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Abstract

The thermal conduction and thermomechanical properties of materials used for making

thermal management devices often constitute bottlenecks in the development of new tech-

nologies in many important fields, such as the development of faster microprocessors, of

fusion nuclear reactors, or more efficient heat engines, amongst others. There is an urgent

need for new materials than can withstand increasingly extreme working conditions.

The present thesis is devoted to the development of computer tools for supporting the

design and manufacturing of new materials. Analytical, semi–analytical and numerical

continuum–level descriptions for studying the macroscopic and local thermophysical and

thermomechanical behaviours of discontinuously reinforced composites that contain rein-

forcements of non-ellipsoidal shapes and general size distributions are reviewed, extended

and/or developed. An issue of special interest are the effects of thermally imperfect in-

terfaces between the constituents on the macroscopic thermal conduction behaviour. The

methods are applied to diamond reinforced metal matrix composites (DRMMCs).

The use of semi–analytical “replacement tensor” Mori–Tanaka methods for estimating

the effective conductivity of DRMMCs at moderate and elevated particle volume fractions

is validated. Windowing methods using essential, natural and mixed uniform boundary

conditions as well as Periodic Microfield Approaches (PMAs) are applied to computer-

generated volume elements for studying the thermal conduction of DRMMCs. Good agree-

ment between the results obtained with the different approaches is found, which supports

the validity of the different modeling approaches.

Semianalytical methods and PMAs are used for extracting the macroscopic elasticity

and coefficient of thermal expansion tensors of DRMMCs, with good agreement between

the prections of the two approaches. Unit cell analyses of the thermoelastoplastic be-

haviour of DRMMCs indicate a tendency towards yielding of the matrix for rather moder-

ate temperature excursions. In addition, incremental Mori–Tanaka methods for studying

the behaviour of components made of inhomogeneous materials exposed to thermal cycling
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are implemented.

The modelling methods reviewed, extended or developed in this work contribute a set

of tools for the assessment of the macroscopic conductivity of inhomogeneous materials.

These tools cover considerable ranges of detail that can be resolved and of numerical

requirements. Moreover, they help in achieving an improved understanding of the local

thermomechanical and thermophysical behavior of these composites at the microscale.



Kurzfassung

Das Wärmeleitungs- und thermomechanische Verhalten von Werkstoffen, die in Vorrichtun-

gen zum Temperaturmanagement zum Einsatz kommen, kann bei der Entwicklung neuer

Technologien in vielen wichtigen Bereichen eine Schlüsselrolle spielen. Beispiele dafür sind

Hochleistungsmikroprozessoren, Fusionsreaktoren oder hocheffiziente Wärmekraftmaschi-

nen. Daher besteht ein dringender Bedarf an neuen Werkstoffen, die bei extremen Bedin-

gungen eingesetzt werden können.

Die vorliegende Dissertation ist auf die Entwicklung computergestützter Werkzeuge zur

Unterstützung der Entwicklung und Herstellung neuer Werkstoffe ausgerichtet. Analyti-

sche, semianalytische und numerische Beschreibungen auf Kontinuumsebene, die zur Un-

tersuchung des thermophysikalischen und thermomechanischen Verhaltens diskontinuier-

lich verstärkter Verbundwerkstoffe dienen, werden diskutiert, erweitert und/oder entwick-

elt. Das Schwergewicht liegt dabei auf Verbunden, deren diskontinuierliche Verstärkungen

nichtellipsoidale Formen und beliebige Größenverteilungen haben. Von besoderem Inter-

esse sind dabei die Auswirkungen nicht idealer Interfaces zwischen den Konstituenten auf

das makroskopische Wärmeleitungsverhalten. Die Methoden werden auf diamantverstärk-

te Metallmatrix-Verbundwerkstoffe (DRMMCs) angewendet.

Der Einsatz semianalytischer “Ersatztensor”-Mori–Tanaka-Methoden zur Abschätzung

der effektiven Wärmeleitfähigkeit von DRMMCs mit moderaten bis hohen Partikelvolums-

fraktionen wird validiert. Windowing-Methoden, die notwendige, natürliche und gemischte

gleichförmige Randbedingungen verwenden, sowie Verfahren auf Basis periodischer Mikro-

felder (PMAs) werden auf computergenerierte Volumselemente angewandt, um die Wärme-

leitung in DRMMCs zu modellieren. Eine gute Übereinstimmung der mit den verschiede-

nen Methoden errechneten Resultate konnte festgestellt werden, was die Gültigkeit dieser

Modellierungszugänge stützt.

Weiters werden semianalytische und PMA-Methoden zur Bestimmung der makrosko-

pischen Elastizitäts- und Wärmeausdehnungstensoren von DRMMCs herangezogen, wobei
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wiederum eine gute Übereinstimmung der Vorhersagen der beiden Verfahren beobachtet

wird. Einheitszellenanalysen des thermoelastoplastischen Verhaltens von DRMMCs weisen

auf eine Tendenz dieser Werkstoffe hin, bereits bei relativ geringen Temperaturänderungen

Plastifizieren der Matrix zu zeigen. Weiters werden Mori–Tanaka-Methoden implementiert,

um das Verhalten von aus inhomogenen Werkstoffen hergestellten Komponenten unter dem

Einfluss thermisch-zyklischer Belastungen zu studieren.

Die in der vorliegenden Arbeit besprochenen, erweiterten bzw. entwickelten Model-

lierungsmethoden stellen einen Satz von Werkzeugen dar, mit dem das makroskopische

Verhalten inhomogener Werkstoffe voraussagend beurteilt werden kann. Die Werkzeuge

decken einen breiten Bereich sowohl hinsichtlich des Detaillierungsgrads als auch der nu-

merischen Anforderungen ab. Sie helfen beim Erreichen eines besseren Verständnisses des

thermomechanischen und thermophysikalischen Verhaltens inhomogener Werkstoffe auf der

Mikroskala.
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Notation

In this work, both tensorial and engineering notations are used. In tensorial notation

the order of the tensors is denoted by the number of subscripts of the variables whereas

in engineering notation the tensors do not have any subscript denoting the order of the

tensors.

Tensors up to rank four are used, denoted as follows in engineering notation:

• Scalars: lowercase or uppercase Italic letters, non–bold Greek lower case letters, or

any letters with indices. Examples: a, b, A, B, α, β, a(i), B(i, j)

• Tensors of rank one: lowercase bold Roman letters. Examples: a,b

• Tensors of rank two: bold Greek lower case letters or uppercase calligraphic letters.

Examples: α, β,A,B

• Tensors of rank four: boldface uppercase Roman letters. Examples: A,B

Throughout this thesis, mechanical and heat conduction problems are studied. The

orders of the tensors involved in the above problems are different and the engineering

notation used for them, too.

In heat conduction problems, tensors up to rank two are used, which can be represented

by matrices, vectors and scalars, without loss of information.

In mechanical problems symmetric tensors of rank 4 and 2 appear. There are several

engineering notations that take advantage of these symmetries to represent these tensors

reducing their order, e.g. Nye notation (also called Voigt notation) or Mandel notation

(also called Kelvin notation), see [35]. In this work the second order tensors are represented
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following Nye notation. In this notation the strain and stress tensors, ε and σ read:

ε =




ε(1)

ε(2)

ε(3)

ε(4)

ε(5)

ε(6)




=




ε11

ε22

ε33

γ12

γ13

γ23




and σ =




σ(1)

σ(2)

σ(3)

σ(4)

σ(5)

σ(6)




=




σ11

σ22

σ33

σ12

σ13

σ23




respectively, where εij and σij are the components of the strain and stress tensors, respec-

tively, and γij = 2εij are the shear angles. Every second order tensor is represented like the

stress tensor, the only exception are strain tensors. Fourth order tensors are represented

as matrices, e.g. the elasticity tensor, E:

E =




E1111 E1122 E1133 E1112 E1113 E1123

E2211 E2222 E2233 E2212 E2213 E2223

E3311 E3322 E3333 E3312 E3313 E3323

E1211 E1222 E1233 E1212 E1213 E1223

E1311 E1322 E1333 E1312 E1313 E1323

E2311 E2322 E2333 E2312 E2313 E2323




where Eijkl are the components of the elasticity tensor. For a more thorough description

of the engineering notation used and a comparison with tensorial notation, see appendix

A.

If tensorial notation is used, the rank of the tensor equals the number of subscripts

• Engineering notation: a, a, α,A,A

• Tensorial notation: a, ai, αij, Aij , Aijkl

In tensorial notation, all variables without subscripts are scalars.

Unless stated otherwise, the Einstein convention is used in this work for tensorial no-

tation. If a subscript occurs twice in any term, it is understood that the index has to

be summed from 1 to 3. If a subscript occurs once in a term, it is called a “free suffix”.

Square brackets are used to clarify the order of the tensor within them, by indicating the

free-suffixes after the right square bracket. Einstein convention does not apply to these

indices.
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The tensorial product of second order tensors, which is usually denoted in the literature

as ⊗, it is defined as follows:

Aijkl = bijckl (1)

This operation is distributive and associative but not commutative.

The double contraction operation of a fourth order tensor and a second order tensor

will be denoted as follows:

aij = Bijklclk

dij = clkBklij (2)

and for tensors of order two:

a = bijcji = cijbji (3)

The double contraction operation is distributive and associative but not commutative, with

the exception of cases where both tensors are of second order.

The Kronecker delta, δij , is defined as:

δij =

{
0 for i 6= j

1 for i = j
(4)

Using the Kronecker delta, the second and fourth order symmetric identity tensors, Iij and

1ijkl respectively, are defined as:

Iij = δij

1ijkl = δikδjl (5)

The unit fourth order tensor has the important property:

1ijklalk = aij = alk1klij (6)

The volumetric and deviatoric operators follow as:

XI



1vol
ijkl =

1

3
IijIkl

1dev
ijkl = 1ijkl − 1vol

ijkl (7)

Every second order tensor, aij, can be decomposed into its deviatoric part, adev
ij , and

its volumetric part, avol
ij :

aij = alk1
dev
klij + alk1

vol
klij = 1dev

ijklalk + 1vol
ijklalk = adev

ij + avol
ij (8)

A fourth-tensor rank tensor Aijkl is said to have major symmetry if:

Aijkl = Aklij (9)

and minor symmetry if:

Aijkl = Ajikl = Aijlk (10)

As the tensors 1ijkl and 1dev
ijkl have major but not minor symmetry, it is sometimes useful

to work with the symmetrized fourth order tensors:

1s
ijkl =

1

2
(δikδjl + δilδjk)

1dev,s
ijkl = 1s

ijkl − 1vol
ijkl (11)

These tensors exhibit major and minor symmetry, but fulfill equations (6) and (8) only if

aij is symmetric.

The three basic invariants of any second order tensor are defined as:

j(1)(aij) = aijδij = aii

j(2)(aij) =
1

2
aijaji

j(3)(aij) = det|aij| (12)
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Chapter 1

Introduction

The rapid growth of thermal management requirements necessitates the development of

new materials that can withstand extreme working conditions with good reliability. This

is a major goal of the European Integrated Project EXTREMAT [54], which supported a

large part of this study.

Thermal management devices have a wide range of applications. In this chapter, some

of them in the fields of energy and power microelectronics are presented. It is worth

noting that thermal management devices play an important role and in some cases are the

bottleneck in important fields of engineering.

1.1 Motivation

1.1.1 Fusion Power

It is expected that the world population will increase by 50% in the next 40 years [37].

Consequently, the energy requirements will increase. Furthermore, the developing countries

will want to improve the standards of life of their inhabitants.

At present some 85% of energy requirements are covered by fossil energy sources such

as coal or oil [7]. The reserves of these materials are limited and, although estimates

vary [1; 36; 136], they are not expected to last more than 100 years. Furthermore the

green-house effect penalizes the use of these energy sources.

It is obvious than new alternative energy sources for the mid to long term must be

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Operator standing on the divertor of a tokamak nuclear fusion reactor, (courtesy

of IPP).

found. One of these possible alternatives is nuclear fusion.

Nuclear fusion is the process by which multiple particles join together to form a heavier

nucleus. During this process energy is released or absorbed. The fusion of two nuclei

lighter than iron or nickel releases energy. Therefore, typical fuels are isotopes of hydrogen,

deuterium (D) and tritium (T). The fusion of these hydrogen isotopes, according to the

reaction:

D + T → 4He2+ (3, 517 MeV) + n (14, 069 MeV) (1.1)

produces 17.6 MeV of Energy [142].

In order to bring together two nuclei, a substantial energy barrier (Coulomb barrier)

must be overcome. Once they are close enough the nuclear force is sufficiently strong and

fusion is achieved.

One way of overcoming the Coulomb barrier is by heating the particles, temperature

being a measure of the average kinetic energy of particles. The temperatures needed for

overcoming the barrier are huge, e.g. for the case of the deuterium-tritium fuel, 50 million

K [142]. At these temperatures the gas exists as a macroscopically neutral collection of ions

and unbound electrons which is called a plasma. However, two effects reduce the actual

temperature needed. One is the fact that temperature is determined by the average kinetic

energy, and this energy is not homogeneous within a plasma. The other one is quantum

tunneling [135]. The nuclei do not need to have enough energy to overcome the barrier, it

is sufficient if they have nearly enough energy.

Heating a plasma up to suitable temperatures and confining it so that a net positive

energy balance can be achieved are the main milestones of nuclear fusion.
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A fusion plasma cannot be maintained at thermonuclear temperatures if it comes into

contact with the walls of the confinement. Additionally, the confinement materials would

not survive these temperatures. One way of overcoming this problem are magnetic fields.

Usually, magnetic field lines are configured to remain completely within the confinement

chamber. The simplest such configuration is the torus. In this case, however, the field

produces some forces that would, if uncompensated, cause the particles to hit the walls. A

poloidal magnetic field must be superimposed to avoid this effect. This may be produced

by a toroidal current flowing in the plasma (tokamak fusion reactor, see fig. 1.1) or by

external coils as in the case of the stellerator fusion reactor.

Developing materials for fusion reactors is challenging. Huge neutron fluxes, large cyclic

mechanical loads and extreme temperatures must be withstood by these new materials,

see [21; 22]. The divertor of a fusion reactor (see fig. 1.1) is a device that removes some

fusion products as well as some impurities from the plasma. It removes these particles

during operation of the reactor, allowing continuous fusion. Due to the collision with these

particles, the divertor is heavily loaded thermally. The divertor is expected to remove heat

fluxes of 5 MW/m2 in the tokamak machine ITER, 10 MW/m2 for the stellerator device

Wendelstein 7-X, and this value may reach up to 20 MW/m2 under quasistatic conditions

in future fusion reactors [166; 167].

Realistic material testing for these conditions is very complicated, therefore modeling

is needed. One of the goals of this thesis is the development of a material law than can be

implemented into a finite element code which is to be used in the development and study

of components of fusion reactors made of inhomogeneous materials, such as a divertor.

1.1.2 Heat sinks

A heat sink is an environment or object that absorbs and dissipates heat from another

object using thermal contact. Heat sinks are nowadays widely used in electronics. They

have become essential to modern integrated circuits (See fig. 1.2).

The key points in the selection of a material for a heat sink application are:

• High thermal conductivity

• Suitable Coefficient of Thermal Expansion (CTE)

• Stability during thermal cycling
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Figure 1.2: Standard application of a heat sink: heat sink of a PC

If the CTE of the heat sink approaches that of the substrate material used (typically

silicon) the macroscopic thermal stresses and strains during cycling are kept low, which

increases the life of the material. A high thermal conductivity increases the heat removed

per unit of time. Additional requirements depend on the final application, e.g. low weight

for aerospace applications.

Diamond reinforced metal matrix composites (DRMMCs) are promising candidate ma-

terials for attaining elevated thermal conductivities, up to 2000 W/mK [164]. They com-

bine the good thermal conductivity of the metallic matrix with the excellent thermal con-

ductivity of the diamonds. Furthermore, the small CTE of the diamond can be used to

tailor the overall CTE of the composite. The large mismatch between the CTEs of the

metal and the diamonds, however, tends to lead to high thermal stresses on the microscale

and may be a drawback for the thermal stability and mechanical behaviour of the com-

posite.

An important objective of this thesis is the development of computational tools for

assessing of the thermal conduction behaviour of particle reinforced MMCs, such as DR-

MMCs. Furthermore, the thermomechanical behaviour of these materials is modeled.



Chapter 2

Plasticity

As stated in the introduction, one field of interest of the present work is the thermome-

chanical behaviour of MMCs. During service the matrices of MMCs are often exposed to

loads beyond their elastic limit, e.g., in the divertor of a fusion reactor, see section 1.1.1.

Therefore, the modeling of the elastic-plastic behaviour of ductile matrix composites is of

major interest for the present work. Accordingly, some models for describing the non-cyclic

and cyclic elastoplastic behaviour of metallic materials are presented. The discussion is

based on the course notes by Jirásek [88].

2.1 General Remarks

In this chapter, the rate independent theory of plasticity is reviewed. Only small strains

are considered. Throughout this chapter the microstructure of a material refers to the

microscopic description of the crystal structure of a material. For the case of metals,

microstructure refers to the dislocation structure, grain structure, precipitates, defects,...

and the interaction between them. The microstructure in this sense does not necessarily

refer to the microgeometry of the material in the sense of continuum micromechanics.

The Hooke’s elasticity tensor for isotropic materials, Eijkl, can be written as:

Eijkl = 3k1vol
ijkl + 2g1dev, s

ijkl (2.1)

where k and g are the bulk and shear moduli of the material, respectively.

Most plasticity models make use of the volumetric-deviatoric decomposition of the

5
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stress and strain tensors:

σij = σmδij + σdev
ij

εij = εmδij + εdev
ij (2.2)

where σm = σkk/3 and εm = εkk/3 are the mean stress and strain, respectively, and σdev
ij

and εdev
ij the stress and strain deviator tensors.

Combining equations 2.1 and 2.2 gives:

σm = 3kεm

σdev
ij = 2gεdev

ij (2.3)

2.2 Basic equations

The classical flow theory of plasticity is based on the work of Tresca [154] and von Mises

[156]. As only smalls strains are considered, the total strain can be decomposed additively

into the elastic and the plastic strains, equation (2.4). Furthermore, it is assumed that the

current state of a volume element is fully described by the plastic strain, the elastic strain

and some variables, the hardening variables, describing the changes in the microstructure

of the material.

The principal equations of a flow theory model are:

• The elastic-plastic decomposition:

εij = εe
ij + εp

ij (2.4)

• The stress-strain law for the elastic behaviour:

σij = Eijklε
e
lk (2.5)

• The yield condition:

y(σij, Z
r
∗) ≤ 0 (2.6)

• The flow rule:

ε̇p
ij = l̇ [φ(σij , Z

r
∗)]ij (2.7)
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• The hardening model, which consists of two parts:

– The definition of the hardening variables, Zh
∗ , usually in the form of rate equa-

tions:

ḣ
(x)
ij...n = l̇

[
i(x)(σij , Z

h
∗ )

]
ij...n

(2.8)

∀ h
(x)
ij...n ǫ Zh

∗ =
{

h
(1)
i , . . . , h

(q1)
i , . . . , h

(
Pn−1

k=1 (qk)+1)

ij...n , . . . , h
(
Pn

k=1(qk))
ij...n , . . .

}

– and the dependence of the variables Zr
∗ appearing in equations (2.6) and (2.7)

on the hardening variables, the hardening laws:

r
(y)
ij...n =

[
o(y)(Zh

∗ )
]
ij...n

(2.9)

∀ r
(y)
ij...n ǫ Zr

∗ =
{
r
(1)
i , . . . , r

(t1)
i , . . . , r

(
Pn−1

k=1 (tk)+1)
ij...n , . . . , r

(
Pn

k=1(tk))
ij...n , . . .

}

where εe
ij and εp

ij represent the elastic and the plastic contribution to the strain tensor,

respectively; y is the yield function, φ is a function specifying the direction of plastic flow;

the functions i(x) and o(y) describe the influence of the microstructure on the hardening; l is

the plastic multiplier; Zh
∗ and Zr

∗ are sets of tensors of different orders; and h
(x)
ij...n and r

(y)
ij...n

are tensors belonging to the sets Zh
∗ and Zr

∗, respectively. A dot over a symbol denotes

differentiation with respect to a formal parameter that controls the loading process. It is

worth noting that theories described by equations (2.4)–(2.9) are rate independent, and

therefore this parameter does not need to have the meaning of real physical time. The

set of variables Zr
∗ could be eliminated by substituting eqn. (2.9) into equations (2.6)

and (2.7). However, as they have a clear physical meaning that helps to understand the

model, usually, they are not eliminated. Recall that in the thermodynamical formulation

of plasticity, the variables Zr
∗ appear naturally as the thermodynamic forces conjugate with

the hardening variables Zh
∗ , and equations (2.8) are the corresponding state laws, see [95].

The yield function, y, defines the elastic domain in stress space, which is surrounded

by the yield surface. Stress states for which y < 0 are elastic states, for y = 0 they are

plastic, and y > 0 is not possible. Of course, as the microstructure changes Zh
∗ and Zr

∗
evolve, which may expand and/or translate the yield surface.

Plastic flow can occur only if the current state is plastic, which is expressed as:

l̇y(σij, Z
r
∗) = 0 (2.10)

If the material is in an elastic stress state, y < 0, equation (2.10) implies that the rate of

the plastic multiplier is equal to zero and, therefore, the plastic strain and the hardening
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variables remain constant. If the material is in a plastic state, equation (2.10) does not

restrict the rate of the plastic multiplier. However, as the rate of the plastic strain should

be greater than zero in a uniaxial tensile test, the rate of the plastic multiplier should never

be negative, because φij in equation (2.7) specifies the oriented direction of evolution. This

is described by an additional restriction:

l̇ ≥ 0 (2.11)

Equation (2.11) together with equations (2.6) and (2.10) provide the loading/unloading

conditions in the so called Kuhn-Tucker form [88].

Once the current values of all variables and the rate of the total strain are known,

equations (2.4)–(2.11) make it possible to obtain the rates of all variables.

If the current stress state is elastic, then the rate of the plastic multiplier as well as

the rates of the plastic strain are zero and the hardening variables remain constant, as

discussed above. In this case, the model is governed by the elastic law.

If the current stress state is plastic, the rate of the plastic multiplier may be zero or

positive. The latter case describes a plastic loading. The former case represents an elastic

unloading, ẏ < 0, or the so called neutral loading, ẏ = 0, both governed by the elastic law.

If plastic loading takes place, the rate of the yield function can be written as:

ẏ =

[
∂y

∂σij

]

ij

σ̇ji +

[
∂y

∂Zr
∗

]

∗
Żr

∗ = 0 (2.12)

Combining the rate form of equation (2.5) with the flow rule and the additive split of

the total strain, equations (2.4) and (2.7), we get:

σ̇ij = Eijkl(ε̇lk − l̇φlk) (2.13)

The rate form of equation (2.8) combined with equation (2.9), gives rise to:

Żr
∗ =

[
∂o∗
∂Zh

∗

]

∗
ḣ∗ = l̇

[
∂o∗
∂Zh

∗

]

∗
i∗ (2.14)

Substituting equations (2.13) and (2.14) into (2.12), the rate of the plastic multiplier

is obtained as:
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l̇ =
NijEjimnε̇nm

NijEjimnφnm − Zy,r
∗ Zo,h

∗ i∗
(2.15)

where Nij =
[

∂y
∂σij

]
ij
, Zy,r

∗ =
[

∂y
∂Zr

∗

]
∗
, and Zo,h

∗ =
[

∂o∗
∂h∗

]
∗
. Finally, substituting this result

into equation (2.13), leads to the rate form of the elastoplastic stress-strain law:

σ̇ij =

[
Eijkl −

EijmnφnmNopEpokl

NqrErqmnφnm − Zy,r
∗ Zo,h

∗ i∗

]

ijkl

ε̇lk (2.16)

where the tensor in square brackets, is the so called elastoplastic stiffness tensor or tangent

tensor, which is a tensor of rank four. It does not posses, in general, major symmetry,

except when φij = Nij . In this case, the flow rule is said to be associated.

Note that all operations in which one of the members has a star as a subscript, have

to be interpreted in a general way, because the variables Zr
∗ can be a collection of tensors

of different orders. For example, the Chaboche–Marquis model, see section 2.6.2, uses

Zr
∗ = {sy, Xij}. The product Zy,r

∗ Żr
∗ for this case is:

Zy,r
∗ Żr

∗ =

[
∂y

∂sy

]
ṡy +

[
∂y

∂Xij

]

ij

Ẋji (2.17)

2.3 Yield criteria

The yield criterion, y, is a scalar function of the stresses tensor and some other variables,

which defines the elastic region of a given material element. In other words:

y(σij, Z
r
∗) < 0 if σij is in the elastic regime

y(σij, Z
r
∗) = 0 if σij leads to the yielding of the material element

Experimentally, it has been verified for most materials that the yield surface is convex

in stress space.

There exist several yield criteria for different materials. Due to the nature of MMCs’

matrices, only criteria for isotropic pressure independent materials are considered. Never-

theless, when a metallic material is reinforced, the homogenized yielding of the MMC may

be affected by hydrostatic loads, see e.g. [118].
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2.3.1 Isotropic metallic materials

The following discussion is restricted to isotropic elastoplastic materials, i.e., the properties

of the material are taken to be independent of the chosen loading direction. This assump-

tion is valid for many polycrystalline metallic materials. In consequence, the yield criterion

is invariant to rotations of the system of reference. Accordingly, y must be a symmetric

function of the principal stresses or a function of the invariants of the stresses tensor.

Then, for an isotropic material, the elastic region can be defined in the space of the

principal stresses, and the surface of this region must be symmetrical with respect to the

bisector planes between coordinate axes in this space.

In the case of metallic materials, it has been observed experimentally that yielding is

not affected by hydrostatic loads. In other words, the yield criterion for an element of a

metallic material it is not a function of the whole stress state of the element, but only of

the deviatoric stress tensor, σdev
ij . And, as the first invariant of the stress deviator tensor,

j(1)(σdev
ij ), is zero, it can be deduced that the form of the yield criterion must be:

y(j(2)(σdev
ij ), j(3)(σdev

ij ), Zr
∗) (2.18)

where j(2)(σdev
ij ) and j(3)(σdev

ij ) are the second and the third invariant of the stress deviator

tensor.

For the sake of simplicity, in the following is assumed that the yield function does not

depend on Zr
∗.

2.3.1.1 Geometrical representation

The yield criterion can be represented in the space of the principal stresses as a surface

with several symmetries. For metallic materials, the criterion does not depend on the

hydrostatic component of the stress tensor, so that the yield surface must be a cylinder the

axis of which is parallel to the hydrostatic axis, and therefore perpendicular to the plane

σ1 + σ2 + σ3 = 0, where σ1, σ2 and σ3 are the principal stresses, σ1 ≥ σ2 ≥ σ3.

This plane is known as deviatoric plane, and it contains the deviatoric stress quasi–

vectors. The yield surface intersects the deviatoric plane in a curve that is known as the

yield curve.

This curve must be symmetric with respect to the projections of the axes due to the
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σ1 σ2

σ3 Deviatoric Plane

Figure 2.1: Symmetries of the yield curve for metallic materials.

symmetries of the yield surface. Also, the property of the equality of the yield limit in

tension and compression can be generalized such that if a point it is situated on the yield

curve, it also will be if the signs of the stress components are changed. In other words,

the yield curve is symmetric with respect to the origin. Therefore, the yield curve can be

described by a small portion of the curve that is symmetrically repeated every 60 degrees,

see figure 2.1.

2.3.1.2 Tresca and von Mises yield criteria

Several yield criteria have been proposed, but most of them have been forgotten due to

their limited correlation with the behaviour of real materials. For metallic materials, the

criteria most used nowadays are those proposed by Tresca and by von Mises.

The Tresca criterion assumes that yielding takes place when the maximum value of the

shear stress reaches a critical value ccr,Tr. This can be expressed as:

σ1 − σ3

2
= ccr,Tr (2.19)

The critical value can be obtained from a uniaxial test, because in this test only one

principal stress is different from zero, and yielding happens when this stress reaches the

limit so that:

ccr,Tr =
sy

2
(2.20)

where sy is the uniaxial yield stress.

The yield function can be expressed as:
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σ1σ1
σ2σ2

σ3σ3

Deviatoric PlaneDeviatoric Plane

Figure 2.2: Yield curves for the Tresca (left) and von Mises (right) criteria.

y(σij) ≡ Sup|σi − σj − sy| = 0 i, j = 1, 2, 3 (2.21)

Accordingly, the yield surface in the space of principal stresses is a regular hexagonal prism,

the axis of which is parallel to the hydrostatic axis. Its section with the deviatoric plane

is a regular hexagon, see figure 2.2 (left).

The von Mises criterion is based on the idea that yielding happens when the second

invariant of the stress deviator reaches the square of a prescribed value, ccr,VM:

j(2)(σdev
ij ) = (ccr,VM)2 (2.22)

Evidently, the von Mises criterion is a simplification of the general criterion for metallic

materials, equation (2.18). It is easy to verify that if the stress state is a pure shear stress

τ , yielding takes place when τ reaches ccr,VM. But, if the stress state is simple tension

or compression, yielding takes place when the applied stress is equal to
√

3ccr,VM, and

therefore the maximum shear stress,
√

3 ccr,VM

2
, is lower than the shear stress that produces

yielding in pure shear. This is the most important difference between the two criteria, and

reality typically lies between the two.

The von Mises yield function can be written as:

y(σij) ≡
√

3

2
σdev

ij σdev
ji − sy = 0 (2.23)

In the space of the principal stresses, the von Mises yield surface is a regular circular

cylinder, the axis of which is parallel to the hydrostatic axis and its section with the

deviatoric plane is a circle, see figure 2.2 (right).
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σ1 σ2

σ3

Shear

Deviatoric Plane

Figure 2.3: Comparison between Tresca and von Mises yield criteria

The differences between the two criteria can be observed in figure 2.3.

2.4 Flow Rules

As long as the stress remains within the elastic region, the deformation process is purely

elastic and is governed by the elastic stress-strain law, equation (2.1). Plastic flow begins

once the stress state reaches the yield surface. During plastic flow the stress state remains

on the yield surface and therefore the condition y(σij, Z
r
∗) = 0 is satisfied. The yield

condition does not contain enough information to obtain the whole plastic strain tensor,

which has six independent components (recall that this tensor is symmetric). Therefore, an

additional rule governing the evolution of the plastic flow, the flow rule, must be postulated.

The flow rule should be deduced experimentally. From the theoretical point of view

it is convenient to use a rule that preserves the principle of maximum plastic dissipation.

