
 
 
 
 
 
 
 

Face detection in historic 
documentaries with a cascaded 

classifier 
 

 
DIPLOMARBEIT 

 
zur Erlangung des akademischen Grades 

 

Diplom-Ingenieur 
 

im Rahmen des Studiums 
 

Computergraphik/Digitale Bildverarbeitung 
 

eingereicht von 
 

Tobias Schleser 
Matrikelnummer 0225349  

 
 
an der 
Fakultät für Informatik der Technischen Universität Wien  
 
 
Betreuung: 
Betreuer: Univ.-Prof. Dr. Christian Breiteneder 
Mitwirkung: Dipl.-Ing. Matthias Zeppelzauer 
 
 
 
Wien, 20.04.2009  _______________________  _______________________ 
   (Unterschrift Verfasser)  (Unterschrift Betreuer) 
 
 
 
 

Technische Universität Wien
A-1040 Wien   Karlsplatz 13   Tel. +43/(0)1/58801-0   http://www.tuwien.ac.at 

 
 
Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der 
Hauptbibliothek der Technischen Universität Wien aufgestellt  
(http://www.ub.tuwien.ac.at). 
 
The approved original version of this diploma or master thesis is available at the 
main library of the Vienna University of Technology   
(http://www.ub.tuwien.ac.at/englweb/). 

 



Erklärung zur Verfassung der Arbeit

Tobias Schleser

Alseggerstraÿe 38/9, 1180 Wien, Österreich

Hiermit erkläre ich, dass ich diese Arbeit selbstständig verfasst habe,

dass ich die verwendeten Quellen und Hilfsmittel vollständig angegeben habe

und dass ich die Stellen der Arbeit � einschlieÿlich Tabellen, Karten und

Abbildungen �, die anderen Werken oder dem Internet im Wortlaut oder

dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als

Entlehnung kenntlich gemacht habe.

Wien, am 20. April 2009

2



Abstract

Face detection aims at detecting and localizing an unknown number

of faces in a still image or video frame. The challenges are to detect all

faces while keeping the false positive rate small and to minimize the

detection time per frame.

We study face detection in the context of historic documentaries.

The source material for this work are �lms of the Soviet �lm maker

Dziga Vertov that date back to the 1920's. The digitally available ma-

terial bears major image de�ciencies including �icker, scratches, dirt,

bad lighting and contrast and visible frame lines. Naturally, the ma-

terial is monochromatic and silent.

Based on a literature survey on di�erent approaches for face de-

tection, we select a method introduced by Viola and Jones for this

investigation. Their approach employs a cascaded classi�er, i.e. a se-

quence of nodes, that distinguishes faces from non-faces. These nodes

are organized as a hierarchy of classi�ers that are built from simple,

Haar-like features. The main advantage of using a cascade is that only

a moderate false-positive rate is needed for individual nodes as the

individual rates multiply up to the overall false-positive rate.

We describe how the detection framework is set up for and adapted

to the historic material and how it is implemented. Additionally, we

suggest several post-processing steps to ameliorate the false-positive

rate. Finally, we provide detailed results for several sample scenes

from the documentaries, and analyze the performance of the training

and detection stages.
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Deutsche Zusammenfassung

Bei der Gesichtserkennung wird versucht, eine unbekannte Anzahl an

Gesichtern in einem Bild oder Video zu erkennen. Dabei geht es darum,

möglichst alle Gesichter zu erkennen und gleichzeitig eine geringe Feh-

lerrate aufrechtzuerhalten. Weiters soll die Zeit für die Analyse eines

Frames minimiert werden.

In dieser Arbeit wird Gesichtserkennung im Kontext historischer

Dokumentar�lme untersucht. Das Material sind aus den 1920er Jah-

ren stammende Filme des sowjetischen Regisseurs Dziga Vertov. Das

(digital) verfügbare Material weist zum Teil schwere Mängel wie bei-

spielsweise Flimmern, Kratzer, Schmutz, schlechte Beleuchtung und

Kontrast auf. Auÿerdem handelt es sich um schwarz-weiÿ Filme ohne

Ton.

Ausgehend von einer Literaturrecherche über die verschiedenen An-

sätze zur Gesichtserkennung wurde eine Methode von Viola und Jones

als Basis dieser Arbeit ausgewählt. Der Ansatz verwendet eine Kaskade

von Klassi�katoren um Gesichter von nicht-Gesichtern zu unterschei-

den. Die einzelnen Stufen dieser Kaskade bestehen aus einer Hierarchie

von Klassi�katoren, welche aus einfachen, Haar-ähnlichen Features er-

stellt werden. Der Vorteil der Kaskade ist, dass für die einzelnen Stufen

nur eine mittelmäÿig gute Fehlerrate erreicht werden muss, da sich die

individuellen Raten zur Gesamtfehlerrate aufmultiplizieren.

Diese Arbeit beschreibt, wie die Methode für die Gesichtserken-

nung aufgebaut ist, wie sie an das alte Material angepasst wird und

wie die konkrete Implementierung aussieht. Auÿerdem werden einige

Nachverarbeitungsschritte vorgeschlagen, welche die Erkennungs- und

Fehlerrate verbessern. Es werden detailierte Ergebnisse für einige Bei-

spielszenen aus den Dokumentationen präsentiert und der Rechenauf-

wand für Training und Erkennung analysiert.
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1 Introduction

Face detection is one of the visual tasks that humans can do e�ortlessly.

However, the goal of automatically detecting faces by computer systems

is hard to achieve. Hjelmås de�nes the face detection problem as follows:

"Given a still or video image, detect and localize an unknown number (if

any) of faces." [11] Thus, we aim at developing a detector that is able to

localize any number of faces in an image while producing no false detections

(i.e. detected locations where no face is present).

The localization of faces is di�cult because faces vary not only in location

but also in scale, orientation and pose. Furthermore, faces are non-rigid,

thus a face may change appearance over time. Additionally there may be

varying lighting conditions and occlusions. The challenges in face detection

are presented in more detail in Section 1.4.

The di�erent approaches for automatic face detection rely for example on

pattern recognition and statistics. Other methods are based on learning al-

gorithms. These methods rely heavily on training from sample (face-)images.

We discuss several already available face databases in Section 1.5. Up to now

there exist no standardized data sets for detector evaluation. We introduce

important evaluation metrics and databases in Section 1.6.

1.1 Organization

This thesis is organized as follows. Section 1 gives an introduction to face

detection, its challenges and application. An overview of di�erent approaches

is presented in Section 2. Section 3 summarizes the novel domain of historic

documentaries, along with the special challenges in this domain. The chosen

face detection approach of Viola and Jones and adaptions of their method

are presented in Section 4. Further, the experimental setup for training of

the face detector and evaluation of sample scenes is described in Section 5.

Results from the experiments are presented in Section 6 and we conclude in

Section 7.
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1.2 Motivation

Face detection has become an important task not only in the area of surveil-

lance but also for image and video indexing and retrieval. The world wide

web gives access to thousands of media �les, but also private media col-

lections get more and more di�cult to index with increasing size. Thus,

robust face detection, among other object detection methods, is preferrable

to support a user's search.

We study face detection in the domain of historic documentaries as face

detection is regarded to be an important basis for tools that aim at auto-

mated understanding and indexing of �lms and video material. Such tools

might analyze dialogue sequences or aim at recognizing certain persons like

politicians. Additionally, a detected face may be used as reference object for

determining the shot size and camera geometry. Other technologies, that

are built upon face detection, are presented in Section 1.3.

A major challenge for face detection in the context of historic documen-

taries is the monochromaticity of the �lm material. Although faces may still

be detected, the missing color information is a major drawback as color is

an important modality to detect faces. However, monochromatic sources are

common, also in the area of visual surveillance. Monochromatic cameras

are cheaper and night shots feature monochromatic light as well. Thus, a

method that works robustly on monochromatic material is needed.

1.3 Applications

As mentioned before, traditionally computer vision has been applied in repet-

itive, well de�ned tasks such as assembly line inspection. However, recent de-

velopments lead to broader �elds of applications. Decreasing costs for image

acquisition hardware and computing power allow for the deployment of com-

puter vision and image understanding software in large-scale visual systems

as well as in personal tools on PDAs and pocket cameras. As faster hardware

and algorithms for face detection become available, a broad range of applica-

tions, in the areas of face recognition, face authentication, face tracking and

expression recognition is able to solve real-world problems. Face detection is

the basis for all these applications.
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Tasks range from surveillance to multimedia processing, human computer

interaction and others. Figure 1 shows the diverse connections of related

research �elds in computer vision and summarizes their applications.

Figure 1: Applications of face detection. Various technologies (orange) are basis for

�elds of applications (blue) with speci�c tasks (black).

In the �eld of security and surveillance, Tsala et al. presented a system for

face authentication in [45]. They use both, 3D-range data and color images

to robustly detect and localize faces. They employ synthetically generated

views to deal with di�cult pose and varying lighting.

While surveillance in the �eld of public transport systems and monitor-

ing of facilities is important, there also exist various applications in multi-

media processing: the indexing and retrieval of video and image databases

are examples. Other applications include teleconferencing and automated

image enhancement [46]. Recently, face detectors have also been imple-

mented in consumer electronics like digital pocket cameras for enhanced

autofocussing [56].

Human computer interaction (HCI) is a new �eld of computer vision

where reliable face recognition systems can be used for access control. Pnev-

matikakis states that face recognition systems would rank among the most

desirable systems because of two main properties: First, they are non-

intrusive and second, the needed infrastructure is simple and cheap [32]. New

means of computer interaction alternatively to using a mouse and keyboard
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are also developed with regards to face detection [56]. Other applications

include the investigation of human social dynamics and depression assess-

ment, i.e. the observation and timing of facial expression, head motion and

gaze that serve to identify nonverbal indicators of depression [18].

Some methods on face detection may be used for general object detection

as well. Typical examples are the detection and classi�cation of cars, text

or cells in biomedical images [13].

1.4 Challenges

Human faces are non-rigid, meaning that they are subject to steady defor-

mation. Although the face detection problem can be clearly formulated and

the present task is a two-class decision, the nature of faces, their appearance

in images and videos and certain properties of general object detection bear

major challenges. The most important challenges are:

• Facial expression. A�ective states or emotions (happy, sad, surprised,

scared, etc.) have signi�cant impact on the appearance of a human

face.

• Pose. In images and videos, people appear in all di�erent poses, rang-

ing from frontal to pro�le view and anything in between. Unfortu-

nately, the image of a face is completely di�erent for a frontal and a

pro�le face.

• Human race. People of di�erent races feature not only di�erent skin

color. The shape of lips, eyes and nose di�er signi�cantly among people

from di�erent parts of the world (while a certain variability is present

among individuals of a single race as well).

• Occlusions and facial features. Parts of faces may be occluded by both,

facial features such as beards, mustaches or glasses (which themselves

occur in a multitude of shapes, sizes and colors) and by other objects

in the scene like other people, scarfs, headwear and so on. The degree

of occlusion and the occluded parts of the face vary randomly.
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• Orientation, 3D position and camera distance. Additionally to the pose

of a face, it may be translated and rotated in three dimensional space

with respect to the camera coordinate system.

• Uncontrolled background. Video and images generally feature uncon-

trolled, scattered background. A multitude of other objects may ap-

pear in the background (including other faces).

• Illumination. The brightness and color temperature of di�erent light

sources, as well as their number, in�uence the color appearance of facial

parts. Additionally, the shape of objects (i.e. head, nose, mouth) can

be distorted, for instance by sharp shadows or re�ections.

A face detection system has to take these issues into account. Some of

them can be met by broadening the training set of face images (appearance-

based approaches, see Section 2.4) or by extending the set of rules, features

or templates (see Sections 2.1 - 2.3). However, these extensions have direct

impact on performance and usually not all challenges can be met satisfac-

torily. For example, strong in-plane and out-of-plane rotated faces can not

be detected by traditional face detection algorithms that work on 2D data

without training completely independent detectors for the di�erent poses.

1.5 Face Databases

As there has been a strong development in the area of learning algorithms

for face detection, the collection and supply of face databases, which con-

stitute the source material for these algorithms, has boosted. While most

of these databases are available online and are free for scienti�c use, they

di�er signi�cantly in size and quality. Table 1 summarizes some of the high-

quality datasets and their properties. Most of these data sets are suited for

both, training face detectors (given an abundance of face images with varying

lighting conditions and a lot of di�erent individuals) and for the evaluation

of face recognition systems (given several images per individual, for exam-

ple with varying expression, lighting and pose). The UMIST Database, the

Yale Face Database B and the AR Face Database are well known and o�er

a broad range of illumination conditions, facial expressions and poses. The
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FERET Database and the Essex Database have been compiled speci�cally

for the purpose of evaluating face recognition systems (but can be used for

training purposes as well). Some datasets provide additional information

like eye- or mouth coordinates (Yale Face Database B, BioID Face Set pre-

sented in Table 2). The CMU PIE Dataset is the largest face collection in

this summary, providing 41,368 images of 68 individuals in an abundance

of lighting conditions, with di�erent poses and facial expressions. The set

is not available online but the database may be ordered on several DVDs

on the project website. An uno�cial but very large training set with over

3,000 face images (though at the low resolution of 24 × 24 pixels) has been

collected by Viola and Jones and has been used for the implementation in

this work [48].
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Table 1: Face databases for training of face detectors.

Database and Location Description

FERET Database [29, 30]

National Institute of Stan-

dards and Technology1

2,413 images of 865 individuals with di�erent facial expres-

sions; developed for evaluation of face recognition systems

UMIST Face Database [8]

University of Manchester

564 images of 20 individuals covering a range of poses from

pro�le to frontal view

Yale Face Database [47]

Yale University

165 images of 15 individuals; images with di�erent fa-

cial expressions and/or con�guration (direction of light,

glasses)

Yale Face Database B [7]

Yale University

5,460 images of 10 individuals; 576 viewing conditions (9

poses x 64 illumination conditions); ground truth with co-

ordinates of eyes and mouth available

AR Face Database [22]

Purdue University

Over 4,000 images of 126 individuals; di�erent facial ex-

pressions, illumination conditions, and occlusions (sun

glasses and scarf); images taken in 2 sessions; con�guration

encoded in �le name

Essex Database [42]

Essex University

7,900 images of 395 individuals; varying expression and

background, divided into 4 sets (increasing di�culty); de-

veloped for evaluation of face recognition systems

CMU PIE Database [37]

Carnegie Mellon University2
41,368 images of 68 individuals, one face per image; 13

di�erent poses, 43 di�erent illumination conditions and 4

di�erent expressions per person

Viola and Jones

Database [48]

3,900 face images of indivduals at the resolution of 24×24

pixels; extracted from a random web crawl

1.6 Detector Evaluation

The evaluation of the accuracy of face detectors is an important but di�cult

task. Scientists use di�erent metrics, for example the execution time and

the ratio between detection rate and false-positive rate. These rates take the

1FERET Database not available for direct download
2CMU PIE Database not available for direct download
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two types of errors into account that classi�ers can generally make: false-

negatives are positive instances (faces) that are not classi�ed to be positive

and false-positives are negative instances (non-face regions) that are declared

to be positive (i.e. a false detection). De�nitions for the detection- and false

positive rate vary. In this work, the detection rate (also called recall) is

the ratio of the number of faces classi�ed correctly by the detector and the

number of faces detected by a human:

detectionRate =
detectedFaces

totalNumberOfFaces
(1)

The false positive rate (also called fallout) is the ratio of the number of

false positives and the total number of image regions that are classi�ed by

the detector:

falsePositiveRate =
falsePositives

totalNumberOfImageRegions
(2)

The rates can also be calculated in terms of type 1 and type 2 errors. The

following confusion matrix summarizes the results that a two-class classi�er

can generally return. True positives (TP) and true negatives (TN) are good

results, false positives (FP) and false negatives (FN) indicate errors of the

classi�er.

correct: 1 correct: 0

classi�ed: 1 true positive (TP) false positive (FP)

classi�ed: 0 false negative (FN) true negative (TN)

By using this table the calculation of recall (r) and fallout (f) can be re-

formulated. Additionally, another value called precision (p) can be deduced.

