Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universitat Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

TECHNISCHE

 — UNIVERSITAT
I WIEN

VIENNA

VIENNA UNIVERSITY OF

TECHNOLOGY

MASTERARBEIT

BENCHMARKS
FOR
MECHATRONIC MODELS

Ausgeftihrt am Institut far Analysis and Scientific Computing,
Mathematical Modelling and Simulation
Technische Universitat \Wien
unter der Anleitung von
Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Felix Breitenecker
durch
Gemma Ferdinand Kaunang
Brigittenauer Lande 224 /6331
1200 Vienna

Austria

Wien, 2 July 2008

An educated person is one who has learned that information
almost always turns out to be at best incomplete and

very often false, misleading, fictitious, mendacious

- just dead wrong.

RUSSEL BAKER

My Gratitude to:
Father, Mother, brothers and my girlfriend

Abstract

Before a new product is launched to the market, a company have to test the
product and make sure that the product is ready and presentable, especially
if the product is a problem solving system, such as control system,
automated system or self-learning system. Testing is a highly cost consuming
yet unavoidable activity. Therefore to reduce cost of production, company
will use methods like simulation to test their product.
There are so many simulation softwares in the market which offers different
abilities and advantages. The various choices has makes it even more
difficult for end-users (company) to choose which one is more suitable and
useful for the company. On this thesis Three “comparison problem” based
on electrotechnic will be compared each other by using four simulations
software (Matlab/Simulink, Dymola, Mosilab and SimulationX), with different
approaches to model of the system.
The method used for this research is a literature study to have a deeper
understanding about the behaviour and algorithm of the code from 4
different simulation softwares, the design model of three comparison
problems and simulates these models to find the most suitable plot result.
After a thorough research of these three comparison problems, conclusion
can be made as follow:

- Matlab is the only simulation software which able to simulate all
calculation of matrix.

- Stateflow, stategraph and statechart which can only model the
equation with switching state, the harder the equation is, the
longer time required to simulate the equation.

- Dymola has the most variation type of modelling that needed in
this thesis, the fastest time simulation is by dymola electrical
model to simulate task d in comparison 3 = 0,0185s,

- SimulationX took the longest time in simulating task diode C in
comparison 20 = 1307,6718s, Type of designer block in
simulationX is very useful feature for expert user in defining their
code in new element type

- Below are the simulation timing ranking from fastest to slowest
type of modelling:

a. Textual mode

b. Electrical model

c. Hybrid model

d. Stateflow/stategraph/statechart model

Prologue

Praise to the amorously and merciful Lord, because of His strength, love and
affection, this master thesis, titled “Benchmarks for Mechatronic Models”,
can be completed.

In this thesis, writer have tried to compare the simulation result between
three comparison problems by using 4 different simulation softwares, which
are Matlab/Simulink, Dymola, Mosilab and SimulationX with different
approach methods in designing the model of these three comparison
problems.

As there are many people who have generously contributed their time,
knowledge and support during the process of this thesis, I would like to
express my gratitude to:

1. Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Felix Breitenecker, as counsellor of
this thesis, for providing dymola and mosilab software, his help and
support during this research from beginning to the end.

2. Univ.Ass. Dipl.-Ing. Mag.rer.soc.oec. Aman Atri and Nicole Nagele,
for their support helping me with mosilab installation in linux
operating system, also problem during compiling problem in mosilab.

3. Dipl.-Ing. Giinther Zauner, for his help in giving me clues, tips and
suggestions about my problem in modelica language, mosilab and
matlab.

4. Andreas Korner, for his help in providing me with the explanation on
comparison 20, electrical model - basics.

5. Jacek Kierzenka and someone with nickname “helper” from matlab
central newsreader, for their help, giving me clue, tips and suggestion
about my problem in matlab.

6. Antje Heimann, Torsten Blochwitz, Matthias Illschner, Ulrich Behnert
and Gerd Kurzbach from ITI Team for providing simulationX software,
license file and their patient and help in answering my endless

questions about simulationX.

http://www.asc.tuwien.ac.at/index.php?id=62&L=&persid=142
http://www.asc.tuwien.ac.at/index.php?id=62&L=&persid=100
http://www.asc.tuwien.ac.at/index.php?id=62&L=&persid=90

7. Father, mother and my two brothers at home in Jakarta, Indonesia, for
their continueous support and prayer for me, I am forever greatful.

8. My beloved girlfriend in Singapore, for her help, support, prayer and
for boasting my spirit during this research.

9. To all my friend in Vienna, Austria for their help and support.

10.To anyone who has contributed their effort, time and support for me

during this research, my deepest appreciation.

Eventhough I realize that there are many area in this thesis, which are still
open for further study, I sincerely hope that this research can be used as a

contribution for future academic reference.

Thank you for your time and attention.

Vienna, 2 July 2008

Gemma Ferdinand Kaunang

CONTENT

PROLOGUEccuiiiiiiri s e r e s s s s sna s s na s e na s e nanas 1

L]\ = 1ii
2 o I N viil
B2 Y I 5 xiii

1 INTRODUCTION

= 7= T 1 o 0T 1
1.2 Problem’s FOrmulationcoovuiiiuiiieiie e e e e e e 2
|G R @ o) ¢ o 15 o LY 2 = 2
L @) o =Y o] = 3
1.BReSEATCh Plamcceiiiiieiee e e e e 3
1.5.1 Study Literatureccvuiieiiiieiiie e e e e 3
1.5.2 Design and SOIUtIONSccveuiieurireiirirsir e 3
1.6 Writing Methods........oiiuiieiie e e 3
2. THEORY
P T - =Y o 5
2.1.1 The Matlab SYSteIm.....c.oiuiieiiiiiii e 5
2.1.2 ODE SOLVEYueeniiieieieeieeee e e e s e eee e e e e e s e e e e s e e s ea e e e s ennaennneenn 7
P N O) 1 7
2.1.2.2 OdESet..ccuiiiiiiiric e 8
2.1.2.3 Initial Value ODE Problem Solvers.......cc.cceveiiiuiieiiiniieieceeeeanee 9
2.2 SIMULINK. ... e e e e e e e e e e enans 9
A S - X =Y P 9
2.2.1.1 ContinUOUS StateSiiuuiiiuiiiiiri i 11
2.2.1.2 DiSCrete States...ccuiiiu i e e eans 12
2.2.1.4 Modeling Hybrid Syste€msSccuiiimiiimiiiiiiiieeereeee e e 13
2.3 StAtefloOW ...ceeiee e 13
2.3.1 Finite State Machine Concepts.......ccoviruiiirriiniiiiiniinir e 14
PARC TS =1 1 Lo X1it 0\ o] = 1 Lo o F- 15
2.3.2.1 Nongraphical ObjJectscccuuiiiuiiiiiiiiie e 15
2.3.2.2 Graphical ObjJectSccuiiiviiiiiiirii s 16

P2 3) 4 Lo) - PP 16

2.4.1 Architecture of Dymola.......ccccciiiiniiiiiiiiiii e 17
2.4.2 Basic Operations of Dymola.........cceuviiiiniiieneriere e 18
2.5 MOSIIAD ..ceuiiiiiicii e 19
2.5.1 Mosilab Architecturecccooiiiuiiiimiiniii 19
2.5.2 Mosilab Configurations.........ceviruireninniiin e 19
2.5.3 The Mosilab Development Environment........c...ccoeeiiiiieiieiennnennennns 20
2.6 SIMUlAtionXcocvuiiiiiiiirr 21
2.6.1 Library Bar......ccooiiuiiiiiiiiieir e 23
2.6.2 MOdEl VIEWceeiieiieeieii e ei e e e e e m e e e e n e e e e e e e e n e enneean 23

3. Comparison 3: Generalized Class-E Amplifier

3.1 Definition....coicieeiii i 24
3.2 Design and SOIUtIONSc.uiieuiruireirr s e ea s ra s eaaes 26
R0 B 1 -1 - 1 o P 26
3.2.2 SIMUNNK ..cceuiiii i 29
3.2.2.1 Hybrid Model.......ccuuiiiiiiiiiiiciri e e 29
3.2.2.2 StateflOW ...ccceeeie e e e ennas 32

R 2 G T8 1) 1 1o) - 35
3.2.3.1 Hybrid Model.......ccuuiiiiiiiiiiiiiri e e e 35
3.2.3.2 Stategraph Model........ccoouiiiiiiii 38
3.2.3.3 Electrical Modelc.ooiiuiiiiiiiiiiii e 39
3.2.3.4 Modelica Text Mode........cccoiiriniiiiiiiiii e 40
3.2.4 MOSIIaDoiiiiiiiiiiccir 42
3.2.4.1 Modelica Text Mode........ccoovruiiiuiiiiiiir e 42
3.2.4.2 StateChartcoocuuiiiii i 43
3.2.5 SimulationXcoiiiiuuiiiirie e 44
3.2.5.1 Hybrid Model......ccuuuiiiiiiiiiiecceeeeeere e e e e e e e 44
3.2.5.2 Electrical Modelcoiiiiiiiiiiiii e 47

4. Comparison 5: Two State Model
T30 D 1= 1 o 3 o PP 49
4.2 Design and SOIUtIONScuuiieuiruiieiei e e e e e e e e e e e e e n e e e ennes 50

4.2.1 Matlabccuuiiiiiiiii i 51

4.2.2 SIMUNNK ..o e e e e e e e e e e e e e e e e nnn s 54
4.2.2.1 Hybrid Model......coemiiiiiiieiieieeceeee e e 54
4.2.2.2 Stateflowcceuiiiiiii s 58

4.2.3 DYINOLA ...oenieiiiie e e ea e 62
4.2.3.1 Hybrid Model......ccuuuiiiiiiiieieeeeeee s e e e e e e e e 62
4.2.3.2 Stategraph Model ... 65
4.2.3.3 Modelica Text Mode........ccoovvruuiiiiiiiiiiir e 67

2 1 oY 1 - 1 o R PP 69
4.2.4.1 Modelica Text Mode........ccooiiiuiiiinniii e 69
4.2.4.2 StateChartcocceuiiiiiiiriii 71

4.2.5 SimulationXcoiecieuiiieiie e e s 73

5. Comparison 20: Electrical model - Basics

LS T D 7= i 1 T o PP 11
LG T2 1= =1 3 P 18
B.2.1 Steady States..cuuiiiiieiieiiieiriiei e e een 18
5.2.2 Classical Simulationc.oeuiiiieiiiiiiii s e e e e e 18
5.2.3 Different Diode Models........cccuiiiuiimiimiieie e eee e eee e e eneeeas 79
5.2.4 Influence of Simulation Algorithmscccoevuiiimiiiiiieiee e 80
5.3 Design and SOIUtIONSc.uiieuiruireirrirar s e s s s eaas 80
LG G T = - 1 o 80
B.3.1.1 Steady States ..ocuiiiiieiiiiieerr e 80
5.3.1.2 Classical SIMulationccoeuuiiiuiiiniirirrr e 82
5.3.1.3 Different Diode Modelscooviiiiiiiiniiiiiree e 84
5.3.1.4 Influence of Simulation Algorithms.........ccccovvrvniiiiiiinceee 85
5.3.2 SIMUNNK ... e e 87
5.3.2.1 Hybrid Model........coiiiiiiiiiiiiin e e 87
5.3.2.1 Steady Statescccoviireiiiiiiiir 87
5.3.2.2 Classical Simulation.........ocuiieuiiiuiieeiiiieer e e e e e e e 90
5.2.2.3 Different Diode Modelsccooeiuiiiniiiiniiiniii e 93
5.2.2.4 Influence of Simulation Algorithms........ccccceiiveiiiiiiiicinncen, 94

LIRS I =Y (=Y (o 1 94

5.3.2.2.1 Classical Simulation..........ceieeniiniiiinine e 95
LSRG TRC T8 7 1 1o) - 96
5.3.3.1 Hybrid Model.......cccuiiiiiiiiiiiieiiei e e e 96
5.3.3.1.1 Steady States....ccuiieiiiiiiiiii e 96
5.3.3.1.2 Classical Simulation..........ceieeuiiieiiinnine e 98
5.3.3.1.3 Different Diode Models...........ocrvuiiiiiniiiiiniiiirn e 101
5.3.3.1.4 Influence of Simulation Algorithms.........ccccociiiviiiiiiiniiiennnes 102
5.3.3.2 Stategraph Model.........ccciiiiiiiiiiii 104
5.3.3.2.1 Steady States (State C)cevvrirriiiiniiiiiiir e 104
5.3.3.2.2 Classical Simulation........ccivreuiiimnuniirii e 105
5.3.3.2.3 Different Diode Models.........ccoovvuiiiiiiiniiiiiniicr e 107
5.3.3.83 Electrical Modelcoiiiuiiiiiiiiiicr e 108
5.3.3.8.1 Steady States...c.cciieiiiiieiiiii e 108
5.3.3.3.2 Classical Simulation........ccivrvuiiireniiisiii e 109
5.3.3.3.3 Different Diode Models.........ccoovvuiiiiiiiniiiiii e 110
5.3.3.3.4 Influence of Simulation Algorithms.........cccoocuiiieiiiiicnininnnnen. 112
5.3.3.4 Modelica Text Mode........cccooviruiiiiiiiiiiii e 113
5.3.3.4.1 Steady States.......cviiiuiiiiiiiiiirr 113
5.3.3.4.2 Classical Simulation.........civreuiiireninreer s 114
5.3.3.4.3 Different Diode Models...........ocrvuiiiinniiiiiiiiii e 114
5.3.3.4.4 Influence of Simulation Algorithms.........cccoeeiiiviiiiniiinininnn. 115
LGRS 1 oY I - 1 o 2 P 116
5.3.4.1 Modelica Text Mode........cccoirrruiiiimiiiiiir e 116
5.3.4.1.1 Steady States...cccuiieiiiiieiiiii e 116
5.3.4.1.2 Classical Simulation..........cceveeiiiuiiieinir e 118
5.3.4.1.3 Different Diode Models............crvuiiiiiniiiiiiiiie e 119
5.3.4.1.4 Influence of Simulation Algorithms.........cccooeeiiiiiiiniiiiiiinnnne. 121
5.3.4.2 StateChartccviieiiiiir 121
5.3.4.2.1 Steady States.......coieruiiiiiiiiiii 122
5.3.4.2.2 Classical Simulation........coivreuiiiminiir e 123

Vi

5.3.4.2.3 Different Diode MoOAeEIS......ccueiiimiiieieieiieeisiessaeesansnsnsaenesnrnens 124

5.3.5 SimulationXcoieieuuiiieieen e rrenee e e e r e e e s 124
5.3.5.1 Hybrid Model......ccouuiiiiiiiieieeieeer e e e e e 124
5.3.5.1.1 Steady States.....cciiuiiiiieiiiiie e 124
5.3.5.1.2 Classical Simulation........ccciervuiiimeniiniii e 127
5.3.5.1.3 Different Diode Models.........ccoovvuiiiiiiiiiiiiiiir e 128
5.3.5.1.4 Influence of Simulation Algorithms.........cccoocuiiiiiiiiiiniiennnnen. 131
5.3.5.2 Electrical Modelcoiiiuiiiiiiiiiiii i 132
5.3.5.2.1 Steady States.......coviruiiiiiiiiiii 132
5.3.5.2.2 Classical Simulation.........coereuiiireninrnerers s 133
5.3.5.2.3 Different Diode Models............crvuiiiiiniiiiiniiiire e 134
5.3.5.2.4 Influence of Simulation Algorithms.........cccoeeeiiiviiiiniiinininnn. 135

6. Comparison
6.1 Table of ReSult......cocevuiiiiiiiiiii e 137
LS I B 7% 1} o X Fia 1= o) ¢ NG PP 137
6.1.2 CoOmMPATISOI Soireiiiiiiiiiiire i 138
6.1.3 CompPAariSON 20......ccuuiiuiieieireirrreerererares e ses e reasrrsrnrnsenaenaannnns 140
6.2 Advantage and Disadvantage.......ccoooeuiiiriiiniiiinir s 143
B.2.1 Matlab ...coeuiiiiii e e e 143
6.2.2 SIMUNNK ...t e e e e e e nnnas 144
LIRS T D 1 1o) - T PSPPI 144
6.2.4 MOSIIADuiiiiiee e e e e 145
6.2.5 SIMUIAtionX.....cccuiiiiiiiir i 146

7. Conclusion and Suggestion

4 R O o3 o Lo =3 T 148
2S5 T [=T o ¢ 150
REFERENCGE 152
APPENDIX

SoUTCE COAE ...cvvuiiiiiiiiiri e 154

vii

FIGURE LIST

Figure 2.1 Screenshot of Matlab..........cccoiviviiiiiiiiiir e 6

Figure 2.2 Screenshot of Simulinkccoeuiiiiiiiiiiiii e 10
Figure 2.3 Block have States........ccovvviiiiiiiiiniiii e 11
Figure 2.4 Screenshot of Stateflowceeviiiiiiiiiiie, 14
Figure 2.5 Graphical objects in Stateflow...........ccooeeiiiiiiiiiieee 15
Figure 2.6 Architecture of Dymolaccoovuiiieiiiiiiiiici e 17
Figure 2.7 Screenshot of Dymolaccovruiiiiiiiiiiiicie e 17
Figure 2.8 Simulation Mode of Dymolac.coeiiiimiiiiiiiieeereeeeeee 18
Figure 2.9 Data Flow within Stateflow............ccoviiiiiiiiiiee 19

