
Linux in Safety-Critical Applications

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Roland Kammerer
Matrikelnummer 0125555

an der
Fakultät für Informatik der Technischen Universität Wien
ausgeführt am
ICT - Institut für Computertechnik

Betreuung:
Betreuer: O. Univ. Prof. Dipl.-Ing. Dr. techn. Dietmar Dietrich
Betreuer: Dipl.-Ing. Andreas Gerstinger

Wien, 04.11. 2008
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung

Die heutige Gesellschaft ist von einer Vielzahl von sicherheitskritischen Systemen abhängig, die
die Sicherheit der Benutzer und der Umwelt garantieren müssen. Deshalb ist es entscheidend
welches Betriebssystem auf solchen sicherheitskritischen Systemen zum Einsatz kommt. Diese Ar-
beit untersucht einen möglichen Einsatz des Kernels Linux und des Betriebssystems GNU/Linux
für sicherheitskritische Systeme. Um Vertrauen zu schaffen, dass GNU/Linux als Plattform für
sicherheitskritische Anwendungen eingesetzt werden kann, wurde anhand von relevanter Literatur
erforscht, wie Linux entwickelt und getestet wird. Das Open Source Entwicklungsmodell wurde
mit traditionellen Entwicklungsmodellen vergleichen. Es wurde analysiert, ob der aktuelle Stand
der Entwicklung die Anforderungen von existierenden Normen im Bereich sicherheitskritischer
Anwendungen erfüllen kann. Um die Relevanz von Linux für sicherheitskritische Anwendungen
noch weiter zu erhöhen, wurden zwei Projekte implementiert. Das erste ist eine vollautoma-
tische Testumgebung für RAID-1 Systeme auf Kernelebene, das zweite ist ein Dateisystem, das
schadhafte Daten erkennt und korrigiert. Es zeigt sich, dass das Verfahren der Open Source
Entwicklung, das von der GNU/Linux Entwicklergemeinschaft eingesetzt wird, kein limitierender
Faktor ist. Die meisten Standards, die sich mit sicherheitskritischen Systemen beschäftigen, sind
flexibel genug, um Systeme, die auf neuen und offenen Wegen entwickelt wurden, zu zertifizieren.
Dies führt zum Ergebnis, dass Linux als Plattform für sichheitskritische Anwendungen in Be-
tracht gezogen werden sollte. Die Entwicklung von Linux hat in den letzen Jahren einen großen
Fortschritt gemacht, der Linux reif für den Einsatz in sicherheitskritischen Systemen macht.

II

Abstract

Modern society depends on a range of systems that need to guarantee the safety of their users and
the environment. Therefore it is crucial which operating system is used for such safety-critical
systems. This thesis examines the potential use of the operating system kernel Linux, and the
GNU/Linux operating system for safety-critical systems. To gain confidence that GNU/Linux
can be used as a platform for safety-critical applications, it was examined how Linux is developed
and tested by assembling information from relevant literature. This Open Source development
model was compared to traditional software development models. It was analyzed, if the current
state of development can fulfil the requirements of existing safety-related standards. To further
improve the relevance of Linux for safety-critical systems, two projects have been implemented.
The first one is a fully automatic test suite for kernel-level software RAID-1 systems, the second
one is a wrapper file system that detects and corrects faulty data on hard disks. It turns out that
the Open Source development approach taken by the GNU/Linux community is not a limiting
factor for its use in safety-critical applications. Most standards that deal with safety-critical
systems are flexible enough to certify systems that are developed in new and open ways. As a
result, Linux should be considerd as a platform for safety-critical systems. The development of
Linux made large progress during the last years, which makes Linux fit for safety-critical systems.

III

Acknowledgements

First of all I would like to thank my parents for giving me financial and personal support during
my whole lifetime.

Thanks to Andreas Gerstinger for his endless patience and the ability to talk to people involved
in Linux kernel development. Thanks to Wolfgang Puffitsch for reviewing my source code and
to Daniel Schneider for proof-reading. Thanks to my fellow students and true friends Harald
Krapfenbauer and Wolfgang Puffitsch for all their support and interesting discussions during the
last years.

Last but not least I would like to thank all the Linux kernel hackers and the GNU project
for providing such great software, which makes computer science that much fun for me.

IV

Table of Contents

1 Introduction 1
1.1 Problem Description . 1
1.2 Intentions . 2
1.3 Method . 2

2 Linux and GNU/Linux 3
2.1 Free and Open Source Software . 4
2.2 History . 5
2.3 Features and Design . 6
2.4 Development Process . 10

2.4.1 Software Development - The Traditional Way 10
2.4.2 Kernel Development - The Open Source Way 17
2.4.3 Kernel Management - The git Way . 18
2.4.4 Release Cycle . 21
2.4.5 The Modularity of Linux and GNU/Linux Distributions 22
2.4.6 FreeBSD . 26

2.5 Testing, Standardization and Backports . 28
2.5.1 Testing and Standardization . 28
2.5.2 Backports . 31

3 Safety 33
3.1 Definition of Safety . 33
3.2 Dependability . 35

3.2.1 Threats . 35
3.2.2 Attributes . 37
3.2.3 Means . 38

3.3 Testing . 41
3.3.1 Black-Box Testing . 42
3.3.2 White-Box Testing . 43
3.3.3 Fault Injection . 46

3.4 Safety-Related Standards . 49
3.4.1 Safe State . 50
3.4.2 Requirements in Different Safety-Related Standards 51

3.5 COTS . 55
3.5.1 Definition of COTS . 55

V

3.5.2 GNU/Linux Distributors and Their COTS Products 57

4 Related Work 65
4.1 Preliminary Assessment of Linux for Safety-Related Systems 65
4.2 COTS Components in Safety-Critical Systems . 67
4.3 Further Important Work . 71

4.3.1 Linux and Real-Time . 71
4.3.2 Linux, Safety, and COTS . 72

5 Improving Linux for Safety-Critical Applications 74
5.1 A Test-Suite for Kernel Level RAID-1 Systems - raid1test 74

5.1.1 Implementation . 75
5.1.2 Configuration . 83
5.1.3 Test Results . 88

5.2 A File System for Safety-Critical Applications - tinysafefs 89
5.2.1 FUSE . 89
5.2.2 Features . 89
5.2.3 Implementation . 92
5.2.4 Configuration . 98
5.2.5 Test Results . 99

6 Conclusion 100

Appendices 104

A Extreme Programming 104

B Selected Source Code 107
B.1 raid1test . 107
B.2 tinysafefs . 112

Literature 113

Internet References 117

VI

Abbreviations

API Application Programming Interface

BSD Berkeley Software Distribution

COTS Commercial/Component Off The Shelf

CPU Central Processing Unit

CVS Concurrent Versions System

FC Failure Case

FMEA Failure Mode and Effect Analysis

FOSS Free and Open Source Software

FS Free Software

FTA Fault Tree Analysis

GDB GNU Project Debugger

GNU GNU’s Not Unix

GPG GNU Privacy Guard

GPL GNU Public Licence

GUI Graphical User Interface

HRT Hard Real-Time

HTML HyperText Markup Language

IPC Inter Process Communication

ISV Independent Software Vendor

KVM Kernel-based Virtual Machine

LF Linux Foundation

LSB Linux Standard Base

LTP Linux Test Project

MIT Massachusetts Institute of Technology

MMU Memory Management Unit

MTA Mail Transfer Agent

MTBF Mean Time Between Failures

MTTF Mean Time To Failure

VII

MTTR Mean Time To Repair

MULTICS Multiplexed Information and Computation System.

NC Normal Case

NIC Network Interface Card

NPTL Native POSIX Thread Library

NUMA Non Uniform Memory Access

OEM Original Equipment Manufacturer

OSADL Open Source Automation Development Lab

OSDL Open Source Development Labs

OSS Open Source Software

PGP Pretty Good Privacy

POSIX Portable Operating System Interface

QoS Quality of Service

RAID Redundant Array of Inexpensive Disks

RAMS Reliability, Availability, Maintainability, and Safety

RHMRG Red Hat Messaging, Real Time Grid

RTDM Real-Time Driver Model

SCI System Call Interface

SCSI Small Computer Systems Interface

SC Special Case

SHA Secure Hash Algorithm

SIL Safety Integrity Level

SLES SUSE Linux Enterprise Server

SMP Symmetric Multiprocessing

SOUP Software Of Unknown Pedigree

SSL Secure Socket Layer

SVN Subversion

TKO Test Kernel Org

TMR Triple Modular Redundancy

TTA Time Triggered Architecture

TTP Time Triggered Protocol

UML User Mode Linux

USB Universal Serial Bus

VFS Virtual File System

VIII

1 Introduction

The introduction gives a short overview about the problem, the intentions of this thesis and the
methods that are used.

1.1 Problem Description

In the modern world mankind depends on quite a number of safety-critical systems. Sometimes
this dependability is obvious as on the subject of aircraft construction and sometimes it is hidden
in tiny embedded systems like ones that trigger a fire alarm. The more sophisticated a system is,
the more likely these systems need some kind of software which controls their functions.

One of the most fundamental software components in such a safety-critical system is the operating
system which is the base for all higher level applications. Probably the most important part of
the operating system is a piece of software which is called the kernel. The kernel manages the
access to the underlying hardware. This thesis concentrates on a specific kernel named Linux [27],
which is the kernel of the so called GNU/Linux operating system [15]. It is essential to choose
an operating system, and therefore a kernel, which guarantees a high degree of Quality of Service
(QoS). There are lots of important attributes like reliability, availability, maintainability, and the
one which is most important in the context of this thesis, the safety. Together these properties
are called “RAMS”. These terms will be discussed in detail in section 3.2. A more generic name
which includes the above mentioned terms and extends them by properties like security is called
dependability.

One of the most important questions to ask is how can safety be measured and how is it possible
to certify an operating system according to these levels of safety? This question will lead to
so called Safety Integrity Levels (SIL) which can be used to distinguish different levels of safety
requirements. The SIL gives information about the criticality of a system. On the basis of these
requirements someone needs to certify the system according to certain rules, the safety standards.
With this certification it is possible to guarantee safety to users and the environment.

As it can be imagined, safety-critical systems are a complex matter and therefore it can be an
advantage if software (especially operating systems) can be reused. In general there are several
factors which recommend software reuse. It is possible to reduce development costs, it may be
faster to use an already existing product than developing a new one and last but not least, it is
possible to buy in expert know-how from specialized offerers. This strategy can be summarized
under the term Commercial/Component Off The Shelf (COTS) or Software Of Unknown Pedigree
(SOUP).

1

Introduction

1.2 Intentions

The intention of this thesis is to discuss the possibility of using Linux, the kernel, for safety-related
applications. The kernel is one major part of the operating system and therefore it is valuable
to concentrate on that part, but on the other hand an operating system is much more than
a kernel, therefore this thesis will focus on aspects of the whole GNU/Linux operating system
whenever it is important for the completeness of this thesis. The focus is on the domain of railway
systems, which has several special requirements that differ from traditional domains like aircraft
construction. These differences will be discussed in the chapters that concentrate on safety.

To prove that GNU/Linux can be used for safety-critical systems, different topics have to be
examined. This includes the software development model the Linux community uses, which gets
compared to more traditional ones. A review, if this development model fulfils the requirements
for safety-critical systems according to well known standards, is given.

The question if it is advisable to use COTS software for this form of application domain will
be discussed in section 3.5. Different COTS systems are examined and classified by their use in
safety-critical system.

A practical part (section 5) examines the extendibility of GNU/Linux and the methods of testing
existing components. A suite for testing RAID-1 systems will be presented and additionally the
implementation of a wrapper file system that provides safety-related features will be shown.

The goal of this thesis is to provide information about the possibility of using Linux, or modified
versions of Linux, for SIL4 (the most critical safety integrity level) applications.

1.3 Method

The work is mainly based on the study of relevant literature. Important documents for the
discussion of relevant work in this context are the research report ”Preliminary Assessment of
Linux for Safety Related Systems” [Pie02], written by Ron Pierce, and the diploma thesis ”COTS
components in safety-critical systems” [Kri02] by Linda Kristiansen. To improve the trust in
Linux and GNU/Linux components, a practical part is shown, that follows a hands-on imperative
and presents two examples of the extendibility and testability of Linux and the GNU/Linux
operating system.

2

2 Linux and GNU/Linux

The kernel is one of the most important parts of an operating system. The kernel manages the
access to the hardware and therefore it is a layer, which is between the hardware and the so
called user space programs. Without this piece of software an operating system cannot provide
any useful services. It is essential to distinguish between the kernel and the operating system
itself. An operating system consists of much more programs than only the kernel. For example
an operating system provides compilers, editors, graphical user interfaces and many more services
like ftp or web-server. Figure 2.1 gives an overview of the different operating system layers.

Figure 2.1: Structure of an operating system

If the term Linux is used it refers to the kernel itself. If the whole operating system is meant it
is entitled as GNU1/Linux.

Before starting with a little history about GNU/Linux and UNIX in general, it is important to
understand the concept of Open Source Software (OSS) and Free Software (FS). From a technical
point of view these two terms are very similar, but there are philosophical differences, which will
be examined. There is a special term which combines Free and Open Source Software, which is
FOSS (Free and Open Source Software).

1The GNU project was announced in 1983 with the goal to create a free UNIX-like operating system.

3

Linux and GNU/Linux

2.1 Free and Open Source Software

The term free software was defined by the GNU project [15] to give the users of software several
rights. Open Source software is mostly known for the right that everybody has access to the
source code and that everybody has the right to alter it. This is one important part, form a
pragmatic standpoint the most important one, but the concept of free software has an ethical
standpoint, too. There is one famous statement that is cited over and over again which says:
“Free software is a matter of liberty, not price. To understand the concept, you should think of
free as in free speech, not as in free beer” [15]. The GNU project and the Free Software Foundation
give the following definition of free software:

• Freedom 0: The freedom to run the program, for any purpose.

• Freedom 1: The freedom to study how the program works, and adapt it to your needs.
Access to the source code is a precondition for this.

• Freedom 2: The freedom to redistribute copies so you can help your neighbour.

• Freedom 3: The freedom to improve the program, and release your improvements to the
public, so that the whole community benefits. Access to the source code is a precondition
for this.

A program that includes all of the mentioned rights is free software as defined by the GNU
project. There are several software licences that give the user these rights, the most common
used is the GPL (GNU Public Licence). A list of licences that are compatible to the GPL can be
found on the web page [19] of the GNU project.

On the other hand, there exists the term Open Source which is defined by the Open Source
initiative [34]. The Open Source definition mentions the following rights:

• Free redistribution: The license shall not restrict any party from selling or giving away the
software as a component of an aggregate software distribution containing programs from
several different sources. The license shall not require a royalty or other fee for such sale.

• Source code: The program must include source code, and must allow distribution in source
code as well as compiled form. Where some form of a product is not distributed with source
code, there must be a well-publicized means of obtaining the source code for no more than a
reasonable reproduction cost preferably, downloading via the Internet without charge. The
source code must be the preferred form in which a programmer would modify the program.
Deliberately obfuscated source code is not allowed. Intermediate forms such as the output
of a preprocessor or translator are not allowed.

• Derived works: The license must allow modifications and derived works, and must allow
them to be distributed under the same terms as the license of the original software.

• Integrity of the author’s source code: The license may restrict source-code from being
distributed in modified form only if the license allows the distribution of “patch files” with
the source code for the purpose of modifying the program at build time. The license must
explicitly permit distribution of software built from modified source code. The license may
require derived works to carry a different name or version number from the original software.

4

Linux and GNU/Linux

• No discrimination against persons or groups: The license must not discriminate against any
person or group of persons.

• No discrimination against fields of endeavour: The license must not restrict anyone from
making use of the program in a specific field of endeavour. For example, it may not restrict
the program from being used in a business, or from being used for genetic research.

• Distribution of license: The rights attached to the program must apply to all to whom the
program is redistributed without the need for execution of an additional license by those
parties.

• License must not be specific to a product: The rights attached to the program must not
depend on the program’s being part of a particular software distribution. If the program is
extracted from that distribution and used or distributed within the terms of the program’s
license, all parties to whom the program is redistributed should have the same rights as
those that are granted in conjunction with the original software distribution.

• License must not restrict other software: The license must not place restrictions on other
software that is distributed along with the licensed software. For example, the license must
not insist that all other programs distributed on the same medium must be open-source
software.

• License must be technology-neutral: No provision of the license may be predicated on any
individual technology or style of interface.

The conclusion from both definitions is that they are similar, but the term Open Source was
created for marketing reasons because the term free sometimes confuses management people
who associate free with “cheap” or “worthless”. In general people interested in the ethical and
philosophical standpoint use the term free software, whereas people who are more pragmatic, or
when it comes to marketing, use Open Source Software.

2.2 History

Linux is derived from an operating system called UNIX and therefore the history is started with
the roots of UNIX. UNIX started in 1969 as a project of the Bell Labs, which was a research
facility of AT&T and Western Electric. Ken Thompsen, an employee of AT&T worked on an
operating system called MULTICS in cooperation with General Electric and the MIT.

In March of 1969 Bell Laboratories quit the project, but Ken Thompsen decided to create an
operating system which should provide the following features [Wie98]:

• Hierarchic file system to divide the memory in a flexible way.

• The output to a file and the output to a peripheral device should be similar.

• The possibility to start new processes independently from other processes.

• Every user can choose his favourite command interpreter.

• A rich set of utilities especially compilers for different programming languages.

5

Linux and GNU/Linux

• The operating system should be portable to new hardware architectures.

The following text summarizes Linux’s history according to Wielsch [Wie98]: In 1972 Dennis
Ritchie, Rudd Canaday, and Brian Kernighan, who gave the operating system the name UNIX
presented a first prototype. To fulfil the last goal on the list, the portability, most of the UNIX
kernel was written in a high level programming language named C. Until 1975 the UNIX operating
system was developed exclusively by the Bell Laboratories. With version 7, the operating system
had its first commercial success and it got ported to several hardware platforms by companies like
Data General, PCS, Digital Equipment, Amdhal, and Hewlett Packard. Important improvements
were made by the University of California, which named their operating system BSD (Berkeley
Software Distribution). This was necessary because the name UNIX was trademarked.

In 1987 Professor Andrew S. Tanenbaum, who was working at the Vrije University in Amsterdam
released a UNIX like operating system called Minix. He wanted to create a simplified UNIX
system to be able to show his students how operating systems work. For non commercial use
Minix was delivered free of charge.

In 1991 a Finnish computer science student named Linus Torvalds decided to program his own op-
erating system kernel inspired by the ideas of Minix. The motivation of his project was to replace
the Minix kernel with his own kernel, Linux. Therefore Linux was bound to the Minix userland
in its early days. The kernel hackers adapted Linux to operate with the GNU components. The
GNU project itself was founded in 1983 with the goal to create a free UNIX-like operating system.
In the 1990s the GNU project had developed a bunch of sophisticated software like compilers,
editors, and libraries but the heart of its operating system, the kernel, was missing. This gap
was filled by Linux. The resulting operating system is called GNU/Linux, the GNU system with
Linux as one of its kernels. In March 1994 the first official version (1.0) of Linux was released.
This release supported only the i386 single processor hardware with which Linus Torvalds was
familiar. One year later version 1.2 had support for different hardware architectures like Sparc,
Mips, or Alpha but it still was a kernel for single processors systems. This was changed with
Linux version 2.0 in 1996 which introduced Symmetric Multi Processing support (SMP). Linux
version 2.4 was an important step for Linux to the area of desktop computing. For example it had
better support for so called Plug-and-Play hardware and USB devices. In 2003 Linux reached
version 2.6, which is still the relevant development series nowadays. Its features will be discussed
in section 2.3.

2.3 Features and Design

The kernel Linux offers interesting features that are presented afterwards. First in general and
then for the current Linux version 2.6.

In general Linux is a full featured operating system kernel which provides features like multitask-
ing, virtual memory, shared libraries, demand loading, shared copy-on-write executables, memory
management, and multistack networking. One of its biggest advantages is its enormous scalabil-
ity and portability. The kernel can scale form embedded devices to cluster computer arrays with
thousands of nodes. According to to the kernel documentation Linux was ported at least to the
following hardware architectures: 32-bit x86-based PCs (386 or higher), the Compaq Alpha AXP,
Sun SPARC and UltraSPARC, Motorola 68000, PowerPC, PowerPC64, ARM, Hitachi SuperH,

6

Linux and GNU/Linux

IBM S/390, MIPS, HP PA-RISC, Intel IA-64, DEC VAX, AMD x86-64, AXIS CRIS, and Renesas
M32R architectures2.

Linux is designed as a monolithic kernel which means that all the services are integrated in the
kernel itself. It is appropriate to think of Linux as one single binary file. This is in contrast to
so called micro kernels that provide only very basic functions in the kernel itself whereas other
services are located in different layers of the micro kernel architecture. There are several micro
kernel approaches like GNU/Hurd [13] or the much more successful ones like Mach, Amoeba and
Chorus [CDK94]. At the time of programming the first Linux versions, Linus Torvalds decided
that a micro kernel does not fit his needs [TD02]. The architecture of the kernel was described
by Tim Jones [2], which gave the base for the following summary. Torvalds monolithic approach
led to the following architecture of the GNU/Linux system, which is shown in figure 2.2.

Figure 2.2: Basic GNU/Linux architecture

On the most abstract level there is a separation between kernel and user space. In user space
each program has its virtual address space. This is the part of the kernel where all the programs
are executed that an ordinary user wants to start. For example a web browser, an editor, or a
desktop manager. On the other hand there is the kernel space with its own single address space.
There is a layer that connects user space with kernel space. This layer is implemented with the
GNU C Library (glibc) and the System Call Interface (SCI). Therefore in general a user space
application is not allowed to communicate with the hardware itself, users send their requests
to the SCI and get back an answer from the kernel. The kernel itself can be further divided
in an architecture independent part and an architecture dependent part. The independent part

2/usr/src/linux/README

7

Linux and GNU/Linux

is shared between all the architectures Linux supports, whereas the dependent part deals with
special hardware requirements for the specific hardware platform.

The kernel itself is divided into several major subsections that are shown in figure 2.3.

Figure 2.3: Basic Linux components

• Process management: This is the part of the kernel where the user space processes are man-
aged. In the usual terminology there is a difference between processes and threads. Linux
does not difference them and has the internal concept of threads. The kernel provides an
interface through the system call interface where processes can be created, forked, executed,
stopped, killed, and it manages the communication and synchronisation between processes.
Scheduling is done in this part of the kernel, too, which means the strategy how many CPU
cycles each process gets and when does it get them.

• Memory management: This is the part where the memory and virtual memory is managed
by Linux. In most cases memory is managed in so called pages with a traditional size of
4 KB. Linux provides the ability to map virtual memory to physical memory and it is the
place where swapping is done. Swapping needs do be done if all the memory is consumed
and there is no memory left. Then Linux swaps out regions of memory to the hard disk.
GNU/Linux has an own partition type “swap” for these kinds of partitions, but swapping
can also be done to ordinary files on a file system. Allocating 4 KB blocks is not the only
thing the kernel does in its memory management part. For example, it keeps track of the
usage of memory and knows which pages are full, empty, or partial used.

• Virtual file system: The virtual file system is an abstraction between the user space and the
different under-laying file system types. For example the user space application does not
need to know if the under-laying file system is ext2, ext3, vfat, or any other of the supported
file systems. The user space application sends the command “write to disk”, and the kernel
decides how this is done.

• Network stack: The network stack is built up in layers itself, which is known from the
ISO-OSI model. For example there is an IP layer and above it is the TCP layer. The
topmost layer are sockets. Sockets provide an user interface from the user space to the

8

Linux and GNU/Linux

kernel networking stacks. Of course Linux is not limited to TCP/IP, the kernel provides a
large spectrum of networking protocols.

Joseph Pranevich [56] and Paul Venezia [31] give a detailed view of the features of Linux 2.6.
There perceptions are summarized in the rest of this chapter.

One of the most important aims of Linux is the compliance to the POSIX [POS04] specification.
In short, POSIX describes an application interface between the application and the corresponding
operating system. POSIX is an international standard and therefore an operating system can be
certificated according to it. One example is the Native POSIX Thread Library (NPTL) which
runs on top of the rewritten threading infrastructure of Linux 2.6

The possibility of scaling down to embedded devices like PDAs or network-routers was achieved
by integrating code from the uCLinux [54] project in the main kernel. The Linux microcontroller
project has the goal to port Linux to devices that do not have a Memory Management Unit
(MMU). These MMUs protect the memory from getting overwritten by other processes. The
memory is divided in several sections and processes are allowed to write to their own sections but
not to sections from other programs. The most critical event is when a process overwrites the
memory of the kernel which leads to a crash of the system.

The other direction, scaling up, was achieved by better SMP and NUMA (Non Uniform Memory
Access) support. Both concepts deal with computer architectures that have multiple CPUs
(Central Processing Unit). While SMP systems share one big memory space, every CPU in a
NUMA system has its own memory and even I/O components. The further step to NUMA was
necessary because a single memory became the bottle neck for large server systems. History
has shown that Linux 2.6 is a kernel that provides excellent support for these kinds of systems.
Technically this was achieved by an internal “topology API”, that represents the inner structure
of each CPU and its components. Therefore the scheduler is able to exploit the locality of
the memory and I/O components of each CPU in the NUMA system. Another concept that
is related to this issue is hyperthreading, which is used by Intel’s Pentium 4 architecture and
others. Hyperthreading is a way to simulate multiple CPUs on only one physical CPU and it is
done in hardware. While bringing speed enhancements this feature introduced complexity for the
kernel’s scheduler. Support for hyperthreading was introduced during Linux 2.6. In general Linux
2.6 scales much better than Linux 2.4 because limits got removed or at least extended to fulfil
requirements of modern systems. For example the number of Process IDs (PID) was increased
from 32000 to 1 billion or the number of individual users and groups was raised from 65000 to
4 billion. With Linux 2.4 it was possible to have 255 major devices with 255 minor devices (e.g.
partitions). Linux 2.6 increased this numbers to 4096 major devices with a minor device number
of more than one million devices.

Linux has its roots on the i386 platform and therefore CPU and architecture were coupled in a
tight way. In the modern computer architecture world this assumption does not hold any more
and therefore the concept of subarchitectures was introduced which split up the whole architecture
in individual parts. This made Linux 2.6 much more portable to non-standard architectures. The
concept of subarchitectures splits up the system in individual components wherever it is possible
and wherever it makes sense.

The kernel itself is designed in a very modular way and therefore it is possible to integrate kernel
support for exactly that type of hardware that is actually integrated in a device. If someone
compiles a kernel from source code he or she has the chance to exclude unnecessary device

9

Linux and GNU/Linux

drivers. This reduces the resulting binary size which can be interesting for small embedded
devices where size matters. This feature is attractive for developers of safety-critical systems,
too. If a driver (for an unused hardware device) is not integrated in the kernel binary it cannot
fail. With that modular kernel it is possible to reduce points of failure in an uncomplicated
way. The standard kernel provides loading and unloading of so called kernel modules. These
modules are object files, with the extension “*.ko” (kernel object), which can be loaded and
unloaded at runtime. For example, it is possible to compile SCSI and USB mass storage support
as modules. The resulting kernel image does not provide support for these kinds of hardware
devices but if it is necessary someone can load them via the program modprobe. The module
gets linked to the kernel at runtime and therefore the device can be used the same way as if the
support would have been integrated in a static way. If unloading of kernel modules is considered
as unsafe it can be disabled at all. In modern environments modules need to get information
about the status of other modules. For example consider a module which is responsible for the
power management. It needs information from the disc device drivers, or the scheduler needs
information from the power management module. Modern architectures force interconnection
and information exchange between subarchitectures. Getting this information was much more
limited in Linux 2.4 than in version 2.6. Linux introduced a kobject subsystem which unifies the
interfaces and therefore modules can share information in a sophisticated way.

2.4 Development Process

To get confidence that Linux can be used for safety-critical systems, the development process of
Linux, the kernel, and the whole operating system GNU/Linux will be explained. To indicate
the differences between the traditional way of developing software and the way the Open Source
community develops software, the first section describes this mentioned traditional software de-
velopment models. The discussion is based on the results of relevant literature [Gre01].

2.4.1 Software Development - The Traditional Way

A development model is a strategy that describes how software should be developed according to
this model. It describes what different steps are necessary and when they should be done. Addi-
tionally, the model describes the phases of development and which stage follows its predecessor.
Different strategies force different approaches, but the actions a developer has to do are the same,
therefore it is possible to use different models for different software projects within a company
without disturbing the developers.

2.4.1.1 Build and Fix Cycle

This is a model that most of the programmers have used from time to time because it is the
simplest one of all. A customer (or the programmer) has an idea and starts to write a program
that solves the intended task. If there are new and better ideas the programmer tries to integrate
them in the program. This process stops when the program satisfies the programmer’s conception
of “quality management”. There are no determined and separated stages of development like
requirement analysis, design, or implementation. All of these steps are done by the programmer
while he or she is writing the program. The advantage of this model is its simplicity and that

10

Linux and GNU/Linux

it can work well for relatively small software projects. There are several disadvantages of this
model:

• There is a lack of documentation.

• It does not work well for large software projects.

• There is a lack of real quality management and testing.

• The programmer is the only one that knows how the code works. Therefore the project
depends on the programmer.

• The code or project is difficult to maintain.

2.4.1.2 Software Life-Cycle Model

This model provides a much more structured policy which forces different steps during the devel-
opment and lifetime of a system. The following steps have to be done at least once, during the
lifetime of a system [PB93]:

• Requirements

• Analysis

• Design

• Implementation

• Testing

• Integration/Maintenance

Changes of the requirements can only be done during the next project and then all of the former
mentioned steps are rerun from the beginning. This makes the model very strict and inflexible,
because it does not provide any possibilities of going back several steps within the model. A
typical software life-cycle is shown in figure 2.4.

2.4.1.3 The Waterfall Model

The Waterfall Model [Roy70] describes a development model where it is possible to go back one
step (to the direct predecessor). This model forces several development steps, too:

• Requirements analysis

• Design

• Implementation

• Testing (validation)

• Integration/Maintenance

11

Linux and GNU/Linux

Figure 2.4: Software Life-Cycle Model

The model is an iterative approach with the constraint, that a development step is only finished,
if all requirements for that step are fulfilled. This requirement should minimize the risks for the
next step in the hierarchy.

The process is seen as a waterfall where the water flows downwards from one step in development
to the next one (see figure 2.5).

The Waterfall Model is widely used in practice and has advantages as long as the different
development steps are clearly separated from each other, therefore all possible risks have to be
found at the beginning of the project. The Waterfall Model fits well if the developer team is
moderately small, because then all the developers can work together on the current step. This
would be very difficult for larger teams, because the number of people would be too large, and in
larger teams the individual developers have different qualifications and skills.

