
Modularization of Enterprise
Applications -

An Analysis using
Enterprise-Technologies and a
Module Management System

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Informatik

ausgeführt von

Julio César Vergara Heinrroth
Matrikelnummer 9227495

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung:
Betreuer: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Gerald Futschek

Wien, 28.10.2008 _______________________ ______________________
 (Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43/(0)1/58801-0 http://www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

Eidesstattliche Erklärung
„Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die

verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die

Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen -, die anderen

Werken oder im Internet im Wortlaut oder dem Sinn nach entnommen sind, auf je-

den Fall unter Angabe der Quellen als Entlehnung kenntlich gemacht habe.“

Wien, 28. Oktober, 2008 Julio César Vergara-Heinrroth

Kurzfassung
Modul Management Systeme, wie z.B. OSGi (Open System Gateway Initiative)

Service Platform, haben sich als Bausteine in der Architektur eigenständiger

Anwendungen hervorragend etabliert.

Die OSGi Service Platform wird einen Meilenstein in der gesamten Java-Soft-

wareentwicklung darstellen, so auch in der Java Enterprise Edition.

Bisher wurde der OSGi Service Platform nur geringe Aufmerksamkeit bei der

Entwicklung von Unternehmenssoftware geschenkt. Der zentrale Inhalt dieser

Arbeit behandelt die Zusammenführung von Unternehmenssoftware mit ei-

nem Modul Management System anhand der Java Enterprise Edition und der

OSGi Service Platform.

Um die Rolle des OSGi in der Entwicklung von Java-EE-Anwendungen zu un-

tersuchen, wurde eine Beispiel-Anwendung mit der OSGi Service Platform und

Java-EE-Komponenten bzw. -Diensten erstellt. Durch den Einsatz in einer An-

wendungsumgebung für Unternehmenssoftware, wie der Java Enterprise Edi-

tion, zwingt die OSGi Service Platform die/den Entwickler/in aufgrund ihrer

Modul/Dienst-Architektur zu einer strikten Einhaltung einer modularen Soft-

warestruktur.

Die OSGi Service Platform kann schon jetzt eine grundlegende Rolle in der

Entwicklung von Java-EE-Anwendungen in Bezug auf Versionierung, Biblio-

theks/Modul-Abhängigkeitsverwaltung und Anwendungsverteilung einneh-

men.

ii

Abstract
Module Management Systems, like the OSGi (Open System Gateway Initiative)

Service Platform, have been proven to be formidable architectural components

in stand alone application.

The OSGi Service Platform will be a major keystone in the development of soft-

ware across the board in the Java world, including the Java Enterprise Edition.

Little focus has been given to the use of the the OSGi Service Platform in the

enterprise application development domain. The focus of this work is to study

the integration of enterprise applications and a Module Management System

using the Java Enterprise Edition and the OSGi Service Platform.

A sample application was developed using the OSGi Service Platform and Java

EE components and services to investigate the role of OSGi with respect to

Java EE applications.

The use of the OSGi Service Platform in an enterprise application environ-

ment, like the Java Enterprise Edition, forces developers to be discipline about

modularization by introducing a module/service-oriented application develop-

ment model.

The OSGi Service Platform can already play a fundamental role in Java EE ap-

plications with regards to application versioning, library/module dependency

management and deployment.

iii

Acknowledgments
I would like to express my heartfelt gratitude to my lovely wife, Rebecca, for

being the keystone of my life and for being supportive and lovely to me at all

times, good and bad.

To my daughters, Ally and Vivi, for putting a smile at all times and cheering

and enriching my life in so many ways only they can.

To my parents, biological and in law, for supporting me at all times and their

encouragement, which has kept me going.

I would also like to express my endless gratitude to my supervisor, Prof.

Futschek, for believing in me and for always pointing me to the right direction.

Finally, to all my friends for showing me the Paraguayan, Austrian and Ameri-

can way of life.

iv

Table of Contents

Table of Figures...vii

Table of Tables..viii

 1 Introduction..i

 2 Motivation...6
Why enterprise Java? ...6
Why OSGi?...7
Motivation...7

 3 Goal and Structure...10

 4 Technology Background...12
 4.1 Modularization Units in Java..12

Classes and Objects..12
Java Archive (JAR) File...12
Java Packages ..13
Class Loaders...14

 4.2 Class Loading in Java..14
 4.3 Java EE Overview..19

Architecture...20
Components and Modules in Java EE...22
Java EE Services..23
Deployment Structure and Application Assembly............................26
Interoperability...29

 4.4 OSGi Overview...30
 4.4.1 Introduction...30
 4.4.2 Overview..31
 4.4.3 Module Layer...34

Execution Environment..36
Bundle Cooperation...37
Bundle Constraints..41
Resource Loading..43
Loading Native Code...43
Bundle Localization...44
Extension Bundle..44

 4.4.4 Life Cycle Layer...45
Bundle...46
System Bundle...49
Bundle Context..50
Events..50

 4.4.5 Service Layer..51

v

Services..53
Service Management...54
Service Events..55
Service Factory..56
Service Definition..56

 5 Java EE and OSGi Integration...61
 5.1 The Sample Application...61

Application Server Decision..62
Architecture...62

 5.2 Evaluation Points..64
Bundle Repositories..65
Libraries..66
Development Environment...67
Development Model..67
Web Application Support..68
Java EE Services Support..68
Unified Packaging...69
Architectural issues...70
OSGI Binding Models in Java EE Environment:..............................70
Versioning..71
Testing..71
Extensibility...71

 6 Conclusion and Outlook...73

References...76

vi

Table of Figures

Figure 1: The Class Loading Process in Java...14
Figure 2: Hierarchical Class Loading In Java...16
Figure 3: The Java EE Architecture...21
Figure 4: Java EE Deployment Structure...27

vii

Table of Tables

Table 1: Standardized Execution Environments in OSGi..................................36

viii

Introduction: Introduction

 1 Introduction
Many efforts have been made in the software engineering field regarding the

modularization and componentization1 of software.

What are components? According to [ASKOXF] a component is defined as “a

part or element of a larger whole,” derived from the Latin word “componere,”

which stands for “put together.” What are modules? According to [ASKOXF] a

module is defined as “each of a set of parts or units that can be used to con-

struct a more complex structure.”

In this master thesis we will, however, rely on a more technical definition of

the term. We will refer to a module as “a program unit that is discrete and

identifiable with respect to compiling, combining with other units and load-

ing.” [IEEEGL] Moreover, according to [IEEEGL], the terms module, compo-

nent and unit are often used interchangeably or are defined to be sub-elements

of one another depending upon the context. In fact, the assumption of a specif-

ic context becomes even more important as different software and hardware

architectures and frameworks tend to use the notion of a component/module

in different ways. An example of such is the Java Enterprise Edition architec-

ture which defines a module as a collection of components. In this work, we

will examine the use of the word component and module in different ways in

the contexts of software application. Regardless of context, one definition

seems to be common: a discrete program unit that is individually identifiable.

Having defined these words formally, software developers and software archi-

tects have understood early on that partitioning applications plays a very im-

portant role in software development. In fact, modularization and componenti-

zation efforts can be found in all areas of software development, like program-

ming languages, application design (use of design patterns) and even architec-

ture. Having said that, in the context of application development, the notion of

modules and components is almost indistinct and pervasively used. However,

1 Componentization is not an English word but is used in this context as a term for compo-
nent-based development, breaking software application.

i

Introduction

the meaning of the terms varies based on the context. In fact, [GRÖNE] raises

awareness of this problema and provides a definition for:

● System component: “a component is an active part of the (abstract) sys-

tem which exists at runtime; a component provides a defined function-

ality and communicates with other parts of the system. All parts of the

system may have their own state.” This definition based on a look at a

system with its behavior and runtime structures, which he calls the sys-

tem view.

● Software component: “a component is a deployable software unit which

is relevant at build–time (for example a library), or which may be load-

ed into memory at runtime and be processed by a processor or a virtual

machine.” This definition is based on a software development point of

view.

Furthermore, [GRÖNE] concludes that clear separation and definition of com-

ponent terms is key to resolving the ambiguous use of the terms. In this work

we use the later definition of component, namely software component.

In fact, the term Component-Based Software Development exists as an ap-

proach to software development, where a software component - according to

the above-mentioned definition – advertises the services it provides and may

be organized into repositories. These software components can be assembled

together to create large systems. These systems' functionality is based on the

overall functionality of each of these components and their cooperative inter-

action.

Having said that, a common understanding regarding modularization is that

breaking an application into manageable pieces is key because of the following

benefits:

● Easier application management is a benefit, because each individual

piece can be managed independently; bug fixes, extension, improve-

2

Introduction

ments and modifications to modules can be done separately.

● Redundancy avoidance can be achieved by defining clear-cut modules

with specific areas of concerns and cohesive responsibilities.

● Easier testing of each individual module, which can be tested indepen-

dently, hence, creating more robust software. Early studies have already

suggested that overall highly cohesive modules have a lower fault-rate

than low-cohesive modules [CARD]

● Software reuse: individual modules can be reused in the assembly of

many applications. Third party modules can be integrated.

● Shorter development life-cycles: because one could just buy a module or

integrate freely available ones into an application. This plays a particu-

larly important part in the success of new programming languages like

Perl, Java, C#, etc. Moreover, it has allowed these languages to grow

tremendously in past years in terms of capabilities, even beyond the

boundaries of their standardization bodies. An example of such is Java

which originally was almost solely standardized by the Java Community

Process [JCP]. However, new very powerful initiatives exist from the

Apache Software Foundation [APACHE], Eclipse [ECLIPSE], Source

forge [SFORGE], Spring [SPRING], and others providing an additional

array of products and libraries for the Java language that are extremely

popular. Some of them have become widely accepted and are fundamen-

tal pieces of software used in many organizations.

● Project Management flexibility: since the applications are broken down

into pieces, individual sub-projects can be assigned to different develop-

ers and/or development groups. An additional benefit also becomes

clear in terms of human-resource management and knowledge-based

human-resource project distribution. For instance, if an application uses

many different technologies, modules can be assigned to developers

and/or development groups with the knowledge and expertise in that

specific technology.

● Simplicity: developers using modules and components really only need

to know about the functionality of the services provided by these mod-

ules without any specific knowledge of the internals of these modules.

3

Introduction

The above mentioned list of benefits is not intended to be a comprehensive list

but it should rather point to some of the benefits of modularization and com-

ponentization.

A good example of an effort in modularization is the Java Enterprise Edition

(Java EE), which provides architectural modularization and componentization

of enterprise applications in the Java domain. One can also use it as an exem-

plification of the ambiguous use of the term component: web component, busi-

ness component.

Moreover, the software engineering discipline has been so focused on these

modularization efforts that it has produced a new kind of emerging system,

namely Module Management Systems. Many modularization/componentiza-

tion systems have been developed, but there is the emergence of a dominant

standard in the Java domain for this kind of system, the OSGi Service Platform

standardized by the OSGi Alliance - Open Services Gateway Initiative2 (OSGi).

This emerging module management system for Java introduces its own defini-

tion of a module different from the Java EE module definition, but also pro-

vides a different paradigm for software development, namely module-orient-

ed/service-oriented development combination, where the complete software

development effort is based around the notion of modules and the services

they provide.

Also, in the component-based and module-based software engineering do-

main, most of the effort has been placed on the creation, definition and speci-

fication of components, modules and their architectures.

Additionally, in the research community most of the research regarding OSGi

has been used in the context of home automation and embedded systems envi-

ronments. Little to no attention has been provided on the use of OSGi in the

enterprise as a platform for developing enterprise software.

2 The full text definition of OSGi is considered irrelevant [OSGIAL].

4

Introduction

Consequently, there is the need for more investigation regarding the use of a

module management system in the enterprise and the benefits of a module

management system like OSGi bring to the enterprise application development

problem domain. This work aims to shed some light on the use of OSGi in en-

terprise application programming and the benefits of it.

5

Motivation

 2 Motivation

There are so many programming languages and application programming

frameworks for each different programming language that selecting one nowa-

days can be perceived as a matter of preference.

Why enterprise Java?

Java, although relatively new compared to C, C++ and other programming lan-

guages, has become a very powerful language with many capabilities, including

many Application Programming Interfaces (API) and libraries to facilitate the

development of many different types of applications.

In the Java domain there are three main distributions:

● the Standard Edition (SE) providing APIs for the development of

stand-alone application and Applets – Java applications that run inside

a browser,

● the Micro Edition (ME) providing APIs for the development of appli-

cations in embedded devices such as Portable Data Assistants (PDAs),

phones, beepers and other devices with limited capabilities,

● the Enterprise Edition (EE) providing APIs for the development of

server-side applications – Java applications that are deployed and run

inside a server environment, where the server provides life-cycle man-

agement and services to the applications deployed in it.

