Localization is shortly mentioned
as the basis of the following Gaussian filter applied to the localization process. The EKF
explains how this particular Gaussian algorithm can be used to determine the robot’s pose,
using a given map. This leads to the next section where the EKF is applied to the the
more advanced Simultaneous Localization and Mapping problem (SLAM).

For the relevance of this thesis only EKF and online SLAM with EFK has been in-
troduced. Other filter solutions such as UKF Localization, Multi-Hypothesis Tracking,
Occupancy Grid Mapping, FastSLAM, GraphSLAM can be found in Thrun et al. [44].

2.6.1 Localization

The mobile robot localization problem is derived from the general question of how to
determine positons of objects relative to an initial coordinate framework. We assume a
model that tries to determine the pose of the robot relatively to a given map of the envi-
ronment. As Thrun et al. points out [44], there exists certain difficulties when performing
localization. Sensor readings are noisy and in some cases ambiguous assigned to distances
or objects. For example, look-alike rooms in a building may not be able to distinguish with
one sensor reading. Therefore the robot needs to integrate data over time to determine
its pose [44].

Position tracking can be easily addressed by knowing the initial pose. Uncertainty
is introduced by motion which has usually a small effect on the pose in case of smooth
movement. The pose error is assumed to be small and thus the belief is represented by a
narrow unimodal gaussian distribution.

In case of global localization, the initial pose is unknown. The problem is more difficult
to address since Gaussian distributions are usually inappropriate to address it [44]. An-
other difficulty is that surrounding environment can contain moving objects, e.g. walking
people or moving doors, whereas in a static environment the only moving object is consid-
ered to be the robot itself. An important insight of this is the fact that the robot activities
can minimize localization errors [44]. If a robot only passively observes the environment
but not optimizes its control action, it takes no advantage of the different driving paths
with less expected errors.

It is worth noting that the following discussed EKF algorithm is considered to perform
a passive localization, because it does not generate robot control actions [44].
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2.6.2 Map Representation

Maps can be represented in two different ways. Feature based maps present a sparse
sample of objects that have been identified as features, which are represented by an index
in the map. Location based maps, index the measured locations to the corresponding index
of the map. Both representations can formally be written as m = {m1, m2, · · · , mk}. In
the following we will only refer to feature based map representation.

A feature can be represented by its distinct object, commonly called landmarks. Each
feature can be identified by its pose and a signature s. Due to the imprecise sensor
measurement the obtained landmarks cannot be uniquely identified [44]. The definition of
a correspondence variable ct = {c1, c2, · · · , ck} between feature yi

t and landmark mi help
to uniquely identify the observed feature. It is worth noting that ct can be determined in
two ways. Firstly by reducing the uncertainty by using identical landmarks due to system
design and second through estimations via maximum likelihood techniques [44].

2.6.3 Markov Localization

The derived implementation of Bayes Filter algorithm is called Markov Localization. Due
to the fact that a given map m is prerequisite, it is incorporated into the measurement
model p(zt|x̂t, m). For the position tracking an initial belief bel(x̂0) is required. In practice
a Gaussian distribution is used, small centered around the initial pose x̂0 = x0. For global
localization the unknown belief is assumed to be uniformly distributed.

2.6.4 EKF Localization

The EKF algorithm approaches the localization problem by assuming that the map is
represented by a collection of features. For further discussion the landmarks are assumed
to be uniquely identified and there is no data association ambiguity. Thus, the identity of
a feature can be expressed by its correspondence variable ci

t [44].
The filter input can than be denoted as: Previous calculated mean µt−1 and covariance

Σt−1, known feature correspondence vector ct and feature set yt, respectively in measure-
ment notation zt. Further it requires a control step ut and a feature based map m. The
filter calculates the new estimated robot pose as mean µt and covariance Σt. Starting
with the prediction step the estimated mean µt and the covariance matrix Σt of the state
vector are defined and approximated based on the motion model (cf. Sec. 2.4.1) of the
state transition probability. Unlike the EKF as explained in Sec. 2.3.3 is the measurement
update performed per obtained feature. For each feature a measurement prediction is
computed from the measurement model (cf. Eq. 2.19). The predicted measurement zt is
calculated from the relative position and orientation of landmark and predicted mean µt.
The innovation vector is defined as the difference between the observed and predicted mea-
surement (cf. Sec. 2.3.2). In the following update, respectively correction step the Kalman
gain is weighting the innovation vector and covariance. Thus, the Kalman gain scales the
innovation vector based on the measurement prediction uncertainty [44]. The predicted
mean and covariance are corrected by this calculation. The higher the Kalman gain the
stronger the resulting correction. The lower the less certain is the observation. For more

19



Chapter 2. Basic Theory 2.6. Localization and Mapping

then one feature the measurement prediction and update steps are recursively repeated
with the previous calculated mean and covariance. The more features are observed in
one state transition step, the better the final corrected mean and covariance, due to the
additional measurement information. For a complete derivation of the EKF localization
filter, the referred literature is recommended [44].

2.6.5 EKF Simultaneous Localization and Mapping

A robot that is placed in an unknown environment faces the problem that it has no
information about pose nor its surrounding. To navigate successfully, it needs to build up
a map of its environment while simultaneously localizing itself relative to this map [44].
This problem is called Simultaneous Localization and Mapping problem (SLAM).

Considering online SLAM with extended Kalman Filter it can be expanded from the
EKF localization approach described before. EKF SLAM uses feature-based maps, and
models the robot motion and perception as explained in Sec. 2.4 and 2.5 with Gaussian
noise. As described in Sec. 2.6.2 we only consider known correspondence for detected
features. One of the key differences is the absence of the map. Due to the map being
unknown it needs to be built up incremently and therefore it is included in the state
vector. Thus, Xt = (xt, m) denotes the new state vector. The EKF input remains the
same as for the localization case only with the difference that the map is not included.
The filter output contains the mean µt and the covariance matrix Σt of the state vector
Xt.

Considering now the algorithm sequence, first the estimated mean µt and the covariance
matrix Σt of the state variable Xt are calculated. This estimation is only calculated for
the pose vector, whereas the mean and covariance of the landmarks are unchanged, along
with the pose-map covariances [44]. The following steps iterate through the all observed
features. As mentioned in Sec. 2.6.4, each feature has a predicted measurement calculation
zt that is performed. Furthermore the Kalman gain and innovation is calculated per
observed landmark. In case a new feature is detected the corresponding landmark needs
to be initialized. Due to the fact that the Kalman gain contains information for the entire
state variables, the measurement update of one landmark updates the pose and all other
landmarks. Observing a landmark does not just improve the postion estimate of this very
landmark, but that of the other landmarks as well. [44]. As mentioned by Dyran-Whyte
et al. [14], the important insight of this is the strong correlations between the different
observed landmarks. This means the relative location between the landmark is highly
accurate, because the measurement error is common due to the single source (robot). The
more landmarks that are observed the more the correlations among them increase [14].
Due to of the strong correlations the measurement update for one landmark propagate
back to other landmarks.
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Chapter 3

Time-of-Flight Sensor

3.1 General Description

This general section introduces concisely the principle of range image cameras. The Swiss-
Ranger SR3000 is briefly described as an implementation for this kind of sensor an overview
of important parameters is presented.

3.1.1 Range Image Sensor

The Time-of-Flight (ToF) principe is widespread in the area of laser and ultrasonic sensors.
Recent developments have implemented this measurement method into camera sensors.
This 3D or range Image (RIM) cameras measure additionally to the light intensity or
color the distance. The principle is based on modulated light that is sent out by a signal
emitter, partially reflected by an object and mapped onto a sensor array by optics. The
important insight here is that for every object point the correspond pixel in the sensor
array, calculates [18] the distance information. The key advantage of this CCD/CMOS
technology 3D cameras is the concurrent acquisition of a 2D and 3D image in one frame.
Further moving parts, as used by laser scanners, are not needed to acquire the scene.

3.1.2 SwissRanger SR3000

The SR3000 was developed by Centre Suisse d’Electronique et de Microtechnique SA
(CSEM) in Zurich and is commercially distributed by MESA Imaging AG [24]. It is based
on a phase-measuring ToF principle using a light source, that emits continuous amplitude
modulated near-infrared (NIR) light in the range of tens of MHZ [30]. The reflected light of
the scene is imaged by optical lens onto the 3D sensor. A built in optical band pass filter is
placed before the sensor to filter out the received daylight. The combined CCD/CMOS 3D
sensor is integrated onto the camera electronic board that controls the sensor, processing
the image and transfering the depth map to the computer via a USB communication
board [30]. The illumination is based on a set of LEDs mounted symmetrically around
the camera lens. For the purpose of cooling, the camera it is equipped with a built in fan.
The camera software interface enables it to acquire a 2D and 3D image.
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Figure 3.1: Front pictures of SR3000. LEDs are placed around the mounted optical lens.
Slots on the top provide a cooling facility.

3.1.3 Specifications

A list of selected parameters of the SR3000 can be found in table 3.1. The list highlights
important optical and image processing parameters. A full list of specification can be
found in the SR3000 manual [29] and data sheet [23].

Pixel Array Size 176 x 144 (QCIF)
Field of View 47.5 x 39.6 degree
Frame Rate 25fps, typical
Distance Resolution 1% of range, typical
Number of LEDs 55
Illumination Power 1 Watt (average)
Modulation Frequency 20MHz, standard
Wavelength 850nm
Optical Filter Bandwith 35nm (FWHM)
Non-ambiguouse range 7.5m
Focal lenght 8mm
Aperture diameter 5.7mm

Table 3.1: SwissRanger SR-3000 selected parameters.
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3.2 Sensor Characteristics

In this section, the sensor specific amplitude sampling is introduced as phase difference
measurement method. An important configuration parameter that influences this measure-
ment is the integration time. In the following the range accuracy explains the dependency
of the measured distance precision from noise. Beside other noise factors the quantum shot
noise is determined as the most influencing factor of the distance accuracy, respectively
the measured amplitude value. The section target reflectivity depicts the effect of different
received amplitude values of the distance measurement. The last section explains briefly
the sensor parameters with respect to distance calibration.

3.2.1 Phase Difference Measurement

Following the general Time-of-Flight principle (cf. 2.5.5), a specific sensor implementation
for the phase difference measurement is considered. As explained in 3.1.1 the reflected
light signal of an object point is mapped onto an corresponding pixel in the sensor ar-
ray. The phase difference between the emitted and detected signal is measured by each
individual pixel, meaning that each pixel is able to demodulate the incoming modulated
light field [28]. This is achieved by taking at least three sampling points (here four) per
modulation period to completely reconstruct the received signal [21]. As further pointed
out by Lange et al. [21] following the rules of discrete Fourier transform one can calculate
the phase, amplitude and offset of the received signal as

φ = arctan
c(τ3)− c(τ1)

c(τ0)− c(τ2)
(phase), (3.1)

A =

√
[c(τ3)− c(τ1)]2 + [c(τ0)− c(τ2)]2

2
(amplitude), and (3.2)

B =
c(τ0)− c(τ1) + c(τ2)− c(τ3)

4
(offset). (3.3)

Inserting the phase φ into Eq. 2.35 provides the measured distance D towards the object.
Furthermore the non-ambiguouse range L can be calculated based on Eq. 2.36, which
result is L = 7.5m for a modulation frequency of 20MHZ.

As shown in Fig. 3.2 the variables c(τ) denote 4 samples taken at time τ0 · · · τ3. The
thickness of the sample bars indicate the integration intervall for the collected electrons of
that sample. The repeated sampling over one modulation period is necessary to accumulate
additional electrons [28]. This is needed to gain a significant number of electrons to
represent a meaningful sample value.
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3 3D-TOF measurement principle 
 
The 3D camera developed at CSEM is an imaging and distance-measuring device. It 
simultaneously delivers gray level images and the 3D information of the scene. With the 
default settings (i.e. a modulation frequency of 20 MHz), the non-ambiguity distance 
range is 7.5 meters. Distances up to 20 meters can however be measured using lower 
modulation frequencies.  
 