The calculation of the three values is presented in Equations 3-5.

r =
TP

TP + FN
(3) p =

TP

TP + FP
(4) f =

FP

FP + TN
(5)
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These values may be used to build diagrams. In a ROC (receiver operat-

ing characteristic) Curve, the false positive rate (fallout) is plotted against

the detection rate (recall). The Recall-Precision Graph plots recall rates

against precision. In both cases, this is done for di�erent parameter settings

of the detector, yielding diagrams that show interpolated lines of ROC- and

Recall-Precision value pairs.

For learning algorithms, two additional matrics are used: the learning

time and the number of samples required in training.

There is a lack of standardized test scenarios for face detectors which

adds to the di�culty of a comparable evaluation. However, several image

databases exist for the purpose of evaluating detectors and face recognition

systems. Some of these provide images of single persons with a controlled

background (see Table 1), others contain images with several faces and com-

plex backgrounds and lighting. Table 2 presents some of these test sets and

their properties. The CMU data sets have been collected by Henry Schnei-

derman and Takeo Kanade and are widely used in the scienti�c face detection

community. A part of the set contains faces with out-of-plane rotations. The

BioID Face Set contains a large set (1,521) of gray level images of 23 indi-

viduals with natural background. Additionally, data �les are available that

contain 20 manually labeled facial feature points per face (for example left

eye pupil, right mouth corner and others). Thus, this database can be used

to train face detectors and to evaluate detection and gesture recognition

systems in a comparable way.
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Table 2: Face databases for evaluation of face detectors.

Database and Location Description

CMU Frontal Test Sets [43]

Carnegie Mellon University

Massachusetts Institute of

Technology

3 sets of upright frontal face images (42 and 65 images);

the database includes face images collected at CMU and

MIT; all sets contain 1 or more human faces, cartoons or

drawings; ground truth available

CMU Rotated Test Sets [33]

Carnegie Mellon University

1 set of face images (50 images), each containing one or

more human faces; faces appear rotated about the �rst

(i.e. roll) camera axis; ground truth available

BioID Face Set[14]

FAU Erlangen AG

1,521 images, multiple faces per image, natural conditions

(background, lighting), manually labeled eye positions in

data �le
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2 Approaches

In the following sections several approaches to face detection are discussed.

Section 2.1 covers knowledge-based approaches and Section 2.2 describes

methods that use invariant features. In Section 2.3 we present approaches

with template matching and Section 2.4 covers appearance-based methods.

2.1 Knowledge-based approaches

Generally, knowledge-based approaches to face detection try to encode hu-

man knowledge of faces in rules. They match face candidate regions against

these rules to classify them as being a face or not. The rules are based on the

results of research in the �elds of pattern recognition and mathematics but

also biology and medicine. After all, rules are often derived from image ma-

terial directly. The rules mainly encode ratios, similarities and symmetries

of human face features and their relationships, for example relative distances

and positions. For example, a simple principle could be: 'faces often have two

eyes, a nose and a mouth and the direction of the nose constitutes an axis of

symmetry'. Thus, the challenge is 1) to construct a broad set of well-de�ned

rules (and their mathematical representation) and 2) to combine them in a

meaningful way in order to construct a classi�er.

Representative work on the subject has been performed by Yang and

Huang [54]. Their approach is a hierarchical system with three levels of

image resolution and respective rules. An image is subsampled to three

resolutions allowing to apply di�erent sets of coarse to �ne rules. While at

the highest level (coarse image representation) general descriptions of face

patterns and homogeneous patches are present, �ner levels rely on more

detailed descriptions of facial features.

As basis for most rules serves an abstract face as presented in Figure 2a.

At the top-most level, coded rules are derived, for example 'the center part of

a face has four cells with basically uniform intensity' (the dark shaded area

in Figure 2b) or 'the di�erence in gray scale intensity between the center

part and the upper round part of the face is signi�cant' as described in [56].

Positively classi�ed face candidates are then analyzed in a next stage. Here,

the images are represented with better resolutions and after local histogram
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Figure 2: Abstract faces used in knowledge based methods. Rules, derived from human

knowledge on characteristics of facial regions are derived from abstract face models in [54]

(a) and [16] (b).

equalizations, edge detection is performed to detect the contour of a face.

The last step operates on the original resolution of the image where rules are

applied that take eyes, mouth and other facial features into account.

Interestingly, even in this early work, a coarse-to-�ne or focus-of-attention

strategy was chosen. This is done by Viola and Jones years later as well [49].

We show the great impact that this approach can have on speed and accuracy

of a detection system in Section 4.2. Although the design of the stages is

quite di�erent, the cascaded detection framework that is used in this work

uses a similar focus-of-attention strategy.

In 1997, Kotropoulos and Pitas picked up the ideas of Yang and Huang

in [16], retaining the rule- and hierarchy-based concept. Their approach

is, to �rst locate facial features with a projection method. The horizontal

pro�le HI and vertical pro�le VI of an m × n image I are calculated as

HI(x) =
∑n

y=1 I(x, y) and VI(y) =
∑m

x=1 I(x, y). From HI , the left and

right boundaries of a face can be extracted by searching for local minima.

Similarly, the local minima in VI correspond to eye and mouth region and

the maxima between them to the nose area. These facial features are then

evaluated with several rules. The approach performed well on a training

set that comprises 37 video sequences showing single persons in front of a

uniform background (86.5 percent detection rate of facial features). However,
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the approach is not suited for more complex backgrounds or multiple persons

in one image. Thus, it is rather a face localization than a face detection

method.

2.2 Invariant features approaches

The second group of face detection methods are feature-based approaches.

Here, e�orts are put on detecting features such as edges, texture, color or

generally facial features (lips, eyes, eyebrows, hairline), among others. Some

of these features are assumed to be potentially invariant for di�erent poses,

facial expressions and lighting conditions. The underlying assumption is that

humans can detect faces independently of these variables.

Some methods that aim at detecting facial features (mainly early works

in face detection) are built upon edge detectors. Commonly used edge de-

tectors are the Canny detector [1], the Sobel [40], Prewitt (similar to Sobel

without weight setting) and Roberts (fast, poor performance) operators and

the Marr-Hildreth-Operator (Laplacian of Gaussian, LoG) [21]. Once several

facial features are extracted, statistical models and known proportions in hu-

man face geometry are used to verify the existence of faces. Problems arise

from di�cult illumination conditions (shadows might introduce new edges)

or occlusions (corrupted feature boundaries). An example for a face localiza-

tion method based on edge detection is the work by Sirohey [39]. Here, an

edge map is calculated �rst and then processed by some heuristics to group

or remove edges in order to obtain a contour image of the face. Further,

Sirohey �ts ellipses to the obtained outline to segment the face candidate.

Then, Gabor wavelet decomposition and graph matching is performed to

extract facial feature points.

There exist other methods than edge detection to extract facial features.

Chetverikov and Lerch use blobs and streaks instead of edges for their detec-

tion system in [2]. Two dark and three light blobs correspond to the eyes,

cheekbone and nose region in their model. The detection process comprises

a search for triangular con�gurations of these blobs in candidate images.

The streaks are used to represent outlines of the faces and to verify face
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candidates. Operations in other approaches include morphological transfor-

mations and various graph algorithms [56].

More recent work on facial feature extraction assumes a ready-to-use

face detection system and regards feature extraction as a second step, for

example in the area of facial expression analysis. Cristinacce et al. proposed

a multi-stage feature extraction system in [4]. The authors �rst utilise the

cascaded face detector of Viola and Jones [51] and then apply multiple feature

detectors using a method called Pairwise Reinforcement of Feature Responses

(PRFR). Extracted feature points are then veri�ed using a variant of the

Active Appearance Model (AAM) search which is tuned to edge and corner

features. They report to have achieved the best results among many other

feature detector combinations. A comparison of shape constrained facial

feature detectors can be found in [3].

While the before mentioned algorithms work on intensity images, color

adds a powerful clue to detection. The main discussion among researchers

in the �eld is about the selection of a suitable color space. A popular color

space is the normalized RGB space. Based on the RGB color model with

the three primary color components R (red), G (green) and B (blue), the

components r, g and b of the normalized RGB space are de�ned as:

r =
R

R+G+B
(6) g =

G

R+G+B
(7) b =

B

R+G+B
(8)

The three values sum up to 1, thus b is redundant and need not to

be stored as it can be calculated as b = 1 − r − g. Besides the e�ective

representation as (r, g), an important advantage of the color space is the

possibility to �lter out luminance (brightness). This is a strong feature as it

has been shown, that human skin tones vary mainly in luminance [55].

The YCrCb color space can be used to segment skin from background

pixels by simple thresholding. The color space has been used by Tsalakanidou

et al. for an authentication system. They utilize 3D range data and color

images to robustly identify people regardless of certain amounts of rotation

and occlusion [45].
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The strength of the HSI (hue, saturation, intensity) color space is its

non-linear transformation of the RGB space. Thus, unlike normalized RGB

or YCrCb, the extraction of facial-features (e.g. lips) need not to be based on

exhaustive training as the segmentation is easier with this angularly trans-

formed color space [19]. A drawback is the need for high quality source

material, as noise of mono-CCD material is problematic for angular color

transformations.

A summary of the before mentioned commonly used color spaces, their

advantages and examples for applications is presented in Table 3.

Table 3: Color spaces for face detection.

Color space Advantages Sample work

normalized RGB fast calculation, e�ective representation, lumi-

nance (brightness) can be �ltered out

[55]

YCrCb simple skin tone extraction with thresholds [45]

HSI large variance among facial feature color clusters [41]

Although color is a powerful feature that is supportive in face detection

if the color model can be adapted properly for di�erent lighting conditions,

Yang et al. note that it is not e�ective when the spectrum of the light source

varies signi�cantly [56]. Thus, skin color alone is often not suitable to detect

faces. Recent methods utilize skin color as one of several features to better

detect faces. Hota et al. [12] use the cascaded face classi�er and AdaBoost as

proposed by Viola and Jones [49] for face detection in video and extended the

system by a skin color detector. Consequently, they were able to track faces

over several frames of video material even if the face got rotated during the

shot. A detection by the cascade served as basis for continued tracking with

color segmentation. An approach of Foresti et al. in 2004 integrated color

segmentation based on the YCrCb color space and the eigenface method

(see Section 2.4) to detect faces. Their segmentation method is depicted in

Figure 3.

There exist various comparisons of color models for the purpose of skin

segmentation, some of which introduce new performance metrics. For exam-

ple Phung et al. compiled a comparative study in [31].
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Figure 3: Segmentation based on YCrCb color space as performed by Foresti et al. [5].

The focus of attention strategy uses color information to extract potential face candidates.

These are veri�ed with a face detection method (eigenfaces).

2.3 Template Matching

Template matching makes use of prede�ned standard face patterns that are

matched against face candidate sub-windows. Templates encode knowledge

about the human face, for example the size and approximate shading and

color of di�erent parts of faces and their relation. The de�nition of tem-

plates is either performed manually or parameterized by a function. The

standard approach is to calculate the correlation of the prede�ned template

with di�erent parts of a face candidate region [56]. Mouth, eyes and nose

positions and the contour of a face are typical features that are matched

against the template. The obtained correlation values are re�ned, combined

and thresholded in order to classify a face candidate as face or non-face. Sim-

ilarly, some approaches use the Hough transform to match candidate regions

against templates [27].

A problem of the �rst template approaches was the strong response to

changes in scale and shape of faces (faces are non-rigid and subject to steady

deformation) which lead to poor detection rates in more challenging setups,

for example when tested against scenes with unsteady background, di�erent

sizes of faces and changing illumination. However, newer approaches use

multi-resolution or deformable templates to achieve scale and shape invari-

ance.

Sinha proposed a template matching method where the spatial template

de�nes areas of the face [38]. These areas correspond roughly to facial regions

such as eyes, mouth, nose and chin. The approach compares a selection of
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relative brightnesses of face regions to each another. The underlying assump-

tion is that these relations remain unchanged even if the overall illumination

of the face changes. Thus, the method de�nes several brighter-darker con-

straints (e.g. "an eye region is darker than an upper-cheek region") and a

face is detected if a candidate satis�es all pairwise brightness relations.

Scassellati [35] enhanced the system of Sinha. The author uses the tem-

plate approach with brightness relations to implement a robot vision system.

First, potential face locations are extracted with a motion-based method,

then a re�ned version of Sinha's template matching method is applied. Fig-

ure 4 shows the enhanced template of Scassellati. It features 16 areas and a

total of 23 brightness relations. It is obvious that the areas that correspond

to the eye regions are subject to many of these brightness constraints, which

is typical for face detection. The eye region and its relative brightness to sur-

rounding areas of the face is a distinctive feature in face detection, which is

also exploited by Viola and Jones' feature approach (see Section 4). Scassel-

lati reports a detection rate of over 94% for their actual goal of eye detection

(the approach aimed at reacting on social cues like eye contact or gaze di-

rection). The author further states that Sinha's method alone performed

poorly on a set of standard static test images.

Figure 4: Spatial face template, encoding 16 face regions that correspond to facial

features and 23 brightness relations. Black arrows indicate essential relations (necessary for

detection), blue arrows con�rming relations (not necessary). The template is an enhanced

version of Sinha's original template and was proposed by Scassellati in [35].

The method of brighter-darker constraints could be extended with a

training stage, where the brightness relations are determined empirically.

For example, Murai et al. calculated templates from training images of faces
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in [23]. After a preprocessing stage, the samples are iris-aligned and averaged

to obtain face templates. Additionally, the templates were scaled to detect

faces of all possible sizes in the detection domain.

Perez et al. suggested a more recent template approach [27]. Their

method is divided into three steps. The �rst step is a rough face detection

based on Hough transform to obtain a directional image. Consequently, el-

liptical templates of di�erent sizes are scanned over the directional image,

i.e. elliptical forms are detected in the Hough transformed image and the

centers are estimated roughly. The second stage of the algorithm works with

anthropometric templates (i.e. templates constructed from known propor-

tions and measurements of human faces). These templates basically encode

eye, nose and mouth region and the lower half of the facial contour as ellipse.

The templates are rotated in the range [−40◦, 40◦] and are matched against

the face candidates from stage 1. The last stage deals with iris detection.

An array of iris templates (containing di�erent occlusions by eye lids) is used

to determine eye positions and to track the iris.

Jain et al. compiled a review of di�erent template approaches for ob-

ject detection [13]. They concentrate on deformable templates and present

approaches not only for face detection but for general object detection in

di�erent domains, for example the segmentation of cars, birds, road, micro-

scopic forms or parts of the brain.

2.4 Appearance-based approaches

Appearance-based approaches apply eigenfaces, support vector machines,

hidden markov models, naive bayes classi�ers and neural networks for face

detection [56]. These approaches could also be labeled learning-based as

they have in common their need for exhaustive training with sample im-

ages. From the training databases, the models needed to classify potential

face windows are derived by statistical analysis and with machine learning

methods (though in very di�erent ways in the individual approaches). The

main goal of most approaches is the reduction of dimensionality to enhance

computation time and increase robustness to noise. Appearance-based ap-
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proaches have been widely used within the last years. Some methods and

representative work is presented in the following.

The use of eigenfaces was �rst proposed by Kirby and Sirovich in [15]

(however, the name was established later). The method is based on the

Karhunen-Loève transform, which is also known as principal component

analysis (PCA) or Hotelling transform. The basic idea is to reduce the

dimensionality of the data (sample images) in a way that preserves a max-

imum of variance (which corresponds to the information content). Thus,

the eigenvectors of the covariance matrix (i.e. vectors, that span an optimal

subspace) are calculated from the set of vectorized training images. The di-

mensionality of this subspace can be reduced e�ectively. Eigenvectors with

little information content are discarded which produces a space that is less

complex than the original space of face samples while keeping most of the

information.

Sung and Poggio present a method that uses eigenvectors in a distribu-

tion based setup [44]. They �rst model face prototypes from training images

that are scaled to a size of 19× 19 pixels and masked with a circle such that

near-boundary pixels not belonging to the face are culled. Similarly, non-

face prototypes are modeled. They form several clusters of face- and non-face

samples in a prede�ned space and as input to the detection stage compute a

Mahalanobis-like distance of the 75 �rst eigenvectors of each cluster and the

candidate window which is projected on the space spanned by these eigenvec-

tors. Similarly, the Euclidian distance is calculated and the obtained values

are analyzed by a Multi-Layer-Perceptron (MLP) with 24 hidden units. Sung

and Poggio report a 80% detection rate on a test database of images of av-

erage quality. Their approach is well known and has been widely used for

eigenvector- or distribution-based object detection.