The Java Enterprise Edition distribution has established itself as a major plat-

form for business applications since the introduction of component based de-

velopment models in the late 1990s. These component-based models for soft-

ware development assume the presence of a middle ware server (application

server) that provides the runtime environment and services to these compo-

nents. Java EE is a specification by SUN that aims at standardizing these com-

6

Motivation

ponent development models as well as the services they provide. Their

paramount goal is to release the developer from the intrinsic complexity of

these services, thus releasing developers from unneeded complexity and en-

abling a much easier and efficient development process.

Why OSGi?

The origins of OSGi trace back to the home automation market as a means to:

● standardize the integration of devices and applications made for end

users and provided by operators and service providers. In other words,

it standardized the integration of application modules to allow different

devices to work in a home. These standardizations included the cooper-

ation and integration from devices and application modules to manage

these devices under the assumption that applications, as well as de-

vices, could be provided by different vendors.

● provide an execution environment for the defined application mod-

ules, where the execution environment is in full charge of the life-cycle

and management of these application modules and devices.

Having said this, one of the key factors stressed by OSGi is the dynamic inte-

gration and collaboration of application modules in a service-oriented fashion,

where modules(components) utilize other modules' services and publish their

own services that can in turn be used by other modules.

Motivation

OSGi gained traction in the Java SE world with the adoption of the Eclipse

Foundation of OSGi to provide module management to the Eclipse Platform.

This contributed to the management of Eclipse plug-ins, namely modules for

the Eclipse Platform. Eclipse is one of the major development tools for appli-

cations in Java and many enterprise application developers use it on a day-to-

day basis. The inclusion of OSGi in Eclipse exposed a lot of developers to the

7

Motivation

capabilities offered by OSGi; however, until only recently OSGi was largely ig-

nored in the enterprise application domain. The author believes that OSGi will

be a major keystone in the development of software across the board in the

Java world not only in Eclipse but also in the enterprise application program-

ming domain.

Having said that, substantial research and knowledge exists regarding the use

of OSGi in stand alone applications, in particular in combination with Eclipse.

Additionally, there are studies that emphasize the use of OSGi in embedded

system[LEGOOSGI]. However, the use of OSGi in the Enterprise Edition envi-

ronment has been lacking/neglected due to the fact that many enterprises that

use Java EE wait for their server vendor to dictate the use of specific technolo-

gies. Server vendor compliance to Java EE standards is extremely difficult due

to an extensive list of APIs needed to be fulfilled [JEETECH]. In fact, there are

just a few vendors that are fully compliant with the latest version of the Java

EE [SSAPPMTX].

Java EE developers have understood since early on that although the Java EE

distribution provides a developer with many features, it is not sufficient, as re-

quirements and complexity for enterprise applications are high. Consequently,

almost every Java EE development project will resort to using features outside

the Java SE and Java EE specification. Examples of such are Web Frameworks,

which are not considered part of Java EE but are a substantial part of many

Java EE development efforts.

Java EE has provided for many years now a reliable software platform for en-

terprise applications. However, since the specification does not state any

specifics regarding the implementation of the platform, many different appli-

cation servers exist, which lead to several implementations where each server

has a different approach to application management and deployment.

Despite some of the deficiencies in the Java EE specification, the Enterprise

Edition of Java has established itself as one of the most widely used compo-

nent-based enterprise application development environments with thousands

8

Motivation

of deployments available at the time this work was written [EVANSDC].

Although originally the Java EE platform was viewed as a development plat-

form for large scale enterprises, in recent years due to the introduction of easy

to use features, Java EE has made substantial inroads in the small businesses

sector as suggested by this industry study [EVANSSM].

Consequently, Java EE and OSGi both provide a component based develop-

ment model to application development. While OSGi development model is

generic, Java EE development model can be considered specific to a technolo-

gy, for instance: a Servlet – server-side dynamic web application - is built

around the notion of the HTTP protocol and as an extension to HTTP servers.

The integration of Java EE and OSGi will introduce changes in the overall ar-

chitecture of enterprise applications and in particular in their programming

models. As a paradigm shift from a technology-oriented approach used in Java

EE to a service-oriented approach use in OSGi.

Integrating OSGi and Java EE presents not only server vendors with new chal-

lenges and benefits, but also to application developers.

This work sheds some light on these challenges and benefits from the applica-

tion developer's point of view.

9

Goal and Structure

 3 Goal and Structure
The author believes the OSGi Framework will be a major keystone in the devel-

opment of software across the board in the Java world. The introduction of the

OSGi Framework in the Java EE domain will introduce changes in the develop-

ment process as well as the architecture of enterprise applications.

This thesis studies the realization of service-oriented, component-based devel-

opment model and process for Java EE applications with the use of existing

technologies and tools.

The aim of this thesis is to try to evaluate the integration of Java EE and OSGi

from an application developer's point of view rather than a server vendor's

point of view. In particular, this work analyzes how these two technologies

complement each other to create a coherent enterprise application. Additional-

ly, this thesis introduces a possible and practical way to achieve the integration

of OSGi in enterprise applications to achieve a simpler application with the de-

composition of enterprise services to achieve a more lightweight application.

Further, the evaluation of the integration of Java EE and OSGi is done with re-

spect to the following criteria:

● Simplicity and efficiency

○ Programming model: how to bring into agreement the different pro-
gramming models

○ Packaging: evaluated different packaging structures

○ Deployments: test different deployments

○ Management: administration of components

● Testability of components and integration test

● Extensibility of components and the application framework

10

Goal and Structure

Additionally, the following aspects regarding the integration of Java EE and

OSGi will be considered:

● Benefits of the integration of OSGi with Java EE

● Limitations of Java EE as well as OSGi

Chapter 4 provides readers with sufficient background information regarding

the relevant technologies involved in the integration. In particular, Section 4.1

provides background information on the modularization units in the Java pro-

gramming language. Section 4.2 provides a overview of the class loading mech-

anism in Java. Section 4.3 introduces the Java EE architecture, the componen-

tization and modularization units in the Java EE architecture. Section 4.3 also

outline the services available in a Java EE platform.

Section 4.4 provides a thorough introduction of the OSGi Service Platform and

the composition of the platform. Additionally, all features in the OSGi Platform

are explained. As the goal is to provide enough detail to allow understanding

the integration of OSGi with Java EE

Chapter 5 introduces the sample application used to study the integration ca-

pabilities. As well as the motivation behind the architectural structure selected

the sample application in this study. Finally, the lessons learned during the ap-

plication elaboration of the sample application is presented.

11

Technology Background

 4 Technology Background
The intention of this module is to provide the reader with sufficient back-

ground information regarding the major technologies involved in this paper.

This chapter is divided into four sections:

1. Section 4.1 explains the modularization units of Java

2. Section 4.2 explains the class loading features of Java

3. Section 4.3 provides an overview of the Java EE distribution in terms of

architecture, modularization/componentization, development model

4. Section 4.4 provides a thorough review of the OSGi Service Platform

 4.1 Modularization Units in Java
The Java programming language like many other programming languages

comes with some notions of modularization.

Classes and Objects

Provides the object-oriented modularization units, enclose attributes (fields)

that describe classes(objects) and behavior (methods) that provides action on

the classes(objects).

Java Archive (JAR) File

A JAR file [JAROVER] is a platform-independent file format that aggregates

many files in one. A Jar file is the primary unit of deployment for applications

and libraries – classes and resources within them .

The file format for JAR files is a standard ZIP format, which supports com-

pression to reduce size.

12

Technology Background

A JAR file contains a META-INF/ folder that can contain additional informa-

tion regarding the classes and resources within it by means of a MANIFEST.MF

[JARSPEC] file, which provides meta information regarding the files within

the JAR file.

Individual entries in the JAR file can also be digitally signed to authenticate

their origins. Signature files and blocks are also placed in the META-INF/ fold-

er.

The mechanism for extending the Java platform uses the JAR file format to

package extension classes3. Manifest attributes are available to support the ex-

tension mechanism and related features such as package sealing and package

versioning.

Java Packages

Every class in Java exist in a specific namespace. This namespace mechanism

in Java is provided by packages. Since packages provide namespaces for class-

es, packages are used to resolve potential name conflicts4.

Many classes can belong to the same package. Packages can be considered a

modularization units in Java.

Also, packages allow access to non-private fields and methods for classes; this

allows related classes to be grouped together, without having to show details

over the internals of the package. This privilege is not extended to other pack-

ages or sub-packages, because Java does not provide cross-package privileged

access.

3 a group of packages housed in one or more JAR files that implement an API that extends the
Java platform

4 The naming convention for packages is the reverse Internet domain name [JAVACONV].

13

Technology Background

Class Loaders

In Java, class loaders are the components responsible for the dynamic linking

and loading of byte-code class definitions to create runtime Class objects. See

next section for a detailed discussion on class loading.

 4.2 Class Loading in Java
In programming languages such as C/C++ the compilation process creates ma-

chine binaries. These machine binaries need to be assembled altogether into a

final executable program or library in their own right. This final step required

in the application assembly is the linking process, which merges codes from

separately compiled sources along with other (shared) libraries into an exe-

cutable application or library of its own.

14

Figure 1: The Class Loading Process in Java

Technology Background

In Java, although the steps to application assembly are similar, the approach is

different. For every class declaration in a Java compilation unit - .java file, a

class file - .class file - is created containing the Virtual Machine instructions

called the bytecode. Hence, a class is the unit of software distribution in Java.

There is no need to link these class files at compilation. However, during the

compilation process the dependent classes must be available in order for the

application to compile. Unlike the aforementioned programming languages,

the linking process in Java is performed dynamically at runtime.

Having said that, class loading refers to the steps a JVM takes to make a class

available at runtime. Figure 15 outlines the 3 steps of class loading: physical

loading, linking and initializing [HOLBREICH].

1. Physical loading refers to the process of physically locating the class

files, reading it and loading the contained bytecode. This is a process

performed by class loaders.

2. Linking in Java refers to the process of:

1. Verifying the bytecode: it ensures the binary representation of a

class6 is structurally correct, i. e. valid operation codes, instruction

branches and others according to [GOSLING].

2. Class preparation: allocating memory needed for building the neces-

sary data structures to accommodate the class definition, members,

methods, implemented interfaces. Building the necessary data struc-

tures.

3. Resolving the remaining symbolic references used within the class,

i.e. super classes where applied, types of fields, types of method sig-

natures, types of method parameters, types of constructor parame-

ters and types of variables used in methods and constructors. At this

point, additional class loading is performed to resolved those sym-

5 This figure is a reproduction of [HOLBREICH].
6 The term class is used generically to refer to either a class or an interface.

15

Technology Background

bolic names.

The whole linking process is performed by the JVM and upon resolution

of the linking process, two classes are finally linked to each other.

3. During the initialization phase any static initializers - static { /*

....*/ } - are executed and static fields are initialized to their default

values. Immediately after the initialization phase, the class becomes

available for use.

As stated before, the process of loading classes is performed by class loaders.

And as their name states, they are responsible for loading classes into the JVM.

Every class loader has a policy for looking for classes as different class loaders

may implement their own policies. Class loaders are organized in a tree like

structure, see Figure 2 [HOLBREICH].

16

Figure 2: Hierarchical Class Loading in Java

Technology Background

Upon request, a class loader checks to see if the class is already in its cache. If

so, it returns the class object. If not, it delegates to its parent to load it or tries

to load the class itself. Hence, the class lookup process goes in the following or-

der: cache, parent and self.

According to [LIANG] the major advantages of the dynamic class loading sys-

tem in Java are:

1. Lazy loading. Classes are loaded on demand, which allows the system to

delay the loading of classes as much as possible, reducing memory foot-

print as much as possible.

2. Type-safe linkage. Dynamic class loading must violate the type-safety of

the Java Virtual Machine. Dynamic loading must not require additional

runtime checks. Link-time checks are acceptable, because they are per-

formed only once.

3. User-definable class loading policies. Developers have complete control

over the class loading process. Hence, a developer is able to define his

own class loaders to load up classes from wherever he wants, locally, re-

motely, from a stream, etc.

4. Multiple namespaces. Class loaders provide separate namespaces for

different components. Hence, two completely different classes with the

same fully qualified name can be loaded in parallel using two different

class loaders. Furthermore, the class type is uniquely identified by the

combination of fully qualified class name and class loader used to load

the class.

