
MASTERARBEIT

A Mobile Blogging Solution
- Aggregation and Management of location-based Content in the

Java Application Domain

Ausgeführt am Institut für
Softwaretechnik und interaktive Systeme (ISIS)

der Technischen Universität Wien

unter der Anleitung von
Univ.-Prof. Dipl.-Ing. Dr.techn. Hannes Werthner

und Mitbetreuung von
Univ.-Ass. Mag. Christoph Grün
Projektass. Mag. Petra Brosch

durch
Hannes Weingartner
Friedmanngasse 51/11

1160 Wien

Wien, 23. April 2008 Unterschrift

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

ii

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbständig und ohne fremde Hilfe
verfasst, andere als die angegebenen Quellen nicht benützt und die den benutzten Quellen
wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Wien, 23. April 2008 Unterschrift

iii

Danksagung

Die vorliegende Arbeit wäre ohne die Unterstützung von zahlreichen Personen wohl in dieser
Form nicht zustande gekommen. Ein besonderer Dank gilt Mag. Christoph Grün von der
Electronic Commerce Group (EC) und Mag. Petra Brosch von der Business Informatics Group
(BIG), welche mich beide von Anfang an hervorragend bei meinem Unterfangen unterstützt
haben. Ich bedanke mich ebenfalls bei Univ.-Prof. Hannes Werthner welcher die Betreuung
für meine Abschlussarbeit übernahm. Weiters bot mir die Interactive Media Systems Group
(IMS) die notwendige Ausbildung, aber auch die technischen Mittel um das Projekt realisieren
zu können. Hier sei besonders Dr. Horst Eidenberger erwähnt, welcher mein Interesse an
M-Commerce Systemen geweckt hatte. Allgemein ermöglichte mir die Technische Universität
Wien und im Speziellen das Institut für Softwaretechnik und Interaktive System (ISIS), als
auch die Technische Universität Helsinki und die Technische Universität Kiew eine fundierte
Ausbildung zum Diplom-Ingenieur im Bereich der Informatik.

Für eine Unterstützung und ein Interesse an meiner Arbeit in außeruniversitären Kreisen bedanke
ich mich beim M-Commerce Softwareerzeuger IP Square und besonders bei Clemens Mensik.
Meine Eltern und meine Schwester Bettina gaben mir außerdem Anerkennung und Motivation
bei meinem Vorhaben in den letzten Jahren, welche schließlich auch zum erfolgreichen Ab-
schluss meiner Ausbildung beitrugen. Aus meinem Freundeskreis sei besonders Patrik Wielath
erwähnt, welcher mich in technischen Belangen als auch bei der Testphase unterstützte. Für ein
Korrekturlesen meiner Arbeit bin ich Andrea Trautsamwieser, Mag. Ulrike Öhlinger und Mag.
Bettina Nenning zu Dank verpflichtet. Auch Tommi Laukkanen, dessen Arbeit TrailExplorer
mich sehr inspirierte, und weitere Software Ingenieure aus diversen Online Foren boten mir
zahlreiche Tipps während der Implementierungsarbeit.

iv

Kurzfassung

Mobilgeräte wie etwa Smart Phones sind für gewöhnlich permanente Begleiter im Alltag.
Sie bieten per se ein flexibles Kommunikationsmedium in unserer Gesellschaft, wobei zahlre-
iche Dienste die herkömmliche Sprachtelefonie ergänzen. Der Daten-Durchsatz und die An-
bindung an das mobile Internet durch Zellulare Netzwerke und Öffentliche Hotspots steigt
stetig an. Ubiquitäre Mobilität hat heutzutage eine hohe Signifikanz für Geschäftsprozesse und
Endverbraucher-Anwendungen. Die Verarbeitung von dynamischen Umgebungs-Parametern,
wie etwa die geodätische Position eines Mobilgerätes, ermöglicht in diesem Zusammenhang
eine Vielzahl von benutzerbezogenen Diensten. Eine Bereitstellung dieser Dienste über zeitliche
und räumliche Grenzen hinweg erlaubt zudem eine flexible Interaktion mit beliebigen Daten
durch Einbeziehung mehrerer Netzwerke.

Die Diplomarbeit liefert anfänglich einen technischen Wegweiser um den Eigenheiten von mo-
bilen Plattformen, drahtlosen Netzwerk-Infrastrukturen und Positionierungs-Techniken gewahr
zu werden. Das Ziel ist eine effiziente Ausnutzung von Operator- als auch Internet- und Geräte-
basierte Diensten auf wenig leistungsfähigen Mobilgeräten. Zudem werden abschätzbare
technologische Erweiterungen für die Realisierung von Pervasive Computing in zukünftigen
Anwendungen diskutiert. In weiterer Folge werden technische Fragen bezüglich einer An-
wendungsarchitektur und einer Implementierung umrissen, welche auf einem funktionalen
Prototypen basieren. Der Prototyp realisiert eine Mobile Blogging Anwendung. Die Anwen-
dung representiert ein verteiltes Java-basiertes Software System, welches mobile als auch
statische Komponenten beinhaltet. Blogs werden auf Mobilgeräten erzeugt und bestehen
aus einem Foto, einer Nachricht, als auch aus Informationen zum Standort und Zeit der Blog-
Generierung. Zusätzliche Informationen wie etwa Höhenangaben, logische Standortinformation,
und zurückgelegte Distanzen sind zudem einfach abrufbar. Diese geografisch ettiketierten Blogs
sind für eine nachfolgende Manipulation und Exploration auf dem Mobilgerät verfügbar. Ein
Blogging Dienst gibt dem mobilen Benutzer die Möglichkeit diese benutzerzentrierten Blogs
auf einen Anwendungsserver zu transferieren. Die Blogs sind dadurch über eine web-basierte
kartographische Schnittstelle zugänglich. Der Zugriff auf erstellte und gepostete Blogs liegt in
vollkommener Kontrolle des Urhebers. Die Annotationen in einer virtuellen Landkarte durch
die zu den Blogs gehörigen Wegpunkte ermöglichen eine aussagekräftige Darstellung über
bestimmte Aktivitäten. Die Anwendungsfelder liegen demnach hauptsächlich im Tourismus-
Sektor aber auch in der Forschung, wo eine standortbezogene Dokumentation von Artefakten
als sinnvoll erscheint.

Viele Frameworks und Tools sind für den mobilen Anwendungsentwicklungs-Prozess verfügbar
um die Standardfunktionalität auf mobile Plattformen zu erweitern. In der prototypischen Im-
plementierung führt die Bereitstellung eines solchen Frameworks zu einer höheren Benutzerfre-
undlichkeit und zu einer verbesserten Code-Wartbarkeit als auch Programmfehlerbeseitigung.

v

Abstract

Mobile handhelds like Smart Phones are usually permanent attendants in everyday life. They
offer per se flexible means of communication in our society, whereby many services are
complementing the conventional voice telephony. The data throughput and the accessibility
of the mobile Internet through Cellular Networks and Public Hotspots is steadily increasing.
Ubiquitous mobility has a high significance today, both for business processes and consumer
applications. The processing of dynamic environmental parameters like the device’s geodetic
position enables in this context a variety of user-aware services. Furthermore, a deployment of
services across temporal and spatial bounderies allows a flexible interaction with arbitrary data
by incorporating multiple networks.

This master’s thesis initially supplies a technical roadmap to get aware of the peculiarities of
mobile platforms, wireless network infrastructures and positioning techniques. The aim is an
efficient utilization of Operator- as well as Internet- and Device-based services on resource-
limited mobile devices. Furthermore, foreseeable technological enhancements for realizing
Pervasive Computing in future setups are discussed. Subsequently, technical issues regarding
application architecture and implementation are outlined based on a working prototype. The
prototype realizes a Mobile Blogging Application. This application represents a distributed Java-
based software system including mobile and static components. Blogs are created on handhelds
and consist of a Photo, a Message as well as information about Location and Time of the
blog creation. Additional information like Elevation Levels, logical Location Information, and
covered Distances can be obtained easily. These geotagged blogs are available for a subsequent
manipulation and exploration in a mobile context. A Blogging Service gives the mobile user the
opportunity to transfer these user-centric blogs to an Application Server. The blogs are thereby
accessable through a web-based cartographic Interface. The access to the created and posted
blogs is under full control of the content owner. The annotations within a virtual map through
blog-related Waypoints enable an expressive representation of distinct activities. The application
scenarios are thus mainly in the tourism sector, but also in the research sector in cases where a
location-based Documentation of artifacts seems to be useful.

Many Frameworks and Tools are available for the mobile application developing process to
extend the standard functionality of platforms. In the prototype implementation, a deployment
of such a framework increases the usability and improves the code maintainability as well as the
debugging process.

vi

Contents

1. Introduction 1
1.1. Presentation of the Problem . 1
1.2. Motivation . 2
1.3. Outline . 4

2. Background 5
2.1. Mobile Information Technology Market . 5
2.2. Tourism and Information Technology . 6
2.3. Blogging and Social Aspects . 6

2.3.1. World Live Web . 6
2.3.2. Mobile Blogging . 7

2.4. Location Awareness . 7
2.4.1. Location-based Services . 8
2.4.2. Location-based Privacy . 8
2.4.3. Intentions of Users . 9

2.5. Ubiquitous Mobility . 9
2.5.1. Degree of Mobility . 9
2.5.2. Pervasive Computing . 10
2.5.3. Mobile Internet . 10

2.6. Service-Oriented Communication . 11

3. Analysis of Related Technologies 12
3.1. Mobile Platforms . 12

3.1.1. Java Micro Edition Platform . 12
3.1.1.1. Architecture . 12
3.1.1.2. Mobile Java Interoperability 14
3.1.1.3. Provisioning . 14

3.1.2. Symbian OS Platform . 15
3.1.2.1. UI Platforms . 15
3.1.2.2. Development Environments 15
3.1.2.3. Introduction of Version 9.0 16
3.1.2.4. Native Security Concepts 16
3.1.2.5. Java Security Concepts . 17
3.1.2.6. Deployment . 17
3.1.2.7. JVM Support . 19

3.1.3. Alternative Platforms . 20
3.1.3.1. Symbian Extensions . 21
3.1.3.2. Linux . 21
3.1.3.3. BREW . 22
3.1.3.4. BlackBerry . 22

3.2. Mobile Software Development . 23
3.2.1. Code Efficiency . 23

Contents vii

3.2.1.1. Application Design . 24
3.2.1.2. Execution Speed . 24
3.2.1.3. Network Connections . 25
3.2.1.4. Application Size . 25
3.2.1.5. Memory Consumption . 26
3.2.1.6. Application Testing . 26

3.2.2. Frameworks and Tools . 26
3.2.2.1. J2ME Polish . 27
3.2.2.2. Enterprise Integration . 27

3.3. Wireless Networking . 28
3.3.1. Cellular Networks . 28

3.3.1.1. GSM . 28
3.3.1.2. GSM Extensions . 29
3.3.1.3. UMTS . 31

3.3.2. Symbian Communication Infrastructure 32
3.3.3. Generic Connectivity Framework . 33

3.3.3.1. HTTP Support . 33
3.3.3.2. Low Level Network Support 35

3.3.4. Bluetooth . 35
3.3.4.1. Working Principle . 35
3.3.4.2. Protocol Stack . 36
3.3.4.3. Service Implementation . 36
3.3.4.4. Security . 37

3.4. Service-Oriented Computing . 37
3.4.1. Infrastructures . 37

3.4.1.1. Enterprise Services . 37
3.4.1.2. Mobilized Services . 38

3.4.2. Evolution of the Service Concept . 39
3.4.2.1. Programming Paradigms 40
3.4.2.2. Distributed Computing . 40
3.4.2.3. Business Computing . 42

3.4.3. Payload Communication Strategies 43
3.4.3.1. REST . 43
3.4.3.2. XML-RPC . 44
3.4.3.3. SOAP . 44

3.4.4. SOA Analysis and Design . 45
3.4.5. SOA Implementation and Interface Issues 46

3.4.5.1. Approaches . 46
3.4.5.2. Java Web Service Support 47

3.4.6. Mobile Web Services . 48
3.4.6.1. Infrastructure . 48
3.4.6.2. Frameworks . 49
3.4.6.3. Service Environments . 50
3.4.6.4. Payload Communication Constraints 51
3.4.6.5. Service Availability . 52

3.4.7. Java Service Platform . 53
3.4.7.1. Domains . 53
3.4.7.2. Key Features . 54
3.4.7.3. Security . 54
3.4.7.4. Java Application Server Models 55

Contents viii

3.4.7.5. Dynamic Platform Behaviour 55
3.5. Location-based Infrastructures . 56

3.5.1. Location-based Services . 56
3.5.1.1. Service Components . 56
3.5.1.2. Service Architecture . 57
3.5.1.3. Protocols . 58
3.5.1.4. Programming Interface . 58

3.5.2. Satellite-based Positioning Systems 59
3.5.2.1. Positioning Technique . 59
3.5.2.2. Overlayed Systems . 61
3.5.2.3. NMEA Protocol . 61

3.5.3. Network-based and Hybrid Positioning Systems 62
3.5.3.1. Positioning Techniques . 63
3.5.3.2. Assisted GPS . 64

3.5.4. Positioning Models . 65
3.5.5. WGS84 Datum . 65

4. Requirements 66
4.1. Tourism-related Studies and Deployment . 66

4.1.1. Perceived Value of LBS . 67
4.1.2. Application Scenarios . 67

4.2. Application Infrastructure . 68
4.3. Functional Requirements . 70

4.3.1. Mobile Client Domain . 70
4.3.1.1. System . 71
4.3.1.2. Security . 72
4.3.1.3. Content . 73
4.3.1.4. Location . 75
4.3.1.5. Communication . 77
4.3.1.6. Flow Control . 79

4.3.2. Server and Backend Systems Domain 80
4.3.2.1. Web Application . 81
4.3.2.2. Blogging Service . 82
4.3.2.3. Database System . 83

4.3.3. Web Client Domain . 84
4.4. Communication Models . 86

5. Prototype Design 87
5.1. Application Architecture . 87

5.1.1. Mobile Software Components . 88
5.1.1.1. Logical Core Components 91
5.1.1.2. Peripherial Components . 93

5.1.2. Static Software Components . 95
5.1.2.1. Web Components . 96
5.1.2.2. Web Service Components 98

5.2. Inter-Domain Communication . 99
5.3. Deployment . 101

Contents ix

6. Prototype Implementation 103
6.1. Configuration . 103
6.2. Service Modules . 107

6.2.1. Location Service Module . 108
6.2.2. Location Resolution Service Module 110
6.2.3. Gateway Service Module . 112

6.3. Content Generation Management . 116
6.4. Content Access Management . 119
6.5. Interface . 124

7. Related Work and Evaluation 129
7.1. Academic Approaches . 129
7.2. Commercial Approaches . 131
7.3. Prototype Testing . 131
7.4. Problems . 132
7.5. Comparison . 133

8. Conclusion 135

Appendices 137

A. Organizations 137
A.1. Open Mobile Alliance (OMA) . 137
A.2. Open Mobile Terminal Platform (OMTP) . 137
A.3. World Wide Web Consortium (W3C) . 138
A.4. OASIS . 138
A.5. Web Service Interoperability (WS-I) . 138
A.6. Parlay . 138
A.7. Liberty Alliance . 139

B. Mobile Platforms 140
B.1. Platform Security Capabilities . 140

C. Service-Oriented Computing 142
C.1. Standard OSGi Services . 142

D. MIDlet Core APIs 144
D.1. Controller . 144
D.2. Blog Manager . 146
D.3. Photo Manager . 147
D.4. Trace Manager . 149
D.5. Record Manager . 150
D.6. Blog Browser . 152
D.7. Bluetooth Manager . 153
D.8. Location Manager . 154
D.9. Gateway WSC . 155
D.10.Geonames WSC . 155

List of Figures 157

List of Tables 160

Contents x

Listings 161

References 162

1

1. Introduction

“What on earth would a man do with himself,
if something didn’t stand in his way?”

— H.G. Wells (1866-1946)

1.1. Presentation of the Problem

Ubiquitous mobility becomes more and more important in the information technology sector.
The introduction of enterprise paradigms like service-oriented computing for a flexible inter-
action with remote services across platforms has changed the access to information in the last
years. Handheld devices provide a very flexible way for accessing such services and according
resources from nearly every place in the world. Next to the standard communication services,
mobile platforms and telecom infrastructures offer enough resources to incorporate sophisticated
multimedia features nowadays, such as high resolution photo capturing and video streaming.
Furthermore, operator facilities and local Global Positioning System (GPS) receivers are suitable
to determine one’s location, which might be an essential parameter for ubiquitous applications.
In this relationship it is important to ensure the user’s privacy and to restrict access to sensitive
data among several domains.

The delivery of mobile content accross multiple networks in form of business transactions
or social communication is a commonly performed task in mobile infrastructures. Mobile
Blogging Applications are suitable for managing and posting multimedia data like text messages
in combination with photos or audio and video content. Such applications are on the way to
become attractive social utilities for mobile end users. However, limited resources, highly
dynamic network connections and heterogeneous feature implementations on mobile platforms
are technology intrinsic and unavoidable facts today. Those aspects have to be considered when
dealing with handheld-devices, also in terms of multimedia data capturing and processing. As a
consequence, developing advanced and reliable mobile applications is often a challenging task.
Furthermore, remote services rely on different communication models, whereby a service client
has to understand the according protocols and the involved data types. Since most web services
do not consider these facts, only a small amount of them is useful in the mobile domain. However,
additionally to standardized mobile platform implementations, several mobile frameworks and
tools with enhanced and useful features are available nowadays. They might help a software
developer to create novel and widely executable applications for handheld devices.

The General Packet Radio Service (GPRS) and related services as well as Third Generation (3G)
cellular networks are today the standard bridging technologies for exchanging data with the
wired network. These mobile infrastructures provide a maximal device portability. Wireless link
instability and server failures, however, may cause a service interruption and sometimes even an

1. Introduction 2

abortion of an active data transfer and therefore undesirable costs for the end user. Other built-in
radio-based technologies like Wireless Local Area Network (WLAN) or Bluetooth (BT) provide
a service access with a high reliability and data throughput at no data transfer cost. The main
attention in this relationship lies in the restricted mobility, which is intrinsic for those network
technologies.

1.2. Motivation

One goal in this master’s thesis is to convey an awareness and a utilization of services, which
are designed to work within a mobile context as well as those, which have their roots in web-
based environments. The theoretical part focuses on these aspects and describes properties of
mobile service environments, including wireless infrastructures, positioning techniques, and
distributed middleware systems. Services are flexible self-contained components and therefore
suitable to access heterogenous distributed information and processes. The availability of
corresponding on-device parsing and service invocation features are essential requirements for
such a straightforward access. Based on such features a Mobile Blogging Application, called
TMBlog, for Java-related platforms is developed in the course of this master’s thesis. The
according prototype implementation allows a flexible location-aware blog generation process
through the utilization of on-device features, short-range external services, operator facilities,
and web-residing services. The application aims to offer a platform for exploring and managing
these gathered blog content parameters in a suitable way.

A mobile service endpoint offers a Gateway to the wired Internet, in order to map selected user-
centric blogs into a web context. Due to current restrictions on mobile platforms, some thoughts
are necessary to maintain a suitable service-oriented payload exchange for supplying binary
assets as well. The according application server enables user registration-, user authentication-,
and persistence features, to enable a secure device-aware Identity- and Session Management
as well as a suitable Blog Access Management. In analogy to ordinary greeting cards, sent by
people from far away places, delivered mobile blogs may also provide user-centric data like a
Photo, a message body and a postmark in form of Location Coordinates as well as a timestamp
of creation. Consequently, these geotagged blogs are waypoints which are temporal and spatial
related among each other, suitable for an exploration within a cartographic web-based interface
through a known Community. Based on these waypoints a personalized mobile Tracking feature
is an obvious extension, to allow a subsequent insight into one’s personal Trace already on the
mobile handset. Additional parameters like logical Location Information, Elevation Levels, and
covered Distances offer the mobile user further information about visited places. An adequate
application design allows a batch-based processing of created blogs, which are part of a distinct
journey named by the user. This includes an automated content transfer of several blogs at
once. A list of posted blogs and the volume of transfered data are also available features of the
prototype. The web client logic automatically loads blogs from the application server in near
real-time, as long as they are posted during an active web session. Furthermore, Java-based
frameworks are aimed to be utilized to improve the user’s experience through advanced mobile
user interface components. In all domains a sophisticated software development process in
Model-View-Control (MVC)-style and on-device logging functionalities are provided.

1. Introduction 3

Figure 1.1 refers to the mentioned and additionally desired components of the prototype residing
in multiple domains. The upper part of the illustration involves the mobile components, the
lower part refers to the static components.

Figure 1.1.: Schemata of the Prototype with all its Components, distributed among different
Domains. A location-based Service and a Blogging Service are accessable through
the Mobile Client. The Mobile- as well as the Static Platform Components are
executed within a Java-based Environment.

Before the actual application is designed and implemented, it is important to understand the
contextual Background and the Related Technologies. An outline of the chapters of this master’s
thesis is offered in the next section.

1. Introduction 4

1.3. Outline

Chapter Background [2] briefly introduces the current situation of the Mobile IT Market and
its influence on the Tourism Sector. Furthermore, properties of Mobile Blogging as well as those
of a user’s Privacy in relationship to social and technical aspects are described. In addition,
opportunities related to Ubiquitous Mobility and Service-Oriented interaction models in the
mobile domain are motivated.

Chapter Analysis of Related Technologies [3] is an extensive chapter about Mobile Platforms
and Wireless Facilities as well as about Computing Paradigms and Location Determination
techniques. The aim of this roadmap is to get an awareness of hardware- and software-based
service infrastructures in order to understand software architectures and -constraints for the
utilization of mobilized services on handhelds.

Chapter Requirements [4] offers Tourism-related Studies in the mobile IT industry, possible
Application Scenarios and the desirable interactions of the user with the Blogging System. The
analysed User Interaction Cases are directly related to the discussed Functional Requirements.
The functionality is distributed over several domains, however the main focus relies on the
Mobile Client Domain and its Control Flow schemata. These schemata enable an analysis of
component functions and -interactions for performing essential tasks on the mobile platform.

Chapter Prototype Design [5] determines the Architecture of the application on different levels
of abstraction. The actual structure of the Mobile Core System and the Server-side Components
is outlined in this chapter. The functionalities as they have been defined in chapter Requirements
are mainly affecting the underlying design decisions. The mobilized logical core components
also refer to concrete Java Classes and their APIs. Furthermore, this phase offers inter-domain
interaction models to specify the Temporal Behaviour between local and remote functionality,
as well as time-critical operations.

Chapter Prototype Implementation [6] provides Code Outlines from multiple domains. The
focus lies on the application’s Service Modules, the Content Generation Management, and the
Content Access Management as well as on the according Class Diagrams. The chapter also
discusses the application’s Interfaces in the mobile- and the web domain.

Chapter Related Work and Evaluation [7] presents Related Academic and Commercial Works
in the mobile IT industry. Furthermore this chapter summarizes the Experience which has
been made during the prototype implementation and testing phases also in correlation with
the covered knowledge through prior studies. A discussion about occured Problems and an
Evaluation of the prototype in comparision with the mentioned related projects give a conclusion
about the quality of the developed approach.

Chapter Conclusion [8] summarizes the key factors of this master’s thesis. Discussed Perspec-
tives on upcoming technologies in the mobile domain completes the master’s thesis.

5

2. Background

“Computers are incredibly fast, accurate, and stupid;
humans are incredibly slow, inaccurate and brilliant;

together they are powerful beyond imagination.”

— Albert Einstein (1879-1955)

2.1. Mobile Information Technology Market

The first smart phones and communicators became available on a crumbling monopolistic
telecom market in the late 90s, while the development of customized mobile solutions got
initiated [Sil07]. Since this time, mobile devices and carrier-based services are an interesting
platform for individual software developers as well as for companies to expand their business
infrastructures in correlation with privately owned technologies. The enterprise is an important
player in this context, whereby about 28% made use of cellular data networks in Q4 2007 [Sil07].
Enterprises steadily develop their mobile platforms by introducing new hardware and software
concepts, whereby this process is mainly driven by interests of companies, organizations and
consumer studies.

In Q2 2007 mobile device shipments in the EMEA1 region are distributed as follows2: Nokia
(51%), Samsung (17%), Sony Ericsson (14%), Motorola (6%), Others (12%). Worldwide about
290 million units have been shipped per quartal in 2007. As the dominant leader within the
european market, Nokia provides the following core products: the all-round N95 (S60), the
business-oriented E65 (S60), and the mass market 6300 (Series 40) handsets. All these core
models include a high resolution camera, as well as Java APIs for supporting Mobile Media,
Web Services and Bluetooth by default. The multimedia-based NSeries models and the business
models also include the Location API. Since the listed optional Java APIs are supported by other
companies in a similar way and a pure Java application is not bound to a specific seller or user
interface platform and as long as an Java Virtual Machine (JVM) is available on the device, it
potentially reaches a deployment on the highest possible user base. However, there are some
gaps which might prevent a successful deployment on some devices or even groups of devices
(see section Code Efficiency [3.2.1]).

1Western Europe, Central and Eastern Europe, Middle East, Africa
2http://www.idc.com

http://www.idc.com

2. Background 6

2.2. Tourism and Information Technology

Due to the vast number of mobile handheld devices and their agility of accessing IT infrastruc-
tures, mobile applications already play a crutial role for a dynamic society. The tourism sector is
an important application domain in this relationship, which already utilized web infrastructures
in the mid-90’s. According to Werthner and Klein [WK99], between 33% and 50% of the
web transactions were somehow related to tourism at this time. Furthermore, Computerized
Reservation Systems (CRS) and Global Distribution Systems (GDS) are still central interme-
diary components between customers and service suppliers in this sector. Actors like Travel
Agents, Tour Operators, Transportation Agencies, and Hotel Chains are linked together through
vertical networked-based communication strategies, whereby services are integrated into others,
belonging to the same transaction chain.

Modern tourism-based systems are more related to additional services and a better as well as a
mobile integration of information infrastructures for end users in a price sensitive and less loyal
way [WK99]. However one has to consider, that this domain might accept distinct IT solutions
only for short periods until they are outdated and subsequent trends are aimed to be followed.
The establishment of context-aware and ubiquitous systems are along novel strategies, which are
responsible for a structural change towards modern and possibly long-lasting systems, strongly
related to the Mobile Commerce sector. Location-based Services (LBSs) are instances of context-
aware systems with an increasing importance for building advanced mobile applications. Since
information retrieval and social interactions are driven aspects in tourism-based settings, tracing
and publishing experiences related to foreign areas in form of location-based content are typical
actions performed by a tourist.

2.3. Blogging and Social Aspects

User-generated and published digital content in form of photos, videos, audios or simple text
posted to the world wide web is also known as Weblog or Blog. Since blogs are created by
millions of web- as well as by mobile users with variable interests, a huge pool of content also
referred to as Citizen Media is online. An intermediate content aggregator has become obsolete.
People usually communicate with each other to express themselves as a part of their social life.
They provide options on news, share travel hints, memorable photos, and further content and
experiences. Through blogs, which are acting as self-contained and public content carriers, they
aim at reaching either people they already know or as many interested web users as possible,
sometimes with the background to get to know like-minded people. This kind of communication
is highly dynamic and the carried information reaches potentially as many people as people
having access to the Internet, which obligatory results to the formation of many linked live
communities.

2.3.1. World Live Web

Technorati 3 is a recognized authority, which made the monitoring of the so called World Live
Web to its business. This authority is tracking for instance links between several hundred million

3http://www.technorati.com

http://www.technorati.com

2. Background 7

blogs and social media. It also provides statistics based on the collected data. According to
Technorati, there are about 175.000 new blogs and 1.6 million blog updates every day, which
means about 18 updates per second. Many frameworks and tools like Apache Roller are currently
available to develop corresponding platforms and portals for posting content in form of this Web
2.0 related blogging concept.

2.3.2. Mobile Blogging

Since the mobile communication market as well as the performance and multimedia capabilities
of corresponding devices are steady growing, Mobile Blogging is getting more attractive.
Moreover, user-generated content on handhelds and the presence of wireless data networks
gives the user maximal flexibility in terms of Mobility and Spontaneity, as well as an active
role as content provider for the world wide web. Many mobile blogging platforms based on
a variety of technologies are available today and also Nokia supports this trend with its own
products Lifeblog4 and Location Tagger5. Built-in cameras deliver high resolution JPG and PNG
photos or MPEG videos with qualities suitable for creating expressive and rich media content
for blogs. Therefore, the presence of mobile device cameras has a major impact on the growth
of social networks. Corresponding platforms are mainly focused on managing photo and video
content, due to much more comfortable capturing opportunities compared to typing characters
on multi-function keyboards, which are intrinsic to handhelds. However, one drawback of this
behaviour is the higher network utilization when transfering large binary data to remote nodes.
Application performance problems, based on an unreliable connection to cellular networks with
limited bandwidth and high service charges usually put the user in a bad mood.

Telecom operators usually offer customized flat rate models to their customers, which cover a
fixed amount of data capacity per month, reaching from a few mega bytes up to several giga
bytes. The standard data rates for common cellular data networks are as follows6: GPRS (84.4
kbit/s), EDGE (220 kbit/s), and UMTS (384 kbit/s). These rates have only a technology-related
meaning because the delivery is usually constained and the service availability also heavily
depend on the user’s location.

2.4. Location Awareness

Tracking device locations with high accuracy up to a few meters, accessing stored personal data
like contact information and e-mails, or even the management of the whole mobile platform
from remote processes have become realistic scenarios and have already been implemented in
numerous services. This kind of user tracking and information handling offers many opportuni-
ties to develop advanced services for customers. However, one has to distinguish if there is a
willigness to provide personal information or if this kind of information is somehow accessable
to others, without a permission of the affected person. In both cases suitable security features
play a crucial role. In the latter case, mobile platform security concepts like Capabilities have to
be effective, in the way of notifying users when untrusted applications try to access sensitive
platform features (see section Native Security Concepts [3.1.2.4] and Java Service Platform

4http://www.nokia.com/lifeblog/
5http://www.nokia.com/betalabs/locationtagger
6http://www.t-mobile.at

http://www.nokia.com/lifeblog/
http://www.nokia.com/betalabs/locationtagger
http://www.t-mobile.at

2. Background 8

[3.4.7]). However this fact can certainly not prevent unwanted data access at a whole, due to
implementation failures and lacks in the communication chain. Even successive recording of
mobile user behaviour through governmental organizations in a more or less excessive manner
cannot be ruled out.

2.4.1. Location-based Services

As a high potential application field, Location-Based Services (LBS) often process frequently
changing location information automatically, with the aim to track mobile users to help them
under special conditions. Such applications, which are often based on a bilateral agreement
between the user and a wireless service provider might be useful in terms of establishing
advanced services with a high user experience. For instance, a provider may offer a location-
based information system as part of an interactive tourist guide or a distributed collaborative
game. The most common way to determine the user location outdoors, is to use the globally
available GPS satellite system. One must have a passive GPS device to establish a satellite link
and to receive location information (see section Satellite-based Positioning Systems [3.5.2]).
Stand-alone GPS receivers and whole navigation systems are available at moderate prices and
the according hardware becomes more and more a standard feature on smart phones nowadays.
According to an IDC7 study in 2006, the LBS revenue is expected to grow from a few million
dollars in 2005 to over 3 billion8 dollars until 2010. This study affected the US market, but a
steady LBS deployment might be seen as a global trend.

2.4.2. Location-based Privacy

As mentioned by Choi [CC07], information privacy is ’the ability of the individual to personally
control information about one’s self’. There are some few empirical studies on LBS privacy
as well. Choi references to a popular characterization of personal information in cyberspace
from 1998, which are as follows: Authorship Information (e.g. telephone conversation, e-mail),
Descriptive Information (e.g. birth date, gender, membership), and Instrumental Mapping
Information (e.g. social security number, password). Location-based information however can
not be classified in the above static categories, since it is usually a temporary and changing
information related to a person. Due to this fact, it is obvious to distinguish between static
and dynamic personal information. Dynamic or contextual data like a person’s location may
be an indicator of one’s activities and identities of nearby people, which is clearly worth to
be protected in some kind. Furthermore, according to [CC07] it is important to be aware
that ’privacy concerns relates strongly to the degree of perceived psychological feelings when
we lost the control power about personal information’. So, what is the intention of people
when publishing personal location information to a world-wide accessable medium and thereby
running the risk of personal data abuse?

7http://www.idc.com
8milliard under european terms

http://www.idc.com

2. Background 9

2.4.3. Intentions of Users

In the last section it was mentioned that a person’s location is a sensitive form of data. Location-
based services must therefore shield this kind of data from unauthorized people, in a way which
usually depends on the nature of the application and the agreement of the service customers.

A blogging application, which has a public characteristic by default, can also be seen as a
way of accessing and managing personal data by the blogger exclusively. All that without
allowing others to access and interact with this information. This strong privacy can be easily
realized through a web-based login mechanism. However sharing memories and experience
with the family and friends is a basic need of humans, strongly manifested in social interaction.
Digital media may utilize multiple communication channels to interact with people in real-
time, whereby the content might be prepared and consumed in various ways. A map-based
communication interface may enhance the User Experience by virtually displaying a journey
undertaken in the real world, in combination with specific waypoints enriched with multimedia
content. Through this kind of visualization, a person who has not been on a particular journey
may get more immersed in one’s experience and stirring location-related events. Cartographic
web services like Google Maps further allow a Rich User Interaction, by offering arbitrary
zoom levels and customized map visualizations from every point in the world with variable
resolutions. More information about LBS and positioning technologies can be found in section
Location-based Infrastructures [3.5].

One important critera for the acceptence of a service by customers and therefore its success, is
its trustworthiness. Even if 100% system security will be never possible, features like a strictly
controlled Identity-based Data Management as well as strong Encryped Sensitive Data are
the basis for highly reliable and trustable business and social applications. One should always
have in mind, that applications in which the customer’s privacy gets lost are not suitable for the
market, regardless of the remaining product quality.

2.5. Ubiquitous Mobility

Mobile devices are nowadays usually permanent attendants, since accessability to other people
and information systems became an important part within business and social activities. Con-
necting remote data and services from every location and in a 24/7 manner is an enduring quest
within the enterprise IT industry. This liberty offers people many new opportunities and high
flexibility. However, area-wide correlating and interference-free wireless networks and a high
availability of physical access points in municipal areas are necessary technical infrastructures
to provide a seamless interconnectivity across heterogeneous platforms. This fact does not
correspond to our reality.

2.5.1. Degree of Mobility

[Per06] classifies mobility in three categories. In this sense the term Fixed indicates no mobility
at all. In contrast, Nomadic users access a system from different places with different devices,
whereas the location does not change during the interaction. Mobile users are also in movement
while using a service. In the last category the service quality typically depends on the user’s

2. Background 10

environment and speed. Furthermore, the evolution of enterprise mobility can be separated in
three phases [BTQ07]. In ’Phase 1: Islands of Connectivity’, Wi-Fi9 is deployed in collaborative
areas with limited connectivity. ’Phase 2: Pervasive Wireless’ represents an established Wi-
Fi network in a more cooperating manner like on a campus, by possibly augmenting some
segments with GPRS cellular data cards. Finally, ’Phase 3: Ubiquitous Mobile Networks’
deploys the WiMAX10 standard, whereby these municipal networks are seamlessly integrated
into cooperating Wi-Fi networks. Phase 3 could become reality in about five years [BTQ07].

2.5.2. Pervasive Computing

Ubiquitous mobility might be the final stage in the evolution of the mobile IT infrastructure. A
reliable connectivity between cellular data networks and Wi-Fi standards or WiMAX, has the
potential to provide a seamless interaction of private and public information systems, widely
accessable inside and outside major urban areas. According to [Sil07] ’Next generation carrier-
based services must reach parity with 802.11n in throughput and increase in availability while
decreasing in price’. Fourth Generation (4G) networks and according services like WiMAX
have the potential to let ubiquitous mobility become a realistic scenario. Nowadays several
smart phones already have built-in WLAN capabilities, which might be used as an alternative to
GPRS and Third Generation (3G) networks, whenever a connectivity to a local area network
can be established. As indicated in the last section, even if WLAN and WiMAX access points
and according device built-in capabilities will be highly available, only a smooth integration
into country-wide carrier networks enables real Pervasive Computing —anytime, anywhere, any
device [DD06].

2.5.3. Mobile Internet

In 2006 the term Mobile 2.0 was first used to manifest ideas of how the mobile Internet should
be utilized and how existing deficiencies might be eliminated. The Mobile 2.0 concept defends
the statement that the introduction of the Wireless Application Protocol (WAP) was a failure,
because the hypertext paradigm does not seem to be suitable for a mobile platform without the
support of pointer devices. Furthermore, it is mentioned that mobile applications should be based
on Mobile Widgets using HTTP or AJAX to communicate, as well as for storing local data and
for messaging purposes. Compared to WAP clients, Mobile Widgets are platform-independent
and customizable mini-applications with a higher responsiveness. These applications access
web content more precisely, hence web browsing becomes obsolete. The WidSets Service11 for
instance supports this paradigm. In this sense the smart phone as a communication/social device,
reacts if content is pushed to it or the user pulls content on the device. The Mobile 2.0 Manifesto
also stands in clear contrast to proprietary technologies like ActiveSync, BlackBerry, iPhone,
etc., because only open standards would create the prerequisites for an innovative evolution
of mobile platforms and -networks. The following list gives a summary of the Mobile 2.0
Manifesto as published by Fabrizio Capobianco12 [Mob06].

9Wireless-Fidelity; IEEE 802.11a/b/g networks with a data rate of up to 54Mbit/s; http://www.wi-fi.org
10Worldwide Interoperability for Microwave Access; IEEE 802.11n network with a maximal data rate per channel of

40Mbit/s and a cell radius of three to ten kilometers; planned as replacement for cable and DSL connections;
http://www.wimaxforum.org

11https://www.widsets.com
12CEO of Funambol - http://www.funambol.com/

http://www.wi-fi.org
http://www.wimaxforum.org
https://www.widsets.com
http://www.funambol.com/

2. Background 11

1. Mobile 2.0 is NOT a mobile Version of Web 2.0

2. Mobile 2.0 is all about Open Standards and Open Platforms

3. Mobile 2.0 is driven by Open Source

4. Mobile 2.0 happens with Flat Fee Billing

5. Mobile 2.0 is centered on Content and Messaging

Even if mobile web browsing seems to be unhandy on mobile platforms nowadays, smart phone
manufacturers try to overcome this lack through advanced web interaction strategies. According
to [KO08], the access rate to mobile web pages from Apple’s iPhone platform is higher as from
all other smart phones together. This is an interesting fact, since this proprietary solution has
only a market share of two percent today. The adaptions of the statements like mentioned by
Fabrizio Capobianco and a rapid penetration of Wireless Broadband Access (WBA) technologies
such as 3G/UMTS as well as a blurred All IP mobile- and wired Internet in the next decade,
would support an efficient utilization of most diverse services within the mobile IT. Moreover,
new web interaction concepts and the utilization of Web 2.0 technologies, as well as flat fee
billing for end-users, might give the web a new chance in the mobile domain.

2.6. Service-Oriented Communication

Platform extensions and web-based communication models within the mobile IT domain support
a flexible software development process and an integration with remote service endpoints as
part of a cumulative over-all system. Based on sophisticated hardware connectivity facilities
and software middleware layers, abstract service components enable a high-level focus on the
actual business logic architecture of applications. Furthermore, service-oriented computing in
the mobile domain is a novel paradigm in terms of allowing agile terminals to flexible utilize
document-based payload interaction strategies. Service endpoints are easily exchangeable or
extendable and they offer highly interoperable interface definitions for a varity of clients.

Capabilities on mobile platforms are steady growing. Built-in XML parsers and WS-I compliant
(see appendix Web Service Interoperability (WS-I) [A.5]) protocol implementations as well as
an awareness of identity-based interaction mechanisms enable a reliable integration of powerful
enterprise services into the application’s logic. In a similiar way, native functionalities and
optional tools for accessing operator- or device-centric services are available for the application
development process. Depending on the chosen programming language, those features allow a
more or less fine-grained access to service parameters. Operators typically have great opportuni-
ties for offering services to their customers, since they can fall back on the functionalities of
many infrastructure facilities and those services integrated by business partners. The mobile
service infrastructure is however widely open nowadays, and allows the development of cus-
tomized mobile solutions even without any network provider intervention. The mobile operator,
third party companies, or devices within a Personal Area Network (PAN) may likewise provide
a distinct piece of logic or some useful data for mobile platforms, within a single application
context. Furthermore, operators are currently re-structuring network facilities and they start to
offer web-based services as part of their infrastructure.

12

3. Analysis of Related Technologies

Homer: “Welcome to the Internet, my friend, how can I help you?”
Customer: “I’m interested in upgrading my 28.8 kilobound Internet

connection to a 1.5 megabit fibre optic T1 line. Will you
be able to provide an IP router that’s compatible

with my Token Ring / Ethernet LAN configuration?”
Homer: (pause) “Can I have some money now?”

— The Simpsons

3.1. Mobile Platforms

Technical issues of Mobile Java and the widely distributed Symbian OS with the according user
interface platforms are an important knowledge basis for mobile Java application developers.
Furthermore, this section covers Security aspects intrinsic to mobile platforms and applications
as well as Alternative Mobile Solutions. The last section discusses the meaning and the usage of
Mobile Development Frameworks for developers.

3.1.1. Java Micro Edition Platform

The Java programming language arose from a research project called Green Project in 1991.
The aim of this project was to create a central control unit for electronic household devices
while supporting a new developed programming language called Oak [Weß06]. The language
was not successful on small devices, but its platform portability and its rather simply to use and
quite powerful infrastructure led to a further development under the scope of Sun Microsystems
to reinsert it to manage more advanced tasks on capable host and server machines. Next to a
wide-spreaded and successful usage of Java within the Enterprise, Java for resource-constraint
devices known as Java Microedition (JavaME) is nowadays also important and highly available
for developing consumer- as well as business applications across multiple domains.

3.1.1.1. Architecture

Java’s scalability and the platform-independent language standardization also qualifies an
enterprise Java developer to create code for mobile end devices, as long as the developer is
familiar with the peculiarities of the Connected Device Configuration (CDC) or the Connected
Limited Device Configuration (CLDC), respectively. This is possible since JavaME is a subset of

3. Analysis of Related Technologies 13

JavaEE. The ECs1 with are responsible for the evolution of Java Technology are divided into the
JavaSE/EE and JavaME group, whereby effort is going on to build a tight integration between
JavaEE, JavaME, and Web Services. This allows enterprise developers to build consistent end-to-
end solutions by accessing intranets, databases and corporative services more easily and securely
using mobile Java applications. Figure 3.1 shows the Java Platform Architecture [3GA05] with
a focus on the JavaME components, which are discussed in more detail below.

Figure 3.1.: JavaME Platform Architecture

As illustrated in figure 3.1, JavaME is a set of specifications and technologies, which are
necessary to meet the requirements of the fragmented mobile device market. The Micro Edition
architecture is based on configurations, consisting of an adapted Java Virtual Machine (JVM)
and a minimal subset of Java Standard Edition (JavaSE) class libraries. The attention in this
master’s thesis lies on CLDC, which is the Java Platform for devices like smart phones. CLDC
is running the Kilobyte Virtual Machine (KVM) or optimized VM versions. Profiles are used
to extend configurations to provide the developer with additional libraries and corresponding
Application Programming Interfaces (APIs) for the management of essential device features
like the user interface, network connections and the lifecycle for applications. The Mobile
Information Device Profile (MIDP) in the second version is usually used in modern devices,
which is an important convergence in the industry to bring fragmented Java implementations
together. The CLDC and MIDP combination provides a complete Java Runtime Envirionment
(JRE) for executing mobile Java applications (MIDlets) on resource-limited devices [BM06].

1Executive Committees. An elected group of JCP members, which represents a cross-section of the Java Community.
The aim of this union is to select JSRs for development, supplying RIs and Technology Compartibility Kits
(TCKs) [3GA05].

3. Analysis of Related Technologies 14

Next to the CLDC/MIDP-based JavaME core functionality, device manufacturers and oper-
ators have the possibility to extend the profiles with optional functionality, implemented in
corresponding devices. This architecture allows the best adaption of the device capabilities
and constraints to a Java Environment [3GA05]. The specification of interfaces for Optional
Packages is coordinated by the Java Community Process (JCP)2 to ensure a vendor-neutral
application development. Dealing with such packages decreases of course the application
portability [Sch04].

The CLDC Reference Implemenation (CLDC-RI) and MIDP Reference Imlementation (MIDP-
RI) are used by manufacturers as support for setting up the corresponding functionality in
consonance with the underlying platform while offering the standardized Java APIs to the
MIDlets. Sun Microsystems offers application developers the Wireless Toolkit (WTK), a
much more convenient alternative to emulate JavaME device libraries from within Integrated
Developing Environments (IDEs). It also includes frequently used optional packages, building
tools, and generic visual device emulators by default.

