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Kurzfassung

Diese Dissertation behandelt verschiedene generalisierte Netzwerkdesignprobleme
(NDPs), die zu den NP-harten kombinatorischen Optimierungsproblemen gehören.
Im Gegensatz zu klassischen NDPs sind die generalisierten Versionen auf Graphen
definiert, deren Knotenmengen in Clustern aufgeteilt sind. Das Ziel besteht darin,
jeweils einen Subgraphen zu finden, der genau einen Knoten pro Cluster enthält und
weitere Nebenbedingungen erfüllt.

Methoden, die zum Lösen von kombinatorischen Optimierungsproblemen eingesetzt
werden, können grob in zwei Hauptrichtungen eingeteilt werden. Die erste Klasse
besteht aus Algorithmen, die diese Probleme beweisbar optimal lösen können, sofern
ihnen ausreichend viel Zeit und Speicher zur Verfügung gestellt werden. Diese Ar-
beit beginnt mit einer kurzen Einführung in die Techniken der linearen und ganz-
zahlig linearen Programmierung. Sie bilden die Basis für populäre Algorithmen wie
Branch-and-Bound, Branch-and-Cut und viele weitere. Die zweite Klasse besteht
aus Metaheuristiken, die zwar Näherungslösungen erzeugen, aber wesentlich weniger
Zeit benötigen. Wenn beide Klassen miteinander kombiniert werden, entstehen hy-
bride Algorithmen, die von den Vorteilen beider Richtungen profitieren können.
Einige der vielfältigen Kombinationsmöglichkeiten werden untersucht und auf NDPs
in dieser Arbeit angewandt.

Das erste Problem, das betrachtet wird, ist das generalisierte minimale
Spannbaumproblem. Gegeben ist ein Graph, dessen Knoten in Clustern partitioniert
sind. Wir suchen nach einem minimalen Spannbaum, der genau einen Knoten pro
Cluster verbindet. Ein Ansatz basierend auf variabler Nachbarschaftssuche (VNS)
wird vorgestellt, der drei verschiedene Nachbarschaftstypen verwendet. Zwei davon
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arbeiten komplementär, um die Effizienz bei der Suche zu erhöhen. Beide ent-
halten exponentiell viele Lösungen, aber effektive Algorithmen werden eingesetzt,
die die jeweils besten Nachbarlösungen in polynomieller Zeit finden. Für die dritte
Nachbarschaft wird ganzzahlige lineare Programmierung verwendet, um Teilbereiche
einer Lösung zu optimieren.

Als nächstes betrachten wir das generalisierte Handlungsreisendenproblem (GTSP).
Ausgehend von einem geclusteten Graphen suchen wir eine Rundreise minimaler
Länge, die von jedem Cluster einen Knoten besucht. Ein VNS Algorithmus basierend
auf zwei Nachbarschaftsstrukturen wird vorgestellt. Eine davon ist die bereits be-
kannte generalisierte 2-opt Nachbarschaft, für die eine neue inkrementelle Auswer-
tungstechnik entworfen wird, die den Suchvorgang wesentlich beschleunigt. Die
zweite Nachbarschaft basiert auf dem Austauschen von den in der Lösung vork-
ommenden Knoten, auf die anschließend die verkettete Lin-Kernighan Heuristik
angewendet wird.

Als ein zum GTSP verwandtes Problem untersuchen wir das Eisenbahn-
Handlungsreisendenproblem (RTSP). Gegeben ist ein Fahrplan und ein
Geschäftsmann, der eine Anzahl von Städten per Bahn besuchen muss, um
Aufträge zu erledigen. Die Reise startet und endet an einem bestimmten Ort und
die dafür benötigte Gesamtzeit, inklusive den Wartezeiten, soll minimiert werden.
Es werden zwei Transformationen präsentiert, die das Problem als asymmetrisches
oder symmetrisches Handlungsreisendenproblem (TSP) umformulieren. Damit
können für das RTSP bewährte Techniken eingesetzt werden, die für das klassische
TSP konzipiert sind.

Schließlich wird das Problem des generalisierten minimalen kantenzweizusam-
menhängenden Netzwerks betrachtet. Ausgehend von einem geclusteten Graphen
wird ein Subgraph gesucht, der genau einen Knoten pro Cluster kantenzweizusam-
menhängend verbindet, d.h. zwischen je zwei Knoten müssen mindestens zwei
kantendisjunkte Wege existieren. Wir betrachten drei VNS Varianten, die mit
unterschiedlichen Nachbarschaftsstrukturen arbeiten. Jede adressiert bestimmte
Teilaspekte wie die verbundenen Knoten und/oder die Kanten zwischen ihnen. Für
komplexere Nachbarschaften werden effiziente Techniken wie Graphreduktion einge-
setzt, die den Optimierungsvorgang wesentlich beschleunigen. Für Vergleichszwecke
wird eine Formulierung als ganzzahliges lineares Programm entworfen, mit der kleine
Instanzen beweisbar optimal gelöst werden können.

Experimentelle Ergebnisse zeigen, dass die grundlegende Strategie, komplementäre
Nachbarschaftsstrukturen zu kombinieren, beim Lösen von generalisierten NDPs
sehr erfolgreich ist. Insbesondere wird festgehalten, dass jede Nachbarschaftsstruk-
tur signifikante Beiträge zum Optimierungsvorgang leistet.
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Abstract

In this thesis, we consider several generalized network design problems (NDPs) which
belong to the family of NP-hard combinatorial optimization problems. In contrast
to classical NDPs, the generalized versions are defined on graphs whose node sets
are partitioned into clusters. The goal is to find a subgraph which spans exactly one
node from each cluster and also meets further constraints respectively.

Applicable methodologies for solving combinatorial optimization problems can
roughly be divided into two mainstreams. The first class consists of algorithms which
aim to solve these problems to proven optimality – provided that they are given
enough run-time and memory. This thesis starts with a brief introduction to linear
and integer linear programming techniques since popular algorithms like branch-and-
bound, branch-and-cut, etc. are based on them. The second class are metaheuristics
which compute approximate solutions but usually require significantly less runtime.
By combining these two classes, we are able to form collaboration approaches that
benefit from advantages of both sides. We will examine various possibilities of such
combinations and some of them will be used to solve the NDPs in this thesis.

The first considered NDP is the generalized minimum spanning tree problem. Given
a graph whose nodes are partitioned into clusters, we seek a minimum spanning tree
which connects exactly one node from each cluster. A variable neighborhood search
(VNS) approach will be presented that uses three different neighborhood types. Two
of them work in complementary ways in order to maximize search performance. Both
are large in the sense that they contain exponentially many candidate solutions,
but efficient polynomial-time algorithms are used to identify best neighbors. For
the third neighborhood type we apply integer programming to optimize local parts
within candidate solution trees.
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We then study the generalized traveling salesman problem (GTSP). Given a clus-
tered graph, we seek the minimum-costs round trip visiting one node from each
cluster. A VNS algorithm based on two complementary, large neighborhood struc-
tures is proposed. One of them is the already known generalized 2-opt neighborhood
for which a new incremental evaluation technique is described, which speeds up the
search significantly. The second structure is based on node exchanges and the ap-
plication of the chained Lin-Kernighan heuristic.

As a related problem to the GTSP, we also consider the railway traveling salesman
problem (RTSP). We are given a timetable and a salesman who has to visit a number
of cities by train to carry out some business. He starts and ends at a specified home
city, and the required time for the overall journey, including waiting times, shall
be minimized. Two transformation schemes to reformulate the problem as either a
classical asymmetric or symmetric traveling salesman problem (TSP) are presented.
Using these transformations, established algorithms for solving the TSP can be used
to attack the RTSP as well.

Finally, we consider the generalized minimum edge biconnected network problem.
For a given clustered graph, we look for a minimum-costs subgraph connecting one
node from each cluster in an edge biconnected way, i.e. at least two edge-disjoint
paths must exist between each pair of nodes. Three VNS variants are considered
that utilize different types of neighborhood structures, each of them addressing par-
ticular properties as spanned nodes and/or the edges between them. For the more
complex neighborhood structures, efficient techniques – such as a graph reduction
– are applied to essentially speed up the search process. For comparison purpose,
a mixed integer linear programming formulation based on multi commodity flows is
proposed to solve smaller instances of this problem to proven optimality.

Looking at the obtained results, we observe that the fundamental strategy of combin-
ing complementary neighborhood structures is very successful for solving generalized
NDPs. In particular, all of them are shown to contribute significantly to the search
process.
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Chapter 1

Introduction

Network design and network optimization problems are of central importance to the
modern society. They appear frequently in practical fields such as transportation,
telecommunication, facility allocation, resource supply, and many others. Obtaining
good solutions with respect to lowering the connection costs, reducing transmission
delays, etc. often results in substantial economical, environmental and/or social
advantages.

The term “network design” is involved in many contexts and there are several dif-
ferent aspects which deserve attention. In this thesis, they are regarded from a more
theoretical point of view as graph theory problems, i.e. networks are modeled as
graphs and optimization algorithms are applied on them.

For example, when we look for an efficient way to connect several communication
nodes to a local area network, we can regard communication nodes as nodes in a
graph and the possible connections between them as edges. The weight of an edge
can be represented by the estimated costs for setting up a connection. Possible
other requirements on the communication network like fault tolerance, transmission
quality, etc. can be modeled as additional constraints in the corresponding graph
problem.

Formally, we are given a graph G = 〈V,E, c〉 with node set V , edge set E, and edge
cost function c : E → R+. Generally, we are looking for a subgraph S = 〈P, T 〉 with
P ⊆ V and T ⊆ E that has minimal total costs C(T ) =

∑
e∈T c(e) and also satisfies

additional constraints depending on the actual problem.

1



Chapter 1 Introduction

Let us first consider two examples of well known classical Network Design Problems
(NDPs) in combinatorial optimization.

Traveling Salesman Problem (TSP): We are given a graph G = 〈V,E, c〉 with
node set V , edge set E, and edge cost function c : E → R+. We seek a minimal
costs subgraph S = 〈V, T 〉 with T ⊆ E being a round trip (Hamiltonian cycle)
connecting all nodes v ∈ V . This problem is NP-hard, i.e. there are no known
algorithms which can solve every instance in polynomial time with respect to the
graph’s size.

A strongly simplified practical application of this problem would be if a salesman
wants to travel through a number of major cities in Europe by airplane and the
minimal amount of time and/or money should be spent.

Another example where the TSP model can be used in a more straightforward way
appears in the printed circuits manufactory. The route of a drill machine should be
scheduled to all drill holes on a printed circuit board. These holes, which can be
of different sizes, represent cities in the TSP and the required time for relocating
and/or retooling the the drill machine from one drill hole to another represents the
distance between them. At the end, we want to minimize the overall time needed
to produce such a printed circuit board.

Minimum Spanning Tree Problem (MSTP): We are given a graph G = 〈V,E, c〉
with node set V , edge set E, and edge cost function c : E → R+. We seek a minimal
costs subgraph S = 〈V, T 〉 with T ⊆ E that connects all nodes v ∈ V to a single
component without cycles.

This problem can be solved in polynomial time, e.g. with the well-known algorithms
from Kruskal [71] or Prim [95] for the MSTP. However, there are several NP-hard
extensions which add additional constraints to the MSTP, such as a maximal degree
for the nodes, or a maximal diameter of the tree, etc.

Since real world network systems are becoming larger and more complex, the need
of more sophisticated models arises. For example, with increasing number of local
networks, it makes sense to connect them to a new global network. This involves
choosing one computer from each local network to be used as an entrance gate for the
global backbone. Obviously, the old model of MSTP is not sufficient anymore. This
motivates the introduction of Generalized Network Design Problems (GNDPs).

2
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1.1 Considered Problems

In contrast to classical NDPs, the generalized versions are defined on graphs whose
node sets are partitioned into clusters. We consider the variant where the goal is to
find a subgraph connecting exactly one node from each cluster, as well as satisfying
other constraints adopted from their classical counterparts.

For all GNDPs considered in this thesis, we are given an undirected weighted
complete graph G = 〈V,E, c〉 with node set V , edge set E, and edge cost func-
tion c : E → R+. Node set V is partitioned into r pairwise disjoint clusters
V1, V2, . . . , Vr,

⋃
i=1,...,r Vi = V, Vi ∩ Vj = ∅ ∀i, j = 1, . . . , r, i 
= j.

A solution defined on G is a subgraph S = 〈P, T 〉 with P = {p1, p2, . . . , pr} ⊆ V
containing one node from each cluster, i.e. pi ∈ Vi for all i = 1, . . . , r. Depending
on the actual problem, different requirements have to be fulfilled by the subset of
edges T ⊆ E. The costs of S are its total edge costs, i.e. C(T ) =

∑
e∈T c(e), and

the objective is to identify a solution with minimum costs.

Generalized Minimum Spanning Tree Problem (GMSTP): Introduced by Myung
et al. [86], the objective is to find a spanning tree of minimal costs which contains
one node from each cluster. We consider the clustered graph G = 〈V,E, c〉. The
requirements for a feasible solution S = 〈P, T 〉 is that P contains exactly one node
from each cluster and T connects all these nodes without cycles, see Figure 1.1.

V1 V2

V3

V4

V5

p1

p2

p3 p4

p5

Figure 1.1: Example for a solution to the GMSTP.

Generalized Traveling Salesman Problem (GTSP): This problem was introduced
independently by Henry-Labordere [51], Srivastava et al. [112], and Saskena [106].
The goal is to find a node disjoint round trip of minimal costs which spans one node
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Chapter 1 Introduction

in each cluster. We consider the clustered graph G = 〈V,E, c〉. A feasible solution
to the GTSP is a subgraph S = 〈P, T 〉 with P containing exactly one node from
each cluster and T being a round trip on these nodes, see Figure 1.2.

V1 V2

V3

V4

V5

p1

p2

p4

p5
p3

Figure 1.2: Example for a solution to the GTSP.

As a practical extension of the classical TSP and a variant of the GTSP, we also
consider the Railway Traveling Salesman Problem (RTSP): We are given a railway
network, a train schedule, and a salesman who has to visit a number of cities to carry
out some business. He starts and ends at a specified home city, and the required
time for the overall journey, including waiting times, shall be minimized.

Generalized Minimum Edge Biconnected Network Problem (GMEBCNP): Huy-
gens [62] was the first one to examine this problem. Extending the GMSTP, we seek
an edge biconnected network of minimal costs which connects one node from each
cluster. We consider the clustered graph G = 〈V,E, c〉. A feasible solution to the
GMEBCNP is a subgraph S = 〈P, T 〉 with P containing exactly one node from each
cluster and T connecting all nodes in P via edge redundancy, i.e. for each pair of
nodes u, v ∈ P, u 
= v, there must exist at least two edge-disjoint paths, see Figure
1.3.

While for some classical NDPs there exist efficient algorithms, most real-world NDPs
and especially the more complex GNDPs are typically difficult to solve. Because of
the inherent difficulty and the enormous practical importance of these problems, a
large number of techniques for solving them has been proposed in the last decades.
It is clear that a very wide range of industries and commercial and government
enterprises could find benefits if these NDPs could be solved better – with respect
to run-time and/or solution quality – than before.
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V1 V2

V3
V4

V5

p1

p2

p3

p4

p5

V6

p6

Figure 1.3: Example for a solution to the GMEBCNP.

1.2 Methodology

Techniques for solving these optimization problems can roughly be classified into
two main categories: exact and heuristic algorithms. Exact algorithms are guaran-
teed to find an optimal solution and to prove its optimality; the run-time, however,
often increases dramatically with a problem instance’s size, and often only small
or moderately-sized instances can be practically solved to provable optimality. For
larger instances the only possibility is usually to turn to heuristic algorithms that
trade optimality for run-time; i.e., they are designed to obtain good but not neces-
sarily optimal solutions in acceptable time.

When considering exact approaches, the following techniques have had signifi-
cant success: Branch-and-Bound (B&B), Dynamic Programming (DP), Constraint
Programming (CP), and in particular the large class of Integer Linear Program-
ming (ILP) techniques including cutting plane methods, linear programming and
Lagrangean relaxation based approaches, branch-and-cut, branch-and-price, and
branch-and-cut-and-price [87, 90].

On the heuristic side, local search based metaheuristics have proven to be highly
useful in practice. This category of problem solving techniques include, among oth-
ers, simulated annealing [68], tabu search [40], iterated local search [81], variable
neighborhood search [47], various population-based models such as evolutionary al-
gorithms [3], scatter search [41], and memetic algorithms [85], and estimation of
distribution algorithms such as ant colony optimization [21]. See also [39, 54] for
more general introductions to metaheuristics.

5



Chapter 1 Introduction

Looking at the assets and drawbacks of exact techniques and metaheuristics, the
approaches can be seen as complementary. As a matter of fact, it appears to be
natural to combine ideas from both streams. Puchinger and Raidl [97] present a
classification with respect to the hybridization of metaheuristics with exact opti-
mization techniques.

For solving the considered GNDPs in this thesis, we mostly use approaches based on
a Variable Neighborhood Search (VNS) framework which combines multiple neigh-
borhood search strategies and even utilizes different solution representations. Some
of the considered neighborhood structures can be seen as dual to each other, mak-
ing their combination particularly powerful. Some of them are exponentially large,
rendering naive exhaustive exploration inapplicable. However, we present efficient
techniques for finding optimal or near optimal solutions in these neighborhoods via
DP, ILP, or other sophisticated methods.

1.3 Overview of the Thesis

An introduction to exact algorithms, in particular linear and integer linear pro-
gramming is given in Chapter 2. Chapter 3 covers some popular metaheuristics like
local search, VNS, tabu search, and evolutionary algorithms. In addition, a new,
self-adaptive variant of VNS is proposed. This work was also published in:

Bin Hu and Günther R. Raidl. Variable neighborhood descent with self-
adaptive neighborhood-ordering. In Carlos Cotta, Antonio J. Fernandez,
and Jose E. Gallardo, editors, Proceedings of the 7th EU/MEeting on
Adaptive, Self-Adaptive, and Multi-Level Metaheuristics. Malaga, Spain,
2006.

Since many approaches for GNDPs in this thesis do not rely on algorithms of a single
stream but on combinations of them, we will examine concepts of hybrid approaches,
along with some up-to-date representative examples in Chapter 4.

Chapter 5 provides an overview on the GNDPs considered in this thesis and describes
the general strategy applied in order to tackle these problems. In the following
chapters, actual work on the GNDPs will be presented in detail.

Chapter 6 is dedicated to the generalized minimum spanning tree problem. A VNS
approach will be presented that uses three different neighborhood types. Two of
them work in complementary ways in order to maximize search performance. Both
are large in the sense that they contain exponentially many candidate solutions,
but efficient polynomial-time algorithms are used to identify best neighbors. For
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1.3 Overview of the Thesis

the third neighborhood type we apply integer programming to optimize local parts
within candidate solution trees.

This chapter was published in:

Bin Hu, Markus Leitner, and Günther R. Raidl. Combining variable
neighborhood search with integer linear programming for the generalized
minimum spanning tree problem. Journal of Heuristics, volume 14(5),
pages 473–499, 2008.

An earlier version and preliminary results were published in:

Bin Hu, Markus Leitner, and Günther R. Raidl. Computing generalized
minimum spanning trees with variable neighborhood search. In Pierre
Hansen, Nenad Mladenovic, Jose A. Moreno Perez, Belen Melian Batista,
and J. Marcos Moreno-Vega, editors, Proceedings of the 18th Mini Euro
Conference on VNS. Tenerife, Spain, 2005.

Work on the generalized traveling salesman problem is presented in Chapter 7. A
VNS algorithm based on two complementary, large neighborhood structures is pro-
posed. One of them is the already known generalized 2-opt neighborhood for which
a new incremental evaluation technique is described, which speeds up the search
significantly. The second structure is based on node exchanges and the application
of the chained Lin-Kernighan heuristic.

This chapter was published in

Bin Hu and Günther R. Raidl. Effective neighborhood structures for the
generalized traveling salesman problem. In Jano van Hemert and Carlos
Cotta, editors, Evolutionary Computation in Combinatorial Optimisa-
tion – EvoCOP 2008, volume 4972 of LNCS, pages 36–47, Springer.
Naples, Italy, 2008.

and won the best paper award of this conference.

Chapter 8 covers the generalized minimum edge biconnected network problem.
Three VNS variants are considered that utilize different types of neighborhood struc-
tures, each of them addressing particular properties as spanned nodes and/or the
edges between them. For the more complex neighborhood structures, efficient tech-
niques – such as a graph reduction – are applied to essentially speed up the search
process. For comparison purpose, a mixed integer linear programming formulation
based on multi commodity flows is proposed to solve smaller instances of this prob-
lem to proven optimality.

This chapter was published in:
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Chapter 1 Introduction

Bin Hu, Markus Leitner, and Günther R. Raidl. The generalized mini-
mum edge biconnected network problem: Efficient neighborhood struc-
tures for variable neighborhood search. Networks. Accepted for publica-
tion, 2007.

An earlier version and preliminary results were published in:

Markus Leitner, Bin Hu, and Günther R. Raidl. Variable neighborhood
search for the generalized minimum edge biconnected network problem.
In Bernard Fortz, editor, Proceedings of the International Network Op-
timization Conference – INOC 2007, pages 69/1–6. Spa, Belgium, 2007.

Furthermore, a talk with preliminary results was given:

Bin Hu. Efficient neighborhoods for the generalized minimum edge bi-
connected network design problem. Austrian Workshop on Metaheuris-
tics 4. Vienna, Austria, 2006.

As a related problem to the GTSP, the Railway Traveling Salesman Problem (RTSP)
is considered in Chapter 9. We are given a timetable and a salesman who has to
visit a number of cities by train to carry out some business. He starts and ends at a
specified home city, and the required time for the overall journey, including waiting
times, shall be minimized. Two transformation schemes to reformulate the problem
as either a classical asymmetric or symmetric traveling salesman problem (TSP) are
presented. Using these transformations, established algorithms for solving the TSP
can be used to attack the RTSP as well.

This chapter was published in:

Bin Hu and Günther R. Raidl. Solving the railway traveling salesman
problem via a transformation into the classical traveling salesman prob-
lem. In Fatos Xhafa, Francisco Herrera, Ajith Abraham, Mario Köppen,
and Jose Manuel Benitez, editors, 8th International Conference on Hy-
brid Intelligent Systems – HIS 2008, pages 73–77. Barcelona, Spain,
2008.

A talk was given in:

Bin Hu. Solving the railway traveling salesman problem via a transfor-
mation into the classical traveling salesman problem. Austrian Workshop
on Metaheuristics 6. Vienna, Austria, 2008.

Finally, conclusions are made in Chapter 10.
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Chapter 2

Exact Algorithms

Many Combinatorial Optimization Problems (COPs) can be modelled as a (integer)
linear program. While Linear Programs (LPs) can be solved efficiently in practice via
the well known simplex algorithm and, from a theoretical point, even in polynomial
time via the ellipsoid-method [66] and interior-point methods [64], Integer (Linear)
Programs (IPs) are in general NP-hard.

Based on books on linear optimization by Bertsimas and Tsitsiklis [7] and combi-
natorial and integer optimization by Nemhauser and Wolsey [87], this chapter will
give a brief introduction to LPs and IPs, as well as algorithms for solving them.

2.1 Linear Programming

A linear program can be defined as:

min cT x

Ax ≥ b

with c, x ∈ Rn, b ∈ Rm, A ∈ Rm×n. While x is the n-dimensional solution vector
that should be optimized, vector c with the same dimesions characterizes the optic-
tive function cT x. Similarly, matrix A, together with vector b, form the constraints
of the LP.

9



Chapter 2 Exact Algorithms

Equalities can be modelled as two inequalities and for maximization problems, we
only need to multiply the objective function with -1. Unless stated otherwise, we
will consider minimization problems only, since all of the considered network opti-
mization problems requires to minimize the connection costs. Therefore, we denote
the standard of an LP as:

zLP = min{cx | Ax ≥ b, x ∈ Rn} (2.1)

2.2 Integer Linear Programming

Consider the LP (2.1), if we ask for integer solutions, i.e. x ∈ Zn, we would get an
integer linear program

zIP = min{cx | Ax ≥ b, x ∈ Zn} (2.2)

A common and widely-used variant is the so-called 0/1 IP where x ∈ {0, 1}n. If
some of the variables in IP (2.2) needs to be integers and others not, we call the
system a Mixed Integer Program (MIP).

2.3 Geometric Interpretation

Given a linear program zLP = min{cx | Ax ≥ b, x ∈ Rn}, the set of feasible solutions
is denoted by a polyhedron, defined as

P = {x ∈ Rn | Ax ≥ b, A ∈ Rm×n, b ∈ Rn} (2.3)

P is one of following three different types:

• P = ∅ ⇒ the LP is infeasible

• P 
= ∅ but � inf{cT x | x ∈ P} ⇒ the LP is feasible, but unbounded.

• P 
= ∅ and ∃min{cT x | x ∈ P} ⇒ the LP is feasible and an optimal solution
x∗ ∈ P, cT x∗ = min{cT x | x ∈ P} exists.

This leads to the following definitions.

Definition 1 A polyhedron P ⊂ Rn is bounded if there exists a constant k such
that |xi| < k∀x ∈ P, i = 1, . . . , n. Such a polyhedron is called a polytope.

10



2.3 Geometric Interpretation

Definition 2 A set S ⊂ Rn is convex if λx + (1 − λ)y ∈ S, ∀x, y ∈ S, λ ∈ [0, 1]
holds.

Definition 3 Given X = {x1, . . . , xk}, with xi ∈ Rn, λi ≥ 0, i = 1, . . . , k and∑k
i=1 λi = 1. Then

(1) the vector
∑k

i=1 λix
i is called a convex combination of X;

(2) the convex hull of X denoted as conv(X) is the set of all convex combinations
of X.

Definition 4 Consider a polyhedron P defined by linear equality and inequality con-
straints, and let x∗ ∈ Rn.

(a) The vector x∗ is a basic solution if:

(1) All equality constraints are satisfied;
(2) There are n linearly independent constraints that are active (i.e. that hold

with equality) at x∗.

(b) If x∗ is a basic solution that satisfies all constraints, it is called a basic feasible
solution.

Vertices of a polyhedron have special properties on feasible solutions of the corre-
sponding LP. The following two theorems are essential for the simplex algorithm,
which will be described in the next section.

Theorem 1 Let P be a nonempty polyhedron and let x ∈ P .
Then the following statements are equivalent:

(a) x is a vertex;

(b) x is a basic feasible solution.

Theorem 2 Given an LP (2.1), following statements are true:

(1) If polyhedron P in (2.3) is nonempty, there exists a basic feasible solution.

(2) If (2.1) has an optimal solution, then there is an optimal basic feasible solution.
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2.4 Simplex Algorithm

The simplex algorithm is one of the most popular methods to solve linear programs.
The optimal solution of an LP is usually found by a two-phase simplex approach:

1. Find an initial basic feasible solution, which is a vertex of the given polyhedron.

2. Iteratively move to an adjacent vertex while gradually improve the solution.

Finding an initial basic feasible solution can already be a difficult task for some
optimization problems. This is why we use a two-phase simplex, where a preliminary
problem is solved in the first phase to obtain a feasible solution.

The algorithm terminates after reaching a vertex representing the optimal solution,
where none of the adjacent vertices results in an improvement, or if an unbounded
facet is found.

Consider an LP in standard form. For the polyhedron Ax ≥ b we first introduce a
vector of slack variables σ ∈ Rm, resulting in an equation system Ax + σ = b which
e.g. can be solved via Gaussian elimination method. This yields the initial basic
feasible solution x0. Let B(1), . . . , B(m) denote the indices of the basic variables
and B = [AB(1) . . . AB(m)] denote the corresponding basic matrix. To move from
one vertex of the polyhedron to an adjacent one means to introduce a new variable
into the basis and simultaneously removing an existing variable. This procedure is
also called pivoting.

Definition 5 Let x0 be a basic solution, B be the associated basis matrix, and cB

be the vector of costs of the basic variables. For each j, we define the reduced cost
cj of the variable xj according to

cj = cj − cBB−1Aj (2.4)

The reduced costs cj change with the variable xj , so when we put variables with
negative reduced costs (in case of a minimization problem) into the basis, the basic
feasible solution will be improved. If no such variables exist, the current solution is
already optimal.

The simplex algorithm was developed by George Dantzig in 1947 and is one of
the most efficient methods to solve LPs in practice. However, there are worst-case
examples which cannot be solved by simplex in polynomial-time. Nevertheless the
LP problem is solvable in polynomial-time, which was first shown by Khachiyan [66]
in 1979 using the so-called ellipsoid-method. Other polynomial-time algorithms of
more practical interest are the interior-point methods, introduced by Karmakar [64]
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2.5 Duality

in 1984. More highly-competitive algorithms were developed from then on. Most
state-of-the-art commercial LP-solvers incorporate interior-points method such as
barrier or primal-dual algorithms.

2.5 Duality

The duality property are of central importance for some advanced methods like
primal/dual or column generation algorithms when solving LPs. Given a primal
problem zLP stated as in 2.1, its dual problem is denoted as:

wLP = max{ub | uA ≤ c, u ∈ Rm} (2.5)

Based on this definition, we can formulate the following theorems.

Proposition 1 The dual of the dual problem is the primal problem.

Proposition 2 (Weak Duality) If x is primal feasible and u is dual feasible, then

cx ≤ ub.

The next two theorems are fundamental results of LP duality and therefore exploited
by primal/dual algorithms. If the primal problem and the dual problem are both
feasible, their optimal values are equal.

Theorem 3 (Strong Duality) If zLP or wLP is finite, then both (2.1) and (2.5)
have the same finite optimal value

zLP = wLP.

Proposition 3 (Complementary slackness) If x∗ and u∗ are feasible solutions for
the primal (2.1) and the dual (2.5) problem respectively, then x∗ and u∗ are optimal
solutions if and only if

ui(b − Ax)i = 0, ∀i,

xj(uA − c)j = 0, ∀j.
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2.6 LP-based Branch-and-Bound

While it is possible to solve LPs in polynomial time, solving IPs and MIPs is NP-
hard in general. A possible way to handle NP-hard problems are the Branch-and-
Bound (B&B) approaches, which follow the idea of divide and conquer. The basic
principle of B&B is to divide the problem into subproblems for which we calculate
bounds. For minimization problems, lower bounds zi can be obtained by solving
relaxations of the subproblems Pi. Upper bounds z are calculated by solving the
(sub)problems heuristically. For each subproblem, further procedures are decided
according the relation of these bounds:

• zi = z: optimal solution for Pi is found.