Multiple class loaders can be used within a single JVM and these class loaders

can cooperate with each other. For instance, class loader CL1 can ask CL2 to

load class C1. This relationship between class loader is called the delegation re-

lationship [LIANG].

17

Technology Background

Hence, some value-added features of class loaders are code reloading: which

allows someone to update existing components/classes at runtime without a

restart; bytecode instrumentation: which allows a class to be modified prior to

being available for usage at runtime7.

In short, class loaders can be considered a powerful tool for developers as well

as administrators to managing software components such as server-side appli-

cation components, applets and others.

7 Bootstrap classes cannot be instrumented as they are loaded by the System Class Loader and
class loaders can only instrument classes loaded by itself.

18

Technology Background

 4.3 Java EE Overview
This section aims to provide sufficient background information regarding the

Java EE componentization and modularization model.

Java EE is the enterprise distribution of Java. Its major goal is to simplify the

development of enterprise applications by providing a multi-tier architecture

as well as modularization and componentization of software units. Further-

more, Java EE aims at standardizing these enterprise software components

and the services these software components may use.

In particular, Java EE emphasizes on the development model of these compo-

nents by providing specific APIs for the creation of components and the use of

Java EE services

Java EE assumes the presence of a Java EE server, which provides an imple-

mentation for the different APIs in the distribution.

These Java EE APIs have two parts:

1. the Service Provider Interface (SPI), which mandates what a Java EE

product vendor should support, and

2. a Client API, which is what Java EE developers use to create compo-

nents and use services.

This two-side approach allows developers to develop components and use Java

EE services without knowledge of the real implementation, that is running

their components, or providing the Java EE services. This approach also aims

at minimizing dependencies with specific implementations of Java EE services

and so keeping great degree of platform independence regarding not just the

hardware architecture and the operating system but also independence regard-

ing the Java EE server implementation.

19

Technology Background

All Java EE components must be assembled into modules. For instance, web

components and web resources must be assembled into a web module. The

module type used for deploying components depends on the type of Java EE

components to be deployed. For instance, web components can only be assem-

bled into a web module and never into an application client.

Architecture

The Java EE architecture is a multi-tier logical architecture; hence, the Java

EE specification [JAVAEESPEC] does no imply any physical partition of archi-

tectural elements in specific physical machines, process, virtual machines or

address space. The physical partitioning of the application is left out to the

software architect/designer, which assumes at the same time the presence of

built-in distribution in case components are distributed across many physical

machines. This distribution mechanism must be completely transparent to all

components.

The specific implementation of a distribution mechanism for Java EE applica-

tions/components is left out to the Java EE product vendor who also provides

the implementation of Java EE APIs in an application server8. The Java EE

specification does not mandate any specific architectural organization of an

application server. However, the specific set of functionality as well as the run-

time behavior for all components and modules that contain them are standard-

ized. Additionally, the Java EE specification does not mandate a specific imple-

mentation for Java EE services either; again, leaving the implementation to

application server vendors.

The Java EE architecture introduces the notion of containers. A container

refers to a Java EE server implementation without dictating a specific architec-

tural reference or guideline to server vendors. Containers are provided by Java

EE servers.

8 Application server is a term for Java EE server implementation.

20

Technology Background

In essence, containers provide two fundamental features to Java EE compo-

nents:

1. Runtime Environment – by adhering to a specific component's life-cycle

2. Services to Java EE components such as database access through Java

Database Connectivity (JDBC)

Important is to note that different component types use different types of con-

tainers, Contracts also vary based on the the type of containers used.

Figure 3 shows a simplified view of the Java EE Architecture after

[JAVAEESPEC], as well as the different types of components and their corre-

sponding containers.

It is important to know that nobody can directly access components. If an ap-

plication wants to access a component, it must do so through the correspond-

ing communication protocol and the container.

21

Figure 3: The Java EE Architecture

Technology Background

Components and Modules in Java EE

Figure 3 outlines four different types of components in the Java EE architec-

ture.

1. Application Clients – are regular Java applications, either GUI-based or

console-based – that run inside an application client container that pro-

vides access to Java EE services to the application client. The collection

of all classes and resources that encompassed the application client is

referred to as an Application Client Module.

2. Applets – are GUI applications that run inside a browser, where the

browser provides the runtime environment to the applet. Browsers do

not provide any Java EE service to applets, and, therefore, should not be

considered a module in Java EE. However, applets can communicate to

the Java EE environment using standardized interoperability protocols

See section on interoperability.

3. Web Components – are components that respond to Hyper Text Trans-

fer Protocol (HTTP) [RFC2068] requests from clients. Servlet, Java

Server Page (JSP), filters, Web event listeners are examples of web com-

ponents in the Java EE platform. These components execute inside a

web container, which assumes the presence of a web server. The web

server receives HTTP requests and dispatches these requests to the web

container, which in turn dispatches to the corresponding web compo-

nent. The collection of all web components – Servlet, JSP, filters, web

event listeners – as well as web resources such as Hypertext Markup

Language (HTML) pages, Cascading Style Sheet (CSS) files, Java Script

(JS) files and others are all collectively called a Web Module.

4. Enterprise Java Beans (EJB) – are server-side Java objects responsible

for business logic. EJBs execute inside EJB containers, which in turn

provides a transactional context to EJB components. EJBs are remotely

22

Technology Background

accessible using Internet Inter-Object Request Broker Protocol (IIOP)

[IIOP]. IIOP is a distributed object technology, that allows method invo-

cations across networks. A discussion on IIOP is beyond the scope of

this work and is subject to further research and development. The col-

lection of all EJBs as well as classes and resources needed by them is to

be considered an EJB module – Business Logic Module.

5. Resource Adapters – are software components that provide connectivity

to external resources - systems outside the Java EE environment. They

can be used for two purposes: 1) to extend the functionality of a Java EE

service, such as JDBC, or 2) to provide connectivity to an external sys-

tem, for instance a mainframe environment. All classes that comprise

the resource adapter as well as the resources they need are considered a

Resource Adapter Module.

6. Databases – a database accessible through JDBC is required by the Java

EE platform for storing business data. This database is accessible to all

components. The Java EE specification does not mandate a specific DB.

It solely mandates that the database must be accessible through Java

Database Connectivity (JDBC) API. The database is not considered a

module in the Java EE sense. However, it is viewed here as a key archi-

tectural component.

Modules in Java EE are determined by the deployment structure (packaging

structure). Also, as mentioned earlier, specific types of components can only be

assembled in specific types of modules, for instance web components can only

be assembled into web modules. See section on deployment structure.

Java EE Services

The Java EE Architecture mandates the presence of the following standard ser-

vices9.

9 Some of the Java EE services are part of the Java SE distribution.

23

Technology Background

● HTTP – Servlet and JSP provide a server-side implementation for han-

dling HTTP requests. Additionally, the client-side API in the java.net

package can be used for client-side applications. Java EE assumes the

presence of a web server.

● HTTPS (HTTP over Secure Socket layer (SSL)) – is supported in the

same fashion as the HTTP service. Java EE assumes the presence of

HTTPS access to the web server.

● Java Transaction API (JTA)– enables transaction10 support. The Client

API is used by developers to demarcate (begin/end) transactions. Java

EE assumes the presence of a transaction manager. The SPI interfaces

are provided to server vendors to regulate the binding of resource man-

agers from transactional systems (such as database managers) to the

transaction manager steered through the Client API by developers.

● Remote Method Invocation (RMI) over IIOP (RMI-IIOP) – enables Java

EE applications to work completely within the Java programming lan-

guage using the Java Remote Method Protocol (JRMP) as the transport,

or work with other CORBA-compliant programming languages using

the IIOP. EJBs are RMI-IIOP server objects and, therefore, they can be

accessed from Java/Non Java applications using IIOP to ensure inter-

operability with existing CORBAR environment. For a full reference,

please see [RMI-IIOP].

● Java Interface Definition Language (IDL) – allows Java components to

access CORBA objects using IIOP, which can be written using any other

language supporting CORBA.

● Persistence Service – Java Persistence API (JPA) provides a standard-

ization of Object Relational Mapping(ORM) tools.

ORM tools:

10 A transaction is defined as an logical unit of work with ACID characteristics: Atomicity, Con-
sistence, Isolation and Durability [RAMA].

24

Technology Background

○ enable the mapping of Java classes to tables in a relational database

○ provide basic Create, Read, Update and Delete (CRUD) operations

○ provide a querying facility to search the database

Again, the Client API is what developers use to develop persistent appli-

cations. Vendors provide implementations of JPA. These implementa-

tions of JPA are called Persistent Managers.

● Messaging service – Java Message Service (JMS) enables access to

messaging servers using Point-To-Point semantic or Publish-Subscribe

semantics. Messaging servers are transactional systems that enable the

submission/reception of messages in an asynchronous fashion, thus,

providing developers with an asynchronous programming model. Java

EE assumes the presence of a messaging server and provides a SPI to

integrate it with the Java EE server. Developers use the Client API to

develop JMS based applications to access the messaging server.

● Naming / Directory service – Java Naming and Directory Interface

(JNDI) enables access to a naming/directory servers. Naming servers

provide translation of human readable names to objects in Java. Direc-

tory servers provide naming services as well as the ability to attach

properties to the stored names. Java EE assumes the presence of a nam-

ing server and provides the SPI to integrate it with the Java EE server.

Developers use the Client API in JNDI to access or publish objects

stored in the naming server.

● Electronic mail service – JavaMail enables the submission of email

messages from within a Java EE environment. Java EE does not as-

sume the presence of either a Single Mail Transport Protocol (SMTP),

Post Office Protocol or Internet Mail Access Protocol (IMAP) server. It

merely, provides the interfaces to bind one of those servers into a Java

EE server environment and a Client API for accessing the email service.

25

Technology Background

Java Activation Framework (JAF) provides a framework for handling

data in different Multi-Purpose Mail Extension (MIME) types. It's re-

quired by Java Mail.

● Security service – Java Authentication and Authorization Service

(JAAS) allows the authentication of users within a Java EE server and

allows control user access to Java EE components and services. It is a

Java realization of the Pluggable Authentication Module (PAM), which

allows the use of authentication and authorization services indepen-

dently from the real implementation of these services. In other words, it

enables developers to write secure applications without knowledge of

the authentication/authorization mechanism in use.

● Web Services – allows web access of XML-based services as well as the

deployment of XML-based services from web components and EJB

components.

● Management – Java Management Extensions (JMX) enables the writ-

ing of Management Beans (Mbeans), which can be used to manage and

monitor resources such as applications, devices, services, and the Java

virtual machine. In Java EE JMX can be used to manage components,

such as EJBs, and the server infrastructure, such as JDBC data sources.

Deployment Structure and Application Assembly

Java EE provides a portable deployment structure for enterprise applications.

This Deployment structure is also the packaging structure. Components are as-

sembled into different deployment structures based on their type.

The basic unit of deployment in Java EE is the Module. One module can be

comprised of one or many components. Additionally, a Java EE module may

have a deployment descriptor that lists all the components in the module.

These deployment descriptors are optional as deployment information may be

annotated into the corresponding classes since Java 5.

26

Technology Background

Figure 4 from [JAVAEESPEC] outlines the four different module types, where

each module type contains one or many components of the same type. Differ-

ent component types cannot be deployed in the same module:

1. EJB Module – containing EJB components as well as classes and re-

sources they used. EJB modules are deployed (packed) as EJB-JAR

files. EJB-JAR files are JAR files with the following structure is as fol-

lows:

META-INF/MANIFEST.MF – Manifest

META-INF/ejb-jar.xml – EJB Deployment Descriptor

27

Figure 4: Java EE Deployment Structure

Technology Background

*.class – all classes that made up or are used by the

components.

*.jar – referenced JAR files must be included in the

manifest.

2. Web Module – containing web components as well as classes, resources

they used. Web modules are deployed (packed) using Web Archives

(WAR) files. WAR files are JAR files with the following structure:

META-INF/MANIFEST.MF – Manifest

WEB-INF/web.xml – Web Deployment Descriptor

WEB-INF/classes/*.class – all classes that made up or

are used by the web components.

WEB-INF/lib/*.jar – all libraries needed by the web

components.

. – all accessible web resources and folders web

components except the above mentioned.

3. Application Client Module – containing all classes and resources. Appli-

cation client modules are deployed using JAR files with the addition of

an application client deployment descriptor like the other modules. The

structure is as follows:

META-INF/MANIFEST.MF – Manifest

META-INF/application-client.xml – App. Client Deploy-

ment Descriptor

*.jar – referenced JAR files must be included in the

manifest.

