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Abstract

This work examines the Black-Scholes PDE for multi-asset options on an arbitrary number of un-
derlying assets and develops a numerical solution method based on a finite-difference discretisation,
involving the multigrid method for iteratively solving the resulting large sparse systems. The em-
phasis is on designing a numerical algorithm that involves the number of underlying assets, i.e. the
spatial dimension of the PDE, as a mere parameter and is thus simultaneously applicable to any
number of underlying assets. A vectorised MATLAB implementation of this algorithm is presented
and tested on realistic pricing of options on one, two, and three underlyings.
Theoretical considerations at the outset involve solvability and uniqueness results for the multivari-
ate Black-Scholes PDE and its truncation to a bounded domain and the derivation of a localisation
error estimate.
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Introduction

Options are derivative financial products that involve the right but not the obligation to trade
in one or several risky assets, i.e. assets whose future price is not deterministic, like for instance,
shares, commodities, or currencies, at a fixed predefined price. We will only consider so-called
European-style options where the option can only be exercised at one specified date in future, the
so-called maturity or expiry date.

On the financial markets, increasingly sophisticated and complex financial instruments are be-
ing developed and need to be correctly priced. A considerable variety of derivative products can
be interpreted as involving an option on several underlying assets, hence the pricing of multi-asset
options is of both theoretical and practical interest in mathematical finance. Let us present some ex-
amples. [Margrabe, 1978] shows that performance incentive fees, margin accounts, exchange offers,
and standby commitments constitute options to exchange one asset for another, i.e. options con-
tingent on two underlying assets. [Stulz, 1982] discusses applications of options on the maximum
or the minimum of two assets, including the valuation of foreign currency bonds, option-bonds,
risk-sharing and incentive contracts, secured debt, and certain types of investment opportunities.
Furthermore, [Boyle et al., 1989] and [Boyle and Tse, 1990] consider the so-called quality option or
“cheapest to deliver” option which occurs in future contracts when the short position can deliver
any one of a set of deliverable assets, and which can be expressed as an option on the minimum
of this (arbitrarily large) set. [Barraquand, 1995] and [Barraquand and Martineau, 1995] list ap-
plications of multidimensional option pricing in assets and liability management, corporate capital
budgeting, risk management, property/liability insurance, and the pricing of Over The Counter
warrants, multidimensional interest rate term structure contingent claims, mortgage-backed secu-
rities, and life insurance policies.

In 1973, Fisher Black, Myron Scholes, and Robert Merton published a pioneering model allowing
to uniquely determine the price of derivative products, which has since been known as the Black-
Scholes model. Since then, a vast literature on option pricing theory has emerged. There are two
equivalent ways to derive the option price according to the Black-Scholes model (see, e.g., [Wilmott
et al., 1995]): one approach derives a partial differential equation (PDE) that governs the option
price depending on the price(s) of the underlying asset(s) and time, and the other represents the
option price as the discounted expected value of the option’s pay-off under an equivalent martingale
measure, the so-called risk neutral measure. There are only few cases where the resulting PDE
or multidimensional integral, respectively, can be solved analytically, hence one must resort to
numerical valuation methods.

In this thesis, we will concentrate on the PDE approach and design a numerical algorithm based
on finite differences to solve the PDE for multi-asset options. In particular, our objective is that
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the algorithm should be applicable to options on an arbitrary number of underlying assets, or in
mathematical terms, to PDEs in arbitrary space dimensions.

In Chapter 1, we present the Black-Scholes PDE and its multi-dimensional generalisation, trans-
form the problem to a more convenient form, and prove the existence and uniqueness of a solution
based on theorems by [Friedman, 1964]. However, this problem is set on an unbounded domain,
which is not suitable for a finite-difference method. Thus, for the numerical solution, we have to
truncate the problem to a bounded computational domain. In Section 1.4, we analyse the trun-
cated problem, its solvability, and the localisation error caused by the truncation. Based on results
of [Kangro and Nicolaides, 2000] and [Hilber et al., 2004], we derive an estimate of this error in Sec-
tion 1.4.3 that proves convergence of the solution of the truncated problem to the original solution
and hence justifies the truncation.

In Chapter 2, we present the finite-difference discretisation that we use, and give a brief discus-
sion of the convergence of such numerical schemes. The finite-difference method results in a set of
linear systems of equations which are in general very large and sparse. In order to solve them, we
use the highly efficient iterative multigrid method whose basic principles we explain in Chapter 3.

After that, we turn to the practical implementation of our numerical solver in Chapter 4. In
particular, we show how to implement all required algorithms in MATLAB in a vectorised way and
for an a-priori arbitrary number of spatial dimensions. Subsequently, we test the performance of
our solver in a number of numerical experiments presented in Chapter 5.

Our findings are finally summarised in Chapter 6, and the pros and cons of our numerical method
with respect to other numerical valuation strategies found in literature are briefly discussed.
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Chapter 1

The Black-Scholes equation for
multi-asset options

1.1 The option pricing model due to Black, Scholes and Merton

In 1973, Fischer Black and Myron Scholes published a seminal new approach to option valuation
in their famous paper [Black and Scholes, 1973]. Robert C. Merton was also involved in the
development and enhancements of this model. In 1997 (when Black had already died), Scholes and
Merton were awarded the Nobel Prize in Economics for this option pricing model.

The pioneering merit of the Black-Scholes model is the fact that for the first time in option
valuation theory, the price of an option could be determined purely from (theoretically) observable
parameters and did not depend on investors’ expectations about the future development of stock
prices (see also the account by [Schwartz, 1977]). The fundamental underlying concept is the no
arbitrage principle, put the following way in the abstract of [Black and Scholes, 1973]:

If options are correctly priced in the market, it should not be possible to make sure profits
by creating portfolios of long and short positions in options and their underlying stocks.

Thus, calculating the number of options that have to be sold short in order to create a hedged
(i.e. independent of the uncertain development of the stock price) position together with a long
position in one share of stock, and observing that in market equilibrium, the return on this portfolio
must be equal to the return on a riskless asset, they derive a differential equation for the option
price as a function of the stock price and time, based on dynamics obeying stochastic calculus (Itô’s
formula).

This model is based on a number of assumptions corresponding to “ideal market conditions”1:

1. The (short-term) riskless interest rate r is known and constant during the lifetime of the
option (typically a few months).

1Some of these assumptions can be dropped. There are extensions of the original Black-Scholes model which
incorporate, e.g., time-dependent deterministic or stochastic interest rates and volatilities, options on stocks that pay
continuous or discrete dividends, options of American type which can be exercised at any time up to the maturity
date, and more complex “exotic” options, see, e.g., [Wilmott et al., 1995], [Günther and Jüngel, 2003], or [Seydel,
2004].
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2. The stock price follows a random walk with the instantaneous rate of return satisfying the
stochastic differential equation

dS

S
= µdt + σ dX (1.1)

where S is the stock price, t is time, µ is the instantaneous rate of return on the stock (also
called drift), σ > 0 is the instantaneous standard deviation of the rate of return (also called
volatility of the stock price), and dX is a Wiener process, i.e. a continuous-time stochastic
process which starts from zero and has independent increments which are distributed accord-
ing to a normal distribution with mean zero and variance dt. The drift µ and volatility σ are
assumed to be known and constant through time.

A stochastic process satisfying (1.1) is said to follow a Geometric Brownian motion.

3. The stock pays no dividends during the life of the option.

4. The option is of European type, i.e. it can only be exercised at one specified maturity date
(expiry date) T .

5. There are no transaction costs associated with buying or selling assets. Trading takes place
in continuous time.

6. All assets are perfectly divisible, i.e. any quantity can be traded. Lending as well as borrowing
of any amount is possible at the riskless interest rate.

7. Short selling is permitted without penalties and without restrictions.

Under these assumptions, [Black and Scholes, 1973] show that the value V (S, t) of the option is
governed by the partial differential equation known as the Black-Scholes equation,

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2
+ rS

∂V

∂S
− rV = 0, S > 0, t ∈ [0, T ). (1.2)

Here, S denotes the price of the underlying asset, t is time (in years), σ is the volatility of the
underlying asset, r is the riskless interest rate (more precisely, the annual rate of continuously com-
pounded interest), and T is the maturity date of the option. This PDE needs to be supplemented
by a terminal condition

V (S, T ) = V0(S) (1.3)

giving the value of the option at maturity. The no arbitrage principle shows that this must be equal
to the pay-off of the option. Furthermore, boundary conditions for V (0, t) and limS→∞ V (S, t)
derived from economic considerations are usually prescribed. However, this derivation is often
ambiguous, and boundary conditions are actually not mathematically necessary as we will see
later. We will discuss this issue in detail in Section 1.2.1.

The pay-off function V0 depends on the type of option. Consider for example a European call
option, i.e. an option giving its holder the right, at the prescribed time T , to purchase one unit of
the underlying asset at the preset exercise price (strike price) E ≥ 0. If at the maturity date, the
price of the underlying is below the exercise price, there is no gain in exercising the option, as the
underlying asset can be purchased at a lower price on the market. Hence, if S < E at t = T , the
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pay-off of the option is zero. If S > E at expiry, however, the buyer of the option may purchase the
underlying asset at the price E and instantaneously sell it on the market at the price S, thereby
making a profit of S − E. Thus, the pay-off function of a European call option is given by

V0(S) = max {S − E, 0}. (1.4)

By analogous considerations, the pay-off function of a European put option giving the right to sell
one unit of the underlying asset at the exercise price E at time T is found to be

V0(S) = max {E − S, 0}. (1.5)

As for the boundary conditions, the case is rather clear for a European put option: if S = 0 at
any time t0, the Geometric Brownian motion model implies that S = 0 with certainty for any t ≥ t0,
in particular at the maturity date T such that according to (1.5), the pay-off of the put option at
maturity is E with certainty. The no arbitrage principle implies that the value of a certain future
cashflow E is Ee−r(T−t) at time t, i.e. it is discounted by the riskless interest rate. Therefore, we
have V (0, t) = Ee−r(T−t) for a European put option. If S is very large, on the other hand, it will
almost certainly not pay to exercise the put, such that we can say that limS→∞ V (S, t) = 0.

For a European call option, if S = 0, the pay-off at maturity is certainly zero, such that we
have V (0, t) = 0. In the limit S → ∞, however, the case is more difficult. If S is very large, the
option is almost certain to be exercised and yield a pay-off of S −E at maturity. The value of the
option will therefore approximately behave like S − Ee−r(T−t) as S →∞, or neglecting Ee−r(T−t)

compared to S, we can say V (S, t) ∼ S for all t (i.e. limS→∞
V (S,t)

S = 1); a boundary condition of
this form is used in [Wilmott et al., 1995], [Günther and Jüngel, 2003], and [Seydel, 2004]. [Hilber
et al., 2004] set

V (S, t) ∼ e−r(T−t) V0

(
Ser(T−t)

)
at the boundaries (1.6)

for any type of option, which has the economic interpretation that if the stock price were determin-
istic, a stock price of S at time t would correspond to Ser(T−t) at time T , and the value of the option
is the discounted corresponding pay-off. This formula yields precisely the above cited boundary
conditions for European puts and calls, with the limiting condition V (S, t) ∼ S − Ee−r(T−t) as
S →∞ for European calls. There are other ways of expressing this approximate limiting behaviour
of European call options, however; [Schwartz, 1977] uses limS→∞

∂V (S,t)
∂S = 1, and [Persson and von

Sydow, 2007] assume that the option price is nearly linear with respect to S at the boundaries for
any type of option, hence ∂2V (S,t)

∂S2 = 0 at the boundaries.

1.2 Generalisation to multi-asset options

A more general type of options does not only depend on one, but on a set of n underlying assets.
This is the type we will consider from now on. Such options are called multi-asset options, although
alternative names such as rainbow options (e.g. in [Seydel, 2004], [BusinessDictionary.com, 2009])
or basket options (in [Wilmott, 1998]) are sometimes used which may also refer to a special type
of multi-asset options.

The same principles as in the case of single-asset options can be used to price multi-asset options
as well. All assumptions of the Black-Scholes model given above are retained, except that we now
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assume that the n underlying asset prices S1, . . . , Sn follow an n-dimensional Geometric Brownian
motion, i.e. the rates of return satisfy the stochastic differential equations

dS1

S1
= µ1dt + σ1dX1,

...
dSn

Sn
= µndt + σndXn (1.7)

with constant drifts µ1, . . . , µn and volatilities σ1, . . . , σn, respectively, and dX1, . . . , dXn are cor-
related Wiener processes with known constant correlation coefficients ρij for all dXi, dXj . The
corresponding covariance matrix

Σ := (σiσjρij)
n
i,j=1 (1.8)

is required to be positive definite, i.e.

ξT Σ ξ =
n∑

i=1

n∑

j=1

σiσjρij ξiξj > 0 for all ξ ∈ Rn \ {0}. (1.9)

Denote S := (S1, . . . , Sn) and consider the price V (S, t) at time t of a European-style multi-asset
option with maturity date T . An analogous derivation as in the case of single-asset options, based
on the no arbitrage principle, the construction of a hedged portfolio, and dynamics according to the
n-dimensional version of Itô’s formula (see, e.g., [Engelmann and Schwendner, 1998], or [Wilmott,
1998] for a full derivation) shows that V is then governed by the partial differential equation

∂V

∂t
+

1
2

n∑

i=1

n∑

j=1

σiσjρijSiSj
∂2V

∂Si∂Sj
+ r

n∑

i=1

Si
∂V

∂Si
− rV = 0, S ∈ (0,∞)n, t ∈ [0, T ), (1.10)

known as the n-dimensional Black-Scholes PDE, subject to the terminal condition

V (S, T ) = V0(S) for all S ∈ [0,∞)n (1.11)

where V0(S) is the pay-off function of the option. We will further analyse this differential problem
in Section 1.3.

We will now present some important types of multi-asset options and their respective pay-off
functions.

� A European basket call with exercise price E gives its holder the right, at time T , to purchase
a predefined portfolio consisting of ci units of each underlying asset, respectively. Conversely,
a European basket put gives the right to sell this portfolio at the exercise price E.

� A European call on the maximum of n assets with exercise price E gives its holder the right
to purchase the asset whose price at time T is the highest at the exercise price E. More
general, individual exercise prices Ei may apply to each underlying asset Si. Similarly, there
exist calls on the minimum of n assets. Both types may also occur as put options.

� An exchange option is a European-style two-asset option which gives its holder the right, at
time T , to exchange q2 shares with price S2 for q1 shares with price S1.

The pay-off functions for these types of multi-asset options are listed in Table 1.1. Note that the
pay-off is always non-negative, as an option never entails any cost for the holder at expiry.
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option type pay-off function V0(S)

European basket call max
{∑n

i=1 ciSi − E, 0
}

European mean-value basket call max
{

1
n

∑n
i=1 Si − E, 0

}

European basket put max
{
E −∑n

i=1 ciSi, 0
}

European call on the geometric average max
{(∏n

i=1 Si

) 1
n −E, 0

}

European put on the geometric average max
{
E − (∏n

i=1 Si

) 1
n , 0

}

European call on the maximum of n assets max
{

max
i=1,...,n

{Si −Ei}, 0
}

European put on the maximum of n assets max
{

max
i=1,...,n

{Ei − Si}, 0
}

European call on the minimum of n assets max
{

min
i=1,...,n

{Si −Ei}, 0
}

European put on the minimum of n assets max
{

min
i=1,...,n

{Ei − Si}, 0
}

Exchange option max { q1S1 − q2S2, 0}
Table 1.1: Pay-off for several types of multi-asset options.

1.2.1 A note on the boundary conditions

Concerning the boundary conditions, the case is more difficult for multi-asset options. If S = 0
or Si → ∞ for all i simultaneously, similar considerations as in the one-dimensional case are
possible. On the boundary parts where Sj = 0 or Sj → ∞ for some j while the remaining Si

are arbitrary, however, there is in general no clear result. On the Sj = 0 boundaries, one might
reduce the dimensionality of the problem by omitting Sj from the set of underlying assets and
hence consider the option as one on n − 1 assets, and iterate this procedure for the boundaries of
the new domain until the one-dimensional case is reached. However, this method is in general too
complex for practical application. A simpler method is to observe that V0(S) approximates the
boundary behaviour in the one-dimensional case, and hence to set

V (S, t) ∼ V0(S) at the boundaries. (1.12)

A probably more refined approximation is obtained by carrying the economic interpretation of
Formula (1.6) over to the multi-dimensional case, resulting in

V (S, t) ∼ e−r(T−t) V0

(
S er(T−t)

)
at the boundaries. (1.13)

Alternatively, [Persson and von Sydow, 2007] assume that the option price is approximately linear
with respect to each asset price at the boundaries, i.e.

∂2V (S, t)
∂S2

i

= 0 for all i at the boundaries. (1.14)

They point out in addition that financial problems are often parabolic problems with a significant
diffusion part (cf. Section 1.4.1) implying that changes in the boundary conditions do not strongly
affect the solution in the interior of the domain.
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Even though boundary conditions are stated in all literature cited above, they are strictly
speaking not necessary for the Black-Scholes problem at all (cf. [Wilmott et al., 1995]). The
mathematical purpose of boundary conditions is to make the solution of a differential problem
unique. We will see in Section 1.3.2, however, that the n-dimensional Black-Scholes PDE on
(0,∞)n can be transformed to a PDE on Rn and that this PDE together with an appropriate
terminal condition has a unique solution. Not only are no specific conditions on the behaviour
of the solution at the “boundaries” needed for the solvability of the problem, but imposing any
conditions other than the actual behaviour of the solution determined by the terminal condition
alone makes the problem unsolvable. It thus makes sense to define the Black-Scholes problem solely
as the PDE (1.10) together with the terminal condition (1.11).

Nevertheless, there is a practical need for considerations regarding the behaviour of the solution
near the boundaries: whereas this is not relevant for the original Black-Scholes problem on (0,∞)n,
the numerical solution of this problem requires the truncation to a finite domain, and the differential
problem on the finite domain does need boundary conditions. If the computational domain is chosen
suitably large, it makes sense to assume these boundary data close to the boundary value of the
original solution. We will discuss this issue in detail in Section 1.4.4.

1.3 Analysis of the n-dimensional Black-Scholes PDE

1.3.1 A change of variables

The problem we aim to solve is the n-dimensional Black-Scholes problem (1.10)–(1.11). This is
a linear second order parabolic problem in backward time which is degenerate at Si = 0 (see
Definition 1 below). It is possible, however, to transform this problem to a more convenient form
both for analytical and numerical treatment (see, e.g., [Brennan and Schwartz, 1978], [Wilmott
et al., 1995], [Kangro and Nicolaides, 2000], [Hilber et al., 2004], [Persson and von Sydow, 2007]
for slightly different transform variants).

Firstly, the backward final value problem can be transformed to a customary forward initial
value problem by considering the time to expiry,

τ := T − t, (1.15)

instead of calendar time t. Furthermore, the degeneracy with respect to the price variables Si can
be eliminated by switching to the log-price variables

xi := lnSi. (1.16)

With the changes of variables (1.15) and (1.16) and

w(x, τ) := V (S, t) (1.17)

where we set x := (x1, . . . , xn), the problem (1.10)–(1.11) transforms to

∂w

∂τ
− 1

2

n∑

i=1

n∑

j=1

σiσjρij
∂2w

∂xi∂xj
+

n∑

i=1

(σ2
i

2
− r

) ∂w

∂xi
+ rw = 0, x ∈ Rn, τ ∈ (0, T ], (1.18)

subject to the initial condition

w(x, 0) = V0(ex1 , . . . , exn) for all x ∈ Rn. (1.19)

This problem is uniformly parabolic in Rn according to the definition of [Friedman, 1964]:
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Definition 1. Consider a PDE of the form

∂w

∂τ
−

n∑

i=1

n∑

j=1

aij(x, τ)
∂2w

∂xi∂xj
+

n∑

i=1

bi(x, τ)
∂w

∂xi
+ c(x, τ)w = 0 (1.20)

in Ω×[T0, T1] where Ω is a domain in Rn and A(x, τ) := (aij(x, τ))n
i,j=1 is assumed to be a symmetric

matrix. (1.20) can be written in operator notation as

∂w

∂τ
+ L̃w = 0 (1.21)

with the linear differential operator L̃ defined by

L̃w := −
n∑

i=1

n∑

j=1

aij(x, τ)
∂2w

∂xi∂xj
+

n∑

i=1

bi(x, τ)
∂w

∂xi
+ c(x, τ)w. (1.22)

The operator ∂
∂τ + L̃ is called parabolic at the point (x, τ) if the matrix A(x, τ) is positive

definite (see (1.9) for the definition).
If A(x, τ) is positive definite at all (x, τ) ∈ Ω × [T0, T1], the operator is called parabolic in

Ω × [T0, T1]. If the matrix is in addition uniformly positive definite, i.e. if there exist constants
λ,Λ > 0 such that

λ|ξ|2 ≤ ξT A(x, τ) ξ ≤ Λ|ξ|2 for all ξ ∈ Rn for all (x, τ) ∈ Ω× [T0, T1] (1.23)

where |ξ| = (∑n
i=1 ξ2

i

)1/2 is the Euclidean norm of the vector ξ, then the operator ∂
∂τ + L̃ is called

uniformly parabolic in Ω× [T0, T1].

Proposition 1. The operator ∂
∂τ + L of the PDE (1.18) where

Lw := −1
2

n∑

i=1

n∑

j=1

σiσjρij
∂2w

∂xi∂xj
+

n∑

i=1

(σ2
i

2
− r

) ∂w

∂xi
+ rw (1.24)

is uniformly parabolic in Rn × [0, T ] for any T > 0.

Proof. We want to show (1.23) for the differential operator (1.24). Here, we have aij(x, τ) =
1
2σiσjρij , i.e.

A(x, τ) =
1
2
Σ for all (x, τ) ∈ Rn × [0, T ]. (1.25)

As the covariance matrix Σ is a real symmetric matrix, it has n real eigenvalues λ1 ≤ . . . ≤ λn and
there exists an orthonormal basis of Rn consisting of corresponding eigenvectors {v1, . . . ,vn}. We
can therefore write any vector ξ ∈ Rn in the form ξ =

∑n
i=1 ξ̃ivi and obtain

ξT A(x, τ) ξ =
1
2

( n∑

i=1

ξ̃ivT
i

)
Σ

( n∑

j=1

ξ̃jvj

)
=

1
2

n∑

i=1

n∑

j=1

ξ̃iξ̃j vT
i λjvj︸ ︷︷ ︸
=λjδij

=
1
2

n∑

j=1

ξ̃j
2
λj , (1.26)

and consequently,
1
2
λ1|ξ|2 ≤ ξT A(x, τ) ξ ≤ 1

2
λn|ξ|2 for all ξ ∈ Rn (1.27)

uniformly for all (x, τ) ∈ Rn × [0, T ] as the matrix does not depend on (x, τ). We further assumed
Σ to be positive definite; this implies that all eigenvalues are positive. Hence, (1.23) is satisfied
with λ = 1

2λ1 > 0, Λ = 1
2λn > 0.
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For the original Black-Scholes PDE (1.10) in [0,∞)n × [0, T ] (after the time transformation
(1.15) in order to obtain the form (1.20)), in contrast, we have aij(S, τ) = 1

2σiσjρijSiSj . Hence, if
Sk = 0 for some k, taking ξ = ek = (δik)

n
i=1 yields

e T
k A(S, τ) ek =

1
2

n∑

i=1

n∑

j=1

σiσjρijSiSj δikδjk =
1
2
σ2

kS
2
k = 0, (1.28)

i.e. the matrix A(S, τ) is not positive definite in this case; the problem (1.10)–(1.11) is degenerate at
the boundaries of the domain. We have seen that the log transform (1.16) eliminates this degeneracy.
In addition, it has the effect that the PDE (1.18) has constant coefficients in contrast to (1.10).
This is advantageous in the numerical solution of the problem, cf. [Brennan and Schwartz, 1978].
Therefore, we will henceforth consider the transformed problem (1.18)–(1.19) which is a uniformly
parabolic problem in forward time in the whole of Rn.

1.3.2 Solvability of the Black-Scholes problem

In this section, we will prove that the problem

∂w

∂τ
+ Lw = 0, x ∈ Rn, τ ∈ (0, T ], (1.29)

w(x, 0) = V0(ex1 , . . . , exn), x ∈ Rn (1.30)

with the operator L defined in (1.24) has a unique classical solution for every continuous pay-off
function V0 satisfying a certain bound. A problem of the form

∂w

∂τ
+ L̃w = f(x, τ), x ∈ Rn, τ ∈ (0, T ], (1.31)

w(x, 0) = w0(x), x ∈ Rn (1.32)

is called a Cauchy problem in the strip [0, T ]. We will use several results of [Friedman, 1964] in
order to prove existence and uniqueness of a solution of the Cauchy problem (1.29)–(1.30). First,
we define what we understand by a “classical” solution:

Definition 2. A function w(x, τ) defined in Rn× [0, T ] is called a classical solution of the Cauchy
problem (1.31)–(1.32) if

1. w is continuous in Rn× [0, T ] and satisfies the prescribed initial condition w(x, 0) = w0(x) at
all x ∈ Rn,

2. w is continuously differentiable with respect to τ for all (x, τ) ∈ Rn × (0, T ],

3. w is twice continuously differentiable with respect to x for all (x, τ) ∈ Rn × (0, T ],

4. ∂w
∂τ + L̃w = f(x, τ) holds at each point (x, τ) ∈ Rn × (0, T ].

Theorem 2. ([Friedman, 1964, Chapter 1, Theorem 12]).
Assume that

(A1) The operator ∂
∂τ + L̃ is uniformly parabolic in Rn × [0, T ].

10



(A2) The matrix A−1(x, τ) is uniformly positive definite, i.e. (1.23) holds for A−1 for some positive
constants λ̄, Λ̄. (Note that (A1) implies that the matrix A(x, τ) is invertible.)

(A3) aij(x, τ), bi(x, τ), and c(x, τ) are continuous and bounded functions in Rn × [0, T ] for all
i, j = 1, . . . , n.

(A4) For some Hölder exponent 0 < α < 1, the functions bi(x, τ) and c(x, τ) are Hölder continuous
in x ∈ Rn uniformly with respect to τ ∈ [0, T ], and the functions aij(x, τ) satisfy

|aij(x1, τ1)− aij(x2, τ2)| ≤ C
(
|x1 − x2|α + |τ1 − τ2|α/2

)
(1.33)

for some constant C > 0 for all (x1, τ1), (x2, τ2) ∈ Rn × [0, T ].

(A5) f(x, τ) and w0(x) are continuous in Rn×[0, T ] and Rn, respectively, and there is a constant C
such that

|f(x, τ)| ≤ Ceh|x|2 , (1.34)

|w0(x)| ≤ Ceh|x|2 in Rn × [0, T ] for some 0 ≤ h <
λ̄

4T
(1.35)

with λ̄ defined in (A2).

(A6) f(x, τ) is locally Hölder continuous of exponent α in x ∈ Rn uniformly with respect to
τ ∈ [0, T ].

Under these conditions, there exists a classical solution w of the Cauchy problem (1.31)–(1.32),
and this solution satisfies

|w(x, τ)| ≤ Aek|x|2 for all (x, τ) ∈ Rn × [0, T ] (1.36)

with some constant k depending only on h, λ̄, and T .

Remark. The proof of this theorem is based on the construction of a fundamental solution using
the so-called parametrix method.

Theorem 3. ([Friedman, 1964, Chapter 1, Theorem 16]).
Assume that the differential operator satisfies the conditions (A1), (A3) and (A4), and that in

addition,

(A7) The functions ∂aij

∂xk
, ∂2aij

∂xk∂x`
, and ∂bi

∂xk
are continuous and bounded in Rn × [0, T ] for all i, j,

k, ` = 1, . . . , n, and they are Hölder continuous of exponent α in x ∈ Rn uniformly with respect
to τ ∈ [0, T ].

Then there exists at most one solution of the Cauchy problem (1.31)–(1.32) satisfying the con-
dition ∫ T

0

∫

Rn

|w(x, τ)| e−k|x|2 dx dτ < ∞ (1.37)

for some k > 0.

Using Theorems 2 and 3, we can prove an existence and uniqueness result for our problem.
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Corollary 4. The Black-Scholes Cauchy problem (1.29)–(1.30) with

aij(x, τ) =
1
2
σiσjρij , bi(x, τ) =

σ2
i

2
− r, c(x, τ) = r in Rn × [0, T ] (1.38)

has a unique classical solution satisfying (1.36) if the pay-off function V0 is continuous in [0,∞)n

and satisfies

|V0(S)| ≤ c
(
1 +

n∑

i=1

Si

)
(1.39)

in [0,∞)n with some constant c > 0.

Remark. The pay-off functions of all types of options we presented in Table 1.1 are continuous and
satisfy a bound of the form (1.39), as, e.g., the pay-off of a put option is always bounded by the
exercise price, mini Si is bounded by 1

n

∑n
i=1 Si, and maxi Si ≤

∑n
i=1 Si.

Proof of Corollary 4. We show that the conditions (A1)–(A7) are satisfied.
(A1) has already been shown in Proposition 1.
For an invertible matrix A with eigenvalues λ1, . . . , λn, the eigenvalues of A−1 are given by

1
λ1

, . . . , 1
λn

. Thus, the same argument as in the proof of Proposition 1 shows that

2
λn
|ξ|2 ≤ ξT A−1(x, τ) ξ ≤ 2

λ1
|ξ|2 for all ξ ∈ Rn (1.40)

uniformly for all (x, τ) ∈ Rn × [0, T ], i.e. (A2) is satisfied with λ̄ = 2
λn

> 0 and Λ̄ = 2
λ1

> 0 where
λ1 and λn are the smallest and the largest eigenvalue of the covariance matrix Σ, respectively.

As for (A3), (A4) and (A7), the functions aij , bi and c given in (1.38) are constant in Rn× [0, T ]
and thus continuous, bounded, and uniformly Hölder continuous of any exponent α; the same holds
for their derivatives which are zero.

Let us now examine the initial function w0(x) = V0(ex1 , . . . , exn). As V0 is assumed to be contin-
uous in [0,∞)n, so is w0 in Rn. Furthermore, (A5) demands a bound of the form |w0(x)| ≤ Ceh|x|2

for some h < λ̄
4T = 1

2λnT . We will show that the condition (1.39) implies this. First note that

|V0(ex1 , . . . , exn)| ≤ Ceh|x|2 ⇔ |V0(S)| ≤ Ceh
Pn

i=1(ln Si)
2

(1.41)
for all x ∈ Rn for all S ∈ (0,∞)n.

By assumption (1.39), we have |V0(S)| ≤ c
(
1 +

∑n
i=1 Si

)
, i.e. we can prove the required bound if

we can show that

gh(S) :=
c + c

∑n
i=1 Si

eh
Pn

i=1(ln Si)2
(1.42)

is bounded for all S ∈ (0,∞)n for some sufficiently small h. We estimate

gh(S) ≤ c

eh
Pn

i=1(ln Si)2︸ ︷︷ ︸
=:g0,h(S)

+ c

n∑

i=1

Si

eh(ln Si)2︸ ︷︷ ︸
=:ḡh(Si)

(1.43)

and immediately see that g0,h(S) is bounded by c, as eh
Pn

i=1(ln Si)
2 ≥ 1 for any h ≥ 0. As for the

function ḡh, basic calculus shows that limx→0+ ḡh(x) = limx→∞ ḡh(x) = 0, that ḡh(x) ≥ 0 for x > 0,

12



and that ḡh assumes its maximum at x = e1/(2h). Thus, ḡh is bounded by ḡh(e1/(2h)) = e1/(4h). This
holds for any h > 0, such that we can choose, e.g., h∗ := λ̄

8T and thus prove (1.35) with h = h∗ < λ̄
4T

and C = c(1 + ne1/(4h∗)).
As f(x, τ) = 0 in our case, f is continuous, uniformly Hölder continuous of any exponent, and

obviously satisfies the same bound as w0 uniformly in τ such that all requirements of (A5) and
(A6) are met.

Theorem 2 thus ensures the existence of a classical solution w. This solution moreover satisfies
|w(x, τ)| ≤ Aek|x|2 for some k > 0 and hence satisfies (1.37) with k + ε, ε > 0. By Theorem 3, w is
the only solution with this property.

Note that we have only shown uniqueness in terms of solutions satisfying the constraint (1.37),
i.e. solutions which do not grow too fast at infinity. As we have restricted our analysis to pay-off
functions which grow at most linearly (condition (1.39)), this condition seems to be economically
reasonable and thus not to constitute a true constraint.

We have shown that there exists a unique classical solution w(x, τ) to the transformed Black-
Scholes problem (1.18)–(1.19) in Rn× (0, T ]. We can transform this solution back to the (S, t) vari-
ables via

V (S, t) := w (lnS1, . . . , lnSn, T − t) (1.44)

and thus obtain a unique solution to the original Black-Scholes problem (1.10)–(1.11) in the domain
(0,∞)n × [0, T ). This solution is as smooth as w in the interior of the domain and therefore satisfies
the Black-Scholes PDE in the classical sense. However, we cannot infer that V can be continuously
extended to [0,∞)n × [0, T ], except for t = T : the back transform yields V (S, T ) = V0(S) for all
S ∈ (0,∞)n. The continuity of V0 that we assumed in Corollary 4 then implies that V (S, T ) can be
continuously extended to [0,∞)n and that the initial condition is thus in fact satisfied in [0,∞)n

as required by (1.11). On the whole of [0,∞)n × [0, T ], however, we obtain a continuous function
only if limxi→−∞w(x, τ) exists for all x ∈ Rn, for all τ ∈ [0, T ] and for all i and is continuous. We
cannot infer this from our assumptions.

We can, however, derive more accurate bounds on the solution w of (1.29)–(1.30), using a
positivity theorem for parabolic PDEs as done in [Kangro and Nicolaides, 2000]. We will make use
of those estimates in Section 1.4.4.

Theorem 5. ([Friedman, 1964, Chapter 2, Theorem 9]).
Consider the Cauchy problem (1.31)–(1.32) and assume that the operator ∂

∂τ + L̃ is parabolic
with continuous coefficient functions aij(x, τ), bi(x, τ), and c(x, τ) in Rn × (0, T ]. Furthermore,
assume that the following bounds hold in Rn × (0, T ] for some M > 0 for all i, j = 1, . . . , n:

|aij(x, τ)| ≤ M, |bi(x, τ)| ≤ M (|x|+ 1) , |c(x, τ)| ≤ M
(|x|2 + 1

)
. (1.45)

Let w be a continuous function in Rn × [0, T ] which is continuously differentiable with respect to τ
and twice continuously differentiable with respect to x, and let

w(x, τ) ≥ −Aek|x|2 (1.46)

hold in Rn × [0, T ] for some positive constants A and k. If

∂w

∂τ
+ L̃w ≥ 0 in Rn × (0, T ] (1.47)

and w(x, 0) ≥ 0 in Rn, (1.48)
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it follows that
w(x, τ) ≥ 0 in Rn × [0, T ]. (1.49)

Hence, this theorem allows to infer non-negativity of the solution from non-negativity of the
initial data. If there are linear bounds for the pay-off function V0, it can be applied to derive bounds
for the option price at any point in time:

Corollary 6. Under the assumptions of Corollary 4, assume that there are constants νi, κi,
i = 0, . . . , n such that

ν0 +
n∑

i=1

νiSi ≤ V0(S) ≤ κ0 +
n∑

i=1

κiSi (1.50)

for all S ∈ (0,∞)n. Then, the solution w according to Corollary 4 satisfies

ν0e−rτ +
n∑

i=1

νiexi ≤ w(x, τ) ≤ κ0e−rτ +
n∑

i=1

κiexi (1.51)

for all (x, τ) ∈ Rn × [0, T ].

Proof. We proceed by applying Theorem 5 to the functions

u1(x, τ) := w(x, τ)− (
ν0e−rτ +

n∑

i=1

νiexi
)
, (1.52)

u2(x, τ) :=
(
κ0e−rτ +

n∑

i=1

κiexi
)− w(x, τ). (1.53)

By Corollary 4, w is continuous and sufficiently smooth such that L can be applied to u1 and u2,
and w satisfies |w(x, τ)| ≤ Aek|x|2 , hence w(x, τ) ≥ −Aek|x|2 . We can further estimate

∣∣ν0e−rτ +
n∑

i=1

νiexi
∣∣ ≤ |ν0|+

n∑

i=1

|νi|e
√

n max{1, |x|2} in Rn × [0, T ] (1.54)

and thus see that u1 satisfies (1.46) with suitable constants A and k. Analogously, (1.46) can be
shown for u2.

As we have shown earlier, the Black-Scholes differential operator is uniformly parabolic with
continuous coefficients. As the coefficient functions are constant, they obviously satisfy (1.45) as
well.

Furthermore, we have ∂w
∂τ + Lw = 0 and

( ∂

∂τ
+ L

)(
ν0e−rτ +

n∑

i=1

νiexi
)

= −rν0e−rτ − 1
2

n∑

i=1

n∑

j=1

σiσjρij δij νiexi +
n∑

i=1

(σ2
i

2
− r

)
νiexi

+ rν0e−rτ + r
n∑

i=1

νiexi =
n∑

i=1

(
−σ2

i

2
+

σ2
i

2
− r + r

)
νiexi = 0, (1.55)

hence ∂u1
∂τ + Lu1 = 0, and analogously, ∂u2

∂τ + Lu2 = 0. Finally, u1(x, 0) ≥ 0 and u2(x, 0) ≥ 0
hold in Rn by the assumption (1.50) transformed to the (x, τ) variables. Thus, Theorem 5 yields
(1.51).
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1.4 Numerical solution of the Black-Scholes problem

We have proved in the previous section that the transformed Black-Scholes problem (1.29)–(1.30)
possesses a classical solution; however, an analytical solution is only available in some special cases,
see Section 5.1. In the general case, the problem cannot be solved analytically but only numerically.

1.4.1 Truncation of the domain

We will use a finite-difference method (see Chapter 2) to calculate a numerical solution. However,
such a method can only be applied on a bounded domain whereas the spatial domain of the problem
(1.29)–(1.30) is the whole of Rn. We therefore need to localise the PDE to a bounded computational
domain, i.e to truncate the original domain. For some R > 0, define

ΩR := (−R, R)n. (1.56)

In the numerical solution, we will consider the truncated version of problem (1.29)–(1.30) in the
spatial domain ΩR,

∂w̃

∂τ
+ Lw̃ = 0, x ∈ ΩR, τ ∈ (0, T ], (1.57)

w̃(x, 0) = V0(ex1 , . . . , exn) for all x ∈ ΩR, (1.58)
w̃(x, τ) = g̃(x, τ) for all (x, τ) ∈ ∂ΩR × (0, T ]. (1.59)

The truncation of the domain introduces the new “artificial” boundary ∂ΩR × (0, T ] where we
have to impose suitable boundary conditions (1.59) which we do not yet specify here. Due to this
localisation, the function w̃ will in general be different from the exact solution w of (1.29)–(1.30)
restricted to ΩR × [0, T ]; it can be hoped, however, that w̃ is a good approximation of w if the
domain ΩR is “large enough”. In Section 1.4.3, we will analyse the localisation error in detail and
subsequently discuss the choice of the boundary function g̃ in Section 1.4.4.

Problem (1.57)–(1.59) is of the convection-diffusion type (cf., e.g, [Günther and Jüngel, 2003],
[Seydel, 2004]), as we see writing (1.57) in the form

∂w

∂τ
− div (A∇w) + b · ∇w + rw = 0 (1.60)

with the constant matrix A = 1
2Σ ∈ Rn×n

sym and the constant vector b ∈ Rn defined by bi =
(σ2

i
2 − r

)
.

