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ZusammenfassungEs werden sowohl instationäre als auh stationäre transsonishe Strömungsvorgän-ge bei groÿen Reynolds Zahlen in Kanälen betrahtet, die derart shlank sind,dass es zu einem Versagen der klassishen hierarhishen Grenzshiht-Theoriekommt. Folglih lassen sih die Eigenshaften der reibungsfreien Kernregion undder viskositätsbestimmten Grenzshihtsregionen an den Kanalwänden niht mehrin aufeinander folgenden Shritten berehnen, sondern müssen vielmehr gleihzeitigbestimmt werden. Das resultierende lokale Wehselwirkungsproblem für laminareStrömungen idealer und realer Gase (BZT Fluide) wird mithilfe der Methode derangepassten asymptotishen Entwiklungen formuliert unter der Voraussetzung,dass der Kanal zudem noh so shlank ist, dass die Strömung in der Kernregionals eindimensional betrahtet werden kann. Dies führt auf ein triple dek Problem,bei dem die wehselwirkende Kernregion durh ein einziges upper dek repräsen-tiert wird, welhes von den beiden wehselwirkenden Grenzshihten ober- undunterhalb geteilt wird. Im ersten Anwendungsfall wird der Wehselwirkungsvor-gang durh einen stationären shwahen geraden Stoÿ in einem shlanken Kanalkonstantem Quershnitts hervorgerufen. Der regularisierende Ein�uss wehselwir-kender Grenzshihten wird diskutiert und anhand ausgewählter Lösungen für dieinnere Struktur von Verdünnungsstöÿen, sonishen und dopplet-sonishen Stöÿen,welhe von der rein reibungsfreien Theorie für BZT Fluide vorhergesagt werden,demonstriert. Im zweiten Anwendungsfall wird der Wehselwirkungsvorgang durheine kleine Laval Düse hervorgerufen, die sih in einem shlanken Kanal von an-sonstem konstanten Quershnitts be�nden soll. Das stationäre Strömungsbild insolhen Düsen untershiedliher minimaler Quershnitte aber von ansonsten glei-her Gestalt wird in Hinblik auf die eindimensionale reibungsfreie Theorie vonLaval Düsen diskutiert. Eine zeitabhängige numerishe Simulation und eine lineareStabilitätsuntersuhung wenden sih dem Phänomen der selbst-erhaltenden Oszil-lationen eines Stoÿes in Gegenwart von Grenzshihtablösung zu, welhe in einernahezu �gehokten� Strömung im divergierenden Teil solher Düsen auftreten kann.Asymptotishe Methoden erweisen sih dabei als geeignete Mittel, um die wesentli-hen E�ekte (hier die Wehselwirkung zwishen Stoÿ und Grenzshiht) ausgehendvon �rst priniples in ein mathematishes Modell zu isolieren.
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AbstratUnsteady and steady internal transoni �ows at high Reynolds numbers throughhannels so narrow that the lassial boundary layer approah fails are onsidered.As a onsequene, the properties of the invisid ore and the visosity dominatedboundary layer regions adjaent to the hannel walls an no longer be determinedin subsequent steps but have to be alulated simultaneously in the framework ofa loal visous invisid interation strategy. Under the requirement that the han-nel is su�iently narrow so that the �ow outside the visous wall layers beomesone-dimensional to the leading order the resulting interation problem for laminar�ows is formulated for both perfet gases and dense gases with mixed nonlinearity(BZT �uids) by means of mathed asymptoti expansions. As an outome of theasymptoti analysis the interation problem is onsistently desribed by a tripledek problem. The interating ore region hereby is represented by a single upperdek whih is shared by the two interating boundary layers at the lower and upperhannel walls.In the �rst appliation to be onsidered the interation proess is triggered bythe formation of a stationary weak normal shok in a slender hannel of onstantross setion. The regularizing properties of the mehanism of visous invisidinterations are disussed and representative solutions for the internal struture ofweak rarefation shoks, soni and double soni shoks and split shoks whih arepredited by invisid theory in ase of BZT �uids are presented.In the seond appliation the interation proess is triggered by a small Lavalnozzle loated in a hannel of otherwise onstant ross setion. The steady �ow �eldthrough nozzles of di�erent minimum ross setions but of otherwise similar shapeis disussed highlighting the di�erenes and similarities to lassial one-dimensionalLaval nozzle theory. Unsteady alulations and a linear stability analysis addressthe problem of self-sustained shok wave osillations in the presene of �ow sepa-ration taking plae in a nearly hoked �ow regime in the diverging dut of a nozzleof the mentioned kind. Asymptoti methods hereby proof to be a means to isolatethe essential physial e�ets, here the shok/boundary layer interation, and toderive simpli�ed model equations in a onsistent manner based on �rst priniples.



iv



Expression of ThanksI'd like to thank Prof. A. Kluwik, �rst of all, for giving me the opportu-nity to work with him. During my regular studies I have already attendedmost of his letures and have learned to know him as an exellent teaherwith a highly reative sienti� mind. During many interesting talks, someof them on onferenes in far away parts of the world, I also have learned toappreiate his generous and kind ways.Then I'd like to thank Prof. Ch. Shmeiser for the opportunity to takepart in the WK Di�erential Equations. I really enjoyed athing a glimpseon real mathematis and I think that I have pro�ted very muh by it.I'm also very muh indebted to Prof. Ph. Gittler who kindly has takenover the Co-Referat of my thesis.Many thanks also to my olleagues at the WK, Franz, Sabine, Gona andthe others, and to my olleagues at the institute of Fluid Mehanis and HeatTransfer, Guido, Rihard, Uli, Roland, Thomas (both), Markus, Christoph,Stefan (both), Bernhard (both), Matthias, Rene, Edwin, Christian, Daniel,Tanja, Kathi, Harald, Herbert Steinrük. It has been a great time and whowould have guessed that philosophy would be suh a great issue during lunhat the loal anteen. Maybe it is in times of great physial su�ering whenthe need of the human mind for the spiritual is at the greatest.Also many thanks to my friends, Bernhard, Florian, Matthias, Denise,Lambert, Günther, York, Dani, Gerold. It has been important for me to getaway from siene from time to time, to get a new lease on life.I have been luky in many ways to be able to work on my PhD-thesis, butthe greatest ontribution hereby rests with my parents, Henni and Franz, andmy sister, Vera, who not only �naned and/or supported my regular studies,but who also let me approah things in a round-about way, sometimes withmany detours, now umulating in this thesis.OK, I'd better stop here, before I start to thank the world at large. . . enough, or too muh! In fat, it's a good time to stop writing, outside,spring is about to ome . . .



vi



Contents
1 Introdution 11.1 Dense Gases - The Fundamental Derivative . . . . . . . . . . . 42 Model 72.1 Noninterating Flow Regime . . . . . . . . . . . . . . . . . . . 132.1.1 Invisid Flow in the Core Region of a Channel . . . . . 132.1.2 Boundary Layer . . . . . . . . . . . . . . . . . . . . . . 282.2 Interating Flow Regime . . . . . . . . . . . . . . . . . . . . . 322.2.1 Orders of Magnitude - Inspetion Analysis . . . . . . . 332.2.2 Formal Asymptoti Expansions . . . . . . . . . . . . . 392.2.3 Admissible Region 1 Flow Types . . . . . . . . . . . . 522.2.4 Fundamental Canonial Problem . . . . . . . . . . . . 553 Shok Regularization 593.1 Shok Formation and the Fundamental Derivative . . . . . . . 593.1.1 Invisid Theory of Weak Normal Shoks . . . . . . . . 613.2 Varying the In�ow Conditions . . . . . . . . . . . . . . . . . . 643.3 Eigensolutions & Internal Shok Pro�les . . . . . . . . . . . . 673.3.1 Asymptoti Properties Upstream (X → −∞) . . . . . 683.3.2 Asymptoti Properties Downstream (X → ∞) . . . . . 743.3.3 Numerial Results & Numerial Method . . . . . . . . 783.3.4 Calulation of the Material Parameters for PP10 . . . . 793.3.5 Example 1: Compression Shok . . . . . . . . . . . . . 833.3.6 Example 2: Rarefation Shok . . . . . . . . . . . . . . 873.3.7 Example 3: Soni Shok . . . . . . . . . . . . . . . . . 90vii



viii CONTENTS3.3.8 Example 4: Double Soni Shok . . . . . . . . . . . . . 923.3.9 Example 5: Split Shok . . . . . . . . . . . . . . . . . . 954 Visous Laval Nozzle 994.1 Numerial Method . . . . . . . . . . . . . . . . . . . . . . . . 1014.1.1 Stationary Problem . . . . . . . . . . . . . . . . . . . . 1014.1.2 Unsteady Problem . . . . . . . . . . . . . . . . . . . . 1044.1.3 Numerial Homotopy Method . . . . . . . . . . . . . . 1064.2 Steady Flow in �Visous� Laval Nozzles . . . . . . . . . . . . . 1074.2.1 Inverse Design of a Laval Nozzle . . . . . . . . . . . . . 1144.3 Unsteady Flow in �Visous� Laval Nozzles . . . . . . . . . . . 1164.3.1 Linearized Problem and Validation of the NumerialAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . 1164.3.2 Nearly hoked Flow without Flow Separation . . . . . 1184.3.3 Linear Stability of Steady States . . . . . . . . . . . . 1234.3.4 Further Work . . . . . . . . . . . . . . . . . . . . . . . 1295 Conlusions 133A List of Symbols 137B Thermodynami Relations 143B.1 Some Thermodynami Quantities . . . . . . . . . . . . . . . . 143B.1.1 Magnitude of Grüneisen Coe�ient . . . . . . . . . . . 144B.2 Utilized Relations . . . . . . . . . . . . . . . . . . . . . . . . . 146C Asymptoti Prop. of the Airy Funtion 149D Eigenvalue Spetrum of Trivial State 151Bibliography 155



Chapter 1IntrodutionSteady as well as unsteady visous invisid interations taking plae in in-ternal, transoni, single phase and two-dimensional �ows at high Reynoldsnumbers through narrow hannels shall be onsidered. Near the hannel inletvisous e�ets at high Reynolds numbers are limited to thin laminar bound-ary layers whih develop in the viinity of the hannel walls and Prandtl'slassial boundary layer theory an be applied with good auray, in gen-eral, [32℄. However, rapid hanges in the streamwise �ow �eld, suh as theformation of a weak normal shok or the presene of a weak loal redutionof the ross setion of the hannel or both eventually in onnetion withboundary-layer separation, f. �gure 1.1, are found to lead to a loal break-down of the lassial boundary layer approah, f. [80℄ or [37℄ amongst others.As a diret onsequene, the properties of the invisid ore and the visositydominated boundary layer regions an no longer be determined in subsequentsteps but have to be alulated simultaneously in the small interation re-gions depited by the green regions in �gure 1.1. To be spei�, the hannelshall be su�iently slender so that the originally two interation regions forthe boundary layer in the upper and lower half of the hannel ondense toone single interation region as is skethed in �gure 1.1. Under the addi-tional requirement that the hannel is su�iently narrow so that the �owoutside the visous wall layers beomes one-dimensional to the leading orderthe resulting interation problem shall be formulated by means of mathed1



2 CHAPTER 1. INTRODUCTION
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Figure 1.1: Sketh of the �ow on�guration under onsideration. The visousinvisid interation is triggered by a shok (red line, upper part) or by aredution of the �ow ross setion (lower part). The hannel is so slenderthat the two interation regions for the boundary layer in the upper andlower half of the hannel (left hand side) ollapse to one single interationregion (right hand side). Region (1): invisid ore region �ow; region (2):visosity dominated boundary layers; region (3): visous invisid interationregion.asymptoti expansions exploiting the largeness of the Reynolds number. Therequirement of one-dimensionality of the �ow through the interating hannelore region simpli�es the numerial treatment of the transoni �ow regimein the interation region signi�antly while preserving the harateristis as-soiated with transoni �ow at the same time, f. [41℄.The urrent work, whih has been funded by the Austrian Siene Fundin the framework of the WK Di�erential Equations, originates from previouswork done in this ontext by Kluwik, [39℄, Kluwik & Gittler, [43℄, andKluwik & Braun & Gittler, [41℄, who studied the steady transoni interating�ow of a perfet gas in a slender hannel. The extension to their workovers, in partiular, unsteady e�ets whih are to be inluded properly inthe formulation of the interation problem. In addition, real gas e�ets areintrodued with the fous on dense gases, i.e. BZT �uids. The derivationof the appropriate distinguished limit apable to desribe the interationproblem is generalized thereby loosening some restritions on the geometrysalings of the �ow on�guration.The treatise pursues the following aims.� The formulation of the problem is presented in hapter 2.� The regularizing e�et of visous invisid interation on the variousshok-forms whih are possible, at least theoretially, in dense gases,



3i.e. BZT �uids, f. [35℄, suh as rarefation shoks, soni and dou-ble soni shoks and split shoks, shall be investigated in hapter 3.The mehanism of visous invisid shok regularization to be disussedis fundamentally di�erent to the well known shok regularization bythermo-visous e�ets, f. eg. [18℄, [35℄. BZT �uids and their proper-ties are shortly haraterized in setion 1.1.� A theoretial approah to study the transoni �ow through small noz-zles at high Reynolds numbers in the framework of interating bound-ary layer theory shall be presented in setion 4.2 highlighting the di�er-enes and similarities to lassial one-dimensional Laval nozzle theory.The nozzle of small length sale shall be loated in a slender hannel ofonstant ross setion, f. lower part of �gure 1.1. A literature surveyreveals that no suh theory exists at present whih addresses the �owin general and the onversion of subsoni �ow to supersoni �ow inpartiular in �ow devies of small sale for the high Reynolds numberregime. Small sale, here, means hannel ross setions and streamwiseextend of the nozzle of about 10mm, say, so well above miro-sale.� First steps towards a rational approah to study the phenomenon ofself-sustained shok wave osillations in the presene of �ow separationtaking plae in the diverging dut of a nozzle of the mentioned kindshall be given in setion 4.3. Suh unsteady �ow behavior in transonidi�users is a feature frequently enountered in engineering pratie,f. e.g. [54℄. However, the theoretial or numerial approahes to dealwith the problem of self-sustained shok osillations so far enter eitheron models for invisid �ow and onsidering the shok boundary layerinteration in an ad-ho manner at most, [7℄, [27℄, or rely on numerialsimulations of the full problem introduing models, e.g., for turbuleneand wall funtions amongst others, [54℄, [93℄. Asymptoti methodshereby proof to be a means to isolate the essential physial e�ets, herethe shok/boundary layer interation, and to derive simpli�ed modelequations in a onsistent manner based on �rst priniples.Related works on visous invisid interations in internal purely super-



4 CHAPTER 1. INTRODUCTIONsoni �ows an be found in [73℄ and [40℄, works on visous invisid interationsin internal purely subsoni �ows in e.g. [77℄ amongst others. Investigations onvisous ompressible �ow in slender hannels at moderate Reynolds numbersor in miro hannels are to be found, e.g., in [32℄, [65℄, [28℄, [94℄, experimentaland/or numerial studies on shok boundary layer interation in transonidi�users, e.g., [7℄, [27℄, [54℄, [55℄, [66℄, [60℄, [93℄.1.1 Dense Gases - The Fundamental DerivativeThe disussion throughout the thesis will be restrited to the single phasegaseous thermodynami region, so the thermodynami state of the �uid isnot supposed to enter the thermodynami region of liquid-vapor oexistene,see �gure 1.1. p, ρ and s denote the pressure, the density and the entropy,respetively. Quantities evaluated at the ritial point of thermodynamisare denoted by the subsript , tilde indiates dimensional quantities.For most gaseous �uids the speed of sound, c, varies monotonously underisentropi expansion, i.e. ∂c̃
∂ρ̃
|s̃ > 0. Still, there seems to exist -at leasttheoretially- a limited lass of �uids, known as dense gases or BZT (Bethe-Zel'dovih-Thompson) �uids, for whih the variation of the speed of soundis non monotonous leading to various interesting onsequenes for the �owbehavior amongst others the possibility of rarefation shoks, f. e.g. [85℄.An useful quantity haraterizing the mentioned behavior of a �uid is theso-alled fundamental derivative
Γ :=

1

c̃

∂(ρ̃c̃)

∂ρ̃

∣
∣
∣
s̃
. (1.1)In the following we will refer to �uids for whih Γ > 1 in the �ow region ofinterest as regular �uids, �uids for whih Γ < 1 as dense gases and �uidsfor whih Γ < 0 as BZT �uids, f. also �gure 1.1. Rarefation shoks,soni or double soni shoks and split shoks are only possible in the BZTregion Γ < 0, e.g. [34℄. The thermodynami region of non monotonous �owbehavior is restrited to a small region in the dense vapor phase near thethermodynamial ritial point as shown in �gure 1.1.



1.1. DENSE GASES - THE FUNDAMENTAL DERIVATIVE 5
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Figure 1.2: Pressure vs. density diagram for a BZT �uid. Region of Γ > 1:regular, lassial behavior. Region of 0 < Γ < 1: dense gases region with reg-ular behavior. Region of Γ < 0: dense gas region with non regular behavior,BZT region. The subsript c indiates thermodynami quantities evaluatedat the ritial point of thermodynamis, TCP denotes the thermodynamialritial point.





Chapter 2ModelThe transoni �ow of perfet/dense gases through a slender hannel of height
H̃0 is onsidered, see �gure 2.1. The �uid is moving from left to right andthe Reynolds number is supposed to be large leading to the formation of anoninterating visous boundary layer at the hannel walls, region 2 in �gure2.1. At the position L̃0 rapid hanges in the �ow �eld shall trigger a proessof visous invisid interation in a region of small lateral extent, region 3.These rapid hanges an be aused by the formation of a weak shok in theinvisid ore region �ow eventually leading to �ow separation in the boundarylayer, as is shown in the upper half of �gure 2.1, or by a surfae mountedobstale of short length sale, potentially in ombination with a shok shownin the lower half of �gure 2.1. The hannel shall be su�iently slender so thatthe originally two interation regions for the boundary layer in the upper andlower half of the hannel ondense to one single interation region as is shownin �gure 2.1. Therefore, a speial distinguished limit is sought after, wherethe atual hannel height is not known a priori but is part of the interationproblem itself.The interation proess in region 3 shall be desribed by means of mathedasymptoti expansions. To this end the basi set of equations in non-dimen-sional form is provided �rst, then, subsequent to the introdution of theequations, the magnitude of the various dimensional groups entering theformulation of the problem will be disussed.7



8 CHAPTER 2. MODEL
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Figure 2.1: Shemati sketh of the problem setup. Region 1: invisid ore,region 2: visous noninterating boundary layers (L. Prandtl), region 3: vis-ous invisid interation. The red line symbolizes a shok.Introdue the non-dimensional quantities, tilde denotes dimensional quan-tities,
x̃ = (x̃, ỹ) = L̃0 x, H̃0 = L̃0H0, ∇̃ = 1

L̃0
∇, s̃ = (x̃, s̃2) = L̃0 s,

ũ = (ũ, ṽ) = ũ0 u, t̃ = L̃0

ũ0
t, ρ̃ = ρ̃0 ρ, p̃ = ρ̃0ũ

2
0 p,

θ̃ = θ̃0 θ, h̃ = ũ2
0 h, s̃ = c̃p,0s, µ̃ = µ̃0 µ,

µ̃b = µ̃0 µb, k̃ = k̃0 k, c̃ = c̃0 c.Here x̃ denotes the position vetor with the horizontal and vertial ompo-nents (x̃, ỹ), ∇̃ the nabla operator ating on the spaial oordinates only, s̃the position vetor desribing the ontour of a surfae mounted hump withthe horizontal and vertial oordinates (x̃, s̃2), ũ the veloity vetor with thehorizontal and vertial omponents (ũ, ṽ), t̃ the time, ρ̃ the density, p̃ thepressure, θ̃ the temperature, h̃ the spei� enthalpy, s̃ the spei� entropy,
c̃p the spei� heat apaity at onstant pressure, µ̃ the dynami visosity,
µ̃b the bulk visosity, k̃ the thermal ondutivity and c̃ the speed of sound.The subsript 0 indiates a referene state. As an adequate referene statefor the problem the �ow quantities evaluated in the undisturbed ore region�ow immediately upstreams of the interation region at position L̃0 havebeen hosen. Then the Navier Stokes equations for 2D ompressible �ows



9negleting gravitational fores an be written in the following form
∂ρ

∂t
+ ∇ · (ρ u) = 0, (2.1a)

ρ

(
∂u

∂t
+ (u · ∇)u

)

= −∇p +
1

Re
∇ · τττ , (2.1b)

ρ
Dh

Dt
− Dp

Dt
=

1

Re
τττ : ∇u − 1

PrReEc
∇ · q, (2.1)with ρ(x, t), p(x, t), h(x, t) ∈ R, u(x, t),q(x, t) ∈ R2 and τττ = (τij) ∈

M(2, R). q denotes the vetor of the heat �ux and τττ the visous stress tensor.The non-dimensional parameters are the Reynolds number, Re := ρ̃0ũ0L̃0

µ̃0
, theEkert number, Ec :=

ũ2
0

c̃p,0θ̃0
, and the Prandtl number, Pr := k̃0

µ̃0c̃p,0
.The enterline of the nozzle y = H0

2
is a line of symmetry; onsequentlyin the following the boundary onditions are spei�ed for one wall only. Theboundary onditions at the (adiabati) wall are

u =
∂s(x, t)

∂t
, q · ns = 0 @x = s(x, t) = (x, s2(x, t))T , x > 0, (2.2)with ns(x, t) the surfae normal to the walls, and at the in�ow x = 0

u = (1, 0)T , ρ = 1, p = p0, θ = 1, h = h0 @x = (0, 0 < y < H0)
T , (2.3)with the onstraint on the geometry of the nozzle entry ensuring ompatibil-ity with the in�ow onditions

∂s2

∂x
(x = 0, t) = 0 ∀t > 0. (2.4)This onstraint is trivially satis�ed in the hannel part in �gure 2.1 outsidethe interation region, where s2 ≡ 0. In ase of unsteady �ow suitable initialonditions for t = 0 have to be provided.Finally equations (2.1a) to (2.1) have to be losed by the following on-stitutive relations:



10 CHAPTER 2. MODEL� Newtonian �uid
τττ = µb(∇ · u) I + µ

(
∇u + ∇uT − 2

3
(∇ · u) I

)
, (2.5)� Fourier's law

q = −k ∇θ, (2.6)� and a alori and a thermal EOS for single omponent gases
h = h(p, s), p = p(ρ, θ). (2.7)In general the material parameters µ, µb and k themselves are dependent onthe thermodynami state, i.e. given by the pair (p, θ).Alternatively, equation (2.1) an be written in the following form

ρθ
Ds

Dt
=

Ec

Re
τττ : ∇u− 1

PrRe
∇ · q (2.8)making use of Gibbs' fundamental equation, [47℄, [75℄,

θ
Ds

Dt
= Ec

(
Dh

Dt
− 1

ρ

Dp

Dt

) (2.9)relating the hange of the spei� thermodynami entropy s to the dissipativeagenies ating in the �ow, i.e. the dissipation due to visosity and thedissipation due to thermal ondutivity in the �uid. Furthermore, it willproof useful to introdue hanges of the temperature θ and pressure p inthe �ow �eld into the energy equation (2.1) by means of the expression
Dh
Dt

= 1
Ec

cp
Dθ
Dt

+ 1−β̃0θ̃0βθ
ρ

Dp
Dt
, see (B.19). The energy equation in new formthen reads

ρcp
Dθ

Dt
= Ecβ̃0θ̃0βθ

Dp

Dt
+

Ec

Re
τττ : ∇u +

1

PrRe
∇ · q, (2.10)where β = β̃

β̃0
is the oe�ient of thermal expansion, see (B.3).



11To sum up, the non-dimensional groups entering the governing equationsare
Re :=

ρ̃0ũ0L̃0

µ̃0
, (2.11a)

M0 :=
ũ0

c̃0

, (2.11b)
Ec :=

ũ2
0

c̃p,0θ̃0

, (2.11)
Pr :=

k̃0

µ̃0c̃p,0
, (2.11d)

β̃0θ̃0 := −θ̃0
1

ρ̃0

∂ρ̃

∂θ̃

∣
∣
∣
p̃,0

, (2.11e)the Reynolds number, the Mah number, the Ekert number, the Prandtlnumber, and the oe�ient of thermal expansion at referene state times thereferene temperature, respetively.In the following, it will be assumed that Re ≫ 1 and M0 ≈ 1. The �rstondition ontributes to the formation of at least two mathematially di�er-ent regions, regions 1 & 2 in �gure 2.1, a region of invisid �ow and a visousboundary layer at the walls. The equations for this ase of noninterating�ow are olleted in the setion 2.1 as it presents the starting point for theanalysis of the visous invisid interation proess taking plae in region 3in �gure 2.1. The mathematial desription of the interating �ow regime ispresented in setion 2.2. Speial emphasis will be given to the �ow propertiesof perfet and dense gases and their impliations on the boundary layer �ow.The seond ondition, assumption of transoni �ow M0 ≈ 1, allowsto study weak shoks leading to a transition from supersoni to subsoni�ow onditions in the ore region of the hannel in the framework of anasymptoti theory and to study their interation with the boundary layer�ow at the walls. Chapter 3 will disuss the regularizing properties of theshok/boundary layer interation.The magnitude of the Ec number depends on the �uid under onsid-eration. For a perfet gas with onstant spei� heats the relation Ec =

(γ − 1)M2
0 holds. Sine the ratio of the spei� heats γ is of order one



12 CHAPTER 2. MODELregular �uid dense gas
Re ≫ 1 ≫ 1
M0 ≈ 1 ≈ 1
Ec O(1) ≪ 1
Pr O(1) O(1)

β̃0θ̃0 O(1) O(1)Table 2.1: Assumptions on the order of magnitude for various dimensionlessgroups.
Ec = O(M2

0 ), see [36℄. Conversely the situation of dense gases for whih thefollowing estimate Ec = O(M2
0 δ) has been given by Kluwik in [36℄. Sine inase of dense gases the ratio δ of the spei� gas onstant R̃g and the spei�heat at onstant volume c̃v is small due to the relative large values of thespei� heats in ompounds of higher omplexity, f. [36℄ or [11℄ for instane,

0 < δ = R̃g

c̃v
≪ 1, this suggests Ec → 0 in the limit of δ → 0.Interestingly enough, in both ases the Prandtl number is of order one,

Pr = O(1). Whereas this is a well-known and validated fat for a perfetgas it is, in the ase of dense gases, only founded on empirial orrelationssine measurements in the dense gas regime are extremely di�ult, [36℄.These have been supported by numerial alulations performed by Zieherin [97℄ who used used the method of Chung, Ajlan, Lee and Starling, [9℄, toalulate the orresponding transport quantities for PP11, C14F24. However,the approximations impliitly used in the method, as has been noted in [36℄,have to be taken with aution when it omes to the appliation to densegases.Furthermore, it will be required that β̃0θ̃0 = O(1) for both ases in thethermodynami region of interest. Consequently, the very lose viinity ofthe thermodynamial ritial point, where β exhibits unbounded growth, hasto be exluded from the disussion, see [39℄.Table 2.1 summarizes the assumptions on the orders of magnitude of thevarious dimensionless numbers for both regular, that is perfet gas like, �uidsand dense gases.