• zi < z: divide Pi further into subproblems and continue B&B process.

• zi > z: since lower bound is higher than upper bound, subproblem Pi does
not contain optimal solution and thus we can prune it.

Relaxation are methods of approximating a complex problem by simplifying some
constraints. For solving IPs, LP relaxations are commonly used.

Definition 6 The LP relaxation for the IP zIP = min{cx | Ax ≥ b, x ∈ Zn} is the
LP zLP = min{cx | Ax ≥ b, x ∈ Rn}

Proposition 4 If a LP is the relaxation of an IP, then zLP ≤ zIP.

Furthermore, any feasible solution of the IP is a valid upper bound. Detailed B&B
algorithm is described in Algorithm 1.

Branching

Usually the search space is partitioned into two parts during branching. When we
solve the LP relaxation of problem Pi to obtain xLP

i and it is not integral, it contains
at least one fractional value. Let xj(xLP

i ) denote such a value. Then we get two new
subproblems by rounding it up and rounding it down, respectively.

Pk+1 = Pi ∩ {x : xj ≤ �xj(xLP
i )�}

Pk+2 = Pi ∩ {x : xj ≥ �xj(xLP
i )�}
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2.6 LP-based Branch-and-Bound

Algorithm 1: LP-based Branch-and-Bound
Input: Initial problem P
Initialization: Upper bound z := ∞
List of problems L := {P}
while L 
= ∅ do

Choose and remove problem Pi from L
Solve LP relaxation over P i yielding solution xLP

i with objective value zi

if Pi is infeasible then
Prune by infeasibility

else if zi ≥ z then
Prune by bound

else if xLP
i integer then

z := zi

Incumbent x∗ := xLP
i

Prune by optimality
else

Branching: put subproblems Pi1 and Pi2 into L

Incumbent x∗ is optimal solution to p.

One possibility to choose the branching variable is to take a fractional value which
is as close to 0.5 as possible. However, there are more sophisticated methods like
strong branching [120], which calculates bounds for all possible variables which come
into question for branching. The value with most promising bounds is then actually
taken.

Choosing the next subproblem

Quickly obtaining feasible and good integral solutions most likely leads to good upper
bounds which helps at pruning the search space. Strategies like Dept-First Search
meets this purpose, where newly generated subproblems are favored for further ad-
vancing. On the other hand, it can be advantageous to keep the total number of
considered subproblems low. This can be done by following Best-First Search strat-
egy where the subproblem with lowest lower bound is chosen first. Most commercial
IP solvers use more sophisticated combinations of different strategies to make this
decision.
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2.7 Cutting Plane Algorithms and Branch-and-Cut

Branch-and-Cut (B&C) algorithms are among the most powerful and popular meth-
ods for solving IPs and MIPs. Basically, B&C results from enhancing the perfor-
mance of LP based B&B by making use of Cutting Plane Algorithms.

2.7.1 Cutting Plane Algorithms

Solving complex IPs with many constraining (in)equations can be very difficult. In
practice, it is often not necessary to take all constraints into account, but only a
possibly small subset of them. Cutting plane algorithms exploit this observation and
tries to solve a simplified model of the IP with only a small number of constraints.
If the emerging solution does not violate any constraints, it is valid and therefore
optimal already. If some constraints are violated, we need to add them to the model.
This process is repeated until no more constraints need to be added. A pseudocode
of the cutting plane algorithm is described in Algorithm 2.

Definition 7 The separation problem associated with IP (2.2) is defined as:
Given x̂ ∈ Rn, if x̂ /∈ conv(X), find a valid inequality aT x ≥ bj violated by x̂.

Algorithm 2: Cutting plane algorithm
Start with simplified model, only containing a subset of constraints
loop

Solve model, yielding solution x∗

Solve the separation problem for x∗

if ∃ constraint aT x ≥ bj such that aT x∗ < bj then
Add constraint aT x ≥ bj to the model

else
Return x∗ as the optimal solution for the original model

2.7.2 Branch-and-Cut

Branch-and-Cut B&C is a hybridization of B&B with the cutting plane algorithm
to solve IP models. For each subproblem handled by the B&B algorithm, it tries to
apply the cutting plane algorithm in order to get a tight bound.

To make the B&C algorithm efficient, following issues are of great importance:
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• Good LP relaxations

• Efficient algorithm for separation problem

• Cut strategies

• Cut pool management

2.8 Column Generation and Branch-and-Price

In some cases, the IP model contains exponentially many variables, but a manageable
amount of constraints. In such cases, column generation algorithms can be very
efficient, which add variables to the model dynamically. Branch-and-Price (B&P) is
the combination between B&B and column generation.

2.8.1 Column Generation

In the simplex algorithm, variables (columns) with negative reduced costs are added
to the basis in each iteration to improve the solution. If the number of variables
is very large, we might want to start with only few of them in the basis at the
beginning. Afterwards, we must solve the so-called pricing problem for which we
seek the variable with minimal reduced costs to add it to the basis. This is repeated
until no more variables with negative reduced costs exist, see Algorithm 3.

Algorithm 3: Column generation
Start with a subset of the variables: Restricted Master Problem (RMP)
Solve RMP
while variable with negative reduced costs cj exists do

Determine such a variable
Add it to the RMP
Resolve RMP

2.8.2 Branch-and-Price

With the column generation method, we are able to enhance the performance of
the simplex method when solving LPs. However, when we seek integral solutions of
IPs or MIPs, we still need to utilize B&B. Just like B&C in the previous chapter,
Branch-and-Price (B&P) is the hybridization of B&B with column generation. The
later solves the LP relaxation by adding variables to the model until we get an
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optimal LP solution. If it is not integral, we need to branch at fractional variables,
and the relaxations of resulting subproblems will be solved via column generation
again.

The branching process is more difficult now, since it makes no sense to address the
exponentially many variables directly.

B&C algorithms and B&P algorithms theoretically can be seen as dual to each other.
To some extend, they are comparable, since variables in the primal problem corre-
spond to constraints in the dual problem, and vice versa. Hence, column generation
can be seen as the dual problem to separating cutting planes.
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Chapter 3

Metaheuristics

For NP-hard optimization problems, it is often impossible to apply exact methods to
large instances in order to obtain optimal solutions in acceptable time. In such cases,
metaheuristics can be seen as alternatives, which are often able to provide excellent,
but not necessarily optimal solutions in reasonable time. The term metaheuristic
was first introduced by Glover [38] and refers to a number of high-level strategies or
concepts of how to solve optimization problems. It is somewhat difficult to specify
the exact boundaries of this term. Voss [118] gives the following definition:

A metaheuristic is an iterative master process that guides and modi-
fies the operations of subordinate heuristics to efficiently produce high-
quality solutions. It may manipulate a complete (or incomplete) single
solution or a collection of solutions at each iteration. The subordinate
heuristics may be high (or low) level procedures, or a simple local search,
or just a construction method.

This chapter will first introduce the basic concepts of constructive heuristics and
local search. Then, we will consider some popular examples of the family of meta-
heuristics.

3.1 Constructive Heuristics

Constructive or construction heuristics are mostly used for creating initial solutions
in a very short time. These solutions can be used for other algorithms which improve
them iteratively, or even for exact algorithms as bounds. Constructive heuristics
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usually work straightforward, i.e. once they make a decision to build up a partial
solution, they never reconsider it. Because of their simple nature, the computa-
tional complexity can usually be evaluated accurately. In many cases, not only the
complexity, but also the solution quality can be estimated.

Approximation Algorithms

When we can provide the solution quality of a constructive heuristics in term of
bounds, we also call them approximation algorithms [117].

Let A be a heuristic which provides for each instance I of an optimization problem
Π a valid solution. Let cA(I) denote the objective value of the solution generated
by heuristic A on instance I ∈ Π and copt(I) be the objective value of the optimal
solution to I.

Definition 8 For a minimization problem, if

∃ε > 0 :
cA(I)
copt(I)

≤ ε, ∀I ∈ Π

then A is an ε-approximation algorithm and ε is approximation factor of A.

There are different classes of approximation algorithm: those with absolute and
relative approximation factors and (fully) polynomial time approximation schemes.
We can also classify the complexity of COPs based on if they are approximable or
not.

3.2 Local Search

In contrast to constructive heuristics which generate initial solutions for COPs, Local
Search (LS) algorithms improve existing solutions further by applying local changes.
The main idea is to create neighborhood structures which can be defined for each
COP specifically. LS iteratively moves from one solution x to another within the so-
called neighborhood N (x). The final goal is to reach the optimal solution, measured
by objective function f(x). There is no guarantee that the optimum will be found,
though.

Definition 9 A neighborhood structure N : S → 2S is a function associating a set
of neighbors, called neighborhood N (x) ⊆ S to every solution x ∈ S.
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The procedure of changing a solution within its neighborhood N (x) is also called as
applying a move. Algorithm 4 shows the the basic LS in detail.

Algorithm 4: Basic local search (x)
Input: Initial solution x
Output: Improved solution x

repeat
choose x′ ∈ N (x)
if f(x′) better than f(x) then

x := x′

until termination condition(s) met

There are three possibilities of how to choose x′ among neighbor solution N (x).

• Random neighbor: A random solution x′ ∈ N (x) is chosen. This is the
fastest variant, but x′ is often even worse than x.

• Best improvement: We search the neighborhood N (x) completely and the
best solution x′ is chosen.

• Next improvement: We search the neighborhood N (x) systematically and
the first solution x′ better than x is chosen.

In practice, LS with random neighbor strategy requires most number of iterations
and LS with best improvement strategy requires least number of iterations to get to
the final solution. However, the computational effort required for each iteration differ
greatly. While for the random neighbor strategy only one neighbor solution has to be
computed, the best improvement strategy usually requires to systematically check
all solutions in the neighborhood in order to determine the best solution. The next
improvement strategy sometimes can be advantageous if searching the neighborhood
is done in a clever way, e.g. by using incremental evaluation schemes.

Basic LS is often terminated when there is no better solution in neighborhood N (x)
than x itself. In this case, LS cannot improve x anymore and x is local optimal in
regard to N (x).

Definition 10 x is a local optimum ↔ ∀x′ ∈ N (x) : f(x′) ≥ f(x)

A local optimum is not necessarily a global optimum which we are ultimately looking
for. However, every global optimum is a local optimum.
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3.3 Simulated Annealing

Since basic local search terminates after reaching the first local optimum in the
optimization process, it highly depends on the initial solution whether the global
optimum can be found or not. One straightforward approach for escaping local
optima is to not only allow improvements, but also accept solutions that are worse
than the current one under certain conditions.

Simulated Annealing (SA) [68] follows this concept. The name was inspired by the
annealing process in metallurgy. It uses the random neighbor strategy to generate
a new solution x′ in the neighborhood of the current solution x in each iteration. If
x′ is better than x, SA proceeds with the new solution. On the other hand, if x′ is
worse, then it is not discarded immediately, but it can be accepted with a certain
probability that depends on the difference in the objective function f(x′) − f(x)
and on a temperature value. The lower the gap and the higher the temperature,
the more likely the worse solution will be accepted. The temperature is initialized
with a sufficiently hight value and it decreases after each iteration depending on the
cooling strategy that is used. Hence SA accepts worse solutions more often during
the beginnings of the optimization process but it becomes more and more similar to
LS towards the end.

3.4 Variable Neighborhood Search

Another way to enhance basic local search is to make use of following considera-
tions:

• Use multiple neighborhood structures instead of a single one

• Include techniques to escape local optima

Variable neighborhood search, introduced by Hansen and Mladenovic [48] follows
these ideas. When designing this metaheuristic, additional, partially empirical ob-
servations have been taken into account:

• A local optimum with respect to one neighborhood structure is not necessarily
so for another.

• A global optimum is a local optimum with respect to all possible neighborhood
structures.

• For many problems local optima with respect to one or several neighborhoods
are relatively close to each other.
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3.4.1 Variable Neighborhood Descent

Generally speaking, Variable Neighborhood Descent (VND) is similar to basic LS,
but it uses more than one neighborhood structure. Let N1,N2, . . . ,Nkmax be the
neighborhood structures. VND changes between them in order to improve the initial
solution x until it reaches a local optimum with respect to all of these neighborhood
structures, see Algorithm 5.

Algorithm 5: Variable Neighborhood Descent (x)
Input: Initial solution x
Given neighborhoods N1,N2, . . . ,Nkmax

Output: Improved solution x

k := 1
repeat

choose x′ ∈ Nk(x)
if f(x′) better than f(x) then

x := x′

k := 1
else

k := k + 1
until k = kmax

return x

How to order the neighborhood structures N1,N2, . . . ,Nkmax is important for the
performance of VND, but this is not trivial. Following criteria my be taken into
consideration when fixing the order.

• The relationship of neighborhoods: They can be

– overlapping
– one (entirely) including an other
– mutual exclusive
– a mixture between these, etc.

• The complexity of neighborhoods

• The coverage of solution space

If the relationship is overlapping or even mutual including, it is often a good idea
to start with the smallest one and gradually moving on to the larger ones. If the
neighborhood structures are rather independent, it is standard to order them by
increasing complexity at evaluation.
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Looking at the VND procedure, it obviously cannot escape local optima. Hence we
might want to include some mechanisms to do so.

3.4.2 Self-Adaptive Variable Neighborhood Descent

When using VND it is often difficult to decide the ordering of neighborhoods which
are considered during the search procedure. This arrangement typically strongly
affects the computation time as well as the quality of the finally obtained solution.
In this section, which is based on [58], a new VND variant is presented that orders the
neighborhoods dynamically in a self-adaptive way during the optimization process.
Each neighborhood structure has associated a rating which is updated according to
observed success probabilities and required times for evaluation.

Obviously, neighborhoods ranked in the front are searched more often than others at
the end of the queue. If the times required for examining the neighborhoods differ
substantially, it is reasonable to order them according to increasing complexity. How-
ever, this criterion is not always applicable, in particular when the times for searching
the neighborhoods are similar, or if they are unpredictable. The latter case appears
often when next-improvement strategy is used instead of best-improvement.

The best suited neighborhood ordering may also depend on specific properties of the
particular problem instance and the current state of the search process. Research in
the direction of controlling and dynamically adapting the ordering of neighborhood
structures is yet limited. For example, Puchinger and Raidl [98] presented a variant
of VNS in which relaxations of the neighborhoods are quickly evaluated in order to
choose the most promising neighborhood next. This method is effective, however, it
requires the existence of fast methods for solving relaxations of the neighborhoods.
A more general variant is the “choice function” which is often used in hyperheuristics
for selecting low-level heuristics [11, 65].

For the Self-Adaptive Variable Neighborhood Descent (SAVND), neighborhood
structures are dynamically rearranged according to their observed benefits dur-
ing the search process. An initial neighborhood ordering, i.e., a permutation
λ = (λ1, . . . , λn) of {1, . . . , n} is chosen in some intuitive way (or even at random).
Each neighborhood structure Ni, i = 1, . . . , n, gets assigned a rating wi > 0, which
is initially set to some constant value W being a rough estimation of the average
time for evaluating a neighborhood. During the search process, when a neighbor-
hood Nλi

(x) of a current solution x has been investigated, rating wλi
is updated

in dependence of the success and the computation time tλi
required for evaluation:

If an improved solution has been found in Nλi
(x), wλi

becomes halved and
tλi
α is

added; α is a strategy parameter controlling the influence of the evaluation time in
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3.4 Variable Neighborhood Search

this case. If the search of Nλi
(x) was not able to identify a superior solution, we add

time tλi
to wλi

. Depending on how much time the evaluation of the neighborhoods
is generally required, we initialize wi = ε, i = 1, . . . , n with ε > 0 being a small
number.

Algorithm 6: Self Adaptive Variable Neighborhood Descent (x)
Input: Initial solution x
Output: Improved solution x

w1 := w2 := . . . := wn := W
wmin := wmax := W
λ := (1, 2, . . . , n)
i := 1
repeat

find the best neighbor x′ ∈ Nλi
(x), requiring time tλi

if f(x′) better than f(x) then
x := x′

wλi
:=

wλi
2 +

tλi
α

i := 1
else

wλi
:= wλi

+ tλi

i = i + 1
if wλi

< wmin ∨ wλi
> wmax then

nextN := λi // store the neighborhood to be considered next
sort λ1, . . . , λn s.t. wλ1 ≤ wλ2 ≤ . . . ≤ wλn

wmin := wλ1

wmax := wλn

reset i s.t. λi = nextN
until i > n

Permutation λ is not immediately updated after processing a neighborhood in order
to avoid too rapid and strong adaptions in case of a temporarily limited extraordi-
nary good or bad behavior. Only when an updated rating w′

λi
is smaller than the so

far minimum rating minj=1,...,n wj or larger than the maximum rating maxj=1,...,n wj ,
we redetermine permutation λ by sorting the neighborhood structures according to
increasing ratings. SAVND then continues with the structure that would have also
been chosen according to the old ordering. Algorithm 6 shows the whole procedure
in detail.
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3.4.3 Basic Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a simple high level metaheuristic which
follows similar ideas as VND. It can collaborate with almost any LS algorithms,
such as VND itself. Based on empirical observation that local optima lie near to
each other, VNS uses random moves to get from one solution to a neighboring one.
These moves are generated by systematically considering a given set of neighborhood
structures N1,N2, . . . ,Nlmax which are usually ordered by size. After applying a
random move – this is also called shaking – it is common to apply LS to improve
the solution. Algorithm 7 shows how VNS works in detail.

Algorithm 7: Basic Variable Neighborhood Search (x)
Input: Initial solution x
Given neighborhoods N1,N2, . . . ,Nlmax

Output: Improved solution x

repeat
l := 1
repeat

x′ := Shake(l, x), i.e. choose random solution from Nl(x)
x′ := Local Search(x′)
if f(x′) better than f(x) then

x := x′

l := 1
else

l := l + 1
until l = lmax

until stopping conditions are met
return x

There are many variants of VNS. The most simple form is the reduced VNS which
does not use any local search at all but only relies on random shaking. On the other
hand, the most popular variant is probably general VNS which uses VND as local
improvement procedure.

Although VNS is a rather new metaheuristic, it is very easy to use. Compared to
other metaheuristics, especially tabu search, it has only few adjustable parameters.
Hence, creating reasonable neighborhood structures can be sufficient to obtain good
results.
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3.5 Tabu Search

3.5 Tabu Search

Tabu Search (TS) [40] can be seen as another popular extension of local search. The
central component of TS is the tabu list which supports escaping local optima in
order to reach for the global optimum. Tabu list is a memory which keeps track of
the search progress so far to avoid cycling by trying not to reconsider areas which
have already been searched.

Algorithm 8: Tabu Search (x)
Input: Initial solution x
Output: Improved solution x

xbest := x
Tabu List TL := {x}
repeat

X ′ := reduced subset of N (x) with respect to TL
choose best x′ ∈ X ′

add x′ to TL
remove from TL all elements which are older than tL iterations
x := x′

if f(x) better than f(xbest) then
xbest := x

until termination condition(s) met
return xbest

Algorithm 8 shows the procedure of TS in detail. Tabu list TL maintains history of
which solutions have been already considered in the past tL iterations and narrows
the neighborhood N (x) accordingly. The new solution is usually chosen via best
improvement strategy, and in contrast to classical LS, inferior ones are accepted as
well as superior ones. The overall best solution is kept in xbest.

There are two ways to store informations of the solutions in TL:

• Store complete solutions
This basic approach is illustrated in Algorithm 8. While it is advantageous that
previously solutions are certainly not visited again, the drawbacks are the high
memory requirement which grows with parameter tL and the computational
effort of verifying if a solution is in TL or not.

• Store solution attributes only
The more common strategy is to only store solution attributes in TL. All
neighbor solutions which contain a tabu attribute are forbidden. To be precise,
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when moving from x to its neighbor x′, the changed attribute is stored in TL
and thus a reverting move is tabu for the next tL iterations. In contrast
to the previous approach, memory consumption and computational effort are
significant lower. However, a tabu attribute forbids lots of solutions, some of
them have possibly not considered at all. This makes the decision of choosing
the right tL more difficult.

While the tabu list is essential for preventing cycling, it sometimes can become too
powerful and thus stagnates the search progress. When only solution attributes
are stored, forbidden moves do not necessarily lead to solutions which have been
considered. Therefore, aspiration criteria are used to cancel tabus. A classical
criterion is to perform a tabu restricted move if it would lead to a new overall best
solution. Other more sophisticated aspiration criteria have been used in [18, 52].

A parameter of significant importance is the length of the tabu list or tabu tenure
tL. If it is too small, cycling can still occur. On the other hand, if it is too long, the
search process will be restricted too strongly. As a matter of fact, finding the right
tabu tenure is a difficult task in practice and it depends on the problem nature as
well as the problem size. Instead of using a statical value for this parameter, there
are many approaches of how to change the tabu tenure dynamically [19]:

• depending on elapsed time or iterations [83]

• randomly chosen between an interval for each iteration [114]

• adaptive to the search progress [5]

3.6 Evolutionary Algorithms

Evolutionary Algorithms (EA) are a family of metaheuristics which are inspired
by basic principles of natural evolution according to Darwin’s theory [15]. First
algorithms which use evolution theory to solve combinatorial optimization problems
were proposed by Fogel, Owens and Walsh [35] in the 1960s. Two other well known
variants are the genetic algorithm by Holland [53] and the evolution strategies by
Rechenberg and Schwefel [101, 108]. Since then, these algorithms were improved
and extended for many application areas in manifold ways [3].

The main difference between EAs and LS based metaheuristics is the population
concept. While LS, VNS, etc. only maintain a single current solution during the
optimization process, an EA usually operates on a large set of solutions called popu-
lation. The diversity in this population helps to search in wider areas of the solution
space, thus it increases the chance to escape from local optima in order to produce
more robust solutions. The pseudocode of a basic EA is given in Algorithm 9.
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Algorithm 9: Basic Evolutionary Algorithm
Input: Optimization problem
Output: best solution found during optimization

P := population set, containing initial solutions
Evaluate(P )
repeat

Q := Recombination(P )
Q := Mutation(Q)
Evaluate(Q)
P := Selection(P , Q);

until stopping conditions are met
return x

Selection

The main idea of selection procedure is to choose |P | solutions of a larger pool
of solutions. Like in the nature, better solutions have a better chance of being
selected. However, it still should be possible to include inferior solutions. This can
be useful when we try to escape from local optima. We will briefly describe three
basic selection mechanisms: fitness-proportional selection [53], rank-based selection
[4], and tournament selection [25].

Fitness-proportional selection: Let f(xi) > 0 be the objective value (fitness) of
solution xi ∈ P, P = {x1, . . . , x|P |}. For a maximization problem, the probability of
selecting solution xi is

ps(xi) =
f(xi)∑|P |

j=1 f(xj)

Let pmax
s = max{ps(x1), . . . , ps(x|P |)} and ps = 1/|P |. The selection pressure is

defined as the ratio pmax
s /ps, which is the expected probability of how much the best

solution is being preferred over an average one.

If selection pressure is too low, good solutions will not be favored enough and thus the
search process degenerates to a random search. On the other hand, if the pressure is
too high and superior solutions are too much preferred, then diversity will decrease
and it will be harder to escape from local optima.
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In order to control selection pressure, it is possible to scale the objective value. The
most simple way is to use a linear scaling g(xi) = a · f(xi) + b with a and b being
adjustable parameters. Scaling is also necessary when we consider minimization
problems (a is negative in this case) or if f(xi) can be negative.

Rank-based selection: Instead of using concrete objective values of solutions for
the selection probability, it is possible to only consider their ranks. This is done by
ordering all solutions xi ∈ P according their objective values. The resulting order
determines their selection probability.

Tournament selection: This popular selection variant operates quite differently.
The following procedure is applied until the new population is completely filled
up.

1. Choose k solutions from the population set randomly

2. Add the best of these k solutions to the new population

Selection pressure can easily controlled via parameter k. Unlike the previous two
selection mechanisms, no knowledge of the whole population is necessary. Tour-
nament selection can also handle some special optimization problems where actual
solutions cannot be rated directly. These problems often appear in game theory
where solutions represent game strategies.

Recombination

The purpose of recombination is to generate new offspring solutions based on two
(or more) parental solutions. The concept of neighborhood structure is important,
since the new solution should inherit attributes of its parents and not purely random.
When solutions are encoded as bit-strings, the most simple approach is the one point
crossover. It chooses a crossover point randomly and splits each parent solutions
into two parts. For the resulting offsprings, the first part of one parental solution
is combined with the second part of another parental solution. This one point
crossover can be easily extended to two point crossover, multipoint crossover, or
uniform crossover.

Permutation is another popular solution representation for COPs. When applying
crossover on it, it is important that that resulting offsprings are still valid permuta-
tions. Following recombination operators are common examples: partially mapped
crossover [42], order crossover [16], and uniform order based crossover [113].
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For network problems such as the TSP, when solutions are represented by a set of
edges, the edge recombination crossover [13] is also popular. It creates an offspring
by taking over edges of parental solutions iteratively according to certain criteria.
On network problems, this recombination model performs considerably well since it
usually can exploit problem specific informations.

Mutation

Mutation is similar to applying a random move in a certain neighborhood to a
solution in LS. This way, lost attributes which do not appear in the whole population
have a chance of being introduced again. Usually, mutations are not applied to
every solution in the population each iteration, but they only occur with a small
probability. For a permutation based representation, a possible mutation could be
to exchange the attributes of two positions.

3.7 Memetic Algorithms

A common drawback of EAs is that there is no guarantee for the global best solution
to be even local optimal. Though good diversification is present due to a large
population, recombination and mutation mechanisms, EAs lack intensification in
overall.

Therefore, many successful EAs for complex combinatorial optimization problems
additionally use hybridization to improve solution quality and/or running time.
Pablo Moscato [84] introduced the term Memetic Algorithm (MA) for local search
and problem specific knowledge enhanced EAs. The term “meme” corresponds to
a unit of imitation in cultural transmission [17]. So while genetic algorithm are
inspired by biological evolution, MAs attempts to mimic cultural evolution.

In MAs, While the outer metaheuristic is an EA, individual solutions of the pop-
ulation are further improved e.g. via local search heuristics. If each intermediate
solution is always turned into a local optimum, the EA would exclusively search the
space of local optima (w.r.t. the neighborhood structure(s) of the local improvement
procedure). So by adjusting how much effort is spent in the local improvement, it
is possible to tune the balance between intensification and diversification.
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Chapter 4

Hybrid Algorithms

Looking at the various exact techniques and metaheuristics described in the previ-
ous chapters, each of them has its assets and drawbacks. As a matter of fact, it
appears to be natural to combine ideas from multiple algorithmic streams. Several
publications of the last years describe different kinds of such hybrid optimizers that
are often significantly more effective in terms of running time and/or solution qual-
ity since they benefit from synergy. See [24, 97] which illustrates the many different
possibilities of combinations and the huge potential they have.

This chapter will focus on embedded techniques since they are implemented in this
thesis. They are possibly the most straightforward way of how to combine different
approaches. The basic idea is to let one algorithm act as a subordinate of another
one. One popular strategy is to apply some local search or more complex algorithms
within an outer metaheuristic for “fine-tuning”. Variable neighborhood search or
memetic algorithms introduced in the previous chapter are typical examples for such
a collaboration – while the outer algorithms creates diversity, the inner local search
heuristics emphasize intensification. To go one step further, such collaborations
between exact and heuristic approaches seem to provide even more hybridization
possibilities.

4.1 Exact Algorithms as Subordinates of Metaheuristics

In order to enhance the performance of metaheuristics, exact algorithms can be used
to solve parts or subproblems during the optimization process.
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4.1.1 Explore Large Neighborhoods by Exact Methods

Numerous local search based algorithms use neighborhoods Nk that lead to moves
referred to as k-exchange or k-opt with k = 1 or k = 2. These simple neighborhoods
are characterized by the fact that they consider only the change of one or two
component(s) of the current configuration vector at once.

Such algorithms are fast but often produce poor suboptimal solutions. To improve
this behavior, one can increase k, the number of variables to be concurrently con-
sidered at each move, beyond one or two. However, as the number of neighboring
solutions in Nk typically increases exponentially with k, a complete enumeration
and evaluation of all neighbors of the current configuration can usually only be done
for small k.

Instead of naively enumerating and evaluating all the solutions in a larger neighbor-
hood in order to identify the best move (or any improving move) to be performed, we
can consider more sophisticated exact algorithms for this task. So-called very large
scale neighborhood search methods [1] have been described for a few selected prob-
lems, in which large neighborhoods are defined in special ways allowing to identify
the best neighboring solution in reasonable (i.e. polynomial) time without explic-
itly considering each neighbor. For example, Ergun and Orlin [26] presented such
approaches for the traveling salesman problem, Congram [9] explored large neighbor-
hoods efficiently by means of dynamic programming, and for a class of partitioning
problems, Thompson et al. [116] defined the concept of cyclic exchange neighbor-
hoods.

Such approaches are also highly promising for many other classes of problems. How-
ever, the design of successful large neighborhoods, is not trivial, since it goes hand
in hand with the design of an efficient algorithm for searching it.

For several generalized network design problems in this thesis, we will use techniques
such as dynamic programming and integer linear programming to efficiently search
large neighborhoods.

4.1.2 Merge Solutions by Exact Methods

In evolutionary algorithms, a traditional operator is recombination, which derives
a new offspring solution by merging properties of two or more selected candidate
solutions. This operator traditionally relies on random decisions and often poor
offsprings cannot be avoided.
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This motivates approaches where new offspring are derived by exactly solving the
subproblem of finding the best solution made up only or mostly of parental properties
[10].

Therefore, one can interpret this operation, called merging, as the exploration of a
large neighborhood defined by two or more given solutions. How the neighborhood
should be defined exactly is again a non-trivial question, going again hand in hand
with the design of an appropriate method for searching it. Note that this technique
can also be seen as a sophisticated extension of the successful path-relinking operator
which is commonly used in scatter search [41].

4.2 Metaheuristics as Subordinates of Exact Algorithms

Commercial ILP solvers, such as ILOG’s CPLEX, are based on a branch-and-bound
framework and cutting plane techniques. Within this framework, heuristics are
typically used to quickly obtain a promising feasible initial solution (if possible) in
order to start with a meaningful global bound. Furthermore, heuristics are usually
applied to open subproblems within B&B in order to find better feasible solutions
and to improve on this global bound. Beside this obvious application of heuristics,
there are other more sophisticated hybridization possibilities.

