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Zusammenfassung

Der Gegenstand dieser Dissertation ist die Untersuchung nicht-störungstheoretischer
Eigenschaften der Quanten Chromodynamik (QCD) mit Hilfe der Quantenfeldtheorie
auf einem vierdimensionalen Raum-Zeit Gitter (Gitter QCD).

Nach einer kurzen Einleitung wird in Abschnitt 2 das Vortexbild, ein Modell zur
Erklärung des Quarkeinschlusses (Confinement) in der QCD durch in sich geschlossene
Farbwirbel (Vortices), die mit dem Zentrum der Eichgruppe verknüpft sind, vorgestellt.
Im 3. Abschnitt werden seine Confinement-Eigenschaften im Rahmen der SU(2) Git-
tereichtheorie mit (verbesserter) Lüscher-Weisz Wirkung getestet. Danach soll das Vor-
texmodell auf Phänomene bezüglich chiraler Symmetrie analysiert werden, wobei hier
die Relevanz des niedrigen Dirac Spektrums herangezogen wird. Das Atiyah-Singer
Index Theorem erklärt topologische Ladung mit Hilfe des Indexes des Dirac Opera-
tors während die Banks-Casher Formel die Dichte der nahen Dirac Moden dem chi-
ralen Kondensat, einem Ordnungsparameter der chiralen Symmetriebrechung (SCSB),
proportional setzt. Der Dirac Operator wird zuerst in Abschnitt 4 auf dicke, klas-
sische Vortices in Form ebener Flächen (geschlossen durch die Gitterperiodizität) und
Kugeloberflächen angewendet und die Position der Nullmoden im Vergleich zur Vor-
texstruktur wird bestimmt. Es zeigt sich eine interessante Diskrepanz der topologischen
Ladung, gemessen an den Nullmoden (Index) und anderen Bestimmungsmöglichkeiten.
Danach werden im Abschnitt 5 die Eigenmoden verschiedener Dirac Operatoren in SU(2)
Monte Carlo Konfigurationen bestimmt und Eigenschaften wie Verteilung, Dimension-
alität und Lokalisation untersucht. Desweiteren werden Korrelationen dieser Moden
und der Vortexstruktur gemessen. Das Ergebnis dieser Untersuchungen zeigt, dass der
topologischen Untergrund der Eichkonfigurationen deutlichen Einfluss auf die nahen
Nullmoden hat. Allgemeine Schlüsse finden sich in Abschnitt 6.

Anhang A gibt einen Überblick aller wichtigen Methoden und Werkzeuge die zum
Zwecke der folgenden Untersuchungen verwendet wurden. In Anhang B findet sich eine
Zusammenfassung zu statistischen Methoden und Fehleranalyse. Eine Reihe weiterer
Abbildungen und Diagramme analysierter Daten sind in Anhang C zusammengefasst.
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Summary

In this thesis some non-perturbative features of quantum chromodynamics (QCD) are
studied in terms of quantum field theory on a four dimensional space-time lattice (LQCD).

The center vortex model, presented in section 2, has been proposed as an explanation
of confinement in non-Abelian gauge theories. Some checks of the confinement properties
of center vortices in SU(2) lattice gauge theory with improved Lüscher-Weisz action are
repeated in section 3 and then phenomena related to chiral symmetry, such as topological
charge and spontaneous chiral symmetry breaking (SCSB) are studied within the center
vortex model. These non-perturbative features of the QCD vacuum are intimately linked
to the properties of the low-lying spectrum of the Dirac operator. The Atiyah-Singer
index theorem states that the topological charge of a gauge field equals the index of the
Dirac operator, while the Banks-Casher relation sets the spectral density of the near-
zero modes proportional to the chiral condensate, the order parameter for SCSB. The
Dirac operator is applied to thick classical center vortices in the shapes of planes (closed
by lattice periodicity) and spheres in section 4, and the localization of zero-modes with
respect to the position of the thick vortices is investigated. An interesting discrepancy
in the topological charge determined by different methods is discussed. In section 5 the
eigenmodes of the overlap and asqtad staggered Dirac operators applied on SU(2) Monte
Carlo configurations are evaluated and different observables concerning distribution,
dimensional characteristics and localization are studied. Further correlations between
the low-lying modes and center vortices are investigated. The low-lying modes are
apparently sensitive to topological properties of the underlying gauge field configurations.
Conclusions are drawn in section 6.

Appendix A provides an overview of methods and operators used for the purpose of
the following studies while appendix B gives some information on statistics and error
analysis. Some more plots and figures of analyzed data are collected in appendix C.

iii



asdf



Für meine Familie



asdf



Acknowledgments

First of all I would like to thank my supervisor Prof. Manfried Faber for his support
during the work on this thesis. He had always time to discuss my ideas with him and the
most important lesson I have learned from him is that there is often a simple geometrical
picture which explains more than a lot of complicated equations. Furthermore, I would
like to thank our collaborators, Jeff Greensite, Štefan Olejńık and Urs Heller.
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1 Introduction

1 Introduction

The fundamental particles which form the hadronic matter (e.g. protons, neutrons) are
“quarks” (fermions) which interact via “gluons” (bosons) due to the strong interaction.
Quarks come in different “flavors”, namely the “up”, “down”, “strange”, “charmed”,
“bottom” and “top” quark, but the strong interaction is flavor blind. QCD is a gauge
theory based on the unbroken non-Abelian SU(3) group, which assigns every quark one
of three “colors”. Since there are eight generators of SU(3), there are eight massless glu-
ons carrying a color charge which mediate the strong interactions between quarks. QCD
is an asymptotically free theory, forces between quarks become weak for small quark
separations (quark-gluon plasma) and therefore perturbative calculations are possible,
exploring the short distance structure of QCD.

The asymptotic freedom property of QCD is intimately linked to the non-Abelian
structure of the gauge group, which on the other hand causes colored gluons to couple
to themselves. These self couplings are believed to be responsible for quark confinement,
the fact that color charged particles cannot be isolated and hadrons are colorless. Con-
finement is the main property of the dynamics at large distances where perturbation
theory breaks down due to ultraviolet divergences. The lattice formulation of QCD in-
vented by Kenneth Wilson in 1974 allows to study such non-perturbative phenomena.
The gauge field is put on a discrete space-time lattice, which acts like a cutoff in the per-
turbative integrals, and the path integral formalism of quantum field theory is applied
by using numerical methods. With these tools it was possible to study confinement, and
already Wilson showed that within the strong coupling approximation QCD confines
quarks.

Actually, one of the pioneering papers of Mike Creutz [1] was already showing that
the potential between static quarks and antiquarks is asymptotically linearly rising with
the distance. The corresponding constant force, the string tension, is incredibly high,
around 1 GeV/fm. The origin of this strong force should be found in the properties
of the QCD vacuum. This is highly non-trivial, filled with quantum fluctuations and
topological excitations which dominate the behavior of the QCD vacuum at long distance
scales. On the other hand the color electric field between quarks and antiquarks has
regular flux lines and does not like to enter the stochastically fluctuating QCD vacuum.
Therefore, it is energetically favorable to compress the electric flux-lines to a small
tunnel between quark and antiquark. The distribution of this color magnetic flux was
nicely shown in lattice calculations [2]. Despite intensive efforts over three decades there
is no derivation of confinement from first principles nor is there a generally accepted
explanation. Candidates for topological excitations responsible for confinement were
mainly instantons, Abelian monopoles and vortices. Instantons live on a length scale of
around 0.2 fm and can therefore contribute only little to the large distance force between
heavy quarks [3].

By a transformation to the dual degrees of freedom one can show analytically that
confinement in U(1) lattice gauge theory is due to magnetic monopoles. Kronfeld, Schier-
holz, and Wiese [4] devised a method for non-Abelian gauge theories to detect monopoles
by Abelian gauge fixing and Abelian projection (see App. A.4). The property that an

1



1 Introduction

Abelian component of the color field can explain the full string tension was shown in [5]
and was dubbed Abelian dominance. The monopole confinement mechanism leads to
a very nice picture, the dual superconductor model of confinement, where magnetic
monopoles and antimonopoles form a solenoidal current around the electric flux tube
between quark and antiquark. But Del Debbio et al. [6] showed that the hypothesis
of Abelian dominance in the maximally Abelian gauge, which was known to work for
Wilson loops in the fundamental representation, fails for Wilson loops in higher group
representations. Such a problem does not appear in the center vortex picture of confine-
ment.

The center vortex model was first proposed by ’t Hooft [7], Mack and Petkova [8]
and [9] as an explanation of confinement in non-Abelian gauge theories. The central
idea was to filter out the important infrared degrees of freedom responsible for con-
finement and then to simplify the field configurations by projection. Center vortices,
quantized magnetic flux lines, compress the gluonic flux into tubes and cause a linearly
rising potential at large separations. Numerical evidence has been produced to support
this assumption [10, 11] and in addition, simulations have indicated that vortices could
also account for phenomena related to chiral symmetry, such as topological charge and
spontaneous chiral symmetry breaking (SCSB) [12, 13, 14, 15, 16, 17, 18].

These non-perturbative features of the QCD vacuum are intimately linked to the
properties of the low-lying spectrum of the Dirac operator. The Atiyah-Singer index
theorem [19, 20, 21] states that the topological charge of a gauge field equals the index
of the Dirac operator, while the Banks-Casher relation [22] sets the spectral density of
the near-zero modes proportional to the chiral condensate, the order parameter for chiral
symmetry breaking. The fundamental problems of investigating chiral symmetry on the
lattice have been overcome by the invention of overlap fermions. The overlap operator
obeys the Ginsparg-Wilson relation and features an exact chiral symmetry [17]. It further
implements a lattice version of the index theorem [18], and may even be used for the
definition of a local topological charge density [12].

In the following sections, the vortex model is introduced (2) and its confinement
properties are reviewed (3). A summary of previous studies on topological charge is
given (4) and results on SCSB are presented (5).

2



2 Vortex Model

2 Vortex Model

The vortex model was first proposed by ’t Hooft [7], Mack and Petkova [8] and [9]. Due
to lack of an identification method for vortices, almost no numerical investigations were
done for 25 years. Maximal center gauge and center projection (see App. A.4) provided
means to identify vortices [10] and led to new investigations using the vortex model. The
central idea was to filter out the important infrared degrees of freedom responsible for
confinement and then to simplify the field configurations by projection. Other identifi-
cation methods for vortices were proposed, Laplacian center gauge by de Forcrand and
coworkers [15, 23], a method by Langfeld et al. [24] which combines Laplacian center
gauge and direct maximal center gauge, and direct Laplacian center gauge [25]. All of
the center gauges yield qualitatively similar results.

2.1 Center Vortices

Vortices are closed magnetic flux lines forming 2-dimensional world sheets. They carry
magnetic flux corresponding to the center of the gauge group1, therefore vortices are
denoted as center vortices. The flux can only take on a discrete number of values given
by the non-trivial center elements, for SU(2), this is only −1. On the lattice, thin center
vortices are located by plaquettes with negative center element, the vortex world sheet
consists of plaquettes dual to these (negative) P-plaquettes. Such a P-vortex can be
realized for example by simply setting all links to +1 except for the time-like links in a
3-dimensional Dirac volume V (see Fig. 1):

Ut(~x, t0) = −1, a < z ≤ b, ∀x, ∀y (1)

The vortex surface ∂V are the xy-planes at t = t0 and z = a, b. The only plaquettes
that are non-trivial are the zt-plaquettes (corresponding to a field Ez) on these planes.
They signal the presence of two vortices carrying a flux of π each.

x

t

Figure 1: If in some three-volume V the temporal links are multiplied with a nontriv-
ial center element, thin center vortices (indicated by shaded plaquettes) are
created at the border of the three-volume. [26]

1The center of a group is defined as the subgroup of elements commuting with all group elements.

3



2 Vortex Model

Further, with untwisted boundary conditions it is not possible to create a single plane
SU(2) vortex. The planes always come in pairs and therefore form a closed vortex world
sheet by definition. A thick vortex is created by smearing out the thin vortex sheet,
details of how to construct thick vortices will be discussed in chapter 4. In Monte Carlo
configurations one generally finds thick vortices, the corresponding P-vortices have a very
branched structure (fluctuating surface) and can be smoothed out (see appendix A.4.2).

2.2 The vortex picture of quark confinement

Quark confinement has been introduced as the phenomenon that quarks are never ob-
served as isolated, free particles but are confined in composed particles, the hadrons.
A simple phenomenological model for hadrons is a quark and an anti-quark sitting at
the ends of a straight line, called string. In the framework of QCD one identifies the
string with an electric flux tube of fixed cross-sectional area, in which the field between
two quarks is collimated. Suppose this string has a constant energy density σ (in its

rest system), the string tension, which for an electric flux tube is σ = 1
2

∫
d2x⊥ ~E

a · ~Ea.
Therefore the quark-antiquark potential rises linearly at intermediate distances. But at
some distance r0, the string breaking distance, the energy of the string is high enough
to create a new quark-antiquark pair. Quarks of finite mass are therefore confined only
in the sense that after string-breaking they again recombine into hadrons.

The relation of vortices to quark confinement can be presented in an even more sim-
plified phenomenological model. Suppose the vortex world sheet carrying its magnetic
flux compresses somehow the electric field diverging from a quark into the mentioned
flux tube. A simple illustration of this model is shown in Fig. 2.

Figure 2: The color-magnetic vortex flux tube (extending in time direction) compresses
the color-electric field, the string between quark q and antiquark q̄.

The physical relevance of this picture can be seen from the Wilson loop criterion of

4



2 Vortex Model

confinement. In appendix A.5 it is shown that the expectation value of the Wilson loop
has to follow an area law in the confined phase. The vortex model is able to deduce the
area law from independent vortex piercings of the Wilson loop, which can be interpreted
as crossings of the static electric flux tube and moving closed magnetic flux. Since a
plaquette is pierced by a P-vortex if the product of its center-projected links gives −1,
the expectation value 〈W (A)〉 of the Wilson loop of area A = R × T with f denoting
the probability that a plaquette has the value −1, gives (see also Fig. 3)

〈W (A)〉 = [f · (−1) + (1 − f) · 1]A = exp[ln(1 − 2f)
︸ ︷︷ ︸

−σ

A]. (2)

The area law follows from fluctuations in the number of vortices piercing a Wilson loop,
which gives the string tension σ ≡ − ln(1 − 2f) ≈ 2f . Numerical tests for this vortex
picture were first presented in [11, 27].

−1−1

P-vortex

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

Figure 3: The Wilson loop (green) pierced by P-vortices.

The mathematical approach to the relevance of center degrees of freedom for confine-
ment can be seen from N -ality. For SU(N) in general, the N -ality classifies represen-
tations of a group according to the representation of their center. There is an infinite
number of representations of the gauge group SU(N), but only N different represen-
tations for the center ZN . Every representation of SU(N) falls into one of these N
subsets depending on the representation of the ZN subgroup in the given SU(N) repre-
sentation. The center in a representation of N -ality k = 0, . . . , N − 1 labels the center
element zN ∈ ZN . The fundamental representation has k = 1 (because it is the defining
representation), while the adjoint representation has k = 0, so that every center element
is mapped to unity. Now the asymptotic string tension σ for static charges in a repre-
sentation of some N -ality only depends on the presence or absence of dynamical fields
of this N -ality. Therefore fields of zero N -ality (e.g. gluons) cannot break the strings of
particles in non-zero N -ality (e.g. quarks).

There exists a global center symmetry which allows to define an order parameter
for confinement and deconfinement in systems at finite temperature. Center symmetry
implies gauge transformations which are periodic up to a center element, corresponding

5



2 Vortex Model

to a multiplication by a factor exp
(

2πikn
N

)
. Applying these gauge transformations leaves

the Lagrangian invariant since zN is a center element and commutes with the gauge
potential Aµ(~x, t). On the lattice this can be realized by multiplying all time-like link
variables in a given time-slice with a center element (see Fig. 4).

x

t

Figure 4: For an aperiodic gauge transformation, all time-like links in a given time-slice
are multiplied with a center element. [26]

An observable affected by such a singular (aperiodic) gauge transformation is the
Polyakov loop. The Polyakov loop P (~x) is the parallel transporter (“product of link
variables”) along a curve C extending straightly in time direction, closed by lattice
periodicity. It simply involves all time-like links along a single time-line and it can
easily be seen that P (~x) is non-invariant under an aperiodic gauge transformation. The
only chance for its expectation value 〈P (~x)〉 to be invariant is to be equal to zero.
Therefore it represents an order parameter for center symmetry breaking, finite in the
center symmetric phase and zero in the phase of broken center symmetry.

Physically, the Polyakov loop describes a static (infinitely massive) test quark, with a
time-like world-line. As shown in App. A.6, the expectation value of the Polyakov loop
measures the free energy of an isolated static quark. This impacts confinement: In the
confined phase, the free energy of such an isolated quark is infinite. Hence the Polyakov
loop vanishes and remains trivially invariant under center transformations. Conversely,
in the deconfined phase, the free energy is finite. Thus, the Polyakov loop is non-zero and
not invariant under the center transformation. Consequently, confinement is intimately
related to the center symmetry, whose excitations are just the center vortices. If the
gauge transformation described above does not involve the whole time-slice but covers
only a three-dimensional volume (see Fig. 1), the Dirac volume, the plaquettes within the
Dirac volume remain unchanged. However, the plaquettes at the boundary of the Dirac
volume are multiplied by a center element and simply represent the P-vortex plaquettes.

If fundamental matter fields such as fermions or Higgs field are present, the center
symmetry is explicitly broken, this impacts confinement. For observables in the adjoint
representation on the other hand, the symmetry always holds, which is again related
to N -ality. Lattice simulations have provided quite an impressive collection of results
which mainly corroborate the vortex model of confinement. Numerical results, based
on [28] are presented in section 3, re-measured with improved gauge action.
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2 Vortex Model

2.3 Topological Charge

The vortex world-surfaces allow to determine the topological charge of configurations.
This was first discussed in the continuum by Cornwall [29, 30], Engelhardt and Rein-
hardt [31] and then on the lattice in ref. [32]. From the definition

q ∝ ǫµναβFµνFαβ (3)

it is clear that topological charge arises only where two perpendicular non-trivial pla-
quettes meet. More precisely, the topological charge arises at lattice sites at which the
tangent vectors to the vortex surface span all four space-time directions. Such sites are
either (self-)intersection points or writhing points, see Fig. 5. Intersection points con-
tribute by Q = ±1

2
to the topological charge q, writhing points by |Q| < 1

2
.

(a) (b)

Figure 5: Intersection points (a) and writhing points (b) which contribute to the topolog-
ical charge of a P-vortex surface. The full lines are space-like and the dashed
lines time-like. [31]

Relation to magnetic monopoles

Vortices carry color-magnetic flux, after Abelian projection this flux appears as a mono-
pole-antimonopole chain, as indicated schematically in Fig. 6 and discussed in ref. [33].

Figure 6: Vortex field strength after maximally Abelian gauge fixing. Vortex strength is
mainly in the horizontal ±σ3 direction. [33]

2.4 Vortices and chiral symmetry breaking

The chiral condensate
ψ̄ψ = ψ̄lψr + ψ̄rψl (4)

7



2 Vortex Model

is the order parameter which indicates whether chiral symmetry is present or broken. In
the chiral symmetric phase the phase transformations of right and left-handed quarks are
independent and average ψ̄ψ to zero. In the chirally broken phase transformations of left
handed quarks lead to phase changes of right handed quarks and result in ψ̄ψ 6= 0. Lat-
tice calculations indicate that a transition from the confined to the quark-gluon plasma
phase is associated with a transition from the chirally broken to the chiral symmetric
phase. This indicates that both phenomena, confinement and dynamical chiral symmetry
breaking may have the same origin. Due to the strong indications that vortices explain
confinement it is very important to investigate the relation of vortices to chiral sym-
metry breaking. A remarkable result was found by Forcrand and d’Elia [14], removing
vortices from lattice configurations leads to restoration of chiral symmetry. Fig. 7 shows
the chiral condensate tending to zero for vortex-removed (“Modified”) configurations.

Figure 7: Chiral condensate in quenched lattice configurations before (“Original”) and
after (“Modified”) vortex removal. From de Forcrand and D’Elia [14].