2.1. NONINTERACTING FLOW REGIME 132.1 Noninterating Flow Regime2.1.1 Invisid Flow in the Core Region of a ChannelIt has already been pointed out that the order of magnitude of the atualhannel height is not known a priori but is an outome of the formulationof the interation problem to be disussed in setion 2.2. Therefore, nothingmore an be said at present about the magnitude of the vertial oordinate yin the ore region of the hannel, i.e. region 1 in �gure 2.1, than that it will besmall, i.e. y = O(Re−q) with some q > 0, whereas the horizontal oordinate
x in the noninterating part of the hannel �ow, region 1 & 2, learly is O(1).It will be assumed throughout this setion that the �ow in the ore region isinvisid in the limit Re → ∞ even for y = O(Re−q). However, this so far isonly an assumption whih has to be veri�ed in the end when the value of q inthe saling of y has been established. This veri�ation will be done in 2.2.3where the onsisteny of the proposed distinguished limit for the interationregion with the assumed noninterating onoming ore region �ow will beshown.In the limit Re → ∞ with Ec = O(1) and Pr = O(1) in ase of a perfetgas or Ec → 0 and Pr = O(1) in ase of dense gases, see disussion ofequations (2.11) or table 2.1, the steady versions of the governing equations(2.1a), (2.1b), (2.8) read

∇ · (ρu) = 0, ρ (u · ∇)u = −∇p,
Ds

Dt
= 0. (2.12)Equations (2.12) are the steady Euler equations whih no longer satisfy all ofthe boundary onditions (2.2) sine the terms with the highest derivatives,that is the visous terms and the terms of thermal ondutivity, have beenlost in the non dissipative limit (singularly perturbed problem). How thefull set of boundary onditions an be satis�ed is part of the boundary layertheory, summarized in 2.1.2, at this point - invisid �ow in the ore regionof the hannel/nozzle - only the ondition

u · ns = 0 @x = s(x) = (x, s2(x))T , x > 0 (2.13)



14 CHAPTER 2. MODELis needed, again s2 ≡ 0 for the hannel part under onsideration. As aonsequene of Croos' theorem, [86℄, [90℄, stating that an isentropi, steady,isoenergeti and two-dimensional �ow �eld is irrotational and vie versa,
∇× u = 0. (2.14)Finally, equation (2.10) suggests that hanges in the temperature are of

O(Ec) in the limit Re → ∞

∆θ = θ − 1 = O(Ec), Re → ∞, (2.15)and onsequently are small for dense gases, Ec → 0, representing the fatthat for �uids with large spei� heats, δ → 0, isentropi hanges of thethermodynami state only lead to small hanges of the temperature, [39℄.Then equation (2.1) an be written in the invisid limit for both perfetand dense gases as
Dh

Dt
=

1

ρ

Dp

Dt
(2.16)taking into aount ∇ · q = O(Ec) as suggested by using the relation (2.15)in equation (2.6).The solution of the problem of invisid �ow through a hannel of onstantheight is the trivial solution of plain parallel onstant �ow given in de�nition2.1.1.De�nition 2.1.1. The noninterating �ow in in the ore region of the han-nel in �gure 2.1 is a plane parallel onstant �ow.

u ≡ 1, v ≡ 0, c ≡ 1, ρ ≡ 1, p ≡ p0, θ ≡ 1. (2.17)The solution for the unperturbed �ow in the ore region of a hannel, re-gion 1 in �gure 2.1, upstream of the interation region, region 3, is ompletelyknown at this point and one ould immediately proeed to the formulationof the noninterating boundary layers at the hannel walls, region 2 in �gure2.1. Never the less, in the following part of this setion the equations for a



2.1. NONINTERACTING FLOW REGIME 15slowly varying nozzle, s′2 ≪ 1, shall be derived. By a slowly varying nozzle itis meant that the �ow shall be onsidered as one-dimensional to the leadingorder, i.e. variations from plain parallel onstant hannel �ow shall be small.The resulting set of equations will ome in useful later on when the intera-tion problem in region 3 will be formulated, sine the proposed distinguishedlimit for the representation of the former invisid ore region �ow in the in-teration region, i.e. the upper dek, f. setion 2.2.2, is guided by the ideaof one-dimensional invisid transoni nozzle �ow, with the di�erene that inase of an interating �ow the e�et of a varying throat area will generiallybe generated by a displaement e�et indued by the interating boundarylayers at the walls. Therefore, most of the equations obtained will be usedin slightly modi�ed form in the ourse of the formulation of the interationproblem in setion 2.2.2 highlighting the di�erenes between noninteratingand interating �ow.Moreover, in setion 2.2.3 the ompatibility of the proposed distinguishedlimits for the interation problem with region 1 �ow types other than planehannel �ow will be addressed. There the �ow through a slowly varyingnozzle will be analyzed as it is the next obvious generalization of simple �owthrough a hannel of onstant height.Finally, the equations for one-dimensional transoni nozzle �ow will beused as an invisid ounterpart throughout the disussion of the results ofshok/boundary layer interation presented in hapter 3.Remark 2.1.1. An alternative derivation of the equations an be found in [35℄using a slightly di�erent de�nition of the referene state.One-Dimensional Invisid Transoni Flow through a NozzleThe on�guration of a nozzle with slowly varying throat area per unit depth,
Ã = L̃0A, skethed in �gure 2.2, is onsidered. Deviations from plane parallelonstant �ow in a hannel of height H0, de�nition 2.1.1, are supposed to besmall

u = 1 + ∆u, v = ∆v, c = 1 + ∆c, ρ = 1 + ∆ρ, p = p0 + ∆p (2.18)
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Figure 2.2: Sketh of geometry of a slowly varying nozzle.with |∆u|, |∆v|, |∆c|, |∆ρ|, |∆p| ≪ 1, and the �ow shall be transonijustifying the following ansatz for the Mah number at referene state
M2

0 = 1 − K∆K0 (2.19)with ∆K0 ≪ 1.Remark 2.1.2. K is a transoni similarity parameter, [62℄, in antiipation ofthe results of the following analysis.Inserting into the �rst two equations of (2.12) and equation (2.16) sug-gests
∂

∂x
(∆u + ∆ρ + ∆ρ∆u) = O(∆v), (2.20)

∂

∂x
(∆u + ∆p) = O(∆u∆v + ∆u2 + ∆p∆ρ), (2.21)

∂

∂y
∆p = O(∆v), (2.22)

∂

∂x
(∆h − ∆p) = O(∆u(∆h + ∆p) + ∆v(∆h + ∆p)), (2.23)and thus, requiring the �ow to beome one-dimensional to the leading order,implying ∆v ≪ ∆u, and additionally onsidering the in�ow ondition (2.3),leads to the following assumptions on the order of magnitudes of the �ow



2.1. NONINTERACTING FLOW REGIME 17quantities
∆ρ ∼ −∆u − ∆ρ∆u, (2.24)
∆u ∼ −∆p, (2.25)
∆h ∼ ∆p. (2.26)Remark 2.1.3. In equations (2.20) and (2.24) the higher order term ∆ρ∆uhas been kept for later use.At this point the question how small ∆v has to be annot be answered.To this end equations (2.12) are rewritten as
∇ · u + u · 1

ρ
∇ρ = 0, (2.27a)

(u · ∇)u = − c2

M2
0

1

ρ
∇ρ (2.27b)using the relation ∇p = ∂p

∂ρ
|s ∇ρ with ∂p

∂ρ
|s = c2

M2
0
, see (B.2). Projeting(2.27b) onto streamlines leads to

u ·
(

(u · ∇)u
)

= (u ⊗ u) : ∇u = − c2

M2
0

u · 1

ρ
∇ρ, (2.28)and inserting (2.27a) �nally leads to the fundamental equation of gas dy-namis, [62℄,

(

u⊗ u− c2

M2
0

I

)

: ∇u = 0, (2.29)where u·(u · ∇)u = uiuj∂jui = (u⊗ u) : ∇u has been used. Again, insertingthe ansatz for the �ow quantities (2.18) into (2.29) suggests
(

u2 − 1

M2
0

c2

)
∂

∂x
∆u =

∂

∂y
∆v + O(∆v∆u + ∆v∆K + ∆v2). (2.30)Provided ansatz (2.18) leads to a signi�ant degeneration indeed the term onthe left hand side of (2.30) whih is of O ((u2 − 1

M2
0
c2) ∆u

) has to balane



18 CHAPTER 2. MODELwith the right hand side whih is of O (∆v), thus providing the estimate
(u2 − 1

M2
0
c2) ∆u ∼ ∆v (2.31)on ∆v. However, the magnitude of ∆v also depends on the variation of thethroat area of the nozzle A(x) imposed by the boundary ondition (2.13), so(2.31) is in fat a ondition how weakly the throat area of the nozzle is allowedto be varied along the enter line of the nozzle to justify the assumption ofan one-dimensional �ow in the ore region of the nozzle. The magnitude of

(u2 − 1
M2

0
c2), on the other hand, depends on how lose the in�ow onditionsare to soni �ow onditions and on the thermodynami properties of the �uid.Finally, this will lead to an estimate for ∆K0 in equation (2.19) whih hasnot been addressed so far in the disussion.Magnitude of variation of throat area ∆A. As the deviations of the�ow quantities are supposed to be small the variation of the throat area shallbe small as well, i.e.

A(x) = Ã
L̃0

= H0 + ∆A(x) (2.32)with |∆A| ≪ 1. Inserting (2.18) and (2.32) into the boundary onditions(2.13) gives
∆v = −(1 + ∆u)

ddx ∆A

2
= − ddx

∆A

2
+ O(∆A∆u) @x = s(x) = (x, s2(x))T(2.33)using the relation for the non-normalized surfae normal ns =

(
d
dx

∆A
2

, 1
)T 1.Magnitude of u2 − 1

M2
0
c2 - Condition for transoni �ow of perfetand dense gases. In order to give an order of magnitude estimate for theexpression u2− 1

M2
0
c2 it is neessary to onsider the isentropi variation of thespeed of sound c under the variation of the thermodynami state, i.e. under1

s(x) = (x, s2(x))T = (x, H0−A(x)
2 )T  ts(x) = (1,−A

′(x)
2 )T , ns(x) = (A

′(x)
2 , 1)T



2.1. NONINTERACTING FLOW REGIME 19the variation of the density ρ. To this end the following expression for c2 isused as a starting point
c2 = M2

0

∂p

∂ρ

∣
∣
∣
s
= M2

0 ρ
∂h

∂ρ

∣
∣
∣
s
. (2.34)The last step in equation (2.34) is a diret onsequene of Gibbs' fundamentalequation (2.9). Now the expression ∂h

∂ρ

∣
∣
∣
s
is Taylor expanded in terms of ∆ρ

∂h

∂ρ
(1 + ∆ρ, s)

∣
∣
∣
s
=

∂h

∂ρ

∣
∣
∣
s,0

+
∂2h

∂ρ2

∣
∣
∣
s,0

∆ρ +
1

2

∂3h

∂ρ3

∣
∣
∣
s,0

∆ρ2+

+
1

6

∂4h

∂ρ4

∣
∣
∣
s,0

∆ρ3 + O
(
∆ρ4

)
,

(2.35)where the subsript 0 has the meaning as before, i.e. evaluated at referenestate.The partial derivatives of the enthalpy h have to satisfy the following relations
∂h

∂ρ

∣
∣
∣
s,0

=
1

M2
0

, (2.36a)
∂2h

∂ρ2

∣
∣
∣
s,0

=
1

M2
0

(2Γ0 − 3) , (2.36b)
∂3h

∂ρ3

∣
∣
∣
s,0

=
1

M2
0

(
4Γ2

0 − 14Γ0 + 2Λ0 + 12
)
, (2.36)

∂4h

∂ρ4

∣
∣
∣
s,0

=
1

M2
0

(
8Γ3

0 − 48Γ2
0 + 12Γ0Λ0 + 94Γ0 − 24Λ0 + 2N0 − 60

)
, (2.36d)with Λ and N being de�ned as

Λ :=
∂Γ

∂ρ

∣
∣
∣
s
, (2.37a)

N :=
∂2Γ

∂ρ2

∣
∣
∣
s
. (2.37b)A detailed derivation of the expressions (2.36) an be found in B.2.With the relations (2.35) and (2.36) the expression (2.34) for the speed of



20 CHAPTER 2. MODELsound an be written as
c(1 + ∆ρ, s0)

2 = M2
0 (1 + ∆ρ)

∂h

∂ρ
(1 + ∆ρ, s)

∣
∣
∣
s,0

=

= 1 + 2 (Γ0 − 1)∆ρ +
(
2Γ2

0 − 5Γ0 + Λ0 + 3
)
∆ρ2+

+
1

3

(
4Γ3

0 − 18Γ2
0 + 6Γ0Λ0 + 26Γ0 − 6Λ0 + N0 − 4

)
∆ρ3 + O(∆ρ4).

(2.38)
Colleting the previous results, the following expansion for u2 − 1

M2
0
c2 is ob-tained

u2 − 1

M2
0

c2 = −K∆K0 − 2Γ0∆ρ −
(
2Γ2

0 − 5Γ0 + Λ0

)
∆ρ2−

− 1

3

(
4Γ3

0 − 18Γ2
0 + 6Γ0Λ0 + 26Γ0 − 6Λ0 + N0

)
∆ρ3+

+ 2 (∆u + ∆ρ) + ∆u2 − 3∆ρ2 + 4∆ρ3+

+ O(∆ρ4 + ∆ρ∆K0),

(2.39)
where

u2 = (1 + ∆u)2 = 1 + 2∆u + ∆u2, (2.40)
1

M2
0

=
1

1 − K∆K0
= 1 + K∆K0 + O(∆K2

0 ) (2.41)has been used. Equation (2.39) an be redued even further using the sub-sequent relations
∆ρ = −∆u − ∆ρ∆u + O(∆v), (2.42)
∆u2 = ∆ρ2 + 2∆ρ∆u + O(∆ρ∆v), (2.43)
∆ρ2 = ∆ρ (−∆u − ∆ρ∆u) + O(∆ρ∆u) (2.44)whih are a diret onsequene of equation (2.24). With that in mind oneinfers that the expression 2 (∆ρ + ∆u)+∆u2−3∆ρ2 +4∆ρ3 in (2.39) results



2.1. NONINTERACTING FLOW REGIME 21in terms of higher order as shown by the subsequent alulations
2 (∆ρ + ∆u) + ∆u2 − 3∆ρ2 + 4∆ρ3 = |eq. (2.43)| =

2 (∆ρ + ∆u) − 2∆ρ2 + 2∆ρ2∆u + 4∆ρ3 + O(∆ρ∆v) = |eq. (2.44)| =

2 (∆ρ + ∆u + ∆ρ∆u) + 4
(
∆ρ2∆u + ∆ρ3

)
+ O(∆ρ∆v) = |eq. (2.42)| =

4∆ρ
(
∆ρ∆u + ∆ρ2

)
+ O(∆v) = |eq. (2.44)| =

− 4∆u∆ρ3 + O(∆v) = O(∆u∆ρ3 + ∆v),so that equation (2.39) �nally an be simpli�ed to
u2 − 1

M2
0

c2 = −K∆K0 − 2Γ0∆ρ −
(
2Γ2

0 − 5Γ0 + Λ0

)
∆ρ2−

− 1

3

(
4Γ3

0 − 18Γ2
0 + 6Γ0Λ0 + 26Γ0 − 6Λ0 + N0

)
∆ρ3+

+ O(∆ρ4 + ∆ρ3∆u + ∆v + ∆ρ∆K0).

(2.45)
The �rst onlusion that an be drawn out of (2.45) is

∆K0 = O(Γ0∆ρ). (2.46)Referring to �gure 2.1.1 three di�erent ases onerning the orders of mag-nitude for the variation of Γ0, Λ0 and N0 under the variation of the referenestate in the limit M0 → 1 have to be distinguished.ase 1 (n=2): Γ0 = O(1), Λ0 = O(1), N0 = O(1), (2.47a)ase 2 (n=3): Γ0 = O(∆ρ), Λ0 = O(1), N0 = O(1), (2.47b)ase 3 (n=4): Γ0 = O(∆ρ2), Λ0 = O(∆ρ), N0 = O(1), (2.47)whih �nally gives ase 1 (n=2): ∆K0 = O(∆ρ), (2.48a)ase 2 (n=3): ∆K0 = O(∆ρ2), (2.48b)ase 3 (n=4): ∆K0 = O(∆ρ3), (2.48)
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Figure 2.3: Asymptoti regions in the pressure vs. density diagram based onthe magnitude of the fundamental derivative Γ and its derivatives for a BZT�uid. The subsript c indiates thermodynami quantities evaluated at theritial point of thermodynamis, TCP denotes the thermodynamial ritialpoint. See also �gure 1.1 for a larger part of the p vs. ρ diagram.or in short form
∆K0 = O(∆ρn−1). (2.49)Magnitude of ∆v. The magnitude of ∆v, as mentioned before, has tobe suh that the left-hand side and the right-hand side in equation (2.30)balane. Using equations (2.24) and (2.49) this implies

∆v = O(∆ρn) = O(∆un). (2.50)Formal asymptoti expansions. The order of magnitude relations de-rived so far suggest the following ansatz for formal asymptoti representationsof the various quantities
u = 1 +ǫ1u

(1)
i (x) + · · ·+ ǫn−1

1 u
(n−1)
i (x)+ǫn1u

(n)
i (x, y) +O(ǫn+1

1 ), (2.51)
v = ǫn1v

(1)
i (x, y) +O(ǫn+1

1 ), (2.52)
c = 1 +ǫ1c

(1)
i (x) + · · · + ǫn−1

1 c
(n−1)
i (x)+ǫn1 c

(n)
i (x, y) +O(ǫn+1

1 ), (2.53)
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ρ = 1 +ǫ1ρ

(1)
i (x) + · · ·+ ǫn−1

1 ρ
(n−1)
i (x)+ǫn1ρ

(n)
i (x, y) +O(ǫn+1

1 ), (2.54)
p = p0 +ǫ1p

(1)
i (x) + · · · + ǫn−1

1 p
(n−1)
i (x)+ǫn1p

(n)
i (x, y) +O(ǫn+1

1 ), (2.55)
h = h0 +ǫ1h

(1)
i (x) + · · · + ǫn−1

1 h
(n−1)
i (x)+ǫn1h

(n)
i (x, y) +O(ǫn+1

1 ), (2.56)
A = H0 +ǫn1A

(1)
i (x) +O(ǫn+1

1 ), (2.57)and for the ondition of transoni �ow, see (2.19),
M2

0 = 1 + ǫn−1
1 K, (2.58)introduing a small perturbation parameter 0 < ǫ1 ≪ 1 as a measure for theexpeted density hanges in the �ow. The index i in the expansions shallemphasize that these are expansions for the solution of the (i)nvisid Eulerequations.As has been de�ned by (2.47) n ∈ 2, 3, 4 depending on the hosen �uid andthe hosen referene statease 1 (n=2): Γ0 = Γ̄, Λ0 = Λ̄, N0 = N̄ , (2.59a)ase 2 (n=3): Γ0 = ǫ1Γ̄, Λ0 = Λ̄, N0 = N̄ , (2.59b)ase 3 (n=4): Γ0 = ǫ2

1Γ̄, Λ0 = ǫ1Λ̄, N0 = N̄ . (2.59)Remark 2.1.4. The dependene of the individual oe�ients in the asymp-toti expansions on the arguments (x, y) is a result of the following analysis.Inserting the expansions (2.57) to (2.57) into the ontinuity equation andthe momentum equation in x-diretion of the Euler equations (2.12) and into(2.16) gives to the leading order
∂

∂x

(

u
(1)
i (x) + ρ

(1)
i (x)

)

= 0, (2.60)
∂

∂x

(

u
(1)
i (x) + p

(1)
i (x)

)

= 0, (2.61)
∂

∂x

(

h
(1)
i (x) − p

(1)
i (x)

)

= 0, (2.62)



24 CHAPTER 2. MODELwhereas the momentum equation in y-diretion results in
∂

∂y
p

(k)
i = 0 k = 1, . . . , n − 1, (2.63)showing that the �ow �eld is one-dimensional for the �rst n−1 orders. Takinginto aount the in�ow onditions (2.3), these equations an be integratedwith respet to x leading to

u
(1)
i (x) = −ρ

(1)
i (x) = −p

(1)
i (x) = −h

(1)
i (x). (2.64)The ondition of an irrotational �ow �eld (2.14) gives

∂

∂y
u

(k)
i = 0 k = 1, . . . , n − 1, (2.65)

∂

∂y
u

(k)
i − ∂

∂x
v

(k−n+1)
i = 0 k ≥ n. (2.66)And, �nally inserting into the fundamental equation of gas dynamis (2.30)taking into aount (2.45) and (2.64) yields

−J ′
[n]

(

p
(1)
i (x); K, Γ̄, Λ̄, N̄

) ∂p
(1)
i (x)

∂x
=

∂v
(1)
i (x, y)

∂y
. (2.67)with J ′

[n] (p) =
dJ[n](p)dp . J[n] is a polynomial of order n in p

(1)
i , see the followingde�nition 2.1.2, and has the physial meaning of a mass �ux density for whiha heuristi argument will be given at the end of this setion, see remark 2.1.6.De�nition 2.1.2. J[n] (p ; K, Γ, Λ, N) is the leading order term of the pertur-bation of the mass �ux density for an one-dimensional, isentropi, invisidand transoni �ow through a nozzle.

J[n](p ; K, Γ̄, Λ̄, N̄) =







−Kp − Γ̄p2 n = 2

−Kp − Γ̄p2 − 1
3
Λ̄p3 n = 3

−Kp − Γ̄p2 − 1
3
Λ̄p3 − 1

12
N̄p4 n = 4.

(2.68)
J[n]

(
p; K, Γ̄, Λ̄, N̄

) has the following properties.
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c̃
follows from

M − 1 = ǫn−1
1

1

2

dJ[n]dp . (2.69)� The loal value of the fundamental derivative and its �rst derivative isgiven by
Γ = −ǫn−2

1

1

2

d2J[n]dp2
, Λ = −ǫn−3

1

1

2

d3J[n]dp3
. (2.70)In order to obtain equation (2.69) the expression u2− 1

M2
0
c2 is manipulatedin the following way

(

u2 − 1

M2
0

c2

)

=

(

u − 1

M0
c

)(

u +
1

M0
c

)

=

=
c

M0
(M − 1)

(

u +
1

M0
c

) (2.71)and onsequently
M − 1 =

M0

c

1

u + 1
M0

c

(

u2 − 1

M2
0

c2

)

. (2.72)Taking into aount (2.45) for the treatment of expression u2− 1
M2

0
c2, insertionof the asymptoti expansion (2.51) and olleting the terms of highest orderyields the sought after relation for the loal Mah number M .The importane of equation (2.67) stems from the fat that it onnetsthe variation of the leading order terms of p, ρ, u and h along the enterlineof the nozzle with the small vertial veloity omponent v whih itself isgenerated by a small variation of the throat area of the nozzle A(x). To thisend, (2.67) is integrated with respet to y onsidering the fat that the term

∂
∂y

v
(1)
i (x, y) =

∂v
(1)
i

∂y
(x) is a funtion of x only, as an be seen by the inspetion



26 CHAPTER 2. MODELof the left-hand side of (2.67),
v

(1)
i (x, y) =

∫ v
(1)
i

0

dv(1)
i =

∫ y

H0
2

∂v
(1)
i

∂y
(x)dy =

∂v
(1)
i

∂y
(x)

∫ y

H0
2

dy =

= −
(

y − H0

2

) ddxJ[n]

(

p
(1)
i (x); K, Γ̄, Λ̄, N̄

)

.

(2.73)Here the symmetry ondition v
(1)
i

(
x, y = H0

2

)
= 0 has been exploited in theintegration limit. Evaluating (2.73) at the wall, ys = ǫn1A

(1)
i (x) + O(ǫn+1

1 ),and omparing with the boundary ondition (2.33), v
(1)
i (x, ys) = −1

2

dA(1)
idx ,leads after some straightforward manipulations toddx (J[n]

(

p
(1)
i (x); K, Γ̄, Λ̄, N̄

)

+
A

(1)
i (x)

H0

)

= 0, (2.74)whih an be integrated to
J[n]

(

p
(1)
i (x); K, Γ̄, Λ̄, N̄

)

+
A

(1)
i (x)

H0
= const. (2.75)Remark 2.1.5. The fundamental equation of gas dynamis (2.67) an be in-terpreted as a solvability ondition whih has to be imposed in order to avoidseular terms entering the problem at higher order in the asymptoti expan-sions of equations (2.12) and (2.16). This will be shown in more detail insetion 2.2.2.Remark 2.1.6. In de�nition 2.1.2 J[n] has been desribed as the leading orderterm of the perturbation of a mass �ux density. First of all it re�ets theinterpretation of the fundamental equation of gas dynamis (2.29) as a ver-sion of the ontinuity equation, [62℄. A heuristi explanation is given below.Consider the behavior of the mass �ux density ρu lose to soni �ow ondi-tions, u = c∗ with c∗ as the ritial speed of sound, skethed in �gure 2.4.Writing the �rst terms of a Taylor expansion for the mass �ux density,

ρu = 1 +
dρudu ∣∣∣0 (∆u) +

1

2

d2ρudu2

∣
∣
∣
0
(∆u)2 + O(∆u)3), (2.76)



2.1. NONINTERACTING FLOW REGIME 27and inserting the expressions for the slope and the urvature of the funtionof the mass �ux lose to u = c∗, see �gure 2.4,
1

ρ

dρudu ∣∣∣0 = 1 − M2
0 ,

u

ρ

d2ρudu2

∣
∣
∣
0

= −2Γ0 + O(Γ0∆u), (2.77)leads to
ρu = 1 + (1 − M2

0 )∆u − Γ0∆u2 + O(∆u3). (2.78)On the other hand the ontinuity equation for one-dimensional �ow has tohold,
ρu − 1 =

H0

A
− 1 = −∆A

H0
+ O(∆A2). (2.79)Comparing the two expressions for ρu with ∆u ∼ −∆p suggests

ρu − 1 ∼ −∆A

H0

∼ (M2
0 − 1)∆p − Γ0∆p2, (2.80)whih yields the �rst two terms of J[n] after having inserted the asymptotiexpansions (2.51) and (2.58). To be more general, this results in the formalasymptoti representation

ρu ∼ 1 + ǫn1J[n]

(

p
(1)
i (x); K, Γ̄, Λ̄, N̄

) (2.81)of the mass �ux density. From the ontinuity equation for one-dimensional�ow then follows
ρuA = const ∼

{

1 + ǫn1J[n]

(

p
(1)
i (x); K, Γ̄, Λ̄, N̄

)}(

H0 + ǫn1A
(1)
i

)

=

= H0

{

1 + ǫn1

(

J[n]

(

p
(1)
i (x); K, Γ̄, Λ̄, N̄

)

+
A

(1)
i

H0

)}

.
(2.82)Hene equation (2.75) expresses the ontinuity of the mass �ux.
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Figure 2.4: One-dimensional mass �ux density vs. veloity (qualitatively).2.1.2 Boundary LayerThe Euler equations (2.12) obtained in the invisid limit Re → ∞ an-not satisfy the no-slip ondition (2.2) presribed at the hannel walls as thelimiting proedure mathematially results in a degeneration of the originalproblem desribed by the Navier Stokes equations (2.1). The ourrene ofthis singular perturbed problem is indiated by loosing the terms of highestorder derivatives, that is the dissipative terms, in the redued problem (2.12),f. [22℄, [30℄, [74℄, [91℄.This shortage is overome by introduing a seond asymptotially thin re-gion lose to the walls - a boundary layer -, indiated by region 2 in �gure 2.1,where the equations have to be resaled keeping some of the dissipative termsin the resulting distinguished limit. The method of mathed asymptoti ex-pansions �nally leads to an uniformly valid asymptoti representation of thesolution for the two di�erent regions for Re → ∞, f. [22℄, [30℄, [74℄, [91℄.The lassial onept of noninterating boundary layer theory initiatedby L. Prandtl in 1904 an be found in many textbooks, see e.g. [26℄, [33℄[72℄, [74℄, [78℄, [91℄, and therefore the results of the asymptoti analysis areintrodued whilst skipping most of their derivations. A few short ommentson the speial features resulting from the usage of �uids with equation ofstates of higher omplexity, i.e. dense gases, and their impat on the solutionof the ompressible boundary layer equations will be given. Only laminar,



2.1. NONINTERACTING FLOW REGIME 29steady boundary layers shall be onsidered.Introdue a small perturbation parameter ǫ2 de�ned as
ǫ2 = Re−

1
2 . (2.83)The asymptoti expansions of the various �ow quantities in the outer,ore region of a hannel of onstant height, region 1 in �gure 2.1, to whihthe following length sale applies

x = x1 = O(1), (2.84)are given by
u = 1 + O(ǫ2), v = O(ǫ2), (2.85)
p = p0 + O(ǫ2), ρ = 1 + O(ǫ2),

θ = 1 + O(ǫ2), h = h0 + O(ǫ2),f. (2.17).For the desription of the boundary layer �ow the length sales
x = X2 = O(1), y = ǫ2Y2 = O(ǫ2 = Re−

1
2 ). (2.86)are introdued. The leading order terms of the expansions for the variousquantities then are given by

u = U
(0)
2 (X2, Y2) + O(ǫ2), v = ǫ2V

(0)
2 (X2, Y2) + O(ǫ2

2), (2.87)
p = P

(0)
2 (X2) + O(ǫ2), ρ = R

(0)
2 (X2, Y2) + O(ǫ2),

θ = Θ
(0)
2 (X2, Y2) + O(ǫ2).For the enthalpy h, using some appropriate equation of state h = h(θ, p), itis found that

h = H
(0)
2 (Θ

(0)
2 , P

(0)
2 ) + O(ǫ2). (2.88)



30 CHAPTER 2. MODELFurthermore, it will be assumed that the expressions for the material param-eters satisfy
µ = µ

(0)
2 (Θ

(0)
2 , P

(0)
2 ) + O(ǫ2), µb = µ

(0)
b,2(Θ

(0)
2 , P

(0)
2 ) + O(ǫ2), (2.89)

k = k
(0)
2 (Θ

(0)
2 , P

(0)
2 ) + O(ǫ2), β = β

(0)
2 (Θ

(0)
2 , P

(0)
2 ) + O(ǫ2), (2.90)

cp = c
(0)
p,2(Θ

(0)
2 , P

(0)
2 ) + O(ǫ2). (2.91)Then the ompressible, steady, laminar boundary layer equations are givenby

∂R
(0)
2 U

(0)
2

∂X2
+

∂R
(0)
2 V

(0)
2

∂Y2
= 0, (2.92)

R
(0)
2

(

U
(0)
2

∂U
(0)
2

∂X2
+ V

(0)
2

∂U
(0)
2

∂Y2

)

= −dP
(0)
2dX2

+
∂

∂Y2

(

µ
(0)
2

∂U
(0)
2

∂Y2

)

, (2.93)
1

PrEc

∂

∂Y2

(

k
(0)
2

∂Θ
(0)
2

∂Y2

)

=

= R
(0)
2

(

U
(0)
2

∂H
(0)
2

∂X2

+ V
(0)
2

∂H
(0)
2

∂Y2

)

− U
(0)
2

dP (0)
2dX2

− µ
(0)
2

(

∂U
(0)
2

∂Y2

)2

,

(2.94)
or instead of (2.94)

R
(0)
2 c

(0)
p,2

(

U
(0)
2

∂Θ
(0)
2

∂X2
+ V

(0)
2

∂Θ
(0)
2

∂Y2

)

=
1

Pr

∂

∂Y2

(

k
(0)
2

∂Θ
(0)
2

∂Y2

)

+

+ Ec






β̃0θ̃0β

(0)θ
(0)
2 U

(0)
2

dP (0)
2dX2

+ µ
(0)
2

(

∂U
(0)
2

∂Y2

)2





.

