
Master’s Thesis

Transactional Replication
in a .NET Environment

carried out at the

Information Systems Institute
Distributed Systems Group

Vienna University of Technology

under the guidance of

Dr. Karl Michael Göschka
and

Dr. Johannes Osrael
as the contributing advisor responsible

by

Juraj Oprsal, BSc.
Matr.Nr. 0125054

juraj.oprsal@centrum.sk

Vienna, 10th July 2008

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

i

Acknowledgements

I would like to thank my advisor Johannes Osrael for his continuous support
during the whole work. I also thank my supervisor Karl Michael Göschka
for his assistance and valuable comments in the final phase of my thesis.

My further thanks go to my friends, especially Stanka and Evka, for
providing special help to me.

Last but not least, I would like to thank my fiancée as well as my family for
their extraordinary support throughout my studies at the university.

ii

Abstract

Replication as an important mechanism in achieving dependability of
distributed systems has already been subject to extensive research.
Approaches to improve availability in degraded situations (e.g. network
partitions) traditionally focus on pessimistic replication protocols, which
prevent update conflicts during degradation. Recently, a novel class of
optimistic replication protocols has been introduced, which are less
restrictive than pessimistic protocols and allow trading consistency against
availability. Tradeable and non-tradeable constraints can be defined in
the system, while the former will be traded against availability during
degradation.

The Active Replication Per Partition Protocol (ARPPP) is one concrete
protocol applying this trade-off. It is a modification of the standard active
replication scheme. In a healthy system, the ARPPP enforces strict
constraint consistency and thus does not allow operations violating any
of the constraints defined in the system. In case of node failures or
network partitions, the ARPPP temporarily relaxes tradeable constraints
and allows all operations not affecting non-tradeable constraints, even
though tradeable constraints might become violated. After the network
and all nodes recover from failures, strict constraint consistency must be
reestablished in a process called reconciliation.

The contribution of this thesis is a prototype implementation and
evaluation of the ARPPP in the Microsoft .NET environment using the C#
programming language. Based on the features of the .NET Framework 2.0,
the prototype provides full transaction support and allows nested replica
calls as well.

Evaluation results indicate, that the additional necessity of constraint
checking not only causes additional overhead and thus decreases
performance, but in some cases also imposes higher transaction abort rates
of concurrent operations. This is, however, expected behaviour, that
admonishes to a careful constraint definition at application development
time.

iii

Zusammenfassung

Replikation als wichtiger Mechanismus in Erzielung von Zuverlässigkeit
verteilter Systeme ist bereits umfangreicher Forschung unterlegt gewesen.
Verschiedene Ansätze die Erreichbarkeit während Systemdegradation (z.B.
Netzwerktrennung) zu verbessern haben sich traditionell auf pessimistische
Replikationsprotokolle konzentriert, welche Update-konflikte während
Degradation vermeiden. Vor kurzem wurde eine neue Klasse an
optimistischen Replikationsprotokollen vorgestellt, die weniger restriktiv
als pessimistische Protokolle ist und die es erlaubt, Erreichbarkeit und
Konsistenz eines Systems auszubalancieren. Es können handelbare und
nicht-handelbare Konsistenzbedingungen im System definiert werden, wobei
die ersten während Systemdegradation gegen Erreichbarkeit gehandelt
werden können.

Active Replication Per Partition Protocol (ARPPP) ist ein konkretes
Replikationsprotokoll, das diese Balancierung anwendet. Es ist eine
Modifikation der klassischen aktiven Replikation. In einem gesunden
System fordert ARPPP strenge Konsistenz, also erlaubt keine Operation,
die gegen eine beliebige Konsistenzbedingung stoßt. Im Falle eines
Knotenausfalls oder einer Netzwerktrennung werden vorübergehend alle
handelbaren Konsistenzbedingungen von ARPPP aufgehoben und somit alle
Operationen, die keine nicht-handelbaren Bedingungen betreffen, erlaubt,
auch wenn die handelbaren Bedingungen verletzt werden können. Nachdem
das Netzwerk sowie alle Systemknoten heilen, wird strenge Konsistenz im
System – während sogenannter Rekonciliation – wiederhergestellt.

Die Kontribution dieser Arbeit ist die Prototypimplementierung
und –evaluierung des ARPPP Replikationsprotokolls unter Microsoft .NET
in der C# Programmiersprache. Basierend auf Eigenschaften des .NET
Frameworks 2.0, unterstützt der Prototyp sowohl Transaktionen, als auch
geschachtelte Replikaaufrufe.

Die Ergebnisse der Evaluierung indizieren, dass der zusätzliche Bedarf an
Überprüfen von Konsistenzbedingungen nicht nur einen höheren Aufwand
mit sich bringt, sondern auch die Ursache für öftere Transaktionsabbrüche
bei manchen gleichlaufenden Operationen ist. Dies ist jedoch das
erwartete Verhalten, das auf den Bedarf einer sorgfältigen Definition von
Konsistenzbedingungen in jeder Applikation verweist.

CONTENTS iv

Contents

1 Problem Description 1
1.1 Motivation . 1
1.2 DeDiSys Project . 2
1.3 Problem Definition and Contribution 3
1.4 Organization of this thesis . 4

2 Replication Protocols and Transactions 5
2.1 Replication Techniques . 5

2.1.1 Primary-Backup Replication 6
2.1.2 Quorum Consensus Replication 7
2.1.3 Active Replication . 9

2.2 Replication with Adaptive Dependability 11
2.2.1 The Concept . 11
2.2.2 Terminology . 11
2.2.3 Availability/Consistency Balancing Replication Model 12

2.3 Transactions . 14
2.3.1 Concurrency Control 15
2.3.2 Distributed Commit 17
2.3.3 .NET Transaction Specifics 18

3 Design and Implementation 22
3.1 Active Replication Per Partition Protocol 22
3.2 System Architecture . 24

3.2.1 Invocation Service . 26
3.2.2 Group Communication 28
3.2.3 Group Manager . 28
3.2.4 System Mode . 28
3.2.5 Activation Service . 29
3.2.6 Replication Manager 29
3.2.7 Constraint Consistency Manager 31
3.2.8 Transaction Manager 31
3.2.9 Reconciliation Service 32
3.2.10 Interceptors overview 32

3.3 Replica Objects . 34
3.4 Transaction Support . 35

3.4.1 Component Details . 35
3.4.2 Transaction Context 36
3.4.3 Lock Service . 37

CONTENTS v

3.4.4 Resource Management 38
3.4.5 Transactions in the ARPPP 39

3.5 Group Targeted Communication 40
3.5.1 Group Channel Requirements 41
3.5.2 URL for Invocations 42
3.5.3 Interface to Group Communication Service 42
3.5.4 Group Channel Description 43

3.6 Replication and Call Processing 47
3.6.1 Replication Process Requirements 47
3.6.2 Concept of a Common Call 48
3.6.3 Call Guard System . 49
3.6.4 Deadlock Prevention and Detection 55
3.6.5 Optimization of Read Call Processing 56

4 Evaluation 59
4.1 Hardware and Network Infrastructure 59
4.2 Software Equipment . 60
4.3 Replica Set for Testing . 60
4.4 Test Classes . 61
4.5 Performance Measurement . 62

4.5.1 Performance of the Nodes 63
4.5.2 Simple Calls . 64
4.5.3 Nested vs. Serial Calls 65
4.5.4 Transaction Grouped vs. Ungrouped Calls 67

4.6 Transaction Abort Rates . 69
4.6.1 Tested Operation Types 70
4.6.2 Test Results . 73

5 Summary and Conclusions 75
5.1 Summary . 75
5.2 Conclusions . 75
5.3 Future Work . 76
5.4 Related Work . 77

List of Figures

Listings

References

Appendix

1

1 Problem Description

1.1 Motivation

Distributed systems [TS02] form an essential part of today’s information
systems. Resulting into efficient services and the accompanying economic
profit they are massively evolving in many different fields in our information
society. The increasing complexity of modern distributed systems evokes a
higher need for their dependability [ALRL04].

Distributed object systems evolve aiming at specific user requirements.
Failure transparency is one of the most widely required properties of a
distributed system, using replication as the main method in achieving it.

Figures 1.1 and 1.2 show a scenario where the system needs to cope with a
network split in order to ensure failure transparency:

Figure 1.1: Example of a healthy distributed object system.

In a healthy system (figure 1.1), all read and write operations are allowed,
while all changes to one object are replicated to other servers.

If the underlying network splits into several partitions (e.g. due to a
link failure, see figure 1.2), object changes cannot be replicated to all
servers anymore. In order to mask the network failure and to provide as
much functionality as possible, distributed systems traditionally allow read
operations and use one of two policies for write operations – they either
disable all or enable all write operations.

1.2 DeDiSys Project 2

Figure 1.2: Distributed system partitioned due to a network failure.

In the first case the system availability obviously suffers. In the second
case the system stays available, however replica inconsistencies between
partitions may arise.

The DeDiSys project (http://www.dedisys.org) represents an innovative
attempt to combine these extreme policies and introduces a new policy with
adjustable trade-off between availability and consistency.

1.2 DeDiSys Project

DeDiSys (Dependable Distributed Systems) was a research project
supported by the European Community with the main objective to develop
a concept for balancing dependability in distributed systems by relaxing
system consistency. The project investigated data-centric systems (e.g.
distributed object systems), as well as service-centric systems (e.g.
Webservice systems). Validation, comparison, and assessment of the
developed models in combination with existing middleware technologies like
EJB, CORBA, or Microsoft .NET was also an important objective of this
project.

In the case of tightly coupled data-centric systems, DeDiSys introduced a
system architecture with adaptable dependability based on a novel
constraint consistency checking approach [OFG+06].

1.3 Problem Definition and Contribution 3

1.3 Problem Definition and Contribution

As already mentioned, traditional distributed systems will handle a network
split using one of two extreme strategies, however both dealing with major
disadvantages. Within the frame of the DeDiSys project several new
replication protocols have been designed that combine these two strategies.
The resulting replication model is called Availability/Consistency Balancing
Replication Model (ACBRM) [OFG07]. Osrael [Osr07] discusses replication
techniques for balancing data integrity with availability in detail in his PhD
thesis.

The Primary-per-Partition Protocol (P4) [BBG+06] and Adaptive Voting
(AV) [OFGG06] are two concrete protocols of the ACBRM based on the
traditional Primary-Backup and Voting replication techniques, respectively.
.NET-based prototype implementations of both protocols exist and are
closely described in [Wei06, Hab06, Chl07].

In his PhD thesis [Osr07] mentions that Active Replication can also be
adapted to adhere to the ACBRM. However, besides an informal description
of the so-called Active Replication Per Partition Protocol by Osrael, neither
a detailed specification of the protocol has been published nor an
implementation exists. Therefore, the main contributions of this thesis are:

• A prototype implementation of the ARPPP in the .NET environment

• Performance evaluation of the prototype.

Existing prototype implementations of the P4 and AV based on the
Microsoft .NET Framework lack the support for transactions. This makes it
impossible to evaluate any concurrency behaviour of the protocols. To allow
such an evaluation, full transaction support (including distributed and
nested transactions) should be provided by the developed implementation of
the ARPPP.

Also, previous implementations do not support references between replica
objects. This is, however, necessary for the performance measurement of
nested invocations. Therefore, the support of inter-replica references should
be provided by this prototype implementation.

1.4 Organization of this thesis 4

Another challenge to face is the combination of replication and transactions
using the relatively new .NET Framework 2.0 transaction model. Together
with the support of inter-replica references, performance of concurrent and
nested invocations in the ACBRM replication model can be evaluated for
the first time in the .NET environment.

1.4 Organization of this thesis

In section 2 a general overview of the three main replication models
is provided. Followingly, the novel approach of adaptive dependability
in replication is introduced. In the end, the main concepts regarding
transactions are briefly described and an overview of the transaction
mechanisms in the .NET Framework 2.0 is given.

Section 3 starts with presenting the ARPPP protocol to be implemented.
Afterwards, the component architecture as well as design decisions regarding
all fundamental components and services are presented. After description of
the replica object design and implementation, the following mechanisms are
being examined – Transaction Support, Group Targeted Communication, and
Replication and Call Processing. For each mechanism, the implementation
of the core components is described with respect to the overall architecture.
Where relevant, considerations on performance are discussed.

Evaluation results of the prototype are summarized in section 4, including
an interpretation of these results with respect to the implementation.

The last section concludes this work by summarising its results and outlines
the possible course of the future work. Also, a summary of existing related
work is given.

5

2 Replication Protocols and Transactions

2.1 Replication Techniques

Replication is an important technique in achieving reliability in a
distributed system. Apart from distributed systems, replication has been
also extensively studied in the area of database systems (in order to achieve
higher performance). Solutions from both areas are similar, however,
as [WPS+00] suggests, they may differ in several aspects like coordination
mechanisms, assumptions, or provided guarantees. [WPS+00] introduces an
abstract replication model, that will be used in this thesis not only to
compare existing replication mechanisms, but also to describe the own
solution developed for ARPPP (see section 3.1). This is being done
with the aim to highlight the similarities and differences of replication
mechanisms discussed in this thesis.

The abstract model defines five generic phases of the replication process:

1. Request (RE)
Submission of the client’s operation to one or more replicas.

2. Server Coordination (SC)
Synchronization of the operation execution among all servers with
the aim to achieve the same execution order of concurrent
operations. This phase is usually implemented either by using atomic
broadcast (ABCAST) [DSU04, Lam78], or by using distributed
locking [WPS+00].

3. Execution (EX)
The execution of the operation (on one or more servers, depending on
the replication model).

4. Agreement Coordination (AC)
Agreement on the operation result among all involved servers. In this
phase either the use of the two-phase-commit protocol (2PC)1, or the
use of view synchronous broadcast (VSCAST) [BJ87, GS97] is made.

1 discussed in section 2.3.2

2.1 Replication Techniques 6

5. Response (END)
Sending the operation result back to the client.

For concrete replication protocols some phases may be skipped, merged,
reordered, or it may be iterated over them.

So far, many different replication protocols have been described, however
the basic models (from which many others are derived) can be reduced
to the following three: Primary-Backup Replication, Quorum Consensus
Replication, and Active Replication.

2.1.1 Primary-Backup Replication

In Primary-Backup Replication [BMST93], also known as Passive
Replication, the client sends the operation request to one replica server,
called the primary. The primary then executes the operation and propagates
the state update to all other servers, called backups. Two strategies are
applied depending on the operation result that the primary sends back to
the client. For synchronous (or eager) primary-backup replication, the
result is sent after receiving acknowledgements about a successful state
update from all backups. For asynchronous (or lazy) primary-backup
replication, the result is sent immediately after operation execution. In this
case, the state update propagation occurs (lazily) afterwards.

Both approaches, synchronous and asynchronous, have their benefits as well
as drawbacks. The former, obviously, ensures replica consistency among
all servers all the time, however increases transaction response times by
incorporating the state updates in the transaction. This approach is used
mainly in tightly coupled distributed systems. The latter does not guarantee
replica consistency, but may be significantly faster, if not the only possible
solution especially in loosely coupled environments, like mobile applications.

Primary-backup replication maps to the phases of the abstract model as
follows:

1. Client sends the operation request to the primary replica server.

2.1 Replication Techniques 7

2. Server coordination phase (SC) is not necessary, because all clients
send their requests to the primary and thus the request delivery order
equals the execution order.

