

MASTERARBEIT

BENCHMARKS

FOR
MECHATRONIC MODELS

Ausgeführt am Institut für Analysis and Scientific Computing,

Mathematical Modelling and Simulation

Technische Universität Wien

unter der Anleitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Felix Breitenecker

durch

Gemma Ferdinand Kaunang

Brigittenauer Lände 224/6331

1200 Vienna

Austria

Wien, 2 July 2008

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

An educated person is one who has learned that information

almost always turns out to be at best incomplete and

very often false, misleading, fictitious, mendacious

 - just dead wrong.

RUSSEL BAKER

My Gratitude to:

Father, Mother, brothers and my girlfriend

Abstract

Before a new product is launched to the market, a company have to test the
product and make sure that the product is ready and presentable, especially
if the product is a problem solving system, such as control system,
automated system or self-learning system. Testing is a highly cost consuming
yet unavoidable activity. Therefore to reduce cost of production, company
will use methods like simulation to test their product.
There are so many simulation softwares in the market which offers different
abilities and advantages. The various choices has makes it even more
difficult for end-users (company) to choose which one is more suitable and
useful for the company. On this thesis Three “comparison problem” based
on electrotechnic will be compared each other by using four simulations
software (Matlab/Simulink, Dymola, Mosilab and SimulationX), with different
approaches to model of the system.
The method used for this research is a literature study to have a deeper
understanding about the behaviour and algorithm of the code from 4
different simulation softwares, the design model of three comparison
problems and simulates these models to find the most suitable plot result.

After a thorough research of these three comparison problems, conclusion
can be made as follow:

- Matlab is the only simulation software which able to simulate all
calculation of matrix.

- Stateflow, stategraph and statechart which can only model the
equation with switching state, the harder the equation is, the
longer time required to simulate the equation.

- Dymola has the most variation type of modelling that needed in
this thesis, the fastest time simulation is by dymola electrical
model to simulate task d in comparison 3 = 0,015s,

- SimulationX took the longest time in simulating task diode C in
comparison 20 = 1307,6718s, Type of designer block in
simulationX is very useful feature for expert user in defining their
code in new element type

- Below are the simulation timing ranking from fastest to slowest
type of modelling:

a. Textual mode
b. Electrical model
c. Hybrid model
d. Stateflow/stategraph/statechart model

Prologue

Praise to the amorously and merciful Lord, because of His strength, love and

affection, this master thesis, titled “Benchmarks for Mechatronic Models”,

can be completed.

In this thesis, writer have tried to compare the simulation result between

three comparison problems by using 4 different simulation softwares, which

are Matlab/Simulink, Dymola, Mosilab and SimulationX with different

approach methods in designing the model of these three comparison

problems.

As there are many people who have generously contributed their time,

knowledge and support during the process of this thesis, I would like to

express my gratitude to:

1. Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Felix Breitenecker, as counsellor of

this thesis, for providing dymola and mosilab software, his help and

support during this research from beginning to the end.

2. Univ.Ass. Dipl.-Ing. Mag.rer.soc.oec. Aman Atri and Nicole Nagele,

for their support helping me with mosilab installation in linux

operating system, also problem during compiling problem in mosilab.

3. Dipl.-Ing. Günther Zauner, for his help in giving me clues, tips and

suggestions about my problem in modelica language, mosilab and

matlab.

4. Andreas Körner, for his help in providing me with the explanation on

comparison 20, electrical model - basics.

5. Jacek Kierzenka and someone with nickname “helper” from matlab

central newsreader, for their help, giving me clue, tips and suggestion

about my problem in matlab.

6. Antje Heimann, Torsten Blochwitz, Matthias Illschner, Ulrich Behnert

and Gerd Kurzbach from ITI Team for providing simulationX software,

license file and their patient and help in answering my endless

questions about simulationX.

i

http://www.asc.tuwien.ac.at/index.php?id=62&L=&persid=142
http://www.asc.tuwien.ac.at/index.php?id=62&L=&persid=100
http://www.asc.tuwien.ac.at/index.php?id=62&L=&persid=90

7. Father, mother and my two brothers at home in Jakarta, Indonesia, for

their continueous support and prayer for me, I am forever greatful.

8. My beloved girlfriend in Singapore, for her help, support, prayer and

for boasting my spirit during this research.

9. To all my friend in Vienna, Austria for their help and support.

10. To anyone who has contributed their effort, time and support for me

during this research, my deepest appreciation.

Eventhough I realize that there are many area in this thesis, which are still

open for further study, I sincerely hope that this research can be used as a

contribution for future academic reference.

Thank you for your time and attention.

Vienna, 2 July 2008

Gemma Ferdinand Kaunang

ii

CONTENT

PROLOGUE .. i

CONTENT .. iii

FIGURE LIST ... viii

TABLE LIST ... xiii

1 INTRODUCTION

1.1 Background .. 1

1.2 Problem’s Formulation ... 2

1.3 Concluded Area ... 2

1.4 Objective.. 3

1.5 Research Plan ... 3

 1.5.1 Study Literature ... 3

 1.5.2 Design and Solutions ... 3

1.6 Writing Methods... 3

2. THEORY

2.1 Matlab .. 5

 2.1.1 The Matlab System... 5

 2.1.2 ODE Solver .. 7

 2.1.2.1 ODE File .. 7

 2.1.2.2 Odeset... 8

 2.1.2.3 Initial Value ODE Problem Solvers.. 9

2.2 Simulink.. 9

 2.2 1 States.. 9

 2.2.1.1 Continuous States .. 11

 2.2.1.2 Discrete States... 12

 2.2.1.4 Modeling Hybrid Systems ... 13

2.3 Stateflow ... 13

 2.3.1 Finite State Machine Concepts... 14

 2.3.2 Statflow Notations... 15

 2.3.2.1 Nongraphical Objects ... 15

 2.3.2.2 Graphical Objects ... 16

iii

2.4 Dymola ... 16

 2.4.1 Architecture of Dymola .. 17

 2.4.2 Basic Operations of Dymola ... 18

2.5 Mosilab... 19

 2.5.1 Mosilab Architecture ... 19

 2.5.2 Mosilab Configurations.. 19

 2.5.3 The Mosilab Development Environment.. 20

2.6 SimulationX .. 21

 2.6.1 Library Bar... 23

 2.6.2 Model View.. 23

3. Comparison 3: Generalized Class-E Amplifier

3.1 Definition.. 24

3.2 Design and Solutions .. 26

 3.2.1 Matlab.. 26

 3.2.2 Simulink ... 29

 3.2.2.1 Hybrid Model .. 29

 3.2.2.2 Stateflow.. 32

 3.2.3 Dymola .. 35

 3.2.3.1 Hybrid Model .. 35

 3.2.3.2 Stategraph Model.. 38

 3.2.3.3 Electrical Model .. 39

 3.2.3.4 Modelica Text Mode.. 40

 3.2.4 Mosilab .. 42

 3.2.4.1 Modelica Text Mode.. 42

 3.2.4.2 StateChart ... 43

 3.2.5 SimulationX.. 44

 3.2.5.1 Hybrid Model .. 44

 3.2.5.2 Electrical Model .. 47

4. Comparison 5: Two State Model

4.1 Definition.. 49

4.2 Design and Solutions .. 50

iv

 4.2.1 Matlab.. 51

 4.2.2 Simulink ... 54

 4.2.2.1 Hybrid Model .. 54

 4.2.2.2 Stateflow.. 58

 4.2.3 Dymola .. 62

 4.2.3.1 Hybrid Model .. 62

 4.2.3.2 Stategraph Model.. 65

 4.2.3.3 Modelica Text Mode.. 67

 4.2.4 Mosilab .. 69

 4.2.4.1 Modelica Text Mode.. 69

 4.2.4.2 StateChart ... 71

 4.2.5 SimulationX.. 73

5. Comparison 20: Electrical model - Basics

5.1 Definition.. 77

5.2 Tasks .. 78

 5.2.1 Steady States.. 78

 5.2.2 Classical Simulation ... 78

 5.2.3 Different Diode Models.. 79

 5.2.4 Influence of Simulation Algorithms .. 80

5.3 Design and Solutions .. 80

 5.3.1 Matlab.. 80

 5.3.1.1 Steady States ... 80

 5.3.1.2 Classical Simulation .. 82

 5.3.1.3 Different Diode Models ... 84

 5.3.1.4 Influence of Simulation Algorithms.. 85

 5.3.2 Simulink ... 87

 5.3.2.1 Hybrid Model .. 87

 5.3.2.1 Steady States ... 87

 5.3.2.2 Classical Simulation... 90

 5.2.2.3 Different Diode Models ... 93

 5.2.2.4 Influence of Simulation Algorithms.. 94

v

 5.3.2.2 Stateflow.. 94

 5.3.2.2.1 Classical Simulation.. 95

 5.3.3 Dymola .. 96

 5.3.3.1 Hybrid Model .. 96

 5.3.3.1.1 Steady States... 96

 5.3.3.1.2 Classical Simulation.. 98

 5.3.3.1.3 Different Diode Models... 101

 5.3.3.1.4 Influence of Simulation Algorithms 102

 5.3.3.2 Stategraph Model.. 104

 5.3.3.2.1 Steady States (State C) .. 104

 5.3.3.2.2 Classical Simulation.. 105

 5.3.3.2.3 Different Diode Models... 107

 5.3.3.3 Electrical Model .. 108

 5.3.3.3.1 Steady States... 108

 5.3.3.3.2 Classical Simulation.. 109

 5.3.3.3.3 Different Diode Models... 110

 5.3.3.3.4 Influence of Simulation Algorithms 112

 5.3.3.4 Modelica Text Mode.. 113

 5.3.3.4.1 Steady States... 113

 5.3.3.4.2 Classical Simulation.. 114

 5.3.3.4.3 Different Diode Models... 114

 5.3.3.4.4 Influence of Simulation Algorithms 115

 5.3.4 Mosilab .. 116

 5.3.4.1 Modelica Text Mode.. 116

 5.3.4.1.1 Steady States... 116

 5.3.4.1.2 Classical Simulation.. 118

 5.3.4.1.3 Different Diode Models... 119

 5.3.4.1.4 Influence of Simulation Algorithms 121

 5.3.4.2 StateChart ... 121

 5.3.4.2.1 Steady States... 122

 5.3.4.2.2 Classical Simulation.. 123

vi

 5.3.4.2.3 Different Diode Models... 124

 5.3.5 SimulationX.. 124

 5.3.5.1 Hybrid Model .. 124

 5.3.5.1.1 Steady States... 124

 5.3.5.1.2 Classical Simulation.. 127

 5.3.5.1.3 Different Diode Models... 128

 5.3.5.1.4 Influence of Simulation Algorithms 131

 5.3.5.2 Electrical Model .. 132

 5.3.5.2.1 Steady States... 132

 5.3.5.2.2 Classical Simulation.. 133

 5.3.5.2.3 Different Diode Models... 134

 5.3.5.2.4 Influence of Simulation Algorithms 135

6. Comparison

6.1 Table of Result .. 137

 6.1.1 Comparison 3 .. 137

 6.1.2 Comparison 5 .. 138

 6.1.3 Comparison 20... 140

6.2 Advantage and Disadvantage... 143

 6.2.1 Matlab.. 143

 6.2.2 Simulink ... 144

 6.2.3 Dymola .. 144

 6.2.4 Mosilab .. 145

 6.2.5 SimulationX.. 146

7. Conclusion and Suggestion

7.1 Conclusion ... 148

7.2 Suggestion.. 150

REFERENCE .. 152

APPENDIX

Source Code .. 154

vii

FIGURE LIST

Figure 2.1 Screenshot of Matlab... 6

Figure 2.2 Screenshot of Simulink .. 10

Figure 2.3 Block have States... 11

Figure 2.4 Screenshot of Stateflow ... 14

Figure 2.5 Graphical objects in Stateflow... 15

Figure 2.6 Architecture of Dymola ... 17

Figure 2.7 Screenshot of Dymola ... 17

Figure 2.8 Simulation Mode of Dymola .. 18

Figure 2.9 Data Flow within Stateflow... 19

Figure 2.10 Screenshot of Prototypical Implementation of the MOSILAB-

IDE ... 21

Figure 2.11 Screenshot of SimulationX ... 22

Figure 2.12 Components in SimulationX .. 23

Figure 3.1 Class-E Amplifier .. 24

Figure 3.2 Function of time R(t) .. 25

Figure 3.3 Block Diagram of Comparison 3.. 26

Figure 3.4 The result for variable current switch resistor IR(t) and

output voltage VL(matlab) .. 28

Figure 3.5 The phase plane curves dx3/dt=VL3 as a function of x3 =

IL3 for TRF (matlab) .. 29

Figure 3.6 Model of the system using Simulink .. 30

Figure 3.7 The result for variable current switch resistor IR(t) and

output voltage VL (simulink)... 31

Figure 3.8 The phase plane curves dx3/dt=VL3 as a function of x3 =

IL3 for TRF (simulink).. 31

Figure 3.9 Stateflow of the system .. 33

Figure 3.10 Model of the system using Simulink (stateflow)..................... 33

Figure 3.11 The result for variable current switch resistor IR(t) and

output voltage VL (simulink stateflow)...................................... 34

Figure 3.12 Trapezoid Source .. 35

viii

Figure 3.13 The Model of the system using Dymola 35

Figure 3.14 The result for variable current switch resistor IR(t) and

output voltage VL (dymola) .. 36

Figure 3.15 The phase plane curves dx3/dt=VL3 as a function of x3 =

IL3 for TRF (dymola) ... 37

Figure 3.16 Trigerred Trapezoid.. 38

Figure 3.17 Part Controller of the System (stategraph) 38

Figure 3.18 The Model of the system using Dymola stategraph mode 38

Figure 3.19 Electrical Model for Comparison 3.. 40

Figure 3.20 The result for variable current switch resistor IR(t) and

output voltage VL (mosilab) ... 42

Figure 3.21 The model of the system (simulationX).................................. 45

Figure 3.22 The result for variable current switch resistor IR(t) and

output voltage VL (simulationX) ... 46

Figure 3.23 The phase plane curves dx3/dt=VL3 as a function of x3 =

IL3 for TRF (simulationX) .. 46

Figure 3.24. The model of the system (simulationX electrical)................. 48

Figure 4.1 Block Diagram Comparison 5.. 50

Figure 4.2 Plot y1(matlab).. 52

Figure 4.3 Plot y1 (task d) (matlab) .. 53

Figure 4.4 The model of the system (simulink)... 55

Figure 4.5 Plot y1(simulink) ... 56

Figure 4.6 Plot y1 (task d) (simulink).. 57

Figure 4.7 Stateflow block of the system (comparison 5) 58

Figure 4.8 The model of the system (simulink stateflow).......................... 59

Figure 4.9 Plot y1(simulink stateflow) .. 60

Figure 4.10 Plot y1 (task d) (simulink stateflow)....................................... 61

Figure 4.11 The model of the system (dymola) .. 62

Figure 4.12 Plot y1(dymola) ... 63

Figure 4.13 Plot y1 (task d) (dymola) ... 64

ix

Figure 4.14 Part Controller and Switching State of the System (dymola

stategraph)... 66

Figure 4.15 The model of the system (dymola stategraph) 66

Figure 4.16 Plot y1(mosilab) .. 69

Figure 4.17 Plot y1 (task d) (mosilab)... 70

Figure 4.18 The model of the system (simulationX).................................. 73

Figure 4.19 Plot y1(simulationX) .. 74

Figure 4.20 Plot y1 (task d) (simulationX)... 76

Figure 5.1 Electrical circuit comparison 20.. 77

Figure 5.2 Steady States ... 78

Figure 5.3 Time Dependent S1... 79

Figure 5.4 Plot x1 and x2 steady states (matlab) 82

Figure 5.5 Plot x1 and x2 classical simulation (matlab) 83

Figure 5.6 Plot x1 and x2 different diode models (matlab) 85

Figure 5.7 Plot x1 and x2 influence of simulation algorithms (matlab) 86

Figure 5.8 Model of the system steady states (simulink) 88

Figure 5.9 Plot x1 and x2 steady states (simulink).................................... 89

Figure 5.10 Model of the system classical simulation (simulink) 90

Figure 5.11 Plot x1 and x2 classical simulation (simulink)........................ 90

Figure 5.12 Model of the system different diode models (simulink) 91

Figure 5.13 Plot x1 and x2 different diode models (simulink) 92

Figure 5.14 Model of the system influence of simulation algorithms

(simulink) .. 93

Figure 5.15 Plot x1 and x2 influence of simulation algorithms (simulink). 94

Figure 5.16 Model of the system classical simulation (simulink stateflow)95

Figure 5.17 Plot x1 and x2 classical simulation (simulink stateflow)......... 96

Figure 5.18 Model of the system steady states (dymola).......................... 97

Figure 5.19 Plot x1 and x2 steady states (dymola) 98

Figure 5.20 Model of the system classical simulation (dymola)................ 99

Figure 5.21 Plot x1 and x2 classical simulation (dymola) 99

Figure 5.22 Model of the system different diode models (dymola) 100

x

Figure 5.23 Plot x1 and x2 different diode models (dymola).................... 101

Figure 5.24 Model of the system influence of simulation algorithms

(dymola).. 102

Figure 5.25 Plot x1 and x2 influence of simulation algorithms (dymola) .. 103

Figure 5.26 Model of the system steady states (dymola stategraph)........ 104

Figure 5.27 Plot x1 and x2 steady states (dymola stategraph).................. 105

Figure 5.28 Model of the system classical simulation (dymola

stategraph) ... 106

Figure 5.29 Model of the system different diode models (dymola

stategraph) ... 106

Figure 5.30 Plot x1 and x2 different diode models (dymola stategraph).. 108

Figure 5.31 Model of the system steady states (dymola electrical) 109

Figure 5.32 Model of the system classical simulation (dymola electrical) 110

Figure 5.33 Model of the system different diode models (dymola

electrical) .. 111

Figure 5.34 Plot x1 and x2 different diode models (dymola electrical) 111

Figure 5.35 Model of the system influence of simulation algorithms

(dymola electrical)... 112

Figure 5.36 Plot x1 and x2 influence of simulation algorithms (dymola

electrical) .. 112

Figure 5.37 Plot x1 and x2 steady states (mosilab)................................... 117

Figure 5.38 Plot x1 and x2 classical simulation (mosilab)......................... 118

Figure 5.39 Plot x1 and x2 different diode models (mosilab) 120

Figure 5.40 Plot x1 and x2 influence of simulation algorithms (mosilab).. 121

Figure 5.41 Plot x1 and x2 steady states (mosilab statechart) 122

Figure 5.42 Plot x1 and x2 different diode models (mosilab statechart) .. 123

Figure 5.43 Model of the system steady states (simulationX) 125

Figure 5.44 Plot x1 and x2 steady states (simulationX)............................. 126

Figure 5.45 Model of the system classical simulation (simulationX)......... 128

Figure 5.46 Plot x1 and x2 classical simulation (simulationX)................... 128

Figure 5.47 Model of the system different diode models (simulationX) ... 129

xi

Figure 5.48 Plot x1 and x2 different diode models (simulationX)............. 130

Figure 5.49 Model of the system influence of simulation algorithms

(simulationX) ... 131

Figure 5.50 Plot x1 and x2 influence of simulation algorithms

(simulationX) .. 132

Figure 5.51 Model of the system steady states (simulationX electrical) ... 133

Figure 5.52 Model of the system classical simulation (simulationX

electrical) .. 134

Figure 5.53 Plot x1 and x2 classical simulation (simulationX electrical)... 134

Figure 5.54 Model of the system different diode models (simulationX

electrical) .. 135

Figure 5.55 Plot x1 and x2 different diode models (simulationX

electrical) .. 135

Figure 5.56 Model of the system influence of simulation algorithms

(simulationX electrical) ... 136

Figure 5.57 Plot x1 and x2 influence of simulation algorithms

(simulationX electrical) ... 136

xii

TABLE LIST

Table 2-1 List of Solver ... 9

Table 3-1 Eigenvalues of R(t) (matlab) ... 27

Table 3-2 Eigenvalues of R(t) (dymola) .. 36

Table 3-3 Eigenvalues of R(t) (simulationX) ... 45

Table 4-1 The result of time discontinuity and final value y1(5.0) with

vary relative tolerance (matlab) ... 53

Table 4-2 The result of time discontinuity and final value y1(5.0) with

vary relative tolerance (simulink)... 56

Table 4-3 The result of time discontinuity and final value y1(5.0) with

vary relative tolerance (simulink stateflow).............................. 60

Table 4-4 The result of time discontinuity and final value y1(5.0) with

vary relative tolerance (dymola) .. 64

Table 4-5 The result of time discontinuity and final value y1(5.0) with

vary relative tolerance (mosilab) ... 70

Table 4-6 The result of time discontinuity and final value y1(5.0) with

vary relative tolerance (simulationX) 74

Table 6-1 The Result of the simulation software completing the task for

comparison 3 .. 137

Table 6-2 The list of the time needed to simulate the task for

comparison 3 ... 138

Table 6-3 The Result of the simulation software completing the task for

comparison 5 .. 139

Table 6-4 The list of the time needed to simulate the task for

comparison 5 .. 139

Table 6-5 The Result of the simulation software completing the task for

comparison 20 .. 140

Table 6-6 The list of the time needed to simulate the task for

comparison 20.. 142

xiii

1

1.INTRODUCTION

1.1 Background

Before a new product is launched to the market, a company have to test the

product and make sure that the product is ready and presentable, especially

if the product is a problem solving system, such as control system,

automated system or self-learning system. Testing is a highly cost consuming

yet unavoidable activity. Therefore to reduce cost of production, company

will use methods like simulation to test their product.

Simulation is an imitation of some real thing, state of affairs, or process[1].

The act of simulating something generally entails representing certain key

characteristics or behaviours of a selected physical or abstract system.

Simulation is used in many contexts, including the modeling of natural

systems or human systems in order to gain insight into their functioning.

Other contexts include simulation of technology for performance

optimization, safety engineering, testing, training and education. Simulation

proves also cost effective, reducing the cost of the production. One of

simulation that common used is computer simulation.

A computer simulation, a computer model or a computational model is a

computer program, or network of computers, that attempts to simulate an

abstract model of a particular system[2]. Computer simulations have become

a useful part of mathematical modelling of many natural systems in physics

(computational physics), chemistry and biology, human systems in

economics, psychology, and social science and in the process of

engineering new technology, to gain insight into the operation of those

systems, or to observe their behavior.

There are so many simulation softwares in the market which offers different

abilities and advantages. The various choices has makes it even more

difficult for end-users (company) to choose which one is more suitable and

useful for the company. On this thesis Three “comparison problem” based

on electrotechnic will be compared each other by using four simulations

http://en.wikipedia.org/wiki/Scientific_modeling
http://en.wikipedia.org/wiki/Technology
http://en.wikipedia.org/wiki/Safety_engineering
http://en.wikipedia.org/wiki/Experiment
http://en.wikipedia.org/wiki/Training
http://en.wikipedia.org/wiki/Education
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Simulation
http://en.wikipedia.org/wiki/Model_%28abstract%29
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Computational_physics
http://en.wikipedia.org/wiki/Chemistry
http://en.wikipedia.org/wiki/Biology
http://en.wikipedia.org/wiki/Economics
http://en.wikipedia.org/wiki/Psychology
http://en.wikipedia.org/wiki/Social_science
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Technology

2

software (Matlab/Simulink, Dymola, Mosilab and SimulationX), with different

approaches to model of the system.

1.2 Problem’s Formulation

Based on the problem at hand, this thesis will focus on problems as follow:

- Designing and building model using 4 simulation softwares

(Matlab/Simulink, Dymola, Mosilab, SimulationX) with different

approaches for 3 “comparisons problem” based on electrotechnic

method.

- Provide comparison, analysis and conclusion from the above 4

simulation softwares in search for a better solutions based on the

results.

1.3 Concluded Area

Concluded area for designing and building the model of this thesis are as

follow:

- Only 3 comparison problems are being used for this thesis and they are

all based on electrotechnic with non-linear problem. They are

comparison 3, comparison 5 and comparison 20.

- Only 4 Simulation Softwares are being used: Matlab/Simulink, Dymola,

Mosilab and SimulationX.

- Only hybrid model, textual mode, electrical model and statechart

approach are being used for problem solving.

- System Platform is Windows XP for Matlab/Simulink, Dymola and

SimulationX software and Linux UBUNTU for Mosilab.

- The result of the research will be tested on PC Intel Pentium D, 2 x 2,66

GHz and Dell notebook Latitude D630 Intel Centrino Duo.

- Matlab/Simulink version 7.4 R2007a, Dymola version 6.0b, Mosilab

version 3.1, Simulation X version 2.0 are being used.

- All the feature of Matlab/Simulink, Dymola, Mosilab and Simulation will

not be discussed in details, only the features used in this thesis.

1.4 Objective

The objectives of this thesis are:

- To have better understanding on the characteristics, weaknesses and

strengths in each of the 4 simulation softwares analized in this thesis,

within the concluded area.

- As a future reference for academical purpose.

1.5 Research Plan

1.5.1 Study Literature

Literature studies will be done to have better understanding on how to use,

explore and practice 4 simulation softwares used in the thesis, and to

understand the approaching methods to find the solution of the problem.

1.5.2 Design and Solutions

Step by step design of the model with different approach methods and

simulation softwares, simulate the model to get the solutions. Compare all

solutions based on the same approach with different simulation software.

1.6 Writing Method

The writing method and the abstract of each chapter are:

- CHAPTER 1 INTRODUCTION

 Explanation about the background and formulation of the problem,

concluded area, objective and research plan which will be

implemented.

- CHAPTER II THEORY

 Brief discussion about the simulation software, software language,

functions and methods that being used to solve the problem.

- CHAPTER III Comparison 3: Generalized Class-E Amplifier

 Detail discussion about the comparison 3 problem, model design

planning and model solution.

3

4

- CHAPTER IV Comparison 5: Two State Model

 Detail discussion about the comparison 5 problem, model design

planning and model solution.

- CHAPTER V Comparison 20: Electrical Model – Basics

 Detail discussion about the comparison 5 problem, model design

planning and model solution.

- Chapter VI Comparison

 Consist of comparison table and discuss advantage and disadvantage

for each simulation software

- CHAPTER VII CONCLUSION AND SUGGESTION

 Final conclusion and suggestion to improve model development.

5

2. THEORY

2.1 MATLAB

MATLAB is a high-performance language for technical computing. It

integrates computation, visualization, and programming in an easy-to-use

environment where problems and solutions are expressed in familiar

mathematical notation[3]. Typical uses includes:

- Math and computation

- Algorithm development

- Data acquisition

- Modeling, simulation, and prototyping

- Data analysis, exploration, and visualization

- Scientific and engineering graphics

- Application development, including graphical user interface building

MATLAB is an interactive system whose basic data element is an array that

does not require dimensioning. This allows you to solve many technical

computing problems, especially those with matrix and vector formulations,

in a fraction of the time it would take to write a program in a scalar

noninteractive language such as C or Fortran.

The name MATLAB stands for matrix laboratory. MATLAB was originally

written to provide easy access to matrix software developed by the LINPACK

and EISPACK projects. MATLAB has evolved over the years with input from

many users. In university environments, it is the standard instructional tool

for introductory and advanced courses in mathematics, engineering, and

science. In industry, MATLAB is the tool of choice for high-productivity

research, development, and analysis. Screenshot of Matlab is shown in

figure 2.1.