. – all classes and resources that made up the ap-

plication client.

4. Resource Adapter Module – containing all classes that comprise the re-

source adapter.

META-INF/MANIFEST.MF – Manifest

META-INF/ra.xml – Resource Adapter Deployment De-

scriptor

*.jar – referenced JAR files must be included in the

manifest.

28

Technology Background

.dll/.so – native libraries.

. – all classes and resources that made up the re-

source adapter

Figure 4 from [JAVAEESPEC] also defines the structure of a Java EE applica-

tion, which can be comprised of one or many modules regardless of the type of

module. A Java EE application also has an optional deployment descriptor

META-INF/application.xml , but if omitted, default naming rules for

modules apply, because annotations are only used at the component level.

Figure 4 from [JAVAEESPEC] also shows, that modules can be deployed indi-

vidually or that they can be assembled into a Java EE application.

Also, Java EE assumes the presence of a deployment tool to enable the deploy-

ment of the different modules or Java EE application into the final Java EE

server. The structure or architecture of the deployment tool varies for different

server implementations as each vendor provides its own.

All modules as well as the Java EE application are packed using JAR Files.

However, the internal structure of these files varies depending on the type of

module. The internal structure of a Java EE application is also different from

the structure used by the modules.

During the deployment, the modules and components are configured and inte-

grated into the existing infrastructure. Each module type must be installed into

the corresponding container type and configured according to their annota-

tions, or deployment descriptor if present.

Interoperability

The Java EE Specification mandates support of communication protocols for

the different type of containers.

● Applet containers must be able to issue the following request types:

JRMP, IIOP, HTTP and SSL. No mandatory requirements exist for re-

29

Technology Background

sponses.

● Application client containers must be able to issue the following request

types: JRMP, IIOP, HTTP, SSL and SOAP over HTTP. No mandatory

requirements exist for responses.

● Web containers must be able to issue the following request types:

JRMP, IIOP, HTTP, SSL and SOAP over HTTP. Additionally, web con-

tainers must be able to serve HTTP, SSL and SOAP over HTTP re-

quests.

● EJB containers must be able to issue the following request types: JRMP,

IIOP, HTTP, SSL and SOAP over HTTP. Additionally, EJB containers

must be able to serve IIOP, IIOP over SSL, SOAP over HTTP requests.

 4.4 OSGi Overview

 4.4.1 Introduction

The Open Services Gateway initiative (OSGi) Service Platform backed by the

OSGi Alliance [OSGIAL] provides a Java-based software development plat-

form specification, which aims at providing an open and common architecture

for the coordinated development, deployment and management of software

modules and (optionally) services provided by these modules.

The OSGi approach on application development is module and service orient-

ed, where the overall application is comprised of the sum of all modules in-

volved (cooperating) in the application. Hence, the term Module System for

Java.

The current state of the OSGi Service Platform at the time this paper was writ-

ten is Release 4. Having said that, this work uses the release 4 of the OSGi Plat-

form and versions are not considered. Also, it is noted here that many portions

of this section are based on [OSGISPEC] and [OSGISERV]

30

Technology Background

 4.4.2 Overview

The OSGi Service Platform can be divided into two parts: 1) the OSGi Frame-

work, and 2) Services, which in turn can be sub-classified into a) core services

and b) optional services. The OSGi Framework forms the core of the OSGi

Platform.

The specification [OSGISPEC] provides a definition and interfaces. Vendors

provide an implementation of the framework and the services. Additionally,

vendors may provide extensions to the framework. However, their use make

for less portable software.

The OSGi Framework allows developers to create application modules known

as bundles. Hence, a bundle is the modularization unit in OSGi. A bundle is an

extensible and downloadable application module that can in turn be deployed

in the OSGi Framework. Bundles can provide zero to many services that can be

used by other bundles, which provides a service-oriented programming model

for modules. The OSGi Framework, in turn, provides a general-purpose secure

management environment for these bundles.

The OSGi Framework delineates a management environment for bundles and

services, i.e. installation, removal and update of bundles as well as starting,

registration, deregistration, stopping of services.

As stated before, the OSGi Framework is Java-based. In particular, it makes

extensive use of Java's platform independence and dynamic class loading (see

section on class loading). Java's class loading mechanism is central to the dy-

namic nature of Java as it enables the ability to install components at run time.

More importantly, class loaders play a critical role in providing security in Java

because the class loader is responsible for locating and fetching the class file,

consulting the security policy and defining the class object with the appropri-

ate permissions according to the security policies in place.

The service platform functionality is divided into layers, and each layer is re-

sponsible for a specific feature. Figure 5 after [OSGISPEC] depicts these layers.

31

Technology Background

● The Security Layer – is based on Java 2 Policy System, see vertical sec-

tion on security, with some extensions specifically to the management

of OSGi modules. Additionally, this layer defines a secure packaging for-

mat and delineates the runtime interaction of this packaging format

with the Java 2 security layer. One can see from Figure 5 that security is

regarded as a cross cutting concern across all other layers. Also, it is to

note that the security layer is optional.

● The Module Layer – defines the a generic and standardized solution for

Java modularization. In particular, it enhanced the Java SE deployment

model – JAR files – by adding additional rules for sharing/hiding Java

packages between bundles.

● The Life Cycle Layer – provides a means (API) to manage the bundles in

the Module Layer. More importantly, it provides a runtime model for

bundles. In essence, how bundles are installed, updated, started,

stopped and uninstall. It also delineates the state in which a bundle is

and how to transition from one state into another state.

32

Figure 5: OSGi Layers

Technology Background

● The Service Layer – provides a concise and consistent programming

model for bundle developers. It aims at simplifying the development

and deployment of service bundles. In particular, it does so by decou-

pling the service's specification from the service's implementation, ad-

vertise the service using an interface and publish an implementation of

the interface. Allowing bundles to select different service implementa-

tions at runtime through the framework's Service Registry, which allows

bundles to: 1) register new services, 2) receive notifications about the

state of services, 3) lookup existing services. Thus, allowing bundles to

adjust to changes in the environment

● Execution Environment refers to the Java environment in which the

bundles will be executed. For instance, J2SE-1.5 for applications run-

ning in a regular desktop or CDC-1.1 if OSGi is to run in a J2ME Foun-

dation 1.1 complaint device.

Figure 6 after [OSGISPEC] depicts the interaction between the layers and the

bundles. Top to bottom,

● bundles use services

● bundles are started, which initiates the bundle's life cycle. Upon startup

of the life cycle, the bundle is installed as a module, and services are

published by the bundle and managed by the framework.

● classes are loaded from the bundles based on their dependencies

● bundles are executed in a specific execution environment.

33

Technology Background

 4.4.3 Module Layer

The Module Layer provides a standardized and generic modularization model

for Java from a language perspective regardless of the type of Java application,

e.g. Java ME, Java SE or Java EE. The modularization model in OSGi extends

and enhances the regular packaging and deployment format of Java SE appli-

cations, namely the organization of classes and resources in packages and JAR

files.

The modularization unit in the OSGi Framework is called a bundle, which con-

sists of classes and other resources, which together provide functionality to

users and other bundles. Bundles can share Java packages with other bundles,

where the bundle containing the package explicitly exports the package is

34

Figure 6: OSGi Layer Interactions

Technology Background

called an exporter bundle. Another bundle importing explicitly the package in

an exporter bundle is called an importer bundle. Bundles are the only entity of

modularization in OSGi and, therefore, the only application units.

A bundle is deployed as a JAR file, see section on JAR files. Also, upon being

installed into the OSGi Framework, a bundle gets assigned a unique bundle id

that can be used to refer to that bundle from within the OSGi Framework at

runtime.

A bundle is a JAR file that:

● Contains all Java classes and other resources such as graphics, sound,

help files, etc. to provide some functionality.

● May contain other (embedded) JAR Files that are available as resources

and classes to the containing bundle. The contained JAR file, however,

cannot contain other JAR files, thus this structure is non recursive.

● Contains a manifest file describing the contents of the JAR File accord-

ing to the JAR File specification. The META-INF/MANIFEST.MF file

contains additional header information regarding the bundle such as

dependencies to other bundles, imported/exported packages and so on.

The manifest headers must strictly follow the manifest format as of

[JARSPEC]

● May contain an OSGI-OPT/ folder that contains optional documenta-

tion regarding the bundle. OSGi Framework implementations may ig-

nore or entirely remove this folder.

● Every bundle must have a unique symbolic name within the OSGi

Framework. However, there may be multiple versions of the same bun-

dle. Hence, bundle uniqueness is resolved by the bundle's symbolic

name and version number.

A bundle must first be installed and started in that order. At that point:

35

Technology Background

1. the bundle's functionality is exposed and published services become

available to other bundles installed in the OSGi Platform.

2. The bundle itself can be triggered to use services exposed by other bun-

dles.

See section on life cycle layer.

Execution Environment

Bundles can be restricted to executed only in specific execution environments.

Execution Environment is the term use in the OSGi Framework to outline a

specific set of capabilities that a bundle can assume the Java Runtime Environ-

ment will provide, for instance J2SE, CDC, etc. Table 1 after [OSGISPEC] out-

lines the different execution environments specified in the OSGi Framework.

EE Name Description

CDC-1.0/Foundation-1.0 Equal to J2ME Foundation Profile

OSGi/Minimum-1.1 OSGi EE minimal set that allows the
implementation of the OSGi Frame-
work

JRE-1.1 Java 1.1.x

J2SE-1.2 Java 2 SE 1.2.x

J2SE-1.3 Java 2 SE 1.3.x

J2SE-1.4 Java 2 SE 1.4.x

J2SE-1.5 Java 2 SE 1.5.x

JavaSE-1.6 Java SE 1.6.x

PersonalJava-1.1 Personal Java 1.1

PersonalJava-1.2 Personal Java 1.2

CDC-1.0/PersonalBasis-1.0 J2ME Personal Basis Profile

CDC-1.0/PersonalJava-1.0 J2ME Personal Java Profile

Table 1: Standardized Execution Environments in OSGi

When an Execution Environment is in the bundle header, it is the responsi-

bility of the bundle developer to use only features provided in the stated envi-

ronment.

36

Technology Background

For instance, Bundle-RequiredExecutionEnvironment: J2SE-1.4,

J2SE-1.5 - with the previous header the bundle is allowed to use only APIs

existing in both Java environments. Thus, new Java 5 features cannot be in-

cluded.

Conversely, a bundle requires that a specific Execution Environment is present

before it is installed. The OSGi Framework is also obliged to provide the names

of the distinct execution environment it provides. This feature is to be consid-

ered volatile as another bundle may extend the Execution Environment at run-

time and thus change or add new features in the execution environments.

Bundle Cooperation

Many bundles can be installed and started into a single Java Virtual Machine

(JVM).

The mechanism for bundle co-existence and co-operation used by the OSGi

Framework is the class loading feature provided by Java Programming Lan-

guage. In fact, the OSGi Framework exploits extensively the class loading fea-

ture of Java and at the same time it enhances it by providing strict and well-de-

fined rules for bundle cooperation.

Bundles can hide/share packages and classes with other bundles. For example,

bundle B1 exports a package P1 and bundle B2 imports package P1 from B1. B1

is called the exporter and B2 the importer. Additionally, the exporter can ex-

plicitly exclude classes within the exported package, this feature is known in

OSGi as class filtering.

A bundle can also be directly wired to another bundle. This is, however, not

recommended as it tightly couples bundles to each other. It also allows the ex-

istence of split packages – package contents come from different sources (bun-

dles). That in itself may lead to [OSGISPEC]:

● Completeness issues: no guarantee where the package ends. No means

to figure out if all classes may have been included.

37

Technology Background

● Ordering: bundles must be required in the right order.

● Performance: when searching from classes in multiple bundles, an in-

crease number of ClassNotFoundException are thrown until the

class is found.

● Confusion: as classes might come from different bundles and thus load-

ed by different class loaders.

● Mutable Exports: the export signature of the requiring bundle can sud-

denly change.

● Shadowing: classes in the requiring bundle are shadowed by those in a

required bundle.

38

Figure 7: Class Loading Structure in OSGi

Technology Background

Each bundle that is not a fragment11 is loaded in its own class loader. The bun-

dle class loader provides the bundle with its own namespace. This avoid name

conflicts with other bundles as well as ensure resource sharing with other bun-

dles.

A single bundle class loader as well as the class loaders from other bundles cre-

ate a delegation network of class loaders. This class loader delegation model

exploits the ability of a class loader to delegate the loading of a class to another

class loader. Figure 7 depicts the class loading delegation model in OSGi.