3. Primary replica server executes the operation.

4. Agreement Coordination (AC) is accomplished by propagating the
state update from the primary to the backups. This can be done by
VSCAST (mostly in distributed systems), or by coordination using the
2PC protocol (mostly in database systems). Both approaches provide
correct behaviour even in case the primary fails [WPS+00, GS97].

5. Primary sends the operation result back to the client.

The phase order just described corresponds to synchronous (eager)
primary-backup replication. In asynchronous (lazy) primary-backup, the
last phase precedes agreement coordination. In this case the update
propagation does not need to fulfill such strong requirements. More on
asynchronous replication can be found in [GHOS96, GA87].

2.1.2 Quorum Consensus Replication

In Quorum Consensus (Voting) Replication [Tho79, Gif79] the replica
servers “take a vote” on each operation. All servers are equivalent and thus
all are allowed to handle operation requests. In order to perform an
operation, the server needs to find a quorum consensus among sufficiently
many replica servers. The minimum quorum sizes are chosen so, that no
two conflicting operations can gather enough votes to execute concurrently.
Assuming a simple case, that each server has exactly one vote, the following
conditions must be satisfied for the sizes of the read quorum (rq), the write
quorum (wq), and the whole system (N):

rq + wq > N (1)

wq > N/2 (2)

Condition 1 eliminates read-write conflicts, while condition 2 eliminates
write-write conflicts.

2.1 Replication Techniques 8

The voting (quorum) systems can be modeled in a variety of ways as
described in [Tho79, Gif79, PL88, PL91, JM87].

Compared to primary-backup replication, the risk of expensive coordination
in the case of primary failure is eliminated. Furthermore, the quorum sizes
can be adjusted on the properties of a concrete distributed system (like
read/write operation ratio) and improve the overall performance. On the
other hand, replica servers need some kind of synchronization to negotiate
an order of the executed operations. This is accomplished implicitly by the
acquirement of a quorum consensus [DGS85].

Depending on whether the quorum consensus is found before or after
the operation execution, it can be distinguished between pessimistic and
optimistic approaches [DGS85, SS05], respectively.

Also, static and dynamic [DB85, PL88] voting protocols are distinguished,
depending on the determination of quorum sizes. For the former class, the
quorum sizes are fixed, while for the latter, quorum sizes are dynamically
adjusted according to some conditions (in most cases, according to the
current server count).

The mapping of quorum consensus replication to the phases of the abstract
model is as follows:

1. Client sends the operation request to any replica server.

2. The server then coordinates (SC) with others by looking for a quorum
consensus on the requested operation. Distributed locking [WPS+00]
is a widely used mechanism to achieve this.

3. Replica server executes the operation.

4. The server sends a state update to all servers in the current quorum
and starts a coordination round (AC), e.g. 2PC, to gain each server’s
agreement on a successful operation finish.

5. Replica server sends the operation result back to the client.

Described above is the pessimistic approach. If optimistic, the task from
phase SC is (implicitly) accomplished by the phase AC with the hope a
quorum consensus will be found.

2.1 Replication Techniques 9

2.1.3 Active Replication

In Active Replication [WPS+00, Sch93], also called state machine
replication, the operation request is broadcasted to all replica servers, which
then execute the operation independently and send the result back to the
client.

In this approach, deterministic behaviour of the operations is required.
Otherwise, servers in a consistent state could end up, after executing the
same operation, in an inconsistent state. To achieve determinism, replicas
need to act as state-machines [Sch93]. Therefore, multi-threaded execution
or the use of randomized operations are not allowed.

This determinism restriction is the main disadvantage in active replication.
An advantage, on the other hand, is the simplicity of this technique. Also,
in some implementations failure transparency regarding the client is easily
achieved, since if a replica server fails, other servers will still process the
operation2.

The abstract model adapted to active replication looks like the following:

1. Client broadcasts the operation request to all replica servers.

2. Synchronization of concurrent operations (SC) is ensured either by
ABCAST of the requests (actually in phase RE), or by using
distributed locking.

3. All replica servers execute the operation.

4. If distributed locking is used in phase SC, all replica servers must
commit the transaction by running a distributed commit protocol,
usually the 2PC protocol.

5. Replica servers send the operation result back to the client. Depending
on the implementation, the client can wait for all responses, for the
majority of responses, or for the first response only.

2 This can be a problem with implementations using transactions and the 2PC
protocol, because if once a resource becomes involved in a transaction it usually must
commit at the end. But if the resource becomes unavailable (because its server fails),
the resource is not able to commit and the whole transaction will rollback (more on this
issue in section 2.3.2).

2.1 Replication Techniques 10

As already sketched, transactions may imply some difficulties. Because a
distributed transaction using 2PC must be committed by all resources
involved, failure of a replica server will cause abortion of all running
transactions. A possible solution how to circumvent this problem is by
using another (non-blocking) commit protocol [GL06] (more on this issue in
section 2.3.2).

If nested operations are allowed, the so called redundant nested invocation
(RNI) problem [LFT02] must be handled. Figure 2.1 illustrates how the
problem arises in a system with two server groups, each having two servers
(separate server groups are used solely for the sake of lucidity).

Figure 2.1: The redundant nested invocation (RNI) problem.

The client submits an operation to the group A and both servers (S1 and
S2) begin to process it. The operation then triggers a sub-operation to the
server group B. Because this happens on S1 as well as on S2, servers in
group B receive the request twice. Such behaviour is redundant and thus
causes unnecessary network load. [LFT02] describes the RNI problem as
well as a particular solution.

Besides this, there exist several innovative approaches to active replication.
For example, [JPA00] describes a solution enabling multi-threaded
replica execution by introducing a deterministic thread scheduler.
[FS01, Pec06, LXML07] are other examples of interesting solutions
improving different aspects of this replication technique.

2.2 Replication with Adaptive Dependability 11

2.2 Replication with Adaptive Dependability

2.2.1 The Concept

The concept described here has been developed in the frame
of the DeDiSys project (see section 1.2). The project identifies
applications [JSSG05, OFKG05], where on the one hand, strict consistency
is not desired all the time, but on the other hand, arbitrary inconsistencies
are not acceptable either.

[OFKG05] discusses possible correctness criteria in data-, service-, and
resource-centric distributed systems. For data-centric systems, constraint
consistency (data integrity) is the investigated correctness criterion. The
goal of the project is a replication model, where

“data integrity can be temporarily relaxed in order to enhance
availability, i.e. constraint consistency can be traded against
availability.” [OFG+06]

2.2.2 Terminology

To enable a description of the replication model applying this trade-off,
some definitions (according to [OFG07]) need to be clarified:

Tradeable vs. non-tradeable constraints: Non-tradeable constraints
must never be violated and thus cannot be traded for higher
availability. Tradeable constraints can be temporarily violated
(relaxed) in order to achieve higher system availability.

Critical vs. non-critical operations’: A critical operation affects at
least one non-tradeable constraint. An operation, which does not
affect any non-tradeable constraint (but may affect any number of
tradeable constraints) is called non-critical operation.

System modes (normal, degraded, reconciliation): The systemresides
in normal mode if all servers are reachable. In normal mode, the
system guarantees strict constraint consistency.
If a server fails or the underlying network splits (e.g. due to a link

2.2 Replication with Adaptive Dependability 12

failure), the system switches to degraded mode. In this case, in order
to achieve higher availability, tradeable constraints can be temporarily
relaxed (i.e. non-critical operations are allowed).
After server restart, or a network re-unification, the system switches
to reconciliation mode and establishes coarse replica consistency. In
case all servers are reconciling, constraint consistency must be
reestablished too (because switching to normal mode afterwards).
A state diagram modeling the described system modes and transitions
between them is illustrated in figure 2.2.

Figure 2.2: System modes and transitions between them.

2.2.3 Availability/Consistency Balancing Replication Model

A general replication model using this approach has been introduced
in [OFG07] and is called the Availability/Consistency Balancing Replication
Model (ACBRM). Also, a system architecture implementing the model
has been proposed in [OFG+06]. So far, two concrete replication
protocols utilizing this approach have been described and implemented –
the Primary-per-Partition Protocol (P4) [BBG+06] and Adaptive Voting
(AV) [Chl07].

To enlighten things even more, [OFG07] extends the abstract replication
model described in section 2.1, in order to conform to the ACBRM. For this
purpose, additional phases in each system mode have been introduced.

2.2 Replication with Adaptive Dependability 13

In normal mode, only one new phase has been added, the Constraint
Validation (CV) phase. It is inserted just after the EX phase, as can be
seen in figure 2.3.

Figure 2.3: Phases of the ACBRM in normal mode.

The task of CV is to check, whether the result of the preceding execution
(EX) fulfills all (tradeable and non-tradeable) constraints and in case of any
constraint violation, aborts the operation. Of course, this makes sense only
for write operations. Therefore, read operations simply skip this phase.

Since the concept of ACBRM tries to improve system availability in case of
failures, the crucial extension is done in degraded mode. For this purpose,
three phases have been added to the abstract model, as shown in figure 2.4.

Figure 2.4: Phases of the ACBRM in degraded mode.

At the very beginning, the optional phase Configuration Adjustment (CA) is
inserted. In this phase, some protocols may need to reconfigure some
internal aspects of their behaviour. For example, a dynamic voting protocol
might need to adjust quorum sizes, or a primary-backup protocol might
need to redefine the primary replica in a partitioned environment. However,
for some protocols this phase might be needless (e.g. static voting).
Similarly to normal mode, Constraint Validation (CV) is inserted after the
EX phase, however, its task is modified. While critical operations are not
allowed in degraded mode (critical constraints could be violated between
partitions otherwise), non-critical operations are allowed. Evenmore, as
tradeable constraints may be violated between partitions, there is not much
sense to check them within one partition. Therefore, the protocol may
decide simply not to check the tradeable constraints at all.
The last phase added (right after CV) in degraded mode is the
Reconciliation Preparation (RP) phase. In this phase, the protocol logs
information on the executed operations to prepare for later reconciliation.
Different types and amounts of information [OFG07] can be logged,
depending on the reconciliation strategy used.

2.3 Transactions 14

Phases CV and RP in degraded mode have only relevance for write
operations.

When partitions rejoin, the system switches to reconciliation mode. For
this mode, two or, as the case may be, three phases have been added to the
abstract model (see figure 2.5).

Figure 2.5: Phases of the ACBRM in reconciliation mode.

First, replica consistency, and eventually also constraint consistency must be
established. These phases are called Replica Consistency Re-establishment
(RCR) and Constraint Consistency Re-establishment (CCR), respectively.
If all replica servers are rejoining, both phases (RCR and CCR) must
be performed. Else, if only a subset of servers is rejoining, it is
sufficient to perform only RCR. However, CCR can be performed as well.
Different strategies for CCR (re-schedule and replay, stepwise rollback, and
compensation actions) are discussed more closely in [OFG07].
Because some protocols might need to adjust their behaviour after partition
re-unification, an optional Configuration Adjustment (CA) phase is inserted.

2.3 Transactions

Transactions in programming represent a standard mechanism for
synthesizing small atomic actions into complex operations, while ensuring
some predefined properties. Although there exist several transaction
concepts [GR92, Mos81, WS92], the term transaction usually refers to
ACID transactions [GR92] (also in this thesis) characterized by the four
properties – Atomicity, Consistency, Isolation, and Durability.

Atomicity Requires atomic behaviour of the transaction. Either the whole
transaction is performed, or it has no effects at all. Atomicity is
achieved by logging all changes made by a transaction and by applying
or discarding them at transaction commit or rollback, respectively.
For this purpose a distributed commit protocol must be used in a
distributed system (see section 2.3.2).

2.3 Transactions 15

Consistency If starting from a consistent system state, after executing a
transaction, the system must end up in a consistent state, again. To
provide this, the transaction is simply not allowed to commit until all
system specific constraints are satisfied.

Isolation Changes made by a running (not yet committed) transaction
should be visible neither to the system, nor to other concurrent
transactions. What more, during execution of any two transactions,
concurrent access to resources must be controlled in order to prevent
interference between these transactions (see section 2.3.1).
The requirements just described refer to the so called serializable
isolation. The ANSI/ISO SQL-92 specification also defines three other
isolation levels with weaker requirements. These weaker isolation
levels provide better performance, but can cause several phenomena
like Dirty Reads, Non-repeatable Reads, or Phantoms [BBG+95].

Durability After a transaction commit, all changes made must
unconditionally become durable and must be visible to the system
(e.g. be written to the disk).

2.3.1 Concurrency Control

To provide concurrency consistency, the solution is to make transactions
serializable [BHG87]. This means, the execution of any two concurrent
transactions must be equivalent to a serial execution of these transactions.

To achieve serializability, transaction operations must be properly
scheduled [BHG87], i.e. ordered in such a way serializability is secured.
Proper scheduling may be done by several techniques. [BHG87] discusses
two-phase locking (2PL), non-locking techniques (like timestamp ordering,
serialization graph testing, or certifiers), and multiversion concurrency
control. From all these techniques, 2PL is the most widely used one.

Locking is a standard mechanism in synchronizing access to a shared
resource. The 2PL technique divides the transaction process into two phases,
which will be called here the lock acquisition (LA) and the lock release (LR)
phase. The most important rule is that no lock can be acquired after any
lock has been released. Usually, transactions release all locks together at the
transaction commit or rollback. This is denoted as Strict 2PL.

2.3 Transactions 16

In general, 2PL is a subject to deadlocks. A simple deadlock situation arises
for example, if transaction A waits for a lock already owned by another
transaction B and B, at the same time, waits for a lock owned by A.
Of course, more complex deadlock situations are possible. To handle
deadlocks, different mechanisms can be implemented [BHG87, BG81]:

Prevention The most simple technique is to not allow any transaction
to be waiting. If a transaction cannot acquire a lock, either this
transaction or the transaction owning the lock is aborted. Another
simple technique is timeout. If a transaction waits too long for a lock,
it is supposed to be deadlocked and thus is aborted.

Detection Another technique to handle deadlocks is to detect them
precisely. This requires maintenance of a so called waits-for graph
(WFG) keeping track of waits-for dependencies between transactions.
Any deadlock situation appears as a cycle in WFG. In such case, one
transaction from the cycle is aborted, for what exist different selection
methods.

Avoidance The last solution to handle deadlocks is to avoid them
completely. To bring an example, Conservative 2PL avoids deadlocks
by requiring that all locks used during a transaction must be acquired
before the first operation is executed.

For distributed transactions, concurrency control is usually distributed too.
Several solutions for distributed locking have been proposed – Distributed
2PL [BHG87], Wound-Wait (WW) [RSL78], Basic Timestamp Ordering
(BTO) [BG81], or Distributed Certification [SNM85]. All these solutions
work in combination with the two-phase commit (2PC) distributed commit
protocol (see section 2.3.2), which guarantees atomicity of a transaction.

Again, distributed 2PL is the most often used one and thus will be examined
in more detail. [BHG87] shows that if Strict 2PL is used for the distributed
variant, no communication between schedulers on different servers is
required to ensure the 2PL rules. More complicated is the handling
of distributed deadlocks. [BHG87] discusses both distributed deadlock
prevention (by using timeouts or timestamps) and distributed deadlock
detection (by using global deadlock detection or distributed cycle detection).

