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Chapter 1

Introduction

Modelling initiation into drug use has passed through an evolution since

the first optimal control models of illicit drug consumption. In a series of

models it was assumed that initiation is mainly influenced by the price of the

drug. However, there are variations over the evolution of a drug epidemic

that cannot be described entirely by price fluctuations. As Tragler [1998]

points out, drug initiation is partly driven by feedback effects. Drug users

are mostly introduced by existing users (recruitment effect), while on the

other hand they might also be deterred by the negative effects drugs have

on the users (Musto effect, cf. Musto [1987]). Thus, it is more reasonable

to model initiation as a function of the population of users. Further, it was

observed that the deterrence effect is enhanced in later stages of the epidemic,

i.e. when the number of users is high.

This thesis is resuming the analysis of the feedback effect initiated by

Tragler [1998] using a two-stage model approach (see also Bultmann [2007],

Bultmann et al. [2008], Bultmann et al. [to appear]). Following previous

theses (Tragler [1998], Moyzisch [2003], Bultmann [2007]), assumptions are

made that may not seem realistic but allow actual analyses. Perfect knowl-

edge of the parameter values in both stages will be assumed such as the

information about the actual duration of the first stage and the initiation in

the second stage.
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CHAPTER 1. INTRODUCTION 5

However, this thesis deals with uncertainty in a way that a large part

of it is devoted to the impacts of changes of some parameters influencing

initiation on the optimal dynamic drug policy.

Moreover, when initiation declines because of the Musto effect it does not

behave like a two-stage problem by suddenly jumping to a lower level, but

rather shows a multi-stage or even continuously decreasing performance. On

the other hand, Johnson et al. [1996] report a rather sudden decline of the

initiation rate of the U.S. cocaine epidemic in the late 1980s. As a conse-

quence, this sudden jump will be referred to as initiation shock, following the

recent analysis of supply shocks by Bultmann [2007]. The first stage reflects

the beginning of the epidemic with a high initiation rate. After a certain

time, the model switches to the second stage with an infinite time horizon

and a lower initiation rate.

This thesis is organized as follows. Chapter 2 presents the base model

and the baseline parameter values that are used for this thesis. Further, the

model is analysed and solved by using Pontryagin’s Maximum Principle.

In Chaper 3 a first sensitivity analysis for the base model is carried out

focusing on qualitative changes of the system dynamics (bifurcations). The

social costs are varied in order to determine ranges with different stability

properties of the equilibria. Then the same is done for the initiation param-

eter. As a result some knowlegde is obtained about where to find multiple

optimal long-run solutions depending on the social costs and the initiation.

Chapter 4 then deals with initiation shocks. First, the two-stage model is

presented, followed by a discussion of a certain shock for different scenarios

that were revealed in the previous chapter. This part is closed by comparing

the results of those scenarios and formulating some implications for the policy

maker.

Chapter 5 analyses the impact of the intensity and the duration of the

shock on the optimal policy. It starts with a sensitivity analysis for the

shocks with respect to the intensity and to the duration, respectively. Finally,

those results are combined in a two-dimensional sensitivity analysis. Different
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shocks are compared with each other and statements are made about whether

a longer, less intense shock or a shorter, more intense one is favourable in

terms of the equilibrium solutions.

This thesis closes with conclusions to be drawn from the analyses carried

out in the previous chapters.



Chapter 2

The Base Model

2.1 Base Model Formulation

The model for the following analysis is taken from Bultmann [2007] where

it was derived from a one-state three-control model presented in Moyzisch

[2003].

The main objective is the minimization of social costs that result from

illicit drug consumption. On the one hand social costs occur that are caused

by drug consumption itself. On the other hand there are costs due to treat-

ment which is the only control instrument in our model. The drug problem

itself is described by the number of users of the drug that follow the dynamics

of a differential equation. Costs are weighted by a discount factor e−rt which

makes economic sense and assures convergence of the integral.

The objective is described by

max
u(t)

J (2.1)

with

J = −
∫ ∞

0
e−rt

(
κp−ωA(t)︸ ︷︷ ︸

costs due to consumption

+ u(t)︸︷︷︸
costs due to treatment

)
dt

7
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subject to the system dynamics

Ȧ(t) = kp−aA(t)(Ā− A(t))︸ ︷︷ ︸
initiation

− cβ(A(t), u(t))A(t)︸ ︷︷ ︸
outflow due to treatment

− µpbA(t)︸ ︷︷ ︸
natural outflow

(2.2)

with

β(A(t), u(t)) =

(
u(t)

A(t)

)z
characterising the effects of treatment and u(t) ≥ 0 for all times t.

Initiation is described by a logistic function rather than by a power func-

tion that was used in earlier models. For a detailed discussion and comparison

we refer to Bultmann [2007] and Grass et al. [2008].

The outflow of the system consists of two terms. There are always users

that quit by themselves which is here referred to as natural outflow. Addi-

tionally, there are users that exit the system due to treatment. By spending

more money on the control it is intended to increase the outflow due to

treatment.

In the following chapters the parameter t will be omitted whenever this

does not confusion.

2.2 Solving the Problem - Pontryagin’s Max-

imum Principle

In order to analyse problem (2.1) subject to (2.2) Pontryagin’s Maximum

Principle is applied.

For the current value Hamiltonian

H(A, u, λ) = −(κp−ωA+ u) + λA(kp−a(Ā− A)− cβ(A, u)− µpb)

we have the necessary first order condition

u = arg max
u

H(A, u, λ),

where λ denotes the costate variable. It can easily be shown that this con-

dition is also sufficient as β(A, u) is strictly concave with respect to u and
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therefore so is H(A, u, λ), where we make use of the fact that the costate is

nonpositive in our formulation. Setting

Hu = −1− λcβuA = 0

reveals

u(A, λ) = (−cλz)
1

1−zA. (2.3)

According to the maximum principle (see, e.g., Feichtinger and Hartl [1986],

Grass et al. [2008]) we will solve the maximization problem (2.1) subject to

(2.2) by determining the stable manifolds arising from the canonical system

that consists of the system dynamics (2.2) and the costate equation

λ̇ = rλ−HA(A, u(A, λ), λ).

