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Chapter 1

Introduction

My diploma thesis which I wrote under the supervision of Prof. Teichmann in the summer
term 2007/2008 covers the pricing of American options by simulation. This diploma thesis
is based on a paper from L.C.G. Rogers (2002). In his paper he investigates a new ap-
proach using Monte Carlo techniques. He makes no attempt to determine an approximate
exercise policy, but instead gives an upper bound for the true price. The payoff of an
American option depends in a highly complex path-dependent fashion on the underlying,
which means that the computing of the value and the optimal exercise time is very difficult.

The overwhelming majority of traded options are of American style. In general it is not
possible to find explicit formulae for American option prices, and numerical techniques
or approximation schemes are required for option evaluation. For pricing European style
derivatives simulation has been used extensively, but for American style claims there have
been only a few attempts to use simulation techniques for pricing. The problem lies in
the estimation of the exercise boundary; the Monte Carlo method entails the simulation
of the evolution of the asset prices forward in time, but the determination of the optimal
exercise policy requires a backward style algorithm. Monte Carlo simulation is the most
popular approach in computational finance for determining the price of financial options.
The accurate calculation of prices is only one objective of Monte Carlo simulation.

To discuss this pricing process in detail, the diploma thesis is structured as followed:
In a first step the essential mathematic definitions and basis are explained. For this reason
the second and the third chapter are dedicated to an introduction to the basicly financial
model. In the second chapter the discrete time model is presented. Basic contracts like
European options are introduced, also the No Arbitrage Theory is discussed. The main
point of the third chapter is the step from discrete time to continuous time. In addition
to it this part includes hedging methods for European options. All important stochastic
prelimaries like stochastic processes, filtrations, stopping times, adapted processes and
martingales are summarized in the fourth chapter.

After an introduction to the Monte Carlo method in chapter five, the American options
are discussed. It starts with the main properties of American options, followed by the
Snell envelope, a backward recursion for pricing American options, and optimal stopping
times.
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CHAPTER 1. INTRODUCTION

The main chapter of this diploma thesis is chapter seven. After explanations about price
and a hedging method for American options the way of constructing a good martingale
for the Monte Carlo simulation is discussed.
In chapter eight the Monte Carlo method for pricing an American option is demonstrated
on a numerical example. For the implementation Scilab was used (the source code is
quoted in the appendix), followed by some concluding words.
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Chapter 2

Discrete Time Models

2.1 First examples of pricing

In this section the main concept is introduced with a simple example. The startpoint are
one period models, i.e. models for asset prices such that S0 > 0 is the price at t = 0 and
S is the price at some later point in time denoted by 1. Furthermore we assume a bank
account (B0,B1) and for simplicity we take B0 = B1 = 1 (no interest rates) in this chapter.
We are allowed to

• borrow and invest money in the bank account at time t = 0 in arbitrary portions,

• sell and buy stocks at time t = 0 in arbitrary portions.

A portfolio is an amount of money invested in the bank account and an amount of money
invested in stocks at t = 0 and wait for t = 1 to see the result after on ”tick in time”.
Formally this means that a portfolio is a vector (ψ, φ) ∈ R

2 of real numbers, where ψ
denotes the amount of money in the bank account and φ denotes the number of shares in
the stock. The value of portfolio V0 at time t = 0 is given through

V0 = ψ + φS0,

and at time t = 1 through

V1 = ψ + φS1,

which is already a random variable.

Criterion 2.1.1 (No Arbitrage Criterion). We call a one-period model arbitrage-free if
there does not exist an (admissible) portfolio (ψ, φ) with initial value V0 and non-zero final

value V1

>
�= 0. If we can construct such a strategy in a one-period model, we call this

strategy an arbitrage (strategy).

The requirement of a model to be arbitrage-free is minimal for models of financial
markets.

The 1-period model, i.e. an asset has the value x0 at time 0 and x1 with probability p1

and x2 with probability p2 at time 1 (p1 +p2 = 1; p1p2 > 0;x1 > x0 > x2). A sample space

9



2.1. FIRST EXAMPLES OF PRICING

Ω := {ω1, ω2} with σ-algebra 2Ω and probability meausure P (ω1) = p1 and P (ω2) = p2.
Furthermore a stochastic process S0(ω1 = x0), S0(ω2 = x0) and S1(ω1 = x1), S1(ω2 = x2).
This represents the price of a traded asset in a stock market.

Remark 2.1.1. The above described model is arbitrage-free since the outcomes of strate-
gies with V0 = 0 are given through

V1 = φ(S1 − S0),

which is a positive random variable if and only if φ = 0. Then in turn ψ = 0 and V1 = 0

Let (S0, S1) be a general one-period model, i.e. S0 is constant and S1 : (Ω,F , P ) → R

is a random variable on a finite probability space. We assume zero interest rates, i.e. a
bank account process B0 = B1 = 1. Derivatives (Claims, Contingent Claims) X on the
asset are measurable functions X : Ω → R which are the outcomes of contracts at time t
= 1. These derivatives (claims) should as equally traded objects have a price at t = 0, i.e.
buying the derivative at the fair price at t = 0 gives the buyer the outcome X at t = 1.

Criterion 2.1.2 (No Arbitrage Pricing Rule). Given a one-period model and a derivative
(claim) X at t = 1, an arbitrage-free price in the model (S0, S1) at t = 0 is a number π
such that a portfolio consisting of an investment in the bank account, an investment in the
stock and an investment in the derivative X does not yield a value, which is 0 at t = 0
and positive at t = 1. Formally speaking there is no (ψ, φ, η) ∈ R

3 such that

V0 = ψ + φS0 + ηπ = 0

and V1 = ψ+φS1 + ηX ≥ 0 with V1 �= 0. This principle should hold for any finite number
of derivatives.

Fair prices of derivatices need not exist and if they exist they need not be unique.

• given a derivative X and a fair price π for X, for any portfolio (ψ, φ) in bank account
and asset we have that V1 ≥ X ⇒ V1 ≥ π.

• prices for derivatives are additive, the no arbitrage pricing rule leads to an additive
pricing system X �→ π(X) for derivatives X with prices π(X).

• if there are strategies ψ (units in bank account) and φ (units in stock) at time 0, such
that at time 1 we obtain ψB1 +φS1 = V1 = X almost surely, then ψB0 +φS0 = V0 is
the only fair price. There is a unique arbitrage-free price for all replicable portfolios.

• in particular the derivative S1 is replicable (the forward contract), so all possible
arbitrage-free prices π(S1) have to agree and

q(S1) = V0 = S0

• the derivative X = 1Ω is also replicable (with the bond) and therefore π(1Ω) = 1.

• given a positive derivative X ≥ 0, then the price has to be positive, which is seen by
taking the strategy (0,0) for the derivative -X which yields that 0 ≥ −π(X).

10



2.1. FIRST EXAMPLES OF PRICING

• given a linear map X �→ π(X) such that V1 ≥ X ⇒ V1 ≥ π holds, then it is an
arbitrage-free pricing rule. Since then π(S1) = S0 and q(1) = 1. For any portfolio
(ψ, φ1, ..., φk) in derivatives S1, ..., Xk−1 the relation V0 = 0 leads to

φ1(S1 − S0) ≥ 0 φ2(X1 − π(X1)) ≥ 0, ...,

which in turn leads to (ψ, φ1, ..., φk) = 0.

• Ω = {ω1, ..., ωM}. Given a pricing rule X �→ π(X), one can calculate the Arrow-
Debreu prices, i.e. the prices of 1{ωi}, which gives 1 if ωi appears and 0 else.
These prices are denoted by qi = π(1{ωi}) and every other price of a claim X =∑M

i=1 X(ωi)1ωi can be written as

π(X) =
∑M

i=1 qiX(ωi)

by linearity. In particular
∑M

i=1 qi = 1 and a measure on Ω can be defined.

In the first example, where we have two states of the world, every derivative is uniquely
replicable and therefore a unique arbitrage-free pricing rule for derivatives exists. Given
a derivative X, this yiels the system of linear equations

ψ + φx1 = X(ω1) = c1

ψ + φx2 = X(ω2) = c2.

which has a unique solution

ψ =
x2c1 − x1c2
x2 − x1

φ =
c1 − c2
x1 − x2

.

This means there is ”always” a fair price, namely

V0 =
x2c1 − x1c2
x2 − x1

+
c1 − c2
x1 − x2

x0

= c1(
x2

x2 − x1
− x0

x2 − x1
) + c2(− x1

x2 − x1
− x0

x2 − x1
)

= EQ(X).

EQ denotes the expectation with respect to a new measure Q and is the unique pricing
rules for derivatives X.

Q(ω1) =
x0 − x2

x1 − x2
,

Q(ω2) =
x1 − x0

x1 − x2
.

This measure is equivalent under our conditions and the most important property is

EQ(S1) = x1
x0 − x2

x1 − x2
+ x2

x1 − x0

x1 − x2

= x0 = S0

so (St)0≤t≤1 is a Q-martingale. Furthermore we obtain the equation

11



2.1. FIRST EXAMPLES OF PRICING

V0 + φ(S1 − S0) = X.

To determine unique pricing rule we first calculate q1, q2 such that q1 + q2 = 1 and
the associated probability measure on Ω which satifies

EQ(S1) = S0

This means

q1x1 + q2x2 = x0.

Here we have a unique solution

Qx1,x2(ω1) =
x0 − x2

x1 − x2
,

Qx1,x2(ω2) =
x1 − x0

x1 − x2
.

With the measure Q we have found the unique arbitrage free pricing rule, i.e.

π(X) = EQ(X).

The case, where not all claims can be replicated (linear equations are not always
solvable!): We take a one-period model (S0, S1) where Ω has three elements and P is
some probability assigning positive values to all three states of the world. We assume
S1(ω1) = x1, S1(ω2) = x2, S1(ω3) = x3, S0 = x0 with the relations

x1 > x2 > x0 > x3.

The model is arbitrage-free, since for a trading strategy (ψ, φ) ∈ R
2 with

ψ + φS0 = 0

we obtain

φ(S1 − S0) ≥ 0

if and only if φ = 0, which means that the portfolio vanishes.
We have three linear equations with two variables (the portfolio), we cannot hope for

exact replication. We can calculate all no-arbitrage pricing rules. First we calculate all
q1, q2, q3 > 0 with q1 + q2 + q3 = 1 such that the associated probability on Ω, which is
denoted by Q satifies

EQ(S1) = S0

So we have to solve the equation (*)

q1x1 + q2x2 + q3x3 = x0,

q1 + q2 + q3 = 1,
q1, q2, q3 > 0

12



2.2. BASIC CONTRACTS

which can be solved by the previous knowledge. We define the measure

Qx1,x3(ω1) =
x0 − x3

x1 − x3
,

Qx1,x3(ω2) = 0,

Qx1,x3(ω3) =
x1 − x0

x1 − x3
.

and the measure

Qx2,x3(ω2) =
x0 − x3

x2 − x3
,

Qx2,x3(ω1) = 0,

Qx2,x3(ω3) =
x2 − x0

x2 − x3
.

Any convex combination of these two measures is a solution (with condition qi ≥ 0).
Furthermore any solution is a convex combination of these two measures. The solutions
of (*) can be written

Q = tQx1,x3 + (1 − t)Qx2,x3

for t ∈]0, 1[. Then we know that for any derivative X the map

X �→ EQ(X)

is an arbitrage-free pricing rule and these are all arbitrage-free pricing rules.
We can also do the whole calculation with interest rats without any problems. The

only difference is discounting. A one-period model (S0, S1) with bank account (B0, B1),
where B0 = 1. Then the definitions of arbitrage-free models and arbitrage-free pricing
rules remain unchanged. A one-period model with interest rates is arbitrage-free if the
model (S0,

S1
B1

) is arbitrage-free with zero interest rates. This is called the discounted
model. For pricing rules all relations hold true. In particular arbitrage-free pricing rules
are given by probability measure Q such that

EQ( S1
B1

) = S0

and an arbitrage-free price of a derivative X is given through the price of the discounted
derivative

EQ( S1
B1

).

The steps to calculate all arbitrage-free pricing rules are the same like above.

2.2 Basic Contracts

(St)t∈I is the asset price on some interval I. Bt = exp(rt) is a risk-free bank account on I,
which means continuous compounding. We assume the basic no-arbitrage pricing rule for
the one-period model (St, ST ) for t ≤ T in I.

13



2.2. BASIC CONTRACTS

2.2.1 Forward contracts

A forward contract is the right and the obligation to buy one unit of the stock (St)t≥0 at
time T > 0 for an amount K, which is fixed at t ≥ 0. We have the linear payoff-scenario

(ST −K).

We denote the price of a forward contract of this type by Ft. We shall calculate the strike
price K such that the contract can be entered today at t = 0 with zero premium F0 = 0
and obtain

K = exp(r(T − t))St.

If somebody entered the contract with F0 = 0 and K = exp(r(T − t))St, we would buy
one unit of stock for St, which we have to borrow from the bank. Therefore at T we
have debts St exp(r(T − t)), but receive K in exchange for the stock. Hence a net gain of
K − exp(r(T − t))St. If we write a forward contract with K < exp(r(T − t))St with some
other person, then we sell a unit of stock at t and receive St, which is put on the bank
account. At T we receive a unit of stock in exchange for K < exp(r(T − t))St. We clear
the short amount of stock and have a net gain of exp(r(T − t))St −K. Therefore the price
of a forward with strike price K and maturity T is given at t through

Ft = St − exp(−r(T − t))K.