That smooth vortex configurations give rise to zero modes of the Dirac operator was
shown first in analytical calculations by the Tübingen group [34]. The zero modes of
the Dirac operator tend to peak at the intersections as shown in Fig. 8. The plot shows
the probability density of the zero mode in a background of two pairs of intersecting
vortex sheets. Using the chirally improved Dirac operator Gattringer and the Tübingen
group [35, 36] have investigated the influence of center vortices on the properties of
the Dirac spectrum. They have shown, see Fig. 9, that the removal of center vortices
eliminates the zero modes and near-zero modes of the Dirac operator implying via the
Banks-Casher relation the restoration of chiral symmetry. It was not understood why
the spectra of the center-projected configuration has developed a large gap indicating
chirally symmetric field configurations. This is a very interesting result. It is up to now
the only case where confinement does not lead to chiral symmetry breaking.
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Figure 8: Probability density of the zero mode in the background of four intersecting vor-
tex sheets is shown in the two-dimensional subspace defined by the intersection
points. [35, 36]
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Figure 9: The 50 smallest Dirac eigenvalues from 10 different configurations are shown
in the complex plane. The spectrum for the original ensemble (lhs. plot) are
compared to the spectrum for vortex-removed configurations (center) and the
spectrum of center-projected configurations (rhs. plot). [35, 36]
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3 Numerical Results on Confinement

3 Numerical Results on Confinement

All previous numerical checks of the vortex confinement mechanism, via maximal center
gauge fixing and center projection, have been carried out on lattices generated from
Monte Carlo simulations of the Wilson action (a discussion of these tests and their
significance can be found in Ref. [28].) It is important to repeat these checks for the
Lüscher-Weisz action. It turns out that there are no surprises, and vortex results derived
using the new action are consistent with the previous work with the Wilson action. The
most important achievements of the vortex picture are listed below.

3.1 Scaling of vortex density

Fig. 10 shows the P-vortex density (in lattice units) vs. βLW . The solid line is the
two-loop asymptotic freedom behavior for this quantity, for a choice of vortex density ρ
(area per unit volume) in physical units satisfying

√

ρ/6Λ2 = 50.
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Figure 10: P-vortex surface density vs. coupling constant βLW . “Two loop” line is the
scaling prediction with

√

ρ/6Λ2 = 50.

This was first observed by Langfeld et al. [37]. Let NP denote the number of P-
plaquettes and NT the total number of plaquettes. The vortex density p is given by

p =
NP

NT
=

NPa
4

6(NT/6)a4
=

1

6

Vortex area

Lattice volume
a2 =

ρa2

6
(5)

If the vortices are physical objects, their density should scale with β (βLW ) according to
renormalization group theory, which predicts (numerical constants specific to SU(2))

p =
1

6

ρ

Λ2

(
6π2

11
β

)102/121

exp−6π2

11
β (6)
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3 Numerical Results on Confinement

3.2 Center dominance

The vortices in the projected Z(2) gauge theory reproduce a good deal of the string
tension of the full Yang-Mills theory, see Fig. 11. A removal of the P-vortices from the
lattice configuration results in a loss of the confining properties as depicted in Fig. 12.

 0.1

 0  1  2  3  4  5  6  7  8

βLW = 2.9

βLW = 3.1

βLW = 3.3

βLW = 3.5χ
(R

,R
)

asympt. string tension

R

L=84

L=124

L=164

L=204

Figure 11: Center-projected Creutz ratios at βLW = 2.9−3.5 obtained after direct Lapla-
cian center gauge fixing. Horizontal bands indicate the asymptotic string
tensions on the unprojected lattice, with the corresponding error bars.
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Figure 12: Creutz ratios on 204-lattices at βLW = 3.3 for full, center-projected and
vortex-removed data. Horizontal bands indicate asymptotic string tension
on the unprojected lattice with error bars.
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3 Numerical Results on Confinement

3.3 Precocious linearity

The fact that the Creutz ratios from center-projected Wilson loops are almost inde-
pendent of R is known as Precocious linearity. It implies that the projected potential
is already linear at two lattice spacings [25]. For the Lüscher-Weisz action the center-
projected Creutz ratios coincide with the “two loop” scaling prediction at one lattice
spacing already, as can be seen in Fig. 13.

 0.01

 0.1

 1
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 0  0.5  1  1.5  2  2.5  3  3.5  4

-ln(β/4)
two loop
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χ(5, 5)
χ(6, 6)
χ(7, 7)
χ(8, 8)

βLW

Figure 13: Creutz ratios from center-projected Wilson loops on 204-lattice configura-
tions, in direct Laplacian center gauge. “Two loop” line is again the scaling
prediction with

√

ρ/6Λ2 = 50.
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3 Numerical Results on Confinement

3.4 P-vortices locate thick center vortices

Vortex limited Wilson loops Wn are expectation values of Wilson loops in the sub en-
semble of those configurations where the minimal area of the loop is pierced by precisely
n P-vortices. As shown in Fig. 14 for large loop area Wn approaches the limit (−1)nW0.
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-0.5

 0

 0.5

 1

 1.5

 0  5  10  15  20  25

W
n
/W

0

W1/W0
W2/W0

Loop Area

Figure 14: Wn/W0 Wilson loop ratios on 204-lattice configurations at β = 3.1.

3.5 Casimir scaling

The asymptotic string tension depends on N-ality of the color charge only, so that for
SU(2) σj = σ1/2 for j half-integer σj = 0 for j integer there is still an intermediate
range of distances where Casimir scaling applies (at least approximately), i.e. for SU(2)
σj = 1

2
j(j + 1). One could show by a very simple ansatz [33] that for charge distances

comparable to the thickness of these vortices the proportionality of the string tensions
to the eigenvalue of the quadratic Casimir operator is very natural in a thick vortex
model (Fig. 15). For distances large compared to the vortex thickness the string tension
reduces to that of the thin vortex model.

3.6 Vortices and matter fields

Matter fields lead to a breaking of the gluon string. The interesting question how matter
fields influence vortices was first studied in the SU(2)-Higgs model in the continuum in
refs. [38, 39] and then on the lattice in [40, 41, 42].
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Figure 15: Inter quark potential V (R) induced by center vortices, according to the thick
vortex model discussed in the text, for quark charges in the in the fundamental
(j = 1

2
), adjoint (j = 1), and j = 3

2
representations.[33]

3.7 Finite temperature

The P-vortex density across the deconfinement phase transition was first carried out
by Langfeld et al. [43] and Chernodub et al. [44]. At zero temperature vortices are
unorientable surfaces and percolate through the lattice [45]. At finite temperature P-
vortices exist also in the deconfined phase. They form cylindric objects which extend in
time direction, see Fig. 16. This explains the area law for space-like Wilson loops and
the perimeter law for time-like Wilson loops.

(a) (b)

Figure 16: Dual P-plaquettes in a typical field configuration on a 123 × 2-lattice. Two
successive z-slices for the xyt-subspace are shown. The amputated lines leav-
ing the left figure towards right arrive in the right figure from the left.[45]

Finally, Figs. 17 and 18 show the deconfinement phase transition for full and center-
projected Polyakov loops on 123 × Nt-lattices with Nt = 2, 4, 6 and 12 for comparison
with Wilson and Lüscher-Weisz action.
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Figure 17: Polyakov loop phase transition of a) full and b) center-projected configura-
tions for different lattice sizes with Wilson action.
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Figure 18: Polyakov loop phase transition of a) full and b) center-projected configura-
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4 Topological charge

4 Topological charge

The correct description of topological charge is very important within a model of quark
confinement. This section reports on calculations of the lattice index theorem with the
overlap Dirac operator applied to thick classical center vortices in the shapes of planes
(closed by lattice periodicity) and spheres. The localization of zero modes with respect
to the position of the thick vortices is investigated and an interesting discrepancy in
the topological charge determined by different methods is found. The details of the
individual vortex types will be discussed along with the results. First, the different
definitions of the lattice topological charge are given.

4.1 Definitions

(1) The topological charge of the continuum gauge field configuration for the following,
rather simple vortex geometries amounts to adding up the contributions from the
intersection points, which according to the color orientation carry a topological
charge Q = ±1

2
[46].

(2) The index of the overlap Dirac operator [18, 47]. According to the Atiyah-Singer
index theorem the topological charge is given by the index

ind D[A] = n− − n+ = Q (7)

where n− and n+ are the number of left- and right-handed zero modes of the Dirac
operator [19, 20, 21]. The overlap Dirac operator is defined by [48]

D =
1

2
[1 + γ5ǫ(H

+
L )] (8)

Here, ǫ is the sign function, H+
L = γ5Dw(−m0) and Dw is the usual lattice Wilson

Dirac operator with mass −m0 (here, m0 = 1.0 is used). It has been shown
that this fermionic definition of Q coincides with the continuum simple gluonic
definition in the continuum limit [49].

The lattice version of the index theorem is only valid as long as the gauge field
satisfies a so-called “admissibility” condition. This condition assures that H+

L has
no zero eigenvalues so that the sign-function is well-defined. It requires that the
plaquette-values Uµν are bounded close to trivial 1. A sufficient, but not necessary
bound for the “admissibility” of the gauge field is [50, 51]

tr(1− Uµν) < 0.03 (9)

(3) The integral (sum, on the lattice) of the gluonic charge density q(x) = 1
16π2 tr(FµνF̃µν)

in the “plaquette” and/or “hypercube” definitions on the lattice, see ref. [52, 53].
Since Monte-Carlo configurations are in general too coarse, these definitions are
usually only applied after cooling.

19



4 Topological charge

With the field strength tensors Fµν(x) = ∂µAν − ∂νAµ + i [Aµ, Aν ] and F̃µν =
1
2
ǫµνρσFρσ the quantity which determines the affiliation to a homotopy class, the

topological charge Q or (negative) Pontryagin index reads for trivial boundary
conditions [54]

Q ≡
∫

d4x q(x) = − 1

16π2

∫

d4x tr(FµνF̃µν) = (10)

= − 1

8π2
ǫµνρσ

∫

d4x tr{[∂µAν + iAµAν ][∂ρAσ + iAρAσ]} = (11)

= − 1

8π2
ǫµνρσ

∫

d4x tr{∂µAν∂ρAσ + 2iAµAν∂ρAσ}. (12)

In the continuum, the topological charge density q(x) is the total derivative of the
topological current kµ [55]

q(x) = ∂µkµ, kµ = − 1

8π2
ǫµνρσtr

[

Aν∂ρAσ + i
2

3
AνAρAσ

]

. (13)

For smooth gauge fields one can apply the Gauss-theorem to transform the expres-
sion for Q into a surface integral

Q =

∫

d4x q(x) =

∮

S3

dσµkµ. (14)

For x2 → ∞ a sufficiently fast decaying field strength is assumed, so that Fµν = 0
implies ǫµνρσ∂ρAσ = −iǫµνρσAρAσ. Thus one obtains

Q =
iǫµνρσ
24π2

∮

S3

dσµtr[AνAρAσ]. (15)

By a gauge transformation Ω(x) the free gauge field at infinity is put to zero

0 = A′
µ(x

2 → ∞) = Ω†(x)[Aµ(x) − i∂µ]Ω(x) ⇐ : Aµ(x
2 → ∞) = i∂µΩΩ†.

(16)

The pure gauge potential Aµ in Eq. (16) maps a 3D volume element dxνdxρdσ at
infinity to a volume element

iAνAρAσdxνdxρdσ = ∂νΩΩ† ∂ρΩΩ† ∂σΩΩ† dxνdxρdσ (17)

in SU(2) group space. The requirement that the gauge transformation Ω(x) is
smooth implies that the topological charge Q in Eq. (15) is integer, Q ∈ Z. Q
measures the number of times Ω(x) wraps around the group when x covers the
space time surface S3 at x2 → ∞ once. Choosing bases in the tangent spaces of
the two S3 manifolds, one can define an orientation of the map. Thus Q can take
positive and negative values.
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Geometry Topological charge density Fermionic density

x

y

z

2.5 5
7.5

10

2.5 5 7.510

2.5

5

7.5

10

2.5 5
7.5

10

2.5 5 7.510

xx

yy

z

2.5 5 7.5 10

2.5 5 7.510

2.5

5

7.5

10

2.5 5 7.5 10

2.5 5 7.510

xx

yy

z

Figure 19: Plane vortices on a 124-lattice in xy- and zt-planes intersect in four points
giving rise to topological charge and localized fermionic density.

4.2 Plane vortices

Planar vortices are constructed as explained in [26]. At periodic boundary conditions
they always come in pairs and therefore are automatically closed. All three definitions
of Q yield identical results for all configurations containing only plane vortices.

As an example, Fig. 19 shows some diagrams for two orthogonal pairs of plane vortices
on a 124 lattice, which intersect in 4 places. The left picture shows the position of the
P-plaquettes after going to maximal center gauge and center projection. One vortex
pair extends in xy-planes, the other pair in zt-planes. The short pieces of lines attached
to the vertical line symbolize the extent of the zt-vortices in the time-direction. The
diagram in the middle of Fig. 19 shows an equi-density surface of the topological charge
density determined in the plaquette definition and the right diagram shows an equi-
density surface of the scalar fermionic density.

Each of the four intersection points gives rise to a topological charge Q = ±1
2

[12].
The sign of the contribution at a given intersection point can be changed by a flip of the
orientation of the vortex surface, this means by a transition from links Uµ(x) creating
one of the vortices to U †

µ(x) in the region of the intersection. After abelian projection
a smooth transition of the vortex orientation in color space produces a monopole line.
In this way one can produce configurations with two vortex pairs of topological charge
Q = 0,±1 or ±2. In all these cases the lattice index theorem is fulfilled and the results
agree with the analytical solution for the zero modes presented in [34].

4.3 Spherical vortices

One distinguishes an orientable from a non-orientable spherical vortex.

1. The non-orientable spherical vortex of radius R and thickness ∆ is constructed
with an appropriate “profile”-function α(|~r − ~r0|) by time-like links which form a
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4 Topological charge

hedgehog in one time-slice of the lattice, where ~r0 is the center of a spatial sphere

Uµ(x) =

{

exp {iα(|~r − ~r0|)~n(x) · ~σ} t = 1, µ = 4,1 elsewhere.
(18)

A characteristic property of a hedgehog configuration is the agreement between
the color direction ~n and the spatial direction of ~r − ~r0

~n(~r, t) =
~r − ~r0
|~r − ~r0|

, (19)

see left diagram in Fig. 20. For the choice (18) of the links the time-like Wilson
lines (holonomies) agree with the time-like links in the t = 1 time-slice.

At ~r = ~r0 and at the largest possible distances from ~r0 on a periodic lattice the
direction of the color-vectors (19) are undefined. This does not lead to a singularity
of the gauge field if the profile-function α(r) is appropriately chosen such that the
Wilson lines at these special points become center elements of the gauge group. A
good choice for the profile-function α is either one from α+, α−, which are defined
as

α+(r) =







0 r < R− ∆
2

π
2

(

1 + r−R
∆

2

)

R− ∆
2
< r < R+ ∆

2

π R + ∆
2
< r

(20)

α−(r) =







π r < R− ∆
2

π
2

(

1 − r−R
∆

2

)

R− ∆
2
< r < R+ ∆

2

0 R+ ∆
2
< r

(21)

This means that all links are equal to 1 except for the t-links in a single time-slice
at fixed t = 1. The phase changes from 0 to π from inside to outside (or vice
versa). The graph of α−(r) for the largest lattice 403 × Nt is shown in Fig. 20
(right diagram). The traces of all plaquettes are close to unity, tr(1 − Uµν) ≤
1 − cos π

18
= 0.015. In the following computations, R is set to half the lattice size,

and ∆ is chosen such that only 3 links along any direction are equal to +1 and
−1, respectively. The color vector ~n changes according to the spatial direction
(see Fig. 20, left).

2. The orientable vortex is constructed in a similar way:

Uµ(x) =

{

exp {iα(|~r − ~r0|) |~n(x)| · ~σ} t = 1, µ = 4,1 elsewhere.
(22)

Notice the absolute value of the coordinates of the color direction vector ~n. These
links cover only half of the SU(2) group space and this half they cover twice.
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Figure 20: Thick Spherical SU(2)-vortex (hedgehog, non-orientable) and change of its
link phase α(r) = α−(r) according to Eq. (18).

The distinction non-/orientable [45] refers to the orientation of the vortex surface
assigned by abelian projection. While the orientable vortex has a global orientation, the
non-orientable vortex consists of 2 patches of opposite orientation separated by a closed
monopole world line. This is indicated schematically in Fig. 21 with three colors.

The check that this configuration is a vortex is done with maximal center gauge and
center projection and results in a P-vortex forming a lattice representation of a sphere
of radius 10 in the first time slice. The color structure of the thick vortex, which is
symbolically indicated in the left diagram of Fig. 21, leads to a monopole loop on a
great circle of the P-vortex after maximal abelian gauge and abelian projection. The
direction of the loop depends on the U(1) subgroup chosen as abelian degrees of freedom.
For the subgroup defined by the Pauli matrices σ1, σ2 or σ3 the monopole loops are in
the yz-, zx- and xy-plane, respectively. (Fig. 21)

x

yy

zz

Figure 21: The color structure of a non-orientable vortex surface (l) leads to monopole
lines after abelian projection (r)
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Figure 22: For configurations with an orientable vortex the action vanishes during cool-
ing and no topological charge is measured (l), whereas for non-orientable vor-
tex configurations the topological charge rises to 1 while the action S reaches
a (non-zero) plateau (r). The left scale shows the action S =

∑

�
(1− 1

2
TrU�)

in units of the one-instanton action Sinst. The data is taken from a 124-lattice.

The P-vortex surface which is a closed surface in dual space consists only of the duals
of space-time plaquettes. There are no vortex intersections and no writhing points.
Therefore, the topological charge Q determined from the P-vortex surface [12] vanishes,
Q = 0. The traces of all plaquettes are close to unity, tr(1− Uµν) ≤ 1 − cos π

18
= 0.015,

compare the link-phases in Fig. 20. The topological charge in the plaquette definition or
in the hypercube definition can be used safely without cooling. According to Eq. (18) the
only non-trivial links are time-like, therefore all space-space plaquettes are trivial, which
confirms the vanishing of the topological charge Q ∼ ǫµνρσUµνUρσ. This is independent
of the lattice constant and thus holds also in the continuum limit.

For the orientable vortex, the topological charge after cooling and the overlap index
are also equal to zero, in keeping with the continuum expectation (see left diagram of
Fig. 22). However, a discrepancy in the case of the non-orientable spherical vortex is
found, both, for the cooling process and the lattice index theorem.

First, during cooling the topological charge rises near to ±1 for α± (right diagram
of Fig. 22) while the action S reaches a (non-zero) plateau. Further, the index of the
overlap operator is also non-zero, ind D = ∓1 for α±.

For the spherical vortex with profile-function α−(r) on a 403 ×Nt-lattice the overlap
Dirac operator gives three zero modes2 of positive chirality and four zero modes of
negative chirality. Normalized densities of positive and negative chirality modes have
the same spatial distribution.

2In this work, a “zero mode” denotes any eigenmode of D†D of the overlap Dirac operator (8) with
eigenvalue smaller than 10−5. If such modes exist of both positive and negative chirality they are
most likely not exact zero modes, but lifted slightly above zero pairwise. This numerical inaccuracy
does not affect the value of the index (7).
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Figure 23: Phases of Wilson lines along a line through the center of a spherical vortex
(l), normalized scalar densities for all zero modes of one chirality in the planes
with z = 20 close to the center of the sphere (r). The density vanishes in the
region where the phase of the Polyakov loop is π. Both chiralities and both
time-slices on the 403 × 2-lattice give the same picture.

Fig. 23 shows the scalar density in the plane z = 20 . The non-trivial links connect
z = 20 and z = 21, and the densities in both time-slices are identical. The zero modes
are localized mainly in the region of trivial Wilson lines (for |~r − ~r0| ∼ 20) and seem
compressed in the regions where the mirror pictures of the spherical vortex on the
periodic lattice approach each other. In the region where the Wilson lines are non-
trivial center elements (for |~r − ~r0| around 0), the density vanishes. According to the
index theorem the topological charge is given by Q = n− − n+ = 1.

This value is in disagreement with the values determined above (Q = 0). But it
agrees with the gluonic result which one gets after cooling. (compare Fig. 22, right).
The spherical vortex is not a minimum of the action, i.e. not an instanton. During
cooling its action is first rapidly decreasing, whereas its topological charge starts with
zero and reaches a value close to one after a few cooling steps. On the 403×2-lattice the
action does not really approach a plateau value. Since a plateau appears for a 124-lattice
this seems to be related to the strong asymmetry of the lattice. Hence one would expect
to see a clear plateau on a symmetric, but finer 404 lattice, as well. The number of
zero modes is the same for various lattice sizes used: 124, and 123 ×Nt up to 403 ×Nt,
increasing the spacial extent Ns in steps of 4 and using Nt = 2, 4 and 6. One concludes
that cooling and overlap fermions give a different topological charge than the discretized
integral 1

16π2

∫
d4x tr(FµνF̃µν) even for very smooth field configurations.

