

Real-Time Rendering of Dynamic

Vegetation

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computergraphik/Digitale Bildverarbeitung

eingereicht von

Alexander Kusternig
Matrikelnummer 0026571

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuer: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Dipl.-Phys. Dr.techn. Ralf Habel

Wien, 08.05.2009 _______________________ ______________________
 (Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Alexander Kusternig

Haupstraße 76/18
2372 Gießhübl

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass
ich die verwendeten Quellen und Hilfsmittel vollständig angegeben habe und
dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbil-
dungen –die anderen Werken oder dem Internet im Wortlaut oder dem Sinn
nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung
kenntlich gemacht habe.

Alexander Kusternig, Wien, 08.05.2009

Abstract

Plants are present in almost any type of interactive virtual environment like
video games, movie pre-visualization or architectural or urban walkthroughs.
The simulation complexity of plants increases with the evolution of graphics
hardware, but rendering of plants still poses a lot of challenges. This is
due to both the inherent geometric complexity of an individual tree having
thousands of branches and tens of thousands of leaves, and the complex
light interactions between the plant and sunlight. A portion of incoming
light is transmitted through leaves, resulting in the bright translucency effect
observed when looking at a leaf against the sun. Animating plants is another
challenge, as thousands of interconnected branches and individual leaves have
to react to turbulent wind moving through the treetop. All this should
be performed at more than 60 frames per second for real-time interactive
applications.

This thesis presents novel algorithms to render leaves at very high detail
with a physically based translucency model and to animate branches and
leaves using a stochastic approach based on their physical properties. Both
algorithms are executed entirely on the GPU in vertex and pixel shaders,
so they can be easily integrated into any modern rendering pipeline. The
efficiency of the algorithms allows rendering and animating highly detailed
plants with thousands of branches and tens of thousands of leaves at a frame
rate of at 60 frames per second.

Kurzfassung

Pflanzen finden sich in fast allen interaktiven virtuellen Umgebungen wie
Videospielen, Szenen-Vorberechnungen in der Preproduction von Filmen oder
Architektur-Walkthroughs. Mit jeder neuen Generation von Grafikhardware
steigt auch die Qualität der Simulationen, aber die inhärente geometrische
Komplexität von Pflanzen, die aus tausenden von Ästen und zehntausenden
von Blättern bestehen, und die komplizierte Interaktion mit Sonnenlicht
stellen immer noch große Herausforderungen dar. Blätter lassen einen Teil
des ankommenden Lichts durch, was einen hellen Durchleucht-Effekt erzeugt,
wenn sie gegen die Sonne gehalten werden. Die Animation von Pflanzen
ist eine weitere Herausforderung, da tausende von miteinander verbundenen
Ästen und dazugehörigen Blättern auf Wind reagieren müssen, der durch
die Baumkrone streicht. Für Echtzeitanwendungen müssen diese Effekte mit
mindestens 60 Bildern pro Sekunde dargestellt werden.

Diese Diplomarbeit beschreibt zwei Algorithmen um Blätter mit hohem
Detailgrad und einer physikalisch basierten Lichtdurchlässigkeit darzustellen
und um Äste und Blätter entsprechend ihrer physikalischen Eigenschaften
zu animieren. Beide Algorithmen werden direkt auf der GPU im Vertex
und Pixel Shader ausgeführt und können daher einfach in jede moderne
Echtzeit-Renderingapplikation integriert werden. Die Algorithmen sind ef-
fizient genug um Pflanzen mit tausenden von Ästen und zehntausenden von
Blättern flüssig mit mehr als 60 Bildern pro Sekunde darzustellen und zu
animieren.

Contents

1. Introduction . 8
1.1 Aim of the Thesis . 8
1.2 Challenges . 9
1.3 Scope of this Thesis . 11
1.4 Contribution . 12
1.5 Thesis Structure . 13

2. State of the Art on Leaf Rendering 14
2.1 Subsurface Scattering . 14
2.2 Subsurface Scattering in Leaves 15

2.2.1 Measurements . 16
2.3 Radiative Transfer Models . 16

2.3.1 Ray Tracing . 16
2.3.2 Radiative Transfer for Real-Time Rendering 18

2.4 Diffusion-Based Methods . 20

3. A Real-Time Leaf Rendering Algorithm 22
3.1 Overview . 22
3.2 Data Acquisition . 24

3.2.1 Photographing Leaves 24
3.2.2 3D Scanning . 25

3.3 Direct Illumination . 26
3.3.1 Normal Mapping . 28
3.3.2 Shadow Mapping . 29
3.3.3 Cook-Torrance Specularity 32

3.4 Indirect Illumination . 33
3.4.1 Ambient Occlusion . 34

3.5 Translucency . 35
3.5.1 The Half Life 2 Basis 37
3.5.2 Subsurface Scattering 40
3.5.3 Calculating Transmittance 40
3.5.4 Calculating the HL2 map 41

Contents 6

3.5.5 Discussion . 42

4. State of the Art on Plant Animation 43
4.1 Plant Representations . 44

4.1.1 Structural Elements 44
4.1.2 Structural Mechanics 46

4.2 Applying Animation . 47
4.2.1 Simulation . 47
4.2.2 Stochastic Approaches 48
4.2.3 Heuristic Models . 50

4.3 A Vertex-based Method . 50
4.3.1 Vertex Displacement 51
4.3.2 Animation . 51

5. A Physically Guided Real-Time Vegetation Animation Algorithm 54
5.1 Overview . 55
5.2 Modeling Branches as Tapered Cylinders 56

5.2.1 The Euler-Bernoulli Beam Model 56
5.2.2 Length Correction . 59

5.3 Generation of Animation Data 59
5.3.1 Hierarchical Structure 60
5.3.2 Branch Identification 61
5.3.3 Per Branch Data Generation 61
5.3.4 Hierarchy Computation 62
5.3.5 Per Vertex Data Generation 63
5.3.6 Propagation of Animation Data through Hierarchy . . 64
5.3.7 Propagation of Branch Animation Data to Leaves . . . 64
5.3.8 Simplifications . 65
5.3.9 Animation Data Granularity 66

5.4 Wind and Animation Model 67
5.4.1 Uncoupled Harmonic Oscillation 68
5.4.2 Generating Noise Data 68
5.4.3 2D Motion Textures 69
5.4.4 Damping . 70
5.4.5 Limitations . 71

5.5 Animating on a Frame-By-Frame Basis 72
5.5.1 Animating Branches 72
5.5.2 Animating Individual Leaves 75
5.5.3 Intuitive Parameter Set 77
5.5.4 Scalable Complexity 78

Contents 7

6. Implementation and Results . 80
6.1 Overview . 80
6.2 Tree Import and Data Processing 80

6.2.1 Tree Generation in Autodesk Maya 81
6.2.2 Tangent Space Generation 81
6.2.3 Ambient Occlusion Processing 82
6.2.4 Geometry File Format 82
6.2.5 Tree Definition Files 83
6.2.6 Animation Data Generation 84

6.3 Rendering Pipeline . 84
6.3.1 Shadow Mapping . 87
6.3.2 Depth-First Pass . 88
6.3.3 Light Shafts . 89
6.3.4 HDR Rendering and Bloom 90
6.3.5 Preetham Skylight Model 93
6.3.6 Edge Antialiasing . 94
6.3.7 Additional Functionality of the Demo Application . . . 95

6.4 Performance . 96
6.4.1 Frame Rates . 96
6.4.2 Shader Statistics . 100

7. Conclusion . 101
7.1 Summary . 101
7.2 Further Work . 102

List of Figures . 104

List of Tables . 105

Bibliography . 106

Acknowledgements . 115

Chapter 1

Introduction

Computer graphics applications are ubiquitous in modern technologies, in-
cluding navigation tools in mobile devices, entertainment in computer and
video games or movies, scientific visualizations for medical purposes and sim-
ulations or virtual reality walkthroughs. Vegetation is a part of most of these
applications. Besides outdoor natural scenes, plants are also important in ur-
ban scenarios or indoor scenes where alley trees, potted plants or patches of
grass can be found. As graphics hardware evolves, so does the complexity of
the simulation of vegetation. The main driving force behind graphics hard-
ware evolution today is the entertainment sector, so real-time constraints as
well as convincing representations become increasingly important.

1.1 Aim of the Thesis

This thesis proposes algorithms to render plants useable for real-time virtual
environments like games. The results should not only look convincing but
also have to be rendered at more than 60 frames per second to allow real-
time user interaction. Besides rendering each frame at a high level of quality,
the animation of plants caused by wind has to be considered for interactive
applications. Figure 1.1 shows a tree rendered with the techniques presented
in this thesis.

The algorithms introduced in this thesis are designed for easy integration
into any modern rendering pipeline because they run only in the vertex and
pixel shaders of an application. No additional computations on the CPU are
necessary at runtime. The techniques are resource-efficient and fine-tuning
of the appearance of the resulting image can be controlled by a small set of
intuitive parameters.

Chapter 1. Introduction 9

Fig. 1.1: A tree rendered with the algorithms presented in this thesis.

1.2 Challenges

There is a number of challenges related to the convincing representation of
plants in real-time computer graphics:

Geometric complexity

Plants have a high geometric complexity. An individual tree can have thou-
sands of branches and tens of thousands of leaves. Each of these have to be
rendered at high detail for viewpoints close to or inside the plant. There is a
vast body of research on the generation of geometric data to represent plants.
While plant growth in nature is governed by basically the same rules for all
types of plants, very different forms result from it. This also leads to various
methods to simulate plant growth mostly using L-systems [57] or procedural
techniques.

Besides the generation of hierarchical branch data, the geometric simpli-
fication is a main topic of many publications. Simplification is needed for
LOD (Levels of Detail) techniques where a large number of plants have to
be rendered at the same time, for example in a forest scene. Most of these

Chapter 1. Introduction 10

plants only cover a small area of pixels on the screen, so rendering them at
their full geometric complexity is neither feasible for real-time applications
nor for offline rendering.

Light Interaction

The interaction between light coming from the sun or light reflected by the
environment and the plant is of a very complex nature: Leaves have a strongly
structured surface with risps, bulges and veins. Also, they consist of multiple
layers of tissue which react differently to incoming light. Subsurface scatter-
ing effects occur as rays of incoming light are deflected between these layers
until they finally exit the leaf on either side. Light leaving on the opposite
side leads to a noticeable translucency effect. Leaves transmit up to 20%
of the incoming light. Light gradually diminishes with each additional layer
of leaves it passes, so indirect and scattered illumination is the dominant
illumination source inside a treetop.

Convincing Animation

Finally, plants should be rendered not only for still images but for real-time
interactive applications. This introduces the influence of wind onto a plant,
resulting in turbulent branch and leaf motion. Even slight wind causes small
twigs and leaves to react to it, resulting in continuous swaying motion. A
treetop is almost never completely motionless. Stronger wind on the other
hand noticeably bends a whole plant into the wind direction. Wind reaction
depends on the physical properties of each branch, including its thickness,
length, elasticity, and where other branches and leaves are attached to it.
This makes wind interaction a highly complex process.

Existing work on animation is usually based on a hierarchical represen-
tation of the plant. Either the hierarchical elements are influenced by a full
simulation or stochastic processes are used to recreate the motion of branches
and leaves seen in nature.

Rendering at 60 frames per second

Rendering these plants at high detail in real time for interactive applications
poses the additonal challenge of each frame having to be rendered within 16.7
milliseconds if a stable frame rate of at least 60 images per second is to be
maintained. This is in strong contrast to offline rendering for movies, which
allow each frame taking hours to render. Optimization and precomputation
becomes a necessity when dealing with real-time constraints.

Chapter 1. Introduction 11

1.3 Scope of this Thesis

This section highlights which of the challenges described in the previous
section are dealt with in this thesis:

Leaf rendering

A technique is presented to render the complex appearance of leaves including
detailed microstructures and translucency. The physical properties of leaf
surfaces and bodies are taken into account to simulate translucency as a
subsurface scattering process of sunlight transmitted through the leaf and
exiting on the opposite side. It is possible to move the camera at the distance
of only a few centimeters to the surface of a leaf and still gain a highly
detailed image. The algorithm is executed completely in the pixel shader, no
computations on the CPU are necessary at runtime. Figure 1.2 illustrates
the translucency effect of light transmitted through a leaf. Also the data
acquisition process is described, which uses off-the-shelf hardware to create
the textures needed as a basis for this technique.

Fig. 1.2: Leaf translucency can be observed when looking towards the sun.

Chapter 1. Introduction 12

Animation

An animation algorithm is introduced which allows animation of complex
plant models. Each branch and each leaf is animated separately, based on a
stochastic process which relies on the physical properties of branch motion
interacting with turbulent wind moving through the treetop. The algorithm
is executed only in the vertex shader, so a non-linear deformation of branches
can be achieved as they get thinner towards their free end, and the complexity
of the algorithm is not limited by the number of branches or leaves in the
model, which is a great improvement over exiting methods.

Geometric complexity

However, this thesis does not deal with the geometric complexity posed to
render plants at various levels of detail. Both the leaf rendering algorithm
as well as animation are executed solely on the GPU in the pixel shader and
vertex shader respectively so it can be assumed that these techniques scale
linearly with the number of pixels which a plant covers on the screen on the
one hand and with the number of triangles used to represent it geometrically
on the other. Reduction of geometric detail is possible while still retaining
full rendering and animation quality, so the presented techniques comply
perfectly with LOD methods.

1.4 Contribution

The ideas for a physically based leaf translucency algorithm and a physically
guided tree animation model were developed by Ralf Habel. These ideas were
extended to algorithms composed of offline pre-processing and a runtime
component in GPU vertex and pixel shaders in cooperation between the
author and Ralf Habel.

The author implemented the algorithms and embedded them in a real-
world state-of-the-art rendering system, which does not only consist of an
implementation of the two proposed methods but also includes high dy-
namic range rendering, shadow mapping, and advanced per pixel lighting
techniques. The algorithms have to perform at least at 60 frames per second
while still leaving enough rendering resources for other parts of the pipeline.
The application also allows testing performance characteristics with different
geometric or algorithm complexities and rendering pipeline configurations.

The offline tools to generate necessary data for rendering and animation
were created in cooperation between Ralf Habel and the author. Taking pho-
tographs and 3D scans of leaves as well as generating tree geometry in XFrog

Chapter 1. Introduction 13

was done by Ralf Habel. The algorithms were published in “Physically Based
Real-Time Translucency for Leaves” and “Physically Guided Animation of
Trees”, respectively [29, 30].

1.5 Thesis Structure

The thesis is structured as follows:

• Chapter 2 presents state-of-the-art techniques for leaf rendering.

• Chapter 3 introduces a novel approach to render leaves at high detail,
including a physically-based translucency model.

• Chapter 4 lists state-of-the-art techniques to handle animation of trees.

• Chapter 5 shows a new animation algorithm to animate trees of very
high geometric complexity based on a stochastic process.

• Chapter 6 describes the demo application created to test the algorithms
proposed in this thesis and presents results.

• Chapter 7 sums up the contents of the thesis and provides a glance at
further extensions to the algorithms.

Chapter 2

State of the Art on Leaf Rendering

Both the amount of light which is reflected off the leaf surface and the light
transmitted through a leaf have to be taken into account to generate con-
vincing images. A sophisticated light transport solution has to be found, as
leaves are constructed from multiple layers of tissue with different optical
properties. Subsurface scattering is a process which occurs if the light is de-
flected between these layers until ultimately exiting the leaf on either the top
or the bottom side. Section 2.1 discusses subsurface scattering in general.

All publications which deal with leaf rendering have to take subsurface
scattering into account, although very different approaches are taken. There
are models which use ray tracing to trace through a geometric represen-
tation of these layers of tissue as well as methods based on evaluating a
Bi-directional Scattering Surface Reflectance Distribution Function (BSS-
RDF) [49] constructed either analytically or from measured data. Section 2.2
describes subsurface scattering in respect to leaf rendering.

Section 2.3 presents a series of publications using radiative transfer meth-
ods to simulate the light distribution in plants. Ray tracing methods are used
as well as spherical harmonics to evaluate the amount of light exiting and
leaving each surface point analytically. However, most of these methods are
not suitable for real-time applications, either because of their computational
complexity or because of their memory consumption.

Section 2.4 introduces diffusion-based methods which simulate subsurface
scattering as a diffusion effect. Leaves are treated as thin slabs of homoge-
neous material which allows simplifications to the BSSRDF and instancing
of reflectance and transmittance data for multiple leaves. These methods
prove to be suitable for real-time rendering applications.

2.1 Subsurface Scattering

Subsurface scattering (SSS) is an important research field in computer graph-
ics. It deals with the interaction of light with scattering media. Light nor-

Chapter 2. State of the Art on Leaf Rendering 15

mally is not entirely reflected off the surface, but a certain amount of light
enters the medium and is scattered in a range of usually a few millimeters
beneath the surface until exiting again at another point on the surface. For
some materials like wax the effective depth of scattering is even multiple
centimeters. The effects of subsurface scattering can be seen as smoother
gradients on objects as well as the effect of highlighting of thin parts of the
object or “rim lighting” at grazing angles. Skin rendering is one of the most
popular applications for subsurface scattering simulations [16]. Subsurface
scattering has been expanded taking more general lighting conditions into
account [75] or applied onto deformable objects [43].

Usually objects considered for subsurface scattering are placed inside a
non-scattering medium like air. In this case, scattering can be fully described
using a Bi-directional Scattering Surface Reflectance Distribution Function
(BSSRDF) [49]. Additionally to the already 4-dimensional Bidirectional Re-
flectance Distribution Function (BRDF) the point where light enters the ob-
ject and where is exits do not have to be the same. This makes the BSSRDF
a non-local function and increases the dimensionality to 8. A full BSSRDF
is very costly to evaluate. It can be done accurately by path tracing, but
methods used in research usually simplify the model and reduce the number
of dimensions.

2.2 Subsurface Scattering in Leaves

Only a small number of publications model SSS specifically for leaves. Leaves
pose additional problems on subsurface scattering evaluation. For example
with skin rendering, light is assumed to exit the medium on the same side
of the medium on which it enters. However, with a thin translucent medium
like a leaf, light could also exit on the opposite side. This is what creates
the translucency effect of light transmitted through a leaf when looking at
it against the sun. A sophisticated subsurface scattering solution is crucial
mostly for the translucent sun-averted back side of a leaf to capture the
effects seen in nature.

For the sake of simplicity, most publications regarding subsurface scatter-
ing assume the scattering parameters to be homogeneous over the whole sur-
face [23, 74]. With leaves the detailed microstructure of the surface formed by
risps and bulges and the structure of the interior - including a varying thick-
ness - increase the complexity of the simulation further. The locally variant
surface and interior composition of a leaf prohibit the use of a generic solu-
tion for the whole medium and methods have to deal with spatially varying
attributes.

Chapter 2. State of the Art on Leaf Rendering 16

This also leads to most publications concerned with leaf rendering using
measured data to deal with varying reflectance, translucency, and thickness
properties instead of generating the subsurface scattering solution syntheti-
cally by fitting it to a formula. The first step in rendering subsurface scat-
tering is to acquire the necessary underlying data, which is described in the
next section.

2.2.1 Measurements

Spectro-Photo-Goniometers can be used to capture the bidirectional reflectance
and transmittance directly [73]. Due to the nature of these instruments cap-
turing detailed spectral information but only low-frequency spatial data, the
measurements are averaged over a larger area of the leaf surface and do not
incorporate the detailed spatial variances in surface structure [10]. Of course,
photographed textures can be used to modulate the reflectance and trans-
mittance characteristics, but subsurface scattering is not correctly accounted
for.

Wang et al. [74] use a Linear Light Source (LLS) [24] as seen in Figure 2.1
to measure the diffuse color, specular color and specular roughness of a leaf
on a per-pixel basis. In contrast to the method mentioned previously, a
LLS allows the generation of high-resolution texture maps which capture all
the surface detail. These maps capture both the BRDF and Bi-directional
Transmittance Distribution Function (BTDF) behavior for both sides of a
leaf. The main problem however is that a LLS is not commonly available
and has to be custom-built for this purpose.

2.3 Radiative Transfer Models

Most publications concerned with leaf rendering are based on calculating
the radiative transfer of light, which is the amount of light hitting and leav-
ing a surface point. Radiative transfer presents the possibility to evaluate
direct, indirect and environment lighting in a unified model, but needs ex-
tensive precomputation. Additionally, the generated data is unique for each
evaluated surface point, resulting in high memory consumption. Usually, ra-
diative transfer models can not be evaluated in real time if done on such a
micro-detail scale as is needed to capture subsurface scattering.

2.3.1 Ray Tracing

As one of the first publications dealing with realistic leaf rendering Hanrahan
et al. [34] used Monte Carlo ray tracing to evaluate the subsurface scattering

Chapter 2. State of the Art on Leaf Rendering 17

Fig. 2.1: A linear light source used to measure reflectometry.

solution. One-dimensional linear transport theory was employed to derive an
explicit formula for reflectance and transmittance. This does not account for
multiple scattering, though, and does not include a full BSSRDF approach.

Govaerts et al. [27] model the interior of a leaf as a detailed geomet-
rical representation. Different tissues with varying optical properties are
explicitely modeled. Ray tracing is applied to trace through all of these lay-
ers. Obviously, this is slow and not suitable for real-time rendering systems.
Baranoski et al. [4] later expand this model by using available biological in-
formation. A simplified scattering model by Baranoski et al. in 2001 [5]
uses this model to precompute reflectance and transmittance values for the
leaf surface. The model is controlled by a number of biologically meaningful
parameters such as pigment concentractions, refraction index and oblateness
of epidermic cells. The model proves useful to predict specular reflectance
properties of leaves. Figure 2.2 shows Baranoski’s results.

Ganapol et al. [23] propose the LEAFMOD model to calculate estimates
of leaf reflectance and transmittance. The model solves the one-dimensional
radiative transfer in a slab with homogeneous optical properties. Still, the
full BSSRDF is not taken into account. The leaf is assumed to be of uniform
thickness and of a homogeneous material. Local variations, resulting from
the mesostructures and self-shadowing of those structures is not considered.