4.2.1 Guiding Branching and Enumeration Rules by Metaheuristics

B&B strategies have several degrees of freedom that substantially influence perfor-
mance. In particular, it is often crucial on which discrete entity/entities branching
is performed, and in which order the outstanding subproblems (open nodes) are
tackled. It is possible to use metaheuristics to control these decisions. For example,
Kostikas and Fragakis [70] concluded that such an approach can be effective.

4.2.2 Column Generation by Metaheuristics

If written down completely, some ILP models contain a very large number of vari-
ables which precludes the direct application of LP/ILP solvers. Furthermore, in
order to provide better bounds, decomposition techniques such as Dantzig-Wolfe
decomposition are often applied to strengthen ILPs, yielding, however, models with
an exponential number of variables.

As introduced in Chapter 2, this problem can be overcome by starting with a small
set of variables and iteratively adding new ones to the model – the pricing problem.
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However, determining a variable whose addition would improve the current solution
is often a difficult task. Therefore, trying to solve this pricing problem first with
fast heuristics is a common approach to speed up column generation. When applied
properly, metaheuristics can be very useful in this task [100].

Puchinger and Raidl [96, 99] developed a B&P approach for the two-dimensional bin
packing problem which uses a hierarchy of four sub-algorithms for column genera-
tion: A fast greedy heuristic, an EA, an algorithm for the restricted pricing problem,
and an an exact pricing algorithm.

4.2.3 Cut Generation by Metaheuristics

ILP solvers typically rely on cut generation, i.e. the dynamic addition of extra con-
straints that are satisfied by a feasible optimal solution, but which are violated by the
current solution to the linear programming relaxation. Adding such cuts strength-
ens the formulation and yields a better LP relaxation and therefore a tighter bound.
Finding such cuts is, however, often a difficult optimization problem by its own.
Similarly, as metaheuristics can help in solving pricing problems, they are also well
suited to help in solving the separation problem.

For the bounded diameter minimum spanning tree problem, Gruber and Raidl [44,
45] presented a B&C algorithm based on a novel type of inequalities. Since the
separation problem was very hard to solve, they used construction heuristics with
local search and tabu search to locate violated constraints in the LP relaxation.

4.2.4 Applying the Spirit of Metaheuristics in B&B Approaches

Fischetti and Lodi [32] have introduced the concept of local branching in B&B-
based ILP-solvers. Given an incumbent solution, B&B branches by splitting off
a relatively small subproblem corresponding to a k-opt neighborhood around the
incumbent solution. This subproblem is forced to be solved (either to optimality
or truncated through a time or node limit) by B&B itself before considering the
remaining “big” problem. If an improved solution is identified in this way, it is used
as a new incumbent solution for continuing a virtual local search within the B&B
framework.

Furthermore, guided diving and relaxation induced neighborhood search [14] are tech-
niques with a similar spirit as local branching: Branching and node-selection rules of
a B&B-based ILP-solver are modified in such a way that the neighborhood of promis-
ing incumbent solutions and the space around the solution of the LP-relaxation is
investigated first.
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Chapter 5

Generalized Network Design
Problems

This section describes the general strategy that is primarily used in this thesis to
solve the Generalized Network Design Problems (GNDPs). In addition, we will also
give a brief overview of some other GNDPs which are not further considered here.
Finally, we will introduce the instances which are used to test the algorithms for the
GNDPs.

5.1 Strategies for Solving Generalized Network Design
Problems

The GNDPs considered in this thesis are

• the Generalized Minimum Spanning Tree Problem (GMSTP),

• the Generalized Traveling Salesman Problem (GTSP), and

• the Generalized Edge Biconnected Network Problem (GMEBCNP).

As introduced in Chapter 1, all of these GNDPs are regarded in a more abstract
way as graph theory problems. We are given an undirected weighted complete
graph G = 〈V,E, c〉 where node set V is partitioned into r pairwise disjoint clusters
V1, V2, . . . , Vr,

⋃
i=1,...,r Vi = V, Vi ∩ Vj = ∅ ∀i, j = 1, . . . , r, i 
= j.
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Since the goal is to find a subgraph S = 〈P, T 〉 with P = {p1, p2, . . . , pr} containing
one node per cluster, i.e. pi ∈ Vi for all i = 1, . . . , r and T meeting additional con-
straints of the actual GNDPs, we can approach this problem from two directions.

5.1.1 Emphasizing Spanned Nodes

This strategy is probably the more straightforward one. The idea is to first fix P ,
i.e. the nodes of all clusters that have to be spanned, and then connect them as good
as possible with respect to the constraints of the actual GNDP, see Figure 5.1.

V1 V2

V3

V4

V5

p1

p2

p3 p4

p5

Figure 5.1: Problem of finding the optimal connections for a given set of spanned
nodes P .

When designing neighborhood structures for local search based metaheuristics, we
can define a move as changing the spanned node of one or more clusters. For the
resulting new solution characterized by P ′, the problem is how to find the opti-
mal connections T ′. Obviously, this is equal to solving the classical version of the
corresponding GNDP. Depending on the problem, it can be optimally solved in
polynomial time (e.g. MSTP), or it can still be NP-hard (e.g. TSP).

This strategy, for example, has already been successfully applied to the MSTP by
Ghosh [37]. He implemented different variants of tabu search and variable neigh-
borhood search which use neighborhood structures based on changing one or two
spanned nodes and applying Kruskal’s MST heuristic to augment the solutions.

5.1.2 Emphasizing Global Connections

The idea behind the previous strategy can also be inverted: When first fixing the
general adjacency relations of clusters without choosing particular edges, we aim to
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compute an optimal selection of spanned nodes in the second phase. For a formal
description, following terminology is used.

Global graph: Given a clustered graph G = 〈V,E〉, the global graph denoted
by Gg = 〈V g, Eg〉 consists of nodes corresponding to clusters in G, i.e. V g =
{V1, V2, . . . , Vr}, and edge set Eg = {(Vi, Vj) | ∃(u, v) ∈ E∧u ∈ Vi∧v ∈ Vj}. Hereby,
each global connection (Vi, Vj) represents all edges {(u, v) ∈ E | u ∈ Vi ∧ v ∈ Vj} of
graph G.

Global Structure: When given a feasible candidate solution S = 〈P, T 〉 ⊆ G, its
corresponding global structure is defined as the induced global graph’s subgraph
Sg = 〈V g, T g〉 with global connections T g = {(Vi, Vj) ∈ Eg | ∃(u, v) ∈ T ∧ u ∈
Vi ∧ v ∈ Vj}. Figure 5.2 shows an example of a global structure.

V1 V2

V3

V4

V5

Figure 5.2: Example for a global structure Sg

Based on the global connections T g of a given global structure Sg = 〈V g, T g〉, the
idea is to compute an optimal selection of spanned nodes P .

When designing neighborhood structures with respect to this strategy, we can define
a move as changing one or more global connections in T g, yielding T g′. To obtain
the implied solution for T g′, the problem is to find an optimal selection of spanned
nodes P ′. Just as in the previous case, depending on the structure of the global
connections, this problem can be optimally solvable in polynomial time or may be
NP-hard.

This strategy has already been successfully applied to the MSTP by Pop [91] and
to the GTSP by Renaud et al. [103]. They designed neighborhood structures based
on modifying the global structure and applying dynamic programming to evaluate
the solutions.
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5.1.3 Combining both Strategies

The two strategies for approaching GNDPs can be seen as dual to each other and
they are based on complementary incomplete representations of the actual solutions.
As a result, it appears to be reasonable to combine them.

For solving the GNDPs in this thesis, approaches based on VNS are primarily used.
The essential idea behind this metaheuristic is to switch between different neighbor-
hood structures in order to compute solutions that are local optimal with respect to
all neighborhoods. This concept is very useful when we design multiple neighbor-
hood structures which are complementary and thus complete each other well. Of
course, these neighborhood structures can be used in other metaheuristics besides
VNS as well.

5.1.4 Complexity of the Subproblems

For the two strategies, we give the complexity of the corresponding subproblems
depending on the GNDP in Table 5.1.

Table 5.1: Complexity of subproblems of GNDPs

fix spanned nodes and fix global connections and
compute connections compute spanned nodes

Generalized minimum polynomial polynomial
spanning tree problem (classical MST) (dynamic programming)

Generalized traveling NP-hard polynomial
salesman problem (classical TSP) (shortest paths)

Generalized minimum
edge biconnected NP-hard NP-hard
network problem
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The complexities for fixing the spanned nodes and computing the connections are
more obvious since they are derived from the corresponding classical NDP. For de-
termining the complexities when fixing the global connections and computing the
spanned nodes, we will either describe polynomial time algorithms (e.g. for the GM-
STP and GTSP) or prove NP-hardness (e.g. for the GMEBCNP) in the following
chapters.

5.2 Other Generalized Network Design Problems

In addition to the GNDPs that are covered in this thesis and introduced in Section
1.1, there are many others. We will give a short overview on some of them.

The At-Least Variant: For each GNDP there are two problem variants: While we
consider the variant where exactly one node has to be spanned from each cluster,
there is also the variant where at-least one node has to be spanned. In some cases,
the optimal solutions of both variants are equal. For example, if we consider the
GTSP on Euclidean instances, even if we allow more than one node per cluster to
be connected, the optimal solution will only contain one node from each cluster [74].
However, for most of the GNDPs, optimal solutions of the less restrictive at-least
version can have lower objective values.

Generalized Minimum Vertex Biconnected Network Problem: This is an obvious
variation to the GMEBCNP considered in Chapter 8. Based on a clustered graph
G = 〈V,E, c〉, we seek a subgraph S = 〈P, T 〉 of minimal costs with P containing
exactly one node from each cluster and T connects all nodes in P via vertex re-
dundancy, i.e. for each pair of nodes u, v ∈ P, u 
= v there must exist at least two
node-disjoint paths. Note that vertex redundancy implies edge redundancy, but not
conversely. This GNDP has not been considered yet.

Generalized Minimum Clique Problem: Given a clustered graph G = 〈V,E, c〉,
this problem consists of finding the optimal spanned nodes P so that the induced
complete graph has minimal costs. Although this problem appears to be less complex
since the global structure is always a complete graph, Koster et al. [69] showed that
it is still NP-hard to determine the optimal spanned nodes P .
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Generalized Minimum Cost Perfect Matching Problem: Given a clustered graph
G = 〈V,E, c〉, the objective is to find a subgraph S = 〈P, T 〉 of minimal costs with
P containing exactly one node from each cluster and T being a perfect matching
on P , i.e. each node in P is adjacent to only one edge of M . This problem can be
solved in polynomial time by precomputing the shortest connections between each
pair of clusters.

Generalized Steiner Tree Problem: The generalization of the Steiner tree problem,
as it usually appears in literature [102, 105, 122], is rather different compared to
other GNDPs. First of all, not all nodes of the given graph G = 〈V,E, c〉 are
assigned to clusters, but only a subset U ⊆ V . The remaining nodes are regarded
as so-called Steiner nodes, i.e. they do not necessarily have to be connected in the
solution. Secondly, the standard generalization is the at least version, i.e. the solution
S = 〈P, T 〉 must connect at least one node from each cluster. Hence P can contain
more than one node for some clusters. This problem was introduced by Reich and
Widmayer [102]. They showed that this problem is NP-hard, even if G does not
contain any Steiner nodes.

Generalized Node Weighted Steiner Tree Problem: An interesting variation to
the previous problem emerges when costs are assigned to the nodes in V as well.
These can be negative in case they represent profits for connecting particular nodes.
The classical node weighted Steiner tree problem was introduced by Segev [109], but
the generalized version has not been considered yet.

Generalized Shortest Paths Problem: Given a graph G = 〈V,E, c〉, this problem
consists of finding a shortest path from u to v, both being nodes of V . It is assumed
that V \ {u, v} is partitioned into clusters and the path must contain at most one
node from each cluster. There are several different problem formulations. Some
can require at least one node from each cluster to be connected, others demand
exactly one node from each cluster. For these two variants, it is also necessary to
specify whether all clusters have to be included in the path or not. Depending on
the particular problem variant, it can be NP-hard or solvable in polynomial time.
Li et al. [78] considered a variation of this problem where each node is assigned a
non-negative weight value and the shortest path may contain several nodes from a
single cluster if the sum of their weights does not exceed a given limit l.

For a more detailed description with an overview on the existing works of various
GNDPs, we refer to Feremans et al. [30].
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5.3 Test Instances for Generalized Network Design
Problems

For testing the algorithms on the GNDPs, we use several instance sets of differ-
ent types. First of all, we consider Euclidean TSPlib1 instances with geographical
clustering which was used by Feremans [27]. They are based on real world data.

Applying geographical clustering [34] on TSPlib instances is done as follows. A total
of r center nodes are chosen to be located as far as possible from each other. This is
achieved by selecting the first center randomly, the second center as the farthest node
from the first center, the third center as the farthest node from the set of the first
two centers, and so on. Then, clustering is done by assigning each of the remaining
nodes to its nearest center node. We consider the largest of such TSPlib instances
with up to 442 nodes, 97461 edges, and 89 clusters; details are listed in Table 5.2.
The values in the columns denote names of the instances, numbers of nodes, numbers
of edges, numbers of clusters, and the average, minimal, and maximal numbers of
nodes per cluster.

Table 5.2: TSPlib instances with geographical clustering. Numbers of nodes vary
for each cluster.

Instance name |V | |E| r |V |
r dmin dmax

gr137 137 9316 28 5 1 12
kroa150 150 11175 30 5 1 10
d198 198 19503 40 5 1 15
krob200 200 19900 40 5 1 8
gr202 202 20301 41 5 1 16
ts225 225 25200 45 5 1 9
pr226 226 25425 46 5 1 16
gil262 262 34191 53 5 1 13
pr264 264 34716 54 5 1 12
pr299 299 44551 60 5 1 11
lin318 318 50403 64 5 1 14
rd400 400 79800 80 5 1 11
fl417 417 86736 84 5 1 22
gr431 431 92665 87 5 1 62
pr439 439 96141 88 5 1 17
pcb442 442 97461 89 5 1 10

1http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html
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Besides TSPlib instances, we also consider instance which are created by Ghosh
[37] for the GMSTP. First, there are so-called grouped Euclidean instances. In this
type of instances, squares with side length span are associated to clusters and are
regularly laid out on a grid of size col×row as shown in Figure 5.3. The nodes of each
cluster are randomly distributed within the corresponding square. By changing the
ratio between cluster separation sep and cluster span span, it is possible to generate
instances with clusters that are overlapping or widely separated.

ro
w

=
3

col = 4

sep

sp
a
n

Figure 5.3: Creation of Grouped Euclidean Instances.

The second type of benchmark instances are so-called random Euclidean where nodes
of the same cluster are not necessarily close to each other. Such instances are created
by simply scattering nodes randomly within a square of size 1000×1000 and making
the cluster assignment independently at random.

Finally, Ghosh also generated non-Euclidean random instances by choosing all edge
costs randomly from the integer interval [0, 1000]. All graphs have a complete set of
edges. His benchmark set contains instances with up to 1280 nodes, 818560 edges,
and 64 clusters; details are listed in Table 5.3. For each type and size, we consider
three different instances.

Expanding this benchmark library, we analogously generated further large instances
with 600 nodes and 20 clusters, yielding 30 nodes per cluster, using the same al-
gorithms. The values in the columns denote names of the sets, numbers of nodes,
numbers of edges, numbers of clusters, and numbers of nodes per cluster. In case of
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grouped Euclidean instances, numbers of columns and rows of the grid, as well as
the cluster separation and cluster span values are additionally given.

Table 5.3: Benchmark instance sets adopted from [37] and correspondingly created
new sets (marked by *). Each instance has a constant number of nodes
per cluster.

Instance set |V | |E| r |V |
r col row sep span

Grouped E. 125 125 7750 25 5 5 5 10 10
Grouped E. 500 500 124750 100 5 10 10 10 10
Grouped E. 600* 600 179700 20 30 5 4 10 10
Grouped E. 1280 1280 818560 64 20 8 8 10 10
Random E. 250 250 31125 50 5 - - - -
Random E. 400 400 79800 20 20 - - - -
Random E. 600* 600 179700 20 30 - - - -
Non-E. 200 200 19900 20 10 - - - -
Non-E. 500 500 124750 100 5 - - - -
Non-E. 600* 600 179700 20 30 - - - -
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Chapter 6

The Generalized Minimum
Spanning Tree Problem

6.1 Introduction

The Generalized Minimum Spanning Tree Problem (GMSTP) is an extension of
the classical Minimum Spanning Tree (MST) problem on a graph and is defined as
follows. We consider an undirected weighted complete graph G = 〈V,E, c〉 with node
set V , edge set E, and edge cost function c : E → R+. Node set V is partitioned
into r pairwise disjoint clusters V1, V2, . . . , Vr,

⋃
i=1,...,r Vi = V, Vi ∩ Vj = ∅ ∀i, j =

1, . . . , r, i 
= j. We write di for the number of nodes in Vi, i = 1, . . . , r.

A spanning tree of a graph is a cycle-free subgraph connecting all nodes. A solution
to the GMSTP defined on G is a graph S = 〈P, T 〉 with P = {p1, p2, . . . , pr} ⊆ V
containing exactly one node from each cluster, i.e. pi ∈ Vi for all i = 1, . . . , r, and
T ⊆ E being a tree spanning the nodes in P , see Figure 6.1. The costs of such a tree
are its total edge costs, i.e. C(T ) =

∑
(u,v)∈T c(u, v), and the objective is to identify

a solution with minimum costs. We only consider undirected graphs, thus (u, v) is
essentially {u, v}. For better readability, we use (u, v) throughout the chapter.

Parts of this chapter appeared in [55, 57]
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p5

Figure 6.1: Example for a solution to the GMSTP.

In case each cluster contains only one node, i.e. |Vi| = 1 for all i = 1, . . . , r, the
problem reduces to the simple MST problem, which can be efficiently solved in
polynomial time. In general, however, the GMSTP is strongly NP-hard [86].

There are several real world applications of the GMSTP, e.g. in the design of back-
bones in large communication networks. Devices belonging to the same existing
local area network correspond to nodes within the same cluster, and the backbone
is required to connect one device per local network. For a more detailed overview
on the GMSTP, see [86, 27, 91].

A variant of the GMSTP is the less restrictive At-Least GMSTP (LGMSTP) where
more than one node is allowed to be connected from each cluster [63, 22]. The
GMSTP, as well as the LGMSTP, can further be considered as special cases of
the Group Steiner Problem (GSP) introduced by Reich and Widmayer [102]. In
this more general problem, clusters are replaced by groups of nodes, which are not
required to be disjoint, nor do they have to cover all nodes. The objective is to find
a subgraph which spans at least one node of each group.

For solving the GSP, Duin et al. [23] described a transformation to the classical
Steiner tree problem on graphs. It is also possible to transform the GMSTP into a
(not further constrained) GSP, and therefore, we can solve the GMSTP in principle
by means of algorithms for the Steiner tree problem. However, to guarantee that
only one node is connected for each cluster, a large constant has to be added to the
edge costs, resulting in a GSP instance which is more difficult than general.

We propose a general Variable Neighborhood Search (VNS) approach for solving the
GMSTP. As local improvement within VNS, we use Variable Neighborhood Descent
(VND) utilizing three different types of exponentially large neighborhoods. Two of
them are based on complementary representations of candidate solutions. For the
third neighborhood we make use of Mixed Integer Programming (MIP) applying
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partial reoptimization, a metaheuristic technique also proposed by Taillard and Voss
[115].

This chapter based on [57] and is organized as follows. In Section 6.2, we give an
overview on research done on the GMSTP so far. In Section 6.3, we describe the
components of our VNS approach in detail. We show experimental results including
a comparison to previous approaches in Section 6.4 and conclude in Section 6.5.

6.2 Previous Work

The GMSTP was introduced by Myung et al. [86]. They proved that this problem
is NP-hard and provided four different Integer Linear Programming (ILP) formu-
lations. Feremans et al. [29] added another four formulations and performed an
in-depth investigation on all eight ILPs. Pop [91] introduced the “Local-Global”
MIP formulation. It proved in particular to be more efficient in practice, especially
in combination with a relaxation technique called “Rooting Procedure”. Instances
with up to 240 nodes divided into 30 clusters or 160 nodes divided into 40 clusters
could be solved to optimality. Furthermore, Pop utilized the underlying idea of his
MIP formulation in a Simulated Annealing approach in order to heuristically solve
larger instances. His work also formed a basis for the design of one of the neigh-
borhoods we present in this chapter. A more complex Branch-and-Cut algorithm
which features new sophisticated cuts and detailed separation procedures has been
recently presented by Feremans et al. [31]. Nevertheless, large instances can still not
be solved to optimality in reasonable time.

Regarding approximation algorithms, Myung et al. [86] have shown the inapprox-
imability of the GMSTP in the sense that no approximation algorithm with constant
quality guarantee can exist unless P = NP. However, there are better results for some
special cases of the problem. Pop et al. [93] described an approximation algorithm
for the case when the cluster size is constant. Moreover, Feremans and Grigoriev
[28] provided a Polynomial Time Approximation Scheme (PTAS) for the special case
of the GMSTP with so-called grid-clustering.

To approach more general and larger GMSTP instances, various metaheuristics have
been suggested. Ghosh [37] implemented and compared a Tabu Search with recency
based memory (TS), a Tabu Search with recency and frequency based memory
(TS2), a Variable Neighborhood Descent Search, a Reduced VNS, a VNS with steep-
est descent and a Variable Neighborhood Decomposition Search (VNDS). For all the
VNS approaches, he used 1-swap and 2-swap neighborhoods, which are based on the
exchange of the spanned nodes within clusters. Comparing these approaches on in-
stances ranging from 100 to 400 nodes partitioned into up to 100 clusters, Ghosh
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concluded that TS2 and VNDS perform best on average. Golden et al. [43] pre-
sented lower and upper bounding procedures, considering the graph G′ = 〈V ′, E′〉
with nodes v′i of V ′ being the clusters Vi of G and with edge set E′ being complete.
A lower bound arises when one determines an MST on G′ with respect to edge
costs c′(v′i, v

′
j) defined as min{c(a, b) | (a, b) ∈ E ∧ a ∈ Vi ∧ b ∈ Vj}. Furthermore,

the authors introduced construction heuristics by adapting Kruskal’s [71], Prim’s
[95], and Sollin’s algorithm for the classical MST problem, and described a Genetic
Algorithm (GA).

A preliminary version of the VNS approach has been described in [55]. The current
work has been extended by by exploiting an additional neighborhood type that is
based on the idea of solving small parts of an instance via MIP to optimality.

Concerning the LGMSTP, [22] developed two ILPs, four simple construction heuris-
tics and a basic genetic algorithm. [50] presented strategies for obtaining upper
bounds by means of a sophisticated construction heuristic and a complex genetic
algorithm. They also discussed three alternative ILP formulations which provide
lower bounds after relaxing them in a Lagrangian fashion. Based on these bounds,
[49] developed a branch-and-bound algorithm which could solve some instances with
up to 250 nodes and 1000 edges to optimality. Unfortunately, many of the more spe-
cific concepts behind these algorithms for the LGMSTP cannot be applied to the
GMSTP as we consider it here.

6.3 Variable Neighborhood Search for the GMSTP

In this section, we present our VNS approach. First, we consider two constructive
heuristics to produce initial solutions. Then, after describing our neighborhoods
and the search techniques applied to them, we specify the shaking procedure and
a memory function to substantially reduce the number of evaluations for the same
solutions.

6.3.1 Initialization

To compute an initial feasible solution for the GMSTP, either a specialized heuristic
or an adaption of a standard algorithm for the classical MST problem can be used.
Golden et al. [43] give a comparison between three simple and three improved adap-
tions of Kruskal’s, Prim’s, and Sollin’s MST algorithms for the GMSTP. While all
three improved adaptions produce comparable results, the variant based on Sollin’s
algorithm in general has the highest computational effort. We therefore adopt the
improved version based on Kruskal’s MST heuristic and compare it to the rather
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simple minimum distance heuristic which was also used by Ghosh [37] to generate
initial solutions.

Minimum Distance Heuristic

The Minimum Distance Heuristic (MDH) for computing a feasible initial solution
for the GMSTP is shown in Algorithm 10. For each cluster, the node with the
lowest sum of edge costs to all nodes in other clusters is determined, and a MST is
calculated on these nodes. Using Kruskal’s algorithm for computing the MST, the
complexity of MDH is O(|V |2 + r2 log r) where r is the number of clusters.

Algorithm 10: Minimum distance heuristic
for i := 1, . . . , r do

choose pi ∈ Vi with minimal
∑

v∈V \Vi
c(pi, v) as the node to be spanned

determine MST T on the subgraph induced by node set P := {p1, . . . , pr}
return solution S := 〈P, T 〉

Improved Adaption of Kruskal’s MST Heuristic

Creating a feasible solution for the GMSTP by an adaption of Kruskal’s algorithm
for the classical MST problem is straightforward. The basic idea is to consider
edges in increasing cost-order. An edge is added to the solution iff it does not
introduce a cycle and does not connect a second node of any cluster. Obviously,
this adaption does not change the time complexity of Kruskal’s original algorithm,
which is O(|V | + |E| log |E|).
By fixing an initial node to be in the resulting generalized spanning tree, different
solutions can be obtained. The Improved Adaption of Kruskal’s MST Heuristic
(IKH), as it is called in [43], is shown in Algorithm 11 and follows this idea by
running the simple version |V | times, once for each node to be initially fixed. Due

Algorithm 11: Improved Kruskal heuristic
forall v ∈ |V | do

fix v to be in the generalized spanning tree
compute generalized spanning tree with the adaption of Kruskal’s MST
algorithm

return solution with minimal costs
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to the fact that sorting of edges needs to be done only once, the computational
complexity is O(|V |2 + |E| log |E|).

6.3.2 Neighborhood Structures

Our VNS algorithm applies three types of neighborhoods. The first two are based on
local search concepts from [37] and [91]. Ghosh represents solutions by the spanned
nodes and defines neighborhood structures on them. Optimal edges are derived
for a given selection of nodes by determining a classical MST. On the other hand,
Pop approaches the GMSTP from an alternative side by representing a solution via
its “global connections” – the pairs of clusters which are directly connected. The
complete solution is obtained by a decoding function which identifies the best suited
nodes and associated edges for the given global connections. The neighborhood of a
solution contains all solutions obtained by replacing a global connection by another
feasible one. For our third neighborhood type we consider reasonably small parts
of a candidate solution, each part inducing a smaller GMSTP (on a subgraph of
the whole instance). We solve these smaller GMSTP’s independently to optimality
by means of the MIP in [91]. After reconnecting these solved parts we obtain a
neighbor of the candidate solution.

Node Exchange Neighborhood

In this neighborhood, which was originally proposed by Ghosh [37], a solution is
represented by the set of spanned nodes P = {p1, . . . , pr} where pi is the node to be
connected from each cluster Vi, i = 1, . . . , r. Knowing these nodes, there are rr−2

possible spanning trees, but one with smallest costs can be efficiently derived by
computing a classical MST on the subgraph of G induced by the chosen nodes.

The Node Exchange Neighborhood (NEN) of a solution P consists of all node vectors
(and corresponding spanning trees) in which for precisely one cluster Vi the node pi

is replaced by a different node p′i of the same cluster. This neighborhood therefore
consists of

∑r
i=1(|Vi| − 1) = O(|V |) different node vectors representing in total

O(|V |·rr−2) trees. Since a single MST can be computed in O(r2) time, e.g. by Prim’s
algorithm, a straight-forward generation and evaluation of the whole neighborhood
in order to find the best neighboring solution can be accomplished in O(|V | · r2)
time.

Using an incremental evaluation scheme, we can reduce the computational effort sig-
nificantly. The goal is to derive from a current minimum-cost tree S represented by
P a new minimum-cost tree S′ when node pi is replaced by some node p′i. Removing
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pi and all its incident edges from the initial tree S results in a graph consisting of
k ≥ 1 connected components T1, . . . , Tk, where usually k � r. The new minimum-
cost tree S′ will definitely not contain new edges within each component T1, . . . , Tk,
because they are connected in the cheapest way as they where optimal in S. New
edges are only necessary between nodes of different components and/or p′i. Further-
more, only the shortest edges connecting any pair of components must be considered.
So, the edges of S′ must be a subset of

• the edges of S after removing pi and its incident edges,

• all edges (p′i, pj) with j = 1, . . . , r ∧ j 
= i, and

• the shortest edges between any pair of the components T1, . . . , Tk.

To compute S′, we therefore have to calculate the MST of a graph with (r−k−1)+
(r − 1) + (k2 − k)/2 = O(r + k2) edges only. Unfortunately, this optimization does
not change the worst case time complexity, because identifying the shortest edges
between any pair of components may require O(r2) operations. However, in most
practical cases it is substantially faster to compute these shortest edges and to apply
Kruskal’s MST algorithm on the resulting thin graph. Especially when replacing a
leaf node of the initial tree S, we only get a single component plus the new node
and the incremental evaluation’s benefits are largest.

Exchanging More Than One Node

The above neighborhood can be easily generalized by simultaneously replacing t ≥ 2
nodes. The computational complexity of a complete evaluation raises to O(|V |t ·r2).
While an incremental computation is still possible in a similar way as described
above, the complete evaluation of the neighborhood becomes nevertheless imprac-
ticable for larger instances even when t = 2. We therefore apply a Restricted Two
Nodes Exchange Neighborhood (RNEN2) in which only pairs of clusters that are
adjacent in the current solution S are simultaneously considered. Supposing the
clusters are of similar size, the time complexity for a complete evaluation is then
only O(|V | · r2).

Nevertheless, RNEN2 is in practice still a relatively expensive neighborhood. Since
its complete evaluation consumes too much time in case of large instances, we abort
its exploration after a certain time limit returning the best neighbor identified so
far.
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Global Edge Exchange Neighborhood

For a given selection of nodes, optimal edges can be determined by an MST algo-
rithm. Pop [91] has shown that this process can also be reversed: Starting from a
global structure Sg = 〈V g, T g〉 which was introduced in Section 5.1.2, we can deter-
mine optimal vertices (one for each cluster) by another efficient algorithm. Figure
6.2 shows an example of a global structure for the GMSTP, which is also called a
global spanning tree.

V1 V2

V3

V4

V5

Figure 6.2: A global spanning tree Sg.