(2.95)
The boundary onditions for an adiabati wall of the hannel are

U
(0)
2 = V

(0)
2 = 0,

∂Θ
(0)
2

∂Y2
= 0 @X2 = (X2, Y2 = 0)T . (2.96)Mathing with the outer �ow leads to

lim
Y2→∞

U
(0)
2 (x, Y2) = 1, lim

Y2→∞
Θ

(0)
2 (x, Y2) = 1, (2.97)



2.1. NONINTERACTING FLOW REGIME 31where x1 = X2 = x, and
P

(0)
2 (x) = p0. (2.98)The boundary layer equations in ompressible form, equations (2.92) to(2.98), are oupled. In order to omplete the desription relations governingthe dependene of the material parameters µ, µb, k, β and cp on the thermo-dynami state have to be provided, see [72℄ and [78℄ for the ase of perfetgases, where Ec = O(M2

0 ). In ase of dense gases, where Ec = O(M2
0 δ) and

0 < δ ≪ 1, see disussion of equation (2.11), the ompressible boundary layerequations an be simpli�ed for plane parallel outer �ow, de�nition 2.1.1, ashas been noted by Kluwik in [36℄, [39℄.Compressible Boundary Layer Flow of Dense GasesAs has been mentioned in the disussion of equation (2.11) the estimate
Ec = O(M2

0 δ) for the Ekert number holds in ase of dense gases withrelatively large heat apaities, 0 < δ ≪ 1. As a result, hanges of thetemperature aross the boundary layer are small as suggested by equation(2.94),
∂

∂Y2

(

k
(0)
2

∂Θ
(0)
2

∂Y2

)

= O(Ec). (2.99)Consequently, the temperature �eld in the boundary layer at an adiabatiwall an be approximated as
Θ

(0)
2 (x, Y2) = 1 + O(Ec), (2.100)onsidering the mathing ondition (2.97). Sine the outer �ow is a planeparallel onstant hannel �ow (see de�nition 2.1.1) implying dp(0)1dx = 0, thedensity in the whole boundary layer is onstant to leading order as well. Withthat in mind the equations for ompressible boundary layer �ow simplify to
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∂U

(0)
2

∂X2

+
∂V

(0)
2

∂Y2

= 0, (2.101)
U

(0)
2

∂U
(0)
2

∂X2
+ V

(0)
2

∂U
(0)
2

∂Y2
=

∂2U
(0)
2

∂Y 2
2

, (2.102)for whih a solution in lassial self-similar form
U

(0)
2 = f ′(η), V

(0)
2 =

1

2
√

x
(ηf ′(η) − f(η)) , η =

Y2√
x

(2.103)exists. The funtion f(η) has to satisfy the well-known Blasius' equation
f ′′′ +

1

2
ff ′ = 0, (2.104)with the boundary onditions

f(0) = f ′(0) = 0, lim
η→∞

f(η) = 1. (2.105)Remark 2.1.7. Numerial results for boundary layers in a dense gas regimeforming on a �at plate with zero pressure gradient performed by Zieher in [97℄showed a good agreement between the veloity pro�le predited by the Bla-sius solution and the pro�les alulated using the full inompressible formu-lation of the boundary layer equations, [97℄, [39℄.2.2 Interating Flow RegimeThe �ow in the interation region, i.e. region 3 of the hannel, f. �gure 2.1,an be onsistently desribed by means of the triple dek theory formulated�rst by Stewartson, Messiter and Neiland, f. [79℄, [57℄, [59℄. The triple dekstruture of the interation region is skethed in �gure 2.5. The onomingboundary layer subdivides into a thin visous lower dek where visosity playsa signi�ant role and a passive main dek. The role of the main dek is totransfer the displaement e�et of the lower dek to the upper dek and to



2.2. INTERACTING FLOW REGIME 33transfer the resulting pressure response of the upper dek bak to the lowerdek.Aording to the premises made for the sought after distinguished limitfor the desription of the interating �ow regime in the introdutory remarksto hapter 2 the hannel shall be su�iently slender, so that the upper dek isrepresented by one single region interating with the lower/main deks at theupper and lower hannel walls, as is shown in �gure 2.5. Furthermore, it willbe imposed that the �ow in the upper dek region shall be one-dimensional tothe leading order at least. For a disussion of the signi�ane of the desiredlimit in a broader physial ontext refer to the introdution.The desired properties of the distinguished limit an only be obtainedby a suitable hoie of the order of magnitude of the hannel height, whihhas been left unde�ned up to now. In the formulation of the onomingnoninterating �ow in the ore region it therefore had to be assumed thatthe �ow an be desribed by the invisid Euler equations to the leadingorders even when a properly saled vertial oordinate has been introdued,f. setion 2.1.1. This assumption will be veri�ed in setion 2.2.3 after theproperties of the interation region have been established. It will be shownthat the noninterating �ow through a hannel of onstant height is -notvery surprisingly- a meaningful noninterating onoming �ow regime indeedfor the found distinguished limit. Furthermore, the question, whether moregeneral �ow types, i.e. one-dimensional nozzle �ow, are ompatible with theestablished distinguished limit, will be addressed there too.2.2.1 Orders of Magnitude - Inspetion AnalysisUnder the assumption that the region of visous invisid interation, region 3in �gure 2.1 or in �gure 2.5, exhibits a triple dek struture relations for therelative orders of magnitude for the various �ow quantities in the individualdeks shall be derived mainly by inspeting the governing equations andbalaning the terms whih from a physial point of view have to be kept inthe distinguished limits for Re → ∞.
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Figure 2.5: Triple dek struture of interation region. (3u) upper dek, (3m)main dek, (3l) lower dek.Lower Dek� Thin lower dek

(u)3l ∼
∂U

(0)
2 (1, 0)

∂Y2

Re
1
2 δ3l ∼ ∆(u)3l. (2.106)Here the no-slip ondition U

(0)
2 (X2, 0) = 0 and the boundary layersaling (y)2 = Re−

1
2 Y2 have been used.� Balane of inertia and pressure term in x-momentum equation (2.1b)

∆(u)2
3l ∼ ∆(p)3l. (2.107)� Balane of inertia and visous term in x-momentum equation (2.1b)

∆(u)3l
∆(u)3l

∆x3
∼ 1

Re

∆(u)3l

δ2
3l

. (2.108)� Pressure disturbane in thin lower dek imposed by outer �ow
∆(p)3l ∼ ∆(p)3u. (2.109)



2.2. INTERACTING FLOW REGIME 35� Non-degenerate ontinuity equation
∆(u)3l

∆x3

∼ ∆(v)3l

δ3l

. (2.110)Main Dek� Balane with the lower dek shift of the veloity pro�le
∆(u)3m ∼ ∆(u)3l. (2.111)� Exerted displaement on the upper dek
∆(v)3m ∼ ∆(v)3u. (2.112)� Non-degenerate ontinuity equation
∆(u)3m

∆x3
∼ ∆(v)3u

δ3m
. (2.113)� Pressure disturbane in thin main dek imposed by outer �ow similarto lower dek �ow

∆(p)3m ∼ ∆(p)3u. (2.114)Upper DekThe upper dek distinguished limit is guided by the idea of one-dimensionalinvisid nozzle �ow presented in setion 2.1.1.� One-dimensional weakly disturbed plane parallel �ow
∆(ρ)3u ∼ ∆(p)3u ∼ ∆(u)3u. (2.115)� Displaement e�et exerted by main dek shall lead to a �ow response



36 CHAPTER 2. MODELat leading order, see (2.30),
(

(u)2
3u −

1

M2
0

(c)2
3u

)
∆(u)3u

∆x3
∼ ∆(v)3u

H3u
(2.116)with

(

(u)2
3u −

1

M2
0

(c)2
3u

)

∼ ∆(ρ)n−1
3u , (2.117)analogous to (2.45). The parameter n governing the nonlinearity hasbeen already de�ned in (2.47) for the ase of invisid nozzle �ow.� Transoni �ow, see (2.46),

1 − M2
0 = K∆K0 ∼ ∆(ρ)n−1

3u . (2.118)� Irrotational �ow
(

∂u

∂y

)

3u

∼ ∆(v)3u

∆x3
. (2.119)Remark 2.2.1. The main di�erene in the formulation of the small dis-turbane equation (2.67) in setion 2.1.1 and the proedure presentedhere is the freedom of hoie of a suitable saling for the normal di-retion H3u whih an be used to ontrol the degree of degeneration ofequation ∇× u = 0. By a proper hoie of the order of magnitude ofthe hannel height the �ow �eld beomes one-dimensional to the lead-ing order only and two-dimensionality enters at the next lower order inequation ∇× u = 0.� Time saling shall preserve the slowest timesales governing the longtermbehavior of the system

∆t3 ∼
∆x3

∆ρn−1
. (2.120)Remark 2.2.2. Classial theory of ompressible one-dimensional invis-id unsteady �ow through a hannel predits that disturbanes are



2.2. INTERACTING FLOW REGIME 37propagating along left- and right running harateristi urves, η =

const and ζ = const, in the (x, t)-spae with the two harateris-ti speeds λη = λ̃η

c̃0
= M0(u)3u − (c)3u and λζ = M0(u)3u + (c)3u,see [56℄, [49℄. Obviously the faster time sale λζ = O(1), whereasthe slower timesale

λη = M0(u)3u − (c)3u ∼
(

M0(u)3u − (c)3u

)(

M0(u)3u + (c)3u

)

=

= M2
0

(

(u)2
3u −

1

M2
0

(c)2
3u

)

∼ ∆(ρ)n−1
3u .In the last step expression (2.117) has been used. So �nally the estimate(2.120) an be motivated by λη ∼ ∆x3

∆t3
∼ ∆ρn−1.Calulation of the Orders of Magnitude of the Flow QuantitiesIntrodue a small expansion parameter 0 < ǫ3 ≪ 0 as a measure for thevariation of the main veloity in the lower dek ∆(u)3l and make the follow-ing ansatz for the orders of magnitude of the hanges of the relevant �owquantities

∆(u)3l ∼ ǫ3, ∆(v)3l ∼ ǫlv3 ,

∆(u)3u ∼ ǫnu
3 , ∆(v)3u ∼ ǫnv

3 , ∆(ρ)3u ∼ ǫ
nρ

3 ,

∆(u)3m ∼ ǫmu
3 , ∆(v)3m ∼ ǫmv

3 ,

∆(p)3 ∼ ∆(p)3u ∼ ∆(p)3m ∼ ∆(p)3l ∼ ǫ
np

3 ,

∆x3 ∼ ǫkx
3 , δ3m ∼ Re−

1
2 ∼ ǫ

kδ,m

3 , δ3l ∼ ǫ
kδ,l

3 , H3u ∼ ǫkH
3introduing the 11 unknowns ki, li, mi, ni ∈ Q. Insertion into the equations(2.106) to (2.115) yields the following 10 relations

ǫ
kδ,l−kδ,m

3 ∼ ǫ3, ǫ2
3 ∼ ǫ

np

3 , ǫ2−kx
3 ∼ ǫ

1−2kδ,l

3 ,

ǫ1−kx
3 ∼ ǫ

lv−kδ,l

3 , ǫ3 ∼ ǫmu
3 , ǫmv

3 ∼ ǫnv
3 ,

ǫmu−kx
3 ∼ ǫ

mv−kδ,m

3 , ǫ
(n−1)nρ+nu−kx

3 ∼ ǫnv−kH
3 , ǫ

nρ

3 ∼ ǫnu
3 ,

ǫnu
3 ∼ ǫ

np

3 .



38 CHAPTER 2. MODELAs has been pointed out in remark 2.2.1 the �ow in the upper dek shallbe one-dimensional to the leading order and two-dimensionality shall enterat the next higher order. However, this is not a natural ondition, whihthe upper dek �ow has to satisfy, but one that is enfored by the a suf-�iently small hannel height of length sale H3u, as has been pointed outin the introdution to this hapter 2.2 or also in remark 2.2.1. Therefore,as generalization one equally well an ask for a ondition that the �ow �eldin the upper dek is one-dimensional to the �rst N1D orders. This suggeststhe following ansatz for the horizontal veloity omponent u, suppressing thetime dependeny of the quantities in the following relations,
(u)3u = 1 +

N1D∑

i=1

ǫnu+i−1
3 u

(i)
3u

(

(x)3

)

+ ǫnu+N1D
3 u

(N1D+1)
3u

(

(x)3, (y)3u

)

+ · · ·and onsequently
(

∂u

∂y

)

3u

∼ ǫnu+N1D
3

∂

∂(y)3u
u

(N1D+1)
3u

(

(x)3, (y)3u

)d(y)3udy .Keeping that in mind the expression for irrotational �ow in the upper dek(2.119) an be used to make the following estimate
ǫnu+N1D−kH
3 ∼ ǫnv−kx

3 .Comparison of the exponents of ǫ3 in the expressions yields the following 11linear equations for 11 unknowns
kδ,l − kδ,m = 1, np = 2,

2kδ,l − kx = 1, kδ,l − kx − lv = −1,

mu = 1, mv − nv = 0,

kδ,m − kx + mu − mv = 0, kH − kx + nu − nv + (n − 1)nρ = 0,

− nu + nρ = 0, nu − np = 0,

− kH + kx + nu − nv = −N1D,



2.2. INTERACTING FLOW REGIME 39whih have the solutions
kδ,l = 4 + n +

N1D

2
, kδ,m = 3 + n +

N1D

2
, kH = 4 − n +

N1D

2
, kx = 3,

lv = 2 + n +
N1D

2
, mu = 1, mv = 1 + n +

N1D

2
, nu = 2,

nv = 1 + n +
N1D

2
, np = 2, nρ = 2.From δ3m ∼ Re−

1
2 it then follows for the small perturbation parameter

ǫ3 = Re
− 1

6+2n+N1D . (2.121)And �nally exploiting equation (2.120) yields for the time saling
∆t3 ∼ ǫ5−2n

3 . (2.122)For the hoie of N1D there are two meaningful options.1. N1D is kept �xed. Then the ratio
(x)3

(y)3u
= O

(

ǫ
n−1−

N1D
2

3

)

,whih is a measure for the slope of streamlines in the upper dek, isdependent on the hosen nonlinearity n.2. The ratio
(x)3

(y)3u

= constis kept �xed. Then the �rst N1D = 2(n− 1) orders of the �ow �eld areone-dimensional, dependent on the hosen nonlinearity n.2.2.2 Formal Asymptoti ExpansionsWith the inspetion analysis performed in the previous setion it is possibleto write down formal asymptoti expansions for the various �ow quantities
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Figure 2.6: Triple dek struture of interation region. (3u) upper dek, (3m)main dek, (3l) lower dek.in the di�erent subregions of the interation region haraterized by di�erentlength sales in vertial diretion, see �gure 2.6. Inserting into the governingequations and olleting the terms of highest order yields the distinguishedlimits for eah dek, an uniformly valid solution an be found via the math-ing of the di�erent solutions of the neighboring asymptoti regions. Sine forthe lower dek and for the main dek this does not result in many deviationsfrom the standard triple dek theory, see i.e. [37℄, [80℄, these equations willbe introdued without muh further explanations, however more details willbe given for the derivation of the equations of the upper dek problem.Inspetion analysis in setion 2.2.1 suggests for the spaial saling of thex-oordinate

(x)3 = 1 + ǫ3
3X3, (2.123)whih is the same in all deks, and for the time saling

t = ǫ5−2n
3 T3. (2.124)



2.2. INTERACTING FLOW REGIME 41Lower DekInspetion analysis in setion 2.2.1 suggests for the spaial salings in y-diretion
(y)3l = ǫ

4+n+
N1D

2
3 Y3l, (2.125)and the subsequent formal asymptoti expansions for the relevant quantities

(u)3l = ǫ3U
(1)
3l (X3, Y3l, T3) + O(ǫ2

3), (2.126)
(v)3l = ǫ

2+n+
N1D

2
3 V

(1)
3l (X3, Y3l, T3) + O(ǫ

3+n+
N1D

2
3 ), (2.127)

(ρ)3l = Rw + ǫ3R
(2)
3l (X3, Y3l, T3) + O(ǫ2

3), (2.128)
(p)3l = p0 + ǫ2

3P
(1)
3l (X3, T3) + O(ǫ3

3) (2.129)and
(µ)3l = µw + O(ǫ3), (µb)3l = µb,w + O(ǫ3). (2.130)The subsript w has the meaning �evaluated at the wall�. In ase of an adia-bati wall Rw an be onsidered onstant over the horizontal length sale ofthe interation region of O(ǫ3

3).Inserting the asymptoti expansions (2.126) to (2.129) into the governingequations yields to the leading order the following set of equations, the on-tinuity equation
∂U

(1)
3l

∂X3
+

∂V
(1)
3l

∂Y3l
= 0, (2.131)and the x-momentum equation

Rw

(

U
(1)
3l

∂U
(1)
3l

∂X3

+ V
(1)
3l

∂U
(1)
3l

∂Y3l

)

= −∂P
(1)
3l

∂X3

+ µw
∂2U

(1)
3l

∂Y 2
3l

. (2.132)



42 CHAPTER 2. MODELEvaluating the no-slip ondition at the wall (2.2) leads to the followingboundary onditions
U

(1)
3l = V

(1)
3l = 0 @X3l = (X3, Y3l = S3l(X3, T3))

T (2.133)with the saled hight (s2)3l = ǫ
9+2n

2
3 S3l(X3, T3) of a surfae mounted obstale,see �gure 2.1. Equations (2.131) to (2.133) so far are idential to Prandtl'sboundary layer equations in inompressible form derived for the noninter-ating ase, refer to setion 2.1.2. However, new onditions arise out of themathing of the asymptoti expressions for the various �ow quantities in thelower dek with those in the undisturbed boundary layer upstream of theinteration region and with those in the main dek. The mathing proedurewith the undisturbed boundary layer results in

lim
X3→−∞

P
(1)
3l (X3, T3) = 0, (2.134)

lim
X3→−∞

U
(1)
3l (X3, Y3l, T3) =

∂U
(0)
2 (1, 0)

∂Y2
Y3l, (2.135)

lim
X3→−∞

V
(1)
3l (X3, Y3l, T3) = 0. (2.136)And the mathing proedure with the main dek -using the results for thegoverning equations of the main dek obtained in the following setion- resultsin

P
(1)
3l (X3, T3) = P

(1)
3m(X3, T3), (2.137)

lim
Y3l→∞

{

U
(1)
3l (X3, Y3l, T3) −

∂U
(0)
2 (1, 0)

∂Y2

(

Y3l + A3m(X3, T3)
)
}

= 0. (2.138)
A3m is part of the solution of the main dek and represents the negativedisturbane of the displaement thikness.Remark 2.2.3. Subjeted to the proposed time-saling the whole lower dekproblem -and in fat the whole main dek problem too- behaves quasi-steadyto the leading order meaning that the �ow �eld in the boundary layers of the



2.2. INTERACTING FLOW REGIME 43interation region immediately adapts to transient hanges in the outer �ow�eld or to hanges of the ontour of the surfae mounted hump.Main DekInspetion analysis in setion 2.2.1 suggests for the spaial salings in y-diretion
(y)3m = ǫ

3+n+
N1D

2
3 Y3m = Re−

1
2 Y3m. (2.139)The saling of the vertial oordinate in the main dek is the same as for thenoninterating boundary layer upstream of the interation region (2.86) indi-ating that the main dek omprises the main part of the onoming boundarylayer. The subsequent formal asymptoti expansions for the �ow quantitiesare superimposed onto the undisturbed boundary layer pro�le, U

(0)
2 (x, Y3m),

R
(0)
2 (x, Y3m) and Θ

(0)
2 (x, Y3m), evaluated at the beginning of the interationregion x0 = 1. Introduing the de�nitions

U
(0)
20 (Y3m) := U

(0)
2 (1, Y3m), R

(0)
20 (Y3m) := R

(0)
2 (1, Y3m),

θ
(0)
20 (Y3m) := θ

(0)
2 (1, Y3m)

(2.140)the asymptoti expansions an be written as
(u)3m = U

(0)
20 (Y3m) + ǫ3U

(1)
3m(X3, Y3m, T3) + O(ǫ2

3), (2.141)
(v)3m = ǫ

1+n+
N1D

2
3 V

(1)
3m (X3, Y3m, T3) + O(ǫ

2+n+
N1D

2
3 ), (2.142)

(ρ)3m = R
(0)
20 (Y3m) + ǫ3R

(1)
3m(X3, Y3m, T3) + O(ǫ2

3), (2.143)
(p)3m = p0 + ǫ2

3P
(2)
3m(X3, T3) + O(ǫ3

3), (2.144)
(θ)3m = Θ

(0)
20 (Y3m) + ǫ3Θ

(1)
3m(X3, Y3m, T3) + O(ǫ2

3), (2.145)and
(µ)3m = O(1), (µb)3m = O(1), (k)3m = O(1). (2.146)



44 CHAPTER 2. MODELBefore the leading order approximation for the main dek equations is writtendown, a loser look has to be taken at the energy equation (2.8) onsideringa general relation for the spei� enthalpy h. The aim is to study dense gase�ets where the thermodynami relations for ideal gas are inadmissibly. Dh
Dtin the energy equation (2.1) an be expressed in terms of variations of thedensity and the entropy in the following way

Dh

Dt
=

∂h

∂ρ

∣
∣
∣
s

Dρ

Dt
+

∂h

∂s

∣
∣
∣
ρ

Ds

Dt
=

c2

M2
0 ρ

Dρ

Dt
+ (1 + G)

θ

Ec

Ds

Dtusing the relation (2.34) and relation (B.20) in appendix B and introduingthe Grüneisen oe�ient, see i.e. [56℄, [47℄,
G := G0Ḡ =

ρ

θ

∂θ

∂ρ

∣
∣
∣
s
. (2.147)Making use of equation (2.8) for the term Ds

Dt
, the energy equation an bewritten after some rearranging of terms as

c2

M2
0

Dρ

Dt
︸ ︷︷ ︸

O(ǫ−2
3 )

− Dp

Dt
︸︷︷︸

O(ǫ−1
3 )

= −G0Ḡ

(

1

Re
τττ : ∇u − 1

PrEcRe
∇ · q

︸ ︷︷ ︸

O(ǫ3)

) (2.148)where the order of the asymptotially largest ontribution of eah term in theequation is indiated by the values below the brakets . Here again the argu-ment has been used that hanges of the temperature are of O(Ec). Thereforethe term 1
PrEcRe

∇ ·q = O(ǫ3), even in ase of dense gases, where Ec → 0 for
δ → 0, see table 2.1. Formally this an be dedued by inserting the asymp-toti expansions for the main dek quantities into the energy equation in theform (2.8) and olleting the highest order terms resulting in

(
Dθ

Dt

)(1)

3m

:= U
(0)
2

∂Θ
(1)
3m

∂X3
+ V

(1)
3m

dΘ(0)
20dY3m

= O(ǫ3
3Ec), (2.149)indiating that the leading order approximation of the substantial derivativeof the temperature in the main dek is small for perfet gas and for dense



2.2. INTERACTING FLOW REGIME 45gas as well. The important point now is that the relative order of eah termin (2.148) is depending on the magnitude of the Grüneisen oe�ient G0.Whereas G0 learly is an order one quantity for a perfet gas this is not soeasy to see for dense gases. In short the Grüneisen oe�ient an be writtenas
G0 =

β̃0c̃
2
0

c̃v,0

K̃s,0

K̃θ,0

= β̃0θ̃0
c̃2
0

R̃g θ̃0

K̃s,0

K̃θ,0

R̃g

c̃v,0
. (2.150)

Kθ and KS are the isothermal and the isentropi ompressibility, see ap-pendix B.1.1. The atual alulations justifying the following reasoning anbe found there as well. So taking a loser look at the quantities enter-ing equation (2.150) reveals that c̃20
R̃g θ̃0

, K̃s,0

K̃θ,0
are order one and R̃g

c̃v,0
= O(δ)even, however β̃0θ̃0 exhibits unbounded growth in the very lose viinity ofthe thermodynamial ritial point, whih is the working regime for densegases. The disussion in B.1.1 shows that the region of interest here, theregion of negative nonlinearity, even though in the dense gas regime, still isfar enough from the thermodynamial ritial point, so that the argumentof unbounded growth does not apply to the situation onsidered here andtherefore β̃0θ̃0 = O(1) for dense gases also. So in onlusion, the Grüneisenoe�ient G0 = O(1) or even G0 = O(δ) for the ases onsidered in thistreatise and the leading order term of the energy equation

(
Dρ

Dt

)(1)

3m

:= U
(0)
2

∂R
(1)
3m

∂X3

+ V
(1)
3m

dR(0)
2dY3m

= 0,takes on the usual form found in the literature for perfet gases, [37℄, [80℄,but, as has been argued, applies to the ase of dense gases also, if the veryviinity of the thermodynamial ritial point is exluded form the disussion.The leading order approximation for the ontinuity equation and the mo-mentum equations for dense gases an be obtained without any new argu-ments by straightforward insertion of the asymptoti expansions for the �owquantities. Finally olleting the results, the main dek equations are given
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(

Dρ

Dt

)(1)

3m

:= U
(0)
20

∂R
(1)
3m

∂X3
+ V

(1)
3m

dR(0)
20dY3m

= −R
(0)
20

(

∂U
(1)
3m

∂X3
+

∂V
(1)
3m

∂Y3m

)

, (2.151)
(

Du

Dt

)(1)

3m

:= U
(0)
2

∂U
(1)
3m

∂X3

+ V
(1)
3m

dU (0)
20dY3m

= 0, (2.152)
(

Dρ

Dt

)(1)

3m

:= U
(0)
20

∂R
(1)
3m

∂X3
+ V

(1)
3m

dR(0)
20dY3m

= 0, (2.153)the leading order representation of the ontinuity equation, the x-momentumequation and the energy equation, respetively. The fat that no dissipativeterms and no pressure gradient enters the governing main dek equationshighlights the passive nature of the main dek, whih likewise an be observedfrom the general solution
U

(1)
3m = A3m(X3, T3)

dU (1)
20 (Y3m)dY3m

, (2.154)
V

(1)
3m = −∂A3m(X3, T3)

∂X3

U
(0)
20 (Y3m), (2.155)

R
(1)
3m = A3m(X3, T3)

dU (0)
20 (Y3m)dY3m

(2.156)introduing the funtionA3m(X3, T3) whih an be interpreted as the negativedisturbane of the displaement thikness of the undisturbed boundary layer.Mathing of the main dek solutions with the lower dek solutions resultsin equations 2.137 and 2.138 introdued earlier. And the mathing of themain dek solutions with the upper dek solutions yields
P

(1)
3m(X3, T3) = p

(1)
3u (X3, T3), (2.157)

lim
Y3m→∞

U
(1)
3m(X3, Y3m, T3) = lim

Y3m→∞
R

(1)
3m(X3, Y3m, T3) = 0, (2.158)

lim
Y3m→∞

V
(1)
3m (X3, Y3m, T3) = −∂A3m(X3, T3)

∂X3

= v
(1)
3u (X3, 0, T3) (2.159)using limY3m→∞ U

(0)
20 (Y3m) = 1 and limY3m→∞

dU (0)
20 (Y3m)dY3m

= 0. Mathing with



2.2. INTERACTING FLOW REGIME 47the undisturbed boundary layer in region 2 results in
lim

X3→−∞
P

(1)
3m = 0, lim

X3→−∞
U

(1)
3m = 0, lim

X3→−∞
V

(1)
3m = 0. (2.160)Upper DekInspetion analysis arried out in setion 2.2.1 suggests for the spaial salingsin y-diretion and the saled height of the hannel H03

(y)3u = ǫ
4−n+

N1D
2

3 y3u, (H0)3u = ǫ
4−n+

N1D
2

3 H03, (2.161)and the subsequent formal asymptoti expansions for the �ow quantities
(u)3u = 1 + ǫ2

3u
(1)
3u (X3, T3) + O(ǫ3

3), (2.162)
(v)3u = ǫ

1+n+
N1D

2
3 v

(1)
3u (X3, y3u, T3) + O(ǫ

2+n+
N1D

2
3 ), (2.163)