The hedgehog configuration is characterized by links in the center of the spatial sphere
which are non-trivial center elements and Wilson lines L(~x), ~x = (x, y, z), with a topo-
logical winding number ν = 1,

ν({L}) =
1

24π2

∫

d3rǫijkTr(ViVjVk), Vi = ∂iLL
†. (23)
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4 Topological charge

The topological charge determined after the cooling process and from the index theorem
agrees with this winding number. In the continuum limit, the gauge field at the center
of the hedgehog becomes singular. This singularity is due to the topological obstruction
and cannot be removed by a gauge transformation. With Landau-gauge for 100 gauge
copies on a 403 × 2-lattice, it is not possible to get rid of links close to non-trivial center
elements. For the lattice spacing a approaching zero, the gauge field for these links,
A0(x) ≈ πσ3/(ga), diverges. In all gauge copies the same links with negative traces are
found. The number of negative links and the values of their traces are listed in Table 1.

number of links 8 24 24 32 48 24 48
1
2
trUµ(x) -0.93 -0.68 -0.46 -0.30 -0.18 -0.08 -0.01

Table 1: Number of links with negative traces and trace values after Landau gauge for
the non-orientable spherical vortex of Eq. (18) on a 403 × 2-lattice, e.g. there
are eight links with 1

2
trUµ(x) = −0.93.

For comparison, in the case of an orientable spherical vortex, the time-like Wilson
lines have topological winding number zero. This configuration has no zero modes and
all ways to determine the topological charge lead to the same result, Q = 0. With
maximal Abelian gauge no monopole lines appear. With Landau-gauge, again for 100
gauge copies on a 403 × 2-lattice, one can get rid of links close to non-trivial center
elements. Table 2 lists the number of negative links and the values of their traces.

number of links 8 24 24 24
1
2
trUµ(x) -0.26 -0.15 -0.06 -0.008

Table 2: Number of links with negative traces and trace values after Landau gauge for
the orientable spherical vortex of Eq. (22) on a 403 × 2-lattice.

For the non-orientable spherical vortex with profile function α+(r) on a 403×Nt-lattice
the overlap Dirac operator gives only one zero mode of negative chirality.

The phases of the links in the time slice agree again with the phases of the Wilson
lines in time direction and are shown in Fig. 24. In the center of the spherical vortex the
temporal Wilson lines are trivial and at “infinity” they are non-trivial center elements.

The zero mode is localized in the center of the spatial sphere and in both time-slices
occupied by the vortex. Again, the scalar density prefers regions of trivial Wilson lines
over those of non-trivial values. According to the index theorem the topological charge
is -1 and agrees with the winding number (23) of the hedgehog of Wilson lines. The
topological charge computed from plaquettes isQ = 0 while the plaquette traces differ by
less than 1.5 % from trivial ones. Since this configuration is related to the configuration
in Fig. 23 by a non-periodic gauge transformation, it is not surprising that again the
different determinations of the topological charge do not agree.

The non-orientable vortex also gives extra contributions to the index when it is com-
bined with other vortices, possibly including intersection points which produce “real”
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Figure 24: Phase-diagram of the Polyakov loop (l) along a line through the center of a
spherical vortex with the profile function α = α+ (l) and scalar density of the
only fermionic zero mode (r) which has positive chirality.

topological charge.
For two equal vortices of this type, α = α+, one in time slice t = 1 and another

at t = 2 of the 403 × 2-lattice there are three zero modes of positive chirality with a
scalar density like the diagram in Fig. 23 and five of negative chirality with the densities
shown in Fig. 25. Since the modes are degenerate, they can mix and the plots display
the sum of the densities of all zero modes. The left diagram displays the t = 1 slice,
where only four of these modes contribute significantly, while the fifth mode leads only
to the small peak in the middle. Conversely, the density in the t = 2 slice (shown in the
right picture) is dominated by the fifth mode in the center, the other modes being of a
magnitude invisible on this scale. The phase of the Polyakov line for this configuration
is zero in the center of the spherical vortices and due to the 2π-periodicity in the region
between the mirror pictures on the periodic lattice. Again the zero modes are localized
in the region with trivial time-like Wilson lines.

A configuration with two vortices of different type in the two time-slices, one with
α = α− at t = 1 and another with α = α+ at t = 2 does not show any zero mode. In
this case there is no discrepancy in the determinations of the topological charge. The
phase of the Wilson line, which is the sum of the phases from the two vortices, is constant
and equal to π.

A summary of the the number of zero modes for the configurations described above
with spherical vortices is given in Table 3.

More generally, the following empirical rule can be formulated: Non-orientable spher-
ical vortices in slices (3D volumes) of the lattice contribute to cooled topological charge
and Dirac operator index with an integer given by the “winding number” [47, 56] of the
corresponding Wilson lines, mapping the 3D volume of the slice to the SU(2) manifold
of the Wilson lines. To compute this “winding number”, the t-links are seen as a map
not from T4, but from the compactified time-slice t = 0, in which the sphere is located,
to SU(2). The time-slice can be compactified to S3 because the links outside the sphere
are all equal to +1.
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Figure 25: Scalar densities of fermionic zero modes of negative chirality for two equal
vortices with the profile function α = α+, in the time slices t = 1 and t = 2
of the 403 × 2-lattice.

profile α n+ n−
orientable, α± 0 0

non-orientable, α− at t = 1 3 4
non-orientable, α+ at t = 1 1 0

non-orientable, α+ at t = 1 and α+ at t = 2 3 5
non-orientable, α− at t = 1 and α− at t = 2 5 3
non-orientable, α− at t = 1 and α+ at t = 2 0 0

Table 3: Number of zero modes for various smooth field configurations with spherical
vortices. The profile functions α± are defined in Eq. (20).

One concludes that for non-orientable spherical vortices, i.e. configurations with a
non-zero winding number of the Wilson lines, the index of the overlap Dirac operator
differs from the topological charge in the continuum limit. It is very likely that this
non-orientability is related to non-zero winding number of the gauge field and the artifi-
cial configurations reflect properties which saturate the path integral. The discrepancy
between overlap index and continuum topological charge is not due to the coarse dis-
cretization. Lattice sizes with Nt = 2, 4, 6 and Ns ranging from 8 to 40 in steps of 4
have been used [57]. For Ns ≥ 40, the traces of all plaquettes are close to unity and the
admissibility condition (9) is satisfied, but the results remain unaltered. The reason for
the seeming contradiction is probably the singular nature of the continuum gauge field
equivalent to the spherical vortex. The singularities in the gauge field are related to
non-trivial mappings of Wilson lines. These singularities invalidate the usual derivation
of the index theorem.
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4 Topological charge

4.4 Topology and Staggered Fermions

“It is conventional wisdom that staggered fermions do not feel gauge field topology.” [58]
However, the cited paper provides a strategy to improve the response of staggered
fermions to the topological background. Staggered fermions don’t have exact zero modes,
but a separation between “would be” zero modes and non-chiral modes is observed for
improved staggered quark actions. These results shall be verified first, by comparing
standard and asqtad improved staggered fermions and using the HYP (hyper cubic
blocking) smearing algorithm. The results are shown in Fig. 26, presenting the first
twenty eigenmodes of thirty configurations, generated by lattice Monte Carlo simula-
tion of the tadpole improved Lüscher-Weisz pure-gauge action at coupling βLW = 3.7,
since increasing coupling also improves the desired effect. The eigenvalues are plotted
against the chirality (pseudo-scalar density) of the modes, which for staggered fermions
is determined by 〈Ψγ5Ψ〉, where γ5 corresponds to a displacement along the diagonal of
a hypercube. To ensure gauge invariance the product includes gauge field multiplica-
tions along all shortest paths connecting opposite corners of the hypercube. Comparing
standard (red) and asqtad improved (green) staggered fermions, a slight improvement is
observed, “would be” zero modes show a higher chirality and are “closer” to zero. But
for these rough configurations it still seems hard to really identify exact zero modes,
whereas after five steps of HYP-smearing the chirality of the zero modes gets well de-
fined (close to one, negative chiralities were projected to the positive plane) and the
eigenvalues get close to zero. There is no big difference between standard (blue) and
asqtad improved (magenta) fermions any more.

These results promise to be able to identify zero modes on rather smooth configura-
tions, as the above examples of spherical vortices provide. The asqtad staggered modes
are calculated for a positive and a negative non-orientable spherical vortex made up of
time links in a single time sheet of 403×8 lattices. The results concerning zero modes and
the index theorem are exactly the same (see Table 4) as for the overlap Dirac operator,
smearing only precises the eigenvalue close to zero. The scalar densities for the single
mode of each chirality also distribute similar (Fig. 27, compare to Figs. 23 and 24).

positive spherical vortex negative spherical vortex

λ 〈ψγ5ψ〉 HYP λ 〈ψγ5ψ〉 λ 〈ψγ5ψ〉 HYP λ 〈ψγ5ψ〉
0.01060 0.9609 7.97 10−6 0.7951 0.00139 −0.9972 5.68 10−6 0.0304
0.26577 −0.0333 0.28403 −0.0086 0.00168 0.9956 7.40 10−6 −0.1729
0.26577 −0.0385 0.28403 −0.0144 0.00168 0.9958 8.09 10−6 0.0395
0.26577 −0.0401 0.28403 −0.0136 0.00168 0.9960 9.11 10−6 −0.2421
0.27095 0.0096 0.28403 −0.0090 0.00245 −0.9913 9.50 10−6 −0.0661
0.27095 0.0140 0.28403 −0.0096 0.00245 −0.9928 9.78 10−6 0.2491
0.27095 0.0116 0.28403 −0.0089 0.00245 −0.9909 1.01 10−5 −0.2829
0.34335 0.0128 0.35622 0.0081 0.10450 0.0391 0.11128 0.0091

Table 4: First eight asqtad staggered eigenvalues and their chiralities for positive and
negative spherical vortices and HYP-smeared configurations.

29



4 Topological charge

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2  0.25

standard staggered fermions
asqtad improved staggered fermions

 
after 5 steps of HYP-smearing:                           

standard staggered fermions
asqtad improved staggered fermions

ch
ir

al
it
y

(〈
Ψ
γ

5
Ψ
〉)

eigenvalue λ

Figure 26: First twenty eigenmodes of thirty Monte Carlo configurations on a 204-lattice,
for standard and asqtad staggered fermions and smeared gauge fields.
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Figure 27: Scalar densities of the single (unpaired) asqtad staggered zero mode of posi-
tive chirality for the positive (α+, left) and negative chirality for the negative
(α−, right) spherical vortex in a time slice of a 403 × 8-lattice.
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5 Observables and Results on SCSB

The correct description of chiral symmetry breaking within the center vortex model is
analyzed in quenched LQCD. SU(2) gauge configurations were produced by Monte Carlo
methods using the heat-bath algorithm with improved Lüscher-Weisz action and the
Dirac operators (see App. A.2) were applied afterwards. For each set of data, the results
presented below underly a statistics of a 100 configurations for the asqtad staggered and
30 configurations for the overlap Dirac operator. For discussions some representative
examples were depicted only. The results of all data can be found in appendix C.

5.1 Dirac Eigenvalues

In order to solve the question whether the failure to explain the chiral condensate from
the center-projected configurations is caused by the approximation which is due the chi-
rally improved fermions or whether the pure P-vortices miss some important information
concerning chiral symmetry breaking, the overlap Dirac operator is investigated. Fig. 28
presents the first twenty eigenvalues on the Ginsparg-Wilson circle for a 164 lattice at
βLW = 3.3. The projected data shows up the same strange behavior. There is a big gap
around zero, indicating zero chiral condensate and therefore quark confinement without
chiral symmetry breaking. The vortex-removed data shows four near-zero modes for
each chirality, which can be interpreted as real zero modes since they disappear in case
of anti periodic boundary conditions (see Fig. 29) and therefore are irrelevant to chiral
symmetry breaking. Looking closer at the center-projected eigenvalues one spots only
five of the twenty eigenvalues. This indicates a degeneracy of four eigenvalues each and
also the scalar density of the eigenvectors shows up this degeneracy, see Fig. 30.
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Figure 28: First twenty overlap Dirac eigenvalues on the Ginsparg-Wilson circle for a
164 lattice at βLW = 3.3.
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Figure 29: First twenty overlap Dirac eigenvalues on the Ginsparg-Wilson circle for a
164 lattice at βLW = 3.3 using anti periodic boundary conditions.
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Figure 30: Scalar density of first four eigenmodes of a single projected configuration on
a 164 lattice at βLW = 3.3, presenting the maximum peak in z = 4, t = 9
plane.
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This factor of four has the following origin: In the first place, when link variables are
simply plus or minus the 2 × 2 identity matrix, the two colors decouple, and we have a
factor of two degeneracy. Secondly, whenever the link variables are real and the Dirac
operator has the Wilson or overlap (but not staggered) form, the eigenvalue equation
Dψn = lnψn is invariant under charge conjugation. Thus, if ψn is an eigenstate with
eigenvalue ln, then C−1ψ∗

n is also an eigenstate, with the same eigenvalue [59]. This gives
another factor of two, resulting in an overall four-fold degeneracy.

The question which comes to mind is whether the large gap found in center-projected
overlap spectra, as well as by Gattnar et al. [35, 36] for the chirally improved Dirac
operator, is related to the way in which chiral symmetry is realized on the lattice. The
Casher argument [60] that confinement implies chiral symmetry breaking is based on the
usual SU(Nf )L × SU(Nf )R symmetry of the continuum theory with massless fermions.
However, the chirally improved Dirac operator only approximates this symmetry for
gauge-field configurations which vary smoothly at the lattice scale. Center-projected
configurations are not even close to smooth; plaquette variables make a sudden transition
from the trivial center element outside the thin vortex, to a non-trivial center element
inside. The chirally-improved Dirac operator is not necessarily chirally symmetric, even
approximately, in such backgrounds. In the absence of a symmetry, there is no reason to
expect spontaneous symmetry breaking. If this fact explains why there is a gap in the
eigenvalue spectrum of the chirally-improved operator, then it is reasonable to also ex-
pect a gap in the spectrum of the overlap operator, when evaluated on center-projected
configurations. Of course the overlap operator, in contrast to the chirally-improved
operator, does have an exact global symmetry, but the symmetry transformations are
gauge-field dependent [17], and only approximate the SU(Nf )L × SU(Nf )R chiral sym-
metry transformations of the continuum theory for configurations which vary slowly at
the scale of the lattice spacing. While this smoothness condition is expected in the
continuum limit, it is never the case for center-projected configurations, and the Casher
argument relating confinement to chiral symmetry breaking need not apply.

If the overlap operator yields misleading results on center-projected lattices, because
of the lack of smoothness of center-projected configurations, then perhaps the overlap
operator would produce a more reasonable answer when applied to a smoother version
of the center-projected lattice. Therefore an interpolation between full (gauged) and
projected configurations is performed. Given that SU(2) group elements can be repre-
sented by unit 4-vectors aµ, where U = a0I2 + iakσ

k, let θµ(x) denote the angle between
the vector representing group element Uµ(x) in maximal center gauge, and the vector
representing the SU(2) center element Zµ(x)(I2), where Zµ(x) was defined in Eq. (57).
Center projection simply takes this angle to zero, at every link, but one may also con-
sider partial projections in which θµ(x) is everywhere reduced by some fixed percentage.
These partial projections interpolate between the unprojected lattice, in maximal center
gauge, and the fully center-projected lattice. The original SU(2) elements Uµ(x) are
partially turned into the according center element Zµ(x) = ±1 (north/south pole) by
partial steps of the angle θµ(x) (see Fig. 31).

The low-lying overlap eigenvalues of a single configuration on a 164 lattice at βLW = 3.3
during interpolation are shown in Fig. 32. The spectra are shown for a partial projection
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Figure 31: Hyper sphere S3 of SU(2) elements Uµ, center elements Zµ = ±1 (poles)

angle θµ(x) reduced by 50%, 75%, 85%, . . ., together with the unprojected (0%) and fully
(100%) center-projected lattices. There is no really obvious gap in the partially-projected
lattices, even at 85% projection. This agrees with the conjecture that applying the
overlap operator to a smoother version of the vortex-only vacuum would give a result
consistent with chiral symmetry breaking and the Banks-Casher relation.

The development of the first four eigenmodes to a degenerated quartet is shown in
Figs. 33 and 34 for a partial projection angle θµ(x) reduced in 25%-steps. The modes
only degenerate on the center-projected lattice.
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Figure 32: First twenty overlap Dirac eigenvalues of a single configuration on a 164 lattice
at βLW = 3.3 for interpolated fields.
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Figure 33: Development of 1st and 2nd eigenmode during interpolation.
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Figure 34: Development of 3rd and 4th eigenmode during interpolation.
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On the other hand, the Lagrangian for staggered fermions (and their asqtad cousins [61,
62, 63]) preserves a continuous U(1) × U(1) symmetry, which is a remnant of the origi-
nal chiral symmetry group, irrespective of the smoothness of the configuration. By the
Casher argument [60], one would expect this remaining symmetry to be spontaneously
broken, on the lattice, by any ensemble of gauge configurations with the confinement
property. Then, according to the Banks-Casher relation, there should not be any gap
in the vortex-only eigenvalue spectrum. If the puzzling gap in the Dirac eigenvalue
spectrum found by Gattnar et al. [35, 36] is a consequence of the roughness of center-
projected lattices, then one might expect this gap to disappear in the spectrum of the
staggered or asqtad Dirac operators. Indeed, there is already a relevant result in [15],
which reported that 〈ψψ〉 > 0 for staggered fermions on a center-projected lattice.

Therefore, asqtad improved staggered fermions are considered next. The eigenvalues
distribute very differently now (see Fig. 35), the low eigenmode density (chiral conden-
sate) increases for projected compared to full (original) data whereas the vortex-removed
data develops a central band around Imλ = 0 of eight doubly degenerate eigenmodes
per chirality, which are separated by a gap from the higher modes. Now, the free-field
Dirac operator for massless staggered fermions has exactly four zero modes for each of
four “tastes”, and this number must be multiplied by the number of colors (i.e. two for
SU(2)), for a total of 32 free-field zero modes. So it is reasonable to guess that the 32
eigenmodes in the central band of the vortex-removed spectrum are simply the would-be
zero modes of the free staggered theory. In fact, these modes disappear for anti periodic
boundary conditions (see Fig. 36), which is sufficient to remove the zero modes of the
free theory and therefore can be treated as real zero modes which do not contribute to
the chiral condensate via the Banks-Casher relation.
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Figure 35: First twenty asqtad staggered Dirac eigenvalues on a 164 lattice at βLW = 3.3.

These results seem pretty promising, there is confinement with chiral symmetry break-
ing for vortex configurations and even increasing effects for center-projected data, whereas
both properties vanish for vortex-removed configurations. So the vortex excitations of
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Figure 36: First twenty asqtad staggered Dirac eigenvalues on a 164 lattice at βLW =
3.3 using anti periodic boundary conditions.

the vortex-only lattice carry not only the information about confinement, but are also
responsible for chiral symmetry breaking via the Banks-Casher relation. This result was
anticipated in [15], which found a non-zero 〈ψψ〉 condensate on center-projected lattices.
Chiral symmetry breaking disappears for vortex-removed lattices, as discovered long ago
by de Forcrand and D’Elia, in a direct calculation of 〈ψψ〉 [14].

The next question is how these processes are related to the vortices themselves and
therefore the correlation between the Dirac eigenmodes and the vortices shall be consid-
ered. First of all the localization properties of the eigenmodes are determined.

5.2 Localization and fractal dimension of eigenmodes

A useful measure to quantify the localization of eigenmodes is the inverse participation
ratio (IPR) [64, 65, 66, 67]. The IPR of a normalized field ρi(x) is defined as

I = N

N∑

x=0

ρ2
i (x) (24)

where N is the number of lattice sites x. Here, ρi(x) = ψ†
iψi(x) and ψi(x) is the i-th,

normalized (
∑

x ρi(x) = 1), lowest eigenvector of the Dirac operator.
With this definition, I characterizes the inverse fraction of sites contributing signif-

icantly to the support of ρ(x). A simple calculation shows that the IPR takes the
following values for these simple situations:

Unlocalized: ρ(x) = const. I = 1
δ-function: ρ(x) = δ(x0) I = N

localized on fraction f of sites: I = 1/f
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The scaling of the IPR with lattice spacing is sometimes used to determine the dimen-
sionality of eigenmode concentration. Suppose the objects responsible for confinement,
or indeed any physics governing the lowest Dirac eigenmodes (LDE), localize the LDEs.
As the lattice spacing a is reduced, the fraction of sites contributing to the IPR scales as
ad/a4. Thus the IPR indicates the co-dimension of these objects: d = 4 for instantons,
d = 3 for monopoles, and d = 2 for vortices. Gauge dislocations should contribute
as d = 0 objects, however their density diverges as a−4 so that they should give a ∼
constant contribution: a0/(a4a−4).