2.2.2 European Call contracts (European Call Option)

A European call is the right but not the obligation to buy one unit of stock at time T > 0
for an amount K, which is fixed at t. We have the (non-linear) payoff-scenario

(ST −K)+

at time t = T .

2.2.3 European Put contracts (European Put Option)

A European put is the right but not the obligation to sell one unit of stock at time T > 0
for an amount K, which is fixed at t. We have the (non-linear) payoff-scenario

(ST −K)−

at time t = T . We denote the put price by Pt. We obtain the put-call parity by observing
that

Ct − Pt = St −K exp(−r(T − t))

has to be the price of the forward contract with strike price K.

14



2.3. NO ARBITRAGE THEORY FOR DISCRETE MODELS

2.3 No Arbitrage Theory for discrete models

A discrete model for a financial market is an adapted (d+1)-dimensional stochastic process
S with Sn := (S0

n, ..., S
d
n) for n = 0, ..., N on a finite probability space (Ω,F , P ) with

filtration F0 ⊂ · · · ⊂ FN with FN = F . We shall always assume that all σ-algebras
contain all P -nullsets. The price process (S0

n)n=0,...N is assumed to be strictly positive and
called the riskless asset(even if it is stochastic) and we define S0

0 = 1. The coefficients
βn := 1

S0
n

for n = 0, ...N are called discount factors. The assets S1, ..., Sd are called risky
assets. A trading strategy is a predictable stochastic process φ with φn = (φ0

n, ..., φ
d
n) for

n = 0, ...N . We think of a portfolio formed by an amount of φ0
n in the bank account and

φi
n units of risky assets, at time n. The value or wealth at time n of such a portfolio is

Vn(φ) = φnSn :=
∑d

i=0 φ
i
nS

i
n

for n = 0, ...N . The discounted value process is given through

Ṽn(φ) = βn(φnSn) = φnS̃n

for n = 0, ...N , where S̃n = βnSn denotes the discounted price process. A trading strategy
φ is called self-financing if

φnSn = φn+1Sn

for n = 0, ...N − 1. We interpret this condition that the readjustment at time n to new
prices Sn is done without bringing in or consuming any wealth. This condition is obviously
equivalent to

φn+1(Sn+1 − Sn) = φn+1Sn+1 − φnSn

for n = 0, ...N − 1, which means that the changes of the value process are due to changes
in the stock prices.

Proposition 2.3.1. Let S = (S0, ..., Sd) be a discrete model of a financial market and φ
a trading strategy, then the following assertions are equivalent:

1. The strategy φ is self-financing

2. For n = 1, ..., N we have

Vn(φ) = V0(φ) + (φ · S)n.

3. For n = 1, ..., N we have

Ṽn(φ) = V0(φ) + (φ · S̃)n.

A self-financing trading strategy φ can also be given through the initial value V0(φ)
and (φ1, ..., φd), which is proved in the following proposition:

Proposition 2.3.2. For any predictable process (φ1, ..., φd) and for any value V0 there ex-
ists a unique predictable process φ0 such that (φ0, ..., φd) is a self-financing trading strategy
with V0(φ) = V0 such that Ṽn(φ) = V0 + (φ · S̃)n for n = 0, ..., N .
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2.3. NO ARBITRAGE THEORY FOR DISCRETE MODELS

A trading strategy φ is called admissible if there is C ≥ 0 such that Vn(φ) ≥ −C for
n = 0, ..., N , which is not a restriction for discrete models.

Definition 2.3.1. Let S = (S0, ..., Sd) be a discrete model for a financial market, then
the model is called arbitrage-free if for any trading strategy φ the assertion

V0(φ) = 0 and VN (φ) ≥ 0, then VN (φ) = 0

holds true. We call a trading strategy φ an arbitrage opportunity (arbitrage strategy) if

V0(φ) = 0 and VN (φ)
>
�= 0.

Definition 2.3.2. A contingent claim (derivative) is an element of L2(Ω,F , P ). We
denote by X̃ the discounted price at time N, i.e. = 1

S0
N
X. We call the subspace of K ⊂

L2(Ω,F , P )

K :=
{
ṼN (φ)| φ self-financing trading strategy, Ṽ0(φ) = 0

}
=

{
(φ · S̃)N | φ predictable

}
the space of contingent claims attainable at price 0 (see Proposition 2.3.1). We call the
convex cone

C =
{
Y ∈ L2(Ω,F , P )| there is X ∈ K such that X ≥ Y

}
= K − L2

≥0(Ω,F , P )

the cone of claims super-replicable at price 0 or the outcomes with zero investment and
consumption. A contingent claim X is called replicable at price x and at time N if there
is a self-financing trading strategy φ such that

X̃ = x+ (φ · S̃)N ∈ x+ K .

A contingent claim X is called super-replicable at price x and at time N if there is a
self-financing trading strategy φ such that

X̃ ≤ x+ (φ · S̃)N ∈ x+ K .

in other words if X̃ ∈ C.

Remark 2.3.1. The set K is a supspace of L2(Ω,F , P ) and the positive cone L2
≥0(Ω,F , P )

is polyhedral, therefore C is closed. We see immediately that a discrete model for a finan-
cial market is arbitrage-free if

K ∩ L2
≥0(Ω,F , P ) = {0},

which is equivalent to

C ∩ L2
≥0(Ω,F , P ) = {0}.
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2.3. NO ARBITRAGE THEORY FOR DISCRETE MODELS

Given a discrete model for a financial market, then we call a measure Q equivalent to P
an equivalent martingale measure with respect to the numeraire S0 if the discounted price
process S̃i are Q-martingales for i = 0, ..., N . We denote the set of equivalent martingale
measures with respect to the numeraire S0 by M e(S, S0). If the numeraire satifies S0 = 1
we shall write M e(S). In particular M e(S, S0) = M e(S̃). We denote the absolutely
continuous martingale measures with respect to the numeraire S0 by M a(S, S0). If the
numeraire satifies S0 = 1 we shall write M a(S). In particular M a(S, S0) = M a(S̃).

Theorem 2.3.1. Let S be a discrete model for financial market, then the following two
assertions are equivalent:

1. The model is arbitrage-free.

2. The set of equivalent martingale measures is non-empty, M a(S̃) �= ∅.
Definition 2.3.3. A pricing rule for contingent claims X ∈ L2(Ω,F , P ) at time N is a
map

X �→ π(X)

where π(X) = (π(X)n)n=0,...,N is an adapted stochastic process, which determines the price
of the claim at time N at time n ≤ N . In particular π(X)N = X for any X ∈ L2(Ω,F , P ).
A pricing rule is arbitrage-free if for any finite set of claims X1, ...,Xk the discrete time
model of a financial market

(S0, S1, ..., Sd, π(X1)), ..., π(Xk))

is arbitrage-free.

The next Lemma is an argument for super-replication where trading is involved.

Lemma 2.3.1 (superreplication principle). Let π be an arbitrage-free pricing rule, then π
is linear, positive and for any self-financing trading strategy φ = (φ0, ..., φd) the assertion

VN (φ) ≥ X ⇒ Vn(φ) ≥ π(X)n

for n = 0, ..., N holds.

Corollar 2.3.1 (perfect replication). Let X be a replicable claim, i.e. there is a portfolio
φ such that VN (φ) = X, then for all arbitrage-free pricing rules q we have

π(X)n = Vn(X)

for n = 0, ..., N .

Lemma 2.3.2 (arbitrage-free prices). Let π be an arbitrage-free pricing rule for each
contingent claims, then the discrete model (S0, S1, ..., Sd) is arbitrage-free and there is
Q ∈ M e(S̃) such that

π(X)n = EQ( S0
n

S0
N
X|Fn).

17



2.3. NO ARBITRAGE THEORY FOR DISCRETE MODELS

If the discrete time model S is arbitrage-free, then

π(X)n = EQ( S0
n

S0
N
X|Fn).

is an arbitrage-free pricing rule for any contingent claims X ∈ L2(Ω,F , P ). Hence the
only arbitrage-free prices are conditional expectation of the discounted claims with respect
to Q.

Remark 2.3.2. Taking not an equivalent but an absolutely continuous martingale measure
Q ∈ M a(S̃) means that there is at least one state ωi such that Q(ωi = 0). Hence the claim
1A with P (A) > 0 would have price 0, which immediately leads to arbitrage by entering
this contract. Therefore only equivalent martingale measures are possible for pricing.

The set of equivalent martingale measures M e(S̃) is convex and the set M a(S̃) is
compact and convex. Therefore the analysis of the extreme points of M a(S̃) is of particular
importance.

Remark 2.3.3. Given an arbitrage-free financial market such that M e(S̃) contains more
than one measure. Then an equivalent martingale measure Q ∈ M e(S̃) can never be an
extreme point of M a(S̃). Assume that there were an extreme point Q ∈ M e(S̃) of M a(S̃)
and take Q0 �= Q with Q0 ∈ M e(S̃). Then we know that the segment tQ + (1 − t)Q0 ∈
M e(S̃). For t near 1 we also have equivalent martingale measures. We also know that C is
finitely generated by 〈h1, ..., hM ,−h1, ...,−hM ,−e1, ...,−ek〉con, where h1, ..., hM is a basic
of K and e1, ..., ek generates the non-negative cone L2

≥0(Ω,F , P ) = {0}. An equivalent
martingale measure Qt is defined via the relation EQt(C) ≤ 0. The Qt are equivalent
martingale measures since EQt(hi) = 0 and EQt(ei) < 0. So we can continue a little
bit in t-direction beyond 1 and obtain again equivalent martingale measures, too. Hence
Q cannot be an extreme point, since it is a middle point of two martingale measures.
Therefore an extreme point is necessarily absolutely continuous and not equivalent to P .

Theorem 2.3.2. Let S be a discrete model for a financial market and assume M e(S̃) �= 0
and M a(S̃) = 〈Q1, ..., QM 〉. Then for all X ∈ L2(Ω,F , P ) the following assertions are
equivalent:

1. X ∈ K (X ∈ C).

2. For all Q ∈ M e(S̃) we have EQ(X) = 0 (for all Q ∈ M e(S̃) we have EQ(X) ≤ 0).

3. For all Q ∈ M a(S̃) we have EQ(X) = 0 (for all Q ∈ M a(S̃) we have EQ(X) ≤ 0).

4. For all i = 1, ...,m we have EQi(X) = 0 (For all i = 1, ...,m we have EQi(X) ≤ 0).

Definition 2.3.4. Let S be a discrete model for a financial market and assume M e(S̃) �=
0. The financial market is called complete ifM e(S̃) = {Q}, i.e. the equivalent martingale
measure is unique. The financial market is called incomplete if M e(S̃) contains more than
one element. In this case M a(S̃) = 〈Q1, ..., QM 〉convex for linearly independent measures
Qi, i = 1, ...,m and m ≥ 2.

Theorem 2.3.3 (complete markets). Let S be a discrete model of a financial market with
M e(S̃) �= 0. Then the following assertions are equivalent:

18



2.3. NO ARBITRAGE THEORY FOR DISCRETE MODELS

1. S is complete financial market.

2. For every claim X there is a self-financing trading strategy φ such that the claim can
be replicated, i.e.

VN (φ) = X

3. For every claim X there is a predictable process φ and a unique number x such that
the discounted claim can be replicated, i.e.

X̃ = 1
S0

N
X = x+ (φ · S̃).

4. There is a unique pricing rule for every claim X.

The Cox-Ross-Rubinstein model is a complete financial market model: The CRR-
model is defined by the following relations

S0
n = (1 + r)n

for n = 0, ..., N and r ≥ 0 is the bond-process

Sn+1 :=
{
Sn(1 + a)
Sn(1 + b)

for −1 < a < b and n = 0, ..., N . The σ-algebras Fn are given by σ(S0, ..., Sn), which
means that atoms of Fn are of type

{(x1, ..., Xn, yn+1, ..., yN ) for all yn+1, ..., yN ∈ {1 + a, 1 + b}}

with x1, ..., xn ∈ {1 + a, 1 + b} fixed. The returns (Ti)i=1,...,N are well-defined by

Ti := Si
Si−1

for i = 1, ..., N . This process is adapted and each Ti can take two values

Ti := 1+a
1+b

with some specified probabilities depending on i = 1, ..., N . We also note the following
formula

Sn
∏m

i=n+1 Ti = Sm

for m ≥ n. Hence it is sufficient for the definition of the probability on (Ω,F , P ) to know
the distribution of (T1, ..., TN ), i.e.

(T1 = x1, ..., TN = xN )

has to be known for each xi ∈ {1 + a, 1 + b}.
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2.3. NO ARBITRAGE THEORY FOR DISCRETE MODELS

Proposition 2.3.3. Let −1 < a < b and r ≥ 0, then the CRR-Model is arbitrage-free
if and only if r ∈]a, b[. If this condition is satisfied, then the martingale measure Q for
the discounted price process

(
Sn

(1+r)n

)
n=0,...,N

is unique and characterized by the fact that

(Ti)i=1,...,N are independent and identically distributed and

Ti :=
{

1 + a with probability 1 − q
1 + b with probability q

for q = r−a
b−a .

Theorem 2.3.4 (incomplete markets). Let S be a discrete model of a financial market
with M e(S̃) �= 0. Then the following assertions are equivalent:

1. S is an incomplete financial market.

2. For every claim X there is a self-financing trading strategy φ such that the claim can
be super-replicated, i.e.

VN (φ) ≥ X

and there is at least one claim X, which cannot be replicated.

