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Abstract

In this master thesis, I discuss the problem of channel estimation for Long
Term Evolution (LTE). LTE uses coherent detection, that requires channel
state information. LTE provides training data for channel estimation. To
assess the performance of different channel estimators, I utilize the LTE link
level simulator developed at the Institute of Communications and Radio-
Frequency Engineering (INTHFT), Vienna University of Technology. The
channel estimators are compared in terms of throughput of the complete
system for slowly and rapidly changing channels. The Least Squares (LS)
channel estimator with linear interpolation is loosing 2 dB, and the Linear
Minimum Mean Square Error (LMMSE) channel estimator 0.5 dB with re-
spect to the system with perfect channel knowledge. In order to reduce the
complexity, while preserving the performance of the LMMSE channel esti-
mator, Approximate Linear Minimum Mean Square Error (ALMMSE) chan-
nel estimators are also investigated. I present implementations of such an
approximate channel estimator for slowly changing channels and for rapidly
changing channels. The ALMMSE estimator for block fading uses the correla-
tion between the L closest subcarriers. In the fast fading case, the ALMMSE
estimator utilizes the structure of the channel autocorrelation matrix. Fur-
thermore, this thesis shows some simulations, from which the block fading
assumption can be proofed valid for velocities up to approximately 20 km/h.
At higher velocities, the subcarriers are not perfectly orthogonal to each
other. Thus, Inter Carrier Interference (ICI) occurs. At higher velocities,
the Signal to Interference and Noise Ratio (SINR) should be considered in-
stead of Signal to Noise Ratio (SNR).
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Chapter 1

Introduction

Approximately every ten years, there is a new standard for mobile commu-
nication. Analog mobile phone systems were introduced in 1981, the Global
System for Mobile communications (GSM) in 1991, Wideband Code Divi-
sion Multiple Access (W-CDMA) in 2001, and Long Term Evolution (LTE)
will be most likely commercially launched in 2010 [1]. The analog system
enabled people to carry their own cell phones and make phone calls on the
move. GSM brought more security and some new services like Short Message
Service (SMS), Wireless Application Protocol (WAP), etc. This was a time
of great changes in society, as well as a time of rapid increase of cell phone
users. Suddenly, a business could be done on the move. Everything got
faster. The youth started to interact via SMS. People got closer, at least in
some sense. The W-CDMA standard increased the connection speed which
allowed to make video calls, browse the internet from anywhere, and other
mobile applications. However, this influence was not so tremendous as ten
years before. In contrast to the prediction, the people did not use video call-
ing. Maybe some of them did not even realize, that their cell phones worked
on a different basis. Not just the technical perfection of a standard, but also
the offered services make a standard successful.

Today, the market of cell phones is shrinking [2], and a new global stan-
dard is on the horizon. Still, two open question are remaining. First, how
to use the wireless ”broadband”? High speed connection without proper ser-
vices is useless. Will LTE bring new changes to the society, or is telephony,
SMS and internet browsing everything, that the mobile communication can
offer us? Secondly, what will happen in the next ten, twenty years? Are we
just going to increase the connection speed, or will we be able to offer society
something new, something, what will move us in the right direction?
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CHAPTER 1. INTRODUCTION 2

In my master thesis, I concentrate on the close future. I investigate chan-
nel estimation for LTE, necessary for coherent detection, which will be used
by every LTE device. Thus, it is important to analyse this topic. The es-
timators are compared by means of the throughput, that allows to observe
influence of an estimator on the complete system. Although the Mean Square
Error (MSE) shows directly the performance of an estimator, it is not clear if
the decrease of MSE, will also increase the throughput. I discuss channel esti-
mators for rapidly changing channels, where the subcarriers are not perfectly
orthogonal to each other. I present two approximations of the Linear Min-
imum Mean Square Error (LMMSE) channel estimator, which are relevant
for real-time applications due to their performance and their low complexity.

The thesis is organized as follows: In Chapter 2, I present the important
facts about LTE from a channel estimation point of view. I also introduce a
mathematical system model. In Chapter 3, I discuss channel estimation for
slowly changing channels. This analysis is extended in Chapter 4 to rapidly
changing channels. Finally, in Chapter 5, I summarize my thesis.



Chapter 2

LTE Downlink: Physical Layer

LTE is a project within 3rd Generation Partnership Project (3GPP), which
will be introduced in Release 8. More details on LTE can be found in [3]. In
the following chapter, I will present LTE characteristics, which are relevant
from a channel estimation point of view. Furthermore, I will present the
system model, which is used in this work.

2.1 Overview

The LTE downlink is based on Orthogonal Frequency Division Multiplexing
(OFDM), which is an attractive downlink transmission scheme due to its ro-
bustness against frequency selective channels. LTE supports the use of mul-
tiple transmit and receive antennas, and uses different modulation alphabets
and channel codes according to the signalized channel quality. Furthermore,
the time-frequency resources are dynamically shared between users. Adaptive
modulation and coding, support of Multiple Input Multiple Output (MIMO)
and Hybrid Automated Repeat Request (H-ARQ) are the prime keystones
of the LTE downlink.

At the highest level, the LTE signal in the time domain consists of frames
of duration Tframe = 10 ms, which themselves consists of ten equally long
subframes with Tsubframe = 1 ms. Each subframe comprises two equally long
slots of duration Tslot = 0.5 ms. Each slot consists of a number of OFDM
symbols (six or seven) with cyclic prefix. LTE defines two different cyclic
prefix length, normal and extended. In Figure 2.1, the signal structure for
normal cyclic prefix length is depicted. According to the used bandwidth,
each OFDM symbol consists of a number of subcarriers. Subcarriers are
grouped into resource blocks, where each resource block consists of 12 adja-

3



CHAPTER 2. LTE DOWNLINK: PHYSICAL LAYER 4

cent subcarriers, with 15 kHz spacing between two consecutive subcarriers.
LTE allows to use any number of resource blocks from 6 up to 100, which
corresponds to bandwidth from 1.4 MHz up to 20 MHz.

one OFDM symbol + CP

one slot

one subframe

one frame

signal

Figure 2.1: Signal structure

2.2 Structure of Pilot Symbols

To enable coherent demodulation, channel estimation is required. A simple
way to enable channel estimation in an OFDM system is to insert known
pilot symbols into the time-frequency grid of the transmit signal. The posi-
tion of the pilot symbols depends on the number of transmit antenna ports
[3]. Whenever, there is a pilot symbol located within the time-frequency
grid at one transmit antenna port, the symbols at same position at the re-
maining transmit antenna ports are 0. Figure 2.2 depicts structure of the
pilot symbols for 4 transmit antenna ports. The colored squares correspond
to the pilot symbols at a particular antenna port and crosses corresponds
to positions within time-frequency grid, which are 0. Within each resource
block at 1st and 2nd transmit antenna port, there are 4 pilot symbols, and
at the 3rd and 4th transmit antenna port just 2. It is obvious, that with
increasing number of antennas, the number of pilot symbols and symbols,
which are 0, is increasing. This fact results in decreasing spectral efficiency
with increasing number of transmit antenna ports (e.g. in case of 4 transmit
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antenna ports, 14.3% of all symbols is used just for channel estimation). At
the 3rd and 4th transmit antenna ports, less pilot symbols than at the 1st
and 2nd transmit antenna ports are located. Therefore, in general the qual-
ity of the channel estimates from 3rd and 4th transmit antenna ports will
be poorer, than the quality of channel estimate from 1st and 2nd transmit
antenna port. Consequently, the use of 4 transmit antenna ports should be
restricted to scenarios, in which the channel is not changing rapidly [4].

The complex value of the pilot symbols will vary between different pilot
symbol positions and also between different cells. Thus, the reference signal
can be seen as two dimensional cell identifier sequence. In [3], 510 different
cell identities (170 cell identity groups and 3 specific cell identity within one
cell identity group) are defined. Thus, the complex value of pilot symbols is
cell dependent. The frequency domain position of the pilot symbols may vary
between consecutive subframes. The relative position of the pilot symbols
is always the same, as depicted in Figure 2.2. The frequency hopping can
be described as adding frequency offset to the basis pilot symbols position
structure. There are 170 hopping pattern defined, where each corresponds
to one cell identity group.