2.4.1.4 The V-Model

This model [FM95] describes the following six steps for software development:

• Requirements analysis

• System design

• Design and implementation of modules

• Module test

• System integration

• System approval

12

Linux and GNU/Linux

Figure 2.5: Waterfall Model

The later three steps test if the software was designed and implemented according to its specifi-
cation. The finest grained level is the module test which tests the modules that were produced
during the design and implementation stage. The system integration tests the correctness of the
system design. At last the system approval tests if all requirements are satisfied. Every step in
development has its corresponding test on the same level, which leads to the name for this model
which is shown in figure 2.6.

Like the Waterfall Model, the V-Model forces a sequential chain of development steps. Like the
two former mentioned models, it is susceptible to failures that were made in the first steps, and it
makes it difficult to correct them. An advantage of the V-model is that it attaches importance to
the testing process itself, it forces that every step in the development chain is tested and verified.

2.4.1.5 The Spiral Model

The Spiral Model which was defined by Barry Boehm [Boe88] is a system development model
which pays attention to the needs of large and complex projects. The model consists of four
phases which will be passed through in a cyclic manner. The spiral model is an evolutionary
model where each cycle depends on the products created in the previous cycle. The following list
describes the four phases of this model:

• Determine objectives, alternatives, constraints

• Evaluate alternatives, identify and resolve risks

• Develop, verify next-level product

• Plan next phases

13

Linux and GNU/Linux

Figure 2.6: V-Model

In the first phase the goals and the resulting products of the cycle are defined. Alternative
approaches and restrictions are considered, too. The second phase examines the risks that were
found in the first phase and tries to find solutions for these risks. For example in this phase
prototypes are built, simulation is done, or feedback from users is gathered. In the third phase
the defined products are built. The number of products and the chronology of the products may
vary according to the project. For example in this phase the actual coding and unit tests are
done. In the last phase, the next phase is planed according to the results of the review. Figure 2.7
shows a project that was done according to the spiral model.

2.4.1.6 The Incremental Model

The V-Model and the Waterfall Model have the disadvantage that design and implementation
can only start if the requirement analysis is finished. After the requirement analysis is done, it
is set in stone and the implementation is done by the developers. For large projects it can take
up to a year or even longer before the customer gets the finished product. It is possible that the
requirements have changed during the length of time and that the product that the customer
gets is not the product that he or she would like to have now.

The Incremental Model [Bal08] tries to solve this issues, because the implementation starts even
if the whole requirements are still unknown. The key requirements have to be known before the
implementation can start. The incremental model can be described in the following way:

• Software development is a stepwise process. The development is driven by the experience
of the developer and the customer.

• Maintenance is seen as a new release of the product.

14

Linux and GNU/Linux

Figure 2.7: Spiral Model

• This model has the advantage that the customer does not need to know all requirements
from the beginning.

• The development is code driven. The centre of interest is an executable program (or parts
of it).

The Incremental Model makes it possible that parts of the product can be delivered to the cus-
tomer earlier than it is possible with other development models. Even if these are only subsystems
of the product. Another advantage is that changes to the requirements can be accomplished in a
better and easier way.

A sample development process within the Incremental Model can be seen in figure 2.8.

2.4.1.7 Extreme Programming

Extreme Programming [Bec05] is a software development model that is relatively new and which
shares ideas between the more traditional models and Open Source development. Therefore it
is interesting to examine the ideas of Extreme Programming because it shows the evolution of
programming concepts from old fashioned models to newer ones that are required in the digital
age of the twenty first century.

Extreme Programming was invented by Kent Beck in the year 1996 while he was working as
a project leader for Chrysler. The model describes several practices that result in Extreme

15

Linux and GNU/Linux

Figure 2.8: Incremental Model

Programming values. One advantage is the responsiveness to customer requirements. As every
software developer knows, requirements change during the period of software development. Some
of the traditional models do not account this problem in a proper way. For example, in models
that force fixed steps, the requirements are acquired in the first step and then they are set in stone
for the whole project. In contrast to this, Extreme Programming can handle such circumstances.
It is important to see that at the time when this model was invented the more traditional models
did not work any more in all fields of software development. The dot-com boom forced new
models that could deal with fast changes of customer requirements and a short time to market.

Kent Beck [Bec05] describes the following goals of Extreme Programming:

• An attempt to reconcile humanity and productivity

• A mechanism for social changes

• A path to improvement

• A style of development

• A software development discipline

To achieve these goals some values are defined. A list of these values and their means is shown
in the Appendix (table A.1).

Extreme Programming defines the following self explaining activities:

• Coding

• Testing

• Listening

• Designing

To achieve the goals, Extreme Programming defines so called practices which are described in
table A.2 in the Appendix.

16

Linux and GNU/Linux

2.4.2 Kernel Development - The Open Source Way

There are some parts of the development process that can be found in the traditional way of
developing software, too. For example software is reviewed and committed by developers, but
the way this is done is different. Linux’s development is done according to the so called Open
Source development model. In this model the development and review is done by the public. Most
of the communication between the developers is done via email on mailing-lists. There are two
important tools which are used in this development process. The first one is diff which outputs
changes to source code in a human readable way. A short example which demonstrates the use
of diff is given. Imagine the following C-function:

int sum(int a , int b)
{

return (a − b) ;
}

As it is easy to see, the function does not calculate the sum, it calculates the difference. Therefore
someone will find this mistake and correct it. This can be done by everyone because everyone
has read-access to the source code. This person would correct the function, and after that he or
she would generate a diff-file which would look like this:

−−− sum . o r i g . c 2008−02−06 16 : 30 : 16 . 000000000 +0100
+++ sum . c 2008−02−06 16 : 30 : 36 . 000000000 +0100
@@ −1,4 +1,4 @@

i n t sum(i n t a , i n t b)
{
− re turn (a − b) ;
+ return (a + b) ;

}

In our scenario, the developer would send an email with this diff-file to the kernel mailing-list.
Other developers would review the patch, discuss it, and try to improve it. If the patch is good
enough, it would be committed to the official source tree. For this patching the command line
tool patch is used.

As anyone can see, this is a big advantage of the Open Source development model because a lot
of people have their eyes on the source code.

On the other hand many people are afraid of the idea that everyone submits code and therefore
ruins it. This expectation does not hold because it is very difficult to get own code into the
official released source code. There are different layers of authorities which have to accept a
piece of software before it is included in the official tree. This structure is organized like a
pyramid. On the bottom of the pyramid there are hundreds of people who send their patches
to a specific maintainer. Every file has its maintainer or group of maintainers. The appropriate
group can be found in a file named MAINTAINERS, which is included in the kernel source tree.
If this developer thinks the patch is correct, it gets forwarded to the maintainer of a so called
sub-architecture. There are lots of these sub-architectures like “USB”, “networking”, “firewire”,
and so an. If a patch fulfils the expectations it gets forwarded to the top of the pyramid. For
kernel version 2.6 this is Linus Torvalds or Andrew Morton. It is important to know that every
maintainer adds a “Signed-of-by:” line to the commit log. Therefore it is easy to find the persons

17

Linux and GNU/Linux

who are “guilty” for non-working source code. Figure 2.9 shows the Linux development pyramid.

Figure 2.9: Linux development pyramid

2.4.3 Kernel Management - The git Way

A crucial part of developing software in a distributed way is the form of source code management.
These methods affect the code quality and the overall quality of the project. Therefore it will be
analysed how the kernel source is managed by the tool git and why it is appropriate for this job.
This will bring confidence about git itself and the Open Source development model.

In the earlier days the kernel source tree was managed by a tool called BitKeeper, which had a
client that was available free of charge. In April 2005 Bitmover, the company behind BitKeeper,
decided to focus on the commercial software market and therefore dismissed the gratis client for
BitKeeper. This was a historical event for the Linux community, because from one day to the
other the community had the problem to manage their source without the tool which was used for
years. Some developers got nervous because it took BitMover millions of dollars and numerious
person years of work to develop a tool like BitKeeper.

Linus Torvalds responded the Open Source way and only two days later he presented the core of
a new source code management tool called git. Fifteen days later it was possible to manage the
current Linux source tree with git. Nowadays the kernel tree is still managed with git and it is
used on a broad base for different Open Source projects.

The BitKeeper issue shows the superiority of the Open Source development model in several
ways. First of all, if BitKeeper would have been an Open Source tool, the whole problem would
not have existed. Only the proprietary method of software development makes it possible to take
away the freedom from its users by not-releasing further versions of a software. If the source code
would have been available, the Open Source community would have had the chance to continue

18

Linux and GNU/Linux

their work without interfering with the commercial ambitions of BitMover. On the other hand
this issue shows that Open Source development can produce high quality software within very
short time. Git is a prime example how free software development works. Linus released a first
working component very early and the rest of the development was done by the community.

In general git is a source configuration management (SCM) tool which fulfils the same tasks as the
well known CVS (Current Version Control), SVN (Subversion) or BitKeeper. Git is not a clone of
these version tracking systems, it introduces new features which are crucial for the management
of the Linux source tree. Figure 2.10 shows the typical relation between git repositories.

Figure 2.10: Structure of git repositories

As we have seen in section 2.4.2, the kernel development is organized in a highly hierarchic
structure. There is one chief architect and his repository is the base for the others. After the
individual contributors made their changes they get merged back to the master tree. Therefore a
typical git cycle in kernel development would be like this (without the different layers of developer
hierarchy):

• Programmer clones Linus’ repository.

• Programmer makes a local branch.

• Programmer edits files.

• Programmer commits files to his or her repository.

• Linus pulls the changes back to the official tree.

One of the most remarkable features of git is that it guarantees source code integrity. Obviously
this integrity is important because it ensures that nobody has the chance to alter source code
files without recognition. If that would be possible it would be easy to inject malicious software
like backdoors, trojan horses or root kits. By design these changes in the source code would be
recognized because git names files by its content. This name is the SHA1 (Secure Hash Algorithm)

19

Linux and GNU/Linux

checksum of the file itself. Therefore git guarantees a high level of integrity because a user can
validate the content of the file by generating the SHA1 checksum and comparing it with the name
of the file. The next snippet of code will demonstrate this behaviour of naming files:

$ mkdir p r o j e c t
$ cd p r o j e c t
$ g i t i n i t
I n i t i a l i z e d empty Git r e p o s i t o r y in . g i t /
$ echo ” content o f my f i l e ” > f i l e . txt
$ g i t add .
$ g i t commit −a −m ” i n i t i a l r e l e a s e ”
Created i n i t i a l commit 32921 f f2802ab393c fe948b23 f2cde99 f93ba8a8

c r e a t e mode 100644 f i l e . txt
$ echo ” extended ve r s i on ” >> f i l e . txt
$ g i t commit −a −m ”added magic”
Created commit a8f23b219c7bec1238743becf12a289e1234d843

The commit name is defined by the following parameters:

• The content of a object.

• The “parent” commits of an object.

• The comment message for the object.

This makes it clear that the whole history of a file is represented by its checksums and that it is
not possible to alter any file in the tree without recognition. The revision, a so called commit,
depends on the whole development history of the project. To identify the whole development tree
someone has to publish the name/checksum of the top level commit. This can be secured and
checked by the use of digitally signing this message via tools like PGP (Pretty Good Privacy) or
GPG (GNU Privacy Guard) [18].

One important thing to notice about git is that it is a total new approach of source code manage-
ment. All the other widely used tools have a central repository where privileged users can commit
their changes to this central repository. This has some major disadvantages because someone has
to decide who is trusted to make changes to this central repository. Git uses a much more de-
centralized approach. Every developer can clone other repositories and work on his or her own
repositories to make code changes. Technically all these repositories have the same privileges.
A developer can pull back code from other developers to his own repository to get the newest
patches. This is exactly the way Linux kernel development works. Maintainers pull back code
from other developers at different kernel hierarchies. Code that comes up from sub-architecture to
architecture maintainers and then up to Andrew Morton and Linus Torvalds ran through several
levels of trusted developers. For example sub-architecture maintainer A knows that developer B
writes good code and therefore he/she pulls code from B to his independent git repository. A
checks the code from B and maybe applies some patches. After that an architecture maintainer C
pulls back the changes from A, because he or she knows that A is a reliable developer. This goes
up to the top of the Linux kernel development hierarchy until the chief architect Linus Torvalds
releases a new version of Linux (the kernel).

The conclusion of this section is that Linux has a modern and secure tool to manage its source
tree. Git fulfils all the needs that are claimed by the Linux kernel development process.

20

Linux and GNU/Linux

2.4.4 Release Cycle

One question to ask is how often should new software be released? There is one famous quote
in the Open Source world which says “Release early, release often”. In the early days of Linux,
around 1991, Linus Torvalds sometimes released more than one new kernel version a day. Nowa-
days this release cycle is much slower, because the kernel size increased during the years of
development, but it is much faster than commercial software releases. For example Microsoft
Windows XP was released 2001 and Windows Vista was released six yeas later, in 2007. To get
an overview of the typical release times, please see table 2.1.

Table 2.1: Kernel 2.6 release dates

Release 2.6.0 2.6.1 2.6.2 2.6.3 2.6.4
Date 18/12/2003 09/01/2004 04/02/2004 18/02/2004 11/03/2004
Release 2.6.5 2.6.6 2.6.7 2.6.8 2.6.9
Date 04/04/2004 10/05/2004 16/06/2004 14/08/2004 18/10/2004
Release 2.6.10 2.6.11 2.6.12 2.6.13 2.6.14
Date 24/12/2004 0203/2005 17/06/2005 29/08/2005 28/10/2005
Release 2.6.15 2.6.16 2.6.17 2.6.18 2.6.19
Date 03/01/2006 20/03/2006 18/06/2006 20/09/2006 29/11/2006
Release 2.6.20 2.6.21 2.6.22 2.6.23 2.6.24
Date 04/02/2007 26/04/2007 08/07/2007 09/10/2007 24/01/2008
Release 2.6.25 2.6.26
Date 17/04/2008 13/07/2008

The next important question is how are these releases managed? It is crucial to take a look
on a typical release cycle to get confidence to this method of software development. During the
life-cycle of the kernel there exist different kinds of so called kernel branches. The most important
are:

• main: Version 2.6.x

• stable: Version 2.6.x.y.

• git snapshots: Daily snapshots from the git repository.

• -mm: Experimental patches by Andrew Morton.

Historically one of the most important digits was the second one, which is a 6 at the moment.
Even digits stood for a stable kernel tree, and odd digits stood for developer trees. For example
in times where version 2.4.x was up to date, there existed a 2.5.x tree that was the playground
for the newest ideas for the next major kernel release. After the 2.5.x series was stable enough
version 2.6.0 was released. During the changes in the development model there does not exist this
special development tree any more. There is no 2.7.x tree, but there are lots of testing branches
like the tree of Andrew Morton.

21

Linux and GNU/Linux

After each main release there exists a period of about two weeks where major differences to the
kernel are allowed to happen. These suggestions are submitted to Linus Torvalds and most of these
patches have existed in the so called “-mm” branch for a few weeks. After this period, a “-rc1”
(release candidate 1) kernel is released, which is the signal that patches which change existing
functionality are not accepted any more. In this phase patches which bring new functionality
can be accepted, but only if they are self-contained and do not endanger the existing kernel
functionality. Every time Linus Torvalds thinks the kernel tree is in a reasonable stable state for
testing, he releases a new release candidate (-rcN). If the testing process is successful a new main
kernel is released.

The stable kernels are released during two main releases. Their release name has four digits and
they introduce very small new functionality. Their main purpose is to fix problems that have
been found after a main release. Stable kernels are the best way for users to stay cutting edge
without getting into troubles that experimental kernel branches could have.

One of these experimental branches are the “-mm” sources which are maintained by Andrew
Morton. This is the place where experimental patches and new functionality are included and
tested. These kind of kernels are not appropriate for production use. The “-mm” sources is a
branch for developers.

Every day a git snapshot of Linus Torvalds’ kernel tree gets released. This happens in an auto-
mated way and therefore stability should not be expected. These snapshots represent the current
state of the kernel and are even more experimental than the “-rc” releases.

A whole release cycle is shown in figure 2.11.

Figure 2.11: Kernel 2.6 release cycle

2.4.5 The Modularity of Linux and GNU/Linux Distributions

As mentioned before it is crucial to distinguish between Linux, the kernel, and the whole operating
system. Linux is the small but important part between the hardware and the user space programs
and the operating system is the union between the kernel and the user space programs. Many
important programs are developed by GNU people or at least most of the free software is licensed
under the terms of the GPL (GNU Public Licence). Therefore it is fair to call the whole operating
system GNU/Linux and not only Linux.

22

Linux and GNU/Linux

The whole GNU/Linux and UNIX philosophy follows one simple paradigm, which is: “Do one job,
but do it good”. To fulfil this paradigm GNU/Linux and Linux share one important feature, they
are all about modularity. This is in contrast to other operating systems like Microsoft Windows
or Apple’s MacOS. If someone installs a Microsoft Windows Server he or she gets all the programs
that Microsoft provides to him, even if they are not needed. For example if the person wants to
install a web-server, the person is forced to install a graphical user interface. Beside from the
fact that the person does not need this graphical user interface (for a web-server), it is a safety
and security problem. If there are exploits for the unused services, the whole mission critical
system is in danger. Some of the services can be disabled but others cannot be turned off and
are important for those kinds of operating systems.

At the finest grained level, the kernel level, Linux has a high degree of modularity. If someone
compiles a new kernel he or she has the choice to configure it according to his or her needs. For
example Linux supports about 30 different types of file systems, but if only one is necessary for
the job it is easy to disable the rest of them. They are not disabled at runtime, they do not even
exist in the binary image because they were disabled when the kernel was configured. A second
example could be an embedded device which does not need networking features or does not have
any USB or SCSI devices. It is easy to disable the whole subsystem, or to use kernel modules
which can be loaded at runtime. The typical steps for configuring and running a customized
kernel are the following:

• Download kernel sources and unpack them

• Configure the contents of the new kernel via a text file, a console user interface or a full
featured graphical user interface

• Build the new kernel image and modules

• Configure the boot manager

• Boot the new kernel

The second level of modularity is the modularity of the applications itself. In the free software
world someone has the ability to get the source code and compile the applications with exactly
the features that are necessary. One example is Apache, the famous Open Source web-server.
If someone does not need SSL (Secure Socket Layer), that someone can disable this feature at
compile time.

The third level of modularity is the choice of applications. As I mentioned before, some other
operating systems do not have this possibility. For example the Microsoft Windows operating
system provides exactly one command line shell, the “cmd.exe”, and exactly one graphical user
interface, the “explorer.exe”. If these applications do not accord to one’s expectations, it is very
difficult or even impossible to replace them. Last but not least, the user does not even has the
chance to adjust these applications because they are proprietary software and the source code is
not available. To revive the preceding example, GNU/Linux has a whole number of command
line shells like bash, zsh, korn-shell, c-shell, tcshell, and many more.

Compiling the whole operating system is not very easy because most applications have depen-
dencies and compiling huge packages of software consumes a lot of time. In general a fast release
cycle is an advantage but it is difficult for the user of an operating system to track thousands

23

Linux and GNU/Linux

of packages. This is the point where so called distributions come into play. The first advan-
tage of a distribution is that it supports the user while installing the operating system. It helps
the user partitioning and formating the computer’s hard drive, choosing the appropriate set of
packages and updating the boot manager. Distributions provide package management tools, too,
which make it comfortable to install new software. Different distributions choose different tools
to mange their software repository. Well known is Debian’s apt/dpkg, Redhat’s rpm or Gentoo’s
emerge/portage. If these tools are installed, someone can type one of the following commands to
install a new packages:

$ apt−get i n s t a l l apache
or
$ emerge apache

The second advantage that distributions provide is that someone does not need to compile the
software because most distributions provide binary packages. With the use of a GNU/Linux
distribution it is possible to manage all installed packages with simple commands. For example,
if a user wants to check all system packages for updates, he or she can type emerge -u system,
or apt-get update && apt-get upgrade and if he or she wants to check for security related
updates he or she can use tools like glsa-check or use specific security repositories during
apt-get update. Most distributions provide an excellent level of software quality management
because for security and stability reasons it is not always the first choice to install the newest
packages. For example Gentoo provides these different levels of stability during the release cycle
of single packages (see figure 2.12).

Figure 2.12: Gentoo release cycle

One big advantage of distributions is the fact that most of them provide a release cycle. The
duration between two releases depends on the flavour of distribution, but release cycles make it
easier for the users to get a coherent system state. A release represents a state in the time line
where the distributor thinks that the packages have reached a stable state and the progress of
features is huge enough that it is worth to provide a new release.

One GNU/Linux distribution that is known for its stability and well tested package base is Debian.
Debian is a prime example for the Open Source development model. It has a social contract, free

24

Linux and GNU/Linux

software guidelines and a constitution [6]. Currently there are more than a thousand developers
organized in a way that is shown in figure 2.13.

Figure 2.13: Organisation of the Debian project [Kra05]

The distribution release cycle of Debian has four main steps:

• New software is tested in an unstable branch.

• Software gets tested in the testing branch.

• The testing branch gets frozen.

• Generate new release from the frozen testing branch.

There are lots of people involved during the release of a new version of Debian GNU/Linux like
the security team. The whole release process is shown in figure 2.14

The discussed layers of modularity support the argument that Linux and the whole GNU oper-
ating system provide a high level of security. A part of the overall security is gained from the
modularity of Linux, the GNU software and the GNU/Linux distributions. The modularity gives
the system designer the change to design it in a minimal way. Every piece of software has possible
bugs, but if someone has the chance to disable whole subsystems or components, the probability
to get a secure and safe system increases. Last but not least software packages in a GNU/Linux
system are tested very well. The developer itself tests his or her code and after releasing the
software it is extensively tested by the distribution developers. This software is much more tested
than software that is just released on the internet.

25

Linux and GNU/Linux

Figure 2.14: Debian release cycle [Kra05]

2.4.6 FreeBSD

GNU/Linux distributions and traditional Unices are developed and released in a different way,
therefore it is interesting to analyse which approaches are taken by different open communities,
that provide source code, too. For this, FreeBSD [10] was chosen, which is one of the best known
Unices. It is an interesting excursion that shows how other operating systems that allow access
to their code are released and assembled.

2.4.6.1 Goals - FreeBSD versus GNU/Linux

FreeBSD as most of the Unices of the UNIX family has different goals than GNU/Linux distribu-
tions. Both provide more or less stable release cycles, but GNU/Linux distributions concentrate
on a loose coupled set of individual software packages. If someone installs a GNU/Linux distribu-
tion he or she mostly gets all the software that was available at that instant in time. For example
there are different kinds of command line shells or different kinds of ftp-server software on a
typical GNU/Linux distribution. On the other hand FreeBSD tries to provide a whole coherent
operating system that fulfils several tasks. FreeBSD’s main purpose is a stable and secure server
platform. In the base system FreeBSD provides one tool for one task. For example there is one
MTA (mail transfer agent), which is sendmail. It is possible to install other MTAs like postfix,
but only sendmail is in the basic release set. If there is a security hole in sendmail, the FreeBSD
developers provide the necessary patches to remove this issue. On the other hand the operating
system keeps highly extendible via the ports system, which is a collection of Makefiles and addi-
tional patches that provide build information for compiling a piece of software. The BSD ports

26

Linux and GNU/Linux

are similar to the concept of Gentoo’s portage, and in fact the idea of portage was taken from the
BSD ports system. FreeBSD provides modern tools to mange the fetching and updating of the
ports tree and for installing and updating software via the ports tree. If compiling software from
source is not an option or unwanted, binary packages can be managed by pkg-tools. For example
to install the latest GNU Compiler Collection (GCC), someone can use the following commands.

$ # i n s t a l l a b inary package , f e t c h e d from the i n t e r n e t
$ pkg add −r gcc44
$ # i n s t a l l from ports , the t r a d i t i o n a l way
$ cd / usr / por t s / lang / gcc44 / && make i n s t a l l c l ean
$ # i n s t a l l from ports , the modern way
$ cd / usr / por t s / lang / gcc44 /
$ p o r t i n s t a l l $PWD

2.4.6.2 Development Process

FreeBSD is developed in a very open way, too. The repository is readable by everyone via
anonymous, read-only CVS and nowadays additionally SVN. Write accounts are not permitted
to everyone, because that would cause total chaos. Write access to the CVS tree is permitted
to a selected group of about 300 people which are called committers. The next upper level
of hierarchy is represented by the core team, which is responsible for major decisions in which
direction FreeBSD should be developed. At the moment this core team consists of nine people.

The FreeBSD CVS tree, which has its primary repository in Santa Clara CA, has two major
development branches which are called FreeBSD-CURRENT and FreeBSD-STABLE. The current
tree is the place where new features are introduced and tested by the developers and the user
community. It is the playground for new ideas and therefore it should not be used on productive
systems. On the other hand there is the much more stabilized stable tree where well tested
software is merged into the CVS tree. New software first enters current and after the testing
process it is merged into stable. At some instants of time there are releases of FreeBSD, which
are generated from the stable tree.

2.4.6.3 Release Process

FreeBSD tries to provide a stable and fixed release scheme which ends in a new release every four
months. New releases are built from the “-STABLE” tree and according to FreeBSD’s developers
the effort begins to rise about 45 days before the anticipated release date [11]. At this point in
time, the developers are informed that they have 15 days time to merge software changes until
the so called code freeze. The developers now start to merge code from the “-CURRENT” tree
to the “-STABLE” tree. The next important step to a new release is the code slush which starts
about 30 days before the planed release. From now on there are about 15 days where the source
code has to be approved by the Release Engineering Team. Only a limited set of operations is
allowed to the source code which includes the following changes [11]. See figure 2.15 for details.

• Bug fixes

• Documentation updates

27

Linux and GNU/Linux

• Security-related fixes of any kind

• Minor changes to device drivers, such as adding new Device IDs

• Any additional change that the release engineering team feels is justified, given the potential
risk

During the last 15 days before the release the developer team tries to release release candidates
on a weekly basis.

Figure 2.15: FreeBSD release cycle

2.5 Testing, Standardization and Backports

Testing and standardization are indispensable processes that have to be done for operating sys-
tems in a safety-critical context. A description how Linux is tested and verified is given and a
selection of projects that exist for fulfilling this important issue is shown. Without these methods
of testing and standardization a kernel cannot be used for safety-critical systems.

2.5.1 Testing and Standardization

A huge part of the testing efforts is done by the community and the Open Source development
process itself. This development model itself guarantees a high degree of quality management
because hundreds of people have their eyes on the Open Source code. This model, which was
described in section 2.4 is relatively new and sometimes in contrast to the traditional methods of
software quality management. These differences do not have a negative impact on the product
itself, they provide several advantages. It is obvious that the more people review a specific code
the higher the probability is that a bug is found. It would be impossible or extremely expensive
if a company would hire a developer-team that has the manpower of the Linux kernel developer
team. Therefore a high level of stability, safety, and security is reached by the Open Source
development process itself, especially when this development is managed in a sophisticated way
like it is done by the Linux community.

On the other hand the development of safety-critical systems and the corresponding standards
(chapter 3) force some degree of formal verification and testing, which is necessary to guarantee
safety. The industry has reacted to this important problem and several kinds of organisations
and projects exist that try to provide this level of traditional software quality management. In

28

Linux and GNU/Linux

this thesis the Linux Test Project (LTP), the Linux Foundation, the Linux Kernel Performace
project, and the AutoTest project are mentioned.

The Linux Test Project was founded by SGI and is maintained by IBM. The main goal is to
provide a test suite to validate the reliability, robustness, and stability of the Linux kernel [30].
At the moment this suite contains more than 3000 tests. Most of the project is written in
ANSI C (94%), the rest in Bash-scripts and Perl-scripts. The test suite provides an API, too,
and therefore it is possible to extend it with user defined tests that are necessary for special
safety-critical systems. The suite itself contains tests for the following purposes:

• File system stress tests

• Disk input/output tests

• Memory management stress tests

• Inter Process Communication (IPC) stress tests

• Scheduler tests

• Commands functional verification tests

• System call functional verification tests

The test suite is comfortable to use, for example there exists a alltests.sh shell script which
executes all the tests in the suite. To examine the code coverage, which represents the code that
is executed, the tool gcov-kernel exists. It is a extension to the GNU gcov tool and provides
coverage support for the kernel and a interface to to the /proc file system by a kernel module
named gcov-proc As frontend the traditional GNU gcov tool, which is part of the GCC (GNU
Compiler Collection), can be used. Gcov provides information about how often a specific line of
code has been executed by the test suite. This tool is already used for traditional software code
coverage analysis and the patches and kernel modules from the Linux Testing Project make it
possible to use gcov for kernel level analysis.

For visualization of test results there exists a second extension to GNU gcov namely lcov. This
package includes several Perl-scripts that visualize the code coverage with coloured bars and
HTML output format.

The second and definitely one of the most important projects for Linux standardization is the
Linux Foundation (LF). The Linux Foundation is a merge from Open Source Development Labs
(OSDL) and the Free Standards Group. Beside from employing Linux developers like Linus Tor-
valds and therefore guaranteeing that key developers are able to continue their work, the Linux
Foundation is a platform for standardisation and collaboration [26]. The LF offers certification
according to several versions of the Linux Standard Base (LSB). This standardization is impor-
tant to guarantee that different GNU/Linux distributions share the same standard base and that
therefore a LSB certified application will work on every LSB certified distribution. If an appli-
cation or distribution passes the certification process it is permitted to use the LSB trademark.
The current version of the LSB is 3.2 and is defined in two parts. The first one is the architecture
independent part, the second is architecture dependent. Each of these parts contains differ-
ent modules, which are “Core”, “C++”, “Desktop”, “Interpreted Languages”, and “Printing”.
Table 2.2 provides information about the main categories and their modules.

29

Linux and GNU/Linux

Table 2.2: Linux Standard Base version 3.2

LSB 3.2 Modules
Executable And Linking For-
mat (ELF)

Low Level System Information, Object format, Dynamic
Linking

Base Libraries Program Interpreter, Interface Definition / Data Defini-
tion / Interfaces for libc, libm, libpthread, libgcc s, libdl,
librt, libcrypt, libpam

Utility Libraries Interface Definition / Data Definition / Interfaces for libz,
libncurses, libutil

Commands and Utilities Commands and Utilities, Command Behaviour
Execution Environment File System Hierarchy, Localization
System Initialization Cron Jobs, Init Script Actions, Comment Conventions for

Init Scripts, Installation and Removal of Init Scripts, Run
Levels, Facility Names, Script Names, Init Script Func-
tions

Users & Groups User and Group Database, User and Group Names, User
ID Ranges, Rationale

Package Foramt and Installa-
tion

Package File Format, Package Script Restrictions, Package
Tools, Package Naming, Package Dependencies, Package
Architecture Considerations

At the moment, the Linux Foundation consists of an elected chair of 9 people from leading Open
Source software projects, companies, and distributors like MySQL, IBM, Intel, Sun, Usenix,
RedHat, Novell, The Open Group, VMWare, Nokia, and many more.