 
The camera can be read by a USB2.0 interface (USB1.1 also possible, but slows down 
the frame rate). The results of the distance-measuring process can be viewed as a 
color-coded image on a PC with a (lateral) spatial QCIF resolution (176x144 pixels). 
The depth accuracy is typically of the order of a few centimeters down to millimeter for 
advantageous scenarios. The distance accuracy depends on distance range, (the AC 
modulated) signal intensity and the DC background illumination. 
 
The distance measurement is based on the Time-Of-Flight (TOF) principle. A detailed 
discussion of the TOF principle and its present implementation in a silicon-based image 
sensor has been published, for example during the RIM Days. The paper can be 
downloaded from  
http://www.swissranger.ch/ 
 
 
The SR-3000 camera is based on a 2-dimensional dedicated image sensor with a 

spatial resolution of 176*144 
pixels manufactured in 
0.6 micron CMOS / CCD 
technology. The camera is 
typically driven with an internal 
main frequency of 20 MHz, the 
emitted light being modulated at 
20 MHz. The measured 
distance is proportional to 
(twice) the time needed for the 
light to travel from the camera to 
the object. In the present CW 
modulation scheme, a phase 
shift is actually measured, 
namely the phase shift between 
the outgoing signal (modulated 

illumination intensity) and the detected reflected signal. The reflected signal is sampled 
four times (samples A0, A1, A2, A3) in a period, each time phase-shifted by 90°. 
 

 
In the following, the phase shift is computed according to equation 1. At the same time, 
the amplitude A can be calculated using equation 2. 
 

 

Figure 3: 4-times sampled incoming light signal. 

 
Figure 3.2: Light signal [29] with four repeated samples c(τ), amplitude, phase shift and
offset.

3.2.2 Integration Time

The integration time allows to control the number of measurement cycles taken to accu-
mulate the measured samples c(τ). This is accomplished per pixel and per specific sample
at time τ0 · · · τ3. As Fig. 3.2 shows each sample can be performed more than once for
different phases 2πN .

The integration time can be set in the ranges from [0,255], where 0 correspond to
integration time 200µs and 255 to 51.2ms [29]. An increase in the integration time has
following effetcs [18]: (1) a better SNR and therefore more precise data, (2) the measured
amplitude increase, thus the pixel saturation level is reached faster, (3) lead to a shorter
measured distance and (4) the acquisition speed decreases. It is therefore important to
find the right adjustment between acquisition speed and distance accuracy.

3.2.3 Range Accuracy

There are several limiting noise factors to the range accuracy of a distance measurement
of the 3D sensor. As derived by Lange [20] the essential ones are electronic and optical
shot noise, thermal noise, rest noise, 1/f noise. The following equation for depth accuracy
is given by:

∆L =
L√
8

√
B + NPseudo

2A
. (3.4)

Where A and B denote the demodulated amplitude and offset as calculated in Eq. 3.2 and
Eq. 3.3, with respect to the number of photoelectrons per pixel and sampling point. L is the
non-ambiguity distance and NPseudo the noise according to rest, 1/f and termal noise [20].

The term
√

B
2A compute the phase error ∆φ which depends on the number of generated

photoelectrons. Lange [20] conclude that the quantum noise can be considered as a limiting
factor for the phase error, respectively to the range accuracy. As pointed out by Oggier et
al. [28], the offset B can be defined as background and the active modulated illumination
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offset according to Fig. 3.2. The amplitude A depends on the emitted optical power,
modulation depth, the spectral transmission properties (filtering), the camera optics (f-
number, aperture ratio), the performance of the charge separation and transport per pixel
(demodulation contrast), the target reflectivity and final target distance.

Considering Eq. 3.4 the amplitude A is the most affecting parameter on the distance ac-
curacy. As shown in Fig. 3.3 for small amplitudes the distance resolution, respectively the
standard deviation of the amplitude increase due to photon shot noise, due to high values
the standard deviation converge to a smaller number. This implies that for long distances,
where low optical energy is backscattered the measured distance offset increases [18]

Figure 3.3: Fitted curve into measured amplitude values vs standard deviation. The mean
and variance of an amplitude value was calculated per pixel. Afterwards the point was
plotted. The different colours indicate a different series of measurement. It includes the
effects of light scattering and multiple path reflections, which add additional noise to the
amplitude A.

3.2.4 Target Reflectivity and Angle of Incidence

Different target reflectivity, respectively different demodulated amplitudes A have different
effect’s on the distance measurement. As shown by Kahlmann [18], for a high targets
reflectivity the measured distance decrease, whereas increase for low amplitudes. The
similar effect occurs with the angle of incidence. A large angle decreases the backscattered
engery. Thus, the measured distance become longer. The important inside here is that
for a normal reflection to the sensor plane both effect compensate each other to a large
degree [18]
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3.2.5 Calibration

Camera calibration is used to determine which object coordinates are mapped onto which
pixel of the sensor array. This is performed by the a camera model that defines intrinsic
and the extrinsic parameters. The simplest and ideal model is the pinhole camera, where
the lens is exchanged by a very small hole. The important intrinsic parameters are the
focale length and principal point. The extrinsic parameters denote the distortion of the
optics, as radial and decentral parameters [18]. The SR3000 provides a calibration file
that consider principal point, focal length, pixel size and pixel number for transforming
the distance data into cartesian coordinates 1.

Further a fixed pattern noise (FPN) correction is assigned for each pixel. As pointed out
by Kahlmann [18], the FPN can be calculated with respect to following procedure. The
true distance is measured based on geodetic total station and for every pixel the nominal
distance is calculated. A number of camera measurements are used to calculated the
difference between the calculated and measured distance. The difference is stored as offset
in the calibration file. An important preliminary is that the measured camera distance
per pixel is corrected, with respect to the angle of incidence, the target’s reflectivity and
the distance-to-distance dependencies [18].

1The calibration file is only applied in case the provide software API function is used.
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3.3 Interferences

The main disturbing effects are explained, with respect to the distance measurement.
Scattering and temperature are determined as the most influencing ones. Following that,
multiple reflection show the dependency of the scene on the measurement result. Finally
the effects of interference on the image acquisition is presented as image noise, motion
blur and over saturation.

3.3.1 Scattering

Light scattering is an effect that occurs due to the internal setup of the camera [29]. Not
all incoming light that strikes the surface of a 3D sensor array is absorbed. Some part of
it is reflected back to the lens. This light is then partially reflected back to the sensor.
This can happen several times, thus a pixel also contains information which belongs to
neighboring pixels [18].

The result of this effect has a major impact on the distance accuracy. Measurements
that are performed by Kahlmann [18] show a distance variation in for range of a few
centimetres. For example in case in case of over saturation. The amplitude peak was
spread to neighboring pixels, thus a shorter distance was measured. But even pixels that
are far away form the reflected target object are influenced. Scattering disturbs the whole
measurement process due to its influence on almost all the sensor arrays at once. I [18].

3.3.2 Mixed Pixels

Similarly to the scattering phenomena is the mixed pixel effect. They are well known
by range finder applications such as the laser systems. They cause false data within a
distance measurement because of overlapping measurement form different targets [18].
For example, if two targets reflect to one and the same pixel, the energy of both combine
to one distance information.

Mixed pixel can be differantiated in spatial and amplitude based pixels [18]. Spatial
mixed pixels can be explained as a vector addition of two target vectors. The vector
length represents the received signal amplitude, the centre angle and the measurement of
the demodulated phase difference from the emitted signal. The addition provides the final
result of the pixel vector. The amplitude mixed pixel results in a overlapping, neighbouring
pixels with a small distance difference. The higher signal amplitude of one pixel exposes
the lower amplitude of the neighbour pixel and thus leads to a false distance and amplitude
data [18].
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3.3.3 Temperature

The sensor is influenced by internal and external temperatures. The internal temperature
influences the distance measurement during the a warm up period. The measured am-
plitude A decreases during the first minutes and converges to a lower value afterwards.
Otherwise distance starts to increase and converger to a higher value. In case of external
temperature changes the higher the temperature the greater the distance measurement.
For room temperature the SR3000 seem to be stable [18].

3.3.4 Multiple Reflections

The problem of multiple reflections or multi path scattering occurs in scenes where the
backscattered light from the object has more than one path to propagate back to the
sensor [29]. Fig. 3.4 illustrates a corresponding scene. As investigated by Guomundsson
et al. [16] can be the corners depth measurement within two walls very distorted. The
measured walls are very rounded at the corner and the angle between the walls is not 90◦.

Figure 3.4: The figure [29] depicts schematically the interference from B to A with respect
to two different reflection points.

3.3.5 Image Noise, Motion Blur and Saturation

Changing the integration time can lead to one of the following described effects. If the
integration time is too small the accumulated amplitude charge is also small. Thus the
range accuracy is degraded and the effect of photon shot noise is noticeable (cf. 3.2.3).
This can be seen in a noisy amplitude and distance image. By choosing a long integration
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time the distance accuracy improves (cf. 3.2.3, 3.2.2) and and the images contain less
noise. For moving objects this results in a overlay of different object points in one pixel.
The objects in the images become blurred. Due to the longer accumulation of amplitude
charges the pixel gets saturated faster. Hence, object points with high reflectivity or close
object points gets overexposed.

One camera feature is the auto integration time. It adjusts automatically the time
that lowers the noise to a sufficient level. The downside is that the frame rate varies to a
wide range, depending on the used integration time.

3.4 Comparable Vision Based Systems

A short overview of important parameters is provided to compare the SR3000 with other
vision based systems. With respect to the field of mobile robotics, two comparable vison
systems are chosen. This optical imaging systems have proven in related works similar
implementation to the investigating subject of Vision SLAM (Sec. 4). Figure 3.2 represent
typical values with no claim of completeness.

SR3000 nonocular camera stereo vison cameras
Measurement Principe ToF Intensity Intensity
Sensor Type CCD/CMOS CCD or CMOS CCD or CMOS
Pixel Array Size 176x144 > 640x480 > 640x480
Field of View 47.5◦x39.6◦ 50◦-100◦ (H) 50◦-100◦ (H)
Frame Rate 25fps, typical 30-100fps 30-60fps
Distance measurement yes no yes, with triangulation
Distance Resolution cm non mm
Non-ambiguouse range 7.5m, typical no distance > 7.5m
Motion blur yes fast movement only fast movement only
scattering effect yes low low
multipath effect yes no no

Table 3.2: Comparison of SR3000 with monocular cameras and stereo vision systems in
the field of Vision SLAM.
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Vision SLAM

In the last decade the mobile robot community has been investigating SLAM in general
at a theoretical and practical level. Whereas the theory and concept can be considered
as a solved problem, practical solutions suffer from the lack of generality and are mostly
restricted to particular implementations and restriction [14]. E.g. slow or smooth robot
motion, multiple, specialized and accurate sensors, simple unambiguous landmarks [9].
Specially the building of rich and large feature maps is still a limitation factor for real
time processing.

The Simultaneous Localization and Mapping problem has been implemented in various
areas. From indoor and outdoor robots to underwater and airborne systems [14]. Most
commonly used sensors are laser range finders, sonic and recently to some extent camera
sensors. In the following, only the camera is considered as a measuring sensor, which falls
into the realm of vision based SLAM. The following sections provide a brief overview of
some published works in that area. In particular the MonoSLAM algorithm of Davison [11]
is explained in more detail, because of the relevance to the subject of this thesis.