Since the IPR ∼ 1/f , reducing the lattice spacing at fixed physical volume gives

a→ 0 at fixed volume: I ∼ a4−d

On the other hand, increasing the volume at fixed lattice spacing includes proportion-
ately more of the confining objects, whatever their dimension. Thus the IPR is expected
to remain constant,

L→ ∞ at fixed a: I ∼ constant.

This dimensionality, deduced from the IPR by reasoning that if the eigenmode has
support mainly on a sub manifold of dimension d, with a thickness in the 4−d orthogonal
directions which is a fixed number of lattice units, then the IPR should scale with lattice
spacing as 1/a4−d, can lead to incorrect conclusions, because it is not necessarily true
that the thickness of the localization region is a constant number of lattice spacings,
regardless of coupling. An instructive example is provided by the lowest eigenmode of
the covariant Laplacian in the adjoint representation, which was studied in [68]. In that
case it was found that the IPR scaled like 1/a2, suggesting an eigenmode concentration
on surfaces. Instead, it turns out that the lowest eigenmode is sharply concentrated
in a point like region. The peculiar scaling of the IPR arises because the volume b of
the region of concentration, in lattice units, scales in a peculiar way. If this volume
were a constant in physical units, then ba4 would be constant. If instead the volume
were constant in lattice units, then b itself would be constant. In fact, it is ba2 which
is constant; the volume of the eigenmode concentration region goes to zero in physical
units, but infinity in lattice units, in the continuum limit. The naive deduction of the
dimensionality of the concentration region, purely from the scaling of the IPR, leads in
this case to an incorrect conclusion.

5.2.1 asqtad staggered IPR-Results

The following figures show IPRs for asqtad staggered Dirac eigenmodes on 12,16 and
204 lattices for βLW = 2.9, 3.1, 3.3, 3.5 and 3.7 (100 configurations each). The mean
value is plotted against the number of the corresponding eigenmode.

The Figures 37-38 show the dependence on lattice-spacing a (βLW ) of the IPR for fixed
lattice size (204) for full (Fig. 37), projected (Fig.38a) and vortex-removed (Fig.38b)
configurations. It generally shows an increasing IPR with βLW for unprojected data
(Fig.37). According to [66, 67] the IPR should go like 1/a, in which case it should
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roughly double in going from βLW = 2.9 to 3.3, βLW = 3.1 to 3.5 or βLW = 3.3 to 3.7
and in fact, that’s what about it does. For projected configurations (Fig.38a) the IPR
of the lowest modes is roughly 11 at βLW = 2.9, 33 at βLW = 3.1, 140 at βLW = 3.3
and 400 at βLW = 3.5. Now, if the eigenmode density has support on point like regions,
it means that the IPR should go like 1/a4. That means the IPR should increase by
a factor of 4 from βLW = 2.9 to 3.1, from βLW = 3.1 to 3.3 and from βLW = 3.3 to
3.5. Thats not so far off the obtained results. So one figures out that the eigenmodes
in the projected case are sharply peaked, maybe at vortex intersections what has to be
checked. Therefore peaks in the eigenmode densities are identified in the next section
for a better understanding of the IPR-results.

The Figures 39-41 show the IPR as a function of lattice size L for fixed lattice spacing
for full (Fig. 39), projected (Fig. 40) and vortex-removed (Fig. 41) configurations, each
for βLW = 3.1 and 3.3. There is a fairly modest increase in IPR with lattice volume. The
eigenmodes seem to be localized on a few lattice sites (IPR tending to a constant value
(1 <IPR<< L4) for growing L) for full (unprojected) and projected data. Therefore the
number of eigenmode density peaks is expected to increase with the lattice volume.

The IPR of vortex-removed configurations behaves somehow strange. The eigenmodes
of the central band (1-8) seem to be delocalized completely (zero modes) whereas the
higher eigenmodes again seem to be localized on a fraction of sites.
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lattice and different βLW
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a) βLW = 3.1
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Figure 39: Inverse Participation Ratio for full (unprojected) configurations for a) βLW =
3.1 and b) βLW = 3.3 and different lattice sizes
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a) βLW = 3.1
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Figure 40: Inverse Participation Ratio for center-projected configurations for a) βLW =
3.1 and b) βLW = 3.3 and different lattice sizes
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a) βLW = 3.1
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Figure 41: Inverse Participation Ratio for vortex-removed configurations for a) βLW =
3.1 and b) βLW = 3.3 and different lattice sizes
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5.2.2 overlap IPR-Results

For overlap fermions the IPR-results are shown in Figures 42-43. For full configurations
(Fig. 42) the statistics of 20 configurations seems to be too low to give any reasonable
messages. The projected data (Fig. 43a) shows the fourfold degeneracy and vortex-
removed IPR (Fig. 43b) shows up some interesting plateau for eigenmodes two to four
which is not due to zero modes or any degeneracy.
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Figure 42: Inverse Participation Ratio for full (unprojected) configurations on 124 and
164-lattices and different βLW

5.2.3 Results of other groups

For Dirac eigenmodes, conclusions based on the scaling of the IPR have not been entirely
consistent with one another (cf. the overview in [69]). Results of the MILC collaboration,
with asqtad fermions, indicate a dimensionality d = 3 [66, 67], while the ITEP group has
reported results, for overlap fermions and the Wilson action, consistent with d = 0 [70].
A third study, using overlap fermions and the Lüscher-Weisz action, again indicates
d = 3 [71, 72] while the latest study of this group, using generalized IPR’s defined using
higher powers of ρi(x), suggest eigenmode concentrations on manifolds of dimension
between d = 0 and d = 1 [73].
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5.3 Peak Analysis

The IPR shows that the eigenmodes are rather localized to peaks. To confirm this result
a possibly more reliable (if less quantitative) approach is to simply look at sample plots of
ρλ(x) throughout the lattice volume. Looking at single configurations the scalar densities
of single eigenmodes show up as follows. The figures (44-50) show the maximum density
peaks of overlap (44-46) and staggered (47-50) Dirac eigenmodes. Each lattice contains
several sharp peaks of this kind; it is obvious that the concentration of eigenmode
density is in a point-like region, rather than being spread over a sub manifold of higher
dimensionality. The figures display a set of xy-plots of ρ(x, y, z, t) at various values of
z and fixed t, but there is an equally strong falloff of the peak as one moves away from
the maximum in the time direction.

In more detail, Fig. 44 shows the eigenmode density of full overlap modes which
are peaked rather sharp whereas for projected data the eigenmode concentration is
very broad, extending over most of the lattice volume, as seen in Fig. 45. Since the
overlap operator, evaluated on center-projected configurations, does not have any low-
lying eigenmodes, let alone a zero mode, it is not surprising that the eigenmode density
is qualitatively different from all other configurations. Overlap eigenmodes of vortex-
removed configurations show small, large peaks in a noisy background (Fig. 46).

The asqtad staggered modes show even sharper peaks with less noise (Figs. 47, 48
and 50) except the first eight (“real” zero) modes of vortex-removed configurations
(Fig. 49). Eigenmode peaks are by far the sharpest for eigenmodes of the asqtad op-
erator on the center-projected lattice. Taking account of the vertical scales in these
figures, the peak in the asqtad-center-projected case (Fig. 48), is about an order of mag-
nitude higher than the peak in the asqtad-unprojected case (Fig. 47). This difference
is of course reflected in a comparison of the IPRs of asqtad eigenmodes on the full and
center-projected lattices, already shown in Fig. 37 and 38b), which indicate a far higher
degree of eigenmode concentration in the center-projected case.

It is not too surprising that would-be zero modes of the asqtad operator would be
very highly concentrated when evaluated on center-projected lattices. On thin vortices,
topological charge is concentrated not just in point-like regions, but in fact at individual
lattice sites on the dual lattice, where thin vortex sheets writhe and/or intersect. Since
zero modes concentrate on regions of non-zero topological charge density, and topological
charge is concentrated at individual sites on the center-projected lattice, the high degree
of localization of the lowest-lying modes, in volumes of lattice-scale extension, is to be
expected. On unprojected lattices the sources of topological charge, whether vortices,
instantons, calorons, or something else, are more spread out, and there is no particular
reason to expect that the eigenmode density would concentrate in tiny regions of lattice
scale extension. What would be interesting to know, of course, is which of the candidate
sources of topological charge density is giving the main effect. The density plots give a
strong indication that the charge density concentrates in point-like regions, rather than
surfaces or three-volumes, but this fact would be compatible with instanton, caloron,
and vortex (intersection/writhing) sources. Therefore eigenmode density-vortex surface
correlations are performed in section 5.4.
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full configuration on a 204-lattice at βLW = 3.3 with upper (above) and lower
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projected configuration on a 204-lattice at βLW = 3.3 with upper (above)
and lower (below) z-slices of the same t-slice. (sharper peak, less noise)

52



5 Observables and Results on SCSB

 5
 10

 15
 20

 5
 10

 15
 20 0

 2e-05
 4e-05
 6e-05
 8e-05

 0.0001
 0.00012
 0.00014
 0.00016
 0.00018

z=7, t=11

y

x
 5

 10
 15

 20

 5
 10

 15
 20 0

 2e-05
 4e-05
 6e-05
 8e-05

 0.0001
 0.00012
 0.00014
 0.00016
 0.00018

z=8, t=11

y

x

 0

 5

 10

 15

 20

 0

 5

 10

 15

 20 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

 0.00012

 0.00014

 0.00016

 0.00018

density of eigenvalue #1, maximum 0.00012080876109 at x=12, y=15, z=9, t=11

y

x

 5
 10

 15
 20

 5
 10

 15
 20 0

 2e-05
 4e-05
 6e-05
 8e-05

 0.0001
 0.00012
 0.00014
 0.00016
 0.00018

z=10, t=11

y

x
 5

 10
 15

 20

 5
 10

 15
 20 0

 2e-05
 4e-05
 6e-05
 8e-05

 0.0001
 0.00012
 0.00014
 0.00016
 0.00018

z=11, t=11

y

x

Figure 49: Maximum density peak (center) of first asqtad staggered eigenmode for
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5.3.1 Remaining Norm

The remaining norm R, defined as

R(n) = 1 −
n∑

i=1

ρi(x) . . . 1 ≤ n ≤ L4, (25)

where ρi(x) are the eigenmode densities of all x ∈ L4, the lattice volume, sorted from
highest to lowest by index i gives some information about the background in the eigen-
mode densities. A steep slope indicates a low background, a flat slope a higher one.

Fig. 51 shows the R(n)-plot for overlap fermions of full, projected and vortex-removed
configurations on a 124-lattice and different βLW .

Fig. 52 shows the R(n)-plot for staggered fermions of full, projected and vortex-
removed configurations on a 204-lattice and different βLW . The background noise always
decreases with increasing βLW , except for projected overlap data, whose background is
mostly due to its broad peaks. The projected staggered data has a very low background.
Comparing overlap and asqtad staggered data, the remaining norm for full and vortex-
removed configurations are about the same, vortex-removed data always shows the most
background noise.
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Figure 51: Remaining Norm of first non-zero overlap eigenmode of full, projected and
vortex-removed configurations for different βLW on a 124-lattice.
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5.3.2 Peak Fitting

Next, some peak scaling in dependence of βLW considering the full width half maximum
(FWHM) is performed. The FWHM is determined by fitting a distribution function
into the peaks. Therefore the average density at points on a hyper sphere around the
maximum with radii 1,

√
2,
√

3, 2,
√

7 and 3 are taken, normalizing their volume to one.
The standard distribution function

f(x) =
1

σ
√

2π
· exp

−(x− x0)

2σ2
, (26)

where x0 is the maximum peak position, is fitted by some least squares algorithm in order
to get the σ, which gives the FWHM= 2

√
2 ln 2σ. The quality of the fits is shown in

Fig. 53, which is quite good except for overlap projected data due to its broad peaks. The
FWHM is used to identify further peaks which are at least in a distance of 2·FWHM
of each other. Table 5 lists the results for every lattice and βLW , full and projected
configurations, asqtad staggered and overlap data. For every case the maximum, its
FWHM, the number of peaks higher than 1/2, 1/3 and 10% of the maximum and the
average FWHM of these peaks are listed. All data seems to make sense and looks
quite well except for overlap projected configurations. It is somehow interesting that
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the FWHM increases with βLW . The peak height increases drastically with βLW and
therefore the peaks look much sharper. But also the FWHM increases slightly and
therefore the peak volume (in lattice units) increases strongly. This can also be seen
very nicely from decreasing number of peaks for increasing βLW .
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Figure 53: Quality of fits for all configurations on 164 lattice at βLW = 3.3. The green
crosses give the average density normalized to one (ordinate) at points around
the maximum in a certain radius (abscissa), whereas the red line gives the
fitted distribution function f(x).
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L4 βLW peak stag.full projected ovl.full projected

124 2.9 max.: 0.0015(1.438) 0.0105(1.025) 0.0014(2.534) 0.0005(4.341)
>max/2: 10.95(1.655) 3.41(1.075) 3.4(2.976) 6.85(4.514)
>max/3: 565.46(1.664) 154.32(1.078) 38.1(2.99) 82.85(4.54)
>max/10: 19260.24(1.672) 5616.08(1.082) 340.4(3.133) 711.0(4.56)

3.1 max.: 0.0019(1.542) 0.0183(1.022) 0.0018(2.533) 0.0003(4.709)
>max/2: 6.8(1.679) 2.95(1.083) 2.5(2.855) 21.95(4.709)
>max/3: 356.03(1.68) 137.48(1.078) 27.9(2.82) 258.5(4.709)
>max/10: 12322.24(1.684) 4958.11(1.078) 235.35(2.923) 2139.15(4.709)

3.3 max.: 0.0029(1.784) 0.0275(1.067) 0.0021(2.565) 0.0002(4.709)
>max/2: 3.09(1.889) 2.41(1.123) 2.25(2.952) 51.55(4.709)
>max/3: 158.11(1.889) 93.06(1.117) 25.25(2.993) 574.95(4.709)
>max/10: 5649.35(1.903) 3278.59(1.118) 202.05(3.155) 4377.4(4.709)

164 2.9 max.: 0.0006(1.38) 0.0049(1.005)
>max/2: 14.42(1.555) 4.3(1.052)
>max/3: 747.4(1.562) 210.82(1.055)
>max/10: 26199.61(1.58) 7350.42(1.058)

3.1 max.: 0.0009(1.435) 0.0096(1.012)
>max/2: 10.11(1.583) 3.28(1.065)
>max/3: 527.61(1.588) 144.4(1.066)
>max/10: 18340.62(1.597) 4635.4(1.068)

3.3 max.: 0.0015(1.707) 0.0195(1.033) 0.0019(2.389) 0.0001(4.709)
>max/2: 4.68(1.782) 2.47(1.08) 1.45(2.686) 71.15(4.709)
>max/3: 260.63(1.796) 90.7(1.082) 17.6(2.739) 874.7(4.709)
>max/10: 9673.35(1.811) 3034.79(1.086) 154.85(2.91) 7230.0(4.709)

204 2.9 max.: 0.0003(1.304) 0.0023(0.989)
>max/2: 17.17(1.476) 5.0(1.033)
>max/3: 927.22(1.488) 245.91(1.035)
>max/10: 33150.75(1.515) 8692.08(1.039)

3.1 max.: 0.0005(1.383) 0.0054(1.007)
>max/2: 10.38(1.507) 3.59(1.037)
>max/3: 555.9(1.519) 170.37(1.034)
>max/10: 19756.87(1.534) 5757.93(1.034)

3.3 max.: 0.0008(1.536) 0.0135(1.001)
>max/2: 6.95(1.636) 2.59(1.041)
>max/3: 371.67(1.642) 105.77(1.045)
>max/10: 13351.86(1.647) 3516.07(1.05)

Table 5: Peak Analysis Results for staggered and overlap fermions: maximum peak
height, its FWHM enclosed in brackets, number of peaks higher than 1/2,
1/3 and 1/10 of maximum peak and corresponding averaged FWHM

58



5 Observables and Results on SCSB

The results roughly confirm conclusions and assumptions in the previous section.
First, the number of peaks within the 10%-barrier isn’t linearly rising with lattice vol-
ume but it rises proportionally to the IPR data. Secondly, the peaks for projected
configurations are much higher and sharper than all the others and third, the peaks
found for eigenmodes of the central band in vortex-removed data are only small maxima
in a noisy background while for the 9th and higher eigenmodes the data roughly look like
those for full or even projected configurations again. In the following section correlations
between the density of Dirac modes and vortices resp. topological charge determined
from vortices are measured.

5.4 Correlation between vortices and Dirac modes

In order to clarify the role of the vortices in the topological structure of the vacuum,
the correlator Cλ between the density of the eigenmode λ and the vortex surface is
investigated. The correlator depends on the eigenvalue and on the local geometry of
the vortex. The vortex points Pi live on the dual lattice and they are correlated to the
averaged scalar eigenmode density ρλ(x) over the vertices x of the 4d hypercube, H ,
dual to Pi. [74]

Cλ =

∑

Pi

∑

x∈H(V ρλ(x) − 〈V ρλ(x)〉
∑

Pi

∑

x∈H 1
(27)

This correlator strongly depends on the number of the vortex plaquettes, attached to
a point Pi. Numerical results for asqtad staggered and overlap eigenmodes are shown
in Figs. 54 and 55 respectively. The more vortex plaquettes are attached to a point
Pi, the larger the correlator gets in general. Fig. 54a shows the correlations for full
configurations, for more than ten plaquettes attached to a point Pi the error bars are
very large because of low statistics. For zero attached plaquettes by a trivial reason
the correlator gets even negative, one and two plaquettes do not give any contribution
since at least three vortex plaquettes are necessary to attach one point in order to form
a closed vortex surface. The correlation for projected data is much higher (Fig. 54b)
since the vortex surface is determined from the P-vortices. There is not much difference
between first and twentieth mode for asqtad staggered data. For full overlap data the
correlation is smaller and decreasing for higher modes (Fig. 54a), in agreement with the
general picture that vortices are related to chiral symmetry breaking, which is due to
the low lying eigenmodes. The overlap eigenmodes for center-projected configurations
show an anti correlation, the modes do not peak at vortex structures (Fig. 54b).

Determining the topological charge after [46] and again using the same correlator
of equation (27), where Pi now denotes the point with topological charge c, gives the
correlation of vortices and topological charge. The results are presented in Figs. 56
and 57 for asqtad staggered and overlap eigenmodes respectively. Again, there are nice
correlations except for overlap projected data, but errors are very big. Nevertheless, the
results of this section provide a modest degree of evidence in support of a vortex origin
of topological charge density. There is also the possibility, of course, that topological
charge density may come from more than one type of source.
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Figure 54: Vortex Correlation for asqtad staggered eigenmodes on a 204 lattice at βLW =
3.3, a) full and b) center-projected configuration.
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Figure 55: Vortex Correlation for overlap eigenmodes on a 164 lattice at βLW = 3.3, a)
full and b) center-projected configuration.
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Figure 56: Correlation between topological charge and asqtad staggered eigenmodes on
a 204 lattice at βLW = 3.3, a) full and b) center-projected configuration.
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Figure 57: Correlation between topological charge and overlap eigenmodes on a 164 lat-
tice at βLW = 3.3, a) full and b) center-projected configuration.
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5.4.1 Correlations and partial projection

In order to analyze where the strong anti correlation of overlap modes and P-vortices
in center-projected configurations comes from, again the interpolation between full and
center-projected lattices is performed, as described in section 5.1. The vector of the full
SU(2) element Uµ(x) is partially turned into the corresponding SU(2) center element
Zµ(x) = ±1. Determining the vortex structure and overlap modes of these interpolated
fields and again calculating their correlation from equation 27 gives an interesting re-
sult. Fig. 58 shows that full and 25% projected modes correlate quite well with the
corresponding vortex surfaces, but rather quickly vanishes and for 50% projection al-
ready the anti correlation dominates. This suggests two interpretations: First there is
again the reasoning that the overlap Dirac operator has some troubles with rather un-
smooth partially projected configurations or secondly the vortex structure determined
on center-projected fields is quite different from partially projected configurations. Since
eigenvalue spectra on partially projected configurations seemed pretty reasonable even
for 85% projection, the second reasoning seems preferable.

