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Abstract

The concept of geometric phases between quantum states has drawn much
attention in the last three decades. Geometric phases depend, in contrast to
their dynamic counterparts, only on the evolution path of quantum states in
state space. The field was constantly extended and has undergone a series
of generalizations: From their discovery for adiabatic and cyclic evolutions
to the nonadiabatic, noncyclic and even the mixed-state case for unitary and
nonunitary evolutions.
In the present work, special properties of mixed input phases are investigated
experimentally with polarized neutrons. The first part describes a measure-
ment of phases for mixed input states undergoing unitary evolutions. Phases
of purely dynamical and purely geometric origin are measured as a function
of the adjusted input purity of the neutron state. Measuring suitable combi-
nations of both, it was demonstrated that the mixed-state geometric phase
is not additive as it is the case for pure states. Nonadditivity is a natural
consequence of the definition of the mixed-state phase as weighted average
of the phase factors of all pure state components in the density matrix.
In the second part, the phase stability under particular noise influences during
the evolution is tested (nonunitary evolutions). For very special and well-
defined assumptions, it is confirmed that the nonadiabatic cyclic geometric
phase is robust against noise only if the spin evolution path is such that the
acquired dynamical phase is zero.
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Kurzfassung

Das Konzept der geometrischen Phasen zwischen Quantenzuständen hat in
den letzten drei Jahrzehnten viel Aufmerksamkeit auf sich gezogen. Ge-
ometrische Phasen sind, im Unterschied zu dynamischen Phasen, nur vom
Entwicklungpfad von Quantenzuständen im Zustandsraum abhängig. Das
Gebiet wurde ständig erweitert und hat eine Reihe von Verallgemeinerungen
erfahren. Heute reicht sein Spektrum von der Entdeckung der geometrischen
Phasen für adiabatische, zyklische Entwicklungen über nichtadiabatische,
nichtzyklische Entwicklungen bis zum nichtdiagonalen und nichtunitären Fall.
In der vorliegenden Arbeit werden einige der speziellen Eigenschaften von
geometrischen Phasen mit der Technik der Neutronenpolarimetrie experi-
mentell beleuchtet. Der erste Teil beschreibt eine Phasenmessung mit gemis-
chten Eingangszuständen. Phasen rein dynamischen und rein geometrischen
Ursprungs wurden als eine Funktion der Mischung des Eingangszustandes
gemessen. Besonderes Augenmerk wird hierbei auf die Verletzung der Addi-
tivität der Phasen für gemischte Eingangszustände gelegt und diese bestätigt.
Die Nichtadditivität entsteht aus der Definition der Phase als gewichtete
Summe der Phasenfaktoren aller Eigenzustände der Dichtematrix.
Der zweite Teil befasst sich mit geometrischen Phasen unter nichtunitären
Entwicklungen. Es wurde unter bestimmten wohldefinierten Annahmen gezeigt,
dass geometrische Phasen von speziellen Störungen nicht beeinflusst werden,
wenn in der Zustandsentwicklung kein dynamischer Phasenanteil entsteht.
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Chapter 1

Introduction

Although the beginnings of Quantum mechanics can be traced back more
than 100 years, its case is far from being closed. With ongoing progress in
experimental technologies, big obstacles on the way to understanding the
basic principles are removed every day. Leaving aside optimistic hopes for
ambitious goals like a quantum computer within the next few years, quantum
mechanics is still as fascinating as it was in its early days. Its description and
prediction of a wide range of phenomena, that are completely counterintuitive
not only to the lay mind, keep attracting us.

Because of the great success of waves as a model for numerous problems in
classical physics, the notion of phase is of great importance also in quantum
mechanics. A good example is the concept of geometric phase. It was dis-
covered by M. V. Berry [Berry 1984] and found to be closely related to the
early findings of S. Pancharatnam [Pancharatnam 1956, Berry 1987]. Evolv-
ing quantum systems acquire two kinds of phase factors: (i) the dynamical
phase which depends on the dynamical properties of the system - like energy
- during a particular evolution, and (ii) the geometric phase which only de-
pends on the path the system takes in state space on its way from the initial
to the final state. Numerous related theoretical works as well as experimen-
tal demonstrations have been done so far. The concept was widely expanded
and has undergone several generalizations (see [Shapere and Wilczek 1989] or
[Anandan et al. 1997] for an overview). Nonadiabatic [Aharonov and Anan-
dan 1987] and noncyclic [Samuel and Bhandari 1988] evolutions as well as
the off-diagonal case, where initial and final state are mutually orthogonal
[Manini and Pistolesi 2000], have been considered. Ever since, a great vari-
ety of experimental demonstrations has been accomplished [Tomita and Chao
1986, Suter et al. 1988] also in neutron optics [Bitter and Dubbers 1987,
Wagh et al. 1997, Wagh et al. 1998, Hasegawa et al. 2001, Filipp et al. 2005].

Due to its potential robustness against noise [De Chiara and Palma 2003,
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Zhu and Zanardi 2005], the geometric phase is an excellent candidate to be
utilized for logic gate operations in quantum information technology [Nielsen
and Chuang 2000]. Thus, a rigorous investigation of all its properties is of
great importance.
In addition to an approach by Uhlmann [Uhlmann 1991] a new concept of
phase for mixed input states based on an operational approach was devel-
oped [Wagh et al. 1998, Sjöqvist et al. 2000]. Here, each eigenvector of the
initial density matrix independently acquires a phase. The total mixed state
phase is a weighted average of the individual phase factors. This concept
is of great significance for such experimental situations or technical applica-
tions where pure state theories may imply strong idealizations. Theoretical
predictions have been tested by Du et al. [Du et al. 2003] and Ericsson et al.
[Ericsson et al. 2003a] using NMR and single-photon interferometry, respec-
tively.
Within the scope of the first part of this thesis, measurements of nonadia-
batic geometric, dynamical and combined phases with polarized neutrons for
noncyclic evolutions are described. These phases depend on noise strength in
state preparation, providing the degree of polarization – the purity – of the
neutron input state. In particular, the experiment demonstrates that the ge-
ometric and dynamical mixed state phases Φg and Φd, resulting from separate
measurements, are not additive [Sjöqvist 2002, Singh et al. 2003]. The phase
resulting from a single – cumulative – measurement differs from Φg+Φd. This
nonadditivity might be of practical importance for possible applications of
geometric phases. The results are published in [Klepp et al. 2008].

The developments leading to consistent and testable theories for mixed-state
quantum phases naturally set off also the next step: A treatment of phases
under nonunitary evolutions. The nonunitarity mostly comes into play by
interactions of the system with an environment (open quantum systems),
leading to vanishing off-diagonal elements of the states’ density matrix. This
process is usually referred to as decoherence [Zurek 2002, Joos et al. 2003].
A first approach to nonunitary phases for pure states under non-hermitian
Hamiltonians was given in [Garrison and Wright 1988]. In [DeChiara and
Palma 2003], it was shown that for adiabatic evolutions under classical adi-
abatic noise, dephasing is mainly due to the fluctuations of the dynamical
phase. Furthermore, it was demonstrated there that the variance of the
Berry phase is inverse proportional to the evolution time, an aspect which
was also confirmed recently in a dedicated experiment with ultra-cold neu-
trons [Filipp et al. 2009]. Closely related to this result is an experiment with
superconducting qubits by [Leek et al. 2007] that demonstrates the geomet-
ric dependence of the variance of the geometric phase under slow noise. Us-
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ing a quantum jump approach, it was found in [Carollo et al. 2003], that
the geometric phase is independent of noise. A quantum jump is – within
this context – a fluctuation leading to an instantaneous sign inversion of
the polar angle enclosed by the Bloch vector and the precession axis. After
each jump, the Bloch vector finishes the precession through the azimuthal
angle given by the evolution path, so that no change of the total solid an-
gle occurs. In contrast, following the notion of mixed-state Pancharatnam
phases in [Sjöqvist et al. 2000] and in particular its kinetic version put for-
ward by [Singh et al. 2003], [Tong et al. 2004] found that only in the special
case where the induced phase is of purely geometric origin, it is independent
of fluctuations in direction parallel to the precession axis. Their geometric
phase is gauge invariant, i. e. only depends on the path traced out in state
space. Furthermore, their results reduce to the ones of [Sjöqvist et al. 2000]
and [Singh et al. 2003] in the limit of unitary evolutions. The latter is un-
clear for the approach of [Peixoto de Faria et al. 2003], which employs the
concept of completely positive maps. Although operationally well defined,
the ideas developed in [Ericsson et al. 2003b] yield different values of geo-
metric phases for different Kraus representations. The case in which the
system undergoes an adiabatic evolution driven by a slowly varying mag-
netic field and is weakly coupled to a dissipative environment is studied in
[Whitney et al. 2005]. Here, the acquired Berry phase suffers a purely ge-
ometric modification. The problem is tackled in more general frameworks
in [Lombardo and Villar 2006], [Yi et al. 2006] and [Zhu and Zanardi 2005],
the latter putting much emphasis on the aspect of robustness of the nona-
diabatic geometric phase from the point of view of quantum computation.
There, maximum phase gate fidelities in the presence of stochastic control
errors are found for vanishing dynamical phase.
Motivated by the above developments and a clear lack of experimental work
in this field, the second part of this thesis describes neutron polarimeter
measurements dedicated to testing the robustness of geometric phases under
noisy evolutions. It is shown that the measured shifts of intensity oscillations
are independent of the noise level in the experiment, for an evolution with
vanishing dynamical phase. The experiment partly follows the proposal given
in [Tong et al. 2004]. The qualitative demonstration of the robustness of the
geometric phase may only be stated to be achieved if some assumptions about
the nature of the spin evolution under noise are accepted. A clear and also
quantitative experimental proof of the results in [Tong et al. 2004], however,
is still to be accomplished in the future.
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Chapter 2

Observation of Mixed-state
Phases

In this chapter, a measurement of mixed-state phases with polarized neutrons
is described. First, the theoretical prerequisites are briefly explained. Second,
a detailed description of the experimental setup and its adjustment is given.
Subsequent, measurement and data analysis are explained and the results are
shown. The chapter closes with a discussion of these results, open questions
and some ideas concerning potential applications of mixed-state phases.

2.1 The Pancharatnam Phase

In 1984, Berry explicitly calculated the phase accumulated by a quantum
state under adiabatic and cyclic evolutions [Berry 1984]. Besides the usual
dynamical phase, he found an additional geometric contribution of minus half
the solid angle Ω enclosed by the evolution path, as seen from the point of
degeneracy in parameter space, which is the origin of the so-called Poincaré
(for photon polarization states) or Bloch sphere (for other two-level quantum
systems). As an example consider polarized neutrons within a magnetic field
whose direction (the parameter) is changed adiabatically – slow enough for
the system to remain in an eigenstate of the instantaneous Hamiltonian at
all times of the evolution. Following [Sjöqvist 2002], Pancharatnam’s phase
is explained and its connection to the noncyclic and nonadiabatic geometric
phase is established in the next Sections.

We consider two nonorthogonal state vectors |A〉 and |B〉. What is the
phase between the two? If they are collinear, so |A〉 = eiφ|B〉, the answer is
φ. If not, the answer is not trivial. Pancharatnam stated that one could set
up some experiment in which |A〉 and |B〉 are interfering. The intensity is
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measured as:

I =
∣∣eiχ|A〉+ |B〉

∣∣2
= 2 + 〈B|A〉eiχ + (〈B|A〉eiχ)∗

= 2 + 2Re
(〈B|A〉eiχ

)

= 2 + 2
∣∣〈A|B〉

∣∣ cos (χ− arg〈A|B〉) , (2.1)

where we have used that, in general, 〈B|A〉 is a complex number. The im-
portant point is that the oscillations, obtained by varying χ for |A〉 = |B〉
are shifted if we change either |A〉 or |B〉 so that |A〉 6= |B〉. This is the
Pancharatnam relative phase shift between |A〉 and |B〉. Equation (2.1) is at
maximum when χ = arg〈A|B〉 or, for fixed χ = 0 and varied arg〈A|B〉, when
the Pancharatnam phase φ ≡ arg〈A|B〉 = 0. Then the two states are consid-
ered to be ”in-phase”. This is the case if 〈A|B〉 is real and positive, which
is called Pancharatnam’s connection. For example, the states |A〉 = |+〉 and
|B〉 = 1/

√
2(|+〉 − i|−〉) are in-phase states. An important property of this

phase is found when projecting two in-phase states |A〉, |B〉 on a third state
|C〉:

|C ′〉 = |C〉〈C|A〉
|C ′′〉 = |C〉〈C|B〉.

The relative phase between |C ′〉 and |C ′′〉 becomes:

arg〈C ′|C ′′〉 = arg〈A|C〉〈C|B〉 = arg〈A|C〉〈C|B〉〈B|A〉
≡ ∆(A,B, C), (2.2)

where the in-phase condition arg〈A|B〉 = 0 was used. Note that the sequence
of states on the right hand side of the first line of Eq. (2.2) plays an important
role here. |A〉 is projected to |B〉 and the result is projected to |C〉, which is
then compared to |A〉. ∆(A,B, C) is related to oriented areas because it is
additive and depends on orientation, which can be expressed as:

∆(A,B,C, D) = ∆(A,B, C) + ∆(A,C, D)

∆(A,C, B) = −∆(A,B,C). (2.3)

Suppose we start with the state |A〉 at the north pole of the Bloch sphere,
i. e. |A〉 = |+〉. Let (θ, ϕ) be the polar and azimuthal angles for the Bloch
sphere representation of the state |B〉 and (θ + dθ, ϕ + dϕ) for |B + dB〉,
respectively. dθ and dϕ are infinitely small. |B〉 and |B +dB〉 can be written
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Figure 2.1: Bloch sphere description with the spherical triangle defined by
the states |A〉, |B〉 and |C〉, enclosing the solid angle Ω(A,B,C) by geodesics
(green). Note that the path a is a geodesic while b is a circle of latitude.

as

|B〉 = cos
θ

2
|+〉+ eiϕ sin

θ

2
|−〉 (2.4)

|B + dB〉 = cos

(
θ

2
+

dθ

2

)
|+〉+ ei(ϕ+dϕ) sin

(
θ

2
+

dθ

2

)
|−〉.

We can then calculate

∆(A,B, B + dB) = arg〈A|B + dB〉〈B + dB|B〉

= arg


cos2 θ

2
+ sin2 θ

2
cos(dϕ)︸ ︷︷ ︸

'1

−i sin2 θ

2
sin(dϕ)︸ ︷︷ ︸
'dϕ




= arctan

(
− sin2 θ

2
dϕ

1

)
' − sin2 θ

2
dϕ

= −1

2
(1− cos θ)dϕ, (2.5)

where we have used that cos
(

θ
2

+ dθ
2

) ' cos θ
2
. On the Bloch sphere, Eq. (2.5)

equals −∆Ω
2

, where ∆Ω is the solid angle enclosed by the infinitesimal spheri-
cal triangle defined by the states |A〉,|B〉 and |B+dB〉. Thus, for the triangle
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defined by |A〉,|B〉 and |C〉, as shown in Fig. (2.1), we can use the properties
(2.3) to obtain

∆(A,B, C) = −ϕ

2
(1− cos θ) = −Ω(A,B, C)

2
. (2.6)

This phase depends only on the geodesic path (on great circles) defined by
the positions of the three states on the Bloch sphere. Therefore it is a so-
called geometric phase. If the path taken from |B〉 to |C〉 is not the geodesic
marked by a in Fig. 2.1, but the circle of latitude marked by b, the relative
Pancharatnam phase contains also a dynamical part that is calculated as
φd = −ϕ

2
cos θ. This occurs in typical neutron polarimetry experiments,

where the neutron spin state |B〉 is rotated around a magnetic field axis that
is parallel to the z axis of the Bloch sphere. In contrast, the field axis to
achieve a rotation along a must be perpendicular to |B〉. The paths a and
b coincide for θ = π/2 so that φd = 0. It is important to note, that the
Pancharatnam relative phase is independent of the adiabatic approximation.

2.2 Noncyclic Geometric Phase

Employing the above concept it has been shown in [Samuel and Bhandari
1988] that the sequence of states does not need to be closed as in Eq. (2.2).
All results hold for noncyclic evolutions as well. The geometric phase is in this
case, as before, equal to minus half the solid angle enclosed by the geodesics
on the Bloch sphere, as drawn from |A〉 to |B〉 to |C〉 and back to |A〉.
However, one does not need to explicitly carry out the evolution |C〉 → |A〉.
We say that Ω is enclosed by the path its shortest geodesic closure on the
Bloch sphere. An example is shown in Fig. 2.2. Measurements of this effect by
neutron optical methods has been proposed in [Wagh and Rakhecha 1995a,
Wagh and Rakhecha 1995b] and experimentally demonstrated for neutron
interferometry and polarimetry in [Wagh et al. 1998] and [Klepp et al. 2005],
respectively.