3.1.1.2. Mobile Java Interoperability

In the year 2002, the JCP started to work on a Java Specification Request (JSR)3 called
Java Technology for the Wireless Industry (JTWI). The aim of this charter was to provide a
recommendation for manufacturers, for the inclusion of specific optional packages, to create
more consistent end-to-end solutions. Therefore JTWI is a seal of approval for the access of
devices functionalities with Java. The JTWI is getting adapted according to the mobile device
evolution. The inital JTWI specification included the Wireless Messaging API (WMA) and the
Mobile Media API (MMAPI) as additional fundamental packages. A JTWI-compatible device
implements the JTWI functionality and has to pass an extensive test suite [Sch04]. In 2006
a JSR called Mobile Service Architecture (MSA) was released to follow the same philosophy
like JTWI but with a target on high volume wireless handsets [BM06]. Furthermore, each JSR
provides a Technology Compartibility Kit (TCK) by default, which is a set of testing tools for
the implementation of the specification, provided by Sun Microsystems [3GA05].

3.1.1.3. Provisioning

For the provision of mobile applications an air interface called Over-the-Air (OTA) was defined,
to offer the customer a convenient way to obtain and install applications on smart phones by
requesting corresponding web addresses within the built-in mini browser. The underlying
infrastructure consists of a web based JAD Server holding the application descriptor files and a
JAR Server for the corresponding application packages. The application installer on the smart
phones is acting as the client. Additionally a Notification Server is used for getting feedback
from the installer and for application updating and billing purposes. The descriptor offers

2Founded in the year 1998 to involve system- and telecom companies into a standardization process of Java
technologies, while remaining open to improvements and innovations [3GA05]. The JCP is coordinating the
expert groups, which are working on JSRs submitted by JCP members.

3Document which is managed by Sun’s Program Management Office (PMO) for the JCP [JCP07]. JSRs may
be used to initiate a new Java specification process based on expert groups. A finished interface specification
usually results in a Reference Implementation (RI) to provide the correponding functionality and to validate the
correctness of a specification. JavaME-based JSR reference implementations are usually interesting for device
manufacturers. Based on JSRs, new revisions of whole Java platforms as well as small specifications are handled.

3. Analysis of Related Technologies 15

the installer relevant application properties for the installation process. The MIDlet-Jar-URL
attribute for instance holds the web address of the JAR package. The data transfer is entirly
based on HTTP [Sch04]. For more information on wireless networking issues see section
Wireless Networking [3.3].

3.1.2. Symbian OS Platform

To satisfy mobile user demands and to efficiently integrate new system functionality, an open
operating system was needed upon which developers can build advanced applications and
services. In 1998, major vendors like Nokia, Ericsson and Motorola found a shared new starting
point for this requirement in the Operating System (OS) EPOC, which envolved to Symbian OS
later on. Nowadays, Symbian OS has the largest market share and is the industry’s standard
choice for smart phones, since it also supports enterprise information systems.

3.1.2.1. UI Platforms

Unlike company-centric proprietary systems, Symbian OS is usually more rich in functionality
by making use of advanced C++ features, Object Oriented Programming (OOP) and APIs
[Sym07b]. Symbian offers several Software Development Kits (SDKs) for building C++ and Java
applications, including binaries and tools like the Universal Emulator Interface (UEI) [dJ04c]
to integrate with Sun’s WTK and IDEs for emulating MIDlets as well as deploying capabilities,
APIs and system documentations. SDKs are based on UI Platforms associated with device
User Interfaces (UIs) and a set of system applications, which are typically making use of
generic application engines of the OS. Installable, third-party applications (SIS and JAR/JAD
packages) have to be maintained by an SDK of a particular UI Platform, which is related to
a distinct OS version and supported by device manufacturers and by devices with according
capabilities, respectively. Common Symbian OS UI Platforms are UIQ, Nokia S60, Nokia Series
80, and Nokia Series 90. S60 has the biggest market share and is target for voice-centric smart
phones with information capability, supporting C++, Java, and Flash Lite by default. UIQ
and Nokia Series 80 based phones are information-centric and are therefore more suitable for
enterprise services. Series 90 phones introduce more advanced interaction features, like touch
screens [Sym03]. To ensure maximum interoperability, all these platforms have a Symbian OS
specific shared published API set, which is however often extended by device vendors to address
their special needs for the phone’s UI charateristics [Sym07a].

3.1.2.2. Development Environments

Several free tools are available for a standalone usage as well as for IDEs to support the
programmer and designer with a convenient graphical interface for accessing specific SDK
functionalities. Nokia for instance provides the so called Carbide development tools for this
purpose. Carbide.c++ is a bundle of Eclipse-based tools for Symbian OS development on
S60. Carbide.vs supports Microsoft Visual Studio in the same way and Carbide.ui is a full
WYSIWYG4 layout tool for mobile application designers. Nokia also provided a bundle for Java
development called Carbide.j, but since the popular combinations of Eclipse IDE with Eclipse

4What You See Is What You Get

3. Analysis of Related Technologies 16

ME and Sun’s NetBeans IDE with NetBeans Mobility Pack are suitable to offer similar features,
Nokia’s Java solution has become nearly obsolete [Nok07c]. Nokia also offers the so called
Prototype SDK for JavaME as optional package, which does not emulate a full JavaME platform
functionality, but instead offers a lightwight SDK and code examples specific to Nokia’s Java
reference implementation. This SDK contains several UI platforms emulators and provides the
developer with an earlier access to new specified Java APIs and a higher performance compared
to Sun’s WTK [Nok07c]. However this APIs may have been changed in SDKs later on, whereas
final MIDlets should be based on officialy released Java SDKs corresponding to real device
implementations. Symbian OS also supplies exclusive API extensions for C++ and Java to
access system functions not currently available in SDKs.

3.1.2.3. Introduction of Version 9.0

In 2005, Symbian OS Version 9 was introduced, whereby S60 Third Edition and UIQ 3.0 as
newly released UI platform versions aim to support an entirly new market landscape, based on
a new Symbian OS concept. Due to a radical architecture change based on new approaches
like a scalable UI architecture, a re-writing of device drivers was necessary which is why the
S60 Third Edtion is not binary compatible with S60 Second Edition platforms. The S60 Third
Edition Feature Pack 2 package furthermore introduces concepts like Web Runtime to allow
access to Web 2.0 features on smart phones [Nok07c].

3.1.2.4. Native Security Concepts

Essential changes at the design, architecture, core, and management level are coming along
with Symbian OS Version 9. Next to general improvements, a support for OMA standards (see
appendix Open Mobile Alliance (OMA) [A.1]), a new kernel for supporting realtime applications,
and an enhanced Symbian OS Security Model should better meet the requirements while retaining
the benefits of an open platform. The security framework delivers restricted access to sensitive
APIs and therefore to underlying trusted OS applications by defining Levels of Trust. About 40
percent of the OS API access are managed by this so called Trusted Computer Base (TCB). These
APIs are therefore signed and mapped to so called Capabilities (see appendix Platform Security
Capabilities [B.1]), which represent grouped types of similar protected functionality. A direct
access to Capabilities without user intervention is only possible for trustworthy applications.
In all other cases the user will be confrontated with a security warning and the application
has the most restricted access to the system functions. This strategy makes sense to protect
the user’s privacy, the device, and the network, but may be annoying while developing and
testing applications accessing signed APIs. For S60 Third Edition signing is mandatory in order
to be able to install native application on the platform, even if no protected capabilities are
used. The corresponding S60 Third Edition SDK provides therefore a self signing function
to get installable applications and to grant them access to essential resources. The propably
best solution for a developer of native code using capabilities is to order a free Developer
Certificate (DevCert) offerd by Symbian’s official testing program. This certificate allows
individual Symbian developers for a period of six months a trusted access to protected APIs
on a single device, identified by its unique International Mobile Equipment Identity (IMEI)
number [Car].

3. Analysis of Related Technologies 17

3.1.2.5. Java Security Concepts

MIDP 2.0 defines a specific JavaME Security Model with four possible protection domains for
MIDlets, whereas signing is not mandatory. Applications belonging to the Untrusted Third-
Party Domain are not signed and display a warning before the installation starts as well as
permission requests before accessing capabilities. MIDP 1.0 applications are untrusted by
default. In the Trusted Third-Party Domain applications are official tested and signed. However,
this domain does not remove all permission intervention with the user completely by default.
In this domain the permission dialog behaviour may be influenced by the user by configuring
the appropriate system settings, whereby all permission dialogs can be disabled for trusted
ones and a some few ones for untrusted domain applications. Operation Domain applications
have free access to all underlying APIs without asking for any user permissions. Finally,
with Manufacturer Domain applications also accessing hidden APIs is possible. In the last
case the manufacturer is responsible for signing such specific applications [Nok05]. Signed
MIDlets are allowed to request permission for sensitive APIs quoted by the developer. The two
attributes MIDlet-Permissions and MIDlet-Permissions-opt are therefore available in the
application’s Manifest and in the according descriptor. Using the JAD approach for defining
required capabilities is usually making more sense, because in this case it is possible to check
the existence of the necessary platform functionality already during the installation phase. If
this check fails or the user declines a capability access, the installation will be cancelled and the
corresponding JAR package is not downloaded [Sch04]. Moreover, the nature of Java application
execution as intepreted byte code within a Sandbox (cf. JVM) protects the system additionally
against malicious code.

3.1.2.6. Deployment

For Production purposes, the final application must be passed through the official corresponding
Testing Program in order to ensure an adequate quality of the end product and to get digitally
certificated. The OS Application Management System (AMS) installer performs a verification
of this Digital Signature (key) against a device intern Root Certificate (lock) from a trusted
Certificate Authority (CA). A correct signature allows applications accessing protected function-
ality on compatible Symbian OS devices as long as the certificate is valid (usually one year).
Symbian also offers developers to sign their final applications as freeware without any costs as
long as the program is innovative enough and providing its content in the SIS or PKG format.
This also includes non C++ projects as long as the according development tools support this
package format [Nok07a]. In 2004 Symbian Signed as official testing program for native appli-
cations and Java Verified as official testing program for MIDlets have been founded to prevent
a further fragmentation of the existing testing area at this time [Nok05]. These two programs
are the industry-wide agreed standard testing programs which allow mobile applications to be
distributed on mass-market devices.

The Symbian Signed testing and certification procedure presumes three steps. First the publishing
developer or organization a.k.a the Independent Service Vendor (ISV) obtains an Authenticated
Content Signing (ACS) Publisher ID from TCTrustCenter which is the Certificate Authority
chosen by Symbian [Sym07a]. This Publisher ID effectively provides assurance of organisational
identity. Second, the publisher signs the application with this ID certificate and pre-tests against
the Symbian Signed Test Criteria on own devices. As a last step the application is submitted
to an registered and independent test house for a testing phase of around one week to get the

3. Analysis of Related Technologies 18

certificate. Symbian’s trusted partners and large ISVs have also the opportunity to join the so
called Shelf Certification Program as a replacement of the last required step [Car].

For MIDlets the Java Verified Program (JVP) ensures an adequate level of code quality through
the Unified Testing Initiative (UTI) guidelines. A MIDlet is signed with the UTI Root Certificate
if the candidate fulfills the UTI test criteria. This certificate is also stored on the corresponding
device for validation purposes later on. The MIDP specification does not allow to add new
certificates on S60 Third Edition platforms [Jav07]. In the signing procedure, first the submitted
JAD/JAR file content is examined and pre-tested by the ISV. As a further step, the ISV’s
chosen testing house uses the asymmetric cryptograhic RSA algorithm to sign the application
to provide assurance of organisational identity. Therefore, a X.509 Public Key Infrastructure
(PKI) certificate [Jav04], related to the ISV and signed by another trusted CA (e.g. Verisign), is
used. In the actual encryption step the application’s checksum is signed by the ISV’s private
key and stored in the MIDlet-Jar-RSA-SHA1 property field of the descriptor file as a Base64
encoded string value. This unique value is the signature of the ISV. Under normal conditions
this value is sufficient to prove the authenticity and the integrity of the application by decoding
and decrypting it with the ISV’s public key. Since this requires the AMS’s awareness of
every public key of a possible ISV resulting in a large list, another approach is necessary for
resource limited devices. For this reason, the MIDP 2.0 application descriptor also defines a
MIDlet-Certificate property field for storing the UTI Root Certificate. In MIDP 2.0 it is
even possible to store certificate chains in the descriptor. Finally the ISV gets back the signed
and certificated application through the JVP program. Since the application signature is based
on the content’s checksum, a MIDP 2.0 compliant device can also check its integrity to detect
unauthorized code manipulations. This also means that updating the content (including non-code
resources) by the ISV will invalidate the signature [Sch04]. Figure 3.2 illustrates the verify
process and the tasks of the involved parties.

Figure 3.2.: Workflow of signing MIDlets with the Java Verified Program

3. Analysis of Related Technologies 19

3.1.2.7. JVM Support

As mentioned in section Mobile Java Interoperability [3.1.1.2], every new JSR specification
must pass a TCK. However this does not prevent different implementations of the same JSR.
Often vendors provide the mendatory JSR functionality in subtle ways and optional JSR features
are implemented arbitrarily. Due to this fact, it is sometimes important that Java developers know
implementation-specific gaps even when creating standard JavaME applications for Symbian
OS platforms.

Java development protects the programmer from dealing directly with the complexity of OS
specific features, but the use of high-level Java APIs is sometimes a restriction in case of
reqirements for a specific OS functionality to solve a distinct problem. On the other side, more
expensive C++ solutions have full feature access capabilities while decreasing execution latency,
since they run as native OS processes [dJ04a]. Anyway, Java’s portability and security model
are crucial aspects for the wide support of Java Virtual Machines (JVMs) over many platforms
and the precense of a huge Java application development community.

Symbian OS is a fully multitasking system providing multiple processes and included threads.
The OS is based on a Client/Server Framework whereby the server offers services to corre-
sponding clients. Active objects are scheduled by a single Event Handling Thread instead of
spawning threads on requests, like in other operating systems. Symbian OS actually supports
a port of Sun’s CLDC HotSpot implementation of the VM (refered to as CLDC HI VM) for
improving performance of MIDlets, compared to the former KVM implementations. The CLDC
1.1 HI VM is also able to handle floating points, which offer a wider application spectrum. The
VM itself runs as a native thread within its own process. To enable Java components to receive
callbacks from native code a so called Java Event Server runs externally to the VM as a native
thread, which makes use of the OS Client-Server infrastructure. Java threads are either mapped
to underlying OS threads or represent platform-independent lightweight threads of the VM.
An OS supporting CLDC HI VM, only uses the portable lightweight thread model. Unlike
the CLDC HI VM, the MIDP environment is implemented by Symbian, whereby an optimal
performance for Java applications and a similar behaviour and Look-and-Feel like their native
counterparts can by ensured. Consequently Symbian’s CLDC/MIDP implementation is based
on JavaSE and the Java Native Interface (JNI) framework. Furthermore Symbian only imposes
restriction for MIDlets in terms of memory limits. The amount of Record Management System
(RMS) records, Java threads, and socket connections are arbitrarily defined by the developer.
There is also no limit of the installable MIDlet JAR file size and the initial CLDC HI VM heap
size of usually 400kB is adapted dynamically while executing MIDlets [Sym].

The OS Application Management System (AMS) controls the creation, starting, pausing, and
deconstruction of MIDlets and switches therefore (between) the MIDP-specified lifecycle states
ACTIVE, PAUSED, and DESTROYED. As soon as an executing program has to be interrupted,
due to allocating device resources to higher priority tasks, the PAUSE state ensures that the
automatically backgrounded MIDlet only consumes essential resources and releases shared
ones [dJ04b]. However, in practice this behaviour is not always controlled by the AMS logic,
since the circumstances under which the corresponding pauseApp method is called, vary among
UI platforms designs. For UIQ the AMS is acting like expected, but not so the AMS for S60
platforms. In this case the developer has to provide the necessary functionality by monitoring
the MIDlet’s display state, to activate the PAUSED state manually [Sym]. In the DESTROYED
state transient MIDlet data should be eligible for garbage collection. [dJ04b]

3. Analysis of Related Technologies 20

Application runtime errors and exceptions may originate from Java or native code. If abnormal
conditions are encountered in native code, function calls provide an integer error code (C++
exceptions are not supported yet) to the calling Java method. In succession a Java exception
appended with the Symbian OS Error Code is thrown. Since System.out and System.err are
absent in JavaME implementations, on-target debugging is unconvenient by default. Moreover,
it is crucial to deploy and test the MIDlet frequently and in an early development stage, since
software emulators are often unreliable and do not mirror the exact device behaviour [Sym].

In 2007, Sun introduced the JavaFX product family. This technology is targeting content
developers and application designers by enabling an easy and flexible enrichment of applications
with multimedia content and advanced user interfaces. JavaFX and JavaFX Mobile provide
features known from Swing, Java2D, Java3D, JMF, etc. within a script language, but with
optional islands of pure Java code. JavaFX might become a serious technology in the mobile
domain competing Adobe’s Flash Lite and Microsoft’s Silverlight implementations.

3.1.3. Alternative Platforms

Additionally and concurrently to the Symbian OS, several other open mobile platforms like
BREW, Linux-based Systems, Windows Mobile, Palm OS, etc. as well as the proprietary
approaches of BlackBerry and Apple’s iPhone are under steady development and usage. Some
of them are also targeting at the non-smart phone domain by providing mobile frameworks
for building software systems on devices with more or specialized capabilities like Internet
tablets. Figure 3.3 gives an overview of mobile platforms and commonly available development
environments.

Figure 3.3.: Mobile Platforms and their Association with SDKs

3. Analysis of Related Technologies 21

3.1.3.1. Symbian Extensions

Since Symbian OS is a non-proprietary operating system it is scalable for supporting environ-
ments for language independent code execution. Runtime environments, which are ported to the
mobile domain often arose from open source projects based on languages like Python, Ruby,
Perl, OPL, Simkin, etc. [Sym07a]. Python for S60 a.k.a PyS60 was initiated by Nokia and
is frequently used for rapid prototyping purposes and also supports on-device programming.
Phyton scripts can be deployed as libraries or as executable .sis applications, through the usage
of conversation tools [Mob07]. In 2007, Symbian introduced P.I.P.S Is POSIX on Symbian OS
(P.I.P.S) libraries [Sym07c] for supporting the migration of existing commercial and open source
desktop and server components (E.g. middleware, web servers, and database systems) as well as
mobile applications to Symbian OS. P.I.P.S therefore enables easy Open C application porting
and developing, while bringing the benefits of Linux to the S60 platform. About 75% of the
Open C APIs, which are based on well-established open source projects within thousands of
desktop-, server-, and embedded software products, are available on the mobile platform. Open
C development also avoids a time-consuming incorporation into Symbian specific C++ APIs.
P.I.P.S and the Open C extension are now available as plug-ins for third edition devices and will
be firmely integrated into Symbian 9.5 smart phones.

3.1.3.2. Linux

Founded in 2005, the Nokia hosted Maemo5 platform is an open source project used to mobilize
GNU Linux based desktop applications using Nokia’s Internet tablet devices. The aim is to
have a full Internet experience in pocket-size format by supporting Wi-Fi Internet connections
and a rich user interface in form of the GNOME based Hildon UI, developed for resource
limited devices. Furthermore a full Mozilla Gecko Engine provides a sufficient web runtime
on the tablets. Within the mobile Linux world, BlueCat6 by LynuxWorks is another approach
to mobilize applications with a supported realtime performance on smart phones, by using the
kernel 2.6 as underlying engine.

As a further promising Linux-based platform in an early development stage right now, Android
represents an open software stack for developing mobile Java applications. The Android platform
was initited by Google as an open handset alliance with 33 partners from the IT industry and
Google expects an availability on the market under a Apache v2 Licence in late 2008. Based on
the 2.6 kernel Android will include libraries from other open-source projects and the WebKit web
engine which is already used for web browsing on Symbian S60 and Apple’s iPhone. As a virtual
machine, Android introduces Dalvik VM which is a register-based VM optimized for resource-
limited devices and proprietary code execution, not suitable for interpreting standard Java byte
code. It is therefore not compatible with JavaSE and JavaME7. Application development is
primary based on Google’s Android packages including the graphic libraries. All applications
for Android are developed in the Java programming language, regardless of whether these are
system components or third-party consumer applications. According to Google, this strategy will
enable the development of mobile Mashups for a communication between different applications.
The development of an own device for the Android platform following the iPhone concept is
expected [Gla08].

5http://maemo.org
6http://www.lynuxworks.com/embedded-linux/embedded-linux.php
7Only the java.nio, java.util, and java.lang packages will be available for development.

http://maemo.org
http://www.lynuxworks.com/embedded-linux/embedded-linux.php

3. Analysis of Related Technologies 22

3.1.3.3. BREW

The Binary Runtime Environment for Wireless (BREW) by Qualcomm is an open platform
approach with many possibilities for a wide-spreaded spectrum of mobile IT players. The
BREW C++ based framework has low level hardware access capabilities by supporting a
language neutral application execution including MIDlets. With this end-to-end solution it is
even possible to install JVMs on demand, which are handled as ordinary applications by the
BREW infrastructure. Due to the BREW Distribution System (BDS) as a key element with
wireless data service delivery and billing features, Qualcomm created a suitable business model
for the wireless economy. After passing a BREW specific test, applications can be browsed
and OTA downloaded from the operator’s application repository. The platform uses a virtual
handshake between the handset and the BREW Application Download Server (ADS) to meet
installation requirements including a transparent JVM extension download for running Java
applications on non-VM resident BREW devices. BREW therefore offers a flexible virtual
marketplace for developers, operators and customers. Qualcomm argues that BREW provides
a seamless layered device interaction from high level to low level platform functionality, in
contrast to stand-alone operating systems with additionally third party platform components,
which should allow BREW applications a much easier device portability [Qua03]. The BREW
approach has indeed several advantages, but nevertheless its development is bound to a single
company, which naturally excludes rapid innovative implementations necessary for a dynamic
mobile market. Since a JVM is natively shipped with nearly every handset nowadays, deploying
Java applications on those devices is not really a handicap, which makes the descript BREW
concept almost obsolete by even additionally introducing more overhead when executing Java
applications on BREW platforms.

3.1.3.4. BlackBerry

A further innovative end-to-end mobile solution with a focus on secure mobile enterprise and
standard Internet services offers BlackBerry8, which is a device vendor as well as a platform
and service provider. BlackBerry’s research subsection Research in Motion (RIM) provides
the necessary hardware components. BlackBerry implementations cover client- and server-side
components for seamlessly accessing email accounts, enterprise data, web pages as well as
enabling standard voice and messaging services. Even if the company manufactures own smart
phone series, the architecture of the BlackBerry Enterprise Solution for companies and the
BlackBerry Internet Solution for medium wireless business solutions and individual services also
enable access to the BlackBerry infrastructure from foreign operation environments by using
the BlackBerry Connect platform extension. Within the web service based enterprise domain a
specific Enterprise Server (BES) for involving Mobile Data System (MDS) applications is re-
quired. Since standard network protocols are incorporated, existing server-side applications can
be extended to operate with thin- or thick client MDS’ regardless of the underlying technology
by providing a centralized administrative console for managing system aspects. The BlackBerry
smart phone clients run a Java-based operating environment with a customized BlackBerry
JVM for only supporting a MDS-specific MIDlet execution environment. The development of
enterprise and MDS applications is supported by the BlackBerry MDS SDK as well as through
a corresponding IDE support (BlackBerry MDS Studio), Microsoft Visual Studio extensions and
tools.

8http://na.blackberry.com/eng/

http://na.blackberry.com/eng/

3. Analysis of Related Technologies 23

This wireless proprietary all-in-one solution offers a consistent and scalable mobile enterprise,
Internet and electronic mail concept, but since it is a closed and company-coupled approach
the corresponding company business models are close tied to a specific technology (e.g. only
distinct mail servers are supported). Furthermore MDS application developers have restricted
capabilities of building a customized infrastructure according to potential future needs or an
additional money investment in foreign software components and licences will be necessary.
Nevertheless BlackBerry has an advanced security model which is according to [Bla06] usually
more suitable for enterprise information systems than the security concepts of ordinary smart
phones. The 3DES or AES encrypted convidential data transfer from a static BES server to
a mobile BlackBerry client is routed over three worldwide distributed and RIM controlled
Network Operation Centers (NOC) to the distinct mobile networks. The necessary keys are
protectively stored only within the communication end points, unaccessable through third party
MIDlets [A-S04]. Several case studies performed by Symantec, Secorvo and CESG attested the
BlackBerry security concept as sufficient. In 2006, BlackBerry’s security arrangements were
even certificated as government and NATO suitable [Bla06].

3.2. Mobile Software Development

In this section the peculiarities of developing MIDlets for the wide-spread Symbian OS Platform
will be discussed and the pilosophy behind corresponding frameworks and tool suites will
be presented in order to maintain a suitable and efficient development process by supporting
advanced mobile concepts, reusability and reducing the time to market. Therefore an important
question for ISVs usually related to mobile application development will be:

’If we write an application for one Symbian OS phone, how much work will be
involved in getting it running on a different Symbian OS phone, running possibly
on a different UI platform?’ [dJT04]

3.2.1. Code Efficiency

The heterogenity of mobile platforms with different vendor-specific device features is one of
the main reasons for the introduction of independent mobile frameworks and tools to overcome
some of these problems. Furthermore the MIDP specification leaves not much space for an
adaption of the application development process and a customization of the mobile application
in respect to extensions. Some known limitations for the developer are the poor support for a
reliable debugging, an unchangeable standard Look-and-Feel for LCDUI software components,
and the unmanageable varity of aspects to consider while developing cross-platform applica-
tions. However, the usage of extending frameworks during the development process normally
introduces some overhead in memory and CPU cycles, whereby the developer should be aware
of methods to reach the best ratio between efficient code execution and the maintenance of the
desired functionality. Particulary a solid knowledge about the underlying executing environment,
about its properties and restrictions is always an important aspect for a software developer when
designing and writing code, and still much more important for a mobile and embedded software
programmer.

3. Analysis of Related Technologies 24

3.2.1.1. Application Design

Independent of a particular extending framework, a native MIDlet suite should ideally be
designed in a way, to maximize its performance and to minimize its memory footprint as well as
to meet the requirements of mass market, cross-industry devices. Due to this fact, deploying
mobile applications is based on development and optimization of code for different platforms
by default. In this respect, it is also important to consider that a code target for possibly the S60
platform is hard to modify to run on less advanced Series 40 devices. This is often a crucial
and necessary aspect especially when developing Business-2-Consumer (B2C) applications
related to a huge user base and several UI platforms. Faulty implementations in firmwares can
furthermore lead to unpredictable failures when accessing specific device features and sometimes
even carriers modify devices to support provider-specific services. Therefore, designing the
implementation process is a challenging task, where to find some common ground on which to
base the central application features. This functionality is then optionally extended through more
specific JSR-APIs and frameworks, optimized for a subset of platforms or even for common
device models. This results either in one application bundle per device which is uneconomic in
terms of application maintainance and signing, or one JAD/JAR bundle for all devices [Vir05].
In the second approach, the device variances are handled by the application logic at runtime. The
described strategy is supported by the JTWI and MSA initatives mentioned in section Mobile
Java Interoperability [3.1.1.2].

3.2.1.2. Execution Speed

The code execution speed of MIDlets depends on several aspects and some of them can be
influenced more easily than others. In general one known issue is that Java programs spend about
90 percent of their execution time in 10 percent of their code and a major part of the program
deals with function calls to external libraries [Nok04a]. For that reason it is more suitable to find
bottlenecks in the source code rather than to optimize each line of code. Furthermore, MIDP
implementations are vendor specific, whereby their performance varies among each device and
even among different versions of the same model. One way to measure performance and to
find bottlenecks respectively, is to use the WTK Profiler tool as a part of the WTK emulator. It
generates statistics during code execution in terms of method calls and CPU utilization. However,
this measurement must always be seen in relation to a device platform with possibly 200MHz
clock rate and a few mega bytes of heap memory. On real devices, bottlenecks may be verified
by enclosing suspicious code within System.currentTimeMilis() statements and observing
the result through some kind of logging strategy. To overcome performance problems, a
balanced multi-threading strategy, a replacement of the underlying network protocol or avoiding
recursive algorithms are typical points of improvements when executing code on an MIDP
platform. Unfortunately, managing multiple threads also increases the application complexity
and decreases code maintainability. Also static and synchronized access modifiers as well
as Java’s synchronized container data structures like vector or stack, should be used rarely in
respect to performance and memory issues [Vir05]. To prevent a possible code reengineering
later on, MIDP-specific performance aspects should already be considered during the application
design process.

3. Analysis of Related Technologies 25

3.2.1.3. Network Connections

As mentioned in the section above, performance considerations for cellular network-based
connections are another important issue, when designing a mobile application. Avoiding
unnecessary data traffic speeds up the application, increases the overall usability and prevents
additional service costs for the end user. The connection bandwidth has usually a major impact
on networking speed when dealing with a huge amount of data, while networking latency is
more relevant, when exchanging small data chunks between network nodes. As with other
time-consuming tasks, a network interaction should run within a separated threaded environment
to prevent a blocking of the main thread during the operation. Within the mobile networking
domain asynchronous service connections are usually not available. Even if a Domain Name
Service (DNS) allows a flexible remote service access, the name resolution slows down a service
and a hardcoded addressing is often the better choice within MIDlets9 [Vir05]. Due to the higher
HTTP round-trip times of wireless networks compared to the wired ones, a Proxy Servlet or a
similar approach might be used to gather all necessary information for sending the requested
data in one go. Such an intermediate node may also be useful if a MIDlet is otherwise forced
to handle complex XML-based network protocols directly [Nok04a]. However, nowadays
rudimentary but efficient XML parsing and messaging on high-end devices can be done without
a big overhead, which moreover provides the foundation for a pure and flexible integration of
the mobile device in service oriented infrastructures. This offers a varity of new application
opportunities (see section Service-Oriented Computing [3.4].

3.2.1.4. Application Size

Unlike ordinary software packages, the file size of the final mobile application package should
be as small as possible to reduce OTA download costs and to prevent high memory consumption
on the device. During the design phase this might be considered by composing functionality
and therefore reducing the number of classes, while finding a trade-off between application size
and an adequate application structure corresponding to a particular problem. For a feature-rich
mobile application it is however wiser to build an intuitive, modular and well-maintainable
package-based implementation structure, rather than caring too much about the size of the
application itself. Due to the additional overhead, the heavy usage and implementation of OO-
design patterns and abstractions should also be somewhat restricted within a resource-limited
environment, as well as an unnecessary deployment of full MIDP libraries, if their functionality
is not completely exploited during execution. In respect to the package size, Obfuscators are the
most useful tools during the building process. Depending on their implementations they remove
unused code and efficiently map the content of the source code to equivalent, but significantly
shorter character sequences. This usually results in a faster code compilation and class files,
which are about ten percent reduced in size [Nok04b]. Decompiled obfuscated byte code
generates hard to understand source code, protected against unwanted reuse. Finally, application
resources such as images should be as small as possible.

9Especially when it can be assumed that the service resides on the same machine for a longer period of time.

3. Analysis of Related Technologies 26

3.2.1.5. Memory Consumption

The memory heap size for MIDlets may reach from about 150kb for MIDP 1.0 devices up to
several mega bytes for high-end MIDP 2.0 phones. Since MIDlets are able to run concurrently
on S60 devices, requesting a guaranteed value for already allocated resources from the runtime
is not possible. To efficiently utilize the shared and expensive memory resource and to accelerate
code execution, reusing objects should be favoured over creating new ones and outdated object
references should be released for garbage collection whenever possible. Therefore, it is wise to
use some kind of clean-up tasks within the code, to set currently referencing variables directly
to null during runtime. This also avoids memory leaks. The CLDC HotSpot VM garbage
collection process is releasing dynamic memory quite effectively, by handling about a thousand
of unreferenced objects per second [Nok04a]. Consequently, the developer has to find a good
trade-off between execution speed and memory consumption.

3.2.1.6. Application Testing

Software emulators and corresponding tools shipped with Sun’s WTK and UI platform develop-
ment kits may support mobile application development. However, such features should be used
with care, due to unmapped execution differences to real devices and erroneous implementations.
In this sense, verifying application code on a varity of real devices is essential before releasing
a product to the market. Nokia offers therefore the so called Remote Device Access (RDA)
technology [Nok07b], which is a distributed testing infrastracture consisting of a Nokia device
pool, situated in a lab. When using this free-of-charge service, the developer is able to deploy
the application bundle directly on the remote devices via an Internet connection, whereby
the corresponding device screen is transferred to the local desktop in realtime. In this way,
implemented features may be efficently tested without the need to have several devices in the
actual surrounding.

3.2.2. Frameworks and Tools

As mentioned in the section Motivation - Mobile Internet [2.5.3], it is considered that the
mobile platform is currently within an evolution process towards a changed web accessability
paradigm called Mobile 2.0. Frameworks and tools are supporting various stages within the
mobile software development cycle and may be the driving force for building advanced mobile
applications not only for the Mobile 2.0 era, but also for contemporary services.

Mobile frameworks address issues of Device Management, Graphical User Interfaces (GUI),
On-Device Debugging, Code Maintainability, Service-Coupling, etc. and are therefore extending
mobile standard implementations. According to [Vir05], ’Thanks to the different behaviour of
the devices, creating stable APIs for J2ME is quite a challenging and complex task’. A developer
should try to use proven and stable third-party APIs instead of creating own implementations
whenever possible. However, intrinsic to the integration of any third-party products into own
projects, the developer’s final work also depends on the support through other vendors. In the
worst case, serious bugs may be part of a framework over a long time which usually restricts
constitutive code. In the next sections some promising framework implementations are briefly

3. Analysis of Related Technologies 27

described. All of them aim an efficient software development process which also considers time
to market issues.

3.2.2.1. J2ME Polish

The architecture of the open source mobile development suite J2ME Polish10 from Enough,
extends the JavaME implementation and is divided into a Build Framework, a Client Framework,
IDE Plug-ins, and Stand-Alone Tools.

The Ant-based Build Framework extends the project’s Ant file and enables a customized code
Pre-Processing, as well as an XML-based project configuration and a framework-specific
resource integration. An exhausting and ajustable mobile Device Database in form of an XML-
based document, is one of the resources which may be included in the building phase. This
database allows the developer to customize a mobile project for a specific device or UI platform
with the help of code-intern pre-processing variables and stored device capabilities. The Locale
of the application’s GUI and shared global variables may be defined through further documents.
The build therefore results in a tailored JAD/JAR bundle, which should be portable on the
aimed devices without any problems. With this strategy different versions of an application
may be deployed with less effort. The framework even considers known platform-specific
bugs, which is however no guarantee for a proper deployment on real devices. One of the
most useful components is the Logging Framework, customized and also deployed by the
developer on the handset as part of the application bundle. The implementation is reacting on
System.out.println() statements annotated with pre-processing variables, and configured
to be called on thrown exceptions by default.

The Client Framework consists of APIs for an advanced mobile Java development. The most
important and most innovative one is an extension of the MIDP’s high level API. This GUI
extension separates the UI design from the application logic, which improves the code main-
tainability. The designer’s work is only based on the definition of an according Cascading
Style Sheet (CSS)11, which refers to the application’s UI components (e.g. screens, text fields,
choice groups, alerts, etc.). This web-based design concept enables a much more customized
Look-and-Feel than a pure MIDP approach (e.g. transparent items, animated backgrounds and
menus, tabbed and framed forms, etc.) and therefore a greater user experience. The Client
Framework also covers a Game Engine and Utility Classes to support for instance some useful
JavaSE programming features. JavaME Polish also enables an extention of the framework itself
through third-party APIs or own Java-based libraries. The framework may be seen as the next
step of the open-source approach Antenna12. Antenna is also a mobile framework based on Ant
tasks and delivers a similar functionality as the Build Framework from Enough.

3.2.2.2. Enterprise Integration

For distributed Business-2-Business (B2B) applications, aspects like data accessability, data
synchronization, service security, service agility, database management, a rapid development,

10http://www.j2mepolish.org/; The framework’s name still refers to the former notation of the Java Microedi-
tion Platform. Since the product is well known under this name, the master’s thesis refers to it as such.

11Also allows the usage of pre-defined, static, and dynamic styles.
12http://antenna.sourceforge.net/

http://www.j2mepolish.org/
http://antenna.sourceforge.net/

3. Analysis of Related Technologies 28

and a long-lasting inter-domain communication structure are typically more important than
enhanced GUI features and the support of a maximum of devices. Companies and research
institutes typically develop, involve or extend abstract middleware layers to customize complex
business models and mobile information systems according to their needs. The resulting
implementations might be divided into several adaptive and loosely coupled service components
which encapsulate platform- and network specific implementation aspects like described in
the sections above. Such systems are often based on proven middleware implementations,
specifications and tools which usually support an efficient application development process.
Representives of such platforms for the mobilized enterprise domain are for instance Open
Mobile IS13, EQUIP14, and the Multichannel Adaptive Information System (MAIS) framework
[Per06], which are however not discussed in more detail, since they are not of pratical relevance
within the master’s thesis. Instead, the thesis will present the architectural concepts behind such
large-scale systems (see section Service-Oriented Computing [3.4]).

3.3. Wireless Networking

3.3.1. Cellular Networks

The elimination of the monopolistic telecom infrastructures and the formation of competitive net-
work providers in the 1990s led to an international acceptance of the Global System for Mobile
Communication (GSM) and technology-related standards. GSM and the increasing miniaturiza-
tion of digital components resulted in a further price collapse for end user devices. Nowadays
wireless packet-based wide-area networks and corresponding interfaces are established, which
are the foundation for more advanced cross-network information exchange strategies and a
variety of potential mobile services.

Due to physical and terrain-specific15 conditions, the electro-magnetic signal strength decreases
with the fourth potency to the distance from an emitting antenna, resulting in an additional
complexity while maintaining a cellular network. Furthermore, overlaying signal transmissions
cannot be isolated like in the case of wired channels. A reliable wireless communication for a
huge user base is therefore only possible through expensive time- and frequency multiplexing
methods16 [Rot02]. The complexity of cellular network infrastructures typically leads to high
investments for the operator.

3.3.1.1. GSM

The Groupe Spécial Mobile founded in 1982, defined the GSM standard and joined the European
Télecommunication Standards Institute (ETSI) as Technical Committee (TC) in 1989. GSM
was introduced in 1992 as mobile communication standard of the Second Generation (2G).
The digitalized 2G network is designed to support millions of mobile devices while allowing
multiple independent GSM networks within the same area. GSM also introduced the popular

13http://www.openmobileis.org
14http://equip.sourceforge.net
15Signal reflexions on objects such as buildings and system-independent jamming sources.
16The same frequency can be used within different GSM cells as long as the distance between the corresponding

antennas is high enough

http://www.openmobileis.org
http://equip.sourceforge.net

3. Analysis of Related Technologies 29

Short Message Service (SMS) as additional asynchronous communication infrastructure. The
GSM standard works with a data rate of 9.6 kBit/s and includes several frequency domains
with different channel numbers, as well as one Uplink and one Downlink for each domain. The
GSM900 and the GSM1800 domains are often used, whereby GSM900 occupies the 890-915
MHz frequency band as uplink and the 935-960 MHz frequency band as downlink. GSM1800
uses 1710-1785 MHz as uplink and 1805-1880 MHz as downlink [Gut07]. Country-wide
wireless base stations, Handover and Roaming functionality between stations, and the detection
and suppression of jamming sources, are supporting a reliable mobile communication in the
entire country and also abroad. The GSM standard is the infrastructural base for more advanced
cellular network concepts like HSCSD, GPRS, and EDGE, also referred to as 2.5G networks
(see section GSM Extensions [3.3.1.2]), as well as for next generation networks (see section
UMTS [3.3.1.3]).

The GSM architecture consists of three subsystems. The Operation and Maintenance Subsystem
(OMSS) is used by the operator for administration and controlling purposes. For the management
of the network internal user data and for the accessability to external networks, the Mobile
Switching and Management Subsystem (SMSS) has been specified. Finally, the Base Station
Subsystem (BSS) is responsible for accessing the actual Mobile Stations (MS)17.

The communication between an MS and the GSM network is performed through the air inter-
face18 of the Base Transceiver Station (BTS) related to a distinct GSM cell. Due to economic
reasons, BTS clusters are controlled by a Base Station Controller (BSC), which is furthermore
under the care of the Mobile Switching Center (MSC). Data exchange to foreign networks
goes through the Gateway Mobile Switching Center (GMSC) as well as through the Interna-
tional Switching Center (ISC). The network management is the reponsibility of the Operation
and Maintenance Center (OMC). Multiple GSM databases are available to manage the users-
centric data: Equipment Identifier Register (EIR), Authentication Center (AUC), Home Location
Register (HLR), and Visitors Location Register (VLR) [Rot02]. Figure 3.4 illustrates the intro-
duced compontents and their relationship to each other. The specific GSM components are not
addressed in more detail, since this does not lie within the focus of this master’s thesis.

Each user-related Subscriber Identity Module (SIM) contains a globally unique International
Mobile Subscriber Identity (IMSI)19 which must be readable by the MS before a user is allowed
to log into a particular GSM network. Also the built-in International Mobile Station Equipment
Identity (IMEI)20 of the used MS is determined by the provider to be able to identify the
behaviour21 of a connected mobile device.

3.3.1.2. GSM Extensions

The High Speed Circuit Switching Devices (HSCSD) technology is an early improvement of
the GSM capabilities, which became too limited for some applications. Through a better data
encoding and a multiplexing of several channels, HSCSD increases the theoretical data rate to
115.2 kBit/s under adoptable setup costs. Used a pure GSM-compliant handset, the end users
had to exchange their devices by an HSCSD enabled one. As it is the case with GSM, HSCSD

17GSM terminology - all mobile devices related to the GSM standard.
18The remaining network component communication infrastructure is usually based on fiber optics.
19Stored in the provider’s HLR.
20Stored in the provider’s EIR.
21The IMEI’s are tracked in lists to identifiy currently used, stolen, or outdated devices.

3. Analysis of Related Technologies 30

Figure 3.4.: Relationship between GSM Network Components

also is a Circuit-Switched technique, which means that the end user has to pay for a service as
long as a connection is established. This behaviour is not suitable for mobile web connections,
which are working in a dialog-oriented manner.

To allow a smooth accessability to Packet-Oriented networks22 within the mobile domain and
a better utilization of network resources for data-oriented services, the General Packet Radio
Service (GPRS) standard was released. It also introduced the Multimedia Message Service
(MMS) based on WAP 2.0 implementations (see section HTTP Support [3.3.3.1]). GPRS is
available in Austria since the turn of the millenium, which theoretically enables services with
a speed of 171.2 kBit/s under optimal conditions and the usage of eight multiplexed transfer
channels. Due to the wide distribution of circuit-switched communication systems within
pre-GPRS networks, the additional cost for corresponding network infrastructure extensions was
high and similar to the introduction of the HSCSD standard, new end devices were necessary.
GPRS devices are classified according to their capability to manage voice- and data-oriented
services23. One important category of components within the new infrastructure are GPRS
Support Nodes (GSN), which are acting as packet routers and gateways to external networks.
The GPRS specification allows registered mobile end devices to be always online, while the
resources are only claimed when data packets have to be exchanged [Rot02]. GPRS-based
services are either of Point-to-Point (PTP) or of Point-to-Multipoint (PTM) nature and fully
support the TCP/IP protocol stack [Umt07].

22E.g. IP and X.25 based networks.
23E.g. Class A allows both services in parallel, Class B uses the services in a mutually exclusive manner, and Class

C devices have to switch the services manually

3. Analysis of Related Technologies 31

The last step towards 3G networks is the Enhanced Data Rates for GSM evolution (EDGE)
extension. An enhanced modulation strategy named 8 Phase Shift Keying (8-PSK) allows a
transmission of three bits per cycle, resulting in a theoretical data rate of 473.6 kBit/s when
using eigth multiplexed transfer channels24. The problem with EDGE is the higher propability
of data transfer errors in conjunction with the 8-PSK modulation. To ensure a proper service
quality with EDGE, the standard modulation technique of GSM called Gaussian Minimum Shift
Keying (GMSK) is used if the error rate is too high. EDGE can be combined with HSCSD and
GPRS resulting in network services with the acronyms ECSD and EGPRS, whereby their setup
also requires an extensive modification of the existing infrastructure.

3.3.1.3. UMTS

The Universal Mobile Telecommunication System (UMTS) is one of the Third Generation (3G)
mobile network standards. 3G networks are designed to meet the requirements of contemporary
and future mobile applications by a better utilization of available frequencies and higher data
rates. UMTS is mainly used as an european system today, whereby its specification was initiated
in the 1990s by the International Telecommunication Union (ITU) through an appeal named
International Mobile Telecommunication 2000 (IMT-2000)25. The intention of ITU was the
establishment of an internationally used communication standard for mobile devices26. At
this time an expert group called 3rd Generation Partnership Project (3GPP) was formed to
promote the standardization of 3G technologies. UMTS with the according air interface UMTS
Terrestrial Radio Access (UTRA) was a suggestion of the ETSI and reached its final stage in Mai
2000 [Rot02]. UTRA is the core element of the UMTS infrastructure and specifies two wireless
radio interfaces: UTRA Frequence Division Duplex (FDD) with an uplink frequency band of
1920-1980 MHz and a downlink of 2110-2170 MHz, UTRA Time Division Duplex (TDD) with
an uplink frequency band of 1900-1920 MHz and a downlink of 2010-2025 MHz. The total
auction sales for the corresponding country-specific and limited UMTS frequency licences have
been enormous27. Operators without a licence may use EDGE as an alternative, which provides
the best approximation, but with a worse network utilization compared to UMTS [Umt07].