The Linux Kernel Performance project [22] is maintained by five dedicated kernel programmers
and tries to test the kernel in a systematic and disciplined way to improve the performance of the
kernel. The testing itself is done by running a large set of benchmarks covering different kernel
core components [22]. The tests are run on different hardware platforms every week and the
results are published on the project page. Everyone of these five project maintainers is associated
with the Intel company and therefore the tests are run exclusively on Intel hardware. The kernel
under test is Linus Torvald’s latest git snapshot (see section 2.4.4).

According to the project page the following components are tested:

• Raw server performance and network scalability

• Micro benchmarks for measuring the key system performance

• Network performance tests (TCP and UDP, DLPI, UNIX Domain Sockets,. . .)

• Memory and disk operation, virtual memory management

• I/O workload tests: Sets of files are created and operations are performed on them

• Filesystem tests (read, write, re-read, re-write, read backwards, fread, fwrite, random
read,. . .)

30

Linux and GNU/Linux

• CPU intensive benchmarks

The last project presented in this thesis is test.kernel.org [23] (TKO). This project focused on a
whole test environment called autotest for the kernel which makes it possible to test Linux in a
highly automated way. The present development has shown that manpower is more expensive
than machine-power and therefore a automated test approach fulfils the needs of the kernel
community best. Software companies can afford the costs of a quality management team, which
is much more difficult in the Open Source world. Therefore it is a better approach to focus
on the wide range of machines instead of expensive programmers. There are other arguments
that support the need for automated testing. For example Linux supports a broad spectrum
of hardware and many different combinations of them. The more hardware that is supported
and the more portable a kernel is, the more important an automated testing approach becomes.
Open Source is an evolutionary and fast process. Developers join projects but some of them
leave it as fast as they came in and therefore it is a good idea to keep their knowledge in the
(testing) system instead of keeping the knowledge in the person itself. Automated testing speeds
up the testing process because the developers get feedback very soon when their code is still in
their minds. An additional advantage is that most of the developers have a limited range of
different hardware available, but Linux supports a broad range of hardware. For these developers
it would be very hard to get their hands on different and not so wide spread hardware. Therefore
feedback from TKO is highly important for them. An extended discussion of the advantages of
an automated testing approach can be found in the pager “Fully Automated Testing of the Linux
Kernel” [BW06].

2.5.2 Backports

GNU/Linux distributions are able to provide a stable system with long term support without
breaking the system stability and without introducing new bugs. This introduces a longer life-
cycle which is important for safety-critical systems, too.

From the kernel side this is managed via the so called stable tree (section 2.4.4). This tree, which
has four digits (2.6.x.y) does not try to introduce new features, it is for updates concerning safety
and security of the system. This is necessary, because new features always have the potential of
introducing new bugs. Therefore concentrating on fixing bugs without introducing new features
is the best way to keep the system current and stable. New kernel releases sometimes provide
changes in the API which could break the compatibility to existing third party modules, but if
someone stays in the stable tree he can avoid this nasty side-effects.

On the other hand the operating system provides much more software than the kernel and there-
fore it is important that COTS providers have mechanisms to guarantee a stable system, too.
Some GNU/Linux distributors use so called backports for this purpose. Most software writers
and software projects concentrate on their single project, but they do not take direct actions to
integrate their project into a coherent operating system (GNU/Linux distribution). Therefore
a second layer of developers exist who try to integrate the individual software packages in the
coherent operating system. These programmers actually do not work on the software package
itself, but they work for the GNU/Linux distributors. If a new release of a package is done, they
try to provide new packages for their distribution. If there are critical fixes, some distributions
provide back-ports to their stable line of distribution. For example, imagine a distributor who
released version 1.2.3 of a software for its stable system. If there exists a security hole in this

31

Linux and GNU/Linux

version, the original authors of the software will provide version 1.2.4. But sometimes the devel-
opers introduce new features (and therefore the possibility of new bugs), too. The distributor
cannot switch easily to this version. Maybe the 1.2.4 release has a changed API and therefore all
packages that depend on it would have to be updated, too. Therefore the distributors provide a
backport of the security fixes for their old and stable version 1.2.3 without the new features. This
package could be named 1.2.3 1 or something similar.

In conclusion, both, Linux and GNU/Linux distributions provide mechanisms for a stable, safe
and secure operating system. This is done via the stable tree of the kernel and the backports form
the GNU/Linux distributors.

32

3 Safety

A clear definition of the term safety is required to decide if an operating system can be used in
a safety-critical context. It will be delimited from terms like reliability, availability, and main-
tainability. After that the focus is on the question if it is possible to certify software like Linux
according to CENELEC standards which are in use in the railway domain. The last section exam-
ines if COTS (Commercial Off The Shelf) components can be used in safety-critical applications
and if there exist appropriate GNU/Linux components for this task.

3.1 Definition of Safety

The definition of safety starts with two quotes, one from Hermann Kopetz and one from Avizienis,
Laprie and Randell. “Safety is reliability regarding critical failure modes” [Kop97] and “Absence
of catastrophic consequences on the user(s) and the environment” [ALR01]. The first quote
depends on the definition of reliability, which will be discussed in detail in section 3.2, but it
gives a clear statement, that a system is only safe, if the user can place trust in the system that
it fulfils its specification according to critical failure modes. The second quote includes a more
practical relation to the environment that is controlled by a safety-critical application by saying
that these systems are not allowed to do harm to users or the environment. The conclusion of
these two quotes is, that a system or application is only entitled as safety-critical if it controls a
process that has a potential risk for its environment or users.

The question if it is necessary to provide safety has two components. The first one is the ethical
component, the second one is an economic question. Sometimes the economic overrules the moral
as we can see in the following example of immoral cost-benefit analysis. In the early 1970’s the
Ford Motor Company released a new line of cars, the Ford Pinto. Before the car was released
several crash tests proved, that the car has serious design flaws [Str80]. The problem was the
design and the location of the gas tank that caused fire or an explosion during a rear end collision
at an even very low impact speed. This issue was known, but Ford did not react until forced by
law. The costs to save lives was about eleven dollar per car, but from a cost-benefit standpoint
it was cheaper to let people die.

“A cost-benefit analysis prepared by Ford concluded that it was not cost-effecient to
add an $11 per car cost in order to correct the flaws. Benefits derived from spending
this amount of money were estimated to be $49.5 million. This estimate assumed that

33

Safety

each death which could be avoided would be worth $200,000, that each major burn
injury that could be avoided would be worth $67,000 and that an average repair cost
of $700 per car involved in a rear end accident would be avoided. It further assumed
that there would be 2,100 burned vehicles, 180 serious burn injuries, and 180 burn
deaths in making this calculation. When the unit cost was spread out over the number
of cars and light trucks which would be affected by the design change, at a cost of $11
per vehicle, the cost was calculated to be $137 million, much greater then the $49.5
million benefit”. [5] [Str80]

Safety does not only have moral implications, improper system and safety design can lead to
enormous costs. One well known example is the Ariane 5 accident [Lio96]. The rocket had a 500
million dollar set of four identical scientific satellites on board which were lost during the accident.
Another example is the Therac-25 accident [Lev95] which happened between 1985 and 1987. The
Therac-25 system was a medical accelerator which had malfunctions and it delivered lethal X-ray
doses at several medical facilities. The system provided two different kinds of radiation, a low-
power electron beam and in additon X-rays. Due to internal race conditions, Therac-25 radiated
the high-power X-rays with the metal X-ray target out of position. At least 5 people died, several
others were injured.

These examples show that safety is an important issue in the modern world and it leads to the
question how safety can be measured. In industry, standards are used to describe the development
of safety-critical systems. Software programs are not like mathematical formulas and as it is
known from several fields of computer science like testing or quality management, it is impossible
to prove that a piece of software is correct in a mathematical sense. Therefore someone must find
arguments for the safety of a piece of software that confirm that it is unlikely that the software
fails. Certification and standards provide mechanisms that can be used to find these former
mentioned arguments. For example standards describe how software should be tested. If it is
enough to black-box test the software or if additional white-box tests are required. Therefore a
system developer who trusts a specific standard has trust in a piece of software that was certified
according to this standard.

RCTA/DO-178B [ARI92] is a de facto standard for the development of safety-critical avionics
software. According to this standard, systems have to be certified as a whole, hardware and
software. One of the most important requirements forced by DO-178B is the traceability. “The
evidence of an association between items, such as between process outputs, between an output
and its originating process, or between a requirement and its implementation”.

On the other hand there exist several European standards like IEC 61508 [IEC98, FG] where it is
possible to certify individual components of the safety-critical system. The criticality of a system
function is categorized in so called Safety Integrity Levels (SIL). There exist four (1-4) different
levels of integrity. Each level forces different development and verification methods. Table 3.1
shows the different levels of severity in DO-178B and IEC 61508. Note that this table is not a
side to side comparison of these two standards. For example a “Level B” system has completely
different requirements than a “SIL3” system.

According to [Kop97] these levels of severity have the following impact on the environment:

• Catastrophic: A fault that prevents continued safe operation of the system and can be the
cause of an accident.

34

Safety

Table 3.1: Level of failure severity

Severity of Failure DO-178B IEC 61508
Catastrophic Level A SIL 4
Hazardous/Severe Level B SIL 3
Major Level C SIL 2
Minor Level D SIL 1
No Effect Level E —

• Hazardous: A fault that reduces the safety margin of the redundant system to an extent
that further operation of the system is considered critical.

• Major: A fault that reduces the safety margin to an extent that immediate maintenance
must be performed.

• Minor: A fault that has only a small effect on the safety margin. From the safety point of
view, it is sufficient to repair the fault at the next scheduled maintenance.

• No Effect: A fault that has no effect on the safety margin.

3.2 Dependability

It is essential to get a clear view and definition of the terms reliability, availability, maintainability,
and safety (RAMS), therefore the following section gives the required distinction of these terms.
There are several interconnections between these terms which will be discussed, too. A general
term, with several additions like security, or survivability is referred as dependability. Dependabil-
ity of a computing system is the ability to deliver service that can justifiably be trusted [ALR01].
Figure 3.1 shows the concept of dependability according to its threats, attributes, and its means.

3.2.1 Threats

The threats for dependability can be described by the so called fault-error-failure-chain which is
shown in figure 3.2.

The fault is the starting point of the chain and it is a circumstance that causes an error. Faults
can be categorized by nature, perception, boundaries, origin, and persistence [Kop97], which is
shown in figure 3.3.

• Nature: The nature of a fault can be by chance or intentional. For example ageing of an
electronic component is a fault by chance whereas improper usage of a system can happen
by intention. For example an angry user who hits the monitor.

• Perception: A fault can be caused by a physical problem like a bird that flies through a wire-
less communication signal or it can be by design. Design faults can happen by inappropriate
specification of the system or by inappropriate implementation by the programmers.

35

Safety

Figure 3.1: Dependability according to threats, attributes and means [ALR01]

Figure 3.2: Fault, error, failure chain [Kop97]

• Boundaries: Internal faults happen if the fault is contained in the system itself, whereas
external faults are caused by external influences like over voltage.

• Origin: Development faults are caused by the system development, like misunderstanding
the task of the system or bad design decisions. Operation faults can appear if the user of
the system is not able to handle it in a sufficient way.

• Persistence: Transient faults disappear without any influence on the system by them self,
whereas permanent faults do not disappear and therefore force some form of intervention.

If faults occur they can lead to an error. An error is an internal, unintentional state of the system.
Errors can be transient or permanent [Kop97].

• Permanent: This class of errors need a correction mechanism to be removed.

• Transient: Transient errors occur from time to time, caused by a fault, but they disappear
without causing a failure.

36

Safety

Figure 3.3: Categorization of faults [Kop97]

If the output of the system does not conform to its specified behaviour it is called a failure.
According to Laprie [Lap91] and Kopetz [Kop97] failures can be classified by nature, perception,
effect, and oftenness, which is shown in figure 3.4.

Figure 3.4: Categorization of failures [Kop97]

• Nature: A failure in the value domain is a failure like a bit-flip where a zero flips to a one.
The second class are timing failures. They occur if a correct value is too late or too early
in a point of time.

• Perception: If the failure is inconsistent, different users or systems have a different view of
it whereas a consistent failure is seen by all users in the same way. An example is a data
failure, where all the users see the same (wrong) result.

• Effect: Benign failures do not cost more than the component itself, whereas malign failures
cost much more. A failure in a railway control system can cost much more than the system
itself, in the worst case it can cost the life of the passengers. If a system has the potential
of malign failures, these system is safety-critical.

• Oftenness: If the system is able to operate after a failure occurs, it is called a transient
failure, whereas permanent failures need some form of correction.

3.2.2 Attributes

The attributes of dependability are availability, reliability, safety, and maintainability.

37

Safety

Availability describes the readiness of a system to deliver its specified behaviour. Two important
values in the context of availability are the Mean Time to Failure (MTTF) and the Mean Time to
Repair (MTTR). Sometimes the sum of MTTF and MTTR is referred as the Mean Time between
Failures (MTBF). If the availability gets assigned the letter ’A’, it is described by the following
formula: A = MTTF

MTTF+MTTR = MTTF
MTBF . The interaction of these terms is shown in figure 3.5.

Figure 3.5: MTTR, MTTF, MTBF [Kop97]

The term reliability describes the continuity of correct service. It is the probability that a system,
that worked correct at time t = t0 will deliver this correct service until time t. λ is the constant
failure rate (typically per hour). The reliability is given by the following formula: R(t) = e−λ(t−t0).
The inverse of the failure rate (1

λ) is the Mean Time to Failure [Kop97].

Maintainability of a system is the probability that a system can be repaired after a failure within
a given duration in time. One measure for maintainability is the Mean Time to Repair (MTTR).

3.2.3 Means

The means of dependability are Fault Prevention, Fault Tolerance, Fault Removal and Fault
Forecasting.

The term fault prevention deals with methods of avoiding the introduction of faults. This pre-
vention is done by methods of software or hardware quality management. For example some
standards force strict design and programming paradigms. The well known V-Model or the Wa-
terfall Model can be used to guarantee a healthy software life-cycle. Modularization of software is
a method of fault prevention, too. Individual components have less complexity and they can be
tested easier. In the field of hardware the choice of high-quality suppliers or the enforcement of
strict design rules prevents the introduction of faults. Even obvious actions like better shielding
can be used to improve the overall system quality.

Fault tolerance is a method of tolerating individual faults but keeping the whole system alive.
This fault tolerance is achieved by redundancy in the system. For example if one component fails
an other redundant component takes over the job of the failed one. There are different classes of

38

Safety

failures, which force a different level of redundancy [PSL80]. In the following examples k is the
number of failed components [Kop97].

• Fail-silent behaviour is given if the system produces correct values or it does not produce
any values at all. This class requires k + 1 components in total, and therefore 1 extra
redundant component.

• If a failure is fail-consistent, all users or the environment see the same result. All users
have a coherent view of a value or an output, but this does not mean that this output is
correct. If a component is fail-consistent, 2k + 1 components are required to cover k faulty
components.

• If the failure is inconsistent, also referred as Byzantine failure all the users have a different
view of the value that is produced by the failed component. To tolerate such k failed
components, 3k + 1 components are needed.

There are several ways fault tolerance can be achieved, but all of them deal with redundancy.
One way is to add redundancy to the transmitted information. For example a Hamming-Code
could be added, which allows the reconstruction of the information after a flopped transmission.
Another approach is to add redundancy in the time domain. For example every message could
be sent a second time if it is necessary without violating the timing of the whole system. The
third approach is physical redundancy which can be done in software or in hardware. If it is done
in software, critical processes exist more than once and if one of them fails there are still enough
processes that can cover the job of the failed one. For safety-critical systems redundancy is often
added by additional hardware. One often used method is Triple Modular Redundancy (TMR),
which guarantees a high degree of fault tolerance. The behaviour of a TMR-system is shown in
figure 3.6.

Figure 3.6: Triple modular redundancy

The system [Tan03] in figure 3.6 (a) consists of 3 individual subsystems and does not have any
redundancy built in. If one of the subsystems fails, the whole system fails. On the other hand
every component of the system in figure 3.6 (b) is replicated three times. In addition there are
voters in each stage of the system. Each voter has three inputs and one output. The output of

39

Safety

a voter is defined by the majority of its input. If two or three inputs are equal, the output is
set to that input value. If all of the three values are different, the output is not defined. For
example if the component A3 fails, each of the voters V1 to V3 gets a false input value but the
majority of the input values overrules A3 because the inputs from A1 and A2 are correct and
equal. Therefore the faulty component A3 is masked and every component in the second stage
(B1 to B3) gets a correct input value. This TMR-system even covers the fault of three different
components, for example A1, B2, and C3. The voters them self are components and therefore
they have to be redundant, too. For example if V1 fails the input of B1 is false but if the rest
of the systems works correct, the voters V4 to V6 mask the fault in V1. Therefore a fault in
V1 is the same as a fault in B1. The concept of triple modular redundancy is used in many
safety-critical systems that are in productive use. For example the Austrian Federal Railways
(ÖBB) use a system called Elektra for a fault-tolerant railway interlocking system [KK95].

The Elektra systems uses a second design paradigm which makes the system more fault tolerant
which is called N-version-programming [CA78]. N stands for the number of diverse programs (or
systems). For example imagine a system that consists of two individual subsystems. The first
one is an Intel based standard PC, the second one is an IBM PowerPC, therefore the system uses
two diverse hardware architectures. For the software components the developers can write the
first control-software in Assembler and the other one in high level C, or whatever programming
language fulfils their needs.

Fault removal is a concept which is important during the whole life cycle of a software component
or a system. There two different terms which are used in the context of fault removal:

• Verification is used to guarantee that the system or software conforms to the requirements
that are given in the specification. Therefore verification is used by system developers to
check if they did the right job, and if the implementation of their work fulfils the specified
behaviour. Verification is established at a low-level of system development.

• Validation is used to guarantee that the system fulfils its intended use for the purchaser.
The question to ask is: “Does the product solve the problem?” Validation is a high-level
concept which questions the whole system.

The verification of systems can be done by static or dynamic methods and the first step of
verification is testing. If the testing process shows that the system violates its specification two
further steps have to be undertaken. The next step is diagnosing why the tests have not been
successful. When the developers know why the tests have failed, for example from the test
results, they can make the final step which is the correction. The process of testing, diagnosis,
and correction is an iterative one and has to be done during the whole life-cycle of a component.
Testing is one of the most important activities during software development. The various methods
of testing will be described in section 3.3.

Fault Forecasting is used to evaluate the system with respect to its faults [ALR01]. There are
different methods which are used in real life which help system developers to examine potential
faults. One of them is the Fault Tree Analysis (FTA) [Sta02], which is a graphical way to represent
events that can lead to a fault. On top of the tree there is the fault and its sub-tree contains events
that can lead to this fault. Sub-trees are joint with “AND” or “OR” operators (conventional logic
gate symbols). A simple example is given in figure 3.7.

A second method of analysing the system according to potential faults is the Failure Mode and
Effect Analysis (FMEA). The FMEA [Kop97] is done via a standardized work-sheet and helps to
spot failures in the design process. A sample work-sheet can be found in table 3.2.

40

Safety

Figure 3.7: Fault tree analysis

Table 3.2: FMEA worksheet

Component Failure Mode Failure Effect Probability Criticality
Fan Voltage drop Overheating 1/10 high
Flash disk Wear out No further writes 3/10 high
.

3.3 Testing

Several safety-related standards force a certain level of testing and some of these standards even
force certain methods of testing. Even if testing is not a formal requirement for a standard it is
not possible to build a safety-critical system without testing under real life conditions.

The first two questions to ask are “What is testing?” and “Why should we do it?”. Myers [Mye79]
gives the following definition: “Testing is the process of executing a program or system with the
intent of finding errors”, whereas Hetzel [Het88] writes that “testing is any activity at evaluating
an attribute or capability of a program or system and determining that it meets its required
results”. One famous quote by Dijkstra [Dah72] is that “testing can prove the presence of bugs
but not their absence”. While this is absolutely true, the process of testing is important because
it leads to the following advantages:

• Improve quality

• Reliability estimation

• Verification and validation

• Certification

41

Safety

• Save costs (maintenance)

• Save lives (in a safety-critical context)

Summarized, testing increases the confidence that a system meets its specified behaviour. The
process of testing is divided into two parts:

• Testing: Different kinds of tests are run and as a result someone knows if the system failed
or met the specified behaviour.

• Diagnosis: This is the part where the interpretation of the results happen. Why did the
test failed?

The following sections discuss the most important test methods.

3.3.1 Black-Box Testing

As the name of this testing method implies, the system (or the software) is treated as a “black
box”. It is an external view of the system and also known as functional testing [Kri02]. The most
important characteristics of black-box testing are:

• Test cases are derived from the functional specification of the system.

• Only input and output interfaces of the system are considered.

• No implementation details are used to build test cases.

One advantage of this approach is that the generation of black-box test cases can be done at an
early stage in the product life-cycle, because if the specification is known, someone can start to
generate test cases. Black-box testing cannot exactly localise the cause of the failure (e.g. the
source code line), it gives a general overview if the systems reacts to its specification.

It is impossible to test every existing scenario in test cases. For example, if the software accepts
alphanumeric input strings up to a length of 100 characters this would lead to

∑100
i=0 62i individual

test cases. Therefore it is important to divide the test cases in equivalence classes. If it is expected
that two different inputs cause an equivalent output they are in the same equivalence class. For
example if the system under test is a simple calculator which adds two integer numbers, the input
2 + 3 is equivalent to 4 + 2 because the expected behaviour is the same. A test case that is not
equivalent to the former test cases is the addition of a positive number and a negative number
like 2 + (−1) because this tests if the calculator can handle signed numbers. A third equivalence
class could be tests where the result is negative like 2 + (−3). A forth equivalence class could
be tests where someone tests what happens if the range of an integer variable is exceeded, like
$INT MAX + 1. This class of test cases is the important class of extremal values. Additionally
test cases are generated that examine the normal case (NC), special cases (SC), and failure cases
(FC). An example for the former mentioned simple calculator is shown in table 3.3.

According to Kristiansen [Kri02] black-box testing has the following advantages:

• The test is unbiased, since the designer of the component and the tester are independent of
each other.

42

Safety

Table 3.3: Example of black-box test cases and equivalence classes

Nr.: Class Description Expected Result Input
1 NC 2 positive integers 5 2 + 3
2 NC 2 negative integers -8 (−3) + (−5)
3 NC 1 positive, one negative, result > 0 2 4 + (−2)
4 NC 1 positive, one negative, result < 0 -1 4 + (−5)
5 NC 1 negative, one positive, result > 0 3 (−3) + 6
6 NC 1 negative, one positive, result < 0 -2 (−3) + 1
7 SC $MAXINT + 1 warning message $INT MAX + 1
8 EC alphabetic character + integer warning message a+ 3
.

• The test case can be described as soon as the specification of the component is completed.

• The tester does not need knowledge of any specific programming language.

Therefore it is possible to outsource the testing from the skilled programmers to other persons that
do not need to have a special insight in the software. Black-box testing can be done by persons
that are able to understand the specification of the software component. Black-box testing is
kind of “intelligent guessing”, but design of the test cases and wise equivalence classes is needed.

There are several drawbacks [Kri02] of black-box testing, too:

• It is impossible to test every possible input.

• The test cases can be difficult to design, either because the component can take a wide
variety of input, or because input can be combined in many ways.

3.3.2 White-Box Testing

In this form of testing the object under test is seen as a “white box”, which means that the
internal structure of the object has to be known. If someone wants to do white-box testing, he or
she has to know the source code of the software under test. White-box testing needs an internal
view of the system. White-box testing is defined by the following attributes:

• Generation of test cases is based on the knowledge of the program design or implementation.

• Verification of structural coverage requires white-box testing.

The goal of white-box testing is that every path or edge of the control flow diagram of a software
component is executed. White-box testing cannot prove (in a mathematical sense) that the
software is correct, but it can increase the possibility and the confidence.

There are several different kinds of coverage levels that are referred as Cx coverage, where “x” is
the length of the edges in the software control flow diagram [Gre01].

43

Safety

Figure 3.8: A valid C0 coverage

C0 coverage is the weakest coverage analysis and it is known as vertex or instruction coverage
because it forces that every statement in the source code is executed at least once. This is
demonstrated in figure 3.8. As we can see, it is sufficient to test every statement in the code.

C1 coverage, which is also known as edge coverage has stricter requirements because it forces that
every edge of the control flow diagram has to be executed at least once by a test case. This is
shown in figure 3.9. Together the two test cases are a valid C1 coverage.

To see the difference between C0 and C1 coverage, see figure 3.10. Every statement is covered
by the test, but not every path. In this example the path that is executed if the if-statement
evaluates to false is not checked, which violates C1 coverage.

There exists a C∞ coverage which is nearly impossible to reach in real life software projects. C∞
coverage is also known as path coverage and forces that every possible sequence of statements is
covered by a test case. In real life there are too much possible sequences that such test cases
could be designed manually. One possibility to escape that dilemma is to use automated testing
tools. Figure 3.11 shows two test cases that both together describe a valid C1 coverage but do
not guarantee a C∞ coverage. The requirements from C1 are satisfied because very edge is tested
but not every combination of paths is tested. If someone wants C∞ coverage he or she would
need to specify the test cases in the following way:

• if == true, case a

• if == true, case b

• if == false, case a

• if == false, case b

Another form of coverage analysis is condition coverage which tests every possible combination
in a conditional statement. For example, consider the following part of source code:

44

Safety

Figure 3.9: A valid C1 coverage

if((a == true) AND (b == false)) THEN ... A successful C1 coverage would need two test
cases, one that results in true and one that results in false. For example, the following two test
cases guarantee C1 coverage:

• a == true, b == false ⇒ TRUE

• a == true, b == true ⇒ FALSE

For condition coverage someone needs these four test cases:

• a == true, b == true ⇒ FALSE

• a == true, b == false ⇒ TRUE

• a == false, b == true ⇒ FALSE

• a == false, b == false ⇒ FALSE

Summarized, white-box testing has the following advantages:

• If the source code is available, white-box testing can find programming errors much quicker
than black-box testing. For example, vulnerabilities are found easier if someone reads the
source code. If the program is a black-box it is much more difficult to find such vulnerabil-
ities.

• With white-box testing it is easier to test specific code sections. It is possible to direct
test the code. Black-box tests are more difficult to construct. Black-box testing makes it
difficult to drive special input to an inner component of the program, whereas white-box
testing supports this behaviour.

45

Safety

Figure 3.10: A valid C0 coverage which is not a valid C1 coverage

Apart from the former mentioned advantages, there exist several disadvantages:

• Source code is needed. White-box testing is only possible if someone has access to the
underlying source code. This can be a problem in the context of proprietary software (e.g.
proprietary COTS components).

• Complexity. The tester must understand the software in detail and the tester needs the
ability to read and understand source code.

• If the source code changes the whole testing process needs to be redesigned and redone.

• White-box testing is more expensive than black-box testing. The know-how of the testers
costs more and special tools that support this form of tests are needed. For example code
compilers that support code coverage analysis.

In general white-box testing is superior to black-box testing but harder to do.

3.3.3 Fault Injection

Fault injection is done to observe the system under test under fault conditions and its reactions
on these injected faults. The injection itself is done by software or hardware according to the
system under test. Embedded systems are often tested via special hardware devices that are able
to inject faults. These hardware injected faults can also have influence on the software of the
device, for example the fault triggers a fault removal subsystem in the firmware of the device.
The system under test gets two forms of input. The normal input data and the injected faults.
Therefore fault injection can be seen as a special form of input data and the tester is interested
in the output data of the system.

According to Kopetz [Kop97] fault injection has the following two purposes:

46

Safety

Figure 3.11: A valid C1 coverage which is not a valid C∞ coverage

• Testing and debugging: To test fault tolerance mechanisms someone has to generate artifi-
cial faults to trigger the tolerance mechanism. During normal operation faults are rare and
therefore they have to be generated in order to guarantee that the system, and the fault
tolerance mechanism in the system, has been sufficiently tested.

• Dependability forecasting: The data gained from the previous step can be used to make an
assumption about the dependability of the system under test. This data is only significant
if the operational environment of the system is known and if the tester provides a simulation
of this environment that is sufficient realistic.

Table 3.4 gives an overview about the two different purposes of fault injection.

Table 3.4: Fault injection for testing and debugging versus dependability forecasting [AALC92]

Testing and Debugging Dependability Forecasting
Injected
faults

Faults derived from the specified fault
hypothesis.

Faults expected in the operational en-
vironment.

Input
data

Selected input data to activate the in-
jected faults.

Input data taken from the operational
environment.

Results Information about the operation and
effectiveness of the fault tolerance
mechanism.

Information about the envisioned de-
pendability of the fault-tolerant sys-
tem.

Fault injection can be done by two different approaches. The first one is physical fault injection
and the second one is software fault injection.

47

Safety

Physical fault injection is mostly used to direct test hardware systems. One advantage of physical
fault injection is that it can provide a more suitable simulation of the systems intended usage.
For example if the system is a satellite, a bombardment with α-particles is a good approach to
simulate the physical environment in which the satellite will be used. Kopetz [Kop97] shows three
different methods of physical fault injection. The first one is a bombardment with α particles, the
second one is pin level fault injection where potentials are forced directly on the hardware pins
and the third one is electro magnetic interference (EMI), which is a form of radiation. According
to Kopetz [Kop97] these methods have the characteristics shown in table 3.5.

Table 3.5: Different properties of physical fault injection [AALC92]

Technique Heavy ion Pin level EMI
Controllability, space low high low
Controllability, time none high/medium low
Flexibility low medium high
Reproducibility medium high low
Physical reachability high medium medium
Timing measurement medium high low

The second form of fault injection is software based where the memory of a program is manipulated
in several ways. The injection of these faults can be done by the system (software) under test
itself or by special tools developed for fault injection.

There are several advantages of software based fault injection over physical fault injection [Kop97]:

• Predictability: In opposite to physical fault injection the instant of time and space is more
predictable than with physical fault injection. For example the exact time and location
where a fault is injected with methods of electromagnetic interference or with α-particle
bombardment is hard to control.

• Reachability: Pin level fault injection has the limitation that several inner portions of the
system cannot be reached because they do not have dedicated pins. With software based
approaches every location of the memory or the registers can be changed.

• Effort: Hardware based fault injection needs special equipment which is extremely expensive
and is mostly found at universities or rich equipped laboratories. Software based approaches
are cheaper and much easier to handle.