All methods based on ray tracing are extremely computationally expen-
sive, since a large number of rays have to be shot per pixel to approximate
the subsurface scattering solution accurately. While these methods are obvi-

Chapter 2. State of the Art on Leaf Rendering 18

Fig. 2.2: A set of front-lit and back-lit leaves rendered by Baranoski et al.

ously not suited for real-time rendering, they prove even tedious when used
only for preprocessing of data.

2.3.2 Radiative Transfer for Real-Time Rendering

Wang et al. [74] make use of the LEAFMOD model. They obtain their input
data by a LLS, measuring diffuse and specular reflectance, varying roughness
as well as diffuse transmittance for both sides of a leaf at a highly detailed
scale of sub-millimeter accuracy. Fitting this data into the LEAFMOD model
gives them a thickness variation map, an albedo map and an average absorp-
tion and scattering coefficent. Having all this detailed data available in the
form of high resolution texture maps allows the evaluation of reflectance and
transmittance in a real-time environment. The model proposed by Wang et
al. takes direct, indirect and environment lighting into account. Because all
the lighting data is precomputed and stored in texture maps, certain simplifi-
cations are made to keep the amount of memory low. A unified precomputed
radiance transfer solution could be used to evaluate the whole lighting for
each surface point, but a simpler model is used. Lighting calculation is split
up into two parts:

• Direct illumination depends on the amount of sunlight hitting the sur-
face point directly. Possible sunlight visibility is precomputed for each
vertex as an environment map. The amount of direct lighting is then
evaluated by convolution of this environment map with a sun disk pro-
jected to a corresponding environment map. This delivers the hard
shadows usually observed in direct sunlight illumination.

Chapter 2. State of the Art on Leaf Rendering 19

• Indirect and environment lighting, which are both of relatively low fre-
quency when compared to direct illumination, are approximated using
spherical harmonics (SH) [65]. The precision of a SH solution depends
on the number of coefficients used. To evaluate the SH solution the
incoming light has to be transformed into SH coefficients as well. The
big advantage of SH is that not only a simple direct light source may
be used, but an arbitrary low-frequency environment lighting can be
expressed by SH coefficients.

Usually, 16 coefficients are used because they fit perfectly into 4 vec-
tors of 4 components each, and can therefore be optimally stored in 4
vertex attributes or textures. Due to the limited number of coefficients,
spherical harmonics tend to produce soft lighting, which is well suited
to simulate indirect and environment lighting, but has problems with
the hard shadows coming from direct sunlight. A larger number of
coefficients is needed to approximate direct illumination, which further
increases the amount of memory needed. The low-frequency nature of
SH combined with the memory consumption is the reason Wang et al.
decided to use this simulation for indirect illumination only.

Wang et al. evaluate lighting on a per-vertex basis, and interpolate the
results. So, since all of the illumination data is pre-baked and data is unique
per vertex, the precision of the solution depends directly on the geometric
complexity of the mesh. This method is still very memory-expensive, Wang
et al. only model small plants with less than 20 leaves. They report that these
plants already consume about 30 MB. While producing impressive results as
can be seen in Figure 2.3, this model proves not to be feasible for larger
plants due to memory constraints and vertex count limitations. A leaf still
needs to be rendered at full geometric detail even if the leaf is far away from
the viewer.

Also the surfaces of the leaves appear to be very smooth, which is only
valid for some types of leaves. This is due to using the geometric normal on
a per-vertex basis for lighting evaluation instead of the high-detail surface
normal which is available from the data measured by the LLS. However,
evaluating spherical harmonics on a perturbed normal requires additional
computation, as Sloan et al. [64] demonstrate.

Also, precomputation of all lighting data prohibits the plant from being
animated. Methods exist for animating spherical harmonics but result in an
additional workload on memory and computation time [66]. The method
described in this thesis aims for both memory efficiency as well as animat-
ing plants by wind influence, so relying on precalculated lighting only is no
suitable approach.

Chapter 2. State of the Art on Leaf Rendering 20

Fig. 2.3: Three plants modeled with the technique presented by Wang et al. All
plants consist of only a small number of leaves to keep memory requirements low.

2.4 Diffusion-Based Methods

Jos Stam [68] treats light scattering in a medium as a diffusion process.
This is true for highly scattering media for which full path tracing is not
necessary. Stam uses a multi-grid approach to render multiple scattering
in clouds. Jensen et al. [35] model an analytic expression based on dipole
diffusion approximation of a semi-infinite thin slab. Again, the material
is assumed to be homogeneous to avoid evaluating a detailed BSSRDF for
every point on the surface. Mertens et al. [43] show that this model can be
integrated into a real-time rendering environment.

Donner and Jensen [19] extend the model to efficiently calculate subsur-
face scattering in multi-layered thin slabs by using multiple diffusion dipoles.
This approach adds an additional boundary on the opposite side of the
medium to accurately compute the amount of light transmitted through it.
Obviously, this is needed to calculate reflectance and transmittance for leaves.
Due to their thin nature, the influence of subsurface scattering is constrained
to a small surface area, and full evaluation over the whole leaf surface is not
necessary to calculate the subsurface scattering solution. This significantly
reduces precomputation work, and also allows the assumption of the BSS-
RDF solution to be considered local. This is a very important assumption
because the space for evaluating the BSSRDF has to be locally flat. This
would pose problems with bent leaves if the whole leaf had to be taken into
account. Also, because the evaluation stays local the same BSSRDF can be
used for all leaves. There is no need to calculate a new BSSRDF for each
leaf, which keeps memory requirements low for this method.

Figure 2.4 shows the quite realistic results of the method. Different re-
flectance properties can be observed for the front and back sides of the leaf.
The transmittance on the other hand seems to be nearly identical for both
sides. These observations correspond to measured data and prove the accu-

Chapter 2. State of the Art on Leaf Rendering 21

racy of the method.

Fig. 2.4: The front and back sides of a leaf. Rendered with light coming from the
front (left), and with light coming from the back (right).

Franzke and Deussen [22] use a simplified model of Donner and Jensen’s
method by reducing the leaf to only one layer and evaluating only single scat-
tering in the light transport. Ignoring multiple scattering effects significantly
reduces the rendering cost. The results of Franzke can be seen in Figure 2.5.

Fig. 2.5: A plant rendered by Franzke and Deussen. Only single scattering is taken
into account.

The multiple-dipole approach proposed by Donner and Jensen was used
by the technique presented in this thesis to precalculate a local illumination
environment for a leaf taking a BSSRDF and surface mesostructures into
account, as can be seen in Section 3.5. However, the HL2 basis was chosen
as a simpler method to evaluate this data in a real-time constraint, and leaves
are assumed to consist of only one slab.

Chapter 3

A Real-Time Leaf Rendering Algorithm

This chapter presents an algorithm to render photorealistic leaves with a
physically based translucency model in a real-time environment. The runtime
part of the algorithm is based on vertex and pixel shaders only, so it can be
integrated into any modern rendering engine. Precomputation of necessary
information is done offline in separate tools, and the information is passed
to the shader either as per-vertex data or as texture content.

The algorithm was designed to allow two important features: First of all,
leaves have to retain a believable high-detail look even if viewed at very close
range. Even if one single leaf covers the full screen, details should stand out
clearly and the mesostructue of risps and bulges on the leaf’s surface and
veins in the leaf’s interior are visible. Second, the method should scale well
to a large number of leaves and to multiple plants. To achieve this, data
must be stored efficiently and be reuseable as much as possible.

3.1 Overview

To evaluate the full lighting situation for a pixel the illumination of direct
sunlight, indirect sunlight, and environment lighting have to be taken into
account. Only direct sunlight is evaluated by this method on a per-pixel
basis at runtime, indirect illumination is approximated by a precomputated
solution. The leaf rendering algorithm described in this thesis consists of two
major parts:

• Direct illumination is handled on a per-pixel level and captures the
high-detail mesostructure of leaf surfaces. Normal mapping is used to
express the structures. Shadow mapping is used to handle the hard
shadows resulting from direct illumination. All of the data needed for
evaluation of the direct illumination is available locally by texture data,
and the same data set is instanced for every leaf in a tree. The only
exception to this is the shadow map, which is global and generated

Chapter 3. A Real-Time Leaf Rendering Algorithm 23

at runtime each frame. The components of direct illumination are
described in detail in Section 3.3.

Translucency and subsurface scattering effects are handled by a pre-
computed radiance transfer solution which is based on the “Half Life
2” (HL2) basis, and also stored in a texture. The HL2 basis can be set
up to match with local leaf space so the same texture can be instanced
for all leaves in a tree. The tangent space – which has to be built any-
way for normal mapping – is also used to define the basis vectors of the
HL2 space. Details on translucency can be found in Section 3.5.

• Indirect illumination handles the transport of environment light and
indirect sunlight through different layers of leaves down to the branches
or the trunk. This illumination component is precalculated once for the
whole tree and illumination information is stored on a per-vertex basis.
Details on the calculation of the indirect illumination term is found in
Section 3.4.

Figure 3.1 illustrates how direct and indirect illumination together create
the final appearance of a leaf.

Fig. 3.1: Direct illumination only (top left), indirect illumination only (top right),
and the composed final image (bottom).

Chapter 3. A Real-Time Leaf Rendering Algorithm 24

Section 3.2 of this chapter deals with the acquisition of data needed to
simulate all of these effects. Texture sets for leaves were generated by pho-
tographing leaves and lighting them from the front to obtain an albedo map
and from the back to gain the average translucency color information. Addi-
tionally, 3D scanning was used to gain information about the structure of the
leaf surface as well as to obtain per-pixel thickness information to calculate
translucency and subsurface scattering information.

3.2 Data Acquisition

The rendering application makes use of a leaf acquisition method developed
by Ralf Habel which will be described in this section.

The front and back sides of a leaf were photographed two times each.
First with light coming from diagonally behind the camera to gain an albedo
map to capture the diffuse reflectance properties of the leaf. A second photo
was taken with the light source placed behind the leaf, to obtain translucency
color information of light transmitted through the leaf.

Additionally, the leaf was placed into a 3D scanner to get a high-detail
geometric representation of the leaf. The data sets of the front and back sides
were used to calculate the normal maps and a thickness map of the leaf.
While the normal map is used directly for normal mapping, the thickness
map is needed along with the normal map to generate subsurface scattering
and translucency information which is stored in the HL2 map. Details on
the acquisition of the HL2 map are found in Section 3.5.4.

3.2.1 Photographing Leaves

A Canon EOS 20D digital camera was used to capture the photographs for a
leaf set. The images were taken at a resolution of 3504*2336 pixels in RAW
format with fixed exposure time. Two large box diffusors with a 1000 Watt
light source each were used to light the leaf from the front, with the diffusor
placed next to the camera, and from the back, with the second diffusor placed
behind the leaf. The diffusors create almost hemispheric lighting for front
and back lighting, which is needed to get the diffuse reflectance information.
Strong directional light sources could result in shading of the leaf surface
as well as intense specularity. The leaf itself was placed in an easy-to-build
wooden fixing frame to ensure that all photographs match pixel-perfect, and
to reduce distortions due to the natural bending of the leaf. A photograph of
the installation together with a schematic view of the acquisition setup can
be seen in Figure 3.2.

Chapter 3. A Real-Time Leaf Rendering Algorithm 25

Fig. 3.2: The photography setup used to take photos of the leaves. The leaf is
placed inside a fixing frame to ensure pixel-exact matching between photos. Image
courtesy of Ralf Habel [29].

After taking photographs of one side of the leaf the fixing frame was
carefully rotated by 180 degrees to capture images of the other side. The
resulting images were downsampled to 1024*1024, which still retains high-
resolution color information in the sub-millimeter range. Specular highlights
still present were removed from the photograph with standard image process-
ing tools to obtain only diffuse color information for the albedo map. Also,
an alpha channel was added to this texture for alpha-testing when rendering
the texture mapped onto a quad. At a total there are four textures obtained
from photographs: An albedo and a translucency color map, both for the
front and the back side of a leaf.

3.2.2 3D Scanning

A Minolta VI-910 scanner was used to capture the 3D geometry of both the
front and the back sides of a leaf. As with the texture maps, the resolution
of the scanned geometry is within sub-millimeter range. High resolution
normal maps are obtained directly from the geometry. These two scans were
combined into one geometric object with the help of Geomagic [25], and
scanning errors were smoothed out. Autodesk Maya [3] was used to calculate
a normal map for each side and generate different lower-resolution meshes
of the original geometry. The photographed textures are then mapped onto
them.

The thickness map is calculated from measuring the difference between

Chapter 3. A Real-Time Leaf Rendering Algorithm 26

the front and the back side of leaf geometry and normalising the differences
to a user-defined maximum. Figure 3.3 shows all of the textures for one leaf
data set, downsampled to 1024*1024 pixels.

Fig. 3.3: A data set for albedo maps (left), translucency color maps (middle) and
normal maps (right) for the front and back sides of a leaf, and the thickness map
(bottom). Image courtesy of Ralf Habel [29].

3.3 Direct Illumination

Direct illumination is evaluated in the pixel shader. The final color value
consists of multiple parts: An albedo map is used for the basic per-pixel
reflectance color, normal mapping is used to deal with the detailed structure
of the leaf surface. Shadow mapping is used to determine sunlight visibitily.

The Cook-Torrance specular model [14] is used to calculate the specu-
lar reflectance. Typically, only the top side of a leaf is specular, while the
bottom side is mostly diffuse [10]. The Cook-Torrance specular model is

Chapter 3. A Real-Time Leaf Rendering Algorithm 27

controlled by physical parameters like surface roughness and takes a Fresnel
term into account, which is an important part of the specular appearance of
leaves. The specular highlights of leaves tend to disperse and stand out more
clearly if seen at grazing angles. The benefits of this model become obvious
when compared to the “standard” specular model for real-time rendering, the
Phong-Blinn specularity model [8]. That model usually creates continuous
bright spots of specularity, a behavior not found for most types of leaves.

The last part of the direct illumination model is the translucency, which
simulates the amount of sunlight transmitted through the leaf and exiting on
the opposite side. This effect causes the perceived bright green appearance of
leaves if looked at against the sun. This property is also seen from a distance,
which is not the case for the high-detail techniques like normal mapping or
shadow mapping, which could be simplified at a distance to reduce rendering
cost. Another physical property which comes with translucency is subsurface
scattering. Rays of light which are not reflected by the topmost layer of a
leaf surface are bounced off or scattered between multiple interior layers until
they exit the medium again. In the case of leaves this may happen on either
side. Light emitted on the incoming side adds to the reflectance while light
emitted on the opposite side adds to the translucency. Subsurface scattering
is handled by a precomputed radiance transfer approach which is calculated
once for a leaf texture set. The simulation is local to the leaf only, not taking
into account global illumination conditions.

All texture data needed for direct illumination evaluation is available
for both the front and the back sides of a leaf, resulting in a total of eight
textures per leaf. Of course, front and back side versions of a texture set may
be combined into one texture, and texture coordinates altered in the vertex
shader depending on which side is visible to the viewer to save texture stages.
A texture set for the front side of a leaf is displayed in Figure 3.4.

Fig. 3.4: From left to right: Albedo map, normal map, HL2 map, translucency
color map. Note that the albedo map additionally has an alpha-channel, with the
areas displayed black being transparent. Image courtesy of Ralf Habel [29].

Chapter 3. A Real-Time Leaf Rendering Algorithm 28

3.3.1 Normal Mapping

Normal mapping is the standard approach to render mesostructure in real-
time rendering. A texture is used that stores normal information to distort
the normal of a surface on a per-pixel basis. Typically, this information is
stored in tangent space, which is constructed from the the surface normal N
and the tangent T and binormal B. The tangent and binormal point into
the direction of the largest increase of u and v texture coordinate values of
the normal map. B, T and N are orthogonalized and normalized to ensure
that the tangent space is an orthonormal basis. At runtime, the normal used
for lighting calculations is looked up from the normal map instead of taking
the interpolated surface normal directly. Therefore the light vector has to
be transformed into tangent space as well, which can be done in the vertex
shader.

As a result the surface appears to have detailed geometrical mesostructure
on it, instead of being only one flat polygon. When rendering, these per-pixel
illumination changes are especially apparant for specular highlights.

Typically, there are two ways to generate normal maps:

• The first one is by building a high-polygon mesh and a low-polygon
representation of the same object. The low-polygon version is used
for rendering at runtime. The normal map is generated by first cal-
culating unique texture coordinates for all polygons of the model to
store normal map data, and then transferring normal information of
the high-polygon version to the low-polygon version for each texel in
the normal map. This technique was used to obtain the leaf normal
maps since high-polygon geometry is already available from the 3D
scan.

• The second approach is to calculate depth information from the albedo
map by using image-processing techniques and then build the normal
map from the depth derivatives. There is a number of tools for this
purpose like the NVIDIA Photoshop Normalmap Plugin [51] or Crazy-
Bump [15]. This method was used to generate normal and displacement
maps for the branch textures.

Parallax Mapping

A common addition to normal mapping is parallax mapping [36] which needs
an additional height map. Parallax mapping distorts the pixel lookup of
albedo and normal map according to the viewing angle towards the surface
in tangent space, and taking the local texel’s height into account for how far

Chapter 3. A Real-Time Leaf Rendering Algorithm 29

to displace the lookup. This results in an additional three-dimensional depth
perception of the surface, since bumps appear to stand out of the surface
towards the viewer.

Depth information is readily available from the 3D scan, but parallax
mapping proved to have no additional perceived effect on the appearance of
the leaves. So parallax mapping is only used to render the branches. Most
types of tree bark show considerable height differences and a generally rough
surface which makes this technique very useful to enhance surface detail.

3.3.2 Shadow Mapping

The influence of direct sunlight plays a very important role in the calculation
of diffuse and specular reflectance as well as translucency. Sunlight casts hard
shadows, so an accurate per-pixel approach to test sunlight visibility has to be
applied to achieve convincing results. Shadow mapping is the most common
real-time algorithm for per-pixel shadow testing in outdoor environments.

Shadow mapping [58] is a texture-based shadowing approach. First, the
scene is rendered from the point of view of the light source. Typically orthog-
onal projection is used for directional light sources like the sun. The distance
of each rendered pixel to the light source is stored in the shadow map. When
rendering the scene from the viewer’s perspective, a depth comparison is
made for each fragment between its distance to the light source, and the
distance which is looked up in the shadow map for the corresponding texel.
The view and projection matrices already used when renderering into the
shadow map are used again to transform the fragment position into shadow
map space. If the distance looked up from the shadow map is smaller than
the measured distance, then there has to be an occluding object between
the light source and the rendered fragment. The fragment is found to be in
shadow.

Shadow Volumes

Shadow Volumes [20] work by extruding the geometry of each shadow caster
away from the light towards infinity (in its simplest form, generating a tri-
angular prism from each triangle), and using the stencil buffer to test which
pixel of the frame buffer is shadowed. Shadow volumes always produce pixel-
perfect hard shadows due to their stencil buffer-based nature, which makes
them suitable for the hard shadows casted by sunlight. However, there are
limitations which make them not useful for rendering outdoor vegetation
environments.

Chapter 3. A Real-Time Leaf Rendering Algorithm 30

The biggest disadvantage for foliage rendering is the inability of shadow
volumes to handle alpha-testing. Usually, leaves are rendered as simple quads
with an alpha-channel-enabled texture mapped onto them. Only pixels with
alpha-values greater than a specified threshold are rendered and assumed to
cast shadows. When rendered with shadow volumes, shadows of leaves would
remain in their original quad form.

Texel distribution

There are some implications to shadow mapping. Since it is a texture-based
method, the resolution of the texture is of course a major limiting factor to
the quality of the shadows, as can be seen in Figure 3.5. Shadow maps can
only be as precise as the number of texels available. Also, only one depth
value is stored for each texel in the shadow map. Bilinear interpolation of
the texel values is not directly possible because the stored values are depth
values and not color data. Thus a whole range of depth values from the
viewer’s perspective are mapped to one discrete value in the shadow map.
These depth differences resulting in incorrect self-shadowing or shadow acne
have to be dealt with to avoid artifacts from wrong depth comparison results.
Common solutions to this problem include rendering only the back faces of
objects or adding a certain depth bias which can be composed of a constant
value and a value scaling linearly with the angle between the pixel’s normal
and the view vector [77].

Fig. 3.5: Shadow map resolutions from left to right: 1024, 2048, 4096.

On the other side, if multiple texels are mapped to one single fragment in
the view space, then minification artifacts are present. Finding a distribu-
tion which matches shadow map texels most closely to screen space pixels is a
whole body of research on itself. Methods like Perspective Shadow Maps [70],

Chapter 3. A Real-Time Leaf Rendering Algorithm 31

Light-Space Perspective Shadow Maps [77] and Trapezoidal Shadow Maps [40]
warp the shadow map space to retain as many texels as possible for close-up
fragments. Recently, the idea of using multiple individual shadow maps for
closer and farther range in the view frustum has become more common. Cas-
caded Shadow Maps [71] and Parallel-Split Shadow Maps [78] are examples
of this technique. All of these methods are based on finding a tight bounding
volume around all shadow-casting objects of relevance (which are seen both
from the light source and from the viewer’s point of view) and thus focusing
the shadow map for optimal usage of the texel space available.

A focusing technique proves to be useful especially for larger scenes if
the hard shadows of individual leaves should be captured. Only uniform
texel distribution was implemented in the demo application for this thesis
because most of the development was done with only one tree at a time.
However, integrating different focusing methods should pose no problem be-
cause shadow map tests are completely independent of the other techniques
like translucency or indirect illumination.

Filtering

Hard shadow outlines are produced due to shadow map depth values be-
ing discrete per-texel values. Either a pixel is found to be shadowed or
not. Filtering the shadow map results to get smooth shadow outlines is an
area of research in itself. Besides the most simple Percentage Closer Filter-
ing (PCF) [58], which interpolates bilinearly between the four neighboring
shadow mapping results (not the depth values themselves) there are more
sophisticated algorithms which sample a larger number of shadow mapping
results in an area around the current texel, sometimes in dependence of the
distance of the texel to the nearest occluder [21]. Techniques like Variance
Shadow Mapping (VSM) [18] rely on statistical methods and treat a shadow
map texel not as one single depth value, but as a distribution of multiple val-
ues. The results of these different filtering methods can be seen in Figure 3.6.
Multiple PCF lookups were found to produce the best results, both in regard
to image quality and to rendering cost. VSM produces noticeable artifacts
by eliminating small spots of light in shadowed areas. This is due to blurring
of mean depth values in the shadow map and the depth variance for each
texel being very large for vegetation, because a large number of individual
leaves with discontinuous depth values and small empty areas between them
fill the shadow map.