3. For every claim X there is a predictable process φ and a unique number x such that
the discounted claim can be super-replicated, i.e.

X̃ = 1
S0

N
X ≤ x+ (φ · S̃).

and there is at least one claim, which cannot be replicated.

In particular we have that the no arbitrage prices at time 0 form an open interval ]π↓(X), π↑(X)[
if π↓(X) < π↑(X) with

π↓(X) = inf
{

EQ( X
S0

N
) for Q ∈ M e(S̃)

}
,

π↑(X) = sup
{

EQ( X
S0

N
) for Q ∈ M e(S̃)

}
.

The case π↓(X) = π↑(X) (there is only one no-arbitrage price for the claim X) occurs if
and only if X can be replicated.

Given a financial market (S0
n, S

1
n, ..., S

d
n)n=0,...,N on a probability space (Ω,F , P ) with

filtration (Fn)n=0,...,N . Without restriction we assume d = 1 and S0
n = 1 for n = 0, ..., N ,

since

M a(S1

S0 , ...,
Sd

S0 ) = ∩d
i=1M

a( Si

S0 ).

So if we are able to calculate the martingale measures for a one asset model, we can do it
in general easily for an R

d-valued process.

The defining definition for a martingale (Sn)n=0,...,N , namely
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2.3. NO ARBITRAGE THEORY FOR DISCRETE MODELS

EQ(Sn|Sn−1 = x) = x

for all values x of Sn−1 on Ω. We define for all values x of Sn−1 the conditional probabilities

EQ(1{An}|Sn−1 = x) = qx(An),

which is 0 if Sn−1(An) �= {x} for the atoms An of Fn. Then we get the equations

|Ω|∑
An∈A (Fn)

qx(An)Sn(An) = x,

|Ω|∑
i=1

qx(An) = 1,

qx(An) ≥ 0,

which can be solved if the model is arbitrage-free. The martingale measures Q is then
given through

Q(An) = EQ(1An |Sn−1 = x)Q(Sn−1 = x)

if Sn−1(An) = {x}. M a(S1) = 〈Q1, ..., Qm〉 for m ≥ 1 (both cases are included, complete
or incomplete), then we want to calculate (super)replicating strategies. Given a claim X
there is one Qi for some i ∈ {1, ...,m} such that

π↑(X) = EQi(X),

which is trivial in the complete case and requires some reasoning in the incomplete one.
Then calculate the conditional expectations of X with respect to Qi

Xn := EQi(X|Fn)

for n = 0, ..., N . The difference Xn −Xn−1 for n = 1, ..., N is then

Xn −Xn−1 = φn(Sn − Sn−1)

for some predictable process φ, which can be easily calculated from this equation for
n = 1, ..., N .

Remark 2.3.4. The wealth process (Vn/φ)0≤n≤N of every portfolio φ, which finally pro-
duces the attainable claims VN (φ), is equal to the price process (q(Vn)n)0≤n≤N , which in
turn is a Q-martingale for each Q ∈ M a(S̃) if we discount with respect to S0. If the
portfolio is strictliy positive we can take as new unit of calculation and calculate prices
with respect to this portfolio. Certainly the prices should remain unchanged, since they
should not depend on the currency unit. For a discrete model of a financial market S

• the discounted processes (S1
n

S0
n
, ..., Sd

n
S0

n
)0≤n≤N have to satisfy the condition that there is

an equivalent martingale measure.
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2.3. NO ARBITRAGE THEORY FOR DISCRETE MODELS

• calculating the price of a claim X at time n amounts to calculating the conditional
expectation of the discounted claim XS0

n

S0
N

, discounted for time n. If one could dis-
count this price to time 0 one obtains that the discounted price process is again a
martingale.

• hence calculations are always done with respect to a numeraire and a discounting
procedure to some fixed time 0. This is economically obvious since one cannot com-
pare amounts of money at different times without taking care of the time changes in
value of the money

Definition 2.3.5. Let S be a discrete model of a financial market. A numeraire process
(Cn)0≤n≤N is a strictly positive, adapted stochastic process, which has the property that
there is a self-financing trading strategy φ such that Cn = Vn(φ) for 0 ≤ n ≤ N .

Theorem 2.3.5. Let S be a discrete model of a financial market and C a numeraire
process. If S is arbitrage-free, then also the market

SC
n = (1, S0

n
Cn
, S1

n
Cn
, ..., Sd

n
Cn

)

for n = 0, ..., N is arbitrage-free and we have

M e(SC , 1) =
{
QC |dQC

dP = 1
S0

N

CN
C0

dQ
dP for Q ∈ M e(S, S0)

}
Every pricing rule πC for contingent claims X is of the form

πC(X)n = EQ( Cn
CN

X|Fn)

for any Q ∈ M e(SC , 1) and the disounted processes with respect to the numeraires C are
martingales.

In the sequel we shall formulate most of the assertions with respect to a basis in
L2(Ω,F , P ). We shall assume (not a real restriction), that F = 2Ω and P (ωi) > 0 for
i = 1, ..., |Ω|. We choose (1{ω})ω∈Ω and identify L2(Ω,F , P ) with some R

|Ω|. Hence we
can apply our duality theory for cones.

Proposition 2.3.4. Let S be a discrete model of a financial market and assume M e(S̃) �=
∅. Then there are linearly independent measures Q1, ..., Qn such that

M a(S̃) = 〈Q1, ..., Qn〉convex,

the polar cone C0 equals

C0 =
〈

dQ1

dP , ..., dQn

dP

〉
cone

.

Furthermore the Qi have at least n− 1 zeros, where n equals the codimension of K .
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2.4. OPTIMIZATION

2.4 Optimization

2.4.1 First examples of optimization

Definition 2.4.1. A real valued function u : I → R is called utility function if I =
]0,∞[ or I =] −∞,∞[ and u is an increasing, strictly concave function. We shall denote
dom(u) := I and we define u(x) = −∞ for x /∈ dom(u). Furthermore we shall assume
that limx↓0 u(x) = −∞ if dom(u) =]0,∞[.

We consider a financial market (S0
n, ..., S

d
n)n=0,1 on (Ω,F , P ) with one period and aim

to solve the following optimization problem for a given utility function u : dom(u) → R

and x ∈ dom(u).

EP

(
u(

1
S0

1

V1(φ))
)

→ max,

V0(φ) = x,

where φ is running over all self-financing trading strategies. This leads to the following
one dimensional optimization problem

a �→ EP

(
u(x+ a(S̃1 − S̃0))

)
,

which can be solved by classical analysis. We see immediately that the existence of an
optimal strategy â(x) for a fixed x ∈ dom(u) leads to

EP

(
u′(x+ â(x)(S̃1 − S̃0))(S̃1 − S̃0)

)
= 0

This is in turn means that the vector can be normalized to a probability measure Q, i.e.

dQ
dP = 1

λu
′
(
x+ â(x)(S̃1 − S̃0)

)
which is a martingale measure since EQ(S̃1 − S̃0) = 0. Therefore the existence of an
optimizer leads to arbitrage-free markets.

2.4.2 Basic concepts of utility optimization

Given a financial market (S0
n, ..., S

d
n)n=0,1 on (Ω,F , P ) and a utility function u, then we

define the utility optimization problem as determination of U(x) for x ∈ dom(u), i.e.

sup
φ trading strategy

φ self-financing
V0(φ)=x

E

(
u(

1
S0

N

VN (φ))
)

=: U(x).

We say that the utility optimization problem at x ∈ dom(u) is solvable if U(x) is finitely
valued and if we find an optimal self financing trading strategy φ̃(x) for x ∈ dom(u) such
that

U(x) = E

(
u(

1
S0

N

VN (φ̃))
)
,

V0(φ̃(x)) = x.
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We assume that F = 2Ω and P (ω) > 0 for ω ∈ Ω. We then have three characteristic
dimensions: the dimension of all random variables |Ω| (the number of paths), then the
dimension of discounted outcomes at initial wealth 0, denoted by dim K , and the number
of martingale measures m. We have the basic relation

m+ dimK = |Ω|.

• the pedestrian method is an unconstraint extremal value problem in dim K vari-
ables.

• the Lagragian method yields an unconstraint extremal value problem in |Ω| + m
variables.

• the duality method (martingale approach) yields an unconstraint extremal value
problem in m variables. Additionally one has to transform the dual value function
to the original, which is a one dimensional extremal value problem.

In financial mathematics usually dim K � m, which means that the duality method is
of particular importance.

Pedestrian’s method

We can understand utility optimization as unrestricted optimisation problem. Define S
the vector space of all predictable strategies (φn)n=0,...,N , then the utility optimization
problem for x ∈ dom(u) is equivalent to solving the following problem

Fx :

{
S → R ∪ {−∞}
(φn)n=0,...,N �→ E

(
u(x+ (φ · S̃)N )

)
sup
φ∈S

Fx(φ) = U(x)

This is an ordinary extremal value problem for every x ∈ dom(u). We introduce a
basis on S, namely

(1A)A∈A (Fi−1)

is a basis for the i-th component of a predictable strategy. With respect to this basis we
can calculate gradients. Let (φ̂n)n=0,...,N be an optimal strategy, then necessarily

gradFx((φ̂n)n=0,...,N ) = 0

and therefore we can in principle calculate the optimal strategy. From this formulation
we take one fundamental conclusion.

Theorem 2.4.1. Let the utility optimization problem at x ∈ dom(u) be solvable and let
(φ̂n)n=0,...,N be an optimal strategy, so

supφ∈S Fx(φ) = U(x) = Fx(φ̂),
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then M e(S̃) �= ∅.
Remark 2.4.1. We shall always assume M e(S̃) �= ∅.
Proposition 2.4.1. Assume M e(S̃) �= ∅ and limx→∞ u′(x) = 0 if dom(u) = (R), then the
utility optimization problem for x ∈ dom(u) has a unique solution X̂(x) is C1 on dom(u).
If x /∈ dom(u), then supφ∈S Fx(φ) = −∞.

Duality methods

Since we have a dual relation between the set of martingale measures and the set K
of claims attainable at price 0, we can formulate the optimization problem as constraint
problem: for any X ∈ L2(Ω,F , P )

X ∈ K ⇐⇒ EQ(X) = 0

for Q ∈ M a(S̃) and for any probability measure Q

Q ∈ M a(S̃) ⇐⇒ EQ(X) = 0

for all X ∈ K . Therefore we can formulate the problem as constraint optimization
problem and apply the method of Langrangian multipliers. First we define a function
H : L2(Ω,F , P ) −→ R via

H(X) := EP (u(X))

for a utility function u. For x ∈ dom(u) we can formulate the constraints

Ux := K + x =
{
X ∈ L2(Ω,F , P ) such that EQ(X) = x for Q ∈ M a(S̃)

}
.

Consequently the utility optimization problem reads

supX∈Ux
EP (u(X)) = U(x)

for x ∈ dom(u). Hence we can treat the problem by Langragian multipliers, i.e. if X̂ ∈ Ux

is an optimizer, then

(LM) u′(X̂) −
m∑

i=1

η̂i
dQi

dP
= 0

EQi(X̂) = 0

for i = 1, ...,m,M a(S̃) = 〈Qi, ..., Qm〉 and some values η̂i. This result is obtained by
taking the gradient of the function

X �→ EP (u(X)) −∑m
i=1 η̂i(dQi

dP X− x))

with respect to some basis. We can choose η̂i positive, since u′(X̂) represents a positive
multiple of an equivalent martingale measure. With assumption u′(x) > 0 for all x ∈
dom(u), and u′(X̂) is finitely valued.
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Lemma 2.4.1. If (X̂, η̂1, ..., η̂m) is a solution of the Langragian multiplier equation (LM),
then the multipliers η̂i > 0 are uniquely determined and

∑m
i=1 η̂i > 0. Given x ∈ dom(u),

the map x �→ (η̂i(x))i=1,...,m is C1.

The Lagrangian L̃ is given through

L̃(X, η1, ..., ηm) = EP (u(X)) −∑m
i=1 ηi(EQi(X) − x)

for X ∈ L2(Ω,F , P ) and ηi ≥ 0. We introduce y := η1 + ... + ηm and µi := ηi

y (we can
assume y > 0 since the value for ηi we are looking for has to satisfy y > 0). Therefore

L(X, y,Q) = EP (u(X)) − y(EQ(X) − x)

for X ∈ L2(Ω,F , P ), Q ∈ M a(S̃) and y > 0. We define

Φ(X) := inf
y>0,Q∈M a(S̃)

L(X, y,Q)

for X ∈ L2(Ω,F , P ) and

ψ(y,Q) = supX∈L2(Ω,F ,P ) L(X, y,Q)

for y > 0 and Q ∈ M a(S̃). We can hope for

supX∈L2(Ω,F ,P ) Φ(X) = infy>0 inf
Q∈M a(S̃)

ψ(y,Q) = U(x).

by a mini-max consideration.

Lemma 2.4.2. Let u be a utility function and (S0
n, S

1
n, ..., S

d
n)n=0,...,N be a financial market,

which is arbitrage-free, then

supX∈L2(Ω,F ,P ) Φ(X) = U(x).

For the application of the minimax theorem we need to calculate ψ.

Lemma 2.4.3. Given an arbitrage-free financial market (S0, ..., Sd), the function

ψ(y,Q) = supX∈L2(Ω,F ,P ) L(X, y,Q)

can be expressed by the conjugate function v of u,

ψ(y,Q) = EP (v(y dQ
dP )) + yx.