2.3 System Model

The relevant components of the considered system are depicted in Figure 2.3.
In the following mathematical description just one subframe is considered and
for sake of simplicity the subframe index will be omitted. At the transmitter,
the data bits of one subframe are generated (in the complete system these
data bits are scrambled and encoded, but from channel estimation point of
view this is of minor importance). Before serial-to-parallel conversion, the
symbols are modulated according to [3] and pilot symbols are inserted. After
Inverse Fast Fourier Transform (IFFT) and parallel-to-serial conversion, the
cyclic prefix is inserted and the transmit signal is generated by a Digital-to-
analog converter. At the receiver, the cyclic prefix is removed. Using Fast
Fourier Transform (FFT), the signal is converted into the frequency domain.
Using the channel estimation and equalization, the data estimates are ob-
tained.

The following system model is based on [5]. Let x
(f)
d,nt

be a length Nd

column vector comprising all modulated data symbols of one subframe in
the frequency domain (indicated by (f)) at the transmit antenna port nt

(nt = 1 · · ·Nt). Furthermore, let x
(f)
p,nt be a length Np column vector com-
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Antenna port 1

Antenna port 2

Antenna port 3

Antenna port 4

frequency

time

Figure 2.2: Pilot symbols structure

prising all pilot symbols. Let vector x̃nt be the concatenation of vector x
(f)
p,nt

and vector x
(f)
d,nt

x̃(f)
nt

=
[
x(f)

p,nt

T
x

(f)
d,nt

T
]T
. (2.1)

After permuting the vector x̃
(f)
nt with a permutation matrix P that fulfills

PTP = PPT = I, a column vector x
(f)
nt of length Np +Nd is obtained

x(f)
nt

= Px̃(f)
nt
. (2.2)

The vector x
(f)
nt consists of Ns OFDM symbols

x(f)
nt

=
[
x

(f)
nt,0

T
. . . x

(f)
nt,Ns−1

T
]T
. (2.3)

The ns-th OFDM symbol is represented by the vector x
(f)
nt,ns of length Ksub

x(f)
nt,ns

=
[
x

(f)
nt,ns,0 . . . x

(f)
nt,ns,Ksub−1

]T
(2.4)
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Figure 2.3: System Model

in which the elements x
(f)
nt,ns,k

correspond to the symbols at the nt-th transmit
antenna port within the ns-th OFDM symbol on the k-th subcarrier. The
transmit signal of the ns-th OFDM symbol in the time domain, indicated by
(t), can be written as

x(t)
nt,ns

= FCP DH
KFFT

Fguard x(f)
nt,ns

. (2.5)

where Fguard indicates an KFFT×Ksub matrix adding (KFFT−Ksub) zero sym-
bols on guard subcarriers. The matrix DKFFT

the Discrete Fourier Transform
(DFT) matrix and FCP is a matrix, which adds cyclic prefix to the OFDM
symbol in the time domain. The matrix Fguard is defined as

Fguard =

(
IKsub

0(KFFT−Ksub)×Ksub

)
(2.6)

with Iz being the z × z identity matrix, and 0 denotes a zero matrix of
a given dimension. Furthermore, DKFFT

is the DFT matrix of dimension

KFFT×KFFT with elements 1√
L
e
−j 2π

KFFT
iric (ir and ic are the row and column

indices, respectively). FCP is an (KFFT + P )×KFFT matrix adding a cyclic
prefix of length P to a vector of length KFFT, which is defined as

FCP =

(
0P×(KFFT−P ) IP

IKFFT

)
. (2.7)

At the receiver, after Analog/Digital (A/D) conversion, the receive signal
of the ns-th OFDM symbol in the time domain at receive antenna port nr is
obtained as

y(t)
nr,ns

=
Nt∑

nt=1

H(t)
nt,nr,ns

x(t)
nt,ns

+ w(t)
nr,ns

(2.8)
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where y
(t)
nr,ns is the ns-th received OFDM symbol in the time domain of length

KFFT + P , H
(t)
nt,nr,ns is the channel matrix between the nt-th transmit and

nr-th receive antenna port and w
(t)
nr,ns is the noise vector, which elements are

considered to be white Gaussian zero mean random variables with variance
σ2

w. The channel matrix H
(t)
nt,nr,ns is a toeplitz matrix of dimension (KFFT +

P ) × (KFFT + P ) with the following structure. Here, I assume that the
channel impulse response has at most Nh taps and for sake of simplicity, I
also omitted the antenna port indices.

H(t)
ns

=



h
(t)
ns,0 0 . . . . . . . . . 0
...

. . . . . .
...

h
(t)
ns,Nh−1

. . . . . .
...

0
. . . . . . . . .

...
...

. . . . . . . . . 0

0 . . . 0 h
(t)
ns,Nh−1 . . . h

(t)
ns,0


(2.9)

where h
(t)
ns,nh is a tap of the channel impulse response with delay nh of the

ns-th OFDM symbol. Here, I assumed that the channel impulse response is
constant over duration of a OFDM symbol. If this assumption is violated,
Inter Carrier Interference (ICI) will occur. If the channel is time variant, the

columns of the matrix H
(t)
ns are time dependent, which is trivial extension to

Equation (2.9).

At the receiver, the cyclic prefix is removed, FFT is performed, and at last
the guard symbols are removed

y(f)
nr,ns

= Fguard,rem DKFFT
FCP,rem y(t)

nr,ns
(2.10)

where FCP,rem performs the cyclic prefix removal and is of dimension KFFT×
(KFFT + P ) with the following structure

FCP,rem =
(

0KFFT×P IKFFT

)
. (2.11)

Fguard,rem is an Ksub × KFFT matrix, which removes the guard subcarriers.
The matrix Fguard,rem is defined as

Fguard,rem =
(

IKsub
0Ksub×(KFFT−Ksub)

)
. (2.12)

After removing the cyclic prefix, performing the FFT and removal of the
guard band, Equation (2.8) can be equivalently rewritten as

y(f)
nr,ns

=
Nt∑

nt=1

Λ(f)
nt,nr,ns

x(f)
nt,ns

+ w(f)
nr,ns

(2.13)



CHAPTER 2. LTE DOWNLINK: PHYSICAL LAYER 9

where y
(f)
nr,ns is the ns-th received OFDM symbol in the frequency domain,

and Λ(f)
nt,nr,ns

is an Ksub ×Ksub channel matrix between the nt-th and nr-th
antenna port, which is obtained as

Λ(f)
nt,nr,ns

= Fguard,rem DKFFT
FCP,rem H(t)

nt,nr,ns
FCP DH

KFFT
Fguard. (2.14)

If the channel is not changing over the duration of one subframe, the matrix
Λ(f)

nt,nr,ns
is diagonal. The vector w

(f)
nr,ns is the noise in the frequency domain.

Let h
(f)
nt,nr,ns denote a length Ksub vector comprising diagonal elements of the

matrix Λ(f)
nt,nr,ns

and h
(f)
nt,nr the concatenation of Ns channel vectors h

(f)
nt,nr,n

h(f)
nt,nr

=
[
h

(f)
nt,nr,0

T
. . . h

(f)
nt,nr,Ns−1

T
]T
. (2.15)

By permutation of h
(f)
nt,nr analog to Equation (2.1), the same structure of the

channel vector can be obtained

h̃(f)
nt,nr

= PTh(f)
nt,nr

= [h(f)
p,nt,nr

T
h

(f)
d,nt,nr

T
]T. (2.16)

Let vector y
(f)
nr be a connection of Ns received OFDM symbols from the nr-th

receiver antenna port

y(f)
nr

=
[
y

(f)
nr,0

T
. . . y

(f)
nr,Ns−1

T
]T

(2.17)

As before, ỹ
(f)
nr is the permuted version of y

(f)
nr , so that the vector ỹ

(f)
nr can be

splitted in the pilot vector and the data vector

ỹ(f)
nr

= PTy(f)
nr

=
[
y(f)

p,nr

T
y

(f)
d,nr

T
]T
. (2.18)

Using this notation, Equation (2.10) can be expressed in two equivalent forms

y(f)
nr

=
Nt∑

nt=1

h(f)
nt,nr
� x(f)

nt
+ w(f)

nr
(2.19)

ỹ(f)
nr

=
Nt∑

nt=1

h̃(f)
nt,nr
� x̃(f)

nt
+ PTw(f)

nr
(2.20)

where � denotes element wise multiplication of two vectors. From channel
estimation point of view the symbol on pilot positions are of most interest.
Equation (2.20) on the pilot positions reduces to

y(f)
p,nr

= h(f)
p,nt,nr

� x(f)
p,nt

+ w(f)
p,nr

. (2.21)



CHAPTER 2. LTE DOWNLINK: PHYSICAL LAYER 10

The sum in Equation (2.20) disappears because of the following reason.
Whenever a pilot is located at the nt-th transmit antenna port within the
ns-th OFDM symbol on the k-th subcarrier, symbols, at the remaining trans-
mit antenna ports zeros are transmitted on the same positions (for more
details see Section 2.2).