2.3 Transactions 17

Global deadlock detection is accomplished by unifying local WFGs into a
global WFG. A problem arises from the graph unification, which happens
only periodically and thus, the deadlock detection must happen periodically
too. For this reason, the discovery of a deadlock can be delayed, which
blocks resources. Also, because the global WFG is not always up to date,
stale transaction dependencies may cause so-called phantom deadlocks.

A distributed cycle detection algorithm called path pushing [BHG87] is
based on the exchange of partial information from local WFGs with other
servers. Under some circumstances, this approach discovers deadlocks faster
than the global deadlock detection.

2.3.2 Distributed Commit

When a distributed transaction receives a commit request a distributed
commit protocol must be initiated in order to ensure atomicity of the whole
transaction. Most of the protocols are variants of a centralized Two-Phase
Commit (2PC) protocol [GL06].

In 2PC, after receiving the commit request, the coordinator first requests all
participants to prepare for commit. After receiving the answers, the
coordinator decides whether the transaction can be committed or not.
Depending on the decision, the coordinator then sends a commit or abort
command to each participant. A disadvantage of the 2PC is, that in case of
the coordinator failure the protocol execution can become blocked until the
coordinator recovers.

A solution to the blocking problem of 2PC are non-blocking protocols. For
example, [Ske81] introduces the Three-Phase Commit (3PC) protocol able
to overcome blocking in some cases, however, for the price of an additional
coordination phase. [GHR97] presents an optimistic commit protocol called
OPT, which allows a transaction to “lend” a lock from a transaction that is
already in the prepare phase. A different approach to handle server failures
has been proposed in [GL06]. Here, the Paxos Commit uses the well known
Paxos consensus algorithm to reach a commit or abort decision.

[GHR97] describes or lists several other variants of the 2PC and other
commit protocols.

2.3 Transactions 18

2.3.3 .NET Transaction Specifics

The ARPPP implementation to be developed in the frame of this thesis
should reside on top of the Microsoft’s .NET Framework 2.0. Because the
transaction integration is a substantial goal, an overview of transaction
support in the .NET Framework is given at this place.

The .NET Framework 2.0 provides a completely new transaction support
mechanisms compared to its previous versions. [Low05] describes the
main features of the new System.Transactions namespace and [Laz08]
presents several articles on transactions under Microsoft Windows and in
the .NET Framework.

One of the main improvements is the introduction of the Lightweight
Transaction Manager (LTM) that provides better performance for simple
transactions when compared to the already known Distributed Transaction
Coordinator (DTC). The LTM is used for transactions involving at most
one durable resource (e.g. a database) and any number of volatile resources
(see below), unless they reside in different application domains. If a second
durable resource or any resource from a new application domain gets
involved, the transaction is promoted to a distributed one and the DTC is
used. If a transaction is serialized, the promotion is forced, because this
may imply the distribution to another application domain.

Also, the System.Transactions namespace simplifies implementation of
custom resources able to enlist in a transaction, the so-called transactional
resource managers (RM). To provide flexibility, two types of RMs can be
defined:

Durable RMs store the data and the transaction history to a persistent
storage and in case of failure they are able to recover and eventually
continue in the transaction. An example of such RM is a database
manager.

Volatile RMs manage only volatile data and do not need to recover after
failures. An example could be an in-memory data structure managed
by a transactional RM.

2.3 Transactions 19

The DTC implements the 2PC protocol in order to ensure atomicity of
distributed transactions. To correctly interact with custom RMs, every RM
must implement the IEnlistmentNotification interface (see figure 2.6).

Another simplification represents the concept of ambient transactions.
Whenever a transaction is started, it is stored in a threadstatic field
Current of class Transaction, i.e. a static field within the current thread
and the current application domain. Therefore, any method called on this
thread (and within this application domain) can find out whether it resides
in the scope of a transaction. Software components able to discover the
ambient transaction and enlist with it as a RM are called transaction-aware
components.

Transactions can be incorporated into a program by either declarative
or explicit transactional programming model. The declarative model is
the same one as in previous versions of .NET, however the transaction
management behind it makes use of improvements introduced with the
LTM whenever possible. The explicit model allows to completely manage
the transaction flow by the programmer while offering two approaches. The
easier one is to use the TransactionScope class as shown in listing 2.1.

using(TransactionScope ts = new TransactionScope())
{
/* Perform any transactional work here... */
ts.Complete();

}

Listing 2.1: Use of the TransactionScope class

In this case, creating the TransactionScope does all the work. To compare
it with the second approach, listing 2.2 shows a code snippet doing exactly
the same thing, however using plain transaction objects.

Transaction oldAmbient = Transaction.Current;
CommittableTransaction committableTransaction;
committableTransaction = oldAmbient as CommittableTransaction;
if(committableTransaction == null)
{

committableTransaction = new CommittableTransaction();

2.3 Transactions 20

Transaction.Current = committableTransaction;
}

try
{

/* Perform any transactional work here... */
committableTransaction.Commit();

}
finally
{

committableTransaction.Dispose();
//Restore the ambient transaction
Transaction.Current = oldAmbient;

}

Listing 2.2: Use of plain transaction objects

Unless using the plain transaction objects cannot be avoided,
TransactionScope should be the preferred way to manage transactions.
However, scenarios, where using a TransactionScope is not possible, exist.
For example, if the transaction must be started within one method, but
needs to be finished within another method, using a TransactionScope is
not suitable.

When programing with the plain transaction objects, three classes
are to be considered – Transaction, CommittableTransaction, and
DependentTransaction as illustrated in figure 2.6.

CommittableTransaction is always the “top-most” Transaction object
created and is also the only one that can be committed. If a nested
transaction is needed, the Transaction.DependentClone method can be
called to create one, called here a DependentTransaction. It is not possible
to commit a DependentTransaction. However, calling its Complete

method indicates to the parent all work has been done.

The CommittableTransaction with all DependentTransactions cloned
from it belong to the same logical transaction.

2.3 Transactions 21

Figure 2.6: Transaction classes in .NET 2.0

22

3 Design and Implementation

3.1 Active Replication Per Partition Protocol

The Active Replication Per Partition Protocol (ARPPP) is after
Primary-per-Partition Protocol (P4) and Adaptive Voting (AV) the next
replication protocol following the ACBRM replication model in combination
with active replication. The idea of applying ACBRM principles to Active
Replication has been mentioned in Osrael’s PhD thesis [Osr07], but besides
an informal, unpublished description of the protocol by Osrael, no detailed
published specification of the protocol exists. Section 2.2.3 introduces new
phases added to the abstract replication model by ACBRM. In section 2.1.3
active replication is discussed in detail.

In the system architecture design for ACBRM described in [OFG+06] a
membership service is supposed to keep track of node failures and system
partitionings. Usually, a group membership service is combined with a
group communication (GC) service. Therefore, ABCAST has been chosen
to ensure server coordination in the SC phase, as a GC service is (usually)
able to provide it.

However, an important goal is the support of transactions. In the context of
.NET transactions the client can provide an ambient transaction when
initiating a call to the system. In such case the system should behave as a
transaction-aware component and join the transaction. This implies:

• distribution of the transaction to all nodes and

• transactional resource management (ensuring all the ACID properties
as discussed in section 2.3) concluded with the 2PC protocol.

Compared to active replication using ABCAST from section 2.1.3, the 2PC
is extra added. This is crucial, because the outcome of an operation is
determined not only by the system, but also by external factors. Such
factors can be the client’s commit/abort decision, or the outcome of another
external resource manager involved in the same transaction.

To summarize the ARPPP protocol phases, figure 3.1 illustrates them (for
both normal and degraded mode) and a description of each phase follows:

3.1 Active Replication Per Partition Protocol 23

Figure 3.1: Phases of the ARPPP model.

CA (Configuration Adjustment) For the general ACBRM replication
model, this phase is only required in degraded mode. However,
ARPPP does not need to perform any adjustments in configuration
during degradation, therefore this phase can be ommited completely.

RE+SC (Request + Server Coordination) This phase merges the
sending of the operation request by client with server coordination.
The client sends the request to all nodes using ABCAST, which
implicitly ensures server coordination by receiving request messages
on all nodes in the same order. Also, the client uses the ambient
transaction and distributes it along with the request to all nodes. If
no ambient transaction exists, the client starts a new one.

EX (Execution) The operation requested by the client is executed.
Resources involved in the operation must be transactionally managed
in order to achieve the ACID properties. The operations may initiate
other (nested) sub-operations. These are handled following the same
model, however a special synchronization is necessary as will be
discussed later in section 3.6. The standard RNI problem (see
section 2.1.3) must be handled too.

CV (Constraint Validation) This phase added by the ACBRM
replication model validates consistency of constraints in the system
immediately after executing an update operation. This phase is
skipped if the executed operation was a read operation. As described
in section 2.2.3, CV behaves differently in normal and degraded mode.

RP (Reconciliation Preparation) According to the general ACBRM
replication model, this phase again is only required in degraded mode.
Its task is to store information necessary for later reconciliation. For
example, a log of the change performed during EX phase can be stored.

END (Response) After the operation has been processed, a response is

3.2 System Architecture 24

sent back to the client. Although, this ends the invocation, it does not
finish the transaction. Because the client provided the transaction, it
is also responsible for committing/aborting it. However, the client can
decide to initiate another operation within the same transaction (see
the loop back in figure 3.1).

AC (Agreement Coordination) After the client commits or aborts the
transaction, the AC phase starts. Here, 2PC ensures the final
agreement on all changes performed. At the end of 2PC all changes
(and eventually the corresponding logs from RP phase) performed
within the transaction are made durable. Also, all resources involved
in the transaction are released.

3.2 System Architecture

The general architecture design [OFG+06] and its implantation into the
.NET environment [OFS+06] have been used as a reference. Both proposals
discuss the system components and main dependencies between them.
The interceptor architecture of the Invocation Service (IS) as presented
in [Hab06] and implemented in both P4 and AV has been used here as well
(see section 3.2.1). Figure 3.2 illustrates the system design considering the
interceptor architecture.

Some smaller components and some dependencies have been omitted for
better readability. For example, a Lock Service is used by the Replica
Manager and Transaction Manager, or the System Mode is visible to all
components, which can adapt their behaviour according to it. Also, the
Reconciliation Service uses other components to fulfill its tasks.

Design and implementation of the following components have been taken
with less or more modifications from previous work done in frame of the
DeDiSys project [Hab06], and the P4 and AV implementations:

• Group Communication: taken with almost no modifications.

• Invocation Service: taken with almost no modifications.

• System Mode: taken with almost no modifications.

3.2 System Architecture 25

Figure 3.2: System architecture.

• Activation Service: taken with minor changes in implementation.

• Reconciliation Service: has been redesigned, however the logic of
the algorithm for resolving replica conflicts has been kept.

• Constraint Consistency Manager: has been redesigned and partly
reimplemented.

All other components have been redesigned and reimplemented completely
or developed from scratch.

In the rest of this section an overview of each system component is given.
The focus is on the tasks and dependencies to other components. Also, if
necessary, any special design, tool, or technology decisions are presented.

3.2 System Architecture 26

3.2.1 Invocation Service

The Invocation Service (IS) provides means to intercept every method call
placed on an object exposed by the system. Every system component is
able to register its own interceptors with the invocation service. For one
invocation, the client and server side, as well as before and after operation
interception is distinguished. That means, four types of interceptors are
available – ClientBefore, ClientAfter, ServerBefore, and ServerAfter. The
sequence diagrams in figures 3.3 and 3.4 illustrate how the interceptor
architecture works on the client and server side, respectively.

Figure 3.3: Interceptor architecture (client side).

This interceptor architecture allows every system component to append its
part of handling to the overall call processing. .NET Remoting turns the
client call into a call message object, which is supplied to all interceptors for
custom processing. After the call is executed on the real object, the call
result is represented by a return message object. This is therefore supplied
only to the ServerAfter and ClientAfter interceptors.

3.2 System Architecture 27

Figure 3.4: Interceptor architecture (server side).

Handling done by single components is described in appropriate subsections
further below. From the view of IS, all handling done by the interceptors
is optional. The only exception is, that any one of the ClientBefore
interceptors must set the remote object’s URI into the call message in
order to address the call. As described later, this is done by the RM’s
ClientBefore interceptor (see section 3.2.6).

The remote invocation between two instances of IS is handled by the
.NET Remoting layer. .NET Remoting offers different types of so called
channels to transmit the call request/return message depending on the
call data representation and the communication mechanism used (e.g.
binary data/TCP or SOAP/HTTP). While these channels are appropriate
for point-to-point communication, for active replication a means of
group communication is advantageous. No such channel exists in the
.NET Framework, however it is possible to provide a custom channel
implementation.

For this purpose a custom GroupChannel enables two nodes to communicate

3.2 System Architecture 28

over a group communication service (see section 3.2.2). A client can address
either the group as a whole, or any individual node. For the case of ordered
message delivery, the GroupChannel assigns a sequence number to every
call request received with a message. This enables higher level handlers to
reconstruct the call request delivery order. A detailed description of group
targeted invocations is discussed in section 3.5.

3.2.2 Group Communication

Group communication (GC) and a membership service is provided by
the Spread Toolkit (http://www.spread.org) for the reasons explained
in [OFS+06]. Among other features, Spread is able to provide both
ABCAST and VSCAST as required by several protocol models described in
section 2.1.

A group membership service in turn is necessary for handling node
failures/rejoins and partition splits/reunifications as supposed by the
ACBRM (see section 2.2.3). Spread’s group membership service is further
used by the Group Manager component described in section 3.2.3.

3.2.3 Group Manager

The Group Manager (GrMgr) handles all membership changes in the
communication group. According to the state diagram presented in
figure 2.2 (section 2.2.2), it triggers state transitions of the System Mode
instance (see section 3.2.4). It is the only system component intended to do
this. GrMgr is also responsible for starting the reconciliation process
whenever necessary.

3.2.4 System Mode

System Mode is a publicly visible singleton (per node) instance providing
information about the current mode the system is operating in. System
components (if appropriate) adapt their behaviour according to the current
state of the System Mode.

3.2 System Architecture 29

3.2.5 Activation Service

One task of the Activation Service (AS) is to exchange client provided real
objects for proxy objects exposed by the system. This enables every call to
be intercepted by the IS as described in section 3.2.1.

The second task of the AS is to activate the instance targeted by an
invocation. In this case, the AS obtains the instance from the RM.
(Other features like passivation of unused instances is possible, however not
intended for the prototype.) The activation is accomplished by registering a
ServerBefore interceptor with IS, which activates the target object prior
to the call.

3.2.6 Replication Manager

The core component responsible for replica management and replication is
the Replication Manager (RM). It manages the local replicas, keeps track of
their versions, and implements the replication protocol.

The RM uses a separate component called Replica Manager to manage
replica objects3. Although isolation (from the ACID properties) should
be ensured by the replication protocol during server coordination, it is
(redundantly) guaranteed by the Replica Manager as well. For every
operation, the Replica Manager requires a suitable lock to be owned by the
executing transaction. This does not harm performance and provides a
general approach with high robustness guarantees.