This principle for perfectly plastic materials reads:

Let ε̇p
ij be a given plastic strain rate. Among all possible stress states σpos

ij satisfying

the yield condition, the power σpos
ij ε̇p

ji is maximized by the actual stress, σij :

σij ε̇
p
ji = max

y(σpos
ij )≤0

(σpos
ij ε̇p

ji) (2.24)

Equation (2.24) means that the projection of admissible stress states onto the direction

of the plastic strain rate is maximized by the actual stress state. It holds if:

• The elastic domain is convex

• The direction of the plastic strain rate is normal to the yield surface
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σσσ

ε̇p ε̇p ε̇p

Yield surface
Normal plane to the ε̇p

Figure 2.4: Ideal yield surfaces and plastic strain rate situations.

This can be easily understood observing figure 2.4, recall that the double contraction

of these tensors has a similar meaning as the dot product of vectors. In figure 2.4 (left),

a planar yield surface is sketched. It is obvious that the dot product of the plastic strain

rate and any admissible stress state in the yield surface is constant and proportional to

the distance of the origin to the planar yield surface, so that planar surfaces normal to the

rate of the plastic strain act as isoplanes of the scalar field σij ε̇
p
ji. If the rate of the plastic

strain were not normal to the yield surface, figure 2.4 (center), the principle of maximum

plastic dissipation would not be fulfilled. The same would happen if the yield surface were

not convex, see figure 2.4 (right).

The yield surface in stress space is a graphical representation of y(σij, Z
r
∗) = 0, therefore

the gradient of y with respect to σij determines the direction normal to the yield surface,

and the flow rule follows as:

ε̇p
ij = l̇

[
∂y(σkl, Z

r
∗)

∂σij

]

ij

= l̇Nij (2.25)

which is called the normality rule or the associated flow rule. Note, that for a given stress

state the gradient Nij is a fixed tensor specifying the direction of the rate of the plastic

strain. The magnitude of this rate is not specified by the plastic flow rule, and it must be

determined using the yield function, because during plastic flow the stress state remains

on the yield surface.

The behaviour of most metals can be well described using an associated flow rule. Nev-

ertheless, for some pressure-sensitive materials an associated flow rule can be unrealistic,

and it must be replaced by a more general flow rule, see equation 2.7, where φ(σij , Z
r
∗) is

the so called plastic potential.
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2.5 Hardening models

The microstructure of a material evolves as plastic flow continues, resulting in a change of

the properties observable at the macroscale. It is known than in many materials the yield

stress is not constant.

Under uniaxial loading the stress transmitted by a yielding material may increase,

known as hardening, or decrease, referred to as softening. During hardening or softening,

the elastic domain undergoes a certain evolution. The initial yield surface of a virgin

material is called the elastic limit envelope. The boundary of the yield surface at an

intermediate state is usually called a loading surface.

In this section two hardening models, isotropic hardening and linear kinematic hard-

ening, are presented. With some exceptions, the hardening behaviour of most materials

usually appears to be well described by a combination of both, the so called mixed hard-

ening. The suitability of a hardening model depends not only on the material, but the

phenomena studied play a role, too. An isotropic hardening model may be suitable for

studying the behaviour of a material exposed to uniaxial tensile loading, but completely

inadequate for studying the behaviour of the same material under thermomechanical cy-

cling.

2.5.1 Isotropic hardening model

Isotropic hardening is the simplest approach to characterizing the effect of hardening. It

uses only one parameter to describe the evolution of the yield surface.

In this model, the yield surface may change only its size. The size of the yield surface

is governed by the current yield stress:

Zr
∗ = {sy} (2.26)

The evolution of the yield stress during plastic flow must be described by an additional

equation, a hardening law, see equation (2.9). If the hardening law describes the evolution

of the yield limit under uniaxial stress as a function of the equivalent plastic strain, it is

referred in the following as hardening equation.

One possible way to achieve this is using the equivalent plastic strain, p:
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sy = o(1)(p) (2.27)

with:

p (t) =

√
2

3

∫ t

0

||ε̇p
ij (s) ||ds (2.28)

and therefore the rate of the equivalent plastic strain is:

ṗ =

√
2

3
||ε̇p

ij|| =

√
2

3
ε̇p

ij ε̇
p
ji = l̇

√
2

3
φijφji (2.29)

The equivalent plastic strain is a better choice than e.g. the norm of the plastic strain,

because the latter does not always increase during plastic flow, whereas the equivalent

plastic strain does. The factor
√

2
3

is chosen such that under monotonic uniaxial loading,

ṗ coincides with the component ε̇p
11 of ε̇p

ij. The isotropic hardening model assumes that the

yield stress depends on the accumulated equivalent plastic strain.

The function o(1) is a hardening equation. Its derivative with respect to the equivalent

plastic strain is called the plastic modulus. The hardening equation can be an analytical

function, a piecewise linear function or any other interpolation of experimental data. A

considerable number of hardening equations have been proposed in the literature. The

simplest one is the elastic perfectly plastic material, in which o(1)(p) is constant and the

plastic modulus is zero. Among the more complex (and more realistic) hardening equations

found in the literature is the Voce law [155]:

sy = c(1),Voce − c(2),Voceepc(3),Voce

(2.30)

which is used in the following. In equation 2.30 c(1),Voce is the saturation stress, c(2),Voce is

a modulus-like parameter, and c(3),Voce is a dimensionless exponent.

An alternative to the strain-hardening hypothesis is the work hardening, wp, hypothesis:

sy = o(2)(wp) (2.31)

with

ẇp = σij ε̇
p
ji = l̇σijφji (2.32)
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The choice between strain hardening and work hardening depends on multiaxial experi-

ments. Both are widely used and even lead to similar results in many multiaxial situations.

For associated J2 plasticity they are completely equivalent.

2.5.2 Kinematic hardening model

For some cases, i.e. unloading or cyclic loading, more complicated hardening models are

necessary. For unreinforced metals the Bauschinger effect cannot be modelled using an

isotropic hardening model. The simplest model for studying this phenomenon is linear

kinematic hardening, in which the current loading surface is assumed not to expand but

to move in stress space.

To describe the shift of the yield surface a new variable, the so called back stress, Xij , is

introduced. The back stress represents the center of the shifted elastic domain. Therefore

in this model:

Zr
∗ = {Xij} (2.33)

and the yield function can be rewritten as:

y(σij, Xij) ≡ y(σij − Xij) − sy = 0 (2.34)

It is worth noting that Xij is the thermodynamic conjugate force of the hardening variable

̺ij , the kinematic hardening (see [38]). Equation (2.9) takes the form:

Xij = c(1),Kin̺ij (2.35)

where c(1),Kin is a material parameter. Often ̺ij is not used in the literature.

Now, we need a kinematic hardening law that governs the evolution of the back stress.

Melan [105] and Prager [133] proposed:

Ẋij = c(2),Kinε̇p
ij (2.36)

where c(2),Kin is a factor proportional to the plastic modulus, see section 2.5.1. According

to this proposal the rate of the back stress is proportional to the plastic strain rate.

Ziegler [169] observed that if the Prager law, equation (2.36), is reduced to a subspace

of the stress space, the yield surface does not always move in the direction of its normal
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at the current stress point. In some cases the yield surface even deforms. Of course, the

complete yield surface in stress space does not deform but as it moves, the shape of the

intersection with a given subspace of the stress space may change.

Furthermore, Ziegler observed than the von Mises yield surface always moves in the

direction of the vector that goes from its center to the current stress point. Therefore he

suggested the following kinematic hardening law:

Ẋij = ċ(3),Kin(σij − Xij) (2.37)

where ċ(3),Kin is the rate of a new multiplier. A new unknown has been introduced and

therefore a supplementary condition is needed. Studying the consistency condition, Ziegler

postulated that the projection of the stress rate onto the direction of the normal to the

yield surface be proportional to the projection of the plastic strain rate:

σ̇ijNij = c(2),Kinε̇p
ijNij (2.38)

This condition is also satisfied by the Prager law. Thus the parameter c(2),Kin has the

same meaning as in the Prager rule. Using equations (2.38) and (2.37), together with the

elastic stress-strain law, the flow rule and the consistency condition, the rate of the plastic

multiplier can be obtained as:

l̇ =
NijEjimnε̇nm

NijEjimnφnm + c(2),KinNijNji
(2.39)

and the rate of the multiplier, c(3),Kin, follows as:

ċ(3),Kin = c(2),Kin NijNji

Nij(σji − Xji)

NijEjimnε̇nm

NijEjimnφnm + c(2),KinNijNji
(2.40)

The rate of the plastic multiplier, l̇, can, also, be calculated using equation (2.15), once

the scale factor c(2),Kin NijNji

Nij(σji−Xji)
between the plastic multiplier and ċ(3),Kin is known. Note

that Nij = −Zy,r
∗ in the present case.

For the Von-Mises yield criteria, Ziegler’s and Prager’s hardening models, understood

here to mean linear kinematic hardening models using Ziegler’s or Prager’s hardening law,

respectively, lead to exactly the same results. In Ziegler’s model the yield surface moves in

the direction connecting its current center with the current stress point, and this remains

true in any subspace.
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2.6 Examples

In order to clarify concepts two of the most widely used plasticity models for isotropic

metals are developed in this section; elasto-plasticity with isotropic hardening and the

Chaboche-Marquis model.

2.6.1 J2 elasto-plasticity model with isotropic hardening

This is one of the simplest and most used plasticity models for metals, because of its

simplicity and accuracy. Usually it is a good choice for describing the plastic behaviour

of metals that are not exposed to cyclic loading so that the Bauschinger effect need not

be accounted for. The model is rate independent, follows a Von-Mises type yield criterion,

has an associative flow rule, and hardening is purely isotropic.

As Zr
∗ = {sy} and the model has a Von-Mises type yield criterion, the yield condition

can be formulated as:

y(σij, s
y) ≡

√
3

2
σdev

ij σdev
ji − sy ≤ 0 (2.41)

The derivative of y(σij, s
y) with respect to the stress tensor is:

Nij =

[
∂y(σkl, s

y)

∂σij

]

ij

=

[
∂

∂σij

(

√
3

2
σdev

kl σdev
lk − sy)

]

ij

=
3

2
√

3
2
σdev

kl σdev
lk

σdev
ij (2.42)

The flow rule, equation (2.7), which is associative, can then be rewritten as:

ε̇p
ij = l̇

[
∂y(σkl, s

y)

∂σij

]

ij

=
3l̇

2
√

3
2
σdev

kl σdev
lk

σdev
ij (2.43)

Combining the definition of the rate of the equivalent plastic strain, equation (2.29),

with the flow rule (2.43), the plastic multiplier is obtained as:

ṗ =

√
2

3
ε̇p

ij ε̇
p
ji = l̇

√
2

3

3

2

√
σdev

ij σdev
ji

3
2
σdev

kl σdev
lk

= l̇ (2.44)
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To summarize, the basic equations of this model, the equivalents to equations (2.4)-

(2.9), are the elastic plastic decomposition and the stress-strain law for the elastic part,

equations (2.4)-(2.5), together with the yield condition, equation (2.41) and:

• The flow rule:

ε̇p
ij =

3ṗ

2
√

3
2
σdev

kl σdev
lk

σdev
ij (2.45)

• The two “ingredients” of the hardening model:

– The definition of the hardening variables, Zh
∗ =

{
p, εp

ij

}
:

ṗ = l̇

ε̇p
ij = l̇

3

2
√

3
2
σdev

kl σdev
lk

σdev
ij (2.46)

– and the dependence of the variables, Zr
∗ = {sy}, on the hardening variables,

equation (2.27).

Using equation (2.16), the elastoplastic stiffness tensor, Fijkl, is obtained as:

Fijkl = Eijkl −
(3g)2

3
2
σdev

mnσdev
nm

3g + do(1)(p)
dp

σdev
ij σdev

kl (2.47)

Recall that in this plasticity model NijNji = 3
2

and that Nij is a deviatoric tensor, and,

therefore, taking into account equation (2.1), EijklNlk = NklElkij = 2gNij. Furthermore,

for the isotropic hardening model:

Zy,r
∗ Zo,h

∗ i∗ =
dy

dsy


∂sy

∂p
1 +

∂sy

∂εp
ij

3

2
√

3
2
σdev

kl σdev
lk

σdev
ij


 (2.48)

2.6.2 Chaboche-Marquis hardening model

This is one of the most widely used models in the literature for studying cyclic plasticity

in metals. The model is rate independent, follows a Von-Mises type yield criterion, has an

associative flow rule, and uses mixed hardening. In its more general form, the model has
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multiple back stresses. The multiple back stresses were introduced by Chaboche [26] to

extend the capability of the original Armstrong–Frederick model [8] for larger strain range.

These back stresses evolve according a similar rule defined by different material constants,

thus allowing saturation of hardening to take place at different strain levels. The present

example is developed for a single back stress.

Linear isotropic hardening and kinematic hardening can be easily combined to form the

yield condition:

y(σij, Z
r
∗) ≡

√
3j(2)(1dev

ijkl(σlk − Xlk)) − sy ≤ 0 (2.49)

where Zr
∗ = {Xij , s

y}, and the derivative with respect to the stress tensor becomes:

Nij =

[
∂y(σmn, Zr

∗)

∂σij

]

ij

=
3

2
√

3j(2)(1dev
mnkl(σlk − Xlk))

(
σdev

ij − Xdev
ij

)
(2.50)

Recall that the position of the yield surface, Xij , is independent of the actual stress

state, and that: [
dσdev

ij

dσkl

]

ijkl

= 1ijkl − 1vol
ijkl (2.51)

Since NijNji = 3
2
, combining the definition of the rate of the equivalent plastic strain

with the the associative flow rule, the plastic multiplier is obtained as:

ṗ = l̇ (2.52)

The basic equations of this model, the equivalents to equations (2.4)–(2.9), are the elas-

tic plastic decomposition, the stress-strain law for the elastic part and the yield condition,

equations (2.4)–(2.5) and (2.49), together with:

• The flow rule:

ε̇p
ij =

3ṗ

2
√

3
2
(σdev

kl − Xdev
kl )(σdev

lk − Xdev
lk )

(
σdev

ij − Xdev
ij

)
(2.53)

• The two parts of the hardening model:
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– The definition of the hardening variables, Zh
∗ =

{
p, εp

ij, ̺ij

}
:

ṗ = l̇

ε̇p
ij = l̇

3

2
√

3
2
(σdev

kl − Xdev
kl )(σdev

lk − Xdev
lk )

(
σdev

ij − Xdev
ij

)

˙̺ij = l̇

(
Nij −

c(2),C-M

c(1),C-M
Xij

)
(2.54)

– and the dependence of the variables, Zr
∗ = {sy, Xij}, on the hardening variables,

equations (2.27) and:

Xij = c(1),C-M̺ij (2.55)

where c(1),C-M and c(2),C-M are material constants.

Usually equations (2.35) and (2.54) are combined to remove the variable ̺ij , obtaining:

Ẋij = c(1),C-Mε̇p
ij − c(2),C-MXij ṗ (2.56)

which is known as the Frederick–Armstrong equation.

Together with equations (2.50) and (2.53), equation (2.56) shows clearly that if the

initial value of Xij is deviatoric, e.g. Xij = 0, Xij is deviatoric, and therefore it can be

often found in the literature that equation (2.50) is written as:

Nij =
3

2
√

3j(2)(σlk − Xlk)

(
σdev

ij − Xij

)
(2.57)

The finite element code ABAQUS, [2], uses a similar model with the same equations,

but with a different hardening law. Instead of equation (2.56) it uses:

Ẋij =
c(1),ABA

sy
(σij − Xij) ṗ − c(2),ABAXij ṗ (2.58)

where c(1),ABA and c(2),ABA are material parameters.

This model leads exactly to the same results, although the two models are not strictly

equivalent. Notice that equation (2.58) can be rewritten as:

Ẋdev
ij =

c(1),ABA

sy

(
σdev

ij − Xdev
ij

)
ṗ − c(2),ABAXdev

ij ṗ (2.59)

Ẋvol
ij =

c(1),ABA

sy

(
σvol

ij − Xvol
ij

)
ṗ − c(2),ABAXvol

ij ṗ (2.60)
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Initial yield surface

C-M model with Prager’s modified law
C-M model with Ziegler’s modified law

Deviatoric plane

XZ,dev = XP

XZ

XZ,vol

Figure 2.5: Evolution of the yield surface in the Chaboche–Marquis criterion for different

kinematic hardening laws: Prager’s modified law, equation (2.56), and Ziegler’s modified

law, equation (2.58).

whenever plastic flow takes place, sy =
√

3j(2)(σdev
lk − Xdev

lk ) because the yield function

equals zero. If the yield function is less than zero, the rate of the plastic multiplier is

zero, and therefore the rate of the hardening variables equals zero, recall equation (2.8).

Equation (2.59), can then be rewritten as:

Ẋdev
ij =

2c(1),ABA

3
ε̇p

ij − c(2),ABAXdev
ij ṗ (2.61)

and by setting c(1),ABA = 3
2
c(1),C-M and c(2),ABA = c(2),C-M equation (2.59) is equivalent to

equation (2.56).

Furthermore, the volumetric part of Xij does not have any influence on the yield surface.

This can be easily understood in figure (2.5). Both models describe the movement of a

cylinder. In the Chaboche-Marquis model, the cylinder moves normally to the deviatoric

axis, whereas for the ABAQUS model, the cylinder, in addition, moves along its axis. But,

as we have a cylinder the two surfaces coincide.

Using equation 2.16, the elastoplastic stiffness tensor, Fijkl, is obtained:

Fijkl = Eijkl −
(2g)2

3g + do(1)(p)
dp

+ 3/2c(1),C-M − c(2),C-MNmnXnm

NijNkl (2.62)
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Where the relation:

Zy,r
∗ Zo,h

∗ i∗ =
∂y

∂sy

[
∂sy

∂p
1 +

∂sy

∂εp
ij

Nji +
∂sy

∂̺ij

(
Nji −

c(2),C-M

c(1),C-M
Xji

)]
+ ...

... +
∂y

∂Xij

[
∂Xji

∂p
1 +

∂Xji

∂εp
op

Npo +
∂Xji

∂̺op

(
Npo −

c(2),C-M

c(1),C-M
Xpo

)]
(2.63)

is used.

2.7 Computational Plasticity

Up to now, the fundamental equations of a plasticity model have been explained, but the

question of how to implement them into a finite element program has not been discussed. In

order to do that, it is necessary to supply a piece of code that can evaluate the increment

of stress for any given strain increment. This procedure is usually known as the stress

return algorithm, because the stresses must be returned to the yield surface. Before going

into details, some common matters in any stress return algorithm are described, such as

the integration of the flow rule and the Newton-Raphson method. Finally the algorithmic

stiffness is described.

2.7.1 Newton-Raphson method

When implementing a plasticity model it is, usually, necessary to solve a system of non-

linear equations:

a1(x1, x2, ..., xn) = 0

a2(x1, x2, ..., xn) = 0

......................

an(x1, x2, ..., xn) = 0





a(x) = 0 (2.64)

where a1, a2, ..., an are functions of n variables

For obtaining a numerical solution, equation (2.64) is, usually, transformed into the

form:

x = g(x) (2.65)
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This is, normally, done as follows:

g(x) = x −A(x)a(x) (2.66)

If A(x) is chosen such that it equals the inverse of the Jacobian of a(x), J (x):

A(x) = (J (x))−1 ; J (x) =




∂a1

∂x1
. . . ∂a1

∂xn

...
. . .

...
∂an

∂x1
. . . ∂an

∂xn


 (2.67)

then the root of the succession
{
x(m)

}∞
m=0

, where x(m+1) = g(x(m)), is unique [59]. This is

the well known Newton-Raphson method for systems of equations:

x(m+1) = x(m) −
(
J

(
x(m)

))−1
a(x(m)) (2.68)

Of course, in order to avoid difficulties, J must not be singular at the solution of the

system (2.64), and the partial derivatives of (a1, a2, ..., an) must be continuous. Further-

more, if a is C2, a function with 2 continuous derivatives, in an interval that contains the

solution, then the method will converge for every initial value within a neighborhood of

the solution.

To avoid the calculation of the inverse of the Jacobian, equation (2.68) is rewritten as:

J (x(m))
(
u(m)

)
= −a(x(m)) (2.69)

where u(m) = x(m+1) − x(m) is the unique unknown of the system. Once the system is

solved x(m+1) can be easily calculated as:

x(m+1) = x(m) + u(m) (2.70)

2.7.2 Generalized trapezoidal rule

The flow rule, equation (2.7), is a differential equation that must be integrated numerically:

ε̇p = l̇φ(σ) (2.71)

Formal integration leads to the formula:
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∆εp =

∫ l

l(n)

φ(σ(s))ds (2.72)

where the integral is evaluated from the value of the plastic multiplier at the beginning

of the increment, l(n), to the value of the plastic multiplier at the end of the increment, l.

This equation can be solved approximately using the generalized trapezoidal rule:

∆εp = ∆l
[
(1 − cTrap)φ(σ(l(n))) + cTrapφ(σ(l))

]
(2.73)

where cTrap is an adjustable weight factor. Ortiz and Popov [121] showed that when the

increment size tends to zero cTrap = 0.5 would be the best choice, but, when the increment

size increases this may not be the case. According to their analysis for von Mises plasticity

the closest point projection, cTrap = 1, is probably optimal.

2.7.3 Stress return algorithm

The basic task of the stress return algorithm is to provide the values of all the variables

at the end of a generic increment, knowing the respective values at the beginning of the

increment, denoted by subscripts (n), and the increment of the total strain. If a variable

does not have a subscript, it will be computed at the end of the increment. In this section

a stress return algorithm for handling isotropic elasto–plasticity models, compare section

2.6, is described.

The main equations of this elasto-plasticity model can be rewritten as:

ε = εe + εp (2.74)

σ = Eεe (2.75)

y ≡
√

3

2

[[
σdev

]T
σdev

]M

− sy = 0 (2.76)

εp − ε
p
(n) = (p − p(n))

3

2

σdev

√
3
2

[[
σdev

]T
σdev

]M
(2.77)
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sy = o(p) (2.78)

where []M are the modified products described in appendix A.

The flow rule is evaluated at the end of the increment which means that the algorithm

corresponds to the backward Euler scheme.

The unloading/loading conditions, equations (2.6), (2.10) and (2.11), can be replaced

by:

y(σ) ≤ 0, (l − ln)y(σ) = 0, l − ln ≥ 0 (2.79)

The first step consists of the evaluation of a trial stress state, σtr. This trial stress state

is calculated under the assumption that no plastic flow occurs during the increment:

σtr = E(ε − ε
p
(n)) = σ(n) + E∆ε (2.80)

If the trial stress satisfies the yield condition, it is accepted as the solution. If not,

plastic flow occurs during the increment and the set of equations (2.74–2.78) must be

solved using an iterative solution procedure, e.g., the Newton-Raphson method. The set

of equations (2.74–2.78) can be easily reduced to one equation with one unknown, ∆p:

√
3

2

[[
σdev, tr

]T
σdev, tr

]M

− sy − ∆p3g = 0 (2.81)

Recall that in this model:

N =
σdev

√
3
2

[[
σdev

]T
σdev

]M
=

σdev, tr

√
3
2

[[
σdev, tr

]T
σdev, tr

]M
(2.82)

where σdev, tr is the deviatoric part of the trial stress state.

Applying the Newton-Raphson method to equation (2.81) gives:

∆p = ∆p +

√
3
2

[[
σdev, tr

]T
σdev, tr

]M

− sy − ∆p3g

3g + dsy

dp

(2.83)

and when ∆p is known, the rest of the variables can be easily updated using equations

(2.74–2.78). Once all the variables are evaluated the algorithmic Jacobian (see subsection

2.7.4) can be calculated using equation (2.88).
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An algorithm following this scheme can be found e.g. in [2]. Observe that in the nomen-

clature of the ABAQUS sample user material subroutine for isotropic elasto-plasticity

SYIELD =

√
3
2

[[
σdev

]T
σdev

]M

and SMISES =

√
3
2

[[
σdev, tr

]T
σdev, tr

]M

. For the Chaboche-

Marquis model with one back stress tensor an algorithm can be found in [38], for multiple

back stresses see [138].

2.7.4 Algorithmic stiffness and tangent material stiffnesses

There are two types of elastoplastic stiffness tensors, the algorithmic and the tangent

stiffnesses. The latter was explained and obtained for some plasticity models in the previous

sections. It describes the change of the stress tensor produced by an infinitesimal change of

the strain tensor. The algorithmic stiffness, in contrast, describes the change of the stress

tensor produced by a finite change of the strain tensor. In general the two stiffnesses are

different for finite increments.

The tangent elastoplastic stiffness is obtained by differentiation of the constitutive law,

whilst the algorithmic elastoplastic stiffness is obtained by differentiation of the numerical

algorithm. Some authors refer to the algorithmic stiffness tensor as the consistent tensor.

This name is not optimally chosen because because both stiffnesses are derived consistently.

A quadratic rate of convergence of the Newton-Raphson equilibrium iteration is obtained

only when using the algorithmic stiffness [39]. Nevertheless, the converged results may be

the same using algorithmic or tangent elastoplastic stiffness.

The algorithmic tangent stiffness is obtained by letting all the variables vary slightly

around the converged solution. In the following, it is obtained for the isotropic elasto-

plasticity model, section 2.6.1.

Combining the elastic-plastic decomposition, the stress-strain law, the yield condition

and the flow rule, equations (2.4), (2.5), (2.41) and (2.45), the following relationship is

obtained:

(
1 +

3g

sy
∆p

)
σdev

ij = 2g
(
εdev,e

ij,(n) + ∆εdev
ij

)
(2.84)

where εdev,e
ij,(n) is the deviatoric part of the elastic strain tensor at the beginning of the

increment.

Taking the variation of equation (2.84) with respect to all the variables at the end of
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the increment gives:

(
1 +

3g

sy
∆p

)
∂σdev

ij +
3g

sy

(
∂p − ∆p

sy
∂sy

)
σdev

ij = 2g∂
(
ZAlg

ij

)
(2.85)

where ZAlg
ij = εdev,e

ij,(n) + ∆εdev
ij

The differentials of the equivalent plastic strain and the yield stress can be obtained as

functions of Zij, using equations (2.27) and (2.84), which leads to:

∂σdev
ij =

(
c(1),Alg1s

ijkl − c(2),Algσdev
ij σdev

kl

)
∂ZAlg

lk (2.86)

where c(1),Alg =
(2/3) sy

√
(2/3)ZAlg

mn ZAlg
nm

and c(2),Alg =
1

sy

√
(2/3)ZAlg

mn ZAlg
nm

1 − ∆p
sy

dsy

dp

1 + dsy

dp
/3g

.

Since:

∂ZAlg
ij = 1dev,s

ijkl ∂εlk (2.87)

combining equation (2.2) with (2.86) leads to:

∂σij =
[
c(1),Alg1s

ijkl +
(
3k − c(1),Alg

)
1vol

ijkl − c(2),Algσdev
ij σdev

kl

]
ijkl

∂εlk (2.88)

where the tensor in square brackets is the algorithmic stiffness.



Chapter 3

Continuum Micromechanics

The tools employed in this thesis to study the thermomechanical or thermal conduction

behaviour of inhomogeneous materials are based on continuum models, an approach hat

is usually referred to as continuum micromechanics. Therefore in the following the basic

concepts of the continuum micromechanics are revisited. This chapter follows several

reports by Böhm [17; 18].

3.1 General Considerations

In this chapter, some basic issues and some approaches in the field of continuum microme-

chanics of materials are discussed. The treatment concentrates on the thermo-mechanical

and thermal conduction behaviour of two-phase materials showing a matrix-inclusion topol-

ogy, and, especially, to metal matrix composites. Source terms, such as body forces and

heat production are not considered. Dynamical effects and transient thermal conduction

are excluded. Non-uniform phase properties are not considered, either. In order to bring

out similarities and differences, elasticity and heat conduction are presented in parallel, see

table 3.1.

Recall that some of the numerical approaches described in this chapter, see section 3.3,

can account for the presence of source terms as well as non-uniform phase properties. Such

conditions, however, are not accounted for in this thesis.

Whenever engineering notation is used throughout this chapter for mechanical prob-

lems, the correction terms, see appendix A, are not shown to simplify the notation. Never-

30
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Elasticity Thermal conduction

ε d

Strain tensor Thermal gradient vector

σ q

Stress tensor Heat flux vector

C R
Compliance tensor Thermal resistivity tensor

E K
Elasticity tensor Thermal conductivity tensor

u t

Displacement vector Temperature

Table 3.1: Analogous variables used in thermal conduction and elasticity.

theless, they may be taken into account when implementing an algorithm. Some authors

use Nye notation instead. In Nye notation, the tensors have a slightly different notation,

and they are written so that the corrections are avoided, e.g., the symmetric unit tensor

is represented using the unit matrix. Nye notation is equivalent to engineering notation if

the tensors of rank four involved in the equations have the following structure:

A =




A11 A12 A13 0 0 0

A21 A22 A23 0 0 0

A31 A32 A33 0 0 0

0 0 0 A44 0 0

0 0 0 0 A55 0

0 0 0 0 0 A66




(3.1)

If the structure is different, e.g., for the Eshelby tensor of an ellipsoidal particle embedded

in a matrix with lower than orthotropic symmetry, Nye notation may lead to incorrect

results. In fact, for any symmetry lower than isotropy the tensors must be given in principal

orientation
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3.1.1 Inhomogeneous materials and length scales

Most industrial and engineering materials are inhomogeneous; they consist of dissimilar

constituents that are distinguishable at some length scale. Each constituent has differ-

ent material properties and/or material orientations, and may itself be inhomogeneous at

some smaller scale. Typical examples of such materials are composites, steel, concrete,

laminates, bones, wood . . . Important aims of theoretical studies of inhomogeneous materi-

als lie in homogenization and localization. Homogenization consists in deducing the overall

behaviour from the geometrical arrangements of the constituents, their material properties

and the interfaces between them. Localization consists in deducing the local state from

the geometrical arrangements of the constituents, their material properties, the interfaces

between them and the macroscopic loading the inhomogeneous material is exposed to.

Description of the properties of inhomogeneous materials have to account for at least

two length scales:

• Macroscale: the length scale of the component, structure or sample.

• Microscale: the length scale at which the constituents are distinguishable.

In many cases, however, the constituents may be inhomogeneous at a lower length scale.

In micromechanical approaches the strain, stress, temperature gradient and heat flux

fields, ε, σ,d,q, in an inhomogeneous material are split into contributions corresponding

to different length scales. It is assumed that these length scales are sufficiently different so

that:

• Fluctuations of the strain, stress, temperature gradient and heat flux at the mi-

croscale (microfields, fast variables) influence the macroscopic behaviour only via

their volume averages.

• Gradients of strain, stress, temperature gradient and heat flux at the macroscale

(macrofields, slow variables) are not significant at the microscale, where these fields

appear to be locally constant, and can be described in terms of uniform applied or

far field strains, stresses, temperature gradients or heat fluxes.