Chapter 3

Channel Estimation for
Block Fading

In the following chapter, I will discuss channel estimation assuming block
fading, that is, the coherence time of the channel is long enough that the
channel impulse response is approximately constant over the duration of
one subframe. According to [3] the duration of one subrame is 1 ms. The
coherence time of a channel is in [6] defined as

Tc =
1

4Ds

(3.1)

with Ds being the Doppler spread, that is, the largest difference between the
Doppler shifts

Ds = max
i,j

∣∣fsi − fsj

∣∣ (3.2)

where fsi is the Doppler shift of the i-th path. Doppler shift is defined as
frequency shift due the relative motion between observation point and fader

fs = fc
v

c0

(3.3)

with v being the relative velocity and c0 the speed of light. Assuming Jakes
model, where Ds = 2fs,max, using a realistic carrier frequency (for example
fc = 2.11 GHz), the maximum relative velocity between the receiver and
faders has to be smaller than v = 17.7 m/s (I will further investigate this
theoretical statement in Chapter 4. )

If the block fading assumption is fulfilled, then the channel will be con-
stant over the duration of one subframe. The elements h

(f)
nt,nr,ns of h

(f)
nt,nr from

Equation (2.15) are independent of ns. Therefore, the output of the block
fading estimator will be the estimated channel vector

ĥnt,nr,ns = [ĥnt,nr,ns,0 · · · ĥnt,nr,ns,Ksub−1]
T (3.4)

11
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with the elements ĥnt,nr,ns,k corresponding to the channel estimate for the k-th
subcarrier between the nt-th and nr-th antenna port. Although the estimate
is independent of ns, I won’t omit the corresponding index ns, because it
might cause confusion with the vector hnt,nr , which length is Ns times larger
than the length of hnt,nr,ns . From this point on, all quantities are considered
in the frequency domain, therefore I will omit the index (f).

3.1 Least Squares Channel Estimation

Whenever there is a pilot on the k-th subcarrier within the ns-th OFDM
symbol on the nt-th transmit antenna port, the symbols on the same sub-
carrier within the same OFDM symbol on the remaining transmit antenna
ports are 0. This reduces the spectral efficiency, however such a scheme also
preserves the orthogonality between the pilot symbols at different transmit
antenna ports allowing to estimate a MIMO channel as NtNr independent
Single Input Single Output (SISO) channels. (In Section 3.2.2 I will discuss
an approach, which estimates a MIMO channel using spatial correlation be-
tween channels.) To estimate the channel coefficient on the pilot positions,
the first obvious approach is to divide the received symbol on the desired
position by the corresponding pilot symbol

ĥLS,p,nt,nr =
yp,nr

xp,nt

= hp,nt,nr +
zp,nr

xp,nt

(3.5)

where subscript p indicates symbol on the pilot positions. This approach
corresponds to the Least Squares (LS) channel estimate from [7]. Due to
the LTE system design and using Equation (3.5) it is possible to calculate
just the channel estimates on the pilot positions, the channel estimate on the
remaining positions has to be obtained by interpolation.

At the 1st and the 2nd transmit antenna port within an LTE subframe there
are two pilot symbols on every 3rd subcarrier. If the assumption of block fad-
ing is fulfilled, then both pilot symbols are transferred over the same channel,
that is, the hp,nt,nr for both pilot symbols are exactly the same. The noise
term in Equation (3.5) is zero mean, therefore averaging over two channel
coefficient estimates will improve the estimate (thereby reducing the noise
term of the estimate).

ĥLS,nt,nr,ns,kp =
1

2

[
yp1,nr

xp1,nt

+
yp2,nr

xp2,nt

]
= hnt,nr,ns,kp +

1

2

[
zp1,nr

xp1,nt

+
zp2,nr

xp2,nt

]
(3.6)

where ĥLS,nt,nr,ns,kp is the LS estimate of the channel coefficient between the
nt-th and nr-th antenna port on the kp-th subcarrier (lower index p refers to
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subcarriers, on which the pilot symbols are located) and p1 and p2 are the
pilot positions on the same k-th subcarrier (they are located within different
OFDM symbols).

Interpolation

Pilot symbols insertion and the LS estimation of the channel on the pilot po-
sitions corresponds to the sampling of the channel. To obtain the remaining
channel coefficients, interpolation has to be used.

Linear Interpolation

Linear interpolation is the easiest way to estimate the channel coefficients
on the data positions. Two adjacent channel estimates are connected by the
help of a linear function. This linear function is sampled at the missing data
positions.

ĥnt,nr,ns,kd
= ĥnt,nr,ns,kp1

+ (kd − kp1)
ĥnt,nr,ns,kp2

− ĥnt,nr,ns,kp1

kp2 − kp1

(3.7)

where kp1 and kp2 are the indices of adjacent subcarriers on which the pilot
symbols are located and kd is the index of the subcarriers, on which just
the data symbols are located, with kp1 < kd < kp2 . To estimate channel
coefficients, which are not located between two pilot symbols, that is, the
edge channel coefficients, one can use linear extrapolation. Figure 3.1 shows
the linear interpolation approach an a channel realization. First, the LS
channel estimates are calculated and then adjacent LS channel estimates are
connected by a linear function. In Figure 3.1 it seems as if the LS points
were not connected by linear function. The reason for this appearance is
that the absolute value of the estimated channel is plotted. If the real or
imaginary part of the channel estimate is plotted, the connection between
the LS estimates would be linear.

Cubic Interpolation

The approach in cubic interpolation is similar to the one of the linear in-
terpolation, but instead of using linear function to connect adjacent pilot
positions, functions up to the 3rd order are used. The complexity of cubic
interpolation is higher than the complexity of linear interpolation.
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Figure 3.1: Example of linear interpolation

Spline Interpolation

Spline interpolation uses a low degree polynomial to connect the LS esti-
mates, whereby the continuity is preserved [8].

Time-Frequency Interpolation

The Time-Frequency (T-F) interpolation uses IFFT/FFT and zero padding.
All estimates of the channel ĥLS,nt,nr,kp are inserted into a lengthKsub/3 vector

ĥLS,nt,nr . Then the IFFT of the vector ĥLS,nt,nr is performed, to convert the
LS channel estimate vector from the frequency to the time domain. After
the IFFT, a zero vector of length 2

3
Ksub is added. The zero padded vector is

a Ksub length vector. Then the FFT is performed to convert the zero padded
vector to the frequency domain. More details on this interpolation technique
can be found in [9].

Sinc Interpolation in the frequency domain

This approach is well known from common signal sampling. Every channel
sample (the LS estimate on the subcarriers on which the pilot symbols are
located) is multiplied by the sinc function, which has zeros values at the
remaining LS estimates the subcarriers on which the pilot symbols are lo-
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cated, that is, the sinc function has non zero values on the subcarriers on
which just data symbols are located. With the sinc interpolation technique
is it possible to recover the original signal perfectly, if two assumption are
fulfilled, the Nyquist-Shannon sampling theorem and the signal has to be of
infinity length. In practice however, is the length of the signal finite and one
can observe edge effect, that is, the channel estimate at the edge shows larger
error than elsewhere.

Sinc Interpolation in the time domain

The previous technique corresponds to the convolution of the sinc function
with the LS estimate in the frequency domain. From signal theory it is
known, that the convolution in the frequency domain is equivalent to the
multiplication in the time domain. The sinc function in the frequency do-
main corresponds to a rect function in the time domain. With knowledge of
those two facts it is possible to perform the interpolation in the time domain,
equivalent to the sinc interpolation in the frequency domain. First, the FFT
of the LS estimate has to be performed, then the LS estimate in the time
domain will be multiplied with the rect function and transformed back to
the frequency domain using the FFT.

In Figure 3.2 different interpolation methods are plotted for one channel
realization at Signal to Noise Ratio (SNR) = 100 dB. Three facts can be
observed:

� Both sinc interpolation techniques are strongly oscillating.

� Especially at low and high subcarrier indices almost all interpolation
methods result in different values.

� All interpolation methods except sinc in frequency and time result in
similar channel estimates.

All three points will be further investigated in Section 3.4.1.