Definition 2.4.2. Given the above setting we call the optimization problem

V (y) := inf
Q∈M a(S̃)

EP (v(y dQ
dP ))

the dual problem and V the dual value function for y > 0.

Lemma 2.4.4. Let u be a utility function under the above assumptions and assume
M a(S̃) �= ∅, then there is a unique optimizer Q̂(y) such that
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V (y) = inf
Q∈M a(S̃)

EP (v(y dQ
dP )) = EP (v(y dQ̂(y)

dP )).

Furthermore

infy>0(V (y) + xy) = inf
y>0,Q∈M a(S̃)

EP (v(y dQ
dP ) + xy).

Theorem 2.4.2. Let (S0, ..., Sd) be an arbitrage-free market and u a utility function with
the above properties, then

U(x) = inf
y>0,Q∈M a(S̃)

EP (v(y dQ
dP ) + xy)

and the mini-max assertion holds.

This theorem enables us to formulate the following duality relation. Given a utility
optimization problem for x ∈ dom(u)

supY ∈K EP (u(x+ Y )) = U(x),

then we can associate a dual problem, namely

inf
Q∈M a(S̃)

EP (v(y dQ
dP )) = V (y)

for y > 0. The main assertion of the minimax considerations is that

infy>0(V (y) + xy) = U(x),

so the concave conjugate of V is U and since V shares the same regularity as U , also U
is the convex conjugate of V . First we solve the dual problem (which is much easier) and
obtain y �→ Q̂(y). For given x ∈ dom(u) we can calculate ŷ(x) and obtain

V (ŷ(x)) + xŷ(x) = U(x)

u′(X̂(x)) = ŷ(x)
dQ̂(ŷ(x))

dP
.
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Chapter 3

Continuous Time Models

3.1 From discrete to continuous time

The next step is the intuition from discrete models for the pricing and hedging of contin-
gent claims in continuous time models. Brownian motion plays a very important role in
continuous time models.

Definition 3.1.1. Let (Ω,F , P ) be a probability space and (Ft)t≥0 a filtration of σ-
algebras which satisfies the usual conditions, i.e.

• the σ-algebra Ft contains all P-nullsets

• right continuity holds,
⋂

t>s Ft = Fs for s ≥ 0.

Brownian motion then is a stochastic process (Bt)t≥0 such that

• Bt is Ft-measurable for t ≥ 0 (the process is adapted to the filtration).

• Bt −Bs is independent of Fs for t ≥ s ≥ 0.

• Bt −Bs is normally distributed N(0, t− s) for t ≥ s ≥ 0.

• B0 = 0.

Furthermore we assume that the paths of Brownian motion are continuous, i.e. for all
ω ∈ Ω the curve

t �→ Bt(ω)

is continuous. The same definition can be done on [0, T ] and yields to a Brownian motion
on [0, T ].

Lemma 3.1.1. Let (Bt)t≥0 be a Brownian motion on (Ω,F , P ), then

1. Brownian motion is a martingale, i.e. E(Bt|Fs) = Bs for t ≥ s.

2. the random variables Bt1 , Bt2 − Bt1 , ..., Btn − Btn−1 are independent for 0 ≤ t1 ≤
t2 ≤ ... ≤ tn and n ≥ 1.
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Now the basic definition of a financial market with finite time horizon T > 0, such
that second moments exist and interest rates are constant.

Definition 3.1.2. Let (Ω,FT , P ) be a probability space and (Ft)0≤t≤T a filtration of σ-
algebras which satisfies the usual conditions. A financial market is given by a bank account
process S0

t = exp(rt), where r ≥ 0 and 0 ≤ t ≤ T denotes the interest rate and an adapted
process (S1

t )0≤t≤T with continuos paths. We assume that S1
t ∈ L2(Ω,FT , P ) and S0 > 0 is

a constant. A simple portfolio (ψt, φt)0≤t≤T is given by stochastic processes (ψt, φt)0≤t≤T

such that there is 0 = t0 < t1 < t2 < ... < tn and Fi, Gi ∈ L∞(Ω,Ft, P ) for i = 0, ..., n− 1
such that

ψt =
n−1∑
i=0

Gi1]ti,ti+1](t),

φt =
n−1∑
i=0

Fi1]ti,ti+1](t),

where ψ0 = G0 and φ0 = F0 by definition. The value process is given by

Vt(ψ, φ) = ψtS
0
t + φtS

1
t

for 0 ≤ t ≤ T . The discounted value process is given by

Ṽt(ψ, φ) = ψt + φtS̃
1
t

with S̃1
t = exp(−rt)S1

t for 0 ≤ t ≤ T . A simple portfolio is called self-financing if for
i = 0, ..., n− 1 we have

ψtiS
0
ti + φtiS

1
ti = ψti+1S

0
ti+1

+ φti+1S
1
ti+1

.

We denote by K the space of all discounted outcomes at initial investment 0.

Lemma 3.1.2. Given a financial market, then for every self-financing portfolio (ψt, φt)0≤t≤T

we obtain

Ṽt(ψ, φ) = V0(ψ, φ) +
∑n−1

i=0 φti(S̃
1
ti+1∧t − S̃1

ti∧t) = V0(ψ, φ) + (φ · S̃)t,

hence

K =
{

(φ · S̃)t for φ a simple, self-financing trading strategy
}

Condition 3.1.1. We shall assume that the L2-closure of K can be described by

K =
{
X ∈ L2

≥0(Ω,FT , P ) such that EQ(X) = 0
}

for some equivalent measure Q ∼ P . We call this market complete.

Lemma 3.1.3. Given a complete financial market, the measure Q is the unique absolutely
continuous martingale measure for the process (S̃1

t )0≤t≤T . Furthermore

K ∩ L2
≥0(Ω,FT , P ) = {0}.
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3.1. FROM DISCRETE TO CONTINUOUS TIME

Now the first main example of a continuous time model, known as Bachelier model.
We assume zero interest rates r = 0 (for equally that the discounted price process equals
SB

t ). Let (Bt)0≤t≤T be a Brownian motion on (Ω,FT , P ) and let S0 > 0 and σ > 0 be
constants, then

SB
t := S0(1 + σBt)

for 0 ≤ t ≤ T

Theorem 3.1.1. For the Bachelier model we have K =
{
X ∈ L2(Ω,FT , P ) such that

EP (X) = 0}, so in particular (SB
t )0≤t≤T is a martingale.

Given a derivative Y ∈ L2(Ω,FT , P ), we know from finite dimensional theory that
the only arbitrage-free prices are given through

E(Y |Ft) = π(Y )t

for 0 ≤ t ≤ T . In the Bachelier framework this can be easily calculated, which is the
”main advantage” of continuous time models.

Theorem 3.1.2. Let S0, σ > 0 be given, then the price of a European call with strike price
K > 0 and maturity T at time t = 0 is given through

C(S0, T,K) = (S0 −K)Φ( S0−K
S0σ

√
T

) + S0σ
√
Tφ( S0−K

S0σ
√

T
)

with

φ(x) =
1√
2π

exp(−x
2

2
),

Φ(x) =
∫ x

−∞
φ(x)dx.

The second important example is the Black-Scholes model. Given µ ≥ 0 and S0, σ > 0,
then

SBS
t := S0 exp(µt− σ2

2 t+ σBt)

for 0 ≤ t ≤ T . The process is adapted and has continuous paths. Furthermore it is a
martingale with respect to the following measure.

Proposition 3.1.1. Given the Black-Scholes model SBS on [0, T ], the measure Q on
(Ω,FT , P ) by

dQ
dP = exp(−µ

σBT − µ2

2σ2T )

is an equivalent martingale measure for SBS.

Theorem 3.1.3. For the Black-Scholes model we have K =
{
X ∈ L2(Ω,FT , P ) such

that EQT
(X) = 0}, so in particular (SBS

t )0≤t≤T is a QT -martingale.
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3.1. FROM DISCRETE TO CONTINUOUS TIME

Theorem 3.1.4. Given the Black-Scholes model (SBS
t )0≤t≤T , a maturity time T0 ≤ T and

a strike price K ≥ 0, the unique price of the European call (ST0 − K)+ without interest
rates is given through

C(S0,K, T0) = S0Φ( ln
S0
K

+ 1
2
σ2T0

σ
√

T0
) −KΦ( ln

S0
K

+ 1
2
σ2T0

σ
√

T0
).

Through replacement from the strike K with the discounted value Ke−rT0, we get the price
with interest rate r

C(S0,K, T0) = S0Φ( ln
S0
K

+( 1
2
σ2+r)T0

σ
√

T0
) − e−rT0KΦ( ln

S0
K

+( 1
2
σ2+r)T0

σ
√

T0
).

Theorem 3.1.5. Let t ≥ 0 be a fixed point in time and (Bs)s≥0 a Brownian motion, then

limn→∞
∑2n−1

i=0 (B t(i+1)
2n

−B ti
2n

)2 = t

almost surely.

Now we turn to the construction of the Ito-Integral. Given a standard Brownian
motion (Bt)t≥0 on R

d. We denote by L2(R≥0 × Ω,Fp, dt⊗ P ) the set of all progressively
measurable processes, i.e. the set of

φ : R≥0 × Ω → R,

which are measurable with respect to the σ-algebra Fp, i.e. the σ-algebra generated by
B([0, t]) ⊗ Ft for t ≥ 0 and square-integrable. These all such that the restriction φ1[0,t]

lies in L2([0, t] × Ω,B([0, t]) ⊗ Fp, dt⊗ P ) and

E(
∫∞
0 φ(s)2ds) =

∫
Ω

∫∞
0 φ(s, ω)2dsP (dω) <∞.

The subspace of simple predictable processes, i.e.

u(t) =
∑n−1

i=0 Fi1]ti,ti+1
(t)

with Fi a Fti-measurable and E(F 2
i ) <∞ (hence Fi ∈ L2(Ω,Fti , P ), n ≥ 0) and 0 = t0 ≤

t1 ≤ ... ≤ tn, is denoted by E . On E we define the Ito-Integral by

I(u) =
∫∞
0 u(t)dBt :=

∑n−1
i=0 Fi(Bti+1 −Bti)

Theorem 3.1.6. The mapping I : E → L2(Ω,F , P ) is a well defined isometry and
E(I(u)) = 0 for all u ∈ E , i.e.

E(I(u)I(v)) = E(
∫∞
0 u(t)v(t)dt).

Definition 3.1.3. The closure of E in L2(R≥0 × Ω,Fp, dt ⊗ P ) is denoted by L2(B).
The unique continuous extension I : L2(B) → L2(Ω) is called the stochastic integral with
respect to Brownian motion or the Ito integral, we denote∫∞

0 u(t)dBt := I(u).
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3.1. FROM DISCRETE TO CONTINUOUS TIME

In particular we have for all u, v ∈ L2(B)

E(
∫ ∞

0
u(t)dBt) = 0

E(
∫ ∞

0
u(t)dBt

∫ ∞

0
v(t)dBt) = E(

∫ ∞

0
u(t)v(t)dBt)

The definite integral is defined in the following way∫ t
0 u(s)dBs :=

∫ t
0 u(s)1[0,t](s)dBs

for t ≥ 0, which is well defined since the processes u are progressively measurable.

Theorem 3.1.7. The vector space E is dense in L2(R≥0 × Ω,Fp, dt⊗ P ).

Corollar 3.1.1. The process Mt :=
∫ t
0 u(s)dBs has a version with continuous paths.

Remark 3.1.1. All simple processes u ∈ E are progressively measurable by definition.
Given u ∈ L2(R≥0 × Ω,Fp, dt ⊗ P ) with continuous paths, then we can approximate the
process (us1[0,t])s≥0 by elements in E of the form

un
s :=

∑2n−1
i=0 u ti

2n
1
] ti
2n ,

t(i+1)
2n ]

(s),

which have the property

un
s → us

surely by continuity and un → u1[0,t] in L2(R≥0×Ω,Fp, dt⊗P ) by dominated convergence.
Therefore we can calculate the Ito integral for processes with continuous paths by

limn→∞
∫ t
0 u

n
s dBs = limn→∞

∑2n−1
i=0 u ti

2n
(B t(i+1)

2n
−B ti

2n
).

Theorem 3.1.8. Let f ∈ C2
b ([0, T ] × R,R) (bounded with bounded derivatives) be given.

Suppose u, v ∈ L2(R≥0 × Ω,Fp, dt⊗ P ). Let X be the continuous process

Xt := X0 +
∫ t
0 u(s)dBs +

∫ t
0 v(s)ds,

then

f(t,Xt) = f(0,X0) +
∫ t
0

∂
∂xf(s,Xs)ds+

∫ t
0

∂
∂xf(s,Xs)u(s)dBs +

∫ t
0

∂
∂xf(s,Xs)v(s)ds+

1
2

∫ t
0

∂2

∂x2 f(s,Xs)u2(s)ds.