Formally, this splitting can be written as:



CHAPTER 3. CONTINUUM MICROMECHANICS 33

ε (x) = 〈ε〉 + ε
′
(x)

σ (x) = 〈σ〉 + σ
′
(x)

d (x) = 〈d〉 + d
′
(x)

q (x) = 〈q〉 + q
′
(x)

(3.2)

where 〈ε〉, 〈σ〉, 〈d〉 and 〈q〉 are the macroscopic fields, and ε
′
, σ

′
, d

′
and q

′
denote the

microscopic fluctuations.

The term “composite” is used in this thesis whenever the microtopology of the inho-

mogeneous material is of the matrix-inclusion type.

For different homogenization methods that can be used when the above conditions are

not fulfilled (e.g. marked compositional or load gradients, insufficiently separated length

scales, ...), see e.g. [56; 93].

3.1.2 Homogenization and localization

For any region of an inhomogeneous material the microscopic fields and the macroscopic

response can be linked by localization relations of the type:

ε (x) = A (x) 〈ε〉
σ (x) = B (x) 〈σ〉

d (x) = A (x) 〈d〉
q (x) = B (x) 〈q〉 (3.3)

where A, B, A and B are the mechanical strain, mechanical stress, thermal gradient and

heat flux concentration tensors. The above equations are directly applicable only for linear

elastic and steady state heat conduction behaviour, respectively. Nevertheless, equations

(3.3) can be modified to cover thermoelastic behaviour, compare equations (3.17).

If, in addition, the region is sufficiently large and contains no significant macroscopic

gradients of strain, stress, temperature, heat fluxes or composition, homogenization rela-

tions can be defined as:

〈ε〉 = 1
v

∫
v
ε (x) dv

〈σ〉 = 1
v

∫
v
σ (x) dv

〈d〉 = 1
v

∫
v
d (x) dv

〈q〉 = 1
v

∫
v
q (x) dv

(3.4)

where v stands for the volume of the region under consideration.

For perfectly bonded constituents and in the absence of cracks the divergence theorem

can be applied to equations (3.4). In this case the mean strains and stresses in v are

fully determined by the surface displacements and tractions, and the mean temperature

gradients and heat fluxes are determined by the surface temperatures and the normal

components of the heat fluxes at the surface.



CHAPTER 3. CONTINUUM MICROMECHANICS 34

For inhomogeneous materials that show sufficient separation between the macro- and

micro-scales the relation:

∫

v

[σ∗ (x)]T ε∗ (x) dv =

∫

v

[σ∗ (x)]T dv

∫

v

ε∗ (x) dv (3.5)

can be shown to hold for general admissible stress fields, σ∗, and kinematically admis-

sible strain fields, ε∗. This equation is known as Hill’s macrohomogeneity condition or

the Mandel-Hill condition, see [83]. For the special case of homogeneous stress and strain

boundary conditions, it is referred as Hill’s lemma. So, homogenization can be interpreted

as finding a homogeneous comparison material that is energetically equivalent to a given

microstructured material. Hill’s lemma represents one of the basic principles in homog-

enization of statistically homogeneous and ergodic random and periodic materials [77].

Hill’s condition can be extended to heat conduction, see [90]:

∫

v

[q∗ (x)]T d∗ (x) dv =

∫

v

[q∗ (x)]T dv

∫

v

d∗ (x) dv (3.6)

Note that for the heat conduction case, the equation does not have energy units.

The microgeometries of real inhomogeneous materials are usually highly complex. Ac-

cordingly, exact expressions for most of the terms in the previous equations cannot realisti-

cally be provided and approximations have to be introduced. Typically, the inhomogeneous

material is assumed to be statistically homogeneous. Thus, sufficiently large subvolumes

selected randomly within a sample are taken to give rise to the same averaged material

properties which, in turn, correspond to the overall or effective material properties.

Ideally, the homogenization volume should be chosen to be a proper representative

volume element (RVE), a subvolume of the sample that is statistically representative of

the microgeometry of the material. Such a volume element must be sufficiently large to

allow a meaningful sampling of the microfields and sufficiently small for the influence of

macroscopic gradients to be negligible and for an analysis of the microfields to be possible.

3.1.3 Overall behaviour, material symmetries

The homogenized fields in an inhomogeneous material obtained with the previous equations

can be linked by effective compliance , C∗, elasticity , E∗, resistivity, R∗, and conductivity,
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K∗, tensors:

〈ε〉 = C∗ 〈σ〉
〈σ〉 = E∗ 〈ε〉

〈d〉 = −R∗ 〈q〉
〈q〉 = −K∗ 〈d〉 (3.7)

These tensors, the effective tensors, may be viewed as the elastic or thermal conduction

tensors of an appropriate equivalent homogeneous material.

The resulting homogenized behaviour of many multiphase materials can be idealized

as being statistically isotropic, or statistically transversely isotropic. Thus, effective elastic

and thermal conduction tensors have the same restrictions as the elastic and thermal

conduction tensors of homogeneous materials for the same symmetries. For example, if the

inhomogeneous material is considered as statistically isotropic, the elastic tensor can be

described with two independent parameters, and one is required for the effective thermal

conduction behaviour in the linear range (recall that the elastic and thermal conduction

tensors have different ranks).

3.1.4 Basic modeling strategies in continuum micromechanics of

materials

Homogenization procedures aim at finding a volume element’s responses to prescribed

thermomechanical or thermal loads and at deducing from them the corresponding overall

properties. The most straightforward applications of such studies are materials charac-

terization and constitutive models. Besides materials characterization and constitutive

modeling, there are a number of other important applications like the study of local phe-

nomena in inhomogeneous materials, such as the initiation and evolution of microscopic

damage, the nucleation and growth of cracks, hot spots, the stresses at intersections be-

tween macroscopic interfaces and free surfaces... For the latter behaviours, details of the

microstructure tend to be of major importance. Because for realistic phase distributions

the analysis of the spatial variations of the microfields in sufficiently large reference volumes

tends to be beyond present capabilities, approximations have to be used. The available

models can be treated as falling into two groups. The first of them comprises methods

that describe the microgeometries of inhomogeneous materials on the basis of statistical

information:

• Mean Field Approaches (MFAs): The microfields within each constituent are ap-

proximated by their phase averages 〈ε〉(p), 〈σ〉(p), 〈d〉(p) and 〈q〉(p). Such descriptions

typically use information on the microscopic topology, microscopic geometry (volume
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fraction) and microscopic symmetry. Mean field approaches tend to be formulated

in terms of the phase concentration tensors, they pose relatively low computational

requirements, and they have been highly successful in describing the thermoelastic

and thermal conduction response of inhomogeneous materials.

• Variational Bounding Methods: Variational principles are used to obtain upper and,

in many cases, lower bounds on the overall physical properties of inhomogeneous

materials, e.g., elastic bulk and shear moduli or thermal conductivities. Bounds,

aside of their intrinsic interest, are important tools for assessing other models of

inhomogeneous materials.

The second group of approximations is based on studying discrete microstructures and

includes:

• Periodic Microfield Approaches (PMAs) or Unit Cell Methods: The real inhomo-

geneous material is approximated by an infinitely extended model material with

a periodic phase arrangement. The corresponding periodic microfields are usually

evaluated by analyzing unit cells via analytical or numerical methods. Unit cells are

typically used for performing characterization of inhomogeneous materials in the non-

linear range, but they can also be employed as micromechanically based constitutive

models. The high resolution of the microfields provided by PMAs can be very useful

for studying the initiation of microdamage on the microscale. However, they are not

well suited for investigating macroscopic cracks. Periodic microfield approaches can

give detailed information on the local strain, stress, thermal gradient and heat flux

fields within a given unit cell, but they tend to be computationally expensive.

• Embedded Cell Approaches (ECAs): The real inhomogeneous material is approxi-

mated by a model that consists of a core containing a discrete phase arrangement

that is embedded within some outer region to which far field loads, displacements or

temperatures are applied. ECAs can be used for materials characterization, and they

are usually the best choice for studying regions of special interest, such as crack tips

and their surroundings, in inhomogeneous materials or for studying the heat conduc-

tion behaviour of inhomogeneous materials with temperature dependent properties.

Like PMAs, ECAs can resolve local fields in the core region at high detail, but tend

to be computational expensive.

• Windowing approaches: Rectangular or hexahedral subregions are chosen from a

given phase arrangement and subjected to macrohomogeneous boundary conditions
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Original Configuration Periodic Approximation

Embedded Configuration Window

Figure 3.1: Representation of a hypothetical microstructure, and the modified microge-

ometries used to model it by PMA, ECA and windowing approaches.[18]

to obtain estimates as well as lower and upper bounds for the overall behaviour of

the material. Homogeneous strain and stress boundary conditions are applied to

obtain lower and upper estimates on the mechanical behaviour, and homogeneous

temperature gradient and heat flux boundary conditions are applied to obtain lower

and upper estimates on the thermal conduction behaviour. Bounds can be obtained

by ensemble averaging. Mixed uniform boundary conditions can be applied, too, to

obtain estimates of the macroscopic behaviour of the material, see [86; 123].

Schematic representations of the different discrete microstructure approximations are

given in fig. 3.1. For studying materials that are inhomogeneous at a number of length

scales, hierarchical procedures that use homogenization at more than one level are a natural

extension of the above concepts.
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3.2 Analytical and Semianalytical Approaches

In this section some approaches belonging to the first group of methods listed in sec-

tion 3.1.4 are discussed. The description is not a review of all pertinent methods in the

literature, and only some methods of interest for studying the problems outlined in the

introduction are covered. For a more thorough description see e.g. [17; 18] and the ref-

erences therein. The present treatment is divided into three parts, the first one reviews

classical methods, whereas the second and the third parts discuss more specific methods

for studying the thermo–elastoplastic behaviour of metal matrix composites, which may

be used in the divertor of a nuclear reactor, see section 1.1.1, and the thermal conduction

behaviour of DRMMCs, see section 1.1.2, respectively.

The volume fraction of any phase is defined as:

f (p) =
v(p)

∑
(k) v(k)

(3.8)

where k is an index that represents all the phases and v(k) is the volume pertinent to phase

k. For the special case of matrix-inclusion topologies with only one type of inclusion, the

superscript (i) refers to the inclusion, and the superscript (m) to the matrix. For this case

the convention:

f (i) = f

f (m) = 1 − f (3.9)

is used.

3.2.1 General approaches for linear elasticity and steady state

heat conduction

In this section only two-phase materials are covered explicitly, with the exception of mul-

tiphase Mori–Tanaka methods, section 3.2.1.2.3, and some variational bounds in section

3.2.1.3. Nevertheless, most of the methods may be extended to multiphase composites

without difficulty. Perfect bonding between phases is assumed. For mechanical problems

the material behaviour of all the phases is taken to be linear thermo-elastic, and for heat

transfer problems linear conductivity is assumed.
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3.2.1.1 Classical Approaches

The rules of mixture (ROM) are probably the best known classical approach. They produce

estimates for some scalar effective physical property, a∗, of a two phase composite from the

phase values of this property and the volume fractions of the composite. In the general

case they take the form:

a∗ =
[
f

(
a(i)

)b
+ (1 − f)

(
a(m)

)b
]1/b

(3.10)

The ROM do not contain any information on the microtopology of the material studied

and therefore their results may be inaccurate in many situations. Furthermore, there

is no clear physical interpretation for cases with b 6= {−1, 1}. Nevertheless, for some

microtopologies the rules of mixture can successfully describe some macroscopic properties.

For mechanical properties, the ROM have been widely used to estimate the Young’s

modulus in longitudinal direction (fiber direction), E∗(1, 1), and transverse direction,

E∗(2, 2), of long-fiber reinforced composites. These are the well known Voigt and Reuss

estimates:

E∗(1, 1) = fE(i)(1, 1) + (1 − f)E(m)(1, 1)

E∗(2, 2) =
E(i)(2, 2) E(m)(2, 2)

fE(i)(2, 2) + (1 − f)E(m)(2, 2)
(3.11)

that are obtained by setting b = 1 and b = −1 in equation (3.10). Voigt expressions

correspond to full strain coupling of the phases (springs in parallel), whilst Reuss expres-

sions correspond to full stress coupling (springs in series), i.e. they describe the in plane

and out–of–plane behaviour of layered materials the constituents of which have the same

Poisson contractions. The Voigt rule is a good estimate for the axial stiffness of long fiber

reinforced composites, but the Reuss model is not that accurate. Instead of it some other

models have been used, see e.g. [66].

For heat conduction properties, the equivalents of Voigt and Reuss expressions can be

used as well for long fiber reinforced composites, for estimating the thermal conductivity

in fiber direction, K∗(1, 1) and transverse direction, K∗(2, 2):
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K∗(1, 1) = fK(i)(1, 1) + (1 − f)K(m)(1, 1)

K∗(2, 2) =
K(i)(2, 2) K(m)(2, 2)

fK(i)(2, 2) + (1 − f)K(m)(2, 2)
(3.12)

which, in fact, are particular cases of the Wiener bounds, see section 3.2.1.3.1. Equa-

tions (3.12) give an excellent estimate for the thermal conductivity of long fiber reinforced

composites in the direction of the fiber.

ROM can be used to generate effective elastic tensors and conductivity tensors. How-

ever, as they do not account for the relationship between the moduli, such procedures tend

to lead to inconsistent results in the former case. A better approach that generates con-

sistent elasticity tensors for unidirectionally reinforced composites is the Vanishing Fiber

Diameter (VFD) model of Dvorak [49]. However, the VFD–model generally does not fulfill

Hill’s relationships for unidirectional long fiber reinforced composites, see [81]. The com-

posite sphere assemblage (CSA) and the composite cylinder assemblage (CCA) give exact

expressions for some effective elastic engineering moduli of special particle reinforced and

aligned continuously reinforced composites, but the complete effective tensors cannot be

generated with these approaches, see [67].

3.2.1.2 Mean Field Approaches

This section concentrates mainly on Mori-Tanaka methods, which may be viewed as the

simplest mean field approaches for inhomogeneous materials that encompass the full phys-

ical range of phase volume fractions. Additionally, some other mean field methods such as

the differential scheme are described.

It is assumed that the inclusions are distributed homogeneously in the matrix. Equa-

tions are derived for aligned ellipsoidal inclusions. Approximations for using Mean-Field

methods with non–ellipsoidal inclusions are described in detail in section 3.2.2.2.

3.2.1.2.1 General relations For linear materials the overall strain-stress and thermal

gradient-heat flux relations can be denoted in the form:

〈ε〉 = C∗ 〈σ〉 + α∗△t

〈σ〉 = E∗ 〈ε〉 + ω∗△t

〈d〉 = −R∗ 〈q〉
〈q〉 = −K∗ 〈d〉 (3.13)

where △t is a temperature increment with respect to a stress free temperature, and α∗, ω∗

are the overall coefficient of thermal expansion tensor and the overall specific thermal stress
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tensor, respectively. The overall specific thermal stress tensor gives the overall response of

the fully constrained material to a purely thermal unit load, ω∗ = −E∗α∗. The constituents

are also taken to behave linearly:

〈ε〉(p) = C(p) 〈σ〉(p) + α(p)△t

〈σ〉(p) = E(p) 〈ε〉(p) + ω(p)△t

〈d〉(p) = −R(p) 〈d〉(p)
〈q〉(p) = −K(p) 〈q〉(p) (3.14)

where the subscript (p) represents either the matrix, (m), or the inclusion, (i).

When the microfields within each constituent are approximated by their phase averages,

the homogenization relations for each phase become:

〈ε〉(p) = 1
v(p)

∫
v(p) ε (x) dv

〈σ〉(p) = 1
v(p)

∫
v(p) σ (x) dv

〈d〉(p) = 1
v(p)

∫
v(p) d (x) dv

〈q〉(p) = 1
v(p)

∫
v(p) q (x) dv

(3.15)

From the definition of volume averaging, equation (3.4), and equation (3.15), one ob-

tains the following relations:

〈ε〉 = f 〈ε〉(i) + (1 − f) 〈ε〉(m) = εa

〈σ〉 = f 〈σ〉(i) + (1 − f) 〈σ〉(m) = σa

〈d〉 = f 〈d〉(i) + (1 − f) 〈d〉(m) = da

〈q〉 = f 〈q〉(i) + (1 − f) 〈q〉(m) = qa

(3.16)

where εa, σa, da and qa are the applied (far field) strain, stress, temperature gradient

and heat flux. These equations hold provided no displacement jumps are present in the

composite. For the heat conduction case, interfacial temperature jumps are studied in

section 3.3.2.2.3.

The phase averaged fields can be related to the overall fields by concentration tensors,

so that:

〈ε〉(p) = Ā(p) 〈ε〉 + ῑ(p)△t

〈σ〉(p) = B̄(p) 〈σ〉 + θ̄
(p)△t

〈d〉(p) = Ā(p) 〈d〉
〈q〉(p) = B̄(p) 〈q〉 (3.17)

where Ā(p), ῑ(p), B̄(p) and θ̄
(p)

are the elastic and thermal phase strain and stress concentra-

tion tensors, and Ā(p) and B̄(p) are the phase temperature gradient and heat flux concen-

tration tensors. Recall that in MFAs the microfields within each phase are approximated

by their phase averages and therefore the concentration tensors are not position dependent

within each phase. Combining equations (3.16) and (3.17), the following equations are
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obtained:
fĀ(i) + (1 − f) Ā(m) = 1s

fB̄(i) + (1 − f) B̄(m) = 1s

f ῑ(i) + (1 − f) ῑ(m) = O
f θ̄

(i)
+ (1 − f) θ̄

(m)
= O

fĀ(i) + (1 − f) Ā(m) = I
f B̄(i) + (1 − f) B̄(m) = I (3.18)

where O is the second order zero tensor. These equations show that the concentration

tensors of matrix and inclusions are not independent. Thus, if the strain or thermal gradient

concentration tensor of the matrix is known, the strain or thermal gradient concentration

tensor of the inclusions is known, too, and vice versa.

Combining equations (3.4) with the definition of concentration tensors for mean field

methods (3.17), it is easy to obtain the effective elastic or thermal conductivity tensors of

the composite as:

C∗ = fC(i)B̄(i) + (1 − f)C(m)B̄(m)

E∗ = fE(i)Ā(i) + (1 − f)E(m)Ā(m)

R∗ = fR(i)B̄(i) + (1 − f)R(m)B̄(m)

K∗ = fK(i)Ā(i) + (1 − f)K(m)Ā(m)
(3.19)

The effective thermal expansion coefficient tensor and the effective thermal stress tensor

can be written as:

α∗ = f
(
C(i)θ̄

(i)
+ α(i)

)
+ (1 − f)

(
C(m)θ̄

(m)
+ α(m)

)
(3.20)

ω∗ = f
(
E(i)ῑ(i) + ω(i)

)
+ (1 − f)

(
E(m)ῑ(m) + ω(m)

)
(3.21)

The overall coefficients of thermal expansion can be obtained, too, using the Mandel-Levin

formula [100]:

α∗ = (1 − f)
[
B̄(m)

]T
α(m) + f

[
B̄(i)

]T
α(i) (3.22)

Furthermore the following relationships can be found, see e.g. [17]:

Ā(m) = C(m)B̄(m)E∗

B̄(m) = E(m)Ā(m)C∗
Ā(m) = R(m)B̄(m)K∗

B̄(m) = K(m)Ā(m)R∗ (3.23)

Expressions connecting the thermal strain and stress concentration tensors of a given

phase with the elastic strain and stress concentration tensors can be found e.g. in [13]:

ῑ(m) =
(
1s − Ā(m)

) (
E(i) − E(m)

)−1 (
ω(m) − ω(i)

)
(3.24)

θ̄
(m)

=
(
1s − B̄(m)

) (
C(i) − C(m)

)−1 (
α(m) − α(i)

)
(3.25)
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From equations (3.18 – 3.25) is obvious that the full thermoelastic behaviour of two-

phase inhomogeneous materials is fully described by the knowledge of one elastic phase

concentration tensor and that the thermal conduction behaviour is fully described by the

knowledge of one thermal conduction phase concentration tensor.

3.2.1.2.2 Eshelby tensor and dilute matrix-inclusion composites A large pro-

portion of the mean field descriptions used in continuum micromechanics of materials are

based on the work of Eshelby [51], who studied the stress and strain distributions in a

homogeneous medium containing a subregion (inclusion) that spontaneously changes its

shape and/or size so that it no longer fits into its previous space in the parent medium.

Eshelby’s results show that if an elastic homogeneous ellipsoidal inclusion in an infinite

linear elastic matrix is subjected to a uniform strain εt (called the stress-free strain, un-

constrained strain, eigenstrain, or transformation strain), a uniform strain, εc, is induced in

the constrained inclusion (the constrained strain) which is related to the stress–free strain,

εt, by the expression:

εc = Sεt (3.26)

where S is called the Eshelby tensor. For this equation to hold, the stress-free strain may

be any kind of eigenstrain which is uniform over the inclusion.

For mean field descriptions of dilute matrix-inclusion composites it is the stress and

strain fields of inhomogeneous inclusions embedded in a matrix that are of interest. Such

cases can be handled by introducing the concept of equivalent homogeneous inclusions.

This process can be visualized as consisting of cutting and welding operations as shown

in fig. 3.2. The concept of an equivalent homogeneous inclusion can be extended to cases

where a uniform mechanical strain or external stress is applied to a perfectly bonded inho-

mogeneous inclusion in an infinite matrix. It allows dilute stress and strain concentration

tensors to be evaluated as [82]:

Ā
(i)
dil =

[
1s + SC(m)

(
E(i) −E(m)

)]−1
(3.27)

B̄
(i)
dil =

[
1s + E(m) (1s − S)

(
C(i) − C(m)

)]−1
(3.28)

Expressions of this type are derived under the hypothesis that the inclusions are dilutely

dispersed in the matrix and thus do not feel any effects due to their neighbors. Accordingly,

they are independent of the phase volume fractions. It must be kept in mind, however,
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Figure 3.2: Equivalent inclusion procedure [33].
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that the dilute expressions are strictly valid only for vanishingly small inclusion volume

fractions and should be used only for f ≪ 0.1.

The Eshelby tensor, S, depends only on the material properties of the matrix and

on the aspect ratio of the inclusions. Expressions for the Eshelby tensor of spheroidal

inclusions embedded in an isotropic matrix can be found e.g. in [115; 124; 146]. Closed

form expressions for the Eshelby tensor have also been reported for spheroidal inclusions in

a matrix of transversely isotropic [163] or cubic [115] material symmetry. For other matrix

symmetries where no analytical formula is available, the Eshelby tensor can be computed

numerically, see [60].

The Eshelby’s concept can be extended for studying effective transport properties in

homogeneous materials such as steady state heat conduction, see [75]. In analogy to eqns.

(3.27)–(3.28), the dilute temperature gradient and heat flux concentration tensors can be

obtained as:

Ā(i)
dil =

[
I + SR(m)

(
K(i) −K(m)

)]−1

B̄(i)
dil =

[
I + K(m) (I − S)

(
R(i) −R(m)

)]−1
(3.29)

where S is the Eshelby tensor for the thermal conduction problem. Expressions for S for

the case of ellipsoidal particles embedded in an isotropic matrix are collected in appendix

B, see [75; 91] for details. For this case, in contrast to elasticity, the Eshelby tensor for

heat conduction depends only on the shape of the reinforcement and not on the properties

of the matrix. For other cases, numerical integration in analogy to the elastic case, [60],

may be used.

It is well known that the Eshelby property holds only for ellipsoidal inclusions [99]. As

a consequence, the Eshelby tensor and dilute concentration tensors are position dependent

within non-ellipsoidal inclusions. Analytical solutions are available only for some non–

ellipsoidal inclusion shapes, see [115]. One straightforward solution for overcoming this

problem is the use of averaged Eshelby or dilute inclusion concentration tensors, recall

that these approaches are not equivalent. Averaged replacement concentration tensors can

be obtained by setting up numerical models with a single dilute inhomogeneity, generating

solutions for six, in elasticity, or 3, in heat conduction, linearly independent load cases.

For details see section 3.2.2.2.

Theoretical descriptions of the overall behaviour of composites with inclusion volume

fractions of more than a few percent must explicitly account for the interaction between
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inclusions. These interactions give rise to inhomogeneous fields within each inhomogeneity

(intra–phase fluctuations), and they cause the levels of averaged fields in individual inho-

mogeneities to differ (inter–phase fluctuations). Inhomogeneous fields are present in the

matrix even at dilute reinforcement fractions [52]. There are a number of approximations

in the literature, the most important of which are effective field approaches, such as Mori–

Tanaka methods, and effective medium approaches, such as self–consistent and differential

schemes. These methods account for the intra–phase and inter–phase interactions in an

averaged (mean field) sense.

3.2.1.2.3 Mori-Tanaka Estimates One way of accounting for the inter– and intra–

phase interactions consists of approximating the stresses or heat fluxes acting on an in-

clusion, which may be viewed as the perturbation stresses or heat fluxes caused by the

presence of other inclusions superimposed on the applied far field stress or heat flux, by

an appropriate average matrix stress or heat flux. Effective field theories of this type are

generically called Mori-Tanaka methods or, for the elastic case, “Equivalent Inclusion Av-

erage Stress” (EIAS) approaches. The idea of combining the average-stress field in the

matrix with the Eshelby theory can already be found in the works of Brown [24] and Mori

and Tanaka [113].

The central assumption involved in Mori-Tanaka approaches can be denoted for the

isothermal elastic and the steady heat conduction problems as [11]:

〈ε〉(i) = Ā
(i)
dil 〈ε〉(m) = Ā

(i)
dilĀ

(m)
M 〈ε〉

〈σ〉(i) = B̄
(i)
dil 〈σ〉(m) = B̄

(i)
dilB̄

(m)
M 〈σ〉

〈d〉(i) = Ā(i)
dil 〈d〉(m) = Ā(i)

dilĀ
(m)
M 〈d〉

〈q〉(i) = B̄(i)
dil 〈q〉(m) = B̄(i)

dilB̄
(m)
M 〈q〉

(3.30)

where the concentration tensors with the subscript M are the so called Mori-Tanaka con-

centration tensors. These equations can be viewed as modifications of equations (3.3),

in which the applied fields are replaced by the unknown matrix fields according to the

Mori-Tanaka strategy.

Very simple and straightforward Mori-Tanaka-type expressions for the matrix concen-

tration tensors follow from equations (3.16) and (3.30):

Ā
(m)
M =

[
(1 − f)1s + fĀ

(i)
dil

]−1

B̄
(m)
M =

[
(1 − f)1s + fB̄

(i)
dil

]−1

Ā(m)
M =

[
(1 − f) I + fĀ(i)

dil

]−1

B̄(m)
M =

[
(1 − f) I + f B̄(i)

dil

]−1 (3.31)
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The corresponding relations for the inclusion concentration tensors then follow from

equation (3.30):

Ā
(i)
M = Ā

(i)
dil

[
(1 − f)1s + fĀ

(i)
dil

]−1

B̄
(i)
M = B̄

(i)
dil

[
(1 − f)1s + fB̄

(i)
dil

]−1

Ā(i)
M = Ā(i)

dil

[
(1 − f)I + fĀ(i)

dil

]−1

B̄(i)
M = B̄(i)

dil

[
(1 − f)I + f B̄(i)

dil

]−1 (3.32)

By construction the Mori–Tanaka concentration tensors fulfill equations (3.18).

A number of authors gave different but essentially equivalent Mori-Tanaka-type expres-

sions for the phase concentration tensors and effective elastic tensors of inhomogeneous

materials, see e.g. [124; 147; 157]. Alternatively, the Mori-Tanaka method can be formu-

lated to directly give the overall Mori–Tanaka elasticity, E∗
M, [146] or conductivity tensor,

K∗
M, as:

E∗
M = E(m)

{
1s − f

[(
E(i) −E(m)

)
(S − f (S− 1s)) + E(m)

]−1 [
E(i) − E(m)

]}−1

K∗
M = K(m)

{
I − f

[(
K(i) −K(m)

)
(S − f (S − I)) + K(m)

]−1 [
K(i) −K(m)

]}−1

(3.33)

In accordance with their derivation, Mori–Tanaka type theories at all volumes frac-

tions describe composites consisting of aligned ellipsoidal inclusions embedded in a matrix,

compare fig. 3.3. Mori–Tanaka methods have been successfully “extended” for studying

non-aligned composites, see e.g. [12; 45; 109; 127]. However, in some cases these methods

may lead to unphysical results [55]. Mori–Tanaka methods can also be extended for study-

ing elastoplastic composites or composites with imperfect interfaces, see sections 3.2.2 and

3.2.3. Mori–Tanaka methods do not have an intrinsic length scale, but this can be intro-

duced through the material properties, see e.g. section 3.2.2.2. Mori–Tanaka methods can

be extended to studying multi-phase materials, in this case equations (3.32) take the form:

Ā
(p)
M = Ā

(p)
dil

[(
f (m)

)
1s +

∑N
j=1 f (j)Ā

(j)
dil

]−1

Ā(p)
M = Ā(p)

dil

[(
f (m)

)
I +

∑N
j=1 f (j)Ā(j)

dil

]−1

(3.34)

and the effective elasticity or conductivity tensors can be written as:

E∗
M = E(m) +

N∑

j=1

f (j)
(
E(j) − E(m)

)
Ā

(j)
M

K∗
M = K(m) +

N∑

j=1

f (j)
(
K(j) −K(m)

)
Ā(j)

M (3.35)
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Figure 3.3: Example of aligned composite material described by Mori-Tanaka method.[18]

where the relationship f (m) +
∑N

j=1 f (j) = 1 holds.

Mori–Tanaka predictions for the overall elastic moduli of composites reinforced by stiff

aligned or spherical reinforcements are stiffer than the matrix. In high contrast cases

they tend to considerably underestimate the effective elastic properties of typical matrix–

inclusion composites. Similarly, they tend to underpredict the macroscopic conductivities

of composites reinforced with inclusions that have a higher conductivity than the matrix.

Mori-Tanaka type theories can be implemented into computer programs in a straightfor-

ward way. Because they are explicit algorithms, all that is required are matrix additions,

multiplications, and inversions plus expressions for the Eshelby tensor. Together with

their good accuracy this makes them important tools for evaluating the stiffness, ther-

mal expansion and heat conduction properties of inhomogeneous materials that show a

matrix–inclusion topology with aligned inclusions or voids.