The global spanning tree represents the set of all feasible generalized spanning trees
on G which contain for each global connection (Va, Vb) ∈ T g a corresponding edge
(u, v) ∈ E with u ∈ Va ∧ v ∈ Vb ∧ a 
= b. Such a set of trees on G that a particular
global spanning tree represents is in general exponentially large with respect to
the number of nodes. However, we can use dynamic programming to efficiently
determine a minimum cost solution from this set. We start by rooting the global
spanning tree at an arbitrary cluster Vroot ∈ V g and directing all edges towards the
leafs. Then, we traverse this tree in a recursive depth-first way calculating for each
cluster Vk ∈ V g and each node v ∈ Vk the minimum costs for the subtree rooted in
Vk when v is the node to be connected from Vk. These minimum costs of a subtree
are determined by the following recursion:

C(T g, Vk, v) =

{
0 if Vk is a leaf of the global spanning tree∑

Vl∈Succ(Vk) minu∈Vl
{c(v, u) + C(T g, Vl, u)} else,

where Succ(Vk) denotes the set of all successors of Vk in T g. After having determined
the minimum costs for the whole tree, the nodes to be used can be easily derived
in a top-down fashion by fixing for each cluster Vk ∈ V g the node pk ∈ Vk yielding
minimum costs. This dynamic programming algorithm requires in the worst case
O(|V |2) time and is illustrated in Figure 6.3.
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C(T g, V1, a) = 0
C(T g, V1, b) = 0

C(T g, V2, c) = 0
C(T g, V2, d) = 0

C(T g, V3, e) = 4
C(T g, V3, f) = 5

C(T g, Vroot, g) = 8
C(T g, Vroot, h) = 6

Figure 6.3: Determining the minimum-cost values for each cluster and node. The
tree’s total minimum costs are C(T g, Vroot, h) = 6, and the finally se-
lected nodes are printed bold.

As Global Edge Exchange Neighborhood (GEEN) for a given global tree T g, we
consider any feasible global tree differing from T g by precisely one global connection.
There are O(r) edges which can be removed and O(r2) feasible ways of reconnecting
the resulting two components. If we determine the best neighbor by evaluating all
possibilities and naively perform the whole dynamic programming for each global
candidate tree, the total time complexity is O(|V |2 · r3).

Incremental Dynamic Programming: For a more efficient evaluation of all neigh-
bors, we perform the whole dynamic programming only once at the beginning, store
all costs C(T g, Vk, v), ∀k = 1, . . . , r, v ∈ Vk, and incrementally update our data
for each considered move. According to the recursive definition of the dynamic pro-
gramming approach, we only need to recalculate the values of a cluster Vi if it gets
a new child, loses a child, or the costs of a successor change.

Moving to a solution in this neighborhood means to exchange a single global connec-
tion (Va, Vb) by a different one (Vc, Vd) so that the resulting graph remains a valid
tree, see Figure 6.4. By removing (Va, Vb), the subtree rooted at Vb is disconnected,
hence Va loses a child and Va, as well as all its predecessors, must be updated. Before
we add (Vc, Vd), we first need to consider the isolated subtree. If Vd 
= Vb, we have
to re-root the subtree at cluster Vd. Thereby, the old root Vb loses a child. All other
clusters which get new children or lose children are on the path from Vb up to Vd,
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and they must be reevaluated. Otherwise, if Vd = Vb, nothing changes within the
subtree. When adding the connection (Vc, Vd), Vc gets a new successor and therefore
must be updated together with all its predecessors on the path up to the root. In
conclusion, whenever we replace a global connection (Va, Vb) by (Vc, Vd), it is enough
to update the costs of Va, Vb, and all their predecessors on the ways up to the root
of the new global tree.

Vroot

Va

VbVc

Vd

Vroot

Va

Vc

Vb

Vd

Figure 6.4: After removing (Va, Vb) and inserting (Vc, Vd), only the clusters on the
paths from Va to Vroot and Vb to Vroot must be reconsidered.

If the tree is not degenerated, its height is O(log r), and we only need to update
O(log r) clusters of Gg. Suppose each of them contains no more than dmax nodes
and has at most smax successors, the time complexity of updating the costs of a
single cluster Vi is O(d2

max · smax), and the whole process needs time that is bounded
by O(d2

max · smax · log r). The incremental evaluation is therefore much faster than
the complete evaluation with its time complexity of O(|V |2) as long as the trees are
not degenerated. An additional improvement is to further avoid unnecessary update
calculations by checking if an update actually changes costs of a cluster. If this is
not the case, we may skip the update of the cluster’s predecessors as long as they
are not affected in some other way.

To examine the whole neighborhood of a current solution by using the improved
method described above, it is a good idea to choose a processing order that further
supports incremental evaluation. Algorithm 12 shows how this is done in detail.

Removing an edge (Vi, Vj) splits our rooted tree into two components: Kg
1 containing

Vi and Kg
2 containing Vj . The algorithm iterates through all clusters Vk ∈ Kg

1 and
makes them root. Each of these clusters is iteratively connected to every cluster
of Kg

2 in the inner loop. The advantage of this calculation order is that none of
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Algorithm 12: Global Edge Exchange Neighborhood (solution S = 〈P, T 〉)
forall global connections (Vi, Vj) ∈ T g do

remove (Vi, Vj)
M1 := list of clusters in component Kg

1 containing Vi (traversed in
preorder)
M2 := list of clusters in component Kg

2 containing Vj (traversed in
preorder)
forall Vk ∈ M1 do

root Kg
1 at Vk

forall Vl ∈ M2 do
root Kg

2 at Vl

add (Vk, Vl)
use incremental dynamic programming to determine the complete
solution

and the objective value
if current solution better than best then

save current solution as best
remove (Vk, Vl)

restore and return best solution

the clusters in Kg
1 except its root Vk has to be updated more than once, because

global edges are only added between the roots of Kg
1 and Kg

2 . Processing clusters
in preorder has another additional benefit: Typically, most of the time very few
clusters have to be updated when re-rooting either Kg

1 or Kg
2 .

Global Subtree Optimization Neighborhood

This neighborhood follows the idea of selecting subproblems of reasonable size, solv-
ing them to provable optimality via MIP and merging the results to an overall
solution as well as possible. We consider the current solution S = 〈P, T 〉 with its
corresponding global spanning tree Sg = 〈V g, T g〉 defined on the global graph Gg,
i.e. for each edge (u, v) ∈ T with u ∈ Vi ∧ v ∈ Vj , there exists a global connection
(Vi, Vj) ∈ T g. After rooting Sg at a randomly chosen cluster Vroot, we perform
a depth-first search to determine all subtrees Q1, . . . , Qk containing at least Nmin

and no more than Nmax clusters. Figure 6.5 shows an example for this selection
mechanism with Nmin = 3 and Nmax = 4 yielding subtrees Q1, . . . , Q4 rooted at
V1, . . . , V4.

Moving to a solution in the Global Subtree Optimization Neighborhood (GSON)
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Vroot

V1

V2

V3

V4

Q1

Q2

Q3

Q4

Figure 6.5: Selection of subtrees to be optimized via MIP.

means to optimize one subtree Qi as an independent GMSTP on the restricted
graph induced by the clusters and nodes of Qi. After solving this subproblem via
MIP, we reconnect the new subtree to the remainder of the current overall tree in
the best possible way. This can be achieved by inspecting all global connections
between both components, which is similar as in GEEN. Algorithm 13 summarizes
the evaluation of this neighborhood in pseudo-code.

Algorithm 13: Global Subtree Opt. Neighborhood (solution S = 〈P, T 〉)
V1, . . . , Vk := roots of the subtrees Q1, . . . , Qk containing at least Nmin and

no more than Nmax clusters
for i := 1, . . . , k do

remove the edge (parent of Vi, Vi) // separate subtree Qi from S
optimize Qi via MIP
reconnect Qi to S in a best possible way // as GEEN reconnection
mechanism
if current solution better than best then

save current solution as best
restore initial solution

restore and return best solution

Whether or not to also consider contained subtrees as Q2 in addition to Q1 in Figure
6.5 was a difficult question while designing GSON. In general, if Qi contains Qj , it
is not guaranteed that optimizing and reconnecting Qi would always yield a better
result than optimizing and reconnecting only the smaller subtree Qj . This is possible
in particular if the connection between Qi’s root cluster Vi and its predecessor is
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6.3 Variable Neighborhood Search for the GMSTP

cheap, but Qj fits better at a different location. So we decided to include contained
subtrees. If Nmin and Nmax are close, the additional computational effort caused by
contained subtrees is relatively low.

The computational complexity of GSON is hard to determine due to the optimization
procedure via MIP. If we do not allow overlapping subtrees, the number of subtrees
to be considered is bounded below by 0 and above by � r

Nmin
�. In our case, we allow

contained subtrees, and the number of subtrees to be optimized can be as large as
� r

Nmax
· (Nmax − Nmin + 1)�. In our experiments, choosing Nmin = 5 and Nmax = 6

yielded the best results.

Local-Global MIP Formulation

In order to solve the subproblems on restricted sets of clusters to optimality, GSON
utilizes Pop’s local-global MIP formulation [91], which turned out to be more efficient
than other formulations when using a general purpose MIP solver as CPLEX. This
formulation is based on the fact that for each cluster Vk, k = 1, . . . , r, there must
be a directed global path from Vk to each other cluster Vj , j 
= k. For each k,
these paths together form a directed tree rooted at Vk. We use the following binary
variables.

yij =

⎧⎪⎨
⎪⎩

1 if cluster Vi is connected to cluster Vj
in the global graph

0 otherwise
∀i, j = 1, . . . , r, i 
= j

λkij =

⎧⎪⎨
⎪⎩

1 if cluster Vj is the parent of cluster Vi
when we root the tree at cluster Vk

0 otherwise

∀i, j, k = 1, . . . , r,
i 
= j, i 
= k

xe =

{
1 if edge e ∈ E appears in the solution
0 otherwise

∀e ∈ E

zv =

{
1 if node v is connected in the solution
0 otherwise

∀v ∈ V

Pop proved that if the binary incidence matrix y describes a spanning tree of the
global graph, then the local solution is integral. Therefore it is sufficient to only
force yij to be integral in the following local-global MIP formulation.
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minimize
∑
e∈E

cexe (6.1)

subject to
∑
v∈Vk

zv = 1 ∀k = 1, . . . , r (6.2)

∑
e∈E

xe = r − 1 (6.3)

∑
e=(u,v)|u∈Vi,v∈Vj

xe = yij ∀i, j = 1, . . . , r, i 
= j (6.4)

∑
e=(u,v)|u∈Vi

xe ≤ zv ∀i = 1, . . . , r, ∀v ∈ V \Vi (6.5)

yij = λkij + λkji ∀i, j, k = 1, . . . , r, i 
= j, i 
= k (6.6)∑
j∈{1,...,r}\{i}

λkij = 1 ∀i, k = 1, . . . , r, i 
= k (6.7)

λkkj = 0 ∀j, k = 1, . . . , r, j 
= k (6.8)
λkij ≥ 0 ∀i, j, k = 1, . . . , r, i 
= j, i 
= k (6.9)
xe, zv ≥ 0 ∀e ∈ E,∀v ∈ V (6.10)
ylr ∈ {0, 1} (6.11)

Constraints (6.2) guarantee that only one node is selected per cluster. Equality (6.3)
forces the solution to contain exactly r− 1 edges, while constraints (6.4) allow them
only between nodes of clusters which are connected in the global graph. Inequalities
(6.5) ensure that edges only connect nodes v for which zv = 1. For each k = 1, . . . , r,
constraints (6.6) and (6.8) force variables λkij to represent a spanning tree directed
out of Vk: Equalities (6.6) ensure the selection of a global connection (i, j) iff i is
parent of j or j is parent of i in a spanning tree directed out of Vk. Constraints (6.7)
guarantee that each cluster except root k has exactly one parent, while Equalities
(6.8) make sure that root k has no parents.

Alternative Neighborhoods

When designing GSON we considered several alternative large neighborhoods com-
bining the concepts of the global graph with an exact MIP. One variation of GSON is
to first solve all subtrees of limited size exactly and then iterate through a neighbor-
hood structure in which we consider all possibilities of reconnecting these parts. As
there are exponentially many such possibilities, the exhaustive exploration turned
out to be too expensive in practice.
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Another idea for enhancing GSON was to select the clusters inducing a subproblem
to be solved exactly not just from the subtrees connected via a single edge to the
remaining tree, but from any connected subcomponent of limited size. However, the
number of such components is in general too large for a complete enumeration. A
practical possibility is to consider the restricted set formed by choosing each cluster
as root exactly once and adding Nmax − 1 further clusters found via breadth first
search. Thus one considers components of the current global tree where the clusters
are close to each other. Unfortunately, experiments we performed indicated that the
gain of this variant of GSON could not cover its high computational costs.

6.3.3 Variable Neighborhood Search Framework

We use the basic VNS scheme with VND as local improvement [48], see Section 3.4.
In VND, we alternate between NEN, GEEN, RNEN2, and GSON in this order, see
Algorithm 14. This sequence has been determined according to the computational
complexity of evaluating the neighborhoods.

Algorithm 14: VND (solution S = 〈P, T 〉)
l := 1
repeat

switch l do
case 1: // NEN

S′ := Node Exchange Neighborhood (S)
case 2: // GEEN

S′ := Global Edge Exchange Neighborhood (S) //see Algorithm 12
case 3: // RNEN2

S′ := Restricted Two Nodes Exchange Neighborhood (S)
case 4: // GSON

S′ := Global Subtree Optimization Neighborhood (S) //see
Algorithm 13

if solution improved then
S := S′

l := 1
else

l := l + 1
until l > 4
return S
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Shaking

It turned out that using a shaking function which puts more emphasis on diversity
yields good results for our approach, see Algorithm 15. This shaking process uses
both, the NEN and the GEEN structures. For NEN, the number of random moves
for shaking starts at three because we have a restricted 2-Opt NEN improvement
already included in VND; thus, shaking in NEN with smaller values would mostly
lead to the same local optimum as reached before. Shaking in GEEN starts with
two random moves for a similar reason. The number k of random moves increases
in steps of two up to � r

2�.

Algorithm 15: Shake (solution S = 〈P, T 〉, size k)

for i := 1, . . . , k + 1 do
randomly change the spanned node pi of a random cluster Vi

determine the MST T and derive T g

for i := 1, . . . , k do
remove a randomly chosen global connection e ∈ T g yielding components
Kg

1 and Kg
2

insert a randomly chosen global connection e′ connecting Kg
1 and Kg

2 with
e′ 
= e
determine the spanned nodes p1, . . . , pr by dynamic programming

return S

Memory Function

There is a common situation where VNS unnecessarily spends much time on iterating
through all neighborhoods. A local optimum reached by VND is a dead end for all
neighborhoods and VNS uses shaking to escape from it. Sometimes, applying VND
on the new solution soon leads to the same local optimum. Nevertheless, VND
iterates through all neighborhoods again, trying to improve the solution with no
success.

We use a hash memory to avoid such situations. For each deterministic neighborhood
structure Ni, we store a hash value hNi of the best solution obtained by it. Before
VND tries to improve a solution within Ni, it compares the hash value of the current
solution with the memorized hash value hNi . If they are equal, the evaluation of the
neighborhood is skipped, as the current solution cannot be improved by searching
through Ni. Since only one hash value per neighborhood structure is memorized at
a time, it is not comparable with full-fledged Tabu Search. Nevertheless, this simple
concept turned out to save much time in practice.
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Experimental VND Variation

We tried out a supposedly promising variation of VND where we remain at one
neighborhood until it cannot improve the solution anymore and only then move on
to the next one. This approach has the advantage that by consecutively running the
GEEN, we do not need to recalculate the connection values of all nodes each time
in the dynamic programming process. Unfortunately this was not such a good idea
because the gain was not too big. As GEEN still consumes much more time than
NEN, it is better to apply NEN whenever possible.

6.4 Computational Results

We tested our algorithms on Euclidean TSPlib instances with geographical center
clustering, grouped Euclidean, random Euclidean, and non-Euclidean instance sets
as introduced in Section 5.3. All experiments were performed on a Pentium 4,
2.8GHz PC with 2GB RAM, and we used CPLEX 9.03 to solve the MIP subproblems
within GSON.

In the following, we first present a summary for an experimental comparison of the
two constructive heuristics described in Section 6.3.1, which we consider for the
creation of initial solutions for VNS. Computational results of our VNS approach
on the different test data sets follow in Section 6.4.2. Finally, Section 6.4.3 analyses
the individual contributions of the different neighborhoods within VND.

6.4.1 Comparison of Construction Heuristics

Table 6.1 summarizes the comparison of MDH and IKH on all considered input
instances. It turned out that IKH performs consistently better than MDH on the
TSPlib based, grouped Euclidean, and non-Euclidean instances. Only on random
Euclidean instances, MDH could outperform IKH on 70% of the instances. Ratios
IKH/MDH indicate the average factor between the objective values of solutions
generated by IKH and MDH. Interestingly, the two heuristics never obtained the
same solution or solutions of the same quality. As the required CPU-times of both
heuristics are very small (less than 80ms for our largest instances with 1280 nodes),
we decided to run both, MDH and IKH, and to choose the better result as initial
solution for VNS.
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Table 6.1: Comparison of the construction heuristics MDH and IKH.

Instance Type MDH better % IKH better % IKH/MDH
TSBlib based 0 100 0.89
Grouped Euclidean 0 100 0.85
Random Euclidean 70 30 1.36
Non-Euclidean 0 100 0.16

6.4.2 Computational Results for VNS

We compare the results of our VNS to Tabu Search with recency and frequency
based memory (TS2) [37], Variable Neighborhood Decomposition Search (VNDS)
[37], the Simulated Annealing (SA) approach from Pop [91], and, in case of TSPlib
instances, also to the Genetic Algorithm (GA) from Golden et al. [43]. While TS2 is
deterministic, we provide average results over 30 runs for VNDS and VNS and over
at least 10 runs for SA (due to its long running times). For TS2, VNDS, and our
VNS, runs were terminated when a certain CPU-time limit had been reached. In
contrast, SA was run with the same cooling schedule and termination criterion as
specified by Pop [91], which led to significantly longer running times compared to
the other algorithms. The results for the GA are adopted from Golden et al. [43].

In Table 6.2 and 6.3 we show instance names, numbers of nodes, numbers of clusters,
(average) numbers of nodes per cluster, and (average) objective values of the final
solutions obtained by the different algorithms. Best values are printed bold. In
case of SA and VNS, we also provide corresponding standard deviations of objective
values. VNDS produces very stable results as the standard deviations are always
zero, except for the second instance of set “Random E. 400” where it is 0.34. For
GA, we do not have any standard deviations as they are not listed in [43].

In Table 6.2 we compare our VNS to TS2, VNDS, SA, and also the GA on the
TSPlib based instances. Results for the GA are adopted from Golden et al. [43],
where only smaller instances up to pr226 have been considered. The listed CPU-
times were the stopping criteria for TS2, VNDS, and VNS. SA needed up to 10000s
for large instances as pcb442. The test runs indicate that our VNS outperforms
VNDS and SA significantly. Wilcoxon rank sum tests again yield error probabilities
of less than 1% for the assumptions that the mean objective values from VNS are
smaller. Judging by the few results for GA, VNS finds solutions which are at least as
good as those of GA. Considering VNS and TS2, we cannot draw clear conclusions.
Most of the time, these two algorithms generate comparable results under the same
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Table 6.2: Results on TSPlib instances with geographical clustering, |V |
r = 5, vari-

able CPU-time.

TSPlib Instances TS2 VNDS SA GA VNS
Name |V | time C(T ) C(T ) C(T ) std dev C(T ) C(T ) std dev
gr137 137 150s 329.0 330.0 352.0 0.00 329.0 329.0 0.00
kroa150 150 150s 9815.0 9815.0 10885.6 25.63 9815.0 9815.0 0.00
d198 198 300s 7062.0 7169.0 7468.73 0.83 7044.0 7044.0 0.00
krob200 200 300s 11245.0 11353.0 12532.0 0.00 11244.0 11244.0 0.00
gr202 202 300s 242.0 249.0 258.0 0.00 243.0 242.0 0.00
ts225 225 300s 62366.0 63139.0 67195.1 34.49 62315.0 62268.5 0.51
pr226 226 300s 55515.0 55515.0 56286.6 40.89 55515.0 55515.0 0.00
gil262 262 300s 942.0 979.0 1022.0 0.00 - 942.3 1.02
pr264 264 300s 21886.0 22115.0 23445.8 68.27 - 21886.5 1.78
pr299 299 450s 20339.0 20578.0 22989.4 11.58 - 20322.6 14.67
lin318 318 450s 18521.0 18533.0 20268.0 0.00 - 18506.8 11.58
rd400 400 600s 5943.0 6056.0 6440.8 3.40 - 5943.6 9.69
fl417 417 600s 7990.0 7984.0 8076.0 0.00 - 7982.0 0.00
gr431 431 600s 1034.0 1036.0 1080.5 0.51 - 1033.0 0.18
pr439 439 600s 51852.0 52104.0 55694.1 45.88 - 51847.9 40.92
pcb442 442 600s 19621.0 19961.0 21515.1 5.15 - 19702.8 52.11

conditions. We omitted smaller TSPlib instances in Table 6.2 as the most capable
algorithms TS2, GA, and VNS were all able to (almost) always provide optimal
solutions as found by the exact Branch-and-Cut algorithm from [31]. The latter
could solve all instances with up to 200 nodes except d198 to provable optimality in
up to 5254s CPU time.

In Table 6.3 we compare our VNS to TS2, VNDS, and SA on grouped Euclidean
instances, random Euclidean instances, and non-Euclidean instances. The time limit
was set to 600s for TS2, VNDS, and VNS. In fact, none of the tested algorithms
practically needs that much time on smaller instances to find the finally best solu-
tions, but Ghosh [37] used this time limit as termination criterion, so we decided
to retain it. SA required 150s for small instances with 125 nodes and up to about
40000s for the largest instances with 1280 nodes.

When comparing our VNS with SA, we can observe that VNS consistently finds
better solutions. Wilcoxon rank sum tests yield error probabilities of less than 1%
for the assumption that the mean objective values from VNS are smaller. Also in
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Table 6.3: Results on instance sets from [37] and correspondingly created new sets,
600s CPU-time (except SA). Three different instances are considered for
each set.

Instances TS2 VNDS SA VNS
Set |V | r |V |

r C(T ) C(T ) C(T ) std dev C(T ) std dev
125 25 5 141.1 141.1 152.3 0.52 141.1 0.00

Grouped E. 125 125 25 5 133.8 133.8 150.9 0.74 133.8 0.00
125 25 5 143.9 145.4 156.8 0.00 141.4 0.00
500 100 5 566.7 577.6 642.3 0.00 567.4 0.57

Grouped E. 500 500 100 5 578.7 584.3 663.3 1.39 585.0 1.32
500 100 5 581.6 588.3 666.7 1.81 583.7 1.82
600 20 30 85.2 87.5 93.9 0.00 84.6 0.11

Grouped E. 600 600 20 30 87.9 90.3 99.5 0.28 87.9 0.00
600 20 30 88.6 89.4 99.2 0.17 88.5 0.00

1280 64 20 327.2 329.2 365.1 0.46 315.9 1.91
Grouped E. 1280 1280 64 20 322.2 322.5 364.4 0.00 318.3 1.78

1280 64 20 332.1 335.5 372.0 0.00 329.4 1.29
250 50 5 2285.1 2504.9 2584.3 23.82 2300.9 40.27

Random E. 250 250 50 5 2183.4 2343.3 2486.7 0.00 2201.8 23.30
250 50 5 2048.4 2263.7 2305.0 16.64 2057.6 31.58
400 20 20 557.4 725.9 665.1 3.94 615.3 10.8

Random E. 400 400 20 20 724.3 839.0 662.1 7.85 595.3 0.00
400 20 20 604.5 762.4 643.7 14.54 587.3 0.00
600 20 30 541.6 656.1 491.8 7.83 443.5 0.00

Random E. 600 600 20 30 540.3 634.0 542.8 25.75 537.0 10.2
600 20 30 627.4 636.5 469.5 2.75 469.0 11.9
200 20 10 71.6 94.7 76.9 0.21 71.6 0.00

Non-E. 200 200 20 10 41.0 76.6 41.1 0.02 41.0 0.00
200 20 10 52.8 75.3 86.9 5.38 52.8 0.00
500 100 5 143.7 203.2 200.3 4.44 152.5 3.69

Non-E. 500 500 100 5 132.7 187.3 194.3 1.20 148.6 4.27
500 100 5 162.3 197.4 205.6 0.00 166.1 2.89
600 20 30 14.5 59.4 22.7 1.49 15.6 1.62

Non-E. 600 600 20 30 17.7 23.7 22.0 0.82 16.1 1.24
600 20 30 15.1 29.5 22.1 0.44 16.0 1.66
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comparison to VNDS, our VNS is the clear winner. There are only two instances
where VNS and VNDS obtained exactly the same mean results and one instance
(the second of set “Grouped E. 500”) on which VNDS performed better. In all other
cases, VNS’ solutions are superior with high statistical significance (error levels less
than 1%). Results of VNS and TS2 are ambiguous. While TS2 usually produces
better results on instances with few nodes per cluster, VNS is typically superior
when the number of nodes per cluster is higher. This can in particular be observed
on instances with 30 nodes per cluster.

On grouped Euclidean instances, the objective values of the final solutions obtained
by the considered algorithms, especially those by TS2 and VNS, are relatively close.
We assume that these instances are easier to handle as the quality of the solutions
are less affected by the differences of the approaches. On random Euclidean in-
stances, especially when the number of nodes per cluster is higher, VNS produces
substantially better results than TS2 and VNDS; e.g. for the third instance of set
“Random E. 600”, solutions obtained by VNS are on average 34.4% better than
those of TS2. We also observe that SA, which is usually worst, is able to outperform
TS2 and VNDS on some of these instances. We conclude that the neighborhood
type GEEN, which is also the main component of SA, is very effective on random
Euclidean instances and on instances with higher number of nodes per cluster. On
non-Euclidean instances, TS2 mostly outperforms all other algorithms.

In overall, VNS and TS2 are the most powerful algorithms among all considered
approaches. Out of 46 instances we have tested, VNS produces strictly better results
in 20 cases, TS2 is better in 16 cases, and on 10 instances, they are equally good.

6.4.3 Contributions of Neighborhoods

In order to analyze how the different neighborhood structures of VNS contribute
to the whole optimization, we logged how often each one was able to improve on a
current solution and their absolute gains. Table 6.4 shows the ratios of successful
improvements in contrast to how often each neighborhood structure was evaluated.
These values are grouped by the different types of input instances. On the other
hand, Table 6.5 shows their absolute gains, i.e. their contribution in percentage to
the difference between objective values of the starting and the final solutions.

In general, each neighborhood structure contributes substantially to the whole suc-
cess. NEN and RNEN2 are most effective in terms how often they improve on a
solution, whereas the differences in the objective values achieved by single improve-
ments are significant larger in case of GEEN. Considering that GSON operates on
solutions which are already local optima with respect to all other neighborhoods,
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Table 6.4: Individual improvement rates of NEN, GEEN, RNEN2, and GSON.

Instance Type |V | r |V |
r NEN GEEN RNEN2 GSON

TSBlib based n.a. n.a. 5 0.55 0.44 0.67 0.18
125 25 5 0.54 0.49 0.72 0.15
500 100 5 0.55 0.41 0.76 0.16Grouped Euclidean
600 20 30 0.58 0.54 0.74 0.23

1280 64 20 0.63 0.45 0.70 0.46
250 50 5 0.74 0.30 0.95 0.09

Random Euclidean 400 20 20 0.59 0.42 0.88 0.10
600 20 30 0.57 0.53 0.81 0.07
200 20 10 0.78 0.43 0.60 0.06

Non-Euclidean 500 100 5 0.80 0.16 0.68 0.24
600 20 30 0.79 0.49 0.56 0.09

Table 6.5: Individual absolute gains of NEN, GEEN, RNEN2, and GSON.

Instance Type |V | r |V |
r NEN GEEN RNEN2 GSON

TSBlib based n.a. n.a. 5 16.58% 60.71% 15.64% 7.07%
125 25 5 18.02% 63.40% 13.61% 4.96%
500 100 5 23.17% 45.19% 28.32% 3.31%Grouped Euclidean
600 20 30 13.60% 75.85% 7.29% 3.26%

1280 64 20 16.72% 40.08% 20.45% 22.76%
250 50 5 16.90% 48.52% 16.06% 18.52%

Random Euclidean 400 20 20 16.14% 66.75% 15.13% 1.98%
600 20 30 21.30% 63.43% 13.65% 1.62%
200 20 10 10.89% 48.07% 11.92% 29.13%

Non-Euclidean 500 100 5 11.74% 60.04% 24.75% 3.47%
600 20 30 11.78% 74.80% 10.65% 2.78%

both its improvement ratios and its absolute gains are remarkable. Regarding the
different instance sets, we also observe that the improvement ratio of GEEN gener-
ally increases with the size of nodes per cluster.

In addition, Table 6.6 and 6.7 show tests on switching particular neighborhood struc-
tures off. We compare results obtained by using all neighborhood structures, turning
NEN and RNEN2 off, turning GEEN off, and turning GSON off. Obviously, omit-
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ting NEN and RNEN2 performs worst. By switching GEEN off, we get comparable
results on Group Euclidean instances and Non-Euclidean instances, but significantly
worse results on Random Euclidean instances. Results on runs without GSON are
taken from our previous work in [55], they are generally inferior compared to the
current results.

Table 6.6: Results on TSPlib instances when switching off certain neighborhoods.

Instances VNS w.o. NEN w.o. GEEN w.o. GSON
Name C(T ) std dev C(T ) std dev C(T ) std dev C(T ) std dev
gr137 329.0 0.00 329.0 0.00 329.0 0.00 329.0 0.00
kroa150 9815.0 0.00 9815.0 0.00 9815.0 0.00 9815.0 0.00
d198 7044.0 0.00 7044.6 2.28 7044.3 1.64 7044.0 0.00
krob200 11244.0 0.00 11264.0 22.6 11244.0 0.00 11244.0 0.00
gr202 242.0 0.00 242.2 0.48 242.1 0.25 242.0 0.00
ts225 62268.5 0.51 62270.7 6.35 62269.9 4.58 62280.5 16.28
pr226 55515.0 0.00 55515.0 0.00 55515.0 0.00 55515.0 0.00
gil262 942.3 1.02 947.0 3.63 942.9 1.36 943.2 1.63
pr264 21886.5 1.78 21913.0 17.1 21890.5 5.84 21890.8 5.92
pr299 20322.6 14.67 20422.2 44.85 20330.7 21.67 20347.4 28.09
lin318 18506.8 11.58 18596.1 36.9 18521.5 15.96 18511.2 9.70
rd400 5943.6 9.69 6067.8 48.1 5976.3 16.74 5955.0 7.57
fl417 7982.0 0.00 7982.3 0.47 7982.0 0.00 7982.0 0.00
gr431 1033.0 0.18 1037.2 1.64 1033.1 0.25 1033.0 0.25
pr439 51847.9 40.92 52184.0 127.55 51893.5 65.6 51849.7 39.30
pcb442 19702.8 52.11 20079.2 42.39 19796.7 35.51 19729.3 50.90
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Table 6.7: Results on Ghosh’ instance sets when switching off certain neighborhoods.