(ρ)3u = 1 + ǫ2
3ρ

(1)
3u (X3, T3) + O(ǫ3

3), (2.164)
(p)3u = p0 + ǫ2

3p
(1)
3u (X3, T3) + O(ǫ3

3), (2.165)
(c)3u = 1 + ǫ2

3c
(1)
3u (X3, T3) + O(ǫ3

3), (2.166)
(h)3u = h0 + ǫ2

3h
(1)
3u (X3, T3) + O(ǫ3

3), (2.167)
(θ)3u = 1 + ǫ2

3θ
(1)
3u (X3, T3) + O(ǫ3

3), (2.168)for the ondition of transoni �ow, introduing the transoni similarity pa-rameter K,
(
1 − M2

0

)

3u
= Kǫ2n−2

3 (2.169)and ase n=2: Γ0 = Γ̄, Λ0 = Λ̄, N0 = N̄, (2.170a)ase n=3: Γ0 = ǫ2
3Γ̄, Λ0 = Λ̄, N0 = N̄, (2.170b)ase n=4: Γ0 = ǫ4
3Γ̄, Λ0 = ǫ2

3Λ̄, N0 = N̄. (2.170)



48 CHAPTER 2. MODELFurthermore,
(µ)3u = O(1), (µb)3u = O(1), (k)3u = O(1). (2.171)In the following more time will be spent on the motivation of the governingequations for the upper dek problem than in the previous setions for thelower and main dek problem.Continuity equation. The starting point for the formulation of the upperdek problem is the ontinuity equation

∂ρ

∂t
+ ∇ · (ρu) = 0.Insertion of the asymptoti expansions yields, using the upper dek salingand the appropriate time saling,

ǫ−3
3

∂

∂X3
(∆(ρ)3u + ∆(u)3u + ∆(ρ)3u∆(u)3u) =

= O
(

ǫ2n−3
3

∂∆(v)3u

∂y3u
, ǫ2n−5

3

∂∆(ρ)3u

∂T3

) (2.172)with the notation
∆(ρ)3u :=

2n−1∑

k=2

ǫk3ρ
(k−1)
3u + O(ǫ2n

3 ), (2.173)
∆(u)3u :=

2n−1∑

k=2

ǫk3u
(k−1)
3u + O(ǫ2n

3 ), (2.174)
∆(v)3u := ǫ

1+n+
N1D

2
3 v

(1)
3u + O(ǫ

2+n+
N1D

2
3 ), (2.175)

∆(ρ)3u∆(u)3u =
2n−1∑

k=4

ǫk3
∑

i+j=k
i,j≥2

ρ
(i−1)
3u u

(j−1)
3u + O(ǫ2n

3 ). (2.176)Equation (2.172) then leads to
∆(ρ)3u + ∆(u)3u + ∆(ρ)3u∆(u)3u = O

(
ǫ2n
3

)
, (2.177)



2.2. INTERACTING FLOW REGIME 49similar to the derivation of the essential equations for one-dimensional invis-id transoni �ow through a nozzle presented in hapter 2.1.1, see equation(2.20) and (2.42). Colleting the terms of same order in equation (2.177)results in
ρ

(k−1)
3u + u

(k−1)
3u +

∑

i+j=k
i,j≥2

ρ
(i−1)
3u u

(j−1)
3u = 0 k = 2, · · · , 2n − 1. (2.178)For the integration of (2.172) with respet to X3 the ondition of mathingwith plane parallel onstant nozzle �ow upstream, (2.17),

lim
X3→−∞

ρ
(k−1)
3u = 0, lim

X3→−∞
u

(k−1)
3u = 0 k = 2, · · · , 2n − 1, (2.179)has been used. The integration onstant entering (2.177) or (2.178) then isfound to be zero.Momentum equation. In the following only the leading order represen-tation of the momentum equation in x-diretion

∂u
(1)
3u

∂X3
= −∂p

(1)
3u

∂X3
(2.180)is needed, whih an be integrated with respet to X3

u
(1)
3u = −p

(1)
3u . (2.181)The integration onstant again is found to be zero by making use of themathing onditions (2.179) and

lim
X3→−∞

p
(1)
3u = 0. (2.182)The leading order term of the momentum equation in y-diretion redues to

∂p
(1)
3u

∂y3u
= 0 (2.183)



50 CHAPTER 2. MODELfor all ases of n = 2, 3, 4 and N1D ∈ N+ onsidered here.Energy equation. For the further disussion it is onvenient to rewritethe energy equation in the form
ρ
Dh

Dt
− Dp

Dt
=

1

Re
τττ : ∇u− 1

PrReEc
∇ · qin the way already introdued for the treatment of the energy equation inthe main dek, (2.148),

c2

M2
0

Dρ

Dt
− Dp

Dt
= −G0Ḡ

(
1

Re
τττ : ∇u− 1

PrEcRe
∇ · q

)

.Making use of the momentum equation (2.1b) the substantial derivative ofthe pressure an be written as
Dp

Dt
=

∂p

∂t
+ u · ∇p =

=
∂p

∂t
+ u ·

(

−ρ
∂u

∂t
− ρ (u · ∇)u− 1

Re
∇ · τττ

)

=

=
∂p

∂t
− ρu · ∂u

∂t
− ρ (u⊗ u) : ∇u − 1

Re
u · (∇ · τττ) ,where u · (u · ∇)u = uiuj∂jui = (u⊗ u) : ∇u has been used in the last step.On the other hand, the substantial derivative of the density is written as

Dρ

Dt
=

∂ρ

∂t
+ u · ∇ρ =

∂ρ

∂t
+ ∇ · (ρu) − ρ∇ · u =

∂ρ

∂t
+ ∇ · (ρu) − ρI : ∇u.Insertion into the energy equation yields the �nal result

− c2

M2
0

(
∂ρ

∂t
+ ∇ · (ρu)

)

=

= −∂p

∂t
+ ρu · ∂u

∂t
+ ρ

(

u⊗ u− c2

M2
0

I

)

: ∇u +

+
1

Re

{

u · (∇ · τττ ) + G0Ḡ

(

τττ : ∇u− 1

PrEc
∇ · q

)}

.

(2.184)



2.2. INTERACTING FLOW REGIME 51Several important onlusions an be drawn form equation (2.184).� The expression with the fator 1
Re

in front an be estimated as beingof O(ǫ4n
3 + ǫ2n+2+N1D

3 ) by inserting the asymptoti expansions for thevarious �eld quantities in the upper dek saling. As has been pointedout in the disussion of equation (2.150) in the previous setion, theGrüneisen oe�ient G0 = O(1) for perfet gas and G0 = O(δ) fordense gases. And one again the argument is used that in ase of densegases, where Ec → 0 for δ → 0, also the hanges of the temperatureare of O(Ec) at most.� If the expression (u⊗ u− c2

M2
0

I
)

: ∇u would be equal to zero, thenone would have obtained the fundamental equation of gas dynamis(2.29) enountered in the setion dealing with the invisid, steady �owin the ore region, see 2.1.1.� The derivation of equation (2.184) has spawned the ontinuity equation.This is interesting in so far, as for a onsistent asymptoti formulation ofthe upper dek the right hand side being equal to zero has to be imposedas a solvability ondition. This refers to the orresponding remark 2.1.5made about the fundamental equation of gas dynamis. If it wouldbe not the ase, then insertion of the asymptoti representations intothe energy equation �nally would result in a ontradition leading to
∂tρ + ∇ · (ρu) 6= 0.By exploitation of relation (2.181) the leading order approximation of equa-tion (2.184), i.e. the leading order approximation of the solvability ondition,

−2
∂p

(1)
3u

∂T3

− ∂

∂X3

J[n]

(

p
(1)
3u ; K, Γ̄, Λ̄, N̄

)

=
∂v

(1)
3u

∂y3u

(2.185)is obtained. The relevant steps of the analysis already have been performedin setion 2.1.1 and they immediately arry over to the derivation of (2.185).Here the �delta notation�, (2.173), of the ontinuity equation (2.177) intro-dued above proofs very bene�ial one again. The perturbation of the mass�ux density J[n] has been de�ned in de�nition 2.1.2.



52 CHAPTER 2. MODELRemark 2.2.4. As a onsequene of the suitable time saling the time depen-dene of the problem enters the equations here for the �rst time. The otherequations so far have not exhibited an expliit dependeny on the time.The left hand side of equation (2.184) does not depend on y3u, so it an beexpliitly integrated in the same way as in (2.73) resulting in the expression(2.73) for v
(1)
3u . The main di�erene is that the veloity has to be mathed tothe main dek solution instead to be �tted to the gradient of the throat areaof the nozzle expressed by the boundary ondition of tangential �ow at thewall. So applying the mathing ondition (2.159) gives the �nal result

−2
∂p

(1)
3u

∂T3

− ∂

∂X3

J[n]

(

p
(1)
3u ; K, Γ̄, Λ̄, N̄

)

=
2

H03

∂A3m

∂X3

. (2.186)Equation (2.186) is the �nal piee that loses the formulation of the wholetriple dek problem, sine it relates the displaement e�et exerted by themain dek to an immediate response of the pressure in the upper dek atleading order. The displaement of the interating boundary layer in itselfis a result of the de- or aeleration of the lower dek �ow due to hanges ofpressure imposed by the upper dek �ow. Equation (2.186) therefore governsthe visous invisid interation and is onsequently referred to as interationlaw.2.2.3 Admissible Region 1 Flow TypesAs an outome of the inspetion analysis in setion 2.2.1 the vertial lengthsale in the upper dek is of O(ǫ
4−n+

N1D
2

3 ). Sine the upper dek regionomprises the whole former ore region in the interation region, the vertialoordinate in the ore region, region 1, has to be of the same order, suggesting
x = x1, y = ǫ

4−n+
N1D

2
3 y1. (2.187)



2.2. INTERACTING FLOW REGIME 53A look at the ontinuity equation shows that the vertial veloity v also hasto sale as
(v)1 = ǫ

4−n+
N1D

2
3 v1, (2.188)whereas the other �ow quantities stay order one quantities.Insertion into the governing equations introdued at the beginning ofsetion 2, and shown here for the basi Navier Stokes equations (2.1a) to(2.1) equation only, leads to

∂ρ1

∂t
+ ∇ · (ρ1 u1) = 0, (2.189a)

ρ1

(
∂u1

∂t
+ (u1 · ∇1)u1

)

= −∇1p1 + O(ǫ4n−2
3 ), (2.189b)

ρ
D1h1

D1t
− D1p1

D1t
= O(ǫ4n−2

3 ). (2.189)Here Re−1 = ǫ6+2n+N1D
3 , a onsequene of the de�nition of ǫ3 (2.121), andthe fat, that the ontributions of highest order in the dissipative terms ofthe momentum and energy equation are resulting from ∂2

∂y2
∼ ǫ−8+2n−N1D

3 , hasbeen used. Now, taking the limit Re → ∞, implying ǫ3 → 0, indeed gives theEuler equations, whih justi�es the previous assumption made for the formu-lation of the noninterating ore region �ow in setion 2.1.1. Noninteratinghannel �ow truly is an admissible leading order representation of the �owregime upstream of the interating region. Therefore, the distinguished limitfor the interating �ow regime proves to be onsistent with all the premisesmade during its derivation.In the following the question wether more general noninterating �owtypes are admissible for this speial interation problem shall be addressedshortly . To this end onsider the results of one-dimensional invisid nozzle�ow presented in setion 2.1.1. The asymptoti representations of the �owquantities (2.51) have to be modi�ed as follows
(u)1 = 1 + ǫ1u

(1)
1i (x1) + . . . , (2.190a)
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(v)1 = ǫ

4−n+
N1D

2
3 ǫn1v

(1)
1i (x1, y1) + . . . , (2.190b)

(c)1 = 1 + ǫ1c
(1)
1i (x1) + . . . , (2.190)

(ρ)1 = 1 + ǫ1ρ
(1)
1i (x1) + . . . , (2.190d)

(p)1 = p0 + ǫ1p
(1)
1i (x1) + . . . , (2.190e)

(h)1 = h0 + ǫ1h
(1)
1i (x1) + . . . , (2.190f)

(A)1 = H10 + ǫ
4−n+

N1D
2

3 ǫn1A
(1)
1i (x1) + . . . , (2.190g)whih leaves the outome of the derivations performed in setion 2.1.1 un-hanged, see equation (2.74), if the symbols for the quantities used in 2.51are substituted by the ones used in 2.190a, ui by u1i, say.Remark 2.2.5. The nozzle geometry (A)1 obviously is dependent on ǫ3 andtherefore dependent on Re.The important point now is that (v)1 has to be mathed with (v)3u. Ifsuh a mathing is possible, then one-dimensional invisid nozzle �ow willbe an admissible leading order representation of the �ow regime upstreamof the interating region too. Mathing, taking into aount y1 = y3u andequations (2.160) and (2.159), formarly results to the leading order in

ǫ
4−n+

N1D
2

3 ǫn1v
(1)
1i (1, y1) = ǫ

2+n+
N1D

2
3 lim

X3→−∞
v

(2)
3u (X3, y1, T3). (2.191)Therefore the perturbation parameter ǫ1, formerly introdued as a measurefor the variation of the density in setion 2.1.1, has to be dependent on Retoo, whih suggests

ǫ1 = ǫ
2(1− 1

n)
3 . (2.192)Considering the relations (2.32) and (2.33) implies that not only the order ofmagnitude of the throat area A in the noninterating �ow regime, but alsothe order of magnitude of the variation of the nozzle ∆A has to depend on

Re.



2.2. INTERACTING FLOW REGIME 552.2.4 Fundamental Canonial ProblemColleting the results derived in the previous setion, the problem of visousinvisid interation an be fully desribed by the equations of the lower deksupplemented by the interation law (2.186). Due to the passive nature of themain dek it is not expliitly needed in the formulation of the fundamentalproblem.The fundamental lower dek problem in non anonial form writes
∂

∂X3

U
(1)
3l (X3, Y3l, T3) +

∂

∂Y3l

V
(1)
3l (X3, Y3l, T3) = 0, (2.193)

Rw

(

U
(1)
3l

∂U
(1)
3l

∂X3

+ V
(1)
3l

∂U
(1)
3l

∂Y3l

)

= − ∂

∂X3

P
(1)
3 (X3, T3) + µw

∂2U
(1)
3l

∂Y 2
3l

(2.194)supplemented by the no slip ondition at the wall
U

(1)
3l = V

(1)
3l = 0 @X3l = (X3, Y3l = S3l(X3, T3))

T , (2.195)the onditions of mathing with the undisturbed noninterating boundarylayer upstream
lim

X3→−∞
P

(1)
3 = 0, (2.196)

lim
X3→−∞

U
(1)
3l =

∂U
(0)
2 (1, 0)

∂Y2

Y3l, (2.197)
lim

X3→−∞
V

(1)
3l = 0 (2.198)and the onditions of mathing with the main dek �ow

lim
Y3l→∞

(

U
(1)
3l − ∂U

(0)
2 (1, 0)

∂Y2
Y3l

)

=
∂U

(0)
2 (1, 0)

∂Y2
A3m(X3, T3). (2.199)The quasi steady lower dek problem is losed by the unsteady interationlaw governing the mutual reation of lower and upper dek �ow

−2
∂P

(1)
3

∂T3
− ∂

∂X3
J[n]

(

P
(1)
3 ; K, Γ̄, Λ̄, N̄

)

=
2

H03

∂A3m

∂X3
. (2.200)



56 CHAPTER 2. MODELInterestingly enough, the perturbations of the pressure in eah dek a�etedby the interation proess, whih are depending only on X3 and T3, are thesame in all three regions as suggested by the mathing onditions (2.137) and(2.157). Thus P
(1)
3 (X3, T3) := P

(1)
3l = P

(1)
3m = P

(1)
3u has been used in the �nalfundamental formulation of the interation problem. J[n] is the perturbationof the mass �ux density in the upper dek region and de�ned in an analogousmanner to the de�nition 2.1.2.The fundamental lower dek problem depends on several parameters, asthere are e.g. Rw, µw, ∂U (0)

2 (1,0)

∂Y2
or H03. These an be onveniently eliminatedby introduing the a�ne transformation given below

X⋆ = µwR
1
2
wU ′

20(0)2C
3
2 X3, (2.201a)

Y ⋆ = R
1
2
wU ′

20(0)C
1
2 Y3l, (2.201b)

T ⋆ = µwR
1
2
wU ′

20(0)2|Γ̄|C 1
2 T3, (2.201)

U⋆ = R
1
2
wC

1
2 U3l, (2.201d)

V ⋆ = µ−1
w R

1
2
wU ′

20(0)−1C− 1
2 V3l, (2.201e)

P ⋆ = C P3, (2.201f)
A⋆ = R

1
2
wU ′

20(0)C
1
2 A3m, (2.201g)

S⋆ = R
1
2
wU ′

20(0)C
1
2 S3l (2.201h)with C :=

∣
∣
∣
2Γ̄
K

∣
∣
∣ and U ′

20(0) :=
∂U

(0)
2 (1,0)

∂Y2
.Remark 2.2.6. Obviously C has to be de�ned meaning suh that K 6= 0 and

Γ̄ 6= 0. If one of these two onditions is not satis�ed, then the above a�netransformation has to be modi�ed appropriately. E.g. onsider K 6= 0 and
Γ̄ = 0, but Λ̄ 6= 0, say, then Λ̄ instead of Γ̄ an be used in the de�nition of
C. Insertion into the interation law (2.186) shows that the material parame-ters entering the �ux funtion J[n] annot be eliminated as these are essentialparameters of the problem resulting in

Γ−∞ = Γ̄
∣
∣Γ̄
∣
∣−1

, (2.202)
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Λ−∞ = Λ̄C−1

∣
∣Γ̄
∣
∣
−1

, (2.203)
N−∞ = N̄C−2

∣
∣Γ̄
∣
∣−1

, (2.204)
Q = 2−1R

− 1
2

w U ′
20(0)−1

∣
∣Γ̄
∣
∣
−1

H−1
03 C

3
2 . (2.205)Parameter Q > 0 measures the intensity of the oupling between lower andupper dek, as follows immediately from the de�nition of the fundamentalanonial problem summarized below.De�nition 2.2.1 (Fundamental anonial problem). After appliation ofPrandtl's transposition theorem, [64℄,

T = T ⋆, X = X⋆, S(X, T ) = S⋆(X⋆, T ⋆), Y = Y ⋆ − S(X, T ), (2.206a)
U(X, Y, T ) = U⋆(X⋆, Y ⋆, T ⋆), (2.206b)
V (X, Y, T ) = V ⋆(X⋆, Y ⋆, T ⋆) − U

∂

∂X
S, (2.206)

P (X, T ) = P ⋆(X⋆, T ⋆), A(X, T ) = A⋆(X⋆, Y ⋆, T ⋆) + S(X, T ) (2.206d)the fundamental lower dek problem for plane parallel onoming hannel �ow,see de�nition 2.1.2, in anonial form is given by
∂

∂X
U(X, Y, T ) +

∂

∂Y
V (X, Y, T ) = 0, (2.207)

U
∂U

∂X
+ V

∂U

∂Y
= − ∂

∂X
P (X, T ) +

∂2U

∂Y 2
(2.208)supplemented by the no slip ondition at the wall

U = V = 0 @X = (X, Y = 0)T , (2.209)the onditions of mathing with the undisturbed noninterating boundary layerupstream
lim

X→−∞
P = 0, (2.210)

lim
X→−∞

U = Y, (2.211)
lim

X→−∞
V = 0 (2.212)



58 CHAPTER 2. MODELand the onditions of mathing with the main dek �ow
lim
Y→∞

(U − Y ) = A(X, T ). (2.213)The quasi steady lower dek problem is losed by the unsteady interation lawgoverning the mutual reation of lower and upper dek �ow
−∂P

∂T
+

∂

∂X
G[n] (P ; K, Γ−∞, Λ−∞, N−∞) = Q

∂

∂X
(A − S) . (2.214)The parameter Q > 0, de�ned in equation (2.205), measures the intensity ofthe oupling between lower and upper dek. The material parameters Γ−∞,

Λ−∞, N−∞ are de�ned in equations (2.202) to (2.204). G[n] is the leadingorder negative disturbane of the mass �ux density of the upper dek �ow inanonial form given by
G[n](P ; K, Γ, Λ, N) =







sign(K)P + 1
2
sign(Γ)P 2 n = 2sign(K)P + 1

2
sign(Γ)P 2 + 1

6
ΛP 3 n = 3sign(K)P + 1

2
sign(Γ)P 2 + 1

6
ΛP 3 + 1

24
NP 4 n = 4.(2.215)

G[n] has the following properties.� The loal Mah number M = ũ
c̃
follows from

M − 1 = −ǫ
2(n−1)
3 C−1|Γ̄|dG[n]dP . (2.216)� The loal value of the fundamental derivative and its �rst derivative isgiven by

Γ = ǫ
2(n−2)
3 |Γ̄|d2G[n]dP 2

, Λ = ǫ
2(n−3)
3 C|Γ̄|d3G[n]dP 3

. (2.217)



Chapter 3Shok Regularization by VisousInvisid Interations
3.1 Shok Formation and the Fundamental De-rivativeAfter an area of vivid interest in BZT �uids starting with the works of Bethe,[4℄, Zel'dovih, [96℄, and Thompson, [85℄, and lasting to the middle of the90s, [88℄, [5℄, [15℄, [87℄, [16℄, [34℄, [18℄, [17℄, [8℄, [35℄, [36℄, [44℄, [58℄, thereexists a renewed interest in �uids exhibiting negative or mixed nonlinearityas an be observed by the number of more reent publiations dealing withthe experimental predition and detetion of anomalous shoks inherent tothese kind of �uids, [38℄, [19℄, [13℄, [39℄, [25℄, [11℄, [12℄, [95℄. Given the possibletehnial appliations in turbomahinery, see e.g. [10℄, [12℄, these �uids alsoare of theoretial value on their own. The feature of Gamma hanging sign inthe �ow �eld has severe onsequenes for the theory of ompressible invisid�ows giving rise to a riher variety of anomalous shok forms not known in theommon ase of Gamma being stritly positive, i.e. rarefation shoks, sonishoks, double soni shoks and split shoks, see e.g. [56℄ for a disussion ofRiemann problems in general or [14℄, [8℄, [35℄ for a disussion of steady andunsteady weak shoks.Most important of all, the lassial riteria, as the requirement [s] ≥ 059



60 CHAPTER 3. SHOCK REGULARIZATIONfollowing from seond law of thermodynamis or the more mathematialondition for the stability of the resulting wave pattern expressed by Lax'sharateristi riterion, [56℄, or by the more general Oleinik ondition, [61℄,[45℄, are too weak to rule out inadmissible shoks in ase of �uids exhibitingmixed nonlinearity. A shok is onsidered inadmissible in this ontext ifthere exists no internal shok pro�le onneting the �ow onditions beforeand after the shok when physial e�ets that have been negleted so far butwhih beome signi�ant in the viinity of the shok front are onsidered andthus regularize the problem. It is ommonly known that the onsiderationof small e�ets of visosity and heat ondution in a small region around theshok front leads to the formation of suh smooth internal shok pro�les. Athoroughly disussion of these pro�les for �uids exhibiting mixed nonlinearityresulting from a regularization by thermo-visous e�ets an be found in [14℄,[35℄ or [18℄. In the following a quite di�erent mehanism for the regularizationof weak shoks is proposed by making use of the theory of transoni visousinvisid interations in narrow hannels introdued in hapter 2. Considerthe situation of a stationary weak normal shok in a hannel. The �ow�eld in the boundary layers at the walls is subjeted to a disontinuouspressure distribution, i.e. a rapid hange of the �ow �eld, and a region ofshok boundary layer interation emerges around the position of the formershok. It an be expeted that the shok/boundary layer interation leadsto a smoothed transition from super- to subsoni ore region �ow similar tothe phenomenon of a pseudo-shok enountered in internal gas �ows, [54℄.Furthermore, if the internal �ow an be desribed by the distinguished limitfor the interation problem presented in hapter 2, then the invisid �ow inthe ore region of the hannel onveniently an be desribed by the equationsfor one-dimensional invisid transoni �ow of dense gases, see setion 2.1.1or [35℄. This hapter will address the following issues.� First of all, a de�nition of what has to be understood by an inter-nal shok pro�le generated by visous invisid interations is given insetion 3.3.� Furthermore, it is mandatory to show that suh an internal shok pro�le



3.1. SHOCK FORMATION AND THE FUNDAMENTAL DERIVATIVE61truly onnets the undisturbed �ow state in the ore region of the han-nel before and after the interation region. To this end, the asymptotibehavior of the solution of the interation problem far up- and down-stream, X → ±∞, will be investigated . The undisturbed �ow stateshave to be in aordane with the theory for invisid �ow, a summaryof whih is given in the following setion together with the formulationof appropriate shok admissibility riteria.� And �nally, seleted numerial results for various forms of shoks pre-sented in setion 3.3 will be disussed. Above all, these allow to identifythe physial mehanism being at the basis of the regularizing propertiesof the interation problem.Besides the theoretial value of the disussion to be presented in thishapter, a diret appliation of the saling laws proposed in the derivationof the distinguished limit shall be given for the example �uid PP10 whih isexpeted to exhibit a region of negative Γ. A alulation of the harateristilength sale imminent to the problem shows that the phenomena desribedin this hapter are expeted to be enountered for �ows of dense gases intehnial appliations under realisti onditions.3.1.1 Invisid Theory of Weak Normal ShoksA shok forming in a �ow regime desribed by the Euler equations for invis-id �ow has to satisfy ertain jump onditions, i.e. the Rankine Hugoniotonditions, governing the overall jump of the �ow quantities. In the followinga braket [a] := aa− ab denotes a jump of some quantity a. The supersripts
a and b refer to onditions before and after the shok.Most important of all, the values of the pressure before and after a shokhave to be points on the so alled Rayleigh line whih an be de�ned asfollows

CR := {(p(1)
i , J) : J = J[n](p

(1)b
i ; K, Γ̄, Λ̄, N̄)} (3.1)



62 CHAPTER 3. SHOCK REGULARIZATIONfor the ase of stationary weak normal shoks in steady transoni nozzle�ow, see setion 2.1.1 or [35℄. The Rayleigh line in the form of (3.1) ex-presses the ontinuity of the mass �ux density aross a shok front fora given pressure jump p
(1)
i − p

(1)b
i . Graphially, the atual pressure jump

[p
(1)
i ] has to result from an intersetion of the Rayleigh line and the graph

CJ = {(p(1)
i , J) : J = J[n](p

(1)
i ), p

(1)
i ∈ [p

(1)b
i , p

(1)a
i ]} in the pressure p

(1)
i vs.mass �ux density J[n] diagram, see the example in �gure 3.1. The jumponditions are supplemented by the entropy ondition

[s] ≥ 0 (3.2)expressing the fat that the thermodynami entropy has to inrease over anadmissible shok. Kluwik showed in [35℄ that the entropy ondition (3.2)together with the Rankine Hugoniot onditions an be used to formulate thefollowing inequality
[s] ∼ −1

6
ǫ2
1[ρ

(1)
i ]2[M ] − 1

360
ǫ5
1N̄ [ρ

(1)
i ]5 ≥ 0 (3.3)whih has to hold in ase of weak normal shoks desribed by the one-dimensional theory of the transoni �ow of dense gases in slowly varyingnozzles in setion 2.1.1. From that follows the inequality

[M ] ≤ 0 (3.4)whih in ase of a stationary weak normal shok is equal to stating that anadmissible shok has to lead to a transition from super- to subsoni �ow, ingeneral. Interestingly enough, shoks may have soni upstream onditions
M b = 1 or soni downstream onditions Ma = 1 or both. It is in the latterase that the equality sign in equation (3.4) holds.In ase of a stritly onvex or onave �ux funtion J[n], i.e. ase ofpositive or negative nonlinearity, the onditions mentioned above are enoughto rule out inadmissible shoks. This, however, is not always true in ase ofmixed nonlinearity whih is demonstrated for the example in �gure 3.1. Theshok onneting the points A and B and the shok onneting the points A
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Figure 3.1: Plot of the negative perturbation of the mass �ux density −J[n]vs. the pressure p
(1)
i , denoted by CJ , and a example of a Rayleigh line CR.and D both result in a transition from super- to subsoni and hene satisfythe shok admissibility riteria stated so far. However, it turns out that onlythe shok AB is onsistent with a thermo-visous internal shok pro�le, f.e.g. [35℄. Therefore, the shok admissibility riteria have been generalizedin [35℄ in order to over all the possible weak shok forms ourring in steady�ows of dense gases governed by a mass �ux density J[n] with a nonlinearityof up to forth order in the pressure.Shok Admissibility Criteria, [35℄Theorem 3.1.1 (Shok admissibility riterion). A shok forming in the sin-gle phase dense gas regime, whih is governed by the density of the perturba-tion mass �ux J[n], see de�nition 2.1.2, for one dimensional nozzle �ow, isadmissible if and only if the following onditions are met:1. The Rayleigh line onneting the states before and after the shok does
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Figure 3.2: Shemati sketh for introduing small variations of the hannelheight, ∆s2,0 = ǫ
4+n+N1D/2
3 S−∞, and of the in�ow onditions, ∆p0 = ǫ2