As a logical specification conclusion, the network technology is mainly based on GSM. The
network adaption is however very cost-intensive due to the setup of the 3G UTRA interface,
which is completely different compared to the installed 2G interface. The new standard is
designed to support much higher bandwidths and various usage scenarios. It is therefore more
than a simple re-definition of the air interface. A focus lies on mobile IP-based multimedia
services with data rates up to 2000 kbit/s, on QoS configuration possibilities28, as well as on
a radio access to multiple infrastructures including satellite systems and cordless phones29.
UMTS application scenarios are: Internet Services (world wide web, news, booking, etc.),
Entertainment (e-books, video clips, etc.), Location-based Services (logistic, navigation, location
determination, etc.), Financal Services (online banking, shopping, etc.), Communication (voice
telephony, video telephony, e-mail, greeting cards, etc.)

24In reality data rates up to 170 kBit/s are possible.
252000 refers to the year of the planned introduction and the used operating frequency of 2000 MHz.
26This goal was not reached and a variety of 3G networks are under usage today. In the USA for instance the 3G

network CDMA2000 was integrated into the existing 2G IS-95 mobile network [Umt07].
2750.8 billion euros [Rot02] (milliard under european conditions).
28Defined QoS categories: Conventional, Streaming, Interactive, Background
29Especially phones based on the popular Digital Enhanced Cordless Telecommunications (DECT) standard.

3. Analysis of Related Technologies 32

The UMTS reference architecture is categorized into different domains. The two major ones are:
User Equipment and Infrastructure. The user equipment domain includes the mobile devices
and is divided into the User Services Identity Module (USIM)30, which manages service-specific
user information and the Mobile Equipment domain. The infrastructure domain consists of the
Access Network, which is usually the UTRA Network (UTRAN) and the Core Network. This core
network includes the Serving Network responsible for the circuit-switched and packet-switched
data transfer and location-based functionality. The Home Network domain is a further component
of the core network and includes services, which are not depending on the user’s current location.
As a last domain within the core network, the Transit Network domain covers services needed
for cross-network communication [Rot02]. Figure 3.5 represents this architecture.

Figure 3.5.: High-level UMTS Architecture

In future releases of the UMTS specification the All IP-Network will be propagated, providing
each service (including voice telephony) over the IPv6 standard. With IPv6 each mobile device
will also be individually addressable.

3.3.2. Symbian Communication Infrastructure

Symbian’s most important communication servers are the Communication Database Server, the
Serial Communications Server, the Telephony Server, the Socket Server, and the Host Resolver
Server. The Symbian client-server model is overlayed by a communication infrastructure,
which is divided into four layers: Physical Device, Device Driver, Protocol Implementation and
Application.

The Physical Device represents the hardware which is seen as an abstract layer by the system.
As part of the second layer, the typical device-dependent Physical Device Driver (PDD) directly
communicates with the hardware, whereby the Logical Device Driver (LDD) is responsible
for buffering, flow control, etc. The Protocol Implementation contains four important modules.
To be able to use serial port services, CSY plug-in modules31 for the Serial Communication
Server were defined. TSY modules are Telephony Server plug-in modules for voice-centric

30Implemented on the user’s SIM card.
31at least RS232, IrDA, and Bluetooth

3. Analysis of Related Technologies 33

services. For supporting protocol services the Socket Server plug-in modules 32 named PRT were
implemented. Finally MTM modules are message type modules. Amongst others, the telephony
service as basic communication application is shipped with the device by default. Further client
applications are developed by third parties. Individual clients and communication subsystems
may access the Communication Database (CommDb), which holds communication-related
settings like Internet Access Providers (IAPs), Internet Service Provider (ISPs), GPRS, Modems,
Locations, WAP settings, etc. Multiple IAPs can be active and the client/user can choose which
one should be used for accessing a particular network. In the same way GPRS/UMTS QoS
parameters may be configured.

The platform-optimized TCP/IP Services for mobile clients can be used from many network
interface types and include the Internet Protocol (IPv4/IPv6 dual stack), the Internet Control
Message Protocol (ICMP), the User Datagram Protocol (UDP), and the Transmission Control
Protocol (TCP), as well as the Domain Name Service (DNS). This OSI protocol stack imple-
mentation also considers security aspects like IPSec. The IP is part of the abstract Packet Data
Protocol (PDP) used by external packet data networks to communicate with GPRS networks. A
mobile wireless service call or session is represented by the PDP context, which can either be
primary or secondary. A primary PDP context is a specific connection from the mobile device
to a network with one assigned IP address. A secondary PDP context shares the IP address with
the primary one, but it is seen as a different network connection [Sym05].

3.3.3. Generic Connectivity Framework

A mobile application developer has several possibilities to exchange packet-based information
with network nodes on different levels. The Generic Connectivity Framework (GCF) is a
Java-based approach for this purpose. The network APIs for JavaSE occupy more than 200kB
of memory and they partly reference to further packages. Furthermore, optimized mobile imple-
mentations are more hardware-centric and more homogeneous than java.net packages. Due
to this inconsistencies, the JCP specified the GCF33 as a unified set of network APIs optimized
for CLDC devices. All MIDP 2.0 terminals support at least two application layer protocols:
HyperText Transfer Protocol (HTTP)34 and HTTP over TLS/SSL (HTTPS)35 [Sch04].

3.3.3.1. HTTP Support

The standard OSI TCP/IP stack is not working sufficiently related to wireless mobile connections,
due to the higher error rates and the higher latency, intrinsic to wireless networks. For that
reason, an alternative OSI-compliant protocol stack was specified and implemented on data-
network enabled phones. An access to Internet resources over this Wireless Application Protocol
(WAP) stack however requires an TCP/IP-aware WAP Proxy to the wired IP network. The main
idea of WAP was to deliver web content to mobile devices, to be accessable through Mobile
Micro-Browsers. However mobile web content browsing was and is due to very small screens
and missing input capabilities not very user-friendly and a long latency of mobile networks as

32at least TCP/IP, IrDA, and Bluetooth
33javax.microedition.io
34In version 1.1
35Transport Layer Security/Secure Socket Layer

3. Analysis of Related Technologies 34

well as unmoderate service fees36 are further decreasing the usability of the supposed mobile
web experience (see section Motivation - Mobile 2.0 [2.5.3]). In general Mobile Widgets should
be favoured over web navigation paradigms, which typically integrates the mobile Internet more
efficiently. Nevertheless, WAP is an adopted technology, and might reach the outstanding honor
in prospective setups and scenarions.

The first release of WAP in 1998 defined a compact binary processing of the WAP-specific
Wireless Markup Language (WML)37, more suitable to be transferred to mobile clients over low
bandwidth cellular networks. The translation between the compiled38 and the plain text version
of the web content is the task of the WAP proxy, as well as the syntactical analysis39 of the WML
page delivered by the HTTP server, the Cookie management and the domain name resolution40.
Since HTTP and HTTPS are network-agnostic protocols, they can also be transported over
the WAP-specific ones like Wireless Session Protocol (WSP), Wireless Transaction Protocol
(WTP)41, and Wireless Datagram Protocol (WDP).

With the introduction of WAP 2.0 in 2002, the mobile Internet access has become more familiar,
since WAP-related protocols and security concepts were mainly replaced by wireless profiled
standard Internet communication protocols such as IP, TCP, HTTP42, and SSL. WAP 2.0
communication specifications are working with forseeable and existing air interfaces and their
bearers including GPRS and 3G network technologies [WAP02]. However, as introduced in
Symbian Communication Infrastructure [3.3.2], an adapted connectivity model must be used,
which also supports an WAP 1.0-independent TCP/IP service implementation for the mobile
IT domain43. According to [WAP02], ’WAP 2.0 leverages IETF work in the Performance
Implications of Link Characteristics (PILC) Working Group to develop a mobile profile of
TCP for wireless links’. Thanks to this new wireless protocol specification, web content can
also be delivered in plain text XHTML Mobile Profile (XHTML-MP). This step flattens the
learning curve for mobile content creation and may by-pass an operator-specific WAP proxy
by communicating directly with the original web server over HTTP/1.1. This means that an
IP network connection can either be established through a carrier-based proxy44 or an Internet
Access Point [Vir05]. The usage of an intermediate network node may offer advantages in
terms of optimized communication processes such as with location-based services and privacy
concerns [WAP02]. A proxy is also necessary to be able to implement WAP 2.0 services like
WAP Push functionality for real-time applications. As already introduced in section Mobile
Platforms - Symbian OS - Deployment [3.1.2.6], the MIDP 2.0 implementation uses a Public Key
Infrastructure (PKI) to be able to verify signed MIDlets. This PKI specification also considers
WAP-specific security profiles, which enables HTTPS and Secure Stream connections for mobile
devices. The mobilized version of HTTPS therefore also provides Authentication, Confidentiality
and Data Integrity such as with standard HTTPS [Sch04]. The WAP 2.0 approach increases
the bandwidth utilization and requires more intelligent web browsers, whereby a successful
introduction is also bound to more powerful devices, both in screen resolution and color model
as well as in CPU and memory metrics.

36In cases where a mobile Internet access is not based on a provider-specific flat rate, the service fees are usually
quite high.

37Also referred to as WAP sites.
38MIME Type: WML Compiled (WMLC)
39which is usually a task of the browser
40http://dev.mobi
41A lightweight transaction protocol for thin clients, optimized for wireless datagram networks [WAP02].
42Also referred to as WP-HTTP. Provides message body compression and secure tunnels.
43At this time a traditional WAP stack as well as a TCP/IP stack are usually implemented on smart phones. The

stacks are dynamically switched depending on the web content.
44The usage of non-standard HTTP ports may sometimes cause problems.

http://dev.mobi

3. Analysis of Related Technologies 35

3.3.3.2. Low Level Network Support

The GCF also offers low level network support in form of APIs for the transport layer protocols
TCP and UDP, which are not mandatorily implemented on devices. This MIDP 2.0 Java APIs
allows the development of enhanced mobile side functionality like servers on the basis of
Socket45 connections, Serial Communication services, and Push Registry services. The Push
Registry functionality must not be confused with WAP Push, which is a part of the WAP 2.0
service infrastructure and related to the mobile browsing paradigm. The MIDP-based approach
is quite similar to the UNIX-based Internet Super-Server (inetd). The Push Registry service is
started at boot time and used to process incoming connection requests by starting the requested
services, encapsulated into MIDlets. This task is performed by the AMS [Sch04].

3.3.4. Bluetooth

The Bluetooth (BT)46 technology was specified in 2001 as a data- and voice centered, universal
short-range and low power information carrier which is now integrated in many handhelds
for establishing wireless Personal Area Networks (PAN), also called BT Pico Networks, with
surrounding Bluetooth-enabled hosts [Hol03b].

3.3.4.1. Working Principle

In contrast to IrDA47, the data exchange is based on radio technology which allows an operating
radius of up to 150 meters48 and a maximal data rate of 2.1 MBit/s49, without the necessity of
having a line of sight between the communicating nodes. BT typically supports the pervasive
computing paradigm, since it is a cheap technology which can be seamlessly integrated into
many kinds of smart objects to establish Ad-Hoc Networks between them. The initiator of such a
network is referred to as Master and the remaining nodes are called Slaves. A pico network may
hold up to 7 active and 255 slaves in power-save mode, which might be activated on demand.
Slaves in power-save mode are either in the park, sniff, or hold state, which distinguishes the way
on how they participate on a session with the master. Communication links between overlapping
pico networks are also specified through so called Scatter Networks. The BT technology uses the
2.4 GHz ISM-Band50 which is available in most countries without a licence fee for low-power
usage. The communication within such pico networks is based on Frequency Hopping Spread
Spectrum (FHSS) which uses 79 channels of 1MHz each. Active transmission channels are
changed arbitrarily at a rate of 1600Hz, whereby a robust communication link is ensured. This
technique requires a shared knowledge between nodes about the starting point of the frequency
hopping algorithm which therefore introduces some kind of secure links as well [Hol03a].
According to the IEEE 802 standard, each BT device is associated with a worldwide unique
manufacturer-specific 48 bit address, which is referred to as the Medium Access Control (MAC)
address [Hol03a].

45In UNIX terms a socket describes a programming interface for several transport protocols. In MIDP terms a socket
only supports TCP.

46Ericsson named this technology after the norwegian viking king Harald Blåtand.
47Infrared Data Association.
48For class 1 devices with a transmission power of 100mW.
49According to the Enhanced Data Rate Specification of 2005 [Bia08].
50Industrial, Scientific, Medical Frequency Band

3. Analysis of Related Technologies 36

3.3.4.2. Protocol Stack

The most important protocols in the BT protocol stack are the Logical Link Control and
Adaption Protocol (L2CAP) responsible of multiplexing high level protocols to an asynchronous
connection, the Service Discovery Protocol (SDP), and the Radio Frequency Emulation of
the Serial COM Ports (RFCOMM), which emulates the RS-232 protocol over the L2CAP
channel [Hol03b]. The L2CAP protocol is part of the Connection Management and Control
Layer within the BT stack. This layer is situated on top of the Baseband layer, which provides
mechanisms for the connection establishment, and the Radio layer, which performs the signal
modulation and the signal transmission over the air. To ensure an interoperability between
BT applications of different vendors the Bluetooth Special Interest Group (BT SIG) defines
several profiles which might be seen as vertical layers covering different protocols of the stack.
The most important profiles are the Generic Access Profile, the Service Discovery Application
Profile, the Serial Port Profile, and the Generic Object Exchange Profile.

The common network protocols UDP, TCP, IP, and PPP are also defined in the BT stack, whereby
the TCP/IP over PPP functionality is also implemented as a more efficiently alternative through
the Bluetooth Network Encapsulation Protocol (BNEP). A further important part of the BT stack
is the Object Exchange Protocol (OBEX) which originally was specified for IrDA to exchange
data objects between short range wireless interfaces. OBEX has similar characteristics as the
HTTP protocol, however the headers are not mandatory in use, but may be used to describe the
transfered byte arrays or byte sequences. During an OBEX session the client can GET objects
from an OBEX server or PUT objects to it. The objects, which are either transferred as a whole
or as successive packets, offer a developer a convenient mechanism to exchange multimedia
objects, vCards, or vNotes with remote BT nodes running an OBEX server. The objects itself
are constructed within MIDlets [New08]. With the OBEX File Transfer Profile it is possible
for remote applications to browse and manipulate files directly on the device. An open-source
implementation of the BT Stack called BlueZ is integrated into the Linux kernel.

3.3.4.3. Service Implementation

MIDP implementations provide the javax.bluetooth and javax.obex APIs through the
optional JSR-82 package to access the bluetooth functionality of a device. The two APIs are
split into three functional categories. The Discovery category covers methods for browsing
devices and their services in range, as well as methods for device registration purposes. Once a
Bluetooth enabled application is executed it registers its service records within its own Service
Discovery Database (SDDB), to offer them for searching or browsing by inquiring SDP clients
through the local SDP server. Each service is referred to a 128 Bit Universally Unique Identifier
(UUID). Sent packets within a pico network have the same 72 Bit Access Code, which is
checked by the receiving node before the payload is fetched. As one particular code category,
the Inquiry Access Code (IAC) is used to identify surrounding devices, whereas the General
Inquiry Access Code (GIAC) and the Dedicated Inquiry Access Code (DIAC) subcategories
are used to perform a search either without or with restrictions according to certain device
characteristics [Hol03b]. The Communication category provides interfaces for exchanging data
between discovered devices, and the Device Management category for controlling established
connections. The APIs also interfaces with the Bluetooth Control Center (BCC) of the device to
manage secure connections between nodes [New08].

3. Analysis of Related Technologies 37

3.3.4.4. Security

To be able to authenticate devices within an ad-hoc network, a Challenge-Response dialog may
be initiated either by the master or by a slave, which are further refered to as the Verifier and the
Claimant. The verifier sends a random number51 to the claimant. The queried device creates a
128 Bit Combination Key with the received as well as an own random number, its MAC address,
and a shared secrete passkey52. If the responsed calculated key is accepted by the verifier, the
devices are said to be Paired and a circuit- or packet centric communication can be performed
trustworthy without a further user intervention, even if both devices are locked for discovery
by the user. This authentication mechanism is single-edged, however it may be performed
from the claimant in the same way. Furthermore the transferred data might be encrypted by
the master, which is however not supported by each BT device and typically relates on higher
level protocols. Even if the BT security standards are quite high, it might be still possible for
unauthorized persons to access private data on remote devices or even to send messages from
hijacked devices via a BT link. According to [Bia08] hackers may use software which lets
devices react to discover inquiries even if they are not configured in this way. Further security
problems may also be based on erroneous service implementations by device manufactures
themselves, which is frequently the case for particular models.

3.4. Service-Oriented Computing

In this section software systems are discussed under the viewpoint of adaptivity, re-usablity, man-
agement and inter-domain communication with a focus on mobile environments. Within modern
and large-scale B2B and B2C scenarios, mobile applications can be seen as independent and
distributed software components with a high degree of interconnectivity with numerious related
remote counterparts, as their common characteristics. Interconnectivity in this sense represents
a method to define and reach communication targets more efficiently and effectively.

3.4.1. Infrastructures

3.4.1.1. Enterprise Services

Many Business-2-Business (B2B) collaborations are built in the scope of Enterprise Application
Integration (EAI) and automatization of business processes. An important fact in this relation is
an adequate control of the workflow between heterogeneous systems, which is usually supported
by EAI tools. Within the enterprise domain suitable conceptional and organizational strategies in
the software development process are important for a long-term success of a product. The hyped
Service Oriented Architecture (SOA) is an accepted and suitable concept to reach this goal. An
SOA reduces the former complex workflow handling to simple remote services invocations.
Web Services are one way to build a SOA, whereas the integration of heterogeneous mobile

51For a secure transmission of this number a Initialization Key is used, which can be calculated from a public random
number, a MAC address, and a passkey [Hol03b].

52A shared Link Key is generated from the passkey which is stored in the device’s persistent memory and used for a
transparent authentication later on. If both parties have a fixed passkey, no authentication is possible. Sometimes
devices have a default passkey of 0000.

3. Analysis of Related Technologies 38

devices as agile and interactive components within business solutions is due to the availability
of mobile web service frameworks more attractive than ever before.

Even if the SOA strategy has been heavily researched and advanced in the last 10 years and the
advantages are obvious, the degree of deployment within real-world software systems is quite
low [Bec08]. The US Nucleus Research Center53 recently finalized an IT market study, which
brought to light that only 27% of IT projects are somehow based on a SOA right now. Only
40% of the developers are using SOA concepts, which is furthermore often concentrated on a
few web services. The reasons for the stagnation may be seen in the avoidance of an exhausting
refactoring of existing and proven products and a resulting production drop-out in correlation
with high investments and a possible negative Return on Investment (ROI) for the final product.
According to [Bec08], about 75-95% of the companies’ IT budget is used to maintain and
optimize products, whereas no resources are left to develop new systems from the scratch.
Also the change to standard software solutions would mainly depreciate the former work while
negating competitive advantages reached through a successful software release. On the other
side, IT experts are aware of the additional investment to maintain large software systems with
structural lacks, which often become visible if they are under frequent modification and their
functionality and complexity is growing. Also ad-hoc decisions, sufficient in-house knowledge,
euphoria of successful steps during the implementation process, and a thinking in terms of
workarounds often lead to hardly maintainable systems at a later point in time [KBS05].

Existing systems are not seldom based on inflexible and closed mainframe applications written
in Common Business Oriented Language (COBOL). An integration or a data synchronization
with web-based or mobile terminals is often difficult to realize for this type of legacy systems.
A desired process may be to easily transfer legacy software in a new open context based
on a language-, technology-, and system-independent SOA with the help of some kind of
Enterprise IT Renovation Roadmap [KBS05]. The main challenge in a subsequent system
adaption lies within a liberation of a proven business logic with complex cross-dependencies
towards functional service interfaces, especially if both, core and peripheral components, are
affected. A trend therefore goes to the automatization of the refactoring step while preventing
changes of the existing code whenever possible [Bec08]. Such mapping products are already
available and might have the potential to encourage the SOA paradigm within the IT market by
following the architecture’s strategy of embracing existing and upcoming technologies.

3.4.1.2. Mobilized Services

Comprehensive mobility in the IT domain also means a requirement for mobile services, which
should be available across time and space as well as on every device. Mobile properties54

depend on the architecture on which the services are based. Mobile services may be coarsely
classified in Service Logic and Service Content. In early telecom systems services have been
mainly embedded in hardware components within the provider’s internal infrastructure. This
lack of accessability from an outside domain through independent software developers led to a
dominance of the provider in the mobile IT market and has been a hindrance for developing
flexible services [JDvT04]. Step by step services have been decoupled in form of third party
service providers, which are operating on a specialized domain like SMS, WAP, or enterprise
services. Furthermore 3GPP introduced the Virtual Home Environment for 3G mobile systems

53http://nucleusresearch.com
54Personalized service properties may be passive (e.g. look and feel), active (service behavior), or content related

(user generated content, service inquiry results).

http://nucleusresearch.com

3. Analysis of Related Technologies 39

to guarantee flexible access to subscribed user services from home-, as well as from foreign
networks. Nowadays, the dependence from a particular operator when developing mobile
services, is based on the involved platforms. WAP and JavaME services, for instance, do not
require special agreements, whereas SMS services do so. Provider-related services have many
advantages, which are often difficult to implement in an independent way. For instance, a
determination of the user’s current location through a cellular network might be helpful in
relation with a location-based information system during the absence of satellite links. A typical
problem with this approach is that the provider often uses an unsecure transmission channel for
carrying sensible user data. On the other side, network providers usually have the status of a
confidential partner for the customer [Cha06].

[JDvT04] sees an ultimative goal of a further service decoupling in an open and ’...ubiquitous
access to data services ... no matter where the service content and service logic is located’. In
this sense, a novel concept is the composite service, which is spanning over several domains
including home networks, foreign networks, Internet, enterprise networks, and PANs, whereas a
user’s profile including privacy preferences is distributed or replicated across these networks.
The implementation of such universal services however requires a sophisticated interaction
design, security and usability roadmap as well as a suitable inter-domain communication
infrastructure (see section Umiquitous Mobility [2.5]).

Network operators already started to support this concept by opening interfaces to Internet based
services on business as well as on entertainment level. The operator’s technical environment
however typically consists of proprietary and open distributed systems such as n-tiered enterprise
application platforms like JavaEE, .NET, or CORBA. By default, these infrastructures do often
not support a loosely coupled interaction in SOA style. Two standardization efforts try to
improve this situation: OMA Web Service Enabler Release (OWSER)55 and Parlay X Web
Services 56 [Cha06]. With a focus on such standardizations, ’operators can leverage Service
Composition to reuse their existing legacy systems and Services to build higher level services
for internal deployment and expose it as services to enable new innovations on existing assets’.
Furthermore, ’web services will play a major role in making open IT solutions available in
Mobile Environments.’ [Cha06].

3.4.2. Evolution of the Service Concept

The term service is used in many different ways within the IT industry. According to [KBS05] a
service ’...denotes some meaningful activity that a computer performs on request of another
computer program’. In a more technical sense, [KBS05] defines a service as a ’...remotely
accessable, self contained application module’, whereas the communicating nodes are referred
to as a Service Consumer and Service Provider. It is important to understand that a SOA is
no middleware and therefore no concrete technology, but a description of a structure which
encapsulates activity of a certain complexity on different levels of abstraction. The service model
is a quite old concept which found its way towards efficient inter-domain communication patterns
within the last decade. The idea of service orientation arose from Programming Paradigms,
Distributed Technologies, and Business Computing [KBS05]. The business domain is the
strongest power in the SOA evolution, since its abstract components facilitate an understanding
and a shared knowledge of processes and data flows on both sides, technology and business.

55http://www.openmobilealliance.org/technical/release program/owser v10.aspx
56http://www.parlay.org/en/specifications/index.asp

http://www.openmobilealliance.org/technical/release_program/owser_v10.aspx
http://www.parlay.org/en/specifications/index.asp

3. Analysis of Related Technologies 40

3.4.2.1. Programming Paradigms

One of the most popular languages for computer science was Pascal, introduced by Nikolaus
Wirth in 1970. It was an early functional programming concept which provided some form of
abstraction and software libraries. However, since multi-purpose functions were difficult to
create and many parameters had to be passed, the trend went further to software modules and
components whereas the term Encapsulation got popular in the ’80s. In those years Modula,
ADA, and Prolog were created. With the mainstream usage of the Object-Oriented Paradigm
(OOP)57 through languages like Smalltalk, C++, and Java, the concept of individual entities
in form of objects and the Inheritance of functionality have been added. Important software
patterns like Interfaces were developed from OOP. The granularity and abstraction of OOP
implementations are however to fine for the service concept [KBS05].

3.4.2.2. Distributed Computing

Calling remote processes on physically distributed machines residing in multiple networks in a
seamless and controlled way is an essential service characteristic. In early distributed systems
the computing power wasn’t distributed, but the data I/O in form of remote Terminals, while
the logic still resides on huge and expensive mainframes. During two research projects at the
University of Berkeley UNIX OS was developed, whereas the distributed computing concepts
had been mapped on small and powerful workstations in the ’70s. An easy remote access
to a particular host over a network with tools like Telnet and a transparent provisioning of
storage space through the Network File System (NFS)58 have been introduced in 1984 [KBS05].
As soon as relational Database Systems (DBS) became available and companies adopted the
Client-Server pattern, Stored Procedures were used to conduct functions directly within the
DBS.

The next step was to blur the border between the client and the server by introducing Dis-
tributed Middleware models in Remote Procedure Call (RPC) style as a solution for Application
Heterogenity, with the Internet as underlying platform [TvS02]. Later on, a combination of a
distributed computing environment and the OOP concept, resulted in the specification of the
Common Object Request Broker Architecture (CORBA). The former structure of a server, which
offered a large number of functions was broken down into uniquely identificable and remotely
accessable objects managing their own state. Due to the involved Interface Definition Language
(IDL), CORBA objects are language-independent and registerable within a naming service,
which enables a runtime discovery of the available server objects. Furthermore, this strategy is
mapping the OO design to the network and follows the Interoperable Object Reference concept
which comes along with Object Request Brokers (ORBs)59 for accessing and manipulating
remote objects. To ensure interoperability accross vendor boundaries the TCP-based Internet
Inter-ORB Protocol (IIOP) was also introduced at this time [Nok06]. CORBA components are
executed in CORBA Component Model (CCM) containers within application servers and are
mainly used in telecommunication and financial systems. However the architecture’s structure
is often too fine-grained and too complex for the majority of enterprise applications. As a
result, clusters of server-side objects in form of more abstract middleware systems have been

57The concept was first realized in 1967 with the language SIMULA.
58Developed by Sun Microsystems.
59Further ORBs are Remote Method Invocation (RMI) from Sun and the Component Object Model family (COM/D-

COM) from Microsoft, which are however bound to a particular programming language.

3. Analysis of Related Technologies 41

propagated in the ’90s. Such a strategy got popular in 1997 [KBS05] through the Enterprise
Java Beans (EJB) specification as part of the JavaEE platform. The EJB technology involves
a sophisticated application container, which enables web services and manages application
resources, including a naming service as well as extensive security features. Next to the EJB
many other middleware solutions like Microsoft’s COM+ and .NET60 technologies are available
on the IT market at the moment, causing an ironic problem: Middleware Herogenity.

A solution for this problematic trend is the eXtensible Markup Language (XML) as ’...the
smallest common denominator upon which the IT industry could agree’ [KBS05]. Since XML
is independent of any middleware standard and does not require a heavy-weight infrastructure,
it seems to be the ideal format for exchanging data between applications. Moreover, tools for
processing and managing XML data such as the Simple API for XML Processing (SAX) and the
Document Object Model (DOM) API are available on many different platforms. To be able to use
this self-descriptive protocol efficiently within the enterprise domain as a higher level messaging
format, more complex XML-based data types had to be specified. With a focus on the Internet
as the main data carrier, DevelopMentor, IBM, and Microsoft [FTW07] invented the Simple
Object Access Protocol (SOAP) as a suitable document-centric protocol for this purpose. This
specification started the age of XML-based Web Service technology in 1998. SOAP was initially
defined with respect to the HTTP protocol as the underlying transport protocol to make use of
world-wide established and configured network infrastructures61. Due to its growing importance
within IT systems, this extensible62 communication protocol became a W3C recommendation in
2001. Microsoft also invented the Web Service Discription Language (WSDL) in anology to the
IDL of CORBA, which also enabled various bindings to lower-level communication protocols
of existing middleware systems like the Message Oriented Middleware (MOM). The most
flexible approach to discover available services is through a publicly accessable service broker,
which holds WSDL documents and according provider information (c.f. yellow pages). This
registry is standardized through the Universal Description, Discovery and Integration (UDDI).
The development of distributed computing architectures like RPCs, ORBs, EJB, MOM, and
XML Web Services can be seen as communication models or middleware busses with different
characteristics63 as well as basis for the SOA concept.

As it is generally known, middleware layers are situated between the network software or the OS
respectively and the user applications, which shield the developer from dealing with low-level
functions. To integrate with several middleware systems, an additional layer of abstraction in
form of technology-dependent Adapters between applications and the middleware busses are
used. A suitable middleware interaction like illustrated in figure 3.6 increases the flexibility,
interoperability, portability, and maintainability of distributed applications.

Even if standardized and proven middleware systems give developers more freedom, it is
important to understand the concept behind the scene, to be able to choose and adapt technology
for a particular problem and to handle potential conflicts.

60In contrast to JavaEE, .NET supports multiple component languages like C#, C++, and Java. However .NET is
bound to Microsoft platforms. Currently the Mono project supports the .NET concept under Linux distributions.

61IIOP on the other side needs a special configuration of the firewalls.
62Unlike as with unflexible documents like HTML the developer is capable of introducing new application-specific

tags. According to [FTW07] this fact mainly led to the success of SOAP.
63E.g. Degree of Coupling between components, Asynchron vs. Synchron data exchange, Interface vs. Payload

semantics, etc.

3. Analysis of Related Technologies 42

Figure 3.6.: Connecting to Middleware Buses through Adapters

3.4.2.3. Business Computing

The IT-based management of business processes is the source for the content in form of business
data and business logic within software systems, and therefore as important as the underlying
technical infrastructure in the evolution towards an SOA. In mainframe-eras and later on COBOL
and FORTRAN have been suitable languages to implement solutions for business problems.
In correlation with database systems the Structured Query Language (SQL) got very popular,
which was mainly built for business analysts and not for database programmers. In 1981
SAP set a milestone within the business domain as they released the R/2 system, suitable for
enterprise-wide real-time processing of financial data and resource planning issues. Changes in
the worldwide business market later on, led to more complex enterprise systems, as Enterprise
Resource Planning (ERP) and Supply Chain Management (SCM). In the 1990ies the high
availability and co-existence of enterprise software caused many problems and changed the
business models once again towards Enterprise Application Integration (EAI). In the context
of Internet networks and through the demand to integrate across organizational boundaries,
a flexible and distributed service oriented architecture is nowadays the preferred business
solution [KBS05].

The introduction and application of the SOA paradigm changed the enterprise computing
domain significantly. Moreover, ’Similar to object orientation, which today seems to present the
endpoint in the development of programming concepts, service orientation is the result of a long
evolutionary process and has the potential to finally provide some stability in an environment
that has been constantly evolving over the past 30 years’. [KBS05]

3. Analysis of Related Technologies 43

3.4.3. Payload Communication Strategies

Next to Web Services, there are two other kinds of integration techniques concerning the
participation of mobile devices: Socket Connections, and Messaging Techniques. When using
sockets, one is fully responsible of the data structure to be transfered. This also requires a detailed
knowledge of network programming concepts in multiple languages, as within heterogonous
setups. If a software system does not need to transfer complex data structures such as serialized
objects, one can define individual communication formats with socket connections. This is
the most efficient solution in respect to message overhead and transmission speed. Since, this
proprietary approach does not scale well, also a specialized understanding of how to access
communication endpoints is needed. Messaging software typically occupies a lot of resources
and slows down the system, and it is often hard to manage in terms of security issues.

Web Services offer simple invocations and less programming effort, however this mechanism is
still incapable of fulfilling critical real-time processing requirements due to the costs of XML
parsing and exchanging SOAP messages. On the other side, XML is very flexible in structuring
data and basically well supported across platforms. With a focus on standardized communication
techniques, the following sections outline the most common messaging methods for XML-based
web services.

3.4.3.1. REST

The term Representational State Transfer (REST) describes an Architectural Style on networking
systems, which arose from a Ph.D. dissertation64 by Roy Fielding65. In this work the Web is
seen as a ’...network of web pages (a virtual state machine), where the user progresses through
an application by selecting links (state transitions), resulting in the next page (representing the
next state of the application) being transferred to the user and rendered for their use’ [Res08].
A web resource is everything which is accessable through an URI, not only web pages: e.g. CGI
scripts, images, servlets, XML documents, etc. One motivation for this work was to capture
the evolution of the web, but it is also a guideline of how the web as a globally distributed
application should work.

REST is no product, standard or protocol, however it may be used to design web services in a
RESTful66 fashion. Many search engines, shops, etc. are available as RESTful web services,
even if this has not been the intended design goal. As their generic interfaces, resources are
accessable and editable through HTTP GET, POST, PUT, and DELETE commands [Res02]. The
result of a response from an REST application is typically a resource in form of an XML
document holding some useful and structured data, which has to be processed and represented
by the client application in some way. As soon as the content of an XML document contains a
hyperlink mapping (E.g. through XLink tags), a client may be able to traverse into deep nested
and loosely coupled resources through one initial URI. As a system logon feature, HTTP Basic
Authentication and an SSL enabled channel might be used.

64http://www.ics.uci.edu/∼fielding/pubs/dissertation/top.htm
65Former director of the Apache Software Foundation and initiator of Apache HTTP server. - http://roy.gbiv.

com/vita.html
66Within REST systems a service has a different meaning since the focus is on the resource, not on service

implementations.

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://roy.gbiv.com/vita.html
http://roy.gbiv.com/vita.html

3. Analysis of Related Technologies 44

In contrast to SOAP and XML-RPC, REST systems can be configured easily by system adminis-
trators through firewall, proxy, and server settings by enabling or disabling resources. RESTful
web services scale with the web and its infrastructure, whereby a widespreaded and flexible
inter-domain resource handling (resource formats can be easily appended through MIME types)
through stateless operations is one of their biggest advantages. Furthermore, REST supports a
caching of service operations through standardized HTTP GET caching methods. The core of
the REST server is working with the same principles as an RPC server. The only difference is
that an HTTP interface is used instead of a component-base one [Res02]. As with SOAP and
XML-RPC, REST is not suitable for an efficient local communication between components like
the application server and a database system. Also the serialization and deserialization between
objects and their XML representations requires XML binding frameworks. Unlike middleware
systems, RESTful web services can be seen as pure web services since they are only using
established web technologies like HTTP, URI, MIME types, and global addressing. RESTful
web services are widely available and well supported by common web servers.

3.4.3.2. XML-RPC

The Remote Procedure Call (RPC) technology was introduced by Sun Microsystems in the
80ies67. Within RPC systems ’...the syntax and the semantics of remote calls remain the same
whether or not the client and server are located on the same system’ [KBS05]. Even if an
implementation of this technique is not related to an RPC-conform RFC protocol, the com-
munication infrastructure is said to work in RPC-style. The most instances are based on a
technology-intrinsic synchronous communication. Due to various competing RPC implementa-
tions in the 80ies, the Distributed Computing Environment (DCE) standard tried to overcome
this situation, however with less success. As a concrete instance of this style, the XML-RPC
payload protocol is widely used for XML-based middleware systems, even if it is no official
standard [Nok06]. XML-RPC is faster and easier to understand as the related SOAP protocol,
because it is less customizable and extensible. For instance this lightweight protocol does not
support Namespaces, whereby the same processing order must be maintained for wrapping and
unwrapping the message content.

3.4.3.3. SOAP

The Simple Object Access Protocol (SOAP)68 was designed in a very flexible way. In fact, it is a
communication protocol for remote invocations, a standard for interoperability, a protocol for
exchanging documents, and a business communication language [CJ02]. Unlike as the original
acronym indicates, handling SOAP data is in principle as complex as handling with the involved
XML Schemas, however much of that complexity is managed by corresponding frameworks and
tools.

In contrast to version 1.1, the current SOAP 1.2 specification69 describes a whole messaging
framework instead of a single protocol [FTW07]. However, it still defines an one-way protocol,

67E.g. NFS(RFC 1094) was implemented with respect to SUN RPC [KBS05].
68The relation to an Object originally comes from invocations of Microsoft’s COM Objects over the Internet [CJ02].

Today SOAP is usually used within a non-OO context, whereas the SOAP 1.2 specification declared SOAP as a
simple name instead of an acronym [FTW07].

69http://www.w3.org/TR/soap12-part1/

http://www.w3.org/TR/soap12-part1/

3. Analysis of Related Technologies 45

whereas according messages are often combined to reach a synchron as well as an asynchron
request-response schema. SOAP 1.2 is aware of namespaces and its specification includes
formatting conventions for describing the content and routing information within an SOAP
Envelope, a protocol binding, data type encoding rules, and a RPC mechanism. The new
specification also introduced the term Message Exchange Pattern (MEP) to indicate two available
communication scenarios: a dialog-oriented Conversational Message Exchange suitable for
MOM infrastructures and the traditional XML-RPC invocation mechanism [FTW07].

The overall envelope consists of a SOAP Body, which encapsulates the actual payload in form of
an XML-structured content and optional instructions for the SOAP processor within the SOAP
Header. To be able to transfer non-desciptive data like binary files as part of an XML-based
web service infrastructure, SOAP with Attachments (SwA) has been specified. In this case the
SOAP message is combined with the MIME format to break down arbitrary data in successive
data chunks, such as with E-Mail attachments [CJ02]. The wrapping and unwrapping of SOAP
messages is performed through APIs as part of the web service environment. SOAP headers are
often used to declare security-specific data to be processed and verified by intermediate Security
Gateways before the payload is processed by the actual message receiver. In general, SOAP
header data for Intermediaries plays a crucial role within the Processing Model of flexible web
service infrastructures [FTW07]. The specification also considers a sophisticated message error
handling through SOAP Faults. However, as with the processing of SwA, this functionality is
not available for mobile web service environments until now.

3.4.4. SOA Analysis and Design

Platform-independent technologies like web services may only lead to successful long-term
software solution if they are designed and implemented in the right way. It is therefore important
to understand the anatomy of software achitectures and their relationship to the service concept.
[KBS05] references to a software architecture from different perspectives, whereas in general it

’...is the set of significant decisions about the organization of a software system...’, in more detail
it ’...is a set of statements that describes software components and assigns the functionality of the
system to these components. It describes the technical structure, constraints, and characteristics
of the components and the interfaces between them. The architecture is the blueprint for the
system and therefore the implicit high-level plan for its construction’. The ability of distributed
software systems to discover and to enable services across platforms is also refered to as the
Composite Computing Model [CJ02]. This model is seen as the class to which a SOA belongs. A
SOA typically refers to a business infrastructure based on a software architecture which contains
Application Frontends, Services, a Service Repository, and a Service Bus as a system-specific
communication infrastructure. The communication bus interconnects services and frontends in a
technologic agnostic way and integrates pure technical services such as for logging, security, and
transaction purposes. A service itself relies on a Contract70, a service Interface, and a concrete
Implementation of this interface in form of a Service Stub as well as on the actual business
logic and the according data infrastructure. Figure 3.7 illustrates the relationship between the
mentioned components.

These elementary SOA artifacts have different Lifecycles, since data and content may be a
part of the system over decades, whereas application frontends are changing more rapidly. An
application frontend might be a graphical web interface, a mobilized rich client, or even long-

70E.g. in form of an WSDL document.

3. Analysis of Related Technologies 46

Figure 3.7.: Artifacts of an SOA

living scheduled processes without any user intervention. Frontends usually initiate business
processes and receive their results. Business-oriented services also have different characteristics
which may be seen as Flexible Building Blocks [KBS05] to manage complexity and to have a
Common Language between the different stakeholdes of a SOA project. A block or component
is situated within a specific SOA Layer depending on whether it is acting as Basic, Intermediary,
Process-centric, or Public Enterprise service [KBS05].

3.4.5. SOA Implementation and Interface Issues

Since SOA-based systems have been implemented, interoperability problems still remained at
a particular level. Many of that problems were solved by releasing and following according
standards. System-specific and potentially long-lasting problems should however always be
considered when designing and realizing large distributed systems. The cause of a time-
consuming re-design or a plainly failed project is often found in a misusage of SOAP and WSDL
themselves or an inadequate design. Basically there are two approaches to start implementing a
SOA project: Code-First and Contract-First [FTW07].

3.4.5.1. Approaches

The most common approach for relatively simple projects is Code-First, whereby a WSDL
generator automatically constructs the according service contract after the business logic is
available. Furthermore, the resulting WSDL file is used to generate the service-related client
code maybe through the same tool suite. This time-saving approch also protects the developer
from manually creating rather complex service contracts. On the other side this strategy often
causes interoperability problems as soon as the service is being accessed through a vast number
of heterogenous systems. The reason lies in the occurence of different XML Schema Definitions
(XSDs) with incompatible or unavailable data types [FTW07]. XML Schema defines a set of
basic data types as well as possibilities for extending them to more complex application-specific

3. Analysis of Related Technologies 47

ones. The mapping between XML Schemas and platform- or language specific data types is
therefore typically performed through standard binding frameworks with additional customized
binding rules. In this case a developer is running into danger to support only data types which
are currently available in the local development environment. As a consequence, service failures
which have been emerging through non-standardized mappings rules when integrating with
other systems are often hard to detect. There may also be problems with the WSDL contracts
caused by deficiencies of WSDL generators. This and similar incompatibility problems are
however considered through WSDL validators and the WS-I Basic Profile specification, which
is well supported by appropriate frameworks.

As implied indirectly in the last paragraph, the interface-oriented71 Contract-First approach is
more suitable for large-scale projects. Since cooperative business systems are developed in a
distributed manner and typically in stages, it is straightforward to develop against an existing
service contract, designed and shared by multiple business partners. In this case a better control
of cross-platform data type bindings and therefore an elimation of incompatibility problems
can be widely ensured. Furthermore the client stub as well as the service code skeleton72 can
be generated automatically. As to Contract-First, it is crucial to validate the WSDL file before
performing this step. To be more flexible in respect to subsequent changes, complex data types
are usually defined as separate XML Schemas in XSD Files, which are combined to an overall
XML Schema for describing the current message content [FTW07].

3.4.5.2. Java Web Service Support

Sun Microsystems offers several products for developing web services for the Java Enterprise
Platform. They are categorized73 in Core Web Services, Enhanced Web Services, Secure Web
Services, Legacy Web Services, and services for System Management purposes.

As one of the core APIs for developing SOAP-based and RESTful web services, the Java API for
XML-based Web Services (JAX-WS) takes off the role of JAX-RPC for this purpose. The Java
Architecture for XML Binding (JAXB) package is an XML binding framework for associating
Java objects with XML schemas and vice versa. As a bridge between Java web services and
Microsoft technologies, the JAX-WS extension Web Services Interoperability Technologies
(WSIT) ensures reliable cross-platform messaging and atomic transaction capabilities. Another
framework for securing JAX-WS, JAX-RPC, and SOAP with Attachments API for Java (SAAJ)
related services is XML and Web Services Security (XWSS). As representative of Sun’s Legacy
Web Services category, the Java API for XML-Based RPC (JAX-RPC) plays a crucial role for
supporting SOAP 1.1 web services, based on current and former Java Platforms. This API is
also useful if an RPC/encoded SOAP style is used. JAX-RPC can be used stand-alone or as
part of an application server. According to [ibm06], there are currently three JAX-RPC-specific
Encoding Styles for messages:

• RPC/encoded
This is a straightforward approach and allows an easy dispatching of messages, however
this approach decreases throughput performance.

71CORBA, DCE, and COM projects are typically based on this style.
72In cases where service code already exists, it is preferable to integrate the generated Java Beans directly into

classes of this code. Some binding frameworks such as JiBX are supporting this strategy.
73http://java.sun.com/webservices/technologies/index.jsp

http://java.sun.com/webservices/technologies/index.jsp

3. Analysis of Related Technologies 48

• PRC/literal
This encoding style has the same properties as RPC/encoded, it is however compliant
with the WS-I specification.

• Document/literal
This style includes no type encoding info, whereby each XML validator can process
the messages easily. However the operation name in the SOAP message is lost, with
the consequence that a message dispatching might be impossible. This approach is also
supported by the WS-I standards.

A mobile web service implementation typically uses the Document/literal encoding for
mapping WSDL-based descriptions to actual Java objects, which is the safest option to interpret
messages. Even if the Java API for XML Processing (JAXP) package is not directly WS-specific
it is typically used to access XML parsers on the system.

Java Web service APIs are available since the release of the JavaEE 1.4 platform specification.
JavaEE-conform application servers such as the reference implementation Sun Java System
Application Server (SJS AS)74, its open-source version Glass Fish75, JBoss76, or BEA WebLogic
Server77 therefore have a built-in support for developing web services. Based on basic web
service APIs, many tools and frameworks are available on the market with the aim to simplify
the development process. A service developer’s task is therefore also to handle a vast number
of assistant software products, which sometimes makes an implementation appear prima facie
more complex as it actually is. One product which tries to reconcile essential functionalities and
tools is the powerful open-source SOAP engine Apache Axis278. This engine is often integrated
into Apache Tomcat79 as a web service container.

3.4.6. Mobile Web Services

The objective of this section is to emphasize the meaning and the gaps of Mobile Web Services
(MWSs) for B2B as well as for B2C application scenarios. As an important strategy for realizing
largely distributed SOAs, MWSs are typically used to enable and to solve complex enterprise
integration issues in the same way as their full-featured counterparts on wired hosts, but under a
user-centric and mobile context.