Instances VNS w.o. NEN w.o. GEEN w.o. GSON
Set C(T ) std dev C(T ) std dev C(T ) std dev C(T ) std dev

141.1 0.00 141.1 0.00 141.1 0.00 141.1 0.00
Grouped E. 125 133.8 0.00 133.8 0.00 133.8 0.00 133.8 0.00

141.4 0.00 141.4 0.00 141.4 0.00 141.4 0.00
567.4 0.57 589.6 5.56 567.7 0.48 568.6 0.59

Grouped E. 500 585.0 1.32 601.8 5.33 586.5 1.18 581.0 1.39
583.7 1.82 597.1 2.37 583.3 1.91 587.9 4.07
84.6 0.11 84.8 0.27 84.6 0.11 84.8 0.27

Grouped E. 600 87.9 0.00 88.3 0.24 87.9 0.02 87.9 0.05
88.5 0.00 88.7 0.12 88.5 0.00 88.5 0.00
315.9 1.91 327.1 4.30 314.6 1.10 321.8 2.41

Grouped E. 1280 318.3 1.78 326.4 3.01 317.8 0.79 316.3 0.83
329.4 1.29 339.9 3.87 329.6 2.16 334.3 2.13

2300.9 40.27 2646.6 28.49 2320.0 43.08 2336.9 34.23
Random E. 250 2201.8 23.30 2576.2 112.15 2199.7 21.94 2304.1 47.95

2057.6 31.58 2460.6 131.82 2061.2 26.91 2049.8 15.29
615.3 10.8 703.4 53.40 621.9 14.20 625.4 14.59

Random E. 400 595.3 0.00 671.4 25.82 595.3 0.00 595.3 0.14
587.3 0.00 657.4 50.38 597.5 17.15 588.8 7.40
443.5 0.00 506.5 46.08 452.9 33.57 443.5 0.00

Random E. 600 537.0 10.2 685.0 21.40 545.1 18.05 535.2 12.20
469.0 11.9 643.4 63.68 493.8 35.76 479.9 26.55
71.6 0.00 97.3 14.23 71.6 0.00 71.6 0.02

Non-E. 200 41.0 0.00 58.5 11.18 41.0 0.00 41.0 0.00
52.8 0.00 56.8 0.69 52.8 0.00 52.8 0.00

152.5 3.69 203.3 0.00 155.4 3.94 173.4 8.40
Non-E. 500 148.6 4.27 237.9 1.28 151.2 5.41 154.6 6.55

166.1 2.89 282.5 0.00 167.5 4.36 180.1 3.67
15.6 1.62 47.5 9.40 15.3 1.35 15.9 2.07

Non-E. 600 16.1 1.24 36.0 3.67 16.3 1.24 17.6 1.75
16.0 1.66 42.0 5.87 16.2 1.97 15.1 0.22
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6.4.4 Adjusting the Size of GSON

The primary adjustment parameter for GSON is the size of the subtrees to be
optimized via MIP. These subtrees contain at least Nmin and at most Nmax clusters.
In Table 6.8 and 6.9 we study the influence of different values for these parameters.
In general, results are ambiguous. On Random Euclidean instances, a tendency
towards smaller sizes yielding better results is noticeable. On some other instances,
the search process benefits from larger values as the neighborhood is searched more
extensively. We decided to set Nmin = 5 and Nmax = 6 as default behavior for a
balanced behavior.

Table 6.8: Results on TSPlib instances when tweaking the ILP size of GSON.

Instances ILP size 3 – 4 ILP size 5 – 6 ILP size 7 – 8 ILP size 3 – 8
Set C(T ) std dev C(T ) std dev C(T ) std dev C(T ) std dev
gr137 329.0 0.00 329.0 0.00 329.0 0.00 329.0 0.00
kroa150 9815.0 0.00 9815.0 0.00 9815.0 0.00 9815.0 0.00
d198 7044.0 0.00 7044.0 0.00 7044.0 0.00 7044.0 0.00
krob200 11244.0 0.00 11244.0 0.00 11244.0 0.00 11244.0 0.00
gr202 242.0 0.00 242.0 0.00 242.0 0.18 242.0 0.00
ts225 62268.2 0.38 62268.5 0.51 62269.4 4.68 62268.3 0.47
pr226 55515.0 0.00 55515.0 0.00 55515.0 0.00 55515.0 0.00
gil262 942.1 0.57 942.3 1.02 942.0 0.00 942.1 0.57
pr264 21886.2 1.28 21886.5 1.78 21887.1 3.09 21887.6 4.23
pr299 20320.9 12.98 20322.6 14.67 20316.1 0.55 20316.8 2.07
lin318 18504.4 7.25 18506.8 11.58 18508.0 8.99 18506.0 8.01
rd400 5947.8 10.25 5943.6 9.69 5943.9 9.99 5945.8 10.57
fl417 7982.0 0.00 7982.0 0.00 7982.0 0.00 7982.0 0.00
gr431 1033.0 0.00 1033.0 0.18 1033.0 0.00 1033.0 0.18
pr439 51837.0 31.71 51847.9 40.92 51847.4 43.77 51841.4 41.27
pcb442 19693.1 49.05 19702.8 52.11 19712.4 53.58 19699.6 53.78
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Table 6.9: Results on Ghosh’ instance sets when tweaking the ILP size of GSON.

Instances ILP size 3 – 4 ILP size 5 – 6 ILP size 7 – 8 ILP size 3 – 8
Set C(T ) std dev C(T ) std dev C(T ) std dev C(T ) std dev

141.1 0.00 141.1 0.00 141.1 0.00 141.1 0.00
Grouped E. 125 133.8 0.00 133.8 0.00 133.8 0.00 133.8 0.00

141.4 0.00 141.4 0.00 141.4 0.00 141.4 0.00
567.4 0.65 567.4 0.57 567.5 0.49 567.5 0.76

Grouped E. 500 585.3 1.01 585.0 1.32 584.4 1.50 584.8 1.32
584.2 1.76 583.7 1.82 583.7 1.43 584.0 1.73
84.6 0.00 84.6 0.11 84.7 0.24 84.6 0.11

Grouped E. 600 87.9 0.00 87.9 0.00 88.4 0.39 87.9 0.00
88.5 0.00 88.5 0.00 88.5 0.00 88.5 0.00

315.9 1.75 315.9 1.91 316.9 2.59 317.7 2.36
Grouped E. 1280 318.4 1.58 318.3 1.78 319.5 1.51 319.6 1.97

329.9 1.68 329.4 1.29 330.8 1.37 329.5 1.05
2308.6 47.04 2300.9 40.27 2308.0 42.85 2320.8 50.63 3

Random E. 250 2208.6 31.66 2201.8 23.30 2198.6 20.56 2212.3 33.31 1
2055.5 34.74 2057.6 31.58 2057.2 33.67 2050.7 15.97
611.5 5.20 615.3 10.8 658.8 36.55 687.6 49.36

Random E. 400 595.3 0.00 595.3 0.00 618.3 24.62 621.6 25.02
587.3 0.00 587.3 0.00 598.7 23.75 623.1 36.00
443.5 0.00 443.5 0.00 657.7 0.00 657.7 0.00

Random E. 600 530.5 7.53 537.0 10.2 579.7 42.90 562.2 20.79
466.8 0.00 469.0 11.9 560.7 63.25 551.9 65.76
71.6 0.00 71.6 0.00 71.6 0.00 71.6 0.00

Non-E. 200 41.0 0.00 41.0 0.00 41.0 0.00 41.0 0.00
52.8 0.00 52.8 0.00 52.8 0.00 52.8 0.00
153.2 2.82 152.5 3.69 152.1 4.19 153.9 3.64

Non-E. 500 149.1 6.54 148.6 4.27 148.4 6.28 148.5 3.84
167.6 3.29 166.1 2.89 167.5 2.81 166.2 2.82
16.0 1.97 15.6 1.62 16.1 1.65 16.2 1.97

Non-E. 600 16.7 1.42 16.1 1.24 16.3 1.42 17.0 1.66
15.2 0.51 16.0 1.66 16.1 1.78 15.8 1.46
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6.4.5 Using Different Starting Solutions

Table 6.10 and 6.11 show the importance of having good starting solutions for our
VNS. We compare the quality of the final solutions when using MDH/IKH as ini-
tialization heuristics in contrast to starting with random solutions. The latter are
constructed by choosing a random node for each cluster and connecting them via
Kruskal’s MST algorithm. Using MDH and IKH improves the quality of final solu-
tions in most cases. On smaller instances, starting with a random solution leads to
the same results as VNS is powerful enough and has enough time available. When
facing more difficult instances, time becomes more crucial and therefore starting
with a superior solution proves to be advantageous.

Table 6.10: Results on TSPlib instances when using different starting solutions.

Instances MDH and IKH random init
Set C(T ) std dev C(T ) std dev
gr137 329.0 0.00 329.0 0.00
kroa150 9815.0 0.00 9815.0 0.00
d198 7044.0 0.00 7044.0 0.00
krob200 11244.0 0.00 11246.0 6.32
gr202 242.0 0.00 242.0 0.00
ts225 62268.5 0.51 62268.8 0.42
pr226 55515.0 0.00 55515.0 0.00
gil262 942.3 1.02 943.3 1.49
pr264 21886.5 1.78 21890.0 5.54
pr299 20322.6 14.67 20341.6 27.26
lin318 18506.8 11.58 18517.2 14.57
rd400 5943.6 9.69 5969.0 26.52
fl417 7982.0 0.00 7982.0 0.00
gr431 1033.0 0.18 1034.4 1.84
pr439 51847.9 40.92 51855.3 63.74
pcb442 19702.8 52.11 19735.0 56.57
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Table 6.11: Results on Ghosh’ instance sets when using different starting solutions.

Instances MDH and IKH random init
Set C(T ) std dev C(T ) std dev

141.1 0.00 141.1 0.00
Grouped E. 125 133.8 0.00 133.8 0.00

141.4 0.00 141.4 0.00
567.4 0.57 577.2 3.85

Grouped E. 500 585.0 1.32 585.4 2.63
583.7 1.82 585.0 3.51
84.6 0.11 84.7 0.25

Grouped E. 600 87.9 0.00 88.0 0.16
88.5 0.00 88.5 0.06

315.9 1.91 320.7 3.7
Grouped E. 1280 318.3 1.78 320.9 4.48

329.4 1.29 333.2 2.58
2300.9 40.27 2363.3 40.33

Random E. 250 2201.8 23.30 2306.1 48.63
2057.6 31.58 2153.1 92.65
615.3 10.8 626.9 17.72

Random E. 400 595.3 0.00 595.3 0.00
587.3 0.00 587.3 0.00
443.5 0.00 443.5 0.00

Random E. 600 537.0 10.2 541.4 14.06
469.0 11.9 470.7 12.36
71.6 0.00 71.6 0.00

Non-E. 200 41.0 0.00 41.0 0.00
52.8 0.00 52.8 0.00

152.5 3.69 177.3 16.54
Non-E. 500 148.6 4.27 166.0 9.06

166.1 2.89 187.5 10.11
15.6 1.62 17.8 2.93

Non-E. 600 16.1 1.24 18.4 1.81
16.0 1.66 16.7 2.34
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6.5 Conclusions

In this chapter, we proposed a general Variable Neighborhood Search (VNS) ap-
proach for solving the Generalized Minimum Spanning Tree problem. For initializing
the solution, we use the Minimum Distance Heuristic and the Improved Adaption
of Kruskal’s MST Heuristic, which are both based on Kruskal’s classical algorithms
for determining a MST. Though their performance depends on the instance type,
the latter construction heuristic mostly yields better results.

Our Variable Neighborhood Descent combines three neighborhood types: For the
Node Exchange Neighborhood, solutions are represented by the spanned nodes and
one node is replaced by another of the same cluster. Optimal edges are derived by
determining a classical MST on these nodes. The Global Edge Exchange Neigh-
borhood works in a complementary way by considering for a solution primarily its
global connections, i.e. pairs of clusters which are directly connected. Neighbors
are all solutions differing in exactly one global connection. Knowing this global
structure for a solution, dynamic programming is used to determine the best suited
nodes and concrete edges. For both of these neighborhoods, incremental evaluation
schemes have been described, which speed up the whole computation considerably.
For the Global Subtree Optimization Neighborhood, we consider subsets of clusters
which are reorganized via Mixed Integer Programming and then reconnected to the
remainder as well as possible.

Tests were performed on TSPlib instances, grouped Euclidean instances, random
Euclidean instances, and non-Euclidean instances. Results show that the proposed
VNS algorithm produces with high probability solutions of equal or significantly
better objective value, improving other metaheuristics designed previously for the
GMSTP.

This holds in particular for instances with large number of nodes per cluster. On
grouped Euclidean and TSPlib based instances, the differences between the objec-
tive values of the final solutions obtained by our VNS and the other candidate
algorithms are relatively low, which indicates that the structure of these instances
is simpler. Differences between the considered algorithms are largest on random
Euclidean instances. In this case, VNS produces substantially better results due to
the effectiveness of the Global Edge Exchange Neighborhood.
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Chapter 7

The Generalized Traveling
Salesman Problem

7.1 Introduction

The Generalized Traveling Salesman Problem (GTSP) extends the classical Travel-
ing Salesman Problem (TSP) and is defined as follows. We consider an undirected
weighted complete graph G = 〈V,E, c〉 with node set V , edge set E, and edge cost
function c : E → R+. Node set V is partitioned into r pairwise disjoint clusters
V1, V2, . . . , Vr,

⋃r
i=1 Vi = V, Vi ∩ Vj = ∅, i, j = 1, . . . , r, i 
= j.

A solution to the GTSP defined on G is a subgraph S = 〈P, T 〉 with P =
{p1, p2, . . . , pr} ⊆ V connecting exactly one node from each cluster, i.e. pi ∈ Vi

for all 1 ≤ i ≤ r, and T ⊆ E being a round trip, see Figure 7.1.

The costs of such a round trip are its total edge costs, i.e. C(T ) =
∑

(u,v)∈T c(u, v),
and the objective is to identify a solution with minimum costs. When edge costs
satisfy the triangle inequality, even if we allow more than one node per cluster to
be connected, an optimal solution of the GTSP always contains only one node from
each cluster [74]. Obviously, the GTSP is NP-hard since it contains the classical
TSP as the special case in which each cluster consists of a single node only.

Parts of this chapter appeared in [59]
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V1 V2

V3

V4

V5

p1

p2

p4

p5
p3

Figure 7.1: Example for a solution to the GTSP.

The GTSP finds practical application particularly in many variants of routing prob-
lems, e.g. when some good can be delivered to multiple alternative addresses of
customers. Occasionally, such applications can be directly modeled as the GTSP,
but more often the GTSP appears as a subproblem [72].

In this chapter, which is based on [59], we present a general Variable Neighborhood
Search (VNS) approach for heuristically solving this problem. As local improvement
within VNS, we use Variable Neighborhood Descent (VND) based on two different
types of exponentially large neighborhoods, which can be seen as dual to each other.
One neighborhood structure is the generalized 2-opt, which has been introduced by
Renaud et al. [104]; for it, we propose a new incremental evaluation scheme leading
to a substantial speed-up. As second neighborhood structure we investigate a new
approach: the nodes to be spanned from each cluster are fixed and TSP tours are
derived via the chained Lin-Kernighan algorithm.

Section 7.2 gives an overview on research done on the GTSP so far. In section 7.3
we describe the components of our VNS approach in detail, including the solution
representation, initialization procedures, and especially the neighborhood structures
as well as their search strategies. Experimental results are discussed section 7.4 and
we conclude in section 7.5.

7.2 Previous Work

The GTSP was introduced independently by Henry-Labordere [51], Srivastava et
al. [112], and Saskena [106]. Laporte et al. [74, 73] provided integer programming
formulations for the symmetrical and asymmetrical GTSP, respectively. The for-
mulation for the symmetrical case was later enhanced by Fischetti et al. [33] who
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proposed several classes of facet defining inequalities and corresponding separation
procedures. Based on these, they developed a branch-and-cut algorithm [34] which
could solve instances with up to 442 nodes to optimality.

Several approaches exist which transform the GTSP into the classical TSP. They
have been studied by Noon and Bean [88], Lien et al. [79], Dimitrijevic and Saric [20],
Laporte and Semet [75], and Behzad and Modarres [6]. Unfortunately, many trans-
formations substantially increase the numbers of nodes and edges and are therefore
of limited practical value. Furthermore, some transformations even require addi-
tional constraints, thus making general algorithms for the classical TSP inapplica-
ble. Among the more efficient approaches, Dimitrijevic and Saric [20] proposed a
transformation of the GTSP into the TSP on a digraph containing twice the num-
ber of nodes compared to the original graph. This technique was further improved
by Behzad and Modarres [6] where the transformed graph has the same number
of nodes as the original graph. However, the transformation increases edge costs
significantly, what may lead to problems in some cases.

To approach larger GTSP instances, various metaheuristics have been suggested.
Renaud et al. [104] developed a complex composite heuristic whose components
can be used for other (meta-)heuristics as well. They introduced generalized k-opt
heuristics which are derived from Lin’s classical 2-opt and 3-opt local search for
the TSP [80]. Snyder and Daskin [111] describe a Genetic Algorithm (GA) that
achieves relatively good results in short running times. It uses random keys to
encode solutions and a parameterized uniform crossover operator including local
improvement based on the 2-opt heuristic to boost solution quality. Wu et al. [121]
also proposed a GA using a direct representation in which the spanned nodes from
each cluster and the sequence in which they are visited in the tour are stored. This
approach has further been enhanced by Huang et al. [61] who apply a so-called
hybrid chromosome encoding. However, reported results are on average inferior
when compared to those of the GA from [111].

7.3 Variable Neighborhood Search for the GTSP

In this section, we present our VNS approach. First, we propose the solution rep-
resentation and two initialization procedures. Then, after describing our neighbor-
hoods and the search techniques applied to them, we specify the details of our VNS
framework.
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7.3.1 Solution Representation and Initialization

In our VNS, we represent a solution S = 〈P, T 〉 in a direct way by storing the spanned
nodes of each cluster P = {p1, p2, . . . , pr} with pi ∈ Vi, i = 1, . . . , r, and additionally
the visiting order in the round trip as circular permutation π = 〈π1, . . . , πr〉 of the
cluster indices {1, . . . , r}.

Depending on the instance type we use two different procedures to compute feasible
initial solutions for the VNS. Both are extensions of well known greedy strategies
for the classical TSP. The first algorithm is the (generalized) Nearest Neighbor
Heuristic (NNH), and it can in principle be applied to all kinds of instances. The
second procedure is specifically targeted to Euclidean instances where the clustering
is based on geographical proximity. It exploits Euclidean coordinates of nodes and
is called Generalized Insertion Heuristic (GIH). The following paragraphs describe
these algorithms in detail.

Nearest Neighbor Heuristic for the GTSP (NNH)

Noon [89] suggested this approach, which computes a feasible solution as follows.
We begin to construct a tour Sv from an arbitrarily chosen starting node v ∈ V .
Iteratively, the algorithm always continues to the closest node belonging to a cluster
that has not been visited yet and includes the corresponding edge. When nodes of
all clusters have been reached, the tour is closed by including a final edge back to
node v. This process is carried out once for each node in V as starting node, and
the best tour is retained. See also Algorithm 16.

Algorithm 16: Nearest Neighbor Heuristic
forall v ∈ |V | do

Sv := ∅
W := V
add v to Sv

v′ := v
for i := 1, . . . , r − 1 do

remove from W all nodes belonging to the same cluster as v′

u := node in W nearest to v′

add u to the partial tour Sv

v′ := u

return tour S = Sv∗ with v∗ = argminv∈V C(Sv)
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Generalized Insertion Heuristic for the GTSP (GIH)

This heuristic is inspired by the composite heuristic GI3 from Renaud et al. [103].
In a first phase, it determines the set of spanned nodes P by calculating for each
cluster Vi the node pi having the lowest sum of distances to all other nodes in other
clusters. After fixing these nodes, the CLOCK heuristic from [104] is performed to
construct a tour containing many but not necessarily all nodes of P .

Recall that GIH only works on Euclidean instances where the nodes’ coordinates
are given. The CLOCK heuristic begins a partial tour S at the northernmost node
from P . In case of a tie, the easternmost node among the northernmost nodes is
chosen. This initial insertion is followed by four loops: In the first loop the procedure
appends to S the northernmost node to the east of the last inserted node. In case
of a tie, the easternmost node among these is chosen again. The process is repeated
until there are no nodes to the east of the last appended node. The second, third,
and forth loops work in the same way by appending to S the easternmost node to
the south, the southernmost node to the west, and the westernmost node to the
north of the last inserted node, respectively.

When the CLOCK heuristic terminates, there are in general some nodes from P
left which are not yet included in the tour S. In contrast to the more complex GI3

heuristic [103], we simply choose for each of these remaining nodes pj ∈ P\H greedily
the “cheapest” insertion position k so that c(pπk−1

, pj) + c(pj , pπk
)− c(pπk−1

, pπk
) ≤

c(pπi−1 , pj) + c(pj , pπi) − c(pπi−1 , pπi) ∀i = 1, . . . , |H| with π0 = π|H|.

As a final step, we try to improve the obtained feasible tour S by calling the shortest
path algorithm, which will be introduced in Section 7.3.2. This procedure may
replace nodes by other nodes of the same cluster, but it does not modify the visiting
order π anymore. See Algorithm 17 for more details of the whole GIH.

This construction heuristic is much faster than the original GI3, mainly because
the latter uses a more sophisticated local improvement. Nevertheless, solutions
obtained by GIH are typically only slightly inferior, and it usually takes just a few
VNS iterations to catch up with or exceed the quality of GI3’s solutions.

While NNH has time complexity Θ(r·|V |2), GIH can be implemented in time Θ(|V |2)
and usually finds significantly better solutions to Euclidean instances with geograph-
ical clustering. However, GIH’s applicability is far more limited.
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Algorithm 17: Generalized Insertion Heuristic
for i := 1, . . . , r do

pi := node in Vi with min. sum of costs to all other nodes in other clusters
partial tour S := CLOCK heuristic({p1, . . . , pr})
for j := 1, . . . , r do

if pj 
∈ S then
k := minargi=1,...,|S| (c(pπi−1 , pj) + c(pj , pπi) − c(pπi−1 , pπi)), π0 = π|S|
insert pj at position k in S

apply shortest path algorithm on S
return S

7.3.2 Neighborhood Structures

In our VNS, we use two complementary neighborhood structures. On the one hand,
we approach the GTSP from the global view by first deciding in which order the
clusters are to be visited and then computing an optimal selection of spanned nodes.
On the other hand, we may start from the opposite direction and define a set of nodes
for which we derive an appropriate tour.

Generalized 2-opt Neighborhood (G2-opt)

Renaud et al. [103] introduced the generalized 2-opt heuristic, which is based on
the well known 2-opt heuristic for the classical TSP [80]. G2-opt is defined on a
circular permutation π = 〈π1, . . . , πr〉 indicating the visiting order of the clusters
〈Vπ1 , . . . , Vπr〉, see Figure 7.2. Note that π also characterizes the global structure to
a current solution of the GTSP, see Section 5.1.2. A particular permutation π thus
represents the set of all feasible round trips 〈pπ1 , pπ2 , . . . , pπr〉 with pπi ∈ Vπi , i =
1, . . . , r, and this set is in general exponentially large with respect to the number
of nodes. However, the minimum cost round trip can be determined via a shortest
path algorithm in polynomial time.

Given the visiting order of clusters, we can construct a graph containing edges only
between nodes of consecutive clusters and a clone of the starting cluster attached to
the last cluster, as it is shown in Figure 7.3.

On this graph, we calculate shortest paths starting from each node of the starting
cluster and ending at its clone. To ensure that at most one node is included from
each cluster, we may simply assume the edges to be directed according to π. The
overall cheapest path represents the optimal tour for this cluster order. Formally
speaking, let Luv denote the length of the shortest path from node u ∈ Vπk

to node
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V2V1

V4

V5V3

Figure 7.2: Visiting order of clusters characterized by permutation π = 〈4, 5, 3, 1, 2〉.

V4 V5 V3 V1 V2 V ′
4

Calculation direction

π1 π2 π3 π4 π5 π′
1〈 〉

Figure 7.3: Corresponding graph to π in Figure 7.2 on which the shortest path al-
gorithm is applied, starting at the first node of cluster V4 and ending at
its clone in cluster V ′

4 .

v ∈ Vπl
, k < l. Let Lu be the length of the shortest path containing r-edges, starting

from u ∈ Vπ1 , and ending at its clone in V ′
π1

. The length L of the overall shortest
tour respecting visiting order π is:

L = minu∈Vπ1
Lu

Lu = minv∈Vπr
(Luv + c(v, u)) ∀u ∈ Vπ1

Luv = c(u, v) ∀u ∈ Vπ1 , ∀v ∈ Vπ2

Luv = minw∈Vπk−1
(Luw + c(w, v)) ∀u ∈ Vπ1 , ∀v ∈ Vπk

, k = 3, . . . , r

To reduce the computational effort, we exploit the fact that π is rotation-invariant
and choose Vπ1 so that it is a cluster of smallest cardinality. The complexity of this
dynamic programming algorithm is bounded by O(|Vπ1 | · n2/r).
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Our generalized 2-opt neighborhood of a current solution S having cluster or-
dering π can now be defined as the set of all feasible round trips induced by
any cluster ordering π′ that differs from π by precisely one inversion Iij , i.e.
π′ = 〈π1, . . . , πi−1, πj , . . . , πi, πj+1, . . . , πr〉, 1 ≤ i < j ≤ r.

Incremental bidirectional shortest path calculation.

Instead of determining the shortest path L always from Vπ1 (a cluster with the
smallest number of nodes) to the cloned cluster V ′

π1
, we can partition this task into

three parts:

1. Perform shortest path calculations in forward direction from u ∈ Vπ1 to each
node of a cluster Vπm where m may be chosen arbitrarily.

2. Perform shortest path calculations in backward direction starting from u′ ∈ V ′
π1

to each node of cluster Vπm+1 where u′ is the clone of node u.

3. Consider all edges in Em = {(a, b) ∈ E | a ∈ Vπm ∧ b ∈ Vπm+1} and the
corresponding complete paths from u to u′ including the above determined
shortest paths to nodes in Vπm and Vπm+1 , respectively. Take a (a∗, b∗) ∈ Em

yielding an overall shortest path, i.e. Lua∗ + c(a∗, b∗) + Lb∗u′ ≤ Lua + c(a, b) +
Lbu′ ∀(a, b) ∈ Em.

This procedure, illustrated in Figure 7.4, is in practice almost equally efficient as the
simple one-way dynamic programming algorithm. When considering that we want
to search the general 2-opt neighborhood, however, it provides the advantage of
allowing for a substantially faster incremental evaluation scheme: If π′ differs from
π by an inversion Iij with i ≤ m ≤ j, we do not have to recalculate the distances
and predecessors of the nodes in clusters Vπ1 , . . . , Vπi−1 and Vπj+1 , . . . , V

′
π1

, assuming
we have stored these values in steps 1 and 2 before.

As a matter of course, m is always chosen to lie within the inversion interval. Clusters
from Vπi to Vπj are marked “invalid” for both calculation directions after performing
the inversion. Whenever we apply the shortest path algorithm in a particular direc-
tion, the evaluation is skipped for all clusters which are still valid, and the actual
computation starts at the first invalid cluster. When processing these clusters, their
“invalid” flags are removed.

To fully exploit this incremental evaluation, we further enumerate the possible in-
versions of π in a specific way: First, all inversions of pairs of two adjacent clusters
are considered from left to right, then the inversions of all triplets in the reverse
direction from right to left, next all 4-cluster inversions from left to right again, etc.
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V4 V5 V3 V1 V2 V ′
4

Calculation direction 1 Calculation direction 2

π1 π2 π3 π4 π5 π′
1〈 〉

Figure 7.4: Example for a bidirectional shortest path calculation with m = 3.

Hereby, π1 (and its clone in the corresponding graph for the shortest path calcula-
tion) remain fixed. See also Figure 7.5. This strategy allows the largest data-reuse
and minimizes the total number of clusters for which computations are necessary.
It is in particular advantageous when we use a next improvement strategy in the
local search, since we start with inversions of smallest size yielding the largest time
savings; see Algorithm 18.

π1 π2 π3 π4 πr−2 πr−1 πr〈 〉. . .

. . .

. . .. . .

2-node path inversions

3-node path inversions

π5 πr−3

Figure 7.5: Enumeration order of the inversions on π for making best use of the
incremental bidirectional shortest path calculations.

In the worst case, when we have to evaluate the whole neighborhood, O(r2) in-
versions must be considered. A naive complete enumeration would require time
O(r2 · |Vπ1 | · n2/r) = O(|Vπ1 | · n2 · r). To be more precise, we have (r − l + 1)
possibilities for inversions of length l, l = 2, . . . , r − 2. For each of them, the
classical shortest path algorithm would have to consider all r clusters. However,
with the incremental bidirectional shortest path calculation, we only have to con-
sider l + 1 clusters after the first iteration. Hence, the classical algorithm evaluates∑r−2

l=2 r · (r − l + 1) = r3−r2−6r
2 clusters while the incremental scheme only pro-
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Algorithm 18: Generalized 2-opt Neighborhood (solution S = 〈P, T 〉)
for l := 2, . . . , r − 2 do

if l is even then
for i := 2, . . . , r − l + 1 do

π′ := 〈π1, . . . , πi−1, πi+l−1, . . . , πi, πi+l, . . . , πr〉
Apply incremental bidirectional shortest path calculation on π′

if obtained solution S′ is better than original solution S then
return solution S′

else
for i := r − l + 1, . . . , 2 do

π′ := 〈π1, . . . , πi−1, πi+l−1, . . . , πi, πi+l, . . . , πr〉
Apply incremental bidirectional shortest path calculation on π′

if obtained solution S′ is better than original solution S then
return solution S′

return : no better solution found, i.e. S is a local optimum w.r.t. G2-opt

cesses
∑r−2

l=2 (l + 1) · (r − l + 1) = r3+6r2−25r−6
6 clusters for the whole neighborhood.