The OSGi Framework defines 3 distinct types of class loaders:

● System Class Loader: loads classes and resources provided by the exe-

cution environment; i.e. classes in the java.* packages.

● Framework Class Loader: loads classes and resources provided by the

OSGi Framework, as well as classes and resources provided by core ser-

vices, classes in the org.osgi.* packages and their implementation.

This class loader is used by the system bundle, which provides the im-

plementation of the OSGi Framework. See section on system bundle.

● Bundle Class Loader: loads classes and resources included in the bundle

(JAR file) as well as classes and resources included in enclosed JAR files

or extensions provided by fragment bundles. Every bundle has it's own

class loader and share the parent class loader.

The OSGi Framework also defines the bundle's class space, which includes

classes and resources loaded from:

● boot class path – classes and resources loaded by the System Class

Loader.

11 Fragments are bundles that extends other bundles, this bundles are called a host bundles.
Therefore, fragments are treated as part of the host bundle and become part of the host bun-
dle class space. This feature is typically used to support translation files for different locales.
Which allows the different localization to be shipped independently. Fragment bundles can
also be used to provide optional extensions to a specific bundle.

39

Technology Background

● framework's class path – classes and resources loaded by the Frame-

work Class Loader.

● bundle class path – classes and resources loaded by the Bundle Class

Loader.

● required bundles path – classes and resources loaded by other bundles.

● imported packages – classes and resources imported from other bun-

dles.

As with regular class loaders, the class space must be consistent, in other

words, every class must be resolved exactly once. However, the OSGi Frame-

work supports versioning, which allows the loading multiple versions of the

same class.

Having said that, the OSGi Framework is responsible for instantiating and

maintaining all class loaders except for the System Class Loader, which is the

primordial class loader provided by the execution environment.

The OSGi Framework is not only responsible for providing a class loader to

each bundle but it is also responsible for resolving bundles. Resolving is the

process of wiring two bundles, where one bundle is the importer and another

is the exporter. In other words, the OSGi Framework is responsible for creat-

ing the bundle's class space, creating a class loader after all wires are resolved

and finally, loading and executing each class in the corresponding bundle's

class loader.

Although the OSGi Framework is responsible for resolving bundles, bundle de-

velopers have the means to declaratively state all bundle dependencies (im-

ported/exported packages) and their constraints (version) in the META-

INF/MANIFEST.MF file.

According to [LIANG], class loaders must exist in strictly hierarchical structure

with the primordial class loaders at root of the inheritance tree. However, the

40

Technology Background

maintenance of this hierarchical structure has to be ensured by the class devel-

oper, which may lead to errors at runtime if the class loader does not follow the

implementation guidelines. Having said that, the OSGi Framework mandates

the loading of classes in the java.*12 packages by the System Class Loader,

but it also allows other classes to be loaded by the System Class Loader, thus

the OSGi framework allows the expansion of the bootstrap class space. This is

done via the system property org.osgi.framework.bootdelegation.

For instance when running on a SUN JVM the following must be necessary.

org.osgi.framework.bootdelegation=sun.*, com.sun.*. Which

states all class from the sun as well as the com.sun packages should be loaded

by the System Class loader.

Bundles are not allowed to import any of the java.* packages. However, the

OSGi Framework must explicitly export relevant non java.* packages such as

Java extension packages, javax.*. This is done via the system property

org.osgi.framework.system.packages. For instance, org.os-

gi.framework.system.packages=javax.cryto.*. Careful attention

must be paid here, as these exports can collide with some to the other exported

packages by bundles. This is a deviation of Java as everything the JRE has to

offer is available to an application running in it automatically.

Bundle exports are accessible immediately after the bundle has been resolved.

Hence, an importer may use an exported package before the exporter bundle is

started.

Bundle Constraints

Constraints are conditions on a wire a bundle provider can state in the mani-

fest to match imports to exports. Constraints also state explicit conditions on

an export that importers must follow in order to use the bundle.

12 The wild card means recursive matching; all classes in the java package as well as other sub-
packages within it.

41

Technology Background

A bundle is able to constrain an import from another bundle by a) absolute

version, b) version list, or c) version ranges. An OSGi bundle versioning is used

as: Major – an incompatible update, Minor – a backward compatible update,

Micro – a change that does not affect the interfaces. For instance, Import-

Package: p; version="[1.5.0,1.5.3)" will import packages p of ver-

sion 1.5.0 through 1.5.3, excluding version 1.5.3.

Imports can be declared optional or mandatory, optional imports means the

imported package is not required for the bundle to resolve correctly. This can

be specified using the dynamic import header: look for exported package when

needed (class loading); or the resolution-directive: import definition with the

resolution set to optional.

Inter-package dependencies can be depicted by means of the uses directive in

the Export-Package header. This means: if an importer A wants to use the

package p1 in bundle B that uses package p2 in bundle C, importer A must also

import p2 in bundle C for the bundle to be resolved.

The complete set of constraints constructed from recursively traversing the

wirings is called implied package constraints. These implied constraints are

not automatic imports, but must be taken into consideration when importing

in order to preserve class space consistency.

The OSGi Framework also allows the importer/exporter to influence the wiring

process in a declarative way, called declarative constraints. This allows seman-

tics like, import accounting module from company “MyCompany”.

Although the wiring of an imported package is typically done implicitly, an im-

porter has a means to state specifically from which bundle it wants a package

to be imported. This includes a specific bundle name and bundle version or

version ranges. This feature is also called (bundle) Provider Selection.

The OSGi Framework also provides a facility for bundles to provide classes and

resources to other bundles, via the Fragment-Host header. This feature al-

42

Technology Background

lows a bundle to provide optional features to existing bundles. This feature is

commonly used for localization.

Resource Loading

Resources from a bundle may come from the bundle's JAR file, fragments, im-

ported packages or the bundle classpath. The OSGi Framework states all re-

sources must be loaded using the class loader for that bundle. This should be

done with the class loader's methods getResource(String) and getRe-

sources(String), which return an URL or an enumeration of URLs respec-

tively. These URLs are bundle relative and are called bundle entry URLs. API

classes provided by the OSGi Framework must load resources using the

bundle's class loader.

Loading Native Code

Another key Java feature that the OSGi Framework is based on is the Java Na-

tive Interface (JNI). JNI allows the integration of native code13 into the bun-

dles. All native libraries must be loaded using the class loader of the bundle at-

tempting to load the library. Native code libraries can be specified in the MAN-

IFEST.MF file in a header to enhance the wiring process. Bundle providers can

include the following native library descriptions:

● Operating System (OS) name to indicate the name of the OS for which

the native library runs, for instance Windows2000, WindowsXP, Linux,

etc. For a comprehensive list of OS names, refer to [OSGISPEC] [OS-

GIAL]

● OS version specifies the version range under which the native library

runs.

● Processor specifies the hardware architecture under which the native li-

brary runs (Mips, Alpha, x86, etc.). For a comprehensive list of proces-

13 Native code is code compile exclusively for a specific hardware architecture and operating
system.

43

Technology Background

sors refer to [OSGISPEC] [OSGIAL]

● Language to indicate the language for which the bundle has been local-

ized.

The OSGi allows only one entry in the native library header per platform. If

multiple libraries need to be loaded for one platform all libraries need to ap-

pear in the same header as a list.

A native library can only be loaded by single class loaders in order to preserve

namespace separation. Failure to do so will result in a linkage error.

Bundle Localization

The manifest file includes a substantial amount of human readable OSGi head-

ers. The OSGi Framework allows a bundle provider to extract all that informa-

tion and to place it into Java Resource Bundle14 for each supported Locale15.

The localized information is placed in properties resources OSGI-

INF/l10n/bundle.properties resource bundle for the default locale.

Each supported locale follows with its own file with 2-letter language code in

lower case and 2-letter country code as specified by [reference to Java API for

Locale], for instance for German and Austria OSGI-

INF/l10n/bundle_de_AT.properties. The content of these properties

files are key value pairs, where the key is the same in all properties files, but

the values are in the corresponding language they support.

Extension Bundle

Optional parts of the OSGi Framework as well as extensions to the Framework

and the execution environment can be done using extension bundles. These

14 Resource bundles contain locale specific objects. It allows a developer to isolate a Java appli-
cation from most if not all the locale specific information. Although Java supports many dif-
ferent kinds of resource bundles, the OSGi Framework uses specifically the PropetyRe-
sourceBundle class.

15 A Locale object represents a specific geographical, political, or cultural region. More specifi-
cally Java uses ISO-639-2 for language codes and ISO-3166 for country codes. Locales enable
tailoring of information according to an users location.

44

Technology Background

bundles are different from regular bundles as they can provide packages that

must reside in the boot class path or framework's class path. Therefore, their

packages cannot be imported/exported. Extension bundles will not be loaded

in their own class loader either, as extension bundles will be appended to the

framework's class path and boot class path extensions are installed in the boot

class path.

Furthermore, extension bundles must have AllPermission granted to them

as they are part of the Execution Environment or the OSGi Framework. Both of

these Protection Domains have AllPermission granted to them. See sec-

tion on Security Layer.

 4.4.4 Life Cycle Layer

The Module layer describes the static characteristics of bundles. The Life-Cycle

Layer specifies the dynamic characteristics and behavior of this bundles. In

other words, the runtime state of a bundle and the framework itself as well as

events triggered by these state transitions.

Furthermore, the OSGi Framework provides a well-defined API to control the

life-cycle of bundles as well as the state of the framework and the installed

bundles.

Although there are many classes involved in the life cycle layer, some of the

most relevant classes in the API are [OSGISPEC]:

● Bundle – Represents an installed bundle in the Framework.

● Bundle Context – A bundle's execution context within the Frame-

work. The Framework passes this to a Bundle Activator when a bundle

is started or stopped.

● Bundle Activator – An interface implemented by a class in a bun-

dle that is used to start and stop that bundle.

45

Technology Background

● Bundle Event – An event that signals a life cycle operation on a bun-

dle. This event is received via a (Synchronous) Bundle Listener.

● Framework Event – An event that signals an error or Framework

state change. The event is received via a Framework Listener.

● Bundle Listener – A listener to Bundle Events. Should be imple-

mented by developers willing to listen to bundle events.

● Synchronous Bundle Listener – A listener to synchronously de-

livered bundle events. Should be implemented by developers willing to

listen to bundle events.

● Framework Listener – A listener to Framework events. Should be

implemented by developers willing to listen to framework events.

● Bundle Exception – An Exception thrown when Framework opera-

tions fail.

● System Bundle – A bundle that represents the Framework.

Bundle

Every Bundle installed in the framework is represented by a Bundle object,

which can be used to manage the bundle in the OSGi Framework.

Every bundle has an identifier (long) assigned by the OSGi Framework and is

valid for the full life time of the bundle. Bundle identifiers are assigned in as-

cending order corresponding to the installation order.

Every bundle object must have also a symbolic name retrieved from the header

in the manifest file; keep in mind that the combination of symbolic name and

bundle version is what makes a bundle globally unique.

46

Technology Background

Each bundle object has a bundle location representing the URL to the JAR file

used to install the bundle from. This location must be unique and cannot be

changed.

A bundle can be in one of the following states during its life cycle:

● INSTALLED – The bundle has been successfully installed. A bundle's

structure must be valid and its location must be unique before it can be

installed on the framework . At this point the bundle gets a unique bun-

dle identifier (higher than an existing one) and the bundle object is cre-

ated. This is persistent and it must be managed by the framework until

the bundle is uninstalled. If the bundle for an existing location already

exists, the framework must just update the existing object. Finally, all

remaining life cycle operations must be performed on the instantiated

bundle object.

● RESOLVED – A bundle enters the resolved state after all bundle depen-

dencies, fragments, imports, exports, etc., are resolved. Thus, in this

state all Java classes that the bundle needs are available. This state indi-

cates that the bundle is either ready to be started or that it has stopped.

● STARTING – The bundle is being started. Immediately after and based

on the activation policy declared in the manifest the bundle will be acti-

vated or not. Activation is the process of starting up16 the bundle; con-

versely, deactivation is the process of shutting down17 the bundle. Acti-

vation is optional, for instance, a library bundle. There are two types of

activation policies: a) eagerly – where the bundle is immediately acti-

vated (default), and b) lazily – where the bundle remains in the START-

ING state until the first class in a specified package(s) from bundle is

loaded. The activation depends on the activation policy (eager/lazy), but

the activation process is done using a BundleActivator object a bun-

16 During the startup process bundles can create threads, start servers, register services, etc.
17 All previously started threads must be stopped at this point. At this point no framework ob-

ject must be reached by the bundle. There is no need to deregister services or listeners as they
will be cleanup automatically by the framework.