Eigenfaces are often used for face recognition as well and in more recent

approaches in combination with other methods. Concerning face recognition,

it has been shown, that the eigenface method is robust against local changes

but not against global changes. Thus, it is well suited to recognize faces of the

same person with di�erent expression, clothing or hair cut while problems

arise when the same person is viewed under di�erent lighting conditions.

Foresti et al. suggest to combine a neural network and color segmentation
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with eigenfaces for face detection [5]. First, they perform outline analysis

with an MLP neural network. The outline of a moving object in the scene

is represented as a B-Spline. The upper part of the shape is analyzed by

the neural net in order to �nd the head region. The second part consists of

color segmentation in the YCrCb color space (see Figure 3 in Section 2.2).

The third part utilizes eigenfaces in a similar way as Sung and Poggio as

described above. They perform data fusion with the di�erent possible head

regions with a weighted vote. The weights are determined experimentally.

One important advantage of eigenface approaches is that they need less

training images than other learning-based approaches. Most authors report

a database size of approximately 50 to 300 face images for their methods.

Support Vector Machines (SVM) have been used in appearance-based

approaches as well. In contrast to eigenface/PCA methods, patterns are

projected explicitely to a higher dimensional space (the feature space). Con-

sequently, the goal is to �nd an optimal decision surface (called hyperplane)

in the n-dimensional feature space to discriminate the projected face and

non-face patterns. The hyperplane is de�ned by a weighted combination

of a small subset of training vectors, called the support vectors. The opti-

mal hyperplane is linear in feature space and has maximum distance to the

closest points (i.e. support vectors).

Heisele et al. propose a cascaded architecture of Support Vector Ma-

chines in 2003 [10]. They construct �ve increasingly complex SVMs that

are arranged in a cascade for detection. This is done in a similar way as

proposed by Viola and Jones which was used in this work and is described

in Section 4.2 [49]. Heisele et al. explicitly reduce the complexity of their

non-linear top layer SVM to reduce computation time. Therefore, they rank

features that are derived from training samples and perform PCA. In the

face detection domain, they report to have removed 99% of the PCA gray

features without loosing information. Thus, by using a hierarchy (i.e. cas-

caded architecture) and feature reduction at the top level, they are able to

speed-up the system by two orders of magnitude while retaining a similar

classi�cation performance.

One of the most signi�cant works in the area of Neural Networks (NN)

in face detection has been performed by Rowley et al. in [34]. The structure
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of arti�cial neural networks is inspired by the biological neural network,

i.e. interconnections of neurons in the human brain. An arti�cial neural

network basically consists of simple processing units (also called neurons)

that are organised in layers and their (weighted) connections. A neural

network is usually designed as an adaptive system that is trained by updating

its weights. Thus, the network changes its structure based on the inputs

during the learning phase.

Figure 5 shows a simple neural network with one input and one output

unit. These units are connected with a network of hidden units (here or-

ganized in two layers), that perform functions on their respective inputs.

A probabilistic view on this setup could be stated as: a random variable

F = f(G), for example the classi�cation result in face detection, depends

upon the random variable G = g(H) which depends upon H = h(X) which

depends upon random variable X, for example some representation of a can-

didate image region. Thus, the network can mathematically be seen as a

tool for non-linear statistical data modeling. Nodes of a single layer are

independant from each other which allows parallelization.

Figure 5: A simple arti�cial neural network (NN). The value of an input unit x is used by

two layers of hidden units that perform functions h and g with di�erent sets of parameters.

The result is an output f . The arrows represent connections between the nodes which are

weighted in networks that are used for learning.

Rowley et al. propose a system that consists of two stages [34]. First, a

neural network-based �lter is used to classify candidate image regions, then

they apply a function that merges detected regions from di�erent �lter-sizes

(i.e. outputs of di�erent NNs) and eliminates ovelapping regions. They
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use a manually labeled and normalized set of over 1000 positive training

images. Negative (non-face) training images are collected by bootstrapping,

see Section 4.2.7 for details. For preprocessing, they match a linear function

to an image region and consequently subtract it. Thus, lighting conditions

can be compensated. Furthermore, they perform histogram equalization to

achieve better contrast in candidate images. Their neural network classi�es

20 × 20 pixel subwindows and uses three types of hidden units that work

directly on the pixels of the candidate subwindow: 4 which look at 10x10

pixel subregions, 16 which look at 5x5 pixel subregions, and 6 which look at

overlapping 20x5 horizontal stripes of pixels. The units are chosen in this

way to be sensitive to di�erent facial features. The stripes, for example, are

sensitive to the mouth region or the pair of eyes.

Viola and Jones propose an approach to face detection that aims at

constructing a detection cascade [51]. Their method is a learning algorithm,

depending on thousands of positive and negative training images and is based

on primitive Haar-like rectangular features. The approach is described in

detail in Section 4.

Other appearance-based approaches to face detection include Hidden

Markov Models (HMM) [24], Genetic Algorithms (GA) [57] and Naive Bayes

Classi�ers [28]. In the latter class of methods, an image is regarded as random

variable x which is characterized by the class-conditional density functions

p(x|face) and p(x|nonface). Consequently, Bayes' theorem and, for exam-

ple, the maximum a posteriori decision rule, are used to calculate p(C|X),

i.e. the probability of a class C (face or non-face) given a new example

image X.

There exist various combinations of the presented and other methods.

For example, Li et al. proposed an approach for multi-view face detection

in 2004 [20]. They �rst use support vector regression to estimate the pose

of an object in three dimensional space. They choose one of several face

detectors that suits the pose and classify the image as being a face or not

with a combination of support vector machine and eigenface approaches.
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3 Source material

In the work at hand, the source material for face detection are old �lms

of Dziga Vertov. The project that constitutes the context for this work is

called Digital Formalism: The Vienna Vertov Collection and is described in

Section 3.1. Special challenges of the material are summarized in Section 3.2.

We provide information on the digitization process and properties of the

digitized �lms in Section 3.3.

3.1 The Vienna Vertov Collection

Dziga Vertov (born David Abelevich Kaufman) was a Soviet avant-garde

�lm-maker and �lm-director. He was a pioneer in the area of documentary

�lms and newsreels (short documentaries that were presented publicly and

covered news stories and other topics of interest of the time). His �rst

productions date back to 1919 (the newsreel Kino Nedelya, Cinema Week).

His best-known production today is the �lm Man with a Movie Camera

which was produced in 1929.

Digital Formalism: The Vienna Vertov Collection is a project that fo-

cuses on the digital analysis of the "senses of cinema". The project is carried

out by three project partners: The Austrian Film Museum (OeFM), the De-

partment for Theatre, Film and Media Studies (TFM) at University of Vi-

enna and the Interactive Media Systems Group (IMS) at Vienna University

of Technology. It is funded by the WWTF (Vienna Science and Technology

Fund) as a three-year project and started in 2007. The research aims at de-

veloping methods to analyze principal cinematic elements in the �lms [17].

Computer scientists develop methods to analyze high-level �lm-elements like

rhythm, contrast and dialogue sequences in the �lms.

This work focuses on face detection, which forms the basis for extracting

people, recognizing reappearing characters and to enhance understanding of

peoples' interactions in di�erent sequences. The �lms that are used in this

work are listed in Table 4.
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Table 4: Films of Dziga Vertov used in the work at hand.

Year Original title English title Length

1924 Kino-glaz Kino Glaz (Cinema eye) 78 minutes

1925 Kinopravda Kino Pravda (Film Truth) 32 minutes

1926 Xesta� qast~ mira A Sixth of the World 64 minutes

1928 Odinnadcaty� The Eleventh 58 minutes

1929 Qepovek s kinoapparatom Man with a Movie Camera 16 minutes

3.2 Material properties

As described above, the material at hand dates back to the 1920's. The

silent monochrome �lms (see Table 4) were originally recorded on 35 mm

�lm strips. The �lms were copied for backup reasons. They were poorly

stored and treated because a presentation or other use of the material -

years later - was not intended. However, meanwhile the original �lm strips

are not traceable anymore and were possibly destroyed. Thus, the available

bad-quality backup copies are the only remaining source for the �lms. They

were digitized recently by the Austrian Film Museum (see Section 3.3) to

preserve the �lms and make them accessable to automatic analysis.

The material has su�ered from poor storage and repeated analog copying.

The most disturbing artifacts in the digitized �lm copies include:

• Flicker, which is mainly caused by the cameras used for recording.

The manual �lm transport produces uneven exposure and �icker.

• Scratches, which result from repeated playback of the analog �lms.

• Coarsely grained and blurred scenes, which are possibly caused by
poor focusing and bad lighting during recording and repeated analog

copying.

• Dirt, which is a result of poor storage, transport and copying under

suboptimal conditions (dust, humidity, liquids).
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• Image vibration, caused by shrunken �lm strips. The biochemical

material shrinks with time and changing temperature horizontally and

vertically, resulting in misaligned frames and image vibrations.

• Bad lighting with over- and underexposure as a result from

recording di�culties in very dark and light scenes (for example night

shots or scenes that show underground mining) and problems with

back light.

• Bad contrast in some scenes which is caused by repeated copying of

the analog �lms.

• Border and frame lines become visible due to copying of shrinked

�lmstrips.

Note that most of the above mentioned artifacts accumulate during ana-

log copying. Figure 6 shows sample frames from the material that bear some

of the mentioned image de�cienies.

We confront these challenges with various techniques. First of all, the

chosen algorithm for face detection is robust against minor scratches and

varying brightness of a face. Second, we use variance normalization to ac-

count for varying lighting conditions within a face and �icker. Concerning

scratches and coarse grained images the use of �lters (for example median

or mean �lters) of di�erent sizes is suggested. We use a Wiener �lter to

deblur the images after smoothing with median or mean �lters. A Wiener

�lter is an adaptive linear �lter, that tailors itself to the local image variance.

Thus, it is able to preserve edges while removing noise and blurring to some

extend. Additionally, the active region where faces are detected is limited

at the frame borders to avoid problems with the border artifacts and frame

lines.

We use a base resolution of 24 × 24 pixels for the training of the face

detection system, but due to the coarse grained source images, faces at this

size are hardly detected by the program. In fact, in most cases, it would be

even di�cult for humans to recognize a face of this size in the �lms without

contextual information (for example a human corpus or a priori knowledge

from preceding �lm frames). Thus, the minimum detection size is set to a
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Figure 6: Six sample frames from the analyzed �lms (artifacts marked with white borders

and arrows). (a) blurred frame 2,444 from Man with a Movie Camera; (b) frame 25,190

from Kino Pravda with an artifact from spoiled liquid through the faces and di�cult

lighting; (c) frame 3,015 from A Sixth of the World with scratches in the upper left area

of the image, possibly introducing false-positive detections in this area and visible frame

lines at the bottom; (d) frame 845 from A Sixth of the World with border and frame line

artifacts, vertical lines and dirt; (e) frame 3,629 from Kino-glaz with dissolve artifacts in

the marked area, border and frame line artifacts; (f) frame 12,199 from The Eleventh with

dirt and scratches and underexposure of the object of interest because of back light.

larger value (twice the base resolution). Section 4 provides more insight into

the face detection algorithm.

3.3 Digitization

The Austrian Film Museum provides the source material for this investiga-

tion by digitizing the �lms of Dziga Vertov. The �lms are scanned frame by

frame from the 35mm �lm strips. Optical scanning is performed in real time

at 25 frames per second. Table 5 gives an overview of the properties of the

scanned �lms. All �lms are silent and monochromatic.
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Table 5: Properties of the digitized �lms of Dziga Vertov.

English Title Broadcast Number Resolution Total Image

system of frames memory format

Kino-glaz PAL 84,133 720× 576 23.4 GB TIF (LZW)

Kino Pravda PAL 35,060 720× 576 9.5 GB TIF (LZW)

A Sixth of PAL 69,181 720× 514 23.2 GB TIF (LZW)

the World

The Eleventh PAL 63,123 720× 576 18.4 GB TIF (LZW)

Man with a PAL 17,577 720× 576 5.0 GB TIF (LZW)

Movie Camera

Note that the resolution of A Sixth of the World di�ers from the other

�lms. This is because the �lm is already cut to the area that contains

the image content (i.e. borders are cropped). Note also that Man with a

Movie Camera is not available completely for this work. Only the last reel,

containing the �lm's last 16 minutes (17,577 frames) was available during

this investigation.
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4 Face detection method

This section covers a detailed description of the face detection algorithm we

implemented. It is based on Viola and Jones' method [49] with the Forward

Feature Selection of Wu et al. [53]. Additionally, we present suggestions for

post processing the results.

4.1 Preprocessing

Both, training samples and candidate subwindows during detection are vari-

ance normalized to compensate for di�erent lighting conditions. This is sug-

gested by various authors, including Viola and Jones in [49] and necessary

because of the �icker in the old material that is analyzed. The statistical

background is presented here, the e�cient calculation using so called integral

images is described in Section 4.2.3.

Basically, the process is a Z-normalization of individual images X, i.e. the

calculation of Xnorm = X−x
s , without a shift of the negative mean. Thus,

the normalization is given as

X =
X

s
(9)

where X is the input image (subwindow) and s is the standard deviation of

X. The variance s2 is de�ned as

s2 =
1

n− 1

n∑
i=1

(xi − x)2 (10)

where x is the mean of the values xi, i.e. x = 1
n

∑n
i=1 xi. This can be

computed more e�ciently by

V ar(X) = E(X2)− (E(X))2 (11)

where V ar(X) is the variance of random variableX and E(X) is its expected

value. Thus, s2 can be calculated as
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s2 =
1

n− 1

n∑
i=1

x2
i −

n

n− 1
x2. (12)

where x is the expected value of X. Note, that we normalize the variance by

the widely used factor 1
n−1 (another used normalization factor is 1

n).

Utilizing Equation 11 for the computation of the variance is especially

useful when using the integral image representation as the expected value

can be computed very e�ciently. An outline of the calculation is presented

in Section 4.2.3.

4.2 Training

In the following we describe the training process for the face detection

method proposed by Viola and Jones in [49, 51] with certain changes that

better suit the purpose of analyzing archive �lms (i.e. the set of training

images) and improvements, addressing a faster feature selection process. We

start by presenting an outline of the process in Figure 7.

In a �rst step the positive and an initial set of negative image samples are

read in and a large set of rectangular features is calculated. These images

are then converted to their integral image representation which allows for

e�cient area calculation (needed for feature evaluation). The training pro-

cess starts with �nding the optimal thresholds for the features. This is done

by applying each feature to each of the training images, followed by a com-

bination of median functions and lokal searching to obtain the best �tting

value. A feature with its corresponding threshold is called weak classi�er.

The next part is the selection of a combination of weak classi�ers to form an

ensemble which is done by forward feature selection in this work, following

the suggestions of Wu et al. in [53, 52]. Forward feature selection leads to

signi�cant improvements in the overall training runtime. After weight set-

ting for the ensemble classi�er, a bootstrapping step completes the execution

of one training cycle, which is repeated to create a cascade of classi�ers. The

algorithm terminates when the learning goal or the maximum depth of the

cascade is achieved.
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Figure 7: Schema of the training process. Input are positive and negative training

samples, output is a cascaded classi�er. Numbers in brackets correspond to the section

numbers where the subprocesses are discussed.

The above described procedure will be depicted in more detail in the

following sections. We start by presenting the concept of a cascaded clas-

si�er which will be created as a result from training in Section 4.2.1, go

on by describing the set of training images in Section 4.2.2 and explain the

rectangular feature set and its e�cient calculation with the integral image

representation in Section 4.2.3. The training of a weak classi�er, the small-

est single part in the detection system, is presented in Section 4.2.4. In

Section 4.2.5 we will focus on the concept of majority voting (by FFS). The

calculation of a weighted ensemble of selected features can be done with a

variant of AdaBoost [52] or any other weight setting algorithm. The proce-

dure is presented in Section 4.2.6. The description of the training process

is completed by a short presentation of the bootstrapping concept which

provides the basis for achieving the goal of encouraging independant errors

among the classi�cation (cascade-) stages in Section 4.2.7.
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4.2.1 The idea of a cascaded classi�er

One of the important contributions of Viola and Jones in [49] and core feature

of their face detection system is the cascaded architecture of their detector.