4.1 General Overview

During the time the SLAM problem was theoretically well determined researchers began
to expand their implementation in the domain of vision based sensors. One of the first
works was presented by Davison and Murray [8], using stereo cameras on an active head
mounted on robot with goal-directed navigation. An automatic feature detection, mapping
and tracking was presented at a real time processing rate of 5Hz. Davision and Kita [7] ex-
tended this method to the presence of unknown slope variations. An alternative approach
to Visual SLAM was suggested by Drocourt et al. [13] using omni-directional stereo vi-
sion system. Following works of Davison [9], [11] presented an algorithm working with a
monocular camera. So far several contributions have been proposed based on the stereo
vision cameras e.g. [43], [42], on monocular camera e.g. [15] as well on mixed solutions with
camera and other sensors e.g. [19]. More recently published work by Sim et al. [39], [38]
used SIFT features in combination with a Rao-Blackwellised Particle Filter (RBPF) to
build a large scale map from stereo vision camera and by Milford and Wyeth [26] demon-
strating with a single consumer camera mounted on a driving vehicle, localization and
mapping using a computationally expensive process of tracking landmarks.
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4.2 MonoSLAM

MonoSLAM is a algorithm introduced by Davison et al. [11] based on a sequential approach
to map building and localization with a step-by-setup fashion. Among other visual based
SLAM methodes its specific characteristic contribution is the feasible usage of a single
camera as a sensor, using a EKF based algorithm to calculate the first order estimation
of the robot (camera) and map feature positions [9] in a sparse map of visual landmarks.
Furthermore it proposes a technique of active feature measurement and mapping, the use
of a general motion model for smooth camera movement, and solutions for monocular
feature initialization and feature orientation estimation [11].

Being restricted to sparse feature maps rather than dense visual maps, which are
computational intensive, the single camera SLAM algorithm can be implemented within
real time systems. Possible applications are a single camera used as a sensor for robot
navigation, a wearable robot for motion estimation of a device worn by humans to assist in
tasks such as industrial inspection, or television used to provide camera motion estimation
for on-line augmented reality [9]. In the following a general overview of the MonoSLAM
algorithm is presented with no claim to be complete.

Active Feature Measurement     Feature  Initialization

      EKF(State Space)
        EKF (Feature Orientation)

          MAP

Feature List    (Orientation)

exiting feature       measured new featurefull initialized
feature position

new frame

update
input

input

Figure 4.1: Overview of the MonoSLAM algorithm as presented by Davison et al. [11].
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4.2.1 Map Representation

Following Davison et al. [11] a map represents the position and orientation of the features
and camera position in a 3D coordinate system. The location and bearing are probabilis-
tic estimations and continuously updated during camera motion and feature observation,
using a EKF based algorithm to minimize their uncertainty (cf. Sec. 2.6.5, 2.3.3 2.3.2).
New features can enlarge the map whereas unstable features can be deleted. In a proba-
bilistic map features can be displayed as points enclosed by a 3D ellipse expressing their
uncertainty of the current position. Mathematically the map can be expressed by its state
vector x̂t and covariance matrix Pt for the discrete time step t (cf. Sec. 2.2.1, 2.1.3 and for
more detail to [11]),

x̂t =





x̂v

ŷ1

ŷ2,
...




, Pt =





Pxx Pxy1 Pxy2 . . .
Py1x Py1y1 Py1y2 . . .
Py2x Py2y1 Py2y2 . . .

...
...

...




. (4.1)

Where the estimated camera pose is defined as x̂v with 3D position, orientation, velocity
and angular velocity, and estimated feature state ŷi denote its 3D position [11]. The
covariance matrix consists of a sub matrix for the camera state uncertainty Pxx and feature
state uncertainty Pii. They are displayed within the 3D map in an elliptic form and
updated after every EKF measurement step. The cross correlations between features
and camera Pyix and among feature themselves Pyiyj are not displayed in the map. It is
essential to emphasize that the strong correlations between the different features are an
important insight of the general EKF-SLAM problem. Meaning that, the relative feature
positions among each other are very well known and thus the covariance matrix Pyiyj

converges towards zero, whereas the absolute position of camera and feature still remain
uncertain through their motion and measurement noise (cf. Sec. 2.6.5 and refer for more
detail to [14]).

4.2.2 Assumptions

Known Objects
The single camera SLAM as introduced here requires prior information for the system
start-up about the surrounding environment. This can be achieved by placing a known
object in front of the camera, with four features at known positions and patch [11]. For the
start-up the predefined patches, e.g. corners of a black rectangle, are searched for within
the image frames at known postions. In case of a match of all four patches the camera and
feature position can be considered as initialized. Note that the initial camera positions is
given a certain amount of uncertainty, which quickly converge to a smaller limit within
the next frames. Davison et al. [11] pointed out that there are two good reasons for this
kind of initialization: (1) Because of the unknown depth a known target allows to assign a
precise scale to the estimated map and motion. (2) Predict-measurement-update tracking
can be started without any further initialization steps.
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Figure 4.2: Example for the 3D map. Features are points surrounded by their uncertainty
ellipses. Coordinate framwork orientated relative to the camera origin located within fix
targets.

Constant Light
A prerequisite for a successful working MonoSLAM algorithm are constant light condi-
tions. Monochrome images that vary in their intensity from frame to frame, are difficult
to measure features again. For features matching using cross-correlation a templet patch
will fail due to considerable differences of the pixel intensity between the template and the
image search region.

Calibration
Active feature measurement and map building requires a camera model. Within the
MonoSLAM approach a pinhole camera model is used, which allows the projection of the
feature position onto the image plane. While the model telling us the image position
gives the position of the camera and feature, it is not invertible, which means the image
measurement and camera position cannot provide the feature 3D position [9].

A camera calibration needs to provide the following parameters of the standard pinhole
camera model as input for the MonoSLAM algorthm: Focal length, principal point and
pixel element densities per direction.

4.2.3 Motion Model

Using an agile camera as a sole sensor requires a different modelling of the motion model
as for a wheeled robot moving on a plane (cf. Sec. 2.4). A main difference is the absence
of knowledge about control actions as calculated by the robot and derived in Sec. 2.2.2.
However, as denoted by Davison et al. [11] the unknown dynamics can be as suposed
as additional noise, respectively process uncertainty and thus modeled probabilistically.
The camera is assumed to move constantly over time, whereas on average undetermined
accelerations are considered as a Gaussian distribution [11], where very large acceleration
is assumed to be relativly unlikely [9].
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4.2.4 Feature Extraction

Features are searched within a randomly placed search box in every acquired image frame.
It is assured that the chosen position should not overlap with any existing feature and that
any detected feature is not expected to disappear from the camera view immediately [11].
Within that search box, feature detection is performed by using the standard operator of
Shi and Tomasi [36]. Following the approach of Davison and Murray [8] a 11x11 pixel
image patch is extracted as a long-term landmark.

4.2.5 Initialization of New Features

One of the characteristics of the feature measurement model is that it is not invertible [9].
The 3D position of the feature is unknown and needs to be estimated before the predict-
measurement-update steps can start. The method introduced by Davison et al. [11] as-
sumes that the feature must lie along a semi-infinity line with the estimated camera posi-
tion as origin set, heading to infinity (practically 0,5-5m) through the viewing direction of
the feature. A set of discrete depth hypothesis are uniformly distributed along that line,
analogous to a 1D particle distribution. Assuming that the line remains unchanged within
the next frames, each hypothesis of a 3D position is projected into the 2D image, enclosed
by an elliptical search region representing the uncertainty of the image location (based on
the uncertainty of the camera and feature position).

Matching features within each ellipse is performed by a normalized cross-correlation
search of the template patch that has been extracted by the detection operator (cf. Sec. 4.2.4) [11]
. Features that match produce a likelihood for each particle and their probability in the
distribution are reweighed [9]. The procedure - projection - seach - match - weight is
repeated and the distribution shape changes towards a more Gaussian distribution. When
the standard derivation of this quasi-gausian probability distribution reaches a certain
threshold it is safely approximated as Gaussian and the feature can be initialized as a
point into the map with its 3D Gaussian distribution [11].

4.2.6 Active Feature Measurement

For re-observed features that are already within the 3D map a measured attempt is per-
formed within each new image frame. Before performing a measurement the feature po-
sition within the image is predicted based on the current camera and feature position in
the state vector. With this intermediate step only regions of interest are searched for a
possible match. This narrows down the search and maximizes the efficiency [11]. In the
following the key steps are explained as introduced by [11].

• Firstly, the point feature position, - relative to the camera position based on the
camera and feature estimation in the state is determined.

• Next, for measurement prediction the feature position is projected onto the image
plane using the the standard pinhole model.
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• The perspective-projected feature coordinates are warped with radial distortion to
obtain the final measurement prediction of the feature position in the image plane.

• Finally the Covariance innovation matrix for this warped measurement prediction is
calculated (cf. Sec. 2.6.5, 2.3.3, 2.3.2 for derivation of innovation within EKF).

The Innovation matrix represents the a 2D Gaussian probability over the predicted image
coordinates. Choosing a standard deviation of 3σ defines an elliptical region in the image
plane [11].

The key contribution by Davison et al. is to use the elliptic region as search region for
re-observed feature measurement. High innovation covariance provides more information
about estimated camera and feature positioning. Taking advantage of that, it is possible
to select only those predicted image coordinates with high innovation covariance, and thus
limiting the number of features to be searched per image frame (10-12) [11]. Finally a
cross-correlation search for the template patch extracted during feature initialization is
performed in the elliptic region. The patch is tested for a match at each location until a
peak is found [11].

4.2.7 Estimation of Feature Orientation

Initially the assumption is that the feature corresponds to a locally planar region in 3D
space [11]. The feature orientation is set during initalization as surface normal parallel to
the vector from feature to camera. By re-observing the landmark the feature orientation
is corrected. The updating process is separated from the main SLAM algorithm of state
vector and covariance matrix EKF update.

Following Davison et al. [11] the initial camera position and local surface orientation
for each point are maintained in a separate list. The prediction of a warped feature from
the current viewpoint is compared to the obtained measurement. The difference between
the prediction and measurement is used to update the surface orientation. The process
repeats itself when the landmark is measured again.

4.3 Example MonoSLAM Framework

In the following section there are presented examples of 3D maps and camera image
frames of a MonoSLAM application. The figure colour code follows as: red = successfully
measured, blue = attempted but failed measurement, and yellow = not selected for mea-
surement on this step [11]. The demonstrated sequences depicted the whole life time of a
sequential build map. Starting from initializing the coordinate framework at the system
start-up, to active feature measurement and feature initialization during camera move-
ment. Also an automatic map management is presented, where the features measurement
is not active or has failed and therefore features are deleted.
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4.3.1 System Startup

The camera is placed in front of a black rectangular target with white background for
the coordinate framework initialization. Fig. 4.3 shows the four corner template patches
projected into the image frame overlapping the rectangular target. The quadratic patches
appear within a yellow frame because measurement and tracking is disabled. In the cor-
responding 3D map the corners are depicted as point features located within a fix frame
relative to the camera coordinate system.

Figure 4.3: 3D map and image frame with target corners at system startup.

36



Chapter 4. Vision SLAM 4.3. Example MonoSLAM Framework

In the next image frame tracking and mapping has been enabled. Fig. 4.4 shows in the
image frame the locked on features with their initial assumed uncertainty ellipses based
on the covariance sub matrix Pyiyi as explained in Sec. 4.2.1. The red colour indicates
that the detected features are actively measured (cf. Sec. 4.2.6). Derived from the known
postion of a fixed target in relation to the camera postion the camera pose can then be
estimated. This is performed by the EKF update of state vector x̂t and covariance matrix
Pt as depicted in Eq. 4.1.

Figure 4.4: 3D map and image frame with target corners and active measurement at
system startup.
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Fig. 4.5 shows that due to the active measurement the uncertainty ellipse is reduced
by the EKF update within the next image frames.

Figure 4.5: 3D map and image frame with target corners, active measurement and reduced
uncertainty ellipses at system startup.
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4.3.2 Feature Initialization

Each image frames is actively scanned for new features by the feature detection operator
of Shi and Tomasi (cf. Sec. 4.2.4). Fig. 4.6 depicts a match within the green search box
in the image frame. As shown in the 3D map, the depth of the new feature is initialized
as a green particle distribution along the cyan viewing line of the feature as explained in
Sec. 4.2.5. The corresponding uncertainty ellipse of each postion hypothesis is coloured
cyan within the image frame.

Figure 4.6: 3D map and image with partial feature initialization.
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Fig. 4.7 illustrates the particle distribution in a subsequent frame in the 3D map.
The particle size denotes the re-weighted probability distribution based on their matching
likelihood of the template patch in the image frame within the elliptic search region. The
distribution profile converge to a Gaussian distribution. The cyan ellipse in the image
frame represents a search ellipse for each feature position hypothese.