5.4.2 Correlations and chiral densities

Next, the vortex correlations shall be determined for different eigenmode densities.
When up to now the scalar density

ρ0(x) =
∑

c,d

|~v(x)cd|2, (28)

of the eigenvector ~v(x)cd with color and Dirac indices, was used, the chiral densities
ρ5(x), ρ+(x) (left-handed) and ρ−(x) (right-handed), defined as

ρ5(x) =
∑

c,d,d′

~v(x)∗cdγ
c,d′

5 ~v(x)cd′, (29)

ρ±(x) =
∑

c,d,d′

~v(x)∗cd
1 ± γc,d

′

5

2
~v(x)cd′, (30)

shall be considered next. The results show up in Fig. 59 for first and 20th overlap
eigenmodes together with the previous results for the scalar density. By definition, the
correlations of left- and right-handed chiral density average to the scalar density corre-
lation, whereas the chiral density ρ5(x) gives even higher correlation. This increasing
of correlation has its origin, of course, in higher chiral density because of removal of
any background noise density of the eigenmodes, but also gives a first hint that the
peaks of left- and right-handed modes appear at different positions. These peaks shall
be analyzed in section 5.6 in more detail.
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Figure 58: Correlation of overlap eigenmodes and a) original or b) smoothed vortex
surface of partially projected configurations on a 164-lattice at βLW = 3.3.
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Figure 59: Vortex Correlation for a) first and b) 20th overlap eigenmode on a 164-lattice
at βLW = 3.3, using scalar (ρ0(x)), chiral (ρ5(x)) and right-/left-handed
(ρ±(x)) eigenmode densities.
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5.4.3 Correlations with partial vortex structures

In this section, once again the correlator Cλ (27) between Dirac eigenmodes and vortex
structures is analyzed. First, the correlations of overlap and asqtad staggered eigenmodes
to only E- (“electric”, space-time-) or B- (“magnetic”, space-space-) plaquettes of the
vortex surface shall be analyzed. Taking only one type of plaquettes at single vortex
points also allows to get correlations to vortex points with only one B-plaquette, or two
plaquettes of a certain type attached. This causes no problems since the vortex surface is
closed at these points by the other type of plaquettes. On the other hand it is not possible
to form a closed surface with an odd number of E-plaquettes (space-time-plaquettes)
attached to a vortex point and therefore only even numbers contribute to the correlation.
But apart from that fact, there is not much difference between the two correlations, at
least for overlap eigenmodes (Fig. 60) on full configurations. The error bars are rather big
(doubled, compared to full vortex structure correlations) since the statistics decreased
when dividing the vortex structure into E- and B-plaquettes. For asqtad staggered modes
it seems that the correlations are slightly different, the correlation to vortex points with
six and eight B-plaquettes attached is clearly lower, it seems that the correlation to E-
plaquettes at these points balances the overall correlation-loss due to the fact that there
is no correlation to an odd number of E-plaquettes attached. The E- and B-plaquette
vortex correlations to asqtad staggered eigenmodes are presented in Fig. 61.
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Figure 60: Correlation between eigenmode density and E- respectively B-plaquettes of
full configurations at βLW = 3.3 on 164 lattices.

67



5 Observables and Results on SCSB

a)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

vo
rt

ex
 c

or
re

la
tio

n

number of attached plaquettes

E-plaqs
B-plaqs

b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  2  4  6  8  10

vo
rt

ex
 c

or
re

la
tio

n

number of attached plaquettes

E-plaqs
B-plaqs

Figure 61: Correlation between eigenmode density and E- respectively B-plaquettes of
a) full and b) projected configurations at βLW = 3.3 on 204 lattices.
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Next, the smoothing procedure of rough vortex structures is performed, and its ef-
fect on the vortex-eigenmode correlations analyzed. This procedure is explained in
App. A.4.2 and what it mainly does, is to remove so called vortex fluctuations, e.g. sin-
gle negative links in the center-projected gauge field. Since smoothing the vortex surface
also reduces the number of vortex points, statistics decrease and error bars increase, es-
pecially for overlap modes, where the number of configuration is already lower than for
asqtad staggered modes. In Fig. 64 the correlation of overlap modes with the rough and
smooth vortex structure is shown. There is not much difference between the two correla-
tions for vortex points with up to seven plaquettes attached. Above the signal is too low
to give a trust-able analyze. For asqtad staggered modes, Fig. 65, one finds a breakdown
of correlation for vortex points with many vortex plaquettes attached, since these points
are removed in the smoothing procedure. Especially for center-projected configurations
it seems that the correlation loss for points with more vortex points attached reappears
at points with less attached vortex plaquettes. The correlation growth for the smoothed
vortex structure can also be seen for overlap eigenmodes and the similarity between both
fermion formulations on full configurations shall be stressed.
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Figure 62: Correlation between overlap eigenmode density and rough respectively
smooth vortex structure of full configurations at βLW = 3.3 on 164 lattices.

Finally, for each configuration one big main vortex cluster, containing about 95% of the
vortex plaquettes which form one big closed surface, is identified in the vortex structure.
The eigenmode densities can be correlated to the main cluster or the rest of the vortex
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Figure 63: Correlation between eigenmode density and rough respectively smooth vortex
structure of a) full and b) center-projected configurations at βLW = 3.3 on
204 lattices.
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structure (small fluctuations, e.g. single negative links, forming vortices closed around
one hypercube, which are removed during vortex smoothing). Again, in Fig. 64 the
correlation signal of the small fluctuations is very noisy, but one can see that most of
the correlation is due to the main vortex structure of course, by comparing with Fig. 55
for example. Concerning asqtad staggered eigenmodes (Fig. 65) on full and center-
projected configurations the correlation behaves similar, but there is a better signal
of correlation to the vortex fluctuations. Especially for center-projected configurations
a good correlation of asqtad staggered modes to vortex fluctuation points with four,
which might form closed vortex hypercubes, and more attached plaquettes can be seen
in Fig. 65b.
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Figure 64: Correlation between eigenmode density and the main vortex cluster or vortex
fluctuations of full configurations at βLW = 3.3 on 164 lattices.

5.5 Eigenmode Correlations

All these vortex correlations in the last section showed similar behavior for overlap
and asqtad modes, evaluated on full configurations. Therefore, the correlation of the
different fermionic eigenmodes is analyzed here. The first overlap mode corresponds
not necessarily to the first asqtad staggered mode, since the energies of eigenmodes
do not have to be the same for the two fermion discretizations. In order to overcome
this discrepancies the correlation is performed as follows: The scalar densities of the first
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Figure 65: Correlation between eigenmode density and the main vortex cluster or vortex
fluctuations of a) full and b) center-projected configurations at βLW = 3.3 on
204 lattices.
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twenty modes, overlap and asqtad staggered, are summed up for one single configuration,
normalized and correlated as follows:

C =
L4

∑

x=0

1

20

20∑

λ=1

ψovlλ (x)
1

20

20∑

λ=1

ψasqtadλ (x). (31)

This gives a 95% correlation for overlap and asqtad eigenmodes on full configurations,
whereas the correlation between asqtad eigenmodes on full and center-projected config-
urations is only about 70%. Correlating different configurations gives a signal of about
83%, so this type of correlator seems to mostly correlate the background of the modes
and not their maxima. Therefore the correlation of maximum peaks is considered next,
where the summation over lattice sites x in (31) now only runs over the sites x within a
44 hypercube around the maximum of each eigenmode ψλ:

C =
1

40

20∑

λ=1

xmax
i (ψovl

λ
)+2

∑

xi=xmax
i (ψovl

λ
)−2

ψovlλ (x)
20∑

λ=1

xmax
i (ψasqtad

λ
)+2

∑

xi=xmax
i (ψasqtad

λ
)−2

ψasqtadλ (x). (32)

This correlator now gives almost no signal for different configurations (0.1%), very
low correlation between full and center-projected asqtad modes (6.8%) and quite good
correlation for overlap and asqtad modes on full configurations (37.4%). Considering the
chirality of the different modes, increases the correlation of overlap and asqtad modes on
full configurations (41.85%), since the maxima of both chiralities of overlap modes were
included in the correlation. Correlating now only asqtad staggered modes of one chirality
with the corresponding chiral part of overlap modes for one single configuration gives
34.6% correlation for positive chirality and 33.6% for negative chirality. Considering
that modes of different configurations do not correlate and even asqtad modes of full
and center-projected configurations correlate very little, the correlation of overlap and
asqtad staggered eigenmodes on full configurations seems quite impressive. One further
can look at correlations of single modes and find different modes (with different energy
for different fermion formulations) which peak at same positions. In Fig. 66 the overlap
and asqtad staggered modes of two representative configurations are plotted with their
eigenvalue and joined when the maximum peak of a certain chiral component of an
overlap mode corresponds to the maximum peak of an asqtad staggered mode with
same chirality (correlations about 90%). Lower correlations are identified with close
maximum peaks. In the first example, the two overlap zero modes do not correlate to
asqtad modes, but overlap modes three and five, which have their maximum peak at the
same position, correspond to asqtad staggerd modes two, four and five. In the second
example one overlap zero mode corresponds to asqtad staggered modes five and six.
Allowing only single pairing, i.e. one overlap mode is identified with one asqtad mode
only, of course reduces the joining lines but is maybe a more physical way of presentation
(see Fig. 67). Concerning asqtad staggered modes on center-projected configurations,
only few correlations are found to either overlap or asqtad staggered modes on the
corresponding full configurations (see Fig. 68).
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Figure 66: Overlap (left) and asqtad staggered (right) eigenmodes, plotted with their
eigenvalues and joined for good correlation (about 90%) of their maximum
eigenmode peaks of certain chirality. Two representative configurations at
βLW = 3.3 on 164 lattices.
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Figure 67: a) same as in Fig. 66. In b) one overlap mode is identified with one asqtad
mode only, therefore all multiple lines from one eigenmode (two zero modes!)
are removed from a).
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Figure 68: a) Correlations between eigenmodes on a center-projected and the corre-
sponding full configuration. In b) again all multiple lines from one eigenmode
are removed from a).
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5.6 Chiral Density Peaks and Vortex Structures

Vortex correlations with chiral densities of the overlap Dirac eigenmodes show that
the density peaks concentrate near vortex surfaces but left- and right-handed densities
behave somehow differently. Since the eigenmode densities are peaked rather sharply
(section 5.3), it might be again worthwhile to look at these peaks and where they are
located exactly. For a first glance the “Interactive Visualization Package for 4D Lattice
Field Theories” by Ivan Hip [75] shall be used. Fig. 69 shows the chiral densities of first
and 20th overlap Dirac (non-zero) eigenmodes of a representative configuration.

a)

b)

Figure 69: Left- (yellow) and right-handed (magenta) chiral density peaks of a) first and
b) 20th overlap Dirac eigenmodes.
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The first (non-zero) mode behaves similar to zero modes, it is located in one main
peak and shows no density elsewhere. But differently from real zero modes, it shows one
peak for each chirality. These peaks are located in very different positions on the lattice.
Higher modes show more and more peaks in their eigenmode densities, but again, the
peaks for different chiralities do not completely coincide, but seem to be located closer
to each other.

Next, these peaks shall be compared with the vortex structures. Therefore, the eigen-
mode density in a certain xy-slice, including chiral density peaks is plotted together with
the vortex plaquettes in this region. Fig. 70 shows the density of 8th eigenmode and the
vortex structure in xy-slice at z=1 and t=1 of a representative configuration. In Fig. 71
the same plot is split up in three sub-figures, showing right- (up), left-handed (below)
chiral densities and the vortex structure (center).

Figure 70: xy-plot of 8th eigenmode density and vortex structure at z=1, t=1 (vortex
plot shows z=1 and z=2 slices).

The plots show eigenmode density peaks located not exactly at vortex structures, but
rather close to. Peaks of different chirality seem to be located at opposite sides of the
vortex surface, this should be analyzed in more detail next.
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Figure 71: xy-plots for eigenmode densities of positive (above) resp. negative chirality
(below) and vortex structure (center) at z=1, t=1 (vortex plot shows z=1
and z=2 slices).
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Concentrating on low-lying eigenmodes and considering the results of section 5.5, the
vortex structures where overlap and/or asqtad staggered eigenmodes show their (chiral)
maxima are presented in the following figures.

In Fig. 72 three examples of vortex structures where only overlap eigenmodes of left-
(above) and right-handed (below) chirality peak on full configurations are shown. The
vortices extend in all four space-time directions and all plaquette-types contribute. For
the first example in Fig. 72a, respectively example two in Fig. 72b, no plaquette of the
(dual) hypercube around the exact maximum contributes to the vortex structure. A
difference between left- and right-handed chiral peaks is not obvious.

Fig. 73 presents three examples of vortex structures where overlap and asqtad stag-
gered eigenmode density peaks of left- (above) and right-handed (below) chirality are
found. The structures look pretty similar but the plaquette distribution seems to be
denser. In fact, almost all examples show all types of vortex plaquettes at the center
of the structures, the exact maxima of the peaks. It seems that at structures of right-
handed chiral peaks more time-extending plaquettes contribute, i.e. there are more
space-space vortex plaquettes in left-handed chiral peak structures.

In Fig. 74 three examples of vortex structures where only asqtad staggered eigenmodes
of left- (above) and right-handed (below) chirality peak on full configurations are pre-
sented. The plots look pretty similar to the examples in Fig. 73. It seems that there are
a few less vortex plaquettes contributing in total, but again, at the exact maximum peak
position, all types of plaquettes are found which form partially closed hypercubes. The
difference between vortex structures at left- and right-handed chiral peaks from above
(space-space vs. space-time plaquettes) cannot be established.

Finally, Fig. 75 shows three examples of vortex structures where only asqtad staggered
eigenmodes of left- (above) and right-handed (below) chirality peak on center-projected
configurations. The vortex structures are smaller but denser. Here only the surrounding
hypercubes of the chiral peak maxima are drawn, in order to show that all types of vortex
plaquettes contribute. The second example of left- and first example of right-handed
chiral peak structures form closed hypercubes, in all other cases only few plaquettes are
missing. These structures are often vortex fluctuations, e.g. single negative links in the
center-projected configurations.

To summarize, overlap and asqtad staggered peaks are found at locations with much
vortex structure. Only overlap peaks are found with less vortex structure at the precise
maximum, but a lot of vortex plaquettes in close neighborhood (at one lattice constant
and further) whereas asqtad modes show many plaquettes at the precise point where
they peak maximally. On center-projected configurations asqtad staggered modes often
peak on vortex fluctuations. This result is not surprising, considering the form of the
different eigenmode peaks (e.g. full width half maximum or Figs. 44-48) - overlap peaks
seem to spread over a few (3-4) lattice spacings whereas asqtad staggered peaks are much
sharper, for center-projected configurations by far the sharpest - but it is interesting that
it can be observed so clearly at the vortex structure. For eigenmode density peaks of
different chirality the vortex structure pretty looks the same. It is also found that modes
of different chirality peak at the same structure, e.g. at the first example in Fig. 75b)
three modes of positive and two of negative chirality peak.
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a)

b)

Figure 72: Vortex structures where only overlap eigenmodes of a) left- and b) right-
handed chirality peak on full configurations.
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a)

b)

Figure 73: Vortex structures where overlap and asqtad staggered eigenmodes of a) left-
and b) right-handed chirality peak on full configurations.
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a)

b)

Figure 74: Vortex structures where only asqtad staggered eigenmodes of a) left- and b)
right-handed chirality peak on full configurations.
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a)

b)

Figure 75: Vortex structures where only asqtad staggered eigenmodes of a) left- and b)
right-handed chirality peak on center-projected configurations.
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Figure 76: For comparison, six vortex structures at randomly chosen points are plotted,
in about one third of chosen random points, no vortex structure was found.
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In order to analyze these issues more globally, the number of E- respectively B-
plaquettes in the neighborhood of eigenmode density maxima is analyzed. Therefore
the number of vortex plaquettes (E/B) in a distance d of individual maxima peaks is
counted. The eigenmode density maximum peak lies in the center of a hypercube on
the dual “vortex-lattice”. Vortex plaquettes appear at discrete distances d from this
center, the 24 plaquettes of the hypercube for example have d =

√
0.5 ≈ 0.71. Therefore

the plaquettes on spherical shells with radius r = d, distances where plaquettes appear,
are considered. The average number over all maximum peaks of overlap and/or asqtad
staggered eigenmodes on full and asqtad staggered modes on center-projected configu-
rations is listed in Table 6 together with the total number of possible plaquettes at a
considered distance and the normalized data (E+B-plaquettes/total number of plaque-
ttes), which of course gives some sort of correlation or simply the vortex density around
the eigenmode density peak maxima.

distances r: 0.71 1.23 1.59 1.88 2.13 2.35 2.55 2.74 2.92 3.09
plaquettes total 24 96 144 192 312 288 336 576 432 480

E-plaquettes:

only overlap peaks: 1.41 4.29 5.31 6.51 9.07 7.96 8.75 15.02 10.79 11.95
overlap & asqtad: 1.45 4.45 5.77 6.46 9.15 7.96 8.99 14.76 10.61 11.56

only asqtad peaks: 1.58 5.07 5.49 6.36 9.37 7.74 8.68 15.09 10.27 12.27
projected asqtad: 2.09 5.36 5.5 5.99 8.7 6.94 8.51 13.77 10.38 11.77

B-plaquettes:

only overlap peaks: 1.42 4.37 5.55 6.55 9.54 8.44 9.28 14.93 10.88 12.09
overlap & asqtad: 1.44 4.64 5.69 7.01 9.6 7.97 8.97 14.94 11.16 11.94

only asqtad peaks: 1.37 4.68 5.37 6.32 9.65 7.75 9.4 15.38 11.15 11.4
projected asqtad: 2.02 5.58 5.72 5.96 8.45 6.92 8.78 14.27 10.55 11.48

vortex density:

only overlap peaks: 11.8 8.9 7.4 6.8 5.8 5.5 5.2 5.2 5.0 5.0
overlap & asqtad: 12.1 9.3 8.0 6.7 5.9 5.5 5.4 5.1 4.9 4.8

only asqtad peaks: 13.2 10.6 7.6 6.6 6.0 5.4 5.2 5.2 4.8 5.1
projected asqtad: 17.5 11.2 7.6 6.2 5.6 4.8 5.1 4.8 4.8 4.9

Table 6: Average number of E/B-plaquettes and vortex density (data normalized to total
number of possible plaquettes) in a distance r around the maximum eigenmode
density peaks

The data confirms the conjectures from above. The number of plaquettes in clos-
est neighborhood increases from overlap to asqtad eigenmodes, only the number of B-
plaquettes seems a bit too low for only asqtad peaks on full configurations. The values
are maximal for center-projected asqtad modes, but for higher distances they seem to be
lower. The normalized data tends to a value of about 5% at higher distances, which is
the average vortex density. This vortex density is plotted in Fig. 77, the discrete block
diagrams are smoothed with gnuplot for better perceptibility.
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Figure 77: Vortex density at a distance r (see discrete values from above tables) from
the maximum eigenmode density peaks (smoothed block digram plot).

The plots of course show the same results as obtained before. For center-projected
configurations it should be mentioned that six plaquettes (out of the 24 in closest neigh-
borhood) are necessary to form a closed cube or twelve plaquettes to form a closed
hypercube. From Table 6 one can see that in average a total number of more than four
plaquettes is present in the closest neighborhood. So, the hypothesis that asqtad stag-
gered eigenmodes on center-projected configurations peak mainly on vortex fluctuations
only seems not to be confirmed. Nevertheless, in Fig. 77 one finds the vortex density
decreasing from a maximal value (compared to overlap and staggered eigenmodes on
full configurations) at the exact eigenmode density peak maximum to a vortex den-
sity in close neighborhood (two to four lattice constants) which is even lower than the
overall vortex density. Asqtad staggered eigenmodes on center-projected configurations
therefore seem to find somehow isolated, very dense vortex structures, whereas on full
configurations the peaks are located at simply dense structures within the main vortex
cluster.