Figure 2.10 Screenshot of Prototypical Implementation of the MOSILAB-

10) 21
Figure 2.11 Screenshot of SimulationXccooeeiiimiiieiiiiirer e 22
Figure 2.12 Components in SimulationXccccceviiuiiiiiniinieeeae 23
Figure 3.1 Class-E AmMPLfierccvuiiiiiiiiiiiirr e 24
Figure 3.2 Function of time R(t)ooeuiiimiiie e 25
Figure 3.3 Block Diagram of CompariSOmn 3.........cccuruurreurirnirnrrruninnienannas 26
Figure 3.4 The result for variable current switch resistor IR(t) and
output voltage VL(matlab)coouiiiiiiiiiiiieeei e 28
Figure 3.5 The phase plane curves dx3/dt=VL3 as a function of x3 =
IL3 for TRF (mMatlab)ccvuiieiiiiiiiin e 29
Figure 3.6 Model of the system using Simulinkccccovviviiiiiniiinnnnennnn. 30

Figure 3.7 The result for variable current switch resistor IR(t) and
output voltage VL (Simulink)........ccccceivimuiiimininnimenieas 31
Figure 3.8 The phase plane curves dx3/dt=VL3 as a function of x3 =

IL3 for TRE (SImMUulink)......ccuveuiiiiiieiiiiieeris e reeee e e s e e e e enns 31
Figure 3.9 Stateflow of the system........cccooviiiiiiiiii e 33
Figure 3.10 Model of the system using Simulink (stateflow)..................... 33

Figure 3.11 The result for variable current switch resistor IR(t) and
output voltage VL (simulink stateflow)..........ccoovviiieiiiiiiiiiiennnns 34
Figure 3.12 Trapezoid SOUICEcieuiiiuiiiniiiirir e 35

viii

Figure 3.13 The Model of the system using Dymola........c...cccevruienniennnnne. 35

Figure 3.14 The result for variable current switch resistor IR(t) and

output voltage VL (dymola)ccevevuiimuiiiininiirninirnneneeans 36
Figure 3.15 The phase plane curves dx3/dt=VL3 as a function of x3 =

IL3 for TRF (Aymola)ovvvuiiiiiiiiriiiiir e 37
Figure 3.16 Trigerred Trapezoid..........cceviruiiirniiiniiinini e e 38
Figure 3.17 Part Controller of the System (stategraph)c..cceeeeieennnen. 38
Figure 3.18 The Model of the system using Dymola stategraph mode...... 38
Figure 3.19 Electrical Model for Comparison 3..........cevveuirrnnirnniennennnn. 40
Figure 3.20 The result for variable current switch resistor IR(t) and

output voltage VL (mosilab)cooeiiiiiiiiiiiceeeeeee e 42
Figure 3.21 The model of the system (simulationX).........cccocvevirniiinininnnnnes 45

Figure 3.22 The result for variable current switch resistor IR(t) and
output voltage VL (simulationX)cccevimmiiimiiiniiiiiieeeerceenes 46
Figure 3.23 The phase plane curves dx3/dt=VL3 as a function of x3 =

IL3 for TRF (simulationX)c.ccoireiiiruiimnnimnninre e 46
Figure 3.24. The model of the system (simulationX electrical)................. 48
Figure 4.1 Block Diagram CompariSOn S..........cceuviruiiiiiimnninnncnseaeeeens 50
Figure 4.2 Plot yl(matlab)cccoivuiiiiiiii e 52
Figure 4.3 Plot yl (task d) (matlab)ceeiiiimiiiiiniii e, 53
Figure 4.4 The model of the system (simulink)...........cccovvuiiimiiiiiinniennnnee. 585
Figure 4.5 Plot y1(SImulink)ccoviiiiiniiiiiiir e 56
Figure 4.6 Plot yl (task d) (SImulink)........cccovirvuiiimmniiiiniir e, 57
Figure 4.7 Stateflow block of the system (comparison 5)ccccceuveennnee. 58
Figure 4.8 The model of the system (simulink stateflow)..............cceveennnee. 59
Figure 4.9 Plot y1(simulink stateflow)ccoovviiiiiiiiii e 60
Figure 4.10 Plot y1 (task d) (simulink stateflow).........cccooeuiiiiiiiiiiniiennnnee. 61
Figure 4.11 The model of the system (dymola)ccevrvuiiiniiincienniennnes 62
Figure 4.12 Plot y1(dymola)ccoiiuuiimuiiiiiiiiii e 63
Figure 4.13 Plot y1 (task d) (Aymola)ccceriimniiimmniiiriirr e 64

Figure 4.14 Part Controller and Switching State of the System (dymola

stategraph)....ccceoiiiiiii s 66
Figure 4.15 The model of the system (dymola stategraph)ccceeveeeen. 66
Figure 4.16 Plot y1(mosilab)ccciieuiiieiiiiiie e e 69
Figure 4.17 Plot y1 (task d) (1nosilab).......cccovvuiiiiiiiiiiiii e 70
Figure 4.18 The model of the system (simulationX).........cccoceevirniiiniinnnnne. 13
Figure 4.19 Plot y1(simulationX)ccceuiiruiiimiiiireeerr e e e e e eea e 74
Figure 4.20 Plot y1 (task d) (simulationX)..........ccerrrurirnimnniinnireneeaes 16
Figure 5.1 Electrical circuit comparisSon 20.........ccovrureruiimnnirnnirnniennieean. 17
Figure 5.2 Steady Statesceuiiiiieiiiiiiir 78
Figure 5.3 Time Dependent S1 ... e 19
Figure 5.4 Plot x1 and x2 steady states (matlab)cccoeeiiiiiiiiiiiniiinnne. 82
Figure 5.5 Plot x1 and x2 classical simulation (matlab)ccceceieennnee. 83
Figure 5.6 Plot x1 and x2 different diode models (matlab) 85
Figure 5.7 Plot x1 and x2 influence of simulation algorithms (matlab)..... 86
Figure 5.8 Model of the system steady states (simulink)c.ccceuveennneee 88
Figure 5.9 Plot x1 and x2 steady states (simulink)...........cccoeeiiiniiinniennnnnn. 89
Figure 5.10 Model of the system classical simulation (simulink)............... 90
Figure 5.11 Plot x1 and x2 classical simulation (simulink)............ccoeveunneee 90
Figure 5.12 Model of the system different diode models (simulink) 91
Figure 5.13 Plot x1 and x2 different diode models (simulink) 92

Figure 5.14 Model of the system influence of simulation algorithms
(SIMULINK) ceviriieeice s 93
Figure 5.15 Plot x1 and x2 influence of simulation algorithms (simulink). 94

Figure 5.16 Model of the system classical simulation (simulink stateflow)95

Figure 5.17 Plot x1 and %2 classical simulation (simulink stateflow)......... 96
Figure 5.18 Model of the system steady states (dymola)..........cccccuuveennnen. 97
Figure 5.19 Plot x1 and x2 steady states (dymola)cccovevuviiniiiniinnnnnes 98
Figure 5.20 Model of the system classical simulation (dymola)................ 99
Figure 5.21 Plot x1 and x2 classical simulation (dymola)c..ccceuurennnn. 99
Figure 5.22 Model of the system different diode models (dymola).......... 100

Figure 5.23 Plot x1 and x2 different diode models (dymola).................... 101

Figure 5.24 Model of the system influence of simulation algorithms

(AYIMOLA) .ceuiriieei e 102
Figure 5.25 Plot x1 and x2 influence of simulation algorithms (dymola) .. 103
Figure 5.26 Model of the system steady states (dymola stategraph)........ 104
Figure 5.27 Plot x1 and x2 steady states (dymola stategraph).................. 105

Figure 5.28 Model of the system classical simulation (dymola
stategraph) ..o 106

Figure 5.29 Model of the system different diode models (dymola
stategraph)coooviiiiiii 106
Figure 5.30 Plot x1 and x2 different diode models (dymola stategraph).. 108
Figure 5.31 Model of the system steady states (dymola electrical).......... 109
Figure 5.32 Model of the system classical simulation (dymola electrical) 110

Figure 5.33 Model of the system different diode models (dymola
€leCtriCAl) couuiiiiei i 111
Figure 5.34 Plot x1 and x2 different diode models (dymola electrical).... 111

Figure 5.35 Model of the system influence of simulation algorithms

(dymola €lectriCal).....coivuieiiiieiiie e 112

Figure 5.36 Plot x1 and x2 influence of simulation algorithms (dymola

electrical) ..o 112
Figure 5.37 Plot x1 and x2 steady states (mosilab)..........cccoeeiiiniiiniiennnnee. 117
Figure 5.38 Plot x1 and x2 classical simulation (mosilab).............cccoveeunnee. 118
Figure 5.39 Plot x1 and x2 different diode models (mosilab)................... 120

Figure 5.40 Plot x1 and x2 influence of simulation algorithms (mosilab).. 121
Figure 5.41 Plot x1 and x2 steady states (mosilab statechart) 122
Figure 5.42 Plot x1 and x2 different diode models (mosilab statechart) .. 123

Figure 5.43 Model of the system steady states (simulationX)................... 125
Figure 5.44 Plot x1 and x2 steady states (simulationX)...........ccceervvuiinnnnnns 126
Figure 5.45 Model of the system classical simulation (simulationX)......... 128
Figure 5.46 Plot x1 and x2 classical simulation (simulationX)................... 128

Figure 5.47 Model of the system different diode models (simulationX) ... 129

Xi

Figure 5.48 Plot x1 and x2 different diode models (simulationX)............. 130
Figure 5.49 Model of the system influence of simulation algorithms
(simulationX)oiceiiieiiiii s 131
Figure 5.50 Plot x1 and =x2 influence of simulation algorithms
(SIMUIAtIONX) 1.uivuiieiiiiiei it 132
Figure 5.51 Model of the system steady states (simulationX electrical) ... 133
Figure 5.52 Model of the system classical simulation (simulationX
€leCtrICAl) couniiiiei i 134
Figure 5.53 Plot x1 and x2 classical simulation (simulationX electrical)... 134
Figure 5.54 Model of the system different diode models (simulationX
LY LYo ' Loz 1) PP 135
Figure 5.55 Plot x1 and x2 different diode models (simulationX
electrical)oiveiiiiiie 135
Figure 5.56 Model of the system influence of simulation algorithms
(simulationX electrical)cccccveeiiiiiiiii e 136
Figure 5.57 Plot x1 and x2 influence of simulation algorithms

(simulationX electrical)cccveiveiiiuiieiiiire e 136

Xii

TABLE LIST

Table 2-1 List Of SOIVEYieieeiee e e e e e e e e 9

Table 3-1 Eigenvalues of R(t) (matlab)ccoouiiiiiiiiiciiee e, 27
Table 3-2 Eigenvalues of R(t) (Aymola)ccccovivuiimiiiiiiniieiierceeneeae 36
Table 3-3 Eigenvalues of R(t) (simulationX)cccevierurimrnnirnninienneeennn, 45

Table 4-1 The result of time discontinuity and final value y,(5.0) with

vary relative tolerance (matlab)ccoovviiiiiiiiiiiiie 53
Table 4-2 The result of time discontinuity and final value y,(5.0) with

vary relative tolerance (simulink)........coceevveiiiiiiiiiienieceeeeeanes 56
Table 4-3 The result of time discontinuity and final value y,(5.0) with

vary relative tolerance (simulink stateflow)..........ccoeeiviniienennne. 60
Table 4-4 The result of time discontinuity and final value y,(5.0) with

vary relative tolerance (Aymola)ccceeevieiieiieniiiiiiieeereeee e 64
Table 4-5 The result of time discontinuity and final value y,(5.0) with

vary relative tolerance (mosilab)ccccoeiviiiiiiiiiiiiin 70
Table 4-6 The result of time discontinuity and final value y,(5.0) with

vary relative tolerance (simulationX)ccoveiiiviiiiiiiiininnnennnes 74
Table 6-1 The Result of the simulation software completing the task for

COIMPATISOIL 3 .euiieiiiiiinieuienrrsensensenseasensrnsrnsensrnnsenerensenssrnsennns 137
Table 6-2 The list of the time needed to simulate the task for

(o703 44} 0T 18 1= 03 o I 138

Table 6-3 The Result of the simulation software completing the task for

[oTo) 0} 0 X- ¥ 1= o) 1 1 T PRSPPI 139
Table 6-4 The list of the time needed to simulate the task for

LoTo ¢4} o 1o 1= o) ¢ IR 139
Table 6-5 The Result of the simulation software completing the task for

COMPATISON 20 ..cuuiiiiiiiiiieniie e i e e e e s s re s e rnsrnresensraaennss 140
Table 6-6 The list of the time needed to simulate the task for

COMPATISOI 20, .. tuieniiuienieieerrr e reern s e enrensensensenrrasennsenneen 142

Xiii

1.INTRODUCTION
1.1 Background

Before a new product is launched to the market, a company have to test the
product and make sure that the product is ready and presentable, especially
if the product is a problem solving system, such as control system,
automated system or self-learning system. Testing is a highly cost consuming
yet unavoidable activity. Therefore to reduce cost of production, company
will use methods like simulation to test their product.

Simulation is an imitation of some real thing, state of affairs, or process[1].
The act of simulating something generally entails representing certain key
characteristics or behaviours of a selected physical or abstract system.
Simulation is used in many contexts, including the modeling of natural
systems or human systems in order to gain insight into their functioning.
Other contexts include simulation of technology for performance
optimization, safety engineering, testing, training and education. Simulation
proves also cost effective, reducing the cost of the production. One of
simulation that common used is computer simulation.

A computer simulation, a computer model or a computational model is a
computer program, or network of computers, that attempts to simulate an
abstract model of a particular system[2]. Computer simulations have become
a useful part of mathematical modelling of many natural systems in physics
(computational physics), chemistry and biology, human systems in
economics, psychology, and social science and in the process of
engineering new technology, to gain insight into the operation of those
systems, or to observe their behavior.

There are so many simulation softwares in the market which offers different
abilities and advantages. The various choices has makes it even more
difficult for end-users (company) to choose which one is more suitable and
useful for the company. On this thesis Three “comparison problem” based

on electrotechnic will be compared each other by using four simulations

http://en.wikipedia.org/wiki/Scientific_modeling
http://en.wikipedia.org/wiki/Technology
http://en.wikipedia.org/wiki/Safety_engineering
http://en.wikipedia.org/wiki/Experiment
http://en.wikipedia.org/wiki/Training
http://en.wikipedia.org/wiki/Education
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Simulation
http://en.wikipedia.org/wiki/Model_%28abstract%29
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Computational_physics
http://en.wikipedia.org/wiki/Chemistry
http://en.wikipedia.org/wiki/Biology
http://en.wikipedia.org/wiki/Economics
http://en.wikipedia.org/wiki/Psychology
http://en.wikipedia.org/wiki/Social_science
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Technology

software (Matlab/Simulink, Dymola, Mosilab and SimulationX), with different

approaches to model of the system.

1.2 Problem’s Formulation
Based on the problem at hand, this thesis will focus on problems as follow:

- Designing and building model using 4 simulation softwares
(Matlab/Simulink, Dymola, Mosilab, SimulationX) with different
approaches for 3 “comparisons problem” based on electrotechnic
method.

- Provide comparison, analysis and conclusion from the above 4
simulation softwares in search for a better solutions based on the
results.

1.3 Concluded Area
Concluded area for designing and building the model of this thesis are as
follow:

- Only 3 comparison problems are being used for this thesis and they are
all based on electrotechnic with non-linear problem. They are
comparison 3, comparison 5 and comparison 20.

- Only 4 Simulation Softwares are being used: Matlab/Simulink, Dymola,
Mosilab and SimulationX.

- Only hybrid model, textual mode, electrical model and statechart
approach are being used for problem solving.

- System Platform is Windows XP for Matlab/Simulink, Dymola and
SimulationX software and Linux UBUNTU for Mosilab.

- The result of the research will be tested on PC Intel Pentium D, 2 x 2,66
GHz and Dell notebook Latitude D630 Intel Centrino Duo.

- Matlab/Simulink version 7.4 R2007a, Dymola version 6.0b, Mosilab
version 3.1, Simulation X version 2.0 are being used.

- All the feature of Matlab/Simulink, Dymola, Mosilab and Simulation will

not be discussed in details, only the features used in this thesis.

1.4 Objective
The objectives of this thesis are:
- To have better understanding on the characteristics, weaknesses and
strengths in each of the 4 simulation softwares analized in this thesis,
within the concluded area.

- As a future reference for academical purpose.

1.5 Research Plan

1.5.1 Study Literature

Literature studies will be done to have better understanding on how to use,
explore and practice 4 simulation softwares used in the thesis, and to
understand the approaching methods to find the solution of the problem.
1.5.2 Design and Solutions

Step by step design of the model with different approach methods and
simulation softwares, simulate the model to get the solutions. Compare all

solutions based on the same approach with different simulation software.

1.6 Writing Method
The writing method and the abstract of each chapter are:
- CHAPTER 1 INTRODUCTION
Explanation about the background and formulation of the problem,
concluded area, objective and research plan which will be
implemented.
- CHAPTER Il THEORY
Brief discussion about the simulation software, software language,
functions and methods that being used to solve the problem.
- CHAPTER IIl Comparison 3: Generalized Class-E Amplifier
Detail discussion about the comparison 3 problem, model design

planning and model solution.

- CHAPTER IV Comparison 5: Two State Model
Detail discussion about the comparison 5 problem, model design
planning and model solution.

- CHAPTER V Comparison 20: Electrical Model — Basics
Detail discussion about the comparison 5 problem, model design
planning and model solution.

- Chapter VI Comparison
Consist of comparison table and discuss advantage and disadvantage
for each simulation software

- CHAPTER VII CONCLUSION AND SUGGESTION

Final conclusion and suggestion to improve model development.

