
D I P L O M A R B E I T

Automatic Solver Control for Linear
Equation Systems

ausgef̈uhrt am
Institut für Mikroelektronik

der Technischen Universität Wien

unter Anleitung von
Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Erasmus Langer

und
Projektass. Dipl.-Ing. Dr.techn. René Heinzl

durch

CLEMENS KLÖCKLER

Hollerweg 5-7/4/4
A-3430 Tulln,Österreich

Matr. Nr. 0027071

geboren am 4. Juni 1982, Wien

Tulln, im Mai 2009

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Kurzfassung

Das Ziel dieser Arbeit war es, eine automatische Steuerung für Gleichungslöser von linearen Gleichungs-
systemen zu entwickeln, die dem Anwender möglichst alle Entscheidungen bei der Lösung eines linearen
Gleichungssystem abnehmen kann. Es soll, wenn möglich, den richtigen Gleichungslösertyp für eine
Matrix auswählen, sowie eine geeignete Vorkonditionierung vornehmen. Falls der gewählte Löser nicht
zum Ziel führt, sollten noch andere Lösungsvarianten ausgenutzt werden.
Der erste Teil der Arbeit beschäftigt sich mit dem notwendigen mathematischen Hintergrund von Ma-
trizen. Außerdem werden die Lösungsalgorithmen von CG, BICGstab und GMRES erklärt und auch
einige Vorkonditionierungsmethoden erläutert (Jacobi,unvollständige LR-Zerlegung und unvollständige
Cholesky-Zerlegung). Um diese Algorithmen zu testen, wurden verschiedene Software Pakete, die eben
diese anbieten, analysiert (Trilinos, PETSc, ITL, QQQ und Hypre), damit ein Pool an Gleichungslösern
zur Verfügung gestellt werden kann. Um eine automatische Steuerung zu realisieren, braucht das Pro-
gramm gewisse Matrixeigenschaften, auf denen die Entscheidungen fußen können. Dazu wurde ein
Analysetool entwickelt, das eine Matrix analysiert und verschiedene wichtige Matrixeigenschaften zu-
rückliefert (Bsp.: Symmetrie, Definitheit). Der Hauptteil der Arbeit beschäftigt sich mit dem Test ver-
schiedener Matrizen, um zu sehen, welche Matrixeigenschaften als Entscheidungskriterien verwendet
werden können. Aufgrund dieser Matrixeigenschaften wurden dann die Entscheidungen, die eine au-
tomatische Steuerung trifft, abgestimmt. Der letzte Teil der Arbeit zeigt das entwickelte Modul angewen-
det auf die gezeigten Testmatrizen, sowie den Lösungsstatus, und zugehörigen Residuen.

i

Abstract

This work describes the development of an automatic solver control for linear equations systems which
was designed to help a user to find the optimal solver for a given matrix problem. The used solver algo-
rithms were CG, BICGstab and GMRES, with the preconditioners Jacobi, incomplete LU factorization
and incomplete Cholesky factorization. Several solver packages available on the market were tested for
their performance (Trilinos, PETSc, QQQ, Hypre and ITL). Inorder for the automatic solver control
to be able to make decisions, it needs to know several properties of a given matrix. For that reason an
analyzing tool was developed. The main part of this work consists of a description of the testing of the
different solver packages to find out how the various solversperform and which matrix properties may
have an influence on their performance. This testing helped in the adjustment of the decision criteria for
the automatic solver control. The last part of this work describes the performance of the automatic solver
control which was developed.

ii

Acknowledgments

I want to thank Prof. Erasmus Langer, René Heinzl, and his team, Franz Stimpfl and Philipp Schwaha,
for guiding and advising me through this work. Special thanks go to my study colleague Josef Weinbub,
who was a helpful partner throughout the whole study especially with his knowledge of programming.

I want to thank my family for their support in all of my years ofeducation since I started school at the
age of six. I also want to thank all my friends who missed me during the last days of my completion of
this work, especially Matthias and Ronny.

Very special thanks go to my beloved girlfriend, Elisabeth,who always had a shoulder to lean on in hard
days.

dedicated to:

my little daughter Katharina
who lets me see the world through different eyes

iii

Contents

1 Introduction 1

1.1 Motivation 1

1.2 Organization 1

2 Linear Solvers 3

2.1 Mathematical Toolkit 3

2.1.1 Vector Norm .3

2.1.2 Symmetry .3

2.1.3 Eigenvalues .. . 4

2.1.4 Positive Definite 4

2.1.5 Gershgorin Circle Theorem 4

2.1.6 Pivot Element .. . 4

2.1.7 Krylov Subspace .. . 4

2.1.8 Linear Equation System 5

2.1.9 Condition Number .. . 5

2.1.10 Residual .. 5

2.2 Direct Solvers 6

2.2.1 Gauss algorithm .. . 6

2.3 Indirect Solvers 7

2.3.1 Conjugate Gradient 8

2.3.2 Stabilized Bi-Conjugated Gradient 9

2.3.3 Generalized Minimal Residual Method 10

2.3.4 Other Krylov Methods 11

2.4 Preconditioners 12

2.4.1 Jacobi Preconditioner 12

2.4.2 ILU Preconditioner 12

2.4.3 Incomplete Cholesky Factorization 13

2.4.4 Other Preconditioners 14

2.5 Residual 14

iv

2.6 Loss of precision 15

3 Related Solver Packages 16

3.1 Trilinos Solver Package 16

3.1.1 CG . 17

3.1.2 BICGstab .17

3.1.3 GMRES . 18

3.1.4 Jacobi .18

3.1.5 ILU . 18

3.1.6 IC . 18

3.1.7 Loss of Precision 18

3.2 PETSc Solver Package 18

3.2.1 CG . 19

3.2.2 BICGstab .19

3.2.3 GMRES . 19

3.2.4 ILU . 19

3.2.5 IC . 20

3.2.6 Divergence tolerance 20

3.3 Iterative Template Library/Matrix Template Library 20

3.3.1 CG . 20

3.3.2 BICGstab .20

3.3.3 Jacobi .21

3.3.4 ILU . 21

3.3.5 IC . 21

3.4 QQQ Solver Package 21

3.4.1 BICGstab .21

3.4.2 GMRES . 22

3.4.3 ILU . 22

3.4.4 Residual for Convergence 22

3.4.5 Pre-elimination, Sorting and Scaling 22

3.5 Hypre Solver Package 23

3.5.1 CG . 23

3.5.2 BICGstab .23

3.5.3 GMRES . 24

3.5.4 ILU . 24

4 Diagnostic Tool 25

4.1 Matrix and Vector Container 25

v

4.1.1 Sparse Matrix Storage 25

4.1.2 Vector Storage .. . 27

4.2 Matrix Entries 28

4.3 Symmetry Check 28

4.4 Positive Definite Matrices 29

4.5 Condition Number 31

5 Matrices for Solver Testing 32

5.1 Tridiagonal Matrices 33

5.1.1 Rank 2 . 33

5.1.2 Rank 3 . 34

5.1.3 Rank 4 . 34

5.1.4 Rank 5 . 35

5.1.5 Rank 10 . 36

5.2 Hilbert Matrices 37

5.2.1 Rank 4 . 37

5.2.2 Rank 10 . 38

5.2.3 Rank 100 . 39

5.2.4 Rank 1000 . 40

5.3 Fidap Matrices 42

5.3.1 Fidap001 .42

5.3.2 Fidap002 .44

5.3.3 Fidap005 .45

5.3.4 Fidapm05 .46

5.3.5 Fidap027 .48

5.3.6 Fidap028 .50

5.4 Sherman Matrices 51

5.4.1 Sherman2 .51

5.4.2 Sherman3 .53

5.4.3 Sherman5 .54

5.5 DRIVCAV Matrices 56

5.5.1 E05r0100 .56

5.5.2 E20r5000 .57

5.6 Hamm Matrices 59

5.6.1 Add20 . 59

5.6.2 Memplus . 60

5.7 Saddle point matrix 61

vi

5.8 Overall Results 63

6 Automatic Solver Control Interface 66

6.1 Number Analyzer 66

6.2 Structure Analyzer 68

6.3 Residual Decision 68

6.4 Solver Decision 68

6.5 Error Code Handling 69

6.5.1 Loss of Precision Handling 70

6.5.2 Maximum Iterations Exceeded 71

6.5.3 Numerical Problems 71

6.6 Tests .. . 71

6.6.1 Break tolerance1 · 10−8 . 71

6.6.2 Break tolerance1 · 10−10 . 76

6.6.3 Break tolerance1 · 10−12 . 78

6.6.4 Conclusion of the Tests 80

6.7 Usage of the Automatic Solver Control 80

7 Conclusion 81

A Test results 82

B Sparse Matrix Formats 106

B.1 Sparse Matrix Formats 106

B.1.1 Compressed Sparse Row Matrix Format (CSR) 106

B.1.2 Modified Compressed Sparse Row Matrix Format (MCSR) 106

Bibliography 108

vii

Chapter 1

Introduction

Solving a linear equation system with a solver is a common task in computer science. Solvers are
programs that are able to determine a solution for a mathematical problem, such as a linear equation
system. An automatic solver control environment should be capable of evaluating the optimal approach
to solve the problem statement. Additionally user interaction should be reduced to a minimum to keep
the usage simple.

The major goal of this work is to implement a solver interfacewhich is able to evaluate an equation
system and process it accordingly. Due to the interface approach, several different software tools can
be used. Each software tool provides a certain set of solversand preconditioners. The automatic solver
interface selects the solver which is likely to most efficiently solve this particular system of equations.

1.1 Motivation

The goal of this work is to develop an automatic solver control which tries to independently find the right
options for solving an equation system. During the development of such a program several questions
arise:

• Which different solver concepts are available? What are their advantages and disadvantages?

• What solver packages are available? What solvers and features do they offer? How is their perfor-
mance?

• What can be done to improve the convergence of specific solvers (e.g., preconditioners)?

• Which matrix properties have an influence on the solvers and the preconditioners and therefore
can help in making a decision?

• Does the solution fulfill the desired accuracy?

1.2 Organization

Chapter 2 offers the mathematical background of this work and discusses different properties a matrix
may have (e.g., symmetry, positive definite). Then the solving concepts of direct (Gauss algorithm) and
indirect solvers are introduced (Sections 2.2 and 2.3) witha deeper look at the indirect solver concepts
CG, BICGstab andGMRES. One improvement (preconditioning) which can be used with an indirect

1

solver is discussed in Section 2.4, primarily investigating Jacobi, incomplete LU factorization and
incomplete Cholesky factorization.
Chapter 3 discusses the five different solver packages that were tested:Trilinos , PETSc, ITL , QQQ and
Hypre. Some of the functions the packages provide are introduced here along with the solving functions,
and the special features of each package are also discussed.
The main part of the work consists of Chapters 4, 5 and 6. At first the development of a diagnostic tool
which is able to analyze a matrix and find out its important properties is presented. Then a variety of
solver packages are tested with different matrices: tridiagonal matrices (Section 5.1), Hilbert matrices
(Section 5.2) and several sparse matrices resulting from scientific problems (Sections 5.3, 5.4, 5.5, 5.6).
The tests are performed for two purposes: on the one hand to analyze the performance of the different
solver packages, and on the other hand to investigate the effects of the matrix properties on different
solver algorithms. The results of these tests are used to develop an automatic solver control which
automatically decides which solver and preconditioner is chosen based on several matrix properties. The
important tasks the program should fulfill, as well as tests to see whether the program is working, are
discussed in Section 6.

2

Chapter 2

Linear Solvers

Before linear equation systems are analyzed, the mathematical background is introduced. First the math-
ematical toolkit that is needed for solving is described, including some matrix properties that may influ-
ence the solving. Then the solving algorithms are introduced.

2.1 Mathematical Toolkit

2.1.1 Vector Norm

Definition 1 (Norm) LetV be a vector space over the fieldR. A given norm of a vectorx ∈ V needs to
fulfill the properties [1]:

• ‖x‖ ≥ 0, if ‖x‖ = 0 ⇒ x = 0, ∀x ∈ V

• ‖α · x‖ = |α| · ‖x‖,∀x ∈ V,∀α ∈ R

• ‖x + y‖ ≤ ‖x‖ + ‖y‖,∀x, y ∈ V

One specific vector norm is theEuclidean norm which is used for this work [1].

‖x‖2 =

√

√

√

√

n
∑

i=1

|xi|2, ∀x ∈ R
n (2.1)

2.1.2 Symmetry

Definition 2 (Symmetry) A real-valued matrixA is calledsymmetricif it is equal to its transposeAT 1

[2].

A = AT (2.2)

1The transpose is built by writing the rows ofA as columns ofAT

3

2.1.3 Eigenvalues

Theeigenvaluesof a real-valued matrix are all valuesλ which fulfill the equation [2]:

Ax = λx (2.3)

2.1.4 Positive Definite

Definition 3 (Positive Definite) A symmetric real-valued matrixA is calledpositive definiteif all eigen-
values of the matrix are positive [3]. A non-symmetric matrix is calledpositive definiteif its symmetric
part is positive definite.

The symmetric part of a matrix can be built via:

Asymm =
1

2
(A + AT) (2.4)

2.1.5 Gershgorin Circle Theorem

An estimation of the eigenvalues of a matrix can be made with the Gershgorin circle theorem [4]. If
the matrix has only real values and is symmetric, the theoremsimplifies to:

A ∈ R
n×n with entriesaij

Di[aii − Ri, aii + Ri], i = 1, ..., n
with Ri =

∑n
j=1,j 6=i |aij |

The closed setsDi are calledGershgorin discs (Gershgorin circles). The theorem states that every
eigenvalue resides within at least one of these discs.
If the off-diagonal matrix entries are small, it is possibleto get a good approximation of the eigenvalues.
Sometimes it is only of interest whether one of the eigenvalues is negative (e.g., for the definite). This
may be possible to determine even if the non-diagonal entries have huge numbers.

2.1.6 Pivot Element

Thepivot elementof a matrix is the first element chosen by an algorithm. Zero pivot elements can lead
to numerical instability of some algorithms [3]. For that reason it is necessary to guarantee that the pivot
elements are not zero.

2.1.7 Krylov Subspace

Definition 4 (Krylov Subspace) TheKrylov subspaceis generated by ann × n matrix A and a vector
b with the lengthn [5]. It is represented by the span2 of the vectorsb, Ab, A2b, ...,An−1b:

Kn = span{b, Ab, A2b, ..., An−1b} (2.5)

This subspace is used in algorithms to find the solution for a linear equation system.
2The span of a set of vectors is the set of all linear combinations that can be built with these vectors.

4

2.1.8 Linear Equation System

A linear equation system can be formulated as [1]:

Ax = b (2.6)

If the matrix A has full rank3 its inverseA−1 exists and there is only one single solution for the linear
equation system.

A−1Ax = A−1b (2.7)

x = A−1b (2.8)

2.1.9 Condition Number

If a linear equation system is altered thecondition number is a measure for the variation of the solution
occurring if one element in the right-hand side vector is changed [4]:

κ(A) = ‖A‖‖A−1‖ (2.9)

The smallest condition number for a matrix is one. The value of the condition number depends on the
matrix norm used. If the condition number is≫ 1 the matrix is called ill-conditioned. A good condition
leads to a small change in the solution; an ill condition leads to a large change.

If the Euclidian4 norm is used, the condition number can be determined via the eigenvalues:

κ(A) =

∣

∣

∣

∣

∣

λmax(
√

AAT)

λmin(
√

AAT)

∣

∣

∣

∣

∣

(2.10)

2.1.10 Residual

If a solutionx for a linear system is determined, theresidual can be calculated by [6]:

r = b − Ax (2.11)

The norm of the residual is a measure for the error of the solution. The two most common methods
of calculating the error of the solution are based on theabsoluteresidual and on therelative residual.
Using the Euclidian norm theabsoluteresidual is:

‖r‖2 (2.12)

3All vectors of the matrix are linearly independent
4The spectral norm is induced by thel2 vector norm. Thus‖A‖ =

q

λmax(AT A)

5

On the other hand therelative residual is determined by dividing the absolute residual bythe norm of
the right-hand side vectorb. Again for the Euclidian norm:

‖r‖2

‖b‖2
(2.13)

2.2 Direct Solvers

After introducing the mathematical background now the two different categories for solving are investi-
gated:direct andindirect solvers.

Direct solvers use matrix transformation, e.g., into an upper triangular matrix.

2.2.1 Gauss algorithm

One example for a direct solver is theGauss elimination algorithm [2]. This algorithm uses row
addition and subtraction to obtain a triangular matrix. Hence the solution vector can be determined.

A =











a11 a12 ... a1n

a21 a22 ... a1n

...
. . .

...
an1 an2 ... ann











⇒

Â =











a11 a12 ... a1n

0 â22 ... â1n

...
. ..

...
0 ... 0 ânn











Let the vector obtained on the right side be:

b̂ =







b̂1
...

b̂n







The solution vector can be calculated by:

6

xn =
b̂n

ânn

xn−1 =
b̂n−1 − ân−1n · xn

ân−1n−1

...

x1 =
b̂1 − â12 · x2 − · · · − â1n · xn

â11

The Gaussian elimination can be easily implemented:

Algorithm:

Let k, i, j, n ∈ N; A ∈ R
n×n; b, x ∈ R

n

for k = 1, ..., n

exchange columnk with the column weremaxn
j=k|akj|

for i = k + 1, ..., n

for j = k, k + 1, ..., n

aij = akj · ak+1,k − aij · akk

bi = bk · ak+1,k − bi · akk

for k = n, n − 1, ..., 1

for i = k, k + 1, ..., n

xi =
bk − (

∑n
j=k+1 aij · xj)

akk

It usesn(n + 1)/2 divisions,(2n3 + 3n2 − 5)/6 multiplications and(2n3 + 3n2 − 5)/6 subtractions,
which is a total of around2n3/3 floating point operations. Therefore the computational effort of the
Gaussian elimination algorithm isO(n3) and becomes very big for largen. A better performance for
large matrices is given by the indirect solvers introduced in the next section.

2.3 Indirect Solvers

Several indirect solvers are based on iterative methods. Ineach iterative step the initial matrix is used
and the matrix is not changed during the solving process. Onegroup of indirect solvers use theKrylov
subspace. The basic idea of iterative methods based on theKrylov subspace is that in each iteration
step a vector will be multiplied by the matrix to achieve a newvector in the subspace base. To build the
whole subspace thenth multiplication of the matrix needs to benot equal to zero. Iterative methods that
are based on theKrylov subspace are, e.g.,CG, BICGstab andGMRES.

7

2.3.1 Conjugate Gradient

The conjugate gradient (CG) algorithm is the simplestKrylov subspace method [6]. The convergence of
the algorithm is only guaranteed for symmetric positive definite matrices. For other matrices the method
can diverge and another solving algorithm has to be used.

CG:

Constants used:

A ∈ R
n×n; b ∈ R

n

Variables used:

pk , r k , xk , pk+1, rk+1, xk+1 ∈ R
n; ak, bk ∈ R

Algorithm:

Let x0 ∈ R
n

p0 = r0 = b − Ax0

for k = 0, 1, ...

if pk = 0 thenxk is the solution

else

ak =
rT

k r k

pT
k Apk

, xk+1 = xk + akpk

rk+1 = rk − akApk , bk =
rT

k+1r k+1

rT
k r k

pk+1 = rk+1 + bkpk

Each iteration of theCG algorithm applied on a matrix of sizen × n has the following computational
complexity:

• 1 matrix-vector multiplication

• 4 scalar products

• 6n floating point operations

As additional input besides the matrix and right-hand side vector, an initial guess is necessary.

8

2.3.2 Stabilized Bi-Conjugated Gradient

BICGstab (stabilized Bi-conjugated gradient) is an indirect methodto solve a linear equation system
[6]. It is a method based on theKrylov subspace and it is an enhancement ofCG. The matrix to be
treated does not need to be symmetric, but it has to be positive definite. (Note that this fact is in contrast
to CG, where the matrix requires both attributes.)

BICGstab:

Constants used:

A ∈ R
n×n; b, r̂0 ∈ R

n (r̂0
T rk 6= 0 has to be fulfilled in each iteration step)

Variables used:

pk , r k , xk , v, pk+1, rk+1, xk+1, s, t ∈ R
n; ak, bk, wk+1 ∈ R

Algorithm:

Let x0 ∈ R
n

r0 = b − Ax0 6= 0

Let r̂0 ∈ R
n with r̂0

T r0 6= 0

p0 = r0

for k = 0, 1, ...

ak =
r̂0

T rk

r̂0
T Apk

v = Apk , s = rk − akv, t = As

wk+1 =
sT t
tT t

xk+1 = xk + akpk + wk+1s, r k+1 = s− wk+1t

if ‖r k+1‖2 small enough then STOP

else

bk =
r̂0

T rk+1

r̂0
T rk

ak

wk+1

pk+1 = r k+1 + bk(pk − wk+1v)

Each iteration of theBICGstab algorithm applied on a matrix of sizen × n has the following computa-
tional complexity:

• 2 matrix-vector products

• 4 scalar products

• 12n floating point operations

9

The algorithm requires two initial vectors besides the matrix, where the second one has a big influence
on the convergence of the algorithm (the equationr̂0

T rk 6= 0 has to be fulfilled until convergence, or else
the algorithm fails).

2.3.3 Generalized Minimal Residual Method

GMRES (generalized minimal residual method) is an iterative method for solving a linear equation
system [6]. The algorithm builds an orthonormal basis in theKrylov subspace, which can be used to cal-
culate the solution of the linear equation system. The matrix does not have to fulfill any special properties
for the algorithm to work. However if the matrix is ill-conditioned the algorithm may fail. Analytically
the algorithm always converges because in the last iteration step the base of theKrylov subspace is com-
pleted and all vectors can be reached.

GMRES:

Constants used:

A ∈ R
n×n; x0, b ∈ R

n

Variables used:

wk , x, ∈ R
n; i = 1, ..., k : vi ∈ R

n

k = 1, ..., n : sk+1, ck+1, γk ∈ R; β ∈ R; i = 1, ..., k : yi ∈ R

H5 ∈ R
(k+1)×k with elementshij .

Algorithm:

Let x0 ∈ R
n

r0 = b − Ax0

If r0 = 0, then END

v1 = r0
‖r0‖2

γ1 = ‖r0‖2

for k = 1, ..., n

for i = 1, ..., k dohik = vT
i Avk

wk = Avk −
∑k

i=1 hikvi , hk+1,k = ‖wk‖2

for i = 1, ..., k − 1

do

(

hik

hi+1,k

)

=

(

ci+1 si+1

si+1 −ci+1

) (

hik

hi+1,k

)

β =
√

h2
kk + h2

k+1,k; sk+1 =
hk+1,k

β

ck+1 = hkk

β
; hkk = β

γk+1 = sk+1γk; γk = ck+1γk

if γk+1 6= 0, vk+1 = wk
hk+1,k

5This is called theHessenbergmatrix

10

else

for i = k, ..., 1

doyi = 1
hii

(

γi −
∑k

j=i+1 hikyj

)

x = x0 +
∑k

i=1 yivi END

The computational complexity and allocated memory increase linearly with every iteration step (forCG
and BICGstab the calculations are constant in every step). The complexity of GMRES at themth

iteration step are:

• 1 matrix-vector multiplication

• m scalar products

• ≈ 3 · m · n floating point operations

Therefore it is sometimes recommended to restart the algorithm after a certain number of steps with
the actual solution. The restart deletes all the previous base vectors. Hence the base can only have a
restricted number of vectors which may be insufficient to calculate the solution. Like theCG algorithm,
GMRES requires only the initial vector as input besides the matrix.

The Table 2.1 shows a comparison of the computational complexity of the different solvers.

solver matrix-vector scalar products floating point

CG 1 4 6n
BICGstab 2 6 12n
GMRES 1 m ≈3·m·n

Table 2.1: Effort for a matrix with rank n: CG is the simplest solving algorithm and thus has the least op-
erations. The computational effort forBICGstab algorithm is nearly twice the effort forCG. The
complexity forGMRES depends on the iteration step m. The effort for the first few steps is lower than
for the other solvers. But after several steps the effort is much larger than for the other solvers.

2.3.4 Other Krylov Methods

There are several other methods available which are also based on theKrylov subspace. Some are for
computing the solution of a linear equation system; others are for the calculation of the eigenvalues:

• BICG: further enhancement of theCG algorithm for non-symmetric matrices, very unstable
though [6].

• CGS: conjugate gradient squared, is a squared BICG [1].

• QMR: quasi minimum residual method, uses twoKrylov subspaces built by the system matrix
and its transpose [6].

• TFQMR: transpose free quasi minimum residual method, works without the transpose of the
system matrix [1].

11

2.4 Preconditioners

Solving a linear system
Ax = b

by an iterative solver requires a well-conditioned matrixA. Otherwise the solver requires too many iter-
ations or may fail completely. IfA is ill-conditioned then one can multiplyA by another matrixP such
thatP−1A has a smaller condition number thanA [5].

This approach yields the following equation system:

P−1Ax = P−1b

The preconditionerP which is used should approximate the inverse of matrixA as well as possible. This
is because if

P−1 = A−1

then the linear system becomes
Ix = A−1b

The system would be solved by a simple matrix multiplication. In practice the preconditioner is not
multiplied by the matrix directly; in fact, the residual

rk = b − Axk

is multiplied by the preconditioner. This approach reducescomputational complexity because a matrix-
matrix multiplication is more complex than two matrix-vector multiplications.

2.4.1 Jacobi Preconditioner

The simplest way to compute a preconditioner of a matrixA is theJacobipreconditioner. The precondi-
tionerP is the diagonal part ofA:

P = D

pij = aijδij =

{

aij i = j

0 otherwise

p−1
ij =

δij

aii
.

2.4.2 ILU Preconditioner

The Jacobi preconditioner is very simple and may not improve the condition of the matrix enough to
solve all kinds of linear equation systems. In this case a more complex preconditioner, like the incomplete
LU factorization (ILU), is needed. The matrixA is decomposed into a lower6 and an upper7 triangular
matrix A = LU . This approach eases the computation of the inverse ofA because it is easier to invert a
triangular matrix than a full matrix. (This is similar to thebackward solving of the solution vector during
a Gaussian elimination). If the decomposition of the matrixA into LU is only done for a certain number
of matrix elements so thatA ≈ LU , it is called the incomplete LU decomposition [1].

6a matrix containing only zeros above the main diagonal
7a matrix containing only zeros under the main diagonal

12

A simple algorithm forILU :

TheL andU matrices can be stored in one matrixM . The upper part ofM including the diagonal part is
U. The lower part ofM without the diagonal part isL . The diagonal part ofL contains only ones. In the
following algorithm only the nonzero elements of the matrixwill be changed.

for k = 1, ..., n − 1 do

for i = k + 1, ..., n do

mik := mik/mkk

for j = k + 1, ..., n do

mij := mij − mikmkj

The algorithm contains a division by the diagonal elements (pivot elements forILU). Thus zeros in the
main diagonal let the algorithm fail. A variation of theILU preconditioner is theILUT preconditioner
which only keeps entries that are greater than a defined threshold (also called drop tolerance). This is
used to save computation time by ignoring entries close to zero. Another important number is the ratio of
fill, which defines how many nonzeros are allowed in the preconditioner matrix compared to the original
matrix. This can be implemented by:

• Restricting the maximum number of row entries in the matrix

• Restricting the additional entries in a row compared to the original matrix

• Restricting the maximum number of entries in the preconditioner

2.4.3 Incomplete Cholesky Factorization

For a symmetric and positive definite matrix, the incompleteCholesky (IC) factorization can be used
as a preconditioner. It is similar to theILU factorization. The Cholesky factorization is a direct solver
for symmetric matrices. The matrix is decomposed into the product of a lower matrix and its transpose:
A = LL T . The incomplete Cholesky factorization is only done for a limited number of matrix elements
so the product is not exactly the matrixA [6].

A ≈ LL T (2.14)

Algorithm for decomposition intoLDL T (D diagonal matrix):

for i = 1, ..., n

di = aii −
∑i−1

k=1 dkl
2
ik

for j = i + 1, ..., n

dilji = aji −
∑i−1

k=1 dkljklik

The IC preconditioner also can use drop tolerances and ratio of fillsimilar toILU .

13

2.4.4 Other Preconditioners

There are several other preconditioners available:

• Multilayer /Multigrid preconditioners are only usable if the equation system offers an underlying
mesh, e.g., a semiconductor simulation [7]. The preconditioner uses meshes with different num-
bers of elements. Starting with the smallest mesh, a preconditioner can be set up by using each
mesh as a different preconditioner level. These levels willbe added (Multilayer) or multiplied
(Multigrid) to achieve the final preconditioner.

• Other iterative methods can be used as preconditioners, like theGauss-Seidelalgorithm or the
SOR (successive over relaxation) [6].