The term div (A∇w) then physically corresponds to a diffusion, b · ∇w to a convection, and rw to
a reaction. The size of the convection term compared to the diffusion term is crucial when using
a finite-difference method to numerically solve such a problem. A dominant convection term can
cause stability problems and spurious oscillations in the numerical solution, whereas the diffusion
term has a smoothing property. In our case, problems may arise if there is an asset whose volatility
is much lower than the square root of twice the interest rate. This is not the case in most realistic
settings (cf. [Persson and von Sydow, 2007, (17)]). We will come across a constraint involving
this parameter in Chapter 2, Proposition 13. Note that in the special case σ2

i = 2r for all i, the
convection term vanishes, and we have a pure diffusion-reaction problem.
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1.4.2 Solvability of the truncated Black-Scholes problem

Before we proceed to numerically solve the problem (1.57)–(1.59), we make sure that this problem
actually has a unique solution. As in the case of the Cauchy problem, this can be done with the
aid of results by [Friedman, 1964].

Consider an initial-boundary value problem of the form
∂w

∂τ
+ L̃w = f(x, τ) in Ω× (0, T ], (1.61)

w = w0 in Ω× {τ = 0}, (1.62)
w = g on ∂Ω× (0, T ] (1.63)

where Ω is a bounded domain in Rn. By a classical solution of (1.61)–(1.63), we understand a
function w which is continuous in Ω × [0, T ], continuously differentiable with respect to τ and
twice continuously differentiable with respect to x in Ω× (0, T ], and which satisfies the equations
(1.61)–(1.63) point-wise. Denote B := Ω × {τ = 0} and S := ∂Ω × (0, T ]. B is the part of the
boundary where initial data need to be prescribed, and S is the manifold where boundary data
have to be prescribed. A continuous solution can only be expected if the combination of the initial
function w0 and the boundary function g forms a continuous function on B∪S, i.e. if the transition
at ∂Ω × {τ = 0} is continuous. We will consider this compatibility condition in our choice of
boundary conditions for the problem (1.57)–(1.59) in Section 1.4.4.

The following existence, uniqueness, and regularity results can be shown.

Theorem 7. (adapted from [Friedman, 1964, Chapter 3, Corollary 1 to Theorem 9 and Corollary 2
to Theorem 11]).

Let Ω be a bounded domain in Rn and consider the initial-boundary value problem
∂w

∂τ
+ L̃w = f in Ω× (0, T ], (1.64)

w = ψ on B ∪ S (1.65)

where (1.65) represents a combined initial-boundary condition. Let ∂
∂τ + L̃ be a parabolic operator

with constant coefficients in Ω× [0, T ], and let f be infinitely differentiable in Ω× (0, T ].
Furthermore, assume that S has the outside strong sphere property, i.e. for every P = (x̄, τ̄) ∈ S

there exist a closed ball K with centre (x0, τ0) and a constant ε > 0 independent of P such that

K ∩ (
Ω× [0, T ]

)
= {P} and (1.66)

|x0 − x| ≥ c(P ) > 0 for all (x, τ) ∈ Ω× [0, T ] with |τ − τ̄ | < ε. (1.67)

Then for every function ψ which is continuous on B ∪ S, there exists a unique classical solution w
of (1.64)–(1.65). This solution is infinitely differentiable in Ω× (0, T ].

Corollary 8. The truncated Black-Scholes problem (1.57)–(1.59) posed in ΩR×(0, T ] for any R > 0
has a unique classical solution w̃ provided that V0 and g̃ are continuous with a continuous transition
at ∂ΩR × {τ = 0}. w̃ is then infinitely differentiable in ΩR × (0, T ].

Proof. It only remains to show that S = ∂ΩR × (0, T ] has the outside strong sphere property. For
P = (x̄, τ̄) ∈ S with x̄i = R (x̄i = −R), choose any ρ > 0 and define K as the closed ball with
radius ρ and centre (x̄ + ρ ei, τ̄) ((x̄ − ρ ei, τ̄)). Then, clearly, (1.66) and (1.67) are satisfied with
c(P ) = ρ and ε arbitrary.

Theorem 7 thus proves the result.
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1.4.3 Estimation of the localisation error

We remind of the definitions that w(x, τ) denotes the solution of the Black-Scholes problem (1.29)–
(1.30) on Rn × [0, T ], and that w̃(x, τ) denotes the solution of the truncated problem (1.57)–(1.59)
on [−R, R]n × [0, T ]. We will now show that w̃ is a good approximation of w provided that the
computational domain is suitably large; more specifically, the localisation error |w − w̃| at each
fixed point (x, τ) ∈ ΩR × (0, T ] can be estimated in terms of the maximum error on the boundary
of the domain, i.e. the maximum error in the boundary conditions g̃ prescribed for w̃. Based on
this estimate, we will address the issue of choosing suitable boundary conditions in the subsequent
section. For certain types of options and boundary conditions, we will finally be able to show that
the localisation error tends to zero point-wise in ΩR × (0, T ] as R tends to infinity, albeit at a rate
of at best O( 1

R). For single-asset options, we will present an alternative approach at the end of
this section that shows that the localisation error in fact decays exponentially in R. However, this
result refers to a different norm, and it cannot be generalised to higher dimensions.

To estimate the localisation error in the n-dimensional case, we closely follow the ideas of
[Kangro and Nicolaides, 2000], yet with some differences: Kangro and Nicolaides examine the
untransformed Black-Scholes problem on [0,∞)n×[0, T ) and thus only have to truncate the domain
at large values of S, introducing an artificial far field boundary. Hence, they derive a bound for the
localisation error in terms of the far field boundary error. They stress that they do not recommend
to transform the problem to the whole of Rn, as they regard the additional artificial boundary
which then has to be introduced for small asset price values as an unnecessary complication. In our
analysis, however, we always examine the transformed problem on the whole of Rn because we wish
to take advantage of the numerical convenience of a constant coefficient problem. Consequently,
we have to truncate the computational domain at both large and small values of the asset prices;
ΩR with x ∈ (−R,R)n corresponds to S ∈ (

e−R, eR
)n =:

(
1

Smax
, Smax

)n. From the numerical point
of view, the truncation near the zero boundary is not a big problem, for asset prices near zero are
seldom of practical interest, and the existence of the solution on the zero boundary is questionable
anyway as we have seen in Section 1.3.2. However, we do have to consider the additional artificial
boundary in the analysis of the localisation error and therefore cannot proceed exactly like [Kangro
and Nicolaides, 2000]. We will show how to modify their arguments to apply them to our case
and still derive a convergence result, though a much weaker one than the result by [Kangro and
Nicolaides, 2000].

The central argument is the following weak maximum principle for initial-boundary value prob-
lems.

Theorem 9. ([Friedman, 1964, Chapter 2, Theorem 6]).
Let Ω be a bounded domain in Rn. For any point (x0, τ0) ∈ Ω× (0, T ), define

S
(
(x0, τ0)

)
:= {(x, τ) ∈ Ω× (0, T ) : (x, τ) can be connected to (x0, τ0) by a simple

continuous curve in Ω× (0, T ) along which the τ coordinate is nondecreasing.} (1.68)

Assume that the operator ∂
∂τ + L̃ is parabolic and has continuous coefficients in Ω × (0, T ). Fur-

thermore, assume that

c(x, τ) ≥ 0 in Ω× (0, T ). (1.69)
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Let u be a continuous function in Ω × [0, T ] which is continuously differentiable with respect to τ
and twice continuously differentiable with respect to x and for which

∂u

∂τ
+ L̃u ≥ 0 in Ω× (0, T ). (1.70)

Then for each P := (x0, τ0) in Ω×(0, T ), there holds that if u has a negative minimum in S(P ),
this minimum is (also) obtained at some point in S(P ) \ S(P ).

For Ω being a domain, i.e. an open connected set in Rn and hence a path-wise connected set, it
is easy to see that

S
(
(x0, τ0)

)
= {(x, τ) ∈ Ω× (0, T ) : τ ≤ τ0} = Ω× (0, τ0], (1.71)

and hence that

S
(
(x0, τ0)

) \ S
(
(x0, τ0)

)
= Ω× {τ = 0} ∪ ∂Ω× (0, τ0). (1.72)

Using this, the contraposition of Theorem 9 yields the following very useful version of the maximum
principle.

Theorem 10. Under the assumptions of Theorem 9, if

∂u

∂τ
+ L̃u ≥ 0 in Ω× (0, τ0), (1.73)

u(x, 0) ≥ 0 for all x ∈ Ω (1.74)
and u(x, τ) ≥ 0 on ∂Ω× (0, τ0] (1.75)

for some τ0 > 0, then

u(x, τ) ≥ 0 in Ω× [0, τ0]. (1.76)

Like [Kangro and Nicolaides, 2000], we now use Theorem 10 to obtain an a priori estimate for
the localisation error in the interior of the domain in terms of its maximum value on the boundary.

Lemma 11. Let z be any continuous function in ΩR × [0, T ] which is continuously differentiable
with respect to τ and twice continuously differentiable with respect to x and which satisfies

z(x, τ) ≥ 0 in ΩR × [0, T ], (1.77)
z(x, τ) > 0 on ∂ΩR × [0, T ] (1.78)

and
∂z

∂τ
+ Lz ≥ 0 in ΩR × (0, T ]. (1.79)

Denote Γ := ∂ΩR. Then the localisation error for the Black-Scholes problem can be estimated like

|w̃(x, τ)− w(x, τ)| ≤ sup
(x0,τ0)∈ Γ×(0,τ ]

|w̃(x0, τ0)− w(x0, τ0)|
z(x0, τ0)

z(x, τ) for all (x, τ) ∈ ΩR × (0, T ].

(1.80)

18



Proof. For any fixed τ∗ ∈ (0, T ], define

fτ∗(x, τ) := sup
(x0,τ0)∈ Γ×(0,τ∗]

|w̃(x0, τ0)− w(x0, τ0)|
z(x0, τ0)︸ ︷︷ ︸

=: Cτ∗

z(x, τ). (1.81)

Here, Cτ∗ is a well-defined non-negative constant; assumption (1.78) ensures that z is bounded
away from zero on Γ× (0, τ∗]. We will now apply Theorem 10 to the functions f+ and f− defined
by

f±(x, τ) := fτ∗(x, τ)± (w̃(x, τ)− w(x, τ)) in ΩR × [0, τ∗]. (1.82)

The Black-Scholes differential operator satisfies all requirements of Theorem 10, in particular,
c(x, τ) = r ≥ 0. Furthermore,

∂f±
∂τ

+ Lf± =
∂fτ∗

∂τ
+ Lfτ∗ ±

( ∂w̃

∂τ
+ Lw̃

︸ ︷︷ ︸
=0 in ΩR × (0, T ]

by (1.57)

− (
∂w

∂τ
+ Lw)

︸ ︷︷ ︸
=0 in Rn × (0, T ]

by (1.29)

)
= Cτ∗︸︷︷︸

≥0

( ∂z

∂τ
+ Lz

︸ ︷︷ ︸
≥0 in ΩR × (0, T ]

by (1.79)

)

≥ 0 in ΩR × (0, τ∗] (1.83)

for any τ∗ ∈ (0, T ], i.e. (1.73) is satisfied for f+ and f−. We further have

f±(x, 0) = fτ∗(x, 0)± (
w̃(x, 0)︸ ︷︷ ︸

=V0(ex1 ,...,exn)

in ΩR by (1.58)

− w(x, 0)︸ ︷︷ ︸
=V0(ex1 ,...,exn )
in Rn by (1.30)

)
= Cτ∗︸︷︷︸

≥0

z(x, 0)︸ ︷︷ ︸
≥0 in ΩR
by (1.77)

≥ 0 in ΩR (1.84)

such that (1.74) is satisfied. Finally, in order to show the requirement (1.75), note that for all
(x, τ) ∈ Γ× (0, τ∗], there holds

Cτ∗ = sup
(x0,τ0)∈ Γ×(0,τ∗]

|w̃(x0, τ0)− w(x0, τ0)|
z(x0, τ0)

≥ |w̃(x, τ)− w(x, τ)|
z(x, τ)

(1.85)

so that we obtain

f±(x, τ) = Cτ∗ z(x, τ)± (w̃(x, τ)− w(x, τ))

≥ |w̃(x, τ)− w(x, τ)|
z(x, τ)

z(x, τ)± (w̃(x, τ)− w(x, τ))

=
∣∣w̃(x, τ)− w(x, τ)

∣∣± (
w̃(x, τ)− w(x, τ)

) ≥ 0 (1.86)

for all (x, τ) ∈ Γ× (0, τ∗].
Thus, Theorem 10 yields f± ≥ 0 in ΩR × [0, τ∗], i.e.

|w̃(x, τ)− w(x, τ)| ≤ Cτ∗ z(x, τ) for all (x, τ) ∈ ΩR × [0, τ∗], for all τ∗ ∈ (0, T ]. (1.87)

Setting τ = τ∗ in (1.87), we obtain (1.80).
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Setting z(x, τ) = 1 in Lemma 11, we immediately obtain as a first result that

|w̃(x, τ)− w(x, τ)| ≤ sup
(x0,τ0)∈ Γ×(0,τ ]

|w̃(x0, τ0)− w(x0, τ0)| for all (x, τ) ∈ ΩR × (0, T ], (1.88)

i.e. that the localisation error within the domain is always bounded by the maximum error on
the boundary up to time τ (the initial data being assumed to be exact). It is a general result
that the solution of a linear homogeneous parabolic problem with a continuous parabolic operator
with c ≥ 0 is bounded by the maximum of the initial and boundary data (see, e.g., [Friedman,
1964, Chapter 2]). With another choice of z, however, we can even show the stronger result that
the localisation error decreases with the size of the domain: we now set

z(x, τ) :=
n∑

i=1

x2
i + BR τ with BR :=

n∑

i=1

σ2
i + R

n∑

i=1

∣∣σ2
i − 2r

∣∣ > 0. (1.89)

This function clearly satisfies (1.77). On Γ × [0, τ ], the smallest value is assumed at the points
(±Rej , 0) where z (±Rej , 0) = R2 > 0, such that (1.78) is satisfied as well. Finally,

∂z

∂τ
+ Lz = BR − 1

2

n∑

i=1

n∑

j=1

σiσjρij 2δij +
n∑

i=1

(σ2
i

2
− r

)
2xi + rz

= BR −
n∑

i=1

σ2
i +

n∑

i=1

(σ2
i − 2r) xi︸ ︷︷ ︸

≤
∣∣σ2

i−2r
∣∣|xi|

+ rz︸︷︷︸
≥0

≥ BR −
n∑

i=1

σ2
i −

n∑

i=1

∣∣σ2
i − 2r

∣∣R = 0, (1.90)

i.e. (1.79) is satisfied. Lemma 11 now gives us

|w̃(x, τ)− w(x, τ)| ≤ sup
(x0,τ0)∈ Γ×(0,τ ]

|w̃(x0, τ0)− w(x0, τ0)|
z(x0, τ0)

z(x, τ)

≤
sup

(x0,τ0)∈ Γ×(0,τ ]
|w̃(x0, τ0)− w(x0, τ0)|

inf
(x0,τ0)∈ Γ×(0,τ ]

z(x0, τ0)
z(x, τ)

= ‖w̃ − w‖L∞(Γ×(0,τ ])

∑n
i=1 x2

i + BRτ

R2
for all (x, τ) ∈ ΩR × (0, T ]. (1.91)

For each fixed interior point (x∗, τ∗), the factor
Pn

i=1(x
∗
i )2+BRτ∗

R2 is a constant of order O(1/R) (or
O(1/R2) in the special case that σ2

i = 2r for all i, i.e. in the case of a pure diffusion problem). This
proves the following convergence result:

Theorem 12. If the maximum boundary error ‖w̃ − w‖L∞(Γ×(0,τ ]) can be bounded for any R > 0
by a bound of order O(Rα) with α < 1 for all τ ∈ (0, T ], then the localisation error |w̃ − w| of the
Black-Scholes problem truncated to ΩR× (0, T ] tends to zero point-wise for each (x, τ) ∈ Rn× (0, T ]
as R tends to infinity. The convergence order is at least O(1/(R1−α)).
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It is an important question in practical numerical finance how large the computational domain
must be in order to keep the localisation error small (compared to other discretisation errors due
to the numerical method, modelling errors, rounding errors etc.) [Wilmott et al., 1995] and [Seydel,
2004] state that the computational domain should be chosen “suitably large” without giving a more
precise quantification; [Günther and Jüngel, 2003] refer to [Kangro and Nicolaides, 2000] for the
proof that the localisation error is small if the computational domain is sufficiently large. [Kangro
and Nicolaides, 2000] and [Persson and von Sydow, 2007] mention the general “rule of thumb” for
numerical computations,

Smax ≈ 3 to 4 times the exercise price of the option, (1.92)

where the exercise price usually corresponds to a discontinuity in the first derivative of the pay-
off function (cf. Table 1.1). Additionally, however, [Kangro and Nicolaides, 2000] show how their
estimate of the localisation error can be used to explicitly determine the size of the computational
domain necessary to ensure a desired accuracy within some domain of interest. They thus find in
numerical experiments that the above mentioned rule of thumb is sufficient if not too conservative.

A similar estimate is possible based on our localisation error bound (1.91): if one is interested
in the option price for asset prices lying in some fixed domain ΩR̃, say (e.g. a neighbourhood of the
current asset price), the necessary size of the computational domain such that the localisation error
within ΩR̃ × [0, T ] is (uniformly) lower than some tolerance ε is obtained by solving the inequality

‖w̃ − w‖L∞(Γ×(0,T ])

nR̃2 +
(∑n

i=1 σ2
i + R

∑n
i=1

∣∣σ2
i − 2r

∣∣) T

R2
≤ ε (1.93)

for R. This estimate requires a bound for ‖w̃ − w‖L∞(Γ×(0,T ]) which must be of lower order than
O(R), i.e. O(lnSmax); otherwise, decay of the localisation error cannot be inferred from (1.91).
Even if a suitable bound for ‖w̃ − w‖L∞(Γ×(0,T ]) is available, however, the resulting domain size
may be much larger than the rule of thumb suggests; this is due to the low decay rate of Rα−1, i.e.
(lnSmax)α−1, obtained in Theorem 12. This is a much weaker result than the point-wise decay rate
of (at best) e−O(R2) found by [Kangro and Nicolaides, 2000], where convergence of the localisation
error is still guaranteed if ‖w̃−w‖L∞(Γ×(0,T ]) grows like Smax = eR. However, as already mentioned
above, this result refers to a different truncation strategy.

In the one-dimensional case, an alternative approach proves that the localisation error in our
problem indeed decays like e−O(R). We can proceed as in [Hilber et al., 2004, Theorem 3.7], where
the localisation error for the PDE pricing a European single-asset option under stochastic volatility
is analysed. Due to the assumption of stochastic volatility, an additional spatial variable is in-
volved in the PDE analysed there; however, the approach carries over to the Black-Scholes problem
(1.18)–(1.19) with n = 1 in a straightforward way.

[Hilber et al., 2004] consider the differential problem in a variational setting in weighted Sobolev
spaces that enforce decay of the solution at infinity; this assumption is justified by considering the
excess to pay-off,

w̄(x, τ) := w(x, τ)− e−rτV0(ex+rτ ), (1.94)

which tends to zero as |x| → ∞ when the boundary behaviour (1.6) is assumed, instead of the
option price w. The new unknown function w̄ satisfies the PDE

Lw̄ (x, τ) =
σ2

2
e2x+rτ d2V0

dS2
(ex+rτ ), x ∈ R, τ ∈ (0, T ], (1.95)
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subject to the initial condition

w̄(x, 0) = 0 for all x ∈ R (1.96)

and “boundary conditions”,

lim
|x|→∞

w̄(x, τ) = 0 for all τ ∈ (0, T ]. (1.97)

The operator L in (1.95) is the transformed Black-Scholes operator defined in (1.24) with n = 1; in
contrast to the PDE for the option price w, the initial and boundary conditions are homogeneous
now, but the right-hand side is inhomogeneous. The right-hand side function

f(x, τ) :=
σ2

2
e2x+rτ d2V0

dS2
(ex+rτ ) (1.98)

involves the second derivative of the option’s pay-off V0. As Table 1.1 demonstrates, typical pay-off
function are continuous but not continuously differentiable. For instance, the pay-off (1.4) of a call
option can be written as the product of a smooth function and the Heaviside step function,

V0(S) = max {S − E, 0} = (S − E) ·HE(S) where HE(S) =

{
0, S ≤ E,

1, S > E.
(1.99)

The second derivative of HE exists only in the distributional sense and is given by the delta
distribution defined by

〈δE , φ〉 = φ(E) for φ ∈ C∞
0 (R). (1.100)

The right-hand side function (1.98) thus has to be understood as a distribution, and the strong
formulation (1.95)–(1.97) of the problem makes no sense. However, the problem can be solved in
an appropriate variational setting. In our case, we can use the evolution triple H1

ϕ(R) ↪→ L2
ϕ(R) ↪→

(H1
ϕ(R))∗, where

L2
ϕ(R) := {v : vϕ ∈ L2(R)} with ϕ ∈ W 1,∞

loc (R), ϕ(x) ≥ 0 (1.101)

and H1
ϕ(R) denotes the space of functions in L2

ϕ(R) which are weakly differentiable in L2
ϕ(R),

equipped with the norm

‖v‖2
H1

ϕ(R) := ‖v‖2
L2

ϕ(R) +
∥∥dv

dx

∥∥2

L2
ϕ(R)

= ‖vϕ‖2
L2(R) +

∥∥dv

dx
ϕ
∥∥2

L2(R)
. (1.102)

The weight function ϕ imposes the homogeneous “boundary conditions”; it turns out that

ϕ(x) = eµ|x| (1.103)

with µ > 0 is an appropriate choice for our problem. The variational formulation of (1.95)–(1.97)
then is,

Find w̄ ∈ L2(0, T ; H1
ϕ(R)) ∩H1(0, T ;(H1

ϕ(R))∗) such that
( d

dτ
w̄( · , τ), v

)
L2

ϕ(R)
+ aϕ

(
w̄( · , τ), v

)
= 〈f( · , τ), v〉(H1

ϕ(R))∗×H1
ϕ(R) for all v ∈ H1

ϕ(R)

for all τ ∈ (0, T ], (1.104)
w̄( · , 0) = 0, (1.105)
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with the bilinear form aϕ : H1
ϕ(R)×H1

ϕ(R) → R defined by

aϕ(u, v) :=
∫

R

(σ2

2
∂u

∂x

∂v

∂x
+ σ2 ∂u

∂x
v
ϕ′(x)
ϕ(x)

+
(σ2

2
− r

)∂u

∂x
v + r uv

)
ϕ(x)2 dx. (1.106)

By [Hilber et al., 2004, Proposition 3.1], this problem has a unique solution if

f ∈ L2(0, T ; (H1
ϕ(R))∗) (1.107)

and if the bilinear form aϕ( ·, · ) is continuous and satisfies the G̊arding inequality

aϕ(v, v) ≥ c1‖v‖2
H1

ϕ(R) − c2‖v‖2
L2

ϕ(R) for some constants c1 > 0, c2 > 0. (1.108)

For our problem, it can be shown that there exists µ̄ > 0 such that the conditions on aϕ are satisfied
for every weight function of the form (1.103) with µ ≤ µ̄. f( · , τ) from (1.98) represents a continuous
functional on H1

ϕ(R) for each τ if d2V0
dS2 (ex+rτ ) does. Without explicitly stating it, [Hilber et al.,

2004] use that the delta distribution satisfies the requirements. Hence, for typical pay-off functions,
the problem (1.104)–(1.105) has a unique weak solution w̄ ∈ L2(0, T ; H1

ϕ(R))∩H1(0, T ; (H1
ϕ(R))∗).

If a classical solution according to Corollary 4 exists as well, they must coincide, hence the weak
solution of (1.104)–(1.105) is in fact a classical solution.

The truncated Black-Scholes problem (1.57)–(1.59) in the domain ΩR×(0, T ] = (−R,R)×(0, T ]
has the variational formulation

Find ˜̄w ∈ L2(0, T ; H1
0 (ΩR)) ∩H1(0, T ; (H1

0 (ΩR))∗) such that
( d

dτ
˜̄w( · , τ), v

)
L2(ΩR)

+ aR

(
˜̄w( · , τ), v

)
= 〈f( · , τ), v〉(H1

0 (ΩR))∗×H1
0 (ΩR) for all v ∈ H1

0 (ΩR)

for all τ ∈ (0, T ], (1.109)
˜̄w( · , 0) = 0 in ΩR, (1.110)

where the bilinear form aR is the restriction of a1 as given in (1.108) to H1
0 (ΩR)×H1

0 (ΩR). Here,
the homogeneous boundary conditions are included in the definition of spaces.

Using the same arguments as in [Hilber et al., 2004, Theorem 3.7], one can now prove that there
exists a constant C independent of R and of τ such that

‖( ˜̄w − w̄)( · , τ)‖2
L2(ΩR/2) +

∫ τ

0
‖( ˜̄w − w̄)( · , s)‖2

H1(ΩR/2) ds ≤ Ce−µ̄R for all τ ∈ [0, T ], (1.111)

i.e. the localisation error within the domain ΩR/2 is bounded by a function that decays exponentially
with the domain size R. As H1(ΩR/2) is continuously embedded in C0([−R

2 , R
2 ]) by the Sobolev

embedding theorem, (1.111) implies that

(∫ T

0
sup

x∈[−R
2

, R
2

]

∣∣( ˜̄w − w̄)(x, s)
∣∣2 ds

) 1
2 ≤ Ce−

µ̄
2
R. (1.112)

This estimate is much sharper than (1.91), albeit with respect to the weaker L2(0, T ; C0([−R
2 , R

2 ]))-
norm rather than the C0([−R

2 , R
2 ]× [0, T ])-norm.
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In any case, the proof does not carry over to the multi-dimensional case: for an n-asset option,
the excess to pay-off satisfies the PDE

Lw̄ (x, τ) =
1
2

n∑

i=1

n∑

j=1

σiσjρij exi+xj+rτ ∂2V0

∂Si∂Sj
(ex1+rτ , . . . , exn+rτ ), x ∈ Rn, τ ∈ (0, T ],

(1.113)
with homogeneous initial and boundary conditions. For the existence proof of the variational formu-
lation of the problem, we need the right-hand side function to be in L2(0, T ; (H1

ϕ(R))∗) (see (1.107)).
However, the delta distributions typically appearing in the second derivatives of option pay-offs are
not continuous functionals on H1

0 (ΩR) if n > 1.

1.4.4 Possible choices of boundary conditions

As the error on the artificial boundary Γ, ‖w̃ − w‖L∞(Γ×(0,τ ]) = ‖g̃ − w‖L∞(Γ×(0,τ ]), appears in
our estimate (1.91) of the localisation error in the whole computational domain, it is obviously
preferable to prescribe a boundary function g̃ in (1.59) which is a good approximation of the true
solution w on Γ; however, as we have already seen in Section 1.2.1, the limiting behaviour of w is
not always obvious. Conditions on the derivatives of g̃ such as (1.14) are not appropriate for the
desired estimate, we need Dirichlet boundary conditions instead. [Kangro and Nicolaides, 2000] use

g̃1(x, τ) := V0(ex1 , . . . , exn), x ∈ Γ, τ ∈ (0, T ] (1.114)

corresponding to (1.12). Based upon (1.13), an alternative choice is

g̃2(x, τ) := e−rτ V0

(
ex1+rτ , . . . , exn+rτ

)
, x ∈ Γ, τ ∈ (0, T ]; (1.115)

this is assumed in the one-dimensional variational model leading to the estimate (1.112). As
(x, τ) → (x̄, 0), we obviously have g̃i(x, τ) → V0

(
ex̄1 , . . . , ex̄n

)
for i = 1, 2, i.e. g̃1 and g̃2 are

compatible with the initial condition. Let us now examine what we can say about the error
‖g̃i − w‖L∞(Γ×(0,τ ]) for several option types. We will make use of Corollary 6 in order to estimate
the solution w.

Example 1. Consider a European basket call with exercise price E ≥ 0. The corresponding pay-off
function max

{∑n
i=1 ciSi − E, 0

}
can be estimated like

V0(S) ≥ 0 and
n∑

i=1

ciSi −E ≤ V0(S) ≤
n∑

i=1

ciSi, (1.116)

so we obtain by Corollary 6

max
{ n∑

i=1

ciexi −Ee−rτ , 0
}

︸ ︷︷ ︸
=g̃2(x,τ)

≤ w(x, τ) ≤
n∑

i=1

ciexi (1.117)

and consequently,

w(x, τ)− g̃1(x, τ) ≤
n∑

i=1

ciexi −
( n∑

i=1

ciexi − E
)

= E, (1.118)

0 ≤ w(x, τ)− g̃2(x, τ) ≤
n∑

i=1

ciexi −
( n∑

i=1

ciexi − Ee−rτ
)

= Ee−rτ . (1.119)
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Although we obtain a more accurate point-wise bound for w − g̃2 than for w − g̃1, the resulting
bound on the maximum error in Γ× (0, τ ] is

‖g̃i − w‖L∞(Γ×(0,τ ]) ≤ E (1.120)

in both cases. Hence, for a basket call, we find a bound independent of R which implies convergence
of the localisation error like 1/R.

Example 2. For any type of put option, the pay-off function is bounded by the exercise price (E
or maxi Ei), so we a obtain similar result as in the case of basket calls.

Example 3. For a call on the minimum of n assets, analogous estimates as in Example 1 yield
‖g̃i − w‖L∞(Γ×(0,τ ]) ≤ maxi Ei. For a call on the maximum of n assets, however, linear estimates
like in Corollary 6 only yield a bound of order eR so that we cannot infer convergence in this case.

These examples show that g̃1 and g̃2 are appropriate choices of boundary functions for a number
of option types. We will examine in numerical experiments in Chapter 5 which is the better choice.
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Chapter 2

Finite-difference discretisation of the
model problem

2.1 The computational grid

We will use a finite-difference method to approximate the solution of the truncated transformed
Black-Scholes problem (1.57)–(1.59), i.e. we discretise the domain ΩR × (0, T ] of the problem,
approximate the PDE (1.57) at the grid points of the discrete mesh using finite differences instead
of derivatives, and solve the resulting systems of equations in order to obtain an approximation of
the solution w̃(x, τ) at the grid points.

We first have to define meshes in space and time. As for the time interval [0, T ], we choose a
suitable number K defining the time step k := T

K > 0 and thus introduce the equidistant time grid

Ωτ
k := {τ0, . . . , τK} with τ` := `k, ` = 0, . . . , K (2.1)

where τ0 = 0 and τK = T .
As for the truncated spatial domain ΩR, we choose a suitably large number M = 2m,m ≥ 0,

and hence obtain on ΩR the equidistant spatial grid of mesh width h = R
M ,

Ωx
R,h := {xα : α ∈ Zn, −M ≤ αi ≤ M, i = 1, . . . , n} with xα := hα = (hα1, . . . , hαn). (2.2)

The mesh Ωx
R,h consists of a total of (2M + 1)n grid points. Each of them is characterised by

a multiindex α which we will sometimes simply call its index. Grid points with at least one
component αi of their index being M or −M lie on the boundary of the computational domain
where we prescribe Dirichlet boundary values. The number of interior, i.e. “free” grid points is
(2M − 1)n.

It will be important to identify “neighbouring” grid points. The neighbours in the i-th direction
of a grid point xα are those grid points with the smallest distance from xα in the xi direction.
Clearly, every interior grid point xα has two neighbours in the i-th direction with indices α−ei and
α + ei, respectively. The “two-step neighbours” reached from xα by one step in the i-th direction
and one in the j-th direction, with i 6= j, are the four grid points with indices α± ei ± ej .
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2.2 Finite-difference discretisation

Our goal is to approximate the solution w̃(x, τ) of problem (1.57)–(1.59) by a set of discrete vectors
W` ∈ R(2M+1)n

, ` = 0, . . . , K representing approximations of the values of the function w̃ at the
grid points of the spatial mesh Ωx

R,h at each time step τ` of Ωτ
k. To simplify notation, we write

w̃(xα, τ`) =: w̃`
α and denote by W `

α the corresponding component of the approximation vector W`.
Furthermore, the vector of all w̃`

α is denoted by w̃`.
The basic idea of the finite-difference method is to replace the derivatives in the PDE (1.57)

by finite differences based on the grid points. Different types of difference quotients (forward,
backward or central) can be used, yielding a variety of possible finite-difference schemes.

For a sufficiently smooth function w : ΩR × [0, T ] → R, Taylor series expansion yields

w(x, τ ± k) = w(x, τ)± k
∂w

∂τ
(x, τ) +

k2

2!
∂2w

∂τ2
(x, τ) + O(k3), (2.3)

w(x± hei, τ) = w(x, τ)± h
∂w

∂xi
(x, τ) +

h2

2!
∂2w

∂x2
i

(x, τ)± h3

3!
∂3w

∂x3
i

(x, τ) + O(h4), (2.4)

w(x + hiei + hjej , τ) = w(x, τ) + hi
∂w

∂xi
(x, τ) + hj

∂w

∂xj
(x, τ) +

h2
i

2!
∂2w

∂x2
i

(x, τ)

+2
hihj

2!
∂2w

∂xi∂xj
(x, τ) +

h2
j

2!
∂2w

∂x2
j

(x, τ) +
h3

i

3!
∂3w

∂x3
i

(x, τ) + 3
h2

i hj

3!
∂3w

∂x2
i ∂xj

(x, τ)

+3
hih

2
j

3!
∂3w

∂xi∂x2
j

(x, τ) +
h3

j

3!
∂3w

∂x3
j

(x, τ) + O(h4). (2.5)

If ∂3w
∂τ3 and all x-partial derivatives of the fourth order exist and are uniformly bounded in ΩR×[0, T ],

the higher order terms in these formulae can be uniformly bounded for all (x, τ) ∈ ΩR × [0, T ] and
all i, j ∈ {1, . . . , n}.

The above formulae imply the finite-difference approximations for the τ -partial derivative,

∂w

∂τ
(xα, τ`) =

1
k

(
w (xα, τ` + k)− w (xα, τ`) + O(k2)

)

=
w`+1

α − w`
α

k
+ O(k) (forward difference) (2.6)

or

∂w

∂τ
(xα, τ`) =

1
k

(
w (xα, τ`)− w (xα, τ` − k) + O(k2)

)

=
w`

α − w`−1
α

k
+ O(k) (backward difference), (2.7)

and for the first and second x-partial derivatives,

∂w

∂xi
(xα, τ`) =

1
2h

(
w (xα+ei , τ`)− w (xα−ei , τ`) + O(h3)

)

=
w`

α+ei
− w`

α−ei

2h
+ O(h2) (central difference), (2.8)
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∂2w

∂x2
i

(xα, τ`) =
1
h2

(
w (xα+ei , τ`)− 2w (xα, τ`) + w (xα−ei , τ`) + O(h4)

)

=
w`

α+ei
− 2w`

α + w`
α−ei

h2
+ O(h2) (central difference), (2.9)

∂2w

∂xi∂xj
(xα, τ`) =

1
4h2

(
w

(
xα+ei+ej , τ`

)− w
(
xα+ei−ej , τ`

)

− w
(
xα−ei+ej , τ`

)
+ w

(
xα−ei−ej , τ`

)
+ O(h4)

)

=
w`

α+ei+ej
− w`

α+ei−ej
− w`

α−ei+ej
+ w`

α−ei−ej

4h2
+ O(h2) (central difference). (2.10)

Hence, we obtain the central difference approximation of the differential operator L on the grid
Ωx

R,h × Ωτ
k,

Lw̃ (xα, τ`) = −1
2

n∑

i=1

n∑

j=1

σiσjρij
∂2w̃

∂xi∂xj
(xα, τ`) +

n∑

i=1

(σ2
i

2
− r

) ∂w̃

∂xi
(xα, τ`) + rw̃ (xα, τ`)

≈− 1
2

∑

i6=j

σiσjρij

w̃`
α+ei+ej

− w̃`
α+ei−ej

− w̃`
α−ei+ej

+ w̃`
α−ei−ej

4h2

− 1
2

n∑

i=1

σ2
i

w̃`
α+ei

− 2w̃`
α + w̃`

α−ei

h2
+

n∑

i=1

(σ2
i

2
− r

) w̃`
α+ei

− w̃`
α−ei

2h
+ rw̃`

α (2.11)

or, rearranging terms and observing the symmetry with respect to i and j,

Lw̃ (xα, τ`) ≈
∑

i<j

σiσjρij

4h2

(
−w̃`

α+ei+ej
+ w̃`

α+ei−ej
+ w̃`

α−ei+ej
− w̃`

α−ei−ej

)

+
n∑

i=1

(
− σ2

i

2h2
+

σ2
i

4h
− r

2h

)
w̃`

α+ei
+

n∑

i=1

(
− σ2

i

2h2
− σ2

i

4h
+

r

2h

)
w̃`

α−ei

+
(
r +

n∑

i=1

σ2
i

h2

)
w̃`

α (2.12)

at all interior grid points xα. This discretisation can be compactly written in the form

Lw̃
∣∣
Ωx

R,h×{τ`} ≈ Ahw̃` (2.13)

with the “space discretisation matrix” Ah ∈ R(2M+1)n×(2M+1)n
which is independent of τ . If we

characterise the matrix entries by the multiindices associated with the mesh Ωx
R,h, the matrix Ah
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is given by

(Ah)α,β =





r +
∑n

i=1
σ2

i
h2 if β = α

and xα is an interior grid point,

− σ2
i

2h2 + σ2
i

4h − r
2h if β = α + ei, i = 1, . . . , n,

and xα is an interior grid point,

− σ2
i

2h2 − σ2
i

4h + r
2h if β = α− ei, i = 1, . . . , n,

and xα is an interior grid point,
−σiσjρij

4h2 if β = α + ei + ej or β = α− ei − ej ,
i 6= j, and xα is an interior grid point,

σiσjρij

4h2 if β = α + ei − ej or β = α− ei + ej ,
i 6= j, and xα is an interior grid point,

0 otherwise.

(2.14)

Due to the local character of the finite-difference discretisation, the matrix is sparse with at most
2n2 + 1 non-zero entries per row. We stress that the matrix is not symmetric except for the
special case that the convection component in the PDE vanishes and that all assets are completely
uncorrelated, i.e. in the case that σ2

i
2 = r for all i and ρij = 0 for all i 6= j.

Note that the matrix Ah has to include columns corresponding to boundary grid points in order
to provide all neighbours of interior grid points. At the boundary of the spatial domain, however,
the differential operator L is actually not defined. Therefore, we cannot interpret

(
Ahw̃`

)
α

as an
approximation of Lw̃ (xα, τ`) if xα is a boundary grid point. Instead, the rows of Ah corresponding
to boundary grid points may be assigned arbitrary values. In (2.14), we define those rows to contain
exclusively zeros, such that

(
Ahw̃`

)|∂Ωx
R,h

= 0. We will later see that this choice is convenient for
our numerical solution scheme. Independently of the components of Ah in the rows corresponding
to boundary grid points, (2.8)–(2.10) show that

Lw̃
∣∣
int(Ωx

R,h)×{τ`} = Ahw̃`
∣∣
int(Ωx

R,h)
+ O(h2) (2.15)

provided that the fourth order x-partial derivatives of w̃ are uniformly bounded, i.e. the finite-
difference approximation of L by the matrix Ah then is of second order in h (cf., e.g., [Smith,
1978, Chapter 1]).