Resources involved in an operation are enlisted with the executing
transaction as volatile resources (see section 2.3.3). Durable resource
management is much more complex and not necessary for the objectives
of this thesis. Each resource participates in the 2PC protocol ensuring
atomicity and durability of the transactional resource management as well.

3The Replica Manager stores all replica objects on one node, ensures their backup in
a persistent storage, keeps track of their versions, ensures concurrency control by
requesting replica locks, and provides transactional management of replicas. On the
other hand, the Replication Manager implements the replication protocol itself using
the features of the Replica Manager.

3.2 System Architecture 30

The Replica Manager stores the replica objects in runtime memory, but
keeps synchronized copies in a database, too. This enables to load all
durably persisted resources even after a node crash.

Another task of the Replica Manager is to log the history of replica
versions during degraded mode. This can be done in several ways as
described in [OFG07]. Logging full history of changes allows to use any
reconciliation strategy. In order to provide as much configuration options
for the prototype as possible, this approach has been chosen.

Finally, the most important task of the RM is the management of the
replication process itself. It is realized by scheduling the operations to be
executed. For this purpose, the RM registers all four types of interceptors.
A brief overview of each interceptor’s task follows, however, a detailed
description of the scheduling process is described in section 3.6.

ClientBefore interceptor is responsible for selecting the target of the
remote invocation. In case of the ARPPP, this is the whole
communication group. For nested invocations, this interceptor also
performs some synchronization with the parent call, needed for proper
scheduling, as will be discussed later.

ServerBefore interceptor is the most important interceptor. It schedules
the execution of all operations according to the operation receipt
order. It does this by suspending each operation’s thread until it is
allowed to execute. The scheduling must happen in a deterministic
way, in order to achieve the same operation execution for one replica
order on all nodes.

ServerAfter interceptor does some synchronization needed for proper
scheduling. This will be discussed later in more detail.

ClientAfter interceptor performs for nested operations some
synchronization with the parent operation needed for proper
scheduling. This will also be discussed later in section 3.6.3 in more
detail.

3.2 System Architecture 31

3.2.7 Constraint Consistency Manager

The Constraint Consistency Manager (CCMgr) holds all constraints defined
in the system and ensures constraint consistency according to the rules
described in section 2.2.3.

To validate constraint consistency in the system, the CCMgr installs
a ServerAfter interceptor, which approves changes made by a write
operation immediately after execution. As an optimization, the CCMgr also
installs a ClientBefore interceptor, which aborts any critical operation
during degraded mode.4

3.2.8 Transaction Manager

The Transaction Manager (TxnMgr) is designed to provide transactional
support for the replication process on the local node. It keeps track of every
distributed transaction since it has been first seen on the node, until the
transaction finishes.

The TxnMgr associates a TxnContext with every transaction seen on the
particular node. The TxnContext stores transaction specific data like, for
example, locks of resources involved in the transaction.

TxnMgr also registers all four types of interceptors with the IS. Their tasks
are as follows:

ClientBefore interceptor is the very first client-side interceptor. It
installs an ambient transaction, which can be then used by all other
client-side interceptors on this thread.

ServerBefore interceptor is the very first server-side interceptor. It uses
the transaction distributed by the client with the operation request
and installs an ambient transaction. This can be subsequently used by
all other server-side interceptors on the thread.

4The operation criticality can be checked on the client side because in the prototype
every node is a client and a server at the same time. If this was not so, the check must
happen within a ServerBefore interceptor.

3.2 System Architecture 32

ServerAfter interceptor as the very last server-side interceptor finishes
the ambient transaction installed by the ServerBefore interceptor.

ClientAfter interceptor is the very last client-side interceptor that
finishes the ambient transaction installed by the ClientBefore
interceptor.

Transaction processing is discussed more closely in section 3.4.

3.2.9 Reconciliation Service

The Reconciliation Service (RS) is the component responsible for replica
consistency reestablishment after two partitions rejoin. If the partition
reunification results in a healthy system, the RS is also responsible
for constraint consistency reestablishment as discussed in section 2.2.3.
Reconciliation is triggered by the Group Manager when a failed node
recovers or partitions rejoin.

As the reconciliation process is not in the focus of this thesis, only a very
simple reconciliation algorithm (based on the more updates win strategy)
has been taken from the AV implementation described in [Chl07].

The RS tightly cooperates with the RM to gather all data and information
necessary for the reconciliation. Because the RS needs to have exclusive
access to all resources, it has special priviledges to “turn off” the TxnMgr.

3.2.10 Interceptors overview

After all main system components and their registered interceptors have
been described, a comprehensive overview of all interceptors is presented.
Figure 3.5 illustrates which client-side interceptors are called by the IS and
in which order. Figure 3.6 in turn illustrates the server-side interceptors
and their order as they are called by the IS.

3.2 System Architecture 33

Figure 3.5: Client-side interceptors overview.

Figure 3.6: Server-side interceptors overview.

3.3 Replica Objects 34

3.3 Replica Objects

The concept of a replica object has been basically taken from previous
solutions (P4 and AV) and is represented by the class ReplicableObject

illustrated in figure 3.7.

Figure 3.7: The ReplicableObject class.

ReplicableObject is an abstract class supposed to be extended by user
defined classes, that should have the “replication ability”. For this purpose,
every replica object needs to have a unique identifier (ObjectId) and a
version identifier (Version). Both these members are used exclusively by
the system and are not visible to the outside world.

The Activation Service provides means for exchanging a client supplied
ReplicableObject for a client proxy substitute. In this case, a client and a
server proxy for this object are created and a new unique ObjectId is
assigned to both proxies, as well as to the replica object. Then, the real
instance is passed to the Replication Manager (RM), where it is further
managed (see section 3.2.6). The client proxy is passed to the client to be
used for invocations and the server proxy is published by the .NET
Remoting infrastructure to accept remote invocations.

The ReadMethodAttribute attribute is used by user extensions of
ReplicableObject to mark methods, that do not perform any changes of
the replica object. Such operations are then treated by the system in a

3.4 Transaction Support 35

more efficient way, according to the ACBRM replication model specification
(see section 2.2.3).

In contrast to the previous implementations, one of the goals here is to
enable nested invocations. For this purpose, inter-replica references must be
supported. To achieve the desired behaviour, a replica A referencing
another replica B must store B’s proxy object instead of the real instance of
B. This ensures a nested call to B to be intercepted by the system and
handled appropriately.

To store a replica proxy instead of its real instance is a matter of object
construction. However, replica objects are serialized frequently, so the
serialization process must not destroy the proxy reference. Because custom
proxy implementations are used in the system, custom serialization is
necessary, too. For this purpose, every custom ReplicableObject

implementation must implement the ISerializable interface. For the
serialization and deserialization of replica references, ReplicableObject

provides the GetReplicableObjectData and ReplicableObjectFromData

methods, respectively.

In fact, when serializing a replica proxy, only the corresponding ObjectId is
recorded. During deserialization then, the proxy for the ObjectId must be
found and assigned.

3.4 Transaction Support

3.4.1 Component Details

As described in section 3.2.8, transaction support during invocations is
implemented by using interceptors. For this reason, it is not suitable to use
the TransactionScope class for transaction management. Instead, the
more complex technique of using plain transaction objects must be used
(see section 2.3.3). The Transaction Manager (TxnMgr), however, provides
a simplified interface for managing transactions, as shown in the class
diagram in figure 3.8.

StartTxn is a transaction-aware method that creates a new
CommittableTransaction object or, if an ambient transaction is present,
clones a DependentTransaction from it. Optionally, the caller may pass in

3.4 Transaction Support 36

Figure 3.8: The ITransactionManager and ITxnContext interfaces.

a Transaction object from which the dependent should be cloned. This
method also sets the new Transaction object as the ambient transaction
and pushes the previous one onto a stack.

Calling the Rollback method rolls back the ambient transaction. An
Exception object may be optionally passed in to indicate the cause for
aborting the transaction. At the end, this method resets the previous
ambient transaction by popping it from the stack.

After all work within the ambient transaction has been successfully done,
the Complete method must be called. If the ambient transaction
is a CommitableTransaction, it is committed. Otherwise, if it is a
DependentTransaction, it is completed. Afterwards, this method pops the
previous ambient transaction from the stack and resets it.

3.4.2 Transaction Context

The Transaction class provides basic information about the transaction it
represents like a local ID, a global ID, or a transaction status. To store other
transaction specific information, the Transaction Context (TxnContext) has
been designed. It is specific for one (logical) transaction and one node. I.e.
the TxnContext is also node specific. The ITransactionManager’s field
CurrentTxnContext provides the TxnContext associated with the ambient
transaction (see figure 3.8).

3.4 Transaction Support 37

The TxnMgr associates a new TxnContext with every transaction, when it
is first seen. At creation time, TxnContext enlists with the corresponding
transaction and so becomes involved in the 2PC. Although it is part of the
2PC protocol, TxnContext never votes for aborting the transaction. When
the transaction finishes, the TxnContext simply disposes itself during the
commit, or as the case may be, the rollback phase.

The main task of TxnContext is to store resource locks owned by a
transaction. These locks are then requested by the Replica Manager to
control concurrent access to replica objects. More on the locking system is
discussed in section 3.4.3. As declared by its interface (see figure 3.8),
TxnContext provides methods to add and obtain locks. All locks held by a
TxnContext are released at dispose time, when the transaction finishes.

Also, TxnContext provides a general purpose field Properties, where
arbitrary data can be stored.

3.4.3 Lock Service

The only resource type in the system are replica objects. Replicas are
locked on each node independently by acquiring locks at a node-central
component called the Lock Service. As figure 3.9 shows, two types of locks
can be acquired – read locks (IReadLock) and write locks (IWriteLock).

Figure 3.9: Lock Service interfaces.

The Lock Service must ensure the usual rules for lock issuing. At the same
time, for one replica (on one node) the following must be satisfied:

3.4 Transaction Support 38

• Either no lock is issued, or

• any number of read locks, but no write lock is issued, or

• one write lock, but no read lock is issued.

The Lock Service interface (see figure 3.9) provides methods to request both
types of locks. Additionally, when requesting a write lock, the caller can
pass in the read lock it already owns. In this case, the Lock Service tries to
advance the given read lock to a write lock. All methods are nonblocking
and return null in case the lock requested cannot be issued.

A lock is mapped to a replica by holding the replica’s ObjectId. The base
interface of a lock (ILock) enables its holder to release the lock as well as to
check, whether the lock is still valid. The former method is used by the
TxnContext at dispose time, while the latter is used by Replica Manager to
check the validity of a lock provided for an operation.

When a lock is unlocked, the Lock Service sends the OnLockUnlocked event
to all registered delegates containg information about which replica has
been unlocked and whether it is now possible to acquire a new lock.

3.4.4 Resource Management

As already discussed, the Replica Manager controls the access to all replica
objects on a certain node. On one hand, this incorporates concurrency
control ensured by using a standard locking mechanism with read and write
locks. On the other hand, transactional resource management is required as
well.

Besides other functionality, Replica Manager offers the GetReplica method
to obtain a read copy of a replica object and the UpdateReplica method
to install a new version of a replica passed in as a parameter. To
secure concurrency control, the former method provides the replica’s read
copy only if the ambient transaction owns the appropriate read lock.
Analogously, the latter method installs the provided replica object only if
the ambient transaction owns the appropriate write lock. How the locks are
obtained is described in section 3.4.2.

3.4 Transaction Support 39

To ensure transactional ACID properties, the Replica Manager’s
UpdateReplica method installs a new replica version in a transactional
manner. When the method is called, the new replica version is wrapped
by the UncommittedReplica object, which is then enlisted with the
ambient transaction and stored in TxnContext. In this way, when the
transaction finishes, the wrapper object will participate in the 2PC, which
is necessary for providing atomicity and durability. Apart from that,
storing the temporal changes in TxnContext ensures isolation, because
every transaction has access to its own (and no other) TxnContext and thus
does not see changes made by other concurrent transactions.

For resources, that only need to be notified about the transaction end,
but do not require to vote on its outcome (similar to TxnContext), the
abstract class DisposableTxnResource has been designed. Its subclasses
automatically enlist with the ambient transaction at construction time
and implement the Dispose method, that is called when the transaction
finishes. The use of this class will be presented later in section 3.6.3.

3.4.5 Transactions in the ARPPP

After the concepts, components, and mechanisms supporting transaction
processing have been presented, this section describes their interplay within
the replication using the ARPPP.

When the client calls a method on a replicated object an ambient
transaction may or may not be running. The very first interceptor called is
the TxnMgr’s ClientBefore interceptor. This calls the TxnMgr’s StartTxn

method, which installs a newly created Transaction object as the ambient
transaction (see section 3.4.1). Also, the TxnContext for this transaction on
this node is created. All the subsequent client-side interceptors have the
access to the ambient transaction as well as to its TxnContext.

Except that, the TxnMgr’s ClientBefore interceptor copies the new ambient
transaction into the call message. In this way, the Transaction object is
broadcasted to all server nodes in the call message. Each server node starts
processing the call message with the TxnMgr’s ServerBefore interceptor as
the very first server-side interceptor. Using the broadcasted Transaction

object, this interceptor starts a new dependent transaction and sets it as the

3.5 Group Targeted Communication 40

ambient transaction. The TxnContext is created too. From now on
all server-side interceptors can access the ambient transaction and the
corresponding TxnContext.

Evenmore, the same thread performs the method invocation on the real
object. Therefore, if the replica object contains transaction-aware methods,
these automatically join the ambient transaction and become a part of it.
This is especially useful for nested invocations. If the replica object places a
call to another replica object, this nested call happens already in the
context of the ambient transaction started by the system.

The transaction mechanism described for nested invocations clones always
the same transaction and thus ensures the execution within the same
logical transaction. This causes a call and its nested call to have a
common TxnContext, which is essential for proper transactional resource
management.

TxnMgr’s ServerAfter and ClientAfter interceptors finish the ambient
transaction at the end of server-side and client-side invocation processing,
respectively. If an ambient transaction has been started by the client prior
to the replica method invocation, the client is responsible for finishing the
transaction. The client can also decide to abort the transaction (although
the invocation has been successful), or even start another invocation within
the same transaction.

3.5 Group Targeted Communication

Another important part of the system is the support for invocations
targeting the whole communication group, instead of a single node. This is
needed for simple call replication within the active replication scheme. As
already discussed in section 3.2.2, the Spread toolkit provides a group
communication service with the message broadcast ability. How a custom
channel implementation can be integrated into .NET Remoting is suggested
in section 3.2.1. Here, the concrete design and implementation of such a
channel is described.

3.5 Group Targeted Communication 41

3.5.1 Group Channel Requirements

Using the underlying group communication service of Spread, the custom
group channel must:

• be able to broadcast a call message to every node in the
communication group,

• accept call messages sent to the channel, process them, and send
return messages back,

• handle the Redundant Nested Invocation (RNI) problem for
duplicated call and return messages,

• allow the caller to specify for how many replies should be waited
before making the return message available (for the first reply only, or
for all replies)

• assign a sequence number to every call message received.

To be compatible with the .NET Remoting infrastructure, the group
channel must further implement the following three interfaces:

IChannel: Methods exposed by this interface are used by .NET Remoting
for general channel management. For example, for obtaining the
channel’s name and priority, or to check whether an invocation URL is
accepted by a channel or not.