3.2 Linear Minimum Mean Square Error

Channel Estimation

The LMMSE channel estimator provides channel coefficients that minimize
the mean squared error

ε = E
{∥∥∥h−ALMMSEĥLS

∥∥∥2

2

}
. (3.8)
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Figure 3.2: Comparison of interpolation techniques for one channel realiza-
tion

The LMMSE channel estimation can be obtained as filtering of the LS esti-
mate by a matrix ALMMSE [7]

ĥLMMSE = ALMMSEĥLS (3.9)

with
ALMMSE = Rh,hLS

(
RhLS

+ σ2
wI
)−1

. (3.10)

where Rh,hLS
is a crosscorrelation matrix

Rh,hLS
= E

{
h hH

LS

}
(3.11)

and RhLS
is a autocorrelation matrix

RhLS
= E

{
hLS hH

LS

}
. (3.12)

3.2.1 LMMSE Channel Estimation for
Spatially Uncorrelated Channels

In the following subsection, I will specialize the LMMSE channel estimator
for spatial uncorrelated MIMO channels, which basically consists of NtNr
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uncorrelated SISO channels. In a real scenario there is almost always spatial
correlation between antennas, but if the use of the spatial correlation between
the antenna ports is omitted, the computational complexity is reduced. To
simplify notation, let ĥLS,nt,nr,ns be the vector of the LS estimate between the
nt-th and nr-th antenna on subcarriers with pilot symbol. The length of this

vector is Ksub/3 and
ˆ̃
hLMMSE,nt,nr,ns is the vector of the permuted LMMSE

channel estimate for all subcarriers with length Ksub. Equation (3.9) and
Equation (3.10) can be written as

ˆ̃
hLMMSE,nt,nr,ns = ALMMSEĥLS,nt,nr,ns (3.13)

and
ALMMSE = Rh̃ns ,hLS,ns

(RhLS,ns
+ σ2

wI)−1 (3.14)

where
Rh̃ns ,hLS,ns

= E
{

h̃nt,nr,ns hH
LS,nt,nr,ns

}
(3.15)

and
RhLS,ns

= E
{
hLS,nt,nr,ns hH

LS,nt,nr,ns

}
. (3.16)

The Rh̃ns ,hLS,ns
and RhLS,ns

are tall crosscorrelation and square autocorre-
lation matrices, respectively. To obtain the channel estimate in the correct

order, the ˆ̃hLMMSE,nt,nr,ns has to be multiplied with a Ksub×Ksub permutation
matrix P

ĥLMMSE,nt,nr,ns = P
ˆ̃
hLMMSE,nt,nr,ns (3.17)

3.2.2 LMMSE Channel Estimation for
Spatially Correlated Channels

If it is possible to estimate spatial correlation between antennas, this know-
ledge can be used to estimate the channel vector more precise. First, the
LS estimate for every SISO channel has to be calculated which will be or-
dered into the vector h

(full)
LS,ns

. Let h̃
(full)
ns be a vector, which is a permuted

version of the vector h
(full)
ns such, that at the beginning of the vector channel

coefficients corresponding to the pilot positions of all transmit antennas are
located and followed by the remaining channel coefficients (length of this vec-

tor is KsubNtNr). The vector h
(full)
ns consists of the channel vectors between

all transmit and receive antenna ports.

h(full)
ns

=
[
hT

0,0,ns
· · ·hT

Nt−1,Nr−1,ns

]T
. (3.18)
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Let Rh
(full) be the autocorrelation matrix of the vector h

(full)
ns , which has

following structure, if the Kronecker model is considered [10]

R
(full)
h = RT ⊗RR ⊗Rh (3.19)

where RT is the spatial autocorrelation matrix between the transmit anten-
nas, RR is the spatial autocorrelation matrix between the receive antennas
and Rh is the channel autocorrelation matrix. In the following step, the
matrix R

(full)
h has to be permuted, so that the following expression is valid

R
(full)

h̃
= PR

(full)
h PT = E

{
h̃(full)h̃(full)H

}
. (3.20)

To calculate the channel estimate, Equation (3.9) can be used with the fol-
lowing formal changes

ˆ̃h
(full)

LMMSE,ns
= A

(full)
LMMSEĥ

(full)
LS,ns

(3.21)

with
A

(full)
LMMSE = R

h̃
(full)
ns ,h

(full)
LS,ns

(R
h

(full)
LS,ns

+ σ2
wI)−1 (3.22)

where the matrices R
h̃

(full)
ns ,h

(full)
LS,ns

and R
h

(full)
LS,ns

are obtained as

R
h̃

(full)
ns ,h

(full)
LS,ns

=
(
R

(full)

h̃ns

)
Kd+Kp,Kp

(3.23)

R
h

(full)
LS,ns

=
(
R

(full)

h̃ns

)
Kp,Kp

(3.24)

where Kd is the number of the subcarriers on which just data symbols are
located, and Kp is the number of subcarriers, on which pilot symbols are
located. The expression (·)M,N indicates a submatrix , which is given by the
first M rows and the first N columns of the matrix.

3.3 Approximate LMMSE Channel Estima-

tion

The performance of the LMMSE estimator is in general superb (see Sec-
tion 3.4.2), but of high computational complexity because of the matrix in-
version in Equation (3.10). In a real-time implementation, a reduction of
complexity is desired while preserving the performance of the LMMSE esti-
mator. In the following section, I will discuss a low complexity estimator pre-
sented in [11], where the authors applied this estimator for Worldwide Inter-
operability for Microwave Access (WiMAX). The main difference between
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LTE and WiMAX from channel estimation point of view is that LTE uses pi-
lot symbols for the channel estimation and WiMAX a preamble [3], [12]. Con-
sequently, the Approximate Linear Minimum Mean Square Error (ALMMSE)
presented in [11] has to be adopted for the LTE system.

The two main ideas of the ALMMSE estimator from [11] are:

1. To the calculate the LMMSE filtering matrix by suing only the cor-
relation between the L nearest subcarriers instead of using the full
correlation between all subcarriers. In case of the LMMSE estimator
the correlation with all subcarriers is used. Figure 3.3 depicts the full
autocorrelation matrix of dimension Ksub × Ksub and its submatrices
of dimension L× L, which are used by the ALMMSE estimator.

2. To average over all L×L matrices to get just one matrix, that approx-
imates the correlation to the L nearest subcarriers.

Ksub

L

Figure 3.3: Principle of the ALMMSE estimator

Let R̂
(L)
h be the L×L matrix, that approximates the correlation between the

L nearest subcarriers

R̂
(L)
h =

1

bKsub

L
c

bKsub
L
c−1∑

m=0

(Rh)mL+1:(m+1)L,mL+1:(m+1)L (3.25)
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where (·)M :N,M :N denote a submatrix given by the M -th to N -th row and
the M -th to N -th column.

The ALMMSE algorithm for LTE consists of the following steps:

1. Choose L. The dimension of R̂
(L)
h is L× L. L is bounded by 3 ≤ L ≤

Ksub. If L = Ksub is chosen, the ALMMSE estimator is equal to the
LMMSE estimator.

2. Choose the interval of L consecutive subcarrier indices according to the
following rule (k is the subcarrier index of the channel coefficient to be
estimated):

Interval =


[1, L] ; k ≤ L+1

2[
k − bL−1

2
c, k + dL−1

2
e
]

; otherwise
[Ksub − L+ 1, Ksub] ; k ≥ Ksub − L−1

2

(3.26)

Let h(L) be the channel vector for the subcarriers from the chosen
interval.

3. Find the K
(L)
p = bL

3
c subcarriers on which the pilot symbols are located

within the chosen interval. Let h
(L)
p be the vector of channel coefficients

on the pilot symbol positions.

4. Create a permutation matrix P of dimension L× L with

h̃(L) =
[
h(L)

p

T
h

(L)
d

T
]T

= PTh(L) (3.27)

where h
(L)
d is the channel vector on the data positions within the chosen

interval.

5. Permute R̂
(L)
h with P

˜̂R
(L)

h = PTR̂
(L)
h P. (3.28)

6. Extract ˜̂R
(L)

hLS
and ˜̂R

(L)

h,hLS
from ˜̂R

(L)

hn as

˜̂R
(L)

hLS
=

(
˜̂R

(L)

h

)
K

(L)
p ,K

(L)
p

(3.29)

˜̂R
(L)

hn,hLS,n
=

(
˜̂R

(L)

hn

)
L,K

(L)
p

. (3.30)
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7. Calculate the filtering matrix F̃(L)

F̃(L) = ˜̂R
(L)

h,hLS

(
˜̂R

(L)

hLS
+ σ2

wI

)−1

. (3.31)

8. Obtain an estimate of the channel coefficients by multiplying (filtering)
the LS estimate on the pilot positions from the chosen interval has to be
multiplied (filter) by F̃(L) and permuting (multiplying by PT). Finally
the k-th element has to selected

q = PTF̃(L)h̃
(L)
LS (3.32)

ĥALMMSE,k =


[q]k ; k ≤ L+1

2

[q]dL+1
2
e ; otherwise

[q]L+k−Ksub
; k ≥ Ksub − L−1

2

(3.33)

[q]k means, that the k-th element of vector q will be selected.