Taken together, the results of this whole section provide an impressive indication that
center vortices are in fact able to discribe chiral symmetry breaking. Still better, they
are even necessary for chiral symmetry breaking, whether due to their confining force or
some other, still unrevealed properties.
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5.7 Finite Temperature

The chiral symmetry section shall be concluded with a high-temperature result. Chiral
symmetry is restored at high temperatures, and this fact should also hold for center-
projected lattices. Therefore, at sufficiently high-T, a gap should open in the eigenvalue
spectrum. This can be seen in Fig. 78, where the low-lying eigenvalues from 123 × NT

center-projected lattices at βLW = 3.5 for time-extensions NT = 2, 4, 6, 12 are displayed.
In this case, the theory is certainly in the deconfined phase at NT = 6, where there is,
however, no obvious gap in the eigenvalue spectrum, so it may be that on the projected
lattice the chiral transition occurs at a higher temperature than the deconfinement tran-
sition. This is also consistent with [15], which found a non-vanishing ψψ condensate at a
temperature somewhat above the Wilson action deconfinement temperature. It should
be stressed, however, that there is no reason that the chiral and deconfinement tem-
peratures need coincide on the center-projected lattice. Confinement is a sufficient but
not a necessary condition for chiral symmetry breaking, and, while the center-projected
lattice is expected to get the static quark potential about right asymptotically, this
fact certainly does not hold true at intermediate scales, where the finite thickness of
real vortices is crucial. If the static potential on the center-projected lattice is strong
enough, chiral symmetry breaking will be realized, and this symmetry breaking may
persist somewhat above the actual deconfinement temperature. The point is that if
one views Yang-Mills configurations as being in some sense factorizable into vortices ×
perturbative fluctuations at short distances, then the thickness and internal structure of
vortices is important for certain non-perturbative phenomena (such as Casimir scaling,
and perhaps the precise chiral transition point) which are sensitive to the static quark
potential at intermediate scales.3

5.7.1 Vortex correlation in high-temperature configurations

The correlation between the vortex surface and eigenmode density is analyzed with
the correlator from equation (27), for asqtad staggered fermions in high-temperature
configurations, Fig. 79 shows that the vortex correlation vanishes for high temperatures.
As described in section 3.7, at finite temperature P-vortices exist also in the deconfined
phase. They form cylindric objects which extend in time direction only, and therefore
can’t be well located by Dirac modes anymore.

Further figures of spectra and vortex-eigenmode correlations for full and center-project-
ed configurations with Wilson and Lüscher-Weisz action, using different boundary con-
ditions and βLW , including some correlation studies on Polyakov loops, eigenmode and
vortex densities and number of E- (space-space), B- (space-time) and P- (vortex) pla-
quettes for finite temperature can be found in Appendix C, page 170ff.

3Cf. [76] for a discussion of vortex thickness and Casimir scaling.

88



5 Observables and Results on SCSB

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

123 × 2 123 × 4 123 × 6 124

Im
λ

Figure 78: Finite temperature and center projection. The first twenty asqtad Dirac
eigenvalue pairs from 123 × NT center-projected lattices at βLW = 3.5 and
NT = 2, 4, 6, 12 lattice spacings, using anti periodic boundary conditions.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

123 × 2, 1stmode
123 × 4, 1stmode
123 × 6, 1stmode

124, 1stmode

vo
rt

ex
co

rr
el

at
io

n

number of attached plaquettes

Figure 79: Correlation between eigenmode density and vortex surface for finite temper-
ature configurations at βLW = 3.5

89



asdf



6 Conclusion

6 Conclusion

In this thesis the center vortex model of quark confinement was introduced and its con-
finement properties in SU(2) lattice gauge theory with improved Lüscher-Weisz action
were analyzed. The main goal of this work was to study the role of center vortices within
the mechanism of chiral symmetry breaking. First, thick classical center vortices in the
shape of planes (closed by lattice periodicity) and spheres were analyzed in terms of
topological charge. The center vortex model explains topological charge with intersec-
tions of vortex sheets and so-called writhing points, regions where the vortex sheet twists
around itself. By the Atiyah-Singer index theorem the topological charge of a gauge field
is equal to the index of the Dirac operator, the difference of left- and right-handed chiral
zero modes. Finally the gluonic charge in plaquette and hypercube definition, a lattice
version of FF̄ , is measured after cooling. For non-orientable spherical vortices, the index
of the overlap Dirac operator differs from the topological charge in the continuum limit.
The reason for the seeming contradiction is the singular nature of the continuum gauge
field equivalent to the spherical vortex. This singularity invalidates the usual derivation
of the index theorem. These results were published in [77]. Furthermore, the same dis-
crepancies are found for asqtad staggered fermions, implying that staggered fermions in
fact feel the topological background of the gauge field.

The Dirac operators were next applied on SU(2) Monte Carlo configurations generated
with improved Lüscher-Weisz gauge action. In particular, the influence of center vortices
on the low-lying eigenmodes of the Dirac operator, in both the overlap and asqtad
staggered formulations are studied. By the Banks-Casher formula the density of low-
lying Dirac modes is proportional to the chiral condensate, an order parameter for chiral
symmetry breaking. For center-projected, i.e. vortex-only configurations, one finds that
the low-lying near-zero modes are present in the asqtad staggered formulation, but not
in the overlap and “chirally-improved” formulations. It is argued in [78] that this is due
to the absence of a field-independent chiral symmetry in the latter formulations, when
the Dirac operator is evaluated on the very rough configurations generated by center
projection. Thus, the vortex excitations of the vortex-only lattice carry not only the
information about confinement, but are also responsible for chiral symmetry breaking
via the Banks-Casher relation. Furthermore, localization and scaling properties of the
Dirac eigenmodes, with respect to center vortices were analyzed. Strong correlations
between center vortex locations and the scalar density of low-lying Dirac eigenmodes
were found. The low-lying eigenmodes have their largest concentration in point-like
regions, rather than on sub manifolds of higher dimensionality. These eigenmode density
peaks are located at regions with clearly enhanced vortex structure density. Taken
together, these results also support the picture of a center vortex origin of topological
charge, and indicate that center vortices have a strong effect on the properties of low-
lying eigenmodes of the Dirac operator, i.e. chiral symmetry breaking via the Banks-
Casher relation.
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A Methods and Operators

The aim of the present work is to establish the mechanism of chiral symmetry breaking
and its possible connection to center vortices. Therefore the following methods and tools
are applied in SU(2) lattice gauge field theory.

A.1 Lüscher-Weisz Action

The gauge action used in this work is a tadpole improved version of the one-loop con-
tinuum limit improved SU(2) action of Lüscher and Weisz [79, 80, 81].

a) b) c)µ µµ

ν νν

λ

Figure 80: Lüscher-Weisz action Wilson loops: a) standard plaquette, b) 2×1 rectangle
and c) 1 × 1 × 1 parallelogram

The standard Lüscher-Weisz action removes leading ultra-violet cutoff effects by adding
a few next-to-nearest neighbor terms to Wilson’s action. In addition to the standard
plaquette (labeled “pl”) term, it includes a sum over all 2×1 (planar) rectangle (labeled
“rt”) and over all 1×1×1 parallelogram (labeled “pg”) Wilson loop terms (see Fig. 80).
For SU(N) lattice gauge fields Uµ(x) living on a four-dimensional (µ = 0, 1, 2, 3) hyper
cubic lattice with sites x and lattice spacing a, the improved action reads

S[U ] = β
∑

x

{

cpl
∑

pl

Spl + crt
∑

rt

Srt + cpg
∑

pg

Spg

}

(33)

where β denotes the (inverse) coupling constant and Si = 1
N

Re Tr(1 − Ui) with Ui the
corresponding Wilson loops. The coefficients ci = c0i + 4πα0∆i for one-loop corrections
∆i have been computed by Lüscher and Weisz for both SU(2) and SU(3) (Table 1 in
Ref. [79]). Redefining β ≡ βcpl the perturbatively renormalized couplings βi = βci/cpl
for given β read [80]

βrt = − β

20
[1 − (

3

5
∆pl + 12∆rt)4πα0], βpg =

3

5
β∆pg4πα0 (34)

The continuum limit behavior of the Lüscher-Weisz action can be further improved by
making the lattice links more “continuum like”. At the mean field level this entails
setting Uµ → u−1

0 Uµ, where one possible choice for the mean field (or “tadpole”) factor
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u0 is using the expectation value of the average plaquette

u0 =<
1

N
Re TrUpl >

1/4 . (35)

The Lüscher-Weisz action can now be tadpole improved by explicitly pulling a u−1
0 factor

out of each link and replacing α0 in the one-loop perturbatively renormalized coefficients
ci with a non-perturbatively renormalized coupling αs defined through [80]

αs = −4
ln u0

ξN
with ξN = 0.366262π

N2 − 1

N
=

{

1.72597, for N=2

3.06839, for N=3
(36)

Defining βLW ≡ u−4
0 β (since Upl involves 4 links) the improved action reads for SU(2) [80]

S = βLW
∑

pl

Spl −
βLW
20u2

0

[1 + 0.2227αs]
∑

rt

Srt − 0.02224
βLW
u2

0

αs
∑

pg

Spg. (37)

The tadpole factor u0 is determined during thermalization and then kept fixed. One
starts with an initial guess, simulates until the plaquette starts stabilizing, computes a
new guess for u0 by averaging over the last few iterations and iterates this procedure.
Fortunately, the plaquette stabilizes quite fast and can be measured quite accurately
(about 4 digits) after only a few iterations. In Table 7 the expectation value of the
plaquette u4

0 = Re Tr < Upl > /2 and the values of the new couplings for the treated
ensembles are listed. The sample size at each value of β is 100 configurations on 204

lattices. The update was done with the heat-bath algorithm.

βLW 2.9 3.1 3.3 3.5 3.7
u4

0 0.5606(2) 0.6018(8) 0.6206(8) 0.6622(5) 0.6722(9)
crt −0.1064 −0.1017 −0.0983 −0.0959 −0.0942
cpg −0.0289 −0.0261 −0.0242 −0.0228 −0.0218

Table 7: Parameters for the Lüscher-Weisz action: coefficients ci and expectation value
of the plaquette u4

0 = Re Tr < Upl > /2.

In a next step, in view of extracting physical quantities, the lattice spacing a has
to be determined. This is done by fitting the time-dependent potential V (R, T ) =
−log(W [R, T − 1]/W [R, T ]) with W [R, T ] the Wilson loop (see also section A.5) of
size R × T in space-/time-direction respectively at some fixed T , to an ansatz V (R) =
σTR − c/R + v0 (linear-plus-Coulomb fit). In order to obtain an asymptotic lattice
string tension σlat the extracted string tensions σT for several T values are fitted to some
stabilizing function f(T ) = exp(−kT + d) + σ with σ giving the asymptotic (T → ∞)
value. All fits were done by least-square routines. To set the scale the physical string
tension, a

√
σlat =

√
σphys ≈ 0.44GeV [2], is used to determine the lattice spacing a.

Since natural units, ~ = c = kB = 1, are used throughout this work, energy and mass
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have the dimension of inverse length 1fm−1 = 197.327 MeV. Table 8 lists the data for
runs of string tension determination on 204-lattices with a 1000 thermalization steps,
1000 measurements separated by 200 iterations each, determined lattice spacings a and
corresponding physical volumes treated in this work. Since a vortex has a physical scale
of about 1fm, the physical extent of the lattice should not fall below 1.5fm. Fig. 81
shows the measured potential-data for different βLW ’s at fixed T and the fitted curves
V (R). Fig. 82a shows the measured potential-data for βLW = 3.5 for different T s and
the fitted curves V (R). Fig. 82b shows the measured (fitted) σT values for different
βLW s and fitted curves f(T ).
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Figure 81: The static potential: data for different βLW s at fixed T and fitted curves
(linear-plus-coulomb fits to V (R, T = fixed)) on a 204-lattice

βLW σlat a[fm] L = 12 L = 16 L = 20
2.9 0.3756 ±0.0053 0.2749 ±0.0019 3.274 4.364 5.454

3.1 0.2254 ±0.0033 0.2129 ±0.0016 2.584 3.444 4.294

3.3 0.1112 ±0.0017 0.1495 ±0.0012 1.784 2.384 2.974

3.5 0.0635 ±0.0007 0.1138 ±0.0006 1.854 2.314

3.7 0.0401 ±0.0003 0.0898 ±0.0003 1.634

4.0 0.0225 ±0.0002 0.0673 ±0.0002

Table 8: Lattice string tension σlat, lattice spacing a and corresponding physical volumes,
as extracted from linear-plus-Coulomb fits to V (R, T = fixed)
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A.2 Fermionic Actions

A.2.1 Fermion Doubling

A naive discretization of the continuum Dirac operator leads to unphysical particle
content. Fermion fields experience (at least) a doubling of the number of particle types
on a discrete space-time lattice. Since fermion functions are defined on lattice points
only, the momentum k can be restricted to the first Brillouin zone B = (−π

a
, π
a
]d in d

dimensions. On the fourier transformed lattice, functions have to be periodic in k.
The eigenvalue of the Dirac operator goes like

λ ∝ sin(ka)

a
(38)

In the low eigenvalue limit, there are two different regions: one about k = 0 and another
about k = π/a. They behave like two different particles. In d dimension this leads to
2d different types (tastes/flavors) of particles (quarks). To bypass the fermion doubling
problem, Wilson suggested to add a term to the action with the effect that the extra
fermions acquire an infinite mass in the continuum limit a→ 0.

A.2.2 Exact Chiral Symmetry

Investigating the chirality of the fermion doublers, half of them turn out to be left- and
the others to be right-handed. Nielsen and Ninomiya [82, 83] showed that one cannot
solve the fermion doubling problem without breaking chiral symmetry in the continuum
limit m → 0. The Nielsen-Ninomiya theorem requires {D, γ5} = 0 to make the fermion
action invariant under usual chiral rotations. Instead, the Ginsparg-Wilson relation [84]

{D, γ5} = 2aDγ5D (39)

in the continuum limit a → 0 reduces to the usual chiral symmetry, so that actual
physics are not affected.

A.2.3 The Overlap Operator

The overlap Dirac operator [18, 47, 85] is a special way to define the determinant of the
chiral Dirac operator

detC[A] =

∫

DψDψee−S(ψ,ψ,A) ⇔ 〈0 − |0+〉A (40)

as an overlap of the ground states |0±〉 of two many-body Hamiltonians H± with

H− = γ5 =

(
1 0
0 −1

)

; H+ = γ5(γµDµ −m) =

(
−m C(A)
C†(A) m

)

(41)
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The massless lattice overlap Dirac operator is defined by

Dov =
1

2
[1 + γ5ǫ(H

+
L )] (42)

where on the lattice H− → H−
L = γ5 remains unchanged, ǫ(x) denotes the sign function

and H+ → H+
L = γ5Dw(−m) with Dw the usual lattice Wilson Dirac operator for r = 1

Dw x,y(m) = −1

2

∑

µ

[
(1 + γµ)Uµ(x)δµ̂,y + (1 − γµ)U

†
µ(x− µ̂)δx−µ̂,y − (m+ 4)2δx,y

]

(43)
The numerical implementation of the overlap Dirac operator [48]4 provides eigenvalues

|λ| ∈ [0, 1]. Since this operator obeys the Ginsparg-Wilson relation all eigenvalues are
restricted to the so-called Ginsparg-Wilson circle, a circle with radius 1

2
and center

(1
2
, 0) in complex plane. Therefore the two corresponding eigenvalues λ and λ∗ are

constructed as follows (see also Fig. 83).

λ = x+ iy, λ∗ = x− iy

x2 + y2 = λ2, (1/2 − x)2 + y2 = 1/4 (Fig.83)

→ x = λ2, y =
√
λ2 − λ4

λ

x

y

ϕ

1/2

1/2

ℑλ

ℜλ

Figure 83: Ginsparg-Wilson circle with eigenvalue λ

4The numerical implementation of all Dirac operators were provided by Urs M. Heller, School of
Computational Science & Information Technology, the Florida State University
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Figure 84: Distributing four degrees of freedom on a two dimensional lattice

A.2.4 Staggered Fermions

Another possibility to bypass the fermion doubling problem is to construct a nonlocal
action where the Dirac operator is treated as a square root. In order to eliminate the
unwanted fermion modes one can reduce the Brillouin zone, i.e. double the effective
lattice spacing a. [86] This is done by distributing the fermionic degrees of freedom over
the lattice in such a way that the effective lattice spacing for each type of Grassmann
variable is twice the fundamental lattice spacing, i.e. putting different fermionic tastes
on every other lattice site (see Fig. 84). On a four dimensional lattice one therefore
needs four different tastes which can be interpreted as four different quark flavors (i.e.
“up”, “down”, “strange”, etc.). The basic term of the staggered fermion action is the
so-called “Kogut-Susskind” term

ψ̄Dψ =
1

2a
ψ̄(x)

∑

µ

γµ[Uµ(x)ψ(x+ µ̂) − U †
µ(x− µ̂)ψ(x− µ̂)] (44)

which is illustrated in Fig. 85. In order to reduce the action in the naive continuum limit
to the desired continuum form one adds a couple of next-to-nearest neighbor and staple
terms (“asqtad” - “a-squared tadpole” - improvement [61, 62, 63]), namely the Naik
term, 3-, 5- and 7-staple terms and the Lepage term. The prefactors for the single terms
are derived perturbatively again, using the above tadpole factor u0 as well. Finally, in

ψ(x− µ̂) ψ̄(x) ψ(x+ µ̂)

U †
µ(x− µ̂) Uµ(x)

Figure 85: Kogut-Susskind term combines ψ and nearest neighbored ψs

order to reduce the number of tastes from four to one, one can take the fourth root of the
Dirac determinant. So far it is not clear, if this “mixing” of tastes and chiralities (the
four tastes have pairwise opposite chiralities), still produces physically correct results.
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A.3 Dirac Eigenmodes

A.3.1 Atiyah-Singer index theorem and exact zero modes

In the continuum, integrating the anomaly equation gives a relation for the topological
charge Q = mtr(γ5SF ), where SF is the fermion propagator. Resolving the propagator
in a sum over eigenmodes of the Dirac operator /D, and noting that all modes with
nonzero eigenvalue come in conjugate pairs, one gets the Atiyah-Singer index theorem
relating the analytical index, the number of exact zero modes to the topological index,
the topological charge: [18, 47, 56]

ind /D[A] = n− − n+ = Q[A], (45)

with n−,n+ number of left-/right-handed zero modes [19, 20, 21]. On the lattice, both
sides of the index equation are slightly distorted. The flavor singlet γ5 does not exactly
anti commute with /D, so the trace of γ5SF cannot be collapsed into a trace in the
zero mode sector alone. Further, there are no exact zero modes, nor is there an exact
definition of the topological charge. Nevertheless, the lattice version of the index theorem
should hold as long as the gauge field is sufficiently close to the continuum. It has been
shown for the overlap Dirac operator that this fermionic definition of Q coincides with
the continuum simple gluonic definition in the continuum limit [49].

A.3.2 Banks-Casher relation and near-zero modes

The Banks-Casher relation [22] gives a connection between chiral symmetry breaking
and low-lying eigenmodes of the Dirac operator. The chiral condensate is given by

∫

d4x〈ψψ〉 = − ∂

∂m
lnZ(m)|m→0 (46)

where Z(m) is the functional integral in Euclidean space

Z(m) =

∫

DAµDψDψ exp



−1

4

∫

FµνFµν −
Nf∑

f

∫

ψ( /D +m)ψ



 (47)

On the lattice

− ∂

∂m
lnZ(m) = 〈Tr

m

D +m2
〉 →

∫ ∞

−∞
dλρ(λ)

m

λ2 +m2
(48)

with ρ(λ) the spectral density of the eigenvalue λ. Since limm→0
2m

λ2
n+m2 −→ πρ(0), one

obtains the Banks-Casher relation

〈ψψ〉 =
πρ(0)

V
, (49)

which relates the chiral condensate to the spectral density of near-zero modes.

100



A Methods and Operators

A.3.3 Localization of eigenmodes

In order to localize the eigenvectors ~v appropriate observables are the scalar density

ρ(x) =
∑

c,d

|~v(x)cd|2, (50)

where the summation indices c and d refer to color and Dirac indices and further the
chiral densities ρ5(x), ρ+(x) (left-handed) and ρ−(x) (right-handed)

ρ5(x) =
∑

c,d,d′

~v(x)∗cdγ
c,d′

5 ~v(x)cd′, (51)

ρ±(x) =
∑

c,d,d′

~v(x)∗cd
1 ± γc,d

′

5

2
~v(x)cd′. (52)

A.4 Direct Maximal Center Gauge

[26] Direct maximal center gauge (DMCG) is the common name for lattice Landau
gauge in the adjoint representation. This gauge is used to locate center vortices in
thermalized lattice configurations, which are condensates of thick vortices and other
fluctuations and excitations. Since vortices carry magnetic color flux quantized in terms
of elements of the center ZN of the gauge group SU(N), most vortex detection methods
try to center project such a field configuration, changing all link variables to their nearest
center element as will be described in section A.4.1, revealing a thin vortex configuration.
Therefore, maximal center gauge (MCG) was the first gauge used to identify vortices,
because it gauges links such that they are already as close as possible - on average - at
the center elements.