Chapter 3. A Real-Time Leaf Rendering Algorithm 32

Fig. 3.6: Percentage closer filtering leaves the shadow map texels clearly visible
(left) while multiple PCF lookups smooth the result (middle) and variance shadow
mapping create hard shadow outlines but eliminates fine detail (right).

3.3.3 Cook-Torrance Specularity

Specular highlights are the most prominent features seen on leaves. Usually,
only the front sides of tree leaves are highly specular while the back sides
are mainly diffuse. The composition of leaf surfaces varies greatly between
different species, ranging from velvet-like surfaces to leaves with a thick waxy
coat that create a broad intense specularity. All these stronly varying surface
characteristics have to be modeled as accurately as possible.

The Cook-Torrance specular model [14] was used to model specularity for
the front sides of leaves. Normals looked up from the normal map, changing
over the surface area, result in broad specularity instead of the highly con-
centrated round highlights which are usually seen when using the “standard”
specularity model of real-time rendering, the Phong-Blinn specular model [8].
Also, due to a Fresnel term specularity of leaves is mostly apparant at grazing
angles, which is an effect captured well by the Cook-Torrance model.

The model is based on two physical properties, surface roughness and a
refracton index. Since these are physical properties, their results are strongly
non-linear and the values have to be chosen carefully. The refraction index
n ranges from 1.2 to 1.7, and the roughness ρ ranges from 0.078 to 0.5 for
different types of leaves. The numbers were taken from values measured by
Bousquet [10] and are assumed to be constant over the whole surface of a
leaf, although they could of course by varied by parameter texture maps.

Figure 3.7 illustrates the difference between the standard Phong-Blinn
specularity model and the Cook-Torrance specularity model. The benefit of
the Fresnel term at grazing angles is obvious.

Chapter 3. A Real-Time Leaf Rendering Algorithm 33

Fig. 3.7: A comparison between the Cook-Torrance specular model (top) and the
Phong-Blinn specular model (bottom). The angle of incoming light changes from
straight down to a low angle. The difference in specularity becomes apparant as
the light is reflected at a grazing angle into the eye.

3.4 Indirect Illumination

Aside from direct illlumination coming from the sun, the hemispherical sky
also has a strong impact. Additionally, a portion of the incoming light hitting
each surface point is bounced off into the hemisphere above it. If this light
hits another surface point in the scene it adds to the indirect illumination.
This diffuse inter-reflection leads to surfaces facing away from the sun to
also receive light instead of being completely dark. Calculating the effect of
indirect illumination is usually handled by a global illumination (GI) solution
like Radiosity [13] or Path Tracing [37], which combines direct and indirect
illumination.

Usually, in real-time rendering only direct illumination is considered and a
constant ambient term is chosen instead of a more complex indirect illumina-
tion term to avoid unlit parts of the scene being completely black. However,
while indirect illumination always adds to the believability of the generated
images, it is especially important for plants: Additionally to the diffuse inter-
reflection there is also a large amount of light transmitted through leaves,
which makes the translucency an integral part of the indirect illumination
solution. The available light decreases continuously towards the center of
the treetop as more and more environment light is filtered out by layers
of leaves. Indirect illumination enhances the sense of perceived depth to

Chapter 3. A Real-Time Leaf Rendering Algorithm 34

the image, because the different layers of leaves stand out more clearly to
the viewer. Without sophisticated indirect illumination, there are mainly
blotches of bright and darkened leaves, as can be seen in figure 3.8.

Fig. 3.8: A constant ambient term (left) and per-vertex ambient occlusion (right).

3.4.1 Ambient Occlusion

A simple but efficient algorithm to simulate diffuse illumination is ambient
occlusion (AO) [55]. The amount of incoming light from the environment
is assumed to be constant over the whole hemisphere above a surface point.
The amount of exposure to incoming light directly determines the surface
brightness. It can be calculated by doing multiple ray casting tests into
different directions over the hemisphere of the surface point. The sample
results which do not hit any occluding geometry are assumed to let outside
light from the environment come in. The ray cast results are summed up and
normalized to a user-defined scale and used to attenuate the surface point’s
albedo. This results in isotropic direct illumination.

Indirect illumination can be evaluated with AO as well by using multi-
bounce ambient occlusion, which evaluates the AO again for each ray hit-
ting an object recursively until a specified recursion depth is reached. Also,
translucency can be taken into account by not eliminating the influence of
a ray hitting an object completely, but instead modulating its influence and
continuing the AO evaluation with multi-bounce ambient occlusion. Because
AO does not depend on the direction or intensity of incoming light, it can
be used as a simple approximation of indirect illumination while direct illu-
mination is evaluated using other dynamic real-time rendering algoritms.

Chapter 3. A Real-Time Leaf Rendering Algorithm 35

Often a simple ambient occlusion solution suffices to enhance the percep-
tion of depth and light distribution in a scene, and more complex methods
like precomputed radiance transfer are not needed to push the believability
of a scene any further. This is due to changes in indirect illumination being
of low frequency and most observers not recognizing approximated or simpli-
fied indirect illumination in contrast to clearly noticeable artifacts in direct
illumination. Due to the complexity of vegetation an AO term is sufficient
for a concinving skylight.

Per-Vertex

It is not necessary to have the same density of sample points which would
be needed for direct illumination. Vegetation objects tend to have a very
dense polygonal mesh anyway, so a per-vertex solution with intensity values
interpolated linearly over the polygon faces suffices.

Calculation

Leaves are assumed to be translucent and transmit a certain portion of the
environmental light through their surfaces, with different amounts of translu-
cency for different wavelengths. The HL2 map, which was calculated primar-
ily to evaluate translucency, is taken into account here to obtain meaningful
translucency information for each ray intersection point when calculating
ambient occlusion. Ambient occlusion colors are also not simple intensity
values but RGB color values. The average translucency color map is used to
change the amount of transmitted light for different color channels.

This multi-bounce AO solution leads to slowly attenuating light inten-
sities through multiple layers of leaves. The visible light turns greener and
darker with each passed layer. Figure 3.9 illustrates the ambient occlusion
values, as they turn from white to a dark green.

3.5 Translucency

Rendering detailed translucency is crucial for believable leaf rendering. While
specular reflectance remains the most important factor to rendering the sun-
facing side of a leaf, translucency is the dominant factor for the back-lit
side. The algorithm presented in this thesis takes varying leaf thickness, self
shadowing due to risps and bulges on the leaf surface as well as subsurface
scattering inside the leaf into account. A per-pixel translucency transport
function is precomputed by transferring the intensity of incoming and outgo-
ing light over the hemisphere above the surface into the “Half Life 2” (HL2)

Chapter 3. A Real-Time Leaf Rendering Algorithm 36

Fig. 3.9: The ambient occlusion values are calculated per vertex. The colors turn
from white to a dark green inside the treetop.

basis. The data is stored as a texture, the so-called HL2 map. This allows
efficient and fast rendering of translucency in real-time applications because
the HL2 basis is constructed from only three orthogonal basis vectors.

The physically based subsurface simulation for thin slabs by Donner and
Jensen [19] is used as a foundation to compute the contents of the HL2 map.
This allows modeling subsurface scattering effects as they are found in leaves.
While still using the simplification of assuming a homogeneous material, this
already proves to be an advantage over other methods which basically use
a Lambertian translucency model, not taking subsurface scattering effects
and microstructure into account [74]. The differences can be seen in Fig-
ure 3.10. The amount of transmitted light changes with the structure of the
leaf, revealing risps and veins.

Using the HL2 map not for full direct and indirect illumination evaluation
but only for translucency evaluation allows keeping the data local to a leaf.
The HL2 map can be instanced for every leaf in the tree, not re-aquiring
any per-leaf data. Additionally, evaluation of the HL2 map can be easily
combined with normal mapping because the HL2 space is equivalent to the

Chapter 3. A Real-Time Leaf Rendering Algorithm 37

Fig. 3.10: A comparison between a Lambertian translucency model (left) and the
per-pixel perturbed translucency (right).

tangent space. This eliminates the need to transform the incoming light
vector into a different basis first, as is the case with spherical harmonics or
Wavelets [39].

3.5.1 The Half Life 2 Basis

The “Half Life 2” basis was first introduced by the Source Engine by Valve
Corporation in 2004 [42]. It allows a fast and efficient combination of normal
mapping and precalculated light maps. Basically, instead of using one light
map for one surface normal, 3 light maps are calculated and their results are
weighted according to a normal from a normal map.

The HL2 basis is constructed from three basis vectors which are dis-
tributed uniformly over the hemisphere above a surface point. The HL2
basis vectors are orthogonal, resulting in the fact that the angle between the
tangent plane and each vector is identical. The three basis vectors therefore
are:

Chapter 3. A Real-Time Leaf Rendering Algorithm 38

~H1 =
(
− 1√

6
,− 1√

2
, 1√

3

)
~H2 =

(
− 1√

6
, 1√

2
, 1√

3

)
~H3 =

(√
2
3
, 0, 1√

3

)
Figure 3.11 illustrates the three basis vectors on a hemisphere.

Fig. 3.11: The three basis vectors that construct the HL2 basis. n is the surface
normal. x and y are the tangent and binormal vectors. Image courtesy of Ralf
Habel [29].

The basis vectors are constructed in tangent space. This allows evaluat-
ing the influence of each coefficient by a simple dot product between the basis
vector and the tangent space normal, which is taken directly from the normal
map. No transformation between spaces is needed. This is a vast improve-
ment over other bases, like spherical harmonics [65] or Wavelet bases [39],
which require the incoming light to be transformed into the respective basis
coefficients.

In the case of the Source Engine, instead of calculating one single light
map using the world space surface normal, one light map is generated for each
basis vector transformed into world space. This results in three lightmaps. At
runtime, the results of these three lightmaps are combined by simply adding

Chapter 3. A Real-Time Leaf Rendering Algorithm 39

the weighted color values. The weights are calculated by the dot product
between the normal stored in the normal map, and the basis vectors. Dot
product results are allowed to be negative as well, since the contribution
of each basis vector is included over the whole hemisphere. Figure 3.12
illustrates the areas of positive and negative weights of the three coefficients.

Fig. 3.12: Red indicates positive values for the coefficients, blue indicates negative
values. The values of all three coefficients sum up to 1. Image courtesy of Ralf
Habel [29].

Of course, the results are of relatively low frequency compared to solutions
using a larger number of bases like higher order spherical harmonics because
only three coefficients are available. However, if HL2 maps are not used
for high-frequency information, they prove to be fast and efficient. Finally,
calculating the result of information stored in the HL2 basis comes up to only
2 texture lookups and 3 added and weighted dot products. (In the case of
the Source Engine, RGB color values are used for lightmapping, so there are
effectively 3 RGB lightmaps, making the total amount of texture lookups rise

Chapter 3. A Real-Time Leaf Rendering Algorithm 40

to 4) This makes the HL2 basis a very suitable choice for real-time rendering
of low frequency precomputed data over the hemisphere above a surface.

3.5.2 Subsurface Scattering

A full 8D Bi-directional Scattering Surface Reflectance Distribution Function
(BSSRDF) is required to evaluate a full subsurface scattering solution [49],
modeling the amount of light exiting the medium at any given point. How-
ever, in contrast to most subsurface scattering materials, which can be mod-
eled as semi-infinite slabs (for example skin rendering), leaves are a very thin
and highly absorbing medium and a certain amount of light rays exit on the
other side of the leaf. This keeps the range of light diffusion down to a few
millimeters at maximum. This helps because a BSSRDF requires a locally
flat space. With a thin medium as a leaf, this can be assumed to be the case
even for bent leaves, as the space of the effective scale of the BSSRDF still
remains locally flat.

A full BSSRDF takes variations in surface thickness into account, as
well as self-shadowing of the surface and variations in the reflectance proper-
ties. Changing reflectance properties are handled by the average translucency
color map, which was taken from a photograph of a real leaf. Self-shadowing
is dealt with by horizon maps [41], which are precalculated offline from the
measured normal maps and thickness map.

In context of the illumination model presented in this thesis, the subsur-
face scattering solution is assumed to be local only. Global lighting effects
are not taken into account because the amount of incoming light from di-
rect illumination is already determined by shadow mapping, and the light
source is reduced to a directional light only instead of a full hemispheric
light. The amount of incoming light only modifies the resulting radiance but
does not take any noticeable effect on the subsurface scattering results itself.
This is due to shadowing happening on a much larger scale than subsurface
scattering.

3.5.3 Calculating Transmittance

Donner and Jensen introduced a model for an efficient approximation of sub-
surface scattering in a thin homogeneous slab [19]. As in the calculation for
semi-infinite homogeneous slabs, the BSSRDF is approximated by a diffusion
dipole, which is modeled by two virtual point light sources, positioned inside
the participating medium as well as outside. In a thin slab a boundary con-
dition is added for light exiting on either side of the object to never return.
Multiple dipoles are needed to match these conditions. As a simplification

Chapter 3. A Real-Time Leaf Rendering Algorithm 41

a leaf is assumed to consist of only one layer of homogeneous material. One
problem with Donner and Jensen’s method which still remains is taking into
account arbitrary boundary conditions, which are needed to approximate the
risp sides of leaves closely. In that case Monte Carlo simulation [4] proves to
be superior. However, the error compared to a Monte Carlo solver stays in
a margin of 3% for most of the surface area with exception of the risps [29].

All light that is not reflected is assumed to be transmitted through the
medium. Figure 3.13 shows that the transmittance decreases exponentially
with increasing thickness. The influence of incoming light to the exiting point
on the opposite side of the medium decreases in a smooth Gauss curve-like
falloff depending on the distance. This helps when calculating the HL2 map,
because not every texel has to be compared to the full leaf surface area and
a cutoff can be applied.

Fig. 3.13: The amount of transmitted light decreases exponentially with increasing
thickness, and slowly in a smooth curve depending on distance. Image courtesy of
Ralf Habel [29].

3.5.4 Calculating the HL2 map

The continuous transmittance function is discretized to an area integral to
match one texel of the HL2 map, which has the same resolution as all the
other leaf textures. The amount of transmitted light is sampled for many
directions on the hemisphere of incoming light and then projected into the

Chapter 3. A Real-Time Leaf Rendering Algorithm 42

3 directions of the 3 HL2 basis vectors. (128 samples were taken by the
tool used in this thesis.) Instead of full trichromatic RGB values, only one
dominant wavelength of 510nm is evaluated, which is green light. Therefore
only one texture is needed to store the 3 HL2 coefficients. Although only
luminance is stored, it can be quickly expanded to the RGB spectrum by
modulating it with the color values stored in the translucency map.

Because the HL2 basis only consists of 3 coefficients, the results are of
relatively low frequency if compared to solutions with a larger number of
bases like spherical harmonics. Thus a slight blurring of the transmittance
results can be noticed. Fortunately this matches the blurring properties of
subsurface scattering.

All luminance values stored in the HL2 map are physical units, so a tone
mapper may be required to adjust them to meaningful values for output.
Due to their nature these values could also be used for a physically based ray
tracer to integrate the transmittance over the whole hemisphere for global
illumination.

Calculation of the translucency information at a resolution of 1024*1024
takes about 45 minutes for one leaf data set. The resulting HL2 map calcu-
lated can be seen in Figure 3.4. Details on the calculation of the HL2 map
and the projection of the subsurface scattering results into the HL2 basis can
be found in [29].

3.5.5 Discussion

One big advantage of choosing the HL2 basis over other precomputed light
transfer solutions like spherical harmonics is that the 3 basis vectors corre-
spond to the tangent space, which is needed anyway for normal mapping
in the pixel shader. This also makes rotating the basis trivial, which is im-
portant for animation. Besides, evaluation of the HL2 basis is very cheap
because only 3 coefficients are involved. This results in the calculation of
the translucency in the pixel shader being signifcantly less costly than other
parts of the illumination like the Cook-Torrance specular model.

Only storing transmittance coefficients in the HL2 map also makes it local
to a leaf, so the same HL2 map can be instanced for all leaves, just as the
other textures are. This makes the HL2 map not only a fast but also a very
memory-efficient technique compared to full PRT solutions, which requires
unique coefficient information for every texel on a plant [74]. Of course this is
also important when animating the plant, where static precomputed lighting
techniques are not applicable.

Chapter 4

State of the Art on Plant Animation

Trees are very complex systems of a large number of interconnected branches,
which all have to react to wind. Large branches usually move at a lower fre-
quency than small twigs or leaves. Ideally, also leaves react to wind individ-
ually. In addition to the high geometric complexity posed by this problem,
individual elements usually do not stay rigid but bend smoothly when react-
ing to incoming wind. Wind itself is not only a simple directional force but a
three-dimensional turbulent air flow which gets influenced as it hits the tree.

Modeling of the animation of plants therefore consists of different com-
ponents:

• A structural model of the plant itself is needed. The physical properties
of thinning branches and leaves should be taken into account. Usually
a hierarchical joint system is used, which allows propagating branch
motion down to sub-branches and leaves. Structural representations of
plants are described in Section 4.1. However, there is also a completely
different approach which is solely based on vertex displacement and
does not have any connectivity information or hierarchical structure of
the plant at all.

• Wind can be modeled either as a three-dimensional velocity field or as a
stochastic process. Simulation allows feeding branch motion back into
the system to create turbulent wind movement automatically, while
stochastic approaches have to treat free-flowing directional wind and
turbulent wind moving through the treetop separately. Since wind is
invisible to the naked eye and the interaction of wind and tree is of a
very complex nature, this component is well suited for simplification.

• An animation scheme has to be found to modify branch motion and
wind for each frame. Animation can be performed by either integrating
the equations of motion in the structural model of the tree and the wind
model, or by heuristic approaches that try to emulate the characteristics

Chapter 4. State of the Art on Plant Animation 44

of branch swaying and bending as closely as possible. More than one
structural element is needed in a single branch to perform a realistic
bending motion.

The different methods described in this chapter employ various combina-
tions of these 3 components with different goals in mind: Most algorithms
only strife for a convincing look of the resulting animation and have no aim to
correctly simulate the complex behavior of tree and wind. Especially wind
is often modeled as a stochastic process without complex spatio-temporal
correlations. The different methods are described in Section 4.2.

Most approaches deal with the animation of only one highly detailed
plant, but there is also need for approaches simple enough to animate a large
number of plants at a high framerate and still leave enough resources for
advanced shading techniques or additional CPU computations. This totally
different method is discussed in Section 4.3.

4.1 Plant Representations

Trees are usually represented as an interconnected hierarchical structure of a
trunk, multiple levels of branches and leaves at the end. These components
are the structural elements that are used to build the tree. Animation can
be applied to the joints connecting them by rotating them, thus resulting
in a correlated hierarchical swaying motion. Branches should also bend to
the influence of incoming wind to create a convincing result. Most meth-
ods regard a branch as one rigid structural element, which does not allow
bending. A branch has to be separated into multiple structural elements
to achieve bending. Typically bending is realized by applying a structural
mechanics model to a branch, which deals with the deflection and internal
forces and stresses within the branch. A feasible model to use for branches
is the comparatively simple Euler-Bernoulli model [72].

4.1.1 Structural Elements

The dominant model used to represent the hierarchical structure of a tree is
a rigid skeletal joint system [1, 52, 62, 69]. Skeletal systems are a common
method to animate dynamic objects or characters in computer graphics. An
object is built from a number of connected joints (with the connections typ-
ically called “bones” in character animation). An example of a hierarchical
structure used to represent a tree can be seen in Figure 4.1.

Animation of the object is performed by transforming the frames of these
individual joints, usually by rotation. Because the joint system is a hier-

Chapter 4. State of the Art on Plant Animation 45

Fig. 4.1: A hierarchical structure of joints representing the structural elements of
a tree. Each branch is modeled as one structural element.

archical tree structure, the whole child structure of a joint is rotated with
the parent. Each vertex is assigned one joint in the case of rigid skinning
or multiple joints in the case of smooth skinning. Animation is applied by
transforming the vertex position and normal with the joint’s frame. If smooth
skinning should be applied, then multiple joint transformation matrices are
modulated in regard to weights defined per vertex which sum up to 1.

When rendering the object, the joint transform matrices are usually up-
loaded to the GPU and the process of skinning is performed entirely on the
GPU. (Of course this is only possible if the number of shader constants needed
to store the joint transform matrices does not exceed the maximum number
of usable registers on the graphics card.) The calculation of the hierarchical
transformation matrices each frame is an obvious performance limitation,
though. This usually has to be done on the CPU, because hierarchy depth
varies vastly per joint and transformation calculations have to be performed

Chapter 4. State of the Art on Plant Animation 46

in the correct order to retain the hierarchical nature of the transformation.
All this makes parallelization on the GPU very difficult and inefficient.

While the calculation of the joint transformation matrices is a relatively
fast process, the calculation of the rotation information itself can be of high
complexity if an expensive simulation is used. The complexity of evaluat-
ing the system at runtime therefore usually scales linearly with the number
of joints used. So the number of branches has to be kept low to maintain
real-time framerates [60]. To achieve bending of each branch as a reaction
to incoming wind, a number of joints is needed per branch, which further in-
creases the complexity of the simulation. This disadvantage can be overcome
by using a structural mechanics model, as is described in the next section.

4.1.2 Structural Mechanics

Structural mechanics describes the deflections, deformations, and inner stresses
within structures. While there are very sophisticated models, the compara-
tively simple Euler-Bernoulli beam model proves sufficient to model deflec-
tions for bending of branches [72]. Branches are assumed to be cylinders of
homogeneous physical properties, thus simplifying calculations. If the cylin-
der is thinning out at the free end, then a strong non-linear deflection can
be observed creating the bending behavior of branches seen in nature. The
Euler-Bernoulli Beam model is also the basis to calculate bending in the ap-
proach intoduced in this thesis and is discussed in detail in the next chapter
in Section 5.2. The benefit of smooth bending compared to a rigid branch
model can be seen in Figure 4.2.