3.4 Simulation Results

All result are obtained with the LTE Link Level Simulator, developed at the
Institute of Communications and Radio-Frequency Engineering (INTHFT),
Vienna University of Technology [13]. The simulator is implemented accord-
ing to [3] in the complex base band. In most cases, I will present a figure
of MSE over SNR, which depicts the performance of the estimator and a
figure of throughput over SNR, which depicts the influence of the estimator
on the performance of the complete system. Table 3.1 presets the most im-
portant simulator settings. Those are used for all simulations unless stated
differently.

Parameter Value
Bandwidth 1.4 MHz

Number of transmit antennas 4
Number of receive antennas 2

Transmission mode Open-loop spatial multiplexing
Channel type ITU PedB [14]

CQI 9

Table 3.1: Simulator settings for block fading simulations
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3.4.1 Comparison of Interpolation Techniques

In Figure 3.4 the MSE curves for different interpolation techniques are de-
picted. The linear interpolator shows the best performance in terms of small-
est MSE. This fact is shown also in terms of largest throughput, which is
depicted in Figure 3.4. The linear interpolation also has the best performance
in terms of throughput among other interpolation techniques and it is also
the least complex interpolator from the presented estimators. In Figure 3.5,
a saturation behavior of sinc interpolators and of the T-F interpolator can
be seen, so the use of them should be limited. Performance of the cubic
interpolator is poorer than performance of other interpolators, especially at
low SNR values. Therefore, its use should be limited. Pilot symbols are
located relative dense on the subcarriers, on every 3rd subcarrier there is at
least one pilot symbol, and the adjacent subcarriers are strongly correlated,
thus the linear interpolator outperform other interpolators. In Table 3.2 the
SNR loss of the individual interpolators is shown. The SNR loss is defined
as the difference between the throughput of the considered curves at 90 % of
the achievable throughput for the given scenario. There is a gap between the
linear interpolator and remaining interpolators.
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Figure 3.4: MSE for different interpolation techniques
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Figure 3.5: Throughput for different interpolation techniques

Edge effects

Figure 3.2 shows, that the presented interpolation techniques differ mainly
in the estimation at the edge of the frequency band. Therefore, I will in-
vestigate the performance of the interpolators over subcarrier index. I will
present performance of the sinc interpolator, to investigate how significant is
the channel estimate error at edge subcarriers. And performance of the linear
interpolator, as comparison to the performance of the sinc interpolator. In
Figure 3.6 is plotted the MSE over SNR and over subcarrier index for the
linear interpolation. It can be seen, that the MSE for high SNR values is
close to zero for all subcarriers. For low SNR, an edge effect can be observed,
where the MSE is excessively increased. If the linear interpolator is used at
low SNR values, one should be aware of this effect.

In Figure 3.7 the MSE over SNR and over subcarrier index is plotted for
the sinc interpolation in the frequency domain. At low subcarrier indices,
the MSE is larger than at other subcarrier indices. Therefore, the use of sinc
interpolation should be always carefully considered. It is surprising, that the
the edge effect at low SNR values is more vivid for the linear interpolation
than for the sinc interpolation.
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Interpolator SNR loss [dB]
linear 1.7
cubic 2.8
spline 2.5

T-F 2.4
sinc in the frequency domain 2.6

sinc in the time domain 2.6

Table 3.2: SNR loss of different Interpolation techniques to the system with
perfect channel knowledge
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Figure 3.6: MSE for the linear interpolation over subcarrierindex and SNR

3.4.2 LMMSE Channel Estimation

In this part, I will compare the performance of the LMMSE estimator with
the LS estimator using the linear interpolation. I will also compare the
LMMSE estimator which uses the ideal autocorrelation matrix with one that
has to estimate the autocorrelation matrix. Finally, I will compare the per-
formance of the LMMSE estimator for spatially correlated channels and the
LMMSE for spatially uncorrelated channels applied on a spatially correlated
MIMO channel.
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Figure 3.7: MSE for the sinc interpolation in the frequency domain over
subcarrierindex and SNR

LMMSE Channel Estimation versus LS Channel Estimation

In Figure 3.8 and Figure 3.9, the LS estimator is compared to the LMMSE es-
timator. The performance increase of the LMMSE estimator is obvious. The
SNR gain of the LMMSE estimator over the LS estimator is approximately
1.4 dB. In terms of throughput, the system using the LMMSE estimator is
approximately 0.5 dB worse than the system with perfect channel knowledge.
However, the use of the LMMSE estimator is connected with some problems.
The second order statistics of the channel and the noise are necessary, and
have therefore to be estimated. In the presented figures, I assumed that
the channel statistics and noise power are known perfectly. To calculate the
LMMSE filtering matrix, a matrix inverse has to be calculated. In general,
matrix inversion is a complex operation, which increases the overall complex-
ity of the estimator.

Non Ideal Autocorrelation Matrix

In practice, a user does not know the second order statistics of the channel
(i.e. Rh,hLS

and RhLS
from Equation (3.10) are unknown). One possibility

to solve this problem, is to save autocorrelation matrices for typical scenarios
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Figure 3.8: MSE for the LMMSE estimator versus the LS estimator
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Figure 3.9: Throughput for the LMMSE estimator versus the LS estimator
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and let the User Equipment (UE) update it, or let the UE to estimate its own
autocorrelation matrix. I implemented the following algorithm to estimate
the autocorrelation matrix:

1. The first M subframes are dedicated just for the estimation of the
autocorrelation matrix R̂h.

2. For the first M subframes, LS estimation with the linear interpolation
is performed.

3. The autocorrelation matrix is estimated as

R̂h =
1

Mntnr

M−1∑
m=0

nt−1∑
nt=0

nr−1∑
nr=0

ĥLS,m,nt,nr,nĥH
LS,m,nt,nr,n. (3.34)

M should be chosen such, that the matrix R̂h is full rank. In the follow-
ing simulation, I set M = 20 in a 4 × 2 system, which means that the
autocorrelation matrix is estimated over 160 channel realizations (MNtNr).
In Figure 3.10 and Figure 3.11 the performance of systems with the ideal
autocorrelation matrix and with the estimated autocorrelation matrix are
compared. As expected, the performance of the system with estimated au-
tocorrelation matrix is decreased. However, the performance is much better
than the system with LS estimator. The SNR loss of the system with esti-
mated autocorrelation matrix to the system with ideal autocorrelation matrix
is approximately 0.5 dB.

Figure 3.12 and Figure 3.13 show the performance of the system using the
estimated autocorrelation matrix over M MIMO channel realizations over
which the autocorrelation matrix is calculated. It can be seen, that the
MSE saturates for M larger than 10, which is the condition for full rank.
If throughput is considered, the system saturates even before M = 10. In
the simulation, the individual SISO channels of the MIMO channel were as-
sumed uncorrelated. Therefore, if the SISO channels of the MIMO channel
were correlated, the performance saturation would occur for M > 10.

LMMSE Channel Estimation for Spatially Correlated Channels

In Figure 3.14 and Figure 3.15 the LMMSE estimator for spatially correlated
channels, which knows the spatial correlation between the antennas perfectly
and the LMMSE estimator, which is not using the spatial correlation for
channel estimation are compared. To generate a spatially correlated MIMO
channel, the Kronecker model with 0.3 correlation coefficients is used. There
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Figure 3.10: MSE for the LMMSE estimator with estimated autocorrelation
matrix

is no significant improvement of performance observable. To be able to use
the LMMSE estimator for spatial correlated channels, spatial correlation
between antennas has to be estimated and the dimension of the matrix to
invert is NtNr-times larger than the dimension of matrix to invert in case
of the LMMSE estimator, which does not use spatial correlation between
antennas. Thus, it does not seem reasonable to utilize the spatial correlation
between antennas for channel estimation.