In short notation this is written as,

dXt := u(t)dBt + v(t)dBt,

df(t,Xt) =
∂

∂x
f(t,Xt)dt+

∂

∂x
f(t,Xt)dXt +

1
2
∂2

∂x2
f(t,Xt)dt,

where the process is given through d 〈X〉t := u2(t)dt.
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3.2. BACHELIER HEDGING

3.2 Bachelier Hedging

In order to come up with a Hedging formula we need to redefine our model. From now on
we call - given a Brownian motion (Bt)0≤t≤T - the (discounted) price process

St = S0 + σBBt,

dSt = σBdBt

for 0 ≤ t ≤ T , where we call σB the absolute Bachelier volatility. We can calculate - by
the previous methods - the price of a European Call Option in this model

CB(S0, T ) := E((ST −K)+)

=
∫ ∞

K−S0
σB

√
T

(S0 + σ
√
Tx−K)φ(x)dx

= (S0 −K)Φ(
S0 −K

σB
√
T

) + σB
√
Tφ(

S0 −K

σB
√
T

).

By simple differentiation we check that

∂
∂T C

B(S0, T ) = (σB)2

2
∂2

∂S2
0
CB(S0, T )

for T > 0 and S0 ∈ R. Ito’s Formula for the stochastic process (CB(St, T − t))0≤t≤T then
yields the following result:

CB(ST , 0) = CB(S0, T ) −
∫ T

0

∂

∂T
CB(St, T − t)dt

+
∫ T

0

∂

∂S0
CB(St, T − t)dSt

+
1
2

∫ T

0

(σB)2

2
∂2

∂S2
0

CB(St, T − t)dt

= CB(S0, T ) +
∫ T

0

∂

∂S0
CB(St, T − t)dSt.

Consequently we can build a self-financing portfolio at initial wealth CB(S0, T ), which
replicates the European Call Contract.

3.3 Black-Scholes Hedging

We take a Black-Scholes model with volatility σ > 0, drift µ and today’s price S0,

St = S0 exp(µt− σ2

2 t+ σBt)

for 0 ≤ t ≤ T . Furthermore we assume an interest rate r ≥ 0, we obtain the discounted
price process

S̃t = S0 exp(µt− rt− σ2

2
t+ σBt),

dS̃t = S̃t(µ− r)dt+ S̃tσdBt.

We calculate - like in the Bachelier model - the price of a European Call Option, hence
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3.3. BLACK-SCHOLES HEDGING

C(S0, T, r) = S0Φ( ln
S0
K

+( 1
2
σ2+r)T

σ
√

T
) − e−rT0KΦ( ln

S0
K

−( 1
2
σ2−r)T

σ
√

T
).

As before we see that for T > 0 and S0 > 0,

∂
∂T C(S0, T, r) = σ2S2

0
2

∂2

∂S2
0
CB(S0, T, r).

In order to calculate the Hedging Portfolio, we apply Ito’s Formula to the process (C(S̃t, T−
t))0≤t≤T ,

C(ST , 0, r) = C(S0, T, r) −
∫ T

0

∂

∂T
C(S̃t, T − t, r)dt

+
∫ T

0

∂

∂S0
C(S̃t, T − t, r)dS̃t

+
1
2

∫ T

0

σ2S2
t

2
∂2

∂S2
0

C(S̃t, T − t, S̃t)dt

= CB(S0, T ) +
∫ T

0

∂

∂S0
C(S̃t, T − t)dS̃t.
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Chapter 4

Stochastic Preliminaries

This chapter is meant to recall the basic ideas and definitions of stochastic processes (in
particular martingales, filtrations,...) which are needed for better understanding of the
following chapters. The most is taken from [Teichmann] and [Wertz].

4.1 Stochastic Processes

Ω is a finite, non-empty set. A subset F ⊂ 2Ω of the power set is called a σ - algebra if
it is closed under countable unions, closed under taking complements and contains Ω. A
probability measure is a map

P : F → R

such that

• for all mutually disjoint sequences (An)n≥0 ∈ F we have P (
⋃

n≥0An) =
∑

n≥0 P (An).

• P (Ω) = 1.

The set of all probability measures on (Ω,F ) is R(Ω). For a probability space
(Ω,F , P ) we shall always assume that F is complete with respect to P , i.e. for ev-
ery set B ⊂ Ω, such that B ⊂ A with A ∈ F and P (A) = 0, we have B ∈ F . Such sets
are called P-nullsets. The P-completeness assumption allows to deal with maps, which are
defined up to sets of probability 0. A random variable X : (Ω,F ) → R is a measurable
map, i.e. the inverse image of Borel measurable sets is measurable in F . The set of mea-
surable maps is denoted by L0(Ω,F , P ), a measurable map takes constant values on each
atom of the measurable space (X(A) for A an atom in F ). Given a set M ⊂ 2Ω, there
is a smallest σ-algebra containing M denoted by σ(M). If the set M is given as inverse
image of Borel subsets from R via a map X : Ω → R, then we write for the σ-algebra
σ(X). This is the smallest σ-algebra such that X is measurable X : (Ω, σ(X)) → R. On

Lp(Ω,F , P ) =
{
X ∈ L0 such that E(|X|p) <∞}

we consider Lp − convergence due to Xn → X if E(|Xn −X|p) → 0 as n → ∞ for each
p ≥ 1, which coincides with L0 on finite probability spaces. L2((Ω,F , P )) is an euclidean
vector space with scalar product
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4.2. FILTRATIONS, STOPPING TIMES, ADAPTED PROCESSES AND
MARTINGALES

〈X,Y 〉 = E(XY )

for X,Y ∈ L2(Ω,F , P ) and L∞(Ω,F , P ) is the set of bounded random variables with
the supremum norm, which is equal to L0. A sequence (Xn)n≥0 is said to converge P −
almost surely to X if Xn → X outside a null set as n→ ∞.

Lemma 4.1.1. Let (Ω,F , P ) be a probability space and H ⊂ G ⊂ F be subalgebras, then

• for all X ∈ L1(Ω,F , P ) we have E(X|G ) = X.

• the conditional expectation E(.|G ) is a linear map on Lp(Ω,F , P ) and an orthogonal
projection as map from L2(Ω,F , P ) to L2(Ω,F , P ).

• the conditional expectation is a positive map, i.e. E(X|G ) ≥ 0 if X ≥ 0.

• the tower law holds, E(E(X|G )|H ) = E(X|H ) for all X ∈ L1(Ω,F , P ).

• Jensen’s inequality holds, i.e. for convex φ : R → R we have φ(E(X|G )) ≤ E(φ(X)|G )
for X ∈ L1(Ω,F , P ).

• for all Z ∈ L1(Ω,G , P ) we have

E(ZX|G ) = ZE(X|G )

X ∈ L1(Ω,F , P ).

• IF X is independent of G then E(X|G ) = E(X).

• Let X,Y ∈ L1(Ω,F , P ) be given and take σ-algebras G1,G2 ⊂ F . Assume A ∈
G1 ∩ G2 such that X = Y on A and A ∩ G1 = A ∩ G2 (in this case the σ-algebras
G1,G2 are called locally on A equal σ-algebras). Then E(X|G1) = E(Y |G2) on A.

• We denote the atoms of G by A(G ), then we have

E(X|G ) =
∑

A∈A (G ),P (A) �=0
E(1AX)
P (A) 1A.

Consequently the conditional expectation is well-defined up to sets of probability 0.

4.2 Filtrations, Stopping Times, Adapted Processes and Mar-
tingales

A filtration on (Ω,F , P ) is a finite sequence of σ-algebras F0 ⊂ F1 ⊂ · · · ⊂ FN ⊂ 2Ω,
where F = FN for N ≥ 1. Filtrations represent increasing degrees of information on
probability space.

• A stochastic process on (Ω,F , P ) is a sequence of R
d-valued random variables

(Xn)0≤n≤N .

• A stochastic process (Xn)0≤n≤N is called adapted to a filtration (Fn)0≤n≤N if Xn

is Fn-measurable for 0 ≤ n ≤ N . In this case we shall often speak of an adapted
process if there is no doubt about the filtration.
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• A stochastic process (Hn)0≤n≤N is called predictable if H0 is constant and Hn is
Fn−1-measurable for 1 ≤ n ≤ N . A predictable process is certainly adapted.

• Let (Hn)0≤n≤N , (Xn)0≤n≤N be stochastic processes, then the Riemannian sum for
0 ≤ n ≤ N is

(H ·X)n :=
∑n

i=1Hi(Xi −Xi−1).

(H ·X)n = HNXN −H0X0 − (X∗−1 ·H)n,

where (X∗−1)n := Xn−1 for 1 ≤ n ≤ N and (X∗−1)0 = X0.

Definition 4.2.1. Let (Ω,F , P ) be a probability space and (Fn)0≤n≤N a filtration, then
a sequence of R

d-valued random variables (Mn)0≤n≤N is called a martingale if

E(Mn|Fm) = Mm

for 0 ≤ m ≤ n ≤ N . The sequence is called a submartingale (supermartingale) if
E(Mn|Fm) ≥Mm(E(Mn|Fm) ≤Mm respectively) for 0 ≤ m ≤ n ≤ N .

Definition 4.2.2. Let (Ω,F , P ) be a probability space and (Fn)0≤n≤N a filtration, then
a random variable τ : Ω → N≥0 is called a stopping time if

{τ ≤ n} ∈ Fn

for 0 ≤ n ≤ N . Let M be an adapted process and τ a stopping time with τ ≤ N almost
surely, then

Mτ (ω) := Mτ(ω)(ω)

for ω ∈ Ω. The stopped process M τ is defined for any stopping time τ

M τ
n := Mτ∧n

for 0 ≤ n ≤ N . The stopped σ-algebra

Fτ := {A ∈ F such that A ∩ {τ ≤ n} ∈ Fn for 0 ≤ n ≤ N}

contains all informations from the stopping time τ .

Important examples of stopping times are hitting times τX
B of a set B ∈ B by a

stochastic process X:

τX
B = inf {t ≥ 0 : Xt ∈ B}.

Lemma 4.2.1. Let τ, η, η1, η2, ... be stopping times, then

•
∑k

i=1 ηk, inf ηi, sup ηi, lim sup ηi, lim inf ηi are stopping times.

• If τ ≤ η bounded by N, then Fτ ⊂ Fη and the sets {τ ≤ η} and {η ≤ τ} lie in
Fτ∧η = Fτ ∩ Fη.
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• If τ, η bounded by N, then {τ ≤ η} ∩ Fτ ⊂ Fτ∧η.

• If τ bounded by N, then Fτ = Fn on {τ = n}, i.e. {τ = n} ∩ Fτ = {τ = n} ∩ Fn.

• Let τ be bounded by N. If A ∈ Fτ , then τA = τ1A +N1Ac is a stopping time.

• Given an adapted sequence of random variables M and τ, η stopping times bounded
by N, Mτ is Fτ -measurable and E(Mτ |Fn) is Fτ∧η-measurable.

Theorem 4.2.1 (Doob’s optional sampling). Let (Ω,F , P ) be a finite probability space
and (Fn)n≤n≤N a filtration. Let (Mn)n≤n≤N be an adapted process.

1. If M is a martingale, then for every predictable process (Hn)n≤n≤N the stochastic
integral (H ·M) is a martingale. In particular E((H ·M)N ) = 0.

2. If the stochastic integral (H ·M) satifies

E((H ·M)N ) = 0

for every predictable process H, then M is a martingale.

3. If for all stopping times τ ≤ N

E(Mτ ) = E(M0)

holds, then M is a martingale, and if M is a martingale, then

E(Mτ ) = E(M0).

4. If M is a martingale, then for all stopping times τ ≤ η ≤ N almost surely we have

E(Mτ |Fη) = Mη.

More generally we have that for any two stopping times τ, η ≤ N

E(Mτ |Fη) = Mτ∧η.

A equivalent measure QP̃ is a measure such that for all A ∈ F , P (A) = 0 if and only
if Q(A) = 0. Given any measure Q on Ω the Radon-Nikodym derivative dQ

dP is a random
variable, such that for all Z ∈ L0(Ω,F , P ),

EQ(Z) = EP (Z dQ
dP ).

dQ
dP (A) = Q(A)

P (A)

for all atoms A ∈ A (F ) with P (A) > 0. A measure Q is called absolutely continuous with
respect to P if for all A ∈ F with P (A) = 0, Q(A) = 0. In the generic case of P (ωi) > 0
for all i = 1, ..., |Ω| every measure Q is absolutely continuous with respect to P .

Lemma 4.2.2 (change of measure). Let (Ω,F , P ) be a probability space with filtration
(Fn)0≤n≤N and Q be an equivalent probability measure such that
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dQ
dP = X

for some X ∈ L1(Ω,F , P ). Then Q|Fn are equivalent probability measures on (Ω,Fn, P |Fn)
for n = 0, ..., N and

dQn

dPn
=: Xn

is a P-martingale. Here Pn denotes the restriction of P to Fn. Furthermore

EP (X|Fn) = Xn

and

EQ(Y |Fn) = 1
Xn

EP (Y X|Fn)

for all Y ∈ L1(Ω,F , Q). In particular Xn > 0 almost surely with respect to P .

Let M be an adapted process, then the set of measures Q equivalent to P such that M
is a Q-martingale by M e(M). The set of measures Q absolutely continuous with respect
to P such that M is a Q-martingale is denoted by M a(M). The set M a(M) is always a
closed set and it is the convex hull of linearly independent measures Q1, ..., Qm, since it is
polygonal as intersection of hyperlanes. If M a(M) contains mare than one element, the
measures Qi are not equivalent to the measure P if P (ωi) > 0 for i = 1, ..., |Ω|.
Lemma 4.2.3. Let M be a d-dimensional adapted process with M e(M) �= ∅, then for
any Q ∈ M a(M) and A ∈ Fk, we can define a probability measure QA on (A,Fk) for
Q(A) �= 0 via

QA(B) = Q(B)
Q(A)

for B ∈ FA = {b ∈ F , B ⊂ A}. The process MA := (Mn|A)n=k,...,N is a QA-martingale
with respect to the filtration (FA

k ). Given a martingale measure R on (Ω,Fk) for Mk :=
(Mn)n=0,...,k and SA martingale measure for MA for every A ∈ A (Fk), the probability
measure

QR,(SA)(B) =
∑

A∈A (Fk)R(A)SA(B ∩A)

is a martingale measure for M.