2.1.1 The MATLAB System

The MATLAB system consists of five main parts:

1. Development Environment.

6

This is a set of tools and facilities that will help you to use MATLAB functions

and files. Many of these tools are graphical user interfaces. It includes the

MATLAB desktop and command Window, a command history, an editor and

debugger, and browsers for viewing help, the workspace, files, and the

search path.

Figure 2.1 Screenshot of Matlab

2. The MATLAB Mathematical Function Library.

This is a vast collection of computational algorithms ranging from elementary

functions, like sum, sine, cosine, and complex arithmetic, to more

sophisticated functions such as matrix inverse, matrix eigenvalues, Bessel

functions, and fast Fourier transforms.

3. The MATLAB Language.

This is a high-level matrix/array language with control flow statements,

functions, data structures, input/output, and object-oriented programming

features. It allows both "programming in the small" to rapidly create a quick

7

and dirty throwaway programs, and "programming in the large" to create

large and complex application programs.

4. Graphics.

MATLAB has extensive facilities for displaying vectors and matrices as

graphs, as well as annotating and printing these graphs. It includes high-

level functions for two-dimensional and three-dimensional data visualization,

image processing, animation, and presentation graphics. It also includes

low-level functions that allow you to fully customize the appearance of

graphics as well as to build complete graphical user interfaces on your

MATLAB applications.

5. The MATLAB Application Program Interface (API).

This is a library that allows you to write C and Fortran programs that interact

with MATLAB. It includes facilities for calling routines from MATLAB

(dynamic linking), calling MATLAB as a computational engine, and for

reading and writing MAT-files

2.1.2 ODE SOLVER

2.1.2.1 ODE File

Odefile is not a command or function. It is a help entry that describes how to

create an M-file defining the system of equations to be solved. This definition

is the first step in using any of the MATLAB ODE solvers. We can use the

odefile M-file to define a system of differential equations in one of these

forms

y’ = f(t,y) or M(t,y)y’ = f(t,y)

where: t is a scalar independent variable, typically representing time.

y is a vector of dependent variables.

f is a function of t and y returning a column vector the same length as

y.

M(t,y) is a time-and-state-dependent mass matrix.

8

The ODE file must accept the arguments t and y, although it does not have to

use them. By default, the ODE file must return a column vector the same

length as y.

2.1.2.2 Odeset

Create or alter options structure for input to ordinary differential equation

(ODE) solvers Syntax:

options = odeset('name1',value1,'name2',value2,...)

options = odeset(oldopts,'name1',value1,...)

options = odeset(oldopts,newopts)

odeset

Description:

The odeset function lets you adjust the integration parameters of the ODE

solvers. options = odeset('name1',value1,'name2',value2,...) creates an

integrator options structure in which the named properties have the

specified values. Any unspecified properties have default values. It is

sufficient to type only the leading characters that uniquely identify a

property name. Case is ignored for property names.

options = odeset (oldopts,'name1',value1,...) alters an existing options

structure oldopts.

options = odeset (oldopts,newopts) alters an existing options

structure oldopts by combining it with a new options structure

newopts. Any new options not equal to the empty matrix overwrite

corresponding options in oldopts.

Odeset with no input arguments displays all property names as well as their

possible and default values.

9

2.1.2.3 Initial Value ODE Problem Solvers

These are the initial value problem solvers. The table 2.1 lists the kind of

problem you can solve with each solver, and the method each solver uses.

Table 2.1 List of Solver

2.2 SIM

Simulink

analyze

referred

behavio

circuits,

mechan

Simulati

user cr

graphic

system's

simulate

a specif

2.2.1 S

Typicall

function

called s
Solver Solves These Kinds of Problems Method

ode45 Nonstiff differential equations Runge-Kutta

ode23 Nonstiff differential equations Runge-Kutta

ode113 Nonstiff differential equations Adams

ode15s Stiff differential equations and DAEs NDFs (BDFs)

ode23s Stiff differential equations Rosenbrock

ode23t Moderately stiff differential equations and DAEs Trapezoidal rule

ode23tb Stiff differential equations TR-BDF2

ode15i Fully implicit differential equations BDFs
ULINK

 is a software package that enables us to model, simulate, and

 systems whose outputs change over time. Such systems are often

 to as dynamic systems. Simulink can be used to explore the

r of a wide range of real-world dynamic systems, including electrical

 shock absorbers, braking systems, and many other electrical,

ical, and thermodynamic systems[4].

ng a dynamic system is a two-step process with Simulink. First, a

eates a block diagram, using the Simulink model editor, which

ally depicts time-dependent mathematical relationships among the

 inputs, states, and outputs. The user then commands Simulink to

 the system represented by the model from a specified start time to

ied stop time. The screenshot of Simulink is shown in figure 2.2.

tates

y the current values of some system, and hence model, outputs are

s of the previous values of temporal variables. Such variables are

tates. Computing a model's outputs from a block diagram hence

10

entails saving the value of states at the current time step for use in computing

the outputs at a subsequent time step. Simulink performs this task during

simulation for models that define states.

Figure 2.2 Screenshot of Simulink

Two types of states that can occur in a Simulink model: discrete and

continuous states. A continuous state changes continuously. Examples of

continuous states are the position and speed of a car. A discrete state is an

approximation of a continuous state where the state is updated (recomputed)

using finite (periodic or aperiodic) inte

ould be the position of a car shown on a digital odometer where it is

posed to continuous state. In the limit, as the

rvals. An example of a discrete state

w

updated every second as op

discrete state time interval approaches zero, a discrete state becomes

equivalent to a continuous state.

Blocks implicitly define a model's states. In particular, a block that needs

some or all of its previous outputs to compute its current outputs implicitly

defines a set of states that need to be saved between time steps. Such a

block is said to have states is shown in figure 2.3.

Figure 2.3 Block have states

2.2.1.1 Continuous States

Computing a continuous state entails knowing its rate of change, or

derivative. Since the rate of change of a continuous state typically itself

changes continuously (i.e., is itself a state), computing the value of a

continuous state at the current time step entails integration of its derivative

from the start of a simulation. Thus modeling a continuous state entails

representing the operation of integration and the process of computing the

uous state at the current time step entails

integrating its values from the start of the simulation. The accuracy of

rn depends on the size of the intervals between

time steps. In general, the smaller the time step, the more accurate the

11

state's derivative at each point in time. Simulink block diagrams use

Integrator blocks to indicate integration and a chain of operator blocks

connected to the integrator block to represent the method for computing the

state's derivative. The chain of block's connected to the Integrator's is the

graphical counterpart to an ordinary differential equation (ODE).

In general, excluding simple dynamic systems, analytical methods do not

exist for integrating the states of real-world dynamic systems represented by

ordinary differential equations. Integrating the states requires the use of

numerical methods called ODE solvers. These various methods trade

computational accuracy for computational workload. Simulink comes with

computerized implementations of the most common ODE integration

methods and allows a user to determine which it uses to integrate states

represented by Integrator blocks when simulating a system.

Computing the value of a contin

numerical integration in tu

simulation. Some ODE solvers, called variable time step solvers, can

automatically vary the size of the time step, based on the rate of change of

the state, to achieve a specified level of accuracy over the course of a

simulation. Simulink allows the user to specify the size of the time step in the

case of fixed-step solvers or allow the solver to determine the step size in the

case of variable-step solvers. To minimize the computation workload, the

variable-step solver chooses the largest step size consistent with achieving

an overall level of precision specified by the user for the most rapidly

changing model state. This ensures that all model states are computed to the

e blocks,

s of blocks connected to the inputs of

ver. The fixed-step discrete solver determines a fixed step

12

accuracy specified by the user.

2.2.1.2 Discrete States

Computing a discrete state requires knowing the relationship between the

current time and its value at the time at which it previously changed value.

Simulink refers to this relationship as the state's update function. A discrete

state depends not only on its value at the previous time step but also on the

values of a model's inputs. Modeling a discrete state thus entails modeling

the state's dependency on the systems' inputs at the previous time step.

Simulink block diagrams use specific types of blocks, called discret

to specify update functions and chain

the block's to model the state's dependency on system inputs.

As with continuous states, discrete states set a constraint on the simulation

time step size. Specifically a step size must be chosen that ensure that all the

sample times of the model's states are hit. Simulink assigns this task to a

component of the Simulink system called a discrete solver. Simulink

provides two discrete solvers: a fixed-step discrete solver and a variable-

step discrete sol

size that hits all the sample times of all the model's discrete states, regardless

of whether the states actually change value at the sample time hits. By

contrast, the variable-step discrete solver varies the step size to ensure that

sample time hits occur only at times when the states change value.

2.2.1.3 Modeling Hybrid Systems

A hybrid system is a system that has both discrete and continuous states

Strictly speaking a hybrid model is identified as having continuous and

iscrete sample times from which it follows that the model will have

discrete states. Solving a model of such a system entails

cal design and development tool that works wi

imulink. Stateflow is a suitable environment for modeling logic used to

deled in Simulink.

els the desired behavior. The screenshot of stateflow

is shown in figure 2.4.

13

d

continuous and

choosing a step size that satisfies both the precision constraint on the

continuous state integration and the sample time hit constraint on the

discrete states.

Simulink meets this requirement by passing the next sample time hit as

determined by the discrete solver as an additional constraint on the

continuous solver. The continuous solver must choose a step size that

advances the simulation up to but not beyond the time of the next sample

time hit. The continuous solver can take a time step short of the next sample

time hit to meet its accuracy constraint but it cannot take a step beyond the

next sample time hit even if its accuracy constraint allows it to.

2.3. Stateflow

Stateflow is a graphi th

S

control and supervise a physical plant mo

Stateflow integrates with its Simulink environment to model, simulate, and

analyze your system. Stateflow lets you design and develop deterministic,

supervisory control systems in a graphical environment. It visually models

and simulates complex reactive control to provide clear, concise

descriptions of complex system behavior using finite state machine theory,

flow diagram notations, and state-transition diagrams all in the same

diagram. Stateflow brings system specification and design closer together. It

is easy to create designs, consider various scenarios, and iterate until the

Stateflow diagram mod

2.3.1 Finite State M

tateflow is an example of a finite state machine. A finite state machine is a

achine Concepts

S

representation of an event-driven (reactive) system. In an event-driven

system, the system makes a transition from one state (mode) to another

prescribed state, provided that the condition defining the change is true. For

example, you can use a state machine to represent a car's automatic

transmission. The transmission has a number of operating states: park,

reverse, neutral, drive, and low. As the driver shifts from one position to

another the system makes a transition from one state to another, for example,

from park to reverse.

Figure 2.4 Screenshot of Stateflow

Traditionally, designers used truth tables to represent relationships among

the inputs, outputs, and states of a finite state machine. The resulting table

describes the logic necessary to control the behavior of the system under

study. Another approach to designing event-driven systems is to model the

behavior of the system by describing it in terms of transitions among states.

The state that is active is determined based on the occurrence of events

14

under certain conditions. State-transition diagrams and bubble diagrams are

graphical representations based on this approach.

Figure 2.5 Graphical objects in Stateflow

phical Objects

S

re

1. Event Objects

15

2.3.2 Stateflow Notations

2.3.2.1 Nongra

tateflow defines event, data, and target objects that do not have graphical

presentations in the Stateflow diagram editor.

An event is a Stateflow object that can trigger a whole Stateflow chart or

in its own workspace.

3. Target Objects

 executes a Stateflow model or a Simulink model

hical Object

us

ling methodology based on object orientation and

equa n s to a block

diag nipulation. Other

high h

g models.

l composition.

n - symbolic pre-processing.

model components.

 Open interface to other programs.

• 3D Animation.

• Real-time sim

16

individual actions in a chart. Because Stateflow charts execute by reacting

to events

2. Data Objects

A Stateflow chart stores and retrieves data that it uses to control its

execution. Stateflow data resides

A target is a program that

containing a Stateflow machine.

2.3.2.2 Grap

The name of each graphical object in Stateflow is shown in figure 2.5

2.4 Dymola

Dymola - Dynamic Modeling Laboratory - is suitable for modeling of vario

kinds of physical systems[5]. It supports hierarchical model composition,

libraries of truly reusable components, connectors and composite acasual

connections. Model libraries are available in many engineering domains.

Dymola uses a new mode

tio s[6]. The usual need for manual conversion of equation

ram is removed by the use of automatic formula ma

lig ts of Dymola are:

• Handling of large, complex multi-engineerin

• Faster modeling by graphical mode

• Faster simulatio

• Open for user defined

•

ulation.

Figure 2.6 Architecture of Dymola

Figure 2.7 Screenshot of Dymola

e use

17

2.4.1 Architecture of Dymola

The architecture of the Dymola program is shown in figure 2.6. Dymola has a

powerful graphic editor for composing models. Dymola is based on th

of Modelica models stored on files. Dymola can also import other data and

graphics files. Dymola contains a symbolic translator for Modelica equations

generating C-code for simulation. The C-code can be exported to Simulink

and hardware-in-the-loop platforms.

Dymola has powerful experimentation, plotting and animation features.

cripts can be used to manage experiments and to perform calculations.

Automatic documentation generator is provided.

.4.2 Basic Operations of Dymola

ymola has two kinds of windows: Main window and Library window. The

perates in one of two modes: Modeling and Simulation.

n window is used to compose models and

S

2

D

Main window o

The Modeling mode of the Mai

model components. The Simulation mode is used to make experiment on the

model, plot results and animate the behavior. The Simulation mode also has

a scripting subwindow for automation of experimentation and performing

calculations. The screenshot of dymola is shown in figure 2.7 and simulation

mode of dymola is shown in figure 2.8.

Figure 2.8 Simulation Mode of Dymola

18

2.5 Mosilab

2.5.1 MOSILAB Architecture

The

modelling process with the help of

graph

Figure

definit

model

model

GNU g

repres ernel classes.

GENSIM simulation tool MOSILAB (Modeling and Simulation

Laboratory) includes the simulation kernel (consisting of a model compiler,

a runtime system and a numerical solver framework) and an IDE (Interactive

Development Environment)[7], the interface to the user of the simulation

system. It supports him both in the

ical UML and text editors and during the simulation experiment.

 2.9 shows the data flow within the MOSILABtools: Beside experiment

ions, the models also developed within the IDE are stored as MOSILA

 classes. Together with the MOSILA standard library, these MOSILA

s are compiled to C++ classes by the MOSILA compiler. Using the

cc/g++ compiler, the executable simulator is built from these C++

entations and the simulator k

Figure 2.9 Data Flow within Mosilab

2.5.2 MOSILAB Configurations

MOSILAB can be configured in to act in three modes:

a) The generated simulator is represented by a single, monolithic

C/C++ application. This option has the smallest memory footprint and only

few dependencies on the underlying platform, so it is most useful e.g. for

embedded applications. However, the functionality of w.r.t. dynamic

parameterization at runtime is limited.

19

b) The simulator is represented by a shared object file which can be

dynamically linked to a main program which controls the simulation.

MOSILAB uses the Python language and interpreter

chanism for experiment

 controlled in protocol-based, platformindependent manner, and it

ccording to the structural variability of

the model). This run-time model can be uired via introspection features of

t

o) experiment scripts are able to follow the structural changes over the

mulation run. This way, if special reactions to model

simulation experiment. In the

modelling mode the user can choose between three graphical UMLH-editors

20

(http://www.python.org) as its central me

control. The simulator is loaded as an “extension” into the interpreter,

and “experiment scripts”, written in Python, access the simulator API

via a Python-level interface.

c) The simulator acts as a service. In this mode, the simulator is linked

with appropriate libraries to publish its API via standard TCP/IP-based

protocols such as SOAP in a web or grid services framework (e.g. the

upcoming release 4 of the Globus Toolkit). In this mode, the simulator can

easily be

is easy to deploy multiple (and potentially large numbers of) “simulator

service instances” in a coordinated way in a heterogeneous network or Grid,

for instance to solve an optimization problem. Python-based experiment

control support is available in this mode as well a (Python) client library is

used to talk to thesimulator’s API over the network in this case. The simulator

maintains a run-time representation of the model object hierarchy (as

defined in the source and evolving a

25

 inq

he simulator API, so (using the synchronisation features offered by this API,

to

entire course of a si

structure changes are needed, which cannot be formulated in the model

itself due to their complexity, such reactions can easily be implemented in

the experiment script.

2.5.3 The MOSILAB Development Environment

The MOSILAB Development Environment (MOSILAB-IDE) supports the user

during the modelling process and the

(class diagrams, collaboration diagrams and statecharts) and a text editor.

While the graphical views give the user an intuitive overview about the

structure and the logic of a complex model, the text editor offers the user

features like syntax highlighting for implementing the MOSILA/Modelica

models.

In the experiment mode of the MOSILAB-IDE the user can define the root

model for the simulation experiment, can parameterize model variables and

can choose and configure a suitable numerical solver. Furthermore he can

define a subset of model variables, which should be observed during the

simulation experiment. The observed variables are the basis for different

types of post-processing. Figure 2.10 shows a screenshot of the prototypical

implementation of the MOSILAB-IDE.

Figure 2.10 Screenshot of OSILAB-IDE

2.6 SimulationX

SimulationX is a standard software based on modelica language, for

valuation of the interaction of all components of techni

tion and analyzing of physical effects

 with ready-to-use model libraries for 1D mechanics, 3D multibody systems,

ower transmission, hydraulics, pneumatics, thermodynamics, electrics,

26

21

Prototypical Implementation of the M

cal systems. It is the

universal CAE tool for modeling, simula

–

p

electrical drives, magnetics as well as controls – postprocessing included[8].

Figure 2.11 shows SimulationX screenshot.

SimulationX supports the use of the most convenient way of modeling in each

of the engineering domains - signal blocks in the control domain, circuit

diagrams in the electronic, magnetic and fluid domains, functional sketches

in 1D mechanics, and 3D geometrical structures with visualization and

hanics. animation in 3D mec

Figure 2.11 Screenshot of SimulationX.

The all-domain ITI modeling philosophy opens up new application fields for

real system simulation and analysis including:

• Linear and Rotary Mechanics

• Multibodies

• Hydraulics

• Pneumatics

• Controls

• Electronics

• Magnetics

• Power Transmission

• Electromechanical

• Thermics

• Thermal Fluid

• Thermodynamics

22

23

2.6.1. Library Bar

The library bar offers access to the installed element types. For clarity, the

element types are subdivided into libraries (groups). In the tree view,

element types and libraries are shown according to their hierarchy. The

library view offers access to the element types over symbols that are

administered in folders.

The model view serves for the graphical

2.6.2 Model View

representation of the structure and

the modification of the simulation model. Elements and connections are the

components of a simulation model. Elements have connectors that can link

together via a connection. Connections can be branched arbitrarily; i.e. they

can link more than two connectors.

There are different types of connectors, such as mechanical (linear and

rotary), hydraulic, and electrical connectors, as well as signal inputs and

outputs. Only connectors of the same type can be connected to each other.

Each connector posses with respect to the

se names can be made visible via "Pin Labels"

ses an unambiguous name

corresponding element. The

(menu "View"). Figure 2.12 shows components in SimulationX.

Figure 2.12 Components in SimulationX.

3. Comparison 3: Generalized Class-E Amplifier

s introduced by N.O. Sokal and A.D.

 R.E. Zulinski[10]. They use the following equivalent circuit of a

generalized class-E amplifier as a test example for a procedure to evaluate

steady means of MATLAB. Figure 3.1 shows

Class

3.1 Definition

The basic class-E power amplifier wa

Sokal in their classic paper from 1975[9]. It is a switching-mode amplifier

that operates with zero voltage and zero slope across the switch at switch

turn-off. The actual numerical example is taken from J.C. Mandojana, K.J.

Herman and

 state boundary conditions by

E Amplifier

Figure 3.1 Class-E Amplifier

The comp

VDC = 5 volt, L1 = 79.9E-6 henry, C2 = 17

C4 = 9.66E

The time dependent resistor R(t) models

with an ON-resistance of 0.05 ohm and

extreme ON-resistance of value zer a

pathological system

capacitor with a certain charge is sudd

DC voltage source w

shows func

24

onent values are:

.9E-9 farad, L3 = 232.0E-6 henry,

-9 farad and RL = 52.4 ohm.

 the active device acting as a switch

an OFF-resistance of 5.0E+6 ohm. A

o ohm will of course result in

n

 i.e. the old story of what happens when an ideal

enly short circuited. Furthermore the

ill be short circuited through the ideal coil L1. Figure 3.2

tion of time R(t).

Figure 3.2 Function of time R(t)

The duty ratio is 50% 10E-6 seco 00 kHz). The

rise/fall time is TRF = 1E-15 seconds.

The equations describing the circuit may be the state-equations where

inductor currents and capacito variables. By

off voltage and current laws we get the following differential

d

 = VC2 (the

volta

Note quations demands a topological

analysis of the circuit excluding some inductor currents and capacitor

volta loop of N

capacitors then only N-1 of these may be given an arbitrary initial charge).

hould be performed:

the eigenvalues of the system in the ON-period:

F-period: R(t)=5E+6 ohm.

r the time interval [0, 100E-6] sec

 initial state. Time curves of the state

the current in the switch resistor IR(t) = x2/R(t) and the

ltage VL = x3*RL are wanted.

25

. The period is nds (frequency 1

r voltages are chosen as system

using the Kirchh

equations:

L1*dx1/dt = - x2 + VDC

C2*dx2/ t = + x1 - x2/R(t) - x3

L3*dx3/dt = + x2 - RL*x3 - x4

C4*dx4/dt = + x3

where the variables are as follows: x1 = IL1 (the current of L1), x2

ge of C2), x3 = IL3 (the current of L3) and x4 = VC4 (the voltage of C4).

 that normally the setup of state e

ges as candidates for system variables (e.g if there is a

The following tasks s

a. Calculation of

R(t)=0.05 ohm and in the OF

b. Simulation of the system ove

with the zero-solution as

variables,

output vo

c. A parameter variation study over the time interval [0, 9E-6] sec

olution equal to the final solution at 100E-6 sec from task

(b). The rise/fall time TRF should be varied through the values: 1E-15,

1, 1E-9, 1E-7 sec. The phase plane curves of dx3/dt = VL3 as a

age difference V2-V3 as a function of the

3.2

Bloc

The odel consist of only 2 block diagram: Time dependent

gure 3.3 shows block diagram for

comparison 3.

ock Diagram

.2.1 Matlab

 time dependent resistor matrix A = A(R(t)). The

resis n are built by matlab function-typ

mented as a continuous

fu System Matrix
global VDC L1 C2 L3 C4 RL TRF
A
0 1/
e

with initial s

1E-1

function of x3 = IL3 i.e the volt

current IL3 are wanted. Time curves of the current in the switch

resistor IR(t) = x2/R(t) and the output voltage VL = x3*RL are wanted.

Design and Solutions

k Diagram

design of this m

Resistor and Differential Equation. Fi

TIME
DEPENDENT

R RESISTO
DIFFERENTIAL

EQUATION

26

Figure 3.3 Bl for Comparison 3

3

Design of Model

For design model, using differential equation in state space form dx/dt =

A*x, x R3, A R3*3, with

tivity R(t) and the differential equatio e

m-files. The time-dependent resistivity R(t) was imple

function. In the following these m-file models (A.m, R.m, deq.m)

nction Aout=A(t) %

out=[0 -1/L1 0 0; 1/C2 -1/(C2*R(t)) -1/C2 0;
L3 -RL/L3 -1/L3; 0 0 1/C4 0];

nd

function R_out = R(t) %Time dependent Resistor
global TRF
TRF=1e-15;
k=((5e+6)-(5e-2))/TRF;

t_red=mod(t, (10e-6));
if(0<=t_red)&(t_red<TRF)
 R_out=(5e-2)+k*t_red;
elseif(TRF<=t_red)&(t_red<(5e-6))
 R_out=5e+6;
elseif((5e-6)<=t_red)&(t_red<((5e-6)+TRF))
 R_out=(5e+6)-k*(t_red-(5e-6));
elseif((5e-6)+TRF<=t_red)&(t_red<(10e-6))
 R_out=5e-2;
else
 R_out=-5;
end
function dx=deq(t,x) %Differential equation
global VDC L1 C2 L3 C4 RL TRF
b=[VDC/L1; 0; 0; 0];
dx=(A(t)*x)+b;
end

Solutions

Ta

Using Matlab built function the eigenvalue’s matrix of

 and when R(t) is off = 5e+6 ohm. The

TRF= 1e-15; L1= 79.9e-6; VDC= 5; C2= 17.9e-9;

A(TRF))
(A(0))

It too

Table 3-1 Eigenvalues of R(t) (matlab)

ith the solv

[tsol,xso

here ode2

sk a Calculation of eigenvalues

eig() to determined

the system when R(t) is on = 0.05 ohm

result of eigenvalues is shown in Table 3-1.

global VDC L1 C2 L3 C4 RL TRF

L3= 232e-6; C4= 9.66e-9; RL= 52.4;
R0ff= eig(
ROn= eig

k 0,101523s to simulate the task a

27

Task b Sim

To simulate

w

W

alues R(t) OFF Eigenvalues R(t) ON Eigenv

-54708 +1.0408e+6i -1.1173e+9

-54708 -1.0408e+6i -625.78

-58228 +5.3275e+5i -1.1304e+5 +6.5835e+5i

-58228 -5.3275e+5i -1.1304e+5 -6.5835e+5i
unction ode23s (odesolver)

er form:

l]=ode23s('deq',[0 100e-6],[0;0;0;0]);

3s = ode solver matlab built in function

ulation of the system

 the system, using matlab built in f

 deq = differential equation of the model in form of m-files

[0 100e.6] = simulation time interval

[0;0;0;0] = Initial condition of the model

tsol = time solutions of the model

xsol = variable value solutions of the model

he result for variable current switch resistor IR(t) and output voltage VL is

hown in figure 3.4. It took 4,344246s to simulate the task b.

T

s

Figure 3.4 The result for variable current switch resistor IR(t) and output

voltage VL(matlab)

 Variation Study

l solution given by task b. The time

inte Also using the matlab built in function ode23s in the

sol

('deq',[0 9e-6],[0.26144;0.010869;0.044044;-14.475]);

28

Task c Parameter

The parameter of TRF is varied between 1e-15s, 1e-11s, 1e-9s, 1e-7s. Initia

state for the task c is equal to the fina

l

rval is 0…9e-6s.

ver form:

 [tsol,xsol]=ode23s
x1=xsol(:,1);
x2=xsol(:,2);
x3=xsol(:,3);
x4=xsol(:,4);
VL= x3*RL;
D3= (1/L3)*((x2-VL)-x4);

The phase plane curves dx3/dt=VL3 as a function of x3 = IL3 is shown in

figure 3.5. It took 1.075 s to simulate task c. The four simulations will be

 on PC Intel Pentium D, 2 x 2,66 GHz.

Figure 3.5 The phase plane curves dx3/dt=VL3 as a function of x3 = IL3 for

TRF(matlab):

el

he time dependent resistor is using block clock as a input and built by

block embedded Matlab function R(t):

executed separately

For the complete calculation and simulation, using Matlab/Simulink version

7.4 R2007a

(a)

(b)

(d)

29

(c)

(a). 1e-15s (b). 1e-11s (c) 1e-9s (d) 1e-7s

3.2.2 Simulink

3.2.2.1 Hybrid Mod

Design of Model

T

function R_out = R(t)
persistent TRF
TRF=1e-15;
k=((5e+6)-(5e-2))/TRF;
t_red=mod(t, (10e-6));
if(0<=t_red)&&(t_red<TRF)
 R_out=(5e-2)+k*t_red;
elseif(TRF<=t_red)&&(t_red<(5e-6))
 R_out=5e+6;
elseif((5e-6)<=t_red)&&(t_red<((5e-6)+TRF))
 R_out=(5e+6)-k*(t_red-(5e-6));
elseif((5e-6)+TRF<=t_red)&&(t_red<(10e-6))
 R_out=5e-2;
else
 R_out=-5;
end

block integrator, add/subtract, gain,

user defined block and Mux. Figure 3.6 shows the model of the system using

i

The differential equation part is built by

S mulink.

