DIPLOMARBEIT

Automatic Solver Control for Linear Equation Systems

ausgeführt am
Institut für Mikroelektronik
der Technischen Universität Wien
unter Anleitung von
Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Erasmus Langer
und

Projektass. Dipl.-Ing. Dr.techn. René Heinzl
durch

CLEMENS KLÖCKLER

Hollerweg 5-7/4/4
A-3430 Tulln, Österreich

Matr. Nr. 0027071
geboren am 4. Juni 1982, Wien

Kurzfassung

Das Ziel dieser Arbeit war es, eine automatische Steuerung für Gleichungslöser von linearen Gleichungssystemen zu entwickeln, die dem Anwender möglichst alle Entscheidungen bei der Lösung eines linearen Gleichungssystem abnehmen kann. Es soll, wenn möglich, den richtigen Gleichungslösertyp für eine Matrix auswählen, sowie eine geeignete Vorkonditionierung vornehmen. Falls der gewählte Löser nicht zum Ziel führt, sollten noch andere Lösungsvarianten ausgenutzt werden.
Der erste Teil der Arbeit beschäftigt sich mit dem notwendigen mathematischen Hintergrund von Matrizen. Außerdem werden die Lösungsalgorithmen von CG, BICGstab und GMRES erklärt und auch einige Vorkonditionierungsmethoden erläutert (Jacobi, unvollständige LR-Zerlegung und unvollständige Cholesky-Zerlegung). Um diese Algorithmen zu testen, wurden verschiedene Software Pakete, die eben diese anbieten, analysiert (Trilinos, PETSc, ITL, QQQ und Hypre), damit ein Pool an Gleichungslösern zur Verfügung gestellt werden kann. Um eine automatische Steuerung zu realisieren, braucht das Programm gewisse Matrixeigenschaften, auf denen die Entscheidungen fußen können. Dazu wurde ein Analysetool entwickelt, das eine Matrix analysiert und verschiedene wichtige Matrixeigenschaften zurückliefert (Bsp.: Symmetrie, Definitheit). Der Hauptteil der Arbeit beschäftigt sich mit dem Test verschiedener Matrizen, um zu sehen, welche Matrixeigenschaften als Entscheidungskriterien verwendet werden können. Aufgrund dieser Matrixeigenschaften wurden dann die Entscheidungen, die eine automatische Steuerung trifft, abgestimmt. Der letzte Teil der Arbeit zeigt das entwickelte Modul angewendet auf die gezeigten Testmatrizen, sowie den Lösungsstatus, und zugehörigen Residuen.

Abstract

This work describes the development of an automatic solver control for linear equations systems which was designed to help a user to find the optimal solver for a given matrix problem. The used solver algorithms were CG, BICGstab and GMRES, with the preconditioners Jacobi, incomplete LU factorization and incomplete Cholesky factorization. Several solver packages available on the market were tested for their performance (Trilinos, PETSc, QQQ, Hypre and ITL). In order for the automatic solver control to be able to make decisions, it needs to know several properties of a given matrix. For that reason an analyzing tool was developed. The main part of this work consists of a description of the testing of the different solver packages to find out how the various solvers perform and which matrix properties may have an influence on their performance. This testing helped in the adjustment of the decision criteria for the automatic solver control. The last part of this work describes the performance of the automatic solver control which was developed.

Acknowledgments

I want to thank Prof. Erasmus Langer, René Heinzl, and his team, Franz Stimpfl and Philipp Schwaha, for guiding and advising me through this work. Special thanks go to my study colleague Josef Weinbub, who was a helpful partner throughout the whole study especially with his knowledge of programming.

I want to thank my family for their support in all of my years of education since I started school at the age of six. I also want to thank all my friends who missed me during the last days of my completion of this work, especially Matthias and Ronny.

Very special thanks go to my beloved girlfriend, Elisabeth, who always had a shoulder to lean on in hard days.
dedicated to:
my little daughter Katharina
who lets me see the world through different eyes

Contents

1 Introduction 1
1.1 Motivation 1
1.2 Organization 1
2 Linear Solvers 3
2.1 Mathematical Toolkit 3
2.1.1 Vector Norm 3
2.1.2 Symmetry 3
2.1.3 Eigenvalues 4
2.1.4 Positive Definite 4
2.1.5 Gershgorin Circle Theorem 4
2.1.6 Pivot Element 4
2.1.7 Krylov Subspace 4
2.1.8 Linear Equation System 5
2.1.9 Condition Number 5
2.1.10 Residual 5
2.2 Direct Solvers 6
2.2.1 Gauss algorithm 6
2.3 Indirect Solvers 7
2.3.1 Conjugate Gradient 8
2.3.2 Stabilized Bi-Conjugated Gradient 9
2.3.3 Generalized Minimal Residual Method 10
2.3.4 Other Krylov Methods 11
2.4 Preconditioners 12
2.4.1 Jacobi Preconditioner 12
2.4.2 ILU Preconditioner 12
2.4.3 Incomplete Cholesky Factorization 13
2.4.4 Other Preconditioners 14
2.5 Residual 14
2.6 Loss of precision 15
3 Related Solver Packages 16
3.1 Trilinos Solver Package 16
3.1.1 CG 17
3.1.2 BICGstab 17
3.1.3 GMRES 18
3.1.4 Jacobi 18
3.1.5 ILU 18
3.1.6 IC 18
3.1.7 Loss of Precision 18
3.2 PETSc Solver Package 18
3.2.1 CG 19
3.2.2 BICGstab 19
3.2.3 GMRES 19
3.2.4 ILU 19
3.2.5 IC 20
3.2.6 Divergence tolerance 20
3.3 Iterative Template Library/Matrix Template Library 20
3.3.1 CG 20
3.3.2 BICGstab 20
3.3.3 Jacobi 21
3.3.4 ILU 21
3.3.5 IC 21
3.4 QQQ Solver Package 21
3.4.1 BICGstab 21
3.4.2 GMRES 22
3.4.3 ILU 22
3.4.4 Residual for Convergence 22
3.4.5 Pre-elimination, Sorting and Scaling 22
3.5 Hypre Solver Package 23
3.5.1 CG 23
3.5.2 BICGstab 23
3.5.3 GMRES 24
3.5.4 ILU 24
4 Diagnostic Tool 25
4.1 Matrix and Vector Container 25
4.1.1 Sparse Matrix Storage 25
4.1.2 Vector Storage 27
4.2 Matrix Entries 28
4.3 Symmetry Check 28
4.4 Positive Definite Matrices 29
4.5 Condition Number 31
5 Matrices for Solver Testing 32
5.1 Tridiagonal Matrices 33
5.1.1 Rank 2 33
5.1.2 Rank 3 34
5.1.3 Rank 4 34
5.1.4 Rank 5 35
5.1.5 Rank 10 36
5.2 Hilbert Matrices 37
5.2.1 Rank 4 37
5.2.2 Rank 10 38
5.2.3 Rank 100 39
5.2.4 Rank 1000 40
5.3 Fidap Matrices 42
5.3.1 Fidap001 42
5.3.2 Fidap002 44
5.3.3 Fidap005 45
5.3.4 Fidapm05 46
5.3.5 Fidap027 48
5.3.6 Fidap028 50
5.4 Sherman Matrices 51
5.4.1 Sherman2 51
5.4.2 Sherman3 53
5.4.3 Sherman5 54
5.5 DRIVCAV Matrices 56
5.5.1 E05r0100 56
5.5.2 E20r5000 57
5.6 Hamm Matrices 59
5.6.1 Add20 59
5.6.2 Memplus 60
5.7 Saddle point matrix 61
5.8 Overall Results 63
6 Automatic Solver Control Interface 66
6.1 Number Analyzer 66
6.2 Structure Analyzer 68
6.3 Residual Decision 68
6.4 Solver Decision 68
6.5 Error Code Handling 69
6.5.1 Loss of Precision Handling 70
6.5.2 Maximum Iterations Exceeded 71
6.5.3 Numerical Problems 71
6.6 Tests 71
6.6.1 Break tolerance $1 \cdot 10^{-8}$ 71
6.6.2 Break tolerance $1 \cdot 10^{-10}$ 76
6.6.3 Break tolerance $1 \cdot 10^{-12}$ 78
6.6.4 Conclusion of the Tests 80
6.7 Usage of the Automatic Solver Control 80
7 Conclusion 81
A Test results 82
B Sparse Matrix Formats 106
B. 1 Sparse Matrix Formats 106
B.1.1 Compressed Sparse Row Matrix Format (CSR) 106
B.1.2 Modified Compressed Sparse Row Matrix Format (MCSR) 106
Bibliography 108

Chapter 1

Introduction

Solving a linear equation system with a solver is a common task in computer science. Solvers are programs that are able to determine a solution for a mathematical problem, such as a linear equation system. An automatic solver control environment should be capable of evaluating the optimal approach to solve the problem statement. Additionally user interaction should be reduced to a minimum to keep the usage simple.
The major goal of this work is to implement a solver interface which is able to evaluate an equation system and process it accordingly. Due to the interface approach, several different software tools can be used. Each software tool provides a certain set of solvers and preconditioners. The automatic solver interface selects the solver which is likely to most efficiently solve this particular system of equations.

1.1 Motivation

The goal of this work is to develop an automatic solver control which tries to independently find the right options for solving an equation system. During the development of such a program several questions arise:

- Which different solver concepts are available? What are their advantages and disadvantages?
- What solver packages are available? What solvers and features do they offer? How is their performance?
- What can be done to improve the convergence of specific solvers (e.g., preconditioners)?
- Which matrix properties have an influence on the solvers and the preconditioners and therefore can help in making a decision?
- Does the solution fulfill the desired accuracy?

1.2 Organization

Chapter 2 offers the mathematical background of this work and discusses different properties a matrix may have (e.g., symmetry, positive definite). Then the solving concepts of direct (Gauss algorithm) and indirect solvers are introduced (Sections 2.2 and 2.3) with a deeper look at the indirect solver concepts CG, BICGstab and GMRES. One improvement (preconditioning) which can be used with an indirect
solver is discussed in Section 2.4, primarily investigating Jacobi, incomplete LU factorization and incomplete Cholesky factorization.
Chapter 3 discusses the five different solver packages that were tested: Trilinos, PETSc, ITL, QQQ and Hypre. Some of the functions the packages provide are introduced here along with the solving functions, and the special features of each package are also discussed.
The main part of the work consists of Chapters 4, 5 and 6 . At first the development of a diagnostic tool which is able to analyze a matrix and find out its important properties is presented. Then a variety of solver packages are tested with different matrices: tridiagonal matrices (Section 5.1), Hilbert matrices (Section 5.2) and several sparse matrices resulting from scientific problems (Sections 5.3, 5.4, 5.5, 5.6). The tests are performed for two purposes: on the one hand to analyze the performance of the different solver packages, and on the other hand to investigate the effects of the matrix properties on different solver algorithms. The results of these tests are used to develop an automatic solver control which automatically decides which solver and preconditioner is chosen based on several matrix properties. The important tasks the program should fulfill, as well as tests to see whether the program is working, are discussed in Section 6.

Chapter 2

Linear Solvers

Before linear equation systems are analyzed, the mathematical background is introduced. First the mathematical toolkit that is needed for solving is described, including some matrix properties that may influence the solving. Then the solving algorithms are introduced.

2.1 Mathematical Toolkit

2.1.1 Vector Norm

Definition 1 (Norm) Let V be a vector space over the field \mathbb{R}. A given norm of a vector $\boldsymbol{x} \in V$ needs to fulfill the properties [1]:

- $\|\mathbf{x}\| \geq 0$, if $\|\mathbf{x}\|=0 \Rightarrow \mathbf{x}=\mathbf{0}, \forall \mathbf{x} \in V$
- $\|\alpha \cdot \mathbf{x}\|=|\alpha| \cdot\|\mathbf{x}\|, \forall \mathbf{x} \in V, \forall \alpha \in \mathbb{R}$
- $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|, \forall \mathbf{x}, \mathbf{y} \in V$

One specific vector norm is the Euclidean norm which is used for this work [1].

$$
\begin{equation*}
\|\mathbf{x}\|_{2}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}, \quad \forall \mathbf{x} \in \mathbb{R}^{n} \tag{2.1}
\end{equation*}
$$

2.1.2 Symmetry

Definition 2 (Symmetry) A real-valued matrix \boldsymbol{A} is called symmetric if it is equal to its transpose $\boldsymbol{A}^{T 1}$ [2].

$$
\begin{equation*}
\mathbf{A}=\mathbf{A}^{T} \tag{2.2}
\end{equation*}
$$

[^0]
2.1.3 Eigenvalues

The eigenvalues of a real-valued matrix are all values λ which fulfill the equation [2]:

$$
\begin{equation*}
\mathbf{A x}=\lambda \mathbf{x} \tag{2.3}
\end{equation*}
$$

2.1.4 Positive Definite

Definition 3 (Positive Definite) A symmetric real-valued matrix \boldsymbol{A} is called positive definite if all eigenvalues of the matrix are positive [3]. A non-symmetric matrix is called positive definite if its symmetric part is positive definite.

The symmetric part of a matrix can be built via:

$$
\begin{equation*}
\mathbf{A}_{\text {symm }}=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{T}\right) \tag{2.4}
\end{equation*}
$$

2.1.5 Gershgorin Circle Theorem

An estimation of the eigenvalues of a matrix can be made with the Gershgorin circle theorem [4]. If the matrix has only real values and is symmetric, the theorem simplifies to:

$$
\begin{gathered}
\mathbf{A} \in \mathbb{R}^{n \times n} \text { with entries } a_{i j} \\
D_{i}\left[a_{i i}-R_{i}, a_{i i}+R_{i}\right], i=1, \ldots, n \\
\text { with } R_{i}=\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|
\end{gathered}
$$

The closed sets D_{i} are called Gershgorin discs (Gershgorin circles). The theorem states that every eigenvalue resides within at least one of these discs.
If the off-diagonal matrix entries are small, it is possible to get a good approximation of the eigenvalues. Sometimes it is only of interest whether one of the eigenvalues is negative (e.g., for the definite). This may be possible to determine even if the non-diagonal entries have huge numbers.

2.1.6 Pivot Element

The pivot element of a matrix is the first element chosen by an algorithm. Zero pivot elements can lead to numerical instability of some algorithms [3]. For that reason it is necessary to guarantee that the pivot elements are not zero.

2.1.7 Krylov Subspace

Definition 4 (Krylov Subspace) The Krylov subspace is generated by an $n \times n$ matrix \boldsymbol{A} and a vector \boldsymbol{b} with the length $n[5]$. It is represented by the span ${ }^{2}$ of the vectors $\boldsymbol{b}, \boldsymbol{A} \boldsymbol{b}, \boldsymbol{A}^{2} \boldsymbol{b}, \ldots, \boldsymbol{A}^{n-1} \boldsymbol{b}$:

$$
\begin{equation*}
\mathcal{K}_{n}=\operatorname{span}\left\{\mathbf{b}, \mathbf{A b}, \mathbf{A}^{2} \mathbf{b}, \ldots, \mathbf{A}^{n-1} \mathbf{b}\right\} \tag{2.5}
\end{equation*}
$$

This subspace is used in algorithms to find the solution for a linear equation system.

[^1]
2.1.8 Linear Equation System

A linear equation system can be formulated as [1]:

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{2.6}
\end{equation*}
$$

If the matrix \mathbf{A} has full rank ${ }^{3}$ its inverse \mathbf{A}^{-1} exists and there is only one single solution for the linear equation system.

$$
\begin{gather*}
\mathbf{A}^{-1} \mathbf{A} \mathbf{x}=\mathbf{A}^{-1} \mathbf{b} \tag{2.7}\\
\mathbf{x}=\mathbf{A}^{-1} \mathbf{b} \tag{2.8}
\end{gather*}
$$

2.1.9 Condition Number

If a linear equation system is altered the condition number is a measure for the variation of the solution occurring if one element in the right-hand side vector is changed [4]:

$$
\begin{equation*}
\kappa(\mathbf{A})=\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\| \tag{2.9}
\end{equation*}
$$

The smallest condition number for a matrix is one. The value of the condition number depends on the matrix norm used. If the condition number is $\gg 1$ the matrix is called ill-conditioned. A good condition leads to a small change in the solution; an ill condition leads to a large change.

If the Euclidian ${ }^{4}$ norm is used, the condition number can be determined via the eigenvalues:

$$
\begin{equation*}
\kappa(\mathbf{A})=\left|\frac{\lambda_{\max }\left(\sqrt{\mathbf{A A}^{T}}\right)}{\lambda_{\min }\left(\sqrt{\mathbf{A A}^{T}}\right)}\right| \tag{2.10}
\end{equation*}
$$

2.1.10 Residual

If a solution \mathbf{x} for a linear system is determined, the residual can be calculated by [6]:

$$
\begin{equation*}
\mathbf{r}=\mathbf{b}-\mathbf{A x} \tag{2.11}
\end{equation*}
$$

The norm of the residual is a measure for the error of the solution. The two most common methods of calculating the error of the solution are based on the absolute residual and on the relative residual. Using the Euclidian norm the absolute residual is:

$$
\begin{equation*}
\|\mathbf{r}\|_{2} \tag{2.12}
\end{equation*}
$$

[^2]On the other hand the relative residual is determined by dividing the absolute residual by the norm of the right-hand side vector \mathbf{b}. Again for the Euclidian norm:

$$
\begin{equation*}
\frac{\|\mathbf{r}\|_{2}}{\|\mathbf{b}\|_{2}} \tag{2.13}
\end{equation*}
$$

2.2 Direct Solvers

After introducing the mathematical background now the two different categories for solving are investigated: direct and indirect solvers.
Direct solvers use matrix transformation, e.g., into an upper triangular matrix.

2.2.1 Gauss algorithm

One example for a direct solver is the Gauss elimination algorithm [2]. This algorithm uses row addition and subtraction to obtain a triangular matrix. Hence the solution vector can be determined.

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{1 n} \\
\vdots & & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right] \\
\Rightarrow \\
\hat{\mathbf{A}}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
0 & \hat{a}_{22} & \ldots & \hat{a}_{1 n} \\
\vdots & & \ddots & \vdots \\
0 & \ldots & 0 & \hat{a}_{n n}
\end{array}\right]
\end{gathered}
$$

Let the vector obtained on the right side be:

$$
\hat{\mathbf{b}}=\left[\begin{array}{c}
\hat{b}_{1} \\
\vdots \\
\hat{b}_{n}
\end{array}\right]
$$

The solution vector can be calculated by:

$$
\begin{aligned}
& x_{n}=\frac{\hat{b}_{n}}{\hat{a}_{n n}} \\
& x_{n-1}=\frac{\hat{b}_{n-1}-\hat{a}_{n-1 n} \cdot x_{n}}{\hat{a}_{n-1 n-1}} \\
& \vdots \\
& x_{1}=\frac{\hat{b}_{1}-\hat{a}_{12} \cdot x_{2}-\cdots-\hat{a}_{1 n} \cdot x_{n}}{\hat{a}_{11}}
\end{aligned}
$$

The Gaussian elimination can be easily implemented:

Algorithm:

Let $k, i, j, n \in \mathbb{N} ; \mathbf{A} \in \mathbb{R}^{n \times n} ; \mathbf{b}, \mathbf{x} \in \mathbb{R}^{n}$
for $k=1, \ldots, n$
exchange column k with the column were $\max _{j=k}^{n}\left|a_{k j}\right|$

$$
\begin{aligned}
& \text { for } i=k+1, \ldots, n \\
& \qquad \begin{array}{c}
\text { for } j=k, k+1, \ldots, n \\
\quad a_{i j}=a_{k j} \cdot a_{k+1, k}-a_{i j} \cdot a_{k k} \\
b_{i}=b_{k} \cdot a_{k+1, k}-b_{i} \cdot a_{k k}
\end{array}
\end{aligned}
$$

for $k=n, n-1, \ldots, 1$

$$
\text { for } i=k, k+1, \ldots, n
$$

$x_{i}=\frac{b_{k}-\left(\sum_{j=k+1}^{n} a_{i j} \cdot x_{j}\right)}{a_{k k}}$
It uses $n(n+1) / 2$ divisions, $\left(2 n^{3}+3 n^{2}-5\right) / 6$ multiplications and $\left(2 n^{3}+3 n^{2}-5\right) / 6$ subtractions, which is a total of around $2 n^{3} / 3$ floating point operations. Therefore the computational effort of the Gaussian elimination algorithm is $\mathcal{O}\left(n^{3}\right)$ and becomes very big for large n. A better performance for large matrices is given by the indirect solvers introduced in the next section.

2.3 Indirect Solvers

Several indirect solvers are based on iterative methods. In each iterative step the initial matrix is used and the matrix is not changed during the solving process. One group of indirect solvers use the Krylov subspace. The basic idea of iterative methods based on the Krylov subspace is that in each iteration step a vector will be multiplied by the matrix to achieve a new vector in the subspace base. To build the whole subspace the $n^{t h}$ multiplication of the matrix needs to be not equal to zero. Iterative methods that are based on the Krylov subspace are, e.g., CG, BICGstab and GMRES.

2.3.1 Conjugate Gradient

The conjugate gradient ($\mathbf{C G}$) algorithm is the simplest Krylov subspace method [6]. The convergence of the algorithm is only guaranteed for symmetric positive definite matrices. For other matrices the method can diverge and another solving algorithm has to be used.

CG:

Constants used:

$$
\mathbf{A} \in \mathbb{R}^{n \times n} ; \mathbf{b} \in \mathbb{R}^{n}
$$

Variables used:

$\mathbf{p}_{\mathbf{k}}, \mathbf{r}_{\mathbf{k}}, \mathbf{x}_{\mathbf{k}}, \mathbf{p}_{\mathbf{k}+\mathbf{1}}, \mathbf{r}_{\mathbf{k}+\mathbf{1}}, \mathbf{x}_{\mathbf{k}+\mathbf{1}} \in \mathbb{R}^{n} ; a_{k}, b_{k} \in \mathbb{R}$

Algorithm:

Let $\mathbf{x}_{\mathbf{0}} \in \mathbb{R}^{n}$
$\mathbf{p}_{\mathbf{0}}=\mathbf{r}_{\mathbf{0}}=\mathbf{b}-\mathbf{A x}_{\mathbf{0}}$
for $k=0,1, \ldots$
if $\mathbf{p}_{\mathbf{k}}=0$ then $\mathbf{x}_{\mathbf{k}}$ is the solution
else

$$
\begin{aligned}
& a_{k}=\frac{\mathbf{r}_{\mathbf{k}}^{T} \mathbf{r}_{\mathbf{k}}}{\mathbf{p}_{\mathbf{k}}^{T} \mathbf{A} \mathbf{p}_{\mathbf{k}}}, \mathbf{x}_{\mathbf{k}+\mathbf{1}}=\mathbf{x}_{\mathbf{k}}+a_{k} \mathbf{p}_{\mathbf{k}} \\
& \mathbf{r}_{\mathbf{k}+\mathbf{1}}=\mathbf{r}_{\mathbf{k}}-a_{k} \mathbf{A} \mathbf{p}_{\mathbf{k}}, \quad b_{k}=\frac{\mathbf{r}_{\mathbf{k}+\mathbf{1}}^{T} \mathbf{r}_{\mathbf{k}+\mathbf{1}}}{\mathbf{r}_{\mathbf{k}}^{T} \mathbf{r}_{\mathbf{k}}} \\
& \mathbf{p}_{\mathbf{k}+\mathbf{1}}=\mathbf{r}_{\mathbf{k}+\mathbf{1}}+b_{k} \mathbf{p}_{\mathbf{k}}
\end{aligned}
$$

Each iteration of the $\mathbf{C G}$ algorithm applied on a matrix of size $n \times n$ has the following computational complexity:

- 1 matrix-vector multiplication
- 4 scalar products
- $6 n$ floating point operations

As additional input besides the matrix and right-hand side vector, an initial guess is necessary.

2.3.2 Stabilized Bi-Conjugated Gradient

BICGstab (stabilized Bi-conjugated gradient) is an indirect method to solve a linear equation system [6]. It is a method based on the Krylov subspace and it is an enhancement of CG. The matrix to be treated does not need to be symmetric, but it has to be positive definite. (Note that this fact is in contrast to CG, where the matrix requires both attributes.)

BICGstab:

Constants used:

$$
\mathbf{A} \in \mathbb{R}^{n \times n} ; \mathbf{b}, \hat{\mathbf{r}_{\boldsymbol{0}}} \in \mathbb{R}^{n}\left({\hat{\mathbf{r}_{0}}}^{T} \mathbf{r}_{\mathbf{k}} \neq 0\right. \text { has to be fulfilled in each iteration step) }
$$

Variables used:

$\mathbf{p}_{\mathbf{k}}, \mathbf{r}_{\mathbf{k}}, \mathbf{x}_{\mathbf{k}}, \mathbf{v}, \mathbf{p}_{\mathbf{k}+\mathbf{1}}, \mathbf{r}_{\mathbf{k + 1}}, \mathbf{x}_{\mathbf{k}+\mathbf{1}}, \mathbf{s}, \mathbf{t} \in \mathbb{R}^{n} ; a_{k}, b_{k}, w_{k+1} \in \mathbb{R}$

Algorithm:

$$
\text { Let } \mathbf{x}_{\mathbf{0}} \in \mathbb{R}^{n}
$$

$\mathbf{r}_{\mathbf{0}}=\mathbf{b}-\mathbf{A x} \mathbf{0} \neq 0$
Let $\hat{\mathbf{r}_{\boldsymbol{0}}} \in \mathbb{R}^{n}$ with ${\hat{\mathbf{r}_{\mathbf{0}}}}^{T} \mathbf{r}_{\boldsymbol{0}} \neq 0$
$\mathbf{p}_{\mathbf{0}}=\mathbf{r}_{\mathbf{0}}$
for $k=0,1, \ldots$

$$
\begin{aligned}
& a_{k}=\frac{\hat{\mathbf{r}}_{\mathbf{0}}^{T} \mathbf{r}_{\mathbf{k}}}{\hat{\mathbf{r}}_{\mathbf{0}}^{T} \mathbf{A \mathbf { p } _ { \mathbf { k } }}} \\
& \mathbf{v}=\mathbf{A} \mathbf{p}_{\mathbf{k}}, \mathbf{s}=\mathbf{r}_{\mathbf{k}}-a_{k} \mathbf{v}, \mathbf{t}=\mathbf{A s} \\
& w_{k+1}=\frac{\mathbf{s}^{T} \mathbf{t}}{\mathbf{t}^{T} \mathbf{t}} \\
& \mathbf{x}_{\mathbf{k}+\mathbf{1}}=\mathbf{x}_{\mathbf{k}}+a_{k} \mathbf{p}_{\mathbf{k}}+w_{k+1} \mathbf{s}, \mathbf{r}_{\mathbf{k}+\mathbf{1}}=\mathbf{s}-w_{k+1} \mathbf{t} \\
& \text { if }\left\|\mathbf{r}_{\mathbf{k + 1}}\right\|_{2} \text { small enough then STOP } \\
& \text { else } \\
& b_{k}=\frac{\hat{\mathbf{r}}_{\mathbf{0}}}{\hat{\mathbf{r}}_{\mathbf{0}} \mathbf{r}_{\mathbf{k + 1}} \mathbf{r}_{\mathbf{k}}} \frac{a_{k}}{w_{k+1}} \\
& \mathbf{p}_{\mathbf{k + 1}}=\mathbf{r}_{\mathbf{k}+\mathbf{1}}+b_{k}\left(\mathbf{p}_{\mathbf{k}}-w_{k+1} \mathbf{v}\right)
\end{aligned}
$$

Each iteration of the BICGstab algorithm applied on a matrix of size $n \times n$ has the following computational complexity:

- 2 matrix-vector products
- 4 scalar products
- 12n floating point operations

The algorithm requires two initial vectors besides the matrix, where the second one has a big influence on the convergence of the algorithm (the equation $\hat{\mathbf{r}}^{T} \mathbf{r}_{\mathbf{k}} \neq 0$ has to be fulfilled until convergence, or else the algorithm fails).

2.3.3 Generalized Minimal Residual Method

GMRES (generalized minimal residual method) is an iterative method for solving a linear equation system [6]. The algorithm builds an orthonormal basis in the Krylov subspace, which can be used to calculate the solution of the linear equation system. The matrix does not have to fulfill any special properties for the algorithm to work. However if the matrix is ill-conditioned the algorithm may fail. Analytically the algorithm always converges because in the last iteration step the base of the Krylov subspace is completed and all vectors can be reached.

GMRES:

Constants used:

$$
\mathbf{A} \in \mathbb{R}^{n \times n} ; \mathbf{x}_{\mathbf{0}}, \mathbf{b} \in \mathbb{R}^{n}
$$

Variables used:

$$
\begin{aligned}
& \mathbf{w}_{\mathbf{k}}, \mathbf{x}, \in \mathbb{R}^{n} ; i=1, \ldots, k: \mathbf{v}_{\mathbf{i}} \in \mathbb{R}^{n} \\
& k=1, \ldots, n: s_{k+1}, c_{k+1}, \gamma_{k} \in \mathbb{R} ; \beta \in \mathbb{R} ; i=1, \ldots, k: y_{i} \in \mathbb{R} \\
& \mathbf{H}^{5} \in \mathbb{R}^{(k+1) \times k} \text { with elements } h_{i j} .
\end{aligned}
$$

Algorithm:

Let $\mathbf{x}_{\mathbf{0}} \in \mathbb{R}^{n}$
$\mathbf{r}_{\mathbf{0}}=\mathbf{b}-\mathbf{A x} \mathbf{x}_{0}$
If $\mathbf{r}_{\boldsymbol{0}}=\mathbf{0}$, then END

$$
\mathbf{v}_{\mathbf{1}}=\frac{\mathbf{r}_{0}}{\left\|\mathbf{r}_{\mathbf{0}}\right\|_{2}}
$$

$$
\gamma_{1}=\left\|\mathbf{r}_{\mathbf{0}}\right\|_{2}
$$

$$
\text { for } k=1, \ldots, n
$$

$$
\begin{aligned}
& \text { for } i=1, \ldots, k \text { do } h_{i k}=\mathbf{v}_{\mathbf{i}}^{T} \mathbf{A} \mathbf{v}_{\mathbf{k}} \\
& \quad \mathbf{w}_{\mathbf{k}}=\mathbf{A} \mathbf{v}_{\mathbf{k}}-\sum_{i=1}^{k} h_{i k} \mathbf{v}_{\mathbf{i}}, \quad h_{k+1, k}=\left\|\mathbf{w}_{\mathbf{k}}\right\|_{2} \\
& \quad \text { for } i=1, \ldots, k-1 \\
& \quad \text { do }\binom{h_{i k}}{h_{i+1, k}}=\left(\begin{array}{cc}
c_{i+1} & s_{i+1} \\
s_{i+1} & -c_{i+1}
\end{array}\right)\binom{h_{i k}}{h_{i+1, k}} \\
& \beta=\sqrt{h_{k k}^{2}+h_{k+1, k}^{2} ; \quad s_{k+1}=\frac{h_{k+1, k}}{\beta}} \begin{array}{l}
c_{k+1}=\frac{h_{k k} ; \quad h_{k k}=\beta}{\beta} \\
\gamma_{k+1}=s_{k+1} \gamma_{k} ; \quad \gamma_{k}=c_{k+1} \gamma_{k} \\
\text { if } \gamma_{k+1} \neq 0, \mathbf{v}_{\mathbf{k + 1}}=\frac{\mathbf{w}_{\mathbf{k}}}{h_{k+1, k}}
\end{array}
\end{aligned}
$$

[^3]\[

$$
\begin{gathered}
\text { else } \\
\text { for } i=k, \ldots, 1 \\
\text { do } y_{i}=\frac{1}{h_{i i}}\left(\gamma_{i}-\sum_{j=i+1}^{k} h_{i k} y_{j}\right) \\
\mathbf{x}=\mathbf{x}_{\mathbf{0}}+\sum_{i=1}^{k} y_{i} \mathbf{v}_{\mathbf{i}} \quad \text { END }
\end{gathered}
$$
\]

The computational complexity and allocated memory increase linearly with every iteration step (for CG and BICGstab the calculations are constant in every step). The complexity of GMRES at the $m^{t h}$ iteration step are:

- 1 matrix-vector multiplication
- m scalar products
- $\approx 3 \cdot m \cdot n$ floating point operations

Therefore it is sometimes recommended to restart the algorithm after a certain number of steps with the actual solution. The restart deletes all the previous base vectors. Hence the base can only have a restricted number of vectors which may be insufficient to calculate the solution. Like the CG algorithm, GMRES requires only the initial vector as input besides the matrix.
The Table 2.1 shows a comparison of the computational complexity of the different solvers.

solver	matrix-vector	scalar products	floating point
CG			
BICGstab	1	4	6 n
GMRES	2	6	12 n
	1	m	$\approx 3 \cdot \mathrm{~m} \cdot \mathrm{n}$

Table 2.1: Effort for a matrix with rank n: CG is the simplest solving algorithm and thus has the least operations. The computational effort for BICGstab algorithm is nearly twice the effort for CG. The complexity for GMRES depends on the iteration step m . The effort for the first few steps is lower than for the other solvers. But after several steps the effort is much larger than for the other solvers.

2.3.4 Other Krylov Methods

There are several other methods available which are also based on the Krylov subspace. Some are for computing the solution of a linear equation system; others are for the calculation of the eigenvalues:

- BICG: further enhancement of the CG algorithm for non-symmetric matrices, very unstable though [6].
- CGS: conjugate gradient squared, is a squared BICG [1].
- QMR: quasi minimum residual method, uses two Krylov subspaces built by the system matrix and its transpose [6].
- TFQMR: transpose free quasi minimum residual method, works without the transpose of the system matrix [1].