2. THEORY

2.1 MATLAB
MATLAB is a high-performance language for technical computing. It
integrates computation, visualization, and programming in an easy-to-use
environment where problems and solutions are expressed in familiar
mathematical notation[3]. Typical uses includes:

- Math and computation

- Algorithm development

- Data acquisition

- Modeling, simulation, and prototyping

- Data analysis, exploration, and visualization

- Scientific and engineering graphics

- Application development, including graphical user interface building
MATLAB is an interactive system whose basic data element is an array that
does not require dimensioning. This allows you to solve many technical
computing problems, especially those with matrix and vector formulations,
in a fraction of the time it would take to write a program in a scalar
noninteractive language such as C or Fortran.
The name MATLAB stands for matrix laboratory. MATLAB was originally
written to provide easy access to matrix software developed by the LINPACK
and EISPACK projects. MATLAB has evolved over the years with input from
many users. In university environments, it is the standard instructional tool
for introductory and advanced courses in mathematics, engineering, and
science. In industry, MATLAB is the tool of choice for high-productivity
research, development, and analysis. Screenshot of Matlab is shown in

figure 2.1.

2.1.1 The MATLAB System
The MATLAB system consists of five main parts:

1. Development Environment.

This is a set of tools and facilities that will help you to use MATLAB functions
and files. Many of these tools are graphical user interfaces. It includes the
MATLAB desktop and command Window, a command history, an editor and
debugger, and browsers for viewing help, the workspace, files, and the

search path.

| HATISE _J.JL_!I
Fle Edt View Graphcs Debug Desitop Window Help
D & [-} « W 7 CurertDrectory C ProgrommentaTLABT wrors (ca]
Shoriculs (2] How o Add (2] What's New
X
REPad v Sk

To get started, select NATLAB Help
Fisera Vhue it o @ ar ‘ i Help or

& stan

Figure 2.1 Screenshot of Matlab

2. The MATLAB Mathematical Function Library.

This is a vast collection of computational algorithms ranging from elementary
functions, like sum, sine, cosine, and complex arithmetic, to more
sophisticated functions such as matrix inverse, matrix eigenvalues, Bessel
functions, and fast Fourier transforms.

3. The MATLAB Language.

This is a high-level matrix/array language with control flow statements,
functions, data structures, input/output, and object-oriented programming

features. It allows both "programming in the small" to rapidly create a quick

and dirty throwaway programs, and "programming in the large" to create
large and complex application programs.

4. Graphics.

MATLAB has extensive facilities for displaying vectors and matrices as
graphs, as well as annotating and printing these graphs. It includes high-
level functions for two-dimensional and three-dimensional data visualization,
image processing, animation, and presentation graphics. It also includes
low-level functions that allow you to fully customize the appearance of
graphics as well as to build complete graphical user interfaces on your
MATLAB applications.

5. The MATLAB Application Program Interface (API).

This is a library that allows you to write C and Fortran programs that interact
with MATLAB. It includes facilities for calling routines from MATLAB
(dynamic linking), calling MATLAB as a computational engine, and for

reading and writing MAT-files

2.1.2 ODE SOLVER
2.1.2.1 ODE File
Odefile is not a command or function. It is a help entry that describes how to
create an M-file defining the system of equations to be solved. This definition
is the first step in using any of the MATLAB ODE solvers. We can use the
odefile M-file to define a system of differential equations in one of these
forms
y =fit,y) or M(ty)y =f(ty)

where: t is a scalar independent variable, typically representing time.

y is a vector of dependent variables.

f is a function of t and y returning a column vector the same length as

y.

M(t,y) is a time-and-state-dependent mass matrix.

The ODE file must accept the arguments t and y, although it does not have to
use them. By default, the ODE file must return a column vector the same

length as y.

2.1.2.2 Odeset

Create or alter options structure for input to ordinary differential equation

(ODE) solvers Syntax:

options = odeset('namel’,valuel,'name2',value2,...)
options = odeset(oldopts, namel’,valuel,...)

options = odeset(oldopts,newopts)

odeset
Description:
The odeset function lets you adjust the integration parameters of the ODE
solvers. options = odeset('namel’,valuel,'name2',value2,...) creates an
integrator options structure in which the named properties have the
specified values. Any unspecified properties have default values. It is
sufficient to type only the leading characters that uniquely identify a
property name. Case is ignored for property names.
options = odeset (oldopts, namel’,valuel,...) alters an existing options
structure oldopts.
options = odeset (oldopts,newopts) alters an existing options
structure oldopts by combining it with a new options structure
newopts. Any new options not equal to the empty matrix overwrite
corresponding options in oldopts.
Odeset with no input arguments displays all property names as well as their

possible and default values.

2.1.2.3 Initial Value ODE Problem Solvers
These are the initial value problem solvers. The table 2.1 lists the kind of

problem you can solve with each solver, and the method each solver uses.

Table 2.1 List of Solver

Solver Solves These Kinds of Problems Method
ode45 Nonstiff differential equations Runge-Kutta
ode23 Nonstiff differential equations Runge-Kutta
odell3 Nonstiff differential equations Adams
odelS5s Stiff differential equations and DAEs NDFs (BDFs)
ode23s Stiff differential equations Rosenbrock
ode23t | Moderately stiff differential equations and DAEs Trapezoidal rule
ode23tb Stiff differential equations TR-BDF2
odel5i Fully implicit differential equations BDFs
2.2 SIMULINK

Simulink is a software package that enables us to model, simulate, and
analyze systems whose outputs change over time. Such systems are often
referred to as dynamic systems. Simulink can be used to explore the
behavior of a wide range of real-world dynamic systems, including electrical
circuits, shock absorbers, braking systems, and many other electrical,
mechanical, and thermodynamic systems[4].

Simulating a dynamic system is a two-step process with Simulink. First, a
user creates a block diagram, using the Simulink model editor, which
graphically depicts time-dependent mathematical relationships among the
system's inputs, states, and outputs. The user then commands Simulink to
simulate the system represented by the model from a specified start time to

a specified stop time. The screenshot of Simulink is shown in figure 2.2.

2.2.1 States
Typically the current values of some system, and hence model, outputs are
functions of the previous values of temporal variables. Such variables are

called states. Computing a model's outputs from a block diagram hence

10

entails saving the value of states at the current time step for use in computing
the outputs at a subsequent time step. Simulink performs this task during

simulation for models that define states.

Fle Edt View Help
D&+ 8

Commonly Used Blocks e
od Block

L d
a
i

bl

HE

4+

| i’rl'i'rilli.’-__'fl'f lgél'

sesEeens.

§

00 odedS

Figure 2.2 Screenshot of Simulink

Two types of states that can occur in a Simulink model: discrete and
continuous states. A continuous state changes continuously. Examples of
continuous states are the position and speed of a car. A discrete state is an
approximation of a continuous state where the state is updated (recomputed)
using finite (periodic or aperiodic) intervals. An example of a discrete state
would be the position of a car shown on a digital odometer where it is
updated every second as opposed to continuous state. In the limit, as the
discrete state time interval approaches zero, a discrete state becomes
equivalent to a continuous state.

Blocks implicitly define a model's states. In particular, a block that needs

some or all of its previous outputs to compute its current outputs implicitly

11

defines a set of states that need to be saved between time steps. Such a

block is said to have states is shown in figure 2.3.

-
u (states) oy

Figure 2.3 Block have states

2.2.1.1 Continuous States

Computing a continuous state entails knowing its rate of change, or
derivative. Since the rate of change of a continuous state typically itself
changes continuously (i.e., is itself a state), computing the value of a
continuous state at the current time step entails integration of its derivative
from the start of a simulation. Thus modeling a continuous state entails
representing the operation of integration and the process of computing the
state's derivative at each point in time. Simulink block diagrams use
Integrator blocks to indicate integration and a chain of operator blocks
connected to the integrator block to represent the method for computing the
state's derivative. The chain of block's connected to the Integrator's is the
graphical counterpart to an ordinary differential equation (ODE).

In general, excluding simple dynamic systems, analytical methods do not
exist for integrating the states of real-world dynamic systems represented by
ordinary differential equations. Integrating the states requires the use of
numerical methods called ODE solvers. These various methods trade
computational accuracy for computational workload. Simulink comes with
computerized implementations of the most common ODE integration
methods and allows a user to determine which it uses to integrate states
represented by Integrator blocks when simulating a system.

Computing the value of a continuous state at the current time step entails
integrating its values from the start of the simulation. The accuracy of
numerical integration in turn depends on the size of the intervals between

time steps. In general, the smaller the time step, the more accurate the

12

simulation. Some ODE solvers, called variable time step solvers, can
automatically vary the size of the time step, based on the rate of change of
the state, to achieve a specified level of accuracy over the course of a
simulation. Simulink allows the user to specify the size of the time step in the
case of fixed-step solvers or allow the solver to determine the step size in the
case of variable-step solvers. To minimize the computation workload, the
variable-step solver chooses the largest step size consistent with achieving
an overall level of precision specified by the user for the most rapidly
changing model state. This ensures that all model states are computed to the

accuracy specified by the user.

2.2.1.2 Discrete States

Computing a discrete state requires knowing the relationship between the
current time and its value at the time at which it previously changed value.
Simulink refers to this relationship as the state's update function. A discrete
state depends not only on its value at the previous time step but also on the
values of a model's inputs. Modeling a discrete state thus entails modeling
the state's dependency on the systems' inputs at the previous time step.
Simulink block diagrams use specific types of blocks, called discrete blocks,
to specify update functions and chains of blocks connected to the inputs of
the block's to model the state's dependency on system inputs.

As with continuous states, discrete states set a constraint on the simulation
time step size. Specifically a step size must be chosen that ensure that all the
sample times of the model's states are hit. Simulink assigns this task to a
component of the Simulink system called a discrete solver. Simulink
provides two discrete solvers: a fixed-step discrete solver and a variable-
step discrete solver. The fixed-step discrete solver determines a fixed step
size that hits all the sample times of all the model's discrete states, regardless
of whether the states actually change value at the sample time hits. By
contrast, the variable-step discrete solver varies the step size to ensure that

sample time hits occur only at times when the states change value.

13

2.2.1.3 Modeling Hybrid Systems

A hybrid system is a system that has both discrete and continuous states
Strictly speaking a hybrid model is identified as having continuous and
discrete sample times from which it follows that the model will have
continuous and discrete states. Solving a model of such a system entails
choosing a step size that satisfies both the precision constraint on the
continuous state integration and the sample time hit constraint on the
discrete states.

Simulink meets this requirement by passing the next sample time hit as
determined by the discrete solver as an additional constraint on the
continuous solver. The continuous solver must choose a step size that
advances the simulation up to but not beyond the time of the next sample
time hit. The continuous solver can take a time step short of the next sample
time hit to meet its accuracy constraint but it cannot take a step beyond the

next sample time hit even if its accuracy constraint allows it to.

2.3. Stateflow

Stateflow is a graphical design and development tool that works with
Simulink. Stateflow is a suitable environment for modeling logic used to
control and supervise a physical plant modeled in Simulink.

Stateflow integrates with its Simulink environment to model, simulate, and
analyze your system. Stateflow lets you design and develop deterministic,
supervisory control systems in a graphical environment. It visually models
and simulates complex reactive control to provide clear, concise
descriptions of complex system behavior using finite state machine theory,
flow diagram notations, and state-transition diagrams all in the same
diagram. Stateflow brings system specification and design closer together. It
is easy to create designs, consider various scenarios, and iterate until the
Stateflow diagram models the desired behavior. The screenshot of stateflow

is shown in figure 2.4.

14

2.3.1 Finite State Machine Concepts

Stateflow is an example of a finite state machine. A finite state machine is a
representation of an event-driven (reactive) system. In an event-driven
system, the system makes a transition from one state (mmode) to another
prescribed state, provided that the condition defining the change is true. For
example, you can use a state machine to represent a car's automatic
transmission. The transmission has a number of operating states: park,
reverse, neutral, drive, and low. As the driver shifts from one position to

another the system makes a transition from one state to another, for example,

from park to reverse.

»
FUHS 1P D P =] Herd =] MBSO REAMB €
o | ttefiowdchant) pmtitiea(Cliart A =8|
Q Flle Edr Seedstion View Tooks Add Help -
g T8 Bl i« HeE BRA0 B
L1
&)
:Ii
=
yF
100 %
h 4

100% odedS

Figure 2.4 Screenshot of Stateflow

Traditionally, designers used truth tables to represent relationships among
the inputs, outputs, and states of a finite state machine. The resulting table
describes the logic necessary to control the behavior of the system under
study. Another approach to designing event-driven systems is to model the
behavior of the system by describing it in terms of transitions among states.

The state that is active is determined based on the occurrence of events

15

under certain conditions. State-transition diagrams and bubble diagrams are

graphical representations based on this approach.

Name

State

Transition

History Junction

Default Transition

Connective Junction

Truth Table Function

Notation

-

O

truthtable
y = func(x)

Toolbar lcon

Graphical Function

Embedded MATLAB Function

Box

function y = func(x)

eM
y = func(x)

Figure 2.5 Graphical objects in Stateflow

2.3.2 Stateflow Notations

2.3.2.1 Nongraphical Objects

Stateflow defines event, data, and target objects that do not have graphical

representations in the Stateflow diagram editor.

1. Event Objects

16

An event is a Stateflow object that can trigger a whole Stateflow chart or
individual actions in a chart. Because Stateflow charts execute by reacting
to events

2. Data Objects
A Stateflow chart stores and retrieves data that it uses to control its
execution. Stateflow data resides in its own workspace.

3. Target Objects
A target is a program that executes a Stateflow model or a Simulink model

containing a Stateflow machine.

2.3.2.2 Graphical Object

The name of each graphical object in Stateflow is shown in figure 2.5

2.4 Dymola
Dymola - Dynamic Modeling Laboratory - is suitable for modeling of various
kinds of physical systems[5]. It supports hierarchical model composition,
libraries of truly reusable components, connectors and composite acasual
connections. Model libraries are available in many engineering domains.
Dymola uses a new modeling methodology based on object orientation and
equations[6]. The usual need for manual conversion of equations to a block
diagram is removed by the use of automatic formula manipulation. Other
highlights of Dymola are:

o Handling of large, complex multi-engineering models.

o Faster modeling by graphical model composition.

o Faster simulation - symbolic pre-processing.

e Open for user defined model components.

e Open interface to other programs.

e 3D Animation.

¢ Real-time simulation.

17

ﬁ [Expeimetainan | [Madel Paameters
Usar Models | e
CAD {DXF, STL,
? fonalogy, prapertes)
El I
E Madelca | External Graphics
Linmries E fvecir, bitmag)
© Symbolic Kemel ===
HL
5 g ——
I E—— || &
L= g Cmm
w oY d
=]
prrm e rnenen ey E‘ “‘“—-—-—...___‘ Simudini
| Saigting S MATLAR
=
01 ! Plot and Animation
iy =
= I
2= | [cruos]| Mada dac and
22 1 [Reporting [Fi=] Sxaeimat og MTML
g VRML PG)

Figure 2.6 Architecture of Dymola

DympleSliynarmeodelineisahonatory Sl iaeran|) J J le
& File Edt Smulabon Flot Animation Commands Window Help (=&

EHQAE W o mey ANRL- 0N Z- -4 mgHEE 02

Packages
e
w40 Users Guide
* [Blocks
[o] Constants
(5] Electical
5] lcons
® (P Math
(o] Mechanics
 (Media
(] Slunits
¥ [Stateliraph
* (5 Themal
* [Uil |

Compenents
[Ornemed

Modeling | Simulation

Figure 2.7 Screenshot of Dymola

2.4.1 Architecture of Dymola

The architecture of the Dymola program is shown in figure 2.6. Dymola has a
powerful graphic editor for composing models. Dymola is based on the use
of Modelica models stored on files. Dymola can also import other data and

graphics files. Dymola contains a symbolic translator for Modelica equations

18

generating C-code for simulation. The C-code can be exported to Simulink
and hardware-in-the-loop platforms.

Dymola has powerful experimentation, plotting and animation features.
Scripts can be used to manage experiments and to perform calculations.

Automatic documentation generator is provided.

2.4.2 Basic Operations of Dymola

Dymola has two kinds of windows: Main window and Library window. The
Main window operates in one of two modes: Modeling and Simulation.

The Modeling mode of the Main window is used to compose models and
model components. The Simulation mode is used to make experiment on the
model, plot results and animate the behavior. The Simulation mode also has
a scripting subwindow for automation of experimentation and performing
calculations. The screenshot of dymola is shown in figure 2.7 and simulation

mode of dymola is shown in figure 2.8.

[Advanced

-.{ RunScript ("c: fprogramme fdymola/insert fdymola mos", true);
ue

e
RunScript ("C: /I und Einstellungen/Ferdinand ' n./) im/settings.mos", true):

| @i | 12 smitin|
Figure 2.8 Simulation Mode of Dymola

19

2.5 Mosilab

2.5.1 MOSILAB Architecture

The GENSIM simulation tool MOSILAB (Modeling and Simulation
Laboratory) includes the simulation kernel (consisting of a model compiler,
a runtime system and a numerical solver framework) and an IDE (Interactive
Development Environment)[7], the interface to the user of the simulation
system. It supports him both in the modelling process with the help of
graphical UML and text editors and during the simulation experiment.