2.3 Mixed-State Pancharatnam Phase

Trying to find an equivalent to the Pancharatnam phase concept for the more
general mixed-states evolving under unitary transformations – so ρA → ρB =
UρAU † – or

ρA =
∑

k

wk|Ak〉〈Ak| → ρB =
∑

k

wk|Bk〉〈Bk|,
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Figure 2.2: The evolution on the geodesic from |C〉 to |A〉 does not need
to be carried out to obtain −Ω(A,B,C)/2. The result is the same for an
evolution that only goes from |A〉 to |C〉.

where wk are the eigenvalues of the density matrices and |Bk〉 = U |Ak〉.
Each orthonormal pure state component of the input density matrix con-
tributes with their ”own” oscillation as predicted by Eq. (2.1) to the overall
interference pattern. The total intensity is then proportional to

I ∝
∑

k

wk

∣∣eiχ|Ak〉+ |Bk〉
∣∣2

= 2 + 2
∑

k

wk

∣∣〈Ak|Bk〉
∣∣ cos(χ− arg〈Ak|Bk〉), (2.7)

which is calculated in the same manner as Eq. (2.1), including the fact that∑
k wk = 1. Noting that

Tr(UρA) = Tr

( ∑

k

wkU |Ak〉〈Ak|
)

=
∑

i

∑

k

wk〈i|U |Ak〉〈Ak|i〉

=
∑

i

∑

k

wk 〈Ak |i〉〈i|︸︷︷︸
1l

U |Ak〉
︸ ︷︷ ︸

∈C

=
∑

k

wk|〈Ak|U |Ak〉|ei arg 〈Ak|U |Ak〉,

one may rewrite Eq. (2.7) to

I ∝ 2 + 2
∣∣Tr(UρA)

∣∣ cos
(
χ− arg Tr(UρA)

)
. (2.8)
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In analogy to Eq. (2.1), the interference pattern is shifted when U 6= 1l.
If we use pure states in Eq. (2.8), the phase shift and the visibility reduce
to Pancharatnam’s original formulas. The sequence of states that leads to
the pure state phase ∆(A,B,C) can be adopted for a sequence of density
operators. All pure state components undergo the same unitary U (in the
following U takes the system through ρA → ρB → ρC), so that we can write
down the quantities ∆(Ak, Bk, Ck) = arg 〈Ak|U |Ak〉 for each of them. The
generalization of Eq. (2.2) for mixed states is then

∆(A, B, C) = arg
( ∑

k

wk

∣∣〈Ak|U |Ak〉
∣∣ei arg 〈Ak|U |Ak〉). (2.9)

Equation (2.9) depends exponentially on the Pancharatnam phases of all
pure state components and therefore ∆(A,B, C) is nonadditive, in contrast
to Eq. (2.2). ∆ still depends on the orientation of U :

∆(A,B, C) = −∆(A,C, B). (2.10)

For example, a mixed input state of qubits with the two components |+〉 and
|−〉 can be described by ρA = 1

2
(1l + rσz). One can consider a spin-polarized

neutron beam, for instance. r is the degree of polarization (the purity), which
can be interpreted as the length of the polarization vector ~r = Tr(ρA~σ) with
0 < r ≤ 1. The visibilities are equal for |+〉 and |−〉, the phases related
as ∆(A+, B+, C+) = −∆(A−, B−, C−) = −Ω/2. The states pointing to the
positions A+, B+ and C+ on the Bloch sphere are orthogonal to the states
pointing to the positions A−, B− and C−, respectively. We obtain

∆(A,B, C) = arg
(1

2
(1 + r)e−iΩ/2 +

1

2
(1− r)eiΩ/2

)

= arg
(
cos

Ω

2
− ir sin

Ω

2

)

= − arctan(r tan
Ω

2
). (2.11)

The same can be done for the visibility, which results in:

V =
∣∣Tr

(
UρA

)∣∣ =
∣∣ ∑

k

wk

∣∣〈Ak|U |Ak〉
∣∣ei arg 〈Ak|U |Ak〉∣∣

= ν

√
cos2

Ω

2
+ r2 sin2 Ω

2
. (2.12)
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2.4 Pancharatnam Phase in Neutron Polari-

metry

How can the obtained formulas be tested in an experiment? As already men-
tioned, a demonstration of Eq. (2.11) has been accomplished in [Du et al.
2003] [Du et al. 2003] , while in [Ericsson et al. 2003a] also the validity of
Eq. (2.12) has been demonstrated. The proposal for a neutron polarimetry
measurement of the Pancharatnam phase [Wagh and Rakhecha 1995b] has
been adopted for mixed input states in [Larsson and Sjöqvist 2003] and im-
plemented in [Klepp et al. 2005] and, with a changed experimental setup,
in [Sponar et al. 2006]. [Sponar et al. 2006]. However, in the latter two
references, the mixed input state was produced by doing the measurement
with almost 100% polarization. The data was recorded one time with an up-
stream DC-flipper turned off and a second time with this device turned on,
which resulted in the incident states |+〉 and |−〉, respectively. Two intensity
oscillations, mutually shifted by π, were obtained. Calculating a weighted
average of the data of the two curves was assumed to give the curve one
would have obtained for a particular input purity. Corresponding to the cho-
sen weights, the result for a specific ”mixed input state” was obtained. While
those results already confirmed the theoretical predictions for the Sjöqvist
mixed-state phase, a demonstration for real mixtures was needed. In the
following, a formal treatment of the experimental setup and a calculation of
expected results is shown.

2.4.1 The Pure State Case

A neutron beam propagating in y direction interacting with static magnetic
fields ~B(y) is described by the Hamiltonian

H = −~2/2m~∇2 − µ~σ ~B(y).

m and µ are the mass and the magnetic moment of the neutron, respec-
tively. ~σ is the Pauli vector operator. Zeeman splitting within ~B(y) leads to
solutions of the Schrödinger equation

cos(ϑ/2)|k+〉|+〉+ eiα sin(ϑ/2)|k−〉|−〉, (2.13)

where |k±〉 are the momentum and |±〉 the spin eigenstates within the field
~B(y). ϑ and α denote the polar and azimuthal angles determining the direc-

tion of the polarization with respect to ~B(y). k± ' k ∓∆k, where k is the

momentum of the free particle and ∆k = mµ| ~B(y)|/~2k is the field-induced
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momentum shift. ∆k can be detected from Larmor precession. Omitting
the coupling of momentum and spin for the moment, we focus on the evo-
lution of superposed spin eigenstates resulting in Larmor precession of the
polarization vector ~r. Consider the unitary, unimodular operator

U(ξ′, δ′, ζ ′) = e−iδ′ cos ξ′|+〉〈+| − e−iζ′ sin ξ′|+〉〈−|
+eiζ′ sin ξ′|−〉〈+|+ eiδ′ cos ξ′|−〉〈−|. (2.14)

It is capable of describing the evolution of the system within static mag-
netic fields. The set of SU(2) parameters (ξ′, δ′, ζ ′) is related to the so-called
Cayley-Klein parameters a, b via a = e−iδ′ cos ξ′ and b = −e−iζ′ sin ξ′ (see
e.g. [Sakurai 1994]). As already stated, the Pancharatnam relative phase φ
for pure input states accumulated during such a particular evolution Uφ, say,
can be written as

φ = arg〈+|Uφ|+〉, (2.15)

with the assumed initial state |+〉. The visibility for pure input states is
given by

ν = |〈+|Uφ|+〉|. (2.16)

The effects of an evolution written in the form Eq. (2.14) on the orthogonal
states |+〉 and |−〉 are

Uφ|+〉 = cos ξ′e−iδ′|+〉+ sin ξ′eiζ′|−〉
Uφ|−〉 = − sin ξ′e−iζ′|+〉+ cos ξ′eiδ′|−〉. (2.17)

One finds that the Pancharatnam phase is given by

φ = arg
(
〈+|

[
cos ξ′ · e−iδ′ |+〉+ sin ξ′ · eiζ′|−〉

] )

= −δ′ + arg(cos ξ′) (2.18)

and the associated pure state visibility is

ν = | cos ξ′|. (2.19)

Note that both the Pancharatnam phase and the visibility depend only on
the SU(2) parameters δ′ and ξ′, respectively.
The neutron polarimeter experiment proposed in [Wagh and Rakhecha 1995b]
is sketched in Fig. 2.3. The following calculations should make clear how φ
and ν can be measured using this apparatus.
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Figure 2.3: Sketch of neutron polarimetry setup for phase measurement with
overall guide field Bz, polarizer P , three DC-coils to implement unitary oper-
ations U1, U †

1 , Uφ, analyzer A and detector D. Greek letters denote polariza-
tion rotation angles. Shifting the second coil induces an additional dynamical
phase η/2 resulting in intensity oscillations.

A monochromatic neutron beam passes the polarizer P preparing it in the
up state |+〉 with respect to a magnetic guide field in z direction that we
call Bz. Next, the beam approaches a DC coil with its field Bx pointing
to the x direction. Bx is chosen such that it carries out the transformation
U1 ≡ U(π/4, 0,−π/2), corresponding to a +π/2 rotation around the +x axis.
This can also be denoted as

U1 =
1√
2

(|+〉〈+| − i|+〉〈−| − i|−〉〈+|+ |−〉〈−|),

or in matrix form:

U1 =
1√
2

(
1 −i
−i 1

)
. (2.20)

Instead of Eq. (2.14), to receive Eq. (2.20), one usually employs the well-
known spin state rotation formalism, in which the direction of the rotation
axis ~β/|~β| (+x in this case) and the rotation angle β (π/2 in this case) must
be given. The unitary rotation operator is then:

U(~β) = 1l cos
β

2
− i~σ

~β

|~β|
sin

β

2
. (2.21)

By comparison of the matrix elements of Eqs. (2.14) and (2.21) one easily
finds the parameter set for a given coil operation.
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After U1 the resulting state of the system is a coherent superposition of the
two orthogonal spin eigenstates:

|ψ0〉 = 1/
√

2(|+〉 − i|−〉). (2.22)

A subsequent coil, represented by U(ξ, 0,−π/2), is set to cause a rotation
around the +x axis by an angle 2ξ. This second coil and the following propa-
gation distance within Bz – corresponding to a rotation angle 2δ around the
+z axis – define an evolution Uφ≡U(ξ, δ, ζ). Undergoing the transforma-
tion Uφ, the two spin eigenstates |±〉 acquire opposite Pancharatnam phase

φ = arg〈±|Uφ|±〉 = ∓δ. A third coil, that we refer to as U †
1 , exactly reverses

the action of the first one and would therefore transform a state |ψ0〉 back to
|+〉. Clearly, the state of the system entering the third coil equals |ψ0〉 only if
Uφ = 1l. φ can be extracted by applying an extra dynamical phase shift ∓1

2
η

to |±〉. It is implemented by adjusting both inter-coil distances from first to
second and second to third coil to polarization rotation angle equivalents of
2πn + η and 2πn′ + 2δ − η, respectively (n, n′ are integer). By variation of
the position of the second coil, these rotation angles are varied stepwise to
yield intensity oscillations from which φ can then be calculated. We refer to
the transformations carried out along these distances within the guide field
as Uη≡U(0, η/2) and U †

η . Note that, because of ξ = 0, the parameter ζ is
undetermined and, therefore, omitted in Uη. After projection on the state
|+〉 by the analyzer A, the phase φ=−δ and its visibility ν = | cos ξ| can be
computed as functions of the maxima and minima of the expected intensity,
Imax and Imin, in the following way:

I ∝ ∣∣〈+|U †
1U

†
ηUφUηU1|+〉

∣∣ 2

leads, by extensive use of Eq. (2.14), to:

I ∝ cos2 ξ cos2 δ + sin2 ξ cos2(ζ − η). (2.23)

In the second term of this expression, depending on the direction of the axis
of rotation for U1 (either x or y), one finds cos2(ζ − η) or sin2(ζ − η). The
intensity is completely determined by the three SU(2) parameters ξ, δ, ζ and
the angle η. It oscillates sinusoidally with a period π in η between its maxima
and minima

Imin = cos2 ξ cos2 δ (2.24)

and
Imax = cos2 ξ cos2 δ + sin2 ξ. (2.25)

Note that I = I ′/In, Imin = I ′min/In and Imax = I ′max/In, where I ′, I ′min

and I ′max are the measured intensities and In is a measured normalization
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Figure 2.4: Evolution of the |+〉 state induced by Uφ, associated to:
a) Purely (noncyclic) geometric phase (2ξ = π/2). b) Combinations of dy-
namical and geometric phase on the Bloch sphere (0 < 2ξ < π/2).

constant to be discussed in Section 2.6.10 in more detail. The Pancharatnam
phase φ =−δ in terms of these can be calculated from (2.24):

cos2 δ =
Imin

cos2 ξ

=
Imin

1− sin2 ξ − cos2 ξ cos2 δ + cos2 ξ cos2 δ

⇒ φ = arccos

√
Imin

1− Imax + Imin

. (2.26)

The visibility ν becomes

ν = | cos ξ|
=

√
cos2 ξ

=

√
1− sin2 ξ − cos2 ξ cos2 δ + cos2 ξ cos2 δ

=
√

1− Imax + Imin. (2.27)

As before in Eq. (2.6), φg and the total Pancharatnam phase φ are related
to the path by the polar and azimuthal angles 2ξ and 2δ, so that the pure
state geometric phase becomes

φg = φ− φd = −δ[1− cos (2ξ)], (2.28)

while its dynamical counterpart is

φd = −δ cos (2ξ). (2.29)
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By proper choice of 2ξ and 2δ, Uφ can be set to generate purely geometric,
purely dynamical, or arbitrary combinations of both phases as shown in
Fig. 2.4.1. For instance, consider an evolution that takes |+〉 to the equator
(carried out by the second DC coil) and along the latter for an angle of 2δ
(carried out by the guide field Bz). The evolution can be divided into two

parts, U
(1)
φ and U

(2)
φ , that can be written as:

U
(1)
φ =

1√
2

(|+〉〈+| − i|+〉〈−| − i|−〉〈+|+ |−〉〈−|)

and

U
(2)
φ = e−iδ|+〉〈+|+ eiδ|−〉〈−|, (2.30)

so that

Uφ = U
(2)
φ U

(1)
φ

=
1√
2

(
e−iδ|+〉〈+| − ie−iδ|+〉〈−| − ieiδ|−〉〈+|+ eiδ|−〉〈−|).

Comparing this to Eq. (2.14), one sees that the particular set of SU(2) pa-
rameters for Uφ is (ξ = π/4, δ, ζ = δ − π/2). By choosing 2ξ = π/2 one sets
the accumulated Pancharatnam phase to be purely geometric.

For 2ξ = π, using Eqs. (2.24) and (2.25), one can see that the intensity oscil-
lates between the values 0 and 1. Consequently, the contrast (or ”visibility”)
of interference fringes

C =
Imax − Imin

Imax + Imin

(2.31)

is at maximum while ν = 0. This is correct, because the measured pattern
shows interference between the |+〉 and |−〉 states, while ν denotes the visi-
bility of the interference between the initial state |+〉 and the evolved state
Uφ|+〉.

2.4.2 The Mixed State Case

A neutron beam with incident purity r′0 along the +z axis
(
~r′0 =(0, 0, r′0)

)
is

described by the density operator

ρin(r′0) = 1/2(1l + r′0σz).
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Calculating

ρout = U †
1U

†
η UφUηU1︸ ︷︷ ︸

U

ρin U †
1U

†
η U †

φUηU1︸ ︷︷ ︸
U
†

=
1

2

(
1l + r′0

(
U |+〉〈+|U † − U |−〉〈−|U †))

,

the state of the outgoing beam after undergoing the transformations as de-
scribed in the previous Sections, one finds the intensity

Iρ ∝ Tr
(|+〉〈+|ρout

)

=
1

2
+

1

2
r′0 Tr

(|+〉〈+|U |+〉〈+|U †)
︸ ︷︷ ︸

=I

−1

2
r′0 Tr

(|+〉〈+|U |−〉〈−|U †)
︸ ︷︷ ︸

=1−I

=
1− r′0

2
+ r′0

(
cos2 ξ cos2 δ + sin2 ξ cos2(ζ − η)

)
(2.32)

after the analyzer A, with I as defined in Eq. (2.23). Considering the
maxima and minima Iρ

max = Ĩρ
max/I

ρ
n, Iρ

min = Ĩρ
min/I

ρ
n of η-induced os-

cillations of Iρ = Ĩρ/Iρ
n one obtains the mixed state phase and visibility

[Larsson and Sjöqvist 2003]

Φ(r′0) = arccos

√
[Iρ

min−1/2(1−r′0)]/r
′
0

r′0[1/2(1+r′0)−Iρ
max]+[Iρ

min−1/2(1−r′0)]/r
′
0

(2.33)

V(r′0) = |Tr(Uφρin)| =
√

r′0[1/2(1+r′0)− Iρ
max]+[Iρ

min − 1/2(1− r′0)]/r
′
0,(2.34)

with the measured intensities Iρ, Iρ
max, I

ρ
min and a normalization factor Iρ

n (see
also Section 2.6.10). Iρ

0 is the intensity measured at Uφ = 1l.

Note that Eqs. (2.33) and (2.34) reduce to the pure state formulas for the
phase and visibility – Eq.(2.18) and Eq.(2.19) – for r′0 = 1.

The theoretical predictions for the specific notation for the mixed state phase
and visibility in terms of SU(2) parameters are

Φ(r′0) = − arctan (r′0 tan δ) (2.35)

V(r′0) = ν
√

cos2 δ + r′20 sin2 δ, (2.36)

a result already obtained in Section 2.3.
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2.5 Entanglement of Spin and Momentum

The description of the mixed-state phase and the measurement concept using
polarized neutrons given above is satisfactorily described by the formalism
used in the previous Sections. There are no open questions with respect to
the experiment that is discussed. Nevertheless, it is interesting to tackle the
problem with a more rigorous mathematical description that is not necessary
and, moreover, more complicated. Personally, I hope that this could help to
give a better understanding of the subject.
The measurable effect of rotation of the polarization vector within a static
magnetic field originates from the Zeeman splitting of the up and down spin
components of the neutron state vector with respect to the quantization axis
defined by the field. The up component loses, while the down component
gains kinetic energy (see, for instance [Suda 2006]) when entering the static
magnetic field. In the following, the situation is shortly summarized.
The one-dimensional Schrödinger equation for the free particle moving in y
direction

Hψ(y, t) = − ~
2

2m

∂2

∂y2
ψ(y, t) = i~

∂

∂t
ψ(y, t)

can be solved by making the Ansatz ψ(y, t) = Aei(ky−ωt). This yields the
dispersion relation

E = ~ω =
~2k2

2m
.