3.4.6.1. Infrastructure

It is convenient for developers to let mobile end users act as Web Service Consumers (WSCs) to
access and integrate with remote data and business logic residing on powerful network nodes
offered through Web Service Producers (WSPs). They additionally shield the mobile from
implementation details. Since web services are agnostic to any specific platform, the only

74http://www.sun.com/software/products/appsrvr/index.jsp
75https://glassfish.dev.java.net/
76http://labs.jboss.com/
77http://www.bea.com/
78http://ws.apache.org/axis2/
79http://tomcat.apache.org/

http://www.sun.com/software/products/appsrvr/index.jsp
http://www.bea.com/
http://ws.apache.org/axis2/
http://tomcat.apache.org/

3. Analysis of Related Technologies 49

restriction in the mobile domain is limited hardware resources for handling document-centric
protocols and dynamic network links.

Currently, mobile services are hosted by Network Operators80 and Internet Service Providers
(ISPs), which usually offer Web Service Interfaces (WSIs) to provide mobile application
developers a suitable access to their business logic from heterogonous platforms. A WSP or
even a Web Service Broker (WSB) is in fact not bound to the wired domain and may offer
rich contextual information directly by mobile devices running a mini-web server, which let
device owners act as service providers. In near future, a trend may go towards device-centric
peer-to-peer web services, which might offer a Collaboration-Oriented [Cha06] communication
pattern of high dynamically hosts. Furthermore, mobile WSBs might support social networks
without the intervention of a network infrastructure provider. However, nowadays mobilized
services are bound to service vendor infrastructures. Figure 3.8 demonstrates this situation by
involving multiple domains.

Figure 3.8.: Mobilized Service Infrastructure including multiple Services from different Domains.
A Bluetooth-connected GPS Receiver might be used to determine the geodetic Loca-
tion of the User. The Location is a useful Parameter for Context-aware Services.

3.4.6.2. Frameworks

Today the key mobile technology developers, which enable standardized frameworks for a
mobilized service-oriented communication are mainly Nokia, Symbian, Microsoft, IBM, and
Sun Microsystems, as well as a few open-source projects. According implementations are based
on specifications from OMA, Liberty Alliance, JCP, Parlay, etc. (see appendix Organizations
[A]). The Nokia Mobile Web Service Framework (NWSF) and the Microsoft Mobile Web
Service Framework for Windows Mobile devices are currently the leading technologies in this
domain [Cha06].
80E.g. Services for payment, SMS/MMS center access, user profile, etc. The operator may support a service access

from a PC as well as from the mobile [Cha06].

3. Analysis of Related Technologies 50

The NWSF SDK is a middleware framework with a deep focus on security features and is
situated between the developer and the networking facilities. It is a WS-I Basic Profile- and WS-
Security conform implementation and provides access to SOAP-based messages through basic
SOAP and XML processing libraries, and supports the developer with a sophisticated high-level
Service API to manage service-related tasks more efficiently. The NWSF was developed for
Series 80 devices, targeting both languages: C++ and Java. The S60 counterpart has identical
features and is called SOA for S60 and available as native platform component since the third
edition81. Based on Symbian’s Client-Server model, the SOA for S60 Service Manager is a
robust server process, which is responsible for managing service connections as well as for
storing service information and identities. The service manager also enables the registration
of callback functions to perform asynchronous service requests by involving so called Active
Objects.

The SOA for S60 architecture offers a pluggable interface82 to be extended by specific frame-
works, which are managing their own interactions, for instance through the wrapping and
unwrapping of framework-specific message envelopes [HKI06]. A loosely coupled framework83

is the implementation of the Liberty Alliance ID-WSF specification (see appendix Liberty
Alliance [A.7]) for managing user authentications and their identities across several services.
More precisely, a centralized Identity Provider (IDP) may be used by multiple services to fetch
user credentials on demand84 for performing a transparent authentication as soon as the client
tries to access the service. This strategy only requires a single user intervention with the central
IDP when starting a session with multiple secured and independent services, as in the case
of a distributed booking system. This proven concept is manifested in WS-Security conform
Single-Sign-On (SSO) systems like Java Open Source SSO (JOSSO), CAS, or the Java System
Access Manager as part of the Java Authentication and Authorization Services (JAAS) module.
The advantages of SSO are clear: simplified cross-domain authentication, convenient and more
secure service interactions85, and avoidance of fragmentation of authentication solutions for the
enterprise. Mobile liberty-enabled WSCs therefore are of crucial importance when integrating
with modular enterprise applications, where ’...authentication and other facilities are factored
out of application services’ [HKI06]. Next to SSO features, SOA for S60 also supports HTTP
Basic Authentication. Figure 3.9 illustrates a high-level architecture of the Nokia Web Service
specification.

3.4.6.3. Service Environments

The JSR-172 implementation enables web services consumer applications on mobile Java
platforms. The specification is also known as Web Service APIs (WSA) and supports the WS-I
Basic Profile in the same way as the NWSF. WSA is based on SOAP 1.1, WSDL 1.1, XML
1.0, XML Schema, and HTTP 1.1 and therefore contains lightweight versions of JAX-RPC and
JAXP [Cha06]. JAX-RPC enables Stub Generation, Stub Instantiation, and Stub Operations
for including the web service interaction logic into the microedition code base as well as for
configuring interaction properties. The client stub code is generated from WSDL files through
according stand-alone tools or IDE web service features. The available XSD data types for

81However only for C++ applications until now [HKI06].
82Since Web Services are not the only service-oriented technologies, Nokia tries to meet future trends with this kind

of architecture [HKI06].
83And the only one until now.
84Usually through a user-specific Security Token within the protocol header [Sam08].
85cf. SOAP Message Security encryption, Replay Attack protection, Identity-based Discovery Services, etc.

3. Analysis of Related Technologies 51

Figure 3.9.: High-level Architecture of the Nokia Web Service Framework (NWSF)

CLDC devices is limited to the basic ones and their mapping is adapted to the capabilities of
UI platforms as well. This fact restricts the use of mobile web services, because server-side
interfaces often involve XSDs which are not available in the mobile domain. The JAXP package
references to the SAX 2.0 API and allows MIDlets to receive parse events. WSA implementations
do not support WS-Security, SwA, WSPs, UDDI, SOAP message handlers, or an asynchronous
communication model.

In cases where native mobile web service support in not available, third-party extensions like
kSOAP in combination with kXML are frequently used. kXML was developed at the University
of Dortmund and is an XML pull parser and writer. Both implementations have a very small
footprint. Another related mobile extension is the ANSI C++ based eSOAP implementation.
The aim of this work was to let embedded systems inter-operate with n-tiered application
architectures. A further important tool for processing SOAP messages within embedded C and
C++ based applications is gSOAP [Cha06].

3.4.6.4. Payload Communication Constraints

In contrast to XML technologies, suitable for rendering content directly for end user consump-
tions like XHTML-MP, WML, and SMIL, web service specific XML dialects are used for
programmatic communication interfaces to remote resources. This textual and verbose commu-
nication formats have to be adapted for a mobile context by the environment. The properties of
mobile communication infrastructures like cellular networks, Bluetooth, and messaging systems
in different user interaction modes usually require a special attention in this relationship. The
operator usually supports a compressed payload protocol to reach a more efficient exchange
of plain XML structures over GPRS/UMTS networks and to save radio resources. One such
a compression method is specified by the WAP Forum as WAP Binary XML (WBXML). This
format preserves the element structure while encoding representative non-metadata XML tags
as single bytes.

3. Analysis of Related Technologies 52

On mobile platforms the biggest deficiency of XML is its processing overhead and its lack
to handle binary data via SwA. One alternative to transfer unstructured data such as images,
is by encoding them as Base64 strings, which however results in additional processing time
and message enlargements by the factor 1.33 [Nok06]. In combination with WBXML, binary
data might be transferred as so called opaque data [Nok06], which can be directly appended to
the encoded XML structure without a pre-processing step. Consequently, the WBXML parser
does not interpret this kind of attachments. The WBXML parsing capability is typically not a
platform feature by default, but it can be made available through the integration of commercial
or open-source solutions.

3.4.6.5. Service Availability

Since mobile users are usually charged by transmission volumes, rather than connection time,
and a reliable responsiveness is important for the acceptance of a network-based application,
it is preferable to optimize service connections. As already introduced in section Payload
Communication Strategies [3.4.3] and Payload Communication Constraints [3.4.6.4], there are
several approaches of how to speed-up remote server interactions a priori, by choosing from
different communication models during the development phase.

Now the focus lies on a measurement of a service’s availability within the mobile domain,
by introducing QoS parameters. This strategy is worth to be discussed, since it generally
enables an optimal end-to-end connection to arbitrary web-based services. Kee-Leong Tan
and S.M.F.D. Syed Mustapha [TM06] propose an MWS Availability Checking Model (MWS-
ACM) for integrating Availability Metrics into WSDL files, to give the mobile client feedback
about the service status before a invocation is performed. Within the web service domain QoS
refers to Service Level Agreement (SLA) to describe contracts and relationships between the
service and its clients. According parameters might be Availability, Response Time, Security,
and Throughput. With a concentration on obtaining the mobile service availability status, the
according paper refers to five different groups of metrics:

• Server Component Metrics
Connectivity to the Web Server, the Application Server, the Database Server, etc.

• Server System Metrics
CPU Utilization, Memory Consumption, Network Traffic, etc.

• Mobile Network Metrics
Response Time, Latency, Throughput, etc.

• Message Size Metrics
WSDL-specific Output Parameters and their Data Types.

• Device Metrics
Screen Size, Media Processing Capabilities, System Memory, etc.

In the work of Tan and Mustapha, the metric values are requested from mobile clients and
computed on the server through the so called Availability Checking Agent (ACA) which is acting
as a Service Broker. The agent finally delivers the service status data to the mobile client. The

3. Analysis of Related Technologies 53

Mobile Network Metrics are measured in the course of this initial data exchange. Since these
metrics or based on error-prone wireless connections, they are the most unreliable in the chain.
To enable an availability check with the MWS-ACM approach, the according XSD file with the
availability elements has to be integrated into the WSDL file of the desired service. Next to this
approach, there are similar works and efforts related to SLA, but often designed for the wired
domain exclusively.

3.4.7. Java Service Platform

An important organization effecting the interoperability of Java based applications and services,
is the Open Services Gateway Initiative (OSGi) Alliance, founded in 1999. The OSGi technology
has been adapted by manufactures, service providers and developers and is an attempt to
control the rising complexity when developing large distributed software systems by offering
specifications and according reference implementions as well as test suites and certification
programs. It is a contemporary non-proprietary technology with an improved time-to-market
model by integrating pre-build and pre-tested subsystems into the business logic. The OSGi
approach, originally aimed at residential Internet gateways for automatization of household
applications, is now evolving in other market segments including the mobile and embedded
sector. Nokia and other vendors plan to integrate the OSGi concept into their next generation
smart phones. OSGi is also widely accepted by the Open Source Community as an advanced
service-oriented, component-based Universal Middleware and is manifested in open source
projects like Apache Felix, Apache Derby and Eclipse Callisto [OSG07a]. Moreover, according
to [OSG07a]

’...the core OSGi technology is now increasingly prevalent in the Enterprise, and
is also seen as the key component of the next generation Java Service Platform that
enables the dynamic deployment of Web 2.0 Services and Mashups.’

In detail, the middleware system is divided into containers, which are defining Dynamic Software
Component interactions and a remote application lifecycle management, including over-the-
network deploying and updating without service interruption (JVM restarting). Software compo-
nents are Java libraries or according applications which are able to discover other components.
The alliance has specified standard component interfaces, implemented by different vendors to
suit the need of different markets, whereby OSGi provides a Cross Platform and Cross Industry
Service Platform widely applicable from small devices to mainframes.

3.4.7.1. Domains

The OSGi service platform got popular within the Enterprise Domain. The reason may be the
complexity of the Java Enterprise Edition (JavaEE) and its compatibility to other frameworks
through mechanisms like Inversion of Control (IoC)86 and Dependency Injection87, which

86An OO paradigm which describes the working principle of frameworks: A function of an application is registered
at a distinct library which calls this function at a later point in time a.k.a. Hollywood Principle. This means that
the program does not have full execution control. This design pattern is manifested in Listeners, Applets, Servlets,
etc.. IoC is also related to libraries which are working with Dependency Injection.

87A pattern for instantiation and initialization of objects while minimizing dependencies between them. Therefore
this method can be seen as an abstraction of the Factory Method Pattern.

3. Analysis of Related Technologies 54

limits the software to a specific application environment. However OSGi does not address
many JavaEE issues like APIs for persistence and messaging which are important within
enterprise applications, whereas an OSGi enterprise expert group has been established in the
end of 2006. Moreover an integration of OSGi technology into the popular and orthogonal
Spring framework from Spring Source ’...will strengthen Spring’s value as a basis for server
infrastructure and offer benefits to users in the area of componentization, versioning and
dynamic deployment.’ [OSG07b].

An interesting aspect is that the OSGi specification theoretically fulfills the requirements needed
for a flexible, scalable, reusable and unified service platform for the Mobile Domain. That kind
of platform is desired by mobile phone manufacturers, service operators and enterprises as
well as by end-users, which are currently faced with unmanageable software customization and
adaptions, potentially effecting more than half a billion88 mobile Java platforms. The JSR-232
Mobile Operational Management Submission expert group’s work is based on the OSGi concept
to manage the life-cycle of mobile Java services, libraries and applications on-the-fly without any
user intervention. This technology allows much more control over the enterprise and consumer
platform domain and improves the support and the user experience in a device-independent
way. This introduced Client Middleware will change the perspective within the mobile business
market also by allowing numerous of new application fields [OSG07b].

3.4.7.2. Key Features

In the following, the working principles and the Key Features of the OSGi middleware are briefly
discussed. First of all, the life-cycle controlling Software Component Management feature may
install a corresponding JAD/JAR application bundle in the OSGi framework, which is being
prepared to get ready for execution. The management component is now in the position to start,
stop, update or remove distinct components through the framework API. This postulates the
definition of additional JAR manifest headers and a reference to the framework API represented
by the BundleContext-Object, within Java applications. Since the OSGi specification forms
a small layer that allows multiple Java components to cooperate efficiently in a single JVM,
the communication between running applications is as fast as possible while minimizing the
memory footprint. Furthermore the service platform is designed to allow devices either run
independently or under the control of the Remote Component Management feature, driven
by a platform operator. In the second case an authorized software component has to map
a distinct management protocol to an API call to get connected to the remote service. This
concept provides the same interoperability as a standard protocol by additionally supporting
protocols which are adapted to distinguish deployment scenarios. For instance, the OMA
Device Management (OMA DM) is one of the OSGi supported protocols within the mobile
environment [OSG07b].

3.4.7.3. Security

The OSGi middleware also simplifies the management of component configurations when
developing software for this platform while considering Security aspects as well. The first
level of defense is the security concept of the JVM itself, which is designed to restrict the

88millard in european terms

3. Analysis of Related Technologies 55

capabilities of an executing Java code by preventing for example dangerous buffer over-runs.
The access modifiers of the Java Language represents the second level of defense, which allows
a shared but shielded runtime environment for applications in a JVM. The final mandatory
platform security feature lies within the OSGi framework that strictly separates bundles from
each other by validating their Service Permission before being executed. In summary, the OSGi
security architecture is quite advanced and sufficient to offer a reliable cooperation between
OSGi platform applications [OSG07b].

3.4.7.4. Java Application Server Models

In contrast to other Java Application Server Models, such as MIDPv2 or JavaEE where ap-
plications are seen as private bundles which have to carry all their codes, OSGi not runs its
code in a closed container. This means that the platform does not introduce an overhead when
integrating with other applications. However, functionality is contributed to the environment
and shared among other applications by downloading the distinct libraries resulting in much
more slender code. Arising bundle dependencies and version control for classes as well as the
loading of classes are solved by the OSGi middleware in a deterministic fashion. A closed MIDP
environment has to provide a set of APIs to each single device to offer specific functionalities,
instead of sharing them once within a collaborative environment. This environment requires a
lightweight publish, find, and bind model for services inside the JVM, like manifested in the
OSGi Service Registry. This loosly coupled component interaction supports a Service Oriented
Architecture, whereas a registered OSGi service represents an object which is made available
by one bundle and consumed by another one. These vendor-supported service objects have
different granularity and might also be full featured services like a HTTP Server. There are
several abstract standard OSGi services which can be integrated in specific solutions on demand
(see appendix Standard OSGi Services [C.1]). More complex enterprise applications are often
split up into sub-components for communication, database access, business logic, multiple user
interfaces etc. During the OSGi deployment phase, components are then smoothly composed in
a way to meet the requirements of a specific target environment, which also offers a simplified
and flexible mobile application development [OSG07b].

3.4.7.5. Dynamic Platform Behaviour

The described Dynamic Platform Behaviour is one of the most interesting features, but also quite
complex to maintain, since listener registries and listeners themselves must also become aware
of the platform dynamics to be able to set their state according to bundle life-cycle changes.
Based on a solid platform management, frequently component manipulations however do not
influence the 24/7 availability of system components. Even servlets may be updated without
forcing a restart of the underlying web server a.k.a. Hot Update. Furthermore, there is no
strict policy for using the service platform, the maintainer has to assume the responsibility.
OSGi Alliance members are in the position to certificate their implementations, whereas these
applications are proven to run on service platforms of other vendors as well. In this case a
service fee might be charged for the service consumer, but since different vendors are forced to
compete against each other, the price is usually low and service quality high [OSG07b].

3. Analysis of Related Technologies 56

3.5. Location-based Infrastructures

Location-based infrastructures are highly distributed networks of services and components to
provide the end-user with new kind of enhanced mobile applications. There are several ways to
determine the location of mobile devices and its corresponding users. Satellite-Based systems,
to name the most popular technology in this area, achieve a rarely high accuracy, whereas related
receivers are compact and highly available at moderate prices. On high-end smart phones, a
satellite service might be directly accessable through on-board hardware. Alternatively, telecom
providers are able to offer a pure Network-based or an Assisted-GPS location service for end-
users, using their 2G, 2.5G, or 3G country-wide wireless telecommunication infrastructure in
combination with GPS stations. Another family of positioning technologies are Short-range
Network positioning systems based on Wi-Fi, Bluetooth, RFID, IrDA, etc., but they are not in
the focus of this master’s thesis.

3.5.1. Location-based Services

Mobile data networks in combination with modern mobile devices and a seamless as well as a
secure service/data access offer many new applications for an advanced end-user experience.
The most attractive services with a great potential within the mobile domain are probably
Context-Aware ones, related to the user’s physical environment. In this sense, also the user’s
current location becomes a powerful aspect. According to [MS05] ’A typical location-based
wireless service hosted by a service provider, analyzes the user’s request, prepares a reply
according to the user’s location and sends the response.’ As described more detailed within the
next sections, the positioning method can be somehow controlled by the service developer or
even by the user, by involving different positioning systems. A standalone satellite-based service,
for instance, does not depend on service operators. No privacy control has to be established as
long as the retrieved location is not sent over the network. On the other side, location-unaware
devices may have a fast access to a variety of operator-controlled LBS’ with according security
models. Sometimes, a combination of multiple positioning solutions is desired to ensure a
maximal mobility and service quality.

The user’s geodetic datum retrieved from a positioning service is suitable to be part of a further
information service request originated from the mobile platform. The requested service might
offer user friendly geographical addresses, weather forecasts, or real-time traffic situations with
respect to the delivered datum89, also without any intervention of an intermediate processing
node. In such cases location-centric web services typically offer the desired data base.

3.5.1.1. Service Components

Typical location-based services are designed in a way to allow location-unaware handsets
a widespreaded network-based application spectrum, which may be classified as following:
Emergency Services90, Information Services, Tracking Services and Entertainment Services
[MS05].

89A LBS can also be refered to as a Coordinate LBS, whereby distinct coordinates are already arguments of queries.
90The US E911 and EU E112 specifications are location enhanced emergency services for mobile devices, which

have to be supported by manufactures and operators. This capability is not exposed to developers [PD04].

3. Analysis of Related Technologies 57

From the operators perspective, a LBS is structured into Service Channels, Service Context
Layers, and Service Interfaces. The location-related information is either pushed to, or pulled
by the mobile platform, resulting in different service channel characteristics. Pulled-based
LBS are much more propagated today, since they are easier to implement and allow the user to
initiate a request on demand. The Location Detection context layer is the foremost layer, used
to determine basic parameters like the longitude and latitude information of the mobile terminal.
The Location Transformation layer is a context layer which is sometimes used to convert a
location into a geographical landmark91 to be represented within a cartographic interface. As
a third layer, the Location Tracking/Monitoring layer provides location updates at periodical
intervals. Operators may provide a LBS through different service interfaces/gateways: SMS,
MMS, Interactive Voice Response (IVR), Internet, or WAP.

3.5.1.2. Service Architecture

Including the presented components above, a LBS architecture contains a location access
manager and a controller situated within a Middle Layer, surrounded by a Device/User Layer,
a Network Layer, and an Application Layer. The Device/User Layer covers the user- and the
corresponding service interfaces. The application layer includes the deployed mobile application
which uses the LBS infrastructure.

The middle layer manages the user’s privacy and profile information and offers client authentifi-
cation mechanisms as well as interfaces to external engines, services and applications. The user
may subscribe/unsubscribe services on demand, whereby full control over the location privacy
is not guaranted. A user may have the permission to define a Home Zone and a remaining
Roam Zone, which triggers the middle layer in cases where the user leaves or enters the cells
corresponding to prior defined zones, resulting in different service fees [MS05].

The network layer represents all the location detection equipment, which is required next
to the basic cellular network technology to determine the location of mobile terminals.
The corresponding components belong to the operator’s Network Support Services (NSS)
infrastructure. Two important network layer components of this infrastructure are the Gateway
Mobile Location Center (GMLC) and the Service Mobile Location Center (SMLC), which
provide location information of a requesting Mobile Station (MS) identified by its phone number.
Before a query, which is received by a service interface, is being executed, application-specific
Criterias like the maximal accuracy, the preferred location technique, and the service cost
settings have to be retrieved. Afterwards, the GMLC redirects the query to the Home Location
Register (HLR) to determine the user’s registration data. This data is sent to the SMLC, which
coordinates and assigns the resources for the determination of the user’s position within the
network. The actual query is performed by the Mobile Switching Center (MSC) and the
corresponding Base Station Subsystem (BSS) through the Location Measurement Unit (LMU),
which is applying the positioning techniques described in section Network-based and Hybrid
Positioning Systems [3.5.3]. The collected information is sent back to the SMLC, which finally
returns the new location or the last successfully retrieved one (if the current positioning attempt
failed) over the service gateway [Gut07]. Figure 3.10 illustrates this query process.

91Map Servers or Geographic Information Systems (GIS) are usually used to perform this task.

3. Analysis of Related Technologies 58

Figure 3.10.: Location Determination within an Operator’s Network Infrastructure

When utilizing the privacy management infrastructure within the LBS middle layer, a service
subscriber specifies whether/how the location information is controlled from other groups of
subscribers or location clients. This configuration is performed by a SIM tool kit option, WAP,
or SMS [MS05].

3.5.1.3. Protocols

Since a particular location-based application frequently uses foreign networks as well, a service
Standardization is important to maintain the pervasive computing paradigm. The OMA-defined
application-level Mobile Location Protocol (MLP) is for instance specified in a way to determine
the location of the mobile terminal independent of the underlying technology. Such protocols
have a great importance not only for the deployment of an area-wide location enhanced emer-
gency system. To acquire location information on identificable Internet resources92, the Internet
Engineering Task Force and the Open GIS Consortium (OGC) developed geoprocessing specifi-
cations like the Geographical Markup Language (GML), including location transformation and
Web Map Service (WMS) definitions [MS05].

3.5.1.4. Programming Interface

A LBS offered through a network operator can for instance be accessed with the help of the
JavaME-based Location API93. This programming interface is quite abstract. After the definition
of the location criteria, the query is send to the corresponding positioning system, which triggers
a location listener as soon as the result is available. The implementation of the Location API
is usually aware of the available positioning methods by automatically searching services in
the following order: Bluetooth connection to an external GPS service, internal GPS service,
network-based service. In the next sections the working principle and the properties of the actual
positioning technologies are described.

92E.g. The physical location of a specific server machine or a software.
93JSR 179

3. Analysis of Related Technologies 59

3.5.2. Satellite-based Positioning Systems

In the late ’70s the NASA started to invest in cooperation with other US Departments billion
of dollars for establishing a strategically important global object localization and navigation
infrastructure based on 24 satellites on 6 different orbits (about 19000 km over the earth’s
surface). In this height, a satellite circumnavigates the world in approximate 12 hours. In
1995 all the satellites reached their final position. This Global Positioning System (GPS),
originally known as Navigation Satellite Timing and Ranging (NAVSTAR)94, consists of three
main segments: A Space Segment, a Control Segment, and a User Segement [GAR00]. The space
segment contains 21 active and three spare satellites, which are distributed around the earth in a
way to have a straight view to at least four satellites from every position on the earth’s surface.
The control segment consists of five distributed terrestrial base stations with one manned master
control station to track and update the satellite system. The user segment consists of the potential
user base like military, hikers, pilots, hunters, etc. and their corresponding receivers to be able
to navigate through a specific terrain or to annotate data with location information for further
processing.

3.5.2.1. Positioning Technique

The civilian GPS receivers receive low power satellite radio signals in the scale of 20 to 50 watt
with a frequency of 1575,42 MHz by using the Ultra High Frequency (UHF) band. In contrast
to a 100,000 watt powered local FM radio station on earth, GPS signals are usually not able
to run through massive buildings or even not through a thick cloud ceiling. A Line of Sight
to the satellites should be ensured while using the service, which usually depends on weather
conditions. The receiver has to detect the space positions of at least four satellites and the
distance to them, to be able to determine its own position on the earth’s surface. The accuracy is
proportional to the number of visible satellites. The transmitted and coded GPS information
contains the satellite positions a.k.a Almanac data, which also allow to determine the signal
travel time a.k.a Time of Arrival to the receiver, used to figure out the Distance between the
communicating nodes [GAR00].

The Almanac data of satellites are stored and updated periodically within the receiver’s memory.
An update is made by the receipt of the Ephemeris data which contains the corrected satellite
positions initiated by the master control station when a satellite travels slightly out of orbit,
which happens every 4 to 6 hours. A GPS receiver is considered as ’warm’ when it has stored
the latest Ephemeris data of viewable satellites, otherwise it is said to be ’cold’. Therefore a
GPS receiver start-up takes some time to aquire satellites for performing a position calculation.
This so called Time To First Fix (TTFF)95 [Sur07] lies in the scale of several seconds up to more
than one minute, depending on the physical environment and the used infrastructure (see section
Assisted GPS [3.5.3.2]). A small TTFF or satellite lock-on value is considered as an important
aspect when acquire a GPS unit, especially when a reliable tracking of high dynamic objects is
desired. Stable satellite locks may be maintained at all times through the usage of multi-channel
GPS units, whereas multiple circuits are devoted to a particular GPS signal96.

94Nearly parallel the deployment of the NAVSTAR satellites the former Sowjet Union started the Globalnaya
Navigationnaya Sputnikovaya Sistema (GLONASS) project, which was given up after the collapse of the Sowjet
Union in 1991. However Russia has re-adopted the project and plans to reach its final stage in 2010. Currently,
also a European Global Positioning System called Galileo is under construction.

95The term Fix is associated with the actual position data.
96This approach reduces the TTFF value and improves the ability to receive signals even under difficult conditions

3. Analysis of Related Technologies 60

Within the receiver, the radio wave’s velocity c is being multiplied by the signal travel time
∆t resulting in the distance d between sender and receiver. Due to the earth’s atmosphere,
the signal velocity lies slightly under the velocity of light. This circumstance is considered
through an ionospheric delay model within the final formular. The receiver is responsible of
calculating the distance with the help of a received, satellite-specific Pseudo-Random Code
(PRC)97, which is compared with a similar receiver-specific PRC [GAR00]. The aim of this
operation is to shift both codes until they match, whereas this shift ∆t is rated to the signal’s
travel time between the nodes. The calculated distance d=∆dt*c to three satellites is theoreti-
cally sufficient to determine the exact position on the earth’s surface like illustrated in figure 3.11.

(a) The Intersection Point of three Sphere Surfaces results
in a precise Position on the Earth’s Surface (The Spheres
are not shown to the Clarity)

(b) A further Intersection Point lies in the Space and has no Relevance

Figure 3.11.: Principle of the Positioning Determination with Satellites

like in urban settings.
97Each receiver knows the PRC of each satellite, whereas it has the ability to filter specific PRCs from an received

overlayed signal. The signal is refered to as pseudo random, since it looks like a noise signal.

3. Analysis of Related Technologies 61

Due to its inefficiency, a GPS receiver’s internal clock is not synchronized to a atomic time
like in the case with satellite clocks (GPS System Time). The distance measurement therefore
contains an error98 resulting in a Pseudo-Range Data, which has to be corrected by using the
fixes of at least four99 satellites [GAR00].

With the civilian GPS service, further errors like multi-path signals caused through object
reflexion especially within urban areas and therefore a corruption of the satellite distance
value are common problems. A suboptimal satellite geometry100 and especially the so called
Selective Availablity (SA)101 are further sources for an unprecise location evaluation within
civil applications. Due to economic reasons, the SA restriction is however inactive since 2000,
which improves the positioning accuracy from 50-200 meters to 6-12 meters102, which offered
many new applications like consumer navigation systems. Independent of the removal of this
restriction the GPS service is divided in two categories, refered to as Standard Positioning
Service (SPS) for civilian applications and Precise Positioning Service (PPS)103 for US military
applications with an accuracy up to a few centimeters [Häß01].

3.5.2.2. Overlayed Systems

To overcome some of the errors mentioned above which are mostly related to the SPS service
quality, the Differential GPS (DGPS) represents a suiteable approach. With DGPS, a terrestrial
reference station at a known location is continously measuring its current GPS location and is
therefore able to send104 a calculated GPS signal error for tracked satellites in form of a DGPS
correction message to a moving object related to the station. The DGPS receiver is therefore
able to correct its own location by considering a known GPS signal error value for distinct
satellites, resulting in an accuracy of 1 to 5 meters [GAR00]. A similar approach as DGPS is
the Wide Area Augmented System (WAAS), which uses a geostationary satellite for transmitting
the correction data [Rot02].

3.5.2.3. NMEA Protocol

In 1983, the National Marine Electronics Association (NMEA) defined a standard protocol for
exchanging data between an GPS receiver and an external processing unit. This protocol was

98A time difference of only 1µs between the GPS system time and the receiver’s internal time causes a location error
of about 300 meters [Rot02].

99The receiver’s clock can not be synchronized with satellite clocks to calculate an exact distance, since this
synchronization signals would have to travel faster than the speed of light. A further problem, which is also
related to the theoretical physics domain is that a clock situated in the interstellar space is influenced by the
gravitation of the universe and therefore not working under the same conditions as a clock on the earth. To
solve this problem, a forth satellite must be used to calculate the user’s exact position. A description of how this
method works can be found in [Rot02]

100A satellite geometry is seen as ideal if the nodes are located at wide angles relative to each other. A minimum
elevation angle limit is often built into GPS units to avoid using satellites close the horizon, whereby the signal
would have to travel through more atmosphere resulting in more unprecise values [Sur07].

101An introduction of an artificial location data imprecision for civil applications to avoid a GPS accuracy which is
nearly as high as for military applications.

102Official location-technology specific accuracies have always a probability of 95%.
103With PPS another PRC code with a higher frequency is modulated resulting in much more precise satellite distance

calculation. The PPS signal is encryped and only accessable by the US military and the NATO [Rot02].
104The correction message is transmitted in real-time e.g. over FM radio frequencies or satellites.

3. Analysis of Related Technologies 62

named NMEA 0183 and is nowadays the standard protocol for handling raw GPS location
information using an asynchronous RS-232 compatible serial interface with a default baud rate
of 4800105. NMEA 0183 devices are designed to be Talkers or Listeners or both. The GPS
talker information is provided in NMEA sentences built upon ASCII characters only, whereas
a listener is querying the talker for a particular sentence of interest. Often only a talker is
used, which is constantly sending NMEA sentences over its opened interface. Each sentence is
starting with a $ character, followed by a 2-digit talker ID, a 3-digit sentence ID, the actual
payload, a sometimes optional checksum starting with a * character and an obligatory carrage
return/line feed <CR><LF>, resulting in a maximal length of 82 characters [NME07]. The
NMEA 0183 standard also allows the definition of proprietary vendor-specific sentences starting
with a $P and a 3-digit vendor ID as well as an NMEA conform data representation. This also
allows a specification of the device’s baud rate and the underlying geodetic format [Häß01]. The
Recommended Minimum GPS/Transit Data (RMC) sentence defines the minimum recommended
GPS information delivered by each GPS unit, containing at least the longitude and latitude
information of the current position (see section Positioning Models [3.5.4]). In the following
table the fields of a valid RMC sentence (as received from a GPS unit) are analysed [Häß01].

$GPRMC,143029,A,4844.6196,N,12311.12,W,000.0,054.7,230500,000.2,W*7C

Field Value Description
GP Talker Identifier (Global Positioning System Device)
RMC Sentence Identifier
143029 Timestamp of Sentence Creation (14:30:29 GMT)
A Receiver Warning (OK - Valid Data)
4844.6196,N Latitude and Hemisphere Direction (48 deg. 44.6196 min North)
12311.12,W Longitude and Hemisphere Direction (123 deg. 11.12 min West)
000.0 Speed over Ground (0.0 knots)
054.7 True Course
230500 Date of Last Fix (23.05.2000)
000.2,W Magnetic Variation (0.2 deg West)
7C Hexadecimal checksum value of NMEA Sentence

Table 3.1.: NMEA 0183 RMC Sentence Example - List of Sentence Fields and their Description

3.5.3. Network-based and Hybrid Positioning Systems

Next to the incorporation of the GPS service, fixing an user’s location is also possible
through the already established cellular networks of telecom providers as indicated in section
Location-based Infrastructures [3.5]. The major advantages with this approach are that the
additional investment in network components is quite low and the according location techniques
are working as long as the mobile device is able to establish a connection to the surrounding
base station of the provider’s network. A further advantage is, that with network-based systems
no additional hardware is necessary as part of the user’s equipment. On the other side, the
LBS is usually not free of charge. Furthermore, this outdoor/indoor approach only has an
average accuracy of several kilometers in rural areas where the GSM cell sizes may have

105The NMEA 0183-HS standard as part of the NMEA 0183 v3.0 specification uses a default baud rate of 38400
[NME07].

3. Analysis of Related Technologies 63

35 km, and up to 50 meters in urban areas with cell sizes of approximately 100 m. The
quality of this less accurate location service in contrast to satellite-based ones, obviously
heavily depends on the network/human population dense. Figure 3.12 provides an overview
of available network infrastructure-based positioning techniques in contrast to GPS enabled ones.

Figure 3.12.: Positioning Techniques for the Mobile End-User in Dependency of the received
Accuracy and the Environment of the Mobile Device

3.5.3.1. Positioning Techniques

Since a GSM network is always aware of the communicating Mobile Stations (MS) within a
distinct cell, a coarse positioning of a MS is a-priori given. The resolution is in most cases
however not as exact as desired by corresponding applications. For this reason an additional
infrastructure is needed to constrain the position of a MS on a maintainable level. This network-
based positioning methods are often combined. Their names already expose information on how
the technology works: Cell of Origin (COO) or Cell ID, Angel of Arrival (AOA), Time Advance
(TA), Uplink Time of Arrival (UL-TOA) and Estimated Observed Time Difference (EOTD), all
with various advantages and drawbacks in respect of accuracy and complexity. The COO, which
only uses the position of the next base station as final MS position is very unprecise and therefore
often improved by dividing a cell in Cell Sectors (CS) established through an BSS with multiple
directional antennas working at different frequencies. A further improvement of the COO or
COO CS approach to restrict the possible user location within a cell is through a measurement
of the Received Signal Strength (RSS). The AOA approach makes only sense if the base stations
use expensive antennas with direction characteristics, whereas they are able to calculate the
position of the MS through a measurement of the incoming signal direction [Gut07]. Mobile
stations and base stations are using exact time slices to communicate with each other, whereby
this approach has to consider the signal runtime between the nodes as well. By default, the
TA method is used to initiate a signal transmission from the MS at time in advance which is
proportional to the distance from the BSS. This information can be used to estimate the position
of the MS within a cell in steps of about 550 meters. The UL-TOA method can be used if the
MS is in the coverage of four base stations. A signal runtime measurement and an evaluation

3. Analysis of Related Technologies 64

similar to the GPS approach allows a position determination with an accuracy of 50 to 150
meters [Rot02]. The EOTD method is similar to the UL-TOA one, with the difference that the
position of the MS is calculated by the device itself, after the necessary information has been
received from the operator’s LMU. The evaluation parameters are once again the signal runtime
differences between signals emitted from the base stations [Gut07].

3.5.3.2. Assisted GPS

Nowadays, the support for network-based LBS is spare106, but it may have a great protential
especially as a hybrid Network-/Satellite-based positioning approach also known as Assisted
GPS (A-GPS)107. A-GPS is for instance very helpful in urban canyons where the satellite
acquisition time may take several minutes or if a lock-on is impossible. Assisting network
components bypasses the cold start phase of GPS units by sending pre-determined Ephemeris
data (see section Satellite-Based Positioning Systems [3.5.2]) through a wireless network link
to the requesting units. The Ephemeris data is determined through a Reference GPS Receiver
which is a sub-component of the SMLC. As soon as the MS receives the assistance information
from the network, the position calculation is either performed by the MS itself in combination
with the viewable satellites, or by the NSS infrastructure. In the second case the relevant
satellites are determined through the known location of the BTS to which the MS is locked-
on108. Afterwards these satellites are used to calculate the position of the MS [Tay05]. The NSS
approach futhermore saves resources on mobile units. The accuracy for A-GPS lies between
5 and 30 meters and the TTFF value is usually less than ten seconds [MS05]. A-GPS also
supports a better roaming and does not need expensive network installations like LMUs and
associated equipment. Figure 3.13 shows the infrastructure of A-GPS.

Figure 3.13.: Schematic Infrastructure of an Assisted GPS System

106For instance, in Germany some providers like T-Mobile, D2 Vodafone, E-Plus, and O2 offer location-based
services over an WAP portal or an SMS gateway [MS05]

107In Japan this encouraging technique is already deployed with success.
108As approximation to the MS location

3. Analysis of Related Technologies 65

3.5.4. Positioning Models

There are several mathematical models for a description of a specific position on the earth’s
surface, divided into two subsets: geometric and symbolic models. Geometric models contain
further sub classes: Earth-Centered Earth-Fixed (ECEF) XYZ Coordinate Systems, Conformal
Coordinate Systems, and Geographic Coordinate Systems. All geometric models use coordinates
within the model’s reference system to point on specific positions, which are in contrast to
symbolic models suitable to be processed by computers. A geographic model uses a reference
ellipsoid as a model for the earth’s volume. This geodetic109 shape which may be seen as the
base for a Geoid110 is mainly defined through its Equatorial Radius (semi-major axis) and Polar
Radius (semi-minor axis), sometimes together with the earth’s Flattening at the poles. The
Geographic Model is the most important positioning model and the WGS84 Datum the most
important map datum format, also used by the GPS infrastructure. However a GPS receiver may
handle a dozen of different positioning or grid formats as well as more than hundred map datum
formats [PD04].

3.5.5. WGS84 Datum

The World Geodetic System of 1984 (WGS84) geoid is currently the most widely adoped
earth reference system since it is precise and user friendly. The classical WGS84 datum as a
mathematical representation of a point on the earth’s surface, consists of a Longitude, a Latitude,
and an Altitude value. The longitude value is refered to the plane which totally covers the
equator, and the latitude value is refered to the plane which totally covers the Main Meridian
going through Greenwitch in UK [Häß01]. This principle is illustrated in figure 3.14.

Figure 3.14.: Definition of the Longitude and Latitude for the WSG84 Earth Reference System

The WGS84 values are often represented as the deviation in degrees, minutes, and seconds
from this reference planes together with the hemisphere direction if the denoted values are not
signed111. The WGS84 ECEF format, which is not as understandable to humans as the classical
WGS84 format, is however the most popular one when it comes to computer communication
and processing of map datum information [PD04].

109Geodesy refers to as the science of measuring and mapping the earth’s surface
110An abstracted model for the shape of the earth considering an earth’s abstract model gravitation.
1111 degree of longitude at the equator is roughly 111.3 km, whereas at 60 degree of latitude, 1 degree of longitude is

not more than 55.8 km [PD04].

66

4. Requirements

“A journey of a thousand miles must begin with a single step.”

— Chinese proverb

The chapters Introduction [1] and Background [2] provided an early position on the problem
of realizing a distributed location-based application for the aggregation and management of
mobile-generated media content. Such a functionality is going to be manifested as the core
system of a Mobile Blogging Application called TMBlog. The implementation also aims to verify
the adequacy of the corresponding solution for distinct application scenarios. Additionally, this
mainly user-centric blogging tool focuses on privacy and usability aspects, which usually have
a great impact on an acceptance of the system through device owners. The technologies and
concepts which have been discussed in chapter Analysis of Related Technologies [3] are in a great
measure the foundation for building this prototype and to understand its runtime environment as
well as design decisions. This chapter describes Tourism-related Studies, possible Application
Scenarios, the Application Infrastructure, derived detailed Functional Requirements for the
prototype and its possible extensions, as well as its Communication Models.

4.1. Tourism-related Studies and Deployment

Tourism and LBS’ are often seen as an ideal mix, because travellers are often confronted
with unfamiliar places and a recording of locations for the ’generation of an authentic travel
experience’ might be desired. [Leu05] predicts LBS’ as a key-defining factor with a high
potential application field in the mobile industry. The University of Auckland accomplished a
study on the perceived value of LBS from a customer-centric perspective in the New Zealand
tourism. The results of this study lead to a set of requirements for according mobile solutions
in terms of user preferences and perceptions. In general, a successful introduction of such
services usually depends on the usefulness, performance and costs of according solutions. In
areas where the tourism makes up a great part of the country’s Gross Domestic Product (GDP),
an efficient and novel deployment of tourist-related services might have a great impact on the
visitor’s immersive travel experience and behaviour. Unlike as in Austria and in other populous
areas, different issues such as a fragmented coverage of the mobile Internet in isolated terrains
like deserts, rain forests, mountain chains, etc. must be considered when designing mobile
applications for world-wide travellers. The aimed solution in this master’s thesis is not tightly
integrated into large-scale provider networks or into a country’s tourism service infrastructure in
general. However, consumer-centric studies for such exhausting and possible long-lasting IT
systems are also valid in small dimensions. The requirement analysis for the aimed LBS-based
blogging prototype therefore heavily depends on experiences with such tourism services and
according studies.

4. Requirements 67

4.1.1. Perceived Value of LBS

Clara Lueng carried out a research in two phases including in-depth interviews with expert in-
formants in the mobile industry and technology-interested international travellers [Leu05]. This
evaluation process formed a much fuller picture of LBS issues in the tourism sector. The expert
informants defined necessary requirements for mobile LBS solutions as follows: Usefulness,
Ease of Use, Security & Privacy, Personalisation, and Interoperability. The related consumer
study with 31 travellers in New Zealand gave an insight into the technology-experienced mobile
user’s preferences, doubts and perceived risks when using such kind of services [Leu05].

More exactly, the consumer interviews manifested different important values for travellers when
using LBS’, grouped into Contextual Value, Functional Value, Social Value, Emotional Value &
Emotional Risk, and Linking Value. These values result from a Utilitarian Thinking on the one
side and a Hedonic Thinking on the other side. Like expected by the researchers, the Contextual
Value with its key factors Mobility and Context-Awareness has the greatest importance for a
service consumer. Furthermore, ’service costs appear to be the most important functional value,
while ease of use, reliability, convergence and global standards, are assumed to be inherent
in the service, otherwise they will simply reject and avoid using the service altogether’. The
Social Value is related to interpersonal interactions, such as keeping in touch with home and
other travellers for sharing experience and to enable a local word-of-mouth communication.
This strategy leads to a Linking Value, which fits well to the concepts of postmodern individuals
’who are highly autonomous and mobile in a spatial and social sense.’ [Leu05]. This technology-
based communication forms a strong sense of community among travellers and lets them stay
connected regardless of their physical location. Emotional Value & Emotional Risk are crutial
factors for the acceptance of services. The utilization of LBS’ supports the Self-Assurance
through the establishment of advanced emergency services. A single traveller typically perceives
a more secure or safe feeling during a journey if someone is able to recognize abnormal situations
as well as his last location in case of an serious accident. However, privacy invasions and the
possibility of personal data misuse are further strong emotions, which might reject a usage of
LBS’ through the mobile user. The trustfulness of a service is typically higher, if the user has
full control over service parameters and if the service offers expected information. Furthermore,

’fear of biased information is a perceived risk of using location-based tourism information
services,...biased by other consumers with opinions...or via sabotage by firms.’ [Leu05]. In
this sense, a printed travelling guide is still a preferred assistant for travellers, even if the
information is not up-to-date. Finally one has to consider that each medium has its own qualities.
Technology-interested travellers might however tend to utilize reliable and well integrated IT
services as well, which offers much benefit also in terms of flexible communication models.