In contrast, the one-sided finite-difference approximations (2.6) and (2.7) of the τ -partial deriva-
tive are only of first order in k; nevertheless, they yield satisfactory numerical schemes, whereas
central differences with respect to τ are useless in practice as the resulting numerical schemes are
inherently unstable according to [Wilmott et al., 1995, Chapter 8] (see Section 2.3 for the defini-
tion of stability). In the following sections, we will briefly introduce a family of frequently used
finite-difference schemes and discuss their properties when applied to our problem (1.57)–(1.59).

2.2.1 The θ-method

The so-called θ-method is presented in almost any reference on the numerical solution of parabolic
PDEs, e.g., [Smith, 1978], [Morton and Mayers, 1994], [Günther and Jüngel, 2003], [Seydel, 2004],
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or [Wilmott et al., 1995]. Consider the initial-boundary value problem

∂w

∂τ
+ L̃w = f(x, τ), x ∈ Ω, τ ∈ (0, T ], (2.16)

w(x, 0) = w0(x) for all x ∈ Ω, (2.17)
w(x, τ) = g(x, τ) for all (x, τ) ∈ ∂Ω× (0, T ], (2.18)

where Ω is a bounded open region in Rn, L̃ is a second order differential operator in the space
variable x without explicit dependence on τ , and f , w0 and g are given functions. We will restrict
our considerations to the case where L̃ is linear and has constant coefficients as in our model
problem; however, this is not essential for the application of the θ-method. Taking Ω = ΩR and
the grid Ωx

R,h×Ωτ
k as defined in (2.1)–(2.2), the PDE (2.16) may be discretised at the interior grid

point (xα, τ`) using a forward difference (2.6) with respect to τ , and a discretisation matrix Ãh for
L̃ based on central differences as in (2.11)–(2.15), yielding

w`+1
α − w`

α

k
+

(
Ãhw`

)
α

= f(xα, τ`) + O(k) + O(h2)

for all α corresponding to interior grid points, ` = 0, . . . , K − 1, (2.19)

where the O(k) and O(h2) terms can be understood uniformly bounded in Ω× [0, T ] provided that
w is sufficiently smooth.

Alternatively, one might use a backward difference (2.7) at the time step τ`+1. This results in

w`+1
α − w`

α

k
+

(
Ãhw`+1

)
α

= f(xα, τ`+1) + O(k) + O(h2)

for all α corresponding to interior grid points, ` = 0, . . . , K − 1. (2.20)

The idea of the θ-method is to take a convex combination of these two equations. With θ ∈ [0, 1],
we obtain for sufficiently smooth solutions w,

w`+1
α − w`

α

k
+ (1− θ)

(
Ãhw`

)
α

+ θ
(
Ãhw`+1

)
α

= (1− θ)f(xα, τ`) + θf(xα, τ`+1) + O(k) + O(h2)

for all α corresponding to interior grid points, ` = 0, . . . , K − 1. (2.21)

The θ-method for the model problem (2.16)–(2.18) now defines the approximation vectors W` as
the solution of the system of linear equations

W `+1
α −W `

α

k
+ (1− θ)

(
ÃhW`

)
α

+ θ
(
ÃhW`+1

)
α

= (1− θ)f(xα, τ`) + θf(xα, τ`+1)

for all α corresponding to interior grid points, ` = 0, . . . , K − 1, (2.22)

W 0
α = w0(xα) for all α, (2.23)

W `
α = g(xα, τ`) for all α corresponding to boundary grid points, ` = 1, . . . ,K. (2.24)

Hence, all W`+1 can be successively computed, starting from the vector W0 determined by the
initial condition (2.17).
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To obtain a clear matrix notation of this method, we decompose the set of all multiindices α
of the mesh Ωx

R,h into the set αint of indices corresponding to interior grid points and the set αbd

of indices corresponding to boundary grid points, and decompose the vectors W` like

W` = W`,int + W`,bd (2.25)

where

W `,int
α :=

{
W `

α, if α ∈ αint,

0, if α ∈ αbd,
W `,bd

α :=

{
0, if α ∈ αint,

W `
α, if α ∈ αbd.

(2.26)

Furthermore, we define the right-hand side discretisation vectors f `,

f `
α :=

{
f(xα, τ`), if α ∈ αint,

0, if α ∈ αbd,
(2.27)

and the vectors g` containing the boundary values (2.24),

g`
α :=

{
0, if α ∈ αint,

g(xα, τ`), if α ∈ αbd.
(2.28)

Thus, the boundary components of the unknown approximations W` can be immediately defined
by

W`,bd = g` for ` = 1, . . . , K. (2.29)

Hence, the only true unknowns are the components W`,int for ` = 1, . . . , K. Using the decomposi-
tion (2.25), the θ-method equation (2.22) becomes

1
k
W`+1,int − 1

k
W`,int + (1− θ)

(
ÃhW`,int

)int + θ
(
ÃhW`+1,int

)int

+ (1− θ)
(
ÃhW`,bd

)int + θ
(
ÃhW`+1,bd

)int = (1− θ)f ` + θ f `+1. (2.30)

Now using (2.29) and recalling that according to our definition of the matrix Ãh,
(
Ãhx

)bd = 0 and
thus

(
Ãhx

)int = Ãhx for any vector x, (2.30) can be rewritten as

(1
k
I +θÃh

)
W`+1,int =

(1
k
I−(1−θ)Ãh

)
W`,int +(1−θ)f ` +θ f `+1−(1−θ)Ãhg`−θÃhg`+1. (2.31)

This is a (2M + 1)n × (2M + 1)n linear system for each W`+1,int. Note, however, that all lines of
this system which correspond to a boundary index reduce to “0 = 0” and are thus redundant. The
only sought-after components of W`+1,int are those corresponding to interior indices, anyway. The
system (2.31) can thus be reduced to a (2M − 1)n × (2M − 1)n linear system involving exclusively
the “interior” components:

Let intind and bdind denote vectors listing the interior and boundary indices, respectively, in
the same order as they appear in the vectors W`. For vectors x and y, we will use the MATLAB
syntax W(x) and A(x,y) to denote, respectively, the vector made up of the components listed in x
of the vector W, and the matrix made up of the lines listed in x and the columns listed in y of
the matrix A. The unknown components of W`+1,int can therefore be written as W`+1,int(intind),

31



or equivalently, as W`+1(intind), which is a (2M − 1)n-component vector. In components, the
system (2.31) reads

1
k

W `+1,int
α + θ

(
ÃhW`+1,int

)
α

=
1
k

W `,int
α − (1− θ)

(
ÃhW`,int

)
α

+ (1− θ)f `
α + θ f `+1

α − (1− θ)
(
Ãhg`

)
α
− θ

(
Ãhg`+1

)
α
. (2.32)

For components corresponding to interior grid points, i.e. for α ∈ αint, we have
(
ÃhW`,int

)
α

=
∑

β

(Ãh)αβ W `,int
β︸ ︷︷ ︸

=0 if β∈αbd

=
∑

β∈αint

(Ãh)αβ W `,int
β , (2.33)

hence
(
ÃhW`,int

)
(intind) = Ãh (intind, intind)W`,int(intind) (2.34)

for any `. Analogously, we find that

(
Ãhg`

)
(intind) = Ãh (intind, bdind)g`(bdind). (2.35)

We introduce the short notations

Ã
(ii)
h := Ãh (intind, intind) ∈ R(2M−1)n×(2M−1)n

, (2.36)

Ã
(ib)
h := Ãh (intind, bdind) ∈ R(2M−1)n×((2M+1)n−(2M−1)n). (2.37)

Now extracting only the lines corresponding to interior indices from the linear system (2.31) and
using (2.34) and (2.35), we obtain the (2M − 1)n × (2M − 1)n systems,

(1
k
I + θÃ

(ii)
h

)
W`+1,int(intind) =

(1
k
I − (1− θ)Ã(ii)

h

)
W`,int(intind)

+ (1− θ)f `(intind) + θ f `+1(intind)− (1− θ)Ã(ib)
h g`(bdind)− θÃ

(ib)
h g`+1(bdind)

for ` = 0, . . . , K − 1, (2.38)

or in short (following the notation of [Morton and Mayers, 1994, Chapter 5]),

B1 W`+1(intind) = B0 W`(intind) + F`, ` = 0, . . . , K − 1, (2.39)

with the matrices

B1 :=
1
k
I + θÃ

(ii)
h ∈ R(2M−1)n×(2M−1)n

, (2.40)

B0 :=
1
k
I − (1− θ)Ã(ii)

h ∈ R(2M−1)n×(2M−1)n
, (2.41)

and the vectors

F` := (1− θ)f `(intind) + θ f `+1(intind)− (1− θ)Ã(ib)
h g`(bdind)− θÃ

(ib)
h g`+1(bdind). (2.42)

Equation (2.39) represents the pure matrix formulation of the θ-method, comprising solely the val-
ues at interior grid points as unknowns, the boundary conditions (2.24) being incorporated in the
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right-hand side vectors F`.

For θ = 0, we obtain the so-called explicit or explicit Euler method,

1
k
W`+1(intind) =

(1
k
I − Ã

(ii)
h

)
W`(intind) + f `(intind)− Ã

(ib)
h g`(bdind) (2.43)

providing an explicit formula to compute each interior component of W`+1 individually. This
method is for instance used for the one-dimensional untransformed Black-Scholes equation in
[Schwartz, 1977], one of the first publications on the use of finite-difference methods in the fi-
nancial literature. However, although the explicit method is very intuitive, its practical use is often
limited due to stability deficiencies; specifically, unless the mesh ratio k

h2 is smaller than some
constant depending on the problem, the explicit method is unstable and hence magnifies rounding
errors at each time step to such an extent that the result may become meaningless (cf. [Morton
and Mayers, 1994, Sections 2.4 and 3.1], [Wilmott et al., 1995, Section 8.4], and Section 2.3).

This problem can be avoided by choosing different values of θ, yet at the cost of higher compu-
tational complexity. For θ > 0, we obtain implicit methods where the components of W`+1 cannot
be computed individually, but where a simultaneous system of equations has to be solved to obtain
the vector W`+1(intind).

For θ = 1, we obtain the so-called fully implicit or implicit Euler method
(1

k
I + Ã

(ii)
h

)
W`+1(intind) =

1
k
W`(intind) + f `+1(intind)− Ã

(ib)
h g`+1(bdind), (2.44)

or, formally,

W`+1(intind) =
(1

k
I + Ã

(ii)
h

)−1
[
1
k
W`(intind) + f `+1(intind)− Ã

(ib)
h g`+1(bdind)

]
. (2.45)

This method turns out to have no stability limitations.
However, an even more sophisticated choice is θ = 1

2 yielding the so-called the Crank-Nicolson
method

(1
k
I +

1
2
Ã

(ii)
h

)
W`+1(intind) =

(1
k
I − 1

2
Ã

(ii)
h

)
W`(intind)

+
1
2

(
f `(intind) + f `+1(intind)

)
− 1

2
Ã

(ib)
h

(
g`(bdind) + g`+1(bdind)

)
, (2.46)

or, formally,

W`+1(intind) =
(
I +

k

2
Ã

(ii)
h

)−1
[(

I − k

2
Ã

(ii)
h

)
W`(intind)

+
k

2

(
f `(intind) + f `+1(intind)

)
− k

2
Ã

(ib)
h

(
g`(bdind) + g`+1(bdind)

)]
. (2.47)

This method has a higher order of accuracy than the other θ-methods, cf. Section 2.3.1.
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2.3 On the convergence of numerical schemes

The exact solution vectors W` of the system of linear equations (2.39) are only approximations of
the exact solution w of the differential problem (2.16)–(2.18). Natural requirements for a numerical
scheme to provide “reasonable” approximations are

1. that the scheme is uniquely solvable, and

2. that the W` converge to the exact solution w as the mesh is refined (in a sense to be defined
more precisely below).

We can prove the first property for the θ-method for our model problem, the truncated transformed
Black-Scholes problem (1.57)–(1.59). Following [Morton and Mayers, 1994, Chapter 5], we will also
define some properties closely linked to the convergence of a numerical scheme in this section, even
if we will ultimately not be able to apply them to our problem for lack of regularity.

Note that for the rest of this chapter, we will use the notation W` that formerly denoted the
vector of approximations at all grid points of the spatial mesh at time τ` and that hence included
the known boundary values, to denote the vector of approximations at the interior grid points only.
This is the true set of unknowns, hence the output of the numerical scheme, which was denoted as
W`(intind) in the previous section.

In order to be able to measure errors and define convergence, we need to fix a norm. Common
norms in this context are the maximum norm,

‖W`‖∞ := max
α∈αint

|W `
α|, (2.48)

and the discrete `2-norm in Rn associated with mesh width h,

‖W`‖2 := h
n
2

( ∑
α∈αint

|W `
α|2

) 1
2
. (2.49)

These discrete norms can also be defined for continuous functions u ∈ C(ΩR× [0, T ]) by identifying
u( . , τ`) with the vector u` of mesh point values and the vector of root cell averages, respectively,

u` := (u(xα, τ`))α∈αint
(2.50)

and u` :=
(
h−

n
2

(∫

Vα

|u(x, τ`)|2 dx
) 1

2
)

α∈αint

, (2.51)

respectively, where Vα denotes the axis-aligned cube of side length h centered at xα (cf. [Morton
and Mayers, 1994, Chapter 5]). The discrete norms ‖u`‖ then approximate the L∞ and the integral
L2 norm of u( . , τ`) on ΩR, respectively; more precisely, we have

‖u`‖∞ ≤ ‖u( . , τ`)‖C(ΩR) for all h > 0 and ‖u`‖∞ → ‖u( . , τ`)‖C(ΩR) as h → 0, (2.52)

‖u`‖2 ≤ ‖u( . , τ`)‖L2(ΩR) for all h > 0 and ‖u`‖2 → ‖u( . , τ`)‖L2(ΩR) as h → 0. (2.53)

Note that for any fixed spatial mesh, the two discrete norms are equivalent according to

h
n
2 ‖W‖∞ ≤ ‖W‖2 ≤

(
2R

)n
2 ‖W‖∞; (2.54)

however, the equivalence is not preserved in the limit h → 0, as the left bound tends to zero.
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We will now examine the solvability of numerical schemes.

Definition 3. We call a numerical scheme of the form (2.39),

B1 W`+1 = B0 W` + F` for ` = 0, . . . ,K − 1, (2.55)

uniformly solvable with respect to the norm ‖ · ‖ if there exists a constant C such that

‖B−1
1 ‖ ≤ C k (2.56)

for all k sufficiently small, independently of the dimension of the matrix.

Remark. When applied to a matrix like in (2.56), ‖ · ‖ is understood to be the matrix norm induced
by the vector norm ‖ · ‖, i.e. for A ∈ RN×N ,

‖A‖ := sup
x∈RN\{0}

‖Ax‖
‖x‖ . (2.57)

Proposition 13. (generalised from a result in [Morton and Mayers, 1994, Section 5.3]).
For the explicit Euler method for the truncated transformed Black-Scholes problem (1.57)–(1.59),

(2.56) holds with C = 1 for ‖ · ‖ = ‖ · ‖∞, i.e. the method is always uniformly solvable with respect
to the maximum norm. For θ > 0, the θ-method for (1.57)–(1.59) is uniformly solvable with respect
to the maximum norm if

h ≤ min
i=1,...,n

σ2
i∣∣σ2

i
2 − r

∣∣ and
k

h2
<

1

θ
(∑

i<j σiσj |ρij |
) . (2.58)

Proof. In order to prove (2.56), we need to show that there is a constant C such that

‖W‖∞
‖F‖∞ ≤ C k for all F ∈ R(2M−1)n \ {0}, W = B−1

1 F. (2.59)

To this end, we estimate ‖W‖∞ in terms of ‖F‖∞ where F = B1W = 1
kW + θA

(ii)
h W.

If θ = 0, i.e. for the explicit method, we have F = 1
kW for all components and thus immediately

see that (2.59) holds with C = 1.
For arbitrary θ, we have to take a closer look at A

(ii)
h W. Regarding (2.14), we have for a vector

W̃ ∈ R(2M+1)n
that

(
AhW̃

)
α

=
(
r +

n∑

i=1

σ2
i

h2

)
W̃α +

n∑

i=1

(
− σ2

i

2h2
+

σ2
i

4h
− r

2h

)
W̃α+ei +

n∑

i=1

(
− σ2

i

2h2
− σ2

i

4h
+

r

2h

)
W̃α−ei

+
∑

i<j

σiσjρij

4h2

(
−W̃α+ei+ej + W̃α+ei−ej + W̃α−ei+ej − W̃α−ei−ej

)
(2.60)

for all α corresponding to interior grid points. The components of A
(ii)
h W are of the same form,

except that summands corresponding to neighbouring grid points are omitted if these neighbours
lie on the boundary. In any case, the estimate
∣∣∣
(
A

(ii)
h W

)
β
−

(
r +

n∑

i=1

σ2
i

h2

)
Wβ

∣∣∣ ≤
n∑

i=1

∣∣∣− σ2
i

2h2
+

σ2
i

4h
− r

2h

∣∣∣‖W‖∞ +
n∑

i=1

∣∣∣− σ2
i

2h2
− σ2

i

4h
+

r

2h

∣∣∣‖W‖∞

+ 4
∑

i<j

σiσj |ρij |
4h2

‖W‖∞ (2.61)
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holds for all components of A
(ii)
h W. The first constraint of (2.58) is equivalent to

σ2
i

2h2
− σ2

i

4h
+

r

2h
≥ 0 and

σ2
i

2h2
+

σ2
i

4h
− r

2h
≥ 0 for all i, (2.62)

so that (2.61) reduces to

∣∣∣
(
A

(ii)
h W

)
β
−

(
r +

n∑

i=1

σ2
i

h2

)
Wβ

∣∣∣ ≤
n∑

i=1

( σ2
i

2h2
− σ2

i

4h
+

r

2h

)
‖W‖∞ +

n∑

i=1

( σ2
i

2h2
+

σ2
i

4h
− r

2h

)
‖W‖∞

+
∑

i<j

σiσj |ρij |
h2

‖W‖∞

=
( n∑

i=1

σ2
i

h2
+

∑

i<j

σiσj |ρij |
h2

)
‖W‖∞. (2.63)

From
Fβ =

1
k
Wβ + θ

(
A

(ii)
h W

)
β
, (2.64)

it follows that
(

1 + kθ
(
r +

n∑

i=1

σ2
i

h2

))
Wβ = kFβ − kθ

((
A

(ii)
h W

)
β
−

(
r +

n∑

i=1

σ2
i

h2

)
Wβ

)
(2.65)

for all β. Taking absolute values, using (2.63) and passing to the supremum, we finally obtain

(
1 + kθr − kθ

∑

i<j

σiσj |ρij |
h2

︸ ︷︷ ︸
=:C̃

)
‖W‖∞ ≤ k‖F‖∞. (2.66)

The second condition in (2.58) now implies that

C̃ = 1 + kθr︸︷︷︸
≥0

− k

h2︸︷︷︸
< 1

θ(Pi<j σiσj |ρij |)

θ
∑

i<j

σiσj |ρij |
)

> 0, (2.67)

i.e. (2.59) is satisfied for C := 1
C̃

.

We are now ready to define in which sense we wish the numerical approximations to converge:

Definition 4. A numerical scheme for the problem (2.16)–(2.18) with exact solution w is called
convergent in the norm ‖ · ‖ if

‖W` − w`‖ → 0 as h → 0, k → 0, `k → τ ∈ (0, T ] (2.68)

for all initial data w0 for which the problem is well-posed in ‖ · ‖. As h and k both tend to zero,
they may be required to satisfy certain relations.
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Remark. For the exact definition of well-posedness, we refer to [Morton and Mayers, 1994, Sec-
tion 5.5]; broadly speaking, a differential problem is well-posed if for a sufficiently large set of initial
functions, there exists a unique solution which is sufficiently regular and depends continuously on
the data.

For well-posed linear differential problems, the following convergence theorem due to Lax ap-
plies:

Theorem 14 (Lax Equivalence Theorem). ( [Morton and Mayers, 1994, Theorem 5.1]).
A numerical scheme that is consistent with a linear well-posed parabolic differential problem

and that is uniformly solvable in the sense of (2.56) is convergent if and only if it is stable (where
all properties have to hold with respect to the same norm).

Remark. The proof of this theorem in [Morton and Mayers, 1994] reveals that under the above
conditions, the error W` −w` for a smooth solution w is of the same order as the truncation error
defined in (2.69) below.

The key properties of the numerical scheme are hence

1. consistency, which ensures that the numerical scheme in fact approximates the correct differ-
ential equation, and

2. stability, which is analogous to the requirement of continuous dependence on the data for the
differential problem and ensures that errors (e.g., rounding errors) are not unduly amplified
in each step of the numerical scheme.

The definitions of these properties are not entirely consistent in the literature; we adopt those by
[Morton and Mayers, 1994, Chapter 5] which read as follows:

Definition 5. A numerical scheme is said to be consistent with the differential problem (2.16)–
(2.18), if the truncation error T` defined by

T `
α :=

(
B1 w`+1

)
α
− (

B0 w`
)
α
− F `

α for all α ∈ αint, ` = 0, . . . ,K − 1 (2.69)

satisfies
T `

α → 0 as h → 0, k → 0 for all α and `, (2.70)

for all sufficiently smooth solutions w of the differential problem.

Hence, a numerical scheme is consistent with a PDE if in the limit, the exact solution solves
the numerical scheme. Depending on the order of convergence of the truncation error, we define
the order of accuracy of the numerical scheme:

Definition 6. A numerical scheme is said to have order of accuracy p in k and q in h, if p and q
are the largest integers for which there exists a constant C such that

|T `
α| ≤ C (kp + hq) as h → 0, k → 0 for all α and ` (2.71)

for all sufficiently smooth solutions w of the differential problem.
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Definition 7. Let V` and W` be two solutions of the numerical scheme (2.55) starting from
different initial data V0 and W0 but having the same right-hand side F`. We then say that the
scheme is stable in the norm ‖ · ‖ if there exists a constant C such that

‖V` −W`‖ ≤ C ‖V0 −W0‖ for all `k ≤ T . (2.72)

Remark. In the case of a linear problem, the difference between two solutions with the same right-
hand side F` satisfies the same linear equation with homogeneous right-hand side. In this case,
(2.72) is therefore equivalent to the requirement

‖(B−1
1 B0)`‖ ≤ C for all `k ≤ T . (2.73)

2.3.1 Convergence of the θ-method

Let us now turn to the analysis of the θ-method for the Black-Scholes problem (1.57)–(1.59) that
we are examining here.

The θ-method with θ < 1
2 is usually only stable if a constraint of the form k

h2 ≤ C is met
(see, e.g., [Morton and Mayers, 1994, Section 2.10]), i.e. the time step has to be very small compared
to the spatial mesh size, entailing a great amount of computational effort. In contrast, θ-methods
with θ ≥ 1

2 are usually unconditionally stable which can make them ultimately even more efficient
than the explicit method. For the problem (1.57)–(1.59), local Fourier analysis (cf. [Morton and
Mayers, 1994, Sections 2.7 and 5.6], [Smith, 1978, Chapter 3]) can be used to prove unconditional
practical stability with respect to the discrete `2-norm.

The comparison of (2.21) and (2.22) indicates that the θ-method is consistent with the Black-
Scholes problem. For sufficiently smooth solutions w̃, all components of the truncation error are
uniformly O(h2) + O(k), i.e. the method is of second order in h and of first order in k. For the
Crank-Nicolson method, it can even be shown to be of second order in both h and k ( [Morton
and Mayers, 1994, Section 2.10], [Wilmott et al., 1995, Section 8.7]). Regarding the Remark to
Theorem 14, the numerical method converges of the same order as the truncation error if the
solution is sufficiently smooth.

The problem lies with well-posedness, however. The assumption of well-posedness in Theo-
rem 14 ensures convergence of the numerical scheme in the sense of (2.68) even for generalised
solutions which are not smooth enough to solve the problem in the classical sense but which may
be obtained as limits of smooth solutions (cf. [Morton and Mayers, 1994, Section 5.5]). In our case,
Corollary 8 in Section 1.4.2 ensures that the truncated Black-Scholes problem has a unique solution
provided that the initial and boundary data are continuous, and this solution is even infinitely dif-
ferentiable in the interior of the computational domain. However, the initial function involves the
option’s pay-off which is usually continuous but not continuously differentiable. Thus, we cannot
expect a solution whose derivatives are uniformly bounded in ΩR × [0, T ], and consequently, the
truncation error for the concrete problem is not uniformly bounded. This would not constitute a
problem if we could approximate its solution arbitrarily well by solutions for smoother initial and
boundary data which have uniformly bounded derivatives. However, even for arbitrarily smooth
initial and boundary conditions, the existence of such smooth solutions to the problem (1.57)–(1.59)
is open. [Friedman, 1964, Chapter 3] proves regularity results for initial-boundary value problems
including differentiability of the solution up to the boundary of the domain, albeit under the con-
dition that the boundary of the domain is accordingly smooth. In our case, however, ∂ΩR × [0, T ]
has “corners” and is thus not continuously differentiable.
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Hence, we cannot a priori prove convergence of the θ-method for the Black-Scholes problem
(1.57)–(1.59); we can only observe the behaviour of the error for special types of options where the
exact solution is analytically known.

For stability reasons, we will use a θ-method with θ ≥ 1
2 to numerically solve our model problem.

We will present results obtained with the Crank-Nicolson method as well as the implicit Euler
method.
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Chapter 3

The multigrid method

All implicit θ-methods for the computation of the approximation vectors W`+1(intind) require
the solution of a linear system of the form

B1 W`+1(intind) = B0 W`(intind) + F` (3.1)

at each time step, with B1 = 1
kI + θA

(ii)
h and θ ∈ (0, 1], or equivalently,

kB1 W`+1(intind) = kB0 W`(intind) + k F` (3.2)

with the system matrix kB1 = I +k θA
(ii)
h . The dimension of this system is (2M − 1)n × (2M − 1)n

with n being the space dimension or number of underlying assets, and 2M + 1 the number of
grid points in each direction. Hence the linear system to be solved will in general be very large,
yet we have already observed in Section 2.2 that the matrix A

(ii)
h is sparse, and hence so is B1.

For large sparse systems, iterative methods are in general preferable to direct solution methods
(cf., e.g., [Smith, 1978, Chapter 5]). A particularly effective solution method is the multigrid
method which is based on classical iterative (relaxation) methods but which has considerably better
convergence properties at a comparable computational cost. In fact, the effort required by the so-
called full multigrid V-cycle scheme to solve an N × N system up to discretisation accuracy is
O(N) (see, e.g., [Briggs, 1987, Chapter 4]) which is the optimal effort that can be achieved.

This is the method that we will use for our problem. In the following, we will briefly describe
the basic ideas and techniques that we need; for a comprehensive treatment of multigrid methods,
we refer to [Briggs, 1987], [Hackbusch, 1985] or [Hackbusch, 1993]. Broadly speaking, the idea of
the multigrid method is to apply an iterative method (in our case, the weighted Jacobi method) on
a sequence of meshes which are coarser than the original one.

3.1 The weighted Jacobi method

Suppose we want to solve the linear system

AW = RHS (3.3)

for a given matrix A ∈ RN×N and right-hand side vector RHS ∈ RN . The objective of the weighted
Jacobi method, as for any iterative method, is to produce a sequence W0,W1,W2, . . . of vectors
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which approximate the exact solution W while being less costly to compute. Let us introduce some
further notation. The error in the m-th approximation is

Em := W −Wm, (3.4)

and by the corresponding residual Rm, we understand the difference between RHS and AWm,

Rm := RHS−AWm = AW −AWm. (3.5)

Note that the error satisfies the so-called residual equation

AEm = Rm (3.6)

which will be of importance in the multigrid method.
Let D denote the diagonal matrix made up of the diagonal elements of A. Starting from

an arbitrary initial guess W0, the weighted Jacobi method then defines the approximations Wm

recursively by

Wm+1 :=
(
I − ωD−1A

)
Wm + ωD−1RHS

= Wm + ωD−1Rm (3.7)

where ω ∈ (0, 1] is a weighting factor; for ω = 1, we obtain the classical (unweighted) Jacobi
method. If A is a sparse matrix with O(N) non-zero elements, then the residual can be computed
in O(N) operations, hence each step of the weighted Jacobi method is of effort O(N) in this case.

3.1.1 Convergence properties of the weighted Jacobi method

Iterative methods for the system (3.3) that are of the form

W0 ∈ RN arbitrary, Wm+1 := M Wm + N RHS (3.8)

with matrices M, N ∈ RN×N are called linear iterative methods; M is called the corresponding
iteration matrix (see, e.g., [Hackbusch, 1993, Chapter 3]). Clearly, the weighted Jacobi method (3.7)
is of this form with

M = I − ωD−1A, N = ωD−1. (3.9)

A necessary condition for the convergence of an iterative method is consistency with the linear
system, i.e. that the solution W be a fixed point of the method for any right-hand side vector
RHS. For a linear iterative method, this is equivalent to the condition

M = I −NA (3.10)

( [Hackbusch, 1993, Theorem 3.2.2]). Thus, comparing (3.9) and (3.10), we immediately see that
the weighted Jacobi method is consistent.

An iterative method is called convergent if for any right-hand side vector RHS, the iterates Wm

converge to a limit that is independent of the initial guess W0 as m → ∞. [Hackbusch, 1993,
Theorem 3.2.7] states that a linear iterative method is convergent if and only if

ρ(M) < 1 (3.11)
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where ρ(M) denotes the spectral radius of the iteration matrix and is called the convergence rate
of the method. If the method is additionally consistent, (3.11) implies that the iterates converge
to the unique solution W of the linear system (3.3) ( [Hackbusch, 1993, Supplement 3.2.8]).

A number of convergence criteria are known for the weighted Jacobi method applied to linear
systems whose system matrix A is symmetric positive definite, an M -matrix, strictly diagonally
dominant or irreducibly diagonally dominant (e.g., [Hackbusch, 1993, Sections 4.4 and 6.4]). The
system matrix kB1 = I + k θA

(ii)
h of the linear system (3.2) with θ > 0 is in general of neither of

those types, nor is it straightforward how to analytically calculate the eigenvalues of B1. We can,
however, prove convergence of the weighted Jacobi method for the problem (3.2) by estimating the
norm of the corresponding iteration matrix and making use of the relation

ρ(M) ≤ ‖M‖ (3.12)

for all matrix norms induced by a vector norm according to (2.57) (e.g., [Hackbusch, 1993, Sec-
tion 2.9]). We will consider the matrix norm induced by the maximum norm (2.48); it can be shown
(see, e.g., [Hackbusch, 1993, Section 2.6.3]) that the resulting matrix norm is given by

‖A ‖∞ = max
α∈αint

∑

β∈βint

|Aαβ|. (3.13)

Proposition 15. Under the conditions

h ≤ min
i=1,...,n

σ2
i∣∣σ2

i
2 − r

∣∣ and
k

h2
<

1

θ
(∑

i<j σiσj |ρij |
) , (3.14)

the weighted Jacobi method for the problem (3.2) with θ ∈ (0, 1] (i.e. any implicit θ-scheme dis-
cretisation of the Black-Scholes problem) converges for any ω ∈ (0, 1].

Proof. We aim to show (3.11). As we have already verified that the weighted Jacobi method is a
consistent linear iterative method, this implies that it converges to the solution of the linear system.

The diagonal entries of the system matrix kB1 = I(2M−1)n + k θA
(ii)
h of (3.2) are all equal to

d := 1 + k θ
(
r +

n∑

i=1

σ2
i

h2

)
(3.15)

regarding (2.14), hence the iteration matrix of the corresponding weighted Jacobi method is

M = I(2M−1)n − ω (d I)−1
(
I(2M−1)n + k θA

(ii)
h

)
=

(
1− ω

d

)
I(2M−1)n − ω

d
k θ A

(ii)
h (3.16)

by (3.9). According to (3.13), the norm ‖M‖∞ of this matrix is equal to its maximum absolute
row sum, i.e.

‖M‖∞ =
∣∣∣1− ω

d
− ω

d
k θ

(
r +

n∑

i=1

σ2
i

h2

)∣∣∣ +
ω

d
k θ

( n∑

i=1

∣∣∣− σ2
i

2h2
+

σ2
i

4h
− r

2h

∣∣∣

+
n∑

i=1

∣∣∣− σ2
i

2h2
− σ2

i

4h
+

r

2h

∣∣∣ + 4
∑

i<j

σiσj |ρij |
4h2

)
(3.17)
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regarding (2.14). The first condition in (3.14) implies σ2
i

2h2 ∓ σ2
i

4h ± r
2h ≥ 0 (cf. (2.58) and (2.62)).

Hence, (3.17) reduces to

‖M‖∞ =
∣∣∣1− ω

d

(
1 + k θ

(
r +

n∑

i=1

σ2
i

h2

))∣∣∣ +
ω

d
k θ

( n∑

i=1

σ2
i

h2
+

∑

i<j

σiσj |ρij |
h2

)

= |1− ω|+ ω

d
θ

k

h2

( n∑

i=1

σ2
i +

∑

i<j

σiσj |ρij |
)

= 1− ω
[
1− θ

d

k

h2

( n∑

i=1

σ2
i +

∑

i<j

σiσj |ρij |
)]

. (3.18)

Thus, we obtain ‖M‖∞ < 1 if and only if

1− θ

d

k

h2

( n∑

i=1

σ2
i +

∑

i<j

σiσj |ρij |
)

> 0, (3.19)

or equivalently, if
k

h2
<

1
θ + kr∑

i<j σiσj |ρij | . (3.20)

The second condition in (3.14) ensures this for any k, r ≥ 0. Thus, under the conditions (3.14),
(3.12) yields

ρ(M) ≤ ‖M‖∞ < 1. (3.21)

Remark. Note that the conditions (3.14) are the same as the conditions (2.58) for uniform solvability
of implicit θ-schemes with respect to the maximum norm (Proposition 13).

However, even if the weighted Jacobi method converges, it turns out that its performance (like
that of most classical iterative methods) when applied to systems arising from the finite-difference
discretisation of PDEs is not satisfactory: If one plots the size of the error Em (measured in some
norm) against the number of iteration steps (as is done, e.g., in [Briggs, 1987, Chapter 2]), one
will in general observe a fast decrease of the error during the first few steps, but as the number of
iterations grows, the error decays more and more slowly, and an acceptable accuracy can in general
only be reached after a very large number of iteration steps.

This slowing down convergence is due to the so-called smoothing property of the iterative
method. This effect is best seen in the Fourier mode decomposition of the error. The (complex)
Fourier modes which are distinguishable on the grid points of the mesh Ωx

R,h are represented by the
set of vectors Ŵk ∈ R(2M+1)n

, k ∈ {−(M − 1),−(M − 2), . . . ,−1, 0, 1, . . . ,M}n, with components

(Ŵk)α = ei π
R

k·xα (3.22)

(see, e.g., [Morton and Mayers, 1994, Section 5.6]). The n-component vector k can be understood
as a wavenumber vector which describes how oscillatory the mode is; k = 0 corresponds to a
very smooth (in fact, constant) mode, whereas the mode with k = (M, M, . . . , M) is the most
oscillatory one on the mesh. In the following analysis, we will distinguish between smooth modes
and high-frequency modes on the respective grid; here, we understand by a smooth mode a Fourier
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mode where every single wave number component is less than M
2 in modulus (cf. [Briggs, 1987,

Chapter 2], [Hackbusch, 1993, Section 10.1.1]).
For an arbitrary initial guess, the initial error E0 will in general contain components of all Fourier

modes. It turns out, however, that after some iterations of the weighted Jacobi method, the error
Em becomes increasingly smoother. High-frequency error components are quickly eliminated by
the weighted Jacobi method, whereas smooth error components are damped more slowly (the exact
damping factor distribution depends on the weighting factor ω, see, e.g., [Briggs, 1987, Chapter 2],
and cf. the last part of Section 3.2.1). Hence, one initially observes a fast decrease of the error
when the oscillatory components are eliminated, but once the remaining error consists mainly of
smooth components, the convergence slows down as smooth modes are only slowly reduced by the
weighted Jacobi method.

3.2 The multigrid method

3.2.1 Basic elements of multigrid

Following [Briggs, 1987], we present in this section the basic ideas leading to the multigrid method.
The key observation is that a smooth Fourier mode on the grid Ωx

R,h, when restricted to a coarser
grid, appears more oscillatory on the coarse grid. This phenomenon known as aliasing suggests the
following strategy in order to accelerate the convergence of the weighted Jacobi method:

� Apply the weighted Jacobi method to the problem AW = RHS on the grid Ωx
R,h until the

error does not decrease significantly any more. This yields the approximation Wm to W.
Its error Em cannot be calculated unless the exact solution W is known; we can, however,
calculate its residual Rm from the known data.

� Restrict the residual Rm of Wm to a coarser mesh Ωx
R,h̃

with h̃ > h and apply the weighted
Jacobi method to the equation AEm = Rm (see (3.6)) on the coarse grid (with initial guess,
e.g., zero) in order to obtain an estimate of the error Em. The error components which
are smooth on Ωx

R,h and which could not be eliminated well any more on the fine grid now
correspond to more oscillatory modes on Ωx

R,h̃
and can thus be effectively removed by the

weighted Jacobi method on the coarse grid.

� Interpolate the obtained approximation of Em back to the fine grid Ωx
R,h and add it to Wm

to obtain a better approximation W̃m to W (note that W = Wm + Em by (3.4)).

� One may further improve the approximation by applying some more iterations of the weighted
Jacobi method to the problem AW = RHS on the fine grid with initial guess W̃m.

Before formalising this procedure, we observe several details (see also [Hackbusch, 1985, Sec-
tions 3.4–3.7]). First, it is practical to use a subset of the fine-grid points as coarse grid. The
most convenient and most popular choice is Ωx

R,h̃
:= Ωx

R,2h, i.e. one uses the grid of twice the mesh
width of the original grid as coarse grid; we will study the relation between these two meshes in
more detail in Section 3.2.3. Second, we need to find appropriate intergrid transfer operations,
i.e. methods to restrict a vector given on the fine grid to the coarse grid, and to interpolate a vector
given on the coarse grid to the fine grid. Again, this issue is addressed in Section 3.2.3. Finally, it
has to be defined how the original linear system with system matrix A can be represented on the
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coarse grid. For the discretisation matrix Ã
(ii)
h of a partial differential operator in space, an appro-

priate possibility is to use the matrix Ã
(ii)
2h on the coarse grid, i.e. the matrix that corresponds to

the discretisation of the differential operator directly on the coarse grid. Consequently, the system
matrix for the problem (3.2) on the grid Ωx

R,h will be defined by

B1,h :=
1
k

I(2M−1)n +
1
2
A

(ii)
h where M =

R

h
. (3.23)

It will be useful to introduce a similar mesh width subscript for vectors, indicating which grid they
are defined on.

We are now ready to express the above idea as a formal algorithm, called two-grid iteration
by [Hackbusch, 1985], in Algorithm 1. The key element is the coarse-grid correction in steps 2–5.

Algorithm 1 Two-grid iteration for solving AhWh = RHSh

1: Pre-smoothing : Apply the weighted Jacobi method ν1 ≥ 0 times to the equation
AhWh = RHSh

on Ωx
R,h with a given initial guess W0,h to obtain an approximation Wν1,h.

2: Compute the residual Rh = RHSh −AhWν1,h, and restrict it to Ωx
R,2h to obtain R2h.