For our model, the canonical system is given by

Ȧ = A
(
kp−a(Ā− A)− c(−cλz)

z
1−z − µpb

)
, (2.4)

λ̇ = rλ+ κp−ω + (−cλz)
1

1−z + λ
(
c(−cλz)

z
1−z + µpb − kp−a(Ā− 2A)

)
. (2.5)

The steady states of the canonical system are the solutions of {Ȧ = 0, λ̇ = 0}.
In order to allow for an analytical derivation of the steady states and their

stability properties we set z = 0.5 for the following analyses. It can be

immediately seen from (2.4) that Â = 0 is always a solution. The associated

λ can be found by solving λ̇ = 0 and using the negative solution of the

quadratic equation obtained:

λ̂ =
2

c2

(
(r + µpb − kp−aĀ)−

√
(r + µpb − kp−aĀ)2 + c2κp−ω

)
.

Further, two more steady states may occur, provided that they are feasable:

Â =
c2λ
2

+ kp−aĀ− µpb

kp−a
,

λ̂ = − 2

3c2

(
r + kp−aĀ− µpb ±

√
(r + kp−aĀ− µpb)2 − 3c2κp−ω

)
.
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In Bultmann [2007] and Grass et al. [2008] a more general and detailed anal-

ysis of the constellations of parameter values is given for which the existence

of three feasable steady states can be assured.

Figure 2.1 shows the phase diagram for the base model with the param-

eters presented in Section 2.3. There are three steady states – two saddle

points and one unstable focus – and the optimal paths are highlighted in

blue. See Table 2.1 for the steady state levels of the number of users, shadow

prices, and control spending.

A λ u

Âl 0 −648.84 0

Âf 4.402634× 106 −222.25 1.01597× 108

Âh 1.086781× 107 −38.07 7.35889× 106

Table 2.1: Coordinates and associated control spending levels of the steady

states of the canonical system. The indices l,f ,h refer to low saddle point,

unstable focus, and high saddle point, respectively.

We see that a DNSS-point occurs at ADNSS = 7, 546, 903. According to

the Maximum Principle the stable manifolds of the saddle point steady states

provide candidates for the optimal solutions. By comparing the costs along

those trajectories the optimal paths can be determined. A DNSS thresh-

old (named after Dechert-Nishimura-Sethi-Skiba, cf. Dechert and Nishimura

[1983], Sethi [1977], Sethi [1979] and Skiba [1978]) is an initial value for which

two different optimal solutions for the problem exist, i.e. a point where the

costs along two different trajectories are equal. That implies that in this point

the decision maker is indifferent between two long-term policies to follow.

In other words, both saddle points are optimal long-term solutions locally,

i.e. their optimality depends on the initial value A0 = A(0). In the DNSS

point both saddle point steady states are optimal long-term outcomes. For

A0 smaller than the DNSS threshold it is optimal to approach the lower

saddle point steady state, while for an initial value larger than the DNSS

point the optimal long-term solution lies in the higher saddle point.
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Figure 2.2 shows the optimal control spending for this policy. When

converging to the lower saddle point starting at the DNSS threshold note

that at first the spending levels have to be raised in order to reach the saddle

point although the number of users is already decreasing. Figure 2.3 shows

the value of the objective as a function of the initial value A0. It reflects the

total costs caused by drug consmption for each A0.

ADNSS A
�

5. ´ 106 1. ´ 107 1.5 ´ 107
A

-600

-400

-200

0

Λ

Figure 2.1: Phase diagram for the base model. Optimal paths are highlighed

in blue.



CHAPTER 2. THE BASE MODEL 12

ADNSS5. ´ 106 1. ´ 107 1.5 ´ 107
A

5. ´ 107

1. ´ 108

1.5 ´ 108

2. ´ 108

2.5 ´ 108

3. ´ 108

3.5 ´ 108

u

Figure 2.2: Base model: Optimal levels of control spending.

ADNSS A
�

5. ´ 106 1. ´ 107 1.5 ´ 107
A0

5. ´ 108

1. ´ 109

1.5 ´ 109

2. ´ 109

2.5 ´ 109

3. ´ 109

3.5 ´ 109

-J*

Figure 2.3: Base model: Optimal utility J∗ as a function of the initial value

A0.
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2.3 Parameters

The baseline parameters summarized in Table 2.3 for this thesis are taken

from Bultmann et al. [to appear] for the most part. For more background

information about the origin of these values we refer to there.

Parameter Value Description

r 0.04 annual discount rate

a 0.25 absolute value of the price elasticity of initiation

Ā 16, 250, 000 maximum number of users in the uncontrolled model

b 0.25 price elasticity of desistance

c 0.043229 treatment efficiency constant

k 1.581272× 10−8 initiation rate constant

κ 4.185 proportionality constant for social costs

µ 0.181282758 natural outflow rate proportionality constant

p 0.12454 retail price per gram

ω 0.5 absolute value of the short-term price elasticity

z 0.5 treatment’s diminishing returns

Table 2.2: Baseline Parameter Values



Chapter 3

Bifurcation Analysis

Bifurcations are local and global qualitative changes of a system that occur

due to a variation of parameters. Here it is of special interest how the number

and stability properties of steady states change when certain parameters (in

this case the social costs κ and later the initiation constant k) change in order

to determine the optimal policy. In what areas of the parameter space of κ

and k do we find one or three steady states? In the latter case, are always

two of them optimal? In fact, it will be demonstrated that the existence of

three steady states does not guarantee multiple optimal long-term solutions.

Intuitively, one would expect that higher social costs cause the lower

saddle point to be the optimal long-term solution. From a certain threshold

of κ the policy of eradicating drug consumption may be more cost-effective

than staying at a high long-term level. In fact, multiple steady states do

appear just for κ smaller than a certain threshold, and that threshold is

highly influenced by the initiation constant k.

In the following figures saddle points are always indicated by red lines

while unstable focuses and nodes are displayed in green.

14
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TranscriticalPoint

Maximumvalue of High Saddlepoint

-20 -15 -10 -5 5 10
Κ

2. ´ 106

4. ´ 106

6. ´ 106

8. ´ 106

1. ´ 107

1.2 ´ 107

Â

Figure 3.1: Bifurcation diagram for the base case.

3.1 Analytical Analysis

There are some critical points in the bifurcation diagram (Figure 3.1) that

can be calculated analytically for this model.

Transcritical Point The value of κ for which the saddle point Â = 0 turns

into an unstable vortex or node.

Maximum Value of the High Saddle Point The worst case scenario where

no social costs due to drug consumption occur (i.e. κ = 0) and therefore

no money is spent on the control.

Blue-Sky Point The largest value of κ with more than one steady state.

To determine the transcritical point the threshold where the sign of one

of the eigenvalues of the steady state at Â = 0 switches from positive to

negative has to be calculated.
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For that purpose one has to determine the Jacobian matrix evaluated at

the steady state and compute its eigenvalues. One of them is always positive,

the other can be positive or negative depending on the chosen parameter

values.