4.1.2. Application Scenarios

In the following a specific scenario is described to get more immersed into a traveller’s
situation when using the TMBlog solution: A person might be on a long Journey possibly on
another continent. In such a case the application, installed on his smart phone, might be used
to create location-based blogs to get aware of Distances covered by plane or other means of
transportation. Furthermore the traveller would be able to determine the province and the state
he is staying at the moment or he has previously visited, by exploring his trace on the phone.
Additionally the mobile application might be used to communicate with relatives or friends at
home by posting created multimedia blogs into a web environment. Consequently it is a good

4. Requirements 68

way to be informed about someone’s experience and adventures without suffering high costs
for phone calls or time management. Extensions might allow further services such as weather
forecasts for the current region.

A further already mentioned application field for the TMBlog approach besides tourism
is the Research and Statistics sector: The application might be a handy tool for Documen-
tation purposes in scientific settings. A biologist might for instance track the occurance of
distinct plants or flowers within specific areas, by taking photos and by optionally adding
some annotations with a mobile handheld device. The collected location-based data might
be transfered to an institute’s server immediately, to be automatically prepared for a conve-
nient cartographic exploration within a web environment. The offered spatial circulation and
according elevation levels where distinct species are situated might have relevance for the
biologist’s studies. The transfered geotagged data might also be stored and pre-processed as
application-independent XML-representations, suitable for a transformation and an integration
into an arbitrary context.

4.2. Application Infrastructure

On principle, the TMBlog application is distributed over three domains: Mobile Client Domain,
Server and Backend Systems Domain, and Web Client Domain. The connectivity between the
mobile and the static components typically not relies on a particular network.

Figure 4.1.: High-level Overview of the Blogging Application’s Infrastructure. Multiple transfer
Channels provide a flexible Interaction with the Server and Backend Systems, and
the Community respectively.

4. Requirements 69

Country-wide provider networks support the highest possible mobility and flexibility to commu-
nicate with remote nodes. However the availability of further wireless technologies like WLAN
and Bluetooth through modern handsets also enables alternative and charge-free communication
channels. A utilization of the introduced GPS-enabled handsets in the last years increases the
application’s usability, since no additional hardware would be necessary. Figure 4.1 illustrates
a high level overview of the application’s infrastructure and the mentioned communication
technologies.

WLAN access points are discovered by WLAN-compliant devices through a native platform
functionality and can be chosen in the same way as data-centric access point providers by end
users as soon as the application initiates HTTP connectivity. A Bluetooth transfer channel
however requires a special focus, since it is not suitable for accessing Internet-based network
nodes by default. Such an optional short-range channel might be part of the application’s
communication logic. As a mainly social application it is desired to reach a huge user base and
therefore as many mobile devices as possible. The wide-reaching availability of KVM-enabled
devices theoretically1 fulfills this fundamental requirement.

1As mentioned in section Mobile Software Development [3.2], errorneous implementations through vendors are
common.

4. Requirements 70

4.3. Functional Requirements

In the following sections, the application domains as they have been indicated in figure 4.1, are
going to be analysed in detail, to be able to launch the Prototype Design [5] and the Prototype
Implementation [6] phases. The Functionality mainly focus on user-centric application aspects
and on high-level system components as well as on first ideas of how to realize them. The actual
decissions in this development stage are mainly based on consumer studies in the tourism sector
like mentioned in section Tourism-related Studies and Deployment [4.1].

4.3.1. Mobile Client Domain

The according MIDlet is divided into five major domains: System, Security, Content, Location,
and Communication. The following figures visualize all desired user interactions with this
domain in form of UML User Case Diagrams, which are analysed and discussed in the next
sections. These features should be finally implemented as part of the prototype. In figure 4.2 it
is assumed that blogs are already stored on the device.

Figure 4.2.: UML User Case Diagram for User Interactions in the Mobile Client Domain:
Application and Content Management

4. Requirements 71

Figure 4.3.: UML User Case Diagram for User Interactions in the Mobile Client Domain:
Application Configuration and Content Generation

4.3.1.1. System

• Platform Capability Awareness
While the end user is installing and executing the MIDlet through the system’s installer
everything may work fine. Platform implementation failures however may prevent the
MIDlet to offer all its features. Due to this fact it may be advantageous to have an
application functionality which explores the actual system’s firmware version and its
capabilities with all available APIs to find causes for potential conflicts more efficiently.
This feature is interesting for Debugging purposes and might be disabled easily. In

4. Requirements 72

future implementations, distributed vendor-driven service platforms might give this topic
however a new dimension (see section Java Service Platform [3.4.7]).

• Multiple Locale
Since the application is based on mobility and designed for a global usage, it is obvious
to support multiple languages. J2ME Polish enables the outsourcing of language-specific
artifacts to text documents and therefore a separation from the application logic. This
resource-centric web- and enterprise application development concept offers an efficient
deployment of language-specific MIDlets.

• Advanced Usability
Based on the features of J2ME Polish and application-specific ones, the software should
have a high degree of usability. This involves an intuitive application navigation through
advanced mobile layout features, a right-balanced usage of expressive icons, an adequate
user feedback about errors and progresses of operations, and customizable units of
measurement.

• User Preference Settings
The user should have a great impact on the behaviour of the application. The features
of the application domains Security, Content, and Location should therefore accept the
following user-specific settings across sessions, which are discussed in more detail within
the according sections.

Attribute Values
Remember Credentials yes | no
SSL Connection yes | no
Blog Relation Journey Blogs | Standalone Blogs
Blog Order Time | Type
Photo Size Small | Large
Blog as Waypoint yes | no
Location Service Search | GPS Device
GPS Device Search | ’GPS Device Name’
Distance Unit Kilometers | Miles

Table 4.1.: Available User Preference Settings in the Mobile Client Domain

• Persistent Storage
Like with the system settings, generated content must be stored persistently to be available
over successive sessions. As a mobile database the JavaME-specific Record Management
Store (RMS) should provide this functionality since it is a native feature on all KVM de-
vices and does not result in additionally overhead. The RMS is kept quite rudimentary and
does not support database features like SQL and object-orientation. More sophisticated
DBMSs for the mobile domain, like Java DB and Oracle Berkeley DB might improve the
database handling.

4.3.1.2. Security

• Authenticated Device-aware Server Access
Security is an important aspect when handling sensitive user-centric data. In order to

4. Requirements 73

additionally prevent misuse of user accounts through unauthorized persons, credentials
should be bound to a particular device. Such a strategy may be realized through the
specification of a unique device identifier like the Bluetooth MAC address. This device
ID should therefore be accessable within the application’s login area for registration
purposes. Hence the system’s Identity Management only grants access to server features
if it is aware of the user’s mobile terminal. Furthermore, a user may want to let the device
remember user credentials to speed-up the startup phase. This option should only be
possible as soon as the user once logged-on successfully.

• Authenticated Standalone Application Access
Connection instability and service unavailability should be rare, but may occur frequently
especially within a mobilized environment. Environment-based Dead Zones within the
providers telecom infrastructure (E.g. tunnels, caves, faraway sections of a country, etc.)
usually prevent reliable connections. The application’s design should consider this fact
by ensuring an access to the application independently of a server-based logon. In such
cases all non-server-based features should be made available after a successful local user
authentication. A condition for the activation of this feature should also be one previously
successful server logon.

• Encrypted Transfer Channels
Passwords, location information, and further content should be transfered in a secure
way by utilizing the SSL feature, which is part of the communication model of mobile
platforms. Since encrypted connections introduce some overhead and possibly intercepted
credentials are only valid for a particular device, the user should be allowed to disable
this feature.

• Logout
As far as the user has initiated a session with the server during the application startup,
the session should be invalid as soon as the user leaves the application. It should also be
ensured that the application is terminating under all circumstances, independently of an
available server connection in this moment.

4.3.1.3. Content

• Flexible Multimedia Content Generation
The actual business data is based on the I/O features of the device. In the prototype
at least a content generation in form of Text Messages and Photos should be included.
However, the design should allow a usage of the application even in the absense of
a built-in camera. As a result, the composition of text messages must be possible at
all circumstances, but not mandatory in combination with a photo-related blog. Text
messages should have a maximum length of about 200 characters and the photos may be
captured in at least two Different Dimensions with an aspect ratio of 1.33 by default. Each
captured photo should be offered through a Preview functionality to be able to discard it,
if it is not to the user’s full satisfaction. Furthermore the software package should allow a
configuration of arbitrary photo dimensions as well as either jpg or png encoding through
an application configuration file. Beyond the actual prototype implementation, a possible
system extension might be the integration of Time-based Content. This does however
require additional performance measurement and related studies to access this kind of
content in a reliable way from multiple platforms.

4. Requirements 74

• Journey-related Content Management
A stored content may be seen as Standalone Blog without any relationship to other blogs
or it may be handled as a Journey Blog which is logical linked with other journey blogs.
In the latter case the blog should preferable contain a unique and successive journey blog
number as long at is available on the mobile platform. A Journey itself may be treated
as a set of journey blogs and is related to a user-definable name. In this sense it is also
important to design the application in a way to manage a journey as a whole, by affecting
multiple blogs through single operations.

• Content Browsing
The availability of the generated content on the mobile platform should be a central aspect.
The blogs should be browsable in form of a list with Expressive Blog Items. Each blog
representation should indicate the content it holds as well as the relationships among
blogs. The blog items might be realized through Flags and icons or Thumbnails for
photo-related blogs respectively. Furthermore, thumbnail sizes should be automatically
adapted to be complied with screen properties of the underlying devices. To provide a
better and more customized overview of stored blogs, the blog items might be sorted
either by their creation date or by their representing blog type, through the user. The blog
item attributes should be defined as follows 2:

Attribute Value
Date and Time ’Date and Time of Blog Creation’
Temporal Distance (’Temporal Distance to prev. Blog’) | (-)
Spatial Distance (’Spatial Distance to prev. Blog’) | (-)
Content Flags - PB (’Journey Blog Number’ | -, M | -, W | -)
Content Flags - MB (’Journey Blog Number’ | -, W | -)

Table 4.2.: Blog Item Attributes for Stored Blogs in the Mobile Client Domain

The attributes Temporal Distance and Spatial Distance in table 4.3.1.3 are discussed in
section Mobile Client Domain - Location [4.3.1.4]). Loading a huge amount of blogs
typically decreases the performance and the usability of the application. This aspect
should be considered by loading the whole blog set at application startup time and by
subsequently Caching the set, to speed-up its access when opening the list browser
through a user intervention. In this case the cache must be updated each time new blogs
are added at runtime. Since the application startup time increases due to this interaction
improvement, it is crucial to give the user an adequate feedback of tasks which are
performed by the system, already during the initialization step.

• Selective Content Details
It should be possible to select and open an item of the blog list with the aim to explore
more detailed information about its content. The details should be categorized according
to their attribute characteristics. Related photos should be enlarged to fit them to the
screen size. Available blog attribute categories should be: Photo, Message, Properties,
and Waypoint. The last category needs a closer focus and is discussed in the following
section Mobile Client Domain - Location. However, the remaining blog attributes should
be:

2The abbreviations in the table are defined as follows: ’PB’...Photo Blog; ’MB’...Message Blog; M...Message;
’W’...Waypoint; ’-’...n/a;

4. Requirements 75

Attribute Value Category
Resolution Large | Small(’width’, ’height’) Photo
Encoding jpg | png Photo
Content ’Text Message’ Message
Length ’Amount of Characters’ Message
Date ’Date of Blog Creation’ Properties
Time ’Time of Blog Creation’ Properties
Blog Size ’Size’(bytes | kb) Properties

Table 4.3.: Fundamental Blog Attributes in the Mobile Client Domain

• Selective Content Removal
Each stored blog of each type must be removable individually, whereas the allocated
storage must be freed. A journey and its according blogs should also be removed at
once, which however requires an additional user confirmation before the operation will be
performed.

• Content and Storage Statistics
The application should provide a high-level overview of stored blogs in association with
their corresponding types, as well as information about the consumed and the available
amount of mobile data storages and their last modifications.

4.3.1.4. Location

• Flexible Usage of Location Infrastructures
The main focus related to positioning lies on the accurate and globally available GPS-
based infrastructure (see section Satellite-based Positioning Systems [3.5.2]). However,
additional approaches offered through Cellular-based location services (see section
Network-based and Hybrid Positioning Systems [3.5.3]) should also be available, as far
as they are supported by the network operator. To let the user know which positioning
infrastructure has been used, the following additional blog attributes should be specified
in the Waypoint category:

Attribute Value Category
Location Method Satellite | CellID | AOA | TOA | TA Waypoint
Hyprid Approach yes | no Waypoint

Table 4.4.: Location Service-related Blog Attributes in the Mobile Client Domain

Next to the availability of all this location methods through the standard functionality
of the Location API (see section Location-Based Infrastructures - Programming Inter-
face [3.5.1.4]), the prototype should also be designed in a way to retrieve the geodetic
datum (longitude, latitude) directly from an external GPS receiver by accessing the BT-
transmitted data (see section NMEA Protocol [3.1]). This customized approach does not
rely on a specific API and therefore offers a higher user base. Furthermore it allows a fine-
tuned access to location properties, but it also requires a manual discovery and integration
of a BT-based GPS Receiver. As soon as a receiver has been successfully integrated
once, the BT-specific connnection properties should be stored under the BT-service name
within the system settings as an additional location service option. This does not require a

4. Requirements 76

time-consuming initialization on each service access and allows the user to re-initiate the
BT-discovery step through the system settings, if another receiver should be used. The
functionality of the Location API implementation should be however enabled by default to
support a maximum of positioning systems. Sometimes no location methods are available.
Therefore, the blog generation process should be possible without a manifestation as a
location-related waypoint. Location-unaware blogs should be transfered equally, but they
must be treated in a different way at the server-side.

• Content-related Distance and Time Awareness
To support Mobile Tracking next to the blogging capabilities, journey blogs should be
aware of their spatial and temporal distance to previous journey blogs as far as they
are treated as waypoints. For a better clarity, this information should be part of the
browser’s list items. Mobile tracking is theoretically independent of remote processes3

and a convenient feature to trace covered distances in customized granularity. A journey’s
totally covered distance4 and the journey’s duration should also be offered to the mobile
user. If a journey waypoint has been deleted, its logical successor (as far as existing) must
update its temporal and spatial distance by using the waypoint information of the logical
predecessor of the deleted one, to prevent inconsistency in the journey blog chain.

• Content-related and logical Location Information
A blog’s geodetic datum should be used to determine logical information of its related
location on demand. This information should include the Province Name, State Name,
and Country Name as well as the Country’s International Code. As soon as the blog’s
waypoint is resolved in this manner, the according information should be accessable as a
replacement for the underlying geotetic data as part of the Waypoint category in the blog
details. This waypoint-related blog attributes might be defined as follows:

Attribute Value Category
Longitude ’Longitude Value’ Waypoint
Latitude ’Latitude Value’ Waypoint
Waypoint Elevation ’Elevation Value’(m | ft) Waypoint
Nearby Place ’Name of next populated Place’ Waypoint
State/Province ’Name of State/Province’ Waypoint
Country ’Name of Country’(’Int.Code’) Waypoint

Table 4.5.: Blog Location Information in the Mobile Client Domain

The according knowledge base for this feature is accessable through the public Geonames
[geo08] web service. Since the elevation data within the NMEA Sentence is often quite
inaccurate, this value should also be queried from this web service. On the one side this
strategy requires an Internet connection with a resulting unavailability of the waypoint’s
elevation value in dead network zones, on the other side the values are very precise. The
web service related elevation data origin from the NASA’s Shuttle Radar Topography
Mission (SRTM) in the year 2000. According to [geo08], ’...the dataset covers land areas
between 60 degree north and 56 degree south’ and has been captured approximately every
90 meters.

3In the prototype implementation the elevation value however depends on a web service.
4Since waypoint distances are always linear, the resulting journey distance approximation would be quite inaccurate

if the dense of waypoints is low.

4. Requirements 77

4.3.1.5. Communication

• Flexible Integration of Remote Processes
In principle each remotely connected or local service for the aggregation of the blog
content data should be integrated into the MIDlet’s application logic on demand, without
a considerable execution overhead. The delivery of composed multimedia blogs and the
interaction with the application server is however a more time-consuming and resource-
stressing process. The performance of the underlying mobile communication threads
mainly depends on the interaction models and the related protocols of the corresponding
services. The application would need to interact with several different services:

1. A NMEA-based location service residing on an external GPS unit.

2. A MLP-based technology-independent location service.

3. A REST-based web service for accessing logical location information.

4. A SOAP-based web service in order to exchange data with a application server.

The mobilized WSCs and their according remote WSPs offer a flexible loosely-coupled
approch to separate the execution logic between Internet-based network nodes while
enabling a convenient invocation mechanism. The usage of a web service for transfering
the blogs seems to be a good decision related to text-based ones exclusively. However, a
further reason for this decision is also an examination of the service model’s adequacy for
transfering large binary data within a mobile context (see section Mobile Web Services -
Payload Communication Constraints [3.4.6.4]).

If performance measurements are to a developers satisfaction, the SOA approch offers a
straightforward scaling of functionality on mobile devices. Geonames is one example for
newly upcoming services in the mobile B2C domain for this purpose (also see section
SOA Analysis and Design [3.4.4] and SOA Implementation and Interface Issues [3.4.5]).

• Selective Content Posting
Each stored blog of each type should be transferable individually to the server platform.
It is important to find a compromise between content quality and runtime/network perfor-
mance, respectively. The application should be designed in a way to reach an adequate
request-response time by assuming a Synchronous Document-centric Communication
Model and an GPRS-based transfer speed. Due to this fact, a blog should not exceed
a specific size. This upper boundary must be determined during the application testing
phase and configured through photo-related parameters. After a blog has been posted
successfully, its item must be removed from the browser list (however not in the case of a
transmission error).

• Batch-based Content Posting
Journey-related blogs should be additionally allowed to be posted in one go by giving
the user an adequate feedback about the transfer progress. Furthermore the user must be
notified about a possibly long-term operation in advance.

4. Requirements 78

• Flexible Usage of available Wireless Networks
Since WLAN access points might be easily integrated through native system features on
demand, this topic does not need a special focus. However, as mentioned in the beginning
of this chapter, BT transfer channels might be an alternative bridging technology for the
prototype. In such a case, an according BT-service would be intergrated in the same
way as a device-based location service. In general, the user should also be aware of an
established connection as well as about the utilized network type.

• Awareness of Posted Content
After a blog has been posted successfully it should still be accessable in a further context
to give the user some feedback about previously performed operations. Also detailed
blog information should be available. To save storage resources, referenced full quality
photos should however be removed from the RMS. Finally the user must have the option
to definitively clear all blog items and corresponding RMS entries.

This feature should enable some kind of Pseudo Remote Browser since the according
entries are mirroring at least a subset of the blogs on the server. The blog item attributes
for this remote browser should be defined as follows5:

Attribute Value
Blog Type ’Message Icon’ | ’Photo Thumbnail’
Date and Time ’Date and Time of Blog Transfer’
Journey Name (’Name of corresponding Journey’) | (-)
Content Flags - PB (’Journey Blog Number’ | -, M | -, W | -)
Content Flags - MB (’Journey Blog Number’ | -, W | -)

Table 4.6.: Blog Item Attributes for Posted Blogs in the Mobile Client Domain

As an improvement, a server-side service process might be used to optionally synchronize
the mobile platform with the acutally posted blogs (possibly at startup time), to support
a true consistency between the nodes. A further extension might be a bidirectional
messaging feature to perform this synchronization directed on posted blogs, which are
related to reply messages from the community. This application-centric bidirectional
communication model might be based on an already proved messaging framework,
involving various other communication channels like MMS, SMS, E-Mail, etc.

• Awareness of occured Data Traffic
Since the usage of provider-enabled communication links is always related to charging
fees, the mobile blogger should have a possibility to explore the volume of data which
has been already sent over the network by the application. This value should be related to
the date of the last user-initiated counter Reset.

5The abbreviations in the table are defined as follows: ’PB’...Photo Blog; ’MB’...Message Blog; M...Message;
’W’...Waypoint; ’-’...n/a;

4. Requirements 79

4.3.1.6. Flow Control

The following Flow Control diagrams illustrate the working principle of the central mobile
application management components by considering the functional requirements as described
above. Figure 4.4 refers to the actual blog creation process.

Figure 4.4.: Flow Control Diagram for Creating a Blog in the Mobile Client Domain

4. Requirements 80

Figure 4.5 shows the flow control process for accessing blog set manipulation capabilities,
whereby it is assumed that a valid user account and a related set of blogs are existing.

Figure 4.5.: Flow Control Diagram for Accessing the Blog Set Manipulation Capabilities in the
Mobile Client Domain

4.3.2. Server and Backend Systems Domain

The application server with its corresponding backend system has several important functions.
In principle it has to offer suitable interfaces to exchange data with the mobile terminals.
Additionally, it is responsible for managing user accounts as well as to supply posted blogs
to web users. Since the server only needs to have a Servlet Container for this purpose, no
JavaEE-compliant application server is necessary. The backend system is aimed at storing
and accessing user- and blog-related data. As a result, the application server contains three

4. Requirements 81

major components: Web Application, Blogging Service, and Database System. In the following
sections, specific requirements for these server features are analysed and discussed. The whole
described functionality should be finally implemented as part of the prototype.

4.3.2.1. Web Application

The web application should primary offer an interface for web clients to access posted blogs
in a suitable way, whereby the application should be accessable through authorized users
exclusively. The according GUIs of the web components should provide an adequate feedback
to the user on performed operations. To support sophisticated user input validations and a
suitable web application design, the MVC-based Struts framework6 should be applied. Due to
this requirements, the web application has to provide an User Account Registration-, a User
Access Management-, and a Blog Content Management component.

• User Account Registration
As soon as the user has installed the MIDlet, an account registration for the device will be
necessary in order to use the blogging application. Next to the standard attributes User
Name and Password, the declaration of the Device ID is therefore an obligatory account
attribute. The created account is Universal, since it is valid for the remote mobile logon,
the local mobile login, and the web application login. Next to performing database entries
for the new user, the account creation process also has to allocate some storage quota
for the user’s media repository on the host’s HDD. For the prototype implementation, no
subsequent manipulation nor a deletion of an account through the user is provided.

• User Access Management
Unlike the web service component, the user access management should propagate an
application-centric user authentication over a standard Basic HTTP Authentication through
the runtime environment. Since web client-specific as well as web-form related authenti-
cation input masks in combination with this standard approach are less customizable, they
would migrate logic- and presentation related web application design rules. This strategy
enables a fine- tuned access and session management through the application logic. In
this context, the logic has to ensure that a session becomes invalid as soon as the web user
initates a logout or the according web client has been closed. The application should also
take care that web clients are not re-sending user credentials7 after a session has been
closed8. To avoid this behaviour the application logic has to prevent clients from Caching
Pages, which might contain web-form entries. The web user should also be aware of the
current session status.

An improvement of this component might be the introduction of Guest Accounts9 for
trustworthy persons to access blogs related to a particular active user. This feature
would support the community idea and additionally improves the system security since
credentials suitable for the mobile client domain might be separated from the ones used
to access the web application.

6http://struts.apache.org/
7In form of HTTP POSTDATA
8This behaviour is usually caused through browser navigation features
9Possibly with restricted persmissions.

4. Requirements 82

• Blog Content Management
In the course of a web session, a connection to the according user’s resources should
be established, or refused if a logout is performed through the web user. As soon as a
connection to the user’s resources is available, the blogs can be offered to web clients
on demand. The best strategy would be to map the necessary blog attributes to a XML
representation and to stream it over the according HTTP connections. To simplify the
serialization process, the XStream library might be used 10.

Additionally to deliver a full set of attributes for a single blog, the Content Management
Component should also be able to response with a list of currently available blogs including
a minimum set of attributes per blog. These attributes might be seen as the blog’s waypoint
data. As a result, this strategy improves the application’s responsiveness on initial data set
requests by avoiding network traffic bursts. This improvement usually has a noticeable
benefit when loading a large set of blogs with possibly many additional attributes. A
further advantage of this communication model would be a separation of the blog’s
representation within a cartographic interface and its corresponding content. An additional
feature should be used to verify, if a Mobile Session has been concurrently established
during a Web Session. Such a strategy would maintain a true Consistency between the
two client domains by delivering new blogs on subsequent requests or through a server
push mechanism.

In the prototype the only tasks of the Blog Content Management Component are to
manage resource connections and to deliver blogs, however there might be a plenty of
further possibilities. For instance, the component might be used to delete blogs or whole
journeys, as well as to deliver journey related blogs or to provide statistical data for
enabling elevation level schemata.

4.3.2.2. Blogging Service

The blogging service is a WSP and should have at least three interfaces to offer a Mobile User
Logon, a Mobile User Logout, and a Mobile Gateway. In SOA terminology, the functionality
of this service should be an instance of a Basic Service consisting of logic- and data-centric
elements, which does however not need to have a manifestation in further services, due to a
manageable complexity of the application. The mobile application must be notified about the
service operation results under all circumstances, to give the WSC and thus the mobile user an
adequate feedback.

• Mobile User Logon
As mentioned in section Mobile Client Domain - Security [4.3.1.2], remote mobile
terminals need to offer a unique device ID. The according service interface only needs
to accept this single parameter, because a successful authentication through the security
features of the runtime environment should be the precondition to delegate control to the
service.

• Mobile User Logout
Since the WSP should not track IP addresses of mobile terminals, the mobile application
has to pass the device ID once again as interface parameter to terminate a server session.

10http://xstream.codehaus.org/

4. Requirements 83

• Mobile Gateway
As soon as the user is authenticated, the mobile terminal should be allowed to transfer
blogs over a corresponding gateway to be persistently stored on the server as a subse-
quent step. The according interface needs to accept serveral blog-specific attributes as
parameters.

Next to providing Communication Interfaces, the WSP’s logic should offer the following logic-
and data-centric components: Identity Mangement, Blog Content Handler, and Persistence
Management.

• Identity Management
One task of this component should be a verification of the relationship between the
received device ID and the user credentials before granting access to further service
features. If this security instance has been passed, a Session has been established and the
according mobile user should be declared as Online. As soon as the WSP receives a logout
notification from a mobile user, the component should also invalidate the corresponding
session by resetting the mobile user’s online status. If there is no activity at the gateway
interface for one hour a timeout mechanism should invalidate a user session automatically.

Unlike as with enterprise-based identity infrastructures (see section Mobile Web Services -
Frameworks [3.4.6.2]), this approach is straightforward, but efficient in this context since
no further services are involved.

• Blog Content Handler
As mentioned in section Mobile Web Services - Payload Communication Constraints
[3.4.6.4], it seems to be good strategy to process binary data like photos as Base64
encoded strings. In this way photos can be passed as parameters like the descriptive one.
The component therefore also has the task to composite the received blog content to be
suitable for further server-side processing. The reconstructed photo should be available as
user-specific resource within a Repository on the server.

• Persistence Management
Each remote invocation of service methods is affecting persistence infrastructures. The
Identity Management as well as the Blog Content Handler component will need to perform
I/O operations on a database and the host’s file system respectively, to verify users as well
as to store user-related blogs. A separate data-centric component should therefore provide
a transparent interaction with this external system resources.

4.3.2.3. Database System

The application’s data should rely on a RDBMS to allow a flexible access and manipulation
through data-centric server processes and through the authentication module of the underlying
execution environment. In principle, the corresponding tables belong to one of the following
logic categories:

• Security
This category should include the entities user, userrole, and trackeduser. The first
ones should be used to associate registered users with their device and the permissions

4. Requirements 84

they have on the system. The last one might be used to enable a session management by
tracking all mobile users which are currently online. The usage of a separate table for this
purpose would tolerate temporary server drop-outs without affecting established sessions
with mobile terminals. Since a logout notification during drop-outs would not update the
according entries, some session-timeout or -update mechanism would be required as well.

• Content
This category should include the entities blog and photo. The first entity should store
descriptive blog attributes and the second one blog-referenced photo properties. These
properties should at least contain the photo’s dimension11 and a reference to their actual
location in the user’s repository.

4.3.3. Web Client Domain

The web application interface should offer a user interaction with the web application as well
as with a further web service to integrate map-related functionalities. Through this interface
the web user has the possibilities to create a new account for the blogging application as well
as to access and to explore the content of posted blogs in several ways. The following figure
visualizes all desired user interactions in form of a UML User Case Diagram.

Figure 4.6.: UML User Case Diagram for User Interactions in the Web Client Domain

11Which may be of interest for their web-based representations.

4. Requirements 85

The logic of the web application interface includes the components Blog Integration and Blog
Exploration, which should be realized through the functionality of JavaScript directives.

• Blog Integration
After a successful web login, all available waypoints and related blogs should be loaded
from the server to be represented as GUI-based items. To support a near Realtime Update
of newly posted blogs, the server’s consistency feature should be used, by schedule
requests on fixed intervals. To have a suitable communication model and to provide a
stable GUI, blog request should be performed asynchronously through the browser’s AJAX
functionality. The component has to unserialize the XML-based responses into objects,
in order to handle waypoints and blogs through further components. The prototype does
not load blogs without waypoint information. This subject might be a part of further
interaction extensions.

• Blog Exploration
Loaded blogs should be represented as List entries through a unique number and their
creation date. Additionally, the blogs should have a location-based representation within a
Map as visual Pins related to the blog’s Waypoint. The related list and map entries should
be associated with each other to enable a consistent and intuitive user interaction. On the
same web page textual information about the currently selected or focused blog should be
available in form of the following attributes.

Attribute Values
Journey Name ’Name of Journey’
Photo yes | no
Message yes | no
Elevation ’Elevation Value’(m) | n/a
Longitude ’Longitude Value’
Latitude ’Latitude Value’

Table 4.7.: Textual Representation of Blog Attributes in the Web Client Domain

The cartographic interface should be provided by the Google Maps web service. Its
functionality is accessable through JavaScript functions, embedded into the web client’s
logic. As soon as a blog has been opened through the web user by selecting the list- or
map-related blog representation, its content should be offered in a suitable way, including
a photo preview as far as available. Google Maps and similar services usually provide
many features to enhance their standard functionality. For instance, journey blogs might
be grouped and visualized in different meaninful colors within the map.

4. Requirements 86

4.4. Communication Models

Based on the application’s infrastructure, as depict in figure 4.1, and the analysed functional
requirements, the communication models between the application domains are fully defined.
Figure 4.7 shows this inter-domain data exchange patterns by considering specified payload
and security issues. A fourth domain is involved in order to access geographical information
from an independent ISP. The ISP’s data sources are used to resolve waypoints as described in
section 4.3.1.4.

Figure 4.7.: High-level Overview of the Blogging Application’s Communication Models. The
Data Exchange between the Clients and the Application Servers is based on XML-
structured Messages. This Strategy supports a technology-independent Payload
Handling.

87

5. Prototype Design

“Nothing is paticularily hard if you divide it into small jobs.”

— Henry Ford (1863-1947)

The specified Functionality and Communication Models in chapter Requirements [4] are the
prerequisites for the design of the actual software architecture and the relationship to the utilized
services. In this phase the inter-domain Software Subsystems and the according Software
Components, as well as Time-critical Communication Issues are going to be specified in detail.
As a central functionality, the mobile core logic also refers to its corresponding Java APIs.

5.1. Application Architecture

The following figure 5.1 is a scratch of the system’s software architecture including the
underlying platforms and related communication channels.

Figure 5.1.: High-level Overview of the Blogging Application’s Architecture.

5. Prototype Design 88

The application is designed to work in each mobile OS environment which runs the KVM.
Since the prototype’s Mobile Software Components are executed under Symbian OS (see section
Symbian OS Platform [3.1.2]), the architecture refers to this platform. The server host is running
the Linux distribution Debian Etch to offer web- and service runtime environments for Static
Software Components, accessable through the clients. Debian is a proven light-weight OS for
server machines with nearly no limitation in customizing platform features.

5.1.1. Mobile Software Components

The MIDlet is the central element of the blogging application. As seen from the analysis phase,
the mobile client domain specifies the most functional requirements of the overall system.
As a logical result the mobile implementation requires a sophisticated architecture to be able
to handle the application development and possibly subsequent extensions in a suitable way.
Figure 5.2 refers to the MIDlet’s high-level architecture and its related subsystems.

Figure 5.2.: Mobile Application Architecture with a high-level Focus on involved Subsystems

5. Prototype Design 89

As depict in figure 5.2, the Management domain is separated into the following subsystems:
Controller, Content Management, Record Management, and Communication Management. The
Communication Management system provides access to the network logic and therefore to
remote processes and data. The communication link (A) enables BT and HTTP connections.

Due to performance reasons, the deployment of design pattern in the mobile domain should be
rare (see section Mobile Software Development [3.2]). Depending on the nature of the appli-
cation, a deployment of the Model-View-Control (MVC) software development pattern might
however be a good idea for comprehensive mobile implementations. Since the charateristics
of a blogging application requires plenty of user- and data-centric elements, it is obvious to
structure the MIDlet according to this paradigm. Furthermore, the Singletone pattern is used
to prevent multiple instances of controlling components. Based on this design decisions, the
MIDlet might be seen as a set of logical-related system components:

• Logical Core Components
Functional elements within the subsystems of the management domain.

• Utility Components
Assisting functional elements for the execution of logic components. E.g. parser, formatter,
encoder, connection handler, etc.

• Data Components
Container elements for holding and transporting application data in form of Java Beans.

• Screen Components
Functional GUI elements for supporting a user interaction with the application. E.g. form,
list, video stream, etc.

• Resource Components
Configuration as well as Style Sheet files to define the application’s behaviour, including
their Locale-specific message elements and the screen layout.

The application involves J2ME Polish and several optional JSR-specific APIs to access native
platform features as indicated in figure 5.2. The J2ME Polish Building Framework enables a
flexible building process of the MIDlet through pre-defined and customized Ant Tasks, as well
as the integration of application resource components.

5. Prototype Design 90

In order to understand the tasks of the Locical Components, it is necessary to analyse the
according subsystems. Figure 5.3 gives a deeper insight into the MIDlet’s core architecture.

Figure 5.3.: Mobile Application Architecture with a Focus on the Core Logic

The Controller, the Record Management, and the Content Management subsystem do not
rely on external resources. Each remote connection is established through the components
of the Communication Management system by utilizing the related Air Interfaces (A). The
GLPServiceConnection utility includes the ability to discover location services on various
hardware platforms. The component might establish a service connection to an external GPS
receiver (B), to an embedded GPS receiver (C), or to the network operator (D).

Within the Communication Management system the components are further clustered as Location
Service Module, Location Resolution Service Module, and Gateway Service Module. The
granularity of the Logical Components within the MIDlet’s core architecture is suitable enough
for realizing their embedded functionalities as concrete Java Classes. These classes represent the
Logical Core of the mobile application. In the following only these Logical Core Components are
discussed in more detail since they are the most important ones in the mobile client domain.

5. Prototype Design 91

5.1.1.1. Logical Core Components

This section describes the application’s Logical Core Components as they are implemented in
the MIDlet suite, and their responsibilities and relationships among each other. Furthermore,
each class refers to its underlying API specification, which considers the functional requirements
as defined in chapter Prototype Analysis [4].

• Controller
The Controller extends the MIDlet class, and as the starting point it coordinates the
application’s flow control. The component is responsible for the startup process and it
therefore acts as a loader for further control components, system settings, application
screens, alerts, icons, etc. See appendix MIDlet Core APIs - Controller [D.1].

• Blog Manager
The BlogManager is a central element, involving essential functionalities to perform
operations on user-generated content. In principle this component manages the Blog
Creation process by composing all related content. As a first step, it gathers the device’s
location if a blog should be referenced to a waypoint. Depending on the type of the blog,
it furthermore starts the photo capture process as well as the message input form. The in-
volved PhotoManager runs within a threaded environment and notifies the BlogManager
as soon as a photo has been created by the user. In a final step, the composed blog is
serialized to be compatible with the persistence infrastructure on the device.

The BlogManager is also responsible for initializing the browsing capabilities of blogs
by involving the abstract BlogBrowser component. According to the instructions of the
browser’s logic, the manager manipulates a blog set in the desired way. The represented
blogs data in the browser’s list either refer to the locally stored data set or to the already
posted ones. Finally the Blog Manager acts as a data provider for blog statistics. See
appendix MIDlet Core APIs - Blog Manager [D.2].

• Photo Manager
The PhotoManager is responsible for the photo capture, formatting, and preview pro-
cesses. The MMAPI supports this tasks by enabling for instance an access to the device’s
camera. The photo encoding, the quality, as well as the dimension parameters as they are
handled by the system, are relying on the application’s configuration file. This strategy
enables a straightforward adaption of the visual blog content and the related memory
consumption. See appendix MIDlet Core APIs - Photo Manager [D.3].

• Trace Manager
The application’s TraceManager is used to manage relationships between journey blogs
as they have been described in the last chapter. A journey might be related to a Trace,
which is in fact an ordered list of waypoints. Such a trace is stored and processed
independently of blog sets. The TraceManager is responsible for temporal and spatial
distance measurements and it is furthermore used as a data provider for journey statistics.
The BlogManager takes care about the consistency between journey blogs and waypoints
as far as a blog set has been manipulated. See appendix MIDlet Core APIs - Trace
Manager [D.4].

• Record Manager
The RecordManager represents the intermediary element between the record store and

5. Prototype Design 92

classes which need to read or write data as part of their embedded logic, including
system settings as well as user-specific content persistence. Data is stored as byte arrays
exclusively. By default, instances of the JavaME-specific interfaces RecordFilter and
RecordComparator are used to enumerate and to process stored records. In this context
it must be considered to avoid a high frequently RMS access, since the records must be
temporarily reconstructed as objects followed by subsequent re-serializations, in order
to identify and process according attributes. A sophisticated application design might
decrease the memory footprint dramatically, even if persistence is a central element.
The prototype contains the following record stores: loginRS, settingsRS, traceRS,
blogPMRS, blogPMThumbRS, and blogMRS1. See appendix MIDlet Core APIs - Record
Manager [D.5].

• Blog Browser
The BlogBrowser is a generalization of the BlogBrowserLocal and the
BlogBrowserRemote components. These two browsers offer the interface for the
management of stored and posted blogs directly on the device. The user interface logic
is suitable for an exploration of blog details, a resolution of waypoints, a deletion of
blogs/journeys, an initialization of blog/journey transfer processes, and a customization
of the blog list behaviour. A blog caching and updating mechanism is designated for both
instances. See appendix MIDlet Core APIs - Blog Browser [D.6].

• Bluetooth Manager
The BluetoothManager enables the management of surrounding bluetooth-based ser-
vices. It is responsible for the discovery and the inquiry of devices and services as well as
for their accessability. The component is based on the functionalities of the Bluetooth API
and used to connect GPS receivers for location determination purposes. See appendix
MIDlet Core APIs - Bluetooth Manager [D.7].

• Location Manager
The LocationManager composes the capabilities of system features to access loca-
tion services. For a customized GPS-based location determination, the GPS receiver
is accessed through the GPSServiceConnection handler. The received NMEA sen-
tence must be parsed with the NMEASentenceParser utility in order to get some useful
geodetic data. A Generic Location Provider (GLP) is supported through the related
GLPServiceConnection handler by incorporating the Location API. The location data
delivered from an GLP is directly accessable. See appendix MIDlet Core APIs - Location
Manager [D.8].

• Gateway WSC
The GatewayWSC component enables high-level functions to invoke remote server-based
processes for the integration of mobilized content into a web environment. It offers user
authentication and blog transfer features on the device. The WSC runs in a threaded
environment and involves SOAP-based data transfer functionalities through the utilization
of the according GatewayServiceConnection handler, which furthermore relies on the
actual ServiceStub class. The stub and the related interfaces are generated by the IDE,
based on the descriptions of the service’s WSDL file. Since the component utilizes the
WSA, the actual invocation and the XML-parsing tasks are managed by the system. See
appendix MIDlet Core APIs - Gateway WSC [D.9].

1PM refers to multimedia (photo, message) blogs; M refers to message blogs

5. Prototype Design 93

• Geonames WSC
The GeonamesWSC component is responsible for enabling logical location information for
a waypoint’s geodetic data. The public Geonames service provides information like the
Country Name, the NearbyPlace Name, and the Elevation Value. The component runs
in a threaded environment and is based on a REST-based service invocation model. The
response must be parsed manually by accessing the SAX Parser features on the device.
See appendix MIDlet Core APIs - Geonames WSC [D.10].

5.1.1.2. Peripherial Components

The core logic described in the last section, is strongly related to further components in order
to get a runable prototype with the desired functionalities. These peripheral components have
important functions on all application levels and are related to specific domains within the
mobile application.

Component Domain
Settings System
PlatformInfo System
Credentials Security
Blog Content
BlogMessage Content
BlogMultimedia Content
Photo Content
Message Content
GPSLocation Location
Waypoint Location
Toponym Location
Payload Communication

Table 5.1.: Data Components in the Mobile Client Domain

Component Domain
AppSplashScreen System
AppLoginScreen System
AppMainScreen System
AppSettingsScreen System
PlatformInfoScreen System
PlatformMainScreen System
BlogBrowserScreen Content
BlogMainScreen Content
BlogMessageScreen Content
BlogInfoScreen Content
PhotoCaptureScreen Content
PhotoViewerScreen Content
BluetoothDeviceList Communication

Table 5.2.: Screen Components in the Mobile Client Domain

5. Prototype Design 94

The Data- and Screen Components in table 5.1 and 5.2 are used for data processing, inter-
component communication, and user interaction purposes. The screen components as well as
different types of system alerts are managed and accessed through the application Controller.

The Utility Components as listed in table 5.3 are essential to manage complexity by encapsulate
frequently used functionality within the different domains and to support code maintainability
through interface components.

Component Domain
Monitor System
Statistics System
DateFormatter System
ActivityAlert System
InfoCollector System
BluetoothInfoCollector System
DisplayInfoCollector System
FileConnectionInfoCollector System
LibrariesInfoCollector System
PlatformInfoCollector System
ISerializable Content
BlogSerializer Content
BlogUnserializer Content
BlogInfoFormatter Content
Base64Encoder Content
RMSBlogSelector Content
GPSServiceConnection Location
GLPServiceConnection Location
NMEASentenceParser Location
NMEASentenceParserToolkit Location
WaypointToolkit Location
RMSWaypointSelector Location
GatewayServiceConnection Communication
ResponseHandlerCountry Communication
ResponseHandlerNearbyPlace Communication
ResponseHandlerElevation Communication
BluetoothDevice Communication
IServiceListener Communication
IGateway Communication

Table 5.3.: Utility Components in the Mobile Client Domain

5. Prototype Design 95

5.1.2. Static Software Components

The Application Server involves several subsystems to handle the complexity of managing and
processing client requests from different domains. Figure 5.4 refers to the application server’s
architecture and its related software components.

Figure 5.4.: Web Application- and Blogging Service Architecture

The two server domains Web Application and Blogging Service are going to be observed under
the viewpoint of software components. The server architecture specifies Web Components and
Web Service Components, which are operating in different server environments. They are only
coupled by means of manipulating and accessing shared application Data Sources.

In the same way as with the MIDlet, the Web Application components are structured according
to the MVC software pattern. This is obvious since the Struts framework implies an architecture
of the Web Components as follows:

5. Prototype Design 96

• Logical Components
Functional elements within the subsystems of the management domain.

• Data Components
Container elements for holding and transporting application data in form of Java Beans.

• Screen Components
Functional GUI elements based on HTML pages for supporting a user interaction with
the web application. E.g. form, list, button, etc.

• Resource Components
Functional elements for encapsulating the web client logic in form of Java Script files
and Configuration- as well as Style Sheet files to define the application’s behaviour and
the page layout.

Since the intermediary Web Service Components are functional components only, no end user
interface is necessary. The Blogging Service is structured into:

• Logic-Centric Service Components
Functional elements for handling identities and the received data from connected service
consumers.

• Data-Centric Service Components
Intermediary functional elements for managing the access to persistent infrastructures on
the host.

• Data Components
Container elements for holding and transporting service data in form of Java Beans.

• Resource Components
The service contract in form of a WSDL file. According to the interface definitions, the
stubs are typically generated through IDE tools by requesting the contract of a known
service endpoint.

As shown in figure 5.4, both server domains have to establish communication links to their
clients. The Blogging Service communicates with the mobile clients by exchanging SOAP
messages in a synchronous manner (A). The Web Application communicates with the web
clients in order to deliver HTML pages through a synchronous channel (B) or application-
specific blog content through an asynchronous channel (C). In the following sections the most
essential components of both domains are briefly described. As with the MIDlets’s logical core
components, the functionality of the server-specific ones are equally suitable for a manifestation
into Java Classes.

5.1.2.1. Web Components

• Page Loader
The abstract PageLoader component is a URI Handler, responsible for the delivery of
web resources as well as a request dispatcher for the delegation of form-specific user

5. Prototype Design 97

data to the UserAccountRegistration and UserAccessManagement components. This
process in mainly driven by the Struts framework. The usage of Tag Libraries within Java
Server Pages (JSPs) enables functional Widgets for HTML-based interaction patterns like
a straightforward rendering of error messages through Struts Action Errors. The JSPs
communicate with the application logic typically through Java Beans. This data-transfer
process is automated by including Struts Action Forms2 as well as the functionality of
customizable user input Validators. Finally, the Struts Action components include the
actual application logic. Additionally, Struts Action Forwards might be used to decouple
JSP’s from the Action components.

• User Account Registration
The logic for the user registration process is embedded into a corresponding Action
component. As soon as the user’s Registration Data has been validated successfully, the
component creates a new account by setting the according entries into the database tables
user and userrole. Furthermore, HDD storage quota is allocated for the account by
creating a subfolder within the server’s repository directory. Finally, the component
induces a loading of the application’s main page.