3: Apply the weighted Jacobi method κ > 0 times to the equation
A2hE2h = R2h

on Ωx
R,2h with initial guess 0 to obtain an approximation Eκ,2h.

4: Interpolate Eκ,2h to Ωx
R,h.

5: Correct the approximation Wν1,h on Ωx
R,h with the interpolated error estimate Eκ,h.

6: Post-smoothing : Apply the weighted Jacobi method ν2 ≥ 0 times to the equation
AhWh = RHSh

on Ωx
R,h with Wν1,h + Eκ,h as initial guess.

This is combined with a smoothing operation performed before (pre-smoothing) and/or after (post-
smoothing) the coarse-grid correction step; either ν1 or ν2 is required to be non-zero.

The role of the smoothing operation in the context of the multigrid method is to dampen
primarily the high-frequency modes of the error, the smooth components being taken care of by the
coarse-grid correction step. Thus, the weighting factor in the weighted Jacobi method is optimally
chosen so as to maximise the damping factors in the high-frequency part of the spectrum. Following
ideas presented, e.g., in [Hackbusch, 1985, Section 2.6.3], one can show that the optimal value of ω
for the n-dimensional Laplace problem is given by

ωopt =
2n

2n + 1
. (3.24)

Note that this is the optimal weighting factor for the weighted Jacobi method used as a smoothing
operation within a multigrid method, not for the weighted Jacobi method used on its own.

In step 1 of Algorithm 1, the initial guess W0,h is not specified. Again, the coarse grid can be
used to find an informed initial guess: before starting the smoothing operation on the fine grid, we
can apply the weighted Jacobi method to the equation A2hW2h = RHS2h on the coarse grid, and
then interpolate the obtained approximation of W2h in order to use it as initial guess on the fine
grid. This strategy is called nested iteration. The trick of this idea is that applying the weighted
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Jacobi method on the coarse grid is much less computationally expensive than on the fine grid
(see also [Briggs, 1987, Chapter 4], [Hackbusch, 1985, Section 4.3]): as we have seen above, the
effort of one weighted Jacobi iteration step is proportional to the number of degrees of freedom,
i.e. (2M−1)n on Ωx

R,h, and (M−1)n on Ωx
R,2h. Hence, the effort of one weighted Jacobi step on the

coarse grid is roughly 1
2n times the effort of one weighted Jacobi step on the fine grid, and nested

iteration can thus be added to the two-grid iteration algorithm at a minimum extra effort.

3.2.2 Multigrid algorithms

The strategies discussed so far involved only two meshes and served to illustrate the key elements
of the multigrid method. We now arrive at the multigrid method by simply recursively applying
the two-grid method on a sequence of successively coarser meshes, where the coarsest grid is advan-
tageously chosen such that a direct solution of the linear system is possible there. In our case, we
have assumed the mesh parameter M to be a power of two in Section 2.1, M = 2m for some m ≥ 0,
such that by successively doubling the mesh width, we obtain a sequence of m + 1 meshes where
the coarsest one is characterised by M = 1 and hence involves exactly one interior grid point. The
linear system on the coarsest grid is thus a scalar equation which can easily be solved explicitly.

For the sake of clarity, let us define several subfunctions to be used in the multigrid algorithms:

jacobi (M,RHSh,W0,h, ω, ν) (3.25)

returns the result of ν iterations of the weighted Jacobi method with weighting factor ω and initial
guess W0,h for the system AhWh = RHSh on the grid with parameter M ;

R (W,M) and P (W,M) (3.26)

denote, respectively, the restriction of the vector W from the grid with parameter 2M to the one
with parameter M , and the prolongation or interpolation of the vector W from the grid with
parameter M

2 to the one with parameter M .
We are now ready to state the first multigrid algorithm: recursive application of the two-

grid iteration (Algorithm 1) yields the so-called multigrid µ-cycle scheme (see also [Briggs, 1987,
Chapter 3], [Hackbusch, 1985, Algorithm (4.1.1)]) whose recursive function definition is given in
Algorithm 2. While the coarsest grid is not reached yet (i.e. M > 1), pre-smoothing is performed
(line 5), the residual is calculated (line 6), and the multigrid µ-cycle is called µ times on the next
coarser grid (line 9) for the residual equation A2hE2h = R2h where the right-hand side is the
residual Rh, restricted to the coarser grid, and a zero initial guess is used (initialised in line 7).
The obtained error estimate E2h is interpolated back to the finer grid and used to correct the
approximation Wh (line 11) before post-smoothing is performed (line 12). On the coarsest grid, in
contrast, the linear system AhWh = RHSh is solved exactly (formally expressed in line 3).

The cycling parameter µ defines how many times the algorithm is called on the next coarser
grid (see line 8 of Algorithm 2). µ = 1 yields the so-called multigrid V-cycle, and µ = 2 the multi-
grid W-cycle. These cycles are named after the patterns formed by the schedule of visited grids,
which are illustrated in Figure 3.1. Cycling parameters higher than 2 are unproductive in practice
according to [Hackbusch, 1985, Section 4.2].

The V-cycle scheme supplemented by the nested iteration strategy yields the so-called full
multigrid V-cycle scheme which is particularly effective. The recursive definition of this method
is given in Algorithm 3. This algorithm involves the cycling parameter ν indicating how many
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Algorithm 2 Multigrid µ-cycle for solving AhWh = RHSh

1: function Wh = MG(M,RHSh,W0,h, ω, ν1, ν2, µ)
Input: parameter of the finest grid M = 2m, right-hand side vector RHSh, initial guess W0,h,

weighting parameter ω, smoothing parameters ν1, ν2, cycling parameter µ
Output: approximation Wh on the finest grid
2: if M = 1 then
3: Wh ← A−1

h RHSh

4: else
5: Wh ← jacobi (M,RHSh,W0,h, ω, ν1)
6: Rh ← RHSh −AhWh

7: E2h ← 0
8: for i = 1 : µ do
9: E2h ← MG(M

2 , R(Rh, M
2 ),E2h, ω, ν1, ν2, µ)

10: end for
11: Wh ← Wh + P(E2h,M)
12: Wh ← jacobi (M,RHSh,Wh, ω, ν2)
13: end if
14: return Wh

V-cycles are to be performed on each grid once an initial guess has been established by nested
iteration. Figure 3.2 illustrates the schedule of visited grids in the case ν = 1.

3.2.3 Intergrid transfer

In our listings of the multigrid µ-cycle and full multigrid V-cycle schemes, we assumed that appro-
priate restriction and interpolation methods had already been defined (cf. (3.26)). These intergrid
transfer operations are the subject of the current section.

Let us first take a closer look at the relation between the meshes Ωx
R,h and Ωx

R,2h. For the
two-dimensional case, this is illustrated in Figure 3.3. It is hence easily seen that the coarse grid
is made up of those fine-grid points xα whose multiindex α consists of even components only;

M = 8

W−cycleV−cycle

M = 1

M = 2

M = 4

Figure 3.1: Schedule of grids where the weighted Jacobi method is performed in the case M = 8
for µ = 1 (V-cycle) and µ = 2 (W-cycle).
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Algorithm 3 Full multigrid V-cycle for solving AhWh = RHSh

1: function Wh = FMG(M,RHSh, ω, ν1, ν2, ν)
Input: parameter of the finest grid M = 2m, right-hand side vector RHSh, weighting factor ω,

smoothing parameters ν1 and ν2, cycling parameter ν
Output: approximation Wh on the finest grid
2: Wh ← 0
3: if M = 1 then
4: go to step 10
5: else
6: Rh ← RHSh −AhWh % in fact, Rh = RHSh here as Wh = 0 at this stage
7: W2h ← FMG(M

2 , R(Rh, M
2 ), ω, ν1, ν2, ν)

8: end if
9: Wh ← Wh + P (W2h,M)

10: for i = 1 : ν do
11: Wh ← MG (M,RHSh,Wh, ω, ν1, ν2, 1)
12: end for
13: return Wh

M = 8

M = 1

M = 2

M = 4

Figure 3.2: Schedule of grids where the weighted Jacobi method is performed in the full multigrid
V-cycle in the case M = 8, ν = 1.

formally,

(xα)2h = (x2α)h for all α ∈
{
−M

2
, . . . ,

M

2

}n
. (3.27)

A very simple restriction operation, called injection, consists in assigning each coarse-grid point
the value of the corresponding fine-grid point. However, injection is often avoided in practice as
it does not always satisfy the heuristic requirement stated in [Hackbusch, 1985, Note 3.5.1]. More
sophisticated restriction operators are preferred which use the information contained in fine-grid
points which are not part of the coarse grid as well (see also [Hackbusch, 1985, Section 3.8.5]); we
will present a popular choice below.

For the prolongation operator, piecewise polynomial interpolation is an obvious choice. For our
model problem, we will use n-linear interpolation, i.e. we assign each fine-grid point the evaluation at
this point of the unique n-linear function interpolating all surrounding coarse-grid values (cf. [Briggs,
1987, Chapter 3], [Hackbusch, 1985, Section 3.4.2] for the one and two-dimensional cases). This
is equivalent to assigning each fine-grid point the arithmetic mean of the values at the coarse-grid
points nearest this fine-grid point. The number of nearest coarse-grid neighbours depends on the
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[2 2]

[0 0]

[0 1]

[0 2] [1 2]

[1 1]

[1 0] [2 0]

[2 1]

Figure 3.3: The grids Ωx
R,R (filled dots) and Ωx

R,R/2 (all dots) in two dimensions. Selected grid
points are labelled with their fine-grid multiindex.

position of the fine-grid point within the coarse grid: let α be the multiindex of the fine-grid point.
Then each odd component of α corresponds to a direction in which the fine-grid point is “shifted”
with respect to the main axes of the coarse grid. The nearest coarse-grid points are reached by
altering each odd component of α by +1 or −1. If p components of α are odd, there are 2p such
combinations, hence xα has 2p nearest coarse-grid neighbours, with 0 ≤ p ≤ n. In Figure 3.3, the
different types of fine-grid points in two dimensions can be visualised: the fine-grid index α = [0, 0],
for instance, has only even components and the corresponding fine-grid point hence has one nearest
coarse-grid neighbour, i.e. xα itself. The fine-grid point with index α = [0, 1], in contrast, lies on
an “edge” between two coarse-grid points, whereas the fine-grid point with index α = [1, 1] lies on
a “face” of the coarse grid and has four nearest coarse-grid neighbours.

Conversely, we can determine the weight with which the value at each coarse-grid point enters
into the values at the surrounding fine-grid points: given a coarse-grid point of coarse-grid index α,
this point corresponds to the fine-grid point with index 2α, and the value at this point is retained,
i.e. it has weight 1 for the value at the fine-grid point of index 2α. For all fine-grid points with index
2α±ei for some i, the weight of the value at the point with coarse-grid index α is 1

2 ; for 2α±ei±ej

with i 6= j, the weight is 1
4 , and so on; finally, for 2α +

∑n
i=1(±ei), the weight is 1

2n . This way,
the matrix P ∈ R(2M+1)n×(M+1)n

representing the prolongation mapping can be assembled; in the
rows and columns of this matrix, the fine-grid and coarse-grid indices are listed, respectively.

By taking the adjoint of a polynomial prolongation operator, one obtains a restriction operator.
[Briggs, 1987] and [Hackbusch, 1985] use the so-called full weighting restriction operator given by
the adjoint of n-linear interpolation, multiplied by the normalising factor 2−n (which results from
the different scaling of the corresponding scalar products, cf. [Hackbusch, 1985, Section 3.5]), or in
matrix notation, R = 2−nP T . Unlike injection, full weighting restriction also takes into account
values at fine-grid points which are not part of the coarse grid.

A detailed discussion of different prolongation and restriction operators and criteria for an
appropriate choice can be found in [Hackbusch, 1985, Sections 3.4 and 3.5]; for the discretisation
of a second-order PDE as in our case, the combination of n-linear interpolation and full weighting
restriction is approved, cf. [Hackbusch, 1985, Example 3.5.2].
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Chapter 4

Implementation of a numerical
Black-Scholes solver

We aim to solve the Crank-Nicolson and the implicit Euler schemes presented in Section 2.2.1
for the truncated transformed Black-Scholes problem (1.57)–(1.59) with initial function w̃0(x) =
V0(ex1 , . . . , exn) for some continuous pay-off function V0, and boundary function g̃ for which we
found appropriate choices to be g̃1(x, τ) = w̃0(x) or g̃2(x, τ) = e−rτ V0

(
ex1+rτ , . . . , exn+rτ

)
in Sec-

tion 1.4.4. Regarding (2.22)–(2.24), the θ-method defines the approximation vectors W` for this
problem as

W0 = (w̃0(xα))α , (4.1)

W`,bd = g̃`, ` = 1, . . . ,K, (4.2)(
I + k θA

(ii)
h

)
W`+1(intind) =

(
I − k (1− θ)A(ii)

h

)
W`(intind)

− k (1− θ)A(ib)
h

(
g̃`(bdind) + g̃`+1(bdind)

)
, ` = 0, . . . ,K − 1,

(4.3)

where the matrix Ah is given by

(Ah)α,β =





r +
∑n

i=1
σ2

i
h2 if β = α and α ∈ αint,

− σ2
i

2h2 + σ2
i

4h − r
2h if β = α + ei, i = 1, . . . , n, and α ∈ αint,

− σ2
i

2h2 − σ2
i

4h + r
2h if β = α− ei, i = 1, . . . , n, and α ∈ αint,

−σiσjρij

4h2 if β = α + ei + ej or β = α− ei − ej , i 6= j, and α ∈ αint,
σiσjρij

4h2 if β = α + ei − ej or β = α− ei + ej , i 6= j, and α ∈ αint,

0 otherwise.

(4.4)

Our objective is to implement this scheme for θ = 1
2 (Crank-Nicolson) and θ = 1 (implicit Euler)

for an arbitrary number n of assets. In particular, for each θ, we aim to

� create a single implementation simultaneously applicable for any dimension n, and

� to take advantage of the fact that MATLAB is optimised for vector and matrix operations by
vectorising the code, i.e. by replacing for and while loops by appropriate matrix operations
whenever possible (cf. [MATLAB 7.7.0 Help, 2008]).
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We will use the full multigrid V-cycle scheme (see Algorithm 3) to iteratively solve the sparse
system (4.3).

4.1 Data structure

We have already specified the output arguments W`, ` = 0, . . . ,K to be (2M + 1)n-component
vectors. Another possibility would be to create them as n-dimensional arrays where each entry
W `

α is stored at the position which corresponds to the spatial location of the grid point xα within
the mesh. This is in principle feasible in MATLAB and may seem an intuitive approach regarding
the association between grid points and output components. However, the code is in fact more
straightforward if the array is “broken up” and stored as a single long vector, which is also the
way MATLAB internally stores n-dimensional arrays (see [MATLAB 7.7.0 Help, 2008]). This is
the data format used in the program presented below.

This storage method requires a unique mapping between the multiindex α associated with the
mesh and the array index defining the position of the corresponding component W `

α within the
vector W`, or in other words, an appropriate ordering of the grid points. This ordering scheme
has to be compatible with the program feature that the space dimension n is an a-priori arbitrary
parameter. Furthermore, we have to be able to identify neighbouring grid points, interior and
boundary grid points.

4.1.1 Ordering of the grid points

We have seen in the previous section that we need to define an appropriate ordering of the grid
points of the spatial mesh. In the program presented below, we will always use lexicographical
ordering of the grid points by their multiindex α, i.e. when we compare two indices, we consider
their components in the order α1, . . . , αn and decide which index is “larger” by comparing the first
component in which they differ. Table 4.1 illustrates this ordering in the case of three dimensions.
It is MATLAB standard to start array indexing from 1.

array multi- array multi- array multi-
index index index index index index

1 −1 −1 −1 10 0 −1 −1 19 1 −1 −1
2 −1 −1 0 11 0 −1 0 20 1 −1 0
3 −1 −1 1 12 0 −1 1 21 1 −1 1
4 −1 0 −1 13 0 0 −1 22 1 0 −1
5 −1 0 0 14 0 0 0 23 1 0 0
6 −1 0 1 15 0 0 1 24 1 0 1
7 −1 1 −1 16 0 1 −1 25 1 1 −1
8 −1 1 0 17 0 1 0 26 1 1 0
9 −1 1 1 18 0 1 1 27 1 1 1

Table 4.1: Ordering of grid points in a mesh with n = 3, M = 1.

Geometrically, this means that we move within the three-dimensional domain along “piles” of
grid points in the positive z direction, proceeding to the next pile in the y direction until we reach
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the “right” y direction boundary where we return to the “left” y direction boundary after a step
in the positive x direction. Figure 4.1 illustrates this. An analogous “pile” interpretation holds in
all dimensions.

x

z

y 12

10

11

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

1

2

3

4

5

6
9

8

7

Figure 4.1: Illustration of the ordering of grid points in a mesh with n = 3, M = 1.

Note that if we add (M,M, . . . , M) to each multiindex, we do not alter their lexicographical
order. The components of the shifted multiindices are all between 0 and 2M and can thus be
interpreted as the digits of n-digit numbers in the base (2M + 1) numeral system. Lexicographical
ordering then corresponds to ordering these numbers by increasing size. With this interpretation,
it is easy to see that arithmetically, the array index ı̂ ∈ {1, . . . , (2M + 1)n} corresponding to the
multiindex α = (α1, . . . , αn) is given by

ı̂ (α) = 1 +
n∑

i=1

(αi + M) · (2M + 1)n−i . (4.5)

Furthermore, we find that the array indices of neighbouring grid points differ by a fixed incre-
ment depending on the dimension in which the grid points adjoin: namely, the relation between
the array indices of a given grid point xα and its right and left neighbours in the i-th direction
xα+ei and xα−ei (provided that they exist) is

multiindex array index
α ı̂ (α)
α + ei ı̂ (α) + (2M + 1)n−i

α− ei ı̂ (α)− (2M + 1)n−i

(4.6)

4.1.2 Identifying interior and boundary grid points

As interior and boundary grid points have to be treated differently, we have to identify which posi-
tions within the vectors W` correspond to which type of grid points. A geometrical consideration
shows that the array indices of the boundary grid points can be systematically described as follows:

“left” boundary in the i-th dimension:

d · (2M + 1)n−i+1 + 1 : d · (2M + 1)n−i+1 + (2M + 1)n−i, d = 0, . . . , (2M + 1)i−1 − 1,
(4.7)
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“right” boundary in the i-th dimension:

d · (2M + 1)n−i+1

+ 2M (2M + 1)n−i + 1 : (d + 1) · (2M + 1)n−i+1, d = 0, . . . , (2M + 1)i−1 − 1,
(4.8)

where the MATLAB colon notation is used to denote the sequence of unit-spaced values between
and including the specified start and end values. The result of these formulae is displayed in
Table 4.2 for the case n = 3, M = 1, and it is in accordance with Figure 4.1.

i = 1 i = 2 i = 3
“left” boundary 1 : 9 1 : 3 1 : 1, 4 : 4, 7 : 7,

10 : 12 10 : 10, 13 : 13, 16 : 16,
19 : 21 19 : 19, 22 : 22, 25 : 25

“right” boundary 19 : 27 7 : 9 3 : 3, 6 : 6, 9 : 9,
16 : 18 12 : 12, 15 : 15, 18 : 18,
25 : 27 21 : 21, 24 : 24, 27 : 27

Table 4.2: Array indices of the boundary grid points in a mesh with n = 3, M = 1.

Formulae (4.7) and (4.8) thus allow us to determine the set of array indices of all boundary
grid points. We will now demonstrate how these formulae can be turned into a fully vectorised
algorithm. First, note that for each dimension i, we can write the set of “left” boundary indices
(4.7) in matrix form as

(2M + 1)n−i+1 ·




0 0 . . . 0
1 1 . . . 1
2 2 . . . 2
...

...
...

...
dmax dmax . . . dmax




+




1 2 . . . (2M + 1)n−i

1 2 . . . (2M + 1)n−i

1 2 . . . (2M + 1)n−i

. . . . . . . . . . . . . . . . . . . . . . .
1 2 . . . (2M + 1)n−i




(4.9)

where dmax := (2M +1)i−1−1, or writing the matrix components row-wise into (2M + 1)n−1-com-
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ponent column vectors, as

(2M + 1)n−i+1 ·




0
0
...
0
1
1
...
1
2
2
...
2
...

dmax

dmax
...

dmax




+




1
2
...

(2M + 1)n−i

1
2
...

(2M + 1)n−i

1
2
...

(2M + 1)n−i

...
1
2
...

(2M + 1)n−i




. (4.10)

Analogously, the set of “right” boundary indices is given by (4.10) with 2M (2M + 1)n−i added to
each component. We now horizontally concatenate the vectors (4.10) obtained for each dimension i.
For our illustration case n = 3, M = 1, this becomes

“left”
boundary:




33 32 31

33 32 31

33 32 31

33 32 31

33 32 31

33 32 31

33 32 31

33 32 31

33 32 31




︸ ︷︷ ︸
=:M1

. ∗




0 0 0
0 0 1
0 0 2
0 1 3
0 1 4
0 1 5
0 2 6
0 2 7
0 2 8




︸ ︷︷ ︸
=:M2

+




1 1 1
2 2 1
3 3 1
4 1 1
5 2 1
6 3 1
7 1 1
8 2 1
9 3 1




︸ ︷︷ ︸
=:M3

, (4.11)

“right”
boundary:

︷ ︸︸ ︷


33 32 31

33 32 31

33 32 31

33 32 31

33 32 31

33 32 31

33 32 31

33 32 31

33 32 31




. ∗

︷ ︸︸ ︷


0 0 0
0 0 1
0 0 2
0 1 3
0 1 4
0 1 5
0 2 6
0 2 7
0 2 8




+

︷ ︸︸ ︷


1 1 1
2 2 1
3 3 1
4 1 1
5 2 1
6 3 1
7 1 1
8 2 1
9 3 1




+2 ·




32 31 30

32 31 30

32 31 30

32 31 30

32 31 30

32 31 30

32 31 30

32 31 30

32 31 30




︸ ︷︷ ︸
=:M4

(4.12)
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(compare with Table 4.2) where we used the MATLAB operator .∗ denoting component-wise matrix
multiplication. We immediately see that M1 = (2M + 1) ·M4. Defining in addition the auxiliary
matrix

M0 :=




0 0 0
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
8 8 8




, (4.13)

we find that M2 is given by the component-wise integer division of M0 by M4. Furthermore, M3 is
obtained as the result of M0 −M4. ∗M2, component-wise increased by 1. With these relations, we
can write the complete “left” boundary matrix as

M1 . ∗M2 + M3 = (2M + 1) ·M4 . ∗M2 + M0 −M4 . ∗M2 + 1

= 2M ·M4 . ∗M2 + M0 + 1 (4.14)

where 1 denotes the (2M + 1)n−1 × n matrix containing all ones. The “right” boundary matrix is
obtained by adding 2M ·M4 to (4.14).

For illustrative purposes, we derived Formula (4.14) for the special case n = 3, M = 1. However,
with appropriately defined auxiliary matrices M0, M2 and M4, we ultimately arrive at the same
formula for any n and M . Namely, using the MATLAB colon notation already explained, we define

M0 :=




0 : (2M + 1)n−1 − 1
. . . . . . . . . . . . . . . . . . . . .
0 : (2M + 1)n−1 − 1




T

∈ R(2M+1)n−1×n, (4.15)

M4 :=




(2M + 1)n−1 (2M + 1)n−2 . . . (2M + 1) 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(2M + 1)n−1 (2M + 1)n−2 . . . (2M + 1) 1


 ∈ R(2M+1)n−1×n, (4.16)

and M2 as the result of component-wise integer division of M0 by M4 as before. Matrices like M0

and M4 can easily be constructed in MATLAB with the aid of the repmat function (see [MATLAB
7.7.0 Help, 2008]): repmat(A,m,n) generates a matrix consisting of copies of the array A “tiled”
in an m× n arrangement.

In Algorithm 4, we provide a MATLAB code fragment generating the vectors intind and
bdind of boundary and interior grid point array indices, respectively, for an n-dimensional mesh
comprising 2M +1 grid points in each dimension. For further reference on the MATLAB functions
and operators used, see [MATLAB 7.7.0 Help, 2008]. M0 and M4 are generated from vectors with
the repmat function as described above. The ’ operator in line 1 denotes transposition. In line 2,
we construct the vector pow =

(
(2M + 1)n−1, (2M + 1)n−2, . . . , (2M + 1), 1

)
making up M4 by

generating the equally spaced vector (n− 1, n− 2, . . . , 1, 0) with the aid of the colon operator with
increment −1, and then generating the vector of (2M +1) to the power of all these values with the
.ˆ operator for component-wise powers. In line 4, the integer division of M0 by M4 is implemented
as the floor function (component-wise rounding to the nearest integer towards minus infinity)

55



Algorithm 4 Finding boundary and interior grid point indices

1 M0 = repmat( (0:((2*M+1)^(n-1)-1))’, 1,n);
2 pow = (2*M+1).^(n-1:-1:0);
3 M4 = repmat( pow, (2*M+1)^(n-1),1);
4 M2 = floor( M0./M4 );
5 leftbd = 2*M* M4.*M2 + M0 + 1;
6 bdind = reshape( [leftbd; leftbd+2*M*M4], 2*n*(2*M+1)^(n-1),1);
7 intind = setdiff((1:(2*M+1)^n)’, bdind);

of the component-wise matrix quotient M0./M4. Line 5 implements Formula (4.14). Note that
MATLAB interprets adding the scalar 1 to a matrix as adding 1 to each matrix component. In
line 6, we first vertically concatenate the “left” and “right” boundary index matrices leftbd and
leftbd+2M ·M4 and then reshape the result as a single column vector. The final output argument
bdind is a (2n (2M + 1)n−1)-component column vector containing all boundary grid point indices
in the order 



“left” boundary in the first dimension
“right” boundary in the first dimension

...
“left” boundary in the n-th dimension

“right” boundary in the n-th dimension




. (4.17)

Note that grid points which are on the boundary with respect to more than one dimension feature
more than once in bdind, i.e. bdind contains repetitions. The output vector intind simply obtained
as the set difference of {1, . . . , (2M + 1)n} and bdind using the MATLAB setdiff function, in
contrast, is automatically uniquely valued and sorted; it is a (2M − 1)n-component column vector
containing the array indices of the interior grid points.

4.2 Evaluating initial and boundary data

We shall need to evaluate the given functions w̃0 and g̃ at certain sets of grid points. As we aim for a
fully vectorised algorithm, these evaluations are to be done simultaneously. To this end, we require
the functions w̃0 and g̃ to be provided in the form of MATLAB function handles (see [MATLAB
7.7.0 Help, 2008]) which can deal with matrix arguments: if we pass a matrix as space argument,
we expect the output to be a column vector of evaluations of the respective function at each row of
the matrix as space arguments, i.e. if X ∈ RN×n is a “list” of N space arguments xk ∈ R1×n with
xk = X(k, 1 : n), we demand that the function f yields the output Y ∈ RN with Y (k) = f(xk).
This is a technical issue of entering the initial and boundary data, and MATLAB functionalities
facilitate the creation of such function handles; we will present a concrete example in Section 5.4.2.

Suppose the column vector y contains the array indices of the subset of grid points where we
wish to evaluate one of these functions (e.g., y = bdind for g̃, or y = (1 : (2M + 1)n)T for the
entire grid). Provided that a function handle meeting the above requirements is available, all we
need to do to obtain the vector of evaluations is to create a matrix that contains in its rows the
coordinates of the respective grid points and pass this matrix as space argument to the function
handle. The xi coordinate of the grid point xα is hαi (see the definition (2.2) of Ωx

R,h). Hence,
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we need an operation to convert array indices into the corresponding multiindices, i.e. the inverse
of (4.5). Dividing (4.5) by (2M + 1)n−j for any j between 1 and n, we obtain

ı̂− 1
(2M + 1)n−j

=
n∑

i=1

(αi + M) · (2M + 1)j−i

=
j∑

i=1

(αi + M) · (2M + 1)j−i +
n∑

i=j+1

(αi + M) · (2M + 1)j−i. (4.18)

The first partial sum is integer as j − i ≥ 0, and non-negative. The second partial sum can be
estimated like

0 ≤
n∑

i=j+1

(αi + M) · (2M + 1)j−i ≤ 2M
n∑

i=j+1

(2M + 1)j−i = 1−
( 1

2M + 1

)n−j
≤ 1. (4.19)

Taking the integral part of (4.18) hence yields

⌊
ı̂− 1

(2M + 1)n−j

⌋
=

j∑

i=1

(αi + M) · (2M + 1)j−i, (4.20)

and we finally obtain the conversion formula,

αj( ı̂ ) =
⌊

ı̂− 1
(2M + 1)n−j

⌋
− (2M + 1)

⌊
ı̂− 1

(2M + 1)n−j+1

⌋
−M, j = 1, . . . , n. (4.21)

Again, this relation is straightforward if α + (M, M, . . . ,M) is interpreted as the base (2M + 1)
numeral system representation of the number ı̂− 1.

Algorithm 5 presents a MATLAB procedure to simultaneously convert all array indices listed
in the column vector y into the corresponding multiindices: In the first line, each component of y

Algorithm 5 Converting array indices to multiindices

1 y = repmat(y-1,1,n);
2 aux = y./repmat( (2*M+1).^(n:-1:1),length(y),1 );
3 alpha = floor((2*M+1)*aux) - (2*M+1)*floor(aux) - M;

is decreased by 1, and n copies of this vector are horizontally concatenated. The first column of the
resulting matrix is then divided by (2M +1)n, the second by (2M +1)n−1 and so on, and finally, the
n-column matrix alpha containing in its rows the multiindex components corresponding to each
array index is calculated according to (4.21) using the floor of the respective quotients.

In order to obtain the vector of function evaluations at the grid points listed in y, the function
handle has to be called with the matrix h · alpha as space argument.

4.3 The matrices Ah and B1,h

The linear system (4.3) to be solved involves submatrices of Ah ∈ R(2M+1)n×(2M+1)n
. This matrix

is in general very large, and storing it component-wise would require a vast amount of memory. As
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Ah is sparse, however, the memory requirement reduces considerably if only the non-zero elements
together with their array indices are stored. MATLAB provides an appropriate sparse matrix data
structure along with a number of functions optimised for sparse matrices and thus allows to store
and manipulate sparse matrices highly efficiently (see [MATLAB 7.7.0 Help, 2008]). If we take a
closer look at the problem, however, we find that we do not even need to generate the matrix Ah

explicitly: the right-hand side of the system (4.3) involves A
(ii)
h and A

(ib)
h merely in the context of

matrix-vector products. The same holds true for the system matrix I + k θA
(ii)
h = kB1,h within the

multigrid method: in the multigrid algorithms 2 and 3, the system matrix is needed in the context
of the weighted Jacobi method for smoothing steps and for the calculation of residuals, and in
both cases exclusively in the form of matrix-vector products again (see (3.5) and (3.7)). Hence, it
suffices to implement the multiplication of vectors by Ah and kB1,h, and this can be done without
assembling the full matrices as we will show below.

Using array indexing as explained in Section 4.1.1, the matrix Ah is given by

(Ah)ı̂̂ =





r +
∑n

i=1
σ2

i
h2 if ı̂ ∈ intind and ̂ = ı̂

− σ2
i

2h2 + σ2
i

4h − r
2h if ı̂ ∈ intind and ̂ = ı̂ + (2M + 1)n−i, i = 1, . . . , n,

− σ2
i

2h2 − σ2
i

4h + r
2h if ı̂ ∈ intind and ̂ = ı̂− (2M + 1)n−i, i = 1, . . . , n,

−σiσjρij

4h2 if ı̂ ∈ intind and ̂ = ı̂ + (2M + 1)n−i + (2M + 1)n−j

or ̂ = ı̂− (2M + 1)n−i − (2M + 1)n−j , i 6= j,
σiσjρij

4h2 if ı̂ ∈ intind and ̂ = ı̂ + (2M + 1)n−i − (2M + 1)n−j

or ̂ = ı̂− (2M + 1)n−i + (2M + 1)n−j , i 6= j,

0 otherwise,

(4.22)

and the entries of I(2M+1)n + k θAh (i.e. kB1,h supplemented by rows and columns corresponding
to boundary indices) derive from those of Ah like

(
I(2M+1)n + k θAh

)
ı̂̂

= δı̂̂ + k θ(Ah)ı̂̂ (4.23)

with the Kronecker delta. We now see that with lexicographical grid point ordering, Ah is banded
with (maximal) upper and lower band width (2M + 1)n−1 + (2M + 1)n−2 (if n ≥ 2; in the one-
dimensional case, the matrix is tridiagonal). Figure 4.2 illustrates the typical sparsity pattern
of Ah in several space dimensions. The plots were generated with the MATLAB command spy
(cf. [MATLAB 7.7.0 Help, 2008]). Empty rows correspond to boundary grid points.

Furthermore, (4.22) reveals that each row of Ah that corresponds to an interior index contains
the same set of (potential) non-zero components, in the sense of actual values and their position
with respect to the diagonal. The 2n2 +1 elements of this set are systematically listed in Table 4.3.

Based on these observations, the multiplication of a vector W ∈ R(2M+1)n
by the matrix Ah

can be implemented as follows: write the increments listed in the first column of Table 4.3 into the
(2n2 +1)-component row vector increments, and the corresponding matrix entries into the equally
sized vector vals. The ı̂-th component of AhW is then given by

(AhW)ı̂ =





0, ı̂ ∈ bdind,∑(2M+1)n

̂=1 (Ah)ı̂̂ Ŵ =
∑2n2+1

j=1 vals(j) Wı̂+increments(j)

= W
(
(̂ı, ı̂, . . . , ı̂) + increments

) · valsT, ı̂ ∈ intind.

(4.24)
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1 65

1

65

nz = 189

n=1, M=32, N=65

1 81

1

81

nz = 441

n=2, M=4, N=81

1 125

1

125

nz = 513

n=3, M=2, N=125

Figure 4.2: Visualisation of the sparsity pattern of the matrix Ah for different space dimensions.
nz denotes the number of non-zero entries.

distance from the diagonal value

0 r +
∑n

i=1
σ2

i
h2

(2M + 1)n−i for all i − σ2
i

2h2 + σ2
i

4h − r
2h

−(2M + 1)n−i for all i − σ2
i

2h2 − σ2
i

4h + r
2h

(2M + 1)n−i + (2M + 1)n−j for all (i, j) with i < j −σiσjρij

4h2

−(2M + 1)n−i − (2M + 1)n−j for all (i, j) with i < j −σiσjρij

4h2

(2M + 1)n−i − (2M + 1)n−j for all (i, j) with i < j
σiσjρij

4h2

−(2M + 1)n−i + (2M + 1)n−j for all (i, j) with i < j
σiσjρij

4h2

Table 4.3: The entries in each row of Ah corresponding to an interior index. The “distance from
the diagonal” is to be understood as follows: for ı̂ ∈ intind, the column index of the corresponding
entry is obtained by adding the listed “distance” to ı̂.

Using the relations (2.34) and (2.35), we further find that

A
(ii)
h Wint(intind) =

(
AhWint

)
(intind) = Wint(incrind) · valsT, (4.25)

A
(ib)
h Wbd(bdind) =

(
AhWbd

)
(intind) = Wbd(incrind) · valsT, (4.26)

where

incrind := repmat( intind, 1, 2n2 + 1 ) + repmat( increments, (2M − 1)n, 1 ), (4.27)

i.e. the (2M −1)n× (2n2 +1) matrix incrind contains in each row the set of a fixed interior index ı̂
increased or decreased by all increments listed in Table 4.3; W(incrind) denotes the matrix made
up of the corresponding entries of W and is valid MATLAB syntax. Thus, the product AhW can be
implemented as a multiplication by the (2n2 + 1)-component vector vals, i.e. in linear complexity,
and without generating the matrix itself.

As for kB1,h = I(2M−1)n + k θA
(ii)
h , the product kB1,hW̃ with a vector W̃ ∈ R(2M−1)n

can
be implemented in a similar way as (4.25): we first supplement W̃ by zero boundary values to a
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(2M + 1)n-component vector W̃BV = W̃int
BV, and extend kB1,h to I(2M+1)n + k θAh. The entries

of this matrix are given in (4.23); hence, the corresponding kB1vals vector can be generated from
the vals vector corresponding to Ah by multiplying each component by k θ and then adding 1 to
the first component (representing the diagonal element). The corresponding increments vector is
the same as for the matrix Ah. Hence, we obtain

kB1,hW̃ =
(
I(2M−1)n + k θA

(ii)
h

)
W̃int

BV(intind) =
((

I(2M+1)n + k θAh

)
W̃int

BV

)
(intind)

= W̃int
BV(incrind) · kB1valsT = W̃BV(incrind) · kB1valsT. (4.28)

It remains to provide a vectorised algorithm to create the vectors increments and vals. As
for the increments corresponding to the one-step neighbours, we can use again the pow vector
as defined in line 2 of Algorithm 4, and hence define the first 2n + 1 entries of increments by
[0,pow,-pow]. The corresponding vals entries can be computed from the input parameters r,
R, M , and Σ (passed as an n × n matrix sigma): for a matrix sigma, the MATLAB command
diag(sigma) (see [MATLAB 7.7.0 Help, 2008]) returns a column vector formed from the diagonal
entries of sigma, i.e. in our case, (σ2

1, σ
2
2, . . . , σ

2
n)T. The transpose of this vector can be directly

used to generate the entire vals fragments
(
− σ2

i
2h2 ±

(σ2
i

4h − r
2h

))n

i=1
, and

∑n
i=1 σ2

i needed for the
first vals entry is obtained by the command sum(diag(sigma),1) where the first argument is an
array and the second argument denotes the dimension along which the array elements are to be
added up, cf. [MATLAB 7.7.0 Help, 2008].

For the increments entries corresponding to the two-step neighbours, we need increment com-
binations of the form 



(2M + 1)n−1 ± (2M + 1)n−2

(2M + 1)n−1 ± (2M + 1)n−3

...
...

(2M + 1)n−1 ± 1
(2M + 1)n−2 ± (2M + 1)n−3

...
...

(2M + 1)n−2 ± 1
...

...
(2M + 1) ± 1




T

(4.29)

with all combinations (n− i, n− j) with i < j as exponents. In order to generate a matrix of the
form (4.29), we first create a 2 × n(n−1)

2 matrix containing in its columns all combinations (i, j)
with i < j, and thereafter take (2M + 1) to the required powers with the aid of the .ˆ operator.
The rows of the resulting matrix can then be added or subtracted as desired. A matrix of all
combinations (i, j) with i < j can be constructed according to the following idea: we first generate
an n × n matrix containing the sequence (1 : n) in each row. The lower and upper triangular
part of this matrix (excluding the diagonal), extracted column-wise and row-wise, respectively, and
written row-wise into a two-row matrix, then yield the required pairs (i, j). This is illustrated in
Figure 4.3 for the case n = 4. In MATLAB, the functions triu and tril are available to extract
the upper and lower triangular parts of a matrix, respectively (see [MATLAB 7.7.0 Help, 2008]): for
a square matrix A, tril(A,-1) yields a matrix of the same size as A where the elements below the
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1

1 2 3 4

1 1 1
2 3 4 3

2 2 3
4 4

1

1

2

2

3

3

4

4
3 42

Figure 4.3: The construction of all combinations (i, j) with i < j.

diagonal of A are retained and all other elements are set to zero. If we know that all subdiagonal
elements of A are positive, we can column-wise extract them with the command A(tril(A,-1)>0)
(cf. [MATLAB 7.7.0 Help, 2008]).