• Additive Schwarz preconditioner splits the problem domain into smaller domains and adds the
results of these [8].

2.5 Residual

The convergence of the solver is indicated by the residual norm. If the residual norm is small enough, the
solving process is stopped. The two most common methods of calculating the break condition are based
on the absolute residual and on the relative residual. If theabsolute residual is used, the solving process
stops when the norm of the residual gets smaller than the desired accuracy. In case of the 2-norm this
would be

‖r k‖2 < ǫ (2.15)

On the other hand the relative residual can be checked to determine the convergence. The relative residual
is the absolute residual divided by the norm of the right-hand side vectorb.

‖r k‖2

‖b‖2
< ǫ (2.16)

The choice of the convergence method can have an influence on the quality of the solution. If the norm of
the b-vector is much larger than one, the absolute residual should be used as a break condition, because if
the relative residual is used, many solutions are possible which won’t be very accurate, due to the fact that
the residual is divided by a large number which brings it closer to the break accuracy. On the other hand,
if the norm of theb-vector is close to the break accuracy, it would be better to use the relative residual
because using the true residual could cause the initial guess (zero in most cases) to be the solution, which
may not be accurate enough.

Considering this, a good limit value for the decision of the residual would be 1. If the norm ofb is
greater than or equal to 1.0, the absolute residual can be used. The relative residual can be used if the
norm is smaller than 1.0. If it is done the other way around, the iterations taken would be decreased but
the solution might not be very accurate.

14

2.6 Loss of precision

A loss of precision is encountered when the solution vector returned is not usable as a solution for the
linear system because it does not have the desired accuracy (regardless which of the residuals discussed in
Section 2.5 is used). The reason for this problem is that the solvers all calculate a recursive residual which
is updated every iteration step. This residual looks different for each of the three solvers introduced:

CG : rk+1 = rk − akApk (2.17)

BICGstab : rk+1 = s− wk+1t (2.18)

GMRES : γk+1 = sk+1γk, γk+1=̂‖r k+1‖ (2.19)

The residuals of the different solver algorithms have in common that they are all built recursively from
elements built in the current iteration step or in the one before. Therefore round-off errors which occur
every iteration step can become very meaningful and may leadto a totally wrong recursive residual. If
the solver only checks the recursive residual, it can accidently state that the problem is solved even if it
is not. To avoid this problem, the true residual should be checked after the solver is finished:

rk+1 = b − A · xk+1 (2.20)

The problem is not really predictable, but it is possible to deal with it. The reason it occurs is due
to round-off errors during the solving of an ill-conditioned matrix, so it would help to reformulate the
linear equation system. To reformulate the equation systemthe underlying problem must be known and
modified to acquire a matrix which is more solvable1. Only the user knows the problem behind the matrix
and not the automatic solver control, so this is not an optionhere. Another way to deal with the problem
is introduced here. First the residual of the solution obtained is checked. If it is smaller than one, and
close to the desired accuracy, the solution vector can be used as an initial guess for a new solving process.
In this case, the same solver can be used again with the old solution as an initial guess. Additionally the
accuracy for convergence is decreased. It is possible that the loss of precision may occur again, so the
resolving process should be carried out a few times. Each time the accuracy for convergence is decreased
further.

1E.g., if a simulation of a drift diffusion is calculated which has an underlying mesh, the modification of the mesh would
lead to a new equation system. The modification should be donesuch that the new matrix has a better condition than the former.

15

Chapter 3

Related Solver Packages

The following sections provide an overview of theTrilinos package, theQQQ1 package, thePETSc
package, theHypre package and the C++ matrix template library (MTL/ITL)2.

3.1 Trilinos Solver Package

The Trilinos Project is an effort to develop algorithms and enabling technologies within
an object-oriented software framework for the solution of large-scale, complex multi-physics
engineering and scientific problems. A unique design feature of Trilinos is its focus on
packages.[10]

TheTrilinos solver package consists of many different packages like matrix manipulation tools (Epetra,
EpetraExt, Tpetra, Jpetra, Kokkos), preconditioners (AztecOO, IFPACK, ML, Meros), linear solvers
(Epetra, Teuchos, Pliris, AztecOO, Belos, Komplex, Amesos), eigenvalue solvers (Anasazi) and also
nonlinear solvers (NOX, LOCA, MOOCHA, Rythmos) [11]. TheKrylov subspace techniques are used
by the package AztecOO which uses the Epetra package for matrix manipulation.

AztecOO supports the solversCG, CGS (conjugate gradient squared),BICGstab, GMRES and TFQMR
(Transpose Free Quasi-Minimal Residual). There is also a condition number estimator for theCG and
GMRES solvers which estimates the condition number of the preconditioned equation system. This is
connected with a higher cost of performance.

The preconditioners available areJacobi, Neumann, least-square, Gauss-Seidel,IC and a few different
ILU preconditioners. There is also the possibility of using a multilevel preconditioner by using the
package ML.

The Trilinos package stores the matrix in CSR3 format. For the matrix-vector multiplication and the
scalar product, BLAS4 functions are used.

1The QQQ solver package was developed at the Institute of Microelectronics, Vienna University of Technology
2some of the packages useMPI (message passing interface, a standard that allows communication among many different

computers). For the sake of simplicity theMPI support has been deactivated [9].
3see Section B.1.1
4The BLAS (Basic Linear Algebra Subprograms) programming interface offers various functions for the computation of

matrix products, matrix-vector products or scalar products [12].

16

3.1.1 CG

Thex-vector used for theCG algorithm can be used as an initial guess. If this is not desired, thex-vector
should be set to zero. TheCG algorithm ofTrilinos has several integrated break conditions which are
not mentioned in Section 2.3.1. The solving process stops ifthe dot product ofp andAp is less than
zero, indicating that the matrix is not positive definite:

1 i f (p a p d o t < 0 | | AZ breakdownf (N, p , ap , p ap do t , p r o c c o n f i g)){
2 //possible breakdown
3 }

Additionally, it stops if these two vectors are under a certain absolute threshold because then their dot
product would be close to zero showing, that they are orthogonal. Another possible break point is if the
new calculated dot product of the residual is under a defined threshold:

1 i f (f a b s (r z d o t) < brkdown to l){
2 //possible breakdown
3 }

3.1.2 BICGstab

The x-vector can be used as an initial guess; if this is not intended, thex-vector should be set to zero.
The vectorr̂0 can be set tor0; otherwise there is an option to generate a random vector. The Trilinos
package has more checks implemented than the algorithm introduced in Section 2.3.2. Every time there
is a division, the divisor is checked to see if it is under a certain threshold. This is done in two different
ways. The valuesrhon (= r̂0

T rk , see Section 2.3.2) andsigma(= r̂0
T Apk , see Section 2.3.2)are checked

if they are smaller than the valuebrkdowntol (which is initialized withDBL EPSILONof C++):

1 i f (f a b s (rhon) < brkdown to l) {
2 i f (. . .)
3 b r k d o w n w i l l o c c u r = AZ TRUE;
4 e l s e brkdown to l = 0 .1 ∗ f a b s (rhon) ;
5 }

Line 2 in the code snippet above holds a check if the two vectors leading to the valuerhonare orthogonal.
The check is valid if the following statement is true:

|vT w| < 100 · ‖v‖2‖w‖2 · DBL EPSILON

If they are not orthogonal thebrkdowntol is decreased else a flag is set that a breakdown will occur.
Analogous the check of sigma is implemented, only difference is that the iteration is aborted immediately
instead of setting a flag:

1 i f (f a b s (s igma)< brkdown to l) {
2 i f (. . .)) {
3 . . .
4 re tu rn ;
5 } e l s e brkdown to l = 0 .1 ∗ f a b s (s igma) ;
6 }

For the valuedot vec[1] which contains the scalar product oftT t (see Section 2.3.2) a different check is
done. The value is analyzed if it is smaller than theDBL MIN of C++.

1 i f (f a b s (d o t v e c [1]) < DBL MIN) {
2 omega = 0 . 0 ;
3 b r k d o w n w i l l o c c u r = AZ TRUE;
4 } e l s e omega = d o tv e c [0] / d o t v e c [1] ;

17

3.1.3 GMRES

TheGMRES algorithm ofTrilinos checks if the matrixH (see Section 2.3.3) is ill-conditioned. If this
is the case the solving process is aborted. The reasons that the matrix is ill-conditioned can be caused by
bad zero pivot handling of the preconditioner. Also this canappear if the matrix is singular5.

3.1.4 Jacobi

The only option that can be set for theJacobipreconditioner is the number ofJacobisteps (Default: 1).

3.1.5 ILU

The drop tolerance of theILU factorization can be set (Default: 0.0) and also the ratio offill compared
to the original matrix can be set (Default: 3). If a zero pivotis encountered, the preconditioner uses the
value rownorm, which is calculated from the values of the row, divided by the number of values and
multiplied by the drop tolerance (if it is not equal to zero):

3.1.6 IC

The IC preconditioner ofTrilinos offers the same options as theILU preconditioner and thus has the
same default values.

3.1.7 Loss of Precision

Trilinos is the only package that warns if the solution is not accurateand thus a loss of precision has
occurred.

3.2 PETSc Solver Package

PETSc includes a large suite of parallel linear and nonlinear equation solvers that are
easily used in application codes written in C, C++, Fortran and now Python.[13]

PETSc (Portable, Extensible Toolkit for Scientific Computation)[14]: supports theKrylov subspace
methods Richardson,CG, BICG, GMRES, BICGstab, CGS, two versions of TFQMR, and several
others. The preconditioners provided areJacobi, Block Jacobi, SOR,incomplete Cholesky, ILU , and
additive Schwarz. It has the ability to use linear solvers aspreconditioners and the option to combine
different preconditioners. For this workCG, BICGstab andGMRES were used withJacobi, ILU and
IC preconditioners.

PETScstores the matrix in a CSR6 format and uses BLAS functions to calculate the scalar product. For
the matrix-vector multiplication an internal function is used.

5A matrix is singular if its inverse does not exist
6see Section B.1.1

18

3.2.1 CG

TheCG algorithm can be filled with an initial guess. To prevent a user from accidentally providing an
initial guess, the usage of an initial guess must be activated explicitly. TheCG algorithm breaks if the
beta value is less than zero indicating that the preconditioned matrix is not positive definite:

1 e l s e i f (b e t a < 0 . 0) {
2 ksp−>r e a s o n = KSPDIVERGED INDEFINITE PC ;
3 i e r r = P e t s c I n f o (ksp , ” d i v e r g i n gdue t o i n d e f i n i t e p r e c o n d i t i o n e r\n”) ;CHKERRQ(i e r r) ;
4 }

Another breakdown can be reached if the valuedpi (equals the multiplicationpT
k Apk) is less than zero

indicating that the matrix is indefinite or negative definite:

1 i f (P e t s c R e a l P a r t (dp i)<= 0 . 0) {
2 ksp−>r e a s o n = KSPDIVERGED INDEFINITE MAT ;
3 i e r r = P e t s c I n f o (ksp , ” d i v e r g i n gdue t o i n d e f i n i t e or n e g a t i v e d e f i n i t e m a t r i x\n”) ;
4 CHKERRQ(i e r r) ;
5 break ;
6 }

PETScalso checks to see if the scalar product yields a valid number:

1 i f P e t s c I s I n f O r N a n S c a l a r (b e t a)
2 SETERRQ(PETSCERR FP , ” I n f i n i t e or not−a−number g e n e r a t e d i n do t p r o d u c t ”) ;

3.2.2 BICGstab

For theBICGstab an initial guess can be set if the initial guess option ofPETScis activated. The vector
r̂0 is set tor0. PETScavoids divisions by zero by checking divisors to see if they are zero:

1 i f (d1 == 0 . 0) SETERRQ(PETSCERR PLIB , ” D iv ide by ze ro ”) ;

The algorithm breaks if the valuerho (scalar product of the vector̂r0 and the residual vector of the current
iteration step) equals zero.

1 i f (rho == 0 . 0) {
2 ksp−>r e a s o n = KSPDIVERGED BREAKDOWN;
3 break ;
4 }

3.2.3 GMRES

TheGMRES code does not have significant changes to the algorithm in Section 2.3.3.

3.2.4 ILU

ThePETScpackage offers many functions to adjust theILU factorization. The zero pivot limit can be
defined (Default:1 · 10−12) and also how the preconditioner should act if it is encountered (e.g., shifting
of nonzero, reordering of matrix etc.). The fill amount can beset via a factor that indicates how big
the preconditioner is in comparison to the original matrix (Default: 1). Also a drop tolerance for matrix
elements can be set to keep only values over the defined tolerance.

19

3.2.5 IC

The IC preconditioner uses the same default options as theILU preconditioner.

3.2.6 Divergence tolerance

PETScis the only package offering a divergence tolerance value. If the residual becomes larger than this
value, the solving process is aborted (Default:1 · 105).

3.3 Iterative Template Library/Matrix Template Library

The matrix template library 4 (MTL4) is currently under development by Peter Gottschling and Andrew
Lumsdaine [15]. The latest version is only available from a public subversion repository and may be
in an instable state (https://svn.osl.iu.edu/tlc/trunk/mtl4/trunk mtl4). Nevertheless the library is worth
testing and provides some iterative solving methods. Theseare in the iterative template library (ITL)
which is part of MTL4. At the moment there areCG, BICG andBICGstab solvers available andJacobi,
ILU andIC preconditioners.

ITL stores the matrix in a CSR7 format and has internal functions for calculating the scalar product
and matrix-vector multiplication. The following sectionsdiscuss the difference in code adaptation to the
algorithms in Sections 2.3.1 and 2.3.2.

3.3.1 CG

Thex-vector is used as an initial guess on input and as a solution vector on output. There are no signif-
icant changes to the algorithm in Section 2.3.1. The only check that is done is after each iteration loop
which is used to break if the residual is lower than the break accuracy.

3.3.2 BICGstab

The x-vector is used as an initial guess on input and as a solution vector on output. For the vector̂r0

the vectorr0 is used. Two additional checks are implemented in the code which are not in the algorithm
shown in Section 2.3.2. First the scalar product ofr̂0

T r0 is checked if it is equal to zero.

1 r ho 1 = do t (r t i l d e , r) ;
2 i f (r ho 1 == S c a l a r (0 .)) {
3 i t e r . f a i l (2 , ” b i cg breakdown #1 ”) ;
4 break ;
5 }

Second the valueomega((sT t)/(tT t)) is checked if is equal to zero:

1 i f (omega == S c a l a r (0 .)){
2 i t e r . f a i l (3 , ” b i cg breakdown #2 ”) ;
3 break ;
4 }

7see Section B.1.1

20

3.3.3 Jacobi

In the code for theJacobi preconditioner there is no check to see if the value from which the reciprocal
is built is zero:

1 f o r (s i z e t y p e i = 0 ; i < num rows (A) ; ++ i)
2 i n v d i a g [i]= r e c i p r o c a l (A[i] [i]) ;
3 }

3.3.4 ILU

TheILU code checks whether all main diagonal elements exist; it does not check whether they are close
or equal to zero. There are no options which can be used for this preconditioner.

3.3.5 IC

There are no additional options which can be used for this preconditioner. The implementation of the
code checks whether all diagonal elements are present, but it does not check whether they are zero or
smaller than a certain limit.

3.4 QQQ Solver Package

TheQQQ Solver was developed at the University of Technology in Vienna by Claus Fischer and Stephan
Wagner [16]. It supports a direct solver and the indirect solvers BICGstab and GMRES. The only
preconditioner available is anILU factorization. It also has the possibility to pre-eliminate some critical
rows and solve them with a direct solver. There is also a mechanism for scaling of the matrix elements.

One important difference from the other packages is that thesolver always uses the zero vector as the
initial guess. The user can not specify another initial guess. It is also the only package that uses the
MCSR8 matrix format. Also it is the only package that can not switchbetween relative and absolute
residual, because it only provides the relative residual.

The package uses internal functions for the calculation of scalar products and matrix-vector products.

3.4.1 BICGstab

The initial guess for the algorithm is set to zero. The vectorr̂0 is set tor0. During the solving process
the functionqqqFromZero(double , double) is used several times to prevent division by zero. The function
returns the maximum of the two given double values. The second double value is a reference value which
will not be undercut. It is initialized with:

1 Real con s t mins i ze
2 = Real (1 . 0 e6) ∗ DBL MIN ;

One example of the usage is:

1 Number con s t d o t r t v = qqqDotPrd (n , r0 , v)) ;
2 a lpha = rho / qqqFromZero (d o t r t v , m ins i ze) ;

8see Section B.1.2

21

To avoid division by zero, the solving process is kept up and the solver may be able to find a solution
where the other packages already gave up.

3.4.2 GMRES

TheGMRES solver does not have significant changes to the algorithm introduced in Section 2.3.3.

3.4.3 ILU

Two values can be set for theILU factorization. First the drop tolerance of the factorization can be
defined to specify the limit at which a value is dropped (default: 1e-9). The second value isfillMax
which stands for the allowed number of additional elements in each row (default: -1, which indicates
that no additional element is allowed).

If a zero pivot is encountered, the preconditioning is aborted and the solving is stopped. However the
ILU algorithm uses an internal sort function so that a zero pivotis rarely encountered, even if there are
several zeros on the main diagonal of the initial matrix.

3.4.4 Residual for Convergence

QQQ only checks the convergence using the relative residual. There is no way to switch to the absolute
residual, so if this is desired, the residual has to be modified to make the package useful for that case.
The solving accuracy can be divided by the norm of the right-hand side vector. The package still will use
the relative residual as a break condition but the new accuracy will simulate the absolute residual of the
former accuracy:

‖r k‖2 ≤ ǫ (3.1)

⇒
‖r k‖2

‖b‖2
≤ ǫ/‖b‖2 (3.2)

⇒

‖r k‖rel ≤
ǫ

‖b‖2
(3.3)

3.4.5 Pre-elimination, Sorting and Scaling

TheQQQ package offers additional algorithms for improving the condition number of a given matrix. If
the flags for pre-elimination, sorting and scaling are set, automatic versions of these algorithms are used.
During the tests of the matrices it also was tested if they have much influence on the performance. The
default values of these implementations did not give a significant increase in performance and the same
results at nearly the same speed have been reached, so these features have not been investigated further.

22

3.5 Hypre Solver Package

Hypre is a library for solving large, sparse linear systems of equations on massively
parallel computers.[17]

Hypre stores the matrix in CSR9 format and uses internal functions to calculate scalar product and
matrix-vector multiplication.Hypre supports the indirect solversCG, BICGstab andGMRES. The
ILU preconditioner is the only introduced preconditioner thatis provided by the package.

3.5.1 CG

The CG algorithm ofHypre can be started with an initial guess, which is stored in thex-vector given
to the algorithm. If this is not intended, thex-vector should be set to zero. TheCG algorithm breaks if
the gamma (gamma stands for the scalar product of the residual and the preconditioned residual) value
is under a certain threshold (also described in the originalcomment):

1 i f ((gamma<1.0e−292) && ((−gamma)<1.0e−292)) {
2 h y p r e e r r o r (HYPREERRORCONV) ;
3 break ;
4 }
5 /* ... gamma should be >=0. IEEE subnormal numbers are < 2**(-1022)=2.2e-308
6 (and >= 2**(-1074)=4.9e-324). So a gamma this small means we’re getting
7 dangerously close to subnormal or zero numbers (usually if gamma is small,
8 so will be other variables). Thus further calculations risk a crash.
9 Such small gamma generally means no hope of progress anyway. */

3.5.2 BICGstab

The BICGstab algorithm can be filled with an initial guess, which is storedin the x-vector. If this is
not intended, thex-vector should be set to zero. The vectorr̂0 is set tor0. TheBICGstab algorithm of
Hypre breaks if the valuetemp(scalar product of the residual and the preconditioned residual) is under
a certain threshold avoiding a division by a number close to zero.

1 i f (f a b s (temp) >= epsmac) //epsmac = 1.e-128
2 a lpha = r e s / temp ;
3 e l s e {
4 p r i n t f (”BiCGSTAB broke down ! ! d i v i d e by near ze ro\n”) ;
5 re tu rn (1) ;
6 }

Another breakdown occurs if the variableres(the scalar product of the vector̂r0 and the residual vector
of the current iteration step) falls under a defined threshold, avoiding a division by a number close to
zero.

1 i f (f a b s (r e s) >= epsmac)
2 b e t a = 1 . 0 / r e s ;
3 e l s e {
4 p r i n t f (”BiCGSTAB broke down ! ! r e s =0 \n”) ;
5 re tu rn (2) ;
6 }

A breakdown which often occurs on small matrices, is if thegamma(equalswk+1 in Section 2.3.2) value
is smaller than a defined limit.

9see Section B.1.1

23

1 i f (f a b s (gamma)>= epsmac)
2 (∗ (b i c g s t a b f u n c t i o n s−>S c a l e V e c t o r)) ((b e t a∗ a lpha / gamma) , p) ;
3 e l s e {
4 p r i n t f (”BiCGSTAB broke down ! ! gamma=0 \n”) ;
5 re tu rn (3) ;
6 }

3.5.3 GMRES

TheGMRES algorithm has no significant changes from the algorithm introduced in Section 2.3.3.

3.5.4 ILU

For theILU preconditioner the drop tolerance can be set to raise the speed of the preconditioning process
(default: 0.0001). The second parameter that can be set is the maximum number of elements each row
of the preconditioner matrix can have (default: 20).

Table 3.1 gives an overview of the introduced packages.

Trilinos PETSc ITL QQQ Hypre

CG YES YES YES NO YES
BICGstab YES YES YES YES YES
GMRES YES YES NO YES YES
Jacobi YES YES YES NO NO
ILU YES YES YES YES YES
IC YES YES YES NO NO
Matrix-
format

CSR CSR CSR MCSR CSR

residual
norm

abs/rel abs/rel abs/rel rel abs/rel

initial
guess

YES YES YES NO YES

loss of
precision YES NO NO NO NO
handling
scalar
product

BLAS BLAS internal internal internal

matrix-vector
product

BLAS internal internal internal internal

Table 3.1: Packages Overview

24

Chapter 4

Diagnostic Tool

For the development of an automatic solver control which candecide which solvers and preconditioners
are used, there need to be some matrix properties on which thedecisions are based. Some kind of
diagnostic tool is necessary which can find out the importantfacts of a matrix. This tool needs to be fast
enough so that its use is relevant.

4.1 Matrix and Vector Container

4.1.1 Sparse Matrix Storage

The first thing that is needed for a matrix is a buffer where it is stored. The intended use was as inter-
mediate storage between the reading of the matrix and the assembling of the specific internally stored
matrices of the solvers (later it became a part of the diagnostic tool, too). This storage type needs the
following properties:

1. only store the non-zeros

2. no order required for inserting of elements

3. possibility to read out only the nonzero elements

4. stores the dimension of the full matrix

For this purpose the boost multiindex1 containers library was used. The advantage of the multi-index
container is that it is possible to order the objects inserted by more than one order (e.g., a matrix can be
ordered by rowand by column index). This makes it possible to traverse the objects of the container
differently. For the purpose of a sparse matrix the objects stored are the nonzero elements which have a
row index, a column index and a value (e.g.,double). The following struct represents that:

1 s t r u c t m a t r i x e l e m e n t {
2 i n t row ;
3 i n t column ;
4 double va lue ;
5 . . .
6 } ;

1Boost Multi Index (http://www.boost.org/doc/libs/139 0/libs/multi index/doc/index.html)

25

A multi-index container which can be ordered by row and column index can be defined by:

1 t yp ed e f m u l t i i n d e x c o n t a i n e r< m a t r i x e l e m e n t ,
2 i ndexed by<orde red non un ique<tag<row> ,
3 BOOSTMULTI INDEX MEMBER(m a t r i x e l e m e n t ,i n t , row)> ,
4 orde red non un ique<tag<column> ,
5 BOOSTMULTI INDEX MEMBER(m a t r i x e l e m e n t ,i n t , column)> >

6 > m a t r i x s e t r e a l ;

The indices are ordered non-unique which indicates that an index can be inserted twice else for each row
and column only one element would be allowed.

To add some error handling to the matrix container anotherstruct is defined which also holds the dimen-
sion of the matrix, if it is initialized and a function to insert values into the matrix:

1 s t r u c t s p a r s e m a t r i x {
2 i n t dim ;
3 m a t r i x s e t r e a l d a t a ;
4 bool i n i t i a l i z e d ;
5

6 void i n i t i a l i z e (i n t dim) { . . .}
7

8 s p a r s e m a t r i x (i n t dim){
9 i n i t i a l i z e (dim) ;

10 }
11

12 void i n s e r t v a l u e (i n t i , i n t j , double v a r i a b l e){
13 i f (i n i t i a l i z e d) {
14 i f ((i <dim)&&(j >=0)&&(i <dim)&&(j >=0))
15 d a t a . i n s e r t (m a t r i xe l e m e n t<double>(i , j , v a r i a b l e)) ;
16 e l s e throw MATRIX INSERTWRONG INDEX;
17 } e l s e throw MATRIX NOT INITIALIZED;
18 }
19

20 i n t g e t e l e m e n t s () {
21 re tu rn d a t a . s i z e () ;
22 }
23

24 void p r i n t m a t r i x () { . . .}
25 i n t g e t d i m e n s i o n (){
26 re tu rn dim ;
27 }
28 } ;

The container does not explicitly circumvent double insertion of a matrix element, however this may lead
to wrong solutions depending on the usage of the matrix and should be avoided.

There are two ways to read out the elements of the matrix. Theycan be accessed row-wise or column-
wise which is indicated by the following code snippet:

1 t yp ed e f m a t r i x s e t r e a l : : index<row> : : t ype m a t r i x s e t r e a l b y r o w ;
2 t yp ed e f m a t r i x s e t r e a l : : index<column> : : t ype m a t r i x s e t r e a l b y c o l u m n ;

26

To access them an iterator can be used, e.g., row-wise reading of elements and printing to terminal:

1 s p a r s e m a t r i x m a t r i x (1 0 0 0) ;
2 . . .//insert elements
3 m a t r i x s e t r e a l b y r o w : : i t e r a t o r i t e r r o w ;
4 f o r (i t e r r o w = m a t r i x . d a t a . get<0>(). beg in () ;
5 i t e r r o w != m a t r i x . d a t a . get<0>(). end () ; ++ i t e r r o w) {
6 s t d : : cou t << (∗ i t e r r o w) . row << s t d : : end l ;
7 s t d : : cou t << (∗ i t e r r o w) . column << s t d : : end l ;
8 s t d : : cou t << (∗ i t e r r o w) . va lue << s t d : : end l ;
9 }

Such a matrix format can now be used as intermediate storage between matrix reading and choosing the
solver package where the equation system will be solved. Theadvantage of this format is that one can
insert the elements of a matrix randomly. For other sparse matrix formats one needs to insert elements
row wise or column wise. Also it is easy to traverse the nonzero elements of this matrix row- or column-
wise. The disadvantages are that other formats may need lessmemory and that one needs to avoid
multiple insertions of elements with the same indices.

4.1.2 Vector Storage

To store the right-hand side vector and the solution vector asimple class has been implemented that
stores the dimension of the vector, if it is initialized and the vector elements. These are stored in a vector
of the standard template library. The solution vector of a linear equation system is a dense vector so the
format is dense.

1 c l a s s d e n s e v e c t o r {
2 p r i v a t e :
3 i n t dim ;
4 bool i n i t i a l i z e d ;
5 s t d : : vec to r<double> d a t a ;
6 . . .
7 p u b l i c :
8

9 d e n s e v e c t o r (i n t dimens ion){ . . .}
10

11 void i n s e r t v a l u e (i n t row , double va lue){ . . .}
12

13 double g e t v a l u e (i n t row){ . .}
14 . . .
15 }

The vector can be filled with the functioninsert value (...) and an element can be read out byget value (...).

27

4.2 Matrix Entries

One interest lies in the relation of the numbers of diagonal and non-diagonal entries. E.g., a matrix with
50% diagonal elements may be perfect for theJacobi preconditioner. For that reason the matrix storage
type introduced (4.1.1) can be used to traverse through the elements and find out the numbers of diagonal
and non-diagonal entries:

1 s p a r s e m a t r i x m a t r i x ;
2 . . .//fill matrix
3 m a t r i x s e t r e a l b y r o w : : i t e r a t o r i t e r ;
4 f o r (i t e r = m a t r i x . d a t a . get<0>(). beg in () ;
5 i t e r != m a t r i x . d a t a . get<0>(). end () ; + + i t e r) {
6 i f ((∗ i t e r) . row != (∗ i t e r) . column)//check for diagonal entry
7 n o n d i a g o n a l e l e m e n t s ++;
8 e l s e {
9 d i a g o n a l e l e m e n t s ++;

10 }
11 }

With the number of non-zeros and diagonal elements, the diagonal-dominance (the diagonal elements
percentage of all non-zeros) can be calculated.