• User Access Management
The logic for the user access management process is embedded into a corresponding
Action component. As soon as the user’s Login Data has been validated successfully, the
component authenticates the user by verifying the given credentials with the entries in
the database table user. If access is granted, the component enables a Web Session with
the client by using the session management functionality of the Servlet API. Finally, the
component induces a loading of the application’s main page. On a Logout request the
component ensures an application-wide unavailability of sensitive user data on subsequent
requests, by closing the according active session. To prevent clients and proxies from
caching pages, according HTTP directives in the HTML headers must be set.

• Session Listener
As a subcomponent of the Content Access Management subsystem, the Session Listener
uses the HttpSessionBindingListener functionality of the Servlet API, and it is used
to dynamically establish and close database connections according to a user’s session
status. This component is a interface to the user’s blog set, and a loader as well as a
composer of blog- and waypoint lists by accessing the actual blog content through the
database table blog. Furthermore it is responsible to observe the user’s mobile status to
enable blog consistency during active sessions between clients, by verifying entries in the
database table trackeduser.

• Blog Loader
As a further subcomponent of the Content Access Management subsystem, the Blog
Loader is a simple Servlet for handling blog requests. It incorporates the related
SessionListener in order to fetch blogs and to verify the user’s session status. The
BlogLoader component uses the XStream tool to map the according Java Beans into
XML-Representations, suitable for the network transfer.

2This components might be seen as special JavaBeans.

5. Prototype Design 98

5.1.2.2. Web Service Components

• Mobile Gateway
Since a Web Service is the chosen integration technique for transfering blogs within
this project, it is important to design the interfaces in the right granularity to avoid
unnecessary performance overhead. Preferable the definition of the interfaces should
be one of the first tasks, because this ensures a stable interaction between the WSP
and its WSCs. Furthermore the service design should avoid deep nested XML tree
structures. The MobileGateway incorporates the following Service Interfaces for mobile
user authentications and for gathering user blogs on the server domain:

1. boolean logon(String deviceID)
Used for a device-specific server logon. The implementation of this interface
delegates the service parameter to the IdentityManagement component.

2. boolean logout(String deviceID)
Used for a device-specific server logout. The implementation of this interface
delegates the service parameter to the IdentityManagement component.

3. boolean post(long timestamp, String journeyName, String message,
double longitude, double latitude, double elevation, String
encodedPhoto)
Used as a gateway for mobile blogs. The implementation of the interface
maps the blog attributes into a Java Bean in order to be manageable by the
BlogContentHandler service components.

• Identity Management
This component reads the user’s credentials from the underlying HTTP stream in order to
verify them with the entries in the database table user as well as with the given device
ID. If access is granted, the mobile user is set as Online by registering the according user
name in the database table trackeduser. On a logout operation it resets the according
entry in this database table, whereby the mobile session is terminated. The database is
accessed in a transparent way by using the data-centric PersistenceManagement service
component.

• Blog Content Handler
This component interprets and handles the content of the received blog object. In a first
step it decodes the binary data and reconstructs the according photo as far as defined.
After a successful decoding, the Photo is stored in the user’s repository together with a
down-scaled Thumbnail Photo for preview purposes on the web clients. Regardless of the
original photo dimension, the preview versions are equal-sized for all photo-related blogs.
Furthermore the component performs the according entries into the database table photo,
including the determined photo Dimension and the Path to the photo on the HDD. In the
second step the actual blog attributes are recorded in the database table blog, including a
reference to the photo-specific data in cases of non-message blogs.

The BlogContentHandler service component has to ensure that the Set of Blog Attributes
as defined in the tables 5.4 and 5.5 are made available in the database tables. Those sets
are essential for the content supply to the web clients as indicated in chapter Prototype

5. Prototype Design 99

Analysis - Web Client Domain [4.3.3]. In all cases, accesses to the host’s data sources
are performed in a transparent way by using the data-centric PersistenceManagement
service component.

Attribute Values
ID ’ID of Blog’
Longitude ’Longitude Value’
Latitude ’Latitude Value’
Elevation ’Elevation Value’(m) | n/a

Table 5.4.: Minimum Set of Attributes for a web-based Waypoint Representation

Attribute Values
ID ’ID of Blog’
Timestamp ’Timestamp of Blog Creation’
Date ’Date and Time of Blog Creation’
Journey Name ’Name of Journey’
Message ’Message’ | NULL
Photo Path ’Path the Photo’ | NULL
Photo Path Thumb ’Path the Photo Thumbnail’ | NULL
Photo Width ’Width of Photo’ | -1
Photo Height ’Height of Photo’ | -1

Table 5.5.: Full Set of Attributes for a web-based Blog Representation

• Persistence Management
This component is a layer above the system’s Data Sources, which has to deal with the
actual data source-specific low level commands in order to perform the desired operations,
received from related service components. As far as not managed by the RDBMS itself,
the PersistenceManagement also has to ensure unique database entries as well as unique
photo paths by using the blog’s timestamp as file name.

5.2. Inter-Domain Communication

Interaction models enable an observation of the Temporal Behaviour as well as the Temporal
Order of local and remote operations between the application domains. In the following figures,
time-critical processes are illustrated and discussed. The noted estimated durations for the
integration of remote services must not be exceeded, because otherwise this would result in
system usability problems. Optionally service-specific Web Service Level Agreement (WSLA)
parameters like network metrics might be used to determined the service quality (see section
Service Availability [3.4.6.5]). The utilization of non-XML-based payload protocols would
also speed-up service interactions in the mobile domain (see section Payload Communication
Strategies [3.4.3]).

A typcial time-critical scenario is a unidirectional near Real-Time Communication between
the mobile- and the web client domain through concurrently established server sessions,
whereby a specific Blog X is created, posted and immediately available for an exploration in

5. Prototype Design 100

the cartographic interface. The process in figure 5.5 describes a successfully creation of a
waypoint-related Blog X with a resolved location. The process has to deal with the determination
of the location datum and the retrieval of the according location identifiers by including device-
and web-based services. It is considered that all services are available during this procedure,
including an active satellite link. The methods’ specification and the according parameters as
defined in figures 5.5 and 5.6 are abstract and do not directly relate to class methods.

Figure 5.5.: UML Sequence Diagram for Retrieving a Location Datum and its logical Location
Information

Figure 5.6 illustrates the interactions of the mobile- and the web client with the backend system
in a concurrently way. After a successful user authentication has been performed on both clients,
the user’s waypoints and blogs are requested by the web client. As soon as the list response
has been processed, further asynchronous data requests are scheduled with an interval of five
seconds, in order to poll the server for updates. As a consequence, the subsequent posted and
stored Blog X is considered by the server logic and directly delivered and integrated into the
web client’s GUI.

5. Prototype Design 101

Figure 5.6.: UML Sequence Diagram for Concurrently Mobile- and Web Client Sessions includ-
ing the Server’s Blog near Real-Time Updating Mechanism

5.3. Deployment

The deployment diagram in figure 5.7 is used to define the actual application environments and
their properties within the implemented components are executed. The diagram refers to the
blogging application as TMBlog, which has been defined as the project’s name.

The basic configuration of the Web Application Execution Environment as well as of the
Application-specific Parameters is performed through the resources server.xml and web.xml,
by default. These files specify the used communication Ports, Security Realms for authenti-
cation purposes, servlet Paths, and servlet-specific Access Constraints. The workflow, start-
ing from an initial request up to the delivery of the response page, is managed through the
struts-config.xml resource as part of the Struts framework. This configuration file is
also used to define references to validators and to their underlying rules, as specified in the
validation.xml and validator-rules.xml resources, as well as the data source properties
including the used JDBC connector to the RDBMS. Since the Web Service Execution Environ-

5. Prototype Design 102

ment is itself a web application in this context, it also needs a web.xml file. The actual Web
Service only needs to hold its WSDL descriptor.

The basic MIDlet-based configuration files are the JavaME-specific JAD descriptor, which
includes install- and execution instructions for the system’s AMS, and the J2ME Polish-specific
messages.txt file for the Internationalization and a suitable Blog Content Configuration.

Figure 5.7.: UML Deployment Diagram of the Blogging Application

The widely deployed Apache Tomcat servlet container is used to execute the Web Application
as well as the Apache Axis2 SOAP engine, to enable the Blogging Service functionality. This
combination seems to be suitable according to the dimension and the characteristics of this
project. The MySQL database system has been chosen since it is reliable, easy to maintain, and
free available as well.

103

6. Prototype Implementation

“The user does not know what he wants until he sees what he gets.”

— Ed Yourdon
(Thoughts on Programming, Number 52)

In this chapter Configuration Outlines, Class Diagrams, and Code Outlines of the Service
Modules as well as of the Content Generation- and Access Management Subsystems are dis-
cussed. The according Listings provide an insight of how distinct tasks have been realized. The
Prototype Implementation refers to the three application domains, as they have been specified in
the chapters Requirements [4] and Prototype Design [5].

6.1. Configuration

In order to offer the desired functionality of components within the chosen execution containers,
a proper configuration of those and the application itself is essential. Among other things, this
task enables the utilization of the container’s built-in security features and a straightforward
initiation of data sources, as well as an optimized building process. The captions of the following
listings also refer to the resource in which the XML configuration code fragments are situated,
as well as the execution environment and the according application domain.

Listing 6.1 shows three important sections of the J2ME Polish-specific Ant Task as part of the
according Application Building Process, whereby some framework-specific instructions might
override or extend IDE-specific ones. The Info Section defines some general information about
the MIDlet, whereas the subsequent Device Requirements Section defines the devices for which
the application should be optimized. Finally, the configuration within the Build Process Section
controls the Ant’s workflow.

1 <project name="TMBlog" default="j2mepolish">
2 <target name="j2mepolish"
3 depends="j2mepolish -init"
4 description="This is the controller for the J2ME build process."
5 >
6 <j2mepolish>
7 <!-- 1. info section -->
8 <info copyright="Copyright 2007, 2008 Hannes Weingartner. All rights reserved."
9 description="JavaME Application for the TMBlog Project."

10 infoUrl="http://www.tmblog.org"
11 jarName="${polish.vendor}-${polish.name}-${polish.locale}-TMBlogMobile.jar"
12 jarUrl="${deploy -url}${polish.jarName}"
13 icon="logo.png"
14 name="TMBlogMobile"
15 vendorName="TU Vienna"
16 version="0.0.1" />
17

6. Prototype Implementation 104

18 <!-- 2. device requirements section -->
19 <deviceRequirements unless="test">
20 <requirement name="JavaPlatform" value="MIDP/2.0+" />
21 <requirement name="Identifier" value="Nokia/N71"/>
22 </deviceRequirements>
23

24 <!-- 3. build process section -->
25 <build fullscreen="menu"
26 usePolishGui="yes"
27 workDir="${dir.work}"
28 destDir="${dir.dist}"
29 >
30 <!-- midlets definition -->
31 <midlets definition="${manifest.midlets}" if="manifest.midlets:defined" />
32 <midlets unless="manifest.midlets:defined">
33 <midlet class="at.ac.tuwien.control.Controller" name="TMBlog" />
34 </midlets>
35

36 <!-- project-wide variables - used for preprocessing -->
37 <variables>
38 <variable file="configuration/configuration.properties" />
39 </variables>
40

41 <!-- customization settings -->
42 <resources
43 dir="resources"
44 defaultexcludes="yes"
45 excludes="readme.txt"
46 >
47 <root dir="resources/images" />
48 <root dir="resources/sounds" />
49

50 <!-- localization element for created localized versions of the application -->
51 <localization>
52 <locale name="en_US" unless="test" />
53 <locale name="en_US" if="test" />
54 </localization>
55 </resources>
56

57 <!-- logging framework settings -->
58 <debug showLogOnError="true"
59 verbose="true"
60 level="error"
61 if="test"
62 >
63 <filter pattern="at.ac.tuwien.control.controller" level="debug" />
64 <filter pattern="at.ac.tuwien.control.BlogManager" level="debug" />
65 <filter pattern="at.ac.tuwien.extern.webservice.tmblog.GatewayService" level="debug" />
66 </debug>
67 </build>
68 </j2mepolish>
69 </target>
70 </project>

Listing 6.1: build.xml - MIDP: Mobile Client - J2ME Polish Ant Task

Listing 6.2 defines the client- and database connections as part of the Servlet Container
configuration, and listing 6.3 shows the web application-specific servlet definitions and
-mappings as well as the security constraints for accessing them. The Realm for verifying valid
web application users is defined as MySQL, whereby this code section further refers to the tables
user and userrole.

6. Prototype Implementation 105

1 <!-- http -->
2 <Connector port="80"
3 protocol="HTTP/1.1"
4 connectionTimeout="20000"
5 redirectPort="443" />
6

7 <!-- https -->
8 <Connector port="443"
9 protocol="HTTP/1.1" SSLEnabled="true"

10 maxThreads="150" scheme="https" secure="true"
11 clientAuth="false" sslProtocol="TLS" />
12

13 <!-- jdbc -->
14 <Realm className="org.apache.catalina.realm.JDBCRealm" debug="99"
15 driverName="org.gjt.mm.mysql.Driver"
16 connectionURL="jdbc:mysql://localhost/tmblog?user=tomcat&password=ToMTMbloG"
17 userTable="user"
18 userNameCol="username"
19 userCredCol="password"
20 userRoleTable="userrole"
21 roleNameCol="rolename"/>

Listing 6.2: server.xml - Tomcat: Web Application - HTTP/HTTPS/JDBC Connection Config-
urations

1 <!-- servlet settings -->
2 <servlet>
3 <servlet -name>BlogLoader</servlet -name>
4 <servlet -class>at.ac.tuwien.tmblog.web.actions.BlogLoader</servlet -class>
5 </servlet>
6 <servlet -mapping>
7 <servlet -name>action</servlet -name>
8 <url-pattern>*.do</url-pattern>
9 </servlet -mapping>

10

11 <servlet -mapping>
12 <servlet -name>BlogLoader</servlet -name>
13 <url-pattern>/BlogLoader</url-pattern>
14 </servlet -mapping>
15 <session -config>
16 <session -timeout>30</session -timeout>
17 </session -config>
18 <welcome -file -list>
19 <welcome -file>/jsp/index.jsp</welcome -file>
20 </welcome -file -list>
21

22 <!-- security settings -->
23 <security -constraint>
24 <web-resource -collection>
25 <web-resource -name>Protected Area</web-resource -name>
26 <url-pattern>/*</url-pattern>
27 <http -method>DELETE</http -method>
28 <http -method>GET</http -method>
29 <http -method>POST</http -method>
30 <http -method>PUT</http -method>
31 </web-resource -collection>
32 <user -data -constraint>
33 <description/>
34 <transport -guarantee>CONFIDENTIAL</transport -guarantee>
35 </user -data -constraint>
36 </security -constraint>

Listing 6.3: web.xml - Tomcat: Web Application - Servlet and Security Configurations

Listing 6.4 provides a collection of configuration sets for the Struts framework as part of the
web application. Those settings include the Action Form definitions, the Mappings of the JSPs
to the application logic, and the database connectivity configuration.

6. Prototype Implementation 106

1 <struts -config>
2 <!-- action form settings -->
3 <form -beans>
4 <form -bean name="StrutsActionLoginForm"
5 type="at.ac.tuwien.tmblog.web.forms.StrutsActionLoginForm"/>
6 <form -property name="username" type="java.lang.String" />
7 <form -property name="password" type="java.lang.String" />
8 <form -bean name="StrutsActionRegisterForm"
9 type="at.ac.tuwien.tmblog.web.forms.StrutsActionRegisterForm">

10 <form -property name="username" type="java.lang.String" initial=""/>
11 <form -property name="password" type="java.lang.String" initial=""/>
12 <form -property name="passwordConfirm" type="java.lang.String" initial=""/>
13 <form -property name="deviceID" type="java.lang.String" initial=""/>
14 </form -bean>
15 </form -beans>
16

17 <!-- smart links -->
18 <global -forwards>
19 <forward name="init" path="/init.do"/>
20 <forward name="loginFwd" path="/loginFwd.do"/>
21 <forward name="registerFwd" path="/registerFwd.do"/>
22 <forward name="mainFwd" path="/mainFwd.do"/>
23 <forward name="logoutFwd" path="/logoutFwd.do"/>
24 </global -forwards>
25

26 <!-- action mappings -->
27 <action -mappings>
28 <action path="/init"
29 type="at.ac.tuwien.tmblog.web.actions.StrutsActionInit">
30 </action>
31 <action input="/jsp/login.jsp"
32 name="StrutsActionLoginForm"
33 attribute="StrutsActionLoginForm"
34 path="/login"
35 scope="session"
36 validate="true"
37 type="at.ac.tuwien.tmblog.web.actions.StrutsActionLogin">
38 </action>
39 <action input="/jsp/register.jsp"
40 name="StrutsActionRegisterForm"
41 attribute="StrutsActionRegisterForm"
42 path="/register"
43 scope="session"
44 validate="true"
45 type="at.ac.tuwien.tmblog.web.actions.StrutsActionRegister">
46 </action> <action path="/loginFwd"
47 type="org.apache.struts.actions.ForwardAction"
48 parameter="/jsp/login.jsp">
49 </action>
50 <action path="/registerFwd"
51 type="org.apache.struts.actions.ForwardAction"
52 parameter="/jsp/register.jsp">
53 </action>
54 <action path="/mainFwd"
55 type="org.apache.struts.actions.ForwardAction"
56 parameter="/jsp/main.jsp">
57 </action>
58 <action path="/logoutFwd"
59 type="org.apache.struts.actions.ForwardAction"
60 parameter="/jsp/logout.jsp">
61 </action>
62 </action -mappings>
63

64 <!-- data source settings -->
65 <data -sources>
66 <data -source type="org.apache.tomcat.dbcp.dbcp.BasicDataSource">
67 <set-property property="description" value="tmblog database" />
68 <set-property property="driverClassName" value="com.mysql.jdbc.Driver" />
69 <set-property property="url" value="jdbc:mysql://localhost:3306/tmblog" />
70 <set-property property="username" value="tomcat" />
71 <set-property property="password" value="ToMTMbloG" />
72 <set-property property="maxActive" value="10" />

6. Prototype Implementation 107

73 <set-property property="maxWait" value="5000" />
74 <set-property property="defaultAutoCommit" value="false" />
75 <set-property property="defaultReadOnly" value="false" />
76 <set-property property="validationQuery" value="SELECT COUNT(*) FROM user" />
77 </data -source>
78 </data -sources>
79

80 <message -resources parameter="at/ac/tuwien/tmblog/web/resources/application"/>
81

82 <!-- validator settings -->
83 <plug -in className="org.apache.struts.validator.ValidatorPlugIn">
84 <set-property
85 property="pathnames"
86 value="/WEB -INF/validator -rules.xml ,/WEB -INF/validation.xml"/>
87 </plug -in>
88 </struts -config>

Listing 6.4: struts-config.xml - Tomcat: Web Application - Struts Configuration

Listing 6.5 refers to the security settings of the Axis2 Web Application, which are in fact those
used for accessing the Blogging Service through mobile clients. The service container offers a
transparent HTTP Basic Authentication for users of the TMBlog application.

1 <!-- security settings -->
2 <security -constraint>
3 <display -name>Web service Security</display -name>
4 <web-resource -collection>
5 <web-resource -name>Protected Area</web-resource -name>
6 <url-pattern>/services/Gateway</url-pattern>
7 </web-resource -collection>
8 <auth -constraint>
9 <role -name>tmblog</role -name>

10 </auth -constraint>
11 </security -constraint>
12 <security -role>
13 <role -name>tmblog</role -name>
14 </security -role>
15 <login -config>
16 <auth -method>BASIC</auth -method>
17 <realm -name>TMBlog Login</realm -name>
18 </login -config>

Listing 6.5: web.xml - Axis2: Blogging Service - Security Configurations

6.2. Service Modules

In the following, implementation issues of the distributed application service Modules are solved.
A module consists of a Service Producer-, a Service Consumer-, and a Service Connection
implementation. These modules belong to the Mobile Client domain, Server- and Backend
Systems domain, and to the domains of independent service providers. Without any attention
of third party service provider implementations, the module’s Class Diagrams are illustrated
and attended by outlines of the Java Source Code from included components, in the following
section. With a focus on central functionality and due to clarity, the illustrated classes do
not show all references to related components, as with the case of referenced objects in the
source code. The captions of the following listings also refer to the resource in which the code
fragments are situated, as well as the execution environment and the according application
domain.

6. Prototype Implementation 108

6.2.1. Location Service Module

Figure 6.1 illustrates the classes within the Location Service Module and their relationship
among each other, with the Location Manager as the central service consumer component.

Figure 6.1.: UML Class Diagram of Location Service Consumer- and Service Connection
Components in the Mobile Client Domain

The according listing 6.6 shows how a discovered GPS receiver is integrated into the application
in order to retrieve the geodetic datum. Listing 6.7 utilizes the functionality of the Location
API with the same aim. The according thread is started in the retrieveLocationFromGLP()
method of the Location Manager.

6. Prototype Implementation 109

1 private void retrieveLocationFromBTD() {
2 this.locationMethod = this.GPS;
3 String address = this.settings.getGPSDevice().getAddress();
4

5 // check if GPS device has changed in the meantime
6 if(this.gpsDevice == null || !this.gpsDevice.getAddress().equals(address)) {
7 // create GPS device for receiving the GPS data from satellites
8 String alias = this.settings.getGPSDevice().getAlias();
9 this.gpsDevice = new GPSServiceConnection(address , alias);

10 this.gpsDevice.setServiceConnectionURL(this.settings.getGPSDevice().getConnectionURL ());
11 this.gpsDevice.setController(this.controller);
12 this.gpsDevice.setLocationManager(this);
13 }
14 if(this.gpsDevice.getStatus() == this.gpsDevice.STATUS_CONNECTED ||
15 this.gpsDevice.getStatus() == this.gpsDevice.STATUS_DISCONNECTING) {
16 return;
17 }
18

19 // GPS connection thread
20 Thread t = new Thread() {
21 int maxConnectionAttemps = 1;
22 int connectionAttempts = 0;
23 public void run() {
24 while(connectionAttempts < maxConnectionAttemps
25 && gpsDevice.getStatus() == gpsDevice.STATUS_DISCONNECTED) {
26 try {
27 connectionAttempts++;
28 gpsDevice.connect();
29 activityScreen.setString(Locale.get("locationManager.alert.waiting"));
30 } catch(SecurityException se) {
31 cleanUp();
32 controller.show(controller.getScreen(controller.MAIN_SCR));
33 } catch(IOException ioe) {
34 if(connectionAttempts == this.maxConnectionAttemps) {
35 cleanUp();
36 Displayable nextScreen = controller.getScreen(controller.MAIN_SCR);
37 controller.show(controller.ERROR_ASCR ,
38 Locale.get("locationManager.alert.unreachableDevice"), null , nextScreen);
39 }
40 }
41 }
42 }
43 }; t.start();
44 }

Listing 6.6: LocationManager.java - MIDP: Mobile Client - Connection Thread for a Loca-
tion Retrival with a pre-selected BT-GPS Receiver

1 // GLP connection thread
2 public void connect() {
3 new Thread() {
4 public void run() {
5 try {
6 LocationProvider provider = LocationProvider.getInstance(criteria);
7 if(provider != null) {
8 try {
9 Location location = provider.getLocation(TIMEOUT);

10 //#debug
11 System.out.println("GLP - nmea string: "
12 +location.getExtraInfo("application/X-jsr179 -location -nmea"));
13 if(location.isValid()) {
14 QualifiedCoordinates coord = location.getQualifiedCoordinates ();
15 double lng = coord.getLongitude();
16 double lat = coord.getLatitude();
17 gpsLocation = new GPSLocation(lng , lat);
18 String method =
19 getLocationMethodName(location.getLocationMethod ());
20 gpsLocation.setLocationMethod(method);
21 locationManager.GLPLocationAvailable(true);
22 }
23 if(gpsLocation == null)

6. Prototype Implementation 110

24 locationManager.GLPLocationAvailable(false);
25 } catch(LocationException le) {
26 locationManager.GLPLocationAvailable(false);
27 } catch(InterruptedException ie) {
28 locationManager.GLPLocationAvailable(false);
29 } catch(SecurityException se) {
30 controller.show(controller.getScreen(controller.MAIN_SCR));
31 }
32 } else
33 throw new LocationException();
34 } catch(LocationException le) {
35 //#debug
36 System.out.println("GLP: no Provider reachable.");
37 }
38 }.start();
39 }
40 }

Listing 6.7: GLPServiceConnection.java - MIDP: Mobile Client - Connection Thread for a
Location Retrival with the Location API

6.2.2. Location Resolution Service Module

Figure 6.2 illustrates the GeonamesWSC class, which is responsible for invoking the Geonames
web service in a RESTful way. The resolved geodetic datum is stored in the Toponym class in
order to be processed by further components.

Figure 6.2.: UML Class Diagram of the Location Resolution Service Consumer in the Mobile
Client Domain

6. Prototype Implementation 111

Listing 6.8 shows how to determine the Nearest Populated Place for a specific waypoint. The
system’s SAX Parser is used to process the XML response from the service.

1 private void findNearbyPlaceName(Waypoint wp)
2 throws IOException , Exception , SecurityException {
3 // set request parameters
4 double latitude = wp.getLocation().getLatitude();
5 double longitude = wp.getLocation().getLongitude();
6

7 // service url
8 String url = GEONAMES_SERVER + "/findNearbyPlaceName?";
9 url += "type=XML"; // response type

10 url += "&style=SHORT"; // verbosity of returned xml document
11 url += "&lat=" + latitude;
12 url += "&lng=" + longitude;
13 url += "&lang" + this.language;
14 // open connection and send request
15 this.httpConnection = this.getServiceConnection(url);
16 // read the HTTP response headers
17 this.verifyConnection(this.httpConnection);
18 // get response stream
19 this.inputStream = this.httpConnection.openInputStream();
20 this.parseResponseNearbyPlace(this.inputStream);
21 }
22

23 // parse XML response to update toponym
24 private void parseResponseNearbyPlace(InputStream is) throws
25 FactoryConfigurationError ,
26 ParserConfigurationException ,
27 SAXException ,
28 IOException {
29 SAXParser xmlParser = SAXParserFactory.newInstance().newSAXParser();
30 ResponseHandlerNearbyPlace handler = new ResponseHandlerNearbyPlace ();
31 xmlParser.parse(is, handler);
32 }

Listing 6.8: GeonamesWSC.java - MIDP: Mobile Client - Geonames Web Service Invocation
for the Determination of the nearest populated Place

Listing 6.9 shows instances of XML messages, as they have been received from the Geonames
web service.

1 <!-- findNearbyPlace -->
2 <geonames>
3 <geoname>
4 <name>Ottakring</name>
5 <lat>48.2166667</lat>
6 <lng>16.3</lng>
7 <geonameId>2769359</geonameId>
8 <countryCode>AT</countryCode>
9 <countryName>Austria</countryName>

10 <fcl>P</fcl>
11 <fcode>PPLX</fcode>
12 <distance>2.3289</distance>
13 </geoname>
14 </geonames>
15

16 <!-- elevation -->
17 <geonames>
18 <srtm3>209</srtm3>
19 <lat>48.211225</lat>
20 <lng>16.3303533</lng>
21 </geonames>

Listing 6.9: Instances of XML-Messages for the Transfer of resolved geodetic Data between the
Geonames Web Service and the Mobile Clients

6. Prototype Implementation 112

6.2.3. Gateway Service Module

Figure 6.3 shows the GatewayWSC class with its high-level methods for accessing server-side
functionality through the GatewayServiceConnection class. The GatewayWSC is being noti-
fied about remote events by the invocation of its Callback Functions, which are defined in the
IServiceListener interface.

Figure 6.3.: UML Class Diagram of Gateway Service Consumer- and Service Connection
Components in the Mobile Client Domain

Listing 6.10 shows how a remote user authentication is initiated by the Mobile Client. The
user credentials are set as properties of the HTTP stream, which is managed through an
instance of the service stub. Listing 6.11 illustrates how a mobile user authentication and blog
reconstruction is handled through the server’s Blogging Service.

1 // user authentication
2 public synchronized void logon() {
3 if (!isThreadRunning) {
4 isThreadRunning = true;
5 this.deviceID = this.controller.getCredentials().getBtAddress();
6 OPERATION = OPERATION_LOGON;
7 new Thread(this).start();
8 }
9 }

10

11 public void run() {
12 Gateway_Stub gatewayServiceStub = new Gateway_Stub();
13 gatewayServiceStub._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY , this.endPoint);
14 gatewayServiceStub._setProperty(Stub.SESSION_MAINTAIN_PROPERTY , new Boolean(false));
15

16 // credentials for user authentication on system (basic http authentication).
17 // username and password are base64 encoded by the JAX-RPC runtime before being send.
18 // since this an unreliable security policy an SSL tunnel is used additionally.
19 gatewayServiceStub._setProperty(
20 javax.xml.rpc.Stub.USERNAME_PROPERTY ,
21 this.controller.getCredentials().getUser());

6. Prototype Implementation 113

22 gatewayServiceStub._setProperty(
23 javax.xml.rpc.Stub.PASSWORD_PROPERTY ,
24 this.controller.getCredentials().getKey());
25

26 // perform remote invocation
27 IGateway gatewayService = (IGateway) gatewayServiceStub;
28 if (OPERATION == OPERATION_LOGON) {
29 activityScreen.setString(Locale.get("gatewayServiceConnection.authenticate"));
30 this.controller.show(activityScreen);
31 try {
32 //#debug
33 System.out.println("invoke remote signon method...");
34 // pass the registered device ID as parameter
35 Boolean signed = gatewayService.signon(this.deviceID);
36 if (signed.booleanValue()) {
37 this.listener.onAuthenticationRequestComplete(
38 Locale.get("gatewayServiceConnection.accountAvailable"));
39 } else {
40 // user tries to login from a unregistered device
41 this.listener.onAuthenticationRequestError(
42 Locale.get("gatewayServiceConnection.noAccountAvailable"));
43 }
44 } catch (RemoteException re) {
45 // http authentication failed
46 // 401 unauthorized: invalid credentials
47 // 403 forbitten: no permissions
48 // 500 server error: invalid SOAP request or system-specific error
49 listener.onAuthenticationRequestError(
50 Locale.get("gatewayServiceConnection.serviceError"));
51 } catch (SecurityException se) {
52 this.controller.show(this.controller.getScreen(this.controller.LOGIN_SCR));
53 } catch (Exception e) {
54 // another IO problem e.g. Symbian Native Error-7372:
55 // an SSL tunnel can not be established - server is maybe down
56 listener.onAuthenticationRequestError(Locale.get("tmblogServer.serviceNotAvailable"));
57 }
58 }
59 this.cleanUp();
60 }

Listing 6.10: GatewayServiceConnection.java - MIDP: Mobile Client - Connection Thread
for the Remote User Authentication through the according Service Stub.

1 // sign-on mobile user
2 public boolean signon(String deviceID) {
3 // get SOAP message context
4 MessageContext msgCxt = MessageContext.getCurrentMessageContext ();
5 System.out.println("SOAP envelope: "+msgCxt.getEnvelope().toString());
6 // get username
7 HttpServletRequest request =
8 (HttpServletRequest)msgCxt.getProperty(HTTPConstants.MC_HTTP_SERVLETREQUEST);
9 String username = request.getRemoteUser();

10 boolean isValid = this.dbManager.isValidUser(username , deviceID);
11 // set user online
12 if(isValid) {
13 this.dbManager.trackUser(username);
14 }
15 return isValid;
16 }
17 // post blog
18 public boolean post (
19 long timestamp ,
20 String journeyName ,
21 String message ,
22 double longitude ,
23 double latitude ,
24 double elevation ,
25 String encodedPhoto) throws RemoteException {
26

27 MessageContext msgCxt = MessageContext.getCurrentMessageContext ();
28 HttpServletRequest request =

6. Prototype Implementation 114

29 (HttpServletRequest)msgCxt.getProperty(HTTPConstants.MC_HTTP_SERVLETREQUEST);
30 String username = request.getRemoteUser();
31 // check if user is online
32 if(!this.dbManager.isTrackedUser(username)) {
33 return false;
34 }
35 // create new blog
36 Blog blog = new Blog();
37 blog.setTimestamp(timestamp);
38 blog.setUserName(username);
39 blog.setJourneyName(journeyName);
40 blog.setMessage(message);
41 blog.setLongitude(longitude);
42 blog.setLatitude(latitude);
43 blog.setElevation(elevation);
44 // decode photo
45 byte[] photo = null;
46 if(encodedPhoto != null) {
47 photo = Base64Decoder.decode(encodedPhoto);
48 blog.setPhotoLength(photo.length);
49 blog.setPhoto(photo);
50 } else {blog.setPhotoLength (0);}
51 try {
52 if(blog.isValid()) {
53 this.dbManager.storeBlog(blog);
54 } else {throw new RemoteException ();}
55 } catch (SQLException se) {
56 throw new RemoteException();
57 } catch (IOException ioe) {
58 throw new RemoteException();
59 }
60 System.out.println("blog stored.");
61 return true;
62 }

Listing 6.11: Gateway.java - Axis2: Blogging Service - Mobile User Authentication and Blog
Reconstruction

The code for the IGateway interface and the according Gateway Stub is generated by the IDE,
out of the Gateway Service WSDL Description. The input type- and service definitions of this
contract are offered in listing 6.12.

1 <!-- wsdl type definitions -->
2 <wsdl:types>
3 <xs:schema
4 xmlns:ns="http://webservice.tmblog.tuwien.ac.at"
5 attributeFormDefault="qualified"
6 elementFormDefault="qualified"
7 targetNamespace="http://webservice.tmblog.tuwien.ac.at">
8 <xs:element name="signon">
9 <xs:complexType>

10 <xs:sequence>
11 <xs:element minOccurs="0" name="deviceID" nillable="true" type="xs:string"/>
12 </xs:sequence>
13 </xs:complexType>
14 </xs:element>
15 <xs:element name="post">
16 <xs:complexType>
17 <xs:sequence>
18 <xs:element minOccurs="0" name="timestamp" type="xs:long"/>
19 <xs:element minOccurs="0" name="journeyName" nillable="true" type="xs:string"/>
20 <xs:element minOccurs="0" name="message" nillable="true" type="xs:string"/>
21 <xs:element minOccurs="0" name="longitude" type="xs:double"/>
22 <xs:element minOccurs="0" name="latitude" type="xs:double"/>
23 <xs:element minOccurs="0" name="elevation" type="xs:double"/>
24 <xs:element minOccurs="0" name="encodedPhoto" nillable="true" type="xs:string"/>
25 </xs:sequence>
26 </xs:complexType>

6. Prototype Implementation 115

27 </xs:element>
28 <xs:element name="logout">
29 <xs:complexType>
30 <xs:sequence>
31 <xs:element minOccurs="0" name="deviceID" nillable="true" type="xs:string"/>
32 </xs:sequence>
33 </xs:complexType>
34 </xs:element>
35 </xs:schema>
36 </wsdl:types>
37

38 <!-- wsdl service definition -->
39 <wsdl:service name="Gateway">
40 <wsdl:port name="GatewaySOAP11port_http" binding="ns2:GatewaySOAP11Binding">
41 <soap:address location="http: //192.168.1.35:80/axis2/services/Gateway"/>
42 </wsdl:port>
43 <wsdl:port name="GatewaySOAP12port_http" binding="ns2:GatewaySOAP12Binding">
44 <soap12:address location="http: //192.168.1.35:80/axis2/services/Gateway"/>
45 </wsdl:port>
46 <wsdl:port name="GatewayHttpport" binding="ns2:GatewayHttpBinding">
47 <http:address location="http: //192.168.1.35:80/axis2/services/Gateway"/>
48 </wsdl:port>
49 </wsdl:service>

Listing 6.12: wsdl.xml - Axis2: Blogging Service - WSDL Type and Service Definition

Listing 6.13 shows two instances of SOAP Envelopes as they are transfered to the server. The
first message represents a Message Blog, the second one a Photo Blog.

1 <?xml version=’1.0’ encoding=’utf -8’?>
2 <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
3 xmlns:tns="http://webservice.tmblog.tuwien.ac.at"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance"
5 xmlns:xsd="http://www.w3.org/2001/ XMLSchema">
6 <soap:Body>
7 <tns:post>
8 <tns:timestamp>1205393379066</tns:timestamp>
9 <tns:journeyName>My Journey</tns:journeyName>

10 <tns:message>friedmanngasse</tns:message>
11 <tns:longitude>16.3303533</tns:longitude>
12 <tns:latitude>48.211225</tns:latitude>
13 <tns:elevation>209.0</tns:elevation>
14 <tns:encodedPhoto xsi:nil="true" />
15 </tns:post>
16 </soap:Body>
17 </soap:Envelope>
18

19 <?xml version=’1.0’ encoding=’utf -8’?>
20 <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
21 xmlns:tns="http://webservice.tmblog.tuwien.ac.at"
22 xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance"
23 xmlns:xsd="http://www.w3.org/2001/ XMLSchema">
24 <soap:Body>
25 <tns:post>
26 <tns:timestamp>1205319419217</tns:timestamp>
27 <tns:journeyName>My Journey</tns:journeyName>
28 <tns:message>karlskirche</tns:message>
29 <tns:longitude>16.371295</tns:longitude>
30 <tns:latitude>48.1987233</tns:latitude>
31 <tns:elevation>187.0</tns:elevation>
32 <tns:encodedPhoto>/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEA...</tns:encodedPhoto>
33 </tns:post>
34 </soap:Body>
35 </soap:Envelope>

Listing 6.13: Instances of the SOAP Envelopes for the Blog Transfer between Mobile Clients
and the Blogging Service

6. Prototype Implementation 116

Figure 6.4 shows the generated Service Stub at the according Interface. The invocation of the
stub’s service methods causes a marshalling of the passed parameters.

Figure 6.4.: UML Class Diagram of Gateway Service Connection Components in the Mobile
Client Domain - Service Interface and Service Stub

6.3. Content Generation Management

The blog generation process is managed by the BlogManager and the PhotoManager classes.
The PhotoManager contains the inner class PhotoFormatter, which is responsible for mapping
the photo’s content to a Photo object, including a Thumbnail version. The formatter is also used
during the capture process to offer the user a Preview of the blog’s content. The dimension and
the encoding for the photo is parsed from the application’s configuration file. In order to create
message blogs, only a text input mask is required. Figure 6.5 shows the class diagram of the
three mentioned components as well as their relationship among each other.

6. Prototype Implementation 117

Figure 6.5.: UML Class Diagram of Content Generation Management Components in the Mobile
Client Domain

Listing 6.14 shows the methods for initializing the blog content generation process. During
the photo capture phase, the BlogManager is suspended until the finished Photo object has
been passed to the manager within the PhotoBin stack. Listing 6.15 illustrates the tasks
performed within the takeSnapshot() method, called from the application in order to process
the buffered video still.

1 // photo
2 private void createPhoto() {
3 // init photo capture process
4 this.photoManager.mandatePhoto();
5 // photo waiting thread
6 Thread t = new Thread() {
7

8 public void run() {
9 BlogManager m = BlogManager.uniqueInstance;

10 Stack pb = m.photoManager.photoBin; // lock
11 m.photo = null;
12 synchronized (pb) {
13 try {
14 pb.wait();
15 } catch (InterruptedException ie) {/*ignore*/

6. Prototype Implementation 118

16 }
17 // look for a photo
18 if (!pb.isEmpty()) {
19 m.photo = (Photo) pb.pop();
20 m.createMessage();
21 }
22 }
23 }
24 };
25 t.start();
26 }
27

28 // message
29 private void createMessage() {
30 this.messageScreen.setString(null);
31 this.controller.show(this.messageScreen);
32 }

Listing 6.14: BlogManager.java - MIDP: Mobile Client - Operations for the Initialization of
the Blog Content Generation Process

1 public void takeSnapshot() {
2 this.captureScreen.setStatus(PhotoCaptureScreen.STATUS_INITIALIZING);
3 if(this.player != null) {
4 try{
5 // get raw jpeg photo data
6 this.rawData = videoControl.getSnapshot(this.encoding);
7 if(this.rawData != null) {
8 Image previewPhoto = null;
9 previewPhoto = this.formatter.getPreview(this.rawData);

10 // delete last preview
11 this.viewerScreen.deleteAll();
12 //#style photoViewerTitleItem
13 this.viewerScreen.append(Locale.get("photoManager.label.preview")+": ");
14 // set new preview
15 //#style photoViewerPhotoItem
16 this.viewerScreen.append(previewPhoto);
17 // set snapshot info
18 //#style photoViewerInfoItem
19 this.viewerScreen.append(Locale.get("photoManager.label.photo.size")+": "
20 +this.photoSizeID+" ("+this.grabbedDimension [0]+" x "+this.grabbedDimension [1]+")");
21 // show preview screen
22 this.controller.show(this.viewerScreen);
23 }
24 } catch(MediaException me) {
25 //#debug error
26 System.out.println("Capture - Media Exception: "+me);
27 this.memoryProblem = true;
28 this.cleanUp();
29 this.controller.show(this.controller.ERROR_ASCR ,
30 Locale.get("photoManager.alert.captureFailed")
31 +Locale.get("photoManager.alert.memoryProblem"), null , this.next);
32 } catch(SecurityException se) {
33 this.cleanUp();
34 this.controller.show(this.controller.getScreen(this.controller.BLOG_SCR));
35 } catch(Exception e) {
36 this.controller.show(this.controller.ERROR_ASCR ,
37 Locale.get("photoManager.alert.captureFailed")
38 +Locale.get("photoManager.alert.memoryProblem"), null , this.next);
39 }
40 }
41 this.captureScreen.setStatus(PhotoCaptureScreen.STATUS_READY);
42 }

Listing 6.15: PhotoManager.java - MIDP: Mobile Client - Operations on the buffered Video
Still during the Photo Capture Process

6. Prototype Implementation 119

6.4. Content Access Management

The Content Access Management subsystem, as illustrated in figure 5.3, contains the com-
ponents Session Listener and Blog Loader. The Session Listener is manifested as a
SessionBindingListener instance, created by the StrutsActionLogin class, in cases where
a web client has been authenticated successfully. The component’s functionality is bound on
the behaviour of the user’s session status, and used to perform waypoint and blog database
queries in order of the BlogLoader class. Figure 6.6 shows the relationship between these web
application components.

Figure 6.6.: UML Class Diagram of Content Access Management Components in the Server-
and Backend Systems Domain

Listing 6.16 refers to the Web Client Authentication functionality, which includes the
application’s Session Management. According to the session status, either the valueBound()
or the valueUnbound() method of the SessionBindingListener instance is called. As a

6. Prototype Implementation 120

consequence, the listener either establishes or closes a connection to the user’s data sources on
occured HttpSessionBindingEvents.

1 // web client authentication
2 public ActionForward execute(ActionMapping mapping , ActionForm form ,
3 HttpServletRequest request , HttpServletResponse response)
4 throws Exception {
5

6 StrutsActionLoginForm loginForm = (StrutsActionLoginForm) form;
7

8 ActionMessages errors = new ActionErrors();
9 Credentials credentials = new Credentials();

10 credentials.setUsername(loginForm.getUsername ());
11 credentials.setPassword(loginForm.getPassword ());
12 sessionListener = null;
13

14 try {
15 this.dataSource = getDataSource(request);
16 this.connection = dataSource.getConnection();
17

18 // db interaction
19 if (this.isAuthorizedUser(credentials)) {
20 System.out.println("user: " + credentials.getUsername() + " is authenticated.");
21 // get session
22 HttpSession session = request.getSession();
23 session.setAttribute("login.done", credentials.getUsername ());
24 // maintain inactive session for half an hour
25 session.setMaxInactiveInterval (1800);
26 // add a session binding listener
27 sessionListener = new SessionBindingListener(this.dataSource , credentials.getUsername ());
28 session.setAttribute("bindings.listener", sessionListener);
29 return mapping.findForward(SUCCESS);
30 } else {
31 errors.add(ActionMessages.GLOBAL_MESSAGE , new ActionMessage("errors.login.failed"));
32 System.out.println("user: " + credentials.getUsername() + " is not authorized.");
33 }
34 } catch (SQLException sqle) {
35 errors.add(ActionMessages.GLOBAL_MESSAGE , new ActionMessage("errors.db.failed"));
36 getServlet().log("Connection.process", sqle);
37 } finally {
38 try {
39 connection.close();
40 } catch (SQLException e) {
41 getServlet().log("Connection.close", e);
42 }
43 }
44 // save error in request
45 saveErrors(request , errors);
46 return mapping.findForward(FAILED);
47 }

Listing 6.16: StrutsActionLogin.java - Tomcat: Web Application - Session Binding through
the Application’s Web Client Authentication Functionality

Listing 6.17 refers to the BlogLoader class, which represents a Servlet for processing incoming
asynchronous waypoint and blog requests. The source code of the component also shows how
to utilize the XStream tool to perform the mapping of the corresponding Java Bean into a XML
Representation.