The corresponding vals fragments ±(σiσjρij

4h2

)
with the (i, j) combinations from the columns

of the two-row matrix shown in Figure 4.3 can be obtained by converting the array indices (i, j)
to linear indices (see [MATLAB 7.7.0 Help, 2008]) and thus extracting the desired entries of the
matrix Σ.

4.3.1 Implementation of the weighted Jacobi method

By (3.7), the (m + 1)-th Jacobi iterate for the system AW = RHS is defined by

Wm+1 = Wm + ωD−1Rm = Wm + ωD−1(RHS−AWm), (4.30)

where D is made up of the diagonal of A. As already indicated, the matrix-vector multiplication
algorithm developed in the previous section (see (4.25)–(4.28)) can be used both for assembling the
right-hand side vector of the system (4.3) at each time step (where the approximation vector W` is
known at time step ` + 1), and in the context of the weighted Jacobi method. The system matrix
of (4.3) is kB1,h = I(2M−1)n + k θA

(ii)
h whose diagonal elements are all equal to

kB1vals(1) = 1 + k θ
(
r +

n∑

i=1

σ2
i

h2

)
(4.31)

independently of the time step. Hence, the subfunction jacobi (M,RHSh,W0,h, ω, ν) (see (3.25))
used in the multigrid algorithm listings can be implemented as indicated in Algorithm 6. Line 7
implements the calculation of the current residual using (4.28) for the product kB1,hW; to this end,
the vector WBV supplementing W by zero boundary values has to be generated in line 5. Line 8
then implements (4.30). As all diagonal elements of kB1,h are equal, the multiplication by D−1

in (4.30) reduces to a division by the scalar kB1vals(1). Finally, WBV is accordingly updated in
line 9. Note that the algorithm can be called with ν = 0 which may occur in the context of the
multigrid method if no pre- or post-smoothing is required; in this case, W0 is returned due to the
initialisation in line 4, i.e. the current approximation remains unchanged.

4.4 Intergrid transfer operations

An important feature needed in the multigrid method is intergrid transfer between the meshes
Ωx

R,h and Ωx
R,2h; in our case, we will use n-linear interpolation and full weighting restriction. In
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Algorithm 6 Weighted Jacobi method applied to kB1,hW = RHS on the interior grid points
of Ωx

R,h

1: function W = jacobi (M,RHS,W0, ω, ν, k, R, r,Σ)
Input: grid parameter M , right-hand side vector RHS ∈ R(2M−1)n

, initial guess W0 ∈ R(2M−1)n
,

weighting factor ω, number of iterations ν ≥ 0, time step k, problem parameters R, r, Σ
Output: ν-th iterate of the weighted Jacobi method with initial guess W0

2: Generate the intind vector for the mesh Ωx
R,h.

3: Generate the kB1vals and increments vectors and the matrix incrind described in Section 4.3.
4: W ← W0

5: Initialise WBV as a (2M + 1)n-component vector of zeros, and set
WBV(intind) ← W

6: for i = 1 : ν do
7: R ← RHS−WBV(incrind) · kB1valsT

8: W ← W + ω
kB1vals(1) R

9: WBV(intind) ← W
10: end for
11: return W

Section 3.2.3, we have already indicated how to construct the (sparse) matrix P representing the
n-linear interpolation mapping from R(M+1)n

to R(2M+1)n
: each column corresponds to a coarse-

grid point, and in all rows corresponding to surrounding fine-grid points, the weight with which
the coarse-grid value enters into the value at the respective fine-grid point is entered. Thus, row
and column index vectors and a value vector can be defined which the matrix P can be generated
from: an m× n sparse matrix P can be directly generated in MATLAB with the function call
P = sparse(I,J,Pvals,m,n), where Pvals is a vector containing the non-zero elements of the
matrix, and I and J are vectors of the same length containing the corresponding row and column
indices, respectively (see [MATLAB 7.7.0 Help, 2008]).

In the practical implementation, we may proceed by creating a list of all coarse-grid multiindices,
doubling each component in order to obtain the corresponding fine-grid indices (cf. (3.27)), and
then creating all combinations of increasing or decreasing the components by 1 in order to obtain
the fine-grid multiindices of all surrounding fine-grid points which are not part of the coarse grid.
Using Formula (4.5), we can convert the multiindices back to fine-grid array indices, corresponding
to row numbers in the matrix P . However, we have to be careful about the treatment of boundary
grid points, as those do not have the full set of surrounding fine-grid points. Instead of individually
determining the neighbours of each boundary coarse-grid point, however, we observe that this
problem does not occur when interpolating vectors with zero boundary values, and subsequently
show how we can use the prolongation routine for vectors with zero boundary values to treat vectors
with arbitrary boundary values as well.

4.4.1 n-linear interpolation for vectors with zero boundary values

If both the coarse-grid and the fine-grid vector have zero boundary values, Figure 4.4 illustrates
that it suffices to consider only the interior coarse-grid points in the above procedure: All interior
fine-grid points can be reached and assigned all relevant value contributions; the contribution of
the boundary coarse-grid points can be neglected as it is zero. As for the fine-grid boundary values,
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Figure 4.4: Illustration of which fine-grid points can be reached as neighbours of interior coarse-grid
points (filled) in a two-dimensional mesh.

no coarse-grid contributions are assigned in this case, yet the resulting zero rows in the matrix P
correctly define the boundary values to be zero. The advantage now is that every coarse-grid point
taken into consideration has fine-grid neighbours in any direction and hence that no distinction has
to be made.

Let M
2 be the grid parameter of the original coarse mesh. As suggested above, we start by

creating a matrix listing the coarse-grid multiindices of all interior coarse-grid points, i.e. all multi-
indices with components between −(M

2 −1) and M
2 −1. To this end, we devise an algorithm to create

all n-tupels with components between and including arbitrary numbers a and b in lexicographical
order; we can use a similar strategy as for the matrix M2 in (4.11). For illustration, let us consider
the case n = 2, a = 0 and b = 2, then we are aiming to create the matrix

ind :=




0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2




. (4.32)

Define the auxiliary matrices,

M̃0 :=




0 : (b− a + 1)n − 1
. . . . . . . . . . . . . . . . . . . .
0 : (b− a + 1)n − 1




T

∈ R(b−a+1)n×n, (4.33)

M̃4 :=




(b− a + 1)n−1 (b− a + 1)n−2 . . . (b− a + 1) 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(b− a + 1)n−1 (b− a + 1)n−2 . . . (b− a + 1) 1


 ∈ R(b−a+1)n×n, (4.34)

M̃1 := (b− a + 1) · M̃4. (4.35)
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In the illustration case, these matrices are given by

M̃0 =




0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8




, M̃1 =




9 3
9 3
9 3
9 3
9 3
9 3
9 3
9 3
9 3




, M̃4 =




3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1
3 1




. (4.36)

The matrix of remainders after the component-wise division of M̃0 by M̃1, rem (M̃0, M̃1) in MAT-
LAB notation (see [MATLAB 7.7.0 Help, 2008]), is




0 0
1 1
2 2
3 0
4 1
5 2
6 0
7 1
8 2




. (4.37)

After component-wise integer division of this matrix by M̃4, we arrive at



0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2




, (4.38)

i.e. the desired matrix ind. In the general case, the result at this stage is a matrix containing all
n-tupels with components between 0 and b− a, and we have to add a to each component to obtain
the n-tupels with components between a and b. A MATLAB code fragment implementing this
procedure for arbitrary n is shown in Algorithm 7.

We can thus generate a list ind of coarse-grid multiindices of all interior coarse-grid points with
the aid of Algorithm 7 with a = −M

2 +1, b = M
2 −1. The rows of this matrix can then be converted

to the column vector intcoarse of corresponding coarse-grid array indices by using Formula (4.5)
with M

2 instead of M . The vector intfine of fine-grid array indices of the same grid points is
obtained by using (4.5) with M and the rows of 2 · ind (cf. (3.27)). With the aid of these vectors
and following the ideas laid out in Section 3.2.3, we can assemble the row index, column index and
value vectors I, J and Pvals needed to generate the matrix P as shown in Table 4.4.
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Algorithm 7 Creating the set of all n-tupels with components between and including a and b,
written in the rows of the matrix ind in lexicographical order.

1 pow = (b-a+1).^(n-1:-1:0);
2 M0 = repmat( (0:((b-a+1)^n-1))’, 1,n);
3 M4 = repmat( pow, (b-a+1)^n,1);
4 ind = floor( rem( M0,(b-a+1)*M4 )./ M4 ) + a;

I J Pvals

intfine intcoarse 1

intfine ± (2M + 1)n−i · 1 for all i intcoarse 1
2 · 1

intfine ± (2M + 1)n−i · 1
± (2M + 1)n−j · 1 for all i < j intcoarse 1

4 · 1
...

...
...

intfine +
∑n

i=1

[±(2M + 1)n−i
] · 1 intcoarse 1

2n · 1

Table 4.4: Fragments making up the row index, column index, and value vectors for P . 1 denotes
an (M − 1)n-component vector of all ones.

For illustration, let us consider the two-dimensional case again. For the row index fragments,
we need increments of the form




0 0
0 −1
0 1

−1 0
1 0

−1 −1
−1 1

1 −1
1 1




︸ ︷︷ ︸
=:comb

·
(

2M + 1
1

)
. (4.39)

Note that the 3n × n matrix comb corresponds to the set of all n-tupels with components between
−1 and 1, hence we can use Algorithm 7 to create it. This yields the n-tupels in lexicographical
order unlike shown in (4.39), yet the order is irrelevant in this case. Thus, the entire I vector can
be generated by adding comb*((2*M+1).^(n-1:-1:0)’) to each component of intfine. Finally,
the corresponding exponent of 2 in the Pvals entry is given by the negative sum of the moduli of
the entries in the corresponding row of comb, corresponding to the number of directions in which
the fine-grid point is shifted with respect to the coarse grid axes.

To summarise, we present a full MATLAB code to generate the matrix P in Algorithm 8.
Lines 1–4 implement Algorithm 7 with a = −M

2 +1, b = M
2 − 1 in a more compact way, and finally
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Algorithm 8 Creating the matrix P representing n-linear interpolation from Ωx
R,2h to Ωx

R,h for
vectors with zero boundary values.

1 pow = (M-1).^(n-1:-1:0);
2 ind = floor( rem( repmat( (0:((M-1)^n-1))’, 1,n), ...
3 repmat( (M-1)*pow, (M-1)^n,1) )...
4 ./ repmat( pow, (M-1)^n,1) ) + 1;
5 ind = ind’;
6 intcoarse = (( M+1).^(n-1:-1:0))* ind + 1;
7 intfine = ((2*M+1).^(n-1:-1:0))*2*ind + 1;
8 comb = floor( rem( repmat( (0:(3^n -1))’, 1,n),...
9 repmat( 3.^(n:-1:1), 3^n,1) )...

10 ./ repmat( 3.^(n-1:-1:0), 3^n,1) ) - 1;
11 incr = comb*((2*M+1).^(n-1:-1:0)’);
12 I = repmat( intfine, 3^n,1) + repmat( incr, 1,(M-1)^n);
13 J = repmat( intcoarse, 3^n,1);
14 Pvals = 2.^(-sum(abs(comb),2));
15 P = sparse( I(:), J(:), repmat( Pvals, (M-1)^n,1), (2*M+1)^n, (M+1)^n );

increase each component of ind by M
2 as a first step in the conversion to coarse-grid array indices.

In lines 6 and 7, the array index vectors intcoarse and intfine are generated as indicated above
using a vectorised version of Formula (4.5), expressed as an inner product. In lines 8–10, the comb
vector is generated according to Algorithm 7 using a = −1, b = 1. In line 12, the row index vector I
is assembled by vertically concatenating 3n copies of the row vector intfine, and adding (M −1)n

horizontally concatenated copies of the column vector incr containing the neighbour increments
as in (4.39). By this combination of vertical and horizontal copies, we achieve that each intfine
component is combined with each increment. The resulting matrix is converted back to a column
vector in line 15: for an arbitrarily shaped array A, the MATLAB command A(:) creates a vector
containing its components as a single column (see [MATLAB 7.7.0 Help, 2008]). Line 14 generates
the Pvals vector by taking 2 to the negative power of the row-wise summed matrix of absolute
values of comb.

4.4.2 n-linear interpolation for vectors with arbitrary boundary values

Algorithm 8 is designed for vectors whose boundary entries are all zero, as only the interior coarse-
grid point values are taken into account. Figure 4.5 highlights the fine-grid points in a two-
dimensional mesh on which the coarse-grid boundary values have no influence during n-linear
interpolation. Hence, the following idea how to extend Algorithm 8 to a prolongation routine for
vectors with arbitrary boundary values suggests itself:

� Create the matrix representing the prolongation mapping for vectors with zero boundary
values from a coarse grid with parameter M

2 + 1 to the fine grid with parameter M + 2, i.e.
grids which are slightly larger than the ones in consideration.

� Delete the entries corresponding to the two “outermost fine-grid boundary layers”, i.e. the
grid points of Ωx

R+2h,h which are not part of Ωx
R,h, and of Ωx

R+2h,2h which are not part of
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Figure 4.5: Illustration of the properties of the prolongation procedure in Algorithm 8: for all
fine-grid points within the grey box, the values at all nearest coarse-grid neighbours are taken into
account and there is no influence of the boundary values.

Ωx
R,2h (those outside the grey box in Figure 4.5).

This leaves the submatrix corresponding to the prolongation mapping from Ωx
R,2h to Ωx

R,h

where all boundary values are taken into account.

Before we proceed to the practical implementation of this idea, two remarks are in place: first, note
that Algorithm 8 does not require the mesh parameter M to be a power of two, it rather works
for any integer M ≥ 2. Therefore, we can always apply it to the mesh with parameter M + 2 in
the first step of the above algorithm. Second, although we mention the actual diameters R of the
meshes in the second step, they play no role in the creation of the prolongation matrix in fact, as
only the number and relative positions of grid points are relevant.

Algorithm 9 shows how the above idea can be implemented using known routines. From the

Algorithm 9 Creating the matrix P representing n-linear interpolation from Ωx
R,2h to Ωx

R,h for
vectors with arbitrary boundary values.
1: Use Algorithm 8 with fine-grid parameter M + 2 to obtain the matrix P ∈ R(2M+5)n×(M+3)n

.
2: Find the set of boundary grid point indices for the mesh with parameter M + 2 (Algorithm 4),

and delete the rows of P corresponding to these indices.
3: Find the set of boundary grid point indices for the mesh with parameter M + 1 (Algorithm 4),

and delete the rows of P corresponding to these indices.
4: Find the set of boundary grid point indices for the mesh with parameter M

2 + 1 (Algorithm 4),
and delete the columns of P corresponding to these indices.

5: Return the resulting submatrix P ∈ R(2M+1)n×(M+1)n
.

rows of the original “large” matrix P , we have to eliminate all components corresponding to grid
points of the mesh with parameter M +2 which are not part of Ωx

R,h. This is done by first deleting
the rows corresponding to boundary grid points in line 2. Note that the remaining grid points
correspond to the mesh with parameter M + 1, in lexicographical order. In order to eliminate the
“second boundary layer” (cf. Figure 4.5), we thus delete the entries corresponding to boundary grid
points of this mesh. Note that the order of lines 2 and 3 is substantial, whereas line 4 taking care
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of the coarse-grid points may be executed at any stage.

Regarding Section 3.2.3, once the prolongation matrix P has been created, the matrix repre-
senting full weighting restriction is simply obtained by transposing P and weighting it by 2−n. If
a fine-grid vector with zero boundary values is to be restricted, the matrix P may be generated
according to Algorithm 8 rather than Algorithm 9.

4.5 The full Black-Scholes solver

Combining the routines developed in the previous sections, we can assemble a full numerical scheme
to approximately compute the solution vectors W`, ` = 0, . . . , K of the Crank-Nicolson and the im-
plicit Euler discretisations (4.1)–(4.3) of the truncated transformed Black-Scholes problem (1.57)–
(1.59), based on the full multigrid V-cycle method with the weighted Jacobi method as smoothing
operation, n-linear interpolation and full weighting restriction.

Algorithm 10 presents a pseudocode implementation of the Crank-Nicolson method. Note that

Algorithm 10 Crank-Nicolson method for the truncated transformed Black-Scholes problem
1: function W = CN(n,M,R, k, T, r,Σ, w̃0, g̃, ν1, ν2, ν, ω)

Input: number of underlying assets n, grid parameters M = 2m and R, time step k, maturity
date T , riskless interest rate r, covariance matrix Σ, initial function w̃0, boundary function g̃,
smoothing parameters ν1 and ν2 for the multigrid method, cycling parameter ν for the full
multigrid method, weighting factor ω for the weighted Jacobi method

Output: matrix W ∈ R(2M+1)n×(K+1) containing in its columns the vectors W`, ` = 0, . . . , K
(approximately) solving (4.1)–(4.3)

2: Initialise W as a zero matrix.
3: Generate a matrix coord of all grid point coordinates

(
R
M · alpha with alpha according to

Algorithm 5 with y = (1 : (2M + 1)n)T
)
.

4: Evaluate w̃0 at coord and hence assign the first column of W with the initial data.
5: Generate the boundary and interior array index vectors bdind and intind for the mesh Ωx

R,h

(Algorithm 4).
6: Generate the vals vector for the matrix Ah and the incrind matrix according to Section 4.3.

Analogously to kB1vals described there, generate the kB0vals vector of non-zero values of the
matrix I − k

2Ah.
7: for i = 1 : K do
8: Generate the vectors g̃` and g̃`+1 by evaluating g̃ at coord(bdind,:) and at time (i − 1)k

and ik, respectively, and supplementing the results by zero interior values.
9: Assemble the right-hand side vector of (4.3) with θ = 1

2 using the matrix-vector product
algorithm from (4.25)–(4.28):
W`,int ← W(intind, i) supplemented by zero boundary values
RHS ← W`,int(incrind) · kB0valsT − k

2

(
g̃`(incrind) + g̃`+1(incrind)

) · valsT

10: W( : , i + 1) ← FMG∗ (n,M,R, k, r,Σ,RHS, g̃`+1, ν1, ν2, ν, ω)
11: end for
12: return W

although only the interior components of the W` vectors are involved in the linear system (4.3), we
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assume the full multigrid V-cycle function FMG∗ called in line 10 to return the full W `+1 vector
including the correct boundary values (using a colon instead of a specified vector as row or column
reference is interpreted as all existing rows or columns in MATLAB syntax, see [MATLAB 7.7.0
Help, 2008]). The reason for this is that the boundary data are required in the full multigrid
V-cycle algorithm (see the subsequent paragraph). As the vector g̃`+1 of boundary values of W`+1

is calculated in line 8 of Algorithm 10 in any case, it makes sense to pass this knowledge to the
FMG∗ function as an input parameter in order to avoid redundant evaluations of the function g̃
which are in general computationally expensive. On the other hand, the FMG∗ function can thus
conveniently be defined in such a way that the output already includes the correct boundary values.

In the nested iteration scheme, approximations of the vector W on different grids are involved.
The correct boundary values of W on any grid are prescribed by the boundary function g̃ which
is not zero in general. Hence, in interpolating approximations of W from a coarse to a fine grid,
the boundary values have to be taken into account in order to obtain a correct interpolation at
fine-grid points near the boundary. For the fine-grid points directly on the boundary, however, the
obtained interpolation will in general not be equal to the correct boundary values prescribed by g̃.
Hence, coarse-grid boundary values are necessary for the interpolation, yet the fine-grid boundary
values have to be additionally corrected after the interpolation step.

Algorithm 11 presents an appropriate implementation of the FMG∗ function. This is a slightly
modified version of Algorithm 3 involving the modified multigrid µ-cycle function MG∗ that is
shown in Algorithm 12 below. First, unless we are on the coarsest grid already, the right-hand side
vector is restricted to the coarser mesh Ωx

R,2h (line 6). Note that we have so far always defined
the prolongation matrix P to interpolate coarse-grid vectors including boundary values to fine-grid
vectors including boundary values, hence the corresponding weighted restriction matrix R = 1

2n PT

acts on fine-grid vectors in R(2M+1)n
. However, the right-hand side vector RHS only includes

components corresponding to interior grid points, hence it cannot directly be multiplied by R.
A possible way to bypass this mismatch would be to extend RHS by arbitrary boundary values
before applying the restriction matrix. The boundary values have no influence on the interior
components of the result (note that this holds for restriction, but not for prolongation!), and only
those are needed in the subsequent process as right-hand side vector on the coarser grid. We may
for instance extend RHS by zero boundary values. The product RRHSBV is then the same as if
we multiplied the original vector RHS by the submatrix of R obtained by omitting the columns
corresponding to fine-grid boundary indices. Hence, instead of extending RHS, we may as well
restrict R, and this is the strategy we use in Algorithm 11: in line 6, we extract only the rows of
P corresponding to interior fine-grid indices, i.e. we obtain only the columns of R corresponding
to interior fine-grid indices. As we are only interested in the interior components of the restricted
vector, we additionally restrict to the columns of P corresponding to interior coarse-grid indices
(i.e. rows of R corresponding to interior coarse-grid indices). Note that as the boundary entries of P
are omitted in this step, we actually do not need the prolongation matrix for vectors with arbitrary
boundary values (according to Algorithm 9), but we might as well use the prolongation matrix for
vectors with zero boundary values (according to the less complex Algorithm 8). However, as we
have argued above, we need the prolongation matrix for vectors with arbitrary boundary values in
line 9 where W2h is interpolated to the finer grid Ωx

R,h. Therefore, it makes sense to generate the
matrix P for vectors with arbitrary boundary values once and for all in line 5. After restricting the
right-hand side vector, the FMG∗ function is called on the mesh Ωx

R,2h in line 8. However, FMG∗

also requires the boundary values of the result (i.e. of W2h) as input. These may be calculated with
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Algorithm 11 Full multigrid V-cycle method for use in a Crank-Nicolson or implicit Euler dis-
cretisation
1: function W = FMG∗ (n,M,R, k, r,Σ,RHS, BVs, ν1, ν2, ν, ω)

Input: number of underlying assets n, grid parameters M = 2m and R, time step k, riskless interest
rate r, covariance matrix Σ, right-hand side vector RHS ∈ R(2M−1)n

, boundary value vector
BVs ∈ R(2M+1)n

, smoothing parameters ν1 and ν2, cycling parameter ν, weighting factor ω for
the weighted Jacobi method

Output: W ∈ R(2M+1)n
: result of the full multigrid V-cycle method (with the specified parameters)

applied to the problem (4.1)–(4.3)
2: Initialise W as a zero vector.
3: Generate the boundary and interior array index vectors bdind and intind for the mesh Ωx

R,h,
and bdind2h and intind2h for the mesh Ωx

R,2h (Algorithm 4).
4: if M > 1 then
5: Generate the matrix P representing n-linear interpolation from Ωx

R,2h to Ωx
R,h for vectors

with arbitrary boundary values (Algorithm 9).
6: Use the submatrix of P corresponding to interior indices to restrict the right-hand side vector

to Ωx
R,2h:

RHS2h ← 1
2n P (intind, intind2h)T RHS

7: Define the vector BVs2h of coarse-grid boundary values by extracting the appropriate entries
of BVs (to find those, convert the coarse-grid array index vector bdind2h to coarse-grid
multiindices using Algorithm 5 and then convert these to fine-grid array indices as in creating
intfine in Algorithm 8).

8: W2h ← FMG∗ (
n, M

2 , R, k, r,Σ,RHS2h,BVs2h, ν1, ν2, ν, ω
)

9: W ← W + P W2h

10: end if
11: W(bdind) ← BVs(bdind)
12: for i = 1 : ν do
13: W(intind) ← MG∗ (n,M, R, k, r,Σ,W(intind),RHS, ν1, ν2, 1, ω)
14: end for
15: return W

the aid of the boundary function g̃. However, we can again avoid redundant function evaluations
at this step: all coarse-grid boundary grid points are part of the fine-grid boundary as well, and
the corresponding values are included in the known BVs vector. We can extract them as described
in line 7. The result of the FMG∗ function call then has to be interpolated to Ωx

R,h again in line 9,
and as mentioned above, the boundary values have to be corrected after that in line 11. This line
is also executed on the coarsest grid in order to define the boundary values of W.

The procedure up to this point implements the nested iteration method to find a good initial
guess for W to be used in the multigrid µ-cycle method. The multigrid µ-cycle merely concerns
the linear system in the interior components of the W vector; boundary values are not needed any
more as we will see below. Hence, the MG∗ function is called only for W(intind) and with initial
guess W(intind) in line 13 of Algorithm 11. In any case, the output of FMG∗ contains the correct
boundary values due to the previous assignment in line 11.

The corresponding multigrid µ-cycle implementation is shown in Algorithm 12. As indicated
in Algorithm 2, if the coarsest grid with M = 1 is reached, the linear system kB1,hW = RHS is
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Algorithm 12 Multigrid µ-cycle
1: function W = MG∗ (n,M,R, k, r,Σ,W0,RHS, ν1, ν2, µ, ω)

Input: number of underlying assets n, grid parameters M = 2m and R, time step k, risk-
less interest rate r, covariance matrix Σ, initial guess W0 ∈ R(2M−1)n

, right-hand side
vector RHS ∈ R(2M−1)n

, smoothing parameters ν1 and ν2, cycling parameter µ, weighting
factor ω for the weighted Jacobi method

Output: W ∈ R(2M−1)n
: result of the multigrid µ-cycle method (with the specified parameters)

applied to the problem kB1,hW = RHS on the interior grid points of the mesh Ωx
R,h with

initial guess W0

2: if M = 1 then
3: W ← 1

1+k θ
(
r+
Pn

i=1

σ2
i

h2

) RHS

4: else
5: W ← jacobi (M,RHS,W0, ω, ν1, k, R, r,Σ) (Algorithm 6)
6: Calculate the residual R of W as in line 7 of Algorithm 6.
7: Generate the matrix P representing n-linear interpolation from Ωx

R,2h to Ωx
R,h for vectors

with zero boundary values (Algorithm 8).
8: R2h ← 1

2n P (intind, intind2h)T R
9: E2h ← 0

10: for i = 1 : µ do
11: E2h ← MG∗ (

n, M
2 , R, k, r,Σ,E2h,R2h, ν1, ν2, µ, ω

)
12: end for
13: W ← W + P (intind, intind2h)E2h

14: W ← jacobi (M,RHS,W, ω, ν2, k, R, r,Σ) (Algorithm 6)
15: end if
16: return W

to be solved exactly. As we have already seen, there is only one interior grid point in this mesh,
hence kB1,h is a 1× 1 matrix made up of the “diagonal element” 1 + k θ

(
r +

∑n
i=1

σ2
i

h2

)
(see (4.31)),

and the solution of the corresponding scalar equation is obtained by dividing RHS by this value
(see line 3). Otherwise, pre-smoothing is performed (line 5), the residual is calculated (line 6)
and restricted to the grid Ωx

R,2h (line 8). Note that like in the case of restricting the right-hand
side vector in Algorithm 11, we want to restrict a vector without boundary values here. As we
have seen above, we can implement this by omitting the rows and columns of P corresponding to
boundary grid points. In contrast to the FMG∗ function, the less complex prolongation matrix for
vectors with zero boundary values can be used within the MG∗ function (generated in line 7): for
the restriction, this is insignificant in both cases; as for the prolongation, however, the vector to
be interpolated is W2h in FMG∗ and E2h in MG∗. The former has potentially non-zero boundary
values prescribed by g̃, whereas the latter is the error of W2h with respect to the exact solution of
the system (4.3) on Ωx

R,2h. As the boundary values are defined by (4.2) for the approximation as
well as the exact solution, we can say that if E2h were supplemented by boundary values, it would
have zero boundary values. Hence, the prolongation matrix for vectors with zero boundary values,
or in effect, the submatrix corresponding to interior grid points, can be used in line 13. Finally,
post-smoothing is performed in line 14.

In order to implement the implicit Euler method instead of the Crank-Nicolson method, only
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small changes are necessary in Algorithm 10. A pseudocode implementation of the corresponding
IE function is given in Algorithm 13. Furthermore, the MG∗ function (in particular, the weighted
Jacobi method) has to be modified to solve the system

(
I(2M−1)n + k A

(ii)
h

)
W = RHS rather than(

I(2M−1)n + k
2A

(ii)
h

)
W = RHS; the FMG∗ function need not be altered.

Algorithm 13 Implicit Euler method for the truncated transformed Black-Scholes problem
1: function W = IE (n, M, R, k, T, r,Σ, w̃0, g̃, ν1, ν2, ν, ω)

Input: number of underlying assets n, grid parameters M = 2m and R, time step k, maturity
date T , riskless interest rate r, covariance matrix Σ, initial function w̃0, boundary function g̃,
smoothing parameters ν1 and ν2 for the multigrid method, cycling parameter ν for the full
multigrid method, weighting factor ω for the weighted Jacobi method

Output: matrix W ∈ R(2M+1)n×(K+1) containing in its columns the vectors W`, ` = 0, . . . , K
(approximately) solving (4.1)–(4.3)

2: Initialise W as a zero matrix.
3: Generate a matrix coord of all grid point coordinates

(
R
M · alpha with alpha according to

Algorithm 5 with y = (1 : (2M + 1)n)T
)
.

4: Evaluate w̃0 at coord and hence assign the first column of W with the initial data.
5: Generate the boundary and interior array index vectors bdind and intind for the mesh Ωx

R,h

(Algorithm 4).
6: Generate the vals vector for the matrix Ah and the incrind matrix according to Section 4.3.
7: for i = 1 : K do
8: Generate the vector g̃`+1 by evaluating g̃ at coord(bdind,:) and at time ik, and supple-

menting the result by zero interior values.
9: Assemble the right-hand side vector of (4.3) with θ = 1:

RHS ← W(intind, i)− k g̃`+1(incrind) · valsT

10: W( : , i + 1) ← FMG∗ (n,M,R, k, r,Σ,RHS, g̃`+1, ν1, ν2, ν, ω)
11: end for
12: return W
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Chapter 5

Numerical results

In this chapter, we will present some numerical results of the Black-Scholes solver derived in the
previous chapters when applied to realistic option pricing problems, and thus assess the performance
of the method and the implementation. Most computations (especially those where computation
times are given) were done in MATLAB 7.7 (R2008b) running on a UNIX PC with an AMD Opteron
Processor 248 (2 cores, 2.2 GHz, 1 MB CPU Cache, 8 GB RAM); the most costly computations
were executed in MATLAB 7.8 (R2009a) on a UNIX PC with an Intel Xeon processor (8 cores,
2.5 GHz, 6144 KB CPU Cache, 32 GB RAM).

We will also compare the obtained results to results published in literature. As the most
interesting test cases are option types, where a closed form solution for the price is known, we will
give a summary of some explicit pricing formulae first.

5.1 Closed form option pricing formulae

5.1.1 Calls and puts on a single asset

For European call and put options on a single asset, an explicit valuation formula was already
derived in [Black and Scholes, 1973]: let C(S, E, τ, r, σ) denote the price of a European call with
exercise price E at time to maturity τ and current asset price S, when the riskless interest rate is r
and the volatility of the underlying asset is σ, and P (S, E, τ, r, σ) the price of the corresponding
put. Then

C(S,E, τ, r, σ) = SN( d1)− Ee−rτN( d2), (5.1)
P (S,E, τ, r, σ) = −SN(−d1) + Ee−rτN(−d2), (5.2)

where

d1 := d1(S, E, τ, r, σ) :=
ln S

E +
(
r + σ2

2

)
τ

σ
√

τ
, (5.3)

d2 := d2(S, E, τ, r, σ) :=
ln S

E +
(
r − σ2

2

)
τ

σ
√

τ
= d1(S,E, τ, r, σ)− σ

√
τ , (5.4)

and N( . ) denotes the cumulative distribution function of the standard normal distribution. There
holds the put-call-parity relation

C(S, E, τ, r, σ) + Ee−rτ = P (S, E, τ, r, σ) + S. (5.5)
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5.1.2 Exchange options

Options that give the holder the right, at expiry, to exchange one asset for another were first
examined by [Margrabe, 1978]. This type of option is called exchange option by [Wilmott, 1998]
and Margrabe option, exchangeable option, or outperformance option in [BusinessDictionary.com,
2009]. Following [Wilmott, 1998], one can reduce the two-dimensional Black-Scholes problem for an
option to exchange q2 units of asset S2 for q1 units of asset S1 to the one-dimensional Black-Scholes
problem of an ordinary call option on the underlying S1

S2
. Hence, with Σ =

(
σ2
1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

)
, one

obtains,

V (S1, S2, q1, q2, τ, r,Σ) = q1S2 C

(
S1

S2
,
q2

q1
, τ, 0, σ̄

)

= q1S1 N
(
d1(q1S1, q2S2, τ, 0, σ̄)

)
− q2S2 N

(
d2(q1S1, q2S2, τ, 0, σ̄)

)
(5.6)

with
σ̄2 := σ2

1 + σ2
2 − 2ρ12σ1σ2. (5.7)

5.1.3 Options on the maximum or the minimum of n assets

[Stulz, 1982] derived a valuation formula for European call and put options on the minimum and
the maximum of two assets. The resulting pricing formula involves evaluations of the bivariate
normal cumulative distribution function. Subsequently, [Johnson, 1987] generalised this formula to
options on the minimum and the maximum of an arbitrary number of assets. Let

Nn(x1, . . . , xn, R) (5.8)

denote the evaluation at (x1, . . . , xn) of the cumulative distribution function of the n-variate normal
distribution with mean 0 and covariance matrix R. According to the formula by [Johnson, 1987],
where we correct an obvious typographical error in the second term, the price of a call option on
the maximum of n assets with uniform exercise price E is given by

Cmax(S, E, τ, r,Σ) =

S1 Nn

(
d1(S1, E, τ, r, σ1), d1(S1, S2, τ, 0, σ12), . . . , d1(S1, Sn, τ, 0, σ1n), R1

)

+S2 Nn

(
d1(S2, E, τ, r, σ2), d1(S2, S1, τ, 0, σ12), . . . , d1(S2, Sn, τ, 0, σ2n), R2

)

+ . . .

+Sn Nn

(
d1(Sn, E, τ, r, σn), d1(Sn, S1, τ, 0, σ1n), . . . , d1(Sn, Sn−1, τ, 0, σn−1 n), Rn

)

−Ee−rτ
(
1−Nn

(
−d2(S1, E, τ, r, σ1),−d2(S2, E, τ, r, σ2), . . . ,−d2(Sn, E, τ, r, σn), R

))
(5.9)

with d1 and d2 as defined in (5.3)–(5.4),

σ2
ij := σ2

i − 2ρijσiσj + σ2
j , (5.10)
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and covariance matrices

R :=




1 ρ12 ρ13 . . . ρ1 n−1 ρ1n

ρ12 1 ρ23 . . . ρ2 n−1 ρ2n

ρ13 ρ23 1 . . . ρ3 n−1 ρ3n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ρ1 n−1 ρ2 n−1 ρ3 n−1 . . . 1 ρn−1 n

ρ1n ρ2n ρ3n . . . ρn−1 n 1




(5.11)

and

Ri :=




1 ρij1(i)k1(i) ρij2(i)k2(i) . . . ρijn−2(i)kn−2(i) ρijn−1(i)kn−1(i)

ρij1(i)k1(i) 1 ρijn(i)kn(i) . . . ρij2n−4(i)k2n−4(i) ρij2n−3(i)k2n−3(i)

ρij2(i)k2(i) ρijn(i)kn(i) 1 . . . ρij3n−7(i)k3n−7(i) ρij3n−6(i)k3n−6(i)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 ρijn(n−1)/2(i)kn(n−1)/2(i)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1




(5.12)

for i = 1, . . . , n, where the triple indexed correlation coefficients are defined by

ρiij := ρiji :=
σi − ρijσj

σij
for i 6= j, (5.13)

ρijk := ρikj :=
σ2

i − ρijσiσj − ρikσiσk + ρjkσjσk

σijσik
for i,j,k mutually distinct (5.14)

and where the vectors j(i) and k(i) containing the (j(i), k(i)) combinations appearing in (5.12)
can be found as follows: create an n × n matrix by vertically concatenating n copies of the row
vector [i,1:(i-1),(i+1):n]. The lower triangular part of this matrix (excluding the diagonal),
extracted column-wise, yields j(i), and the upper triangular part, extracted row-wise, yields k(i).
Note that this procedure is similar to the one described in Section 4.3 to find all (i, j) combinations
with i < j, only now the i-th column of the construction matrix is put in front. For illustration,
the j(i) and k(i) vectors for n = 4 are shown in Table 5.1.

construction matrix
(

j(i)
k(i)

)

i = 1
(

1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

) (
1 1 1 2 2 3
2 3 4 3 4 4

)

i = 2
(

2 1 3 4
2 1 3 4
2 1 3 4
2 1 3 4

) (
2 2 2 1 1 3
1 3 4 3 4 4

)

i = 3
(

3 1 2 4
3 1 2 4
3 1 2 4
3 1 2 4

) (
3 3 3 1 1 2
1 2 4 2 4 4

)

i = 4
(

4 1 2 3
4 1 2 3
4 1 2 3
4 1 2 3

) (
4 4 4 1 1 2
1 2 3 2 3 3

)

Table 5.1: The (j(i), k(i)) combinations appearing in (5.12) in the case n = 4.
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The price of a call option with exercise price E on the minimum of n assets is given by

Cmin(S, E, τ, r,Σ) =

S1 Nn

(
d1(S1, E, τ, r, σ1),−d1(S1, S2, τ, 0, σ12), . . . ,−d1(S1, Sn, τ, 0, σ1n), R̃1

)

+S2 Nn

(
d1(S2, E, τ, r, σ2),−d1(S2, S1, τ, 0, σ12), . . . ,−d1(S2, Sn, τ, 0, σ2n), R̃2

)

+ . . .

+Sn Nn

(
d1(Sn, E, τ, r, σn),−d1(Sn, S1, τ, 0, σ1n), . . . ,−d1(Sn, Sn−1, τ, 0, σn−1 n), R̃n

)

−Ee−rτNn

(
d2(S1, E, τ, r, σ1), d2(S2, E, τ, r, σ2), . . . , d2(Sn, E, τ, r, σn), R

)
, (5.15)

where the covariance matrices R̃i differ from the Ri defined by (5.12) in that the first (n− 1) triple
indexed correlation coefficients (i.e. the ones in the first row and column of R̃i) are taken negative.
For n = 2, (5.15) becomes

Cmin(S1, S2, E, τ, r,Σ) = S1 N2

(
d1(S1, E, τ, r, σ1),−d1(S1, S2, τ, 0, σ12),

(
1 −ρ112

−ρ112 1

))

+ S2 N2

(
d1(S2, E, τ, r, σ2),−d1(S2, S1, τ, 0, σ12),

(
1 −ρ221

−ρ221 1

))

− Ee−rτN2

(
d2(S1, E, τ, r, σ1), d2(S2, E, τ, r, σ2),

(
1 ρ12

ρ12 1

))
(5.16)

with σ2
12 = σ2

1 − 2ρ12σ1σ2 + σ2
2, ρ112 = σ1−ρ12σ2

σ12
and ρ221 = σ2−ρ12σ1

σ12
, which is consistent with

equation (11) in [Stulz, 1982] corrected by the typographical error pointed out by [Johnson, 1987].
For the two-asset case, [Stulz, 1982] in addition proves the relations

Cmin(S1, S2, 0, τ, r,Σ) = S1 − V (S1, S2, 1, 1, τ, r,Σ)

= S1 − S1 N
(
d1(S1, S2, τ, 0, σ12)

)
+ S2 N

(
d2(S1, S2, τ, 0, σ12)

)
, (5.17)

where V is the price of the exchange option to exchange one unit of asset S2 for one unit of asset S1

(see (5.6)),

Cmax(S1, S2, E, τ, r,Σ) = C(S1, E, τ, r, σ) + C(S2, E, τ, r, σ)− Cmin(S1, S2, E, τ, r,Σ), (5.18)

where C denotes the price of a call option on a single asset as given by (5.1), and the parity relations
yielding the price of put options on the minimum and maximum of two assets, respectively,

Pmin(S1, S2, E, τ, r,Σ) = Ee−rτ − Cmin(S1, S2, 0, τ, r,Σ) + Cmin(S1, S2, E, τ, r,Σ), (5.19)
Pmax(S1, S2, E, τ, r,Σ) = Ee−rτ − Cmax(S1, S2, 0, τ, r,Σ) + Cmax(S1, S2, E, τ, r,Σ). (5.20)

5.1.4 Other cases

[Boyle et al., 1989] mention that a closed form solution can be found for the price of options on the
geometric average of n assets, yet they do not state this solution.