Figure 4.7: 3D map and image with partial feature initialization.
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Fig. 4.8 shows, the same feature a couple of frames later. The feature did convert from
a partially initialized feature into a fully initialized feature, while particle distribution
reaches a certain threshold probability for a Gaussian profile. The 3D map depicts the
feature postions uncertainty, the 3D ellipse is colored yellow. Note that yellow indicates
that, the feature is not active, meaning not used for active measurement updates. The
image patch of the detected region coloured yellow in the image frame is stored and
furthermore used as a template patch when the feature becomes active.

Figure 4.8: 3D map and image with a converted full initialized feature.
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Fig. 4.9 depicts the same feature on frames later. The feature is actively measured
(coloured red) EKF update of its pose and covariance matrix that is performed visibly
by the shrinking uncertainty of the ellipses in the 3D map and image frame. The green
search box illustrates the parallel performed search for new features in the arrived image
frame (cf. Sec. 4.2.4)

Figure 4.9: 3D map and image with full feature initialization after EKF update step.
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4.3.3 Active Feature Measurement

Fig. 4.10 illustrates the active measurement of 6 re-observed features. For each feature the
new feature postion in the image frame is obtained as described in Sec. 4.2.6. For each
feature a sequencial EKF update of the state vector and covariance matrix is performed.
Thus the measurement is updated for of each re-observed feature in the image frame
helping to reduce uncertainty ellipses of all active features.

Figure 4.10: 3D map and image with ative measurement and EKF update.
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Fig. 4.11 depicts the feature subsequent frames later. Compared to Fig. 4.10 are the un-
certainty ellipses highly reduced with respect to the smooth camera motion (cf. Sec. 4.2.3).
The changes of the camera pose is small compared to the reduction of the uncertainty el-
lipses. Note that the uncertainty ellipses of the observed features are reducing as the
features are observed more within the image frame.

Figure 4.11: 3D map and image with active measurement and EKF update with subse-
quent reduced uncertainty.
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4.3.4 Map Management

Not every feature can be reliably measured within the image frame. The MonoSLAM
algorithm takes care of the feature state and performs only sensible measurement updates.
Fig. 4.12 illustrates the different feature states. The yellow inactive features are too far
on the left hand side of the image frame and thus not reliable for measurement. Only
the three features coloured red are actively measured and used for a state and covariance
EKF update. The measurement for the feature coloured blue on the right hand side of the
image frame failed and therefore cannot be used for the measurement update either. The
feature is deleted if the measurement success rate fails under a certain threshold (< 50%)
value.

Figure 4.12: 3D map and image with different feature states.
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Fusion

Conventional cameras capture the environment geometry through photemetric sensors
transforming light into pixel intensities. The transformation projects the 3D world into
a 2D space, while losing the direct depth information. Recontructing three-dimensional
structures from images falls in the realm of Computer Vision known as Structure from
Motion(SFM) or Computer Stereo Vision (CSV). SFM evaluates motion for an object
over time in order to regain its 3D geometry, whereas CSV calculates the distance from
comparing the two images while shifting them together.

Considering non vision based system such as laser range finders or sonic systems, they
are commonly used to gather depth information of an environment. The 3D camera as in-
troduced in Chap. 3 supports both of the two apporches. A 2D image is obtained through
a photometric sensor and the depth information is measured through active light measure-
ment by the ToF principle. In this section we propose an approach that uses the camera
generated distance and 3D data within the Visual SLAM algorithm descripted in Chap. 3,
instead of using a 2D image to reconstruct the depth and 3D structure information.

5.1 Visualization of Distance Data

With the conventional 2D approach (SFM) it is difficult to extract features in real time
and to generate reliable long-term maps. When it comes to a dense map of features or
objects it seems even more difficult if not impractically. Because of the inherent distance
measurement of the 3D camera, solving this problem is straight forward. For each pixel the
corresponding distance point is calculated in the 3D environment as described in Chap. 3.
These points can be easily mapped into a 3D map in real time, which results finally results
in a dense 3D map. Fig. 5.1 outlines a 3D map including structured point clouds.
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Figure 5.1: Drawing of 3D map including distance points.

5.2 Feature Initialization Using Distance Data

One starting point to actively apply the measured distance to the MonoSLAM algorithm
introduced in Chap. 4 is to use depth for feature initialization as described in Sec. 4.2.5.
In our approach we reduce the range that the particle distribution is assumed to lie on.
By knowing where the feature has been detected in the 2D images the corresponding xy
coordinates in the 3D map can be determined. Based on that we can calculate with the
knowledge of the depth information the corresponding pixel in the 2D image and, the
feature distance. Due to the uncertainty for the measured distance accuracy we apply the
standard deviation σ to the range limits (cf. Sec. 3.2.3). Therefore the reduced range for
feature initialization can be denoted as

d =
√

x2 + y2 + z2 (measured data), and (5.1)

λ = [d− σ, d + σ] (particle range). (5.2)
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Figure 5.2: Outline of feature initialization with different particle ranges.
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5.3 Identifying 3D Features

In Visual SLAM and in particular MonoSLAM (cf. Sec. 4.2) identifying a point features
is based on a 2D image. The feature detector does not evaluate the 3D structure of the
match. Therefore no conclusion can be made where the feature has been detected, e.g. in
the plane or on the edge. To provide depth information a 2D feature needs to be initialized
e.g. as described in Sec. 4.2.5. However, the resulting 3D feature location does not provide
information about the feature structure.

The following approach describes a method to use the inherent measured 3D coordi-
nates by the camera, to find information about the features structure. Using this in the
MonoSLAM algorithm would increase the reliability of the detected feature and thus the
building of a long term maps generated in real-time. The following mathematical concept
of the structure tensor describes a method to derive 3D corners from a 3D image.

5.3.1 Structure Tensor

Object structure in an image can be highlighted by its gradient information. It can be
used to identify features like edges or lines. A special method of representing gradient
information is by using the ”structure tensor” as explained by [4]. The 3D structure
tensor is formed by the matrix

S =




I2
x Ixy1 Ixz

Ixy I2
y Iyz

Ixz Iyz I2
z



 . (5.3)

Where Ix,y,z denotes the partial derivative of image I along the x, y, z-axis. The eigen
decomposition of matrix S provide its eigenvalues λ1, λ2, λ3 and eigenvectors e1, e2, e3. It
can be visualized as a 3D ellipse spanned by the eigenvectors with the radii equal to its
corresponding eigenvalue. With this representation it is possible to determine simple 3D
structures. Fig. 5.3 depicts examples for different elements.
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: An example for ideal 3D structure elements with decomposit eigen values. (a)
ideal plane, (b) eigenvalues represent line, (c) ideal curvel, (d) eigenvalues represent 2D
ellipse, (e) ideal corner, (f) eigenvalues represent sphere

As depicted by Fig. 5.3 (f) the eigenvalues for a corner are represented ideally by a
sphere and thus have equal values. Due to the lack of time it was not possible to determine
an analytic method to judge which form is represented by which eigenvalues with respect
to a single threshold determining the degree of similarity. This has been deferred to future
investigations.
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Implementation

6.1 Assembly

The Assembly gives a short overview about the used hardware and software. Firstly the
used main hardware components are shown, secondly the relevant software is listed.

6.1.1 Hardware

The main hardware components consist of a standard computer (macbook, 2GHz Intel
Core Duo, 2GB RAM), an USB connector cable, the SwissRanger SR3000 ToF camera,
an ACDC converter including a +12 DC power connector. Following figures 6.1 depict the
schematically and real hardware setup including auxiliary equipment.

Computer

SR3000
USB 2.0

12V DC

230V AC

Figure 6.1: Schematically overview left real setup right.

6.1.2 Software

The software components can be grouped in three different categories: (1) Operation Sys-
tem related, (2) camera related, (3) MonoSLAM related. The installed operation consists
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of a 32 bit Linux, where Ubuntu 8.04 LTS was chosen as the preferred distribution. In
oder to have Linux as a native operation system on the macbook, a separate partition was
created to ensure that Linux and Mac OSX can run separately. The reason to use Linux
and not for example Mac OSX comes with the fact that further used software as the cam-
era API and the MonoSLAM Framework have been proven to run on Linux already. The
camera related software consists of the SwissRanger SR3000, USB driver and Application
Programming Interface (API), the Shared Memory Server and Client. The camera API is
part of the camera delivery, whereas the Shared Memory Class, Server and Client are addi-
tional software components provided within this thesis work. The MonoSLAM framework
consists of a powerful C++ library and an application implementing a vision based SLAM
approach based on a monocular camera as sensor. Additionally software modifications has
been applied in oder to utilize the SR3000 as a sensor. Following figure 6.2 provides an
overview of the used software components:

Operation System Linux 

Application Programming Interface 

MonoSLAM Framework

Shared Memory Server / Client 

VW35 MonoSLAMSceneLib

CSEMSHMShared Memory

libUSBSR

libUSB

Figure 6.2: Software building blocks and their interfaces.

6.2 Camera Interface

Within this section the camera specific interface, the implementation of the Shared Mem-
ory Class and the Server and Client application are explained in more detail.
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6.2.1 SR3000 API

The camera Application Programming Interface consists of several functions to setup the
camera. The amplitude and distance data is acquired and processes the images distance
further. All functions which are attached to the camera software are combined in the
interface library libusbSR. This interface can be used to connect C,C++ code to the
camera. Table 6.1 provides a list and a short description of important library functions.
A complete and detailed description can be found in [25].

SR Open & Close Opens and closes a connection to the camera via the USB device and
assigns a unique camera handler to it.

SR Set Buffer Sets a buffer that allocates free space on the computer. The camera
image (first place amplitude second distance) is copied from the sen-
sor into the buffer. However, the buffer size needs to be defined by
the user

SR Acquire Acquires the image (amplitude and distance). The distance is given
in spherical coordinates and corrected according to the focal length,
principal point and FPN offsets in the calibration file (cf. Sec. 3.2.5)
Further a median filter (3x3) can be applied if needed

SR Get Image The helper function returns the index to the first position of the
image in the buffer. A offset parameter allows it to jump directly to
the starting point of the amplitude or distance values.

SR Coordinate
Transformation

Transforms the spherical coordinates into cartesian (x,y,z). Three
versions exist for the data type: (1) double, (2) float, (3) unsigned
integer. For each coordinate a separate buffer needs to be be allocated
by the user.

SR Set Amplitude
Threshold

It sets the maximum allowed amplitude value. Pixels with a lower
value are filtered and set to ’0’

SR Set Integration
Time

Sets the integration time by intervalls from 0 to 255 (cf. Sec. 3.2.2)

SR Set Auto
Illumination

If set changes the integration time automatically based on the per-
ceived intensity. An integration time interval, an illumination thresh-
old and target intensity value needs to provided. The given threshold
defines the percentage of the number of amplitudes that are over a
certain intensity value. The integration time is slowly adapted until
the threshold has reached the target intensity value. For example:
start at 10% over intensity 50 will stop at 10% over intensity 100.

SR Set
Modulation
Frequency

Set the modulation frequency of the camera LEDs.
This will change the non-ambiguous distance range.
30MHz → 5m, 20MHz → 7.5m, 19MHz → 7.9m
(cf. Sec. 2.5.5)

Table 6.1: SwissRanger SR-3000 interface library selected functions.
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6.2.2 Shared Memory and Semaphore

The Shared Memory (SHM) Class is based on C++ code. It interconnects the camera
API with a shared memory segment hold by the operation system. Shared memory can
be used for interprocess communication, where different processes, respectively programs
communicate via the same memory segment of the computers random access memory
(RAM). In addition to the shared memory a control mechanism has been added that ensure
that only one program can access the shared memory at time. A common solution for this
problem is the semaphore (SEM) concept. In a practical implementation the semaphore
function checks whether an access is possible or not. It waits until the lock has been cleared
before the next in the shared chain is accessing the resource. Semaphores are commonly
used in the synchronization of multiple processes or applications that want to access the
same resource. For the relevance of this implementation semaphores and shared memory
are considered from a practical point of view. (We refer to relevant computer science
literature for more information.) For this implementation a shared memory segment and
semaphore access have been chosen for several reasons:

• The additional layer between the camera API and the MonoSLAM framework pro-
vide more independence with respect to the camera functions. Within the MonoSLAM
classes no additional camera specific functions need to be implemented. Only the
shared memory class which encapsulate the API from the higher software layers.