IChannelSender: This interface exposes only one method
(CreateMessageSink) to be used by a client wanting to send a
call message using this channel. The method must return an
IClientChannelSink implementation, that can be further used to
send call messages. An URL of the invocation target is passed in to
adjust the sink behaviour. The format of the URL for the custom
channel is described in section 3.5.2.

IChannelReceiver: Methods declared here are needed for the channel’s
server behaviour management. For example, the StartListening and
StopListening methods enable or disable the channel’s ability to
receive and process messages.

3.5 Group Targeted Communication 42

3.5.2 URL for Invocations

In the .NET Remoting infrastructure every channel supports a specific URL
format to address the invocations. The URL format for the group channel is
the following:

gcp://<group id>/<target>/<object uri>

The string gcp at the very beginning is an identifier of the URL format and
stands for group communication protocol. The following group id denotes a
concrete group as the underlying group communication service can manage
any number of different groups. The target of the invocation (within the
specified group) can be defined in two ways. Using the string all will
broadcast the invocation to all members of the specified communication
group. Alternatively, one node can be addressed by using its IP endpoint
identifier in the form <ip adr>:<port nr>. The rest of the URL is the
application specific object identifier (object uri) denoting the object to be
used for the invocation.

3.5.3 Interface to Group Communication Service

Access to a group communication service is basically provided over the two
interface definitions presented in figure 3.10. Concrete implementations
access some real group communication service like Spread.

ICommunicationGroup is an abstraction of a communication group. Except
of providing group specific information, it is able to establish connections to
the group. Such a connection is represented by implementation of the
IGroupConnection interface. Also, ICommunicationGroup is supposed to
raise events when group members leave or join the group. This is exploited
by the Group Manager as described in section 3.2.3.

The IGroupConnection object then provides means to multicast messages
to the group members. If a connection receives a message, it raises the
OnMessageReceived event.

3.5 Group Targeted Communication 43

Figure 3.10: Interface to group communication service.

3.5.4 Group Channel Description

Figure 3.11 illustrates the main classes involved in the mechanism providing
group targeted communication.

The central class here is the GroupChannel class, which implements the
three channel interfaces discussed in section 3.5.1. When creating an
instance of this class, an IGroupConnection instance must be passed in, to
associate the GroupChannel with a communication group.

A remote call is placed by exchanging a pair of CallRequest and
CallResponse objects between the client and server GroupChannels.
The CallRequest transmits the call message to the server, while the
CallResponse transmits the return message back to the client. Every call is
identified by a CallID. With every call a CallControl object is associated
to store call specific information needed for proper call handling.

In the rest of this section, the single processes of sending and receiving call
and return messages are described with focus on the requirements discussed
in section 3.5.1.

3.5 Group Targeted Communication 44

Figure 3.11: Classes providing group targeted communication.

3.5 Group Targeted Communication 45

Registering the Group Channel

To integrate the described group channel implementation into the
.NET Remoting infrastructure, the channel must be registered by using the
ChannelServices.RegisterChannel method.

Sending the Call Message

When the client proxy intercepts a call, the Replication Manager’s
ClientBefore interceptor sets the URL of the invocation target. It also
provides a custom CallID and the desired ResponseAvailabilityOption.
Using the URL, the client proxy finds the corresponding group channel.
By invoking its CreateMessageSink method, the client obtains an
IClientChannelSink. This, in fact, is an instance of the nested class
GroupClientChannelSink (see figure 3.11).

The custom IClientChannelSink implementation provides only the
ProcessMessage methods for synchronous invocations. For the sake of
simplicity, other methods for asynchronous invocation are not implemented.

When the client proxy calls the ProcessMessage method, it tries firstly to
extract the custom CallID from the provided call message. If none is found
a new one is generated. Then it checks, whether a CallControl for the
CallID exists. If yes, this means the call message has been already received
from some other node and thus a redundant sending is suppressed (this
handles the RNI problem for call messages). Otherwise, the call message
(together with the CallID, addressee, URL, and number of responses
needed5) is packed into a CallRequest object and multicasted to the group.

At this stage, the CallControl object is not created. This is an exclusive
task of the call message receiving process. For this purpose, it is necessary
to always multicast the message to the own node as well.

On the client side, the process continues with receiving the return message,
which is described below.

5number of responses needed to make the response available to the client, according
to the ResponseAvailabilityOption

3.5 Group Targeted Communication 46

Receiving the Call Message

At the server side, after receiving the CallRequest, the channel checks
whether the message is addressed to it. If so and if it has not been already
received, a sequence number is assigned to this request and a CallControl

object is created. Then, a handler is started to process the request. If a
CallControl object already exists, this means the call request has been
already received and executed and thus it must not be handled once again.
In this case, the handler skips to the sending of a return message.

Otherwise, the handler first unpacks the call message and sets the sequence
number assigned by the channel into the message. Then it finds the
server proxy of the object denoted in the URL. Afterwards, by using
.NET Remoting, the call message is used to place a call on the server proxy,
which invokes all interceptors, as well as the target object.

Sending the Return Message

After the call has been executed, the handler checks the call’s CallControl
object, whether it is still needed to send the response. If the requested
number of responses has been already received (from other server nodes),
sending the response would be redundant and thus is suppressed (this
handles the RNI problem for return messages). Otherwise, the handler
packs the return message into a CallResponse object and sends it back to
the group.

Receiving the Return Message

The GroupClientChannelSink on the client side after sending (or
suppressing the sending of) the call message waits until the CallControl

object makes the response available. After that, it forwards the return
message back to the caller of the ProcessMessage method.

The CallControl object is notified about received CallResponses by the
GroupChannel’s handleMessageReceived method, which is a registered
delegate for the IGroupConnection.OnMessageReceived event. According
to the ResponseAvailabilityOption of the request, the response is made
available after enough CallResponses have been received.

3.6 Replication and Call Processing 47

3.6 Replication and Call Processing

Now, after all the supporting mechanisms have been presented, this section
describes how the replication process works. The central component here is
the Replication Manager (RM) with its interceptors, which are briefly
discribed in section 3.2.6.

3.6.1 Replication Process Requirements

For the replication process, the most important tasks of the RM are:

• to replicate client calls to all server nodes,

• to schedule the call execution in a deterministic way, so that the
operation order for one replica is identical on all nodes,

• to allow execution parallelism to the largest extent possible, and

• to optimize the processing of read calls.

Call replication is easily achieved by the RM’s ClientBefore interceptor by
setting a target URL that uses the group channel and addresses all nodes in
the current communication group. It is also important, that the underlying
group communication service is set to provide atomic broadcast (ABCAST)
guarantees for message delivery.

The deterministic call scheduling on one replica (with respect to high
parallelism) is not so easy to achieve. ABCAST used for the call replication
ensures the same delivery order of call requests on all nodes. However, by
using .NET Remoting, a separate thread is started to handle a call request.
Assuming this, the operating system provides no guarantees regarding the
scheduling of threads running concurrently. Therefore, a system of call
guards has been designed, which schedules the thread execution, while
making use of the sequence numbers assigned to every call message by the
group channel (see section 3.5).

Under certain circumstances, optimization of read call processing is possible
and desired. It will be explained in section 3.6.5.

3.6 Replication and Call Processing 48

3.6.2 Concept of a Common Call

Before the call guard system will be described, the concept of the so called
common call must be introduced. A common call is the union of all calls
belonging to one logical transaction. In fact, there is a one-to-one mapping
between a transaction and a common call.

Every common call has a unique identifier. Sequence numbers are assigned
to single calls in the order they are issued, so a single call is identified by its
common call’s ID and a sequence number. This identifier construction
mechanism has the important characteristic, that if one replicated call
executing on several nodes initiates a nested call, the same ID is assigned to
all nested calls produced without any synchronization. The call ID is
represented by the class ARCallID as shown in figure 3.12. ARCallID

implements the CallID interface introduced in section 3.5.4 and thus can be
used with the group channel.

Figure 3.12: The common call context and call identifier classes.

To provide a common call context, an instance of CommonCallContext

(RM’s nested class, see figure 3.12) is sent along with all calls belonging to
one common call. Similar to the Transaction Manager, the RM’s interceptors
install the current call’s CommonCallContext into the threadstatic field
CommonCallContext.ThreadCurrent. In this way, the CommonCallContext

of the current call is accessible to everyone working on the thread.

3.6 Replication and Call Processing 49

The CommonCallContext provides information about the current call,
however, it also stores data about all its parent calls. The data stored about
every single call include:

• call ID,

• ObjectId of the targeted replica,

• a flag whether it is a write or a read call, and

• a flag whether it is a nested call or not.

Additionally, CommonCallContext provides methods to start a new
(eventually nested) call on a specified replica (StartCallOn) and to finish
the current call (FinishCall). Starting a new call is done by the RM’s
ClientBefore interceptor. It also automatically generates a new call ID and
pushes the eventual parent call onto a stack. In turn, the RM’s ClientAfter
interceptor finishes the call. If it was a nested call, this resets the parent
call to be the new current again.

3.6.3 Call Guard System

The designed call guard system is a mechanism to ensure a proper call
execution order on single replicas, i.e. on all nodes the same order of
operations executed on one replica. This is one of the basic requirements
of active replication to achieve deterministic processing with respect to
concurrent calls.

Additionally, (nested) subcalls must be handled as well. To allow the
execution of a subcall even on a single replica, the concept of suspending a
(parent) call has been considered as well.

Figure 3.13 shows an example when a call to replica A (call1) starts a
subcall to replica B (call2), which in turn starts another subcall back to
replica A (call3). On replica A, this causes the call3 being executed
“within” the call1. With active replication, the call3 request could arrive
from another node even before call2 has been initiated locally (ALT-call3).
Also, the response to call2 (ALT-call2/ret) could arrive before call3 finishes
locally. Both situations would cause indeterministic concurrency behaviour.

3.6 Replication and Call Processing 50

Figure 3.13: Necessity of suspending the parent call.

To avoid such problems, the underlying communication service could provide
causal atomic broadcast (CABCAST) for message delivery. In this case, a
subcall message would not be delivered on a node until the corresponding
parrent call message has been delivered. The Spread group communication
toolkit is supposed to provide CABCAST, however, to the knowledge of the
author, there exists no documentation on how to use this feature.

Therefore, the call guard system has been designed to synchronize the calls
in such scenarios as well. Nevertheless, no significant overhead should
appear in case the communication service provides CABCAST6.

A Call Guard Component

A call guard is a component exposing methods, that are called during the
processing of every call. By calling these methods, the call guard system is
able to discriminate different phases of a call’s lifecycle. Some of these
methods only notice the call’s phase changes, while others may also block
the thread’s execution until some criteria are fulfilled.

Figure 3.14 shows the classes involved in the call processing and the call
guard system. All call guard components implement the ICallGuard

interface7. For every single call, on one ICallGuard component, the
methods must be invoked in the following order:

6In fact, the custom mechanism combined only with ABCAST is expected to perform
better, because the synchronization takes place further in the invocation process.

7For the sake of lucidity, in figure 3.14 the interface methods are ommited in all
concrete classes implementing ICallGuard.

3.6 Replication and Call Processing 51

Figure 3.14: Call processing classes.

3.6 Replication and Call Processing 52

1. RegisterCurrentCall (mandatory)
Registers the current call on the component. If the registration order
for two calls is equal on different nodes, then all the other methods
behave in the same way on these nodes regarding the two calls.

2. StartCurrentCall (mandatory, may block the calling thread)
By calling this method, a previously registered call “asks for a
permission” to start its execution. Different ICallGuard components
may require different criteria to be fulfilled, in order to grant such
permission. Until the permission is granted, the calling thread is
suspended.

3. SuspendCurrentCall (optional)
Optionally, the component might need to be informed, that a call has
been suspended (e.g. when a call initiates a subcall).

4. ResumeCurrentCall (optional, may block the calling thread)
If a call has been suspended, it needs to be resumed before continuing
in work. Similarly to StartCurrentCall, this method may block the
calling thread, until some internal criteria are fulfilled (e.g. the subcall
ends).

5. EndCurrentCall (mandatory)
Calling this method notifies the component, that the current call has
finished all its work.

The SuspendCurrentCall and ResumeCurrentCall methods can be
optionally invoked multiple times (however, both and in the specified order).
For example, in case a call initiates several subcalls during its execution.

Interaction with Replication Manager

In the designed call guard system, there are three types of components
implementing the ICallGuard interface (see figure 3.14). The RM’s
interceptors use only objects of type ReplicaCallContext to synchronize
concurrent thread execution. Objects of other ICallGuard implementations
are used internally by ReplicaCallContext. In the following, the tasks of
all RM’s interceptors with respect to the call scheduling and synchronization
are described:

3.6 Replication and Call Processing 53

ClientBefore Before starting a new call, this interceptor suspends the
parent call (if there is any) by calling the SuspendCurrentCall

method on the appropriate ReplicaCallContext object.

ServerBefore This interceptor registers and starts every call. It ensures,
that for any two concurrent calls, the RegisterCurrentCall method
(of the appropriate ReplicaCallContext) is invoked in the order
they have been received. This is done by making use of the
call’s sequence number assigned by the group channel and stored
in the call message (see section 3.5). After a call has been
registered, the StartCurrentCall method is called on the appropriate
ReplicaCallContext to notify that the call starts. The method will
block execution until the call is allowed to start.

ServerAfter After the call has been executed on the server, this
interceptor finds the call’s ReplicaCallContext and invokes its
EndCurrentCall method to indicate the call has been executed.

ClientAfter Only in the case the current call is a subcall, the parent
call must “ask for a permission” to resume execution. Therefore,
ResumeCurrentCall method of the parent call’s ReplicaCallContext
is invoked. This method will block execution until the parent call is
allowed to resume execution.

Detailed Description

After the interaction between the RM’s interceptors and the call guard
system has been discussed, the call guard system can be described in detail.
It consists of three types of ICallGuard components – Replica Call Context
(RCC), Execution Group (EG), and Replica Common Call Context (RCCC).
These are implemented by corresponding classes illustrated in figure 3.14.

When a call request arrives, it must be associated with exactly one
RCC, one EG, and one RCCC. A strict hierarchy exists between these
components. When a RCC’s call guard method does its work for a certain
call, it invokes the corresponding method on the call’s EG. In turn, when
the call’s EG does its work, it invokes the same method on the call’s RCCC.
In the following, each component is described, focusing on its internal
criteria of when a call is allowed to execute:

3.6 Replication and Call Processing 54

Replica Call Context (RCC) For every replica installed on a certain
node, a RCC is created. The RCC is responsible for the first-level call
ordering on the corresponding replica. It does this by associating
common calls with EGs (described later). RCC also maintains a
queue of EGs. When a call request arrives, it is firstly checked
whether its common call has already an associated EG within this
RCC. If not, the RCC tries to associate (register) it with the last EG
in the queue. If this fails, a new EG is created, associated with the
current call’s common call, and inserted into the queue. The RCC
allows a call to be executed only if its EG is the first in the queue.