A typical approach for injecting faults in the software itself are pre-processor statements that are
activated if the software is compiled with this #define enabled. Following snippet of source code
demonstrates this method.

int sum(int a , int b)
{
#ifde f INJECTFAULT

return (2 3) ;
#else

return (a + b) ;

48

Safety

#endif
}

This form of fault injection has the advantage that is can be done very easy. On the other
hand it is not very flexible and some of the modern programming languages do not have the
support of pre-processor statements. For example Java does not use a pre-processor. If there is
no pre-processor the former mentioned code can be rewritten the following way:

int sum(int a , int b)
{

int i n j e c t i o n = 0 ; /∗ s e t to ’1 ’ to i n j e c t f a u l t s ∗/
i f (i n j e c t i o n)

return (2 3) ;
else

return (a + b) ;
}

This has the disadvantage that it alters the control flow of the software which makes it harder to
test and to verify a piece of software, because strictly the software with these if-else constructs is
not the same as without them.

The second category of software implemented fault injection can be divided into two sub-categories.
The first one are tools that are separate from the software under test but interfere with the soft-
ware under test and change its behaviour. An example for such a tool is a debugger which is
able to change the value of variables in the software under test. The second category are virtual
machines that encapsulate the software under test and inject faults from outside. Some virtual
machines provide the ability of fault injection, some use external tools like debuggers. The ad-
vantage of virtual machines is that it is easier to test core software components like the kernel of
an operating system. The advantages of the three different approaches is shown in table 3.6.

Table 3.6: Different properties of software implemented fault injection

Technique Directly in software Debugger Virtual machines
Complexity low low/medium high
Flexibility medium high high
Timing measurement high medium low

3.4 Safety-Related Standards

Different standards force different requirements for safety-critical systems. The field of appli-
cation is the railway domain which, is an appropriate example for an area of applications that
force safety. Applications in this domain have the advantage of a safe state. The term will be
explained in section 3.4.1. The standards concentrated on in this section are European stan-
dards that are approved by CENELEC, which is the “European Committee for Electrotechnical
Standardization”. The most important ones in this context are EN 50126 - “Railway applica-
tions - The specification and demonstration of Reliability, Availability, Maintainability and Safety

49

Safety

(RAMS)” [CEN99], EN 50128 - “Railway applications - Communications, signalling and process-
ing systems - Software for railway control and protection systems” [CEN00], and EN 50129 -
“Railway applications - Safety related electric systems for signalling” [CEN03].

Standards in general do not provide a step by step procedure for certifying components according
to them. For example, terms like “Evidence of quality management” are used, but the standard
does not enforce a specific method how this evidence should be given. In general, this makes it
harder for a system designer to choose an adequate approach, but it gives designers the chance
to provide alternative resources of evidence, which opens the door to non-traditional design
paradigms like the Open Source development model. Therefore, it will be examine if it is possible
to provide sources of evidence, that the Open Source development model provides methods that
make it possible to certify Open Source components according to the former mentioned safety-
related standards.

3.4.1 Safe State

In the context of safety-critical systems and applications, it is important to identify the so called
safe state, if it exists. In a safe state the controlled object is in a state where it cannot harm
its users or the environment. For a railway signalling system, this safe state could be to stop
all the trains, switch the signals to red, and do not switch any track switches. If this behaviour
can be reached in a reasonable time, the system is called fail-safe. In practice these kind of
systems provide a high degree of error-detection to be able to reach the safe state. There exist
special devices which help to monitor the state of the system. For example, a watchdog is such
a device, where the system under control has to send a life-signal in a fixed period of time. If
the system does not send this signal, the watchdog assumes that the system has failed and forces
the necessary steps to bring the system to a safe state. It is important to note that reaching the
safe state is desirable from a safety standpoint, but it is a system state that is undesirable from
a availability prospective. A simple safe state is shown in figure 3.12. Even if the cable breaks,
the system is in a safe state, because the system gets turned off.

Figure 3.12: A simple example for a safe state

In contrast to railway systems, where a safe state can be identified (with the exception of a failure
in a tunnel where the tunnel itself influences the overall safety), there exist systems where this

50

Safety

safe state does not exist. For example if the fly-by-wire system in an (already flying) aircraft fails,
it does not make sense to stop the system. These kind of systems have to provide a minimum of
operation to guarantee safety to its users, which is the reason why they are called fail-operational.

3.4.2 Requirements in Different Safety-Related Standards

According to EN 50129 [CEN03] there are three requirements that shall be satisfied for safety-
critical systems:

• Evidence of quality management

• Evidence of safety management

• Evidence of functional and technical safety

The evidence that these requirements are satisfied should be provided in a Safety Case. It is
not the aim of this thesis to provide such a Safety Case, it will be determined if the Linux
community, and in general the Open Source community provides methods that can satisfy the
strict requirements of safety-related standards. A discussion can be found in section 3.4.2.1.

Appendix A of the standard EN 50128 [CEN00] contains different tables that provide information
how important different requirements are for different Safety Integrity Levels. There are five
different types of importance which are summarized in table 3.7, which can be found in the
appendix of the corresponding standard. A discussion of the mandatory requirements can be
found in section 3.4.2.2.

Table 3.7: Different types of importance for different safety integrity levels [CEN00]

Importance Description
M This symbol means that the use of a technique is mandatory.
HR This symbol means that the technique or measure is Highly Recom-

mended for this safety integrity level. If this technique or measure
is not used then the rationale behind not using it should be detailed
in the Software Quality Assurance Plan.

R This symbol means that the technique or measure is Recommended
for this safety integrity level. This is a lower level of recommendation
than “HR” and such techniques can be combined from part of a
package.

- This symbol means that the technique or measure has no recom-
mendation for or against being used.

NR This symbol means that the technique or measure is positively Not
Recommended for this safety integrity level. If this technique or
measure is used then the rationale behind using it should be detailed
in the Software Assurance Plan.

51

Safety

3.4.2.1 EN 50129 Evidence of Quality Management

EN 50129 [CEN03] provides a list of example aspects that should be considered for appropriate
quality management for safety-critical systems. The following list is a selection of these aspects
with a short explanation how the Linux community satisfies this requirement (with a reference
to the relevant chapter in this thesis).

• Organisational structure: The structure of the Linux development team is hierarchic and
there is a small group of high qualified decision makers (Section 2.4.2 and figure 2.9).

• Quality planning and procedures: The code quality is ensured by the development model
itself. There are multiple levels of reviews until code is included in an official released kernel
(section 2.4.2).

• Handling and storage: As shown in section 2.4.3, the Linux (and Open Source) community
has developed professional tools that make it possible to handle the kernel code in a com-
fortable way. In addition, the code handling system (git) guarantees code integrity, which
is important in the context of safe and secure systems.

• Inspection and testing: There are different levels of inspection and testing in the Open
Source development model. First of all Linux kernel code has to pass multiple levels of
authorities where the code gets inspected by different maintainers. Remember the persons
in charge for a file (file maintainers) or for a sub-architecture (sub-architecture maintainers)
from section 2.4.2. On the other hand there exist several dedicated projects for kernel level
testing. For example the Linux Test Project (LTP), which was presented in section 2.5.

• Non-conformance and corrective action: Linux and most GNU/Linux distributions provide
sophisticated methods to deal with this mentioned “corrective actions”. As shown in sec-
tion 2.4.4, there are different branches of the kernel itself. A system designer has the chance
to choose a stable tree of code. If there are bugs, the designer does not have to choose a
newer version because that could violate the compatibility, he or she can stay in the same
tree and gets fixes for it. These are the kernel releases with four digits (a.b.c.d), named the
stable tree.

• Quality monitoring and feedback: By the open source nature of the kernel, developers get
much feedback from their users. There are different ways how a user can give feedback to the
developers. General discussion can be done on the kernel mailing-lists [28]. Bug submission
can be done via mailing-lists, too, but there are at least two different ways. The suggested
way [20] is to contact the specific developer that is involved with this issue. As seen in
section 2.4.2, there is a maintainer for every single file. The third way of submitting bugs is
to use Bugzilla [4] [43]. Bugzilla is a tool that helps managing software development. It is
installed on a web-server and provides a simple web interface for submitting bugs. Bugzilla
has shown that it is suitable to support huge software projects and it is used by various
projects and companies like Mozilla, Gnome, KDE, Apache, Open Office, Red Hat, Novell,
and the NASA.

• Documentation and records: The kernel package includes a set of documents which describe
the functionality of individual kernel parts. The documentation can be found in a directory
called “Documentation” in the top-level directory of the kernel sources. At the moment the
documentation contains over 900 individual documents.

52

Safety

The two other requirements (“Evidence of safety management” and “Evidence of functional and
technical safety”) are dependent on the purpose of the safety-critical system. These requirements
cover the system or sub-system as a whole and it does not really make sense to pick one component,
the kernel or even the whole operating system, because the overall safety is influenced by much
more components. The overall safety includes hardware, too. For example a less safe software
component can be tolerated if adequate design decisions have been kept in mind, like TMR or
N-version programming.

3.4.2.2 EN 50128 Mandatory Requirements for SIL4 Applications

The standard EN 50128 provides a list of requirements that are necessary for SIL4 systems. A
discussion which of them are fulfilled by the kernel Linux follows. Refer to table 3.8 for a list of
mandatory requirements and their aim according to appendix B of the corresponding standard.

Table 3.8: Mandatory requirements for SIL4 applications [CEN00]

Mandatory Requirements Aim or Requirement
Modular Approach Decomposition of a software system into small

comprehensible parts in order to limit the com-
plexity of the system.

Design and Coding Standards To ensure a uniform layout of the design doc-
uments and the produced code, enforce egoless
programming and to enforce a standard design
method

Functional/Black-box Testing No further comments in appendix B [CEN00]
Performance Testing A suitable set of techniques shall be chosen ac-

cording to the software safety integrity level.
Data Recording and Analysis To record all data, decisions and rationale in the

software project to allow for easier verification,
validation, assessment and maintenance.

Compliant with EN ISO 9000-3 Self explaining
Company Quality System No further comments in appendix B [CEN00]
Software Configuration Management Software Configuration management aims to en-

sure the consistency of groups of development
deliverables as those deliverables change.

Impact Analysis To identify the effect that a change or an en-
hancement to a software system will have to
other modules in that software system as well
as to other systems.

Before examining the requirements in detail, it should be mentioned that it is not enough, if these
strict requirements are fulfilled only by the kernel, the system is much more than a kernel. Even
if some aspects of the requirements are not fulfilled by the kernel at all, the system itself can
be safe if other adequate methods like diverse programming or fault tolerance are applied. It is
out of the focus to provide these strategies for a whole safety-critical system, therefore it is only
examined how Linux, the kernel, applies to the requirements of the standard.

53

Safety

The approach that is taken for Linux development is in deed modular and fulfils the first require-
ment. As mentioned in chapter 2 the kernel is developed in an open and distributed way, which
is the nature of Open Source. It simply makes sense to break the challenge of kernel development
into smaller challenges. Remember that the development is organized in a hierarchic way. There
are encapsulated classes of sub-architectures like USB, Firewire, Networking, and so on. That
makes it much easier for developers - even if they are new to kernel development - to concentrate
on their special field of interest. For example, someone that wants to improve the networking
stack, does not have to be familiar with the Firewire stuff. Another indication for the modular
approach is the concept of kernel modules. If it is possible to deactivate code or even whole
subsystems and activate them at runtime, it is a indication of a working modular approach.

Design and coding standards are defined by kernel developers, too. There is a document in the
kernel tree (/usr/src/linux/Documentation/CodingStyle) that describes the preferred coding
style, which is different from the GNU coding standards. The following list contains a few selected
rules from the former mentioned document.

• Tabs are 8 characters wide.

• Indentation of 8 characters.

• Multiple statements should not be on the same line.

• Statements longer than 80 columns should be broken into smaller parts.

• Opening braces should be put on the same line as the statement (Kerninghan and Ritchie
style).

• Enforcement of short but descriptive variable names.

• Functions should be short and do one thing. Typical size of two 80x24 screens. If they are
complex, it is okay if they are longer.

• Local variable count of about 5 to 10.

• Comments should explain what a function does and why, but not how. This enforces that
the function code is easy to read and easy to understand.

Kernel-level testing projects have been presented and discussed in section 2.5. The LTP pro-
vides a modular and extensible framework for black-box testing. In addition code coverage
analysis can be done with the tools from the LTP. The autotest project provides sophisticated
methods for the second requirement, namely functional testing. The results can be found on
http://test.kernel.org.

There are two major projects for performance testing. The first one is the former mentioned
autotest project, the second one is the kernel-perf project.

Data recoding and analysis is given because all kernel data, in the sense of source code, is recorded
on the kernel homepage [27]. Even the source code of the first kernel release (version 0.01) is
available on this project page. For newer kernel releases someone can use git, which was described
in section 2.4.3. Git makes it easy to check out a specific tree or version of the kernel tree. Besides
from that, the history is logged in the git commit-logs.

54

Safety

Compliance to EN ISO 9000-3 and the company quality system are requirements that are out of
focus here. The question if the company quality management is sufficient can not be answered
in a general manner, because it depends on the specific safety-critical system and on the specific
company and its quality system.

According to appendix B of the standard, Software Configuration Management means the record-
ing of the production of every version of every “significant” deliverable [CEN00]. For example
such a significant component is a kernel module or a kernel sub-system. The whole life-cycle of
such a component, in principle of every source code file, is recorded in its git history. It is easy
to compare two different versions of such a source code file. Additionally the commit log files
(man git-log) provide information which changes happened during the component’s life-cycle.

Concerning the impact analysis and its consequences as described in appendix B of the standard,
the history of Linux has shown that the kernel community can successfully deal with this dynamic
process. In this context the verification is done by the kernel developers them self and in addition
by the former mentioned testing tools. Appendix B of the standard describes the following
decisions:

• Only the changed module to be reverified: This is the most common case, because the
kernel module is encapsulated in a sub-architectures. Therefore the usual case is that a
change in one component does not effect a different sub-architecture. Of course, there are
interconnections that are sometimes difficult to identify, but during the history of Linux,
especially from version 2.4 to version 2.6, things changed to the better.

• All identified affected modules are reverified: There have been major changes in the kernel
architecture since the beginning of the kernel and they continue until now. For example the
integration of SMP forced major changes in the architecture, but history has shown, that
they were successful and therefore, that the way the kernel is developed is a healthy one.
The kernel gets verified by automatic testing tools, too.

• The complete system is reverified: Except from the early days there never was a situation
where the whole kernel has been rewritten from scratch. This would not be possible nowa-
days, because the kernel reached a enormous size and complexity. On the other hand, the
kernel is reverified as a whole while it is developed by the tools mentioned before, by the
developers, and by the users.

3.5 COTS

Section 3.5.1 gives a definition of the term COTS and examines their advantages. Section 3.5.2
analyses the existence of COTS in the context of GNU/Linux.

3.5.1 Definition of COTS

Nowadays developing software is a complex matter and writing whole operating systems from
scratch is impossible or it would lead to enormous costs. Therefore system designers try to reuse
components that are already tested, verified or even certified. This reused components (hardware
or software) are referred as COTS components. In the literature, the abbreviation COTS stands
for Commercial Off The Shelf or sometimes for Component Off The Shelf. An abbreviation that

55

Safety

should be mentioned in this context is SOUP which stands for Software Of Unknown Pedigree. In
the context of this thesis COTS is used as component off the shelf because the reuse of components
does not have to be a commercial one. There are several definitions what COTS means and which
attributes it has, like the following by Morisio and Torchiano [MT01]:

• Exists a priori

• Is available to the general public

• Can be bought, or leased or licensed

• The buyer has no access to the source code.

• The vendor controls its development.

• It has a non-trivial installed base.

Jones [JBFB01] defines the following characteristics of SOUP:

• SOUP already exists and cannot be re-engineered.

• It is generic and hence may contain functions that are unnecessary for the system applica-
tion.

• It is subject to continuous change. A mass market SOUP will evolve to meet customer
demands and to match the competition.

These assumptions lead to the following definition of COTS software for Free and Open Source
Software (FOSS):

• It exists a priori and can be re-engineered.

• It is available to the general public.

• The buyer has access to the source code.

• It is generic and hence may contain functions that are unnecessary for the system applica-
tion.

• is subject to continuous change.

The kernel Linux fulfils every point of this definition. On the other hand there are distributors
of GNU/Linux systems that do not fulfil all of them. For example some of them provide third
party tools which are not released as FOSS.

According to the paper “COTS, Integration and critical Systems” [Sta97], COTS components
have the following advantages:

• Reduces software development costs

• Reduced software maintenance costs

56

Safety

• Improved reuse

As it is known, developing software is an error prone process and therefore it does not make sense
to reinvent the wheel over and over again. This reinvention can be avoided if COTS components
can be used. This saves time and therefore development costs. A well defined COTS component
can be seen as a black-box with well defined interfaces and maintenance costs can be saved,
because the system designer has well defined interfaces to the component but the inner structure
can be hidden. An example for this is a software library which provides interfaces in the form of
class definitions. If there is a bug in the class, the developers can fix them, or they can improve
the performance of the class by implementing new algorithms but the external interface, the class
definition is still the same. If the component, software as well as hardware, is well designed it
can be used for different projects and this improves the reuse of COTS components.

On the other hand COTS components can have several disadvantages [DK97]:

• The potential for introducing systematic errors through component mismatch

• Meeting the obligations of the system safety case

Developing customized software is a process of specifying, implementing, and reviewing the system
under development. There is always some loss of information between the specification and the
resulting system. Sometimes the COTS component cannot be seen as a black-box, it has to
be seen in the context of the whole system. Uncoupling such a component can lead to several
problems. One famous example is “Test flight 501” from the Ariane 5 rocket in 1996. The
control software, which was successfully used in the Ariane 4 program, was reused but had a
malfunction in the context of the new Ariane 5 system which lead to a self-destruction after 37
seconds airtime [Lio96]. If a component is reused, the view of the system as a whole is lost, and
therefore the COTS-component has to be reviewed if it successfully fulfils the properties of the
new system.

The claims that a component is safe in the context of its safety case is based on the argument
that it is “sufficient tested and verified”. But this argument is valid in the context of the whole
system and does not have to be valid in the context of the new system where a component is
reused.

3.5.2 GNU/Linux Distributors and Their COTS Products

Several well known GNU/Linux distributors and their range of products are examined in this
section. The focus is on the attributes that are most important in the context of this thesis.
These criteria include the level of support from the distributor as well as the long term support of
the distribution. As seen in the previous chapters it is tedious to certify products and to design
systems that meet the high requirements for safety-critical systems. Therefore most safety-critical
systems have a relatively long operation period. Unlike the traditional consumer market, safety-
critical systems have decades of operation. It is difficult to find vendors that provide this long
support periods and if someone chooses such a vendor or product he or she should keep that in
mind. If the vendor does not offer this level of support, it is an important decision to take this
risk [Voa98]. “The Cost of COTS” [Tal98] describes an interesting way of solving this particular
problem. The customer can make an agreement with the vendor that at the end of the support

57

Safety

period, the customer gains access to the source code and can therefore support the product
himself. In addition to that, a special focus on products that are sufficient for safety-critical
systems will be set. For example, this will include the availability of products that have special
real-time features.

3.5.2.1 Red Hat

Red Hat offers a huge quantity of desktop and server products. The most important product in
this context is the “Red Hat Enterprise 5 Linux Server” which is available in a basic version and
a so called “Advanced Platform” version. The most notable enhancement is its higher level of
virtualisation. The advantages in the field of safety that may be gained through virtualisation will
not be examined here, but could be determining for the choice of the GNU/Linux distribution.

Red Hat offers different kinds of support-levels through a subscription. According to Red Hat [37]
they offer a duration of support for 7 years [38].

The general support includes:

• Product updates & upgrades

• Covered under the Open Source Assurance program

• Supported by leading ISV (Independent Software Vendor) applications

• Certified on leading OEM (Original Equipment Manufacturer) hardware

• Includes full suite of open source server applications, including: Apache, Samba, nfs, ftp,
Tomcat, MySQL, PostgreSQL and network servers

• Installation and documentation media kit - DVDs only (optional purchase)

• Does not include desktop applications

Depending on the chosen server version, Red Hat offers the following support:

• Web and phone-based comprehensive support, 24x7 coverage, 1 hour critical incident re-
sponse (4 hour normal), unlimited incidents, Red Hat Network Update.

• Web and phone-based comprehensive support, 5x12 coverage, 1 hour critical incident re-
sponse (4 hour normal), unlimited incidents, Red Hat Network Update.

• Web-based comprehensive support, 2 business day response, unlimited incidents, Red Hat
Network Update.

Security issues are treated by a Security Response Team, that investigates and verifies the issue.
After that, the team analyses which products are infected and what impact it causes on these
products. If a security update has to be done the team will create one which has a minimal
side-effect to the other services.

The update and management of a Red Hat system is done via a so called Network Update Module
which offers the following features [41]:

58

Safety

• Simple web user interface

• Priority email notification

• Errata information

• RPM dependency checking

The former mentioned support for 7 years is divided in three different periods. The first phase
is full support for 3 years, followed by a 3.5 year deployment support, and a 7 years maintenance
support. According to the Red Hat Enterprise Linux Errata Support homepage [39], the policy
is structured way table 3.9 presents.

Table 3.9: Red Hat’s errata policy

Errata Policy Start Date End Date Description
Full Support General Avail-

ability
3 years from
general avail-
ability

During the Full Support phase, new
hardware support will be provided at
the discretion of Red Hat via updates.
Additionally, all available and qualified
errata will be applied to the enterprise
products via updates (or as required for
security level errata). And finally, up-
dated ISO images will only be provided
during phase 1: Full Support.

Deployment
Support

3 years from
general avail-
ability (end of
full support)

3.5 years from
general avail-
ability

During the Deployment phase, all
available and qualified security and bug
fix errata will be applied to the enter-
prise products via updates. Security
errata will be released as necessary in-
dependent an update.

Maintenance
Support

3.5 years from
general avail-
ability (end
of deployment
support)

7 years from
general avail-
ability

Description: During the Maintenance
phase, only security errata and select
mission critical bug fixes will be re-
leased for the enterprise products.

In December of 2007 Red Hat made a formal product announcement of a product that supports
some kinds of real-time extensions. Red Hat was one force of Linux real-time enhancement for
several years. This product is called Red Hat MRG (Messaging, Real Time Grid) platform. The
core component is a real-time enhanced kernel that replaces the normal kernel of the Red Hat
Enterprise Linux product. If a company runs Red Hat certified products it is no problem to run
them on Red Hat MRG.

According to the product page of MRG [40], it provides these enhancements:

• A real-time kernel, which replaces the Red Hat Enterprise Linux 5 Kernel

59

Safety

• A set of configuration utilities designed to allow real-time tunign.

• A set of performance monitoring tools to allow real-time performance and be monitored
and provide information to support real-time tuning.

• Documentation, including information on how to tune a system for optimal latency.

The real-time enhancements are only in the kernel. The rest, like runtime environment, system
utilities, and glibc, is the same as in the Red Hat Enterprise Linux 5. The update and fix cycles
are the same as for Red Hat Enterprise Linux, too.

3.5.2.2 SUSE Linux

SUSE Linux [48] owned by Novell is one of the big players in the distribution business and offers
GNU/Linux distributions since the early nineties. Like Red Hat, the SUSE distribution uses rpm
for its package management. The most interesting product in the field of COTS is the SUSE
Linux Enterprise Server (SLES).

The administration of a SLES system is done by a set of tools that were designed by SUSE
and Novell special for the purpose of system administration. These tools are called YaST and
AutoYaST. YaST provides a graphical user interface (GUI) and a commandline interface for
remote administration. According to Novell YaST can be used for system installation, hardware
setup, network configuration, software and packages selection, and service setup. It is used to
configure and manage every aspect of the server. AutoYaST extends the concept of YaST in
the field of administering multiple servers. For example software can be installed on a range of
different servers in a simple way.

Novell offers a range of different support levels for their products. These range from standard and
priority subscriptions to premium services. The standard and priority support offers the level of
support shown in table 3.10.

Table 3.10: Standard and priority support for SUSE Linux

Property Standard Priority
Access 12x5 24x7
Maximum Target Response Time 4 hours 1 hour
Service Requests Unlimited Unlimited
SUSE Linux Enterprise Server Fundamentals Training (Course 3071) Included Included

Novell is the second GNU/Linux distributor examined in this thesis that offers a product with
the label “real-time” for time critical servers, which was even announced before Red Hat’s MRG.
The product is called SUSE Linux Enterprise Real Time [49] and according to the Novell’s web
page it is deterministic, has low latency, and runs on a variety of industry standard hardware
platforms. The description of the product includes safety-critical systems like “industrial control”
or “medical imaging systems”. Novell writes that “properly configured, SUSE Linux Enterprise
Real Time ensures that a user-level application can respond to an external event in less than 30

60

Safety

microseconds” [50]. Further Novell writes: “It is capable of running on a variety of industry-
standard hardware. Ideally, SMP machines (x86 of x86/64 architectures) run with at least one
dual-core CPU. Everything that is required for a real-time solution is included in the box. That
includes kernel modifications for real-time supporting user libraries, low latency node interconnect
infrastructure (Infiniband), additional documentation, and command-line performance and mon-
itoring tools”. According to the product’s web page the following main changes to a traditional
GNU/Linux system have been undertaken:

• CPU assignment and shielding: Processes that have special real time characteristics can
be assigned to a dedicated CPU or CPU-core. Shielding prevents non real time tasks from
interfering with real time tasks on such a dedicated CPU.

• SoftIRQ enhancements: If a devices raises an interrupt it is split into two parts. The first
part is handled at interrupt priority, which is always higher than the normal priority of the
process, and handles only the most critical aspects of interrupt-completion processing. The
second and not that critical part is deferred to ran at program level. This strategy makes
sense because the system can achieve better program scheduling latency by removing non-
critical processing from interrupt level. The second part of the interrupt routine is handled
by kernel deamons. Novell’s kernel patches allow tuning of these kernel deamons by the
administrator of the system. Therefore the administrator can set the priority of the kernel
deamons that fulfil the processing of the second part of the interrupt handling, which is de
deferred part. Therefore the administrator can set the priority to set the priority of the
deferred interrupt kernel deamon so that a high priority user process overrules the priority
of the deferred interrupt kernel deamon, which delivers a more deterministic response time
for the real time tasks that execute on this CPU.

• Priority inheritance: This is a modification to the kernel’s internal semaphore/mutex mech-
anism. In a traditional system a lower priority task can block a high priority task by not
releasing a resource (e.g.: memory, hardware resource), that the lower priority process al-
ready has under control. With the patches provided the former low priority process inherits
the high priority of the process that wants to get the resource until it releases it. Therefore
time is saved because the process that has now a higher priority will be executed in favour
of other lower priority processes. SUSE Enterprise Real Time includes a modified version
of the “glibc” (GNU C library) that extends the concept of priority inheritance to the user
space.

• High precision timers and process accounting: The POSIX kernel timer service has a res-
olution of about 40 milliseconds and it was replaced by a high precision timer that has a
resolution in nanosecond interval.

• Low latency connections: The product uses Infiniband [21] as a low latency node connection
which improves network connectivity and throughput.

3.5.2.3 Ubuntu Server

Ubuntu [53] is a relatively new GNU/Linux distribution which is based on the well known Debian
GNU/Linux distribution [6]. Debian GNU/Linux itself is one of the oldest Linux distributions
and known for its stable base systems. Therefore, it is one of the most used operating systems

61

Safety

for mission critical server systems. Ubuntu is known for its user-friendly desktop distribution but
provides a special flavour with the focus on server systems.

The Ubuntu community provides these different distributions (see table 3.11 for details).

Table 3.11: Ubuntu GNU/Linux products

Ubuntu Flavour Version Support
Desktop Ubuntu 8.04 LTS Supported to 2011
Server Ubuntu 8.04 LTS Supported to 2013

The version number contains the release date of the distribution in the numbering scheme
YEAR.MONTH. Therefore Ubuntu 8.04 was released in April (04) in the year 2008 (8). The
term LTS means Long Term Support which is provided for 3 years for the desktop version and 5
yeas for the server edition.

Ubuntu is a community based distribution and updates and security fixes are provided by the
Ubuntu development team. As known from Debian, Ubuntu uses apt-tools to manage software.
Apt reads a special file (/etc/apt/sources.list) and according to its settings, it creates a new
database of available packages. For example it is possible to stay at the stable packages which
were provided during the release and only make updates to these packages if there are security
fixes. For details examine the documentation of apt or the corresponding man-pages. Updates
can then be applied in a simple way:

r e s y n c h r o n i z e the package index
$ apt−get update
i n s t a l l the newest v e r s i o n / s e c u r i t y f i x e s
$ apt−get upgrade

As mentioned before, Ubuntu is a community based project, but it features a high professional
hierarchy of developers in several different structures. The communication is done in traditional
ways, like IRC-channels or mailing-lists. On the other hand Canonical Ltd. created a new tool
which is called launchpad [24] that provides a platform for communication and development of
free software. For example it is possible to submit and trace bugs or work and discuss important
issues in a software project (e.g. the release cycle of a product).

The structure of the development team and there rights is shown in table 3.12.

This is only a list of the most important rights the corresponding developers have. For a complete
list, please take a look at the Ubuntu wiki-page [35].

Canonical offers a commercial support for Ubuntu Server and Desktop systems. The support is
provided via phone, e-mail or web for a duration of one year. There are two different options, one
9x5 support and a 24x7 support. Both include live phone support, e-mail support, free updates,
and security updates.

62

Safety

Table 3.12: Ubuntu developers

Ubuntu Developers What do they do? Which rights do they have?
Prospective Developers Starting point for new developers. Work with an developer

or core developer as sponsor and mentor. Give reviews and
feedback. Interact with MOTU (member of the ubuntu-
dev team in Launchpad). Can become developers.

Ubuntu Developers (MOTU) Members of the ubuntu-dev team in Launchpad. Upload
and updating of packages. Contribution to the core devel-
opers. Provide guidance for prospective developers. Par-
ticipate in technical discussions.

Ubuntu Core Developers Members of the ubuntu-core-dev team in Launchpad.
Strong knowledge of the Ubuntu project procedures, con-
taining releases and support commitments. Have a history
of substantial contributions to the distribution. Sense of
personal responsibility for the quality of the distribution.

3.5.2.4 Gobuntu

As it is discussed in chapter 4, it is a benefit for developers of COTS systems if the underlying
components are free software. This makes it easier to certify a product, because the developers
have access to the source code and can alter it according to their needs. Therefore it is important
to examine if there is a GNU/Linux distribution that strictly uses free software. For example,
many of of the commercial distributions include proprietary firmware or proprietary drivers. From
a safety standpoint it is difficult to argue that these third party software conforms to the specified
safety assumptions.

There exists a relatively new project which is Gobuntu [16] and can be used as a base for the
development of COTS components. According to the project it follows the definition of the
four freedoms introduced by the Freesoftware Foundation (refer to section 2.1 for details). The
project is related to the Ubuntu project and uses the same concepts like apt-tools for package
management. The Gobuntu wiki [17] mentions the following advantages of its distribution, where
the last one is the most interesting for safety-critical systems:

• Someone likes Ubuntu technically, but is concerned about his/her freedom.