For the steady state

Â = 0

and

λ̂ =
2

c2

(
µpb + r − kp−aĀ−

√
(µpb + r − kp−aĀ)2 + c2κp−ω

)
the eigenvalues√
c2κp−ω + (Ākp−a − µpb − r)2 r −

√
c2κp−ω + (Ākp−a − µpb − r)2

are revealed. The first eigenvalue is always positive as all of the parameter

values are positive and negative social costs κ are not considered for this

model in general. The second one can be negative, zero or positive. Setting

it to zero and solving this equation for κ reveals the transcritical point

κTranscrit =
r2 − (Ākp−a − µpb − r)2

c2p−ω
.

For the maximal value of the upper saddlepoint the utility functional has

to be inspected. As κ = 0 the objective is reduced to

J = −
∫ ∞

0
e−rtu(t)dt.

The maximum of this function is obviously J = 0 with u(t) = 0, ∀t, as u(t)

is nonnegative. In this scenario the optimal policy is not to spend anything

on treatment as no costs for society are caused by drug consumption.

Hence, the system dynamics are reduced to

Ȧ(t) = kp−aA(t)(Ā− A(t))− µpbA(t).

The steady states of this uncontrolled system are given by Â = 0 and

ÂMax = Ā− µ

k
pa+b.
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As a result, it can be seen that the saddle point at ÂMax is influenced by the

initiation constant k. The higher k, the higher the upper long-term solution,

which makes sense.

In order to calculate the blue-sky value of κ one needs to determine the

point where the upper saddle point and the unstable steady state are equal.

As already discussed in Chapter 2.2 positive steady states are given by

Â =
1

kp−a

(c2λ

2
+ Ākp−a − µpb

)
and

λ1,2 = −2(r + Ākp−a − µpb)
3c2

± 2

√√√√(r + Ākp−a − µpb
3c2

)2

− κp−ω

3c2
.

It is easy to see that the two steady states are equal if λ1 and λ2 are equal.

Obviously, this occurs when the square root term above is zero. Therefore,

setting the root to zero and solving this equation for κ reveals the blue-sky

value

κBS =
pω(r + Ākp−a − µpb)2

3c2
.

Note that this is a quadratic function in k with its minimum in kmin = µpb−r
Āp−a .

3.2 Variation of κ for the Base Model

Application of the results of the previous section leads to the critical points

of the bifurcation diagram for the base model as summarized in Table 3.1.

Transcritical Point κ = −15.02097406

Maximum Value of the Upper Saddle Point Â = 1.22042× 107

Blue-Sky Point κ = 8.3795245893

Table 3.1: Critical points of the bifurcation diagram for the base model

As shown above in Figure 3.1, three feasible steady states exist for−15.021 <

κ < 8.3795. For higher values of κ only the lower saddle at Â = 0 serves
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as a long-term optimal solution. For κ < −15.021 one steady state becomes

negative and hence infeasible.

Some of these thoughts are only academic, however. As κ and A are

parameters and variables representing social costs and numbers of people,

respectively, note that the bifurcation diagram for κ < 0 and A < 0 is of

no practical relevance for this model. Therefore, further analysis will be

restricted to the area where κ and A are nonnegative. As a consequence,

Figure 3.2 focuses only on the positive quadrant of the preceding bifurcation

diagram.

TranscriticalPoint

Maximumvalue of High Saddlepoint

ADNSS

Heteroclinic Bifurcation Blue-Sky Point

2 4 6 8 10
Κ

2. ´ 106

4. ´ 106

6. ´ 106

8. ´ 106

1. ´ 107

1.2 ´ 107

Â

Figure 3.2: Detail of the bifurcation diagram and the DNSS threshold for

the baseline parameters. The arrows indicate in which area it is optimal to

converge to the upper or the lower saddle point, respectively.

In order to complete this discussion, the DNSS threshold is included.

Here, it is represented by the blue curve as a function of κ. The function

obviously has to start at the origin. In the case of no social costs (κ = 0)

it is optimal for that specific utility functional not to spend anything on the

control as no costs occur that have to be avoided. The uncontrolled num-
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ber of users would therefore move towards the upper saddle point whenever

A(t) > 0.

A
�5. ´ 106 1. ´ 107 1.5 ´ 107

A

-800

-600

-400

-200

0

200

400

Λ

Figure 3.3: Phase diagram for the base case with κ = 2 including the unstable

manifolds. Arrows pointing towards a steady state indicate stable manifolds,

arrows pointing away unstable manifolds.

Further, a monotonically increasing behaviour of the DNSS threshold

can be observed. As the social costs per gram consumed rise, more and more

initial values A0 require eradication of drug consumption in order to be cost-

effective in the long run. Figure 3.3 shows the phase diagram for κ = 2. In

comparison to the base model discribed in Chapter 2.2 it can be clearly seen

that the larger κ the more the stable manifold of the lower saddle point tends

towards the upper saddle point. At the same time, the stable manifolds of

both saddle points approximate each other when circling around the unstable

focus.

At κ = 4.60557596885 the DNSS threshold has the same level of A as

the higher saddle point. In this situation a so-called heteroclinic bifurcation
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A
�

5. ´ 106 1. ´ 107 1.5 ´ 107
A

-800

-600

-400

-200

0

200

Λ

Figure 3.4: Phase diagram of the base model for κ = 4.60557596885 showing

a heteroclinic bifurcation.

occurs. Figure 3.4 shows the phase diagram for this case. Note that the

unstable manifold of the upper saddle point is at the same time the stable

manifold of the lower saddle point (heteroclinic connection). Further, the

unstable focus now only serves as a source for the upper saddle point.

For a more detailed discussion on heteroclinic bifurcations and implica-

tions for DNSS thresholds also refer to Wagener [2003].

For κ higher than the heteroclinic bifurcation point no DNSS threshold

occurs despite the existence of three steady states. Figure 3.5 shows the

phase diagram for κ = 6.5. For κ bigger than the heteroclinic bifurcation

value the higher saddle point is dominated by the lower one, i.e. the lower

saddle point is always cost-efficient. As a consequence, from now on there is

only one optimal long-term solution. The optimal policy now always consists

of eradication of drug consumption. The higher saddle point still is a long-

term solution but it is no longer optimal.
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A
�5. ´ 106 1. ´ 107 1.5 ´ 107

A

-800

-600

-400

-200

0

200

Λ

Figure 3.5: Phase diagram of the base model with κ = 6.5.