3.2.1.2.4 Differential schemes The differential scheme, [104; 120], takes into account

the interaction between inclusions by repeatedly adding a small concentration of inhomo-

geneities followed by homogenizing, the starting point being the pure matrix. Following

[68], the overall tensors can be defined by the sets of differential equations:

dC∗
D

df
= 1

(1 − f)

(
C(i) −C∗

D

)
B̄

(i)
dil

dE∗
D

df
= 1

(1 − f)

(
E(i) − E∗

D

)
Ā

(i)
dil

dR∗
D

df
= 1

(1 − f)

(
R(i) −R∗

D

)
B̄(i)

dil

dK∗
D

df
= 1

(1 − f)

(
K(i) −K∗

D

)
Ā(i)

dil

(3.36)
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where the subscript D denotes the overall tensors evaluated according to the differential

scheme. The initial conditions are C∗
D = C(m) and E∗

D = E(m) at f = 0 for the elastic

case and R∗
D = R(m) and K∗

D = K(m) at f = 0 for the heat conduction case. Recall that

the material is homogenized after every small addition of reinforcements and, therefore,

at the beginning of each cycle, the effective “matrix” material is different. As a conse-

quence, the Eshelby and the dilute concentration tensors are not constant and they must

be recalculated. The dilute concentration tensors read

Ā
(i)
dil =

[
1s + SDC∗

D

(
E(i) − E∗

D

)]−1

B̄
(i)
dil =

[
1s + E∗

D (1s − SD)
(
C(i) − C∗

D

)]−1

Ā(i)
dil =

[
I + SDR∗

D

(
K(i) −K∗

D

)]−1

B̄(i)
dil =

[
I + K∗

D (I − SD)
(
R(i) −R∗

D

)]−1

(3.37)

in analogy to equation (3.28). Combining equations (3.36) and (3.37) one obtains:

[(
E(i) −E∗

D

)−1
+ SDC∗

D

] dE∗
D

df
=

1

(1 − f)
1s

[(
K(i) −K∗

D

)−1
+ SDR∗

D

] dK∗
D

df
=

1

(1 − f)
I (3.38)

which are differential equations that can be solved by separation of variables. The main

problem in solving these equations is the dependence of the Eshelby tensor on the elasticity

or conductivity tensor of the matrix. In heat conduction, though, when the matrix is

isotropic and the reinforcements are spherical, the Eshelby tensor does not depend on the

conductivity tensor of the matrix and the differential equation can be solved analytically,

see [151].

The differential schemes describe matrix-inclusion topologies with a wide range of re-

inforcements sizes. Their results comply with the appropriate Hashin-Shtrikman bounds.

3.2.1.3 Variational Bounding Methods

Variational bounding methods are restricted to homogenization, in contrast to the numer-

ical approaches or mean field methods. In the following, only outlines of the methods are

given.

3.2.1.3.1 Hill and Wiener Bounds The Hill [80] and Wiener [161] bounds can be

seen as the most universal and simple bounds for elasticity and heat conduction, respec-
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tively. Both methods use minimum potential energy principles to bound the effective

elasticity and conductivity tensors, respectively:

[∑
(p) f (p)C(p)

]−1

≤ E∗ ≤ ∑
(p) f (p)E(p)

[∑
(p) f (p)R(p)

]−1

≤ K∗ ≤ ∑
(p) f (p)K(p)

(3.39)

These bounds, although universal and very simple, do not contain any information on

the microgeometry of the material except the volume fractions, and are typically too slack

for practical purposes. Nevertheless, they hold for volume elements that are too small to

be proper RVEs. The Hill bounds coincide with the Reuss and Voigt expressions if the

Poisson numbers of the constituents fulfill special conditions.

3.2.1.3.2 Hashin–Shtrikman Bounds Much tighter bounds can be obtained using

the variational formulation of Hashin and Shtrikman [69; 70]. For two–phase composites

with isotropic constituents and isotropic overall behaviour, the effective elasticity tensor

lower bound, E∗,l.b.
HS , and the effective conductivity tensor lower bound, K∗,l.b.

HS , can be

expressed in terms of the Mori–Tanaka concentration tensors [160] as:

E∗,l.b.
HS = E(m) + f

(
E(i) −E(m)

)
Ā

(i)
M

K∗,l.b.
HS = K(m) + f

(
K(i) −K(m)

)
Ā(i)

M (3.40)

whilst the upper bounds, E∗,u.b.
HS and K∗,u.b.

HS , can be obtained after a “color inversion” or in

other words after changing the roles of the matrix and the inclusion:

E∗,u.b.
HS = E(i) + (1 − f)

[(
E(i) −E(m)

)−1
+ fS(i)C(i)

]−1

K∗,u.b.
HS = K(i) + (1 − f)

[(
K(i) −K(m)

)−1
+ fS(i)R(i)

]−1

(3.41)

Equations (3.40) and (3.41) apply to materials that additionally fulfill the condition(
k(i) − k(m)

) (
g(i) − g(m)

)
> 0 and K(i)(i, i) > K(m)(i, i) respectively. These equations can be

applied, too, to transversely isotropic materials that fulfill similar conditions, see [67].

Kohn and Milton [92] extended the method to anisotropic composites for heat conduc-

tion. For the case of oriented anisotropic inclusions of ellipsoidal shape, Walpole [158] and

Willis [162] derived bounds on the elastic moduli.



CHAPTER 3. CONTINUUM MICROMECHANICS 51

It is worth noting that Hashin-Shtrikman bounds are the tightest bounds that can be

given for the type of geometrical information used, i.e. phase volume fractions and overall

symmetry.

3.2.1.3.3 Improved Bounds The more information we have about the geometry, the

better bounds we can generate. Improved bounds that are significantly tighter than Hashin-

Shtrikman type expressions can be obtained by using more complex trial functions in varia-

tional bounding. These functions require statistical information on the phase arrangement

in the form of n-point correlation functions for their optimization, see [63; 151].

Three–point bounds for the elastic behaviour of two–phase isotropic materials can be

formulated such that the information about the phase arrangement statistics is contained

in two microstructural parameters, only one of these parameters is needed for conductivity.

The evaluation of these parameters is a considerable task. However, analytical or tabular

data as a function of the reinforcement volume fraction, f , are available, see [151], for some

important microgeometries. Among them are statistically homogeneous isotropic materials

containing identical, bidisperse and polydisperse impenetrable spheres as well as monodis-

perse interpenetrating spheres, and statistically homogeneous transversely isotropic ma-

terials reinforced by impenetrable or interpenetrating aligned cylinders. This allows to

study a good number of cases that range from matrix–inclusion composites to interwoven

composites.

3.2.2 Approaches for studying composites with imperfect inter-

faces and/or non-ellipsoidal reinforcements

In this section, some micromechanical approaches for studying the heat conduction be-

haviour of composites with imperfect interfaces are presented. Additionally, extensions

of the mean-field methods for studying the mechanical and heat conduction behaviour of

composites reinforced with non-ellipsoidal inclusions are discussed. Only two-phase ma-

terials are covered explicitly and the material behaviour of all the phases is taken to be

linear elastic for mechanical problems, or linear for heat transfer problems.
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3.2.2.1 Basic theories for heat conduction: Hasselman–Johnson method

Hasselman and Johnson [74] studied the effective conductivity of composites with interfacial

thermal barrier resistance, by modifying the original theories of Rayleigh [134] and Maxwell

[103]. They gave results for composites consisting of a continuous matrix phase containing

inhomogeneities with spherical, cylindrical and platelet geometry.

For spherical reinforcements of radius r, interfacial conductance hβ and isotropic ther-

mal conductivity K(i) embedded in an isotropic matrix of thermal conductivity K(m), the

elements of the resulting effective conductivity tensor , K∗, read:

K∗(i, i) = K(m)(i, i)

[
2
(

K(i)(i,i)

K(m)(i,i)
− K(i)(i,i)

rhβ
− 1

)
f + K(i)(i,i)

K(m)(i,i)
+ 2K(i)(i,i)

rhβ
+ 2

]

[(
1 − K(i)(i,i)

K(m)(i,i)
+ K(i)(i,i)

rhβ

)
f + K(i)(i,i)

K(m)(i,i)
+ 2K(i)(i,i)

rhβ
+ 2

] (3.42)

From equation (3.42) is trivial to obtain the critical radius for spherical reinforcements,

rs
c. The critical radius is the radius at which the effective conductivity of the composite

equals the conductivity of the matrix. Therefore, by setting K∗(i, i) = K(m)(i, i) in equation

3.42, it follows:

rs
c =

K(i)(i, i)K(m)(i, i)

hβ (K(i)(i, i) − K(m)(i, i))
(3.43)

The Hasselman-Johnson method has been widely used for estimating the thermal

conductivity of particle reinforced composites, even at high volume fractions, see e.g.

[53; 62; 71; 72; 73]. It is worth noting that Hasselman and Johnson stated explicitly

that their theory is valid only for “dilute” volume fractions for which interactions between

the temperature field of neighboring dispersions is negligible. Nevertheless, equation (3.42)

can be derived using a modified MTM approach, see 3.2.2.2, which is a theory that does

account for collective interactions between inclusions (but not for pair–wise ones).

3.2.2.2 Mean Field Methods: Replacement Tensor Algorithm

Mean-field methods can be extended to handle inhomogeneities of non-ellipsoidal shape as

well as finite interfacial thermal conductances (for which the Eshelby equivalent inclusion

theory no longer holds) by introducing phase averaged dilute “replacement” inhomogeneity

elasticity or conductivity tensors, E(i,r) or K(i,r), and the associated dilute “replacement”
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inhomogeneity strain or gradient concentration tensors, Ā
(i,r)
dil or Ā(i,r)

dil . The replacement

tensors must fulfill the consistency conditions:

E(i,r) = E(m) +
1

fdil

(
E∗

dil − E(m)
)(

Ā
(i,r)
dil

)−1

K(i,r) = K(m) +
1

fdil

(
K∗

dil −K(m)
)(
Ā(i,r)

dil

)−1
(3.44)

which follow from eqn. (3.19) for the dilute case. Here E∗
dil and K∗

dil are the effective

elasticity and the effective conductivity of a composite with dilute reinforcement volume

fraction fdil. The replacement tensors E(i,r), K(i,r), Ā
(i,r)
dil and Ā(i,r)

dil can be inserted into

any mean–field scheme in lieu of E(i), K(i), Ā
(i)
dil and Ā(i)

dil, respectively, see e.g. [47; 119].

Extensions to multiphase materials can be found, e.g. in [20].

For heat conduction in the presence of finite interfacial conductances between the

phases, the replacement tensors depend on the size of the reinforcements, so that an ab-

solute length scale is introduced into the Mori–Tanaka scheme. A number of authors also

modeled the mechanical behaviour of composites with imperfect interfaces by assigning

replacement stiffnesses to partially or fully debonded particles, compare e.g. [149]. In the

present study, however, only the elastic behaviour of polyhedral particles with mechani-

cally perfect interfaces is considered, for which the replacement tensor approach may be

viewed as an alternative to the compliance contribution formalism of Kachanov et al. [89].

It is worth noting that combining equations (3.29) and (3.33) with the heat conduction

Eshelby tensor for non–perfectly bonded spheres embedded in an isotropic matrix , see

[47], the Hasselman-Johnson relationship, equation (3.42), is obtained.

3.2.2.3 Improved Bounds for heat conduction

Torquato and Rintoul [152] developed three–point bounds on the effective thermal conduc-

tivity of dispersions that are given in terms of the phase contrast between the inclusion

and matrix, the conductance of the interface, volume fraction and some higher-order mor-

phological information.

3.2.3 Mean Field Approaches for studying inelastic composites

Descriptions for inelastic microstructured materials are closely related to those for elastic

composites see [67]. The extension of mean field estimates and bounding methods to

elastoplastic inhomogeneous materials, however, has been found to be challenging.
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The main aim of mean field models of microstructured materials with at least one

elastoplastic constituent, besides materials characterization, consists in providing accurate

estimates for the material response for any load state and load history at reasonable com-

putational cost. The main difficulties in attaining this goal lie in the typically strong intra-

phase fluctuations of the stress and strain fields in elastoplastic inhomogeneous materials

and in the hereditary path dependent nature of plasticity. The responses of elastoplastic

constituents can thus vary markedly at the microscale, with each point following its own

trajectory in stress space. Accordingly, a two-phase elastoplastic composite effectively be-

haves as a multiphase material and phase averages are less useful descriptors than in the

linear elastic case.

Mean field models of elastoplastic inhomogeneous materials typically are based on solv-

ing sequences or sets of linearized problems in terms of linear reference media. Accordingly,

choices have to be made with respect to the linearization procedure, the linear homoge-

nization model, and the phase-wise equivalent stresses and strains to be used in evaluating

the elastoplastic constituent material behaviour. In the literature several lines of devel-

opment of mean field approaches for elastoplastic inhomogeneous materials can be found.

Historically, the most important of them have been secant plasticity concepts based on de-

formation theory, and incremental plasticity models. In addition, tangent concepts [112],

and the affine formulation [101] have been proposed.

3.2.3.1 Secant methods

Secant models aim at directly arriving at solutions in terms of the overall response for a

given load state. They are based on the deformation theory of plasticity and can be for-

mulated in terms of potentials, which allows for a concise mathematical presentation [144].

Secant plasticity models are limited to monotonic loading and radial trajectories of the

constituents in stress space during loading, which precludes their use as micromechanically

based constitutive models in multi-scale analyses.

The secant formulation determines for each elastoplastic phase, (ep), a secant operator,

E
(ep)
S , that relates the average strain and the average stress tensors in every phase. If

macroscopic isotropy is assumed, the secant operator reads:

〈σ〉(ep) = E
(ep)
S 〈ε〉(ep) E

(ep)
S = 3k(ep)1vol + 2g

(ep)
S 1dev,s (3.45)

where g
(ep)
S is the secant shear modulus, which is a function of the phase–wise reference
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equivalent strain ε
(ep)
REF. There are several methods to define the phase–wise equivalent

strain, the classical one being:

ε
(ep)
REF =

(
2

3

[
1dev,s 〈ε〉(ep)

]T

1dev,s 〈ε〉(ep)

)1/2

(3.46)

Other methods for determining the equivalent reference strain can be found in [25; 130].

Once the equivalent reference strains are determined, the effective elastoplastic tensor

can be determined by using a linear homogenized scheme defined by its strain concentration

tensor, equation (3.19). Secant methods can be formulated, too, in terms of reference

stresses instead of reference strains, [65], both formulations being equivalent [143].

A common problem to all mean field approaches for elastoplastic composites lies in

handling the intra-phase variations of the stress and strain fields within the assumption

of phase-wise uniformity. Improvements in this respect have been obtained by evaluating

the phase averages of the von Mises equivalent stress from energy considerations, or by

using statistically based theories. Such algorithms, however, have been limited to secant

plasticity approaches, leading to modified secant models. Excellent agreement has been

reported between the latter method and multi-particle unit cell models in a materials

characterization context [140].

3.2.3.2 Incremental methods

Incremental methods are another alternative for predicting the macroscopic and local (av-

eraged) behaviour of non-linear materials. This is done incrementally over several “time”

steps. In contrast to secant methods, incremental methods can deal with any elastoplastic

model and any load-path. In these methods the rates of the stress and strain tensors of the

elastoplastic phases are linked through algorithmic or tangent material stiffness tensors,

compare section 2.7.4. From the state of deformation at the beginning of the time step,

homogenization models can be applied to obtain the effective algorithmic stiffness tensor.

In what follows, the Incremental Mori-Tanaka (IMT) model of Pettermann [126] is

reviewed. Incremental mean field methods can be formulated in terms of phase averaged

strain and stress rate tensors, d 〈ε〉(p) and d 〈σ〉(p), which can be expressed in analogy with

the elastic case, equation (3.17), as:

d 〈ε〉(p) = Ā
(p)
t d 〈ε〉 + ῑ

(p)
t dt

d 〈σ〉(p) = B̄
(p)
t d 〈σ〉 + θ̄

(p)
t dt (3.47)
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where d 〈ε〉 stands for the instantaneous macroscopic mechanical strain rate tensor, and

d 〈σ〉 for the instantaneous macroscopic stress rate tensor. Ā
(p)
t , B̄

(p)
t , ῑ

(p)
t and θ̄

(p)
t are the

instantaneous elastic and thermal phase strain and stress concentration tensors, respec-

tively. Using the assumption that the inclusions show elastic and the matrix elastoplastic

material behaviour, the overall instantaneous (tangent) stiffness tensor, Et, can be written

in terms of the phase properties and the instantaneous concentration tensors as:

E∗
t = E(i) + (1 − f)

(
E

(m)
t − E(i)

)
Ā

(m)
t (3.48)

This equation is formulated so that Et is a continuum tangent operator.

In analogy to equation (3.31), the instantaneous matrix concentration tensors take the

form:

Ā
(m)
t =

[
(1 − f) 1dev,s + f

[
1dev,s + StC

(m)
t

(
E(i) −E

(m)
t

)]−1
]−1

(3.49)

B̄
(m)
t =

[
(1 − f) 1dev,s + f

[
1dev,s + E

(m)
t

(
1dev,s − St

) (
C(i) − C

(m)
t

)]−1
]−1

(3.50)

where St is the instantaneous Eshelby tensor. It depends on the current state of the matrix

material and in general has to be evaluated numerically due to the anisotropic structure

of the instantaneous tangent stiffness tensor of the matrix, E
(m)
t . If the symmetry of the

Eshelby tensor is lower than orthotropic Nye notation may lead to incorrect results.

Formulations of the previous equations that are directly suitable for implementation as

micromechanically based constitutive models at the integration point level within Finite

Element codes can be obtained by replacing rates such as d 〈ε〉(p) with finite increments such

as △〈ε〉(p) . It is worth noting that in the resulting incremental Mori-Tanaka methods no

assumptions on the overall yield locus and the overall flow potential are made, the effective

material behaviour being entirely determined by the incremental mean field equations and

the constitutive behaviour of the phases. However, mapping of the stresses onto the yield

surface cannot be handled at the level of the homogenized material and the stress return

mapping algorithm has to be applied to the matrix at the microscale instead. Accordingly,

the constitutive equations describing the overall behaviour cannot be integrated directly,

and iterative algorithms are required. For example, Pettermann [126] used an implicit Euler

scheme in an implementation of an incremental Mori-Tanaka method as a user supplied

material routine (UMAT) for the commercial Finite Element code ABAQUS. Algorithms

of this type can also handle thermal expansion effects and temperature dependent material

parameters.
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Due to their combination of usually reasonable accuracy, flexibility in terms of inclu-

sion geometries, and relatively low computational requirements, incremental Mori-Tanaka

methods can be useful as micromechanically based constitutive laws within Finite Element

codes for analyzing components and structures made of elastoplastic composite materials

such as metal matrix composites.

Furthermore, incremental plasticity approaches are not subject to limitations with re-

spect to loading paths. However, especially for matrix deformation dominated models they

tend to markedly overestimate the overall strain hardening in the post-yield regime. Re-

cent algorithmic improvements are reported to markedly reduce this weakness, see Doghri’s

modification below. Using this algorithm, incremental Mori–Tanaka methods can handle

large strains, see [84].

3.2.3.2.1 Doghri’s modification The algorithmic and tangent tensors, see section

2.7.4, obtained with the isotropic elasto–plasticity, see section 2.6.1, or the Chaboche plas-

ticity, see section 2.6.2, models are anisotropic. Numerical experience has shown, however,

that good predictions with the IMT method are obtained only when modified tensors,

isotropized or transversely–isotropized, are used instead, see Doghri [41]. Evidently, this

holds if the global symmetry of the composite is isotropic or transversely isotropic. For

anisotropic elastoplastic tensors, Zijkl, Doghri proposed four methods for modifying:

• Isotropic generalized projection method:

The isotropic part, ZIso
ijkl, of Zijkl is defined as :

ZIso
ijkl =

(
1vol

ijklZlkji

)
1vol

ijkl +
1

5

(
1dev,s

ijkl Zlkji

)
1dev,s

ijkl (3.51)

• Isotropic spectral decomposition:

This method applies to anisotropic tangent operators which are a linear combination

of 1vol
ijkl, 1dev,s

ijkl and NijNkl, where Nij satisfies the relations:

Nij = Nji; Nii = 0; NijNji =
3

2
(3.52)

For isotropic elasto–plasticity, the algorithmic and the tangent tensors satisfy all the

conditions. For the Chaboche–Marquis model, the conditions are satisfied by the

tangent tensor in all cases, and by the algorithmic tensor when c(2),C-M = 0. For
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those cases, Ponte Castañeda [132] proposed the following form of the elastoplastic

tensor:

Zijkl = 3c(1),SD1vol
ijkl + 2c(2),SD

[
1dev,s

ijkl − 2

3
NijNji

]
+ 2c(3),SDNijNji (3.53)

where c(1),SD, c(2),SD and c(3),SD are constants.

The isotropic spectral decomposition of the tensor, ZIso, Spe
ijkl , is defined as:

ZIso, Spe
ijkl = 3c(1),SD1vol

ijkl + 2c(3),SD1dev,s
ijkl (3.54)

• Transversely isotropic generalized projection method:

Any transversely isotropic second–order tensor, λij, with direction of anisotropy, wi,

can be written as:

λij = cςςij + cττij (3.55)

where ςij = wiwj and τij = 1 − ςij .

The transversely isotropized part of Zijkl, ZTrIso
ijkl , can be written as (see [23]):

ZTrIso
ijkl =

[
Z

(B1)
ijkl Zlkij

]
Z

(B1)
ijkl +

[
Z

(B2)
ijkl Zlkij

]
Z

(B2)
ijkl +

+
1

2

[
Z

(B3)
ijkl Zlkij

]
Z

(B3)
ijkl +

1

2

[
Z

(B4)
ijkl Zlkij

]
Z

(B4)
ijkl +

+
1

2

[
Z

(B5)
ijkl Zlkij

]
Z

(B6)
ijkl +

1

2

[
Z

(B6)
ijkl Zlkij

]
Z

(B5)
ijkl

(3.56)

where:

Z
(B1)
ijkl =

1

2
τijτkl (3.57)

Z
(B2)
ijkl = ςijςkl (3.58)

Z
(B3)
ijkl =

1

2
(τikτjl + τjkτil − τijτkl) (3.59)

Z
(B4)
ijkl =

1

2
(ςikςjl + τilςjk + τjlςik + τjkςil) (3.60)

Z
(B5)
ijkl = ςijςkl (3.61)

Z
(B6)
ijkl = τijςkl (3.62)
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• Transversely isotropic spectral method:

For elasto–plasticity with isotropic hardening, the transversely isotropic spectral part

of Zijkl, ZTrIso, Spe
ijkl , is:

ZTrIso, Spe
ijkl = Zijkl − cK (2g)2

3g + do(1)(p)
dp

NijNkl (3.63)

where cK is a softening factor.

Doghri rewrote equations (3.48)–(3.50) as:

Et = E(i) + (1 − f)
(
E

(m),C
t − E(i)

)
Ā

(m)
t (3.64)

Ā
(m)
t =

[
(1 − f)1dev,s + f

[
1dev,s + StC

(m),D
t

(
E(i) − E

(m),C
t

)]−1
]−1

(3.65)

where the Eshelby tensor is calculated using E
(m),E
t , St = St

(
E

(m),E
t

)
. E

(m),C
t , E

(m),D
t and

E
(m),E
t are modified elastoplastic tensors of the matrix. In the IMT of Pettermann, a fourth

modified elastoplastic tensor, E
(m),F
t , is introduced to deal with the thermal concentration

tensor, so that equation 3.25 is rewritten as:

θ̄
(m)

=
(
1s − B̄(m)

) (
C(i) −

[
E

(m),F
t

]−1
)−1 (

α(m) − α(i)
)

(3.66)

The “classical” IMT method corresponds to:

E
(m),C
t = E

(m),D
t = E

(m),E
t = E

(m),F
t = E

(m)
t (3.67)

Softer and better predictions are obtained by using:

E
(m),E
t = E

(m),Iso
t

E
(m),D
t = E

(m),C
t = E

(m),F
t = E

(m)
t (3.68)

see [41; 40; 118].

Alternatively, Chaboche [27] obtained good predictions with the following set of elasto-

plastic tensors:
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E
(m),E
t = E

(m),D
t = E

(m),Iso,spe
t

E
(m),C
t = E

(m),F
t = E

(m)
t (3.69)

The best set of modified tensors to be used for a given composite depends on its

macroscopic symmetry. For a detailed description of the most suitable sets for different

composites, see e.g. [129].

3.2.3.3 Variational bounds

In analogy to mean-field estimates for elastoplastic materials, non-linear bounds are ob-

tained by evaluating a sequence of linear bounds. Talbot and Willis [145] extended the

Hashin-Shtrikman variational principle to obtain upper or lower bounds, depending on the

material combination, on the non-linear mechanical behaviour of inhomogeneous materials.

Ponte Castañeda [131] derived a variational principle that allows to obtain upper bounds

on the effective non–linear behaviour of inhomogeneous materials, on the basis of upper

bounds for the elastic response. Analogous bounds to the Hill Bounds were presented by

Bishop and Hill [16].

3.3 Numerical Approaches

3.3.1 General remarks on approaches based on discrete micro-

geometries

Broadly speaking, micromechanical approaches based on discrete microgeometries trade off

restrictions to the generality of the microstructures that can be studied for the capabilities

of using fine grained geometrical models and of resolving details of the microfields at the

length scale of the inhomogeneities. The main fields of application of such methods are

studying the nonlinear behaviour of inhomogeneous materials and evaluating the micro-

scopic fields of model materials at high resolution. This information may be required when

the local fields fluctuate strongly and this information is important, too, for understand-

ing behaviours that depend on details of the microgeometry, such as damage or failure

behaviour.
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There are two, often complementary, philosophies for modeling inhomogeneous materi-

als via discrete microgeometries. One of them is based on studying generic phase arrange-

ments, which may vary from simple periodic arrays of fibers to highly complex microge-

ometries involving a considerable number of reinforcements. Complex phase arrangements

of the latter type can be generated by appropriate statistically based algorithms. Model

microgeometries of this type tend to employ idealized inclusion shapes, equiaxed particles

embedded in a matrix, for example, being often represented by spheres [19; 141].

Alternatively, microgeometries may be chosen to follow as closely as possible the phase

arrangement of a given sample of the material to be modeled, obtained from metallographic

sections, serial sections, or tomographic data,. . . The resulting descriptions are termed real

structure or digital image based (DIB) models [9; 28].

Unless materials with simple periodic phase arrangements are considered, for both

modeling strategies the question immediately arises of how complex (and thus large) the

model geometry must be in order to adequately capture the physical behaviour of the

material to be studied. For the case of elastic statistically isotropic composites with matrix-

inclusion topology and sphere-like particles, Drugan and Willis [42] estimated that for

approximating the overall elastic moduli with errors of less than 5% or less than 1%,

respectively, volume elements with sizes of approximately two or five inclusion diameters

are sufficient for any volume fraction. In addition, the adequacy of the size of a volume

element may be judged on the basis of deviations from the required symmetry of the overall

response. At present, however, there appears to be no reliable method for directly assessing

the representativeness of the microscopic field distributions obtained from a given volume

element.

For nonlinear behaviour a number of numerical studies have indicated that substan-

tially larger volume elements are necessary for satisfactorily approximating the required

overall symmetry and for obtaining good agreement between the macroscopic responses of

statistically equivalent phase arrangements, especially for mechanical analysis at elevated

overall inelastic strains [64; 87; 170]. The reason for this behaviour lies in the marked

inhomogeneity of the microfields typically found in these regimes,which may introduce a

new length scale into the problem. Accordingly, the size of satisfactory multi-inclusion unit

cells depends markedly on the phase material behaviour.

The majority of published micromechanical analyses of discrete microstructures have

employed standard numerical engineering methods for resolving the microfields. Studies

using Finite Difference algorithms [6], spring lattice models [122], the boundary element
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method [97], the Finite Element Method, techniques using Fast Fourier Transforms and

Discrete Fourier Transforms [114], as well as FE-based discrete dislocation models [32]

have been reported. Generally speaking, spring lattice models tend to have advantages

in handling traction boundary conditions and in modeling the progress of microcracks

due to local (brittle) fracture. Boundary elements tend to be at their best in studying

geometrically complex linear elastic problems. For all the above methods the characteristic

length of the discretization must, of course, be considerably smaller than the microscale of

a given problem in order to obtain spatially well resolved results.

At present the FEM is the most commonly used numerical scheme for evaluating dis-

crete microgeometries, especially in the nonlinear range, where its flexibility and capability

of supporting a wide range of constitutive models for the constituents and for the interfaces

between them are specially appreciated. An additional asset of the FEM in the context of

continuum micromechanics is its ability to handle discontinuities in the strain, stress, tem-

perature gradient and heat flux components (which typically occur at interfaces between

different constituents) in a natural way via appropriately placed element boundaries.

In most published works, the phase arrangements are discretized by an often high num-

ber of standard continuum elements, the mesh being designed in such a way that element

boundaries are positioned at all interfaces between constituents. Such an approach has the

advantage that in principle any microgeometry can be handled and that readily available

commercial FE packages may be used. However the actual modeling of complex phase

configurations in many cases requires sophisticated and/or specialized preprocessors for

generating the mesh, a task that has been tricky to automatize. The resulting stiffness

matrices may show unfavorable conditioning due to suboptimal element shapes. Satisfac-

tory resolution of the microfields at local hot spots can lead to very large models indeed.

3.3.2 Periodic microfield approaches

Periodic microfield approaches (PMAs) aim to describe the macroscopic and microscopic

behaviour of inhomogeneous materials by studying model materials that have periodic

microstructures.

In the following discussion the main emphasis is on the small strain elastoplastic be-

haviour and on the heat conduction behaviour of materials the properties of which are tem-

perature independent. Homogenization methods for finite strain problems are discussed in

e.g. [108; 148].
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3.3.2.1 Basic concepts of unit cell models

Periodic microfield approaches analyze the behaviour of infinite (one–, two– or three–

dimensional) periodic arrangements of constituents making up a given inhomogeneous

material under the action of far field mechanical or thermal loads. They describe a micro-

geometry by a periodically repeating unit cell to which the investigations may be limited

without loss of information or generality, at least for steady state analyses.

A wide variety of unit cells have been employed in published PMA studies, ranging

from geometries used to describe simple periodic arrays of inclusions to highly complex

phase arrangements, such as multi-inclusion cells. For simple periodic phase arrangements

it may also be possible to find analytical solutions via series expansions [34] or potential

methods [159].

Most PMA studies have used standard numerical engineering methods, but some more

specialized approaches for evaluating microscopic stress and strain fields use somewhat

different methods, e.g the method of the cells, [3; 4; 5], or Transformation Field Analysis

[50].

In typical periodic microfield approaches the fields are split into constant macroscopic

contributions, 〈ε〉, 〈σ〉, 〈d〉 and 〈q〉 (slow variables), and periodically varying microscopic

fluctuations, ε
′
(z), σ

′
(z), d

′
(z) and q

′
(z) (fast variables), in analogy to equation (3.2).