3.4.3 ALMMSE Channel Estimation

In this section, I will present results of the ALMMSE channel estimator
performance. In Figure 3.16 and Figure 3.17 performance of the ALMMSE
estimator with different values of L is plotted. It can be seen, that with
increasing L, also the MSE is decreasing and throughput is increasing. For
L = K the ALMMSE estimator is equal to the LMMSE estimator. It is
obvious, that with increasing L also the complexity of the estimator is in-
creasing. This fact allows to adjust the performance and complexity of the
estimator to achieve a good trade-off.
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Figure 3.11: Throughput for the LMMSE estimator with estimated autocor-
relation matrix

For L = 3 just one channel estimate on a pilot position is used to estimate
the channel vector. This approach corresponds to nearest neighbor inter-
polation, where the estimate on the data position is equal to the estimate
on the closest pilot position. Therefore, the performance of the ALMMSE
estimator with L = 3 is poorer than the performance of the LS estimator.

In Figure 3.18 the SNR loss of ALMMSE to LMMSE in dependence of chosen
L is plotted. To overcome LS performance, L ≥ 6 has to be chosen.



CHAPTER 3. CHANNEL ESTIMATION FOR BLOCK FADING 30

0 5 10 15 20 25 30 35 4010-3

10-2

10-1

M

M
SE

 

 
SNR = 10 dB
SNR = 15 dB
SNR = 20 dB

Figure 3.12: MSE for the LMMSE estimator with estimated autocorrelation
matrix over M
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Figure 3.13: Throughput for the LMMSE estimator with estimated autocor-
relation matrix over M
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Figure 3.14: MSE for the LMMSE estimator for spatially correlated channels
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Figure 3.15: Throughput for the LMMSE estimator for spatially correlated
channels
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Figure 3.16: MSE for the ALMMSE estimator with different L
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Figure 3.17: Throughput for the ALMMSE estimator with different L
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Chapter 4

Channel Estimation for
Fast Fading

In the following chapter, I will discuss channel estimation assuming fast fad-
ing, that is, the coherence time of the channel is so short that the channel
impulse response changes significantly during one subframe. In the used
channel model, the maximum Doppler shift frequency fs,max, corresponding
to the maximum velocity vmax according to Equation (3.3), can be chosen.
Due the vividness of velocity, I will use vmax to describe the fast fading chan-
nel. If vmax is set to 0, the fast fading channel degrades into a block fading
channel. The channel estimation for fast fading is in general more complex
than for block fading, therefore it is important for a real-time implementa-
tion to decide correctly which type of estimator to use.

The output of the fast fading estimator will be the channel estimate ĥnt,nr

between all transmit and receive antenna ports (this vector has the same
structure as hnt,nr in Equation (2.15)). This vector can be equivalently writ-
ten as matrix

Ĥnt,nr = [ĥT
nt,nr,0 · · · ĥ

T
nt,nr,Ns−1] (4.1)

where ĥnt,nr,ns is the channel estimate vector of the ns-th OFDM symbol.

The matrix Ĥnt,nr corresponds to the time-frequency grid of a subframe.

4.1 Least Square Channel Estimation

As in Section 3.1, the first step toward the LS estimate is to divide the re-
ceived symbol at a pilot symbol position yp,nr at the nr-th receive antenna
port by the known transmitted pilot symbol xp,nt of the nt-th transmit an-

34
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tenna port.

ĥLS,p,nt,nr =
yp,nr

xp,nt

= hp,nt,nr +
zp,nr

xp,nt

. (4.2)

The pilot symbol positions indicated by p corresponds to some position
within the time-frequency grid. The main difference to Equation (3.6) is,
that also the index of OFDM symbol ns has to be considered and that in
general it is not allowed to average over two channel coefficients on the same
subcarrier. Therefore the fast fading LS estimator has poorer performance in
case vmax = 0 as the block fading estimator for same scenario. To obtain the
missing data channel coefficients, again interpolation has to be performed.
The main difference to Section 3.1 is, that instead of 1D interpolation, 2D
interpolation has to be used.

Linear Interpolation

This algorithm solves the so-called triangulation problem (for more details
see [15]). For every channel coefficient which is to estimate, it searches for
three nearest LS estimates on the pilot positions in the time-frequency grid,
and samples plane spanned by those three points.

Cubic Interpolation

Cubic interpolation works similar to the linear interpolation, but instead of
using just planes, it performs triangle-based cubic interpolation [16].

V4 Interpolation

This algorithm uses method presented in [17]. The complexity is higher than
of the linear or cubic interpolation.

4.2 Linear Minimum Mean Square Error

Channel Estimation

The approach of the LMMSE estimator for fast fading is similar to the
LMMSE for block fading. It is based on Equation (3.9). The MIMO channel
will be estimated as NtNr independent SISO channels. This estimator can be
used also for spatially correlated MIMO channels. Let ĥLS,nt,nr be the vector
of the LS estimate for the SISO channel between the nt-th transmit and the
nr-th receive antenna ports on the pilot positions, with length Np, which is
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the number of pilot symbols. The autocorrelation matrix Rh is given by

Rh = E
{
hnt,nr hH

nt,nr

}
. (4.3)

In contrast to Section 3.2, the vector to estimate in this section is Ns time
longer than the one in Section 3.2, therefore also the dimension of Rh is
correspondingly larger. The autocorrelation matrix can be written as

Rh = Rtime ⊗Rhns
(4.4)

where Rtime is an Ns × Ns matrix describing the time correlation between
the OFDM symbols and Rhns

is an Ksub × Ksub matrix describing the fre-
quency correlation of the subcarriers. The index ns in Equation (4.4) does
not indicate time dependency, but indicates, that the matrix Rhns

comprises
correlation within one OFDM symbol. To obtain the LMMSE channel esti-
mate, the LS channel estimate has to be filtered by a filter matrix ALMMSE,
which is in the case of fast fading

ALMMSE = Rh̃,hLS
(RhLS

+ σ2
wI)−1. (4.5)

To obtain the matrices Rh̃,hLS
and RhLS

, which are necessary to calculate the
LMMSE filtering matrix, the matrix Rh has to be permuted

Rh̃ = PRhPT (4.6)

and the submatrices have to be chosen

Rh̃,hLS
= (Rh̃)Nd+Np,Np

(4.7)

RhLS
= (Rh̃)Np,Np

. (4.8)

The LMMSE channel estimate between the nt-th transmit and nr-th receive
antenna port is obtained as

ˆ̃hLMMSE,nt,nr = ALMMSEĥLS,nt,nr (4.9)

which has to be permuted with permutation matrix P to obtain the channel
estimate in the correct order

ĥLMMSE,nt,nr = Pˆ̃hLMMSE,nt,nr . (4.10)
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4.3 Approximate LMMSE Channel Estima-

tion

In the following section, I present a novel fast fading channel estimator,
which approximates the LMMSE channel estimator. The main idea is to
make use of the known structure of the channel autocorrelation matrix, given
by Equation (4.4). The standard LMMSE filtering matrix is obtained by
minimizing Equation (3.8). Let us consider the following problem

min
Bfreq,Ctime

E
{
‖H−BfreqĤLSC

T
time‖2F

}
(4.11)

where H and ĤLS have the structure given in Equation (4.1). The approach
in Equation (4.11) corresponds to separate filtering over time and frequency
of the LS estimate. If the frequency correlation is not changing over time and
the time correlation is not frequency dependent, then the channel estimate
obtained by separate filtering over time and frequency is identical to the
LMMSE channel estimate. After applying the vec(·) operator (for details see
[18]) on Equation (4.11), and using

vec (H) = h, (4.12)

vec
(
ĤLS

)
= ĥLS, (4.13)

and
vec
(
BfreqĤLSC

T
time

)
= (Ctime ⊗Bfreq) vec

(
ĤLS

)
, (4.14)

the following expression is obtained

min
Bfreq,Ctime

E
{
‖h− (Ctime ⊗Bfreq) ĥLS‖22

}
. (4.15)

The problems formulated in Equation (4.11) and Equation (4.15) are equiv-
alent. Comparing Equation (4.15) to Equation (3.8), the LMMSE estimate
is obtained as ALMMSE = Ctime ⊗ Bfreq. However, not every matrix can be
obtained as Kronecker product of two matrices. Thus, the matrix ALMMSE

can only be approximated by Ctime ⊗Bfreq

ALMMSE ≈ Ctime ⊗Bfreq. (4.16)

Using Equation (4.4), the matrix ALMMSE is given as

ALMMSE = Rtime ⊗Rhns

(
Rtime ⊗Rhns

+ σ2
wI
)−1

. (4.17)
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The symmetric matrices Rtime and Rhns can be rewritten using the eigenvalue
decomposition as

Rtime = UtimeDtimeU
H
time (4.18)