In the bifurcation diagram of Figure 3.2 and also in the previous phase

diagrams it can be noticed that the unstable focus and the upper saddle

point are approaching each other for increasing values of κ. The point where

they finally meet is called blue-sky or Saddle-Node bifurcation (see also again

Wagener [2003]). Two separate but neighbouring steady states collide and

vanish.

For κ larger than the blue-sky threshold only one steady state - the lower

saddle point - continues to exist. Therefore, only one long-term solution

exists and clearly it is optimal to approach it.
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3.3 Variation of Initiation

In the previous section bifurcations were analysed where only one parameter –

the social costs κ – changed. Now a second parameter, the initiation constant

k has its values changed in the analysis. This will be of special interest in

the next chapter when discontinuities of the initiation constant are studied.

In this thesis, changes of the parameter k are indicated by using a scaling

factor.

ADNSS A
�

5. ´ 106 1. ´ 107 1.5 ´ 107
A

-1500

-1000

-500

0

Λ

Figure 3.6: Phase diagram for the base model with initiation constant of 2k.

Figure 3.6 shows the phase diagram of the basemodel with a higher ini-

tiation constant of 2k. Comparing this scenario with the baseline case (see

Chapter 2.2) note that the stable manifolds of the saddle point steady states

are circulating the unstable focus more often. The whole system reacts much

faster to changes, i.e. it is more volatile. A direct consequence is the shift of

the DNSS threshold from 7.546903 × 106 to 2.754878 × 106. Also note that

the lower saddle point now has a costate of −1500. An additional user in

this scenario causes around twice the costs compared to an additional user
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in the base model. This is due to the fact that a new user now causes twice

as many new users as in the base case.

2k

5k

base

50 100 150 200 250 300
Κ0

5. ´ 106

1. ´ 107

1.5 ´ 107

Â

Figure 3.7: Comparison of bifurcation diagrams for the base case initiation

and initiation at the twofold and fivefold levels, respectively.

Figure 3.7 shows the bifurcation diagram for different initiation constants.

Focusing on the comparison with larger initiation constants than the base

case the figure indicates a monotonically increasing behaviour of the Blue-

Sky point with respect to both A and κ. First, when k increases the range

with three steady states also increases. In the case of initiation twice the

size of the baseline case the feasible range of three steady states, i.e. where

κ ≥ 0, has almost grown by the factor five. Taking an initiation constant

even five times higher leads to an area that is 33 times larger than in the base

case. Therefore, a nonlinear monotonically increasing behaviour of the range

with three steady states with respect to κ can be observed. However, as was

pointed out in Section 3.1 the blue-sky threshold is a quadratic function with

a minimum at kmin = µpb−r
Āp−a . For the base model this minimum is at a scaling

factor of 0.156497. As the main focus of this thesis is mainly on scenarios
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where k is larger than in the base case, a monotonic increasing function may

be assumed.

The number of users in the blue-sky point is also a monotonically in-

creasing, but it is concave and in k and has an upper bound. It is given

by

ÂBS =
5(Ākp−a − µpb)− r

6kp−a
.

This can be obtained by substituting the value κBS from Section 3.1 for κ in

the formula for the positive steady states Â > 0 from Chapter 2.2. It can be

shown easily that ∂Â(BS)

∂k
> 0 and ∂2Â(BS)

∂k2 < 0. The limit for k →∞ may be

obtained by

lim
k→∞

Â(BS) =
5

6
Ā.

For very small values of k additional observations can be made. For a

scaling factor k < 0.433924 the transcritical point moves into the positive

range of κ. Therefore, for small k there are cases where only the upper

saddlepoint serves as a long-term solution. Additionally, the blue-sky point

may move into the negative range of A. This implies that in those cases the

upper saddle point becomes the only optimal long-term solution.

Furthermore, the properties of the unstable steady state may change for

very small k. As we have seen in the discussion of the base model in Chap-

ter 2.2, the unstable steady state in the middle is a focus, i.e. its eigenvalues

are complex conjugates. For small k the imaginary part vanishes and the

steady state becomes an unstable node.

Finally, statements about the behaviour of the steady states themselves

can be made. It can easily be seen that the upper saddle point is an increasing

function of k for all κ. Consequently, so is the maximum value for this saddle

point as it was shown in Section 3.1. However, the same statement cannot

be made for the unstable focus/node.



CHAPTER 3. BIFURCATION ANALYSIS 25

3.4 Variation of κ and k

After having considered analyses for changes of κ and then of k separately

and their impacts on the qualitative properties of the system, the results are

now combined. Again, it is of special interest in which areas of the (k, κ)-

space the existence and optimality of multiple steady states can be assured.

With regard to the following two chapters the focus lies on the part of the

k-space where the scaling factor of k is larger than 1.

Blue-Sky

Heteroclinic Bifurcation

One steady state

Multiple steady states

without DNSS

DNSS
2 3 4 5

scale of k

50

100

150

200

250

300

Κ

Figure 3.8: Bifurcation diagram: (k, κ)-space with focus on the properties of

steady states.

As the final result of this chapter, Figure 3.8 displays the (k, κ)-space for

scales of k between 1 and 5. Again, it can be clearly seen that the blue-sky

threshold is an increasing function of both the social costs κ and the scale

of the initiation constant k. This implies that for either of those parameters

increasing, the range with multiple steady states increases as well.

However, it is of greater interest for the policy maker in which areas of the

parameter space the existence of not only multiple but also multiple optimal
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steady states can be assured. This threshold is displayed by the heteroclinic

bifurcation curve in Figure 3.8. Only in the area below that line a DNSS

threshold occurs. It is astonishing that this area shows a seemingly linear

increasing behaviour at the best whereas the area with three steady states

itself is growing convexly.

The pure existence of three steady states after the change of a param-

eter does not necessarily imply a qualitative change in policy as it will be

demonstrated in the next chapter. It may, however, have consequences if the

changes happen along the heteroclinic bifurcation curve.



Chapter 4

Analysis of Initiation Shocks

In this chapter, initiation shocks and their consequences on the optimal dy-

namic drug policy are analysed.

An initiation shock is a sudden change of the initiation constant k. Here,

we only discuss shocks where initiation in the shock stage is higher than

initiation in the base model. The idea is that initiation is higher at the

beginning of a drug epidemic, i.e. when the drug is new and fancy, and

therefore more people are willing to try it.

4.1 The Two-Stage Model

Suppose that there is a stage with a higher initiation rate and at time T

the initiation constant shifts back to a lower level. Then the problem can be

divided into two stages. The first stage has a finite time horizon of duration

T whereas the second one is a problem with an infinite time horizon. For

similar applications of this procedure see also Tragler [1998] and Bultmann

[2007].