The position vectors are denoted here as z to indicate that the unit cells “lives” on the

microscale. The volume integrals used to obtain averages must, of course, be solved over the

volume of the unit cell, vUC. Formal derivations of the above relationships for periodically

varying microstrains and microstresses, show that the work done by the fluctuating strains

and stresses vanishes [107]. Analogously, for periodically varying micro thermal gradients

and micro heat fluxes, the product of thermal gradients and heat fluxes vanishes, see [151].

Evidently in periodic microfield approaches each unit of periodicity (unit cell) con-

tributes the same displacement or temperature increment and the macroscopic displace-

ments or temperatures vary (multi)linearly. In fig. 3.4 an idealized depiction of such

a situation in elasticity is presented, which shows the variation of the strains εβ (zβ) =

〈εβ〉 + ε
′

β (zβ) and of the corresponding displacements uβ (zβ) = 〈εβ〉zβ + u
′

β (zβ) along

some section line β in a hypothetical periodic two-phase material consisting of constituents

A and B. The periodicity of the strains and of the displacements is immediately apparent,

the unit of periodicity in direction β and the corresponding displacement increment being

marked as cU and ∆uβ, respectively (note that ∆uβ = 〈εβ〉cU for linear displacement-strain
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u
′
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uβεβ ,

〈εβ〉zβ

ε
′

β

∆uβ

cU

zβ

〈εβ〉

Figure 3.4: Scheme of the strain variation and displacements along a linear section in an

hypothetical inhomogeneous material made of constituents A and B. [17]

relations). In addition symmetry points of εβ (zβ) and uβ (zβ) are indicated by small cir-

cles. The same plot holds for heat conduction, by replacing the variables by their analogs,

see table 3.1. A difference between thermomechanical and thermal conduction problems

is worth noting at this point. In thermomechanics material nonlinearities typically involve

dependencies of the materials parameters on stress, strain and temperature, i.e. on vari-

ables the averages of which do not vary from unit cell to unit cell. In thermal conduction

material nonlinearities typically take the form of dependencies on the temperature, the

average of which varies from unit cell to unit cell in such problems. Furthermore, the

temperature varies from −∞ to ∞.

Accordingly, even though the average conductivity of unit cells with temperature de-

pendent material parameters can be evaluated, for this case PMAs may not be free of

contradictions.
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Figure 3.5: Two-dimensional unit cells for a periodic hexagonal array. [17]

3.3.2.2 Boundary conditions, application of loads, evaluation of microfields

3.3.2.2.1 Boundary Conditions The proper use of unit cell based methods requires

that the cells together with the boundary conditions prescribed on them generate valid

tilings both for the undeformed geometry and for all deformed states pertinent to the

investigation for mechanical problems and that temperature profiles are compatible on the

unit cell’s faces for all possible temperature gradients in conduction problems. In order to

achieve this, the boundary conditions for the unit cells must be specified in such a way that

all deformation modes or temperature profiles appropriate for the load cases to be studied

can be attained. The three major types of boundary conditions used in periodic microfield

analyses of the mechanical and thermal conduction behaviour of periodic model materials

are periodicity, symmetry, and antisymmetry boundary conditions. In this thesis, only

periodicity boundary conditions are used with PMAs.

Periodicity boundary conditions are the most general boundary conditions for unit

cells, they can handle any possible deformation state or temperature profile of the cell

and, consequently, of the inhomogeneous material to be modeled. In fig.3.5, cells A to F
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Figure 3.6: Mechanical periodicity boundary conditions for a two-dimensional unit cell.

[18]

belong to this group. Because such unit cells tile the computational space by translation,

neighboring cells must fit into each other like parts of a jigsaw puzzle in both unloaded

and loaded states. For the case of two-dimensional unit cells with even number of faces

this can be achieved by pairing opposite faces and linking the corresponding degrees of

freedom from each pair of faces.

Using the conventions for naming the vertices and faces shown in figs. 3.6 and 3.7, the

resulting equations for the periodically varying displacement vectors at the boundaries, u
′
,

and periodically varying temperatures, t
′
, at the boundaries can be symbolically written

as:

u
′

N (z̃1) = u
′

S (z̃1) + u
′

NW

u
′

E (z̃2) = u
′

W (z̃2) + u
′

SE

t
′

N (z̃1) = t
′

S (z̃1) + t
′

NW

t
′

E (z̃2) = t
′

W (z̃2) + t
′

SE

(3.70)

Here z̃1 and z̃2 denote corresponding positions on the N and S faces and on the E

and W faces of the unit cell, respectively. From equations (3.70), it follows that the

displacements and the temperatures of nodes on faces N and E depend on or are “slaved”

to the displacements and temperatures of the nodes SE and NW, respectively. These

nodes control the displacement and temperatures of the nodes on faces N and E and are

called “master nodes”, whilst the dependent nodes are the so called “slaved nodes”. In

principle, all variables (in example for mechanical analyses the displacements, strain and

stresses and for thermal analyses temperature, temperature gradients and fluxes) must be

linked by appropriate periodicity conditions. When a displacement or a temperature based

FE code is used, however, such conditions (including where appropriate, rotation D.O.F.s)
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Figure 3.7: Temperature periodicity boundary conditions for a two-dimensional unit cell

for studying heat conduction

can be specified explicitly only for the displacement components and temperatures, and the

periodicity of the strains, stresses, temperature gradients and heat fluxes is only fulfilled

approximately. In mechanical problems, for periodicity boundary conditions, the main

error is due to the fact that in typical implementations the nodal stresses and strains are

not averaged across cell boundaries, even though they ought to be. The same holds for

heat fluxes and temperature gradients in conductivity. Note also that when stresses are

periodic, unit cell boundary tractions are antiperiodic.

Periodicity boundary conditions generally are the least restrictive option for periodic

multi-inclusion unit cells models using phase arrangements obtained by statistically based

algorithms or by experimental techniques. In practice FE-based unit cell studies using

periodicity boundary conditions can be rather expensive in terms of computing time and

memory requirements, because the multipoint constraints required for implementing equa-

tions (3.70) tend to degrade the band structure of the system matrix, especially in three-

dimensional problems. In addition it is worth noting that considerable care may be required

to prevent over- and underconstraining due to inappropriate selection of regions with pe-

riodicity boundary conditions [128].

All the previous equations refer to the usual case where standard material behaviour

is used on the macroscale and the scale transition is handled via homogenized stress and

strain fields. Periodicity boundary conditions that are conceptually similar to the previous

equation can be devised for cases where gradient theories are employed on the macroscale

and higher order stresses as well as strain gradients figure in coupling the length scales

[61].
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Obviously, the description of real materials, which in general are not periodic, by pe-

riodic model materials entails some geometrical approximations. These take the form of

periodicity constraints on computer generated phase arrangements or of appropriate mod-

ifications in the case of real structure microgeometries. The effects of such approximations

in the vicinity of the cell surfaces, of course, diminish in importance with growing size of

the model.

3.3.2.2.2 Linking macroscale and microscale The primary practical challenge in

using periodic microfield approaches for modeling inhomogeneous materials lies in choos-

ing and generating suitable unit cells that, in combination with appropriate boundary

conditions, allow a realistic representation of the actual microgeometries within available

computational resources. The unit cells must then be subjected to appropriate macroscopic

strains, stresses, or temperature excursions for mechanical analyses and thermal gradients

or heat fluxes for heat conduction analyses. Whereas homogeneous temperature excur-

sions for studying the effective thermal expansion behaviour do not pose major difficulties,

applying far field strains, stresses, temperature gradients or heat fluxes may be difficult.

There are two main strategies for linking the macroscale and the microscale in unit cell

analysis, asymptotic homogenization [125; 168] and the method of macroscopic degrees of

freedom [106]. In this work, only the latter one is used.

In the method of macroscopic degrees of freedom, the loads are prescribed by assigning

appropriate displacements, loads, temperatures or heat flows to the master nodes. For

example a uniaxial strain state is obtained in the unit cell of the figure 3.6, by applying

a displacement in z1 direction to the master node SE or a displacement in direction z2 to

the master node NW. Equivalently, a thermal gradient in z1 is obtained in the unit cell

of figure 3.7 by fixing the nodal temperature of the node NW equal to the temperature of

node SW, and specifying different nodal temperatures for the nodes SE and SW.

3.3.2.2.3 Evaluation of averaged microfields For evaluating the phase averaged

quantities from unit cells models in the absence of imperfect interfaces, it is possible to

use direct integration of eqns (3.4). This can be done in every FE code by integrating

numerically these equations according to:
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〈ε〉 = 1
v

∫
v
ε (x) dv ≈ 1

v

∑N
i=1 εivi

〈σ〉 = 1
v

∫
v
σ (x) dv ≈ 1

v

∑N
i=1 σivi

〈d〉 = 1
v

∫
v
d (x) dv ≈ 1

v

∑N
i=1 divi

〈q〉 = 1
v

∫
v
q (x) dv ≈ 1

v

∑N
i=1 qivi

(3.71)

where the subscripts i denote the value of the respective variables at the integration point

and vi is the volume associated with the integration point. In the case of rectangular

or hexahedral unit cells that are aligned with the coordinate axes, averaged engineering

strain and stress components can be evaluated by dividing the displacements at the master

nodes by the appropriate cell lengths and by dividing the applied or reaction forces at the

master nodes by the appropriate surface areas, respectively. The averaged temperature

gradient and heat fluxes can be evaluated by dividing the temperature difference at the

master nodes by the appropriate cell lengths and by dividing the applied concentrated heat

flow components at the master nodes by the appropriate surface areas, respectively. For

example, for extracting the Young modulus in z1 direction, Ez1 , of the unit cell depicted

in figure 3.6, when a load, cLoad, is applied at node SE in z1 direction, the next formula

can be applied:

Ez1 =
cLoad

cEe
u(1)
cS

(3.72)

where, cE is the length of the face “E”, cS the length of the face “S”, and e the thickness

of the unit cell.

In the presence of imperfect interfaces, the evaluation cannot, in general, be done using

equations (3.71). In this thesis, imperfect interfaces are considered in thermal conduction,

only. In order to evaluate the phase averaged temperature gradient or heat flux, the

following procedures are used.

Consider a generic composite like the one depicted in figure 3.8. Its volume is divided

into three parts. The first one is formed by “shells” of finite thickness, eIF, containing the

imperfect interfaces, vIF. The second one contains all the matrix material that does not

belong to the first part, vM, and the last one contains all the inclusion material that does

not belong to the first part vI. In this case the volume integrals can be written without

loss of generality as:
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Figure 3.8: Idealized composite material divided into three regions

∫

vUC

d (x) dv =

∫

vIF

d (x) dv +

∫

vM

d (x) dv +

∫

vI

d (x) dv
∫

vUC

q (x) dv =

∫

vIF

q (x) dv +

∫

vM

q (x) dv +

∫

vI

q (x) dv (3.73)

Note that the volumes above can always be obtained as the sum of connected volumes.

If the thickness of the shells tends to zero, see figure 3.9, equation (3.73) can be written

as:

∫

vUC

d (x) dv = lim
eIF→0

{∫

vIF

d (x) dv

}
+

∫

v(m)

d (x) dv +

∫

v(i)

d (x) dv (3.74)

∫

vUC

q (x) dv = lim
eIF→0

{∫

vIF

q (x) dv

}
+

∫

v(m)

q (x) dv +

∫

v(i)

q (x) dv (3.75)

Furthermore, the thermal gradient in the shells tends to
∆tIF

eIF
n and the heat flux to

[
[q]T n

]
n, when their thickness tends to zero, where ∆tIF is the temperature jump at

the interface and n is a unit vector normal to the surface going from the inclusion to the

matrix. Then it follows:

lim
eIF→0

{∫

vIF

d (x) dv

}
=

∫

sIF

lim
eIF→0

{∫

eIF

∆tIF

eIF
n de

}
ds

lim
eIF→0

{∫

vIF

q (x) dv

}
=

∫

sIF

lim
eIF→0

{∫

eIF

[
[q]T n

]
n de

}
ds (3.76)
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where sIF represents the boundaries of the interface. As the variations in the normal

component are of vanishing importance as the thickness goes to zero, it follows that:

lim
eIF→0

{∫

vIF

d (x) dv

}
=

∫

sIF

∆tIFn ds

lim
eIF→0

{∫

vIF

q (x) dv

}
= 0 (3.77)

Inserting this result into equation (3.73), and applying the divergence theorem to the

integrals of the gradients within each phase the following result is obtained:

∫

vUC

d (x) dv =

∫

sIF

∆tIFn ds +

∫

s(m)

tn ds +

∫

s(i)

tn ds
∫

vUC

q (x) dv =

∫

v(i)

q (x) dv +

∫

v(m)

q (x) dv (3.78)

Therefore the effective heat flux can be calculated following the same procedure as in

equations (3.71). The phase average of the thermal gradient equation can be rewritten as:

∫

vUC

d (x) dv =

∫

sEXT

tn ds +

∫

sINT

tn ds +

∫

sIF

∆tIFn ds (3.79)

where sEXT are the external surfaces of the unit cell, and sINT the internal surfaces, compare

figure 3.9 (left). In figure 3.9 (right) a detail of the internal surfaces, the interfaces and

their normals is depicted. As observed, there are two points A
′
and B

′
for every “section”

of the interface, so that the temperature jump at the interface is tB
′

− tA
′

. Furthermore,

for the point A
′

there is a point A in the inclusion surface with the same temperature,

and the same applies for the point B
′
and B on the interface and on the matrix’s surface.

Therefore for every “section” of the interface:

tA − tB︸ ︷︷ ︸
(tn)

sINT

+ tB
′

− tA
′

︸ ︷︷ ︸
(∆tIFn)

sIF

= 0 (3.80)

In other words, the contributions of the external surfaces and the interfaces to the phase

average of the thermal gradient cancel out and, consequently, it follows that:

∫

vUC

d (x) dv =

∫

sEXT

tn ds (3.81)
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Figure 3.9: Surfaces of the idealized composite depicted in figure 3.8 (left), and detail of

these surfaces and their normals (right).

which coincides with the result obtained if the Gauss theorem is applied to a material with

perfect interfaces. Note that there is no such behaviour in elasticity.

3.3.3 Windowing methods

In windowing approaches appropriate boundary conditions are applied to simply shaped

mesoscopic regions (typically right hexahedral) “cut out” at random positions and orien-

tations from an inhomogeneous material, compare figure 3.10, to calculate the properties

of these mesoscopic regions. These properties are called the apparent properties [85] of

the inhomogeneous sample. They allow to estimate or bound the effective behaviour of

the inhomogeneous material. It is worth noting that, if the boundary conditions applied

are periodic, the properties obtained are called effective rather than apparent, because

the mesoscopic region together with the boundary conditions represent an infinite periodic

material and not a mesoscopic region of an inhomogeneous material. If the mesoscopic

region is big enough to be a representative volume element, the properties obtained are

independent of the boundary conditions used.

Using variational principles [151], it can be shown that the ensemble average of the

apparent properties obtained with a number of equally sized “non–pathological” volume

elements, Eappar, NAT, Eappar, ESS, Kappar, NAT, and Kappar, ESS, obtained using uniform es-

sential:

ui (xj) = 〈ε〉ik xk t (x) = [〈d〉]T x (3.82)
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Figure 3.10: Different windows in an inhomogeneous material.

and uniform natural boundary conditions:

σij (xk)nj = 〈σ〉ik nk [q (x)]T n = [〈q〉]T n (3.83)

bound the effective elasticity and conductivity tensors for a given microgeometry [85]:

Eappar, ESS ≥ E∗ ≥ Eappar, NAT

Kappar, ESS ≥ K∗ ≥ Kappar, NAT
(3.84)

Here the order relation Eappar, ESS ≥ Eappar, NAT and Kappar, ESS ≥ Kappar, NAT means that:

[Zany]T
(
Eappar, ESS − Eappar, NAT

)
Zany ≥ 0

[zany]T
(
Kappar, ESS −Kappar, NAT

)
zany ≥ 0

(3.85)

for any second order symmetric tensor, Zany, or any vector, zany, different from the zero

second order tensor or the zero vector, respectively.

Alternatively, mixed uniform boundary conditions (MUBCs) may be used. MUBCs

fulfill the Hill macrohomogeneity condition, eqn. (3.5), for elasticity or its equivalent for

heat conduction, eqn. (3.6). For example, for the heat conduction case, MUBCs applied

to a right hexahedron consist of essential boundary conditions on two parallel faces of the

volume and natural conditions to the other faces or vice versa. It can be shown, [79; 87],

that the apparent properties obtained using the MUBC lie between the natural and the

essential apparent properties.

The previous results hold for perfect interfaces or imperfect interfaces provided there is

no discontinuity of the vector x⊗n on the interface, see [78], where ⊗ represents the tensor
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product. They can be extended to imperfect interfaces where there is a discontinuity of

x ⊗ n, but additional terms must be taken into account.

All the boundary conditions described fulfill the Hill condition, which for the heat

conduction case can be rewritten as:

∫

sUC

(
[q (x)]T n − 〈q〉Tn

)
(t (x) − 〈d〉x) ds = 0 (3.86)

where x is the position vector.



Chapter 4

Study of the thermal conduction

behaviour of Diamond Reinforced

Metal Matrix Composites using

Micromechanics of Materials

In this chapter some of the methods described in chapter 3 are applied to studying the ther-

mal conduction behaviour of Diamond Reinforced Metal Matrix Composites (DRMMCs).

The discussion takes into account several aspects of the microgeometry of the material,

such as volume fraction, imperfect interfaces between the constituents, and size, shape

and orientation of the particles. Furthermore, monodisperse and polydisperse particle size

distributions are studied.

4.1 Literature review

The effective heat conduction properties of composites are mainly affected by the following

factors:

• Heat conduction properties of the constituents

• Volume fractions of the constituents

• Shapes of the reinforcements

75
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• Sizes of the reinforcements

• Orientations of the reinforcements

• Interfaces between the constituents

Numerical methods as e.g. PMAs, see section 3.3.2, can, in principle, take into account

all of these factors and some others, such as the arrangement of the particles, but they are

computationally expensive, see [47; 102; 119].

Analytical or semi–analytical methods, can be used instead. Whilst some methods that

take into account a number of the previous factors but the interfaces can be found in the

literature, see e.g. [44; 91] and the references therein, works considering imperfect thermal

interfaces are less numerous, and works taking into account all of the factors are scarce,

see [119].

The effects of the interfaces are mainly captured by using an interface of zero thickness

or by using an interphase model of finite thickness.

Examples of works using the concept of zero–thickness interface can already be found

in the pioneering works of Benveniste and Miloh [14] or Hasselman and Johnson [74]. Has-

selman and Johnson extended the work of Maxwell to non–ideal interfaces for obtaining

estimates of the effective conductivity of composite materials reinforced with spheres or

aligned continuous fibers, see section 3.2.2.1. Benveniste and Miloh studied the effective

conductivity of dilute composites reinforced with spheroidal inclusions the interfaces of

which are imperfect. Extensions to non–dilute volume fractions were done by Benveniste

[10] by using a generalized self consistent scheme and a Mori–Tanaka approach, and by

Chiew and Glandt [30] using a second order approximation. Different approximations

and/or development of the previous methods were done by Lu, Chen, Duschlbauer, Gana-

pathy, Duan et al. as well as Böhm and Nogales. Lu [98] proposed an equivalent inclusion

model for studying the thermal conductivity of composites reinforced by aligned spheroids

having the same size, shape and constant interfacial parameter. Chen [29] studied the

thermal conduction behaviour of a circular inclusion with variable interfacial parameter.

Duschlbauer et al. [48] analyzed the effect of the imperfect interfaces by replacing the

inclusion with the imperfect interface by an inclusion with perfect interface but reduced

conductivity, extensions of this method are used in the present work. Ganapathy et al.

[58] combined effective medium theory and the finite difference method for studying com-

posites reinforced with cylindrical particles. Duan et al. [43] used the average t–matrix

approximation of the multiple–scattering approach to take into account the effect of three
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types of imperfect bonding. Böhm and Nogales [20] extended the work of Duschlbauer to

studying non-ellipsoidal particle shapes and size distributions.

Works capturing the effect of the interfacial barrier using a coating of finite thick-

ness with very low conductivity are less numerous. Benveniste and Miloh [15] investigated

coated ellipsoidal inclusions, the coating being represented by two confocal ellipsoids. Dunn

and Taya [46] combined the coating concept, corresponding to a variable interface parame-

ter, with a Mori–Tanaka approach for studying the thermal conduction of composites with

imperfect interfaces. Nan et al. [117] estimated the effective thermal conductivity by using

coatings of constant thickness. Zou [171] derived analytical expressions for the transverse

thermal conductivities of unidirectional fibre composites with thermal barrier by using an

electrical analogy and unit cell models.

4.2 Material studied

Throughout this chapter, the same set of thermophysical constituent material parame-

ters, which correspond to diamond particles embedded in matrix of commercially pure

aluminum, was used for all simulations.

Table 4.1 lists the thermal conductivities, K, used for the constituents. Diamond has

cubic symmetry and, accordingly, has isotropic conduction properties. Therefore, both

constituents have isotropic conductivity. The conductances for the {100} and {111} faces,

see figure 4.1 (left), of synthetic diamond particles embedded in aluminum given in table

4.2 are preliminary estimates that aim at accounting for differences in the behaviour of the

two sets of faces, the lower reactivity of the {111} faces leading to reduced bonding and to

a lower interfacial conductance [137].

Table 4.1: Thermal conductivities of the constituents.

K(i, i) [W/Km]

Diamond 1800

Aluminum 237
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4.3 Monodisperse particle size distributions

In this section only composites reinforced with particles of the same size and shape are

studied. Two geometries are considered for the reinforcements, spheres and regular cubo–

octahedra, the latter being depicted in figure 4.1 (left), and the real particles in figure

4.1 (right). The radius of the cubo–octahedral particles, r, is defined as the radius of

the sphere into which the cubo–octahedra can be inscribed. In the first part, some an-

alytical/semianalytical methods for obtaining the effective properties of these composites

are studied. In the second part, some numerical methods are used to test the results ob-

tained with the analytical methods and for studying in detail the local behaviour of these

composites.

{100} faces

{111} faces

Figure 4.1: Cubo-octahedral geometry of the diamond particles used in the numerical

models (left) and actual shapes of diamond particles (right) (courtesy EMPA).

4.3.1 Analytical/Semianalytical methods

DRMMCs are complex materials to model. They are reinforced by non-ellipsoidal and

non-aligned particles with inhomogeneously distributed interfacial conductance. Due to

Table 4.2: Estimates for the thermal conductances of the diamond–aluminum interfaces,

[137].

hβ{100} [MW/Km2] hβ{111} [MW/Km2]

100 20
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the complex shapes of the reinforcements, it is easier to study the effects of the interfa-

cial conductance via models using an interface of zero thickness rather than by methods

based on coatings of finite thickness that are more restricted to ellipsoidal and cylindri-

cal reinforcement shapes. Within the “interface of zero thickness” methods only MFMs

allow to simultaneously study all of the factors described above [43]. Among the MFMs

a MTM–scheme was selected because of its simplicity and efficiency. In the following, the

MTM replacement inclusion (RMTM) method of Duschlbauer [48] is extended to studying

DRMMCs.

4.3.1.1 Extension of Duschlbauer’s method

The main idea behind the method, see section 3.2.2.2 for a detailed description, is the

replacement of a particle with an imperfect interface by a less conducting particle hav-

ing a perfect interface, so that the effective conductivity of a dilute composite reinforced

by a single inclusion is not affected by this change. The approach can also account for

non–spheroidal particle shapes. For ellipsoidal particles with isotropic conductivity and a

homogeneous distribution of the interfacial conductance analytical solutions can be found

for the dilute thermal gradient concentration tensor of the inclusion, Ā(i,r)
dil , and the re-

placement conductivity of the inclusion, K(i,r), see [47]. However, for the present case this

is not possible and numerical procedures are needed for extracting Ā(i,r)
dil and K(i,r).

In order to obtain Ā(i,r)
dil and K(i,r), dilute models consisting of a single reinforcement

embedded in large matrix regions are employed, see figure 4.2 (left). These volume el-

ements are subjected to three linearly independent applied temperature gradients. The

averaged heat fluxes in the phases and the effective heat flux are then evaluated from

the phase averaged fields in the inhomogeneity, see section 3.3.2.2.3. The dilute heat flux

concentration tensor, B̄(i,r)
dil , follows directly from the phase averaged heat fluxes and the

effective heat flux, equations (3.17). The effective conductivity of the dilute unit cell, K∗
dil,

can be evaluated from the effective heat flux and the effective thermal gradient which is

known a priori. Using equation (4.2) for the dilute case, and the consistency condition,

equation (3.44), Ā(i,r)
dil and K(i,r) are obtained.

Once the replacement tensors, Ā(i,r)
dil and K(i,r), are known they are inserted into the

Mori–Tanaka scheme, eqns. (3.31)–(3.33), in lieu of the “standard ones”, Ā(i)
dil and K(i). It

is worth noting that this procedure can be applied to any particle shape. Furthermore,

this procedure is valid for any MFM.



CHAPTER 4. THERMAL CONDUCTION BEHAVIOUR OF DRMMCS 80

Alternatively, one can directly extract Ā(i,r)
dil , see [47], in this case three independent

heat fluxes must be applied. The volume integrals of the thermal gradient over the volume

of the cube or the diamond can be calculated by transforming them into surface integrals,

see section 3.3.2.2.3. Note, that the surface integral over the diamond surface must contain

the interface so that the interfacial temperature jumps are accounted for. The unit cells

used for the dilute models are, usually, meshed very finely in the neighborhood of the

inclusion and rather coarsely at the boundaries of the cube, see figure 4.2 (right). This

may lead to numerical errors when approximating the surface integral on the boundaries

of the cube. For dilute unit cells, the fields on the boundary are nearly homogeneous and

the problem is avoided, but if the unit cell is not dilute the fields on the boundaries may

be rather inhomogeneous leading to non trivial numerical errors.

It is worth noting that both methods for extracting the dilute concentration tensors are

equivalent. Recall that in the direct evaluation of Ā(i,r)
dil the temperature jumps at the in-

terface are taken into account and therefore equations (3.18) hold. Furthermore, equations

(3.23) always hold for the matrix of the composite with imperfect interfaces. Therefore, it

follows that the concentration tensors, as calculated above, of the composite with imper-

fect interfaces, are not independent, and the results obtained with both methodologies are

equivalent.

In a dilute composite, an inclusion is embedded in an infinite matrix. How to approxi-

mate this with numerical models, or in other words, how small must be the volume fraction

so that the composite can be considered dilute, is an open question. Therefore it must

be studied how the “diluteness” of the composite affects the estimations of the method.

Furthermore, the FE mesh may play a role, too. In the following both aspects are studied

in detail.

For studying the influence of dilute volume fraction, the Ā(i,r)
dil and K(i,r) tensors obtained

from different volume elements, such as the one shown in figure 4.2 (left), are compared.

Recall that the reinforcement is a cubo–octahedral particle. The volume elements studied

follow the material parameters in tables 4.1 and 4.2, and they differ in the reinforcement

volume fraction, the boundary conditions used, and the radius of the particle. The volume

fractions used are 0.00001, 0.0001, 0.001, 0.01, 0.1, and 0.2. Three types of boundary con-

ditions are considered, Uniform Thermal Gradient boundary conditions (UTGBC), Period-

icity boundary conditions (PBC), and Uniform Heat Flux boundary conditions (UHFBC),

that correspond to essential, periodicity, and natural boundary conditions respectively, see

section 3.3.3. Three different particle radii, 1µm, 10µm and 1000µm, are studied, which
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1

2

3

Figure 4.2: Geometry (left) and mesh (right) of a dilute volume element used for obtaining

the replacement concentration and conduction tensors.

are smaller than, comparable to, and larger than, respectively, the critical radius, rc, perti-

nent to the chosen material parameters. The critical radius is the radius below which even

highly conductive particles fail to increase the overall conductivity of the composite. This

size effect is due to the presence of the interfacial resistances between reinforcements and

matrix, and it is a well known phenomenon, see e.g. [53; 96]. The critical radius depends

not only on the constituent’s properties and the interfaces between them, but also on the

shapes of the particles, see figures 4.11 and 4.12. In this case (cubo–octahedral parti-

cles which inhomogeneous distribution of the interfacial conductance) the critical radius is

8.335µm, see figure 4.10. It was obtained numerically by interpolation, in some cases, e.g,

spherical particles with homogeneous distribution of the conductance, it can be obtained

analytically, see equation (3.43). In the following the results obtained are compiled.

As DRMMCs are reinforced by equiaxed particles and the assumed distribution of the

interfacial conductance does not break the cubic symmetry of the material, dilute concen-

tration tensors, effective conductivities, . . . are diagonal tensors with diagonal elements of

equal value, and they can be described by one of these elements.

The behaviour of the replacement conductivity and the dilute replacement concentra-

tion tensor can be divided into 5 cases: r ≪ rc, r < rc, r ≈ rc, r > rc and r ≫ rc.

When r ≪ rc, the inclusion behaves as a void, the replacement conductivity is zero and

the diagonal elements of the replacement dilute inclusion concentration tensor are greater

than unity. When r < rc, see table 4.3, the replacement conductivity is smaller than the

conductivity of the matrix, and the diagonal elements of the replacement dilute inclusion

concentration tensor are higher than unity, i.e., the particle does not succeed in increasing
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the effective thermal conductivity of the composite. When r ≈ rc, see table 4.4, the diag-

onal elements of the replacement dilute inclusion concentration tensor are approximately

1, and the replacement conductivity approaches the value of the conductivity of the ma-

trix, in other words the composite behaves like a homogeneous material. If r > rc, see

table 4.5, the replacement conductivity is higher than that of the matrix, and the diag-

onal terms of the replacement dilute inclusion concentration tensor are lower than unity,

i.e., the reinforcements do increase the effective conductivity of the composite. If r ≫ rc

the replacement conductivity approaches the conductivity of the inclusion and the diag-

onal terms of the replacement dilute inclusion concentration tensor approach the dilute

concentration tensor, i.e., the composite behaves as a composite with perfect interfaces.

This behaviour of Ā(i,r)
dil is similar to the one obtained for the same material properties

but spherical reinforcements. For this case the Ā(i,r)
dil obtained are diagonal tensors, recall

that the conductivities are isotropic. Therefore, equation (3.29) can be decomposed into

three uncoupled scalar equations:

Ā(i,r)
dil (i, i) =

1

1 + S(i, i)
(

K(i,r)(i,i)

K(m)(i,i)
− 1

) (4.1)

which are monotonously decreasing functions of the conductivity contrast, which tends to

zero when K(i,r)(i, i) → ∞, and which equals 1 when K(i,r)(i, i) = K(m)(i, i). Furthermore

Ā(i,r)
dil (i, i) → 1.5 when K(i,r)(i, i) → 0, and Ā(i,r)

dil (i, i) → 3K(m)(i, i)

2K(m)(i, i) + K(i)(i, i)
≈ 0.31266

when K(i,r)(i, i) → K(i)(i, i). These values approach the correspondent values, 1.44 and

0.34, obtained for cubo–octahedral reinforcements, see tables 4.3 and 4.5. Nevertheless,

the shape effect can be observed.