Rhns
= Uhns

Dhns
UH

hns
(4.19)

where Dtime and Dhns
are diagonal matrices, with their corresponding eigen-

values ordered from largest to smallest on the main diagonal. Utime and
Uhns

are unitary matrices comprising the eigenvectors of the given matrices.
The Kronecker product of two matrices has eigenvectors that are given as
Kronecker product of the eigenvectors of the matrices, and the eigenvalues
are obtained by all possible multiplications of the eigenvalues of the given
matrices, thus

Rtime ⊗Rhns
= (Utime ⊗Uhn) Dh (Utime ⊗Uhn)H (4.20)

where Dh is a diagonal matrix with eigenvalues of matrix Rtime⊗Rhns
, equiv-

alently the matrix Dh is given by Dtime ⊗Dhns
. Inserting Equation (4.20)

into Equation (4.17) the following expression is obtained

ALMMSE = (Utime ⊗Uhn) Dh (Utime ⊗Uhn)H ·

·
(

(Utime ⊗Uhn) Dh (Utime ⊗Uhn)H + σ2
wI
)−1

. (4.21)

As a matter of fact, the Kronecker product of two unitary matrices is again
a unitary matrix, and therefore

I = (Utime ⊗Uhn) (Utime ⊗Uhn)H . (4.22)

Using Equation (4.22), Equation (4.21) can be rewritten as

ALMMSE = (Utime ⊗Uhn) Dh (Utime ⊗Uhn)H ·

·
(

(Utime ⊗Uhn)
(
Dh + σ2

wI
)

(Utime ⊗Uhn)H
)−1

. (4.23)

To calculate the inverse of a matrix, using the eigenvalue decomposition, the
following expression holds(

UDUH
)−1

= UD−1UH (4.24)

thus Equation (4.23) can be equivalently rewritten as

ALMMSE = (Utime ⊗Uhn) Dh (Utime ⊗Uhn)H ·

· (Utime ⊗Uhn)
(
Dh + σ2

wI
)−1

(Utime ⊗Uhn)H . (4.25)
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Using Equation (4.22), Equation (4.25) can be equivalently rewritten as

ALMMSE = (Utime ⊗Uhn) Dh

(
Dh + σ2

wI
)−1

(Utime ⊗Uhn)H . (4.26)

The first assumption towards finding Bfreq and Ctime, is that the matrix Bfreq

has the same eigenvectors as the matrix Rhns
, and Ctime as Rtime. Thus,

Equation (4.16) can be written as

ALMMSE = UhDh

(
Dh + σ2

wI
)−1

UH
h ≈ UhDCT⊗Bfreq

UH
h (4.27)

with Uh = Utime⊗Uhns
and DCtime⊗Bfreq

being a diagonal matrix comprising
the eigenvalues of the matrix Ctime ⊗ Bfreq, which are given as all possible
multiplications of eigenvalues of the matrices Ctime and Bfreq. By multiplying
the expression in Equation (4.27) by UH

h from the left side and by Uh from
the right side, the following expression is obtained

Dh

(
Dh + σ2

wI
)−1 ≈ DCtime⊗Bfreq

. (4.28)

Let λtime, λhns
, λCtime

and λBfreq
denote vectors with eigenvalues of Rtime,

Rhn , Ctime and Bfreq, respectively. By multiplying λtime with λT
hns

, a ma-
trix is obtained that comprises all possible multiplications of the elements
of the vectors, and thus the eigenvalues of the matrix Rtime ⊗ Rhns

. To
solve Equation (4.28), the eigenvalues of the matrix Ctime⊗Bfreq have to be
found. The eigenvalues of the matrix Ctime ⊗ Bfreq are given as all possible
multiplications of the eigenvalues of the matrices Ctime and Bfreq. Thus, the
matrix λCtime

λT
B comprises the eigenvalues of the matrix Ctime⊗Bfreq. Using

matrices λtimeλ
T
hns

and λCtime
λT

Bfreq
, instead of solving Equation (4.28), the

problem can be reformulated as

λtimeλ
T
hns
./
(
λtimeλ

T
hns

+ σ2
w11T

)
≈ λCtime

λT
Bfreq

(4.29)

where 1 is the all ones vector and ./ denotes element-wise division. Equa-
tion (4.29) and Equation (4.28) are equivalent. The approximation from
Equation (4.29) is a so-called rank one approximation. The best rank one
approximation can be found by using a singular value decomposition of the
matrix, that has to be approximated

λtimeλ
T
hns
./
(
λtimeλ

T
hns

+ σ2
w11T

)
= UΣVH. (4.30)

The rank one approximate vectors are then given by the columns of U and V
corresponding to the largest singular value. One of them has to be multiplied
by the largest singular value

λCtime
= σmaxumax, (4.31)
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λBfreq
= vmax. (4.32)

In order to reduce the complexity of the estimator, only Ntime and Nfreq

largest eigenvalues of the matrices Rtime and Rhns
and corresponding eigen-

vectors are considered.

The presented channel estimation approach is summarized as

ĤALMMSE = BfreqĤLSC
T
time, (4.33)

where the matrices Bfreq and Ctime are given by

Bfreq = (Uhn)1:Nfreq
diag (vmax) (Uhn)H

1:Nfreq
(4.34)

Ctime = (Utime)1:Ntime
σmaxdiag (umax) (Utime)

H
1:Ntime

(4.35)

where diag(·) creates a diagonal matrix, and (·)1:N creates a matrix, which
consists of the first N columns of the matrix. The vectors vmax and σmaxumax

are obtained with help of Equation (4.30), with the vectors λhn and λtime

being of length Nfreq and Ntime, respectively.

4.4 Simulation Results

In the following section, I will discuss the performance of the presented chan-
nel estimation technique for fast fading. Furthermore, I will discuss scenarios
in which a block fading estimator is applied on a fast fading channel. Ad-
ditionally, I will discuss the ICI issue. For the following simulations, I used
settings of the simulator presented in Table 4.1. In will present simulation
results just for vmax = 60 km/h.

Parameter Value
Bandwidth 1.4 MHz

Number of transmit antennas 4
Number of receive antennas 2

Transmission mode Open-loop spatial multiplexing
Channel type ITU VehA [14]

vmax 60 km/h
CQI 9

Table 4.1: Simulator settings for fast fading simulations
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Figure 4.1: Example of a fast fading channel

To obtain a time correlated channel, I used the modified Rosa Zheng model,
which is based on [19] and with some modification in the appendix of [20]. In
Figure 4.1, an example of a fast fading channel for vmax = 60km/h is plotted.
The variation of the channel does not look enormous, but I will later present
results, which show, that the chosen vmax corresponds to a fast fading chan-
nel. Fast fading implementation in the LTE link level simulator generate a
channel impulse response for every sample of the transmit signal in the time
domain. This approach corresponds to a real fast fading scenario more than
the widely used scenario, where the channel impulse response is assumed to
be constant over the duration of one OFDM symbol.

4.4.1 Comparison of Fast Fading Channel Estimation

In Figure 4.2 and Figure 4.3 the MSE and throughput for the LS estimator
with different interpolation techniques and also for the LMMSE estimator
are plotted. The performance of different interpolation techniques is similar.
Therefore, it make sense to use the less complex interpolator, which is the
linear interpolator. The SNR loss of a system using the LS estimator with
linear interpolation to the system with perfect channel knowledge is approx-
imately 2.3 dB. The system using the LMMSE estimator is loosing around
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Figure 4.2: MSE for different fast fading estimators

0.8 dB. The SNR loss of the fast fading estimators is slightly larger than the
SNR loss of the block fading estimator.

If Figure 4.3 and Figure 3.9 are compared, it is evident that for fast fad-
ing scenario with vmax = 60km/h the achievable throughput is smaller than
for block fading scenario. The reason for this behavior is ICI.

Robustenss against Wrong Temporal Statistics

To calculate the LMMSE filtering matrix, correlation over time is necessary.
In Figure 4.2 and Figure 4.3, I assumed that the time correlation between
the OFDM symbols of a subframe is perfectly know. Assuming Jakes model,
the time correlation is given by the zero-order Bessel function. In practice
however, the time correlation has to be estimated. I was not considering esti-
mation of time correlation, but I investigated the robustness of the LMMSE
estimator against wrong temporal statistics. In this experiment, the channel
is generated using some vmax and the LMMSE estimator is using vestimated,
which might be different. In Figure 4.4 and Figure 4.5 the MSE and through-
put for a system using the LMMSE estimator, which is using wrong temporal
statistics for the channel estimation are shown. The abscissa shows the rel-
ative error of the used vestimated compared to vmax. It can be seen, that the
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Figure 4.3: Throughput for different fast fading estimators

relative error of the vestimated has to be larger than 40 % to see degradation
of the performance of the whole system. In Figure 4.4 can be seen, that the
MSE is larger in case, when the vestimated is smaller than vmax, than if the used
vestimated is larger than the true vmax. Furthermore, it can be seen, that the
MSE is not changing significantly if the vestimated is in range of vmax ± 20%.