Referring to the closed form solution published by [Johnson, 1987] for options on the maximum
and the minimum of n assets (see Section 5.1.3), [Barraquand, 1995] says,

To the best of our knowledge, the above problem of option pricing on the maximum or
minimum of several assets is the only case reported in the literature where solutions to
high-dimensional (say, more than 5) problems have been developed.
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5.2 Choice of parameters

Apart from the problem parameters (number of underlying assets, volatilities and correlation co-
efficients, option type, exercise price, maturity date, interest rate), a number of computational
parameters have to be specified.

First, the parameter θ in the θ-method determines the type of discretisation of the PDE. In
Section 2.3.1, we argued why using the explicit Euler method or an implicit method with θ < 1

2 is
not recommendable. We will use both θ = 1

2 (Crank-Nicolson method) and θ = 1 (implicit Euler
method) and compare the performance of these two methods.

Depending on the range of asset prices where the option price is of interest, the size of the
computational domain has to be chosen. Suppose, for example, that we are interested in the option
price for asset prices between $0 and $40. Si = 40 corresponds to xi = ln 40, hence we need
R ≥ ln 40. According to the results of Section 1.4.3, the localisation error decreases with R. The
estimate (1.93) might be used to determine R such that the localisation error is less than some
predefined tolerance within the domain ΩR̃ with R̃ = ln 40. It turns out, however, that (1.93) is
extremely conservative; we will experimentally show that taking

R = 2R̃ or R = 2 lnE (5.21)

yields good results in practice. As R̃ ≥ ln E in general and E > 4 in our experiments below,
this is in turn more conservative than the rule of thumb (1.92) to define the far field boundary at
Smax equal to 3E or 4E, i.e. R = lnSmax = lnE + ln 3 or lnE + ln 4, and we can thus expect our
choice of R to be large enough to keep the localisation error acceptably small. We will in addition
numerically examine how fast the the localisation error decays with R. If we choose R = 2 lnE,
Si = E is a grid point for any admissible mesh width. As the initial function is not smooth at these
points for certain option types, it may be advantageous for the numerical solution to have them as
grid points; this is recommended, e.g., by [Seydel, 2004]. We will come back to this question in the
experiments below.

The localisation error also depends on the choice of the boundary function; in Section 1.4.4, we
showed that

g̃1(x, τ) = w̃0(x) = V0(ex1 , . . . , exn) or g̃2(x, τ) = e−rτ V0

(
ex1+rτ , . . . , exn+rτ

)
(5.22)

are appropriate. We will investigate below which is the better choice. A priori, economic reasoning
makes g̃2 more plausible, whereas g̃1 has the advantage of being independent of time. In the latter
case, the evaluation vector g̃ and its contribution −kA

(ib)
h g̃(bdind) to the right-hand side only have

to be calculated once, and the computational effort can thus be reduced if Algorithm 10 or 13 is
accordingly modified.

Once the computational domain has been set, appropriate space and time mesh widths have to
be chosen. In our analysis of the θ-method, we found in Proposition 13 that the Crank-Nicolson
method is uniformly solvable if

h ≤ min
i=1,...,n

σ2
i∣∣σ2

i
2 − r

∣∣ and
k

h2
<

1

θ
(∑

i<j σiσj |ρij |
) . (5.23)

The same conditions also imply that the weighted Jacobi method with any ω ∈ (0, 1] converges,
as we have seen in Proposition 15. The first of these conditions is not very restrictive in general.
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The second one, however, imposes a bound on k
h2 unless all assets are uncorrelated, and thus

requires the time step to be very small compared to the spatial mesh width. However, we do not
know whether the sufficient conditions (5.23) are necessary as well. As for the further convergence
criteria of consistency and stability, we mentioned in Section 2.3.1 that the implicit Euler method
for the transformed Black-Scholes PDE is consistent of order O(h2)+O(k), and the Crank-Nicolson
method even of order O(h2) + O(k2). Furthermore, both methods are stable with respect to the
`2-norm under no further conditions on the mesh widths. However, we also found that the truncated
Black-Scholes problem in the domain ΩR× (0, T ] is not well-posed in the sense required for the Lax
Equivalence Theorem, so that we were not able to prove convergence of our numerical methods.
We will experimentally examine the convergence properties below.

Furthermore, the multigrid functions require the multigrid parameters ν1 (number of pre-
smoothing operations on each grid), ν2 (number of post-smoothing operations on each grid), ν
(number of V-cycles performed on each grid once an initial guess has been established by nested
iteration), and the weighting factor ω in the weighted Jacobi method. In the context of the multi-
grid method, ω is optimally chosen such that the high-frequency modes are damped most efficiently
(cf. Sections 3.1 and 3.2.1). We will use the theoretically optimal weighting factor given by (3.24),
ωopt = 2n

2n+1 . The parameters ν1, ν2 and ν determine the accuracy as well as the computational
complexity of the full multigrid V-cycle method; the higher they are chosen, the more accurate is
the result and the higher is the computation time in general. Thus, a trade-off has to be found.
In our practical experiments, we will find suitable parameters such that one full multigrid V-cycle
yields an acceptable result as follows: We will always use the weighting factor ωopt given by (3.24)
and at the same time increase the parameters ν1, ν2 and ν until no significant decrease in the error
is achieved any more. According to [Hackbusch, 1985, e.g., Sections 2.6.2 and 4.3], the performance
of the multigrid method depends primarily on the overall number of smoothing steps ν1 +ν2 rather
than on the distribution of pre- and post-smoothing steps; we will use ν1 = ν2.

5.2.1 Overview of numerical experiments

We will now give a brief overview of the test problems that we will present below, and motivate
the choices of parameters. We will numerically price options on 1, 2, and 3 underlying assets for
which in most cases, the exact solution is known and the error in the numerical solution can thus
be calculated. As the solution of the Black-Scholes problem represents option prices, the maximum
norm is a more appropriate error measure than the `2-norm (cf. also [Kangro and Nicolaides, 2000]).
Note further that an accuracy corresponding to 10−3 of the respective currency unit is in general
sufficient.

Our choice of problem parameters is inspired by reference results available in literature. Typi-
cally, volatilities between 20% and 35% are assumed for each asset. [Boyle and Tse, 1990] present
numerical results for values of European calls on the maximum and the minimum of three assets,
using a range of symmetric and unsymmetric volatility and correlation assumptions. The case
where the highest errors are observed is the most unsymmetric case with σ1 = 0.25, σ2 = 0.3,
σ3 = 0.35, ρ12 = ρ23 = 0.6, and ρ13 = 0.4 ( [Boyle and Tse, 1990, Table 5]). As for the other
problem parameters, a riskless interest rate of 10%, a maturity date in one year’s time (i.e. T = 1),
and a uniform exercise price of $30 (i.e. Ei = 30 =: E for all i) are assumed, and the option
price is computed for asset prices of $40 each. The same problem is considered in [Engelmann and
Schwendner, 1998, Tables 1 and 2]. We will use the same parameters for our three-dimensional test
case, and consider the option price for asset prices in the domain [ 1

40 , 40]3 (i.e. R̃ = ln 40 in (5.21))
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such that we can compare the results. [Engelmann and Schwendner, 1998] consider in addition a
case with individual exercise prices for each asset where no exact solution is known, albeit evaluated
at asset price combinations which cannot be generated as grid points of uniform meshes as used in
our algorithms. Hence, we will not present numerical results for this case although our solver can
deal with this case when the pay-off function is accordingly defined.

Further numerical results for three-asset options are given in [Boyle et al., 1989, Table 2] for
European call and put options on the maximum, the minimum, the geometric average, and the
arithmetic average, respectively. The problem parameters used there are σi = 0.2 for all i, ρij = 0.2
for all i 6= j, E = 100, r = 0.1, and T = 1. We will present results of our solver for the two types
of basket options as well.

In [Barraquand and Martineau, 1995, Tables 1–5], results for European and American single-
asset calls and puts, and options on the maximum of 3 and 10 assets with equal correlation coeffi-
cients are presented. Here, longer times to expiry of 4 and 7 years are considered as well. However,
varying T in a time-stepping algorithm does not seem to provide more insight than varying the
step size k at fixed T , hence we will restrict to the case T = 1. Furthermore, options often have
a life-span of less than a year. As for the ten-dimensional test case presented in [Barraquand and
Martineau, 1995], we cannot repeat this experiment as the computational effort and memory re-
quirement are too high. The same holds for the valuation of quality options in up to 50 dimensions
presented in [Boyle and Tse, 1990, Table 1]. Note, however, that all numerical results cited so
far refer to algorithms where the option price can only be evaluated at one specific point (S, τ),
whereas our algorithm simultaneously yields results on a whole grid of (S, τ) combinations. This
difference has to be considered when comparing the complexity. We will come back to the pros and
cons of the two algorithm types in Section 6.

In one and two dimensions, we will consider single-asset calls and puts, exchange options, and
calls on the maximum and minimum of two assets. We choose similar problem parameters as in the
three-dimensional test case from [Boyle and Tse, 1990, Table 5] and [Engelmann and Schwendner,
1998, Tables 1 and 2] mentioned above, i.e. volatilities of 25% and 30%, r = 0.1, T = 1, E = 30
where applicable, and R̃ = ln 40. We assume a higher correlation coefficient of ρ = 0.9 in the
two-dimensional experiments, however; economically, such a high positive correlation may occur
for shares of companies in the same branch of trade, for instance.

The test cases we consider are summarised below, together with full multigrid V-cycle parame-
ters that were empirically found suitable in the way mentioned in the previous section. In general,
for the accuracy required here, using ν = 1 is sufficient, and the computation time is less than for
higher values of ν even when the latter are used with lower numbers ν1 and ν2 of smoothing steps.

n = 1: European call and put options
Section 5.3

exercise price: $30
time to maturity: one year

asset volatility: σ = 0.3
interest rate: 10%

domain of interest: S ≤ $40
types of θ-methods used: Crank-Nicolson and implicit Euler

size of computational domain: R = 2 ln 40 and R = 2 ln 30
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grid sizes: M varied between 32 and 4096,
k varied between 0.1 and 0.0001

boundary conditions: g̃1 and g̃2

Jacobi weighting factor: ωopt = 2
3

multigrid parameters: ν1 = ν2 = 7, ν = 1

for the examination of the localisation error:
exercise price: $1

domain of interest: R̃ = 0.005
types of θ-methods used: implicit Euler

size of computational domain: R varied between 0.04 and 0.35
grid sizes: sufficiently fine to see no dependence on M and k

boundary conditions: g̃2

n = 2: Exchange option
Section 5.4.1

exchange ratio: q1 = q2 = 1
time to maturity: one year
asset volatilities: σ1 = 0.25, σ2 = 0.3

correlation coefficient: ρ = 0.9
interest rate: 10%

domain of interest: R̃ = 0.005
types of θ-methods used: implicit Euler

size of computational domain: R varied between 0.005 and 0.1
grid sizes: sufficiently fine to see no dependence on M and k

boundary conditions: g̃1 = g̃2

Jacobi weighting factor: ωopt = 0.8
multigrid parameters: ν1 = ν2 = 10, ν = 1

European call options on the
maximum and the minimum of two assets
Section 5.4.2

exercise price: $30 for both assets
time to maturity: one year
asset volatilities: σ1 = 0.25, σ2 = 0.3

correlation coefficient: ρ = 0.9
interest rate: 10%

domain of interest: Si ≤ $40
types of θ-methods used: Crank-Nicolson and implicit Euler

size of computational domain: R = 2 ln 40 and R = 2 ln 30
grid sizes: M varied between 16 and 1024,

k varied between 0.1 and 0.001
boundary conditions: g̃1 and g̃2

Jacobi weighting factor: ωopt = 0.8
multigrid parameters: ν1 = ν2 = 10, ν = 1
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n = 3: European call options on the
maximum and the minimum of three assets
Section 5.5.1

exercise price: $30 for each asset
time to maturity: one year
asset volatilities: σ1 = 0.25, σ2 = 0.3, σ3 = 0.35

correlation coefficients: ρ12 = ρ23 = 0.6, ρ13 = 0.4
interest rate: 10%

domain of interest: Si ≤ $40
types of θ-methods used: implicit Euler

size of computational domain: R = 2 ln 40
grid sizes: M varied between 8 and 64,

k varied between 0.1 and 0.0001
boundary conditions: g̃2

Jacobi weighting factor: ωopt = 6
7

multigrid parameters: ν1 = ν2 = 12, ν = 1
reference results: [Boyle and Tse, 1990, Table 5],

[Engelmann and Schwendner, 1998, Tables 1 and 2]

European call options on the arithmetic and geometric average
Section 5.5.2

exercise price: $100
time to maturity: one year
asset volatilities: σ1 = σ2 = σ3 = 0.2

correlation coefficients: ρ12 = ρ23 = ρ13 = 0.2
interest rate: 10%

domain of interest: Si ≤ $100
types of θ-methods used: implicit Euler

size of computational domain: R = 2 ln 100
grid sizes: M varied between 8 and 128,

k varied between 0.1 and 0.0001
boundary conditions: g̃1

Jacobi weighting factor: ωopt = 6
7

multigrid parameters: ν1 = ν2 = 12, ν = 1
reference results: [Boyle et al., 1989, Table 2]

5.3 Numerical results for single-asset options

Although our solver is primarily designed for multi-asset options, it works for the one-dimensional
case as well, and as this case requires the least computational effort, it is well suited for investi-
gating the convergence properties of our method. We will present results for European call and
put options with the parameters listed in the previous section. The exact option prices can be
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calculated from (5.1) and (5.2), respectively; the results can be directly obtained in MATLAB by
a call of the function blsprice from the MATLAB Financial Toolbox (see [MATLAB 7.7.0 Help,
2008]). Thus, we can determine the error of the result obtained by our solver. We assume that we
are interested in the results for asset prices up to $40, hence we mainly consider the error in the
domain [ 1

40 , 40]× [0, T ].

In Tables 5.3 and 5.4, results obtained with the Crank-Nicolson method are shown for domain
sizes R = 2 ln 40 and R = 2 ln 30, respectively, for different mesh widths and time steps. We list the
errors maxxα∈ΩR, 0≤`≤K |W `

α − w`
α| and maxxα∈[ 1

40
,40], 0≤`≤K |W `

α − w`
α|, where W`, ` = 0, . . . , K

denotes the set of numerical solution vectors and w`, ` = 0, . . . , K the set of evaluations of the
exact solution of the untruncated Black-Scholes problem. In addition, Tables 5.3 and 5.4 allow to
compare the two choices of boundary functions (5.22).

The first thing we observe from Tables 5.3 and 5.4 is the fact that we do obtain results that
agree up to less than one cent with the exact solution for asset prices in [ 1

40 , 40] and uniformly at
all time steps for certain (h, k) combinations. However, for k larger than 0.0001, we observe that
the error first decreases with h, attains a minimum and then increases again. This may indicate
that the relation between k and h is critical for the convergence of the Crank-Nicolson method after
all. The conditions (5.23) for uniform solvability and convergence of the weighted Jacobi method
do not impose any bound on k

h2 in the one-dimensional case as the denominator is zero then. We
stated in Section 2.3.1 that such a constraint is usually necessary for the stability of θ-schemes with
θ < 1

2 but not for the Crank-Nicolson scheme; however, this result refers to stability in the `2-norm,
whereas we are considering the maximum norm of the error in Tables 5.3 and 5.4 as this is the more
appropriate error measure for the Black-Scholes problem. Convergence in the maximum norm may
require more restrictive conditions on k and h as both tend to zero. If we take a closer look at
the (k, h) combinations that yield the best results in Tables 5.3 and 5.4, i.e. (0.1, 128), (0.01, 256),
(0.001, 1024), and (0.0001, 4096), we find that k

h2 is of the same order of magnitude for all of them
and bounded by 31 for R = 2 ln 40 and 37 for R = 2 ln 30, respectively. This suggests a convergence
condition of the form k

h2 ≤ C after all.
When comparing the two choices of boundary functions, we observe that g̃1 entails a higher

error within the full computational domain than g̃2 in all cases. Furthermore, the error associated
with g̃1 is independent of the mesh; a closer examination reveals that this error is always attained
at the grid point τ = 1, S = Smax for calls and τ = 1, S = 1

Smax
for puts, i.e. on the extreme

boundary, and it therefore reflects an error in the prescribed boundary conditions rather than an
error in the actual result of the linear system. In contrast, if we use the boundary function g̃2, the
maximum error on the whole computational domain is much lower, and for sufficiently small h,
it coincides with the error in the interior domain. This proves that g̃2 better reflects the true
behaviour of the solution at the boundaries. We predicted that g̃2 might be better in Section 1.2.1.
However, we have to bear in mind that we are actually only interested in the numerical results for
S ∈ [ 1

40 , 40], and it turns out that the maximum error in this interior domain is indistinguishable
for both choices of boundary functions in all cases, confirming the assertion in Section 1.2.1 that
the boundary conditions have no significant influence on the solution in the interior of the domain
for this type of problem. Thus, using g̃1 with an algorithm exploiting its time independence is
empirically advisable.

The maximum error within [ 1
40 , 40]× [0, T ] is in most cases attained at the first non-zero time

step and at an asset price near S = 30, i.e. at the point where the pay-off function is not smooth; as
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we predicted, this is the most critical region for the numerical solution. The quality of the numerical
solution at different time steps is illustrated in Figure 5.1 as well. When we compare the results
obtained with R = 2 ln 40 and R = 2 ln 30, we find that R = 2 ln 40 yields slightly more accurate
results in almost all cases. Apparently, there is no gain in placing grid points at the location of the
discontinuity in the derivative of the initial function. Further increasing R does not seem to have
an influence on the result any more; with R = 4 ln 40, we obtain identical results in the domain of
interest as with R = 2 ln 40 at corresponding mesh widths (results not shown here).
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Figure 5.1: Plot of the solution for single-asset call and put options at different time steps. Dots
correspond to the numerical solution obtained with the Crank-Nicolson method, whereas lines
interpolate the exact solution obtained by blsprice unless otherwise specified. The parameters
used are E = 30, T = 1, σ = 0.3, r = 0.1, M = 128, k = 0.01, R = 2 ln 30, ν1 = ν2 = 7, ν = 1, and
ω = 2

3 .

Next, we repeat the same experiments but using the implicit Euler method instead of the
Crank-Nicolson scheme. The results are shown in Tables 5.5 and 5.6.

As for the dependence of the error on the boundary function and the size of the computational
domain, we observe the same behaviour as for the Crank-Nicolson method above. However, the
behaviour of the maximum norm error with respect to the grid sizes is significantly different now:
apart from minor irregularities, the error decreases whenever the spatial mesh width h or the time
step k is reduced, until a level is reached where it remains constant. This is the behaviour we
expect from a convergent method. Whereas the Crank-Nicolson method seems to converge only
if k

h2 remains bounded, the implicit Euler method appears insensitive to the relation between h
and k, the so-called refinement path. This constitutes a significant advantage of the implicit Euler
method over the Crank-Nicolson method. For a graphical comparison of the two methods, see also
Figure 5.2.

The observed error in the numerical solution with respect to the exact solution of the Black-
Scholes model (1.10)–(1.11) derives from several origins. Known error sources are the localisation
error associated with the truncation of the problem to a bounded domain and imposing artifi-
cial boundary conditions, the discretisation error of the finite-difference discretisation of the PDE
(i.e. the error in the θ-scheme), the error in the iterative solution of the corresponding linear system,
and rounding errors. Some of these can be approximately quantified. We examined the localisation
error in detail in Section 1.4.3. Experimentally, we found that the choice R = 2 ln R̃ where ΩR̃ is the
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domain of interest produces acceptable results, in accordance with the empirical rule (1.92); fur-
thermore, we observed that further increasing R had no influence on the result. This suggests that
the localisation error is kept well under control; we will analyse the localisation error in detail at the
end of this section. As for the error associated with the boundary conditions, we observed that the
influence of different boundary functions is indiscernible in the interior of the domain, hence this
error can be neglected. The error in the solution of the linear system by the multigrid method can
be quantified by calculating a reference solution using a direct solution method that produces the
accurate result (subject to rounding errors); in the one-dimensional case, the computational effort
of directly solving the linear system is not excessive. We present some results in Table 5.7. These
demonstrate that when using the parameters ν = 1, ν1 = ν2 = 7 as in all numerical experiments
above, the multigrid error is negligible with respect to the overall error in our test problems. With
a higher number of V-cycles and smoothing operations on each grid, e.g. ν = 3, ν1 = ν2 = 15 as
in the lower part of Table 5.7, one can even achieve an accuracy of the multigrid method that is
comparable to the direct solution of the linear system. For the first choice of multigrid parame-
ters in Table 5.7, we observe that for fixed k, the error initially decreases and eventually increases
with M again. This can be attributed to the trade-off between increasing theoretical accuracy and
growing impact of rounding errors when h is reduced. For the higher multigrid parameters, the
accuracy is very good even for the coarsest grids, and we observe only the effect of rounding errors
as h becomes smaller.

The dominant error seems to be the discretisation error, i.e. the error by which the exact solution
of the θ-scheme differs from the solution of the truncated differential problem. For problems
that are well-posed in the sense required for the Lax Equivalence Theorem (see the Remark to
Definition 4), this error is of the same order as the truncation error (see the Remark to Theorem 14),
i.e. O(h2)+O(k) for the implicit Euler method and O(h2)+O(k2) for the Crank-Nicolson method.
However, as the usual convergence theory does not apply to our special problem (see the argument
in Section 2.3.1), we cannot predict the order of convergence in this case. In Figure 5.2, we examine
the experimentally observed errors within [ 1

40 , 40] × [0, T ] from Tables 5.3 and 5.5. Note that this
is not the error with respect to the truncated but the original Black-Scholes problem; we do not
know the exact solution of the truncated problem, however, the difference should be small within
the interior domain [ 1

40 , 40]× [0, T ] according to our observations so far.
In the upper four plots of Figure 5.2, we plot the maximum norm error at fixed k against

M and at fixed M against k, respectively, for the Crank-Nicolson method and the implicit Euler
method, in a double logarithmic scale. The slope of the obtained curves should indicate the order
of convergence with respect to the respective mesh parameter. For the Crank-Nicolson method,
however, the curves are not monotonically decreasing but reaching a minimum and then increasing
again. We already observed this phenomenon in Table 5.3 and deduced the empirical convergence
condition k

h2 ≤ C: When h becomes so small compared to the fixed time step k that the condition
k
h2 ≤ C is violated, the error increases again. However, this interpretation does not explain the
form of the curves at fixed M . In any case, this phenomenon does not occur in the implicit Euler
method. Here, the error curves are decreasing and eventually levelling off. As for the slopes of the
curves, the result in the first Crank-Nicolson plot is ambiguous. The observed order lies between
O(1/M) and O(1/M2), i.e. O(h) and O(h2). Some curve sections seem to display quadratic order,
but the slope of the full decreasing curve sections is hard to judge. It is possible that the lack
of regularity of the option pricing problem causes the actual convergence order to be less than
the theoretical order of h2. As for the order with respect to time, this is clearly the case: for
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sufficiently regular problems, the Crank-Nicolson method is of order k2, yet the second plot in
Figure 5.2 does definitely not display second order convergence but instead a good agreement with
the reference curve indicating an order of k. For the implicit Euler method, we observe an order of
O(h) with respect to space, and an order eventually reaching O(k1/2) with respect to time, hence
the implicit Euler method does not reach its theoretical convergence order of O(h2) + O(k) either.
The higher consistency order of the Crank-Nicolson method is visible despite the lack of regularity
of the problem. Nevertheless, the implicit Euler method is preferable due to its insensitivity to the
refinement path.

The last two plots of Figure 5.2 contain the maximum norm as well as the discrete `2-norm
(2.49) of the errors within the interior domain, plotted against M at fixed k. In practice, the
maximum norm is more significant as mentioned above, however, it is of mathematical interest
to compare the behaviour of the error in the two norms. By (2.54), the `2-norm is the weaker
of the two, hence the convergence conditions for this norm might be less restrictive. Figure 5.2
illustrates, however, that the error curves for the `2-norm are similar in shape as the ones for the
maximum norm; in fact, the corresponding pairs of curves are almost parallel. This indicates that
the quotient of the two norms is approximately constant. In particular, the order of convergence
with respect to both norms is the same, and the error of the Crank-Nicolson method has the same
strange behaviour when measured in the `2-norm as in the maximum norm.

It remains to investigate the behaviour of the localisation error. By Estimate (1.112) from
Section 1.4.3, the localisation error within the domain ΩR/2× [0, T ] is controlled by a bound of the

form Ce−
µ̄
2
R in the one-dimensional case, albeit not with respect to the maximum norm that we

are interested in. In order to examine this, we try to extract the localisation error by choosing a
very small computational domain where the localisation error should be notable, and fine meshes
to keep the discretisation error small. The choice M = 1024, k = 0.001 turned out appropriate
for all domain sizes R we used here. For the exact problem parameters, refer to the overview in
Section 5.2.1. The results are plotted in Figure 5.3 together with reference curves representing
decay laws of O(1/R) as predicted by (1.91), eO(−R) as predicted by (1.112), and eO(−R2). In the
first plot, the logarithms of the maximum norm errors are plotted versus R such that the curve
should be linear if the errors are proportional to eO(−R); in the second plot, we use R2 on the
x-axis such that the curve is linear if the errors are proportional to eO(−R2). The result is rather
clear: the error obviously decays faster than 1/R and even faster than exponentially with respect
to R; the good accordance with the reference curve of e−30 R2

indicates a decay that is almost
exponential in R2. This result is better than the estimates given in Section 1.4.3 and confirms that
the localisation error in practical numerical computations is very small.

5.4 Numerical results for options on two underlying assets

5.4.1 Exchange options

We start our two-dimensional experiments by investigating the behaviour of the localisation error
measured in the maximum norm. Exchange options are convenient for this experiment because
the exact solution (5.6) can be computed fast. The localisation error estimate that we derived for
the two-dimensional case is (1.91) which predicts an algebraic decay if the maximum error on the
boundary of the domain is bounded independently of the domain size R. However, this is not the
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case for exchange options, so we cannot even apply (1.91). Note further that the two choices of
boundary functions (5.22) are the same for exchange options.

In Figure 5.4, we present semilogarithmic plots of the numerically observed localisation errors
(for the parameters specified in the overview in Section 5.2.1) versus R and R2, respectively. We
immediately see that the decay is not like 1/R but in fact at least exponentially in R; the error
curve is in good accordance with the reference curve of e−4R. Even though the localisation error
decays more slowly than in the one-dimensional case where we observed an order of approximately
eO(−R2), this result is highly satisfactory as it indicates that the localisation error decreases so fast
that it should not interfere in practice.

Figure 5.5 depicts the numerical solution for R = 0.01, i.e. ΩR ≈ [0.99005, 1.01005], and its
point-wise error within Ω0.005 ≈ [0.99501, 1.00501]. In the last plot, both the exact and the nu-
merical solution are shown on the whole domain. The discrepancy is significant, the numerical
solution is more curved than the exact one and shifted by a considerable distance, which has to be
attributed primarily to the boundary conditions.

5.4.2 Options on the maximum and the minimum of two assets

The second two-dimensional test problem will be European call options on the maximum and the
minimum of two assets with parameters as specified in the overview in Section 5.2.1. With the
chosen parameters, the conditions (5.23) for uniform solvability and convergence of the weighted
Jacobi method become

h ≤ 0.909 and
k

h2
< 29.6; (5.24)

we will examine below whether a bound on k
h2 is in fact necessary for convergence of the Crank-

Nicolson method and irrelevant for convergence of the implicit Euler method as in the one-dimen-
sional case.

The exact prices of call options on the minimum and the maximum of two assets are given by
(5.16) and (5.18), respectively, which we implement in MATLAB to generate the exact solutions.
Note, however, that the valuation formulae involve the cumulative distribution function of the
bivariate normal distribution which cannot be analytically evaluated. In MATLAB, evaluations of
the multivariate normal cumulative distribution function are computed by the function normcdf
using adaptive quadrature with a default absolute error tolerance of 10−8 for dimensions n = 2 and
n = 3, and a quasi-Monte Carlo integration algorithm with a default absolute error tolerance of
10−4 for n ≥ 4 (see [MATLAB 7.7.0 Help, 2008]). We thus have to bear in mind that the computed
“exact” solution is obtained as a numerical approximation as well; however, the result will still be
sufficiently accurate to be regarded as the exact solution.

Let us briefly comment on the implementation of the initial and boundary function for this test
problem. In Section 4.2, we specified certain requirements regarding the simultaneous evaluation
of matrix arguments. The initial function for a call on the maximum of two assets with uniform
exercise price,

w̃0(x1, x2) = V0(ex1 , ex2) = max
{

max{ex1 , ex2} − E, 0
}

(5.25)

according to Table 1.1, can be implemented as

w0 = @(x) max(max(exp(x), [], 2)− E, 0), (5.26)

where the @ construction defines w0 to be a function handle representing a function in the variable x
(see [MATLAB 7.7.0 Help, 2008]). If x is a matrix, exp(x) is the component-wise exponential
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function, and max(exp(x), [], 2) is the column vector containing the largest entry in each row of
exp(x). Finally, the outer max function yields the column vector containing in each row the
component of the previous vector diminished by E or zero, whichever is larger. Hence, (5.26) acts
on matrix arguments precisely as desired. Once w0 is available, the boundary functions g̃1 and g̃2

can simply be defined as

g1 = @(x, t) w0(x) and g2 = @(x, t) exp(−r ∗ t) ∗ w0(x + r ∗ t). (5.27)

Numerical results obtained with the implicit Euler method with R = 2 ln 40 and R = 2 ln 30
and a range of meshes are presented in Tables 5.8 and 5.9, and plots of the numerical solution
and the point-wise error are shown in Figures 5.6 and 5.7. Note that due to the higher compu-
tational complexity in two dimensions, we cannot refine the meshes to such an extent as in the
one-dimensional test problem. Furthermore, as the calculation of the exact solution turns out to
be of significantly higher computational effort than our solver, we only compute it for the time
steps τ = 0, 0.1, 0.2, . . . , 1 and compare it to the numerical solution only at these points in time
in Tables 5.8 and 5.9. Results for the Crank-Nicolson method are not shown in tables, but the
observed errors are plotted in Figure 5.8.

The quality of the results is slightly different to the one-dimensional case. In Tables 5.8 and
5.9, we observe maximum norm errors that largely decrease monotonically with h within [ 1

40 , 40]2×
(0 : 0.1 : 1) at fixed k. For fixed h, we observe constant errors for all k for large h; however, the error
seems to decrease with k if only h is sufficiently small. The results for options on the maximum
and on the minimum are similar. Again, the error within the interior domain is indistinguishable
for both choices of boundary functions. As for the error on the whole computational domain, we
observe a large maximum error that is independent of the mesh width and that is attained at τ = 1,
S = (Smax, Smax) for both boundary functions now. In addition, the pay-off function is not smooth
at Si = 30, Sj ≤ 30 and at S1 = S2 ≥ E (cf. the plot for τ = 0 in Figure 5.6). This results
in the maximum error within [ 1

40 , 40]2 × (0 : 0.1 : 1) occurring at the grid point nearest (40, 40)
in most cases; in Figure 5.6, the numerical solution appears to be “pulled up” at this point. In
Figure 5.7, we show a plot of the corresponding point-wise error. Again, we see that the largest
error by far is attained at the boundary. At the locations where the initial condition is non-smooth,
we observe initial disturbances which become smoother with time thanks to the diffusive property
of the problem. The disturbance along the Si = Sj line is the most significant and causes the
maximum error in the domain of interest. The fact that the choice R = 2 ln 30 now yields better
results than R = 2 ln 40, in particular on the coarser meshes, indicates that it is advantageous to
place grid points at this location in this case. Using R = 4 ln 30 does not yield better results than
R = 2 ln 30, however (results not shown here).

When comparing the performance of the Crank-Nicolson and the implicit Euler methods in
Figure 5.8, we first note that the maximum norm error curves of the Crank-Nicolson method are
decreasing and levelling off, but never increasing now. This indicates that the Crank-Nicolson
method is not as restrictive with respect to the refinement path as in the one-dimensional test
case. The convergence order with respect to h is similar for both methods. Interestingly, the error
curves are concave rather than linear, reflecting an accelerating convergence order that is lower
than O(h) in the beginning but approaches the optimal order of O(h2) for small h. The error
curves of the Crank-Nicolson method level off earlier than the ones of the implicit Euler method,
i.e. the final error obtained with the implicit Euler method is smaller. With respect to the time
step k, the convergence order of the Crank-Nicolson method is higher again. On the finest mesh,
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the slope of the Crank-Nicolson curve is higher than O(k), whereas the implicit Euler curve is
less steep and corresponds to an order between O(k1/2) and O(k). However, more data would be
necessary for a reliable judgement. In particular, the observed slopes are becoming steeper when k
is reduced, i.e. the true convergence order with respect to k is probably not reached yet. However,
the computational complexity prevents us from further reducing k.

Table 5.10 shows that the error in the multigrid method is negligible for fine meshes again;
in addition, we compare the observed computation times for the generation of the solution at all
spatial and time grid points in Figure 5.9. For a fixed number K of time steps, we expect our
solver to be of linear complexity with respect to the number N := (2M − 1)2 of unknowns in
the linear system, and the direct solution of the K linear systems to be of order O(N3). In the
plot, we observe that our solver is not quite of order O(N) but rather of O(N log N). A closer
examination reveals that this is due to the sparse function assembling sparse matrices; apparently,
this involves an ordering algorithm of order O(N log N). Nevertheless, our solver is of considerably
lower computational effort than the direct solver even if this is of order O(N2) here rather than
O(N3); apparently, MATLAB can make use of the structure of the system matrix to apply a more
efficient direct solution method than usual Gaussian elimination with pivoting strategy (for full
matrices). According to [MATLAB 7.7.0 Help, 2008], banded solvers are used for banded matrices.
Direct solvers for banded matrices with upper and lower band width p can be constructed with
complexity O(Np2). The system matrix of our two-dimensional model problem has a bandwidth
of p = 2M + 2 = O(N1/2) (cf. (4.22)), hence Np2 = O(N2).

5.5 Numerical results for options on three underlying assets

5.5.1 Options on the maximum and the minimum of three assets

As mentioned in Section 5.2.1, we use the same problem parameters as in [Boyle and Tse, 1990,
Table 5] and [Engelmann and Schwendner, 1998, Tables 1 and 2] and will compare the results
below. We use the implicit Euler method on a computational domain of size R = 2 ln 40; this
has the disadvantage that there are no grid points at the locations where the pay-off function is
non-smooth, but as the results in literature are evaluated at S = (40, 40, 40), we choose R such
that (40, 40, 40) is a grid point. Furthermore, we use the boundary function g̃2. As explained
in Section 5.4.2, the computation of the exact solution according to Formulae (5.9) and (5.15) is
expensive, and we only generate the exact solution at the time steps τ = 0, 0.1, . . . , 1 again.

The obtained maximum norm errors are shown in Table 5.11. Their quality is similar to
the one observed for options on the maximum and the minimum of two assets: the boundary
conditions entail a considerable error at (Smax, Smax, Smax), but the maximum error within the
domain of interest decays monotonically with h and k until levelling off. The maximum error within
[ 1
40 , 40]3 × (0 : 0.1 : 1) is attained at (40, 40, 40) at an early time step in most cases, i.e. along the

line S1 = S2 = S3 ≥ E where the pay-off function is not smooth and during the initial phase before
the disturbance is smoothed out. The convergence order observed for calls on the maximum (plot
not shown) is comparable to the implicit Euler method in two dimensions in Figure 5.8, i.e. between
O(h) and O(h2) with respect to the spatial mesh width and less than O(k) with respect to time;
however, we have not enough data available for a reliable evaluation of the convergence behaviour.

Apart from the maximum norm errors within ΩR and [ 1
40 , 40]3, Table 5.11 shows the obtained

option value at the grid point S = (40, 40, 40), τ = 1, and the point-wise error there. This error is
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considerably smaller than the maximum error within [ 1
40 , 40]3, however, even if the former decreases

with k, the point-wise error at S = (40, 40, 40), τ = 1 increases for calls on the maximum. For calls
on the minimum, in contrast, we achieve a good accuracy.

In the table below, we compare the results where we achieved the best overall accuracy, i.e. the
results for M = 64, k = 0.01, to those by [Boyle and Tse, 1990] and [Engelmann and Schwendner,
1998]. Both papers present algorithms to numerically compute the value of multi-asset options at
one specific point (S, τ). [Boyle and Tse, 1990] approximate the price of options on the maximum
or the minimum of n assets in terms of order statistics of n jointly normal random variables.
[Engelmann and Schwendner, 1998] devise an efficient Fourier grid method which can be used for
any type of European multi-asset option.

evaluation at
S = (40, 40, 40), τ = 1

[Boyle and Tse,
1990, Table 5]

[Engelmann and
Schwendner, 1998,
Tables 1 and 2]

our solver with
M = 64, k = 0.01

exact relative relative relative
value value error value error value error

call on the maximum 20.153 20.185 +0.159% 20.150 −0.015% 20.232 +0.392%

call on the minimum 7.172 7.172 0.000% 7.175 +0.042% 7.169 −0.042%

We observe that the performance of our PDE-based solver is comparable to the method by
[Engelmann and Schwendner, 1998] for the call on the minimum. For the call on the maximum,
however, the error of our solver is higher than for the other methods. We achieved better point-wise
results on coarser meshes, yet the objective of our solver is not to deliver optimal point-wise results
but a high accuracy within the whole domain of interest.

Note in addition that we only take into account our results on the grids that we considered in
Table 5.11. The limiting factor for the mesh widths there was the computation time of generating
the exact solution, not the numerical Black-Scholes solver. Our solver can be used on even finer
meshes at acceptable computational effort, hence we might obtain better results than those listed
in the table above. We do not demonstrate this for options on the maximum and minimum of three
assets, but for basket options in the following section.

5.5.2 Basket options

We will now repeat experiments by [Boyle et al., 1989, Table 2] for calls on the arithmetic and the
geometric average of three assets. We do not have any analytical solution available for these cases,
hence we cannot judge the maximum error on the grid, but we will merely consider the obtained
option value at S = (100, 100, 100), τ = 1 as [Boyle et al., 1989]. We use the implicit Euler method
on a computational domain of size R = 2 ln 100 and with the boundary function g̃1. Results for a
range of grid parameters entailing an acceptable computation time are shown in Table 5.12. The
memory capacity of the available computers allows for a spatial grid parameter of M = 128 at most.
The time step k = 0.0001 can be used on grids with up to M = 32 (computation time 15 hours).