Execution Group (EG) Within one RCC, an EG is a group of common
calls, that can execute concurrently. Because a common call is equal
to a logical transaction, a common call’s transaction needs to own the
replica’s lock in order to execute. Therefore, an EG can consist either
of only a single writing common call, or of any number of reading
common calls. In the first case, no additional common calls can be
registered in the EG. In the second case, only new reading common
calls can be registered. In the second case however, a reading common
call may need to be advanced to a writing common call. For one EG,
this is allowed only to the first common call, that requests an advance
and all subsequent requests within an EG cause the corresponding
common call to be aborted. Obviously, the EG must ensure that such
a ed writing common call is not allowed to execute until all other
(reading) common calls finish. Also, an EG with a ed writing common
call will refuse registration of any additional common calls.

Replica Common Call Context (RCCC) A common call within an EG
of a certain replica (RCC) is represented by a RCCC. Until now,
decisions regarding the execution permit have been based solely on the
call’s common call. Now, the task of RCCC is to synchronize single
calls belonging to one common call. Each RCCC uses CallInfoNode

objects to represent single calls (see figure 3.14). By being notified
about each call’s phase changes, a RCCC stores information about the
state of every single call. It maintains a pointer to the currently active
call (the only one allowed to execute), a queue for waiting calls, and a
stack for suspended calls.

Because a common call in fact equals to a logical transaction, it is

3.6 Replication and Call Processing 55

straightforward the RCCC should be disposed when the transaction finishes.
To accomplish this, the ReplicaCommonCallContext class extends the
abstract class DisposableTxnResource described in section 3.4.4. This
approach disposes RCCCs and (eventually) EGs after a transaction finishes
and releases all locks, which is necessary before allowing next EGs and
RCCCs to execute.

The basic design of the call guard system has been described, however,
many implementation details must have been omitted. The most important
properties of the presented synchronization system are:

1. determinism (the same registration order implies the same execution
order), and

2. a high level of parallelism for concurrently executing calls.

3.6.4 Deadlock Prevention and Detection

It is relatively easy to imagine a situation, where two concurrent
transactions acquire replica locks in a way causing a deadlock. As discussed
in section 2.3.1, three different approaches solve this problem – deadlock
prevention, deadlock detection, and deadlock avoidance.

The last approach would impose additional requirements on the transaction
processing, therefore only the first two techniques have been implemented.

Deadlock prevention is easily achieved by aborting every transaction of a
call, that would need to wait for a lock. Practically, this can only happen in
the call guard system in two cases. Either the EG of a call is not the first in
queue and so must wait for another EG to finish, or the call is in the
first EG, but requires an advance and thus must wait for common calls
(transactions) in the same EG to finish.

Alternatively, it is searched for deadlocks at call registration time. If it is
found out the current call would cause a deadlock, it is aborted. By using
this approach, waiting for locks can be enabled without the risk of a
deadlock situation. In the rest of this section, the deadlock detection
mechanism is explained in detail.

3.6 Replication and Call Processing 56

When a call is registered, a new CallInfoNode is created (see figure 3.14).
It does not only store important information about the call, but also
maintains dependencies to other CallInfoNodes. A call is dependent on
another call if:

• the first call is a direct or indirect parent of the second call, or

• the first call’s EG is waiting in a queue for the second call’s EG to
finish, or

• both calls are in the same EG, but the first call requires a lock advance.

By defining these dependencies, it is possible to construct a directed graph
of CallInfoNode objects, the so called waits-for graph [BHG87] (see also
section 2.3.1). A cycle in the waits-for graph means a deadlock situation,
that must be resolved by aborting any call in the cycle.

In this implementation, a depth first search is started for every registered
call from its CallInfoNode along the dependencies. If the search returns to
the same CallInfoNode, this means the new call would cause a deadlock
situation and therefore must be aborted. This is the task of the
DeadlockDetector shown in figure 3.14.

The deadlock detection mechanism just described works only locally and
thus requires all relevant calls to be multicasted to all nodes. This, however,
reduces the possibilities of read call optimizations (see section 3.6.5).
For better optimization possibilities, a distributed deadlock detection
mechanism would be necessary.

The approach to handle deadlocks (prevention or detection) is configurable.

3.6.5 Optimization of Read Call Processing

With active replication, read calls do not need to be replicated among all
nodes. Local execution improves read call performance by eliminating
network communication and also reduces the load on all other nodes.

In the prototype, the deadlock detection must be taken with care (see
section 3.6.4). As the deadlock detection mechanism only uses local data to

3.6 Replication and Call Processing 57

make decisions, all calls that could eventually cause a deadlock must be
registered. This, however, implies replicating read calls as well. Otherwise,
a deadlock might not be detected as the situation in figure 3.15 illustrates.

Figure 3.15: An undetected deadlock caused by local reads.

Two distinct clients start a transaction and place the subsequent calls
within these transactions. Client 1 (locally) reads replica A on node 1,
while client 2 (locally) reads replica B on node 2. Afterwards, client 1 and
client 2 try to write replicas B and A respectively, within the previously
started transactions. Now, the write calls are replicated to both nodes. Due
to the locally executed read calls, each node does see a distinct call set.
Therefore, node 1 is aware of only one call dependency, while node 2 of the
another. Although the deadlock situation is obvious, none of the two nodes
will detect it from its waits-for graph, because both are incomplete. By
using distributed deadlock detection, a union of both graphs would be
constructed and thus would contain the dependency cycle.

However, the situation just described is the only one causing this problem.
If there is no (external) user supplied transaction with a top-level read call,
no following write call can be started within the same transaction. If such a
read call and all its (reading) subcalls never replicate to other nodes, the
whole transaction will be known to exactly one node. This allows a local
deadlock detection mechanism to detect all deadlocks.

Also consider a write call starting a reading subcall. Because every write
call is replicated to all nodes, a locally started reading subcall will be

3.6 Replication and Call Processing 58

implicitly started on all nodes. Therefore, the transaction will appear the
same on all nodes, which again allows proper deadlock detection.

To summarize the ideas just described a read call can be executed locally in
the following cases:

• the local deadlock detection mechanism is not involved, or

• the read call is a top-level call and there is no (external) user supplied
transaction, or

• the read call is a subcall.

This means, that only top-level read calls executing within an (external)
user supplied transaction must be replicated. To allow local read call
processing for all types of read calls, the deadlock detection would have to be
distributed. However, it is not clear, whether this benefit would compensate
the additional overhead of a distributed deadlock detection mechanism.

59

4 Evaluation

4.1 Hardware and Network Infrastructure

For the performance evaluation of the implemented prototype of the ARPPP
a set of four computers has been connected to a local area network (LAN)
using one router. The router is an AirPlus G 802.11g/2.4GHz Wireless
Router. However, wireless connections have not been used and all computers
have been plugged in using a network cable. The configuration is as follows:

1. PC - Intel Celeron CPU 2.80GHz
- 556MB of RAM
- HDD 80GB (7200rpm)
- Fast Ethernet NIC (100Mbps)

2. Laptop1 - Intel Pentium 4 CPU 2.00GHz
- 228MB of RAM
- HDD 30GB (4200rpm)
- Fast Ethernet NIC (100Mbps)

3. CF-Box - VIA Nehemiah 664MHz
- 556MB of RAM
- Compact Flash (CF) memory 4GB
- Fast Ethernet NIC (100Mbps)

4. Laptop2 - Intel Celeron CPU 548MHz
- 192MB of RAM
- HDD 20GB (4200rpm)
- 10/100 Ethernet Card (100Mbps)

The specified order also determines the computer group creation for testing.
E.g., for testing with one node, PC (no.1) has been used. For testing with
two nodes, PC (no.1) and Laptop1 (no.2) have been used, etc.

The CF-Box computer uses a compact flash (CF) memory in place of a hard
disk. This type of memory is slower than the standard hard disk drives.
Therefore, it is expected to have influence on the performance of write
operations using a database backend.

4.2 Software Equipment 60

4.2 Software Equipment

All four computers have been equipped with identical software. This
includes the following:

• Microsoft Windows XP Service Pack 2 operating system,

• Microsoft .NET Framework 2.0,

• Spread 3.17.4 with identical network group configuration,

• MySQL 5.0 Server, and

• MySQL ODBC 3.51 Driver.

4.3 Replica Set for Testing

To allow a variety of performance tests, a set of four concrete replica classes
has been designed as illustrated in figure 4.1.

All replica classes inherit the public field x from AbstractReplica and
must implement the abstract method WriteX nested. Implementations of
this method write the local field x and subsequently call the WriteX nested

method on the referenced replica (if there is any).

At the program start, one instance of each class is created - called replica A,
B, C, and D. Additionally, three constraints are defined:

• A.x < 2000 (critical/non-tradeable)

• B.x < 2000 (tradeable)

• A.x + B.x < 3000 (tradeable)

This design allows to place read, write, as well as nested calls. Due to the
last constraint defined (A.x + B.x < 3000), all write operations on replicas
A and B will cause in normal mode an additional nested read call, in order
to validate this constraint.

4.4 Test Classes 61

Figure 4.1: Replica set for testing.

4.4 Test Classes

For simple test creation, execution, and evaluation, the abstract class
AbstractTest provides some common tasks to be inherited by concrete
tests. Its class diagram is illustrated in figure 4.2.

AbstractTest requires its concrete subclasses to implement the abstract
method DoTestOperation, which is then called multiple times in test
iterations. To eventually modify its behaviour in time, this method gets the
current iteration number as an input parameter.

The public field NUM OF ITERATIONS specifies how many iterations should
be run to measure the operation performance. Using this information, the
method RunTest calls DoTestOperation the given number of times and

4.5 Performance Measurement 62

Figure 4.2: AbstractTest class diagram.

measures how long does it take. Afterwards, it is able to compute the
average operation execution time. Both times are stored into private fields
and are used by the LogTestResults method, which is called at the end of
RunTest.

To eliminate the influence of any initializations or just-in-time compilations,
the RunTest method runs one full operation iteration before the actual
measuring starts.

Concrete test classes may override the LogTestResults method to log other
test-specific results, too.

4.5 Performance Measurement

For all performance measurements, the tests have been run with
NUM OF ITERATIONS equal to 1000. For every test, three separate runs have
been performed and the average computed. The resulting diagrams show
the time in milliseconds needed for a given operation to complete, where an
operation can be a set of several calls.

Except of the first one, all tests have been started from the PC node.

4.5 Performance Measurement 63

4.5.1 Performance of the Nodes

To interpret the test results in context of hardware performance, first of all,
the performance of simple read and write operations has been measured on
each computer separately. The configured node count in this case has been
1 in all tests. Listings 4.1 and 4.2 show the particular test classes.

class Test_SimpleRead : AbstractTest
{
...
public override void DoTestOperation(int iterNum)
{

int axVal = this.repA.x;
}

}

Listing 4.1: Performance test of simple read call

class Test_SimpleWrite : AbstractTest
{
...
public override void DoTestOperation(int iterNum)
{

this.repA.x = iterNum;
}

}

Listing 4.2: Performance test of simple write call

Note that a write call on replica A causes a nested read call of B. Also, the
simple write call test has been evaluated with two distinct system settings –
with the database (DB) backend turned on and off. The diagram in
figure 4.3 presents the corresponding results.

In this diagram, three operations have been measured. For every node, the
first bar shows the performance of a simple read call (see listing 4.1). The
second and third bar show a simple write call performance (see listing 4.2)
with and without using a DB backend, respectively.

4.5 Performance Measurement 64

Figure 4.3: Simple call performance on separate nodes.

The results reflect the hardware performance of every node. For example, a
write call with using DB backend on CF-Box takes the longest, because it
has the slowest persistent memory.

4.5.2 Simple Calls

Here, the performance of simple calls (the same as in section 4.5.1) has been
tested, however, now with different number of nodes in the system. The test
has been started from the PC node. Figure 4.4 presents the test results.

Results indicate that the performance of write operations depends firstly on
the performance of the slowest node in system, but secondly also on
the number of nodes. With higher number of nodes, the overhead in
group communication increases (this is partly visible also from read call
performance) as well as the overhead of 2PC.

It can be observed, that the performance difference between a write call
with and without using the DB backend is almost exactly equal to the same
difference in the previous test (performance per node) for the slowest
node in the system. So for example, in a system with three nodes, the
performance difference between a write call using the DB backend and a
write call not using the DB backend is 179 milliseconds (see figure 4.4). The

4.5 Performance Measurement 65

Figure 4.4: Simple call performance.

slowest node in this test set is the CF-Box node. The results of the very first
test returned for the CF-Box (as a single system node) a difference between
the same types of write calls equal to 180 milliseconds (see figure 4.3).

With an increasing node count, the simple read performance grows only
very slowly due to the read call optimizations introduced in section 3.6.5.
The slight growth relates to the group communication which slows down
with the increasing number of nodes.

The influence of hardware on overall performance gets multiplied, because it
affects not only the speed of call processing itself, but also the speed of
group communication and transaction coordination. This is because every
node must run its own instance of group communication service as well as
the distributed transaction coordinator.

4.5.3 Nested vs. Serial Calls

In this test, a performance comparison between three nested and three serial
write calls have been made. Listings 4.3 and 4.4 show the corresponding
test classes.

4.5 Performance Measurement 66

class Test_NestedSerial_Nested : AbstractTest
{
...
public override void DoTestOperation(int iterNum)
{

this.repA.WriteX_nested(iterNum);
}

}

Listing 4.3: Performance test of three nested write calls

class Test_NestedSerial_Serial : AbstractTest
{
...
public override void DoTestOperation(int iterNum)
{

using (TransactionScope ts = new TransactionScope())
{
this.repA.x = iterNum;
this.repC.x = iterNum;
this.repD.x = iterNum;
ts.Complete();

}
}

}

Listing 4.4: Performance test of three single write calls

In the second test class, the single write calls are grouped into one
transaction as the nested write calls also execute within one transaction. In
the first case, three nested write operations are executed and then the
replica B is read in order to validate the constraint between A and B. In the
second case, replica A is written, then B is read, and finally two other
replicas are written. This difference in call order, however, is not expected
to have influence on the results.

The outcome of this test is presented in figure 4.5.

The diagram shows, that there is not really a difference between the two
tested operations. I.e. the performance of same calls within one transaction

4.5 Performance Measurement 67

Figure 4.5: Nested vs. serial call execution.

does not depend on whether these calls are nested or executed separately in
a row.

4.5.4 Transaction Grouped vs. Ungrouped Calls

In the last test, the performance of five calls has been compared – once if
grouped into a transaction and secondly if not grouped into a transaction.
Listings 4.5 and 4.6 show the test classes.

class Test_TxnCallGroup_Grouped : AbstractTest
{
...
public override void DoTestOperation(int iterNum)
{

using (TransactionScope ts = new TransactionScope())
{
this.repD.x = this.repC.x;
this.repC.x = this.repA.x;
this.repA.x = iterNum;
ts.Complete();

}
}

4.5 Performance Measurement 68

}

Listing 4.5: Performance test of five calls grouped into a transaction

class Test_TxnCallGroup_Ungrouped : AbstractTest
{
...
public override void DoTestOperation(int iterNum)
{

this.repD.x = this.repC.x;
this.repC.x = this.repA.x;
this.repA.x = iterNum;

}
}

Listing 4.6: Performance test of five calls NOT grouped into a transaction

The call order is the same in both cases. Replica C is read in order to write
replica D. Then, A is read in order to write C and finally A is written. As
already discussed, writing A causes another read of B.