Corollar 4.2.1. Let M be a d-dimensional adapted process with M e(M) �= ∅, then for
0 ≤ k ≤ N and A ∈ A (Fk)

M a(MA) =
{
QA for Q ∈ M a(M)}

and

M a(Mk) = {Qk for Q ∈ M a(M)}.
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Chapter 5

Monte Carlo Valuation

5.1 Basics

The Monte Carlo method is based on the law of large numbers. We consider a random
variable with law µ(dx) and we generate a sequence of independent trials, X1, ..., Xn, ...
with common distribution µ. Applying the law of large numbers, we can assert that if f
is a µ-integrable function, i.e. the integral

∫
f(x)µ(dx) exists,

lim
N→∞

1
N

∑
1≤n≤N

f(Xn) =
∫
f(x)µ(dx).

• Strong law of Large Numbers: This law shows that the mean of f(Xi) for a
large sample converges to the expected value of f under an integrability condition.
If Xi are i.i.d. (independent and identically distributed) and if

∫
R
f(x)µ(dx) < ∞

then
1
N

N∑
i=1

f(Xi)
a.s.−→

∫
R

f(x)µ(dx)

• Central Limit Theorem: We note for d = 1,
∫
f(x)µ(dx) = m and

var(f) =
∫

R
(f −m)2µ(dx) <∞ we have

1√
var(f)

1√
N

N∑
i=1

(f(Xi) −m) in distribution−→ N (0, 1)

for N → ∞.
1
N

N∑
i=1

(f(Xi) −m) ≈ N (0,
1
N

var(f)).

5.2 Overview of Monte Carlo Simulation in finance

5.2.1 Stochastic differential equations

A stochastic differential equation (SDE) with general drift and volatility terms has the
form

dSt = a(S, t)dt+ b(S, t)dWt,
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5.2. OVERVIEW OF MONTE CARLO SIMULATION IN FINANCE

which is simply a shorthand for the more formal integral equation

St = S0 +
∫ t

0
a(St′ , t

′)dt′ +
∫ t

0
b(St′ , t

′)dWt′ .

The stochastic term b(St, t)dWt models the uncertain, unpredictable events which influence
asset price, interest rates, exchange rates and other financial variables. Monte Carlo
simulation estimates the expectation E [f(ST )] by simulationg a finite number of future
paths, and averaging over that finite set.
The scalar SDE which underlies the Black-Scholes model is geometric Brownian motion

dSt = rSdt+ σSdWt,

where r is the constant risk-free interest rate and σ is a constant volatility. Using Itô
calculus, the corresponding SDE for X ≡ logS is

dXt = (r − 1
2
σ2)dt+ σdWt,

which may be integrated subject to initial conditions X(0) = X0 = logS0 to give

Xt = X0 + (r − 1
2
σ2)T + σWT ,

and hence

ST = S0 exp
(

(r − 1
2
σ2)T + σWT

)
.

Performing a change of variables, the expected value of some financial payoff P = f(ST )
can be expressed as

V ≡ E [f(ST )] =
∫
f(S)ps(S)dS,

where

ps(S) =
(
∂S

∂W

)−1

pw =
1

Sσ
√

2πT
exp

⎛⎝−1
2

(
log(S/S0) − (r − 1

2σ
2)T

σ
√
T

)2
⎞⎠

is the log-normal probability density function for ST .

5.2.2 Monte Carlo sampling and numerical solution of SDEs

The Monte Carlo estimate for the same case of geometric Brownian motion is

V̂ = M−1
∑
m

f(S(m)),

where

S(m) = S0 exp
(

(r − 1
2
σ2)T + σW (m)

)
,

with the M values W (m) being independent samples from the probability distribution for
WT . The expected value for the Monte Carlo estimate V̂ is equal to the true expected
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value V . Because the samples are independent, the variance of the estimate is equal to
M−1

V [f(ST )], where V [f(ST )] is the variance of a single sample. Thus the root-mean-
square sampling error is proportional to M−1/2.
In the general case in which the SDE can not be explicitly integrated, the time interval
[0, T ] is split into N timesteps of size h = T/N , and S(j) is replaced by the approximation
Ŝ

(j)
N , the value at the end of the N th timestep in a numerical approximation of the SDE.

The simplest approximation is the Euler discretisation,

Ŝn+1 = Ŝn + a(Ŝn, tn)h+ b(Ŝn, tn)∆Wn

in which the Brownian increments ∆Wn are all independent Normal variables with zero
mean and variance h. Each path involves N random inputs Wn, to produce the one
random output ŜN .

5.2.3 Evaluating sensitivities

If V (θ) represents the expected value of the payoff f(ST ) for a particular value of one of
the input paramters (e.g. S0, r or σ in the case of geometric Brownian motion) then for
the purposes of hedging and risk analysis one often wants to evaluate ∂V/∂θ and ∂2V/∂2θ.
The simplest approach is to use a finite difference approximation,

∂V

∂θ
≈ V (θ + ∆θ) − V (θ − ∆θ)

2∆θ
,

∂2V

∂2θ
≈ V (θ + ∆θ) − 2V (θ) + V (θ − ∆θ)

(∆θ)2
.

The drawback is, that it is computationally expensive. Since we divide by a small quantity
2∆θ the error can increase, so care must be taken in the choice of ∆θ. In the case of a
scalar SDE for which one can compute a terminal probability distribution, the second
approach, the Likelihood Ratio Method (LRM), obtains

∂V

∂θ
=

∫
f(S)

∂pS

∂θ
dS =

∫
f(S)

∂(log pS)
∂θ

pSdS,

where pS is known. That it does not require the differentiation of f(S) is the great advan-
tage. Second derivatives can also be computed using the LRM approach. Differentiating
twice leads to

∂2V

∂θ2
=

∫
f(S)

∂2pS

∂θ2
dS,

where the so-called ”score” g is defined as

g = p−1
s

∂2ps

∂θ2
=
∂2 log ps

∂θ2
+
(
∂ log ps

∂θ

)2

.

In the same case of a scalar SDE with a terminal probability distribution, the third ap-
proach of pathwise sensitivities gives

∂V

∂θ
=

∫
∂f

∂S

∂ST

∂θ
pwdW = E

[
∂f

∂S

∂ST

∂θ

]
,
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with the partial derivative ∂ST /∂θ being evaluated at fixed W . It yields to

∂Ŝn+1

∂θ
=

(
1 +

∂a

∂S
h+

∂b

∂S
∆Wn

)
∂Ŝn

∂θ
+
∂a

∂θ
h+

∂b

∂θ
∆Wn.

Solving this gives ∂ŜN/∂θ from which we get the Monte Carlo estimate for the first order
sensitivity as the average of the sensitivity of M independent paths,

∂V̂

∂θ
= M−1

∑
m

∂f

∂S
(Ŝ(m)

N )
∂Ŝ

(M)
N

∂θ
.

The second order is easily obtained by differentiating a second time.
The key limitation of the pathwise sensitivity approach is the differentiability required of
the drift and volatility functions, and the payoff function f(S). If the payoff function is
suitable, then the pathwise sensitivity estimator has a much lower variance than the LRM
estimator, and so it is computationally more efficient.
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Chapter 6

American Options

6.1 Basic information on American options

We consider discrete time, i.e. t = 0, ..., T with T ∈ N, T ≥ 0, T = {0, ..., T}.
We have a model (Ω,F ,F, P ),F = (Ft)t∈T,F0 = {∅,Ω}, for a financial market with
primary securities Si = (Si

t)t∈T, i = 1, ..., d. We suppose that there exist a numeraire pair
(N,QN ), which ensures that the primary securities are free of arbitrage. We also assume
that the model is complete.
A European contingent claim with maturity T is a non-negative random variable XT ,
which is FT -measurable. In cases of practical relevance, XT = F (Si

u, u ≤ T, i = 1, ..., d).
Let X = (Xt)t≤T,t∈T be a family of non-negative random variables with each Xt being Ft-
measurable with EQN

(Xt/Nt) <∞. We say X is an American option with maturity
T if the holder has the right to receive the non-negative payoff Xt if she decides to exercise
the option at time t ≤ T . The holder is allowed to exercise once at any time t ∈ T before
or equal maturity T .

Definition 6.1.1. An American contingent claim is a non-negative adapted process X =
(Xt)t=0,...,T on the filtered space (Ω, (Ft)t=0,...,T ).

An exercise strategy for an American contingent claim X is an F -measurable variable
τ taking values in {0, ..., T}. The payoff obtained by using τ is equal to

Xτ (ω) := Xτ(ω)(ω), ω ∈ Ω.

An American put option on the ith asset and with strike c > 0 pays the amount

Cput
t := (K − Si

t)
+,

if it is exercised at time t. The payoff at time t of the corresponding American call option
is given by

Ccall
t := (Si

t −K)+.

We are interested in the fair price, Vt(X), of the American option X at time t provided
the option has not been exercised yet. Obviously, we have the inequality

Vt(X) ≥ Xt, t ∈ T, t ≤ T.
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6.1. BASIC INFORMATION ON AMERICAN OPTIONS

We start by approaching the problem from an intuitive point of view by restricting
ourselves to the situation of discrete time, T = {0, 1, ...}. Clearly, at maturity T , we have
VT (X) = XT . At time T −1 we can either decide to exercise and receive XT−1, or we wait
until maturity T to get the final pay-off XT . At time T − 1 the value of the European
option to receive XT at time T is given by

NT−1EQN
(XT /NT |FT−1).

This implies

VT−1(X) = max (XT−1, NT−1EQN
(XT /NT |FT−1))

= max (XT−1, NT−1EQN
(VT (X)/NT |FT−1)) .

Going further backwards, at time T −2 the holder can decide to exercise and receive XT−2

or, alternatively, to wait until T − 1 to ”get something worth” VT−1(X). Finally we end
up with the recursion

VT (X) = XT (6.1)
Vt(X) = max (Xt, NtEQN

(Vt+1(X)/Nt+1|Ft)) , t = T − 1, ..., 0. (6.2)

The main result of this section justifies that, in discrete time, the fair price of the American
option X at time 0 can be defined as the quantity V0(X), which we obtain as a result of
the above backward induction algorithm.

Corollar 6.1.1 (American option price as optimal stopping value). We have

V0(X) = N0 sup
τ≤T

EQN

(
Xτ

Nτ

)
,

where the supremum is taken over all stopping times τ bounded by T .

Definition 6.1.2. Any stopping time τ0 ≤ T , satisfying

EQN

(
Xτ0

Nτ0

)
= sup

τ,τ≤T
EQN

(
Xτ

Nτ

)
is called an optimal stopping time for the interval [0, T ].

Theorem 6.1.1 (Snell envelope). Let Ṽ (X) be defined by the backward recursion (6.1),(6.2):

ṼT (X) = X̃T

Ṽt(X) = max
(
X̃t,EQN

(Ṽt+1(X)|Ft)
)
, t = T − 1, ..., 0.

1. Ṽ (X) is a QN -supermartingale, with Ṽ (X) ≥ X̃. It is even the smallest super-
martingale with this property, the so-called Snell envelope of X̃.

2. Define τ0 = inf
{
t : Ṽt(X) = X̃t

}
= inf {t : Vt(X) = Xt} . Then τ0 is a stopping time

and
(
Ṽt∧τ0(X)

)
t∈T

is a QN -martingale.
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6.1. BASIC INFORMATION ON AMERICAN OPTIONS

3. A stopping time τ0, τ0 ≤ T , is optimal for the intervall [0, T ] if and only if Vτ0(X) =
Xτ0 and

(
Ṽt∧τ0(X)

)
t∈T

is a QN -martingale.

4. The snell envelope Ṽ (X) of X̃ is characterized by the equality

Ṽt(X) = ess sup
t≤τ≤T

EQN
(X̃τ |Ft),

where the supremum is over all stopping times τ taking values in [t, T ].

Proof. 1. The defintition of Ṽ (X) directly yields Ṽ (X) ≥ X̃ and Ṽt(X) ≥ EQN
(Ṽt+1(X)|Ft),

i.e., Ṽ is a supermartingale. Let Y be another supermartingale with Y ≥ X̃. Then

YT ≥ X̃T = ṼT (X)
YT−1 ≥ EQN

(YT |FT−1) ≥ EQN
(ṼT (X)|FT−1)

YT−1 ≥ max
(
X̃T−1,EQN

(ṼT (X)|FT−1)
)

= ṼT−1(X)

Induction finally proves the assertion.

2. Since τ0 = inf
{
t : Ṽt(X) − X̃t ∈ {0}

}
, it is a stopping time. For the martingale

property of
(
Ṽt∧τ0(X)

)
t≥0

we have to show that for A ∈ Ft

∫
A Ṽt∧τ0(X)dQN =

∫
A Ṽ(t+1)∧τ0(X)dQN .

This is equivalent to∫
A∩{t<τ0} Ṽt(X)dQN =

∫
A∩{t<τ0} Ṽt+1(X)dQN .