• Someone is a system administrator at an organization, which has a commitment to use only
free software.

• Someone runs a system with high security requirements, allowing only software with source
code available to be used.

• Someone is choosing parts for a commercial hardware platform. He/She wants to make sure
that his company has access to all necessary bits of code so they are able to support their
product in future.

In this case the last statement should be extended that it is easier for this platform to get certified.

63

Safety

Recent news show that the future of Gobuntu is uncertain because there is too less interest
in the community. Fortunately the standard Ubuntu distribution offers a “Free Software only”
installation nowadays.

64

4 Related Work

There are several papers that deal with Linux and COTS for safety-critical systems. The focus is
laid on a discussion of papers that are relevant in the context of GNU/Linux, safety, and COTS.
The first two sections deal with individual papers (section 4.1 and 4.2), whereas section 4.3
concentrates on specific topics relevant in the context of this thesis.

4.1 Preliminary Assessment of Linux for Safety-Related Systems

The paper “Preliminary assessment of Linux for safety related systems” from Ron Pierce [Pie02]
is about the possible use of GNU/Linux for safety-critical systems. To sum up, he concluded
that Linux may be feasible for SIL3 applications and cannot be used for SIL4 ones. This paper
was written in the year 2002 and Linux has undergone some important changes which were not
known at this time when Linux 2.4 was up to date. For example, this includes enhanced real-
time capabilities and a notable different development and quality management model introduced
during kernel 2.6 (see chapter 2 and the following discussion). Ron Pierce came to his conclusions
by examining the potential of Linux from a vanilla1 Linux (kernel) in version 2.4. Kernel version
2.6 brought a lot of extensions and new features that have been already discussed in the previous
chapters, or will be discussed later in this chapter when a specific lack of a feature is claimed.
The improvements of non-vanilla kernel projects like RT-Linux should have influence on the
conclusions, too.

On page 11 Ron Pierce writes: “There is, as far as this study has been able to determine,
no single definitive work which describes the services provided by Linux [. . .]”. This is not
true because Linux conforms to the POSIX specification and therefore the services that Linux
(the kernel) provides are specified. On the same page Ron Pierce writes about POSIX that
“it is regarded as the lowest common denominator of Unix systems and does not provide some
commonly used functions such as the communications socket concept which is the means of
providing network communication protocols (in particular, the Internet protocol IP and higher
layers such as TCP and UDP)”. This cannot be seen as a counterpoint for Linux, because if
the safety-critical application does not need these services, there exists no problem. Imagine
an embedded system that does not need socket communication. The whole subsystem can be
disabled from the kernel at the kernel configuration step. This has the advantage that there does

1The term vanilla refers to that kernel that can be downloaded from www.kernel.org without any special patches.
This is the stable mainline version released by Linus Torvalds.

65

Related Work

not exist unused/dead code in the final kernel binary. If a subsystem is disabled it will not be
part of the resulting binary.

On page 14 Ron Pierce writes about temporal partitioning according to [Rus99] and concludes:
“Temporal partitioning is therefore rather weak in Linux”. This is not true because there exist
interesting projects which deal with this issue. Of course, temporal partitioning is very important
for real-time applications and systems, therefore most of the interesting ideas come from this
part of the Linux community. For example RT-Linux [45] uses a small real-time kernel that
coexists with the standard Linux kernel. According to Yodaiken [1], in RT-Linux a simple real-
time executive runs a non-real-time kernel as its lowest priority task. On the other hand there
exists RTAI [44] [BBD+00], which is another Linux real-time approach that guarantees temporal
partitioning of applications and it is successfully used in real-time critical systems like TTA [KB03]
(Time Triggered Architecture), which uses TTP [Gro04, KG93] (Time Triggered Protocol).

On page 16 Ron Pierce writes that most if not all SIL4 applications have hard real-time behaviour
defined and that “the conclusion reached is that Linux is not suitable for HRT (hard real-time)”.
This conclusion is questionable because Linux has support for many features that are enforced
by real-time critical systems. For example Linux supports a second timer system besides the
traditional kernel/timers.c. This high resolution timer (hrtimer2) subsystem brought various
advantages for applications that use nanosleep, POSIX-timers and itimer interfaces. The hrtimer
subsystem was verified according to POSIX-timer tests in practice. As mentioned before, RT-
Linux can be used (and it is) for real-time critical applications. According to Victor Yodaiken [1]
from the New Mexico Institute of Technology, the interrupt latency on a 486/33MHz PC was
measured well under 30 microseconds, which is close to the hardware limit. On the other hand the
main kernel line introduced real-time features over the past years. For example the official kernel
2.6.18 introduced priority inheritance support to prevent priority inversions, and extensions to the
generic interrupt handling layer across all architectures which enable predictable and consistent
performance in Linux [3].

On page 17 of Pierce’s report he writes: “There appears to be no defence against a peripheral
system or device which is generating an excessive interrupt rate, which is the main way in which
an operating system can be overloaded”. This can be avoided in the way RT-Linux handles
interrupts because interrupts are only forwarded from the RT-Linux kernel to the normal kernel
if there are no real-time tasks.

In the chapter “Assessment of Linux provision” Ron Pierce writes: “In particular there is no
direct provision of accurate watchdog timers which will take action if a process has not re-
sponded within a given deadline”. Linux provides support for hardware and software watchdogs.
This support can be enabled via Device Drivers -> Character Devices -> Watchdog Cards.
Various hardware watchdog cards are supported. On the user side the behaviour for shutdowns
or reboots can be controlled via a watchdog deamon [46]. A /dev/watchdog is created and it
is possible to monitor processes, therefore Ron Pierce’s argument does not hold. For example
if someone wants to monitor the Apache (web-server) process, it can be done by the directive
pidfile = /var/run/apache2.pid. The watchdog program has other interesting features, too.
For example it is possible to monitor network interfaces, memory-usage or maximum-load sce-
narios. Even the fitness of a network host can be monitored. If a problem is examined there are
different methods of handling them. There are the traditional ones like shutdown or reboot, but
a repair binary can be specified, too. Most of them are shell-scripts which can be used to restart
a failed service.

2/usr/src/linux/Documentation/hrtimers/hrtimers.txt

66

Related Work

On page 27 Ron Pierce writes that “Linux systems will require the attention of a system admin-
istrator”, and as an example for it he uses the removal and archiving of old log files. As this
might be true in general, there are differences in detail. GNU/Linux is used for several embedded
projects where administration is not required. For example digital video recording set-top device
like TiVO [51], Relook [42], and Dreambox [8] [Gäb06] use GNU/Linux and it does not require
administrative interaction. A second example is the use of GNU/Linux in network routing devices
from Linksys [14]. If the router is configured according to the users needs, no further interaction
or administration is necessary. Of course, these systems are not used in a safety-critical context,
but these examples show that GNU/Linux based systems do not necessarily need this adminis-
trative attention claimed by Pierce. In addition there exist tools which automate the process of
archiving and rotating log files. There exists a tool named logrotate, which is able to automate
this process. According to its configuration the program archives the old log file at a point in
time, creates a new log file and if it is required, the program sends a signal to the program which
owns the log file. Besides from that, old log files are removed.

In the chapter “Testing” on page 40 Ron Pierce writes: “Another problem is that the testing
carried out to date by the LTP and others generally is black box or requirements based rather than
white box or structural testing. The extent of code coverage of the tests is therefore unknown”.
As presented in section 2.5 and according to the LTP project page [30], LTP does provide tools
which can be used for code coverage analysis, therefore the situation changed to the better. In
the same chapter Ron Pierce writes that operating system testing is different form application
testing in several ways. In general he is absolutely right, but there have been enormous efforts
during the last years which make it much more comfortable (or at least possible) to test Linux.
For example there is a project called User Mode Linux (UML) which makes it possible to run
Linux (the kernel) as a normal user-mode process inside a GNU/Linux system [Dik06]. This
makes debugging for developers much easier. If the kernel fails (often referred as “the kernel
panics”), it is only a normal process that fails but there is no need to endanger the whole system,
which uses a stable kernel as its base. There is a second project, the FAU-Machine [HWS04],
which provides simple methods for injecting faults into the kernel that runs in a virtual machine.

4.2 COTS Components in Safety-Critical Systems

The paper “COTS components in safety-critical systems” [Kri02] was written by Linda Kris-
tiansen in 2002 and is about the use of COTS components in safety-critical systems and what
makes it difficult to use them.

There is an interesting assumption in the abstract of the paper. Kristiansen writes, “COTS
components are hence black boxes to their users, and the greatest concern about the component
is not what you know it can do. The things you do not know that the component is capable
of are far more difficult to handle”. While this is an important argument that holds most of
the time, because as it is known, in most cases the ’C’ in COTS implies that the source code
of the component is closed and not known because companies have commercial interests and do
not provide source code. On the other hand Open Source software has the advantage that the
source is known and therefore someone with the ability to read and understand this source code
knows perfectly well what this component is capable. In this case the development model used
by the GNU/Linux community has an advantage over the traditional closed source ones. This
conclusion is also made by Kristiansen because on the next page she writes: “The problem of

67

Related Work

lack of insight into the programming code present in most COTS components could be avoided
by using Open Source Software”.

On page eight Kristiansen writes that “the other prospective of unfamiliarity is that the software
developers may have insufficient knowledge about the problems the system is supposed to control.
They lack the knowledge of the specific industry area”. Linux kernel development is done by well
known programmers who have a long experience in the field of safety-critical applications. Many
of those programmers work for companies that are known for the development of safety-related
software.

On page 12 Kristiansen writes that COTS components have a wide range of users who provide a
large test base. This argument holds because it is a simple equation that the more users, in this
case testers, a component has, increases the possibility of finding errors. Especially in the market
of embedded systems, Linux has a broad user and developer base. The main arguments for Linux
for embedded systems was its portability and the reduced costs of a COTS component. Most of
the embedded devices that run a Linux kernel or parts of the GNU/Linux system do not have
safety-critical requirements like internet routing devices or Linux powered smart phones, but the
area of safety-critical applications and devices can benefit from the huge amount of Linux users
and developers in the sector of non critical embedded systems. That is the same conclusion that
Kristiansen makes in her paper when she writes “Since many have used the product, the likelihood
of undetected errors is small”. According to her and to Boehm [BA99], frequent product updates
can have drawbacks, because commercial vendors typically provide only support for the newest
release which forces users to upgrade to a component that is not that well tested. This is an
interesting statement and it perfectly makes sense in the field of commercial products, because
commercial vendors or vendors of proprietary software tend to encourage their users to update
and upgrade, because that is the way they make money. This argument holds in the field of some
well known GNU/Linux distributions (see section 3.5.2), because the distributors want to make
money. In defence, it should be mentioned that most of these distributors offer special long term
support where they provide critical updates but do not force someone to use a complete new, and
therefore untested version. It is very difficult to distinguish where a software patch only corrects
a software bug without interfering with safety assumptions and where the component has to be
re-validated. In general, the field of Free and Open Source (FOSS) COTS has a big advantage
over the traditional commercial ones. There is nobody that would force a developer to upgrade
and as long as there is interest in a component, it will be developed. This can be explained
on the example of the Linux kernel series 2.4. The mainstream development nowadays is done
in the series 2.6, but the old one is still important and interesting for developers of embedded
systems because, the hardware requirements for the old series is much lower than for full featured
2.6 kernels. As it is known, kernel development is done by the paradigm of Open Source and
therefore nobody tries to force someone to the newer 2.6 series. If the kernel would be proprietary
software the older kernel tree would not exist nowadays. So there is a market for the older tree,
because of its lower hardware requirements and therefore it is still not forgotten. Of course, the
update cycles are very long, but still new versions of the 2.4 kernel are done. And the long release
cycle does not implicitly mean that that it is dead code, it is a sign that the code is stable, too.

The advantage of the Open Source paradigm is shown on page 15 where Kristiansen writes
“COTS components often appear as black boxes the developers have to deal with. This black-
box association is what causes the problem”. Further she writes “thus, the developer of a safety-
critical system can analyse his work, but where COTS components are involved the reasoning
becomes weaker, since he cannot argue for the internal functions of the COTS component”.
COTS components that follow an Open Source development model have two main advantages

68

Related Work

to the former quoted arguments. First of all the developer is able to review, test, and maybe
certify the code of the COTS component because he or she does not need to treat the component
as a black-box because the code is available. The second advantage is that this code review is
already done by other developers which use the same component. Of course, someone has to
be careful with this assumption, but the probability for it is much higher than for a traditional
COTS component. This is kind of an extension to the former mentioned argument that the more
people use a COTS component the less errors will be undetected. The more people have the
possibility to review code, the more it will be reviewed and therefore errors should be found even
faster.

On page 16 Kristiansen is very sceptic that COTS components should perform critical operations.
She shows a figure similar to figure 4.1 to demonstrate her conclusion.

Figure 4.1: Event chain for safety-critical systems with COTS components

The figure shows states from A to E where the states A and B are non critical because they always
have a safe state as its predecessor. According to Kristansen state C should not be controlled
by a COTS component because it can lead to the unsafe system state E. The argument for this
decision is the following: “The reason for advising against the use of COTS in this situation is
that the COTS component is more difficult to control than custom written code would be in
this situation”. While this makes sense from Kristiansen’s point of view, it does not hold if the
COTS component would have been a FOSS component because FOSS COTS components are
not categorical more difficult to control than their self written counterparts.

On page 27 Kristiansen writes that white-box testing is not effective and often not possible with
most COTS components. As described in section 3.3.2, white-box testing has several advantages
that give much more confidence than other testing approaches like black-box testing. Kristiansen
is right that white-box testing is difficult and for proprietary components it is impossible to do
white-box testing, but in the context of Open Source COTS components, it is very well possible.
Therefore the Open Source paradigm can solve the problem and gives the designer the power to
do proper and sufficient testing of the system or component.

When Kristiansen writes about fault injection she is right when she is sceptic that it is applicable
for traditional COTS components. One solution is to alter the output of a component on its
output interface and use this output (with the injected faults) as input for a second component.
This simple method of fault injection can be done for Open Source COTS components too, but
there exist much more powerful alternatives to this approach. A simple but powerful method

69

Related Work

is provided by the gdb [12] (The GNU Project Debugger). This tool can execute programs and
run them step by step. The gdb offers traditional debugger features like setting breakpoints and
changing and displaying the values of variables. The gdb is able to execute debugging scripts,
which makes it a perfect tool for fault injection. Kernel level fault injection and debugging is
much more complicated than traditional software debugging, but there exist several tools which
support Linux kernel developers. First of all there exists a special tool that is similar to the gdb
which is named kgdb [29] (Linux Kernel Source Level Debugger). On the other hand several forms
of virtualisation can help with kernel level debugging and fault injection. There exists a special
project which is designed for Linux fault injection which is the FAU Machine [HWS04]. One of
the most used projects for fault injection is User Mode Linux [55] which lets someone execute
the kernel as a normal process in the user mode. A project that was recently integrated in the
mainstream kernel is lguest [25] [Rus07], which provides similar features as User Mode Linux but
is much more light weight.

On page 52 Kristiansen has several doubts on FOSS components, because she writes: “Another
possible problem with OSS is the rapid change in the components. The OSS components are
under constant change, because there are many developers working to improve them in one way
or another. Some of the official versions of the components contain errors or bugs, and these
errors will not be corrected until users describe them, and someone contributes a version where
the problem has been fixed”. In general bugs are only fixed if someone provides a fix for them, that
is the nature of bug fixing and not a FOSS problem. Bug fixing in the Open Source community
is even superior than in the traditional software developing models. For example, most know
examples of the Microsoft Windows operating system or the Microsoft Internet Explorer where
bugs have not been fixed for a very long period. Besides from the enormous number of security
related bugs that exist for these two products, the Open Source community is faster in fixing
bugs. Concerning major Open Source products a fix for a bug exists hours after the reporting
of the bug itself. For example take a look on famous Open Source projects that are stable and
secure even if there are hundreds of developers. Consider the Apache web-server, the Linux kernel,
the Samba server, or the Firefox web-browser. All of them are developed by a huge number of
programmers and they are known as stable products. Of course it is hard to compare security
and safety, but developing secure products is a difficult task and it shows that the Open Source
development model can provide secure software. In fact it is not a problem of the development
model, it is a problem of quality management and this quality management works very well in
the Open Source software world.

On the same page Kristiansen writes: “Therefore, you wish to use OSS components in safety-
critical systems, it would be wise not to use a young version of a product (typically in the range
of versions 1.1 to 2.9), and instead aim for the more mature versions”. That is a good and
universally valid advice, but what Kristiansen writes about version numbers is not true. There
exist lots of tools that have version numbers below 2.9 and are rock stable and mature. Some of
them are developed for decades and have not reached a version number above 2.9. For example
the Linux kernel is at version 2.6, or the old stable 1.x tree of the Apache web-server series is
still used on lots of servers nowadays. Most of the GNU tools have very low version numbers,
like the GNU grep command which is at version 2.5 or the GNU man system which is at version
1.6. There are many ways how the individual projects give there version numbers, but there is
no general advice. And there is a reason why these products have relative low version numbers.
It is because the developers do not need to raise the version number for marketing reasons. For
FOSS software developers it does not make sense to call their newest product “XP” or raise the
first digit of the version by every minor bug fix.

70

Related Work

4.3 Further Important Work

The previous sections discussed individual papers whereas the following sections concentrate on
major important topics in the context of Linux in safety-critical applications.

4.3.1 Linux and Real-Time

As mention in section 4.1 the real-time capabilities of Linux sometimes get criticized. At the time
when Ron Pierce wrote his paper (Linux 2.4.x), there were in deed some shortcomings in this
part of the kernel. But the kernel series 2.6 brought some inventions that make the kernel much
more real-time fit. There exist so called rt-preempt [RH07] patches that help the kernel in several
ways. First, the patches allow that the kernel is preempted in nearly all sections with a few
exceptions. It is obvious, that the possibility to preempt the kernel helps the overall timing of the
kernel. The second important invention was the inclusion of high resolution timers (hrtimers).
The combination of these two things give the Linux kernel hard real-time behaviour [36].

To support this claim some companies recently made all kinds of latency tests. One test was done
by Alexander Bauer [Bau07] where he examined the real-time capabilities on a PowerPC and on
an ARM board. His results are summarized in table 4.1 and table 4.2.

Table 4.1: Cyclictest on MPC5200 (PowerPC) and PXA270 (ARM)

Cyclic Test PPC (266 MHz) PPC (400 MHz) ARM (260 MHz) ARM (520 MHz)
Idle 60 µs 45 µs 550 µs 450 µs
Under stress 120 µs 95 µs 600 µs 550 µs

Table 4.2: Interrupt latency (IRL) on MPC5200 (PowerPC) and PXA270 (ARM)

IRL PPC (266 MHz) PPC (400 MHz) ARM (260 MHz) ARM (520 MHz)
Idle 9 µs 8 µs 85 µs 70 µs
Under stress 11 µs 10 µs 112 (max. 260) µs 90 (max. 150) µs

A team of ABB AS Robotics and ABB Corporate Research made Linux real-time capability
tests [MSR07], too. The team used the following hardware:

• Custom made for ABB and based on the Lite5200 evaluation board from Freescale.

• Freescale processor MMPC5200B, which is an embedded PowerPC processor based on the
MPC603e Core.

• 750 MIPS running at 400 MHz

• 64 MB DDR SDRAM and 32 MB Flash

71

Related Work

Table 4.3: Write Latency Test [MSR07]

Latency Min Max Avg Jitter
Idle 457.136 µs 539.530 µs 499.508 µs 82.394 µs
Under stress 439.285 µs 537.075 µs 494.517 µs 97.790 µs

Table 4.4: Read, Write, and Interrupt Latency Test [MSR07]

Latency Min Max Avg Jitter
Idle 263.800 µs 434.458 µs 296.240 µs 79.658 µs
Under stress 266.043 µs 364.067 µs 286.358 µs 98.024 µs

The results of the benchmarks that were run on Linux-2.6.21-rt3 kernel can be found in table 4.3,
and table 4.4. The situation under load was created with a tool called stress [47], and the defined
sleep time was 500 µs.

From these results ABB comes to the following conclusion: “During the course of this evaluation
we have validated and benchmarked certain real-time performance parameters in the context
of paint robots. The results are optimistic and the prospects are bright for the future with
Linux” [MSR07].

There is a second important point that shows the advantage of Linux over other, more traditional
used, real-time operating systems: “The ability to be able to run a real-time application on the
same processor as other standard applications is a winning combination. This is really what
favours Linux as a real-time operating system compared to other dedicated real-time operating
systems” [MSR07].

4.3.2 Linux, Safety, and COTS

As it has been worked out in this thesis there is a lot of progress in Linux kernel development
and some main points of criticism have been removed or at least progress has been made. The
paper “Linux for Safety Critical Systems in IEC 61508 Context” [Gui07] written by the Linux
kernel developer Nicholas Mc Guire shares most of the arguments that have been presented in
this thesis and he summarizes it in the following way:

• Advances in the kernel software life-cycle

– Introduction of subsystem maintainers

– Developer branches and arch branches for early testing of features (i.e. arm.linux.org.uk)

– Well defined experimental tree (-mm) and the introduction of the merge-window

– Early testing in the release candidates (-rcX)

– Long term road-maps for feature introduction (i.e. RT-preempt is being merged in
steps since early 2.6.x)

72

Related Work

• High-level management elements introduced in 2.6 - beyond LKML

– Annual kernel summit for strategic decisions

– Domain specific groups (i.e. CELinuxForum Architecture Group for consumer elec-
tronics)

– Auditing introduced for critical API (i.e. raw spin lock usage)

– Change-log management

– Improved maintenance of kernel specific information (i.e. lwn.net, kerneltrap.org,
changelogs)

• Testing and validaton

– Critical resources include built-in tests (i.e. RCU torture test, lock-dependency val-
idator), especially in 2.6.x the development of built-in tests have resulted in detection
of a large number of bugs without that these ever struck in the field.

– Linux Test Project (LTP) providing a high-level test-coverage of the Linux kernel
providing roughly 30000 test of the Linux OS (ltp-20070831).

– Crackerjack - kernel code coverage test-suite (crackerjack.sf.net)

– http://test.kernel.org - Autotest is a framework for fully automated testing of the
latest Linux kernel release - published online and available to the public.

– POSIX test-suit

A relatively new organization, where Nicholas Mc Guire is involved, is the Open Source Automa-
tion Development Lab (OSADL). Their goal is to promote the usage of Open Source software in
the context of machine and plant control systems and to help to meet the demand of the automa-
tion industry [33]. There are several ambitious projects on the roadmap which cover the most
important aspects of this thesis. The focus in on two major aspects of Linux. The first one is the
real-time aspect and the second one is the certification of Linux. Driven by kernel programmers,
members of the industry, and by academic members, this project has the likelihood to push Linux
in the longed for position. The following OSADL projects [33] focus on the contents of this theses:

• Implement real-time capabilities in the mainline Linux kernel

• Prepare mechanism to allow for the certification of the Linux kernel

• Provide a compatibility layer to use RTDM-based (Real-Time Driver Model) drivers under
RT-Preempt

• Support the development of the KVM (kernel-based virtual machine) in such a way that
running a guest system does not interfere with the real-time capabilities of the host system.

• Provide support for real-time Ethernet boards to the Linux kernel

• Add real-time Linux support for Coldfire (68knommu) to RT-Preempt

73

5 Improving Linux for Safety-Critical
Applications

The previous chapters have shown an appraisal of the current status of Linux and the GNU/Linux
operating system. The following sections give two examples how to improve features of Linux to
make the kernel more suitable for safety-critical applications. It is important to note that these
examples are showcases that demonstrate the possibility of improving, testing, and extending
the Linux kernel or features of it. Section 5.1 provides a fully automatic test-suite for in-kernel
RAID-1 systems, also known as “Software-RAID”. Section 5.2 shows the implementation of a
wrapper file system that implements a layer of safety over already existing file systems.

5.1 A Test-Suite for Kernel Level RAID-1 Systems - raid1test

Raid1test is a test suite of programs and scripts that test a RAID (Redundant Array of Inex-
pensive Disks) level one environment. For testing the RAID system two computers running the
GNU/Linux operating system are needed. RAID systems by them self do not provide any safety
relevant features so it is important to explain their context for safety critical systems. RAID (level
one) improves the availability of a system by writing data that is written to a special device to
two, or more, physical hard drives. If one disk stops operation the system is able to read the data
from the second one and can continue to operate. Therefore, as said before, RAID improves the
availability but not the safety in the traditional sense. But availability can be part of the safety
argumentation and availability is part of safety in real world systems. For example, a plane that
is in the air cannot switch to a state where it stops all of its operation, which can be possible in
other systems. If the plane would stop the operation it would crash. In such a system availability
is part of the safety argumentation. For example, if the system is designed in a redundant way,
one part can adopt the operation of a failed part. RAID-1 provides this redundancy on hard disk
level and should be considered in the context of safety.

As stated before, RAID improves the availability and in many cases the safety, but RAID level
one has one important problem that is crucial in a safety relevant context. RAID-1 mirrors data
to multiple disks and can mask a disk failure by reading from functional disks, but it does not
have an ability to check if two data sets are equal during read. Therefore, if one disk does not fail
completely, but sends malicious data, the whole system is in trouble, which is shown in figure 5.1.
One disk sends a bad block of data, which is shown in red, but the whole RAID system is affected

74

Improving Linux for Safety-Critical Applications

by one disk. RAID 1 reads data from different disks to improve the read speed of the RAID
system.

Figure 5.1: Read from RAID-1 with one malicious hard disk

The conclusion is that RAID systems have the ability to improve safety, but there is something
missing, a check if the data is consistent during read. Section 5.2 will provide a possible solution
for this matter.

The first step in helping RAID-1 to be relevant for safety-critical systems is to test the current
status of RAID-1. Only if someone can be sure that the underlying, existing RAID infrastructure
in the Linux kernel is working according to the specification, additional steps can be taken to
improve the safety of RAID-1.

This section concentrates on RAID-1 testing, whereas section 5.2 shows safety relevant improve-
ments for file systems.

5.1.1 Implementation

To make raid1test a full featured, automated test suite a combination of hard- and software
was needed. Section 5.1.1.1 describes the hardware parts of the test suite and section 5.1.1.2
concentrates on the software side of the test suite. The first task was to find a set of test cases
which test all the relevant features of a RAID-1 system. The Linux Test Project [32] specifies a
test plan for RAID-1 systems which was used as a guideline for this project.

5.1.1.1 Hardware

The first thing noted from the test plan was that there has to be a solution to switch on and off
hard disks to simulate failed disks. To run the tests in an automated way, this has to be done
by the test suite itself. It is not an option to manually switch on or off the power of a hard disk.
The solution was to split the test suite into a server and a client part. The server, called master,
is the head of the system that delegates orders to the client (slave node) and keeps log of the

75

Improving Linux for Safety-Critical Applications

current test and the state of the test suite. This server can physically switch off hard disks of
the client via a special hardware device that is controlled by a kernel module. The kernel module
controls output pins of the computer’s parallel port which turns on or off relays. These relays are
connected to the current line of a hard disk. A schematic of the test suite is shown in figure 5.2.

Figure 5.2: Schematic of the test suite

The relays switch the power lines of the hard drives and simulate a breakdown of a hard disk.
The schematic of the circuit is shown in figure 5.3.

Figure 5.3: Schematic of device that turns off and on hard disks

76

Improving Linux for Safety-Critical Applications

5.1.1.2 Software

The test suite has the following features, that will be discussed later in this section.

• Test suite has a client/server architecture.

• TCP/IP socket communication between client and server.

• Client can be forked to background.

• Full automated testing without manual interaction. This is provided by special hardware
(section 5.1.1.1) and by distribution specific start-up scripts.

• Tests use strong checksums (SHA1) to verify the integrity of files.

The server keeps track of all events, which has two major advantages. The first one is that the
client can reboot itself, which is necessary for several tests, without being affected to know in
which state the client was before the reboot. After an reboot the client initiates a connection to
the server and the server tells the client which test, or which part of a test, has to be done. There
is a second advantage of this architecture, which is even more important. It is always better to
trust a second, independent node (the server), than trusting the node that is under test.

Client and server communicate via standard UNIX sockets, which has the advantage that the
ordinary Ethernet hardware can be used. The communication is separated from the client and
server implementation in a communication API. This API is used by the server and the client
to communicate to each other and to log the communication. Listing B.1 shows the header file
(communication.h) of the communication API. The source is documented with doxygen [7] and
gives an overview of the communication API.

As an example for the implementation of a communication function, the next listing (listing 5.1)
shows the source code of make_socket which is used to create a new socket.

Listing 5.1: Source code for making a new socket

1 /∗ ∗
2 ∗ @ b r i e f C r e a t e a new s o c k e t
3 ∗
4 ∗ The f u n c t i o n c r e a t e s a new INET s o c k e t on a s p e c i f i e d p o r t .
5 ∗
6 ∗ @param p o r t The s o c k e d i s bound t o t h i s p o r t a d d r e s s .
7 ∗
8 ∗ @re tu rn S o c k e t f i l e d e s c r i p t o r i n c a s e e v e r y t h i n g i s okay .
9 ∗/

10 int make socket (u i n t 1 6 t port)
11 {
12 int sock ;
13 struct sockaddr in name ;
14

15 /∗ C r e a t e t h e s o c k e t . ∗/
16 sock = socket (PF INET , SOCK STREAM, 0) ;
17

77

Improving Linux for Safety-Critical Applications

18 i f (sock == −1)
19 {
20 per ro r (f u n c) ;
21 e x i t (EXIT FAILURE) ;
22 }
23

24 /∗ Give t h e s o c k e t a name . ∗/
25 name . s i n f a m i l y = AF INET ;
26 name . s i n p o r t = htons (port) ;
27 name . s i n addr . s addr = htonl (INADDR ANY) ;
28

29 i f (bind (sock , (struct sockaddr ∗) &name , s izeof (name)) == −1)
30 {
31 per ro r (f u n c) ;
32 e x i t (EXIT FAILURE) ;
33 }
34

35 return sock ;
36 }

The function is called with one argument which is the port of the new socket. The socket call
returns a new socket file description. In this example it creates an IP version 4 socket (PF_INET)
socket that provides sequenced, reliable, two-way, connection-based byte streams (SOCK_STREAM,
man 2 socket). After that the structure name gets initialized with the protocol family (AF_INET),
the port of the socket and the internet address (sin_addr). The hton functions converts from
“host byte order” to “network byte order” (man htons). The next step is to call bind which is
the clue between the socket (sock) and the name. The bind function assigns a name to a socket
(man 2 bind). Before that, the socket exists, but has no name assigned. If everything is okay,
the function returns the file descriptor of the new socket, which is an ordinary integer variable.