There are two contradictory influences between these operations. The read
calls to replica C and A are processed in a distinct manner, because of the
read call optimizations (see section 3.6.5). A read call within an external
(user supplied) transaction must be replicated to all nodes, while a read call
without such a transaction can be optimized and executed only locally.

The second point is, that in case of calls not grouped into a transaction, a
transaction must be started and finished five times, while for grouped calls
this happens only once.

Figure 4.6 shows the results of this test.

Although the differences in performance of both operations are not big,
they most probably refer to the issues described earlier. For a single node,
the performance of both operations appears to be the same. In this case,
the communication overhead in the group communication and transaction
coordination is eliminated. Furthermore, in this case there is obviously no
difference in processing read calls.

4.6 Transaction Abort Rates 69

Figure 4.6: Calls grouped vs. ungrouped into a transaction.

For more than one node in the system, the calls not grouped into a
transaction achieve slightly higher performance. This corresponds to the
fact, that the read calls are allowed to execute locally. With an
increasing number of nodes, however, the gap between performance of
grouped and ungrouped operations decreases. This might be caused by
network communication overhead in group communication and transaction
coordination increasing faster than the overhead of replicated read calls.

4.6 Transaction Abort Rates

One of the goals of this thesis was to introduce transactional support
for operations. As already shown, it has been realized using the
System.Transactions namespace of .NET Framework 2.0. This allows,
for the first time, to evaluate the behaviour of ACBRM for concurrent
operations in a .NET environment. For this purpose, transaction abort
rates have been tested for several operation types.

All the tests have been performed in a system consisting of four nodes,
where two clients concurrently run a certain operation. Both clients have
run the operation 500 times (NUM OF ITERATIONS equal to 500), while it has
been recorded how many operations have finished successfully.

4.6 Transaction Abort Rates 70

All operation types have been tested with deadlock detection as well as
deadlock prevention. This also allows a comparison of these two deadlock
handling mechanisms. Deadlock detection only causes a transaction abort if
a deadlock is detected. On the other hand, using deadlock prevention will
abort the transaction every time a lock cannot be obtained.

The client operations have been run on the PC and Laptop1 computers.

4.6.1 Tested Operation Types

For the evaluation of transaction abort rates, four operation types have
been chosen:

1. simple read call,

2. simple write call,

3. simple write call (with mutual constraint checking), and

4. nested write call (with mutual constraint checking).

A generic test class is presented in listing 4.7.

class Test_TxnAbortRate_??? : AbstractTest
{
...
public override void DoTestOperation(int iterNum)
{

try
{
...perform the operation...

}
catch { ...record the aborted transaction... }

}
}

Listing 4.7: A general transaction abort rate test

4.6 Transaction Abort Rates 71

The operation to be tested is enclosed in a try-catch block, so if the
operation is aborted (throws an exception), this can be recorded and the
transaction abort rate computed.

In the rest of this section, each operation type is described. Also, the exact
operation run by each of the two concurrent clients is stated.

Simple Read Call

• int ax = this.repA.x; (for both clients the same)

In this test case, both clients have repeated the same operation – a
simple read call to replica A. For both deadlock handling mechanisms, the
transaction abort rate is expected to be 0% as two read locks never conflict.

Simple Write Call

• this.repA.x = iter; (for both clients the same)

A simple write call on replica A has been repeated on both clients in the
second test case. Due to automatic constraint checking, this write call
causes an additional read call to replica B within the same transaction.

Because transactions run by both clients obtain locks in the same order, a
deadlock can never occur. Therefore, if using deadlock detection, the
operations should never be aborted and the transaction abort rate should
be 0%. Otherwise, if deadlock prevention is used, a running transaction
owning a write lock on A will cause all other transactions trying to acquire
the same lock to abort.

4.6 Transaction Abort Rates 72

Simple Write Call with Mutual Constraint Checking

• this.repA.x = iter;

• this.repB.x = iter;

This testcase is similar to the previous one, however, while the first client is
writing replica A, the second is writing replica B. Because of a constraint
defined between A and B, both write operations imply a read call to the
other replica.

This situation can easily cause a deadlock, as both operations acquire
conflicting locks on the same replicas, but in distinct order. Therefore,
when using deadlock detection, transactions may be aborted, in order to
resolve deadlock situations. Using deadlock prevention causes abortions
every time a transaction cannot acquire a lock, because a conflicting lock is
held by another transaction.

Nested Write Call with Mutual Constraint Checking

• this.repA.WriteX nested(iter);

• this.repB.WriteX nested(iter);

In the last test case, the transaction abort rate of nested operations has
been tested. One of the clients starts the nested write on replica A, while
the other one on replica B. In both variants, this again causes an additional
read call to verify the constraint between A and B.

Similar to the previous test case, positive transaction abort rates are
expected for both deadlock handling mechanisms.

4.6 Transaction Abort Rates 73

Figure 4.7: Transaction abort rates for different operation types.

4.6.2 Test Results

Figure 4.7 presents a result summary of the transaction abort rate tests.

As expected, two concurrent read calls accessing the same replica do not
conflict and thus do not need to be aborted.

Although, two concurrent write calls conflict on the same replica, they can
be serialized without causing a deadlock. In case deadlock detection is used,
calls are delayed as necessary and none of them must be aborted. When
using deadlock prevention, delaying a call is not allowed and such call must
be aborted instead. With deadlock prevention the transaction abort rate
depends on how long a transaction blocks a certain lock causing a conflict
with concurrent transactions. In this case, a write lock is blocked for the
duration of one write call and one read call (to validate a constraint). Also
only one write-write conflict between two transactions may arise.

In the third test case, simple write operations are started on distinct replicas
causing a mutual constraint check. As explained earlier, this can cause
deadlock situations so transactions may need to be aborted, also when using

4.6 Transaction Abort Rates 74

deadlock detection. A transaction abort rate somewhat above 50% indicates,
that the time window between acquiring the write lock and acquiring the
read lock is something longer than the time span from transaction start
(actually end of the previous transaction) and acquiring the write lock.
Using deadlock prevention has a similar effect than in the previous case.
Although, a lock conflict with respect to one replica is less probable to
occur (one of the “collision windows” is shorter), the abort rate is slightly
higher because there are read-write conflicts possible on two replicas.

In the last case, the two concurrent clients start a nested call, however,
each on a different replica. So, one client runs transactions of the
form W (A) → W (C) → W (D) → R(B), while the second client runs
transactions of the form W (B) → W (C) → W (D) → R(A). Using deadlock
detection, transactions get aborted due to deadlock situations arisen from
acquiring conflicting locks on replicas A and B in a distinct order. Because
the “collision window” here is relatively long, the transaction abort rate in
this case is appropriately (very) high.
With deadlock prevention, the primary reason for transaction abortion
arises from the write-write conflict when obtaining a lock on replica C. A
relatively long blocking of the write lock on C causes appropriately high
abort rates. There is also an influence of the read-write conflict on replicas
A and B, however, it is much smaller, because it extends the time span of
possible lock blocking in a small extent.
As it is apparent from the results in figure 4.7, the “collision window” for
deadlocks (when using deadlock detection) is so long, that the transaction
abort rate in this case is even higher than if using deadlock prevention.

75

5 Summary and Conclusions

5.1 Summary

A new class of replication protocols has been recently introduced, allowing
an adaptable trade-off between constraint consistency and availability. The
key idea is to allow tradeable constraints to be temporarily violated during
degraded situations, so that replicas not affecting critical (non-tradeable)
constraints stay available in case of node failures or network partitions.

This thesis presents a prototype implementation of a concrete protocol
called Active Replication Per Partition Protocol (ARPPP), which integrates
the above-mentioned trade-off into the active replication scheme. The
developed prototype based on .NET supports nested replica invocations as
well as distributed transactions. A group communication toolkit provides
the necessary mechanisms needed for inter-node communication.

Evaluation of the developed prototype is part of the thesis as well. Not
only the performance of simple read and write calls has been measured,
but also performance of nested calls and calls grouped into transactions.
What more, thanks to the full transaction support, concurrency behaviour
has been also tested by measuring transaction abort rates for different
combinations of concurrent operations.

5.2 Conclusions

The prototype has been implemented to the planned extent. Compared to
traditional active replication, the biggest overhead in ARPPP is caused by
additional read calls needed for constraint validation. However, due to the
optimization of read call processing, this overhead is kept relatively small.

It turned out to be possible to integrate the transaction mechanisms
provided by .NET Framewrok 2.0 into the prototype. Replicas exposed
by the system behave as transaction resource managers in context of
.NET. This allows the client to combine transaction operations on other
heterogeneous resources with calls to the system and to externally manage
the transaction.

5.3 Future Work 76

To allow the usage of nested calls, a special synchronization mechanism had
to be developed. The possibility of inter-replica references and nested calls
increases the variability of applications to a considerable extent.

Evaluation of the prototype showed that the performance of all replicated
operations is influenced by several aspects. Firstly, it is in direct proportion
to the slowest node in the system. Also, with growing number of nodes,
the group communication overhead increases as well as the transaction
coordination overhead does. The execution of nested calls and calls grouped
to logical transactions has not proven any significant overhead in the
performance. Optimized read calls perform much better as they are
executed only locally.

Among all protocols supporting the trade-off between constraint consistency
and availability, this implementation of ARPPP is the first one supporting
transactions in a .NET environment. Therefore, the evaluation of
concurrent operations behaviour has been possible. It has shown, that the
read calls required for constraint validation may cause several issues. These
additional operations belong to the same transaction as the originating
write call and thus extend its duration, so that locks are blocked for a
longer period of time. Even worse is the impact on the probability of
deadlocks. Concurrent write operations on two replicas affecting a common
constraint are likely to cause deadlocks. If such write calls also initiate
nested calls, the probability of a deadlock can climb up very high.

The evaluation results indicate, that the necessity of constraint validation
implies a performance decrease and higher transaction abort rates of
(concurrent) operations. Therefore, the constraint definition in a particular
application should always be done carefully and with respect to the
performance.

5.3 Future Work

This thesis primarily concentrates on the replication protocol itself.
Implementations of the reconciliation service and the system of constraints
are very basic, providing only the features necessary for the prototype
and its evaluation. Although fully functional, the performance of the
reconciliation algorithm could be improved considerably.

5.4 Related Work 77

Furthermore, a naming and lookup service would be of interest.

To improve performance in case of a high replica number installed, the
activation service should be able to passivate unused replicas and reactivate
them as necessary.

According to the evaluation measurements, optimized read calls, although
executed locally, slightly lose on performance with growing number of nodes
in the system. This is because of the way an addressed message is delivered
by the group channel. In practice, the message is broadcasted to all nodes,
but only the addressee accepts it. This behaviour is subject to optimization.
Either a direct delivery within the group should be implemented, or a TCP
channel should be used instead of the group channel.

The evaluation of the ARPPP prototype has shown high transaction abort
rates for concurrent operations consisting of nested calls and a mutual
constraint validation (see section 4.6). To lower the abort rates, some
measures could be implemented and tested in future versions. The
conservative two-phase locking (2PL) approach would avoid deadlocks
completely and thus would ensure no transaction abort rates at all.
However, it would place extensive restrictions on the application flexibility.
A softer option would be to use conservative 2PL only for a single write call.
I.e. the replicas needed for constraint validation would be locked for read
(in a predefined order), before the update operation is executed.

Another approach to lower the transaction abort rate would be to separate
the operation execution and constraint validation actions, so that each of
them is performed within its own transaction. In this case, however, some
kind of constraint consistency re-establishment (e.g. compensation actions)
must be used for resolving any conflicts found during constraint validation.

5.4 Related Work

For a long time, improving availability of distributed systems by relaxing
consistency has been focused on optimistic approaches providing no
consistency guarantees at all.

[YV02] has introduced a consistency model where consistency is expressed
by so-called conits (logical consistency units). This model has also been

5.4 Related Work 78

used in the implementation of the TACT (Tunable Availability and
Consistency Trade-offs) middleware layer. To quantify conits, three
application-independent metrics have been proposed – numerical error,
order error, and staleness. “Numerical error limits the total weight of writes
on a conit that can be applied globally across all replicas before being
propagated to a given local replica. Order error limits the number of
tentative writes on a conit (subject to reordering) that can be outstanding
at any one replica, and staleness places a real-time bound on the delay of
write propagation among replicas.” [YV02] By defining application-specific
bounds using conits, TACT provides a tunable trade-off between system
availability and replica consistency. However, in contrast to the subject of
this thesis, it does not consider constraint consistency.

Smeikal analyses in his PhD thesis [Sme04] three types of consistency –
replica consistency, concurrency consistency, and constraint consistency. It
suggests further constraint consistency as the system correctness criterion to
be traded against availability. This idea has been further developed in frame
of the DeDiSys project and has resulted into the generic ACBRM replication
model [OFG07]. Such replication techniques for balancing data integrity
with availability are discussed in detail in Osrael’s PhD thesis [Osr07].

Apart from the ARPPP as the subject of this Master’s thesis, two other
protocols based on the ACBRM have been described and implemented. The
one is the Primary-per-Partition Protocol (P4) [BBG+06], based on the
primary-backup scheme, while the other is Adaptive Voting (AV) [OFGG06],
based on the quorum-consensus approach.

All three implementations integrate its components into the .NET
architecture introduced by [Hab06]. This is a mapping from a
platform-independent system architecture [OFG+06] worked out within the
DeDiSys project.

Chlaupek’s Master’s thesis [Chl07] focuses on implementation and evaluation
of the Adaptive Voting protocol in a .NET environment. Implementation
of the Primary-Backup and Primary-per-Partition replication protocols
is the subject of Weigl’s Master’s thesis [Wei06], whereas Stoifl [Sto06]
presents an implementation of the Quorum Consensus replication protocol
in a .NET environment. All three implementations rely on the
Spread communication toolkit to provide a group communication service.
[Sto06] also compares the features of .NET Remoting and Spread in detail.

5.4 Related Work 79

In contrast to the ARPPP implementation presented in the given thesis,
these works do not support nested transactions.

Moser [Mos07] analyses different reconciliation protocols with respect to the
replica consistency as well as constraint consistency. For his experimental
evaluation he provides a .NET-based test framework, which, in contrast to
the given thesis, is focused on reconciliation only.

LIST OF FIGURES i

List of Figures

1.1 Example of a healthy distributed object system 1
1.2 Distributed system partitioned due to a network failure 2
2.1 The redundant nested invocation (RNI) problem 10
2.2 System modes and transitions between them 12
2.3 Phases of the ACBRM in normal mode 13
2.4 Phases of the ACBRM in degraded mode 13
2.5 Phases of the ACBRM in reconciliation mode 14
2.6 Transaction classes in .NET 2.0 21
3.1 Phases of the ARPPP model 23
3.2 System architecture . 25
3.3 Interceptor architecture (client side) 26
3.4 Interceptor architecture (server side) 27
3.5 Client-side interceptors overview 33
3.6 Server-side interceptors overview 33
3.7 The ReplicableObject class 34
3.8 The ITransactionManager and ITxnContext interfaces 36
3.9 Lock Service interfaces . 37
3.10 Interface to group communication service 43
3.11 Classes providing group targeted communication 44
3.12 The common call context and call identifier classes 48
3.13 Necessity of suspending the parent call 50
3.14 Call processing classes . 51
3.15 An undetected deadlock caused by local reads 57
4.1 Replica set for testing . 61
4.2 AbstractTest class diagram 62
4.3 Simple call performance on separate nodes 64
4.4 Simple call performance . 65
4.5 Nested vs. serial call execution 67
4.6 Calls grouped vs. ungrouped into a transaction 69
4.7 Transaction abort rates for different operation types 73

LISTINGS ii

Listings

2.1 Use of the TransactionScope class 19
2.2 Use of plain transaction objects 19
4.1 Performance test of simple read call 63
4.2 Performance test of simple write call 63
4.3 Performance test of three nested write calls 66
4.4 Performance test of three single write calls 66
4.5 Performance test of five calls grouped into a transaction 67
4.6 Performance test of five calls NOT grouped into a transaction 68
4.7 A general transaction abort rate test 70

REFERENCES iii

References

[ALRL04] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic
concepts and taxonomy of dependable and secure computing.
Dependable and Secure Computing, IEEE Transactions on,
1(1):11–33, Jan.-March 2004.