For neutrons in a static magnetic field the total energy is conserved and
therefore kinetic energy must increase/decrease when the potential energy
decreases/increases for neutrons with spin down/up. One can write

E =
~2k2

2m
=
~2k2

±
2m

± µB,

from which follows that k2 = k2
± ± 2mµB

~2 . The modified kinetic energies
associated with the two spin eigenstates become

k± = k

√
1∓ 2mµB

~2k2
= k

(
1∓ 1

2

2mµB

~2k2
− 1

8

(
2mµB

~2k2

)2

∓ . . .

)

' k ∓ mµB

~2k
= k ∓∆k.

The approximation is well-justified as long as E and therefore k is much
larger than µB. This is definitely the case for all experiments described in
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this thesis. Typically, E∼20meV for thermal neutrons and µB∼60 neV for
a magnetic field of 1T.
Next, the Schrödinger equation for neutrons with a magnetic potential (also
called Pauli equation) induced by a magnetic field in z direction

(
− ~2

2m

∂2

∂y2
− µσzBz(y, t)

)
ψ(y, t) = i~

∂ψ(y, t)

∂t
(2.37)

has the solutions

ψ = a|+〉+ b|−〉 = f+(y, t) cos
ϑ

2
|+〉+ f−(y, t)eiα sin

ϑ

2
(2.38)

(see, for instance, [Rauch and Werner 2000]), where

f±(y, t) =
1√
2π

∫
a±(k±)ei(ky∓∆ky−ω(k)t).

The functions f± describe the wave packets of the up and down spin com-
ponents. As long as δk, the width of the momentum distribution function
g±(k) = |a±(k)|2, is much larger than ∆k, one can write |a±(k±)| ' |a±(k)|.
One can take the problem as a semiclassical one – the neutron as a pointlike
particle with a 3D vector ”piercing through it”. One can then calculate the
components of the polarization vector ~r = 〈ψ|~σ|ψ〉 as shown in [Mezei 1988].
The polar angle ϑ is determined by g+(k) and g−(k). The azimuthal angle α
– the relative phase between |+〉 and |−〉 – is equal to 2y∆k. If ∆k gets large
enough and the corresponding spatial separation exceeds the coherence length
lc'λ2/∆λ (the separation distance at which the contrast is, for instance, 1/e
or 1/2 of its maximum value), interference vanishes [Badurek et al. 1993].
The contrast of the measured oscillations, resulting from Larmor precession
of the polarization vector, decreases and is finally lost. In past experiments
the Zeeman effect and the related so-called longitudinal Stern-Gerlach effect
were investigated for neutrons [Zeilinger and Shull 1979, Alefeld et al. 1981].
From the above, we can conclude that it is only in momentum-space where
the relative phase shifts between |+〉 and |−〉 are induced. Taking a look
at Eq. (2.38), we can say that the neutron state vector evolves within a
Hilbert space that is formed by two subspaces: Spin space and momentum
or k-space. This product space is denoted as H = Hk ⊗ Hs. Therefore,
in addition to spin, we have a second ”two-level system” (accelerated and
decelerated part) with the basis states |k+〉, associated with |+〉 and |k−〉,
associated with |−〉. The coupling of momentum and spin can be seen as
a form of entanglement of degrees of freedom. As in many up-to-date per-
fect crystal interferometer experiments, the entanglement is manifest be-
tween degrees of freedom of one particle instead of separate particles (see,
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for instance, [Hasegawa et al. 2003]). The same occurs in descriptions of the
Stern-Gerlach apparatus (for example, in [Zurek 2002]), where the state of
the moving particles and the detector state form an entangled state. The
notation is also equivalent to the usual way of describing the electron states
of hydrogen atoms in basic quantum mechanics. For instance one writes
|l,m〉 ⊗ |s,ms〉, where l, m, s and ms are usually the quantum numbers for
orbital momentum, its projection to the z axis, the spin and its projection
to the z axis, respectively.
As already mentioned above, while traveling within the static B field, wave
packets associated with two different values of momentum get separated also
in position space. The question what the requirements are for a physical
property to be considered as separate degree of freedom that can be entangled
with a second one and the usefulness of this idea, is still under discussions. It
is conceivable that the state vector for polarized neutrons in a static magnetic
field can, due to the spatial separation, be extended to

|y+〉 ⊗ |k+〉 ⊗ |+〉+ |y−〉 ⊗ |k−〉 ⊗ |−〉.
|y±〉 could be associated with the position of either one of the wavepackets
with respect to the center of both in flight direction y . In the following, we
will restrict ourselves to the case denoted in Eqs. (2.13) or (2.38), with only
two entangled degrees of freedom.
Including the coupling of momentum and spin - responsible for the spin
evolution in our treatment - we write the input state before the first coil as
|k++〉. The operator (2.14) must then be rewritten:

U ′
φ = cos ξ cos δ · 1l(k) ⊗ 1l(s) − i sin ξ cos ζ · σ(k)

y ⊗ σ(s)
x

−i sin ξ sin ζ · σ(k)
y ⊗ σ(s)

y − i cos ξ sin δ · 1l(k) ⊗ σ(s)
z

=




e−iδ cos ξ 0 0 −e−iζ sin ξ
0 eiδ cos ξ −eiζ sin ξ 0
0 e−iζ sin ξ e−iδ cos ξ 0

eiζ sin ξ 0 0 eiδ cos ξ


 , (2.39)

where we have used the basis formed by the four vectors |k±±〉, |k±∓〉. (k)
and (s) refer to the momentum and spin degrees of freedom, respectively.
This operator is a combination of a general unitary, unimodular operator in
two dimensions and what is referred to as controlled gate in quantum in-
formation technology [Nielsen and Chuang 2000]. The conditional dynamics
expressed by U′

φ implies that the coherent evolution of one subsystem depends
on the state of the other subsystem, as it is known from NMR experiments
[Du et al. 2003, Jones et al. 2000], for instance.
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To become more familiar with the concept, we write down the explicit cal-
culation of Eq. (2.23) with the help of Eq. (2.39). The input state is

|ψ0〉 = |k++〉 =




1
0
0
0


 .

The first coil affects this state as

|ψ1〉 = U ′
1|ψ0〉 =

1√
2




1 0 0 −i
0 1 i 0
0 i 1 0
−i 0 0 1







1
0
0
0




=
1√
2

(|k++〉 − i|k−−〉
)
.

The distance between the first and the second coil is equivalent to a phase
shifting operation:

|ψ2〉 = U ′
η|ψ1〉 =




e−i η
2 0 0 0

0 ei η
2 0 0

0 0 e−i η
2 0

0 0 0 ei η
2







1
0
0
−i




=
1√
2

(
e−i η

2 |k++〉 − iei η
2 |k−−〉

)
.

In the same manner we can calculate the effect of the SU(2) transformation
(the second coil together with the specific flight distance within the guide
field):

|ψ3〉 = U ′
φ|ψ2〉

=
1√
2

(
ei(δ− η

2
) cos ξ + ie−i(ζ− η

2
) sin ξ

+ei(ζ− η
2
) sin ξ − ie−i(ζ− η

2
) cos ξ

)
.

After the second inter-coil distance and the third coil, the state becomes

|ψ4〉 = U ′†
1 U ′†

η |ψ3〉

=
1

2

([
(eiδ + e−iδ) cos ξ + (e−i(ζ−η) + ei(ζ−η))i sin ξ

]|k++〉

+
[
(eiδ − e−iδ)i cos ξ + (ei(ζ−η) − e−i(ζ−η)) sin ξ

]|k−−〉
)

.
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The corresponding density operator can be written as

ρ = |ψ4〉〈ψ4|
= |k++〉〈k++|[ cos2 ξ cos2 δ + sin2 ξ cos2(ζ − η)

]
+ . . . .

All other terms drop out after the final projection measurement by the ana-
lyzer so that we end up with

I ∝ Tr[1l⊗ |+〉〈+|ρ] = cos2 ξ cos2 δ + sin2 ξ cos2(ζ − η),

which is the same as Eq. (2.23). For mixed states we denote the input state
as the density operator

ρin(r′0) =
(1 + r′0)

2
|k++〉〈k+ + |+ (1− r′0)

2
|k−−〉〈k− − |.

The result for mixed states is equivalent to Eq. (2.32). It might be important
to note that the operator Eq. (2.39) was found by careful construction. It was
not found in literature in this form. It is possible, that some inconsistency
or other problem exists that prevents its use for the given task. So far, it
provides for the correct results. There is hope that it can also be used for the
formal treatment of related problems in neutron optics [Sponar et al. 2008a].

2.6 Experiment

For the measurements of the mixed-state phase one of the beam ports of the
polarized neutron facility at the 250 kW TRIGA reactor at the Atominstitut,
Vienna (see Fig. 2.5) was employed. The experimental methods used in the
mixed-state phase measurements are described in details. For the remaining
Sections of this thesis, directions are defined as in Fig. 2.3. In the meanwhile,
the radiation shielding and monochromator angles have been changed, so that
the parameters given in the following Sections are not valid any more. For a
detailed description of the new setup see [Schmitzer 2009].

2.6.1 Detectors

As detector recording intensity oscillations and as monitor that gives addi-
tional information about the reactor power fluctuations, the usual 3He tubes
of small diameter (∼1 cm) were used. The signal detector (”coffee box”) con-
tained two of them next to each other (aligned perpendicular to the flight
direction), to completely cover the beam cross-section. Its background count-
ing rate when wrapped up in Cd sheets within a layer of borated plastic bricks
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Figure 2.5: The TRIGA reactor at the Atominstitut, Vienna.

(NEUTRO STOP) was finally ∼0.3 cts/s which is one to three orders of mag-
nitude less than the measured signal. The single monitor tube was mounted
within a small (insufficient) shielding to reduce the background counting
rate that was finally as high as ∼4 cts/s. For the monitor, such a high back-
ground does not pose a problem, because its count rate was ∼1500 cts/s. The
background was subtracted by the software for both detectors. In the plots
of measured data that will follow, either intensities (counts per unit time)
or normalized intensities (detector counts per unit time divided by monitor
counts per unit time) are given.

2.6.2 Time Of Flight measurements - TOF

To start with setting up the experiment, the mean wavelength λ and the
spectral width ∆λ/λ at our beam port was measured by the Time Of Flight
(TOF) method. An example of obtained data is shown in Fig. 2.6. The
spectrum emitted by the reactor core approaches a pyrolytic graphite mo-
saic crystal. Bragg reflection from this mosaic monochromator provides for
broader wavelength distribution and therefore higher intensities than it is
the case with perfect crystal monochromators. Since, at that time, the po-
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Figure 2.6: Typical data obtained from a TOF measurement. The peaks
arising from first (right) and second order (left) intensity are clearly visible.
Here, the distance from the center of the chopper housing to the center of the
detector was about 135 cm. Note that the intensity is low: The detector was
placed behind polarizer and analyzer supermirrors. The region starting from
about 1.5 ms is ”dead time”. Also there, channel numbers are shown by the
measurement software, but the time for half a chopper rotation is shorter.

larizing supermirror was installed at its fixed position within the shielding
[Buchelt 1997], we put a chopper into the polarized beam trajectory (∼
20000 rpm, as calculated from Fig. 2.6). A photo-electric relay is opened
and closed twice per rotation and the resulting TTL pulse is passed on to a
Multi-Channel-Analyzer. The pulse is the start signal for the measurement
in which each channel number is assigned to the arriving neutrons counted
within the channel width that was typically 2 µs. Each channel number can
be related to a particular time of flight, because the distance between the
chopper and the detector is known. Here, it is essential to use 3He detectors.
The interaction cross-section of neutrons for 3He is larger than for 10B. For
that reason the 3He detectors can be built with much smaller volumes at
comparable detection efficiencies. This increases the time resolution of the
TOF measurement, that is in our case of the order of 20 µs (see FWHM in
Fig. 2.6), while the detector resolution is of the order of 5 µs.

One knows that the momentum of particles is related to their wavelength
λ by p = ~k = mv = h/λ and therefore λ = h/mv = ht/mL. L and t
are the length of the flight path from the chopper to the detector and the
time of flight, respectively. t′ = t + t0 = c · w is the measured time of
flight, where t0, c and w are an intrinsic time offset, the channel number to



2.6 Experiment 25

which a counted neutron is assigned to and the channel width (time/channel),
respectively. t0 is due to the unknown relation between the exact departure
time of the neutron pulse and the starting time of the channel sequence. The
monochromatization process is described by the Bragg condition 2d sin θB =
nλ. For the n-th order we write vn = L/tn and so

v1 =
L

t′1 − t0
, v2 =

L

t′2 − t0

for n = 1 and n = 2. Moreover, for the first and second order (higher orders
are negligible in this case, as can also be seen from the measured data) one
knows that λ2 = λ1/2 and therefore v1 = v2/2. Taking advantage of this,
one can get rid of the intrinsic time shift:

t0 = 2t′2 − t′1

and can also calculate the real time of flight of a neutron pulse:

t = t′ − t0 = t′ − 2t′2 + t′1.

The wavelength as a function of the measured time of flight and the wave-
length as a function of the channel number c are then given by

λ(t′) =
h

m
· t′ − 2t′2 + t′1

L

λ(c) =
hw

mL
(c− 2c2 + c1),

with c1,2, the channel numbers of the first and second order intensity peaks,
respectively.
To calculate the spectral width or wavelength distribution ∆λ/λ one notes
that in a TOF measurement the measured time uncertainty is, following the
law of propagation of errors,

∆t′2 = ∆t2CD + ∆t2.

It has two main contributions: First, the desired ∆t that stems from the
properties of the monochromator and second, ∆tCD which arises from the
finite opening time or unstable rotation frequency of the chopper and the
uncertainty of the exact position of detection within the detector. In the
present measurements, the geometry and so the opening time of the chopper
window is not known with high accuracy. Pencil-shaped 3He detectors with a
diameter of about 1 cm were used (see Section 2.6.1), so the uncertainty in the
measurement of the distance between chopper and detector is more stringent
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than the exact detection position. For two peaks of the same reflection order,
obtained from two measurements at two different distances one can write:

∆t′21 = ∆t2CD + ∆t21
∆t′22 = ∆t2CD + ∆t22

and again, the unwanted part drops out if one assumes that it does not
depend on the chopper-detector distance:

∆t′21 −∆t′22 = ∆t21 −∆t22.

One can make the Ansatz

t = const · λ.

and also gets ∆t = const ·∆λ, which one can divide by the Ansatz to obtain
∆t/t = ∆λ/λ. This equation can be squared to be able to plug in ∆t21−∆t22.
One finally yields

∆λ

λ
=

√
∆t21 −∆t22

t21 − t22
.

With t = w · c it follows that

∆λ

λ
=

√
∆c2

1 −∆c2
2

c2
1 − c2

2

.

One defines ∆c1,2 as the FWHM of the Gaussian peaks obtained in the first
and second measurement at the positions marked by channel numbers c1 and
c2. They were determined from Gauss fits of measured data, applying the
following fit function from the IGOR data analysis software:

f(x) = y0 + A exp

[
−

(
x− x0

width

)2]
.

It is related to the common form of the Gaussian distribution function

f(x) =
1

σ
√

2π
exp

[
−(x− x0)

2

2σ2

]

by the equations σ = width/
√

2 and FWHM = 2
√

ln 2 ·width. The result of
the TOF measurement at the beamline used for the subsequent experiments
was:

λ = 1.988(6)Å

∆λ

λ
= 1.48(9)%,



2.6 Experiment 27

Figure 2.7: Blue markers: Intensity versus micrometer screw position. Red
markers: Fractions of areas below second and first order Gaussian peaks
versus incident angle.

which corresponds to a velocity of about 1989(5) m/s. It is not fully clarified,
whether one should measure the chopper-detector distance from the center,
the upstream or the downstream end of the chopper. Here, it was mea-
sured from the center, but additionally the systematic error arising from this
potential mistake was taken into account. The percentage of second order
neutrons in the beam was determined to 13.9(8)%, with only the polarizer
in the beam.

2.6.3 Reducing Second-Order Intensity

In [Klepp 2004, Klepp et al. 2005] it is stated that the attempts to measure
the Pancharatnam phase for mixed input states met its major difficulties in
the second order neutrons reflected from the monochromator. When inten-
sity oscillations were measured over more than one period, mutually different
values were found for the two minima and the two maxima, which are ex-
pected to have roughly the same intensity. This poses a serious problem for
the calculation of phases from minimum and maximum intensities. Because
their interaction time with the magnetic fields along the beam path is only
half of that for first order neutrons, their polarization is only rotated by half
the angle that was adjusted for spin rotation devices.
The method to reduce the percentage of second order contributions is con-
tained in the specifications of typical polarizing supermirrors: The critical
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Figure 2.8: Neutrons with spin up move along the beam trajectory: a) All
magnetic guide fields are perfectly aligned. The spin is kept parallel to the
field direction. b) The second guide field is slightly tilted relative to the first
one. The neutron spin starts a precession around the tilted direction.

angle θc between a neutron beam and a surface, under which the neutrons
are total reflected by a material (see [Rauch and Werner 2000]), is larger for
wavelength λ than for λ/2. This means that for given wavelength we can
increase the angle of incidence slightly and certainly lose a certain amount
of the first order neutrons, but the intensity of the second order neutrons
decreases more rapidly.