But on {t < τ0} we have Ṽt(X) > X̃t and thus Ṽt(X) = EQN
(Ṽt+1(X)|Ft) on this

set, which finishes the proof of (2).

3. From X̃t ≤ Ṽt(X) and the fact that Ṽ (X) is a supermartingale, for every stopping
time τ0 we get the chain of inequalities

EQN
X̃τ0 ≤ EQN

Ṽτ0(X) ≤ EQN
Ṽτ0∧t(X) ≤ Ṽ0(X) = sup

τ,τ≤T
EQN

X̃τ .

Now, if τ0 is optimal for [0, T ] all ”≤” signs reduce to equalities. This implies that
Vτ0(X) = Xτ0 and (Ṽτ0∧t) is a martingale. The opposite direction is straightforward.

τ0 = inf {t : Vt(X) = Xt} is the smallest optimal stopping time.

Lemma 6.1.1 (Largest optimal stopping time). The largest optimal stopping time is given
by

τm = max
{
t ≤ T : Ãt = 0

}
,

where Ṽ (X) = M̃ − Ã is the Doob decomposition of Ṽ (X).
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The majority of models for the primary securities S1, ..., Sn are such that (S̃1, ..., S̃n)
is an n-dimensional Markov process under the measure QN . In this situation the pricing
problem of an American option X = (Xt) often reduces to a backward induction on the
”states” of (S̃1, ..., S̃n).

If, at each time t, the payoff Xt of the American option is of the form

X̃t = P (t, S̃1
t , ..., S̃

n
t )

with some payoff function P (t, x1, ..., xn) then by Snell Envelope (Point 4) and the Markov
Property

Ṽt(X) = ess sup
τ,t≤τ≤T

EQN
(X̃τ |Ft)

= ess sup
τ,t≤τ≤T

EQN

(
X̃τ |σ(S̃1

t , ..., S̃
n
t )
)

=: F (t, S̃1
t , ..., S̃

n
t ).

This means that the value Ṽt(X) at time t is some measurable function of the ”state” of
(S̃1, ..., S̃n) at time t. This yields an interesting insight. From the Snell Envelope we know
that the smallest optimal stopping time is

τ0 = inf
{
t : Ṽt(X) = X̃t

}
= inf

{
t : F (t, S̃1, ..., S̃n) = P (t, S̃1, ..., S̃n)

}
.

The set
D = {(t, x1, ..., xn) : F (t, x1, ..., xn) > P (t, x1, ..., xn)}

is called the continuation region and its complement, Dc, is the exercise region. As long as
the process (t, S̃1

t , ..., S̃
n
t ) stays in the continuation region D it is not optimal to exercise.

The first time this process enters the exercise region is the smallest optimal stopping
time. If there is just one stochastic security, as is the case in the Black & Scholes or in
the binomial model, the exercise region can often be characterized by a so-called exercise
boundary B(t, x), meaning that D is of the form D = {(t, x) : x < B(t, x)}.

Example: In case of the Binomial tree model,

S1
t = (1 + r)t = Nt, S

2
t = S2

t−1ξt, with ξt ∈ {u, d} ,

and
QN (ξt = u) = p,QN (ξt = d) = 1 − p,

the backward induction algorithm for pricing an American option with payoff Xt =
P (t, S2

t ) is

VT (X) = P (T, S2
T ) =: F (T, S2

T )

Vt(X) = max(P (t, S2
t ),

1
1 + r

(F (t+ 1, S2
t · u)p+

(
F
(
t+ 1, S2

t · d)(1 − p)
))

=: F (t, S2
t ), t = T − 1, ..., 0.
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6.2 Hedging American options

We assume the market to be complete.
(Vt) is the value process of an American option described by the sequence (Xt), by the
system {

VT = XT

Vt = max
(
Xt, S

0
nE

∗(Vt+1/S
0
t+1 | Ft)

) ∀t ≤ T − 1.

Thus, the sequence (Ṽt) defined by Ṽt = Vt/S
0
t (discounted price of the option) is the snell

envelope, under P ∗, of the sequence X̃t. We deduce that

Ṽt = sup
t≤τ≤T

E
∗(X̃τ |Ft )

and consequently

Vt = S0
t sup

t≤τ≤T
E
∗(
Xτ

S0
τ

|Ft ).

We can write
Ṽt = M̃t − Ãt,

where (M̃t) is a P ∗-martingale and (Ãt) is an increasing predictable process, null at 0.
Since the market is complete, there is a self-financing strategy φ such that

Vt(φ) = S0
t M̃t,

for t = 0, ..., T . For the sequence
(
ṼT (φ)

)
is a P ∗-martingale, we have

ṼT (φ) = E
∗
(
ṼT (φ) |Ft

)
= E

∗
(
M̃T |Ft

)
= M̃T ,

and consequently
Ṽt = Ṽt(φ) − Ãt

Therefore
Vt = Vt(φ) −At,

where At = S0
t Ãt. From the previous equality, it is obvious that the writer of the option

can hedge herself perfectly: once he receives the premium V0 = V0(φ), she can generate
a wealth equal to Vt(φ) at time t which is bigger than Vt and a fortiori Xt. What is the
optimal date to exercise the option? The date of exercise is to be chosen among all the
stopping times. For the buyer of the option, there is no point in exercising at time t when
Vt > Xt, because he would trade an asset worth Vt (the option) for an amount Xt (by
exercising the option). Thus an optimal date τ of exercise is such that Vτ = Xτ . On the
other hand, there is no point in exercising after the time

τmax = inf {j, Aj+1 �= 0}
(which is equal to inf {j, Aj+1 �= 0}) because, at that time, selling the option provides the
holder with a wealth Vτmax = Vτmax(φ) and, following the strategy φ from that time, he
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6.2. HEDGING AMERICAN OPTIONS

creates a portfolio whose value is strictly bigger than the option’s at time τmax +1, τmax +
2, ..., T . Therefore we set as a second condition, τ ≤ τmax, which allows us to say that Ṽ τ

is a martingale. As a result, optimal dates of exercise are optimal stopping times for the
sequence (X̃t), under probability P ∗. (If he hedges himself using the strategy φ as defined
above and if the buyer exercises at time τ which is not optimal, then Vτ > Xτ or Aτ > 0.
In both cases, the writer makes a profit Vτ (φ) −Xτ = Vτ +Aτ −Xτ , which is positive.)
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Chapter 7

Monte Carlo Valuation of
American Options

7.1 Price of an American option

We consider discrete time, i.e. t = 0, ..., T with T ∈ N, T ≥ 0, T = {0, ..., T}.
As seen in chapter 6, an American option is a contract, which can be exercised at any
time prior the expiration date T . We have the expiration date T > 0, and suppose two
adapted processes (rt)0≤t≤T and (Xt)0≤t≤T , which are defined on some filtered probability
space (Ω,F , (Ft)0≤t≤T , P ). The first process is the spot rate of interest, and the second
defines the amount paid to the holder of an American option at the moment of exercise,
the payoff Xt = max(K − St, 0) and K is the strike price. The discounted exercise value
of the option is X̃t = Xt/Bt, where Bt is the value at time t of 1 unit invested in a riskless
money market account at t = 0. The time 0 value of an American option is given by

Y ∗
0 ≡ sup

0≤τ≤T
E(X̃τ ),

where X̃t is the discounted exercise value of the option. The supremum is taken over
all the possible stopping times τ less then the expiration date T , and the expectation is
taken over the risk-neutral probability density. (We assume that Y ∗

0 < ∞, also that for
some p > 1, sup0≤t≤T

∣∣∣X̃t

∣∣∣ ∈ Lp, and also that the paths of X are right continuous). This
assumptions lead to the Snell envelope process

Y ∗
t ≡ ess sup

t≤τ≤T
E

[
X̃τ |Ft

]
,

where Y ∗
0 is a supermartingale, and has a Doob-Meyer decomposition

Y ∗
t = Y ∗

0 +M∗
t −A∗

t ,

where M∗ is a martingale vanishing at zero, and A∗ is a previsible integrable increasing
process, also vanishing at zero.

Theorem 7.1.1. Y ∗
0 = infM∈H1

0
E

[
sup0≤t≤T (X̃t −Mt)

]
, where H1

0 is the space of mar-

tingales M for which sup0≤t≤T |Mt| ∈ L1, and such that M0 = 0. The infimum is attained
by taking M = M∗.
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7.2. HEDGING

Proof. We assume that Y ∗
0 <∞, also that for some p > 1,E

[(
sups

∣∣∣X̃s

∣∣∣)p]
<∞.

First, we note that Y ∗ is dominated by the Lp-bounded martingale x̃t ≡ E(sups

∣∣∣X̃s

∣∣∣ |Ft),

and so sup0≤t≤T |M∗
t | ≤ sup0≤t≤T x̃t + |Y ∗

0 | +AT , proving that M∗ is indeed in H1
0 .

Returning to the definition of Y ∗
0 in the theorem, we have for any M ∈ H1

0 that

Y ∗
0 = sup

0≤τ≤T
EX̃τ

= sup
0≤τ≤T

E

[
X̃τ −Mτ

]
≤ E

[
sup

0≤t≤T
(X̃t −Mt)

]
;

taking the infimum over all M ∈ H1
0 proves that Y ∗

0 is bounded by the right-hand side of
the expression in our theorem. On the other hand, since X̃t ≤ Y ∗

t = Y ∗
0 +M∗

t −A∗
t ,

inf
M∈H1

0

E

[
sup

0≤t≤T
(X̃t −Mt)

]
≤ E

[
sup

0≤t≤T
(X̃t −M∗

t )

]

≤ E

[
sup

0≤t≤T
(Y ∗

t −M∗
t )

]

= E

[
sup

0≤t≤T
(Y ∗

0 −A∗
t )

]
= Y ∗

0 ,

as claimed.

Remark 7.1.1. Davis and Karatzas (1994) proved that E

[
sup0≤t≤T (X̃t +M∗

T −M∗
t )
]

=
Y ∗

0 in the present notation.

Remark 7.1.2. Of course a conditional form of Theorem 7.1.1 holds too.

Starting from this theorem we can describe a method of pricing the American op-
tion: We pick a suitable martingale M , and evaluate by simulation the expectation
E

[
sup0≤t≤T (X̃t −Mt)

]
. Obtaining the optimal martingale is of course a task of a similar

complexity to finding the optimal exercise policy, but often simple martingales can be
found, that provide remarkably good and quick bounds.

7.2 Hedging

As seen in the previous theorem, it is necessary to find a good martingale M ∈ H1
0 for a

good approximation of the price Y ∗
0 of the American option.

Holding M fixed, we have an upper bound for Y ∗
0 - namely, the mean of the random

variable

η ≡ sup
0≤t≤T

(X̃t −Mt). (7.1)
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7.3. ARBITRARY MARTINGALE - THEORY

Let us set ηt ≡ E(η|Ft) for the martingale closed on the right by η, so that η ≡ ηT .
We now think of the martingale M as the discounted gains-from-trade process of some
portfolio; thus if we start with wealth η0 and used this portfolio, our discounted wealth at
time t would just be η0 +Mt. Now (7.1) implies the inequality for any t ∈ [0, T ]

X̃t ≤ η +Mt

and taking conditional expectation given Ft and rearranging gives the key inequality

X̃t ≤ E [ηT − η0|Ft] + (Mt + η0).

The interpretation is illuminating: the (discounted) amount X̃t, which has to be paid out
to the holder of the option if exercised at time t, is almost hedged by the (discounted)
value of our portfolio. The shortfall is at worst

E [ηT − η0|Ft]
+ ≤ E

[
(ηT − η0)+|Ft

]
.

It will be highly desirable that the quantity E [|ηT − η0|], which bounds the mean of the
shortfall should be small.
(The perfect situation is M = M∗, where we have a zero bound on the shortfall). It could
be that a given martingale M gives a good bound on the price of the option (i.e. E(η)−Y ∗

0

is small), while having a large shortfall, and therefore being less desirable for hedging.

The dual problem can be interpreted in a very concrete way: we are trying to choose
the hedging strategy to minimize the lookback value of X̃ −M . In any Markovian exam-
ple, we would have that X̃ is a function time and a Markov process Z, and the solution to
be such that at any time the optimal hedging portfolio should be a function of t, Zt, and
supu≤t(X̃u −Mu).
We may also use a candidate martingale M to suggest an exercise policy, namely, to stop
when first X̃ exceeds the value of hedging policy:

τM ≡ inf
{
t ∈ [0, T ] : Mt + η0 ≤ X̃t

}
∧ T.

In the case where the hedging policy was optimal, this stopping rule would also be optimal.

7.3 Arbitrary martingale - Theory

For an arbitrary martingale Mt, we define a dual function FM
t as

FM
t

Bt
= E

[
sup

t≤τ≤T
(X̃τ −Mτ )

]
+Mt.

The dual problem is to minimise the dual function at time 0 over all martingales Mt. Let
U0 denote the optimal value of the dual problem, so that

U0 = inf
M
FM

0 = inf
M

E

[
sup

0≤τ≤T
(X̃τ −Mτ )

]
+M0.