To model a highly detailed tree with over 1500 branches and ten-thousands
of leaves with smooth bending, more than 30000 joints would be required.
Using a full evaluation of the hierarchical structure each frame is obviously
very expensive to calculate. So most methods rely only on rigid structural
elements like the one proposed by Akagi [1], Shinya [62] or Ota [52], ignoring
bending alltogether. Bending is often incorporated in methods which rely on
precomputation [69, 33].

A major limitation of using a unified hierarchical structure is the ineffi-
ciency of animating individual leaves. If a tree has thousands of leaves, then
the same number of joints would be needed to animate them, even with the
simplification of the leaves being treated as rigid objects. If bending should
be included, the number of joints has to be increased even further.

Chapter 4. State of the Art on Plant Animation 47

Fig. 4.2: Smooth bending becomes available if a structural mechanics model is
applied. The same rotation is performed by only one structural element (left) and
five elements(right). The more elements are used, the closer the model matches
reality, although each cylindrical part of the branch is still bound to only one joint.

4.2 Applying Animation

Wind has to by updated every frame in order to keep the animation running.
Evaluating wind flow as a three-dimensional fluid simulation or as a velocity
field is very expensive to compute [1]. Therefore, most methods use stochastic
wind models instead. Wind is represented as a noise function generated in the
frequency domain from the power spectrum of branch motion with respect to
a dominant resonance frequency. By applying FFT (Fast Fourier Transform),
the signal can be transferred into time domain and sampled each frame to
obtain animation information. This only simulates turbulent wind, as no
clear wind direction is encoded into the power spectrum. However, using
a stochastic wind model allows considering only the noise input and the
resulting motion vectors for the current frame without the need to integrate
from the last frame forward. This greatly simplifies calculations, although
aspects like intersections of branches or reactions to exterior influences cannot
be included. Strong directional wind has to be treated separately, too.

4.2.1 Simulation

Akagi et al. [1] use a full three-dimensional fluid dynamics simulation, solving
the Navier-Stokes equation for incompressible fluids to model the influence
of wind on the joints. The rotation of structural elements in the tree is cal-
culated by explicit integration of the branch motion and the results are fed
back into the fluid dynamics simulation. This allows evaluating directional

Chapter 4. State of the Art on Plant Animation 48

wind as well as turbulent wind in the same way, as well as reacting to pos-
sible environmental influences. Another benefit of a full simulation is that
intersections of branches can be detected and avoided.

Of course this is very expensive to calculate in real time. A boundary
condition map representing resistance from the tree in the 3D field is gener-
ated to speed up calculations. Still calculations for each frame of animation
are too expensive to be feasible for a real-time system running at 60 frames
per second, even though a comparatively simple Euler integration is used. A
tree animated by Akagi’s method can be seen in Figure 4.3. Sakaguchi and
Ohya [60] simplify integration by ignoring the effect of gravity. Joints are
animated as angular springs to create an oscillating swaying motion.

Fig. 4.3: A tree animated by Akagi’s simulation.

4.2.2 Stochastic Approaches

Shinya and Fournier [62] and Zhang et al. [78] use a stochastic wind model
instead of solving the Navier-Stokes equation. Wind is modeled as a three-
dimensional velocity field with 3D wind vectors for each grid point. A station-
ary Gaussian process is used to evaluate wind velocity vector fluctuations.
Wind is generated as a power spectrum in the frequency domain and FFT
is used to transform it back into time domain. This approach is also taken
by Yung et al. [11], who use spectral methods to model various natural phe-
nomena. They consider branches as harmonic oscillators, swaying at their
resonance frequency.

Jos Stam [69] uses modal analysis to find the natural modal shapes of
branches moving in wind. Branch motion is simulated in the frequency do-

Chapter 4. State of the Art on Plant Animation 49

main, which allows applying spectral methods and avoiding an explicit inte-
gration of motion. Branches are represented as flexible structures, vibrating
freely at different modal frequencies. Multiple modal shapes are precom-
puted and simply superimposed at runtime to obtain the final appearance
of a branch reacting to an arbitrary wind force composed from those modal
shapes. This process removes high-frequency motion of small branches from
the simulation but allows fast evaluation due to preprocessing of the modal
shapes. Bending of branches is also included in the preprocessing step. Fig-
ure 4.4 shows a tree animated by this method.

Fig. 4.4: A tree animated by Stam’s approach. Bending along the branches can
be observed in the different states of animation.

Haevre et al. [76] also rely on precalculation. They use a technique similar
to motion graphs to precalculate a set of motion samples. Motion graphs
essentially are directed graphs of animation states with predefined transitions
depending on varying input. Re-sequencing these samples at runtime gives
a controllable and directable goal-based motion, but of course the variety of
results is limited to the number of precalculated shapes.

Diener et al. [17] also base their work on modal analysis. Instead of fully
evaluating the modal shapes each frame – like Stam does – they pre-calculate
a set of modes offline for a given wind basis. The modal shapes are updated

Chapter 4. State of the Art on Plant Animation 50

each frame on the GPU in a pixel shader with one set of modes per tree
instance. This allows changing the wind direction in real time for a large
number of trees in a scene. A LOD approach is used to reduce the number of
modes for farther-away trees to only the largest deflections. So, only branches
are animated and leaves are simply dragged along by them. However, as with
Stam’s technique, high frequency oscillations cannot be fully captured with
the precomputed modal shapes. The method also shares the limitations of
skeletal tree animation methods, and does not animate leaves. Results from
Diener’s method can be seen in Figure 4.5.

Fig. 4.5: A tree and a forest scene animated by Diener et al. Their approach builds
on modal analysis and allows animating a large number of trees on the GPU only.

4.2.3 Heuristic Models

Heuristic animation systems do not try to simulate the motion of branches as
correctly as possible, but instead try to emulate the appearance of movement
using noise functions. Ota et al. [52] use noise functions to drive the rotation
of branches. A spring model is used to make branches sway when reacting
to incoming wind. This leads to a correlated motion behavior of similar
branches, but the resonance frequencies of the branches are not considered.
Ota’s approach only models turbulent wind. Strong directional wind is not
taken into account. Results from Ota’s method can be seen in Figure 4.6.

4.3 A Vertex-based Method

A completely different approach was taken by Sousa [67] in 2007. The system
was developed primarily for the use in the computer game “Crysis” [26], so
the aim was to provide a very fast and efficient animation solution. Physical
foundations or stochastic observations of real vegetation were not a priority.
This approach is particularly interesting because it was created with the
aim to be extremely efficient on resources and memory. Hundreds of plants

Chapter 4. State of the Art on Plant Animation 51

Fig. 4.6: A tree animated by Ota’s method. Only a small number of branches is
present because animation is bound to rotation of individual joints on the CPU.

can be visible at once so even the most simple skeletal animation system
proves to be too expensive to be evaluated per plant. A simple vertex-based
method was found that can be executed solely in the vertex shader without
any additional CPU calculations.

4.3.1 Vertex Displacement

The complexity of the animation system is very limited because information
on how to animate a vertex is local to it and no information about adjacent
vertices or a full hierarchy structure is available. In Sousa’s method vertices
are only displaced along the XZ plane depending on wind strength, wind
direction and a weighting factor, and the free ends of branches or large leaves
are displaced along the Y axis (assuming Y points upwards) [67]. Only vertex
positions are modifed. Normals and tangents can not be recalculated because
no vertex adjacency information is available and no coordinate frame can be
constructed to rotate them.

The amplitude of this displacement is specified as a modulation factor
set on a per-vertex level manually by an artist. The animation frequency is
constant for a plant and is only modulated by a global wind strength. While
having an artist fine-tuning the parameters for each branch and each leaf
helps creating a convincing animation from such simple input, it is also a
very tedious and time-consuming process.

4.3.2 Animation

Sousa has no detailed information about turbulent wind at all. Wind is
only treated as an intensity curve with lookup values changing every frame.
The curve is constructed from a constant set of multiple triangular waves
which are evaluated and their results smoothed out in the vertex shader.
The curves are defined by hand and are guaranteed to repeat periodically.
To avoid having all branches and leaves in a plant move in the same fashion,

Chapter 4. State of the Art on Plant Animation 52

an additional offset value is introduced per vertex to displace the lookup
in the curve. This offset is also set by hand and should be uniform per
branch to retain coherent motion. Additionally, a global offset is randomly
assigned to each plant instance to avoid all plants in the scene performing the
same animation at once. The amplitude of motion depends linearly on wind
strength and is varied each frame to avoid an obvious periodic repetition of
motion. Wind direction is modeled separately by shearing the whole plant
into the direction of the wind vector with the amplitude varying over time
to add variation.

Obviously the shear motion in XZ direction and swaying limited to the
Y axis makes this model impractical to animate complex broad-leaf trees
with multiple hierarchical levels of branches, but it is suitable for trees with
long trunks and the treetop distributed mainly on top of it. The animation
model is used predominantly for jungle trees and palm trees, for which this
is the case. Figure 4.7 shows a palm tree animated by this method.

Fig. 4.7: A tree animated by Sousa’s approach. The whole tree is sheared along
the XZ plane and the large palm leaves move up and down on the Y axis.

The model was also expanded to work together with a skeletal system of
mass springs which were applied to the larger first-level branches of bushes
near the viewer. This allows the branches of bushes to be rotated away
from characters moving through the environment and bounce back after the
character leaves. Still, the animation system is fast enough for real-time
animation of a large number of vegetation objects while leaving enough re-
sources for advanced shading effects, real-time illumination and game logic
calculations on the CPU.

One big advantage of this method is that it scales linearly with the number
of vertices and not with the number of branches in the mesh (which are
organized hierarchically and therefore are more expensive to evaluate). This
is why a vertex-based animation system was deemed the most useful method
to animate a complex highly detailed tree with thousands of branches and was

Chapter 4. State of the Art on Plant Animation 53

adopted by the algorithm described in this thesis. Also a method evaluated
in the vertex shader is obviously well suited to animate a large number of
individual leaves. As the number of vertices can be scaled with LOD (level-
of-detail) techniques, it is possible to use the same animation complexity
for a highly detailed tree with thousands of individual branches and for a
far-away simplified billboard-cloud version which may have only one or two
levels of hierarchy represented at all. Of course, many additions and extensive
precalculations have been added to increase the complexity of the animation
system. The algorithm is described in the following chapter.

Chapter 5

A Physically Guided Real-Time
Vegetation Animation Algorithm

This chapter describes an algorithm designed to animate vegetation in a real-
time environment based on physical foundations. The runtime component
of the algorithm is executed in a vertex shader, therefore it can be easily
integrated in any modern rendering system. No additional computations on
the CPU are required. Thus, rendering cost scales linearly with the number of
vertices and independently of the branch structure complexity, which works
well with LOD (level-of-detail) techniques ubiquitously present in outdoor
scene rendering. All precalculations of necessary data are done offline in
separate tools. Tree geometry created by standard tree generation tools
like XFrog [28] or natFX [6] can be processed automatically without any
additional user input.

The algorithm was designed with multiple goals in mind:

• First of all, it should be independent of the complexity of the underlying
tree structure. A local per-vertex model was chosen so the number of
branches in a tree does not impact performance. High-detailed tree
meshes with thousands of branches can be animated the same way as
simple billboard clouds for far-away LODs.

• Non-linear bending of branches has to be possible. When affected by
wind, branches do not stay rigid but are bent according to their physical
properties.

• Since individual leaves can be rendered at high detail they should be
animated individually, too.

• Finally it should be easy for an artist to tweak the animation at run-
time without the need of tedious recalculations. A set of meaningful
parameters is defined which allows easy fine-tuning of the appearance
of the animation.

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 55

Figure 5.1 shows an animation sequence for slight and strong wind.

Fig. 5.1: An animation sequence for slight wind (top) and strong wind (bottom).
Non-linear deflection is noticeable on the lower left branch.

5.1 Overview

The algorithm described in this chapter was designed to animate complex
highly detailed tree meshes under real-time constraints without posing a
signifcant load on the CPU or GPU side. The runtime component of the
algorithm is executed entirely in the vertex shader, thus removing all load
from the CPU. A localized per-vertex model is used to stay independent
of the number of branches in the mesh and also allows animating each leaf
individually. Additionally each branch is modeled as a tapered cylinder based
on a structural mechanics model to enable non-linear deflection. This allows
the free ends of branches to react stronger to wind than the thicker inner
parts and creates a more convincing motion.

The Euler-Bernoulli beam model is used to calculate the deflection of
branches. The standard model only calculates a deflection along one axis,
effectively creating a shearing motion. Length correction has to be applied to
transform the shear into a rotational bend. Section 5.2 describes the details
of this model and how it is integrated into the animation algorithm.

Section 5.3 deals with preprocessing of the underlying data which is
needed to animate a tree at runtime. Data generation is done offline so
the data has to be stored and retrieved at runtime.

The stochastic wind and animation model is discussed in Section 5.4.
Wind is stored as a set of two-dimensional noise functions in the frequency
domain. Turbulent wind is modeled as a power spectrum regarding the oscil-
lation frequencies of branches and calculated from wind and branch proper-
ties. The intensity and frequency of motion also depends on wind strength:

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 56

Slight and medium wind is enough to move small branches and leaves but
only strong wind is able to bend a whole tree into one direction. Directional
wind is integrated into the animation algorithm separately.

Finally, Section 5.5 describes how all of these parts work together at run-
time to calculate branch motion on a frame-by-frame basis without the need
of knowledge about previous or following animation states. A set of param-
eters is introduced which allows an artist to efficiently adjust the animation.

5.2 Modeling Branches as Tapered Cylinders

Commonly, branches are treated as elastic cylinders of uniform material that
bend to incoming wind [1, 52]. But branches are usually not of the same
thickness along their whole length and get thinner at their free ends instead.
This tapering leads to the free ends of branches reacting stronger to incoming
wind and being deflected to a larger degree. Contrary to standard models
that transform the whole branch uniformly [1, 52, 60], a non-uniform bending
has to be found that takes the varying local thickness along the branch into
account. The Euler-Bernoulli beam model was chosen, which describes the
deflection of long thin elastic cylinders of homogeneous material and can be
used to calculate a displacement value for each point on the beam.

The characteristics of this model allow a simplification which is fast to
evaluate in the vertex shader but still yields virtually exact results. Also,
large deflections due to strong wind have to be accounted for to avoid over-
stretching of the beam, because the Euler-Bernoulli beam model only de-
scribes a translation along the beam normal’s plane. This leads to a shear
motion, so points need to be corrected in length by moving them back to-
wards the branch base point to retain the original length.

5.2.1 The Euler-Bernoulli Beam Model

The Euler-Bernoulli beam model is a structural mechanics model describing
the deflection of a beam of uniform material according to a transversal force.
It is a simplification of the linear theory of elasticity that yields reasonably
close results for long thin beams of a length-to-thickness ratio of at least
15 : 1. This model is therefore well suited for branches [72]. The Euler-
Bernoulli differential equation is written as:

F =
∂2

∂x2
(EI(x)

∂2u(x)

∂x2
) (5.1)

with u(x) being the unknown deflection of the beam, F the transversal

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 57

force applied to the beam, I being the area moment of inertia and E the
elastic modulus, which is assumed to be constant.

In this thesis a branch is treated as a linearly tapered circular beam which
is defined by its length L and the radii s1, s2 at the base point and the free
end. Figure 5.2 illustrates the beam model.

Fig. 5.2: A branch is considered to be a tapered cylinder of length L and the radii
s1 at the base point and s2 at the free end. Image courtesy of Ralf Habel [30].

Boundary conditions can be defined because each branch is known to
be fixed at its base point. Also, the length is normalized to 1 with the radii
rescaled to r1, r2 and E ′ being the rescaled elastic modulus. The area moment
of inertia is a function of the radius r at each given point with I = πr4/4.

The beam is assumed to taper linearly along its length. The taper ratio α
is defined as r2/r1. This allows an analytical solution to the equation, which
still consists of a large number of terms and is therefore not well suited to be
evaluated in a vertex shader directly. According to Habel et al. [30] the full
equation is:

u(x) =
E ′F

r4
1

(
x(α− 1)(6 + x(α− 1)(2x(α− 1)(3 + (α− 3)α)

+ 3(4 + (α− 2)α)))− 6(1 + x(α− 1))2 log (1 + x(α− 1))
)

·
(
3π(1 + x(α− 1))2(α− 1)4

)−1
. (5.2)

An important point is that while the radius of the beam thins linearly
along the length, the deflection is a quartic function of the local radius. Also,
the transversal force F affects the solution linearly, resulting in a direct
proportional relationship of incoming force and resulting deflection. This
allows the use of wind strength to scale the deflection amplitude linearly.
The base point radius influences the deflection with r1

−4 [30].

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 58

So instead of evaluating the full equation in the vertex shader, a linear
least squares fit is found, with the polynomal form:

u(x) = c2x
2 + c4x

4 (5.3)

The taper ratio α, the rescaled elasticity modulus E ′ and the base point
radius r1 are baked into the coefficients c2 and c4. As the length is normalized,
x ranges from 0 to 1.

Figure 5.3 illustrates how different taper ratios affect the deflection along
the normalized length of a beam. An untapered beam with α = 1, as is
often used by structural element models to approximate branch motion [1,
52, 62], results in an almost linear deflection, which is far from what can be
observed in nature. A quadric relationship between length and deflection can
be observed with tapered branches. A comparison of the full Euler-Bernoulli
solution to the least square fit approximations shows that the results are
virtually exact for taper ratios above 0.1, with the error already below 0.2%
and decreasing further with the ratio increasing [30]. A detailed discussion
of fitting the Euler-Bernoulli beam model into a least squares approximation
can be found in [30].

Fig. 5.3: Different taper ratios α result in different deflection intensity values u(x)
along the branch length x. Image courtesy of Ralf Habel [30].

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 59

5.2.2 Length Correction

The Euler-Bernoulli beam model works well for deflections with an amplitude
smaller than 1/4 of the beam length. Simply shearing the points results in
stretching of branches. Figure 5.4 illustrates the difference between a simple
shear transform and a length-corrected rotational bend. The distance of a
vertex to the branch base point has to be preserved. An exact solution would
require solving an elliptical integral [7] as branch bending is continuous. This
integral can not be formulated explicitly so it cannot be solved in the vertex
shader [30].

Fig. 5.4: A branch is deflected by a force along its normal. The difference between a
simple shear along the branch normal (left) and a length-corrected bending motion
(right) becomes clear at increasing deflection amplitudes.

By moving the deflected vertex back towards the base point along the
branch tangent, the shear transform can effectively be converted into a rota-
tion. The amplitude of the deflection is used to linearly scale the length of the
vector to displace the vertex back along the tangent. Due to the fact that
the deflection is essentially a quadratic function, the linear approximation
still yields results close to a correct solution [30].

5.3 Generation of Animation Data

Most of the animation data is precomputed once for a tree mesh and then
loaded at runtime. The main components of preprocessing are identifying
branches in a tree mesh, assigning animation weights and properties to each
branch and linking each vertex to a branch. Additionally, a hierarchical
structure is built to store the relationships of branches. It is not possible
to create correlated branch movement without such a structure, as many
publications show [1, 52, 60]. The hierarchical structure of a tree mesh can
be obtained without the need of user input or additional outside information
like an existing joint structure.

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 60

Preprocessed data is stored either directly in the vertex stream in the
case of per-vertex data, or in a separate texture in the case of per-branch
data, which is then sampled as needed in the vertex shader. Data which is
constant for a tree or only needed on a per-hierarchy level is stored in shader
constants. Precomputation is divided in two steps: First information for
the branch geometry is gathered and evaulated, and in a second step, it is
propagated to the leaf geometry.

5.3.1 Hierarchical Structure

The animation algorithm described in this thesis is based on a hierarchy
of individual branches. The hierarchy is used to propagate deformations
from each level of hierarchy down to the next, similar to existing structural
elements models [1, 60]. Because a per-vertex model is used, a branch does
not have to stay rigid during animation. Motion is realized by bending a
branch along ~r and ~s in local branch space. ~r, ~s and the principal axis ~t of
the branch form an orthogonal space, which is illustrated in Figure 5.5.

Fig. 5.5: The local orthogonal space for each branch, created from ~s (red), ~r (green)
and the principal axis ~t along the branch (blue).

The amount of deflection is calculated by evaluating the Euler-Bernoulli
beam model, which was discussed in Section 5.2. The whole branch is as-
sumed to have homogeneous physical properties, but varying thickness results

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 61

in highly non-linear bending.

5.3.2 Branch Identification

The first step to generate animation data is identifying individual branches
in the tree mesh. It is assumed that branch geometry and leaf geometry
are already separated as two meshes, since they have to be rendered with
different shaders anyway. This already complies to the way natFX [6] or
XFrog [28] generate trees. However, if the meshes are not split yet, this can
be done easily by assuming that disjointed flat quads are leaves (or billboards
in a billboard cloud) while larger connected polygonal objects belong to the
branch mesh.

Tree generation packages usually create trees by placing a cylindrical
structure as a trunk, and then adding additional smaller cylinders rotated
away from it for branches, with distribution and rescaling normally bound to
the golden section. This process is recursively repeated until a desired level
of sub-branches is reached and the algorithm stops. The number of segments
of each cylinder is determined according to its thickness and length. Indi-
vidual segments along the length can be displaced to create a more natural
grown look. Additional computational tasks could be performed to ensure
that no branches intersect each other, that they bend towards the light and
of course that the whole tree has a balanced shape. However, the individual
cylinders are usually not interconnected. This allows considering each en-
closed polygonal shape to be one branch, as can be seen in Figure 5.6. Of
course, existing joint data coming from a tree generation package could also
be used to identify branches and their hierarchical structure.

5.3.3 Per Branch Data Generation

The polygonal object forming a branch is usually a cylinder. Sometimes the
polygonal shape is closed at the free branch end. This facilitates finding
the base, which is a circular border at the thicker end of the cylinder. The
center of the base is called the “base point”. The principal axis and length
of the branch can then be determined from a vector from the base point to
the far end of the cylinder. Similarly, thickness is calculated from the largest
distance of a pair of vertices at the base.