47

Technology Background

dle developer provides in the manifest. The Activation is always trig-

gered by the framework, who creates a BundleActivator and in-

vokes its BundleActivator.start(BundleContext) method.

● ACTIVE – The bundle has been successfully activated and is running; its

Bundle Activator start method has been called and returned.

● STOPPING – The bundle is being stopped. The BundleActiva-

tor.stop (BundleContext) method has been called but the stop

method has not yet returned. In general, the stop method should undo

the work done by the start method. Upon successful execution of the

stop method, the bundle transitions into the resolved state.

● UNINSTALLED – The bundle has been uninstalled. It cannot move into

another state.

Figure 8 after [OSGISPEC] depicts the states of a bundle as well as the state

transitions from one state to another.

48

Technology Background

System Bundle

The OSGi Framework itself is implemented as a bundle. This bundle is referred

to as the system bundle. Built-in services offered by the Framework are regis-

tered by the system bundle.

Although the system bundle shows as a regular bundle, it is different to other

bundles in the following ways.

● It always has the identifier 0 (zero)

● The location shows typically “System Bundle”

● Although it has it's own symbolic name, it should also respond to the

system.bundle alias.

● It's life cycle is different:

○ start does nothing, because the bundle is already started

○ stop returns immediately and shut downs the framework

49

Figure 8: Bundle State Diagram and Transitions

Technology Background

○ update returns immediately and shut downs and restarts the frame-

work in a new thread.

● It cannot be unistalled.

Bundle Context

The Bundle Context object realizes the relationship between the a bundle and

the OSGi Framework. Hence, this object represents the execution context of a

bundle and provides access to the framework's capabilities to the bundle. This

object is provided by the framework to the Bundle Activator.

Some of the capabilities provided by the bundle context are:

● Installing new bundles

● Retrieving and interrogating other bundles installed in the OSGi Frame-

work. This capability is not restricted. Any bundle should get access to

any other bundle in the framework.

● Providing environment information to the bundle, such as framework

version, framework vendor, framework language, execution environ-

ment, processor, OS version, OS name and other.

● Obtaining persistent storage area. The OSGi Framework defines option-

al support for a private storage area in form of file system (java.io.-

File). Bundle Context allows the use of this private storage area

● Registering/retrieving services

● Subscribing/unsubscribing to event broadcast

Events

The OSGi Framework supports two types of events:

50

Technology Background

● Bundle Event (BundleEvent)to report changes in the life cycle [refer-

ence to figure on bundle state] of bundles.

● Framework Events (FrameworkEvent)to report information, warning

and error messages as well as to report when the framework has been

started, updated and the start level has changed.

A bundle developer interested in listening to bundle events must implement a

BundleListener or a SynchornousBundleListener to receive notifica-

tion of changes in the bundle's life cycle. SynchronousBundleListeners

are called during the processing of the event before BundleListeners. Addi-

tionally, SynchronousBundleListeners can listen to lazy activation, start-

ing and stopping events, which are state transition events. Other wise all

events are triggered after the bundle has changed its state.

A bundle developer interested in listening to framework events must imple-

ment a FrameworkListener.

All event listeners are registered using the BundleContext object. The

framework ensures all events are delivered only to listeners registered at the

time the event was published and to listeners in active bundles - bundles in the

active state.

 4.4.5 Service Layer

The Service Layer of the OSGi Service Platform delineates a collaboration

model for bundles that is tightly integrated with the bundle's life cycle. This

collaboration model is built around services. A service is to be regarded as

piece of functionality provided by a bundle, for instance, data service, connec-

tion pool service, naming service, etc.

The service model use in the OSGi Framework is of publish, find, bind. The

framework provides a facility for bundles to publish, find and bind to each oth-

er's services. This service facility is called the Service Registry. Additionally,

51

Technology Background

the OSGi framework provides a means to restrict access and operations on the

services.

The service model in the OSGi Framework is persistent, because the frame-

work allows bundles to track services even across framework restarts.

Also, this service model accounts for the evolution of services over time, which

allows a bundle to be bound to a new version of the service it uses.

Furthermore, the OSGi Framework comes with a comprehensive API to con-

trol operations on services – publishing, finding and binding – as well as an

API to track service events.

A service is a Java object registered under one or many interfaces with the ser-

vice registry, which is provided and fully managed by the framework.

Although the are many classes involved in service layer. Some of the most rele-

vant classes in the API are [OSGISPEC]:

● Service – An object registered with the service registry under one or

more interfaces together with properties. This object can be discovered

and used by bundles.

● Service Registry – Holds the service registrations. It provides th

facility that the OSGi Framework provides for bundles to publish, find

services.

● Service Reference – A reference to a service. Provides access to the

service’s properties but not the actual service object. It allows a bundle

to inquire about a service without directly using the service and thus

creating a dependency. It can be used by the bundle to select the most

suitable service based on the service's properties. It is used in combina-

tion with the bundle context to acquire the the service object.

52

Technology Background

● Service Registration – The receipt provided by the service reg-

istry when a service is registered successfully. The service registration

can be used to update the service properties. It can also be used to

deregister the service. The service can only be unregistered by the

holder of the service registration.

● Service Permission – A permission to delineate the use of a service

or to preform the registration of a service.

● Service Factory – A facility to let the registering bundle customize

the service object for each using bundle.

● Service Event – An event fired when a service is registered, unregis-

tered or when the service properties are updated.

● Service Listener – A listener to Service Events. Should be imple-

mented by developers willing to listen to service events.

● Filter – An object that implements a simple but powerful filter lan-

guage18 that can be used to filter the selection of a service based on it's

service properties.

Services

Bundles provide functionality to other bundles by means of a service, which

represents the unit of bundle cooperation in the OSGi Framework.

The OSGi Service consist of: a) a service interface19 that defines the service, and

b) a service implementation that provides the service as defined in the service

interface.

An OSGi service is provided by, registered by and owned by a bundle. The ser-

vice also runs within the bundle. The bundle registers the service with the

18 The filter expressions are based on Lightweight Directory Access Protocol (LDAP) . Please re-
fer to RFC 2254.

19 Note that regular Java classes (abstract, final or concrete) can be advertised as services too

53

Technology Background

OSGi Framework's service registry. Upon successful registration the registered

service becomes available to other bundles. It's important to note that, if a

bundle B1 publishes a service S1 and a bundle B2 uses the service S1 in bundle

B1, the S1 still runs within the bundle B1 (using the bundle B1 class loader).

A service may contain service properties (key/value pairs - String) which de-

scribe the service. The service properties are intended to provide information

about the service and should not be used to alter the functionality of it. These

service properties can be used to filter services available in the framework.

The framework predefines some of these service properties.

● objectClass: provides a set of interface names under which the ser-

vice implementation was registered. This property is set automatically.

● service.description: can be use for documenting the service. This

property is optional.

● service.id: the framework assigns a unique service id to each regis-

tered service.

● service.pid: is a unique persistent id that can be used to identify a

service across framework restarts.

● service.ranking: is numeric value that can be used to rank services

that are registered under the same service interface. The framework re-

turns the service with the highest rank order if present. If not present,

the framework returns the service with the lowest service id;

Service Management

An important aspect of service management in the OSGi Framework is that all

dependencies are managed by the framework.

54

Technology Background

● When a bundle is stopped, all registered services for that bundle are au-

tomatically deregistered by the framework.

● The framework provides an API for a bundle to manage it's services and

the services it uses.

● The framework provides an infrastructure to notify bundles about ser-

vice registration, modification and deregistration events.

● Every bundle has means to retrieve all services it has published and all

services it s using.

● The framework must ensure that during the registration all service im-

plementations adhere to the interface(s) it has been publish for.

● Services can be registered and unregistered by a bundle dynamically

while the bundle is in the STARTING, ACTIVE or STOPPING states.

● The framework must ensure that a bundle requesting a service will be

able to safely cast the service object to any of the associated interfaces

under which the service has been registered. Having said that, the

framework's service registry must ensure that bundles see only compati-

ble services to avoid a ClassCastException.

Service Events

As mentioned earlier the framework provides an API for handle event in the

service life cycle: registration, unregistration and changes in the service prop-

erties.

A ServiceListener allows a bundle to listen for service events for a specific

compatible services only. A bundle developer using a service should implement

a ServiceListener and register it with the framework. This ServiceLis-

tener is used to track the availability of a service; thus, it allows the bundle

developer to take appropriate actions when the service state changes.

55

Technology Background

In particular, bundle developers must ensure that all references to another

bundle's class are deleted to minimize the effect of stale references20. More im-

portantly, the OSGi Framework does not specifies the behavior of a service

when it becomes unregistered. Such services may continue working or they

may throw an exception at the discretion of the service implementation.

Some bundles would like to listen to all events even from incompatible ser-

vices. This can be accomplished by means of the AllServiceListener in-

terface, which allows a bundle to listen to all service events regardless of their

compatibility.

Service Factory

Service factories as their name say are classes that can be use to produce ser-

vice object, based on the Service Factory design pattern [GAMMA].

In the OSGi Framework a service factory can be used to customize the service

objects returned by a bundle to the requesting bundle. Therefore, it allows to

create a unique service object for each bundle that gets the service. At the same

time, a service factory also helps manage dependencies not managed by the

framework. For instance, a service can be notified when a bundle no longer

uses the service.

Service factories can also be used to minimize stale references if coded using

indirection. Indirection simply said that the service objects return by the ser-

vice factory do not return the service object itself, but a reference to it. Hence,

when the service object becomes invalid, the reference can be nullified, thus

removing the service object.

Service Definition

Organizations and bundle developers define and create services. However, the

OSGi Framework defines a list of built in services.

20 A stale reference is an object reference from a class in a stopped bundle.

56

Technology Background

In fact, the OSGi Framework classifies these services in two major categories:

1. Core Framework Services defined [OSGISPEC] are considered part of

the framework, but they are optional, and

1. Permission Admin – The permissions of current or future bundles

can be manipulated through this service. Permissions are activated

immediately once they are set.

2. Package Admin – Bundles share packages with classes and re-

sources. The update of bundles might require the system to re-calcu-

late the dependencies. This Package Admin service provides infor-

mation about the actual package sharing state of the system and can

also refresh shared packages. i.e. break the dependencies and recal-

culate the dependencies.

3. Start Level – Start Levels are a set of bundles that should run togeth-

er or should be initialized before others are started. The Start Level

Service sets the current start level, assigns a bundle to a start level

and interrogates the current settings.

4. URL Handler – The Java environment supports a provider model

for URL handlers. However, this is a singleton making it impossible

to use this in a collaborative environment like OSGi that potentially

has many different providers. This service specification enables any

component to provide additional URL handlers.

2. Add-on Services defined in [OSGISERV]:

1. Log Service – The logging of information, warnings, debug informa-

tion or errors is handled through the Log Service. It receives log en-

tries and then dispatches these entries to other bundles that have

subscribed to this information.

57

Technology Background

2. Configuration Admin Service – This service provides a flexible and

dynamic model to set and get configuration information.

3. Device Access Service – Device Access is the OSGi mechanism to

match a driver to a new device and automatically download a bundle

implementing this driver. This is used for Plug and Play scenarios.

4. User Admin Service – This service uses a database with user infor-

mation (private and public) for authentication and authorization

purposes.

5. IO Connector Service – The IO Connector Service implements the

CDC/ CLDC javax. microedition.io package as a service. This service

allows bundles to provide new and alternative protocol schemes.

6. Preferences Service – This service provides access to hierarchical

database of properties, similar to the Windows Registry or the Java

Preferences class.

7. Component Runtime – The dynamic nature of services -- they can

come and go at any time -- makes writing software harder. The Com-

ponent Runtime specification can simplify handling these dynamic

aspects by providing an XML based declaration of the dependencies.

8. Deployment Admin – The primary deployment format for OSGi is

the bundle, which is a JAR/ZIP file. The Deployment Admin pro-

vides a secondary format: the deployment package. Deployment

Packages can combine bundles with arbitrary resources into a single

deliverable that can be installed and uninstalled. A comprehensive

model of resource processors allows user code to extend the resource

types.

9. Event Admin – Many OSGi events have specific typed interfaces,

making it hard to receive and filter events generically. The Event Ad-

min provides such a generic, topic-based event mechanism. The

58

Technology Background

specification includes mapping for all existing framework and ser-

vice events.

10. Application Admin – The OSGi bundle model is different from the

typical desktop or mobile phone application model that relies on

starting and stopping applications. The Application Admin pre-

scribes such a traditional application model and its required man-

agement infrastructure.