• Separation of the camera and MonoSLAM applications. Its is possible that more
than one application can easily access and acquired the same image frames.

• Fast and easy accessible data in comparison to Unix socket or the common TCP/IP
network communication. Additional effort is needed to be undertaken to implement a
proper communication sequence and assure the needed performance for grabbing the
image. With respect to this context shared memory access offers a straightforward
and easy methode.

• Reliable and basic operation system support. Unix System V has on default a built in
Application Programming Interface for shared memory and semaphore management.

The downside of this approach lies in the inherence of an extra layer between the camera
and the application software. It introduces additional complexity and an additional delay
for image acquisition. Further a more simpler solution for access control could be imple-
mented, due to the fact that maximal two processes have access to the shared memory.
However, the overhead is rather small and the introduction delay can be considered as
marginal. In the following, Tab. 6.2 lists the most relevant shared memory and semaphore
functions.
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Shared Memory
Constructor

Creating a the shared memory when initialized with the allocated
memory size. To guarantee unique access a SHM key is gener-
ated. Based on that key the operation system assignes a SHM ID
to the established segment. This is archived with the system func-
tion shmget. The ID is important for further access to the shared
memory. The constructor checks if the SHM key and the SHM ID
already exists. If yes, it retrieves the existing SHM ID.

SHM Attach Attach to the shared memory with respect to the SHM ID. The
system function shmat returns the starting address of the created
memory segment. This address is used to perform read and write
operation on the shared memory.

SHM Detach Detaching from the shared memory with respect to the starting
address. By use of the system function shmdt the operation system
releases the mapped SHM segment from the address space of the
calling process.

SHM Delete Deletes the shared memory with respect to the SHM ID. The system
function shmctl will mark the memory as to be deleted. It will
be finally destroyed after the last process has detached from the
memory.

SHM Recover Recovers the shared memory with respect to the shared memory
key. This function can be used in case the memory segment has
been deleted. The same SHM ID is generated based on the SHM
key. If the segment already exists only the memory ID is stored.

Semaphore
Constructor

Creates the semaphore set based on a SEM key. The retrieved
SEM ID is assigned by the operation system. This is archived with
the system function semget. Further the semaphore is set to the
unblock state. The constructor also checks if the key already exist.
If yes, the existing SEM ID only is retrieved.

SEM Operation Increments or decrements the semaphore variable to unblock or
block the semaphore. The operation is defined by the values -1 and
1 and is performed by the system function semop. If a semaphore
has been blocked, processes that try to decrement the semaphore
will be put to sleep until it is incremented again.

SEM Delete Deletes the semaphore with respect to the SEM ID. The semaphore
is immediately removed.

SEM Recover Recovering the semaphore with respect to the SEM key. If the
semaphore has been deleted then the same SEM ID is recreated.
In case the SEM ID already exists it is stored for further handling.

Table 6.2: Shared memory and semaphore class selected functions.
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6.2.3 Shared Memory Server

A control program has been developed in C++, in order to acquired camera images and
to store them within a shared memory segment . It is based on the camera API of the
SR3000 and the Shared Memory and Semaphore Class. Following tasks are performed by
the Shared Memory Server application (cf. Fig. 6.4) .

• Creating, connecting, reconnecting, and deleting a shared memory segment by us-
ing the Shared Memory and Semaphore Class. Defines the memory segment data
structure. Allows access to the shared memory through the semaphore operation.

• Initialising the camera by defining a camera handler, setting up camera buffers for
image and coordinate transformation. Further settings have predefined values for
integration time, the amplitude threshold and auto illumination flag.

• Acquire image frame through camera API function and copies the amplitude and
distance values, Cartesian coordinates and the 8-bit grayscale image to the shared
memory. Updating the new image flag and image counter variable of the shared
memory data structure.

• Transforming spherical distances into Cartesian coordinates (x, y, z) with respect
to the camera calibration (cf. Sec. 3.2.5). Convert the amplitude data into a 8-bit
grayscale image.

Camera SHMServer
 connect  set buffer set integration time  set amplitude threshold 
 acquire  get amplitude data get distance data 

 create  get SHM ID get SEM ID 

 copy  amplitude data distance data (x,y,z) data grayscale image set new image flag set image counter

 convert  to (x,y,z) to grayscale 

 acquire ... 
Figure 6.3: Communication flow from/to camera, server application and shared memory.
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6.2.4 Shared Memory Client

The Shared Memory Client connects to the existing shared memory and query the image
date of a single frame based on the Shared Memory and Semaphore library Class. With
the stand alone client a snap shot of the the images values can be taken, in order to save
the image values to a file for further processing. The following tasks are performed by the
Shared Memory Client application (cf. Fig. 6.4).

• Query the shared memory and semaphore ID by using the Shared Memory and
Semaphore Class. Access the shared memory through semaphore operation.

• Acquire image frame through the shared memory data structure and printing the
data values to the output terminal. A selection of different input switches are avail-
able to obtain a single output for amplitude and distance values, Cartesian coor-
dinates x, y, z and the 8-bit grayscale values. This can be configured either by a
continuous mode or as a single shot.

Server ClientSHM

 acquire [SEM block]  AM amplitude data DIST distance data 8BIT grayscale data X data Y data Z data

 qurey  get SHM ID get SEM ID 
 copy [SEM block] amplitude data distance data (x,y,z) data grayscale image set new image flag set image counter[SEM unblock]  copy [SEM block]

 copy [SEM block]
[SEM blocked] 

 ...
 wait [SEM unblock] 

Figure 6.4: Communication flow from/to client, server application and shared memory.
Gray bar indicates blocked semaphore. Example for the case client blocks access to shared
memory via semaphore , while a server tries to connect. When the semaphore is unblocked
the server process gets a wake up signal and reconnects.
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6.3 MonoSLAM Framework

The MonoSLAM Framework SceneLib 1.0 is a free open-source C++ library, for real-
time Simultaneous Localization and Mapping. It is designed and implemented by Andrew
Davison et al. [12], and depends on the open source computer vision library VW35 devel-
oped at Oxford’s Active Vision Lab by David Murray et al. [27] and the Open Graphics
Libary (Open GL). The Scene platform provides general algorithms and methods to built
SLAM applications. The details of the real-world implementations can be plugged into
Scene by the definition of a model class. In the following sections a brief description of
important Scene and VW35 libraries is provided. Based on that a sample application for
sparse monocular SLAM is introduced. The modification of the VW35 and MonoSLAM
application with respect to the camera sensor SR3000 is discussed.

6.3.1 VW35

VW libraries provide C++ objects and algorithms for building Computer Vision and
other applications [3]. This includes numerical functions, simple image and image feature
objects, hardware interface classes as well various widgets sets supporting GUI inter-
faces. E.g. matrix and vector classes, image processing and feature detection algorithms,
FireWire support and the GUI libraries like OpenGL, GLUT and GLOW toolkit. In the
following, relevant libraries (Fig. 6.5 and Tab. 6.3) are described with respect to an inter-
face implementation of a shared memory segment. For a complete description of the full
VW libraries refer to the source code documentation [2]

Interface

Core Libraries

VWGlow Displaythreedtoolglowwidget
sequencerfileglowsequencerfirewireglow

Hardware LibraryVWFirewire FirewireCameraSequencerFirewire

Interface Library

ImageImageBaseImageIFImageMonoImagePixelMonoVWCore
CoreSequencersThreadSequencerBaseSequencerFile

Figure 6.5: Overview of Libraries with a selection of related classes.
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ThreeDToolGlowWidget Class that create a control a Glow GUI window for 3D draw-
ing. E.g. World coordinate system with camera pose and
sparse feature map. It makes use of Open GL drawing func-
tion inherited from ThreeDToolGLCommon

SequencerFileGlow Class that creates a Glow GUI control window for loading
new image files based on the SequencerFile class

SequencerFirewireGlow Class that creates a Glow GUI control window for loading
new images based on the SequencerFirewire class

FirewireCamera Class to provide control of a FireWire (IEEE 1394) digital
camera. E.g. setup camera, start/stop ISO transmision, set
image mode, get node number, Get ISO channel.

SequencerFirewire Class that knows how to get images from FireWire cameras by
making use of the FirewireCamera class. E.g. InitSequencer,
CopyImage, GetBuffer, GetImageWidth, GetImageHeight

ImageBase Base class that provides functions for constructing, storing,
loading and operating on images. It is important as an ab-
stract class to enforce consistency.

ImageIF Abstract base class that ensure all derived image classes have
specific functions in place. E.g. GetHeight, GetWidth.

ImageMono Class for storing monochrome images, with pixels as single
values.

ImagePixelMono Class for storing luminance values only. Default type is 8-bit
unsigned char.

Thread Base class from which a multi-threaded application can be
derrived. Used by SequencerBase to run as a single process
independent from higher SLAM applications.

SequencerBase Base class for all sequencers, provide basic mechanism for
moving a single frame and continuously getting frames. In
case a new frame arrives, a signal it is sent and can be re-
trieved by using a copy image function. A frame is generally
assigned to one channel.

SequencerFile Class that loads several ordered files. The file format is defined
as the name 000000.xxx. It is possible to process a selection
of image types. E.g. jpeg, png, gif, ppm, pgm, eps.

Table 6.3: List of selected VW35 libraries and classes related to a hardware interface
implementation.
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6.3.2 SceneLib

The SceneLib library provide generic classes and functions for performing Simultaneous
Localization and Mapping (SLAM). Scene can be applied where it is wished to estimate
the states of a generaly moving robot and many stationary measurable features via one or
more sensors. They are fix mounted relative to the robot [10]. It manages basic feature
information as feature’s state, covariances and identifier via a feature model, implements
the Extended Kalman Filter, a motion model describing the movement of a robot or
sensor and provides an internal measurement model for making measurements of the robot
state [40]. Further it enables it to manage a single EKF-SLAM map. E.g. creates and
initializes new features, removes features, makes measurement of features. Creates and
updates the robot feature states and covariances. Provides basic function to draw feature
parameters as uncertainty, prediction and measurement. An important insight of the
feature model is the split into partial and fully initialized feature [10]. This design has been
applied to monocular Visual SLAM because of the uncertainty in the depth dimension.
New features are initialized first using a particle distribution to estimate their depth before
being transformed to full features in the EKF map. Following classes are considered as
main Scene classes as compiled by Smith [41]. Refer to the source code documentation [40]
for a complete description.

Scene Single Saves the entire system state and perform feature man-
agement.

Feature Saves and manages a feature’s state vector and covari-
ances

Motion Model Basic class for all motion models. Describing robot or
sensor movement. Accesses state and performs the state
update. Stores no state itself.

Feature Measurement Model Basic class for all feature and measurement models.
Manages the feature’s state and predicts a measurement.
Splits into a complete feature in the map and a partially
initializes the feature. It stores no state itself.

Sim Or Rob Basic class that provides functionality for initialisation
and the measurement of features, making internal mea-
surements and controlling a vehicle.

Kalman Friend class of Scene Single that implements an Ex-
tended Kalman filter.

Table 6.4: List of selected Scene classes, where Scene build applications are derived from.
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6.3.3 MonoSLAM

The MonoSLAM library is a particular implementation of a real-time Single Camera SLAM
(MonoSLAM) based on the Scene library. It provides a set of classes and functions that
initializes a 3D motion model for camera movements. It defines a pinhole camera model
that can project image rays into the camera image and vice versa and provides a camera
feature measurement model. It controls and runs MonoSLAM and provide an GUI inde-
pendent interface for MonoSLAM applications such as MonoSLAMGlow. In the following
main Scene classes are briefly described. For a complete and detailed description refer to
the source code documentation [40].