The behaviour of Ā(i,r)
dil with the volume fraction and the boundary conditions follows,

almost, a clear pattern. In the following, the boundary conditions are arranged in a natural

order: UHFBC ≤ PBC ≤ UTGBC. Let’s call this order boundary condition ordering. A

variable increases its value with the boundary condition ordering, when the value of this

variable is higher for the UTGBC than for the PBC, and higher for the PBC than for

the UHFBC. For r < rc, Ā(i,r)
dil decreases with the volume fraction and with the boundary

condition ordering. For r > rc, Ā(i,r)
dil increases with the volume fraction and the boundary

condition ordering, as observed in tables 4.3–4.5. However, some exceptions to this pattern

can be observed, mainly in the UTGBC case. Because surface integrals at the boundaries

of the cube are needed for extracting the replacement tensors in this case, this behaviour

may be due to small numerical errors as explained above.
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To explain the above trends, the following equation which is analogous to equation

(3.23):

Ā(i,r)
dil = R(i,r)B̄(i,r)

dil K∗
dil (4.2)

is needed. For the material studied all matrices are diagonal with equal components,

therefore, equations (3.17), (3.7) and (4.2) can be reduced to scalars. If we let all the

variables vary, the following equations are obtained:

∆Ā(i,r)
dil (i, i) = R(i,r)(i, i)

[
B̄(i,r)(i, i)∆K∗

dil(i, i) + . . .

... + ∆B̄(i,r)(i, i)K∗
dil(i, i) + ∆B̄(i,r)(i, i)∆K∗,dil(i, i)

]

∆q∗
dil(i, i) = ∆K∗

dil(i, i)d
∗
dil(i, i)

∆B̄(i,r)(i, i) =
∆q(i)−B̄(i,r)(i,i)∆q∗

dil(i,i)

q∗
dil(i,i)+∆q∗

dil(i,i)

(4.3)

where Ā(i)(i, i), R(i)(i, i), B̄(i)(i, i),... are the initial values , and ∆Ā(i)(i, i), ∆R(i)(i, i),

∆B̄(i)(i, i),... are the values of the increment of the variables. Recall, that the effective

thermal gradient has been considered constant in all the unit cells, and therefore its incre-

ment is always zero. Note that the effective thermal gradient can be kept constant without

loss of generality because of the isotropy of the material studied. Combining equations

(4.3), the following result can be obtained:

∆Ā(i,r)(i, i) =
∆q(i)

q∗
dil(i, i) + ∆q∗

dil(i, i)
∆K∗

dil(i, i) (4.4)

which will be used in the following for studying the influence of the boundary conditions

and the volume fraction. Note that for very small volume fractions, the increment of the

heat flux in the inclusion and the effective conductivity may be very small, which may

produce an increment of Ā(i,r)
dil that is very small and comparable to numerical fluctuations.

The influence of the volume fraction depends on the radius of the particle:

• For r < rc: As the replacement conductivity of the particle is smaller than the

conductivity of the matrix, if the volume fraction increases, the dilute effective con-

ductivity decreases. The higher the volume fraction, the higher the averaged flux in

the inclusion. Obviously, the effective heat flux won’t change sign. Therefore Ā(i,r)

decreases with the volume fraction.

• for r = rc: the material behaves as a homogeneous material and the replacement

tensors are not affected by the volume fraction.



CHAPTER 4. THERMAL CONDUCTION BEHAVIOUR OF DRMMCS 84

• For r > rc: In this case, the replacement conductivity of the inclusion is bigger

that the conductivity of the matrix and therefore the dilute effective conductivity

increases with the volume fraction. As the effective heat flux and the average heat

flux in the inclusion increase as well, it is clear that Ā(i,r) increases with the volume

fraction.

The behaviour of Ā(i,r)
dil for the different boundary conditions depends, too, on the radius

of the particle. The dilute conductivity increases with the boundary condition, see section

3.3.3. The increment of the effective heat flux does not change the sign of the effective

heat flux. The increment of the average heat flux in the inclusion depends on the radius

of the inclusion. The higher the boundary condition ordering, the higher the effective heat

flux, recall that the effective thermal gradient is considered a constant. If r > rc it is clear

that the average heat flux in the inclusion increases and therefore Ā(i,r)
dil increases with the

boundary condition ordering. If r < rc the behaviour of Ā(i,r)
dil depends on the sign of the

increment of the average heat flux.

Whilst the behaviour of the Ā(i,r)
dil can be more or less predicted, the behaviour of K(i,r)

is more complex and there is no clear pattern. This may be due to the complex form of the

consistency condition, equation (3.44). Furthermore, it can be noted that the replacement

conductivity does not necessarily obtain its minimum and maximum values for natural and

essential boundary conditions, respectively.

For a dilute composite, the same results must be obtained independently of the bound-

ary conditions used. As observed in tables 4.3–4.5, up to volume fractions of 0.01 the

results obtained are very similar for both the replacement conductivity and the replace-

ment gradient concentration tensor. For volume fraction smaller than 0.01, the particle

does not “feel” the boundary conditions and the values of Ā(i,r)
dil and K(i,r) remain constants.

In other words, the microfields in the particle and the surrounding matrix are not affected

by the boundary conditions for volume fraction smaller than 0.01, as can be seen in figures

4.3–4.5.

In figures 4.3–4.5 fringe plots of the heat flux magnitude in dilute volume elements

exposed to thermal loadings in horizontal direction are plotted, the boundary conditions

applied being UTGBC, PBC, and UHFBC respectively. In each row, fringe plots for UC

reinforced with particles of the same radius are represented for r < rc, r ≈ rc, and r > rc

(from top to bottom). All the volume elements in a row are exposed to the same thermal

loading so that they can be compared. The columns represent different volume fractions,

0.0001, 0.001, 0.01 and 0.1 (from left to right). In all the pictures it can be observed how
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Table 4.3: Dilute replacement thermal gradient concentration tensor, Ā(i,r)
dil , and replace-

ment conductivity tensor, K(i,r), of dilute volume elements (see figure 4.2 (left)) as a function

of the reinforcement volume fraction (VF), and the boundary conditions used to calculate

it: Periodic boundary conditions (PBC), uniform heat flux boundary conditions (UHFBC),

and uniform thermal gradient boundary conditions (UTGBC). The isotropic tensors are

represented by 1 term. Material parameters follow tables 4.1 and 4.2. Case: r < rc.

Ā(i,r)
dil (i, i)[ ]

VF [ ] 0.00001 0.0001 0.001 0.01 0.1 0.2

UTGBC 1.43950 1.43945 1.43874 1.43219 1.36924 1.30588

PBC 1.43951 1.43947 1.43891 1.43388 1.38829 1.34799

UHFBC 1.43159 1.43691 1.43624 1.43377 1.40240 1.37050

K(i,r)(i, i) [W/Km]

VF [ ] 0.00001 0.0001 0.001 0.01 0.1 0.2

UTGBC 35.7340 35.7335 35.7342 35.7293 35.6665 35.5170

PBC 35.7340 35.7335 35.7341 35.7266 35.5421 35.1348

UHFBC 35.9316 35.7977 35.8051 35.7765 35.6825 35.5872
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Table 4.4: Dilute replacement thermal gradient concentration tensor, Ā(i,r)
dil , and replace-

ment conductivity tensor, K(i,r), of dilute volume elements (see figure 4.2 (left)) as a function

of the reinforcement volume fraction (VF), and the boundary conditions used to calculate

it: Periodic boundary conditions (PBC), uniform heat flux boundary conditions (UHFBC),

and uniform thermal gradient boundary conditions (UTGBC). The isotropic tensors are

represented by 1 term. Material parameters follow tables 4.1 and table 4.2. Case: r ≈ rc.

Ā(i,r)
dil (i, i)[ ]

VF 0.00001 0.0001 0.001 0.01 0.1 0.2

UTGBC 0.98976 0.98976 0.98991 0.99036 0.99759 1.00838

PBC 0.98973 0.98976 0.98990 0.99028 0.99905 1.01414

UHFBC 0.98959 0.98986 0.99022 0.99016 0.99323 0.99860

K(i,r)(i, i) [W/Km]

VF 0.00001 0.0001 0.001 0.01 0.1 0.2

UTGBC 273.193 273.200 273.156 273.240 273.882 275.950

PBC 273.205 273.200 273.156 273.241 273.782 275.378

UHFBC 273.242 273.171 273.063 273.205 273.262 271.654
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Table 4.5: Dilute replacement thermal gradient concentration tensor, Ā(i,r)
dil , and replace-

ment conductivity tensor K(i,r) of dilute volume elements (see figure 4.2 (left)) as a function

of the reinforcement volume fraction (VF), and the boundary conditions used to calculate

it: Periodic boundary conditions (PBC), uniform heat flux boundary conditions (UHFBC),

and uniform thermal gradient boundary conditions (UTGBC). The isotropic tensors are

represented by 1 term. Material parameters follow tables 4.1 and table 4.2. Case: r > rc.

Ā(i,r)
dil (i, i)[ ]

VF 0.00001 0.0001 0.001 0.01 0.1 0.2

UTGBC 0.34120 0.34124 0.34153 0.34429 0.37513 0.41879

PBC 0.34121 0.34124 0.34146 0.34363 0.36774 0.40160

UHFBC 0.34077 0.34486 0.34401 0.34500 0.35800 0.37790

K(i,r)(i, i) [W/Km]

VF 0.00001 0.0001 0.001 0.01 0.1 0.2

UTGBC 1676.23 1676.23 1676.20 1676.22 1677.18 1679.59

PBC 1676.23 1676.23 1676.20 1676.24 1678.12 1682.25

UHFBC 1678.52 1658.76 1663.45 1665.84 1677.45 1668.52
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Figure 4.3: Fringe plots of the heat flux magnitude in the matrix of DRMMCs in a central section of volume elements

exposed to a unit thermal gradient in horizontal direction. Material parameters follow tables 4.1 and table 4.2. Volume

fractions: 0.0001, 0.001, 0.01 and 0.1 (from left to right), and particle radii: r < rc, r ≈ rc, and r > rc (from top to

bottom), all the UCs in the same row have the same particle radius. TGUBC are applied to all the volume elements.
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Figure 4.4: Fringe plots of the heat flux magnitude in the matrix of DRMMCs in a central section of UCs exposed to

a unit thermal gradient in horizontal direction. Material parameters follow tables 4.1 and table 4.2. Volume fractions:

0.0001, 0.001, 0.01 and 0.1 (from left to right), and particle radii: r < rc, r ≈ rc, and r > rc (from top to bottom), all the

UCs in the same row have the same particle radius. PBC are applied to all the UCs.
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Figure 4.5: Fringe plots of the heat flux magnitude in the matrix of DRMMCs in a central section of volume elements

exposed to a unit heat flux in horizontal direction. Material parameters follow tables 4.1 and table 4.2. Volume fractions:

0.0001, 0.001, 0.01 and 0.1 (from left to right), and particle radii: r < rc, r ≈ rc, and r > rc (from top to bottom), all the

UCs in the same row have the same particle radius. HFUBC are applied to all the volume elements.
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Figure 4.6: Estimates of the effective conductivity of a DRMMC with a volume fraction of

0.34 using a RMTM with material parameters following tables 4.1 and 4.2, as a function

of the volume fraction and the boundary conditions of the numerical models used for

obtaining the replacement tensors.

the microfields in the inclusion are affected by the boundary conditions, the “worst” case

being r > rc because the microfields are most inhomogeneous. The PBC case, figure 4.4,

has a clear physical meaning. As the volume fraction increases, the particle “feels” the

presence of the neighboring particles, and the field in its surroundings is clearly perturbed.

Below a volume fraction of 0.01, the influence of the boundary conditions is negligible.

The replacement tensors obtained from the dilute volume elements were used to esti-

mate the effective conductivity of the material studied with a reinforcement volume fraction

of 0.34, see figure 4.6. As can be observed the estimated effective conductivity does not

change for volume fractions of the volume elements below 0.01. For volume fractions higher

than 0.01 the influence becomes noticeable for r > rc. This indicates that the
1

fdil
term in

the consistency relations, eqn. (3.44), can account for volume fraction effects only in the

dilute range. For all volume fractions the effective conductivities using the replacement

tensors obtained with essential and natural boundary conditions bound the corresponding

effective conductivities using the replacement tensor obtained with PBC.
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Therefore, it can be concluded, that the “diluteness” of the volume element used to cal-

culate the replacement tensors does not play an important role on the effective conductivity

of the composite, provided the value of the dilute volume fraction is below certain limits.

For the material tested UCs with a volume fraction smaller than 0.01 can be considered

dilute for linear heat conduction.

The discontinuity of the normal vector at edges on the surface of the diamond may

lead to some numerical problems when implementing the interfacial conductance into FE

models. Recall that the nodes at the edges do not have a clearly defined normal. To study

this effect, a mesh refinement study was done.

The same dilute volume elements, see figure 4.2 (left), with a dilute volume fraction of

approximately 0.001, as in the previous study are used. Note that for the volume fraction

used, the results are independent of the applied boundary conditions. The dilute volume

elements were meshed using different mesh densities, described by the number of elements

per edge of the cubo–octahedral particles. In table 4.6, the dilute concentration tensors of

DRMMCs are presented as functions of the mesh density. Whilst K(i,r) decreases with the

mesh density, there is no clear pattern of the evolution of Ā(i,r)
dil . For the values studied, the

influence is smaller than for changes of the volume fractions of the dilute volume elements.

In figure 4.7, the effective conductivity of the material was estimated using the re-

placement tensors obtained for the different mesh densities. The influence in the results is

negligible, even for low mesh densities.

It can then be concluded that the mesh densities do not have a major influence on the

estimates obtained with the method, provided the meshes are sufficiently fine to capture

the geometry of the particle.

In order to check the numerical evaluation of the replacement tensors, the RMTM

and the Hasselman–Johnson method were applied to a material reinforced with spherical

particles and with an homogeneous distribution of the interfacial conductance, using the

thermal conductivities listed in table 4.1, and an isotropic thermal conductance of 27.7

MW/Km2. Recall that for this case both methods should lead to exactly the same results,

because the only difference between them is that for the RMTM the replacement tensors

are calculated numerically, and for the other method they are calculated analytically, see

section 3.2.2.1. Evidently, the replacement concentration tensors could be obtained ana-

lytically for this case. In figure 4.8 both methods are compared for different reinforcement

volume fractions and three different particle radii: r < rs
c, r = rs

c, and r > rs
c, where

rs
c = 9.85µm is the critical radius for spherical particles, which can be obtained using
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Table 4.6: Dilute replacement thermal gradient concentration tensor, Ā(i,r)
dil , and replace-

ment conductivity tensor, K(i,r), of dilute volume elements (see figure 4.2 (left)) as a func-

tion of the number of elements per edge of the cubo–octahedral particles used to mesh it.

Material parameters follow tables 4.1 and 4.2. The isotropic tensors are represented by 1

term.

Ā(i,r)
dil (i, i) [ ]

Edge elements 2 4 6 7 8 10 20

r < rc 1.42952 1.43714 1.43888 1.43934 1.43992 1.44022 1.44075

r ≈ rc 0.98232 0.98753 0.98944 0.98951 0.99001 0.99033 0.99084

r > rc 0.34123 0.34129 0.34122 0.34124 0.34120 0.34122 0.34127

K(i,r)(i, i) [W/Km]

Edge elements 2 4 6 7 8 10 20

r < rc 35.9503 35.7865 35.7463 35.7353 35.7215 35.7144 35.7017

r ≈ rc 277.282 274.389 273.362 273.326 273.070 272.909 272.655

r > rc 1681.23 1677.81 1676.57 1676.26 1675.94 1675.63 1675.01
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Figure 4.7: RMTM estimates of the effective conductivity of a DRMMC with a volume

fraction of 0.34, material parameters follow tables 4.1 and 4.2, as a function of the number of

elements per edge used for calculating the replacement tensors and the size of the particles.

The volume elements used for obtaining the replacement tensors have a volume fraction of

0.001.

equation (3.43). For r < rs
c the replacement conductivity is smaller than the conductivity

of the matrix, and, therefore, as the volume fraction increases the effective conductivity

decreases, the opposite effect can be observed for r > rs
c. When r = rs

c, the replacement

conductivity of the particle equals the conductivity of the matrix, the composite behaves

as a homogeneous material and the effective conductivity does not change with the vol-

ume fraction. As observed in the figure, both methods give rise to the same results for

all the scenarios studied. There are only small differences, not resolved in figure 4.8, for

high volume fractions, which can be explained because of small numerical errors, i.e., the

spheres are meshed using quadratic tetrahedra. It is worth noting that this method makes

physical sense only left of the vertical line plotted in the graphic. Recall that although

the Mori–Tanaka methods do not have an intrinsic length scale and they fill the space

with inclusion of different size, see figure 3.3, in this case an intrinsic length scale has been

introduced when calculating the replacement tensors and the limiting volume fraction for

spheres of equal size holds.
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Figure 4.8: Estimates of the effective conductivity of a sphere reinforced composite with

material parameters following tables 4.1 and a homogeneous interfacial conductance of 27.7

MW/Km2, using the RMTM with numerical evaluation of the replacement tensors and the

Hasselman–Johnson models.

For further checking, the model is applied to spheres and compared with some

other well-established micromechanical approaches such as the differential scheme and the

Torquato/Rintoul 3–point bounds, compare section 3.2.1.3. The results are presented

in figure 4.9. The RMTM (which is equivalent to the Hasselman–Johnson model) clearly

captures the size effect of the material. When r = rs
c the material behaves as a homogeneous

material and all the micromechanical approaches give rise to the same results. For r > rs
c

the RMTM does not fall within the Torquato/Rintoul–Bounds. This is not surprising

because the Torquato/Rintoul–Bounds are 3–point bounds, whilst the RMTM is a Mori–

Tanaka method, and Mori–Tanaka methods coincide with the lower Hashin–Shtrikman

bound (which is not within the Torquato/Rintoul–Bounds) for two–phase composites with

ideal interphases, see section 3.2.1.3, when the conductivity of the reinforcement is higher

than the conductivity of the matrix. In contrast, the differential scheme falls within the

bounds for the case considered, but it is closer to the upper one, which is not the behaviour

expected for composites with matrix topology [151]. For r < rs
c the RMTM falls within

the bounds. The differential scheme estimates are lower than the RMTM in this case, but
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Figure 4.9: Comparison of the estimates of the effective conductivity of a sphere rein-

forced composite with material parameters following table 4.1 and a homogeneous in-

terfacial conductance of 27.7 MW/Km2, obtained using a differential scheme (DS), the

Torquato/Rintoul 3–point Bounds (T/R bounds) and a RMTM, as a function of the par-

ticle radius.

the difference is small.

It can be concluded that the RMTM is in good agreement with the most commonly

used micromechanical approaches, but tends to give somewhat low estimates for r > rs
c.

4.3.1.2 Examples and discussion

The RMTM allows quick estimates of the effective conductivity of particle reinforced com-

posites with inhomogeneous distribution of the interfacial conductance. It can be used

in advance to study the effects of the size and the shape of the particles as well as any

interfacial conductance scenario. In the following, some interface conductance scenarios

and shape studies are presented.

In figure 4.10, different interfacial scenarios are studied for a DRMMC with proper-

ties following table 4.1 and a reinforcement volume fraction of 0.34. The case “RMTM,

Perfect” represents perfect interfacial conductances, “RMTM, Voids” vanishing interfacial

conductances, “RMTM, Inho {100}” finite conductances for the {100} faces and perfect
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Figure 4.10: Estimates of the effective conductivity for different interfacial conductance

scenarios of a DRMMC with material parameters following table 4.1, as a function of the

particle radius.

conductances for the {111} faces, “RMTM, Inho {111}” finite conductances for the {111}
faces and perfect conductances for the {100} faces, and “RMTM, Inho all” finite conduc-

tances for the {100} and {111} faces, with all of the conductance values following table

4.2. Note that the conductance scenarios chosen do not break the cubic symmetry of the

dilute volume elements and, therefore, orientational averaging is not needed. The “RMTM,

Perfect” and “RMTM, Voids” cases do not show a size dependence. The rest of the curves

show a sigmoid dependence on the radius of the particle. Each case has a different critical

radius. As the finite conductance on the {100} faces is higher than the finite conductance

in the {111} faces, and the area fraction of the {100} faces is considerable smaller than

that of the {111} faces, the estimates for the effective conductivity are correspondingly

higher.

For a specific size of a diamond with an inhomogeneous distribution of the interfacial

conductance, it is possible to find a diamond with the same dilute effective conductivity

but with a homogeneous distribution of the conductance. This can be done only if the in-

homogeneous distribution of the conductance has at least cubic symmetry. The equivalent

homogeneous conductance, hβ
r=
Equi, homo, can be obtained by interpolation between suitably

chosen test values for which the dilute effective conductivity is evaluated. For the mate-
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Figure 4.11: Comparison of the effective conductivity of a DRMMC with material pa-

rameters following table 4.1 for homogeneous and inhomogeneous distributions of the in-

terfacial conductances for different particle radius. “RMTM, Inho all” refers to an inho-

mogeneous distribution of the interfacial conductance following table 4.2, and “RMTM,

Homo all” refers to a homogeneous distribution of the interfacial conductance with value

of hβ
r=100µm
Equi, homo = 27.7 MW/Km2.

rial studied, a DRMMC with cubo–octahedral particles and material properties following

tables 4.1 and 4.2, the equivalent homogeneous conductance at r = 100µm was found to

be 27.7 MW/Km2. Note that the equivalent conductance depends on the radius of the

particle. In figure 4.11 the estimates of the RMTM for a material with an inhomogeneous

distribution of the conductance, denoted as “Inho all”, are compared with the estimates for

the same material but with a homogeneous conductance of hβ
r=100µm
Equi, homo, denoted as “Homo

all”. The estimates are very similar, but there are some differences for radii in the range

from 1µm to 100µm, where the estimates of the “Homo all” case are slightly lower than the

estimates of the “Inho all” case. Therefore the critical radius is slightly different for the

“Homo all” case, rHomo
c = 10.34µm. Nevertheless, the “Homo all” case can be considered

as a good approximation for the whole range of radii.

The homogeneous equivalent interfacial conductance allows to directly compare spheres

and diamonds. In figure 4.12 DRMMCs with the same material parameters but different

shapes are compared. The results are very similar, there are only some small differences
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Figure 4.12: Comparison of the effective conductivity of spherical and cubo–octahedral

reinforced composites with material parameters following table 4.1 and an interfacial con-

ductance of 27.7 MW/Km2

for r ≫ rHomo
c and r ≪ rHomo

c . For the radius range where the estimates for the “Homo all”

case differ noticeably from the estimates of the “Inho all” case, the estimates of spheres do

not increase this difference.

Therefore, it can be concluded that for the material studied, DRMMC with material

properties following tables 4.1 and 4.2, spheres with a conductance equal to the equivalent

conductance of the diamond at r = 100µm are a very good approximation. This can be

used to study distributions of particles, see section 4.4. The same procedure can be applied

to more general particle shapes such as truncated octahedra.
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4.3.2 Numerical Methods

In this section, PMAs and Windowing methods, see section 3.3, are used to study the ther-

mal conduction behaviour of DRMMCs. These methods are not only intended for checking

the semianalytical models in section 4.3.1, they also offer the possibility of studying the

microscopic behaviour of these materials in detail.

4.3.2.1 Generation of the arrangements

For the present work periodic and non-periodic volume elements containing randomly ori-

ented positioned particles of equal size and shape were used.

Periodic arrangements of equally sized spheres were generated by the two-step algorithm

of Segurado [139], which involves random sequential insertion followed by a Monte-Carlo

compaction procedure. Randomly oriented identical regular cubo-octahedra as shown in

fig. 4.1(left) were then inscribed into the spheres, which allowed particle volume fractions of

some 0.34 to be attained. This strategy provides for the generation of unit cells that contain

cubo-octahedral particles at different positions and orientations, such as cell UCDA. The

cell UCDB contains regular cubo-octahedra at the same positions as UCDA, but with

different orientations. Volume UCS contains spheres at the same positions as the above,

see fig. 4.13. Together with the capability of prescribing different or equal conductances

at the {100} and {111} faces of the diamond particles, the resulting family of models

allows various aspects of the phase geometry to be studied in detail at both the micro- and

macro–scales. The ideal geometry of UCS has a nominal volume fraction of 0.34, but due

to meshing effects the particle volume fraction of the actual cell was 0.339.

The main limitation to the models described above lie in the relatively low particle

volume fraction that can be attained, which is little more than half of the diamond volume

fractions reported for actual samples [111]. Alternatively, algorithms for generating densely

packed cubo–octahedral particles, see [57], were used for studying non–periodic volume

elements with volume fractions of up to 0.445, such as cell UCNP in figure 4.14. It is worth

noting that the algorithm can generate volume elements with particle volume fractions of

up to 0.65, but the meshing of these phase arrangements is challenging.

A further difficulty lies in the limited number of particles that could be handled within

the constraints of available computer resources, an issue that is exacerbated in PMAs by

the large number of multi-point constraints required for implementing periodicity boundary

conditions, which tend to degrade the efficiency of Finite Element solvers. As discussed in
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Figure 4.13: Periodic multi-particle unit cells, UCDA (left), UCDB (middle) and UCS

(right), used in the analysis. The three unit cells have, approximately, the same reinforce-

ment volume fraction of f = 0.34 and use the same particle centers.

sections 4.3.2.2 and 4.3.2.3 some anisotropy is present in the overall conductivities predicted

for the three configurations shown in fig. 4.13, which indicates that the unit cells are

too small for being proper reference volume elements for linear heat conduction. The

same applies to elasticity problems, see section 5.2. Even though ensemble averaging over

different configurations can be employed for improving the predictions of the macroscopic

properties, unit cells containing a higher number of particles are clearly desirable.

4.3.2.2 Periodic Microfield Approaches

The unit cells UCDA, UCDB and UCS, see figure 4.13, together with the appropriate

periodicity boundary conditions were used for studying details of the microgeometry such

as orientation, size and shape of the reinforcements or distributions of the interfacial con-

ductances. Sizes of the diamonds studied were 1, 10 and 1000 µm, r < rc, r ≈ rc and

r > rc, respectively. Additionally 100 µm size particles were used because the equivalent

homogeneous conductance was evaluated for this particle size. Recall, that as all the UCs

used have the same volume fraction, the corresponding radii of the spheres are 0.88, 8.8,

888.8 and 88.8 µm. The scenarios studied were “Perfect”, which refers to perfect inter-

facial conductances, “Inho all” that refers to finite conductances following table 4.2, and

“Homo all” which refers to a homogeneous distribution of the conductance with a value of

hβ
r=100µm
Equi, homo = 27.7 MW/Km2.

The isotropy of the unit cells is studied in tables 4.7–4.10. In these tables, estimates of
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Figure 4.14: Non–periodic volume element, UCNP, used in the analysis. The volume

element has a reinforcement volume fraction of f = 0.445.

the effective conductivity of the material for temperature gradients in 1–, 2– and 3– direc-

tions are compared for different interfacial conductance scenarios and particle radii. The

largest differences are found for the scenario of perfect interfaces, for which the conductiv-

ity contrast is highest. The anisotropy of the results for the inhomogeneous distribution

of the interfacial conductance is slightly higher than the anisotropy of the results for the

homogeneous distribution of the interfacial conductance, the difference being smaller for

bigger radii. This behaviour is similar to the behaviour of the replacement conductivity,

see figure 4.11. For the scenarios with imperfect interfaces, the higher the radius the big-

ger the anisotropy. This is because the replacement conductivity is bigger and therefore

the conductivity contrast is bigger. The predictions obtained for unit cells UCDA and

UCDB differ only by a small amount, indicating that the orientation of the particles and

consequent local changes in the flux distributions have little influence in the macroscopic

anisotropy. The estimates in 1–direction give the highest values in almost all the cases,

which shows the importance of the positions and that the unit cell is not a proper represen-

tative volume element. The differences in the effective conductivity are slightly higher for

the diamond unit cells than for UCS, which indicates that UCS is slightly more isotropic

than the unit cells with polyhedral particles, as expected because of the additional local

perturbations due to vertices and edges. For all the cases considered the differences in the

effective conductivities are below 1%, and therefore these conductivities can be considered

as valid estimates.
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Table 4.7: Effective conductivities, K∗ [W/Km], obtained by applying thermal gradients in

1–, 2– and 3–directions to the unit cells UCDA, UCDB, and UCS (see fig.4.13) for different

conductance scenarios, a diamond volume fraction of f = 0.34, and r < rc (r=1 µm for

diamonds and r=0.88 µm for spheres).

K∗
1(i, i) K∗

2(i, i) K∗
3(i, i) K∗

avg(i, i)

UCDA Perfect 471.9 467.3 467.9 469.0

Homo all 145.0 144.3 144.4 144.6

Inho all 150.0 149.3 149.4 149.6

UCDB Perfect 472.7 468.7 467.9 469.8

Homo all 144.8 144.2 144.5 144.5

Inho all 149.8 149.2 149.5 149.5

UCS Perfect 459.7 457.2 456 457.6

Homo all 146.6 146.2 146.1 146.3

Table 4.8: Effective conductivities, K∗ [W/Km], obtained by applying thermal gradients in

1–, 2– and 3–directions to the unit cells UCDA, UCDB, and UCS (see fig.4.13) for different

conductance scenarios, a diamond volume fraction of f = 0.34, and r ≈ rc (r=10 µm for

diamonds and r=8.8 µm for spheres).

K∗
1(i, i) K∗

2(i, i) K∗
3(i, i) K∗

avg(i, i)

UCDA Perfect 471.9 467.3 467.9 469.0

Homo all 234.6 234.5 234.6 234.6

Inho all 249.4 249.1 249.2 249.2

UCDB Perfect 472.7 468.7 467.9 469.8

Homo all 234.5 234.6 234.6 234.6

Inho all 249.1 249.1 249.1 249.1

UCS Perfect 459.7 457.2 456.0 457.6

Homo all 229.2 229.2 229.2 229.2
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Table 4.9: Effective conductivities, K∗ [W/Km], obtained by applying thermal gradients in

1–, 2– and 3–directions to the unit cells UCDA, UCDB, and UCS (see fig.4.13) for different

conductance scenarios, a diamond volume fraction of f = 0.34, and r > rc (r=100 µm for

diamonds and r=88 µm for spheres).