Other interesting values are the average of the diagonal elements and the average of the non diagonal
elements. If the diagonal average is greater than one while the average of the non diagonal elements
is small (< 1), theJacobi preconditioner may be suitable, because it guarantees onlyones in the main
diagonal. If all of the non-diagonal elements are very small, this will result in eigenvalues close to one,
according to the Gershgorin theorem in Section 2.1.5. The diagonal average and non diagonal average
can be calculated within the same loop as the diagonal elements:

1 { //traverse all matrix elements
2 i f ((∗ i t e r) . row != (∗ i t e r) . column)//check for diagonal entry
3 va lue += s t d : : f a b s ((∗ i t e r) . va l ue) ;
4 e l s e {
5 d i a g o n a l v a l u e += s t d : : f a b s ((∗ i t e r) . va l ue) ;
6 }
7 }
8 //average diagonalvalue
9 d i a g o n a l v a l u e = d i a g o n a l v a l u e / boos t : : l e x i c a lc a s t<double>(d i a g o n a l e l e m e n t s) ;

10 //average nondiagonalvalue
11 va lue = va lue / boos t : : l e x i c a lc a s t<double>(nonzeros−d i a g o n a l e l e m e n t s) ;

Also the maximum, minimum, absolute maximum and absolute minimum can be calculated.

4.3 Symmetry Check

The IC preconditioner is only available for symmetric matrices (see Section 2.4.3). A check whether
the matrix is symmetric can decide if the preconditioner maybe useable or not. TheIC is a necessary
preconditioner for the use of theCG solver, which needs a symmetric matrix for convergence.

The symmetry check can be implemented with the introduced sparse matrix storage format. The matrix
is traversed simultaneously by a row and a column iterator. For a symmetric matrix the iterators always
point on two values that are symmetric to each other (if no zeros have been added to the matrix). These
values can used to determine if the matrix is symmetric. If the two values are not symmetric to each other
one iterator tries to find the symmetric value of the other iterator. The following code snippet shows the
symmetry check without the search for a symmetric value:

28

1 m a t r i x s e t r e a l b y r o w : : i t e r a t o r i t e r r o w = m a t r i x . d a t a . get<0>(). beg in () ;
2 m a t r i x s e t r e a l b y c o l u m n : : i t e r a t o r i t e r c o l = m a t r i x . d a t a . get<1>(). beg in () ;
3

4 f o r (; (i t e r r o w != m a t r i x . d a t a . get<0>(). end ()) &&
5 (i t e r c o l != m a t r i x . d a t a . get<1>(). end ()) ;
6 ++ i t e r r o w ,++ i t e r c o l) {
7 i f ((∗ i t e r r o w) . row != (∗ i t e r r o w) . column){//check if element is on main diagonal
8 i f ((∗ i t e r c o l) . column ==(∗ i t e r r o w) . row){
9 i f ((∗ i t e r c o l) . row ==(∗ i t e r) . column){

10 i f (s t d : : f a b s ((∗ i t e r r o w) . va lue−(∗ i t e r c o l) . va l ue)>SYMMETRIC TOLERANCE) {
11 symmet r i c=f a l s e ;
12 break ;
13 } e l s e con t inue;
14 } e l s e{
15 . . .//find symmetric element
16 }
17 } e l s e {
18 . . .//find symmetric element
19 }
20 }
21 }

4.4 Positive Definite Matrices

CG andBICGstab require positive definite matrices to ensure convergence. The Gershgorin theorem
can be used to estimate the minimum and the maximum eigenvalue or at least closed sets in which they
are found. If the set containing the smallest eigenvalue is in the positive area of real values, the matrix
is positive definite. If it overlaps with the negative area one may decide that it is nearly positive definite
if its greater part is in the positive area. If the matrix is non-symmetric the symmetric part needs to be
built first (according to Section 2.1.4). This is done with the help of the row and column iterators of the
matrix which build a new matrix (its name is analyzer in the following code snippets).

1 s p a r s e m a t r i x a n a l y z e r (m a t r i x . g e td i m e n s i o n ()) ;
2

3 m a t r i x s e t r e a l b y r o w : : i t e r a t o r i t e r r o w = m a t r i x . d a t a . get<0>(). beg in () ;
4 m a t r i x s e t r e a l b y c o l u m n : : i t e r a t o r i t e r c o l = m a t r i x . d a t a . get<1>(). beg in () ;
5

6 whi le ((i t e r r o w != m a t r i x . d a t a . get<0>(). end ())&&
7 (i t e r c o l != m a t r i x . d a t a . get<1>(). end ())){
8 . . .//build symmetric part
9 }

Thewhile-loop is done until both iterators reached the end. If the iterators point on two symmetric values
following if -branch is valid:

1 i f (((∗ i t e r r o w) . row==(∗ i t e r c o l) . column) && ((∗ i t e r c o l) . row==(∗ i t e r r o w) . column)){
2 i f ((∗ i t e r c o l) . column<=(∗ i t e r c o l) . row)
3 a n a l y z e r . i n s e r tv a l u e ((∗ i t e r c o l) . row , (∗ i t e r c o l) . column ,
4 ((∗ i t e r r o w) . va lue + (∗ i t e r c o l) . va l ue)∗ 0 . 5) ;
5 i f (((∗ i t e r r o w) . row != (∗ i t e r r o w) . column)&& ((∗ i t e r r o w) . column>= (∗ i t e r r o w) . row))
6 a n a l y z e r . i n s e r tv a l u e ((∗ i t e r r o w) . row , (∗ i t e r r o w) . column ,
7 ((∗ i t e r r o w) . va lue + (∗ i t e r c o l) . va l ue)∗ 0 . 5) ;
8 i t e r r o w ++;
9 i t e r c o l ++;

10 }

29

To avoid a double insertion of an element on the main diagonalthe second insertion is only made if row
and column index are different. Additionally the column iterator only inserts an element if he points on
the lower part of the matrix. Analogous the row iterator onlyinserts an element if he points on the upper
part of the matrix. If the iterators would not be restricted that way each element would be inserted twice.

The two otherif -branches are valid if one of the iterators did not traverse as far as the other. Then
this iterator is increased till it catches up with the other one (additionally all elements it passes need to
inserted as well). The following code snippet will introduce this for the row iterator:

1 e l s e i f (((∗ i t e r r o w) . row<(∗ i t e r c o l) . column) | |
2 (((∗ i t e r r o w) . row==(∗ i t e r c o l) . column)&&
3 ((∗ i t e r c o l) . row > (∗ i t e r r o w) . column))) {
4 i f ((∗ i t e r r o w) . column>= (∗ i t e r r o w) . row){
5 a n a l y z e r . i n s e r tv a l u e ((∗ i t e r r o w) . row , (∗ i t e r r o w) . column ,
6 (∗ i t e r r o w) . va lue∗ 0 . 5) ;
7 a n a l y z e r . i n s e r tv a l u e ((∗ i t e r r o w) . column , (∗ i t e r r o w) . row ,
8 (∗ i t e r r o w) . va lue∗ 0 . 5) ;
9 }

10 i t e r r o w ++;
11 }

Analogous the code part for the column iterator can be implemented.

After the symmetric part is build the the Gershgorin’s discswhich contain the eigenvalues can be calcu-
lated. Three vectors (of the introduced dense vector format) are used to store the central point, the row
radius and the column radius of each disc:

1 d e n s e v e c t o r r a d i i r o w (m a t r i x . g e t d i m e n s i o n ()) ;
2 d e n s e v e c t o r r a d i i c o l (m a t r i x . g e t d i m e n s i o n ()) ;
3 d e n s e v e c t o r c e n t r a l p o i n t s (m a t r i x . g e td i m e n s i o n ()) ;

These are filled by traversing all elements of the analyzer matrix first row-wise to get the central points
and the row radii.

1 //traverse row-wise
2 i f ((∗ i t e r r o w) . row ==(∗ i t e r r o w) . column)
3 c e n t r a l p o i n t s . i n s e r t v a l u e ((∗ i t e r r o w) . row , (∗ i t e r r o w) . va lue) ;
4 e l s e
5 r a d i i r o w . i n s e r t v a l u e ((∗ i t e r r o w) . row ,
6 r a d i i r o w . g e t v a l u e ((∗ i t e r r o w) . row)+ s t d : : f a b s ((∗ i t e r r o w) . va lue)) ;

Then column-wise to determine the column radii.

1 //traverse column-wise
2 i f ((∗ i t e r c o l) . row != (∗ i t e r c o l) . column)
3 r a d i i c o l . i n s e r t v a l u e ((∗ i t e r c o l) . column ,
4 r a d i i c o l . g e t v a l u e ((∗ i t e r c o l) . column)+ s t d : : f a b s ((∗ i t e r c o l) . va l ue)) ;

After the three vectors are filled the two closed sets which contain the smallest and largest eigenvalue
can be built. The important set for the definite is that which contains the smallest eigenvalue:

30

1 f o r (i n t i =1 ; i < c e n t r a l p o i n t s . g e t d i m e n s i o n () ; ++ i){
2 double bu f fe r1 , bu f f e r2 , r a d i u s ;
3

4 i f (r a d i i c o l . g e t v a l u e (i)> r a d i i r o w . g e t v a l u e (i))
5 r a d i u s = r a d i i c o l . g e t v a l u e (i) ;
6 e l s e
7 r a d i u s = r a d i i r o w . g e t v a l u e (i) ;
8

9 b u f f e r 1 = c e n t r a l p o i n t s . g e t v a l u e (i)+ range ;
10 b u f f e r 2 = c e n t r a l p o i n t s . g e t v a l u e (i)− r ange ;
11

12 //check if the old maxima and minima of the smallest eigenvalue set are
13 //dominating the new values
14 i f (bu f f e r1<mine igenva luemax)
15 mine igenva luemax= b u f f e r 1 ;
16 i f (bu f f e r2<mine igenva luemin)
17 mine igenva luemin = b u f f e r 2 ;
18 }

After the set for the smallest eigenvalue has been calculated, the decision whether the matrix is positive
definite can be made. Therefore the minimum of the smallest eigenvalue needs to be positive to ensure
the matrix is positive definite. If it is negative, but the greater part of the set is withinR+, then one can
state that the matrix “nearly positive definite”. This statement will also be used in the next chapter if the
matrix is only qualified as may be positive definite.

4.5 Condition Number

The condition number would be very helpful in deciding whichsolver or preconditioner may be used.
The problem is that it is difficult to estimate before the solving process. There are some solvers which
can estimate the condition number during the solving process, but the problem is that does not really help
in the selection of the solver (the condition number is readyafter the solving process has been finished).

31

Chapter 5

Matrices for Solver Testing

Several matrices have been used for testing of the solver packages and some of their different solvers.
The break condition of the residual has been set to1e−12. The relative residual was used for the test run
becauseQQQ offers no explicit check for the absolute residual. The maximum number of iterations was
set to the rank of the tested matrix. For the non-symmetric matricesJacobi and ILU preconditioners
have been tested. For symmetric matricesIC has been used as well. The value for theGMRES restart
has been set to 1000. The results of the tests are listed in appendix A.

This chapter tries to detect the strengths and expose the weaknesses of the different code implementations
of the solving and preconditioning algorithms. Several matrix properties are investigated to see if they
may give a hint which solving options fit them. For the preconditioners, the default options the packages
offer have been used, to see how the different options influence the solving process. The solving and
assembly times were measured with a timer provided by the Epetra package ofTrilinos . For the time
of analysis the average value of a series of one hundred measured time values for each matrix was
determined. The assembly time is the average value of a series of twenty time values. The results of the
solving speed measurements are only discussed if the matrixhas a rank greater than 10.

The implemented solver interface for each package has been compiled with the options: -pipe -pedantic
-Wall -O3 -s. The option -03 has been used to guarantee full optimization by the compiler so each code
can perform at its best. The solvers tested in these sectionsare:

• Trilinos package; Version 9.0.1

Solvers:CG, BICGstab andGMRES

Preconditioners: none,Jacobi, ILU andIC

• PETScpackage; Version 3.0.0-p1

Solvers:CG, BICGstab andGMRES

Preconditioners: none,Jacobi, ILU andIC

• ITL package; Version mtl4 alpha-1

Solvers:CG andBICGstab

Preconditioners: none,Jacobi, ILU andIC

• Hypre package; Version 2.4.0b

Solvers:CG, BICGstab andGMRES

Preconditioners: none andILU

32

• QQQ package:

Solvers:BICGstab andGMRES

Preconditioners: none andILU

5.1 Tridiagonal Matrices

A good example of a tridiagonal matrix is the one obtained by the finite difference one-dimensional
Laplace problem [11]. This matrix will be investigated in different sizes, starting with rank 2 (although
the rank 2 version is not a real tridiagonal matrix). The matrix is symmetric and positive definite. It was
basically used to test the solvers on small matrices, to see how they perform.

5.1.1 Rank 2

The rank 2 version of the matrix has the form:

A =

[

2 −1
−1 2

]

Matrix Properties:

Dimension 2
Symmetric YES
Positive Definite YES
Value Range -1 to 2
Absolute Minimum 1
Absolute Maximum 2
Diagonal Entries 2
Diagonal Zeros 0
Total Non-Zeros 4
Diagonal Average 2
Non-diagonal Average 1
Diagonal Dominance 0.5

Important Times:

Trilinos Assembly Time 2.93e-02 ms
PETSc Assembly Time 1.41e-01 ms
ITL Assembly Time 2.50e-03 ms
Hypre Assembly Time 8.05e-03 ms
QQQ Assembly Time 1.28e-03 ms
Time for Analysis 1.71e-01 ms

Results

All solvers computed a solution exceptHypre BICGstab (see Table A.1) which encountered the error
”BiCGSTAB broke down!! gamma=0”described earlier in Section 3.5.2.

33

5.1.2 Rank 3

The rank 3 version of the matrix has the form:

A =





2 −1 0
−1 2 −1
0 −1 2





Matrix Properties:

Dimension 3
Diagonal Entries 3
Symmetric YES
Diagonal Zeros 0
Positive Definite YES
Total Non-Zeros 7
Value Range -1 to 2
Diagonal Average 2
Absolute Minimum 1
Non-diagonal Average 1
Absolute Maximum 2
Diagonal Dominance 0.428

Important Times:

Trilinos Assembly Time 3.05e-02 ms
PETSc Assembly Time 1.41e-01 ms
ITL Assembly Time 2.60e-03 ms
Hypre Assembly Time 9.00e-03 ms
QQQ Assembly Time 1.34e-02 ms
Time for Analysis 1.51e-01 ms

Results

All solvers computed a solution exceptBICGstab of Hypre (Table A.2) which encountered the error
”BiCGSTAB broke down!! gamma=0”described earlier in Section 3.5.2.

5.1.3 Rank 4

The rank 4 matrix has the form:

A =









2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2









Matrix Properties:

Dimension 4
Symmetric YES
Positive Definite YES
Value Range -1 to 2
Absolute Minimum 1
Absolute Maximum 2
Diagonal Entries 4
Diagonal Zeros 0
Total Non-Zeros 10
Diagonal Average 2
Non-diagonal Average 1
Diagonal Dominance 0.4

Important Times:

Trilinos Assembly Time 3.16e-02 ms
PETSc Assembly Time 1.39e-01 ms
ITL Assembly Time 2.85e-03 ms
Hypre Assembly Time 9.70e-03 ms
QQQ Assembly Time 1.34e-02 ms
Time for Analysis 1.52e-01 ms

34

Results

BICGstab of Hypre encountered the error”BiCGSTAB broke down!! gamma=0”described earlier in
Section 3.5.2. All other solvers solved the equation system(Table A.3).

5.1.4 Rank 5

The rank 5 matrix has the form:

A =













2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2













Matrix Properties:

Dimension 5
Symmetric YES
Positive Definite YES
Value Range -1 to 2
Absolute Minimum 1
Absolute Maximum 2
Diagonal Entries 5
Diagonal Zeros 0
Total Non-Zeros 13
Diagonal Average 2
Non-diagonal Average 1
Diagonal Dominance 0.384

Important Times:

Trilinos Assembly Time 3.25e-02 ms
PETSc Assembly Time 1.46e-01 ms
ITL Assembly Time 3.35e-03 ms
Hypre Assembly Time 1.05e-02 ms
QQQ Assembly Time 1.42e-02 ms
Time for Analysis 1.56e-01 ms

Results

All solvers succeeded in solving the equation system as shown in Table A.4.

35

5.1.5 Rank 10

The rank 10 version of the matrix has the form:

A =

































2 −1 0 0 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0 0
0 0 −1 2 −1 0 0 0 0 0
0 0 0 −1 2 −1 0 0 0 0
0 0 0 0 −1 2 −1 0 0 0
0 0 0 0 0 −1 2 −1 0 0
0 0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 0 0 −1 2

































Matrix Properties:

Dimension 10
Symmetric YES
Positive Definite YES
Value Range -1 to 2
Absolute Minimum 1
Absolute Maximum 2
Diagonal Entries 10
Diagonal Zeros 0
Total Non-Zeros 28
Diagonal Average 2
Non-diagonal Average 1
Diagonal Dominance 0.3857

Important Times:

Trilinos Assembly Time 4.08e-02 ms
PETSc Assembly Time 1.46e-01 ms
ITL Assembly Time 6.00e-03 ms
Hypre Assembly Time 1.49e-02 ms
QQQ Assembly Time 1.56e-02 ms
Time for Analysis 1.64e-01 ms

Results

All solvers succeeded in computing a solution as shown in Table A.5.

36

5.2 Hilbert Matrices

The Hilbert matrix is symmetric, positive definite and ill-conditioned, especially for large dimensions.
The matrix elements are built by:

hij =
1

i + j − 1
(5.1)

Normally it is used for testing solvers which build the inverse of a matrix (the inverse is known and has
integer values). Here it is used to see the behavior of the iterative solvers on an ill-conditioned matrix.

5.2.1 Rank 4

The Hilbert matrix for rank 4 has the form:

A =









1 1
2

1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7









Matrix Properties:

Dimension 4
Symmetric YES
Positive Definite YES
Value Range -0.142857 to 1
Absolute Minimum 0.142857
Absolute Maximum 1
Diagonal Entries 4
Diagonal Zeros 0
Total Non-Zeros 16
Diagonal Average 0.419048
Non-diagonal Average 0.283333
Diagonal Dominance 0.25

Important Times:

Trilinos Assembly Time 3.43e-02 ms
PETSc Assembly Time 1.54e-01 ms
ITL Assembly Time 3.30e-03 ms
Hypre Assembly Time 1.01e-02 ms
QQQ Assembly Time 1.37e-02 ms
Time for Analysis 2.35e-01 ms

Results

Without a preconditioner theCG andBICGstab solvers are not able to calculate the solution in the given
iteration limit (see Table A.6). The final residual of the solutions is≈ 1 · 10−8 and so an increase of the
maximum iteration number would help to get closer to the desired residual.

The Jacobi preconditioner is only useful for theGMRES solver. The matrix is dense, so theJacobi
preconditioner would not be a considerable option anyway.

All solvers are able to solve the system with theILU preconditioner exceptBICGstab of Hypre, which
encountered the same error already discussed for the Laplace matrices rank 2 to 4 (Section 5.1).

TheIC preconditioner performs perfectly here to make it possiblefor all solvers to converge. The reason
is that the matrix meets the requirements forIC .

37

5.2.2 Rank 10

The matrix form is shown in Figure 5.1.

Figure 5.1: Hilbert matrix rank 10: Dimension = 10; Value Range: 0.0526316 to 1;Absolute Minimum =
0.0526316,Absolute Maximum = 1. (NOTE: The row indices are negative to simplify the visualiza-
tion of the matrix in the right shape.)

Matrix Properties:

Symmetric YES
Positive Definite YES
Diagonal Entries 10
Diagonal Zeros 0
Total Non-Zeros 100
Diagonal Average 0.213326
Non-diagonal Average 0.124913
Diagonal Dominance 0.1

Important Times:

Trilinos Assembly Time 8.29e-02 ms
PETSc Assembly Time 1.84e-01 ms
ITL Assembly Time 3.22e-02 ms
Hypre Assembly Time 2.09e-02 ms
QQQ Assembly Time 2.36e-02 ms
Time for Analysis 1.78e-01 ms

Results

The system without a preconditioner is only solvable withGMRES, althoughBICGstab comes close
with a final residual of around1 · 10−11 (see Table A.7).

The Jacobi preconditioner is unsuitable for this matrix. OnlyTrilinos GMRES is able to compute a
solution with it. The reasons are that the matrix has a low diagonal dominance and also the diagonal
average is too small.

TheILU preconditioner fails only forHypre CG. The rest of the solvers are able to compute the solution
of the equation system to a satisfying accuracy.

The IC preconditioner increases the performance of all solvers, letting them all converge. The reason is
that the matrix is symmetric an positive definite.

38

5.2.3 Rank 100

The Hilbert matrix rank 100 has the form shown in Figure 5.2.

Figure 5.2: Hilbert matrix rank 100: Dimension = 100;Value Range: 0.00502513 to 1;Absolute Minimum
= 0.00502513,Absolute Maximum = 1.

Matrix Properties:

Symmetric YES
Positive Definite YES
Diagonal Entries 100
Diagonal Zeros 0
Total Non-Zeros 10000
Diagonal Average 0.0328434
Non-diagonal Average 0.0136208
Diagonal Dominance 0.01

Important Times:

Trilinos Assembly Time 7.66 ms
PETSc Assembly Time 54.54 ms
ITL Assembly Time 5.81 ms
Hypre Assembly Time 5.11 ms
QQQ Assembly Time 1.69 ms
Time for Analysis 5.49 ms

Results

Without a preconditioner all solvers are able to compute a solution (see Table A.8).

With the Jacobi preconditioner only theCG solvers andTrilinos GMRES can calculate an accurate
solution. The diagonal dominance is only one percent for this matrix. BICGstab of Trilinos andITL
abort the iteration because the vectorsr̂0 and rk are orthogonal in the terminating iteration step (see
Sections 3.1.2 and 3.3.2.

TheILU preconditioner fails for thePETScandHypre implementations. Their default values do not fit
this matrix and so the solvers need too many iterations.

The IC preconditioners all fail although thePETScsolversBICGstab andGMRES reach an accurate
residual (the solver on the other hand returns that it has failed). ForCG andBICGstab of ITL andTrili-
nos the residual yields ”nan” values. ForGMRES of Trilinos the Hessenberg matrix is ill-conditioned
caused by a worse preconditioning.

39

Performance

The solvers that reached the best speed performance and additionally computed an accurate solution are
shown in Figure 5.3.

time in ms

0
2
4
6
8

10
12
14

IT
L

C
G

28

H
yp

re
C

G

27

T
ri

lin
os

C
G

28

P
E

T
S

c
C

G

28
IT

L
B

IC
G

st
ab

56

H
yp

re
B

IC
G

st
ab

57

T
ri

lin
os

B
IC

G
st

ab

72

Q
Q

Q
B

IC
G

st
ab

43

P
E

T
S

c
B

IC
G

st
ab

49

H
yp

re
G

M
R

E
S

12

T
ri

lin
os

G
M

R
E

S

12

Q
Q

Q
G

M
R

E
S

12

P
E

T
S

c
G

M
R

E
S

12

IT
L

C
G

28

T
ri

lin
os

C
G

27

P
E

T
S

c
C

G

30

T
ri

lin
os

G
M

R
E

S

12

T
ri

lin
os

C
G

1

T
ri

lin
os

B
IC

G
st

ab

1

T
ri

lin
os

G
M

R
E

S

1 NONE
Jacobi
ILU

Figure 5.3: Performance for Hilbert rank 100: The fastest solver for this matrix isTrilinos GMRES with
Jacobi. CG without preconditioner is also very fast considering that the matrix is not very well-
conditioned. ILU preconditioning is very time inefficient for this matrix because it is dense and
therefore much computational complexity is required. On the other hand only one iteration step is
required afterwards. (Note: The number above each bar stands for the iterations used for computing
the solution.)

5.2.4 Rank 1000

The Hilbert matrix rank 1000 has the form shown in Figure 5.4.

Matrix Properties:

Symmetric YES
Positive Definite YES
Diagonal Entries 1000
Diagonal Zeros 0
Total Non-Zeros 1000000
Diagonal Average 0.00443563
Non-diagonal Average 0.00138274
Diagonal Dominance 0.001

Important Times:

Trilinos Assembly Time 2.168 s
PETSc Assembly Time 429.678 s
ITL Assembly Time 0.991 s
Hypre Assembly Time 1.106 s
QQQ Assembly Time 0.217 s
Time for Analysis 0.743 s

Results

Without a preconditioner all solvers exceptPETSc GMRES(the solution reached an accuracy of1.733 ·
10−12) are able to compute an accurate solution (see Table A.9).

TheJacobipreconditioner helps to compute a solution for allCG solvers and theTrilinos GMRES . For
BICGstab ITL exceeds the maximum iterations,Trilinos encounters a breakdown because the vectors
r̂0 andrk become orthogonal andPETScreaches a residual bigger than its default divergence value.

40

Figure 5.4: Hilbert matrix rank 1000: Dimension = 1000;Value Range:0.00050025 to 1;Absolute Minimum
= 0.00050025,Absolute Maximum = 1.

TheILU preconditioner ofPETScandQQQ fails completely (although theQQQ package returned that
it solved the equation system for both solvers).Trilinos ILU solves with all solvers.Hypre and ITL
only solve with one solver each (Hypre GMRES andITL BICGstab).

The IC preconditioner fails completely although thePETSc GMREScomputes a reasonable solution
(but states that it has not solved the system, this seems to bea different loss of precision effect. The true
residual computed after solving is more accurate than the recursive residual computed during the solving
process (see Section 6).

Performance

The solver that solved the equation system fastest and reached the desired accuracy isHypre GMRES
without preconditioner (Figure 5.5).

41

time in ms

0

100

200

300

400

500

600

700

IT
L

C
G

46

H
yp

re
C

G

44

T
ri

lin
os

C
G

44

P
E

T
S

c
C

G

49

H
yp

re
B

IC
G

st
ab

131

T
ri

lin
os

B
IC

G
st

ab

151

P
E

T
S

C
B

IC
G

st
ab

119

H
yp

re
G

M
R

E
S

16

T
ri

lin
os

G
M

R
E

S

16

Q
Q

Q
G

M
R

E
S

16

T
ri

lin
os

C
G

51

P
E

T
S

c
C

G

50

T
ri

lin
os

G
M

R
E

S

16

NONE
Jacobi
ILU

Figure 5.5: Hilbert rank 1000 performance: No preconditioner is able to improve the speed performance for
this matrix. The fastest solver (Hypre BICGstab) uses no preconditioner. Considering that this is a
dense matrix, using a preconditioner is associated with a high computational complexity.

5.3 Fidap Matrices

A visual repository of test data for use in comparative studies of algorithms for numerical
linear algebra, featuring nearly 500 sparse matrices from avariety of applications, as well
as matrix generation tools and services.[18]

For testing the solvers, a few matrices have been downloadedfrom Matrix-market. These vary in form
and range of values. Only matrices with an available right-hand side vector have been chosen.

The Fidap matrices are all generated by the Fidap package andare finite element modeling matrices
(Source: Isaac Hasbani (Fluid Dynamics International), Barry Rackner (Minnesota Supercomputer Cen-
ter))

5.3.1 Fidap001

The first matrix of the Fidap set has the form in Figure 5.6.

Matrix Properties:

Symmetric YES
Positive Definite NO
Diagonal Entries 181
Diagonal Zeros 35
Total Non-Zeros 3733
Diagonal Average 0.038429
Non-diagonal Average 0.00182772
Diagonal Dominance 0.048

Important Times:

Trilinos Assembly Time 2.72 ms
PETSc Assembly Time 16.98 ms
ITL Assembly Time 2.07 ms
Hypre Assembly Time 0.68 ms
QQQ Assembly Time 0.61 ms
Time for Analysis 2.76 ms

42

Figure 5.6: Matrix Fidap001: Dimension = 216;Value Range: -0.0302009 to 0.104451;Absolute Minimum
= 5.96311e-21,Absolute Maximum = 0.104451.

Results

TheCG andBICGstab solvers are not useful because the matrix is not positive definite (Table A.10).
For theCG solvers this characteristic is discovered by thePETScandTrilinos package breaking, the
iteration.

TheJacobi preconditioner has problems because there are zeros on the main diagonal and the diagonal
dominance is too small. Also the diagonal average is smallerthan one.

The ILU preconditioner fails totally for theITL package by throwing an exception caused by the zeros
on the main diagonal. For theBICGstab only theTrilinos package has problems withILU .

The IC preconditioner also throws an exception when using theITL package because of the zeros on
the main diagonal. TheTrilinos andPETScpackages are able to solve this matrix withBICGstab and
GMRES with the IC .

Performance

Trilinos BICGstab with IC preconditioner was the fastest solver for this matrix (Figure 5.7). The
performance of the differentGMRES implementations is also shown.