Figure 2.9 shows the data flow within the MOSILABtools: Beside experiment
definitions, the models also developed within the IDE are stored as MOSILA
model classes. Together with the MOSILA standard library, these MOSILA
models are compiled to C++ classes by the MOSILA compiler. Using the
GNU gcc/g++ compiler, the executable simulator is built from these C++

representations and the simulator kernel classes.

| i Ce+
I .
I > Experiment
C++ Mode ﬂ
Classes
1 MADEILA- % geolgi+
@ Compiler I:p- IZD Campiler Eb
Executable

ﬂ ﬂ ﬂ Simulator
q MOSILA {
[::’ | standard-

MOSILA Likrary C++ Simulator-
Mode| Casses Kerng! Classes

|MOSILABR- IDE MOSILAB-Simulater

Figure 2.9 Data Flow within Mosilab

2.5.2 MOSILAB Configurations
MOSILAB can be configured in to act in three modes:

a) The generated simulator is represented by a single, monolithic
C/C++ application. This option has the smallest memory footprint and only
few dependencies on the underlying platform, so it is most useful e.g. for
embedded applications. However, the functionality of w.r.t. dynamic

parameterization at runtime is limited.

20

b) The simulator is represented by a shared object file which can be
dynamically linked to a main program which controls the simulation.
MOSILAB uses the Python language and interpreter
(http://www.python.org) as its central mechanism for experiment
control. The simulator is loaded as an “extension” into the interpreter,
and “experiment scripts”, written in Python, access the simulator API
via a Python-level interface.

c) The simulator acts as a service. In this mode, the simulator is linked
with appropriate libraries to publish its API via standard TCP/IP-based
protocols such as SOAP in a web or grid services framework (e.g. the
upcoming release 4 of the Globus Toolkit). In this mode, the simulator can
easily be controlled in protocol-based, platformindependent manner, and it
is easy to deploy multiple (and potentially large numbers of) “simulator
service instances” in a coordinated way in a heterogeneous network or Grid,
for instance to solve an optimization problem. Python-based experiment
control support is available in this mode as well a (Python) client library is
used to talk to thesimulator’s API over the network in this case. The simulator
maintains a run-time representation of the model object hierarch®b (as
defined in the source and evolving according to the structural variability of
the model). This run-time model can be inquired via introspection features of
the simulator API, so (using the synchronisation features offered by this API,
too) experiment scripts are able to follow the structural changes over the
entire course of a simulation run. This way, if special reactions to model
structure changes are needed, which cannot be formulated in the model
itself due to their complexity, such reactions can easily be implemented in

the experiment script.

2.5.3 The MOSILAB Development Environment
The MOSILAB Development Environment (MOSILAB-IDE) supports the user
during the modelling process and the simulation experiment. In the

modelling mode the user can choose between three graphical UMLH-editors

21

(class diagrams, collaboration diagrams and statecharts) and a text editor.
While the graphical views give the user an intuitive overview about the
structure and the logic of a complex model, the text editor offers the user
features like syntax highlighting for implementing the MOSILA/Modelica
models.

In the experiment mode of the MOSILAB-IDE the user can define the root
model for the simulation experiment, can parameterize model variables and
can choose and configure a suitable numerical solver. Furthermore he can
define a subset of model variables, which should be observed during the
simulation experiment. The observed variables are the basis for different
types of post-processing. Figure 2.10 shows a screenshot of the prototyzp?ical

implementation of the MOSILAB-IDE.

L

T 1] e sgres | Bn Cesiiwn | Comprees (s
Bk it

- |mia 2

ml | ==

Figure 2.10 Screenshot of Prototypical Implementation of the MOSILAB-IDE

2.6 SimulationX

SimulationX is a standard software based on modelica language, for
valuation of the interaction of all components of technical systems. It is the
universal CAE tool for modeling, simulation and analyzing of physical effects
— with ready-to-use model libraries for 1D mechanics, 3D multibody systems,

power transmission, hydraulics, pneumatics, thermodynamics, electrics,

22

electrical drives, magnetics as well as controls — postprocessing included[8].

Figure 2.11 shows SimulationX screenshot.

SimulationX supports the use of the most convenient way of modeling in each

of the engineering domains - signal blocks in the control domain, circuit

diagrams in the electronic, magnetic and fluid domains, functional sketches

in 1D mechanics, and 3D geometrical structures with visualization and

animation in 3D mechanics.

[#]171 Simulation¥ Evaluation ¥ersion - Modell

=10l

S Fle Edt Wiew Insert Elements Simulation Extras Window Help

fNE-HdS | 4G K| o~ i @,

0 E EE|

w e |me|%2 7
. : : - Menu Bar
LIBE L iR mG | ., he L. iQas8

Libraries 2 x| AModel1=:1 | = % || [Avodel1z |

:x|Tasks ax

(-] Rotational Meche . spherel Forcel
Eﬁ 3D-Mechanics o E .
=3 Bodes
| Model View
KN

Open = .
linsyszpoles2ze. ..

32Weqgekanten...
(55 More models. .,

] Create anew ...

5

| Model Explorer

2 xl + FRun simulation

Calculate Equili. ..

| |Comment | Mame

| Current Va ~

calc

Model Explorer [

< Force Elemer
J1 Local Loz

& o Run variants ca...

1} | |

< Fry Mealc | 0
R o ha
| _>|_I Task Pane

— | Result Windows 0 x|
J | 1558 gz =
ct,1<: Result Window Manager]

|Output 1 x

Description: Local Load
I;:E::D o Mc‘ecc;arzzs.Mechanic | Output Area
Wersion: 100 W 4+ K s Simulation (Fie 7

Sirnulation Time: 0.00000000 s .

Figure 2.11 Screenshot of SimulationX.

The all-domain ITI modeling philosophy opens up new application fields for

real system simulation and analysis including:

e Linear and Rotary Mechanics .
e Multibodies .
o Hydraulics .
e Pneumatics .
o Controls .
o Electronics .

Magnetics

Power Transmission
Electromechanical
Thermics

Thermal Fluid

Thermodynamics

23

2.6.1. Library Bar

The library bar offers access to the installed element types. For clarity, the
element types are subdivided into libraries (groups). In the tree view,
element types and libraries are shown according to their hierarchy. The
library view offers access to the element types over symbols that are

administered in folders.

2.6.2 Model View

The model view serves for the graphical representation of the structure and
the modification of the simulation model. Elements and connections are the
components of a simulation model. Elements have connectors that can link
together via a connection. Connections can be branched arbitrarily; i.e. they
can link more than two connectors.

There are different types of connectors, such as mechanical (linear and
rotary), hydraulic, and electrical connectors, as well as signal inputs and
outputs. Only connectors of the same type can be connected to each other.
Each connector possesses an unambiguous name with respect to the
corresponding element. These names can be made visible via "Pin Labels"

(menu "View"). Figure 2.12 shows components in SimulationX.

' Eprng\ S Mass1 |

atrl —+ atrk ctr o2

 Dampert | Pin

art) ctr2 e
- I—
Caonnection

Figure 2.12 Components in SimulationX.

24

3. Comparison 3: Generalized Class-E Amplifier

3.1 Definition

The basic class-E power amplifier was introduced by N.O. Sokal and A.D.
Sokal in their classic paper from 1975[9]. It is a switching-mode amplifier
that operates with zero voltage and zero slope across the switch at switch
turn-off. The actual numerical example is taken from]J.C. Mandojana, K.].
Herman and R.E. Zulinski[10]. They use the following equivalent circuit of a
generalized class-E amplifier as a test example for a procedure to evaluate

steady state boundary conditions by means of MATLAB. Figure 3.1 shows

Class E Amplifier
X1 X3 + x4 -
1 2 3 4
C e T :
L1 + L3 c4

vDe —~ R(E) é e2 T x RL é VL

Figure 3.1 Class-E Amplifier
The component values are:
VDC = 5 volt, Ll = 79.9E-6 henry, C2 = 17.9E-9 farad, L3 = 232.0E-6 henry,
C4 = 9.66E-9 farad and RL = 52.4 ohm.

The time dependent resistor R(t) models the active device acting as a switch
with an ON-resistance of 0.05 ohm and an OFF-resistance of 5.0E+6 ohm. An
extreme ON-resistance of value zero ohm will of course result in a
pathological system i.e. the old story of what happens when an ideal
capacitor with a certain charge is suddenly short circuited. Furthermore the
DC voltage source will be short circuited through the ideal coil L1. Figure 3.2

shows function of time R(t).

25

OFF . OH

time

5.0E-2 A

Y

SE=6 IOE-% sec

Figure 3.2 Function of time R(t)

The duty ratio is 50%. The period is 10E-6 seconds (frequency 100 kHz). The
rise/fall time is TRF = 1E-15 seconds.
The equations describing the circuit may be the state-equations where
inductor currents and capacitor voltages are chosen as system variables. By
using the Kirchhoff voltage and current laws we get the following differential
equations:
Ll*dxl/dt = -x2 + VDC
C2*dx2/dt = + x1 - x2/R(t) - x3
L3*dx3/dt = + x2 - RL*x3 - x4
C4*dx4/dt = + x3
where the variables are as follows: x1 = IL1 (the current of L1), x2 = VC2 (the
voltage of C2), x3 = IL3 (the current of L3) and x4 = VC4 (the voltage of C4).
Note that normally the setup of state equations demands a topological
analysis of the circuit excluding some inductor currents and capacitor
voltages as candidates for system variables (e.g if there is a loop of N
capacitors then only N-1 of these may be given an arbitrary initial charge).
The following tasks should be performed:
a. Calculation of the eigenvalues of the system in the ON-period:
R(t)=0.05 ohm and in the OFF-period: R(t)=5E+6 ohm.
b. Simulation of the system over the time interval [0, 100E-6] sec
with the zero-solution as initial state. Time curves of the state
variables, the current in the switch resistor IR(tf) = x2/R(t) and the

output voltage VL = x3*RL are wanted.

26

C. A parameter variation study over the time interval [0, 9E-6] sec
with initial solution equal to the final solution at 100E-6 sec from task
(b). The rise/fall time TRF should be varied through the values: 1E-15,
1E-11, 1E-9, 1E-7 sec. The phase plane curves of dx3/dt = VL3 as a
function of x3 = IL3 i.e the voltage difference V2-V3 as a function of the
current IL3 are wanted. Time curves of the current in the switch

resistor IR(t) = x2/R(t) and the output voltage VL = x3*RL are wanted.

3.2 Design and Solutions

Block Diagram

The design of this model consist of only 2 block diagram: Time dependent
Resistor and Differential Equation. Figure 3.3 shows block diagram for

comparison 3.

TIME
DEPENDENT || DIFFERENTIAL
RESISTOR EQUATION

Figure 3.3 Block Diagram for Comparison 3
3.2.1 Matlab
Design of Model
For design model, using differential equation in state space form dx/dt =
A*x, xR3, AR*’, with time dependent resistor matrix A = A(R(t)). The
resistivity R(t) and the differential equation are built by matlab function-type
m-files. The time-dependent resistivity R(t) was implemented as a continuous

function. In the following these m-file models (A.m, R.m, deq.m)

function Aout=A(%) %System Matrix
global VDC L1 C2 L3 C4 RL TRF

Aout=[0-1/L100; 1/C2 -1/(C2*R(t)) -1/C2 0;

0 1/L3 -RL/L3-1/L3; 00 1/C4 0];

end

function R_out = R(?) % Time dependent Resistor
global TRF

TRF=le-15;

k=((5e+6)-(5e-2))/TRF;

27

t red=mod(t, (10e-6));

if(0<=t_red)&(t_red<TRF)
R_out=(5e-2)+k*t_red;

elseif(TRF<=t_red)&(t_red<(5e-6))
R_out=5e+6;

elseif((5e-6)<=t_red)&(t red<((5e-6)+TRF))
R_out=(5e+6)-k*(t_red-(5e-6));

elseif((5e-6)+TRF<=t_red)&(t_red<(10e-6))
R _out=5e-2;

else
R _out=-5;

end

function dx=deq(t,x) % Differential equation

global VDC L1 C2 L3 C4 RL TRF

b=[VDC/LI; 0; 0; 0];

dx=(A(t)*x)+b;

end

Solutions

Task a Calculation of eigenvalues

Using Matlab built function eig() to determined the eigenvalue’s matrix of
the system when R(t) is on = 0.05 ohm and when R(t) is off = 5e+6 ohm. The

result of eigenvalues is shown in Table 3-1.

global VDC L1 C2 L3 C4 RL TRF

TRF= le-15; L1=79.9e-6; VDC= 5; C2= 17.9e-9;
L3= 232e-6; C4= 9.66e-9; RL= 52.4;

ROff= eig(A(TRF))

ROn= eig (A(0))

It took 0,101523s to simulate the task a
Table 3-1 Eigenvalues of R(t) (matlab)

Eigenvalues R(t) OFF Eigenvalues R(t) ON
-84708 +1.0408e+6i -1.1173e+9

-54708 -1.0408e+6i -625.78

-88228 +5.3275e+5i -1.1304e+5 +6.5835e+5i
-58228 -5.3278e+5i -1.1304e+5 -6.5835e+5i

Task b Simulation of the system
To simulate the system, using matlab built in function ode23s (odesolver)

with the solver form:
[tsol,xsol]=ode23s('deq’,[0 100e-6],[0;0;0;0]);

Where ode23s = ode solver matlab built in function

28

deq = differential equation of the model in form of m-files
[0 100e.6] = simulation time interval
[0;0;0;0] = Initial condition of the model
tsol = time solutions of the model
xsol = variable value solutions of the model
The result for variable current switch resistor IR(t) and output voltage VL is

shown in figure 3.4. It took 4,344246s to simulate the task b.

140

120 4
100 - -
80 B
B0 =
40+ -

20 -
slet R A A ALl Al A

2ot i

e 02 04 06 05 i 12
Figure 3.4 The result for variable current switch resistor IR(t) and output
voltage VL(matlab)

Task ¢ Parameter Variation Study
The parameter of TRF is varied between le-15s, le-11s, le-9s, le-Ts. Initial
state for the task c is equal to the final solution given by task b. The time
interval is 0...9e-6s. Also using the matlab built in function ode23s in the
solver form:

[tsol,xsol]=ode23s('deq',[0 9e-6],[0.26144;0.010869;0.044044,;-14.475]);
xl=xsol(:,1);
x2=xs0l(:,2);
x3=xso0l(:,3);
x4=xso0l(:,4);
VL= x3*RL;
D3= (1/L3)*((x2-VL)-x4);

29

The phase plane curves dx3/dt=VL3 as a function of x3 = IL3 is shown in
figure 3.5. It took 1.075 s to simulate task c. The four simulations will be
executed separately

For the complete calculation and simulation, using Matlab/Simulink version

7.4 R2007a on PC Intel Pentium D, 2 x 2,66 GHz.

w1t w1t

8 8
6 6
4 4
2 2
0 0
2 2
4 4
B B
a a
10 10
71—20.2 —EI.‘15 —EI.‘1 —U.IUS EII EI.‘EIE EII‘\ 0.15 71—20.2 —EI.‘15 —EI.‘1 —U.IUS EII EI.‘EIE EII‘\ 0.15
() ()
gk 1t ‘ ‘ . . ‘ . gk 1t
6 6
4 4
2 2
0 0
2 2
4 4
B B
a a
10 10
33 G o o o e X 0.15 33 G o o o e X 0.15
(©) (d)
Figure 3.5 The phase plane curves dx3/dt=VL3 as a function of x3 = IL3 for
TRF(matlab):

(@). le-15s (b). le-11s (c) le-9s (d) le-Is

3.2.2 Simulink
3.2.2.1 Hybrid Model
Design of Model

The time dependent resistor is using block clock as a input and built by

block embedded Matlab function R(t):

30

function R_out = R(%)
persistent TRF
TRF=le-15;
k=((5e+6)-(5e-2))/TRF;
t red=mod(t, (10e-6));
if(0<=t_red)&&(t_red<TRF)
R _out=(5e-2)+k*t red;
elseif(TRF<=t_red)&&(t_red<(5e-6))
R _out=5e+6;
elseif((5e-6)<=t_red)&&(t_red<((5e-6)+TRF))
R_out=(5e+6)-k*(t_red-(5e-6));
elseif((5e-6)+TRF<=t red)&&(t_red<(10e-6))

R _out=5e-2;
else

R _out=-5;
end

The differential equation part is built by block integrator, add/subtract, gain,
user defined block and Mux. Figure 3.6 shows the model of the system using
Simulink.

+
n - E
Voo P

e et = int frtfL1)

Clock

11T Be)

int (i2/C2)

R R
hlux u[MUMT
Rty 2R

142.6671048)

s
Soope 1ca b= int (3/C))

Figure 3.6 Model of the system using Simulink
Solutions
Task a Calculation of eigenvalues
Because there is no special function in simulink to calculate the eigenvalue.
Therefore this task can’t be done by simulink.
Task b Simulation of the system
To simulate the system, using variable step as a time step, 0 ...100e-6s as

simulation time interval and ode23 (Bogacki-Shampine) as the solver. Under

31

the intial state zero, the result for variable current switch resistor IR(t) and

output voltage VL is shown in figure 3.7. It took 4s to simulate the task b.

Figure 3.7 The result for variable current switch resistor IR(t) and output

voltage VL(simulink)

Task ¢ Parameter Variation Study

-} XY Graph -} XY Graph
XY Plot MY Plot
30 30 T T T T
20 20
10 10
Z ap Z 0
= -
10 -10
20 -20
a0 30
-0z 015 -01 -0.05 u} 0.05 0.1 015 -0z 015 -01 -0.05 i} 0.05 0.1 0.15
M Axis X Axis
(@) ()
-} X¥ Graph
X Plot X Plot
30 T T 30 T T
20 R 201
10+ R 10 F
I or Ea
= i
Aot : Ao}
a0t . 2ot
=0 20
0.2 -015 -01 -0.05 o 0.05 0.1 0.15 -0z 015 -01 -0.05 i} 0.05 0.1 0.15
X Axis X Axis
(c) (d)

Figure 3.8 The phase plane curves dx3/dt=VLa3 as a function of x3 = IL3 for
TRF (simulink):
(@). le-15s (b). le-11s (c) le-9s (d) le-Is

32

The parameter of TRF is varied le-15s, le-11s, 1e-9s, le-T7s. Initial state for
the task c is equal to the final solution is given by task b. The time interval is
0...9e-6s. As the result, the phase plane curves dx3/dt=VL3 as a function of
x3 = IL3 is shown in figure 3.8. It took 9,5s to simulate task c. The four
simulations will be executed separately.