2.4 Preconditioners

Solving a linear system

$$
\mathbf{A x}=\mathbf{b}
$$

by an iterative solver requires a well-conditioned matrix \mathbf{A}. Otherwise the solver requires too many iterations or may fail completely. If \mathbf{A} is ill-conditioned then one can multiply \mathbf{A} by another matrix \mathbf{P} such that $\mathbf{P}^{-1} \mathbf{A}$ has a smaller condition number than \mathbf{A} [5].

This approach yields the following equation system:

$$
\mathbf{P}^{-1} \mathbf{A} \mathbf{x}=\mathbf{P}^{-1} \mathbf{b}
$$

The preconditioner \mathbf{P} which is used should approximate the inverse of matrix \mathbf{A} as well as possible. This is because if

$$
\mathbf{P}^{-1}=\mathbf{A}^{-1}
$$

then the linear system becomes

$$
\mathbf{I x}=\mathbf{A}^{-1} \mathbf{b}
$$

The system would be solved by a simple matrix multiplication. In practice the preconditioner is not multiplied by the matrix directly; in fact, the residual

$$
\mathbf{r}_{\mathbf{k}}=\mathbf{b}-\mathbf{A} \mathbf{x}_{\mathbf{k}}
$$

is multiplied by the preconditioner. This approach reduces computational complexity because a matrixmatrix multiplication is more complex than two matrix-vector multiplications.

2.4.1 Jacobi Preconditioner

The simplest way to compute a preconditioner of a matrix \mathbf{A} is the Jacobi preconditioner. The preconditioner \mathbf{P} is the diagonal part of \mathbf{A} :

$$
\begin{gathered}
\mathbf{P}=\mathbf{D} \\
p_{i j}=a_{i j} \delta_{i j}= \begin{cases}a_{i j} & i=j \\
0 & \text { otherwise } \\
p_{i j}^{-1}=\frac{\delta_{i j}}{a_{i i}} .\end{cases}
\end{gathered}
$$

2.4.2 ILU Preconditioner

The Jacobi preconditioner is very simple and may not improve the condition of the matrix enough to solve all kinds of linear equation systems. In this case a more complex preconditioner, like the incomplete LU factorization (ILU), is needed. The matrix \mathbf{A} is decomposed into a lower ${ }^{6}$ and an upper ${ }^{7}$ triangular matrix $\mathbf{A}=\mathbf{L} \mathbf{U}$. This approach eases the computation of the inverse of \mathbf{A} because it is easier to invert a triangular matrix than a full matrix. (This is similar to the backward solving of the solution vector during a Gaussian elimination). If the decomposition of the matrix \mathbf{A} into $\mathbf{L U}$ is only done for a certain number of matrix elements so that $\mathbf{A} \approx \mathbf{L U}$, it is called the incomplete LU decomposition [1].

[^4]A simple algorithm for ILU:

The \mathbf{L} and \mathbf{U} matrices can be stored in one matrix \mathbf{M}. The upper part of \mathbf{M} including the diagonal part is \mathbf{U}. The lower part of \mathbf{M} without the diagonal part is \mathbf{L}. The diagonal part of \mathbf{L} contains only ones. In the following algorithm only the nonzero elements of the matrix will be changed.

$$
\begin{aligned}
& \text { for } k=1, \ldots, n-1 \text { do } \\
& \qquad \begin{array}{r}
\text { for } i=k+1, \ldots, n \text { do } \\
\qquad \begin{array}{r}
i k \\
:=m_{i k} / \\
\text { for } j \\
j
\end{array}=k+1, \ldots, n \text { do } \\
\quad m_{i j}:=m_{i j}-m_{i k} m_{k j}
\end{array}
\end{aligned}
$$

The algorithm contains a division by the diagonal elements (pivot elements for ILU). Thus zeros in the main diagonal let the algorithm fail. A variation of the ILU preconditioner is the ILUT preconditioner which only keeps entries that are greater than a defined threshold (also called drop tolerance). This is used to save computation time by ignoring entries close to zero. Another important number is the ratio of fill, which defines how many nonzeros are allowed in the preconditioner matrix compared to the original matrix. This can be implemented by:

- Restricting the maximum number of row entries in the matrix
- Restricting the additional entries in a row compared to the original matrix
- Restricting the maximum number of entries in the preconditioner

2.4.3 Incomplete Cholesky Factorization

For a symmetric and positive definite matrix, the incomplete Cholesky (IC) factorization can be used as a preconditioner. It is similar to the ILU factorization. The Cholesky factorization is a direct solver for symmetric matrices. The matrix is decomposed into the product of a lower matrix and its transpose: $\mathbf{A}=\mathbf{L L}^{T}$. The incomplete Cholesky factorization is only done for a limited number of matrix elements so the product is not exactly the matrix \mathbf{A} [6].

$$
\begin{equation*}
\mathbf{A} \approx \mathbf{L} \mathbf{L}^{T} \tag{2.14}
\end{equation*}
$$

Algorithm for decomposition into $\mathbf{L D L}^{T}$ (D diagonal matrix):

$$
\begin{aligned}
& \text { for } i=1, \ldots, n \\
& \qquad \begin{array}{l}
d_{i}=a_{i i}-\sum_{k=1}^{i-1} d_{k} l_{i k}^{2} \\
\quad \text { for } j=i+1, \ldots, n \\
\quad d_{i} l_{j i}=a_{j i}-\sum_{k=1}^{i-1} d_{k} l_{j k} l_{i k}
\end{array}
\end{aligned}
$$

The IC preconditioner also can use drop tolerances and ratio of fill similar to ILU.

2.4.4 Other Preconditioners

There are several other preconditioners available:

- Multilayer/Multigrid preconditioners are only usable if the equation system offers an underlying mesh, e.g., a semiconductor simulation [7]. The preconditioner uses meshes with different numbers of elements. Starting with the smallest mesh, a preconditioner can be set up by using each mesh as a different preconditioner level. These levels will be added (Multilayer) or multiplied (Multigrid) to achieve the final preconditioner.
- Other iterative methods can be used as preconditioners, like the Gauss-Seidel algorithm or the SOR (successive over relaxation) [6].
- Additive Schwarz preconditioner splits the problem domain into smaller domains and adds the results of these [8].

2.5 Residual

The convergence of the solver is indicated by the residual norm. If the residual norm is small enough, the solving process is stopped. The two most common methods of calculating the break condition are based on the absolute residual and on the relative residual. If the absolute residual is used, the solving process stops when the norm of the residual gets smaller than the desired accuracy. In case of the 2 -norm this would be

$$
\begin{equation*}
\left\|\mathbf{r}_{\mathbf{k}}\right\|_{2}<\epsilon \tag{2.15}
\end{equation*}
$$

On the other hand the relative residual can be checked to determine the convergence. The relative residual is the absolute residual divided by the norm of the right-hand side vector \mathbf{b}.

$$
\begin{equation*}
\frac{\left\|\mathbf{r}_{\mathbf{k}}\right\|_{2}}{\|\mathbf{b}\|_{2}}<\epsilon \tag{2.16}
\end{equation*}
$$

The choice of the convergence method can have an influence on the quality of the solution. If the norm of the b -vector is much larger than one, the absolute residual should be used as a break condition, because if the relative residual is used, many solutions are possible which won't be very accurate, due to the fact that the residual is divided by a large number which brings it closer to the break accuracy. On the other hand, if the norm of the \mathbf{b}-vector is close to the break accuracy, it would be better to use the relative residual because using the true residual could cause the initial guess (zero in most cases) to be the solution, which may not be accurate enough.

Considering this, a good limit value for the decision of the residual would be 1 . If the norm of \mathbf{b} is greater than or equal to 1.0 , the absolute residual can be used. The relative residual can be used if the norm is smaller than 1.0. If it is done the other way around, the iterations taken would be decreased but the solution might not be very accurate.

2.6 Loss of precision

A loss of precision is encountered when the solution vector returned is not usable as a solution for the linear system because it does not have the desired accuracy (regardless which of the residuals discussed in Section 2.5 is used). The reason for this problem is that the solvers all calculate a recursive residual which is updated every iteration step. This residual looks different for each of the three solvers introduced:

$$
\begin{gather*}
\text { CG }: \mathbf{r}_{\mathbf{k + 1}}=\mathbf{r}_{\mathbf{k}}-a_{k} \mathbf{A} \mathbf{p}_{\mathbf{k}} \tag{2.17}\\
\text { BICGstab }: \mathbf{r}_{\mathbf{k + 1}}=\mathbf{s}-w_{k+1} \mathbf{t} \tag{2.18}\\
\text { GMRES }: \gamma_{k+1}=s_{k+1} \gamma_{k}, \gamma_{k+1} \hat{=}\left\|\mathbf{r}_{\mathbf{k + 1}}\right\| \tag{2.19}
\end{gather*}
$$

The residuals of the different solver algorithms have in common that they are all built recursively from elements built in the current iteration step or in the one before. Therefore round-off errors which occur every iteration step can become very meaningful and may lead to a totally wrong recursive residual. If the solver only checks the recursive residual, it can accidently state that the problem is solved even if it is not. To avoid this problem, the true residual should be checked after the solver is finished:

$$
\begin{equation*}
\mathbf{r}_{\mathbf{k}+1}=\mathbf{b}-\mathbf{A} \cdot \mathbf{x}_{\mathbf{k}+1} \tag{2.20}
\end{equation*}
$$

The problem is not really predictable, but it is possible to deal with it. The reason it occurs is due to round-off errors during the solving of an ill-conditioned matrix, so it would help to reformulate the linear equation system. To reformulate the equation system the underlying problem must be known and modified to acquire a matrix which is more solvable ${ }^{1}$. Only the user knows the problem behind the matrix and not the automatic solver control, so this is not an option here. Another way to deal with the problem is introduced here. First the residual of the solution obtained is checked. If it is smaller than one, and close to the desired accuracy, the solution vector can be used as an initial guess for a new solving process. In this case, the same solver can be used again with the old solution as an initial guess. Additionally the accuracy for convergence is decreased. It is possible that the loss of precision may occur again, so the resolving process should be carried out a few times. Each time the accuracy for convergence is decreased further.

[^5]
Chapter 3

Related Solver Packages

The following sections provide an overview of the Trilinos package, the QQQ 1 package, the PETSc package, the Hypre package and the C++ matrix template library (MTL/ITL) ${ }^{2}$.

3.1 Trilinos Solver Package

The Trilinos Project is an effort to develop algorithms and enabling technologies within an object-oriented software framework for the solution of large-scale, complex multi-physics engineering and scientific problems. A unique design feature of Trilinos is its focus on packages. [10]

The Trilinos solver package consists of many different packages like matrix manipulation tools (Epetra, EpetraExt, Tpetra, Jpetra, Kokkos), preconditioners (AztecOO, IFPACK, ML, Meros), linear solvers (Epetra, Teuchos, Pliris, AztecOO, Belos, Komplex, Amesos), eigenvalue solvers (Anasazi) and also nonlinear solvers (NOX, LOCA, MOOCHA, Rythmos) [11]. The Krylov subspace techniques are used by the package AztecOO which uses the Epetra package for matrix manipulation.
AztecOO supports the solvers CG, CGS (conjugate gradient squared), BICGstab, GMRES and TFQMR (Transpose Free Quasi-Minimal Residual). There is also a condition number estimator for the CG and GMRES solvers which estimates the condition number of the preconditioned equation system. This is connected with a higher cost of performance.
The preconditioners available are Jacobi, Neumann, least-square, Gauss-Seidel, IC and a few different ILU preconditioners. There is also the possibility of using a multilevel preconditioner by using the package ML.
The Trilinos package stores the matrix in CSR^{3} format. For the matrix-vector multiplication and the scalar product, BLAS ${ }^{4}$ functions are used.

[^6]
3.1.1 CG

The \mathbf{x}-vector used for the $\mathbf{C G}$ algorithm can be used as an initial guess. If this is not desired, the \mathbf{x}-vector should be set to zero. The CG algorithm of Trilinos has several integrated break conditions which are not mentioned in Section 2.3.1. The solving process stops if the dot product of \mathbf{p} and $\mathbf{A p}$ is less than zero, indicating that the matrix is not positive definite:

```
    if (p_ap_dot < 0 || AZ_breakdown_f(N, p, ap, p_ap_dot, proc_config)){
    //possible breakdown
}
```

Additionally, it stops if these two vectors are under a certain absolute threshold because then their dot product would be close to zero showing, that they are orthogonal. Another possible break point is if the new calculated dot product of the residual is under a defined threshold:

```
if (fabs(r_z_dot)< brkdown_tol){
    //possible breakdown
}
```


3.1.2 BICGstab

The \mathbf{x}-vector can be used as an initial guess; if this is not intended, the \mathbf{x}-vector should be set to zero. The vector $\hat{\mathbf{r}_{0}}$ can be set to $\mathbf{r}_{\mathbf{0}}$; otherwise there is an option to generate a random vector. The Trilinos package has more checks implemented than the algorithm introduced in Section 2.3.2. Every time there is a division, the divisor is checked to see if it is under a certain threshold. This is done in two different ways. The values rhon $\left(=\hat{\mathbf{r}}_{0}{ }^{T} \mathbf{r}_{\mathbf{k}}\right.$, see Section 2.3.2) and sigma $\left(={\hat{\mathbf{r}_{0}}}^{T} \mathbf{A} \mathbf{p}_{\mathbf{k}}\right.$, see Section 2.3.2) are checked if they are smaller than the value brkdown_tol (which is initialized with DBL_EPSILON of $\mathrm{C}++$):

```
if (fabs(rhon)< brkdown_tol) {
    if (...)
        brkdown_will_occur = AZ_TRUE;
    else brkdown_tol = 0.1 * fabs(rhon );
}
```

Line 2 in the code snippet above holds a check if the two vectors leading to the value r hon are orthogonal. The check is valid if the following statement is true:

$$
\left|\mathbf{v}^{T} \mathbf{w}\right|<100 \cdot\|\mathbf{v}\|_{2}\|\mathbf{w}\|_{2} \cdot D B L _E P S I L O N
$$

If they are not orthogonal the brkdown_tol is decreased else a flag is set that a breakdown will occur. Analogous the check of sigma is implemented, only difference is that the iteration is aborted immediately instead of setting a flag:

```
if (fabs(sigma) < brkdown_tol) {
    if (...)) {
        return;
    } else brkdown_tol = 0.1 * fabs(sigma);
}
```

For the value dot_vec[1] which contains the scalar product of $\mathbf{t}^{T} \mathbf{t}$ (see Section 2.3.2) a different check is done. The value is analyzed if it is smaller than the DBL_MIN of $\mathrm{C}++$.

```
if (fabs(dot_vec[1]) < DBL_MIN) {
    omega = 0.0;
    brkdown_will_occur = AZ_TRUE;
    } else omega = dot_vec[0] / dot_vec[1];
```


3.1.3 GMRES

The GMRES algorithm of Trilinos checks if the matrix \mathbf{H} (see Section 2.3.3) is ill-conditioned. If this is the case the solving process is aborted. The reasons that the matrix is ill-conditioned can be caused by bad zero pivot handling of the preconditioner. Also this can appear if the matrix is singular ${ }^{5}$.

3.1.4 Jacobi

The only option that can be set for the Jacobi preconditioner is the number of Jacobi steps (Default: 1).

3.1.5 ILU

The drop tolerance of the ILU factorization can be set (Default: 0.0) and also the ratio of fill compared to the original matrix can be set (Default: 3). If a zero pivot is encountered, the preconditioner uses the value rownorm, which is calculated from the values of the row, divided by the number of values and multiplied by the drop tolerance (if it is not equal to zero):

3.1.6 IC

The IC preconditioner of Trilinos offers the same options as the ILU preconditioner and thus has the same default values.

3.1.7 Loss of Precision

Trilinos is the only package that warns if the solution is not accurate and thus a loss of precision has occurred.

3.2 PETSc Solver Package

PETSc includes a large suite of parallel linear and nonlinear equation solvers that are easily used in application codes written in C, C++, Fortran and now Python. [13]

PETSc (Portable, Extensible Toolkit for Scientific Computation) [14]: supports the Krylov subspace methods Richardson, CG, BICG, GMRES, BICGstab, CGS, two versions of TFQMR, and several others. The preconditioners provided are Jacobi, Block Jacobi, SOR, incomplete Cholesky, ILU, and additive Schwarz. It has the ability to use linear solvers as preconditioners and the option to combine different preconditioners. For this work CG, BICGstab and GMRES were used with Jacobi, ILU and IC preconditioners.
PETSc stores the matrix in a CSR 6 format and uses BLAS functions to calculate the scalar product. For the matrix-vector multiplication an internal function is used.

[^7]
3.2.1 CG

The CG algorithm can be filled with an initial guess. To prevent a user from accidentally providing an initial guess, the usage of an initial guess must be activated explicitly. The CG algorithm breaks if the beta value is less than zero indicating that the preconditioned matrix is not positive definite:

```
else if (beta < 0.0) {
    ksp }->\mathrm{ reason = KSP_DIVERGED_INDEFINITE_PC;
    ierr = PetscInfo(ksp,"diverging}\mp@subsup{|}{~}{\prime
}
```

Another breakdown can be reached if the value $d p i$ (equals the multiplication $\mathbf{p}_{\mathbf{k}}^{T} \mathbf{A} \mathbf{p}_{\mathbf{k}}$) is less than zero indicating that the matrix is indefinite or negative definite:

```
if (PetscRealPart(dpi)<= 0.0) {
    ksp }->\mathrm{ reason = KSP_DIVERGED_INDEFINITE_MAT;
```



```
    CHKERRQ( i err);
    break;
}
```

PETSc also checks to see if the scalar product yields a valid number:

```
if PetscIsInfOrNanScalar(beta)
```


3.2.2 BICGstab

For the BICGstab an initial guess can be set if the initial guess option of PETSc is activated. The vector $\hat{\mathbf{r}_{\boldsymbol{0}}}$ is set to $\mathbf{r}_{\boldsymbol{0}}$. PETSc avoids divisions by zero by checking divisors to see if they are zero:

```
if (d1 == 0.0) SETERRQ(PETSC_ERR_PLIB,"Divide_by_zero");
```

The algorithm breaks if the value rho (scalar product of the vector $\hat{\mathbf{r}_{0}}$ and the residual vector of the current iteration step) equals zero.

```
if (rho == 0.0) {
    ksp->reason = KSP_DIVERGED_BREAKDOWN;
    break;
}
```


3.2.3 GMRES

The GMRES code does not have significant changes to the algorithm in Section 2.3.3.

3.2.4 ILU

The PETSc package offers many functions to adjust the ILU factorization. The zero pivot limit can be defined (Default: $1 \cdot 10^{-12}$) and also how the preconditioner should act if it is encountered (e.g., shifting of nonzero, reordering of matrix etc.). The fill amount can be set via a factor that indicates how big the preconditioner is in comparison to the original matrix (Default: 1). Also a drop tolerance for matrix elements can be set to keep only values over the defined tolerance.

3.2.5 IC

The IC preconditioner uses the same default options as the ILU preconditioner.

3.2.6 Divergence tolerance

PETSc is the only package offering a divergence tolerance value. If the residual becomes larger than this value, the solving process is aborted (Default: $1 \cdot 10^{5}$).

3.3 Iterative Template Library/Matrix Template Library

The matrix template library 4 (MTL4) is currently under development by Peter Gottschling and Andrew Lumsdaine [15]. The latest version is only available from a public subversion repository and may be in an instable state (https://svn.osl.iu.edu/tlc/trunk/mtl4/trunk mtl4). Nevertheless the library is worth testing and provides some iterative solving methods. These are in the iterative template library (ITL) which is part of MTL4. At the moment there are CG, BICG and BICGstab solvers available and Jacobi, ILU and IC preconditioners.
ITL stores the matrix in a CSR^{7} format and has internal functions for calculating the scalar product and matrix-vector multiplication. The following sections discuss the difference in code adaptation to the algorithms in Sections 2.3.1 and 2.3.2.

3.3.1 CG

The \mathbf{x}-vector is used as an initial guess on input and as a solution vector on output. There are no significant changes to the algorithm in Section 2.3.1. The only check that is done is after each iteration loop which is used to break if the residual is lower than the break accuracy.

3.3.2 BICGstab

The \mathbf{x}-vector is used as an initial guess on input and as a solution vector on output. For the vector $\hat{\mathbf{r}_{\mathbf{0}}}$ the vector $\mathbf{r}_{\boldsymbol{0}}$ is used. Two additional checks are implemented in the code which are not in the algorithm shown in Section 2.3.2. First the scalar product of $\hat{\mathbf{r}}_{\boldsymbol{0}}^{T} \mathbf{r}_{0}$ is checked if it is equal to zero.

```
rho_1 = dot(rtilde, r);
    if (rho_1 == Scalar(0.)) {
        iter.fail(2, "bicg_breakdown」#1");
    break;
    }
```

Second the value omega $\left(\left(\mathbf{s}^{T} \mathbf{t}\right) /\left(\mathbf{t}^{T} \mathbf{t}\right)\right)$ is checked if is equal to zero:

```
if (omega == Scalar(0.)) {
    iter.fail(3, "bicg.breakdown\iota#2");
    break;
```

\}

[^8]
3.3.3 Jacobi

In the code for the Jacobi preconditioner there is no check to see if the value from which the reciprocal is built is zero:

```
for (size_type i= 0; i < num_rows(A); ++i)
    inv_diag[i]= reciprocal(A[i][i]);
    }
```


3.3.4 ILU

The ILU code checks whether all main diagonal elements exist; it does not check whether they are close or equal to zero. There are no options which can be used for this preconditioner.

3.3.5 IC

There are no additional options which can be used for this preconditioner. The implementation of the code checks whether all diagonal elements are present, but it does not check whether they are zero or smaller than a certain limit.

3.4 QQQ Solver Package

The QQQ Solver was developed at the University of Technology in Vienna by Claus Fischer and Stephan Wagner [16]. It supports a direct solver and the indirect solvers BICGstab and GMRES. The only preconditioner available is an ILU factorization. It also has the possibility to pre-eliminate some critical rows and solve them with a direct solver. There is also a mechanism for scaling of the matrix elements.

One important difference from the other packages is that the solver always uses the zero vector as the initial guess. The user can not specify another initial guess. It is also the only package that uses the MCSR^{8} matrix format. Also it is the only package that can not switch between relative and absolute residual, because it only provides the relative residual.
The package uses internal functions for the calculation of scalar products and matrix-vector products.

3.4.1 BICGstab

The initial guess for the algorithm is set to zero. The vector $\hat{\mathbf{r}_{\boldsymbol{0}}}$ is set to $\mathbf{r}_{\mathbf{0}}$. During the solving process the function $q q q F r o m Z e r o(d o u b l e$, double) is used several times to prevent division by zero. The function returns the maximum of the two given double values. The second double value is a reference value which will not be undercut. It is initialized with:

```
Real const minsize
= Real(1.0 e6) * DBL_MIN;
```

One example of the usage is:

```
Number const dotrtv = qqqDotPrd(n,r0,v));
alpha = rho / qqqFromZero(dotrtv,minsize);
```

[^9]To avoid division by zero, the solving process is kept up and the solver may be able to find a solution where the other packages already gave up.

3.4.2 GMRES

The GMRES solver does not have significant changes to the algorithm introduced in Section 2.3.3.

3.4.3 ILU

Two values can be set for the ILU factorization. First the drop tolerance of the factorization can be defined to specify the limit at which a value is dropped (default: 1e-9). The second value is fillMax which stands for the allowed number of additional elements in each row (default: -1, which indicates that no additional element is allowed).
If a zero pivot is encountered, the preconditioning is aborted and the solving is stopped. However the ILU algorithm uses an internal sort function so that a zero pivot is rarely encountered, even if there are several zeros on the main diagonal of the initial matrix.

3.4.4 Residual for Convergence

QQQ only checks the convergence using the relative residual. There is no way to switch to the absolute residual, so if this is desired, the residual has to be modified to make the package useful for that case. The solving accuracy can be divided by the norm of the right-hand side vector. The package still will use the relative residual as a break condition but the new accuracy will simulate the absolute residual of the former accuracy:

$$
\begin{gather*}
\left\|\mathbf{r}_{\mathbf{k}}\right\|_{2} \leq \epsilon \tag{3.1}\\
\Rightarrow \\
\frac{\left\|\mathbf{r}_{\mathbf{k}}\right\|_{2}}{\|\mathbf{b}\|_{2}} \leq \epsilon /\|\mathbf{b}\|_{2} \tag{3.2}\\
\Rightarrow \\
\left\|\mathbf{r}_{\mathbf{k}}\right\|_{\text {rel }} \tag{3.3}
\end{gather*}
$$

3.4.5 Pre-elimination, Sorting and Scaling

The QQQ package offers additional algorithms for improving the condition number of a given matrix. If the flags for pre-elimination, sorting and scaling are set, automatic versions of these algorithms are used. During the tests of the matrices it also was tested if they have much influence on the performance. The default values of these implementations did not give a significant increase in performance and the same results at nearly the same speed have been reached, so these features have not been investigated further.

3.5 Hypre Solver Package

Hypre is a library for solving large, sparse linear systems of equations on massively parallel computers. [17]

Hypre stores the matrix in CSR^{9} format and uses internal functions to calculate scalar product and matrix-vector multiplication. Hypre supports the indirect solvers CG, BICGstab and GMRES. The ILU preconditioner is the only introduced preconditioner that is provided by the package.

3.5.1 CG

The CG algorithm of Hypre can be started with an initial guess, which is stored in the \mathbf{x}-vector given to the algorithm. If this is not intended, the \mathbf{x}-vector should be set to zero. The CG algorithm breaks if the gamma (gamma stands for the scalar product of the residual and the preconditioned residual) value is under a certain threshold (also described in the original comment):

```
if ( (gamma<1.0e-292) && ((-gamma)<1.0e-292) ) {
    hypre_error(HYPRE_ERROR_CONV);
    break;
    }
    /* ... gamma should be >=0. IEEE subnormal numbers are < 2** (-1022)=2. 2e-308
        (and >= 2**(-1074)=4.9e-324). So a gamma this small means we're getting
    dangerously close to subnormal or zero numbers (usually if gamma is small,
    so will be other variables). Thus further calculations risk a crash.
    Such small gamma generally means no hope of progress anyway. */
```


3.5.2 BICGstab

The BICGstab algorithm can be filled with an initial guess, which is stored in the \mathbf{x}-vector. If this is not intended, the \mathbf{x}-vector should be set to zero. The vector $\hat{\mathbf{r}_{\mathbf{0}}}$ is set to $\mathbf{r}_{\mathbf{0}}$. The BICGstab algorithm of Hypre breaks if the value temp (scalar product of the residual and the preconditioned residual) is under a certain threshold avoiding a division by a number close to zero.

```
if (fabs(temp) >= epsmac) //epsmac = 1.e-128
    alpha = res/temp;
else {
    printf("BiCGSTAB\_broke\iotadown!!&divide^by\iotanear\iotazero\n");
    return (1);
}
```

Another breakdown occurs if the variable res (the scalar product of the vector $\hat{\mathbf{r}_{\boldsymbol{0}}}$ and the residual vector of the current iteration step) falls under a defined threshold, avoiding a division by a number close to zero.

```
if (fabs(res) >= epsmac)
    beta = 1.0/res;
else {
    printf("BiCGSTAB\_broke~down!!ures=0^\n");
    return(2);
}
```

A breakdown which often occurs on small matrices, is if the gamma (equals w_{k+1} in Section 2.3.2) value is smaller than a defined limit.

[^10]```
if (fabs(gamma) >= epsmac)
 (*(bicgstab_functions }->\mathrm{ ScaleVector))((beta*alpha/gamma),p);
else {
 printf("BiCGSTAB_broke」down!! &gamma=0^\n");
 return(3);
}
```


### 3.5.3 GMRES

The GMRES algorithm has no significant changes from the algorithm introduced in Section 2.3.3.

### 3.5.4 ILU

For the ILU preconditioner the drop tolerance can be set to raise the speed of the preconditioning process (default: 0.0001). The second parameter that can be set is the maximum number of elements each row of the preconditioner matrix can have (default: 20).
Table 3.1 gives an overview of the introduced packages.

|  | Trilinos | PETSc | ITL | QQQ | Hypre |
| :--- | :---: | :---: | :---: | :---: | :---: |
| CICGstab <br> GMRES | YES | YES | YES | YES | NO |
| YES | YES | NO | YES | YES | YES |
| Jacobi <br> ILU <br> IC | YES | YES | YES | NO | NO |
| Matrix- <br> format | YES | YES | YES | YES | YES |
| NO | YES |  |  |  |  |
| NO |  |  |  |  |  |$|$ CSR

Table 3.1: Packages Overview

## Chapter 4

## Diagnostic Tool

For the development of an automatic solver control which can decide which solvers and preconditioners are used, there need to be some matrix properties on which the decisions are based. Some kind of diagnostic tool is necessary which can find out the important facts of a matrix. This tool needs to be fast enough so that its use is relevant.

### 4.1 Matrix and Vector Container

### 4.1.1 Sparse Matrix Storage

The first thing that is needed for a matrix is a buffer where it is stored. The intended use was as intermediate storage between the reading of the matrix and the assembling of the specific internally stored matrices of the solvers (later it became a part of the diagnostic tool, too). This storage type needs the following properties:

1. only store the non-zeros
2. no order required for inserting of elements
3. possibility to read out only the nonzero elements
4. stores the dimension of the full matrix

For this purpose the boost multi_index ${ }^{1}$ containers library was used. The advantage of the multi-index container is that it is possible to order the objects inserted by more than one order (e.g., a matrix can be ordered by row and by column index). This makes it possible to traverse the objects of the container differently. For the purpose of a sparse matrix the objects stored are the nonzero elements which have a row index, a column index and a value (e.g., double). The following struct represents that:

```
struct matrix_element {
 int row;
 int column;
 double value;
};
```

[^11]A multi-index container which can be ordered by row and column index can be defined by:

```
typedef multi_index_container < matrix_element,
 indexed_by<ordered_non_unique <tag <row > ,
 BOOST_MULTI_INDEX_MEMBER(matrix_element,int,row)>,
 ordered_non_unique <tag <column > ,
 BOOST_MULTI_INDEX_MEMBER(matrix_element,int,column)}>>
> matrix_set_real;
```

The indices are ordered non-unique which indicates that an index can be inserted twice else for each row and column only one element would be allowed.
To add some error handling to the matrix container another struct is defined which also holds the dimension of the matrix, if it is initialized and a function to insert values into the matrix:

```
struct sparse_matrix {
 int dim;
 matrix_set_real data;
 bool initialized;
 void initialize(int dim_){...}
 sparse_matrix(int dim_){
 initialize(dim_);
 }
 void insert_value(int i, int j, double variable){
 if(initialized) {
 if ((i < dim)&& (j>=0)&& (i<\operatorname{dim})&&(j>=0))
 data.insert(matrix_element<double >(i, j, variable));
 else throw MATRIX_INSERT_WRONG_INDEX;
 }else throw MATRIX_NOT_INITIALIZED;
 }
 int get_elements() {
 return data.size();
 }
 void print_matrix() {...}
 int get_dimension(){
 return dim;
 }
};
```

The container does not explicitly circumvent double insertion of a matrix element, however this may lead to wrong solutions depending on the usage of the matrix and should be avoided.
There are two ways to read out the elements of the matrix. They can be accessed row-wise or columnwise which is indicated by the following code snippet:

```
typedef matrix_set_real::index<row >::type matrix_set_real_by_row;
typedef matrix_set_real::index<column >::type matrix_set_real_by_column;
```

To access them an iterator can be used, e.g., row-wise reading of elements and printing to terminal:

```
sparse_matrix matrix(1000);
...//insert elements
matrix_set_real_by_row:: iterator iter_row;
for(iter_row = matrix.data.get <0> ().begin();
 iter_row != matrix.data.get <0>().end (); ++iter_row) {
 std::cout << (*iter_row). row << std:: endl;
 std::cout << (*iter_row).column << std:: endl;
 std ::cout << (*iter_row).value << std:: endl;
}
```

Such a matrix format can now be used as intermediate storage between matrix reading and choosing the solver package where the equation system will be solved. The advantage of this format is that one can insert the elements of a matrix randomly. For other sparse matrix formats one needs to insert elements row wise or column wise. Also it is easy to traverse the nonzero elements of this matrix row- or columnwise. The disadvantages are that other formats may need less memory and that one needs to avoid multiple insertions of elements with the same indices.

### 4.1.2 Vector Storage

To store the right-hand side vector and the solution vector a simple class has been implemented that stores the dimension of the vector, if it is initialized and the vector elements. These are stored in a vector of the standard template library. The solution vector of a linear equation system is a dense vector so the format is dense.