Figure 3.6 Model of the system using Simulink

of the system

To simulate the system, using variable step as a time step, 0 …100e-6s as

simulation time interval and ode23 (Bogacki-Shampine) as the solver. Under

30

Solutions

Task a Calculation of eigenvalues

Because there is no special function in simulink to calculate the eigenvalue.

Therefore this task can’t be done by simulink.

Task b Simulation

the intial state zero, the result for variable current switch resistor IR(t) and

output voltage VL is shown in figure 3.7. It took 4s to simulate the task b.

Figure 3.7 The result for variable current switch resistor IR(t) and output

voltage VL(simulink)

Figure 3 IL3 for

(a). 1e-15s (b). 1e-11s (c) 1e-9s (d) 1e-7s

Task c Parameter Variation Study

.8 The phase plane curves dx3/dt=VL3 as a function of x3 =

TRF (simulink):

(a) (b)

(d)

31

(c)

The parameter of TRF is varied 1e-15s, 1e-11s, 1e-9s, 1e-7s. Initial state for

the t

 the complete calculation and simulation, using Matlab/Simulink version

7.4 R2007a on PC Intel Pentium D, 2 x 2,66 GHz.

3.2.2.2 Stateflow

Design of Model

The model has 3 parts: controller, time dependent resistor and differential

equation. The time dependent resistor has also 2 parts for state off and on,

using block clock as an input and built by block embedded Matlab function

Roff(t) and Ron(t):

function R_out = Roff(t)
persistent TRF
TRF=1e-15;
k=((5e+6)-(5e-2))/TRF;
t_red=mod(t, (10e-6));

elseif(TRF<=t_red)&&(
 R_out=5e+6;
else
 R_out=5e-2;

TRF=1e-15;

else

Part controller using stateflow mode to control time dependent resistor

tate off and when is state on with outpul signal SGN. Figure

32

ask c is equal to the final solution is given by task b. The time interval is

0…9e-6s. As the result, the phase plane curves dx3/dt=VL3 as a function of

x3 = IL3 is shown in figure 3.8. It took 9,5s to simulate task c. The four

simulations will be executed separately.

For

if(0<=t_red)&&(t_red<TRF)
 R_out=(5e-2)+k*t_red;

t_red<(5e-6))

end

function R_out = Ron(t)
persistent TRF

k=((5e+6)-(5e-2))/TRF;
t_red=mod(t, (10e-6));
if((5e-6)<=t_red)&&(t_red<((5e-6)+TRF))
 R_out=(5e+6)-k*(t_red-(5e-6));
elseif((5e-6)+TRF<=t_red)&&(t_red<(10e-6))
 R_out=5e-2;

 R_out=5e+6;
End

block, when is s

3.9 shows Stateflow mode of the system. The differential equation part is built

, add/subtract, gain, user defined block, switch and Mux. by block integrator

Figure 3.10 shows the model of the system using Stateflow mode.

Figure 3.9 Stateflow mode of the system

(a)

(b)

em

el (

33

Figure 3.10 Model of the syst using Simulink (stateflow)

(a)Main Mod b)Subsystem

Solutions

ulation of the system

ariable step as a time step, 0 …100e-6s

Task b Sim

To simulate the system, using v

as simulation time interval and ode23s (Stiff/Mod. Rosenbrock) as the solver.

Under the intial state zero, the result for variable current switch resistor IR(t)

and output voltage VL is shown in figure 3.11. It took 3s to simulate the task

b.

Figure 3.11 The result for variable current switch resistor IR(t) and output

voltage VL (simulink stateflow)

Task c Parameter Variation Study

The parameter of TRF is varied between 1e-15s, 1e-11s, 1e-9s, 1e-7s. Initial

state for the task c is equal from the final solution is given by task b. The time

terval is 0…9e-6s. As the result, the phase plane curves dx3/dt=VL3 as a

nction of x3 = IL3 is shown in figure 3.8. It took 2s to simulate task c. The

ur simulations will be executed separately.

or the complete calculation and simulation, using Matlab/Simulink version

.4 R2007a on PC Intel Pentium D, 2 x 2,66 GHz.

34

in

fu

fo

F

7

3.2.3. Dymola

.2.3.1 Hybrid Model

esign of Model

he time dependent resistor is built by block Trapezoid source and shown in

gure 3.12. The differential equation part is built by block integrator,

dd/subtract, gain, division and constant. Figure 3.13 shows the model of the

ng Dymola.

3

D

T

fi

a

system usi

Figure 3.12 Trapezoid Source

Figure 3

- Amplitude = 5e+6
- Rising = 1e-15
- Width = 5e-6

- Offset = 5e-2
- Falling = 1e-15
- Period = 10e-6

35

.13 The Model of the system using Dymola

Table 3-2 Eigenvalues of R(t) (dymola)

Solutions

Task a Calculation of eigenvalues

To calculate the eigenvalues of the system when R(t) is on = 0,05 ohm and

when R(t) is off = 5e+6 ohm by using the function “eigenValues” (included in

Modelica standard library 2.2). It t f

took 0,047s to simulate the task b.

ook 0,5s to execute task a. The result o

eigenvalues is shown in Table 3-2.

Task b Simulation of the system

To simulate the system, using Dassl as an algorithm integration, 1000 as

number of intervals, 0…100e-6s as simulation time interval and 1e-4 as a

tolerance integration. Under the intial state zero, the result for variable

current switch resistor IR(t) and output voltage VL is given by figure 3.14. It

Figure 3.14 The result for variable current switch resistor IR(t) and output

voltage VL(dymola)

Eigenvalues R(t) OFF Eigenvalues R(t) ON

-54697.1634644282 +1040801.10427323i -1117317558.64085

-54697.1634644282 -1040801.10427323i -625.800550896034

-58228.2500355719 +532753.338849395i -113038.779297539 +658348.699798618i

-58228.2500355719 -532753.338849395i -113038.779297539 -658348.699798618i

36

Task c Parameter Variation Study

The parameter of TRF is varied between 1e-15s, 1e-11s, 1e-9s, 1e-7s. Initial

esult, The phase plane curves dx3/dt=VL3 as a

function of x3 = IL3 is given by figure 3.15. It took 0,025s to simulate task c.

 separately.

alculation and simulation, using Dymola version 6.0b on

/dt=VL3 as a function of x3 = IL3

 (b). 1e-11s (c) 1e-9s (d) 1e-7s

state for the task c is equal from the final solution is given by task b. The time

interval is 0…9e-6s. As r

The four simulation executed

For the complete c

PC Intel Pentium D, 2 x 2,66 GHz.

Figure 3.15 The phase plane curves dx3

(dymola)

(a). 1e-15s

(a) (b)

(d)

37

(c)

3.2.3.2 Stategraph Model

ependent resistor is built by block triggered trapezoid

and figure 3.16.

Design of Model

The model has 3 parts: Controller, time dependent resistor and differential

equation. The time d

shown by

Figure 3.16 Triggered Trapezoid

Figure 3.17 Part Controller of the system (stategraph)

Figure 3.18 The Model of the system using Dymola stategraph mode

-15
fset = 5e-2

- Falling = 1e-15
- Amplitude = 5e+6 - Of
- Rising = 1e

38

Part controller using stategraph mode to control time dependent resistor

block, when state is off and when state is on. Controller is built by trapezoid

ource, greater equal, less equal, initial step, step and transition block.

igure 3.17 shows part controllerof the system. The differential equation pa

 built by block integrator, add/subtract, gain, division and constant. Figure

odel of the system using Dymola stategraph mode

 0…100e-6s as simulation time interval and 1e-4 as a

tolerance integration. Under the intial state zero, the result for variable

current switch resistor IR(t) and output voltage VL is given by figure 3.14. It

took 0,063s to simulate the task b

Task c Parameter Variation Study

The parameter of TRF is varied between 1e-15s, 1e-11s, 1e-9s, 1e-7s. Initial

state n is given by task b. The time

interval is 0…9e-6s. As result, The phase plane curves dx3/dt=VL3 as a

function of x3 = IL3 is show simulate task c.

The four simulation executed separately.

For all the calculation and simulation, using Dymola version 6.0b on PC Intel

Pentium D, 2 x 2,66 GHz.

3.2.3.4. Electrical Model

Design of Model

The model built based on electrical model as given by figure 3.1. Time

dependent resistor block is built by variable resistor and trapezoid source

as input of variable resistor. Electrical model for comparison 3 is given by

figure 3.19.

39

s

F rt

is

3.18 shows the m

Solutions

Task b Simulation of the system

To simulate the system, using Dassl as an algorithm integration, 1000 as

number of intervals,

 for the task c is equal from the final solutio

n in figure 3.15. It took 0,047s to

Solutions

Task b Simulation of the system

To simulate the system, using Dassl as an algorithm integration, 1000 as

number of intervals, 0…100e-6s as simulation time interval and 1e-4 as a

tolerance integration. Under the intial state zero, the result for variable

current switch resistor IR(t) and output voltage VL is given by figure 3.14. It

took 0,047s to simulate the task b

Task c Parameter Variation Study

The parameter of TRF is varied between 1e-15s, 1e-11s, 1e-9s, 1e-7s. Initial

state for the task c is equal from the final solution is given by task b. The time

interval is 0…9e-6s. As result, The phase plane curves dx3/dt=VL3 as a

fu .

The four simulation executed

alculation and simulation, using Dymola version 6.0b on PC Intel

nction of x3 = IL3 is shown in figure 3.15. It took 0,015s to simulate task c

 separately.

For all the c

Pentium D, 2 x 2,66 GHz.

Figure 3.19 Electrical Model for Comparison 3.

n. For time dependent resistor using

lgorithm as below:

40

3.2.3.4. Modelica Text Mode

Design of Model

For design of the model, using the exact differential equation with modelica

function der(x) as dx/dt in the equatio

a

equation
t_red = mod(time, 10E-6);

)/TRF;
algorithm

6;

6)+TRF)) then
) - k*(t_red - (5e-6));

)) then

Solu

Task

To simulate the system, using Dassl as an algorithm integration, 1000 as

num me interval and 1e-4 as a

tolerance integration. Under the intial state zero, the result for variable

itch resistor IR(t) and output voltage VL is given by figure 3.14. It

erval is 0…9e-6s. As result, The phase plane curves dx3/dt=VL3 as a

y.

or all the calculation and simulation, using Dymola version 6.0b on PC Intel

Hz.

41

k=((5e+6)-(5e-2)

if
 (0<=t_red) and (t_red<TRF) then
 Rt:=(5e-2) + k*t_red;
elseif
 (TRF<=t_red) and (t_red<(5e-6)) then
 Rt:=5e+
elseif
 ((5e-6)<=t_red) and (t_red<((5e-
 Rt:=(5e+6
elseif
 ((5e-6)+TRF<=t_red) and (t_red<(10e-6
 Rt:=5e-2;
else
 Rt:=-5;
end if;

tions

 b Simulation of the system

ber of intervals, 0…100e-6s as simulation ti

current sw

took 0,047s to simulate the task b

Task c Parameter Variation Study

The parameter of TRF is varied between 1e-15s, 1e-11s, 1e-9s, 1e-7s. Initial

state for the task c is equal from the final solution is given by task b. The time

int

function of x3 = IL3 is shown in figure 3.15. It took 0,031s to simulate task c.

The four simulation executed separatel

F

Pentium D, 2 x 2,66 G

3.2.4 Mosilab

3.2.4.1. Modelica Text Mode

Design of Model

For design of the model, using the exact differential equation with modelica

function der(x) as dx/dt in the equation. For time dependent resistor using

algorithm as below:

t_);
-(5e-2))/TRF;

d) and (t_red<TRF) then

t_red) and (t_red<(5e-6)) then

6)<=t_red) and (t_red<((5e-6)+TRF)) then
6) - k*(t_red - (5e-6));

 ((5e-6)+TRF<=t_red) and (t_red<(10e-6)) then
;

nd if;

equation
red = mod(time, 10E-6

k=((5e+6)
algorithm
if
 (0<=t_re
 Rt:=(5e-2) + k*t_red;
elseif
 (TRF<=
 Rt:=5e+6;
elseif
 ((5e-
 Rt:=(5e+
elseif

 Rt:=5e-2
else
 Rt:=-5;
e

Figure 3.20 The result for variable curr

42

ent switch resistor IR(t) and output

voltage VL(mosilab)

Solutions

ask a Calculation of eigenvalues

To calculate the eigenvalues of the system when R(t) is on = 0,05 ohm and

when R(t) is off = 5e+6 ohm can’t be done by mosilab, because Mosilab

didn’t have “eigenValues” function in their modelica library.

Task b Simulation of the system

To simulate the system, using Dassl as an algorithm integration, 1e-10 as min

stepsize, 1e-7 as max stepsize and 0…100e-6s as simulation time interval.

Under the intial state zero, the result for variable current switch resistor IR(t)

and output voltage VL is given by figure 3.20. It took 1,3s to simulate the task

b

Ta

This task can’t be done b ab didn’t have plotArray

nction in their core system.

or all the calculation and simulation, using Mosilab version 3.1 on Notebook

ell Latitude D630 Intel Centrino Duo.

.2.4.2 StateChart

esign of Model

or design of the model, using the exact differential equation with modelica

nction der(x) x/dt in the eq ation. For time depend resistor using

lgorithm the same as previous. The code for statechart is written below:

equation
s1 = if Rt>=5e+6 then true else false;
s2 = if Rt<=5e-2 then true else false;
statechart
 state C3MosilabStateSC extends State;
 annotation(extent=[-104,104; 44,-43]);
 State State1 annotation(extent=[-90,63; -77,59]);
 State State2 annotation(extent=[-51,62; -38,58]);
 State Initial (isInitial=true) annotation(extent=[-82,74; -80,72]);
 transition Initial->State1 action
 Rs:=5e+6
 end transition annotation(points=[-82,72; -82,63]);
 transition State1->State2 event s2 action
 Rs:= 5e-2;

43

T

sk c Parameter Variation Study

y mosilab because mosil

fu

F

D

3

D

F

fu as d u ent

a

;

 end transition annotation(points=[-77,59; -51,59]);
 transition State2->State1 event s1 action
 Rs:= 5e

60; -77,60]);

me interval.

Under the intial state zero, the result f le current switch resistor IR(t)

re 3.20. It took 85s to simulate the task

he differential equation part is built by block integrator, add/subtract, gain,

ignal generator(as constant).The time dependent

 type designer block using modelica code. The model of

(t_red<(5e-6)) then
;

red) and (t_red<((5e-6)+TRF)) then
-6));

(10e-6)) then

44

+6;
 end transition annotation(points=[-51,
 end C3MosilabStateSC;

Solutions

Task b Simulation of the system

To simulate the system, using Dassl as an algorithm integration, 1e-12 as min

stepsize, 1e-9 as max stepsize and 0…100e-6s as simulation ti

or variab

and output voltage VL is given by figu

b

For all the calculation and simulation, using Mosilab version 3.1 on Notebook

Dell Latitude D630 Intel Centrino Duo.

3.2.5 SimulationX

3.2.5.1 Hybrid Model

Design of Model

T

function (as division) and s

resistor is built by

the system was shown by figure 3.21. The code for time dependent resistor

was written below:

algorithm
if
 (0<=t_red) and (t_red<TRF) then

Rt:=(5e-2) + k*t_red;
 elseif
 (TRF<=t_red) and
 Rt:=5e+6
 elseif
 ((5e-6)<=t_
 Rt:=(5e+6) - k*(t_red - (5e
 elseif
 ((5e-6)+TRF<=t_red) and (t_red<
 Rt:=5e-2;
 else
 Rt:=-5;
 end if;

equation
 t_r mod(time,ed = 10E-6);

+6)-(5e-2))/TRF; k=((5e

Figure 3.21. The model of the system (simulationX)

Task a Calculation of eigenvalues

To calculate the eigenvalues of the system when R(t) is on = 0,05 ohm and

when R(t) is off = 5e+6 ohm by simulate the whole system first and then go to

tab analysis(natural frequencies and mode shapes). In there simulationX

automatically calculate the eigenvalue. It took 0,0723s to execute task a. The

result of eigenvalues is in Table 3-3.

Table 3-3 Eigenvalues of R(t) (simulationX)

Solutions

Eigenvalues R(t) OFF Eigenvalues R(t) ON

-54708+1,0408E+5i -1,11731E+9

-54708-1,0408E+5i -625,78

-58228+5,3275E+5i -1,1304E+5 +6,5835E+5i

-58228+5,3275E+5i -1,1304E+5 -6,5835E+5i

45

Figure 3.22 The result for variable current switch resistor IR(t) and output

voltage VL(simulationX)

Figure 3.23 The phase plane curves dx3/dt=VL3 as a function of x3 = IL3

(a). 1e-15s (b). 1e-11s (c) 1e-9s (d) 1e-7s

(a) (b)

(d)

46

(c)

Task b Simu

To sim

1e-15

simula

zero, t

VL is g

Task c Parameter Variation Study

The amet

the tas

is 0…9e-6s. As result, The phase plane curves dx3/dt=VL3 as a function of x3

 IL3 is given by figure 3.23. It took 0,0858s to simulate task c. The four

ly.

lation and simulation, using SimulationX version 2.0 on PC

ical Model

esign of Model

he design of model based on figure 3.1, using resistor, inductor, capacitor

nd constant voltage as VDC. The time dependent resistor was built by type

esigner us a code. The em was shown by figure

.24. The code for time dependent resistor was written below:

equation
 v=pin1.v -pin2.v;
 v=R*i;
 pin1.i=i;
 pin2.i=-i;
 tred = mod(time, 10E-6);
 k=((5e+6)-(5e-2))/TRF;
 if (0<=tred) and (tred<TRF) then
 R=(5e-2) + k*tred;
 elseif (TRF<=tred) and (tred<(5e-6)) th n

e+6;
 elseif ((5e-6)<=tred) and (tred<((5e-6)+TRF)) then

6) - k*(tred - (5e-6));
 elseif ((5e-6)+TRF<=tred) and (tred<(10e-6)) then
 R=5e-2;
 else

47

lation of the system

ulate the system, using BDF-Method as solver, 1e-18 as min step size,

as min output step size, 1e-8 as absolute tolerance, 0…100e-6s as

tion time interval and 1e-8 as relative tolerance. Under the intial state

he result for variable current switch resistor IR(t) and output voltage

iven by figure 3.22. It took 1,2528s to simulate the task b.

par er of TRF is varied 1e-15s, 1e-11s, 1e-9s, 1e-7s. Initial state for

k c is equal from the final solution is given by task b. The time interval

=

simulation executed separate

For all the calcu

Intel Pentium D, 2 x 2,66 GHz.

3.2.5.2 Electr

D

T

a

d ing modelic model of the syst

3

e
 R=5

 R=(5e+

 R=0;
 end if;

Figure 3.24. The model of the system (simulationX electrical)

Solu

ask a Calculation of eigenvalues

e eigenvalues of the system when R(t) is on = 0,05 ohm and

requencies and mode shapes). In there simulationX

auto 133s to execute task a. The

o sim solver, 1e-18 as min step size,

 absolute tolerance, 0…100e-6s as

r variable current switch resistor IR(t) and output voltage

61s to simulate the task b.

The parameter of TRF is varied between 1e-15s, 1e-11s, 1e-9s, 1e-7s.

l from the final solution is given by task b.

he tim . As result, The phase plane curves dx3/dt=VL

of x3 = IL3 is given by figure 3.23. It took 0,11s to simulate task

c. Th

 SimulationX version 2.0 on

PC Intel Pentium D, 2 x 2,66 GHz.

48

tions

T

To calculate th

when R(t) is off = 5e+6 ohm by simulate the whole system first and then go to

tab analysis(natural f

matically calculate the eigenvalue. It took 0,0

result of eigenvalues is in Table 3-3.

Task b Simulation of the system

T ulate the system, using BDF-Method as

1e-15 as min output step size, 1e-8 as

simulation time interval and 1e-8 as relative tolerance. Under the intial state

zero, the result fo

VL is given by figure 3.22. It took 0,84

Task c Parameter Variation Study:

Initial state for the task c is equa

T e interval is 0…9e-6s 3

as a function

e four simulations executed separately.

For all the calculation and simulation, using

4. Comparison 5: Two State Model

4.1

In many engineering problems simulation models turn up to be

disco uous, but either the first or

high tinuities may occur either at

spec nditions are satisfied.

When a discontinuity has been passed, not only the model may be changed,

but also the function that determines the location of the discontinuity.

Cons inuity is not correctly modelled and determined,

respectively, the results may go wrong qualitatively[11].

forementioned type in a satisfactory way. The problem is as follows

dy1/dt = c1 * (y2 + c2 - y1)

dy2/dt = c3 * (c4 - y2)

This ODE system is essentially a simple linear stiff problem with exponential

decays as analytical solution. One of these is a very rapid transient, and the

stationary solution of the slow decay varies from the two states of the model.

This actually "drives" the model (and the discontinuity).

Parameters c1 and c3 remain unchanged during simulation: c1 = 2.7E+6, c3 =

3.5651205.

The model operates in two states:

• The model is in state 1 when 2 is 0.4 and c4 is 5.5 (also the initial

= 0.3. The model

he choice of c2 and c4 ensures

 m el sw ate 2, parameters c2 and c4 change to c2

4 = 2.73. The model remains in state 2 as long as y1 > 2.

When passing this instance the model switches back to state 1; the

2 4

The time interval is 0 to 5

he tasks to re:

49

Definition

ntinuous. That is, the solution itself is contin

er order derivatives have jumps. Discon

ific time points or when certain co

equently, if this discont

This example tests the ability of the simulator to handle discontinuities of the

c

state). The initial values are y1(0) = 4.2 and y2(0)

remains in state 1 as long as y1 < 5.8. T

that y1 will grow past 5.8.

• When the od itches to st

= -0.3 and c 5.

choice of c and c ensures that this will happen.

.

T be performed a

a. Plot y1 as function of time.

b. Printout the time for every located discontinuity and the final

value y1(5.0).

c. Repeat question b) for the true relative accuracy varying

between 10-6, 10-10, 10-14. Analytical solution values can be found, so for

nd the y1(5.0) value should be approximately 5.369. If

 rerun a) and b) with a true relative

accuracy of 10-11.

4.2. Design and Solutions

i o m

comparison we state that the last discontinuity occurs at time

4.999999646 a

the last discontinuity is not located, the previous ones are not found

with adequate accuracy. The value of y1(5.0) also reflects the accuracy

of the locations of the discontinuities and any value between 5.8 and

5.1 can be expected.

d. Change the state 2 parameter values of c2 to -1.25, c4 to 4.33 and

the condition to y1 > 4.1 and

Block Diagram

The design of this model consists of only 3 block diagrams: Switching State,

Controller and Differential Equation. Figure 4.1 shows block diagram for

comparison 5.

Different
o

ial
Equati n

Controller Switching
 State

50

F gure 4.1 Bl ck Diagra Comparison 5

4.2.1 M

Design o

The model design in matlab algorithm od

numerically and to calculate th

solver’s state event finder. Each time a switching event encountered, the

integration of ODE solver stopped and the values of c2 and c4 were changed.

ain at time of discontinuity. The state

interval is reached. The differential

ents function are as follow:

global p d

Where ode15s = ode solver matlab built in function

deq = differential equation of the model in form of function

 [tstart tfinal] = simulation time interval

 y0 = Initial condition of the model

 options = an options structure that can pass as an argument to any of

the ODE solvers

 t= time solutions of the model

 y = variable value solutions of the model

 te = time event

 ye = variable value event

 ie = ith iteration event

The code is:

tstart = 0; tfinal = 5; y0= [4.2 0.3]; C = [2 0.4 3.5651205 5.5];

51

atlab

f Model

e15s is used to solve the system

e times of the discontinuities by calling the

Then the solver has to be restarted ag

will switch back and forth until the time

equation code and ev

function dydt = F(t, y, C)
dydt(1,1) = C(1) * (y(2) + C(2) - y(1));
dydt(2,1) = C(3) * (C(4) - y(2));
function [value,isterminal,direction] = events(t,y)

value = y(1)- [p;0];
isterminal = [1;1];
direction = [d;1];

Task a. Plot y1

To simulate the system, using matlab built in function ode15s (odesolver)

with the solver form:

[t,y,te,ye,ie] = ode15s(@deq,[tstart tfinal],y0,options);

.7E+6

p=5.8; d=1;
options = odeset('reltol',1e-14,'Events',@events);
tout = tstart; yout = y0; teout = []; yeout = []; ieout = [];

while tout(lengt
% Call ODE Solve
FUN = @(t,y)F(t,y,
[t,y,te,ye,ie] = ode15s(FUN,[tstart tfinal],y0,options);
 nt = length(t);

>=5.8
 p=2.5; d=-1; C = [2.7E+6 -0.3 3.5651205 2.73]; end

 p=5.8; d=1; C = [2.7E+6 0.4 3.5651205 5.5]; end

 options = odeset(options);

Plot y1 is given by figure 4.2. It took 0,890272s to simulate the task a

h(tout))<5
r
C);

 if y(nt)

 if y(nt)<=2.5

 tout = [tout; t(2:nt)]; yout = [yout; y(2:nt,:)];
 teout = [teout; te]; yeout = [yeout; ye];
 ieout = [ieout; ie];
 % Set the new initial conditions
 y0=[y(nt,1) y(nt,2)];
 tstart=t(nt);

end

Figure 4.2 Plot y1(matlab)

Task .0)

The

297

t = 3,0542 t = 4,0756

1

52

 b Time Discontinuity and Final Value of y1(5

time discontinuity and the final value are:

t0 = 1,1083 t1 = 2,1

2 3

y (5,0) = 5,8

Table 4-1 The result of time discontinuity and final value y1(5.0) with vary

r ranceelative tole (matlab)

Task c Time Discontinuity and Final Value of y1(5.0) with Different

Relative Tolerance

The parameter of relative tolerance are varied between 10-6, 10-10 and 10-14

while still using variable 0 …5s as simulation time interval and ode15s as the

solver. When relative tolerance 10-14 was used there is a warning message

from matlab and matlab will then automatically set the relative tolerance to

2.22045e-014. Table 4-1 shows the result of time discontinuity and final value

y (5.0) with vary relative tolerance. 1

Figure 4.3 plot y

Task d t Even

Changi te 2 pa lu tch ion ts in

a high frequent event of

took 10 o simu d. F ho s (tas

The time discontinuity and the final value are:

Relative Tolerance 10-6 10

1 (task d) (matlab)

 Frequen ts

ng the sta rameter va es and swi ing condit will resul

 discontinuity for y1 with relative tolerance 1e-11. It

,789155s t late task igure 4.3 s w plot y1 k d)

10-10 -14

t0 1083 3 1,11, 1,108 083

t1 ,1297 7 2,12 2,129 297

t2 0542 2 3,03, 3,054 542

t3 4,0756 4,0756 4,0756

y1(5,0) 5,8000 5,8000 5,8000

53

t0 = 1,1083

9

t = 1,6169

9

t13 =

t14 =

t15 =

t16 =

t17 =

t19 = 2,2662

t20 = 2,3799

t = 2,3933

22

 = 2

 = 2

 = 2

 = 2

 = 3

t31 = 3,0291

t32 = 3,1428

t33 = 3,1563

t = 3,2700

35

 3,5

 3,6

 3,6

 3,7

 3,7

t44 = 3,9058

t45 = 3,9192

t46 = 4,0329

t = 4,0464

48

,414

,427

,541

,5550

687

t57 = 4,6822

t58 = 4,7959

t59 = 4,8093

t = 4,9230

61

4.2.2 Simulink

 of controller is to control the signal that was sent to switching state

 change the value c2 and c4; depending on which state is active. Part

controller was built by using 2 hit crossing block and OR gate block. Part

switching state was built by using clock and triggered subsystem block. 2 hit

crossing blocks will be used for detection when value y1 rises above 5,8 or

falls below 2,5 otherwise the output is FALSE. In case of output TRUE,

triggered subsystem is executed. The subsystem changes the value of c2 and

c4 by using switches, which is different depending on the value of y1.