43

time in ms

0

10

20

30

40

50

60

70

80

216

H
yp

re
G

M
R

E
S

216

T
ri

lin
os

G
M

R
E

S

216

Q
Q

Q
G

M
R

E
S

P
E

T
S

c
G

M
R

E
S

216

H
yp

re
B

IC
G

st
ab

52

Q
Q

Q
B

IC
G

st
ab

9

P
E

T
S

c
B

IC
G

st
ab

17

H
yp

re
G

M
R

E
S

48

T
ri

lin
os

G
M

R
E

S

6

Q
Q

Q
G

M
R

E
S

5

P
E

T
S

c
G

M
R

E
S

27

T
ri

lin
os

B
IC

G
st

ab

15

P
E

T
S

c
B

IC
G

st
ab

165

T
ri

lin
os

G
M

R
E

S

24

P
E

T
S

c
G

M
R

E
S

72 NONE
ILU
IC

Figure 5.7: Fidap001 performance: Trilinos BICGstabwith IC preconditioner solves this system fastest. The
matrix is not positive definite so theBICGstab would not be chosen by the automatic solver control.
The options chosen would be aGMRES solver with theIC preconditioner ofTrilinos , which is
the third fastest solver. ForGMRES the ILU preconditioner would yield less iterations and thus
be faster. TheGMRES solvers without a preconditioner show the efficiency of the different code
implementations.They all need 216 iterations but their speeds are different.Hypre is fastest, followed
by Trilinos andGMRES. The slowest code implementation is fromQQQ. This is also shown for the
ILU preconditioner whereQQQ GMRES needs 5 iterations but performs slowest.

5.3.2 Fidap002

The second matrix which was chosen from the Fidap set has the form in Figure 5.8.

Matrix Properties:

Symmetric YES
Positive Definite NO
Diagonal Entries 441
Diagonal Zeros 0
Total Non-Zeros 26807
Diagonal Average 6.03195e+06
Non-diagonal Average 680862
Diagonal Dominance 0.016

Important Times:

Trilinos Assembly Time 19.44 ms
PETSc Assembly Time 93.65 ms
ITL Assembly Time 17.10 ms
Hypre Assembly Time 10.74 ms
QQQ Assembly Time 4.28 ms
Time for Analysis 16.16 ms

Results

The equation system was not solvable to the accuracy of1·10−12 (see Table A.11). TheTrilinos package
encountered a loss of precision several times. Other solverpackages returned that they have solved the
system for some solving options, but the residual of the solution does not have the desired accuracy.
Considering the matrix properties, anIC preconditioner withGMRES solver would be the choice of
solving options. The loss of precision error will be investigated further in Chapter 6.

44

Figure 5.8: Matrix Fidap002: Dimension = 441;Value Range:-3.38963e+08 to 1.71342e+08;Absolute Mini-
mum = 3.58608e-25,Absolute Maximum = 3.38963e+08.

Performance

There are no performance results for this matrix because no solver was able to compute the solution to
the desired accuracy.

5.3.3 Fidap005

The third matrix from the Fidap set has the form shown in Figure 5.9.

Matrix Properties:

Symmetric YES
Positive Definite NO
Diagonal Entries 27
Diagonal Zeros 0
Total Non-Zeros 279
Diagonal Average 954735
Non-diagonal Average 280423
Diagonal Dominance 0.096

Important Times:

Trilinos Assembly Time 0.172 ms
PETSc Assembly Time 0.369 ms
ITL Assembly Time 9.52e-02 ms
Hypre Assembly Time 4.64e-02 ms
QQQ Assembly Time 4.45e-02 ms
Time for Analysis 0.375 ms

Results

The Jacobi preconditioner failed totally for this matrix (Table A.12). With the ILU and IC precondi-
tioner some packages returned that they solved the equationsystem. But the relative residual is not below
the desired accuracy.Trilinos encountered a loss of precision a few times.

45

Figure 5.9: Matrix Fidap005: Dimension = 27;Value Range: -1.18519e+06 to 2.37038e+06;Absolute Mini-
mum = 18518.6,Absolute Maximum = 2.37038e+06.

Performance

There are no performance results for this matrix because no solver was able to compute an accurate
solution.

5.3.4 Fidapm05

The fourth matrix of the Fidap set has the form in Figure 5.10.

Matrix Properties:

Symmetric YES
Positive Definite NO
Diagonal Entries 27
Diagonal Zeros 15
Total Non-Zeros 445
Diagonal Average 2.72593
Non-diagonal Average 0.209569
Diagonal Dominance 0.06

Important Times:

Trilinos Assembly Time 0.320 ms
PETSc Assembly Time 0.403 ms
ITL Assembly Time 0.192 ms
Hypre Assembly Time 7.725e-02 ms
QQQ Assembly Time 7.395e-02 ms
Time for Analysis 0.503 ms

Results

Without being positive definite theCG andBICGstab solvers are not able to compute a solution without
preconditioner (see Table A.13).

TheJacobi preconditioner is not able to improve the solving performance due to the zeros on the main
diagonal and lets all solvers fail.

With the ILU preconditioner theQQQ BICGstab and thePETSc BICGstab are able to solve the
system. On the other hand, the solution of theGMRES solver ofQQQ is not accurate. TheIC precon-

46

Figure 5.10: Matrix Fidapm005: Dimension= 42; Value Range: -1.06667 to 5.68889;Absolute Minimum =
1.38778e-17,Absolute Maximum: = 5.68889.

ditioner also fails totally.

Performance

The fastest solvers for this equation system which also offer accurate solutions areQQQ BICGstab and
PETSc BICGstabboth withILU preconditioner (Figure 5.11).

47

time in ms

0

5

10

15

H
yp

re
G

M
R

E
S

41

T
ri

lin
os

G
M

R
E

S

41

Q
Q

Q
G

M
R

E
S

41

P
E

T
S

c
G

M
R

E
S

41

Q
Q

Q
B

IC
G

st
ab

11

P
E

T
S

c
B

IC
G

st
ab

39 NONE
ILU

Figure 5.11: Fidapm05 performance:Two BICGstab solvers lead the performance results for this matrix. Since
this matrix is not positive definite, each of these solvers would not be an option for an automatic
solver control.GMRES solves this system without a preconditioner. All packages require the same
number of iterations to reach an accurate solution. HereTrilinos is fastest, followed byQQQ and
Hypre. PETSchas the slowestGMRES implementation for this matrix.

5.3.5 Fidap027

The fifth matrix chosen from the Fidap set has the form in Figure 5.12.

Matrix Properties:

Symmetric NO
Positive Definite NO
Diagonal Entries 728
Diagonal Zeros 192
Total Non-Zeros 23775
Diagonal Average 0.0182834
Non-diagonal Average 0.000924957
Diagonal Dominance 0.032

Important Times:

Trilinos Assembly Time 29.02 ms
PETSc Assembly Time 920.81 ms
ITL Assembly Time 25.92 ms
Hypre Assembly Time 13.44 ms
QQQ Assembly Time 6.26 ms
Time for Analysis 29.02 ms

Results

The matrix is symmetric but not positive definite so theCG andBICGstab fail (see Table A.14). Without
a preconditioner thePETSc GMRESfails, in contrast to the otherGMRES solvers.

TheJacobipreconditioner is not usable for this matrix, mainly because of the zeros on the main diagonal.

The zeros on the main diagonal also let the TrilinosILU preconditioner fail. TheHypre ILU is not
able to calculate a solution but does not deliver a numericalbreakdown. TheQQQ BICGstab with ILU
preconditioner solves the equation system. ThePETSc version of this solver only reaches a solution
close to the accuracy desired. On the other hand theGMRES solvers of these packages are returning an
inaccurate solution.

48

Figure 5.12: Matrix Fidap027: Dimension= 974;Value Range:-0.0706368 to 0.156271;Absolute Minimum
= 3.2967e-35,Absolute Maximum = 0.156271.

Performance

This is another matrix that is not positive definite but hasBICGstab as fastest solver (Figure 5.13).

time in s

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

H
yp

re
G

M
R

E
S

890

T
ri

lin
os

G
M

R
E

S

890

Q
Q

Q
G

M
R

E
S

890

Q
Q

Q
B

IC
G

st
ab

9

NONE

ILU

Figure 5.13: Fidap027 performance: QQQ BICGstabwith ILU solved fastest, although the matrix is not pos-
itive definite. Hypre GMRES solves the system without a preconditioner slightly slowerthan the
QQQ BICGstab.

49

5.3.6 Fidap028

The sixth matrix of the Fidap set has the form in Figure 5.14.

Figure 5.14: Matrix Fidap028: Dimension= 2603;Value Range: -24.6163 to 49.3352;Absolute Minimum =
6.31089e-30,Absolute Maximum = 49.3352.

Matrix Properties:

Symmetric NO
Positive Definite NO
Diagonal Entries 1853
Diagonal Zeros 750
Total Non-Zeros 70861
Diagonal Average 8.6464
Non-diagonal Average 0.485261
Diagonal Dominance 0.026

Important Times:

Trilinos Assembly Time 51.36 ms
PETSc Assembly Time 991.75 ms
ITL Assembly Time 51.70 ms
Hypre Assembly Time 18.67 ms
QQQ Assembly Time 12.18 ms
Time for Analysis 59.29 ms

Results

TheCG andBICGstab solvers do not work because the matrix is not positive definite (see Table A.15).

TheJacobipreconditioner fails due to the zeros on the main diagonal.

The ILU preconditioners ofQQQ andPETSchelp theBICGstab andGMRES solvers to calculate an
tolerable solution. However the desired accuracy is not reached with any of the solvers.

Performance

There are no performance results for this matrix because no solver was able to compute an accurate
solution.

50

5.4 Sherman Matrices

The Sherman set consists of matrices used for oil reservoir simulation by Andy Sherman (Source: Andy
Sherman, Nolan and Associates, Houston, TX.).

5.4.1 Sherman2

The first matrix of the Sherman set that was chosen has the formin Figure 5.15.

Figure 5.15: Matrix Sherman2: Dimension= 1080;Value Range: -1.11233e+09 to 1.33985e+09;Absolute
Minimum = 1.48821e-17,Absolute Maximum = 1.33985e+09.

Matrix Properties:

Symmetric NO
Positive Definite NO
Diagonal Entries 1080
Diagonal Zeros 0
Total Non-Zeros 22958
Diagonal Average 2.56142e+06
Non-diagonal Average 4.3234e06
Diagonal Dominance 0.047

Important Times:

Trilinos Assembly Time 14.74 ms
PETSc Assembly Time 98.56 ms
ITL Assembly Time 12.05 ms
Hypre Assembly Time 3.72 ms
QQQ Assembly Time 3.26 ms
Time for Analysis 20.21 ms

Results

The matrix is neither symmetric nor positive definite so it isobvious thatCG andBICGstab do not work
(Table A.16). Without a preconditioner only theGMRES solvers converge except theGMRES of the
PETScpackage which uses too many iterations.

TheJacobipreconditioner completely fails letting theGMRES solvers diverge which were able to solve
it without the preconditioner. The low diagonal dominance of 4.7 percent is a good reason for not using
it.

51

The ILU preconditioner lets theBICGstab andGMRES solvers of the packages be able to get to an
accurate solution except theQQQ versions. These both calculate a wrong solution with a residual≫ 1
which indicates that theQQQ ILU preconditioner failed here.

Performance

The fastest solvers for this matrix arePETSc BICGstabandPETSc GMRES(Figure 5.16).

time in ms

0

20

40

60

80

100

120

140

160

180

200

IT
L

B
IC

G
st

ab

11

H
yp

re
B

IC
G

st
ab

609

T
ri

lin
os

B
IC

G
st

ab

8
P

E
T

S
c

B
IC

G
st

ab
10

H
yp

re
G

M
R

E
S

252

T
ri

lin
os

G
M

R
E

S

609

P
E

T
S

c
G

M
R

E
S

18

ILU

Figure 5.16: Sherman2 performance: PETSChas the two fastest solvers for this matrix withBICGstab and
GMRES, both using theILU preconditioner. TheILU preconditioner ofHypre andTrilinos per-
form equally well here because theGMRES of both packages needed 609 iterations. For this matrix
the default values of thePETSc ILU preconditioner fit best, decreasing the number of iterations the
most.

52

5.4.2 Sherman3

The second matrix used from the Sherman set is shown in the Figure 5.17.

Figure 5.17: Matrix Sherman3: Dimension= 5005;Value Range: -1.72445e+06 to 3.44925e+06;Absolute
Minimum = 1e-10,Absolute Maximum = 3.44925e+06.

Matrix Properties:

Symmetric NO
Positive Definite YES
Diagonal Entries 5005
Diagonal Zeros 0
Total Non-Zeros 20033
Diagonal Average 14610.2
Non-diagonal Average 4864.83
Diagonal Dominance 0.249

Important Times:

Trilinos Assembly Time 8.96 ms
PETSc Assembly Time 1.266 s
ITL Assembly Time 3.02 ms
Hypre Assembly Time 4.34 ms
QQQ Assembly Time 1.95 ms
Time for Analysis 12.45 ms

Results

The matrix is not symmetric but is positive definite. TheBICGstab is not able to solve the equation
system without a preconditioner (see Table A.17). TheGMRES solvers, on the other hand, deliver an
inaccurate solution.

With theJacobipreconditioner the performance is slightly better. All solver types are reaching a tolerable
accuracy around1 · 10−11, but no solver reaches the convergence limit, although somesolvers state that
they are successful.

TheILU preconditioner also encounters loss of precision errors (in case of theQQQ GMRES this error
is around1 ·107). The only solvers which did not encounter a considerable round-off error are theHypre
BICGstab, Hypre GMRES andTrilinos GMRES .

53

Performance

There are only three solvers that solve the equation system in an acceptable amount of time (Figure 5.18).

time in s

0
0.05
0.10
0.15
0.20
0.25

H
yp

re
B

IC
G

st
ab

109

H
yp

re
G

M
R

E
S

125

T
ri

lin
os

G
M

R
E

S

29 ILU

Figure 5.18: Sherman3 performance: Trilinos GMRESwith anILU preconditioner is the fastest solver for this
matrix.Trilinos BICGstab would have been slightly faster but it encountered a loss of precision error
so it is not in the diagram. TheILU preconditioner ofTrilinos decreases the number of iterations
more thanHypre ILU and therefore theGMRES solver ofTrilinos is fastest. The matrix is positive
definite so theBICGstab solver would be the choice for an automatic solver control.

5.4.3 Sherman5

The third matrix chosen from the Sherman set has the form shown in Figure 5.19.

Matrix Properties:

Symmetric NO
Positive Definite NO
Diagonal Entries 3312
Diagonal Zeros 0
Total Non-Zeros 20793
Diagonal Average 60.4114
Non-diagonal Average 23.1693
Diagonal Dominance 0.159

Important Times:

Trilinos Assembly Time 12.33 ms
PETSc Assembly Time 445.19 ms
ITL Assembly Time 7.87 ms
Hypre Assembly Time 3.67 ms
QQQ Assembly Time 2.54 ms
Time for Analysis 15.98 ms

Results

The matrix is neither symmetric nor positive definite, so theCG andBICGstab solvers fail without a
preconditioner (see Table A.18). TheGMRES solvers are able to solve the system except thePETSc
GMRES which exceeds the maximum iterations.

TheJacobipreconditioner encounters a loss of precision and deliversan inaccurate solution forBICGstab
andGMRES.

The ILU preconditioner also encounters a loss of precision except for theHypre BICGstab and the
GMRES solvers ofTrilinos andHypre.

54

Figure 5.19: Matrix Sherman5: Dimension= 3312;Value Range:-3557.32 to 785.866;Absolute Minimum =
3.68974e-06,Absolute Maximum = 3557.32.

Performance

For this matrix only three solvers are able to calculate an accurate solution shown in Figure 5.20.

time in s

0
0.02
0.04
0.06
0.08
0.10

H
yp

re
B

IC
G

st
ab

72

H
yp

re
G

M
R

E
S

93

T
ri

lin
os

G
M

R
E

S

20
ILU

Figure 5.20: Sherman5 performance:The ILU preconditioner ofTrilinos decreases the number of iterations
more thanHypre ILU and therefore theGMRES solver ofTrilinos is fastest.Trilinos BICGstab
would have been slightly faster but encountered a loss of precision error so it is not shown in the
Figure.

55

5.5 DRIVCAV Matrices

The matrices in the DRIVCAV set are from 2D modeling of fluid flow in driven cavities. These matrices
are non-symmetric and indefinite and are normally hard to solve with Krylov solvers because of the
difficulty in finding a good preconditioner. The intended useof these matrices is for testing iterative
solvers. (Source: Andrew Chapman, University of Minnesota, chapman@msi.umn.edu)

5.5.1 E05r0100

The matrix e05r0100 has the form shown in Figure 5.21.

Figure 5.21: Matrix E05r0100: Dimension= 236;Value Range: -5.87668 to 10.1705;Absolute Minimum =
3.46945e-18,Absolute Maximum = 10.1705.

Matrix Properties:

Symmetric NO
Positive Definite NO
Diagonal Entries 162
Diagonal Zeros 74
Total Non-Zeros 5760
Diagonal Average 6.26831
Non-diagonal Average 0.29926
Diagonal Dominance 0.028

Important Times:

Trilinos Assembly Time 3.73 ms
PETSc Assembly Time 28.38 ms
ITL Assembly Time 2.88 ms
Hypre Assembly Time 1.16 ms
QQQ Assembly Time 0.83 ms
Time for Analysis 6.75 ms

Results

Without a preconditioner the equation system is only solvable by theGMRES solvers ofHypre, Trilinos
andQQQ (see Table A.19). The matrix is not symmetric and not positive definite so it is obvious that
CG andBICGstab fail.

56

TheJacobi preconditioner has problems solving this equation system because of the zeros on the main
diagonal. Also the diagonal dominance is very low.

For theILU preconditioner the only solver able to solve the system is the QQQ BICGstab. PETSc
BICGstab (final residual=1.01673·10−12), QQQ GMRES (final residual =2.93189·10−12) andPETSc
GMRES (final residual =1.71488 · 10−11) state that they solve too, but their final residual is slightly
greater than the desired accuracy. The zero pivot shifting of PETScand the internal ordering ofQQQ
ILU are better strategies for this matrix than the zero pivot handling of Trilinos andHypre which only
replace the zeros.Trilinos states that the Hessenberg matrix is ill-conditioned whichis due to the zero
pivot handling.

Performance

The fastest solver for this matrix isQQQ BICGstab with ILU preconditioner as shown in Figure 5.22.

time in ms

0

20

40

60

80

100

H
yp

re
G

M
R

E
S

203

T
ri

lin
os

G
M

R
E

S

203

Q
Q

Q
G

M
R

E
S

203

Q
Q

Q
B

IC
G

st
ab

30 ILU

NONE

Figure 5.22: E05r0100 performance: QQQ BICGstabwith an ILU preconditioner not only solved this system
the fastest, but it was also the only one which solved with a preconditioner. ThreeGMRES solved
without a preconditioner, wherebyHypre was fastest, followed byTrilinos andQQQ.

5.5.2 E20r5000

The second matrix tested of the DRIVCAV set has the form in Figure 5.23.

Matrix Properties:

Symmetric NO
Positive Definite NO
Diagonal Entries 3042
Diagonal Zeros 1199
Total Non-Zeros 126328
Diagonal Average 6.26187
Non-diagonal Average 2.37942
Diagonal Dominance 0.024

Important Times:

Trilinos Assembly Time 0.088 s
PETSc Assembly Time 3.456 s
ITL Assembly Time 0.094 s
Hypre Assembly Time 0.034 s
QQQ Assembly Time 0.022 s
Time for Analysis 0.230 s

57

Figure 5.23: Matrix E20r5000: Dimension= 4241;Value Range:-74.7776 to 93.9809;Absolute Minimum =
3.25261e-19,Absolute Maximum = 93.9809.

Results

This matrix is a numerical challenge for the solvers. There are over 28 percent zeros on the main diag-
onal, so the preconditioners are working at their limits. Without a preconditioner, no solver is able to
solve the system. The best residuals reached are around1 ·10−1 by theGMRES solver (see Table A.20).

TheJacobi preconditioner is not able to decrease the condition numberenough to be able to solve the
matrix.

The ILU preconditioner ofITL throws an exception because of the zeros on the main diagonal. The
zero pivot handling ofTrilinos also fails and leads to ”nan” residuals for theCG andBICGstab solvers.
The only solvers which deliver a tolerable solution are theQQQ GMRES andBICGstab solvers which
reach a residual of around1 · 10−8.

Performance

There are no performance results for this matrix because no solver was able to reach the desired accuracy
for the solution.

58

5.6 Hamm Matrices

The matrices in this package are computer design componentsfrom Steve Hamm. (Source: Steve Hamm,
Motorola Inc. Semiconductor Systems Design Technology, 3501 Bluestein Blvd. MD-M2, Austin, TX
78762 USA (hamm@ssdt-bluestein.sps.mot.com))

5.6.1 Add20

The first matrix in the Hamm set is the model of a 20-bit adder and has the form in Figure 5.24.

Figure 5.24: Matrix Add20: Dimension = 2395;Value Range:-0.285714 to 0.4981081;Absolute Minimum =
8.57445e-13,Absolute Maximum = 0.498101.

Matrix Properties:

Symmetric NO
Positive Definite YES
Diagonal Entries 2395
Diagonal Zeros 0
Total Non-Zeros 13139
Diagonal Average 0.140144
Non-diagonal Average 0.0237017
Diagonal Dominance 0.182

Important Times:

Trilinos Assembly Time 9.55 ms
PETSc Assembly Time 66.93 ms
ITL Assembly Time 5.75 ms
Hypre Assembly Time 4.75 ms
QQQ Assembly Time 2.15 ms
Time for Analysis 11.71 ms

Results

The matrix is positive definite so theBICGstab solver works for all packages exceptTrilinos which
encounters a numerical breakdown (Table A.21) because the vectorsr̂0 andr k become orthogonal.

The ILU preconditioner performs well for this matrix especially for theTrilinos package which is able
to solve the system with all 3 solvers. AllBICGstab andGMRES implementations solve with theILU
preconditioner.

59

Performance

Trilinos CG , GMRES and BICGstab with ILU preconditioner had the fastest performance (Figure
5.25).

time in s

0
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

H
yp

re
B

IC
G

st
ab

580

T
ri

lin
os

C
G

5

IT
L

B
IC

G
st

ab

159

H
yp

re
B

IC
G

st
ab

145

T
ri

lin
os

B
IC

G
st

ab

2

P
E

T
S

c
B

IC
G

st
ab

221

H
yp

re
G

M
R

E
S

112

T
ri

lin
os

G
M

R
E

S

4

NONE
ILU

Figure 5.25: Add20 performance: The ILU preconditioner ofTrilinos performs very well, reducing the itera-
tions to 2,4 and 5 for the solvers.Trilinos BICGstab was able to solve the solution fastest using 2
iterations. TheILU preconditioners of the other packages did not improve the performance of their
solvers that well.

5.6.2 Memplus

The second matrix in the Hamm set is the model of a memory circuit and has the form shown in Figure
5.26.
Matrix Properties:

Symmetric NO
Positive Definite NEARLY
Diagonal Entries 17758
Diagonal Zeros 0
Total Non-Zeros 97350
Diagonal Average 0.0257426
Non-diagonal Average 0.00447144
Diagonal Dominance 0.182

Important Times:

Trilinos Assembly Time 0.079 s
PETSc Assembly Time 3.592 s
ITL Assembly Time 0.051 s
Hypre Assembly Time 0.052 s
QQQ Assembly Time 0.019 s
Time for Analysis 0.135 s

Results

The matrix is nearly positive definite and three of the fiveBICGstab solvers are able to solve the equation
system (see Table A.22).Trilinos BICGstab encounters a numerical breakdown because the vectorsr̂0

andrk become orthogonal. TheILU preconditioner ofTrilinos helps theCG solver to solve the system.

QQQ GMRES, PETSC BICGstab andPETSC GMRES with ILU stated that they solved the equa-
tion system, although the solutions are slightly above the desired accuracy caused by round-off errors

60

Figure 5.26: Matrix Memplus: Dimension = 17758;Value Range:-0.15873 to 140965;Absolute Minimum =
1.36431e-26,Absolute Maximum = 1.40965.

(1.44025·10−12 for QQQ, 3.57992−12 for PETSc GMRESand2.27627·10−12 for PETSc BICGstab).
QQQ BICGstab is able to determine an accurate solution.

Performance

The TrilinosBICGstab with ILU preconditioner is the fastest solver for this matrix as shown in Figure
5.27.

5.7 Saddle point matrix

A Saddle point matrix has the form [19]:

A =

[

B C
CT 0

]

Such a matrix can lead to trouble usingKrylov subspace methods because the zeros on the main diagonal
lead to zero pivot errors. If such a system needs to be solved using these preconditioners, the matrix needs
to be modified (e.g., exchange rows to obtain a diagonal without zeros). The saddle point matrix used
for testing has the form:

A =













1 2 5 1 4
3 4 6 2 5
8 8 9 3 6
1 2 3 0 0
4 5 6 0 0













61

time in s

0

1

2

3

4

5

6

Q
Q

Q
B

IC
G

st
ab

9

IT
L

B
IC

G
st

ab

2038

H
yp

re
B

IC
G

st
ab

2271

P
E

T
S

c
B

IC
G

st
ab

1860

T
ri

lin
os

G
M

R
E

S

286

IT
L

B
IC

G
st

ab

345

H
yp

re
B

IC
G

st
ab

695

T
ri

lin
os

B
IC

G
st

ab

4

H
yp

re
G

M
R

E
S

207

T
ri

lin
os

G
M

R
E

S

7

NONE
Jacobi
ILU

Figure 5.27: Memplus performance:TheTrilinos BICGstab andGMRES solvers with anILU preconditioner
are the fastest here. For this matrix theBICGstab solver would be preferred because the matrix is
defined as nearly positive definite. TheILU preconditioner ofTrilinos reduces the iterations of the
solving process to a minimum compared to the other packages exceptQQQ BICGstab.

Matrix Properties:

Dimension 5
Symmetric NO
Positive Definite NO
Value Range 1 to 9
Absolute Minimum 1
Absolute Maximum 9
Diagonal Entries 3
Diagonal Zeros 2
Total Non-Zeros 21
Diagonal Average 4.66667
Non-diagonal Average 4.11111
Diagonal Dominance 0.142

Important Times:

Trilinos Assembly Time 3.69e-02 ms
PETSc Assembly Time 0.15 ms
ITL Assembly Time 3.5e-03 ms
Hypre Assembly Time 1.14e-02 ms
QQQ Assembly Time 1.49e-02 ms
Time for Analysis 0.25 ms

Results

The matrix shows that allJacobipreconditioners do have troubles caused by the zeros on the main diag-
onal, except the one fromPETScwhich solves the system together with theGMRES solver. With this
matrix theILU preconditioners do not have that much trouble, although thenormally well performing
ILU of PETSc is not able to compute an adequate solution in the given maximum iterations.

62

5.8 Overall Results

Several matrix properties influence the performance of the different solvers and preconditioners. Also
different implementations of the solvers and preconditioners by the packages lead to different results
during the solving of a linear equation system (e.g., different solving times, different residuals achieved,
and different numbers of iterations).

There are two important matrix properties which have a big influence on the performance of a solving
algorithm: symmetry andpositive definite. The symmetry of the matrix is required for theCG solver
and theIC preconditioner. They also need the matrix to be positive definite, although theIC precondi-
tioner could solve systems which have no positive definite matrix as well. If the matrix is not positive
definite this can be detected during solving byTrilinos andPETSc, which will lead to a breakdown of
the solving process (e.g., see Section 5.3.1).ITL andHypre do not detect this and therefore exceed the
maximum number of iterations.

The BICGstab solver also requires a positive definite matrix. All matrices stated as nearly positive
definite could be treated by the solver as well. Also several matrices that are not positive definite could
be treated with BICGstab (but this is not predictable). The biggest problem of theBICGstab solver
is that if the vectorsr̂0 and r k become orthogonal (seeBICGstab algorithm in Section 2.3.2), then
the algorithm stops without convergence.Trilinos is the most sensitive package in this case (e.g., see
Sections 5.3.1, 5.2.4, 5.6.1, and 5.6.2).QQQ avoids this problem, as described in Section 3.4.1.