1 protected void processRequest(HttpServletRequest request , HttpServletResponse response)
2 throws ServletException , IOException {
3

4 String action = request.getParameter("action");
5 response.setContentType("application/xml");
6 ServletOutputStream out = response.getOutputStream();
7 this.sessionListener = StrutsActionLogin.getSessionListener();

6. Prototype Implementation 121

8 try {
9 if (action != null && action.equals("getWaypointList")) {

10 // create xml document and send it to client
11 out.println(this.getXMLWaypointListDoc(this.sessionListener.getWaypointList ()));
12 out.flush();
13 } else if (action != null && action.equals("getWaypointUpdateList")) {
14 out.println(this.getXMLWaypointListDoc(this.sessionListener.getWaypointUpdateList ()));
15 out.flush();
16 } else if (action != null && action.equals("getBlogList")) {
17 // create xml document and send it to client
18 out.println(this.getXMLBlogListDoc(this.sessionListener.getBlogList ()));
19 out.flush();
20 } else if (action != null && action.equals("getBlog")) {
21 String id = request.getParameter("id");
22 // create xml document and send it to client
23 if (id != null) {
24 out.println(
25 this.getXMLBlogDoc(this.sessionListener.getBlog(Integer.valueOf(id).intValue ())));
26 out.flush();
27 }
28 }
29 } finally {
30 out.close();
31 }
32 }
33

34 private String getXMLWaypointListDoc(Vector <Waypoint > waypointList) {
35 StringBuffer xmlString = new StringBuffer();
36

37 xmlString.append("<list >");
38 if (waypointList != null) {
39 XStream xstream = new XStream();
40 for (int i = 0; i < waypointList.size(); i++) {
41 xstream.alias("waypoint", Waypoint.class);
42 String xml = xstream.toXML(waypointList.elementAt(i));
43 xmlString.append(xml);
44 }
45 }
46 xmlString.append("</list >");
47 System.out.println("waypoint xml string: " + xmlString.toString());
48 return xmlString.toString();
49 }

Listing 6.17: BlogLoader.java - Tomcat: Web Application - Servlet for processing Waypoint-
and Blog Requests from Web Clients

The Java Script code in listing 6.18 outlines how the WaypointManager class as part of the
Web Client Logic performs the mentioned asynchronous requests to the BlogLoader in order to
retrieve the waypoints of the posted blogs. A registered Callback Function is invoked as soon
as the server replies with a HTTP status code. A valid XML response is parsed by reading the
according elements within the DOM tree. If at least one waypoint has been loaded, a Marker/Pin
for the Map Interface is going to be created and set to the corresponding location. Finally,
the web client’s BlogManager class requests the server for the actual blogs, which include all
remaining non-location related blog attributes.

6. Prototype Implementation 122

1 function loadWaypointList() {
2 if(map != null) {
3 // create browser-safe XMLHttpRequest object
4 var request = GXmlHttp.create();
5 // Prepare an asynchronous HTTP request to the server
6 request.open("GET", "/tmblog/BlogLoader?action=getWaypointList", true);
7 // Returned data will be processed by this processWaypoints
8 request.onreadystatechange = getCallbackFunction(request , processXMLResponse);
9 request.send(null);

10 isLiveUpdate = false;
11 }
12 };
13 function getCallbackFunction(request , processXMLResponse) {
14 return function () {
15 // request complete and ok
16 if (request.readyState == 4) {
17 if (request.status == 200) {
18 // Pass the XML payload of the response to the handler function
19 processXMLResponse(request.responseXML);
20 } else {
21 // http error
22 alert("HTTP error: "+request.status);
23 }
24 }
25 }
26 };
27 function processXMLResponse(waypointsXML){
28 // obtain the array of waypoints and loop through it
29 var waypointList = waypointsXML.documentElement.getElementsByTagName("waypoint");
30 for (var i = 0; i < waypointList.length; i++) {
31 // obtain the attributes of each marker
32 var id = waypointList[i].getElementsByTagName("id")[0]. firstChild.nodeValue;
33 var lng = parseFloat(
34 waypointList[i].getElementsByTagName("longitude")[0]. firstChild.nodeValue);
35 var lat = parseFloat(
36 waypointList[i].getElementsByTagName("latitude")[0]. firstChild.nodeValue);
37 var ele = parseFloat(
38 waypointList[i].getElementsByTagName("elevation")[0]. firstChild.nodeValue);
39 // create a new blog to be displayed on demand
40 var blog = new Blog();
41 blog.setID(id);
42 blog.setLongitude(lng);
43 blog.setLatitude(lat);
44 blog.setElevation(ele);
45 // store new blog
46 blogManager.setBlog(blog);
47 // create a display a new waypoint for the map
48 var params = new Array();
49 params[0] = id;
50 params[1] = lat;
51 params[2] = lng;
52 createWaypoint(params);
53 }
54 if(waypointList.length > 0) {
55 blogManager.loadBlogList();
56 }
57 // schedule next server poll
58 setTimeout("waypointManager.loadWaypointUpdateList ();", pollInterval);
59 };

Listing 6.18: WaypointManager.js - Requesting and Parsing Waypoints in the Web Client
Domain

Listings 6.19 and 6.20 show two instances of Waypoints and Blogs, as they are trans-
fered from the Web Application to the Web Client. The Blog ID attribute is used to
request specific blogs from the server as well as for client-side content management pur-
poses. After the initial blog retrieval process, an empty list or a list with newly created blogs
is delivered in predefined request interval, which is five seconds in the prototype implementation.

6. Prototype Implementation 123

1 <list>
2 <waypoint>
3 <id>1</id>
4 <longitude>16.3303533</longitude>
5 <latitude>48.211225</latitude>
6 <elevation>209.0</elevation>
7 </waypoint>
8 <waypoint>
9 <id>2</id>

10 <longitude>16.371295</longitude>
11 <latitude>48.1987233</latitude>
12 <elevation>187.0</elevation>
13 </waypoint>
14 </list>

Listing 6.19: Instances of XML-Messages for the Transfer of Waypoints between the Web Appli-
cation and the Web Client

1 <list>
2 <blog>
3 <id>1</id>
4 <timestamp>1205393379066</timestamp>
5 <date>2008/03/13 08:29:39</date>
6 <journeyName>My Journey</journeyName>
7 <message>friedmanngasse</message>
8 <photoPath>NULL</photoPath>
9 <photoPathThumb>NULL</photoPathThumb>

10 <photoWidth>-1</photoWidth>
11 <photoHeight>-1</photoHeight>
12 <onDemand>0</onDemand>
13 </blog>
14 <blog>
15 <id>2</id>
16 <timestamp>1205319419217</timestamp>
17 <date>2008/03/12 11:56:59</date>
18 <journeyName>My Journey</journeyName>
19 <message>karlskirche</message>
20 <photoPath>/repository/hannes/photos /1205319419217.jpg</photoPath>
21 <photoPathThumb>/repository/hannes/photos/thumb_1205319419217.jpg</photoPathThumb>
22 <photoWidth>320</photoWidth>
23 <photoHeight>240</photoHeight>
24 <onDemand>0</onDemand>
25 </blog>
26 </list>

Listing 6.20: Instances of XML-Messages for the Transfer of Blogs between the Web Application
and the Web Client

6. Prototype Implementation 124

6.5. Interface

This section depicts Screenshots of the Mobile- and the Web Client. In both domains CSS files
have been used to structure and to define the screen’s content. In the same way, GUI messages
are outsourced to domain-specific text files. This allows an easy adaption of the application’s
Look and Feel and its Locale. The figure sets 6.7, 6.8, 6.9, 6.10, and 6.11 refers to different
system states and user interactions in the mobile domain.

Figure 6.7.: Screenshots of the Mobile Client - The Application Startup Process loads the
Components as well as the stored Blogs (left). The Login Screen verifies the User
Input before Credentials are allowed to be submitted (center). The Application’s
Main Menu is used to initiate Tasks (right).

Figure 6.8.: Screenshots of the Mobile Client - J2ME Polish specific Tabbed Forms for a user-
friendly System Preference Browsing and Setting, categorized into different logical
Domains.

6. Prototype Implementation 125

Figure 6.9.: Screenshots of the Mobile Client - The System’s Security-related Capability Feature
confirms the User during the Location Determination Process since the Appliation
is not Signed (left). Exploration of stored Waypoint-related Journey Blogs. The
List Items represent generated Blogs and refer to their Content as well as to their
spatial and temporal Relationship among each other (center). Several Operation
can be performed on stored Blogs (right).

Figure 6.10.: Screenshots of the Mobile Client - J2ME Polish specific Tabbed Forms for a
categorized Content-Browsing within an opened Photo Blog (left). Exploration of
logical Location Information within an opened Blog (center). Journey- and Blog
Statistics are used as a Tracking und Content Management Feature (right).

Figure 6.12 shows the used Nokia handset and the GPS receiver. Figure 6.13, 6.14, and 6.15
refer to the cartographic web interface which is used for the exploration of the posted blogs
as well as the user registration form. The map functionality relies on the implemention of the
Google Maps web service and an optional package for the definition of a customized zoom
area.

6. Prototype Implementation 126

Figure 6.11.: Screenshots of the Mobile Client - Exploration of the Blogging History. A re-
maining lightweight Version of the Blog also enables an Exploration of the Blog’s
Content. This List can be cleared anytime (left). The Traffic Monitor shows the Net-
work Utilization since a specific Date (center). A Logout Operation is performed
as far as an User Authentication has been performed on the Server (right).

Figure 6.12.: A Nokia N71 handset has been used in the Prototype Testing Phase. An external
GNS 5843 Bluetooth GPS Receiver enabled an accurate Determination of the
User’s geodetic Location.

6. Prototype Implementation 127

Figure 6.13.: Screenshot of the Web Client - An opened Photo-related Blog is shown within the
Map together with the Time of Creation, an optional Message, and the Journey to
which the Blog belongs. The Interface also offers Information about the Waypoint
and the Content of the Blog.

Figure 6.14.: Screenshot of the Web Client - An opened Photo-related Blog shown at a higher
Zoom Level as well as in Full Size. The Photo Dimension for this Instance is 240
x 160 Pixels. Depending on the mobile User’s preferences, a maximum Dimension
of 480 x 320 Pixels is possible.

6. Prototype Implementation 128

Figure 6.15.: Screenshot of the Web Client - Registration Form with the Struts Action Errors.
Next to the specification of the User’s Credentials, a 12-digit Device ID is required.

129

7. Related Work and Evaluation

“Thus times do shift, each thing his turn does hold;
New things succeed, as former things grow old.”

— Robert Herrick (1648)

Mobile content generation, -processing, and -integration with remote nodes are topics of
several academic research projects and evaluation studies today. The aim of related studies and
their practical verifications are often based on capability measurements, content adaption, or
intelligent interaction strategies within mobile communities. In the following, three related
academic works and two commercial works are briefly presented to offer a classification of
the master’s thesis and its application field. Furthermore the presentation and the evaluation of
related projects shows the differences and the disadvantages compared to the TMBlog solution.
Related to TMBlog, the presented projects are either focused on Community- or Personal Data
Management aspects.

7.1. Academic Approaches

• Location-based Mobile Blogging

The LocoBlog project of William Bamford, Paul Coulton, and Reuben Edwards [BCE06]
from the Informatics Group - InfoLab21 at the University of Lancaster is similar to the
TMBlog prototype implementation as part of this thesis. Their implementation however
differs in terms of Privacy, Mobile Content Management, as well as in the underlying
Programming Languages, and the utilized Communication Models. As described in the
according paper, this mobile Python/JavaME application focuses on more precise location
information like the actual Cell ID, GPS Receiver Information, and on-device Compass
Bearing. The blog transfer to the server is based on HTTP Form-encoded Data which is
parsed through an according PHP script. Users are tracked by registering the device’s 15-
digit IMEI address, the cartographic web access to an arbitrary user’s blogs is however not
restricted. The LocoBlog application also offers a 3D Space-Time Mapping Plot of posted
blogs. Spatial- and temporal correlated blogs are not available for mobile users. Location
awareness offered through area-specific location names is missing too. The absense of
mobile web services within this project results in a tightly coupled technology-dependent
interaction strategy, which does not scale well.

• Media Content Metadata and Mobile Picture Sharing

Risto Sarvas [Sar04] from the Helsinki Institute for Information Technology (HIIT) at
the Helsinki University of Technology (HUT) presents in his paper a combination of a

7. Related Work and Evaluation 130

Mobile Picture Sharing System and a Mobile Metadata Creation System. With a focus on
Personal Media Data Management, generated content is adapted to be processable with
the aim of retrieving and sharing media assets more efficiently. The necessary semantic
information origins from a combination of user-defined contextual and social metadata,
and descriptive ones which are automatically retrieved by the system. Location-Unaware
pictures are organized in folders and published directly to a Web Album, which is also
suitable to be loaded from mobile browsers. In the course of a picture posting process,
the application allows to send notifications to persons stored on the phone’s address book.
In this sense, the application has been designed as a management tool for Social Activities
within mobile communities. The web interface additionally offers a Calendar feature for
tracking activities of certain user groups. In contrast to TMBlog, this project is strongly
related to the mobile browsing paradigm, which typically results in high volume payloads
and a decreased responsiveness because page layout and rendering information have
to be transfered as well. Since the generated media content is not geotagged, a further
location-based processing of user-centric data is not possible.

• Usage Patterns of FriendZone

FriendZone is a suite of Mobile Location-Based Services (LBS) for virtual communities
with a focus on extended communication patterns and privacy management [BS04]. This
academic solution stands under the hood of the Carnegie Mellon ETC and the MIT
Media Laboratory. 47.000 users tested the according services such as LBS Chat, Instant
Messaging and Locator (IM&L), Anonymous Instant Messaging (AIM), etc. One aim
of this test and the according interviews with the subscribed testers was a verification
of the acceptance of LBS’ through mobile users. Service design concepts, privacy,
and interaction patterns on low-level graphics devices have been important guidelines
during this evaluation. FriendZone is a multi-platform approach involving mobile and
static communication nodes. The look-and-feel of integrated services stays the same
across domains. According to [BS04] ’users are able to manage buddy lists by adding
friends, based on their approval, using phone numbers as identifiers. They can then view
their buddies’ enhanced virtual presence, send them textual messages which they receive
instantly, and view their location’. The location information might either be obtained in an
absolute way by using the network’s CellID or as a relative distance to the user, indicated
through special ASCII characters. On 3G devices and on Personal Computers (PCs) with
more capable user interfaces, the buddy list is presented in a Radar-like Graphical Map
including Distances and Compass Directions. A similar, but commercial approach is
Qiro1. With Qiro the own location can be retrieved within a mobile map immediately.
Friends in the near surrounding can be discovered in a similar way through a buddy list
with according distances. Furthermore it is a location-based information and navigation
system to be able to explore the near surrounding including streets, ATMs, shops, etc.
FriendZone and Qiro are not directly related to mobile blogging, but the LBS-based
community- and the multi-domain aspect allow a comparision with the TMBlog approach.

1https://www.myqiro.de/web/

https://www.myqiro.de/web/

7. Related Work and Evaluation 131

7.2. Commercial Approaches

• Lifeblog

Lifeblog is a free commercial tool developed by Nokia. The software is shipped with
N-Series handsets. Lifeblog is a mobile diary which might be used to create and to
combine personal geotagged messages and media data on the phone2. The according
blogs might be transfered on a PC for managing and organizing the entries within a
calendar or an album with one virtual diary page per day. This concept is similar to
MobShare (Media Content Metadata and Mobile Picture Sharing [7.1]). The access to
this user-centric data is however restricted to the content owner exclusively. In this sense
it is no community-based tool. This solution also offers a backup function for the whole
diary. Composed blogs related to the TMBlog project are treated in a similar way on the
mobile platform and posted Blogs might also be accessable by the author exclusively.
Unlike as with the static part of Lifeblog, the web application related to TMBlog is used
for an exploration of posted blogs only, without any backup- or manipulation function in
the prototype software release.

• TrailExplorer

TrailExplorer is an open-source mobile Java approach for recording and viewing trails
on smart phones, which is useful for hikers, bikers, and outdoor activities in general.
The software is a commercial product developed by Tommi Laukkanen3. Trail-related
waypoints are automatically recorded in user-defined time intervals, optionally along with
manual annotations to mark specific places or events. The according geodetic information
is stored within a KML or GPX file. These file formats are used to import tracks in
the Google Earth4 application. This PC software might be used to re-explore a trail in
a highly interactive cartographic environment. Furthermore the created files might be
archived as part of an athletic training program to be able to observe his own performance.
TrailExplorer is a useful software installable on many smart phones. It offers mobile
features like compass bearing, elevation level schemata, distance information, GPS
satellite statistics, etc. Compared to the TMBlog project, TrailExplorer is a personal
tracking tool exclusively, without any communication features. Since the recorded files
can be easily transfered by using standard communication channels, trail-specific data
can be exchanged between different parties in this way.

7.3. Prototype Testing

The TMBlog application as a whole has been tested in different development stages, followed
by several revisions. The final prototype implementation has been proven as reliable distributed
system with a benefit for various scenarios. An exhausting Sightseeing Tour through the city
of Vienna has finished the prototype testing phase. Content quality, performance, and location
accuracy were satisfying and the application handling has been verified as intuitive through
independent test persons.

2http://www.golem.de/0603/43995.html
3http://www.substanceofcode.com/software/mobile-trail-explorer/
4http://earth.google.com/intl/de/

http://www.golem.de/0603/43995.html
http://www.substanceofcode.com/software/mobile-trail-explorer/
http://earth.google.com/intl/de/

7. Related Work and Evaluation 132

• The access to Location Services is straightforward and once integrated, subsequent
location inquiries are possible in intervals of a few seconds, which enables Tight Mashups
of Waypoints on the map. The MIDlet’s Trace Management feature is working fine and
the measured distances are realistic. Depending on the chosen measurement unit, the
perceived waypoint resolution on the device is however restricted to 100 meters/feet.
Determining logical location information through the involved ISP has been proven
as fast, reliable, and as an useful feature for a Rough Awareness of Places during a
journey in foreign areas, like districts within large cities or countryside-subdivisions. The
application has also been tested successfully on the GPS-capable Nokia N95 handset
without deployment or execution problems, like conceived.

• It also came to light that the utilization of SOAP-based Mobile Web Services causes no
considerable usability limitations even when transfering messages with binary attachments
up to 90KB of data. In most of the cases, Remote Connections have been quite stable and
a high availability of 3G networks furthermore resulted in a high data throughput. Due
to this fact, estimated durations for remote invocations like defined as upper boundaries
in figure 5.6, have by far not been exceeded. The web service approach also offers
benefits in terms of WSLA Extensions and easy adaptions of the service interface for
future requirements.

• The representation of posted blogs in a map punctuates the contextual significance of a
specific location. Photos with a maximum dimension of 480 x 360 pixels seem to be a
proper size for loading them within the Map and to mediate impressions of distinct places
and objects, as they are represented within the blogs.

7.4. Problems

During the prototype implementation- and testing phase some problems arose, which led to an
adaption of the software design or to steady usability restriction in the final software revision.

• Since network performance and -responsiveness are varying metrics in the wireless
domain, the design finally considered this fact through a loosely coupling with server
components. Due to this change the application might be used with nearly all its fea-
tures without the need of being logged on. Network Connectivity Problems during the
authentication and posting phases are rare, but occur frequently. In such cases the user is
informed, and a subsequent attempt usually succeeds.

• Device-specific metrics like the unavailability of hardware features caused by Erroneous
Vendor Firmware Updates prevented the MIDlet from successfully accessing the capabili-
ties of the built-in camera on the Nokia N71 handset. Since no firmware downgrades can
be performed by the device owner, the mobile host was not suitable any more to fulfill the
requirments from the prototype analysis phase. As a consequence the handset had to be
exchanged.

• The decision of Utilizing the RMS Data Store on the device to enable an easy deployment
on all KVM handset without the need of installing additional DB systems, also led
to problems. For one thing, accessing and manipulating stored entries is inconvenient
and resource-stressing if many entries are affected, and for another thing the native

7. Related Work and Evaluation 133

implementation does not work well. The problem is that removed entries still occupy the
storage, which might be a problem for less capable handsets. Only rejecting the whole
store frees the hardware resources.

• The J2ME Polish mobile application framework is supporting the development process
in a great measure, but some outstanding bug fixes led to Consistency Problems in the
GUI. More exactly, the display mode for the video control is restricted to the raw canvas,
which results in an unavailability of form-specific widget layouts. The usage of Symbian’s
look-and-feel during the photo capture phase is therefore obligatory.

• Since the GSM cells in Austria and in many other countries are rarely mapped yet
for supporting LBS systems, user-side GPS receivers are essential for public location-
based applications. A Bluetooth-capable receiver has to be situated within a radius of
approximately five meters related to the handset. Within this area a manual discovery
of the device is usually no problem. Based on the environment more attempts might be
necessary, until the receiver can be chosen from the offered application-specific device
list. The establishment of an initial Bluetooth service connection to the GPS unit might
also fail on the first attempt. Depending on the weather conditions, the TTFF value
of the receiver lies between ten seconds and several minutes. Near to windows active
satellite links are also possible within buildings, which however sometimes result in more
inaccurate geodetic data with a derivation up to a few hundred meters.

• Even if the mobile device is strongly seen as an agile terminal for the content aggregation
in a web context, its on-device content management -and waypoint tracking features
resulted actually in a fat client implementation. The drawback of this strategy is that
memory issues have to be considered in a greater measure on the mobile platform. The
prototype testing phase showed that the batch-based processing of ten photo-related blogs
and more causes Resource Problems. This is a steady fact for the prototype, whereby
the processing capabilities heavily depend on the platform’s hardware and the amount
of concurrently running processes. The application however does not freeze, the user
is just informed that the operation can not be performed. Memory problems might be
solved by avoiding caching of blog set by the application, which can be disabled easily
through minor code changes. In such cases more efficient mobile database systems would
probably compensate a degraded responsiveness due to missing caching facilities.

7.5. Comparison

In the following, the introduced related academic and commercial software approaches are
evaluated in terms of their main application fields, actuality, technology, and features. Figure
7.1 gives and overview of these approaches. This evaluation enables a direct comparison
between the mentioned solutions. TMBlog is a mobile and simple to use location-based data
management and asynchron communication tool. Due to these characteristics, the solution
might be interesting for tourists. Tourists are typically in a steady movement, they communicate
with people at home and they document their activities by writing entries in diaries or by taking
pictures of themselves, expressive places, buildings, etc. Software solutions for the tourism
sector are typically related to assisting guides, booking systems, weather forecasts, and further
services [WK99]. The TMBlog solution might be seen as a personal data management tool with
roots in both, the classical Tourism and the virtual Community sector.

7. Related Work and Evaluation 134

Figure 7.1.: Comparison of related Content-Sharing and Location-based Services in the Mobile
Domain. The TMBlog Project refers to the Software Solution, which is designed
and implemented in the Course of this Master’s Thesis. The Table shows related
academic and commercial Approaches within this Application Field.

Next to a high level overview of related solutions, four main Criteria have been defined
to enable a closer focus on implemented features: Security, Context, Communication, and
Usability. These criteria are derived from a study on mobile IT solutions for the tourism sector
at the University of Auckland in 2005. The study is based on location-based services for
travellers and is outlined in section Tourism-related Studies and Deployment [4.1]. Figure 7.2
shows an evaluation of the mentioned approaches according to these critera.

Figure 7.2.: Comparison of the introduced Approaches in Terms of Security, Context, Communi-
cation and Usability.

The main differences and main advantages of TMBlog compared to other approaches is a focus
on Security, Usability, Portability, and a loosely coupled integration of data and functionality
from multiple domains.

135

8. Conclusion

“At the end its only counting what we have done and experienced,
and not what we have desired.”

— Arthur Schnitzler (1862-1931)

This master’s thesis discussed mobile platforms and communication models to efficiently
integrate mobile solutions into distributed software infrastructures by considering physical
environment parameters. As a practical verification of related technologies, a Location-Aware
Mobile Blogging and Tracking Solution named TMBlog has been designed and implemented.
TMBlog offers a social tool within the Tourism Sector with useful features for managing
user-centric mobile geotagged data by considering privacy and usability aspects in a great
measure. Additionally, the TMBlog service is running on a variety of smart phones since the
implementation is based on Java. This solution aims to adapt useful and proved features, as
they are implemented in academic and commercial approches as discussed in chapter Related
Work and Evaluation [7]. Additionally, this mobile solution offers a flexible interaction with
web users and the underlying technical infrastructure, while utilizing mobile frameworks and
supporting multi-domain services.

The prototype might be extendend through a Messaging Framework with bi-directional com-
munication capabilities to receive feedback from a known community over various channels
like SMS, MMS, E-Mail or HTTP. Since the application is mainly seen as a tool for a flexible
aggregation of geotagged content within a web-based context, a processing of blogs through
further services in form of technology-independent XML-Representations offers a vast number
of additional possibilities. On most of the problems mentioned in the section Problems [7.4], the
application developer has hardly no influence, because they are based on mobile infrastructure
implementations and technology-intrinsic limitations. However a suitable application design and
a consideration of platform characteristics and their service environments, enable general rich
mobilized software systems towards application scenarios which may benefit from upcoming
mobile technologies. With the establishment of GPS-capable Devices, the LBS infrastructure
and the revenue from such systems will grow, leading to new XML standards for an automated
processing of Geotagged artifacts which are widely distributed over the world within the wired-
and the wireless domain. Location-related descriptions and object-specific metadata informa-
tion, used for characterizing, organizing, and searching resources will be essential requirements
within the Semantic Web. Additionally, a wide area WiMAX deployment in correlation with
operator networks and sophisticated vendor-supported Service Platforms have the potential
to enable reliable pervasive computing at high data rates. The success of such setups is also
strongly related to moderate Service Fees in the end-user segment. The utilization of various
services in the mobile domain will increase steadily and future setups will include capable
mobile devices acting as providers for data and functionality, manifested as high dynamically
incorporations in All-IP networks.

136

Appendices

137

A. Organizations

“The nice thing about standards is that you have
so many to choose from. Futhermore, if you don’t like
any of them, you can just wait for next year’s model.”

— Andrew S. Tanenbaum

This section describes standardization organizations related to the mobile IT sector. The mobile
value chain is represented by operators, handset manufacturers, chip providers, content providers,
and application and OS developers. To ensure the highest possible interoperability between these
IT groups also in terms of converging the mobile and fixed Internet, standardization bodies are
essential. The following briefly presented organizations have a major impact in the evaluation
of mobile platforms including security and interoperability issues between mobile and static
communication systems by recommending and releasing industry wide technology standards.
The primary work is therefore usually the establishment of openess within the corresponding
market. For this reason a lot of these organizations’ work also concentrates on marketing aspects
including press and conference talks.

A.1. Open Mobile Alliance (OMA)

In the year 2002 the Open Mobile Alliance (OMA) was founded with the purpose to force more
openness within the mobile IT market. The main focus is to bring more insight into the technical
aspects of products from corresponding companies. OMA members are therefore advised to
provide public lists of products including specified OMA mobile services like interoperability
and device capability issues. The so called OMA Technical Plenary supports a deployment
of rich mobile applications and services by delivering certificated technical specifications to
applications and frameworks [OMA07]. Prime objectives of OMA are standardardization efforts
in Mobile Web Browsing (e.g. mobile profiles for XHTML, ECMAScript, WML and CSS),
Data Synchronization, Multimedia Messaging, Web Services, and Digital Rights Management
(DRM) [Mob07].

A.2. Open Mobile Terminal Platform (OMTP)

The operator driven Open Mobile Terminal Platform (OMTP) Alliance was founded in 2004
and aims at standardizing and at recommending guidelines effecting the usability, device
management, and security issues for mobile systems [OMT07]. OMTP for instance publishes
operator recommendations for remote service provisioning as well as for device management,
SIM and VoIP settings.

A. Organizations 138

A.3. World Wide Web Consortium (W3C)

The goal of the World Wide Web Consortium (W3C) is to build and maintain an universal access
to the web, a semantic web, and a web of trust. W3C defines its role in a design and a stan-
dardization leadership to achieve a decentralized machine interaction and processing including
security mechanisms. The consortium is working in the areas World Wide Web (HTML), Data
Modelling (XML family), Web Services (SOAP, WSDL), Security (XML Signature and XML
Encryption), Semantic Web, and Resource Description Framework (RDF) [W3C07]. Many
W3C specifications are the foundation for further interoperability standards, introduced through
organizations with a focus on more concrete aspects, like web services (e.g. OASIS, WS-I, and
Liberty Alliance) [HKI06].

A.4. OASIS

An important player devoted to the development of standards within the e-business area is the
Organization for the Advancement of Structured Information Standards (OASIS). Started with a
focus on SGML the organization broadened its scope to XML and related standards in 1998. The
work is split in so called Technical Commitees (TCs), which are initiated by OASIS members
including formerly independent standard organizations (e.g. LegalXML, PKI, UDDI). TCs are
responsible for industry standards like SOAP Message Security (WS-Security) and Security
Assertion Markup Language (SAML) [HKI06].

A.5. Web Service Interoperability (WS-I)

The Web Service Interoperability (WS-I) tries to ensure web service interoperability across
platforms, applications, and programming languages. Technical working groups are Basic
Profile (SOAP 1.1, WDSL 1.1, UDDI 2.0, SOAP Messages with Attachments), Basic Security
Profile, Requirements Gathering, Sample Applications, Test Tools, and XML Schema Work
Plan. WS-I offers best practice methods, usage guides, service analysis and optimization, and
multi-vendor demonstrations of service interoperability [HKI06].

A.6. Parlay

The parlay consortium consists of Internet service vendors, software developers, leading IT
companies, network providers, etc. An important target is to link IT applications with the
capabilities of the telecommunication systems through feature rich, simple to use and secure
APIs. The resulting specification are base on open standards to support service and solution
providers to utilize mobile operator infrastructures. This strategy should enable IT developers to
access and explore infrastructures of network- and service providers to build open and advanced
B2B and B2C applications [Par08].

A. Organizations 139

A.7. Liberty Alliance

Since 2001 the Liberty Alliance plays a crucial role in enabling distributed identity management
for sensitive services like implemented in business and social applications. Liberty Alliance
therefore covers technology, privacy, and e-business issues. The members consist of government
organizations, IT vendors, system integrators, and end-user companies. The alliance addresses
the demand for identity federation to share identity information across networks and organi-
zational bounderies in a secure way while keeping a suitable service interoperability. This is
a very important topic in every environment to prevent the abuse of personal information by
unauthorized system users. Due to the usage of sensitive services like location and contact
information of the user, a reliable authority based identity management within a mobile infras-
tructure is one of the most important aspects when maintaining a pervasive architecture. The
Liberty Alliance is currently the only open body addressing this issues. The complete specifi-
cation package of Liberty Alliance consists of the major elements Liberty Identity Federation
Framework (ID-FF), Liberty Identity Web Service Framework (ID-WSF), and Liberty Identity
Service Interface Specification (ID-SIS). Nokia’s web service implementation on smart phones
is based on these frameworks by default to ensure a secure communication between distributed
services [HKI06].

140

B. Mobile Platforms

B.1. Platform Security Capabilities

There are several criterias to provide developers access to handset functionality, categorized in
following three capability groups [Hea06]:

1. Basic Capabilities. In order to use this functionality a standard application signing with
Symbian Signed is sufficient.

• LocationServices. Accessing local services and transfer data over the serial port,
USB, IR, and point-to-point Bluetooth profiles short-link connections. Does not
allow IP over routable profiles (e.g. file transfer, data synchronization with PC).

• Location. Accessing data giving the location of the phone (e.g. cell ID).

• NetworkServices. Accessing remote services without restriction on physical
location. This capability controls access to services delivered over GSM, CDMA,
and all IP transport protocols including IP over Bluetooth (e.g. voice calls, Internet
services).

• ReadUserData. Accessing confidential user data for reading (e.g. contacts, short
messages).

• UserEnvironment. Accessing live data about the users environment (e.g. audio,
picture, video, and biometric recording).

• WriteUserData. Accessing confidential user data for writing (e.g. deleting user
data, storing captured media).

2. Extended Capabilities. In order to use this functionality a standard application sign-
ing with Symbian Signed and several detailed declarative statements by the submitter,
explaining why a distinct API must be accessed, is needed.

• PowerMgmt. Ability to kill processes and to control power management (e.g. standby,
shutdown).

• ProtServ. Allows a server process to register with a protected name.

• ReadDeviceData. Accessing confidential network operator, mobile phone manu-
facturer, and device settings for reading.

B. Mobile Platforms 141

• SurroundingsDD. Accessing distinct logical device drivers for getting input infor-
mation about the surroundings of the phone.

• SwEvent. Ability to simulate UI events and to catch them from any program.

• TrustedUI. Creating trusted UI sessions and displaying dialogs in a secure UI
environment.

• WriteDeviceData. Accessing confidential settings to control the behavior of the
device (e.g. device lock, system time).

3. Phone Manufacturer Approved Capabilities. In order to use this functionality an
authorization of a phone manufacturer or channel certifier is needed.

• AllFiles. Read access to the entire file system and write access to private processes’
directories.

• CommDD. Direct access to all device drivers used for communication (e.g. Wi-Fi,
USB, serial port).

• DiskAdmin. Access to the file system administration operations (e.g. mounting file
systems)

• Drm. Access to Digital Rights Managment (DRM) protected content.

• MultimediaDD. Access to multimedia device drivers and APIs.

• NetworkControl. Ability to modify and access network protocol controls.

• Tcb. Write access to executables and shared read-only resources.

142

C. Service-Oriented Computing

C.1. Standard OSGi Services

1. Framework Services

• Permission Admin. Service for manipulation bundles by setting permissions.

• Conditional Permission Admin. Extends Permission Admin and allows an
operator to set permission only when a distinct conditions are true or false. For
instance, a mobile operator permitts operations when the mobile device is in a
specific region.

• Package Admin. A service that provides information of the current package sharing
state and allows a refresh by recalculating its dependencies.

• Start Level. Defines the order of initializing and starting packages by assigning
packages to start levels.

• URL Handlers. Service to dynamically contribute new scheme or content handlers
to the URL classes.

2. System Services

• Log Service. Receiving and dispatching log entries from and to bundles that
subscribed to this information.

• Event Admin. A flexible publish and subscribe mechanism for synchronous and
asynchronous events.

• Device Access. A plug-and-play service to match a driver to a new device and
automatically download a bundle including an implementation of this driver.

• User Admin. A service supporting an user database for authentication and autho-
rization purposes.

• IO Connector. Extends the Generic Connection Framework by new and alternative
protocol schemes.

• Preference Service. Access a hierachical database of properties, similar to the
Java Preference Class.

C. Service-Oriented Computing 143

• Device Management Tree. Provides an abstract tree with device specific manage-
ment information similar to the OMA DM protocol.

• Deployment Admin. Deploys multiple artifacts from one file.

• Application Admin. A model whereby applications can get registered and acti-
vated on demand.

• Monitoring. Service for providing performance data of bundles.

• Foreign Applications. This service offers non-OSGi applications like MIDlets
an API to access OSGi specific functions.

3. Protocol Services

• HTTP Service. A servlet runner, used by bundles to provide functions accessable
over an HTTP server, which can be smoothly updated with new servlets.

• UPnP. Maps devices within an Universial Plug-and-Play (UPnP) network to the
Service Registry and OSGi services to an UPnP network as well.

4. Miscellaneous Services

• Wire Admin. Alternatively to the rules defined by bundles to find collaborative
services, this service connects different services together according to the producer-
consumer service that interchange objects over the wire.

• XML Parser. Allows a bundle to locate a parser with desired properties and com-
partibility to JAXP.

5. Programming Services. Services to better address to additional complexity origined
from the dynamic OSGi platform behavior.

• Service Tracker. A class that tracks the services for an application.

• Declarative Services. Uses the OSGi subsystem Component Service Runtime
to read XML declarations from a bundle with service registration and dependencies,
to initialize a it only if really needed. This reduces the footprint of a device.

144

D. MIDlet Core APIs

D.1. Controller

• void startApp()
Native method. Called by the platform to initialize the application. Contains the function-
ality fo the startup sequence.

• void pauseApp()
Native method. Called by the platform’s higher priority processes to interrupt the MIDlet
execution. On some devices this function is not working like expected, whereas a
workaround would be necessary. In the prototype this fact is not considered.

• void destroyApp()
Native method. Called by the platform if the MIDlet has to be destroyed. Used to perform
terminating tasks.

• Display getDisplay()
Returns the application’s display.

• Displayable getScreen(int scrID)
Returns a screen indicated by an application-specific ID.

• void show(Displayable screen)
Used to display a specific screen on the device.

• void show(String title, InfoCollector collector)
Used to display the title and the platform capability values of the category specified
through the InfoCollector.

• void show(int type, String text, CommandListener controlScreen,
Displayable nextScreen)
Used to display an alert of a specific type with the content text. The specified
controlScreen is listening for the associated alert commands and the nextScreen
parameter defines the next visible screen after the alert has been closed.

• void loadResources()
Used to load all application-specific resources at startup.

• void confirmExit()
Used to confirm the user whether the exit operation should be performed.

D. MIDlet Core APIs 145

• void exit()
Used to exit the application.

• boolean storeSettings(Settings settings)
Used to store the system settings in the RMS. Returns true if the operation was successful.

• Settings retrieveSettings()
Used to retrieve the system settings from the RMS. Returns the Settings.

• Settings getSettings()
Used to get the cached system settings. Returns the cached Settings.

• void storeAsDefaultBTD(int context, BluetoothDevice device)
Used to store a discovered bluetooth device as the default device in the RMS within the
given context. The context might be GPS or BTGateway.

• boolean storeCredentials(Credentials credentials)
Used to store the user credentials in the RMS. Returns true if the operation was success-
ful.

• Credentials retrieveCredentials()
Used to retrieve the user’s credentials from the RMS. Returns the Credentials.

• Credentials getCredentials()
Used to get the cached user’s credentials. Returns the cached Credentials.

• void authenticateUser(Credentials credentials)
Used to authenticate an user with the given credentials at a remote server.

• void setLoggedOn(boolean logged)
Used to indicate whether the user is logged on a remote node.

• boolean isLoggedOn()
Returns true if the user is logged on a remote host.

• void createBlog(int type)
Used to create a blog of a specific type.

• void loadStoredBlogs()
Used to load all stored blogs to be browsable through an application screen.

• void loadPostedBlogs()
Used to load all posted blogs to be browsable through an application screen.

• void postBlog(Payload payload)
Used to post a blog with the given Payload as its content to a remote node.

• void setPosted(boolean posted)
Used to indicate whether the currently processed blog was posted successfully.

D. MIDlet Core APIs 146

• void retrieveLocation()
Used to initialize the location determination process.

• void setCurrentGPSLocation(GPSLocation location)
Used to set the last received device location.

• GPSLocation getCurrentGPSLocation()
Returns the last received device location.

• Statistics getStatistics()
Returns the current statistics of the application.

• void loadStatistics()
Used to load the statistics to be displayed through an application screen.

• Monitor getMonitor()
Returns the current traffic monitor of the application.

• void loadMonitor()
Used to load the traffic monitor to be displayed through an application screen.

D.2. Blog Manager

• void init()
Used to initialize related subsystems.

• void showBlogs(int browserType)
Used to start a blog browser instance in order to access blogs as list items. The
browserType parameter indicates the browser type.

• void cleanUp()
Used to perform clean-up tasks after a blog creation process has been terminated.

• void cleanUpPost()
Used to perform clean-up tasks after a blog posting process has been terminated.

• void cancel()
Used to cancel active processes.

• class BlogStoreTerminator()
Inner Class. Extends TimerTask. Used to schedule the termination of the blog storing
process in case of memory problems.

• void createBlog(GPSLocation location, int type)
Used to start the blog creation process. The location parameter declares a blog as a
waypoint and type parameter indicates the blog type.

D. MIDlet Core APIs 147

• void createPhoto()
Used to start the photo capture process.

• void createMessage()
Used to start the message capture process.

• void prepareBlog()
Used to composite all related blog content (location, photo, message).

• void storeBlog()
Used to start the blog storing process.

• void serializeBlog()
Used to serialize the blog content as byte array.

• void storeSerializedBlog()
Used to store the serialized blog content as record.

• void postBlogs(Stack stackOfBlogs)
Used to start a batch-based blog posting process. The stackOfBlogs parameter contains
the related blogs.

• void postBlog(Blog blog)
Used to start a single blog posting process. The blog parameter refers the related blog.

• void updatePostedBlogs()
Used to perform updating tasks after a blog has been posted successfully.

• int getBlogSize(Blog blog)
Returns the size of a specific blog in bytes.

• int getNextJourneyBlogNumber()
Returns the next unique number for a journey blog.

• int getJourneyBlogCount()
Returns the count of currently stored journey blogs.

• int getWaypointCount()
Returns the count of currently stored waypoints.

D.3. Photo Manager

• void init()
Used to perform initial tasks.

• void initVideoSettings()
Used to grab the photo parameters from the configuration file.

D. MIDlet Core APIs 148

• void mandatePhoto()
Used to mandate the photo manager to create a photo. Starts all necessary components
for the capturing process.

• void showVideo()
Used to open a new video screen.

• void startCamera()
Used to start the camera resource.

• void stopCamera()
Used to stop the camera resource.

• void takeSnapshot()
Used to capture a photo of the current scene according the defined photo parameters.

• void discardPlayer()
Used to discard the capture process. Releases also related hardware resources.

• void finished()
Used to perform subsequent tasks as soon as the capture process has been finished.

• void restart()
Used to re-initialize the capture process.

• void cleanUp()
Used to perform clean-up tasks to prevent memory problems.

• void cancel()
Used to cancel an active photo capture process.

• class PhotoFormatter()
Inner Class. Used to convert the captured raw data into a suitable form.

• Photo PhotoFormatter.prepare()
Returns a Photo object with content-specific attributes.

• Image PhotoFormatter.getPreview(byte[] rawData)
Returns a formatted Image instance of the given captured rawData for preview purposes.
The image is scaled to the device screen dimension.

• Image PhotoFormatter.getThumbnail(Image image)
Returns a formatted Image instance of the given image for thumbnail preview purposes.
The thumbnail is automatically scaled to the prefered device list item dimension.

• void PhotoFormatter.cleanUp()
Used to perform clean-up tasks to prevent memory problems.

D. MIDlet Core APIs 149

D.4. Trace Manager

• void trackWaypoint(long timestamp, GPSLocation location)
Used to add a new waypoint to the trace. The timestamp parameter refers to a distinct
journey blog. The location parameter refers to the location data for the waypoint.

• Waypoint getPredecessor()
Returns the predecessor of the current processing waypoint within the trace.

• int getWaypointIndex(long timestamp)
Returns the trace index of the given waypoint. The parameter timestamp refers to the
waypoint.

• Waypoint getWaypoint(long timestamp)
Returns the waypoint with the given timestamp.

• boolean removeWaypoint(long timestamp)
Used to remove the given waypoint from the trace. The timestamp parameter refers to
the waypoint. Returns true if the operation has been successful.

• String[] getWaypointInformation(long timestamp)
Returns the temporal and spatial information to the given waypoint’s predecessor as a
formatted string array. The timestamp parameter refers to the waypoint.

• boolean removeTrace()
Used to remove the current trace. Returns true if the operation has been successful.

• void resolveTrace()
Used to resolve all waypoints within the trace to logical location information within a
threaded environment. This method accesses the Geonames web service to perform this
task.

• boolean isResolvedTrace()
Returns true if all waypoints of the trace have been resolved.

• String getJourneyDistance()
Returns the current journey distance as formatted string.

• String getJourneyDuration()
Returns the current journey duration as formatted string.

• int getJourneyWaypointCount()
Returns the count of journey blogs which are related to a waypoint.

D. MIDlet Core APIs 150

D.5. Record Manager

• RecordStore openRecordStore(String storeName)
Used to open the specified record store. The storeName parameter refers to the store
store. Returns the desired RecordStore instance.

• boolean addRecord(RecordStore store, byte[] record)
Use to add a new record to the specified store. The store parameter refers to the record
store. The record parameter refers to the record data. Returns true if the operation has
been successful.

• Stack getRecords(RecordStore store, RecordFilter filter,
RecordComparator comparator)
Used to get a specified set of records from the given store. The store parameter refers to
the store. The filter parameter refers to the customized record filter which is applied on
the stored records. The comparator parameter refers to an optional record comparator.
Returns the desired Stack of records.

• boolean updateRecords(RecordStore store, byte[] record, RecordFilter
filter)
Used to update a specified set of records in the given store. The store parameter refers
to the store. The record parameter refers to the new record data. The filter parameter
refers to the customized record filter which is applied on the stored records. Returns true
if the operation has been succesful.

• int countRecords(int storeType, int blogType)
Used to get the count of record of the specified store type and blog type. The storeType
parameter refers to the store type. The blogType parameter refers to the blog type.
Returns the count of records1.

• int countRecords(RecordStore store)
Used to get the count of record of the specified store. The store parameter refers to the
record store. Returns the count of records.

• int removeRecords(RecordStore store, RecordFilter filter)
Used to remove records from the given store. The store parameter refers to the store.
The filter parameter refers to the customized record filter which is applied on the stored
records. Returns the count of records which have been removed successfully.

• boolean closeRecordStore(RecordStore store)
Used to close the specified record store. The store parameter refers to the record store.
Returns true if the operation has been successful.

• boolean setCredentials(Credentials credentials)
Used to store the user’s credentials. The credentials parameter refers to the credentials.
Returns true it the operation has been successful.

1The store type may refer to a store containing local blogs are a store containing remote blogs. The blog type may
refer to blogs containing a Message- or a Photo-related content

D. MIDlet Core APIs 151

• Credentials getCredentials()
Returns the stored user’s credentials.

• boolean removeCredentials()
Used to remove the user’s credentials from the system. Returns true if the operation has
been successful.

• boolean setSettings(Settings settings)
Used to store the system settings. The settings parameter refers to the system settings.
Returns true it the operation has been successful.

• Settings getSettings()
Returns the stored system settings.