The key idea is to construct a detector that successively becomes more dis-

tinctive. Early detection stages aim at rejecting a majority of the non-face

candidate images that are scanned by the detector while detecting almost

all positive instances. The detection rate of the stage is far more crucial

than its false-positive rate. Later stages become more complex and try to

achieve a low overall false-positive rate. The approach is motivated by the

fact that face detection is a typical example for rare event detection, i.e. a

highly asymmetric classi�cation task. Millions of sub-windows need to be

processed by the system and only few contain targets, i.e. faces. This adds

to the di�culty of the face detection problem: while the detection rate (as in

most detection systems) is supposed to be very high, the false-positive rate

must be minimal, i.e. in the order of 10−7 to avoid a �ood of non-events to

be passed through.

The "attentional cascade" [49] is illustrated in Figure 8. Note that the

complexity of the cascade's stages increases. While a large amount of sub-

windows is rejected during the �rst stages, later stages consist of more fea-

tures and are therefore more precise while computation time also increases.

The rejection of a majority of sub-windows during the e�cient �rst stages

(practically, each stage is supposed to �lter 50% of the remaining false-

positives) adds to the e�ciency of the cascaded decision structure. The

classi�ers themselves are built from rectangular features are described in

Section 4.2.3.

The exhaustive set of sub-windows is processed completely by the �rst

stage. While this stage rejects a large number of windows, it is supposed

to pass almost all positive instances to the next detection stage and so on.

Overall, a sub-window is rejected and classi�ed as non-face if it is rejected

by any of the classi�ers (cascade stages). Thus, a sub-window is classi�ed

as face if and only if it passes all combined classi�ers.

Mathematically, this approach requires some prerequisites in order to

work as intended. The individual classi�ers (stages) are tuned to a false-
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Figure 8: Face detection with a cascaded classi�er with n stages. A sub-window's

classi�cation is non-face if it is rejected by any of the stages, thus it is classi�ed as face if

it is accepted by all stages.

positive rate of only 50%. This allows high indiviual detection rates of over

99% which are necessary for the cascaded detection approach. Remember, a

sub-window that is only once (by only one stage) classi�ed as non-face is re-

jected by the system and cannot be brought back, neither will it be classi�ed

again. When we assume independent errors of the di�erent cascade stages

(it will be shown how we achieve this by bootstrapping in Section 4.2.7), we

can de�ne the overall detection- and false-positive-rate d and f , respectively,

by means of di and fi, the individual rates:

d =
n∏

i=1

di (13) f =
n∏

i=1

fi (14)

Thus, a hypothetical system with a cascade of 20 stages and individual

rates of di = 0.99 and fi = 0.5 would yield a detection rate d of 81.78% and

a false-positive rate f of 9.6 ∗ 10−5%.

4.2.2 Training Images

The proposed algorithm needs, as it is typically for appearance-based detec-

tion methods, exhaustive training. Larger training sets constitute a broader

and more general basis for training and therefore better detection and false-

positive rates. Several thousands of images have been used in this approach,

divided in a set of positive (face) and negative (non-face) sample images.
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The set of negative training samples needs to be even larger due to the

unequal complexity of the two classes face and non-face. While the face class

is well de�ned (i.e. a frontal face features two eyes and a mouth, we regard

faces from the hairline to the chin, etc.), the non-face class consists of images

that can virtually be everything, thus featuring an extensive set of patterns.

We describe how we generate and process the large set of negative samples

in Section 4.2.7. In Section 5.3 we describe the data sets employed for our

experiments.

4.2.3 Rectangular Features and Integral Images

An important concept of Viola and Jones' approach is the simplicity of the

classi�ers that are used. The stages of the cascade mentioned in the previous

section are set up with an increasing number of individual classi�ers. These

weak classi�ers consist of a single feature which is easy and fast to calculate,

and a threshold which is determined during training. The feature itself

consists of two or more rectangular regions. The selection of classi�ers is

also done during the training process.

Figure 9 shows visualizations of the di�erent shapes of features. The

key idea is, that these features are moved over a sub-window of an image

and the sum of intensities under the black and white area of each feature is

calculated, respectively. Then, one of the values is substracted from the other

one, yielding an integer value of some magnitude. The calculation process

of pixel areas can, mathematically, be seen as a matrix convolution. The use

of simple features that are evaluated with, basically, a matrix convolution,

is inspired by the work of C. Papageorgious et al. on Haar basis functions

in [26].

Figure 9: Di�erent types of used features. Note that all feature types are build from

rectangular regions.

39



The idea is, that the calculation process mentioned above yields charac-

teristic integer values for face- and non-face sub-windows, respectively. An

analysis of several hundred face- and non-face windows shows, that this hy-

pothesis is true for some features. For example a horizontal two-rectangle fea-

ture evaluated over the region where eyes normally appear in a sub-window

that contains a face, yields high negative numbers for face windows, while

the same feature evaluated over non-face windows produces values around

zero. The evaluation of a feature on top of a face and a non-face image is

depicted in Figure 10. The feature scores (sum of intensities of white area

subtracted from sum of intensities of black area) di�er signi�cantly for the

two images.

Figure 10: Horizontal 2-rectangle feature on top of a face and a non-face.

This induces a simple classi�cation process for a single feature: once a

threshold is determined (by training with thousands of positive and negative

samples), classify a test window as face if the calculated value is above/be-

low the threshold and as non-face otherwise. The information of positive

instances scoring above or below the threshold (we call this information the

parity of the threshold) needs to be stored along with the threshold and fea-

ture chracteristics. A classi�er therefore consists of: a threshold, the parity

information and the particular type, x-o�set, y-o�set, width and height of

the feature. The process for obtaining the threshold for each classi�er is

described in the next section.

Said, that each feature type appears in di�erent sizes (width and hight)

and positions (x- and y- o�sets), it is obvious that we deal with a large

number of classi�ers. The number n of 2-area-features of a single type with

respect to width w and height h of the sub-window and width wf and height
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hf of the feature (which is scaled) is computed as follows (assuming a base

resolution of 2× 2 pixel for the feature):

n =
w∑

wf=2

h∑
hf=2

(w − wf + 1)(h− hf + 1) (15)

For a resolution of 24× 24 pixel for the test- and detection sub-windows,

as it was used in this implementation, the equation evaluates to a sum of

76, 176 di�erent features of a single type. Practically, on one hand we use

a larger step size for x- and y-o�sets which reduces the feature set, on the

other hand we have di�erent types of features, as illustrated in Figure 9,

which boosts the set again. All together, 68, 000 features are created in

our experiments. This set is, in terms of linear dependencies, many times

overcomplete - a di�erence to the linearly independent Haar basis in [26].

Although this exhaustive set is subject to a tight selection process which

is described in consequent sections, an e�cient calculation of the scores of

features for the large set of test images is crucial.

We mentioned before, that the calculation of the scores of features de-

scribed above could be done by matrix convolution. However, Viola and

Jones introduce a faster and more e�cient method in [49] which makes use

of what is called an integral image. An integral image is a representation,

where each pixel's value is the sum of all pixels above and to the left from

the original image. An integral image ii therefore is computed as

ii(x, y) =
∑

x′<=x,y′<=y

i(x′, y′) (16)

where x and y are the pixel position in the integral image ii(x, y) and the

original image i(x, y). The computation of an integral image can be done in

one pass over the original image, for details see [49].

Figure 11 illustrates the calculation of an integral image for two example

pixels A(4, 8) and B(10, 7). The computation produces a new image, as

illustrated in Figure 12, where an original image showing a typical face-

sample is transformed to its integral image representation. The resulting
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Figure 11: An integral image's pixel

values are the sums of the pixel at this

position, and all pixel values on the left

and above. Thus, pixel A in the inte-

gral image representation gets the sum

of all values that are included in the yel-

low rectangle, pixel B is the sum of the

values in the red rectangle.

Figure 12: An Example showing the

transformation of a normal gray scale

portrait of size 24× 24 pixels to its inte-

gral image representation. Note that the

integral image's pixel values are mapped

to the [0-255] gray scale color set for pre-

sentation purposes.

representation is similar to a gradient image: the lower right pixel is the

sum of all pixels in the original image (all pixels are above and to the left of

this position) whereas the upper left pixel has the lowest value, which is its

original value (no other pixel is above or to the left of this pixel).

The bene�t of the integral image representation is the possibility to calcu-

late the sum of all pixel values in a rectangular area very fast and e�ciently.

Figure 13 demonstrates the calculation process.

With 4 array references we gather the values of pixels X, W, Y and

Z. Since these pixels in the integral image represent areas in the original

image (see Equations 1-4 in Figure 13), we can calculate area D as D =

Z+X−(Y +W ). Consequently, we need 6 array references for the calculation

of 2 adjacent areas and 8 array references for 3 adjacent areas, which are

present in the above described feature types. Star-shaped features need 12

references.

E�cient calculation of the variance of an image for z-normalization.

As described in Section 4.1, we preprocess the face candidate images by

normalizing their variance. This can be done e�ciently using integral images.

We utilize the equation
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Figure 13: E�cient area calculation by only 4 array references and 3 additions, assuming

an image representation as integral image. Pixels X, W, Y, Z need to be referenced and

hold the values of area A, A+B, A+C and A+B+C+D, respectively. Therefore, area

D can be calculated by combining these pixel values to D = Z +X − (Y +W ).

s2 =
1

n− 1

n∑
i=1

x2
i −

n

n− 1
x2. (17)

to compute the variance for z-normalization during preprocessing. We ex-

ploit the property of integral images, that the last value is the sum of all

pixel values. Thus, the mean can be calculated by the single additional oper-

ation of dividing the sum by the number of pixels. Consequently, we utilize

the squared image in the same way and use Equation 17 to calculate the

variance from the two values with the appropriate coe�cients.

Listing 1 shows an e�cient implementation of the variance normalization

process. It makes use of the integral image representation and Equation 17.
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1 im is the input image (array) of size m× n
2 imSq is the input image squared element-by-element of size m× n
3 ii(im) is a function that computes the integral image represen-

4 tation of im

5 [] is the indexing operator, i.e. im[m,n] references the value in

6 row n and column m of image im

7 sqrt(v) is the standard square root function for a scalar v

8

9 Compute the integral image representations of im and imSq:

10 imI = ii(im)

11 imSqI = ii(imSq)

12 Compute the expected values of im and imSq, normalized by 1/(m ∗ n− 1):

13 exp = imI[m,n]/(m ∗ n− 1)

14 expSq = imSqI[m,n]/(m ∗ n− 1)

15 Compute the variance of im utilizing Equations 11 and 17:

16 variance = sqrt(expSq − (m ∗ n)/(m ∗ n− 1) ∗ exp ∗ exp)
17 Divide im element-by-element by variance:

18 imV ar = im / variance

19

20 save imV ar which is the variance normalized image

Listing 1: E�cient variance normalization with integral images.

The presented algorithm is about 200 times faster than a standard imple-

mentation using the function std() in Matlab3. Additionally, during detec-

tion the image is not variance normalized directly. Instead, the variance is

calculated and stored per subwindow. The calculated feature value (see Sec-

tion 4.2.3) is divided by the variance in order to perform normalization. This

yields equivalent results as normalizing subwindows directly. The proposed

normalization of feature values instead of normalizing images leads to addi-

tional performance gains (1 �oating point operation instead of 24×24 = 576

per subwindow).

3Tested on Matlab 2007b on a 2.6Ghz Pentium IV CPU with 24×24 pixel input images
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4.2.4 Training a weak classi�er

The �rst learning step in the proposed algorithm is the training of so called

weak classi�ers. The above described rectangular features are somewhat

primitive in comparison to other features for face detection in literature, like

steerable �lters in [9]. Nevertheless, the training process shows, that even

a very small number of those features - if selected carefully - can achieve a

high detection rate (while few features cause bad false-positive rates, too).

Thus, the weak classi�ers, i.e. rectangular features and their threshold (and

parity), are combined to form strong classi�ers as described in the following

section.

Weak classi�ers are calculated once every iteration of the algorithm, serv-

ing as basis for a strong classi�er that constitutes one stage in the detection

cascade. Because of bootstrapping4, which encourages independant errors

among the classi�er stages, a recalculation of all weak classi�ers needs to be

done every iteration. The calculation process is performed as depicted in

Listing 2:

1 for every feature fi

2 for every positive sample image Pj

3 calculate feature value vP
i,j of the image

4 end

5 for every negative sample image Nj

6 calculate feature value vN
i,j of the image

7 end

8

9 find median medPi of positive feature values vP
i

10 find median medNi of negative feature values vN
i

11

12 from = min(medPi,medNi)

13 to = max(medPi,medNi)

14 minerr = Inf

15

16 for all i in [from,to]

17 calculate error of vP
i , vN

i and threshold i

4Bootstrapping means that the set of negative samples is updated in every iteration;

for details see Section 4.2.7
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18 if error < minerror

19 minerror = error

20 thresh = i

21 end

22 end

23

24 save thresh as thresholdi

25 save parity information

26 end

Listing 2: Calculation of thresholds for single features.

We �rst calculate the feature value for all positive and negative sample

images, respectively, and compute the median medPi and medNi. The op-

timal threshold lies between these boundaries, thus the error of each value

between them is calculated. Consequently, the value i that makes the error

minimal is selected as threshold for this feature. The parity information indi-

cates, whether the positive sample's mean lies above or below the threshold.

Note, that a perfect separation is impossible for most setups, while not

necessary either, since the best weak classi�ers are combined with each other

to minimize the ensemble error in a later step of training. We visualize

the threshold determination with two histograms showing the values that

positive and negative sample images score, respectively. The histograms of

some of the best features are presented in Section 6.1 (Figure 24).

The �nal weak classi�er hj is given as

hj(x) =

{
1 if pjfj(x) < pjθj

0 otherwise
(18)

where fj is the classi�er's feature, θj its threshold and pj the parity, indi-

cating the direction of the inequality sign. Here, x may be a 24 × 24 pixel

sub-window of an image in the detection process or a 24 × 24 pixel sample

image in training, respectively.

4.2.5 Forward Feature Selection versus AdaBoost

Given the large feature set F = {fi} and the corresponding set of weak

classi�ers {hi}, the next step is to select a reasonable number of weak clas-
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si�ers {ht} and combine them to an ensemble H in a way that maximizes

detection- and false-positive-performance. While each feature can be com-

puted very e�ciently, the computation of all features for each possible face

window is prohibitively expensive in terms of calculation time (remember,

we are dealing with tens of thousands of features and even larger potential

face window sets in �lms). Thus, a greedy feature selection method is needed

that selects a small (compared to the initial size) set of weak classi�ers where

individual classi�ers are nevertheless signi�cantly di�erent from each other.

Viola and Jones employ the AdaBoost algorithm proposed by Freund

and Schapire in [6] in their original work for feature selection. They utilize

a variant of AdaBoost for both, selecting the features and training the en-

semble classi�er. Based on the weak classi�ers, where even the best one is

not expected to classify the training images well, AdaBoost tries to combine

them into a strong classi�er which meets the learning goal. The approach is

as follows. Each weak classi�er solves a sequence of classi�cation problems

and, after each round, the samples are reweighted such that false classi�ed

images have a higher priority in further iterations. The �nal strong classi�er

is a weighted combination of weak classi�ers. While being e�ective in select-

ing good features and weighing them, this approach has a major drawback.

The calculation is extremely computational expensive, as demonstrated in

Section 6.3. This is because it maintains and evolves a distribution of weights

over the complete training data set which is not only computational expen-

sive itself, but requires retraining for the complete set of classi�ers at each

iteration.

Thus, another method has been chosen in this work. The combination of

Viola and Jones' algorithm with the forward feature selection (FFS) heuristic

was proposed by Wu et al. in [53]. It bene�ts from the idea to decouple the

feature selection process from the design of an ensemble strong classi�er. We

employ forward feature selection as in [52], which is a more recent version of

the original method. The ensemble classi�er design, i.e. the weight setting

for selected features, is presented in Section 4.2.6.