The normal is found by normalizing a vector from the base point to
any base vertex. Branch space is then calculated from orthogonalizing the
principal axis ~t, ~r and ~s. Branch space is illustrated in Figure 5.5 and is
needed for all hierarchical deformations.

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 62

Fig. 5.6: Branches are constructed from separate tapered cylinders. Each polygo-
nal shape is considered to be an individual branch.

Additionally a random offset value is calculated which is used for lookups
in the noise texture when the branch has to be animated. This is needed
so that each branch is sampled at a different position in the noise texture
during animation. This is discussed in detail in Section 5.5.1. Changing the
lookup position leads to different motion vectors for each branch with the
overall amplitude and frequency of branch movement staying the same for
all elements of one hierarchy level, as this is encoded into the noise texture
itsef.

5.3.4 Hierarchy Computation

A hierarchical structure has to be calculated from a loose number of branches.
The thickest branch is assumed to be the trunk, and assigned hierarchy level
0. Going on from there all sub-branches have to be identified, which are
branches with geometry intersecting the trunk’s geometry. It is safe to as-
sume that child branches have to intersect the parent geometry because oth-
erwise visible holes in the tree mesh would be present. If branches are ordered
by their thickness, then the parent branch can be found easily by looking for
a vertex whose branch is already assigned a hierarchy level and that is closest
to the base point of the current branch. Obviously, if a custom tree generator
is used then the data needed to build the tree geometry in the first place can
be directly used to store branch information and the hierarchical structure.
The process is repeated recursively until all branches have a parent and a

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 63

hierarchy level assigned to them. Of course, a maximum hierarchy level can
be defined, in which case all child branches simply adopt the level of their
parent instead of increasing it. The approach presented in this thesis stops
at 4 levels of hierarchy, because that number fits perfectly into a 4-coordinate
vector attribute in the vertex stream.

It was found that for a tree generated by Xfrog [28] with approximately
1500 branches, 4 levels of hierarchy suffice to assign a hierarchy level to all
branches of the mesh. The majority of branches (about 1200) are already
in the fourth level, so the geometric detail of the mesh is already very high.
Also, leaves attached to these fourth-level twigs create an enclosed dense
volume that forms the treetop without the need to add any additional levels
of hierarchy for a more convincing animation.

The data generated for all branches including the parent relationships
are encoded into a texture called the “branch data texture”. This texture is
unique for each tree mesh, and has to be loaded into the vertex shader. Each
branch is stored in a column of the texture with branch space vectors, offset
values and the parent index stored in texels beneath each other.

5.3.5 Per Vertex Data Generation

Most data is consistent per branch. But in order to apply a non-linear
deflection, a value is necessary to store the deflection intensity for each vertex
on the branch. The intensity can be calculated by evaluating the Euler-
Bernoulli beam model for the local thickness at the vertex position.

For a start, the weight values are distributed linearly along the length
of a branch. Values are normalized to the range of [0, 1] with 0 at the base
end and 1 at the free end. If these values were used directly as deflection
modulators, a linear bending of the branch would be achieved. This behavior
corresponds to the shearing of structural elements operating only on the
branch level [1, 52, 60]. But a structural mechanics model is used instead,
which takes the weight values as an input and outputs a non-linear deflection
corresponding to the physical properties of the branch. A least squares fit of
the Euler-Bernoulli beam model is used with the physical properties encoded
into c2 and c4 (These coefficients are discussed in detail in Section 5.2).

Since all information on how to animate a vertex must be accessible within
the vertex shader, it is necessary to not only store the weight of the vertex
of the current branch, but a whole hierarchy of up to 4 weights is kept in a
four-component vector attribute in the vertex stream. Additionally, an index
value to the current branch is stored as a float vector attribute. This allows
looking up branch information in the branch data texture for the given index.
As a next step the hierarchy of parent branches is reconstructed from the

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 64

branch data texture. This enables the evaluation of the whole hierarchy on
a per-vertex level. The weights for all unused hierarchy levels are simply set
to 0, thereby eliminating their contribution to the final vertex displacement
calculation.

5.3.6 Propagation of Animation Data through Hierarchy

Weights have to be transferred from vertices on any branch down to the
branches of the lower hierarchy levels. This is necessary to keep the hierar-
chical nature of the animation, displacing sub-branches together with their
parent. Propagating weights is the last step of animation data generation for
branches.

The hierarchical relationship for all branches is known, so to obtain
weighting information, the vertex on the parent branch nearest to the lo-
cal base point has to be found. Its weights are transferred to all vertices of
the local branch and all sub-branches. With trees generated by natFX [6]
or XFrog [28], child branches always emanate directly from segment edges
along the cylinder, so the values of the nearest vertex can be taken directly.
Of course, a bilinear weighting of the nearest parent vertices has to be used
if child branches could be spawned at any position alongside a cylinder seg-
ment. In any case, the inherited weights have to correspond with the local
weighting on the parent branch. Figure 5.7 illustrates how weights are propa-
gated from the trunk down two levels of hierarchy, always keeping the weight
values of the parent levels and adding a new weight for the next hierarchy
level.

5.3.7 Propagation of Branch Animation Data to Leaves

Finally, all animation information calculated for the branches of a tree is
propagated to the leaves to make them move together with the branches they
are attached to. A very simple approach is taken by finding the branch vertex
nearest to the leaf’s petiole position and inheriting its weights and branch
index onto all 4 vertices of the leaf. A unique animation model for leaves is
layered on top of branch movement at runtime instead of adding a fifth level of
hierarchy. This allows leaves not only to bend but also being twisted along the
petiole axis, as is described in Chapter 5.5.2. All necessary animation data
needed at runtime to perform this additional animation is taken directly from
the vertex position, texture coordinate, normal and tangent, so no additional
information has to be stored in the vertex stream. This makes preprocessing
for leaves very fast and straight-forward.

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 65

Fig. 5.7: Left: Weights are propagated from the trunk to a main branch and a sub-
level branch. Right: Weights on a tree represented as color values. Red indicates
the top hierarchy level, followed by green for main branches and blue for their
sub-branches.

5.3.8 Simplifications

All branches of one hierarchy level are assumed to be identical in respect to
their physical properties. This is a valid simplification for trees generated by
tree generation packages like natFX [6] or XFrog [28], because they usually
distribute child branches and leaves uniformly on a tree. This simplification
is necessary because only a limited number of noise textures can be used if
the system is to perform efficiently under real-time constraints. Oscillation
characteristics are baked into the noise texture upon calculation from an
average over all branches in a hierarchy level. The deflection amplitude is
modulated per branch in respect to its total length compared to the average
length of all branches on the hierarchy level. Randomly distributed offset
values ensure that different points in the noise texture are sampled for each
branch. Noise texture generation is discussed in detail in Section 5.4.

Weights could be adjusted individually depending on the actual branch
length and number of sub-branches. Frequency and amplitude modulators
could be calculated and stored in the branch data texture. However, it was
found that this level of precision is not necessary, especially since a stochastic
approach to animation is taken instead of a full simulation anyway, so a
convincing appearance of the animation is sufficient [52, 69].

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 66

5.3.9 Animation Data Granularity

In total there are 3 levels of granularity in the preprocessed animation data:

• Per tree: Animation frequencies and amplitudes are constant for all
branches in a tree. These values are set in a constant buffer in the
vertex shader and can therefore be easily tweaked at runtime by an
artist. Oscillation data is stored in a set of 4 noise textures, one for
each hierarchy level.

• Per branch: The local branch space consisting of the principal axis ~t
and the deflection vectors ~r and ~s has to be stored for each branch.
Branch space basis vectors are stored in object coordinates. The index
of the parent branch is stored, or 0 if there is no parent. Also a random
offset value is stored per branch to sample the noise textures from a
unique position and avoid uniform motion for all branches of a hierarchy
level.

This data is stored in a texture called the “branch data texture” with
each branch placed in a column and its attributes stored in the rows. It
is assumed that the number of branches does not exceed the maximum
number of texels allowed in a row by the GPU, which is 8192 at the
time of writing. Otherwise several rows of branches have to be stored
below each other, or a texture array has to be used. Part of a branch
data texture can be seen in Figure 5.8.

• Per vertex : An index value is stored on a per vertex level to identify
which branch the vertex belongs to, together with a hierarchy of 4
weights that scale the amplitude of branch deflection for each hierarchy
level. These values are written directly to the vertex stream. A total
of 5 vertex attributes are therefore needed to hold the information.

Fig. 5.8: Part of a branch data texture. Each column represents one branch. The
data layout is from top to bottom: branch indices (stored for the 4 hierarchy levels
in RGBA), noise texture offsets (stored for the 4 hierarchy levels in RGBA), ~r
vectors for 4 hierarchy levels, ~s vectors for 4 hierarchy levels.

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 67

The three levels of granularity are also illustrated in Table 5.1. To an-
imate the tree at runtime a global time value, noise textures to represent
wind and constant values to scale motion frequencies and amplitudes have
to be fed to the vertex shader. Details on generation of noise textures to
stochastically reproduce damped oscillation of branches can be found in the
next section. Finally, Section 5.5 describes how this animation data is used
to animate the tree on a frame-to-frame basis. Because the whole branch
hierarchy is available per vertex in the vertex shader and the transformation
stack can be built dynamically, no joint transformation matrices or simi-
lar calculations have to be performed per branch separately. Therefore this
method scales linearly with the number of vertices and independent of the
number of branches.

Per tree amplitudes, frequencies, motion textures

Per branch c2, c4, L, ~r, ~s,~t, noise texture lookup, parent branch index
Per vertex branch index, weights

Tab. 5.1: The three levels of animation data granularity.

5.4 Wind and Animation Model

Based on the work of Yung et al. [11], each branch is treated as a harmonic
oscillator. Yung suggests using 2D motion textures containing displacement
information to control the animation of branches swaying in wind. Con-
structing these textures in the frequency domain from a power spectrum
containing the wind force as well as the physical properties of a branch, and
then transforming the signal into time domain allows replicating the natural
look of branch motion, which shows characteristic oscillation frequencies but
also an aperiodic irregular movement. This complex behavior cannot be cap-
tured fully by simply superimposing sinus waves or smoothed triangle waves
atop each other, as Sousa [67] does. Yung generates one noise function per
tree, but for this thesis one noise texture is created per hierarchy level. Only
turbulent wind motion can be represented in this way, strong directional
wind is added separately as an additional deflection at runtime. Separating
the two forms of wind is similar to the approaches of Ota et al. [52] and
Sousa [67], representing wind as a combination of a noise function and a
global directional force.

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 68

5.4.1 Uncoupled Harmonic Oscillation

The algorithm presented in this thesis treats each branch as an uncoupled
harmonic oscillator, as Yung [11] does. A full simulation would have to
take the dependence of branches on their parents and children into account.
The relationships are of a very complex nature due to their dependence on
the number and distributions of sub-branches and leaves. Not only does
the number increase exponentially with every hierarchy level, but also the
total number of children varies for each branch, thereby prohibiting optimal
parallelization on the GPU. Also, wind becomes predominantly turbulent
when passing through a tree, hiding the principal wind direction for slight
or medium wind. All these complex effects are very expensive to evaluate.
Instead of fully evaluating this system, a branch is simply considered to move
with its parent’s frame, being dragged along by the parent motion. Due to
the predominantly turbulent nature of wind and the high complexity of the
model as well as wind being invisible to the naked eye it is hard for an observer
to actually see the difference between an uncoupled system of each branch
moving independently, but in a coherent manner, and a full simulation [52].

This algorithm represents wind as a power spectrum, because for slight or
medium wind no predominant wind direction can be observed directly. Even
for strong wind only the turbulent part is considered for precalculation of
motion data, while a directional force is superimposed as a separate step at
runtime. The model to calculate the power spectrum of wind, which was also
used by Yung, has been taken from Shirley and Chiu [63], with vm being the
mean wind velocity:

Pw(f) ∝ vm

(1 + f/vm)
5
3

(5.4)

5.4.2 Generating Noise Data

A stochastic approach is taken to generate noise data for branch motion
synthesis. The noise function should comply with the empirically evaluated
behavior of branch motion. This means that the resonance frequency of a
branch has to be found, which depends on its length and thickness and the
number of sub-branches and leaves attached to it as well as the elasticity of
wood.

The noise data is generated in frequency domain. A random Gaussian
field is created with the wind and the oscillator response functions defining
the power spectrum. Applying the inverse Fourier Transform yields the sig-
nal in time domain. A physically defined power spectrum is preferred over
other noise generation techniques like Perlin noise [54] because the resonance

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 69

frequencies and a wind power spectrum can be taken into account. This leads
to motion much closer to a full simulation than a purely heuristic approach.

Empirical data collected by Coder [12] is used to obtain the resonance
frequency of a branch. The frequency is calculated as 2.55L−0.59 with L being
the length of the branch. This value is only valid for broad leaf trees. Leafless
trees or conifers have approximately 2.5 times this frequency because there
is less surface area reacting to incoming wind.

5.4.3 2D Motion Textures

If a one-dimensional noise signal is created, then an individual signal is
needed for each branch because the noise function should remain aperiodic
so that motion of branches remains uncoupled and the resulting animation
is convincing. A 2D noise texture is created to solve these problems. A 2D
random Gaussian field and a 2D velocity spectrum are calculated. The power
spectrum being radially symmetric allows any trajectories leading through
the noise texture after transforming it into time domain to follow the defined
power spectrum. As long as a trajectory does not close onto itself, the sam-
pled signal remains aperiodic. This can be ensured by rejecting trajectories
if the ratio of the x and y coordinates of the trajectory vector is a rational
value. The resulting noise texture tiles seamlessly, so filtering outside the
area of [0, 1] still results in a coherent signal. Figure 5.9 shows an examplary
trajectory through a 2D noise texture.

Fig. 5.9: A trajectory through the noise texture, transferred into time domain. A
trajectory ensures that the sampled signal remains aperiodic. Image courtesy of
Ralf Habel [30].

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 70

Fortunately, all branches of one level of hierarchy can be assumed to have
roughly the same properties regarding their oscillation behavior. So instead
of generating a unique noise function for each branch, only one noise field
is generated for all branches of a hierarchy level. By setting an individual
trajectory for each branch it is guaranteed that a unique aperiodic motion
behavior can be extracted. The speed of movement along the trajectory is
varied according to the length of each branch, thus effectively modulating
the motion frequency.

Boundary conditions for the maximum and minimum frequency repre-
sented in the texture have to be set to retain smooth signals when crossing
over texture edges. Initially, when transforming into time domain, the high-
est frequency captured by the texture oscillates at a length of 2 texels. To
closely recreate this signal advanced sampling like sinc would have to be ap-
plied, but graphics hardware only allows bilinear filtering. The frequencies
are reduced by padding the signal with zeros, thus effectively smoothing it
over a larger area of texels in time domain to avoid sampling artifacts. A
minimum cycle length of 8 texels is set for the highest frequency to allow
a reasonable reconstruction with bilinear filtering. The lowest frequency al-
lowed has a cycle length of one fourth of the texture resolution. Details on
the generation of the noise textures can be found in [30].

5.4.4 Damping

Damping the oscillation is very important for believable branch motion. A
simple per-vertex approach like the one presented by Sousa [67] accounts
for damping by overlaying a set of smoothed-out triangular wave functions,
thus laying damping directly into the hands of an artist. However, in the
context of noise textures, damping is directly integrated into the generation
of the signal as a parameter together with mass and a natural oscillation
frequency [11].

Finding a correct damping value is crucial, because underdamped motion
results in the resonance frequency being dominant and overshadowing other
frequencies, while an overdamped oscillation hides the resonance frequency.
Figure 5.10 illustrates noise textures generated for the damped and over-
damped case. 1/fβ noise has a spectrum very close to the overdamped case
and is often used to model natural phenomena [52]. However, simple 1/fβ

noise does not account for damping effects coming from the physical prop-
erties of branches moving in wind: Branches must be able to hold up their
own weight, but also have the elasticity to withstand strong winds without
breaking. Moore and Maguire [48] suggest using a value in the slightly un-
derdamped region, with findings based on empirical measurements. Larger

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 71

branches however should be placed near the overdamped case to replicate the
behavior of withstanding stronger winds instead of oscillating to their own
frequency.

Fig. 5.10: The frequency distribution in noise textures for the damped (top) and
overdamped (bottom) case. The resonance frequency is a clearly visible bump in
the histogram of the damped case.

5.4.5 Limitations

One obvious drawback of a stochastical method in contrast to a full simu-
lation is the possibility of branches to intersect each other because they are
moving independently and no inter-connection is evaluated. However, when
looking at a tree influenced by wind, the larger branches which shape the
overall form of motion are usually at a safe distance from each other. On the
other hand, the oscillation frequency of small twigs, which are mostly prone
to intersection, is relativly high when compared to larger branches, so even
if an intersection should happen it would occur only for a few frames and
be hardly noticeable. Besides, usually a large number of leaves covers the
treetop, thus blocking the view to possible intersections.

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 72

Another drawback of a stochastic method is the inability to react to outer
environmental influences, for example surrounding objects limiting motion in
that direction. The only solution to solve exterior influences would be to de-
couple any affected branches from the stochastic evaluation, either by storing
them as a separate object altogether or by adding extra motion information
on a per-branch level. This could be achieved by writing data to the branch
data texture which contains all information needed to transform a branch at
runtime. Information in this texture is also looked up when evaluating the
hierarchy, so theoretically rotation or bending information could be added
to the texture data. However, of course this additional data still needs to be
calculated from an exterior simulation on the CPU and is therefore not fully
incorporated into the stochastic method.

5.5 Animating on a Frame-By-Frame Basis

Most of the data necessary for branch deflection is precalculated, but there
has to be input varying continuously each frame to create motion. Wind
and the oscillating motion of branches are represented as a two-dimensional
oscillation field and stored in noise textures, so animation can be applied
straight-forward by displacing sample positions in these textures each frame.
The data in the textures is guaranteed to correspond to the oscillating fre-
quencies of branch movement and repeat seamlessly along all possible trajec-
tories through texture space. Also the textures tile seamlessly when wrapping
lookups around the border, so animation values exiting the texture space of
[0, 1] stay valid.

Having deflection vectors readily at hand from the noise textures makes
calculation of the current animation step very fast and efficient. The only
input needed is a global time value, treated as an offset to displace lookup in
the noise texture. Increasing the offset continuously over time automatically
results in coherent animation. Modulating the speed of increase corresponds
linearly to an alteration of the animation frequency. Amplitudes can be
modulated independently from frequencies by scaling the deflection values
sampled from the noise texture.

5.5.1 Animating Branches

The branches of a tree should move in a correlated fashion while retaining
their hierarchical structure. Usually, an animation system similar to vertex
skinning [78, 1, 52, 60] is employed, which assigns a number of weights and
branch indices (usually called “joints” in the case of vertex skinning) to each

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 73

vertex. Joints are hierarchical structural elements which are usually trans-
formed by rotation. Due to their hierarchical nature each joint transforms all
its children with it. Vertex skinning normally has up to 4 joints influencing
the position of a vertex, with their weights summing up to 1. A weighted
average of these matrices is calculated which is then used to finally transform
the vertex position and normal. For this algorithm a hierarchy is encoded
into the 4 weights and one branch index instead of a list of independent
weights and joints, so the results are not averaged but displacements are
superimposed atop each other to obtain a hierarchical transformation.

When animating the branch vertex, all four hierarchy levels are evaluated
one after another directly in the vertex shader using the respective branch
indices and weights. If the vertex is located on an upper level in the hierarchy,
then the weights of the sub-levels are simply set to 0 to eliminate their
influence on the final displacement alltogether. Dynamic branching is used in
the vertex shader to speed up calculations for vertices in higher-up hierarchy
levels.

Obtaining animation information for a frame

The input driving the animation each frame is reduced to two amplitude mod-
ulators, scaling the deflection along the ~r and ~s vectors of a branch. These
values are sampled from the R and G channels of the noise texture. One
noise texture is available per level of hierarchy, because changes in branch
length and thickness result in different resonance frequencies and oscillation
behavior. These deflection values can be scaled at runtime by a modulation
value defined by an artist to tweak animation appearance. Figure 5.11 illus-
trates how branch deflections along ~r and ~s are combined to obtain the final
deflection.

The deflection is performed for each level in the branch hierarchy succes-
sively in order to create a hierarchical motion. The sample point in the noise
texture is determined by a fixed starting point and a time offset which changes
every frame, creating a trajectory through the noise texture and causing con-
tinuous oscillating motion. The starting point is chosen randomly per branch
when animation data is generated and stored in the branch data texture. The
time-dependent offset value is controlled by an artist to make branch motion
consistent with the desired oscillation behavior. Usually, smaller twigs oscil-
late faster than larger branches. The tree generation packages used to create
the meshes for the demo application of this thesis show a reduction of thick-
ness and length between two levels of hierarchy of factor 2. Therefore the
speed of traversal through the noise texture was doubled for each additional
level of hierarchy. The amplitude on the other hand decreases with each

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 74

Fig. 5.11: The deflections along the ~r vector (top left) and the ~s vector (top right)
are combined into the final deflection (bottom).

level, as branches become shorter and large absolute amplitude values would
lead to over-bending and distortion. All of these values are transferred to the
GPU as constants in the vertex shader and can be easily changed at runtime.

Modeling Wind Direction and Wind Strength

Sampling the noise textures to deflect branches only accounts for turbulent
wind. Small twigs start to move even at slight wind, where turbulence is the
predominant factor. Deflection mostly seems erratic and no clear wind direc-
tion can be observed from it. Only strong wind is able to bend even thicker
branches into the direction of the wind, thus making the direction visible
indirectly from bending. This effect has to be encoded into the animation
system as well.

Wind direction is modeled as a 3D vector in world space. Branch space
is defined by a principal axis along the branch, and 2 orthogonal vectors ~r

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 75

and ~s in the tree’s object space. Transferring the wind direction into object
space allows calculating the influence of directional wind on each of these
two axes by calculating the dot product of the wind direction vector and
the corresponding branch vector. The length of the wind direction vector
corresponds to the desired impact of directional wind onto the final bending
appearance and usually depends linearly on wind strength. ~r and ~s are
assumed to be normalized. Thus, evaluation of the dot product results in
branches orthogonal to the wind direction being influenced significantly more
than branches headed parallel to the wind direction, with the maximum
being the wind direction vector’s length. Negative results of the dot product
are also valid because they are needed to bend a branch into the opposite
direction.