The next implementation detail is that the client can be forked to the background which is a nice
way to let the client run as daemon. This can be used to start the client via GNU/Linux start-up
scripts, that are provided in the source code package. Running as daemon guarantees that the
whole test suite can be run fully automatic. For example, the server is started up and initialized
and then the client gets booted. Turing boot up the start-up script for the client is executed and
the client gets forked to the background. It connects to to the server (specified via internet name
and port in a configuration file or via command line arguments) and begins the communication
and testing. After an reboot, the client connects again and begins to run the remaining tests.

Listing 5.2: Source code to run the client as daemon

1 /∗ ∗ @ b r i e f Run programm a s daemon .
2 ∗
3 ∗ Thi s f u n c t i o n a l l o w s t o run t h e program i n backg round (a s daemon) .
4 ∗ I t c l o s e s unneeded f i l e d e s c r i p t o r s and f o r k s t h e p r o c e s s
5 ∗ t o t h e backg round .
6 ∗ I t c r e a t e s a l o c k f i l e and w r i t e s t h e PID t o i t .
7 ∗/
8 void daemonize (void)
9 {

78

Improving Linux for Safety-Critical Applications

10 int i , l o c k f p ;
11 p i d t pid ;
12 int p id l ength = 15 ; /∗ t h a t s enough ∗/
13 char ∗ s p i d = NULL;
14 i f (getppid () == 1) return ; /∗ a l r e a d y a daemon ∗/
15

16 pid = fo rk () ;
17 i f (pid == −1) /∗ f o r k e r r o r ∗/
18 {
19 per ro r (f u n c) ;
20 e x i t (EXIT FAILURE) ;
21 }
22

23 i f (pid > 0) /∗ p a r e n t e x i t s ∗/
24 {
25 e x i t (EXIT SUCCESS) ;
26 }
27

28 /∗ c h i l d (daemon) c o n t i n u e s ∗/
29 s e t s i d () ; /∗ o b t a i n a new p r o c e s s g roup ∗/
30

31 /∗ c l o s e d e s c r i p t o r s ∗/
32 /∗ f o r (i = (s y s c o n f (SC OPEN MAX) − 1) ; i >= 0 ; i −−) ∗/
33 for (i = (sy s con f (SC OPEN MAX) − 1) ; i > 1 ; i−−)
34 {
35 c l o s e (i) ;
36 }
37 /∗ keep s t d i n / s t d o u t open , we need them t o r e a d o u t p u t f rom
38 ∗ mdadm ∗/
39

40 umask (0 2 7) ; /∗ s e t newly c r e a t e d f i l e p e r m i s s i o n s ∗/
41 chd i r (RUNNING DIR) ; /∗ change r u n n i n g d i r e c t o r y ∗/
42

43 l o c k f p = open (LOCK FILE, ORDWR | O CREAT, 0640) ;
44 i f (l o c k f p == −1) /∗ c a n n o t open ∗/
45 {
46 per ro r (f u n c) ;
47 e x i t (EXIT FAILURE) ;
48 }
49

50 i f (f l o c k (l o ck fp , LOCK EX) == −1) /∗ c a n n o t l o c k ∗/
51 {
52 per ro r (f u n c) ;
53 e x i t (EXIT FAILURE) ;
54 }
55

56 s p i d = (char ∗) mal loc ((s izeof (char) ∗ p id l ength) + 1) ;
57 i f (s p i d == NULL)

79

Improving Linux for Safety-Critical Applications

58 {
59 per ro r (f u n c) ;
60 }
61 else
62 {
63 s n p r i n t f (s p id , p id l ength + 1 , ”%d\n” , ge tp id ()) ;
64 /∗ r e c o r d p i d t o l o c k f i l e ∗/
65 wr i t e (l o ck fp , s p id , s t r l e n (s p i d)) ;
66 f r e e (s p i d) ;
67 }
68

69 s i g n a l (SIGCHLD, SIG IGN) ; /∗ i g n o r e c h i l d ∗/
70 s i g n a l (SIGTSTP, SIG IGN) ; /∗ i g n o r e t t y s i g n a l s ∗/
71 s i g n a l (SIGTTOU, SIG IGN) ;
72 s i g n a l (SIGTTIN , SIG IGN) ;
73 s i g n a l (SIGHUP, s i g n a l h a n d l e r) ; /∗ c a t c h hangup s i g n a l ∗/
74 s i g n a l (SIGTERM, s i g n a l h a n d l e r) ; /∗ c a t c h k i l l s i g n a l ∗/
75 }

First the program checks if the parent process has a PID (process ID) equal to 1. If this is the
case the parent process is the init process. This process is the first processes started by the kernel
during boot up and has the PID 1. If the parent process has PID 1, the function returns because
it is already a daemon. The next step is to fork (man 2 fork) the process. Fork creates a new
process by duplicating the calling process. After the call, there exist two equal processes. The
return value of fork() determines in which process the following code will be executed. If the
return value is -1, an error occurred and the forking went wrong. If the return value is greater
than 0, it is the parent’s thread of execution. In this case exit() is called to end the program
and therefore the original process ends. The new process, the child, now takes several actions
which are necessary to run as daemon. First of all it calls setsid() to obtain a new process
group. This is necessary because processes inherit their group from the parent. A real daemon
should be unaffected by other processes and therefore it is a good practice to call setsid().

Daemon processes usually run with root-privileges and therefore someone should take attention
with which rights files get created. In this case the umask is set to “027” (man umask).

It is a good practice to run the server in a specific directory independent of the directory it was
started. This is done via the chdir() call.

To ensure that a daemon runs only one time, file locking is used. The first daemon locks a specific
file and when it terminates the lock will be released. This is done via a call to lockf(). As a
bonus the PID of the running process is recorded to this locked file. This makes determining the
PID easier for the administrator.

The rest of the function handles so called signals. Signals are used to communicate to a process.
For example if a user types “CTRL-C” the signal SIGTERM is sent to the process. If the process
has a signal handler it decides how to handle the signal. In his example the process ignores signals
from the child processes and terminal signals. Hangup and termination signals get handled by a
signal handler. For a list of signals and their meaning refer to man 7 signals.

The following list gives an overview about additional functions that the slave node provides. It
does not make sense to discuss every function in detail, therefore only a short overview is given.

80

Improving Linux for Safety-Critical Applications

The source code is available an documented, therefore it is up to the interested reader to get
further implementation details.

• print help: Prints information about command line options and arguments.

• signal handler: Handles signals passed to the programm (man 7 signals)

• daemonize: Run the program in background, as a daemon.

• reboot system: Takes care about clean up and reboots the system.

• read back data and check: Reads back data from the RAID and checks it.

• generate new data and check: Generates new data and checks it.

The most important functionality is the creation and verification of data, therefore the function
generate_new_data_and_check is shown in listing 5.3 and discussed afterwards.

Listing 5.3: Source code to generate and test files

1 /∗ ∗ @ b r i e f G e n e r a t e new data and c h e c k i t .
2 ∗
3 ∗ Thi s f u n c t i o n g e n e r a t e s new data and r e a d s back t h i s da ta f rom
4 ∗ t h e RAID1 sy s t em and t r a n s f e r s
5 ∗ t h e checksum t o t h e m a s t e r node .
6 ∗
7 ∗ @param s o c k f d S o c k e t f i l e d e s c r i p t o r t o w r i t e t o .
8 ∗ @re tu rn 0 i n c a s e t h e checksums a r e ok
9 ∗ and c o u l d be t r a n s f e r e d , e l s e −1.

10 ∗/
11 int generate new data and check (int sock fd)
12 {
13 int r e t v a l ;
14 char ∗ checksum read = NULL, ∗ checksum write = NULL;
15

16 /∗ g e n e r a t e new data ∗/
17 l og message (wr i te to , ” gene ra t ing f i l e s . . . ”) ;
18 r e t v a l = w r i t e f i l e s (t e s t d i r , f i l e c o u n t , byte count ,
19 &checksum write) ;
20 i f (r e t v a l != f i l e c o u n t)
21 {
22 s n p r i n t f (bu f f e r , BUFFER SIZE ,
23 ”%s : Could not wr i t e a l l f i l e s (%d/%d)\n” ,
24 cmnd , r e tva l , f i l e c o u n t) ;
25 l og message (wr i te to , b u f f e r) ;
26 return −1;
27 }
28

29 s p r i n t f (bu f f e r , ” checksum write : %s ” , checksum write) ;
30 l og message (wr i te to , b u f f e r) ;
31

81

Improving Linux for Safety-Critical Applications

32 l og message (wr i te to , ” read ing f i l e s . . . ”) ;
33 r e t v a l = c h e c k f i l e s (t e s t d i r , f i l e c o u n t , &checksum read , 0) ;
34 i f (r e t v a l != f i l e c o u n t)
35 {
36 s n p r i n t f (bu f f e r , BUFFER SIZE ,
37 ”%s : Could not read a l l f i l e s (%d/%d) . \ n” ,
38 cmnd , r e tva l , f i l e c o u n t) ;
39 l og message (wr i te to , b u f f e r) ;
40 f r e e (checksum write) ;
41 return −1;
42 }
43

44 s p r i n t f (bu f f e r , ” checksum read : %s ” , checksum read) ;
45 l og message (wr i te to , b u f f e r) ;
46

47 i f (strcmp (checksum write , checksum read) != 0)
48 {
49 s n p r i n t f (bu f f e r , BUFFER SIZE ,
50 ”%s : checksums d i f f e r !\ nwrite : %s \nread : %s \n” ,
51 cmnd , checksum write , checksum read) ;
52 l og message (wr i te to , b u f f e r) ;
53 f r e e (checksum write) ;
54 f r e e (checksum read) ;
55 return −1;
56 }
57

58 send message (SLAVE OK, sock fd) ;
59

60 /∗ w a i t f o r g e t checksum ∗/
61 r ead and log (bu f f e r , sockfd , wr i t e t o) ;
62 i f (strcmp (bu f f e r , M GET CHKSUM) != 0)
63 {
64 s p r i n t f (bu f f e r , ” Server sent wrong response in l i n e %d\n” ,
65 LINE) ;
66 l og message (wr i te to , b u f f e r) ;
67 f r e e (checksum write) ;
68 f r e e (checksum read) ;
69 return −1;
70 }
71

72 /∗ s end checksum ∗/
73 send message (checksum read , sock fd) ;
74

75 /∗ w a i t f o r g o t checksum ∗/
76 r ead and log (bu f f e r , sockfd , wr i t e t o) ;
77

78 /∗ now we can f r e e checksums ∗/
79 f r e e (checksum read) ;

82

Improving Linux for Safety-Critical Applications

80 f r e e (checksum write) ;
81

82 i f (strcmp (bu f f e r , M GOT CHKSUM) != 0)
83 {
84 s p r i n t f (bu f f e r , ” Server sent wrong response in l i n e %d\n” ,
85 LINE) ;
86 l og message (wr i te to , b u f f e r) ;
87 return −1;
88 }
89

90 /∗ t r a n s f e r s u c c e s s f u l checksums a r e f r e e d ∗/
91 return 0 ;
92 }

The function tries to generate new data (write_files) and stores the checksum of these files.
If the generation was successful and the data could be read from the RAID and the checksum
is still the same, the client sends the checksum in a readable string to the master node which
stores it. After that the RAID gets manipulated, for example a disk is turned off and a call to
read_back_data_and_check is done. This function reads back the files generated and sends the
checksum to the master. The master compares the two checksums and if they are equal, the
RAID worked as expected.

5.1.2 Configuration

Information about the basic installation of a RAID-1 system and the installation and configuration
of the raid1test test suite is given in this section. Both, the master and the slave node, need an
operating system that has the ability to compile software. All the further steps have been tested
on a Ubuntu GNU/Linux 8.04 LTS system with the latest patches and fixes available at writing
this document.

5.1.2.1 Hardware

First of all, someone needs two PCs, which will be called master, and slave from now on. The
master is the control node and does not need to have non standard hardware. As the slave, it needs
to have a network interface card (NIC) to communicate to the other node. The configuration of
the network will not be covered in this document, it is an assumption. If the master should be
able to switch off an on the hard disks in the slave node, then the master has to have a parallel
port and the hardware device described in section 5.1.1.1. The hardware configuration of the
slave node is a bit more sophisticated. It should have one hard disk with the operation system
on its own hardware channel (i.e. master on the first IDE channel) and two disks which form
the RAID array. It is important that the two disks in the RAID array have separate hardware
channels. If the two disk are on the same bus, the configuration will not work. For example if the
two disks are on the second IDE channel as master and slave (jumper settings), one failed disk
can bring down the whole bus and therefore the second disk will be unreachable, too. The Linux
documentation project describes this behaviour in the reconstruction section [52] of the software
RAID howto.

83

Improving Linux for Safety-Critical Applications

“Well, it [reconstruction] usually is [easy], unless you’re unlucky and your RAID has
been rendered unusable because more disks than the ones redundant failed. This can
actually happen if a number of disks reside on the same bus, and one disk takes the
bus with it as it crashes. The other disks, however fine, will be unreachable to the
RAID layer, because the bus is down, and they will be marked as faulty. On a RAID-5
where you can spare one disk only, loosing two or more disks can be fatal.”

This leads to a difficult situation, because the system-disk (with the operating system) needs
one separate channel, and the two raid disks need separate channels, too, which makes three
channels, but ordinary mother boards provide only two channels. This problem can be solved
with a PCI-card that provides additional channels.

Though the configuration of the software RAID on the slave node involves software tweaks, it
will be covered in this section. After installing the hard disks as described, and installing Ubuntu
on a seperate disk, it is time to configure the RAID itself. It is assumed, that the device nodes of
the RAID disks are known. An easy and fast way to get information about the disks is to read
the information dmesg provides and to scan the disks with fdisk. To get information about the
disks the command sudo fdisk -l /dev/sd[a-z] can be used. After that the individual disks
should get a reasonable partition table. The RAID management tool and the kernel can deal
with whole disks, but the following example provides information on creating one large RAID
partition on the device /dev/sdb.

1 $ # d e l e t e the o ld p a r t i t i o n t a b l e
2 $ sudo dd i f =/dev/ zero o f=/dev/sdb bs=512 count=1
3 $ # c r e a t e new p a r t i t i o n
4 $ sudo f d i s k /dev/sdb
5 Command (m f o r he lp) : n <enter>
6 Command ac t i on
7 e extended
8 p primary p a r t i t i o n (1−4)
9 p <enter>

10 P a r t i t i o n number (1−4): 1 <enter>
11 F i r s t c y l i n d e r (1−1016 , d e f a u l t 1) : <enter>
12 Using d e f a u l t va lue 1
13 Last c y l i n d e r or +s i z e or +sizeM or +sizeK (1−1016 , d e f a u l t 1016) : <enter>
14 Using d e f a u l t va lue 1016
15

16 Command (m f o r he lp) : t <enter>
17 Se l e c t ed p a r t i t i o n 1
18 Hex code (type L to l i s t codes) : fd <enter>
19 Changed system type o f p a r t i t i o n 1 to fd (Linux ra id autodetec t)
20

21 Command (m f o r he lp) : w <enter>
22 The p a r t i t i o n t a b l e has been a l t e r e d !

Most of this is self explaining but it is encouraged to read man fdisk or use the built in m
command. The second disk should have equal size and partitioning. An easy way to copy the
partitions from /dev/sdb to /dev/sdc is to use sudo sfdisk -d /dev/sdb | sfdisk /dev/sdc.

During the test of the RAID-1 array it was recognized, that switching disks on and off can
influence the internal order of the device nodes. To be on the safe side, it is a good idea

84

Improving Linux for Safety-Critical Applications

to map the hard disks to special unique names. This can be done with udev. The follow-
ing example assumes that disks are matched according to their model parameter, but every-
one is free to match the disks according to his or her preferences. To get information about
a disk the command sudo udevinfo -a -p $(udevinfo -q path -n /dev/sdb) can be used.
The information gathered can be used for custom udev rules. During the test the following
/etc/udev/rules.d/25-names.rules file was used:

1 KERNEL==”sd ∗” , SUBSYSTEMS==”s c s i ” , ATTRS{model}==”SAMSUNG SV2042H ” , SYMLINK+=”f i r s t r a i d d i s k%n”
2 KERNEL==”sd ∗” , SUBSYSTEMS==”s c s i ” , ATTRS{model}==”Maxtor 90431U1 ” , SYMLINK+=”secondra idd i sk%n”

This will create device nodes like /dev/firstraiddisk1 for the first partition of the disk that
matches the model string defined by the udev rule.

After this is done, the RAID is ready to be configured. This is done in two steps. First the raid
is created and then the new raid device gets a file system. It is assumed that the two disks have
proper /dev nodes.

1 $ # i n s t a l l mdadm i f i t i s not i n s t a l l e d
2 $ sudo apt−get i n s t a l l mdadm
3 $ # c r e a t e the RAID d e v i c e
4 $ sudo mdadm −−c r e a t e −−verbose /dev/md1 −− l e v e l =1 \
5 −−ra id−d e v i c e s=2 /dev/ f i s t r a i d d i s k /dev/ s e condra idd i sk

If it is planed to use a partition instead of the whole disk, /dev/firstraiddisk should be replaced
with /dev/firstraiddisk1 or similar to use a partition.

The second step is to create a file system on the devices, which is done the same way it would
be done for a single disk: sudo mkfs.ext3 /dev/md1. The RAID tool assumes that the RAID is
“dirty” and therefore it syncs the array. The progress can be checked on the command line with
watch -n1 cat /proc/mdstat. After that the RAID is ready for use. For example, it can be
mounted like an ordinary disk (mount /dev/md1 /raid).

The RAID tools monitor the array and try to find every disk and partition that can be used
as RAID device. During the test this was restricted to the special disks in use. The following
example shows the file /etc/mdadm/mdadm.conf.

1 # mdadm. conf
2 #
3 # Please r e f e r to mdadm. conf (5) f o r in fo rmat ion about t h i s f i l e .
4 #
5

6 # by de fau l t , scan a l l p a r t i t i o n s (/ proc / p a r t i t i o n s) f o r MD superb locks .
7 # a l t e r n a t i v e l y , s p e c i f y d e v i c e s to scan , us ing wi ldcards i f d e s i r e d .
8 #DEVICE p a r t i t i o n s
9 DEVICE /dev/∗ r a i d d i s k ∗

10

11 # auto−c r e a t e d e v i c e s with Debian standard permi s s i ons
12 CREATE owner=root group=di sk mode=0660 auto=yes
13

14 # automat i ca l l y tag new arrays as be long ing to the l o c a l system
15 HOMEHOST <system>
16

17 # i n s t r u c t the monitor ing daemon where to send mail a l e r t s
18 MAILADDR root
19

85

Improving Linux for Safety-Critical Applications

20 # d e f i n i t i o n s o f e x i s t i n g MD arrays
21 ARRAY /dev/md1 l e v e l=ra id1 num−d e v i c e s=2 \
22 d e v i c e s=/dev/ f i r s t r a i d d i s k , / dev/ s e condra idd i sk \
23 UUID=4330b429 : cd7aa906 : e368bf24 : bd0fce41

If this is done the RAID is set up and the raid1test test suite can be installed.

5.1.2.2 Software

In order to build software from source, someone has to have various build-tools, libraries, and a
compiler installed. On both sides, the master and the client, the build-essential package has
to be installed and the source code of the raid1test suite has to be present. The following listing
shows the steps that are necessary on both sides:

1 $ sudo apt−get i n s t a l l bui ld−e s s e n t i a l l i bgc rypt11−dev
2 $ mkdir ˜/ s r c
3 $ cd ˜/ s r c
4 $ # now copy the t a r b a l l to t h i s d i r e c t o r y b e f o r e proceed ing
5 $ l s
6 r a i d 1 t e s t −0 . 0 . 1 . ta r . gz
7 $ ta r −zxvf r a i d 1 t e s t −0 . 0 . 1 . ta r . gz
8 $ cd r a i d 1 t e s t −0.0 .1
9 $. / c o n f i g u r e

The libgcryt, which is used to generate and verify SHA1 checksums is needed by the slave, but
it is checked in the configure script, therefore it has to be present on the master and the slave
side. After running the configure script someone can type make, which will build raid1testmaster,
raid1testslave, and gives information about building the kernel module raid1test.ko. These three
components can be built individual as the following listing shows:

1 $ cd s r c
2 $ # b u i l d on ly the master :
3 $ make ra id1 t e s tmas t e r
4 $ # b u i l d on ly the s l a v e :
5 $ make r a i d 1 t e s t s l a v e
6 $ # b u i l d on ly the k e r n e l module :
7 $ cd kernelmodule
8 $ make

To build the kernel module the Linux kernel header files have to be installed. Select the package
that fits the kernel by typing sudo apt-get install linux-headers. The make command in
the kernelmodule directory provides extra information for creating the device nodes in /dev and
information on loading the kernel module. Read them very carefully.

To install the whole suite type make install in the root of the source code directory. Note that
only root can install software.

1 $ cd ˜/ s r c / r a i d 1 t e s t −0.0 .1
2 $ sudo make i n s t a l l

86

Improving Linux for Safety-Critical Applications

By default the raid1testmaster is configured to “manual mode”, which means that it will print
information to switch on and off hard disks and it will wait for confirmation, but the disks have
to be switched manually. If the special hardware device and the kernel module should be used it
is important to set a switch device (--switchdev) that is different from the keyword <none>.
Please read man raid1testmaster for more information.

The raid1testmaster has to be started before the raid1testslave is executed. There is a man-page
which describes the various options, or just run raid1testmaster --help

After running raid1testmaster it is time to run raid1testslave on the slave PC. There are several
possibilities like manually starting the program or let it run via init scripts. There are several
preconditions before running the binary:

• Network connection.

• raid1master has to be started.

• The RAID device has to be mounted

In order to mount the RAID at system start, a line can be added to /etc/fstab, that is similar
to the following (replace ’X’ with your RAID device, and /raid with the desired, existing mount
point).

1 $ vim / etc / f s t a b
2 /dev/mdX / ra id ext3 auto 0 0

After the raid is mounted it is a good idea to run raid1testslave --help or read the man-page.
An example program start may look like this, where “master” is the DNS name of the master
node:

1 $ r a i d 1 t e s t s l a v e −−name=master −−ra iddev=/dev/md1 −−t e s t d i r =/ra id \
2 −−di sk0=/dev/ f i r s t r a i d d i s k \
3 −−di sk1=/dev/ s e condra idd i sk −f 23 −m42

Note that the disk argument does not need to be a whole disk. If your RAID is configured to
use single partitions, then the options could look like this: --disk0=/dev/firstraiddisk1. The
former example tests the disks firstraiddisk and secondraiddisk in the RAID array md1 which is
mounted to /raid. The 23 files, each 42 MB in size, will be written to the root of /raid. The
name of the master can ether be a resolvable DNS name or an IP address.

After starting raid1testslave it connects to the master and runs the test cases. During this, the
system will be rebooted. The results will be prompted to stdout, or to a specified log file. If the
raid1testslave is started in the way that it writes its output to a log file, it is a good idea to use
tail to see what is going on.

To automate the whole testing process there are init scripts in the source directory which can be
used on Ubuntu and Debian systems. Just copy the example scripts to their right place and alter
the default configuration.

1 $ cd ˜/ s r c / r a i d 1 t e s t −0.0.1/ startup−s c r i p t s
2 $ cd debian ubuntu
3 $ sudo cp e tc / i n i t . d/ r a i d 1 t e s t s l a v e / e tc / i n i t . d

87

Improving Linux for Safety-Critical Applications

4 $ sudo cp e tc / d e f a u l t / r a i d 1 t e s t s l a v e / e t c / d e f a u l t
5 $ # change the d e f a u l t va lue s
6 $ sudo vim / etc / d e f a u l t / r a i d 1 t e s t s l a v e

After that raid1testslave can be started by typing sudo /etc/init.d/raid1testslave start.
If the daemon should be started at boot up, create the needed links by typing
sudo update-rc.d raid1testslave defaults.

5.1.3 Test Results

Each run of the test suite contained 6 tests that are documented in table 5.1.

Table 5.1: Description of test cases run by the suite

Test case Description
Test 1 Checks if RAID is up and working.
Test 2 Turn off disk 0. Read back and check data from previous test. Write

new data and check them while RAID contains only one disk. Turn
disk 0 on and reboot system.

Test 3 After the reboot from the previous test check RAID status. Read
back data and check it from previous test. Hotadd disk 0. Synchro-
nize the RAID array and wait until it is finished. Read back and
check data from synced RAID.

Test 4 Checks if RAID is up and working again.
Test 5 Turn off disk 1. Read back and check data from previous test. Write

new data and check them while RAID contains only one disk. Turn
disk 1 on and reboot system.

Test 6 After the reboot from the previous test check RAID status. Read
back data and check it from previous test. Hotadd disk 1. Synchro-
nize the RAID array and wait until it is finished. Read back and
check data from synced RAID.

Table 5.2 shows the test results of the raid1test test suite.

Table 5.2: Test results

Number of tests Number of files File size Passed Failed
20 50 2 MB 20 0
20 100 1 MB 20 0
20 20 5 MB 20 0
20 200 1 MB 20 0
20 200 2 MB 20 0

Sum 11400 18000 MB 100 0

88

Improving Linux for Safety-Critical Applications

Finally listing B.2 and listing B.3 show successful log files of the master and the slave node.

5.2 A File System for Safety-Critical Applications - tinysafefs

Tinysafefs is a wrapper file system which provides useful safety-related features for file sys-
tems that do not support them by them self. Tinysafefs does not claim to be ready for use in
safety-critical systems, it is more a proof of concept for the extendibility of Linux and the whole
GNU/Linux operating system.

Section 5.2.1 gives a short introduction to FUSE (Filesystem in Userspace), which provides a
simple API for writing whole file systems in the so called user space. Section 5.2.2 will discuss
the different modes that tinysafefs supports, section 5.2.3 will concentrate in the implementation
of such a file system, section 5.2.4 provides information on compiling the file system, and finally
section 5.2.5 shows a short test suite and its results.

5.2.1 FUSE

Tinysafefs is written with FUSE [9] which made the development fast and easy. According to the
homepage, FUSE provides the following features:

• Simple library API

• Simple installation (no need to patch or recompile the kernel)

• Secure implementation

• Userspace - kernel interface is very efficient

• Usable by non privileged users

• Runs on Linux kernels 2.4.X and 2.6.X

• Has proven very stable over time

FUSE has a library part and a kernel module which communicate to each other via a device file
(/dev/fuse). Figure 5.4 shows the structure of a file system call in FUSE.

5.2.2 Features

Tinysafefs has the following features which will be discussed in detail later in this section:

• Two disk mode with redundant writes and read checks

• TMR mode with fault masking and error correction

• Can be wrapped over different file systems as long as they are supported by Linux

89

Improving Linux for Safety-Critical Applications

Figure 5.4: Structure of a system call in FUSE (http://fuse.sf.net)

In every mode tinysafefs is mounted to a directory (for example /tmp/tinysafefs) and utilizes
two or three additional directories. To make sense, these directories should be mount points of
additional physical disks or if wanted whole RAID arrays.

One major design decision was the decision between checksums or redundant copies. Whereas the
approach with checksums has the major advantage that it does not cost as much space as writing
files a second or even third time, there are advantages of the approach of writing files multiple
times:

• Backups: Even if the file system cannot reconstruct data, maybe humans can do forensics.

• Only redundancy makes it possible to vote out and correct faulty data.

• To write a checksum of a file the whole file has to be read (compare md5sum), which would
make a file system horrible slow. If checksum computation would be done in background
this would compromise the safety arguments.

• Writing multiple times seams to be easier to implement in FUSE.

5.2.2.1 Two disk mode

In two disk mode every time data is written to the mount point of tinysafefs (/tmp/tinysafefs),
it is mirrored to two directories, and therefore to two disks (which are mounted on the directories
/disk1 and /disk2). For example, if somebody creates a directory in /tmp/tinysafefs, the file
system creates this directory on every physical disk. The following example demonstrates this
behaviour. Note that tinysafefs is wrapped over /tmp/tinysafefs and the two disks are mounted
on /disk1 and /disk2.

90

Improving Linux for Safety-Critical Applications

1 $ cd /tmp/ t i n y s a f e f s
2 $ l s
3 t e s t f i l e . txt
4 $ l s / d i sk ∗/
5 / d i sk1 :
6 t e s t f i l e . txt
7

8 / d i sk2 :
9 t e s t f i l e . txt

10 $ mkdir t e s t d i r
11 $ l s
12 t e s t f i l e . txt
13 t e s t d i r
14 $ l s / d i sk ∗/
15 / d i sk1 :
16 t e s t f i l e . txt
17 t e s t d i r
18

19 / d i sk2 :
20 t e s t f i l e . txt
21 t e s t d i r

This example shows that data that is written to /tmp/tinysafefs is mirrored to both disks
(/disk1 and /disk2).

If data is read from /tmp/tinysafefs, it will be read from both disks and only if the two disks
contain the same data, the file system will return this data back to the calling process. If the two
disks contain different data an error will be raised. This adds safety, because a malicious disk
cannot provide its malicious data. The following example shows how the file system reacts to non
equal data. First, a file is created and read back. After that, one copy of the file gets destroyed
and the file is read back again. This time the file system raises an error, because the files are not
equal any more.

1 $ cd /tmp/ t i n y s a f e f s
2 $ echo ” t e s tda ta ” > . / t e s t f i l e . txt
3 $ l s / d i sk ∗
4 / d i sk1 :
5 t e s t f i l e . txt
6

7 / d i sk2 :
8 t e s t f i l e . txt
9 $ cat . / t e s t f i l e . txt

10 t e s tda ta
11 $ echo ” des t roy i t ” > / d i sk1 / t e s t f i l e . txt
12 $ cat . / t e s t f i l e . txt
13 cat : . / t e s t f i l e . txt : No such f i l e or d i r e c t o r y

This behaviour adds safety because the application that reads data knows that something is
wrong and can take action to prepare a safe state. For example if the direction of a switchblade

91

Improving Linux for Safety-Critical Applications

is encoded as a bit value where ’0’ means “left” and ’1’ means “right”, a malicious hard disk that
provides inverted data could cause serious damage. On the other hand, if the data is read with
tinysafefs the application would read the error message and for example stop the train.

This behaviour of tinysafefs sounds like the reinvention of RAID-1, but this is not the case. RAID
does not provide any safety features. RAID systems do not read the whole data from both disks.
To improve read speed, parts of the file are read from one disk and other parts from an other
disk. This behaviour of RAID systems does not improve safety aspects.

5.2.2.2 Three disk mode

In three disk mode, tinysafefs has the ability to tolerate one faulty disk and in the best case it
can repair destroyed data. In every read cycle the date is read from three disks. After that,
these read buffers get compared and if at least two of them are equal the data will be returned
to the calling process. Tinysafefs uses TMR (Triple Modular Redundancy) and votes two out of
three. If all three read buffers have a different view, an error will be raised. If tinysafefs works in
correction mode, it tries to write back the correct data to the faulty file.

The following example shows tinysafefs in three disk mode with enabled correction.