Historically the first type of MCG was an indirect version (IMCG), which builds on
an older gauge, the maximal Abelian gauge (MAG). This gauge moves the link variables
as close as possible to some chosen Abelian subgroup U(1) of the gauge group SU(N).
After Abelian projection the IMCG is fixed and Abelian monopoles can be identified.
It has been found that the world lines of Abelian monopoles are located mostly on thin
vortex world sheets [27].

DMCG tries to find the absolute maximum of the gauge functional

R =
∑

µ,x

Tr[Uag
µ (x)] =

∑

µ,x

Tr[S−1
ag U

ag
µ (x)Sag] (53)

with links Uag
µ (x) and the gauge matrix Sag in the adjoint representation of gauge group

elements g(x). For SU(2), finding the maximum of (53) is equivalent to find the maxi-
mum of

R′ =
∑

µ,x

|TrUg
µ(x)|2 (54)

with links Ug
µ(x) in the fundamental representation.
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In order to maximize a functional R[Σ] of a field configuration Σ one uses iterative
methods, generating a sequence of configurations, each created by a gauge transforma-
tion from the previous configuration, which approach a maximum of R.

The over-relaxation method [87] changes iteratively, locally the field to some com-
bination of the original field, and of a field which maximizes the functional locally.
Over-relaxation finds quite effectively a (local) maximum of R[Σ].

Because of the adjoint representation, DMCG is center blind and after gauge fixing
there remains a residual gauge freedom stemming from the ambiguous mapping from
the gauge matrices Sg to the fundamental gauge elements g. But apart from this there
can be some more ambiguities in gauge fixing because the iterative methods might find
not the global, but some local maximum of R[Σ]. The existence of such Gribov copies
will emerge to be important for the detection of vortices.

A.4.1 Detection of Vortices

[57] Extracting the vortex content of an arbitrary gauge field configuration is accom-
plished by a procedure known as center projection [88]. It proceeds in two steps:

1. Adjoint Gauge: First, all link variables are uniquely fixed in the DMCG, the
adjoint representation of Landau gauge. For the SU(2) group, adjoint links Uag

µ (x)
in this gauge satisfy the condition

Tr
∑

µ

Li(U
ag
µ (x) − Uag

µ (x− µ̂)) = 0 (55)

at every point x (the Li are the SU(2) group generators in the adjoint representa-
tion). Since this representation maps all center elements to unity, the gauge leaves
a residual center symmetry.

2. Center projection proper: The link in the fundamental representation is de-
composed as a product

Uag
µ (x) = Zµ(x)Vµ(x) (56)

where Zµ(x) is the center element ZN which is on the SU(N) manifold closest to
Uag
µ (x), in the sense of the distance 1

2
tr(Z∗

µU
ag
µ ). For SU(2), the nearest center

element can be found by choosing the sign of the trace

Zµ(x) = signTr[Uag
µ (x)]. (57)

Center projection consists in replacing Uag
µ (x) by Zµ(x), giving the so-called center-

projected field configuration.

Upon creation of a thin center vortex by a “singular gauge transformation”, the links are
multiplied by a center element Z ′. As the adjoint representation is blind to the center,
this change carries over to Uag and therefore

U ′ag
µ (x) = Z ′

µ(x)Zµ(x)Vµ(x) (58)

102



A Methods and Operators

in a 3-dimensional volume bordered by the vortex surface. Since center projection ex-
tracts Z ′Z, thin vortices appear as discontinuity sheets in the resulting ZN configuration
at the same points where they were originally created. Thick vortices are collapsed into
thin ones, but their location is not uniquely determined. The thin vortices in the pro-
jected configuration are known as P-vortices and the plaquettes they pierce are called
P-plaquettes. Hence a P-plaquette is always equal to −1. The rationale just presented
suggests that P-vortices represent the vortex content of the original configuration.

Problems with this interpretation arise from the finite thickness of center vortices
and the occurrence of Gribov copies in gauge fixing. The latter usually consists in
the minimization of the gauge functional of the links. Gribov copies are distinct local
minima of this functional. Usually it is not possible to track down the global minimum,
which would be the correct solution. In order to somehow avoid the Gribov problem,
the easiest way is to average over all gauge copies in the Gribov region. For a more
detailed discussion of the Gribov Problem in DMCG see [89].

Finally, there exist several procedures for center-projection which may differ in their
results. It is not entirely clear why one should be more meaningful than the other.
However, any method should meet a minimum requirement, dubbed the ”vortex-finding
property” [88]: the ability to locate thin vortices inserted ”by hand” into an arbitrary
gauge field configuration.

A.4.2 Smoothing Vortex Configurations

An example for a P-vortex, extracted from a Monte-Carlo configuration, is shown in
Fig. 86. The vortices form closed surfaces of random structure.

Figure 86: 3-dimensional cut through the dual of a 124-lattice.

In order to reduce the small fluctuations of the P-vortices several smoothing steps
as depicted in Fig. 87 are performed. This vortex smoothing procedure [26] iteratively
scans for cubes of the lattice and transforms them according to the following rules:
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a) remove single isolated P-vortex cubes
b) identify cubes covered by five P-vortex plaquettes and substitute them

by one complementary plaquette
c) substitute cubes with four P-plaquettes which are positioned opposite

on the cube by the two missing plaquettes (disconnects two surfaces)
d) substitute cubes with four P-plaquettes by the two missing plaquettes

joining a common link
These smoothing steps consist of elementary cube transformations and preserve the

closeness of the P-vortex surface. The result of applying repeatedly all smoothing steps
a)-d) on the configuration of Fig. 86 is presented in Fig. 88.

A.4.3 Center Vortex Removal

It was suggested by de Forcrand and D’Elia [14] that one could remove center vortices
from a given lattice configuration by multiplying the original links Uµ(x) with the cor-
responding center-projected links Zµ(x). Applying the vortex finding procedure to the
modified configuration U ′

µ(x), one can easily check that there are no P-vortices obtained
from center projection, since

Z ′
µ(x) = signTr[U ′ag

µ (x)] = Z2
µ(x) = 1 (59)

One can therefore say that center vortices have been removed from the lattice config-
uration, which is denoted as vortex removed configuration. More precisely, what the
modification does is to place a thin vortex (one plaquette thickness) in the middle of
each thick center vortex core, whose locations are identified by center projection. At
large scales, the effects of the thin and thick vortices on Wilson loops will cancel out.

A.5 The Wilson Loop and the qq̄-potential

For large distance R a simple ansatz for the continuum potential V (R) between two
infinitely heavy (mq → ∞) quarks (qq̄) is given by

V (R) = σR+ v0 + αR−1 +O(R−2), (60)

with the string tension σ and the Coulomb coefficient α. In order to measure this
potential, one creates a quark-antiquark pair, separated by a distance R, propagating
for a time interval t = [0, T ]. In the absence of gauge fixing, the expectation value of a
color non-singlet state will average out to zero, so it is necessary to include a parallel
transporter between the quarks in order to form a gauge-invariant creation operator
Q(t). The parallel transporter along a curve C in the background of the gauge field
Aµ(x) is given by

U(C) = P exp[ig

∫

C

Aµ(x)dxµ], (61)

where P denotes the path ordering operator. On the lattice, U(C) is represented by the
product of link variables Uµ along the curve C (a “Wilson line”).

104



A Methods and Operators

5 plaquettes 1 plaquetteb)

6 plaquettes 0 plaquettesa)

4 plaquettes 2 plaquettesc)

4 plaquettes 2 plaquettesd)

Figure 87: Various smoothing steps for vortices

Figure 88: Result of applying all smoothing steps a)-d) on the configuration of Fig. 86.
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Choosing a closed loop as the path C and taking the trace, one gets a gauge invariant
expression

W (C) = TrU(C) = Tr
∏

µ∈C
Uµ, (62)

the Wilson loop.
Rectangular R × T Wilson loops W (R, T ) in the fundamental representation can be

used to extract the lattice potential. One can regard the expectation value of the Wilson
loop as the creation Q(0) of a quark-antiquark pair at a time t = 0, and its annihilation
Q†(T ) at a time t = T , propagating in time at a static separation by a distance R
(including the shortest Wilson lines joining the quark operators in Q and Q†, giving the
Wilson loop around the rectangle R × T ). Then, following the usual rules of quantum
mechanics and integrating out the quark fields in the path integral [28] one gets

〈Q†(T )Q(0)〉 ∝ e−V (R)T ∝ 〈W (R, T )〉. (63)

Therefore, the static potential follows from the Wilson loop (up to a constant) as

V (R) ∝ − lim
T→∞

1

T
log〈W (R, T )〉, (64)

or without the integration constant

V (R) = − lim
T→∞

log

[〈W (R, T + 1)〉
〈W (R, T )〉

]

. (65)

Hence, the expectation value of the Wilson loop provides an order parameter for
confinement. In the strong-coupling phase (confinement) the potential is asymptotically
rising linearly: V (R) ≈ σR, with the string tension σ. The Wilson criterion implies an
area law for the Wilson loop

〈W (R, T )〉 ∝ exp(−σRT ) ∝ exp(−σA) → confinement, (66)

with area A = RT , whereas in the weak-coupling (deconfined) phase the potential tends
to a constant V (R) → µ, which leads to a perimeter law

〈W (R, T )〉 ∝ exp(−µT ) ∝ exp(−µP ) → deconfinement, (67)

with perimeter P ≈ T for T ≫ R since the limit T → ∞ is required.
Only for large areas A the Wilson loop is governed, if confinement is present, by the

area law. In order to extract the string tension σ already from smaller loops, the Creutz

ratio

χ(R, T ) = −log

[〈W (R, T )〉〈W (R+ 1, T + 1)〉
〈W (R, T + 1)〉〈W (R+ 1, T )〉

]

(68)

can be used. In this expression perimeter law and constant factors cancel, and already

for moderate areas the Creutz ration approaches the string tension χ(R, T )
A→∞→ σ.
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A.6 The Polyakov Loop, Free Energy and Center Symmetry

The Polyakov loop P (~x) is just a Wilson loop which is periodic in Euclidean time di-
rection. It is defined as the holonomy for a curve extending straightly in time direction.
On the lattice it is composed of link variables in time direction and reads

P (~x) :=
1

N
Tr

NT∏

x4=1

U4(~x, x4). (69)

A Polyakov loop can be thought of as the world-line of a massive static quark at spatial
position ~x, propagating only in the periodic time direction. The static quark potential
can be extracted from the correlator of two Polyakov loops at a distance R = |~x− ~y|

〈P (~x)P †(~y)〉 − 〈P (~x)〉〈P †(~y)〉 ∝ exp(−V (R)NT ), (70)

with NT the lattice extension in time direction. For large distances one can obtain from
the correlators the free energy of a single static charge

lim
|~x−~y|→∞

〈P (~x)P †(~y)〉 = |〈P 〉|2. (71)

Therefore, the expectation value of the modulus of P (~x), averaged over the position ~x,
can be related to the free energy of an isolated quark, measured relatively to the absence
of the quark:

〈|P |〉 =
〈∣
∣
∣

1

N3
S

∑

~x

P (~x)
∣
∣
∣

〉
NS→∞

= e−FNT . (72)

In the confinement phase, the free energy of an isolated quark is infinite, hence the
Polyakov loop vanishes (〈P (~x)〉 = 0), while in the deconfinement phase the free energy
of an isolated quark is finite and 〈P (~x)〉 6= 0. This behavior reflects a global symmetry
under ZN central conjugations (center symmetry). Suppose to multiply all temporal
links which are located in a hyper surface at fixed time t0 by a non-trivial center element
z

U4(~x, t0) → zU4(~x, t0) ∀~x. (73)

It is straightforward to see that the space-time plaquettes are left unchanged, but the
Polyakov loops pick up a factor z. So if this ZN symmetry is spontaneously broken, at
the phase transition the expectation value of the Polyakov loop should jump from zero
to a non-zero value and this is exactly what happens in lattice computations.

The Polyakov loop is a true order parameter for confinement and center symmetry:
zero in confinement phase and therefore trivially invariant under center transformations,
non-zero in deconfinement phase, which associates the breaking of global center symme-
try from the confinement to the deconfinement phase

〈P (~x)〉
{

= 0 confinement ⇔ unbroken ZN symmetry

6= 0 deconfinement ⇔ broken ZN symmetry
(74)
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B Statistics and Errors

[90, 91] In probability theory and statistics the expected value 〈x〉 (expectation

or mean value) of a discrete random variable x (probability distribution or sample)
is the sum of the probability of each possible value (e.g. outcome of an experiment)
multiplied by the (outcome) value (or payoff). Measuring a single variable x N -times,
e.g on N (hopefully independent) configurations, one gets values xi, i = 1, 2, . . . , N with
probability 1/N for the outcome of each value. Then the unbiased estimate of the mean
value of this variable is

x̄ = 〈x〉 =
N∑

i=1

1

N
xi =

x1 + x2 + . . .+ xN
N

=
1

N

N∑

i=1

xi. (75)

The standard deviation σ of a probability distribution is defined as the square root
of the variance σ2,

σ =
√

〈x2〉 − 〈x〉2 =
√

µ′
2 − µ2, (76)

where µ = x̄ = 〈x〉 is the mean and µ′
2 = 〈x2〉 is the second raw moment5. The variance

σ2 is therefore equal to the second central moment µ2 (i.e., moment about the mean).
The sample variance of a random variable x is one measure of statistical dispersion,

averaging the squared distance of its possible values xi from the expected value 〈x〉 = x̄.

σ2
N (x) = 〈(x− x̄)2〉 =

1

N

N∑

i=1

(xi − x̄)2. (77)

In physical sciences one generally uses the bias-corrected variance

σ2
N−1(x) =

1

N − 1

N∑

i=1

(xi − x̄)2, (78)

where the denominator N − 1 takes into account the reduction of degrees of freedom
in the vector (x1 − x̄, x2 − x̄, . . . , xN − x̄). Anyways, for N ≫ 1 there is practically no
difference between the two definitions.

The sample standard deviation of a random variable x is a measure of the spread of
its values xi. It is known as the root mean square deviation of the values from their
(arithmetic) mean, i.e., the square root of the sample variance, and often simply called
standard deviation

σN−1(x) =
√

〈(x− 〈x〉)2〉 =

√
√
√
√ 1

N − 1

N∑

i=1

(xi − x̄)2. (79)

The standard deviation is commonly used to define a confidence interval CI, an

5The nth moment of a probability function P (x) about a value c is given by µ′
n =

∫
(x − c)nP (x)dx.

For a discrete random variable x µ′
n = 〈(x − c)n〉. The raw moment is generated about c = 0.
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CI P (x ∈ x̄± nσ)
x̄± σ 0.6826895
x̄± 2σ 0.9544997
x̄± 3σ 0.9973002
x̄± 4σ 0.9999366
x̄± 5σ 0.9999994  0

 0.1

 0.2

 0.3

 0.4

0.1%
2.1%

13.6%

68.3%

13.6%

2.1%
0.1%

x̄−3σ −2σ −1σ 1σ 2σ 3σ

Table 9: Probabilities P (x̄− nσ < x < x̄+ nσ) for measurements from a normal distri-
bution lying in the confidence interval CI=[x̄ ± nσ]. The figure illustrates the
normal distribution probability function with confidence intervals CI.

interval estimate of a random variable. For a normal distribution6 the probability that
a measurement falls within n standard deviations (nσ) of the mean x̄ (i.e., within the
confidence interval [x̄− nσ, x̄+ nσ]) is given by

P (x̄−nσ < x < x̄+nσ) =
1

σ
√

2π

∫ x̄+nσ

x̄−nσ
e−(x−x̄)2/(2σ2)dx =

2

σ
√

2π

∫ x̄+nσ

x̄

e−(x−x̄)2/(2σ2)dx.

(80)
Now let u ≡ (x− x̄)/

√
2σ, so du = dx/

√
2σ. Then

P (x̄− nσ < x < x̄+ nσ) =
2√
π

∫ n/
√

2

0

e−u
2

du = erf(
n√
2
), (81)

where erf(x) is the so-called error function

erf(x) =
2√
π

∫ x

0

e−t
2

dt. (82)

Table 9 lists the probabilities P (x̄− nσ < x < x̄+nσ) for measurements from a normal
distribution lying in the confidence interval [x̄± nσ] for the first few multiples n of the
standard deviation.

B.1 Error propagation and correlations

Error propagation (or propagation of uncertainty) is the effect of variables’ errors on the
uncertainty of a function f based on these variables. The uncertainty of a variable x
is usually defined by the absolute error △ x, which is commonly given as the standard
deviation σ. If the variables are correlated, then the covariance must be taken into

6A normal distribution in a variable x with mean x̄ and variance σ2 is a statistic distribution with
probability function

P (x) =
1

σ
√

2π
e−(x−x̄)2/(2σ2)
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account. Correlation indicates the strength and direction of a linear relationship between
two random variables. The correlation coefficient ρx,y between two random variables x
and y with expected values x̄ and ȳ and standard deviations σx and σy is defined as

ρx,y =
cov(x, y)

σxσy
=

〈(x− x̄)(y − ȳ)〉
σxσy

=
1

Nσxσy

N∑

i=1

(xi − x̄)(yi − ȳ),

where cov(x, y) is the covariance of x and y.
Let f(x1, x2, . . . , xn) be a single function which is a linear combination of n variables

xi with combination coefficients a1, a2, . . . , an.

fk =

n∑

i

aixi : f = aTx (83)

and let the variance-covariance matrix on x be denoted by

Mx =







σ2
1 cov12 cov13 . . .

cov12 σ2
2 cov23 . . .

cov13 cov23 σ2
3 . . .

. . .






. (84)

Then the variance of f is given by

σ2
f =

n∑

i

n∑

j

aiM
x
ijaj = aTMxa =

n∑

i

(a2
iσ

2
i +

n∑

j 6=i
aiajcovij). (85)

When the variables xi are uncorrelated this simplifies to

σ2
f =

n∑

i

a2
iσ

2
i . (86)

In the case of a non-linear function f of the variables xi, it must usually be linearized
by approximation to a first-order Maclaurin series7 expansion

f ≈ f0 +

n∑

i

∂f

∂xi
xi. (87)

Since f0 is a constant it does not contribute to the error on f . Therefore, the propagation
of error follows the linear case, but replacing the linear coefficients ai by the partial
derivatives ∂f

∂xi
.

A simple version of error propagation for uncorrelated variables xi is sometimes given

7Taylor series using the derivatives at zero
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by

△f =
n∑

i

∂f

∂xi
△xi. (88)

Here, all terms of the sum are taken with a positive sign, even if the partial derivative
gives a negative one.

B.2 The jackknife error estimate

Jackknifing is a statistical re-sampling method to estimate the precision of a sample by
using subsets of available data. The basic idea behind the jackknife estimator lies in
systematically recomputing the statistic estimate leaving out one observation at a time
from the sample set. From this new set of ”observations” for the statistic, an estimate
for the bias and an estimate for the variance can be calculated.

Again using a sample of values xi, i = 1, 2, . . . , N with mean x̄ and variance σ2. The
jackknife approach takes sub ensembles with (N − 1) points by always leaving out one
measured value (jackknife samples). Then the jackknife sample means and the jackknife
error in the mean are given by

x̄j =
1

N − 1

N∑

i6=j
xi, σ2

j =
N − 1

N

N∑

i=1

(x̄j − x̄)2. (89)

The reason for the difference of the placement of the factor (N − 1) is that the jackknife
means are distributed (N − 1)-times closer to the mean than the original values xi,
therefore a correction factor of (N − 1)2 is needed. In fact, for a single variable, it is
easy to show that σj = σ coincide.