In order to show this effect, several TOF measurements were carried out for
varying analyzing supermirror angles. The adjustment of the micrometer
screw that controls the relative position of the analyzer exit diaphragm with
respect to the maximum intensity position was varied. The results are shown
in Fig. 2.7. One could trade off measurement times longer by a factor of 2 or 3
for second order reduction down to about 1%. The maximum intensity of the
complete setup and a 0.75 cm2 Cd diaphragm in place was about 150 cts/s,
which was good enough for the planned experiment. Second order intensity
turned out to be not the only reason for unbalanced oscillations as will be
explained in the next Sections.
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2.6.4 Nonadiabatic Transitions between Guide Fields

During the adjustments for the mixed-state phase measurement it was con-
ceived that even small tilting of the incident polarization vector relative to the
magnetic guide field axis can also lead to asymmetric behavior of measured
intensity oscillations. So, further effort was made to avoid such unwanted tilt-
ing of some degrees that can, in our setup, only be created by nonadiabatic
evolutions. Without all rotation devices switched off, this means ”unsmooth”
transitions from some magnetic guide field to the next. Adiabatic evolution
means, roughly speaking, that the spin state remains in an eigenstate of the
Hamiltonian describing the magnetic interactions of the neutron beam along
its trajectory. In such a case, the polarization vector remains pinned to the
direction of the guide field (see Fig. 2.8a)). A quantitative criteria for adi-
abaticity, the adiabaticity parameter as given in [Kraan et al. 2003], can be
written as:

k =
ωL

ωgeo

=
2µB
~

v|dα
dy
| ,

where α is the angle between the intended guide field direction and the actual
field direction at any position y along the beam trajectory. Adiabaticity is
provided if k is large. If the field component in some other direction than
+z (remember that directions are defined as in Fig. 2.3) abruptly increases
from zero, the polarization is not any more aligned to the guide field Bz,
but precesses on a cone with an opening (tilting) angle around the new
quantization axis (see Fig. 2.8b)). A simple experiment to resolve such a
tilting is carried out: With polarizer and analyzer in place, one puts a DC
coil with its magnetic field axis pointing to the x direction to a chosen position
and varies its current. Say, we set currents in such a way that we achieve
more than a −π rotation up to more than a +π rotation. −π and π rotations
are identified by the corresponding intensity minima. We obtain an intensity
oscillation.
When doing a sine fit of the oscillation, its phase fit parameter ”phi” in the
IGOR fit function

f(x) = y0 + A sin(fx + phi) (2.40)

is equal to π/2 if the oscillation is perfectly symmetric. In practice, the
oscillation can be shifted by several degrees. The approach was, to use phi
as a quantitative measure of the tilting of the polarization vector incident
to the coil the coil (or of the coil itself, see the next Sections). One moves
the coil further along the beam by several mm (an increment small enough
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Figure 2.9: Three examples for measuring the tilting angle of the incident
polarization.

to resolve one Larmor period within the guide field) and measures another
oscillation by variation of the coil current. Repeating this procedure several
times we can plot the fit parameter phi of each oscillation versus the coil
position and obtain an oscillation whose amplitude is proportional to the
angle between the guide field axis and the tilted incident polarization. A
cross check for the obtained modulation is, that its period should roughly
be equal to the Larmor period for the particular guide field strength. In the
present case, it was about 10 G, corresponding to a Larmor period of about
6.8 cm. Deviations of the Larmor period in the experiments were explained as
arising from stray fields from the neighboring beamline, situated at 5 - 50 cm
distance, and the inaccurate positioning system: With a pen, positions were
marked on the rails that carry the coils. Three examples of data obtained
by the explained procedure are shown in Fig. 2.9. For the red curve the
calculated tilting angle is about 3°, the Larmor period calculated from the fit
parameter f is approximately 7 cm. For the orange curve the tilting angle
is about 1.4°, the Larmor period calculated from the fit is roughly 7.8 cm.
Both oscillations are offset from 0 by approximately 0.1°, where 0 means that
phi = π/2. They are obtained from measurements done at different relative
distances of an auxiliary permanent magnet guide field to the guide field coils
in which the used DC coil was placed. The green curve is data obtained for
almost ideal incident polarization at the best position of the magnet. Here,
a sine fitting model is not appropriate (green dashed line). A horizontal line
fit with zero slope gives an offset of about 5°.
Very small tilting angles could be achieved with the guide field that is shown
in Fig. 2.10. The ”crocodile mouths” at the entrance and the exit provide for
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Figure 2.10: Guide field with ”Crocodile mouths” at entrance and exit.

a good adiabatic transition of the polarization between the guide field and
the surrounding auxiliary magnets. While most guide fields are designed to
fulfill the conditions of Helmholtz geometry (the radius of the two coils equals
their distance in field direction, see [Klepp et al. 2005], [Sponar et al. 2008a]
and [Filipp et al. 2009] for examples), this guide field consists of only one
coil.

The offset of the parameter phi, that does not depend on the coil position
was interpreted as arising from a tilting of the used coil itself. Once the
adjustment was accomplished such that there was no visible oscillation of
the incident spin, one could compensate the tilting of a particular coil as will
be described in Section 2.6.6.

2.6.5 DC Coils

For the experiments described in [Klepp 2004] and [Klepp et al. 2005], mainly
the coils shown in Fig. 2.11 were used. Their dimensions are h = w∼ 5 cm
in height and width and l∼ 2.5 cm in length. They were suspected to cause
a very small homogeneous field region in their center, where the beam of
circularly shaped cross-section of about 0.5 cm radius is transmitted.

Therefore, new coils were constructed that still fit into most available guide
fields, but have bigger homogeneous field region in their center (see Fig. 2.12).
In particular, the goal was to reduce the ratio of length to height and length
to width. The dimensions are h = w∼ 6 cm and l∼ 1.7 cm. The preferred
wire material was anodized Al, as it was used for the old coils. The absorption
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Figure 2.11: Coils used in earlier experiments. The wire material is anodized
Al.

Figure 2.12: Coil designed to provide for better homogeneity in the coil
center.

of neutrons by Al is very small. The thin insulating layer contains hydrogen
that causes scattering. Within the course of coil design it was found that
purchasing a few meters of anodized Al wire of about 0.6 mm diameter is
not a trivial mission at all, since it is hard to find and most companies do
not sell small entities.

Available Al-wire samples were tested in USANS measurements at the TRIGA
reactor facility of the Atominstitut. The results were promising also with re-
spect to an implementation of DC coils in interferometers, where the material
in the beam path must not cause small angle scattering: The rocking curves
with and without sample were identical (see Fig. 2.13). Unfortunately, af-
ter the USANS test it was found that the insulating layer of the wire was
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Figure 2.13: USANS measurements to test wire samples for DC coils. ”hor-
izontal” means that in the sample roughly parallel wire pieces are aligned
perpendicular to the analyzing direction. Note that there is no difference
between the blank and the anodized sample, which means that there is no
small angle scattering involved. The material could in principle be used in
interferometry experiments.

partly too thin to prevent shortcuts and so the samples were not suitable
for DC coils. As a consequence of the anodized Al wire scarcity, we changed
to coated Cu as wire material. The reduction of intensity for one coil with
winding in x and z direction is about 18%.

2.6.6 Adjusting DC Coils

In this Section, it is explained how the fit parameter phi (see Eq. (2.40))
of a fit to an oscillation, measured by varying the x current of a DC coil,
can be used to adjust the relative angle between the z axis of the coil and
the incident polarization in case of unwanted tilting. We assume that the
polarization is already adjusted to be parallel to the guide field. A behavior
as exhibited by the green curve in Fig. 2.9 has already been shown. The only
problem we are left with is the constant offset seen in this curve.

So, sweeping carelessly aside for the moment any other possible interpreta-
tion, position-independent shifting of the oscillation is solely attributed to
tilting of the coil. Tilting around the x axis has been shown not to lead to
crucial effects. One can neglect it as long as it is not visible to the naked eye.

An oscillation measured using a coil tilted around an axis parallel to the
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Figure 2.14: One obtains a shifted (∼ 5°) and asymmetric curve when the x
field current of a tilted DC coil is varied. Here, no guide field compensation
was applied.

Figure 2.15: Visualization of coil tilting: The coil fields and the guide field
are added and result in effective magnetic fields. The effective fields differ in
magnitude and in angle enclosed with the z axis if the coil is tilted.
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Figure 2.16: a) Camera joint for adjusting angles of mounted coils around
the x and y axes. b) Al piece for the base rod of the joint to be inserted and
fixed in a certain height by friction of the brass screw on the base rod.

Figure 2.17: a) Joint with Al piece and fixation screw. b) Mounted on piece
of ITEM rod.

flight direction (y in our case) typically looks like the one shown in Fig. 2.14.
Note that the two minima do not exhibit the same intensity. This can be
interpreted as different angles of the magnetic field axes with respect to the
z direction because of tilting of the coil as shown in Fig. 2.15. By mounting
the coil on a device able to compensate this tilting angle, an oscillation with
roughly equal minima and zero offset, i. e. phi= π/2, can be achieved. Since
more professional materials like angle compensators were not available for
first tests, cheap joints usually used for adjusting photo cameras on tripods
(see Fig. 2.16a) were suggested and implemented by P. Pataki.

They are small enough for the task and have two degrees of freedom, namely
rotation around the x and the y axis. The adjustment in height and the
angle around z could be accounted for by a hexagonally shaped Al piece in
which the base rod of the joint was inserted (see Figs. 2.16b and 2.17a).

By fixing a brass screw that holds the base rod and therefore the coil in a
certain height and a certain angle around z by friction, all needed adjustments
could be done. The disadvantage of this devices was the bad reproducibility.
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Figure 2.18: Complete adjustment device mounted on X 95 carrier.

The Al piece is mounted on an ITEM rod as shown in Fig. 2.17b. The rod

Figure 2.19: a) Coil on adjustment device. b) Adjusted coil and positioning
system fixed to X 95 rail.

was fixed on a translation carrier (Fig. 2.18) for the used Newport X 95 rail
profiles (see Fig. 2.19). The new version (2008) of the coil adjustment system
is shown in Fig. 2.20 (see [Schmitzer 2009]).
On a second carrier, a manual linear translation table with a micrometer
screw was mounted to be able to reproduce the position of the coil carrier:
One fixes the coil carrier at a certain position and moves the translation
table carrier so that the translation table touches firmly the coil carrier.
After fixing the translation table carrier and loosening the coil carrier the
micrometer screw can be adjusted to the desired relative distance and the
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Figure 2.20: DC coil mounted on X 95 carrier with two translation stages for
x and y direction, rotation table and angle compensators for both directions.

coil carrier is moved back to contact position. The coil carrier can then be
fixed again and one knows the relative coil position with an accuracy of,
in principle, 1 µm. The carriers can, by mistake, be slightly tilted around
the z direction (even when strongly fixed) and all mountings have small
slackness which decreases the resolution of the positioning system. After
some experience, the accuracy of this positioning method was estimated to
be 0.5 mm, a value that also entered as systematic error in the data analysis.
The blue curve in Fig. 2.21 shows a typical result of adjusting the tilting
angle around the y axis of a DC coil. These curves were measured before the
reconstruction of the polarimeter beamline in 2008.

In the photographs of the DC coils (for instance Fig. 2.12) one can see clearly
that, apart from the winding causing the x field, there is a second layer of
wire, wound around the z direction. This is already implemented in the old
coils in Fig. 2.11 and is used to compensate the guide field at the position of
the coil. Without compensation field, the guide field and the x component
of the coil add up to a field that cannot become perpendicular to the z
direction and therefore the incident up spin cannot be inverted to the down
state in the coil (see Fig. 2.15). We found the correct values for the guide
field compensation by choosing the current value that corresponds to one
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Figure 2.21: Blue curve: Oscillation measured after tilting adjustment, with-
out compensation field at a guide field of about 10 G. Black curve: The same
with compensation field. The flipping ratio (calculated from the fit) improves
significantly on using a compensation field.

Figure 2.22: Red curve: First compensation field scan. Black curve: Second
compensation field scan.



2.6 Experiment 39

Figure 2.23: Red curve: After tilting adjustment, without compensation field
at a guide field of about 12 G. Black curve: The same with compensation
field. Note the huge difference in flipping ratio. The curves were measured
at the refurbished polarimeter setup in autumn 2008.

of the minima in the blue fit curve of Fig. 2.21 for the x field. With this
x-current set, the current for the z field is varied. The minimum intensity
current of such a plot – the red curve shown in Fig. 2.22, for instance –
is set and another x field variation is done. As a result, the flipping ratio
R = Imax/Imin increases significantly as well as the period of the measured
oscillation. The latter is clearly seen from the black curves of Figs. 2.21
and 2.23. For the data associated to the black markers in Fig. 2.22 two fits
were applied: One is a Gaussian (dashed line). The other is a polynomial
of fifth degree (solid black line). The polynomial takes into account that
the behavior of the compensation field scans is not symmetric around the
minimum. However, if the current is varied only within a small range, no
asymmetry can be observed.

Another effect that we found was, that after adding a compensation field to
a coil whose tilting angle had been adjusted before, small tilting of 1°-2° is
again observable. The coil with the compensation field switched on has to
be adjusted once again. The origin of this effect could be that the pitch
of the coil windings (≤ 3°) in x and z direction prevent their fields to be
mutually perpendicular. The whole procedure can be shortened by setting a
good estimation for the compensation field from the beginning. The typical
current values for a π rotation at a neutron velocity of about 2000 m/s
and a guide field of 10 G were roughly 1.2 A and -0.3 A for x and z field,
respectively.
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Figure 2.24: Varying the position of the second coil with both coils set to a
π/2 rotation, we obtain an oscillation from which we can deduce and set the
rotation angle of the polarization vector between the two coils.

2.6.7 How to set Distance with polarized Neutrons

In the experiment to measure mixed-state phases, it is required to set dis-
tances between different coils that correspond to the particular polarization
rotation angles 2πn, 2πn′ and 2δ. This was done by the following method:
The first of a pair of coils was set to a rotation of π/2 around the x axis.
The incident up spin state evolves as it was described in Section 2.4.1 and
becomes

|ψ〉 = 1/
√

2(|+〉 − i|−〉). (2.41)

The polarization vector for this spin state is ~r = (0,−1, 0)T . The relative
phase shift ±Λ/2 between the spin eigenstates, induced within Bz, is de-
scribed by the operator in Eq. (2.30). Λ(y) = 2µBy/~v depends upon the
flight distance of the neutrons within Bz. The spin state becomes

|ψ〉 = 1/
√

2(e−iΛ(y)/2|+〉 − ieiΛ(y)/2|−〉). (2.42)

The corresponding polarization vector is ~r = (sin Λ(y), cos Λ(y), 0)T . The
polarization vector lies within the xy plane with its direction specified by Λ,
depending on the distance from the first coil. After interaction with the x
field of the second coil, also set to a π/2 rotation around the +x axis, the
final spin state is denoted as:

|ψ〉 =
1

2

[
e−iΛ/2

(|+〉 − i|−〉)− ieiΛ/2
(− i|+〉+ |−〉)]
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Figure 2.25: Adjusting the purity with a shim plate.

and the intensity after projection to the up state is

I ∝ |〈+|ψ〉|2 =
1

4

∣∣e−iΛ/2 − eiΛ/2
∣∣2

=
1

4

∣∣− 2i sin
Λ

2

∣∣2 = sin2 Λ(y)

2
. (2.43)

We know, for instance, that a minimum of intensity is found for Λ/2 = 2πn,
so we can achieve any desired rotation angle or phase shift between two coils.
An example for such a position measurement is shown in Fig. 2.24. As in
Section 2.6.4, the period of the oscillation should roughly match the Larmor
period of the guide field strength.

2.6.8 Creation of the Mixed State

To access Eq. (2.35) experimentally, r′0 needs to be varied. Several ideas were
developed and tested to achieve this in the experiment. In the following,
a short explanation of all of them is given and the tests are summarized.
First, a thin de-magnetized ferromagnetic material (”shim plate”) of size
60×30×0.5 mm3 was partly brought into the beam cross-section as shown in
Fig. 2.6.8. Because of the randomly distributed magnetic domain directions,
the part of the beam that is transmitted through the material is completely
depolarized. It suffers from random polarization rotations. The part that
passes the material on the side should stay completely polarized. The re-
sulting beam should be a mixture of a polarized beam and a completely
unpolarized beam. The first test measurement showed the desired loss of
contrast, but the curve with inserted shim was also shifted by more than
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Figure 2.26: A particular purity can also be achieved by applying a magnetic
field gradient parallel to the incident spin direction. For instance, a wire
carrying high currents could be aligned parallel to the flight direction to
create the indicated field gradient.

20°. This was interpreted as creation of unwanted magnetic field lines in
directions other than +z within the guide field around the shim. After this
short test no further efforts were made to implement this method.

Second, a wire carrying current was considered for depolarizing the neutron
beam by its stray field as is shown in Fig. 2.6.8. However, the high currents
needed prevented this suggestion from being tested.

The third method that was tested was called RF-mixing method. Due to
the rotating wave approximation [Sakurai 1994], there is one magnetic field
axis that rotates within the xy plane in an RF flipper (see, for instance,
[Suda 2006] or [Sponar 2009] for more detailed descriptions of RF flippers
in neutron optics). A beam, polarized in +z direction, passes the field of
an RF coil (see Fig. 2.6.8). With the flipper adjusted to a π rotation, each
neutron arriving at the coil at different instants, experiences the spin flip
around an axis that lies in the xy plane. The directions of those axes are
equally distributed around 2π for arriving particles. Since all polarization
vector tips finally point to the same direction (−z) for a π rotation, the sys-
tem remains in a pure state that is |−〉. If we set an amplitude to achieve
a rotation angle between 0 and π the situation is different. In this case, all
resulting polarization vector tips should be equally distributed around some
circle of latitude of the Bloch sphere. Averaging over a long measurement
time interval – compared to the RF frequency of some 10 kHz – should yield a
mixed state. By this method, one should be able to create any desired purity
ranging from a pure state to the completely mixed state only by setting RF
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Figure 2.27: The RF-mixing method.

amplitudes corresponding to rotation angles between 0 and π/2, respectively.
However, tests showed that some small components of the polarization direc-
tion other than +z remain for unknown reasons. The issue could not be fully
clarified. Moreover, it was found that the electronic parts of the RF circuit
(resistor, capacitor, amplifier) must be chosen very carefully to achieve well
matched circuits and therefore stable magnetic field amplitudes within the
RF coil. As an example, the change of the flipping ratio R = Ioff/Ion is
plotted versus time in Fig. 2.6.8. The saturation behavior in this plot, mea-
sured directly after switching on the signal generator is unfortunately not the
end of the story: Drastic changes of flipping ratios in the coils were noted
also after continuous operation of several hours, apparently depending also
on environment temperature. As a consequence, in subsequent interferom-
eter experiments on GHZ-states at the S18 in Grenoble using RF Flippers,
PC controlled amplitude readjustment was implemented to ensure stability.
Later, new amplifiers (EPS) were available, providing for very stable ampli-
tudes. Finally, this mixing method was discarded as the two others before.