```
class dense_vector {
 private:
 int dim;
 bool initialized;
 std::vector<double> data;
 ublic:
 dense_vector(int dimension) {...}
 void insert_value(int row, double value) {...}
 double get_value(int row) {..}
}
```

The vector can be filled with the function insert_value (...) and an element can be read out by get_value (...).

### 4.2 Matrix Entries

One interest lies in the relation of the numbers of diagonal and non-diagonal entries. E.g., a matrix with $50 \%$ diagonal elements may be perfect for the Jacobi preconditioner. For that reason the matrix storage type introduced (4.1.1) can be used to traverse through the elements and find out the numbers of diagonal and non-diagonal entries:

```
sparse_matrix matrix;
...//fill matrix
matrix_set_real_by_row:: iterator iter;
for(iter=matrix.data.get <0> ().begin();
 iter!=matrix.data.get <0>().end();++iter) {
 if((*iter). row!=(*iter).column)//check for diagonal entry
 nondiagonalelements++;
 else {
 diagonalelements++;
 }
}
```

With the number of non-zeros and diagonal elements, the diagonal-dominance (the diagonal elements percentage of all non-zeros) can be calculated.
Other interesting values are the average of the diagonal elements and the average of the non diagonal elements. If the diagonal average is greater than one while the average of the non diagonal elements is small $(<1)$, the Jacobi preconditioner may be suitable, because it guarantees only ones in the main diagonal. If all of the non-diagonal elements are very small, this will result in eigenvalues close to one, according to the Gershgorin theorem in Section 2.1.5. The diagonal average and non diagonal average can be calculated within the same loop as the diagonal elements:

```
{ //traverse all matrix elements
 if((*iter).row!=(*iter).column)//check for diagonal entry
 value+=std:: fabs((*iter).value);
 else{
 diagonalvalue+=std :: fabs((* iter). value);
 }
}
//average diagonalvalue
diagonalvalue=diagonalvalue / boost : : lexical_cast <double > (diagonalelements);
//average nondiagonalvalue
value=value / boost:: lexical_cast <double > (nonzeros - diagonalelements);
```

Also the maximum, minimum, absolute maximum and absolute minimum can be calculated.

### 4.3 Symmetry Check

The IC preconditioner is only available for symmetric matrices (see Section 2.4.3). A check whether the matrix is symmetric can decide if the preconditioner may be useable or not. The IC is a necessary preconditioner for the use of the CG solver, which needs a symmetric matrix for convergence.
The symmetry check can be implemented with the introduced sparse matrix storage format. The matrix is traversed simultaneously by a row and a column iterator. For a symmetric matrix the iterators always point on two values that are symmetric to each other (if no zeros have been added to the matrix). These values can used to determine if the matrix is symmetric. If the two values are not symmetric to each other one iterator tries to find the symmetric value of the other iterator. The following code snippet shows the symmetry check without the search for a symmetric value:

```
matrix_set_real_by_row :: iterator iter_row=matrix.data.get <0>().begin();
matrix_set_real_by_column:: iterator iter_col=matrix.data.get < < > ().begin();
for(;(iter_row!=matrix.data.get <0>().end()) &&
 (iter_col!=matrix.data.get <1>().end());
 ++iter_row,++iter_col) {
 if((*iter_row). row!=(*iter_row).column){//check if element is on main diagonal
 if((*iter_col).column==(*iter_row).row){
 if((*iter_col).row==(*iter).column){
 if(std::fabs((*iter_row).value -(*iter_col).value)>SYMMETRIC_TOLERANCE) {
 symmetric=false;
 break;
 }else continue;
 } else{
 ...//find symmetric element
 }
 } else {
 ...//find symmetric element
 }
 }
}
```


### 4.4 Positive Definite Matrices

CG and BICGstab require positive definite matrices to ensure convergence. The Gershgorin theorem can be used to estimate the minimum and the maximum eigenvalue or at least closed sets in which they are found. If the set containing the smallest eigenvalue is in the positive area of real values, the matrix is positive definite. If it overlaps with the negative area one may decide that it is nearly positive definite if its greater part is in the positive area. If the matrix is non-symmetric the symmetric part needs to be built first (according to Section 2.1.4). This is done with the help of the row and column iterators of the matrix which build a new matrix (its name is analyzer in the following code snippets).

```
sparse_matrix analyzer(matrix.get_dimension());
matrix_set_real_by_row : : iterator iter_row=matrix.data.get < 0 > ().begin();
matrix_set_real_by_column : : iterator iter_col=matrix.data.get < < > > ().begin();
while((iter_row != matrix.data.get <0>().end())&&
 (iter_col!=matrix.data.get < | > ().end())) {
 ...//build symmetric part
}
```

The while-loop is done until both iterators reached the end. If the iterators point on two symmetric values following if-branch is valid:

```
if(((*iter_row). row==(*iter_col).column) && ((*iter_col).row==(*iter_row).column)){
 if((*iter_col). column <=(*iter_col). row)
 analyzer.insert_value((*iter_col).row, (*iter_col).column,
 ((*iter_row).value + (*iter_col).value)*0.5);
 if(((*iter_row). row!=(*iter_row).column)&& ((*iter_row).column >= (*iter_row). row))
 analyzer.insert_value((*iter_row).row, (*iter_row).column,
 ((*iter_row).value + (*iter_col).value)*0.5);
 iter_row ++;
 iter_col++;
}
```

To avoid a double insertion of an element on the main diagonal the second insertion is only made if row and column index are different. Additionally the column iterator only inserts an element if he points on the lower part of the matrix. Analogous the row iterator only inserts an element if he points on the upper part of the matrix. If the iterators would not be restricted that way each element would be inserted twice.

The two other if-branches are valid if one of the iterators did not traverse as far as the other. Then this iterator is increased till it catches up with the other one (additionally all elements it passes need to inserted as well). The following code snippet will introduce this for the row iterator:

```
else if (((*iter_row). row < (*iter_col). column)
 (((*iter_row). row==(*iter_col).column)&&
 ((* iter_col). row > (*iter_row).column))) {
 if ((*iter_row).column>=(*iter_row). row) {
 analyzer.insert_value((*iter_row).row , (*iter_row).column,
 (*iter_row). value*0.5);
 analyzer.insert_value((*iter_row).column , (*iter_row). row,
 (*iter_row).value*0.5);
 }
 iter_row ++;
}
```

Analogous the code part for the column iterator can be implemented.
After the symmetric part is build the the Gershgorin's discs which contain the eigenvalues can be calculated. Three vectors (of the introduced dense vector format) are used to store the central point, the row radius and the column radius of each disc:

```
dense_vector radii_row(matrix.get_dimension());
dense_vector radii_col(matrix.get_dimension());
dense_vector central_points(matrix.get_dimension());
```

These are filled by traversing all elements of the analyzer matrix first row-wise to get the central points and the row radii.

```
//traverse row-wise
if((*iter_row). row==(*iter_row). column)
 central_points.insert_value((*iter_row). row, (* iter_row). value);
else
 radii__row.insert_value((*iter_row). row,
 radii_row.get_value((*iter_row).row)+ std : : fabs ((*iter_row).value));
```

Then column-wise to determine the column radii.

```
//traverse column-wise
if((*iter_col).row!=(*iter_col).column)
 radii_col.insert_value((*iter_col).column,
 radii_col.get_value((*iter_col).column)+ std : : fabs ((* iter_col).value));
```

After the three vectors are filled the two closed sets which contain the smallest and largest eigenvalue can be built. The important set for the definite is that which contains the smallest eigenvalue:

```
for(int i=1; i< central_points.get_dimension(); ++i){
 double buffer1, buffer2, radius;
 if(radii_col.get_value(i)}>\mathrm{ radii_row.get_value(i))
 radius=radii_col.get_value(i);
 else
 radius=radii_row.get_value(i);
 bufferl=central_points.get_value(i)+range;
 buffer2=central_points.get_value(i)-range;
 //check if the old maxima and minima of the smallest eigenvalue set are
 //dominating the new values
 if(bufferl<mineigenvaluemax)
 mineigenvaluemax=buffer1;
 if(buffer2<mineigenvaluemin)
 mineigenvaluemin=buffer2;
}
```

After the set for the smallest eigenvalue has been calculated, the decision whether the matrix is positive definite can be made. Therefore the minimum of the smallest eigenvalue needs to be positive to ensure the matrix is positive definite. If it is negative, but the greater part of the set is within $\mathbb{R}^{+}$, then one can state that the matrix "nearly positive definite". This statement will also be used in the next chapter if the matrix is only qualified as may be positive definite.

### 4.5 Condition Number

The condition number would be very helpful in deciding which solver or preconditioner may be used. The problem is that it is difficult to estimate before the solving process. There are some solvers which can estimate the condition number during the solving process, but the problem is that does not really help in the selection of the solver (the condition number is ready after the solving process has been finished).

## Chapter 5

## Matrices for Solver Testing

Several matrices have been used for testing of the solver packages and some of their different solvers. The break condition of the residual has been set to $1 e^{-12}$. The relative residual was used for the test run because QQQ offers no explicit check for the absolute residual. The maximum number of iterations was set to the rank of the tested matrix. For the non-symmetric matrices Jacobi and ILU preconditioners have been tested. For symmetric matrices IC has been used as well. The value for the GMRES restart has been set to 1000 . The results of the tests are listed in appendix A.

This chapter tries to detect the strengths and expose the weaknesses of the different code implementations of the solving and preconditioning algorithms. Several matrix properties are investigated to see if they may give a hint which solving options fit them. For the preconditioners, the default options the packages offer have been used, to see how the different options influence the solving process. The solving and assembly times were measured with a timer provided by the Epetra package of Trilinos. For the time of analysis the average value of a series of one hundred measured time values for each matrix was determined. The assembly time is the average value of a series of twenty time values. The results of the solving speed measurements are only discussed if the matrix has a rank greater than 10.
The implemented solver interface for each package has been compiled with the options: -pipe -pedantic -Wall -O3 -s. The option - 03 has been used to guarantee full optimization by the compiler so each code can perform at its best. The solvers tested in these sections are:

- Trilinos package; Version 9.0.1

Solvers: CG, BICGstab and GMRES
Preconditioners: none, Jacobi, ILU and IC

- PETSc package; Version 3.0.0-p1

Solvers: CG, BICGstab and GMRES
Preconditioners: none, Jacobi, ILU and IC

- ITL package; Version mt14 alpha-1

Solvers: CG and BICGstab
Preconditioners: none, Jacobi, ILU and IC

- Hypre package; Version 2.4.0b

Solvers: CG, BICGstab and GMRES
Preconditioners: none and ILU

- QQQ package:


## Solvers: BICGstab and GMRES

Preconditioners: none and ILU

### 5.1 Tridiagonal Matrices

A good example of a tridiagonal matrix is the one obtained by the finite difference one-dimensional Laplace problem [11]. This matrix will be investigated in different sizes, starting with rank 2 (although the rank 2 version is not a real tridiagonal matrix). The matrix is symmetric and positive definite. It was basically used to test the solvers on small matrices, to see how they perform.

### 5.1.1 Rank 2

The rank 2 version of the matrix has the form:

$$
A=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]
$$

## Matrix Properties:

| Dimension | 2 |
| :--- | ---: |
| Symmetric | YES |
| Positive Definite | YES |
| Value Range | -1 to 2 |
| Absolute Minimum | 1 |
| Absolute Maximum | 2 |
| Diagonal Entries | 2 |
| Diagonal Zeros | 0 |
| Total Non-Zeros | 4 |
| Diagonal Average | 2 |
| Non-diagonal Average | 1 |
| Diagonal Dominance | 0.5 |

## Important Times:

| Trilinos Assembly Time | $2.93 \mathrm{e}-02 \mathrm{~ms}$ |
| :--- | :--- |
| PETSc Assembly Time | $1.41 \mathrm{e}-01 \mathrm{~ms}$ |
| ITL Assembly Time | $2.50 \mathrm{e}-03 \mathrm{~ms}$ |
| Hypre Assembly Time | $8.05 \mathrm{e}-03 \mathrm{~ms}$ |
| QQQ Assembly Time | $1.28 \mathrm{e}-03 \mathrm{~ms}$ |
| Time for Analysis | $1.71 \mathrm{e}-01 \mathrm{~ms}$ |

## Results

All solvers computed a solution except Hypre BICGstab (see Table A.1) which encountered the error "BiCGSTAB broke down!! gamma=0" described earlier in Section 3.5.2.

### 5.1.2 Rank 3

The rank 3 version of the matrix has the form:

$$
A=\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

## Matrix Properties:

| Dimension | 3 |
| :--- | ---: |
| Diagonal Entries | 3 |
| Symmetric | YES |
| Diagonal Zeros | 0 |
| Positive Definite | YES |
| Total Non-Zeros | 7 |
| Value Range | -1 to 2 |
| Diagonal Average | 2 |
| Absolute Minimum | 1 |
| Non-diagonal Average | 1 |
| Absolute Maximum | 2 |
| Diagonal Dominance | 0.428 |

## Important Times:

| Trilinos Assembly Time | $3.05 \mathrm{e}-02 \mathrm{~ms}$ |
| :--- | :--- |
| PETSc Assembly Time | $1.41 \mathrm{e}-01 \mathrm{~ms}$ |
| ITL Assembly Time | $2.60 \mathrm{e}-03 \mathrm{~ms}$ |
| Hypre Assembly Time | $9.00 \mathrm{e}-03 \mathrm{~ms}$ |
| QQQ Assembly Time | $1.34 \mathrm{e}-02 \mathrm{~ms}$ |
| Time for Analysis | $1.51 \mathrm{e}-01 \mathrm{~ms}$ |

## Results

All solvers computed a solution except BICGstab of Hypre (Table A.2) which encountered the error "BiCGSTAB broke down!! gamma=0" described earlier in Section 3.5.2.

### 5.1.3 Rank 4

The rank 4 matrix has the form:

$$
A=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]
$$

## Matrix Properties:

| Dimension | 4 |
| :--- | ---: |
| Symmetric | YES |
| Positive Definite | YES |
| Value Range | -1 to 2 |
| Absolute Minimum | 1 |
| Absolute Maximum | 2 |
| Diagonal Entries | 4 |
| Diagonal Zeros | 0 |
| Total Non-Zeros | 10 |
| Diagonal Average | 2 |
| Non-diagonal Average | 1 |
| Diagonal Dominance | 0.4 |

## Important Times:

| Trilinos Assembly Time | $3.16 \mathrm{e}-02 \mathrm{~ms}$ |
| :--- | :--- |
| PETSc Assembly Time | $1.39 \mathrm{e}-01 \mathrm{~ms}$ |
| ITL Assembly Time | $2.85 \mathrm{e}-03 \mathrm{~ms}$ |
| Hypre Assembly Time | $9.70 \mathrm{e}-03 \mathrm{~ms}$ |
| QQQ Assembly Time | $1.34 \mathrm{e}-02 \mathrm{~ms}$ |
| Time for Analysis | $1.52 \mathrm{e}-01 \mathrm{~ms}$ |

## Results

BICGstab of Hypre encountered the error "BiCGSTAB broke down!! gamma=0" described earlier in Section 3.5.2. All other solvers solved the equation system (Table A.3).

### 5.1.4 Rank 5

The rank 5 matrix has the form:

$$
A=\left[\begin{array}{ccccc}
2 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 2
\end{array}\right]
$$

## Matrix Properties:

| Dimension | 5 |
| :--- | ---: |
| Symmetric | YES |
| Positive Definite | YES |
| Value Range | -1 to 2 |
| Absolute Minimum | 1 |
| Absolute Maximum | 2 |
| Diagonal Entries | 5 |
| Diagonal Zeros | 0 |
| Total Non-Zeros | 13 |
| Diagonal Average | 2 |
| Non-diagonal Average | 1 |
| Diagonal Dominance | 0.384 |

## Important Times:

| Trilinos Assembly Time | $3.25 \mathrm{e}-02 \mathrm{~ms}$ |
| :--- | :--- |
| PETSc Assembly Time | $1.46 \mathrm{e}-01 \mathrm{~ms}$ |
| ITL Assembly Time | $3.35 \mathrm{e}-03 \mathrm{~ms}$ |
| Hypre Assembly Time | $1.05 \mathrm{e}-02 \mathrm{~ms}$ |
| QQQ Assembly Time | $1.42 \mathrm{e}-02 \mathrm{~ms}$ |
| Time for Analysis | $1.56 \mathrm{e}-01 \mathrm{~ms}$ |

## Results

All solvers succeeded in solving the equation system as shown in Table A.4.

### 5.1.5 Rank 10

The rank 10 version of the matrix has the form:

$$
A=\left[\begin{array}{cccccccccc}
2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2
\end{array}\right]
$$

## Matrix Properties:

| Dimension | 10 |
| :--- | ---: |
| Symmetric | YES |
| Positive Definite | YES |
| Value Range | -1 to 2 |
| Absolute Minimum | 1 |
| Absolute Maximum | 2 |
| Diagonal Entries | 10 |
| Diagonal Zeros | 0 |
| Total Non-Zeros | 28 |
| Diagonal Average | 2 |
| Non-diagonal Average | 1 |
| Diagonal Dominance | 0.3857 |

## Important Times:

| Trilinos Assembly Time | $4.08 \mathrm{e}-02 \mathrm{~ms}$ |
| :--- | :--- |
| PETSc Assembly Time | $1.46 \mathrm{e}-01 \mathrm{~ms}$ |
| ITL Assembly Time | $6.00 \mathrm{e}-03 \mathrm{~ms}$ |
| Hypre Assembly Time | $1.49 \mathrm{e}-02 \mathrm{~ms}$ |
| QQQ Assembly Time | $1.56 \mathrm{e}-02 \mathrm{~ms}$ |
| Time for Analysis | $1.64 \mathrm{e}-01 \mathrm{~ms}$ |

## Results

All solvers succeeded in computing a solution as shown in Table A.5.

### 5.2 Hilbert Matrices

The Hilbert matrix is symmetric, positive definite and ill-conditioned, especially for large dimensions. The matrix elements are built by:

$$
\begin{equation*}
h_{i j}=\frac{1}{i+j-1} \tag{5.1}
\end{equation*}
$$

Normally it is used for testing solvers which build the inverse of a matrix (the inverse is known and has integer values). Here it is used to see the behavior of the iterative solvers on an ill-conditioned matrix.

### 5.2.1 Rank 4

The Hilbert matrix for rank 4 has the form:

$$
A=\left[\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7}
\end{array}\right]
$$

## Matrix Properties:

| Dimension | 4 |
| :--- | ---: |
| Symmetric | YES |
| Positive Definite | YES |
| Value Range | -0.142857 to 1 |
| Absolute Minimum | 0.142857 |
| Absolute Maximum | 1 |
| Diagonal Entries | 4 |
| Diagonal Zeros | 0 |
| Total Non-Zeros | 16 |
| Diagonal Average | 0.419048 |
| Non-diagonal Average | 0.283333 |
| Diagonal Dominance | 0.25 |

Important Times:

| Trilinos Assembly Time | $3.43 \mathrm{e}-02 \mathrm{~ms}$ |
| :--- | :--- |
| PETSc Assembly Time | $1.54 \mathrm{e}-01 \mathrm{~ms}$ |
| ITL Assembly Time | $3.30 \mathrm{e}-03 \mathrm{~ms}$ |
| Hypre Assembly Time | $1.01 \mathrm{e}-02 \mathrm{~ms}$ |
| QQQ Assembly Time | $1.37 \mathrm{e}-02 \mathrm{~ms}$ |
| Time for Analysis | $2.35 \mathrm{e}-01 \mathrm{~ms}$ |

## Results

Without a preconditioner the CG and BICGstab solvers are not able to calculate the solution in the given iteration limit (see Table A.6). The final residual of the solutions is $\approx 1 \cdot 10^{-8}$ and so an increase of the maximum iteration number would help to get closer to the desired residual.

The Jacobi preconditioner is only useful for the GMRES solver. The matrix is dense, so the Jacobi preconditioner would not be a considerable option anyway.

All solvers are able to solve the system with the ILU preconditioner except BICGstab of Hypre, which encountered the same error already discussed for the Laplace matrices rank 2 to 4 (Section 5.1).

The IC preconditioner performs perfectly here to make it possible for all solvers to converge. The reason is that the matrix meets the requirements for $\mathbf{I C}$.

### 5.2.2 Rank 10

The matrix form is shown in Figure 5.1.


Figure 5.1: Hilbert matrix rank 10: Dimension $=10$; Value Range: 0.0526316 to 1; Absolute Minimum = 0.0526316 , Absolute Maximum = 1. (NOTE: The row indices are negative to simplify the visualization of the matrix in the right shape.)

## Matrix Properties:

| Symmetric | YES |
| :--- | ---: |
| Positive Definite | YES |
| Diagonal Entries | 10 |
| Diagonal Zeros | 0 |
| Total Non-Zeros | 100 |
| Diagonal Average | 0.213326 |
| Non-diagonal Average | 0.124913 |
| Diagonal Dominance | 0.1 |

## Important Times:

| Trilinos Assembly Time | $8.29 \mathrm{e}-02 \mathrm{~ms}$ |
| :--- | :--- |
| PETSc Assembly Time | $1.84 \mathrm{e}-01 \mathrm{~ms}$ |
| ITL Assembly Time | $3.22 \mathrm{e}-02 \mathrm{~ms}$ |
| Hypre Assembly Time | $2.09 \mathrm{e}-02 \mathrm{~ms}$ |
| QQQ Assembly Time | $2.36 \mathrm{e}-02 \mathrm{~ms}$ |
| Time for Analysis | $1.78 \mathrm{e}-01 \mathrm{~ms}$ |

## Results

The system without a preconditioner is only solvable with GMRES, although BICGstab comes close with a final residual of around $1 \cdot 10^{-11}$ (see Table A.7).
The Jacobi preconditioner is unsuitable for this matrix. Only Trilinos GMRES is able to compute a solution with it. The reasons are that the matrix has a low diagonal dominance and also the diagonal average is too small.
The ILU preconditioner fails only for Hypre CG. The rest of the solvers are able to compute the solution of the equation system to a satisfying accuracy.
The IC preconditioner increases the performance of all solvers, letting them all converge. The reason is that the matrix is symmetric an positive definite.

### 5.2.3 Rank 100

The Hilbert matrix rank 100 has the form shown in Figure 5.2.


Figure 5.2: Hilbert matrix rank 100: Dimension $=100$; Value Range: 0.00502513 to 1 ; Absolute Minimum $=0.00502513$, Absolute Maximum $=1$.

## Matrix Properties:

| Symmetric | YES |
| :--- | ---: |
| Positive Definite | YES |
| Diagonal Entries | 100 |
| Diagonal Zeros | 0 |
| Total Non-Zeros | 10000 |
| Diagonal Average | 0.0328434 |
| Non-diagonal Average | 0.0136208 |
| Diagonal Dominance | 0.01 |

## Important Times:

| Trilinos Assembly Time | 7.66 ms |
| :--- | ---: |
| PETSc Assembly Time | 54.54 ms |
| ITL Assembly Time | 5.81 ms |
| Hypre Assembly Time | 5.11 ms |
| QQQ Assembly Time | 1.69 ms |
| Time for Analysis | 5.49 ms |

## Results

Without a preconditioner all solvers are able to compute a solution (see Table A.8).
With the Jacobi preconditioner only the CG solvers and Trilinos GMRES can calculate an accurate solution. The diagonal dominance is only one percent for this matrix. BICGstab of Trilinos and ITL abort the iteration because the vectors $\hat{\mathbf{r}_{\mathbf{0}}}$ and $\mathbf{r}_{\mathbf{k}}$ are orthogonal in the terminating iteration step (see Sections 3.1.2 and 3.3.2.

The ILU preconditioner fails for the PETSc and Hypre implementations. Their default values do not fit this matrix and so the solvers need too many iterations.

The IC preconditioners all fail although the PETSc solvers BICGstab and GMRES reach an accurate residual (the solver on the other hand returns that it has failed). For CG and BICGstab of ITL and Trilinos the residual yields "nan" values. For GMRES of Trilinos the Hessenberg matrix is ill-conditioned caused by a worse preconditioning.

## Performance

The solvers that reached the best speed performance and additionally computed an accurate solution are shown in Figure 5.3.


Figure 5.3: Performance for Hilbert rank 100: The fastest solver for this matrix is Trilinos GMRES with Jacobi. CG without preconditioner is also very fast considering that the matrix is not very wellconditioned. ILU preconditioning is very time inefficient for this matrix because it is dense and therefore much computational complexity is required. On the other hand only one iteration step is required afterwards. (Note: The number above each bar stands for the iterations used for computing the solution.)

### 5.2.4 Rank 1000

The Hilbert matrix rank 1000 has the form shown in Figure 5.4.
Matrix Properties:

| Symmetric | YES |
| :--- | ---: |
| Positive Definite | YES |
| Diagonal Entries | 1000 |
| Diagonal Zeros | 0 |
| Total Non-Zeros | 1000000 |
| Diagonal Average | 0.00443563 |
| Non-diagonal Average | 0.00138274 |
| Diagonal Dominance | 0.001 |

## Important Times:

| Trilinos Assembly Time | 2.168 s |
| :--- | ---: |
| PETSc Assembly Time | 42.678 s |
| ITL Assembly Time | 0.991 s |
| Hypre Assembly Time | 1.106 s |
| QQQ Assembly Time | 0.217 s |
| Time for Analysis | 0.743 s |

## Results

Without a preconditioner all solvers except PETSc GMRES (the solution reached an accuracy of 1.733. $10^{-12}$ ) are able to compute an accurate solution (see Table A.9).

The Jacobi preconditioner helps to compute a solution for all CG solvers and the Trilinos GMRES. For BICGstab ITL exceeds the maximum iterations, Trilinos encounters a breakdown because the vectors $\hat{\mathbf{r}_{0}}$ and $\mathbf{r}_{\mathbf{k}}$ become orthogonal and PETSc reaches a residual bigger than its default divergence value.


Figure 5.4: Hilbert matrix rank 1000: Dimension $=1000$; Value Range: 0.00050025 to 1 ; Absolute Minimum $=0.00050025$, Absolute Maximum $=1$.

The ILU preconditioner of PETSc and QQQ fails completely (although the QQQ package returned that it solved the equation system for both solvers). Trilinos ILU solves with all solvers. Hypre and ITL only solve with one solver each (Hypre GMRES and ITL BICGstab).
The IC preconditioner fails completely although the PETSc GMRES computes a reasonable solution (but states that it has not solved the system, this seems to be a different loss of precision effect. The true residual computed after solving is more accurate than the recursive residual computed during the solving process (see Section 6).

## Performance

The solver that solved the equation system fastest and reached the desired accuracy is Hypre GMRES without preconditioner (Figure 5.5).


Figure 5.5: Hilbert rank 1000 performance: No preconditioner is able to improve the speed performance for this matrix. The fastest solver (Hypre BICGstab) uses no preconditioner. Considering that this is a dense matrix, using a preconditioner is associated with a high computational complexity.

### 5.3 Fidap Matrices

A visual repository of test data for use in comparative studies of algorithms for numerical linear algebra, featuring nearly 500 sparse matrices from a variety of applications, as well as matrix generation tools and services. [18]

For testing the solvers, a few matrices have been downloaded from Matrix-market. These vary in form and range of values. Only matrices with an available right-hand side vector have been chosen.
The Fidap matrices are all generated by the Fidap package and are finite element modeling matrices (Source: Isaac Hasbani (Fluid Dynamics International), Barry Rackner (Minnesota Supercomputer Center))

### 5.3.1 Fidap001

The first matrix of the Fidap set has the form in Figure 5.6.

## Matrix Properties:

| Symmetric | YES |
| :--- | ---: |
| Positive Definite | NO |
| Diagonal Entries | 181 |
| Diagonal Zeros | 35 |
| Total Non-Zeros | 3733 |
| Diagonal Average | 0.038429 |
| Non-diagonal Average | 0.00182772 |
| Diagonal Dominance | 0.048 |

## Important Times:

| Trilinos Assembly Time | 2.72 ms |
| :--- | ---: |
| PETSc Assembly Time | 16.98 ms |
| ITL Assembly Time | 2.07 ms |
| Hypre Assembly Time | 0.68 ms |
| QQQ Assembly Time | 0.61 ms |
| Time for Analysis | 2.76 ms |



Figure 5.6: Matrix Fidap001: Dimension $=216$; Value Range: -0.0302009 to 0.104451 ; Absolute Minimum $=5.96311 \mathrm{e}-21$, Absolute Maximum $=0.104451$.

## Results

The CG and BICGstab solvers are not useful because the matrix is not positive definite (Table A.10). For the CG solvers this characteristic is discovered by the PETSc and Trilinos package breaking, the iteration.

The Jacobi preconditioner has problems because there are zeros on the main diagonal and the diagonal dominance is too small. Also the diagonal average is smaller than one.
The ILU preconditioner fails totally for the ITL package by throwing an exception caused by the zeros on the main diagonal. For the BICGstab only the Trilinos package has problems with ILU.
The IC preconditioner also throws an exception when using the ITL package because of the zeros on the main diagonal. The Trilinos and PETSc packages are able to solve this matrix with BICGstab and GMRES with the IC.

## Performance

Trilinos BICGstab with IC preconditioner was the fastest solver for this matrix (Figure 5.7). The performance of the different GMRES implementations is also shown.


Figure 5.7: Fidap001 performance: Trilinos BICGstab with IC preconditioner solves this system fastest. The matrix is not positive definite so the BICGstab would not be chosen by the automatic solver control. The options chosen would be a GMRES solver with the IC preconditioner of Trilinos, which is the third fastest solver. For GMRES the ILU preconditioner would yield less iterations and thus be faster. The GMRES solvers without a preconditioner show the efficiency of the different code implementations.They all need 216 iterations but their speeds are different. Hypre is fastest, followed by Trilinos and GMRES. The slowest code implementation is from QQQ. This is also shown for the ILU preconditioner where QQQ GMRES needs 5 iterations but performs slowest.

### 5.3.2 Fidap002

The second matrix which was chosen from the Fidap set has the form in Figure 5.8.
Matrix Properties:

| Symmetric | YES |
| :--- | ---: |
| Positive Definite | NO |
| Diagonal Entries | 441 |
| Diagonal Zeros | 0 |
| Total Non-Zeros | 26807 |
| Diagonal Average | $6.03195 \mathrm{e}+06$ |
| Non-diagonal Average | 680862 |
| Diagonal Dominance | 0.016 |

## Important Times:

| Trilinos Assembly Time | 19.44 ms |
| :--- | ---: |
| PETSc Assembly Time | 93.65 ms |
| ITL Assembly Time | 17.10 ms |
| Hypre Assembly Time | 10.74 ms |
| QQQ Assembly Time | 4.28 ms |
| Time for Analysis | 16.16 ms |

## Results

The equation system was not solvable to the accuracy of $1 \cdot 10^{-12}$ (see Table A.11). The Trilinos package encountered a loss of precision several times. Other solver packages returned that they have solved the system for some solving options, but the residual of the solution does not have the desired accuracy. Considering the matrix properties, an IC preconditioner with GMRES solver would be the choice of solving options. The loss of precision error will be investigated further in Chapter 6.


Figure 5.8: Matrix Fidap002: Dimension $=441$; Value Range: $-3.38963 \mathrm{e}+08$ to $1.71342 \mathrm{e}+08$; Absolute Minimum $=3.58608 \mathrm{e}-25$, Absolute Maximum $=3.38963 \mathrm{e}+08$.

## Performance

There are no performance results for this matrix because no solver was able to compute the solution to the desired accuracy.

### 5.3.3 Fidap005

The third matrix from the Fidap set has the form shown in Figure 5.9.

Matrix Properties:

| Symmetric | YES |
| :--- | ---: |
| Positive Definite | NO |
| Diagonal Entries | 27 |
| Diagonal Zeros | 0 |
| Total Non-Zeros | 279 |
| Diagonal Average | 954735 |
| Non-diagonal Average | 280423 |
| Diagonal Dominance | 0.096 |

Important Times:

| Trilinos Assembly Time | 0.172 ms |
| :--- | ---: |
| PETSc Assembly Time | 0.369 ms |
| ITL Assembly Time | $9.52 \mathrm{e}-02 \mathrm{~ms}$ |
| Hypre Assembly Time | $4.64 \mathrm{e}-02 \mathrm{~ms}$ |
| QQQ Assembly Time | $4.45 \mathrm{e}-02 \mathrm{~ms}$ |
| Time for Analysis | 0.375 ms |

## Results

The Jacobi preconditioner failed totally for this matrix (Table A.12). With the ILU and IC preconditioner some packages returned that they solved the equation system. But the relative residual is not below the desired accuracy. Trilinos encountered a loss of precision a few times.


Figure 5.9: Matrix Fidap005: Dimension $=27$; Value Range: $-1.18519 \mathrm{e}+06$ to $2.37038 \mathrm{e}+06$; Absolute Minimum $=18518.6$, Absolute Maximum $=2.37038 \mathrm{e}+06$.

## Performance

There are no performance results for this matrix because no solver was able to compute an accurate solution.

### 5.3.4 Fidapm05

The fourth matrix of the Fidap set has the form in Figure 5.10.

## Matrix Properties:

| Symmetric | YES |
| :--- | ---: |
| Positive Definite | NO |
| Diagonal Entries | 27 |
| Diagonal Zeros | 15 |
| Total Non-Zeros | 445 |
| Diagonal Average | 2.72593 |
| Non-diagonal Average | 0.209569 |
| Diagonal Dominance | 0.06 |

## Important Times:

| Trilinos Assembly Time | 0.320 ms |
| :--- | ---: |
| PETSc Assembly Time | 0.403 ms |
| ITL Assembly Time | 0.192 ms |
| Hypre Assembly Time | $7.725 \mathrm{e}-02 \mathrm{~ms}$ |
| QQQ Assembly Time | $7.395 \mathrm{e}-02 \mathrm{~ms}$ |
| Time for Analysis | 0.503 ms |

## Results

Without being positive definite the CG and BICGstab solvers are not able to compute a solution without preconditioner (see Table A.13).
The Jacobi preconditioner is not able to improve the solving performance due to the zeros on the main diagonal and lets all solvers fail.
With the ILU preconditioner the QQQ BICGstab and the PETSc BICGstab are able to solve the system. On the other hand, the solution of the GMRES solver of QQQ is not accurate. The IC precon-


Figure 5.10: Matrix Fidapm005: Dimension = 42; Value Range: -1.06667 to 5.68889 ; Absolute Minimum $=$ $1.38778 \mathrm{e}-17$, Absolute Maximum: $=5.68889$.
ditioner also fails totally.

## Performance

The fastest solvers for this equation system which also offer accurate solutions are QQQ BICGstab and PETSc BICGstab both with ILU preconditioner (Figure 5.11).


Figure 5.11: Fidapm05 performance: Two BICGstab solvers lead the performance results for this matrix. Since this matrix is not positive definite, each of these solvers would not be an option for an automatic solver control. GMRES solves this system without a preconditioner. All packages require the same number of iterations to reach an accurate solution. Here Trilinos is fastest, followed by QQQ and Hypre. PETSc has the slowest GMRES implementation for this matrix.

### 5.3.5 Fidap027

The fifth matrix chosen from the Fidap set has the form in Figure 5.12.

## Matrix Properties:

| Symmetric | NO |
| :--- | ---: |
| Positive Definite | NO |
| Diagonal Entries | 728 |
| Diagonal Zeros | 192 |
| Total Non-Zeros | 23775 |
| Diagonal Average | 0.0182834 |
| Non-diagonal Average | 0.000924957 |
| Diagonal Dominance | 0.032 |

Important Times:

| Trilinos Assembly Time | 29.02 ms |
| :--- | ---: |
| PETSc Assembly Time | 920.81 ms |
| ITL Assembly Time | 25.92 ms |
| Hypre Assembly Time | 13.44 ms |
| QQQ Assembly Time | 6.26 ms |
| Time for Analysis | 29.02 ms |

## Results

The matrix is symmetric but not positive definite so the CG and BICGstab fail (see Table A.14). Without a preconditioner the PETSc GMRES fails, in contrast to the other GMRES solvers.

The Jacobi preconditioner is not usable for this matrix, mainly because of the zeros on the main diagonal.
The zeros on the main diagonal also let the Trilinos ILU preconditioner fail. The Hypre ILU is not able to calculate a solution but does not deliver a numerical breakdown. The QQQ BICGstab with ILU preconditioner solves the equation system. The PETSc version of this solver only reaches a solution close to the accuracy desired. On the other hand the GMRES solvers of these packages are returning an inaccurate solution.


Figure 5.12: Matrix Fidap027: Dimension $=974$; Value Range: -0.0706368 to 0.156271 ; Absolute Minimum $=3.2967 \mathrm{e}-35$, Absolute Maximum $=0.156271$.

## Performance

This is another matrix that is not positive definite but has BICGstab as fastest solver (Figure 5.13).


Figure 5.13: Fidap027 performance: QQQ BICGstab with ILU solved fastest, although the matrix is not positive definite. Hypre GMRES solves the system without a preconditioner slightly slower than the QQQ BICGstab.

### 5.3.6 Fidap028

The sixth matrix of the Fidap set has the form in Figure 5.14.


Figure 5.14: Matrix Fidap028: Dimension = 2603; Value Range: -24.6163 to 49.3352 ; Absolute Minimum = $6.31089 \mathrm{e}-30$, Absolute Maximum $=49.3352$.

## Matrix Properties:

| Symmetric | NO |
| :--- | ---: |
| Positive Definite | NO |
| Diagonal Entries | 1853 |
| Diagonal Zeros | 750 |
| Total Non-Zeros | 70861 |
| Diagonal Average | 8.6464 |
| Non-diagonal Average | 0.485261 |
| Diagonal Dominance | 0.026 |

## Important Times:

| Trilinos Assembly Time | 51.36 ms |
| :--- | ---: |
| PETSc Assembly Time | 991.75 ms |
| ITL Assembly Time | 51.70 ms |
| Hypre Assembly Time | 18.67 ms |
| QQQ Assembly Time | 12.18 ms |
| Time for Analysis | 59.29 ms |

## Results

The CG and BICGstab solvers do not work because the matrix is not positive definite (see Table A.15).
The Jacobi preconditioner fails due to the zeros on the main diagonal.
The ILU preconditioners of QQQ and PETSc help the BICGstab and GMRES solvers to calculate an tolerable solution. However the desired accuracy is not reached with any of the solvers.

## Performance

There are no performance results for this matrix because no solver was able to compute an accurate solution.

### 5.4 Sherman Matrices

The Sherman set consists of matrices used for oil reservoir simulation by Andy Sherman (Source: Andy Sherman, Nolan and Associates, Houston, TX.).

### 5.4.1 Sherman2

The first matrix of the Sherman set that was chosen has the form in Figure 5.15.


Figure 5.15: Matrix Sherman2: Dimension = 1080; Value Range: $-1.11233 \mathrm{e}+09$ to $1.33985 \mathrm{e}+09$; Absolute Minimum $=1.48821 \mathrm{e}-17$, Absolute Maximum $=1.33985 \mathrm{e}+09$.

## Matrix Properties:

| Symmetric | NO |
| :--- | ---: |
| Positive Definite | NO |
| Diagonal Entries | 1080 |
| Diagonal Zeros | 0 |
| Total Non-Zeros | 22958 |
| Diagonal Average | $2.56142 \mathrm{e}+06$ |
| Non-diagonal Average | 4.3234 e 06 |
| Diagonal Dominance | 0.047 |

## Important Times:

| Trilinos Assembly Time | 14.74 ms |
| :--- | ---: |
| PETSc Assembly Time | 98.56 ms |
| ITL Assembly Time | 12.05 ms |
| Hypre Assembly Time | 3.72 ms |
| QQQ Assembly Time | 3.26 ms |
| Time for Analysis | 20.21 ms |

## Results

The matrix is neither symmetric nor positive definite so it is obvious that CG and BICGstab do not work (Table A.16). Without a preconditioner only the GMRES solvers converge except the GMRES of the PETSc package which uses too many iterations.
The Jacobi preconditioner completely fails letting the GMRES solvers diverge which were able to solve it without the preconditioner. The low diagonal dominance of 4.7 percent is a good reason for not using it.

The ILU preconditioner lets the BICGstab and GMRES solvers of the packages be able to get to an accurate solution except the $\mathbf{Q Q Q}$ versions. These both calculate a wrong solution with a residual $\gg 1$ which indicates that the QQQ ILU preconditioner failed here.

## Performance

The fastest solvers for this matrix are PETSc BICGstab and PETSc GMRES (Figure 5.16).


Figure 5.16: Sherman2 performance: PETSC has the two fastest solvers for this matrix with BICGstab and GMRES, both using the ILU preconditioner. The ILU preconditioner of Hypre and Trilinos perform equally well here because the GMRES of both packages needed 609 iterations. For this matrix the default values of the PETSc ILU preconditioner fit best, decreasing the number of iterations the most.

### 5.4.2 Sherman3

The second matrix used from the Sherman set is shown in the Figure 5.17.


Figure 5.17: Matrix Sherman3: Dimension = 5005; Value Range: $-1.72445 \mathrm{e}+06$ to $3.44925 \mathrm{e}+06$; Absolute Minimum $=1 \mathrm{e}-10$, Absolute Maximum $=3.44925 \mathrm{e}+06$.

## Matrix Properties:

| Symmetric | NO |
| :--- | ---: |
| Positive Definite | YES |
| Diagonal Entries | 5005 |
| Diagonal Zeros | 0 |
| Total Non-Zeros | 20033 |
| Diagonal Average | 14610.2 |
| Non-diagonal Average | 4864.83 |
| Diagonal Dominance | 0.249 |

## Important Times:

| Trilinos Assembly Time | 8.96 ms |
| :--- | ---: |
| PETSc Assembly Time | 1.266 s |
| ITL Assembly Time | 3.02 ms |
| Hypre Assembly Time | 4.34 ms |
| QQQ Assembly Time | 1.95 ms |
| Time for Analysis | 12.45 ms |

## Results

The matrix is not symmetric but is positive definite. The BICGstab is not able to solve the equation system without a preconditioner (see Table A.17). The GMRES solvers, on the other hand, deliver an inaccurate solution.

With the Jacobi preconditioner the performance is slightly better. All solver types are reaching a tolerable accuracy around $1 \cdot 10^{-11}$, but no solver reaches the convergence limit, although some solvers state that they are successful.
The ILU preconditioner also encounters loss of precision errors (in case of the QQQ GMRES this error is around $1 \cdot 10^{7}$ ). The only solvers which did not encounter a considerable round-off error are the Hypre BICGstab, Hypre GMRES and Trilinos GMRES.

## Performance

There are only three solvers that solve the equation system in an acceptable amount of time (Figure 5.18).


Figure 5.18: Sherman3 performance: Trilinos GMRES with an ILU preconditioner is the fastest solver for this matrix. Trilinos BICGstab would have been slightly faster but it encountered a loss of precision error so it is not in the diagram. The ILU preconditioner of Trilinos decreases the number of iterations more than Hypre ILU and therefore the GMRES solver of Trilinos is fastest. The matrix is positive definite so the BICGstab solver would be the choice for an automatic solver control.

### 5.4.3 Sherman5

The third matrix chosen from the Sherman set has the form shown in Figure 5.19.

## Matrix Properties:

| Symmetric | NO |
| :--- | ---: |
| Positive Definite | NO |
| Diagonal Entries | 3312 |
| Diagonal Zeros | 0 |
| Total Non-Zeros | 20793 |
| Diagonal Average | 60.4114 |
| Non-diagonal Average | 23.1693 |
| Diagonal Dominance | 0.159 |

Important Times:

| Trilinos Assembly Time | 12.33 ms |
| :--- | ---: |
| PETSc Assembly Time | 445.19 ms |
| ITL Assembly Time | 7.87 ms |
| Hypre Assembly Time | 3.67 ms |
| QQQ Assembly Time | 2.54 ms |
| Time for Analysis | 15.98 ms |

## Results

The matrix is neither symmetric nor positive definite, so the CG and BICGstab solvers fail without a preconditioner (see Table A.18). The GMRES solvers are able to solve the system except the PETSc GMRES which exceeds the maximum iterations.

The Jacobi preconditioner encounters a loss of precision and delivers an inaccurate solution for BICGstab and GMRES.

The ILU preconditioner also encounters a loss of precision except for the Hypre BICGstab and the GMRES solvers of Trilinos and Hypre.


Figure 5.19: Matrix Sherman5: Dimension = 3312; Value Range: -3557.32 to 785.866 ; Absolute Minimum $=$ 3.68974e-06, Absolute Maximum $=3557.32$.

## Performance

For this matrix only three solvers are able to calculate an accurate solution shown in Figure 5.20.

## time in s



Figure 5.20: Sherman5 performance: The ILU preconditioner of Trilinos decreases the number of iterations more than Hypre ILU and therefore the GMRES solver of Trilinos is fastest. Trilinos BICGstab would have been slightly faster but encountered a loss of precision error so it is not shown in the Figure.

### 5.5 DRIVCAV Matrices

The matrices in the DRIVCAV set are from 2D modeling of fluid flow in driven cavities. These matrices are non-symmetric and indefinite and are normally hard to solve with Krylov solvers because of the difficulty in finding a good preconditioner. The intended use of these matrices is for testing iterative solvers. (Source: Andrew Chapman, University of Minnesota, chapman@msi.umn.edu)

### 5.5.1 E05r0100

The matrix e05r0100 has the form shown in Figure 5.21.


Figure 5.21: Matrix E05r0100: Dimension = 236; Value Range: -5.87668 to 10.1705 ; Absolute Minimum = $3.46945 \mathrm{e}-18$, Absolute Maximum $=10.1705$.

## Matrix Properties:

| Symmetric | NO |
| :--- | ---: |
| Positive Definite | NO |
| Diagonal Entries | 162 |
| Diagonal Zeros | 74 |
| Total Non-Zeros | 5760 |
| Diagonal Average | 6.26831 |
| Non-diagonal Average | 0.29926 |
| Diagonal Dominance | 0.028 |

## Important Times:

| Trilinos Assembly Time | 3.73 ms |
| :--- | ---: |
| PETSc Assembly Time | 28.38 ms |
| ITL Assembly Time | 2.88 ms |
| Hypre Assembly Time | 1.16 ms |
| QQQ Assembly Time | 0.83 ms |
| Time for Analysis | 6.75 ms |

## Results

Without a preconditioner the equation system is only solvable by the GMRES solvers of Hypre, Trilinos and QQQ (see Table A.19). The matrix is not symmetric and not positive definite so it is obvious that CG and BICGstab fail.

The Jacobi preconditioner has problems solving this equation system because of the zeros on the main diagonal. Also the diagonal dominance is very low.
For the ILU preconditioner the only solver able to solve the system is the QQQ BICGstab. PETSc BICGstab (final residual $=1.01673 \cdot 10^{-12}$ ), QQQ GMRES (final residual $=2.93189 \cdot 10^{-12}$ ) and PETSc GMRES (final residual $=1.71488 \cdot 10-11$ ) state that they solve too, but their final residual is slightly greater than the desired accuracy. The zero pivot shifting of PETSc and the internal ordering of QQQ ILU are better strategies for this matrix than the zero pivot handling of Trilinos and Hypre which only replace the zeros. Trilinos states that the Hessenberg matrix is ill-conditioned which is due to the zero pivot handling.

## Performance

The fastest solver for this matrix is $\mathbf{Q Q Q}$ BICGstab with ILU preconditioner as shown in Figure 5.22.


Figure 5.22: E05r0100 performance: QQQ BICGstab with an ILU preconditioner not only solved this system the fastest, but it was also the only one which solved with a preconditioner. Three GMRES solved without a preconditioner, whereby Hypre was fastest, followed by Trilinos and QQQ.

### 5.5.2 E20r5000

The second matrix tested of the DRIVCAV set has the form in Figure 5.23.

## Matrix Properties:

| Symmetric | NO |
| :--- | ---: |
| Positive Definite | NO |
| Diagonal Entries | 3042 |
| Diagonal Zeros | 1199 |
| Total Non-Zeros | 126328 |
| Diagonal Average | 6.26187 |
| Non-diagonal Average | 2.37942 |
| Diagonal Dominance | 0.024 |

## Important Times:

| Trilinos Assembly Time | 0.088 s |
| :--- | :--- |
| PETSc Assembly Time | 3.456 s |
| ITL Assembly Time | 0.094 s |
| Hypre Assembly Time | 0.034 s |
| QQQ Assembly Time | 0.022 s |
| Time for Analysis | 0.230 s |



Figure 5.23: Matrix E20r5000: Dimension = 4241; Value Range: -74.7776 to 93.9809 ; Absolute Minimum = $3.25261 \mathrm{e}-19$, Absolute Maximum $=93.9809$.

## Results

This matrix is a numerical challenge for the solvers. There are over 28 percent zeros on the main diagonal, so the preconditioners are working at their limits. Without a preconditioner, no solver is able to solve the system. The best residuals reached are around $1 \cdot 10^{-1}$ by the GMRES solver (see Table A.20). The Jacobi preconditioner is not able to decrease the condition number enough to be able to solve the matrix.

The ILU preconditioner of ITL throws an exception because of the zeros on the main diagonal. The zero pivot handling of Trilinos also fails and leads to "nan" residuals for the CG and BICGstab solvers. The only solvers which deliver a tolerable solution are the QQQ GMRES and BICGstab solvers which reach a residual of around $1 \cdot 10^{-8}$.

## Performance

There are no performance results for this matrix because no solver was able to reach the desired accuracy for the solution.

### 5.6 Hamm Matrices

The matrices in this package are computer design components from Steve Hamm. (Source: Steve Hamm, Motorola Inc. Semiconductor Systems Design Technology, 3501 Bluestein Blvd. MD-M2, Austin, TX 78762 USA (hamm@ ssdt-bluestein.sps.mot.com))

### 5.6.1 Add20

The first matrix in the Hamm set is the model of a 20-bit adder and has the form in Figure 5.24.


Figure 5.24: Matrix Add20: Dimension = 2395; Value Range: -0.285714 to 0.4981081 ; Absolute Minimum = 8.57445e-13, Absolute Maximum $=0.498101$.

## Matrix Properties:

| Symmetric | NO |
| :--- | ---: |
| Positive Definite | YES |
| Diagonal Entries | 2395 |
| Diagonal Zeros | 0 |
| Total Non-Zeros | 13139 |
| Diagonal Average | 0.140144 |
| Non-diagonal Average | 0.0237017 |
| Diagonal Dominance | 0.182 |

## Important Times:

| Trilinos Assembly Time | 9.55 ms |
| :--- | ---: |
| PETSc Assembly Time | 66.93 ms |
| ITL Assembly Time | 5.75 ms |
| Hypre Assembly Time | 4.75 ms |
| QQQ Assembly Time | 2.15 ms |
| Time for Analysis | 11.71 ms |

## Results

The matrix is positive definite so the BICGstab solver works for all packages except Trilinos which encounters a numerical breakdown (Table A.21) because the vectors $\hat{\mathbf{r}_{\boldsymbol{0}}}$ and $\mathbf{r}_{\mathbf{k}}$ become orthogonal.
The ILU preconditioner performs well for this matrix especially for the Trilinos package which is able to solve the system with all 3 solvers. All BICGstab and GMRES implementations solve with the ILU preconditioner.

## Performance

Trilinos CG, GMRES and BICGstab with ILU preconditioner had the fastest performance (Figure 5.25).


Figure 5.25: Add20 performance: The ILU preconditioner of Trilinos performs very well, reducing the iterations to 2,4 and 5 for the solvers. Trilinos BICGstab was able to solve the solution fastest using 2 iterations. The ILU preconditioners of the other packages did not improve the performance of their solvers that well.

### 5.6.2 Memplus

The second matrix in the Hamm set is the model of a memory circuit and has the form shown in Figure 5.26.

## Matrix Properties:

| Symmetric | NO |
| :--- | ---: |
| Positive Definite | NEARLY |
| Diagonal Entries | 17758 |
| Diagonal Zeros | 0 |
| Total Non-Zeros | 97350 |
| Diagonal Average | 0.0257426 |
| Non-diagonal Average | 0.00447144 |
| Diagonal Dominance | 0.182 |

Important Times:

| Trilinos Assembly Time | 0.079 s |
| :--- | :--- |
| PETSc Assembly Time | 3.592 s |
| ITL Assembly Time | 0.051 s |
| Hypre Assembly Time | 0.052 s |
| QQQ Assembly Time | 0.019 s |
| Time for Analysis | 0.135 s |

## Results

The matrix is nearly positive definite and three of the five BICGstab solvers are able to solve the equation system (see Table A.22). Trilinos BICGstab encounters a numerical breakdown because the vectors $\hat{\mathbf{r}_{\boldsymbol{0}}}$ and $\mathbf{r}_{\mathbf{k}}$ become orthogonal. The ILU preconditioner of Trilinos helps the CG solver to solve the system.
QQQ GMRES, PETSC BICGstab and PETSC GMRES with ILU stated that they solved the equation system, although the solutions are slightly above the desired accuracy caused by round-off errors


Figure 5.26: Matrix Memplus: Dimension = 17758; Value Range: -0.15873 to 140965; Absolute Minimum = $1.36431 \mathrm{e}-26$, Absolute Maximum $=1.40965$.
(1.44025•10 ${ }^{-12}$ for QQQ, 3.57992 ${ }^{-12}$ for PETSc GMRES and $2.27627 \cdot 10^{-12}$ for PETSc BICGstab). QQQ BICGstab is able to determine an accurate solution.

## Performance

The Trilinos BICGstab with ILU preconditioner is the fastest solver for this matrix as shown in Figure 5.27.

### 5.7 Saddle point matrix

A Saddle point matrix has the form [19]:

$$
\mathbf{A}=\left[\begin{array}{cc}
\mathbf{B} & \mathbf{C} \\
\mathbf{C}^{T} & \mathbf{0}
\end{array}\right]
$$

Such a matrix can lead to trouble using Krylov subspace methods because the zeros on the main diagonal lead to zero pivot errors. If such a system needs to be solved using these preconditioners, the matrix needs to be modified (e.g., exchange rows to obtain a diagonal without zeros). The saddle point matrix used for testing has the form:

$$
A=\left[\begin{array}{lllll}
1 & 2 & 5 & 1 & 4 \\
3 & 4 & 6 & 2 & 5 \\
8 & 8 & 9 & 3 & 6 \\
1 & 2 & 3 & 0 & 0 \\
4 & 5 & 6 & 0 & 0
\end{array}\right]
$$

## time in s



Figure 5.27: Memplus performance: The Trilinos BICGstab and GMRES solvers with an ILU preconditioner are the fastest here. For this matrix the BICGstab solver would be preferred because the matrix is defined as nearly positive definite. The ILU preconditioner of Trilinos reduces the iterations of the solving process to a minimum compared to the other packages except QQQ BICGstab.

## Matrix Properties:

| Dimension | 5 |
| :--- | ---: |
| Symmetric | NO |
| Positive Definite | NO |
| Value Range | 1 to 9 |
| Absolute Minimum | 1 |
| Absolute Maximum | 9 |
| Diagonal Entries | 3 |
| Diagonal Zeros | 2 |
| Total Non-Zeros | 21 |
| Diagonal Average | 4.66667 |
| Non-diagonal Average | 4.11111 |
| Diagonal Dominance | 0.142 |

## Important Times:

| Trilinos Assembly Time | $3.69 \mathrm{e}-02 \mathrm{~ms}$ |
| :--- | ---: |
| PETSc Assembly Time | 0.15 ms |
| ITL Assembly Time | $3.5 \mathrm{e}-03 \mathrm{~ms}$ |
| Hypre Assembly Time | $1.14 \mathrm{e}-02 \mathrm{~ms}$ |
| QQQ Assembly Time | $1.49 \mathrm{e}-02 \mathrm{~ms}$ |
| Time for Analysis | 0.25 ms |

## Results

The matrix shows that all Jacobi preconditioners do have troubles caused by the zeros on the main diagonal, except the one from PETSc which solves the system together with the GMRES solver. With this matrix the ILU preconditioners do not have that much trouble, although the normally well performing ILU of PETSc is not able to compute an adequate solution in the given maximum iterations.

### 5.8 Overall Results

Several matrix properties influence the performance of the different solvers and preconditioners. Also different implementations of the solvers and preconditioners by the packages lead to different results during the solving of a linear equation system (e.g., different solving times, different residuals achieved, and different numbers of iterations).
There are two important matrix properties which have a big influence on the performance of a solving algorithm: symmetry and positive definite. The symmetry of the matrix is required for the CG solver and the IC preconditioner. They also need the matrix to be positive definite, although the IC preconditioner could solve systems which have no positive definite matrix as well. If the matrix is not positive definite this can be detected during solving by Trilinos and PETSc, which will lead to a breakdown of the solving process (e.g., see Section 5.3.1). ITL and Hypre do not detect this and therefore exceed the maximum number of iterations.
The BICGstab solver also requires a positive definite matrix. All matrices stated as nearly positive definite could be treated by the solver as well. Also several matrices that are not positive definite could be treated with BICGstab (but this is not predictable). The biggest problem of the BICGstab solver is that if the vectors $\hat{\mathbf{r}_{0}}$ and $\mathbf{r}_{\mathbf{k}}$ become orthogonal (see BICGstab algorithm in Section 2.3.2), then the algorithm stops without convergence. Trilinos is the most sensitive package in this case (e.g., see Sections 5.3.1, 5.2.4, 5.6.1, and 5.6.2). QQQ avoids this problem, as described in Section 3.4.1.
All three preconditioners encounter problems if there is no handling of zero pivot elements. The solver packages use different strategies when a zero pivot element is encountered. For some preconditioners this is not even tested and the preconditioner is used anyway, resulting in a divergence of the solving process most of the time (after a division by zero or by a number close to zero). The ITL package checks whether all diagonal elements exist (and throws an exception if not, so the solving process is stopped and cannot be continued), but it does not check whether these are equal to zero (see Section 3.3). This leads to problems when a zero is inserted explicitly into the main diagonal. Hypre and Trilinos replace an encountered zero pivot, and so the solving process can be kept alive (Trilinos replaces a zero pivot with the rownorm (see Section 3.1.5) and Hypre uses the drop tolerance (see Section 3.5.4)). The PETSc package uses one of several different shifting options to eliminate zero pivots (Section 3.2), which seems to be the best method to deal with zero pivots (see Sections 5.3.2, 5.3.3 and 5.3.5). QQQ aborts the solving process if a zero pivot is encountered (see Section 3.4.3), although this rarely happens (never in the tests of this chapter), due to the internal sort algorithms used by the ILU factorization.
The comparison of the different implementations of the ILU factorization shows that the fill factor has great influence on the iterations until convergence is reached. The Trilinos package, with a fill ratio of 3, needs below 10 iterations most of the time until convergence is reached (e.g., see Section 5.6.1 and 5.6.2). On the other hand, the PETSc package with a fill ratio of 1 performs very much worse.

Trilinos is the only package which gives a warning that a solution may not be accurate. The other solver packages may return in their error code that the system was solved (e.g., for the matrices in Sections 5.3.2, 5.4.2 and 5.4.3), but it can happen that the solution is not accurate or totally wrong (e.g., if the residual is $\gg 1$ ). This is particularly important because if the user does not check whether the solution is accurate, the program using the solution may work with false parameters.
ITL is very easy to implement and does not need much knowledge of solvers or preconditioners because there are not many options which can be set. The disadvantage of this package is that there is no handling of zero pivots when they are encountered. The solving process cannot be continued. Also the GMRES algorithm, which is one of the most effective solving algorithms, has not been implemented yet.

Hypre has a limited choice of preconditioners (no Jacobi or IC preconditioner). The BICGstab algorithm has problems with small matrices (< rank 5; e.g., see Sections 5.1.1 to 5.1.3). The zero pivot
handling of the Hypre preconditioner works but could be better. There are a few solving options which can be set to improve the performance of the solving and which require little knowledge of the solvers.
Trilinos has the fastest solvers and also is the only package that can detect a loss of precision. Additionally its GMRES algorithm has been implemented to terminate if the Hessenberg matrix is ill-conditioned (e.g., in Section 5.2.4). On the other hand, it has problems with zeros on the main diagonal if a preconditioner is used (e.g., see Sections 5.3.2 and 5.7). Several different options can be set to improve the solving process.

PETSc has the slowest solvers, regarding the time for solving a linear equation system, compared to the other packages (also the GMRES solver often uses more iterations than the implementations of the other packages), but, on the other hand, error detecting is well designed because every function returns an error code that is immediately checked. There are many options which can be altered to improve the solving process, but they also require a deep knowledge of the ongoing processes. PETSc also offers the best zero pivot handling of all the packages.
QQQ sometimes performs best on the matrices (e.g., Section 5.5.1); for other matrices it delivers completely wrong solutions (e.g., see Sections 5.4.1 and 5.4.2). It does not really offer zero pivot handling, but the ILU preconditioner uses sorting algorithms during the factorization which can prevent zero pivots most of the time. This also results in a larger amount of time for computing the ILU factorization than the implementations of other packages. QQQ also offers algorithms not available for the other packages, like pre-elimination or automatic scaling. However, a test showed that these do not improve the performance significantly if used with their default settings.

Figures 5.28 and 5.29 show how many of the given equation systems each package was able to solve and how many solving combinations were successful.

## Systems solved



Figure 5.28: Number of solvable equation systems per package: Trilinos and Hypre were both able to solve 19 of the 23 given systems. These are followed by QQQ, which solved 17 different systems. PETSc and ILU solved the least amount of equation systems with 15 and 12 different solved systems, respectively.

## Successful Solvers



Figure 5.29: Weighted Score of the Packages: Each solving combination that was tested yields one weighted point if it has reached the accuracy of $1 \cdot 10^{-12}$. The five Laplace matrices have not been taken into account for this diagram because they would have distorted the result. Trilinos has the most successful solving combinations and also provides the most different solving combinations. PETSc has the same amount of combinations but is not that successful because it often only reaches an accuracy between $1 \cdot 10^{-11}$ and $1 \cdot 10^{-12}$. ITL has the second most solving combinations but the least successful ones. At the moment ITL only provides solvers which are restricted to a specific kind of matrices. With a GMRES algorithm there would have been more successful solving runs.

## Chapter 6

## Automatic Solver Control Interface

Figure 6.1 shows the components of the automatic solver control interface that was developed which handles the solving of a linear equation system. It contains elements that analyze the matrix, components which can decide on the different solving options, and a post solving handling of the solution which checks whether the system has been solved. The user needs to insert the matrix and the right-hand side vector into the solver. When the solving process is started, the matrix will be analyzed and then passed to the solver package that will solve it. The right-hand side vector is analyzed to decide which residual should be used as a break condition. When the solving process is finished, the solution will be checked to see if it has reached a defined accuracy (three choices are available for the user). If not, the error code delivered will be handled. This may result in a new solving run with different solving options.

### 6.1 Number Analyzer

The number analyzer fulfills the following tasks:

- Calculating the diagonal dominance percentage
- Determining the number of zeros in the main diagonal
- Calculation of the diagonal average and the nondiagonal average

The main task of the number analyzer is to determine the number of zeros on the main diagonal, because they cause errors when using a preconditioner without zero pivot handling. Another useful number is the diagonal dominance, which indicates how many percent of the matrix elements are within the main diagonal. Other useful numbers are the diagonal average and the nondiagonal average. If a matrix has big numbers on the main diagonal and small numbers off the main diagonal, the Jacobi preconditioner would make the main diagonal one and the nondiagonal values smaller. Considering the Gershgorin circle theorem (see Section 2.1.5) and that the condition is defined by the eigenvalues of the matrix $\mathbf{A} \cdot \mathbf{A}^{T}$ (see Chapter 2) the matrix obtained would have eigenvalues close to 1 and therefore a small condition number.


Figure 6.1: This figure illustrates how the automatic solver control interface works. The user states a linear equation system by inserting the matrix and the right-hand side into the solver interface (the initial guess is not required). The matrix is analyzed by numbers and structure. The 2-norm of the $\mathbf{b}$ vector is used for the residual decision. The Solver Decision module decides which solver package and options are used. Afterwards all necessary information is passed to the chosen solver package. After the solving process, the Error Code Handling module checks the error the solver package returned and also guarantees that the solution has the desired accuracy. In case the system was not solved, other approaches are used.

### 6.2 Structure Analyzer

The structure analyzer checks to see if the matrix is symmetric and positive definite. If the matrix does not fulfill one of these characterizations, several solver flags are disabled:

- not symmetric: CG and IC deactivated
- not positive definite: CG and BICGstab deactivated


### 6.3 Residual Decision

The norm of the $\mathbf{b}$-vector is used to make a decision if the absolute or relative residual should be used. If the norm is greater than or equal to one, the absolute residual is used; if the norm is smaller, the relative residual is used.

### 6.4 Solver Decision

The data which is obtained by the analyzers can be used to decide which solver package, solver, and preconditioner may be used. This tool is used to eliminate improper solving options. This is implemented using Boolean variables.

The CG and IC algorithms require a symmetric matrix as input. If the matrix is not symmetric these methods may fail and lead to a crash of the program. So if the matrix is not symmetric, these methods are not used.

CG also requires the matrix to be positive definite as well as BICGstab. If it is not, the methods are not used.

The Jacobi preconditioner can be used when the percentage of the diagonal dominance is larger than a defined threshold. It may also be used if the average diagonal value is larger than 1 , while the average nondiagonal value is smaller than 1 :

```
if((diagonaldominance >JACOBI_LIMIT)| |((diagonalaverage >1.0)&&(nondiagonalaverage < < .0)))
 jacobi_flag=true;
else jacobi_flag=false;
```

If there are zeros in the main diagonal, the Trilinos ILU preconditioner and the preconditioners of ITL have serious problems. These packages should not be used in this case. Hypre, PETSc and QQQ offer a better handling for this case. Also the Jacobi preconditioner should be turned off because it is affected as well.

To decide whether the current solver configuration is valid, a function is needed that returns false if not valid. There are two reasons the configuration can be invalid. The first reason can be that some of the solving options have been disabled by the decision module:

```
if((preconditioner_id==IC)&&(symmetric_flag==false)) return false;
if((preconditioner_id==JACOBI)&&(jacobi_flag== false)) return false;
if ((solver_id==CG)&&((symmetric_flag==_false)||(positive_definite_flag==false)))
 return false;
if((solver_id==BICGSTAB)&&(positive_definite_flag==false)) return false;
```

Second, the solving options can be invalid because the defined package does not have the required solvers or preconditioners.

```
switch(solver_package_id){
 case TRILINOS: if(trilinos_flag==true) return true;
 else return false;
 break;
 case HYPRE: if ((preconditioner_id!=ILU)||(hypre_flag== false)) return false;
 else return true;
 break;
 case ITL: if((solver_id==GMRES)|(itl_flag==false)) return false;
 else return true;
 break;
 case PETSC: return true;
 break;
 case QQQ: if((solver_id==CG)||(preconditioner_id!=ILU)) return false;
 else return true;
}
```

If the solver configuration is invalid it needs to be changed which will be discussed in the next section.

### 6.5 Error Code Handling

The error code that is returned by the solver package used can be used to make further decisions. Also, even if the error code states that the problem was solved, it is possible that a numerical problem occurred and that the true residual is far off the desired accuracy.

The errors which can occur are:

- loss of precision
- maximum iterations exceeded
- different types of numerical breakdowns

The possible options for handling the errors are:

- change solver package
- change preconditioner
- change solver
- solve again with new accuracy
- solve again with more iterations

The first three options can be merged into one single function which cycles through all solver packages, preconditioners and solvers. The first thing changed is the solver package, so if a solver type seems good for a problem, it will be tested with all solver packages, starting with the fastest one. If it fails, the next package will be used. The packages will be cycled in the following order (starting with the fastest): Trilinos, ITL, Hypre, PETSc and QQQ. If the QQQ package is reached, the solver package is reset to Trilinos and the preconditioner is increased (preconditioner cycle order: Jacobi, IC and ILU).