Starting with the first – finite – stage the objective function is given by

JT =
∫ T

0
e−rt(κp−ωA(t) + u(t))dt+ e−rTS(A(T )) (4.1)

with S(A(T )) describing the value of the state A(T ) at time T . In accordance

27
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to the maximum principle the transversaltiy condition

λ(T ) = SA(A∗(T ))

must hold at time T , with A∗(T ) being the optimal value of A at time T

(see Feichtinger and Hartl [1986]). In order to connect the two problems

reasonably now a salvage function S(A(T )) has to be chosen. Following

Tragler [1998] an appropriate choice is the optimal value J∗ of the utility

functional of the second stage using A∗(T ) as the initial value A0.

As this thesis is dealing with a problem with an infinite time horizon the

optimal utility functional is given by

1

r
H(A(0), u(0), λ(0))

(see Feichtinger and Hartl [1986]). Application to our model reveals the

following transversality condition

λ(kS)(T ) =
1

r
H

(kb)
A (A∗(T ), u(kb)(0), λ(kb)(0))

where kS denotes the initiation constant during the shock stage and kb the

parameter for the base case, i.e. the second stage.

4.2 Initiation shocks

We start the analysis with an initiation in the shock stage being at twice the

level of the base initiation, i.e. kS = 2kb. After two time units it switches

to the base level, i.e. the duration of the shock is T = 2. For most of

the following scenarios a rather low initial value of A0 = 250, 000 is chosen.

This may be motivated by the fact that stages of higher initiation are more

likely to happen when a new drug enters the market and thus, not that

many people have already used it. Additionally, the value of κ is varied in

order to cover the different steady state scenarios discussed in Chapter 3.

Table 4.1 summarizes the additional parameters for the scenarios discussed

in the subsections below.
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Initial value A0 social costs κ

250, 000 4.185

5× 106 4.185

250, 000 7

250, 000 15

250, 000 2

Table 4.1: Parameters for the different scenarios of initiation shocks.

4.2.1 DNSS Threshold and a Low Initial Value

In this first scenario, the baseline parameter values and a low initial value of

A0 = 250, 000 are assumed.

A0
100 000 200 000 300 000 400 000 500 000

A
-1400

-1200

-1000

-800

-600

-400

-200

0

Λ

Figure 4.1: Two-stage model: Detail of phase diagram for shock of intensity

2kb and duration T = 2. Optimal path without shock gray, optimal path

with shock blue.

Figure 4.1 shows the relevant detail of the phase diagram. The blue curve

represents the optimal path in case of a shock, the gray line the base model.
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Due to the shock with higher initiation it starts at a lower value of λ. This

makes sense as the absolute value of the costate represents the costs that are

added by an additional user. Due to the higher initiation constant a new

user causes more new entries into the system and therefore causes additional

costs.

2 4 6 8 10
t

50 000

100 000

150 000

200 000

250 000

A

Figure 4.2: Two-stage model: Number of users as a function of time for

A0 = 250, 000. The blue line are users in case of a shock, the dashed line

refers to the base model, i.e. without shock.

Similar to the one-stage model a DNSS point occurs but this time at a

lower level of users. As costs are accumulated it is more often a cost-optimal

policy to tolerate a high long-term level of users rather than to eradicate them

by spending huge amounts of money on the control. The threshold for a shock

of intensity ks = 2kb and duration T = 2 is found at ADNSS = 4.111040×106.

Interestingly, the number of users show a nonmonotonic behaviour over

time (see Figure 4.2). At first, a decrease can be observed, but as control

spending decreases as well (see Figure 4.3), the number of users start to rise
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again until the initiation constant jumps to the lower base level. From there

it declines to the lower saddle point.

2 4 6 8 10
t0

2. ´ 107

4. ´ 107

6. ´ 107

8. ´ 107

1. ´ 108

1.2 ´ 108

1.4 ´ 108

uOpt

Figure 4.3: Two-stage model: Optimal spending on the control u as a func-

tion of time. The blue line represents spendings with a stage of higher initi-

ation, the dashed line allows a comparison with the base model.

Comparison of the total costs reveals the dimension of the costs added

by the higher initiation stage. In a one-stage model with initial value A0 =

250, 000 total costs sum up to −J∗b = 1.60419284 × 108. Due to the shock

costs rise to −J∗s = 2.89067× 108. This is an increase of more than 80%.

4.2.2 DNSS Threshold and a High Initial Value

In this scenario, a higher initial value of A0 = 5×106 is chosen. Additionally,

a second scenario with a longer shock period T = 5 is added in order to com-

pare the effects of shocks of a different duration. Implications for the optimal

dynamic policy are completely different, though. It was already mentioned
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in the previous section that due to the shock a shift of the DNSS threshold

occurs. In the previous scenario that shift did not have any qualitative impli-

cations for the optimal policy. Here, the optimal solution consists of moving

to the upper steady state instead. A completely different policy is required.

ADNSS-new A0 ADNSS-old
5. ´ 106 1. ´ 107 1.5 ´ 107

A

-600

-400

-200

0

Λ

Figure 4.4: Two-stage model with high initial value and T = 2: Phase

diagram showing the optimal path with shock in blue, without shock in dark

gray.

Figure 4.4 shows the phase diagram for the scenario T = 2 including

the DNSS point with and without shock (”new” DNSS and ”old” DNSS,

respectively). Note that the chosen initial value lies between the original and

the new DNSS point. In fact, a qualitative change of the optimal dynamic

drug policy only occurs if the initial value happens to be inbetween those

two thresholds. For T = 5 the shift of the DNSS threshold is even stronger

(ADNSS−5 = 2.414707 × 106). Chapter 5 will focus on the impacts of a

shock’s properties (i.e. intensity vs. duration) on the DNSS threshold. Also

note that the new optimal path lies above the original one and therefore

has a lower costate in absolute value terms. This indicates that the shock
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supports convergence towards the equilibrium as an additional user causes

less incremental costs than in the no-shock scenario.

with shock

without shock

with shock

without shock

T=0

T=2

T=5

5 10 15 20
t0

2. ´ 106

4. ´ 106

6. ´ 106

8. ´ 106

1. ´ 107

1.2 ´ 107

A

Figure 4.5: Two-stage model with high initial value: number of users as a

function of time.

Considering the number of users over time (see Figure 4.5) a sudden,

almost vertical increase in the number of users during the shock stage can be

observed for both shock scenarios. However, note that in the T = 5-case the

number of users overshoots during the shock stage showing a nonmonotonic

behaviour whereas for T = 2 the convergence to the higher saddle point is

monotonically increasing.