The Differential equation was built by Integrator, Gain and add/substract

block. Figure 4.4 shows the model of the system.

54

t1 = 1,1217

t2 = 1,2355

t3 = 1,248

t4 = 1,3626

t5 = 1,3760 t

 1,8847 t

 1,9984 t

 2,0118 t

 2,1256 t

 2,1390 t

18 = 2,2527

26 ,7614 t

27 ,7748 t

28 ,8885 t

29 ,9019 t

30 ,0157 t

39 = 377 t

40 = 515 t

41 = 649 t

42 = 786 t

43 = 920 t

52 = 4 4

53 = 4 8

54 = 4 6

55 = 4

56 = 4,6

t6 = 1,4898

t7 = 1,5032

8

t = 1,6304

t10 = 1,7441

t11 = 1,7575

t12 = 1,8713

21

t = 2,5070

t23 = 2,5205

t24 = 2,6342

t25 = 2,6476

34

t = 3,2834

t36 = 3,3972

t37 = 3,4106

t38 = 3,5243

47

t = 4,1601

t49 = 4,1735

t50 = 4,2873

t51 = 4,3007

60

t = 4,9365

Y1(5,0) = 5,7804

The whole calculation and simulation was done by using

Matlab/Simulink version 7.4 R2007a on PC Intel Pentium D, 2 x 2,66

GHz.

4.2.2.1 Hybrid Model

Design of Model

The model has 3 parts: Controller, Switching State and Differential equation.

The task

to

(a)

(b)

Figure 4.4 The model of the system (simulink)

(a) Main Model (b) Triggered subsystem

To simulate the system a time step, 0 …5s as

simulation time interval, relative tolerance of 10-11 and ode23s (Stiff/Mod.

Rosenbrock) as the solver. Under the intial state 4,2 for integrator y1 and 0,3

for integrator y2, the result for value y1 is given in figure 4.5. It took 0,5s to

simulate the task a.

 55

Solutions

Task a. Plot y1

 using variable step as

Figure 4.5 Plot y1(simulink)

(5.0)

The time discontinuity and the final value are:

t = 3,054 t = 4,0754 t = 4,9998

 with vary

ative tolerance (simulink)

Task c Time Discontinuity and Final Value of y1(5.0) with Different

Relative Tolerance

The parameter of relative tolerance is varied between 10-6, 10-10 and 10-14

while still using variable step as a time step, 0 …5s as simulation time

interval and ode23s (Stiff/Mod. Rosenbrock) as the solver. When relative

Task b Time Discontinuity and Final Value of y1

t0 = 2,1204e-007 t1 = 1,1083 t2 = 2,1296

3 4 5

y1(5,0) = 5,0980002181246

Table 4-2 The result of time discontinuity and final value y1(5.0)

rel

Relative Tolerance 10-6 10-10 10-14

t0 2,1204e-007 2,1204e-007 2,1204e-007

t 1,1082 1,1083 1,1083 1

t2 2,1294 2,1296 2,1296

t3 3,0538 3,054 3,054

t4 4,075 4,0754 4,0754

t5 4,9994 4,9998 4,9998

y1(5,0) 5,0940204247788 5,0979970081424 5,0980106702

56

tolerance 10-14 was used and simulink was automatically set the relative

tolerance to 2.842170943040401e-014 there is a warning message from

matlab. Table 4-2 shows the result of time discontinuity and final value

y1(5.0) with vary relative tolerance.

Figure 4-6 plot y1 mu

Task d Frequent Events

Changing t and switching condition will results in

high frequent event of ity o too simu d.

Figure 4.6 shows plot y1 (

The time ity an va

t0 09

t1

t2

t3

t4

t5

t8 = 1,5031

t = 1,6303

11

t13

t14

t15

t16

t17

18 9

t21 =2,3798

t22 =2,3932

t =2,5069

24 =2,5203

t25 =2,6341

t26

t27

t28

t29

t30

t31 =3,0155

t34 =3,1561

t35 =3,2698

t36 =3,2832

t37 =3,397

t38 =3,4104

t39

t40

t41

t42

t43

t44 =3,7918

t46 =3,919

t47 =4,0327

t48 =4,0461

t49 =4,1598

t50 =4,1733

t51 =4,287

t52

t53

t54

t55 4,5413

t56 =4,5547

t57 =4,6684

t59 =4,7956

t60 =4,809

t61 =4,9227

t62 =4,9362

Y1(5,0) = 5,0980002181246

57

 (task d)(si link)

he state 2 parameter values

discontinu f r y1. It k 3s to late task

task d)

 discontinu d the final lue are:

 = 9,6205e-0

 = 1,1083

 = 1,1217

 = 1,2354

 = 1,2488

 = 1,3626 t = 2,138

 = 1,8712

 = 1,8846

 = 1,9983

 = 2,0117

 = 2,1255

 =2,6475

 =2,7612

 =2,7746

 =2,8884

 =2,9018

 =3,5241

 =3,5375

 =3,6513

 =3,6647

 =3,7784

 =4,3004

 =4,4141

 =4,4276

 =

t6 = 1,376

t7 = 1,4897

t19 = 2,2526

t20 =2,266

t32 =3,0289

t33 =3,1427

t45 =3,9055 t58 =4,6819

t9 = 1,6169

10

t = 1,744

23

t

t12 = 1,7574

4.2.2.2 Stateflow

Design of Model

The model has 3 parts: Controller, Switching State and Differential equation.

The task of controller is to control the signal that was sent to the switching

state to change the value c2 and c4, depending on which state is active. Part

controller was built by using 2 hit crossing blocks and OR gate block. Part

switching state was built by clock and triggered subsystem block. 2 hit

crossing blocks are used for detection when value y1 rises above 5,8 or falls

below 2,5 otherwise the output is FALSE. In case of output TRUE, triggered

subsystem will be executed. The subsystem changes the value of SGN by

 block changes the value

of c2 and c4, which is differed depending on value SGN. The differential

equation was b ck. Figure 4.7

shows stateflow block of the system. Figure 4.8 shows the model of the

system.

using switches, which is differed depending on the value of y1. Value SGN is

used as a switch event of stateflow block. Stateflow

uilt by Integrator, Gain and add/substract blo

Figure 4.7 Stateflow block of the system (comparison 5)

58

(a)

(b)

he model of the system (simFigure 4.8 T ulink stateflow)

ain M l (b) Trigg subsystem

olutions

em, using variable step as a time step, 0 …5s as

imulation tim interval, rel lerance od.

osenbrock) a the solver. Und he intial state 4,2 for integrator y1 and 0,3

r integrat he result f y1 is sh figure 4 ok 9s to

imulate the task a.

59

(a) M ode ered

S

Task a. Plot y1

To simulate the syst

e ative to of 10-11 and ode23s (Stiff/Ms

R s er t

fo or y2, t or value own in .9. It to

s

Figure 4.9 Plot y (simulink stateflow)

Task b T tinui l (5

The time ity an a

t0 = 2,1204e-007 2 7

t3 = 3,0542 4

y1(5 2727 8

Table 4 ult of ti a .0

elati e at

Task c Time Discontinuity and Final Value of y (5.0) with Different

Relative Tolerance

The parameter of relative tolerance is varied between 10 , 10 and 10 ,

while still using variable step as a time step, 0 …5s as simulation time

interval and ode23s (Stiff/Mod. Rosenbrock) as the solver. When relative

Re ce -10 10-14

1

ime Discon ty and Fina Value of y1 .0)

 discontinu d the final v lue are:

t1 = 1,1083 t = 2,129

t = 4,0755 t = 5 5

,0) = 5,1871 1 67

-3 The res time discon nuity and fin l value y1(5) with vary

r ve toleranc (simulink st eflow)

lative Toleran 10-6 10

t0 2,1204e-007 2,1204e-007 2,1204e-007

t1 1,1083 1,1083 1,1083

t2 2,1297 2,1297 2,1297

t3 3,0542 3,0542 3,0542

t 4,0755 4,0755 4,0755 4

t5

5 5 5

y1(5,0) 5,1871018782202 5,1870844463401 5,1871273654863

60

1

-6 -10 -14

tolerance 10-14 was used and simulink was automatically set the relative

tolerance to 2.842170943040401e-014. Table 4-3 shows the result of time

discontinuity and final value y1(5.0) with vary relative tolerance.

Task d Frequent Events

Changing the state 2 parameter values and switching condition will result in

a high frequent event of discontinuity for y1. It took 14s to simulate task d.

Figure 4.10 shows plot y1 (task d)

Figure 4.10 plot y1 (task d) (simulink stateflow)

The time discontinuity and the final value are:

t0 = 9,6205e-009

t1 = 1,1083

t2 = 1,1217

t3

t4 = 1,2489

 1,3626

t = 1,5032

t13 = 1,8713

t14 = 1,8847

t = 1,9984

16

t17 = 2,1256

t18 = 2,139

t19 = 2,2527

t =2,3799

t26 =2,6476

t =2,7614

t =2,7748

29

t30 =2,9019

t31 =3,0157

t32 =3,0291

t =3,1563

t39 =3,5243

t40 =3,5377

t =3,6515

42

t43 =3,7786

t44 =3,792

t45 =3,9058

t =4,0329

873

t52 =4,3007

t53 =4,4144

t =4,4278

55 ,5416

t56 =4,555

t57 =4,6687

t58 =4,6821

t =4,8093

Y1(5,0) = 5,7804027877939

61

27

 = 1,2355

15

t = 2,0118

28

t =2,8885

41

t =3,6649

54

t =4

t5 =

t6 = 1,376

t7 = 1,4898

8

t9 = 1,6169

t10 = 1,6304

t11 = 1,7441

t20 =2,2661

21

t22 =2,3933

t23 =2,507

t24 =2,5205

t33 =3,1428

34

t35 =3,27

t36 =3,2834

t37 =3,3971

t46 =3,9192

47

t48 =4,0464

t49 =4,1601

t50 =4,1735

t59 =4,7959

60

t61 =4,923

t62 =4,9365

t12 = 1,7575 t25 =2,6342 t38 =3,4106 t51 =4,2

For all the calculation and simulation, using Matlab/Simulink version 7.4

R2007a on PC Intel Pentium D, 2 x 2,66 GHz.

el

ck. Switching State was built

y constant, switch and greater equal block. Greater equal threshold block

lock are used to detect whether value y1 rises

depending on value of y1.

igure 4.11 shows the model of the system.

4.2.3. Dymola

4.2.3.1 Hybrid Mod

Design of Model

The model has 3 parts: Controller, Switching State and Differential equation.

The task of controller is to control the signal that was sent to the switching

state to change the value c2 and c4 depending on which state is active. Part

controller was built by greater equal threshold block, less equal threshold

block, OR gate block and triggered sampler blo

b

and less equal threshold b

above 5,8 or falls below 2,5, for otherwise the output is FALSE. In case of

output TRUE, triggered sampler is activated, changing the value of c2 and c4

by using switches that is different

The Differential equation is built by Integrator, Gain and add/substract

block. F

Figure 4.11 The model of the system (dymola)

62

Figure 4.12 Plot y1 (dymola)

Solutions

tem, using 1000 as number of intervals, 0 …5s as
-11

e final value are:

t0 = 2,46288e-007 t1 = 1,10831 t2 = 2,12968

 = 4,07553 t5 = 5

1(5.0) with Different

ameter of relative tolerance is varied between 10-6, 10-10 and 10-14,

 solver. There is an error message from dymo

when relative tolerance 10-14 was used because it is unable to do the task,

ill be used as the new relative tolerance instead. Table 4-4

63

Task a. Plot y1

To simulate the sys

simulation time interval, relative tolerance of 10 and Dassl as the solver.

Under the intial state 4,2 for integrator y1 and 0,3 for integrator y2, the result

for value y1 shown in figure 4.12. It took 0,047s to simulate the task a.

Task b Time Discontinuity and Final Value of y1(5.0)

The time discontinuity and th

67

t3 = 3,05415 t4

y1(5,0) = 5,37114

Task c Time Discontinuity and Final Value of y

Relative Tolerance

The par

while still using 1000 as number of intervals, 0 …5s as simulation time

interval and Dassl as the la

therefore 10-12 w

shows the result of time discontinuity and final value y1(5.0) with vary

relative tolerance (dymola)

Task d Frequent Events

Changing the state 2 parameter values and switching condition will

result in a high frequent event of discontinuity for y1. It took 0,204s to

simulate task d. Figure 4.13 shows plot y1 (task d)

relative tolerance.

Table 4-4 The result of time discontinuity and final value y1(5.0) with vary

Figure 4.13 plot y1 (task d) (dymola)

10-6 10-10 10-12Relative Tolerance

t0 2,46288e-007 2,46288e-007 2,46288e-007

t1 1,10831 1,10831 1,10831

t2 2,12969 2,12968 2,12968

t3 3,05416 3,05415 3,05415

t4 4,07555 4,07553 4,07553

t5 5 5 5

y1(5,0) 5,79999 5,38522 5,36955

64

The time discontinuity and the final value are:

61e-008

31

t = 1,23546

t = 1,5032

9

t12 = 1,75752

t15 = 1,99841

t = 2,01184

t18 = 2,13899

t =2,37988

22

t23 =2,50704

t26 =2,64762

t27 =2,76136

t28 =2,77478

t =2,88851

t31 =3,01567

t =3,15625

35

t36 =3,28341

t39 =3,5243

t40 =3,53773

t41 =3,65146

t =3,66489

t44 =3,79204

t =4,03294

48

t49 =4,16009

 =4,28725

t52 =4,30068

t53 =4,41441

t54 =4,42783

t =4,54157

t57 =4,66872

t =4,80931

61

t62 =4,93646

Y1(5,0) = 5,7804

or all the simul n, using Dymola version 6.0b on PC Intel

entium D, 2 x 2, 6 GHz.

.2.3.2 Stategr ph Model

esign of Mod

he model has 3 parts: Controller, Switching State and Differential equation.

The task of controller is to send a signal to the switching state to change th

value c2 and c4 depe ontroller was built

 block and less equal threshold block. Switching

t0 = 1,073 t13 = 1,87125

t1 = 1,108 t14 = 1,88468

t2 = 1,12173

3

t4 = 1,24889

t5 = 1,36262

16

t17 = 2,12557

29

t30 =2,90194

42

t43 =3,77862

55

t56 =4,55499

t6 = 1,37605

t7 = 1,48978

8

t = 1,61694

t10 = 1,63036

t19 = 2,25273

t20 =2,26615

21

t =2,39331

t32 =3,0291

t33 =3,14283

34

t =3,26999

t45 =3,90578

t46 =3,9192

47

t =4,04636

t58 =4,68215

t59 =4,79588

60

t =4,92304

t11 = 1,7441 t24 =2,52047

t25 =2,6342

t37 =3,39715

t38 =3,41057

t 50 =4,17352

t51

F calculation and atio

P 6

4 a

D el

T

e

nding on which state is active. Part c

by greater equal threshold

State was built by constant, switch and and stategraph block such as initial

step, step and transitition block. Greater equal threshold block and less

equal threshold block are used to detect whether value y1 rises above 5,8 or

falls . In case of output TRUE,

transititio io w i ending on

which th o TR e ntrols the

value of c n step block

active or not. Figure 4.14 shows part controller and switching state of the

system.

65

below 2,5, for otherwise the output is FALSE

n 1 block or transitit n 2 block ill be act vated dep

reshold bl ck send a UE output. Then the st p block co

2 4 and c by using different switch depending o whether

The Diffe u b i /substract

block. Fi sh od s

rential eq ation was uilt by Integrator, Ga n and add

gure 4.15 ows the m el of the sy tem.

Figure 4.14 Part Controller and Switching State of the System (dymola

stategraph)

Figure 4.15 The model of the system (dymola stategraph)

Solu

t y1

system, using 1000 as number of intervals, 0 …5s as

for value y1 is shown in figure 4.12. It took 0,062s to simulate the task a.

66

tions

Task a. Plo

To simulate the

simulation time interval, relative tolerance of 10-11 and Dassl as the solver.

Under the intial state 4,2 for integrator y1 and 0,3 for integrator y2, the result

Task b Time Discontinuity and Final Value of y1(5.0)

The time discontinuity and the final value are the same as dymola hybrid

model:

e Tolerance

The parameter of relative tolerance is varied between 10-6, 10-10 and 10-14

There is an error message from dymola when relative

lica Text Mode

 when (y1>=5.8) then

67

Task c Time Discontinuity and Final Value of y1(5.0) with Different

Relativ

while still 1000 as number of intervals, 0 …5s as simulation time interval and

Dassl as the solver.

tolerance 10-14 was used because it is unable to do the task, therefore 10-12

will be used as the new relative tolerance instead. The result will be the

same as the hybrid model shown by Table 4-4.

Task d Frequent Events

Changing the state 2 parameter values and switching condition will result in

a high frequent event of discontinuity for y1. It took 0,25s to simulate task d.

Figure 4.13 shows plot y1 (task d)

The time discontinuity and the final value are the same as dymola hybrid

model.

For all the calculation and simulation, using Dymola version 6.0b on PC Intel

Pentium D, 2 x 2,66 GHz.

4.2.3.3. Mode

Design of Model

For design of the model, using the exact differential equation with modelica

function der(y) as dy/dt in the equation. For switching state using algorithm

as below:

algorithm

 c2:=-0.3;
 c4:=2.73;
 end when;
 when (y1<=2.5) then
 c2:=0.4;

 c4:=5.5;

Solutions

Task a. Plot y1

 end when;

1 and Dassl as the solver.

Under the intial state 4,2 for integrator y1 and 0,3 for integrator y2, the result

for value y1 is shown in figure 4.12. It took 0,047s to simulate the task a.

Task b Time Discontinuity and Final Value of y1(5.0)

The time discontinuity and the final value are the same as dymola hybrid

model:

Task c Time Discontinuity and Final Value of y1(5.0) with Different

Relative Tolerance

The parameter of relative tolerance is varied 10-6, 10-10 and 10-14. Still 1000 as

number of intervals, 0 …5s as simulation time interval and Dassl as the

solver. There is an error message from dymola when relative tolerance 10-14

was used because it is unable to do the task, therefore 10 will be used a

the new relative tolerance instead. The result will be the same as the hybrid

model shown by Table 4-4.

Task d Frequent Events

Changing the state 2 parameter values and switching condition will result in

a high frequent event of discontinuity for y . It took 0,187s to simulate task d.

Figure 4.13 shows plot y (task d)

The time discontinuity and the final value are the same as dymola hybrid

model.

For all the calculation and simulation, using Dymola version 6.0b on PC Intel

68

To simulate the system, using 1000 as number of intervals, 0 …5s as

simulation time interval, relative tolerance of 10-1

-12 s

1

1

Pentium D, 2 x 2,66 GHz.

4.2.4 Mosilab

4.2. lica Text

Design of Model

For design of the model, using the exact differential equation with modelica

fu

as below:

algori
when (y1>=5.8) then
 c2:=-0.3;
 c4:=2.73;
end when;
when (y1<=2.5) then
 c2:=0.4;

 c4:=5.5;
end when;

1 2 1

4.1. Mode Mode

nction der(y) as dy/dt in the equation. For switching state using algorithm

thm

Solutions

Task a. Plot y1

To simulate the system, using 1e-6 as min stepszize. 0,08 as max stepsize,

relative tolerance of 10-6 and Dassl as the solver. Under the intial state 4,2 for

integrator y and 0,3 for integrator y , the result for value y is shown in

figure 4.16. It took 0,1s to simulate the task a.

Figure 1

69

4.16 Plot y (mosilab)

Task b T on d u 0)

The time ui f ar

t0 = 1,1088 t = 2,1397

t2 = , ,

y1(5 8

Task c tinuity and Final Value of y1(5.0) with Different

elative Tolerance

ax stepsize and Dassl as the solver. Table 4-5

shows the result of time discontinuity and final value y1(5.0) with vary

relative tolerance.

Table 4-5 The result of time discontinuity and final value y1(5.0) with vary

relative tolerance (mosilab)

ime Disc tinuity an Final Val e of y1(5.

 discontin ty and the inal value e:

1

3 0588 t3 = 4 0760

,0) = 5,798

Time Discon

R

The parameter of relative tolerance is varied 10-6, 10-10 and 10-14. Still using

1e-6 as min stepszize. 0,08 as m

Figure 4.17 plot y1 (task d) (mosilab)

Relative Tolerance 10-6 10-10 10-14

t0 1,1088 1,1083 1,1090

t1 2,1397 2,1394 2,1299

t2 3,0588 3,0584 3,0592

t3 4,0760 4,0757 4,0764

y1(5,0) 5,7988 5,7985 5,7997

70

71

Task d Frequent Events

Changing the state 2 parameter values and switching condition will result in

a high frequent event of discontinuity for y1 with relative tolerance 1e-11. It

took 1,3s to simulate task d. Figure 4.17 shows plot y

t0 = 1,1088

t = 1,1220

t = 1,5037

 1,8716

t13 = 1,8852

t = 1,9987

,1259

397

t18 = 2,2534

t19 = 2,2669

t = 2,3804

,3939

t25 = 2,6482

t26 = 2,7618

t = 2,7755

0

t29 = 2,9023

t30 = 3,0161

t31 = 3,0297

t32 = 3,1433

t33 = 3,1569

t34 = 3,2705

t38 = 3,5249

t39 = 3,5382

t40 = 3,6520

t41 = 3,6655

t42 = 3,7791

t43 = 3,7925

t44 = 3,9062

t45 = 3,9197

t46 = 4,0335

t47 = 4,0469

t51 = 4,3013

t52 = 4,4150

t53 = 4,4283

t54 = 4,5419

t55 = 4,5556

t56 = 4,6694

t57 = 4,6827

t58 = 4,7963

t59 = 4,8098

t60 = 4,9235

,0) = 5,7827

For all g Mosilab version 3.1 on Notebook

Dell Latitude D630 Intel Centrino Duo.

Desi of M

For design of the model, using the exact differential equation with modelica

funct der(ation. For switching state using statechart

algo m as

ation
 >= 5.8 then true else false;

2.5 then true else false;

extends State;
 annotation(extent=[-104,105; 45,-43]);
 State State1 annotation(extent=[-90,63; -81,59]);
 State State2 annotation(extent=[-58,62; -45,58]);
 State Initial (isInitial=true) annotation(extent=[-82,74; -80,72]);

1 (task d)

The time discontinuity and the final value are:

1

t2 = 1,2357

14

t15 = 2,0121

27

t28 = 2,889

t3 = 1,2493 t16 = 2

t4 = 1,3629 t17 = 2,1

t5 = 1,3765

t6 = 1,4899

7

t8 = 1,6174

20

t21 = 2

t9 = 1,6307

t10 = 1,7446

t11 = 1,7578

t12 =

t22 = 2,5077

t23 = 2,5209

t24 = 2,6349

t35 = 3,2838

t36 = 3,3977

t37 = 3,4111

t48 = 4,1608

t49 = 4,1739

t50 = 4,2878

t61 = 4,9370

Y (51

 the calculation and simulation, usin

4.2.4.2 StateChart

gn odel

ion y) as dy/dt in the equ

rith below:

equ
s2 = if y1
s1 = if y1 <=
statechart
 state C5MosilabStateSC

 transition Initial->State1
 end transition annotation(points=[-82,72; -82,63]);
 transition State1->St te2 event s2 action
 c2:= -0.3; c4:= 2.
 end transition annot tion(points=[-81,59; -77,60; -58,60]);
 transition State2->State1 event s1 action
 c2:= 0.4; c4:= 5.5;
 end transition annotation(points=[-58,59; -77,59; -81,);
 end C5MosilabStateSC;

Solutions

Task a. Plot y1

To simulate the system, using 1e-6 as min stepszize. 0,08 as max stepsize,

relative tolerance of 10-6 and Dassl as the solver. Under the intial state 4,2 for

integ

. It took 0,3s to simulate the task a.

Task b Time Discontinuity and Final Value of y1(5.0)

isc previous in the text

mode

Task c Time Discontin (5.0) with Different

The parameter of relativ een 10-6, 10-10 and 10-14

tepszize. 0,08 as max stepsize and Dassl as the

solve

erance.

Changing the state 2 parameter values and switching condition will result in

nce 1e-11

took 2,3s to simulat

The time discontinuity and the final value are the same as previous in the text

mode

ion, using Mosilab version 3.1 on Notebook

Dell

72

a
73;

a

59]

rator y1 and 0,3 for integrator y2, the result for value y1 is shown in

figure 4.16

The time d ontinuity and the final value are the same as

uity and Final Value of y1

Relative Tolerance

e tolerance is varied betw

while still using 1e-6 as min s

r. Table 4-4 shows the result of time discontinuity and final value y1(5.0)

with vary relative tol

Task d Frequent Events

a high frequent event of discontinuity for y1 with relative tolera . It

e task d. Figure 4.17 shows plot y1 (task d)

For all the calculation and simulat

Latitude D630 Intel Centrino Duo.

4.2. S

Hybrid

Design of Model

The m g State and Differential equation.

The task of contro al that sent to switching state to

chan te active is. Part

controller was built by single pass switch block, relational pass switch block,

constan vent sample and hold block. Switching

State w an itch

block a

value y1 rises above 5,8 or falls below 2,5,

In case of output value of 5,8 or 2,5, controlled event sample and hold block

will pas ng the value of c2 and c4 by using single

change switc

5 imulationX

Model

odel has 3 parts: Controller, Switchin

ller is to control the sign

ge the value c2 and c4 that depend on which sta

t, add block and controlled e

as built by constant d single change switch. Single pass sw

nd relational pass switch block are being used to detect whether

for otherwise the output is ZERO.

s and hold this value, changi

hes which is differ depending on value of y1.

The if

block. Figure 4.18 shows the model of the system.

D ferential equation is built by Integrator, Gain and add/substract

Figure 4.18 The model of the system (simulationX)

73

Soluti

Task a. Plot y1

To s bsolute

tolerance, 0 …5s as simulation time interval, relative tolerance of 10-6 and

he intial state 4,2 for integrator y1 and 0,3 for

e result for value y1 shown in figure 4.19. It took 0,0582s to

ons

imulate the system, using 1e-12 as min stepsize, 1e-3 as a

Dassl as the solver. Under t

integrator y2, th

simulate the task a.