All three preconditioners encounter problems if there is nohandling of zero pivot elements. The solver
packages use different strategies when a zero pivot elementis encountered. For some preconditioners
this is not even tested and the preconditioner is used anyway, resulting in a divergence of the solving
process most of the time (after a division by zero or by a number close to zero). TheITL package checks
whether all diagonal elements exist (and throws an exception if not, so the solving process is stopped and
cannot be continued), but it does not check whether these areequal to zero (see Section 3.3). This leads
to problems when a zero is inserted explicitly into the main diagonal. Hypre andTrilinos replace an
encountered zero pivot, and so the solving process can be kept alive (Trilinos replaces a zero pivot with
the rownorm (see Section 3.1.5) andHypre uses the drop tolerance (see Section 3.5.4)). ThePETSc
package uses one of several different shifting options to eliminate zero pivots (Section 3.2), which seems
to be the best method to deal with zero pivots (see Sections 5.3.2, 5.3.3 and 5.3.5).QQQ aborts the
solving process if a zero pivot is encountered (see Section 3.4.3), although this rarely happens (never in
the tests of this chapter), due to the internal sort algorithms used by theILU factorization.

The comparison of the different implementations of theILU factorization shows that the fill factor has
great influence on the iterations until convergence is reached. TheTrilinos package, with a fill ratio of
3, needs below 10 iterations most of the time until convergence is reached (e.g., see Section 5.6.1 and
5.6.2). On the other hand, thePETScpackage with a fill ratio of 1 performs very much worse.

Trilinos is the only package which gives a warning that a solution may not be accurate. The other solver
packages may return in their error code that the system was solved (e.g., for the matrices in Sections
5.3.2, 5.4.2 and 5.4.3), but it can happen that the solution is not accurate or totally wrong (e.g., if the
residual is≫ 1). This is particularly important because if the user does not check whether the solution
is accurate, the program using the solution may work with false parameters.

ITL is very easy to implement and does not need much knowledge of solvers or preconditioners because
there are not many options which can be set. The disadvantageof this package is that there is no handling
of zero pivots when they are encountered. The solving process cannot be continued. Also theGMRES
algorithm, which is one of the most effective solving algorithms, has not been implemented yet.

Hypre has a limited choice of preconditioners (noJacobi or IC preconditioner). TheBICGstab al-
gorithm has problems with small matrices (< rank5; e.g., see Sections 5.1.1 to 5.1.3). The zero pivot

63

handling of theHypre preconditioner works but could be better. There are a few solving options which
can be set to improve the performance of the solving and whichrequire little knowledge of the solvers.

Trilinos has the fastest solvers and also is the only package that can detect a loss of precision. Addition-
ally its GMRES algorithm has been implemented to terminate if the Hessenberg matrix is ill-conditioned
(e.g., in Section 5.2.4). On the other hand, it has problems with zeros on the main diagonal if a precon-
ditioner is used (e.g., see Sections 5.3.2 and 5.7). Severaldifferent options can be set to improve the
solving process.

PETSc has the slowest solvers, regarding the time for solving a linear equation system, compared to
the other packages (also theGMRES solver often uses more iterations than the implementationsof the
other packages), but, on the other hand, error detecting is well designed because every function returns
an error code that is immediately checked. There are many options which can be altered to improve the
solving process, but they also require a deep knowledge of the ongoing processes.PETScalso offers the
best zero pivot handling of all the packages.

QQQ sometimes performs best on the matrices (e.g., Section 5.5.1); for other matrices it delivers com-
pletely wrong solutions (e.g., see Sections 5.4.1 and 5.4.2). It does not really offer zero pivot handling,
but theILU preconditioner uses sorting algorithms during the factorization which can prevent zero pivots
most of the time. This also results in a larger amount of time for computing theILU factorization than
the implementations of other packages.QQQ also offers algorithms not available for the other pack-
ages, like pre-elimination or automatic scaling. However,a test showed that these do not improve the
performance significantly if used with their default settings.

Figures 5.28 and 5.29 show how many of the given equation systems each package was able to solve and
how many solving combinations were successful.

Systems solved

0

10

20
Maximum 23

T
ri

lin
os

19

P
E

T
S

c

15

Q
Q

Q

17

IT
L

12

H
yp

re

19

Figure 5.28: Number of solvable equation systems per package: Trilinos andHypre were both able to solve
19 of the 23 given systems. These are followed byQQQ, which solved 17 different systems.PETSc
andILU solved the least amount of equation systems with 15 and 12 different solved systems, re-
spectively.

64

Successful Solvers

0

10

20

30

40

50

60

T
ri

lin
os

60
P

E
T

S
c

42
Q

Q
Q

32
IT

L
25

H
yp

re

38

Figure 5.29: Weighted Score of the Packages:Each solving combination that was tested yields one weighted
point if it has reached the accuracy of1 · 10−12. The five Laplace matrices have not been taken
into account for this diagram because they would have distorted the result.Trilinos has the most
successful solving combinations and also provides the mostdifferent solving combinations.PETSc
has the same amount of combinations but is not that successful because it often only reaches an
accuracy between1 · 10−11 and1 · 10−12. ITL has the second most solving combinations but the
least successful ones. At the momentITL only provides solvers which are restricted to a specific
kind of matrices. With aGMRES algorithm there would have been more successful solving runs.

65

Chapter 6

Automatic Solver Control Interface

Figure 6.1 shows the components of the automatic solver control interface that was developed which
handles the solving of a linear equation system. It containselements that analyze the matrix, components
which can decide on the different solving options, and a postsolving handling of the solution which
checks whether the system has been solved. The user needs to insert the matrix and the right-hand side
vector into the solver. When the solving process is started,the matrix will be analyzed and then passed
to the solver package that will solve it. The right-hand sidevector is analyzed to decide which residual
should be used as a break condition. When the solving processis finished, the solution will be checked
to see if it has reached a defined accuracy (three choices are available for the user). If not, the error code
delivered will be handled. This may result in a new solving run with different solving options.

6.1 Number Analyzer

The number analyzer fulfills the following tasks:

• Calculating the diagonal dominance percentage

• Determining the number of zeros in the main diagonal

• Calculation of the diagonal average and the nondiagonal average

The main task of the number analyzer is to determine the number of zeros on the main diagonal, because
they cause errors when using a preconditioner without zero pivot handling. Another useful number is
the diagonal dominance, which indicates how many percent ofthe matrix elements are within the main
diagonal. Other useful numbers are the diagonal average andthe nondiagonal average. If a matrix has
big numbers on the main diagonal and small numbers off the main diagonal, theJacobi preconditioner
would make the main diagonal one and the nondiagonal values smaller. Considering the Gershgorin
circle theorem (see Section 2.1.5) and that the condition isdefined by the eigenvalues of the matrix
A · AT (see Chapter 2) the matrix obtained would have eigenvalues close to 1 and therefore a small
condition number.

66

Figure 6.1: This figure illustrates how the automatic solver control interface works. The user states a linear equa-
tion system by inserting the matrix and the right-hand side into the solver interface (the initial guess
is not required). The matrix is analyzed by numbers and structure. The 2-norm of theb vector is used
for the residual decision. The Solver Decision module decides which solver package and options are
used. Afterwards all necessary information is passed to thechosen solver package. After the solving
process, the Error Code Handling module checks the error thesolver package returned and also guar-
antees that the solution has the desired accuracy. In case the system was not solved, other approaches
are used.

67

6.2 Structure Analyzer

The structure analyzer checks to see if the matrix is symmetric and positive definite. If the matrix does
not fulfill one of these characterizations, several solver flags are disabled:

• not symmetric:CG andIC deactivated

• not positive definite:CG andBICGstab deactivated

6.3 Residual Decision

The norm of theb-vector is used to make a decision if the absolute or relativeresidual should be used. If
the norm is greater than or equal to one, the absolute residual is used; if the norm is smaller, the relative
residual is used.

6.4 Solver Decision

The data which is obtained by the analyzers can be used to decide which solver package, solver, and
preconditioner may be used. This tool is used to eliminate improper solving options. This is implemented
using Boolean variables.

The CG and IC algorithms require a symmetric matrix as input. If the matrix is not symmetric these
methods may fail and lead to a crash of the program. So if the matrix is not symmetric, these methods
are not used.

CG also requires the matrix to be positive definite as well asBICGstab. If it is not, the methods are not
used.

TheJacobi preconditioner can be used when the percentage of the diagonal dominance is larger than a
defined threshold. It may also be used if the average diagonalvalue is larger than 1, while the average
nondiagonal value is smaller than 1:

1 i f ((d iagona ldominance>JACOBI LIMIT) | | ((d i a g o n a l a v e r a g e>1.0)&&(nond iagona lav e ra ge<1 . 0)))
2 j a c o b i f l a g =t rue ;
3 e l s e j a c o b i f l a g = f a l s e ;

If there are zeros in the main diagonal, theTrilinos ILU preconditioner and the preconditioners ofITL
have serious problems. These packages should not be used in this case.Hypre, PETScandQQQ offer
a better handling for this case. Also theJacobipreconditioner should be turned off because it is affected
as well.

To decide whether the current solver configuration is valid,a function is needed that returnsfalse if not
valid. There are two reasons the configuration can be invalid. The first reason can be that some of the
solving options have been disabled by the decision module:

1 i f ((p r e c o n d i t i o n e r i d ==IC)&&(s y m m e t r i c f l a g == f a l s e)) re tu rn f a l s e ;
2 i f ((p r e c o n d i t i o n e r i d ==JACOBI)&&(j a c o b i f l a g == f a l s e)) re tu rn f a l s e ;
3 i f ((s o l v e r i d ==CG)&&((s y m m e t r i c f l a g == f a l s e) | | (p o s i t i v e d e f i n i t e f l a g == f a l s e)))
4 re tu rn f a l s e ;
5 i f ((s o l v e r i d ==BICGSTAB)&&(p o s i t i v e d e f i n i t e f l a g == f a l s e)) re tu rn f a l s e ;

Second, the solving options can be invalid because the defined package does not have the required solvers
or preconditioners.

68

1 swi tch (s o l v e r p a c k a g e i d){
2 case TRILINOS : i f (t r i l i n o s f l a g ==t rue) re tu rn t rue ;
3 e l s e re tu rn f a l s e;
4 break ;
5 case HYPRE: i f ((p r e c o n d i t i o n e r i d != ILU) | | (h y p r e f l a g == f a l s e)) re tu rn f a l s e ;
6 e l s e re tu rn t rue ;
7 break ;
8 case ITL : i f ((s o l v e r i d ==GMRES)| | (i t l f l a g == f a l s e)) re tu rn f a l s e ;
9 e l s e re tu rn t rue ;

10 break ;
11 case PETSC: re tu rn t rue ;
12 break ;
13 case QQQ: i f ((s o l v e r i d ==CG)| | (p r e c o n d i t i o n e r i d != ILU)) re tu rn f a l s e ;
14 e l s e re tu rn t rue ;
15 }

If the solver configuration is invalid it needs to be changed which will be discussed in the next section.

6.5 Error Code Handling

The error code that is returned by the solver package used canbe used to make further decisions. Also,
even if the error code states that the problem was solved, it is possible that a numerical problem occurred
and that the true residual is far off the desired accuracy.

The errors which can occur are:

• loss of precision

• maximum iterations exceeded

• different types of numerical breakdowns

The possible options for handling the errors are:

• change solver package

• change preconditioner

• change solver

• solve again with new accuracy

• solve again with more iterations

The first three options can be merged into one single functionwhich cycles through all solver packages,
preconditioners and solvers. The first thing changed is the solver package, so if a solver type seems
good for a problem, it will be tested with all solver packages, starting with the fastest one. If it fails, the
next package will be used. The packages will be cycled in the following order (starting with the fastest):
Trilinos , ITL , Hypre, PETScandQQQ. If the QQQ package is reached, the solver package is reset to
Trilinos and the preconditioner is increased (preconditioner cycleorder:Jacobi, IC andILU).

69

1 i f (s o l v e r p a c k a g e i d ==QQQ){//check if last package reached
2 i f (p r e c o n d i t i o n e r i d ==ILU) {//check if last preconditioner reached
3 . . .
4 }
5 } e l s e {
6 s o l v e r p a c k a g e i d =TRILINOS ;//reset solver package
7 p r e c o n d i t i o n e r i d ++;//use next preconditioner
8 }
9 } e l s e

10 s o l v e r p a c k a g e i d ++; //use next solver_package

If the preconditioners are cycled through as well, the solver will be increased (solver cycle order:CG,
BICGstab andGMRES), until all possible options have been used.

1 i f (s o l v e r i d ==GMRES)
2 re tu rn f a l s e ;//no more option available
3 e l s e {
4 s o l v e r p a c k a g e i d =TRILINOS ;//reset solver_package
5 p r e c o n d i t i o n e r i d =JACOBI ;//reset preconditioner
6 s o l v e r i d ++;

Every time the solving options are changed, a check is required to see if they are valid .

6.5.1 Loss of Precision Handling

The Trilinos package is the only package that explicitly states a loss of precision error. For the other
packages, this error is handled implicitly if the solver package returned that everything is all right but the
residual check fails.

The loss of precision error can be approached by resolving the equation system with a better accuracy
and with the solution of the last run as the initial guess. Important variables are:

1 i n t s o l v e c o u n t e r ;//counts the solve numbers
2 double accuracy ;// desired accuracy
3 double s o l v e a c c u r a c y ;//accuracy handed to the solver, can vary to the above number
4 double r e s i d u a l ;//residual which is calculated after the solving process
5 double o l d r e s i d u a l ;//residual of the last run before current run

The implementation in the code is as follows:

1 i f ((s o l v e c o u n t e r<SOLVE LOOPMAX)&&(o l d r e s i d u a l != r e s i d u a l)) {
2 s o l v e c o u n t e r ++;
3 o l d r e s i d u a l = r e s i d u a l ;//residual is the same as the last run
4 s o l v e a c c u r a c y = s o l v ea c c u r a c y / 1 0 . 0 ;
5 i f (r e s i d u a l>1.0)
6 r e s e t i n i t i a l g u e s s () ;
7 }

The procedure is repeated until a defined number of solving processes is reached or the residual of the
last solution is equal to the new residual. Also the solutionwill only be used again if it is smaller than
1. Theelse-tree resets thesolve counter, the solve accuracyand theold residual. It also changes the solving
options:

70

1 e l s e {
2 s o l v e c o u n t e r =0;
3 s o l v e a c c u r a c y = accuracy ;
4 d e c i s i o n = i n c r e a s es o l v e r () ;
5 o l d r e s i d u a l = 0 . 0 ;
6 }

6.5.2 Maximum Iterations Exceeded

If the maximum number of iterations are exceeded, then depending on the residual of the solution it may
be helpful to restart the solving process with an increased number of iterations. The restart will only be
used if the norm of the residual from the last run is smaller than 1. In the other case, the solver cycling
will continue. There are two different resolving branches depending on whether the solving package is
PETScor not. PETSc is the slowest solver, so only one solving run is used here. The other packages
use two solving runs at most. The iterations are multiplied by 10 every time, so more than two solving
runs do not make sense because the time to divergence would betoo long.

1 i f ((s o l v e r p a c k a g e i d ==PETSC)&&(r e s i d u a l<1.0)&&(s o l v e c o u n t e r<SOLVE IT MAX PETSC)){
2 i t e r a t i o n s∗=10;
3 i f (i t e r a t i o n s>MAX ITERATIONS)
4 i t e r a t i o n s =MAX ITERATIONS ;
5 s o l v e c o u n t e r ++;
6 }

The else-branch resets the variables which were used.

6.5.3 Numerical Problems

For the numerical problems, the only possible solution is tochange the solver options, because the
numerical breakdown is nested within the algorithm used andwould likely occur again if the same
options were used again.

1 s o l v e c o u n t e r =0;//resets if it was used in the current run
2 d e c i s i o n = i n c r e a s es o l v e r () ; //use next solving option
3 i f (r e s i d u a l>1.0) //keep residual if it is smaller than 1
4 r e s e t i n i t i a l g u e s s () ;

6.6 Tests

There are three different accuracy limits the user can choose from:1 · 10−8, 1 · 10−10 and1 · 10−12. It is
not guaranteed that these limits are reached. In case of divergence, the solution with the lowest residual
reached can be accessed if desired.

6.6.1 Break tolerance1 · 10
−8

Tests with the automatic solver control showed that for all matrices except the matrix E20r5000 and the
matrix Sherman2 a solution with an accuracy of1 · 10−8 could be computed. Which solvers have been
used and how many times a new solving run was necessary until the accuracy was reached are shown in
the Figures 6.3 and 6.4 (Figure 6.2 explains how the diagramscan be read).

71

solving tries

0

1

2

3

4

5

preconditioner: Jacobi
solver: CG

solver package: Trilinos

1 try

M
at

rix
1

package switch
solver / preconditioner switch

preconditioner: ILU
solver: GMRES

solver package: PETSc

3 tries

M
at

rix
2

CG

BICGstab

GMRES

Trilinos

PETSc

Jacobi

IC

ILU

Figure 6.2: Diagram explanation manual: The diagram of the Matrix 1 indicates that its equation system was
solved with one try and the solving options Trilinos, CG and Jacobi. The second system was solved in
3 tries. The first try was done with Trilinos, BICGstab and IC.The second try with Trilinos, GMRES
and ILU. The third try with PETSc, GMRES and ILU. These diagrams show the solving options that
were used by the automatic solver control interface and alsothe number of solving tries used to reach
an accurate solution (NOTE: This is only an explanation diagram which may not indicate the real
switch options the automatic solver control uses).

A positive example of handling a loss of precision can be seenin Figure 6.5. The handling does not work
every time, which can be seen in the matrix E20r5000 which reached the accuracy3.35 · 10−8 (Figure
6.6) and the matrix Sherman2 that had1.1−7 as best residual (Figure 6.7).

72

solving tries

0

1

2

3

4

5

L
ap

la
ce

ra
nk

2

L
ap

la
ce

ra
nk

3

L
ap

la
ce

ra
nk

4

L
ap

la
ce

ra
nk

5

L
ap

la
ce

ra
nk

10

H
ilb

er
tr

an
k

4

H
ilb

er
tr

an
k

10

H
ilb

er
tr

an
k

10
0

H
ilb

er
tr

an
k

10
00

F
id

ap
00

1

F
id

ap
00

2

F
id

ap
00

5

CG

GMRES

Trilinos

PETSc

Jacobi

IC

Figure 6.3: Test results for accuracy1 · 10−8: The Laplace matrices are all symmetric and positive definite,
therefore theCG solver is used by the program. TheJacobi preconditioner is chosen because the
diagonal dominance is greater than 20%. TheTrilinos package is the first one used and successfully
solves these systems. The same solving options are used for the Hilbert matrix rank4. The linear
equations systems of the three other Hilbert matrices are solved with theIC preconditioner and the
GMRES solver because they are not positive definite. For the rank 100 and 1000 matrices,Trilinos is
not able to solve the systems so the package is switched toPETSc. The Fidap001 matrix has zeros in
the main diagonal, soTrilinos is skipped and insteadPETSc is used as the first package. The matrix
is symmetric but not positive definite, thereforeGMRES and IC are used. Its system is solved on
the third try. The matrix Fidap002 has no zeros on the main diagonal, soTrilinos was used but a loss
of precision occurred so the system was only solvable on the second try. The equation system of the
matrix Fidap005 was solvable in one try.

solving tries

0

1

2

3

4

5

F
id

ap
m

05

F
id

ap
02

7

F
id

ap
02

8

E
05

r0
10

0

S
he

rm
an

3

S
he

rm
an

5

A
dd

20

M
em

pl
us

sa
dd

le

BICGstab Jacobi

Trilinos

PETSc

GMRES

Hypre

ILU

IC

Figure 6.4: Test results for accuracy1 · 10−8: The matrix Fidapm05 has zeros in the main diagonal, so the first
package is notTrilinos . The matrix is symmetric but not positive definite so the options chosen are
GMRES andIC from thePETScpackage. A loss of precision makes a second run necessary. The
matrices Fidap027 and Fidap028 are neither symmetric nor positive definite and have zeros in the main
diagonal. The options for the first run wereGMRES andILU from theHypre package, which did not
result in a solution. A second run (and even a third run for Fidap027) with thePETScpackage was
required. The matrix E05r0100 has zeros in the main diagonaland is neither symmetric or positive
definite. TheHypre package solved the system in two runs usingGMRES andILU . The rest of the
equation systems could be solved with the first decision of the automatic solver control module.

73

log(rk)

solving runs1 2 3 4
0

−2

−4

−6

−8

−10

rs
rs

rs

rs PETSc GMRES IC

Break tolerance

Figure 6.5: Results for the matrix Fidap001: The true residual of the matrix is not beyond the given limit for
convergence after the first solving run, so the solving process is restarted. The last solution is used as
the new initial guess, and the accuracy is decreased by a factor of 10. After two restarts the solution
fulfills the given limit.

log(rk)

solving runs1 2 3 4 5 6 7 8 9 10
7

5

3

1

−1

−3

−5

−7

−9

ut

ut

rs

rs

b

b

b b b
b

b b

b

best accuracy reached

HYPRE GMRES ILU

PETSc GMRES ILU

QQQ GMRES ILU

Break tolerance

Figure 6.6: Results for Matrix E20r5000: The equation system containing the matrix E20r5000 was not solvable
to the accuracy1 · 10−8. Hypre andPETScfailed totally by returning a residual number much bigger
than 1. With theQQQ GMRES solver with ILU preconditioner it was possible by restarting the
solving process repeatedly (while the accuracy was decreased at every restart) to reach a solution
close to1 · 10−8 (NOTE: Normally the restart process also uses the last solution, ifit is already
smaller than 1. This option is not available becauseQQQ resets the solution every time).

74

log(rk)

solving runs1 2 3 4 5 6 7 8 9 10 11 12 13 14
16

14

12

10

8

6

4

2

−0

−2

−4

−6

−8

−10

ut
ut ut ut ut ut ut ut ut ut ut

ut

rs rs

rs

b

b

best accuracy reached

Trilinos GMRES ILU

PETSc GMRES ILU

QQQ GMRES ILU

Break tolerance

Figure 6.7: Results for the matrix Sherman2: The solution with the best accuracy is reached after 5 solving
tries. Then the residual norm of the solution could not be decreased further. TheQQQ solver totally
failed here by calculating a solution with a residual norm around1 · 1016.

75

6.6.2 Break tolerance1 · 10
−10

The solvable matrices are shown in the diagrams 6.8 and 6.9.

solving tries

0

1

2

3

4

5

L
ap

la
ce

ra
nk

2

L
ap

la
ce

ra
nk

3

L
ap

la
ce

ra
nk

4

L
ap

la
ce

ra
nk

5

L
ap

la
ce

ra
nk

10

H
ilb

er
tr

an
k

4

H
ilb

er
tr

an
k

10

H
ilb

er
tr

an
k

10
0

H
ilb

er
tr

an
k

10
00

F
id

ap
00

1

CG

GMRES

Trilinos

PETSc

Jacobi

IC

Figure 6.8: Test results for accuracy1 · 10−10: This diagram does not show much difference from the diagram
for the accuracy1 ·10−8. One big difference is that the equation systems Fidap002 and Fidap005 were
not solvable anymore, so they are missing here. All the othermatrices had the same solving options
and tries as for the accuracy1 · 10−8.

solving tries

0

1

2

3

4

5

F
id

ap
m

05

F
id

ap
02

7

F
id

ap
02

8

E
05

r0
10

0

S
he

rm
an

3

S
he

rm
an

5

A
dd

20

M
em

pl
us

sa
dd

le

BICGstab Jacobi

Trilinos

PETSc

GMRESHypre
ITL

ILU

IC

Figure 6.9: Test results for accuracy1 ·10−10: All matrices behave the same way they did with accuracy1 ·10−8

except the matrix Sherman2 which now needs 5 tries, unlike toone try before.

The systems which were not able to be solved are Fidap002 (Figure 6.10) which was only solvable to an
accuracy of3.54−9 and Fidap005 (Figure 6.11) which only reached an accuracy of2.25−10. Obviously,
the linear equation systems E20r5000 and Sherman2 which have not been solvable to an accuracy of
1 · 10−8 could not be solved as well.

76

log(rk)

solving runs5 10 15 20 25 30
−2

−4

−6

−8

−10

−12

ut

ut ut

ut
ut ut

ut
ut ut

ut
ut

ut

rs rs

rs

qp qp qp
qp
qp qp

qp qp qp
qp qp

qp

+ + + + + + +

+

b b

b

best accuracy reached

Trilinos GMRES IC

PETSc GMRES IC

Trilinos GMRES ILU

PETSc GMRES ILU

QQQ GMRES ILU

Break tolerance

Figure 6.10: Results for the matrix Fidap002: The matrix Fidap002 already had a loss of precision with the
accuracy1 ·10−8. There the desired accuracy was reachable by restarting thesolving process several
times. Now the best solution is reached after 4 solving runs and then no more improvement is made.
The solution does not reach the convergence limit of1 · 10−10.

log(rk)

solving runs5 10 15 20 25 30 35 40 45
−2

−4

−6

−8

−10

−12

ut

ut

ut
ut ut

ut ut
ut ut

ut
ut

ut

rs

rs rs
rs rs rs

rs rs rs
rs rs

rs

qp
qp qp

qp
qp
qp qp

qp qp qp qp

qp

+
+ + + + + + + + + +

+

b

b
b b

b

best accuracy reached

Trilinos GMRES IC

PETSc GMRES IC

Trilinos GMRES ILU

PETSc GMRES ILU

QQQ GMRES ILU

Break tolerance

Figure 6.11: Results for the matrix Fidap005: The matrix Fidap005 did not encounter any problems with the
accuracy1 · 10−8. Only one solving try was necessary to get to the desired solution. Now the best
solution is also calculated at the first try, but it does not fulfill the convergence tolerance of1 · 10−10.
No switch of the solving options helps to get a more accurate solution.

77

6.6.3 Break tolerance1 · 10
−12

With the higher accuracy, more equation system appeared that were not solvable to the desired tolerance.
The systems which could be solved are shown in the Figures 6.12 and 6.13.

solving tries

0

1

2

3

4

5

L
ap

la
ce

ra
nk

2

L
ap

la
ce

ra
nk

3

L
ap

la
ce

ra
nk

4

L
ap

la
ce

ra
nk

5

L
ap

la
ce

ra
nk

10

H
ilb

er
tr

an
k

4

H
ilb

er
tr

an
k

10

H
ilb

er
tr

an
k

10
0

H
ilb

er
tr

an
k

10
00

F
id

ap
00

1

CG

GMRES

Trilinos

PETSc

Jacobi

IC

ILU

Figure 6.12: Test results for accuracy1 · 10−12: The matrix Hilbert rank 100 now needs an additional solving
try to compute the solution with an accuracy of1 · 10−12. The matrix Hilbert rank 1000 even needs
five tries now and cycles not only the solving packages, but also the preconditioner is changed from
IC to ILU .

solving tries

0

1

2

3

4

5

F
id

ap
m

05

F
id

ap
02

7

F
id

ap
02

8

e0
5r

01
00

ad
d2

0

M
em

pl
us

sa
dd

le

BICGstab Jacobi

Trilinos

PETSc

GMRES

Hypre

ILU

IC

Figure 6.13: Test results for accuracy1 ·10−12: The equation systems Sherman3 and Sherman5 are missing here
because they are not solvable anymore. The matrix Fidap028 now needs one more solving try than
before.

The Sherman3 matrix had8.42−11 as best residual (Figure 6.14). The matrix Sherman5 reacheda resid-
ual of2.27−11 (Figure 6.15).

78

log(rk)

solving runs5 10 15 20 25 30 35 40 45 50 55
−8

−9

−10

−11

−12

−13

ut

ut Trilinos BICGstab Jacobi

ut

ut ITL BICGstab Jacobi

ut ut

ut PETSc BICGstab Jacobi

rs rs rs rs rs rs
rs

rs

rs

rs

rs
rs

rs Trilinos BICGstab ILU

rs
rs rs rs rs

rs

rs rs
rs rs rs

rs PETSc BICGstab ILU

rs rs rs rs rs rs

rs QQQ BICGstab ILU

qp qp qp qp qp
qp
qp
qp
qp
qp
qp

qp Trilinos GMRES Jacobi

qp qp

qp PETSc GMRES Jacobi

+ + + + + + + + + + +

+ Trilinos GMRES ILU

+ +

+ PETSc GMRES ILU

best accuracy reached

Break tolerance

Figure 6.14: Results for the matrix Sherman3: The best solution is reached after six solving tries and three
switches of the solving options. Further restarting of the solving process and even more switching
of the options does not improve the solution anymore. (NOTE: The QQQ GMRES solver with
ILU preconditioner was the last solving try but is not shown in the diagram because it had a residual
around1 · 1010).

log(rk)

solving runs5 10 15 20 25
−8

−9

−10

−11

−12

−13

ut

ut ut ut ut ut ut ut ut ut ut

ut

rs

rs

rs

rs rs rs rs rs rs rs rs rs

b

b

b b
b b

b

best accuracy reached

Trilinos GMRES ILU

PETSc GMRES ILU

QQQ GMRES ILU

Break tolerance

Figure 6.15: Results for the matrix Sherman5:The best solution was reached after the second solving try. More
solving tries and switching of the options did not increase the accuracy of the solution anymore nor
did they help to reach convergence.