For both option types, the obtained values at S = (100, 100, 100), τ = 1 increase monotonically
when h or k is reduced; the spatial mesh width h has a more noticeable influence than the time
step k. For the option on the geometric average, [Boyle et al., 1989] provide the accurate value

89



of 11.581 obtained by some not further specified analytic formula. We thus see that the values
obtained by our solver are always too low but rise against the exact solution as h and k are
reduced.

In the table below, we compare the point-wise results on the finest mesh we used to those
by [Boyle et al., 1989]. The results there are obtained using an n-dimensional extension of the
lattice binomial method developed by [Cox et al., 1979] for single-asset options.

evaluation at
S = (100, 100, 100), τ = 1 [Boyle et al., 1989, Table 2]

our solver with
M = 128, k = 0.01

exact value value relative error value relative error

call on the arithmetic average − 12.078 − 12.072 −

call on the geometric average 11.581 11.573 −0.069% 11.551 −0.259%

We note that the numerical results for a call on the arithmetic average obtained by [Boyle
et al., 1989] and by our solver are in very good accordance. Our result for the call on the geometric
average is worse, yet the difference to the accurate result is only 3 cents.

5.6 Summary of numerical results

We have presented results of our numerical solver applied to realistic test cases in one, two, and
three dimensions. Although the convergence of the θ-method could not theoretically be established
in Section 2.3.1, we experimentally observed satisfactory convergence of the implicit Euler method
with respect to the maximum norm (and the discrete `2-norm in a one-dimensional experiment),
even if the theoretically optimal convergence order of O(h2) + O(k) was not attained. The Crank-
Nicolson method, in contrast, did not perform well in the one-dimensional test case; we conjectured
a convergence condition of the form k

h2 ≤ C (for both choices of norms), which is undesirable in
practice. This problem did not occur in the two- and three-dimensional test cases. The higher
consistency order of the Crank-Nicolson method with respect to time was apparent in all our
experiments. Nevertheless, we consider the implicit Euler method preferable for its reliability.

A comparison showed that the full multigrid V-cycle method (with the weighted Jacobi method
with ω = 2n

2n+1 as smoothing operation, n-linear interpolation and full weighting restriction) with
appropriately chosen smoothing and cycling parameters converges and achieves an accuracy com-
parable to a direct solution method, at an execution time that is essentially linear with respect to
the number of unknowns in the linear system and thus almost optimal.

We experimentally examined the quality of the choices (5.22) of artificial boundary conditions
and found that the boundary function had no perceptible effect on the solution in the interior of
the computational domain. Thus, a simple choice (e.g., the time-independent function g̃1) can
be used in practice. The relative insignificance of the boundary conditions can be explained by
the dominant diffusion part in the transformed Black-Scholes PDE (cf. (1.60) and [Persson and
von Sydow, 2007]). This also accounts for the smoothing of initial disturbances in the numerical
solution that we observed at non-smooth points of the initial function. For the choice of parameters
used here, the convection part of the PDE did not cause problems in the numerical solution.
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The estimate of the localisation error that we derived in Section 1.4.3 yields a convergence rate
of O( 1

R) at best. If this estimate was sharp, the size of the computational domain would have to
be chosen much larger than the domain of interest in order to keep the localisation error small.
We experimentally analysed the size of the localisation error measured in the maximum norm in
one and two dimensions. There, we observed a much faster decay: in fact, the localisation error
decays approximately exponentially with respect to the domain size R if n = 2, and exponentially
with respect to R2 if n = 1. This is even better than the exponential bound we found by a
variational approach for the one-dimensional case in Section 1.4.3. To conclude, the experimental
results demonstrated that our analytical localisation error estimates are very pessimistic, and that
the localisation error is in practice negligible with respect to the discretisation error. In particular,
it suffices to choose the computational domain of twice the diameter of the domain of interest (with
respect to log-price variables). For options on the maximum and the minimum of several assets,
it turned out advantageous to choose the computational domain such that there are grid points at
the locations where the pay-off function is not smooth.

In all, the performance of our solver, particularly the implicit Euler version, was satisfactory in
all test cases and achieved a maximum norm error of fractions of one currency unit within the whole
domain of interesting asset prices. However, fine grids have to be used to achieve this accuracy,
and the associated computational effort is already very high for three-dimensional problems. The
number of spatial grid points and hence the number of unknowns in the linear system which controls
the computation time is exponential in the space dimension n. Hence, our solver is in practice
only applicable to multi-asset options with few underlying assets, depending on the computational
capacity available.
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Crank-Nicolson call option put option
method error in error in error in error in

R = 2 ln 40 ΩR × [0, T ] [ 1
40 , 40]× [0, T ] ΩR × [0, T ] [ 1

40 , 40]× [0, T ]
M h k g̃1 g̃2 g̃1 g̃2 g̃1 g̃2 g̃1 g̃2

32 0.23 0.1 2.855 0.615 0.161 0.161 2.855 0.158 0.158 0.158
64 0.12 0.1 2.855 0.158 0.047 0.047 2.855 0.047 0.047 0.047
128 0.058 0.1 2.855 0.094 0.094 0.094 2.855 0.094 0.094 0.094
256 0.029 0.1 2.855 0.223 0.223 0.223 2.855 0.223 0.223 0.223
512 0.014 0.1 2.855 0.266 0.266 0.266 2.855 0.266 0.266 0.266
1024 0.0072 0.1 2.855 0.277 0.277 0.277 2.855 0.277 0.277 0.277
2048 0.0036 0.1 2.855 0.279 0.279 0.279 2.855 0.279 0.279 0.279
4096 0.0018 0.1 2.855 0.280 0.280 0.280 2.855 0.280 0.280 0.280
32 0.23 0.01 2.855 0.615 0.163 0.163 2.855 0.160 0.160 0.160
64 0.12 0.01 2.855 0.158 0.074 0.074 2.855 0.074 0.074 0.074
128 0.058 0.01 2.855 0.145 0.145 0.145 2.855 0.145 0.145 0.145
256 0.029 0.01 2.855 0.032 0.032 0.032 2.855 0.032 0.032 0.032
512 0.014 0.01 2.855 0.046 0.046 0.046 2.855 0.046 0.046 0.046
1024 0.0072 0.01 2.855 0.074 0.074 0.074 2.855 0.074 0.074 0.074
2048 0.0036 0.01 2.855 0.082 0.082 0.082 2.855 0.082 0.082 0.082
4096 0.0018 0.01 2.855 0.083 0.083 0.083 2.855 0.083 0.083 0.083
32 0.23 0.001 2.855 0.615 0.163 0.163 2.855 0.160 0.160 0.160
64 0.12 0.001 2.855 0.158 0.074 0.074 2.855 0.074 0.074 0.074
128 0.058 0.001 2.855 0.146 0.146 0.146 2.855 0.146 0.146 0.146
256 0.029 0.001 2.855 0.070 0.070 0.070 2.855 0.070 0.070 0.070
512 0.014 0.001 2.855 0.030 0.030 0.030 2.855 0.030 0.030 0.030
1024 0.0072 0.001 2.855 0.007 0.007 0.007 2.855 0.007 0.007 0.007
2048 0.0036 0.001 2.855 0.017 0.017 0.017 2.855 0.017 0.017 0.017
4096 0.0018 0.001 2.855 0.021 0.021 0.021 2.855 0.021 0.021 0.021
32 0.23 0.0001 2.855 0.615 0.163 0.163 2.855 0.160 0.160 0.160
64 0.12 0.0001 2.855 0.160 0.074 0.074 2.855 0.074 0.074 0.074
128 0.058 0.0001 2.855 0.146 0.146 0.146 2.855 0.146 0.146 0.146
256 0.029 0.0001 2.855 0.070 0.070 0.070 2.855 0.070 0.070 0.070
512 0.014 0.0001 2.855 0.032 0.032 0.032 2.855 0.032 0.032 0.032
1024 0.0072 0.0001 2.855 0.014 0.014 0.014 2.855 0.014 0.014 0.014
2048 0.0036 0.0001 2.855 0.004 0.004 0.004 2.855 0.004 0.004 0.004
4096 0.0018 0.0001 2.855 0.002 0.002 0.002 2.855 0.002 0.002 0.002

Table 5.3: Results obtained with the Crank-Nicolson method for single-asset options with exercise
price E = 30, T = 1, σ = 0.3, r = 0.1, R = 2 ln 40, i.e. Smax = $1600, ν1 = ν2 = 7, ν = 1,
and ω = 2

3 . The error is measured in the maximum norm and with respect to the exact solution
obtained by blsprice.
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Crank-Nicolson call option put option
method error in error in error in error in

R = 2 ln 30 ΩR × [0, T ] [ 1
40 , 40]× [0, T ] ΩR × [0, T ] [ 1

40 , 40]× [0, T ]
M h k g̃1 g̃2 g̃1 g̃2 g̃1 g̃2 g̃1 g̃2

32 0.21 0.1 2.855 0.543 0.543 0.543 2.855 0.545 0.545 0.545
64 0.11 0.1 2.855 0.184 0.184 0.184 2.855 0.184 0.184 0.184
128 0.053 0.1 2.855 0.107 0.107 0.107 2.855 0.107 0.107 0.107
256 0.027 0.1 2.855 0.235 0.235 0.235 2.855 0.235 0.235 0.235
512 0.013 0.1 2.855 0.274 0.274 0.274 2.855 0.274 0.274 0.274
1024 0.0066 0.1 2.855 0.284 0.284 0.284 2.855 0.284 0.284 0.284
2048 0.0033 0.1 2.855 0.287 0.287 0.287 2.855 0.287 0.287 0.287
4096 0.0017 0.1 2.855 0.287 0.287 0.287 2.855 0.287 0.287 0.287
32 0.21 0.01 2.855 0.549 0.549 0.549 2.855 0.551 0.551 0.551
64 0.11 0.01 2.855 0.280 0.280 0.280 2.855 0.280 0.280 0.280
128 0.053 0.01 2.855 0.138 0.138 0.138 2.855 0.138 0.138 0.138
256 0.027 0.01 2.855 0.025 0.025 0.025 2.855 0.025 0.025 0.025
512 0.013 0.01 2.855 0.052 0.052 0.052 2.855 0.052 0.052 0.052
1024 0.0066 0.01 2.855 0.080 0.080 0.080 2.855 0.080 0.080 0.080
2048 0.0033 0.01 2.855 0.088 0.088 0.088 2.855 0.088 0.088 0.088
4096 0.0017 0.01 2.855 0.090 0.090 0.090 2.855 0.090 0.090 0.090
32 0.21 0.001 2.855 0.549 0.549 0.549 2.855 0.551 0.551 0.551
64 0.11 0.001 2.855 0.280 0.280 0.280 2.855 0.280 0.280 0.280
128 0.053 0.001 2.855 0.141 0.141 0.141 2.855 0.141 0.141 0.141
256 0.027 0.001 2.855 0.070 0.070 0.070 2.855 0.070 0.070 0.070
512 0.013 0.001 2.855 0.031 0.031 0.031 2.855 0.031 0.031 0.031
1024 0.0066 0.001 2.855 0.009 0.009 0.009 2.855 0.009 0.009 0.009
2048 0.0033 0.001 2.855 0.021 0.021 0.021 2.855 0.021 0.021 0.021
4096 0.0017 0.001 2.855 0.027 0.027 0.027 2.855 0.027 0.027 0.027
32 0.213 0.0001 2.855 0.549 0.549 0.549 2.855 0.551 0.551 0.551
64 0.11 0.0001 2.855 0.280 0.280 0.280 2.855 0.280 0.280 0.280
128 0.053 0.0001 2.855 0.141 0.141 0.141 2.855 0.141 0.141 0.141
256 0.027 0.0001 2.855 0.070 0.070 0.070 2.855 0.070 0.070 0.070
512 0.013 0.0001 2.855 0.035 0.035 0.035 2.855 0.035 0.035 0.035
1024 0.0066 0.0001 2.855 0.017 0.017 0.017 2.855 0.017 0.017 0.017
2048 0.0033 0.0001 2.855 0.006 0.006 0.006 2.855 0.006 0.006 0.006
4096 0.0017 0.0001 2.855 0.003 0.003 0.003 2.855 0.003 0.003 0.003

Table 5.4: Results obtained with the Crank-Nicolson method for single-asset options with exercise
price E = 30, T = 1, σ = 0.3, r = 0.1, R = 2 ln 30, i.e. Smax = $900, ν1 = ν2 = 7, ν = 1, and ω = 2

3 .
The error is measured in the maximum norm and with respect to the exact solution obtained by
blsprice.
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Implicit Euler call option put option
method error in error in error in error in

R = 2 ln 40 ΩR × [0, T ] [ 1
40 , 40]× [0, T ] ΩR × [0, T ] [ 1

40 , 40]× [0, T ]
M h k g̃1 g̃2 g̃1 g̃2 g̃1 g̃2 g̃1 g̃2

32 0.23 0.1 2.855 0.592 0.202 0.202 2.855 0.204 0.204 0.204
64 0.12 0.1 2.855 0.144 0.081 0.081 2.855 0.083 0.083 0.083
128 0.058 0.1 2.855 0.207 0.207 0.207 2.855 0.206 0.206 0.206
256 0.029 0.1 2.855 0.206 0.150 0.150 2.855 0.149 0.149 0.149
512 0.014 0.1 2.855 0.225 0.134 0.134 2.855 0.133 0.133 0.133
1024 0.0072 0.1 2.855 0.156 0.131 0.131 2.855 0.129 0.129 0.129
2048 0.0036 0.1 2.855 0.130 0.130 0.130 2.855 0.129 0.129 0.129
4096 0.0018 0.1 2.855 0.130 0.130 0.130 2.855 0.129 0.129 0.129
32 0.23 0.01 2.855 0.613 0.164 0.164 2.855 0.161 0.161 0.161
64 0.12 0.01 2.855 0.157 0.072 0.072 2.855 0.072 0.072 0.072
128 0.058 0.01 2.855 0.164 0.164 0.164 2.855 0.164 0.164 0.164
256 0.029 0.01 2.855 0.091 0.091 0.091 2.855 0.091 0.091 0.091
512 0.014 0.01 2.855 0.055 0.055 0.055 2.855 0.055 0.055 0.055
1024 0.0072 0.01 2.855 0.077 0.044 0.044 2.855 0.044 0.044 0.044
2048 0.0036 0.01 2.855 0.064 0.041 0.041 2.855 0.041 0.041 0.041
4096 0.0018 0.01 2.855 0.041 0.041 0.041 2.855 0.041 0.041 0.041
32 0.23 0.001 2.855 0.615 0.163 0.163 2.855 0.160 0.160 0.160
64 0.12 0.001 2.855 0.158 0.074 0.074 2.855 0.074 0.074 0.074
128 0.058 0.001 2.855 0.148 0.148 0.148 2.855 0.148 0.148 0.148
256 0.029 0.001 2.855 0.074 0.074 0.074 2.855 0.074 0.074 0.074
512 0.014 0.001 2.855 0.039 0.039 0.039 2.855 0.039 0.039 0.039
1024 0.0072 0.001 2.855 0.021 0.021 0.021 2.855 0.021 0.021 0.021
2048 0.0036 0.001 2.855 0.019 0.014 0.014 2.855 0.014 0.014 0.014
4096 0.0018 0.001 2.855 0.024 0.013 0.013 2.855 0.013 0.013 0.013
32 0.23 0.0001 2.855 0.615 0.163 0.163 2.855 0.160 0.160 0.160
64 0.12 0.0001 2.855 0.160 0.074 0.074 2.855 0.074 0.074 0.074
128 0.058 0.0001 2.855 0.147 0.147 0.147 2.855 0.147 0.147 0.147
256 0.029 0.0001 2.855 0.071 0.071 0.071 2.855 0.071 0.071 0.071
512 0.014 0.0001 2.855 0.033 0.033 0.033 2.855 0.033 0.033 0.033
1024 0.0072 0.0001 2.855 0.015 0.015 0.015 2.855 0.015 0.015 0.015
2048 0.0036 0.0001 2.855 0.007 0.007 0.007 2.855 0.007 0.007 0.007
4096 0.0018 0.0001 2.855 0.004 0.004 0.004 2.855 0.004 0.004 0.004

Table 5.5: Results obtained with the implicit Euler method for single-asset options with exercise
price E = 30, T = 1, σ = 0.3, r = 0.1, R = 2 ln 40, i.e. Smax = $1600, ν1 = ν2 = 7, ν = 1,
and ω = 2

3 . The error is measured in the maximum norm and with respect to the exact solution
obtained by blsprice.
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Implicit Euler call option put option
method error in error in error in error in

R = 2 ln 30 ΩR × [0, T ] [ 1
40 , 40]× [0, T ] ΩR × [0, T ] [ 1

40 , 40]× [0, T ]
M h k g̃1 g̃2 g̃1 g̃2 g̃1 g̃2 g̃1 g̃2

32 0.21 0.1 2.855 0.591 0.591 0.591 2.855 0.591 0.591 0.591
64 0.11 0.1 2.855 0.344 0.344 0.344 2.855 0.343 0.343 0.343
128 0.053 0.1 2.855 0.200 0.200 0.200 2.855 0.198 0.198 0.198
256 0.027 0.1 2.855 0.149 0.149 0.149 2.855 0.147 0.147 0.147
512 0.013 0.1 2.855 0.135 0.135 0.135 2.855 0.133 0.133 0.133
1024 0.0066 0.1 2.855 0.131 0.131 0.131 2.855 0.130 0.130 0.130
2048 0.0033 0.1 2.855 0.130 0.130 0.130 2.855 0.129 0.129 0.129
4096 0.0017 0.1 2.855 0.130 0.130 0.130 2.855 0.129 0.129 0.129
32 0.21 0.01 2.855 0.554 0.554 0.554 2.855 0.556 0.556 0.556
64 0.11 0.01 2.855 0.290 0.290 0.290 2.855 0.290 0.290 0.290
128 0.053 0.01 2.855 0.160 0.160 0.160 2.855 0.160 0.160 0.160
256 0.027 0.01 2.855 0.089 0.089 0.089 2.855 0.089 0.089 0.089
512 0.013 0.01 2.855 0.055 0.055 0.055 2.855 0.055 0.055 0.055
1024 0.0066 0.01 2.855 0.045 0.045 0.045 2.855 0.045 0.045 0.045
2048 0.0033 0.01 2.855 0.042 0.042 0.042 2.855 0.042 0.042 0.042
4096 0.0017 0.01 2.855 0.041 0.041 0.041 2.855 0.041 0.041 0.041
32 0.21 0.001 2.855 0.550 0.550 0.550 2.855 0.552 0.552 0.552
64 0.11 0.001 2.855 0.281 0.281 0.281 2.855 0.281 0.281 0.281
128 0.053 0.001 2.855 0.143 0.143 0.143 2.855 0.143 0.143 0.143
256 0.027 0.001 2.855 0.074 0.074 0.074 2.855 0.074 0.074 0.074
512 0.013 0.001 2.855 0.042 0.042 0.042 2.855 0.042 0.042 0.042
1024 0.0066 0.001 2.855 0.023 0.023 0.023 2.855 0.023 0.023 0.023
2048 0.0033 0.001 2.855 0.016 0.016 0.016 2.855 0.016 0.016 0.016
4096 0.0017 0.001 2.855 0.014 0.014 0.014 2.855 0.014 0.014 0.014
32 0.21 0.0001 2.855 0.549 0.549 0.549 2.855 0.551 0.551 0.551
64 0.11 0.0001 2.855 0.280 0.280 0.280 2.855 0.280 0.280 0.280
128 0.053 0.0001 2.855 0.141 0.141 0.141 2.855 0.141 0.141 0.141
256 0.027 0.0001 2.855 0.071 0.071 0.071 2.855 0.071 0.071 0.071
512 0.013 0.0001 2.855 0.036 0.036 0.036 2.855 0.036 0.036 0.036
1024 0.0066 0.0001 2.855 0.019 0.019 0.019 2.855 0.019 0.019 0.019
2048 0.0033 0.0001 2.855 0.011 0.011 0.011 2.855 0.011 0.011 0.011
4096 0.0017 0.0001 2.855 0.006 0.006 0.006 2.855 0.006 0.006 0.006

Table 5.6: Results obtained with the implicit Euler method for single-asset options with exercise
price E = 30, T = 1, σ = 0.3, r = 0.1, R = 2 ln 30, i.e. Smax = $900, ν1 = ν2 = 7, ν = 1, and ω = 2

3 .
The error is measured in the maximum norm and with respect to the exact solution obtained by
blsprice.
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ν = 1, ν1 = ν2 = 7

k = 0.1 k = 0.01 k = 0.001 k = 0.0001
multigrid error in multigrid error in multigrid error in multigrid error in

M
ΩR

×[0, T ]
[ 1
40 , 40]
×[0, T ]

ΩR

×[0, T ]
[ 1
40 , 40]
×[0, T ]

ΩR

×[0, T ]
[ 1
40 , 40]
×[0, T ]

ΩR

×[0, T ]
[ 1
40 , 40]
×[0, T ]

32 3.8e− 05 9.0e− 07 2.7e− 04 9.4e− 06 2.7e− 03 1.0e− 04 2.7e− 02 1.0e− 03
64 1.0e− 04 3.4e− 06 3.2e− 05 1.0e− 06 2.7e− 04 9.7e− 06 2.7e− 03 9.8e− 05
128 2.5e− 03 6.2e− 05 1.4e− 05 5.7e− 07 2.3e− 05 1.8e− 06 2.1e− 04 1.8e− 05
256 5.1e− 02 2.1e− 04 8.3e− 05 4.1e− 06 3.3e− 06 1.8e− 07 1.6e− 05 1.1e− 06
512 8.5e− 02 2.7e− 04 4.9e− 03 4.3e− 05 3.7e− 06 2.8e− 07 1.4e− 06 1.4e− 07
1024 9.2e− 02 2.9e− 04 2.3e− 02 7.1e− 05 1.6e− 04 3.5e− 06 3.4e− 07 5.2e− 08
2048 6.7e− 02 1.6e− 04 2.9e− 02 8.7e− 05 3.6e− 03 1.9e− 05 3.4e− 06 1.8e− 07
4096 4.1e− 02 2.2e− 04 2.7e− 02 1.3e− 04 8.3e− 03 1.7e− 05 2.0e− 04 2.5e− 06

ν = 3, ν1 = ν2 = 15

k = 0.1 k = 0.01 k = 0.001 k = 0.0001
multigrid error in multigrid error in multigrid error in multigrid error in

M
ΩR

×[0, T ]
[ 1
40 , 40]
×[0, T ]

ΩR

×[0, T ]
[ 1
40 , 40]
×[0, T ]

ΩR

×[0, T ]
[ 1
40 , 40]
×[0, T ]

ΩR

×[0, T ]
[ 1
40 , 40]
×[0, T ]

32 6.8e− 13 7.1e− 15 2.3e− 12 8.9e− 15 1.0e− 11 7.6e− 14 6.0e− 10 9.4e− 12
64 9.1e− 13 8.9e− 15 6.6e− 12 9.2e− 14 2.3e− 11 2.8e− 13 4.3e− 10 6.2e− 12
128 8.0e− 13 3.6e− 15 1.8e− 12 2.5e− 14 7.8e− 11 1.1e− 12 6.6e− 10 9.9e− 12
256 1.4e− 09 4.9e− 12 7.7e− 12 6.0e− 14 4.5e− 11 6.7e− 13 6.9e− 10 1.0e− 11
512 6.1e− 07 7.4e− 10 1.0e− 11 1.7e− 13 8.6e− 11 1.3e− 12 1.2e− 10 1.8e− 12
1024 2.4e− 06 4.3e− 09 9.7e− 09 2.3e− 11 5.0e− 11 7.5e− 13 9.5e− 10 1.4e− 11
2048 3.2e− 06 4.0e− 09 3.4e− 07 3.8e− 10 2.2e− 10 3.3e− 12 5.0e− 10 6.6e− 12
4096 2.5e− 06 3.6e− 09 9.0e− 07 1.1e− 09 1.9e− 08 2.8e− 11 1.1e− 09 1.8e− 11

Table 5.7: The error in the multigrid method, calculated as the maximum norm of the difference
between the solution obtained by our Crank-Nicolson solver and the solution obtained by applying
the MATLAB direct solver on the linear systems (4.3) resulting from the Crank-Nicolson method.
The results refer to a single-asset call option with E = 30, T = 1, σ = 0.3, r = 0.1, R = 2 ln 40 and
boundary function g̃2. In our solver, one full multigrid V-cycle is performed with ω = 2

3 and the
cycling parameters specified above each table.
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Maximum norm error for the Crank-Nicolson method
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Maximum norm error for the implicit Euler method

32 64 128 256 512 1024 2048 4096
10

−3

10
−2

10
−1

10
0

Error versus M at fixed k

M

m
ax

im
um

 n
or

m
 e

rr
or

 

 

10
−4

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

Error versus k at fixed M

k

m
ax

im
um

 n
or

m
 e

rr
or

 

 

M=256
M=512
M=1024
M=2048
M=4096

k=0.1
k=0.01
k=0.001
k=0.0001

O(1/M)

O(k)O(1/M2)

O(k1/2)

Comparison of the error in the `2-norm and the maximum norm

32 64 128 256 512 1024 2048 4096
10

−4

10
−3

10
−2

10
−1

10
0

M

er
ro

r

Crank−Nicolson method

 

 

32 64 128 256 512 1024 2048 4096
10

−4

10
−3

10
−2

10
−1

10
0

M

Implicit Euler method

er
ro

r

 

 

k=10−1

k=10−2

k=10−3

k=10−4

k=10−1

k=10−2

k=10−3

k=10−4

k=10−1

k=10−2

k=10−3

k=10−4

k=10−1

k=10−2

k=10−3

k=10−4

l2−norm l2−norm

maximum
norm

maximum
norm

Figure 5.2: Plots of the maximum norm and `2-norm errors (with respect to the solution of the
untruncated Black-Scholes problem) within [ 1

40 , 40] × [0, T ] obtained for a single-asset call option
with parameters as in Tables 5.3 and 5.5 against the space or time grid parameter, for the Crank-
Nicolson and the implicit Euler methods.
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Figure 5.3: Plots of the error within Ω0.005 × [0, T ] versus the size R of the computational domain,
for single-asset call options with E = 1, T = 1, σ = 0.3, r = 0.1, and boundary function g̃2. We
use M = 1024, k = 0.001, where the error empirically remains constant when the grid is further
refined, the implicit Euler method, and multigrid parameters ν1 = ν2 = 7, ν = 1, and ω = 2

3 .

0 0.02 0.04 0.06 0.08 0.1 0.12
0.0316

0.0398

0.0501

0.0631

m
ax

im
um

 n
or

m
 e

rr
or

R

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0.0316

0.0398

0.0501

0.0631

Localization error in 2D

R2

m
ax

im
um

 n
or

m
 e

rr
or

O(1/R)O(exp(−4R))

O(exp(−40R2))

O(1/R)

O(exp(−4R))

O(exp(−40R2))

Figure 5.4: Plots of the error within Ω0.005 × [0, T ] versus the size R of the computational domain,
for exchange options with q1 = q2 = 1, T = 1, σ1 = 0.25, σ2 = 0.3, ρ = 0.9, and r = 0.1. We use
M = 128, k = 0.01, where the error empirically remains constant when the grid is further refined,
the implicit Euler method, and multigrid parameters ν1 = ν2 = 10, ν = 1, and ω = 0.8.
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Figure 5.5: Plots of the numerical solution and its point-wise error for an exchange option with
q1 = q2 = 1, T = 1, σ1 = 0.25, σ2 = 0.3, ρ = 0.9, and r = 0.1. The numerical solution is obtained
using the implicit Euler method with R = 0.01, i.e. Smax ≈ $1.01, M = 64, k = 0.01, boundary
function g̃1 = g̃2, and multigrid parameters ν1 = ν2 = 10, ν = 1, and ω = 0.8.
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Implicit Euler call on the maximum call on the minimum

R = 2 ln 40 error in ΩR

× (0 : 0.1 : 1)
error in [ 1

40 , 40]2

× (0 : 0.1 : 1)
error in ΩR

× (0 : 0.1 : 1)
error in [ 1

40 , 40]2

× (0 : 0.1 : 1)
M h k g̃1 g̃2 g̃1 g̃2 g̃1 g̃2 g̃1 g̃2

16 0.46 0.1 87.234 84.379 1.039 1.039 81.524 84.379 0.714 0.714
32 0.23 0.1 87.234 84.379 0.751 0.751 81.524 84.379 0.781 0.781
64 0.12 0.1 87.234 84.379 0.407 0.407 81.524 84.379 0.431 0.431
128 0.058 0.1 87.234 84.379 0.220 0.220 81.524 84.379 0.248 0.248
256 0.029 0.1 87.234 84.379 0.159 0.159 81.524 84.379 0.178 0.178
512 0.014 0.1 87.234 84.379 0.139 0.139 81.524 84.379 0.147 0.147
1024 0.0072 0.1 87.234 84.379 0.132 0.132 81.524 84.379 0.141 0.141
16 0.46 0.01 87.234 84.379 1.111 1.111 81.524 84.379 0.745 0.745
32 0.23 0.01 87.234 84.379 0.809 0.809 81.524 84.379 0.803 0.803
64 0.12 0.01 87.234 84.379 0.450 0.450 81.524 84.379 0.432 0.432
128 0.058 0.01 87.234 84.379 0.207 0.207 81.524 84.379 0.207 0.207
256 0.029 0.01 87.234 84.379 0.095 0.095 81.524 84.379 0.094 0.094
512 0.014 0.01 87.234 84.379 0.042 0.042 81.524 84.379 0.041 0.041
1024 0.0072 0.01 87.234 84.379 0.018 0.018 81.524 84.379 0.022 0.022
16 0.46 0.001 87.234 84.379 1.118 1.118 81.524 84.379 0.749 0.749
32 0.23 0.001 87.234 84.379 0.815 0.815 81.524 84.379 0.805 0.805
64 0.12 0.001 87.234 84.379 0.454 0.454 81.524 84.379 0.433 0.433
128 0.058 0.001 87.234 84.379 0.212 0.212 81.524 84.379 0.211 0.211
256 0.029 0.001 87.234 84.379 0.103 0.103 81.524 84.379 0.102 0.102
512 0.014 0.001 87.234 84.379 0.042 0.042 81.524 84.379 0.042 0.042

Table 5.8: Results obtained with the implicit Euler method for options on the maximum and
minimum of two assets with exercise price E = 30, T = 1, σ1 = 0.25, σ2 = 0.3, ρ = 0.9, r = 0.1,
R = 2 ln 40, i.e. Smax = $1600, ν1 = ν2 = 10, ν = 1, and ω = 0.8. The error is with respect to the
solution of the untruncated Black-Scholes problem and measured in the maximum norm.
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Implicit Euler call on the maximum call on the minimum

R = 2 ln 30 error in ΩR

× (0 : 0.1 : 1)
error in [ 1

40 , 40]2

× (0 : 0.1 : 1)
error in ΩR

× (0 : 0.1 : 1)
error in [ 1

40 , 40]2

× (0 : 0.1 : 1)
M h k g̃1 g̃2 g̃1 g̃2 g̃1 g̃2 g̃1 g̃2

16 0.43 0.1 50.318 47.463 1.042 1.042 44.608 47.463 1.758 1.758
32 0.21 0.1 50.318 47.463 0.595 0.595 44.608 47.463 0.829 0.829
64 0.11 0.1 50.318 47.463 0.352 0.352 44.608 47.463 0.418 0.418
128 0.053 0.1 50.318 47.463 0.212 0.212 44.608 47.463 0.237 0.237
256 0.027 0.1 50.318 47.463 0.157 0.157 44.608 47.463 0.173 0.173
512 0.013 0.1 50.318 47.463 0.138 0.138 44.608 47.463 0.146 0.146
1024 0.0066 0.1 50.318 47.463 0.134 0.134 44.608 47.463 0.141 0.141
16 0.43 0.01 50.318 47.463 1.016 1.016 44.608 47.463 1.756 1.756
32 0.21 0.01 50.318 47.463 0.629 0.629 44.608 47.463 0.822 0.822
64 0.11 0.01 50.318 47.463 0.346 0.346 44.608 47.463 0.405 0.405
128 0.053 0.01 50.318 47.463 0.185 0.185 44.608 47.463 0.185 0.185
256 0.027 0.01 50.318 47.463 0.085 0.085 44.608 47.463 0.083 0.083
512 0.013 0.01 50.318 47.463 0.038 0.038 44.608 47.463 0.039 0.039
1024 0.0066 0.01 50.318 47.463 0.018 0.018 44.608 47.463 0.021 0.021
16 0.43 0.001 50.318 47.463 1.013 1.013 44.608 47.463 1.756 1.756
32 0.21 0.001 50.318 47.463 0.634 0.634 44.608 47.463 0.822 0.822
64 0.11 0.001 50.318 47.463 0.351 0.351 44.608 47.463 0.404 0.404
128 0.053 0.001 50.318 47.463 0.190 0.190 44.608 47.463 0.189 0.189
256 0.027 0.001 50.318 47.463 0.092 0.092 44.608 47.463 0.091 0.091
512 0.013 0.001 50.318 47.463 0.037 0.037 44.608 47.463 0.037 0.037

Table 5.9: Results obtained with the implicit Euler method for options on the maximum and
minimum of two assets with exercise price E = 30, T = 1, σ1 = 0.25, σ2 = 0.3, ρ = 0.9, r = 0.1,
R = 2 ln 30, i.e. Smax = $900, ν1 = ν2 = 10, ν = 1, and ω = 0.8. The error is with respect to the
solution of the untruncated Black-Scholes problem and measured in the maximum norm.

101



0 10 20 30 40 0
10

20
30

40

0

2

4

6

8

10

S
2

S
1

τ=0

0 10 20 30 40 0
10

20
30

40

0

2

4

6

8

10

S
2

S
1

τ=0.01

0 5 10 15 20 25 30 35 400

20

40
0

5

10

15
τ=0.1

S
1

S
2

0 5 10 15 20 25 30 35 400

20

40
0

5

10

15
τ=1

S
1

S
2

Figure 5.6: Plot of the numerical solution for a call on the maximum of two assets with E = 30,
T = 1, σ1 = 0.25, σ2 = 0.3, ρ = 0.9, r = 0.1, obtained by the implicit Euler method with
computational parameters M = 128, R = 2 ln 30, k = 0.01, boundary function g̃2, ν1 = ν2 = 10,
ν = 1, and ω = 0.8. The solution in the domain [ 1

40 , 40]2 is shown at different time steps.
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Figure 5.7: Illustration of the point-wise error (with respect to the solution of the untruncated
Black-Scholes problem) in the numerical solution for a call on the maximum of two assets with
E = 30, T = 1, σ1 = 0.25, σ2 = 0.3, ρ = 0.9, r = 0.1, obtained by the implicit Euler method with
computational parameters M = 128, R = 2 ln 30, k = 0.01, boundary function g̃2, ν1 = ν2 = 10,
ν = 1, and ω = 0.8. The error is shown at the first non-zero (left) and the last (right) time step,
in the whole computational domain (top) and within the domain [ 1

40 , 40]2 (bottom), respectively.
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Figure 5.8: Plots of the maximum norm errors (with respect to the solution of the untruncated
Black-Scholes problem) within [ 1

40 , 40]2 × (0 : 0.1 : 1) obtained for an option on the maximum of
two assets with parameters as in Table 5.9 (i.e. E = 30, σ1 = 0.25, σ2 = 0.3, ρ = 0.9, r = 0.1,
R = 2 ln 30, ν1 = ν2 = 10, ν = 1, and ω = 0.8) against the space and time grid parameter,
respectively, for the Crank-Nicolson and the implicit Euler methods. Compared to Table 5.9, the
experiment with parameters M = 1024, k = 0.001 is added.
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k = 0.1 k = 0.01 k = 0.001
multigrid error in multigrid error in multigrid error in

M h
ΩR

× [0, T ]
[ 1
40 , 40]2

× [0, T ]
ΩR

× [0, T ]
[ 1
40 , 40]2

× [0, T ]
ΩR

× [0, T ]
[ 1
40 , 40]2

× [0, T ]
4 1.84 8.2e− 11 1.5e− 11 8.5e− 10 2.1e− 10 8.5e− 09 2.2e− 09
8 0.92 5.6e− 11 3.8e− 12 5.3e− 10 3.0e− 11 5.3e− 09 2.9e− 10
16 0.46 5.2e− 11 1.7e− 12 2.4e− 10 3.3e− 12 2.3e− 09 3.0e− 11
32 0.23 3.3e− 09 1.2e− 10 8.1e− 11 2.2e− 12 5.3e− 10 1.3e− 11
64 0.12 1.8e− 05 6.8e− 07 2.4e− 10 7.3e− 12 1.1e− 10 3.0e− 12
128 0.058 3.4e− 02 8.9e− 04 5.3e− 08 1.6e− 09 5.9e− 11 1.6e− 12
256 0.029 9.4e− 01 8.3e− 03 2.7e− 04 6.2e− 06
512 0.014 3.1e + 00 1.1e− 02

Table 5.10: The error in the multigrid method, calculated as the maximum norm of the difference
between the solution obtained by our Crank-Nicolson solver and the solution obtained by applying
the MATLAB direct solver on the linear systems (4.3) resulting from the Crank-Nicolson method.
The results refer to an option on the maximum of two assets with E = 30, T = 1, σ1 = 0.25,
σ2 = 0.3, ρ = 0.9, r = 0.1, R = 2 ln 40 and boundary function g̃2. The multigrid method is used
with the parameters ν1 = ν2 = 10, ν = 1, and ω = 0.8.
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Figure 5.9: Computation time for the numerical solution with our solver (solid lines) and with
the MATLAB built-in direct solver (dashed lines) plotted against the number N = (2M − 1)2 of
unknowns in the linear system for the experiments listed in Table 5.10. The computation time is
measured with the MATLAB built-in stopwatch timer functions tic and toc (see [MATLAB 7.7.0
Help, 2008]).
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call on the maximum

Implicit Euler
R = 2 ln 40

error in ΩR

× (0 : 0.1 : 1)
error in [ 1

40 , 40]3

× (0 : 0.1 : 1)

value at
S = (40, 40, 40),
τ = 1

error at
S = (40, 40, 40),
τ = 1

M h k (exact: 20.153)
8 0.92 0.1 289.878 1.885 20.131 −0.022
8 0.92 0.01 289.878 1.879 20.216 +0.063
8 0.92 0.001 289.878 1.879 20.225 +0.072
8 0.92 0.0001 289.878 1.879 20.226 +0.073
16 0.46 0.1 289.878 1.237 20.149 −0.004
16 0.46 0.01 289.878 1.181 20.282 +0.129
16 0.46 0.001 289.878 1.176 20.296 +0.143
16 0.46 0.0001 289.878 1.176 20.297 +0.144
32 0.23 0.1 289.878 0.803 20.237 +0.084
32 0.23 0.01 289.878 0.649 20.346 +0.193
32 0.23 0.001 289.878 0.630 20.357 +0.204
64 0.12 0.1 289.878 0.436 20.138 −0.015
64 0.12 0.01 289.878 0.203 20.232 +0.079

call on the minimum

Implicit Euler
R = 2 ln 40

error in ΩR

× (0 : 0.1 : 1)
error in [ 1

40 , 40]3

× (0 : 0.1 : 1)

value at
S = (40, 40, 40),
τ = 1

error at
S = (40, 40, 40),
τ = 1

M h k (exact: 7.172)
8 0.92 0.1 271.770 2.404 9.021 +1.849
8 0.92 0.01 271.770 2.393 8.998 +1.826
8 0.92 0.001 271.770 2.392 8.996 +1.824
8 0.92 0.0001 271.770 2.392 8.996 +1.824
16 0.46 0.1 271.770 1.807 8.100 +0.928
16 0.46 0.01 271.770 1.756 8.028 +0.856
16 0.46 0.001 271.770 1.750 8.020 +0.848
16 0.46 0.0001 271.770 1.750 8.019 +0.847
32 0.23 0.1 271.770 0.955 7.235 +0.063
32 0.23 0.01 271.770 0.813 7.176 +0.004
32 0.23 0.001 271.770 0.795 7.170 −0.002
64 0.12 0.1 271.770 0.514 7.207 +0.035
64 0.12 0.01 271.770 0.250 7.169 −0.003

Table 5.11: Results obtained with the implicit Euler method for options on the maximum and
the minimum of three assets with exercise price E = 30, T = 1, σ1 = 0.25, σ2 = 0.3, σ3 = 0.35,
ρ12 = ρ23 = 0.6, ρ13 = 0.4, r = 0.1, R = 2 ln 40, i.e. Smax = $1600, boundary function g̃2,
ν1 = ν2 = 12, ν = 1, and ω = 6

7 . The error is with respect to the solution of the untruncated
Black-Scholes problem and measured in the maximum norm within domains.
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Implicit Euler method call on the arithmetic average call on the geometric average
R = 2 ln 100

M h k value at S = (100, 100, 100), τ = 1 value at S = (100, 100, 100), τ = 1

8 1.15 0.1 10.999 8.129
8 1.15 0.01 11.024 8.147
8 1.15 0.001 11.027 8.149
8 1.15 0.0001 11.027 8.149
16 0.58 0.1 10.621 9.589
16 0.58 0.01 10.678 9.647
16 0.58 0.001 10.684 9.653
16 0.58 0.0001 10.684 9.654
32 0.29 0.1 11.675 11.008
32 0.29 0.01 11.784 11.119
32 0.29 0.001 11.796 11.130
32 0.29 0.0001 11.797 11.131
64 0.14 0.1 11.965 11.398
64 0.14 0.01 12.048 11.483
64 0.14 0.001 12.056 11.492
128 0.072 0.1 11.994 11.469
128 0.072 0.01 12.072 11.551

Table 5.12: Point-wise results obtained with the implicit Euler method for calls on the arithmetic
and the geometric average of three assets with exercise price E = 100, T = 1, σi = 0.2 for all i,
ρij = 0.2 for all i 6= j, r = 0.1, R = 2 ln 100, i.e. Smax = $10000, boundary function g̃1, ν1 = ν2 = 12,
ν = 1, and ω = 6

7 . For the option on the geometric average, [Boyle et al., 1989] provide the exact
solution 11.581.
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Chapter 6

Conclusion

This thesis has developed a numerical solution method for the multivariate Black-Scholes PDE
based on a finite-difference discretisation of a log-transform of the Black-Scholes PDE after trun-
cation to a bounded domain, and on iterative solution of the resulting linear systems using the full
multigrid V-cycle method. We have proven the existence of a unique solution of the original and
the truncated differential problem and provided an analytical estimate of the localisation error by
generalising the approach by [Kangro and Nicolaides, 2000]. We found that the truncated problem
is not regular enough to ensure convergence of the finite-difference scheme according to the stan-
dard convergence theory of such numerical schemes. However, numerical experiments in MATLAB
in one, two, and three dimensions demonstrated that the implicit Euler discretisation employed
with a suitable choice of computational parameters has satisfactory convergence properties even if
the theoretically optimal convergence order is not attained. Hence, we were able to price realistic
multi-asset options to an accuracy of few cents.