Figure 4.19 Plot y1 (simulationX)

Task b Time Discontinuity and Final Value of y1(5.0)

The the final value are:

3

8

Table 4-6 The result of time discontinuity and final value y1(5.0) with vary

relative tolerance (simulationX)
-6 -10 10-14

time discontinuity and

t0 = 1,108 t1 = 2,130

t = 3,058 t = 4,079 2

y (5,0) = 5,791

 Relative Tolerance 10 10

t0 1,108 1,105 1,105
t1 2,130 2,130 2,130
t2 3,058 3,055 3,055

t3 4,079 4,077 4,077

y (5,0) 5,798 5,799 5,798

1

74

Task ontinuity and Final Value of y1(5.0) with Different

Relative Tolerance

ter of relative tolerance is varied between 10-6, 10-10 and 10-14

hows the result of

time discontinuity and final value y1(5.0) with vary relative tolerance.

Task

Changing the state 2 parameter values and switching condition will result in

a high frequent event of discontinuity for y . It took 0,434s to simulate task d.

Figure 4.20 shows plot y (task d)

The time discontinuity and the final value are:

t0 = 1,107

t1 = 1,122

t2 = 1,239

t3 = 1,250

t4 = 1,368

t5 = 1,382

t6 = 1,498

t7 = 1,511

t8 = 1,627

t9 = 1,638

t10 = 1,756

t11 = 1,770

t12 = 1,886

t13 = 1,897

t14 = 2.015

t15 = 2,029

t16 = 2,145

t17 = 2,159

t18 = 2,275

t19 = 2,284

t20 = 2,404

t21 = 2,415

t22 = 2,534

t23 = 2,547

t24 = 2,663

t25 = 2,677

t26 = 2,793

t27 = 2,803

t28 = 2,922

t29 = 2,935

t30 = 3,051

t31 = 3,062

t32 = 3,181

t33 = 3,194

t34 = 3,310

t35 = 3,321

t36 = 3,440

t37 = 3,453

t38 = 3,569

t39 = 3,583

t40 = 3,699

t41 = 3,709

t42 = 3,828

t43 = 3,842

t44 = 3,957

t45 = 3,968

t46 = 4,087

t47 = 4,100

t48 = 4,216

t49 = 4,227

t50 = 4,346

t51 = 4,359

t52 = 4,475

t53 = 4,486

t54 = 4,605

t55 = 4,615

t56 = 4,734

t57 = 4,745

t58 = 4,863

t59 = 4,874

t60 = 4,993

Y1(5,0) = 4,123

For all the calculation and simulation, using SimulationX version 2.0 on PC

Intel Pentium D, 2 x 2,66 GHz.

75

 c Time Disc

The parame

while still using 1e-12 as min stepsize. 1e-3 as absolute tolerance, 0 …5s as

simulation time interval and Dassl as the solver. Table 4-6 s

 d Frequent Events

1

1

76

Figure 4.20 plot y1 (task d) (simulationX)

5. Comparison 20: Electrical Model - Basics

5.1 Definition

Figure 5.1 Electrical circuit comparison 20

Electrical circuit comparison 20 is giv

are:

,1E-9 farad

r currents and capacitor voltages are chosen as system variables. By

using the Kirchhoff voltage and current laws we get the following differential

equations:

L*dx1/dt = U – x1*R1 - VD

C*dx2/dt = + x1 - ID – VD/Rmin

VD= R2*C*dx2/dt +x2

ID = ids*(eVD/VT-1)

Where: x1 = IL (the current of L)

 x2 = VC (the voltage of C)

 VD = voltage of diode

 ID = current of diode

 ids = saturation current of diode

 VT = thermal voltage of diode

77

en by figure 5.1. The component values

- U = 2*10kV* sin(2 *50Hz*t +) volt

- L = 3,18E-3 henry

- C = 11

- R1 = 0,1 ohm

- R2 = 5 ohm

- Rmin = 1E-4 ohm

The equations describing the circuit may be the state-equations where

inducto

5.2 Tasks

5.2.1 Steady States

Figure 5.2 Steady States

Equa

-Stat – x2

-Stat 1*R1 – (R2*C*dx2/dt) –x2

on+Rmin) –x2

-Stat – VD

C*dx2/dt = x1 – (1e-5*VD)

 VD>=0 L*dx1/dt = -U – x1*R1 – (1e-5*VD)

2]

5.2.2 Classical Simulation

The task are, plot x1 and x2 when switch S1 is time dependent switch is

Equation:S1 open: L*dx1/dt = U – x1*(R1+R2) – x2

hm

 78

A

C

Ron=1e-4 o
B

Steady states is given by figure 5.2. Simulate the system for each state.

tion:

e A: L*dx1/dt = U – x1*(R1+R2)

C*dx2/dt = x1

e B: L*dx1/dt = U – x

C*(R2+Ron+Rmin)*dx2/dt = x1*(R

e C: VD<0: L*dx1/dt = -U – x1*R1

C*dx2/dt = x1 – VD [1

given by figure 5.3.

C*dx2/dt = x1

 S1 close L*dx1/dt = U – x1*R1 – (R2*C*dx2/dt) –x2

C*(R2+Ron+Rmin)*dx2/dt = x1*(Ron+Rmin) –x2

79

5e-2 sec

Figure 5.3 Time dependent S1

5.2.3. Different Diode models

The tasks are simulate the system when diode is:

- ideal model with simplification (diode A)

Equ = -U – x1*R1 – VD

C*dx2/dt = x1– ID

 VD= R2*C*dx2/dt +x2

ID = ids*(eVD/VT-1) [13]

- diode modelled as exponential function (diode B)

Equation:

L*dx1/dt = -U – x1*R1 – VD

VD/ C*dx2/dt = x1 – id R

VD/VT > maxexp C*dx2/dt = x1 – ids*(emaxexp*(1+(VD/VT)-maxexp)-1)

+VD/R

VD= R2*C*dx2/dt +x2

where R = diode resistance

nt for linear continuation.

VD/VT-1) +VD/R

ation: L*dx1/dt

s*(eVD/VT-1) +VD/VT <= maxexp

 maxexp = maximum expone

- realistic with data from a set of characteristic curves (temperature

diode=diode C)

L*dx1/dt = -U – x1*R1 – VD

VD/VT <=maxexp C*dx2/dt = x1 – ids*(e

80

VD/VT > maxexpC*dx2/dt = x1 – ids*(emaxexp*(1+(VD/VT)-maxexp)-

1)+VD/R

 R2*C*dx2/dt +x2

where k =Boltzmann’s constant

5.2.4 Influence of Simulation Algorithms

The tasks are:

simulate the system when all switch on.

Equation: L*dx1/dt = -U – x1*R1 – VD

C*dx2/dt = x1– ID – VD/(Ron+Rmin)

 VD= R2*C*dx2/dt +x2

ID = ids*(eVD/V -1)

calculatio condition of the mass matrices for each case.

5.3. Design and Solutions

de15i for state C. Ode15i was used,

because of its speciality that it can solve the matrix in implicit form, where

ode2 al

equation in eded. The code of

diffe n

function d

b=[
dxdt=(A*x)+
end

VD=

VT= (k*T)/q

 T = absolute temperature (oK)

 q = magnitude of charge on an electron

-

T

- n of the

5.3.1 Matlab

5.3.1.1 Steady States

Design of Model

For design of the model using matlab algorithm ode23s to solve the system

numerically for state A and state B, o

3s can only solve the matrix in explicit form. For switching differenti

state C, solver’s state event finder was ne

re tial equation and events function for state C were written below:

xdt= deqx(t,x) %State A
global L C R1 R2
A=[-(R1+R2)/L -1/L; 1/C 0];

U(t)/L; 0];
b;

fun ti xdt= deqxB(t,x %Sta e B

-((R1*R2)+((R1+R

c on d) t
global L C R1 R2 Rmin Ron
A=[2)*(Ron+Rmin)))/(L*(R2+Ron+Rmin)) -
(Ron+Rmin)/
(Ron+Rm
b=[U(t)/L;];
dxdt=(A*x)+b;

global L C R1 R2 R
 VD<0

L)-((x(1)*R1)/L)-(((R2*C*xp(2))+x(2))/L)
((R2*C*xp(2))+x(2))*R)/C)]

global L C R1 R2 R

dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((((R2*C*xp(2))+x(2))*R)/L)
 (x(1)/C)-((((R2*C*xp(2))+x(2))+R)/C)]

terminal,direction] = events(t,x,xp)

isterminal = [1;1];

 built in function ode23s (odesolver) for

tate A and state B, ode15i for state C with the solver form:

Where xp0 = initial value for dx/dt

s, it took 29,635323s to simulate state A, 1,194620s

to simulate state B and 1,437591s to simulate state C.

8

(L*(R2+Ron+Rmin));
in)/(C*(R2+Ron+Rmin)) -1/(C*(R2+Ron+Rmin))];
 0

1

end

function dxdt = f1(t,x,xp) %State C

%
dxdt = [-(U(t)/
 (x(1)/C)-((

function dxdt = f2(t,x,xp)

% VD>=0

function [value,is
global R2 C d
value = ((R2*C*xp(2))+ x(2)) - [0;0];

direction = [0;d];

Simulation

To simulate the system, using matlab

s

[tsol,xsol]=ode23s('deq',[tstart tfinal],x0);

[t,x,te,xe,ie] = ode15i(@deq,[tstart tfinal],x0, xp0, options);

The result for plot x1 and x2 state A, state B and state C is shown in figure 5.4.

With time interval 0 … 0,2

82

Figure 5.4 Plot x1 and x2 steady states (matlab)

5.3.1.2 Classical Simulation

Design of Model

For design of the model using matlab algorithm ode23s to solve the system

numerically. Time dependent switch was built by matlab function-type m-

files. The code of time dependent switch, differential equation and ev nts

function were written below:

function T_out = T(t) %time dependent switch
persistent TRF

e

StateA plot x1

State A plot x2

State B plot x1

State B plot x2

State C plot x1

State C plot x2

TRF=5e-3;
k=((1e+8)-(1e-4))/TRF;
t_red=mod(t, (1e-1));
if(0<=t_red)&&(t_red<TRF)
 T_out=(1e-4)+k*t_red;
elseif(TRF<=t_red)&&(t_red<(5e-2))
 T_out=1e+8;
elseif((5e-2)<=t_red)&&(t_red<((5e-2)+TRF))
 T_out=(1e+8)-k*(t_red-(5e-2));
elseif((5e-2
 T_out=1e-

 T_out=-5;

function dxdt1= deqtaskb1(t,x) %S1 open

(x(2)*(Ron+Rmin)/(L*(R2+Ron+Rmin)))+(U(t)/L);

function [value,isterminal,direction] = events(t,x)

value = T(t)- p + [0;0];
isterminal = [1;1];
dir

Simulation

To simulate the system, using matlab built in function ode23s with the solver

form:

[t,x,te,xe,ie] = ode23s(@deq,[tstart tfinal],x0, options);

The result for plot x1 and x2 is shown in figure 5.5. With time interval 0

0,3s, it took 50.511835s to simulate this task.

Figure 5.5 Plot x1 and x2 classical simulation (matlab)

)+TRF<=t_red)&&(t_red<(1e-1))
4;

else

end

global L C R1 R2
dxdt1(1,1) = (-x(1)*(R1+R2)/L)-(x(2)/L)+(U(t)/L);
dxdt1(2,1) = (x(1)/C);
function dxdt2= deqtaskb2(t,x) %S1 close
global L C R1 R2 Rmin Ron
dxdt2(1,1) = (-x(1)*((R1*R2)+((R1+R2)*(Ron+Rmin)))/(L*(R2+Ron+Rmin)))-

dxdt2(2,1) = (x(1)*(Ron+Rmin)/(C*(R2+Ron+Rmin)))-(x(2)/(C*(R2+Ron+Rmin)));

global p

ection = [0;0];

 …

plot x2

83

plot x1

5.3.1.3 Different Diode Models

Design of Model

For design of the model using matlab algorithm ode15i to solve the system

numerically in implicit form. The function for diode B and diode C are

simila ferent is in thermal voltage VT, where in diode B, VT is a

variable and in diode C, VT is a function. The code of differential equation,

events function and thermal voltage VT were written below:

function dxdt = f(t,x,xp) %diode A
global L C R1 R2 Rmin Ron ids VT R
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L)
 (x(1)/C)-((ids*(exp(((R2*C*xp(2))-x(2))/VT)-1))/C)];

function dxdt = f1(t,x,xp) %diode B & C, where in B VT=0.04
global L C R1 R2 Rmin Ron ids VT R in C VT=VT(t)
%VD/VT maxexp
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L)
 (x(1)/C)-((ids*(exp(((R2*C*xp(2))-x(2))/VT)-1))/C)+(((R2*C*xp(2))-x(2))/(R*C))]

function dxdt = f2(t,x,xp)
g R2 Rmin Ron ids VT maxexp R
%VD/VT>maxexp
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L)
(x(1 (exp(maxexp*(1+(((R2*C*xp(2)) + x(2)/VT))-maxexp))-1))/C)-
(((R2*C*xp(2))-x(2))/(R*C))]

function [value,isterminal,direction] = events(t,x,xp)
global R2 C VT maxexp

isterminal = [1;1];
direction = [0;0];

function VTout = VT(t) %Thermal Voltage function for diode C
VTout= ((30 * sin(2*pi*100*t))+310)*8.61734681e-5;
End

Simulation

To simulate the system, using matlab built in function ode1 i

solver form:

[tsol,xsol]=ode15i(@deq,[tstart tfinal],x0, xp0); %for diode A

[t,x,te,xe,ie] = ode15i(@deq,[tstart tfinal],x0, xp0, options); %for diode B

The result for plot x1 and x2 diode A, diode B and diode C is shown in figure

5.6. With time interval 0 … 0,2s, it took 0,861165s to simulate diode A,

1,016539s to simulate diode B and 0,958469s to simulate diode C.

84

r, the dif

lobal L C R1

)/C)-((ids*

value = (((R2*C*xp(2))+ x(2))/VT) - maxexp + [0;0];

5 with the

 & C

Figure 5.6 Plot x1 and x2 different diode models (matlab)

5.3.1.4 Influence of Simulation Algorithms

Design of Model

For design of the model using matlab algorithm ode15i to solve th

t,x,xp)
global L C R1 R2 Rmin Ron ids VT
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L)

e

system numerically in implicit form. The code of differential equation were

written below:

function dxdt = f(

DiodeA plot x1 Diode A plot x2

Diode B plot x1

Diode B plot x2

Diode C plot x2

85

Diode C plot x1

(x(1)/C)-((ids*(exp(((R2*C*xp(2))-x(2))/VT)-1))/C)-((R2*C*xp(2))/(C*(Ron+Rmin)))-

Simulation

To simulate the system, using ma

(x(2)/(C*(Ron+Rmin)))]

tlab built in function ode15i with the solver

Figure 5.7 Plot x1 and x2 influence of simulation algorithms (matlab)

Using matlab build in function con for calculation of condition of

massmatrices. This t

ondition of system matrix from state A, state B and

calculate the condition. The result are:

- State A: condition = 143896,5027149321, 1-norm and infinite-norm

- State B: condition = 287254,3405559489, 1-norm and infinite-norm

- Task B: S1 open: condition = 143896,5027149321, 1-norm and

infinite-norm

 condition = 143891,40289569343, 2-norm

form:

[tsol,xsol]=ode15i(@deq,[tstart tfinal],x0, xp0);

The result for plot x1 and x2 is shown in figure 5.7. With time interval 0 …

0,2s, it took 0,859261s to simulate this task.

plot x2

88

86

plot x1

d()

ask can only executed if the system matrix in explicit

form, therefore only the c

task b(classical simulation) that can be calculated. It took 0,189968s to

 condition = 143891,40289569343, 2-norm

 condition = 287196,9122644086, 2-norm

- S1 close: condition = 287254,3405559489, 1-norm and

infinite-norm

 condition = 287196,9122644086, 2-norm

For whole calculation and simulation, using Matlab/Simulink version 7.4

R2007a on PC Intel Pentium D, 2 x 2,66 GHz.

5.3.2 Simulink

5.3.2.1 Hybrid Mod

5.3.2.1.1 Steady States

For design of the model using only gain, add/substract and integrator block

for differential equation and sine source block for the sinus voltage. Switc

block was used with threshold 0 and condition control signal >= threshold

for switching differential equation in state C. The model for state A, state B

and state C was shown in figure 5.8.

Simulation

To simulate the system, using solver ode23 (Bogacki-Shampine) for state A

and ode23s (stiff/Mod.Rosenbrock) for state B and state C, 1e-6 for relative

tolerance and 0 … 0,2 as simulation interval. Plot x1 and x2 for each state is

shown by figure 5.9. it took 1s to simulate state A, 0,5s to simulate state B and

19,5s to simulate state C.

87

el

Design of Model

h

Figure 5.8 Model of the system steady states (simulink)

State C

88

State A

State B

Figure l a steady states (s 5.9 P ot x1 nd x2 imulink)

x1

State A

x2

x1

State B

x2

x1

State C

89

x2

5.3.2.1.2 Classical Simulation

k

for differential equation and sine source block for the sinus voltage. Time

dependent switch was built by embedded matlab m code and switch block

with threshold 1e-4 and condition control signal > threshold for switching

differential equation in this model. The model for the system was shown in

figure 5.10.

Design of Model

For design of the model using only gain, add/substract and integrator bloc

Fig k)

ure 5.10 Model of the system classical simulation (simulin

Figure 5.11 Plot x1 and x2 classical simulation (simulink)

x1

x2

90

Simulation

To simulate the system, using solver ode23s (stiff/Mod.Rosenbrock), 1e-6 for

relative tolerance and 0 … 0,3 as simulation interval. Plot x1 and x2 for this

task is shown by figure 5.11. it took 5,5s to simulate this task.

Diode C

Figure 5.12 The model of the system different diode modes (simulink)

Diode A

Diode B

91

Figure 5.13 Plot x1 and x2 different diode models (simulink)

x1

x2

x1

Diode B

x2

x1

x2

92

Diode A

Diode C

5.3.2.1.3 Different Diode Models

Design of Model

For design of the model for diode A using only gain, add/substract and

) for switching differential equation in

diod B, with changing 1 gain

bloc define the function of VT

(VD/ (t)). T as shown in figure

5.12.

Simulation

To simulate the system, using solver ode45 (Dorman-Prince), 1e-6 for

relative tolerance and 0 … 0,2 as simulation interval. Plot x1 and x2 for this

task is shown by figure 5.13. it took 153s to simulate diode A, .183s to

simulate diode B and 213s to simulate diode C.

integrator block for differential equation , sine source block for the sinus

voltage and math function block for exponential function. For diode B, the

design is similar with diode A but with addition switch block (threshold 15,

condition: control signal > threshold

e B. For diode C, the design based on diode

k (VD/VT) with 1 subsystem block to

VT he model for diode A, diode B and diode C w

Figure 5.14 Model of the system influence of simulation algorithms (simulink)

93

5.3.2.1.4 Influence of Simulation Algorithms

Design of Model

For design of the model for this task using only gain, add/substract and

integrator block for differential equation , sine source block for the sinus

voltage and math function block for exponential function. The model of the

system was shown in figure 5.14.

Simulation

To simulate the system, using solver ode45 (Dorman-Prince), 1e-5 for

relative tolerance and 0 … 0,2 as simulation interval. Plot x1 and x2 for this

task is shown by figure 5.15. it took 255s to simulate this task.

For calculation of condition of massmatrices, can’t be done by simulink,

because simulink didn’t have block function cond() in their library, therefore

no calculation of condition for simulink.

For whole calculation and simulation, using Matlab/Simulink version 7.4

R2007a on PC Intel Pentium D, 2 x 2,66 GHz.

Figure 5.15 Plot x1 and x2 influence of simulation algorithms (simulink)

5.3.2.2 Stateflow

Looking from all the equation comparison 20 above, only state C, task B

(classical simulation), diode B and diode C that can be modelled in stateflow

mode, because they have switching differential equation in their equation.

x2

94

x1

But stateflow have restriction in their system, they don’t allowed any value

from algebraic loop as an input or event trigger, therefore only task

B(classical simulation) that can be simulated in stateflow mode in simulink,

because only task B that didn’t have algebraic loop in its model.

Figure 5.16 Model of the system classical simulation (stateflow)

5.3.2.2.1Classical Simulation

Design of Model

For d

ial equation and sine source block for the sinus voltage. Time

stateflow

model

95

esign of the model using only gain, add/substract and integrator block

for different

dependent switch was built by embedded matlab m code, stateflow block

was used to send a control signal to the switch block(threshold 1e-4 and

condition control signal > threshold) fo switching differential equation in

was shown in figure 5.16.

r

this model. The model for the system

Simulation

To simulate the system, using solver ode45 (Dorman-Prince), 1e-5 for

relative tolerance and 0 … 0,2 as simulation interval. Plot x1 and x2 for this

task is shown by figure 5.17. it took 1,5s to simulate this task.

For whole calculation and simulation, using Matlab/Simulink version 7.4

R2007a on PC Intel Pentium D, 2 x 2,66 GHz.

Figure 5.17 Plot x1 and x2 classical simulation (stateflow)

5.3.3 Dymola

5.3.3.1 Hybrid Model

5.3.3.1.1 Steady States

Design of Model

For design of the model using only gain, add/substract and integrator block

for differential equation and sine source block for the sinus voltage. Switch

block was controlled by less (<0) block for switching differential equation in

state C. The model for state A, state B and state C was shown in figure 5.18.

x1

x2

96

Simula

To simulate the system, using solver DASSL, 1000 as numbers of interval, 1e-

 0 … 0,2 as simulation interval. Plot x1 and x2 for

e 5.19. it took 0,046s to simulate state A, 0,031s to

d 0,234s to simulate state C.

tion

4 for relative tolerance and

each state is shown by figur

simulate state B an

Figure 5.18 Model of the system steady states (dymola)

Sta

97

State A

te B

State C

Figure 5.19 Plot x1 and x2 steady states (dymola)

5.3.2.1.2 Classical Simulation

Design of Model

For design of the model using only gain, add/substract and integrator block

for differential equation and sine source block for the sinus voltage. Time

State A

x2

x1

State B

State C

x2

98

x1

x2

x1

dependent switch was built by switch block, less equal block and trapezoid

source with parameter listed below:

- Amplitude = 1e+8 - Offset = 1e-4

- Rising = 5e-3 - Falling = 5e-3

- Width = 5e-2 - Period = 1e-1

Switch block was controlled by less equal(0) block for switching differential

equation in this model. The model for the system was shown in figure 5.20.

Figure 5.20 Model of the system classical simulation (dymola)

 x2 classicaFigure 5.21 Plot x1 and l simulation (dymola)

99

x1

x2

Simulation

To simulate the system, using solver DASSL, 1000 as numbers of interval, 1e-

4 for relative tolerance and 0 … 0,3 as simulation interval. Plot x1 and x2 for

this task is shown by figure 5.21. It took 0,203s to simulate this task.

Figure 5.22 The model of the system different diode models (dymola)

Diode C

Diode B

100

Diode A

Figure 5.23 Plot x1 and x2 different diode models (dymola)

5.3.2.1.3 Different Diode Models

Design of Model

For design of the model for diode A using only gain, add/substract and

lock for differential equation , sine source block for the sinus

x1

Diode C

x2

x1

Diode B

x2

x1

Diode A

101

x2

integrator b

voltage and exponent block for exponential function. For diode B, the design

is similar with diode A but with addition switch block and greater

block(sending Boolean signal to switch block) for switching differential

equation in diode B. For diode C, on diode B, with

he model for diode A, diode B and diode C was shown in

ver DASSL, 1000 as numbers of interval, 1e-

8 for rval. Plot x1 and x2 for

this t mulate diode A, .5,42s to

simu

the design based

changing 1 gain block (VD/VT) with 1 subsystem block to define the function

of VT (VD/VT(t)). T

figure 5.22.

Simulation

To simulate the system, using sol

 relative tolerance and 0 … 0,2 as simulation inte

ask is shown by figure 5.23. it took 2,66s to si

late diode B and 6,14s to simulate diode C.

Figure 5.24 Model of the system influence of simulation algorithms (dymola)

5.3.2.1.4 Influence of Simulation Algorithms

esign of Model

ly gain, add/substract and

or differential equation , sine source block for the sinus

102

D

For design of the model for this task using on

integrator block f

voltage and exponent block for exponential function. The model of the

system was shown in figure 5.24.

Simulation

To simulate the system, using solver DASSL, 1000 as numbers of interval, 1e-

8 for terval. Plot x1 and x2 for

this task is shown by figure 5.25. it took 0,141s to simulate this task.

For calculation of condition of massmatrices, can’t be done directly by

dymola, because dymola didn’t have block function cond(), but dymola do

have norm and inverse function in their library, therefore the calculation of

condition based on equation below.

Condition = norm(A,p) * norm(inv(A),p) [14]

Where A= system matrix (massmatrices)

 p = norm condition number (1, 2 or infinite)

 relative tolerance and 0 … 0,2 as simulation in

Figure 5.25 Plot x1 and x2 influence of simulation algorithms (dymola)

As written before, only equation in exp e condition of

mass state A, state B and task B

(clas n) that qualified for this task.

The result: the calculation of condition of massmatrices can’t be done by

dym ke inverse matrix for system matrix state

A, state B and task B (too stiff).

x1

103

x2

licit form that th

matrices can be calculated, therefore only

sical simulatio

ola, because dymola can’t ma

For whole calculation and simulation, using Dymola version 6.0b on PC Intel

 x 2,66 GHz.

ode. This time,

tategraph didn’t have any restriction like stateflow in simulink.

5.3.3.2.1 Steady States

Design of Model

For design of the model using only gain, add/substract and integrator block

for differential equation and sine source block for the sinus voltage. Switch

block was controlled by stategraph block for switching differential equation

in state C. Stategraph get input signal from less (<0) block an r equal

block (0) to define which state is active is. The model for state C was shown

in figure 5.26.

Pentium D, 2

5.3.3.2 Stategraph Model

As written before in stateflow, only state C, task B (classical simulation),

diode B and diode C that can be modelled in stategraph m

s

d greate

Figure 5.26 Model of the system steady states (stategraph)

104

Figure 5.27 Plot x1 and x2 steady states (dymola stategraph)

 is shown by figure 5.27. It took 0,234s to simulate state C.

5.3.2.2.2 Classical Simulation

Design of Model

For design of the model using only gain, add/substract and integrator

block for differential equation and sine source block for the sinus voltage.

Time dependent switch was built by switch block, less equal block and

trapezoid source with parameter listed below:

- Amplitude = 1e+8 - Offset = 1e-4

- Rising = 5e-3 - Falling = 5e-3

- Width = 5e-2 - Period = 1e-1

Switch block was controlled by stategraph block for switching differential

t signal from less equal (1e-4) block

x1

x2

105

Simulation

To simulate the system, using solver DASSL, 1000 as numbers of

interval, 1e-4 for relative tolerance and 0 … 0,2 as simulation interval. Plot x1

and x2

equation in state C. Stategraph get inpu

and greater block (>1e-4) to define which state is active is. The model for the

system was shown in figure 5.28.

Figure 5.28 Model of the system classical simulation (stategraph)

Figure 5.29 The model of the system different diode modes (stategraph)

Diode C

Diode B

106

Simulation

To simulate the system, using solver DASSL, 1000 as numbers of interval, 1e-

 interval. Plot x1 and x2 for

y figure 5.21. It took 0,235s to simulate this task.

l

For design of the model for diode B using only gain, add/substract and

integ urce block for the sinus

voltage and exponent block for exponential function. Switch block was

controlled by stategraph block for switching differential equation in diode B.