1 $ cd /tmp/ t i n y s a f e f s
2 $ echo ” t e s tda ta ” > . / t e s t f i l e . txt
3 $ l s / d i sk ∗
4 / d i sk1 :
5 t e s t f i l e . txt
6

7 / d i sk2 :
8 t e s t f i l e . txt
9

10 / d i sk3 :
11 t e s t f i l e . txt
12 $ cat . / t e s t f i l e . txt
13 t e s tda ta
14 $ echo ” des t roy i t ” > / d i sk1 / t e s t f i l e . txt
15 $ cat . / t e s t f i l e . txt
16 t e s tda ta
17 $ cat / d i sk1 / t e s t f i l e . txt
18 t e s tda ta
19 $ echo ” des t roy i t 1” > / d i sk1 / t e s t f i l e . txt
20 $ echo ” des t roy i t 2” > / d i sk2 / t e s t f i l e . txt
21 $ cat . / t e s t f i l e . txt
22 cat : . / t e s t f i l e . txt : No such f i l e or d i r e c t o r y

The most important part is the second and third call of cat. The second one shows that one
faulty file can be tolerated and the third one that the data gets corrected on /disk1.

5.2.3 Implementation

As stated before, tinysafefs is written with the help of FUSE (section 5.2.1). FUSE itself provides
different programming language bindings. These bindings include C, C++, perl, python, and

92

Improving Linux for Safety-Critical Applications

several more. To make the file system as fast as possible, the choice to write it in C was obvious.
To get the most out of the file system, the difference between two disk mode (section 5.2.2.1) and
three disk mode (section 5.2.2.2) was done with C pre-processor #define constructs. On one hand
this makes the code a bit more difficult to read, on the other hand this avoids additional CPU
cycles for checking if-then-else statements. If -statements have to be checked every time, whereas
#define statements are resolved during compile time by the pre-processor. For file systems it is
better to get the most out of the kernel and the hardware and make the code a bit more difficult
to read for the programmer.

FUSE provides a skeleton which maps file system calls to user defined functions, which is imple-
mented via a struct. To get the idea a few example mappings are shown in listing 5.4.

Listing 5.4: Mapping of file system calls to functions

1 stat ic struct f u s e o p e r a t i o n s t i n y s a f e o p e r = {
2 . g e t a t t r = t i n y s a f e g e t a t t r ,
3 . a c c e s s = t i n y s a f e a c c e s s ,
4 . r e add i r = t i n y s a f e r e a d d i r ,
5 . mknod = tinysafe mknod ,
6 . mkdir = t inysa f e mkd i r ,
7 . un l ink = t i n y s a f e u n l i n k ,
8 . rmdir = t iny sa f e rmd i r ,
9 . rename = t inysa fe rename ,

10 . chmod = tinysafe chmod ,
11 . chown = tinysafe chown ,
12 . t runcate = t i n y s a f e t r u n c a t e ,
13 . open = t inysa f e open ,
14 . read = t i n y s a f e r e a d ,
15 . wr i t e = t i n y s a f e w r i t e ,
16 } ;

In the rest of this section some of these functions will be discussed. Most of them are straight
forward and follow the easy paradigm to do the ordinary operation a second or a third time to
provide the former discussed redundancy. One of simplest functions is the one that is used to
create new directories. The prototype and arguments of the functions are given by FUSE itself.
The programmer’s job is to fill this prototype with code that makes sense. Listing 5.5 shows the
code for making redundant directory entries. Code enclosed between #ifdef TMR and #endif is
executed if the file system is in three disk mode.

Listing 5.5: mkdir function of tinysafefs

1 stat ic int t i ny sa f e mkd i r (const char ∗path , mode t mode)
2 {
3 int r e s ;
4

5 r e s = mkdir (path , mode) ;
6 i f (r e s == −1)
7 return −errno ;
8

9 path += mount d i r l ength ;
10 GETPATH(backup dir) ;

93

Improving Linux for Safety-Critical Applications

11

12 r e s = mkdir (sec path , mode) ;
13 i f (r e s == −1)
14 return −errno ;
15

16 #ifde f TMR
17 GETPATH(backup dir2) ;
18

19 r e s = mkdir (sec path , mode) ;
20 i f (r e s == −1)
21 return −errno ;
22 #endif
23 return 0 ;
24 }

The macro GETPATH writes the backup paths (in the previous examples /disk1 and /disk2)
to the variable sec path (second path), and addes the remaining file name from the original path
variable. To keep the memory footprint small, sec path is reused for the third directory operation.
These are details and the most important thing to focus on is, that if there occurs a single mkdir
call, behind the scene multiple directories are created.

Most of the really interesting code is in tinysafe getattr (listing 5.6) and in tinysafe read(listing
5.7 and 5.8).

The function tinysafe_getattr is called to get information about the file before it will be
accessed. For example if a file is read, the getattr function will be called before the read function
is called. This function sets a status buffer (stbuf), which will be used by FUSE internally.
Therefore it is crucial that this status buffer is set to the correct values.

Listing 5.6: getattr function of tinysafefs

1 stat ic int t i n y s a f e g e t a t t r (const char ∗path , struct s t a t ∗ s tbu f)
2 {
3 int r e s ;
4 #ifde f TMR
5 struct s t a t s e c s t b u f ;
6 struct s t a t t h r d s t b u f ;
7 #endif
8

9 r e s = l s t a t (path , s tbu f) ;
10 i f (r e s == −1)
11 return −errno ;
12

13 #ifde f TMR
14 i f ((S ISREG(stbuf−>st mode)))
15 {
16 /∗ TMR check and vo t e f o r the r i g h t s t a t ∗/
17 path += mount d i r l ength ;
18

19 GETPATH(backup dir) ;

94

Improving Linux for Safety-Critical Applications

20 r e s = l s t a t (sec path , &s e c s t b u f) ;
21 i f (r e s == −1)
22 return −errno ;
23

24 GETPATH(backup dir2) ;
25 r e s = l s t a t (sec path , &t h r d s t b u f) ;
26 i f (r e s == −1)
27 return −errno ;
28

29 /∗ TMR−vo te ∗/
30 i f (stbuf−>s t s i z e == s e c s t b u f . s t s i z e)
31 {
32 i f (s e c s t b u f . s t s i z e == t h r d s t b u f . s t s i z e)
33 {
34 /∗ a l l e q u a l ∗/
35 return 0 ;
36 }
37 else
38 {
39 /∗ t runc t h i r d ∗/
40 GETPATH(backup dir2) ;
41 t runcate (sec path , stbuf−>s t s i z e) ;
42 }
43 }
44 else
45 {
46 i f (s e c s t b u f . s t s i z e == t h r d s t b u f . s t s i z e)
47 {
48 /∗ f i r s t f a u l t y ∗/
49 path −= mount d i r l ength ;
50 r e s = truncate (path , s e c s t b u f . s t s i z e) ;
51 i f (r e s == −1)
52 return −errno ;
53

54 /∗ r e s t a t the path ∗/
55 r e s = l s t a t (path , s tbu f) ;
56 i f (r e s == −1)
57 return −errno ;
58 }
59 else
60 {
61 i f (stbuf−>s t s i z e == t h r d s t b u f . s t s i z e)
62 {
63 /∗ t runc second ∗/
64 GETPATH(backup dir) ;
65 t runcate (sec path , stbuf−>s t s i z e) ;
66 }
67 else

95

Improving Linux for Safety-Critical Applications

68 {
69 return −ENOENT;
70 }
71 }
72

73 }
74 }
75 #endif
76 return 0 ;
77 }

First of all the file systems tries to stat all the copies of the file. After that it checks which stat
structures are equal and takes the necessary actions. If one of the backup copies is faulty the
function sets it size to the correct one, which is done via truncate. If the fist copy is faulty the
file system has to correct the size (truncate) and after this the stat structure has to be reread.
After this is done, the file itself and the backup files are prepared for further actions.

The most important function is the read function because there faults are masked and repaired.
This function is relatively long and therefore only the most important parts are shown in this
section. If the file system is in three disk mode, three file descriptors are opened and the content
of the file (with a given offset) is read to a buffer with pread. After that, all three buffers get
compared and a variable bufs ok is set according to the value of correct buffers. This variable can
be seen as a bit field where every buffer has its own place an value. These values are combined
with a boolean or. The following bit field shows the value of each buffer.

012

three two one
}

Buffers

For example, if buffers one and three are valid and the second one is faulty, bufs ok would get
the value 0x5, which is 0x4 | 0x1 . The corresponding source code is shown in listing 5.7.

Listing 5.7: Comparison of buffers in the read function

1 s t a t i c i n t t i n y s a f e r e a d (const char ∗path , char ∗buf , s i z e t s i z e ,
2 o f f t o f f s e t , s t r u c t f u s e f i l e i n f o ∗ f i)
3 {
4 . . .
5 . . .
6 . . .
7 /∗ compare b u f f e r s ∗/
8 i f (memcmp(buf , s ec bu f , s i z e) != 0)
9 {

10 r e s = −ENOENT;
11 }
12 #i f d e f TMR
13 e l s e
14 {
15 buf s ok |= (DISK0 | DISK1) ;
16 /∗ take one v a l i d r e s a l s f i n a l r e s u l t ∗/
17 r e s = r e s f i r s t ;

96

Improving Linux for Safety-Critical Applications

18 }
19 #e n d i f
20

21 #i f d e f TMR
22 i f (memcmp(buf , thrd buf , s i z e) == 0)
23 {
24 buf s ok |= (DISK0 | DISK2) ;
25 r e s = r e s f i r s t ;
26 }
27 i f (memcmp(sec bu f , thrd buf , s i z e) == 0)
28 {
29 buf s ok |= (DISK1 | DISK2) ;
30 r e s = r e s s e c ;
31 }
32 . . .
33 . . .
34 . . .
35 #e n d i f
36 . . .
37 . . .
38 . . .
39 }

The next code snippet (listing 5.8) shows how files are corrected if tinysafefs is in correction mode.
It is known which buffers contain the correct data (bufs ok) and therefore correction is relatively
easy. It is a switch statement which corrects the file that contains data that is not valid. The
main focus is safety, not availability, therefore the file system does not raise an error if the file
cannot be corrected.

Listing 5.8: Correction of files in the read function

1 . . .
2 . . .
3 . . .
4 switch (bu f s ok)
5 {
6 case (DISK0 | DISK1) : /∗ f i r s t , second ok , t h i r d broken ∗/
7 #ifde f TMRC
8 /∗ w r i t e to t h i r d ∗/
9 GETPATH(backup dir2) ;

10 th rd fd = open (sec path , OWRONLY) ;
11 i f (th rd fd != −1) /∗ t r y to c o r r e c t ∗/
12 {
13 r e s t h r d = pwrite (thrd fd , buf , res , o f f s e t) ;
14 c l o s e (th rd fd) ;
15 }
16 #endif
17 break ;
18 . . .

97

Improving Linux for Safety-Critical Applications

19 . . .
20 . . .
21 }
22 . . .
23 . . .
24 . . .

So data is corrected while it is read. During testing the file system, one test was to copy a mp3
file to the file system and start playing it. During playback one copy was destroyed and the file
system continued to return correct data because the faulty disk was voted out. During playback,
the third faulty copy was reconstructed with the correct data from the first two disks. After
playing back the first part of the mp3 file (before the destruction) the whole file on the third disk
was corrected. This has been checked with the program md5sum.

One important thing to notice in figure 5.4 is, that FUSE communicates to the VFS (Virtual
File System) which has a safety relevant advantage because someone gets diversity for free. If
someone does not want to lay his or her trust on one singe file system it is possible to circumvent
this problem with tinysafefs. Each disk can be formatted with a different file system as long as
Linux supports it. For example the first disk could be formatted with ext3, the second one with
reiserfs, and the third one with xfs.

5.2.4 Configuration

The steps to compile, mount, and unmount tinysafefs are described here. The first listing (listing
5.9) provides information on installing necessary tools for tinysafefs and the compilation of the
package itself.

Listing 5.9: Intalling tools for tinysafefs and compilaton

1 $ sudo apt−get i n s t a l l pkg−c o n f i g bui ld−e s s e n t i a l
2 $ sudo apt−get i n s t a l l fuse−u t i l s l i b f u s e−dev
3 $ mkdir ˜/ s r c
4 $ cd ˜/ s r c
5 $ # now copy the t a r b a l l to t h i s d i r e c t o r y b e f o r e proceed ing
6 $ l s
7 t i n y s a f e f s −0 . 0 . 1 . ta r . gz
8 $ ta r −zxvf t i n y s a f e f s −0 . 0 . 1 . ta r . gz
9 $ cd t i n y s a f e f s −0.0 .1

10 $. / c o n f i g u r e
11 $ make

This procedure compiles a binary called tinysafefs. This binary can be installed with make install
or it can be used directly from this directory. Information on mounting is provided if the binary
is called with --help as argument. An example mount is shown in listing 5.10.

Listing 5.10: Mounting tinysafefs

1 $ sudo modprobe f u s e # load the f u s e k e r n e l module
2 $ mkdir /tmp/ t i n y s a f e f s
3 $ # mount d i s k s to / disk1 , / disk2 , / d i s k 3 (not shown here) .

98

Improving Linux for Safety-Critical Applications

4 $ # mount t i n y s a f e f s
5 $ sudo . / t i n y s a f e f s /tmp/ t i n y s a f e f s −−backup=/di sk2 −−backup2=/di sk3 \
6 −omodules=subdir , subd i r=/di sk1
7 $ # w r i t e t e s t data to t i n y s a f e f s which w i l l mirror the data
8 $ sudo dd i f=/dev/urandom of=/tmp/ t i n y s a f e f s / test . bin bs=1M count=10
9 $ # unmount f i l e system

10 $ sudo fusermount −u /tmp/ t i n y s a f e f s

That data written to /tmp/tinysafefs is mirrored to the backup directories can be shown with
ls -l /disk*. To run further tests, the test suite which is shown in section 5.2.5 can be used.

5.2.5 Test Results

To test the functionality of the file system, a test suite written as a Bash shell script was developed
and executed several times.

First the user of the suite has to set the variables in the suite according to the paths and has to
set VARSSET to YES. If this configuration step is done the test suit can be executed as root. If it is
executed as lower privileged user, the test suite aborts. After this check was successful the user
can choose which tests should be executed.

The test functions are aware of the fact in which mode the file system is, because if the file
system is in two disk mode the shell script variable B2 is empty. The tests themselves are straight
forward if basic concepts of GNU/Linux and the command line are known. In general, the test
case creates a file and checks it with md5sum. Then the file is copied to the tinysafefs mount point
and there it gets manipulated. For example it gets overwritten with other data. To verify this,
the md5sum of the manipulated file is printed. After that, the file is reread from the file system
and the md5sum is calculated. If the new checksum is equivalent to the first checksum, tinysafefs
voted out the manipulated file. In all the other cases, the manipulated file is reset to the original
state. In the case of the TMR mode with correction enabled, the test function does not reset
the file, because the file has to be corrected by the file system itself. To test if the file system
responds with an error if all copies of the file are destroyed there is a test case which destroys
every single copy of the file. In this case tinysafefs responds with an error.

Listing B.4 shows a successful run of the test suite and the entries in the /var/log/syslog. As
it can be seen in the log file, the destroyed file was voted out, and because the file system was in
TMR mode with correction, the file was corrected on the read access.

Table 5.3 shows the test results for tinysafefs.

Mode Number of tests Passed Failed
two disk 50 50 0
TMR 50 50 0
TMRC 50 50 0
Sum 150 150 0

Table 5.3: Test results

99

6 Conclusion

The discussion about the possibility of using GNU/Linux in safety-critical applications will be
resumed and immersed in the following part of the thesis. The goal is to connect the theoretical
parts of the previous chapters and make a statement relevant for practical, real life safety-critical
systems.

The thesis started with an introduction (chapter 1), that gave a description of the problem. In the
modern world we live nowadays, mankind depends on a variety of technical, highly sophisticated
systems. To guarantee the safety of the environment and the safety of human beings, there are
claims that these systems have to fulfil. It is necessary that there is an independent layer that
guarantees that a system is safe, which is provided by standards. There are several companies
that provide special software for such safety-critical systems, but there is an alternative to this
proprietary solutions, which is the operating system called GNU/Linux. This operating system,
and its kernel Linux, is well known and used in thousands of desktop computers, servers and
embedded systems all over the world. Therefore, it is a natural question, if this operating system,
or parts of it, can be used for safety-critical applications and systems. As there are different
opinions on this issue the rest of the thesis dealt with this question.

To give an answer to the question if GNU/Linux and Linux can be used for safety-critical systems
some fundamental terms had to be clarified.

Chapter 2 dealt with the kernel Linux and the GNU/Linux operating system. This chapter started
with an overview what an operating system kernel is and what it has to do. It is the component of
an operating system, that is between the hardware and the applications that want to communicate
to this hardware. After providing a short overview about the history and the features of Linux,
the development of the kernel was examined. It is significant for the evidence that a software
component is ready for use in safety-critical systems, to trust the way it is developed. Therefore
different development models were compared and the chapter showed that the kernel community
uses sophisticated tools (section 2.4.3) for the development. The development team has a well
defined structure and hierarchy. Besides from that it follows a release cycle (section 2.4.4), that
helps to provide stable software.

Chapter 3 concentrated on the basic terms that are used for safety-critical systems. This declara-
tions were necessary to provide a stable base what the term safety means and to trace the outline
to terms like reliability, availability, and maintainability (section 3.2). The next section of this
chapter concentrated on an essential topic for safety-critical systems, which was testing (section
3.3). There the differences between several testing methods like black-box testing, white-box test-
ing, and fault injection were outlined. After that, the focus was laid on safety-related standards.

100

Conclusion

Section 3.4 discussed the differences between several standards and showed the requirements that
a system has to fulfil to get certified according to these standards. As GNU/Linux distributions
are components of the shelf, the discussion if COTS can be used for safety-critical systems was
given in section 3.5.1. After lining out what the term COTS stands for, an overview about existing
GNU/Linux components of the shelf was given in section 3.5.2.

After giving all the basics, chapter 4 discussed several related papers that deal with GNU/Linux
in safety-critical systems and COTS components for safety-critical systems. The main discus-
sion was laid out on two very sceptical papers, but it was shown that most of the arguments
can be extenuated or even disproved. Some arguments simply do not hold any more, because
the GNU/Linux, and especially the Linux kernel community made a huge progress in the right
direction. Some other arguments can be seen from another point of view, which lays much more
trust in the Open Source development model.

Chapter 5 demonstrated that it is easy to contribute to the GNU/Linux community and to help
it forward to become ready for safety-critical systems. The chapter contains two parts, where
the fist (section 5.1) tests RAID-1 systems via a client/server architecture test suite. With the
addition of a simple hardware component and a Linux kernel module it is possible to test RAID-1
systems in a realistic way. The second part (section 5.2) provided an extension for already existing
file systems. The tinysafefs adds a layer of safety that can be used directly by file systems on
hard disks or as a meta file system for RAID-1 systems. Both projects have shown that it is
relatively easy to test and to extend Linux kernel components. This showed that it is much easier
to improve FOSS components than proprietary ones.

As outlined in chapter 3 (section 3.4) a software component has to conform to safety-related
standards to be relevant for practical use. These standards have to be rigorous to ensure the safety
of the environment and the safety of human beings. Therefore, they force rules for developing
safety-critical software and safety-critical systems. Most of the standards seem to be written for
a traditional software developing approach, but on the other hand their terminology is generic
enough that someone certifying a component according to theses standards is not limited to one
unique approach. For example the standard EN 50129 [CEN03] contains phrases like “evidence
of quality management”, but it does not force a unique technique to achieve this goal. This is an
excellent approach which makes it possible to certify a component that was developed using an
unusual way.

To be successful, the Open Source community had to create new ways of working together from
all over the world. These methods are new and may seem to be unconventional, but they work
very well in practice. For example, git, the source code management tool of Linux, is a new and
extraordinary approach because it breaks with the traditional rules of centralized code repositories
and follows a decentralized design. The increased quality of the kernel since new approaches have
been taken, not only git itself, is an indication that quality management can be achieved with
new approaches. Git is just one little example which demonstrates the predominance of Free and
Open Source development. This can be seen from the lowest level, for example code management,
up to the highest level of GNU/Linux distributions. The aim of these examples is to show that
there is a major line in argumentation that connects Free and Open Source to the main question
in of this theses: “Is it possible to use GNU/Linux (and FOSS) in a safety-related context?” The
common thread that runs through the thesis is that Free and Open Source use different, high
sophisticated approaches to fulfil traditional goals. As it has been shown, the kernel community
does this very well, in most cases better than the traditional approaches. The FOSS development
model itself does not claim that it bears software that can be used for safety-critical systems, but

101

Conclusion

FOSS definitely supports the argumentation that software developed according to this model has
a higher chance to be major enough to be used for safety-critical applications. This is shown in
the practical part (chapter 5) of this thesis. If things are not adequate, just make them adequate.
Even if the tools and extensions presented in chapter 5 are not enough, and not enough tested
to be used in real world safety-critical systems, they show the strength of Free and Open Source
software.

One important thing to notice is that FOSS is not the holy grail, but it can be used for safety-
critical applications, even for applications that have a high safety integrity level. FOSS is not
a limiting factor for safety, it is a benefit. For example, this was shown in section 3.3.2 when
white-box testing was discussed. FOSS makes it possible to do white-box testing, because the
source is available. Of course, taking a broken piece of software and make it open source does not
mean that it will become better over night, but if there are developers interested in this piece of
software, the quality will improve. There are major companies and organisations that are very
active in pushing Linux in the right direction (for example OSADL [33]).

It is important to know what certification really means, which is different in several standards,
and what consequences it brings. For example if the question is “Can a stock Linux kernel itself
be certified according to standard XYZ?”, then in most cases the answer is a clear “no”, because
it is not possible to do a line by line testing of such a huge component as the Linux kernel. The
more interesting question is: “Is it possible to use Linux in a safety-relevant context?” There the
answer is different, and often it is “yes”. There are cases where Linux can be used. Depending
on the project, the use of a flattened version of the kernel that does not contain unused sub-
systems should be considered. It is important to notice that in several standards a whole system
is certified and not a single component. If this is the case, the kernel is not the only part that
is responsible for the whole system. There are measures that can be taken to guarantee that the
system is safe even if there are small shortcomings in a single component. For example, diversity
can be used, or a small layer that checks the results of the underlying system. To conclude this
example, a safety layer could be used to check the results and the timing of the underlying Linux
kernel. If the Linux kernel takes too long to response the system is turned to a safe state.

102

Appendices

103

A Extreme Programming

Table A.1: Extreme programming values according to Kent Beck [Bec05]

Value Description
Communication Every software development process needs communication between

the developers. In the former named traditional models this com-
munication is done by documentation. The output of one formal
step is used as input for the next step. Extreme Programming has
another paradigm that tries to force communication. The method
in which this communication is done is secondarily. For example
feedback via verbal communication. This idea of fast and frequent
communication can be found in the Open Source model, too, where
communication is done via mailing lists or IRC-channels.

Simplicity Try to keep the code and the design simple. Some traditional models
force an overall view of the system and software design before the
coding is done. Extreme programming tries to solve currently known
problems and not the problems that might come in the future. The
advantage is that there is no time investigated for future problems
that might never appear because of the rapid requirement changes.
This near-sighted view has the disadvantage that it is sometimes
more work to change the design at a later point in time than design
it from the beginning in a sufficient way. This idea of simplicity can
also be found in the Open Source development model. It is usual
to release a core component and let the community develop on this
base. It is the old “release often and early” paradigm that works
very well, it is a new evolutionary process of software development.

Feedback The term feedback is divided into several sub categories. From the
system by testing, from the customer by integration tests and from
the team.

104

Extreme Programming

Courage This includes design and coding decisions. For the design part it
means that developers should only develop for today and not for
tomorrow. Coding often needs courage, too, because sometimes it
is necessary to throw away portions of code. Developers should not
be afraid to do that for wrong reasons. For example it is hard to
throw away code which needed a long time to be implemented, but
if it is the right decision it has to be done.

Respect Respect means that the developers should respect other developers
and their work. This is also important for Open Source development
where developers do not personally know their counterparts. For
example it is a bad idea to patch a system in such a way that it
helps the sub system you are working on while it breaks another sub
system.

Table A.2: Extreme programming practices according to Kent Beck [Bec05]

Practice Description
Fine scale feedback
Pair programming The idea of pair programming is not new, it is one of the oldest ideas

in software development. For example it was used in times when
computers costed much more money and not every programmer had
his or her own terminal. Pair programming is a process of coding and
watching. One programmer is focused on coding while the second
one is focused on the overall picture.

Planing Game This term describes the future of the project and is divided in two
main phases. The first one is Release Planning, where the goals
of the next release are planed and Iteration Planning. In release
planning the customer of the software is included while iteration
planning is for the programmers only.

Test driven devel-
opment

In test driven development so called unit tests [Boa99] are used to
test the correctness of the software. It is important to mention that
these unit tests are coded before the implementation of the function
under test is undertaken.

Whole team This practice means that the whole team is included in the develop-
ment process. This team also includes the customer that should be
available for all kinds of questions during the development. It makes
the customer a member of the team and the customer is not only
that one that pays the cheque. It is interesting that this idea is very
common for open source development, too. Except from business
driven development the usual case is that the customer is the pro-
grammer of the software. In this case the customer can be a whole
community that is included.

Continuous process

105

Extreme Programming

Continuous Inte-
gration

When many developers work on a project it is important that they
commit their changes to some kind of software repository. If they
wait to long integration problems may appear. Continuous integra-
tion prevents this issue and all developers have the view of working
in the same version. This practice can be seen as the open source
counterpart of “release often and early”.

Design Improve-
ment

Extreme programming forces the so called KISS (keep it simple,
stupid) paradigm which may lead to that point where the develop-
ment sticks. If that occurs it is important to reconsider the design.

Small Releases Small releases should be done in a continuous way. This helps the de-
velopment in general and supports the continuous integration prac-
tise and it helps the customer, too. The customer has the ability
to get confirmed that the development makes progress and there-
fore the customer can give feedback which supports the whole team
practice.

Shared under-
standing
Coding standards Coding standards should be used and accepted by the whole devel-

opment team. Coding standards are necessary to make collaboration
between different programmers much easier.

Collective Code
Ownership

This principle means that every developer should know the whole
code and should be able to fix bugs in the code. Therefore every
developer is responsible for the quality of the product, not only for
his or her part of the project.

Simple Design Always use the simplest solution for a problem. If there is a simpler
solution for a function already implemented nobody should hesitate
to rewrite and refactor this part of the code.

System Metaphor This discipline describes a naming convention for functions and
classes in the system. It should be easy to guess the function of
a class by its name. For example a function that appends text to a
log file could have the name “append to log()”

Programmer wel-
fare
Sustainable Pace This discipline says that a programmer should not be exploited, a

sustainable pace is much better for the progress of the system under
development. If someone is forced to work too long on a problem he
or she gets frustrated and drained.

106

B Selected Source Code

B.1 raid1test

Listing B.1: communication.h

1 /∗
2 ∗ C o p y r i g h t (C) 2008 − Roland Kammerer
3 ∗ Thi s program i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t and / o r
4 ∗ mod i fy i t under t h e t e r m s o f t h e GNU G e n e r a l P u b l i c L i c e n s e
5 ∗ a s p u b l i s h e d by t h e F r e e S o f t w a r e F o un d a t i o n ; e i t h e r v e r s i o n 2
6 ∗ o f t h e L i c e n s e , o r (a t your o p t i o n) any l a t e r v e r s i o n .
7 ∗
8 ∗ Thi s program i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be u s e f u l ,
9 ∗ but WITHOUT ANY WARRANTY; w i t h o u t even t h e i m p l i e d w a r r a n t y o f

10 ∗ MERCHANTABILITY o r FITNESS FOR A PARTICULAR PURPOSE . See t h e
11 ∗ GNU G e n e r a l P u b l i c L i c e n s e f o r more d e t a i l s .
12 ∗
13 ∗ You s h o u l d have r e c e i v e d a copy o f t h e GNU G e n e r a l P u b l i c L i c e n s e
14 ∗ a l o n g w i th t h i s program ; i f not , w r i t e t o t h e Fr e e S o f t w a r e
15 ∗ Foundat ion , I n c . , 59 Temple P l a c e − S u i t e 3 3 0 , Boston ,
16 ∗ MA 02111 −1307 , USA .
17 ∗/
18

19 /∗ ∗
20 ∗ @ f i l e commun i ca t i on . h
21 ∗ @ b r i e f F u n c t i o n s f o r s o c k e t commun i ca t i on .
22 ∗ @author Roland Kammerer
23 ∗ @date 2008−09−24
24 ∗
25 ∗ Thi s l i b r a r y p r o v i d e s b a s i c f u n c t i o n s f o r s o c k e t commun i ca t i on .
26 ∗ Thi s i n c l u d e s t h e c r e a t i o n o f a s o c k e t , i n i t i a l i s a t i o n o f a s o c k e t
27 ∗ a d d r e s s and a c c e p t i n g new c o n n e c t i o n s . The l i b r a r y p r o v i d e s
28 ∗ f u n c t i o n s t o s end and r e c e i v e m e s s a g e s t o / f rom s o c k e t s .
29 ∗ Message l o g g i n g t o s t d o u t / s t d e r r o r f i l e s i s done he re , t o o .
30 ∗/
31

107

Selected Source Code

32 #ifndef COMMUNICATION H
33 #define COMMUNICATION H
34

35 #define STDOUTMSG ”−”
36

37 /∗ ∗ @ b r i e f C r e a t e a new s o c k e t ∗/
38 int make socket (u i n t 1 6 t port) ;
39

40 /∗ ∗ @ b r i e f A c c e p t s new c o n n e c t i o n t o a s o c k e t . ∗/
41 int accept new connect ion (int sockfd , struct sockaddr in ∗ c l i a d d r ,
42 int c l i l e n) ;
43

44 /∗ ∗ @ b r i e f I n i t i a l i z e a s o c k e t a d d r e s s b e f o r e we c o n n e c t t o t h e s e r v e r
∗/

45 void i n i t s o c k a d d r (struct sockaddr in ∗name , const char ∗hostname ,
46 u i n t 1 6 t port) ;
47

48 /∗ ∗ @ b r i e f Send a mes sage u s i n g a s o c k e t . ∗/
49 int send message (char ∗msg , int sock fd) ;
50

51 /∗ ∗ @ b r i e f Read a mes sage f rom a s o c k e t and s t o r e i t t o a b u f f e r . ∗/
52 int read message (char ∗ bu f f e r , int sock fd) ;
53

54 /∗ ∗ @ b r i e f Wr i te a mes sge t o a l o g f i l e / s t d o u t / s t d e r r . ∗/
55 int l og message (char ∗wri teto , char ∗message) ;
56

57 /∗ ∗ @ b r i e f Read a mes sage f rom a s o c k e t , s t o r e i t t o a b u f f e r
58 ∗ and w r i t e i t t o a l o g f i l e / s t d o u t / s t d e r r . ∗/
59 int r ead and log (char ∗ bu f f e r , int sockfd , char ∗wr i t e t o) ;
60 #endif

Listing B.2: Logfile of the master node
1 −−START: Mon Aug 11 13 : 3 0 : 1 4 2008
2

3 Sta r t i ng . / ra id1 t e s tmas t e r on port 1234
4

5 SLAVE: i n i t i a l i z e d
6 SLAVE: Ok
7 f6b87ebeb9aabf36eb8efab18da230432989021e
8 SLAVE: Test 1 s u c c e s s f u l
9 SLAVE: Turn d i sk0 o f f

10 pre s s any key
11 SLAVE: Ok
12 f6b87ebeb9aabf36eb8efab18da230432989021e
13 SLAVE: Ok
14 4817 baa6976ae12370969e26a7008ec2b8a5fcee
15 SLAVE: Turn d i sk0 on
16 pre s s any key
17 SLAVE: Test 2 s u c c e s s f u l
18 SLAVE: i n i t i a l i z e d

108

Selected Source Code

19 SLAVE: Ok
20 4817 baa6976ae12370969e26a7008ec2b8a5fcee
21 SLAVE: Ok
22 4817 baa6976ae12370969e26a7008ec2b8a5fcee
23 SLAVE: Test 3 s u c c e s s f u l
24 SLAVE: Ok
25 fd5528241bb5792a8b277344581ff1d7520d0584
26 SLAVE: Test 4 s u c c e s s f u l
27 SLAVE: Turn d i sk1 o f f
28 pre s s any key
29 SLAVE: Ok
30 fd5528241bb5792a8b277344581ff1d7520d0584
31 SLAVE: Ok
32 fa34952e04ae94493de724c60d740b72f943f14b
33 SLAVE: Turn d i sk1 on
34 pre s s any key
35 SLAVE: Test 5 s u c c e s s f u l
36 SLAVE: i n i t i a l i z e d
37 SLAVE: Ok
38 fa34952e04ae94493de724c60d740b72f943f14b
39 SLAVE: Ok
40 fa34952e04ae94493de724c60d740b72f943f14b
41 SLAVE: Test 6 s u c c e s s f u l
42 SLAVE: Exit
43 Al l t e s t s ran s u c c e s s f u l !
44 −−−END: Mon Aug 11 13 : 54 : 3 7 2008

Listing B.3: Logfile of the slave node
1 Binding / usr / sb in / r a i d 1 t e s t s l a v e to Server masternode on port 1234
2

3 MASTER: Run Test 1
4 −−−START: Mon Aug 11 13 : 3 1 : 1 3 2008
5

6 do t e s t c a s e 1
7 gene ra t ing f i l e s . . .
8 checksum write : f6b87ebeb9aabf36eb8efab18da230432989021e
9 read ing f i l e s . . .