Asymptotically, the latter is faster by factor 3.

Node Exchange Neighborhood (NEN)

With this new neighborhood structure, the search focuses on the set of spanned
nodes P = {p1, . . . , pr}. The node exchange neighborhood of a current solution
S with spanned nodes P includes all feasible tours S′ for each node set P ′ that
can be derived from P by replacing one spanned node pi ∈ Vi, i ∈ {1, . . . , r}, by
another node v of the same cluster Vi. This neighborhood therefore is induced by∑r

i=1(|Vi| − 1) = O(|V |) different node sets resulting in a total of O(|V | · r!) round
trips.

Unfortunately, determining the minimum cost round trip for a given node set P ′ is
NP-hard since this subproblem corresponds to the classical TSP. Hence, instead of
calculating the optimal round trip, we use the well known Chained Lin-Kernighan
(CLK) algorithm [82] implemented in the Concorde library2 to find a good but not
necessarily optimal tour S′ for a certain P ′.

Though the size of this TSP is relatively small (|P ′| = r), a complete evaluation of
NEN is relatively time-demanding – even when using CLK – since we have to solve

2www.tsp.gatech.edu/concorde.html
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O(|V |) different TSPs. To further speed up the neighborhood search, we restrict
CLK to consider edges of the k-nearest-neighbor graph induced by P ′ only. For
Euclidean instances and available point positions, this k-nearest-neighbor graph is
efficiently derived using a KD-tree data structure. Tuning the parameter k, we can
balance between speed and thoroughness of the search process. For the actual tests,
we set k to 10. In contrast to G2-opt, we use a best improvement strategy for NEN
since it yielded better results during our tests. Algorithm 19 summarizes the steps
of evaluating NEN.

Algorithm 19: Node Exchange Neighborhood (solution S = 〈P, T 〉)
for i := 1, . . . , r do

forall v ∈ Vi \ {pi} do
P ′ := P \ {pi} ∪ {v}
determine k-nearest-neighbor graph Gk induced by P ′

apply CLK on Gk to obtain round trip S’
if current solution S′ better than so far best then

save S′ as so far best

restore and return best solution found

7.3.3 Variable Neighborhood Search Framework

We use the general variable neighborhood search (VNS) scheme with embedded
variable neighborhood descent (VND), see Section 3.4.

Arrangement of the neighborhoods: We alternate between G2-opt and NEN in
this order. G2-opt is always considered first since its evaluation has a lower compu-
tational complexity.

Shaking in VNS: To perform shaking, we randomly exchange s spanned nodes by
other nodes of the corresponding clusters and apply s random swap moves on the
cluster ordering π. A swap move exchanges two positions in π. Parameter s depends
on the number of clusters in the input graph and varies from 1 to r

7 . We obtained
the best results with these settings for s during our tests.
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7.4 Computational Results

We tested the VNS on Euclidean TSPlib instances with geographical clustering, see
Section 5.3. Our experiments were performed on a Pentium 4 2.6 GHz PC. In order
to compute average values and standard deviations, we performed 30 runs for each
instance. The VNS terminated after 10 consecutive outer iterations without finding

Table 7.1: Results on TSPlib instances with geographical clustering.

Instance B&C GI3 rk-GA hc-GA VNS
Name Copt time gap time gap time gap time gap σgap time

kroa100 9711 18.4s 0.00% 6.8s 0.00% 0.4s - - 0.00% 0.00 2.5s
krob100 10328 22.2s 0.00% 6.4s 0.00% 0.4s - - 0.00% 0.00 0.4s
rd100 3650 16.6s 0.00% 7.3s 0.00% 0.5s - - 0.00% 0.00 0.9s
eil101 249 25.6s 0.40% 5.2s 0.00% 0.4s - - 0.04% 0.12 16.3s
lin105 8213 16.4s 0.00% 14.4s 0.00% 0.5s - - 0.00% 0.00 0.6s
pr107 27898 7.4s 0.00% 8.7s 0.00% 0.4s - - 0.00% 0.00 0.5s
pr124 36605 25.9s 0.43% 12.2s 0.00% 0.6s - - 0.00% 0.00 26.6s
bier127 72418 23.6s 5.55% 36.1s 0.00% 0.4s - - 0.00% 0.00 1.4s
pr136 42570 43.0s 1.28% 12.5s 0.00% 0.5s - - 0.00% 0.00 48.1s
pr144 45886 8.2s 0.00% 16.3s 0.00% 1.0s - - 0.00% 0.00 4.0s
kroa150 11018 100.3s 0.00% 17.8s 0.00% 0.7s 0.00% 0.4s 0.00% 0.00 1.2s
krob150 12196 60.6s 0.00% 14.2s 0.00% 0.9s 0.00% 0.9s 0.00% 0.00 3.7s
pr152 51576 94.8s 0.47% 17.6s 0.00% 1.2s 0.00% 0.6s 0.00% 0.00 7.6s
u159 22664 146.4s 2.60% 18.5s 0.00% 0.8s 0.00% 1.0s 0.00% 0.00 22.6s
rat195 854 245.9s 0.00% 37.2s 0.00% 1.0s - - 0.01% 0.04 105.6s
d198 10557 763.1s 0.60% 60.4s 0.00% 1.6s - - 0.02% 0.05 141.3s
kroa200 13406 187.4s 0.00% 29.7s 0.00% 1.8s 0.01% 1.8s 0.00% 0.00 16.9s
krob200 13111 268.5s 0.00% 35.8s 0.00% 1.9s 0.06% 8.0s 0.00% 0.00 18.8s
ts225 68340 37875.9s 0.61% 89.0s 0.02% 2.1s 0.13% 19.0s 0.03% 0.07 274.4s
pr226 64007 106.9s 0.00% 25.5s 0.00% 1.5s 0.00% 0.6s 0.00% 0.00 1.7s
gil262 1013 6624.1s 5.03% 115.4s 0.79% 1.9s 0.00% 41.2s 0.05% 0.16 372.5s
pr264 29549 337.0s 0.36% 64.4s 0.00% 2.1s 0.00% 3.1s 0.01% 0.04 268.2s
pr299 22615 812.8s 2.23% 90.3s 0.11% 3.2s 0.10% 68.6s 0.00% 0.01 220.5s
lin318 20765 1671.9s 4.59% 206.8s 0.62% 3.5s 0.72% 18.3s 0.30% 0.61 320.1s
rd400 6361 7021.4s 1.23% 403.5s 1.18% 5.9s 2.15% 17.4s 0.74% 0.51 502.0s
fl417 9651 16719.4s 0.48% 427.1s 0.05% 5.3s 0.12% 19.4s 0.00% 0.00 92.4s
pr439 60099 5422.8s 3.52% 611.0s 0.26% 9.5s 0.76% 10.9s 0.12% 0.11 519.0s
pcb442 21657 58770.5s 5.91% 567.7s 1.70% 9.0s 0.94% 31.8s 0.08% 0.08 596.6s
Average gaps 1.26% 0.17% 0.30% 0.05%
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a new best solution.

Table 7.1 presents results of our VNS and compares them to those of Fischetti et
al’s exact branch-and-cut algorithm (B&C) [34], the GI3 heuristic [104], the random
key GA (rk-GA) [111], and the hybrid chromosome GA (hc-GA) [61]. Listed are for
each instance its name, the numbers of nodes and clusters, the optimal solution value
and run-time of B&C, and average percentage gaps of the heuristics’ final objective
values to the optimum solution value, as well as corresponding CPU-times. Best
results are printed bold.

Since the B&C algorithm ran on a HP 9000/720, the GI3 heuristic on a Sun Sparc
Station LX, the rk-GA on a Pentium 4, 3.2 GHz PC, and the hc-GA on a 1.2 GHz
PC, it is hard to compare the CPU-times directly. Nevertheless, it is obvious that
in particular the rk-GA is very fast and computes high quality results within a few
seconds. Comparing VNS with both GAs, VNS requires significantly more time, but
it is often able to find superior solutions.

Especially on the larger instances with ≥ 299 nodes, VNS benefits from the sophisti-
cated large neighborhood search and its average gaps of are consistently substantially
smaller than those of all other considered heuristics. For 18 out of the 28 instances,
VNS was even able to obtain optimal solutions in all of the 30 performed runs; its
total average gap is only 0.05%, and no average gap exceeds 0.75%. From all consid-
ered heuristics, GI3 was the weakest, with worst average results and running times
in the same order of magnitude as our VNS.

In particular for the two large instances pr226 and fl417, already VND was able to
directly identify the optimal solutions, i.e. merely alternating between G2-opt and
NEN was sufficient to get to the global optima, and no VNS iterations were required.
This documents how well these neighborhood structures complement each other.

7.5 Conclusions

In this chapter, we proposed a variable neighborhood search approach for the gener-
alized traveling salesman problem utilizing two large neighborhood structures. They
can be seen as dual to each other: While G2-opt predefines the possible cluster or-
derings and uses a relatively sophisticated but efficient procedure for augmenting
these partial solutions with appropriate selections of nodes, the situation is vice
versa in the newly proposed NEN.

Considering in particular G2-opt, the described incremental evaluation scheme
turned out to be a major speed-up factor in comparison to the previously used
evaluation via independent standard shortest path calculations.
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It further turned out that the VNS slightly benefits from a good starting solution.
Therefore, we described the more generally applicable nearest neighbor heuristic
and particularly for Euclidean instances with given point positions the generalized
insertion heuristic. Both are reasonably fast and provide solutions of appropriate
quality.

We tested the VNS on TSPlib instances with geographical clustering consisting of
up to 442 nodes. Compared to two recent genetic algorithms, the VNS performs
slower, but it is able to generate remarkably better solutions, in particular for larger
instances.

Future work will in particular include tests on other types of instances, e.g. with
non-Euclidean distances and incomplete graphs. An incremental evaluation scheme
for NEN seems to be a challenging task but might further speed up the algorithm.
Promising is also the combination of these neighborhood structures with others, and
to investigate their application in other types of metaheuristics.
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Chapter 8

The Generalized Minimum Edge
Biconnected Network Problem

8.1 Introduction

The Generalized Minimum Edge Biconnected Network Problem (GMEBCNP) is
defined as follows. We consider a complete, undirected weighted graph G = 〈V,E, c〉
with node set V , edge set E, and edge cost function c : E → R+. Node set V is
partitioned into r pairwise disjoint clusters V1, V2, . . . , Vr,

⋃r
i=1 Vi = V, Vi ∩ Vj =

∅ ∀i, j = 1, . . . , r, i 
= j.

A solution to the GMEBCNP defined on G is a subgraph S = 〈P, T 〉, P =
{p1, . . . , pr} ⊆ V connecting exactly one node from each cluster, i.e. pi ∈ Vi, ∀i =
1, . . . , r, and containing no bridges [30, 62, 76], see Figure 8.1. A bridge is an
edge which does not lie on any cycle and thus its removal would disconnect the
graph. The costs of such an edge biconnected network are its total edge costs, i.e.
c(T ) =

∑
(u,v)∈T c(u, v), and the objective is to identify a feasible solution with

minimum costs. This problem is NP-hard since the task of finding a minimum
cost biconnected network spanning all nodes of a given graph is already NP-hard
[30, 36], which is the special case with |Vi| = 1, ∀i = 1, . . . , r.

Parts of this chapter appeared in [77, 56]
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V1 V2

V3
V4

V5

p1

p2

p3

p4

p5

V6

p6

Figure 8.1: Example for a solution to the GMEBCNP.

The GMEBCNP was introduced by Huygens [62] and it arises in the design of back-
bones in large communication networks. For example, we can consider the possible
access points of an existing local network as nodes of a cluster when designing a
backbone network connecting multiple LANs. Survivability by means of a single
link outage is covered via the considered edge redundancy [30].

We propose three variants of Variable Neighborhood Search (VNS) approaches for
the GMEBCNP. We also propose a Mixed Integer Programming (MIP) formulation
based on multi commodity flows for solving smaller instances of this problem to
provable optimality.

The remainder of this chapter based on [56] is organized as follows. In Section 8.2, we
give an overview on research done on the GMEBCNP and other related problems
so far. Section 8.3 describes the components of our VNS approach in detail and
Section 8.4 introduces the MIP formulation. Section 8.5 describes the instances we
used for our computational experiments. Finally, we describe experimental results
in Section 8.6 and conclude in Section 8.7.

8.2 Previous Work

Despite the importance of this problem in survivable network design, not much re-
search has been done for this particular problem until now. Huygens [62] studied the
GMEBCNP and provided integer programming formulations along with separation
techniques, but no practical results on actual instances were published.
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Though not identical, the GMEBCNP is related to the Generalized Minimum Span-
ning Tree Problem (GMSTP) [86]. As a matter of course, some concepts can be
adopted from Chapter 6. There, we approached the GMSTP from contrary direc-
tions by utilizing two dual representations and associated neighborhood structures
within a VNS. By fixing the spanned nodes of each cluster, optimal edges can be
efficiently computed via Kruskal’s MST algorithm. On the other hand, by fixing the
connections between clusters, an optimal choice of spanned nodes can be determined
via dynamic programming in polynomial time. Though these concepts are not di-
rectly applicable for the GMEBCNP due to higher complexity, some neighborhood
structures of the current work are also based on these ideas.

Another related problem is the Generalized Traveling Salesman Problem (GTSP)
[51, 106, 112], see Chapter 7. Since every solution to the GTSP is obviously edge
biconnected and therefore also a solution to the GMEBCNP, its solution value can
be regarded as an upper bound to the current problem. However, the GTSP is also
NP-hard and especially on large graphs, these upper bounds become rather poor as
the overall costs of solutions to the GMEBCNP are substantially lower. Therefore,
we will not consider the GTSP any further in this chapter.

The classical minimum edge biconnected network problem (2-ECNP or MEBCNP)
has been shown to be NP-hard by a reduction from the Hamiltonian cycle problem
[36]. Khuller and Viskin [67] proposed a factor two approximation algorithm and
showed that approximating the optimal solution to some additive constant is im-
possible in polynomial time unless P=NP. Czumaj and Lingas [12] presented more
detailed results with respect to the approximability of the MEBCNP and gave a
PTAS for the case of complete Euclidean graphs in Rd.

8.3 Variable Neighborhood Search for the GMEBCNP

In this section, we will first describe the solution representation and the initializa-
tion procedure, then discuss our neighborhood structures along with techniques to
optimize the search process. Finally we assemble our VND and VNS framework.

8.3.1 Solution Representation

For each solution, we store the spanned nodes P = {p1, . . . , pr} and the global
connections T g of the global structure Sg = 〈V g, T g〉, see Figure 8.2 and Section
5.1.2.
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V1
V2

V3
V4

V5

V6

Figure 8.2: Example for the global structure of the solution in Figure 8.1.

Spanned nodes p1, . . . , pr alone are insufficient to represent a solution, since finding
the cheapest edges for them corresponds to the classical minimum edge biconnected
network problem which is NP-hard [30, 36]. Similarly, a representation via global
connections alone is also insufficient, since identifying a set of optimal nodes even
when restricted to a given global structure is also NP-hard. Since the latter is not
obvious, we prove it by a reduction from the graph coloring problem:

Theorem 4 Given an (edge biconnected) global structure Sg = 〈V g, T g〉, T g ⊆ Eg,
it is NP-hard to identify an optimal selection of nodes P yielding a corresponding
minimum cost GMEBCNP solution.

Proof Consider the classical NP-hard graph coloring problem [36] on an undirected
graph H = 〈U, F 〉 (Figure 8.3a): To each node, one color of a restricted set of colors
needs to be assigned in such a way that any pair of adjacent nodes is differently
colored. We consider the input graph H as global structure Sg, and the clustered
graph G = 〈V,E〉 is derived by the following procedure: Each node i ∈ U becomes
a cluster Vi and for each possible color c of i, we introduce a node vc

i in cluster
Vi (Figure 8.3b). For each edge (i, j) ∈ F , we create in the clustered graph edges
(vc

i , v
d
j ) ∀ vc

i ∈ Vi, ∀ vd
j ∈ Vj (Figure 8.3c). An edge’s cost is 0 if c 
= d and 1

otherwise.

If we are able to solve the problem of identifying the optimal nodes of the clusters in
order to minimize the GMEBCNP’s solution costs (Figure 8.3d), we also solve the
original graph coloring problem on H: Suppose vc

i is the selected node in cluster Vi,
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0

0
0

a) original graph with possible node colors b) corresponding GMEBCNP structure

c) possible edges d) optimal edges

0

e) solution to the coloring problem

V1 V2

V3 V4

V1 V2

V3

V1 V2

V3 V4

0

V4

Figure 8.3: Transformation of the graph coloring problem into the problem of iden-
tifying an optimal node selection w.r.t. a given global structure.

then c becomes the color of node i ∈ U (Figure 8.3e). The validity of the theorem
thus follows from the NP-hardness of the graph coloring problem. �

So far we considered arbitrary global structures that may contain redundant edges,
i.e. edges which can be removed without violating the edge biconnectivity property.
However, if the global structure meets some particular properties, optimal spanned
nodes can be identified in polynomial time, e.g. for the GMSTP and GTSP. The
following theorem and proof strengthens our result by showing that the NP-hardness
even holds when the global structure is edge-minimal, as it is always the case for an
optimal global structure to the GMEBCNP.
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Theorem 5 Given an edge-minimal edge biconnected global structure Sg =
〈V g, T g〉, T g ⊆ Eg, it is NP-hard to identify an optimal selection of nodes P yielding
a corresponding minimum cost GMEBCNP solution.

a) global structure Sg with one b) edge-minimal global structure Sg
min

c) possible connections and the optimal one

0

0

0

d) backward transformation

0

V1 V2

V3 V4

V1 V2

V3

V4

V e
3

V e
2

V2

V3

V e
3

V e
2

V2

V3

between V2 and V3 between V2 and V3

e

redundant edge e

Figure 8.4: Transformation of the graph coloring problem: Extension towards an
edge-minimal global structure.

Proof If the global structure Sg, after the previous transformation, is not edge-
minimal, T g contains at least one redundant connection (Figure 8.4a). For each such
redundant connection e = (Vi, Vj) ∈ T g, we add new artificial clusters V e

i and V e
j ,

which are exact copies of Vi and Vj , respectively. The global connection (Vi, Vj) gets
replaced by (Vi, V

e
i ), (V e

i , V e
j ), and (V e

j , Vj) (Figure 8.4b). Let Sg
min = 〈V g

min, T
g
min〉

denote the resulting structure, which obviously is edge-minimal.

When adding the clusters V e
i and V e

j , we have to modify the edges E in the clustered
graph G as well. We replace each edge (u, v) ∈ E | u ∈ Vi ∧ v ∈ Vj by (ue, ve) | ue ∈
V e

i ∧ ve ∈ V e
j with ue and ve being the new copies of u and v, respectively. Between

Vi and V e
i , we add edges (u, ue) with costs 0 for all u ∈ Vi. The same procedure

is applied for Vj and V e
j (Figure 8.4c). Let G′ = 〈V ′, E′, c〉 denote the resulting

modified graph. By determining an optimal selection of nodes on G′ subject to
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the global structure T g
min, we get the optimal node set on G subject to the global

structure T g by simply ignoring the artificial clusters (Figure 8.4d). Thus, we also
obtain the optimal solution to the original graph coloring problem on H by choosing
the corresponding colors.

The backward transformation is valid because only one node (hence one color) is
chosen per cluster as we solve the GMEBCNP containing exactly one node per
cluster. Furthermore, the selected node of a cloned cluster is always the clone of the
selected node in the original cluster due to the zero cost edges. �

8.3.2 Initialization

Our strategy for determining an initial solution for the GMEBCNP is inspired the
Christofides heuristic for the traveling salesman problem [8] and therefore called
Adapted Christofides Heuristic (ACH). Its pseudo-code is listed in Algorithms 20 and
21. We start with a solution to the Generalized Minimum Spanning Tree Problem
computed via the Improved Kruskal Heuristic (IKH) from Golden et al. [43], see
Section 6.3.1. This algorithm considers edges in increasing cost-order and adds an
edge to the solution iff it does not introduce a cycle and does not connect a second
node of any cluster. By fixing an initial node to be in the resulting generalized
spanning tree, different solutions can be obtained. Therefore, this process is carried
out |V | times, once for each node to be initially fixed, and the overall cheapest
spanning tree is adopted.

To augment this spanning tree to become a valid solution for the GMEBCNP, we
then determine the set Vo of nodes with odd degree deg(v) and sort the edges induced
by Vo and not contained in the spanning tree with respect to increasing edge costs.
Next, we derive a matching TM for the nodes V0 by iterating through these edges
and adopting any edge incident to two yet uncovered nodes until all nodes in Vo

are covered. Note that this procedure, shown in Algorithm 21, does not necessarily
generate a minimum cost matching.

Unfortunately, these steps still do not necessarily yield a solution completely satisfy-
ing the edge biconnectivity property. More precisely, ACH will fail to find a perfect
matching if the last two uncovered nodes u′ and v′ are adjacent in the spanning tree.
However, it is easy to see that S0 = 〈P, T0 ∪ TM〉 will consist of at most two edge
biconnected components even if no perfect matching is found, as both eventually
existing components of 〈P, T0 ∪ TM \ {(u′, v′)}〉 are Eulerian in that case. There-
fore Algorithm 20 adds the cheapest edge not yet part of the solution between the
eventually remaining two edge biconnected components.
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At the end, we remove redundant edges which might occur due to the previous step
with regard to decreasing edge costs. Ties that might appear due to edges having
identical costs are broken at random.

The overall time complexity of ACH is bounded by O(|E| log |E| + r3). The most
expensive operations are generating a solution to the GMSTP by IKH with com-
plexity O(|E| log |E|) [43], and finding and removing the redundant edges which can
be done in complexity O(r3).

Algorithm 20: Adapted Christofides Heuristic
S0 = 〈P, T0〉 := feasible GMST computed via Improved Kruskal Heuristic
TM := compute matching (S0) // see Algorithm 21
S0 := 〈P, T0 ∪ TM〉
if S0 has two edge biconnected components then

add cheapest edge ∈ E \ To between the two edge biconnected components
remove redundant edges

Algorithm 21: compute matching (GMST S0 = 〈P, T0〉)
TM := ∅
Vo := {v ∈ P | deg(v) is odd}
Eo := {(u, v) ∈ E | u, v ∈ Vo ∧ (u, v) /∈ To}
sort Eo according to increasing costs, i. e. c(e1) ≤ · · · ≤ c(e|Eo|)
i := 1
while Vo 
= ∅ ∧ i < |Eo| do

// current edge ei = (ui, vi)
if ui ∈ Vo ∧ vi ∈ Vo then

TM := TM ∪ {ei}
Vo := Vo \ {ui, vi}

i := i + 1
return TM

8.3.3 Neighborhood Structures

We propose four different types of neighborhood structures, each of them focusing
on different aspects of solutions to the GMEBCNP. For two of them, there exist
simple versions and advanced versions making use of the following graph reduction
technique.
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Graph Reduction: Though it is generally not possible to derive an optimal set of
spanned nodes in polynomial time when a global structure Sg is given, this task
becomes feasible once the spanned nodes in a few specific clusters are fixed. The
underlying concept, called graph reduction, is based on the observation that good
solutions to the GMEBCNP usually consist of only few clusters with spanned nodes
of degree greater than two, denoted as branching clusters, and long paths of clusters
with spanned nodes of degree two connecting them, denoted as path clusters. Once
the spanned nodes within all branching clusters are fixed, it is possible to efficiently
determine for each cluster path the optimal selection of remaining nodes by comput-
ing the shortest path between the two fixed branching cluster nodes in the subgraph
of G represented by the cluster path.

Formally, for any global structure Sg = 〈V g, T g〉, we can define a reduced global
structure Sg

red = 〈V g
red, T

g
red〉. Vred denotes the branching clusters, i.e. V g

red = {Vi ∈
V g | deg(Vi) ≥ 3} with deg(Vi) being the degree of cluster Vi in Sg. T g

red consists of
edges which represent strings of path clusters connecting these branching clusters,
i.e. T g

red = {(Va, Vb) | (Va, Vk1), (Vk1 , Vk2), . . . , (Vkl−1
, Vkl

), (Vkl
, Vb) ∈ T g ∧ Va, Vb ∈

V g
red ∧ Vki

/∈ V g
red, ∀i = 1, . . . , l}.

Corresponding to the reduced global structure Sg
red = 〈V g

red, T
g
red〉 we can define a

reduced graph Gred = 〈Vred, Ered〉 with all nodes of branching clusters Vred = {v ∈
Vi | Vi ∈ V g

red} and edges between any pair of nodes whose clusters are adjacent in
the reduced global structure, i.e. (i, j) ∈ Ered ⇔ (Vi, Vj) ∈ T g

red,∀i ∈ Vi, j ∈ Vj . Each
such edge (i, j) corresponds to the shortest path connecting i and j in the subgraph
of G represented by the reduced structure’s edge (Vi, Vj), and (i, j) therefore gets
assigned this shortest path’s costs, see Figure 8.5.

When fixing the spanned nodes in V g
red we can determine the costs of the correspond-

ing solution S with optimally chosen nodes in path clusters efficiently by using the
precomputed shortest path costs stored with the reduced graph’s edges. Decoding
the corresponding solution, i.e. making the optimal spanned nodes within path clus-
ters explicit, is done by choosing all nodes lying at the shortest paths corresponding
to used edges from Ered. Detailed pseudocode for the graph reduction procedure is
given in Algorithm 22.

An edge-minimal solution to the GMEBCNP, as it is obtained from our initialization
procedure, may consist of O(r) edges only. When computing the corresponding
reduced global structure and reduced graph, each solution edge is considered exactly
once, and for each edge all combinations of nodes within three clusters need to be
considered. The overall worst case time complexity is thus O(r · d3

max), with dmax

being the maximum number of nodes within a single cluster.

99



Chapter 8 The Generalized Minimum Edge Biconnected Network Problem

V4

a b

e f

g h

1
2

3

4

5

3

2

7

V3

V1

c dV2

1

7 3
1

a bV1

V4
h

5 5

4 6

g

Figure 8.5: Computing the shortest paths between all node pairs of two branching
clusters V1 and V4.

Algorithm 22: reduce (solution S = 〈P, T 〉)
Sg = 〈V g, T g〉 is the global structure of S = 〈P, F 〉
Eg

red := ∅
V g

red := set of all clusters in Gg with deg(V g
r ) ≥ 3

forall global paths P g = {(V1, V2), . . . , (Vn−1, Vn)} in Gg do
Eg

red := Eg
red ∪ {(V1, Vn)}

calculate costs of reduced path P g

reduced global graph Gg
red := 〈V g

red, E
g
red〉

// generate corresponding “local” reduced graph Gred = 〈Vred, Ered〉
Vred := {v ∈ Vred|Vred ∈ V g}
Ered := ∅
forall edges (Vi, Vj) ∈ Eg

red do
forall v ∈ Vi do

forall w ∈ Vj do
Ered := Ered ∪ {(v, w)}
set c(v, w) in Gred to costs of reduced path between v and w

Figure 8.6 shows an example of reducing the number of clusters to be further con-
sidered from nine to two. Note that cyclic paths in T g, i.e. Va = Vb, will yield loops
in T g

red, as it is the case with (V6, V6) in our example. Furthermore, multiple cluster
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paths may exist between two branching clusters, as for V1 and V6, and they lead to
multi-edges in the reduced graph. We can treat such multi-edges as simple edges by
summing up the costs of associated single edges.

V1

V5
V2

V4

V3 V6

V7 V9

V8

V1

V6

V1

V6

Figure 8.6: Example for graph reduction: V1 and V6 are branching clusters, while
all others are path clusters.

Simple Node Optimization Neighborhood (SNON)

With this neighborhood structure we try to optimize a solution with respect to the
spanned nodes within clusters while keeping the global structure. SNON consists
of all solutions S′ that differ from the current solution S by exactly one spanned
node. A move within SNON (see Figure 8.7) is accomplished by changing pi ∈ Vi

to p′i ∈ Vi, pi 
= p′i, for i ∈ {1, . . . , r}, removing all edges incident to pi and adding
edges from p′i to all nodes that were incident to pi in S, see Algorithm 23.

Since the objective value can be updated in an incremental way, the time complexity
of a complete search in SNON is O(|V | · dmax).
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Figure 8.7: A SNON move, changing the spanned node of V6 from p6 to p′6.

Algorithm 23: Simple Node Optimization (solution S = 〈P, T 〉)
for i := 1, . . . , r do

forall v ∈ Vi \ pi do
change spanned node pi of cluster Vi to v
if current solution better than best then

save current solution as best
restore initial solution

restore and return best solution

Node Optimization Neighborhood (NON)

This neighborhood structure enhances SNON by utilizing the graph reduction tech-
nique. NON consists of all solutions S′ that differ from S by at most two spanned
nodes within branching clusters. Again, the global structure of the solution remains
unchanged. By means of the graph reduction technique, spanned nodes of path clus-
ters are selected in an optimal way once the best neighboring solution is identified
on the reduced graph, see Algorithm 24.

Carrying out graph reduction in advance adds O(r · d3
max) to the time complexity.

Since updating the objective value for a considered neighbor can be done in O(dmax)
and O(r2) neighbors are to be considered, the overall time complexity of NON is
bounded by O(r2 · d2

max + r · d3
max).
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Algorithm 24: Node Optimization (solution S = 〈P, T 〉)
compute reduced structure Sg

red = 〈V g
red, T

g
red〉

forall Vi, Vj ∈ V g
red ∧ Vi 
= Vj do

forall u ∈ Vi 
= pi do
change used node pi of cluster Vi to u
forall v ∈ Vj do

change used node pj of cluster Vj to v
if current solution better than best then

save current solution as best
restore initial solution

restore best solution // fixes the spanned nodes in branching clusters
decode solution // by using precomputed shortest paths corresponding to used
edges in Ered

return solution

Node Re-Arrangement Neighborhood (NRAN)

With this neighborhood structure we try to optimize a solution with respect to the
arrangement of nodes. A neighbor solution S′ in NRAN differs from S by exactly
one swap move which exchanges for two nodes a and b their sets of adjacent nodes
Ia and Ib as shown in Figure 8.8. Set Ia, in respect to solution S = 〈P, T 〉, is defined
as Ia = {w ∈ P | (a, w) ∈ T}. After this swap move, S′ = 〈P, T ′〉 consists of
T ′ = T \ Ia \ Ib ∪ {(a, v) | v ∈ Ib} ∪ {(b, u) | u ∈ Ia}. The pseudocode of completely
searching this neighborhood is given in Algorithm 25.