The method that finally saved the day was to use the first DC coil in the setup
for generating the mixed spin state (see Fig. 2.29). In addition to the current
which results in the transformation U1 (the π/2 rotation to create the super-
position state), random noise from a SONY/TEKTRONIX AFG320 signal
generator was applied to the first coil, thereby changing Bx in time. The
voltage signal from the noise as recorded by a digital oscilloscope is shown
without and with coil and amplifier (KEPCO power supply) connected to the
circuit in Fig. 2.30a and b, respectively. The noise created a small unwanted
amplitude-dependent offset in addition to the DC current intended to im-
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Figure 2.28: The flipping ratio R versus time measured immediately after
switching on the signal generator. With two fans as used for cooling of PC
housings, the effect of cooling of the circuit parts was tested. Fan cooling
was found to have no effect.

Figure 2.29: Generation of mixed states by the use of the first DC coil and
a function generator.
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Figure 2.30: a) Voltage signal from the NOISE function of the signal genera-
tor. The changing rate of the amplitude is about 20 kHz. b) Signal measured
with coil and amplifier connected to the circuit.

pose the π/2 rotation. It could be measured by a multimeter (AC current
measurement) and compensated with a counter-directed offset, adjusted at
the signal generator. From Fig. 2.30b, it can be seen that the resulting signal
is not merely a smoothed version of the signal in Fig. 2.30a. The inductance
of the coil and the characteristics of the power supply are assumed to be re-
sponsible for the signal form. The signal generator settings for the four noise
levels (the pure state phase was measured with the signal output switched
off) were:

1. Function: NOISE, Frequency: 20 Hz, Amplitude: 1.8 V, Offset: 10 mV

2. Function: NOISE, Frequency: 20 Hz, Amplitude: 2.4 V, Offset: 15 mV

3. Function: NOISE, Frequency: 20 Hz, Amplitude: 3.8 V, Offset: 25 mV
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4. Function: NOISE, Frequency: 20 Hz, Amplitude: 6.15 V, Offset: 40 mV

Note that these values are display readings.
Neutrons, which are part of the ensemble ρin(r′0), arrive at different times at
the coil and experience different magnetic field strengths. This is equivalent
to applying different unitary operators U(π/4+∆ξ′(t), 0,−π/2) = Ũ1(∆ξ′(t)).
For the whole ensemble we have to take the time integral

ρ =

∫
Ũ1(∆ξ′(t))|+〉〈+|Ũ †

1(∆ξ′(t))dt. (2.44)

Although each separate transformation is unitary, due to the randomness of
the signal we end up with a nonunitary evolution that yields a mixed state for
the measurement time at each position of the second coil [Bertlmann et al.
2006]. Note that in this method the purity r′0 of the input state is not affected
before the first DC coil. In this coil Ũ1 is set to create spin superpositions
distributed around |ψ0〉 within the y, z plane. We are left with ~r0 =(0,−r0, 0)
where r0 <1, as has been confirmed by analyzing the state Ũ1ρinŨ †

1 . The x
and z components of ~r0 were found to be negligible.

2.6.9 Measuring the Purity

In [Buchelt 1997], several methods are described to determine the degree
of polarization (the length of the polarization vector) or purity of the spin
state. Here, we will shortly explain the method used in the mixed-state phase
measurement, which is referred to as ”Two-Flipper Method”. It requires two
spin flippers that turn the polarization of the neutron beam through an
angle of π, from the up state to the down state with respect to the guide
field and the analyzing direction of polarizer and analyzer. By performing
measurements of the four intensities

I1......intensity with both flippers turned off
I2......intensity with flipper 1 (efficiency=e1) turned on
I3......intensity with flipper 2 (efficiency=e2) turned on
I4......intensity with both flippers turned on,

(see Fig. 2.31) one can calculate the unknown quantities e1, e2 and r2 as

e1 =
I4 − I2

I1 − I3

e2 =
I4 − I3

I1 − I2

r2 =
(I1 − I2) · (I1 − I3)

I1I4 − I2I3

(2.45)
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Figure 2.31: Two-Flipper Method.

In the derivation of Eq. (2.45) it was assumed that the polarizer and the
analyzer have the same characteristics concerning transmission and spin fil-
tering, so rP ≈ rA ≡ r. Therefore one has r2 in Eq. (2.45). The assumption
is that the purity of the beam leaving the polarizer, rP , is only diminished
by the noise added to the DC current in the coil winding for Bx of the first
coil and can be described by a depolarization factor d. One can denote r2

from Eq. (2.45) as r2 = rP · d · rA. Since one can calculate the right hand
side of Eq. (2.45) from measured intensities, one can determine rP · d: With
the noise switched off it follows that d = 1 and one measures rP · rA in that
case. Then,

√
rP · rA = rA since one still assumes rP ≈ rA. The thereby

determined value for rA can be used to calculate rP · d for all other noise
amplitudes. Rough values of the purity, obtained with the chosen noise set-
tings given in Section 2.6.8, were 99%, 75%, 61%, 33% and 11% for 0 V, 1.8
V, 2.4 V, 3.8 V and 6.15 V of signal amplitude, respectively. More accurate
values are given in the data plots of Section 2.7. The purities were measured
before each experimental run and differed slightly on different days for other-
wise unchanged settings. The deviations were roughly up to three standard
deviations.

Although Eq. (2.45) is independent of the flip-efficiency, spin flippers used
for the explained method need to be well-adjusted, because a bad flipper
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Figure 2.32: Scheme of an incomplete spin flip. ~r and ~r′ are polarization
vectors with flipper switched off and on, respectively. For simplicity, the
intensity is normalized so that it ranges from 0 to 2.

(although it does not depolarize the beam) rotates the polarization through
some angle 6= π and/or around some axis not intended by the experimenter.
Consider the following example: Let ~r and ~r′ be the polarization vectors be-
fore and after an incomplete flip that is assumed not to cause any shortening
of the polarization vector, i. e. r = r′ (no depolarization). Before the flip ~r
points in +z direction. After the operation, the polarization vector encloses
an angle ∆ with the vertical axis parallel to the analyzing direction of polar-
izer and analyzer (see Fig. 2.32). The flipping ratio is R = Ioff/Ion, so that
we may write

Ion =
Ioff

R
=

1 + r

R
.

For the angle ∆ we get

cos ∆ =
1− Ion

r′
=

1− 1+r
R

r′

and since r = r′ we have

∆ = arccos

(
1

r
− 1

R
− 1

Rr

)
. (2.46)

Suppose we measure the flipping ratio R = 50, which is a reasonably good
result (the maximum value measured within the scope of this experiment was
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Figure 2.33: A hypothetical measurement of the intensity at input purity
r′0 = 1 and Uφ = 1l would yield Iρ

n as a result. However, we only can measure
Iρ
0 and r′0 to calculate Iρ

n.

∼68). It follows from Eq. (2.46) that for r ∼ 1 we still get ∆ ∼ 16◦. So even
when we reach high flipping ratios, care has to be taken not to produce any
oscillations in the sense of Section 2.6.4. If one uses such flippers in a purity
measurement, the result for the intensity I4, for instance, may depend on the
distance of the two coils. In the experiments described here, the distance
between the second and the third coil is a measurement parameter that has
to be varied. It is not the same for all measurements, so the purity could
differ for the same noise settings.

2.6.10 Normalization of Intensities

To yield the mixed-state phase and visibility from a particular measured
curve, the values for Iρ

min and Iρ
max obtained from a fit must be normalized

by the intensity Iρ
n to plug them into Eqs. (2.33) and (2.34). Iρ

n is the intensity
that would reach the detector after passing the empty setup (Uφ = 1̂l) at an
input purity of r′0 ≡ 1, a situation that is not achievable in practice. Iρ

n

cannot be measured, but only calculated as

Iρ
n = 2Iρ

0/(1 + r′0), (2.47)

where Iρ
0 must be measured for each r′0. Equation 2.47 can be understood

from Fig. 2.33: Iρ
0 is the intensity at Uφ = 1̂l with a specific value of input

purity. Consider, for example, the two extreme cases: If r′0 = 1, Eq. (2.47)
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becomes Iρ
n = Iρ

0 , which means that we can only obtain Iρ
max/I

ρ
n ≤ 1, as

required. If r′0 = 0, we get Iρ
0 = Iρ

n/2, which is the correct result for a
completely unpolarized beam. However, note that Eqs. (2.33) and (2.34) are
undefined for r′0 = 0. This issue is also discussed in [Bhandari 2002] and
[Anandan et al. 2002].

2.7 Experimental Results

The methods described in the previous Sections were implemented to carry
out the mixed-state phase measurement as explained in the following. Here,
the obtained data is shown. Data analysis is explained and the results are
discussed in the following.

2.7.1 Purity-Dependence of the Phase

The neutron beam incident from the pyrolytic graphite crystal monochroma-
tor with mean wavelength and spectral width as described in Section 2.6.2
was polarized up to r′0 ∼ 99 % by reflection from a bent Co-Ti supermirror
array. The implementation of these devices is explained in [Buchelt 1997].
The analyzing supermirror was slightly de-adjusted to higher incident an-
gles to suppress second order intensity in the incident beam as described
in Section 2.6.3. The final maximum intensity I0 was about 150 cts/s at a
beam cross-section of roughly 0.75 cm2 (with a circle-shaped Cd diaphragm
of ∼ 0.5 cm radius pinned to the analyzer entrance). In order to find the
coil current values for required polarization rotation angles, each coil cur-
rent was adjusted as explained in Section 2.6.6. Then, with coils set to a
π/2 rotation around the x axis, inter-coil distances were varied to search
for intensity minima. Thereby, the desired rotation angles within the guide
field were adjusted pairwise, as described in Section 2.6.7. As explained in
Section 2.4.1, one can choose the parameters ξ by setting the current in the
second coil to achieve a rotation angle 2ξ and the parameter δ by adding
a certain flight distance within Bz to the distance 2πn′~v/2µB set between
the second and the third coil. The corresponding rotation angle is 2δ. With
the first coil and the third coil set to a π/2 and −π/2 rotation, respectively,
the intensity in the detector recorded in a certain time interval (depending
on the achieved intensity and the magnitude of the statistical error one can
tolerate) were measured. The typical measurement time interval was 120 s.
Then, the second coil was moved one step further by the positioning system
described in Section 2.6.6 and the intensity measured again. Continuing this
procedure and plotting the measured intensity versus the coil position one
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obtained a graph like the black curves in Fig. 2.34, for instance. Then the
signal generator was switched on to add the noise to the DC current as ex-
plained in Section 2.6.8. For settings No. 1, for example, one obtains the
blue curves of Fig. 2.34 with a purity of the input state of about 77%. In
the same manner intensity oscillations for the remaining three input purities
were recorded. Additionally, the purity was measured before each run. As
an approximation the intensity I4 was associated to Iρ

0 (see Section 2.6.9
and Section 2.6.10). The validity of this approximation was also confirmed
experimentally for one noise level.

In total, for purely geometric phases the parameter sets (ξ=π/4, δ, ζ =δ−π/2)
with δ=φg =π/8, 2π/8 and 3π/8 were chosen. For each set the intensity os-
cillations Iρ – see Fig. 2.34 – were measured. The error bars in those plots
are calculated taking into account the law of propagation of errors for the
normalized intensity calculated by Idetector/Imonitor. In Fig. 2.35, the purely
geometric mixed-state phase Φg(r0) and the visibility Vg(r0), calculated from
the data in Fig. 2.34 by the use of Eqs. (2.33) and (2.34) are shown. For this
purpose IGOR sine fits (see also Eq. (2.40)), represented by the solid lines
in Fig. 2.34, were applied. The fitting procedure provides for the parame-
ters of the calculated function and its uncertainties (standard deviation σ).
The errors for the minima and maxima were associated with the error of the
amplitude parameter A. The result of Eqs. (2.33) and (2.34) are an angle
in radiant – the phase, and a dimensionless number between 0 and 1 – the
visibility. In order to get to these results, one had to normalize the obtained
minima and maxima of each fit function to be able to use them for the cal-
culation of phase and visibility. This is explained in Section 2.6.10. The law
of propagation of errors was applied to all error-prone quantities to calculate
the vertical error bars for phases and visibilities shown in the graphs. Fur-
thermore, only visible at two data points in Fig. 2.35, horizontal error bars
were calculated. They correspond to the uncertainty in the purity at which
a certain phase was measured. However, they are rather small compared to
other influences like, for example, the error in reproducing the coil position,
which is the main source of error in the experiment and was eliminated by
implementing stepper motors in later experiments. As already stated, this
error of estimated 0.5 mm was accounted for in the data analysis. The solid
lines in Fig. 2.35 are theoretical curves according to Eqs. (2.35), using the
measured value for Φ without noise as phase reference.

The purely dynamical phase requires that 2ξ = 0 and therefore Eq. (2.32)
reduces to

Iρ = (1−r′0)/2+r′0 cos2 δ.
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Figure 2.34: Intensity oscillations measured for varying positions of the sec-
ond coil and five different input purities. The parameter settings for the
purely geometric phase were ξ = π/4 and: a) δ = π/8, b) δ = 2π/8 and c)
δ = 3π/8.
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Figure 2.35: Purely geometric phases and the corresponding visibilities versus
input purity for three values of δ.

As a consequence, only one intensity value is needed to compute Φd. With the
second coil turned off, the distance between the first and the third coil was
chosen such that the polarization rotation angle between them was 2πn′′+2δ.
Intensity oscillations for the parameter values δ = φd = π/8, 2π/8, 3π/8 for
five values of r0, shown together with fits (solid lines) in Fig. 2.36, were
recorded. The dynamical mixed state phases Φd(r0) and the visibility Vd(r0)
were calculated in the same manner as their geometric counterparts, ex-
plained in the previous paragraph and are shown in Fig. 2.37.

The experimental data reproduce the r0-dependence predicted by Eq. (2.35).
Clearly, there is no difference in the behavior of dynamical and geometric
mixed-state phase visible from the data. This is no surprise, since all deriva-
tions in the first part of this chapter are done for the Pancharatnam phase,
which can be either dynamical or geometric or a combination of both.
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Figure 2.36: Measured oscillations for purely dynamical phases.

2.7.2 Nonadditivity

The carried out experiments include also a special property of the mixed-state
phase: its nonadditivity. Since this phase is defined as a weighted average of
phase factors rather then one of phases (see Eq. (2.9) or [Singh et al. 2003,
Fu and Chen 2004a, Sjöqvist 2004, Fu and Chen 2004b] for a more elabo-
rate discussion), it is true only for pure states that phases of separate mea-
surements can be added up to the usual total phase. Suppose we carry
out two measurements on a pure state system: The state is subjected to
a transformation Ug in the first and to a different transformation Ud in
the second experiment, inducing the pure state phases φg and φd, respec-
tively. Applying Eqs. (2.28) and (2.29), we can also choose a combination
of angles 2ξ and 2δ leading to a transformation Utot so that we measure
the total pure state phase φtot = φg + φd. It is expected from quantum
theory that phases in interference experiments behave exactly in the same
manner. However, the result of the latter experiment for the system in a
mixed input state is Φtot(r0) = arctan [r0 tan(φg + φd)]. The total phase
is then not given by Φg(r0) + Φd(r0), with Φg(r0) = arctan (r0 tan φg) and
Φd(r0) = arctan (r0 tan φd). Although this result is in complete agreement
with theory – we can expect nonadditivity from Eq. (2.9) already – it is sur-
prising and in contradiction with what is the case for pure states. It is worth
noting that the three evolution paths on the Bloch sphere, induced by Ug, Ud

and Utot, differ from each other, i. e. in each of the three experiments the spin
state traces out different paths on the Bloch sphere (see also Section 2.8).

In our experiment we have chosen two examples of Utot, i.e. two sets of values
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Figure 2.37: Purely dynamical phases and the corresponding visibilities ver-
sus input purity for three values of δ.

for Bx in the second coil and the distance within Bz to show that additivity
does not hold for mixed-state phases: 2ξ(1) = 60◦, 2δ(1) = 90◦ and 2ξ(2) =
48◦, 2δ(2) = 135◦. The sets were chosen that way to be able to compare the
results with the calculated sum of dynamical and geometric phases already
shown in Section 2.7. According to Eqs. (2.28) and (2.29), the total pure state

phases φ
(1)
g +φ

(1)
d and φ

(2)
g +φ

(2)
d with φ

(1)
g = φ

(2)
g = π/8 and φ

(1,2)
d = 2π/8, π/8

should be obtained. The intensity oscillations, again measured by recording
the intensity at various positions of the second coil, are shown for five values of
input purities in Fig. 2.38a and b for set (1) and (2), respectively. In Fig. 2.39

the resulting mixed state phases Φ
(1,2)
tot and the sum Φ

(1,2)
g +Φ

(1,2)
d are plotted.

Φ
(1,2)
tot is directly obtained by plugging the normalized minima and maxima

from the fit curves of Fig. 2.38 into Eq. (2.33), while the sums Φ
(1,2)
g + Φ

(1,2)
d

are calculated from the previously measured data shown in Figs. 2.35 and
2.37. The values of the terms in the sum are also indicated by the black
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Figure 2.38: Intensity oscillation measured for the parameter sets: a) (1)

that results in the pure state phase φ
(1)
g + φ

(1)
d = π/8 + π/8. b) (2) that

results in the pure state phase φ
(2)
g + φ

(2)
d = π/8 + 2π/8.

and white bars in Fig. 2.39. The solid and the dotted lines are theory curves
assuming nonadditivity and additivity, respectively. The experimental data
is clearly in favor of nonadditivity, as expected from theory.