```
if(solver_package_id==QQQ){//check if last package reached
 if(preconditioner_id==ILU){//check if last preconditioner reached
 }
 } else {
 solver_package_id=TRILINOS;//reset solver package
 preconditioner_id++;//use next preconditioner
 }
} else
 solver_package_id++; //use next solver_package
```

If the preconditioners are cycled through as well, the solver will be increased (solver cycle order: CG, BICGstab and GMRES), until all possible options have been used.

```
if(solver_id==GMRES)
 return false;//no more option available
 else {
 solver_package_id=TRILINOS;//reset solver_package
 preconditioner_id=JACOBI;//reset preconditioner
 solver_id++;
```

Every time the solving options are changed, a check is required to see if they are valid .

### 6.5.1 Loss of Precision Handling

The Trilinos package is the only package that explicitly states a loss of precision error. For the other packages, this error is handled implicitly if the solver package returned that everything is all right but the residual check fails.

The loss of precision error can be approached by resolving the equation system with a better accuracy and with the solution of the last run as the initial guess. Important variables are:

```
int solve_counter;//counts the solve numbers
double accuracy;// desired accuracy
double solve_accuracy;//accuracy handed to the solver, can vary to the above number
double residual;//residual which is calculated after the solving process
double old_residual;//residual of the last run before current run
```

The implementation in the code is as follows:

```
if((solve_counter <SOLVELOOP_MAX)&&(old_residual!= residual)) {
 solve_counter ++;
 old_residual=residual;//residual is the same as the last run
 solve_accuracy=solve_accuracy / 10.0;
 if(residual > 1.0)
 reset_initialguess();
}
```

The procedure is repeated until a defined number of solving processes is reached or the residual of the last solution is equal to the new residual. Also the solution will only be used again if it is smaller than 1. The else-tree resets the solve_counter, the solve_accuracy and the old_residual . It also changes the solving options:

```
else {
 solve_counter=0;
 solve_accuracy=accuracy;
 decision=increase_solver();
 old_residual =0.0;
}
```


### 6.5.2 Maximum Iterations Exceeded

If the maximum number of iterations are exceeded, then depending on the residual of the solution it may be helpful to restart the solving process with an increased number of iterations. The restart will only be used if the norm of the residual from the last run is smaller than 1 . In the other case, the solver cycling will continue. There are two different resolving branches depending on whether the solving package is PETSc or not. PETSc is the slowest solver, so only one solving run is used here. The other packages use two solving runs at most. The iterations are multiplied by 10 every time, so more than two solving runs do not make sense because the time to divergence would be too long.

```
if((solver_package_id==PPTSC)&&(residual < 1.0)&&(solve_counter<SOLVE_IT_MAX_PETSC)){
 iterations*=10;
 if(iterations >MAX_ITERATIONS)
 iterations=MAX_ITERATIONS;
 solve_counter ++;
}
```

The else-branch resets the variables which were used.

### 6.5.3 Numerical Problems

For the numerical problems, the only possible solution is to change the solver options, because the numerical breakdown is nested within the algorithm used and would likely occur again if the same options were used again.

```
solve_counter=0;//resets if it was used in the current run
decision=increase_solver(); //use next solving option
if(residual >1.0) //keep residual if it is smaller than 1
 reset_initialguess();
```


### 6.6 Tests

There are three different accuracy limits the user can choose from: $1 \cdot 10^{-8}, 1 \cdot 10^{-10}$ and $1 \cdot 10^{-12}$. It is not guaranteed that these limits are reached. In case of divergence, the solution with the lowest residual reached can be accessed if desired.

### 6.6.1 Break tolerance $1 \cdot 10^{-8}$

Tests with the automatic solver control showed that for all matrices except the matrix E20r5000 and the matrix Sherman 2 a solution with an accuracy of $1 \cdot 10^{-8}$ could be computed. Which solvers have been used and how many times a new solving run was necessary until the accuracy was reached are shown in the Figures 6.3 and 6.4 (Figure 6.2 explains how the diagrams can be read).
solving tries


Figure 6.2: Diagram explanation manual: The diagram of the Matrix 1 indicates that its equation system was solved with one try and the solving options Trilinos, CG and Jacobi. The second system was solved in 3 tries. The first try was done with Trilinos, BICGstab and IC. The second try with Trilinos, GMRES and ILU. The third try with PETSc, GMRES and ILU. These diagrams show the solving options that were used by the automatic solver control interface and also the number of solving tries used to reach an accurate solution (NOTE: This is only an explanation diagram which may not indicate the real switch options the automatic solver control uses).

A positive example of handling a loss of precision can be seen in Figure 6.5. The handling does not work every time, which can be seen in the matrix E20r5000 which reached the accuracy $3.35 \cdot 10^{-8}$ (Figure 6.6) and the matrix Sherman2 that had $1.1^{-7}$ as best residual (Figure 6.7).


Figure 6.3: Test results for accuracy $1 \cdot 10^{-8}$ : The Laplace matrices are all symmetric and positive definite, therefore the CG solver is used by the program. The Jacobi preconditioner is chosen because the diagonal dominance is greater than $20 \%$. The Trilinos package is the first one used and successfully solves these systems. The same solving options are used for the Hilbert matrix rank4. The linear equations systems of the three other Hilbert matrices are solved with the IC preconditioner and the GMRES solver because they are not positive definite. For the rank 100 and 1000 matrices, Trilinos is not able to solve the systems so the package is switched to PETSc. The Fidap001 matrix has zeros in the main diagonal, so Trilinos is skipped and instead PETSc is used as the first package. The matrix is symmetric but not positive definite, therefore GMRES and IC are used. Its system is solved on the third try. The matrix Fidap002 has no zeros on the main diagonal, so Trilinos was used but a loss of precision occurred so the system was only solvable on the second try. The equation system of the matrix Fidap005 was solvable in one try.


Figure 6.4: Test results for accuracy $1 \cdot 10^{-8}$ : The matrix Fidapm05 has zeros in the main diagonal, so the first package is not Trilinos. The matrix is symmetric but not positive definite so the options chosen are GMRES and IC from the PETSc package. A loss of precision makes a second run necessary. The matrices Fidap027 and Fidap028 are neither symmetric nor positive definite and have zeros in the main diagonal. The options for the first run were GMRES and ILU from the Hypre package, which did not result in a solution. A second run (and even a third run for Fidap027) with the PETSc package was required. The matrix E05r0100 has zeros in the main diagonal and is neither symmetric or positive definite. The Hypre package solved the system in two runs using GMRES and ILU. The rest of the equation systems could be solved with the first decision of the automatic solver control module.


Figure 6.5: Results for the matrix Fidap001: The true residual of the matrix is not beyond the given limit for convergence after the first solving run, so the solving process is restarted. The last solution is used as the new initial guess, and the accuracy is decreased by a factor of 10 . After two restarts the solution fulfills the given limit.


Figure 6.6: Results for Matrix E20r5000: The equation system containing the matrix E20r5000 was not solvable to the accuracy $1 \cdot 10^{-8}$. Hypre and PETSc failed totally by returning a residual number much bigger than 1. With the QQQ GMRES solver with ILU preconditioner it was possible by restarting the solving process repeatedly (while the accuracy was decreased at every restart) to reach a solution close to $1 \cdot 10^{-8}$ (NOTE: Normally the restart process also uses the last solution, if it is already smaller than 1. This option is not available because $\mathbf{Q Q Q}$ resets the solution every time).


Figure 6.7: Results for the matrix Sherman2: The solution with the best accuracy is reached after 5 solving tries. Then the residual norm of the solution could not be decreased further. The QQQ solver totally failed here by calculating a solution with a residual norm around $1 \cdot 10^{16}$.

### 6.6.2 Break tolerance $1 \cdot 10^{-10}$

The solvable matrices are shown in the diagrams 6.8 and 6.9.


Figure 6.8: Test results for accuracy $1 \cdot 10^{-10}$ : This diagram does not show much difference from the diagram for the accuracy $1 \cdot 10-8$. One big difference is that the equation systems Fidap002 and Fidap005 were not solvable anymore, so they are missing here. All the other matrices had the same solving options and tries as for the accuracy $1 \cdot 10-8$.


Figure 6.9: Test results for accuracy $1 \cdot 10^{-10}$ : All matrices behave the same way they did with accuracy $1 \cdot 10^{-8}$ except the matrix Sherman 2 which now needs 5 tries, unlike to one try before.

The systems which were not able to be solved are Fidap002 (Figure 6.10) which was only solvable to an accuracy of $3.54^{-9}$ and Fidap005 (Figure 6.11) which only reached an accuracy of $2.25^{-10}$. Obviously, the linear equation systems E20r5000 and Sherman2 which have not been solvable to an accuracy of $1 \cdot 10^{-8}$ could not be solved as well.


Figure 6.10: Results for the matrix Fidap002: The matrix Fidap002 already had a loss of precision with the accuracy $1 \cdot 10^{-8}$. There the desired accuracy was reachable by restarting the solving process several times. Now the best solution is reached after 4 solving runs and then no more improvement is made. The solution does not reach the convergence limit of $1 \cdot 10^{-10}$.


Figure 6.11: Results for the matrix Fidap005: The matrix Fidap005 did not encounter any problems with the accuracy $1 \cdot 10^{-8}$. Only one solving try was necessary to get to the desired solution. Now the best solution is also calculated at the first try, but it does not fulfill the convergence tolerance of $1 \cdot 10^{-10}$. No switch of the solving options helps to get a more accurate solution.

### 6.6.3 Break tolerance $1 \cdot 10^{-12}$

With the higher accuracy, more equation system appeared that were not solvable to the desired tolerance. The systems which could be solved are shown in the Figures 6.12 and 6.13.


Figure 6.12: Test results for accuracy $1 \cdot 10^{-12}$ : The matrix Hilbert rank 100 now needs an additional solving try to compute the solution with an accuracy of $1 \cdot 10^{-12}$. The matrix Hilbert rank 1000 even needs five tries now and cycles not only the solving packages, but also the preconditioner is changed from IC to ILU.


Figure 6.13: Test results for accuracy $1 \cdot 10^{-12}$ : The equation systems Sherman3 and Sherman5 are missing here because they are not solvable anymore. The matrix Fidap028 now needs one more solving try than before.

The Sherman3 matrix had $8.42^{-11}$ as best residual (Figure 6.14). The matrix Sherman5 reached a residual of $2.27^{-11}$ (Figure 6.15).


Figure 6.14: Results for the matrix Sherman3: The best solution is reached after six solving tries and three switches of the solving options. Further restarting of the solving process and even more switching of the options does not improve the solution anymore. (NOTE: The QQQ GMRES solver with ILU preconditioner was the last solving try but is not shown in the diagram because it had a residual around $1 \cdot 10^{10}$ ).


Figure 6.15: Results for the matrix Sherman5: The best solution was reached after the second solving try. More solving tries and switching of the options did not increase the accuracy of the solution anymore nor did they help to reach convergence.

### 6.6.4 Conclusion of the Tests

The test with the three different accuracy levels showed that decreasing the accuracy margin of the convergence causes more solvers to have problems with computing accurate solutions for the matrices. For the low accuracy $1 \cdot 10^{-8}$ most matrices have been solvable with the first chosen options; only a package switch sometimes had to be made. When the accuracy tolerance was decreased, more solver and preconditioner switches occurred and also more matrices had loss of precision errors.

Regarding the loss of precision error it was not always possible to improve the solution further by restarting the solving process. For the matrices it worked with a lower accuracy a higher accuracy resulted in an unsolvable loss of precision error. These matrices are close to the numerical limits and therefore it is very hard to improve the accuracy further.

### 6.7 Usage of the Automatic Solver Control

At first the automatic solver control interface needs to be initialized with the dimension of the equation system:

```
asi:: automatic_solver_control_interface si(dimension);
```

Then the matrix and the right-hand side need to be filled:

```
{
 ... //loop for passing matrix to solver interface
 si.insert_value(row, column, value);
}
{
 ...//loop for passing b vector to solver
 si.init_rhs(i, value);
}
```

After that the diagnostic tool can be activated (si . activate_diagnostic ()). Before solving the desired accuracy may be chosen (e.g., low accuracy si. set_low_accuracy ()) and the printlevel optionally can be set ( si . set_printlevel (1)). Because some solver packages have output which cannot be suppressed, there is some output even if no output is chosen. All warnings provided by these packages are not valid because they are handled anyway.

Then the solving process can be started with si.solve () and will return a true if it succeeds. If a false is returned the user can check the value of the best residual reached. If he tolerates it he may access the best solution with:
si.get_best_x_value (int row) ;//returns the double value with the index row

## Chapter 7

## Conclusion

The development of an automatic solver control has been presented. Three different indirect solver algorithms (CG, BICGstab, and GMRES) have been tested. Five different packages (Trilinos, Hypre, PETSc, QQQ and ITL) which provide these algorithms have been compared to each other to find out the differences in code implementation (Chapters 3 and 5). The preconditioners Jacobi, ILU and IC have been introduced to improve the solver process of some linear equation systems.

In this work several matrix properties have been investigated to find out which solvers fit a particular type of matrix best. The CG solver and the IC preconditioner require a matrix that is symmetric and positive definite. The BICGstab solver also requires a positive definite matrix. Another important matrix property is the number of zeros in the main diagonal. The strategies of the different solver packages for zero pivot elements are important to success in solving certain matrices. The PETSc and QQQ packages both have good strategies and therefore had the least problems with matrices containing zeros on the main diagonal. Last but not least, the relation between the number of diagonal and off-diagonal elements is a decision criteria for the Jacobi preconditioner.

These matrix properties are checked by a matrix analyzer which has been implemented. The performance of this module was reasonable and helped the automatic solver control to decide which solving options fit best for a matrix.

An error that often occurred during the testing of the matrices is a loss of precision of the residual. This can lead to inaccurate solutions. Chapter 6 introduced a strategy to handle this problem. The equation system is solved repeatedly to improve the accuracy of the residual. This led to reasonable results for some of the matrices. Chapter 6 also showed the performance of the automatic solver control with three different accuracy limits. For the accuracy $1 \cdot 10^{-8}$ the automatic solver control was able to solve all given systems except two. A few of the matrices needed more than one solving run to reach the desired accuracy. Switching of the solver package helped in some cases. For other matrices the loss of precision handling was successful. The automatic solver control also delivered reasonable results for the other accuracy limits.
There are more solvers and preconditioners available on the market which could be added to the automatic solver control for further improvement.

## Appendix A

## Test results

This section contains the test results of all the matrices tested in Chapter 5. The tables contain the solver package, the solver type, the preconditioner, how many iterations the solving process took, the status, the solving time and the absolute and relative residual calculated after the solving process. The error codes returned by the packages are represented by the following enum values:

```
enum solvererror{
 SOLVED=0, MAX_ITERATIONS_EXCEEDED, LOSS_OF_PRECISION,
 NUMERICAL_BREAKDOWN, ILL_CONDITIONED, UNKNOWNERROR, INDEFINITE_PC,
 DROP_TOLERANCE, INDEFINITE_MAT
};
```

The solver combinations tested were:

- Trilinos package

Solvers: CG, BICGstab and GMRES; Preconditioners: none, Jacobi, ILU and IC

- PETSc package

Solvers: CG, BICGstab and GMRES; Preconditioners: none, Jacobi, ILU and IC

- ITL package

Solvers: CG and BICGstab; Preconditioners: none, Jacobi, ILU and IC

- Hypre package

Solvers: CG, BICGstab and GMRES; Preconditioners: none and ILU

- QQQ package:

Solvers: BICGstab and GMRES; Preconditioners: none and ILU
The IC preconditioner was only used with symmetric matrices. When any of the solver combinations mentioned is missing from a table, this indicates that the solver was not able to reach a defined program end (e.g., an exception was thrown).

| package | solver | precond | iterations | status | solving time | absolute residual | rel residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITL | CG | NONE | 2 | 0 | 0.000264 s | 0 | 0 |
| Hypre | CG | NONE | 1 | 0 | 0.000188 s | 0 | 0 |
| Trilinos | CG | NONE | 1 | 0 | 0.00025 s | 0 | 0 |
| PETSc | CG | NONE | 1 | 0 | 0.000603 s | 0 | 0 |
| ITL | BICGstab | NONE | 1 | 0 | 0.000255 s | 0 | 0 |
| Hypre | BICGstab | NONE | 0 | 3 | 0.000157 s | nan | nan |
| Trilinos | BICGstab | NONE | 1 | 0 | 0.000232 s | 0 | 0 |
| QQQ | BICGstab | NONE | 1 | 0 | 0.000208 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| PETSc | BICGstab | NONE | 1 | 0 | 0.000594 s | 0 | 0 |
| Hypre | GMRES | NONE | 1 | 0 | 0.006222 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| Trilinos | GMRES | NONE | 1 | 0 | 0.000269 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| QQQ | GMRES | NONE | 1 | 0 | 0.004661 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| PETSc | GMRES | NONE | 1 | 0 | 0.01812 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| ITL | CG | Jacobi | 2 | 0 | 0.000273 s | 0 | 0 |
| Trilinos | CG | Jacobi | 1 | 0 | 0.000263 s | 0 | 0 |
| PETSc | CG | Jacobi | 1 | 0 | 0.000634 s | 0 | 0 |
| ITL | BICGstab | Jacobi | 1 | 0 | 0.000269 s | 0 | 0 |
| Trilinos | BICGstab | Jacobi | 1 | 0 | 0.000234 s | 0 | 0 |
| PETSc | BICGstab | Jacobi | 1 | 0 | 0.000614 s | 0 | 0 |
| Trilinos | GMRES | Jacobi | 1 | 0 | 0.000253 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| PETSc | GMRES | Jacobi | 1 | 0 | 0.017948 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| ITL | CG | ILU | 2 | 0 | 0.000298 s | 0 | 0 |
| Hypre | CG | ILU | 1 | 0 | 0.000194 s | 0 | 0 |
| Trilinos | CG | ILU | 1 | 0 | 0.000482 s | 0 | 0 |
| PETSc | CG | ILU | 1 | 0 | 0.001542 s | 0 | 0 |
| ITL | BICGstab | ILU | 1 | 0 | 0.000286 s | 0 | 0 |
| Hypre | BICGstab | ILU | 0 | 3 | 0.000172 s | nan | nan |
| Trilinos | BICGstab | ILU | 1 | 0 | 0.000411 s | 0 | 0 |
| QQQ | BICGstab | ILU | 1 | 0 | 0.00019s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| PETSc | BICGstab | ILU | 1 | 0 | 0.001494 s | 0 | 0 |
| Hypre | GMRES | ILU | 1 | 0 | 0.004202 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| Trilinos | GMRES | ILU | 1 | 0 | 0.000498 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| QQQ | GMRES | ILU | 1 | 0 | 0.004665 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| PETSc | GMRES | ILU | 1 | 0 | 0.019647s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| ITL | CG | IC | 2 | 0 | 0.000376 s | $4.96507 \mathrm{e}-16$ | 3.51083e-16 |
| Trilinos | CG | IC | 1 | 0 | 0.000486 s | 0 | 0 |
| PETSc | CG | IC | 1 | 0 | 0.001646 s | 0 | 0 |
| ITL | BICGstab | IC | 1 | 0 | 0.000286 s | 2.22045e-16 | 1.57009e-16 |
| Trilinos | BICGstab | IC | 1 | 0 | 0.000379 s | 0 | 0 |
| PETSc | BICGstab | IC | 1 | 0 | 0.001264 s | 0 | 0 |
| Trilinos | GMRES | IC | 1 | 0 | 0.00046 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| PETSc | GMRES | IC | 1 | 0 | 0.018328 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |

Table A.1: Laplace Rank 2 test results

| package | solver | precond | iterations | status | solving time | absolute residual | rel residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITL | CG | NONE | 3 | 0 | $8.9 \mathrm{e}-05 \mathrm{~s}$ | 0 | 0 |
| Hypre | CG | NONE | 2 | 0 | $8.9 \mathrm{e}-05 \mathrm{~s}$ | 0 | 0 |
| Trilinos | CG | NONE | 2 | 0 | 0.000113 s | 0 | 0 |
| PETSc | CG | NONE | 2 | 0 | 0.000328 s | 0 | 0 |
| ITL | BICGstab | NONE | 2 | 0 | $9.5 \mathrm{e}-05 \mathrm{~s}$ | 5.43896e-16 | 3.84593e-16 |
| Hypre | BICGstab | NONE | 2 | 0 | $8.5 \mathrm{e}-05 \mathrm{~s}$ | $5.43896 \mathrm{e}-16$ | 3.84593e-16 |
| Trilinos | BICGstab | NONE | 2 | 0 | 0.000104 s | 5.43896e-16 | 3.84593e-16 |
| QQQ | BICGstab | NONE | 2 | 0 | 0.000107 s | 0 | 0 |
| PETSc | BICGstab | NONE | 2 | 0 | 0.000332 s | 5.43896e-16 | 3.84593e-16 |
| Hypre | GMRES | NONE | 2 | 0 | 0.005149 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| Trilinos | GMRES | NONE | 2 | 0 | 0.001377 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| QQQ | GMRES | NONE | 2 | 0 | 0.004485 s | $6.28037 \mathrm{e}-16$ | 4.44089e-16 |
| PETSc | GMRES | NONE | 2 | 0 | 0.010632 s | $4.44089 \mathrm{e}-16$ | 3.14018e-16 |
| ITL | CG | Jacobi | 3 | 0 | 0.000101 s | 0 | 0 |
| Trilinos | CG | Jacobi | 2 | 0 | 0.000126 s | 0 | 0 |
| PETSc | CG | Jacobi | 2 | 0 | 0.000354 s | 0 | 0 |
| ITL | BICGstab | Jacobi | 2 | 0 | $9.8 \mathrm{e}-05 \mathrm{~s}$ | $5.43896 \mathrm{e}-16$ | 3.84593e-16 |
| Trilinos | BICGstab | Jacobi | 2 | 0 | 0.000109 s | $5.43896 \mathrm{e}-16$ | 3.84593e-16 |
| PETSc | BICGstab | Jacobi | 2 | 0 | 0.000337 s | $5.43896 \mathrm{e}-16$ | 3.84593e-16 |
| Trilinos | GMRES | Jacobi | 2 | 0 | 0.000121 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| PETSc | GMRES | Jacobi | 2 | 0 | 0.010194 s | $4.44089 \mathrm{e}-16$ | 3.14018e-16 |
| ITL | CG | ILU | 2 | 0 | 0.000126 s | $2.48253 \mathrm{e}-16$ | 1.75542e-16 |
| Hypre | CG | ILU | 1 | 0 | $9.4 \mathrm{e}-05 \mathrm{~s}$ | $2.48253 \mathrm{e}-16$ | 1.75542e-16 |
| Trilinos | CG | ILU | 1 | 0 | 0.000216 s | $2.48253 \mathrm{e}-16$ | 1.75542e-16 |
| PETSc | CG | ILU | 1 | 0 | 0.000662 s | $2.48253 \mathrm{e}-16$ | 1.75542e-16 |
| ITL | BICGstab | ILU | 1 | 0 | 0.000108 s | $2.48253 \mathrm{e}-16$ | 1.75542e-16 |
| Hypre | BICGstab | ILU | 0 | 3 | $8.4 \mathrm{e}-05 \mathrm{~s}$ | 0 | 0 |
| Trilinos | BICGstab | ILU | 1 | 0 | 0.000155 s | 0 | 0 |
| QQQ | BICGstab | ILU | 1 | 0 | $8.4 \mathrm{e}-05 \mathrm{~s}$ | $7.36439 \mathrm{e}-16$ | 5.20741e-16 |
| PETSc | BICGstab | ILU | 1 | 0 | 0.000634 s | $1.57009 \mathrm{e}-16$ | 1.11022e-16 |
| Hypre | GMRES | ILU | 1 | 0 | 0.0032 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| Trilinos | GMRES | ILU | 1 | 0 | 0.000239 s | $3.14018 \mathrm{e}-16$ | $2.22045 \mathrm{e}-16$ |
| QQQ | GMRES | ILU | 1 | 0 | 0.00446s | $1.57009 \mathrm{e}-16$ | 1.11022e-16 |
| PETSc | GMRES | ILU | 1 | 0 | 0.011198 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| ITL | CG | IC | 2 | 0 | 0.000109 s | 0 | 0 |
| Trilinos | CG | IC | 1 | 0 | 0.000253 s | 2.48253e-16 | 1.75542e-16 |
| PETSc | CG | IC | 1 | 0 | 0.000883 s | $2.48253 \mathrm{e}-16$ | 1.75542e-16 |
| ITL | BICGstab | IC | 1 | 0 | $9.8 \mathrm{e}-05 \mathrm{~s}$ | 0 | 0 |
| Trilinos | BICGstab | IC | 1 | 0 | 0.000153 s | 0 | 0 |
| PETSc | BICGstab | IC | 1 | 0 | 0.000502 s | $1.57009 \mathrm{e}-16$ | 1.11022e-16 |
| Trilinos | GMRES | IC | 1 | 0 | 0.00023 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| PETSc | GMRES | IC | 1 | 0 | 0.010533 s | $3.14018 \mathrm{e}-16$ | $2.22045 \mathrm{e}-16$ |

Table A.2: Laplace rank 3 test results

| package | solver | precond | iterations | status | solving time | absolute residual | rel residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITL | CG | NONE | 3 | 0 | 0.000284 s | 0 | 0 |
| Hypre | CG | NONE | 2 | 0 | 0.000208 s | 0 | 0 |
| Trilinos | CG | NONE | 2 | 0 | 0.000266 s | 0 | 0 |
| PETSc | CG | NONE | 2 | 0 | 0.00063 s | 0 | 0 |
| ITL | BICGstab | NONE | 2 | 0 | 0.000296 s | 0 | 0 |
| Hypre | BICGstab | NONE | 0 | 3 | 0.00018 s | nan | nan |
| Trilinos | BICGstab | NONE | 2 | 0 | 0.00025 s | 0 | 0 |
| QQQ | BICGstab | NONE | 2 | 0 | 0.000215 s | 6.28037e-16 | $4.44089 \mathrm{e}-16$ |
| PETSc | BICGstab | NONE | 2 | 0 | 0.000612 s | 0 | 0 |
| Hypre | GMRES | NONE | 2 | 0 | 0.006287 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| Trilinos | GMRES | NONE | 2 | 0 | 0.001544 s | $3.14018 \mathrm{e}-16$ | $2.22045 \mathrm{e}-16$ |
| QQQ | GMRES | NONE | 2 | 0 | 0.004627 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| PETSc | GMRES | NONE | 2 | 0 | 0.018159 s | $3.14018 \mathrm{e}-16$ | $2.22045 \mathrm{e}-16$ |
| ITL | CG | Jacobi | 3 | 0 | 0.000294 s | 0 | 0 |
| Trilinos | CG | Jacobi | 2 | 0 | 0.000278 s | 0 | 0 |
| PETSc | CG | Jacobi | 2 | 0 | 0.000668 s | 0 | 0 |
| ITL | BICGstab | Jacobi | 2 | 0 | 0.000359 s | 0 | 0 |
| Trilinos | BICGstab | Jacobi | 2 | 0 | 0.000262 s | 0 | 0 |
| PETSc | BICGstab | Jacobi | 2 | 0 | 0.000645 s | 0 | 0 |
| Trilinos | GMRES | Jacobi | 2 | 0 | 0.000277 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| PETSc | GMRES | Jacobi | 2 | 0 | 0.017549 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| ITL | CG | ILU | 2 | 0 | 0.000306 s | $1.57009 \mathrm{e}-16$ | 1.11022e-16 |
| Hypre | CG | ILU | 1 | 0 | 0.000198 s | $1.57009 \mathrm{e}-16$ | 1.11022e-16 |
| Trilinos | CG | ILU | 1 | 0 | 0.00049s | $1.57009 \mathrm{e}-16$ | 1.11022e-16 |
| PETSc | CG | ILU | 1 | 0 | 0.001502 s | $3.33067 \mathrm{e}-16$ | 2.35514e-16 |
| ITL | BICGstab | ILU | 1 | 0 | 0.000291 s | $1.57009 \mathrm{e}-16$ | 1.11022e-16 |
| Hypre | BICGstab | ILU | 1 | 0 | 0.000218 s | 0 | 0 |
| Trilinos | BICGstab | ILU | 1 | 0 | 0.000429 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| QQQ | BICGstab | ILU | 1 | 0 | 0.000196 s | $4.96507 \mathrm{e}-16$ | 3.51083e-16 |
| PETSc | BICGstab | ILU | 1 | 0 | 0.001455 s | $1.57009 \mathrm{e}-16$ | 1.11022e-16 |
| Hypre | GMRES | ILU | 1 | 0 | 0.004284 s | $1.57009 \mathrm{e}-16$ | 1.11022e-16 |
| Trilinos | GMRES | ILU | 1 | 0 | 0.0005 s | $2.71948 \mathrm{e}-16$ | 1.92296e-16 |
| QQQ | GMRES | ILU | 1 | 0 | 0.004586 s | $1.57009 \mathrm{e}-16$ | 1.11022e-16 |
| PETSc | GMRES | ILU | 1 | 0 | 0.019218 s | $4.96507 \mathrm{e}-16$ | 3.51083e-16 |
| ITL | CG | IC | 2 | 0 | 0.000299 s | $4.96507 \mathrm{e}-16$ | 3.51083e-16 |
| Trilinos | CG | IC | 1 | 0 | 0.000494 s | $3.33067 \mathrm{e}-16$ | 2.35514e-16 |
| PETSc | CG | IC | 1 | 0 | 0.001608 s | $3.33067 \mathrm{e}-16$ | 2.35514e-16 |
| ITL | BICGstab | IC | 1 | 0 | 0.000286 s | $3.84593 \mathrm{e}-16$ | 2.71948e-16 |
| Trilinos | BICGstab | IC | 1 | 0 | 0.000386 s | 0 | 0 |
| PETSc | BICGstab | IC | 1 | 0 | 0.001239 s | $1.57009 \mathrm{e}-16$ | 1.11022e-16 |
| Trilinos | GMRES | IC | 1 | 0 | 0.000467 s | $2.48253 \mathrm{e}-16$ | 1.75542e-16 |
| PETSc | GMRES | IC | 1 | 0 | 0.018313 s | 4.96507e-16 | 3.51083e-16 |

Table A.3: Laplace rank 4 test results

| package | solver | precond | iterations | status | solving time | absolute residual | rel residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITL | CG | NONE | 5 | 0 | 0.000113 s | $8.59975 \mathrm{e}-16$ | 3.2504e-16 |
| Hypre | CG | NONE | 4 | 0 | 0.000106 s | $5.55112 \mathrm{e}-16$ | $2.09812 \mathrm{e}-16$ |
| Trilinos | CG | NONE | 4 | 0 | 0.000128 s | $5.55112 \mathrm{e}-16$ | 2.09812e-16 |
| PETSc | CG | NONE | 4 | 0 | 0.000359 s | $2.71948 \mathrm{e}-16$ | 1.02787e-16 |
| ITL | BICGstab | NONE | 4 | 0 | 0.000128 s | $5.55112 \mathrm{e}-16$ | 2.09812e-16 |
| Hypre | BICGstab | NONE | 4 | 0 | $9.9 \mathrm{e}-05 \mathrm{~s}$ | $1.57009 \mathrm{e}-16$ | 5.93439e-17 |
| Trilinos | BICGstab | NONE | 4 | 0 | 0.000111 s | $3.14018 \mathrm{e}-16$ | 1.18688e-16 |
| QQQ | BICGstab | NONE | 4 | 0 | 0.000109 s | $7.69185 \mathrm{e}-16$ | 2.90725e-16 |
| PETSc | BICGstab | NONE | 4 | 0 | 0.000362 s | $3.84593 \mathrm{e}-16$ | 1.45362e-16 |
| Hypre | GMRES | NONE | 4 | 0 | 0.005221 s | $8.382 \mathrm{e}-16$ | 3.1681e-16 |
| Trilinos | GMRES | NONE | 4 | 0 | 0.001395 s | $1.04738 \mathrm{e}-15$ | $3.95873 \mathrm{e}-16$ |
| QQQ | GMRES | NONE | 4 | 0 | 0.004774 s | $1.52226 \mathrm{e}-15$ | 5.75361e-16 |
| PETSc | GMRES | NONE | 4 | 0 | 0.010735 s | 5.43896e-16 | $2.05573 \mathrm{e}-16$ |
| ITL | CG | Jacobi | 5 | 0 | 0.000112 s | $8.59975 \mathrm{e}-16$ | $3.2504 \mathrm{e}-16$ |
| Trilinos | CG | Jacobi | 4 | 0 | 0.000137 s | $5.55112 \mathrm{e}-16$ | $2.09812 \mathrm{e}-16$ |
| PETSc | CG | Jacobi | 4 | 0 | 0.000399 s | $2.71948 \mathrm{e}-16$ | 1.02787e-16 |
| ITL | BICGstab | Jacobi | 4 | 0 | 0.000127 s | $5.55112 \mathrm{e}-16$ | $2.09812 \mathrm{e}-16$ |
| Trilinos | BICGstab | Jacobi | 4 | 0 | 0.000122 s | $3.14018 \mathrm{e}-16$ | 1.18688e-16 |
| PETSc | BICGstab | Jacobi | 4 | 0 | 0.000376 s | $3.84593 \mathrm{e}-16$ | $1.45362 \mathrm{e}-16$ |
| Trilinos | GMRES | Jacobi | 4 | 0 | 0.000144 s | $1.04738 \mathrm{e}-15$ | 3.95873e-16 |
| PETSc | GMRES | Jacobi | 4 | 0 | 0.010281 s | 5.43896e-16 | 2.05573e-16 |
| ITL | CG | ILU | 2 | 0 | 0.000129 s | $2.48253 \mathrm{e}-16$ | $9.3831 \mathrm{e}-17$ |
| Hypre | CG | ILU | 1 | 0 | 0.000102 s | $6.66134 \mathrm{e}-16$ | 2.51775e-16 |
| Trilinos | CG | ILU | 1 | 0 | 0.000214 s | $2.22045 \mathrm{e}-16$ | $8.3925 \mathrm{e}-17$ |
| PETSc | CG | ILU | 1 | 0 | 0.000704 s | $6.66134 \mathrm{e}-16$ | 2.51775e-16 |
| ITL | BICGstab | ILU | 1 | 0 | 0.000106 s | $2.48253 \mathrm{e}-16$ | $9.3831 \mathrm{e}-17$ |
| Hypre | BICGstab | ILU | 1 | 0 | $9.7 \mathrm{e}-05 \mathrm{~s}$ | $1.11022 \mathrm{e}-16$ | 4.19625e-17 |
| Trilinos | BICGstab | ILU | 1 | 0 | 0.000167 s | $3.33067 \mathrm{e}-16$ | 1.25887e-16 |
| QQQ | BICGstab | ILU | 1 | 0 | $9 \mathrm{e}-05 \mathrm{~s}$ | $6.66134 \mathrm{e}-16$ | 2.51775e-16 |
| PETSc | BICGstab | ILU | 1 | 0 | 0.000694 s | $6.75322 \mathrm{e}-16$ | 2.55248e-16 |
| Hypre | GMRES | ILU | 1 | 0 | 0.003189 s | 5.43896e-16 | 2.05573e-16 |
| Trilinos | GMRES | ILU | 1 | 0 | 0.000239 s | $2.22045 \mathrm{e}-16$ | $8.3925 \mathrm{e}-17$ |
| QQQ | GMRES | ILU | 1 | 0 | 0.00448 s | $6.66134 \mathrm{e}-16$ | 2.51775e-16 |
| PETSc | GMRES | ILU | 1 | 0 | 0.011167 s | $6.66134 \mathrm{e}-16$ | $2.51775 \mathrm{e}-16$ |
| ITL | CG | IC | 2 | 0 | 0.000114 s | $5.97873 \mathrm{e}-16$ | 2.25975e-16 |
| Trilinos | CG | IC | 1 | 0 | 0.000252 s | $2.22045 \mathrm{e}-16$ | $8.3925 \mathrm{e}-17$ |
| PETSc | CG | IC | 1 | 0 | 0.000885 s | $2.22045 \mathrm{e}-16$ | $8.3925 \mathrm{e}-17$ |
| ITL | BICGstab | IC | 1 | 0 | 0.000108 s | 5.97873e-16 | 2.25975e-16 |
| Trilinos | BICGstab | IC | 1 | 0 | 0.000154 s | $3.33067 \mathrm{e}-16$ | 1.25887e-16 |
| PETSc | BICGstab | IC | 1 | 0 | 0.000539 s | $2.22045 \mathrm{e}-16$ | $8.3925 \mathrm{e}-17$ |
| Trilinos | GMRES | IC | 1 | 0 | 0.000238 s | $2.22045 \mathrm{e}-16$ | $8.3925 \mathrm{e}-17$ |
| PETSc | GMRES | IC | 1 | 0 | 0.010801 s | $6.66134 \mathrm{e}-16$ | $2.51775 \mathrm{e}-16$ |

Table A.4: Laplace rank 5 test results

| package | solver | precond | iterations | status | solving time | absolute residual | rel residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITL | CG | NONE | 6 | 0 | 0.000353 s | $2.71948 \mathrm{e}-16$ | 1.92296e-16 |
| Hypre | CG | NONE | 5 | 0 | 0.000269 s | $4.44089 \mathrm{e}-16$ | 3.14018e-16 |
| Trilinos | CG | NONE | 5 | 0 | 0.000325 s | $4.44089 \mathrm{e}-16$ | 3.14018e-16 |
| PETSc | CG | NONE | 5 | 0 | 0.000744 s | $4.44089 \mathrm{e}-16$ | $3.14018 \mathrm{e}-16$ |
| ITL | BICGstab | NONE | 5 | 0 | 0.000429 s | $1.17495 \mathrm{e}-15$ | 8.30815e-16 |
| Hypre | BICGstab | NONE | 5 | 0 | 0.000288 s | $4.96507 \mathrm{e}-16$ | 3.51083e-16 |
| Trilinos | BICGstab | NONE | 5 | 0 | 0.000312 s | $2.1065 \mathrm{e}-15$ | 1.48952e-15 |
| QQQ | BICGstab | NONE | 5 | 0 | 0.000227 s | $2.64364 \mathrm{e}-15$ | 1.86933e-15 |
| PETSc | BICGstab | NONE | 5 | 0 | 0.000737 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| Hypre | GMRES | NONE | 5 | 0 | 0.006462 s | $4.44089 \mathrm{e}-16$ | $3.14018 \mathrm{e}-16$ |
| Trilinos | GMRES | NONE | 5 | 0 | 0.001597 s | $6.08094 \mathrm{e}-16$ | $4.29988 \mathrm{e}-16$ |
| QQQ | GMRES | NONE | 5 | 0 | 0.004681 s | $1.38667 \mathrm{e}-15$ | 9.80522e-16 |
| PETSc | GMRES | NONE | 5 | 0 | 0.018655 s | $8.88178 \mathrm{e}-16$ | 6.28037e-16 |
| ITL | CG | Jacobi | 6 | 0 | 0.000364 s | $2.71948 \mathrm{e}-16$ | 1.92296e-16 |
| Trilinos | CG | Jacobi | 5 | 0 | 0.00034 s | $4.44089 \mathrm{e}-16$ | $3.14018 \mathrm{e}-16$ |
| PETSc | CG | Jacobi | 5 | 0 | 0.000772 s | $4.44089 \mathrm{e}-16$ | 3.14018e-16 |
| ITL | BICGstab | Jacobi | 5 | 0 | 0.000444 s | $1.17495 \mathrm{e}-15$ | 8.30815e-16 |
| Trilinos | BICGstab | Jacobi | 5 | 0 | 0.000326 s | $2.1065 \mathrm{e}-15$ | 1.48952e-15 |
| PETSc | BICGstab | Jacobi | 5 | 0 | 0.00076 s | $3.14018 \mathrm{e}-16$ | 2.22045e-16 |
| Trilinos | GMRES | Jacobi | 5 | 0 | 0.000353 s | $6.08094 \mathrm{e}-16$ | 4.29988e-16 |
| PETSc | GMRES | Jacobi | 5 | 0 | 0.017783 s | $8.88178 \mathrm{e}-16$ | 6.28037e-16 |
| ITL | CG | ILU | 2 | 0 | 0.000313 s | $2.71948 \mathrm{e}-16$ | 1.92296e-16 |
| Hypre | CG | ILU | 1 | 0 | 0.000207 s | $2.71948 \mathrm{e}-16$ | 1.92296e-16 |
| Trilinos | CG | ILU | 1 | 0 | 0.000495 s | $2.71948 \mathrm{e}-16$ | 1.92296e-16 |
| PETSc | CG | ILU | 1 | 0 | 0.001518 s | $3.33067 \mathrm{e}-16$ | 2.35514e-16 |
| ITL | BICGstab | ILU | 1 | 0 | 0.000303 s | 2.71948e-16 | 1.92296e-16 |
| Hypre | BICGstab | ILU | 1 | 0 | 0.000228 s | 0 | 0 |
| Trilinos | BICGstab | ILU | 1 | 0 | 0.000424 s | 0 | 0 |
| QQQ | BICGstab | ILU | 1 | 0 | 0.000203 s | 3.84593e-16 | 2.71948e-16 |
| PETSc | BICGstab | ILU | 1 | 0 | 0.001479 s | $3.33067 \mathrm{e}-16$ | 2.35514e-16 |
| Hypre | GMRES | ILU | 1 | 0 | 0.004408 s | $2.71948 \mathrm{e}-16$ | 1.92296e-16 |
| Trilinos | GMRES | ILU | 1 | 0 | 0.000509 s | 4.00297e-16 | 2.83052e-16 |
| QQQ | GMRES | ILU | 1 | 0 | 0.004716 s | $9.15513 \mathrm{e}-16$ | 6.47366e-16 |
| PETSc | GMRES | ILU | 1 | 0 | 0.019294 s | $1.92296 \mathrm{e}-16$ | 1.35974e-16 |
| ITL | CG | IC | 2 | 0 | 0.000304 s | $4.44089 \mathrm{e}-16$ | 3.14018e-16 |
| Trilinos | CG | IC | 1 | 0 | 0.000499 s | $6.66134 \mathrm{e}-16$ | $4.71028 \mathrm{e}-16$ |
| PETSc | CG | IC | 1 | 0 | 0.00163 s | $6.66134 \mathrm{e}-16$ | 4.71028e-16 |
| ITL | BICGstab | IC | 1 | 0 | 0.000294 s | $4.44089 \mathrm{e}-16$ | 3.14018e-16 |
| Trilinos | BICGstab | IC | 1 | 0 | 0.00039 s | 0 | 0 |
| PETSc | BICGstab | IC | 1 | 0 | 0.001263 s | 0 | 0 |
| Trilinos | GMRES | IC | 1 | 0 | 0.000473 s | $3.33067 \mathrm{e}-16$ | 2.35514e-16 |
| PETSc | GMRES | IC | 1 | 0 | 0.018294 s | $6.66134 \mathrm{e}-16$ | $4.71028 \mathrm{e}-16$ |

Table A.5: Laplace rank 10 test results

| package | solver | precond | iterations | status | solving time | absolute residual | rel residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITL | CG | NONE | 4 | 1 | 0.000224 s | $4.20719 \mathrm{e}-09$ | $1.53968 \mathrm{e}-09$ |
| Hypre | CG | NONE | 4 | 1 | 0.000176 s | $4.21041 \mathrm{e}-09$ | 1.54086e-09 |
| Trilinos | CG | NONE | 4 | 1 | 0.000311 s | 5.14823e-09 | 1.88407e-09 |
| PETSc | CG | NONE | 4 | 1 | 0.000526 s | $1.7421 \mathrm{e}-10$ | 6.37547e-11 |
| ITL | BICGstab | NONE | 4 | 1 | 0.00027 s | $3.16189 \mathrm{e}-08$ | 1.15714e-08 |
| Hypre | BICGstab | NONE | 4 | 1 | 0.000156 s | 5.80364e-08 | 2.12393e-08 |
| Trilinos | BICGstab | NONE | 4 | 1 | 0.000297 s | $3.69441 \mathrm{e}-08$ | 1.35202e-08 |
| QQQ | BICGstab | NONE | 4 | 1 | 0.00016s | $2.71695 \mathrm{e}-08$ | 9.94306e-09 |
| PETSc | BICGstab | NONE | 4 | 1 | 0.000516 s | $1.19062 \mathrm{e}-08$ | 4.35726e-09 |
| Hypre | GMRES | NONE | 4 | 0 | 0.005288 s | $4.57757 \mathrm{e}-16$ | 1.67523e-16 |
| Trilinos | GMRES | NONE | 4 | 0 | 0.00149 s | $2.22045 \mathrm{e}-16$ | 8.12604e-17 |
| QQQ | GMRES | NONE | 4 | 0 | 0.004482 s | $5.55112 \mathrm{e}-16$ | $2.03151 \mathrm{e}-16$ |
| PETSc | GMRES | NONE | 4 | 0 | 0.011031 s | $5.08768 \mathrm{e}-16$ | 1.86191e-16 |
| ITL | CG | Jacobi | 4 | 1 | 0.000229 s | $9.41892 \mathrm{e}-10$ | 3.44699e-10 |
| Trilinos | CG | Jacobi | 4 | 1 | 0.000332 s | 3.19936e-09 | 1.17085e-09 |
| PETSc | CG | Jacobi | 4 | 1 | 0.000557 s | 2.50357e-09 | 9.16217e-10 |
| ITL | BICGstab | Jacobi | 4 | 1 | 0.000278 s | $2.19324 \mathrm{e}-06$ | 8.02646e-07 |
| Trilinos | BICGstab | Jacobi | 4 | 1 | 0.00031 s | $2.19327 \mathrm{e}-06$ | 8.02657e-07 |
| PETSc | BICGstab | Jacobi | 4 | 1 | 0.000522 s | $2.4326 \mathrm{e}-06$ | 8.90245e-07 |
| Trilinos | GMRES | Jacobi | 4 | 0 | 0.000235 s | $2.48253 \mathrm{e}-16$ | $9.08519 \mathrm{e}-17$ |
| PETSc | GMRES | Jacobi | 4 | 0 | 0.010467 s | $6.97054 \mathrm{e}-13$ | 2.55097e-13 |
| ITL | CG | ILU | 2 | 0 | 0.000211 s | 0 |  |
| Hypre | CG | ILU | 1 | 0 | 0.000147 s | 0 | 0 |
| Trilinos | CG | ILU | 1 | 0 | 0.00035s | 0 | 0 |
| PETSc | CG | ILU | 1 | 0 | 0.001137s | 0 | 0 |
| ITL | BICGstab | ILU | 1 | 0 | 0.000198 s | 0 | 0 |
| Hypre | BICGstab | ILU | 0 | 3 | 0.000128 s | nan | nan |
| Trilinos | BICGstab | ILU | 1 | 0 | 0.000287 s | 0 | 0 |
| QQQ | BICGstab | ILU | 1 | 0 | 0.000142 s | 2.71948e-16 | 9.95232e-17 |
| PETSc | BICGstab | ILU | 1 | 0 | 0.001105 s | 0 | 0 |
| Hypre | GMRES | ILU | 1 | 0 | 0.003308 s | $1.11022 \mathrm{e}-16$ | 4.06302e-17 |
| Trilinos | GMRES | ILU | 1 | 0 | 0.000363 s | $1.11022 \mathrm{e}-16$ | 4.06302e-17 |
| QQQ | GMRES | ILU | 1 | 0 | 0.004539 s | $1.04266 \mathrm{e}-14$ | 3.81578e-15 |
| PETSc | GMRES | ILU | 1 | 0 | 0.01158s | $1.04266 \mathrm{e}-14$ | 3.81578e-15 |
| ITL | CG | IC | 2 | 0 | 0.000205 s | 0 | 0 |
| Trilinos | CG | IC | 1 | 0 | 0.000367 s | $5.20741 \mathrm{e}-16$ | 1.90572e-16 |
| PETSc | CG | IC | 1 | 0 | 0.00128s | $2.71948 \mathrm{e}-16$ | 9.95232e-17 |
| ITL | BICGstab | IC | 1 | 0 | 0.000195 s | 0 | 0 |
| Trilinos | BICGstab | IC | 1 | 0 | 0.000265 s | 0 | 0 |
| PETSc | BICGstab | IC | 1 | 0 | 0.000892 s | $2.48253 \mathrm{e}-16$ | $9.08519 \mathrm{e}-17$ |
| Trilinos | GMRES | IC | 1 | 0 | 0.000346 s | $2.22045 \mathrm{e}-16$ | 8.12604e-17 |
| PETSc | GMRES | IC | 1 | 0 | 0.010994 s | $7.03219 \mathrm{e}-15$ | $2.57353 \mathrm{e}-15$ |

Table A.6: Hilbert rank 4 test results

| package | solver | precond | iterations | status | solving time | absolute residual | rel residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITL | CG | NONE | 10 | 1 | 0.00031 s | $6.927 \mathrm{e}-08$ | $1.47075 \mathrm{e}-08$ |
| Hypre | CG | NONE | 10 | 1 | 0.000325 s | $1.53567 \mathrm{e}-07$ | 3.26056e-08 |
| Trilinos | CG | NONE | 10 | 1 | 0.000489 s | $2.08801 \mathrm{e}-07$ | $4.4333 \mathrm{e}-08$ |
| PETSc | CG | NONE | 10 | 1 | 0.000795 s | $2.37618 \mathrm{e}-07$ | 5.04514e-08 |
| ITL | BICGstab | NONE | 10 | 1 | 0.000644 s | $1.40222 \mathrm{e}-10$ | 2.97722e-11 |
| Hypre | BICGstab | NONE | 10 | 1 | 0.00031 s | $1.41216 \mathrm{e}-10$ | $2.99833 \mathrm{e}-11$ |
| Trilinos | BICGstab | NONE | 10 | 1 | 0.000588 s | $1.06781 \mathrm{e}-10$ | 2.26718e-11 |
| QQQ | BICGstab | NONE | 10 | 1 | 0.000258 s | $1.20492 \mathrm{e}-10$ | $2.5583 \mathrm{e}-11$ |
| PETSc | BICGstab | NONE | 10 | 1 | 0.000908 s | 1.28341e-10 | 2.72495e-11 |
| Hypre | GMRES | NONE | 7 | 0 | 0.005538 s | $3.42065 \mathrm{e}-13$ | 7.26277e-14 |
| Trilinos | GMRES | NONE | 7 | 0 | 0.001651 s | $3.42137 \mathrm{e}-13$ | 7.26431e-14 |
| QQQ | GMRES | NONE | 7 | 0 | 0.00477 s | $3.42054 \mathrm{e}-13$ | $7.26253 \mathrm{e}-14$ |
| PETSc | GMRES | NONE | 7 | 0 | 0.011307 s | $3.69428 \mathrm{e}-13$ | 7.84375e-14 |
| ITL | CG | Jacobi | 10 | 1 | 0.000481 s | $1.43939 \mathrm{e}-07$ | 3.05613e-08 |
| Trilinos | CG | Jacobi | 10 | 1 | 0.000617 s | $4.53603 \mathrm{e}-08$ | 9.63096e-09 |
| PETSc | CG | Jacobi | 10 | 1 | 0.000922 s | $5.31169 \mathrm{e}-08$ | $1.12779 \mathrm{e}-08$ |
| ITL | BICGstab | Jacobi | 10 | 1 | 0.00068 s | $4.5955 \mathrm{e}-06$ | $9.75723 \mathrm{e}-07$ |
| Trilinos | BICGstab | Jacobi | 9 | 3 | 0.000616 s | $4.5954 \mathrm{e}-06$ | $9.75702 \mathrm{e}-07$ |
| PETSc | BICGstab | Jacobi | 10 | 1 | 0.000918 s | 0.000665968 | 0.000141399 |
| Trilinos | GMRES | Jacobi | 7 | 0 | 0.000407 s | $3.43116 \mathrm{e}-13$ | 7.28508e-14 |
| PETSc | GMRES | Jacobi | 10 | 1 | 0.01095 s | $1.78515 \mathrm{e}-10$ | 3.79026e-11 |
| ITL | CG | ILU | 2 | 0 | 0.000436 s | 0 | 0 |
| Hypre | CG | ILU | 10 | 1 | 0.000408 s | $6.63835 \mathrm{e}-08$ | 1.40947e-08 |
| Trilinos | CG | ILU | 1 | 0 | 0.000514 s | 0 | 0 |
| PETSc | CG | ILU | 6 | 0 | 0.001753 s | $6.37775 \mathrm{e}-16$ | 1.35413e-16 |
| ITL | BICGstab | ILU | 1 | 0 | 0.000405 s | 0 | 0 |
| Hypre | BICGstab | ILU | 3 | 0 | 0.000285 s | 5.73006e-13 | $1.21662 \mathrm{e}-13$ |
| Trilinos | BICGstab | ILU | 1 | 0 | 0.000452 s | 0 | 0 |
| QQQ | BICGstab | ILU | 5 | 0 | 0.000306 s | $3.00062 \mathrm{e}-13$ | 6.37097e-14 |
| PETSc | BICGstab | ILU | 5 | 0 | 0.001712 s | $5.32444 \mathrm{e}-16$ | $1.13049 \mathrm{e}-16$ |
| Hypre | GMRES | ILU | 2 | 0 | 0.003408 s | $5.57132 \mathrm{e}-13$ | 1.18291e-13 |
| Trilinos | GMRES | ILU | 1 | 0 | 0.000549 s | $6.47366 \mathrm{e}-16$ | $1.3745 \mathrm{e}-16$ |
| QQQ | GMRES | ILU | 3 | 0 | 1.39602 s | $8.382 \mathrm{e}-16$ | $1.77968 \mathrm{e}-16$ |
| PETSc | GMRES | ILU | 4 | 0 | 0.006615 s | $3.76986 \mathrm{e}-15$ | 8.00422e-16 |
| ITL | CG | IC | 2 | 0 | 0.000285 s | 0 | 0 |
| Trilinos | CG | IC | 1 | 0 | 0.000391 s | 0 | 0 |
| PETSc | CG | IC | 3 | 0 | 0.001437 s | $4.57757 \mathrm{e}-16$ | 9.71916e-17 |
| ITL | BICGstab | IC | 1 | 0 | 0.000272 s | 0 | 0 |
| Trilinos | BICGstab | IC | 1 | 0 | 0.000292 s | 0 | 0 |
| PETSc | BICGstab | IC | 2 | 0 | 0.000967 s | $4.96507 \mathrm{e}-16$ | $1.05419 \mathrm{e}-16$ |
| Trilinos | GMRES | IC | 1 | 0 | 0.000375 s | $6.47366 \mathrm{e}-16$ | $1.3745 \mathrm{e}-16$ |
| PETSc | GMRES | IC | 3 | 0 | 0.011162 s | $3.84593 \mathrm{e}-16$ | 8.16573e-17 |

Table A.7: Hilbert rank 10 test results

| package | solver | precond | iterations | status | solving time | absolute residual | rel residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITL | CG | NONE | 28 | 0 | 0.002271 s | 3.19848e-12 | 2.00532e-13 |
| Hypre | CG | NONE | 27 | 0 | 0.001311 s | $1.92737 \mathrm{e}-12$ | 1.20838e-13 |
| Trilinos | CG | NONE | 28 | 0 | 0.001402 s | $1.21157 \mathrm{e}-12$ | 7.59605e-14 |
| PETSc | CG | NONE | 28 | 0 | 0.002516 s | $2.90365 \mathrm{e}-12$ | 1.82047e-13 |
| ITL | BICGstab | NONE | 56 | 0 | 0.008232 s | $2.81127 \mathrm{e}-12$ | $1.76255 \mathrm{e}-13$ |
| Hypre | BICGstab | NONE | 57 | 0 | 0.003858 s | $1.58843 \mathrm{e}-11$ | 9.95884e-13 |
| Trilinos | BICGstab | NONE | 72 | 0 | 0.004737 s | $1.03206 \mathrm{e}-11$ | 6.47061e-13 |
| QQQ | BICGstab | NONE | 43 | 0 | 0.009032 s | $1.03347 \mathrm{e}-11$ | 6.47943e-13 |
| PETSc | BICGstab | NONE | 49 | 0 | 0.005225 s | $1.02169 \mathrm{e}-11$ | $6.40559 \mathrm{e}-13$ |
| Hypre | GMRES | NONE | 12 | 0 | 0.006365 s | $1.20622 \mathrm{e}-12$ | 7.56252e-14 |
| Trilinos | GMRES | NONE | 12 | 0 | 0.00209s | 1.20636e-12 | 7.56337e-14 |
| QQQ | GMRES | NONE | 12 | 0 | 0.006851 s | 1.20658e-12 | 7.56475e-14 |
| PETSc | GMRES | NONE | 12 | 0 | 0.01224 s | $2.61782 \mathrm{e}-12$ | 1.64127e-13 |
| ITL | CG | Jacobi | 28 | 0 | 0.002286 s | $2.0414 \mathrm{e}-12$ | 1.27987e-13 |
| Trilinos | CG | Jacobi | 27 | 0 | 0.001505 s | $5.66709 \mathrm{e}-12$ | 3.55304e-13 |
| PETSc | CG | Jacobi | 30 | 0 | 0.002715 s | $7.83941 \mathrm{e}-12$ | $4.91499 \mathrm{e}-13$ |
| ITL | BICGstab | Jacobi | 50 | 5 | 0.007504 s | $4.62261 \mathrm{e}-05$ | 2.89819e-06 |
| Trilinos | BICGstab | Jacobi | 16 | 3 | 0.001539 s | $4.89168 \mathrm{e}-05$ | 3.06689e-06 |
| PETSc | BICGstab | Jacobi | 100 | 1 | 0.009801 s | 0.012549 | 0.00078677 |
| Trilinos | GMRES | Jacobi | 12 | 0 | 0.000979 s | $1.26878 \mathrm{e}-12$ | 7.95473e-14 |
| PETSc | GMRES | Jacobi | 100 | 1 | 0.020344 s | $4.19833 \mathrm{e}-08$ | 2.63219e-09 |
| ITL | CG | ILU | 2 | 0 | 0.043619 s | $9.6064 \mathrm{e}-14$ | 6.02283e-15 |
| Hypre | CG | ILU | 100 | 1 | 0.007659 s | 355.635 | 22.2969 |
| Trilinos | CG | ILU | 1 | 0 | 0.005575 s | $2.74205 \mathrm{e}-15$ | 1.71915e-16 |
| PETSc | CG | ILU | 65 | 8 | 0.012643 s | $7.4135 \mathrm{e}-08$ | 4.64797e-09 |
| ITL | BICGstab | ILU | 1 | 0 | 0.043425 s | $7.4244 \mathrm{e}-15$ | 4.6548e-16 |
| Hypre | BICGstab | ILU | 100 | 1 | 0.010346 s | 0.000294372 | 1.84559e-05 |
| Trilinos | BICGstab | ILU | 1 | 0 | 0.005286 s | $3.00376 \mathrm{e}-15$ | 1.88324e-16 |
| QQQ | BICGstab | ILU | 8 | 0 | 0.120315 s | $1.46383 \mathrm{e}-11$ | 9.17761e-13 |
| PETSc | BICGstab | ILU | 100 | 1 | 0.019756 s | 4.41937e-09 | 2.77077e-10 |
| Hypre | GMRES | ILU | 100 | 1 | 0.011315 s | $1.40817 \mathrm{e}-07$ | 8.82863e-09 |
| Trilinos | GMRES | ILU | 1 | 0 | 0.004998 s | $2.96244 \mathrm{e}-15$ | 1.85733e-16 |
| QQQ | GMRES | ILU | 100 | 0 | 1.92864 s | $9.84294 \mathrm{e}-14$ | 6.17113e-15 |
| PETSc | GMRES | ILU | 100 | 1 | 0.022275 s | $2.35607 \mathrm{e}-13$ | 1.47716e-14 |
| ITL | CG | IC | 2 | 5 | 0.059313 s | nan | nan |
| Trilinos | CG | IC | 1 | 3 | 0.043062 s | nan | nan |
| PETSc | CG | IC | 100 | 1 | 0.020455 s | $9.04494 \mathrm{e}-10$ | 5.67081e-11 |
| ITL | BICGstab | IC | 1 | 5 | 0.059175 s | nan | nan |
| Trilinos | BICGstab | IC | 1 | 3 | 0.044934 s | nan | nan |
| PETSc | BICGstab | IC | 100 | 1 | 0.023955 s | $3.63423 \mathrm{e}-13$ | 2.27851e-14 |
| Trilinos | GMRES | IC | 1 | 3 | 0.040762 s | 15.95 | 1 |
| PETSc | GMRES | IC | 100 | 1 | 0.029418 s | $4.0757 \mathrm{e}-12$ | $2.5553 \mathrm{e}-13$ |

Table A.8: Hilbert rank 100 test results

| package | solver | precond | iterations | status | solving time | absolute residual | rel residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITL | CG | NONE | 46 | 0 | 0.236592 s | $2.10316 \mathrm{e}-11$ | $4.12673 \mathrm{e}-13$ |
| Hypre | CG | NONE | 44 | 0 | 0.11377 s | $2.0448 \mathrm{e}-11$ | $4.01222 \mathrm{e}-13$ |
| Trilinos | CG | NONE | 44 | 0 | 0.116052 s | $2.04162 \mathrm{e}-11$ | $4.00598 \mathrm{e}-13$ |
| PETSc | CG | NONE | 49 | 0 | 0.155108 s | 3.1622e-11 | 6.20473e-13 |
| ITL | BICGstab | NONE | 125 | 0 | 1.29165 s | $2.12603 \mathrm{e}-11$ | $4.1716 \mathrm{e}-13$ |
| Hypre | BICGstab | NONE | 131 | 0 | 0.676206 s | $1.79792 \mathrm{e}-11$ | $3.5278 \mathrm{e}-13$ |
| Trilinos | BICGstab | NONE | 151 | 0 | 0.765636 s | $3.34408 \mathrm{e}-11$ | 6.56162e-13 |
| QQQ | BICGstab | NONE | 143 | 0 | 3.80804s | $4.80739 \mathrm{e}-11$ | $9.43286 \mathrm{e}-13$ |
| PETSc | BICGstab | NONE | 119 | 0 | 0.740253 s | $4.78309 \mathrm{e}-11$ | $9.38518 \mathrm{e}-13$ |
| Hypre | GMRES | NONE | 16 | 0 | 0.052864 s | $2.02465 \mathrm{e}-11$ | $3.97269 \mathrm{e}-13$ |
| Trilinos | GMRES | NONE | 16 | 0 | 0.061722 s | $2.02466 \mathrm{e}-11$ | $3.97271 \mathrm{e}-13$ |
| QQQ | GMRES | NONE | 16 | 0 | 0.233662 s | $2.02469 \mathrm{e}-11$ | 3.97277e-13 |
| PETSc | GMRES | NONE | 18 | 0 | 0.065736 s | 8.8348e-11 | 1.73353e-12 |
| ITL | CG | Jacobi | 48 | 0 | 0.248s | $4.46602 \mathrm{e}-11$ | 8.76305e-13 |
| Trilinos | CG | Jacobi | 51 | 0 | 0.142618 s | $2.39416 \mathrm{e}-11$ | $4.69773 \mathrm{e}-13$ |
| PETSc | CG | Jacobi | 50 | 0 | 0.162431 s | $4.44202 \mathrm{e}-11$ | 8.71595e-13 |
| ITL | BICGstab | Jacobi | 1000 | 1 | 10.2725s | 0.000259781 | 5.09732e-06 |
| Trilinos | BICGstab | Jacobi | 17 | 3 | 0.093759 s | 0.00177622 | 3.48523e-05 |
| PETSc | BICGstab | Jacobi | 798 | 7 | 4.93399s | $3.69026 \mathrm{e}+07$ | 724087 |
| Trilinos | GMRES | Jacobi | 16 | 0 | 0.054442 s | $2.47582 \mathrm{e}-11$ | $4.85795 \mathrm{e}-13$ |
| PETSc | GMRES | Jacobi | 1000 | 1 | 5.97811 s | $1.7516 \mathrm{e}-06$ | $3.43691 \mathrm{e}-08$ |
| ITL | CG | ILU | 191 | 5 | 36.0003s | nan | nan |
| Hypre | CG | ILU | 1000 | 1 | 3.94704 s | 38.5607 | 0.756622 |
| Trilinos | CG | ILU | 1 | 0 | 2.07958 s | $2.71255 \mathrm{e}-12$ | 5.32245e-14 |
| PETSc | CG | ILU | 285 | 8 | 4.63593 s | $2.14401 \mathrm{e}-06$ | $4.20689 \mathrm{e}-08$ |
| ITL | BICGstab | ILU | 1 | 0 | 33.863 s | $1.68221 \mathrm{e}-12$ | 3.30077e-14 |
| Hypre | BICGstab | ILU | 1000 | 1 | 6.63145 s | 0.000274096 | $5.37821 \mathrm{e}-06$ |
| Trilinos | BICGstab | ILU | 1 | 0 | 2.08542 s | $1.50324 \mathrm{e}-12$ | 2.9496e-14 |
| QQQ | BICGstab | ILU | 730 | 0 | 94.2204 s | nan | nan |
| PETSc | BICGstab | ILU | 771 | 7 | 12.9524s | 9.79664 | 0.192226 |
| Hypre | GMRES | ILU | 460 | 0 | 2.79304 s | $3.67954 \mathrm{e}-11$ | 7.21984e-13 |
| Trilinos | GMRES | ILU | 1 | 0 | 2.10316 s | $2.24399 \mathrm{e}-12$ | 4.40306e-14 |
| QQQ | GMRES | ILU | 479 | 0 | 20.5125 s | 0.734338 | 0.0144089 |
| PETSc | GMRES | ILU | 1000 | 1 | 12.2122s | $2.01663 \mathrm{e}-08$ | $3.95695 \mathrm{e}-10$ |
| ITL | CG | IC | 2 | 5 | 62.8814 s | nan | nan |
| Trilinos | CG | IC | 1 | 3 | 53.2338s | nan | nan |
| PETSc | CG | IC | 1000 | 1 | 10.8735s | 2.10377e-09 | 4.12793e-11 |
| ITL | BICGstab | IC | 1 | 5 | 62.8922 s | nan | nan |
| Trilinos | BICGstab | IC | 1 | 3 | 53.4243 s | nan | nan |
| PETSc | BICGstab | IC | 1000 | 1 | 19.9753 s | $3.06529 \mathrm{e}-07$ | 6.01459e-09 |
| Trilinos | GMRES | IC | 1 | 3 | 53.2426s | 50.9643 | 1 |
| PETSc | GMRES | IC | 1000 | 1 | 13.6084 s | $9.25948 \mathrm{e}-12$ | 1.81686e-13 |

Table A.9: Hilbert rank 1000 test results

| package | solver | precond | iterations | status | solving time | absolute residual | rel residual |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: |
|  |  |  |  |  |  |  |  |
| ITL | CG | NONE | 216 | 1 | 0.009474 s | $2.03408 \mathrm{e}-06$ | 0.00104844 |
| Hypre | CG | NONE | 216 | 1 | 0.004741 s | $3.07566 \mathrm{e}-06$ | 0.00158531 |
| Trilinos | CG | NONE | 14 | 3 | 0.000463 s | 0.00697383 | 3.59457 |
| PETSc | CG | NONE | 14 | 8 | 0.001925 s | 0.00697383 | 3.59457 |
| ITL | BICGstab | NONE | 216 | 1 | 0.018788 s | $2.43245 \mathrm{e}-05$ | 0.0125378 |
| Hypre | BICGstab | NONE | 216 | 1 | 0.007994 s | $4.54973 \mathrm{e}-05$ | 0.023451 |
| Trilinos | BICGstab | NONE | 216 | 1 | 0.007586 s | $1.49028 \mathrm{e}-05$ | 0.00768145 |
| QQQ | BICGstab | NONE | 216 | 1 | 0.018279 s | $1.58748 \mathrm{e}-05$ | 0.00818249 |
| PETSc | BICGstab | NONE | 216 | 1 | 0.020728 s | $2.28318 \mathrm{e}-05$ | 0.0117684 |
| Hypre | GMRES | NONE | 216 | 0 | 0.024286 s | $5.73681 \mathrm{e}-17$ | $2.95697 \mathrm{e}-14$ |
| Trilinos | GMRES | NONE | 216 | 0 | 0.031384 s | $2.68214 \mathrm{e}-17$ | $1.38247 \mathrm{e}-14$ |
| QQQ | GMRES | NONE | 216 | 0 | 0.069713 s | $1.0976 \mathrm{e}-16$ | $5.65745 \mathrm{e}-14$ |
| PETSc | GMRES | NONE | 216 | 0 | 0.049644 s | $1.41014 \mathrm{e}-16$ | $7.26837 \mathrm{e}-14$ |
| ITL | CG | Jacobi | 2 | 5 | 0.000843 s |  | nan |
| Trilinos | CG | Jacobi | 31 | 3 | 0.000969 s | 0.000161776 | 0.0833852 |
| PETSc | CG | Jacobi | 10 | 5 | 0.00179 s | 0.0220573 | 11.3692 |
| ITL | BICGstab | Jacobi | 1 | 5 | 0.000765 s |  | nan |

Table A.10: Fidap001 test results

| package | solver | precond | iterations | status | solving time | absolute residual | rel residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITL | CG | NONE | 441 | 1 | 0.075503 s | 72.935 | 10.5997 |
| Hypre | CG | NONE | 441 | 1 | 0.032999 s | 1413.43 | 205.416 |
| Trilinos | CG | NONE | 1 | 3 | 0.000448 s | 6.88082 | 1 |
| PETSc | CG | NONE | 1 | 8 | 0.001905 s | 6.88082 | 1 |
| ITL | BICGstab | NONE | 441 | 1 | 0.147967 s | 480.292 | 69.8016 |
| Hypre | BICGstab | NONE | 441 | 1 | 0.059716s | 2690.68 | 391.041 |
| Trilinos | BICGstab | NONE | 441 | 1 | 0.058336 s | 2461.82 | 357.78 |
| QQQ | BICGstab | NONE | 441 | 1 | 0.170636 s | 433.943 | 63.0657 |
| PETSc | BICGstab | NONE | 441 | 1 | 0.094213 s | 268.37 | 39.0026 |
| Hypre | GMRES | NONE | 441 | 1 | 0.148011 s | $8.59851 \mathrm{e}-07$ | $1.24963 \mathrm{e}-07$ |
| Trilinos | GMRES | NONE | 182 | 2 | 0.050207 s | $1.11923 \mathrm{e}-07$ | $1.62659 \mathrm{e}-08$ |
| QQQ | GMRES | NONE | 441 | 1 | 0.569367 s | 0.808758 | 0.117538 |
| PETSc | GMRES | NONE | 441 | 1 | 0.281105 s | 0.00921185 | 0.00133877 |
| ITL | CG | Jacobi | 441 | 1 | 0.074537 s | 28.129 | 4.08804 |