The result of the dot products is added onto the two swaying amplitudes
along ~r and ~s originally emanating from noise texture lookups, thus increas-
ing the deflection into the direction of the wind. The swaying frequency
remains unaffected. The importance of re-scaling the length of a branch be-
comes clearly visible especially with stronger wind when branches would be
elongated if simply sheared into the wind direction. Also, since turbulent
wind still is present in the calculations, branches do not point into wind di-
rection permanently but bend into other directions as well. However, the
main wind direction becomes clearly visible for strong wind.

Wind strength for turbulent wind is modeled as a simple scalar value
which directly modulates the amplitude of deflection. The influence of wind
strength increases with each level of hierarchy so smaller twigs are influenced
by even slight wind. Since thickness and length of each hierarchy level are
found to be roughly half of the next upper level the influence is increasing
by a factor of 2.

5.5.2 Animating Individual Leaves

Each leaf should react individually to wind in addition to moving with the
branch it is attached to. As can be seen in nature, already small gusts
of wind make leaves move erratically in different directions uncoupled from
wind direction similar to the behavior of small twigs. Leaves are much lighter
and have a larger surface area to capture incoming wind, so their oscillation
frequencies are even higher. Also, leaves bend in different angles and are
twisted around the petiole axis, resulting in a torsion. (This behavior of
course only applies to broad leaf trees.) Leaves which are close together
spatially are expected to move at a similar frequency and intensity, although
not necessarily in the same direction. As a gust of wind moves through the
tree it is expected to influence the leaves one after the other, so the wind

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 76

direction can be tracked indirectly by watching waves of leaf motion moving
through the treetop.

A unique model for leaf animation is used to capture this behavior instead
of just adding an additional branch hierarchy level. The leaf’s tangent space,
texture coordinate values and vertex positions are used directly for a simple
animation approach. Using the vertex position as an input value complies
ideally with the effect of nearby leaves moving in a correlated fashion.

Motion is divided into lateral motion with vertices being displaced along
the tangent or normal vectors, and a rotational torsion with vertices ro-
tated around the petiole. Calculation of the rotation components is straight-
forward if the petiole is assumed to be at the center of the leaf texture.
Figure 5.12 illustrates torsion along the normal and tangent vectors.

Fig. 5.12: The end points of leaves are displaced along the normal and tangent,
resulting in a torsion. Image courtesy of Ralf Habel [30].

Obtaining Animation Information for Each Frame

An additional cube noise texture is used for leaf animation, and the x, y and
z coordinates of the leaf vertex position are used as weighted sampling coor-
dinates in the texture. The lookup is displaced by the wind direction vector
scaled over time, effectively moving the noise texture through the treetop
over time continuously. Similar to handling branch motion, the texture is
filtered to avoid too high frequencies, which would cause the individual ver-
tices of one leaf to behave too differently. In the noise texture the maximum
frequency takes 8 pixels for one oscillation. The three individual degrees of

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 77

motion are stored as RGB values in the noise texture. The R and G channels
hold information for lateral movement along the tangent and normal plane
of the leaf, and torsion is stored in the B channel. Although this approach
is quite simple, it produces satisfactory results. One reason is that leaves
are already moving with the branches, so the noise texture lookups are al-
ready pre-displaced by a modified vertex starting position. This effectively
avoids a homogeneous motion rolling through the tree top, which could be
witnessed if the branches stayed absolutely still. Additionally, since slightly
different noise texture samples are taken for each vertex of a leaf, the leaves
automatically bend and twist in a believable manner and do not remain rigid.

Of course this approach could also be expanded to leaves of higher geo-
metrical detail as the motion texture still is filtered uniformly over the area
of a leaf. The animation of a leaf remains consistent as long as its size stays
inside the texture space area associated with the highest frequency.

5.5.3 Intuitive Parameter Set

Amplitude and frequency for branches and leaves are the values which shape
the appearance of the animation. The noise textures on the other hand could
be re-used for similar types of trees which have roughly the same oscillation
characteristics. Motion amplitudes and frequencies are found by experimen-
tation, starting with values from Coder [12]. Because they are only used
as modulation input in the vertex shader, these values can be changed at
runtime each frame which makes tweaking fast and easy.

• A change in amplitude is simply a multiplication factor for the amount
of deflection, thus directly influencing the amount of vertex displace-
ment. This corresponds to u in the Euler-Bernoulli beam model seen
in Section 5.2.

• A change in frequency modulates the speed at which the offset value is
increased each frame for noise texture lookups. This correlates linearly
to the speed of branch swaying.

Besides an amplitude and frequency value associated with branches and
leaves there is of course wind direction and wind strength. Wind strength
again modulates the trajectory speed in the noise texture, and wind direction
is used for the directional wind component of the algorithm only. These are
all the values needed to modulate the appearance of the animation. The
parameter set stays small and intuitive, as changes can be made and observed
at runtime. Also changes to the individual levels of hierarchy stay local to
that level, so animation properties for each level can be changed without

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 78

influencing the overall appearance of the animation. Figure 5.13 illustrates
a GUI to modify all these parameters in real-time.

Fig. 5.13: A GUI to change all parameters influencing the animation behavior at
runtime.

Of course, an additional variation has to be accounted for if a larger
number of trees is to be rendered at once. An offset value for noise texture
lookup can be added per tree to increase the variety of the perceived ani-
mation. Also, an additional “global” wind noise texture could be used and
moved along the XZ plane in wind direction to modulate wind direction and
strength for each tree over time in a coherent fashion.

5.5.4 Scalable Complexity

The complexity of the animation system can be scaled according to the de-
sired precision to save rendering time. This is especially important if this
technique is to be combined with an LOD approach where far-away trees do
not need full shading or animation detail.

The model proposed in this thesis displaces not only the vertex position
like Sousa [67] does, but also rotates the vertex normal and tangent to retain

Chapter 5. A Physically Guided Real-Time Vegetation Animation Algorithm 79

an orthogonal tangent space necessary for advanced per-pixel lighting cal-
culations. If a tree is farther away from the viewpoint and does not need a
complex per-pixel illumination model, then it is also feasible to ignore normal
and tangent transformations. Besides, motion amplitudes are small values
and vertex displacement stays on a small scale with slight or medium wind.
Normal rotation therefore would also remain at a few degrees, thus making
missing tangent space corrections possibly not visible at all.

Another possible simplification is the reduction of the number of hierar-
chy levels. If no small twigs on the fourth hierarchy level are rendered at
all, for example because they are already baked into billboard clouds, then
there is no need to store branch indices and weight values for these hierarchy
levels. Reducing the amount of data stored for a vertex in the vertex stream
additionally makes caching on the GPU more effective. About 30 ALU in-
structions in the vertex shader are needed per hierarchy level to calculate
transformations including normal and tangent rotation, so simply reducing
the number of evaluated levels of hierarchy already reduces work in the vertex
shader.

Chapter 6

Implementation and Results

6.1 Overview

A DirectX 10 proof-of-concept implementation was created to show that
trees of a high level of detail can be rendered and animated in real time
by the methods proposed in this thesis. The implementation uses state-of-
the-art rendering techniques. The whole scene is rendered in HDR (High
Dynamic Range) and then tonemapped to the RGB color range. Bloom
is used to create the effect of overbright spots in the image bleeding out to
other regions, and light shafts are included to enhance the visual depth of the
image. The modular approach of a strict separation of offline preprocessing
wih specialized tools and a runtime system only based on vertex and pixel
shaders makes adaptation of the techniques to any modern shader-based
rendering pipeline easy and straight-forward.

Section 6.2 deals with obtaining tree data and how it was preprocessed
to be loaded by the demo application.

The pipeline of the demo application is described in detail in Section 6.3.
The individual steps taken to render a frame and how they are combined is
discussed in detail in this section.

Finally, rendering statistics and performance characteristics are presented
in Section 6.4. These numbers indicate that all of the advanced techniques
presented in this thesis can be integrated into a full rendering pipeline to run
at 60 frames per second. The techniques were also tested on a larger number
of trees, up to 100 visible at once.

6.2 Tree Import and Data Processing

As a first step, a tree model has to be generated. The tree generation package
XFrog [28] was employed to create a tree mesh in Autodesk Maya [3]. Only
vertex positions, normals and texture coordinates are exported from Maya.
A separate tool is used to calculate the tangent space and process the per-

Chapter 6. Implementation and Results 81

vertex ambient occlusion data. Animation data is created offline by the demo
application if necessary.

All information needed at runtime is loaded from a “tree definition file”,
which is basically an INI file holding all data for rendering and animation
parameters. This includes links to tree geometry, animation data and tex-
tures for leaves and branches. It is easy to integrate new trees by writing
new tree definition files and then loading them into the demo application at
runtime.

6.2.1 Tree Generation in Autodesk Maya

XFrog [28] was used to generate trees in Autodesk Maya [3]. The selected
level of detail includes 4 levels of hierarchy for the branching structure and
leaves represented as textured quads. Two different tree models were gener-
ated to test different performance characteristics for smaller trees with very
dense treetops and larger trees with fewer but larger leaves and a sparse tree-
top. The generated models have approximately 70,000 triangles and 100,000
vertices each. Both trees feature over 10,000 leaves. Leaves are individual
textured quads, but obviously a tree generation package like XFrog would
be suited to generate a series of LODs (levels of detail) and integrate them
into the data generation pipeline. However, LOD techniques are beyond the
scope of this thesis and most of the time only one tree is rendered at close
distance to observe rendering and animation details.

The models were exported in OBJ file format, so geometry is stored
as lists of triangles. Branch geometry and leaves are stored as two separate
groups in the OBJ file. The human-readable OBJ format was chosen because
parsing is fast and straight-forward. Only the most basic information of
vertex positions, normals and texture coordinates are stored. This is all
data necessary, because tangent space can be easily calculated separately
and the per-vertex ambient occlusion has to be created with a specialized
tool anyway. Animation data also has to be calculated separately.

6.2.2 Tangent Space Generation

Tangent space is calculated in a spezialized tool. The positions and texture
coordinates coming from the OBJ file are used as input with the assumption
that textures are always mapped straight onto the geometry according to a
local right-handed coordinate system and not flipped along the u or v axis.
A Gram-Schmidt orthogonalization is performed to guarantee an orthogonal
tangent space even if the original texture coordinate distribution was not
uniform. An algorithm by Lengyel [38] was used to generate the tangent

Chapter 6. Implementation and Results 82

space. The data is finally written to another OBJ file containing one tangent
vector per vertex.

6.2.3 Ambient Occlusion Processing

Ambient occlusion calculation is performed by the GUPRT tool set which
was created by Ralf Habel to evaluate precomputed radiance transfer for
other research purposes [31]. The tool however also allows simple ambient
occlusion calculation and is able to take light transmittance coming from
the leaf translucency and HL2 maps into account. Evaluation is done on a
per-vertex level because the tree mesh is detailed enough to assume a sample
point for a range of at maximum 20 centimeters, which is sufficient precision
for ambient occlusion. Color values are linearly interpolated over the triangle
area upon rendering.

The GUPRT tool outputs the newly generated ambient occlusion colors
as an additional OBJ file.

6.2.4 Geometry File Format

After the previous steps, vertex geometry to represent one tree mesh is dis-
tributed among 3 OBJ files. One file stores vertex positions, normals and
texture coordinates, exported from Autodesk Maya [3]. Another file contains
tangent vectors, and the third one holds the color information for ambient
occlusion.

Geometry is now converted into a proprietary binary file format. Most
common existing geometry formats like FBX [2] store a set of individual
vertex indices for position data, normals data and texture coordinates of
each primitive vertex. While this reduces file size somewhat and may be
useful for 3D content creation tools like Autodesk Maya [3], it is not well
suited for real-time rendering. Graphics hardware demands only one index
per primitive vertex to render, and vertex data has to be located in one large
continuous buffer with data for all vertices lined up. So when using a file
format like FBX, mesh data has to be processed after loading to convert a
number of individual indices and individual data streams to one index per
primitive vertex and one continuous data stream.

The binary file format called VBO (for “Vertex Buffer Objects”, a term
from OpenGL equivalent to “Vertex Streams” in Direct3D) stores geometry
data directly in the required format. Vertex data can be loaded from the
file as one buffer and uploaded to the GPU directly without any additional
preprocessing. Data can be stored either as a list of individual streams for

Chapter 6. Implementation and Results 83

each vertex attribute or as one interleaved vertex stream containing all ver-
tex attributes and ordered by vertices. However, no noticeable performance
changes in the demo application could be found when switching from one
representation to the other.

The file format supports an arbitrary number of attributes per vertex,
with each attribute ranging from a one-dimensional float value to a four-
dimensional float vector. Each attribute is identified by a string name which
is used to bind the stream to an attribute in the vertex shader. This is done
when generating the vertex stream and uploading it to the GPU at load time.
Semantics, which are an integral part of the Direct3D FX format, are used
to match vertex attributes to shader input streams.

Additionally, one index stream for the whole VBO and the primitive type
to be rendered are stored in the file. Usually, primitives are a list of triangles
but triangle strips are supported as well.

6.2.5 Tree Definition Files

A tree is loaded into the demo application via a tree definition file. These are
human-readable INI files which contain all information necessary to render
and animate a tree. The data stored in a tree definition file is the following:

• Geometry : Information to the location of the VBO files for branch and
leaf geometry is stored in the tree definition. File locations are specified
for geometry with and without per-vertex animation data baked into
the vertex stream (see Section 5.3 for which data is stored per vertex). If
the vertex streams containing animation data are not found on the hard
disk then they are automatically calculated from the static geometry
when the tree definition file is loaded. The newly created vertex streams
as well as the branch data texture are saved to the file locations specified
in the tree definition file.

• Animation data: The location of the branch data texture and a set of
noise textures are stored as well as a set of constants that define initial
branch and leaf deflection amplitudes and frequencies. These constants
can be changed at runtime via a GUI to tweak the appearance of the
animation.

• Textures : A set of textures to render leaves and branches is specified.
This data set consists of the 8 textures necessary to render a leaf with
advanced translucency and a set of an albedo map, a normal map and
a displacement map for the branches.

Chapter 6. Implementation and Results 84

• Lighting : Lighting constants for scaling of ambient, diffuse, specular
and translucent terms of branches and leaves are also specified ex-
plicitely to fine-tune the appearance of different types of trees.

6.2.6 Animation Data Generation

The noise textures are created in a custom tool which takes the average
thickness and length of a branch as input and outputs a 2D noise texture.
A set of noise textures is created from this tool with input values for each
hierarchy level taken directly from XFrog [28]. This guarantees that the
oscillation characteristics generated in the noise textures always match the
underlying geometry data.

Per-vertex data is stored directly in a vertex stream. Generation of per-
vertex and per-branch animation data is automatically triggered if the VBO
file specified to hold the animation information is not found on the hard disk
when the tree definition is loaded.

6.3 Rendering Pipeline

This section presents a detailed view of the demo application’s rendering
pipeline. The pipeline was created with state-of-the-art real-time rendering
techniques to create convincing results and test the performance of the al-
gorithms with only part of the rendering resources dedicated to them. HDR
(High Dynamic Range) rendering was chosen and a custom tone mapper was
applied which is based on Reinhard’s tone mapper [59]. Additional settings
to adjust contrast, saturation and color shift are added to enable the user
to perform simple post processing steps similar to color correction in movie
post-production. Shifting color and saturation allows setting a mood for the
resulting images similar to the use in film and state-of-the-art games, as these
are the target applications for the techniques presented in this thesis. Al-
though color and saturation are shifted away from a natural look, results can
seem even more convincing because viewers have already become accustomed
to established motives from cinematography.

Figure 6.1 provides an overview of the rendering pipeline, with the main
render targets used when rendering a frame displayed in different colors.
The demo application renders one “scene” at a time, with all visible objects
contained in this scene subsequently called “scene objects”.

The rendering pipeline mainly consists of the following passes:

• Render into Shadow Map: The shadow map is updated each frame. It
is used to test whether sunlight reaches a point on a per-pixel level.

Chapter 6. Implementation and Results 85

Fig. 6.1: The rendering pipeline. The most important render targets used in the
respective passes are color-coded: The shadow map (green), the linear scene depth
(red), the HDR scene render target (yellow), various render targets associated with
HDR and tonemapping (blue) and the frame buffer (white).

Chapter 6. Implementation and Results 86

Details on shadow map rendering are found in Section 6.3.1.

• Depth-first pass : Instead of starting with rendering all scene objects
with full shaders, they are first rendered as depth values into the linear
scene depth target. This allows to establish the depth buffer and use
early-Z-out optimizations on the GPU when rendering the objects with
their full shaders later on. This not only eliminates overdraw when
rendering leaves with a complex per-pixel shader, but linear scene depth
is also needed for other calculations. The depth-first pass is described
in detail in Section 6.3.2.

• Render scene: The established depth buffer is re-used and objects are
rendered with their full shaders. This includes rendering the sky, the
ground, and vegetation objects. The sky is rendered with the Preetham
Skylight model [56], which is discussed in Section 6.3.5. Colors are
represented as HDR floating point values.

• Calculate and apply light shafts : Light shafts are calculated from the
linear scene depth emanating from the depth-first pass. Light shafts
come from a grayscale image with all pixels of the sky rendered white
and being extruded away from the sun multiple times and then addi-
tively blended onto the scene. Light shafts calculation is described in
Section 6.3.3.

• HDR calculations : The average luminance of the image and a new
key value are calculated to simulate adaption of the virtual camera to
changing lighting conditions. A bloom texture is calculated to create
the effect of overbright areas bleeding over into the rest of the image
and additively layered on top of the scene. A modified Reinhard tone
mapper [59] is applied to convert the HDR values into the RGB color
space. Details of this step are found in Section 6.3.4.

• Edge AA: Finally edge antialiasing is applied, which is a simple image-
based blur approach to soften the outlines of objects. The details of
edge AA are described in Section 6.3.6.

• GUI : A GUI can be rendered on top of everything else to adjust lighting
or animations parameters. GUI visibility can be toggled by the press
of a button.

Chapter 6. Implementation and Results 87

6.3.1 Shadow Mapping

As a first pass the scene is rendered from the point of view of the light source.
Orthographic projection is used because sunlight is modeled as a directional
light. A scale transformation is applied to the projection matrix to always
enclose all visible objects in the scene, in case that a larger number of trees
has to be rendered. The shadow map is used later to determine the intensity
of direct illumination on a per-pixel level.

Linear depth values are stored in the shadow map, with unit length cor-
responding to 1 meter. This allows using a simple constant offset bias when
doing depth comparison to estimate if a pixel lies in shadow.

The texels of the shadow map are uniformly distributed, no advanced
image warping techniques like LispSM [77] or Perspective Shadow Maps [70]
were used. A uniform distribution suffices for the relatively small enclosed
space which has to be covered by the shadow map. In the case of one tree the
area includes only 15m on the XZ plane. The resolution of the shadow map
is set to 2048 by default, although the size can be changed in an INI file. A
resolution of 2048 was found to suffice to capture the details of each individual
leaf and thin twigs. Lower texture resolutions introduced noticeable flickering
effects when leaves and branches are moved by wind.

Filtering

Percentage closer filtering (PCF) [58] is used for the depth comparison be-
tween the depth stored in the shadow map and the distance of the current
fragment to the light source. PCF has to be available in hardware for Di-
rect3D 10-compatible graphics hardware if a 32bit floating point render target
is chosen as input. By default 12 PCF samples are looked up for each pixel
to be tested for the intensity of direct illumination, with the samples placed
according to a Poisson distribution on a unit size disk surrounding the pro-
jected fragment position [58]. Because all samples stay in the area of one
texel, the lookup still results in precise shadows of the accuracy of one texel.
The typical artifacts coming from one PCF lookup (making individual texels
discernable by gradients in u and v direction of the shadow map) are avoided
by a larger number of lookups. Filtering modes can be switched at runtime,
allowing either one single PCF lookup, 12 Poisson-filtered PCF lookups or
Variance Shadow Mapping (VSM) [18].

The precision of the shadow map render target is 32bit per pixel. While
16bit would suffice for linear depth values, 32bit gives the advantage of PCF
filtering directly by the graphics hardware without the need to implement
bilinear interpolation of shadow mapping results in the pixel shader manually.

Chapter 6. Implementation and Results 88

Also, 32bit precision is needed when VSM is applied, because squared depth
values have to be stored in a separate channel of the render target, too. 16bit
floats do not suffice to store meaningful data for squared depth values.

Performance

Interestingly, performance decreases noticeably when VSM is activated, which
can be traced to the blurring which has to be performed in the shadow map
render target. VSM works by treating the set of a linear and squared depth
value of a pixel in the shadow map not as one discrete value but as a dis-
tribution of depth values. Filtering has to be performed in the shadow map
onto an area surrounding the texel to achieve a valid distribution. Usually
this is done by a separable blur, which blurs depth values first along one and
then along the other axis. Separable blur is a valid simplification to sam-
pling a full two-dimensional filter kernel if the kernel is radially symmetric.
The performance decrease can be explained by needing 64bit per pixel in the
shadow map for 2 channels of 32bit floating point precision each. Perfor-
mance characteristics for different shadow mapping algorithms can be found
in Section 6.4.

The size of the kernel directly influences the sharpness of the results of
VSM. A 5x5 kernel was chosen for the demo application, as larger kernels tend
to blur the results too much, making individual leaves disappear. This does
not correspond to the behavior found in nature, where direct illumination of
sunlight casts detailed shadows of each leaf onto the ground.

Poisson filtering was deemed the most suitable shadow mapping filtering
technique for the rendering of precise shadows of highly-detailed geometry,
both in regard to the quality of the resulting image as well as in regard to the
performance impact. Because the complex per-pixel lighting shaders used in
the demo application are mostly limited by performance of the ALU instruc-
tions, there proved to be no discernable framerate impact if the number of
texture sampling instructions increases from 1 PCF lookup to 12 lookups.
This is due to TEX instructions being performed in parallel to ALU instruc-
tions on modern graphics hardware.