A main objective of our work was to design a numerical method that can simultaneously be used
for any number of underlying assets, and we have shown that all required algorithms can indeed
be expressed with the number of underlyings as an a-priori unknown parameter, and presented a
corresponding MATLAB implementation.

In theory, our method is hence applicable for an arbitrary number of underlying assets. In
practice, however, applicability of the method is limited by the computational capacity available.
As we compute the numerical solution on the grid points of a uniform grid in space and time,
the number of unknowns is exponential in the space dimension. This “curse of dimensionality”,
as [Lötstedt et al., 2007] call it, constitutes a serious limitation to any finite-difference or finite
element based numerical method. Alternatively, methods based on the second approach to the
Black-Scholes model mentioned in the introduction can be used, where the option value at a speci-
fied point (S, τ) is given in terms of a multi-dimensional integral that can be numerically evaluated
using, e.g., Monte-Carlo methods such as the one presented in [Barraquand, 1995]. With such
methods, options on as many as several hundred underlying assets can be valued, albeit only at
a single point (S, τ) at a time. PDE-based methods, in contrast, simultaneously yield the option
price on every grid point of a numerical grid. Thus, even though the finite-difference approach is
impracticable in high dimensions, [Lötstedt et al., 2007] declare that they consider it the best choice
for problems in up to five space dimensions, amongst other reasons because the finite-difference
solution is smooth enough to allow for the calculation of derivatives of the option price. These
derivatives, called “the Greeks”, are needed in hedging strategies (see also, e.g., [Wilmott et al.,
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1995]). Both types of methods thus have their justification and applications.

The performance of the numerical solver presented here might be enhanced in several ways.
Using an adaptive method in generating the computational grid, as done, e.g., by [Persson and

von Sydow, 2007] and [Lötstedt et al., 2007], could reduce the computational effort necessary to
achieve a certain accuracy. Adaptive grids in space are not well compatible with the multigrid
method used here, yet introducing an adaptive time stepping method should not cause major
complications and would allow to deal with the initial disturbances caused by the non-smooth
initial condition without imposing an excessively fine time step k during the whole time interval.

Furthermore, more sophisticated variants of the multigrid method might be considered, in-
volving, e.g., different smoothing operations, intergrid transfer operators, or adaptive regulation of
the number of smoothing operations performed on each grid. We refer to the vast literature on
multigrid methods for possible modifications.

This list of possible enhancements is by no means complete. The main aim of this thesis was to
present how an algorithm involving the space dimension as a mere parameter can be devised. For
detailed information, the full code is given in the appendix.
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Appendix A

MATLAB Code

Listing A.1: MATLAB implementation of the Black-Scholes solver using the Crank-Nicolson
method (Algorithm 10)

1 function W = CN( n,M,R,k,T,r,sigma,w0,g,nu1,nu2,nu,omega )
2 % This function performs the Crank−Nicolson method for the transformed
3 % Black−Scholes problem for an n−asset option with transformed pay−off w0
4 % and boundary function g, truncated to [−R,R]�n x [0,T], on a mesh of
5 % spatial mesh width R/M and time step k.
6 % The resulting linear systems are numerically solved with the full
7 % multigrid V−cycle method based on weighted Jacobi iterations, n−linear
8 % interpolation and full weighting restriction.
9 %

10 % Claudia Satke 2009
11

12 K = T/k;
13 W = zeros((2*M+1)�n,K+1);
14

15 % set W0 by evaluating w0 at all grid points:
16 y = repmat( (0:(2*M+1)�n−1)�, 1,n);
17 aux = y./repmat( (2*M+1).�(n:−1:1), (2*M+1)�n,1);
18 coord = R/M*floor((2*M+1)*aux) − R/M*(2*M+1)*floor(aux) − R;
19 W(:,1) = w0(coord);
20

21 % find interior and boundary grid point indices:
22 M0 = repmat( (0:((2*M+1)�(n−1)−1))�, 1,n);
23 pow = (2*M+1).�(n−1:−1:0);
24 M4 = repmat( pow, (2*M+1)�(n−1),1);
25 leftbd = 2*M* M4.*floor( M0./M4 ) + M0 + 1;
26 bdind = reshape( [leftbd; leftbd+2*M*M4], 2*n*(2*M+1)�(n−1),1);
27 bdind = unique(bdind);
28 intind = setdiff((1:(2*M+1)�n)�, bdind);
29

30 % find boundary coordinates for g evaluations
31 % and evaluate boundary values at t=0:
32 bdcoord = coord(bdind,:);
33 g2 = zeros((2*M+1)�n,1);
34 g2(bdind) = g(bdcoord,0);
35
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36 % generate the row entries of the matrix A
37 h = R/M; % = mesh width
38 increments = [0, pow, −pow];
39 vals = [ r + sum(diag(sigma))/h�2, ... % diagonal
40 −diag(sigma)�/(2*h�2) + diag(sigma)�/(4*h) − r/(2*h), ... % 1−step neighbours
41 −diag(sigma)�/(2*h�2) − diag(sigma)�/(4*h) + r/(2*h)];
42 if n>1 % increments corresponding to 2−step neighbours:
43 dimensions = zeros( 2, n*(n−1)/2); % initialise the matrix
44 % of all (i,j) combinations
45 temp = repmat(1:n,n,1);
46 dimensions(1,:) = temp(tril(temp,−1)>0); % lower triangular part,
47 % starting from the first subdiagonal, then the
48 % non−zero values are extracted as a row vector
49 % (automatically column−wise ordered)
50 temp = temp�;
51 dimensions(2,:) = temp(tril(temp,−1)>0); % instead of triu + row−wise
52 % extracting: tril of transposed matrix and column−wise extracting
53 inc = (2*M+1).�(n−dimensions);
54 increments = [increments, sum(inc,1), − sum(inc,1), ...
55 inc(1,:) − inc(2,:), − inc(1,:) + inc(2,:)];
56 vals = [vals, ...
57 − sigma(n*dimensions(2,:)−n+dimensions(1,:))/(4*h�2), ...
58 − sigma(n*dimensions(2,:)−n+dimensions(1,:))/(4*h�2), ...
59 sigma(n*dimensions(2,:)−n+dimensions(1,:))/(4*h�2), ...
60 sigma(n*dimensions(2,:)−n+dimensions(1,:))/(4*h�2)];
61 end
62 % now: vals contains the row entries of A(intind,incrind)
63 kB0vals = − k/2*vals;
64 kB0vals(1) = kB0vals(1) + 1;
65 % now: kB0vals contains the row entries of (I−k/2*A)(intind,incrind)
66

67 %generate the indices to extract the corresponding entries of W
68 N = (2*M−1)�n; % length of intind
69 incrind = repmat( intind, 1, 2*n�2 + 1 ) + repmat( increments, N,1);
70

71 % Crank−Nicolson scheme
72 for i=1:K
73 % generate the boundary value vectors g�l and g�(l+1):
74 g1 = g2;
75 g2 = zeros((2*M+1)�n,1);
76 g2(bdind) = g(bdcoord,i*k);
77 % generate the right−hand side:
78 Wi = zeros((2*M+1)�n,1);
79 Wi(intind)=W(intind,i);
80 RHS = Wi(incrind) * kB0vals� − k/2*( g1(incrind) + g2(incrind) ) * vals�;
81 % call the full multigrid V−cycle function to compute W�(l+1):
82 W(:,i+1) = FMG( n,M,R,k,r,sigma,RHS,g2,nu1,nu2,nu,omega );
83 end
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Listing A.2: MATLAB implementation of the full multigrid V-cycle method for use in the CN func-
tion (Algorithm 11)

1 function W = FMG( n,M,R,k,r,sigma,RHS,BVs,nu1,nu2,nu,omega )
2 % This function performs the full multigrid V−cycle for the equation
3 % (I+k/2*A h(ii)) W,int = RHS, W,bd = BVs
4 % on the n−dimensional grid of spatial mesh width h=R/M, using weighted
5 % Jacobi smoothing, n−linear interpolation and full weighting restriction.
6 %
7 % Claudia Satke 2009
8

9 W = zeros((2*M+1)�n,1);
10

11 % find interior and boundary grid point indices:
12 M0 = repmat( (0:((2*M+1)�(n−1)−1))�, 1,n);
13 M4 = repmat( (2*M+1).�(n−1:−1:0), (2*M+1)�(n−1),1);
14 leftbd = 2*M* M4.*floor( M0./M4 ) + M0 + 1;
15 bdind = reshape( [leftbd; leftbd+2*M*M4], 2*n*(2*M+1)�(n−1),1);
16 bdind = unique(bdind);
17 intind = setdiff(1:(2*M+1)�n, bdind);
18

19 % full multigrid V−cycle algorithm:
20

21 if M > 1
22 % generate the prolongation matrix P:
23 % apply Algorithm 8 with the parameter M+2:
24 pow = (M+1).�(n−1:−1:0);
25 ind = floor( rem( repmat( (0:((M+1)�n−1))�, 1,n),...
26 repmat( (M+1)*pow, (M+1)�n,1) )...
27 ./ repmat( pow, (M+1)�n,1) ) + 1;
28 ind = ind�;
29 intcoarse = (( M+3).�(n−1:−1:0))* ind + 1;
30 intfine = ((2*M+5).�(n−1:−1:0))*2*ind + 1;
31 comb = floor( rem( repmat( (0:(3�n −1))�, 1,n),...
32 repmat( 3.�(n:−1:1), 3�n,1) )...
33 ./ repmat( 3.�(n−1:−1:0), 3�n,1) ) − 1;
34 incr = comb*((2*M+5).�(n−1:−1:0)�);
35 I = repmat( intfine, 3�n,1) + repmat( incr, 1,(M+1)�n);
36 J = repmat( intcoarse, 3�n,1);
37 Pvals = 2.�(−sum(abs(comb),2));
38 P = sparse( I(:), J(:), repmat( Pvals, (M+1)�n,1), (2*M+5)�n, (M+3)�n );
39 % delete rows corresp. to boundary grid points in the mesh with M+2:
40 M0 = repmat( (0:((2*M+5)�(n−1)−1))�, 1,n);
41 M4 = repmat( (2*M+5).�(n−1:−1:0), (2*M+5)�(n−1),1);
42 leftbd = 2*(M+2)* M4.*floor( M0./M4 ) + M0 + 1;
43 bdind2 = reshape( [leftbd; leftbd+2*(M+2)*M4], 2*n*(2*M+5)�(n−1),1);
44 intind2 = setdiff(1:(2*M+5)�n, bdind2);
45 P = P(intind2,:);
46 % delete rows corresp. to boundary grid points in the mesh with M+1:
47 M0 = repmat( (0:((2*M+3)�(n−1)−1))�, 1,n);
48 M4 = repmat( (2*M+3).�(n−1:−1:0), (2*M+3)�(n−1),1);
49 leftbd = 2*(M+1)* M4.*floor( M0./M4 ) + M0 + 1;
50 bdind2 = reshape( [leftbd; leftbd+2*(M+1)*M4], 2*n*(2*M+3)�(n−1),1);
51 intind2 = setdiff(1:(2*M+3)�n, bdind2);
52 P = P(intind2,:);
53 % delete columns corresp. to boundary grid points in the mesh with M/2+1:
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54 M0 = repmat( (0:((M+3)�(n−1)−1))�, 1,n);
55 M4 = repmat( (M+3).�(n−1:−1:0), (M+3)�(n−1),1);
56 leftbd = 2*(M/2+1)* M4.*floor( M0./M4 ) + M0 + 1;
57 bdind2 = reshape( [leftbd; leftbd+2*(M/2+1)*M4], 2*n*(M+3)�(n−1),1);
58 intind2 = setdiff(1:(M+3)�n, bdind2);
59 P = P(:,intind2);
60 % use only the part corresponding to interior grid points to restrict
61 % RHS to the coarser mesh Omega 2h:
62 M0 = repmat( (0:((M+1)�(n−1)−1))�, 1,n);
63 M4 = repmat( (M+1).�(n−1:−1:0), (M+1)�(n−1),1);
64 leftbd = M* M4.*floor( M0./M4 ) + M0 + 1;
65 bdind2h coarse = reshape( [leftbd; leftbd+M*M4], 2*n*(M+1)�(n−1),1);
66 bdind2h coarse = unique(bdind2h coarse);
67 intind2h = setdiff(1:(M+1)�n, bdind2h coarse);
68 RHS2h = P(intind,intind2h)�*RHS/2�n;
69 % extract the correct boundary values on the coarse grid from BVs:
70 % find fine−grid indices of the boundary grid points which belong to
71 % the coarse grid as well:
72 y = repmat( bdind2h coarse−1, 1,n);
73 aux = y./repmat( (M+1).�(n:−1:1),length(y),1 );
74 alpha = floor((M+1)*aux) − (M+1)*floor(aux) − M/2;
75 bdind2h fine = ((2*M+1).�(n−1:−1:0))*(2*alpha�+M) + 1;
76 BVs2h = zeros((M+1)�n,1);
77 BVs2h(bdind2h coarse(:)) = BVs(bdind2h fine(:));
78 % call FMG on the coarse grid and correct W by the interpolated result:
79 W2h = FMG( n,M/2,R,k,r,sigma,RHS2h,BVs2h,nu1,nu2,nu,omega );
80 W = W + P*W2h;
81 end
82 % set the boundary values of W right again:
83 W(bdind) = BVs(bdind);
84

85 for i=1:nu
86 W(intind) = MG(n,M,R,k,r,sigma,W(intind),RHS,nu1,nu2,1,omega);
87 end
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Listing A.3: MATLAB implementation of the multigrid µ-cycle method for the linear system
resulting from the Crank-Nicolson discretisation (Algorithm 12)

1 function W = MG(n,M,R,k,r,sigma,W0,RHS,nu1,nu2,mu,omega)
2 % This function performs the multigrid mu−cycle for the equation
3 % (I+k/2*A)W,int = RHS,int
4 % on the n−dimensional grid of spatial mesh width h=R/M, using weighted
5 % Jacobi smoothing, n−linear interpolation and full weighting restriction.
6 %
7 % Claudia Satke 2009
8

9 if M == 1 % on the coarsest grid: only 1 interior component,
10 % 1x1 linear system is explicitly solved:
11 W = RHS /( 1 + k/2* (r + sum(diag(sigma))*M�2/R�2) );
12 else
13 % initialising
14 W = W0;
15 % pre−smoothing
16 % find interior and boundary grid point indices:
17 M0 = repmat( (0:((2*M+1)�(n−1)−1))�, 1,n);
18 pow = (2*M+1).�(n−1:−1:0);
19 M4 = repmat( pow, (2*M+1)�(n−1),1);
20 leftbd = 2*M* M4.*floor( M0./M4 ) + M0 + 1;
21 bdind = reshape( [leftbd; leftbd + 2*M*M4], 2*n*(2*M+1)�(n−1),1);
22 intind = setdiff((1:(2*M+1)�n)�, bdind);
23 % generate entries in the intind−rows of B1:
24 h = R/M; % = mesh width
25 increments = [0, pow, −pow];
26 vals = [ r + sum(diag(sigma))/h�2, ... % diagonal
27 −diag(sigma)�/(2*h�2) + diag(sigma)�/(4*h) − r/(2*h), ... % 1−step neighbours
28 −diag(sigma)�/(2*h�2) − diag(sigma)�/(4*h) + r/(2*h)];
29 if n>1 % increments corresponding to 2−step neighbours:
30 dimensions = zeros( 2, n*(n−1)/2); % initialise the matrix
31 % of all (i,j) combinations
32 temp = repmat(1:n,n,1);
33 dimensions(1,:) = temp(tril(temp,−1)>0); % lower triangular part,
34 % starting from the first subdiagonal, then the
35 % non−zero values are extracted as a row vector
36 % (automatically column−wise ordered)
37 temp = temp�;
38 dimensions(2,:) = temp(tril(temp,−1)>0); % instead of triu + row−wise
39 % extracting: tril of transposed matrix and column−wise extracting
40 inc = (2*M+1).�(n−dimensions);
41 increments = [increments, sum(inc,1), − sum(inc,1), ...
42 inc(1,:) − inc(2,:), − inc(1,:) + inc(2,:)];
43 vals = [vals, ...
44 − sigma(n*dimensions(2,:)−n+dimensions(1,:))/(4*h�2), ...
45 − sigma(n*dimensions(2,:)−n+dimensions(1,:))/(4*h�2), ...
46 sigma(n*dimensions(2,:)−n+dimensions(1,:))/(4*h�2), ...
47 sigma(n*dimensions(2,:)−n+dimensions(1,:))/(4*h�2)];
48 end
49 % now: vals contains the row entries of A(intind,incrind)
50 kB1vals = k/2*vals;
51 kB1vals(1) = kB1vals(1) + 1;
52 % now: kB1vals contains the row entries of (I+k/2*A)(intind,incrind)
53
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54 % extend W by zero boundary values
55 W BV = zeros((2*M+1)�n,1);
56 W BV( intind ) = W;
57 %generate the indices to extract the corresponding entries of W BV
58 N = (2*M−1)�n; % length of intind
59 incrind = repmat( intind, 1, 2*n�2 + 1 ) + repmat( increments, N,1);
60

61 % execute nu1 weighted Jacobi steps:
62 for j = 1:nu1
63 res = RHS − W BV( incrind ) * kB1vals�;
64 W = W + omega/kB1vals(1) * res;
65 W BV( intind ) = W;
66 end
67

68 % generate the prolongation matrix P:
69 pow = (M−1).�(n−1:−1:0);
70 ind = floor( rem( repmat( (0:((M−1)�n−1))�, 1,n),...
71 repmat( (M−1)*pow, (M−1)�n,1) )...
72 ./ repmat( pow, (M−1)�n,1) ) + 1;
73 ind = ind�;
74 intcoarse = (( M+1).�(n−1:−1:0))* ind + 1;
75 intfine = ((2*M+1).�(n−1:−1:0))*2*ind + 1;
76 comb = floor( rem( repmat( (0:(3�n −1))�, 1,n),...
77 repmat( 3.�(n:−1:1), 3�n,1) )...
78 ./ repmat( 3.�(n−1:−1:0), 3�n,1) ) − 1;
79 incr = comb*((2*M+1).�(n−1:−1:0)�);
80 I = repmat( intfine, 3�n,1) + repmat( incr, 1,(M−1)�n);
81 J = repmat( intcoarse, 3�n,1);
82 Pvals = 2.�(−sum(abs(comb),2));
83 P = sparse( I(:), J(:), repmat( Pvals, (M−1)�n,1), (2*M+1)�n, (M+1)�n );
84 % retain only the components corresponding to interior grid points:
85 P = P(intind,intcoarse);
86 % calculate the residual and restrict it to the coarse grid Omega 2h:
87 res = RHS − W BV( incrind ) * kB1vals�;
88 res = P�*res/2�n;
89 % initialise the error E2h:
90 E2h = zeros((M−1)�n,1);
91 % call MG mu times for the error E2h on the coarse grid Omega 2h and
92 % the restricted residual as RHS:
93 for i = 1:mu
94 E2h = MG(n,M/2,R,k,r,sigma,E2h,res,nu1,nu2,mu,omega);
95 end
96 % correcting W with the interpolated error estimate
97 W = W + P*E2h;
98 % post−smoothing:
99 %execute nu2 weighted Jacobi steps

100 W BV( intind ) = W;
101 for j = 1:nu2
102 res = RHS − W BV( incrind ) * kB1vals�;
103 W = W + omega/kB1vals(1) * res;
104 W BV( intind ) = W;
105 end
106 end
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Listing A.4: MATLAB implementation of the Black-Scholes solver using the implicit Euler method
(Algorithm 13)

1 function W = IE( n,M,R,k,T,r,sigma,w0,g,nu1,nu2,nu,omega )
2 % This function performs the implicit Euler method for the transformed
3 % Black−Scholes problem for an n−asset option with transformed pay−off w0
4 % and boundary function g, truncated to [−R,R]�n x [0,T], on a mesh of
5 % spatial mesh width R/M and time step k.
6 % The resulting linear systems are numerically solved with the full
7 % multigrid V−cycle method based on weighted Jacobi iterations, n−linear
8 % interpolation and full weighting restriction.
9 %

10 % Claudia Satke 2009
11

12 K = T/k;
13 W = zeros((2*M+1)�n,K+1);
14

15 % set W0 by evaluating w0 at all grid points:
16 y = repmat( (0:(2*M+1)�n−1)�, 1,n);
17 aux = y./repmat( (2*M+1).�(n:−1:1), (2*M+1)�n,1);
18 coord = R/M*floor((2*M+1)*aux) − R/M*(2*M+1)*floor(aux) − R;
19 W(:,1) = w0(coord);
20

21 % find interior and boundary grid point indices:
22 M0 = repmat( (0:((2*M+1)�(n−1)−1))�, 1,n);
23 pow = (2*M+1).�(n−1:−1:0);
24 M4 = repmat( pow, (2*M+1)�(n−1),1);
25 leftbd = 2*M* M4.*floor( M0./M4 ) + M0 + 1;
26 bdind = reshape( [leftbd; leftbd+2*M*M4], 2*n*(2*M+1)�(n−1),1);
27 bdind = unique(bdind);
28 intind = setdiff((1:(2*M+1)�n)�, bdind);
29

30 % find boundary coordinates for g evaluations:
31 bdcoord = coord(bdind,:);
32

33 % generate the row entries of the matrix A
34 h = R/M; % = mesh width
35 increments = [0, pow, −pow];
36 vals = [ r + sum(diag(sigma))/h�2, ... % diagonal
37 −diag(sigma)�/(2*h�2) + diag(sigma)�/(4*h) − r/(2*h), ... % 1−step neighbours
38 −diag(sigma)�/(2*h�2) − diag(sigma)�/(4*h) + r/(2*h)];
39 if n>1 % increments corresponding to 2−step neighbours:
40 dimensions = zeros( 2, n*(n−1)/2); % initialise the matrix
41 % of all (i,j) combinations
42 temp = repmat(1:n,n,1);
43 dimensions(1,:) = temp(tril(temp,−1)>0); % lower triangular part,
44 % starting from the first subdiagonal, then the
45 % non−zero values are extracted as a row vector
46 % (automatically column−wise ordered)
47 temp = temp�;
48 dimensions(2,:) = temp(tril(temp,−1)>0); % instead of triu + row−wise
49 % extracting: tril of transposed matrix and column−wise extracting
50 inc = (2*M+1).�(n−dimensions);
51 increments = [increments, sum(inc,1), − sum(inc,1), ...
52 inc(1,:) − inc(2,:), − inc(1,:) + inc(2,:)];
53 vals = [vals, ...
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54 − sigma(n*dimensions(2,:)−n+dimensions(1,:))/(4*h�2), ...
55 − sigma(n*dimensions(2,:)−n+dimensions(1,:))/(4*h�2), ...
56 sigma(n*dimensions(2,:)−n+dimensions(1,:))/(4*h�2), ...
57 sigma(n*dimensions(2,:)−n+dimensions(1,:))/(4*h�2)];
58 end
59 % now: vals contains the row entries of A(intind,incrind) (see below)
60

61 %generate the indices to extract the corresponding entries of W
62 N = (2*M−1)�n; % length of intind
63 incrind = repmat( intind, 1, 2*n�2 + 1 ) + repmat( increments, N,1);
64

65 % Implicit Euler scheme
66 for i=1:K
67 % generate the boundary value vector g�(l+1):
68 g2 = zeros((2*M+1)�n,1);
69 g2(bdind) = g(bdcoord,i*k);
70 % generate the right−hand side:
71 RHS = W(intind,i) − k*g2(incrind)* vals�;
72 % call the full multigrid V−cycle function to compute W�(l+1):
73 W(:,i+1) = FMG IE( n,M,R,k,r,sigma,RHS,g2,nu1,nu2,nu,omega );
74 end
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Listing A.5: MATLAB implementation of the full multigrid V-cycle method for use in the IE func-
tion

1 function W = FMG IE( n,M,R,k,r,sigma,RHS,BVs,nu1,nu2,nu,omega )
2 % This function performs the full multigrid V−cycle for the equation
3 % (I+k*A h(ii)) W,int = RHS, W,bd = BVs
4 % on the n−dimensional grid of spatial mesh width h=R/M, using weighted
5 % Jacobi smoothing, n−linear interpolation and full weighting restriction.
6 %
7 % Claudia Satke 2009
8

9 W = zeros((2*M+1)�n,1);
10

11 % find interior and boundary grid point indices:
12 M0 = repmat( (0:((2*M+1)�(n−1)−1))�, 1,n);
13 M4 = repmat( (2*M+1).�(n−1:−1:0), (2*M+1)�(n−1),1);
14 leftbd = 2*M* M4.*floor( M0./M4 ) + M0 + 1;
15 bdind = reshape( [leftbd; leftbd+2*M*M4], 2*n*(2*M+1)�(n−1),1);
16 bdind = unique(bdind);
17 intind = setdiff(1:(2*M+1)�n, bdind);
18

19 % full multigrid V−cycle algorithm:
20

21 if M > 1
22 % generate the prolongation matrix P:
23 % apply Algorithm 8 with the parameter M+2:
24 pow = (M+1).�(n−1:−1:0);
25 ind = floor( rem( repmat( (0:((M+1)�n−1))�, 1,n),...
26 repmat( (M+1)*pow, (M+1)�n,1) )...
27 ./ repmat( pow, (M+1)�n,1) ) + 1;
28 ind = ind�;
29 intcoarse = (( M+3).�(n−1:−1:0))* ind + 1;
30 intfine = ((2*M+5).�(n−1:−1:0))*2*ind + 1;
31 comb = floor( rem( repmat( (0:(3�n −1))�, 1,n),...
32 repmat( 3.�(n:−1:1), 3�n,1) )...
33 ./ repmat( 3.�(n−1:−1:0), 3�n,1) ) − 1;
34 incr = comb*((2*M+5).�(n−1:−1:0)�);
35 I = repmat( intfine, 3�n,1) + repmat( incr, 1,(M+1)�n);
36 J = repmat( intcoarse, 3�n,1);
37 Pvals = 2.�(−sum(abs(comb),2));
38 P = sparse( I(:), J(:), repmat( Pvals, (M+1)�n,1), (2*M+5)�n, (M+3)�n );
39 % delete rows corresp. to boundary grid points in the mesh with M+2:
40 M0 = repmat( (0:((2*M+5)�(n−1)−1))�, 1,n);
41 M4 = repmat( (2*M+5).�(n−1:−1:0), (2*M+5)�(n−1),1);
42 leftbd = 2*(M+2)* M4.*floor( M0./M4 ) + M0 + 1;
43 bdind2 = reshape( [leftbd; leftbd+2*(M+2)*M4], 2*n*(2*M+5)�(n−1),1);
44 intind2 = setdiff(1:(2*M+5)�n, bdind2);
45 P = P(intind2,:);
46 % delete rows corresp. to boundary grid points in the mesh with M+1:
47 M0 = repmat( (0:((2*M+3)�(n−1)−1))�, 1,n);
48 M4 = repmat( (2*M+3).�(n−1:−1:0), (2*M+3)�(n−1),1);
49 leftbd = 2*(M+1)* M4.*floor( M0./M4 ) + M0 + 1;
50 bdind2 = reshape( [leftbd; leftbd+2*(M+1)*M4], 2*n*(2*M+3)�(n−1),1);
51 intind2 = setdiff(1:(2*M+3)�n, bdind2);
52 P = P(intind2,:);
53 % delete columns corresp. to boundary grid points in the mesh with M/2+1:
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54 M0 = repmat( (0:((M+3)�(n−1)−1))�, 1,n);
55 M4 = repmat( (M+3).�(n−1:−1:0), (M+3)�(n−1),1);
56 leftbd = 2*(M/2+1)* M4.*floor( M0./M4 ) + M0 + 1;
57 bdind2 = reshape( [leftbd; leftbd+2*(M/2+1)*M4], 2*n*(M+3)�(n−1),1);
58 intind2 = setdiff(1:(M+3)�n, bdind2);
59 P = P(:,intind2);
60 % use only the part corresponding to interior grid points to restrict
61 % RHS to the coarser mesh Omega 2h:
62 M0 = repmat( (0:((M+1)�(n−1)−1))�, 1,n);
63 M4 = repmat( (M+1).�(n−1:−1:0), (M+1)�(n−1),1);
64 leftbd = M* M4.*floor( M0./M4 ) + M0 + 1;
65 bdind2h coarse = reshape( [leftbd; leftbd+M*M4], 2*n*(M+1)�(n−1),1);
66 bdind2h coarse = unique(bdind2h coarse);
67 intind2h = setdiff(1:(M+1)�n, bdind2h coarse);
68 RHS2h = P(intind,intind2h)�*RHS/2�n;
69 % extract the correct boundary values on the coarse grid from BVs:
70 % find fine−grid indices of the boundary grid points which belong to
71 % the coarse grid as well:
72 y = repmat( bdind2h coarse−1, 1,n);
73 aux = y./repmat( (M+1).�(n:−1:1),length(y),1 );
74 alpha = floor((M+1)*aux) − (M+1)*floor(aux) − M/2;
75 bdind2h fine = ((2*M+1).�(n−1:−1:0))*(2*alpha�+M) + 1;
76 BVs2h = zeros((M+1)�n,1);
77 BVs2h(bdind2h coarse(:)) = BVs(bdind2h fine(:));
78 % call FMG on the coarse grid and correct W by the interpolated result:
79 W2h = FMG IE( n,M/2,R,k,r,sigma,RHS2h,BVs2h,nu1,nu2,nu,omega );
80 W = W + P*W2h;
81 end
82 % set the boundary values of W right again:
83 W(bdind) = BVs(bdind);
84

85 for i=1:nu
86 W(intind) = MG IE(n,M,R,k,r,sigma,W(intind),RHS,nu1,nu2,1,omega);
87 end
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Listing A.6: MATLAB implementation of the multigrid µ-cycle method for the linear system
resulting from the implicit Euler discretisation

1 function W = MG IE(n,M,R,k,r,sigma,W0,RHS,nu1,nu2,mu,omega)
2 % This function performs the multigrid mu−cycle for the equation
3 % (I+k*A)W,int = RHS,int
4 % on the n−dimensional grid of spatial mesh width h=R/M, using weighted
5 % Jacobi smoothing, n−linear interpolation and full weighting restriction.
6 %
7 % Claudia Satke 2009
8

9 if M == 1 % on the coarsest grid: only 1 interior component,
10 % 1x1 linear system is explicitly solved:
11 W = RHS /( 1 + k* (r + sum(diag(sigma))*M�2/R�2) );
12 else
13 % initialising
14 W = W0;
15 % pre−smoothing
16 % find interior and boundary grid point indices:
17 M0 = repmat( (0:((2*M+1)�(n−1)−1))�, 1,n);
18 pow = (2*M+1).�(n−1:−1:0);
19 M4 = repmat( pow, (2*M+1)�(n−1),1);
20 leftbd = 2*M* M4.*floor( M0./M4 ) + M0 + 1;
21 bdind = reshape( [leftbd; leftbd + 2*M*M4], 2*n*(2*M+1)�(n−1),1);
22 intind = setdiff((1:(2*M+1)�n)�, bdind);
23 % generate entries in the intind−rows of A:
24 h = R/M; % = mesh width
25 increments = [0, pow, −pow];
26 vals = [ r + sum(diag(sigma))/h�2, ... % diagonal
27 −diag(sigma)�/(2*h�2) + diag(sigma)�/(4*h) − r/(2*h), ... % 1−step neighbours
28 −diag(sigma)�/(2*h�2) − diag(sigma)�/(4*h) + r/(2*h)];
29 if n>1 % increments corresponding to 2−step neighbours:
30 dimensions = zeros( 2, n*(n−1)/2); % initialise the matrix
31 % of all (i,j) combinations
32 temp = repmat(1:n,n,1);
33 dimensions(1,:) = temp(tril(temp,−1)>0); % lower triangular part,
34 % starting from the first subdiagonal, then the
35 % non−zero values are extracted as a row vector
36 % (automatically column−wise ordered)
37 temp = temp�;
38 dimensions(2,:) = temp(tril(temp,−1)>0); % instead of triu + row−wise
39 % extracting: tril of transposed matrix and column−wise extracting
40 inc = (2*M+1).�(n−dimensions);
41 increments = [increments, sum(inc,1), − sum(inc,1), ...
42 inc(1,:) − inc(2,:), − inc(1,:) + inc(2,:)];
43 vals = [vals, ...
44 − sigma(n*dimensions(2,:)−n+dimensions(1,:))/(4*h�2), ...
45 − sigma(n*dimensions(2,:)−n+dimensions(1,:))/(4*h�2), ...
46 sigma(n*dimensions(2,:)−n+dimensions(1,:))/(4*h�2), ...
47 sigma(n*dimensions(2,:)−n+dimensions(1,:))/(4*h�2)];
48 end
49 % now: vals contains the row entries of A(intind,incrind)
50 kB1vals = k*vals;
51 kB1vals(1) = kB1vals(1) + 1;
52 % now: kB1vals contains the row entries of (I+k*A)(intind,incrind)
53
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54 % extend W by zero boundary values
55 W BV = zeros((2*M+1)�n,1);
56 W BV( intind ) = W;
57 %generate the indices to extract the corresponding entries of W BV
58 N = (2*M−1)�n; % length of intind
59 incrind = repmat( intind, 1, 2*n�2 + 1 ) + repmat( increments, N,1);
60

61 % execute nu1 weighted Jacobi steps:
62 for j = 1:nu1
63 res = RHS − W BV( incrind ) * kB1vals�;
64 W = W + omega/kB1vals(1) * res;
65 W BV( intind ) = W;
66 end
67

68 % generate the prolongation matrix P:
69 pow = (M−1).�(n−1:−1:0);
70 ind = floor( rem( repmat( (0:((M−1)�n−1))�, 1,n),...
71 repmat( (M−1)*pow, (M−1)�n,1) )...
72 ./ repmat( pow, (M−1)�n,1) ) + 1;
73 ind = ind�;
74 intcoarse = (( M+1).�(n−1:−1:0))* ind + 1;
75 intfine = ((2*M+1).�(n−1:−1:0))*2*ind + 1;
76 comb = floor( rem( repmat( (0:(3�n −1))�, 1,n),...
77 repmat( 3.�(n:−1:1), 3�n,1) )...
78 ./ repmat( 3.�(n−1:−1:0), 3�n,1) ) − 1;
79 incr = comb*((2*M+1).�(n−1:−1:0)�);
80 I = repmat( intfine, 3�n,1) + repmat( incr, 1,(M−1)�n);
81 J = repmat( intcoarse, 3�n,1);
82 Pvals = 2.�(−sum(abs(comb),2));
83 P = sparse( I(:), J(:), repmat( Pvals, (M−1)�n,1), (2*M+1)�n, (M+1)�n );
84 % retain only the components corresponding to interior grid points:
85 P = P(intind,intcoarse);
86 % calculate the residual and restrict it to the coarse grid Omega 2h:
87 res = RHS − W BV( incrind ) * kB1vals�;
88 res = P�*res/2�n;
89 % initialise the error E2h:
90 E2h = zeros((M−1)�n,1);
91 % call MG mu times for the error E2h on the coarse grid Omega 2h and
92 % the restricted residual as RHS:
93 for i = 1:mu
94 E2h = MG IE(n,M/2,R,k,r,sigma,E2h,res,nu1,nu2,mu,omega);
95 end
96 % correcting W with the interpolated error estimate
97 W = W + P*E2h;
98 % post−smoothing:
99 %execute nu2 weighted Jacobi steps

100 W BV( intind ) = W;
101 for j = 1:nu2
102 res = RHS − W BV( incrind ) * kB1vals�;
103 W = W + omega/kB1vals(1) * res;
104 W BV( intind ) = W;
105 end
106 end
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