3P−∞.If the variations satisfy the relation G[n] (P−∞; . . . ) = −QS−∞, then theinteration region is loated at the �xed position L0 = 1.not ut intervening branhes of the graph
CJ = {(p(1)

i , J) : J = J[n](p
(1)
i ), p

(1)
i ∈ [p

(1)b
i , p

(1)a
i ]}.2. The �ow onditions before and after a shok have to satisfy

M b ≥ 1 ≥ Ma.3. In ase of a double soni shok, Ma = 1 = M b, the shok has to be anexpansion shok.Remark 3.1.1. Obviously, the results of the above theorem equally apply tothe situation where J[n] is substituted by G[n], equation (2.215) in de�nition2.2.1, and where p
(1)
i is substituted by P sine G[n] is a saled version of −J[n].3.2 Varying the In�ow ConditionsThe fundamental problem for steady interating �ow is extended to allowsmall variations of the in�ow onditions at the hannel entry, represented by

∆p0, and of the hannel height, represented by ∆s2,0, see �gure 3.2. Thesesmall variations shall a�et the �ow in the interation region, whih shallbe loated at the �xed position L̃0, leaving the referene state unhangedindependently of the new on�guration. Therefore, the saling of the ma-



3.2. VARYING THE INFLOW CONDITIONS 65terial parameters, (2.201), entering the interation law in anonial form,(2.215), whih are dependent on the referene state, do not hange either.This is onvenient, beause it allows to vary the in�ow onditions under anunhanged representation of the �ux funtion G[n]. Taking into aount thea�ne transformation (2.201) ∆p0 is de�ned by
∆p0 = ǫ3

3C
−1P−∞, (3.5)whih implies

lim
X→−∞

P = P−∞ (3.6)for the upstream value of the pressure in the triple dek. ∆s2,0 has to be ofthe same vertial length sale as the lower dek and thus
∆s2,0 = ǫ

4+n+N1D/2
3 R

−
1
2

w U ′
20(0)−1C−

1
2S−∞. (3.7)As a result the no slip onditions have to be presribed at the shifted wall

U⋆ = V ⋆ = 0 @X⋆ = (X⋆, Y ⋆ = S−∞)T . (3.8)Note that ⋆ denotes quantities before the appliation of Prandtl's transposi-tion theorem, (2.206), used in the de�nition of the fundamental problem inanonial form. Prandtl's transposition theorem for S(X) ≡ S−∞ simpli�esto
Y = Y ⋆ − S−∞, A = A⋆ + S−∞. (3.9)Inspetion of equations (2.210) and (2.213) reveals

lim
X→−∞

A(X) = 0. (3.10)



66 CHAPTER 3. SHOCK REGULARIZATIONIntegration of the interation law (2.214) for steady �ows with respet to Xgives
G[n](P ) − Q (A − S−∞) = G[n](P

⋆) − QA⋆ = c1 (3.11)where the dependene of G[n] on the parameters has been suppressed. Takingnote of remark 2.1.6 on equation (2.75), whih is the invisid omplement ofthe above expression, equation (3.11) expresses the ontinuity of the mass �uxof the one-dimensional upper dek �ow passing ross setions of the hannelwhih are redued by the displaement e�et A⋆ aused by the interatingboundary layers at the wall. Consulting Prandtl's transposition theorem A⋆results from a geometri variation of the hannel height expressed by S−∞and from a visous part A generated by the lower dek reation to pressurevariations in the upper dek. Obviously c1 then quanti�es the hange of themass �ux whih has been e�eted by the variation of the in�ow onditions,i.e. P−∞, and the variation of the hannel height S−∞ sine c1 = 0 forthe initial on�guration, i.e. P−∞ = S−∞ = 0. Therefore, in order to beonsistent c1 in equation has to be c1 = 0 and onsequently S−∞ and P−∞have to satisfy the ompatibility relation
G[n] (P−∞; K, Γ−∞, Λ−∞, N−∞) = −QS−∞. (3.12)Finally, the hanges introdued in this setion are summarized in the follow-ing de�nition of the fundamental problem for varying in�ow onditions.De�nition 3.2.1 (Fundamental anonial problem (steady interating �ow,varying in�ow onditions)). The fundamental lower dek problem for an on-oming plane parallel hannel �ow, see de�nition 2.1.2, in anonial form isgiven by

∂

∂X
U(X, Y ) +

∂

∂Y
V (X, Y ) = 0, (3.13)

U
∂U

∂X
+ V

∂U

∂Y
= − ddX

P (X) +
∂2U

∂Y 2
(3.14)



3.3. EIGENSOLUTIONS & INTERNAL SHOCK PROFILES 67supplemented by the no slip ondition at the wall
U = V = 0 @X = (X, Y = 0)T , (3.15)the onditions of mathing with the undisturbed noninterating boundary layerupstream

lim
X→−∞

P = P−∞, lim
X→−∞

U = Y, lim
X→−∞

V = 0 (3.16)and the onditions of mathing with the main dek �ow
lim
Y→∞

(U − Y ) = A(X). (3.17)
Y and A de�ned by Prandtl's transposition theorem, (3.9). The interationlaw for steady �ow in the interation region is given by

G[n] (P ; K, Γ−∞, Λ−∞, N−∞) = Q (A − S−∞) . (3.18)Parameter Q > 0 has been de�ned in equation (2.205), and the materialparameters Γ−∞, Λ−∞, N−∞ in equations (2.202) to (2.204). G[n] is givenby (2.215).3.3 Eigensolutions & Internal Shok Pro�lesAn interesting property of nontrivial eigensolutions to the steady interationproblem formulated in de�nition 3.2.1 is that these orrespond to the internalstrutures of weak normal shoks. As has been mentioned before the internalshok pro�le resulting from shok boundary layer interation has to onnetthe undisturbed �ow states before and after the shok whih an be expressedby the relations
lim

X→−∞
P = P b = P−∞, lim

X→−∞
A = 0, lim

X→−∞
U = Y ;

lim
X→∞

P = P a, lim
X→∞

A = 0, lim
X→∞

U = Y.



68 CHAPTER 3. SHOCK REGULARIZATIONThe values of P before and after the shok, P b (= P−∞) and P a, have tosatisfy the jump ondition [G[n]] = G[n](P
a) − G[n](P

b) = 0 expressing theontinuity of the mass �ux aross a shok front whih is a result of theunderlying invisid theory, see theorem 3.1.1 or [35℄. The Rayleigh line for agiven undisturbed �ow state upstream, P b, is de�ned by
CR = {(P, G) : G = G[n](P

b; K, Γ−∞, Λ−∞, N−∞) = −QS−∞}.Hene, by varying S−∞ the Rayleigh line is moved in the G[n] vs. P diagramwhih is equal to varying P b and P a, i.e. the shok strength [P ].It is important to note, that besides a nontrivial eigensolution there al-ways exists a trivial eigensolution to the problem
P ≡ P−∞, A ≡ 0, U ≡ Y.In the following, general properties of eigensolutions shall be disussedand instrutive numerial results of internal shok pro�les orresponding toweak normal shoks will be given.3.3.1 Asymptoti Properties Upstream (X → −∞)The upstream behavior of the interating �ow for X → −∞ shall be in-vestigated. Therefore, the analysis of Lighthill, [52℄, and Stewartson &Williams, [81℄, dealing with freely interating boundary layers in externalsupersoni �ows has to be extended to inorporate the algebrai interationlaw, (3.18), and the new mathing onditions upstream (3.16). The ansatz

U = Y − a1eκXf1(Y ), V = a1κeκXf ′
1(Y ), P = P−∞ + a1eκX , (3.19)with exp(κX) → 0 for X → −∞, leads to the following expression for f1

f ′
1(Y ) =

∫ Y

0

Ai(κ 1
3 s)ds, f1(Y ) =

∫ Y

0

∫ z

0

Ai(κ 1
3 s)dsdz. (3.20)



3.3. EIGENSOLUTIONS & INTERNAL SHOCK PROFILES 69From that follows the well known result for the displaement funtion
A(X) =

a1

3Ai′(0)
κ

1
3 eκX , Ai′(0) < 0 (3.21)where Ai denotes the Airy funtion, [1℄. Substitution of the expressions for

P and A into the algebrai interation law (3.18) and olleting terms of
O(exp(mκX)) with m ∈ N0 yields to leading order

G[n] (P−∞; K, Γ−∞, Λ−∞, N−∞) = −QS−∞, (3.22)whih is immediately satis�ed beause of the ompatibility assumptions madefor the variation of the in�ow ondition (3.12). The next higher order is foundto be
G′

[n] (P−∞; K, Γ−∞, Λ−∞, N−∞) =
Q

3Ai′(0)
κ

1
3 (3.23)yielding a relation for κ

κ =

(

G′
[n] (P−∞; K, Γ−∞, Λ−∞, N−∞)

3Ai′(0)

Q

)3

. (3.24)A nontrivial eigensolution to the fundamental problem (de�nition 3.2.1) anonly exist, if it deays for X → −∞. Therefore, onsidering the signof Ai′(0) < 0, see [1℄, and Q > 0, see de�nition 3.2.1, this an only bethe ase, if G′
[n](P−∞, . . . ) ≤ 0. Taking into aount relation (2.216) this,however, implies that the onoming hannel �ow has to be supersoni, i.e.

G′
[n](P−∞, . . . ) < 0, or soni in the limiting ase G′

[n](P−∞, . . . ) → 0−. Aninterpretation of internal shok pro�les to soni shoks will be given in thedisussion of the numerial results, f. setion 3.3.7 and 3.3.8.Therefore, one onludes that nontrivial eigensolutions, or in other wordsadmissible internal shok pro�les, an only exist if and only if the onoming�ow -that is the �ow before the regularized shok- is supersoni or soni.Moreover, this result is in aordane with the shok admissibility riteriaformulated for invisid nozzle �ow.



70 CHAPTER 3. SHOCK REGULARIZATIONLinear Spatial Stability of Undisturbed Flow StatesThe generalized ansatz of Lighthill used before, (3.19), an be extended evenfurther in order to study the linear spatial stability of an arbitrary undis-turbed �ow state represented by P−∞ and S−∞ whih always is a trivialsolution of the interation problem. To this end we write
U = ℜ{Û} = Y − ℜ{a1eκX−iωTf1(Y )},
V = ℜ{V̂ } = ℜ{a1κeκX−iωTf ′

1(Y )},
P = ℜ{P̂} = P−∞ + ℜ{a1eκX−iωT} (3.25)with ω ∈ R some given harmoni frequeny and κ ∈ C the orrespondingunknown omplex wave number. Furthermore, X, Y, P−∞ ∈ R, a1 ∈ C and

f1 : R → C.By plugging (3.25) into the equation for the quasi steady lower dek �ow(3.13) to (3.16) one reovers the already obtained result for f1, equation(3.20),
f ′

1(Y ) =

∫ Y

0

Ai(κ 1
3 s)ds, f1(Y ) =

∫ Y

0

∫ z

0

Ai(κ 1
3 s)dsdzwith the main di�erene that now κ ∈ C. Taking a look at the asymptotiproperties of the Airy funtion Ai(z) for z ∈ C and |z| → ∞, see appendix C,the integrals only exist properly for Y → ∞ if κ ∈ {z ∈ C : |Arg(z)| ≤ π/3}.Evaluating the mathing ondition (3.17) then leads to

A = ℜ{Â} = ℜ{ a1

3Ai′(0)
κ1/3eκX−iωT} (3.26)and after insertion into the linearized interation law for unsteady �ow one�nally obtains a relation between the harmoni frequeny and the omplexwave number iω + G′

[n](P−∞)κ =
Q

3Ai′(0)
κ4/3 (3.27)where the dependene of G[n] on the parameters K, Γ−∞, Λ−∞, N−∞ has been



3.3. EIGENSOLUTIONS & INTERNAL SHOCK PROFILES 71suppressed. Provided G′
[n](P−∞) 6= 0 (3.27) an be written in the followingway iω̄ + κ̄ = sign (Ai′(0)G′

[n](P−∞)
)
κ̄4/3 (3.28)introduing a modi�ed de�nition of the harmoni frequeny and of the wavenumber, ω̄ and κ̄,

ω̄ = C
ω

G′
[n](P−∞)

∈ R, (3.29)
κ̄ = Cκ ∈ C (3.30)with

C =

∣
∣
∣
∣
∣

Q

3Ai′(0)G′
[n](P−∞)

∣
∣
∣
∣
∣

3

> 0. (3.31)It is important to note that the new de�nition κ̄ for the wave number is only aresaling of κ, i.e. Arg(κ) = Arg(κ̄). Interestingly enough, for the disussionof (3.28) only two ases have to be onsidered, i.e. G′
[n] < 0 and G′

[n] > 0.That is, one simply has to distinguish between supersoni and subsoni �ow.A andidate for a solution to (3.28) for a given ω̄ an be obtained by�nding a root of the polynomialsign (Ai′(0)G′
[n](P−∞)

)
κ̄4 − κ̄3 − 3iω̄κ̄2 + 3ω̄2κ̄ + iκ̄3 = 0 (3.32)whih has been obtained by taking the left and right hand side of (3.28) tothe power of three. The roots plotted in �gure 3.3 have been heked against(3.28). It has been found that all four roots of the polynomial (3.32) are asolution of (3.28) as well.Out of the four possible wave numbers κ̄ for a given harmoni frequenyof some disturbane ω̄ only those that lie in the set Ωκ = {z ∈ C : |Arg(z)| ≤

π/3}, depited by the shaded region in �gure 3.3, lead to a nontrivial solutionof the lower dek as has been noted before. On the other hand, for the linearspatial stability of the trivial solution of the interation problem the real



72 CHAPTER 3. SHOCK REGULARIZATIONpart of κ̄ has to be negative, ℜ{κ̄} < 0, i.e. some disturbane generated at apurely harmoni frequeny ω̄ is dying out downstream. In ase of ℜ{κ̄} > 0the disturbanes are growing exponentially downstream until nonlinearitytakes over.Keeping that in mind, �gure 3.3 allows for the following interpretation.Taking a look at 3.3.1(a), the ase of a supersoni trivial solution of theinteration problem, and setting ω̄ = 0, i.e. applying a steady disturbane,one obtains the result for the �rst three wave numbers κ̄1,2,3 = 0, whihis the trivial solution again, and κ̄4 = 1 ∈ R. κ̄4 lies within the set Ωκand therefore ansatz (3.25) leads to a nontrivial solution for κ̄4 whih isgrowing downstream beause of ℜ{κ̄} > 0. Making use of (3.29) the result(3.24) based on Lighthill's ansatz (3.19) is retrieved. For ω̄ ∈ [−ω̄c, ω̄c] thereexists only the one nontrivial solution on the branh 4 whih is exponentiallygrowing downstream. For ω̄ > |ω̄c| the seond branh, number 3 in �gure3.3.1(a), enters the region Ωκ. The situation in the ase of a subsoni trivialsolution of the interation problem is quite di�erent, see �gure 3.3.1(b). For
ω̄ = 0 no nontrivial growing mode an exist sine κ̄1,2,3,4 ∈ C \ Ωκ. Thissituation does not hange as long ω̄ ∈ [−ω̄c, ω̄c], however, as soon as ω̄ > |ω̄c|the branh 4 enters Ωκ and a growing mode exists besides the trivial �owstate.Therefore, the supersoni trivial �ow state, i.e.

P = P−∞, A = 0, U = Y, G′
[n](P−∞) < 0,is unonditional unstable aording to the onept of linear spatial stabilityand the subsoni trivial �ow state, i.e.

P = P−∞, A = 0, U = Y, G′
[n](P−∞) > 0,is stable as long the harmoni frequeny of the disturbane satis�es the on-dition ω̄ ∈ [−ω̄c, ω̄c].
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(b)Figure 3.3: Roots κ̄ of equation (3.28) under variation of ω̄ for a) supersoni,i.e. G′
[n](P−∞) < 0, and b) subsoni, i.e. G′

[n](P−∞) > 0, undisturbed initial�ow.



74 CHAPTER 3. SHOCK REGULARIZATION3.3.2 Asymptoti Properties Downstream (X → ∞)In order to justify the interpretation of nontrivial eigensolutions as internalshok pro�les it is mandatory to show that the �ow in the interation regionapproahes an undisturbed �ow state downstream of the interation regionindeed. The investigation of the downstream behavior exatly follows theanalysis performed by Kluwik, Exner & Cox, [42℄. They applied the re-sults found by Gittler, [23℄, for the asymptoti properties of steady tripledek problems of a general kind in ase of Y ≫ 1 and X ≫ 1 to a tripledek problem with a loal interation law, losely resembling (2.214) anddesribing the interation proess of weakly nonlinear bores in laminar highReynolds number �ow. The signi�ant and fundamental di�erene to theinteration problem onsidered in this treatise is, besides the di�erent un-derlying physis involved, that their interation law aounts only for termsof quadrati nonlinearity in the pressure and that additionally a dispersiveterm is present in their relation.Their starting point has been the expansion of the stream funtion Ψ(X, Y ) :

U = ∂Ψ/∂Y, V = −∂Ψ/∂X for Y → ∞

Ψ(X, Y ) ∼ 1

2
(Y + A(X))2 + P (X) + KrsY

r(lnY )s + . . . (3.33)with r < 2. This expression is valid for all X and ontains free onstants
Krs. Sine the �ow struture far upstream is given by (3.19) and (3.20),the orresponding veloity disturbanes U − Y , V deay exponentially with
Y → ∞ beause of the asymptoti properties of the Airy funtion, see [1℄.Consequently the algebrai terms in Y in (3.33) vanish, Krs = 0. There-fore, if the assumption that the interating �ow approahes an undisturbedstate downstream is orret, then Ψ has to take on the following form fardownstream

Ψ(X, Y ) ∼ 1

2
Y 2 + A(X)Y + P a + . . . X → ∞, Y → ∞. (3.34)This result has to be ompared with the similarity form of the stream funtion
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Ψ(X, Y ) ∼ 1

2
Y 2 + αXβf2(η) + C2X

λh2(η) + · · · , η =
Y

X1/3
. (3.35)If as in the present ase no external agenies are a�eting the �ow under on-sideration (no external surfae mounted obstale, say) then the parameter

α = 0 thereby eliminating the seond term in (3.35). The third term repre-sents a homogeneous eigensolution with the eigenvalue λ and its asymptotibehavior of h(η) for η → ∞ has been given by Gittler in [23℄
h(η) ∼ K1η + K2η

3λ + K3e−3λ−4e−η2/9 + . . . η → ∞. (3.36)The two onstants K1 and K3 are arbitrary while
K2 =

Γ
(

2
3

)
3−2λ+1/3

(3λ − 1)Γ(λ + 1)
(3.37)with Γ(·) denoting the Gamma funtion. Therefore, in the end a seondexpression desribing the properties of Ψ in the limit X → ∞, Y → ∞ isobtained

Ψ(X, Y ) ∼ 1

2
Y 2 + C2K1X

λ−1/3Y + C2K2Y
3λ + . . . ,

X → ∞, Y → ∞.
(3.38)Comparison of the two expressions, (3.34) and (3.38), for Ψ implies λ = 0and

A(X) ∼ C2K1X
−1/3, X → ∞. (3.39)Finally, substitution of (3.39) into the linearized interation law for steady�ow, (3.18), yields the asymptoti behavior of the pressure downstream. Pro-vided G′

[n](P
a) 6= 0 it assumes

P (X) ∼ P a +
QC2K1

G′
[n](P

a)
X−1/3, X → ∞ (3.40)



76 CHAPTER 3. SHOCK REGULARIZATIONagain suppressing the dependene of G[n] on the saled parameters K, Γ−∞,
Λ−∞ and N−∞. However, if the shok terminates in a soni �ow state fardownstream, i.e. G′

[n](P
a) = 0, then the asymptoti behavior of the pressuredownstream is given by

P (X) ∼ P a + sign (G′′(P a))

(

2QC2K1

G′′
[n](P

a)

)1/2

X−1/6, X → ∞ (3.41)indiating an even weaker algebrai deay of the pressure than that found inase of G′
[n](P

a) 6= 0. Interestingly enough, the expression 2QC2K1/G
′′
[n](P

a)in (3.41) is found to be always positive due to the fat that C2K1 has thesame sign as A. Figure 3.4 gives a geometrial justi�ation for this statementfor two typial variants of a soni shok. The sign of A follows from QA =

G[3](P ) − (−QS−∞) for P ∈ [P b, P a]. In ase of the shok onneting thepoints A and C the urvature of the �ux funtion G′′
[3] < 0 at the soni stateand A ≤ 0 for P ∈ [P b, P a]. Therefore, C2K1 is negative. In the other aseof a shok onneting the points D and B G′′

[3] > 0 at the soni state and
A ≥ 0 and onsequently C2K1 is positive. In both ases 2QC2K1/G

′′
[3](P

a) isa positive quantity.PSfrag replaements G[3]
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M>1 M>1M<1Figure 3.4: Two examples for a shok terminating in a soni state. At point
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[3] > 0, and at point B: G′′
[3] < 0.



3.3. EIGENSOLUTIONS & INTERNAL SHOCK PROFILES 77Therefore, it is found that the �ow in the interation region, representedby nontrivial eigensolutions of the triple dek problem, approahes an undis-turbed �ow state downstream of the interation region at a pressure P apredited by invisid theory. The �ow before and after the shok is trulyonneted by an internal shok pro�le and, sine A(X) → 0 for X → ±∞,the pressure jump aross the shok is given by [G[n]] = G[n](P
a) − G[n](P

b)in aordane with the jump/Rankine Hugoniot onditions for the invisidase, see setion 3.1.1.Moreover, the requirement that the Rayleigh line onneting the statesbefore and after the shok does not ut intervening branhes of the graph
CG = {(P, G[n](P )) | P ∈ [P b, P a]} formulated in the shok admissibility ri-teria in theorem 3.1.1 an be motivated too. Sine a nontrivial eigensolutionan only exist for supersoni �ow onditions upstream, i.e. G′

[n](P
b) < 0 (seedisussion of the asymptoti behavior of nontrivial eigensolutions in setion3.3.1), the next undisturbed state, whih a �uid partile passing through theinteration region is approahing far downstream, is bound to be subsonior soni, i.e. G′

[n](P
a) > 0. The results of setion 3.3.1 also showed that thesubsoni undisturbed �ow state is stable aording to the onept of linearspatial stability at least for disturbanes with a harmoni frequeny belowsome bound ω̄c. Consequently, without the ation of external agenies likea variation of the throat area of the hannel the �uid partile is attratedtowards the undisturbed subsoni �ow state and will not pass through it.Hene the Rayleigh line does not ross the graph CG.So far the internal shok pro�les whih are resulting from a shok reg-ularization due to visous invisid interations are in aordane with thepredition based on the the shok admissibility riteria formulated for thenoninterating invisid ase, theorem 3.1.1. However, the last issue of theo-rem 3.1.1 stating that a double soni shok is bound to be a rarefation shokan only be seen by studying numerial results for the nontrivial eigensolu-tions of the interation problem. The ase of a double soni shok will beaddressed in setion 3.3.8 after the disussion of the internal shok pro�les fora standard ompression and rarefation shok, setion 3.3.5 and 3.3.6, wherethe �ux funtion G[n] exhibits a quadrati nonlinearity (ase of positive or



78 CHAPTER 3. SHOCK REGULARIZATIONnegative nonlinearity, i.e. n = 2) and for a nonstandard soni shok (setion3.3.7, where G[n] is of third order in the pressure, i.e. n = 3), a ase of mixednonlinearity. Finally, setion 3.3.9 will deal with the ase of a split shok, aase of mixed nonlinearity where as in ase of a double soni shok as well
G[n] is of forth order in the pressure, i.e. n = 4.3.3.3 Numerial Results & Numerial MethodThe fundamental problem, see de�nition 3.2.1, is integrated using a �nitedi�erene sheme of seond order and by applying a marhing tehniquedownstream in X-diretion, the main �ow diretion, starting from an initialveloity pro�le whih is given by the �ow pro�le for a nontrivial eigensolutionfar upstream, f. setion 3.3.1.To this end, a new variable Ū := U − Y is introdued, whereas V in themomentum equation (3.14) is expressed by means of the ontinuity equation(3.13) via

V (X, Y ) = −
∫ Y

0

∂Ū

∂X
(X, Ȳ )dȲ .With the mapping of Y onto the omputational domain η ∈ [0, 1]

Y (η) = Ys

(
1

1 − αsη
− 1

1 + αsη

)with the saling parameters αs , Ys the representation of the numerial gridin the new oordinates (X, η) is introdued
(Xi, ηj) = (X0 + i∆Xi, j∆η) i ∈ N0, j = 0, . . .Njwhere the step size in X-diretion ∆Xi is adaptable and the step size in ηdiretion ∆η = 1/Nj is �xed. X0 represents some initial value whih is noloss of generality beause of the translation invariane of the eigensolutions.Spei�ally, values αs = 0.75 , Ys = 20.0 for the results for n = 2, 3 insetion 3.3.5, 3.3.6 and setion 3.3.7 and Ys = 10.0 for the results for n = 4



3.3. EIGENSOLUTIONS & INTERNAL SHOCK PROFILES 79in setion 3.3.8 and 3.3.9.The derivatives inX-diretion are resolved by means of a Crank-Niholsondisretization, making use of the known/old veloity pro�le evaluated up-stream at Xi−1 and the unknown/new veloity pro�le downstream at thenext grid point at Xi. For the derivatives in η-diretion entral di�erenesevaluated at the grid point ηj are used.The mathing ondition (3.17) is implemented as
A = Ū(X, Ymax = Y (1)).This is justi�ed beause of the exponential deay of Ū for Y ≫ 1 whihone infers from the asymptoti representation of the stream funtion Ψ for

Y ≫ 1, ∀X, see the disussion following equation (3.33).The results of the numerial alulations presented in the following se-tions 3.3.5, 3.3.6 and 3.3.7 have been obtained by hoosing the values Ymax =

68.57 and Ymax = 34.29 in the setions 3.3.8 and 3.3.9. The number of gridpoints in η-diretion Nj = 200.In the rare ases, where separation ours, the FLARE approximation,Reyhner & Flügge-Lotz, [67℄, has been applied whih yields reasonable goodresults as long as the region of separated �ow remains small, [2℄.3.3.4 Calulation of the Material Parameters for PP10Due to the anonial form of the fundamental problem, its solutions are in-dependent of spei� physial values for the parameters governing the han-nel geometry and working medium. However, it is instrutive to hoose ade�nitive physial setup for numerial experiments in order to verify thatthe proposed salings, whih are at the bottom of the interation problemonsidered here, do lead to sensible numerial values for the saled mate-rial parameters, Γ−∞, Λ−∞, N−∞ and Q, in ase of realisti working media,in�ow onditions and geometri dimensions.As an example medium for a possible andidate of a BZT �uid PP10,C13F22, has been hosen. Guardone & Argrow, f. [25℄, ommented on theexpeted thermal stability of PP10 and presented more reent material prop-



80 CHAPTER 3. SHOCK REGULARIZATIONCommerial Chemial M̃ θ̃c P̃c Zc θ̃b
c̃c

v,∞

R̃
n ωname formula (g/mol) (K) (atm) (K)PP10 C13F22 574 630.2 16.2 0.2859 467 78.37 0.5255 0.4833Table 3.1: Experimental data for PP10, [25℄. M̃ moleular weight, P̃c ritialpressure, θ̃c ritial temperature, Zc ritial ompressibility fator, θ̃b boilingtemperature at 1 atm, c̃cv,∞ spei� heat for dilute states (ρ → 0) at θ̃c, R̃spei� gas onstant, n exponent in (3.43), ω aentri fatorerties than those that an found in [16℄ or [17℄, see table 3.3.4. Anotherpromising lass of media suitable for experimental usage are Siloxanes, [12℄.The fundamental derivative is a seondary thermodynami quantity, i.e.it annot be aessed by diret measurements or, in ase of numerial al-ulations, partial derivatives of the thermodynami state variables p̃ and ρ̃have to be alulated for isentropi �ow onditions; see the de�nition of Γin equation (1.1). Therefore, a funtional representation of the thermody-namial equation of state (EOS) for PP10 has to be hosen. The seletionof an appropriate EOS, also in the light of the sare and inaurate dataaessible, is a vast �eld in itself, see [19℄, [25℄, [11℄, [12℄ or [95℄. For thepresented numerial alulations the Martin-Hou EOS, [53℄, has been ho-sen, sine the Martin-Hou EOS is reasonably realisti in prediting regions ofnegative Γ using a small number of experimental data and being appliablywith aeptable numerial e�orts.Sine the Martin-Hou EOS is only a thermal EOS, i.e. an inompleteform of an EOS in the sense that it provides a funtion for p̃ = p̃(θ̃, ρ̃)only, the thermodynami harater of the �uid under onsideration has to beompleted by providing a alori EOS

ẽ(θ̃, ρ̃) = ẽr +

∫ θ̃

θ̃r

c̃v,∞(τ)dτ +

∫ ρ̃

ρ̃r

(

θ̃
∂p̃

∂θ̃
(θ̃, ̺) − p̃(θ̃, ̺)

) d(1
̺

)

, (3.42)[53℄, [25℄, where ẽ denotes the spei� inner energy, the subsript r denotessome referene state and the subsript ∞ indiates that the quantity is eval-uated for dilute states, i.e. ρ̃ → 0. Following [88℄ the funtional form of
c̃v,∞(θ̃) in the neighborhood of the ritial temperature is approximated by
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c̃v,∞ ≃ c̃cv,∞

(

θ̃

θ̃r

)n

. (3.43)The numerial implementation of the EOS for the alulation of Γ and itshigher derivatives Λ and N follows the proedure applied by Colonna in [13℄,whih moreover gives a very omprehensive seletion of various thermody-nami expressions appliable for the alulation of seondary thermodynamiquantities.The dynami visosity has been alulated using the method of Chung,Ajlan, Lee & Starling, [9℄ for nonpolar �uids. The data used is listed intable 3.3.4. The method itself as well as the used data have to be takenwith aution, [36℄, in ase of dense gases, however, the main purpose here issimply to provide realisti values for the transport quantity.Finally, one has to make assumptions on the position of the interationregion in the hannel. For the numerial results presented in the followingsetions it has been assumed that the interation region is loated at L̃0 = 1mfrom the hannel entry. Furthermore, N1D = 1, see setion 2.2.1, being themost general situation.The properties of the undisturbed boundary layer needed in the a�netransformation (2.201), i.e. Rw, µw and U ′
20, are obtained by onsideringthe ompressible boundary layer equations in the limit of dense gases havinglarge relative spei� heats. In setion 2.1.2 it has been argued that inase of a plane parallel onstant �ow in the ore region of the hannel thetemperature and the pressure are onstant in the whole boundary layer.Therefore, Rw = 1 and µw = 1. The boundary layer �ow an be onsidered tobe inompressible and has a self-similar representation in the form of (2.103)leading to U ′

20 = f ′(0). f ′(0) = 0.332 an be alulated by numeriallysolving Blasius' equation (2.104) or by referring to the literature.Figure 3.5 shows the various pressure and density pairs at hannel entryused for the numerial alulations in the following setions.
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Figure 3.5: Redued pressure vs. redued density diagram for PP10 aord-ing to the Martin-Hou EOS. Red symbols mark the pressure and densityat hannel entry used in the numerial alulations. �: example 1, setion3.3.5, +: example 2, setion 3.3.6, ♦: example 3, setion 3.3.7, © : example4, setion 3.3.8, △: example 5, setion 3.3.9. n indiates the nonlinearity inthe pressure to be onsidered in the interation law.