4.4.2 Block Fading Channel Estimation

In this section, I investigate the performance of a system using a block fad-
ing estimator in the fast fading scenario. Furthermore, I try to determine
vmax, for which from channel estimation point of view, block fading can be
assumed. Finally, I discuss the reasons for the performance degradation in
fast fading scenario.

The block fading estimator tries to find a channel estimate, which corre-
sponds to the mean of the channel over the duration of one subframe. If the
channel is changing rapidly, the performance of the system will decrease. In
Figure 4.6 and Figure 4.7 the MSE and throughput of the system with a
block fading estimator applied on fast fading scenario over vmax are shown.
As expected, with increasing vmax the performance of the overall system is
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Figure 4.4: MSE for the LMMSE estimator using wrong temporal statistics

-100 -80 -60 -40 -20 0 20 40 60 80 1001

1.5

2

2.5

3

3.5

error of the estimate of vmax [%]

T
hr

ou
gh

pu
t 

[M
bi

t/
s]

 

 
vmax=180 km/h
vmax=120 km/h
vmax=160 km/h

Figure 4.5: Throughput for the LMMSE estimator using wrong temporal
statistics



CHAPTER 4. CHANNEL ESTIMATION FOR FAST FADING 45

decreasing. The curves for given SNR in Figure 4.7 are not decreasing sig-
nificantly up to vmax = 20 km/h. Therefore, the block fading assumption is
fulfilled for the LTE system, if the vmax ≤ 20 km/h is satisfied. This is less
than predicted in beginning of Chapter 3.
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Figure 4.6: MSE for block fading estimator applied on fast fading scenario

In Figure 4.7, it can be seen, that the performance of the system with per-
fect channel knowledge is also decreasing significantly with vmax. As it has
been shown in Section 4.4.1, the performance of the LMMSE estimator is
just slightly poorer than that of a system with perfect channel knowledge.
Therefore, there is gain of about 0.25 Mbit/s for vmax = 120 km/h, if a fast
fading estimator is used. However, even the performance of a system with
perfect channel knowledge is rapidly decreasing with increasing vmax.

In case of fast fading, the columns of the channel matrix in the time domain
H

(t)
nt,nr,ns are time dependent. The matrix H

(t)
nt,nr,ns is not a circulant matrix

after multiplication by FCP,rem from left and by FCP from right. Therefore,
the channel matrix in the frequency domain Λ(f)

nt,nr,ns
is not diagonal. The

ICI is caused by the nondiagonal elements of the matrix Λ(f)
nt,nr,ns

. Figure 4.8
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Figure 4.7: Throughput for block fading estimator applied on fast fading
scenario

depicts the ICI power over vmax. The ICI power is defined as

PICI =
Nt∑

nt=1

E
{
‖(Λnt,nr,ns − diag (Λnt,nr,ns)) xnt,ns‖

2
2

}
(4.36)

where the expression diag (·) creates a diagonal matrix. For low vmax, the ICI
power is low and the subcarriers are orthogonal. With increasing vmax also
the ICI power is increasing and the orthogonality between the subcarriers
is not preserved. Therefore, not just the noise is the limiting factor of the
system, but also the interference (e.g. for vmax = 120km/h, the Signal to
Interference Ratio (SIR) = 10 dB. Therefore, even without any noise, the
performance of the system is strongly limited). Consequently, the Signal to
Interference and Noise Ratio (SINR) should be considered instead of SNR in
fast fading scenarios. Figure 4.9 depicts the SINR mapping for two values
of SNR, which shows the influence of the ICI. In a MIxO system, the ICI
is caused by signals from more transmit antennas and therefore the ICI in
MIxO systems is accentuated (for detailed ICI analysis see [21] and [22]).
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4.4.3 ALMMSE Channel Estimation

In Figure 4.10 and Figure 4.11 performance curves for the ALMMSE chan-
nel estimator are plotted, which was presented in Section 4.3. In terms of
throughput the ALMMSE estimator is losing 0.1 dB to the LMMSE estima-
tor.

-5 0 5 10 15 20 25 3010-4

10-3

10-2

10-1

100

10

SNR [dB]

M
SE

 

 
ALMMSE
LS linear
LMMSE

1

Figure 4.10: MSE for the ALMMSE estimator
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Chapter 5

Conclusions and Further Work

This master thesis treats channel estimation for Long Term Evolution (LTE)
and investigates the performance of some applicable concepts. It is possible to
apply most of the discussed concepts to other Orthogonal Frequency Division
Multiplexing (OFDM) systems with slight formal changes. First, I investi-
gated channel estimation for slowly changing channels, where I assumed that
the channel stays constant during the transmission of one subframe. Second,
I investigated channel estimation for rapidly changing channels.

If no statistical knowledge about the channel is available, for both, block
and fast fading, first the Least Squares (LS) channel estimate on the pilot
symbol positions has to be calculated. The data channel coefficients have
to be obtained by interpolation. The linear interpolation shows the best
performance among the presented interpolation techniques, and the lowest
computational complexity. Therefore, in case of the LS channel estimation,
the linear interpolation should be used. However, one should be aware of
edge effects of the linear interpolator at low Signal to Noise Ratio (SNR)
values. The SNR loss of a system using the LS estimator with linear inter-
polation to the system with perfect channel knowledge is approximately 2 dB.

To improve the performance of the LS estimator, the Linear Minimum Mean
Square Error (LMMSE) estimator can be implemented by filtering the LS
estimate. If the channel autocorrelation is known perfectly, the SNR loss to
the system with perfect channel knowledge becomes approximately 0.5 dB.
In practice, however, the channel autocorrelation has to be estimated. Such
a system is losing approximately 1 dB to the system with perfect channel
knowledge. To estimate the channel autocorrelation matrix, the LS channel
estimate can be used. Already after few channel realizations, the estimator
is performing well. In case of fast fading, also the time correlation has to

50



CHAPTER 5. CONCLUSIONS AND FURTHER WORK 51

be estimated. In the thesis, I show that the LMMSE estimator is robust
against wrong temporal statistics. A relative estimation error of 20% of the
maximum velocity does not influence the system performance significantly.

To reduce the computational complexity of the LMMSE estimator while pre-
serving its performance, low complex alternatives are investigated. In case
of block fading, I discuss an Approximate Linear Minimum Mean Square
Error (ALMMSE) estimator, which exploits only the correlation between
the L closest subcarriers instead of the correlation between all subcarriers as
in the case of the LMMSE estimator. With increasing L, the performance
is approaching the performance of the LMMSE estimator, and at the same
time the computational complexity is increasing. This fact allows adjusting
the performance and complexity of the estimator to achieve a good trade-off.
In case of fast fading, I propose a novel channel estimator, which makes use
of the structure of the channel autocorrelation matrix. The SNR loss to the
system using the LMMSE estimator is approximately 0.1 dB.

For LTE, it is found that the block fading assumption is justified up to a max-
imum velocity of about 20 km/h. Since with increasing velocity the channel
changes during the transmission of one OFDM symbol, the subcarriers are
not perfectly orthogonal to each other and Inter Carrier Interference (ICI) oc-
curs. Due to the ICI, the performance of the system is significantly reduced,
when the receiver does not handle ICI. Consequently at higher velocities not
just noise power but also ICI power is the limiting factor of the LTE system.



Appendix A

Acronyms

3GPP 3rd Generation Partnership Project

ALMMSE Approximate Linear Minimum Mean Square Error

A/D Analog/Digital

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

GSM Global System for Mobile communications

H-ARQ Hybrid Automated Repeat Request

ICI Inter Carrier Interference

INTHFT Institute of Communications and Radio-Frequency Engineering

IFFT Inverse Fast Fourier Transform

LS Least Squares

LTE Long Term Evolution

LMMSE Linear Minimum Mean Square Error

MIMO Multiple Input Multiple Output

MSE Mean Square Error

OFDM Orthogonal Frequency Division Multiplexing

SINR Signal to Interference and Noise Ratio

SIR Signal to Interference Ratio

SISO Single Input Single Output

SMS Short Message Service

SNR Signal to Noise Ratio

T-F Time-Frequency

UE User Equipment

WAP Wireless Application Protocol

WiMAX Worldwide Inter-operability for Microwave Access

W-CDMA Wideband Code Division Multiple Access
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