11. Http Service – The Http Service is, among other things, a servlet

runner. Bundles can provide servlets, which becomes available over

the Http protocol. The dynamic update facility of the OSGi Service

Platform makes the Http Service a very attractive web server that

can be updated with new servlets, remotely if necessary, without re-

quiring a restart.

12. UPnP Service – Universal Plug and Play (UPnP) is an emerging stan-

dard for consumer electronics. The OSGi UPnP Service maps devices

on a UPnP network to the Service Registry. Alternatively, it can map

OSGi services to the UPnP network. This is a recommended Release

3 specification.

13. DMT Admin – The Open Mobile Alliance (OMA) provides a compre-

hensive specification for mobile device management on the concept

of a Device Management Tree (DMT). The DMT Admin service de-

fines how this tree can be accessed and/or extended in an OSGi Ser-

vice Platform.

14. Wire Admin Service – Normally bundles establish the rules to find

services that they want to work with. However, in many cases this

should be a deployment decision. The Wire Admin service therefore

connects different services together as defined in a configuration

file. The Wire Admin service uses the concept of a Consumer and

Producer service that interchange objects over a wire.

59

Technology Background

15. XML Parser Service – The XML Parser service allows a bundle to lo-

cate a parser with desired properties and compatibility with JAXP.

16. Initial Provisioning – defines how a Management Agent can make

its way to the OSGi Service Platform. A management Agent can be

use to remotely administer the Service Platform, specifically, en-

abling the management of a Service Platform by an Operator.

17. Foreign Application Access – The OSGi service architecture is not

natively supported by foreign application models like MIDP, Ap-

plets, other Java application models. The purpose of this service is to

enable these foreign applications to participate in the OSGi service

oriented architecture.

60

Java EE and OSGi Integration

 5 Java EE and OSGi Integration
As mentioned earlier, the purpose of this chapter is to shed some light over the

integration of the Java EE and the OSGi Framework. A sample application was

created to experiment with a service-oriented development model for Java EE

applications using OSGi.

The service-oriented architecture is outlines here and the results are presented

based on the experience gather during the creation of the sample application.

As mentioned earlier the aim of this work is to analyze the integration of OSGi

and Java EE application from the application developers point of view.

 5.1 The Sample Application
The implementation of an address book was selected for the feasibility study

of the service-oriented Java EE application.

The ideas behind selecting the address book as the sample application was:

1. to select a simple application in terms of business logic, because the em-

phasis of this work is not a specific business logic. The emphasis of this

work is rather to study the composition of a modularized Java EE appli-

cation, and

2. to select only the most commonly use features of a Java EE application

to keep the example still relevant. In particular, the author puts an em-

phasis on the most commonly used features in a Java EE application.

This features are:

1. database access service21 using JDBC,

2. persistence management service using JPA,

21 Data source in terms of Java EE.

61

Java EE and OSGi Integration

3. transaction management service JTA

4. web components using Servlets and JSP.

Please note that not all Java EE services were studied, because addi-

tional features require more careful study. Because of this, the author

suggests topics that require further study and are beyond the scope of

this work.

Finally, this sample application studies the integration of non Java EE features

in the new service oriented Java EE environment.

Application Server Decision

For the sample application a lightweight architecture was selected. When it

comes down to Java EE development, developers can

1. either “prune” the application server features they need,

2. or include individual Java EE features needed.

Although, the second approach represents a small deviation in terms of Java

EE, which assumes the presence of an application server, the author believe

that in the near future many application developers will not rely in an applica-

tion server as much, but much rather rely in the features a Java EE server pro-

vides.

For this work, the author selected to the second approach to keep the applica-

tion weight to a minimum but also to fully realize a service-oriented Java EE

application.

Architecture

Modules and services created for the sample were:

62

Java EE and OSGi Integration

1. Start Database bundle – starts and stop a Hypersonic SQL22 database in

a separate process. This bundle checks if the Database is started, if so, it

does nothing; if not, it starts the Database at a specific location. This

bundle uses OSGi file system based persistence capability to start the

database at a specific location. It also introduces additional meta infor-

mation in bundles. Please note, that in large scale enterprise applica-

tions this approach will not work, because of the complexity of large

database management systems. However, the realization of a similar

service to check the presence of the database is possible.

2. Data Source bundle – this bundles creates JDBC connection pool and

publishes it as OSGi service. This bundle depends on the

3. Transaction Manager bundle – this bundles depends explicitly on the

Data Source service published by the Data Source bundle and attaches a

transaction manager to the Data Source to manage user transactions

when accessing the database.

4. Address Book Data Service bundle – provides data service to the ad-

dress book database. For instance, adding a new contact, removing a

new contact, adding a new phone, etc.

First, this bundle checks if database tables exists, if not, it generates the

address book data model.

A persistence manager (JPA) was used to ease the development process

of this data service. The persistence manager uses the Transaction

Manager service published by the Transaction Manager bundle and the

Data Source service published by the Data Source bundle. The whole

address data service was programmed using the Data Access Object

[GAMMA]design pattern in order to abstract access to the database.

Finally, this service publishes the Address Book Service as an OSGi ser-

vice, which is realized as a Service Facade [GAMMA]. The purpose of

22 Hypersonic SQL is a small foot print, file system based database. [HSQLDB] .

63

Java EE and OSGi Integration

this service facade is to completely encapsulate the realization of the ad-

dress book data service. This facilitates the change or update of the ser-

vice without breaking the overall application.

5. Vcard Bluetooth bundle – detects Bluetooth23 capabilities in the operat-

ing system where the enterprise application resides. If so, the operating

system starts a server that waits for incomming vCards24 over Bluetooth.

Upon reception of a vCard the server stores it in operating system's

temporary directory and publishes the vCard as a file handle (ja-

va.io.File).

6. Vcard Receiver bundle – uses the “Whiteboard” pattern [KRIENS] to re-

ceive vCards published by the Vcard Bluetooth bundle. Upon detection

of the vCard, the server publishes them as Vcard objects to the web ap-

plication as a service.

7. Address Book Web bundle – provides a web front end to the address

book. It depends on the Address Book Data Service published by the

Address Book Data Service bundle. Additionally, it also uses the “White-

board” pattern [KRIENS] to receive vCards objects published by the

Vcard Receiver bundle. Upon reception of these vCard objects this

bundle shows the client the content of the received business card, so the

user can add them to the address book.

 5.2 Evaluation Points
In this section the lessons learned during the creation of the sample are out-

line. The relevant evaluation topics are presented.

23 Bluetooth is a wireless personal area network for connecting devices in near proximity
[BLUETOOTH].

24 Vcard is a file format standard for electronic business cards.

64

Java EE and OSGi Integration

Bundle Repositories

The OSGi Framework does no provided a centralized bundle repository. The

OSGi Framework keeps track only of installed bundles and it has no notion of

bundles that can be potentially installed.

However, some vendors are taking the initiative to provide a Maven-based25

and Web-Based26 repositories for OSGi bundles.

A bundle repository will be particularly useful for existing Java libraries, which

can be retrofitted to work in an OSGi environment. The term OSGi-ed library

is introduced here as a regular JAR file library with the appropriate import/ex-

port definitions in the manifest and without a bundle activator.

Conversely, many of these freely available libraries contain errors, which can

lead to very difficult to debug errors at runtime. When errors occurs in li-

braries without visible dependencies in the manifest, this problem is even

more exacerbated, and have to be debugged on a per needed ad-hoc basis.

In most cases, the absence of a bundle repository will lead to major confusions

for developers as developers must either find existing bundles themselves or

they may OSGi-ed JAR files themselves. Enabling a library for use in the OSGi

framework is not difficult, but a tedious exercise.

The addition of a bundle repository will also enable a component based devel-

opment process as outline by [CHA], which suggests the realization of a com-

ponent repository to enable a component based development process.

25 Maven[MAVEN] is a software project management and comprehension tool. Maven can
manage a project's build, reporting and documentation from a central piece of information.

26 Web-based access is given to users to browse through the bundles. However, no updating or
uploading is allowed.

65

Java EE and OSGi Integration

Libraries

The Java EE specification relies on the presence of libraries in the application

server. Many of these libraries are distributed as JAR files, but assumed to be

already presence in the server; examples of such libraries are the API libraries

for servlets, JSP, JPA, JTA and other Java EE libraries. The OSGi definition of

a bundle is a JAR file with meta information in the META-INF/MANIFEST.MF

file. OSGi also assumes that all packages and their contents are private to the

bundle, which mean using a library in the usual Java way is not possible in the

OSGi Framework. Therefore, a comprehensive repackaging of all libraries was

needed to include the appropriate meta information to make them work in an

OSGi implementation. Luckily many vendors are starting to provide this

“OSGi-ed” libraries and making them accessible in repositories, see the section

on repositories for details regarding repositories.

For instance, an extract of the manifest of the Java Persistence API looks as:

...

Import-Package: javax.sql

...

Implementation-Vendor-Id: javax.persistence

Export-Package:

javax.persistence;version="1.0.0",javax.persistence.sp

 i;version="1.0.0";uses:="javax.persistence,javax.sql"

Bundle-Version: 1.0.0

...

Since some of the freely available bundle libraries contain errors. During the

creation of the sample application some libraries had to be newly packed. Ad-

ditionally, not all libraries can be found in those bundle repositories, here

again a repacking of the library was needed, an example of such was to blue-

cove [BLUECOVE] library that provides an implementation of the JSR-82 -

Java API for Bluetooth to use Bluetooth from within a Java application.

66

Java EE and OSGi Integration

Development Environment

For the sample application the author select Eclipse for the development envi-

ronment. Eclipse itself comes with very good support for OSGi bundle cre-

ation. However, the Eclipse tool set for OSGi development has some draw-

backs:

● One can only test again a single target platform. If something in the tar-

get platform changes, one must reconfigure the whole development en-

vironment.

● No support for any other features but Java, not Java EE features at all.

Additionally, some of the bundles could not be developed efficiently as the tool

set provided for bundle development does not include the editors for web re-

sources like JSP pages, HTML pages and others.

Having said that, as of now the development tools available for OSGi develop-

ment in the enterprise are considered to be in their infancy. However, new

tools with better OSGi and Java EE integration will appear as OSGi becomes

more mature in the Java EE problem domain.

Development Model

The OSGi development model is intrusive, because one has to adhere to the

provides a comprehensive set of APIs to use OSGi within the application, e.g.

BundleContext, BundleActivator, etc.

There is no clear development model for Java EE applications that use OSGi.

This work was done using the native OSGi programming model. The advantage

of using the OSGi development model is that developers are forced to thing in

terms of modules and module dependencies. This is beneficial, because the

modularization effort is not just in the design, but also in the programming

model.

67

Java EE and OSGi Integration

Nonetheless, there is an emerging programming model for OSGi application

development, namely Spring-OSGi that allows the transparent – no need to

know about OSGi – use of OSGi in Java. The Spring-OSGi programming mod-

el isolates developers from all OSGi APIs. Access to OSGi features can be keep

transparent but, if needed, developers still have access to OSGi specific objects.

Spring-OSGi programming model can be used as a means to integrate OSGi

into an existing Java EE environment in a transparent form.

More importantly, the dependency injection capabilities provided in the Spring

Framework can be use to inject OSGi services into any Java class. In fact, these

was done in the sample application in the web module. These represents a new

paradigm in programming, namely Service Injection.

Web Application Support

OSGi provides an HTTP Service but this HTTP Service cannot be compared to

powerful web containers provided by application servers. The use of OSGi's

HTTP service is done programmatically and not declaratively. However, OSGi

provides a declarative service that can be adjusted to support a declarative ap-

proach as known in Java EE applications.

A much better approach to web application support in OSGi is the realization

of an extension of OSGi that allows the deployment of WAR file in it's current

form. This extension can be easily be done using the extension capabilities in

OSGi and the Extender [KRIENS2] design pattern. Thus, integrating WAR

files in an OSGi environment.

Java EE Services Support

Java EE service can be easily modularized using OSGi as shown in the sample

application.

The author found no major problems in the modularization of the JDBC ser-

vice, JTA service, or JPA service. All services could be exposed assembled as

68

Java EE and OSGi Integration

bundles and published as OSGi services.

However, all implementations were done without distribution in mind. Ser-

vices that rely on distribution present new challenges to the modularization ef-

fort as OSGi is single JVM module management system.

In particular, the integration of OSGi environment using a Enterprise Service

Bus (ESB) would be interesting and requires more research. Such an integra-

tion will enable the realization of a federated OSGi environment.