A impressive result is given by looking at the optimal control spending.

Figure 4.6 reveals for the non-shock scenario massive spendings in the first

15 time periods and convergence to zero later on. In the case of a shock

optimal control spendings seem to stay at almost the same level all the time.

A closer look on spending levels during the shock (see Figure 4.7) allows us to

observe a nonmonotonic behaviour during the shock period can be noticed:

decreasing at first, then increasing towards the end of the first stage. Note
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Figure 4.6: Two-stage model with high initial value: optimal control spend-

ing.

T=0

T=2

T=5
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Figure 4.7: Two-stage model with high initial value: detail of optimal control

spending focusing on the shock.
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that although the number of users is rapidly increasing during the shock,

optimal control spending is dropping. Also note, that spending levels during

the shorter shock are higher than in the case of the longer shock.

A possible explaination is that due to the sudden and strong increase

of users and the resulting additional costs caused by the former it wouldn’t

make sense to spend even more money on the control as it wouldn’t have a

sufficient impact. Towards the end of the shock, however, higher spending

makes sense again to keep control after the high initiation stage. If the shock

is longer, even more users occur and the less efficient are spendings on the

control as users are tending towards the high equilibrium anyway. However,

due to the overshooting higher spending levels are required later in order to

decrease the number of users again once the shock is over.

4.2.3 Multiple Equilibria without DNSS Point

For the remaining scenarios an initial value of A0 = 250, 000 is assumed

again. Here, however, the social costs parameter is raised to κ = 7.

Figure 4.8 shows the corresponding phase diagram. As already discussed

in Chapter 3 only the stable manifold of the higher saddle point has its origin

in the unstable vortex. Further, no DNSS threshold occurs as the lower saddle

point dominates the higher equlibrium. It is now always optimal to move to

the lower saddle point even though multiple candidates do exist. This is

caused by the higher social costs κ: permanent drug consumption by a high

long-term level of users becomes too expensive in comparison with the costs

of eradication.

Further, when looking at the number of users (see Figure 4.9) a nonmono-

tonic behaviour similar to the first scenario can be observed: a decrease at

first, then an increase with a local maximum at T , finally again a decreas-

ing behaviour. Control spending levels, however, are much more increased

during the high stage (see Figure 4.10). After the shock, optimal control

spending levels are almost equal to the case without a shock.
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Figure 4.8: Phase diagram of the two-stage model for the case of three steady

states without a DNSS threshold. Optimal paths are highlighted in blue.
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Figure 4.9: Two-stage model with three steady states without a DNSS point:

Number of users as a function of time.
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Figure 4.10: Two-stage model with three steady states without a DNSS

point: Optimal control spending as a function of time.

4.2.4 Lower Saddle Point

Raising social costs even more than in the last scenario to κ = 15 extinguishes

the upper saddle point and the unstable vortex (see Figure 4.11).

Impacts of the shock on the number of users and optimal control spending

are almost equal to the previous scenario. The number of users show only a

slight nonmonotonic behaviour during the time of the shock, then converge

to the lower equilibrium slower than in the base model. Optimal control

spending levels are very high in the shock stage and behave similarly to the

case without shock afterwards (see Figures 4.12 and 4.13, respectively). Note,

however, that the optimal spending starts at a higher level of 1.8 × 108 at

t = 0 than in the previous scenarios with convergence to the lower saddle

point (1.55× 108 and 1.4× 108, respectively).
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Figure 4.11: Two-stage model: Phase diagram for the case of only one steady

state. The optimal path is highlighted in blue.
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Figure 4.12: Two-stage model, lower saddle point: Number of users as a

function of time.
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Figure 4.13: Two-stage model, lower saddle point: Optimal control spendings

as a function of time.

4.2.5 Higher Saddle Point

In order to analyse the impacts of an initiation shock in a model where only

the higher saddle point serves as an optimal long-term solution, more than

one parameter has to be changed. In Chapter 3 it was shown that for the

base model this scenario only occurs for κ < −15, a case which is not feasible

here. Generally speaking, the parameters have to be modified in a way such

that the transcritical value of κ is positive and then take a value that is

smaller than that point but still positive. One possible parameter setting is

displayed in Table 4.2.

Figure 4.14 shows the relevant part of the phase diagram for this scenario.

Again, we start at a lower level of λ than in a situation without a shock.

That means that due to higher initiation an additional user causes much

more costs than in a scenario of low initiation. Compared with the second

scenario where the shock started at a lower costate this may be surprising.

The question arises, however, whether those scenarios can be compared as a
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Parameter baseline value new value

p 0.12454 1.2454

r 0.04 0.1

transcritical point −15.021 4.58046

κ 4.185 2

Table 4.2: Parameters for a scenario with the high saddle point as unique

optimal steady state solution.

different initial value is chosen and here no qualitative change of the policy

occurs.

A0
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Figure 4.14: Two-stage model, high saddle point: Phase diagram. The opti-

mal path is highlighted in blue, the case without shock in gray.

The number of users show a steep increase during the shock (see Fig-

ure 4.15) and afterwards converge to the high equilibrium. The high initia-

tion stage accelerates the number of users reaching the long-term solution but

doesn’t change the qualitative behaviour. However, control spending levels
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Figure 4.15: Two-stage model, high saddle point: Number of users as a

function of time.
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Figure 4.16: Two-stage model, high saddle point: Optimal control spending

as a function of time.
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are reacting in a different way than in the scenarios before (see Figure 4.16).

Although the number of users are rapidly increasing optimal control spend-

ings are decreasing at the same time, however starting at a much higher level

than in the case without shock. A possible explanation may be obtained by

looking at the cost-initiation relation. Due to the high initiation and the

additional costs it would not be cost effective to spend even more on the

control knowing that it will be necessary after the shock to spend more on

the control.

4.3 Comparison and implications for optimal

policy

Table 4.3 summarizes the effects of the high initiation stage on the costs

and establishes a comparison with the base model. One important result is

that irrespective of the qualitative impact on the optimal policy stages of

high initiation cause a dramatic rise of total costs. In the analysed scenarios

those increases range from 29% to more than 80%. So, generally speaking,

initiation shocks with increasing rates of initiation are definitely bad for the

policy maker.