For the complete calculation and simulation, using Matlab/Simulink version

7.4 R2007a on PC Intel Pentium D, 2 x 2,66 GHz.

3.2.2.2 Stateflow

Design of Model

The model has 3 parts: controller, time dependent resistor and differential
equation. The time dependent resistor has also 2 parts for state off and on,
using block clock as an input and built by block embedded Matlab function
Roff(t) and Ron(t):

function R_out = Roff(t)
persistent TRF
TRF=le-15;
k=((5e+6)-(5e-2))/TRF;

t red=mod(t, (10e-6));
if(0<=t_red)&&(t red<TRF)
R_out=(5e-2)+k*t_red;
elseif(TRF<=t_red)&&(t_red<(5e-6))

R _out=5e+6;
else

R_out=5e-2;
end

function R_out = Ron(t)

persistent TRF

TRF=le-15;

k=((5e+6)-(5e-2))/TRF;

t red=mod(t, (10e-6));

if((5e-6)<=t_red)&&(t_red<((5e-6)+TRF))
R_out=(5e+6)-k*(t_red-(5e-6));

elseif((5e-6)+TRF<=t_red)&&(t_red<(10e-6))
R_out=5e-2;

else
R _out=5e+6;

End

Part controller using stateflow mode to control time dependent resistor

block, when is state off and when is state on with outpul signal SGN. Figure

33

3.9 shows Stateflow mode of the system. The differential equation part is built
by block integrator, add/subtract, gain, user defined block, switch and Mux.

Figure 3.10 shows the model of the system using Stateflow mode.

7o I {OFF
enSGN=3;

~,
off_switch EL-SCI
Hi
en:Ohr =0.05; Hi
en:Chm =5000000;

[modulos=(5a(E)+{16-15)]

[modylo==1e-1
l on_switch

Lo Lo Low
en: Ohm=loffi}; en: Chim =lon(); en:Ohm =0.05;

A

function r= |off

function r=lon
{r = (Be+E)-(((Be+E)(5e-2)/(1 e-15) (modulo-Ge-6))); }
— ()

{r = (Be-2)+{{((Fe+6)-5e-2)(1e-16) madulo); }
— ()

Figure 3.9 Stateflow mode of the system

Constant

L
son -
IRt
Subsystem Ecepsll
Period
-" LH- o o
Fulse >
Generator Iz
Controller
Soope
: b[ian.o'ic::o;_ == . !
— 3 ——
D e it 1 = L)
ok
T
it
M _Jb| R | B oTem = w
e 1 gt T e 22 = Nkt
o
]

Tt
2320 10°05 =

> -
2 (RLwE) e

dink 3= inl(e3LT)
{10
[ML
Soaped
..‘.19.%'1;_07_::- - : | J
ST s 1IN

)
Figure 3.10 Model of the system using Simulink (stateflow)

(@)Main Model (b)Subsystem

34

Solutions
Task b Simulation of the system

To simulate the system, using variable step as a time step, 0 ...100e-6s
as simulation time interval and ode23s (Stiff/Mod. Rosenbrock) as the solver.
Under the intial state zero, the result for variable current switch resistor IR(t)
and output voltage VL is shown in figure 3.11. It took 3s to simulate the task

b.

Figure 3.11 The result for variable current switch resistor IR(t) and output

voltage VL (simulink stateflow)

Task ¢ Parameter Variation Study

The parameter of TRF is varied between le-15s, le-11s, le-9s, le-Ts. Initial
state for the task c is equal from the final solution is given by task b. The time
interval is 0...9e-6s. As the result, the phase plane curves dx3/dt=VL3 as a
function of x3 = IL3 is shown in figure 3.8. It took 2s to simulate task c. The
four simulations will be executed separately.

For the complete calculation and simulation, using Matlab/Simulink version

7.4 R2007a on PC Intel Pentium D, 2 x 2,66 GHz.

35

3.2.3. Dymola

3.2.3.1 Hybrid Model

Design of Model

The time dependent resistor is built by block Trapezoid source and shown in
figure 3.12. The differential equation part is built by block integrator,

add/subtract, gain, division and constant. Figure 3.13 shows the model of the

AvE

system using Dymola.

- Offset = 5e-2
- Falling = le-15
- Period = 10e-6

- Amplitude = 5e+6
- Rising = le-15
- Width = 5e-6

Figure 3.12 Trapezoid Source

Copstantt Sl e Integratort

= QutFort1
— T o > -
-1
k=5 (A PE1E E48E =
Division1 Add3_1 Cain? Integrator2
Trapezoic _’ﬂ +1 Qutort2
e r i
N\ == -
k=55665521.76... Py

period=10e-5
) AddE 2 : Integrators
Gaing - = Gaind g OutFort3
1+ =] / D
-1
k=524 ’—> k=4310,344527 .. k=1
OWFoms - fntegrators CutPortd

=

=103519665.7...

I

—>

k=1

Figure 3.13 The Model of the system using Dymola

36

Table 3-2 Eigenvalues of R(t) (dymola)

Eigenvalues R(t) OFF Eigenvalues R(t) ON

-54697.1634644282 +1040801.10427323i -1117317558.64085

-54697.1634644282 -1040801.10427323i -625.800550896034

-58228.2500355719 +532753.338849395i1 -113038.779297539 +658348.699798618i

-58228.2500355719 -532753.338849395i -113038.779297539 -658348.699798618i
Solutions

Task a Calculation of eigenvalues

To calculate the eigenvalues of the system when R(t) is on = 0,05 ohm and
when R(t) is off = 5e+6 ohm by using the function “eigenValues” (included in
Modelica standard library 2.2). It took 0,5s to execute task a. The result of
eigenvalues is shown in Table 3-2.

Task b Simulation of the system

To simulate the system, using Dassl as an algorithm integration, 1000 as
number of intervals, 0...100e-6s as simulation time interval and le-4 as a
tolerance integration. Under the intial state zero, the result for variable
current switch resistor IR(t) and output voltage VL is given by figure 3.14. It

took 0,047s to simulate the task b.

Divisiont y

Gaingy

1204

100+

T T T T T T T T T T T T T T T T T T T
0.0EQ 2.5E-5 50E-5 TSES 1.0E-4

Figure 3.14 The result for variable current switch resistor IR(t) and output

voltage VL(dymola)

37

Task ¢ Parameter Variation Study

The parameter of TRF is varied between le-15s, le-11s, le-9s, le-Ts. Initial
state for the task c is equal from the final solution is given by task b. The time
interval is 0...9e-6s. As result, The phase plane curves dx3/dt=VL3 as a
function of x3 = IL3 is given by figure 3.15. It took 0,025s to simulate task c.
The four simulation executed separately.

For the complete calculation and simulation, using Dymola version 6.0b on

PC Intel Pentium D, 2 x 2,66 GHz.

—— tegrator] deriy) nbegradorderi)

.....

rhegrlerSy

Figure 3.15 The phase plane curves dx3/dt=VL3 as a function of x3 = IL3
(dymola)
(@). le-15s (b). le-11s (c) le-9s (d) le-TIs

3.2.3.2 Stategraph Model
Design of Model

38

The model has 3 parts: Controller, time dependent resistor and differential

equation. The time dependent resistor is built by block triggered trapezoid

and shown by figure 3.16.

time

- Amplitude = 5e+6
- Rising = le-15

- Offset = 5e-2
- Falling = le-15

Figure 3.16 Triggered Trapezoid

Trapezoid!

intialStepth SETE ot Signal step transitioriithSigral1
/__/ 0 :
L
petiod=10e-t active
y
== I
k=gl y

......

X i
¥
v
s
V/

il . S <
M | LR
S\ i —
periode] i |
i =
o -
— —CoPon
| #E >
=
\
[

Figure 3.18 The Model of the system using Dymola stategraph mode

39

Part controller using stategraph mode to control time dependent resistor
block, when state is off and when state is on. Controller is built by trapezoid
source, greater equal, less equal, initial step, step and transition block.
Figure 3.17 shows part controllerof the system. The differential equation part
is built by block integrator, add/subtract, gain, division and constant. Figure

3.18 shows the model of the system using Dymola stategraph mode

Solutions

Task b Simulation of the system

To simulate the system, using Dassl as an algorithm integration, 1000 as
number of intervals, 0...100e-6s as simulation time interval and le-4 as a
tolerance integration. Under the intial state zero, the result for variable
current switch resistor IR(t) and output voltage VL is given by figure 3.14. It

took 0,063s to simulate the task b

Task ¢ Parameter Variation Study

The parameter of TRF is varied between le-15s, le-11s, le-9s, le-Ts. Initial
state for the task c is equal from the final solution is given by task b. The time
interval is 0...9e-6s. As result, The phase plane curves dx3/dt=VL3 as a
function of x3 = IL3 is shown in figure 3.15. It took 0,047s to simulate task c.
The four simulation executed separately.

For all the calculation and simulation, using Dymola version 6.0b on PC Intel

Pentium D, 2 x 2,66 GHz.

3.2.3.4. Electrical Model

Design of Model

The model built based on electrical model as given by figure 3.1. Time
dependent resistor block is built by variable resistor and trapezoid source
as input of variable resistor. Electrical model for comparison 3 is given by

figure 3.19.

40

Solutions

Task b Simulation of the system

To simulate the system, using Dassl as an algorithm integration, 1000 as
number of intervals, 0...100e-6s as simulation time interval and le-4 as a
tolerance integration. Under the intial state zero, the result for variable
current switch resistor IR(t) and output voltage VL is given by figure 3.14. It
took 0,047s to simulate the task b

Task ¢ Parameter Variation Study

The parameter of TRF is varied between le-15s, le-11s, le-9s, le-Ts. Initial
state for the task c is equal from the final solution is given by task b. The time
interval is 0...9e-6s. As result, The phase plane curves dx3/dt=VL3 as a
function of x3 = IL3 is shown in figure 3.15. It took 0,018s to simulate task c.
The four simulation executed separately.

For all the calculation and simulation, using Dymola version 6.0b on PC Intel

Pentium D, 2 x 2,66 GHz.

Trapezoid!

JAY|

periodt Oe-6

inductor capacitor]

inductar!

P C=886e9
capacitor resistor

C=17 8e-9

L=79.9e-6

Figure 3.19 Electrical Model for Comparison 3.

3.2.3.4. Modelica Text Mode

Design of Model

For design of the model, using the exact differential equation with modelica
function der(x) as dx/dt in the equation. For time dependent resistor using

algorithm as below:

41

equation
t red = mod(time, 10E-6);
k=((5e+6)-(5e-2))/TRF;
algorithm
if
(0<=t_red) and (t_red<TRF) then
Rt:=(5e-2) + k*t_red;
elseif
(TRF<=t_red) and (t_red<(5e-6)) then
Rt:=5e+6;
elseif
((5e-6)<=t_red) and (t_red<((5e-6)+TRF)) then
Rt:=(5e+6) - k*(t_red - (5e-6));
elseif
((5e-6)+TRF<=t_red) and (t_red<(10e-6)) then
Rt:=5e-2;
else
Rt:=-5;
end if;

Solutions

Task b Simulation of the system

To simulate the system, using Dassl as an algorithm integration, 1000 as
number of intervals, 0...100e-6s as simulation time interval and le-4 as a
tolerance integration. Under the intial state zero, the result for variable
current switch resistor IR(t) and output voltage VL is given by figure 3.14. It

took 0,047s to simulate the task b

Task ¢ Parameter Variation Study

The parameter of TRF is varied between le-15s, le-11s, le-9s, le-Ts. Initial
state for the task c is equal from the final solution is given by task b. The time
interval is 0...9e-6s. As result, The phase plane curves dx3/dt=VL3 as a
function of x3 = IL3 is shown in figure 3.15. It took 0,031s to simulate task c.
The four simulation executed separately.

For all the calculation and simulation, using Dymola version 6.0b on PC Intel

Pentium D, 2 x 2,66 GHz.

42

3.2.4 Mosilab

3.2.4.1. Modelica Text Mode

Design of Model

For design of the model, using the exact differential equation with modelica
function der(x) as dx/dt in the equation. For time dependent resistor using

algorithm as below:

equation
t red = mod(time, 10E-6);
k=((5e+6)-(5e-2))/TRF;
algorithm
if
(0<=t_red) and (t_red<TRF) then
Rt:=(5e-2) + k*t_red;
elseif
(TRF<=t_red) and (t_red<(5e-6)) then
Rt:=5e+6;
elseif
((5e-6)<=t_red) and (t_red<((5e-6)+TRF)) then
Rt:=(5e+6) - k*(t_red - (5e-6));
elseif
((5e-6)+TRF<=t_red) and (t_red<(10e-6)) then
Rt:=5e-2;
else
Rt:=-5;
end if;

— ExplVRL — Expl.IRT

Figure 3.20 The result for variable current switch resistor IR(t) and output

voltage VL(mosilab)

43

Solutions

Task a Calculation of eigenvalues

To calculate the eigenvalues of the system when R(t) is on = 0,05 ohm and
when R(t) is off = 5e+6 ohm can’t be done by mosilab, because Mosilab

didn’t have “eigenValues” function in their modelica library.

Task b Simulation of the system

To simulate the system, using Dassl as an algorithm integration, le-10 as min
stepsize, le-7 as max stepsize and 0...100e-6s as simulation time interval.
Under the intial state zero, the result for variable current switch resistor IR(t)
and output voltage VL is given by figure 3.20. It took 1,3s to simulate the task
b

Task ¢ Parameter Variation Study

This task can’t be done by mosilab because mosilab didn’t have plotArray
function in their core system.

For all the calculation and simulation, using Mosilab version 3.1 on Notebook

Dell Latitude D630 Intel Centrino Duo.

3.2.4.2 StateChart

Design of Model

For design of the model, using the exact differential equation with modelica
function der(x) as dx/dt in the equation. For time dependent resistor using

algorithm the same as previous. The code for statechart is written below:

equation

sl = if Rt>=5e+6 then true else false;

s2 = if Rt<=5e-2 then true else false;

statechart

state C3MosilabStateSC extends State;

annotation(extent=[-104,104; 44,-43]);
State Statel annotation(extent=[-90,63; -77,59]);
State State2 annotation(extent=[-51,62; -38,58]);
State Initial (islnitial=true) annotation(extent=[-82,74; -80,72]);
transition Initial->Statel action
Rs:=5e+6;
end transition annotation(points=[-82,72; -82,63]);
transition Statel->State2 event s2 action
Rs:= 5e-2;

44

end transition annotation(points=[-77,59; -51,59]);

transition State2->Statel event sl action

Rs:= 5e+6;

end transition annotation(points=[-51,60; -77,60]);
end C3MosilabStateSC;

Solutions

Task b Simulation of the system

To simulate the system, using Dassl as an algorithm integration, le-12 as min
stepsize, le-9 as max stepsize and 0...100e-6s as simulation time interval.
Under the intial state zero, the result for variable current switch resistor IR(t)
and output voltage VL is given by figure 3.20. It took 85s to simulate the task
b

For all the calculation and simulation, using Mosilab version 3.1 on Notebook

Dell Latitude D630 Intel Centrino Duo.

3.2.5 SimulationX

3.2.5.1 Hybrid Model

Design of Model

The differential equation part is built by block integrator, add/subtract, gain,
function (as division) and signal generator(as constant).The time dependent
resistor is built by type designer block using modelica code. The model of
the system was shown by figure 3.21. The code for time dependent resistor

was written below:

algorithm
if
(0<=t_red) and (t_red<TRF) then
Rt:=(5e-2) + k*t_red;
elseif
(TRF<=t_red) and (t_red<(5e-6)) then
Rt:=5e+6;
elseif
((5e-6)<=t_red) and (t_red<((5e-6)+TRF)) then
Rt:=(5e+6) - k*(t_red - (5e-6));
elseif
((5e-6)+TRF<=t_red) and (t_red<(10e-6)) then
Rt:=5e-2;
else
Rt:=-5;
end if;

45

equation
t red = mod(time, 10E-6);
k=((5e+6)-(5e-2))/TRF;

integralz

s

integralz

=

integrald

Figure 3.21. The model of the system (simulationX)

Solutions

Task a Calculation of eigenvalues

To calculate the eigenvalues of the system when R(t) is on = 0,05 ohm and
when R(t) is off = 5e+6 ohm by simulate the whole system first and then go to
tab analysis(natural frequencies and mode shapes). In there simulationX
automatically calculate the eigenvalue. It took 0,0723s to execute task a. The
result of eigenvalues is in Table 3-3.