2.8 Discussion

Nonadditivity of the Sjöqvist mixed state phase is not expected from intu-
itive extrapolation of phase concepts from familiar pure state behavior. Since
the purity of input states in real experiments is always smaller than 1, non-
additivity might be of great importance for possible applications of quantum
phases with many-step gate operations. Our result is valid not only for a sum
of geometric and dynamical phases - which is what we have shown here - but
for summation of arbitrary phases and also an arbitrary number of terms.
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Figure 2.39: Filled triangles: Phases obtained from measuring oscillations
from the parameter sets (1) (right) and (2) (left). Empty triangles: Sum
calculated from previously measured purely dynamical and geometric phases
as indicated by bars. The two data sets coincide only for the pure state (far
right point in each plot).

This can be stated as

Φtot = arctan (r tan φtot) 6=
∑

n

Φn,

with φtot =
∑

n φn and Φn = arctan(r tan φn).
For the measurements to obtain the mixed-state phase for the combinations
of geometric and dynamical transformations (Fig. 2.39), we chose two suitable
sums of previously measured data of purely geometric and purely dynamical
phases (Figs. 2.35 and 2.37). Using Eq. (2.28), we calculated the necessary
evolution path (Γtot) to induce the corresponding total pure state phase φtot =
φg +φd in one experimental run. Φtot is then measured for varied input purity
r0 (it is noted here that Γtot, Γd and Γg differ from each other). Assuming
phase gates in some conceivable application, it means that the purity of
the utilized quantum system has to be considered when inducing phases for
further processing.
Note also that nonadditivity of mixed-state phases is not due to the non-
linearity of the geometric phase that occurs, for instance, when the system
evolves close to the orthogonal state of the reference state [Bhandari 1997].
The noncyclic geometric phase is minus half the solid angle enclosed by the
path on the Bloch sphere and its shortest geodesic closure (see Section 2.2).
As an example, we can consider two types of transformations and figure out
what the corresponding geometric phase is: First, let the state |+〉 be rotated
by an angle π−ε to transform to a|+〉+b|−〉. If ε is very small, the probabil-
ity amplitude a is close to zero. The shortest geometric closure of this path
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is the direct way back on the path itself and therefore the solid angle Ω and
the geometric phase are zero. Second, let |+〉 be rotated by π + ε. By doing
the small step further than π, the shortest geodesic way back to |+〉 closes
the path on the opposite side of the Bloch sphere. Therefore, the geometric
phase suddenly jumps from zero to −π at ε = 0.
As already stated, the evolution paths for each φn are, in our experiments,
different from each other. The question was raised, whether it is possible to
demonstrate nonadditivity in an experiment where only one evolution path
is needed, i. e. to conduct an experiment that can directly determine the
portions of geometric and dynamical phases separately, implementing one
and the same evolution path (in this context, note that Eq. (2.35) does not
contain the parameter ξ, the portions of phases are not expressed in the
phase-purity dependence). While this does not seem to be the case for the
experiments in [Du et al. 2003, Ericsson et al. 2005] it might, for instance,
be possible for adiabatic and cyclic evolutions, i. e. measurements of the
Berry phase. In that case a spin echo approach can be used to get rid of dy-
namical phase contributions (e. g. [Jones et al. 2000, Bertlmann et al. 2004,
Leek et al. 2007, Filipp et al. 2009]). In such a scheme for a two-level system
one has to carry out an adiabatic and cyclic evolution (ΓC) that induces a
relative phase, followed by a π-flip of the two shifted eigenstates. Subse-
quently, ΓC is implemented once again, but in reversed direction. While the
resulting geometric phase induced by the evolution doubles, because it de-
pends on the directed solid angle as seen from the origin of the Bloch sphere
(Eq. (2.10)), all dynamical phase shifts cancel out. By skipping the π-flip
and the second implementation of ΓC , we can get the total phase. We can
then calculate the amount of dynamical phase involved by subtracting the
geometric phase obtained in the first experiment. Alternatively, we may skip
the π-flip and reverse the second implementation of ΓC . The geometric phase
cancels, while the dynamical phase doubles. These methods are also applied
in an experiment with ultra-cold neutrons, measuring the dependence of the
variance of the Berry phase on the evolution time [Filipp et al. 2009].
One may ask if these three procedures really constitute separate measure-
ments of geometric, dynamical and total phase arising from the same evolu-
tion path ΓC . For instance, one could include the π-flip and the subsequent
application of the inverse of ΓC into what is considered to be the actual evo-
lution path and call it Γ′C . Then, applying the three procedures is equivalent
to adjusting the angles 2ξ and 2δ in three different ways as in the experi-
ment explained in this Chapter, because also here, several transformations
different from Γ′C are applied to yield the desired phases. If it is thus con-
cluded that the answer to the above question is ”no”, this infers that the
only phase that we can measure is the total phase. Whether it contains
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solely a geometric or a dynamical component or is a combination of both, is
simply a question of the evolution path involved. From this point of view,
the portion of geometric and dynamical phase can not be resolved by a single
experiment. Furthermore, it suggests that nonadditivity could only be shown
by implementing different, mutually exclusive, evolution paths Γ1, Γ2, . . . , Γn

and Γtot.
On the other hand, if one leaves aside the π-flip and the reversed excursion
on ΓC and considers the three procedures as implementation of one and
the same evolution, as it is usually done, the situation is different. We
can then resolve the portions of phases and consequently also demonstrate
nonadditivity implementing only one single evolution path.
Recently there has been a report on NMR experiments [Du et al. 2007] in-
vestigating Uhlmann’s mixed state geometric phase. It is a property of a
composite system undergoing a certain non-local evolution of system and
ancilla [Ericsson et al. 2003a]. Diverse phase definitions, depending on this
evolution, are possible. The phase investigated in the present work is a
special case in which the ancilla does not necessarily evolve. While the pre-
conditions for inherent fault tolerance [Jones et al. 2000] remain intact for
the Sjöqvist phase, the question whether other phases offer advantages in
terms of robustness remains an exciting issue of discussion.
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Chapter 3

Nonunitary Phases

Geometric phase and the geometric mixed state phase gave rise to a theory
for phases for mixed states under nonunitary evolutions. Among others (see
Chapter 1), it was put forward by [Tong et al. 2004]. The theoretical de-
scription of the nonunitary phase is based on a kinematic approach for the
mixed-state phase as developed in [Singh et al. 2003].
In the following Sections, the most important steps of the derivation of the
nonunitary geometric phase in [Tong et al. 2004] are explained. Furthermore,
an experiment is described, that resolves the impact of noise on the spin
evolution in a neutron polarimeter. Its results are shown and discussed.

3.1 Theory

A quantum system s which is described by state vectors in the N−dimensional
Hilbert space Hs undergoes an evolution on the path P . The density matrix
depends upon a chosen parameter t:

P : t ∈ [0, τ ] → ρ(t) =
N∑

k=1

ωk(t)|φk(t)〉〈φk(t)|. (3.1)

ωk(t) ≥ 0 are the eigenvalues of ρ(t) corresponding to the k−th eigenvector
|φk(t)〉. All nonzero eigenvalues are assumed to be non-degenerate. The
degenerate case is treated in [Tong et al. 2004] and will not be considered
here. The density matrix ρ(t) is lifted to a pure state |Ψ(t)〉 ∈ H = Hs⊗Ha

of the combined system s+a with the entangled ancilla system a of dimension
K = N (in general, K ≥ N can be assumed). The purified state reads as

|Ψ(t)〉 =
N∑

k=1

√
ωk(t)|φk(t)〉 ⊗ |ak〉 (3.2)
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and

ρ(t) = Tra

(|Ψ(t)〉〈Ψ(t)|)

= Tra

( N∑

k,k′=1

√
ωk(t)ωk′(t)|φk(t)〉〈φ′k(t)| ⊗ |ak〉〈a′k|

)

=
N∑

k,k′=1

|φk(t)〉〈φk(t)|Tr
(√

ωk(t)ωk′(t)|ak〉〈a′k|
)

=
N∑

k,k′=1

|φk(t)〉〈φk(t)|
∑

i

√
ωk(t)ωk′(t)〈i|ak〉〈a′k|i〉

=
N∑

k=1

|φk(t)〉〈φk(t)|ωk(t)

is fulfilled. ρ(t) is given by the partial trace over the ancilla. The Pancharat-
nam relative phase between |Ψ(0)〉 (the initial state) and |Ψ(τ)〉 (the state
after the evolution), is denoted as

α(τ) = arg〈Ψ(0)|Ψ(τ)〉

= arg

( N∑

k=1

√
ωk(0)ωk(τ)〈φk(0)|φk(τ)〉

)
. (3.3)

Both, |φk(0)〉 and |φk(t)〉 are orthonormal bases of the same Hilbert space
Hs. The number of vectors |φk(0)〉 is the same as the number of vectors
|φk(t)〉. Consequently, there exists a unitary operator V (t) that transforms
each |φk(0)〉 to |φk(t)〉:

|φk(t)〉 = V (t)|φk(0)〉,

with

V (t) = |φ1(t)〉〈φ1(0)|+ . . . + |φN(t)〉〈φN(0)|. (3.4)

Equation (3.3) can then be rewritten as:

α(τ) = arg

( N∑

k=1

√
ωk(0)ωk(τ)〈φk(0)|V (τ)|φk(0)〉

)
. (3.5)

A disadvantage of Eq. (3.5) is, that it depends on the chosen purification. If
the evolution V (t) fulfills the parallel transport condition 〈Ψ(t)|Ψ̇(t)〉 = 0, the
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phase α(τ) becomes the geometric phase for states of the entangled systems
s and a. However, this condition is stringent only for one of the N phases
of each of the pure state components of the mixed state. Therefore, to yield
the mixed-state geometric phase resulting from the path P , an equivalence
set of unitary operators Ṽ (t) of the form

Ṽ (t) = V (t)
N∑

k=1

eiθk(t)|φk(0)〉〈φk(0)| (3.6)

is introduced in [Tong et al. 2004]. V (t) is arbitrary and V (0) = 1l. The
θk(t) are real and time-dependent with θk(0) = 0. From the operators Ṽ (t),
one can choose the unitary operators V ||(t), that fulfill the parallel transport
conditions

〈φk(0)|V ||†(t)V̇ ||(t)|φk(0)〉 = 0. (3.7)

By plugging Eq. (3.6) into Eq. (3.7), a condition for the θk(t) that provides
for the k induced phases to be of purely geometric origin, can be extracted:

〈φk(0)| Ṽ †(t) ˙̃V (t)|φk(0)〉
= 〈φk(0)|Ṽ †(t)V̇ (t)eiθk(t) + Ṽ †(t)V (t) i θ̇k(t)e

iθk(t)|φk(0)〉
= 〈φk(0)|V †(t)

∑

k

e−iθk(t)eiθk(t)︸ ︷︷ ︸
1

|φk(0)〉〈φk(0)|
︸ ︷︷ ︸

1l

V̇ (t)|φk(0)〉+ i θ̇k(t) = 0.

This yields

θk(t) = i

∫ t

0

〈φk(0)|V †(t′)V̇ (t′)|φk(0)〉dt′. (3.8)

Using this expression, one can substitute V (τ) in Eq. (3.5) by Ṽ (t) = V ||(t)
to yield the geometric phase arising from the path P :

γ[P ] = arg

( N∑

k=1

√
ωk(0)ωk(τ)〈φk(0)|V ||(τ)|φk(0)〉

)

= arg

( N∑

k=1

√
ωk(0)ωk(τ)〈φk(0)|V (τ)e−

∫ τ
0 〈φk(0)|V †(t)V̇ (t)|φk(0)〉dt|φk(0)〉

)

= arg

( N∑

k=1

√
ωk(0)ωk(τ)〈φk(0)|φk(τ)〉e−

∫ τ
0 〈φk(t)|φ̇k(t)〉dt

)
, (3.9)
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where Eq. (3.4) has been used. This phase is gauge invariant and depends
only upon the path traced out by ρ(t). Furthermore, it reduces to the results
in [Sjöqvist et al. 2000] and [Singh et al. 2003] for unitary transformations,
where the eigenvalues ωk are time independent and V (t) is associated the
time evolution operator of the state.

3.2 An Example

In [Tong et al. 2004] one finds a typical example for which the derived phase
can be specified. A qubit under the influence of the spin precession Hamil-
tonian H = (η/2)σz, is subjected to dephasing that is represented by the
Lindblad operator Γ =

√
(Λ/2)σz [Lindblad 1976]. With µBσz = ~/2 · ωLσz

and assuming that ~ was set to 1 in H, one can see that η corresponds to the
Larmor frequency ωL. Λ is associated to the dephasing strength. The initial
state is a pure state given by the Bloch vector ~r(0) = (sin θ0, 0, cos θ0)

T . One
can solve the master equation [ACKN 1]

ρ̇ = −i[H, ρ]︸ ︷︷ ︸
Liouville-von Neumann Eq.

+
∑

k

(
AkρA†

k −
1

2
A†

kAkρ− 1

2
ρA†

kAk

)

︸ ︷︷ ︸
nonunitary term

. (3.10)

The second term on the right hand side is also called the ”dissipator”, the
operators Ak are the Lindblad operators or generators. For the example
above, there is only one generator, so Eq. (3.10) becomes

ρ̇ = −i[H, ρ] + ΓρΓ† − 1

2

(
Γ†Γρ + ρΓ†Γ

)

= −i
(
Hρ− ρH

)
+ ΓρΓ− 1

2

(
Γ2ρ + ρΓ2

)
(3.11)

and in matrix representation one further obtains




˙ρ00 ˙ρ01

˙ρ10 ˙ρ11


 = iη




0 −ρ01

ρ10 0


 + Λ




0 −ρ01

−ρ10 0




=




0 (−iη − Λ)ρ01

(iη − Λ)ρ10 0


 . (3.12)



3.2 An Example 65

Four differential equations must be solved to obtain the time evolution of the
state. First, one has:

˙ρ00 = 0, ˙ρ11 = 0

⇒ ρ00(t) = ρ00(0), ρ11(t) = ρ11(0). (3.13)

For the remaining two equations

˙ρ01 = (−iη − Λ)ρ01,

˙ρ10 = (iη − Λ)ρ10

one can make the Ansatz

ρ01(t) = e(−iη−Λ)tρ01(0),

ρ10(t) = e(iη−Λ)tρ10(0). (3.14)

From the initial density matrix ρ(0), that is calculated from ~r(0), one finds

ρ(t) =




cos2 θ0

2
1
2
e(−iη−Λ)t sin θ0

1
2
e(iη−Λ)t sin θ0 sin2 θ0

2


 . (3.15)

By the help of MATHEMATICA one obtains the eigenvalues

ω1,2 =
1

4

(
2± 2

√
1 + e−2Λt + (1− e−2Λt) cos 2θ0

)

=
1

2

(
1±

√
cos2 θ0 + e−2Λt sin2 θ0

)
. (3.16)

The unnormalized eigenvectors are

|φ̃1,2(t)〉= e(−iη+Λ)t
(
cot θ0 ± csc θ0√

2

√
1 + e−2Λt + (1− e−2Λt) cos 2θ0

)|+〉+ |−〉

= e(−iη+Λ)t

(
cos θ0

sin θ0

± 1

sin θ0

√
cos2 θ0 + e−2Λt sin2 θ0

)
|+〉+ |−〉

= e(−i η
2
+Λ)t cot θ0

·
[
e−i η

2
t
(
1± 1

cos θ0

√
cos2 θ0 + e−2Λt sin2 θ0

)|+〉+ e(i η
2
−Λ)t sin θ0

cos θ0

|−〉
]

= e(−i η
2
+Λ)t cot θ0

·[e−i η
2
t
(
1±

√
1 + e−2Λt tan2 θ0

)|+〉+ ei η
2
te−Λt tan θ0|−〉

]
. (3.17)

For further simplification,
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Figure 3.1: An example for the effect of noise in z direction on the polariza-
tion vector ~r(0): Uniformly distributed noise amplitudes create a distribution
of vectors with a polar angle θ0. Averaging over all vectors leads to a shorter
vector with polar angle θt < θ0.

tan θt = e−Λt tan θ0 (3.18)

is defined. The stronger the noise, the smaller the angle θt, as can also be
understood from Fig. 3.1. The eigenvectors become

|φ̃1,2(t)〉 = e(−i η
2
+Λ)t cot θ0

·[e−i η
2
t
(
1±

√
1 + tan2 θt

)|+〉+ ei η
2
t tan θt|−〉

]
(3.19)

and can further be rewritten as

|φ̃1,2(t)〉 = e(−i η
2
+Λ)t cot θ0

·[e−i η
2
t
(
cos θt ± 1

)|+〉+ ei η
2
t sin θt|−〉

]
. (3.20)

One can calculate the normalized eigenvectors:

|φ1(t)〉 = e−i η
2
t cos

θt

2
|+〉+ ei η

2
t sin

θt

2
|−〉, (3.21)

|φ2(t)〉 = −e−i η
2
t sin

θt

2
|+〉+ ei η

2
t cos

θt

2
|−〉. (3.22)

Plugging in Eqs. (3.16), (3.18) and (3.21) into Eq. (3.9), one can calculate
the geometric phase achieved in nonunitary evolution: MATHEMATICA
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computes

〈φ1(t)|φ̇1(t)〉 = e−i η
2
t sin

θt

2

(
i
η

2
ei η

2
t sin

θt

2
− e−ΛtΛ

2

ei η
2
t cos θt

2
tan θ0

1 + e−2Λt tan2 θ0

)

+ei η
2
t cos

θt

2

(
− i

η

2
e−i η

2
t cos

θt

2
+

e−ΛtΛ

2

e−i η
2
t sin θt

2
tan θ0

1 + e−2Λt tan2 θ0

)
.