K∗
1(i, i) K∗

2(i, i) K∗
3(i, i) K∗

avg(i, i)

UCDA Perfect 471.9 467.3 467.9 469.0

Homo all 405.4 403.0 403.4 404.0

Inho all 406.5 404.1 404.6 405.1

UCDB Perfect 472.7 468.7 467.9 469.8

Homo all 405.7 403.6 403.3 404.2

Inho all 406.7 404.8 404.2 405.2

UCS Perfect 459.8 457.2 456.0 457.7

Homo all 394.7 393.5 393.0 393.7

Table 4.10: Effective conductivities, K∗ [W/Km], obtained by applying thermal gradients

in 1–, 2– and 3–directions to the unit cells UCDA, UCDB, and UCS (see fig.4.13) for

different conductance scenarios, a diamond volume fraction of f = 0.34, and and r > rc

(r=1000 µm for diamonds and r=880 µm for spheres).

K∗
1(i, i) K∗

2(i, i) K∗
3(i, i) K∗

avg(i, i)

UCDA Perfect 471.9 467.3 467.9 469.0

Homo all 463.4 459.1 459.7 460.8

Inho all 463.1 458.8 459.4 460.4

UCDB Perfect 472.7 468.7 467.9 469.8

Homo all 464.1 460.3 459.7 461.4

Inho all 463.7 460.0 459.3 461.0

UCS Perfect 459.7 457.2 456.0 457.7

Homo all 451.6 449.4 448.2 449.7
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In tables 4.11–4.14, the average effective conductivities of the unit cells are compared

with the analytical methods described in section 4.3.1. If r < rc the replacement con-

ductivity of the inclusion is lower than the conductivity of the matrix, and therefore the

MTM–based methods are upper estimates of the solution. This does not hold for the

scenario with perfect interfacial conductances, because in this case the replacement con-

ductivity equals the conductivity of the inclusion and thus is higher than the conductivity

of the matrix, so that the MTM–based methods are a lower estimate. If r ≈ rc the be-

haviour is more complex. Recall that the critical radius of the spheres and the diamonds

for the homogeneous conductance scenario is higher than the radius used, whilst rc for the

inhomogeneous interfacial conductance scenario is below the radius used. Therefore, the

MTM-based methods are an upper estimate for all UCs for the homogeneous conductance

scenario, whilst they are a lower estimate for all UCs for the perfect and inhomogeneous

interfacial conductance scenarios. If r > rc the MTM-based methods are a lower estimate

for all UCs and interfacial conductance scenarios.

For all the radii and interfacial conductance scenarios studied, the difference between

the RMTM and PMAs are very small. The maximum deviation is 2% for the perfect

interfacial conductance scenario for the diamonds. As observed, the higher the conductivity

contrast the higher the deviation between the estimates of the RMTM and the unit cells.

The inhomogeneous distribution of the conductance causes a slight increase of the deviation

for all the radii studied except for r > rc.

The deviations between the RMTM and unit cells are smaller for UCS than for the unit

cells containing polyhedra. This is explained by the more homogeneous fields that occur

within and around the sphere. Recall that the RMTM are based on phase averages. The

orientation of the particles does not play a major role for the effective conductivity of the

composite.

Figures 4.15 – 4.18 concentrate on the distribution of microscopic heat fluxes in the

particles. In figure 4.15 and 4.16 the three unit cells shown in figure 4.13 are subjected

to thermal gradients acting in 3–direction, for the “Homo all” and “Inho all” scenarios,

respectively. The resulting intra–particle fluctuations of the fluxes are represented in terms

of averages and standard deviations. The spherical particles consistently show slightly

smaller particle averages and significantly smaller standard deviations of the fluxes than

do the cubo–octahedra. This behaviour is related to the fact that in dilute spheres the

microfields are homogeneous, whereas in polyhedra they are not. For all the unit cells the

averages and the standard deviations of the fluxes decrease with the radius, which is due
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Table 4.11: Comparison of effective conductivities, K∗ [W/Km], predicted by the unit

cells UCDA, UCDB and UCS (see fig.4.13), by the semi-analytical Mori–Tanaka model

(RMTM, cubo-octahedral particles), and by the Hasselman–Johnson model (HJ, spherical

particles) for different interfacial conductance scenarios for a diamond volume fraction of

= 0.34 and r < rc (r = 1 µm for diamonds and r = 0.88 µm spheres).

K∗
UCDA(i, i) K∗

UCDB(i, i) K∗
RMTM(i, i) K∗

UCS(i, i) K∗
HJ(i, i)

Perfect 469.0 469.8 461.4 457.6 453.0

Homo all 144.6 144.5 146.1 146.3 146.9

Inho all 149.6 149.5 151.3 — —

Table 4.12: Comparison of effective conductivities, K∗ [W/Km], predicted by the unit

cells UCDA, UCDB and UCS (see fig.4.13), by the semi-analytical Mori–Tanaka model

(RMTM, cubo-octahedral particles), and by the Hasselman–Johnson model (HJ, spherical

particles) for different interfacial conductance scenarios for a diamond volume fraction of

f = 0.34 and r ≈ rc (r = 10 µm for diamonds and r = 8.8 µm for spheres).

K∗
UCDA(i, i) K∗

UCDB(i, i) K∗
RMTM(i, i) K∗

UCS(i, i) K∗
HJ(i, i)

Perfect 469.0 469.8 461.4 457.64 453.0

Homo all 234.6 234.6 234.6 229.24 229.86

Inho all 249.2 249.1 249.2 — —
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Table 4.13: Comparison of effective conductivities, K∗ [W/Km], predicted by the unit

cells UCDA, UCDB and UCS (see fig.4.13), by the semi-analytical Mori–Tanaka model

(RMTM, cubo-octahedral particles), and by the Hasselman–Johnson model (HJ, spherical

particles) for different interfacial conductance scenarios for a diamond volume fraction of

f = 0.34 and r > rc (r = 100 µm for diamonds and r = 88 µm for spheres).

K∗
UCDA(i, i) K∗

UCDB(i, i) K∗
RMTM(i, i) K∗

UCS(i, i) K∗
HJ(i, i)

Perfect 469.0 469.8 461.4 457.7 453.0

Homo all 404.0 404.2 400.5 393.7 392.5

Inho all 405.1 405.2 401.0 — —

Table 4.14: Comparison of effective conductivities, K∗ [W/Km], predicted by the unit

cells UCDA, UCDB and UCS (see fig.4.13), by the semi-analytical Mori–Tanaka model

(RMTM, cubo-octahedral particles), and by the Hasselman–Johnson model (HJ, spherical

particles) for different interfacial conductance scenarios for a diamond volume fraction of

f = 0.34 and r > rc (r = 1000 µm for diamonds and r = 880 µm for spheres).

K∗
UCDA(i, i) K∗

UCDB(i, i) K∗
RMTM(i, i) K∗

UCS(i, i) K∗
HJ(i, i)

Perfect 469.0 469.8 461.4 457.7 453.0

Homo all 460.8 461.4 453.3 449.7 445.9

Inho all 460.4 461.0 453.6 — —
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to the conductivity contrast. The orientation of the particles does not seem to play an

important role either for the average values or for the standard deviations.

In figure 4.17 the unit cell UCDA is subjected to thermal gradients acting in 3–direction,

different interfacial conductance scenarios being studied. The perfect scenario, which is

size–independent, shows the biggest standard deviations because of the high conductivity

contrast. The inhomogeneous distribution of the interfacial conductance does not seem

to have an important effect for the cases studied except for r ≈ rc. For this case, the

differences in the average value are due to the different critical radii of the scenarios studied

some of which are below and some above the radius studied. The standard deviation for

the inhomogeneous distribution case is bigger because for this case there are two sets of

interfaces in different regimes. In 4.18 the same results for a radius of 100 µm are shown.

Recall that the conductance used in the “Homo all” scenario, hβ
r=100µm
Equi, homo, was calculated

for this radius. In this case, slightly higher averages and standard deviations are evident

in the inhomogeneous distribution of the interfacial conductance.



CHAPTER 4. THERMAL CONDUCTION BEHAVIOUR OF DRMMCS 109

0

200

400

600

800

1000

0 2 4 6 8 10 12 14 16 18 20 22 24

P
ar

ti
cl

e
H

ea
t

F
lu

x
,
q
(3

),
[W

/m
2
]

Particle’s identification number





r > rc

} r ≈ rc

} r < rc
b b b b b b b b b b b b b b b b b b b b
r r r r r r r r r r r r r r r r r r r r

b b b b b b b b b b b b b b b b b b b br r r r r r r r r r r r r r r r r r r r

b

b b

b
b b

b

b

b

b
b

b
b

b
b

b

b

b

b

b

r

r r

r r r
r

r

r

r

r

r
r

r
r

r

r

r

r

r

UCDA b

UCDB r

UCS +

Figure 4.15: Heat fluxes in the particles (means and standard deviations) predicted by

unit cells UCDA, UCDB and UCS (compare fig. 4.13) for different particle radii, for a

homogeneous interfacial conductance of 27.7 MW/Km2 and loading by a thermal unit

gradient acting in 3–direction.
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Figure 4.16: Heat fluxes in the particles (means and standard deviations) predicted by

unit cells UCDA and UCDB (compare fig. 4.13) for different particle radii and loading by

a thermal unit gradient acting in 3–direction. Material properties following tables 4.1 and

4.2 (Inho all case).
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Figure 4.17: Heat fluxes in the particles (means and standard deviations) predicted by

unit cell UCDA (compare fig. 4.13) for different particle radii and interfacial conductance

scenarios and loading by a thermal unit gradient acting in 3–direction.
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Figure 4.18: Heat fluxes in the particles (means and standard deviations) predicted by unit

cell UCDA (compare fig. 4.13) for different interfacial conductance scenarios and loading

by a thermal unit gradient acting in 3–direction (particle radius r = 100µm).
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4.3.2.3 Windowing methods

Actual DRMMCs for heat–sink applications are produced with high reinforcement volume

fractions, up to 80% [165], in order to achieve a high thermal conductivity. The generation

of periodic arrangements at these volume fractions is challenging. Tomographic techniques

can be used to obtain particle arrangements from the actual composites, but they are,

evidently, not periodic. Windowing methods do not need periodic arrangements for esti-

mating the conductivity of these materials, and, therefore, they are excellent candidates for

studying their behaviour at high volume fractions. Furthermore, windowing methods can

estimate the apparent conductivity of periodic arrangements at a slightly lower cost than

PMAs. In the following, windowing methods are applied to a periodic unit cell, UCDA, to

compare the results with those of periodic homogenization, and to a non–periodic volume

element, UCNP, with a higher volume fraction. The boundary conditions are denoted as

UTGBC for uniform temperature gradient boundary conditions (uniform essential BCs,

eqn. (3.82)), UHFBC for uniform normal heat flux boundary conditions (uniform natural

BCs, eqn. (3.83)), and MUBC for mixed uniform BCs. The MUBC conditions used in this

section correspond to essential boundary conditions on two parallel faces of the volume

element, and natural conditions on the other four faces, in other words the temperature is

kept constant on two parallel faces, the values of which are different, and the normal heat

flux in the other faces is set to zero, see [87; 123].

In tables 4.15–4.18, the estimates obtained for different loading directions and different

particle radii for cell UCDA are collected. The anisotropy of the results is higher than for

the periodic cases studied above.

In table 4.19 the averaged results are collected and compared with the estimates of

PMAs and RMTM. It can be observed that the full equivalence between PBC and MUBC

reported in [87] only holds for orthotropic or higher symmetry. There is a tendency for the

conductivities obtained with MUBC to be slightly higher than those generated with PBC.

The present results show that MUBC give valid results also for volume elements that have

some sub–orthotropic contributions to their geometry. The difference between the lower

und upper estimates decrease with decreasing radius. Such a behaviour, however, is not

observed for higher volume fraction of cell UCNP, see table 4.24.

In tables 4.20–4.23, the estimates obtained for different loading directions and different

particle radii for cell UCNP are presented. Due to numerical problems, the estimates could

not be calculated for all cases. The anisotropy of the results is, in general, smaller than

for UCDA.
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In table 4.24 the averaged results are collected and compared with the estimates of

the RMTM. For all the radii studied the Mori–Tanaka estimates are within the lower and

upper estimates obtained by windowing. For r > rc the windowing estimates using MUBCs

are closer to the upper than the lower estimate. The higher the conductivity contrast, the

higher the difference between the lower and upper estimates. For r ≈ rc, the upper and

lower estimates are not identical, but the differences between them are the smallest of all

the cases studied. For r < rc, the RMTM is closer to the lower estimate than for r ≈ rc,

but it is higher than the windowing estimate using MBCs. The upper estimate exceeds the

conductivity of the matrix. The fact that MUBC predictions, as expected, show somewhat

higher effective conductivity than RMTM for r > rc and the opposite behaviour for r < rc

indicates the validity of both methods at elevated reinforcement volume fractions.

Table 4.15: Apparent conductivities, K [W/Km], obtained by applying thermal gradients

in 1–, 2– and 3-directions to cell UCDA (see fig. 4.13) for different boundary conditions

with material properties following tables 4.1 and 4.2. Particle radius r=1 µm.

K∗
1(i, i) K∗

2(i, i) K∗
3(i, i) K∗

avg(i, i)

UTGBC 294.5 276.4 292.5 287.8

MUBC 153.5 150.0 150.4 151.3

UHFBC 131.0 127.8 132.5 130.4

Table 4.16: Apparent conductivities, K [W/Km], obtained by applying thermal gradients

in 1–, 2– and 3-directions to cell UCDA (see fig. 4.13) for different boundary conditions

with material properties following tables 4.1 and 4.2. Particle radius r=10 µm.

K∗
1(i, i) K∗

2(i, i) K∗
3(i, i) K∗

avg(i, i)

UTGBC 371.2 353.6 368.0 364.3

MUBC 260.4 254.7 254.8 256.6

UHFBC 245.9 245.4 248.2 246.5
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Table 4.17: Apparent conductivities, K [W/Km], obtained by applying thermal gradients

in 1–, 2– and 3-directions to cell UCDA (see fig. 4.13) for different boundary conditions

with material properties following tables 4.1 and 4.2. Particle radius r=100 µm.

K∗
1(i, i) K∗

2(i, i) K∗
3(i, i) K∗

avg(i, i)

UTGBC 489.6 475.7 487.0 484.1

MUBC 416.3 409.5 409.8 411.9

UHFBC 391.7 387.2 393.3 390.7

Table 4.18: Apparent conductivities, K [W/Km], obtained by applying thermal gradients

in 1–, 2– and 3-directions to cell UCDA (see fig. 4.13) for different boundary conditions

with material properties following tables 4.1 and 4.2. Particle radius r=1000 µm.

K∗
1(i, i) K∗

2(i, i) K∗
3(i, i) K∗

avg(i, i)

UTGBC 534.5 521.4 531.6 529.2

MUBC 471.2 463.2 464.0 466.1

UHFBC 443.4 436.4 443.1 441.0

Table 4.19: Comparison of apparent and effective conductivities, K [W/Km], predicted

with cell UCDA (see fig. 4.13) for different boundary conditions and by the semianalyti-

cal Mori–Tanaka model (RMTM, cubo–octahedral particles), for different radii. Material

properties follow tables 4.1 and 4.2.

UTGBC MUBC PBC UHFBC RMTM

r = 1µm < rc 287.8 151.3 149.6 130.4 151.3

r = 10µm ≈ rc 364.3 256.6 249.2 246.5 249.2

r = 100µm > rc 484.1 411.9 405.1 390.7 401

r = 1000µm > rc 529.2 466.1 460.4 441.0 453.6
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Table 4.20: Apparent conductivities, K [W/Km], obtained by applying thermal gradients

in 1–, 2– and 3-directions to cell UCNP (see fig. 4.14) for different boundary conditions

with material properties following tables 4.1 and 4.2. Particle radius r=1 µm.

K∗
1(i, i) K∗

2(i, i) K∗
3(i, i) K∗

avg(i, i)

UTGBC 287.6 273.9 271.0 277.5

MUBC 126.7 — 130.7 128.7

UHFBC 87.0 85.7 88.8 87.2

Table 4.21: Apparent conductivities, K [W/Km], obtained by applying thermal gradients

in 1–, 2– and 3-directions to cell UCNP (see fig. 4.14) for different boundary conditions

with material properties following tables 4.1 and 4.2. Particle radius r=10 µm.

K∗
1(i, i) K∗

2(i, i) K∗
3(i, i) K∗

avg(i, i)

UTGBC 384.0 377.9 374.3 378.7

MUBC 265.7 266.3 268.1 266.7

UHFBC 189.3 189.9 190.5 189.9

Table 4.22: Apparent conductivities, K [W/Km], obtained by applying thermal gradients

in 1–, 2– and 3-directions to cell UCNP (see fig. 4.14) for different boundary conditions

with material properties following tables 4.1 and 4.2. Particle radius r=100 µm.

K∗
1(i, i) K∗

2(i, i) K∗
3(i, i) K∗

avg(i, i)

UTGBC 570.0 571.9 573.7 571.9

MUBC 494.1 489.8 — 492.0

UHFBC 336.9 336.1 338.1 337.0
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Table 4.23: Apparent conductivities, K [W/Km], obtained by applying thermal gradients

in 1–, 2– and 3-directions to cell UCNP (see fig. 4.14) for different boundary conditions

with material properties following tables 4.1 and 4.2. Particle radius r=1000 µm.

K∗
1(i, i) K∗

2(i, i) K∗
3(i, i) K∗

avg(i, i)

UTGBC 664.1 669.0 674.6 669.2

MUBC 596.58 588.9 621.7 602.4

UHFBC 397.1 395.4 399.2 397.2

Table 4.24: Comparison of apparent and effective conductivities, K [W/Km], predicted

with cell UCNP (see fig. 4.14) for different boundary conditions and by the semianalyti-

cal Mori–Tanaka model (RMTM, cubo–octahedral particles), for different radii. Material

properties follow tables 4.1 and 4.2.

UTGBC MUBC UHFBC RMTM

r = 1µm < rc 277.5 128.7 87.2 129.2

r = 10µm ≈ rc 378.7 266.7 189.9 253.1

r = 100µm > rc 571.9 492.0 337.0 466.8

r = 1000µm > rc 669.2 602.4 397.2 546.2
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4.4 Polydisperse particle size distributions

Actual “monodisperse” composites do not have particles of exactly the same size, but the

particle sizes follow narrow statistical distributions. Furthermore, in order to obtain higher

volume fractions, different particles of sizes are commonly mixed, see [110]. In this section,

the effect of particle size distributions is studied in detail via a multiphase RMTM.

4.4.1 Methods

Among micromechanical methods, analytical or semianalytical methods are more suitable

for the problem at hand than numerical methods. Numerical methods are based on discrete

microgeometries which need a high number of particles to describe particle size distributions

that are not very sharp. The meshing of arrangements with particles of different size is

not trivial and can lead to meshes with extremely high numbers of nodes. Furthermore,

the generation of particle arrangements at high volume fractions is not trivial, either.

Within the semianalytical methods the RMTM can, in principle, be a solution, be-

cause it can take into account several descriptors of the material such as particle sizes and

shapes as well as interfaces. Furthermore, Mori–Tanaka methods can be easily extended to

studying multi–phase materials, see section 3.2.1.2.3. Nevertheless, for studying size distri-

butions of particles of general shape they may be quite expensive because three numerical

analyses are required per radius studied.

In section 4.3, it was shown that, for the material studied, a sphere with a homogeneous

interfacial conductance of suitable value is an excellent approximation for diamonds at all

particle radii. Furthermore, the RMTM for spheres with a homogeneous distribution of the

interfacial conductance embedded in an isotropic matrix is fully analytic, being equivalent

to the Hasselman–Johnson method in the monodisperse case. In the following, these results

are used for studying distributions of spherical particles with inhomogeneous distribution

of the interfacial conductance.

4.4.1.1 Multiphase MTM for spherical composites with interfacial resistance

In this method, the particles with different radii are considered as different classes of rein-

forcements. First the distribution of radii is divided into n classes, and then a multiphase

MTM (see section 3.2.1.2.3) is applied to the (n + 1)–phase material.
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For spherical particles of isotropic conductivity, K(p), interfacial conductance, hβ, and

radius, r, the replacement conductivity, K(p,r)(i, i), takes the form [10; 47]:

K(p,r)(i, i) = K(p)(i, i)
rhβ

rhβ + 2K(p)(i, i)
(4.5)

and the replacement dilute concentration tensor, Ā(p,r)
dil , follows from equation (3.28) as:

Ā(p,r)
dil (i, i) =

3K(m)(i, i)

2K(m)(i, i) + K(p,r)(i, i)
(4.6)

Combining equations (3.34), (3.35), (4.5) and (4.6), the effective conductivity follows

as:

K∗
M(i, i) = K(m)(i, i) +

∑N
j=1 f (j)

(
K(j,r)(i, i) −K(m)(i, i)

)
Ā(j,r)

dil (i, i)

f (m)
∑N

j=1 f (j)Ā(j,r)
dil (i, i)

(4.7)

Analogous explicit scalar equations can be derived for the transverse macroscopic

conductivity of composites reinforced by unidirectional continuous fibers that show non–

uniform diameters and interfacial resistances, see [20]. An analogous scheme for studying

the thermal conduction properties of composites with aligned reinforcements having inter-

facial conductances can be formulated in terms of replacement flux concentration tensors.

4.4.2 Examples and discussion

In this section the Mori–Tanaka expressions for composites reinforced by equiaxed particles

that show an interfacial resistance and follow prescribed size distributions, equations (4.5),

(4.6), and (4.7), are applied to modelling a material the properties of which follow tables

4.1 and 4.2. The effect of the statistical distributions used to model the particle size

distribution is studied.

Independently of the distribution used to model the particles size, the RMTM needs as

input a set of radii and the reinforcement volume fraction corresponding to the particles

associated with each radius within this set. This function can be derived from any statistical

distribution. In this section monomodal log–normal distributions of the particle radii and

a “cropped” distribution of the particle radii are studied.

For monomodal log-normal distributions of the particle radii, the probability density

function, cdf, reads:
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cdf(r) =
1

rcσ
√

2π
e
−

“

ln(r)−cµ
√

2cσ

”2

(4.8)

where cσ and cµ are the standard deviation and the mean of the variables’ logarithm.

Alternatively cdf(r) can be defined in terms of the span, cS, and the median, cM. The span

is defined as the value of the random variable below which 90% of the cases are found

minus the value of the random variable below which 10% of the cases are found, divided

by the median. In the present study results are parameterized in terms of medians and

spans. For log–normal distributions the relationships:

cµ = ln
(
cM

)

cσ =
1

1.2816
ln


cS +

√
(cS)2 + 4

2


 (4.9)

hold.

For this distribution, two different meanings for the probability functions were consid-

ered:

• Radius probability: The probability associated with each radius, r, gives the proba-

bility of finding a particle in the composite which radius is r. Its density function is

called cdf, r.

• Relative volume fraction probability: The probability associated with each radius, r,

is the relative volume fraction of particles of radius r. The relative volume fraction is

the ratio between the volume of the reinforcement phase of radius r and the volume

occupied by all the reinforcements. Its density function is cdf, v.

The probability density function of the “cropped” uniform distribution is:

cdf, v−CROP(r) =

{
0.8

cMcS
for cM

(
1 − 0.625cS

)
≤ r ≤ cM

(
1 + 0.625cS

)

0 otherwise
(4.10)

The meaning of the probability function is the same as for cdf, v.
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Figure 4.19: Input for the Mori–Tanaka method, f ri, obtained from log–normal distribu-

tions of the radii for a span of 1 and a median radius of 1 µm. In cdf, r the probability

function gives the probability of finding a particle of radius r and in cdf, v the probability

function gives the relative volume fraction associated with the radius r.

The three distributions can be discretized into different, logarithmically or equally

spaced classes. The volume fractions corresponding to each class are:

f ri =
(cdf, r(ri))r3

i
P

j(cdf, r(rj))r3
j

(
1 − f (m)

)

f ri = cdf, v(r)
(
1 − f (m)

)

f ri = 0.8
cMcS

(
1 − f (m)

)
(4.11)

for cdf, r, cdf, v, and cdf, v−CROP, respectively.

In figures 4.20 and 4.21 estimates of the effective conductivities of composites having

log–normal distributions of the radii, cdf, r and cdf, v, are compared. The span in the

“relative volume fraction” distribution does not qualitatively change the conductivity vs.

size curves, but makes the transition between the large and small radius regimes more

gradual. cdf, r is much more sensitive to its span, especially for the small radius regime.

This can be observed better in figure 4.19. In this figure, the normalized f ri are plotted.

Note that the f ri of cdf, v coincides with the probability density function of both log–

normals divided by a constant. For cdf, r particle radii with a very low probability to be



CHAPTER 4. THERMAL CONDUCTION BEHAVIOUR OF DRMMCS 122

found, can produce a relative volume fraction that is significant. This is because a given

size difference in the radius implies a much larger difference in the volumes and viceversa.

A somewhat larger sensitivity to the span of volume of particles distributions can be

found for “cropped” uniform monomodal distributions. As can be seen in figure 4.22 these

distributions lead to a qualitatively different behaviour than log–normal ones. A decrease

in the overall conductivity is predicted for all median radii.

In the following, a multiphase RMTM is used to study composites with bimodal distri-

butions of particles. The partial distribution with the small radius is denoted by S, and the

partial distribution with the bigger diameter with L. Particle mixes containing different

contributions of both populations are described by a “mixing parameter”, fMIX, describing

the percentage of the total volume fraction that corresponds to the distribution with the

biggest median radius.

In figure 4.23 predictions of the effective conductivity as functions of the “mixing pa-

rameter”evaluated for log–normal partial distributions of equal span, and for median radii

that differ by a factor of 10 are presented. Two different cases are studied, in the first one,

figure 4.23 (top), the radii of the partial distributions, 50 and 500 µm, are chosen so that

they are close to the right–hand “shoulder” of the overall conductivities as shown in figure

4.9. In the second one, figure 4.23 (bottom), the median radii, 1.6 and 16 µm, are chosen

so that they straddle the critical radius. The results are compared with the ones obtained

by applying a rule of mixtures:

K∗
ROM(i, i) = fMIXK∗

ROM(r = rL)(i, i) + (1 − fMIX)K∗
ROM(r = rS)(i, i) (4.12)

where the effective conductivities are calculated by using equation (4.5).

For small spans the Rule of Mixtures is an excellent approximation for the distributions

studied. The difference between the RMTM and the ROM are appreciable only for big

spans, and when the radii studied straddle the critical radius.

Predictions pertaining to monomodal log–normal distributions, cdf, v, with a median

equal to the median of the highest median radius, span equal to one and a particle volume

fraction of 0.17 are also plotted in figure 4.23. As expected the use of bimodal distributions

can considerably improve the the effective conductivity of the composite if the median

radii of both populations are sufficiently large, compare figure 4.23 (top). Adding particles

smaller than the critical radius produces limited gains at best and may actually degrade

the macroscopic conductivity of the composite, see figure 4.23 (bottom).
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Summarizing, the multiphase RMTM has been used to study the effective behaviour of

DRMMCs with polydisperse size distributions. The estimates obtained are highly depen-

dent on the distribution function used to model the particle size distribution. Therefore,

special care must be taken when choosing it, and this should be as close as possible to the

real one.
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Figure 4.20: Mori–Tanaka predictions for the effective conductivity of DRMMCs with

material properties following tables 4.1 and 4.2 and a total particle volume fraction of

0.34. E-MTM denotes predictions for equal–sized particles composites and D–MTM/L

predictions for distribution of particles having log–normal size distributions for different

spans. Lr (Top) denotes a log normal distribution of the radii, cdf, r, and Lf (Bottom)

denotes a log normal distribution of the radii, cdf, v.
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Figure 4.21: Mori–Tanaka predictions for the effective conductivity of DRMMCs with

material properties following tables 4.1 and 4.2 and a total particle volume fraction of

0.34. The top plot pertains to a log normal distribution of the radii, cdf, r, and the bottom

plot pertains to a log normal distribution of the radii, cdf, v.
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Figure 4.22: Mori–Tanaka predictions for the effective conductivity of DRMMCs with

material properties following tables 4.1 and 4.2 and a total particle volume fraction of 0.34.

E-MTM denotes predictions for composites reinforced by particles of equal size and D–

MTM/U predictions for distribution of particles having a “cropped” uniform distribution

of the radius for different spans.
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Figure 4.23: Comparison of “rule of mixture” (ROM) and Mori–Tanaka predictions (B–

MTM) for the effective conductivities of composites reinforced by particles having bimodal

size distributions of different spans, the total volume fraction being 0.34. In the upper

plot, the partial distributions have the same span and median radii of 50 and 500 µm. In

the lower plot, the partial distributions have the same span and median radii of 1.6 and

16 µm. The critical particle radius is 9.85 µm.



Chapter 5

Study of the thermomechanical

behaviour of Diamond Reinforced

Metal Matrix Composites using

Continuum Micromechanics of

Materials

In this chapter some micromechanical methods are applied to studying the mechanical

behaviour of Metal Matrix Composites. The discussion is centered on the thermo–elastic

and thermoelasto–plastic behaviour of DRMMCs. Additionally, some micromechanically-

based models for describing the thermoelastoplastic behaviour of components made of

inhomogeneous materials are discussed.

5.1 Material Parameters

Two different sets of material parameters were used for the simulations discussed in this

chapter. The first one corresponds to diamond particles and aluminium matrix, and the

second one to particle reinforced steel. The latter set was used only for some cyclic load

cases at the end of the chapter.

128
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5.1.1 Diamond/Aluminium composites

In table 5.1 the isotropic Young’s moduli, E, the shear moduli, g, and the bulk moduli,

k, used for Diamond and Aluminium, are listed. Diamond is approximated as an isotropic

material although single crystal diamonds show cubic elasticity.

Whereas temperature independent elastic constants were employed in all studies of the

thermomechanical behaviour of DRMMCs, temperature dependent hardening curves were

obtained from the results given for aluminium 99.99 by Chinh et al. [31]. Table 5.2 list the

corresponding initial yield stresses, sy,0, for a number of temperatures. The coefficients of

thermal expansion of the constituents were prescribed as functions of temperature following

[153], see table 5.3.

5.1.2 Particle reinforced steel

The steel considered is AISI 1010. In table 5.1 the elastic moduli of the material are

collected. The isotropic hardening of the material is described using a Voce law, see

section 2.5.1, the correspondent material parameters are listed in table 5.4. The non-linear

kinematic hardening is described by a Frederick–Armstrong model, see equation (2.56).

The parameters of the non linear kinematic hardening are listed in table 5.5.