| Trilinos | CG | Jacobi | 1 | 3 | 0.000713 s | 6.88082 | 1 |
| PETSc | CG | Jacobi | 1 | 6 | 0.001856 s | 6.88082 | 1 |
| ITL | BICGstab | Jacobi | 441 | 1 | 0.147733 s | 389.591 | 56.6198 |
| Trilinos | BICGstab | Jacobi | 441 | 1 | 0.060231 s | 391.585 | 56.9097 |
| PETSc | BICGstab | Jacobi | 441 | 1 | 0.093884 s | 21.1755 | 3.07747 |
| Trilinos | GMRES | Jacobi | 431 | 2 | 0.236927 s | 1.19691e-06 | 1.73949e-07 |
| PETSc | GMRES | Jacobi | 441 | 1 | 0.279951 s | 355.103 | 51.6076 |
| ITL | CG | ILU | 441 | 1 | 0.244323 s | $2.69292 \mathrm{e}-07$ | 3.91366e-08 |
| Hypre | CG | ILU | 441 | 1 | 0.049234 s | 6.88087 | 1.00001 |
| Trilinos | CG | ILU | 19 | 2 | 0.022473 s | $6.06136 \mathrm{e}-08$ | 8.80906e-09 |
| PETSc | CG | ILU | 2 | 6 | 0.007213 s | 17.4231 | 2.53212 |
| ITL | BICGstab | ILU | 396 | 0 | 0.358785 s | $2.70652 \mathrm{e}-07$ | $3.93343 \mathrm{e}-08$ |
| Hypre | BICGstab | ILU | 441 | 1 | 0.092369 s | $8.92243 \mathrm{e}+10$ | $1.29671 \mathrm{e}+10$ |
| Trilinos | BICGstab | ILU | 4 | 2 | 0.020178 s | $1.36996 \mathrm{e}-08$ | 1.99099e-09 |
| QQQ | BICGstab | ILU | 29 | 0 | 0.473228 s | $1.39157 \mathrm{e}-07$ | $2.02238 \mathrm{e}-08$ |
| PETSc | BICGstab | ILU | 441 | 1 | 0.17704 s | 0.0617003 | 0.00896701 |
| Hypre | GMRES | ILU | 441 | 1 | 0.162195 s | $4.27121 \mathrm{e}+10$ | 6.20741e+09 |
| Trilinos | GMRES | ILU | 6 | 2 | 0.019838 s | $6.42809 \mathrm{e}-10$ | $9.34204 \mathrm{e}-11$ |
| QQQ | GMRES | ILU | 2 | 0 | 0.290719 s | 6.88082 | 1 |
| PETSc | GMRES | ILU | 441 | 1 | 0.330102 s | 0.076763 | 0.0111561 |
| ITL | CG | IC | 2 | 5 | 0.1389 s | nan | nan |
| Trilinos | CG | IC | 113 | 2 | 0.029655 s | $6.98804 \mathrm{e}-08$ | 1.01558e-08 |
| PETSc | CG | IC | 1 | 5 | 0.011784 s | 6.88082 | 1 |
| ITL | BICGstab | IC | 1 | 5 | 0.139376 s | nan | nan |
| Trilinos | BICGstab | IC | 166 | 2 | 0.062446 s | 6.26726e-07 | $9.1083 \mathrm{e}-08$ |
| PETSc | BICGstab | IC | 441 | 1 | 0.256739 s | 924.007 | 134.287 |
| Trilinos | GMRES | IC | 56 | 2 | 0.025388 s | $6.28489 \mathrm{e}-08$ | 9.13392e-09 |
| PETSc | GMRES | IC | 441 | 1 | 0.369817 s | 0.0293541 | 0.00426608 |

Table A.11: Fidap002 test results

| package | solver | precond | iterations | status | solving time | absolute residual | rel residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITL | CG | NONE | 27 | 1 | 0.000409 s | 0.0603102 | 0.923308 |
| Hypre | CG | NONE | 27 | 1 | 0.000318 s | 0.065567 | 1.00379 |
| Trilinos | CG | NONE | 27 | 1 | 0.000409 s | 0.0829542 | 1.26997 |
| PETSc | CG | NONE | 27 | 1 | 0.000851 s | 38.524 | 589.777 |
| ITL | BICGstab | NONE | 27 | 1 | 0.000642 s | 0.0823034 | 1.26001 |
| Hypre | BICGstab | NONE | 27 | 1 | 0.000352 s | 0.0738414 | 1.13046 |
| Trilinos | BICGstab | NONE | 27 | 1 | 0.000437 s | 0.52968 | 8.10904 |
| QQQ | BICGstab | NONE | 27 | 1 | 0.000372 s | 0.0722653 | 1.10633 |
| PETSc | BICGstab | NONE | 27 | 1 | 0.000986 s | 0.0724119 | 1.10858 |
| Hypre | GMRES | NONE | 27 | 1 | 0.00563 s | 1.20693e-10 | 1.84772e-09 |
| Trilinos | GMRES | NONE | 27 | 2 | 0.000625 s | $2.2913 \mathrm{e}-10$ | 3.50782e-09 |
| QQQ | GMRES | NONE | 27 | 1 | 0.01276 s | $7.1664 \mathrm{e}-07$ | 1.09713e-05 |
| PETSc | GMRES | NONE | 27 | 1 | 0.011314 s | 7.13564e-09 | $1.09242 \mathrm{e}-07$ |
| ITL | CG | Jacobi | 27 | 1 | 0.000399 s | 0.0759657 | 1.16298 |
| Trilinos | CG | Jacobi | 27 | 1 | 0.000439 s | 0.186635 | 2.85725 |
| PETSc | CG | Jacobi | 27 | 1 | 0.0009s | 3.09106 | 47.322 |
| ITL | BICGstab | Jacobi | 27 | 1 | 0.000668 s | 0.897626 | 13.742 |
| Trilinos | BICGstab | Jacobi | 27 | 1 | 0.000466 s | 0.10358 | 1.58574 |
| PETSc | BICGstab | Jacobi | 27 | 1 | 0.001008 s | 0.0472817 | 0.72385 |
| Trilinos | GMRES | Jacobi | 27 | 2 | 0.000627 s | $2.31564 \mathrm{e}-10$ | 3.54508e-09 |
| PETSc | GMRES | Jacobi | 27 | 1 | 0.011113 s | 0.0305118 | 0.467115 |
| ITL | CG | ILU | 20 | 0 | 0.000784 s | $9.5835 \mathrm{e}-11$ | 1.46717e-09 |
| Hypre | CG | ILU | 27 | 1 | 0.000392 s | 2.33284 | 35.7142 |
| Trilinos | CG | ILU | 2 | 2 | 0.000497 s | $8.77969 \mathrm{e}-11$ | 1.34411e-09 |
| PETSc | CG | ILU | 1 | 6 | 0.000836 s | 0.0653197 | 1 |
| ITL | BICGstab | ILU | 23 | 0 | 0.001163 s | $2.32982 \mathrm{e}-10$ | 3.56679e-09 |
| Hypre | BICGstab | ILU | 27 | 1 | 0.000462 s | 0.176004 | 2.6945 |
| Trilinos | BICGstab | ILU | 1 | 2 | 0.000426 s | $8.39537 \mathrm{e}-11$ | 1.28527e-09 |
| QQQ | BICGstab | ILU | 8 | 0 | 0.001293 s | $1.08723 \mathrm{e}-10$ | 1.66447e-09 |
| PETSc | BICGstab | ILU | 18 | 0 | 0.001341 s | $3.25371 \mathrm{e}-09$ | $4.9812 \mathrm{e}-08$ |
| Hypre | GMRES | ILU | 27 | 1 | 0.003555 s | $3.59605 \mathrm{e}-11$ | 5.50531e-10 |
| Trilinos | GMRES | ILU | 2 | 2 | 0.000528 s | $1.04463 \mathrm{e}-11$ | $1.59925 \mathrm{e}-10$ |
| QQQ | GMRES | ILU | 3 | 0 | 1.34561 s | $6.97003 \mathrm{e}-11$ | 1.06706e-09 |
| PETSc | GMRES | ILU | 11 | 0 | 0.005876 s | $2.08155 \mathrm{e}-08$ | 3.18671e-07 |
| ITL | CG | IC | 2 | 5 | 0.000512 s | nan | nan |
| Trilinos | CG | IC | 2 | 2 | 0.000458 s | 5.31794e-11 | $8.1414 \mathrm{e}-10$ |
| PETSc | CG | IC | 17 | 0 | 0.001919 s | 2.54017e-10 | 3.88882e-09 |
| ITL | BICGstab | IC | 1 | 5 | 0.000461 s | nan | nan |
| Trilinos | BICGstab | IC | 1 | 2 | 0.000346 s | $5.94119 \mathrm{e}-11$ | 9.09556e-10 |
| PETSc | BICGstab | IC | 16 | 0 | 0.001146 s | $1.08307 \mathrm{e}-10$ | 1.65811e-09 |
| Trilinos | GMRES | IC | 2 | 2 | 0.001703 s | $1.47092 \mathrm{e}-11$ | 2.25187e-10 |
| PETSc | GMRES | IC | 15 | 0 | 0.011292 s | $3.32734 \mathrm{e}-10$ | 5.09393e-09 |

Table A.12: Fidap005 test results

| package | solver | precond | iterations | status | solving time | absolute residual | rel residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITL | CG | NONE | 42 | 1 | 0.000999 s | 1.44987e-06 | 2.21965e-05 |
| Hypre | CG | NONE | 42 | 1 | 0.000755 s | $2.62163 \mathrm{e}-06$ | $4.01354 \mathrm{e}-05$ |
| Trilinos | CG | NONE | 11 | 3 | 0.000428 s | 0.0844426 | 1.29276 |
| PETSc | CG | NONE | 11 | 8 | 0.000848 s | 0.0844426 | 1.29276 |
| ITL | BICGstab | NONE | 42 | 1 | 0.001776 s | 0.000553869 | 0.00847936 |
| Hypre | BICGstab | NONE | 42 | 1 | 0.000867 s | 0.000673926 | 0.0103173 |
| Trilinos | BICGstab | NONE | 42 | 1 | 0.000973 s | 0.000612725 | 0.00938039 |
| QQQ | BICGstab | NONE | 42 | 1 | 0.000814 s | 0.000412576 | 0.00631626 |
| PETSc | BICGstab | NONE | 42 | 1 | 0.001929 s | 0.00068205 | 0.0104417 |
| Hypre | GMRES | NONE | 41 | 0 | 0.006291 s | $8.80907 \mathrm{e}-16$ | 1.34861e-14 |
| Trilinos | GMRES | NONE | 41 | 0 | 0.002384 s | $9.8949 \mathrm{e}-16$ | 1.51484e-14 |
| QQQ | GMRES | NONE | 41 | 0 | 0.005646 s | $1.99601 \mathrm{e}-15$ | 3.05576e-14 |
| PETSc | GMRES | NONE | 41 | 0 | 0.01269s | $6.27715 \mathrm{e}-15$ | 9.60989e-14 |
| ITL | CG | Jacobi | 2 | 5 | 0.000271 s | nan | nan |
| Trilinos | CG | Jacobi | 17 | 3 | 0.000568 s | 0.00911024 | 0.139472 |
| PETSc | CG | Jacobi | 6 | 8 | 0.000765 s | 0.262144 | 4.01325 |
| ITL | BICGstab | Jacobi | 1 | 5 | 0.00026 s | nan | nan |
| Trilinos | BICGstab | Jacobi | 32 | 3 | 0.000865 s | 0.00911024 | 0.139472 |
| PETSc | BICGstab | Jacobi | 42 | 1 | 0.001967 s | $1.76768 \mathrm{e}-05$ | 0.000270619 |
| Trilinos | GMRES | Jacobi | 16 | 4 | 0.000624 s | 0.00891275 | 0.136448 |
| PETSc | GMRES | Jacobi | 42 | 1 | 0.012228 s | $2.71819 \mathrm{e}-07$ | 4.16136e-06 |
| Hypre | CG | ILU | 42 | 1 | 0.001145 s | 0.142913 | 2.1879 |
| Trilinos | CG | ILU | 1 | 3 | 0.001481 s | nan | nan |
| PETSc | CG | ILU | 2 | 6 | 0.001329 s | 1.44603 | 22.1377 |
| Hypre | BICGstab | ILU | 42 | 1 | 0.001399 s | $2.03919 \mathrm{e}-12$ | 3.12185e-11 |
| Trilinos | BICGstab | ILU | 1 | 3 | 0.001556 s | nan | nan |
| QQQ | BICGstab | ILU | 11 | 0 | 0.002045 s | $4.72651 \mathrm{e}-14$ | 7.23596e-13 |
| PETSc | BICGstab | ILU | 39 | 0 | 0.002855 s | $2.94172 \mathrm{e}-14$ | $4.50358 \mathrm{e}-13$ |
| Hypre | GMRES | ILU | 42 | 1 | 0.004654 s | $2.81272 \mathrm{e}-12$ | $4.30608 \mathrm{e}-11$ |
| Trilinos | GMRES | ILU | 1 | 3 | 0.001381 s | 0.0653197 | 1 |
| QQQ | GMRES | ILU | 2 | 0 | 0.083597 s | $9.52165 \mathrm{e}-09$ | 1.4577e-07 |
| PETSc | GMRES | ILU | 42 | 1 | 0.013707 s | $1.41543 \mathrm{e}-08$ | 2.16693e-07 |
| Trilinos | CG | IC | 1 | 3 | 0.001163 s | nan | nan |
| PETSc | CG | IC | 5 | 8 | 0.001897 s | 0.125969 | 1.9285 |
| Trilinos | BICGstab | IC | 1 | 3 | 0.001364 s | nan | nan |
| PETSc | BICGstab | IC | 42 | 1 | 0.00291 s | 1.35377e-06 | 2.07253e-05 |
| Trilinos | GMRES | IC | 1 | 3 | 0.001198 s | 0.0653197 | 1 |
| PETSc | GMRES | IC | 42 | 1 | 0.013159 s | $1.03194 \mathrm{e}-08$ | 1.57983e-07 |

Table A.13: Fidapm05 test results

| package | solver | precond | iterations | status | solving time | absolute residual | rel residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITL | CG | NONE | 974 | 1 | 0.260724s | 0.000735395 | 1.46914 |
| Hypre | CG | NONE | 974 | 1 | 0.100546s | 0.00144761 | 2.89198 |
| Trilinos | CG | NONE | 10 | 3 | 0.001441 s | 0.00325129 | 6.49529 |
| PETSc | CG | NONE | 10 | 8 | 0.00767 s | 0.00325129 | 6.49529 |
| ITL | BICGstab | NONE | 974 | 1 | 0.492048 s | 1.66841e-05 | 0.0333308 |
| Hypre | BICGstab | NONE | 974 | 1 | 0.194319 s | $2.36322 \mathrm{e}-05$ | 0.0472113 |
| Trilinos | BICGstab | NONE | 974 | 1 | 0.189586 s | $2.24524 \mathrm{e}-05$ | 0.0448545 |
| QQQ | BICGstab | NONE | 974 | 1 | 0.578349 s | $2.96936 \mathrm{e}-05$ | 0.0593205 |
| PETSc | BICGstab | NONE | 974 | 1 | 0.485854 s | $1.41414 \mathrm{e}-05$ | 0.0282511 |
| Hypre | GMRES | NONE | 890 | 0 | 1.148 s | $3.74739 \mathrm{e}-16$ | $7.48638 \mathrm{e}-13$ |
| Trilinos | GMRES | NONE | 890 | 0 | 2.31263 s | $3.78224 \mathrm{e}-16$ | $7.556 \mathrm{e}-13$ |
| QQQ | GMRES | NONE | 890 | 0 | 4.52542 s | $3.90853 \mathrm{e}-16$ | $7.8083 \mathrm{e}-13$ |
| PETSc | GMRES | NONE | 974 | 1 | 2.82672 s | $1.75492 \mathrm{e}-11$ | $3.50591 \mathrm{e}-08$ |
| ITL | CG | Jacobi | 2 | 5 | 0.00451 s | nan | nan |
| Trilinos | CG | Jacobi | 122 | 3 | 0.015285 s | 1.35809e-05 | 0.0271314 |
| PETSc | CG | Jacobi | 36 | 8 | 0.014303 s | 0.000378492 | 0.756136 |
| ITL | BICGstab | Jacobi | 1 | 5 | 0.004305 s | nan | nan |
| Trilinos | BICGstab | Jacobi | 974 | 1 | 0.2067s | $1.3598 \mathrm{e}-05$ | 0.0271655 |
| PETSc | BICGstab | Jacobi | 974 | 1 | 0.502673 s | $4.64069 \mathrm{e}-06$ | 0.00927097 |
| Trilinos | GMRES | Jacobi | 95 | 4 | 0.032582 s | $1.35565 \mathrm{e}-05$ | 0.0270827 |
| PETSc | GMRES | Jacobi | 974 | 1 | 2.83895 s | $8.48254 \mathrm{e}-06$ | 0.0169461 |
| Hypre | CG | ILU | 974 | 1 | 0.219448 s | 0.0190443 | 38.0458 |
| Trilinos | CG | ILU | 1 | 3 | 0.133364 s | nan | nan |
| PETSc | CG | ILU | 2 | 6 | 0.012554 s | 0.000336813 | 0.672871 |
| Hypre | BICGstab | ILU | 974 | 1 | 0.40124 s | 0.192553 | 384.675 |
| Trilinos | BICGstab | ILU | 1 | 3 | 0.140919 s | nan | nan |
| QQQ | BICGstab | ILU | 9 | 0 | 0.096451 s | $4.95299 \mathrm{e}-16$ | 9.89488e-13 |
| PETSc | BICGstab | ILU | 19 | 0 | 0.031221 s | $6.12014 \mathrm{e}-16$ | 1.22266e-12 |
| Hypre | GMRES | ILU | 974 | 1 | 1.56428 s | 0.564703 | 1128.14 |
| Trilinos | GMRES | ILU | 1 | 3 | 0.125118 s | 0.000500561 | 1 |
| QQQ | GMRES | ILU | 14 | 0 | 0.1562 s | 0.00120665 | 2.4106 |
| PETSc | GMRES | ILU | 29 | 0 | 0.039871 s | $1.75185 \mathrm{e}-15$ | 3.49976e-12 |

Table A.14: Fidap027 test results

| package | solver | precond | iterations | status | solving time | absolute residual | rel residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITL | CG | NONE | 2603 | 1 | 1.46291s | 0.269311 | 0.190171 |
| Hypre | CG | NONE | 2603 | 1 | 0.579195 s | 0.163464 | 0.115428 |
| Trilinos | CG | NONE | 12 |  | 0.003191 s | 17.5205 | 12.3719 |
| PETSc | CG | NONE | 12 | 8 | 0.015875 s | 17.5205 | 12.3719 |
| ITL | BICGstab | NONE | 1699 | 5 | 1.84716s | 0.56624 | 0.399844 |
| Hypre | BICGstab | NONE | 2603 | 1 | 1.10887 s | 0.29724 | 0.209893 |
| Trilinos | BICGstab | NONE | 117 | 3 | 0.048506 s | 0.861267 | 0.608175 |
| QQQ | BICGstab | NONE | 2603 | 1 | 3.18844s | 0.253346 | 0.178897 |
| PETSc | BICGstab | NONE | 2603 | 1 | 2.50979 s | 1.10728 | 0.781896 |
| Hypre | GMRES | NONE | 2603 | 1 | 10.0036s | 0.000106624 | $7.52915 \mathrm{e}-05$ |
| Trilinos | GMRES | NONE | 2603 | 1 | 22.8405 s | 0.000106748 | 7.53792e-05 |
| QQQ | GMRES | NONE | 2603 | 1 | 36.5571 s | 0.000158039 | 0.000111598 |
| PETSc | GMRES | NONE | 2603 | 1 | 18.607s | 0.000106715 | 7.53555e-05 |
| ITL | CG | Jacobi | 2 | 5 | 0.009695 s | nan | nan |
| Trilinos | CG | Jacobi | 263 | 3 | 0.059078 s | 0.692432 | 0.488954 |
| PETSc | CG | Jacobi | 4 | 8 | 0.01061 s | 30.7697 | 21.7277 |
| ITL | BICGstab | Jacobi | 1 | 5 | 0.009138 s | nan | nan |
| Trilinos | BICGstab | Jacobi | 2603 | 1 | 1.12053 s | $9.91998 \mathrm{e}+13$ | $7.0049 \mathrm{e}+13$ |
| PETSc | BICGstab | Jacobi | 2603 | 1 | 2.51247 s | $2.02845 \mathrm{e}-05$ | $1.43237 \mathrm{e}-05$ |
| Trilinos | GMRES | Jacobi | 134 | 4 | 0.152653 s | 0.667513 | 0.471357 |
| PETSc | GMRES | Jacobi | 2603 | 1 | 18.1686s | $4.21404 \mathrm{e}-08$ | $2.9757 \mathrm{e}-08$ |
| Hypre | CG | ILU | 2603 | 1 | 1.27041 s | 11.5292 | 8.14122 |
| Trilinos | CG | ILU | 1 | 3 | 0.205077 s | nan | nan |
| PETSc | CG | ILU | 1 | 6 | 0.019881 s | 1.41615 | 1 |
| Hypre | BICGstab | ILU | 2603 | 1 | $2.48026 s$ | $5.27602 \mathrm{e}+18$ | $3.72561 \mathrm{e}+18$ |
| Trilinos | BICGstab | ILU | 1 | 3 | 0.222067 s | nan | nan |
| QQQ | BICGstab | ILU | 28 | 0 | 1.23864 s | $2.47651 \mathrm{e}-12$ | 1.74876e-12 |
| PETSc | BICGstab | ILU | 106 | 0 | 0.226963 s | 4.39446e-12 | 3.1031e-12 |
| Hypre | GMRES | ILU | 2603 | 1 | 11.3511 s | $1.26717 \mathrm{e}+08$ | 8.94797e+07 |
| Trilinos | GMRES | ILU | 1 | 3 | 0.183214 s | 1.41615 | 1 |
| QQQ | GMRES | ILU | 16 | 0 | 0.645006 s | 13.4038 | 9.46493 |
| PETSc | GMRES | ILU | 89 | 0 | 0.169645 s | $2.57675 \mathrm{e}-11$ | $1.81954 \mathrm{e}-11$ |

Table A.15: Fidap028 test results

| package | solver | precond | iterations | status | solving time | absolute residual | rel residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITL | CG | NONE | 1080 | 1 | 0.207139s | $6.40783 \mathrm{e}+24$ | $3.67414 \mathrm{e}+16$ |
| Hypre | CG | NONE | 1080 | 1 | 0.089774 s | $7.19293 \mathrm{e}+25$ | $4.1243 \mathrm{e}+17$ |
| Trilinos | CG | NONE | 1 | 3 | 0.000464 s | $1.74403 \mathrm{e}+08$ | 1 |
| PETSc | CG | NONE | 1 | 8 | 0.003869 s | $1.74403 \mathrm{e}+08$ | 1 |
| ITL | BICGstab | NONE | 1080 | 1 | 0.412768 s | $5.29378 \mathrm{e}+07$ | 0.303537 |
| Hypre | BICGstab | NONE | 1080 | 1 | 0.169693 s | $4.01545 \mathrm{e}+06$ | 0.0230239 |
| Trilinos | BICGstab | NONE | 1080 | 1 | 0.162694 s | $4.12918 \mathrm{e}+06$ | 0.023676 |
| QQQ | BICGstab | NONE | 1080 | 1 | 0.596152 s | $4.25507 \mathrm{e}+06$ | 0.0243978 |
| PETSc | BICGstab | NONE | 1080 | 1 | 0.448228 s | $1.76822 \mathrm{e}+08$ | 1.01387 |
| Hypre | GMRES | NONE | 792 | 0 | 0.985469 s | 0.000147067 | 8.43257e-13 |
| Trilinos | GMRES | NONE | 793 | 0 | 2.00764 s | 0.000146049 | 8.37419e-13 |
| QQQ | GMRES | NONE | 792 | 0 | 3.90627 s | 0.000136862 | $7.84745 \mathrm{e}-13$ |
| PETSc | GMRES | NONE | 1080 | 1 | 3.21818s | 119969 | 0.000687883 |
| ITL | CG | Jacobi | 1080 | 1 | 0.216848 s | $3.8619 \mathrm{e}+10$ | 221.435 |
| Trilinos | CG | Jacobi | 4 | 3 | 0.001031 s | $1.90169 \mathrm{e}+08$ | 1.0904 |
| PETSc | CG | Jacobi | 2 | 6 | 0.005147 s | $1.90174 \mathrm{e}+08$ | 1.09043 |
| ITL | BICGstab | Jacobi | 1080 | 1 | 0.425011 s | $6.06008 \mathrm{e}+61$ | $3.47475 \mathrm{e}+53$ |
| Trilinos | BICGstab | Jacobi | 1080 | 1 | 0.172153 s | $7.61446 \mathrm{e}+81$ | $4.366 \mathrm{e}+73$ |
| PETSc | BICGstab | Jacobi | 10 | 7 | 0.009196 s | $3.79207 \mathrm{e}+13$ | 217431 |
| Trilinos | GMRES | Jacobi | 235 | 4 | 0.16251 s | 9047.93 | 5.18793e-05 |
| PETSc | GMRES | Jacobi | 1080 | 1 | 3.21645s | $7.30407 \mathrm{e}+10$ | 418.803 |
| ITL | CG | ILU | 1080 | 1 | 0.503734 s | $9.10391 \mathrm{e}+26$ | $5.22003 \mathrm{e}+18$ |
| Hypre | CG | ILU | 1080 | 1 | 0.166851 s | $1.34245 \mathrm{e}+09$ | 7.69738 |
| Trilinos | CG | ILU | 1 | 3 | 0.028584 s | $1.74403 \mathrm{e}+08$ | 1 |
| PETSc | CG | ILU | 1 | 6 | 0.00672 s | $1.74403 \mathrm{e}+08$ | 1 |
| ITL | BICGstab | ILU | 11 | 0 | 0.056491 s | $4.51981 \mathrm{e}-05$ | 2.59158e-13 |
| Hypre | BICGstab | ILU | 609 | 0 | 0.184664 s | 0.000165714 | 9.50178e-13 |
| Trilinos | BICGstab | ILU | 8 | 0 | 0.032393 s | $3.48335 \mathrm{e}-05$ | $1.99729 \mathrm{e}-13$ |
| QQQ | BICGstab | ILU | 1080 | 1 | 26.7222s | $2.82451 \mathrm{e}+13$ | 161952 |
| PETSc | BICGstab | ILU | 10 | 0 | 0.015809 s | $3.57623 \mathrm{e}-05$ | $2.05055 \mathrm{e}-13$ |
| Hypre | GMRES | ILU | 252 | 0 | 0.097379 s | 0.000101986 | 5.84769e-13 |
| Trilinos | GMRES | ILU | 14 | 0 | 0.032646 s | $1.60593 \mathrm{e}-05$ | $9.20812 \mathrm{e}-14$ |
| QQQ | GMRES | ILU | 1 | 0 | 0.040773 s | $4.01676 \mathrm{e}+15$ | $2.30314 \mathrm{e}+07$ |
| PETSc | GMRES | ILU | 18 | 0 | 0.021028 s | $7.78913 \mathrm{e}-05$ | 4.46616e-13 |

Table A.16: Sherman2 test results

| package | solver | precond | iterations | status | solving time | absolute residual | rel residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITL | CG | NONE | 5005 | 1 | 1.90615s | 0.0771292 | 0.000331295 |
| Hypre | CG | NONE | 5005 | 1 | 0.770484 s | 0.0428037 | 0.000183856 |
| Trilinos | CG | NONE | 5005 | 1 | 0.778495 s | 0.0428973 | 0.000184258 |
| PETSc | CG | NONE | 5005 | 1 | 1.61091 s | 0.0633232 | 0.000271994 |
| ITL | BICGstab | NONE | 5005 | 1 | 3.3448 s | $1.81115 \mathrm{e}-05$ | 7.77946e-08 |
| Hypre | BICGstab | NONE | 5005 | 1 | 1.44806 s | $7.06643 \mathrm{e}-05$ | 3.03526e-07 |
| Trilinos | BICGstab | NONE | 5005 | 1 | 1.45572 s | 0.000102011 | $4.38169 \mathrm{e}-07$ |
| QQQ | BICGstab | NONE | 5005 | 1 | 4.47374s | 0.00706575 | 3.03497e-05 |
| PETSc | BICGstab | NONE | 5005 | 1 | 3.06883s | 0.0341576 | 0.000146718 |
| Hypre | GMRES | NONE | 5005 | 1 | 8.64103 s | $2.43545 \mathrm{e}-10$ | $1.0461 \mathrm{e}-12$ |
| Trilinos | GMRES | NONE | 785 | 2 | 11.1773 s | $6.71055 \mathrm{e}-09$ | $2.8824 \mathrm{e}-11$ |
| QQQ | GMRES | NONE | 1320 | 0 | 31.4356s | 1.87887e-09 | 8.07034e-12 |
| PETSc | GMRES | NONE | 1566 | 0 | 19.0528s | $2.65669 \mathrm{e}-10$ | 1.14114e-12 |
| ITL | CG | Jacobi | 923 | 0 | 0.333632 s | $2.57125 \mathrm{e}-09$ | 1.10444e-11 |
| Trilinos | CG | Jacobi | 922 | 2 | 0.159619 s | $2.9281 \mathrm{e}-09$ | 1.25772e-11 |
| PETSc | CG | Jacobi | 891 | 0 | 0.288987 s | $2.89222 \mathrm{e}-09$ | $1.2423 \mathrm{e}-11$ |
| ITL | BICGstab | Jacobi | 524 | 0 | 0.365448 s | $1.84798 \mathrm{e}-09$ | $7.93769 \mathrm{e}-12$ |
| Trilinos | BICGstab | Jacobi | 490 | 3 | 0.160675 s | $3.23295 \mathrm{e}-09$ | $1.38866 \mathrm{e}-11$ |
| PETSc | BICGstab | Jacobi | 458 | 0 | 0.3237 s | $1.63235 \mathrm{e}-08$ | 7.01147e-11 |
| Trilinos | GMRES | Jacobi | 482 | 2 | 4.13227s | $2.0575 \mathrm{e}-09$ | 8.83765e-12 |
| PETSc | GMRES | Jacobi | 3212 | 0 | 42.5148 s | $2.16487 \mathrm{e}-08$ | $9.29882 \mathrm{e}-11$ |
| ITL | CG | ILU | 172 | 0 | 0.150296 s | $1.52056 \mathrm{e}-09$ | 6.53129e-12 |
| Hypre | CG | ILU | 5005 | 1 | 2.17707s | 1070.29 | 4.59724 |
| Trilinos | CG | ILU | 5005 | 1 | 2.12393 s | $4.73887 \mathrm{e}-09$ | $2.0355 \mathrm{e}-11$ |
| PETSc | CG | ILU | 160 | 0 | 0.104792 s | $1.32474 \mathrm{e}-09$ | 5.69018e-12 |
| ITL | BICGstab | ILU | 101 | 0 | 0.165563 s | $9.28012 \mathrm{e}-10$ | $3.98611 \mathrm{e}-12$ |
| Hypre | BICGstab | ILU | 109 | 0 | 0.104683 s | $1.90999 \mathrm{e}-10$ | 8.20401e-13 |
| Trilinos | BICGstab | ILU | 20 | 2 | 0.049299 s | $6.84653 \mathrm{e}-10$ | 2.94081e-12 |
| QQQ | BICGstab | ILU | 36 | 0 | 2.80833 s | $5.12919 \mathrm{e}-09$ | $2.20315 \mathrm{e}-11$ |
| PETSc | BICGstab | ILU | 117 | 0 | 0.153035 s | $8.09647 \mathrm{e}-10$ | 3.4777e-12 |
| Hypre | GMRES | ILU | 125 | 0 | 0.216134 s | $1.99124 \mathrm{e}-10$ | 8.55301e-13 |
| Trilinos | GMRES | ILU | 29 | 0 | 0.056956 s | $1.98647 \mathrm{e}-10$ | 8.53252e-13 |
| QQQ | GMRES | ILU | 2 | 0 | 0.105566 s | $9.56087 \mathrm{e}+09$ | $4.10671 \mathrm{e}+07$ |
| PETSc | GMRES | ILU | 877 | 0 | 10.9977s | $7.74872 \mathrm{e}-08$ | $3.32833 \mathrm{e}-10$ |

Table A.17: Sherman3 test results

| package | solver | precond | iterations | status | solving time | absolute residual | rel residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITL | CG | NONE | 1899 | 5 | 0.570678s | nan | nan |
| Hypre | CG | NONE | 3312 | 1 | 0.416329 s | $1.72522 \mathrm{e}+23$ | $2.77915 \mathrm{e}+21$ |
| Trilinos | CG | NONE | 1 | 3 | 0.000538 s | 62.0774 | 1 |
| PETSc | CG | NONE | 1 | 8 | 0.010466 s | 62.0774 | 1 |
| ITL | BICGstab | NONE | 198 | 5 | 0.113038 s | 126.741 | 2.04167 |
| Hypre | BICGstab | NONE | 3312 | 1 | 0.783425 s | $2.75118 \mathrm{e}-06$ | 4.43186e-08 |
| Trilinos | BICGstab | NONE | 1113 | 3 | 0.247757 s | 16.3764 | 0.263807 |
| QQQ | BICGstab | NONE | 3312 | 1 | 3.9362 s | 3.74627e-05 | 6.03484e-07 |
| PETSc | BICGstab | NONE | 3312 | 1 | 1.87454 s | $3.03477 \mathrm{e}-08$ | 4.88869e-10 |
| Hypre | GMRES | NONE | 1929 | 0 | 7.42302s | $5.86559 \mathrm{e}-11$ | 9.44884e-13 |
| Trilinos | GMRES | NONE | 1820 | 0 | 20.5701s | $2.38273 \mathrm{e}-11$ | $3.83833 \mathrm{e}-13$ |
| QQQ | GMRES | NONE | 1667 | 0 | 28.0344s | $6.22901 \mathrm{e}-10$ | $1.00343 \mathrm{e}-11$ |
| PETSc | GMRES | NONE | 3312 | 1 | 28.8769s | 0.0178954 | 0.000288276 |
| ITL | CG | Jacobi | 517 | 5 | 0.164849 s | nan | nan |
| Trilinos | CG | Jacobi | 1 | 3 | 0.001135 s | 62.0774 | 1 |
| PETSc | CG | Jacobi | 1 | 8 | 0.010081 s | 62.0774 | 1 |
| ITL | BICGstab | Jacobi | 179 | 0 | 0.107159 s | $3.4952 \mathrm{e}-10$ | $5.6304 \mathrm{e}-12$ |
| Trilinos | BICGstab | Jacobi | 180 | 2 | 0.044537 s | $8.30062 \mathrm{e}-10$ | 1.33714e-11 |
| PETSc | BICGstab | Jacobi | 152 | 0 | 0.097521 s | 1.50881e-09 | $2.43053 \mathrm{e}-11$ |
| Trilinos | GMRES | Jacobi | 165 | 2 | 0.261708 s | $3.75975 \mathrm{e}-10$ | 6.05655e-12 |
| PETSc | GMRES | Jacobi | 1075 | 0 | 9.37321 s | $1.47833 \mathrm{e}-09$ | $2.38143 \mathrm{e}-11$ |
| ITL | CG | ILU | 3312 | 1 | 2.10788s | 19871.1 | 320.102 |
| Hypre | CG | ILU | 3312 | 1 | 0.97036 s | $5.94224 \mathrm{e}+19$ | $9.57231 \mathrm{e}+17$ |
| Trilinos | CG | ILU | 1 | 3 | 0.026437 s | 62.0774 | 1 |
| PETSc | CG | ILU | 2 | 6 | 0.015656 s | 167.044 | 2.6909 |
| ITL | BICGstab | ILU | 30 | 0 | 0.066178 s | 1.28677e-10 | $2.07285 \mathrm{e}-12$ |
| Hypre | BICGstab | ILU | 72 | 0 | 0.050053 s | 5.07197e-11 | 8.1704e-13 |
| Trilinos | BICGstab | ILU | 15 | , | 0.036147 s | $1.18253 \mathrm{e}-10$ | 1.90492e-12 |
| QQQ | BICGstab | ILU | 29 | 0 | 2.23036 s | $1.1653 \mathrm{e}-10$ | $1.87718 \mathrm{e}-12$ |
| PETSc | BICGstab | ILU | 31 | 0 | 0.046716 s | $4.15241 \mathrm{e}-10$ | 6.68909e-12 |
| Hypre | GMRES | ILU | 93 | 0 | 0.085033 s | $5.50109 \mathrm{e}-11$ | 8.86166e-13 |
| Trilinos | GMRES | ILU | 20 | 0 | 0.03647 s | $4.62161 \mathrm{e}-11$ | 7.44492e-13 |
| QQQ | GMRES | ILU | 10 | 0 | 0.621464 s | $8.82663 \mathrm{e}-09$ | 1.42188e-10 |
| PETSc | GMRES | ILU | 41 | 0 | 0.054181 s | $2.10242 \mathrm{e}-09$ | $3.38677 \mathrm{e}-11$ |

Table A.18: Sherman5 test results

| package | solver | precond | iterations | status | solving time | absolute residual | rel residual |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: |
|  | ITL | CG | NONE | 236 | 1 | 0.015485 s | 2739.91 | 379.126

Table A.19: E05r0100 test results

| package | solver | precond | iterations | status | solving time | absolute residual | rel residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITL | CG | NONE | 4241 | 1 | 3.92968 s | $6.70081 \mathrm{e}+06$ | 230868 |
| Hypre | CG | NONE | 4241 | 1 | 1.60714 s | $6.70081 \mathrm{e}+06$ | 230868 |
| Trilinos | CG | NONE | 4241 | 1 | 1.5396s | $6.70081 \mathrm{e}+06$ | 230868 |
| PETSc | CG | NONE | 269 | 7 | 0.231691 s | 290896 | 10022.4 |
| ITL | BICGstab | NONE | 139 | 5 | 0.255446 s | 167.285 | 5.76361 |
| Hypre | BICGstab | NONE | 4241 | 1 | 3.15319s | 175.065 | 6.03166 |
| Trilinos | BICGstab | NONE | 59 | 3 | 0.042719 s | 184.725 | 6.36446 |
| QQQ | BICGstab | NONE | 4241 | 1 | 9.75308 s | 163.881 | 5.64631 |
| PETSc | BICGstab | NONE | 19 | 7 | 0.050993 s | $1.0405 \mathrm{e}+06$ | 35849.3 |
| Hypre | GMRES | NONE | 4241 | 1 | 27.7054s | 15.9229 | 0.548603 |
| Trilinos | GMRES | NONE | 4241 | 1 | 64.176s | 15.9229 | 0.548603 |
| QQQ | GMRES | NONE | 4241 | 1 | 101.779s | 23.0544 | 0.794309 |
| PETSc | GMRES | NONE | 4241 | 1 | 50.5551s | 15.9229 | 0.548603 |
| ITL | CG | Jacobi | 2 | 5 | 0.014851 s | nan | nan |
| Trilinos | CG | Jacobi | 4241 | 1 | 1.68298s | $1.27595 \mathrm{e}+06$ | 43961.3 |
| PETSc | CG | Jacobi | 138 | 7 | 0.124222 s | 92277 | 3179.29 |
| ITL | BICGstab | Jacobi | 1 | 5 | 0.013411 s | nan | nan |
| Trilinos | BICGstab | Jacobi | 1667 | 3 | 1.25287s | 1642.31 | 56.5839 |
| PETSc | BICGstab | Jacobi | 4241 | 1 | 6.70229 s | 233.808 | 8.05556 |
| Trilinos | GMRES | Jacobi | 4241 | 1 | 65.8724s | 15.9288 | 0.548806 |
| PETSc | GMRES | Jacobi | 4241 | 1 | 50.2777s | 16.4152 | 0.565565 |
| Hypre | CG | ILU | 4241 | 1 | 4.28862 s | $8.04596 \mathrm{e}+16$ | $2.77213 \mathrm{e}+15$ |
| Trilinos | CG | ILU | 1 | 3 | 0.302958 s | nan | nan |
| PETSc | CG | ILU | 1 | 6 | 0.036216 s | 29.0244 | 1 |
| Hypre | BICGstab | ILU | 4241 | 1 | 8.0576 s | 29.0218 | 0.999911 |
| Trilinos | BICGstab | ILU | 1 | 3 | 0.330591 s | nan | nan |
| QQQ | BICGstab | ILU | 45 | 0 | 6.63505 s | 1.06817e-09 | 3.68024e-11 |
| PETSc | BICGstab | ILU | 382 | 7 | 1.26225 s | $3.95147 \mathrm{e}+12$ | $1.36143 \mathrm{e}+11$ |
| Hypre | GMRES | ILU | 4241 | 1 | 33.2303 s | $4.86836 \mathrm{e}+13$ | $1.67733 \mathrm{e}+12$ |
| Trilinos | GMRES | ILU | 1 | - | 0.236314 s | 29.0244 | 1 |
| QQQ | GMRES | ILU | 34 | 0 | 4.60562 s | $1.08444 \mathrm{e}-07$ | 3.73629e-09 |
| PETSc | GMRES | ILU | 4241 | 1 | 54.4999s | $1.65029 \mathrm{e}+06$ | 56858.5 |

Table A.20: E20r5000 test results

| package | solver | precond | iterations | status | solving time | absolute residual | rel residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITL | CG | NONE | 2395 | 1 | 0.473019s | $8.06422 \mathrm{e}-13$ | 0.00813262 |
| Hypre | CG | NONE | 2395 | 1 | 0.21942s | $8.06422 \mathrm{e}-13$ | 0.00813262 |
| Trilinos | CG | NONE | 2395 | 1 | 0.228695 s | $8.06422 \mathrm{e}-13$ | 0.00813262 |
| PETSc | CG | NONE | 2395 | 1 | 0.531212 s | $8.06422 \mathrm{e}-13$ | 0.00813262 |
| ITL | BICGstab | NONE | 553 | 0 | 0.21512 s | $8.28338 \mathrm{e}-23$ | 8.35364e-13 |
| Hypre | BICGstab | NONE | 580 | 0 | 0.099845 s | $2.85412 \mathrm{e}-23$ | 2.87832e-13 |
| Trilinos | BICGstab | NONE | 257 | 3 | 0.050144 s | $2.35238 \mathrm{e}-17$ | $2.37233 \mathrm{e}-07$ |
| QQQ | BICGstab | NONE | 715 | 0 | 15.8321s | $8.15104 \mathrm{e}-23$ | 8.22018e-13 |
| PETSc | BICGstab | NONE | 632 | 0 | 0.244964 s | $9.84551 \mathrm{e}-23$ | 9.92901e-13 |
| Hypre | GMRES | NONE | 458 | 0 | 0.775713 s | $9.90202 \mathrm{e}-23$ | $9.986 \mathrm{e}-13$ |
| Trilinos | GMRES | NONE | 459 | 0 | 1.6528 s | $9.57723 \mathrm{e}-23$ | 9.65846e-13 |
| QQQ | GMRES | NONE | 461 | 0 | 2.97669s | $8.97193 \mathrm{e}-23$ | $9.04803 \mathrm{e}-13$ |
| PETSc | GMRES | NONE | 1090 | 0 | 6.82447s | $9.65895 \mathrm{e}-23$ | 9.74087e-13 |
| ITL | CG | Jacobi | 2395 | 1 | 0.516277 s | $6.26454 \mathrm{e}-12$ | 0.0631767 |
| Trilinos | CG | Jacobi | 2395 | 1 | 0.248544 s | $6.26454 \mathrm{e}-12$ | 0.0631767 |
| PETSc | CG | Jacobi | 2395 | 1 | 0.450245 s | $6.26454 \mathrm{e}-12$ | 0.0631767 |
| ITL | BICGstab | Jacobi | 502 | 0 | 0.205913 s | $9.19034 \mathrm{e}-23$ | 9.26828e-13 |
| Trilinos | BICGstab | Jacobi | 63 | 3 | 0.013401 s | $9.2773 \mathrm{e}-14$ | 0.000935599 |
| PETSc | BICGstab | Jacobi | 949 | 0 | 0.387008 s | $9.33245 \mathrm{e}-23$ | $9.4116 \mathrm{e}-13$ |
| Trilinos | GMRES | Jacobi | 172 | 0 | 0.195794 s | $8.87523 \mathrm{e}-23$ | 8.95051e-13 |
| PETSc | GMRES | Jacobi | 2395 | 1 | 14.5466s | $3.29967 \mathrm{e}-15$ | 3.32766e-05 |
| ITL | CG | ILU | 2395 | 1 | 1.03061 s | $8.36297 \mathrm{e}-13$ | 0.0084339 |
| Hypre | CG | ILU | 2395 | 1 | 0.615881 s | $1.30097 \mathrm{e}-10$ | 1.31201 |
| Trilinos | CG | ILU | 5 | 0 | 0.013115 s | $1.86936 \mathrm{e}-24$ | $1.88522 \mathrm{e}-14$ |
| PETSc | CG | ILU | 2395 | 1 | 0.780597 s | $8.36297 \mathrm{e}-13$ | 0.0084339 |
| ITL | BICGstab | ILU | 159 | 0 | 0.14873 s | $8.7275 \mathrm{e}-23$ | 8.80152e-13 |
| Hypre | BICGstab | ILU | 145 | 0 | $0.079206 s$ | $7.95843 \mathrm{e}-23$ | 8.02593e-13 |
| Trilinos | BICGstab | ILU | 2 | 0 | 0.012627 s | $9.89167 \mathrm{e}-23$ | 9.97557e-13 |
| QQQ | BICGstab | ILU | 6 | 0 | 15.5565s | $2.51039 \mathrm{e}-23$ | $2.53168 \mathrm{e}-13$ |
| PETSc | BICGstab | ILU | 221 | 0 | 0.165501 s | $5.70359 \mathrm{e}-23$ | 5.75197e-13 |
| Hypre | GMRES | ILU | 112 | 0 | 0.088412 s | $9.48827 \mathrm{e}-23$ | $9.56874 \mathrm{e}-13$ |
| Trilinos | GMRES | ILU | 4 | 0 | 0.013186 s | $2.05001 \mathrm{e}-23$ | $2.0674 \mathrm{e}-13$ |
| QQQ | GMRES | ILU | 5 | 0 | 0.333652 s | $4.00445 \mathrm{e}-24$ | 4.03841e-14 |
| PETSc | GMRES | ILU | 1057 | 0 | 6.97491 s | $6.92011 \mathrm{e}-23$ | $6.9788 \mathrm{e}-13$ |

Table A.21: Add20 test results

| package | solver | precond | iterations | status | solving time | absolute residual | rel residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITL | CG | NONE | 17758 | 1 | 24.6101s | $7.70234 \mathrm{e}-12$ | 0.365786 |
| Hypre | CG | NONE | 17758 | 1 | 10.8274s | $7.70234 \mathrm{e}-12$ | 0.365786 |
| Trilinos | CG | NONE | 17758 | 1 | 12.0438s | $7.70234 \mathrm{e}-12$ | 0.365786 |
| PETSc | CG | NONE | 17758 | 1 | 21.8778s | $7.70234 \mathrm{e}-12$ | 0.365786 |
| ITL | BICGstab | NONE | 2038 | 0 | 5.53111 s | $1.98111 \mathrm{e}-23$ | 9.40835e-13 |
| Hypre | BICGstab | NONE | 2271 | 0 | 2.6545 s | $1.99094 \mathrm{e}-23$ | 9.45501e-13 |
| Trilinos | BICGstab | NONE | 164 | 3 | 0.230141 s | $1.34628 \mathrm{e}-14$ | 0.000639352 |
| QQQ | BICGstab | NONE | 2458 | 0 | 6.72217 s | $1.88561 \mathrm{e}-23$ | 8.9548e-13 |
| PETSc | BICGstab | NONE | 1860 | 0 | 4.93828 s | $1.87908 \mathrm{e}-23$ | 8.92379e-13 |
| Hypre | GMRES | NONE | 914 | 0 | 22.6791 s | $2.07233 \mathrm{e}-23$ | 9.84156e-13 |
| Trilinos | GMRES | NONE | 914 | 0 | 54.1267s | $2.08688 \mathrm{e}-23$ | 9.91063e-13 |
| QQQ | GMRES | NONE | 1031 | 0 | 101.167s | $2.0618 \mathrm{e}-23$ | 9.79156e-13 |
| PETSc | GMRES | NONE | 1465 | 0 | 59.6993s | $2.07945 \mathrm{e}-23$ | 9.87536e-13 |
| ITL | CG | Jacobi | 17758 | , | 24.9021 s | $8.70321 \mathrm{e}-11$ | 4.13318 |
| Trilinos | CG | Jacobi | 17758 | 1 | 12.9512s | $8.70321 \mathrm{e}-11$ | 4.13318 |
| PETSc | CG | Jacobi | 17758 | 1 | 22.5687s | $8.70321 \mathrm{e}-11$ | 4.13318 |
| ITL | BICGstab | Jacobi | 553 | 5 | 1.60083 s | $1.97465 \mathrm{e}-17$ | 9.37767e-07 |
| Trilinos | BICGstab | Jacobi | 18 | 3 | 0.031162 s | $1.33868 \mathrm{e}-13$ | 0.00635744 |
| PETSc | BICGstab | Jacobi | 755 | 0 | 2.19001 s | $3.43885 \mathrm{e}-23$ | 1.63312e-12 |
| Trilinos | GMRES | Jacobi | 286 | 0 | 5.26988 s | $1.87699 \mathrm{e}-23$ | 8.91389e-13 |
| PETSc | GMRES | Jacobi | 11535 | 0 | 550.505 s | $2.69647 \mathrm{e}-21$ | 1.28056e-10 |
| ITL | CG | ILU | 17758 | 1 | 54.5601 s | $1.50292 \mathrm{e}-10$ | 7.1374 |
| Hypre | CG | ILU | 17758 | 1 | 35.7351 s | $7.98189 \mathrm{e}-13$ | 0.0379062 |
| Trilinos | CG | ILU | 8 | 0 | 0.324985 s | $2.9158 \mathrm{e}-24$ | 1.38472e-13 |
| PETSc | CG | ILU | 17758 | 1 | 39.8092s | $1.50292 \mathrm{e}-10$ | 7.1374 |
| ITL | BICGstab | ILU | 345 | 0 | 2.28419 s | $1.71749 \mathrm{e}-23$ | 8.15638e-13 |
| Hypre | BICGstab | ILU | 695 | 0 | 2.90697 s | $1.68983 \mathrm{e}-23$ | 8.02505e-13 |
| Trilinos | BICGstab | ILU | 4 | 0 | 0.32395 s | $3.54429 \mathrm{e}-24$ | 1.68319e-13 |
| QQQ | BICGstab | ILU | 9 | 0 | 0.735679 s | $5.08324 \mathrm{e}-24$ | 2.41404e-13 |
| PETSc | BICGstab | ILU | 387 | 0 | 1.97006s | $4.79313 \mathrm{e}-23$ | 2.27627e-12 |
| Hypre | GMRES | ILU | 207 | 0 | 1.66554 s | $2.10036 \mathrm{e}-23$ | 9.97468e-13 |
| Trilinos | GMRES | ILU | 7 | 0 | $0.32606 s$ | $3.08071 \mathrm{e}-24$ | 1.46304e-13 |
| QQQ | GMRES | ILU | 8 | 0 | 4.76651 s | $3.03273 \mathrm{e}-23$ | 1.44025e-12 |
| PETSc | GMRES | ILU | 2124 | 0 | 100.289s | $7.53823 \mathrm{e}-23$ | 3.57992e-12 |

Table A.22: Memplus test results

| package | solver | precond | iterations | status | solving time | absolute residual | rel residual |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITL | CG | NONE | 5 | 1 | 0.000112 s | 0.982146 | 0.0220387 |
| Hypre | CG | NONE | 5 | 1 | 0.0001 s | 0.982146 | 0.0220387 |
| Trilinos | CG | NONE | 2 | 3 | 0.030383 s | 3.07395 | 0.0689775 |
| PETSc | CG | NONE | 2 | 8 | 0.009716s | 3.07395 | 0.0689775 |
| ITL | BICGstab | NONE | 5 | 1 | 0.000442 s | 1.20431e-09 | 2.70239e-11 |
| Hypre | BICGstab | NONE | 5 | 1 | 0.000239 s | $1.25082 \mathrm{e}-09$ | 2.80676e-11 |
| Trilinos | BICGstab | NONE | 5 | 1 | 0.000474 s | $1.40992 \mathrm{e}-09$ | 3.16377e-11 |
| QQQ | BICGstab | NONE | 5 | 1 | 0.040176s | 2.67244e-09 | 5.99679e-11 |
| PETSc | BICGstab | NONE | 5 | 1 | 0.000695 s | 1.39461e-09 | 3.12941e-11 |
| Hypre | GMRES | NONE | 5 | 0 | 0.006386 s | $8.37906 \mathrm{e}-15$ | 1.88021e-16 |
| Trilinos | GMRES | NONE | 5 | 0 | 0.023519 s | 8.1886e-15 | 1.83747e-16 |
| QQQ | GMRES | NONE | 5 | 0 | 0.04472 s | $9.56597 \mathrm{e}-15$ | 2.14654e-16 |
| PETSc | GMRES | NONE | 5 | 0 | 0.018645 s | 7.01436e-14 | 1.57398e-15 |
| ITL | CG | Jacobi | 2 | 5 | 0.000291 s | nan | nan |
| Trilinos | CG | Jacobi | 2 | 3 | 0.000458 s | 13.8536 | 0.310865 |
| PETSc | CG | Jacobi | 2 | 8 | 0.000617 s | 4.86385 | 0.109142 |
| ITL | BICGstab | Jacobi | 1 | 5 | 0.000272 s | nan | nan |
| Trilinos | BICGstab | Jacobi | 5 | 1 | 0.000483 s | 3.65538 | 0.0820243 |
| PETSc | BICGstab | Jacobi | 5 | 1 | 0.000727 s | $2.03328 \mathrm{e}-05$ | $4.56255 \mathrm{e}-07$ |
| Trilinos | GMRES | Jacobi | 4 | 4 | 0.000505 s | 3.42932 | 0.0769517 |
| PETSc | GMRES | Jacobi | 5 | 0 | 0.017973 s | $8.8185 \mathrm{e}-13$ | 1.97881e-14 |
| Hypre | CG | ILU | 1 | 0 | 0.000197 s | 0 | 0 |
| Trilinos | CG | ILU | 4 | 0 | 0.000581 s | 5.58757e-12 | 1.25382e-13 |
| PETSc | CG | ILU | 1 | 6 | 0.001527 s | 44.5646 | 1 |
| Hypre | BICGstab | ILU | 0 | 3 | 0.000177 s | nan | nan |
| Trilinos | BICGstab | ILU | 2 | 0 | 0.000461 s | $3.62256 \mathrm{e}-12$ | 8.12879e-14 |
| QQQ | BICGstab | ILU | 3 | 0 | 0.040145 s | $1.75032 \mathrm{e}-12$ | 3.92761e-14 |
| PETSc | BICGstab | ILU | 5 | 1 | 0.001595 s | 0.335308 | 0.0075241 |
| Hypre | GMRES | ILU | 1 | 0 | 0.004303 s | $7.16072 \mathrm{e}-15$ | 1.60682e-16 |
| Trilinos | GMRES | ILU | 4 | 2 | 0.000933 s | 0.00125206 | 2.80953e-05 |
| QQQ | GMRES | ILU | 1 | 0 | 0.057151 s | $8.82118 \mathrm{e}-14$ | 1.97942e-15 |
| PETSc | GMRES | ILU | 5 | 1 | 0.01966 s | $3.61698 \mathrm{e}-06$ | 8.11628e-08 |

Table A.23: Saddle point matrix results

## Appendix B

## Sparse Matrix Formats

## B. 1 Sparse Matrix Formats

## B.1.1 Compressed Sparse Row Matrix Format (CSR)

The CSR (Compressed Sparse ${ }^{1}$ Row) format stores a matrix in three arrays: values, columns and rowIndex. The values array stores the nonzero elements of the sparse matrix [16]. The I-th element of the columns array contains the column indices of the I-th value of the values array. The J-th element of the rowIndex array contains the index of the element in the values array, which is the first nonzero in the row j of the matrix. The number of elements in the values and columns arrays is equal to the number of nonzero elements in the matrix. The rowIndex array contains the dimension of the matrix plus one elements. The last element of rowIndexis the number of elements in values plus one. The following example illustrates the usage:

$$
A=\left[\begin{array}{llll}
1 & 0 & 5 & 0 \\
0 & 4 & 6 & 0 \\
1 & 0 & 0 & 2 \\
1 & 0 & 3 & 1
\end{array}\right]
$$

The Matrix A in CSR format would be stored like this (index starting at 0):