[BBG+95] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth
O’Neil, and Patrick O’Neil. A critique of ansi sql isolation
levels. In SIGMOD ’95: Proceedings of the 1995 ACM SIGMOD
international conference on Management of data, pages 1–10.
ACM, 1995.

[BBG+06] Stefan Beyer, Mari-Carmen Bauls, Pablo Galdmez, Johannes
Osrael, and Francesc D. Muoz-Esco. Increasing availability in a
replicated partitionable distributed object system. In ISPA,
volume 4330 of Lecture Notes in Computer Science, pages
682–695. Springer, 2006.

[BG81] Philip A. Bernstein and Nathan Goodman. Concurrency
control in distributed database systems. ACM Comput. Surv.,
13(2):185–221, 1981.

[BHG87] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman.
Concurrency Control and Recovery in Database Systems.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1987.

[BJ87] Kenneth P. Birman and Thomas A. Joseph. Reliable
communication in the presence of failures. ACM Trans. Comput.
Syst., 5(1):47–76, 1987.

[BMST93] Navin Budhiraja, Keith Marzullo, Fred B. Schneider, and Sam
Toueg. The primary-backup approach. In Distributed systems
(2nd Ed.), pages 199–216, New York, NY, USA, 1993. ACM
Press/Addison-Wesley Publishing Co.

[Chl07] N. Chlaupek. Implementation and evaluation of the adaptive
voting replication protocol in a .net environment. Master’s
thesis, University of Applied Sciencies, FH Campus Wien, 2007.

REFERENCES iv

[DB85] Dančo Davčev and Walter A. Burkhard. Consistency and
recovery control for replicated files. SIGOPS Oper. Syst. Rev.,
ACM, 19(5):87–96, 1985.

[DGS85] Susan B. Davidson, Hector Garcia-Molina, and Dale Skeen.
Consistency in partitioned networks. ACM Comput. Surv.,
17(3):341–370, 1985.

[DSU04] Xavier Défago, André Schiper, and Péter Urbán. Total order
broadcast and multicast algorithms: Taxonomy and survey.
ACM Comput. Surv., 36(4):372–421, 2004.

[FS01] P. Felber and A. Schiper. Optimistic active replication. In
ICDCS ’01: Proceedings of the The 21st International Conference
on Distributed Computing Systems, pages 333–341. IEEE
Computer Society, Apr 2001.

[GA87] H. Garcia-Molina and R.K. Abbott. Reliable distributed
database management. Proceedings of the IEEE, 75(5):601–620,
May 1987.

[GHOS96] Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha.
The dangers of replication and a solution. In SIGMOD ’96:
Proceedings of the 1996 ACM SIGMOD international conference
on Management of data, pages 173–182, New York, NY, USA,
1996. ACM.

[GHR97] Ramesh Gupta, Jayant Haritsa, and Krithi Ramamritham.
Revisiting commit processing in distributed database systems.
ACM SIGMOD Rec., 26(2):486–497, 1997.

[Gif79] David K. Gifford. Weighted voting for replicated data. In SOSP
’79: Proceedings of the seventh ACM symposium on Operating
systems principles, pages 150–162, New York, NY, USA, 1979.
ACM.

[GL06] Jim Gray and Leslie Lamport. Consensus on transaction
commit. ACM Trans. Database Syst., 31(1):133–160, 2006.

[GR92] Jim Gray and Andreas Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1992.

REFERENCES v

[GS97] R. Guerraoui and A. Schiper. Software-based replication for
fault tolerance. Computer, IEEE Computer Society Press,
30(4):68–74, Apr 1997.

[Hab06] Igor Habjan (ed.). Software prototype and refined
design. Technical Report D3.3.2, DeDiSys Consortium
(www.dedisys.org), December 2006.

[JM87] Sushil Jajodia and David Mutchler. Enhancements to the voting
algorithm. In VLDB ’87: Proceedings of the 13th International
Conference on Very Large Data Bases, pages 399–406, San
Francisco, CA, USA, 1987. Morgan Kaufmann Publishers Inc.

[JPA00] Ricardo Jiménez-Peris, Marta Patiňo-Mart́ınez, and Sergio
Arévalo. Deterministic scheduling for transactional multithreaded
replicas. In SRDS ’00: Proceedings of the 19th IEEE
Symposium on Reliable Distributed Systems (SRDS’00), page
164, Washington, DC, USA, 2000. IEEE Computer Society.

[JSSG05] M. Jandl, A. Szep, R. Smeikal, and K. M. Goeschka. Increasing
availability by sacrificing data integrity - a problem statement.
In HICSS ’05: Proceedings of the Proceedings of the 38th Annual
Hawaii International Conference on System Sciences (HICSS’05)
- Track 9, page 291.3. IEEE Computer Society, 2005.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 21(7):558–565, 1978.

[Laz08] Florin Lazar. Florin lazar - transactions. Florin Lazar’s
blog (on MSDN), December 2003 - February 2008.
http://blogs.msdn.com/florinlazar/.

[LFT02] Deron Liang, Chen-Liang Fang, and JiChiang Tsai. A
nested invocation suppression framework for active replication
fault-tolerant corba. In COMPSAC ’02: Proceedings of the 26th
International Computer Software and Applications Conference
on Prolonging Software Life: Development and Redevelopment,
pages 757–762. IEEE Computer Society, 2002.

REFERENCES vi

[Low05] Juval Lowy. Introducing system.transactions in the .net framework
2.0. Microsoft Development Network (MSDN), December 2005.
http://msdn2.microsoft.com/en-us/library/ms973865.aspx.

[LXML07] Lingxia Liu, Jingbo Xia, Zhiqiang Ma, and Ruixin Li.
Rapid-response replication: A fault tolerant algorithm based on
active replication. In International Conference on Computational
Science (3), pages 133–136. Springer, 2007.

[Mos81] E. B. Moss. Nested transactions: An approach to reliable
distributed computing. Technical report, Massachusetts Institute
of Technology, Cambridge, MA, USA, 1981.

[Mos07] Christian Moser. Analysis of reconciliation protocols for
divergent replicas. Master’s thesis, Vienna University of
Technology, 2007.

[OFG+06] J. Osrael, L. Froihofer, K. M. Goeschka, S. Beyer, P. Galdamez,
and F. Munoz. A system architecture for enhanced availability of
tightly coupled distributed systems. In ARES ’06: Proceedings
of the First International Conference on Availability, Reliability
and Security, pages 400–407, Washington, DC, USA, 2006. IEEE
Computer Society.

[OFG07] J. Osrael, L. Froihofer, and K.M. Goeschka.
Availability/consistency balancing replication model. Parallel
and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE
International, pages 1–8, 26-30 March 2007.

[OFGG06] Johannes Osrael, Lorenz Froihofer, Matthias Gladt, and Karl M.
Göschka. Adaptive voting for balancing data integrity with
availability. In OTM Workshops (2), pages 1510–1519. Springer,
2006.

[OFKG05] Johannes Osrael, Lorenz Froihofer, Hubert Kuenig, and Karl M.
Goeschka. Scenarios for increasing availability by relaxing data
integrity. In Innovation and the Knowledge Economy: Issues,
Applications, Case Studies, pages 1396–1403. IOS Press, October
2005.

REFERENCES vii

[OFS+06] Johannes Osrael, Lorenz Froihofer, Georg Stoifl, Lucas Weigl,
Klemen Zagar, Igor Habjan, and Karl M. Goeschka. Using
replication to build highly available .net applications. In
DEXA ’06: Proceedings of the 17th International Conference
on Database and Expert Systems Applications, pages 385–389,
Washington, DC, USA, 2006. IEEE Computer Society.

[Osr07] Johannes Osrael. Replication Techniques for Balancing Data
Integrity with Availability. PhD thesis, Vienna University of
Technology, 2007.

[Pec06] Jan Peciva. Active transaction approach for collaborative virtual
environments. In VRCIA ’06: Proceedings of the 2006 ACM
international conference on Virtual reality continuum and its
applications, pages 171–178. ACM, 2006.

[PL88] J.-F. Paris and D.D.E. Long. Efficient dynamic voting
algorithms. In Data Engineering, 1988. Proceedings. Fourth
International Conference on, pages 268–275. IEEE Computer
Society, 1-5 Feb 1988.

[PL91] J.-F. Paris and D.D.E. Long. Voting with regenerable volatile
witnesses. In Data Engineering, 1991. Proceedings. Seventh
International Conference on, pages 112–119. IEEE Computer
Society, 8-12 Apr 1991.

[RSL78] Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis,
II. System level concurrency control for distributed database
systems. ACM Trans. Database Syst., 3(2):178–198, 1978.

[Sch93] Fred B. Schneider. Replication management using the
state-machine approach. In Distributed systems (2nd Ed.), pages
169–197. ACM Press/Addison-Wesley Publishing Co., 1993.

[Ske81] Dale Skeen. Nonblocking commit protocols. In SIGMOD ’81:
Proceedings of the 1981 ACM SIGMOD international conference
on Management of data, pages 133–142, New York, NY, USA,
1981. ACM.

REFERENCES viii

[Sme04] Robert Smeikal. Trading Consistency for Availability in a
Replicated System. PhD thesis, Vienna University of Technology,
June 2004.

[SNM85] Mukul K. Sinha, P. D. Nandikar, and S. L. Mehndiratta.
Timestamp based certification schemes for transactions
in distributed database systems. ACM SIGMOD Rec.,
14(4):402–411, 1985.

[SS05] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM
Comput. Surv., 37(1):42–81, 2005.

[Sto06] Georg Stoifl. Implementierung des quorum consensus
replikationsprotokolls in einer .net umgebung basierend auf
gruppenkommunikation. Master’s thesis, University of Applied
Sciences Technikum Wien, 2006.

[Tho79] Robert H. Thomas. A majority consensus approach to
concurrency control for multiple copy databases. ACM Trans.
Database Syst., 4(2):180–209, 1979.

[TS02] Andrew S. Tanenbaum and Maarten Van Steen. Distributed
Systems: Principles and Paradigms. Prentice Hall PTR, 2002.

[Wei06] Lucas Weigl. Implementierung von replikations-protokollen in
der .net umgebung. Master’s thesis, University of Applied
Sciences Technikum Wien, 2006.

[WPS+00] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso.
Understanding replication in databases and distributed systems.
IEEE ICDCS: Int. Conf. Distributed Computing Systems, 2000.
Proceedings., pages 464–474, 2000.

[WS92] Gerhard Weikum and Hans-J. Schek. Concepts and applications
of multilevel transactions and open nested transactions. In
Database Transaction Models for Advanced Applications, pages
515–553. Morgan Kaufmann, 1992.

[YV02] Haifeng Yu and Amin Vahdat. Design and evaluation of a
conit-based continuous consistency model for replicated services.
ACM Trans. Comput. Syst., 20(3):239–282, 2002.

APPENDIX ix

Appendix

Installation Guide

Pre-requisites

The following software is necessary in order to run the program:

• Microsoft Windows operating system

• .NET Framework 2.0 or higher

• Spread 3.17.4

• Database with an ODBC connector available

No special hardware requirements must be met. Note, that the exact
version of Spread must be installed, as higher versions are not compatible.

If the program is going to be tested on two or more computers, the software
listed must be installed on each of them. Optionally, one database can be
shared among several computers (it can also be located on a dedicated
computer). All computers must be connected to a common network.

Enabling Transactions Across Computers

As the Windows XP Service Pack 2 disables network access for the
Distributed Transaction Coordinator (DTC), its settings should be checked
and eventually modified in order to enable transactions across computers.
Except of enabling network transactions, the firewall should be configured
not to block the DTC service. A detailed description of how to do this
can be found in Florin Lazar’s blog article “XP SP2 and Transactions”
(http://blogs.msdn.com/florinlazar/archive/2004/06/18/159127.aspx).

APPENDIX x

Spread Configuration

The Spread’s configuration file (spread.conf) must be edited in order to
define the computers forming a group, i.e. a Spread Segment.

If all system nodes will be run on a single computer, then the default
configuration is sufficient:

Spread Segment 127.0.0.255:4803 {
localhost 127.0.0.1

}

Otherwise, the spread segment must be edited to list all computers
belonging to the communication group. For example, the configuration used
during evaluation of this prototype was the following:

Spread Segment 192.168.0.255:4803 {
oprsal-1 192.168.0.101
cf-box 192.168.0.103
gericomntbk 192.168.0.201
deniskantbk 192.168.0.202

}

Database Configuration

Any database can be used if there exists the appropriate ODBC Driver
for it. After installing the ODBC driver, a Data Source Name
(DSN) for the database must be created and configured. During
evaluation, a MySQL database with the MySQL ODBC 3.51 Driver was
used. How to configure an ODBC connector and set a DSN can be
found at http://dev.mysql.com/doc/refman/5.0/en/myodbc-configuration-
dsn-windows.html

APPENDIX xi

Running the Program

To start a new node, a Spread instance must be running on the local
computer. A new node is started by running the DeDiSys-Test.exe

executable. The following commandline arguments are accepted:

• n:<node count> - Number of nodes in a healthy system. Default is 4.

• useDbBackend:[true|false] - Whether to use a DB backend.
Default is false.

• dbDsn:<dsn> - Data Source Name of the DB (only if using DB).

• dbName:<db name> - Name of the DB (only if using DB).

• dbUser:<db user> - Name of the DB user (only if using DB).

• dbPassword:<db passwd> - Password for the specified user (only if
using DB).

• allowCallDelay:[true|false] - Whether to use deadlock detection
(true), or deadlock prevention (false). Default is true.

The following example will start a node, that expects 3 nodes in a healthy
system and that uses a database backend with the DSN “MySQL DB”,
database “dedisys db 1”, user “root”, and password “123”:

DeDiSys-Test.exe n:3 dbDsn:"MySQL DB" dbName:dedisys db 1

dbUser:root dbPassword:123

By default, the node will use deadlock detection and thus allow call
delaying for concurrent calls.

All commands available can be viewed by typing ’?’ or ’help’.

When running any of the tests, the test results are stored in a file called
DeDiSysTest.log.

APPENDIX xii

Logging

Logging is done by using the log4net library. The log output can be
configured in the standard DeDiSys-Test.exe.config file.

Note, that all logging actions decrease performance considerably, so no
output should be produced during performance evaluation.