5.2 Thermo–elastic behaviour

In this section, numerical and semianalytical methods are used for extracting the effective

elasticity tensor and coefficient of thermal expansion tensor of DRMMCs.

Table 5.1: Elastic material parameters (Young’s modulus, E, shear modulus, g, and bulk

modulus, k) of the constituents.

E [GPa] g [GPa] k [GPa]

Diamond 1050 477 438

Aluminum 70 26 69

Steel 210 81 175
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Table 5.2: Initial yield stress, sy,0, of Al 99.99 as function of the temperature, t (data

estimated from curves given in [31]).

t=293 K t=353 K t=433 K t=623 K t=673 K t=738 K

sy,0 [MPa] 20.8 17.5 12.0 7.5 5.8 4.3

Table 5.3: Total coefficients of thermal expansion, α, of aluminum and diamonds as func-

tions of the temperature t [153]. Reference temperature 200 K.

t [K] αAl [1/K] αDiam [1/K]

200 20.3 × 10−6 1.50 × 10−6

300 21.7 × 10−6 1.50 × 10−6

400 22.9 × 10−6 1.57 × 10−6

500 23.8 × 10−6 1.80 × 10−6

600 24.7 × 10−6 2.08 × 10−6

800 26.9 × 10−6 2.55 × 10−6

Table 5.4: Coefficients of the Voce law, see section 2.5.1, for an AISI 1010 steel, see Doghri

[38].

c(1),Voce [GPa] c(2),Voce [GPa] c(3),Voce [ ] sy,0 [MPa]

Steel 2 2 -0.26 200MPa

Table 5.5: Coefficients of the Frederick Armstrong law, equation (2.56), for an AISI 1010

steel, see Doghri [38].

c(1),C-M [GPa] c(2),C-M [ ]

Steel 17 21
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Unit cells UCDA, UCDB and UCS, see figure 4.13, together with the appropriate peri-

odicity boundary conditions, were subjected to six linearly independent mechanical load-

ings for obtaining the elasticity tensors, and one temperature excursion for obtaining the

CTE tensor. Constituent material properties follow the data for diamond and aluminium

in tables 5.1 and 5.3.

The elasticity tensors obtained with UCDA, EUCDA [GPa], UCDB, EUCDB [GPa], and

UCS, EUCS [GPa], are:

EUCDA =




182.0 71.9 71.5 0 0 0

71.9 180.0 71.5 0 0 0

71.5 71.5 180.6 0 0 0

0 0 0 55.4 0 0

0 0 0 0 55.7 0

0 0 0 0 0 56.1




EUCDB =




182.0 71.7 72.0 0 0 0

71.7 180.6 71.7 0 0 0

72.0 71.7 180.0 0 0 0

0 0 0 55.7 0 0

0 0 0 0 56.3 0

0 0 0 0 0 55.9




EUCS =




176.9 71.9 71.8 0 0 0

71.9 176.0 71.7 0 0 0

71.8 71.7 175.6 0 0 0

0 0 0 52.9 0 0

0 0 0 0 53.2 0

0 0 0 0 0 53.2




(5.1)

where the zero components of the elasticity matrices were “numerical zeros”. Because the

unit cells were too small to be representative volume elements some anisotropy was present

in their responses, however the differences between corresponding diagonal terms of the

elasticity tensor being less than 1.5%. In table 5.6, the Zener factors of the above elasticity

tensors are listed. The Zener factors are a measure for the anisotropy of orthotropic

materials. As can be observed, the symmetry of the unit cells is clearly anisotropic. UCS,

as expected, is less anisotropic because of the symmetry of its particles.

Analogously, Mori–Tanaka based methods were used to estimate the elasticity tensor

and CTE vector. Whilst for spherical reinforcements, analytical solutions, i.e. Mori–
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Tanaka method, can be found, see section 3.2.1.2.3, for cubo–octahedral particles semi-

analytical solutions are needed, e.g. RMTM. For the latter case, dilute unit cells, see

figure 3.2.2.2 were subjected to six linearly independent mechanical loads for extracting

the replacement dilute strain concentration tensor and the replacement inclusion elasticity

tensor. Note, that due to the symmetry of the particles, the dilute strain concentration

tensors obtained by this procedure, which pertains to particles having identical orientation,

are cubic and not isotropic. A quasi-isotropic overall elastic behaviour corresponding to

randomly oriented diamond particles can be approximated by “isotropizing” the elasticity

tensors, e.g. by using the Hershey–Kröner–Eshelby (HKE) method [94], which was devel-

oped to evaluate the macroscopically isotropic elastic response of polycrystals consisting

of randomly oriented cubic grains. Note that the method can be applied at the microscale

(at the dilute level) or at the macroscale level, leading to different results.

Predictions for the macroscopic elastic moduli and coefficients of thermal expansion for

a reinforcement volume fraction of 0.34 at room temperature (293 K) are collected in table

5.7. Here “MTM, sph” stands for the classical Mori–Tanaka estimates employing spherical

particles [10] and “RMTM, diam” for the Mori–Tanaka method using replacement tensors

evaluated for cubo-octahedral particles. For the latter case isotropic effective elasticity

tensors were obtained by applying the HKE method at the macroscopic level. Torquato’s

three-point estimates [150] evaluated for spherical particles of uniform size are listed under

the heading “3PE, sph”, and results from the unit cell models shown in fig. 4.13 are

marked as “UCS”, “UCDA’ and “UCDB”. The unit cell results pertain to macroscopic

tensors made quasi-isotropic by the HKE algorithm. In contrast to the effective thermal

conductivities, the predicted elastic tensors do not have an intrinsic length scale.

Table 5.6: Zener factors of the orthotropic material behaviour obtained from the elasticity

tensors of UCDA, UCDB and UCS, eqn. (5.1).

UCDA UCDB RMTM
2E(4, 4)

E(1, 1) − E(1, 2)
1.0064 1.0100 1.0076

2E(5, 5)

E(2, 2) − E(2, 3)
1.0267 1.0340 1.0201

2E(6, 6)

E(3, 3) − E(3, 1)
1.0284 1.0352 1.0250
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Table 5.7: Predictions for the effective elastic moduli and the CTE at 293 K of diamond

reinforced aluminum at a diamond volume fraction of ξ = 0.34 obtained by Mori–Tanaka

methods (MTM and RMTM), Torquato’s three-point estimates (3PE), and unit cells UCS,

UCDA and UCDB.

E∗ [GPa] g∗ [GPa] k∗ [GPa] α∗@ 293 K

MTM, sph 131.2 50.7 106.1 1.394 ×10−5

RMTM, diam 134.0 51.9 106.7 1.258 ×10−5

3PE, sph 137.2 53.3 107.3 1.376 ×10−5

UCS 135.7 52.7 106.6 1.397 ×10−5

UCDA 141.7 55.3 108.0 1.376 ×10−5

UCDB 142.0 55.4 108.2 1.358 ×10−5

Both the Mori–Tanaka methods and the multi-particle unit cells predict a stiffer macro-

scopic behaviour for cubo-octahedral particles compared to spheres, the effect being more

pronounced in the unit cell models. The overall elastic behaviour obtained from the Mori–

Tanaka methods is more compliant than the predictions of the three-point estimates and

the unit cells. This is due to the fact that Mori–Tanaka approaches provide lower es-

timates for the stiffness of composites in which the reinforcements are stiffer than the

matrix; for the spherical particles the MTM results correspond to the Hashin–Shtrikman

lower bounds. A higher CTE is predicted for the spheres than for the diamonds for both

numerical and analytical methods. The MTM for spheres is closer to the estimates of UCS

than the Torquato estimates. The orientation of the particles plays a bigger role in the

CTEs tensors than in the elasticity tensors.

Inspection of the stress distributions obtained with the numerical models using cubo-

octahedral particles indicates that at the interfaces singularities may be present in the

elastic stress and strain fields in the matrix at reentrant edges and corners, see figure

5.1. Even though such singularities cannot be resolved with the Finite Elements models

employed in the present study, their presence does not compromise the evaluation of the

reduced elastic concentration tensors, for which the volume averaged strains in the inhomo-

geneities are required. They lead to difficulties, however, in using criteria for macroscopic

yielding that are based on the maximum of the equivalent stress in the matrix as predicted

by multi-particle unit cells.
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Figure 5.1: Fringe plot of the Von–Mises stress distribution in the matrix of a DRMMCS

subjected to an elastic loading.

5.3 Thermo Elasto–Plastic behaviour

In this section numerical and analytical methods are used for studying the thermo–elasto–

plastic behaviour of Metal Matrix Composites. In the first part, PMAs are used for study-

ing in detail the local behaviour of DRMMCs under fabrication and service conditions.

The second part is devoted to the thermo–elasto–plastic analysis of components made of

inhomogeneous material, such as the divertor of a nuclear reactor.

5.3.1 Local Behaviour

Due to the marked thermal expansion contrast between the constituents, aluminum and

diamond, and the low initial yield stress of the matrix, compare tables 5.2 and 5.3, a strong

tendency of DRMMCs toward matrix yielding under thermal loading must be expected.

Plastic yielding of macroscopically isotropic composites under pure thermal loading cannot
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be described by Mori–Tanaka methods, which always predict hydrostatic matrix stress

states under such conditions. Unit cell methods, however, are well suited to the task.

Thermoelastic modeling with unit cell UCS (20 spherical particles) indicated that the

temperature change required for initiating local plastic yielding is more than an order of

magnitude smaller in a DRMMC with a matrix of Al99.99 compared to a high strength

aluminum alloy reinforced by SiC particles of the same volume fraction.

Thermoelastoplastic analysis employing the multi-particle unit cells shown in fig. 4.13

and the temperature dependent constituent properties listed in tables 5.2 and 5.3 can be

used to study the macroscopic thermomechanical responses as well as the effects of local

thermal stresses and strains in DRMMCs. Figure 5.2 (left) shows the distribution of the

accumulated equivalent plastic strains, p, predicted for the matrix domain of unit cell

UCDA after cooling down from a stress-free temperature of 450 K to room temperature.

The plastic strains can be seen to be highly inhomogeneous and to exceed a value of 0.01

over a considerable part of the volume element. Because hardly any elastic matrix regions

remain, the matrix may be viewed as fully yielded in this state. Heating up to 373 K from

this state leads to further plastic yielding as displayed in fig. 5.2 (right), where especially

the increased extent of regions with accumulated equivalent plastic strains in excess of

0.01 is noteworthy. To further illustrate this behaviour, the evolution of the equivalent

accumulated plastic strain in the matrix is shown in fig. 5.3, where the phase averages

and standard deviations of p are plotted for selected temperatures during the heating-up

process. Temperature changes of up to 20 K give rise to some local yielding, but have little

influence on the distribution of the plastic strains in the matrix. Temperature excursions

in excess of 40 K, however, lead to an increase in the averages of p, which indicates bulk

yielding of the matrix, and to a marked rise in the standard deviations, the latter indicating

an intensifying inhomogeneity of the plastic strains.

Figure 5.4 compares the macroscopic responses of initially stress-free (virgin) and

cooled-down diamond–aluminum (from 450 K to room temperature) composites to uniaxial

tensile loading as predicted with unit cell UCDA. Up to an applied stress of approximately

20 MPa there is little difference between the two curves, but for tensile stresses exceed-

ing 25 MPa the residual stresses in the cooled-down material lead to a markedly stronger

hardening behaviour.

In figure 5.5 the ratchetting behaviour of the material is studied. UCDA was exposed

to thermal cycling from 293 K to 393 K. For a thermal cycling of 100 degrees the material

shows an accumulation of residual strains from cycle 2 to 3.
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Figure 5.2: Predicted distributions of equivalent plastic strain in the matrix of UCDA

following cool–down from a stress–free temperature of 450 K to room temperature (left)

and after subsequent heating up by 80 K (right).

The above modeling results clearly indicate that DRMMCs tend to be subject to marked

matrix plasticity effects under thermal loading. The resulting residual stress states may

also strongly influence the mechanical responses. This behaviour must be accounted for in

the development, production and use of such materials for heat sink applications.
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5.3.2 Effective Behaviour

A component made of an inhomogeneous material cannot be fully modelled via numerical

micromechanical methods, i.e., all the fibers of the divertor of a nuclear reactor cannot

be taken into account in a model because of the computational power needed. Therefore

simplifications are needed. One possibility is to treat the inhomogeneous material as an ho-

mogeneous material the properties of which are obtained from experiments. This approach

does not allow for zooming into the local behaviour of the phases of the inhomogeneous

materials, and requires numerous experiments, which make it inappropriate for parametric

studies. Another possibility is the use of Incremental Mori–Tanaka methods, see section

3.2.1.2.3. The IMT-methods need as input the material properties of the constituents and

not of the actual composite. They are capable of handling complex loading conditions and

arbitrary load paths.

In this thesis, the IMT of Pettermann was extended for studying the cyclic thermoe-

lastoplastic behaviour of particle reinforced composites. For this purpose the Chaboche–

Marquis model was implemented into it. The IMT is implemented in the finite element code

ABAQUS through a user subroutine UMAT. For testing purposes, a single element test

was carried out. The element was exposed to a uniaxial cyclic load. In figure 5.6, stress–

strain curves obtained using the IMT-UMAT material model for vanishing reinforcement

volume fraction are compared with the results obtained with Chaboche–Marquis material

model of ABAQUS. Material parameters follow tables 5.1, 5.4 and 5.5 for steel.

In figure 5.7 the stress–strain curves obtained using the IMT for a single element exposed

to a uniaxial cyclic load for different volume fractions are presented. As observed, even for

high reinforcement volume fraction the ratchetting effect is not avoided for this material.
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a uniaxial cyclic load using the Chaboche–Marquis model of Abaqus, and the Chaboche–

Marquis model of the IMT of Pettermann at vanishing reinforcement volume fraction.

Material properties follow tables 5.1, 5.4 and 5.5 for steel.
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loading for different reinforcement volume fractions. Material properties following tables

5.1, 5.4 and 5.5 for steel. The plasticity model was implemented using the IMT-UMAT of

Pettermann.
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Conclusions

Micromechanical methods for studying the thermophysical and thermomechanical be-

haviour of particle reinforced metal matrix composites were reviewed. Special emphasis

was placed on diamond reinforced metal matrix composites.

Replacement tensor Mori–Tanaka approaches, unit cells and windowing methods were

extended/used for investigating the thermal conduction behaviour of DRMMCs with inter-

facial conductances. The predictions of unit cells and the R–MTM at a moderate volume

fraction of f = 0.34 were found to be in good agreement. At higher volume fractions win-

dowing methods and R–MTM were found to be in agreement, too. For cubo–octahedral

particles, spheres with an equivalent homogeneous distribution of the interfacial conduc-

tance were found to give good results. This concept was used for studying monomodal and

bimodal distributions of particle sizes. The equivalent sphere concept may be extended

to more complex shapes by using ellipsoids instead of spheres. However, orientational

averaging may be needed.

The thermomechanical behaviour of DRMMCs was studied by unit cells, and the results

were compared with some analytical methods.

The results of the previous studies support the viability of the concept of using DR-

MMCs as high–conductivity heat sink materials. The main problem are the thermomechan-

ical behaviour of these composites due to the high contrast of the coefficients of thermal

expansion of the constituents. Therefore, special care must be taken during the manufac-

turing process and the service conditions must be chosen to reduce cyclic plastic yielding.

Additionally incremental Mori–Tanaka methods were extended to studying the cyclic

thermoelastoplastic behaviour of particle reinforced composites. The method allows ther-

142
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moelastoplastic FEM analysis of components made of inhomogeneous materials.



Appendix A

Tensorial and engineering notation

Tensorial notation is elegant and useful for theoretical derivations. However, when imple-

menting a model into a finite element code, the conventional approach is to use engineering

notation. This conversion is a common source of errors when implementing a plasticity

model. In this thesis only tensors of second and fourth rank are used.

Any second rank tensor has 9 components. If the tensor is symmetric, βij = βji, the

number of independent components is reduced to six and can be represented as a quasi–

vector. There is no standard way to arrange these components, but, usually, the normal

components are given first and arranged in “natural” order, and then the shear components,

or a modification of them, follow:

β =




β11

β22

β33

β∗
12

β∗
13

β∗
23




(A.1)

In the present work β∗
ij = 2βij if β is a strain quasi–vector, otherwise β∗

ij = βij .

Any fourth order tensor, Aijkl, has 81 components. If the tensor possesses major sym-

metry, Aijkl = Aklij, the number of components is reduced to 45. If the tensor has minor

symmetry, Aijkl = Ajikl = Aijlk, the tensor has 36 independent constants and it can be

represented as a quasi–matrix:

144
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A =




A1111 A1122 A1133 A1112 A1113 A1123

A2211 A2222 A2233 A2212 A2213 A2223

A3311 A3322 A3333 A3312 A3313 A3323

A1211 A1222 A1233 A1212 A1213 A1223

A1311 A1322 A1333 A1312 A1313 A1323

A2311 A2322 A2333 A2312 A2313 A2323




(A.2)

It is worth noting that if the tensor possesses major and minor symmetry, the number

of independent constants reduces to 21, and the tensor can be represented as a symmetric

quasi–matrix. In this notation, the decomposition of the fourth order symmetric unit

tensor into its deviatoric and its volumetric parts reads:

1s = 1dev,s + 1vol




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1
2

0 0

0 0 0 0 1
2

0

0 0 0 0 0 1
2




=




2
3

−1
3

−1
3

0 0 0

−1
3

2
3

−1
3

0 0 0

−1
3

−1
3

2
3

0 0 0

0 0 0 1
2

0 0

0 0 0 0 1
2

0

0 0 0 0 0 1
2




+




1
3

1
3

1
3

0 0 0
1
3

1
3

1
3

0 0 0
1
3

1
3

1
3

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




(A.3)

Note that the fourth order unit tensor cannot be written in this notation because it

does not have minor symmetry. For different notations see e.g. [35; 116].

The main reasons for using this notation are that when every second order tensor is

represented using (A.1) and every fourth order tensor is represented using equation (A.2):

• The energy product, σijεji, is replaced in the engineering notation by a simple scalar

product of column matrices σTε

• The equation σij = Eijklεlk is replaced by a simple product of a matrix and a column

vector, σ = Eε

This is the convention used by ABAQUS [2] for the stress and strain quasi–vectors and

for the elasticity quasi–matrix. However, ABAQUS uses a slightly different notation for
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the compliance matrix, in order to avoid the use of the correction terms discussed in the

following.

The above simple transcription of tensors, however, does not always work and some

terms must be modified so that correct results are obtained in general cases. It is worth

to review briefly the main operations. It is obvious that addition, subtraction, and multi-

plication by a scalar do not need any corrections.

In the following second order tensors are assumed to be symmetric and they are repre-

sented in engineering notation using equation (A.1). Furthermore, all fourth order tensors

are assumed to have minor symmetry and are represented in engineering notation using

equation (A.2).

The double contraction, a, of two second order tensors, βij and ζji, is:

a = βijζji = β11ζ11 + β22ζ22 + β33ζ33 + 2(β12ζ12 + β13ζ13 + β23ζ23) (A.4)

whilst:

βTζ = β11ζ11 + β22ζ22 + β33ζ33 + β∗
12ζ

∗
12 + β∗

13ζ
∗
13 + β∗

23ζ
∗
23 (A.5)

To obtain the correct result a correction term cM1 must be introduced. The modified

product,
[
βTζ

]M
, reads:

a =
[
βTζ

]M
= β11ζ11 + β22ζ22 + β33ζ33 + cM1(β∗

12ζ
∗
12 + β∗

13ζ
∗
13 + β∗

23ζ
∗
23) (A.6)

where cM1 = 2, if none of the participating quasi–vectors is the strain quasi–vector, cM1 = 1

if one of them is a strain quasi–vector, and cM1 = 1
2

if both are strain quasi–vectors.

The tensorial product, Aijkl, of two second order tensors, βij and ζij is:

Aijkl = βijζkl (A.7)

As βij and ζij are symmetric, Aijkl has minor symmetry and it can be represented as:
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A =




β11ζ11 β11ζ22 β11ζ33 β11ζ12 β11ζ13 β11ζ23

β22ζ11 β22ζ22 β22ζ33 β22ζ12 β22ζ13 β22ζ23

β33ζ11 β33ζ22 β33ζ33 β33ζ12 β33ζ13 β33ζ23

β12ζ11 β12ζ22 β12ζ33 β12ζ12 β12ζ13 β12ζ23

β13ζ11 β13ζ22 β13ζ33 β13ζ12 β13ζ13 β13ζ23

β23ζ11 β23ζ22 β23ζ33 β23ζ12 β23ζ13 β23ζ23




(A.8)

which is very similar to the product of the quasi–vectors:

βζT =




β11ζ11 β11ζ22 β11ζ33 β11ζ
∗
12 β11ζ

∗
13 β11ζ

∗
23

β22ζ11 β22ζ22 β22ζ33 β22ζ
∗
12 β22ζ

∗
13 β22ζ

∗
23

β33ζ11 β33ζ22 β33ζ33 β33ζ
∗
12 β33ζ

∗
13 β33ζ

∗
23

β∗
12ζ11 β∗

12ζ22 β∗
12ζ33 β∗

12ζ
∗
12 β∗

12ζ
∗
13 β∗

12ζ
∗
23

β∗
13ζ11 β∗

13ζ22 β∗
13ζ33 β∗

13ζ
∗
12 β∗

13ζ
∗
13 β∗

13ζ
∗
23

β∗
23ζ11 β∗

23ζ22 β∗
23ζ33 β∗

23ζ
∗
12 β∗

23ζ
∗
13 β∗

23ζ
∗
23




(A.9)

Nevertheless, some correction terms must be introduced when at least one of the par-

ticipating quasi–vectors is a strain quasi–vector:

A =
[
βζT

]M
=




β11ζ11 β11ζ22 β11ζ33 cM1β11ζ
∗
12 cM1β11ζ

∗
13 cM1β11ζ

∗
23

β22ζ11 β22ζ22 β22ζ33 cM1β22ζ
∗
12 cM1β22ζ

∗
13 cM1β22ζ

∗
23

β33ζ11 β33ζ22 β33ζ33 cM1β33ζ
∗
12 cM1β33ζ

∗
13 cM1β33ζ

∗
23

cM2β∗
12ζ11 cM2β∗

12ζ22 cM2β∗
12ζ33 cM2cM1β∗

12ζ
∗
12 cM2cM1β∗

12ζ
∗
13 cM2cM1β∗

12ζ
∗
23

cM2β∗
13ζ11 cM2β∗

13ζ22 cM2β∗
13ζ33 cM2cM1β∗

13ζ
∗
12 cM2cM1β∗

13ζ
∗
13 cM2cM1β∗

13ζ
∗
23

cM2β∗
23ζ11 cM2β∗

23ζ22 cM2β∗
23ζ33 cM2cM1β∗

23ζ
∗
12 cM2cM1β∗

23ζ
∗
13 cM2cM1β∗

23ζ
∗
23




(A.10)

where cM2 = cM1 = 1 if none of the participating quasi–vectors is a strain quasi–vector,

cM1 = 1
2

if ζ is a strain quasi–vector, and cM2 = 1
2

if β is a strain quasi–vector.

The double contraction, βij , of a fourth order tensor, Aijkl, and a second order tensor,

ζij, is:

βij = Aijklζlk (A.11)

As the fourth order tensor has minor symmetry, the result can be written as a quasi–

vector:
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β =




A1111ζ11 + A1122ζ22 + A1133ζ33 + 2(A1112ζ12 + A1113ζ13 + A1123ζ23)

A2211ζ11 + A2222ζ22 + A2233ζ33 + 2(A2212ζ12 + A2213ζ13 + A2223ζ23)

A3311ζ11 + A3322ζ22 + A3333ζ33 + 2(A3312ζ12 + A3313ζ13 + A3323ζ23)

A1211ζ11 + A1222ζ22 + A1233ζ33 + 2(A1212ζ12 + A1213ζ13 + A1223ζ23)

A1311ζ11 + A1322ζ22 + A1333ζ33 + 2(A1312ζ12 + A1313ζ13 + A1323ζ23)

A2311ζ11 + A2322ζ22 + A2333ζ33 + 2(A2312ζ12 + A2313ζ13 + A2323ζ23)




(A.12)

whilst:

Aζ =




A1111ζ11 + A1122ζ22 + A1133ζ33 + A1112ζ
∗
12 + A1113ζ

∗
13 + A1123ζ

∗
23

A2211ζ11 + A2222ζ22 + A2233ζ33 + A2212ζ
∗
12 + A2213ζ

∗
13 + A2223ζ

∗
23

A3311ζ11 + A3322ζ22 + A3333ζ33 + A3312ζ
∗
12 + A3313ζ

∗
13 + A3323ζ

∗
23

A1211ζ11 + A1222ζ22 + A1233ζ33 + A1212ζ
∗
12 + A1213ζ

∗
13 + A1223ζ

∗
23

A1311ζ11 + A1322ζ22 + A1333ζ33 + A1312ζ
∗
12 + A1313ζ

∗
13 + A1323ζ

∗
23

A2311ζ11 + A2322ζ22 + A2333ζ33 + A2312ζ
∗
12 + A2313ζ

∗
13 + A2323ζ

∗
23




(A.13)

the following corrections terms may be used:

β = [Aζ]M =




A1111ζ11 + A1122ζ22 + A1133ζ33 + cM1(A1112ζ
∗
12 + A1113ζ

∗
13 + A1123ζ

∗
23)

A2211ζ11 + A2222ζ22 + A2233ζ33 + cM1(A2212ζ
∗
12 + A2213ζ

∗
13 + A2223ζ

∗
23)

A3311ζ11 + A3322ζ22 + A3333ζ33 + cM1(A3312ζ
∗
12 + A3313ζ

∗
13 + A3323ζ

∗
23)

cM2(A1211ζ11 + A1222ζ22 + A1233ζ33 + cM1(A1212ζ
∗
12 + A1213ζ

∗
13 + A1223ζ

∗
23))

cM2(A1311ζ11 + A1322ζ22 + A1333ζ33 + cM1(A1312ζ
∗
12 + A1313ζ

∗
13 + A1323ζ

∗
23))

cM2(A2311ζ11 + A2322ζ22 + A2333ζ33 + cM1(A2312ζ
∗
12 + A2313ζ

∗
13 + A2323ζ

∗
23))




(A.14)

where cM1 = 2 if ζ is not a strain quasi–vector, or cM1 = 1, if it is, and cM2 = 2 if β is

a strain quasi–vector, otherwise cM2 = 1.

The double contraction, Aijkl, of two fourth order tensors, Bijkl and Cijkl, is:

Aijkl = BijmnCnmkl (A.15)

As both fourth order tensors have minor symmetry, the result, too, has minor symmetry.

In the following a component of the tensor Aijkl in engineering notation is compared with

the same component of the matrix D obtained by multiplying the matrices B and C. :
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A (i, j) = Bmm11C11nn + Bmm22C22nn + Bmm33C33nn + . . .

. . . + 2 (Bmm12C12nn + Bmm13C13nn + Bmm23C23nn)

D (i, j) = Bmm11C11nn + Bmm22C22nn + Bmm33C33nn + . . .

. . . + (Bmm12C12nn + Bmm13C13nn + Bmm23C23nn)

where:

mm =





ii if i = {1, 2, 3}
12 if i = 4

13 if i = 5

23 if i = 6

nn =





jj if j = {1, 2, 3}
12 if j = 4

13 if j = 5

23 if j = 6

(A.16)

Note that Einstein summation is not followed. It is obvious that some correction terms must

be introduced. The following operations with some modifications of one of the matrices

give the same results:

A = B [C]M1 = [B]M2 C (A.17)

where:

[B]M1 =




B1111 B1122 B1133 2B1112 2B1113 2B1123

B2211 B2222 B2233 2B2212 2B2213 2B2223

B3311 B3322 B3333 2B3312 2B3313 2B3323

B1211 B1222 B1233 2B1212 2B1213 2B1223

B1311 B1322 B1333 2B1312 2B1313 2B1323

B2311 B2322 B2333 2B2312 2B2313 2B2323




[C]M2 =




C1111 C1122 C1133 C1112 C1113 C1123

C2211 C2222 C2233 C2212 C2213 C2223

C3311 C3322 C3333 C3312 C3313 C3323

2C1211 2C1222 2C1233 2C1212 2C1213 2C1223

2C1311 2C1322 2C1333 2C1312 2C1313 2C1323

2C2311 2C2322 2C2333 2C2312 2C2313 2C2323




This last result can be used in advance to obtain the inverse of a fourth order tensor

that exhibits minor symmetry. Let [A]−1 be the inverse of a fourth order tensor , [A],

that exhibits minor symmetry and [A]# the inverse of the matrix that represents [A] in
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engineering notation, in other words using equation (A.17) :

A
[
[A]−1]M2

=
[
[A]−1]M1

A = 1s

A [A]# = [A]# A = I
(A.18)

where I is the unit matrix of fourth order. Equation (A.18) can be modified into the

equation:

[
[A]−1]M2

= [A]# 1s (A.19)

and then it follows:

[A]−1 =




B(1, 1) B(1, 2) B(1, 3) 1/2B(1, 4) 1/2B(1, 5) 1/2B(1, 6)

B(2, 1) B(2, 2) B(2, 3) 1/2B(2, 4) 1/2B(2, 5) 1/2B(2, 6)

B(3, 1) B(3, 2) B(3, 3) 1/2B(3, 4) 1/2B(3, 5) 1/2B(3, 6)

1/2B(4, 1) 1/2B(4, 2) 1/2B(4, 3) 1/4B(4, 4) 1/4B(4, 5) 1/4B(4, 6)

1/2B(5, 1) 1/2B(5, 2) 1/2B(5, 3) 1/4B(5, 4) 1/4B(5, 5) 1/4B(5, 6)

1/2B(6, 1) 1/2B(6, 2) 1/2B(6, 3) 1/4B(6, 4) 1/4B(6, 5) 1/4B(6, 6)




(A.20)

where B = [A]#.



Appendix B

Thermal conduction Eshelby tensor

for ellipsoidals particles embedded in

an isotropic matrix

Following Hatta and Taya [76], and Khare [91], the non–zero components of the Eshelby

tensor for thermal conduction are:

• For a prolate spheroid:

S(1, 1) = S(2, 2) =
1

4

2car

(
(car)2 − 1

) 3
2

(
car

(
(car)2 − 1

) 1
2 − cosh−1 car

)

S(3, 3) = 1 − 2S(1, 1) (B.1)

where car is the aspect ratio of the ellipsoid, and the 3–axis is the axis of rotation.

• For a long fiber:

S(1, 1) = S(2, 2) =
1

2
(B.2)

• For a sphere:

S(1, 1) = S(2, 2) = S(3, 3) =
1

3
(B.3)

• For a plate:

S(3, 3) = 1 (B.4)
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