79

6.6.4 Conclusion of the Tests

The test with the three different accuracy levels showed that decreasing the accuracy margin of the
convergence causes more solvers to have problems with computing accurate solutions for the matrices.
For the low accuracy1 · 10−8 most matrices have been solvable with the first chosen options; only a
package switch sometimes had to be made. When the accuracy tolerance was decreased, more solver
and preconditioner switches occurred and also more matrices had loss of precision errors.

Regarding the loss of precision error it was not always possible to improve the solution further by restart-
ing the solving process. For the matrices it worked with a lower accuracy a higher accuracy resulted in
an unsolvable loss of precision error. These matrices are close to the numerical limits and therefore it is
very hard to improve the accuracy further.

6.7 Usage of the Automatic Solver Control

At first the automatic solver control interface needs to be initialized with the dimension of the equation
system:

1 a s i : : a u t o m a t i c s o l v e r c o n t r o l i n t e r f a c e s i (d imens ion) ;

Then the matrix and the right-hand side need to be filled:

1 {
2 . . . //loop for passing matrix to solver interface
3 s i . i n s e r t v a l u e (row , column , va lue) ;
4 }
5

6 {
7 . . .//loop for passing b vector to solver
8 s i . i n i t r h s (i , va l ue) ;
9 }

After that the diagnostic tool can be activated (si . activatediagnostic ()). Before solving the desired ac-
curacy may be chosen (e.g., low accuracysi . setlow accuracy ()) and the printlevel optionally can be set
(si . setprintlevel (1)). Because some solver packages have output which cannot be suppressed, there is
some output even if no output is chosen. All warnings provided by these packages are not valid because
they are handled anyway.

Then the solving process can be started withsi . solve () and will return atrue if it succeeds. If afalse is
returned the user can check the value of the best residual reached. If he tolerates it he may access the
best solution with:

1 s i . g e t b e s t x v a l u e (i n t row) ;//returns the double value with the index row

80

Chapter 7

Conclusion

The development of an automatic solver control has been presented. Three different indirect solver
algorithms (CG, BICGstab, andGMRES) have been tested. Five different packages (Trilinos , Hypre,
PETSc, QQQ andITL) which provide these algorithms have been compared to each other to find out
the differences in code implementation (Chapters 3 and 5). The preconditionersJacobi, ILU and IC
have been introduced to improve the solver process of some linear equation systems.

In this work several matrix properties have been investigated to find out which solvers fit a particular
type of matrix best. TheCG solver and theIC preconditioner require a matrix that is symmetric and
positive definite. TheBICGstab solver also requires a positive definite matrix. Another important matrix
property is the number of zeros in the main diagonal. The strategies of the different solver packages for
zero pivot elements are important to success in solving certain matrices. ThePETScandQQQ packages
both have good strategies and therefore had the least problems with matrices containing zeros on the main
diagonal. Last but not least, the relation between the number of diagonal and off-diagonal elements is a
decision criteria for theJacobi preconditioner.

These matrix properties are checked by a matrix analyzer which has been implemented. The performance
of this module was reasonable and helped the automatic solver control to decide which solving options
fit best for a matrix.

An error that often occurred during the testing of the matrices is a loss of precision of the residual. This
can lead to inaccurate solutions. Chapter 6 introduced a strategy to handle this problem. The equation
system is solved repeatedly to improve the accuracy of the residual. This led to reasonable results for
some of the matrices. Chapter 6 also showed the performance of the automatic solver control with three
different accuracy limits. For the accuracy1 · 10−8 the automatic solver control was able to solve all
given systems except two. A few of the matrices needed more than one solving run to reach the desired
accuracy. Switching of the solver package helped in some cases. For other matrices the loss of precision
handling was successful. The automatic solver control alsodelivered reasonable results for the other
accuracy limits.

There are more solvers and preconditioners available on themarket which could be added to the auto-
matic solver control for further improvement.

81

Appendix A

Test results

This section contains the test results of all the matrices tested in Chapter 5. The tables contain the solver
package, the solver type, the preconditioner, how many iterations the solving process took, the status, the
solving time and the absolute and relative residual calculated after the solving process. The error codes
returned by the packages are represented by the followingenum values:

1 enum s o l v e r e r r o r{
2 SOLVED=0 , MAX ITERATIONS EXCEEDED, LOSSOF PRECISION ,
3 NUMERICAL BREAKDOWN, ILL CONDITIONED , UNKNOWNERROR, INDEFINITE PC ,
4 DROPTOLERANCE, INDEFINITE MAT
5 } ;

The solver combinations tested were:

• Trilinos package

Solvers:CG, BICGstab andGMRES; Preconditioners: none,Jacobi, ILU andIC

• PETScpackage

Solvers:CG, BICGstab andGMRES; Preconditioners: none,Jacobi, ILU andIC

• ITL package

Solvers:CG andBICGstab; Preconditioners: none,Jacobi, ILU andIC

• Hypre package

Solvers:CG, BICGstab andGMRES; Preconditioners: none andILU

• QQQ package:

Solvers:BICGstab andGMRES; Preconditioners: none andILU

The IC preconditioner was only used with symmetric matrices. Whenany of the solver combinations
mentioned is missing from a table, this indicates that the solver was not able to reach a defined program
end (e.g., an exception was thrown).

82

package solver precond iterations status solving time absolute residual rel residual

ITL CG NONE 2 0 0.000264s 0 0
Hypre CG NONE 1 0 0.000188s 0 0
Trilinos CG NONE 1 0 0.00025s 0 0
PETSc CG NONE 1 0 0.000603s 0 0
ITL BICGstab NONE 1 0 0.000255s 0 0
Hypre BICGstab NONE 0 3 0.000157s nan nan
Trilinos BICGstab NONE 1 0 0.000232s 0 0
QQQ BICGstab NONE 1 0 0.000208s 3.14018e-16 2.22045e-16
PETSc BICGstab NONE 1 0 0.000594s 0 0
Hypre GMRES NONE 1 0 0.006222s 3.14018e-16 2.22045e-16
Trilinos GMRES NONE 1 0 0.000269s 3.14018e-16 2.22045e-16
QQQ GMRES NONE 1 0 0.004661s 3.14018e-16 2.22045e-16
PETSc GMRES NONE 1 0 0.01812s 3.14018e-16 2.22045e-16
ITL CG Jacobi 2 0 0.000273s 0 0
Trilinos CG Jacobi 1 0 0.000263s 0 0
PETSc CG Jacobi 1 0 0.000634s 0 0
ITL BICGstab Jacobi 1 0 0.000269s 0 0
Trilinos BICGstab Jacobi 1 0 0.000234s 0 0
PETSc BICGstab Jacobi 1 0 0.000614s 0 0
Trilinos GMRES Jacobi 1 0 0.000253s 3.14018e-16 2.22045e-16
PETSc GMRES Jacobi 1 0 0.017948s 3.14018e-16 2.22045e-16
ITL CG ILU 2 0 0.000298s 0 0
Hypre CG ILU 1 0 0.000194s 0 0
Trilinos CG ILU 1 0 0.000482s 0 0
PETSc CG ILU 1 0 0.001542s 0 0
ITL BICGstab ILU 1 0 0.000286s 0 0
Hypre BICGstab ILU 0 3 0.000172s nan nan
Trilinos BICGstab ILU 1 0 0.000411s 0 0
QQQ BICGstab ILU 1 0 0.00019s 3.14018e-16 2.22045e-16
PETSc BICGstab ILU 1 0 0.001494s 0 0
Hypre GMRES ILU 1 0 0.004202s 3.14018e-16 2.22045e-16
Trilinos GMRES ILU 1 0 0.000498s 3.14018e-16 2.22045e-16
QQQ GMRES ILU 1 0 0.004665s 3.14018e-16 2.22045e-16
PETSc GMRES ILU 1 0 0.019647s 3.14018e-16 2.22045e-16
ITL CG IC 2 0 0.000376s 4.96507e-16 3.51083e-16
Trilinos CG IC 1 0 0.000486s 0 0
PETSc CG IC 1 0 0.001646s 0 0
ITL BICGstab IC 1 0 0.000286s 2.22045e-16 1.57009e-16
Trilinos BICGstab IC 1 0 0.000379s 0 0
PETSc BICGstab IC 1 0 0.001264s 0 0
Trilinos GMRES IC 1 0 0.00046s 3.14018e-16 2.22045e-16
PETSc GMRES IC 1 0 0.018328s 3.14018e-16 2.22045e-16

Table A.1: Laplace Rank 2 test results

83

package solver precond iterations status solving time absolute residual rel residual

ITL CG NONE 3 0 8.9e-05s 0 0
Hypre CG NONE 2 0 8.9e-05s 0 0
Trilinos CG NONE 2 0 0.000113s 0 0
PETSc CG NONE 2 0 0.000328s 0 0
ITL BICGstab NONE 2 0 9.5e-05s 5.43896e-16 3.84593e-16
Hypre BICGstab NONE 2 0 8.5e-05s 5.43896e-16 3.84593e-16
Trilinos BICGstab NONE 2 0 0.000104s 5.43896e-16 3.84593e-16
QQQ BICGstab NONE 2 0 0.000107s 0 0
PETSc BICGstab NONE 2 0 0.000332s 5.43896e-16 3.84593e-16
Hypre GMRES NONE 2 0 0.005149s 3.14018e-16 2.22045e-16
Trilinos GMRES NONE 2 0 0.001377s 3.14018e-16 2.22045e-16
QQQ GMRES NONE 2 0 0.004485s 6.28037e-16 4.44089e-16
PETSc GMRES NONE 2 0 0.010632s 4.44089e-16 3.14018e-16
ITL CG Jacobi 3 0 0.000101s 0 0
Trilinos CG Jacobi 2 0 0.000126s 0 0
PETSc CG Jacobi 2 0 0.000354s 0 0
ITL BICGstab Jacobi 2 0 9.8e-05s 5.43896e-16 3.84593e-16
Trilinos BICGstab Jacobi 2 0 0.000109s 5.43896e-16 3.84593e-16
PETSc BICGstab Jacobi 2 0 0.000337s 5.43896e-16 3.84593e-16
Trilinos GMRES Jacobi 2 0 0.000121s 3.14018e-16 2.22045e-16
PETSc GMRES Jacobi 2 0 0.010194s 4.44089e-16 3.14018e-16
ITL CG ILU 2 0 0.000126s 2.48253e-16 1.75542e-16
Hypre CG ILU 1 0 9.4e-05s 2.48253e-16 1.75542e-16
Trilinos CG ILU 1 0 0.000216s 2.48253e-16 1.75542e-16
PETSc CG ILU 1 0 0.000662s 2.48253e-16 1.75542e-16
ITL BICGstab ILU 1 0 0.000108s 2.48253e-16 1.75542e-16
Hypre BICGstab ILU 0 3 8.4e-05s 0 0
Trilinos BICGstab ILU 1 0 0.000155s 0 0
QQQ BICGstab ILU 1 0 8.4e-05s 7.36439e-16 5.20741e-16
PETSc BICGstab ILU 1 0 0.000634s 1.57009e-16 1.11022e-16
Hypre GMRES ILU 1 0 0.0032s 3.14018e-16 2.22045e-16
Trilinos GMRES ILU 1 0 0.000239s 3.14018e-16 2.22045e-16
QQQ GMRES ILU 1 0 0.00446s 1.57009e-16 1.11022e-16
PETSc GMRES ILU 1 0 0.011198s 3.14018e-16 2.22045e-16
ITL CG IC 2 0 0.000109s 0 0
Trilinos CG IC 1 0 0.000253s 2.48253e-16 1.75542e-16
PETSc CG IC 1 0 0.000883s 2.48253e-16 1.75542e-16
ITL BICGstab IC 1 0 9.8e-05s 0 0
Trilinos BICGstab IC 1 0 0.000153s 0 0
PETSc BICGstab IC 1 0 0.000502s 1.57009e-16 1.11022e-16
Trilinos GMRES IC 1 0 0.00023s 3.14018e-16 2.22045e-16
PETSc GMRES IC 1 0 0.010533s 3.14018e-16 2.22045e-16

Table A.2: Laplace rank 3 test results

84

package solver precond iterations status solving time absolute residual rel residual

ITL CG NONE 3 0 0.000284s 0 0
Hypre CG NONE 2 0 0.000208s 0 0
Trilinos CG NONE 2 0 0.000266s 0 0
PETSc CG NONE 2 0 0.00063s 0 0
ITL BICGstab NONE 2 0 0.000296s 0 0
Hypre BICGstab NONE 0 3 0.00018s nan nan
Trilinos BICGstab NONE 2 0 0.00025s 0 0
QQQ BICGstab NONE 2 0 0.000215s 6.28037e-16 4.44089e-16
PETSc BICGstab NONE 2 0 0.000612s 0 0
Hypre GMRES NONE 2 0 0.006287s 3.14018e-16 2.22045e-16
Trilinos GMRES NONE 2 0 0.001544s 3.14018e-16 2.22045e-16
QQQ GMRES NONE 2 0 0.004627s 3.14018e-16 2.22045e-16
PETSc GMRES NONE 2 0 0.018159s 3.14018e-16 2.22045e-16
ITL CG Jacobi 3 0 0.000294s 0 0
Trilinos CG Jacobi 2 0 0.000278s 0 0
PETSc CG Jacobi 2 0 0.000668s 0 0
ITL BICGstab Jacobi 2 0 0.000359s 0 0
Trilinos BICGstab Jacobi 2 0 0.000262s 0 0
PETSc BICGstab Jacobi 2 0 0.000645s 0 0
Trilinos GMRES Jacobi 2 0 0.000277s 3.14018e-16 2.22045e-16
PETSc GMRES Jacobi 2 0 0.017549s 3.14018e-16 2.22045e-16
ITL CG ILU 2 0 0.000306s 1.57009e-16 1.11022e-16
Hypre CG ILU 1 0 0.000198s 1.57009e-16 1.11022e-16
Trilinos CG ILU 1 0 0.00049s 1.57009e-16 1.11022e-16
PETSc CG ILU 1 0 0.001502s 3.33067e-16 2.35514e-16
ITL BICGstab ILU 1 0 0.000291s 1.57009e-16 1.11022e-16
Hypre BICGstab ILU 1 0 0.000218s 0 0
Trilinos BICGstab ILU 1 0 0.000429s 3.14018e-16 2.22045e-16
QQQ BICGstab ILU 1 0 0.000196s 4.96507e-16 3.51083e-16
PETSc BICGstab ILU 1 0 0.001455s 1.57009e-16 1.11022e-16
Hypre GMRES ILU 1 0 0.004284s 1.57009e-16 1.11022e-16
Trilinos GMRES ILU 1 0 0.0005s 2.71948e-16 1.92296e-16
QQQ GMRES ILU 1 0 0.004586s 1.57009e-16 1.11022e-16
PETSc GMRES ILU 1 0 0.019218s 4.96507e-16 3.51083e-16
ITL CG IC 2 0 0.000299s 4.96507e-16 3.51083e-16
Trilinos CG IC 1 0 0.000494s 3.33067e-16 2.35514e-16
PETSc CG IC 1 0 0.001608s 3.33067e-16 2.35514e-16
ITL BICGstab IC 1 0 0.000286s 3.84593e-16 2.71948e-16
Trilinos BICGstab IC 1 0 0.000386s 0 0
PETSc BICGstab IC 1 0 0.001239s 1.57009e-16 1.11022e-16
Trilinos GMRES IC 1 0 0.000467s 2.48253e-16 1.75542e-16
PETSc GMRES IC 1 0 0.018313s 4.96507e-16 3.51083e-16

Table A.3: Laplace rank 4 test results

85

package solver precond iterations status solving time absolute residual rel residual

ITL CG NONE 5 0 0.000113s 8.59975e-16 3.2504e-16
Hypre CG NONE 4 0 0.000106s 5.55112e-16 2.09812e-16
Trilinos CG NONE 4 0 0.000128s 5.55112e-16 2.09812e-16
PETSc CG NONE 4 0 0.000359s 2.71948e-16 1.02787e-16
ITL BICGstab NONE 4 0 0.000128s 5.55112e-16 2.09812e-16
Hypre BICGstab NONE 4 0 9.9e-05s 1.57009e-16 5.93439e-17
Trilinos BICGstab NONE 4 0 0.000111s 3.14018e-16 1.18688e-16
QQQ BICGstab NONE 4 0 0.000109s 7.69185e-16 2.90725e-16
PETSc BICGstab NONE 4 0 0.000362s 3.84593e-16 1.45362e-16
Hypre GMRES NONE 4 0 0.005221s 8.382e-16 3.1681e-16
Trilinos GMRES NONE 4 0 0.001395s 1.04738e-15 3.95873e-16
QQQ GMRES NONE 4 0 0.004774s 1.52226e-15 5.75361e-16
PETSc GMRES NONE 4 0 0.010735s 5.43896e-16 2.05573e-16
ITL CG Jacobi 5 0 0.000112s 8.59975e-16 3.2504e-16
Trilinos CG Jacobi 4 0 0.000137s 5.55112e-16 2.09812e-16
PETSc CG Jacobi 4 0 0.000399s 2.71948e-16 1.02787e-16
ITL BICGstab Jacobi 4 0 0.000127s 5.55112e-16 2.09812e-16
Trilinos BICGstab Jacobi 4 0 0.000122s 3.14018e-16 1.18688e-16
PETSc BICGstab Jacobi 4 0 0.000376s 3.84593e-16 1.45362e-16
Trilinos GMRES Jacobi 4 0 0.000144s 1.04738e-15 3.95873e-16
PETSc GMRES Jacobi 4 0 0.010281s 5.43896e-16 2.05573e-16
ITL CG ILU 2 0 0.000129s 2.48253e-16 9.3831e-17
Hypre CG ILU 1 0 0.000102s 6.66134e-16 2.51775e-16
Trilinos CG ILU 1 0 0.000214s 2.22045e-16 8.3925e-17
PETSc CG ILU 1 0 0.000704s 6.66134e-16 2.51775e-16
ITL BICGstab ILU 1 0 0.000106s 2.48253e-16 9.3831e-17
Hypre BICGstab ILU 1 0 9.7e-05s 1.11022e-16 4.19625e-17
Trilinos BICGstab ILU 1 0 0.000167s 3.33067e-16 1.25887e-16
QQQ BICGstab ILU 1 0 9e-05s 6.66134e-16 2.51775e-16
PETSc BICGstab ILU 1 0 0.000694s 6.75322e-16 2.55248e-16
Hypre GMRES ILU 1 0 0.003189s 5.43896e-16 2.05573e-16
Trilinos GMRES ILU 1 0 0.000239s 2.22045e-16 8.3925e-17
QQQ GMRES ILU 1 0 0.00448s 6.66134e-16 2.51775e-16
PETSc GMRES ILU 1 0 0.011167s 6.66134e-16 2.51775e-16
ITL CG IC 2 0 0.000114s 5.97873e-16 2.25975e-16
Trilinos CG IC 1 0 0.000252s 2.22045e-16 8.3925e-17
PETSc CG IC 1 0 0.000885s 2.22045e-16 8.3925e-17
ITL BICGstab IC 1 0 0.000108s 5.97873e-16 2.25975e-16
Trilinos BICGstab IC 1 0 0.000154s 3.33067e-16 1.25887e-16
PETSc BICGstab IC 1 0 0.000539s 2.22045e-16 8.3925e-17
Trilinos GMRES IC 1 0 0.000238s 2.22045e-16 8.3925e-17
PETSc GMRES IC 1 0 0.010801s 6.66134e-16 2.51775e-16

Table A.4: Laplace rank 5 test results

86

package solver precond iterations status solving time absolute residual rel residual

ITL CG NONE 6 0 0.000353s 2.71948e-16 1.92296e-16
Hypre CG NONE 5 0 0.000269s 4.44089e-16 3.14018e-16
Trilinos CG NONE 5 0 0.000325s 4.44089e-16 3.14018e-16
PETSc CG NONE 5 0 0.000744s 4.44089e-16 3.14018e-16
ITL BICGstab NONE 5 0 0.000429s 1.17495e-15 8.30815e-16
Hypre BICGstab NONE 5 0 0.000288s 4.96507e-16 3.51083e-16
Trilinos BICGstab NONE 5 0 0.000312s 2.1065e-15 1.48952e-15
QQQ BICGstab NONE 5 0 0.000227s 2.64364e-15 1.86933e-15
PETSc BICGstab NONE 5 0 0.000737s 3.14018e-16 2.22045e-16
Hypre GMRES NONE 5 0 0.006462s 4.44089e-16 3.14018e-16
Trilinos GMRES NONE 5 0 0.001597s 6.08094e-16 4.29988e-16
QQQ GMRES NONE 5 0 0.004681s 1.38667e-15 9.80522e-16
PETSc GMRES NONE 5 0 0.018655s 8.88178e-16 6.28037e-16
ITL CG Jacobi 6 0 0.000364s 2.71948e-16 1.92296e-16
Trilinos CG Jacobi 5 0 0.00034s 4.44089e-16 3.14018e-16
PETSc CG Jacobi 5 0 0.000772s 4.44089e-16 3.14018e-16
ITL BICGstab Jacobi 5 0 0.000444s 1.17495e-15 8.30815e-16
Trilinos BICGstab Jacobi 5 0 0.000326s 2.1065e-15 1.48952e-15
PETSc BICGstab Jacobi 5 0 0.00076s 3.14018e-16 2.22045e-16
Trilinos GMRES Jacobi 5 0 0.000353s 6.08094e-16 4.29988e-16
PETSc GMRES Jacobi 5 0 0.017783s 8.88178e-16 6.28037e-16
ITL CG ILU 2 0 0.000313s 2.71948e-16 1.92296e-16
Hypre CG ILU 1 0 0.000207s 2.71948e-16 1.92296e-16
Trilinos CG ILU 1 0 0.000495s 2.71948e-16 1.92296e-16
PETSc CG ILU 1 0 0.001518s 3.33067e-16 2.35514e-16
ITL BICGstab ILU 1 0 0.000303s 2.71948e-16 1.92296e-16
Hypre BICGstab ILU 1 0 0.000228s 0 0
Trilinos BICGstab ILU 1 0 0.000424s 0 0
QQQ BICGstab ILU 1 0 0.000203s 3.84593e-16 2.71948e-16
PETSc BICGstab ILU 1 0 0.001479s 3.33067e-16 2.35514e-16
Hypre GMRES ILU 1 0 0.004408s 2.71948e-16 1.92296e-16
Trilinos GMRES ILU 1 0 0.000509s 4.00297e-16 2.83052e-16
QQQ GMRES ILU 1 0 0.004716s 9.15513e-16 6.47366e-16
PETSc GMRES ILU 1 0 0.019294s 1.92296e-16 1.35974e-16
ITL CG IC 2 0 0.000304s 4.44089e-16 3.14018e-16
Trilinos CG IC 1 0 0.000499s 6.66134e-16 4.71028e-16
PETSc CG IC 1 0 0.00163s 6.66134e-16 4.71028e-16
ITL BICGstab IC 1 0 0.000294s 4.44089e-16 3.14018e-16
Trilinos BICGstab IC 1 0 0.00039s 0 0
PETSc BICGstab IC 1 0 0.001263s 0 0
Trilinos GMRES IC 1 0 0.000473s 3.33067e-16 2.35514e-16
PETSc GMRES IC 1 0 0.018294s 6.66134e-16 4.71028e-16

Table A.5: Laplace rank 10 test results

87

package solver precond iterations status solving time absolute residual rel residual

ITL CG NONE 4 1 0.000224s 4.20719e-09 1.53968e-09
Hypre CG NONE 4 1 0.000176s 4.21041e-09 1.54086e-09
Trilinos CG NONE 4 1 0.000311s 5.14823e-09 1.88407e-09
PETSc CG NONE 4 1 0.000526s 1.7421e-10 6.37547e-11
ITL BICGstab NONE 4 1 0.00027s 3.16189e-08 1.15714e-08
Hypre BICGstab NONE 4 1 0.000156s 5.80364e-08 2.12393e-08
Trilinos BICGstab NONE 4 1 0.000297s 3.69441e-08 1.35202e-08
QQQ BICGstab NONE 4 1 0.00016s 2.71695e-08 9.94306e-09
PETSc BICGstab NONE 4 1 0.000516s 1.19062e-08 4.35726e-09
Hypre GMRES NONE 4 0 0.005288s 4.57757e-16 1.67523e-16
Trilinos GMRES NONE 4 0 0.00149s 2.22045e-16 8.12604e-17
QQQ GMRES NONE 4 0 0.004482s 5.55112e-16 2.03151e-16
PETSc GMRES NONE 4 0 0.011031s 5.08768e-16 1.86191e-16
ITL CG Jacobi 4 1 0.000229s 9.41892e-10 3.44699e-10
Trilinos CG Jacobi 4 1 0.000332s 3.19936e-09 1.17085e-09
PETSc CG Jacobi 4 1 0.000557s 2.50357e-09 9.16217e-10
ITL BICGstab Jacobi 4 1 0.000278s 2.19324e-06 8.02646e-07
Trilinos BICGstab Jacobi 4 1 0.00031s 2.19327e-06 8.02657e-07
PETSc BICGstab Jacobi 4 1 0.000522s 2.4326e-06 8.90245e-07
Trilinos GMRES Jacobi 4 0 0.000235s 2.48253e-16 9.08519e-17
PETSc GMRES Jacobi 4 0 0.010467s 6.97054e-13 2.55097e-13
ITL CG ILU 2 0 0.000211s 0 0
Hypre CG ILU 1 0 0.000147s 0 0
Trilinos CG ILU 1 0 0.00035s 0 0
PETSc CG ILU 1 0 0.001137s 0 0
ITL BICGstab ILU 1 0 0.000198s 0 0
Hypre BICGstab ILU 0 3 0.000128s nan nan
Trilinos BICGstab ILU 1 0 0.000287s 0 0
QQQ BICGstab ILU 1 0 0.000142s 2.71948e-16 9.95232e-17
PETSc BICGstab ILU 1 0 0.001105s 0 0
Hypre GMRES ILU 1 0 0.003308s 1.11022e-16 4.06302e-17
Trilinos GMRES ILU 1 0 0.000363s 1.11022e-16 4.06302e-17
QQQ GMRES ILU 1 0 0.004539s 1.04266e-14 3.81578e-15
PETSc GMRES ILU 1 0 0.01158s 1.04266e-14 3.81578e-15
ITL CG IC 2 0 0.000205s 0 0
Trilinos CG IC 1 0 0.000367s 5.20741e-16 1.90572e-16
PETSc CG IC 1 0 0.00128s 2.71948e-16 9.95232e-17
ITL BICGstab IC 1 0 0.000195s 0 0
Trilinos BICGstab IC 1 0 0.000265s 0 0
PETSc BICGstab IC 1 0 0.000892s 2.48253e-16 9.08519e-17
Trilinos GMRES IC 1 0 0.000346s 2.22045e-16 8.12604e-17
PETSc GMRES IC 1 0 0.010994s 7.03219e-15 2.57353e-15

Table A.6: Hilbert rank 4 test results

88

package solver precond iterations status solving time absolute residual rel residual