Table 3-3 Eigenvalues of R(t) (simulationX)

Eigenvalues R(t) OFF Eigenvalues R(t) ON

-54708+1,0408E+5i -1,11731E+9
-54708-1,0408E+5i -625,18
-58228+5,3275E+5i -1,1304E+5 +6,5835E+5i

-58228+5,3275E+5i -1,1304E+5 -6,5835E+5i

Figure 3.22 The result for variable current switch resistor IR(t) and output

voltage VL(simulationX)

@)

46

o)

© @

Figure 3.23 The phase plane curves dx3/dt=VL3 as a function of x3 = IL3
(@). le-18s (b). le-11s (c) le-9s

(d) le-Is

47

Task b Simulation of the system

To simulate the system, using BDF-Method as solver, le-18 as min step size,
le-15 as min output step size, le-8 as absolute tolerance, 0...100e-6s as
simulation time interval and le-8 as relative tolerance. Under the intial state
zero, the result for variable current switch resistor IR(t) and output voltage

VL is given by figure 3.22. It took 1,2528s to simulate the task b.

Task ¢ Parameter Variation Study

The parameter of TRF is varied le-15s, le-11s, 1e-9s, le-T7s. Initial state for
the task c is equal from the final solution is given by task b. The time interval
is 0...9e-6s. As result, The phase plane curves dx3/dt=VL3 as a function of x3
= IL3 is given by figure 3.23. It took 0,0858s to simulate task c. The four
simulation executed separately.

For all the calculation and simulation, using SimulationX version 2.0 on PC

Intel Pentium D, 2 x 2,66 GHz.

3.2.5.2 Electrical Model

Design of Model

The design of model based on figure 3.1, using resistor, inductor, capacitor
and constant voltage as VDC. The time dependent resistor was built by type
designer using modelica code. The model of the system was shown by figure

3.24. The code for time dependent resistor was written below:

equation

v=pinl.v -pin2.v;

v=R*i;

pinl.i=i;

pin2.i=-i;

tred = mod(time, 10E-6);

k=((5e+6)-(5e-2))/TRF;

if (0<=tred) and (tred<TRF) then
R=(5e-2) + k*tred;

elseif (TRF<=tred) and (tred<(5e-6)) then
R=5e+6;

elseif ((5e-6)<=tred) and (tred<((5e-6)+TRF)) then
R=(5e+6) - k*(tred - (5e-6));

elseif ((5e-6)+TRF<=tred) and (tred<(10e-6)) then
R=5e-2;

else

48

resishord

Figure 3.24. The model of the system (simulationX electrical)
Solutions
Task a Calculation of eigenvalues
To calculate the eigenvalues of the system when R(t) is on = 0,05 ohm and
when R(t) is off = 5e+6 ohm by simulate the whole system first and then go to
tab analysis(natural frequencies and mode shapes). In there simulationX
automatically calculate the eigenvalue. It took 0,0133s to execute task a. The
result of eigenvalues is in Table 3-3.
Task b Simulation of the system
To simulate the system, using BDF-Method as solver, le-18 as min step size,
le-15 as min output step size, le-8 as absolute tolerance, 0...100e-6s as
simulation time interval and le-8 as relative tolerance. Under the intial state
zero, the result for variable current switch resistor IR(t) and output voltage
VL is given by figure 3.22. It took 0,8461s to simulate the task b.
Task c Parameter Variation Study:

The parameter of TRF is varied between le-15s, le-11s, le-9s, le-Ts.
Initial state for the task c is equal from the final solution is given by task b.
The time interval is 0...9e-6s. As result, The phase plane curves dx3/dt=VL3
as a function of x3 = IL3 is given by figure 3.23. It took 0,11s to simulate task
c. The four simulations executed separately.

For all the calculation and simulation, using SimulationX version 2.0 on

PC Intel Pentium D, 2 x 2,66 GHz.

49

4. Comparison 5: Two State Model

4.1 Definition
In many engineering problems simulation models turn up to be
discontinuous. That is, the solution itself is continuous, but either the first or
higher order derivatives have jumps. Discontinuities may occur either at
specific time points or when certain conditions are satisfied.
When a discontinuity has been passed, not only the model may be changed,
but also the function that determines the location of the discontinuity.
Consequently, if this discontinuity is not correctly modelled and determined,
respectively, the results may go wrong qualitatively[11].
This example tests the ability of the simulator to handle discontinuities of the
forementioned type in a satisfactory way. The problem is as follows
dy,/dt=c, *(y,+c,-Vv))
dy,/dt=c; * (c,-Y,)
This ODE system is essentially a simple linear stiff problem with exponential
decays as analytical solution. One of these is a very rapid transient, and the
stationary solution of the slow decay varies from the two states of the model.
This actually "drives" the model (and the discontinuity).
Parameters ¢, and ¢, remain unchanged during simulation: ¢, = 2.7E+6, c; =
3.5651205.
The model operates in two states:

e The model is in state 1 when ¢, is 0.4 and c, is 5.5 (also the initial
state). The initial values are y,(0) = 4.2 and y,(0) = 0.3. The model
remains in state 1 as long as y, < 5.8. The choice of ¢, and c, ensures
that y, will grow past 5.8.

« When the model switches to state 2, parameters ¢, and ¢, change to ¢,
= -0.3 and ¢, = 2.73. The model remains in state 2 as long as y, > 2.5.
When passing this instance the model switches back to state 1; the
choice of ¢, and ¢, ensures that this will happen.

The time interval is O to 5.

The tasks to be performed are:

a. Plot y, as function of time.

50

b. Printout the time for every located discontinuity and the final

value y,(5.0).

C. Repeat question b) for the true relative accuracy varying

between 10°, 10'°, 10, Analytical solution values can be found, so for

comparison we state that the last discontinuity occurs at time

4.999999646 and the y,(5.0) value should be approximately 5.369. If

the last discontinuity is not located, the previous ones are not found

with adequate accuracy. The value of y,(5.0) also reflects the accuracy

of the locations of the discontinuities and any value between 5.8 and

5.1 can be expected.

d. Change the state 2 parameter values of ¢, to -1.25, ¢, to 4.33 and

the condition to y, > 4.1 and rerun a) and b) with a true relative

accuracy of 107",

4.2. Design and Solutions

Block Diagram

The design of this model consists of only 3 block diagrams: Switching State,

Controller and Differential Equation. Figure 4.1 shows block diagram for

comparison 5.

Differential
Equation

1

Controller

ﬁ

Switching
State

Figure 4.1 Block Diagram Comparison 5

51

4.2.1 Matlab

Design of Model

The model design in matlab algorithm odelSs is used to solve the system
numerically and to calculate the times of the discontinuities by calling the
solver’s state event finder. Each time a switching event encountered, the
integration of ODE solver stopped and the values of ¢c2 and ¢4 were changed.
Then the solver has to be restarted again at time of discontinuity. The state
will switch back and forth until the time interval is reached. The differential

equation code and events function are as follow:

function dydt = F(t, y, C)

dydt(1,1) = C(1) * ((2) + C(2) - y(1));

dydt(2,1) = C(3) * (C(4) - y(2));

function [value,isterminal,direction] = events(t,y)
globalp d

value = y(1)- [p;0];
isterminal = [1;1];
direction = [d;1];

Task a. Plot y1
To simulate the system, using matlab built in function odelS5s (odesolver)
with the solver form:
[ty te,ye, ie] = odel5s(@deq,[tstart tfinal],y0,options);

Where odelSs = ode solver matlab built in function

deq = differential equation of the model in form of function

[tstart tfinal] = simulation time interval

y0 = Initial condition of the model

options = an options structure that can pass as an argument to any of
the ODE solvers

t= time solutions of the model

y = variable value solutions of the model

te = time event

ye = variable value event

ie = i"™ iteration event
The code is:

tstart = 0; tfinal = 5;: y0= [4.2 0.3]; C = [2.7E+6 0.4 3.5651205 5.5];

p=5.8; d=1I;
options = odeset('reltol',1e-14, Events',@events);
tout = tstart; yout = y0; teout = [J; yeout = []; ieout = [J;

while tout(length(tout))<5
% Call ODE Solver
FUN = @(ty)F(ty,C);
[ty.te,ye,ie] = odel5s(FUN,[tstart tfinal],y0,options);
nt = length(t);
if y(nt)>=5.8
p=2.5,d=-1; C=[2.7E+6 -0.3 3.5651205 2.73]; end
ify(nt)<=2.5
p=5.8;d=1; C=[2.7E+6 0.4 3.5651205 5.5]; end
tout = [tout; t(2:nt)]; yout = [yout; y(2:nt,:)];
teout = [teout; te]; yeout = [yeout; ye];
ieout = [ieout; ie];
% Set the new initial conditions
yO0=[y(nt1) y(nt,2)];
tstart=t(nt);
options = odeset(options);
end

Plot y1 is given by figure 4.2. It took 0,890272s to simulate the task a

Figure 4.2 Plot y1(matlab)

Task b Time Discontinuity and Final Value of y,(5.0)
The time discontinuity and the final value are:

t, = 1,1083 t, = 2,1297

t, = 3,0542 t, = 4,0756

v.(8,0) = 5,8

53

Table 4-1 The result of time discontinuity and final value y,(5.0) with vary

relative tolerance (matlab)

Relative Tolerance 10° 10" 10
to 1,1083 1,1083 1,1083
t, 2,1297 2,1297 2,1297
t, 3,0542 3,0542 3,0542
ts 4,0756 4,0756 4,0756
v,(5,0) 5,8000 5,8000 5,8000

Task ¢ Time Discontinuity and Final Value of y,(5.0) with Different
Relative Tolerance

The parameter of relative tolerance are varied between 10°, 107° and 10"
while still using variable O ...5s as simulation time interval and odel5s as the
solver. When relative tolerance 10'* was used there is a warning message
from matlab and matlab will then automatically set the relative tolerance to
2.22045e-014. Table 4-1 shows the result of time discontinuity and final value

v,(5.0) with vary relative tolerance.

1} 0s 1 1.8 2 24 E 35 4 44 5

Figure 4.3 plot y, (task d) (matlab)

Task d Frequent Events

Changing the state 2 parameter values and switching condition will results in
a high frequent event of discontinuity for y, with relative tolerance le-11. It
took 10,789155s to simulate task d. Figure 4.3 shows plot y, (task d)

The time discontinuity and the final value are:

54

t,=1,1083 t;=1,8847 t,,=2,7614 t,, =3,5377 t,=4,4144
t,=1,1217 t,,=1,9984 t,,=2,7748 t,,=3,6515 t,=4,4278
t,=1,2355 t,;=2,0118 t,,=2,8885 t, =3,6649 t, =4,5416
t,=1,2489 t,,=2,1256 t,, =2,9019 t,,=3,7786 tg =4,5550
t,=1,3626 t;=2,1390 ty,=3,0157 t,,=3,7920 ts = 4,6687
t;=1,3760 t,;=2,2527 t, =3,0291 t,, =3,9058 t =4,6822
t;=1,4898 t,,=2,2662 t,=3,1428 t,=3,9192 ty =4,7959
t,=1,5032 t,,=2,3799 t,, =3,1563 t,,=4,0329 ts =4,8093
t,=1,6169 t, =2,3933 t,, =3,2700 t,,=4,0464 ty, =4,9230
t,=1,6304 t, =2,5070 t, =3,2834 t,;=4,1601 t, =4,9365
to=1,7441 t,3=2,52058 t, =3,3972 t, =4,1735
t,, = 1,7575 t,, =2,6342 t,; =3,4106 ty, = 4,2873
t,=1,8713 t,=2,6476 t,=3,5243 t; = 4,3007
Y,(5,0) = 5,7804

The whole calculation and simulation was done by using

Matlab/Simulink version 7.4 R2007a on PC Intel Pentium D, 2 x 2,66
GHz.

4.2.2 Simulink

4.2.2.1 Hybrid Model

Design of Model

The model has 3 parts: Controller, Switching State and Differential equation.
The task of controller is to control the signal that was sent to switching state
to change the value c, and c,; depending on which state is active. Part
controller was built by using 2 hit crossing block and OR gate block. Part
switching state was built by using clock and triggered subsystem block. 2 hit
crossing blocks will be used for detection when value yl rises above 5,8 or
falls below 2,5 otherwise the output is FALSE. In case of output TRUE,
triggered subsystem is executed. The subsystem changes the value of ¢, and
c, by using switches, which is different depending on the value of y,.

The Differential equation was built by Integrator, Gain and add/substract

block. Figure 4.4 shows the model of the system.

55

l 5.0950002 181245

Drisplay

- | 27eth

;
li

Hit

Crossing 5.8
L p{—
— .+
Hit ¥
Crossing 2.8
: plt 4 o
jtime 4
Eonel Clock Changing State
Scopet
(a)
&
Trigger El - N

e w1)
- 2
m Switcha

Co—
¥ Fz}a
b
»
< e
= Lt
o}
a4 SwitchB
oha
Discontinuities
time
To Waotspace

Figure 4.4 The model of the system (simulink)
(a) Main Model (b) Triggered subsystem

Solutions

Task a. Plot y1

To simulate the system using variable step as a time step, 0 ...5s as
simulation time interval, relative tolerance of 10"' and ode23s (Stiff/Mod.
Rosenbrock) as the solver. Under the intial state 4,2 for integrator y, and 0,3
for integrator y,, the result for value y, is given in figure 4.5. It took 0,5s to

simulate the task a.

56

Figure 4.5 Plot y,(simulink)
Task b Time Discontinuity and Final Value of y,(5.0)
The time discontinuity and the final value are:

t, = 2,1204e-007 t, =1,1083 t,=2,1296

t; = 3,054 t, = 4,0754 t;=4,9998

y.(8,0) = 5,0980002181246

Table 4-2 The result of time discontinuity and final value y,(5.0) with vary

relative tolerance (simulink)

Relative Tolerance 10° 10 10™
to 2,1204e-007 2,1204e-007 2,1204e-007
ty 1,1082 1,1083 1,1083
t 2,1294 2,1296 2,1296
13 3,0538 3,054 3,054
14 4,075 4,0754 4,0754
ts 4,9994 4,9998 4,9998
y1(5,0) 5,0940204247788 5,0979970081424 5,0980106702

Task ¢ Time Discontinuity and Final Value of y,(5.0) with Different
Relative Tolerance

The parameter of relative tolerance is varied between 10°, 10" and 10"
while still using variable step as a time step, 0 ...5s as simulation time

interval and ode23s (Stiff/Mod. Rosenbrock) as the solver. When relative

57

tolerance 10" was used and simulink was automatically set the relative

tolerance to 2.84217094304040le-014 there is a warning message from

matlab. Table 4-2 shows the result of time discontinuity and final value

v,(5.0) with vary relative tolerance.

Figure 4-6 plot y, (task d)(simulink)

Task d Frequent Events

Changing the state 2 parameter values and switching condition will results in

high frequent event of discontinuity for y,. It took 3s to simulate task d.

Figure 4.6 shows plot y, (task d)

The time discontinuity and the final value are:

t, = 9,6205e-009 t,, = 1,8712

t, = 1,1083 t,, = 1,8846
t,=1,1217 t;s = 1,9983
t, = 1,2354 t)s = 2,0117
t, = 1,2488 t;; = 2,1255
t; = 1,3626 t)s = 2,1389
t; = 1,376 t,, = 2,2526
t, = 1,4897 t,o =2,266

ts = 1,5031 t, =2,3798
t,=1,6169 t,, =2,3932
t,, = 1,6303 t,5 =2,5069
t,, = 1,744 t,, =2,5203
t,, = 1,7574 t,s =2,6341

Y,(5,0) = 5,0980002181246

=2,6415
=2,7612
=2,1746
=2,8884
=2,9018
=3,0155
=3,0289
=3,1427
=3,1561
=3,2698
=3,2832
=3,397

=3,4104

=3,5241
=3,53715
=3,6513
=3,6647
=3,7784
=3,7918
=3,9055
=3,919

=4,0327
=4,0461
=4,1598
=4,1733
=4,2817

=4,3004
=4,4141
=4,4276
=4,5413
=4,5547
=4,6684
=4,6819
=4,7956
=4,809

=4,92217
=4,9362

58

4.2.2.2 Stateflow

Design of Model

The model has 3 parts: Controller, Switching State and Differential equation.
The task of controller is to control the signal that was sent to the switching
state to change the value c, and ¢, depending on which state is active. Part
controller was built by using 2 hit crossing blocks and OR gate block. Part
switching state was built by clock and triggered subsystem block. 2 hit
crossing blocks are used for detection when value yl rises above 5,8 or falls
below 2,5 otherwise the output is FALSE. In case of output TRUE, triggered
subsystem will be executed. The subsystem changes the value of SGN by
using switches, which is differed depending on the value of y,. Value SGN is
used as a switch event of stateflow block. Stateflow block changes the value
of c2 and c4, which is differed depending on value SGN. The differential
equation was built by Integrator, Gain and add/substract block. Figure 4.7
shows stateflow block of the system. Figure 4.8 shows the model of the

system.

ON
en:C2 =-0.3;
C4=2.73;
ff_switch
n_switch OFF
en:C2=04;
C4 =5.5;

Figure 4.7 Stateflow block of the system (comparison 5)

59

L . .
! 2T e+ S L
— o+ ¥
ol ¥
m Scope 1 cz
; Q
Cros:irtg 58 £
b Pulse Contraller
Generator
—-+
Hit L4
Croszing 2.5 pls r
) SGHf—
Jtime:
Scopet Clodk Changing State
()
]
Trigger
2b
2h >
- SGN
. Switeh,
w2a
il
Dizeontinuities
time
To Wofspace
(©)
Figure 4.8 The model of the system (simulink stateflow)
(a) Main Model (b) Triggered subsystem
Solutions

Task a. Plot y1

To simulate the system, using variable step as a time step, 0 ...5s as
simulation time interval, relative tolerance of 10"' and ode23s (Stiff/Mod.
Rosenbrock) as the solver. Under the intial state 4,2 for integrator y, and 0,3
for integrator y,, the result for value y, is shown in figure 4.9. It took 9s to

simulate the task a.