Stategraph get input signal from less equal (<=15) block and greater equal

block (>15) to define which state is active is. For diode C, the design based

on diode B, with changing 1 gain block (VD/VT) with 1 subsystem block to

define the function of VT (VD/VT(t)). The model for diode B and diode C was

shown in figure 5.29.

Simulation

To simulate the system, using solver DASSL, 1000 as numbers interval, 1e-

8 fo or

own by figure 5.30. it took.5,08s to simulate diode B and 6,11s to

107

4 for relative tolerance and 0 … 0,3 as simulation

this task is shown b

5.3.2.2.3 Different Diode Models

Design of Mode

rator block for differential equation , sine so

of

r relative tolerance and 0 … 0,2 as simulation interval. Plot x1 and x2 f

this task is sh

simulate diode C.

For whole calculation and simulation, using Dymola version 6.0b on PC Intel

Pentium D, 2 x 2,66 GHz.

Figure 5.30 Plot x1 and x2 different diode models (stategraph)

5.3.3.3 Electrical Model

5.3.3.3.1 Steady States

odel

 figure 5.31.

x1

Diode C

x2

x1

Diode B

x2

108

Design of M

For design of the model based on figure 5.2, using basic elec

resistor, capacitor, inductor and sine voltage source for state A and state B.

Using diode ideal for state C. The model for state A, state B and state C was

shown in

tric

Figure 5.31 Model of the system steady states (dymola electrical)

tate is shown by figure 5.19. it took 0,031s to simulate state A, 0,031s to

simulate state B and 0,188s to simulate state C.

al Simulation

ource with parameter listed below:

State B

State C

109

State A

Simulation

To simulate the system, using solver DASSL, 1000 as numbers of interval, 1e-

4 for relative tolerance and 0 … 0,2 as simulation interval. Plot x1 and x2 for

each s

5.3.2.3.2 Classic

Design of Model

For design of the model using basic electric resistor, capacitor, inductor and

sine voltage source Time dependent switch was built by ideal closing switch

block, less equal block and trapezoid s

- Amplitude = 1e+8 - Offset = 1e-4

- Rising = 5e-3 - Falling = 5e-3

 = 5e-2 - Period = 1e-1 - Width

Ideal closing switch block was controlled by less equal(0) block for

switching differential equation in this model. The model for the system was

shown in figure 5.32.

Figure 5.32 Model of the system classical simulation (dymola electrical

Simulation

To simulate the system

)

, using solver DASSL, 1000 as numbers of interval, 1e-

4 for relative tolerance and 0 … 0,3 as simulation interval. Plot x1 and x2 for

this task is shown by figure 5.21. It took 0,703s to simulate this task.

5.3.2.3.3 Different Diode Models

Design of Model

For design of the model, based on state C by changing the type of diode. For

diode A using ideal diode, for diode B using semiconductor diode and for

diode C, using temperature diod ribed

temperature as input for heating diode. The model for diode A is the same as

state C, therefore the task for diode A won’t be needed again. The model for

diode B and diode C was shown in figure 5.33.

110

e. Sinus function and presc

Figure 5.33 The model of the system different diode modes (dymola

electrical)

Figure 5.34 Plot x1 and x2 different diode models (dymola electrical)

x2

x1

Diode C

x1

Diode B

x2

Diode C

Diode B

111

Simulation

er DASSL, 1000 as numbers of interval, 1e-

ance and 0 … 0,2 as simulation interval. Plot x1 and x2 for

For design of the model based on figure 5.1 with all the switch closed and

using e system was shown in figure 5.35.

To simulate the system, using solv

8 for relative toler

this task is shown by figure 5.34. it took.4,08s to simulate diode B and 4,83s to

simulate diode C.

5.3.2.1.4 Influence of Simulation Algorithms

Design of Model

 ideal diode. The model of th

Figure 5.35 Model of the system influence of simulation algorithms (dymola

electrical

Figure 5.36 Plot x1 and x2 influence of simulation algorithm

x2

s (dymola

electrical

x1

112

Simulation

To simulate the system, using solver DASSL, 1000 as numbers of interval, 1e-

8 for relative tolerance and 0 … 0,2 as simulation interval. Plot x1 and x2 for

this task is shown by figure 5.36. it took 0,094s to simulate this task.

For whole calculation and simulation, using Dymola version 6.0b on PC Intel

Pentium

 States

C*(R2+Ron+Rmin)*der(x2)= x1*(Ron+Rmin) - x2;

 C
;

 if VDr< 0 then
 L*der(x1)= -x1*R1 - VDr - U;
 C*der(x2)= x1 - VDr*1e-5;
 else
 L*der(x1)= -x1*R1 - VDr*1e-5 - U;
 C*der(x2)= x1 - VDr;
 end if;

Simulation

To simulate the system, using solver DASSL, 1000 as numbers of interval, 1e-

4 for relative tolerance and 0 … 0,2 as simulation interval. Plot x1 and x2 for

each state is shown by figure 5.19. it took 0,031s to simulate state A, 0,031s to

simulate state B and 0,203s to simulate state C.

113

 D, 2 x 2,66 GHz.

5.3.3.4 Modelica Text Mode

5.3.3.4.1 Steady

Design of Model

For design of the model, using the exact differential equation with modelica

function der(x) as dx/dt in the equation. The equation for state A, state B and

state C was written below:

equation //State A
L*der(x1)= -x1*(R1+R2) - x2 + U;
C*der(x2)= x1;

equation //State B
L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 + U;

equation //State
VDr= (R2*C*der(x2)) + x2

5.3.2.4.2 Classical Simulation

Design of Model

For design of the model, using the exact differential equation with modelica

function der(x) as dx/dt in the equation. Time dependent switch using

algorithm below:

equation
t_ time, 1E-1);
k=((1e+8)-(1e-4))/TRF;
algorithm
if
 (0<=t_red) and (t_red<TRF) then
 Trap:=(1e-4) + k*t_red;
elseif
 (TRF<=t_red) and (t_red<(5e-2)) then
 Trap:=1e+8;

 ((5e-2)<=t_red) and (t_red<((5e-2)+TRF)) then
 Trap:=(1e+8) - k*(t_red - (5e-2));
elseif
 ((5e-2)+TRF<=t_red) and (t_red<(1e-1)) then
 Trap:=1e-4;
else
 Trap:=-5;
end if;

Simulation

To simulate the system, using solver DASSL, 1000 as numbers of interval, 1e-

4 for relative tolerance and 0 … 0,3 as simulation interval. Plot x1 and x2 for

this task is shown by figure 5.21. It took 0,219s to simulate this task.

5.3.2.4.3 Different Diode Models

Design of Model

For design of the model, using the exact differential equation with modelica

function der(x) as dx/dt in the equation. The equation for diode A, diode B

and diode C was written below:

equation //Diode A
L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 - U;
 C*der(x2)= x1 - ids*(exp(((R2*C*der(x2))+x2)/VT)-1);

equation //Diode B
L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 - U;
 VD= (R2*C*der(x2)) + x2;
 C

114

red = mod(

elseif

TR = VD/VT;

 if CTR > maxexp then
 C*der(x2)= x1 - ids*(exp(maxexp*(1+CTR-maxexp))-1) + (VD/R);

 CTR = VD/VT;

 C*der(x2)= x1 - ids*(exp(maxexp*(1+CTR-maxexp))-1) + (VD/R);
 else

ion interval. Plot x1 and x2 for

this task is shown by figure 5.23. it took 2,5s to simulate diode A, .3,77s to

simul

5.3.2.4.4 Influence of Simulation Algorithms

odel

g solver DASSL, 1000 as numbers of interval, 1e-

8 for

For whole calculation and simulation, using Dymola version 6.0b on PC Intel

Pentium D, 2 x 2,66 GHz.

115

 else
 C*der(x2)= x1 - ids*(exp(CTR)-1) + (VD/R);
 end if;

equation //Diode C
L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 - U;
 VD= (R2*C*der(x2)) + x2;
 VT= ((30 * sin(2*3.14159*100*time))+310)*8.61734681e-5;

 if CTR > maxexp then

 C*der(x2)= x1 - ids*(exp(CTR)-1) + (VD/R);
 end if;

Simulation

To simulate the system, using solver DASSL, 1000 as numbers of interval, 1e-

8 for relative tolerance and 0 … 0,2 as simulat

ate diode B and 4,39s to simulate diode C.

Design of M

For design of the model, using the exact differential equation with modelica

function der(x) as dx/dt in the equation. The equation for this task was

written below:

equation
L*der(x1)= -x1*R1 -VD - x2 - U;
C*der(x2)= x1 - ids*(exp(VD/VT)-1) - (VD/(Ron+Rmin));

Simulation

To simulate the system, usin

 relative tolerance and 0 … 0,2 as simulation interval. Plot x1 and x2 for

this task is shown by figure 5.25. it took 0,125s to simulate this task.

5.3.4 Mosilab

5.3.4.1 Modelica Text Mode

5.3.4.1.1 Steady States

Design of Model

F

function der(x) as dx/dt in the equation. The equation for state A, state B and

//State A

Dr= (R2*C*der(x2)) + x2;
VDr< 0 then

)= -x1*R1 - VDr - U;
 C*der(x2)= x1 - VDr*1e-5;

 min step size, 0,08

as max step size, 1.0 for relative tolerance and 0 … 0,2 as simulation interval.

Plot x1 and x2 for each state is shown by figure 5.37. It took 1s to simulate

state A, 0,2s to simulate state B and 13,4s to simulate state C.

116

or design of the model, using the exact differential equation with modelica

state C was written below:

equation
L*der(x1)= -x1*(R1+R2) - x2 + U;
C*der(x2)= x1;

equation //State B
L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 + U;
C*(R2+Ron+Rmin)*der(x2)= x1*(Ron+Rmin) - x2;

equation //State C
V
 if
 L*der(x1

 else
 L*der(x1)= -x1*R1 - VDr*1e-5 - U;
 C*der(x2)= x1 - VDr;
 end if;

Simulation

To simulate the system, using solver DASSL, 1e-6 as

Figure 5.37 Plot x1 and x2 steady states (mosilab)

x1

State C

x1

State B

x2

x1

State A

x2

117

x2

5.3.4.1.2 Classical Simulation

Design of Model

For design of the model, using the exact differential equation with modelica

function der(x) as dx/dt in the equation. Time dependent switch using

algorithm below:

equation
t_red = mod(time, 1E-1);
k=((1e+8)-(1e-4))/TRF;
algorithm
if
 (0<=t_red) and (t_red<TRF) then
 Trap:=(1e-4) + k*t_red;
elseif
 (TRF<=t_red) and (t_red<(5e-2)) then
 Trap:=1e+8;
elseif
 ((5e-2)<=t_red) and (t_red<((5e-2)+TRF)) then
 Trap:=(1e+8) - k*(t_red - (5e-2));

 Trap:=1e-4;
else
 Trap:=-5;
end if;

Simulation

To simulate the system, using solver DASSL, 1e-6 as min step size, 0,08 as

max step size, 1.0 for relative tolerance and 0 … 0,3 as simulation interval.

Plo is

elseif
 ((5e-2)+TRF<=t_red) and (t_red<(1e-1)) then

t x1 and x2 for this task is shown by figure 5.38. It took 9,1s to simulate th

task.

Figure 5.38 Plot x1 and x2 classical simulation (mosilab)

x2

118

x1

5.3.4.1.3 Different Diode Models

Desig

For design of the model, using rential equation with modelica

function der(x) as dx/dt in the equation. The equation for diode A, diode B

 was written below:

 if CTR > maxexp then
xp*(1+CTR-maxexp))-1) + (VD/R);

C*der(x2)= x1 - ids*(exp(CTR)-1) + (VD/R);
 end if;

equation //Diode C
L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 - U;
 VD= (R2*C*der(x2)) + x2;
 VT= ((30 * sin(2*3.14159*100*time))+310)*8.61734681e-5;
 CTR = VD/VT;
 if CTR > maxexp then
 C*der(x2)= x1 - ids*(exp(maxexp*(1+CTR-maxexp))-1) + (VD/R);
 else

Simulation

To simulate the system, using solver DASSL, 1e-8 as min step size, 1e-5

as max step size, 1e-8 for relative tolerance and 0 … 0,2 as simulation

interval. Plot x1 and x2 for this task is shown by figure 5.39. It took 47,9s to

simulate diode A, .100,9s to simulate diode B and 110,7s to simulate diode C.

119

n of Model

the exact diffe

and diode C

equation //Diode A
L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 - U;
 C*der(x2)= x1 - ids*(exp(((R2*C*der(x2))+x2)/VT)-1);

equation //Diode B
L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 - U;
 VD= (R2*C*der(x2)) + x2;
 CTR = VD/VT;

 C*der(x2)= x1 - ids*(exp(maxe
 else

 C*der(x2)= x1 - ids*(exp(CTR)-1) + (VD/R);
 end if;

Figure 5.39 Plot x1 and x2 different diode models (mosilab)

x1

Diode A

x1

Diode B

x2

x1

120

x2

Diode C

x2

5.3.4

Design o

For design of the model, using the exact differential equation with modelica

function der(x) as dx/dt in the equation. The equation for this task was

x1*R1 -VD - x2 - U;
C*der(x2)= x1 - ids*(exp(VD/VT)-1) - (VD/(Ron+Rmin));

.1.4 Influence of Simulation Algorithms

f Model

written below:

equation
L*der(x1)= -

Figure 5.40 Plot x1 and x2 influence of dimulation algorithms (mosilab)

imul ion

o sim ate the sy m, using solve ASSL, 1000 a bers of interval, 1e-

 0,2 as simulation interval. Plot x1 and x2 for

this ta

For the calculation of condition of massmatrices can’t be done by mosilab,

because mosilab didn’t have cond(), norm() and inv() in their core system.

d simulation, using Mosilab version 3.1 on Notebook

5.3.4.2 Statechart

he same as previous, only state C, task B, diode B and diode C that can

be simulated with statechart mode.

x1

121

x2

S at

T ul ste r D s num

8 for relative tolerance and 0 …

sk is shown by figure 5.40. it took 9,7s to simulate this task.

For whole calculation an

Dell Latitude D630 Intel Centrino Duo.

T

5.3

Design of Model

For design of the model, using the exact differential equation with modelica

io (x) t in the e The statech stat

written below:

Equ n //s on
s1 = if VDr >= else false;
s2 = if VDr < en true else false;
state t //statechart a m
 st abS ealc C extends State;
 annotation(extent=[-103, 46,-
 te Sta anno (e nt=[- 60; - 6]);
 St Stat o (extent=[-5 59; -38,55]);
 State Initial (isInitial=true) annotation(extent=[-85,71; -83,69]);

 end t
 trans
 A:= -
 end tran ion(points=[-79,56; -51,56]);
 transition State2->State1 event s1 action

osilabSC_idealchartSC;

.4.2.1 Steady States

funct n der as dx/d quation. art for e C was

atio tatechart equati
 0 then true

0 th
char lgorith

ate C20Mosil C_id hartS
103; 46]);

 Sta
ate

te1
e2 ann

tation
tation

xte 92,
1,

79,5

 transition Initial->State1 action
 A:= 1;

ransition annotation(points=[-84,69; -84,60]);
ition State1->State2 event s2 action
1;

sition annotat

 A:= 1;
 end transition annotation(points=[-51,57; -79,57]);
 end C20M

Figure 5.41 Plot x1 and x2 steady states (mosilab statechart)

SSL, 1e-6 as min step size, 0,08 as

x1

x2

122

Simulation

To simulate the system, using solver DA

max step size, 1.0 for relative tolerance and 0 … 0,2 as simulation interval.

Plot x1 and x2 for each state is shown by figure 5.41. It took 14,1s to simulate

state C

5.3.4.2.2 Classical Simulation

er(x) as dx/dt in the equation. The statechart algorithm was the

sam as

written below:

equation
s1 = if Trap>1 ue else false;
s2 = if Trap<= true else false;if

.

Design of Model

For design of the model, using the exact differential equation with modelica

function d

e as previous in steady states. The statechart equation for this task w

e-4 then tr
1e-4 then

Figure 5.42 Plot x1 and x2 different diode models (mosilab statechart)

x1

Diode B

x1

Diode C

x2

123

x2

Simulation

To simulate the system, using solver DASSL, 1e-6 as min step size, 0,08 as

max s

Plot x1 an hown by figure 5.38. It took 8,8s to simulate this

task.

5.3.4.2.3 Different Diode Models

Design of Model

For design of the model, using the exact differential equation with modelica

function der(x) as dx/dt in the equa rithm was the

same as previous in steady states. The statechart equation for diode B and

diode C was written below:

equation
s2 = i
s1 = if CTR<=maxexp then true else false;

Simulation

To simulate the syst 1e-8 as min step size, 1e-5 as

max step size, 1e-8 for rela l.

Plot x1 and x2 for this task is shown by

diode B and 116,8s to

For whole calculation and simulation, usi

Dell Latitude D630 Intel Centrino Duo.

5.3.5 Sim

5.3.5.1 Hybrid Mod

5.3.5.1.1 Steady States

Design of Model

For design of the model using only gain

for differential equation and signal generator for the sinus voltage. Relational

changeover switch was controlled by

124

tep size, 1.0 for relative tolerance and 0 … 0,3 as simulation interval.

d x2 for this task is s

tion. The statechart algo

 //Diode B and C
f CTR>maxexp then true else false;

em, using solver DASSL,

tive tolerance and 0 … 0,2 as simulation interva

 figure 5.42. It took.105,2s to simulate

 simulate diode C.

ng Mosilab version 3.1 on Notebook

ulationX

el

, add/substract and integrator block

 2 signal (s1<s2) for switching

differential equation in state C. The model for state A, state B and state C was

shown in figure 5.43.

Figure 5.43 Model of the system steady states (simulationX)

State A

State B

State C

125

Figure 5.44 Plot x1 and x2 steady states (simulationX)

Simulation

To simulate the system, using solver BDF-method, 1e-14 as min step size, 1e-

8 as min output step size, 1e-5 for absolute tolerance, 1e-5 for relative

tolerance and 0 … 0,2 as simulation interval. Plot x1 and x2 for each state is

shown by figure 5.44. it took 0,7020s to simulate state A, 0,11181s to simulate

state B and 9,1124s to simulate state C.

State A

x2

x1

State B

x2

126

x1

x2

x1

State C

5.3.5.1.2 Classical Simulation

del

e model using only gain, add/substract and integrator block

tion and signal generator for the sinus voltage. Time

odelica code and

 if

t_red - (5e-2));
 elseif

equation

(time, 1E-1);
 k=((1e+8)-(1e-4))/TRF;

sh

S

e-8 as min output step size, 1e-5 for absolute tolerance, 1e-5 for

elative tolerance and 0 … 0,3 as simulation interval. Plot x1 and x2 for this

 figure 5.46. It took 7,7191s to simulate this task.

127

Design of Mo

For design of th

for differential equa

dependent switch was built by type designer block using m

relational changeover switch block. Modelica code was written below:

algorithm

 (0<=t_red) and (t_red<TRF) then
 Trap:=(1e-4) + k*t_red;
 elseif
 (TRF<=t_red) and (t_red<(5e-2)) then
 Trap:=1e+8;
 elseif
 ((5e-2)<=t_red) and (t_red<((5e-2)+TRF)) then
 Trap:=(1e+8) - k*(

 ((5e-2)+TRF<=t_red) and (t_red<(1e-1)) then
 Trap:=1e-4;
 else
 Trap:=-5;
 end if;

 t_red = mod

Relational changeover switch block was controlled by 2 signal (s1<=s2) for

switching differential equation in this model. The model for the system was

own in figure 5.45.

imulation

To simulate the system, using solver BDF-method, 1e-16 as min step

size, 1

r

task is shown by

Figure 5.45 Model of the system classical simulation (simulationX)

Figure 5.46 Plot x1 and x2 classical simulation (simulationX)

5.3.5.1.3 Different Diode Models

For design of the model for diode A using only gain, add/substract and

integrator block for differential equation , signal generator for the sinus

voltage and exponent block for exponential function. For diode B, the design

is similar with diode A but with addition relational changeover switch block

that was controlled by 2 signal(s1>s2) for switching differential equation in

diode B. For diode C, the design based on diode B, with changing 1 gain

block (VD/VT) with 2 signal generator(as sinus and constant), 1

x1

x2

128

Design of Model

add/substract block, 1 gain block and 1 function block (as division) to define

e function of VT (VD/VT(t)). The mth odel for diode A, diode B and diode C

was shown in figure 5.47.

Diode C

Diode B

Diode A

129

Figure 5.47 The model of the system different diode modes (simulationX)

Figure 5.48 Plot x1 and x2 different diode models (simulationX)

x1

Diode B

x2

x1

Diode A

x2

x1

Diode C

x2

 130

Simulation

To simulate the system, using solver BDF-method, 1e-18 as min step size, 1e-

rval. Plot x1 and x2 for this task is

shown by figure 5.48. it took 8,9803s to

simulate diode B and 1307,6718s to simulate diode C.

5.3.5.1.4 Influence

Design of Model

For design of the model using only gain

for differential equation

model of the system was shown in figure 5.49.

8 as min output step size, 1e-5 for absolute tolerance, 1e-5 for relative

tolerance and 0 … 0,2 as simulation inte

 simulate diode A, .10,0866s to

 of Simulation Algorithms

, add/substract and integrator block

and signal generator for the sinus voltage. The

Figure 5.49 Model of the system influence of simulation algorithms

(simulationX)

Simula

To sim

as min output step size, 1e-5 for absolute tolerance, 1e-5 for relative

tole

shown . it took 560,5021s to simulate this task.

131

tion

ulate the system, using solver BDF-method, 1e-8 as min step size, 1e-4

rance and 0 … 0,2 as simulation interval. Plot x1 and x2 for this task is

 by figure 5.50

For calculation of condition of massmatrices, can’t be done by

tionX because simulationX didn’t have function that can calculate the

ion of massmatrices.

simula

condit

PC In

For whole calculation and simulation, using SimulationX version 2.0 on

tel Pentium D, 2 x 2,66 GHz.

Figure 5.50 Plot x1 a

5.3

5.3.5

Design o

For design of the model based on figure 5.2 using resistor, inductor,

capacitor and sine voltage source. For state C, ideal diode was used. The

model for gure 5.51.

Simula

size, 1

relativ

state i

simula

x2

132

x1

nd x2 influence of simulation algorithms (simulationX)

.5.2 Electrical Model

.2.1 Steady States

f Model

 state A, state B and state C was shown in fi

tion

To simulate the system, using solver BDF-method, 1e-14 as min step

e-8 as min output step size, 1e-5 for absolute tolerance, 1e-5 for

e tolerance and 0 … 0,2 as simulation interval. Plot x1 and x2 for each

s shown by figure 5.44. It took 0,6697s to simulate state A, 0,0844s to

te state B and 16,2727s to simulate state C.

Figure 5.51 Model of the system steady states (simulationX electrical)

5.3

esign of Model

e odel based on state B changing 1 resistor with 1 ideal

de that was used on hybrid model and

rel

The m n by figure 5.52

Simula

To simulate the system, using solver BDF-method, 1e-14 as min step size, 1e-

8 a

toleran

shown 3. It took 9,3952s to simulate this task.

ate B

133

State A

St

State C

.5.2.2 Classical Simulation

D

For d sign of the m

switch. The ideal switch as time dependent switch was controlled by type

designer block using modelica co

ational changeover switch to assign when ideal switch open or closed.

odel of the system was show

tion

s min output step size, 1e-5 for absolute tolerance, 1e-5 for relative

ce and 0 … 0,3 as simulation interval. Plot x1 and x2 for this task is

 by figure 5.5

Figure 5.52 Model of the system classical simulation (simulationX electrical)

Figure 5.53 Plot x1 and x2 classical simulation (simulationX electrical)

5.3.5.2.3 Different Diode Models

Design of Model

For design of the model based on state C with different diode model, Model

diode A is the same as state C using ideal diode, For model diode B using

semiconductor diode and model diode C can’t be done by simulationX,

because simulationX have only 2 type of diode. The model for diode B was

shown in figure 5.54.

x1

x2

134

135

Figure 5.54 The model of the system for diode B (simulationX electrical)

Figure 5.55 Plot x1 and x2 different for diode B (simulationX electrical)

ulation Sim

To simulate the system, using solver BDF-method, 1e-14 as min step size, 1e-

tole

sho 96s to simulate diode B.

Design of Model

.1 with all switch closed.The model

of the system was shown in figure 5.56.

x1

x2

Diode B

Diode B

8 as min output step size, 1e-5 for absolute tolerance, 1e-5 for relative

rance and 0 … 0,2 as simulation interval. Plot x1 and x2 for this task is

wn by figure 5.55. It took 8,62

5.3.5.2.4 Influence of Simulation Algorithms

For design of the model based on figure 5

136

Figure 5.56 Model of the system influence of simulation algorithms

(simulationX)

8 as min output step size, 1e-5 for absolute tolerance, 1e-5 for relative

 x2 for this task is

shown by figure 5.57. it took 0,3801s to simulate this task.

For whole calculation and simulation, using SimulationX version 2.0 on PC

z.

Simulation

To simulate the system, using solver BDF-method, 1e-14 as min step size, 1e-

tolerance and 0 … 0,2 as simulation interval. Plot x1 and

Intel Pentium D, 2 x 2,66 GH

Figure 5.57 Plot x1 and x2 influence of simulation algorithms (simulationX)

x1

x2

137

6. Comparison

6.1 Table of Result

Based on the design and solutions of each comparison discussed in the

previous chapter, the result can be tabulated as follow:

nalyzed in chapter III, table 6-1 shows which software is able to complete

-1 The Result of the simulation softwarecompleting the task for

comparison 3

 Dymola Mosilab SimulationX

6.1.1. Comparison 3

As a

the task.

Table 6

Matlab SimulinkTask

T M S M S E T T S M E

A V X(1) X

 V

 V

 V

V

(2)

 V

 V

V(2)

 V

 V

V(2)

 V

 V

 V(2)

 V

 V

X(3)

 V

X(4)

X(3)

 V

X(4)

V(5)

 V

 V

 V(5)

 V

 V

(1) V

B V

C V

Note: T = text mode

M= hybrid model

S= stateflow/stategraph/statechart mode

E= Electrical model

 task A, this task can be done only

e.

g the task using the same method “calling the eigenValue

function”

nable to complete task A, due to the lack of function to

e the eigenvalue

ask, because it does not have

on (xy plot, phase plot)

(1) Simulink is unable to complete

by using matlab cod

(2) Doin

(3) Mosilab is u

calculat

(4) Mosilab is unable to complete the t

any function to create a phase simulati

(5) Doing the task with the same method, step one is to simulate the

system and then proceed to tab analysis (natural frequencies and

e time needed to simulate the task for

 The list of the time needed to simulate the task for comparison 3

second (s)

(1) Because it is using the same method, therefore the

mode shapes).

Table 6-2 described the list of th

comparison 3.

Table 6-2

Note: All value is in

timing would

parison 5

shows which software is able to

ete the task.