MonoSLAM Provides a main class that runs the MonoSLAM camera
SLAM. It is independent of the GUI and application

MonoSLAMInterface Provide an interface to the MonoSLAM core functions.
Enable applications to control and receive feedback of
the MonoSLAM functions. Inherited from MonoSLAM.

Robot Class that models the Robot as a hand-held grayscale
camera. Handles the image feature measurement. In-
herits from the Scene class Sim Or Rob.

WideCamera Provides a model of a pinhole camera with a cubic dis-
tortion model by Swaminathan and Nayar. Base class
of WideCameraFeature.

Impulse ThreeD Motion
Model

Class that provides a constant-velocity motion model.
It assumes that statistics of its motion is on average
Gaussian distributed for each time step.

ZeroOrder ThreeD Motion
Model

Class that provide a zero-order motion model. The cam-
era is assumed to stay in position. For each time step it
moves from its location with a Gaussian profile.

Partially Initialised Point
Feature

Provides the specific behaviour for standard image point
features. Especially for initialization and matching. In-
heriting from the Scene class PartiallyInitializedFeature
and WideCameraFeature.

Fully Initialised Point
Feature

A feature that performs point measurements from a
wide-angle camera. It stores the feature state and the
measurement state of the image location of the feature.
Inherited from the Scene class Feature and WideCam-
eraFeature.

Table 6.5: List of selected MonoSLAM classes, derived from SceneLib.
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6.3.4 MonoSLAMGlow

MonoSLAMGlow is an application that implements a real-time Single Camera based on
the MonoSLAM, Scene and VW35 libraries. It makes use of the Glow toolkit in order
to build a GUI interface to visualize features position and uncertainties in a 3D map
and augmented 2D camera images. Providing control over the camera capture process
and enabling the tracking of features for the acquired scene. Fig. 6.6 considers the main
functions of the MonoSLAMGlow application. Refer to the MonoSLAMGlow source code
for a complete explanation.

SetUpMonoSLAM Creating a MonoSLAM instance by use of the
MonoSLAMinterface class and an initialization file. E.g.
Number of particles, standard depth deviation, number
of features to select, number of features to initialize at
once, features to keep visible and time shift for each
frame.

SetUpImageGrabber Setup the sequencer that is related to the specific camera
interface. E.g. FireWire.

SetUp3DDisplays Setup function that draws and displays the 3D virtual
view of the camera and 2D image.

SetUpButtons Defines the layout and buttons. E.g. Displays 3D fea-
tures, Displays 3D uncertainties, enables tracking, en-
ables mapping, displays a 2D search region, initializes
auto features.

ImageDraw3D Creates a Feature Drawer based on the MonoSLAM
class MonoSLAM FeatureDrawer to draw the feature
and camera postion and uncertainties.

HandleNewFrameGlow Handles a new frame that was received from the camera
and copies it to a ImageMono object and initiates the
update to the image display.

UpdateDisplayParameters Updates the camera postition in the 3D view by query-
ing the state vector from the camera motion model.

AutoInitialiseFeatureGlow Initializes the features by the use of the MonoSLAM-
Interface class and the Scene feature class.

Table 6.6: List of selected MonoSLAMGlow functions
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6.3.5 VW35 Modification

Implementing the SwissRanger SR3000 as a camera sensor into the MonoSLAMFramework
requires an enhancement of the VW35 hardware and interface libraries. Based on the VW-
Firewire and VWGlow libraries a Shared Memory Library, a Shared Memory Sequencer
and Sequencer Control Class have been developed. The Shared Memory Library consists
of the Shared Memory and Semaphore Classes equal to Sec. 6.2.2. The Shared Memory
Sequencer and Sequencer Glow GUI are derived from the related FireWire classes. Fig.
6.6 and Tab. 6.7 point out the relevant modifications.

Interface
VWGlow Displaythreedtoolglowwidget

sequencerfileglowsequencerfirewireglowsequencersharedmemoryglow
Hardware LibraryVWSharedMemory SharedMemorySequencerSharedMemory

Interface Library

Figure 6.6: Overview of modified libraries and related classes.

SequencerSharedMemoryGlow Create a Glow GUI control window for handling new
images based on the SequencerSharedMemory class.

SequencerSharedMemory Sequencer that grab images from the shared memory by
use of the SharedMemory class E.g. Initialize Sequencer,
set templet for memory structure. Copy 2D image -
amplitude and gray scale values, copy 3D image (x, y, z
coordinates) and 2D image

SharedMemory Interface to a shared memory segment. Create, attach,
delete shared memory. Manage access via semaphores
(cf. Tab. 6.2)

Table 6.7: List of selected VW35 modifications
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6.3.6 MonoSLAMGlow Modification

There are minor modifications to the MonoSLAMGlow code for the integration of the
SR3000 camera. The HandelNewFrameGlow function has been adopted to copy the 3D
image data into the application memory address range. Until now the gray scaled image
data is used as measurement input into the monoslam interface. The 3D data is only
visualized as point cloud in the 3D display with repect to the camera pose. Therefore the
function SetUpButtons of the control panel and the MonoSLAM library class ThreeDDraw
have been modified. Further processing of the x, y, z coordinates as measurement input
has been considered for future enhancement.
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Chapter 7

Results

7.1 Experimental Setup

Based on the hardware and software setup described in Chap. 6 an indoor office envi-
ronment is chosen as the experimental setup scene. Beside the typical office objects e.g.
monitor, books, desks, chairs, picture frames, additional targets haven been prepared to
provide stable and unambiguous landmarks. The initial target frame is placed at the wall
to set the 3D map coordinate system close to it. This means the camera depth is mea-
sured in relation to the wall, respectively to the target frame. A smooth and slow camera
egomotion is carried out by hand and the Scene is observed along the opposing wall.

Figure 7.1: Overview of scene setup.

7.2 Test Procedures

This section provides a general overview of the performed test cases, to verify the server
interface, the MonoSLAM interaction with the Swiss Ranger SR3000 camera, and as well
the Fusion approach (cf. Sec. 5). The tests are grouped by the following three categories.
Tab. 7.1, 7.2, 7.3 listing the performed procedures for each category.

1. Validation of interface functions

2. Validation of MonoSLAM functionality with SR3000

3. Validation of Fusion approach
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7.2.1 Interface Functions

Subject Description

Shared
Memory Server

Creating, connecting, reconnect, deleting a shared memory segment,
acquiring the image from the camera using the Shared Memory
Server application. Testing principal functionality.

Camera
Interface

Initializing the camera, setting predefined values for integration time,
the amplitude threshold and auto illumination flag with the Shared
Memory Server application. Testing camera control.

Shared
Memory Client

Attaching, detaching from Shared Memory. Acquiring the image
frame from the shared memory segment and printing the data values
of amplitude and raw distance values, xyz-coordinates (each), and
the 8-bit grayscale values to the output terminal with the Shared
Memory Client application. Testing image grabbing and validating
2D and 3D image data.

Shared
Memory Client
Server Com-
munication

Setup shared memory, with Shared Memory Server application and
connect with Shared Memory Client application. Cartesian coordi-
nates, and the 8-bit grayscale values to the output terminal. Testing
asynchronous communication via semaphores.

VW Shared
Memory

Creating, connecting, reconnecting, deleting a shared memory seg-
ment with the MonoSLAMGlow application. Testing principal func-
tionality.

VW Sequencer
Shared
Memory

Attaching to and, detaching form the to Shared Memory. Acquir-
ing the image frame from the shared memory segment and printing
the data values of amplitude and distance values, Cartesian coor-
dinates, and the 8-bit grayscale values to the output terminal with
MonoSLAMGlow application. Testing image grabbing and display
and validating 2D and 3D image data.

Table 7.1: List of interface test procedures (1).
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7.2.2 MonoSLAM Functionality with SR3000

Subject Description

2D display Verifying and testing the displayed 3D map and 2D 8bit grayscale
image frames. Evaluating different objects in a office environment.

Tracking Testing feature initialization, feature detection and measurement
and mapping as described in Sec. 4.3.

Parametrization Testing scene with different camera parameters. Integration time,
frequency, saturation threshold, amplitude threshold and auto-
illumination.

Table 7.2: List of MonoSLAM functionality test procedures (2).

7.2.3 Fusion

Subject Description

Structure
Tensor

Acquire 2D and 3D image data and evaluating 3D corners with struc-
ture tensor. Detecting potential 2D and 3D corners.

3D Data
Visualization

Evaluating 3D data points for different scenes.

Table 7.3: List of Fusion test procedures (3).
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7.3 Evaluation

7.3.1 Shared Memory Server

Creating, detaching, attaching and deleting to/from a shared memory segment is per-
formed via a command line terminal. When starting the server application first the cam-
era is initialized. This can be observed when the status LED of the camera turns from
red to green. Subsequently images are acquired by the server. This can be verified by the
terminal output, which displays the number of received frames and the calculated frames
per second. Furthermore the camera status LED blinks faster, indicating successful image
grabbing via the camera API. The shared memory segment is evaluated with a tool for
Unix/Linux Inter-Process Communication (IPC). The tool (ipcs) provides information on
the IPC facilities as shared memory ID, shared memory key, shared memory size in byte,
and shared memory access rights. To stop the server the terminal control command is
processed in the terminal window. The image frames stops immediately and the camera
LED is flashing slower. Processing the query with ipcs illustrates that the shared memory
still exists. Even when the camera is made currentless the server stops processing the
query, but the shared memory is still active. In order to reconnect to the shared memory
the server is restarted with the attachment option. The camera is initialized, the LED
flashes faster and the terminal output displays again frame number and rate as before.
To delete the shared memory the server stops with the terminal control command and
afterwards is deleted with a delete option on the server application. Processing the query
with ipcs show that the shared memory status provides no output for the previous defined
SHM ID or SHM key.

7.3.2 Shared Memory Client Server Communication

The communication between the server and client is controlled via semaphores. By starting
the server one semaphore is created. The the ipcs tool provide the information on the SEM
ID, SEM key and access rights. Testing the asynchronous communication the client starts
within a second terminal in continuous output mode. As verified by standard monitoring
tools, the CPU and memory usages of the computer remains stable (approx.30% for both
cores). To delete the semaphore the server is stopped with the control command and
afterwards deleted with a delete option of the server application. Processing the query with
ipcs show that the semaphore status provides no output for previous defined semaphore
ID.

7.3.3 Shared Memory Client

The Shared Memory Client attaches to the memory segment via a command line terminal
and acquires immediately for each image frames the pixel values. Optional parameters
defined, which data (amplitude, raw distance, x, y, z, and grayscale data) is printed as
terminal output. For a number of test images each data output has been stored and
visualized with MATLAB image processing toolbox for verification of correct data output.
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Figure 7.2: Examples: (a) Amplitude image, [0-65536] with max. picture value 6752. (b)
Grayscale image, normalized amplitude values, [0-255], max. picture value 254. (c) 3D
plot with xyz-coordinates, [0-65536], units in millimeter. (d) Spherical raw-distance data
over a mesh grid, [0-65536], max. picture value 26316 approx. 3m.

The plots in Fig. 7.2 of one image frame visualizes the different data values. The frame
label in (a), (b) and the xy-plane in (c), (d) denote an image resolution of 176x144 pixel
The colour bars indicate the maximum pixel value for each picture. The amplitude and
distance are represented through a 16-bit value (unsigned integer) and therefore distributed
along a wide range. By normalizing the amplitude values onto a maximal value of 8-bit
(255) a grayscale representation is achieved.
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7.3.4 Camera Interface

Following parameters values are set via the command line terminal as an optional param-
eter of a Shared Memory Server startup. For each parameter the data set of one image
frame is provided by the Shared Memory Client command line application and visualized
with MATLAB.