ITL CG NONE 10 1 0.00031s 6.927e-08 1.47075e-08
Hypre CG NONE 10 1 0.000325s 1.53567e-07 3.26056e-08
Trilinos CG NONE 10 1 0.000489s 2.08801e-07 4.4333e-08
PETSc CG NONE 10 1 0.000795s 2.37618e-07 5.04514e-08
ITL BICGstab NONE 10 1 0.000644s 1.40222e-10 2.97722e-11
Hypre BICGstab NONE 10 1 0.00031s 1.41216e-10 2.99833e-11
Trilinos BICGstab NONE 10 1 0.000588s 1.06781e-10 2.26718e-11
QQQ BICGstab NONE 10 1 0.000258s 1.20492e-10 2.5583e-11
PETSc BICGstab NONE 10 1 0.000908s 1.28341e-10 2.72495e-11
Hypre GMRES NONE 7 0 0.005538s 3.42065e-13 7.26277e-14
Trilinos GMRES NONE 7 0 0.001651s 3.42137e-13 7.26431e-14
QQQ GMRES NONE 7 0 0.00477s 3.42054e-13 7.26253e-14
PETSc GMRES NONE 7 0 0.011307s 3.69428e-13 7.84375e-14
ITL CG Jacobi 10 1 0.000481s 1.43939e-07 3.05613e-08
Trilinos CG Jacobi 10 1 0.000617s 4.53603e-08 9.63096e-09
PETSc CG Jacobi 10 1 0.000922s 5.31169e-08 1.12779e-08
ITL BICGstab Jacobi 10 1 0.00068s 4.5955e-06 9.75723e-07
Trilinos BICGstab Jacobi 9 3 0.000616s 4.5954e-06 9.75702e-07
PETSc BICGstab Jacobi 10 1 0.000918s 0.000665968 0.000141399
Trilinos GMRES Jacobi 7 0 0.000407s 3.43116e-13 7.28508e-14
PETSc GMRES Jacobi 10 1 0.01095s 1.78515e-10 3.79026e-11
ITL CG ILU 2 0 0.000436s 0 0
Hypre CG ILU 10 1 0.000408s 6.63835e-08 1.40947e-08
Trilinos CG ILU 1 0 0.000514s 0 0
PETSc CG ILU 6 0 0.001753s 6.37775e-16 1.35413e-16
ITL BICGstab ILU 1 0 0.000405s 0 0
Hypre BICGstab ILU 3 0 0.000285s 5.73006e-13 1.21662e-13
Trilinos BICGstab ILU 1 0 0.000452s 0 0
QQQ BICGstab ILU 5 0 0.000306s 3.00062e-13 6.37097e-14
PETSc BICGstab ILU 5 0 0.001712s 5.32444e-16 1.13049e-16
Hypre GMRES ILU 2 0 0.003408s 5.57132e-13 1.18291e-13
Trilinos GMRES ILU 1 0 0.000549s 6.47366e-16 1.3745e-16
QQQ GMRES ILU 3 0 1.39602s 8.382e-16 1.77968e-16
PETSc GMRES ILU 4 0 0.006615s 3.76986e-15 8.00422e-16
ITL CG IC 2 0 0.000285s 0 0
Trilinos CG IC 1 0 0.000391s 0 0
PETSc CG IC 3 0 0.001437s 4.57757e-16 9.71916e-17
ITL BICGstab IC 1 0 0.000272s 0 0
Trilinos BICGstab IC 1 0 0.000292s 0 0
PETSc BICGstab IC 2 0 0.000967s 4.96507e-16 1.05419e-16
Trilinos GMRES IC 1 0 0.000375s 6.47366e-16 1.3745e-16
PETSc GMRES IC 3 0 0.011162s 3.84593e-16 8.16573e-17

Table A.7: Hilbert rank 10 test results

89

package solver precond iterations status solving time absolute residual rel residual

ITL CG NONE 28 0 0.002271s 3.19848e-12 2.00532e-13
Hypre CG NONE 27 0 0.001311s 1.92737e-12 1.20838e-13
Trilinos CG NONE 28 0 0.001402s 1.21157e-12 7.59605e-14
PETSc CG NONE 28 0 0.002516s 2.90365e-12 1.82047e-13
ITL BICGstab NONE 56 0 0.008232s 2.81127e-12 1.76255e-13
Hypre BICGstab NONE 57 0 0.003858s 1.58843e-11 9.95884e-13
Trilinos BICGstab NONE 72 0 0.004737s 1.03206e-11 6.47061e-13
QQQ BICGstab NONE 43 0 0.009032s 1.03347e-11 6.47943e-13
PETSc BICGstab NONE 49 0 0.005225s 1.02169e-11 6.40559e-13
Hypre GMRES NONE 12 0 0.006365s 1.20622e-12 7.56252e-14
Trilinos GMRES NONE 12 0 0.00209s 1.20636e-12 7.56337e-14
QQQ GMRES NONE 12 0 0.006851s 1.20658e-12 7.56475e-14
PETSc GMRES NONE 12 0 0.01224s 2.61782e-12 1.64127e-13
ITL CG Jacobi 28 0 0.002286s 2.0414e-12 1.27987e-13
Trilinos CG Jacobi 27 0 0.001505s 5.66709e-12 3.55304e-13
PETSc CG Jacobi 30 0 0.002715s 7.83941e-12 4.91499e-13
ITL BICGstab Jacobi 50 5 0.007504s 4.62261e-05 2.89819e-06
Trilinos BICGstab Jacobi 16 3 0.001539s 4.89168e-05 3.06689e-06
PETSc BICGstab Jacobi 100 1 0.009801s 0.012549 0.00078677
Trilinos GMRES Jacobi 12 0 0.000979s 1.26878e-12 7.95473e-14
PETSc GMRES Jacobi 100 1 0.020344s 4.19833e-08 2.63219e-09
ITL CG ILU 2 0 0.043619s 9.6064e-14 6.02283e-15
Hypre CG ILU 100 1 0.007659s 355.635 22.2969
Trilinos CG ILU 1 0 0.005575s 2.74205e-15 1.71915e-16
PETSc CG ILU 65 8 0.012643s 7.4135e-08 4.64797e-09
ITL BICGstab ILU 1 0 0.043425s 7.4244e-15 4.6548e-16
Hypre BICGstab ILU 100 1 0.010346s 0.000294372 1.84559e-05
Trilinos BICGstab ILU 1 0 0.005286s 3.00376e-15 1.88324e-16
QQQ BICGstab ILU 8 0 0.120315s 1.46383e-11 9.17761e-13
PETSc BICGstab ILU 100 1 0.019756s 4.41937e-09 2.77077e-10
Hypre GMRES ILU 100 1 0.011315s 1.40817e-07 8.82863e-09
Trilinos GMRES ILU 1 0 0.004998s 2.96244e-15 1.85733e-16
QQQ GMRES ILU 100 0 1.92864s 9.84294e-14 6.17113e-15
PETSc GMRES ILU 100 1 0.022275s 2.35607e-13 1.47716e-14
ITL CG IC 2 5 0.059313s nan nan
Trilinos CG IC 1 3 0.043062s nan nan
PETSc CG IC 100 1 0.020455s 9.04494e-10 5.67081e-11
ITL BICGstab IC 1 5 0.059175s nan nan
Trilinos BICGstab IC 1 3 0.044934s nan nan
PETSc BICGstab IC 100 1 0.023955s 3.63423e-13 2.27851e-14
Trilinos GMRES IC 1 3 0.040762s 15.95 1
PETSc GMRES IC 100 1 0.029418s 4.0757e-12 2.5553e-13

Table A.8: Hilbert rank 100 test results

90

package solver precond iterations status solving time absolute residual rel residual

ITL CG NONE 46 0 0.236592s 2.10316e-11 4.12673e-13
Hypre CG NONE 44 0 0.11377s 2.0448e-11 4.01222e-13
Trilinos CG NONE 44 0 0.116052s 2.04162e-11 4.00598e-13
PETSc CG NONE 49 0 0.155108s 3.1622e-11 6.20473e-13
ITL BICGstab NONE 125 0 1.29165s 2.12603e-11 4.1716e-13
Hypre BICGstab NONE 131 0 0.676206s 1.79792e-11 3.5278e-13
Trilinos BICGstab NONE 151 0 0.765636s 3.34408e-11 6.56162e-13
QQQ BICGstab NONE 143 0 3.80804s 4.80739e-11 9.43286e-13
PETSc BICGstab NONE 119 0 0.740253s 4.78309e-11 9.38518e-13
Hypre GMRES NONE 16 0 0.052864s 2.02465e-11 3.97269e-13
Trilinos GMRES NONE 16 0 0.061722s 2.02466e-11 3.97271e-13
QQQ GMRES NONE 16 0 0.233662s 2.02469e-11 3.97277e-13
PETSc GMRES NONE 18 0 0.065736s 8.8348e-11 1.73353e-12
ITL CG Jacobi 48 0 0.248s 4.46602e-11 8.76305e-13
Trilinos CG Jacobi 51 0 0.142618s 2.39416e-11 4.69773e-13
PETSc CG Jacobi 50 0 0.162431s 4.44202e-11 8.71595e-13
ITL BICGstab Jacobi 1000 1 10.2725s 0.000259781 5.09732e-06
Trilinos BICGstab Jacobi 17 3 0.093759s 0.00177622 3.48523e-05
PETSc BICGstab Jacobi 798 7 4.93399s 3.69026e+07 724087
Trilinos GMRES Jacobi 16 0 0.054442s 2.47582e-11 4.85795e-13
PETSc GMRES Jacobi 1000 1 5.97811s 1.7516e-06 3.43691e-08
ITL CG ILU 191 5 36.0003s nan nan
Hypre CG ILU 1000 1 3.94704s 38.5607 0.756622
Trilinos CG ILU 1 0 2.07958s 2.71255e-12 5.32245e-14
PETSc CG ILU 285 8 4.63593s 2.14401e-06 4.20689e-08
ITL BICGstab ILU 1 0 33.863s 1.68221e-12 3.30077e-14
Hypre BICGstab ILU 1000 1 6.63145s 0.000274096 5.37821e-06
Trilinos BICGstab ILU 1 0 2.08542s 1.50324e-12 2.9496e-14
QQQ BICGstab ILU 730 0 94.2204s nan nan
PETSc BICGstab ILU 771 7 12.9524s 9.79664 0.192226
Hypre GMRES ILU 460 0 2.79304s 3.67954e-11 7.21984e-13
Trilinos GMRES ILU 1 0 2.10316s 2.24399e-12 4.40306e-14
QQQ GMRES ILU 479 0 20.5125s 0.734338 0.0144089
PETSc GMRES ILU 1000 1 12.2122s 2.01663e-08 3.95695e-10
ITL CG IC 2 5 62.8814s nan nan
Trilinos CG IC 1 3 53.2338s nan nan
PETSc CG IC 1000 1 10.8735s 2.10377e-09 4.12793e-11
ITL BICGstab IC 1 5 62.8922s nan nan
Trilinos BICGstab IC 1 3 53.4243s nan nan
PETSc BICGstab IC 1000 1 19.9753s 3.06529e-07 6.01459e-09
Trilinos GMRES IC 1 3 53.2426s 50.9643 1
PETSc GMRES IC 1000 1 13.6084s 9.25948e-12 1.81686e-13

Table A.9: Hilbert rank 1000 test results

91

package solver precond iterations status solving time absolute residual rel residual

ITL CG NONE 216 1 0.009474s 2.03408e-06 0.00104844
Hypre CG NONE 216 1 0.004741s 3.07566e-06 0.00158531
Trilinos CG NONE 14 3 0.000463s 0.00697383 3.59457
PETSc CG NONE 14 8 0.001925s 0.00697383 3.59457
ITL BICGstab NONE 216 1 0.018788s 2.43245e-05 0.0125378
Hypre BICGstab NONE 216 1 0.007994s 4.54973e-05 0.023451
Trilinos BICGstab NONE 216 1 0.007586s 1.49028e-05 0.00768145
QQQ BICGstab NONE 216 1 0.018279s 1.58748e-05 0.00818249
PETSc BICGstab NONE 216 1 0.020728s 2.28318e-05 0.0117684
Hypre GMRES NONE 216 0 0.024286s 5.73681e-17 2.95697e-14
Trilinos GMRES NONE 216 0 0.031384s 2.68214e-17 1.38247e-14
QQQ GMRES NONE 216 0 0.069713s 1.0976e-16 5.65745e-14
PETSc GMRES NONE 216 0 0.049644s 1.41014e-16 7.26837e-14
ITL CG Jacobi 2 5 0.000843s nan nan
Trilinos CG Jacobi 31 3 0.000969s 0.000161776 0.0833852
PETSc CG Jacobi 10 5 0.00179s 0.0220573 11.3692
ITL BICGstab Jacobi 1 5 0.000765s nan nan
Trilinos BICGstab Jacobi 50 3 0.002085s 0.000161776 0.0833852
PETSc BICGstab Jacobi 216 1 0.021064s 1.07939e-05 0.00556357
Trilinos GMRES Jacobi 26 4 0.00128s 0.000161106 0.0830401
PETSc GMRES Jacobi 216 1 0.049476s 1.74919e-05 0.00901597
Hypre CG ILU 216 1 0.010609s 0.00228652 1.17856
Trilinos CG ILU 216 1 0.015368s 1.08371e-13 5.58586e-11
PETSc CG ILU 1 6 0.001867s 0.0019401 1
Hypre BICGstab ILU 52 0 0.005539s 1.5862e-15 8.17587e-13
Trilinos BICGstab ILU 2 3 0.003389s 2.0337e-07 0.000104825
QQQ BICGstab ILU 9 0 0.006086s 4.80331e-16 2.47581e-13
PETSc BICGstab ILU 17 0 0.004904s 6.04178e-16 3.11416e-13
Hypre GMRES ILU 48 0 0.008215s 1.6735e-15 8.62583e-13
Trilinos GMRES ILU 6 0 0.003677s 4.82309e-16 2.486e-13
QQQ GMRES ILU 5 0 0.04648s 1.99352e-17 1.02753e-14
PETSc GMRES ILU 27 0 0.015625s 2.07441e-14 1.06923e-11
Trilinos CG IC 1 3 0.001949s 0.0019401 1
PETSc CG IC 1 8 0.001861s 0.0019401 1
Trilinos BICGstab IC 15 0 0.002922s 1.21323e-15 6.25344e-13
PETSc BICGstab IC 165 0 0.027896s 5.43052e-17 2.79909e-14
Trilinos GMRES IC 24 0 0.004478s 7.1161e-16 3.6679e-13
PETSc GMRES IC 72 0 0.02156s 1.70953e-13 8.81154e-11

Table A.10: Fidap001 test results

92

package solver precond iterations status solving time absolute residual rel residual

ITL CG NONE 441 1 0.075503s 72.935 10.5997
Hypre CG NONE 441 1 0.032999s 1413.43 205.416
Trilinos CG NONE 1 3 0.000448s 6.88082 1
PETSc CG NONE 1 8 0.001905s 6.88082 1
ITL BICGstab NONE 441 1 0.147967s 480.292 69.8016
Hypre BICGstab NONE 441 1 0.059716s 2690.68 391.041
Trilinos BICGstab NONE 441 1 0.058336s 2461.82 357.78
QQQ BICGstab NONE 441 1 0.170636s 433.943 63.0657
PETSc BICGstab NONE 441 1 0.094213s 268.37 39.0026
Hypre GMRES NONE 441 1 0.148011s 8.59851e-07 1.24963e-07
Trilinos GMRES NONE 182 2 0.050207s 1.11923e-07 1.62659e-08
QQQ GMRES NONE 441 1 0.569367s 0.808758 0.117538
PETSc GMRES NONE 441 1 0.281105s 0.00921185 0.00133877
ITL CG Jacobi 441 1 0.074537s 28.129 4.08804
Trilinos CG Jacobi 1 3 0.000713s 6.88082 1
PETSc CG Jacobi 1 6 0.001856s 6.88082 1
ITL BICGstab Jacobi 441 1 0.147733s 389.591 56.6198
Trilinos BICGstab Jacobi 441 1 0.060231s 391.585 56.9097
PETSc BICGstab Jacobi 441 1 0.093884s 21.1755 3.07747
Trilinos GMRES Jacobi 431 2 0.236927s 1.19691e-06 1.73949e-07
PETSc GMRES Jacobi 441 1 0.279951s 355.103 51.6076
ITL CG ILU 441 1 0.244323s 2.69292e-07 3.91366e-08
Hypre CG ILU 441 1 0.049234s 6.88087 1.00001
Trilinos CG ILU 19 2 0.022473s 6.06136e-08 8.80906e-09
PETSc CG ILU 2 6 0.007213s 17.4231 2.53212
ITL BICGstab ILU 396 0 0.358785s 2.70652e-07 3.93343e-08
Hypre BICGstab ILU 441 1 0.092369s 8.92243e+10 1.29671e+10
Trilinos BICGstab ILU 4 2 0.020178s 1.36996e-08 1.99099e-09
QQQ BICGstab ILU 29 0 0.473228s 1.39157e-07 2.02238e-08
PETSc BICGstab ILU 441 1 0.17704s 0.0617003 0.00896701
Hypre GMRES ILU 441 1 0.162195s 4.27121e+10 6.20741e+09
Trilinos GMRES ILU 6 2 0.019838s 6.42809e-10 9.34204e-11
QQQ GMRES ILU 2 0 0.290719s 6.88082 1
PETSc GMRES ILU 441 1 0.330102s 0.076763 0.0111561
ITL CG IC 2 5 0.1389s nan nan
Trilinos CG IC 113 2 0.029655s 6.98804e-08 1.01558e-08
PETSc CG IC 1 5 0.011784s 6.88082 1
ITL BICGstab IC 1 5 0.139376s nan nan
Trilinos BICGstab IC 166 2 0.062446s 6.26726e-07 9.1083e-08
PETSc BICGstab IC 441 1 0.256739s 924.007 134.287
Trilinos GMRES IC 56 2 0.025388s 6.28489e-08 9.13392e-09
PETSc GMRES IC 441 1 0.369817s 0.0293541 0.00426608

Table A.11: Fidap002 test results

93

package solver precond iterations status solving time absolute residual rel residual

ITL CG NONE 27 1 0.000409s 0.0603102 0.923308
Hypre CG NONE 27 1 0.000318s 0.065567 1.00379
Trilinos CG NONE 27 1 0.000409s 0.0829542 1.26997
PETSc CG NONE 27 1 0.000851s 38.524 589.777
ITL BICGstab NONE 27 1 0.000642s 0.0823034 1.26001
Hypre BICGstab NONE 27 1 0.000352s 0.0738414 1.13046
Trilinos BICGstab NONE 27 1 0.000437s 0.52968 8.10904
QQQ BICGstab NONE 27 1 0.000372s 0.0722653 1.10633
PETSc BICGstab NONE 27 1 0.000986s 0.0724119 1.10858
Hypre GMRES NONE 27 1 0.00563s 1.20693e-10 1.84772e-09
Trilinos GMRES NONE 27 2 0.000625s 2.2913e-10 3.50782e-09
QQQ GMRES NONE 27 1 0.01276s 7.1664e-07 1.09713e-05
PETSc GMRES NONE 27 1 0.011314s 7.13564e-09 1.09242e-07
ITL CG Jacobi 27 1 0.000399s 0.0759657 1.16298
Trilinos CG Jacobi 27 1 0.000439s 0.186635 2.85725
PETSc CG Jacobi 27 1 0.0009s 3.09106 47.322
ITL BICGstab Jacobi 27 1 0.000668s 0.897626 13.742
Trilinos BICGstab Jacobi 27 1 0.000466s 0.10358 1.58574
PETSc BICGstab Jacobi 27 1 0.001008s 0.0472817 0.72385
Trilinos GMRES Jacobi 27 2 0.000627s 2.31564e-10 3.54508e-09
PETSc GMRES Jacobi 27 1 0.011113s 0.0305118 0.467115
ITL CG ILU 20 0 0.000784s 9.5835e-11 1.46717e-09
Hypre CG ILU 27 1 0.000392s 2.33284 35.7142
Trilinos CG ILU 2 2 0.000497s 8.77969e-11 1.34411e-09
PETSc CG ILU 1 6 0.000836s 0.0653197 1
ITL BICGstab ILU 23 0 0.001163s 2.32982e-10 3.56679e-09
Hypre BICGstab ILU 27 1 0.000462s 0.176004 2.6945
Trilinos BICGstab ILU 1 2 0.000426s 8.39537e-11 1.28527e-09
QQQ BICGstab ILU 8 0 0.001293s 1.08723e-10 1.66447e-09
PETSc BICGstab ILU 18 0 0.001341s 3.25371e-09 4.9812e-08
Hypre GMRES ILU 27 1 0.003555s 3.59605e-11 5.50531e-10
Trilinos GMRES ILU 2 2 0.000528s 1.04463e-11 1.59925e-10
QQQ GMRES ILU 3 0 1.34561s 6.97003e-11 1.06706e-09
PETSc GMRES ILU 11 0 0.005876s 2.08155e-08 3.18671e-07
ITL CG IC 2 5 0.000512s nan nan
Trilinos CG IC 2 2 0.000458s 5.31794e-11 8.1414e-10
PETSc CG IC 17 0 0.001919s 2.54017e-10 3.88882e-09
ITL BICGstab IC 1 5 0.000461s nan nan
Trilinos BICGstab IC 1 2 0.000346s 5.94119e-11 9.09556e-10
PETSc BICGstab IC 16 0 0.001146s 1.08307e-10 1.65811e-09
Trilinos GMRES IC 2 2 0.001703s 1.47092e-11 2.25187e-10
PETSc GMRES IC 15 0 0.011292s 3.32734e-10 5.09393e-09

Table A.12: Fidap005 test results

94

package solver precond iterations status solving time absolute residual rel residual

ITL CG NONE 42 1 0.000999s 1.44987e-06 2.21965e-05
Hypre CG NONE 42 1 0.000755s 2.62163e-06 4.01354e-05
Trilinos CG NONE 11 3 0.000428s 0.0844426 1.29276
PETSc CG NONE 11 8 0.000848s 0.0844426 1.29276
ITL BICGstab NONE 42 1 0.001776s 0.000553869 0.00847936
Hypre BICGstab NONE 42 1 0.000867s 0.000673926 0.0103173
Trilinos BICGstab NONE 42 1 0.000973s 0.000612725 0.00938039
QQQ BICGstab NONE 42 1 0.000814s 0.000412576 0.00631626
PETSc BICGstab NONE 42 1 0.001929s 0.00068205 0.0104417
Hypre GMRES NONE 41 0 0.006291s 8.80907e-16 1.34861e-14
Trilinos GMRES NONE 41 0 0.002384s 9.8949e-16 1.51484e-14
QQQ GMRES NONE 41 0 0.005646s 1.99601e-15 3.05576e-14
PETSc GMRES NONE 41 0 0.01269s 6.27715e-15 9.60989e-14
ITL CG Jacobi 2 5 0.000271s nan nan
Trilinos CG Jacobi 17 3 0.000568s 0.00911024 0.139472
PETSc CG Jacobi 6 8 0.000765s 0.262144 4.01325
ITL BICGstab Jacobi 1 5 0.00026s nan nan
Trilinos BICGstab Jacobi 32 3 0.000865s 0.00911024 0.139472
PETSc BICGstab Jacobi 42 1 0.001967s 1.76768e-05 0.000270619
Trilinos GMRES Jacobi 16 4 0.000624s 0.00891275 0.136448
PETSc GMRES Jacobi 42 1 0.012228s 2.71819e-07 4.16136e-06
Hypre CG ILU 42 1 0.001145s 0.142913 2.1879
Trilinos CG ILU 1 3 0.001481s nan nan
PETSc CG ILU 2 6 0.001329s 1.44603 22.1377
Hypre BICGstab ILU 42 1 0.001399s 2.03919e-12 3.12185e-11
Trilinos BICGstab ILU 1 3 0.001556s nan nan
QQQ BICGstab ILU 11 0 0.002045s 4.72651e-14 7.23596e-13
PETSc BICGstab ILU 39 0 0.002855s 2.94172e-14 4.50358e-13
Hypre GMRES ILU 42 1 0.004654s 2.81272e-12 4.30608e-11
Trilinos GMRES ILU 1 3 0.001381s 0.0653197 1
QQQ GMRES ILU 2 0 0.083597s 9.52165e-09 1.4577e-07
PETSc GMRES ILU 42 1 0.013707s 1.41543e-08 2.16693e-07
Trilinos CG IC 1 3 0.001163s nan nan
PETSc CG IC 5 8 0.001897s 0.125969 1.9285
Trilinos BICGstab IC 1 3 0.001364s nan nan
PETSc BICGstab IC 42 1 0.00291s 1.35377e-06 2.07253e-05
Trilinos GMRES IC 1 3 0.001198s 0.0653197 1
PETSc GMRES IC 42 1 0.013159s 1.03194e-08 1.57983e-07

Table A.13: Fidapm05 test results

95

package solver precond iterations status solving time absolute residual rel residual

ITL CG NONE 974 1 0.260724s 0.000735395 1.46914
Hypre CG NONE 974 1 0.100546s 0.00144761 2.89198
Trilinos CG NONE 10 3 0.001441s 0.00325129 6.49529
PETSc CG NONE 10 8 0.00767s 0.00325129 6.49529
ITL BICGstab NONE 974 1 0.492048s 1.66841e-05 0.0333308
Hypre BICGstab NONE 974 1 0.194319s 2.36322e-05 0.0472113
Trilinos BICGstab NONE 974 1 0.189586s 2.24524e-05 0.0448545
QQQ BICGstab NONE 974 1 0.578349s 2.96936e-05 0.0593205
PETSc BICGstab NONE 974 1 0.485854s 1.41414e-05 0.0282511
Hypre GMRES NONE 890 0 1.148s 3.74739e-16 7.48638e-13
Trilinos GMRES NONE 890 0 2.31263s 3.78224e-16 7.556e-13
QQQ GMRES NONE 890 0 4.52542s 3.90853e-16 7.8083e-13
PETSc GMRES NONE 974 1 2.82672s 1.75492e-11 3.50591e-08
ITL CG Jacobi 2 5 0.00451s nan nan
Trilinos CG Jacobi 122 3 0.015285s 1.35809e-05 0.0271314
PETSc CG Jacobi 36 8 0.014303s 0.000378492 0.756136
ITL BICGstab Jacobi 1 5 0.004305s nan nan
Trilinos BICGstab Jacobi 974 1 0.2067s 1.3598e-05 0.0271655
PETSc BICGstab Jacobi 974 1 0.502673s 4.64069e-06 0.00927097
Trilinos GMRES Jacobi 95 4 0.032582s 1.35565e-05 0.0270827
PETSc GMRES Jacobi 974 1 2.83895s 8.48254e-06 0.0169461
Hypre CG ILU 974 1 0.219448s 0.0190443 38.0458
Trilinos CG ILU 1 3 0.133364s nan nan
PETSc CG ILU 2 6 0.012554s 0.000336813 0.672871
Hypre BICGstab ILU 974 1 0.40124s 0.192553 384.675
Trilinos BICGstab ILU 1 3 0.140919s nan nan
QQQ BICGstab ILU 9 0 0.096451s 4.95299e-16 9.89488e-13
PETSc BICGstab ILU 19 0 0.031221s 6.12014e-16 1.22266e-12
Hypre GMRES ILU 974 1 1.56428s 0.564703 1128.14
Trilinos GMRES ILU 1 3 0.125118s 0.000500561 1
QQQ GMRES ILU 14 0 0.1562s 0.00120665 2.4106
PETSc GMRES ILU 29 0 0.039871s 1.75185e-15 3.49976e-12

Table A.14: Fidap027 test results

96

package solver precond iterations status solving time absolute residual rel residual

ITL CG NONE 2603 1 1.46291s 0.269311 0.190171
Hypre CG NONE 2603 1 0.579195s 0.163464 0.115428
Trilinos CG NONE 12 3 0.003191s 17.5205 12.3719
PETSc CG NONE 12 8 0.015875s 17.5205 12.3719
ITL BICGstab NONE 1699 5 1.84716s 0.56624 0.399844
Hypre BICGstab NONE 2603 1 1.10887s 0.29724 0.209893
Trilinos BICGstab NONE 117 3 0.048506s 0.861267 0.608175
QQQ BICGstab NONE 2603 1 3.18844s 0.253346 0.178897
PETSc BICGstab NONE 2603 1 2.50979s 1.10728 0.781896
Hypre GMRES NONE 2603 1 10.0036s 0.000106624 7.52915e-05
Trilinos GMRES NONE 2603 1 22.8405s 0.000106748 7.53792e-05
QQQ GMRES NONE 2603 1 36.5571s 0.000158039 0.000111598
PETSc GMRES NONE 2603 1 18.607s 0.000106715 7.53555e-05
ITL CG Jacobi 2 5 0.009695s nan nan
Trilinos CG Jacobi 263 3 0.059078s 0.692432 0.488954
PETSc CG Jacobi 4 8 0.01061s 30.7697 21.7277
ITL BICGstab Jacobi 1 5 0.009138s nan nan
Trilinos BICGstab Jacobi 2603 1 1.12053s 9.91998e+13 7.0049e+13
PETSc BICGstab Jacobi 2603 1 2.51247s 2.02845e-05 1.43237e-05
Trilinos GMRES Jacobi 134 4 0.152653s 0.667513 0.471357
PETSc GMRES Jacobi 2603 1 18.1686s 4.21404e-08 2.9757e-08
Hypre CG ILU 2603 1 1.27041s 11.5292 8.14122
Trilinos CG ILU 1 3 0.205077s nan nan
PETSc CG ILU 1 6 0.019881s 1.41615 1
Hypre BICGstab ILU 2603 1 2.48026s 5.27602e+18 3.72561e+18
Trilinos BICGstab ILU 1 3 0.222067s nan nan
QQQ BICGstab ILU 28 0 1.23864s 2.47651e-12 1.74876e-12
PETSc BICGstab ILU 106 0 0.226963s 4.39446e-12 3.1031e-12
Hypre GMRES ILU 2603 1 11.3511s 1.26717e+08 8.94797e+07
Trilinos GMRES ILU 1 3 0.183214s 1.41615 1
QQQ GMRES ILU 16 0 0.645006s 13.4038 9.46493
PETSc GMRES ILU 89 0 0.169645s 2.57675e-11 1.81954e-11

Table A.15: Fidap028 test results

97

package solver precond iterations status solving time absolute residual rel residual