3.3. EIGENSOLUTIONS & INTERNAL SHOCK PROFILES 833.3.5 Example 1: Compression ShokAs �rst example the internal pro�le of a ompression shok is onsideredhere. The seleted in�ow onditions and saled quantities are summed up intable 3.2. The hosen in�ow pressure and the in�ow density are depited inthe pressure vs. density diagram for PP10 shown by �gure 3.5.On the left hand side in �gure 3.6 the negative perturbation of the mass�ux density G[2] vs. the pressure P is shown. As stated in the shok admissi-bility riteria theorem 3.1.1, the pressure before and after the shok in invisid�ows, P b and P a, are onneted by the Rayleigh line. The arrow indiates thetransition from super- to subsoni as required by the admissibility riteria.Soni �ow onditions are obtained at P = 1 where G[2] exhibits an extremum.A shok disontinuity in the pressure is skethed to the right in �gure 3.6indiated by the dashed lines. Interestingly enough, the shok disontinuitypredited by the theory of invisid �ows resolves into a smooth transitionfrom super- to subsoni the moment the interating boundary layers at thewall are onsidered in the model as is shown for the pressure, displaementthikness and wall shear stress distribution in �gure 3.6. Moreover, �gure3.6 immediately gives an interpretation for the physial mehanism of shokregularization enountered. If the distribution of the displaement thikness
−A would be a given funtion of X, then the interation law (3.18) would de-sribe the invisid ore region �ow of dense gases through a nozzle of variablethroat area, ompare setion 2.1.1 or equation (2.75). However, in ontrastto a nozzle of �xed geometry the �ow in the boundary layers at the wall andthus −A has the possibility to adapt to the loal pressure ating in the inter-ation region. Sine the pressure in a ompressive pseudo-shok is inreasingmonotonously, dPdX ≥ 0, the �ow passing through the upper dek is deeler-ated throughout the interation region, see (2.180). This is brought about bya redution of the e�etive throat area, i.e. by an inrease of the disturbaneof the displaement thikness, d(−A)dX > 0, in the part of the upper dek wherethe �ow is supersoni. A smooth transition of the upper dek �ow throughthe soni state haraterized by P = 1 an only be e�eted if at the sametime the e�etive throat exhibits an extremum, i.e. d(−A)dX = 0, see �gure 3.6.
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p0/pc ρc/ρ0 θ0/θc ũ0 µ̃0 K Γ0 Re(m/s) (Pas)
1.0268 1.240 1.00490 28.1 3.67 10−5 < 0 1.00 3.88 108

ǫ3 ∆3 δ3l δ3m H3u Γ−∞ Q1

0.166 0.00455 8.42 10−6 5.08 10−5 0.0112 1.00 4.26Table 3.2: Seleted in�ow onditions at hannel entry and resulting saledparameters for the interation problem. Q1 = Q(H30 = 1).
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3.3. EIGENSOLUTIONS & INTERNAL SHOCK PROFILES 87be ahieved, e.g., by varying the saled height of the hannel H30, (2.161).By reduing Q, i.e. reduing the strength of the regularizing e�et of visousinvisid interation, the pressure pro�le more and more seems to approahthe disontinuous solution of a shok, again depited by the dashed lines in�gure 3.8. However, this fores an inreasingly stronger reation of the lowerdek �ow as is revealed by inspeting the plot of the displaement thiknessin �gure 3.8. Beause of the destabilizing e�et of the unfavorable pressuregradient ating in a ompressive shok pro�le, i.e. dPdX ≥ 0, on the boundarylayer �ow the minimum of the wall shear stress dereases with inreasingsteepness of the pressure pro�le. Finally, the �ow starts to separate loally,
τw ≤ 0, the beginning of whih is shown in 3.8 for a small region of separation.3.3.6 Example 2: Rarefation ShokAs seond example the internal pro�le of a rarefation shok has been alu-lated. The seleted in�ow onditions and saled quantities are summed upin table 3.3. The hosen in�ow pressure and the in�ow density are depitedin the pressure vs. density diagram for PP10 shown by �gure 3.5. As an beobserved the �ow onditions lie in the thermodynami region Γ < 0, ase ofnegative nonlinearity.On the left hand side in �gure 3.9 the negative perturbation of the mass�ux density G[2] vs. the pressure P is shown being stritly onave in thease of negative nonlinearity. Appliation of the shok admissibility riteriain theorem 3.1.1 indiates that a rarefation shok is the admissible type ofshok for this �ow on�guration as it leads to a transition from super- tosubsoni �ow onditions. As before the shok disontinuity in the pressureis skethed to the right in �gure 3.9 indiated by the dashed lines. Again,

p0/pc ρc/ρ0 θ0/θc ũ0 µ̃0 K Γ0 Rem/s Pas
0.949 1.710 0.997 35.5 3.00 10−5 < 0 −0.115 4.36 108

ǫ3 ∆3 δ3l δ3m H3u Γ−∞ Q1

0.133 0.0235 2.014 10−5 1.52 10−4 0.0645 −1.00 24.9Table 3.3: Seleted in�ow onditions at hannel entry and resulting saledparameters for the interation problem. Q1 = Q(H30 = 1).
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p0/pc ρc/ρ0 θ0/θc ũ0 µ̃0 K Γ0 Λ0 Re(m/s) (Pas)
0.914 1.917 0.994 40.2 2.80 10−5 < 0 −0.0512 −0.918 4.71 108

ǫ3 ∆3 δ3l δ3m H3u Γ−∞ Λ−∞ Q1

0.215 0.00997 9.93 10−6 4.61 10−5 0.0999 −1.00 −0.375 4.48Table 3.4: Seleted in�ow onditions at hannel entry and resulting saledparameters for the interation problem. Q1 = Q(H30 = 1).



3.3. EIGENSOLUTIONS & INTERNAL SHOCK PROFILES 91

PSfrag replaements

P

−A

M>1M<1=1.0=0.2

X

0
02000

5000 15000
8000

10000 20000
-1-2-3-4 −A ≈ 3.10 X−1/3

P ∼ −4 + 3.52 X−1/6

Figure 3.12: Plot of the pressure P and the displaement thikness −A for
Q = 1, S−∞ = 0 and omparison of the asymptoti behavior far downstream
X ≫ 1 predited by equation (3.39) and (3.41).�ow regime, resulting in a non-onvex �ux funtion. The admissible rarefa-tion shok in the situation under onsideration results in a transition froma supersoni �ow state to a soni state, i.e. M = 1. As before, the shokdisontinuity in the pressure is skethed on the right hand side in �gure 3.11indiated by the dashed lines. And again, the shok disontinuity resolvesinto a smooth internal shok pro�le onneting the two states before and afterthe interation region haraterized by P b = 0 and P a = −4. The in�ueneof the oupling parameter Q on the steepness of the internal shok pro�leshas already been disussed in the previous setion and no new phenomenonsenter here. More interesting is the algebrai deay of the pressure in ase ofa shok terminating in a soni state, i.e. G′

[n](P
a) = 0, whih is even weakerthan in the ase of a shok terminating at a subsoni state, i.e. G′

[n](P
a) 6= 0.As in the latter ase, see �gure 3.7, �gure 3.12 shows a reasonable good agree-ment of the leading order term of the pressure distribution far downstreampredited by theory for a shok ending in a soni state, equation (3.39) and(3.41), and the numerial results. This weaker algebrai deay results in aninreased length of the shok pro�le as an be seen by omparing e.g. �gure3.7 and 3.12.Alternatively to a shok onneting supersoni �ow upstream with soni



92 CHAPTER 3. SHOCK REGULARIZATION�ow downstream onsidered so far, a soni shok an equally well onnetsoni �ow upstream with subsoni �ow downstream in aordane with theshok admissibility riteria theorem 3.1.1 sine the ondition [M ] < 0 issatis�ed in the latter ase just as well. Evaluation of the exponent (3.24)governing the exponential growth of the �ow quantities far upstream, (3.19),results in κ = 0 beause of G′
[3](P

b) = 0 meaning that the Ansatz of Lighthillyields the trivial eigensolution in this ase. On the other hand, there alwaysexists a nontrivial eigensolution for eah supersoni �ow state upstream nomatter how lose it is to the soni �ow state. Consequently, the internalshok pro�le of a soni shok originating in a soni �ow an be seen as thelimiting ase of internal shok pro�les originating in supersoni �ow when
M b → 1+. This will be used and shown in the next setion dealing with theinternal shok pro�le of a double soni shok.3.3.8 Example 4: Double Soni ShokAs fourth example the internal pro�le of a double soni shok has been al-ulated. The seleted in�ow onditions and saled quantities are summed upin table 3.5. The hosen in�ow pressure and the in�ow density are depitedin the pressure vs. density diagram for PP10 in �gure 3.5.On the left hand side in �gure 3.3.8 the negative perturbation of themass �ux density G[4] vs. the pressure P is shown. Similar to the ase of asimple soni shok a double soni shok is only possible in the ase of mixednonlinearity, if Γ hanges its sign in the onsidered �ow regime, resulting ina non-onvex �ux funtion. For the existene of a simple soni shok a singlehange of the sign of Γ in the �ow region is su�ient. However, a doublesoni shok in priniple an only exist if Γ hanges sing twie resulting in
p0/pc ρc/ρ0 θ0/θc ũ0 µ̃0 K Γ0 Λ0 N0 Re(m/s) (Pas)
0.942 1.850 1.00023 40.1 2.87 10−5 < 0 0.0134 −0.455 6.48 4.75 108

ǫ3 ∆3 δ3l δ3m H3u Γ−∞ Λ−∞ N−∞ Q1

0.264 0.0184 1.21 10−5 4.59 10−5 0.514 −1.00 −0.434 0.0761 7.08Table 3.5: Seleted in�ow onditions at hannel entry and resulting saledparameters for the interation problem. Q1 = Q(H30 = 1).
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94 CHAPTER 3. SHOCK REGULARIZATIONa mass �ux density whih is represented by a polynomial of fourth orderin the pressure, i.e. n = 4. Consulting �gure 3.5, the double soni shokoriginates in a thermodynami region in the pressure vs. density diagramlose to the point where an insentrope touhes the transition line Γ = 0.Sine the seond derivative of Γ, i.e. N , has to be positive in the regionof interest, f. e.g. [35℄, the �ux funtion G[4] always takes a shape similarto the example depited in �gure 3.3.8 in the sense that G[4](P ) → +∞for P → ±∞, see equation (2.2.2). As has been disussed in the previoussetion, an eigensolution representing the internal shok pro�le degeneratesto the trivial eigensolution if the shok originates at soni �ow onditions.Still, the internal shok pro�le is the limiting ase for the internal shokpro�les originating in supersoni �ow when M b → 1+ for whih nontrivialeigensolutions exist no matter how lose the �ow onditions upstream areto a soni �ow state. This fat has been used in �gure 3.3.8. Again, thedouble soni shok is skethed by the dashed lines in the plot of the pressuredistribution to the right. The �ow onditions upstream of the interationregion are adjusted by varying the parameter QS−∞ in the interation lawand thus shifting the Rayleigh lines from right to left by a distane −QS−∞from the origin, see left hand side of �gure 3.3.8. The limiting ase of adouble soni shok would be obtained for QS−∞ = QS−∞,max, see �gure3.3.8. Presribing a value QS−∞ 6= 0 is idential to hanging the heightof the hannel and the in�ow onditions aording to the way desribed insetion 3.2; see �gure 3.2 in partiular.Considering the various Rayleigh lines in �gure 3.3.8 it is evident thatthe overall shok strength inreases whilst approahing the limiting doublesoni shok. On the other hand, onsidering the plot of the internal pressurepro�les, the length of a shok pro�le, i.e. the region of signi�ant variation ofthe pressure, is inreasing aordingly. Taking a look at the formulas for theasymptoti behavior far up- and downstream immediately reveals that boththe exponent in (3.19) and the oe�ient in (3.40) are beoming suessivelysmaller for M b → 1+, i.e. G′
[n] → 0− and thus explaining the inreasinglength of the internal shok pro�les. This phenomenon of inreasing shoklength for inreasing shok strength already has been reported in a di�erent



3.3. EIGENSOLUTIONS & INTERNAL SHOCK PROFILES 95ontext by Cramer & Crikenberger, [18℄, who studied internal shok pro�lesresulting from a lassial thermo-visous regularization.Moreover, an admissible double soni shok is bound to be a rarefationshok in aordane with the shok admissibility riteria for the invisid ase,theorem 3.1.1. This an be onluded from inspetion of �gure 3.3.8 and byadditionally onsidering the arguments about the possible shapes of a �uxfuntion G[4] addressed in the beginning of this setion. A double sonishok has to onnet two separate extrema of of G[4] and, sine G[4] → ∞for P → ±∞ beause of N > 0, these two extrema have to be minima. Theremaining extremum of G[4] is a maximum and has to lie in-between. Let
P 1
min > P 2

min haraterize the two separate minima and Pmax the maximum.Then G′
[4] < 0 for P ∈ {P 1

min, Pmax} and G′
[4] > 0 for P ∈ {Pmax, P 2

min}and, onsequently, the internal shok pro�les used to onstrut the limitingsolution of a double soni shok an orrespond to rarefation shoks onlyand thus a double soni shok likewise has to be a rarefation shok.3.3.9 Example 5: Split ShokAs �fth and last example the internal pro�le of a split shok has been alu-lated. The seleted in�ow onditions and saled quantities are summed upin table 3.6. The hosen in�ow pressure and the in�ow density density aredepited in the pressure vs. density diagram for PP10 in �gure 3.5.On the left hand side in �gure 3.3.9 the negative perturbation of the mass�ux density G[4] vs. the pressure P is shown. similar to the ase of a doublesoni shok a split shok is possible only in the ase of mixed nonlinearitywhere Γ hanges its sign twie in the onsidered �ow regime, i.e. n = 4,resulting in a non-onvex �ux funtion whih is represented by a polynomial
p0/pc ρc/ρ0 θ0/θc ũ0 µ̃0 K Γ0 Λ0 N0 Re(m/s) (Pas)
0.945 1.84 1.00042 39.8 2.88 10−5 < 0 0.0110 −0.407 6.90 4.72 108

ǫ3 ∆3 δ3l δ3m H3u Γ−∞ Λ−∞ N−∞ Q1

0.264 0.0184 1.21 10−5 4.59 10−5 0.514 −1.00 −0.563 0.141 6.44Table 3.6: Seleted in�ow onditions at hannel entry and resulting saledparameters for the interation problem. Q1 = Q(H30 = 1).
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3.3. EIGENSOLUTIONS & INTERNAL SHOCK PROFILES 97of fourth order in the pressure. The Rayleigh line of the split shok is givenby the dashed line whih touhes the �ux funtion G[4] at a soni point atthe distane QS−∞,max from the origin. Again, the split shok an be inter-preted as the limiting ase for simple shoks for QS−∞ → QS−∞,max. The�ow in the upper dek region has to pass through three soni sates, see �gure3.3.9, while the overall shok leads to a transition from super- to subsonionditions. The three soni states result in three extrema in the distribu-tion of the disturbane of the displaement thikness −A. The lower dek�ow generates a visous Laval nozzle whih onsists of two throats and oneanti-throat in order to allow a smooth aeleration of the upper dek �owthrough the di�erent Mah number regimes. Taking a look at the alulatedpressure distribution of internal shok pro�les for various values of QS−∞on the right hand side in �gure 3.3.9 reveals that the shok splitting an al-ready be antiipated in the pressure pro�les for vales of QS−∞ < QS−∞,max.After the upper dek �ow has passed through the �rst soni state resultingin a passage from super- to subsoni �ow, the pressure enters a plateau re-gion while passing the seond soni state as the the �ow is aelerated fromsub- to supersoni again. Finally, the then supersoni �ow passes the thirdsoni state and the �ow beomes subsoni again. The last transition fromsupersoni to subsoni onditions results in a seond steepening of the shokpro�le. This phenomenon of impending shok splitting beomes more andmore pronouned suessively separating the two regions of largest asent inthe pressure pro�le for QS−∞ → QS−∞,max. The existene of an internalshok pro�le infers that indeed two shoks forming a split shok may oexistnext to eah other in purely invisid �ow throughout this limited thermody-nami region as predited by the shok admissibility riteria . Interestinglyenough, similar to the ase of a double soni shok disussed before, thisphenomenon of impending shok splitting has also been observed �rst byCramer & Crikenberger, [18℄, for internal shok pro�les resulting from athermo-visous regularization.





Chapter 4Visous Laval NozzleThe �ow �eld resulting form visous invisid interations generated by thepresene of a small surfae mounted hump within the transoni �ow �eldin a slender hannel, f. �gure 4.1, will be disussed. Considering the en-terline symmetry of the problem this surfae mounted hump in fat formsa small nozzle. The visous invisid interations shall be desribed by theproblem previously formulated in de�nition 2.2.1, i.e. the dimensions of thehannel and the surfae mounted hump shall be onsistent with the lengthsales proposed in the formulation of the distinguished limit for this Re num-ber regime, f. setion 2.2, and the invisid �ow in the upper dek of theinteration region is one-dimensional to the leading order.Setion 4.2 will disuss the in�uene of the interation between the steady�ow �eld developing in the ore region of suh slender nozzles and the visousboundary layers at the walls highlighting the similarities and di�erenes topurely invisid one-dimensional theory of Laval nozzles. In the major part ofthis hapter the working media will be onsidered to be perfet gas like, i.e.
Γ > 1. The onversion of subsoni �ow to supersoni �ow by means of Lavalnozzles is of importane in tehnial appliations and taking into aount thetrend towards miniaturization the presented solutions will give a qualitativedesription of phenomena expeted to be enountered in suh �ow devieswhere the in�uene of the visous boundary layers at the walls on the invisid�ow in the ore region no longer an be onsidered to be an e�et of higher99
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Figure 4.1: Small surfae mounted hump of height λ̃ in a slender hannel.order as it would be the ase in lassial hierarhial boundary layer theory.Inidentally, an operating mode lose to hoking onditions, that is loseto �ow onditions for whih no stationary solutions exist, will be identi�edfor suh slender nozzles onneted with the appearane of pseudo-normalshoks, f. e.g. [54℄, in the di�user part of the nozzle. These pseudo-normalshoks are representing regularized versions of weak normal shoks knownfrom purely invisid Laval nozzle theory. If the strength of suh a pseudo-shok is su�iently large, then the boundary layer �ow at the walls is boundto separate. It is known from observations that suh shok indued �owseparation in transoni di�users frequently is onneted with the ourreneof self sustained shok osillations, [7℄, [27℄, [54℄, [55℄, [66℄, [60℄, [93℄. Theproblem of visous invisid interations in slender hannels stated in de�ni-tion 2.2.1 poses a simpli�ed model apable of desribing the essential featuresto be expeted at the basis of the ourrene of shok osillations, namelythe interation of the (pseudo-) shok and the separated �ow in the wall at-tahed boundary layer. The reation of an initially steady interating nearlyhoked �ow �eld in a slender nozzle to unsteady disturbanes will be in-vestigated in setion 4.3. Following [54℄ the transoni di�user �ow an belassi�ed into three types with respet to shok osillations: no separation�ow, shok-indued �ow (the separation being triggered at the shok root)and pressure-gradient-indued separation �ow. The �rst ase will be dis-ussed in setion 4.3.2 and the seond in setion 4.3.3. The third one willnot be overed in the sope of this treatise.



4.1. NUMERICAL METHOD 1014.1 Numerial Method4.1.1 Stationary ProblemThe fundamental lower dek problem equations (2.207) to (2.213) and theinteration law (2.214) in de�nition 2.2.1 are disretized by means of �nitedi�erenes of seond order. In the next step, the resulting system of d alge-brai equations
F(s) = 0 F, s ∈ Rd (4.1)with s the d-dimensional solution vetor is solved by a variant of the PowellHybrid algorithm, e.g. [63℄, whih has been adapted and used by R. Szeywerthfor the numerial treatment of other triple dek problems, [84℄. The sparsityof the Jaobian DsF of F is onveniently exploited by the implementation ofthe sparse solver routine PARDISO, [70℄, [68℄, [69℄. To this end, the physialdomain (X, Y ) ∈ R×R+ is mapped onto the bounded omputational domain

(ξ, η) ∈ [−1, 1] × [0, 1/αs] . The mapping ξ 7→ X(ξ) ∈ C1([−1, 1]) is soughtin the form
X(ξ) =







X−(ξ) − 1 ≤ ξ < ξ−s

Xm(ξ) ξ−s ≤ ξ ≤ ξ+
s

X+(ξ) ξ+
s < ξ ≤ 1introduing three funtions X−, X+ and Xm
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102 CHAPTER 4. VISCOUS LAVAL NOZZLEThe parameters m+ and m− are hosen to aount for the far up- and down-stream behavior of the numerial solution. Most important of all, Xm is alinear mapping of an interior region [X−
s , X+

s ] of the physial domain onto aninterior region [ξ−s , ξ+
s ] of the omputational domain. The ompliated formof X− and X+ originates from the fat that X(ξ) ∈ C1([−1, 1]) whih resultsin the requirements X ′
−((ξ−s )−) = X ′

m((ξ−s )+) and X ′
m((ξ+

s )−) = X ′
+((ξ+

s )+).The map η 7→ Y (η) ∈ C1([0, 1/αs]) is sought in the form of
Y (η) = Ys

(
1

1 − αsη
− 1

1 + αsη

)

,where the parameters Ys and αs are hosen to properly aount for the be-havior of the solution in Y -diretion. The representation of the uniformnumerial grid in the new oordinates (ξ, η) is introdued
(ξi, ηj) = (−1 + i∆ξ, j∆η) i = 0 . . . Ni, j = 0, . . .Nj − 1where the step size in ξ-diretion and in η diretion are given by ∆ξ = 2/Niand ∆η = 1/Nj respetively. For the numerial treatment of the fundamentalproblem the transformation Ū = U−Y is introdued and V in the momentumequation (2.208) is expressed by means of the ontinuity equation (2.207)
V = −

∫ Y

0

∂Ū

∂X
(X, Ȳ )dȲ = −

∫ η

0

1

X ′(ξ)

∂Ū

∂ξ
(ξ, η̄)Y ′(η̄)dη̄. (4.2)The derivatives in ξ-diretion are resolved by means of a Crank-Niholsondisretization, i.e. ∂ • /∂ξ ≈ (•i,j − •i−1,j)/∆ξ, if Ui,j = Yi,j + Ūi,j > 0,and by means of bakward �nite di�erenes of seond order, i.e. ∂ • /∂ξ ≈

(3 •i,j −4 •i−1,j +•i−2,j)/2∆ξ in regions of separated �ow, i.e. Ui,j = Yi,j +

Ūi,j < 0. Numerial experiments showed that the disretization based on aCrank-Niholson approah is superior to a disretization based on bakwarddi�erenes in regions without �ow separation, also in the light of a reduedomputational main memory onsumption. However, it has been found thatthe Crank-Niholson disretization is not always su�ient in regions of larger�ow separation indiated by the ourrene of numerial osillations. It shall



4.1. NUMERICAL METHOD 103be mentioned that the initial strategy of formulating the problem by means ofthe stream funtion has been abandoned in favor of the desribed proedurebeause of the observed numerial problems in regions of �ow separation. Forthe disretization of derivatives in η-diretion entral di�erenes evaluated atthe grid point ηj are used and for the evaluation of the integral in (4.2) thetrapezium rule is applied. The mathing ondition (2.213) is implemented as
A = Ū(X, Ymax = Y (1)). This is justi�ed beause of the exponential deay of
Ū for Y ≫ 1 whih one infers by inspetion of the asymptoti representationof the stream funtion Ψ for Y ≫ 1, ∀X, see the disussion following equation(3.33). The no slip ondition at the wall requires Ūi,0 = 0 for i = 0, . . . , Niand the mathing with the undisturbed boundary layer upstreams results inthe onditions Ū0,j = 0 for j = 0, . . . , Nj − 1.The disretization of the interation law for steady upper dek �ow, i.e.
∂P/∂T ≡ 0, relies on the formulation in di�erential form (2.214) and noton the integrated form (3.18), sine the formulation (2.214) will be used inthe numerial adaption of a linear stability analysis undertaken for seletedsolutions to the stationary problem in setion 4.3.3. Equation (2.214) isrewritten asddX (

G[n](P ) − Q(A − S)
)

=
1

X ′(ξ)

ddξ (G[n](P ) − Q(A − S)
)

= 0 (4.3)and afterwards approximated by Gi = 0 ∀i with
Gi :=







1
X′

i

(G[n](Pi+1)−Q(Ai+1−Si+1))−(G[n](Pi−1)−Q(Ai−1−Si−1))

2∆ξ
i = 1, . . . , Ni − 1

1
X′

i−1/2

(G[n](Pi)−Q(Ai−Si))−(G[n](Pi−1)−Q(Ai−1−Si−1))

∆ξ
i = Ni (4.4)where X ′

i−1/2 = X ′(−1 + (i − 1/2)∆ξ).For the numerial results presented in this hapter -unless otherwisestated- the number of grid points in ξ- and η-diretion are Ni = 1400 and
Nj = 100 respetively, ξ−s = 100/Ni, ξ+

s = 1100/Ni, m− = m+ = 1.3,
X−
s = −3, X+

s = 3, Ys = 0.2, αs = 0.98, Ymax ≈ 9.9.