• integration time: 5, 20, 255
• amplitude threshold: 0, 100, 500
• modulation frequency: 19, 20, 21, 30
• saturation threshold: 0, 4000, 65532

Changing the integration time results in a higher exposure time as described in Sec. 3.2.2.
The higher the value the longer the integration time of amplitude and distance data. For an
integration time value of 5 the acquisition speed increases up to 46fps, with the cost of lower
amplitude and distance values and an increased amplitude and distance noise. Increasing
the integration time subsequently to 20 , 100, 255 lead to higher amplitude values and
more precise data but to a decrease of the acquisition speed. Fig. 7.3 illustrates this
effect on the grayscale and raw distance values. Note that a high value for the integration
time introduces motion blur (cf. Sec. 3.3.5).

(a) (b)

(c) (d)

Figure 7.3: Example images for different integration times. (a) Grayscale image with
integration time 0.5ms (46fps). (b) Raw distance plot as 2D intensity image (max. value
65532) depict clearly the effect of strong noise, due to low integration time. (c) Grayscale
image with 51.2ms (4.5fps). (d) Raw distance plot as 2D intensity image (max. value
20392). For high integration time the noise is reduced significantly.
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Modifying the amplitude threshold results in a cut off from low intensity values, which
can be used to reduce amplitude and distance noise. However, the parameter value has
to been selected with care, because all the values blow the threshold are mapped to zero
and appear as a black pixel (lowerst intenstiy or maximal distance) in the image frame.
Fig. 7.4 illustrates this effect for a threshold of 100 and 500.

(a) (b)

Figure 7.4: Example images for different amplitude thresholds. (a) Amplitude image
threshold set to 100 with isolated pixel are set to zero (coloured dark blue). (b) Amplitude
image threshold set to 500 with most of the pixel are below the threshold and therefore
are coloured dark blue.

There are four explicite parameter values available to adjust the modulation frequency. As
explained in Sec. 2.5.5 depends the non-ambiguity distance on the modulation frequency.
Increasing the frequency results in a lower maximal distance, which corresponds to the
distance values: 30MHz = 5.0m, 21 MHz = 7.1m, 20MHz = 7.5m and 19MHz = 7.9m. As
denoted in Eq. 2.35 the measured distance is proportional to the non-ambiguois distance.
This means that at a higher frequency, distance range values are more compressed, and
thus provide a better resolution and distance accuracy as described in Sec. 3.2.3. Fig. 7.5
depicts the range scaling for different frequencies.

(a) (b)

Figure 7.5: Example images for different modulation frequencies. (a) Raw distance plot
with 20MHz. (b) Raw distance plot as 2D intensity image with 30MHz has a much more
darker pixel with a wider value range.
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Measurements obtained for saturation thresholds of 0, 4000 and 65532 had no effect
on the outcome. Some threshold values provided senseless results. The changing of this
parameter appeared useless, and therefore has not been considered for further analysis.

7.3.5 VW Shared Memory

The VW Shared Memory interface represents the integration of parts of the Shared Mem-
ory Client functionallity into the SceneLib framework. It is based on the same Shared
Memory Class and perform attach, detach and acquire for each image frame via the the
SR3000 API. Additionally it creates a shared shared memory segement on MonoSLAM
startup and provides a function to delete the memory segment. As explained in Sec. 7.3.1 ,
successful creation is verified by the retrieved by IPC information. Also applying when the
shared memory segment is deleted, which is stop via the Sequencer. The communication
with the Shared Memory Server is similar to Sec. 7.3.3. In additional to the server create
and delete command the VW client semaphore is verified by IPC information. For both
applications (Shared Memory Server, MonoSLAM) it is verified by standard monitoring
tools, for the used computer hardware (cf. Sec. 6.1.1) the CPU and memory usages of the
computer remains stable (approx. 50% for both cores).

7.3.6 VW Sequencer Shared Memory

The Sequencer Shared Memory is started automatically as a new thread from the MonoSLAM
application. It conrolls the image grabbing (start, stop, next, countinous) as well the
loading of the amplitude, grayscale and xyz coordinate values. The functionallity of the
sequencer is inherent verified by starting the MonoSLAM application. Fig. 7.6 displays a
grayscale image and xyz data point cloud in the 3D map loaded from the shared mem-
ory by the sequencer. It is worth noting that the amplitude and raw distance values are
not currently not used to updating the MonoSLAM algorithm (cf. Sec. 4.2). Instead the
equivalent Cartesian coordiantes and normalized grayscale values are used.

Figure 7.6: Loaded grayscale image and xyz coordinates on MonoSLAM startup.
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7.3.7 2D and 3D Image Analyse.

Different test sequences are recorded in an indoor environment as illustrated in 7.1 to
evaluate the displayed 2D and 3D image data. The MonoSLAM software has been enabled
to save for every grabbed image the amplitude and xyz data values, as well as the grayscale
image in a pgm format. This provides the possibiltity of further investigation via image
proccessing toolkits e.g. MATLAB1 or ImageMagick2. Fig.7.7 provides an outcome of
recorded grayscale images.

(a) (b) (c)

(d) (e) (f)

Figure 7.7: Selected images of a recorded scene. Default integation time value 35, modu-
lation frequency 20 MHz.

The picture depicts samples of the recorded scene which are evaluated below.The im-
ages in (a)-(d) show a small field of view compared to the scene setup in Fig. 7.1 taken
by a digital photo camera. The illumination is not uniformly distributed along the image.
The reason for that is the active lighting of the senor as described in Sec. 3.1.2. Regions
towards the edges appear darker than in the centre of the image similarly to the illumina-
tion of a torch light. Pictures (c) and (d) appear with low contrast. This can be explained
by the method used by the Shared Memory Server to convert the amplitude data into the
grayscale values (cf. Sec. 6.2.4). All values are normalized onto the maximum intensity
value for each image. In picture in (e) and (f) the image appears to be darker because
maximum intenstiy corresponds to a total reflection on the lampshade centre. As observed
in the images (a) and (b) the contrast increases as soon as the lampshade reflection disap-
pears. To improve the image contrast the intenstiy values are strechted to cover the whole
range of values. With black-out at most 2% of the pixels and white-out at most 1% of the
pixels. Fig. 7.8 depicts the images after manipulating with ImageMagick.

1MATLAB is a numerical computing environment and programming language created by MathWorks.
2ImageMagick R© is a software suite to create, edit, and compose images.
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(a) (b) (c)

(d) (e) (f)

Figure 7.8: Selected images of recorded scene after normalization.

A similar effect to Fig. 7.7 occurs when an object is placed in front of the camera.
The closer object absorbs most of the light from the LEDs whereas the background scene
receives less illumination power. Fig. 7.9 provides an example for this effect. In this case
a contrast modification does not improve the image as in Fig. 7.8.

(a) before normalization. (b) after normalization

Figure 7.9: Image with target shadowing background sence illumination.

In the following the 3D image data of the corrosponding scene and selected images have
been analysed. As illustrated in Fig. 7.10 one relevant effect that has been observed is
the amplitude mixed pixel (cf. Sec. 3.3.2) and distance noise (cf. Sec. 3.2.3). The dark
rectangles introduce strong photon shot noise, due to their low reflectivity and thus low
backscattered optical energy (cf. Sec. 3.3.5). An example is highlighted at the dotted rect-
angles in Fig. 7.10. Scattering has been found at the change over from the white to black
borders. It occurs in particular in the black rectangles surrounded by the white frames.
This effect can be explained due to the difference in target reflectivity (cf. Sec. 3.2.4) of
white and black objects. Because of the differences in the received optical energy the
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”black” pixels are more influenced by the scattered light of their neighboring ”white” pix-
els. This leads finally to a difference in distance measurments. It is worth noting that this
effect changes dynamically with camera motion and the observed environment. Therefore
it is very difficult to determine each effect as introduced in Sec. 3.3 without a comprehen-
sive analysis.
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Figure 7.10: Point cloud and distance mesh grid example cooresponds to Fig. 7.7 (a)

7.3.8 Feature Tracking

Feature detection, initialization and active measurement has been tested according to the
procedure in Sec. 4.3. Within this work it was only possible to integrate 2D information
as measurement information into the MonoSLAM algorithm. Future investigation should
evalute the use of 3D information as a measurement update within the MonoSLAM frame-
work. Fig. 7.11 illustrates the results of a recorded scene where tracking has been enabled.
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Fig. (a)-(c) depicted the detection, initialization and aktive measurement of features. The
number of detected features is restricted to close objects. A small field of view constrains
the active measurement of features within a larger range of camera motion. To compensate
that effect and to increase the feature detection rate, explicit targets have been aranged
closed to the initial target. Further distance to the objects and a camera horinzontal
viewing angle have been increased during motion, to keep features visible. Fig. (c)-(f)
illustrates that the postion is lost if no new feature has been initialized, which restricts
the motion range of the camera. Potential natural landmarks e.g. power or LAN sockets
on cable shaft at the wall, are too small and have far less contrast quality for detection.
This effect has been observed with likewise increasing distance. The illumination contrast
decreases and lower amplitude values add additional noise Sec. 3.2.3.

(a) (b) (c)

(d) (e) (f)

Figure 7.11: Selected images of the recorded scene with tracking enabled. (a) Feature
intialization and measurement after startup. (b) Increase distance and 45◦ viewing angle.
(c) Not all feature could be active measured due to restricted field of view. (d) Reduced
feature set at 50◦ viewing angle. (e) One aktive measured feature at 60◦ viewing angle.
(f) Tracking lost due to inceased motion uncertainy and reduced measured features.

A nother effect with respect to the illumination is the measurement error when the image
contrast suddenly changes as illustrated in Fig. 7.12. As described in Sec. 7.3.7 does
the picture contrast decreases when a high reflected object enters visibility. This il-
lumination change can cause observation errors due to image patches cross-correlation
search(cf. Sec. 4.2.6). In oder to improve the feature detection rate the grayscaled images
have been modified according to Sec. 7.3.7. It could be shown that this correction pro-
vides a postive effect on feature detection and stabilizes the active feature measurement.
Fig. 7.13 shows the tracking results before and after the image processing.

75



Chapter 7. Results 7.3. Evaluation

(a) (b)

Figure 7.12: Selected images of reorded scene with feature measurement errors. (a) Blue
feature with detected measurement errors. (b) Subsequent frames, features are deleted.

(a) (b) (c)

(d) (e)

Figure 7.13: Selected images of recorded scene after contrast enhancement with tacking
enabled. (a) One feature detected with measurement errors but additional features are
detected. (b) Subsequent frames, one feature is deleted, other features remain the same.
(c) One feature more detected compared to Fig. 7.11. (d) Compared to 7.11 one more
feature detected. (e) Compared to Fig. 7.11 is tracking still possible.

7.3.9 Parametrization

To determine the approximate optimal set of configuration parameter for the operation
with the MonoSLAM algorithm. Tests with different integration times, modulation fre-
quencies and amplitude thresholds have been conducted. Based on the experimental scene
as depicted in Fig. 7.1 an integration time value of 35, a modulation frequency of 30MHz,
and amplitude threshold value of 5 have provided practicable findings. An integration
time value of 35 corresponds to a frame rate of 20fps. It been has shown to be a well
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balanced value between the maximum possible frame rate to improve the MonoSLAM
measurement update and the maximum integration time, while still providing a low signal
to noise ratio. Changing the modulation frequency to 30 MHz increases the the depth
accuracy and thus the 3D meassurement data. The slightly increased amplitude threshold
limit the low amplitudes which can cause strong noise. The effect on the 3D data is rather
moderate. Autoillumination has shown to be in principal a good feature due to is ability to
provide good illumination while moving through the scene. However, its major downside
is the variable frame rate from 5fps up to 46fps, that is not applicable for the MonoSLAM
algorithm which requires a nearly constant frame rate. Furthermore a low frame rate can
introduce motion blur (cf. Sec. 3.3.5) which would lead to wrong measurement data for
feature detection and measurement.