Updating the objective value for a single move means to subtract the costs of the
original edges and to add the costs of the new ones. Therefore, a complete evaluation
of NRAN, which consists of all solutions S′ differing from S by exactly one swap
move, can be done in time O(r2 · dmax).

Algorithm 25: Node Re-Arrangement Optimization (solution S = 〈P, T 〉)
for i := 1, . . . , r − 1 do

for j := i + 1, . . . , r do
swap adjacency lists of nodes pi and pj

if current solution better than best then
save current solution as best

restore initial solution
restore and return best solution
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Figure 8.8: A NRAN move, swapping p6 and p7.

Cluster Re-Arrangement Neighborhood (CRAN)

This neighborhood structure is an extension to NRAN which again makes use of
the graph reduction technique. Moving from the current solution S to a neighbor
solution S′ in CRAN means swapping two nodes in an analogous way as for NRAN,
then computing the reduced graph, and finally determining the best nodes in all
path clusters. Since applying the whole graph reduction after each move is relatively
time-expensive, only incremental updates of the reduced structure and associated
information are carried out whenever two nodes of path clusters are swapped, which
is in practice most of the time the case. Whenever two nodes a and b of degree two
on the same reduced path are swapped, only this path has to be updated; if a and
b belong to different paths, only the corresponding two paths must be recomputed.
However, if at least one of these nodes belongs to a branching cluster, the graph
reduction procedure must be completely re-applied as the structure of the whole
solution graph may change. The pseudocode is given in Algorithm 26.

The worst case time complexity of completely examining CRAN is O(r3 ·d3
max) when

graph reduction is applied after every move. Since the complete evaluation might
require too much time on larger instances, we abort the neighborhood exploration
after a certain time limit is exceeded, returning the so-far best neighbor instead of
following a strict best neighbor strategy.
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Algorithm 26: Cluster Re-Arrangement Optimization (solution S = 〈P, T 〉)
compute reduced structure Sg

red = 〈V g
red, T

g
red〉

for i := 1, . . . , r − 1 do
for j := i + 1, . . . , r do

swap adjacency lists of nodes pi and pj

if Vi or Vj is a branching cluster then
recompute reduced solution Sg

red = 〈V g
red, T

g
red〉

else
if Vi and Vj belong to the same reduced path P then

update P in Sg
red

else
update the path containing Vi in Sg

red

update the path containing Vj in Sg
red

if current solution better than best then
decode and save current solution as best

restore initial solution and Sg
red

restore and return best solution

Edge Augmentation Neighborhood (EAN)

In this neighborhood structure, modifications on the edges are primarily considered.
More precisely, EAN of a solution S = 〈P, T 〉 consists of all solutions S′ reachable
from S by including a single additional edge e /∈ T and removing other, now redun-
dant edges, see Figure 8.9 and Algorithm 27. Removing e itself is not allowed since
this would obviously lead to the original solution S. We do not have to consider
edges e = (a, b) if deg(a) = deg(b) = 2 and a and b are part of the same reduced
path. In these cases, adding e would lead to a graph where e is the only redundant
edge.

As there are O(r2) possible moves and removing redundant edges has time com-
plexity O(r3), the overall time complexity for evaluating EAN is bounded by O(r5).
However, since good solutions are in practice usually rather sparse, we can omit the
evaluation of many neighbor solutions.

Node Exchange Neighborhood (NEN)

This neighborhood structure addresses both aspects, changing the spanned nodes
as well as the edges connecting them. A neighbor solution in NEN differs from the
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Figure 8.9: An EAN move, adding (p4, p5) and removing redundant edges (p2, p4)
and (p3, p5).

Algorithm 27: Edge Augmentation Optimization (solution S = 〈P, T 〉)
for i := 1, . . . , r − 1 do

for j := i + 1, . . . , r do
if (i, j) /∈ T then

if
deg(i) 
= 2 ∨ deg(j) 
= 2 ∨ i and j are not part of the same reduced path
then

add (i, j)
remove redundant edges
if current solution better than best then

save current solution as best
restore initial solution

restore and return best solution

original solution by exactly one spanned node and an arbitrary number of edges. A
single move within NEN is accomplished by first changing pi ∈ Vi to p′i ∈ Vi, pi 
= p′i,
and removing all edges incident to pi. This leads to a graph consisting of at least two
and no more than deg(pi) + 1 components. We reconnect these parts by adding the
cheapest edges between any pair of these components. Once this step is completed,
edge biconnectivity is restored using the advanced bridge covering strategy described
below. Finally, redundant edges are removed, see Figure 8.10 and Algorithm 28.
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a) initial solution S = 〈P, T 〉. b) remove all edges incident to p4 and

c) add cheapest edges between all d) restore biconnectivity.

change spanned node of V4 to p′4.

pairs of graph components.

Figure 8.10: A NEN move, changing the spanned node of V4, removing all adjacent
edges, and re-augmenting the graph.

The process of covering all bridges with additional edges can be expensive in practice.
When disconnecting a node in a sparse graph, many bridges may arise. Therefore, we
first determine all nodes with degree one and connect each of them with its cheapest
partner. If only a single node with degree one exists, we connect it with the first
reachable node of degree greater than two. This strategy helps to cover many bridges
with only few edges. Remaining bridges are covered by simply adding the cheapest
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Algorithm 28: Node Exchange Optimization (solution S = 〈P, T 〉)
for i := 1, . . . , r do

forall v ∈ Vi \ pi do
remove all edges incident to pi

change used node pi of cluster Vi to v
add cheapest edges between any two graph components
restore biconnectivity
remove redundant edges
if current solution better than best then

save current solution as best
restore initial solution

restore and return best solution

edges between pairs of edge biconnected components. Even with this advanced
bridge covering strategy, examining NEN still needs O(|V | · r3) time. Therefore,
analogous to CRAN, we stop the search of NEN after a time limit is exceeded and
return the so-far best neighbor solution.

8.3.4 Variable Neighborhood Search Framework

We use the traditional general VNS scheme with different variants of VND as lo-
cal improvements. In order to be able to investigate in particular the efficiency of
the more complicated neighborhoods based on graph reduction (NON, CRAN), two
standard VNDs which use different sets of neighborhoods are considered. Further-
more, we examine the impact of using the more sophisticated Self-Adaptive Variable
Neighborhood Descent (SAVND) with dynamic neighborhood-ordering [58], see Sec-
tion 3.4.2.

The first VND variant, VND1, is shown in Algorithm 29; it only applies the simpler
neighborhood structures without graph reduction, i.e. SNON, NRAN, EAN, and
NEN. This ordering has been determined taking both the computational complexity
as well as preliminary test results into account.

The second VND variant, VND2, is shown in Algorithm 30 and alternates between
NON, NRAN, CRAN, EAN, and NEN. It therefore also uses the more sophisticated
neighborhoods having higher computational complexity due to the applied graph
reduction. SNON is not considered since it is fully contained in NON and preliminary
experiments with both of them did not indicate advantages.
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Algorithm 29: VND1 (solution S = 〈P, T 〉)
l := 1
repeat

switch l do
case 1: // SNON, see Algorithm 23

S′ := Simple Node Optimization (S)
case 2: // NRAN, see Algorithm 25

S′ := Node Re-Arrangement Optimization (S)
case 3: // EAN, see Algorithm 27

S′ := Edge Augmentation Optimization (S)
case 4: // NEN, see Algorithm 28

S′ := Node Exchange Optimization (S)

if solution S′ is better than S then
S := S′

l := 1
else

l := l + 1
until l > 4
return solution S

Finally, the self-adaptive variable neighborhood descent (SAVND) uses the same
neighborhood structures as VND2, but instead of a static order, the neighborhoods
are rearranged automatically during the search process. Each neighborhood struc-
ture has associated a rating which is updated according to success probabilities and
required times for evaluation. In this way, more effective neighborhood structures
come to the fore and will be applied more frequently.

Shaking

Most of our neighborhood structures used in VND concentrate more on the opti-
mization of the spanned nodes than on the global structure. In order to enhance
diversity, our shaking procedure is therefore based on EAN. It augments a current
solution by k randomly chosen new edges followed by a removal of other, now re-
dundant edges. This process starts with k = 1 inserted edge, and as long as no
improvement is achieved, k is incremented by one up to kmax = � r

4�. In accordance
to the used VND variant, we denote the three VNS variants VNS1, VNS2, and
SAVNS, respectively.
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Algorithm 30: VND2 (solution S = 〈P, T 〉)
l := 1
repeat

switch l do
case 1: // NON, see Algorithm 24

S′ := Node Optimization (S)
case 2: // NRAN, see Algorithm 25

S′ := Node Re-Arrangement Optimization (S)
case 3: // CRAN, see Algorithm 26

S′ := Cluster Re-Arrangement Optimization (S)
case 4: // EAN, see Algorithm 27

S′ := Edge Augmentation Optimization (S)
case 5: // NEN, see Algorithm 28

S′ := Node Exchange Optimization (S)

if solution S′ is better than S then
S := S′

l := 1
else

l := l + 1
until l > 5
return solution S

8.4 A Mixed Integer Programming Formulation for
GMEBCNP

To obtain proven optimal solutions for small and medium sized GMEBCNP in-
stances, we propose a multi-commodity flow MIP formulation based on the local-
global approach which was originally suggested for the GMSTP [91]. We use follow-
ing decision variables.

xu,v =

{
1 if the edge (u, v) is included in the solution
0 otherwise

∀(u, v) ∈ E

zv =

{
1 if the node v is connected in the solution
0 otherwise

∀v ∈ V
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yi,j =

⎧⎪⎨
⎪⎩

1 if cluster Vi is connected to cluster Vj
in the global structure

0 otherwise
∀(i, j) ∈ Eg

fk
i,j =

⎧⎪⎨
⎪⎩

1 if a flow f of commodity k exists
from cluster i to cluster j

0 otherwise

∀i, j = 1, . . . , r
∀k = 2, . . . , r

The MIP formulation consists of two parts: The multi commodity flow part operates
on the global structure and is based on sending from cluster V1, which is defined
to be the root, two units of flow f to every other cluster using edge-disjoint routes.
Flows dedicated to different clusters are distinguished by their commodity k. The
result is stored in the binary variables yi,j indicating the global connections. The
local-global part, originally introduced by Pop [91] for the GMSTP, relates the local
variables xu,v and zv with the global connections.

minimize
∑

(u,v)∈E

cu,v xu,v (8.1)

subject to (8.2)

r∑
i=1

fk
i,j −

r∑
l=1

fk
j,l =

⎧⎪⎨
⎪⎩
−2 if j = 1
2 if j = k

0 else

∀j = 1, . . . , r, ∀k = 2, . . . , r (8.3)

fk
i,j + fk

j,i ≤ 1 ∀i, j = 1, . . . , r, ∀k = 2, . . . , r (8.4)∑
v∈Vk

zv = 1 ∀k = 1, . . . , r (8.5)

∑
u∈Vi,v∈Vj

xu,v = yi,j ∀(i, j) ∈ Eg (8.6)

xu,v ≤ zu ∀i = 1, . . . , r, ,∀u ∈ Vi, ∀v ∈ V \ Vi (8.7)

yi,j ≥ fk
i,j ∀i, j = 1, . . . , r, i 
= j, ∀k = 2, . . . , r (8.8)

fk
i,j ≥ 0 ∀i, j = 1, . . . , r, ∀k = 2, . . . , r (8.9)

xu,v ∈ {0, 1} ∀(u, v) ∈ E (8.10)
yi,j ∈ {0, 1} ∀(i, j) ∈ Eg (8.11)
zv ∈ {0, 1} ∀v ∈ V (8.12)
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Constraints (8.2) ensure that two commodities k of flow f are produced in V1, pre-
served by every cluster they are not dedicated for, and consumed by cluster Vk. To
achieve edge biconnectivity, inequalities (8.4) forbid the transportation of two com-
modities dedicated for the same cluster over the same connection. To obtain a valid
global structure, inequalities (8.8) ensure global connections to be included in the
solution if a flow variable is active on it. Constraints (8.5) guarantee that precisely
one node is selected per cluster and equations (8.6) only allow edges between nodes
of clusters which are connected in the global structure. Finally, inequalities (8.7)
ensure that only edges incident to selected nodes are chosen.

8.5 Test Instances

We tested our algorithms on the same instances which are used for the GMSTP and
GTSP: Euclidean TSPlib instances with geographical center clustering, grouped
Euclidean, random Euclidean, and non-Euclidean instance sets, see Section 5.3.

For the MIP formulation, we had to generate smaller instances in order to solve
them optimaly. We derived them by reducing some original benchmark instances.
Their properties are listed in Table 8.1.

Table 8.1: Small instances for comparison with the MIP approach.

Instance |V | |E| r |V |
r col row sep span

Group E. 40 40 780 8 5 4 2 10 10
Group E. 50 50 1225 10 5 5 2 10 10
Group E. 60 60 1770 12 5 6 2 10 10
Random E. 40 40 780 8 5 - - - -
Random E. 50 50 1225 10 5 - - - -
Random E. 60 60 1770 12 5 - - - -
Non-E. 40 40 780 8 5 - - - -
Non-E. 50 50 1225 10 5 - - - -
Non-E. 60 60 1770 12 5 - - - -

8.6 Computational Results

All experiments have been performed on a Pentium 4, 2.6 GHz PC with 1GB RAM.
To test the performance of the MIP formulation, we used the general purpose MIP
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solver CPLEX in version 10.0.1. In order to compute average values and standard
deviations for the VNS, we performed for each algorithm variant and each instance
30 independent runs.

To allow a fair comparison among the VNS variants, we used CPU-time in depen-
dence of the instance type and size as termination criterion. For the two complex
neighborhood structures CRAN and NEN, we set the time limit for each evaluation
to 5s; i.e., after 5s, if not all neighbors of the current solution could be evaluated,
VND continues with the so far-best neighbor.

8.6.1 Results on Small Instances

We first consider the small instances derived in particular for testing the MIP ap-
proach. Table 8.2 shows the corresponding results. For the MIP approach, obtained
optimal solution values C(T ∗) and the required CPU times for identifying and prov-
ing them are listed. For the three VNS variants VNS1 (including only simpler
neighborhoods), VNS2 (including neighborhoods based on graph reduction), and
SAVNS (VNS2 with self-adaptive ordering of neighborhoods), CPU-time was lim-
ited to one second per run. Obtained average solution values C(T ), corresponding
standard deviations, and success rates of how often the optimal solution was found
are listed.

Table 8.2: Results on small instances. Time limit for VNS approaches is 1s per run.

MIP VNS1 VNS2 SAVNS
Instance, |V | C(T ∗) time C(T ) Opt. C(T ) Opt. C(T ) Opt.
Group Eucl, 40 79.4 4.6s 82.9 30/30 82.9 30/30 82.9 30/30
Group Eucl, 50 82.1 31.2s 88.2 29/30 88.1 30/30 88.1 30/30
Group Eucl, 60 91.8 539.8s 92.2 24/30 92.1 26/30 91.8 30/30
Random Eucl, 40 989.0 6.3s 996.2 28/30 992.9 29/30 989.0 30/30
Random Eucl, 50 1310.2 762.0s 1317.7 25/30 1320.8 23/30 1314.0 27/30
Random Eucl, 60 1318.0 3370.6s 1329.9 21/30 1321.6 26/30 1323.7 29/30
Non-Eucl, 40 152.8 3.8s 371.8 27/30 369.0 30/30 369.0 30/30
Non-Eucl, 50 216.2 16.1s 462.4 23/30 452.5 27/30 454.4 26/30
Non-Eucl, 60 305.3 276.9s 317.1 21/30 312.3 25/30 310.2 25/30

We can observe that the MIP approach was able so solve all instances with up to
60 nodes to proven optimality. The required CPU times are, however, relatively
large and substantially increase with the number of nodes, especially for random
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Euclidean instances. For the three VNS variants, these small instances turned out
to be no real challenge: For most of the runs, optimal solutions could be found
in fractions of a second. In particular on the group Euclidean instances, SAVNS
consistently identified the optimal solution in every single run. VNS1 performed
worse than VNS2 and SAVNS due to the absence of the more complex neighborhood
structures.

8.6.2 Results on Larger Instances

We now turn to the larger TSPlib instances and random instances from Ghosh.
Tables 8.3 and 8.4 show the results of the three VNS variants. For TSPlib instances,
the allowed CPU time has been chosen roughly in dependence on the instance size
as indicated in Table 8.3 (between 150s and 600s), while for random instances, each
run has been terminated after 600s. For smaller random instances, shorter time
limit would be enough to let VNS fully converge. However, we finally decided to use
the same time limit for all these instances. As a result, final best solutions might be
found rather early for small instances whereas they are obtained quite at the end of
a run for large instances. The search process takes up all the time nevertheless. We
list the objective values of the best solutions found during the 30 runs C(Tbest), the
average values C(T ), and the standard deviations.

For TSPlib instances (Table 8.3), we can observe a consistent and obvious trend:
Among all VNS variants, SAVNS performs best. Columns γA,B list error probabil-
ities of Wilcoxon tests [119] for the assumption that the difference of the solutions
obtained by approach A and B are significant. In most cases, these tests yield er-
ror probabilities of less than 1% for the assumption that the mean objective values
from VNS2 are superior than those of VNS1. These error probabilities become even
smaller when we compare VNS1 with SAVNS.

Results are more ambiguous for the random instances in Table 8.4. Though SAVNS
is still the best strategy on group Euclidean and non-Euclidean instances, its perfor-
mance is significantly worse than those of VNS2 on random Euclidean instances. By
analyzing the log files, we suspect that this is due to CRAN, which is very efficient
on this type of instances, but also rather time consuming. In the test runs, this
neighborhood structure is moved to the front and therefore examined very often.
This slowed down the whole search process. Nevertheless, in almost all cases the
variants utilizing the more sophisticated neighborhood structures based on graph
reduction outperformed the simpler VNS1.
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8.6.3 Contributions of Neighborhood Structures

In order to analyze the individual contributions of the different neighborhood struc-
tures to the whole success, we logged how often each neighborhood structure was
able to improve a current solution. We then determined the ratios of successful
improvements over how often each neighborhood structure has been evaluated and
normalized these values over all neighborhood structures, yielding percentage values
describing their relative efficiencies. For VNS2 and all considered large test in-
stances, these efficiencies are listed in Tables 8.5 and 8.6. For SAVNS, these values
are similar since the same neighborhood structures are used.

In general, each neighborhood structure contributes substantially to the whole suc-
cess. In Table 8.5, we observe that by increasing the size of the instances, the more
complex neighborhood structures like EAN and NEN become more efficient while
the improvement rates of the simpler ones decrease. In Table 8.6, we combined the
data for each set of three identically parameterized instances for simplicity. The
dependency on the instance size is less obvious, but the neighborhoods’ relative ef-
ficiencies strongly depend on the structure of the instance. In particular, NRAN
is less successful on non-Euclidean instances but second best for random Euclidean
instances. All in all, CRAN is able to improve solutions most often. NON per-
forms best on instances with many nodes per cluster, while EAN performs best on
instances containing many relatively small clusters.

8.6.4 Impact of Self-Adaptive Variable Neighborhood Descent

Since SAVNS performs best in overall, we want to investigate the impact of SAVND
on the optimization process. We expect the substantial difference to be in SAVND
because the same VNS framework is used all the time.

Table 8.7 shows the results when VND2 and SAVND are applied after the initializa-
tion procedure ACH. We compare the average objective values obj of final solutions
identified by those two VND variants and the average total CPU-times t needed to
get there. Since both variants use the same set of neighborhood structures, the only
difference is their order. Because some of the neighborhood evaluation strategies
contain stochastic components, average objective values and average times over 30
runs are provided.

Looking at the final objective values identified by VND2 and SAVND, we observe
that differences exist. The reason obvious; due to the different order in which the
neighborhood structures are searched, different local optima are reached. However,
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Table 8.5: Relative improvement rates of NON, NRAN, CRAN, EAN, and NEN for
TSPlib instances.

Instance |V | r |V |
r NON NRAN CRAN EAN NEN

gr137 137 28 5 22.37% 20.50% 25.43% 22.29% 9.40%
kroa150 150 30 5 22.24% 17.75% 25.70% 21.94% 12.36%
krob200 200 40 5 17.87% 18.17% 23.97% 25.94% 14.05%
ts225 225 45 5 16.35% 19.82% 21.32% 25.68% 16.83%
gil262 262 53 5 15.03% 17.34% 21.56% 27.81% 18.26%
pr264 264 54 5 14.43% 20.27% 23.00% 26.49% 15.80%
pr299 299 60 5 15.07% 17.72% 21.75% 27.39% 18.08%
lin318 318 64 5 15.02% 18.42% 21.00% 27.62% 17.94%
rd400 400 80 5 13.92% 14.66% 18.40% 27.38% 25.64%
fl417 417 84 5 12.69% 21.43% 17.39% 29.69% 18.80%
gr431 431 87 5 11.39% 17.52% 19.79% 30.85% 20.45%
pr439 439 88 5 14.75% 16.52% 20.81% 27.54% 20.38%
pcb442 442 89 5 13.61% 15.21% 20.73% 28.02% 22.42%

Table 8.6: Relative improvement rates of NON, NRAN, CRAN, EAN, and NEN for
random instances.

Instance |V | r |V |
r NON NRAN CRAN EAN NEN

Group E. 125 125 25 5 33.79% 13.56% 32.65% 12.43% 7.56%
Group E. 500 500 100 5 22.84% 12.92% 24.83% 20.36% 19.03%
Group E. 600 600 20 30 30.68% 6.40% 27.52% 4.75% 30.66%
Group E. 1280 1280 64 20 24.95% 10.92% 22.97% 14.09% 27.07%
Random E. 250 250 50 5 13.90% 24.94% 28.08% 22.04% 11.04%
Random E. 400 400 20 20 26.38% 24.94% 33.44% 8.11% 7.12%
Random E. 600 600 20 30 25.23% 27.24% 33.37% 8.13% 6.04%
Non-E. 200 200 20 10 31.76% 3.43% 35.99% 15.17% 13.65%
Non-E. 500 500 100 5 13.55% 5.10% 23.22% 33.95% 24.16%
Non-E. 600 600 20 30 35.83% 1.53% 45.57% 7.91% 9.16%

the difference is relatively small, and over all instances, no strategy yields statistically
significantly better solutions than the other.

Comparing running times, the advantage of SAVND becomes very clear: It consis-
tently requires significantly less time to get to these local optima. When used for
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Table 8.7: Results on random instances, three instances per category.

Random Instances VND2 SAVND
Category |V | r obj t [s] obj t [s]
Grouped E. 125 125 25 178.36 5.90 180.65 3.31
Grouped E. 500 500 100 766.11 161.41 762.85 95.69
Grouped E. 600 600 20 115.49 63.34 116.26 48.10
Grouped E. 1280 1280 64 467.70 221.28 476.15 184.61
Random E. 250 250 50 4143.14 54.28 4049.57 30.67
Random E. 400 400 20 1132.70 51.51 1211.81 38.73
Random E. 600 600 20 948.83 107.85 1088.40 82.44
Non-E. 200 200 20 486.11 6.68 492.44 3.83
Non-E. 400 500 100 1141.04 66.96 1175.01 31.63
Non-E. 600 600 20 266.03 34.63 253.47 25.96

Table 8.8: Results on TSPlib instances with geographical clustering.

TSPlib Instances VND2 SAVND
Name |V | r obj t [s] obj t [s]
gr137 137 28 505.60 10.33 490.23 5.30
kroa150 150 30 12470.77 9.32 12562.13 6.36
d198 198 40 12330.90 37.7 12435.03 17.55
krob200 200 40 13906.47 29.49 14010.97 14.43
gr202 202 41 344.53 30.84 341.13 22.67
ts225 225 45 77418.33 18.63 77691.67 13.77
gil262 262 53 1186.63 66.71 1173.23 21.30
pr264 264 54 34691.27 70.87 35506.70 28.90
pr299 299 60 24887.30 46.73 24839.63 32.66
lin318 318 64 26285.40 41.47 26535.23 22.64
rd400 400 80 7891.80 92.65 7532.13 53.47
fl417 417 84 11042.77 89.44 11003.57 53.29
gr431 431 87 1557.83 78.95 1520.57 72.27
pr439 439 88 77427.03 116.65 78338.93 66.65
pcb442 442 89 26669.00 83.05 26881.70 43.79

VNS, this advantage is even more noticeable since more iterations can be carried
out in the same timeframe.
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8.7 Conclusions

In this chapter, we proposed Variable Neighborhood Search approaches as well as
a Mixed Integer Programming (MIP) model for the Generalized Minimum Edge
Biconnected Network Problem (GMEBCNP).

The VNS algorithms are based on four neighborhood structures addressing particular
properties as spanned nodes and/or edges between them. For two of them there exist
simple and more advanced variants. The latter utilize a graph reduction technique
which allows to efficiently determine the optimal spanned nodes for the majority
of cluster once the connections between clusters are fixed. We apply techniques to
optimize the search process such as methods to omit meaningless computations for
the more complex neighborhood structures and optimized evaluation strategies.

Experiments were performed on TSPlib based instances with geographical clustering,
Euclidean instances with grid and random clustering, and non-Euclidean instances.
The proposed multi commodity flow MIP approach is able to solve smaller GME-
BCNP instances with up to 60 nodes in reasonable time to proven optimality. In
comparison, the VNS variants are in most of their runs also able to identify optimal
solutions for those small instances, but in substantially shorter time (fractions of a
second).

Comparing the results of our VNS variants for medium and large instances, we
conclude that the used neighborhood structures are effective and their combination
within the VNS scales well to large instances. In particular, we observed that the
graph reduction technique applied in the more sophisticated neighborhood struc-
tures of VNS2 and SAVNS is a major improvement. The self-adaptive ordering of
neighborhoods, as it is done in SAVNS turned out to be helpful in the majority of
the experiments.

8.8 Future Work

In the future, we want to consider further large neighborhood structures that are
evaluated by means of integer linear programming. The described multi commodity
flow formulation provides a basis for this. Another plan is to extend the graph
reduction technique by including further shrinking strategies.

Since all of the instances we used for testing were complete graphs, we did not
implement special mechanisms for handling incomplete graphs. Though it is easy
to remove all unneeded variables from the MIP model, it is less straightforward to
adapt the neighborhood structures for the VNS adequately. We want to investigate
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possibilities like narrowing the search space or repairing solutions due to non-existing
edges in the future.

Last but not least, there also exists the variant of the GMEBCNP in which at least
one node of each cluster must be connected. Though related, many techniques in
this chapter are not directly applicable to this variant, e.g. the graph reduction
technique. We would like to investigate this problem in the future and adapt our
proposed neighborhood structures and techniques for it.
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Chapter 9

The Railway Traveling Salesman
Problem

9.1 Introduction

The Railway Traveling Salesman Problem (RTSP) is defined as follows. We are
given a number of cities and a timetable specifying train connections between these
cities. A salesman starts his journey in a particular station, has to visit a given
subset of cities denoted by B, and finally has to return to the initial location. In
each of the cities σ ∈ B, he has to spend a minimum amount of time tσ to complete
his errands. The goal is to minimize the overall time required for the journey.

In contrast to the classical Traveling Salesman Problem (TSP), it is allowed to visit
cities or railway tracks more than once. This is due to practical reasons since it
makes no sense to limit the usage of some backbone stations and to enforce the
salesman to take alternative, possibly slower train connections.

The RTSP has been introduced by Hadjicharalambous et al. [46] and they showed
that it is NP-hard. Furthermore, they modeled the RTSP via a so-called time-
expanded digraph and provided a multi-commodity flow integer linear programming
formulation to solve the problem to optimality. To increase the performance, they

Parts of this chapter appeared in [60]
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introduced a reduction algorithm which decreases the size of the graph significantly.
To handle larger instances, Pop et al. [92] presented an ant colony optimization
algorithm to solve the problem heuristically.

The RTSP is related to the Generalized TSP (GTSP), see Chapter 7. One of the
most obvious differences is that RTSP does not require all cities to be visited. A
transformation to GTSP seems reasonable, since there are many successful algo-
rithms for solving GTSP, such as a branch-and-cut [34], genetic algorithms [111, 110],
other (meta)heuristics [104, 59], or even approaches that exploit transformations of
the GTSP into a TSP [20, 6]. Pop et al. [94] presented a transformation to a special-
ized GTSP, the so-called 2-GTSP, and proposed a cutting plane approach to solve
it. The 2-GTSP differs from the classical GTSP by requiring exactly two nodes in
each cluster to be visited in a roundtrip.

In this chapter which is based on [60], we present two schemes to transform the RTSP
into classical TSPs. Section 9.2 shows how this problem can be modelled as a graph
theoretical problem and how the model can be shrinked in size via preprocessing.
Section 9.3 describes a transformation of RTSP into an asymmetric TSP, while
Section 9.4 proposes a transformation into a symmetric TSP. We show computational
results on the performance of the symmetric transformation in Section 9.5 and finally
conclude in Section 9.6.

9.2 Modelling

The Time-expanded Digraph

Hadjicharalambous et al. [46] proposed to model this problem via a time-expanded
digraph [107]. This graph G = 〈V,E〉, indicated by Figure 9.1, is defined as fol-
lows. Vertex set V is partitioned into σ1, . . . , σm clusters, representing the train
stations. The railway timetable contains a list of train entries in terms of 5-tuples
Ti = (z, σd, σa, t(d), t(a)), each representing the corresponding train ID z, departure
station σd, arrival station σa, departure time t(d) and arrival time t(a). For each
5-tuple, a departure-node d with time t(d) is added to σd and a arrival-node a with
time t(a) is added to σa. Departure and arrival times are integers in the interval
[0, 1439] representing time in minutes after midnight.

All departure-nodes of a station are ordered according to their times. Let
d1, . . . , dl be the departure-nodes of σ in that order, then there are stay edges
(d1, d2), . . . , (dl−1, dl), (dl, d1) connecting them, meaning that the salesman simply
waits at the station. Among these edges, (dl, d1) implies that he stays overnight to
wait for the first train on the next day. It is assumed that train schedules do not
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travel-edges

arrival-edges

stay-edges

busy-edges

station σi station σj

d1

d2

d3

d4

a1

a2

a3

Figure 9.1: Example for two stations in the time-expanded digraph, σi ∈ B and
σj /∈ B

change from day to day. If they do change, the model has to be expanded so that
each station σ contains all depart and arrival-nodes for the whole week (assuming
that schedules do not change from week to week). For practical reasons, arrival-
nodes a1, . . . , ak are also ordered according to their times, but there are no edges
among themselves.