60

Figure 4.9 Plot y, (simulink stateflow)

Task b Time Discontinuity and Final Value of y,(5.0)
The time discontinuity and the final value are:

t, = 2,1204e-007 t,=1,1083 t,=2,1297

t, = 3,0542 t,=4,0I588 t;=35

v,(5,0) = 5,187127271867

Table 4-3 The result of time discontinuity and final value y,(5.0) with vary

relative tolerance (simulink stateflow)

Relative Tolerance 10° 10" 10

t, 2,1204e-007 2,1204e-007 2,1204e-007
t; 1,1083 1,1083 1,1083

t, 2,1297 2,1297 2,1297

ts 3,0542 3,0542 3,0542

t, 4,0755 4,0755 4,0755

s 5 5 5

v.(5,0) 5,1871018782202 | 5,1870844463401 | 5,1871273654863

Task ¢ Time Discontinuity and Final Value of y,(5.0) with Different
Relative Tolerance

The parameter of relative tolerance is varied between 10°, 10" and 107,
while still using variable step as a time step, O ...5s as simulation time

interval and ode23s (Stiff/Mod. Rosenbrock) as the solver. When relative

61

tolerance 10" was used and simulink was automatically set the relative
tolerance to 2.842170943040401e-014. Table 4-3 shows the result of time
discontinuity and final value y,(5.0) with vary relative tolerance.

Task d Frequent Events

Changing the state 2 parameter values and switching condition will result in
a high frequent event of discontinuity for y,. It took 14s to simulate task d.

Figure 4.10 shows plot y, (task d)

Figure 4.10 plot y, (task d) (simulink stateflow)

The time discontinuity and the final value are:

t, = 9,6205e-009 t;;=1,8713 t,,=2,6476 t,, =3,5243 ts, =4,3007

t,=1,1083 t,,=1,8847 t,,=2,7614 t,,=3,5377 t, =4,4144
t,=1,1217 ts=1,9984 t,=2,7748 t,,=3,6515 t,, =4,4278
t, = 1,2355 t,=2,0118 t,,=2,8885 t,=3,6649 ts =4,5416
t, = 1,2489 ti;=2,1256 t,,=2,9019 t,,=3,7786 ts =4,555
t; = 1,3626 ts = 2,139 t;, =3,0167 t,,=3,792 ty; =4,6687
t; = 1,376 to=2,2827 t,=3,0291 t,=3,9088 t,=4,6821
t, = 1,4898 ty =2,2661 t;,=3,1428 t,,=3,9192 t,, =4,7959
ts = 1,5032 t,, =2,3799 t,,=3,1563 t,,=4,0329 t, =4,8093
t,=1,6169 t,; =2,3933 ty =3,27 t,s =4,0464 t, =4,923
t,, = 1,6304 t,s =2,507 ty, =3,2834 t,,=4,1601 t,, =4,9365
t,, = 1,7441 t,, =2,5208 t,;=3,3971 ty, =4,1735

t,, = 1,7575 t; =2,6342 t,,=3,4106 t;, =4,2873

Y,(5,0) = 5,7804027877939

62

For all the calculation and simulation, using Matlab/Simulink version 7.4

R2007a on PC Intel Pentium D, 2 x 2,66 GHz.

4.2.3. Dymola

4.2.3.1 Hybrid Model

Design of Model

The model has 3 parts: Controller, Switching State and Differential equation.
The task of controller is to control the signal that was sent to the switching
state to change the value ¢, and ¢, depending on which state is active. Part
controller was built by greater equal threshold block, less equal threshold
block, OR gate block and triggered sampler block. Switching State was built
by constant, switch and greater equal block. Greater equal threshold block
and less equal threshold block are used to detect whether value y, rises
above 5,8 or falls below 2,5, for otherwise the output is FALSE. In case of
output TRUE, triggered sampler is activated, changing the value of ¢, and c,
by using switches that is different depending on value of y,.

The Differential equation is built by Integrator, Gain and add/substract

block. Figure 4.11 shows the model of the system.

canst
st
triggeredSampler =
= const2
[> o—p———TJ >= L_?T}_r.;
5 =

y1

FEth

k=2Tess [p >= ol
acdd gainl integrator! o D—L or

O > s

K=3 5651205 =

RN

Figure 4.11 The model of the system (dymola)

Figure 4.12 Plot y, (dymola)

Solutions

Task a. Plot y1

To simulate the system, using 1000 as number of intervals, 0 ...5s as
simulation time interval, relative tolerance of 10! and Dassl as the solver.
Under the intial state 4,2 for integrator y, and 0,3 for integrator y,, th&Zesult

for value y, shown in figure 4.12. It took 0,047s to simulate the task a.

Task b Time Discontinuity and Final Value of y,(5.0)
The time discontinuity and the final value are:

t, = 2,46288e-007 t, =1,10831 t,=2,12968

t, = 3,05415 t,=4,07583 t;=35

y,(5,0) = 5,37114

Task ¢ Time Discontinuity and Final Value of y,(5.0) with Different
Relative Tolerance

The parameter of relative tolerance is varied between 10°, 10" and 10",
while still using 1000 as number of intervals, 0 ...5s as simulation time
interval and Dassl as the solver. There is an error message from dymola
when relative tolerance 10'* was used because it is unable to do the task,

therefore 10'% will be used as the new relative tolerance instead. Table 4-4

63

64

shows the result of time discontinuity and final value y,(5.0) with vary

relative tolerance.

Table 4-4 The result of time discontinuity and final value y,(5.0) with vary

relative tolerance (dymola)

Relative Tolerance 10° 10" 102
t, 2,46288e-007 2,46288e-007 2,46288e-007
t; 1,10831 1,10831 1,10831
t, 2,12969 2,12968 2,12968
ts 3,05416 3,05415 3,05415
t, 4,07555 4,07553 4,07553
s 5 5 5
v.(5,0) 5,79999 5,38522 5,36955

Task d Frequent Events

Changing the state 2 parameter values and switching condition will
result in a high frequent event of discontinuity for y,. It took 0,204s to
simulate task d. Figure 4.13 shows plot y, (task d)

—
B0

854

50+

45

20

354

304

254

2.0

Figure 4.13 plot y; (task d) (dymola)

65

The time discontinuity and the final value are:
t,=1,07361e-008 t,,=1,87125 t,, =2,64762 t, =3,5243 t,, =4,30068

t, = 1,10831 t,,=1,88468 t,,=2,76136 t,, =3,53773 ty, =4,41441
t,=1,12173 tis=1,99841 t,,=2,77478 t, =3,65146 t,, =4,42783
t, = 1,23546 t)o=2,01184 t,, =2,88851 t,,=3,66489 t, =4,54157
t, = 1,24889 ti;=2,12587 t,,=2,90194 t,,=3,77862 t, =4,55499
ts = 1,36262 ts=2,13899 t;, =3,01867 t, =3,79204 t,, =4,66872
t; = 1,37605 tio = 2,28273 t,=3,0291 t,,=3,90578 t =4,68215
t, = 1,48978 tyo =2,26615 t,,=3,14283 t,,=3,9192 t, =4,79588
ty = 1,5032 t, =2,37988 t,,=3,15625 t,;=4,03294 t,, =4,80931
t, = 1,61694 t,, =2,39331 t,, =3,26999 t,, =4,04636 t,, =4,92304
t,, = 1,63036 t,, =2,50704 t,, =3,28341 t,, =4,16009 t,, =4,93646
t, = 1,7441 t,y =2,52047 t,;=3,39715 ty, =4,17352

t, = 1,75752 t; =2,6342 t,, =3,410587 t; =4,28725

Y,(5,0) = 5,7804
For all the calculation and simulation, using Dymola version 6.0b on PC Intel

Pentium D, 2 x 2,66 GHz.

4.2.3.2 Stategraph Model

Design of Model

The model has 3 parts: Controller, Switching State and Differential equation.
The task of controller is to send a signal to the switching state to change the
value ¢, and ¢, depending on which state is active. Part controller was built
by greater equal threshold block and less equal threshold block. Switching
State was built by constant, switch and and stategraph block such as initial
step, step and transitition block. Greater equal threshold block and less
equal threshold block are used-to detect whether value y, rises above 5,8 or
falls below 2,5, for otherwise the output is FALSE. In case of output TRUE,
transitition 1 block or transitition 2 block will be activated depending on
which threshold block send a TRUE output. Then the step block controls the
value of ¢, and c, by using different switch depending on whether step block
active or not. Figure 4.14 shows part controller and switching state of the

system.

66

The Differential equation was built by Integrator, Gain and add/substract

block. Figure 4.15 shows the model of the system.

const

aywitchl
¥ c2
> inttislStefranstionNithSighedVith Siyssktior\fthSignal1 D
I 0) const2
At ITE"_TF
!

F
—m == const]

itch2
ayitc] C4
58 [

constS

> <= E—FF

235

Figure 4.14 Part Controller and Switching State of the System (dymola
stategraph)

syvitchl
’ InitizlStefr ansitiont oriith Sigal
l:‘ :

consﬂ

sywitch2 active

L

L’ acldd_1 ool integrator
E] [
+1
|—. k=27e+6 k=1 B ==
L’ - o ater

b e |

£=3.5651205 P=]
245

Figure 4.15 The model of the system (dymola stategraph)

Solutions

Task a. Plot y1

To simulate the system, using 1000 as number of intervals, 0 ...5s as
simulation time interval, relative tolerance of 10! and Dassl as the solver.
Under the intial state 4,2 for integrator y, and 0,3 for integrator y,, the result

for value vy, is shown in figure 4.12. It took 0,062s to simulate the task a.

67

Task b Time Discontinuity and Final Value of y,(5.0)
The time discontinuity and the final value are the same as dymola hybrid

model:

Task c Time Discontinuity and Final Value of y,(5.0) with Different
Relative Tolerance

The parameter of relative tolerance is varied between 10°, 10'° and 10"
while still 1000 as number of intervals, O ...5s as simulation time interval and
Dassl as the solver. There is an error message from dymola when relative
tolerance 10'* was used because it is unable to do the task, therefore 10'2
will be used as the new relative tolerance instead. The result will be the

same as the hybrid model shown by Table 4-4.

Task d Frequent Events

Changing the state 2 parameter values and switching condition will result in
a high frequent event of discontinuity for y,. It took 0,25s to simulate task d.
Figure 4.13 shows plot y, (task d)

The time discontinuity and the final value are the same as dymola hybrid
model.

For all the calculation and simulation, using Dymola version 6.0b on PC Intel

Pentium D, 2 x 2,66 GHz.

4.2.3.3. Modelica Text Mode

Design of Model

For design of the model, using the exact differential equation with modelica
function der(y) as dy/dt in the equation. For switching state using algorithm

as below:

algorithm
when (y1>=5.8) then
c2:=-0.3;
c4:=2.73;
end when;
when (y1<=2.5) then
c2:=0.4;

68

c4:=5.5;
end when;

Solutions

Task a. Plot y1

To simulate the system, using 1000 as number of intervals, 0 ...5s as
simulation time interval, relative tolerance of 10! and Dassl as the solver.
Under the intial state 4,2 for integrator y, and 0,3 for integrator y,, the result

for value y, is shown in figure 4.12. It took 0,047s to simulate the task a.

Task b Time Discontinuity and Final Value of y,(5.0)
The time discontinuity and the final value are the same as dymola hybrid

model:

Task ¢ Time Discontinuity and Final Value of y,(5.0) with Different
Relative Tolerance

The parameter of relative tolerance is varied 10°, 10"° and 10 Still 1000 as
number of intervals, O ...5s as simulation time interval and Dassl as the
solver. There is an error message from dymola when relative tolerance 10
was used because it is unable to do the task, therefore 102 will be used as
the new relative tolerance instead. The result will be the same as the hybrid

model shown by Table 4-4.

Task d Frequent Events

Changing the state 2 parameter values and switching condition will result in
a high frequent event of discontinuity for y,. It took 0,187s to simulate task d.
Figure 4.13 shows plot y, (task d)

The time discontinuity and the final value are the same as dymola hybrid
model.

For all the calculation and simulation, using Dymola version 6.0b on PC Intel

Pentium D, 2 x 2,66 GHz.

69

4.2.4 Mosilab

4.2.4.1. Modelica Text Mode

Design of Model

For design of the model, using the exact differential equation with modelica
function der(y) as dy/dt in the equation. For switching state using algorithm

as below:

algorithm

when (y1>=5.8) then
c2:=-0.3;
c4:=2.73;

end when;

when (y1<=2.5) then
c2:=0.4;
c4:=5.5;

end when;

Solutions

Task a. Plot y1

To simulate the system, using le-6 as min stepszize. 0,08 as max stepsize,
relative tolerance of 10 and Dassl as the solver. Under the intial state 4,2 for
integrator y, and 0,3 for integrator y,, the result for value y, is shown in

figure 4.16. It took 0, 1s to simulate the task a.

time

Figure 4.16 Plot yl (mosilab)

70

Task b Time Discontinuity and Final Value of y,(5.0)
The time discontinuity and the final value are:

t,=1,1088 t, = 2,1397

t, = 3,0588 t; = 4,0760

v.(5,0) = 5,7988
Task c Time Discontinuity and Final Value of y,(5.0) with Different
Relative Tolerance
The parameter of relative tolerance is varied 10°, 10" and 10™". Still using
le-6 as min stepszize. 0,08 as max stepsize and Dassl as the solver. Table 4-5
shows the result of time discontinuity and final value y,(5.0) with vary
relative tolerance.

Table 4-5 The result of time discontinuity and final value y,(5.0) with vary

relative tolerance (mosilab)

Relative Tolerance 10° 10" 10
t, 1,1088 1,1083 1,1090
t; 2,1397 2,1394 2,1299
t, 3,0588 3,0584 3,0592
ts 4,0760 4,0757 4,0764
v,(5,0) 5,7988 5,7985 5,7997

time

Figure 4.17 plot y, (task d) (mosilab)

71

Task d Frequent Events

Changing the state 2 parameter values and switching condition will result in
a high frequent event of discontinuity for y, with relative tolerance le-11. It
took 1,3s to simulate task d. Figure 4.17 shows plot y, (task d)

The time discontinuity and the final value are:

t,=1,1088 t;=1,8852 t,,=2,7618 t, =3,5382 t,=4,4150
t,=1,1220 t,,=1,9987 t,,=2,7755 t,, =3,6520 tg, = 4,4283
t,=1,2357 t,3=2,0121 t,;;=2,8890 t, =3,6655 t,, =4,5419
t,=1,2493 t,,=2,1259 t,,=2,9023 t,=3,7791 ts = 4,5556
t,=1,3629 t,=2,1397 t;, =3,0161 t,,=3,7925 ts =4,6694
t,=1,3765 t,;=2,2534 t, =3,0297 t,=3,9062 t, = 4,6827
t;=1,4899 t,,=2,2669 t,=3,1433 t,=3,9197 ty =4,7963
t,=1,5087 t,,=2,3804 ti=3,1569 t, =4,0335 t, =4,8098
t,=1,6174 t, =2,3939 t, =3,2705 t,, =4,0469 t,, =4,9235
t,=1,6307 t,=2,5077 t,=23,2838 t,=4,1608 t, =4,9370
t)o=1,7446 t;=2,5209 ti,=3,3977 t, =4,1739

t, = 1,7578 t,, =2,6349 t,=3,4111 ty, =4,2878

t,=18716 t=2,6482 t,=3,5249 t; =4,3013

Y,(5,0) = 5,7827

For all the calculation and simulation, using Mosilab version 3.1 on Notebook

Dell Latitude D630 Intel Centrino Duo.

4.2.4.2 StateChart

Design of Model

For design of the model, using the exact differential equation with modelica
function der(y) as dy/dt in the equation. For switching state using statechart

algorithm as below:

equation

s2 =ifyl >= 5.8 then true else false;

sl =ifyl <=2.5 then true else false;

statechart

state C5MosilabStateSC extends State;

annotation(extent=[-104,105; 45,-43]);
State Statel annotation(extent=[-90,63; -81,59]);
State State2 annotation(extent=[-58,62; -45,58]);
State Initial (islnitial=true) annotation(extent=[-82,74; -80,72]);

72

transition Initial->Statel

end transition annotation(points=[-82,72; -82,63]);

transition State1->State2 event s2 action

c2:=-0.3; c4:=2.73;

end transition annotation(points=[-81,59; -77,60; -58,60]);

transition State2->Statel event sl action

c2:=0.4; c4:= 5.5;

end transition annotation(points=[-58,59; -77,59; -81,59]);
end C5MosilabStateSC;

Solutions

Task a. Plot y1

To simulate the system, using le-6 as min stepszize. 0,08 as max stepsize,
relative tolerance of 10° and Dassl as the solver. Under the intial state 4,2 for
integrator y, and 0,3 for integrator y,, the result for value y, is shown in

figure 4.16. It took 0,3s to simulate the task a.

Task b Time Discontinuity and Final Value of y,(5.0)
The time discontinuity and the final value are the same as previous in the text

mode

Task ¢ Time Discontinuity and Final Value of y,(5.0) with Different
Relative Tolerance

The parameter of relative tolerance is varied between 10°, 10'° and 10"
while still using le-6 as min stepszize. 0,08 as max stepsize and Dassl as the
solver. Table 4-4 shows the result of time discontinuity and final value y,(5.0)
with vary relative tolerance.

Task d Frequent Events

Changing the state 2 parameter values and switching condition will result in
a high frequent event of discontinuity for y, with relative tolerance le-11. It
took 2,3s to simulate task d. Figure 4.17 shows plot y, (task d)

The time discontinuity and the final value are the same as previous in the text
mode

For all the calculation and simulation, using Mosilab version 3.1 on Notebook

Dell Latitude D630 Intel Centrino Duo.