104 CHAPTER 4. VISCOUS LAVAL NOZZLE4.1.2 Unsteady ProblemIt is important to note that the numerial sheme for the interation lawin unsteady form, (2.214), is developed having in mind a stritly onvex oronave funtion G[n], i.e. n = 2. To this end, a method of line, [71℄, is usedfor the disretization of the partial di�erential equation. In the �rst step thedisretization sheme for the spatial oordinate whih has been desribed inthe previous setion, equations (4.3) and (4.4), and whih is of seond orderin spae is applied to the expression ∂
∂X

(
G[n](P ) − Q(A − S)

) in equation(2.214) yielding the following system
∂Pi
∂T

= Gi(T ) i = 1, . . . , Ni (4.5)of Ni ordinary equations. The time-integration from Tn = n∆T to Tn+1 =

(n + 1)∆T of the obtained system of ODEs with the known solution at Tnas initial ondition then is performed by means of the TR-BDF2 method,f. [31℄, [50℄, an one-step two staged method being of seond order in time.The TR-BDF2 method is L-stable, f. [31℄, and has been developed for thetime integration of a numerially sti� system of ODEs. That suh a sti�time integration is neessary has been indiated by preliminary numerialexperiments performed with a numerial sheme based on an impliit Lax-Wendro� sheme. The idea behind an impliit Lax-Wendro� sheme has beento think of the interation law (2.214) as to be onsisting of a �hyperbolipart� or �kineti wave equation part�, i.e. −∂P
∂T

+ ∂
∂X

G[n](P ), and a �soureterm� ∂
∂X

Q (A − S). Using the Lax-Wendro� approah in order to derivethe numerial sheme for equation (2.214), [50℄, one �nally obtains a shemeof seond order whih an be written in the form of the lassial impliitLax-Wendro� sheme for the �hyperboli part� extended by the numerialrepresentation of the �soure term�. The numerial results, however, indiatethat disturbanes alulated by this method are traveling at wrong �nitespeeds despite the e�ort to use a onservative formulation for the hyperbolipart of the interation law in the �rst plae, f. the disussion of the linearizedproblem in setion 4.3.1 as well as f. �gure 4.8(a). This phenomenon iswell known in the literature dealing with onservative numerial shemes for



4.1. NUMERICAL METHOD 105hyperboli PDEs with soure terms, f. [48℄ and [50℄, hinting that the soureterm is sti� indeed.The �rst stage of the TR-BDF2 method onsists out of the trapezoidalstep
P n+τ
i − P n

i = 1
2
τ∆T

(
Gn
i + Gn+τ

i

)
i = 1, . . . , Ni (4.6)where the supersripts n and n + τ has the meaning evaluated at the time

n∆T and (n + τ)∆T , respetively. ∆T is the hosen time step whih is kept�xed throughout the alulations. In general τ ∈ (0, 1) but in order to obtainthe property of L-stability for the overall time-integration τ has to be hosen
τ = 2 −

√
2, f. [31℄. The governing equations, f. (2.207) to (2.213), forthe quasi-steady lower dek problem for the time Tn+τ have to be solved asa side-ondition

Rd−Ni ∋ FLD(sn+τ ) = 0 sn+τ ∈ Rd (4.7)for equations (4.6) where the system of algebrai equations given by FLD isobtained by straightforward appliation of the �nite-di�erene sheme devel-oped for the steady lower dek problem, see previous setion. Together withthe Ni algebrai equations from (4.6) this results in a system of d algebraiequations for d unknowns. In the seond stage of the TR-BDF2 sheme bak-ward di�erenes of seond order are used for the time disretization of (4.5)making use of the �old� solutions at the time Tn and the intermediate time
Tn+τ yielding

τ(2 − τ)P n+1
i − P n+τ

i + (1 − τ)2P n
i = τ(1 − τ)∆TGn+1

i i = 1, . . . , Ni.(4.8)The system of equations (4.8) again is solved together with
Rd−Ni ∋ FLD(sn+1) = 0 sn+1 ∈ Rd (4.9)from whih the solution at the �new� time Tn+1 is obtained.



106 CHAPTER 4. VISCOUS LAVAL NOZZLEFinally, it shall be noted that the TR-BDF2 sheme an be rewrittenin the form of a onservative �nite-volume sheme despite the fat that itoriginally has been derived by a method of lines and �nite di�erenes.4.1.3 Numerial Homotopy MethodIn general, the problem under onsideration will depend on several parame-ters. In the following only one of these shall be essential to the problem, i.e.the height λ of a surfae mounted obstale, while the others are kept �xed.Consequently the numerial sheme and the resulting system of algebraiequations (4.1) will depend on λ as well, i.e. F(s; λ) = 0. If the height of thesurfae mounted obstale is small, then the trivial solution of the interationproblem Ū ≡ V ≡ 0 will be a good initial guess for the numerial equationsolver used and onvergene is indeed obtained after several steps. For larger
λ no onvergene an be obtained, therefore a numerial homotopy strategy,f. e.g. [76℄, [82℄, is adopted. The sought after solution sk of F(s; λk) = 0is onsidered to be part of a family of solutions s(λ) of F(s; λ) = 0. If thesolutions of two neighboring problems F(s; λi−1) = 0 and F(s; λi) = 0 areknown an initial guess si+1,est for the solution of F(s; λi+1) = 0 an be on-struted by tangential updating, see �gure 4.2(a). If the onstruted initialguess is good enough to obtain a new solution for λi+1 the desribed updatingproedure an be used to obtain a solution for λi+2 and so forth until λk isreahed. One shortoming of this method is that it fails if a turning pointis enountered as has been depited in �gure 4.2(a) or if the solution is verysensitive to variations of the parameter, i.e. even a small variation of λ leadsto a large hange in the solution. Therefore, the parameter λ is onsideredto be a variable itself and thus part of the solution . The system of equations
F(s, λ) = 0 has to be supplemented by an additional equation f(s, λ) = 0 inorder to lose the problem. The new problem

Rd+1 ∋ F̄ (̄s) = F̄ ((s, λ)T ) =







F(s, λ) = 0

f(s, λ) = 0
(4.10)



4.2. STEADY FLOW IN �VISCOUS� LAVAL NOZZLES 107an be solved in the manner previously desribed. The phase ondition
f(s, λ) = 0 is hosen as

f(s, λ) = ‖(s− si, λ − λi)‖ − ∆λi = 0 (4.11)meaning that the distane in the phase spae ∆λi between the new solution
s̄i+1 and the old solution s̄i is presribed, ompare �gure 4.2(b). ∆λi is hosenaording to the method of Seydel

∆λi = ∆λi−1 min(2, iterop

iter
)with iter and iterop the number of the iterations used to obtain the previoussolution and some preset optimal number of iterations respetively.PSfrag replaementss
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(b)Figure 4.2: Shemati sketh of numerial homotopy method. (a) Homotopymethod with presribed �xed new parameter value λi+1. (b) Homotopy on-tinuation method. New parameter value λi+1 is part of the solution. si+1,estinitial guess onstruted by tangential updating, T turning point.4.2 Steady Flow in �Visous� Laval NozzlesThe subsoni near ritial �ow regime in a slender hannel is a�eted bymeans of a small surfae mounted hump given by the relation, already written



108 CHAPTER 4. VISCOUS LAVAL NOZZLEin lower dek salings,
S(X) =







0 2 < |X|
λ
2
(1 + cos(πX/2)) |X| ≤ 2.

(4.12)The surfae mounted hump forms a small Laval nozzle onsisting of a on-verging, i.e. S ′(X) > 0 for X < 0, and a diverging part, i.e. S ′(X) < 0 for
X > 0, f. �gure 4.1. The �ow medium under onsideration shall be ideal gaslike, i.e. Γ > 1. The orresponding problem of visous invisid interationstated in de�nition 2.2.1 for steady �ows is solved numerially, f. setion4.1.1, for di�erent heights λ of the surfae mounted hump using the numerialhomotopy ontinuation method desribed in setion 4.1.3. The parameter ngoverning the nonlinearity of the �ux funtion G[n], (2.215), is taken to be
2, beause of the premise of Γ > 1, and K > 0 sine the onoming �ow inthe ore region of the nozzle is subsoni, and Q entering the interation lawis taken to be 1. Consequently, supersoni upper dek �ow is enounteredfor P < −1, f. (2.216). The �ow onditions far upstream are given by
P = A = Ū = 0 for X → −∞. Evaluation of expression (3.24) immediatelyreveals that for subsoni onoming ore region �ow no nontrivial eigensolu-tions an exist besides the trivial solution. Hene the presene of the surfaemounted hump is not felt upstream of the obstrution, i.e. for X < −2. Fur-thermore, there exist two possible undisturbed �ow sates downstream of theinteration region whih are onsistent with the asymptoti far downstreambehavior of the solution of the interation problem predited by (3.40) and(3.39). The one given by P = A = Ū = 0 whih is idential with the onom-ing far upstream �ow onditions indiates subsoni and the other given by
P = −2 and A = Ū = 0 indiates supersoni �ow in the ore region of thenozzle downstream of the interation region. Note that equations (3.40) and(3.39) derived for the asymptoti downstream properties of eigensolutionsof the interation problem also apply to the onsidered situation sine thesurfae mounted hump vanishes for |X| ≫ 1, i.e. S(X) ≡ 0 for |X| > 2.The numerial results for the perturbation of the pressure P , the part ofthe negative displaement thikness evoked by the visous lower dek reation
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110 CHAPTER 4. VISCOUS LAVAL NOZZLEonly −A = −A⋆ − S, see equation (2.206), and the wall shear stress τw areshown in �gure 4.3. For small heights of the surfae mounted hump, f. thedistribution of the pressure for λ1 and λ2 in �gure 4.3(a), the upper dek �owremains subsoni in the whole interation region very muh alike as in thelassial ase of invisid one-dimensional �ow of a perfet gas like medium ina Laval nozzle with a minimum throat area larger than the ritial minimumthroat area, see e.g. [33℄. Initially the onoming upper dek �ow is aeleratedin the onverging part of the nozzle. However, unlike to lassial theory wherethe �ow immediately deelerates downstream of the minimum throat area theinterating �ow in the ore region of the nozzle is aelerating still in the �rstpart of the diverging part of the nozzle before �nally deelerating bak to theundisturbed subsoni �ow state P = A = Ū = 0. The reason, of ourse, isto �nd in the visous invisid interation taking plae between the invisid�ow in the upper dek and the visous boundary layers at the walls. Theinterating boundary layers are forming a �visous� Laval nozzle meaningthat the e�etive �ow area felt by the upper dek �ow does not onsist ofthe �geometri� ontribution S alone but also of a visous part −A, f. �gure4.3(b), resulting form the lower dek reation to pressure variations in theupper dek. This is expressed by the relation −A⋆ = −A + S, f. (2.206),for the overall displaement thikness and also by the interation law (2.214)for steady �ow
G′

[n](P ; K, Γ, Λ, N)
dPdX = Q

dA⋆dX = Q
ddX (A − S). (4.13)Figure 4.5(a) again shows the distribution of P for the ase of λ2, but nowtogether with S, −A and −A⋆. The �ow in the lower dek is aelerated aslong dP/dX < 0 and by ontinuity arguments this results in a thinning ofthe boundary layer, i.e. −A < 0, reduing the ontribution of the surfaemounted hump on the displaement e�et and thus delaying the point ofdeeleration into the beginning of the diverging part of the geometri nozzle.The e�etive shape of the �visous� nozzle is given by −A⋆. The loation ofthe minimum of the e�etive throat area now orresponds with the minimumof the pressure distribution, as one would have guessed by appliation of
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112 CHAPTER 4. VISCOUS LAVAL NOZZLEsupersoni �ow, but afterwards smoothly deelerated to subsoni �ow again.Suh a solution has no ounter part in lassial Laval nozzle theory. Figure4.5() reveals that the interating boundary layers are forming a �visous�nozzle onsisting out of two throats and one anti-throat and that a loal su-personi �ow regime is on�ned in between the two �visous� throats. Thetwo soni states are loated at the minima of the two �visous� throats andthe minimum of P is loated at the maximum of the �visous� anti-throat.This immediately follows from equation (4.13), sine in ase of an extremumof A⋆, i.e dA⋆/dX = 0, P takes an extremum, i.e. dP/dX = 0, if the �ow isnot soni, i.e. G′
[2] 6= 0, or otherwise dP/dX an be 6= 0 at a soni state, i.e.

G′
[2] = 0.Furthermore, it is found that the height of the surfae mounted humpannot be inreased above a ertain ritial value λc above whih no steadysolutions an be found. Very muh alike the ase of an ideal Laval nozzlein lassial theory, f. solution branh 3 in �gure 4.4, the solution for λcis just the solution whih leads to a transition from the subsoni to thesupersoni regime, i.e. P = −2 for X → ∞. To this end, the �visous�nozzle, f. −A⋆ in �gure 4.5(d), is forming a nozzle onsisting of one throatand one anti-throat leading to a shok free aeleration of the upper dek �owfrom sub- to supersoni �ow onditions. Moreover, it is found that whilstapproahing λc from below, the region around the loation of the minimumin the pressure distribution is almost forming a usp, f. �gure 4.3(a). Froma numerial point of view the numerial solution is indistinguishable to themahine preisionmp from the numerial solution for λc, i.e. 0 < λc−λ < mp,as long as the �ow in the nozzle is aelerating, i.e. dP/dX < 0. Thenthe solution seems to split form the solution for λc leading to a relativelyrapid transition from super- to subsoni. Interestingly enough, there existsa lassial ounterpart to suh a solution whih is depited in �gure 4.4, f.branh 2. A normal shok in the diverging part of the nozzle leads to thetransition form super- to subsoni �ow, the position of the shok dependson the out�ow ondition at the nozzle exit. However, due to the visousinvisid interation suh a weak normal shok is smoothed out or regularizedby the formation of a pseudo-shok, f. hapter 3. By means of the numerial
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114 CHAPTER 4. VISCOUS LAVAL NOZZLEhomotopy ontinuation method adopted an in�nite number of alike solutionsan be found for 0 < λc − λ < mp, f. �gure 4.3. The position of thepseudo-shok is moved suessively further downstream until it eventuallywould leave the physial domain downstream resulting in the limiting asefor λ = λc. The �ow in suh a regime, in analogy to lassial Laval nozzletheory, an be onsidered to be nearly hoked. The strength of suh a pseudo-shok forming in the hoked �ow regime eventually is large enough to forethe �ow in the lower dek to separate, f. �gure 4.3(). Suh a phenomenonis ommonly enountered in tehnial transoni di�users, f. e.g. [54℄, also inourrene with self-sustained shok osillations, see for instane [54℄, [93℄.The unsteady reation of suh pseudo-shoks solutions will be disussed insetion 4.3 to some extend.4.2.1 Inverse Design of a Laval NozzleFrom the viewpoint of the tehnial design of slender nozzles the issue ofthe right shape of suh a devie in order to obtain a ertain desired pressuredistribution in the nozzle is more appropriate. The hanges in the numerialsheme are small, instead of S(X) now P (X) is presribed and S(X) takesthe role of the unknown. The numerial results for the pressure distributiongiven by
P (X) = P∞(tanh(X) + 1)/2 (4.14)are plotted in �gure 4.6. It is evident that a nozzle ausing the desired pres-sure distribution has to have a slowly diverging part reahing far downstream.So far, only perfet gas like media has been onsidered. If, however,dense gases exhibiting mixed nonlinearity are to be onsidered as well, thenan aeleration of the working media from subsoni to supersoni �ow annotbe aomplished by means of a nozzle onsisting of a single throat even inthe lassial ase of one-dimensional noninterating invisid �ow, f. [35℄.Rather a ombination of throats and anti-throats has to be used. In suh aase, the desribed inverse design of a Laval nozzle is most useful, sine theproedure of suessively inreasing the height of a nozzle of otherwise given
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116 CHAPTER 4. VISCOUS LAVAL NOZZLE4.3 Unsteady Flow in �Visous� Laval Nozzles4.3.1 Linearized Problem and Validation of the Numer-ial AlgorithmBefore the numerial sheme for the unsteady interation problem desribedin setion 4.1.2 is applied to pseudo-shok solutions forming in the nearlyhoked �ow regime in a slender Laval nozzle, f. disussion in setion 4.2,the unsteady triple dek problem shall be disussed under the assumptionthat the problem an be represented by the linearized version of the govern-ing equations, i.e. in ase of small perturbations introdued by a su�ientlysmall surfae mounted hump. For the linearized equations of the interationproblem in de�nition 2.2.1 a solution an be given in losed form for appro-priate surfae funtions S(X, T ) by means of Fourier transforms, f. e.g. [51℄or [21℄. This is onvenient in so far as the linearized problem poses a possibil-ity to validate the numerial sheme developed for the fully nonlinear ase.On the other hand, the obtained numerial solutions allow a �rst glimpse onthe time-dependent behavior of the physial system.The problem is solved for the expression
S(X, T ) =







0 T ≤ 0

0.01 exp(−X2) T > 0
(4.15)desribing the shape of the surfae mounted hump and under the initialonditions

P ≡ Ū ≡ 0 @T = 0. (4.16)The temporal evolution of the Fourier transform of the pressure distribution
P ∧ for the linearized problem under the foring of (4.15) is given by

P ∧(ω; T ) =
1√
2π

∫ ∞

−∞

P (X, T ) e−iωXdX =

=
Q√
2

iω
P(ω)

e−ω2/4
(
1 − e−P(ω)T

)
(4.17)
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3Ai′(0)(iω)4/3 + iω sign (K/Γ−∞). The relevant steps for thederivation of equation (4.17) an be found in [24℄. The transformation fromFourier spae (ω, T ) bak to the physial spae (X, T ) is ahieved by meansof Fast-Fourier Transforms, f. e.g. [6℄, using the GSL library pakage. Theresults are shown in �gure 4.8 for (a) subsoni and (b) supersoni �ow. More-over, also numerial results obtained by the appliation of the TR-BDF2sheme developed for the fully nonlinear problem, f. setion 4.1.2, and animpliit Lax-Wendro� sheme, f. setion 4.1.2, are depited in �gure 4.8(a).The time step is hosen quite large, i.e. ∆T = 0.1. Inspetion of the numeri-al solutions reveals that the agreement between the solution of the linearizedproblem and the solution alulated by means of the TR-BDF2 sheme areexellent, whereas the disturbanes alulated by the Lax-Wendro� shemeobviously move at di�erent �nite speeds. This phenomenon, whih has alsobeen observed for the ase of an impliit upwind sheme plus a simple addingof the soure term not shown here, has already been mentioned and disussedin setion 4.1.2. Considering the temporal development of the pressure dis-tribution itself, two di�erent time sales an be distinguished. Both in thesubsoni and in the supersoni ase the presene of the surfae mountedhump immediately is felt downstream of the hump, whereas there is also animmediate upstream in�uene in ase of supersoni upper dek �ow. On theother hand pressure disturbanes are seen to travel at �nite speeds in both



118 CHAPTER 4. VISCOUS LAVAL NOZZLEases as well. These are moving upstream in ase of subsoni �ow, f. �gure4.8(a), and downstream in the supersoni ase, f. 4.8(b). This is in agree-ment with the reasoning performed for the hoie of an appropriate timesaling used in the derivation of the time-dependent upper dek problem, f.remark 2.2.2. There it has been argued that the time saling shall preservethe transient behavior of the system whih is governed by the slowest timesales in order to apture the longterm behavior of the system. The order ofmagnitude of the slowest time sales an be estimated by the harateristispeed λη = M0u−c = c(M−1), f. remark 2.2.2. Consequently, disturbanesare expeted to be traveling upstream for M < 1 and downstream for M > 1.Conversely the faster time sales are estimated by λζ = c(M + 1) > 0. Sub-jeted to a time saling based on the slower time sales this results in in�nitelarge positive harateristi speeds leading to the observed immediate up-or downstream in�uene. The upstream in�uene exhibited by an obstalein supersoni upper dek region �ow in slender nozzles is typial for tripledek problems in supersoni �ow in general, f. ompressive free interation,e.g. [52℄.4.3.2 Nearly hoked Flow without Flow SeparationA pseudo-shok forming in the diverging part of a slender nozzle of shapegiven by relation (4.12) with su�ient strength to bring the boundary layer�ow at the verge of separation is perturbed by a small osillating surfaemounted hump, Sosc, in the downstream part of the pseudo-shok, f. �gure4.9. Aording to the insight gained into the behavior of the physial systemby studying the linearized ase the small hump is likely to evoke an imme-diate �ow response sine it perturbs the downstream region of in�uene ofthe nozzle. If the loation of the osillating hump is moved su�iently fardownstream then the immediate �ow response an be expeted to be weak.On the other hand, perturbations will travel at �nite speeds upstream of theosillating hump �nally starting to interat with the sensitive pseudo-shok.
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Figure 4.9: Initial onditions. The pseudo-shok in the diverging part of thenozzle given by S is perturbed by a small osillating surfae mounted hump,
Sosc, downstream. The �ow in the lower dek is lose to �ow separation.
Q = 1, K > 0, Γ−∞ = 1.The osillating hump is given by the expression

Sosc(X, T ) =







0 |X − 3.55| > 0.2,

0.005 sin(2πSrT )
(
1 + cos(πX−3.55

0.2
)
)

|X − 3.55| ≤ 0.2,(4.18)it is loated at X = 3.55, spans from X = 3.35 to X = 3.75 and osillatesat a dimensionless frequeny Sr, its maximum height is 0.01. The rea-tion of the pseudo-shok of the initial �ow on�guration, f. �gure 4.9, tothe presene of the osillating hump given by (4.18) shall be alulated for
Sr = 1/Tp = 1.0. Tp denotes the time period. The time step used in theomputations is ∆T = 0.01. The pseudo-shok in �gure 4.9 by nature isnot loated at a ertain position, however, onsidering the wall shear stressdistribution in �gure 4.9 the region of steepest desent spans from X ≈ 0.5to X ≈ 1.5. It an be expeted that it is this region whih is most sensitiveto perturbations of the �ow �eld. The results for the pressure disturbane
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(a) First PartFigure 4.10: Pressure disturbane ∆P = P (X, T ) − P (X, 0) evoked by anosillating surfae mounted hump Sosc. Sr = 1, Tp = 1.0; ∆T = 0.01.
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(b) Seond PartFigure 4.10: Pressure disturbane ∆P = P (X, T ) − P (X, 0) evoked by anosillating hump Sosc. Sr = 1.0, Tp = 1.0; ∆T = 0.01.
∆P = P (X, T ) − P (X, 0) over the time span T = 0 to T = Tp is shown in�gure 4.10 together with Sosc. The disturbanes introdued by the osillatinghump are traveling upstream very muh alike the solutions to the linearizedproblem for subsoni �ow shown in the previous setion and no strong rea-tion of the pseudo-shok an be observed at �rst. However, after some timea �ow response is building up whih is strongest in the region of X ≈ 0.5to X ≈ 1.0. This orresponds with the beginning of the pseudo-shok inthe initial �ow on�guration, f. �gure 4.9, and therefore is a result of theinteration of the pseudo-shok and the foring Sosc. Sine disturbanes ina supersoni upper dek �ow regime are traveling downstream rather thanupstream as in the subsoni regime, no perturbations are generated upstreamof the pseudo-shok. The pseudo-shok osillates at the same harmoni fre-queny of the foring as an be seen by inspetion of �gure 4.11. Further-more, it is found that the maximum amplitude of the pressure osillationsand onsequently the maximum of the osillation of the shok position as
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4.3. UNSTEADY FLOW IN �VISCOUS� LAVAL NOZZLES 123well is dereasing with inreasing Sr, f. �gure 4.12(a). This oinides verywell with the experimental �ndings reported in [7℄. There, it had been foundthat the in�uene of the shok/boundary layer interation on the shok os-illations generated by a harmoni �ow disturbane downstream of the shokis negligible as long as there is no signi�ant �ow separation generated bythe shok. The authors even used a purely invisid model to explain theshok movements and the phenomenon of dereasing amplitude of the shokosillations. The numerial results presented in this setion suggest that thein�uene of the shok boundary layer interation is weak indeed. The aseof separated nearly hoked �ow will be disussed in the following hapter.4.3.3 Linear Stability of Steady StatesNumerial alulations of the unsteady �ow �eld under the in�uene of anosillating hump, f. previous setion, results in onvergene problems ofthe numerial sheme in presene of �ow separation. Despite the e�ort ofusing a sti� time integration the numerial shemes fails after few time stepseven for very small time steps. The results obtained in the early stages ofthe alulations indiate a strong tendeny of the separation bubble towardsself-sustained dynamis. In order to be able to better interpret the observedbehavior a linear stability analysis is performed for various solutions of thesteady Laval nozzle �ow thus eliminating the need of a time-integration ofthe full nonlinear problem.The AnalysisThe fundamental anonial problem, f. de�nition 2.2.1, is written as adynamial system, f. [3℄, [89℄, [46℄,
C

∂

∂T

(
Ū , P

)T
= FTD

(
Ū , P ; λ

) in Ω & B(Ū , P ) = 0 on ∂Ω (4.19)



124 CHAPTER 4. VISCOUS LAVAL NOZZLEwith Ω = R×R≥0. In the ase onsidered here the singular �apaity� matrix
C is de�ned as

C =

(

0 0

0 1

) (4.20)and the operator FTD is de�ned as
FTD

(
Ū , P ; λ

)
=

( (
Y + Ū

)
ŪX −

(
1 + ŪY

) ∫ Y

0
ŪXdȲ + PX − ŪY Y

G′
[2](P ; K, Γ−∞)PX + Q (SX(X, T ; λ) − AX)

)

.(4.21)The parameter λ again denotes the height of the surfae mounted hump inequation (4.12). The �boundary� onditions B(Ū , P ) = 0 are given by theequations (2.209) to (2.213), whih are already linear equations. The govern-ing equations are then linearized about a steady state (Ū0(X, Y ; λ), P0(X; λ))T

(Ū , P )T = (Ū0(X, Y ; λ), P0(X; λ))T + (Ū1(X, Y, T ), P1(X, T ))T (4.22)leading to
C

∂

∂T
(Ū1, P1)

T = L
(
Ū0, P0; λ

)
(Ū1, P1)

T & BL(Ū1, P1) = 0. (4.23)Inserting the ansatz
(Ū1, P1)

T = eµTy (4.24)leads to a generalized eigenvalue problem
(
Cµ − L

(
Ū0, P0; λ

))
y = 0 & BL(y) = 0. (4.25)An expliit solution for the spetrum µ(ω) ∈ C with ω ∈ R an be given forthe trivial �state� (Ū0, P0)

T = 0 only, whih reads as
µ(ω) =

Q

3Ai′(0)
sin(π

6
)|ω|4/3 + iω(sign(K) − Q

3Ai′(0)
cos(π

6
)|ω|1/3

)

. (4.26)



4.3. UNSTEADY FLOW IN �VISCOUS� LAVAL NOZZLES 125A detailed derivation of relation (4.26) is given in appendix D. For thealulation of the eigenvalue spetrum for nontrivial �states� one has to relyon numerial solutions. To this end, system (4.19) is represented by
C

ddT s = F(s; λ) s,F ∈ Rd. (4.27)
s denotes the solution vetor and F(s; λ) = 0 denotes the system of alge-brai equations resulting form the numerial disretization of the governingequations for the stationary problem and whih has been desribed in setion4.1.1 and 4.1.3 in detail. Equation (4.27) an be seen as the �rst step in amethod of lines leading to a system of ODEs. The singular apaity matrix
C now is a large, sparse d × d-matrix

M(d, R) ∋ C =






















0 . . . 0 0 . . . 0 . . . 0 0... . . . ... ... . . .
... . . . ... ...

0 . . . 0 0 . . . 0 . . . 0 0

0 . . . 0 1 . . . 0 . . . 0 0... ... ... ... . . . ... ... ... ...
0 . . . 0 0 . . . 0 . . . 0 0... . . . ... ... . . .