Unified Packaging

Java EE supports 4 different packages structure, namely WAR, JAR (Applica-

tion clients and EJB), RAR and EAR. All these packaging structures are noth-

ing else than an extension to the JAR file format. Therefore, all this packages

could be deployed as OSGi bundles.

In the sample application outline here, the single deployment structure use is a

JAR file. Therefore, OSGi simplifies the packaging of Java Application by using

a standardize format.

Different application servers use different deployment strategies and tools, be-

cause of the differences in their architectures. OSGi can solve, this issue if it is

adopted as the deployment strategy in enterprise application. Why? Because

the OSGi Framework standardizes the installation of modules and all of them

are handled equally.

Management

Dynamics refers to the fact that services may attached and detached at any

point in time. This must be addressed specifically by the developers using the

White board patterns.

Ambiguity occurs when there are multiple candidates that may provide a spe-

cific service. The issue of ambiguity can be solved using versioning or using

69

Java EE and OSGi Integration

service properties, which was use in the vCard bundle to retrieve the file han-

dles containing the business cards.

Architectural issues

The only architectural view provided by OSGi is a modular view that empha-

sizes on the dependencies between bundles.

This dependency view can be use to clarify deployment issues of Java EE appli-

cations.

OSGI Binding Models in Java EE Environment:

The author found three ways to integrate enable OSGi in a Java EE Environ-

ment. These are:

1. Use OSGi as a mean to modularized your Java EE application running

OSGi inside a Java EE system. In this deployment model, the OSGi is

contained within the WAR, JAR module. This deployment model is im-

possible for EJB as the EJB specification imposes strict class loading re-

striction.

2. Use OSGi at the bottom as a mean to provide the infrastructure to your

entire Java EE Serve. In this approach the whole server is build on top

of the OSGi Framework. This deployment structure provides the best

architectural solution, as all Java EE components will be able to profit

from bundles installed in the application server. It also supports a strict

service oriented development model. This was also the solution used in

this work. For instance, [JONAS] provide such an architecture.

3. Use OSGi at the top as a means to provide additional services to your

Java EE component. In this architecture, the application server does not

provide an OSGi Platform to Java EE applications, but allows the use of

bundles within server.

70

Java EE and OSGi Integration

In accordance to the goals of the thesis, these different binding models shows

that the OSGi Platform is a very flexible platform.

Versioning

The OSGi Service Platform comes with strict wiring rules for modules base on

modules. These versioning strategies allows the coexistence of multiple ver-

sions of the same modules. Hence, allowing the deployment of applications

that rely on different versions of an API for instance.

Having said that the versioning control provided by OSGi takes completely

care of the isolation of Java classes. In an OSGi environment two independent-

ly configured services that required one another and use different versions of

the same API can run concurrently and therefore cooperate with each other

seamlessly without any classpath class loading conflicts.

Testing

Testing of OSGi application can be done using existing test toolkits, such as Ju-

nit, Hamcrest, etc. During the elaboration of the sample application the only

minor issue encountered was that in order to use these toolkits, more precisely

Junit and Hamcrest,they need to be adapted to be able to run in an OSGi envi-

ronment.

A positive finding of this work is that OSGi opens a new frontier in application

testing,. OSGI allows the creation of modularized test, that can be dynamically

installed and uninstall in an OSGi Platform to perform life tests on a system.

Extensibility

The OSGi Platform can be easily extended as the core of the platform provides

the necessary mechanism to do so. As an example, one can use the extender

example used in the realization of the web application to extends the capabili-

ties of the framework to accept WAR files as a bundle.

71

Java EE and OSGi Integration

72

Conclusion and Outlook

 6 Conclusion and Outlook
OSGi enables the development of applications that are so much more inter-

twined to the extend that one can develop functionality that can be either de-

ployed at the client or at the server seamlessly providing a) the client comes

with support for OSGi, like some newer cellular phones, or b) the client can be

provisioned with an OSGi environment at runtime. In fact, it opens the possi-

bility to just develop OSGi bundles without the need to determine a priori

where the bundle will be deployed either on the server-side or on the client-

side, thus allowing for a more fluid application architecture were a functionali-

ty can be deployed to best suited tier.

The current state of OSGi already allows the development of modularized, ser-

vice-oriented enterprise applications in the Java EE domain. This modularized

development model provides many advantages in terms of project manage-

ment as many teams can be organized for the parallel development of modules

in an application. Additionally, it provides for more efficient application devel-

opment as new applications can easily be assembled with previously built

modules into the new application.

OSGi forces developers to think about modularization due to its programming

model. This represents very valuable because the modularization effort is not

only in the development process, but also in the developed code itself.

OSGi opens a new frontier in application testing. It allows the creation of mod-

ularized test, that can be dynamically installed and uninstall in an OSGi Plat-

form to perform life tests on a system.

Currently, Java EE application updates can be preform on a life system

[JAVAEESPEC]. However, these module update in a Java EE application has

to be performed in full. A Java EE application modularized with OSGi enables

also partial updates of applications.

73

Conclusion and Outlook

Versioning of Java EE applications is one the most important issues addressed

by the OSGi platform, in particular making sure that there are no conflicts be-

tween different versions of the same software running on the same system.

Thus preventing clashes between the different version of modules in the sys-

tem, or different versions of the same libraries. The issue of versioning be-

comes more and more relevant as application server providers make extensive

use of libraries also needed by the components they run. Versioning becomes

more relevant as different application servers allow users to customize their

servers by means of class loading manipulations, which is completely depen-

dent on the type of server, which makes for very complicated custom deploy-

ment environments in different servers. This fact is so dramatic to the extend

that application software providers must enforce the use of specific application

servers in order to support their products, which has economic implications

when it comes down to the end user/consumer of these applications footing

the bill for it. OSGi solves the class loading chaos or discrepancies in different

application servers.

OSGi lacks a component model. Therefore, Java EE components running in a

OSGi environment provides developers with a strong service-oriented module

oriented with a component architecture.

There is still work that needs to be done in the Integration of OSGi in the en-

terprise environment. These work areas relates to the standardization of com-

ponent repository for bundles in application servers.

The Integration of an Enterprise Service Bus in an OSGi environment needs to

be research to enable a more distributed architecture.

Another interesting direction regarding OSGi is the realization of OSGi based

testing framework for life tests.

The use of Web Services (XML-based services) in an OSGi environment to ex-

pose OSGi services as Web services can also be studied further.

74

Conclusion and Outlook

The Modularization of remoting capabilities (see section on interoperability)

already present in application servers needs to be studied further. For in-

stance, remoting using IIOP, HTTP, SSL, etc.

Finally, there is still much work to be done in terms of OSGi within - or in com-

bination of - an enterprise application development. However, the OSGi ser-

vice platform, in it's current state, can play a fundamental role in the simplifi-

cation of Java EE applications in terms of application versioning, library/mod-

ule dependency management and deployment of concurrent versions of the

same application. This stresses the importance of a module management sys-

tem for enterprise application.

75

References

References
Please note that Internet links are transitional. At the time of writing of this

theses all links were navigable!

[APACHE]: , The Apache Software Foundation, http://www.apache.org

[ASKOXF]: Compact Oxford English Dictionary, http://www.askoxford.com

[BLUECOVE]: BlueCove (JSR-82 implementation), http://www.bluecove.org/

[BLUETOOTH]: Bluetooth Special Interest Group, http://www.bluetooth.org

[CARD]: David N. Card, Gerald T. Page, Frank E. McGarry, Criteria for Soft-
ware Modularization, 1985

[CHA]: Jung-Eun Cha, Young-Jung Yang, Mun-Sub Song, Hang-Gon Kim.
Design and implementation of component repository for supporting the com-
ponent based development process

[ECLIPSE]: , Eclipse Foundation, Inc., http://www.eclipse.org

[EVANSDC]: Evans Data Corp - Market Research,
http://www.evansdata.com/press/listReleases.php?view=archive

[EVANSSM]: Janet Hendrickson-Dalys, Enterprise Java Sweeps Into Small
Businesses, New Evans Data Survey,
http://www.evansdata.com/press/viewRelease.php?pressID=90

[GAMMA]: Erich Gamma, Richard Helm, Ralph Johnson, John M. Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software, 1994

[GOSLING]: James Gosling, Bill Joy, Guy Steele, Gilad Bracha, The Java Lan-
guage Specification, 2005

[GRÖNE]: Bernhard Gröne, Andreas Knöpfel, Peter Tabeling, Component vs.
component: Why We Need More Than One Definition, 2005

[HOLBREICH]: Alexander Holbreich, Java Class Loading, 2008

[HSQLDB]: Hypersonic SQL, http://www.hsqldb.org/

[IEEEGL]: The Institute of Electrical and Electronics Engineers, IEEE Stan-
dard Glossary of Software Engineering Terminology, 1990

[IIOP]: CORBA™/IIOP™ Specification

76

References

[JAVACONV]: Code Conventions for the Java Platform,
http://java.sun.com/docs/codeconv/index.html

[JAROVER]: Java Archives (JAR) Files,
http://java.sun.com/javase/6/docs/technotes/guides/jar/index.html

[JARSPEC]: JAR File Specification, http://java.sun.com/javase/6/docs/tech-
notes/guides/jar/jar.html

[JAVAEESPEC]: Java Platform, Enterprise Edition (Java EE) Specification, v5
- JSR 244, 2006

[JCP]: The Java Community Process, http://www.jcp.org

[JEETECH]: Java EE Technologies, http://java.sun.com/javaee/technologies/

[JONAS]: JonAS - Java Open Application Server, http://jonas.objectweb.org

[KRIENS]: Peter Kriens, BJ Hargrave, Listeners Considered Harmful:The
“Whiteboard” Patterns, 2004

[KRIENS2]: Peter Kriens, Extender Pattern with Automatic Servlet Registra-
tion

[LEGOOSGI]: Lego Mindstorms Robots http://r-osgi.sourceforge.net/mind-
storms.html

[LIANG]: Sheng Liang, Gilad Bracha, Dynamic Class Loading in the Java Vir-
tual Machine, 1988

[MAVEN]: Maven, http://maven.apache.org/

[OSGIAL]: OSGI Alliance, http://www.osgi.org

[OSGISERV]: The OSGi Service Platform, Service Compendum, 2007

[OSGISPEC]: The OSGi Service Platform, Core Specification, 2007

[RAMA]: Raghu Ramakrishnan, Johannes Gehrke, Database Management
Systems, 2002

[RMI-IIOP]: Java RMI over IIOP, http://java.sun.com/products/rmi-iiop/

[RFC2068]: R. Fielding, U.C. Irvine, J. Gettys, J. Mogul, H. Frystyk, T. Bern-
ers-Lee, Hypertext Transfer Protocol -- HTTP/1.1, 1997

[SFORGE]: SourceForge, Inc. , http://www.sf.net

[SPRING]: SpringSource, Inc. , http://www.springframework.org

[SSAPPMTX]: The Server Side Application Server Matrix, http://www.the-
serverside.com/tt/articles/article.tss?l=ServerMatrix

77

	INF_Diplomarbeits-DeckblattJulio
	Thesis - OSGiWeb v3
	Table of Figures
	Table of Tables
	 1 Introduction
	 2 Motivation
	Why enterprise Java?	
	Why OSGi?
	Motivation

	 3 Goal and Structure
	 4 Technology Background
	 4.1 Modularization Units in Java
	Classes and Objects
	Java Archive (JAR) File
	Java Packages
	Class Loaders

	 4.2 Class Loading in Java
	 4.3 Java EE Overview
	Architecture
	Components and Modules in Java EE
	Java EE Services
	Deployment Structure and Application Assembly
	Interoperability

	 4.4 OSGi Overview
	 4.4.1 Introduction
	 4.4.2 Overview
	 4.4.3 Module Layer
	Execution Environment
	Bundle Cooperation
	Bundle Constraints
	Resource Loading
	Loading Native Code
	Bundle Localization
	Extension Bundle

	 4.4.4 Life Cycle Layer
	Bundle
	System Bundle
	Bundle Context
	Events

	 4.4.5 Service Layer
	Services
	Service Management
	Service Events
	Service Factory
	Service Definition

	 5 Java EE and OSGi Integration
	 5.1 The Sample Application
	Application Server Decision
	Architecture

	 5.2 Evaluation Points
	Bundle Repositories
	Libraries
	Development Environment
	Development Model
	Web Application Support
	Java EE Services Support
	Unified Packaging
	Architectural issues
	OSGI Binding Models in Java EE Environment:
	Versioning
	Testing
	Extensibility

	 6 Conclusion and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