ITL CG NONE 1080 1 0.207139s 6.40783e+24 3.67414e+16
Hypre CG NONE 1080 1 0.089774s 7.19293e+25 4.1243e+17
Trilinos CG NONE 1 3 0.000464s 1.74403e+08 1
PETSc CG NONE 1 8 0.003869s 1.74403e+08 1
ITL BICGstab NONE 1080 1 0.412768s 5.29378e+07 0.303537
Hypre BICGstab NONE 1080 1 0.169693s 4.01545e+06 0.0230239
Trilinos BICGstab NONE 1080 1 0.162694s 4.12918e+06 0.023676
QQQ BICGstab NONE 1080 1 0.596152s 4.25507e+06 0.0243978
PETSc BICGstab NONE 1080 1 0.448228s 1.76822e+08 1.01387
Hypre GMRES NONE 792 0 0.985469s 0.000147067 8.43257e-13
Trilinos GMRES NONE 793 0 2.00764s 0.000146049 8.37419e-13
QQQ GMRES NONE 792 0 3.90627s 0.000136862 7.84745e-13
PETSc GMRES NONE 1080 1 3.21818s 119969 0.000687883
ITL CG Jacobi 1080 1 0.216848s 3.8619e+10 221.435
Trilinos CG Jacobi 4 3 0.001031s 1.90169e+08 1.0904
PETSc CG Jacobi 2 6 0.005147s 1.90174e+08 1.09043
ITL BICGstab Jacobi 1080 1 0.425011s 6.06008e+61 3.47475e+53
Trilinos BICGstab Jacobi 1080 1 0.172153s 7.61446e+81 4.366e+73
PETSc BICGstab Jacobi 10 7 0.009196s 3.79207e+13 217431
Trilinos GMRES Jacobi 235 4 0.16251s 9047.93 5.18793e-05
PETSc GMRES Jacobi 1080 1 3.21645s 7.30407e+10 418.803
ITL CG ILU 1080 1 0.503734s 9.10391e+26 5.22003e+18
Hypre CG ILU 1080 1 0.166851s 1.34245e+09 7.69738
Trilinos CG ILU 1 3 0.028584s 1.74403e+08 1
PETSc CG ILU 1 6 0.00672s 1.74403e+08 1
ITL BICGstab ILU 11 0 0.056491s 4.51981e-05 2.59158e-13
Hypre BICGstab ILU 609 0 0.184664s 0.000165714 9.50178e-13
Trilinos BICGstab ILU 8 0 0.032393s 3.48335e-05 1.99729e-13
QQQ BICGstab ILU 1080 1 26.7222s 2.82451e+13 161952
PETSc BICGstab ILU 10 0 0.015809s 3.57623e-05 2.05055e-13
Hypre GMRES ILU 252 0 0.097379s 0.000101986 5.84769e-13
Trilinos GMRES ILU 14 0 0.032646s 1.60593e-05 9.20812e-14
QQQ GMRES ILU 1 0 0.040773s 4.01676e+15 2.30314e+07
PETSc GMRES ILU 18 0 0.021028s 7.78913e-05 4.46616e-13

Table A.16: Sherman2 test results

98

package solver precond iterations status solving time absolute residual rel residual

ITL CG NONE 5005 1 1.90615s 0.0771292 0.000331295
Hypre CG NONE 5005 1 0.770484s 0.0428037 0.000183856
Trilinos CG NONE 5005 1 0.778495s 0.0428973 0.000184258
PETSc CG NONE 5005 1 1.61091s 0.0633232 0.000271994
ITL BICGstab NONE 5005 1 3.3448s 1.81115e-05 7.77946e-08
Hypre BICGstab NONE 5005 1 1.44806s 7.06643e-05 3.03526e-07
Trilinos BICGstab NONE 5005 1 1.45572s 0.000102011 4.38169e-07
QQQ BICGstab NONE 5005 1 4.47374s 0.00706575 3.03497e-05
PETSc BICGstab NONE 5005 1 3.06883s 0.0341576 0.000146718
Hypre GMRES NONE 5005 1 8.64103s 2.43545e-10 1.0461e-12
Trilinos GMRES NONE 785 2 11.1773s 6.71055e-09 2.8824e-11
QQQ GMRES NONE 1320 0 31.4356s 1.87887e-09 8.07034e-12
PETSc GMRES NONE 1566 0 19.0528s 2.65669e-10 1.14114e-12
ITL CG Jacobi 923 0 0.333632s 2.57125e-09 1.10444e-11
Trilinos CG Jacobi 922 2 0.159619s 2.9281e-09 1.25772e-11
PETSc CG Jacobi 891 0 0.288987s 2.89222e-09 1.2423e-11
ITL BICGstab Jacobi 524 0 0.365448s 1.84798e-09 7.93769e-12
Trilinos BICGstab Jacobi 490 3 0.160675s 3.23295e-09 1.38866e-11
PETSc BICGstab Jacobi 458 0 0.3237s 1.63235e-08 7.01147e-11
Trilinos GMRES Jacobi 482 2 4.13227s 2.0575e-09 8.83765e-12
PETSc GMRES Jacobi 3212 0 42.5148s 2.16487e-08 9.29882e-11
ITL CG ILU 172 0 0.150296s 1.52056e-09 6.53129e-12
Hypre CG ILU 5005 1 2.17707s 1070.29 4.59724
Trilinos CG ILU 5005 1 2.12393s 4.73887e-09 2.0355e-11
PETSc CG ILU 160 0 0.104792s 1.32474e-09 5.69018e-12
ITL BICGstab ILU 101 0 0.165563s 9.28012e-10 3.98611e-12
Hypre BICGstab ILU 109 0 0.104683s 1.90999e-10 8.20401e-13
Trilinos BICGstab ILU 20 2 0.049299s 6.84653e-10 2.94081e-12
QQQ BICGstab ILU 36 0 2.80833s 5.12919e-09 2.20315e-11
PETSc BICGstab ILU 117 0 0.153035s 8.09647e-10 3.4777e-12
Hypre GMRES ILU 125 0 0.216134s 1.99124e-10 8.55301e-13
Trilinos GMRES ILU 29 0 0.056956s 1.98647e-10 8.53252e-13
QQQ GMRES ILU 2 0 0.105566s 9.56087e+09 4.10671e+07
PETSc GMRES ILU 877 0 10.9977s 7.74872e-08 3.32833e-10

Table A.17: Sherman3 test results

99

package solver precond iterations status solving time absolute residual rel residual

ITL CG NONE 1899 5 0.570678s nan nan
Hypre CG NONE 3312 1 0.416329s 1.72522e+23 2.77915e+21
Trilinos CG NONE 1 3 0.000538s 62.0774 1
PETSc CG NONE 1 8 0.010466s 62.0774 1
ITL BICGstab NONE 198 5 0.113038s 126.741 2.04167
Hypre BICGstab NONE 3312 1 0.783425s 2.75118e-06 4.43186e-08
Trilinos BICGstab NONE 1113 3 0.247757s 16.3764 0.263807
QQQ BICGstab NONE 3312 1 3.9362s 3.74627e-05 6.03484e-07
PETSc BICGstab NONE 3312 1 1.87454s 3.03477e-08 4.88869e-10
Hypre GMRES NONE 1929 0 7.42302s 5.86559e-11 9.44884e-13
Trilinos GMRES NONE 1820 0 20.5701s 2.38273e-11 3.83833e-13
QQQ GMRES NONE 1667 0 28.0344s 6.22901e-10 1.00343e-11
PETSc GMRES NONE 3312 1 28.8769s 0.0178954 0.000288276
ITL CG Jacobi 517 5 0.164849s nan nan
Trilinos CG Jacobi 1 3 0.001135s 62.0774 1
PETSc CG Jacobi 1 8 0.010081s 62.0774 1
ITL BICGstab Jacobi 179 0 0.107159s 3.4952e-10 5.6304e-12
Trilinos BICGstab Jacobi 180 2 0.044537s 8.30062e-10 1.33714e-11
PETSc BICGstab Jacobi 152 0 0.097521s 1.50881e-09 2.43053e-11
Trilinos GMRES Jacobi 165 2 0.261708s 3.75975e-10 6.05655e-12
PETSc GMRES Jacobi 1075 0 9.37321s 1.47833e-09 2.38143e-11
ITL CG ILU 3312 1 2.10788s 19871.1 320.102
Hypre CG ILU 3312 1 0.97036s 5.94224e+19 9.57231e+17
Trilinos CG ILU 1 3 0.026437s 62.0774 1
PETSc CG ILU 2 6 0.015656s 167.044 2.6909
ITL BICGstab ILU 30 0 0.066178s 1.28677e-10 2.07285e-12
Hypre BICGstab ILU 72 0 0.050053s 5.07197e-11 8.1704e-13
Trilinos BICGstab ILU 15 2 0.036147s 1.18253e-10 1.90492e-12
QQQ BICGstab ILU 29 0 2.23036s 1.1653e-10 1.87718e-12
PETSc BICGstab ILU 31 0 0.046716s 4.15241e-10 6.68909e-12
Hypre GMRES ILU 93 0 0.085033s 5.50109e-11 8.86166e-13
Trilinos GMRES ILU 20 0 0.03647s 4.62161e-11 7.44492e-13
QQQ GMRES ILU 10 0 0.621464s 8.82663e-09 1.42188e-10
PETSc GMRES ILU 41 0 0.054181s 2.10242e-09 3.38677e-11

Table A.18: Sherman5 test results

100

package solver precond iterations status solving time absolute residual rel residual

ITL CG NONE 236 1 0.015485s 2739.91 379.126
Hypre CG NONE 236 1 0.009264s 2739.91 379.126
Trilinos CG NONE 236 1 0.008046s 2739.91 379.126
PETSc CG NONE 236 1 0.024425s 2739.91 379.126
ITL BICGstab NONE 236 1 0.027717s 0.108113 0.0149598
Hypre BICGstab NONE 236 1 0.011747s 0.57305 0.0792938
Trilinos BICGstab NONE 236 1 0.012032s 0.712718 0.0986201
QQQ BICGstab NONE 236 1 0.02732s 0.727792 0.100706
PETSc BICGstab NONE 236 1 0.023994s 1.09461 0.151463
Hypre GMRES NONE 203 0 0.027475s 2.30884e-12 3.19479e-13
Trilinos GMRES NONE 203 0 0.033416s 2.49509e-12 3.45249e-13
QQQ GMRES NONE 203 0 0.074245s 3.65898e-12 5.06299e-13
PETSc GMRES NONE 236 1 0.069171s 0.763829 0.105692
ITL CG Jacobi 2 5 0.000976s nan nan
Trilinos CG Jacobi 236 1 0.009394s 1473.95 203.953
PETSc CG Jacobi 236 1 0.016473s 80555.5 11146.6
ITL BICGstab Jacobi 1 5 0.000871s nan nan
Trilinos BICGstab Jacobi 236 1 0.012502s 11.0212 1.52502
PETSc BICGstab Jacobi 236 1 0.0257s 0.430728 0.0596006
Trilinos GMRES Jacobi 72 4 0.006319s 4.15136 0.574431
PETSc GMRES Jacobi 236 1 0.06867s 0.0446516 0.00617852
Hypre CG ILU 236 1 0.015513s 617886 85497.9
Trilinos CG ILU 6 3 0.004147s 1.31075e+47 1.81371e+46
PETSc CG ILU 1 6 0.002842s 7.22691 1
Hypre BICGstab ILU 236 1 0.027159s 178.613 24.7149
Trilinos BICGstab ILU 236 1 0.034673s 2197.5 304.071
QQQ BICGstab ILU 27 0 0.025025s 4.5019e-12 6.22935e-13
PETSc BICGstab ILU 30 0 0.008727s 7.34779e-12 1.01673e-12
Hypre GMRES ILU 236 1 0.038846s 5.11491e-09 7.07758e-10
Trilinos GMRES ILU 8 4 0.004467s 7.78616 1.07738
QQQ GMRES ILU 12 0 0.087214s 2.11885e-11 2.93189e-12
PETSc GMRES ILU 42 0 0.026555s 1.23933e-10 1.71488e-11

Table A.19: E05r0100 test results

101

package solver precond iterations status solving time absolute residual rel residual

ITL CG NONE 4241 1 3.92968s 6.70081e+06 230868
Hypre CG NONE 4241 1 1.60714s 6.70081e+06 230868
Trilinos CG NONE 4241 1 1.5396s 6.70081e+06 230868
PETSc CG NONE 269 7 0.231691s 290896 10022.4
ITL BICGstab NONE 139 5 0.255446s 167.285 5.76361
Hypre BICGstab NONE 4241 1 3.15319s 175.065 6.03166
Trilinos BICGstab NONE 59 3 0.042719s 184.725 6.36446
QQQ BICGstab NONE 4241 1 9.75308s 163.881 5.64631
PETSc BICGstab NONE 19 7 0.050993s 1.0405e+06 35849.3
Hypre GMRES NONE 4241 1 27.7054s 15.9229 0.548603
Trilinos GMRES NONE 4241 1 64.176s 15.9229 0.548603
QQQ GMRES NONE 4241 1 101.779s 23.0544 0.794309
PETSc GMRES NONE 4241 1 50.5551s 15.9229 0.548603
ITL CG Jacobi 2 5 0.014851s nan nan
Trilinos CG Jacobi 4241 1 1.68298s 1.27595e+06 43961.3
PETSc CG Jacobi 138 7 0.124222s 92277 3179.29
ITL BICGstab Jacobi 1 5 0.013411s nan nan
Trilinos BICGstab Jacobi 1667 3 1.25287s 1642.31 56.5839
PETSc BICGstab Jacobi 4241 1 6.70229s 233.808 8.05556
Trilinos GMRES Jacobi 4241 1 65.8724s 15.9288 0.548806
PETSc GMRES Jacobi 4241 1 50.2777s 16.4152 0.565565
Hypre CG ILU 4241 1 4.28862s 8.04596e+16 2.77213e+15
Trilinos CG ILU 1 3 0.302958s nan nan
PETSc CG ILU 1 6 0.036216s 29.0244 1
Hypre BICGstab ILU 4241 1 8.0576s 29.0218 0.999911
Trilinos BICGstab ILU 1 3 0.330591s nan nan
QQQ BICGstab ILU 45 0 6.63505s 1.06817e-09 3.68024e-11
PETSc BICGstab ILU 382 7 1.26225s 3.95147e+12 1.36143e+11
Hypre GMRES ILU 4241 1 33.2303s 4.86836e+13 1.67733e+12
Trilinos GMRES ILU 1 3 0.236314s 29.0244 1
QQQ GMRES ILU 34 0 4.60562s 1.08444e-07 3.73629e-09
PETSc GMRES ILU 4241 1 54.4999s 1.65029e+06 56858.5

Table A.20: E20r5000 test results

102

package solver precond iterations status solving time absolute residual rel residual

ITL CG NONE 2395 1 0.473019s 8.06422e-13 0.00813262
Hypre CG NONE 2395 1 0.21942s 8.06422e-13 0.00813262
Trilinos CG NONE 2395 1 0.228695s 8.06422e-13 0.00813262
PETSc CG NONE 2395 1 0.531212s 8.06422e-13 0.00813262
ITL BICGstab NONE 553 0 0.21512s 8.28338e-23 8.35364e-13
Hypre BICGstab NONE 580 0 0.099845s 2.85412e-23 2.87832e-13
Trilinos BICGstab NONE 257 3 0.050144s 2.35238e-17 2.37233e-07
QQQ BICGstab NONE 715 0 15.8321s 8.15104e-23 8.22018e-13
PETSc BICGstab NONE 632 0 0.244964s 9.84551e-23 9.92901e-13
Hypre GMRES NONE 458 0 0.775713s 9.90202e-23 9.986e-13
Trilinos GMRES NONE 459 0 1.6528s 9.57723e-23 9.65846e-13
QQQ GMRES NONE 461 0 2.97669s 8.97193e-23 9.04803e-13
PETSc GMRES NONE 1090 0 6.82447s 9.65895e-23 9.74087e-13
ITL CG Jacobi 2395 1 0.516277s 6.26454e-12 0.0631767
Trilinos CG Jacobi 2395 1 0.248544s 6.26454e-12 0.0631767
PETSc CG Jacobi 2395 1 0.450245s 6.26454e-12 0.0631767
ITL BICGstab Jacobi 502 0 0.205913s 9.19034e-23 9.26828e-13
Trilinos BICGstab Jacobi 63 3 0.013401s 9.2773e-14 0.000935599
PETSc BICGstab Jacobi 949 0 0.387008s 9.33245e-23 9.4116e-13
Trilinos GMRES Jacobi 172 0 0.195794s 8.87523e-23 8.95051e-13
PETSc GMRES Jacobi 2395 1 14.5466s 3.29967e-15 3.32766e-05
ITL CG ILU 2395 1 1.03061s 8.36297e-13 0.0084339
Hypre CG ILU 2395 1 0.615881s 1.30097e-10 1.31201
Trilinos CG ILU 5 0 0.013115s 1.86936e-24 1.88522e-14
PETSc CG ILU 2395 1 0.780597s 8.36297e-13 0.0084339
ITL BICGstab ILU 159 0 0.14873s 8.7275e-23 8.80152e-13
Hypre BICGstab ILU 145 0 0.079206s 7.95843e-23 8.02593e-13
Trilinos BICGstab ILU 2 0 0.012627s 9.89167e-23 9.97557e-13
QQQ BICGstab ILU 6 0 15.5565s 2.51039e-23 2.53168e-13
PETSc BICGstab ILU 221 0 0.165501s 5.70359e-23 5.75197e-13
Hypre GMRES ILU 112 0 0.088412s 9.48827e-23 9.56874e-13
Trilinos GMRES ILU 4 0 0.013186s 2.05001e-23 2.0674e-13
QQQ GMRES ILU 5 0 0.333652s 4.00445e-24 4.03841e-14
PETSc GMRES ILU 1057 0 6.97491s 6.92011e-23 6.9788e-13

Table A.21: Add20 test results

103

package solver precond iterations status solving time absolute residual rel residual

ITL CG NONE 17758 1 24.6101s 7.70234e-12 0.365786
Hypre CG NONE 17758 1 10.8274s 7.70234e-12 0.365786
Trilinos CG NONE 17758 1 12.0438s 7.70234e-12 0.365786
PETSc CG NONE 17758 1 21.8778s 7.70234e-12 0.365786
ITL BICGstab NONE 2038 0 5.53111s 1.98111e-23 9.40835e-13
Hypre BICGstab NONE 2271 0 2.6545s 1.99094e-23 9.45501e-13
Trilinos BICGstab NONE 164 3 0.230141s 1.34628e-14 0.000639352
QQQ BICGstab NONE 2458 0 6.72217s 1.88561e-23 8.9548e-13
PETSc BICGstab NONE 1860 0 4.93828s 1.87908e-23 8.92379e-13
Hypre GMRES NONE 914 0 22.6791s 2.07233e-23 9.84156e-13
Trilinos GMRES NONE 914 0 54.1267s 2.08688e-23 9.91063e-13
QQQ GMRES NONE 1031 0 101.167s 2.0618e-23 9.79156e-13
PETSc GMRES NONE 1465 0 59.6993s 2.07945e-23 9.87536e-13
ITL CG Jacobi 17758 1 24.9021s 8.70321e-11 4.13318
Trilinos CG Jacobi 17758 1 12.9512s 8.70321e-11 4.13318
PETSc CG Jacobi 17758 1 22.5687s 8.70321e-11 4.13318
ITL BICGstab Jacobi 553 5 1.60083s 1.97465e-17 9.37767e-07
Trilinos BICGstab Jacobi 18 3 0.031162s 1.33868e-13 0.00635744
PETSc BICGstab Jacobi 755 0 2.19001s 3.43885e-23 1.63312e-12
Trilinos GMRES Jacobi 286 0 5.26988s 1.87699e-23 8.91389e-13
PETSc GMRES Jacobi 11535 0 550.505s 2.69647e-21 1.28056e-10
ITL CG ILU 17758 1 54.5601s 1.50292e-10 7.1374
Hypre CG ILU 17758 1 35.7351s 7.98189e-13 0.0379062
Trilinos CG ILU 8 0 0.324985s 2.9158e-24 1.38472e-13
PETSc CG ILU 17758 1 39.8092s 1.50292e-10 7.1374
ITL BICGstab ILU 345 0 2.28419s 1.71749e-23 8.15638e-13
Hypre BICGstab ILU 695 0 2.90697s 1.68983e-23 8.02505e-13
Trilinos BICGstab ILU 4 0 0.32395s 3.54429e-24 1.68319e-13
QQQ BICGstab ILU 9 0 0.735679s 5.08324e-24 2.41404e-13
PETSc BICGstab ILU 387 0 1.97006s 4.79313e-23 2.27627e-12
Hypre GMRES ILU 207 0 1.66554s 2.10036e-23 9.97468e-13
Trilinos GMRES ILU 7 0 0.32606s 3.08071e-24 1.46304e-13
QQQ GMRES ILU 8 0 4.76651s 3.03273e-23 1.44025e-12
PETSc GMRES ILU 2124 0 100.289s 7.53823e-23 3.57992e-12

Table A.22: Memplus test results

104

package solver precond iterations status solving time absolute residual rel residual

ITL CG NONE 5 1 0.000112s 0.982146 0.0220387
Hypre CG NONE 5 1 0.0001s 0.982146 0.0220387
Trilinos CG NONE 2 3 0.030383s 3.07395 0.0689775
PETSc CG NONE 2 8 0.009716s 3.07395 0.0689775
ITL BICGstab NONE 5 1 0.000442s 1.20431e-09 2.70239e-11
Hypre BICGstab NONE 5 1 0.000239s 1.25082e-09 2.80676e-11
Trilinos BICGstab NONE 5 1 0.000474s 1.40992e-09 3.16377e-11
QQQ BICGstab NONE 5 1 0.040176s 2.67244e-09 5.99679e-11
PETSc BICGstab NONE 5 1 0.000695s 1.39461e-09 3.12941e-11
Hypre GMRES NONE 5 0 0.006386s 8.37906e-15 1.88021e-16
Trilinos GMRES NONE 5 0 0.023519s 8.1886e-15 1.83747e-16
QQQ GMRES NONE 5 0 0.04472s 9.56597e-15 2.14654e-16
PETSc GMRES NONE 5 0 0.018645s 7.01436e-14 1.57398e-15
ITL CG Jacobi 2 5 0.000291s nan nan
Trilinos CG Jacobi 2 3 0.000458s 13.8536 0.310865
PETSc CG Jacobi 2 8 0.000617s 4.86385 0.109142
ITL BICGstab Jacobi 1 5 0.000272s nan nan
Trilinos BICGstab Jacobi 5 1 0.000483s 3.65538 0.0820243
PETSc BICGstab Jacobi 5 1 0.000727s 2.03328e-05 4.56255e-07
Trilinos GMRES Jacobi 4 4 0.000505s 3.42932 0.0769517
PETSc GMRES Jacobi 5 0 0.017973s 8.8185e-13 1.97881e-14
Hypre CG ILU 1 0 0.000197s 0 0
Trilinos CG ILU 4 0 0.000581s 5.58757e-12 1.25382e-13
PETSc CG ILU 1 6 0.001527s 44.5646 1
Hypre BICGstab ILU 0 3 0.000177s nan nan
Trilinos BICGstab ILU 2 0 0.000461s 3.62256e-12 8.12879e-14
QQQ BICGstab ILU 3 0 0.040145s 1.75032e-12 3.92761e-14
PETSc BICGstab ILU 5 1 0.001595s 0.335308 0.0075241
Hypre GMRES ILU 1 0 0.004303s 7.16072e-15 1.60682e-16
Trilinos GMRES ILU 4 2 0.000933s 0.00125206 2.80953e-05
QQQ GMRES ILU 1 0 0.057151s 8.82118e-14 1.97942e-15
PETSc GMRES ILU 5 1 0.01966s 3.61698e-06 8.11628e-08

Table A.23: Saddle point matrix results

105

Appendix B

Sparse Matrix Formats

B.1 Sparse Matrix Formats

B.1.1 Compressed Sparse Row Matrix Format (CSR)

The CSR (Compressed Sparse1 Row) format stores a matrix in three arrays:values, columnsand
rowIndex. The valuesarray stores the nonzero elements of the sparse matrix [16].The I-th element
of thecolumnsarray contains the column indices of the I-th value of thevaluesarray. The J-th element
of the rowIndexarray contains the index of the element in thevaluesarray, which is the first nonzero in
the row j of the matrix. The number of elements in thevaluesandcolumnsarrays is equal to the number
of nonzero elements in the matrix. TherowIndexarray contains the dimension of the matrix plus one
elements. The last element ofrowIndexis the number of elements invaluesplus one. The following
example illustrates the usage:

A =









1 0 5 0
0 4 6 0
1 0 0 2
1 0 3 1









The Matrix A in CSR format would be stored like this (index starting at 0):

values = [1, 5, 4, 6, 1, 2, 1, 3, 1]
columns = [0, 2, 1, 2, 0, 3, 0, 2, 3]
rowIndex = [0, 2, 4, 6, 10]

B.1.2 Modified Compressed Sparse Row Matrix Format (MCSR)

The MCSR (Modified Compressed Sparse Row) format stores the diagonal of the matrix explicitly [16].
There are two arrays used:valuesand index. Both arrays are split into a lower and an upper part. The
lower part of thevaluesarray contains the main diagonal elements of the matrix. Thus the number of
elements stored equals the dimension of the matrix. If the diagonal contains zeros they must be saved as
well. The element with the index dimension plus one is unusedin thevaluesarray. The upper part of the
valuesarray contains the off diagonal non zeros of the matrix stored row wise. The J-th element from
the lower part of theindexarray contains the index of thevaluesarray with the first off diagonal element
of the J-th row. The element dimension plus one holds the number of elements stored in the two arrays.

1In contrast to a dense matrix, a sparse matrix stores the nonzero elements only.

106

The upper part of theindexarray holds the column indices of the elements stored at the same index in
thevaluesarray. The matrixA mentioned in Section B.1.1 would be stored like this (index starting at 0):

values = [1, 4, 0, 1, ∗, 5, 6, 1, 2, 1, 3]
index = [5, 6, 7, 9, 11, 2, 2, 0, 3, 0, 2]

107

Bibliography

[1] A. Meister,Numerik linearer Gleichungssysteme, 2nd ed. Vieweg, 2005.

[2] G. Fischer,Lineare Algebra, 16th ed. Vieweg, 2008.

[3] N. Koeckler and H. R. Schwarz,Numerische Mathematik, 5th ed. Teubner, 2004.

[4] H. Dirschmid,Skriptum aus Matritzennumerik, Technische Universität Wien, 1998.

[5] Y. Saad,Iterative Methods for Sparse Linear Systems, 2nd ed. SIAM, 2003.

[6] J. Stoer and R. Bulirsch,Numerische Mathematik 2, 5th ed. Springer, 2005.

[7] M. Schinnerl, J. Schöberl, M. Kaltenbacher, and R. Lerch, Multigrid Methods for the 3D Simulation
of Nonlinear Magneto-Mechanical Systems. IEEE Transactions Magnetics, 2002, no. Vol 38(3), pp
1497-1511.

[8] A. Toselli and O. Widlund,Domain Decomposition Methods - Algorithms and Theory, 1st ed.
Springer, 2005.

[9] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra,MPI - The Complete Reference,
2nd ed. MIT Press, 1998.

[10] M. A. Heroux, J. M. Willenbring, and R. Heaphy,Trilinos Developers Guide, 2003, no.
SAND2003-1898.

[11] M. Sala, M. A. Heroux, and D. M. Day,Trilinos Tutorial, 2007, no. SAND2004-2189.

[12] L. S. Blackforda, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Heroux, L. Kauf-
man, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and R. C. Whaley,An Updated Set of Basic
Linear Algebra Subprograms (BLAS), 2002.

[13] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith,Efficient Management of Parallelism in
Object Oriented Numerical Software Libraries. Birkhäuser Press, 1997.

[14] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes,
B. F. Smith, and H. Zhang,PETSc Users Manual, 2008, no. ANL-95/11 - Revision 3.0.0.

[15] P. Gottschling and D. Lindbo,Generic Compressed Sparse Matrix Insertion: Algorithms and Im-
plementations in MTL4 and FEniCS, 2009.

[16] S. Wagner, Small-Signal Device and Circuit Simulation. Dissertation, TU Wien, 2005,
http://www.iue.tuwien.ac.at/phd/wagner/.

[17] R. Falgout, A. Cleary, J. Jones, E. Chow, V. Henson, C. Baldwin, P. Brown, P. Vassilevski, and
U. M. Yang,Hypre User’s Manual, 2008.

108

[18] Matrix Market, http://math.nist.gov/MatrixMarket.

[19] D. Braess,Finite Elemente. Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie,
4th ed. Springer-Verlag, 2003.

109