```
values }=[1,5,4,6,1,2,1,3,1
columns = [0, 2, 1,2,0,3,0,2,3]
rowIndex }=[0,2,4,6,10
```


## B.1.2 Modified Compressed Sparse Row Matrix Format (MCSR)

The MCSR (Modified Compressed Sparse Row) format stores the diagonal of the matrix explicitly [16]. There are two arrays used: values and index. Both arrays are split into a lower and an upper part. The lower part of the values array contains the main diagonal elements of the matrix. Thus the number of elements stored equals the dimension of the matrix. If the diagonal contains zeros they must be saved as well. The element with the index dimension plus one is unused in the values array. The upper part of the values array contains the off diagonal non zeros of the matrix stored row wise. The J-th element from the lower part of the index array contains the index of the values array with the first off diagonal element of the J-th row. The element dimension plus one holds the number of elements stored in the two arrays.

[^12]The upper part of the index array holds the column indices of the elements stored at the same index in the values array. The matrix $A$ mentioned in Section B.1.1 would be stored like this (index starting at 0 ): values $=[1,4,0,1, *, 5,6,1,2,1,3]$
index $=[5,6,7,9,11,2,2,0,3,0,2]$

## Bibliography

[1] A. Meister, Numerik linearer Gleichungssysteme, 2nd ed. Vieweg, 2005.
[2] G. Fischer, Lineare Algebra, 16th ed. Vieweg, 2008.
[3] N. Koeckler and H. R. Schwarz, Numerische Mathematik, 5th ed. Teubner, 2004.
[4] H. Dirschmid, Skriptum aus Matritzennumerik, Technische Universität Wien, 1998.
[5] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. SIAM, 2003.
[6] J. Stoer and R. Bulirsch, Numerische Mathematik 2, 5th ed. Springer, 2005.
[7] M. Schinnerl, J. Schöberl, M. Kaltenbacher, and R. Lerch, Multigrid Methods for the 3D Simulation of Nonlinear Magneto-Mechanical Systems. IEEE Transactions Magnetics, 2002, no. Vol 38(3), pp 1497-1511.
[8] A. Toselli and O. Widlund, Domain Decomposition Methods - Algorithms and Theory, 1st ed. Springer, 2005.
[9] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI - The Complete Reference, 2nd ed. MIT Press, 1998.
[10] M. A. Heroux, J. M. Willenbring, and R. Heaphy, Trilinos Developers Guide, 2003, no. SAND2003-1898.
[11] M. Sala, M. A. Heroux, and D. M. Day, Trilinos Tutorial, 2007, no. SAND2004-2189.
[12] L. S. Blackforda, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and R. C. Whaley, An Updated Set of Basic Linear Algebra Subprograms (BLAS), 2002.
[13] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Efficient Management of Parallelism in Object Oriented Numerical Software Libraries. Birkhäuser Press, 1997.
[14] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, PETSc Users Manual, 2008, no. ANL-95/11 - Revision 3.0.0.
[15] P. Gottschling and D. Lindbo, Generic Compressed Sparse Matrix Insertion: Algorithms and Implementations in MTLA and FEniCS, 2009.
[16] S. Wagner, Small-Signal Device and Circuit Simulation. Dissertation, TU Wien, 2005, http://www.iue.tuwien.ac.at/phd/wagner/.
[17] R. Falgout, A. Cleary, J. Jones, E. Chow, V. Henson, C. Baldwin, P. Brown, P. Vassilevski, and U. M. Yang, Hypre User's Manual, 2008.
[18] Matrix Market, http://math.nist.gov/MatrixMarket.
[19] D. Braess, Finite Elemente. Theorie, schnelle Löser und Anwendungen in der Elastiziẗ̈tstheorie, 4th ed. Springer-Verlag, 2003.


[^0]:    ${ }^{1}$ The transpose is built by writing the rows of $\mathbf{A}$ as columns of $\mathbf{A}^{T}$

[^1]:    ${ }^{2}$ The span of a set of vectors is the set of all linear combinations that can be built with these vectors.

[^2]:    ${ }^{3}$ All vectors of the matrix are linearly independent
    ${ }^{4}$ The spectral norm is induced by the $l_{2}$ vector norm. Thus $\|\mathbf{A}\|=\sqrt{\lambda_{\max }\left(\mathbf{A}^{T} \mathbf{A}\right)}$

[^3]:    ${ }^{5}$ This is called the Hessenberg matrix

[^4]:    ${ }^{6}$ a matrix containing only zeros above the main diagonal
    ${ }^{7}$ a matrix containing only zeros under the main diagonal

[^5]:    ${ }^{1}$ E.g., if a simulation of a drift diffusion is calculated which has an underlying mesh, the modification of the mesh would lead to a new equation system. The modification should be done such that the new matrix has a better condition than the former.

[^6]:    ${ }^{1}$ The QQQ solver package was developed at the Institute of Microelectronics, Vienna University of Technology
    ${ }^{2}$ some of the packages use MPI (message passing interface, a standard that allows communication among many different computers). For the sake of simplicity the MPI support has been deactivated [9].
    ${ }^{3}$ see Section B.1.1
    ${ }^{4}$ The BLAS (Basic Linear Algebra Subprograms) programming interface offers various functions for the computation of matrix products, matrix-vector products or scalar products [12].

[^7]:    ${ }^{5}$ A matrix is singular if its inverse does not exist
    ${ }^{6}$ see Section B.1.1

[^8]:    ${ }^{7}$ see Section B.1.1

[^9]:    ${ }^{8}$ see Section B.1.2

[^10]:    ${ }^{9}$ see Section B.1.1

[^11]:    ${ }^{1}$ Boost Multi Index (http://www.boost.org/doc/libs/1_39_0/libs/multi_index/doc/index.html)

[^12]:    ${ }^{1}$ In contrast to a dense matrix, a sparse matrix stores the nonzero elements only.