For τ = 2π/η (cyclic evolution), one finds that

√
ω(0)1ω1(2π/η) =

√
1

2

(
1 +

√
cos2 θ0 + e−4πΛ/η sin2 θ0

) ∈ R

〈φ1(0)|φ1(2π/η)〉 = (−1)
(
cos

θ0

2
cos

θ2π/η

2
+ sin

θ0

2
sin

θ2π/η

2

)

= e−iπ cos

[
θ0

2
− 1

2
arctan(e−4πΛ/η tan θ0)

]

︸ ︷︷ ︸
∈R

. (3.23)

To extract the phase, one only needs to consider the imaginary part of the
exponent in Eq. (3.9), that is

−
∫ 2π

η

0

〈φ1(t)|φ̇1(t)〉dt → −i

∫ 2π
η

0

Im
[〈φ1(t)|φ̇1(t)〉

]
dt = i

η

2

∫ 2π
η

0

cos θtdt

= i
η

2

∫ 2π
η

0

1√
1 + e−2Λt tan2 θ0

dt

= i
η

4Λ
ln

(
(1− cos θ0)(

√
cos2 θ0 + e−4πΛ/η sin2 θ0 + cos θ0)

(1 + cos θ0)(
√

cos2 θ0 + e−4πΛ/η sin2 θ0 − cos θ0)

)
,

provided that the conditions

e4πΛ/η + tan2 θ0 ≥ 0 (3.24)
1

cos2 θ0

e−4πΛ/η cos(2θ0) ≤ 1

cos2 θ0

(
1 + e−4πΛ/η + cos(2θ0)

)
(3.25)

hold. Equation (3.24) is fulfilled. Equation (3.25) can be rewritten as

e−4πΛ/η sin2 θ0 + cos2 θ0 ≥ 0 (3.26)

to see that it is also fulfilled. Taking into account the factor e−iπ in Eq. (3.23),
one finally obtains the geometric phase

γ[P ] =−π +
η

4Λ
ln

(
(1− cos θ0)(

√
cos2 θ0 + e−4πΛ/η sin2 θ0 + cos θ0)

(1 + cos θ0)(
√

cos2 θ0 + e−4πΛ/η sin2 θ0 − cos θ0)

)
, (3.27)
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which is the main result of [Tong et al. 2004] (see Eq. (21) of the paper).
One can Taylor expand Eq. (3.27) and to first order yield

γ[P ] ≈ −π(1− cos θ0) + π2 cos θ0 sin2 θ0
Λ

η
. (3.28)

The first term is the well known expression denoting the geometric phase re-
sulting from a rotation of a state cos θ0/2|+〉+sin θ0/2|−〉 through 2π around
the z axis (see, for instance, Eq. (2.6)). The second term describes the mod-
ification of the geometric phase due to the noise term Γ =

√
(Γ/2) σz. Note,

that the eigenvectors in Eqs. (3.21) and (3.22) change only because of the
right hand side of Eq. (3.18). In consequence, the mere reason why the
induced geometric phase is modified in Eq. (3.28) is, that the noise in z di-
rection diminishes the polar angle enclosed by the z axis and the polarization
vector, which also results in a shortening of the latter.

In the next Section, a proposal for a neutron polarimeter experiment is given
that, under certain assumptions, demonstrates experimentally the modifica-
tion of the spin evolution on the path P and therefore also that, in general,
γ[P ] depends upon dephasing.

3.3 Nonunitary Phases and Neutron Polari-

metry

In the following, a neutron polarimeter experiment is explained. It directly
measures the influence of noise on the polar angle of the polarization vector
~r0 and therefore detects influences of dephasing on the evolution path P .
The setup is sketched in Fig. 3.2.

Let the incident pure state of a neutron beam after the polarizer P be denoted
as |+〉. A unitary rotation around the +x axis through a polar angle θ0 is
carried out by a first DC coil (DC 1). The corresponding operator is written
as

U1 = cos
θ0

2
|+〉〈+| − i sin

θ0

2
|+〉〈−| − i sin

θ0

2
|−〉〈+|+ cos

θ0

2
|−〉〈−|.

In the present treatment, spin rotation operators are used in the form of
Eq. (2.21), in which the direction of the rotation axis is specified together
with the rotation angle. The operator prepares the neutron beam in the state

U1|+〉 = cos
θ0

2
|+〉 − i sin

θ0

2
|−〉.
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Figure 3.2: Sketch of a neutron polarimetry setup for measurements of noise
influences with overall guide field Bz, polarizer P , two DC coils (DC 1 and
DC 2) to implement unitary operations U1, Uϕ, U2, noise coils, analyzer A
and detector D. Greek letters denote polarization rotation angles. Varying
the current of DC 2 results in intensity oscillations from which noise-induced
modifications can be inferred.

The effect of the subsequent flight distance s within the guide field Bz, where
the polarization vector precesses through the angle ϕ = 2µBzs/(~v) around
the z axis (v is the velocity of neutrons), may be written as

Uϕ = e−iϕ/2|+〉〈+|+ eiϕ/2|−〉〈−|. (3.29)

As the relative phase shifts ∓ϕ/2 are induced on |±〉, the state evolves to

UϕU1|+〉 = e−iϕ/2 cos
θ0

2
|+〉 − ieiϕ/2 sin

θ0

2
|−〉. (3.30)

The current of a subsequent DC coil (DC 2), generating a field Bx, is varied.
This is described by the operator

U2 = cos
θ

2
|+〉〈+| − i sin

θ

2
|+〉〈−| − i sin

θ

2
|−〉〈+|+ cos

θ

2
|−〉〈−|.

The resulting state is:

U2UϕU1|+〉= e−iϕ/2 cos
θ0

2

(
cos

θ

2
|+〉 − i sin

θ

2
|−〉

)

−ieiϕ/2 sin
θ0

2

(
− i sin

θ

2
|+〉+ cos

θ

2
|−〉

)
.
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It is projected on |+〉 by the analyzer A, which yields the intensity modulation

I∝|〈+|U2UϕU1|+〉|2 = cos2 ϕ

2
cos2

(
θ0

2
+

θ

2

)
+sin2 ϕ

2
cos2

(
θ0

2
− θ

2

)
. (3.31)

This can be written as

I ∝ 1/2[1 + cos(θ + θ0)] (3.32)

for ϕ = 2πn, which means in practice that the inter-coil distance between
DC 1 and DC 2 is set to a spin rotation equivalent within Bz of 2πn. Imple-
menting the noise, ϕ is distributed symmetrically around 2πn. The oscilla-
tions are shifted compared to Eq. (3.32) and one obtains the intensity

I ∝ 1/2[1 +
√

cos2 θ0 + e−4πΛ/η sin2 θ0 cos(θ + θ′)], (3.33)

with θ′ = θ2π/η = arctan(e−2πΛ/η tan θ0).
As it was done in the experiment described in Chapter 2, the polar and
azimuthal angles can be adjusted reliably, so that the path P of the spin
evolution is known to high accuracy for r0 = 1 and Λ = 0 (for a pure input
state undergoing a unitary evolution). Following the well-known relations
φg = −πn(1−cos θ0) and φd = −πn cos θ0 (see Eqs. (2.6) or (2.28) and (2.29)),
one can set the current in DC 1 and the inter-coil distance between DC 1 and
DC 2 to achieve an evolution path P that yields a relative Pancharatnam
phase between the states |+〉 and UϕU1|+〉

φ = arg〈+|UϕU1|+〉 = − arctan
(
tan

ϕ

2

)
= −ϕ

2
,

with certain portions of dynamical and geometric phases, which are deter-
mined only by θ0 for fixed ϕ = 2πn. If θ0 = 0 is set (DC 1 switched off), the
amplitude to find the system in the state |−〉 vanishes and |+〉 only gath-
ers an overall dynamical phase of −πn. No solid angle Ω is enclosed by P .
If θ0 ∈ ]0, π/2[, the measured oscillations are shifted by θ0 (see Eq. (3.32)
above) compared to the case in which DC 1 is turned off. Ω increases with
increasing θ0. For θ0 = π/2, the induced Pancharatnam phase is of purely
geometric origin and consequently equal to −Ω/2. The enclosed solid angle
Ω and also the geometric phase γ[P ] are therefore functions of the adjusted
polar angle θ0 equal to, neglecting experimental imperfections for the mo-
ment, the measured shift of oscillations for Λ = 0 in this experimental setup
(see Fig. 3.3). As already stated, the relation between the quantities is given
by

γ[P ] = −Ω/2 = −πn(1− cos θ0). (3.34)



3.3 Nonunitary Phases and Neutron Polarimetry 71

Figure 3.3: The spin evolution given by UϕU1 for ϕ = 2π (see text). It
accumulates a relative Pancharatnam phase between |+〉 and UϕU1|+〉 with
a geometric part equal to −Ω/2. It is a function of θ0 which is also equal to
the measured oscillation shifts for Λ = 0 (without noise).

For states with input purity r0 < 1 undergoing unitary evolutions, the solid
angle arising from the spin evolution UϕU1 undergone by |+〉 is the same as
in the pure state case. The radius r0 of the projection sphere is smaller, but
also the surface area enclosed by P on this sphere is decreased accordingly,
so that Ω is constant. Because the mixed-state phase for unitary evolutions
is defined as the argument of a weighted average of, in our case, the phase
factors exp(i arg〈+|UϕU1|+〉) and exp(i arg〈−|UϕU1|−〉) (see Eq. (2.9)), its
geometric part in [Sjöqvist et al. 2000] and [Singh et al. 2003] is, neverthe-
less, dependend on r0:

Φg = − arctan
(
r0 tan

Ω

2

)
. (3.35)

Being able to set a well-known evolution path, the geometric mixed-state
phase for cyclic unitary evolutions can also be obtained employing Eq. (3.35)
using the results of the experiment described here: In the present proposal
as well as in the one of Chapter 2, the experimenter can set θ0 and ϕ. Their
adjustment can be checked by comparing the measured oscillation shifts with
the expected intensity behavior (see Eq. (3.31)). Ω is known. For cyclic
unitary evolutions one can extract r0, if a priori unknown, from the contrast
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of measured intensity oscillations. Alternatively, r0 can also be adjusted
by the mixing-method introduced in Chapter 2. From these results, the
geometric mixed-state phase for cyclic unitary evolutions can be calculated.
What about the Λ 6= 0 case (nonunitary evolutions)? Also in this case one
can assume that we know very well the path of the average Bloch vector ~rt

in the experiment. The vector rotates through 2πn around the z axis, but
additionally the length of its projection on the xy plane is reduced exponen-
tially with time. The length of the vector itself – the time-dependent purity
rt – and the time-dependent polar angle θt that the vector encloses with the
z axis behave as

rt =
√

cos2 θ0 + e−2Λt sin2 θ0 (3.36)

and

θt = arctan(e−Λt tan θ0) (3.37)

during the evolution. The contrast and the shift of measured oscillations
are modified in the same manner as rt and θt (see Eq. (3.33)), respectively.
The solid angle accumulated in a cyclic nonunitary evolution with fixed θ0,
η and noise in z direction, as assumed in our experiment, is a function of rt

and θt, which are again functions of Λ. Strictly assuming that the average
Bloch vector dynamics, as given above in this paragraph, correctly describes
the experiment, it is clear that for θ0→ π/2 the purity, Eq. (3.36), behaves
as rt → e−Λt, while the time dependent polar angle, Eq. (3.37), approaches
θt→ π/2. The polar angle in this particular evolution does not change and
since the solid angle is independent of a mere change of the purity, be it
before or during the evolution, Ω is constant. Now, if we do not detect a
noise-induced modification of the oscillation shift θ′ in our experiment, we
may conclude that the solid angle has not been changed by the noise. Again,
this conclusion can only be drawn if the above mentioned concept of average
Bloch vector dynamics is considered to be the correct description in our
experiment.
What about the corresponding geometric phase? Equation (3.6) shows that
the mixed-state phase under nonunitary evolutions (γ[P ]) is an extension of
the mixed-state phase under unitary evolutions (Φg) as in [Sjöqvist et al. 2000]
and [Singh et al. 2003] for time dependent eigenvalues of the evolving density
matrix. For unitary evolutions (without noise) it reduces to Eq. (3.35), as is
clearly stated in [Tong et al. 2004]. In addition, looking back at Eq. (3.35),
one notices that the closer we set Ω to 2π for general r0, the less does the
mixed-state geometric phase Φg depend on r0. This behavior is shown by
theory curves in Fig. 3.4 and was demonstrated experimentally in Chapter 2
and [Klepp et al. 2008].
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Figure 3.4: Theory curves of geometric mixed-state phase for unitary evo-
lutions calculated from Eq. (3.35) for various Ω. The red curves are for Ω
slightly below and above 2π.

So, taking into account the close relation between the mixed-state Pancharat-
nam phases for unitary (Φg) and nonunitary (γ[P ]) evolutions, the insensi-
tivity of γ[P ] for the set polar angle θ0 = π/2 can be understood in an
intuitive way: Φg is in this case independent of the incident purity r0 (see
Fig. 3.4). Nonunitary evolutions with Λ > 0 change neither the polar angle
θ0 = θ′ = π/2 nor the solid angle Ω = 2π. Only rt is modified for Ω = 2π.
Therefore, since γ[P ] and Φg are closely related in the way explained above,
also γ[P ] should be insensible to our particular noise, given by the Lindblad
operator Γ =

√
Λ/2σz. In this scenario, a noise-induced modification of the

nonunitary mixed-state geometric phase, that is merely a function of the
solid angle enclosed by the spin evolution for θ0 = π/2, could be detected by
means of measuring noise-induced shifts of oscillations θ′. Also here, one has
to assume that the average path is correctly given by the dynamics of the
average Bloch vector, which seems reasonable since the noise merely changes
the magnetic field in z direction.

However, the second term of Eq. (3.28) cannot be measured directly by means
of the described experimental setup. We have no possibility to calculate
the qualitative modification of the geometric phase from the result of the
proposed experiment, except by the use of Eq. (3.28), the validity of which
we want to test. An alternative model, only based on geometric consideration
of the Bloch vector dynamics, for instance, could perhaps be established and
compared to the one in [Tong et al. 2004].
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3.4 Experiment

The experiment was done in the same way as the mixed-state phase measure-
ment reported in Chapter 2. Therefore, most of the experimental methods
have already been described in Section 2.6 and will not be treated in more
detail here. We refer to the corresponding Section in Chapter 2, where a cer-
tain experimental method is explained, if necessary. The measurements were
carried out at the TRIGA reactor in Vienna after the polarimeter beam-
line refurbishment in spring 2008. Photographs of the setup are shown in
Fig. 3.4. The measurement procedure is explained and the obtained data is
shown. Data analysis is considered and the results are discussed.

3.4.1 Measurement and Results

The neutron beam incident from the pyrolytic graphite crystal monochro-
mator with mean wavelength of 2.0(2)Å and a spectral width ∆λ/λ∼2% as
stated in [Geppert and Both 2009] was polarized up to r(0)∼99% by reflec-
tion from a bent Co-Ti supermirror array. The analyzing supermirror was
slightly de-adjusted to higher incident angles to suppress second order inten-
sity in the incident beam as described in Section 2.6.3. The final maximum
intensity in the 10B detector was about 320 cts/s with two coils (with Cu
windings for x and z directions each) in the beam that had a cross-section
of roughly 2 cm2. The rectangular-shaped Cd diaphragms at entrance and
exit of polarizer and analyzer were ∼ 1 cm in width and ∼ 2 cm height. The
background was very low due to the excellent shielding of the detector.
In order to find the DC coil current values for required polarization rotation
angles of DC 1 and DC 2, each coil current was adjusted as explained in
Section 2.6.6. With +π/2 rotations around the x axis set for both coils,
inter-coil distances were adjusted to a spin rotation angle equivalence within
the guide field (roughly 13G) of integer multiples of 2π. For this purpose, the
second coil was mounted on a stepper motor which improved the reproduction
of positions considerably, compared to what was stated in Section 2.6.6. One
step of the motor corresponded to 0.625 µm. While tilting effects could be
eliminated, the slackness of mounting devices was still an issue. However, the
error was considered small enough to be neglected. The method is described
in Section 2.6.7. The oscillation obtained from variation of the motor position
is shown in Fig. 3.6. The inter-coil distance at the chosen position (intensity
minimum) was about 30 cm, from which one can calculate that within Bz the
polarization vector was rotated through an angle of 2π×5. Furthermore, from
the fit parameter f =0.12573± 0.00017 of the plot in Fig. 3.6 one can deduce
the guide field strength: Bz = ~v f · 103/(2µ) = 13.4(1) G. This provides
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Figure 3.5: Experimental setup implemented for measuring noise influences
on phases: The neutron beam is incident from the right. The visible RF
flippers were not used in the measurement. The right and left DC coils
(DC 1 and DC 2) correspond to the operators U1 and U2 of Section 3.3,
respectively. The noise coil windings are directly attached to the guide field
coils to assure the field directions to be parallel.