Additionally to focusing only on the selection of the best features, a

major advantage of FFS is that it doesn't need to evolve a learning distribu-

tion over the complete training set. This leads to dramatic improvement in
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computation time as a retraining of weak classi�ers for each selection is not

necessary any more. However, this comes at the cost of calculating a large bi-

nary classi�cation table Vij once for the selection of T features for each stage

of the cascade of classi�ers. The table gives the score of each weak classi�er

hi for each of the N sample images xj , i.e. Vij = hi(xj). Once calculated,

the table is stored for utilization during the process of feature selection and

discarded when the selection process of features for the particular stage has

completed.

Figure 14: Fraction of binary classi�cation table V showing results of weak classi�ers.

Training images are in x-, classi�ers in y-direction. Thus, Vij = hi(xj).

Figure 14 presents a small fraction of the table where each pixel corre-

sponds to a table cell Vij . Each classi�er (rows) classi�es each input sample

(columns). Positive sample images are located on the left half of the table,

negative ones on the right side. Black pixels indicate that the classi�er clas-

si�ed the sample as non-face while white pixels indicate that the classi�er

detects a face. While it is obvious, that single classi�ers cannot separate

the input images perfectly, it is intuitively clear, that the left side of the ta-

ble has an overall lighter appearance (the positive sample images that show

faces are located here). Also, the evolving patterns when scanning classi�er

lines are interesting to analyze. Remember, a perfect classi�er would score

all images on the left half true (white) and all on the right half false (black).

Furthermore, problematic training samples can be detected (vertical lines in

the table).
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The selection of T features assumes a feature set F of size M with corre-

sponding thresholds θi such that each classi�er has the smallest error on the

training set. During selection of the ensemble set S (initialised to S = ∅),
the addition of each possible classi�er to the set is considered. Therefor,

a vector v1×N is maintained, that is initiatlised to a row vector of zeros.

When the addition of classi�er hi is considered, a temporary v′ is calculated

as v′ = v + Vi. Thus, v′ contains integers in the range 0 to t, i.e. the round

index. By building a histogram of the temporary vector v′, an optimal value

τ for the ensemble threshold which minimizes the ensemble's error rate is

easily found. The value τ serves as threshold for the vote of all up to now

selected classi�ers. Thus, an image is classi�ed as face if more than τ of the

classi�ers in this stage vote positively. Note, that instead of θ which is used

in [52], we use the letter τ for the ensemble's threshold to avoid confusion

with the individual classi�er thresholds θ.

The error rate εi of each temporary set of di�erent weak classi�ers is

stored and once all classi�ers have been analyzed, the one that takes the

minimum value is selected and added to set S. If the desired number of

selected classi�ers is not yet reached, the process is taken into another round

with an updated v and S. Once the method has �nished, the ensemble's

threshold τ is adjusted such that the ensemble classi�er H has a 50% false-

positive rate. Summarizing, we present the above described procedure in

Listing 3:

1 hi are the classifiers

2 xj are the n sample images

3 T is the number of features of this cascade stage

4 Vij = hi(xj) is a large binary classification table

5 v = 01×N is a row vector of zeros

6

7 for t = 1 to T

8 for every classifier hi

9 consider adding Vi to v: v′ = v + Vi

10 the ensemble’s value H ′(xi) can be computed as H ′(xi) = sgn(v′i − τ)

11 find τ ∈ {0,...,t} that minimizes the set’s error rate εi

12 save εi

13 end

14 select classifier hk with smallest ε
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15 add hk to S and update v: S = S ∪ hk and v = v + Vk

16 end

17 save ensemble classifier H(x)

18 adjust value of τ such that H has a false-positive rate of 50%

19 save ensemble threshold τ

Listing 3: Forward feature selection as suggested by Wu et al. [52].

The increase in training performance by forward feature selection is de-

scribed in Section 6.3, the mathematical representation of the combined

(strong) classi�er is presented in the following section.

4.2.6 Weight setting for the strong classi�er

Weight setting is the last step in forming a strong classi�er and is performed

after the features have been selected. The idea is to give the best classi-

�ers in an ensemble more importance, thus assigning a larger weight. There

exist a large number of weight setting algorithms but only few are suited

for the asymmetric classi�cation task of face detection. Remember, we are

dealing with three kinds of asymmetries as described in Section 1: �rst, we

are dealing with uneven class priors (from the large number of input win-

dows during detection, i.e. potential face windows, only few contain faces).

Second, there exist a signi�cant goal asymmetry. A very high detection rate

is needed (no face should be missed), while the overall false-positive rate

needs to be extremely low (e.g. 10−7) to avoid a �ood of non-events. Third,

there is an unequal complexity between the two classes face and non-face as

the positive class is well de�ned ('face') while negatives could virtually be

everything, except a face (e.g. nature, buildings, animals, patterns,...).

While bootstrapping takes care of the unequal class complexity and un-

even class priors (see Section 4.2.7), the nature of the used classi�cation

cascade alleviates the goal asymmetries (i.e. goals for single classi�ers of

the cascade are much easier to achieve than the overall rates mentioned

above). However, within a cascade stage i that features learning goals for

detection rate di ≈ 99.9% and false-positive rate of fi ≈ 50%, an asymmet-

ric weight setting function, that gives more importance to positive (face)

samples, is favored. While AdaBoost - decoupled from feature selection -
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could be used for the task, it does not explicitely take the asymmetries into

account. Therefore, other methods like assigning higher initial weights to

positive samples with a variation of an algorithm called Rocchio have been

proposed by Schapire et al. for text �ltering in [36]. However, it has been

argued by Viola and Jones, that these weights get quickly absorbed by the

boosting algorithm. They proposed AsymBoost instead in [50] but here,

again, the problem of selecting features and designing ensemble classi�ers

(i.e. weight setting) are con�ated which leads to unnecessary performance

losses.

In [52], Wu et al. present a variation of Linear Asymmetric Classi�er

(LAC) for the weight setting task, that can e�ciently be decoupled from the

feature selection process and takes care of the goal asymmetries. When the

sign function sgn is used to label positive and negative classi�cations, the

ensemble classi�er H(x) that was calculated by FFS can be written as

H(x) = sgn(
T∑

t=1

atht(x)− b) = sgn(aTh(x)− b) (19)

where T is the number of weak classi�ers in this stage and ht(x) is a

weak classi�er's output. Thus, the ensemble classi�er is de�ned by its weak

classi�ers and the value pair (a, b), a being a 1×T weight vector and b being a

scalar (o�set). However, there is no guarantee, that the values (a, b) selected

by FFS (here, a = 11×T and b = τ) or AdaBoost satis�es the learning goal

of maximizing the detection rate given a false-positive rate of 0.5.

Wu et al. argue, that this guarantee can be achieved by applying a set

of equations on the mathematical expression of the above described learning

goal. By projecting the standardized positive and negative class labels, ex-

pressed as a vector, onto the direction of weight vector a and under certain

assumptions (i.e. the projection of positive samples is Gaussian and the mean

and median of the projection of negative samples are similar), they conclude

that e�cient calculation of (a, b) can be performed as follows. First, mean

and covariance of positive samples x and negative samples y are estimated

(nx and ny being the number of samples). The experimental means x and y

are given as

51



x =
∑nx

i=1 h(xi)
nx

(20) y =
∑ny

i=1 h(yi)
ny

(21)

and the experimental covariance matrices Σx and Σy can be calculated as

Σx =
∑nx

i=1(h(xi)− x)(h(xi)− x)T

nx
(22)

Σy =
∑ny

i=1(h(yi)− y)(h(yi)− y)T

ny

(23)

Now, under the condition that Σx is positive de�nite5 (i.e. all eigenvalues

λi of the matrix are positive and its inverse exists), the value pair (a, b) can

be calculated as

a = Σ−1
x (x− y), (24) b = aT y (25)

where Σ−1
x is the inverse of the covariance matrix Σx.

In cases where the matrix is not positive de�nite, we induce this property

by adding a small λ to all matrix elements on the diagonal, thus making the

matrix invertible. This has been suggested by Wu and can be performed

when handling a positiv semide�nite matrix. As this is a property of all

covariance matrices, we replace the n × n covariance matrix Σx with Σx +

λDiagn where Diagn is an n×n matrix with elements on the main diagonal

1 and 0 otherwise.

In this work, the Fisher Discriminant Analysis (FDA) was also imple-

mented. Here, the weight vector a is calculated as a = (Σx + Σy)−1(x− y).

However, Wu et al. showed, that LAC, as it takes the goal asymmetries into

account, provides in most cases better values for a and b than AdaBoost,

5Σx is positive de�nite if the training set is su�ciently large, i.e. the number of

variables (selected classi�ers) must be signi�cantly smaller than the number of positive

and negative sample images and the (classi�cation) vectors must be linearly independent

from each other.
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FFS, FDA and other linear weight setting methods. For details on statisti-

cal and mathematical background see [52].

We complete the weight setting step with a novel control process of the

achieved false-positive and detection rates. The rates after weight setting

(with LAC or FDA) are determined with an independent test image set of

1000 positive test images and the set of negative training images. The set of

negative images for the calculation of the false-positive rate is the training

set itself (otherwise, the goal of each stage to achieve a 50% false-positive

rate on the training set could be corrupted). The control mechanism works

as described in Listing 4.

1 Detection rates are obtained from independent test set (1000 test

2 images), false-positive rates from set of negative training images

3

4 det1, fp1 are detection- and false-positive rate after FFS

5 det2, fp2 are detection- and false-positive rate after weight setting

6 a1, b1 are weight and threshold after FFS

7 a2, b2 are weight and threshold after weight setting

8

9 a2, b2 are currently selected as weights by default

10

11 if (fp1 <= fp2) or (fp2 <= fp1 <= 50)

12 if (det1 >= det2)

13 save a1, b1 as weights, discard a2, b2

14 end

15 end

Listing 4: Control mechanism of detection- and false-positive rate after weight setting.

As shown above, we select the weights a1, b1 both if the �rst false-

positive rate is smaller than the second and the �rst detection rate is larger

than second and in the case that the �rst false-positive rate is larger than

the second but smaller than 50% (after all, that was the training goal) while

the �rst detection rate is larger than the second. Thus, the two rates are in

the �rst case both better (the false-positive rate is lower, the detection rate

larger) and in the second case we maximize the detection rate while keeping

a false-positive rate of less than 50%.
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This monitoring is especially important as we cannot guarantee optimal

weights in terms of resulting detection and false-positive rate when the co-

variance matrix was positive semide�nite (here, as described above, we added

a small positive number to the diagonal elements of the matrix to make it

invertible).

4.2.7 Bootstrapping

Boostrapping is the process of updating the set of negative training samples.

It was introduced by Sung and Poggio to �nd di�cult non-face samples that

are hard to separate from faces [44]. The process of bootstrapping is de-

scribed in Listing 5: Once a new cascade stage and the respective weights

are calculated, run the current cascade on the set of negative sample im-

ages. Keep only the false-positives and extend the set with new non-face

samples that, also, are classi�ed incorrectly as face until the original set size

is attained.

1 D is a set of video frames that contain no faces

2 N = {Ni} is the set of n negative samples

3 H = {Hj} is the current cascade of m stages

4

5 run H on N:

6 remove all correctly classified samples from N

7 while (N is not complete)

8 generate new negative sample Nnew from D

9 if Nnew is not classified correctly by H

10 add new sample to N: N = N ∪ {Nnew}
11 end

12 end

Listing 5: Boostrapping after a new cascade stage has been calculated.

There are three reasons for the necessity of this updating procedure.

First, we are dealing with a very large and rich set of non-face samples.

Virtually anything but a face can be in this class. Thus, the use of a broad

training set is adequat. Second, as mentioned earlier, we want the cascade

stages to make independent errors in order to be able to achieve the training

goal with the cascaded architecture. And third, as the cascade stages become
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more complex (i.e. ensemble classi�ers consist of more weak classi�ers), the

training set has to become more di�cult to classify, in order to maximize

the detection and false-positive performance of the ensembles. Note that the

�rst two reasons comply with the earlier mentioned asymmetries: we have

uneven class priors (thus, we keep the hardest negative samples, i.e. samples

that are false-positives) and unequal complexity of the training sets (we try

to gather as many new negative samples as possible).

Once bootstrapping has been performed, the training process for one

stage has �nished and the algorithm is taken into another round until the

termination goal is met.

4.3 Detection

The detection process works at a base resolution of 24 × 24 pixels. When

scanning a video frame or still image, the goal is to classify subwindows

of this size individually by the cascade. The detector scans over the input

frame, thus creating subwindows and locating faces at di�erent positions.

The cascade is evaluated at all positions and if the subwindow is classi�ed

as being a face, its coordinates are stored. Once the frame is scanned at

the starting resolution, the detector is scaled and scans the image again to

detect faces of di�erent sizes. The scaling process works in constant time

and is repeatedly performed up to a maximum resolution.

Once detection has �nished, the process is concluded by merging over-

lapping detections. Because of small x- and y-o�sets, similar scales and some

variability in the positive training images, one face might be detected several

times at slightly di�erent positions. The following two sections present the

scanning and scaling of detectors and the merging of overlapping detections.

4.3.1 Scaling and scanning the detector

The detection cascade works, as indicated before, on 24 × 24 pixel subwin-

dows. Thus, the features that are stored in the cascade with their appro-

priate individual thresholds τ , weights and ensemble threshold θ per stage,

may only be evaluated on subwindows that have the same size as the train-

ing samples. Remember, a feature consists basically of a set of coordinates
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indicating its position and size and these coordinates are relative to the size

of the training subwindows.

Clearly, during detection the goal is to detect faces at all scales and po-

sitions. The latter is achieved by shifting the detection subwindow over all

possible positions in the image. As this is somewhat computation intensive

(for small detection windows, the number of possible positions roughly cor-

responds to the number of pixels in the image which generally is large), we

introduce step sizes dx and dy to reduce the number of subwindow positions.

When dx and dy are small relative to the subwindow, this doesn't a�ect the

detection accuracy as there is some variability of the face locations in the

training samples, as well.

The detection of faces of di�erent sizes is more complex. One straight

forward approach is to make use of image pyramids. Here, the original image

is subsampled repeatedly by a scaling factor. Consequently, the detector in

its original resolution of 24 × 24 pixels is scanned among the subsampled

images. As the subwindows become smaller, the relative size of the detector

increases, thus it can detect larger faces at the cost of creating the image

pyramid and scanning the detector repeatedly.

However, due to the nature of the features, they can be resized and eval-

uated at constant cost. While repeated scanning of the di�erently sized

detectors is still necessary, the calculation of an image pyramid is not re-

quired. Thus, the approach is necessarily more e�cient than the image

pyramid method.

The scaling of the detector is shown for a 2-area horizontal feature (top-

bottom split, see Figure 9 in Section 4.2.3) in Listing 6.

1 The feature is characterized by the following variables:

2 x and y are the coordinates of the upper left corner

3 w is the width of a feature cell

4 h is the height of a feature cell

5 θ is the feature’s threshold

6

7 s is the current scaling factor

8

9 The values x, xw = x+ w, y, yh = y + h and yhh = y + 1 + h+ h are used

10 during feature evaluation. These are scaled in the following way:
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11 x = x · s− (s− 1)

12 xw = xw · s
13 y = y · s− (s− 1)

14 yh = yh · s
15 yhh = yhh · s
16

17 The threshold is scaled by the factor s2:

18 θ = θ · s2

Listing 6: Scaling a 2-area horizontal feature (top-bottom split).

Note, that the scaling is di�erent for values containing initial positions

(x, y) and values evolved from these positions (xw, yh, yhh). Thus, x and

y are scaled by the factor s and o�set −(s − 1) while xw, yh and yhh are

scaled by the factor s without o�set. Note also, that the threshold is scaled

by s2. This is necessary, as s is applied to the feature size in two dimensions

(x direction and y direction), making a feature s2 times larger (i.e. a feature

scaled by s = 2 is 4 times larger than the original one).