6.3.2 Depth-First Pass

The depth-first pass is used for multiple purposes: First of all it establishes
the depth buffer to avoid overdraw in subsequent passes. This is especially
important because very complex per-pixel shaders are used to render the
leaves of a tree. By having the depth buffer already available, early-Z-out
is used by the GPU to reject most unnecessary pixels from being rendered

Chapter 6. Implementation and Results 89

before the pixel shader has to be evaluated at all. Only the pixels of the
nearest leaves have to be rendered fully. Of course, because alpha testing
is used, leaf quads can not be fully rejected at once, so a certain amount
of overdraw cannot be avoided for the pixels with alpha values below 0.5,
which are then rejected during pixel shader evaluation instead of beforehand.
However, using a depth-first pass still does result in a noticeably higher frame
rate.

Besides rendering into the depth buffer, depth values are also stored into
a 16bit floating point render target. Depth values are stored as linear values
with unit length corresponding to 1 meter. The same shaders which are
already used to render into the shadow map can be re-used.

The linear scene depth is needed for edge antialiasing, which is discussed
in Section 6.3.6, and to calculate light shafts, which is described in the fol-
lowing section. Additional post-process effects like Depth of Field could also
be easily achieved with a linear scene depth buffer [61].

6.3.3 Light Shafts

The effect of light shafts comes from particles in the air scattering incoming
light towards the eye. Because less light is scattered in shadowy regions, an
effect of shafts of light extruded from solid objects in the scene into thin air
is created. This effect is often seen in film and games for dramatic purposes
and increases the sensation of the image having a volume instead of being
only two-dimensional [45].

The linear scene depth render target is used as an input to calculate light
shafts for the demo application. Sky distance is assumed to be at 1,000
meters distance. This value is much larger than the far plane defined in
the projection matrix, which is currently at 100 meters. This allows fast
separation of pixels storing scene objects and pixels belonging to the sky.
The basis texture for light shafts is calculated from the linear depth render
target with all pixels belonging to the sky colored white and the rest colored
black. A simple 8bit grayscale render target is used for this, which is also
decreased in size by 1/4 when compared to the frame buffer. This makes
access to the texture a very fast process. Also, the simplification does not
limit the visual quality of the resulting light shafts.

In order to create the effect of three-dimensional light shafts from the
black-and-white basis texture, the bright areas have to be expanded away
from the sun. This is done by calculating the position of the sun in screen
space and then using a vector from the sun position to the current fragment
position as extrusion vector. 64 samples are taken along the extrusion vector,
looking up brightness values from the light shafts basis texture along the way.

Chapter 6. Implementation and Results 90

Summing up the results leads to the effect of all pixels previously white to be
extruded into the black areas, as can be seen in Figure 6.2. This technique
is similar to a method introduced by Kenny Mitchell in GPU Gems 3 [46].

Fig. 6.2: The light shafts basis texture (center) is calculated from the linear scene
depth (left). Sampling the texture multiple times on a trajectory facing away from
the sun results in visible shafts (right).

Finally the resulting image is modulated by the sunlight color and ad-
ditively blended onto the scene. Because this is only a post process effect
instead of a full geometry extrusion, it can only be layered on top of the
scene after rendering all solid objects. The light source has to be behind all
objects in the depth buffer, which fortunately is no problem with the sun.
The subtle difference of an image rendered with and without light shafts can
be seen in Figure 6.3.

Fig. 6.3: A scene without (left) and with (right) light shafts.

6.3.4 HDR Rendering and Bloom

Scene illumination is rendered at high dynamic range. A Direct3D 10 32bit
floating point format is used, which stores the R, G and B channel in 10

Chapter 6. Implementation and Results 91

bits each and leaves 2 bits for the alpha channel, which is not used. No
real physical units were used for luminance, so 10bit precision per channel
suffices.

Tone Mapping

A benefit of high dynamic range rendering is the automatic adaptation to
changing lighting conditions. This is mostly noticeable if the camera moves
inside a treetop. Luminance values are low because almost no direct sunlight
from outside reaches the inside, and also indirect illumination coming from
ambient occlusion is reduced by multiple layers of leaves blocking off envi-
ronment light. High dynamic range rendering is needed to still retain useful
images for this low-light situation. Reinhard’s tone mapping algorithm [59]
was used to convert values from HDR space to meaningful RGB values.

Downsampling is performed to calculate the average luminance of the
image. Each downsampling level reduces the width and height of the render
target by 4. This is achieved by applying a 2x2 box filter on 2x2 samples
from the image which are already bilinearly filtered from 2x2 pixels each.
This leads to a 1x1 render target after 5 iteration steps if the source frame
buffer has a size of 1024x768 pixels. Figure 6.4 illustrates how the color
values of 4x4 pixels are averaged in one pass.

Fig. 6.4: Downsampling is performed by averaging 4 bilinearly filtered lookups.

Instead of relying on physical units, luminance values for the ground,
branches, leaves and the sky were chosen carefully by hand to replicate the
behavior of almost no bloom if the average luminance in the scene is high and
bloom getting more appearant at low average luminance. This is especially
effective if bright spots from the sky can be seen through layers of leaves
while the camera is placed inside a treetop.

Chapter 6. Implementation and Results 92

Bloom

Bloom is calculated as a simple separable blur from the overbright areas of
the image. These regions are first rendered into a separate render target with
the rest of the image remaining black. A user-defined cutoff value specifies
exactly what minimum luminance is needed for a region to start blooming.
However, the bloom itself is an RGB render target with color values taken
from the scene. The image is first blurred horizontally and the results then
blurred vertically to replicate a 9x9 Gaussian blur kernel [44]. Instead of using
the full size frame buffer as bloom source texture, an already downsampled
version is used to reduce the amount of pixel calculations needed and at the
same time increase the size of blurring in screen space.

The blurred bloom texture is blended additively onto the scene before
tonemapping is applied. The bloom kernel was intentionally kept small to
avoid blooming becoming the dominant feature in the final image composition
and overshadowing small details. Because the bloom still retains color values
for the R, G and B channel, not only the luminance but also the chromaticity
of the overbright regions bleeds over to the rest of the image. Figure 6.5
illustrates the effect of blooming, with the bloom having a subtle blueish
color which corresponds to the sky color.

Fig. 6.5: A scene without (left) and with (right) bloom applied.

Saturation and Color Shift

Finally, a saturation modulation and a color shift are applied to the image.
This was added to enable post-production effects similar to what can be
seen in movies and state-of-the-art games. Key calculation can be changed
to create high-key or low-key images. Figure 6.6 illustrates how different

Chapter 6. Implementation and Results 93

saturation values and a slight color shift can change the impression of an
otherwise identical image.

Fig. 6.6: Different saturation and color shift setups: Reduced saturation and a color
shift towards blue produces a colder image (left), standard saturation (center) and
an oversaturated image result in cartoonish colors(right).

6.3.5 Preetham Skylight Model

A hemispheric sky dome mesh represents the surrounding sky. Normals of
each vertex in the sky dome are used to evaluate a gradient color value. Colors
are then interpolated over the triangle area. A geospheric vertex distribution
was chosen when creating the mesh in Autodesk Maya [3]. A geosphere is
created from subsequently subdividing a tetrahedron or a similar geometric
shape. This ensures an almost uniform distance between all neighboring
vertices in the resulting mesh. The sky dome mesh can be seen in Figure 6.7.
This guarantees a consistent image quality over the whole sky dome when
rendering the mesh with interpolated vertex colors.

The Preetham Skylight model [56] is used to calculate the vertex colors.
The model uses fitted simulation data from Nishita et al. [50] and Perez et
al. [53] and is controlled by the sun’s position, which is represented by an
azimuthal angle and the angle to the zenith, the viewing direction, which is
approximated by the normal of the current sky dome vertex, and an atom-
spheric turbidity value which represents atmasphere haziness. The turbidity
is set to 3.0 and can be changed at runtime. Colors are returned as high dy-
namic range values with a luminance distribution corresponding to physical
units. The illumination values are scaled to match the intensity values used
for rendering of the rest of the scene and to have a consistent color range for
the chosen HDR tone mapper to work optimally.

Chapter 6. Implementation and Results 94

Fig. 6.7: The sky dome mesh used in the demo application. A consistent vertex
distance is necessary for convincing shading.

Still sky color values are greater than ambient and diffuse values of the
ground, resulting in subtle blooming of the sky. This effect is increased if the
camera is moved inside a treetop where the average luminance is much lower
due to a decreasing amount of direct illumination. In this case the whole sky
glows bright, as can be seen in nature when looking at a clearing from within
a forest.

The Preetham skylight model does not account for the sun explicitly.
Therefore, the sun is rendered separately as a disk texturemapped onto a
quad. The luminance is much brighter than the surrounding sky, leading to
looking into the sun making the rest of the scene appearing almost black.

6.3.6 Edge Antialiasing

Fullscreen antialiasing (FSAA) is a common way to soften polygon edges in
real-time computer graphics. Instead of full supersampling, where multiple
color values are calculated for each pixel and then averaged, multisampling
does this only for pixels at the outer edges of polygons, thus limiting the
impact on performance. Both for supersampling and multisampling a number
of samples must be available in the render target for each pixel to allow
averaging, effectively increasing the memory requirements for color and depth
buffers. If no antialiasing is used at all, then the outlines of objects are
rendered as hard pixel-aligned shapes, resulting in stair-step artifacts which
make the individual pixels of the frame buffer cleary visible. This can easily

Chapter 6. Implementation and Results 95

destroy the believability of a computer-generated image.
However, many of the polygons in an outdoor vegetation scene are bill-

boards which are already a geometric simplification themselves and rendered
with alpha-testing, rejecting any pixels with a texture alpha value below
a certain threshold. Simple multisampling cannot account for soften these
edges because they are not at the outer edges of the polygon but inside the
polygon area. There are techniques like “Transparency Antialiasing” which
try to deal with this effect, but again need multiple samples per pixel in the
color and depth buffers.

Instead of using FSAA, a technique called “edge antialiasing” (Edge AA)
was employed for the demo application, which is also used by Mittring [47]
in “Crysis” [26] to create convincing results while simultaneously saving
graphics hardware resources. This technique works as a screen-space post-
processing effect and blurs areas of the screen with large discrepancies in
depth values within a specified kernel. This results in blurring of the out-
lines of objects and destroys fine detail in that area, but no multiple samples
have to be stored per pixel in the color or depth render targets. A simple
2x2 box filter was used in the demo application making Edge AA very fast
to evaluate and still resulting in a convincing appearance similar to multi-
sampling, especially if the user does not look closely at the influenced pixels
with a magnification tool. The results can be seen in Figure 6.8.

Fig. 6.8: A scene without (left) and with (right) edge antialiasing.

6.3.7 Additional Functionality of the Demo Application

A GUI can be rendered as an overlay over the scene to allow tweaking of the
animation settings for wind and individual branch and leaf motion frequencies
and amplitudes. Also, the light direction can be set inside the GUI. It is
illustrated in Figure 5.13.

Chapter 6. Implementation and Results 96

Multiple trees can be rendered at once to measure their impact on perfor-
mance. Currently no LOD techniques are employed so all trees are rendered
at full detail. Also, no frustum culling is enabled so all vertices of all tree
meshes are transformed each frame regardless of their visibility.

It is possible to record camera paths through the scene manually or im-
port them from Autodesk Maya [3]. Playback of these camera paths writes
the frame buffer contents to a series of image files to the disk for a prede-
fined frame rate, usually 30 FPS. This allows easy demo video creation and
reconstruction of camera angles to measure performance or image quality
differences when changing shaders and restarting the application.

Besides, a tiled rendering system was integrated that splits up the per-
spective view frustum into individual smaller parts and renders them at frame
buffer-size detail. A series of images is written to the disk for each part of
the view frustum. By putting these images together again in an offline tool,
one large image can be reconstructed with a resolution larger than what Di-
rect3D 10 allows the frame buffer to be. This is useful for high-detail poster
image creation as well as to see extremely small detail on the leaf surfaces,
which would otherwise be hidden by texture filtering. Figure 6.9 illustrates
a high-detail close-up taken from an output image of 8192x6144.

Fig. 6.9: A close-up view of tiled rendering. High detail remains when zooming in
onto a small part of the source image.

6.4 Performance

6.4.1 Frame Rates

The demo application was tested on an Intel Core 2 PC at 2.7 GHz with 2
GB RAM and an NVIDIA GeForce 8800 GTX graphics card with 768 MB

Chapter 6. Implementation and Results 97

VRAM. The graphics driver version is 180.48. The demo application runs
at a resolution of 1024x768 pixels. With one tree in the scene, performance
ranges from 70 to 150 FPS depending on the pixel coverage of the tree in the
frame buffer. For performance graph recording, the camera is moved forward
into the tree continuously. Figure 6.10 illustrates the camera positions for the
far and near endpoint of the linear camera path used for performance testing.
All performance graphs in this section were recorded using this camera path.

Fig. 6.10: A far-away point of view with about 150 FPS (left) and a viewpoint
inside the treetop with 70 FPS (right).

Algorithm Performance

Computations for the animation are performed in the same complexity for
each frame, so they do not influence the overall performance depending on
tree coverage in the frame buffer. In the current implementation animation
is performed three times per frame: First, it is calculated when rendering
into the shadow map, a second time when rendering into the depth-first pass
and a third time in the scene color pass. This could of course be optimized
by using the write-to-vertex-buffer functionality of Direct3D 10 to calculate
transformations once per frame and re-use the same buffer for all three passes.
Deactivating animation altogether currently brings a small benefit from 80
to about 86 FPS, which demonstrates that it is comparatively cheap to eval-
uate even if performed three times per frame. Switching between interleaved
vertex streams and one individual stream per vertex attribute does not alter
performance noticeably.

The complex leaf shader is clearly fillrate bound, so the amount of leaf
pixels in the frame buffer directly influences performance. When using a
simple Gouraud-shading pixel shader instead the frame rate doubles to a
range of 140 to 260 FPS, again depending on the pixel coverage of the tree in

Chapter 6. Implementation and Results 98

static animated difference
reference 7.14ms (140 FPS) 8.26ms (121 FPS) 1.12ms
unshaded 5.21ms (192 FPS) 5.71ms (175 FPS) 0.50ms
simplified 7.14ms (140 FPS) 7.81ms (128 FPS) 0.67ms
4 trees 16.67ms (60 FPS) 19.23ms (52 FPS) 2.56ms

Tab. 6.1: Framerate comparison and animation-only time in the unshaded, shaded,
simplified animation and multiple trees case.

the frame buffer. (Alpha testing is still performed.) Similarly, the frame rate
drops from 80 to 50 if the frame buffer resolution is increased to 1920x1080
pixels. Using the depth-first pass has a small payoff when the camera is
moved into the treetop and leaf pixels are filling most of the frame buffer,
resulting in 70 FPS instead of 60. At far-away viewpoints the depth-first
pass has no frame rate benefit, but also does not impact the frame rate
negatively. Figure 6.11 illustrates rendering performance for different leaf
shader complexities and animation turned on or off.

Fig. 6.11: Performance curves when rendering normally (blue), rendering without
animation (green) and rendering with a simple Gouraud-shading effect instead of
the full leaves shader (red).

Table 6.1 shows the average framerate and milliseconds per frame with
and without animation. Also, a simplified animation model is tested, which
only displaces vertex positions and omits normal and tangent transforma-
tions or length corrections. Simplified animation minimizes the performance
impact but still retains a high visual quality if deflections stay within a small
scale.

Chapter 6. Implementation and Results 99

Shadow Mapping Performance

The size of the shadow map is another important performance factor. If a
camera angle is chosen with the framerate of 70 FPS for a shadow map size
of 4096 pixels per dimension, then it is about 85 FPS for 2048 and 95 FPS
for 1024 pixels. This is mostly due to caching problems with large shadow
maps, where each branch segment to be rendered has to take a lookup in a
different part of the shadow map render target. Changing the size of the tree
in the shadow map render target by adjusting the orthographic projection
matrix to observe possible fillrate problems when rendering into the shadow
map does not alter performance noticeably. Performance curves for different
shadow map resolutions can be seen in Figure 6.12.

Fig. 6.12: Performance for a 1024*1024 shadow map (blue), a 2048*2048 shadow
map (green) and a 4096*4096 shadow map (red).

Multiple Trees

The demo application allows rendering multiple trees aligned in a two-dimensional
grid on the XZ plane. Tree positions are perturbed randomly within a grid
cell, as are the rotation and size values of each tree to add visual variation.
No frustum culling or other techniques are used to cull trees outside the
view frustum and no LOD techniques were employed, so the geometry of
all trees is transformed on the GPU each frame. This allows predicting the
performance impact of multiple trees on the frame rate, which is especially
important when considering animation. Figure 6.13 illustrates how a large
number of trees limits the performance at the vertex shader stage, resulting
in continuous low frame rates. As animation becomes the limiting factor for
more than 16 trees, the framerate does not change much for different camera
angles.

Chapter 6. Implementation and Results 100

Fig. 6.13: Performance for one tree (blue), 4 trees (green), 16 trees (red) and 100
trees (magenta). As the number of trees increases the frame rate is stabilized by
vertex throughput limitations on the GPU.

6.4.2 Shader Statistics

The Direct3D 10 FX compiler is used by Direct3D internally to compile FX
files containing HLSL shader code into a series of assembly instructions which
are then uploaded onto the GPU to execute. The stand-alone command-line
application of this compiler can be executed by calling “fxc.exe” and is part
of the Direct3D 10 SDK. This application is used to measure the number of
ALU and TEX instructions in the shaders to allow an estimatation of shader
complexity. The November 2008 SDK is used for these calculations.

The FX compiler reports approximately 158 instructions needed for the
leaf pixel shader including shadow mapping and the Cook-Torrance specu-
larity model. The vertex shader containing animation uses approximately
259 instructions. Without animation only 42 instructions are needed.

Chapter 7

Conclusion

7.1 Summary

Two algorithms were introduced, one to render convincing images of leaves
at high detail, and one to animate complex trees with thousands of branches
in real time. Both algorithms are designed to do offline preprocessing in
specialized tools and to rely only on vertex and pixel shaders of the GPU at
runtime. This makes them easy to integrate into any modern shader-based
rendering pipeline. Another benefit of a GPU-based evaluation is that both
algorithms scale linearly with the number of pixels to render or vertices to
transform. This property makes the techniques suitable for LOD techniques.

The leaf rendering algorithm presented in this thesis takes the surface
structure of leaves as well as their optical properties into account, resulting
in physically based translucency and subsurface scattering effects. A broad
specularity can be observed for the top side of a leaf, while translucency is
the dominant feature for the sun-averted side. Photographs and 3D scans of
leaves were used to capture the details of a leaf at sub-millimeter accuracy
and allow the camera to move within centimeters of a leaf and still retain full
detail. Translucency and subsurface scattering are evaluated by transferring
the light vector into the “Half Life 2” basis, which allows fast and efficient
hemispheric lighting calculations in the pixel shader. Indirect illumination
is also part of the algorithm and is precomputed into an ambient occlusion
term that also takes light transmittance through leaves into account.

The animation algorithm is based on a stochastic wind model and moves
the branches as uncorrelated harmonic oscillators, based on their physical
properties as well as where sub-branches and leaves are attached to them.
A non-linear bending of branches as they react to incoming wind is possi-
ble because it can be represented in a closed form equation and therefore
the algorithm is executed in the vertex shader. This decouples the complex-
ity of the animation algorithm from the number of hierarchically connected
branches in the model (which would be the case with existing structural el-

Chapter 7. Conclusion 102

ements models and is the limiting factor in those techniques). The same
algorithm can be used for a simplified LOD model with 100 branches and for
a high-detailed close-up model with 2000 branches without modifications.

Animation data for trees can be created from tree geometry models ex-
ported from standard tree generation tools like natFX [6] or XFrog [28] with-
out any further manual processing. A small set of intuitive parameters is used
at runtime to shape the appearance of the animation. This makes the pro-
cess of adding new tree models to an application very fast and efficient, as
preprocessing only takes between 5 and 10 minutes for highly detailed tree
models with 2000 branches.

A proof-of-concept demo application was created using DirectX 10 and
state-of-the-art rendering techniques like High Dynamic Range rendering in
combination with various post processing effects were implemented to show
that the algorithms presented in this thesis can be integrated into a rendering
environment under real-time constraints. The algorithms have to run at least
at 60 frames per second while leaving enough GPU resources to calculate
the other parts of the pipeline. The demo application was further used to
evaluate performance characteristics.

7.2 Further Work

Models to render and animate highly detailed trees and bushes are presented
in this thesis, but there are still many possible extensions to the existing
models which seem worthwile to explore:

One straight-forward area to go into is the integration of a static or dy-
namic LOD system into the algorithms, thus proving their efficiency for close-
up high-detail geometric models as well as for far-away low-detail billboard
cloud representations. Geometry and shader simplification should go hand
in hand here. Especially the physically based translucency component of
the leaf shader is a property which can be seen even at great distances, so it
should be incorporated into all LOD versions of the pixel shader. Other parts
like the specularity are also visible at a distance but can be simplified, while
parts like normal mapping or shadow mapping could be removed entirely
without affecting the resulting image. Smooth blending between different
levels of detail will be necessary to avoid LOD popping artifacts. Adapta-
tion of the animation algorithm to fit billboard clouds is of a more complex
nature: Multiple levels of branch hierarchy may be encoded into one texture
rendered onto a billboard, but a coherent hierarchical animation of individual
branches should still be retained. No convincing animation can be realized
if only the corned vertices of the quad are transformed.

Chapter 7. Conclusion 103

On the other side, adding new geometric detail to leaves near the camera
seems worthwile as well, as leaves are still represented as simple flat quads
close-up. Using the geometry shader to calculate a bent leaf form could
greatly increase image quality. When modelling large leaves up to a meter
long (like the well-known leaves of banana palm trees) the animation system
has to be able to convincingly transform the individual vertices of these
leaves as well. A simple shearing and rotation along the petiole axis cannot
suffice here because wind interaction becomes more complex at this scale.
Techniques like the one proposed by Sousa [67] come to mind, which add
extra animation information for each leaf vertex to allow a smooth coherent
motion.