The benefit of jackknifing lies in implicitly taking into account correlations within
functions of correlated variables. Considering a function f(x, y) of random variables x
and y, in a first step the jackknife means x̄j and ȳj are determined. Then the jackknife
function means are given by f̄j = f(x̄j, ȳj) and finally the jackknife error estimate of the
function f is given by

σ2
J(f) =

N − 1

N

N∑

j=1

(f̄j − f̄) with f̄ = f(x̄, ȳ). (90)

B.3 Error propagation for the Creutz ratio

The Creutz ratio χ combines Wilson loops W (R, T ) of different size

χ(R, T ) = − log

[〈W (R+ 1, T + 1)〉〈W (R, T )〉
〈W (R+ 1, T )〉〈W (R, T + 1)〉

]

. (91)

Denote values, on N individual configurations, of Wilson loops appearing in this ex-
pression as ai, bi, ci, di (i = 1, 2, . . . , N), respectively. Then, mean and errors are given
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by

〈a〉 = ā =
1

N

N∑

i=1

ai, △a = σ(a) =

√
√
√
√ 1

N − 1

N∑

i=1

(ai − ā)2 (92)

(plus similar for other quantities). Now, four different methods of determining the error
of the Creutz ratios are compared:

a) The simple error propagation of equation 88, which of course is not appropriate
because Wilson loops of different size are not uncorrelated, gives error bars as
shown in Fig. 89a:

△χ =
△a

ā
+

△b

b̄
+

△c

c̄
+

△d

d̄

=
△W (R+ 1, T + 1)

W (R+ 1, T + 1)
+

△W (R, T )

W (R, T )
+

△W (R+ 1, T )

W (R+ 1, T )
+

△W (R, T + 1)

W (R, T + 1)
.

(93)

b) Standard error propagation of equation 86, still neglecting correlations, gives error
bars as shown in Fig. 89b:

σ2(χ) =
σ2(a)

ā2
+
σ2(b)

b̄2
+
σ2(c)

c̄2
+
σ2(d)

d̄2
(94)

c) Error propagation by taking into account the correlation of Wilson loops of differ-
ent size (equation 85) gives error bars as shown in Fig. 89c:

σ2(χ) =
σ2(a)

ā2
+
σ2(b)

b̄2
+
σ2(c)

c̄2
+
σ2(d)

d̄2
+ 2

cov(a, b)

āb̄

− 2
cov(a, c)

āc̄
− 2

cov(a, d)

ād̄
− 2

cov(b, c)

b̄c̄
− 2

cov(b, d)

b̄d̄
+ 2

cov(c, d)

c̄d̄

(95)

It is interesting to mention that correlations can also reduce the errors, compared
to the (wrong) case above.

d) Finally, jackknife errors are shown in Fig. 89d:

aj =
1

N − 1

N∑

i6=j
ai, . . . χj = − log

[
ajbj
cjdj

]

and σ2(χ) =
N − 1

N

N∑

j=1

(χj − χ̄)2.

(96)

First, the simple error propagation method (a) strongly underestimates the errors.
The growth of error bars with growing radius R seems correct, because Wilson loops of
growing size have lower statistics. Standard error propagation, neglecting correlations
(b), drastically increases error bars, especially for center-projected configurations, whose
errors were the lowest in case a).
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Figure 89: Symmetric Creutz ratios χ(R,R) from measuring Wilson loops on 700 full,
center-projected and vortex-removed configurations on a 204-lattice at βLW =
3.3, using different methods to determine the error bars.

Taking into account the correlations of Wilson loops (c), lowers error bars again,
especially for center-projected configurations. This needs some more detailed discussion:
The Wilson loops W [R + 1, R] ≡ c and W [R,R + 1] ≡ d of course are fully correlated
(ρ(c, d) = 1), and its covariance (cov(c, d)) contributes positively to the error bars. The
second positive correlation term contributing to the error bars is in fact the smallest,
the Wilson loops W [R + 1, R + 1] ≡ a and W [R,R] ≡ b differ most in their sizes.
All other correlation terms lower the error bars with comparable covariances because
of comparable size differences. Interpreting now Fig. 89c, the Wilson loops of center-
projected correlations seem to correlate equally, independently of their size differences,
whereas for full and vortex removed configurations the correlations seem to scale as
derived above. Finally, jackknife errors are comparable to those from method a), but
implicitly including correlations.
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Figure 90: First twenty overlap Dirac eigenvalues on the Ginsparg-Wilson circle for a
124 lattice at β = 2.9.
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Figure 91: First twenty overlap Dirac eigenvalues on the Ginsparg-Wilson circle for a
124 lattice at β = 3.1.
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Figure 92: First twenty overlap Dirac eigenvalues on the Ginsparg-Wilson circle for a
124 lattice at β = 3.3.

-0.2

-0.1

 0

 0.1

 0.2

-0.05  0  0.05

original (full)

-0.2

-0.1

 0

 0.1

 0.2

-0.05  0  0.05

original (full)

-0.05  0  0.05

center-projected

-0.05  0  0.05

center projected

-0.05  0  0.05

vortex-removed

-0.05  0  0.05

vortex removed

ReλReλReλReλReλReλ

Im
λ

Im
λ

Figure 93: First twenty overlap Dirac eigenvalues on the Ginsparg-Wilson circle for a
124 lattice at β = 3.3 using anti periodic boundary conditions.

117



C Plots and Figures

-0.1

 0

 0.1

original (full)

-0.1

 0

 0.1

center-projected

-0.1

 0

 0.1

vortex-removed
Im
λ

Figure 94: First twenty asqtad staggered Dirac eigenvalues on a 124 lattice at β = 2.9.
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Figure 95: First twenty asqtad staggered Dirac eigenvalues on a 124 lattice at β = 3.1.
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Figure 96: First twenty asqtad staggered Dirac eigenvalues on a 124 lattice at β = 3.3.
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Figure 97: First twenty asqtad staggered Dirac eigenvalues on a 164 lattice at β = 2.9.
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Figure 98: First twenty asqtad staggered Dirac eigenvalues on a 164 lattice at β = 3.1.
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Figure 99: First twenty asqtad staggered Dirac eigenvalues on a 164 lattice at β = 3.3.
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Figure 100: First twenty asqtad staggered Dirac eigenvalues on a 164 lattice at β = 3.5.
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Figure 101: First twenty asqtad staggered Dirac eigenvalues on a 204 lattice at β = 2.9.
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Figure 102: First twenty asqtad staggered Dirac eigenvalues on a 204 lattice at β = 3.1.
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Figure 103: First twenty asqtad staggered Dirac eigenvalues on a 204 lattice at β = 3.3.
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Figure 104: First twenty asqtad staggered Dirac eigenvalues on a 204 lattice at β = 3.5.
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Figure 105: First twenty asqtad staggered Dirac eigenvalues on a 204 lattice at β = 3.7.
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Figure 106: First twenty asqtad staggered Dirac eigenvalues on a 124 lattice at β = 2.9
using anti periodic boundary conditions.
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Figure 107: First twenty asqtad staggered Dirac eigenvalues on a 124 lattice at β = 3.1
using anti periodic boundary conditions.
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Figure 108: First twenty asqtad staggered Dirac eigenvalues on a 124 lattice at β = 3.3
using anti periodic boundary conditions.
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Figure 109: First twenty asqtad staggered Dirac eigenvalues on a 164 lattice at β = 2.9
using anti periodic boundary conditions.
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Figure 110: First twenty asqtad staggered Dirac eigenvalues on a 164 lattice at β = 3.1
using anti periodic boundary conditions.
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Figure 111: First twenty asqtad staggered Dirac eigenvalues on a 164 lattice at β = 3.3
using anti periodic boundary conditions.
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Figure 112: First twenty asqtad staggered Dirac eigenvalues on a 164 lattice at β = 3.5
using anti periodic boundary conditions.
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Figure 113: First twenty asqtad staggered Dirac eigenvalues on a 204 lattice at β = 2.9
using anti periodic boundary conditions.
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Figure 114: First twenty asqtad staggered Dirac eigenvalues on a 204 lattice at β = 3.1
using anti periodic boundary conditions.
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Figure 115: First twenty asqtad staggered Dirac eigenvalues on a 204 lattice at β = 3.3
using anti periodic boundary conditions.
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Figure 116: First twenty asqtad staggered Dirac eigenvalues on a 204 lattice at β = 3.5
using anti periodic boundary conditions.
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Figure 117: First twenty asqtad staggered Dirac eigenvalues on a 204 lattice at β = 3.7
using anti periodic boundary conditions.
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Figure 118: First twenty overlap Dirac eigenvalues of a single configuration on a 164

lattice at β = 3.3 for interpolated fields.
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Figure 119: First twenty overlap Dirac eigenvalues of a single configuration on a 164

lattice at β = 3.3 for interpolated fields using anti periodic boundary

conditions.
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Figure 120: Maximum density peak (center) of first overlap eigenmode for a full config-
uration on a 164-lattice at βLW = 3.3 with upper (above) and lower (below)
z-slices of the same t-slice. 132
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Figure 121: Maximum density peak (center) of first overlap eigenmode for a full config-
uration on a 164-lattice at βLW = 3.3 with upper (above) and lower (below)
z-slices of the same t-slice. 133
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Figure 122: Maximum density peak (center) of first overlap eigenmode for a center-

projected configuration on a 164-lattice at βLW = 3.3 with upper (above)
and lower (below) z-slices of the same t-slice.
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Figure 123: Maximum density peak (center) of first overlap eigenmode for a center-

projected configuration on a 164-lattice at βLW = 3.3 with upper (above)
and lower (below) z-slices of the same t-slice. (rather sharp peak, little noise)
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Figure 124: Maximum density peak (center) of first asqtad staggered eigenmode for
a full configuration on a 204-lattice at βLW = 3.3 with upper (above) and
lower (below) z-slices of the same t-slice.
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Figure 125: Maximum density peak (center) of first asqtad staggered eigenmode for
a full configuration on a 204-lattice at βLW = 3.3 with upper (above) and
lower (below) z-slices of the same t-slice.
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Figure 126: Maximum density peak (center) of first asqtad staggered eigenmode for a
center-projected configuration on a 204-lattice at βLW = 3.3 with upper
(above) and lower (below) z-slices of the same t-slice.
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Figure 127: Maximum density peak (center) of first asqtad staggered eigenmode for a
center-projected configuration on a 204-lattice at βLW = 3.3 with upper
(above) and lower (below) z-slices of the same t-slice.
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Figure 128: Vortex Correlation for overlap eigenmodes on a 124 lattice at β = 2.9, a)
full and b) projected configuration.
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Figure 129: Vortex Correlation for overlap eigenmodes on a 124 lattice at β = 3.1, a)
full and b) projected configuration.
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Figure 130: Vortex Correlation for overlap eigenmodes on a 124 lattice at β = 3.3, a)
full and b) projected configuration.
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Figure 131: Vortex Correlation for asqtad staggered eigenmodes on a 124 lattice at β =
2.9, a) full and b) projected configuration.
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Figure 132: Vortex Correlation for asqtad staggered eigenmodes on a 124 lattice at β =
3.1, a) full and b) projected configuration.
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Figure 133: Vortex Correlation for asqtad staggered eigenmodes on a 124 lattice at β =
3.3, a) full and b) projected configuration.
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Figure 134: Vortex Correlation for asqtad staggered eigenmodes on a 164 lattice at β =
2.9, a) full and b) projected configuration.
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Figure 135: Vortex Correlation for asqtad staggered eigenmodes on a 164 lattice at β =
3.1, a) full and b) projected configuration.
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Figure 136: Vortex Correlation for asqtad staggered eigenmodes on a 164 lattice at β =
3.3, a) full and b) projected configuration.
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Figure 137: Vortex Correlation for asqtad staggered eigenmodes on a 164 lattice at β =
3.5, a) full and b) projected configuration.
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Figure 138: Vortex Correlation for asqtad staggered eigenmodes on a 204 lattice at β =
2.9, a) full and b) projected configuration.
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Figure 139: Vortex Correlation for asqtad staggered eigenmodes on a 204 lattice at β =
3.1, a) full and b) projected configuration.
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Figure 140: Vortex Correlation for asqtad staggered eigenmodes on a 204 lattice at β =
3.3, a) full and b) projected configuration.
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Figure 141: Vortex Correlation for asqtad staggered eigenmodes on a 204 lattice at β =
3.5, a) full and b) projected configuration.
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Figure 142: Vortex Correlation for asqtad staggered eigenmodes on a 204 lattice at β =
3.7, a) full and b) projected configuration.
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Figure 143: Correlation between topological charge and overlap eigenmodes on a 124

lattice at β = 2.9, a) full and b) projected configuration.
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Figure 144: Correlation between topological charge and overlap eigenmodes on a 124

lattice at β = 3.1, a) full and b) projected configuration.
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Figure 145: Correlation between topological charge and overlap eigenmodes on a 124

lattice at β = 3.3, a) full and b) projected configuration.
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Figure 146: Correlation between topological charge and asqtad staggered eigenmodes on
a 124 lattice at β = 2.9, a) full and b) projected configuration.
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Figure 147: Correlation between topological charge and asqtad staggered eigenmodes on
a 124 lattice at β = 3.1, a) full and b) projected configuration.
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Figure 148: Correlation between topological charge and asqtad staggered eigenmodes on
a 124 lattice at β = 3.3, a) full and b) projected configuration.
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Figure 149: Correlation between topological charge and asqtad staggered eigenmodes on
a 164 lattice at β = 2.9, a) full and b) projected configuration.
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Figure 150: Correlation between topological charge and asqtad staggered eigenmodes on
a 164 lattice at β = 3.1, a) full and b) projected configuration.
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Figure 151: Correlation between topological charge and asqtad staggered eigenmodes on
a 164 lattice at β = 3.3, a) full and b) projected configuration.
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Figure 152: Correlation between topological charge and asqtad staggered eigenmodes on
a 164 lattice at β = 3.5, a) full and b) projected configuration.
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Figure 153: Correlation between topological charge and asqtad staggered eigenmodes on
a 204 lattice at β = 2.9, a) full and b) projected configuration.
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Figure 154: Correlation between topological charge and asqtad staggered eigenmodes on
a 204 lattice at β = 3.1, a) full and b) projected configuration.
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Figure 155: Correlation between topological charge and asqtad staggered eigenmodes on
a 204 lattice at β = 3.3, a) full and b) projected configuration.
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Figure 156: Correlation between topological charge and asqtad staggered eigenmodes on
a 204 lattice at β = 3.5, a) full and b) projected configuration.
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Figure 157: Correlation between topological charge and asqtad staggered eigenmodes on
a 204 lattice at β = 3.7, a) full and b) projected configuration.
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Figure 160: 20 lowest asqtad eigenvalues on center-projected configurations with Wilson
action, periodic bc. 172
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Figure 161: 20 lowest asqtad eigenvalues on center-projected configurations with Wilson
action, anti periodic bc. 173
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Figure 162: 20 lowest asqtad eigenvalues on full configurations with Lüscher-Weisz ac-
tion, periodic bc. 174
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Figure 163: 20 lowest asqtad eigenvalues on center-projected configurations with
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Figure 164: 20 lowest asqtad eigenvalues on full configurations with Lüscher-Weisz ac-
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Figure 165: 20 lowest asqtad eigenvalues on center-projected configurations with
Lüscher-Weisz action, apbc. 177
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Correlation Wilson action anti periodic Lüscher-Weisz anti periodic
P (~x)/gap 0.3417 0.1931 −0.1326 0.3532

Z2P (~x)/gap 5.0627 5.4658 1.5739 2.2587
E-plaqs/gap −0.1024 −0.1605 −0.0749 −0.1347
B-plaqs/gap −0.1614 −0.2383 −0.1419 −0.2091
P-plaqs/gap −0.2638 −0.3988 −0.2169 −0.3439
P (~x)/dens −0.1945 −0.2337 −0.0986 −0.2577

Z2P (~x)/dens −4.7398 −4.8173 −2.0382 −3.1190
E-plaqs/dens 0.0993 0.0915 0.0680 0.0771
B-plaqs/dens 0.1279 0.0877 0.0758 0.0724
P-plaqs/dens 0.2273 0.1792 0.1438 0.1496

Table 10: Correlations 〈XY 〉 − 〈X〉〈Y 〉 between size of the gap or eigenvalue density
near zero and Polyakov loop (P (~x) or Z2P (~x)), number of electric, magnetic
or total number of vortex-plaquettes. Size of gap correlates with Polyakov
loops, eigenvalue density near zero correlates with vortex densities.

β(LW ) 123 × 2 123 × 4 123 × 6 124

2.3 0.02609 0.01048 0.00356 0.00021
2.5 −0.00184 0.02874 0.01526 0.02273
2.7 0.02763 0.03182 0.14122 4.54309
3.0 −0.00125 0.01400 0.06222 0.54893
3.3 0.05257 0.08881 0.01149 −0.00275
3.5 0.01319 0.08002 0.09454 −0.00124
3.7 0.03192 0.08010 0.51254 0.07197
4.0 0.00396 0.01612 0.12191 1.08357

Table 11: Correlation between size of the gap and Polyakov loop of center-projected
configurations (Z2P (~x)), different β(LW )s (β : 2.3 − 3.0 → Wilson action,
Fig. 161, βLW : 3.3, . . . → Lüscher-Weisz action, Fig. 165) and lattice sizes,
anti periodic bc.

β(LW ) 123 × 2 123 × 4 123 × 6 124

2.3 0.01973 −0.00322 0.00456 0.02492
2.5 0.00458 0.01675 0.00483 0.08774
2.7 −8.6 · 10−05 0.00642 0.00312 0.04077
3.0 0.00925 0.00441 −0.00666 0.01020
3.3 −0.00089 0.03704 0.02166 0.02135
3.5 0.00416 −0.00108 0.04210 0.01865
3.7 0.00475 0.00867 0.02664 0.03028
4.0 0.00431 0.00016 0.00898 0.00964

Table 12: Correlation between eigenvalue density near zero and vortex-density, different
β(LW )s (β : 2.3 − 3.0 → Wilson action, Fig. 160, βLW : 3.3 − 4.0 → Lüscher-
Weisz action, Fig. 163) and lattice sizes, periodic bc.
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Figure 166: Correlation between eigenmodes and vortex surface, full configuration, βLW = 3.3
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Figure 167: Correlation between eigenmodes and vortex surface, full configuration, βLW = 3.5
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Figure 168: Correlation between eigenmodes and vortex surface, full configuration, βLW = 3.7
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Figure 169: Correlation between eigenmodes and vortex surface, full configuration, βLW = 4.0
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Figure 170: Correlation between eigenmodes and vortex surface, full configuration, anti periodic bc., βLW = 3.3
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Figure 171: Correlation between eigenmodes and vortex surface, full configuration, anti periodic bc., βLW = 3.5
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Figure 172: Correlation between eigenmodes and vortex surface, full configuration, anti periodic bc., βLW = 3.7
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Figure 173: Correlation between eigenmodes and vortex surface, full configuration, anti periodic bc., βLW = 4.0
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Figure 174: Correlation between eigenmodes and vortex surface, center-projected configuration, βLW = 3.3

187



C
P

lo
ts

a
n
d

F
ig

u
res

 0

 1

 2

 3

 4

 5

 0  2  4  6  8  10  12

123 × 2, 1stmode
123 × 4, 1stmode
123 × 6, 1stmode

124, 1stmode
vo

rt
ex

co
rr

el
at

io
n

number of attached plaquettes

 0

 1

 2

 3

 4

 5

 0  2  4  6  8  10  12

123 × 2, 20thmode
123 × 4, 20thmode
123 × 6, 20thmode

124, 20thmode

vo
rt

ex
co

rr
el

at
io

n

number of attached plaquettes

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  2  4  6  8  10

123 × 2, 1stmode
123 × 4, 1stmode
123 × 6, 1stmode

124, 1stmode

vo
rt

ex
co

rr
el

at
io

n

number of attached plaquettes

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  2  4  6  8  10

123 × 2, 20thmode
123 × 4, 20thmode
123 × 6, 20thmode

124, 20thmode

vo
rt

ex
co

rr
el

at
io

n

number of attached plaquettes

Figure 175: Correlation between eigenmodes and vortex surface, center-projected configuration, βLW = 3.5
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Figure 176: Correlation between eigenmodes and vortex surface, center-projected configuration, βLW = 3.7
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Figure 177: Correlation between eigenmodes and vortex surface, center-projected configuration, βLW = 4.0
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Figure 178: Correlation between eigenmodes and vortex surface, center-projected configuration, anti periodic bc., βLW = 3.3
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Figure 179: Correlation between eigenmodes and vortex surface, center-projected configuration, anti periodic bc., βLW = 3.5
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Figure 180: Correlation between eigenmodes and vortex surface, center-projected configuration, anti periodic bc., βLW = 3.7
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Figure 181: Correlation between eigenmodes and vortex surface, center-projected configuration, anti periodic bc., βLW = 4.0
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• Roman Höllwieser, Manfried Faber, Jeff Greensite, Urs M. Heller and Štefan
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