The scaling process is depicted in Figure 15 for a sample scale factor

s = 2 and the sample type-1 feature with x = y = 2, xw = 3, yh = 2 and

yhh = 3. The left side of the �gure shows the original and the right side the

scaled feature. Note that similar calculations allow for scaling of features of

other types (e.g. 3-area features or the star-feature), as well.

Figure 15: Scaling a type 1 feature. The small feature on the left is scaled by the

factor 2. x, y, xw, yh and yhh of the larger feature are updated according to the scaling

rules (blue).

57



4.3.2 Merging detections

The before described scanning and scaling of the detection window may

result in multiple detections of one face. This is due to some variability

in the training images. For example, a face might be detected at positions

(x, y) and at (x+ ε1, y + ε2) where ε1 and ε2 are small o�sets in the x- and

y-direction, respectively.

Thus, we introduce a method that merges detection rectangles with the

goal to output results of higher quality compared to the naive output of all

detections. The procedure works at two levels. The �rst level operates on all

detected face candidates that have the same size (i.e. detected at the same

scale factor). Here, rectangles are merged that overlap in x- and y-direction

for a certain amount. The resulting window is de�ned by averaging the

corners of merged detections. The second level operates on the results of

level one and merges rectangles of di�erent scales. Again, the rectangles

need to overlap for a certain amount in either direction. Smaller rectangles

are merged if they lie inside a bigger detection rectangle. However, small

shifts to either side is also accepted. The corners of the resulting rectangle

are not averaged but weighted in favor of bigger rectangles. This is done due

to the observation that bigger detections tend to be more precise.

Figure 16 illustrates the merging operations. The merging operation at

the same scale is depicted on the left side (green original detections, blue

merged detections) and the operation at di�erent scales on the right side

(blue input rectangles from the �rst merging stage, red results). The red

results are returned as �nal detections.
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Figure 16: Merging detections on two levels. First (left side), two or more overlapping

detections of the same scale are merged. Second (right side), detections at di�erent scales

are merged. Thus, the initial detections (green) are �rst transformed to intermediary

(blue) and then to �nal results (red).

4.3.3 Post processing with a symmetry �lter

Due to the partly bad quality of the material at hand, the detection algo-

rithm yields more false-positives than expected. We introduce a postprocess-

ing step that is built upon a symmetry �lter. The �lter is inspired by the

observation that while frontal faces are generally symmetric, a large number

of false detections is not.

The algorithm �rst reduces the number of gray values of a candidate

image and removes the background (i.e. the value with the most pixels).

Then, three vertical symmetry axes are constructed: one through the center

of the image, one slightly shifted to the left and one slightly shifted to the

right. The idea of multiple symmetry axes is motivated by the obervation,

that not all candidate face windows are perfectly �tted around a centered

face. Thus, three slightly shifted axes are constructed and the maximum

value of symmetric pixels with respect to either axis is the symmetry score

of that face candidate. Consequently, an image is discarded if it has less

symmetric pixels than a threshold demands. With symmetric pixels we mean

pixels, that have a pendant pixel mirrored with respect to the symmetry axis,

having the same gray value. Listing 7 summarizes the �lter.
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1 H is a candidate face image of size m× n
2 c is the number of gray values to reduce complexity

3 f is a percentage of the image width

4 θ is a threshold (minimum percentage of symmetric pixels)

5

6 reduce the number of gray values of H to c levels

7 remove the intensity with the most pixels

8

9 for each gray value i

10 s1 is the number of i-pixels that are symmetric with respect to

11 a vertical symmetry axis through the center of the image

12 s2 is the number of pixels that are symmetric w.r.t. a vertical

13 symmetry axis through the center + f · width of the image

14 s3 is the number of pixels that are symmetric w.r.t. a vertical

15 symmetry axis through the center − f · width of the image

16 sum1 = sum1 + s1

17 sum2 = sum2 + s2

18 sum3 = sum3 + s3

19 end

20

21 score =max(sum1, sum2, sum3)/(m · n)

22

23 if score > θ

24 do not filter the image (assume a face):

25 return 1

26 else

27 filter the image (assume a false-positive):

28 return 0

29 end

Listing 7: Post processing with a symmetry �lter.

The value for the threshold has been determined empirically. Thus, a

test set of 3500 positive (face) and 2000 negative (non-face) images has been

evaluated with the symmetry �lter. The scores of the images are depicted in

two histograms in Figure 17. The histogram at the top shows the scores of the

positive samples, the histogram at the bottom the scores of negative samples.

It shows that a signi�cant number of negative samples has summetry values

at around zero which is a result of homogeneous samples where almost the

entire image gets removed by the background culling procedure.
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Figure 17: Results from symmetry �lter test setup. The histogram at the top shows

the distribution of symmetric pixel per image in per cent for 3500 positive samples, the

histogram at the bottom for 2000 negative samples. The red line indicates a possible value

for the threshold at 22.

Obviously, a threshold somewhere between 20 and 35 percent results in

a signi�cant reduction of false-positives while only few faces get removed.

Table 6 depicts the number of discarded positive and negative samples in

absolut values and in percent for di�erent sample thresholds.

Table 6: Sample thresholds (percentage of symmetric pixels) for the symmetry �lter.

Test setup: 3500 positive samples, 2000 negative samples, 8 intensity values, 3 symmetry

axes (center − 1/10 · width, center, center + 1/10 · width).

Threshold Discarded positives Discarded negatives

0.20 55 of 3500 (1.57%) 313 of 2000 (15.65%)

0.23 71 of 3500 (2.03%) 355 of 2000 (17.75%)

0.28 123 of 3500 (3.51%) 440 of 2000 (22%)

0.32 185 of 3500 (5.29%) 524 of 2000 (26.2%)

0.35 229 of 3500 (6.54%) 590 of 2000 (29.5%)

In applications where the reduction of false-positives is the main goal,

the threshold can be set to a higher value (for example, a threshold of 0.35

reduces the number of false-positives by almost 30 percent). However, high

thresholds also reduce the detection rate signi�cantly. A value of 0.20 keeps
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most of the true detections while still reducing the false-positive rate by over

15 percent.

4.3.4 Post processing with a connectivity �lter

As an additional postprocessing step, we introduce a connectivity �lter. The

use of a connectivity �lter is motivated by the observation that faces show

signi�cant texture while some false-positives have little or no texture. The

�lter calculates connectivity scores for pixels of di�erent intensities of a can-

didate image. It deduces two values from the scores: median and maximum

values of the connectivity scores of di�erent intensities. The measures have

been analyzed and are matched against a threshold area during the �ltering

process.

The algorithm �rst reduces the number of intensities of the candidate

image to c intensities. Then, the connectivity score is calculated for each

gray value independently. The score is the sum of all 8-neighborhoods of each

pixel. After a normalization with the image size, the connectivity scores of

all intensities are stored and the maximum and median of these values are

derived. These two measures are then matched against threshold boundaries.

The algorithm is summarized in Listing 8.

1 H is a candidate face image of size m× n
2 N is the connectivity kernel [1,1,1;1,0,1;1,1,1]

3 c is the number of intensities to reduce complexity

4 med1,med2 are the median thresholds

5 max1,max2 are the maximum thresholds

6

7 reduce the number of intensities of H to c levels

8

9 for each gray value i:

10 Htemp is the image with all pixels of intensity i set to 1, all

11 others to 0

12 C is the convolution of Htemp and N

13 multiply C and Htemp elementwise

14 connectivity(i) is the sum of all values in C ×Htemp
15 normalize the connectivity of intensity i:

16 connectivity(i) = connectivity(i)/(m · n)

17 end
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18

19 med = median(connectivity)

20 max = maximum(connectivity)

21

22 if (med1 < med < med2) and (max1 < max < max2)

23 do not filter the image (assume a face):

24 return 1

25 else

26 filter the image (assume a false-positive):

27 return 0

28 end

Listing 8: Postprocessing with a connectivity �lter.

Values for the thresholds have been determined empirically. Table 7

presents two sample pairs for upper and lower bounds for the median and

maximum values. The table also summarizes the quality of the �lter with

either of the threshold pairs. Again, the test setup consists of 3500 face

images and 2000 negative sample images.

Table 7: Sample thresholds (lower and upper bounds) for connectivity �lter. Test setup:

3500 positive samples, 2000 negative samples, 8 intensity values.

Thresholds Thresholds Discarded Discarded

for median for maximum positives negatives

0.0 < med < 1.7 0.5 < max < 4.0 80 of 3500 (2.29%) 674 of 2000 (33.7%)

0.1 < med < 1.4 0.5 < max < 3.2 285 of 3500 (8.14%) 953 of 2000 (47.65%)

The table shows that by reducing the detection rate by only 2.29%, the

false-positive rate can be reduced signi�cantly by over 33%.

Figure 18 shows a plot of median and maximum plotted against each

other for the set of test images. Green dots indicate the (median, maximum)

value pairs of positive sample images, blue dots the values for negative sam-

ples. The threshold pairs suggested in Table 7 are represented as two red

rectangles where the smaller constitutes a tighter selection (all images that

score outside a threshold area are classi�ed as being a non-face).
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Figure 18: Results from connectivity �lter test setup. Green dots indicate (median,

maximum) value pairs for positive samples, blue dots for negative samples. The two red

rectangles are the sample threshold areas given in Table 7. Thus, all candidates that score

outside a speci�c threshold area are discarded by the �lter.

4.3.5 Combined post processing �lters

We combine the two previously described �lters (symmetry �lter and con-

nectivity �lter) to achieve a better trade o� between detection rate and

false-psoitive rate. The thresholds are selected after combined testing of the

�lters. We provide experimental results in Table 8.

Table 8: Sample thresholds for combined �lters. Test setup: 3500 positive samples,

2000 negative samples, 8 intensities. Symmetry and connectivity �lter as described in

Section 4.3.3 and 4.3.4. The �lters are sequentially combined.

Symmetry Connectivity Connectivity Discarded Discarded

threshold threshold max threshold med positives negatives

0.20 [0.5;4.0] [0.0;1.7] 131 (3.74%) 774 (38.7%)

0.20 [0.5;3.2] [0.0;1.5] 326 (9.31%) 1007 (50.35%)

0.23 [0.5;4.0] [0.0;1.7] 147 (4.20%) 794 (39.7%)

0.23 [0.5;3.2] [0.0;1.5] 341 (9.74%) 1023 (51.15%)

0.28 [0.5;4.0] [0.0;1.7] 199 (5.69%) 844 (42.2%)

0.28 [0.5;3.2] [0.0;1.5] 390 (11.14%) 1058 (52.9%)

Table 8 shows, that the two �lters operate mainly independent for the

set of positive images. The scores 0 ('non-face') and 1 ('face') for the set

64



of negative images overlap to some extent. Thus, the number of discarded

positive images of the combined �lter is roughly the sum of the discarded

positive images of the individual �lters with appropriate thresholds. How-

ever, the combined results for the negative samples are better than for the

individual �lters. The number of discarded negative images is signi�cantly

less than the sum for the individual �lters.

For example, the scores for discarded positives and negatives for a symme-

try �lter with threshold 0.20 are 1.57 and 15.65, respectively. The scores for

a connectivity �lter with maximum thresholds [0.5; 4.0] and median thresh-

old [0.0; 1.7] are 2.29 and 33.7 percent. The combined �lters yield scores of

3.74 percent of discarded positives (roughly the sum of the individual �lter's

scores) and 38.7 percent of discarded negatives (less than the sum).

Note, that the �lter results are obtained from random sample image sets.

The �lter performance may vary for a particular setup, possibly being lower

than indicated above. However, the �lters still ameliorate the false-positive

rate as we will see in Section 6.
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5 Experimental setup and training

This section presents the setup for the training of the detector and for the

detection and evaluation process. Section 5.1 summarizes the employed hard-

ware and software, Section 5.2 describes the setup and data structure for the

detection cascade and how to access it once it is calculated. Section 5.3

gives an overview of the training sample images and Section 5.4 describes

the ground truth for the detector evaluation. The setup is summarized in

Section 5.5.

5.1 Platform

The system used for training and detection has a Pentium IV CPU with

2.4 Ghz. The main memory is 1024 MB. The installed operating system is

Windows XP Professional with Service Pack 3.

The code is completely written in Matlab 2007b (Version 7.5.0). Addi-

tionally to the standard Matlab installation, we use the Image Processing

Toolbox and the XML Toolbox [25] which is used to write and load the data

structure that holds the cascade.

Because of the large memory requirements, especially for table V in for-

ward feature selection (see Section 4.2.5), two memory tweaks have been

performed prior to training the cascade. First, Windows' swap �le has been

set to larger maximum values. Second, Windows has been booted with the

3GB switch enabled. Therefore, the "/3gb" switch has been added in the

boot.ini. The new line in boot.ini should read something like:

multi(0)disk(0)rdisk(0)partition(1)

WINDOWS="XP with 3GB switch" /noexecute=optin /fastdetect /3gb

After a restart of the system, the new boot option should be available,

giving Matlab more memory for workspace variables (this can be con�rmed

with a call of 'system_dependent memstats' in Matlab). The tweaks might

not be necessary if enough random access memory is available or if the train-

ing set is su�ciently small. The performance evaluations that are described

in Section 6.3 are based upon the here described system.
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5.2 Data structure of the cascaded classi�er

This section gives an overview of the internal structure of the cascaded classi-

�er. First, the design of the cascade is described, then we present an example

xml �le that contains a cascade. Finally, a few lines of Matlab code show

how to load the cascade and access di�erent �elds.

The classi�cation cascade as described in Section 4.2 consists of a number

of stages that contain classi�ers and an ensemble threshold. Each classi�er

consists of various �elds that describe its features, its weight, its thresh-

old and its parity information. Figure 19 shows the basic structure of the

classi�cation cascade.

Figure 19: Structure of the cascade classi�er. The cascade consists of n stages. Each

stage has an ensemble threshold and m weak classi�ers. Each classi�er consists of a

weight and a threshold with parity. Additionally, it has �elds for the speci�cation of the

underlying feature: the type, x- and y position, width and height of a feature cell.

Internally, the cascade is represented as a Matlab structure during the

training. It is exportet to an xml-�le once a new stage is calculated. Listing 9

shows the xml-representation of the �rst two classi�ers of cascade stage 2.

Note that most of the structure shown in Figure 19 is represented explicitely

in this xml representation. Only the weights for each classi�er are stored as

a vector per stage rather than a �eld per classi�er for performance reasons.

The two values stored in the <threshold> entities are the actual threshold

(�rst value) and the parity of this classi�er (second value).
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1 ...

2 <item idx="2" type="struct" size="1 15">

3 <weights idx="1" type="double" size="15 1">3.582770825619097

4 0.4396331992625959 0.296199974237249 2.372890570201271

5 1.256582464366535 2.855441663672872 0.6264357607983953

6 0.559260965261162 2.446557310591112 0.2263569285381752

7 1.940773745846374 -0.05608546586182456 2.051127126815692

8 0.497754834200101 0.3310193786694287</weights>

9 <thresh_b idx="1" type="double" size="1 1">8.11317009927721</thresh_b>

10 <classifiers idx="1" type="struct" size="1 1">

11 <feature idx="1" type="struct" size="1 1">

12 <type idx="1" type="double" size="1 1">4</type>

13 <posx idx="1" type="double" size="1 1">5</posx>

14 <posy idx="1" type="double" size="1 1">2</posy>

15 <cellwidth idx="1" type="double" size="1 1">5</cellwidth>

16 <cellheight idx="1" type="double" size="1 1">3</cellheight>

17 </feature>

18 <threshold idx="1" type="double" size="1 2">-8 1</threshold>

19 </classifiers>

20 <classifiers idx="2" type="struct" size="1 1">

21 <feature idx="1" type="struct" size="1 1">

22 <type idx="1" type="double" size="1 1">3</type>

23 <posx idx="1" type="double" size="1 1">7</posx>

24 <posy idx="1" type="double" size="1 1">2</posy>

25 <cellwidth idx="1" type="double" size="1 1">3</cellwidth>

26 <cellheight idx="1" type="double" size="1 1">7</cellheight>

27 </feature>

28 <threshold idx="1" type="double" size="1 2">-33 0</threshold>

29 </classifiers>

30 ...

Listing 9: Snippet of �nal classi�cation cascade which covers the �rst two classi�ers of

stage 2.