Matlab Simulink Dymola Task

M S M S E T T

A 0,1015 X

B 4,3442

C 1,075

4

9,5

X

3

2

0,5

0,047

0,025

=(1)

0,063

0,047

=(1)

0,047

0,015

=(1)

0,047

0,031

also be the same

6.1.2. Com

As analyzed in the chapter IV, table 6-3

compl

Mosilab SimulationX Task

T S M E

A X X

B 1,3 8,5

X X C

0,0723

1,2528

0,145

0,0133

0,8461

0,11

138

Table 6-3 The Result of the simulation software completing the task for

comparison 5

Dymola Mosilab SimulationX Matlab Simulink Task

T M S M S E T T S M E

A V V V V V

B V V V V V X(1)

C V V V V V X

D V V V V V X

X(1)

(1)

 V

 V

V

 V

 V

V

 V

 V

 V

V

 V

 V

 V

V

X(2)

X(2)

X(2)

X(2)

(1) V V

Note: (1)&(2) Because comparison 5 itself does not have any electrical

al model can be applied for this

ed the list of the time needed to simulate the task for

n 5.

able 6 4 The list of the time needed to simulate the task for comparison 5

 Dymola

circuit, therefore no electric

comparison.

Table 6-4 describ

compariso

T -

Matlab Simulink Task

 T M S M S E T

 A 0,8903 0,5

 B X

C X X X

10,7892 3 14 D

X

9

X

0,047

X

X

0,204

0,062

X

X

0,25

X

X

X

X

0,047

X

X

0,187

Mosilab SimulationX Task

T S M E

0,1 A

B

C X

D

X

1,3

0,3

X

X

2,3

0,0582

X

X

0,434

X

X

X

X

139

140

Note: - All value is in second (s)

and C does not have time for the simulation, because these

 A.

which software is able to complete

e Result of the simulation software completing the task for

comparison 20

imulink Dymola Mosilab SimulationX

- Task B

tasks are only the result of data from task

6.1.3. Comparison 20

As analysed in chapter V, table 6-5 shows

the task.

Table 6-5 Th

Matlab STask

T M S M S E T T S M E

A-sa V V X

sb V V

sc V

B V V

C-da V

db V

dc

ns
(1)

 Vns
(1)

 V

 V

 V

X(3)

X(3)

 V

X(3)

X(3)

X(3)

 V

 V

 V

 V

 V

 V

 V

X(5)

X(5)

X(5)

V

V

V

V

X(5)

 V

 V

 V

 V

X(6)

 V

 Vdiff
(7)

 Vdiff
(8)

 V

 V

 V

 V

 V

 V

 V

 V

 V

 V

 V

 V

 V

 V

 V

 V

X(5)

X(5)

X(5)

 V

V

V

V

X(5)

 V

 V

 V

 Vdiff
(10)

 V

V

V

V

X(9)

 V

V

V

V

X(6)

 V

X(11)

 Vdiff
(12)

X(9)

(3) V

ns
(1)

ns
(1) V

D Vns
(1) V X(3)

cond V X(2) X(2) X(4) X(4) X(4) X(4) X(9) X(9)

Note: sa=state A

sb= stateB

sc= State C

da= diode A

 that its condition

db= diode B

dc= diode C

ns= not satisfied

cond= condition. Only the equation in explicit form

can be calculated

141

 diff= the plot is different than others.

e task, but the result isn’t satisfactory.

s task can only done by

 code.

e equation that have switching state and in explicit form can

e modelled in stateflow model. But stateflow have restriction,

es not allow algebraic loop inside their stateflow, that’s

(4) Dymola can calculate indirect condition number with equation:

, dymola can’t calculate condition because dymola

t inverse the system matrix in it. Probably the matrix is too stiff.

(5) Only the equation that have switching state and in explicit form can

 in stategraph model in dymola and statechart mode in

g heating diode made the plot different than others

(8) The plot is slightly different than others. This plot is going to have a

more stable result than the plot from other model and textual mode

ionX can’t calculate condition number,

ve any function for this task.

The plot from hybrid model simulationX slightly different than

others, although using the same signal block in electrical model

nX does not have other type of diode in electrical model

: ideal diode and semiconductor diode,

diode C for this task.

(12) The plot is different than others and compared to the plot in

number (8), this plot is already stable from the beginning, much

ry than the result in

 (1) Using ode15i can simulate th

(2) Simulink can’t calculate the condition, thi

using matlab

(3) Only th

b

which do

why only task B’s condition can be calculated.

 cond = norm(A,p)*norm(inv(A,p))

 But in this task

can’

be modelled

mosilab

(6) Diode A is the same as state C

(7) Usin

(9) Mosilab and simulat

because they don’t ha

(10)

simulationX.

(11) Simulatio

- They only have 2 types

therefore there is no

more like in the tesxt book theo actual situation

142

Below is Table 6-6 described the list of the time needed to simulate the task

st of the time needed to simulate the task for comparison 20

Simulink Dymola

for comparison 20.

Table 6-6 The li

 Matlab

 Task

T M S M S E T

A-sa 29,6353 1

1,1946 sb

1,4376 19,5 sc

B 50,5118 5,5

C-da 0,8612 153

db 1,0165

dc 0,9585 213

D

cond 0,19

0,8593

0,5

183

255

X

X

X

1,5

X

X

X

X

0,046

0,031

0,234

0,203

2,66

5,42

6,14

0,141

X

X

0,234

0,235

X

5,08

6,11

X

X

0,031

0,031

0,188

0,703

X

4,08

4,83

0,094

X

0,031

0,031

0,203

0,219

2,5

3,77

4,39

0,125

X X X X

Mosilab SimulationX Task

T S M E

A-sa 1 X

sb

sc 13,4 14,

B 9,1 8,8

C-da

db

dc 110,7

0,2

100,9

9,7

X

X

X

105,2

116,8

X

X

0,7020

0,1118

9,1124

7,7191

8,9803

10,0866

1307,6718

560,5021

X

0,6697

0,0844

16,2727

9,3952

X

8,6296

X

0,3801

X

1

47,9

D

cond

143

Note: - All value is in second (s)

result (X), refer to table 6-5.

antage and disadvantage

vantage:

, such as eigenvalue, norm, condition, etc..

 given

help sections

urred, the error message is very detail that user can

tely knew what the problem is.

erlook the data from simulation

ial, that a new user can understand the algorithm

ediately.

vide internet newscenter which function as a forum for user so they can

atlab user around the world to seek answers

g: textual mode.

ly solver that

pute, around 125 Kb in stand by

- The task that don’t have time

6.2 Adv

6.2.1 Matlab

Ad

- User friendly

- Powerful package

- Can do all calculation of matrix

- Can do all the ask thatt

- Very complete documentation inside their

- When error occ

immedia

- Provide workspace, that user can ov

- Provide many free literatures in internet.

- Provide step by step tutor

code imm

- Pro

correspondence with other m

should they run into problems while using the software.

Disadvantage:

- cost expensive

- Have only 1 type modellin

- One of the solvers is not working very well, ode15i is the on

can solve differential equation in implicit form.

- Take up so many memory from the com

mode

144

6.2.2 Simulink

Advantage:

- User friendly

- Powerful package

- Very complete documentation inside their help sections

or occurred, the error message is very detail that user can

brid and stateflow

ata from simulation

 Provide many free literatures in internet.

ovide step by step tutorial, that a new user can understand the algorithm

m for user so they can

- When err

immediately knew what the problem is.

- Have 2 type of modelling: hy

- Provide workspace, that user can overlook the d

-

- Pr

code immediately.

- Provide internet newscenter which function as a foru

correspondence with other simulink user around the world to seek answers

lems while using the software.

h as eigenvalue, norm, condition, etc..

e, can’t do the task if there is any signal

ock.

tion in stateflow mode, can’t do the task if there is any loop

s algebraic loop.

 from the computer around 125 Kb in stand by

3 Dymola

should they run into prob

Disadvantage:

- cost expensive

- Can’t do all calculation of matrix, suc

- Give restriction in simulink mod

source inside the subsystem bl

- Give restric

inside the stateflow block such a

- Take up so many memory

mode

6.2.

Advantage:

- User friendly

- Powerful package

- Very fast simulation

- Can do some calculation of matrix, such as eigenvalue, norm, inverse etc..

ed, the error message is very detail that user can

r stategraph mode.

elling: hybrid, electrical, stategraph and textual mode.

iation of electrical model in their library.

 Provide free literatures in internet.

tand the algorithm of code.

vide dymola forum that if user got question about their problem, can

d ge er from user of dymola from

erse stiff matrix.

tion inside their help sections is not complete

e workspace

emory from the computer around 65 Kb in stand by

 difficulty when encounters textual mode in dymola, because

t modelica language.

, the error message is very detail that user can

oblem is.

ve algebraic loop restriction in their statechart mode.

rt.

145

- When error occurr

immediately knew what the problem is.

- Very complete description for their model in the dymola library

- Doesn’t have algebraic loop restriction in thei

- Have 4 type of mod

- Have many var

-

- Provide tutorial, that a new user can unders

- Pro

send a question to this place an t the answ

TU Kaiserslautern.

- Provide demo version in their website

Disadvantage:

- Have problem to inv

- The documenta

- Do not provid

- Take up average m

mode

- New user have

user must understand firs

6.2.4 Mosilab

Advantage:

- User friendly

- When error occurred

immediately knew what the pr

- Doesn’t ha

- Have 2 type of mod lling: textual and statechae

146

- Provide getting started and tutorial documentation, which enable new user

 use mosilab.

ot so powerful

 all matrix calculation.

 Do not provide documentation inside their help sections

erating linux system

, user must provide first a few small programs

are installation. User must be an expert

ew user will have difficulty when they encounter textual mode and

ilab, because user must understand first modelica

.2.5 SimulationX

rred, the error message is so detail that user can

eir model in the simulationX library

ing: hybrid and electrical.

al model in their library.

 tutorial

to understand how to

- Provide free software from their website.

Disadvantage:

- The package is n

- Can’t calculate

-

- Do not provide workspace

- Can only works in op

- Before software installation

that support mosilab.

- New user will have difficulty in softw

of linux first.

- N

statechart in mos

language.

 6

Advantage:

- User friendly

- Powerful package

- When error occu

immediately knew what the problem is.

- Complete description for th

- Have 2 types of modell

- Have variation of electric

- Provide free literatures in internet.

- Provide which enable new user to understand the algorithm code.

r from ITI expert.

- Provide ITI helpdesk that if user got question about their problem, can send

a question to this place and get the answe

- Provide free student version in their website.

ir code for new

overlook the data from

vantage:

matrix calculation, only eigenvalues and eigenvector.

between block. So many tangled and

tor with other connector.

tion inside their help sections

 the software

 by mode

ner block,

nderstand first modelica language.

147

- Provide type designer block, that user can define the

element type.

- Provide list data in the form txt file, user can

simulation

Disad

- Can’t calculate all

- Complicated view of connector

tousled between one connec

- Not so complete documenta

- Take up a lot of time to execute

- Take up many memory from the computer around 85 Kb in stand

- New user will have difficulty when they encounters type desig

because user must u

148

7. Conclusion and Suggestion

ion can be

can do all calculation of

test simulation software.

have the most variation type of modelling needed in this

thesis.

ave quite few not

e longest time simulation is by simulationX to simulate task diode C

.

test time simulation is by dymola electrical model to simulate

only do task B. The other tasks are

have any function to calculate

(y(x)).

lab by using matlab built

 computer

ck.

ionX provide time simulation in their

ndow, mosilab in their

rocess window and simulationX in their output bar

ied result when encounter equation in

7.1 Conclusion

Base on result, advantage and disadavantage above, the conclus

made as follow:

2. Matlab is the only simulation software that

matrix.

3. Dymola is the fas

4. Dymola

5. Despite Matlab can do all task that was given, they h

satisfied result in comparison 20. This was because of using solver

ode15i. The only solver that can solve the equation in implicit form,

6. Th

in comparison 20 = 1307,6718s

7. The fas

task d in comparison 3 = 0,015s.

8. Mosilab in comparison 3 can

impossible, because mosilab didn’t

eigenvalue and to plot y function x

9. To measure the time simulation in mat

function tic toc.

10. Measuring the time in simulink and stateflow, by looking

clo

11. Dymola, mosilab and simulat

software. Dymola in their message wi

simulation p

window.

12. Only matlab that have not satisf

implicit form.

149

13. The different plot between equation model and electrical model in

del is only the

model by dymola and

se of different algorithm

diode, between the two simulation software.

ymola, because inside the equation of

this diode, they have 2 special dymola built in function, exlin and pow,

which only available in dymola.

the equation that

they have

aic loop as input or event

 stiffer the equation is, the longer time required to simulate the

9. Ranking time simulation from fastest to slowest between type of

 dymola are:

 ranking is also valid for other simulation

itation for their step size time in

42170943040401e-014 and dymola limit is 5.939787e-013. Smaller

ulink will automatically set to this limit, but

dymola will give failed and pop up an error message.

task D comparison 20 because of in equation mo

approximation equation for task D.

14. The different plot between electrical

simulationX in task D comparison 20 becau

and equation of ideal

15. The simulation in dymola for task diode C electrical model heating

diode can only be done by d

16. Stateflow, stategraph and statechart can only model

has switching state.

17. Stateflow can only model 1 task in comparison 20, because

restriction which does not allow any algebr

in their stateflow block

18. The

equation.

1

modelling in

a. Textual mode

b. Electrical model

c. Hybrid model

d. Stategraph model

20. As written above, this

software.

21. Matlab, Simulink and Dymola have lim

simulation. Matlab limit is 2.22045e-014, simulink limit is

2.8

than that matlab and sim

22. Mosilab and simulationX don’t have step size limitation in their core

he most efficient and

odel the system based on equation.

 have real time simulation by setting the stop time to

infinite. The other simulation software didn’t have this feature.

block in simulationX is very useful feature for expert

w element type.

imulink that have if, switch case, while loop and for loop block

 Stateflow, stategraph and statechart are based on Petri nets theory and

seful as controller in the system.

acting data in task b and c in comparison 5 from plot result in

ymola, Mosilab and simulationX, by pointing mouse cursor in the

orkspace to extract data from simulation.

cally calculate eigenvalue from every

simulation.

pert first to install mosilab in their computer.

e and conclusion above, the

an be made easier, like in windows, with step-

er shouldn’t need to provide initial small programs to support

silab should have provides them in the

ther solver that can solve problem in implicit

form, not only ode15i, maybe in the future; there will be ode23i,

ode45i, etc.

150

system.

23. Modelling the system in modelica code is t

easiest way to m

24. Only simulink

25. Type designer

user to define their code in ne

26. Only s

in their library.

27.

very u

28. Extr

D

plot result.

29. Matlab and simulink have w

30. Only simulationX that automati

31. User must be a linux ex

7.1 Suggestion

Based on result, advantage, disadvantag

suggestion can be made as follow:

1. Installation of mosilab c

by-step installation wizard.

2. Us

mosilab, before installation. Mo

first place for the user.

3. Matlab should add anoo

151

4. Dymola, mosilab, simulationX should add feature like workspace in

for user to see the data result from

p

 restriction in their stateflow

mulationX should add complete features of all

 calculation.

in their core system.

rary to reduce user

ary.

dd feature for automatic time simulation

odel in their library.

 their library.

 future reference, other comparison can be made with different

e such as vensim, jsim, anylogic, java, C/C++ etc...

matlab/simulink, it will make easier

their simulation.

5. Dymola and matlab/simulink should reduce their limitation in ste

size time.

6. Simulink should delete algebraic loop

mode.

7. Dymola, mosilab, si

matrix

8. Mosilab should add y(x) plot

9. SimulationX should add more models in their lib

using type designer block.

 Dymola, mosilab and simulation should add if, for loop, while loop, 10.

switch case block in their libr

11. Matlab and simulink should a

measurement.

12. Dymola, mosilab and simulationX should add real time simulation

feature (setting stop time to infinite).

13. Simulink should add electrical m

14. SimulationX should add statechart and digital model in

15. For

simulation softwar

152

REFERENCE

[1] http://en.wikipedia.org/wiki/Simulation

p://en.wikipedia.org/wiki/Computer_simulation

ss/helpdesk/help/techdoc/matlab.html

/ James B. Dabney ; Thomas L.
ntice Hall, 2004. - XIX, 376 S. . -

ted modeling and simulation
. - New York, NY : Wiley, 2004. - XLII,

 . - ISBN 0-471-47163-1

[u.a.] : Kluwer Academic

4 S. . - (Kluwer international series in engineering
-7367-7

] http://www.mosilab.de/

[8] http://www.iti.de/news/topics_e.htm

[9]Nathan O. Sokal and Alan D. Sokal, Class E - A New Class of High-
Efficiency Tuned Single-Ended Switching Power Amplifiers, IEEE Journal
of Solid-State Circuits, Vol. SC-10, No. 3, June 1975, pp. 168-176.

[10] Julio C. Mandojana, Kelly J. Herman and Robert E. Zulinski, A
Discrete/Continuous Time-Domain Analysis of a Generalized Class E
Amplifier, IEEE Transactions on Circuits and Systems, Vol. 37, No. 8,
August 1990, pp. 1057-1060

[11] http://www.argesim.org/comparisons/index.html

[12]file:///C:/Programme/Dymola/Modelica/Library/Modelica%202.2.1/hel
p/

[13] http://en.wikipedia.org/wiki/Diode

[14] http://de.wikipedia.org/wiki/Kondition_%28Mathematik%29

[2] htt

[3] http://www.mathworks.com/acce

[4] Dabney, James B. : Mastering Simulink
Harman. - Upper Saddle River, NJ : Pre
 ISBN 0-13-142477-7

[5] Fritzson, Peter : Principles of object-orien
with Modelica 2.1 / Peter Fritzson
897 S.

[6] Tiller, Michael : Introduction to physical modeling with
Modelica / Michael Tiller. - Boston, Mass.
Publ., 2001. - XXII, 34
and computer science ; 615). - ISBN 0-7923

[7

Hanselman, Duane and Littlefield, Bruce: Matlab Bahasa Komputasi Teknis.
Alih Bahasa: Jozep Edyanto, Yogyakarta: Andi, 2002. ISBN: 979-533-753-X.

Hanselman, Duane C. : Mastering MATLAB 7 / Duane Hanselman ; Bruce
Littlefield. - Internat. ed. . - Upper Saddle River, NJ : Pearson Prentice
Hall, 2005. - XI, 852 S. . - ISBN 0-13-185714-2

http://apcmag.com/how_to_dual_boot_windows_xp_and_linux_xp_installed
_first.htm

http://www.dynasim.se/index.htm

http://en.wikipedia.org/wiki/Petri_net

http://en.wikipedia.org/wiki/State_diagram

http://www.facstaff.bucknell.edu/mastascu/eLessonsHtml/Diodes/Diode1.ht
ml

http://www.mathworks.com/matlabcentral/newsreader/

http://www.modelica-forum.com/forums/index.php?showforum=4

http://www.modelica.org/

http://en.wikipedia.org/wiki/Matrix_norm

http://en.wikipedia.org/wiki/Inverse_matrix

http://en.wikipedia.org/wiki/Eigenvalue

http://www.psychocats.net/ubuntu/installingsoftware

153

APPENDIX
SOURCE CODE

Comparison 3

Matlab

function Aout=A(t)
global VDC L1 C2 L3 C4 RL TRF
Aout=[0 -1/L1 0 0; 1/C2 -1/(C2*R(t)) -1/C2 0;
0 1/L3 -RL/L3 -1/L3; 0 0 1/C4 0];
End

function R_out = R(t)
global TRF
TRF=1e-15;
k=((5e+6)-(5e-2))/TRF;
t_red=mod(t, (10e-6));
if(0<=t_red)&(t_red<TRF)
 R_out=(5e-2)+k*t_red;
elseif(TRF<=t_red)&(t_red<(5e-6))
 R_out=5e+6;
elseif((5e-6)<=t_red)&(t_red<((5e-6)+TRF))
 R_out=(5e+6)-k*(t_red-(5e-6));
elseif((5e-6)+TRF<=t_red)&(t_red<(10e-6))
 R_out=5e-2;
else
 R_out=-5;
End

function dx=deq(t,x)
global VDC L1 C2 L3 C4 RL TRF
b=[VDC/L1; 0; 0; 0];
dx=(A(t)*x)+b;
end

tic
global VDC L1 C2 L3 C4 RL TRF
TRF= 1e-15; L1= 79.9e-6; VDC= 5; C2= 17.9e-9;
L3= 232e-6; C4= 9.66e-9; RL= 52.4;
R0ff= eig(A(TRF))
ROn= eig (A(0))
Toc

Dymola & Mosilab

Modelica Text
model C3Dymola_textv2
constant Real L1 = 79.9E-6; constant Real C2 = 17.9E-9;
constant Real L3 = 232.0E-6; constant Real C4 = 9.66E-9;
constant Real VDC = 5; constant Real RL = 52.4;
constant Real TRF = 1E-15;
Real x1; Real x2; Real x3; Real x4;
Real Rt; Real t_red; Real IRT; Real VRL; Real k;
equation

154

t_red = mod(time, 10E-6);
k=((5e+6)-(5e-2))/TRF;
algorithm
if
 (0<=t_red) and (t_red<TRF) then
 Rt:=(5e-2) + k*t_red;
elseif
 (TRF<=t_red) and (t_red<(5e-6)) then
 Rt:=5e+6;
elseif
 ((5e-6)<=t_red) and (t_red<((5e-6)+TRF)) then
 Rt:=(5e+6) - k*(t_red - (5e-6));
elseif
 ((5e-6)+TRF<=t_red) and (t_red<(10e-6)) then
 Rt:=5e-2;
else
 Rt:=-5;
end if;
equation
 L1*der(x1)= -x2 + VDC;
 C2*der(x2)= x1 - (x2/Rt) - x3;
 L3*der(x3)= x2 - (RL*x3) - x4;
 C4*der(x4)= x3;
IRT = x2/Rt; VRL = RL*x3;
end C3Dymola_textv2;

MOSILAB STATECHART
model C3MosilabState
constant Real L1 = 79.9E-6; constant Real C2 = 17.9E-9;
constant Real L3 = 232.0E-6; constant Real C4 = 9.66E-9;
constant Real VDC = 5; constant Real RL = 52.4;
constant Real TRF = 1E-15;
event discrete Boolean s1(start=false), s2(start=false);
Real x1; Real x2; Real x3; Real x4;
Real Rt; Real t_red; Real IRT; Real VRL; Real k;
equation
t_red = mod(time, 10E-6);
k=((5e+6)-(5e-2))/TRF;
algorithm
if
 (0<=t_red) and (t_red<TRF) then
 Rt:=(5e-2) + k*t_red;
elseif
 (TRF<=t_red) and (t_red<(5e-6)) then
 Rt:=5e+6;
elseif
 ((5e-6)<=t_red) and (t_red<((5e-6)+TRF)) then
 Rt:=(5e+6) - k*(t_red - (5e-6));
elseif
 ((5e-6)+TRF<=t_red) and (t_red<(10e-6)) then
 Rt:=5e-2;
else
 Rt:=-5;
end if;

155

equation
s1 = if Rt>=5e+6 then true else false;
s2 = if Rt<=5e-2 then true else false;
 L1*der(x1)= -x2 + VDC;
 C2*der(x2)= x1 - (x2/Rt) - x3;
 L3*der(x3)= x2 - (RL*x3) - x4;
 C4*der(x4)= x3;
IRT = x2/Rt; VRL = RL*x3;
statechart
 state C3MosilabStateSC extends State;
 annotation(extent=[-104,104; 44,-43]);
 State State1 annotation(extent=[-90,63; -77,59]);
 State State2 annotation(extent=[-51,62; -38,58]);
 State Initial (isInitial=true) annotation(extent=[-82,74; -80,72]);
 transition Initial->State1 action
 Rs:=5e+6;
 end transition annotation(points=[-82,72; -82,63]);
 transition State1->State2 event s2 action
 Rs:= 5e-2;
 end transition annotation(points=[-77,59; -51,59]);
 transition State2->State1 event s1 action
 Rs:= 5e+6;
 end transition annotation(points=[-51,60; -77,60]);
 end C3MosilabStateSC;
end C3MosilabState;

COMPARISON 5

MATLAB
function [t,y]=C5
tic
global p d
tstart = 0; tfinal = 5;
y0= [4.2 0.3]; C = [2.7E+6 0.4 3.5651205 5.5];
p=5.8; d=1;
options = odeset('reltol',1e-11,'Events',@events);
tout = tstart; yout = y0;
teout = []; yeout = []; ieout = [];
while tout(length(tout))<5
% Call ODE Solver
FUN = @(t,y)F(t,y,C);
[t,y,te,ye,ie] = ode15s(FUN,[tstart tfinal],y0,options);
 nt = length(t);
 if y(nt)>=5.8
 p=2.5; d=-1; C = [2.7E+6 -0.3 3.5651205 2.73]; end
 if y(nt)<=2.5
 p=5.8; d=1; C = [2.7E+6 0.4 3.5651205 5.5]; end
 tout = [tout; t(2:nt)]; yout = [yout; y(2:nt,:)];
 teout = [teout; te]; yeout = [yeout; ye];
 ieout = [ieout; ie];
 % Set the new initial conditions
 y0=[y(nt,1) y(nt,2)];
 tstart=t(nt);
 options = odeset(options);
end
y1=yout(1:end,1);

156

plot(tout,y1);
A=teout
B=y1(length(y1))
toc
% --
function dydt = F(t, y, C)
dydt(1,1) = C(1) * (y(2) + C(2) - y(1));
dydt(2,1) = C(3) * (C(4) - y(2));
% --
function [value,isterminal,direction] = events(t,y)
global p d
value = y(1)- [p;0];
isterminal = [1;1];
direction = [d;1];

DYMOLA & MOSILAB

Modelica Text
model C5Dymola_text2
constant Real c1 = 2.7E+6; Real c2(start=0.4); constant Real c3 = 3.5651205; Real
c4(start=5.5);
Real y1(start=4.2); Real y2(start=0.3);
algorithm
 when (y1>=5.8) then
 c2:=-0.3; c4:=2.73;
 end when;
 when (y1<=2.5) then
 c2:=0.4; c4:=5.5;
 end when;
equation
 der(y1)= c1*(y2 + c2 - y1);
 der(y2)= c3*(c4 - y2);
end C5Dymola_text2;

MOSILAB STATECHART
model C5MosilabState
constant Real c1 = 2.7E+6; Real c2(start=0.4); constant Real c3 = 3.5651205; Real
c4(start=5.5);
Real y1(start=4.2); Real y2(start=0.3);
event discrete Boolean s1(start=false), s2(start=false);
equation
s2 = if y1 >= 5.8 then true else false;
s1 = if y1 <=2.5 then true else false;
der(y1)=c1*(y2+c2-y1);
der(y2)=c3*(c4-y2);
statechart
 state C5MosilabStateSC extends State;
 annotation(extent=[-104,105; 45,-43]);
 State State1 annotation(extent=[-90,63; -81,59]);
 State State2 annotation(extent=[-58,62; -45,58]);
 State Initial (isInitial=true) annotation(extent=[-82,74; -80,72]);
 transition Initial->State1
 end transition annotation(points=[-82,72; -82,63]);
 transition State1->State2 event s2 action

157

 c2:= -0.3; c4:= 2.73;
 end transition annotation(points=[-81,59; -77,60; -58,60]);
 transition State2->State1 event s1 action
 c2:= 0.4; c4:= 5.5;
 end transition annotation(points=[-58,59; -77,59; -81,59]);
 end C5MosilabStateSC;
end C3MosilabState;
Comparison 20