T A0 κ −J∗b −J∗s J∗s /J
∗
b

2 250000 4.185 1.604193× 108 2.89067× 108 1.80195

2 5× 106 4.185 2.526012× 109 3.275315× 109 1.29663

5 5× 106 4.185 2.526012× 109 3.404600× 109 1.34782

2 250000 7 1.66478× 108 2.967590× 108 1.78257

2 250000 15 1.818282× 108 3.157118× 108 1.73632

2 250000 2 6.776269× 106 1.021725× 107 1.5078

Table 4.3: Comparison of total costs for different scenarios.

Moreover, due to the discussion of different scenarios some further impli-

cations for optimal policies may be established.
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Comparing the scenarios where it is optimal to converge to the lower

saddle point, the same behaviour of the control can be observed. It always

starts at a much higher level than in the base case, decreases sharply during

the shock, flattens at the end of the shock stage and finally converges slowly

towards zero. These scenarios only differ in the magnitude of the control

spendings which correlates to the social cost parameter, respectively.

If nothing is spent on the control the users will certainly tend to the higher

saddle point. High initiation implies that this convergence accelerates. How-

ever, this behaviour is not always optimal in a cost-efficient way. Therefore,

in order to force the users converging to the lower equlibrium the usage of

the control is necessary. In a situation with accelerated initiation even more

spending is required. However, for the policy maker the additional spending

might be a bitter pill to swallow as costs not only for the control itself but

also for consumption tend to explode whenever initiation is high.

A different picture is drawn when observing the impacts on the number

of users. A comparison of Figures 4.2, 4.9 and 4.12 reveals that the local

maximum at T is most prominent in the one scenario where the social cost

parameter κ has its lowest value. This indicates that the impact of the shock

on the population of users is weaker when social costs are already high.

The same conclusion can be made when comparing the absolute increase

of total costs due to the shock in Table 4.3. As κ is increasing, additional

total costs due to the shock are slightly decrasing from 80% to 73%.

This might be a surprising result. However, large amounts of money are

already required in the case without a shock due to the high social costs (see

column −J∗b in Table 4.3). Therefore, impacts of additional costs due to the

shock might not be as severe compared to the social costs.

If the high saddle point is the optimal long-term solution, the additional

costs due to the shock don’t seem so bad compared with other scenarios

(51% compared to an increase of 80% in the latter case). This has several

reasons. First, the high equilibrium only serves as an optimal solution when

social costs are at a rather low level and a high long-term level of users is
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bearable. Second, the initiation shock strongly increases the number of users

that cause additional costs. However, less spending on the control is possible

as the shock may support the convergence towards the high saddle point.



Chapter 5

Sensitivity Analysis

In the last chapter it was shown that changes of the optimal dynamic policy

are in part driven by the way the DNSS point reacts to disturbances or

changes of the system. Depending on the initial value it may become optimal

to move towards different steady states in situations with and without a

shock. The DNSS thresholds are indicators for which initial values such a

change in policy occurs. Therefore, part of this thesis analyses in what way

the DNSS point is sensitive to changes of the intensity and/or the duration of

the initiation shock. At first only one parameter is changed at a time, then a

two-dimensional sensitivity analysis is carried out. Note that this sensitivity

analysis is done for shocks concerning the baseline parameter settings (cf.

scenarios 4.2.1 and 4.2.2).

5.1 Variation of Shock Intensity k

As in Chapter 4.1 an initiation shock of constant duration T = 2 is assumed.

The initiation constant k is scaled from 1 to 6. As mentioned before, only

shocks with a higher initiation rate in the first stage are discused here.

Figure 5.1 displays the DNSS threshold in case of a shock with duration

T = 2 while the intensity of the shock is varied (abscissa). A monotonically

decreasing behaviour of the DNSS threshold with respect to the initiation

45
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constant k can be observed. This result, of course, is not surprising at all. A

higher initiation constant in the first stage causes an intensified increase of

the number of users A (see Chapter 4) and/or a higher value of the costate

λ during the shock (cf. Subsection 4.2.3). This results in increased costs

during the shock period which causes higher total costs. Further, increased

spending on the control during the shock could be observed in the previous

chapter. As a consequence, the DNSS threshold is decreasing and for fewer

initial values A0 the optimal policy consists of eradicating the problem.

2 3 4 5 6
k

1. ´ 106

2. ´ 106

3. ´ 106

4. ´ 106

5. ´ 106

6. ´ 106

7. ´ 106

ADNSS

Figure 5.1: Variation of k: ADNSS as a function of the scale of the initiation

constant during the shock with duration T = 2.

5.2 Variation of T

Here, we assume an intensity of the shock of 2k as in the previous chapter

while varying the duration T of the first stage from 0 to 10.
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Figure 5.2 shows the DNSS threshold as a function of the duration of the

shock T . Note that this time the shift of the DNSS point is nonmonotonic.

A minimum of 2.35147 × 106 can be observed at T = 7.23019 . As pointed

out in Bultmann [2007] this may lead to fundamental changes in the optimal

policy depending on the duration of the shock. Depending on the initial

value it may be optimal for brief shocks to eradicte the problem, for longer

shocks it may become optimal to converge to the high equilibrium and for

even longer shocks the optimal policy consists of eradiction again.

Tinf

2 4 6 8 10
T

3. ´ 106

4. ´ 106

5. ´ 106

6. ´ 106

7. ´ 106

ADNSS

Figure 5.2: Variation of T : ADNSS as a function of T for intensity 2k with a

minimum at T = 7.23019. Tinf indicates the limit of ADNSS for T →∞.

Further, a statement about the long-term behaviour of the DNSS thresh-

old may be made. Let us look at the utility functional of the first stage

(see eq. (4.1)) and let T →∞. The upper boundary of the integral changes

to ∞ whereas the discounted salvage function converges to 0. As a result,

the utility functional of a one-stage model is obtained, i.e. the base model.

Hence, if the limit of ADNSS(T ) for T →∞ is required, the base model with
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a higher initiation constant has to be considered. For 2k a DNSS threshold

of ADNSS = 2.754878× 106 is obtained. In Figure 5.2 this limit is displayed

by the horizontal dashed line Tinf .

5.3 Two-Dimensional Sensitivity Analysis –

Joint Variations of k and T

Having made observations about the influence of either k or T on the DNSS

threshold, a comparison of their impacts is crucial. As a consequence, careful

statements can be made about whether it is better to have a longer and less

intense shock or to have a shorter and more intense one. Here, better refers

to the shift of the DNSS point. The larger the shift, the greater the effect of

the shock, the higher the additional costs, and thus, the worse.

Figure 5.3 shows contour lines for DNSS iso-levels, i.e. combinations of

intensities ks and durations T that result in the same DNSS levels. Therefore,

they represent shocks that are equivalent in terms of qualitative changes of

the optimal policy. The abscissa refers to the scale of the initiation constant

k and the ordinate refers to the duration of the shock T . The axes themselves

represent the base model as either the duration of the shock is zero or the

intensity of the shock equals that of the second stage.