Before detection starts, the structure is converted into a three-dimensional

array for performance reasons. This simpli�ed cascade is stored as xml-�le,

too. Thus, the access to di�erent parts of the cascade in Matlab are standard

array operations. We show how to load the cascade, determine its size, ex-

tract a certain classi�er and access its �elds and how to access the ensemble

threshold of a certain stage in Listing 10.
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1 % load the simplified cascade from xml-file

2 cascade = xml_load(’simple-cascade.xml’);

3

4 % number of classifiers per stage, fields per classifier and stages

5 no_classifiers = size(cascade,1);

6 no_fields = size(cascade,2);

7 no_stages = size(cascade,3);

8

9 % load classifier 3 of stage 5

10 classifier = cascade(3,:,5);

11

12 % load the fields of this classifier

13 weight = classifier(1);

14 theta = classifier(2);

15 parity = classifier(3);

16 ftype = classifier(4);

17 posx = classifier(5);

18 posy = classifier(6);

19 width = classifier(7);

20 height = classifier(8);

21

22 % load ensemble threshold of stage 5

23 threshold = cascade(1,1,5);

Listing 10: Accessing parts of the cascade.

5.3 Training Images

The described algorithm relies heavily on training images. Two sets are re-

quired: face images (positive samples) and non-face images (negative sam-

ples). Both sets have to be su�ciently large to produce a useful cascade.

The detector presented in this work has been trained with approximately

2 × 3900 sample images per cascade stage. While the set of faces remains

the same for subsequent stages, the set of non-faces is updated after each

stage by a bootstrapping procedure (see Section 4.2.7). All training images

have a resolution of 24 × 24 pixels. While the decision on the training set

of negative sample images was straight forward, the training set of positive

samples caused some discussion.
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Positive Sample Images: The sample database has been constructed

from both, the exhaustive set (about 4,000 images) of the Viola and Jones

samples, see [48], and of hand-picked samples from the Vertov �lm material.

An exclusive use of the latter was discussed but considered as not being

suitable due to the time-consuming selection process. Using only faces of

the �lms of Vertov would have resulted in a much smaller face database.

200 sample faces were selected from the �lms by hand and stored along with

their �ipped counterparts, adding up to a set of 400 faces. Together wih

3,500 images from the Viola-Jones database, this sums up to 3,900 positive

training images. Figure 20 presents examples of face images. Note that the

blurred appearance is a result of the enlargement of the 24×24 pixel training

samples for presentation purposes.

Figure 20: Samples of positive training images. The top row shows randomly chosen

face samples from the �lms "The Eleventh" and "Kino Pravda" while the bottom row is

a random set of faces from the Viola and Jones database.

Negative Sample Images: The set of negative samples has been con-

structed from frames of the analyzed �lms of Vertov exclusively. A total

of 870 frames containing scenes without faces (i.e. houses, villages, water, a

quarry,...) have been selected from the material. Out of those, non-face sam-

ple images have been extracted randomly at arbitrary sizes in the range of

24×24 to 200×200 pixels. The square samples have then been resized to the

needed base resolution of 24× 24 pixels and stored in the training database.

The generation is repeated several times during training, as needed for the

70



bootstrapping algorithm. Figure 21 shows some sample images from the

non-face set.

Figure 21: Samples of negative instances. The images have been randomly generated

from frames containing no faces from The Eleventh and Kino Pravda.

5.4 Ground truth

The ground truth for the detector evaluation has been generated with sub-

jective measures. While detection of all faces within a scene, regardless of

pose, size and degree of dirt would be desirable, this is not feasible at the

time, especially not for archive �lms. We thus introduce several restrictions:

• Pose. The detector is trained on frontal faces. While some amount

of rotation (around a vertical axis) is accepted, pro�le or near-pro�le

faces are excluded.

• Rotation. There exist in-plane rotations (around the view axis) and

out-of-plane rotations (around a horizontal axis). Faces that are ro-

tated too much in either direction are excluded.

• Size. While the detector is trained with 24× 24 pixel faces, the mini-

mum size for detection is 50 × 50 pixels. This is necessary due to the

coarse grained source material.

• Dirt and Occlusions. Faces that are occluded signi�cantly by ob-

jects, other people or dirt are excluded from the ground truth (see

sample image in Figure 22).
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• Illumination. While di�erent illumination conditions are accepted,

we exclude faces from the ground truth that show virtually no facial

features because of over- or underexposure and backlight.

As mentioned before, the reasons for exclusion are decided by a subjec-

tive measure. As a rule of thumb, we used the following: if the contextual

information would be missing, could a human decide quickly on whether or

not a subwindow is a frontal face? If so, it is added to the ground truth, if

not, it is excluded.

Figure 22 shows several examples for faces that are excluded from the

ground truth for various reasons.

Figure 22: Restriction of the ground truth of the face detector (problems and reasons

for exclusions are marked with borders and symbols).

Top row from left to right: Strong in-plane rotated face, strong out-of-plane rotated face,

too small face. Bottom row from left to right: Too small and partly occluded faces, heavy

dirt, face in pro�le pose and with strong backlight.

The decision on whether a detection is a match with the ground truth or

not is, again, made on a subjective basis. We count a face as detected, if most

of the face is captured by a detection window. Mouth and eyes have to be

inside the detection window and it should roughly be centered around these

facial features. We manually count the detections as suggested by various

authors, including Wu et al. [53]. For examples of frames with highlighted

ground truth, see Section 6.2.
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5.5 Setup Summary

This section provides a summary of the setup for face detection. Table 9

presents information on the used platform, training images, training setup,

preprocessing and �lter setup for post processing.

Table 9: Training setup.

Platform Pentium IV, 2.4GHz

1024 MB RAM, 3GB virtual memory, 3GB switch enabled

Windows XP/SP3, Matlab 2007b with Image Processing Tool-

box and XML Toolbox [25]

Training images Size: 24× 24 pixels

(face samples) Number: 3,900

Source: Viola-Jones database (3,500), �lms of Vertov (2× 200)

Training images Size: 24× 24 pixels

(non-face samples) Number: 93,081,550

Source: generated from 870 frames from �lms of Vertov

Preprocessing of Variance normalization as described in Section 4.1.

training images

Features Minimum width and height: 6/6 pixels

Types: 1, 2, 3, 4, 5 (see Section 4.2.3)

Number: 68,000, subsampled to 8,500

Cascade Size [7, 15, 29, 29, 49, 49, 49, 99, 119, 139, 159, 179, 199, 199, 199,

(features per stage) 199, 199, 199, 199, 199]

Weight setting FFS (equal weights) or LAC; performance decides

Preprocessing of Wiener �ltering with 5-pixel kernel

candidate frames Average �ltering with 3-pixel kernel

Symmetry �lter Symmetry axis shift: ±(15/100) · imagewidth
(see Section 4.3.3) Threshold (minimum symmetric pixels): 20%

Connectivity �lter Threshold 1 (median borders): [0.0 ; 1.7]

(see Section 4.3.4) Threshold 2 (maximum borders): [0.5 ; 4.0]
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6 Results

The results are divided into three main parts. First, we describe the resulting

classi�cation cascade from training in Section 6.1. Then, we present detec-

tion results for di�erent selected scenes in Section 6.2. Finally, Section 6.3

gives an overview over performance in terms of training and detection time.

6.1 Classi�cation Cascade

This section presents some general results from training. First, the size of the

calculated classi�cation cascade is described. Then, we give an overview of

the �rst cascade stage and present the selected classi�ers and their weights.

Additionally, the determination of threshold values and some results from

bootstrapping are presented.

Size of the cascade. As described in Section 5.2, the classi�cation cascade

is internally represented as a three dimensional array. The cascade calculated

for this work has 13 stages with a rising number of classi�ers per stage,

presented in Equation 26.

features = [7, 15, 29, 29, 49, 49, 49, 99, 119, 139, 159, 179, 199] (26)

Each additional stage would have 199 features, too, as indicated in the

setup summary in Table 9.

The �rst cascade stage. The �rst stage consists of 7 features. They

are shown on top of a typical training sample from the analyzed �lms in

Figure 23. As expected, the training algorithm (see Section 4.2.5) selected

features that encode the eye region (second and sixth). Other features encode

only one eye (1 and 7), the top right corner of a candidate window (3) and

face edges (4 and 5). The graph beneath the images shows the weights that

were selected for the di�erent features by the weight setting procedure (see

Section 4.2.6). The orange line indicates the ensemble threshold. Remember,

a candidate subwindow is classi�ed as being a face by the stage, if the sum of
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all weights of positively scoring features is larger than the threshold. Note,

that the largest weights are assigned to features encoding the eye-region.

Remember, that the classi�ers and weights are selected automatically by

the training procedure by applying complex statistics that rely only on the

training images.

Figure 23: Features of stage 1 with weights. The images show the 7 selected features for

the �rst stage. Beneath is a graph that shows the individual weights of the features, the

orange line indicates the enemble threshold of the stage.

Because of the large weight, feature 5 of this cascade stage is assumed

to be the strongest feature. We visualize the quality of a single feature

by two histograms. Figure 24 shows the histograms for this feature. The

histogram at the top summarizes the feature scores for the set of 3900 positive

training images (faces). The scores of negative images are summarized by the

second histogram. The threshold position is indicated by the red line. It is

always placed between the positive and negative images' median score and is

determined in a way to have the minimum over all error (see Section 4.2.4). In

this setup, the threshold is chosen at about −60 and the parity information

indicates, that all candidate windows that score below this threshold are

classi�ed as being a face by this single feature.

Bootstrapping results. As described earlier, the negative sample images

for training are extracted randomly from frames of the �lms that contain no

faces. Section 4.2.7 describes how the bootstrapping process produces tens

of thousands of images and �lters out the false-positives as training images

for the next cascade stage. The repeated process for a cascade of 13 stages

produces a total of 93, 081, 550 negative samples out of which approximately
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Figure 24: Feature results for Eyes feature. The histograms summarize the scores of

3900 positive (top) and negative (bottom) images for the feature, respectively. The blue

line indicates the median score of positive samples, the green line the median scores of

negative samples. The red line shows the position of the error minimizing threshold.

3900+12·1950 = 27, 500 samples were used for training (3900 initial samples

and 3900/2 samples per cascade stage). As bootstrapping selects the hardest

negative samples we can present some of these samples in Figure 25.

Figure 25: Complex negative samples, accumulated by bootstrapping. These samples

were among the hardest to classify for the cascade.

6.2 Accuracy

This section presents a detailed evaluation of the detector for several scenes

from the analyzed �lms. Ground truth and setup are described in Section 5.

Section 6.2.6 summarizes the results for all evaluated scenes.
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6.2.1 Scene "Marching women" (The Eleventh)

The scene was selected from the �lm The Eleventh. It has 58 frames and

covers frames 51,160 to 51,217. The scene shows three women, marching in

the direction of the camera position which is dollying away in front of the

protagonists. All faces are visible and in acceptable pose for the complete

scene, so the ground truth for the scene is 58 ·3 = 174 faces. The faces di�er

slightly in size, both within one frame and from frame to frame. By window-

ing over each frame and scaling the detector, a total of 27,784 subwindows

per frame is examined. Thus, the sequence covers 58 · 27, 784 = 1, 611, 472

subwindows that are classi�ed as containing a face or not.

Figure 26 shows 3 key frames of the scene with green squares which

highlight the ground truth.

Figure 26: Keyframes of scene Marching women with highlighted ground truth (green

squares). Frames from left to right: 51,160; 51,187; 51,217.

The achieved recall, precision and fallout for the complete sequence are

summarized in Table 10 for 13, 12, 11 and 10 cascade stages. Due to the

nature of the cascade, reducing the number of stages results in a higher

detection rate but also in a higher false-positive rate and reduced precision.

Post processing ameliorates the precision scores by reducing the false-positive

rate.
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Table 10: Performance for scene Marching women with and without post processing.

Stages with and with- Recall Precision Fallout

out post processing (detection rate) (false-positive rate)

13 w/ post processing 69.45 % 69.94 % 0.0032 %

13 w/o post processing 69.45 % 69.14 % 0.0034 %

12 w/ post processing 71.84 % 64.77 % 0.0042 %

12 w/o post procesing 71.84 % 63.13 % 0.0045 %

11 w/ post processing 74.14 % 54.66 % 0.0066 %

11 w/o post procesing 74.14 % 52.44 % 0.0073 %

10 w/ post processing 75.29 % 43.95 % 0.0104 %

10 w/o post procesing 75.29 % 42.26 % 0.0111 %

A detailed evaluation shows, that the most precise detection (13 stages

with post processing) allows a maximum of 3 false-positives per frame in 4

frames (6.9%) while there are 20 frames (34.5%) with no false-positives. In

each frame, at least one of the faces is detected and all faces are detected in

12 frames (20.7%). The face that is most often missed belongs to the woman

in the middle, the face that was detected most often belongs to the woman

on the left.

Figure 27 shows the Receiver Operating Characteristic (ROC) for the

scene without (red) and with (green) post processing. The variable parame-

ter is the size of the detection cascade (13 to 8 stages). The best false-positive

rate but lowest detection rate is obtained by the largest cascade (13 stages).

The point with the best detection but highest false-positive rate is the result

for an 8-stages cascade.

Figure 28 shows the Recall-Precision Rate for the scene, again for 13 to 8

stages, without (red) and with (green) post processing. Here, the point with

the highest precision represents the values for the 13-stages cascade. The

point with lowest precision but highest recall is the 8-stages cascade score.

The two �gures demonstrate, that post processing (symmetry and con-

nectivity �lter) ameliorates the results. In the ROC plot, the false-positive

rate is lower for the �ltered results while the detection rate remains un-

changed. Thus, the recall remains unchanged while the precision rises as
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Figure 27: ROC Curve of sceneMarch-

ing women for a cascade of 13 to 8

stages.

Figure 28: Recall-Precision Rate of

scene Marching women for a cascade of

13 to 8 stages.

depicted by the Recall-Precision plot. The reduction of false-positives by

the post processing procedure is not signi�cant but noticeable. Figure 29

shows 3 representations of a sample frame from the sequence where post

processing reduces the number of false-positives from 1 to 0. The left im-

age shows the ground truth, the centered image the results without post

processing and the right image the �nal results with post processing.

Figure 29: Impact of post processing on detection results for frame 51,169 of scene

Marching women. From left to right: frame with manually placed ground truth (green

squares); frame with detection results from the 13-stages cascade, including one false-

positive (purple squares); frame with detections after symmetry and connectivity post

processing �ltering with no false-positives (red squares).

We present three additional frames with post processed results in Fig-

ure 30. While the left and the right frame show detections of all three faces,

one face is missing in the centered image. The centered and right frame each

show one false-positive.
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Figure 30: Detection results in scene Marching women. From left to right: frame 51,165

showing correct detection and no false-positives; frame 51,188 which misses one face and

has one false-positive (possibly because of the horizontal edge at the top of the subwindow

which corresponds to the region where eyes appear in faces); frame 51,215 which shows

all three detections but one false-positive.

6.2.2 Scene "Crowd" (The Eleventh)

The scene was selected from the �lm The Eleventh. It has 35 frames (frames

49,788 to 49,822). The scene shows a transition of two separate shots of a

crowd, one in the upper half of the image and one in the lower half. Both

crowds are moving right in front of the camera. Thus, many di�erent faces

are present. The ground truth for the complete scene contains 84 faces. The

scene covers a total of 1, 515, 220 subwindows.

Figure 31 shows 3 key frames of the scene with green squares which

highlight the ground truth. Note that many faces are rotated or pro�le

faces and that the ground truth only covers frontal faces as described in

Section 5.4.

Figure 31: Keyframes of scene Crowd with highlighted ground truth (green squares).

Frames from left to right: 49,788; 49,805; 49,822.

The scene shows the limitations of the detector. The results for false-

positive rates are worse than in other scenes. This is a result from the
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strong movement in the scene, along with a lot of structure from many

di�erent individual objects. There exist no homogeneous areas in the frames.

While the false-positive rate is not satisfactory, the detection rate is high in

comparison to other scenes.

Table 11: Performance for scene Crowd with and without post processing.