• boolean setBlog(int storeType, int blogType, Stack recordSet)
Used to store a set of blogs. The storeType parameter refers to the store type. The
blogType parameter refers to the blog type. The recordStack parameter refers to a set
of serialized blogs. Returns true if the operation has been successful.

• Stack getBlog(int storeType, int blogType, int quality,
RMSBlogSelector filter)
Used to get a specified set of blogs. The storeType parameter refers to the store
type. The blogType parameter refers to the blog type. The quality parameter refers
to the desired blog quality2. The filter parameter is an instance of a blog-specific
RecordFilter class which is used to define query conditions. Returns a set of serialized
blogs.

• int removeBlog(int storeType, int blogType, RMSBlogSelector filter)
Used to remove a specified set of blogs. The storeType parameter refers to the store type.
The blogType parameter refers to the blog type. The filter parameter is an instance of
a blog-specific RecordFilter class which is used to define query conditions. Returns
the count of serialized blogs which have been removed successfully.

• boolean setWaypoint(Waypoint waypoint, RMSWaypointSelector filter)
Used to store or update a specific waypoint. The waypoint parameter refers to the
waypoint. The filter parameter is an instance of a waypoint-specific RecordFilter
class which is used to define query conditions. If the filter parameter equals null, a new
waypoint is stored, otherwise the related waypoint will be updated. Returns true if the
operation has been successful.

• Vector getWaypoint(RMSWaypointSelector filter)
Used to get a specified set of waypoints. The filter parameter is an instance of a
waypoint-specific RecordFilter class which is used to define query conditions. Returns
a set of waypoints.

• int removeWaypoint(RMSWaypointSelector filter)
Used to remove a specified waypoint. The filter parameter is an instance of a waypoint-
specific RecordFilter class which is used to define query conditions. Returns the count
of waypoints which have been removed successfully.

2The parameter may refer to a thumbnail or a full version of photo-related blogs.

D. MIDlet Core APIs 152

D.6. Blog Browser

• void init()
Used to perform initial tasks.

• void browseBlogs()
Used to initiate the browsing capabilities and to display the visual blog list.

• void createItem(Blog blog, Integer listIndex)
Used to create a new browser list item. The blog parameter refers to the represented blog.
The listIndex refers to the position within the list.

• void refreshScreen()
Used to refresh the blog list and commands according to the current system state.

• void refreshItemInfo()
Used to refresh the blog item info according to the current system settings.

• int getBlogIndex()
Returns the currently selected index in the blog list.

• void loadBlogs()
Used to load available blog sets into the browser.

• void updateBlogs()
Used to update a loaded blog set.

• Stack getBlogSet(int blogType, RMSBlogSelector selector)
Used to retrieve a set of blogs from a specific blog type. The blogType parameter refers
to the desired blog type. The selector parameter is an instance of a blog-specific
RecordFilter class which is used to define query conditions. Returns a set of blogs.

• void openSelectedBlog()
Used to open the currently selected blog to view its details.

• void deleteSelectedBlog()
Used to delete the currently selected blog from the system.

• void deleteBlog(Blog blog)
Used to delete a specific blog from the system. The blog parameter refers to the blog.

• void deleteJourney()
Used to delete the current journey from the the system.

• void postSelectedBlog()
Used to transfer the content of the currently selected blog to a remote network node.

• void postJourney()
Used to transfer the content of the current journey-related blogs to a remote network node.

D. MIDlet Core APIs 153

• void resolveJourney()
Used to resolve the journey-related waypoints to logical location information.

• void clear()
Used to remove all blogs from the system.

D.7. Bluetooth Manager

• void init()
Used to perform initial tasks.

• void searchEnvironment()
Used to initialize a bluetooth discovery process.

• void inquiryComplete(int discType
Native Method. Called by the system if an inqiry is complete. The discType parameter
refers to the type of request that was completed.

• void scheduleTimeoutNotifier()
Used to schedule a timer for automatically aborting an active discovery process after a
specific amount of time has been elapsed.

• void inqiryTimeoutNotifier()
Inner class. Extends TimerTask. Used to abort an active discovery process.

• void searchDevices()
Used to start a bluetooth device discovery process.

• void deviceDiscovered(RemoteDevice remoteDevice, DeviceClass
deviceClass)
Native method. Called by the system if a device is discovered. The remoteDevice
parameter refers to the discovered device. The deviceClass parameter refers to the
discovered device class.

• boolean isDeviceSearchComplete()
Returns true if the device discovery process in complete.

• void setSelectedDevice(BluetoothDevice device)
Used to set the device selected by the user.

• Vector getDevices()
Returns a set of discovered devices.

• void cancelDeviceSearch()
Used to cancel an active device discovery process.

• void searchServices(RemoteDevice remoteDevice)
Used to start a bluetooth service discovery process. The remoteDevice parameter refers

D. MIDlet Core APIs 154

to the device which offers services.

• void serviceDiscovered(int transID, ServiceRecord[] servRecord)
Native method. Called by the system if a service is discovered. The transID parameter
refers to the transaction ID of the service search that is posting the result. The servRecord
parameter refers to a list of services found during the search request.

• void serviceSearchCompleted(int transID, int respCode)
Native method. Called by the system if a service discovery process is complete. The
transID parameter refers to the transaction ID of the service search that is posting the
result. The respCode parameter refers to the response code that indicates the status of
the transaction.

• Vector getServices()
Returns a set of discovered services.

• void cancelServiceSearch()
Used to cancel an active service discovery process.

D.8. Location Manager

• void retrieveLocation()
Used to start the according location service access components.

• boolean isValidDevice(BluetoothDevice device)
Used to determine if the specified device is a valid GPS receiver. Returns true if the
device parameter refers to a valid device.

• void finished()
Used to perform final tasks.

• void cleanUp()
Used to perform clean-up tasks to prevent memory problems.

• void retrieveLocationFromBTD()
Used to send a location query to a previous discovered and selected GPS-enabled Blue-
tooth Device (BTD).

• void retrieveLocationFromGLP()
Used to send a location query to a Generic Location Provider (GLP). The discovery and
the access to this providers is managed through the underlying system.

• void onLocationInquiryCompleteBTD(boolean available)
Used as a callback function after a location inquiry to the BTD has been completed. The
location provider’s functionality runs within a threaded environment. The available
parameter indicates if valid location data is available.

• void onLocationInquiryCompleteGLP(boolean available)

D. MIDlet Core APIs 155

Used as a callback function after a location inquiry to the GLP has been completed. The
location provider’s functionality runs within a threaded environment. The available
parameter indicates if valid location data is available.

D.9. Gateway WSC

• GatewayServiceConnection getServiceConnection()
Returns an instance of the GatewayServiceConnection class in order to deliver
endpoint-specific connection attributes.

• void onAuthenticationRequestComplete(String info)
Used as a callback function to indicate a completed user-related request. The optional
info parameter refers to response-specific information.

• void onAuthenticationRequestError(String error)
Used as a callback function to indicate an error for an user-related request. The optional
error parameter refers to occured error.

• void onPostRequestComplete(String info)
Used as a callback function to indicate a completed blog-related request. The optional
info parameter refers to response-specific information.

• void onPostRequestError(String error)
Used as a callback function to indicate an error for a blog-related request. The optional
error parameter refers to occured error.

• void logon()
Used for a server logon, in order to establish a session by verifying the user’s credentials
and the according mobile device.

• void logout()
Used for a server logout, in order the close a session.

• void post(Payload payload)
Used to transfer the content of a blog to the server. The payload parameter refers to the
content of the blog.

D.10. Geonames WSC

• HttpConnection getServiceConnection(String url)
Returns the an instance of the HttpConnection class in order to be able to send service
requests. The url parameter refers to the string representation of the service endpoint.

• void verifyConnection(HttpConnection connection)
Used to verify the service reachability. The connection parameter refers to the service
connection.

D. MIDlet Core APIs 156

• Toponym getToponym()
Returns an instance of the Toponym class in order to deliver waypoint-specific location
identifiers.

• void cleanUp()
Used to perform clean-up tasks to prevent memory problems.

• void findCountryName(Waypoint waypoint)
Used to determine the country name related to the specified waypoint. The waypoint
parameter refers to the waypoint.

• void findNearbyPlaceName(Waypoint waypoint)
Used to determine the nearby place name related to the specified waypoint. The waypoint
parameter refers to the waypoint.

• void findSRTMElevation(Waypoint waypoint)
Used to determine the SRTM-based elevation value related to the specified waypoint. The
waypoint parameter refers to the waypoint.

• void parseResponseCountry(InputStream is)
Used to parse the server’s XML-based response in order the determine the country name.
The is parameter refers to the response data stream.

• void parseResponseNearbyPlace(InputStream is)
Used to parse the server’s XML-based response in order the determine the nearby place
name. The is parameter refers to the response data stream.

• void parseResponseElevation(InputStream is)
Used to parse the server’s XML-based response in order the determine the elevation value.
The is parameter refers to the response data stream.

157

List of Figures

1.1. Schemata of the Prototype with all its Components, distributed among different
Domains. A location-based Service and a Blogging Service are accessable
through the Mobile Client. The Mobile- as well as the Static Platform Compo-
nents are executed within a Java-based Environment. 3

3.1. JavaME Platform Architecture . 13
3.2. Workflow of signing MIDlets with the Java Verified Program 18
3.3. Mobile Platforms and their Association with SDKs 20
3.4. Relationship between GSM Network Components 30
3.5. High-level UMTS Architecture . 32
3.6. Connecting to Middleware Buses through Adapters 42
3.7. Artifacts of an SOA . 46
3.8. Mobilized Service Infrastructure including multiple Services from different

Domains. A Bluetooth-connected GPS Receiver might be used to determine
the geodetic Location of the User. The Location is a useful Parameter for
Context-aware Services. 49

3.9. High-level Architecture of the Nokia Web Service Framework (NWSF) 51
3.10. Location Determination within an Operator’s Network Infrastructure 58
3.11. Principle of the Positioning Determination with Satellites 60
3.12. Positioning Techniques for the Mobile End-User in Dependency of the received

Accuracy and the Environment of the Mobile Device 63
3.13. Schematic Infrastructure of an Assisted GPS System 64
3.14. Definition of the Longitude and Latitude for the WSG84 Earth Reference System 65

4.1. High-level Overview of the Blogging Application’s Infrastructure. Multiple
transfer Channels provide a flexible Interaction with the Server and Backend
Systems, and the Community respectively. 68

4.2. UML User Case Diagram for User Interactions in the Mobile Client Domain:
Application and Content Management . 70

4.3. UML User Case Diagram for User Interactions in the Mobile Client Domain:
Application Configuration and Content Generation 71

4.4. Flow Control Diagram for Creating a Blog in the Mobile Client Domain 79
4.5. Flow Control Diagram for Accessing the Blog Set Manipulation Capabilities in

the Mobile Client Domain . 80
4.6. UML User Case Diagram for User Interactions in the Web Client Domain . . . 84
4.7. High-level Overview of the Blogging Application’s Communication Models. The

Data Exchange between the Clients and the Application Servers is based on
XML-structured Messages. This Strategy supports a technology-independent
Payload Handling. 86

5.1. High-level Overview of the Blogging Application’s Architecture. 87
5.2. Mobile Application Architecture with a high-level Focus on involved Subsystems 88
5.3. Mobile Application Architecture with a Focus on the Core Logic 90

List of Figures 158

5.4. Web Application- and Blogging Service Architecture 95
5.5. UML Sequence Diagram for Retrieving a Location Datum and its logical Loca-

tion Information . 100
5.6. UML Sequence Diagram for Concurrently Mobile- and Web Client Sessions

including the Server’s Blog near Real-Time Updating Mechanism 101
5.7. UML Deployment Diagram of the Blogging Application 102

6.1. UML Class Diagram of Location Service Consumer- and Service Connection
Components in the Mobile Client Domain . 108

6.2. UML Class Diagram of the Location Resolution Service Consumer in the Mobile
Client Domain . 110

6.3. UML Class Diagram of Gateway Service Consumer- and Service Connection
Components in the Mobile Client Domain . 112

6.4. UML Class Diagram of Gateway Service Connection Components in the Mobile
Client Domain - Service Interface and Service Stub 116

6.5. UML Class Diagram of Content Generation Management Components in the
Mobile Client Domain . 117

6.6. UML Class Diagram of Content Access Management Components in the Server-
and Backend Systems Domain . 119

6.7. Screenshots of the Mobile Client - The Application Startup Process loads the
Components as well as the stored Blogs (left). The Login Screen verifies the User
Input before Credentials are allowed to be submitted (center). The Application’s
Main Menu is used to initiate Tasks (right). 124

6.8. Screenshots of the Mobile Client - J2ME Polish specific Tabbed Forms for a
user-friendly System Preference Browsing and Setting, categorized into different
logical Domains. 124

6.9. Screenshots of the Mobile Client - The System’s Security-related Capability
Feature confirms the User during the Location Determination Process since the
Appliation is not Signed (left). Exploration of stored Waypoint-related Journey
Blogs. The List Items represent generated Blogs and refer to their Content as
well as to their spatial and temporal Relationship among each other (center).
Several Operation can be performed on stored Blogs (right) 125

6.10. Screenshots of the Mobile Client - J2ME Polish specific Tabbed Forms for a
categorized Content-Browsing within an opened Photo Blog (left). Exploration
of logical Location Information within an opened Blog (center). Journey- and
Blog Statistics are used as a Tracking und Content Management Feature (right). 125

6.11. Screenshots of the Mobile Client - Exploration of the Blogging History. A
remaining lightweight Version of the Blog also enables an Exploration of the
Blog’s Content. This List can be cleared anytime (left). The Traffic Monitor
shows the Network Utilization since a specific Date (center). A Logout Opera-
tion is performed as far as an User Authentication has been performed on the
Server (right). 126

6.12. A Nokia N71 handset has been used in the Prototype Testing Phase. An external
GNS 5843 Bluetooth GPS Receiver enabled an accurate Determination of the
User’s geodetic Location. 126

6.13. Screenshot of the Web Client - An opened Photo-related Blog is shown within
the Map together with the Time of Creation, an optional Message, and the
Journey to which the Blog belongs. The Interface also offers Information about
the Waypoint and the Content of the Blog. 127

List of Figures 159

6.14. Screenshot of the Web Client - An opened Photo-related Blog shown at a higher
Zoom Level as well as in Full Size. The Photo Dimension for this Instance is
240 x 160 Pixels. Depending on the mobile User’s preferences, a maximum
Dimension of 480 x 320 Pixels is possible. 127

6.15. Screenshot of the Web Client - Registration Form with the Struts Action Errors.
Next to the specification of the User’s Credentials, a 12-digit Device ID is required.128

7.1. Comparison of related Content-Sharing and Location-based Services in the
Mobile Domain. The TMBlog Project refers to the Software Solution, which
is designed and implemented in the Course of this Master’s Thesis. The Table
shows related academic and commercial Approaches within this Application
Field. 134

7.2. Comparison of the introduced Approaches in Terms of Security, Context, Com-
munication and Usability. 134

160

List of Tables

3.1. NMEA 0183 RMC Sentence Example - List of Sentence Fields and their Description 62

4.1. Available User Preference Settings in the Mobile Client Domain 72
4.2. Blog Item Attributes for Stored Blogs in the Mobile Client Domain 74
4.3. Fundamental Blog Attributes in the Mobile Client Domain 75
4.4. Location Service-related Blog Attributes in the Mobile Client Domain 75
4.5. Blog Location Information in the Mobile Client Domain 76
4.6. Blog Item Attributes for Posted Blogs in the Mobile Client Domain 78
4.7. Textual Representation of Blog Attributes in the Web Client Domain 85

5.1. Data Components in the Mobile Client Domain 93
5.2. Screen Components in the Mobile Client Domain 93
5.3. Utility Components in the Mobile Client Domain 94
5.4. Minimum Set of Attributes for a web-based Waypoint Representation 99
5.5. Full Set of Attributes for a web-based Blog Representation 99

161

Listings

6.1. build.xml - MIDP: Mobile Client - J2ME Polish Ant Task 103
6.2. server.xml - Tomcat: Web Application - HTTP/HTTPS/JDBC Connection

Configurations . 105
6.3. web.xml - Tomcat: Web Application - Servlet and Security Configurations . . . 105
6.4. struts-config.xml - Tomcat: Web Application - Struts Configuration 106
6.5. web.xml - Axis2: Blogging Service - Security Configurations 107
6.6. LocationManager.java - MIDP: Mobile Client - Connection Thread for a

Location Retrival with a pre-selected BT-GPS Receiver 109
6.7. GLPServiceConnection.java - MIDP: Mobile Client - Connection Thread

for a Location Retrival with the Location API 109
6.8. GeonamesWSC.java - MIDP: Mobile Client - Geonames Web Service Invocation

for the Determination of the nearest populated Place 111
6.9. Instances of XML-Messages for the Transfer of resolved geodetic Data between

the Geonames Web Service and the Mobile Clients 111
6.10. GatewayServiceConnection.java - MIDP: Mobile Client - Connection

Thread for the Remote User Authentication through the according Service
Stub. 112

6.11. Gateway.java - Axis2: Blogging Service - Mobile User Authentication and
Blog Reconstruction . 113

6.12. wsdl.xml - Axis2: Blogging Service - WSDL Type and Service Definition . . . 114
6.13. Instances of the SOAP Envelopes for the Blog Transfer between Mobile Clients

and the Blogging Service . 115
6.14. BlogManager.java - MIDP: Mobile Client - Operations for the Initialization

of the Blog Content Generation Process . 117
6.15. PhotoManager.java - MIDP: Mobile Client - Operations on the buffered Video

Still during the Photo Capture Process . 118
6.16. StrutsActionLogin.java - Tomcat: Web Application - Session Binding

through the Application’s Web Client Authentication Functionality 120
6.17. BlogLoader.java - Tomcat: Web Application - Servlet for processing

Waypoint- and Blog Requests from Web Clients 120
6.18. WaypointManager.js - Requesting and Parsing Waypoints in the Web Client

Domain . 122
6.19. Instances of XML-Messages for the Transfer of Waypoints between the Web

Application and the Web Client . 123
6.20. Instances of XML-Messages for the Transfer of Blogs between the Web Applica-

tion and the Web Client . 123

162

References

[3GA05] The Java Wireless Application Environment.
http://www.3gamericas.org/pdfs/java mar2005.pdf, 2005.

[A-S04] A-SIT - Sicherheitsanalyse - Blackberry mobile data service. http:
//www.cio.gv.at/securenetworks/20040112 StudieBlackberry.pdf,
2004.

[BCE06] William Bamford, Paul Coulton, and Reuben Edwards. Location-based mobile
blogging. Information and Communication Technologies, 2006. ICTTA ’06. 2nd,
1:111–116, 2006.

[Bec08] Rolf Becking. Pragmatismus statt Shangri-La. Java Magazin, (1.08):50–55, 2008.

[Bia08] Marek Bialoglowy. Bluetooth Security Review - Part 1.
http://www.securityfocus.com/infocus/1830, 2008.

[Bla06] ThinPrint - Blackberry Security. http://www.thinprint.de/uploads/File/
TP/White%20Papers/blackberry security de.pdf, 2006.

[BM06] Ulrich Breymann and Heiko Mosemann. JavaME - Anwendungsentwicklung für
Handys, PDA und Co. Carl Hanser Verlag, München, Wien, 2006.

[BS04] Asaf Burak and Taly Sharon. Usage Patterns of FriendZone - Mobile
Location-Based Community Services. ACM International Conference Proceeding
Series, 83:93 – 100, 2004.

[BTQ07] Ubiquitous Mobility - The Enduring Journey. http://www.btquarterly.com,
2007.

[Car] Bruce Carney. Evolving to Symbian OS v9. http://developer.symbian.com/
main/downloads/papers/evolving toV9/evolving toV9.pdf.

[CC07] Sae Sol Choi and Mun-Kee Choi. Consumer’s Privacy Concerns and Willingness to
Provide Personal Information in Location-Based Services. Advanced
Communication Technologies, The 9th International Conference, 3:2196–2199,
2007.

[Cha06] Suresh Chande. Mobile Web Services; University of Helsinki.
http://www.cs.helsinki.fi/u/chande/MobileWebServices.pdf, 2006.

[CJ02] David A. Chappell and Tyler Jewell. Java Web Services. O’Reilly Media,
Sebastopol, CA, 2002.

http://www.3gamericas.org/pdfs/java_mar2005.pdf
http://www.cio.gv.at/securenetworks/20040112_StudieBlackberry.pdf
http://www.cio.gv.at/securenetworks/20040112_StudieBlackberry.pdf
http://www.securityfocus.com/infocus/1830
http://www.thinprint.de/uploads/File/TP/White%20Papers/blackberry_security_de.pdf
http://www.thinprint.de/uploads/File/TP/White%20Papers/blackberry_security_de.pdf
http://www.btquarterly.com
http://developer.symbian.com/main/downloads/papers/evolving_toV9/evolving_toV9.pdf
http://developer.symbian.com/main/downloads/papers/evolving_toV9/evolving_toV9.pdf
http://www.cs.helsinki.fi/u/chande/MobileWebServices.pdf

References 163

[DD06] Christoph Dorn and Schaharam Dustdar. Sharing hierarchical context for mobile
web services.
http://www.forrester.com/Research/Document/0,7211,43340,00.html,
2006.

[dJ04a] Martin de Jode. Getting Started with MIDP Programming on Symbian OS.
http://developer.symbian.com/main/downloads/papers/Midpgetstart/
GetStartMIDPv0 3.pdf, 2004.

[dJ04b] Martin de Jode. Programming the MIDP Lifecycle on Symbian OS.
http://developer.symbian.com/main/downloads/papers/
midplifecycle/midplifecycle.pdf, 2004.

[dJ04c] Martin de Jode. Symbian on Java.
http://media.wiley.com/assets/262/10/SymbianOnJava2 05.pdf, 2004.

[dJT04] Martin de Jode and Colin Turfus. Symbian OS System Definition.
http://developer.symbian.com/main/downloads/papers/SymbOS def/
symbian os sysdef.pdf, 2004.

[FTW07] Thilo Frotscher, Marc Teufel, and Depeng Wang. Java Web Services mit Apache
Axis2. entwickler.press, 2007.

[GAR00] GARMIN - GPS Guide for Beginners.
http://www8.garmin.com/aboutGPS/manual.html, 2000.

[geo08] Geonames Web Service. http://www.geonames.org/, 2008.

[Gla08] Kay Glahn. Der Android auf dem Handy. Java Magazin, (1.08):8, 2008.

[Gut07] Frank Gutmann. Positionsbestimmung in GSM- und UMTS Netzwerken.
http://www.ks.uni-freiburg.de/download/papers/lbsSS07/
PositionGSMandUTMS, 2007.

[Hea06] Craig Heath. Symbian OS Platform Security: Software Development Using the
Symbian OS Security Architecture. John Wiley & Sons, 2006.

[HKI06] Frederick Hirsch, John Kemp, and Jani Ilkka. Mobile Web Services - Architecture
and Implementation. John Wiley & Sons, 2006.

[Hol03a] Heiko Holtkamp. Einführung in Bluetooth; Universität Bielefeld.
http://www.rvs.uni-bielefeld.de/∼heiko/bluetooth/bluetooth.pdf,
2003.

[Hol03b] Clemens Holzmann. Bluetooth in a Nutshell - Context Framework for Mobile User
Applications; Institut für Praktische Informatik - Universität Linz.
http://www.pervasive.jku.at/Research/Publications/ Documents/
Bluetooth-holzmann2003.pdf, 2003.

[Häß01] Achim Häßler. Entwicklung einer GPS-Bibliothek in Java.

http://www.forrester.com/Research/Document/0,7211,43340,00.html
http://developer.symbian.com/main/downloads/papers/Midpgetstart/GetStartMIDPv0_3.pdf
http://developer.symbian.com/main/downloads/papers/Midpgetstart/GetStartMIDPv0_3.pdf
http://developer.symbian.com/main/downloads/papers/midplifecycle/midplifecycle.pdf
http://developer.symbian.com/main/downloads/papers/midplifecycle/midplifecycle.pdf
http://media.wiley.com/assets/262/10/SymbianOnJava2_05.pdf
http://developer.symbian.com/main/downloads/papers/SymbOS_def/symbian_os_sysdef.pdf
http://developer.symbian.com/main/downloads/papers/SymbOS_def/symbian_os_sysdef.pdf
http://www8.garmin.com/aboutGPS/manual.html
http://www.geonames.org/
http://www.ks.uni-freiburg.de/download/papers/lbsSS07/PositionGSMandUTMS
http://www.ks.uni-freiburg.de/download/papers/lbsSS07/PositionGSMandUTMS
http://www.rvs.uni-bielefeld.de/~heiko/bluetooth/bluetooth.pdf
http://www.pervasive.jku.at/Research/Publications/_Documents/Bluetooth-holzmann2003.pdf
http://www.pervasive.jku.at/Research/Publications/_Documents/Bluetooth-holzmann2003.pdf

References 164

http://elib.uni-stuttgart.de/opus/volltexte/2001/813/index.html,
2001.

[ibm06] Designing mobile Web services.
http://www.ibm.com/developerworks/wireless/library/wi-websvc/,
2006.

[Jav04] Java Verified Program - The Java Verified Program and MIDP 2.0 Security.
http://javaverified.com/docs/Technical-Topics-01-2.pdf, 2004.

[Jav07] Java Verified Program. http://javaverified.com, 2007.

[JCP07] Java Community Process - Community Development of Java Technology
Specifications. http://jcp.org/en/introduction/faq, 2007.

[JDvT04] Ivar Jørstad, Schahram Dustdar, and Do van Thanh. Evolution of Mobile Services:
An Analysis of Current Architectures with Prospect to Future. Ubiquitous Mobile
Information and Collaborative Systems, (3272):131–136, 2004.

[KBS05] Dirk Krafzig, Karl Banke, and Dirk Slama. Enterprise SOA - Service Oriented
Architecture, Best Practices. Pearson Education, Inc., New Jersey, 2005.

[KO08] Axel Kossel and Rudi Opitz. Internet handlich - Mobil ins Netz mit dem Handy.
C’T Magazin für Computertechnik, (3.08):92, 2008.

[Leu05] Clara Leung. The Perceived Value of Location-Based Services in New Zealand
Tourism; university of auckland. http://www.tourismresearch.govt.nz/NR/
rdonlyres/AFD13060-2A1E-4372-84C6-1142FD5B7916/22012/
ClaraLeungLBSTourismIndustryReport.pdf, 2005.

[Mob06] Mobile Open Source. http:
//www.funambol.com/blog/capo/2006/11/my-mobile-20-manifesto.html,
2006.

[Mob07] MobEduNet - International Project for Mobile Systems Programming Education.
http://www.mobedu.net/materialbank.php, 2007.

[MS05] Dillip Mohapatra and Suma S.B. Survey Of Location Based Wireless Services.
JCPWC, pages 358–362, 2005.

[New08] Alan Newman. Java Bluetooth Object Exchange. http://developer.symbian.
com/main/downloads/papers/SymbianBluetoothOBEXArticlev1.7.pdf,
2008.

[NME07] National Marine Electronics Association (NMEA) - 0183 Specification.
http://www.nmea.org/pub/0183/index.html, 2007.

[Nok04a] Forum Nokia - Efficient MIDP Programming.
http://sw.nokia.com/id/d307878f-bbd6-415a-af25-bf7fb3efc9d3/
Efficient MIDPProgramming v1 1 en.pdf, 2004.

http://elib.uni-stuttgart.de/opus/volltexte/2001/813/index.html
http://www.ibm.com/developerworks/wireless/library/wi-websvc/
http://javaverified.com/docs/Technical-Topics-01-2.pdf
http://javaverified.com
http://jcp.org/en/introduction/faq
http://www.tourismresearch.govt.nz/NR/rdonlyres/AFD13060-2A1E-4372-84C6-1142FD5B7916/22012/ClaraLeungLBSTourismIndustryReport.pdf
http://www.tourismresearch.govt.nz/NR/rdonlyres/AFD13060-2A1E-4372-84C6-1142FD5B7916/22012/ClaraLeungLBSTourismIndustryReport.pdf
http://www.tourismresearch.govt.nz/NR/rdonlyres/AFD13060-2A1E-4372-84C6-1142FD5B7916/22012/ClaraLeungLBSTourismIndustryReport.pdf
http://www.funambol.com/blog/capo/2006/11/my-mobile-20-manifesto.html
http://www.funambol.com/blog/capo/2006/11/my-mobile-20-manifesto.html
http://www.mobedu.net/materialbank.php
http://developer.symbian.com/main/downloads/papers/SymbianBluetoothOBEXArticlev1.7.pdf
http://developer.symbian.com/main/downloads/papers/SymbianBluetoothOBEXArticlev1.7.pdf
http://www.nmea.org/pub/0183/index.html
http://sw.nokia.com/id/d307878f-bbd6-415a-af25-bf7fb3efc9d3/Efficient_MIDPProgramming_v1_1_en.pdf
http://sw.nokia.com/id/d307878f-bbd6-415a-af25-bf7fb3efc9d3/Efficient_MIDPProgramming_v1_1_en.pdf

References 165

[Nok04b] Forum Nokia - Designing MIDP Applications For Optimization.
http://sw.nokia.com/id/ff51fcc6-edc0-4763-9874-89527700c7ff/
Designing MIDP Applications For Optimization v1 0 en.pdf, 2004.

[Nok05] Forum Nokia - Getting Started with Security.
http://sw.nokia.com/id/2fb09348-acd0-45c1-971f-ccdb626f4218/
Getting Started With Security v1 0 en.pdf, 2005.

[Nok06] Nokia Forum- Enterprise: Developing End-to-End Systems.
http://www.seap.forum.nokia.com/info/sw.nokia.com/id/
7fa55fad-1ebc-43ce-ad42-61b96abec010/
Enterprise Developing End-to-End Systems v2 0 en.pdf.html, 2006.

[Nok07a] Nokia Forum - Freeware Opportunities for S60 and Series 80 Developers.
http://sw.nokia.com/id/5f6e9bc6-239a-4c8d-81d4-9256c5de1f9c/
Freeware opp S60 1 1 en.pdf, 2007.

[Nok07b] Forum Nokia - Remote Device Access. http://www.forum.nokia.com/main/
technical services/testing/rda introduction.html, 2007.

[Nok07c] Nokia for Universities. http://www.forum.nokia.com/main/
forum nokia for universities/index.html, 2007.

[OMA07] Open Mobile Alliance. http://www.openmobilealliance.org, 2007.

[OMT07] Open Mobile Terminal Platform Alliance. http://www.omtp.org/, 2007.

[OSG07a] Open Service Gateway Initiative Alliance. http://www.osgi.org/, 2007.

[OSG07b] Open Service Gateway Initiative Alliance - About the OSGi Platform. http:
//www.osgi.org/documents/collateral/OSGiTechnicalWhitePaper.pdf,
2007.

[Par08] The Parlay Group. http://www.parlay.org/en/index.asp, 2008.

[PD04] John Pagonis and Jonathan Dixon. Location Awareness and Location Based
Services - Positioning and Terminology. http://developer.symbian.com/
main/downloads/papers/messaging/LocalAwareness LBS 01.pdf, 2004.

[Per06] Barbara Pernici. Mobile Information Systems - Infrastructure and Design for
Adaptivity and Flexibility. Springer Verlag, Berlin, Heidelberg, 2006.

[Qua03] BREW and J2ME - A complete Wireless Solution for Operators Commited to Java.
http://www.brewpresskit.com/brew/about/brewwhitepaper.pdf, 2003.

[Res02] REST Web Services.
http://www.oio.de/public/xml/rest-webservices.htm, 2002.

[Res08] Building Web Services the REST Way.
http://www.xfront.com/REST-Web-Services.html, 2008.

http://sw.nokia.com/id/ff51fcc6-edc0-4763-9874-89527700c7ff/Designing_MIDP_Applications_For_Optimization_v1_0_en.pdf
http://sw.nokia.com/id/ff51fcc6-edc0-4763-9874-89527700c7ff/Designing_MIDP_Applications_For_Optimization_v1_0_en.pdf
http://sw.nokia.com/id/2fb09348-acd0-45c1-971f-ccdb626f4218/Getting_Started_With_Security_v1_0_en.pdf
http://sw.nokia.com/id/2fb09348-acd0-45c1-971f-ccdb626f4218/Getting_Started_With_Security_v1_0_en.pdf
http://www.seap.forum.nokia.com/info/sw.nokia.com/id/7fa55fad-1ebc-43ce-ad42-61b96abec010/Enterprise_Developing_End-to-End_Systems_v2_0_en.pdf.html
http://www.seap.forum.nokia.com/info/sw.nokia.com/id/7fa55fad-1ebc-43ce-ad42-61b96abec010/Enterprise_Developing_End-to-End_Systems_v2_0_en.pdf.html
http://www.seap.forum.nokia.com/info/sw.nokia.com/id/7fa55fad-1ebc-43ce-ad42-61b96abec010/Enterprise_Developing_End-to-End_Systems_v2_0_en.pdf.html
http://sw.nokia.com/id/5f6e9bc6-239a-4c8d-81d4-9256c5de1f9c/Freeware_opp_S60_1_1_en.pdf
http://sw.nokia.com/id/5f6e9bc6-239a-4c8d-81d4-9256c5de1f9c/Freeware_opp_S60_1_1_en.pdf
http://www.forum.nokia.com/main/technical_services/testing/rda_introduction.html
http://www.forum.nokia.com/main/technical_services/testing/rda_introduction.html
http://www.forum.nokia.com/main/forum_nokia_for_universities/index.html
http://www.forum.nokia.com/main/forum_nokia_for_universities/index.html
http://www.openmobilealliance.org
http://www.omtp.org/
http://www.osgi.org/
http://www.osgi.org/documents/collateral/OSGiTechnicalWhitePaper.pdf
http://www.osgi.org/documents/collateral/OSGiTechnicalWhitePaper.pdf
http://www.parlay.org/en/index.asp
http://developer.symbian.com/main/downloads/papers/messaging/LocalAwareness_LBS_01.pdf
http://developer.symbian.com/main/downloads/papers/messaging/LocalAwareness_LBS_01.pdf
http://www.brewpresskit.com/brew/about/brewwhitepaper.pdf
http://www.oio.de/public/xml/rest-webservices.htm
http://www.xfront.com/REST-Web-Services.html

References 166

[Rot02] Jörg Roth. Mobile Computing - Grundlagen, Technik, Konzepte. Dpunkt Verlag,
Heidelberg, 2002.

[Sam08] Bruce Sams. Single-Sign-On Systeme. Java Magazin, (1.08):15–20, 2008.

[Sar04] Risto Sarvas. Media Content Metadata and Mobile Picture Sharing.
http://www.seco.tkk.fi/events/2004/2004-09-02-web-intelligence/
papers/sarvas WebIntelligence2versio.pdf, 2004.

[Sch04] Klaus-Dieter Schmatz. Java 2 Micro Edition - Entwicklung mobiler Anwendungen
mit CLDC and MIDP. Dpunkt Verlag, Heidelberg, 2004.

[Sil07] Chris Silva. Forrester Research - Mobile Evolution: Moving Toward An
All-Wireless Enterprise.
http://www.forrester.com/Research/Document/0,7211,43340,00.html,
2007.

[Sur07] GPS TTFF and Startup Modes. http://www.survey-lab.com/, 2007.

[Sym] What Java Developers need to know about MIDP on Symbian OS.
http://developer.symbian.com/main/downloads/papers/midpjava/
WhatJavaDevelopersNeedToKnow 1.0.pdf.

[Sym03] Why is a different Operating System needed?
http://www.symbian.com/files/rx/file6383.pdf, 2003.

[Sym05] Symbian OS: Overview To Networking v.1.0. http://www.forum.nokia.com/
info/sw.nokia.com/id/c4536832-3dd0-45af-94be-1c4289cc3003/
Symbian OS Overview To Networking v1 0 en.pdf.html, 2005.

[Sym07a] Symbian OS. http://developer.symbian.com, 2007.

[Sym07b] Creating the Mass Market for Symbian OS.
http://www.symbian.com/files/rx/file6384.pdf, 2007.

[Sym07c] Symbian Developer Network - P.I.P.S.
http://developer.symbian.com/wiki/display/oe/P.I.P.S.+Home, 2007.

[Tay05] Mayank Tayal. Location Services in the GSM and UMTS Networks.
http://ieeexplore.ieee.org/xpl/freeabs all.jsp?arnumber=1431369,
2005.

[TM06] Kee-Leong Tan and S.M.F.D. Syed Mustapha. Measuring Availability of Mobile
Web Services. http://iec.cugb.edu.cn/WorldComp2006/SWW4876.pdf, 2006.

[TvS02] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems - Principles
and Paradigms. Prentice Hall, Inc., New Jersey, 2002.

[Umt07] GPRS-Einführung. http://umtslink.at, 2007.

http://www.seco.tkk.fi/events/2004/2004-09-02-web-intelligence/papers/sarvas_WebIntelligence2versio.pdf
http://www.seco.tkk.fi/events/2004/2004-09-02-web-intelligence/papers/sarvas_WebIntelligence2versio.pdf
http://www.forrester.com/Research/Document/0,7211,43340,00.html
http://www.survey-lab.com/
http://developer.symbian.com/main/downloads/papers/midpjava/WhatJavaDevelopersNeedToKnow_1.0.pdf
http://developer.symbian.com/main/downloads/papers/midpjava/WhatJavaDevelopersNeedToKnow_1.0.pdf
http://www.symbian.com/files/rx/file6383.pdf
http://www.forum.nokia.com/info/sw.nokia.com/id/c4536832-3dd0-45af-94be-1c4289cc3003/Symbian_OS_Overview_To_Networking_v1_0_en.pdf.html
http://www.forum.nokia.com/info/sw.nokia.com/id/c4536832-3dd0-45af-94be-1c4289cc3003/Symbian_OS_Overview_To_Networking_v1_0_en.pdf.html
http://www.forum.nokia.com/info/sw.nokia.com/id/c4536832-3dd0-45af-94be-1c4289cc3003/Symbian_OS_Overview_To_Networking_v1_0_en.pdf.html
http://developer.symbian.com
http://www.symbian.com/files/rx/file6384.pdf
http://developer.symbian.com/wiki/display/oe/P.I.P.S.+Home
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1431369
http://iec.cugb.edu.cn/WorldComp2006/SWW4876.pdf
http://umtslink.at

References 167

[Vir05] Robert Virkus. J2ME Polish: Open Source Wireless Java Tool Suite. APress Verlag,
2005.

[W3C07] World Wide Web Consortium (W3C). http://www.w3c.org, 2007.

[WAP02] WAP Forum - WAP 2.0 Technical White Paper.
http://www.wapforum.org/what/WAPWhite Paper1.pdf, 2002.

[Weß06] Matthias Weßendorf. Web Services & mobile Clients - SOAP, WSDL, UDDI, J2ME,
MIDlets, WAP & JSF. W3L Verlag, Bochum, 2006.

[WK99] Hannes Werthner and Stefan Klein. Information Technology and Tourism - A
Challenging Relationship. Springer Verlag, Wien, New York, 1999.

http://www.w3c.org
http://www.wapforum.org/what/WAPWhite_Paper1.pdf

	1 Introduction
	1.1 Presentation of the Problem
	1.2 Motivation
	1.3 Outline

	2 Background
	2.1 Mobile Information Technology Market
	2.2 Tourism and Information Technology
	2.3 Blogging and Social Aspects
	2.3.1 World Live Web
	2.3.2 Mobile Blogging

	2.4 Location Awareness
	2.4.1 Location-based Services
	2.4.2 Location-based Privacy
	2.4.3 Intentions of Users

	2.5 Ubiquitous Mobility
	2.5.1 Degree of Mobility
	2.5.2 Pervasive Computing
	2.5.3 Mobile Internet

	2.6 Service-Oriented Communication

	3 Analysis of Related Technologies
	3.1 Mobile Platforms
	3.1.1 Java Micro Edition Platform
	3.1.1.1 Architecture
	3.1.1.2 Mobile Java Interoperability
	3.1.1.3 Provisioning

	3.1.2 Symbian OS Platform
	3.1.2.1 UI Platforms
	3.1.2.2 Development Environments
	3.1.2.3 Introduction of Version 9.0
	3.1.2.4 Native Security Concepts
	3.1.2.5 Java Security Concepts
	3.1.2.6 Deployment
	3.1.2.7 JVM Support

	3.1.3 Alternative Platforms
	3.1.3.1 Symbian Extensions
	3.1.3.2 Linux
	3.1.3.3 BREW
	3.1.3.4 BlackBerry

	3.2 Mobile Software Development
	3.2.1 Code Efficiency
	3.2.1.1 Application Design
	3.2.1.2 Execution Speed
	3.2.1.3 Network Connections
	3.2.1.4 Application Size
	3.2.1.5 Memory Consumption
	3.2.1.6 Application Testing

	3.2.2 Frameworks and Tools
	3.2.2.1 J2ME Polish
	3.2.2.2 Enterprise Integration

	3.3 Wireless Networking
	3.3.1 Cellular Networks
	3.3.1.1 GSM
	3.3.1.2 GSM Extensions
	3.3.1.3 UMTS

	3.3.2 Symbian Communication Infrastructure
	3.3.3 Generic Connectivity Framework
	3.3.3.1 HTTP Support
	3.3.3.2 Low Level Network Support

	3.3.4 Bluetooth
	3.3.4.1 Working Principle
	3.3.4.2 Protocol Stack
	3.3.4.3 Service Implementation
	3.3.4.4 Security

	3.4 Service-Oriented Computing
	3.4.1 Infrastructures
	3.4.1.1 Enterprise Services
	3.4.1.2 Mobilized Services

	3.4.2 Evolution of the Service Concept
	3.4.2.1 Programming Paradigms
	3.4.2.2 Distributed Computing
	3.4.2.3 Business Computing

	3.4.3 Payload Communication Strategies
	3.4.3.1 REST
	3.4.3.2 XML-RPC
	3.4.3.3 SOAP

	3.4.4 SOA Analysis and Design
	3.4.5 SOA Implementation and Interface Issues
	3.4.5.1 Approaches
	3.4.5.2 Java Web Service Support

	3.4.6 Mobile Web Services
	3.4.6.1 Infrastructure
	3.4.6.2 Frameworks
	3.4.6.3 Service Environments
	3.4.6.4 Payload Communication Constraints
	3.4.6.5 Service Availability

	3.4.7 Java Service Platform
	3.4.7.1 Domains
	3.4.7.2 Key Features
	3.4.7.3 Security
	3.4.7.4 Java Application Server Models
	3.4.7.5 Dynamic Platform Behaviour

	3.5 Location-based Infrastructures
	3.5.1 Location-based Services
	3.5.1.1 Service Components
	3.5.1.2 Service Architecture
	3.5.1.3 Protocols
	3.5.1.4 Programming Interface

	3.5.2 Satellite-based Positioning Systems
	3.5.2.1 Positioning Technique
	3.5.2.2 Overlayed Systems
	3.5.2.3 NMEA Protocol

	3.5.3 Network-based and Hybrid Positioning Systems
	3.5.3.1 Positioning Techniques
	3.5.3.2 Assisted GPS

	3.5.4 Positioning Models
	3.5.5 WGS84 Datum

	4 Requirements
	4.1 Tourism-related Studies and Deployment
	4.1.1 Perceived Value of LBS
	4.1.2 Application Scenarios

	4.2 Application Infrastructure
	4.3 Functional Requirements
	4.3.1 Mobile Client Domain
	4.3.1.1 System
	4.3.1.2 Security
	4.3.1.3 Content
	4.3.1.4 Location
	4.3.1.5 Communication
	4.3.1.6 Flow Control

	4.3.2 Server and Backend Systems Domain
	4.3.2.1 Web Application
	4.3.2.2 Blogging Service
	4.3.2.3 Database System

	4.3.3 Web Client Domain

	4.4 Communication Models

	5 Prototype Design
	5.1 Application Architecture
	5.1.1 Mobile Software Components
	5.1.1.1 Logical Core Components
	5.1.1.2 Peripherial Components

	5.1.2 Static Software Components
	5.1.2.1 Web Components
	5.1.2.2 Web Service Components

	5.2 Inter-Domain Communication
	5.3 Deployment

	6 Prototype Implementation
	6.1 Configuration
	6.2 Service Modules
	6.2.1 Location Service Module
	6.2.2 Location Resolution Service Module
	6.2.3 Gateway Service Module

	6.3 Content Generation Management
	6.4 Content Access Management
	6.5 Interface

	7 Related Work and Evaluation
	7.1 Academic Approaches
	7.2 Commercial Approaches
	7.3 Prototype Testing
	7.4 Problems
	7.5 Comparison

	8 Conclusion
	Appendices
	A Organizations
	A.1 Open Mobile Alliance (OMA)
	A.2 Open Mobile Terminal Platform (OMTP)
	A.3 World Wide Web Consortium (W3C)
	A.4 OASIS
	A.5 Web Service Interoperability (WS-I)
	A.6 Parlay
	A.7 Liberty Alliance

	B Mobile Platforms
	B.1 Platform Security Capabilities

	C Service-Oriented Computing
	C.1 Standard OSGi Services

	D MIDlet Core APIs
	D.1 Controller
	D.2 Blog Manager
	D.3 Photo Manager
	D.4 Trace Manager
	D.5 Record Manager
	D.6 Blog Browser
	D.7 Bluetooth Manager
	D.8 Location Manager
	D.9 Gateway WSC
	D.10 Geonames WSC

	List of Figures
	List of Tables
	Listings
	References