76 Nonunitary Phases

Figure 3.6: Variation of the Position of DC 2 mounted on a stepper motor.

also a value for the parameter η: η = ωL = 2µBz/~ = 2.45(2) · 105 rad/s,
which is a reasonable result considering that the neutron spin rotates about
2000/0.05 = 4 · 104 times through 2π in one second.
DC 1 was set to give the following rotation angles θ0, each corresponding to
B

(1)
x currents in DC 1:

Angle [°] B
(1)
x current [mA]

0 0
18 106
36 211
54 317
72 422
90 528
108 634
126 739
144 845
162 950
180 1056

For each of those angles, the B
(2)
x current of DC 2 was scanned from -1600mA

to 1600 mA in steps of 200mA. At each current in DC 2, the intensity reaching
the detector D was recorded for 60 s. Plotting the measured intensities versus
the B

(2)
x current for the second coil, one obtains the black curves in each graph

of Fig. 3.7.
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The output of the signal generator (SONY/TEKTRONIX AFG320 as in
Chapter 2) was plugged into the input of an EPS TO/E7610 amplifier. Its
output was connected to a pair of noise coils (∼13.7 cm in length and ∼17 cm
in width) with about 15 windings each. They were placed directly onto and
below the guide field coils to provide for perfect alignment with the guide
field direction (see Figs. 3.2 and 3.4). For the signal generator the NOISE
function was chosen with the frequency set to 20 kHz (as in Chapter 2) and
seven amplitude readings: 0V (off), 0.8V, 1.6V, 2.4V, 3.2V, 4V and 5V.
The measured voltage signal as created by the signal generator is shown in
Fig. 2.30.
In total, for each of the θ0 values, the intensity oscillation obtained by vari-
ation of the B

(2)
x current in DC 2 was recorded at all seven noise levels. All

acquired data is shown in Fig. 3.7. From the graph for θ0 = 90°, one can see
clearly that the noise has no influence on oscillation shifts for this polar an-
gle, for which the evolution path P encloses the hemisphere and the induced
Pancharatnam phase φ is purely geometric. No modification is also shown
in the graphs for θ0 = 0° and θ0 = 180°, for which no geometric phase or
no phase at all (for θ0 = π, the states |+〉 and UϕU1|+〉 are orthogonal) is
accumulated, respectively. All other oscillation shifts are modified according
to the noise level in the noise coils. The measurements for θ0 =0°, 90°, 180°
confirm the theoretical prediction of [Tong et al. 2004]: The geometric phase
is insensible to dephasing only when the Bloch vector precesses in the equa-
torial plane. Note that for the measurements of 54° and 126° the normalized
count rate was lower at the measurement of the black (no noise) and the light
blue curve (noise level: 2.4V) in the data plots, respectively. The reason for
this is a temporarily higher monitor count rate assumed to originate from
electronic instabilities. Nevertheless, the phase θ′ of those two curves also
matches the theoretical prediction.
From the sine fits in Fig. 3.7 (solid lines), the shifts θ′ of the oscillations
are determined and plotted in Fig. 3.8. Also here, it can be seen that the
measured shifts for θ0 = π/2, for which P lies only on geodesics, are not
influenced by the noise level. The solid lines are piecewise fits (because of
the singularity of the ’tan’ at θ0 = π/2) of the function

arctan
(
e−2πΛ/η tan θ0

)

to the data. For better illustration, the same behavior is shown in Fig. 3.9
(equivalent to Fig. 3.8), where the difference of oscillation shifts measured
with and without noise is plotted. Here, the solid lines are piecewise fits of
the function

θ0 − arctan
(
e−2πΛ/η tan θ0

)
.
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Figure 3.7: Acquired intensity oscillations for 11 settings of θ0 (see text) for
seven noise levels. The oscillations for θ0 =0°,90°,180° are not shifted by the
noise.
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Figure 3.8: Measured shifts θ′ of oscillations for all noise levels as obtained
from the fits to the data in Fig. 3.7 versus θ0. Independent of the noise level,
the result for θ0 = π/2 is θ′ ∼ π/2.

Figure 3.9: θ0 − θ′ versus θ0 for all noise levels. For induction of purely
geometric phase, the curves for all noise levels intercept at the center point.
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Figure 3.10: Parameter Λ versus noise level from the signal generator. The
solid line is a quadratic fit to the data.

The data in both, Fig. 3.8 and 3.9, are in good agreement with the notion of
the average Bloch vector dynamics, that is characterized by Eqs. (3.36) and
(3.37). From the fits in Figs. 3.8 and 3.9, one can obtain the parameter Λ
for each noise level. The explicit values for Λ are:

Noise Level [V] Λ [rad/s]
0 2.4(1) · 103

0.8 8.2(1) · 103

1.6 2.52(2) · 104

2.4 5.20(3) · 104

3.2 8.07(6) · 104

4 1.18(2) · 105

5 1.9(1) · 105

They are plotted in Fig. 3.10. Note that there are small differences between
the points of the two data sets due to the different fit functions. However,
discrepancies range within the standard deviations obtained from the fits.
As in Chapter 2, we use noise that consists of supposedly Gaussian dis-
tributed offsets from the magnetic guide field Bz. Each neutron undergoes a
different unitary evolution and the average Bloch vector movement is, apart
from the adjusted angles, determined by the distribution of the noise field. In
[Bertlmann et al. 2006] the relation between a damping factor e−Λt and the
variance of Gaussian distributed rotation angles caused by noise is calculated.
In our case, such a factor is added to the relative phase factor e−iηt induced
between |+〉 and |−〉 during the precession, as can be seen in Eq. (3.17).
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Figure 3.11: Vertical zoom of Fig. 3.9. A modulation is clearly observable.

The rotation angles ϕ in the matrix elements of a transformation operator
Uϕ = exp (−iϕσz/2), from which the precession phase factor originates (see
Eq. (3.29)), are affected by the noise. Explicitly, the distribution function of
rotation angles is assumed to be

P (ϕ) =
1√
2πσ

exp
(− ϕ2

2σ2

)
, (3.38)

where σ is the standard deviation. One can average over all possible phase
factors by calculating the integral

1√
2πσ

∫
e∓iϕ/2e−

ϕ2

2σ2 dϕ =
1√
2πσ

∫
(cos

ϕ

2
− i sin

ϕ

2
)e−

ϕ2

2σ2 dϕ. (3.39)

Because the integration region is symmetric and the ’sin’ function is asym-
metric around zero, it does not contribute to the result and one obtains

1√
2πσ

∫
cos

ϕ

2
e−

ϕ2

2σ2 dϕ = e−
σ2

2 . (3.40)

Comparing this to e−2πΛ/η (for a cyclic evolution) one can see that

Λ
2π

η
=

σ2

2
. (3.41)
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The right hand side is a (dimensionless) angle squared. Therefore, one finds
that Λ is related to the noise level voltage as Λ ∝V2, since 2µ∆Bz · 2π/η
corresponds to the width of the distribution of spin rotation angles induced by
∆Bz ∝V, the width of the noise field distribution. The quadratic dependence
in Fig. 3.10 shows this effect and thereby confirms that the noise from the
signal generator is Gaussian distributed.

One can also see in Fig. 3.10 and in the corresponding Table, that even
with the output of the signal generator switched off, this method determines
a noise level of about 2400 (rad/s), while we expect a value close to zero.
Surprisingly, enlarging Fig. 3.9, one can see that there is a clearly visible
modulation of θ0 − θ′ (see Fig. 3.11). Even though the set and measured
phases θ0 and θ′ only differ by 2° at maximum (fourth black data point from
the left in Fig. 3.11), the parameter Λ is very sensible for small θ′ due to its
dependence on the natural logarithm, as is expressed by:

Λ = − η

2π
ln

(
tan θ′

tan θ0

)
.

Stray fields in z direction, picked up by the noise coils, that could contribute
to the noise strength, play a minor role in our experimental setup. The small
phase modulation could be explained by assuming that the precession angle
ϕ was not exactly equal to 2πn, but 2πn + ∆ϕ. Geometric considerations
show that θ′ is then given by

θ′ = arctan
(
cos(∆ϕ)e−2πΛ/η tan θ0

)
. (3.42)

By fitting θ0 − arctan
(
cos(∆ϕ)e−2πΛ/η tan θ0

)
to the black data points in

Fig. 3.11 with Λ fixed to zero, we obtain ∆φ = 0.34(1) rad or roughly 20° .
This value is much too large considering the error of the position scan and the
motor resolution, which are 0.3° and 0.625µm, respectively. On the other
hand, if we fix the error for the adjustment of ϕ in the fit to the expected
0.3° for the worst case, we still obtain a noise level of ∼ 2350/s. Even if the
amplitude of the unexpected modulation is very small and has no (obvious)
consequences for the results of the experiment, this issue remains – so far –
unexplained and should be clarified in the future.

In Fig. 3.12, the dependence of measured oscillation shifts on Λ/η is shown.
Again, it is clearly visible that θ′ is strongly influenced by the noise except
for the case of θ0 = π/2, where the path P fulfills the parallel transport
condition and leads to a purely geometric phase. The unwanted noise level
obtained with the signal generator switched off has no impact on this result.
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Figure 3.12: Induced oscillation shifts versus λ/η. The rightmost red data
point corresponds to the curve for θ0 = π/2 and maximum Λ in Fig. 3.7,
with almost zero contrast.

3.5 Discussion

In contrast to the claim by [Carollo et al. 2003], it is calculated in [Tong et
al. 2004] that only in the case when the spin state precesses in the equa-
torial plane where the induced phase is of purely geometric nature, it is
independent of fluctuations of the precession field. The geometric phase in
[Tong et al. 2004] is gauge invariant, i. e. its value only depends on the path
traced out in state space, which is a stringent property for a well defined
phase concept. Their results reduce to the ones of [Sjöqvist et al. 2000] and
[Singh et al. 2003] in the limit of unitary evolutions, which makes this phase
a promising candidate for future developments.
In the described neutron polarimeter measurements, the system is driven
on cyclic evolution paths P by nonadiabatic rotations chosen by the experi-
menter. The evolutions induce a total relative Pancharatnam phase between
the states |+〉 and UϕU1|+〉, the geometric part of which being equal to
−5π(1− cos θ0) for 5 full rotations around the field axis (ϕ = 5× 2π). With-
out noise, the measured shift of oscillations θ′ corresponds to the polar angle
θ0 set by U1. θ′ = 0 for θ0 = 0 and increases together with the solid angle
Ω, enclosed by P (see Figs. 3.7, 3.9 and 3.11). Applying noise in direction
parallel to the precession field axis, it is found that only for θ0 = π/2 the
shift of oscillations θ′ is robust against the noise.
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What conclusions can be drawn from this result? We assume that an average
Bloch or polarization vector ~rt, describing the spin state during the evolution,
rotates through 2πn around the z axis, after being tilted by the polar angle
θ0 in the coil DC 1. In addition, its projection on the xy plane of the Bloch
sphere, sin θ0, decreases exponentially during the evolution, with the noise
strength Λ as ”decay constant” (see Eq. (3.37)). Since the projection of ~rt on
the z axis (rt cos θ0) is assumed to be constant in the experiment, the purity
rt is reduced as well (see Fig. 3.1). This affects directly the contrast and the
shift θ′ of measured oscillations as can be seen from Eq. (3.33).
From the assumed evolution of the average Bloch vector, it is clear that for a
precession in the equatorial plane, the purity rt behaves as e−Λt and the polar
angle θt is constant and equal to π/2 (see Eqs. (3.36) and (3.37)). Also, the
solid angle is independent of the purity and therefore Ω is constant, because
θt is constant. In Fig. 3.7 it is clearly seen, that only for this particular
evolution the measured data exhibits such a behavior, as expected. However,
a drawback of the carried out experiment is, that we only set the polar angle
of the average Bloch vector in the beginning and measure it at the end of the
evolution. We do not know what exactly happens in between. For instance,
the modification of the polar angle for θ0 ∈ ]0, π/2[ could, in principle, take
place in a sudden jump instead of the assumed smooth transition, for some
unknown reason. The oscillation shift θ′ would then be changed, even if the
solid angle Ω remains constant. These jumps could occur for all set angles
θ0 except for θ0 = 0, π/2, π to explain the data in Fig. 3.7. Even if such
jump-like behavior seems very unlikely, only if we neglect such unknown and
chaotic evolutions during the Larmor precession between DC 1 and DC 2,
we can conclude from the obtained data, that the solid angle has not been
changed by the noise for θ0 = π/2.
For the conclusion about the geometric phase one runs into similar trouble.
Again, at first one assumes to know exactly the path of the average Bloch
vector ~rt in the experiment. As was stated in Section 3.3, if θ0 = π/2, the
geometric mixed-state phase for unitary evolutions Φg (for Λ = 0) can be
considered independent of r0 and, intuitively, also γ[P ] (for Λ > 0) of rt.
This would mean that noise-induced modifications of the geometric phase
can be measured by looking at noise-induced shifts θ′ of oscillations recorded
in our experiments. Also here, the main objection that could be raised deals
with the assumptions that have to be made for the evolution between set-
ting and measuring the polar angle, that remains, in principle, completely
unknown in the described experiment. For the future, this objection can
probably be met by measuring intensity oscillations for a several noncyclic
paths in the described experiment. The obtained data can then be compared
to expectations derived from the above explained Bloch vector dynamics and
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verify its predictions.
Apart from this problem, the measured oscillation shift is not identical to the
geometric phase and therefore its quantitative behavior of the modification
was not measured directly in the carried-out experiment. In more detail, we
can plug the oscillation shift θ0, measured without noise, into the first term of
Eq. (3.28) – which is well-known and widely accepted – and yield the correct
value for the geometric phase without the influence of noise. With the signal
generator switched on, θ0 changes to θ′, but we have no possibility to verify
the magnitude of the second term on the right hand side of Eq. (3.28). It
would be interesting to test also the qualitative predictions of the theory in
[Tong et al. 2004]. Moreover, an experiment in which the shift of measured
intensity oscillations is equal to the geometric phase part of a particular
evolution seems much more elegant. Also the noise-induced changes would
be directly observable.
The measurements explained here are a first step towards the clarification of
the issue. The experiment points to the right direction and yields results that
show indications, though perhaps not a clear proof, of the behavior predicted
by [Tong et al. 2004]. As it is the case in many fields of experimental physics,
further investigations are on the way to close the ”loopholes” that are still
open.

In order to overcome all above objections, a method is needed that is not
merely sensible to some angle that could be changed by the noise during
the evolutions, but it is necessary that the measured phase shift of oscil-
lations is equal to the geometric phase part of the evolution. The experi-
ment carried out in [Wagh et al. 1998] seems, at first glance, to be a can-
didate. But also there, only the total Pancharatnam phase between the
states in the two interferometer paths is measured. An experiment that
can set evolutions inducing arbitrary values of geometric phase and can
get rid of the dynamical phase must probably use a spin echo approach
[Bertlmann et al. 2004, Filipp et al. 2009]. With the experimental setup in
[Filipp et al. 2009] one can, in principle, implement nonadiabatic noise (dif-
ferent from the adiabatic noise used for the measurement in the paper) and
perhaps measure the modification of the Berry phase for adiabatic, cyclic
and nonunitary evolutions.
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Chapter 4

Conclusion and Outlook

In all experiments and applications, pure input states and noiseless evolutions
are only approximations that can not be achieved in practice. Therefore it is
important to develop more realistic models to test them in experiments and
be aware of differences to the pure state case. The theoretical development
of the mixed-state phases for unitary evolutions is outlined in Chapter 2. A
detailed description of a dedicated neutron polarimeter experiment, proposed
by [Wagh and Rakhecha 1995b] and [Larsson and Sjöqvist 2003], is given.
An interpretation of the experiment in terms of spin-momentum entangle-
ment is provided. The experimental details of the setup are described and the
measurement procedures for obtaining the mixed-state Pancharatnam phase
(general, dynamical and geometric), dependent on the input purity, are dis-
cussed. The results agree well with theoretical predictions. In particular,
the nonadditivity of the mixed-state phase was demonstrated experimentally
[Klepp et al. 2008]. Nonadditivity, in this context, is a consequence of the
mixed-state phase definition as weighted average of the phase factors of all
pure state components in the density matrix.

As a further step, in Chapter 3, the derivation of the Pancharatnam phase
for nonunitary evolutions developed in [Tong et al. 2004], is explained. Ex-
pectations for the example of a qubit under noise in directions parallel to
the precession axis of the Bloch vector are calculated. Theory predicts the
acquired geometric phase to be robust against this particular noise only if the
state is parallel transported, in this particular setup, if the evolution path lies
in the equatorial plane of the Bloch sphere. We conclude in an intuitive way,
that because the mixed-state Pancharatnam phase for unitary evolutions is
shown to be independent of the purity for this particular kind of evolution
in Chapter 2, the same should be correct for the nonunitary case. A neu-
tron polarimeter experiment is described, that measures the shift of obtained
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intensity oscillations as a function of noise strength in auxiliary noise coils
along the beam path. The data shows that, if the Bloch vector precesses in
the equatorial plane in the evolution, the shift is constant, independent of
the noise level. If the dynamics of the average Bloch vector in the experiment
are considered to be a correct description in the particular circumstances, we
can conclude that the robustness of the geometric phase for precession in the
equatorial plane is experimentally demonstrated. However, a qualitative test
of the theoretical predictions can not be provided by the method. Further
effort is needed in this field. For instance, an experiment with ultra-cold
neutrons based on the spin-echo approach to cancel out all dynamical phase
contributions acquired during the evolution, could lead to full clarification of
the issue.

In so-called quantum erasure experiments, loss of visibility of intensity oscilla-
tions is observed [Scully and Drühl 1982, Stern et al. 1990, Kwiat et al. 1992].
In this concept, the gain of which-way information (welcher Weg information)
is responsible for decreasing visibility in quantum interference experiments.
Which-way information is available in the experiments, because of entan-
glement of the quantum system with an ancilla system (typically called an
environment). Indistinguishable states of a quantum system become distin-
guishable, because one can carry out a measurement on the ancilla system
and thereby gain knowledge about the quantum system. In a quantum eraser
experiment, gained which-way information can be erased again to recover
fringe visibility.
In [Bhandari 1992], it is argued that a Pancharatnam phase, acquired in the
experiment, is responsible for the loss of contrast and, consequently, for de-
coherence in which-way experiments. Neutron interferometry and especially
polarimetry are ideally suitable for quantum erasure-like experiments due
to the very weak unwanted interactions of neutrons with the environment.
Which-way measurements with polarized neutrons are currently carried out
and analyzed, in which the loss of fringe visibility can be both interpreted
in terms of distinguishable paths due to entanglement with an ancilla sys-
tem or, alternatively, a Pancharatnam phase. The preliminary results agree
well with the predictions of both concepts. This points in direction of their
equivalence.
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