Stages with and with- Recall Precision Fallout

out post processing (detection rate) (false-positive rate)

13 w/ post processing 74.33 % 28.28 % 0.0141 %

13 w/o post processing 74.33 % 27.27 % 0.0148 %

As there are a lot of false-positives even for the most precise detector

(13 stages with post processing), a ROC Curve is not calculated for the

scene. The detector with 13 stages does not produce one frame without

false-positives, while 5 result frames (14.7%) had the maximum of 9 false-

positives. Possibly, some of the false-positives are a result of too strict ex-

clusion criterias for the ground truth.

Figure 32 shows three sample result frames of the sequence. As the

ground truth is not self-explanatory in this scene, a representation of the

frame with highlighted ground truth is placed above the detection results

for each of the sample frames. Note, that in the left-most frame 2 faces are

detected that are excluded from the ground truth because of strong occlusion.

6.2.3 Scene "Dancing women" (Kino-glaz)

The scene from the �lm Kino-glaz has 63 frames (frames 1,561 to 1,623).

The scene shows several women dancing in front of the camera. The camera

moves slightly as it is focused on a main protagonist. Thus, di�erent faces

are visible throughout the scene. There are a few partial occlusions and

many faces are slightly rotated in plane. As the protagonists have di�erent

distance to the camera, the faces vary in size. The frames show 0 to 4 faces

for the ground truth and includes a total of 118 faces. The sequence covers

a total of 1,314,317 subwindows that are classi�ed. Figure 33 shows 3 key

frames with ground truth.
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Figure 32: Detection results in scene Crowd. The top row shows the ground truth of

each frame (green squares), the bottom row the detection results (red squares). From

left to right: frame 49,802 with a ground truth of 2 faces, perfect detection but 3 false-

positives; frame 49,812 with 3 of 5 detections but 4 false-positives; frame 49,813 with 4 of

5 detections but again 4 false-positives.

Figure 34 shows the Receiver Operating Characteristic (ROC) for the

scene without (red) and with (green) post processing. Again, the variable

parameter is the size of the detection cascade (13 to 10 stages). Note that

the ROC is almost linear in this scene. Table 12 summarizes the detection

results for a cascade with 13 stages.

Table 12: Performance for scene Dancing women with and without post processing.

Stages with and with- Recall Precision Fallout

out post processing (detection rate) (false-positive rate)

13 w/ post processing 65.25 % 39.29 % 0.0091 %

13 w/o post processing 66.10 % 38.24 % 0.0096 %

The results are similar to those of other scenes. The detection rate is

slightly lower due to the partly complex material. There are small in-plane

and out-of-plane rotations of faces and one of the protagonists is very old.

The face is missed several times because the training database does not con-

tain a su�ciently large set of elder people. Only one of 78 correct detections

is removed by post processing. Detection produces a maximum of 4 false
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Figure 33: Keyframes of scene Dancing women with highlighted ground truth (green

squares). Frames from left to right: 1,561; 1,583; 1,623.

Figure 34: ROC Curve of scene Dancing women for a cascade of 13 to 10 stages.

detections per frame in 6 of 58 frames (10.3%). All faces are detected in

28 frames (48.3%) while in one frame none of the 3 faces is detected. Fig-

ure 35 presents some results for the scene. Note the face rotations in all

three frames.

6.2.4 Scene "Ri�e instructor" (Man with a Movie Camera)

The scene has 21 frames (frames 3,550 to 3,570) and was selected from Man

with a Movie Camera. The scene shows a ri�e instructor who passes a ri�e to

a woman. The woman turns her back to the camera so the only visible face

belongs to the instructor. The man's face is partly occluded by the woman

in some frames. The camera is steady and ground truth is 20 faces because

in the last frame of the sequence, the man's face is occluded too much to

be counted as face for the ground truth. A total of 438,039 subwindows

is classi�ed in the scene. Figure 36 shows 3 key frames of the scene with

highlighted ground truth.
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Figure 35: Detection results in scene Dancing women. The top row shows the ground

truth of each frame (green squares), the bottom row the detection results (red squares).

From left to right: frame 1,596 with a ground truth of 3 faces, two slightly rotated, perfect

detection but 2 false-positives; frame 1,612 with a ground truth of 1 face with slight out of

plane rotation which was detected; frame 1,623 with 2 of 2 detections, one slightly rotated

face and 1 false-positives.

Table 13 summarizes the detection results for a cascade with 13 stages.

Note the high detection rate of 85% to 90%. In fact, the face is missed by the

detector only two times and one time it is discarded due to post processing.

Post processing reduces the number of false-positives from 36 to 32 for the

complete scene (correct detections are reduced from 18 to 17).

Table 13: Performance for scene Ri�e instructor with and without post processing.

Stages with and with- Recall Precision Fallout

out post processing (detection rate) (false-positive rate)

13 w/ post processing 85.0 % 34.69 % 0.0073 %

13 w/o post processing 90.0 % 33.33 % 0.0082 %

Figure 37 shows results for three sample frames. Note the correct detec-

tion despite partial occlusions of the face.
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Figure 36: Keyframes of scene Ri�e instructor with highlighted ground truth (green

squares). Frames: 3,550; 3,557; 3,570.

Figure 37: Detection results in scene Ri�e instructor (frames 3,560, 3,566 and 3,566).

6.2.5 Scene "Cinema Audience" (Man with a Movie Camera)

The scene was again selected from the �lm Man with a Movie Camera and

has 50 frames (frames 9,351 to 9,400). The scene shows several people that

are watching a movie in the cinema. The camera moves slightly throughout

the scene and shows up to 6 frontal faces of varying size. There are a few

partial occlusions and the overall illumination changes signi�cantly in some

frames. The ground truth includes a total of 253 faces. The sequence covers

a total of 1,475,150 subwindows. Some examples from the ground truth are

shown in Figure 38.

Figure 39 shows the Receiver Operating Characteristic (ROC) for the

scene without (red) and with (green) post processing. Again, the variable

parameter is the size of the detection cascade (13 to 10 stages). Note that

while the false-positive rate rises as expected, the ROC shows that detection

results are not signi�cantly better for a cascade with fewer stages except for

the step of 13 to 12 cascade stages (left-most points in the graph). Perfor-

mance values are given in Table 14.
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Figure 38: Keyframes of scene Cinema audience with highlighted ground truth (green

squares). Frames from left to right: 9,352; 9,370; 9,400.

Figure 39: ROC Curve of scene Cinema audience for a cascade of 13 to 10 stages.

Table 14: Performance for scene Cinema audience with and without post processing.

Stages with and with- Recall Precision Fallout

out post processing (detection rate) (false-positive rate)

13 w/ post processsing 66.40 % 57.14 % 0.0085 %

13 w/o post processing 66.40 % 56.56 % 0.0087 %

The detection rate is slightly lower than in other scenes mainly due to

bad illumination. The face of the man at the top right is included in the

ground truth in most of the frames. However, it is missed most of the times

by the detector. Post processing is not e�ective in this scene, only 3 false

detections are removed. However, no correct detections are removed by post

processing. Figure 40 presents results for the scene. Note the restricted

ground truth due to partial occlusions, pose, lighting and size of faces.
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Figure 40: Detection results in scene Cinema audience. The top row shows the ground

truth of each frame (green squares), the bottom row the detection results (red squares).

From left to right: frame 9,372, 9,388 and 9,391. Note the dark face (top right) in the last

two frames that is missed by the detector.

6.2.6 Summary

We presented the detection results of �ve scenes from �lms of Dziga Vertov

in Sections 6.2.1 to 6.2.5. The scenes have varying length and complexity.

The ground truth for the scenes contains 678 faces. Some of these faces

are partly occluded, slightly rotated and bad illuminated. A total number

of 227 frames are analyzed which include 6,353,998 subwindows to classify.

Table 15 summarizes the selected scenes. The column Evaluation indicates,

with which cascade sizes the scene is evaluated.
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Table 15: Summary of the �ve evaluated scenes.

Scene Origin # frames # faces Evaluation

Marching women The Eleventh 58 174 13, 12, 11, 10, 9, 8

Crowd The Eleventh 35 113 13, 12, 11, 10

Dancing women Kino-glaz 63 118 13, 12, 11, 10

Ri�e instructor Man with a 21 20 13, 12, 11, 10

Movie Camera

Cinema Audience Man with a 50 253 13, 12, 11, 10

Movie Camera

227 678

The achieved values for recall, precision and fallout over all �ve sequences

are summarized in Table 16 (for a cascade with 13 stages). The values are

presented with and without post processing. Note that post processing ame-

liorates the precision scores by reducing the false-positive rate. However, few

faces were removed from the results by post processing too, so the detection

rate is slightly lower with post processing.

Table 16: Performance for the �ve evaluated scenes with and without post processing.

Stages with and with- Recall Precision Fallout

out post processing (detection rate) (false-positive rate)

13 w/o post processing 69.17 % 45.18 % 0.0089 %

13 w/ post processing 68.88 % 46.28 % 0.0085 %

(-0.4 %) (+2.4 %) (-4.5 %)

Figure 41 shows the Receiver Operating Characteristic (ROC) for all

scenes without (red) and with (green) post processing. As before, the vari-

able parameter in the ROC is the size of the detection cascade (13 to 10

stages). Figure 42 shows the Recall-Precision Rate for all scenes without

(red) and with (green) post processing. Again, precision grows with the

number of cascade stages.
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Figure 41: ROC Curve for all scenes

for a cascade of 13 to 10 stages.

Figure 42: Recall-Precision Rate for all

scenes for a cascade of 13 to 10 stages.

6.3 Performance

This section covers the observed training and detection times. Basis for this

evaluation is the setup as presented in Section 5.5. We start by summarizing

the performance of the training of the cascade in Section 6.3.1 together with

a comparison of training with Forward Feature Selection and AdaBoost.

Section 6.3.2 gives an overview on the performance of the detector.

6.3.1 Training Time

The presented algorithm needs exhaustive training. This is mainly due to the

large database of training images (2×3900 per stage) and the architecture of

the learning algorithm. As described in Section 4.2.1, the individual stages of

the cascade have to make independent errors. This is achieved by updating

the set of negative sample images for each cascade stage by the bootstrapping

process. However, this makes recalculation of weak classi�ers and repeated

classi�cation necessary which is computational expensive.

Bootstrapping itself is a dominating factor for computation costs. Re-

member that during bootstrapping, new negative sample images are gen-

erated that are classi�ed as false-positives by the current cascade. Conse-

quently, when the false-positive rate of the cascade gets better exponentially

(as in this algorithm), the bootstrapping costs rise exponentially because

it gets more and more di�cult to create negative samples that are false-

positives.
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Figure 43 and 44 show the computation time that is spent for the �rst

11 (12) cascade stages with normal and logarithmic scaling of computation

time, respectively. Reading in images, calculating the weak classi�er and

precomputing of classi�cation results in table V (for forward feature selec-

tion) runs in constant time for all cascade stages. The feature selection is

linear in the number of features (later cascade stages select more features).

Bootstrapping time rises exponentially. After stage 10, for example, the false

positive rate is 0.092 percent and the bootstrapping goal is to generate 1,946

new negative samples, which is about one half of the complete set. The

algorithm needed to generate 30,780,434 samples in this setup to collect the

roughly 2,000 false-positives. Naturally, this generation is costly.

Figure 43: Runtime of training stages 1

to 11. Bootstrapping becomes dominant

at stage 10.

Figure 44: Logarithmic Runtime of

training stages 1 to 12.

Figure 45 presents the total time spent for the di�erent parts of the

algorithm cumulated over the �rst 11 stages. The dominating character of

bootstrapping becomes obvious here, too. Possibly, a larger set of source

images for sample calculation may reduce the time spent for bootstrapping

because of less similarity of the training images.

Note that we plot the results for the �rst 11 stages, omitting stages 12

and 13 due to presentation purposes (the logarithmic plot of the runtime in

Figure 44 covers 12 stages).
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Figure 45: Runtime of di�erent parts of the training algorithm. The values are the

cumulated sum of each part for the �rst 11 cascade stages.

Forward Feature Selection versus AdaBoost. We employ the feature

selection method of Wu et al [53] called Forward Feature Selection (FFS), see

Section 4.2.5. Compared to the original suggestion of Viola and Jones in [49]

(AdaBoost for feature selection) the main advantage of FFS is the shorter

computation time. While the two methods do not select the same features,

it has been shown by Wu that the detection and false-positive performance

of features selected by both methods are similar. Thus, the more e�cient

algorithm should be selected.

The reason for the performance advantages of FFS over AdaBoost is that

the latter needs recalculation of all weak classi�ers for every single selected

feature. The FFS algorithm needs this recalculation only once per stage.

Thus, especially for later stages that have many features, FFS is by far more

e�cient. Additionally, the weight setting procedure in AdaBoost is coupled

to the feature selection and computation of weak classi�ers which is slower

than calculating it only once per stage as in the algorithm of Wu et al. where

weight setting is a separate process after feature selection in each stage.

Figure 46 shows a comparison of the training time of both algorithms for

the �rst 11 cascade stages. While bootstrapping becomes dominant for both

approaches in later stages, the plot shows a stronger dependency between

computation time and the number of selected features for AdaBoost. The
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number of features in the �rst 11 stages are [7, 15, 29, 29, 49, 49, 49, 99,

119, 139, 159].

Figure 46: Runtime of the algorithm based on FFS compared to AdaBoost.

Viola and Jones report a training time of several weeks for the AdaBoost

algorithm for a 32-stages cascade. While this was not tested empirically in

this work, a similar value is estimated based on the performance values mea-

sured for the �rst stages with AdaBoost. Further stages of AdaBoost were

not tested because of time restrictions but predicted. Note, for example, that

the calculation of stage 10 needs about 3 days and 8 hours with AdaBoost

compared to 10 hours for FFS.

6.3.2 Detection Time

For face detection in �lms, algorithms that detect faces in real time or faster

are desired (i.e. detect faces in fast forward mode). However, this is not

possible with the approach presented here.

There are several parameters that a�ect detection time. These parame-

ters are the frame size and time spent for pre-processing as well as the depth

of the cascade (i.e. the number of stages). While a cascade with more stages

is more precise, detection with a smaller cascade is faster. An important

point, however, is the selection of the programming language.

In this work 720×576 pixel frames are analyzed and we employ a cascade

with 13 stages. Matlab 2007b is used as programming language and platform,

for details see Section 5.5. The detection time for the implementation was
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10 to 14 seconds per frame. Figure 47 shows that detection time does not

depend on the size of the cascade. This is because later stages are evaluated

less often, while most of the work is done by the �rst few stages. The diagram

shows average detection timess from the sceneMarching women (other scenes

have similar detection times).

Figure 47: Detection time for cascades of di�erent sizes. The runtime does not depend

on the size of the cascade.

An aspect of the algorithm is that the detection cascade can be repre-

sented as xml �le. Thus, it can easily be used by an optimized detector.

This is a strong feature as Viola and Jones [51] and Wu [52] report realtime

detection for detectors based on precompiled programming languages.
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7 Conclusion

We have presented a study on face detection in the context of historic doc-

umentaries and started by giving an overview on the challenges of face de-

tection and popular approaches.

A novel type of source material for face detection was introduced. Ar-

tifacts like �icker, scratches, bad contrast and illumination as well as the

monochromaticity make this material challenging for automated object de-

tection. We have chosen the face detection method of Viola and Jones for

this work. Their method aims at constructing a classi�cation cascade that is

built from simple, fast to calculate features. Wu's Forward Feature Selection

was employed which allows faster training. Additionally, two post-processing

�lters have been introduced because of the high false-positive rate of the orig-

inal approach.

The face detection system has been evaluated with several sample scenes

from three �lms of Dziga Vertov. The overall detection rate (recall) is

68.88 %, the false-positive rate (fallout) is 0.0085 % and the precision 46.28 %.

While training of the detector needs several days, the detection time per

frame is around 13 seconds.

The presented algorithm is suited for general object detection because of

the generality of the features. Changing the set of positive sample images

results in the calculation of a cascade which can be used to detect arbitrary

objects.

In future, two issues may be addressed. First, the performance of the

detection system does not reach realtime by far. Implementing the algorithm

in a precompiled programming language may solve this problem. Second,

additional post-processing �lters are needed to further reduce the high false-

positive rate.
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