Further work in the greater area of real-time vegetation rendering could
include transferring the leaf model onto grass. Grass has very unique de-
mands when rendered under real-time constraints. LOD and simplification
techniques are inevitable because of the extensive amount of grass blades
which are visible at once. Overdraw becomes a performance issue as count-
less blades of grass are rendered in front of each other. Techniques have to
be found to avoid filtering artifacts in the frame buffer when rendering grass
blades as alpha-textured flat quads, which becomes a problem not only with
billboard grass but also with raycasting algorithms.

Many publications deal with simplifying the geometric complexity of grass
blades as well as of the rendering algorithm at increasing distance. While
individual blades of grass are rendered as geometric models nearby [9] they
are rendered as a number of shells atop each other similar to fur rendering
at medium distance. A pixel shader using raycasting through few predefined
grass slices [32] or simple parallax mapping is used at greater distance. How-
ever, these techniques only work for short grass blades and even terrains.
Blending between these LODs is another critical factor to ensure a smooth
coherent picture when moving the camera in a real-time environment. Of
course, shadowing techniqes like shadow mapping may not be necessary to
render detailed hard shadows for each grass blade, but smoother indirect
lighting approaches like ambient occlusion can be used for self-shadowing of
grass blades and the ground between them. Techniques similar to screen-
space ambient occlusion [47] could prove valuable here.

Another interesting area of research is the combination of the stochastical
per-vertex animation system with a high-level joint system to allow large
branches to react on environmental influences. Vertices should be driven
both by the per-vertex system as well as by joints calculated on the CPU by
a physics simulation. Incorporating correct bending and length correction
into this system is one challenge, as is integrating actions such as branches
breaking from too strong wind.

List of Figures

1.1 Tree from the demo application 9
1.2 Inside the treetop . 11

2.1 Linear light source . 17
2.2 Leaves rendered by Baranoski et al. 18
2.3 Leaves rendered by Wang et al. 20
2.4 Leaves rendered by Donner and Jensen 21
2.5 Leaves rendered by Franzke and Deussen 21

3.1 Direct and indirect illumination 23
3.2 Photography setup . 25
3.3 Acquired leaf textures . 26
3.4 A leaf texture set . 27
3.5 Shadow map resolution comparison 30
3.6 Shadow map filtering comparison 32
3.7 Specularity comparison . 33
3.8 An image with and without indirect illumination 34
3.9 Ambient Occlusion . 36
3.10 Translucency comparison . 37
3.11 The HL2 basis vectors . 38
3.12 Weights in the HL2 basis . 39
3.13 Transmittance plot . 41

4.1 A hierarchical structure . 45
4.2 Smooth bending by applying structural mechanics 47
4.3 A tree by Akagi . 48
4.4 A tree by Stam . 49
4.5 A tree by Diener . 50
4.6 A tree by Ota . 51
4.7 A tree by Sousa . 52

5.1 Animation sequence from the algorithm 55
5.2 The beam model . 57
5.3 Deflections according to different taper ratios 58

List of Figures 105

5.4 Length-corrected deflection . 59
5.5 Branch space . 60
5.6 Branch identification . 62
5.7 Weights on a tree . 65
5.8 Part of a branch data texture 66
5.9 A trajectory through the noise texture 69
5.10 Noise textures for the damped and overdamped case 71
5.11 Deflection along ~r and ~s . 74
5.12 Leaf torsion . 76
5.13 Animation GUI . 78

6.1 The rendering pipeline . 85
6.2 The light shafts extrusion process 90
6.3 An image with and without light shafts 90
6.4 Downsampling . 91
6.5 Scene with and without bloom 92
6.6 Saturation and color shift setups 93
6.7 The sky dome model . 94
6.8 Edge antialiasing . 95
6.9 Tiled rendering . 96
6.10 The near and far camera positions used for performance testing 97
6.11 Performance for animations and shaders 98
6.12 Performance for different shadow map resolutions 99
6.13 Performance for multiple trees 100

List of Tables

5.1 The three levels of animation data granularity. 67

6.1 Framerate comparison . 98

Bibliography

[1] Y. Akagi and K. Kitajima. Computer animation of swaying trees based
on physical simulation. Computers and Graphics, 30(4):529–539, 2006.

[2] Autodesk FBX. http://usa.autodesk.com/adsk/servlet/index?

siteID=123112&id=6837478.

[3] Autodesk Maya. http://www.autodesk.com/maya.

[4] Gladimir V.G. Baranoski and Jon G. Rokne. An Algorithmic Reflectance
and Transmittance Model for Plant Tissue. Computer Graphics Forum,
16(3), 1997.

[5] Gladimir V.G. Baranoski and Jon G. Rokne. Efficiently simulating scat-
tering of light by leaves. The Visual Computer, 17(8):491–505, 2001.

[6] natFX. http://www.bionatics.com/.

[7] K. E. Bisshopp and D. C. Drucker. Large deflection of cantilever beams.
Quarterly of applied Math, 3(3):272–275, 1945.

[8] James F. Blinn. Models of light reflection for computer synthesized
pictures. SIGGRAPH Comput. Graph., 11(2):192–198, 1977.

[9] Kevin Boulanger, Sumanta Pattanaik, and Kadi Bouatouch. Rendering
grass terrains in real-time with dynamic lighting. In SIGGRAPH ’06:
ACM SIGGRAPH 2006 Sketches, page 46, New York, NY, USA, 2006.
ACM.

[10] Laurent Bousquet, Sophie Lacherade, Stéphane Jacquemoud, and Ismaël
Moya. Leaf brdf measurements and model for specular and diffuse com-
ponents differentiation. Remote Sensing of Environment, 98:201–211,
2005.

[11] Yung-Yu Chuang, Dan B Goldman, Ke Colin Zheng, Brian Curless,
David H. Salesin, and Richard Szeliski. Animating pictures with stochas-
tic motion textures. ACM Trans. Graph., 24(3):853–860, 2005.

http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=6837478
http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=6837478
http://www.autodesk.com/maya
http://www.bionatics.com/

Bibliography 108

[12] Kim D. Coder. Sway frequency in tree stems. University Outreach
Publication, FOR00-24, 2000.

[13] Michael F. Cohen, John Wallace, and Pat Hanrahan. Radiosity and
realistic image synthesis. Academic Press Professional, Inc., San Diego,
CA, USA, 1993.

[14] Robert L. Cook and Kenneth E. Torrance. A reflectance model for
computer graphics. ACM Trans. Graph., 1(1):7–24, 1982.

[15] Crazybump. http://www.crazybump.com/.

[16] Eugene d’Eon, David Luebke, and Eric Enderton. Efficient rendering of
human skin. In Rendering Techniques, pages 147–157, Grenoble, France,
2007. Eurographics Association.

[17] Julien Diener, Mathieu Rodriguez, Lionel Baboud, and Lionel Reveret.
Wind projection basis for real-time animation of trees. Computer Graph-
ics Forum (Proceedings of Eurographics 2009), 28(2), mar 2009. to ap-
pear.

[18] William Donnelly and Andrew Lauritzen. Variance shadow maps. In
I3D ’06: Proceedings of the 2006 symposium on Interactive 3D graphics
and games, pages 161–165, New York, NY, USA, 2006. ACM.

[19] Craig Donner and Henrik Wann Jensen. Light diffusion in multi-layered
translucent materials. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Pa-
pers, pages 1032–1039, New York, NY, USA, 2005. ACM Press.

[20] Cass W. Everitt and Mark J. Kilgard. Practical and robust sten-
ciled shadow volumes for hardware-accelerated rendering. CoRR,
cs.GR/0301002, 2003.

[21] Randima Fernando. Percentage-closer soft shadows. In SIGGRAPH ’05:
ACM SIGGRAPH 2005 Sketches, page 35, New York, NY, USA, 2005.
ACM.

[22] Oliver Franzke and Oliver Deussen. Rendering plant leaves faithfully.
In SIGGRAPH ’03: ACM SIGGRAPH 2003 Sketches & Applications,
pages 1–1, New York, NY, USA, 2003. ACM Press.

[23] Barry D. Ganapol, Lee F. Johnson, Philip D. Hammer, Christine A.
Hlavka, and David L. Peterson. LEAFMOD: A new within-leaf radiative
transfer model. Remote Sensing of Environment, 63:182–193, 1998.

http://www.crazybump.com/

Bibliography 109

[24] Andrew Gardner, Chris Tchou, Tim Hawkins, and Paul Debevec. Linear
light source reflectometry. ACM Trans. Graph., 22(3):749–758, 2003.

[25] Geomagic. http://www.geomagic.com/.

[26] Crytek GmbH. Crysis.

[27] Yves M. Govaerts, Stéphane Jacquemoud, Michel M. Verstraete, , and
Susan L. Ustin. Threedimensional radiation transfer modeling in a dy-
cotyledon leaf. Applied Optics, 35(33):6585–6598, 1996.

[28] XFrog. http://www.xfrogdownloads.com/.

[29] Ralf Habel, Alexander Kusternig, and Michael Wimmer. Physically
based real-time translucency for leaves. In Jan Kautz and Sumanta Pat-
tanaik, editors, Rendering Techniques 2007 (Proceedings Eurographics
Symposium on Rendering), pages 253–263. Eurographics, Eurographics
Association, June 2007.

[30] Ralf Habel, Alexander Kusternig, and Michael Wimmer. Physically
guided animation of trees. In Proceedings of the Eurographics 2009,
April 2009. to appear.

[31] Ralf Habel, Bogdan Mustata, and Michael Wimmer. Efficient spherical
harmonics lighting with the preetham skylight model. In Katerina Mania
and Erik Reinhard, editors, Eurographics 2008 - Short Papers, pages
119–122. Eurographics Association, April 2008.

[32] Ralf Habel, Michael Wimmer, and Stefan Jeschke. Instant animated
grass. Journal of WSCG, 15(1-3):123–128, jan 2007. ISBN 978-80-
86943-00-8.

[33] William Van Haevre, Fabian Di Fiore, Philippe Bekaert, and Frank Van
Reeth. A ray density estimation approach to take into account environ-
ment illumination in plant growth simulation. In SCCG ’04: Proceedings
of the 20th spring conference on Computer graphics, pages 121–131, New
York, NY, USA, 2004. ACM.

[34] Pat Hanrahan and Wolfgang Krueger. Reflection from layered surfaces
due to subsurface scattering. In SIGGRAPH ’93: Proceedings of the
20th annual conference on Computer graphics and interactive techniques,
pages 165–174, New York, NY, USA, 1993. ACM Press.

http://www.geomagic.com/
http://www.xfrogdownloads.com/

Bibliography 110

[35] Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Han-
rahan. A practical model for subsurface light transport. In SIGGRAPH
’01: Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, pages 511–518, New York, NY, USA, 2001.
ACM Press.

[36] Tomomichi Kaneko, Toshiyuki Takahei, Masahiko Inami, Naoki
Kawakami, Yasuyuki Yanagida, Taro Maeda, and Susumu Tachi. De-
tailed Shape Representation with Parallax Mapping. In International
Conference on Artifical Reality and Telexistance 2001, 2001.

[37] Eric P. Lafortune and Yves D. Willems. Bi-directional path tracing. In
Proceedings of Third International Conference on Computational Graph-
ics and Visualization Techniques (Compugraphics ’93, pages 145–153,
1993.

[38] Eric Lengyel. Mathematics for 3D Game Programming and Computer
Graphics, Second Edition. Charles River Media, Inc., Rockland, MA,
USA, 2003.

[39] Xinguo Liu, Peter-Pike Sloan, Heung-Yeung Shum, and John Snyder.
All-Frequency Precomputed Radiance Transfer for Glossy Objects. Pro-
ceedings Eurographics Symposium on Rendering, 15:337–344, 2004.

[40] Tobias Martin and Tiow-Seng Tan. Anti-aliasing and continuity with
trapezoidal shadow maps. In Eurographics Symposium on Rendering
Proceedings, pages 153–160, 2004.

[41] Nelson L. Max. Horizon mapping: shadows for bump-mapped surfaces.
The Visual Computer, 4:109–117, 1988.

[42] Gary McTaggart. Half-Life 2/Valve Source Shading. Technical report,
Valve Corporation, 2004.

[43] Tom Mertens, Jan Kautz, Philippe Bekaert, Frank Van Reeth, and
Hans-Peter Seidel. Efficient rendering of local subsurface scattering.
In PG ’03: Proceedings of the 11th Pacific Conference on Computer
Graphics and Applications, page 51, Washington, DC, USA, 2003. IEEE
Computer Society.

[44] Jason Mitchell. Real-time 3d scene post-processing. Talk, GDC, 2003.

[45] Jason Mitchell. Light shafts. Talk, GDC, 2004.

Bibliography 111

[46] Kenny Mitchell. Volumetric light scattering as a post-process. In GPU
Gems 3, pages 275–285. Charles River Media, 2007.

[47] Martin Mittring. Finding next gen: Cryengine 2. In SIGGRAPH ’07:
ACM SIGGRAPH 2007 courses, pages 97–121, New York, NY, USA,
2007. ACM.

[48] John R. Moore and Douglas A. Maguire. Natural sway frequencies and
damping ratios of trees: concepts, review and synthesis of previous stud-
ies. Trees, 3(18):195–203, 2004.

[49] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and
T. Limperis. Geometrical considerations and nomenclature for re-
flectance. Jones and Bartlett Publishers, Inc., USA, 1977.

[50] Tomoyuki Nishita, Yoshinori Dobashi, and Eihachiro Nakamae. Display
of clouds taking into account multiple anisotropic scattering and sky
light. In SIGGRAPH ’96: Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques, pages 379–386, New
York, NY, USA, 1996. ACM.

[51] NVIDIA Plug-ins for Adobe Photoshop. http://developer.nvidia.

com/object/photoshop_dds_plugins.html.

[52] Shin Ota, Machiko Tamura, Tadahiro Fujimoto, Kazunobu Muraoka,
and Norishige Chiba. A hybrid method for real-time animation of trees
swaying in wind fields. The Visual Computer, 20:613–623(11)], dec
2004”.

[53] R. Perez, J.R. Seals, and J Michalsky. An all weather model for sky
luminance distribution, 1993.

[54] Ken Perlin. An image synthesizer. In SIGGRAPH ’85: Proceedings of
the 12th annual conference on Computer graphics and interactive tech-
niques, pages 287–296, New York, NY, USA, 1985. ACM Press.

[55] Matt Pharr. Ambient occlusion. Talk, GDC, 2004.

[56] Arcot J. Preetham, Peter Shirley, and Brian Smits. A practical analytic
model for daylight. In SIGGRAPH ’99: Proceedings of the 26th annual
conference on Computer graphics and interactive techniques, pages 91–
100, New York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing
Co.

http://developer.nvidia.com/object/photoshop_dds_plugins.html
http://developer.nvidia.com/object/photoshop_dds_plugins.html

Bibliography 112

[57] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The algorithmic
beauty of plants. Springer-Verlag New York, Inc., New York, NY, USA,
1990.

[58] William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering
antialiased shadows with depth maps. In SIGGRAPH ’87 Proceedings,
pages 283–291, New York, NY, USA, 1987. ACM Press.

[59] Erik Reinhard, Michael Stark, Peter Shirley, and James Ferwerda. Pho-
tographic tone reproduction for digital images. ACM Trans. Graph.,
21(3):267–276, 2002.

[60] Tatsumi Sakaguchi and Jun Ohya. Modeling and animation of botanical
trees for interactive virtual environments. In VRST ’99: Proceedings of
the ACM symposium on Virtual reality software and technology, pages
139–146, New York, NY, USA, 1999. ACM.

[61] Thorsten Scheuermann. Advanced depth of field. Talk, GDC, 2004.

[62] Mikio Shinya and Alain Fournier. Stochastic motion-motion under the
influence of wind. Comput. Graph. Forum, 11(3):119–128, 1992.

[63] Peter Shirley and Kenneth Chiu. A Low Distortion Map Between Disk
and Square. Journal of Graphics Tools, 2(3):45–52, 1997.

[64] Peter-Pike Sloan. Normal mapping for precomputed radiance trans-
fer. In SI3D ’06: Proceedings of the 2006 symposium on Interactive
3D graphics and games, pages 23–26, New York, NY, USA, 2006. ACM
Press.

[65] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed radiance
transfer for real-time rendering in dynamic, low-frequency lighting en-
vironments. In SIGGRAPH ’02 Proceedings, pages 527–536, New York,
NY, USA, 2002. ACM Press.

[66] Peter-Pike Sloan, Ben Luna, and John Snyder. Local, deformable pre-
computed radiance transfer. In SIGGRAPH ’05: ACM SIGGRAPH
2005 Papers, pages 1216–1224, New York, NY, USA, 2005. ACM.

[67] Tiago Sousa. Vegetation procedural animation and shading in crysis.
In Hubert Nguyen, editor, GPU Gems 3, chapter 16, pages 373–386.
Addison Wesley, July 2007.

Bibliography 113

[68] Jos Stam. Multi-scale stochastic modelling of complex natural phenom-
ena. PhD thesis, University of Toronto, Toronto, Ont., Canada, Canada,
1995.

[69] Jos Stam. Stochastic dynamics: Simulating the effects of turbulence on
flexible structures. Computer Graphics Forum, 16(3):C159–C164, 1997.

[70] Marc Stamminger and George Drettakis. Perspective Shadow Maps. In
John Hughes, editor, SIGGRAPH 2002 Conference Proceedings, Annual
Conference Series, pages 557–562. ACM Press/ ACM SIGGRAPH, 2002.

[71] Katsumi Tadamura, Xueying Qin, Guofang Jiao, and Eihachiro Naka-
mae. Rendering optimal solar shadows using plural sunlight depth
buffers. In Computer Graphics International 1999, page 166, 1999.

[72] Stephen Timoshenko, Donavan YOUNG, and WEAWER, Williams, Jr.
Vibration problems in engineering. New-York : 1974, 1974.

[73] E.A. Walter-Shea, J.M. Norman, and B.L. Blad. Leaf bidirectional re-
flectance and transmittance in corn and soybean. Remote Sensing of
Environment, 29:161–174, 1989.

[74] Lifeng Wang, Wenle Wang, Julie Dorsey, Xu Yang, Baining Guo, and
Heung-Yeung Shum. Real-time rendering of plant leaves. In SIGGRAPH
’05: ACM SIGGRAPH 2005 Papers, pages 712–719, New York, NY,
USA, 2005. ACM Press.

[75] Rui Wang, John Tran, and David Luebke. All-frequency interactive
relighting of translucent objects with single and multiple scattering.
In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, pages 1202–1207,
New York, NY, USA, 2005. ACM Press.

[76] Fabian Di Fiore William Van Haevre and Frank Van Reeth. Physically-
based driven tree animations. Eurographics Workshop on Natural Phe-
nomena, pages 75–82, 2006.

[77] Michael Wimmer and Daniel Scherzer. Robust Shadow Mapping with
Light Space Perspective Shadow Maps. In Wolfgang Engel, editor,
ShaderX 4 – Advanced Rendering Techniques, volume 4 of ShaderX.
Charles River Media, March 2006.

[78] Fan Zhang, Hanqiu Sun, Leilei Xu, and Lee Kit Lun. Parallel-split
shadow maps for large-scale virtual environments. In VRCIA ’06: Pro-
ceedings of the 2006 ACM international conference on Virtual reality

Bibliography 114

continuum and its applications, pages 311–318, New York, NY, USA,
2006. ACM.

Acknowledgements

I would like to send my most sincere thanks to the following people:

Georg Semanek and my brother Michael for proof-reading the thesis and
listening to my ongoing ramblings about everything related to it.

The Institute of Computer Graphics for providing the advisory support
for my thesis, and especially Ralf Habel for putting the demo application to
good use in a number of publications.

The Faculty of Computer Science for granting me a scholarship to work
on this thesis, and especially Michael Wimmer, Ralf Habel and Werner Pur-
gathofer for supporting my application for the scholarship.

And finally, my family, who endured two long years of “I’ll be done soon.”

	Introduction
	Aim of the Thesis
	Challenges
	Scope of this Thesis
	Contribution
	Thesis Structure

	State of the Art on Leaf Rendering
	Subsurface Scattering
	Subsurface Scattering in Leaves
	Measurements

	Radiative Transfer Models
	Ray Tracing
	Radiative Transfer for Real-Time Rendering

	Diffusion-Based Methods

	A Real-Time Leaf Rendering Algorithm
	Overview
	Data Acquisition
	Photographing Leaves
	3D Scanning

	Direct Illumination
	Normal Mapping
	Shadow Mapping
	Cook-Torrance Specularity

	Indirect Illumination
	Ambient Occlusion

	Translucency
	The Half Life 2 Basis
	Subsurface Scattering
	Calculating Transmittance
	Calculating the HL2 map
	Discussion

	State of the Art on Plant Animation
	Plant Representations
	Structural Elements
	Structural Mechanics

	Applying Animation
	Simulation
	Stochastic Approaches
	Heuristic Models

	A Vertex-based Method
	Vertex Displacement
	Animation

	A Physically Guided Real-Time Vegetation Animation Algorithm
	Overview
	Modeling Branches as Tapered Cylinders
	The Euler-Bernoulli Beam Model
	Length Correction

	Generation of Animation Data
	Hierarchical Structure
	Branch Identification
	Per Branch Data Generation
	Hierarchy Computation
	Per Vertex Data Generation
	Propagation of Animation Data through Hierarchy
	Propagation of Branch Animation Data to Leaves
	Simplifications
	Animation Data Granularity

	Wind and Animation Model
	Uncoupled Harmonic Oscillation
	Generating Noise Data
	2D Motion Textures
	Damping
	Limitations

	Animating on a Frame-By-Frame Basis
	Animating Branches
	Animating Individual Leaves
	Intuitive Parameter Set
	Scalable Complexity

	Implementation and Results
	Overview
	Tree Import and Data Processing
	Tree Generation in Autodesk Maya
	Tangent Space Generation
	Ambient Occlusion Processing
	Geometry File Format
	Tree Definition Files
	Animation Data Generation

	Rendering Pipeline
	Shadow Mapping
	Depth-First Pass
	Light Shafts
	HDR Rendering and Bloom
	Preetham Skylight Model
	Edge Antialiasing
	Additional Functionality of the Demo Application

	Performance
	Frame Rates
	Shader Statistics

	Conclusion
	Summary
	Further Work

	List of Figures
	List of Tables
	Bibliography
	Acknowledgements