MATLAB

STEADY STATES

function Source = U(t)
Source= 14142.135623731 * sin((2*pi*50*t)+pi);
end

function dxdt= deqx(t,x)
global L C R1 R2
A=[-(R1+R2)/L -1/L; 1/C 0];
b=[U(t)/L; 0];
dxdt=(A*x)+b;
end

function dxdt= deqxB(t,x)
global L C R1 R2 Rmin Ron
A=[-((R1*R2)+((R1+R2)*(Ron+Rmin)))/(L*(R2+Ron+Rmin)) -
(Ron+Rmin)/(L*(R2+Ron+Rmin));
 (Ron+Rmin)/(C*(R2+Ron+Rmin)) -1/(C*(R2+Ron+Rmin))];
b=[U(t)/L; 0];
dxdt=(A*x)+b;
end

tic
global L C R1 R2 %State A
L= 3.18e-3; C= 22.1e-9; R1= 0.1; R2= 5;
 [tsol,xsol]=ode23s('deqx',[0 2e-1],[0;0]);
x1=xsol(1:end,1); x2=xsol(1:end,2);
plot(tsol,x1);
toc

tic
global L C R1 R2 Ron Rmin %StateB
L= 3.18e-3; C= 22.1e-9; R1= 0.1; R2= 5;
Ron=1e-4; Rmin=1e-4;
 [tsol,xsol]=ode23s('deqxB',[0 2e-1],[0;0]);
x1=xsol(1:end,1); x2=xsol(1:end,2);
plot(tsol,x1);
toc

function C20StateC_exponent %StateC
tic
global L C R1 R2 d R
Ron = 1e-4; Rmin= 1e-4; L= 3.18e-3; C= 22.1e-9;
R1= 0.1; R2= 5; d= -1; R=1e-5;
x0= [0;0]; xp0=[0;0];

158

options = odeset('Events',@events,'RelTol', 1e-7, 'AbsTol', 1e-7);
tstart=0; tfinal=0.2; tout = 0; xout = x0';
teout = []; xeout = []; ieout = [];
FUN=@(t,x,xp)f1(t,x,xp);
while tout(length(tout))<0.2
% Call ODE Solver
[t,x,te,xe,ie]=ode15i(FUN,[tstart tfinal],x0,xp0,options);
 nt = length(t);
 tout = [tout; t(2:nt)];
 xout = [xout; x(2:nt,:)];
 dx1=xout(1:end,1); dx2=xout(1:end,2);
 dx1dtall= diff(dx1); dx2dtall= diff(dx2);
 nx= length(dx2);
 dx2i=dx2dtall(nx-2); x2i= dx2(nx-1);
 ctrl= ((R2*C*dx2i) + x2i);
 if ctrl<0
 FUN=@(t,x,xp)f2(t,x,xp); d=-1 ;end
 if ctrl>0
 FUN=@(t,x,xp)f1(t,x,xp); d=1 ;end
 % Set the new initial conditions
 x0=[x(nt,1); x(nt,2)];
 xp0=[dx1dtall(nx-1); dx2dtall(nx-1)];
 tstart=t(nt);
 options = odeset(options);
end
x1=xout(1:end,1); x2=xout(1:end,2);
plot(tout,x1);
toc
% --
function dxdt = f1(t,x,xp)
global L C R1 R2 R
% VD<0
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-(((R2*C*xp(2))+x(2))/L)
 (x(1)/C)-((((R2*C*xp(2))+x(2))*R)/C)]
% --
function dxdt = f2(t,x,xp)
global L C R1 R2 R
% VD>=0
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((((R2*C*xp(2))+x(2))*R)/L)
 (x(1)/C)-((((R2*C*xp(2))+x(2))+R)/C)]
% --
function [value,isterminal,direction] = events(t,x,xp)
global R2 C d
value = ((R2*C*xp(2))+ x(2)) - [0;0];
isterminal = [1;1];
direction = [0;d];

CLASSICAL SIMULATION
function T_out = T(t)
persistent TRF
TRF=5e-3;
k=((1e+8)-(1e-4))/TRF;
t_red=mod(t, (1e-1));
if(0<=t_red)&&(t_red<TRF)
 T_out=(1e-4)+k*t_red;

159

elseif(TRF<=t_red)&&(t_red<(5e-2))
 T_out=1e+8;
elseif((5e-2)<=t_red)&&(t_red<((5e-2)+TRF))
 T_out=(1e+8)-k*(t_red-(5e-2));
elseif((5e-2)+TRF<=t_red)&&(t_red<(1e-1))
 T_out=1e-4;
else
 T_out=-5;
end

function C20TaskBV2_withevents
tic
global L C R1 R2 Rmin Ron p
Ron = 1e-4; Rmin= 1e-4; L= 3.18e-3; C= 22.1e-9;
R1= 0.1; R2= 5; p=1e-4; x0= [0 0];
options = odeset('Events',@events);
tstart=0; tfinal=0.3; tout = 0; xout = x0;
FUN=@(t,x)deqtaskb1(t,x);
while tout(length(tout))<0.3
% Call ODE Solver
[t,x,te,xe,ie]=ode23s(FUN,[tstart tfinal],x0,options);
 nt = length(t);
 tout = [tout; t(2:nt)];
 xout = [xout; x(2:nt,:)];
 Tu= t(nt);
 if T(Tu)<=1e-4
 p=1e+8; FUN=@(t,x)deqtaskb2(t,x); end
 if T(Tu)>=1e+8
 p=1e-4; FUN=@(t,x)deqtaskb1(t,x); end
% Set the new initial conditions
 x0=[x(nt,1) x(nt,2)];
 tstart=t(nt);
 options = odeset(options);
end
x1=xout(1:end,1); x2=xout(1:end,2);
plot(tout,x2);
toc
% --
function dxdt1= deqtaskb1(t,x)
global L C R1 R2
dxdt1(1,1) = (-x(1)*(R1+R2)/L)-(x(2)/L)+(U(t)/L);
dxdt1(2,1) = (x(1)/C);
% --
function dxdt2= deqtaskb2(t,x)
global L C R1 R2 Rmin Ron
dxdt2(1,1) = (-x(1)*((R1*R2)+((R1+R2)*(Ron+Rmin)))/(L*(R2+Ron+Rmin)))-
(x(2)*(Ron+Rmin)/(L*(R2+Ron+Rmin)))+(U(t)/L);
dxdt2(2,1) = (x(1)*(Ron+Rmin)/(C*(R2+Ron+Rmin)))-(x(2)/(C*(R2+Ron+Rmin)));
% --
function [value,isterminal,direction] = events(t,x)
global p
value = T(t)- p + [0;0];
isterminal = [1;1];
direction = [0;0];

160

DIFFERENT DIODE MODELS

function C20StateC %Diode A
tic
global L C R1 R2 Rmin Ron ids VT
Ron = 1e-4; Rmin= 1e-4; L= 3.18e-3; C= 22.1e-9;
R1= 0.1; R2= 5; ids= 1e-6; VT= 0.04; maxexp=15; R=1e+8;
 [tsol,xsol]=ode15i(@f,[0 2e-1],[0;0],[0;0]);
x1=xsol(1:end,1); x2=xsol(1:end,2);
plot(tsol,x1);
toc
% --
function dxdt = f(t,x,xp)
global L C R1 R2 Rmin Ron ids VT R
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L)
 (x(1)/C)-((ids*(exp(((R2*C*xp(2))-x(2))/VT)-1))/C)];

function C20StateC_exponent %Diode B
tic
global L C R1 R2 Rmin Ron ids VT maxexp R
Ron = 1e-4; Rmin= 1e-4; L= 3.18e-3; C= 22.1e-9;
R1= 0.1; R2= 5; ids= 1e-6; VT= 0.04; maxexp=15; R=1e+8;
x0= [0;0]; xp0=[0;0];
options = odeset('Events',@events,'Refine',100);
tstart=0; tfinal=0.2; tout = 0; xout = x0';
teout = []; xeout = []; ieout = [];
FUN=@(t,x,xp)f1(t,x,xp);
while tout(length(tout))<0.2
% Call ODE Solver
[t,x,te,xe,ie]=ode15i(FUN,[tstart tfinal],x0,xp0,options);
 nt = length(t);
 tout = [tout; t(2:nt)];
 xout = [xout; x(2:nt,:)];
 dx1=xout(1:end,1); dx2=xout(1:end,2);
 dx1dtall= diff(dx1); dx2dtall= diff(dx2);
 nx= length(dx2);
 dx2i=dx2dtall(nx-2); x2i= dx2(nx-1);
 ctrl= ((R2*C*dx2i) + x2i)/VT;
 if ctrl<maxexp
 FUN=@(t,x,xp)f2(t,x,xp); end
 if ctrl>maxexp
 FUN=@(t,x,xp)f1(t,x,xp); end
 % Set the new initial conditions
 x0=[x(nt,1); x(nt,2)];
 xp0=[dx1dtall(nx-1); dx2dtall(nx-1)];
 tstart=t(nt);
 options = odeset(options);
end
x1=xout(1:end,1); x2=xout(1:end,2);
plot(tout,x1);
toc
% --
function dxdt = f1(t,x,xp)
global L C R1 R2 Rmin Ron ids VT R
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L)

161

 (x(1)/C)-((ids*(exp(((R2*C*xp(2))-x(2))/VT)-1))/C)+(((R2*C*xp(2))-x(2))/(R*C))]
% --
function dxdt = f2(t,x,xp)
global L C R1 R2 Rmin Ron ids VT maxexp R
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L)
 (x(1)/C)-((ids*(exp(maxexp*(1+(((R2*C*xp(2)) + x(2)/VT))-maxexp))-1))/C)-
(((R2*C*xp(2))-x(2))/(R*C))]
% --
function [value,isterminal,direction] = events(t,x,xp)
global R2 C VT maxexp
value = (((R2*C*xp(2))+ x(2))/VT) - maxexp + [0;0];
isterminal = [1;1];
direction = [0;0];

function VTout = VT(t) %VT(t) for Diode C
VTout= ((30 * sin(2*pi*100*t))+310)*8.61734681e-5;
end

function C20StateC_exponent_temp %Diode C
tic
global L C R1 R2 Rmin Ron ids maxexp R
Ron = 1e-4; Rmin= 1e-4; L= 3.18e-3; C= 22.1e-9;
R1= 0.1; R2= 5; ids= 1e-6; VT= 0.04; maxexp=15; R=1e+8;
x0= [0;0]; xp0=[0;0];
options = odeset('Events',@events);
tstart=0; tfinal=0.2; tout = 0; xout = x0';
teout = []; xeout = []; ieout = [];
FUN=@(t,x,xp)f1(t,x,xp);
while tout(length(tout))<0.2
% Call ODE Solver
[t,x,te,xe,ie]=ode15i(FUN,[tstart tfinal],x0,xp0,options);
 nt = length(t);
 tout = [tout; t(2:nt)];
 xout = [xout; x(2:nt,:)];
 dx1=xout(1:end,1); dx2=xout(1:end,2);
 dx1dtall= diff(dx1); dx2dtall= diff(dx2);
 nx= length(dx2);
 dx2i=dx2dtall(nx-2); x2i= dx2(nx-1);
 ctrl= ((R2*C*dx2i) + x2i)/VT;
 if ctrl<maxexp
 FUN=@(t,x,xp)f2(t,x,xp); end
 if ctrl>maxexp
 FUN=@(t,x,xp)f1(t,x,xp); end
 % Set the new initial conditions
 x0=[x(nt,1); x(nt,2)];
 xp0=[dx1dtall(nx-1); dx2dtall(nx-1)];
 tstart=t(nt);
 options = odeset(options);
end
x1=xout(1:end,1); x2=xout(1:end,2);
plot(tout,x1);
toc
% --
function dxdt = f1(t,x,xp)
global L C R1 R2 Rmin Ron ids R
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L)

162

 (x(1)/C)-((ids*(exp(((R2*C*xp(2))-x(2))/VT(t))-1))/C)+(((R2*C*xp(2))-x(2))/(R*C))]
% --
function dxdt = f2(t,x,xp)
global L C R1 R2 Rmin Ron ids maxexp R
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L)
 (x(1)/C)-((ids*(exp(maxexp*(1+(((R2*C*xp(2)) + x(2)/VT(t)))-maxexp))-1))/C)-
(((R2*C*xp(2))-x(2))/(R*C))]
% --
function [value,isterminal,direction] = events(t,x,xp)
global R2 C maxexp
value = (((R2*C*xp(2))+ x(2))/VT(t)) - maxexp + [0;0];
isterminal = [1;1];
direction = [0;0];

INFLUENCE OF SIMULATION ALGORITHMS

function C20_subsystem3
tic
global L C R1 R2 Rmin Ron ids VT
Ron = 1e-4; Rmin= 1e-4; L= 3.18e-3; C= 22.1e-9;
R1= 0.1; R2= 5; ids= 1e-6; VT= 0.04;
 [tsol,xsol]=ode15i(@f,[0 2e-1],[0;0],[0;0]);
x1=xsol(1:end,1);
x2=xsol(1:end,2);
plot(tsol,x2);
toc
% --
function dxdt = f(t,x,xp)
global L C R1 R2 Rmin Ron ids VT
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L)
 (x(1)/C)-((ids*(exp(((R2*C*xp(2))-x(2))/VT)-1))/C)-((R2*C*xp(2))/(C*(Ron+Rmin)))-
(x(2)/(C*(Ron+Rmin)))]

DYMOLA & MOSILAB

Modelica Text

model C20DymolaStateA_text
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4;
constant Real L = 3.18E-3; constant Real C = 22.1E-9;
Real x1; Real x2; Real U;
equation
 U = 14142.135623731 * sin((2*3.14159*50*time) + 3.14159);
 L*der(x1)= -x1*(R1+R2) - x2 + U;
 C*der(x2)= x1;
end C20DymolaStateA_text;

model C20DymolaStateB_text
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4;
constant Real Ron = 1E-4; constant Real L = 3.18E-3; constant Real C = 22.1E-9;
Real x1; Real x2; Real U;
equation
 U = 14142.135623731 * sin((2*3.14159*50*time) + 3.14159);
 L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 + U;
 C*(R2+Ron+Rmin)*der(x2)= x1*(Ron+Rmin) - x2;
end C20DymolaStateB_text;

163

model C20DymolaStateC_Ideal_text
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4;
constant Real Ron = 1E-4; constant Real L = 3.18E-3; constant Real C = 22.1E-9;
Real x1; Real x2; Real U; Real VC; Real IL; Real VD; Real VDr; Real ID;
equation
 U = 14142.135623731 * sin((2*3.14159*50*time) + 3.14159);
 VDr= (R2*C*der(x2)) + x2;
 if VDr< 0 then
 L*der(x1)= -x1*R1 - VDr - U;
 C*der(x2)= x1 - VDr*1e-5;
 else
 L*der(x1)= -x1*R1 - VDr*1e-5 - U;
 C*der(x2)= x1 - VDr;
 end if;
VD= x2-x1; ID= x1; IL= -x1; VC= -x2 + x1;
end C20DymolaStateC_Ideal_text;

CLASSICAL SIMULATION

model C20DymolaStateB_taskB_text
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4;
constant Real Ron = 1E-4; constant Real L = 3.18E-3; constant Real C = 22.1E-9;
constant Real TRF = 5e-3; Real x1; Real x2; Real U; Real t_red; Real k; Real Trap;
equation
t_red = mod(time, 1E-1);
k=((1e+8)-(1e-4))/TRF;
algorithm
if
 (0<=t_red) and (t_red<TRF) then
 Trap:=(1e-4) + k*t_red;
elseif
 (TRF<=t_red) and (t_red<(5e-2)) then
 Trap:=1e+8;
elseif
 ((5e-2)<=t_red) and (t_red<((5e-2)+TRF)) then
 Trap:=(1e+8) - k*(t_red - (5e-2));
elseif
 ((5e-2)+TRF<=t_red) and (t_red<(1e-1)) then
 Trap:=1e-4;
else
 Trap:=-5;
end if;
equation
 U = 14142.135623731 * sin((2*3.14159*50*time) + 3.14159);
 if Trap <= 1e-4 then
 L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 + U;
 C*(R2+Ron+Rmin)*der(x2)= x1*(Ron+Rmin) - x2;
 else
 L*der(x1)= -x1*(R1+R2) - x2 + U;
 C*der(x2)= x1;
 end if;
end C20DymolaStateB_taskB_text;

164

DIFFERENT DIODE MODELS

model C20DymolaStateC_text_simple
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4;
constant Real Ron = 1E-4; constant Real L = 3.18E-3; constant Real C = 22.1E-9;
constant Real ids = 1e-6; constant Real VT = 0.04;
Real x1; Real x2; Real U; Real VC; Real IL; Real VD; Real ID;
equation
 U = 14142.135623731 * sin((2*3.14159*50*time) + 3.14159);
 L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 - U;
 C*der(x2)= x1 - ids*(exp(((R2*C*der(x2))+x2)/VT)-1);
VD= (R2*C*der(x2)) + x2;
ID= x1 - (C*der(x2));
IL= -x1; VC= -x2;
end C20DymolaStateC_text_simple;

model C20DymolaStateC_text_simple_exponentv2
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4;
constant Real Ron = 1E-4; constant Real L = 3.18E-3; constant Real C = 22.1E-9;
constant Real ids = 1e-6; constant Real VT = 0.04; constant Real maxexp = 15; constant Real R
= 1e+8;
Real x1; Real x2; Real U; Real VC; Real IL; Real VD; Real ID; Real CTR;
equation
 U = 14142.135623731 * sin((2*3.14159*50*time) + 3.14159);
 L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 - U;
 VD= (R2*C*der(x2)) + x2;
 CTR = VD/VT;
 if CTR > maxexp then
 C*der(x2)= x1 - ids*(exp(maxexp*(1+CTR-maxexp))-1) + (VD/R);
 else
 C*der(x2)= x1 - ids*(exp(CTR)-1) + (VD/R);
 end if;
ID= x1 - (C*der(x2)); IL= -x1; VC= -x2;
end C20DymolaStateC_text_simple_exponentv2;

model C20DymolaStateC_text_simple_exponentv2_temp
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4;
constant Real Ron = 1E-4; constant Real L = 3.18E-3; constant Real C = 22.1E-9;
constant Real ids = 1e-6; constant Real maxexp = 15; constant Real R = 1e+8;
Real x1; Real x2; Real U; Real VC; Real IL; Real VD; Real ID; Real CTR; Real VT;
equation
 U = 14142.135623731 * sin((2*3.14159*50*time) + 3.14159);
 L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 - U;
 VD= (R2*C*der(x2)) + x2;
 VT= ((30 * sin(2*3.14159*100*time))+310)*8.61734681e-5;
 CTR = VD/VT;
 if CTR > maxexp then
 C*der(x2)= x1 - ids*(exp(maxexp*(1+CTR-maxexp))-1) + (VD/R);
 else
 C*der(x2)= x1 - ids*(exp(CTR)-1) + (VD/R);
 end if;
ID= x1 - (C*der(x2)); IL= -x1; VC= -x2;
end C20DymolaStateC_text_simple_exponentv2_temp;

165

INFLUENCE OF SIMULATION ALGORITHMS
model C20DymolaStateB_subsystem3_text
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4;
constant Real Ron = 1E-4; constant Real L = 3.18E-3; constant Real C = 22.1E-9;
constant Real ids = 1e-6; constant Real VT = 0.04;
Real x1; Real x2; Real U; Real VC; Real IL; Real VD; Real ID;
equation
 U = 14142.135623731 * sin((2*3.14159*50*time) + 3.14159);
 VD= (R2*C*der(x2)) + x2;
 L*der(x1)= -x1*R1 -VD - x2 - U;
 C*der(x2)= x1 - ids*(exp(VD/VT)-1) - (VD/(Ron+Rmin));
ID= x1 - (C*der(x2)); IL= -x1; VC= -x2;
end C20DymolaStateB_subsystem3_text;

MOSILAB STATECHART

model C20MosilabSC_idealchart
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4;
constant Real Ron = 1E-4; constant Real L = 3.18E-3; constant Real C = 22.1E-9;
event discrete Boolean s1(start=false), s2(start=false);
Real x1; Real x2; Real U; Real VC; Real IL; Real VD; Real VDr; Real ID; Integer A;
equation
U= 14142.135623731 * sin ((2*3.14159*50*time) + 3.14159);
VDr= (R2*C*der(x2)) + x2;
s1 = if VDr >= 0 then true else false;
s2 = if VDr < 0 then true else false;
if A<0 then
L*der(x1)= -x1*R1 - VDr - U;
C*der(x2)= x1 - VDr*1e-5;
else
L*der(x1)= -x1*R1 - VDr*1e-5 - U;
C*der(x2)= x1 - VDr;
end if;
VD= x2-x1; ID= x1; IL= -x1; VC= -x2+x1;
statechart
 state C20MosilabSC_idealchartSC extends State;
 annotation(extent=[-103,103; 46,-46]);
 State State1 annotation(extent=[-92,60; -79,56]);
 State State2 annotation(extent=[-51,59; -38,55]);
 State Initial (isInitial=true) annotation(extent=[-85,71; -83,69]);
 transition Initial->State1 action
 A:= 1;
 end transition annotation(points=[-84,69; -84,60]);
 transition State1->State2 event s2 action
 A:= -1;
 end transition annotation(points=[-79,56; -51,56]);
 transition State2->State1 event s1 action
 A:= 1;
 end transition annotation(points=[-51,57; -79,57]);
 end C20MosilabSC_idealchartSC;
end C20MosilabSC_idealchart;

CLASSICAL SIMULATION
model C20MosilabStateB_TaskB_chart

166

constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4; constant Real Ron =
1E-4;
constant Real L = 3.18E-3; constant Real C = 22.1E-9; constant Real TRF = 5e-3;
event discrete Boolean s1(start=false), s2(start=false);
Real x1; Real x2; Real U; Real t_red; Real k; Real Trap; Integer A;
equation
t_red = mod(time, 1E-1);
k=((1e+8)-(1e-4))/TRF;
algorithm
if
 (0<=t_red) and (t_red<TRF) then
 Trap:=(1e-4) + k*t_red;
elseif
 (TRF<=t_red) and (t_red<(5e-2)) then
 Trap:=1e+8;
elseif
 ((5e-2)<=t_red) and (t_red<((5e-2)+TRF)) then
 Trap:=(1e+8) - k*(t_red - (5e-2));
elseif
 ((5e-2)+TRF<=t_red) and (t_red<(1e-1)) then
 Trap:=1e-4;
else
 Trap:=-5;
end if;
equation
U= 14142.135623731*sin((2*3.14159*50*time) + 3.14159);
s1 = if Trap>1e-4 then true else false;
s2 = if Trap<=1e-4 then true else false;
if A > 0 then
 L*der(x1)= -x1*R1 - R2*C*der(x2) - x2 + U;
 C*(R2+Ron+Rmin)*der(x2)= x1*(Ron+Rmin) - x2;
else
 L*der(x1)= -x1*(R1+R2) - x2 + U;
 C*der(x2)= x1;
end if;
statechart
 state C20MosilabStateSC extends State;
 annotation(extent=[-104,104; 44,-43]);
 State State1 annotation(extent=[-90,63; -77,59]);
 State State2 annotation(extent=[-51,62; -38,58]);
 State Initial (isInitial=true) annotation(extent=[-82,74; -80,72]);
 transition Initial->State1 action
 A:=-1;
 end transition annotation(points=[-82,72; -82,63]);
 transition State1->State2 event s2 action
 A:=1;
 end transition annotation(points=[-77,59; -51,59]);
 transition State2->State1 event s1 action
 A:=-1;
 end transition annotation(points=[-51,60; -77,60]);
 end C20MosilabStateSC;
end C20MosilabStateB_TaskB_chart;

167

DIFFERENT DIODE MODELS

model C20MosilabStateC_simple_exponent_chart
constant Real R1= 0.1; constant Real R2= 5; constant Real Rmin= 1E-4; constant Real Ron= 1E-
4;
constant Real L= 3.18E-3; constant Real C= 22.1E-9; constant Real ids= 1e-6; constant Real
VT= 0.04;
constant Real maxexp= 15; constant Real R = 1e+8;
Real x1; Real x2; Real U; Real VC; Real IL; Real VD; Real ID; Real CTR; Integer A;
event discrete Boolean s1(start=false), s2(start=false);
equation
U= 14142.135623731*sin((2*3.14159*50*time) + 3.14159);
VD= (R2*C*der(x2)) + x2;
L*der(x1)= -x1*R1 - VD - x2 - U;
CTR= VD/VT;
s2 = if CTR>maxexp then true else false;
s1 = if CTR<=maxexp then true else false;
if A>0 then
C*der(x2)= x1 - ids*(exp(maxexp*(1+CTR-maxexp))-1) + (VD/R);
else
C*der(x2)= x1 - ids*(exp(CTR)-1) + (VD/R);
end if;
ID= x1 - (C*der(x2)); IL= -x1; VC= -x2;
statechart
 state C20MosilabStateSC extends State;
 annotation(extent=[-104,104; 44,-43]);
 State State1 annotation(extent=[-90,63; -77,59]);
 State State2 annotation(extent=[-51,62; -38,58]);
 State Initial (isInitial=true) annotation(extent=[-82,74; -80,72]);
 transition Initial->State1 action
 A:=-1;
 end transition annotation(points=[-82,72; -82,63]);
 transition State1->State2 event s2 action
 A:=1;
 end transition annotation(points=[-77,59; -51,59]);
 transition State2->State1 event s1 action
 A:=-1;
 end transition annotation(points=[-51,60; -77,60]);
 end C20MosilabStateSC;
end C20MosilabStateC_simple_exponent_chart;

model C20MosilabStateC_simple_exponent_temp_chart
constant Real R1= 0.1; constant Real R2= 5; constant Real Rmin= 1E-4; constant Real Ron= 1E-
4;
constant Real L= 3.18E-3; constant Real C= 22.1E-9; constant Real ids= 1e-6;
constant Real maxexp= 15; constant Real R = 1e+8;
Real x1; Real x2; Real VT; Real U; Real VC; Real IL; Real VD; Real ID; Real CTR; Integer A;
event discrete Boolean s1(start=false), s2(start=false);
equation
U= 14142.135623731*sin((2*3.14159*50*time) + 3.14159);
VD= (R2*C*der(x2)) + x2;
L*der(x1)= -x1*R1 - VD - x2 - U;
VT= ((30 * sin(2*3.14159*100*time))+310)*8.61734681e-5;
CTR= VD/VT;
s2 = if CTR>maxexp then true else false;

168

s1 = if CTR<=maxexp then true else false;
if A>0 then
C*der(x2)= x1 - ids*(exp(maxexp*(1+CTR-maxexp))-1) + (VD/R);
else
C*der(x2)= x1 - ids*(exp(CTR)-1) + (VD/R);
end if;
ID= x1 - (C*der(x2)); IL= -x1; VC= -x2;
statechart
 state C20MosilabStateSC extends State;
 annotation(extent=[-104,104; 44,-43]);
 State State1 annotation(extent=[-90,63; -77,59]);
 State State2 annotation(extent=[-51,62; -38,58]);
 State Initial (isInitial=true) annotation(extent=[-82,74; -80,72]);
 transition Initial->State1 action
 A:=-1;
 end transition annotation(points=[-82,72; -82,63]);
 transition State1->State2 event s2 action
 A:=1;
 end transition annotation(points=[-77,59; -51,59]);
 transition State2->State1 event s1 action
 A:=-1;
 end transition annotation(points=[-51,60; -77,60]);
 end C20MosilabStateSC;
end C20MosilabStateC_simple_exponent_temp_chart;

169

	2.4.1 Architecture of Dymola