Arrival-edges connect each arrival-node with their immediately next departure-node
(w.r.t. their time values) of the same station. Travel-edges connect depart-nodes
with their corresponding arrival-nodes according to the timetable. Finally, for all
stations σ ∈ B which the salesman has to visit, there are busy-edges which connect
arrival-nodes with their next possible departure-nodes where he could leave σ after
spending the required amount of time. The cost for each edge c(u, v), (u, v) ∈ E is
the cycle-difference (1440 + t(v)− t(u)) mod 1440. This assumes that a day-to-day
model is used and no train requires more than one day to get from one station to
the next stop.

Graph Size Reduction

Hadjicharalambous et al. [46] presented a preprocessing algorithm to reduce the size
of the time-expanded graph. For each station σ ∈ B, a new sink-node sσ is added
and all arrival-nodes in σ are connected to sσ with zero cost edges. Then, for all
departure-nodes in d ∈ σ, shortest paths to sink-nodes in all other stations in B
are computed. For each path, an edge between d and the last arrival-node of that
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path is added to G. The edge costs equal the costs of the corresponding shortest
path. Then, all sink-nodes and their incoming edges are removed again, as well as
all stations not in B along with their nodes. Arrival-nodes which are not used by
any of the shortest paths and all arrival-edges are removed, too.

After the size reduction procedure, G only consists of stations σ ∈ B, their arrival
and departure-nodes, the edges connecting them, and the newly added shortest path
edges.

9.3 Transformation to asymmetric TSP

We propose a scheme to transform the reduced RTSP into an asymmetric TSP
defined on a graph G′ = 〈V ′, E′〉 by applying similar ideas as Behzad et al. [6], who
presented a transformation for the GTSP to TSP. For each station σ ∈ B in the
original reduced graph, we apply the following procedure to obtain the new station
σ′ ⊂ V ′.

Let a′1, . . . , a′k ∈ σ′ be exact copies of arrival-nodes a1, . . . , ak ∈ σ, or-
dered according to their times. We connect them to a cycle by zero
cost edges (a′1, a′2), . . . , (a′k−1, a

′
k), (a′k, a

′
1). The same procedure is applied

on the departure-nodes d′1, . . . , d′l, which get connected by zero cost edges
(d′1, d′2), . . . , (d′l−1, d

′
l), (d′l, d

′
1). Let pred(v) denote the cyclic predecessor of node

v according to these cycles. We connect every arrival-node a′i, i = 1, . . . , k with
every departure-node d′j , j = 1, . . . , l. For the initial station, c(a′i, d

′
j) is simply set

to t(d′j)− t(d′1) which does not depend on t(a′i). The reason is that the salesman has
to end his tour at the initial station, but not at the initial time. So it only makes
a difference when he starts the journey, thus c(a′i, d

′
j) = t(d′j) − t(d′1) where t(d′1) is

the earliest possible depart time from the initial station. For all other stations in
B, the costs are set to c(a′i, d

′
j) = (1440 + t(d′j) − t(pred(a′i)) − tσ) mod 1440 + tσ.

Note that while all original stay edges are not present, their costs are included in
these new edges. For example, in Figure 9.2, going from a1 to d4 means to take
the busy-edge (a1, d3) and the stay-edge (d3, d4). The costs are t(d4)− t(a1), which
equal the costs of the new edge (a′3, d′4).

Finally, we have to adapt the outgoing edges from d′j , j = 1, . . . , l as well. For
each original travel-edge (dj , v), we introduce an edge (pred(d′j), v). The costs are
c(pred(d′j), v) = c(dj , v) + M where M must be a sufficiently large number, e.g.∑

(u,v)∈E c(u, v), to prevent more than one travel-edge to be included in the optimal
solution.
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original station σ transformed station σ′

d1
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a′
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a′
3

dx

ay

dx

ay

Figure 9.2: Transforming σ into σ′ in the asymmetric TSP. The bold path marks
the travel route from dx to ay in the original σ and in the transformed
σ′.

Figure 9.2 illustrates this transformation procedure and shows an example how a
route is adapted in the new graph. Unfortunately, the resulting graph is directed,
thus the TSP is asymmetric.

9.4 Transformation to symmetric TSP

Since the previous transformation results in an asymmetric TSP, we propose an
alternative procedure to generate a symmetric TSP defined on the graph G′ =
〈V ′, E′〉. This approach follows the same basic ideas for the previous transformation.
Unfortunately, the number of nodes needs to be doubled during this process.

Let again a′1, . . . , a′k ∈ σ′ be exact copies of arrival-nodes a1, . . . , ak ∈ σ. We
duplicate them one more time, obtaining a′′1, . . . , a′′k. Then, we connect these
nodes by edges (a′2, a′′1), (a′3, a′′2), . . . , (a′k, a

′′
k−1), (a′1, a′′k) with zero costs and edges

(a′i, a
′′
i ), i = 1, . . . , k with high costs M to a cycle. High costs on edges (a′i, a

′′
i ) cause

as few of them to be present in the solution as possible. For example, in Figure
9.3, when a travel-edge leads to a1, there are two possible routes to go through
{a′1, . . . , a′3} ∪ {a′′1, . . . , a′′3}, one ending at a′′3 and one ending at a′′1. The latter one
is cheaper since edge (a′1, a′′1) with high costs is spared.

The same procedure is applied to nodes d′1, . . . , d′l and their duplicates d′′1, . . . , d′′l .
Then, we connect all a′′i , i = 1, . . . , k with all d′j , j = 1, . . . , l. The costs of edges
(a′′i , d

′
j) are set to (1440 + t(d′j) − t(a′′i ) − tσ) mod 1440 + tσ. Like in the previous

transformation, costs of original stay edges are implicitly included in these edges.
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Finally, for each original travel-edge (dj , v), we add a new edge (d′′j , v) with costs
c(d′′j , v) = c(dj , v)+M ′. Since M is already used by edges (a′i, a

′′
i ) and (d′j , d

′′
j ) inside

σ′, we have to choose an even larger value for M ′ to ensure that only one travel-edge
is included in the solution on G′. We set M ′ = M · |B| for this matter.

original station σ transformed station σ′

d1

d2

d3

d4

a1

a2

a3

d′′
1

d′′2

d′′3

d′′4

a′′
1

a′′
2

a′′
3

dx

ay

dx

ay

d′1

d′2

d′3

d′4

a′
1

a′
2

a′
3

Figure 9.3: Transforming σ into σ′ in the symmetric TSP. The bold path marks the
travel route from dx to ay in the original σ and in the transformed σ′.

9.5 Computational Results

To test our TSP transformation schemes, we use instances based on two railway
timetables containing real-world data of train schedules in the Netherlands. They
were provided by the authors of [46, 92]. Instance 3000 3 contains 23 cities and
represent trains of a local region. Instance ic times contains 27 larger cities in
the Netherlands which are connected by Intercity trains. The requirements for the
traveling salesman were generated by us at random, as the authors could not find
theirs anymore. They are created by letting the salesman either visit 5 or 10 cities,
and stay times were chosen between 10 and 240 minutes at each location. Since
[46, 92] also used randomly generated data for the salesman with the same number
of cities to be visited, the results should be at least roughly comparable. Stay times
were not mentioned though.

The time-expanded digraph based on both timetables contain more than 2000 nodes
and around 4000 edges (which depends on the traveling person). After reducing the
graph, we carry out the transformation procedure to generate a symmetric TSP
instance and solve it with the Branch-and-Cut (B&C) algorithm of the Concorde
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library2. Our experiments were performed on an Intel Core 2 Quad 2.4 GHz PC
with 4GB memory and B&C uses ILOG CPLEX 9.0 as solver.

Table 9.1: Results on timetable 3000 3, containing 23 cities and 1095 train entries.

Index |B| nodes time std dev
1 5 348 1.14s 0.35
2 5 514 1.02s 0.12
3 5 514 0.98s 0.07
4 5 688 7.14s 3.42
5 5 852 2.65s 0.45
6 5 762 2.41s 0.34
7 5 1312 56.81s 22.89
8 5 782 4.03s 1.20
9 5 854 2.84s 0.73

10 5 456 0.84s 0.11
11 10 1786 15.48s 6.57
12 10 1562 8.67s 4.04
13 10 1960 36.29s 13.39
14 10 1260 5.17s 1.07
15 10 1410 7.89s 3.03
16 10 1478 219.67s 267.30
17 10 2276 52.95s 13.69
18 10 1748 24.64s 13.40
19 10 2252 20.77s 4.88
20 10 1342 6.20s 2.98

Table 9.1 and 9.2 show the performance of Concorde branch-and-cut (B&C) on the
transformed instances. We performed 30 runs for each instance, since B&C uses
random seeds to decide its branching order, thus resulting in variable run-times.
Listed are the instance’s indices, numbers of cities the salesman must visit, numbers
of nodes in the TSP after graph reduction and transformation are applied, the
average run-times needed for B&C to find and prove the optimal solutions, and
standard deviations of run-times.

For instances 12, 14, and 18 in Table 9.2, all 30 runs were terminated after 10000s
where B&C still could not prove optimality. In all these cases, however, the remain-
ing gap is less than 0.1%.

2www.tsp.gatech.edu/concorde.html
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Table 9.2: Results on timetable ic times, containing 27 cities and 1129 train entries.

Index |B| nodes time std dev
1 5 422 3.35s 1.35
2 5 542 5.50s 1.93
3 5 712 6.19s 1.36
4 5 364 0.52s 0.04
5 5 1178 30.26s 9.38
6 5 450 0.77s 0.06
7 5 516 3.47s 1.09
8 5 1140 10.16s 3.57
9 5 324 29.68s 16.17

10 5 568 8.50s 3.29
11 10 1786 1907.47s 990.37
12 10 1562 – 0.00
13 10 1960 45.68s 27.39
14 10 1260 – 0.00
15 10 1410 71.29s 48.41
16 10 1478 1471.14s 781.79
17 10 2276 239.52s 72.94
18 10 1748 – 0.00
19 10 2252 1071.12s 377.63
20 10 1342 346.39s 134.51

Analyzing the results, we observe large differences in run-times between the in-
stances. Among instances with the same size for B, trips can contain quite different
number of nodes. This is due to the random selection for stations in B. Looking
at data from the railway timetables, some stations only contain a few arrival and
departure-nodes while others have a full lineup. This imbalance appears to a greater
extent for timetable “ic times”, in which some stations contain as few as 2 nodes
and others are as large as 254 nodes. This could be the reason why these instances
seems to be harder to solve for Concorde B&C.

Table 9.3 shows the performance of direct approaches for the RTSP: The multi-
commodity flow Integer Linear Programming (ILP) formulation solved via GLPSOL
(GNU Linear Programming Kit LP/MIP Solver) version 4.6 reported in [46] and the
Ant Colony Optimization (ACO) approach [92]. While the ILP operated on reduced
graphs, ACO used original graphs.
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Table 9.3: Reported results using ILP [46] and ACO [92]

Instance |B| time ILP time ACO
3000 3 5 319.00s 18.68s
3000 3 10 9111.90s 677.36s

ic times 5 29.10s 16.60s
ic times 10 6942.60s 374.28s

Comparing these results with those obtained by Concorde B&C, the latter seems to
perform better. However, we have to keep in mind that different data were generated
for the salesman, different integer linear programming solvers and different hardware
were used.

9.6 Conclusions

In this chapter, we proposed two transformation schemes for the Railway Traveling
Salesman Problem (RTSP), resulting in the asymmetric TSP and the symmetric
TSP. Though the number of nodes has to be doubled in the symmetric TSP trans-
formation, the branch-and-cut algorithm of the Concorde library could solve most
of the tested instances to provable optimality in very reasonable time.

For larger RTSP instances, the transformation to the asymmetric or symmetric
TSP is still meaningful when using a faster state-of-the-art TSP heuristic, such as
the chained Lin-Kernighan algorithm [2].

In future work, we will evaluate the approach on more and in particular larger
instances and also test the performance of the direct integer linear programming
formulation for RTSP using ILOG CPLEX for a fairer comparison. Other direct
(meta)heuristic approaches also seem appealing, especially when the number of cities
which the salesman has to visit becomes too high for exact approaches.

For the symmetric TSP transformation, we still have some implementation-
dependent problems with the big M and M ′ added to the edges costs. Trying
to solve instances where the salesman visits 15 cities results in integer overflows and
the branch-and-cut algorithm can only operate with integer values. Therefore, we
would like to enhance the transformation procedure to overcome this difficulty.

We also have not made practical experiments exploiting the transformation to the
asymmetric TSP yet. Since the number of nodes is only half of the symmetric case
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and only one big M is required for the transformation, this seems to be a very
reasonable alternative.
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Chapter 10

Conclusions

This thesis considered three Generalized Network Design Problems (GNDPs) in
detail: the Generalized Minimum Spanning Tree Problem (GMSTP), the Gener-
alized Traveling Salesman Problem (GTSP), the Generalized Minimum Edge Bi-
connected Network Problem (GMEBCNP), and the Railway Traveling Salesman
Problem (RTSP).

Hybrid metaheuristics were used in order to attack these NP-hard combinatorial
optimization problems. The fundamental strategy was to design complementary
neighborhood structures which augment each other well. Most neighborhood struc-
tures are large in the sense that they contain exponentially many candidate solutions,
but we used efficient algorithms to identify a best or nearly best neighbor. Variable
Neighborhood Search (VNS) approaches based on these neighborhood structures
were used as frameworks to handle these problems.

The Generalized Minimum Spanning Tree Problem

We developed a (VNS) approach for the GMSTP using three neighborhood struc-
tures of different types. Two of them use complementary search strategies. They
are exponentially large, but polynomial-time algorithms are used to identify the
best neighbor. The third neighborhood structure uses techniques from Integer Lin-
ear Programming to (IP) in order to improve the structure of subareas in candidate
solutions.
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Computational results show that this approach is able to generating high quality
solutions in acceptable time. Whereas state-of-the-art exact approaches are able to
identify optimal solutions for instances with about 200 nodes within more than one
hour, VNS only requires 10 minutes to generate near optimal solutions for instances
with up to 1280 nodes. It was also able to obtain significantly better solutions on
certain types of instances compared to other metaheuristic approaches which only
rely on neighborhood structures of a single type.

The Generalized Traveling Salesman Problem

We proposed a VNS algorithm for the GTSP that uses two neighborhood structures
which can be seen as dual to each other. The first one has already been successfully
applied to this problem in the literature, but we presented a novel efficient evalu-
ation technique to further reduce computational effort. The second neighborhood
uses the well known Chained Lin-Kernighan algorithm as sub-procedure to evaluate
candidate solutions.

Although our VNS is more time consuming than recent approaches based on genetic
algorithms, it is able to generate solutions of much higher quality. Measured on
Euclidean TSPlib instances containing 100 to 442 nodes, the average gap in the
objective values between our results and the optimal ones is only 0.05%.

The Generalized Minimum Edge Biconnected Network Problem

This problem extends the GMSTP by requiring additional fault tolerance on the
solution graph in terms of edge biconnectivity. We developed different VNS vari-
ants based on four neighborhood structure types that address different aspects of
the solutions. For the more complex ones, we also proposed advanced evaluation
techniques to reduce evaluation effort or to avoid searching in areas where definitely
no improving solutions exist.

Computational results show that all neighborhood structures contribute significantly
to the search process. Since it was hard to determine the order in which the neighbor-
hood structures are applied in VNS, we presented a new variant called self-adaptive
VNS. By rearranging the order the neighborhoods dynamically during the optimiza-
tion process according to the success of each neighborhood, we could obtain better
solutions compared to classical VNS approaches.
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As a related problem to the GTSP, we considered the RTSP. Based on modelling
and preprocessing techniques that were proposed in the literature, we described two
transformations that reformulate the RTSP as classical asymmetric and symmetric
TSPs, respectively.

For testing the performance, we solved the resulting symmetric TSP instances using
the branch-and-cut (B&C) algorithm from the Condore library. Compared to other
direct methods for the RTSP, we observe that our transformation approach benefits
from the strengths of the Concorde B&C solver and optimal solutions could be
obtained in less overall time.

Looking at the results obtained for the considered GNDPs, we conclude that our
general strategy worked out very well. By combining diverse solution representations
with complementary search techniques, it is possible to reach areas in the search
space that are inaccessible when only using neighborhood structures of a single
type.

It is also crucial to use efficient search strategies to identify the best solutions in large
neighborhoods that contain exponentially many candidates. Wherever applicable,
incremental evaluation schemes are important to further reduce the computational
effort for searching through such neighborhoods.
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gence. Decision Sciences, 8:156–166, 1977.

[39] F. Glover and G. Kochenberger. Handbook of Metaheuristics, volume 57 of
International Series in Operations Research & Management Science. Kluwer
Academic Publishers, Norwell, MA, 2003.

[40] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Boston,
MA, 1997.

[41] F. Glover, M. Laguna, and R. Mart́ı. Fundamentals of scatter search and path
relinking. Control and Cybernetics, 39(3):653–684, 2000.

[42] D. Goldberg and R. Lingle. Alleles, loci, and the travelling salesman problem.
In J. J. Grefenstette, editor, Proceedings of the First Int. Conf. on Genetic
Algorithms, pages 154–159. Lawrence Erlbaum, 1985.

[43] B. Golden, S. Raghavan, and D. Stanojevic. Heuristic search for the gener-
alized minimum spanning tree problem. INFORMS Journal on Computing,
17(3):290–304, 2005.

[44] M. Gruber and G. R. Raidl. (Meta-)heuristic separation of jump cuts for
the bounded diameter minimum spanning tree problem. In P. Hansen et al.,
editors, Proceedings of Matheuristics 2008: Second International Workshop on
Model Based Metaheuristics, Bertinoro, Italy, 2008.

[45] M. Gruber and G. R. Raidl. (Meta-)heuristic separation of jump cuts in a
branch&cut approach for the bounded diameter minimum spanning tree prob-
lem. Technical Report TR 186–1–08–02, Institute of Computer Graphics and
Algorithms, Vienna University of Technology, Vienna, Austria, 2008. sub-
mitted to a special issue on Matheuristics of Operations Research/Computer
Science Interface Series, Springer.

[46] G. Hadjicharalambous, P. Pop, E. Pyrga, G. Tsaggouris, and C. Zaroliagis.
The railway traveling salesman problem. Algorithmic Methods for Railway
Optimization, 4359:264–275, 2007.

[47] P. Hansen and N. Mladenović. An introduction to variable neighborhood
search. In S. Voss, S. Martello, I. Osman, and C. Roucariol, editors, Meta-

140



Bibliography

heuristics: advances and trends in local search paradigms for optimization,
pages 433–438. Kluwer Academic Publishers, Boston MA, 1999.

[48] P. Hansen and N. Mladenovic. An introduction to variable neighborhood
search. In S. Voss et al., editors, Meta-heuristics, Advances and trends in local
search paradigms for optimization, pages 433–458. Kluwer Academic Publish-
ers, 1999.

[49] M. Haouari and J. S. Chaouachi. Upper and lower bounding strategies for the
generalized minimum spanning tree problem. European Journal of Operational
Research, 171:632–647, 2006.

[50] M. Haouari, J. S. Chaouachi, and M. Dror. Solving the generalized mini-
mum spanning tree problem by a branch-and-bound algorithm. Journal of the
Operational Research Society, 56(4):382–389, 2005.

[51] Henry-Labordere. The record balancing problem: A dynamic programming
solution of a generalized traveling salesman problem. RAIRO Operations Re-
search, B2:43–49, 1969.

[52] A. Hertz and D. de Werra. The tabu-search metaheuristic: how we used it.
Annals of mathematics and artificial intelligence, 1:54–60, 1990.

[53] J. Holland. Adaptation In Natural and Artificial Systems. University of Michi-
gan Press, 1975.
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of Metaheuristics [39], pages 321–353.

[82] O. Martin, S. W. Otto, and E. W. Felten. Large-step Markov chains for the
traveling salesman problem. Complex Systems, 5:299–326, 1991.

[83] R. Montemanni and D. H. Smith. A tabu search algorithm with a dynamic
tabu list for the frequency assignment problem. Technical report, University
of Glamorgan, UK, 2001.

[84] P. Moscato. On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms. Technical Report C3P 826, Pasadena, CA,
1989.

[85] P. Moscato. Memetic algorithms: A short introduction. In D. Corne et al.,
editors, New Ideas in Optimization, pages 219–234. McGraw Hill, 1999.

143



Bibliography

[86] Y. S. Myung, C. H. Lee, and D. W. Tcha. On the generalized minimum
spanning tree problem. Networks, 26:231–241, 1995.

[87] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
John Wiley & Sons, 1988.

[88] C. Noon and J. C. Bean. An efficient transformation of the generalized trav-
eling salesman problem. INFOR, 31(1):39–44, 1993.

[89] C. E. Noon. The Generalized Traveling Salesman Problem. PhD thesis, Uni-
versity of Michigan, 1988.

[90] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall, 1982.

[91] P. C. Pop. The Generalized Minimum Spanning Tree Problem. PhD thesis,
University of Twente, The Netherlands, 2002.

[92] P. C. Pop, C.-M. Pintea, and C. P. Sitar. An ant-based heuristic for the railway
traveling salesman problem. In EvoWorkshops, volume 4448, pages 702–711.
Springer, 2007.

[93] P. C. Pop, G. Still, and W. Kern. An approximation algorithm for the
generalized minimum spanning tree problem with bounded cluster size. In
H. Broersma, M. Johnson, and S. Szeider, editors, Algorithms and Complexity
in Durham 2005, Proceedings of the first ACiD Workshop, volume 4 of Texts
in Algorithmics, pages 115–121. King’s College Publications, 2005.

[94] P. C. Pop, C. D. Zaroliagis, and G. Hadjicharalambous. A cutting plane
approach to solve the railway traveling salesman problem. Studia Universitatis
Mathematica, 53(1):63–72, 2008.

[95] R. C. Prim. Shortest connection networks and some generalisations. Bell
System Technical Journal, 36:1389–1401, 1957.

[96] J. Puchinger and G. R. Raidl. An evolutionary algorithm for column gen-
eration in integer programming: an effective approach for 2D bin packing.
In X. Y. et. al, editor, Parallel Problem Solving from Nature – PPSN VIII,
volume 3242 of LNCS, pages 642–651. Springer, 2004.

[97] J. Puchinger and G. R. Raidl. Combining metaheuristics and exact algorithms
in combinatorial optimization: A survey and classification. In Proceedings of
the First International Work-Conference on the Interplay Between Natural and
Artificial Computation, volume 3562 of LNCS, pages 41–53. Springer, 2005.

[98] J. Puchinger and G. R. Raidl. Relaxation guided variable neighborhood search.
In Proceedings of the XVIII Mini EURO Conference on VNS, Tenerife, Spain,
2005.

144



Bibliography

[99] J. Puchinger and G. R. Raidl. Models and algorithms for three-stage
two-dimensional bin packing. European Journal of Operational Research,
183(3):1304–1327, 2007.

[100] J. Puchinger and G. R. Raidl. Models and algorithms for three-stage two-
dimensional bin packing. European Journal of Operational Research, Feature
Issue on Cutting and Packing, to appear 2005.

[101] I. Rechenberg. Evolutionsstrategie, Optimierung Technischer Systeme nach
Prinzipien der Biologischen Evolution. Frommann-Holzboog Verlag, 1973.

[102] G. Reich and P. Widmayer. Beyond steiner’s problem: A vlsi oriented gen-
eralization. In Graph-Theoretic Concepts in Computer Science WG89, pages
196–210, 1989.

[103] J. Renaud and F. F. Boctor. An efficient composite heuristic for the symmet-
ric generalized traveling salesman problem. European Journal of Operational
Research, 108:571–584, 1998.

[104] J. Renaud, F. F. Boctor, and G. Laporte. A fast composite heuristic for the
symmetric traveling salesman problem. INFORMS Journal on Computing, 8,
issue 2:134–143, 1996.

[105] J. J. Salazar. A note on the generalized steiner tree polytope. Discrete Applied
Mathematics, 100(1-2):137–144, 2000.

[106] J. P. Saskena. Mathematical model of scheduling clients through welfare agen-
cies. Journal of the Canadian Operational Research Society, 8:185–200, 1970.

[107] F. Schulz, D. Wagner, and K. Weihe. Dijkstra’s algorithm on-line: An empir-
ical case study from public railroad transport. ACM Journal of Experimental
Algorithmics, 5(12):571–584, 2000.

[108] H.-P. Schwefel. Evolution and Optimum Seeking. Wiley, New York, 1995.

[109] A. Segev. The node-weighted steiner tree problem. Networks, 17:185–200,
1987.

[110] J. Silberholz and B. Golden. The generalized traveling salesman problem:
A new genetic algorithm approach. Extending the Horizons: Advances in
Computing, Optimization, and Decision Technologies, 37(4):165–181, 2005.

[111] L. V. Snyder and M. S. Daskin. A random-key genetic algorithm for the
generalized traveling salesman problem. Technical Report 04T-018, Dept. of
Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, USA,
2004.

[112] Srivastava, S. S. S. Kumar, R. C. Garg, and P. Sen. Generalized traveling
salesman problem through n sets of nodes. CORS Journal, 7:97–101, 1969.

145



Bibliography

[113] G. Syswerda. Schedule optimization using genetic algorithms. pages 332–349.
Int. Thomson Computer Press, 1991.

[114] E. Taillard. Robust taboo search for the quadratic assignment problem. Par-
allel Computing, 17:443–455, 1991.

[115] E. Taillard and S. Voss. POPMUSIC: Partial optimization metaheuristic under
special intensification conditions. In C. Ribeiro and P. Hansen, editors, Essays
and surveys in metaheuristics, pages 613–629, 2001.

[116] P. Thompson and H. Psaraftis. Cycle transfer algorithm for multivehicle rout-
ing and scheduling problems. Operations Research, 41:935–946, 1993.

[117] V. V. Vazirani. Approximation algorithms. Springer, 2001.

[118] S. Voss, S. Martello, I. Osman, and C. Roucariol. Kluwer Academic Publishers,
Boston MA, 1999.

[119] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics,
1(6):80–83, 1945.

[120] L. A. Wolsey. Integer Programming. Wiley-Interscience, 1998.

[121] C. Wu, Y. Liang, H. P. Lee, and C. Lu. Generalized chromosome genetic
algorithm for generalized traveling salesman problems and its applications for
machining. Physical Review E, 70, issue 1, 2004.

[122] B. Yang and P. Gillard. The class steiner minimal tree problem: a lower bound
and test problem generation. Acta Informatica, 37(3):193–211, 2000.

146



Curriculum Vitae

Personal Information

• Name: Bin Hu

• Date of birth: October 23, 1980

• Place of birth: Shanghai, China

Education

• since 10/2004: PhD student at Vienna University of Technology. Main re-
search: “Hybrid Metaheuristics for Generalized Network Design Problems”,
supervised by Günther Raidl

• 10/1999 – 04/2004: Computer Science studies at Vienna University of Technol-
ogy with graduation to “Diplom Ingenieur” (MSc). Diploma thesis: “Human
Guided Car Sequencing for the Automobile Industry”, supervised by Gunnar
Klau

• 09/1993 – 06/1999: Comprehensive school in Vienna, Austria

• 09/1991 – 06/1993: Secondary school in Grieskirchen, Austria

• 09/1987 – 06/1991: Primary school in Grieskirchen, Austria

• 09/1986 – 12/1986: Primary school in Shanghai, China

147



Bibliography

Work Experience

• since 03/2005: Research and teaching assistant, Algorithms and Data Struc-
tures Group, Institute of Computer Graphics and Algorithms, Vienna Univer-
sity of Technology

• 03/2005 – 01/2006: Employed in the FWF project Combining Memetic Al-
gorithms with Branch and Cut and Price for Some Network Design Problem
under grant P16263-N04, Algorithms and Data Structures Group, Institute of
Computer Graphics and Algorithms, Vienna University of Technology

• 10/2000 – 01/2005: Tutor (“Studienassistent”) for Introduction to Program-
ming, Institute of Pattern Recognition and Automation

• 10/2000 – 06/2004: Tutor (“Studienassistent”) for Algorithms and Data Struc-
tures 1 and 2, Institute of Computer Graphics and Algorithms

Publications

Refereed Journal Articles

• Bin Hu, Markus Leitner, and Günther R. Raidl. Combining variable neigh-
borhood search with integer linear programming for the generalized minimum
spanning tree problem. Journal of Heuristics, 14(5): 473–499, 2008

• Bin Hu, Markus Leitner, and Günther R. Raidl. The generalized minimum
edge biconnected network problem: Efficient neighborhood structures for vari-
able neighborhood search. Networks. Accepted for publication 2008.

Refereed Conference Papers

• Bin Hu and Günther R. Raidl. Solving the railway traveling salesman problem
via a transformation into the classical traveling salesman problem. Hybrid
Intelligent Systems – HIS 2008, Barcelona, Spain, 2008.

• Bin Hu and Günther R. Raidl. Effective neighborhood structures for the gen-
eralized traveling salesman problem. Evolutionary Computation in Combi-
natorial Optimisation – EvoCOP 2008, volume 4972 of LNCS, pages 36–47,
Naples, Italy, Springer, 2008.

• Markus Leitner, Bin Hu, and Günther R. Raidl. Variable neighborhood search
for the generalized minimum edge biconnected network problem. Proceedings
of the International Network Optimization Conference – INOC 2007, pages
69/1–6, Spa, Belgium, 2007.

148



Bibliography

• Bin Hu and Günther R. Raidl. Variable neighborhood descent with self-
adaptive neighborhood-ordering. Proceedings of the 7th EU/MEeting on Adap-
tive, Self-Adaptive, and Multi-Level Metaheuristics, Malaga, Spain, 2006.

• Bin Hu, Markus Leitner, and Günther R. Raidl. Computing generalized min-
imum spanning trees with variable neighborhood search. Proceedings of the
18th Mini Euro Conference on Variable Neighborhood Search, Tenerife, Spain,
2005.

Master Thesis

• Bin Hu. Interaktive Reihenfolgeplanung für die Automobilindustrie. Master’s
thesis, Vienna University of Technology, Institute of Computer Graphics and
Algorithms, April 2004. Supervised by G. W. Klau.

149