7.3.10 3D Corners

To identify 3D corners the Structure Tensor concept as described in Sec. 5.3.1 has been
evaluated. Fig. 7.14, 7.15 illustrates the selected images with detectable corners and their
corresponding structure tensor visualization. An image patch with the size of 11x11 ma-
trix has been extracted with the corresponding grayscale values. For this data matrix the
structure tensor matrix was calculated within MATLAB. The eigen decompostion of this
matrix calculates the eigenvalues and eigenvectors which have been drawn in the following.
Fig. 7.14 illustrating the detection of 3D corners for two different viewing directions. As
shown in Fig. 7.14 (a) a green detection box overlaps a real corner in its centre point.
Within Fig. 7.14 (b) the detection box cover mostly the black plane, with some small
overlaps on the edge. For comparison detected features in the plane have been analysed.

(a) (b)

(c) (d)

Figure 7.14: Selected images with 3D corners
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Fig. 7.15 illustrates the detection of two features. One at the wall and the second at an
object infront of the wall. As shown in Fig. 7.15 (a) the active measured feature patch on
the right lies on a wall. The corresponding eigenvalue visualization (c) shows a ellipsis that
is similar to the step-plan representation in Sec. 5.3.1. Within Fig. 7.15 (b) the detection
box covers half of the detected corner. The corresponding eigenvalue visualization (d)
represents ellipsis similar to (b). This is surprising, and one might expect a sphere instead
and thus a 3D corner detected. However, the extracted path seems to be more similar to
a step-plane case.

(a) (b)

(c) (d)

Figure 7.15: Selected images with 2D corners.
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7.4 Findings

The integration of a 3D camera within a Visual SLAM framework has been successfully
shown and the impact of the sensor characteristics on the MonoSLAM algorithm has been
analyzed. The investigation reveals that the illumination and contrast of the acquired 2D
image depends greatly on the chosen integration time, the distance, the scene and to some
extent on the image processing. It has been verified that low and fluctuating illumination
and low contrast gain has a negative effect on the feature detection rate and can also
increase measurement errors. According to conducted tests this limits the ability of the
camera to distances in the range from approximately 1-3 metres. The restrictions depend
mainly on the chosen integration time of the sensor. A high integration time provides a
good illumination but can cause a frame rate that is too slow for the MonoSLAM algorithm.
On the other hand a low integration time introduces noise, that can handicap the feature
detection. The auto illumination function, which in general provides a good automatic
control of the illumination, but varies strongly in its frame rate is therefore incompatible
with the algorithm. The major disadvantage of the camera is its small field of view.
The results show that the MonoSLAM algorithm only performs well in an environment
with close good features to track. In case new features are not detectable the algorithm
becomes unstable and loses the camera and feature position. With a small field of view
the feature tracking has proven to be difficult with respect to the camera handling. The
motion speed has been slowed down with motion stops in order to keep the feature visible
longer. This contradicts the underlying motion model, which supposedly has a constant
velocity with additive Gaussian noise and cause unexpected instabilities with the lost in
map and camera position.

The visualization results of the 3D data show the strong influence of interference effects
such as scattering, mixed pixels and also the increasing noise for low amplitude values, this
is due to a longer distance or less reflected light. An increase of the modulation frequency
results in a better distance resolution and range accuracy but reduces the maximal mea-
surable distance. Even under these limitations the obtained distance is considered to be
applicable for the feature initialization in the MonoSLAM algorithm. Future investigation
shall prove the implementation of this concept as described in Sec. 5.2 and provide per-
formance comparison with the current particle initialization. Due to the transformation
of the unknown distance to the measured distance with a small range of uncertainty, it is
expected that the feature is initialized faster as with a full distance range.

In this work the structure tensor concept (cf. Sec 5.3.1) has been tested to obtain 3D
corners. Results show that corners can be identified by its visualization of eigenvalues and
eigenvectors but accuracy of the match is dependent on the detected image region with
respect to the sensors distance noise. It has been shown that corners in the centre point
of the detected region are more distinct than corners towards located towards the edges
of the detection box. Future investigations shall analyze a optimal detected image region
for evaluating 3D corners.
A straight forward improvement of the raw data conversion from 16-bit to 8-bit data, with
standard image processing concepts such as histogram equalization and gamma correction,
can enhance the quality of the 2D image for feature detection. This can either be a feature
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of the camera itself, or done in software before using the image as measurement input to
Visual SLAM. Improving the camera optic to extend the field of view and the increase of
the pixel array provide the most contribution to the feature detection rate and thus the
usability for Visual SLAM. Increasing the camera frame rate further without affecting the
integration time would provide a better performance of the MonoSLAM algorithm.
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Chapter 8

Summary and Further Work

8.1 Summary

The theory chapter built a set of fundamental basic concepts, beginning at the very prin-
cipal of random variables and distributions up to the definition of Bayesian probability,
which is an important concept in probabilistic robotics. Based on that the belief represen-
tation denoted as posterior probability has been derived to estimate the robot state and
position. Furthermore the robot has been modelled as interacting with its environment
and is described by structured dynamic systems. Robots beliefs about the environmental
state, the received measurement data and robot controls have been introduced as impor-
tant characteristics of this model. Following the concept of Bayesian filtering, the Kalman
Filter and its successor the Extended Kalman Filter (EKF) explains how the robot can cal-
culate the belief about its state effectively with this algorithm. Based on that it has been
explained that robot motion and sensor perception always needs to incorporate errors,
therefore uncertainty associated with them is addressed in a motion and measurement
model by probabilistic terms. In that context feature extraction is explained as useful
method for object recognition and tracking. Finally basic solutions to localization and
mapping, respectively Simultaneous Localization and Mapping Problem (SLAM) based
on the EKF algorithm have been explained.

The chapter Time-of-Flight introduces the concept of range image cameras that pro-
vides a 2D image and additional 3D information due to distance measurements. The
SwissRanger SR3000 is described as an implementation for this kind of sensor. Beginning
with the sensors measurement principle based on modulated light that is sent out by a
signal emitter, partially reflected by an object and mapped onto a sensor array by optics.
Following the influence of the integration time and the determination of the distance ac-
curacy, where quantum shot noise is a limiting factor, has been described. Further it has
been highlighted that different targets reflectivity, respectively different demodulated am-
plitudes have different effects on the distance measurement. Finally the main disturbing
effects are explained, such as scattering, mixed pixels and multiple reflection.

The chapter Vision SLAM provide an brief overview of solutions to camera based Si-
multaneous Localization and Mapping problems. In particular the MonoSLAM algorithm
of Davison [11] has been explained in more detail. It is based on a single camera as
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sensor; using an EKF based algorithm to estimation the camera and map feature posi-
tions. It proposes a technique of active feature measurements and mapping, the use of a
general motion model for smooth camera movement, and solutions for monocular feature
initialization and feature orientation estimation.

The chapter Fusion proposes an appoarch that uses the Time-of-Filght camera gener-
ated distance and 3D data within the MonoSLAM algorithm, instead of using a 2D image
to reconstruct the depth and 3D structure information.

The chapter Implementation has provided an overview of the used hardware and soft-
ware. The MonoSLAM Framework SceneLib 1.0 for real-time SLAM and mapping and its
basis the computer vision library VW35. The Scene platform provides general algorithms
and methods to build SLAM applications. A brief description of important Scene and
VW35 libraries has been listed. Finally the modification of the VW35 and MonoSLAM
application with respect to the camera sensor SR3000 has been explained.

The chapter Results has provided a description of the performed testcases to verify the
developed interface, the MonoSLAM interaction with the Swiss Ranger SR3000 camera,
as well the Fusion approach. In the following the influence of the sensor properties onto
the localization and mapping process has been evaluated and how they benefits from the
measured distance information. The Results have showed that illumination and contrast
of the acquired 2D image depend greatly on the chosen exposure time, the object distance,
and the recorded scene and to some extent on the used image processing. Low and
fluctuating illumination and low contrast gain has a negative effect on the feature detection
rate and can also increase measurement errors. The major disadvantage of the camera
is its small field of view. The results have shown that the MonoSLAM algorithm only
performs well in an environment with close and good features to track. In case new
features are not detectable the algorithm gets instable and loses the camera and feature
position. This limits the ability of the camera to distances in the range from approx.
1-3 metres. The results of the visualization of the 3D data have shown that the strong
influence of interference such as scattering, mixed pixels and as well the increasing noise for
low amplitude values. An increase of the modulation frequency results in a better distance
resolution and range accuracy but reduces the maximal measurable distance. In this work
the concept of structure tensors has been tested to obtain 3D corners. Results have
shown that corners can be identified by its visualization of eigenvalues and eigenvectors
but accuracy of the match depends on detected image region with respect to the sensors
distance noise. Even under these limitations the obtained distance is considered to be
applicable for the feature initialization in the MonoSLAM algorithm. On conceptual
basis an enhanced feature initialization method that use measured distance for depth
calculations has been discussed.
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8.2 Further Work

In the following, some possible improvements and considerations for future investigations
will be given.

Future investigation shall prove if the measured depth information of the ToF camera
can be incorporated with the existing MonoSLAM algorithm to improve the feature ini-
tialization. The particle filter initialization introduced by Davison (cf. Sec. 4.2.5) assumes
that the feature lies along a semi-infinity line from the camera to the viewing direction of
the feature. To determine them a set of discrete depth hypothesis are uniformly distributed
along that line, and begin after several image frames to converge to a Gaussian distribution
with the mean representing the most likely feature distance. The direct measured depth
of the ToF camera would allow shrinking the range of the particle filter hypotheses and
thus allowing the initialization duration to decrease significantly.

A further improvement of the MonoSLAM algorithm is to update the feature position
directly with the measured depth, during the tracking of active measured features. Thus,
the feature measurement model can be directly inverted to update the feature position in
the 3D map. Given the image of a perspective-projective camera only, inverting is not
possible due to the unknown distance.

The visualization of 3D corners with its eigenvalue and eigenvector decomposition has
been presented. To enable the MonoSLAM algorithm to detect 3D corners a cornerness
measure need to calculated. Therefore an operater needs to be selected to determine a
threshold for the 3D corner detection. A survey on 3D operators is presented by Rohr [34]
that could be used for further investigations.

Distance measurements are strongly influenced by interference effects such as scatter-
ing, mixed pixels and backscattered light with low amplitudes. This information can be
partially improved by filtering invalid data points. As presented by May et al. [22] the
application of Gaussian blurring and jump edge filtering can remove those interference
effects and smoothing the 3D image. This would improve the measurement data for the
3D corner detection.

A different approach is to implement another type of Time-Of-Flight camera sensor.
Recent developments provide active 3D cameras that measure the distance by implement-
ing a fast image shutter in front of a CCD sensor and blocking the incoming light. The
collected light by each pixel is inversely proportional to the depth of the specific pixel [17].
The advantage of this solution is the usage of a standard CCD sensor as well as standard
camera optics. This certainly would provide a bigger field of view, a better image quality
with sufficient frame rates for good 2D feature detection because additional to the depth
information the 2D image would be based on regular environment illumination. A new
standard RGB 1.3 M-Pixel webcam with potential low price and stated distance depth
resolution of 1-2 cm is announced by 3DV Systems [1].
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List of Abbreviations

2D two-dimensional
3D three-dimensional
GUI Graphical User Interface
LASER Light Amplification by Stimulated Emission of Radiation
PC Personal Computer
NASA National Aeronautics and Space Administration
DARPA Defense Advanced Research Projects Agency
IEEE Institute of Electrical and Electronics Engineers
SLAM Simultaneous Localization and Mapping
RIM Range Image
ToF Time-of-Flightl
API Application Programming Interface
USB Universal Serial Bus
EKF Extended Kalman Filter
UKF Unscented Kalman Filter
RBPF Rao-Blackwellised Particle Filter
CCD Charge Coupled Device
CMOS Complementary Metal Oxide Semiconductor
LED Light Emitting Diode
ACDC Analog Digital Converter
FPS Frames Per Second
RAM Random access Memory
IP Internet Protocol
TCP Transmission Control Protocol
SHM Shared Memory
SEM Semaphore
OpenGL Open Graphics Library
GLUT OpenGL Utility Toolkit
GLOW OpenGL Object-oriented Windowing toolkit
SIFT Scale Invariant Feature Transform
CSV Computer Stereo Vision
SFM Structure from Motion
H Horizontal
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