The contour lines displayed here are referring to the levels of the DNSS

threshold in millions of users. The lowest curve is representing the DNSS

thresholds of 7 × 106, the next upper one is 6 × 106 and so on. The axes

themselves, i.e. ks = k and T = 0, represent the base model with a DNSS

point at 7.5469× 106. Narrow contours imply that impacts of changes of the

parameters are strong because a very small change may cause a large shift.

Broad contours indicate that small changes of the parameters are not likely

to change a lot concerning the DNSS threshold.

The contours themselves are convex curves, which implies that that the

intensity and the duration of the shock are complements. Therefore, they

explain which combinations of shocks are equivalents with respect to the
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Figure 5.3: Contour plot showing changes of ADNSS with respect to the

intensity (abscissa) and the duration (ordinate) of the shock.
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impact on the DNSS threshold.

Table 5.1 displays some values taken from the contour with level 3× 106.

For example, a shock of intensity 2 and duration 3 causes the same shift of

the DNSS threshold as a shock of intensity 6 and duration 0.6.

intensity ×k 1.78847 2 2.47848 4 5.03075 6

duration T 4 3.0107 2 0.999925 0.75 0.607765

Table 5.1: Some combinations of intensity and duration of initiation shocks

that result in a DNSS threshold at 3× 106.

With that in mind, one may try to compare shocks and make statements

about what kind of shock is better.

If the shock analysed in chapter 4 is taken, i.e. with intensity 2 and

duration 2, would it be preferable to have a shock of half the duration and

twice the intensity or half the intensity and twice the duration? Table 5.2

shows the DNSS thresholds for four different scenarios. A shock of intensity

2 and duration 2 causes a shift of the DNSS point from 7.546903 × 106 to

4.11104 × 106. A shock of twice the intensity, 4, and half the duration, 1,

causes a shift to 2.99976 × 106. In the latter case the change of the DNSS

threshold was more intense. Thus, a policy maker would prefer a longer

but less intense shock. This developement continues if the shock becomes

even more intense and shorter. For a shock of intensity 6 and a duration of

0.66667 the DNSS threshold is found at 2.69736 × 106. However, note that

the shift for the last shock is not that much stronger in comparison to the

second scenario. A declining deterioration may be noticed. When a shock

becomes more intense and shorter the decreasing of the DNSS threshold is

getting weaker.

Analogously, better results of the shock are obtained with a weaker inten-

sity and a longer duration. The scale of the intensity and the duration of the

shock were changed by 50% to a scale of 1.5 and a duration of 3, respectively.

Such a shock results in a shift of the DNSS threshold to 4.77515×106, which

is better than a shock of duration and intensity 2.
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intensity ×k duration T DNSS

2 2 4.11104× 106

4 1 2.99976× 106

6 0.66667 2.69736× 106

1.5 3 4.77515× 106

Table 5.2: Comparison of the effects of different shock scenarios.

Note that qualitatively the same results are obtained for most analogous

examples. A longer but less intense shock seems to be more favorable than a

shorter but more intense one. That may also be seen in Figure 5.3. For high

values of k the contours are slightly more narrow than for high values of T ,

which implies a dominating influence of the intensity of the shock. However,

when focusing on the duration of the shock (see Figure 5.2) a nonmonotonic

behaviour of the DNSS threshold as a function of T was noticed. Therefore,

there are areas of the (k, T )-plane, where the intensity and the duration of

the shock are not complements anymore. This may lead to scenarios where

a shorter more intense shock might be favorable.

The results of this chapter may also used for direct policy guidance. If

interpreted as initial values, the contour levels provide information about

qualitative changes of the policy. For shock combinations below this level

curve (including the base model) convergence is to the low-level saddle point

and thus, no disruptive change in the optimal policy occurs. Shocks above

the curve suggest a convergence to the high-level equilibrium instead and

therefore a fundamental change in optimal policy.



Chapter 6

Summary and Conclusions

The subject of this thesis was to discuss the influence and role of initiation

in a previously known one-state one-control model on optimal dynamic drug

policy.

First, the base model per se was discussed and first implications for the

optimal policy were stated. Then a closer look was taken on how the prop-

erties of the equilibria of the system change when either the social costs or

the initiation parameter are modified. As a first result it was shown that

the range with multiple equilibria increases quite strongly with growing ini-

tiation. However, the area with multiple optimal equlibria and DNSS points

only slightly increases. This is good news for the policy maker as the system

is rather insensitive to changes in qualitative matters when social costs are

high. Attention must be paid, however, when social costs are low and multi-

ple optimal long-term solutions exist. A slight change of one paramter might

result in a fundamental change of the policy.

After that, a two-stage model was considered, for which initiation shocks

were discussed for different equilibria and parameter settings. We learned

that stages of high initiation are bad for the policy maker as they always

result in a notable increase of costs. Intuitively, this result is what was ex-

pected, because an increase in users should lead to additional costs. Further,

it was shown that shocks may result in a qualitative change of the optimal
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dynamic policy.

Finally, the impacts of the intensity and the duration of the shock on

optimal dynamic policy were discussed. The indicator that was used here is

the threshold where the optimal policy switches from one long-term solution

to the alternative one, i.e. the DNSS point. Thus, a policy maker may con-

clude whether it is still optimal to follow the same policy as before the shock

or whether it is time to change. Moreover, a device for comparing shocks

is given. If a policy maker is facing a choice of realising shocks of different

intensities and durations, strategic support is provided by the insights made

here. For moderate intensities and durations it is preferable to have a longer

but less intense shock.

Comparing this thesis with other works (e.g. Bultmann [2007]) some addi-

tional assumptions may be made. When analysing price shocks, a symmetric

behaviour of droughts and gluts was observed. The former supports opti-

mal dynamic policy whereas the latter rather interferes. This thesis focused

on high initiation stages, because there is evidence that this situation has

already occurred (see, e.g., Johnson et al. [1996]) and those scenarios have

been declared as unfortunate for optimal policy. Reasoning by analogy would

therefore mean that stages with low initiation are advantageous for the policy

maker. Thus, further analysis in this direction would certainly be interesting.

The reader should also bear in mind that this mathematical model is

highly abstract. Nevertheless, it provides some remarkable insights about

the impacts of high initiation at the beginning of a drug epidemic and the

related optimal dynamic policy. Thus, extensions of this model and related

issues should be considered in future work.
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