The main result is that the optimal values of the dual and the primal problems coincide.
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Proof. For an arbitrary (adapted) martingale Mt, we have

Y0 = sup
0≤τ≤T

E

[
X̃τ

]
= sup

0≤τ≤T
E

[
X̃τ −Mτ +Mτ

]
= sup

0≤τ≤T
E

[
X̃τ −Mτ

]
+M0

≤ E

[
sup

0≤τ≤T
(X̃τ −Mτ )

]
+M0

where the second equality follows from the optional sampling theorem. Since Mt was an
arbitrary martingale, the inequality will hold after taking the infimum, implying Y0 ≤ U0.
The supermartingale property of Yt/Bt allows a Doob-Meyer decomposition of the form

Yt

Bt
= Mt −At,

whereMt is a martingale, and At is a predictable integrable increasing process with A0 = 0.
Using this martingale in the dual problem gives

U0 ≤ E

[
sup

0≤t≤T

(
Xt

Bt
− Yt

Bt
−At

)]
+ Y0.

Since Yt ≥ Xt for all t, we conclude that Y0 ≥ U0. Therefore Y0 = U0 when Mt is
taken to be the martingale component of the discounted American option price process
Yt/Bt. When the optimal martingale is used, both the expectation and the variance of
the lookback option are equal to zero, i.e.

E

[
sup

0≤τ≤T
(X̃τ −Mτ )

]
= 0

and

var

[
sup

0≤τ≤T
(X̃τ −Mτ )

]
= 0.

7.4 Implementation

An upper bound on the price of an American option can be constructed by evaluating the
dual function using an arbitrary martingale Mt,

FM
0 = E

[
sup

0≤t≤T
(X̃t −Mt)

]
+M0 ≥ Y0.

The choice of the martingale is very important, because the tightness of the upper bound
will depend on this. A suitable choice of Mt is one that approximates the martingale
component of the discounted price of the American option. A good place to start is to
consider the martingale part of the corresponding European option. L. C. G. Rogers
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reports in his paper from results with errors in the region of 1-2 percent. The martingale
can be refined by including a weighting coefficient, which is determined by a numerical
optimisation procedure on an initial subsample of size N1, followed by a simulation of N2

paths. To choose an appropriate martingale is the main difficulty in this approach. The
Rogers’ approach is quick to calculate, but requires a careful choice of martingale.
We assume that the asset price S satisfies the lognormal risk-neutral process dS = rSdt+
σSdW , where σ is the volatility. For each sample path, the process is simulated at Q
equally spaced discrete times. There are two natural ways of defining a martingale based
on the European put:

MA
t = B−1

t Veuro [St,K, σ, T − t, r] − Veuro [S0,K, σ, T, r] , (7.2)

MB
t = Veuro [St,K, σ, T − t, r] −BtVeuro [S0,K, σ, T, r] . (7.3)

where Veuro is the Black-Scholes value of the European put, and we have assumed a
deterministic short-rate r. David Lamper and Sam Howison show in their paper [11],
that MA is a better martingale than MB, because MB has a greater value of the mean
pathwise maximum (pwm).

7.4.1 Adding additional European martingales

This section shows the way, how to create the martingale from multiple European con-
tracts. We consider

M =
n∑

i=0

λiπ
euro
i

where πeuro
i is the martingale part of a European option calculated using expression (7.2).

We take πeuro
0 to be a European option with the same contract parameters as the American

option, and by adding n extra martingales we seek to improve the martingale and reduce
the upper bound. The λi’s are found by numerical optimisation to minimise the sum of
the pathwise maximum.
The addition of an extra contract within the martingale leads to an improved upper bound
for the price of an American option (see [11]).

7.4.2 Analytic approximation

As discussed in 7.3, the value of the optimal martingale at t = 0 is equal to the value of
the American option itself. This implies if an optimal martingale (or one close to it) has
been found, then evaluating this at time zero will provide a good approximation to the
American option price (the values obtained using this method are no longer upper bounds,
since we are just evaluating the martingale at t = 0). Having determined a martingale
suitable for a specific value of S0 using Monte-Carlo simulation, we then have an analytic
expression for the martingale at t = 0 and can calculate M as a function of S. This
provides an approximation to the American option value at asset prices near S0, without
having to perform a full Monte-Carlo simulation each time the asset price changes slightly.
In this manner, it is possible to provide a very quick approximation to the American option
price over a range of S values once the martingale has been determined.
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Chapter 8

Numerical Example

8.1 American Put on a Single Asset

In this section, an numerical example, the standard American put, is discussed.
The calculations were performed throughout in Scilab (www.scilab.org, Scilab is a free
Matlab ”clone”), for the code take a look to the appendix.
The first step is to simulate sample paths for the Brownian motion.
To get a good result, the choice of the martingale is very important, in this example, it is
the martingale part of the corresponding European option.
For the implementation mentioned in the appendix following martingale was used:

MA
t = B−1

t Veuro [St,K, σ, T − t, r] − Veuro [S0,K, σ, T, r] ,

the discounted value of the corresponding European put, started when the option goes in
the money, at the first time that St falls below the strike K.
The example handles the American put on a single log-Brownian asset, whose price process
is given by

St = S0 exp(σWt + (r − σ2/2)t),

with r denoting as usual the riskless rate of interest, assumed constant, and σ denoting
the constant volatility.
Holding M fixed, we have an upper bound for the price of the American option:

sup
0≤t≤T

(X̃t −Mt)

The Monte Carlo values, calculated with this method, are within 1% to the true American
price. The true American prices are taken from the paper of Ait-Sahalia and Carr (1997).
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European American American
S0 (true) (true) (MC) Error Error %
80 20.6893 21.6059 21.6782 0.0723 0.33%
85 17.3530 18.0374 18.0553 0.0179 0.10%
90 14.4085 14.9187 14.9600 0.0413 0.28%
95 11.8516 12.2314 12.2179 0.0135 0.11%
100 9.6642 9.9458 9.9374 0.0084 0.08%
105 7.8183 8.0281 8.0329 0.0048 0.06%
110 6.2797 6.4352 6.4097 0.0255 0.40%
115 5.0113 5.1265 5.1236 0.0029 0.06%
120 3.9759 4.0611 4.0487 0.0124 0.31%

Average Error 0.19%

Table 8.1: Simulation Prices of Standard American Puts Using the Discounted Value of
the Corresponding European Put Paramter values: K = 100, r = 0.06, T = 0.5, σ = 0.4
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Figure 8.1: American Put Price calculated with Monte Carlo method, Parameter values:
r = 0.06, T = 0.5, σ = 0.4
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Figure 8.2: Absolute Error between Monte Carlo method and true American Put Price
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Chapter 9

Conclusions

In my Diploma thesis I presented a method for evaluating the prices of American-style
options by a direct simulation approach, based on a dual characterization of the optimal
exercise problem.

The method involves the choice of a suitable Langrangian hedging martingale, which can
be thought of as a hedging strategy designed to minimize the lookback value of the excess
of the option exercise value over the chosen hedging strategy. A choice of the hedging
strategy gives bounds on expected shortfall (evaluated through simulation).
The quality of the upper bound depends on the martingale chosen. Even using very prim-
itive choices for the hedging martingales the results of the Monte Carlo simulation are
remarkably good, usually in range 1-2%.

This shows that the Monte Carlo method is very efficient and reliable for pricing American-
style options, under the predictioin to have a ”good” martingale.
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Chapter 10

Appendix

10.1 Scilab Code

//---------------------------european_put_price.sci---------------------------
//Input: start value S0e, strike price Ke, sigma, time Te, interest rate re,
// time steps Ne
//Return: price of the european put calculated with an Brownian motion model
//----------------------------------------------------------------------------

function [p] = european_put_price(S0e,Ke,sigmae,Te,re,Ne)

s = S0e * exp((re-sigmae*sigmae/2)*Te + sigmae * sqrt(Te)
* rand(1,Ne, ’normal’))

payoff = (-1)*min(s - Ke, 0)
p = exp(-re*Te)*sum(payoff)/Ne

endfunction

//----------------------------american_put_price.sci--------------------------
//Input: start value S0, strike price K, sigma, time T, interest rate r,
// time steps N
//Return: price of the American put calculated with an Brownian motion model
//----------------------------------------------------------------------------

function [ap] = american_put_price(S0,K,sigma,T,r)

NumberofPaths = 200;
N = 10; //NumberofSteps

nue_Summe=0;
e_p_S0=european_put_price(S0,K,sigma,T,r,1000000);
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10.1. SCILAB CODE

for i=1:NumberofPaths,

nue=0;
St=S0;
Wt=0;
for t=(T/N):(T/N):T,

if t==0 then
Wt=0

else
Wt=Wt + sqrt(T/N)* rand(1,’normal’);

end
St=S0 * exp((r-(sigma*sigma)/2)*t + sigma * Wt);
Mt=(exp(-r*t)*european_put_price(St,K,sigma,T-t,r,10000)-e_p_S0);
Zt=exp(-r*t)*(-1)*min(St -K, 0);
nue=max(Zt-Mt,nue);

end

nue_Summe=nue_Summe + nue;
end

ap=(nue_Summe/NumberofPaths);

endfunction

//american_put_price(80,100,0.4,0.5,0.06);
//american_put_price(85,100,0.4,0.5,0.06);
//american_put_price(90,100,0.4,0.5,0.06);
//american_put_price(95,100,0.4,0.5,0.06);
//american_put_price(100,100,0.4,0.5,0.06);
//american_put_price(105,100,0.4,0.5,0.06);
//american_put_price(110,100,0.4,0.5,0.06);
//american_put_price(115,100,0.4,0.5,0.06);
//american_put_price(120,100,0.4,0.5,0.06);

//----------------------American_European_put_price.sci-----------------------
//Input: start value S0, strike price K, sigma, time T, interest rate r,
// time steps N, steps in stock price M
//Return: price of the American put
//----------------------------------------------------------------------------

function[A_E_p] = American_European_put(S,K,v,T,r)

//------ Enter parameters
M=50; //no. of steps in stock price
N=100; //no of time steps
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10.1. SCILAB CODE

tol=0.00000001; //tolerance for SOR convergence
ExerciseType="a"; //set ’a’ for American / ’e’ for European
//----------------

dt=T/N; //time step size
smax=S*2;
ds=smax/M; //stock price step size

payoffvec=zeros(M+1,1); //vector to store option price grid

for j=0:M,
payoffvec(j+1)=max(K-j*ds,0);
end

payvec=zeros(M-1,1);
for j=1:M-1,
payvec(j)=K-j*ds;
end

svec=0:ds:smax;
svec=svec’;

vnew=payoffvec;
ds2=ds*ds;

//Start rollback of time steps
for ti=1:N,
vold=vnew;
v_previteration=vnew*0;
err=1;
nits=1;
while (err > tol)
nits=nits+1;
for i=2:M,
si=svec(i);
ai=0.5*v*v*si*si;
bi=r*si;
ci=-r;
denom=1/dt+2*ai/ds2-ci;
tmp1=vold(i)/dt;
tmp2=ai*(vnew(i+1)+vnew(i-1))/ds2;
tmp3=bi*(vnew(i+1)-vnew(i-1))*0.5/ds;
vnew(i)=(tmp1+tmp2+tmp3)/denom;
end
err=vnew-v_previteration;
err=err’*err;
v_previteration=vnew;
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end
if ExerciseType=="a",
vnew(2:M)=max(vnew(2:M),payvec);

end;
end

svec=0:ds:smax;
option_price_sor=interp1(svec’,vnew,S)
A_E_p=option_price_sor

endfunction

//---------------------Plot_in_3d_S0_K_MC.sce------------------------
// Plots the American Put Price, calculated with Monte Carlo
//-------------------------------------------------------------------
Steps=5;

for S0=50:Steps:150
for K=50:Steps:150
price(S0,K)=american_put_price(S0,K,0.4,0.5,0.06);
end

end

S0=[50:Steps:150];
K=[50:Steps:150];

C=hotcolormap(32);
xset("colormap",C)
xset("hidden3d",30)
xbasc()

plot3d1(S0,K,price(S0,K),leg="Start value@Strike price@American Put Price");

//---------------------Plot_in_3d_S0_K_Diff.sce----------------------
// Plots absolute error between Monte Carlo method
// and true American Price
//-------------------------------------------------------------------
Steps=5;

for S0=50:Steps:150
for K=50:Steps:150
price(S0,K)=american_put_price(S0,K,0.4,0.5,0.06)

- American_European_put(S0,K,0.4,0.5,0.06);
end

end

S0=[50:Steps:150];
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K=[50:Steps:150];

C=hotcolormap(32);
xset("colormap",C)
xset("hidden3d",30)
xbasc()

plot3d1(S0,K,price(S0,K),leg="Start value@Strike price@American Put Price");

//--------------------Plot_in_3d_S0_K_Diff_Proz.sce------------------
// Plots error in % between Monte Carlo method
// and true American Price
//-------------------------------------------------------------------
Steps=5;

for S0=50:Steps:150
for K=50:Steps:150
Ap=American_European_put(S0,K,0.4,0.5,0.06)

price(S0,K)=(abs(american_put_price(S0,K,0.4,0.5,0.06) - Ap))/Ap;
end

end

S0=[50:Steps:150];
K=[50:Steps:150];

C=hotcolormap(32);
xset("colormap",C)
xset("hidden3d",30)
xbasc()

plot3d1(S0,K,price(S0,K),leg="Start value@Strike price@American Put Price");
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[Föllner & Schied] H. Föllner and A. Schied, Stochastic Finance, An Introduction in Dis-
crete Time, de Gruyter Studies in Mathematics 27 (2002).

[Etheridge] A. Etheridge, A Course in Financial Calculus, Cambridge University Press
(2002).
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