10 checksum read : f6b87ebeb9aabf36eb8efab18da230432989021e
11 MASTER: Get checksum
12 MASTER: Got checksum
13 MASTER: Run Test 2
14 do t e s t c a s e 2
15 MASTER: Switched d i sk0 o f f
16 mdadm −−d e t a i l /dev/md1 1>/dev/ n u l l
17 check ing new s t a t u s
18 read ing f i l e s . . .
19 read ing f i l e s s u c c e s s f u l l . . .
20 MASTER: Get checksum
21 MASTER: Got checksum
22 MASTER: Checksum ok
23 gene ra t ing f i l e s . . .
24 checksum write : 4817 baa6976ae12370969e26a7008ec2b8a5fcee
25 read ing f i l e s . . .
26 checksum read : 4817 baa6976ae12370969e26a7008ec2b8a5fcee

109

Selected Source Code

27 MASTER: Get checksum
28 MASTER: Got checksum
29 umount /dev/md1
30

31 MASTER: Switched d i sk0 on
32 MASTER: Reboot 1
33 r eboot ing . . .
34 Binding / usr / sb in / r a i d 1 t e s t s l a v e to Server lapwlan on port 1234
35

36 MASTER: Run Test 3
37 do t e s t c a s e 3
38 check ing s t a t u s
39 read ing f i l e s . . .
40 read ing f i l e s s u c c e s s f u l l . . .
41 MASTER: Get checksum
42 MASTER: Got checksum
43 MASTER: Checksum ok
44 mdadm /dev/md1 −−add /dev/ f i r s t r a i d d i s k
45

46 wait ing f o r sync . . .
47 approximately synced in 706 min ; 90 sec
48 recheck in 30 seconds
49 approximately synced in 3 min ; 70 sec
50 recheck in 30 seconds
51 approximately synced in 3 min ; 0 sec
52 recheck in 30 seconds
53 approximately synced in 2 min ; 50 sec
54 recheck in 30 seconds
55 approximately synced in 2 min ; 10 sec
56 recheck in 30 seconds
57 approximately synced in 1 min ; 90 sec
58 recheck in 30 seconds
59 approximately synced in 1 min ; 30 sec
60 recheck in 30 seconds
61 approximately synced in 0 min ; 90 sec
62 recheck in 30 seconds
63 approximately synced in 0 min ; 60 sec
64 recheck in 30 seconds
65 approximately synced in 0 min ; 20 sec
66 recheck in 30 seconds
67 RAID synced
68 read ing f i l e s . . .
69 read ing f i l e s s u c c e s s f u l l . . .
70 MASTER: Get checksum
71 MASTER: Got checksum
72 MASTER: Checksum ok
73 MASTER: Run Test 4
74 do t e s t c a s e 4
75 gene ra t ing f i l e s . . .
76 checksum write : fd5528241bb5792a8b277344581ff1d7520d0584
77 read ing f i l e s . . .
78 checksum read : fd5528241bb5792a8b277344581ff1d7520d0584
79 MASTER: Get checksum
80 MASTER: Got checksum

110

Selected Source Code

81 MASTER: Run Test 5
82 do t e s t c a s e 5
83 MASTER: Switched d i sk1 o f f
84 mdadm −−d e t a i l /dev/md1 1>/dev/ n u l l
85 check ing new s t a t u s
86 read ing f i l e s . . .
87 read ing f i l e s s u c c e s s f u l l . . .
88 MASTER: Get checksum
89 MASTER: Got checksum
90 MASTER: Checksum ok
91 gene ra t ing f i l e s . . .
92 checksum write : fa34952e04ae94493de724c60d740b72f943f14b
93 read ing f i l e s . . .
94 checksum read : fa34952e04ae94493de724c60d740b72f943f14b
95 MASTER: Get checksum
96 MASTER: Got checksum
97 umount /dev/md1
98

99 MASTER: Switched d i sk1 on
100 MASTER: Reboot 1
101 r eboot ing . . .
102 Binding / usr / sb in / r a i d 1 t e s t s l a v e to Server lapwlan on port 1234
103

104 MASTER: Run Test 6
105 do t e s t c a s e 6
106 check ing s t a t u s
107 read ing f i l e s . . .
108 read ing f i l e s s u c c e s s f u l l . . .
109 MASTER: Get checksum
110 MASTER: Got checksum
111 MASTER: Checksum ok
112 mdadm /dev/md1 −−add /dev/ s e condra idd i sk
113

114 wait ing f o r sync . . .
115 approximately synced in 706 min ; 90 sec
116 recheck in 30 seconds
117 approximately synced in 8 min ; 40 sec
118 recheck in 30 seconds
119 approximately synced in 7 min ; 50 sec
120 recheck in 30 seconds
121 approximately synced in 6 min ; 90 sec
122 recheck in 30 seconds
123 approximately synced in 6 min ; 20 sec
124 recheck in 30 seconds
125 approximately synced in 6 min ; 0 sec
126 recheck in 30 seconds
127 approximately synced in 5 min ; 60 sec
128 recheck in 30 seconds
129 approximately synced in 5 min ; 10 sec
130 recheck in 30 seconds
131 approximately synced in 4 min ; 60 sec
132 recheck in 30 seconds
133 approximately synced in 4 min ; 20 sec
134 recheck in 30 seconds

111

Selected Source Code

135 approximately synced in 3 min ; 80 sec
136 recheck in 30 seconds
137 approximately synced in 3 min ; 40 sec
138 recheck in 30 seconds
139 approximately synced in 2 min ; 90 sec
140 recheck in 30 seconds
141 approximately synced in 2 min ; 40 sec
142 recheck in 30 seconds
143 approximately synced in 1 min ; 90 sec
144 recheck in 30 seconds
145 approximately synced in 1 min ; 60 sec
146 recheck in 30 seconds
147 approximately synced in 1 min ; 10 sec
148 recheck in 30 seconds
149 approximately synced in 0 min ; 60 sec
150 recheck in 30 seconds
151 approximately synced in 0 min ; 10 sec
152 recheck in 30 seconds
153 RAID synced
154 read ing f i l e s . . .
155 read ing f i l e s s u c c e s s f u l l . . .
156 MASTER: Get checksum
157 MASTER: Got checksum
158 MASTER: Checksum ok
159 MASTER: Run Test −1
160 Got EXIT message from Master
161 −−−END: Mon Aug 11 13 : 54 : 3 7 2008

B.2 tinysafefs

Listing B.4: Syslog output of tinysafefs
1 Aug 9 15 : 27 : 52 ubuntu t i n y s a f e f s [4 4 0 8] : Voted out / d i sk1
2 Aug 9 15 : 27 : 52 ubuntu t i n y s a f e f s [4 4 0 8] : Corrected / d i sk1 / f i l e t e s t . bin
3 Aug 9 15 : 27 : 57 ubuntu t i n y s a f e f s [4 4 0 8] : Voted out / d i sk2
4 Aug 9 15 : 27 : 57 ubuntu t i n y s a f e f s [4 4 0 8] : Corrected / d i sk2 / f i l e t e s t . bin
5 Aug 9 15 : 28 : 01 ubuntu t i n y s a f e f s [4 4 0 8] : Voted out / d i sk3
6 Aug 9 15 : 28 : 01 ubuntu t i n y s a f e f s [4 4 0 8] : Corrected / d i sk3 / f i l e t e s t . bin
7 Aug 9 15 : 28 : 05 ubuntu t i n y s a f e f s [4 4 0 8] : A l l d i s k s i n c o n s i s t e n t (Rack on f i r e !)
8 Aug 9 15 : 28 : 17 ubuntu t i n y s a f e f s [4 4 0 8] : Voted out / d i sk1
9 Aug 9 15 : 28 : 17 ubuntu t i n y s a f e f s [4 4 0 8] : Corrected / d i sk1 / t e s t . txt

10 Aug 9 15 : 28 : 18 ubuntu t i n y s a f e f s [4 4 0 8] : Voted out / d i sk2
11 Aug 9 15 : 28 : 18 ubuntu t i n y s a f e f s [4 4 0 8] : Corrected / d i sk2 / t e s t . txt
12 Aug 9 15 : 28 : 19 ubuntu t i n y s a f e f s [4 4 0 8] : Voted out / d i sk3
13 Aug 9 15 : 28 : 19 ubuntu t i n y s a f e f s [4 4 0 8] : Corrected / d i sk3 / t e s t . txt
14 Aug 9 15 : 28 : 20 ubuntu t i n y s a f e f s [4 4 0 8] : A l l d i s k s i n c o n s i s t e n t (Rack on f i r e !)

112

Literature

[AALC92] Dimiter R. Avresky, Jean Arlat, Jean-Claude Laprie, and Yves Crouzet. Fault Injec-
tion for the Formal Testing of Fault Tolerance. In FTCS, pages 345–354, 1992.

[ALR01] A. Avizienis, J. Laprie, and B. Randell. Fundamental Concepts of Dependability. Tech-
nical report, University of California, Los Angeles, LAAS-CNRS Toulouse, France,
University of Newcastle upon Tyne, U.K., April 2001.

[ARI92] ARINC. Software Considerations in Airborne Systems and Equipment Certification.
Technical report, ARINC, Annapolis, Maryland, 1992.

[BA99] Barry Boehm and Chris Abts. COTS Integration: Plug and Pray? Computer,
32(1):135–138, 1999.

[Bal08] Helmut Balzert. Lehrbuch der Softwaretechnik: Softwaremanagement. Spektrum
Akademischer Verlag, 2008.

[Bau07] Alexander Bauer. Realtime capabilities of low-end PowerPC and ARM boards for
embedded systems. In Proceedings of the Ninth Real-Time Linux Workshop in Linz,
November 2007.

[BBD+00] D. Beal, E. Bianchi, L. Dozio, S. Hughes, P. Mantegazza, and S. Papacharalambous.
RTAI: Real-Time Application Interface. Linux Journal, April 2000.

[Bec05] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley
Longman, Amsterdam, 2005.

[Boa99] IEEE Standards Board. IEEE Standard of Software Unit Testing Std 1008-1987.
Technical report, IEEE, 1999.

[Boe88] Barry Boehm. A Spiral Model of Software Development and Enhancement. In Pro-
ceedings of IEEE, pages 61–72, May 1988.

[BW06] Martin Bligh and Andy P. Whitcroft. Fully Automated Testing of the Linux Kernel.
In Proceedings of the Linux Symposium, pages 113–126, 2006.

[CA78] Liming Chen and Algirdas Avizienis. N-version programming: a fault-tolerance ap-
proach to reliability of software operation. In Fault-Tolerant Computing 1995, High-
lights from Twenty-Five Years. FTCS, 1978.

113

[CDK94] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and
Design (ICSS). Addison Wesley, 1994.

[CEN99] CENELEC. Railway applications - The specification and demonstration of Reliabil-
ity, Availability, Maintainability and Safety (RAMS). Technical report, European
Committee for Electrotechnical Standardization, 1999.

[CEN00] CENELEC. Railway applications - Communications, signalling and processing systems
- Software for railway control and protection systems. Technical report, European
Committee for Electrotechnical Standardization, November 2000.

[CEN03] CENELEC. Railway applications - Communications, signalling and processing sys-
tems - Safety related electronic systems for signalling. Technical report, European
Committee for Electrotechnical Standardization, 2003.

[Dah72] Ole-Johan Dahl. Structured programming. Academic Press Ltd., London, UK, UK,
1972.

[Dik06] Jeff Dike. User Mode Linux (Bruce Perens’ Open Source Series). Prentice Hall, 2006.

[DK97] Stefan Dawkins and Tim Kelly. Supporting the use of COTS in safety critical applica-
tions. Cots and Safety Critical Systems (Digest No. 1997/013), IEE Colloquium on,
pages 8/1–8/4, Jan 1997.

[FG] Rainer Faller and William M. Goble. Open IEC 61508 Certification of Products.
Technical report, Exida.com.

[FM95] Kevin Forsberg and Harold Mooz. The Relationship of System Engineering to the
Project Cycle. Technical report, Center for Systems Management, 19046 Pruneridge
Avenue, Cupertino, CA 95014, 1995.

[Gäb06] Rene Gäbler. Dreambox kompakt. Bomots Verlag, 2006.

[Gre01] Grechenig. Software Engineering. Pearson Studium, 2001.

[Gro04] Real-Time Systems Group. LU Distributed Real-Time Systems Engineering. Technical
report, Institute of Computer Engineering, 2004.

[Gui07] Nicholas Mc Guire. Linux for Safety Critical Systems in IEC 61508 Context. In
Proceedings of the Ninth Real-Time Linux Workshop in Linz, November 2007.

[Het88] Bill Hetzel. The complete guide to software testing (2nd ed.). QED Information
Sciences, Inc., Wellesley, MA, USA, 1988.

[HWS04] H. Höxner, Martin Waitz, and V. Sieh. Advanced virtualization techniques for FAU-
machine. Linux Kongress, pages 1–12, September 2004.

[IEC98] IEC. Functional Safety of electrical/electronic/programmable electronic safety-related
systems. Technical report, International Electrotechnical Commission, 1998.

[JBFB01] C. Jones, R. E. Bloomfield, P. K. D. Froome, and P. G. Bishop. Methods for assessing
the safety integrity of safety-related software of uncertain pedigree (SOUP). Technical
report, Adelard for the Health and Safety Executive, 2001.

114

[KB03] Hermann Kopetz and Günther Bauer. The Time-Triggered Architecture. In IEEE
Special Issue on Modeling and Design of Embedded Software, pages 112–126, 2003.

[KG93] Hermann Kopetz and G. Grünsteidl. TTP - A Time-Triggered Protocol for Fault-
Tolerant Real-Time Systems. In Proceedings of the 23rd International Symposium on
Fault-Tolerant Computing, pages 524–533, 1993.

[KK95] Heinz Kantz and Christian Koza. The ELEKTRA Railway Signalling-System: Field
Experience with an Actively Replicated System with Diversity. In FTCS ’95: Pro-
ceedings of the 25th International Symposium on Fault-Tolerant Computing, pages
453–458, Washington, DC, USA, 1995. IEEE Computer Society.

[Kop97] Hermann Kopetz. Real-Time Systems. Design Principles for Distributed Embed-
ded Applications (Kluwer International Series in Engineering & Computer Science).
Springer Netherlands, 1997.

[Kra05] Martin Krafft. The Debian System: Concepts and Techniques. No Starch Press, 2005.

[Kri02] Linda Kristiansen. COTS components in safety-critical systems. Master’s thesis, The
Norwegian University for Science and Technology (NTNU), June 2002.

[Lap91] J. C. Laprie. Dependability: Basic Concepts and Terminology : In English, French,
German, Italian and Japanese (Dependable Computing and Fault-Tolerant Systems).
Springer-Verlag, 1991.

[Lev95] Nancy G. Leveson. Safeware: System Safety and Computers. Addison Wesley, 1995.

[Lio96] J. L. Lions. ARIANE 5: Flight 501, Report by the Inquiry Board. Technical report,
European Space Agency, 7 1996.

[MSR07] Morten Mossige, Pradyumna Sampath, and Rachana Rao. Evaluation of Linux rt-
preempt for embedded industrial devices for Automation and Power technologies - A
case study. In Proceedings of the Ninth Real-Time Linux Workshop in Linz, November
2007.

[MT01] Maurizio Morisio and Marco Torchiano. Definition and Classification of COTS: A
proposal. Lecture Notes in Computer Science, 2255:165–175, 2001.

[Mye79] Glenford J. Myers. The Art of Software Testing (Business Data Processing). John
Wiley and Sons, 1979.

[PB93] Gustav Pomberger and Günther Blaschek. Grundlagen des Software - Engineering.
Prototyping- und objektorientierte Software- Entwicklung. Hanser Fachbuchverlag,
1993.

[Pie02] Ron Pierce. Preliminary Assessment of Linux for Safety Related Systems (Research
Report). Health and Safety Executive (HSE), 8 2002.

[POS04] POSIX. POSIX.1/IEEE 1003.1-2001. POSIX, 2004.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching Agreement in the Presence of Faults.
J. ACM, 27(2):228–234, 1980.

115

[RH07] Steven Rostedt and Darren V. Hart. Internals of the RT Patch. In Proceedings of the
Ottawa Linux Symbosium, pages 161–172, June 2007.

[Roy70] Winston Royce. Managing the Development in Large Software Systems. In Proceedings
of IEEE WESCOM, 1970.

[Rus99] John Rushby. Partitioning for Avionics Architectures: Requirements, Mechanisms,
and Assurance. NASA Contractor Report CR-1999-209347, NASA Langley Research
Center, June 1999.

[Rus07] Rusty Russell. lguest: Implementing the little Linux Hypervisor. In Proceedings of
the Ottawa Linux Symbosium, pages 173–178, June 2007.

[Sta97] Victoria Stavridou. COTS, Integration and Critical Systems. Technical report, De-
partment of Computer Science, Queen Mary and Westfield Colleage, 1997.

[Sta02] Michael Stamatelatos. Fault Tree Handbook with Aerospace Applications. Technical
report, NASA, U.S.A., August 2002.

[Str80] Lee Patrick Strobel. Reckless Homicide? Ford’s Pinto Trial. And Books, 1980.

[Tal98] Nancy Talbert. The Cost of COTS. IEEE Computer, 31(6):46–52, 1998.

[Tan03] Tanenbaum. Verteilte Systeme. Pearson Studium, 2003.

[TD02] Linus Torvalds and David Diamond. Just For Fun: The Story of an Accidental Rev-
olutionary. Texere Publishing,US, 2002.

[Voa98] Jeffrey Voas. COTS: The Economical Choice? IEEE Software, 15(3):16–19,
March,April 1998.

[Wie98] Michael Wielsch. Linux. Data Becker GmbH + Co.Kg, 1998.

116

Internet References

[1] An introduction to RTLinux. Homepage, September 2008. http://www.linuxdevices.com/
articles/AT3694406595.html.

[2] Anatomy of the Linux kernel. Homepage, September 2008. http://www.ibm.com/
developerworks/linux/library/l-linux-kernel/.

[3] Article about the real-time capabilities of Linux. Homepage, September 2008. http://
edageek.com/2006/10/12/real-time-linux/.

[4] Bugzilla - Bug reporting tool. Homepage, September 2008. http://www.bugzilla.org.

[5] The Case of the Ford Pinto. Homepage, September 2008. http://www.cs.rice.edu/

~vardi/comp601/case2.html.

[6] Debian GNU/Linux. Homepage, September 2008. http://www.debian.org.

[7] Doxygen - Source code documentation. Homepage, September 2008. http://www.doxygen.
org.

[8] Dreambox - Digital Video Recoder. Homepage, September 2008. http://www.
dream-multimedia-tv.de.

[9] Filesystem in Userspace. Homepage, September 2008. http://fuse.soureforge.net.

[10] The FreeBSD Operating System. Homepage, September 2008. http://www.freebsd.org.

[11] FreeBSD Release Process. Homepage, September 2008. http://www.freebsd.org/doc/en_
US.ISO8859-1/articles/releng/release-proc.html.

[12] GNU debugger. Homepage, September 2008. http://sourceware.org/gdb.

[13] GNU/Hurd kernel. Homepage, September 2008. http://www.gnu.org/software/hurd/
hurd.html.

[14] GNU/Linux bases Linksys routing device. Homepage, September 2008. http://en.
wikipedia.org/wiki/Wrt54gl.

[15] GNU’s Not UNIX. Homepage, September 2008. www.gnu.org.

[16] Gobuntu GNU/Linux. Homepage, September 2008. http://www.ubuntu.com/products/
whatisubuntu/gobuntu.

117

http://www.linuxdevices.com/articles/AT3694406595.html
http://www.linuxdevices.com/articles/AT3694406595.html
http://www.ibm.com/developerworks/linux/library/l-linux-kernel/
http://www.ibm.com/developerworks/linux/library/l-linux-kernel/
http://edageek.com/2006/10/12/real-time-linux/
http://edageek.com/2006/10/12/real-time-linux/
http://www.bugzilla.org
http://www.cs.rice.edu/~vardi/comp601/case2.html
http://www.cs.rice.edu/~vardi/comp601/case2.html
http://www.debian.org
http://www.doxygen.org
http://www.doxygen.org
http://www.dream-multimedia-tv.de
http://www.dream-multimedia-tv.de
http://fuse.soureforge.net
http://www.freebsd.org
http://www.freebsd.org/doc/en_US.ISO8859-1/articles/releng/release-proc.html
http://www.freebsd.org/doc/en_US.ISO8859-1/articles/releng/release-proc.html
http://sourceware.org/gdb
http://www.gnu.org/software/hurd/hurd.html
http://www.gnu.org/software/hurd/hurd.html
http://en.wikipedia.org/wiki/Wrt54gl
http://en.wikipedia.org/wiki/Wrt54gl
www.gnu.org
http://www.ubuntu.com/products/whatisubuntu/gobuntu
http://www.ubuntu.com/products/whatisubuntu/gobuntu

[17] Gobuntu wiki. Homepage, September 2008. http://wiki.ubuntu.com/Gobuntu.

[18] GPG - Gnu Privacy Guard. Homepage, September 2008. http://www.gnupg.org.

[19] GPL compatible Licenses. Homepage, September 2008. http://www.gnu.org/licenses/
license-list.html#SoftwareLicenses.

[20] How to report Linux kernel bugs. Homepage, September 2008. http://kernel.org/pub/
linux/docs/lkml/reporting-bugs.html.

[21] InfiniBand Trade Association. Homepage, September 2008. http://www.infinibandta.
org.

[22] Kernel Performance Testing. Homepage, September 2008. http://kernel-perf.
sourceforge.net.

[23] Kernel Testing. Homepage, September 2008. http://test.kernel.org.

[24] Launchpad - Free software hosting and development website. Homepage, September 2008.
https://launchpad.net.

[25] Lguest - Kernel Virtualisation. Homepage, September 2008. http://lguest.ozlabs.org.

[26] Linux Foundation. Homepage, September 2008. http://www.linux-foundation.org/en/
About.

[27] The Linux Kernel Archives. Homepage, September 2008. http://www.kernel.org.

[28] The Linux Kernel Mailing List Archive. Homepage, September 2008. http://www.lkml.org.

[29] Linux Kernel Source Level Debugger. Homepage, September 2008. http://kgdb.
linsyssoft.com.

[30] Linux Test Project. Homepage, September 2008. http://ltp.sourceforge.net.

[31] Linux v2.6 scales the enterprise. Homepage, September 2008. http://www.infoworld.com/
infoworld/article/04/01/30/05FElinux_1.html.

[32] LTP - RAID1 test plan. Homepage, September 2008. http://ltp.sourceforge.net/
documentation/test_plans/raid1.php.

[33] Open Source Development Labs. Homepage, September 2008. http://www.osadl.org.

[34] Open Source Initiative. Homepage, September 2008. http://www.opensource.org.

[35] Overview of the different kinds of Ubuntu developers. Homepage, September 2008. http:
//wiki.ubuntu.com/UbuntuDevelopers.

[36] Real-Time Linux Wiki. Homepage, September 2008. http://rt.wiki.kernel.org.

[37] Red Hat - GNU/Linux distribution. Homepage, September 2008. http://www.redhat.com.

[38] Red Hat Enterprise Linux details. Homepage, September 2008. http://www.redhat.com/
rhel/server/details.

118

http://wiki.ubuntu.com/Gobuntu
http://www.gnupg.org
http://www.gnu.org/licenses/license-list.html#SoftwareLicenses
http://www.gnu.org/licenses/license-list.html#SoftwareLicenses
http://kernel.org/pub/linux/docs/lkml/reporting-bugs.html
http://kernel.org/pub/linux/docs/lkml/reporting-bugs.html
http://www.infinibandta.org
http://www.infinibandta.org
http://kernel-perf.sourceforge.net
http://kernel-perf.sourceforge.net
http://test.kernel.org
https://launchpad.net
http://lguest.ozlabs.org
http://www.linux-foundation.org/en/About
http://www.linux-foundation.org/en/About
http://www.kernel.org
http://www.lkml.org
http://kgdb.linsyssoft.com
http://kgdb.linsyssoft.com
http://ltp.sourceforge.net
http://www.infoworld.com/infoworld/article/04/01/30/05FElinux_1.html
http://www.infoworld.com/infoworld/article/04/01/30/05FElinux_1.html
http://ltp.sourceforge.net/documentation/test_plans/raid1.php
http://ltp.sourceforge.net/documentation/test_plans/raid1.php
http://www.osadl.org
http://www.opensource.org
http://wiki.ubuntu.com/UbuntuDevelopers
http://wiki.ubuntu.com/UbuntuDevelopers
http://rt.wiki.kernel.org
http://www.redhat.com
http://www.redhat.com/rhel/server/details
http://www.redhat.com/rhel/server/details

[39] Red Hat Enterprise Linux Errata Support Policy. Homepage, September 2008. http://www.
redhat.com/security/updates/errata.

[40] Red Hat MRG. Homepage, September 2008. http://www.redhat.com/mrg/realtime.

[41] Red Hat Network Update Module. Homepage, September 2008. http://www.redhat.com/
rhn/rhndetails/update.

[42] Relook - Digital Video Recoder. Homepage, September 2008. http://www.dgstation.co.
kr.

[43] Report Linux kernel bugs via Bugzilla. Homepage, September 2008. http://bugzilla.
kernel.org.

[44] RTAI - Linux Real-time Application Interface. Homepage, September 2008. http://www.
rtai.org.

[45] RTLinux - Linux Real-time extension. Homepage, September 2008. http://www.
rtlinux-gpl.org.

[46] Software Watchdog for Linux. Homepage, September 2008. http://sourceforge.net/
projects/watchdog.

[47] Stress - Workload Generator. Homepage, September 2008. http://weather.ou.edu/~apw/
projects/stress/.

[48] SUSE Linux Enterprise. Homepage, September 2008. http://www.novell.com/linux/.

[49] SUSE Linux Enterprise Real Time. Homepage, September 2008. http://www.novell.com/
products/realtime/.

[50] SUSE Linux Enterprise Real Time overview. Homepage, September 2008. http://www.
novell.com/products/realtime/overview.html.

[51] TiVo - Digital Video Recoder. Homepage, September 2008. http://www.tivo.com.

[52] TLDP - Software RAID HOWTO. Homepage, September 2008. http://tldp.org/HOWTO/
Software-RAID-HOWTO-8.html.

[53] Ubuntu GNU/Linux. Homepage, September 2008. http://www.ubuntu.com.

[54] uCLinux. Homepage, September 2008. http://www.uclinux.org.

[55] User Mode Linux. Homepage, September 2008. http://user-mode-linux.sourceforge.
net.

[56] The Wonderful World of Linux 2.6. Homepage, September 2008. http://kniggit.net/
wwol26.html.

119

http://www.redhat.com/security/updates/errata
http://www.redhat.com/security/updates/errata
http://www.redhat.com/mrg/realtime
http://www.redhat.com/rhn/rhndetails/update
http://www.redhat.com/rhn/rhndetails/update
http://www.dgstation.co.kr
http://www.dgstation.co.kr
http://bugzilla.kernel.org
http://bugzilla.kernel.org
http://www.rtai.org
http://www.rtai.org
http://www.rtlinux-gpl.org
http://www.rtlinux-gpl.org
http://sourceforge.net/projects/watchdog
http://sourceforge.net/projects/watchdog
http://weather.ou.edu/~apw/projects/stress/
http://weather.ou.edu/~apw/projects/stress/
http://www.novell.com/linux/
http://www.novell.com/products/realtime/
http://www.novell.com/products/realtime/
http://www.novell.com/products/realtime/overview.html
http://www.novell.com/products/realtime/overview.html
http://www.tivo.com
http://tldp.org/HOWTO/Software-RAID-HOWTO-8.html
http://tldp.org/HOWTO/Software-RAID-HOWTO-8.html
http://www.ubuntu.com
http://www.uclinux.org
http://user-mode-linux.sourceforge.net
http://user-mode-linux.sourceforge.net
http://kniggit.net/wwol26.html
http://kniggit.net/wwol26.html