... . . . ... ...
0 . . . 0 0 . . . 0 . . . 0 0

0 . . . 0 0 . . . 0 . . . 0 1






















. (4.28)
Performing the same steps as in ase of the ontinuous in�nite dimensionalsystem leads to the �nite dimensional equivalent of equation (4.23)

C
ddT s1 = L s1. (4.29)The d × d-dimensional matrix L := DsF(s0; λ) is the Jaobian of the nu-merial sheme F(s; λ) evaluated for s0. The generalized eigenvalue problemfor the d disrete eigenvalues in the �nite dimensional numerial ase, f.e.g. [29℄, �nally reads

(Cµ − L)y = 0. (4.30)



126 CHAPTER 4. VISCOUS LAVAL NOZZLEMost important of all, the singular sparse matrixC has only d nonzero entriesin its diagonal. As a onsequene the harateristi polynomial det(A−µC)an be of order d as a polynomial in µ at the most and there exists a number ofdisrete �nite generalized eigenvalues equal to the order of the harateristipolynomial, [29℄. The generalized eigenvalue problem is solved using the eigsfuntion of the MATLAB suite, whih is an implementation of the iterativeArnoldi method, f. e.g. [82℄.The results for various values of the height λ of the surfae mounted humpare shown in �gure 4.13. A number of 1090 out of 1400 possible �nite gen-eral eigenvalues whih are nearest to the value 0 have been alulated. Figure4.13(a) shows good agreement between the disrete eigenvalue spetrum ob-tained by the numerial method and the analytial eigenvalue spetrum givenby the expression (4.26) whih has been performed in order to validate thenumerial proedure. The real values of the general eigenvalues ℜ{µ} ≤ 0,thus the trivial state, as the numerial results for the unsteady problem haveindiated so far, is linear stable. This statement remains valid for any initial�ow �eld in the nozzle as long as no �ow separation does our, f. �gure4.13(b), 4.13() and 4.13(f). However, taking a look at �gure 4.13(d) and �g-ure 4.13(e) where part of the eigenvalue spetrum has moved into the regionof positive real values, i.e. ℜ{µ} ≥ 0, it is evident that the ourrene of �owseparation is linked with the linear instability of the steady �ow. Moreover,the largest of the eigenvalues with positive real part are of quite large numer-ial values. Assuming that these may be essential for the temporal evolutionof the �ow �eld a numerial sheme would have to resolve to unfeasible smalltime steps. The author believes that these results obtained by the linearstability analysis give an explanation for the observed numerial problemsmentioned at the beginning of this setion. From a physial point of view,the eigenvalue spetra for various surfae heights in �gure 4.13 suggest thatthe ourrene of a region of separated �ow aused by a pseudo-shok form-ing in the di�user part of a nozzle leads to a loss of stability of the steady�ow �eld. Moreover, preliminary numerial results, f. setion 4.3.4, indiatethat the loss of stability is initiated by a onjugate-omplex eigenvalue pairwhih rosses the imaginary axis, that is a Hopf-bifuration or �utter insta-
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4.3. UNSTEADY FLOW IN �VISCOUS� LAVAL NOZZLES 129bility, f. [89℄, [3℄. The steady state remains the unique equilibrium stateof the dynamial system, however, at the bifuration point an exhange ofstability from a stable to an unstable equilibrium ours, [89℄. Consequently,the unsteady �ow �eld is likely to exhibit self-sustained dynamis and takinginto aount the eigenvalue spetrum for a relatively large separation region,�gure 4.13(e), these self-sustained dynamis an be expeted to exhibit highfrequeny tones whih would be in line with experimental observations, [54℄.However, it shall be pointed out that the statements onerning the possiblenature of self-sustained osillations given here so far are preliminary also inthe light that the in�uene of nonlinear e�ets are not aounted for in theframework of a linear stability analysis. Therefore, suggestions for furtherwork fousing on the distinguished ase of the loss of stability, i.e. the situ-ation, where the ritial eigenvalue pair have zero real parts, is given in thefollowing setion.4.3.4 Further WorkPreliminary numerial results (for Q = 0.5, Ni = 1200, Nj = 100, ξ−s =

100/Ni, ξ+
s = 1100/Ni, m− = m+ = 1.3, X−

s = −3, X+
s = 3, Ys = 0.2,

αs = 0.98, Ymax ≈ 9.9 and a slightly di�erent surfae mounted hump 1 ) pointin the diretion that the loss of stability is aused by a onjugate-omplexeigenvalue pair that rosses the imaginary axis suggesting a Hopf-bifuration,f. �gure 4.14. The following aspets would be of interest for future work inthis ontext:� First, the physial relevane of the alulated eigenvalue pair has tobe heked. To this end, the alulation of the pseudospetrum of theeigenvalue problem ould give further insight, f. e.g. [92℄. However,the numerial proedure outlined in [92℄ mainly deals with the standard1
S(X) =







0 X < −2.5
λ

2 (1 + cos(πX/2)) −2.5 ≤ X < 0

λexp(−2(X/2.5)2) 0 ≥ X.

(4.31)
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s = 3, Ys = 0.2, αs = 0.98, Ymax ≈ 9.9 and a slightly di�erentsurfae mounted hump). Di�erent olors in the plot orrespond to di�erentsolutions lose to the solution of a pseudo-shok just strong enough thatthe wall shear stress beomes zero at one single point along the wall but noseparation region forms yet.eigenvalue problem, i.e. (Iµ − A)r = 0, say, and therefore would haveto be extended to the general eigenvalue problem (4.30).� If the ritial eigenvalue pair proofs to be physially meaningful, thena dimension redution of the dynamial system, f. enter manifoldredution theory, e.g. [89℄, [3℄, [83℄ amongst others, would be indiatedin order to obtain a redued problem of similar dynamial behavior asthe original one whih ould then be analyzed analytially, i.e. non-linear stability analysis of the redued system. A ruial point in thisontext will be to deide whether suh a dimension redution is applia-ble or not, espeially whether the ritial eigenvalue pair is su�ientlyisolated from the rest of the eigenvalue spetrum. As the numerialresults show part of the spetrum happens to ross the imaginary linein ase of larger regions of �ow separation, so the ful�llment of the lastrequirement may be questionable.Another aspet of interest to the problem of shok osillations ould beto study the situation of a pseudo-shok in the di�user part of the nozzle



4.3. UNSTEADY FLOW IN �VISCOUS� LAVAL NOZZLES 131in presene of a separation region whih is not diretly aused by the shokitself but rather aused by the adverse pressure-gradient in the subsoni �owregion following the pseudo-shok, i.e. pressure-gradient-indued separated�ow, f. [54℄. Thus the loation of the shok and the separation region ouldbe separated spatially and aording to [54℄ the unsteadiness of suh a �owsituation is haraterized by slower dynamis. It would be interesting tosee whether the numerial sheme developed for the time-integration of thefull nonlinear problem, f. setion 4.1.2, is apable to ope with the slowerdynamis to be expeted.





Chapter 5ConlusionsIt has been shown throughout this treatise that the problem of visous in-visid interations in internal, transoni, single phase and two-dimensionalhigh Reynolds numbers �ows through hannels that are so narrow that theinterating ore region �ow beomes one-dimensional to leading order an beonsistently be desribed by a triple dek problem. The interating ore re-gion hereby is represented by a single upper dek whih is shared by the twointerating boundary layers at the lower and upper hannel walls. In parti-ular previous work, Kluwik, [39℄, Kluwik & Gittler, [43℄, and Kluwik &Braun & Gittler, [41℄, has been extended to inlude more general onoming�ow types than the previously assumed �ow through a hannel of onstantross setion, real gas e�ets and unsteady e�ets fousing on the longtermbehavior of the system, i.e. on the slowest timesales governing the fullproblem.The resulting model equations then have been applied to study two fun-damental �ow problems.In the �rst one the visous invisid interation proess is triggered bythe presene of a weak normal shok forming in a narrow hannel of on-stant ross setion. It has been demonstrated that a shok disontinuity issmoothed out by the interation proess ultimately leading to the forma-tion of an internal shok pro�le. The mehanism of visous invisid shokregularization has been identi�ed. The visosity dominated boundary layers133



134 CHAPTER 5. CONCLUSIONSform a �visous� nozzle adapting to and at the same time interating withthe invisid hannel ore �ow and thus allow a smooth transition of the oreregion �ow through the interation region. The mentioned properties of theinteration problem onsidered in this treatise have been used to study theinternal shok pro�les of various weak anomalous shoks forms possible in�uids of mixed nonlinearity (BZT �uids), i.e. rarefation, soni, double soniand split shoks. It has been found that possible internal shok pro�les areonsistent with shok admissibility riteria formulated for the invisid ase.Moreover, the internal shok pro�les due to visous invisid interations shareommon features with those obtained by a lassial thermo-visous regular-ization, e.g. impending shok splitting, although the regularizing mehanismis governed by ompletely di�erent underlying physis. As a numerial ex-ample the interating �ow of PP10 has been onsidered. The alulation ofthe harateristi length sales involved in the distinguished limit have shownthat suh �ow phenomena as have been disussed here should our in �owsthrough slender hannels in engineering pratie for possible appliation ofBZT �uids in the near future, e.g. organi Rankine yle proesses. Fur-thermore, the setup desribed here ould proof to be an alternative to shoktubes urrently in use to experimentally proof the existene of rarefationshoks. The distinguishing advantages over a shok tube experiment wouldbe that the shok position is stationary and that no other wave phenomenawould have to be aounted for. A disadvantage, however, may be the needto guarantee laminar boundary layer �ow up to very high Reynolds numbers.It shall be pointed out that the presented theory has been obtained by meansof an asymptoti analysis and onsequently the quality of suh an asymptotitheory an only be validated by experiments or by CFD in the end.In the seond �ow problem onsidered here the visous invisid intera-tion is triggered by a small Laval nozzle loated in a hannel of otherwiseonstant ross setion. The disussion of the steady �ow �eld through noz-zles of di�erent minimum ross setions but of otherwise similar shape hasrevealed that the ourrene of a single soni point in the invisid ore region�ow no longer orresponds to a bifuration point as in lassial invisid one-dimensional Laval nozzle theory. The numerial results have shown that the



135purely subsoni solution remains the only possible solution, that is no super-soni branh bifurates at the soni point. Moreover, the soni point has beenfound to move slightly downstream of the loation of the minimum throatarea and the minimum throat area is larger still than the ritial minimumross setion in ontrast to lassial Laval nozzle theory. The reason for thisagain is the possibility of the boundary layers to adapt to and interat withthe ore region �ow in the interation region. A quite similar behavior hasbeen reported in CFD results for the simulation of transoni �ow through mi-ro nozzles, f. [28℄, and for nozzle �ow at moderately high Reynolds numberswhere the visous e�ets are important in the whole �ow �eld, f. [32℄, [65℄.In the lose viinity of the minimal ross setion that leads to a smoothtransition form subsoni to supersoni onditions a pseudo-shok solution isforming in the di�user part of the nozzle. The pseudo-shok part has beenfound to move suessively downstream when the minimum ross setion isapproahed. This �ow regime has been denoted as nearly hoked �ow inanalogy to lassial Laval nozzle theory. The reation of suh a pseudo-shoksolution to small disturbanes has been studied for two di�erent situations.First the pseudo-shok has not been strong enough to ause the boundarylayer �ow to separate. There it has been found that the shok/boundarylayer interation plays only a minor role in aordane with experimentalobservations, [7℄. In the seond situation where the pseudo-shok has auseda distint separation region the numerial sheme developed for the time-integration of the full nonlinear problem has turned out to be not apable toresolve the fast dynamis exhibited by the separation bubble. A linear sta-bility analysis for steady solutions has shown that separation is linked to theloss of stability of the steady solution. Preliminary numerial results seemto indiate that the loss of stability is haraterized by a Hopf-bifuration,however, further investigations outlined in setion 4.3.4 have to be performedto substantiate that statement.





Appendix AList of Symbols
important operators
ã dimensional form of quantity a

∇ nabla operator
∇a gradient of a

∇ · a divergene of a

∇a = (∇⊗ a)T

(∇ · A)i =
∑3

j=1 ∂xj
Aij

Da
Dt

= ∂a
∂t

+ u · ∇a substantial derivative(non-dimensional form)
(a ⊗ b)ij = aibj tensor produt
(A : B)ij =

∑3
k=1 AikBkj tensor ontration

∂a
∂b
|c = ∂

∂c
a(b, c) partial derivative of thermodynami quantity aw.r.t. b for �xed c

(a)n quantity a evaluated inregion n in �gure 2.1
[a] = aa − ab jump onneting the two states aa and ab

ℜ{a} real part of a

ℑ{a} imaginary part of a

a∧ Fourier transform of a
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138 APPENDIX A. LIST OF SYMBOLSimportant variables
A loal throat area of a nozzle per unit depth (invisid theory),negative perturbation of the displaement thikness(triple dek theory)
β oe�ient of thermal expansion
c speed of sound
cp spei� heat apaity at onstant pressure
cv spei� heat apaity at onstant volume
C =

∣
∣
∣
2Γ̄
K

∣
∣
∣ oe�ient used in a�ne transformation (2.201)

δ = R̃g

c̃v
ratio of spei� gas onstant and spei� heat,
δ ≪ 1 for dense gases

δm thikness of subregion m = (3l, 3m) of boundary layer, seelisting of subsripts
ǫ1 perturbation parameter for one-dimensionalinvisid nozzle �ow
ǫ2 = Re−

1
2 perturbation parameter for noninterating boundarylayer �ow

ǫ3 perturbation parameter for interation theory
e spei� inner energy
f self similar part of stream funtion, solution ofBlasius' equation (2.104)
γ adiabati exponent
Γ fundamental derivative of gas dynamis
G Grüneisen oe�ient
G[n] leading order term of negative perturbation of upperdek mass �ux density
h, H spei� enthalpy 1
H3u thikness of upper dek
I identity matrix
J[n] leading order term of perturbation of mass �ux density
k thermal ondutivity
K transoni similarity parameter
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Kθ isothermal ompressibility
Ks isentropi ompressibility
κ exponential deay of eigensolutions of thetriple dek problem for steady �ow
Λ �rst derivative of Γ with respet to ρ at onstant s

L0, H0 harateristi length and height of the hannel
λ harateristi speed de�ned in theory of hyperbolisystem of pdes or height of a surfae mounted hump
µ dynami visosity
µb bulk visosity
mp mahine preision
n order of nonlinearity in G[n] or J[n]

N seond derivative of Γ with respet to ρ at onstant s

N1D number of orders of magnitude up to whih theupper dek �ow an be onsidered one-dimensional
ns surfae normal on the surfae mounted hump
p, P pressure 1
Ψ stream funtion
q vetor of heat �ux density
Q oupling parameter in interation law in anonialform (2.215)
ρ, R density 1
R̃g spei� gas onstant
s thermodynami entropy
s, S position vetor desribing the ontour of surfaemounted hump 1
s2, S2 vertial omponent of s 1
t, T time 1
θ, Θ temperature 1
τττ visous stress tensor
Tp periodi time
U ′

20(0) slope of the horizontal veloity pro�le at the wallin front of interation region ∂U
(0)
2 (1,0)

∂Y2
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uuu,U veloity vetor 1
u, U omponent of veloity vetor in horizontal, main streamdiretion 1
v, V omponent of veloity vetor in vertial diretion 1
x, X position vetor 1
x, X oordinate in horizontal, main stream diretion 1
y, Y oordinate in vertial diretion 1dimensionless groups
Re Reynolds number
Ec Ekert number
M0 Mah number at referene state
Pr Prandtl number
β̃0θ̃0

G0 Grüneisen oe�ient at referene state
Sr Strouhal number, dimensionless frequeny1Capital letters stand for boundary layer saling, the exat region is indiated by thesubsript whih refers to the nomenlature of �gure 2.1 and �gure 2.5.



141subsripts
0 referene state
1 quantity of invisid noninterating �ow regime, see �gure 2.1,in orresponding saling
2 quantity of noninterating boundary layer, see �gure 2.1,in orresponding saling
3 quantity of interation region, see �gure 2.1 or �gure 2.5,in orresponding saling eventually further spei�ed by l,m,u
c quantity at the ritial thermodynami point
i solution of the (i)nvisid Euler equations
l lower dek
m main dek
u upper dek
w evaluated at the wall
−∞ evaluated at the beginning of the interation region (X → −∞)
[n] order of nonlinearity in G[n] or J[n]supersripts
(k) order of oe�ient in asymptoti expansions
∗ ritial �ow quantities at M = 1

a undisturbed �ow quantity immediately after weak normal shok
b undisturbed �ow quantity immediately before weak normal shok
⋆ quantity of fundamental problem before Prandtl's transpositiontheorem is applied





Appendix BThermodynami Relations
B.1 Some Thermodynami QuantitiesSpeed of sound

c̃2 =
∂p̃

∂ρ̃

∣
∣
∣
s̃

(B.1)
c2 =

c̃2

c̃2
0

= M2
0

∂p

∂ρ

∣
∣
∣
s

(B.2)Coe�ient of thermal expansion
β̃ = −1

ρ̃

∂ρ̃

∂θ̃

∣
∣
∣
p̃

(B.3)Spei� heat apaity at onstant volume
c̃v = θ̃

∂s̃

∂θ̃

∣
∣
∣
ρ̃

(B.4)Spei� heat apaity at onstant pressure
c̃p = θ̃

∂s̃

∂θ̃

∣
∣
∣
p̃

(B.5)
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144 APPENDIX B. THERMODYNAMIC RELATIONSAdiabati exponent
γ =

ρ̃

p̃

∂p̃

∂ρ̃

∣
∣
∣
s̃

(B.6)Isothermal ompressibility
K̃θ =

1

ρ̃

∂ρ̃

∂p̃

∣
∣
∣
θ̃

(B.7)Isentropi ompressibility
K̃s =

1

ρ̃

∂ρ̃

∂s̃

∣
∣
∣
θ̃

(B.8)Grüneisen oe�ient
G =

ρ̃

θ̃

∂θ̃

∂ρ̃

∣
∣
∣
s̃

(B.9)B.1.1 Magnitude of Grüneisen Coe�ientWe write
G0 =

β̃0c̃
2
0

c̃v,0

K̃s,0

K̃θ,0

= β̃0θ̃0
c̃2
0

R̃g θ̃0

K̃s,0

K̃θ,0

R̃g

c̃v,0
, (B.10)f. e.g. [56℄, for the Grüneisen oe�ient de�ned in (B.9) and evaluated atreferene state. For the order of magnitude estimate of G0 in the dense gasregime the van der Waals equation of state, f. e.g. [47℄, is applied whih anbe written as

(

π +
3

ν2

)

(3ν − 1) = 8τ (B.11)in the redued variables
π =

p̃

p̃c
, ν =

ρ̃c
ρ̃

, τ =
θ̃

θ̃c
.



B.1. SOME THERMODYNAMIC QUANTITIES 145Expressing β̃ by means of the van der Waals equation of states one �nds
β̃0 =

1

θ̃c

1

ν0

∂ν

∂τ

∣
∣
∣
π,0

=
1

θ̃c

3ν0 − 1

3τ0ν0

1

1 − 1
4

(3ν0−1)2

τ0ν3
0

(B.12)using the expression
∂τ

∂ν

∣
∣
∣
π,0

=
3

8

(

π0 +
3

ν2
0

){

1 − 2(3ν0 − 1)

ν3
0(π0 + 3/ν2

0)

}

=
3τ0

3ν0 − 1

(

1 − 1

4

(3ν0 − 1)2

ν3
0τ0

)

.(B.13)The oe�ient of thermal expansion is unde�ned at the ritial point ofthermodynamis, i.e. τ0 = 1, ν0 = 1, π0 = 1, however, taking a look at thedensity vs. pressure diagram for a BZT �uid, PP10, say, f. �gure 1.1, theregion of interest (region where Gamma hanges sign) lies between ν0 = 1.3and ν0 = 2, say. Evaluating the expression for β0 for ν0 = 1.3 and τ0 indiatesthat β0 is �nite and thus β0θ0 = O(1) in the region of interest. Furthermore,
K̃s,0

K̃θ,0

= 1 − θ̃0β̃
2
0

ρ̃0c̃v,0K̃θ,0

, (B.14)f. [56℄, and
K̃θ,0 = − 1

p̃c

1

ν0

∂ν

∂π

∣
∣
∣
τ,0

=
1

p̃c

1 − 3ν0

3
(

1 + 2−3ν0
ν3
0π0

) . (B.15)As a onsequene it is found
K̃s,0

K̃θ,0

= 1 + (β̃0θ̃0)
2 p̃0

ρ̃0θ̃0c̃v,0

3

1 − 3ν0

(

1 +
2 − 3ν0

ν3
0π0

)

= 1 + O
(

R̃g

c̃v,0

)

= 1 + O(δ).(B.16)For the expression c̃2
0/(R̃gθ̃0) one �nds in the same manner

c̃2
0

R̃gθ̃0

= 1 + O(δ). (B.17)



146 APPENDIX B. THERMODYNAMIC RELATIONSTherefore, one onludes
G0 = O(δ) (B.18)in the BZT region of a dense gas.B.2 Utilized RelationsExpression Dh

Dt
= 1

Ec
cp
Dθ
Dt

+ 1−β̃0θ̃0βθ
ρ

Dp
Dt
. Take h̃ = h̃(θ̃, p̃), then

∆h̃ =
∂h̃

∂θ̃

∣
∣
∣
p̃
∆θ̃ +

∂h̃

∂p̃

∣
∣
∣
θ̃
∆p̃.De�nition (B.5) gives for the �rst oe�ient

c̃p =
∂h̃

∂θ̃

∣
∣
∣
p̃
.For the seond oe�ient the free spei� enthalpy g̃ is used

g̃ = h̃ − θ̃s̃.Then, using the following Maxwell relations
∂g̃

∂p̃

∣
∣
∣
θ̃

=
1

ρ̃
,

∂s̃

∂p̃

∣
∣
∣
θ̃

= − 1

ρ̃2

∂ρ̃

∂θ̃

∣
∣
∣
p̃and the de�nition of the oe�ient of thermodynami expansion (B.3)

β̃ = −1

ρ̃

∂ρ̃

∂θ̃

∣
∣
∣
p̃

= −ρ̃
∂s̃

∂p̃

∣
∣
∣
θ̃�nally leads to

∂h̃

∂p̃

∣
∣
∣
θ̃

=
1 − β̃θ̃

ρ̃
.



B.2. UTILIZED RELATIONS 147Introduing non-dimensional quantities yields the sought-after expression
∆h =

1

Ec
cp∆θ +

1 − β̃0θ̃0βθ

ρ
∆p. (B.19)Expression ∂h

∂s

∣
∣
∣
ρ

= (1 + G) θ
Ec
. Take h̃ = h̃(s̃, p̃), then

∆h̃ = θ̃∆s̃ +
1

ρ̃
∆p̃.Then it follows

1

Ec

∂h

∂s

∣
∣
∣
ρ

=
∂h̃

∂s̃

∣
∣
∣
ρ̃

= θ̃ +
1

ρ̃

∂p̃

∂s̃

∣
∣
∣
ρ̃
.Making use of the Maxwell relation

∂p

∂s

∣
∣
∣
s̃
= ρ̃2 ∂θ

∂ρ

∣
∣
∣
∂s

= ρ̃θ̃G,onsidering the de�nition of the Grüneisen oe�ient (B.9) in the last step,�nally yields the sought-after relation
∂h

∂s

∣
∣
∣
ρ

= (1 + G)
θ

Ec
. (B.20)Terms in the Taylor expansion of h(1+∆ρ, s0). Take h̃ = h̃(s̃, p̃), then

∆h̃ = θ̃∆s̃ +
1

ρ̃
∆p̃.Take the de�nition of the fundamental derivative (1.1)

Γ =
1

c̃

∂(ρ̃c̃)

∂ρ̃

∣
∣
∣
s̃

=
ρ̃

c̃

(
c̃

ρ̃
+

∂c̃

∂ρ

∣
∣
∣
s̃

)

.From that follows for the �rst term of the expansion
∂h̃

∂ρ̃

∣
∣
∣
s̃,0

=
1

ρ̃

∂p̃

∂ρ

∣
∣
∣
s̃,0

=
c̃2
0

ρ̃0

,



148 APPENDIX B. THERMODYNAMIC RELATIONSusing the de�nition of the speed of sound in the last step. The next term ofthe Taylor expansion follows from
∂2h̃

∂ρ̃2

∣
∣
∣
s̃,0

=
∂

∂ρ

(
c̃2

ρ̃

) ∣
∣
∣
s̃,0

= − c̃2
0

ρ̃2
0

+ 2
c̃0

ρ̃0

∂c̃

∂ρ̃

∣
∣
∣
s̃,0

=
c̃2
0

ρ̃2
0

(2Γ0 − 3) .The other expressions then follow in a likewise manner by di�erentiating theexpression of the previous term in the Taylor expansion and reursively usingthe de�nition of the fundamental derivative of gas dynamis Γ and its �rstand seond derivative, Λ, N . As an illustration the next higher derivative of
h̃ is given below.

∂3h̃

∂ρ̃3

∣
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s̃,0

=
∂

∂ρ̃

(
c̃2

ρ̃2
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) ∣
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s̃,0

=
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c̃2
0

ρ̃3
0
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ρ̃2
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∂c̃
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∂ρ̃
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Appendix CAsymptoti Properties of theAiry FuntionThe asymptoti representation of the Airy funtion Ai(z) with z ∈ C for
|z| ≫ 1 has been given in [1℄ byAi(z) ∼ 1

2
π−1/2z−1/4e−ζ

∞∑

0

(−1)kckζ
−k |arg(z)| < πwith ζ = 2

3
z3/2. The oe�ients ck are de�ned as

c0 = 1, ck =
(2k + 1)(2k + 3) . . . (6k − 1)

216kk!
.Introduing

z = Reiφ, ζ = 2
3
R3/2ei32φ, R > 0the asymptoti formula an be written asAi(R, φ) ∼ 1

2
π−1/2R−1/4e−iφ/4e−2

3
R3/2(cos(

3
2
φ)+i sin(

3
2
φ))·

·
∞∑

0

(−1)kck(
2
3
R)−

3
2
ke−i3

2
kφ |φ| < π.
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150 APPENDIX C. ASYMPTOTIC PROP. OF THE AIRY FUNCTIONThe sum is onverging absolutely aording to the omparison test for series,f. e.g. [20℄,
∣
∣
∣
∣
(−1)kck(

2
3
R)−

3
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ke−i3

2
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≤ |ck|R−

3
2
k

∣
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e−i3

2
kφ

∣
∣
∣
∣
< |ck|R−k R ≥ 1with |ck|R−k < |c0|R−k = R−k. The dominated onvergene follows from theonvergene of the geometri series, f. [20℄,

∞∑

0

(
1

R

)k

=
1

1 − 1
Rfor R ≥ 1. From that follows

|Ai(z)| ∼ R−1/4

∣
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e−iφ/4e−2

3
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3
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φ)+i sin(

3
2
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∣
∼

∼ R−1/4
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e−2

3
R3/2 cos(

3
2
φ)

∣
∣
∣
∣
.Hene, the Airy funtion is unbounded for |z| → ∞ if cos(3

2
φ) < 0 andAi(z) → 0 if cos(3

2
φ) > 0, i.e. arg(z) ∈ [−π/3, π/3].



Appendix DCalulation of the EigenvalueSpetrum for the Trivial StateThe generalized eigenvalue problem, f. equation (4.25), for the trivial steadystate (Ū0, P0)
T = 0 is given by
µP10 = sign(K)

∂P10

∂X
− Q lim

Y→∞

∂Ū10

∂X
, (D.1)

0 =
dP10dX

+ Y
∂Ū10

∂X
−
∫ Y

0

∂Ū10

∂X
dȲ − ∂2Ū10

∂Y 2
(D.2)using y = (Ū10, P10)

T in ansatz (4.24). The linearized boundary onditionsare
lim

X→±∞
P10 = 0, lim

X→±∞
Ū10 = 0, (D.3)

Ū10(X, Y = 0) =
∂Ū10

∂X
(X, Y = 0) = 0. (D.4)Introduing the Fourier Transform, f. e.g. [51℄ or [21℄, of P10(X) and

Ū10(X, Y )

P ∧
10(ω) =

1

2π

∫ ∞

−∞

P10(X)e−iωXdX, (D.5)
Ū∧

10(ω, Y ) =
1

2π

∫ ∞

−∞

Ū10(X, Y )e−iωXdX (D.6)151



152 APPENDIX D. EIGENVALUE SPECTRUM OF TRIVIAL STATEequations (D.1) and (D.2) are transformed to Fourier spae
µP ∧

10 = iωsign(K)P ∧
10 − iωQ lim

Y→∞
Ū∧

10, (D.7)
0 = iωP ∧

10 + iωY Ū∧
10 − iω ∫ Y

0

Ū∧
10dȲ − ∂2Ū∧

10

∂Y 2
. (D.8)The pressure in equation (D.8) an be eliminated by di�erentiating the equa-tion with respet to Y leading toiωY

∂Ū∧
10

∂Y
=

∂3Ū∧
10

∂Y 3
(D.9)whih an be transformed into Airy's di�erential equation, f. [1℄,

Z g(Z, ω) =
∂2

∂Z2
g(Z, ω) (D.10)using the transformations

Z = (iω)1/3Y, g(Z, ω) =
∂

∂Y
Ū∧

10(Y, ω). (D.11)The solution to (D.10) is
g(Z, ω) =

∂

∂Y
Ū∧

10(Y, ω) = a(ω)Ai ((iω)1/3Y
) (D.12)where a(ω) is a yet unde�ned integration �onstant� depending on ω sine ωis entering equation (D.10) as a parameter only. Ai is the �rst Airy funtion,f. [1℄, the other linear independent solution of Airy's di�erential equation, i.e.the seond Airy funtion Bi, f. [1℄, is unbounded for Y → ∞. Furthermore,

(iω)1/3Y ∈ {Z ∈ C : |Arg(Z)| ≤ π/3}, f. appendix C. From that follows
lim
Y→∞

Ū∧
10 = lim

Y→∞

∫ Y

0

a(ω)Ai ((iω)1/3Ȳ
) dȲ =

=
a(ω)

(iω)1/3
lim
Y→∞

∫ (iω)1/3Y

0

Ai(Z)dZ =
1

3

a(ω)

(iω)1/3

(D.13)



153exploiting the properties of the Airy funtion in the evaluation of the integral,f. [1℄. Evaluating equation (D.8) for Y = 0 gives a relation for P ∧
10(ω), i.e.

P ∧
10 = a(ω)(iω)−2/3Ai′(0). (D.14)Note Ai′(0) < 0, f. [1℄. Inserting (D.13) and (D.14) into (D.7) �nally givesthe relation for the spetrum of eigenvalues µ(ω)

µ(ω) =
Q

3Ai′(0)
sin(π

6
)|ω|4/3 + iω(sign(K) − Q

3Ai′(0)
cos(π

6
)|ω|1/3

)

. (D.15)In the alulations
(iω)1/3 =







|ω|1/3eiπ6 ω > 0

|ω|1/3e−iπ
6 ω < 0

(D.16)has been used whih follows form the requirement (iω)1/3Y ∈ {Z ∈ C :

|Arg(Z)| ≤ π/3}.
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