73

4.2.5 SimulationX

Hybrid Model

Design of Model

The model has 3 parts: Controller, Switching State and Differential equation.
The task of controller is to control the signal that sent to switching state to
change the value c, and c, that depend on which state active is. Part
controller was built by single pass switch block, relational pass switch block,
constant, add block and controlled event sample and hold block. Switching
State was built by constant and single change switch. Single pass switch
block and relational pass switch block are being used to detect whether
value vy, rises above 5,8 or falls below 2,5, for otherwise the output is ZERO.
In case of output value of 5,8 or 2,5, controlled event sample and hold block
will pass and hold this value, changing the value of ¢, and ¢, by using single
change switches which is differ-depending on value of y,.

The Differential equation is built by Integrator, Gain and add/substract

block. Figure 4.18 shows the model of the system.

jovil
ﬁ

R

Figure 4.18 The model of the system (simulationX)

74

Solutions

Task a. Plot y1

To simulate the system, using le-12 as min stepsize, le-3 as absolute
tolerance, 0 ...Bs as simulation time interval, relative tolerance of 10° and
Dassl as the solver. Under the intial state 4,2 for integrator y, and 0,3 for
integrator y,, the result for value y, shown in figure 4.19. It took 0,0582s to

simulate the task a.

Figure 4.19 Plot y, (simulationX)
Task b Time Discontinuity and Final Value of y,(5.0)
The time discontinuity and the final value are:
t,= 1,108 t, =2,130
t, = 3,058 t; = 4,079
v.(5,0) = 5,798
Table 4-6 The result of time discontinuity and final value y,(5.0) with vary

relative tolerance (simulationX)

Relative Tolerance 10° 10" 10"
t, 1,108 1,108 1,108

t; 2,130 2,130 2,130

t, 3,058 3,085 3,055

ts 4,079 4,077 4,071

7,(5,0) 5,798 5,799 5,798

75

Task c Time Discontinuity and Final Value of y,(5.0) with Different
Relative Tolerance

The parameter of relative tolerance is varied between 10°, 10" and 10"
while still using le-12 as min stepsize. le-3 as absolute tolerance, O ...5s as
simulation time interval and Dassl as the solver. Table 4-6 shows the result of

time discontinuity and final value y,(5.0) with vary relative tolerance.

Task d Frequent Events
Changing the state 2 parameter values and switching condition will result in
a high frequent event of discontinuity for y,. It took 0,434s to simulate task d.

Figure 4.20 shows plot y, (task d)

The time discontinuity and the final value are:

t,=1,107 t;=1,897 t,,=2,793 t,, =3,583 t,=4,475
t,=1,122 t,=2.015 t,=2,803 t,=23,699 t,=4,486
t,=1,239 t,=2,029 t,=2,922 t,=3,709 t,=4,605
t,=1,280 t,=2,145 t,=2,935 t,=23,828 ti=4,615
t,=1,368 t,=2,189 t,=3,051 t,;=23,842 ty,=4,734
t;=1,382 t;=2,275 t;, =3,062 t,=3,957 ty =4,745
t,=1,498 t,=2,284 t,=3,181 t,=23,968 ts =4,863
t,=1,511 t,=2,404 t;,=3,194 t,=4,087 ty,=4,874
t,= 1,627 t, =2,415 t,=3,310 t,;=4,100 t,=4,993
t,=1,638 t,; =2,534 t;=3,321 t,=4,216

to=1,756 t,,=2,547 ty =3,440 t,, = 4,227

t,=1,770 t,,=2,663 t;; =3,453 ty, = 4,346

t,=1,886 t,,=2,677 t,=3,569 t =4,359

Y,(5,0) = 4,123

For all the calculation and simulation, using SimulationX version 2.0 on PC

Intel Pentium D, 2 x 2,66 GHz.

Figure 4.20 plot y, (task d) (simulationX)

76

7

9. Comparison 20: Electrical Model - Basics

5.1 Definition

s, R, L

Figure 5.1 Electrical circuit comparison 20

Electrical circuit comparison 20 is given by figure 5.1. The component values
are:
-U = 2*10kV* sin(2 *50Hz*t +) volt
-L = 3,18E-3 henry
-C=11,1E-9 farad
-R1 =0,1 ohm
-R2 =5 ohm
- Rmin = 1E-4 ohm
The equations describing the circuit may be the state-equations where
inductor currents and capacitor voltages are chosen as system variables. By
using the Kirchhoff voltage and current laws we get the following differential
equations:
L*dx1l/dt =U-x1*R1 - VD
C*dx2/dt = + x1 - ID - VD/Rmin
VD= R2*C*dx2/dt +x2
ID = ids*(e'V-1)
Where: x1 =IL (the current of L)
x2 = VC (the voltage of C)
VD = voltage of diode
ID = current of diode
ids = saturation current of diode

VT = thermal voltage of diode

78

5.2 Tasks
5.2.1 Steady States

S

@ Ron=1e-4 ohm

Figure 5.2 Steady States
Steady states is given by figure 5.2. Simulate the system for each state.
Equation:
-State A: L*dx1/dt = U - x1*(R1+R2) - x2
C*dx2/dt = x1
-State B: L*dx1/dt = U -x1*R1 - (R2*C*dx2/dt) —x2
C*(R2+Ron+Rmin)*dx2/dt = x1*(Ron+Rmin) —x2
-State C: VD<O0: L*dx1/dt =-U-x1*R1-VD
C*dx2/dt = x1 - (le-5*VD)
VD>=0 L*dx1/dt = -U - x1*R1 - (1e-5*VD)
C*dx2/dt = x1-VD [12]
5.2.2 Classical Simulation
The task are, plot x1 and x2 when switch S1 is time dependent switch is
given by figure 5.3.
Equation:S1 open: L*dx1/dt= U - x1*(R1+R2) - x2
C*dx2/dt = x1
S1 close L*dx1l/dt=TU-x1*R1 - (R2*C*dx2/dt) —-x2
C*(R2+Ron+Rmin)*dx2/dt = x1*(Ron+Rmin) —x2

aresistance

1e-4

79

' Be-3sec

Be-2 sec

Figure 5.3 Time dependent Sl

5.2.3. Different Diode models

The tasks are simulate the system when diode is:

ideal model with simplification (diode A)
Equation: L*dxl/dt=-U-x1*R1-VD

C*dx2/dt = x1-ID

VD= R2*C*dx2/dt +x2

ID = ids*(e"”V*-1) [13]
diode modelled as exponential function (diode B)
Equation:
L*dx1/dt = -U-x1*R1 -VD
VD/VT <= maxexp C#*dx2/dt=x1-ids*(e"™""-1) +VD/R
VD/VT > maxexp C#*dx2/dt = x1 — ids¥*(e™>*eP"(+(VD/VI)-maxexp) 1)

+VD/R
VD= R2*C*dx2/dt +x2
where R = diode resistance
maxexp = maximum exponent for linear continuation.

realistic with data from a set of characteristic curves (temperature
diode=diode C)
L*dx1/dt = -U-x1*R1 -VD
VD/VT <=maxexp C#*dx2/dt=x1-ids*(e"™""-1) +VD/R

80

VD/VT > maxexpC#*dx2/dt = x1 - ids¥*(e™>eP*(1+(VD/VI)maxexp),
1)+VD/R
VD= R2*C*dx2/dt +x2
VT= (k*T)/q
where k =Boltzmann’s constant
T = absolute temperature (°K)

q = magnitude of charge on an electron

5.2.4 Influence of Simulation Algorithms
The tasks are:
- simulate the system when all switch on.
Equation: L*dxl/dt=-U-x1*R1-VD
C*dx2/dt = x1- ID - VD/(Ron+Rmin)
VD= R2*C*dx2/dt +x2
ID = ids*(e""V"-1)

- calculation of the condition of the mass matrices for each case.

5.3. Design and Solutions

5.3.1 Matlab

5.3.1.1 Steady States

Design of Model

For design of the model using matlab algorithm ode23s to solve the system
numerically for state A and state B, odelS5i for state C. Odel5i was used,
because of its speciality that it can solve the matrix in implicit form, where
ode23s can only solve the matrix in explicit form. For switching differential
equation in state C, solver’s state event finder was needed. The code of

differential equation and events function for state C were written below:

function dxdt= deqx(t,x) %o State A
global L CRI R2

A=[-(R1+R2)/L-1/L; 1/C 0];

b=[U(t)/L; 0];

dxdt=(A*x)+b;

end

81

function dxdt= deqxB(t,x) %State B

global L C R1 R2 Rmin Ron
A=[-((R1*R2)+((R1+R2)*(Ron+Rmin)))/(L*(R2+Ron+Rmin)) -
(Ron+Rmin)/(L*(R2+Ron+Rmin));
(Ron+Rmin)/(C*(R2+Ron+Rmin)) -1/(C*(R2+Ron+Rmin))];
b=[U®)/L; 0];

dxdt=(A*x)+b;

end

function dxdt = {1 (t,x,xp) %State C

global LCRI R2R

% VD<0

dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))+x(2))/L)
x(D/C)-((R2*C*xp(2))+x(2))*R)/C)]

function dxdt = f2(t,x,xp)

global LCRI R2R

% VD>=0

dxdt = [-(U(t)/L)-((x(1)*R1)/L)-(((R2*C*xp(2))+x(2))*R)/L)
x(D/C)-((R2*C*xp(2))+x(2))+R)/C)]

function [value,isterminal,direction] = events(t,x,xp)

global R2 Cd

value = (R2*C*xp(2))+ x(2)) - [0;0];

isterminal = [1;1];

direction = [0;d];

Simulation
To simulate the system, using matlab built in function ode23s (odesolver) for

state A and state B, odel5i for state C with the solver form:

[tsol,xsol]=ode23s('deq’,[tstart tfinal],x0);
[t x, te,xe,ie] = odel 5i(@deq,[tstart tfinal],x0, xp0, options);
Where xp0 = initial value for dx/dt

The result for plot x1 and x2 state A, state B and state C is shown in figure 5.4.
With time interval O ... 0,2s, it took 29,635323s to simulate state A, 1,194620s

to simulate state B and 1,437591s to simulate state C.

0.1

-0.15

02

L L L L
012 014 016 018 02

L L L L L
a 002 004 006 008 01

StateA plot x1

R L L L L L L L L L
a 002 004 006 008 01 012 014 016 018 0.2

State B plot x1

PRl

L L L L L L L L L
o 002 004 006 008 01 012 014 016 0418 0.2

State C plot x1

82

x 10

g L L L L L L L L L
u] 002 004 006 003 01 012 014 016 048 02

State A plot x2

L L L L L L L L L
u] 002 004 006 003 01 012 014 016 018 02

State B plot x2

35

25

L L L L L L L L L
o 002 004 006 008 01 012 014 016 018 02

State C plot x2

Figure 5.4 Plot x1 and x2 steady states (matlab)

5.3.1.2 Classical Simulation

Design of Model

For design of the model using matlab algorithm ode23s to solve the system
numerically. Time dependent switch was built by matlab function-type m-
files. The code of time dependent switch, differential equation and events

function were written below:

function T_out = T(?)
persistent TRF

%time dependent switch

83

TRF=5e-3;
k=((le+8)-(1e-4))/TRF;
t red=mod(t, (le-1));
if(0<=t_red)&&(t_red<TRF)

T out=(le-4)+k*t_red;
elseif(TRF<=t_red)&&(t_red<(5e-2))

T out=le+8;
elseif((5e-2)<=t_red)&&(t_red<((5e-2)+TRF))

T out=(le+8)-k*(t_red-(5e-2));
elseif((5e-2)+TRF<=t_red)&&(t_red<(le-1))

T out=1le-4;
else

T out=-5;
end
function dxdtl= deqtaskbl(tx) %S1 open
global L CRI R2
dxdti(1,1) = (-x(1)*(R1+R2)/L)-(x(2)/L)+(U(t)/L);
dxdtl(2,1) = (x(1)/C);
function dxdt2= deqtaskb2(t,x) %S1 close
global L C Rl R2 Rmin Ron
dxdt2(1,1) = (-x(1)*((R1*R2)+((R1+R2)*(Ron+Rmin)))/(L*(R2+Ron+Rmin)))-
(x(2)*(Ron+Rmin)/(L*(R2+Ron+Rmin)))+(U(t)/L);
dxdt2(2,1) = (x(1)*(Ron+Rmin)/(C*(R2+Ron+Rmin)))-(x(2)/(C*(R2+Ron+Rmin)));
function [value,isterminal,direction] = events(t x)
global p
value = T(t)- p + [0;0];
isterminal = [1;1];
direction = [0;0];

Simulation
To simulate the system, using matlab built in function ode23s with the solver
form:
[t,x,te,xe,ie] = ode23s(@deq,[tstart tfinal],x0, options);
The result for plot x1 and x2 is shown in figure 5.5. With time interval O ...

0,3s, it took 50.511835s to simulate this task.

DM_”}\M_},\,\,_A

L L L L L L B L L L L L L
0.0s 0.1 015 0.2 0.25 03 035 o 0.05 01 015 0.2 025 0.3 0.35

plot x1 plot x2

Figure 5.5 Plot x1 and x2 classical simulation (matlab)

84

5.3.1.3 Different Diode Models

Design of Model

For design of the model using matlab algorithm odel5i to solve the system
numerically in implicit form. The function for diode B and diode C are
similar, the different is in thermal voltage VT, where in diode B, VT is a
variable and in diode C, VT is a function. The code of differential equation,

events function and thermal voltage VT were written below:

function dxdt = f(t,x,xp) %diode A

global L C Rl R2 Rmin Ron ids VT R

dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L)
(x(1)/C)-((ids*(exp(((R2*C*xp(2))-x(2))/VT)-1))/C)];

function dxdt = f1(t,x,xp) %diode B & C, where in B VT=0.04
global L C Rl R2 Rmin Ron ids VTR inC VT=VT()
%VD/VT maxexp

dxdt = [-(U)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L)
(%(1)/C)-((ids*(exp(((R2*C*xp(2))-x(2))/VT)-1))/C)+(((R2*C*xp(2))-x(2))/(R*C))]

function dxdt = f2(t,x,xp)

global L C R1 R2 Rmin Ron ids VT maxexp R

%VD/VT>maxexp

dxdt = [-(Ut)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L)
(x(1)/C)-((ids*(exp(maxexp*(1+(((R2*C*xp(2)) + x(2)/VT))-maxexp))-1))/C)-
(((R2*C*xp(2))-x(2))/(R*C))]

function [value,isterminal,direction] = events(t,x,xp)
global R2 C VT maxexp

value = ((R2*C*xp(2))+ x(2))/VT) - maxexp + [0;0];
isterminal = [1;1];

direction = [0;0];

function VTout = VT(t) % Thermal Voltage function for diode C
VTout= ((30 * sin(2*pi*100%t))+310)*8.61734681e-5;
End

Simulation

To simulate the system, using matlab built in function odel5i with the

solver form:

[tsol,xsol]=odel5i(@deq,[tstart tfinal],x0, xp0); %for diode A

[t x,te,xe,ie] = odel5i(@deq,[tstart tfinal],x0, xp0, options); %for diode B & C
The result for plot x1 and x2 diode A, diode B and diode C is shown in figure
5.6. With time interval O ... 0,2s, it took 0,861165s to simulate diode A,

1,016539s to simulate diode B and 0,958469s to simulate diode C.

85

0 00z 004 006 008 01 012 014 096 018 02 0 002 004 006 008 01 012 044 016 018 02

DiodeA plot x1 Diode A plot x2

xn™®

L L L L L L L L N L L N L L L L L
0 002 004 008 008 01 012 014 016 018 02 [u} 002 004 008 008 01 012 014 016 018 02

Diode B plot x1 Diode B plot x2

0 00z 004 006 008 01 012 014 096 018 02 0 002 004 006 008 01 012 044 016 018 02

Diode C plot x1 Diode C plot x2

Figure 5.6 Plot x1 and x2 different diode models (matlab)

5.3.1.4 Influence of Simulation Algorithms
Design of Model

For design of the model using matlab algorithm odel5i to solve the
system numerically in implicit form. The code of differential equation were

written below:

function dxdt = f(t x,xp)
global L C Rl R2 Rmin Ron ids VT
dxdt = [-(Ut)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L)

86

(x(1)/C)-((ids*(exp(((R2*C*xp(2))-x(2))/VT)-1))/C)-((R2*C*xp(2))/(C*(Ron+Rmin)))-
(x(2)/(C*(Ron+Rmin)))]

Simulation
To simulate the system, using matlab built in function odel5i with the solver

form:
[tsol,xsol]=odel5i(@deq,[tstart tfinal],x0, xp0);
The result for plot x1 and x2 is shown in figure 5.7. With time interval O ...

0,2s, it took 0,859261s to simulate this task.

%
35 7

o L L L L L L L L L 0 L L L L L L L L L
o 002 004 D06 008 01 012 014 016 018 02 o 002 004 008 008 04 012 014 016 018 02

plot x1 plot x2

Figure 5.7 Plot x1 and %2 influence of simulation algorithms (matlabg8

Using matlab build in function cond() for calculation of condition of
massmatrices. This task can only executed if the system matrix in explicit
form, therefore only the condition of system matrix from state A, state B and
task b(classical simulation) that can be calculated. It took 0,189968s to

calculate the condition. The result are:

- State A: condition = 143896,5027149321, 1-norm and infinite-norm
condition = 143891,40289569343, 2-norm
- State B: condition = 287254,3405559489, 1-norm and infinite-norm
condition = 287196,9122644086, 2-norm
- TaskB: Sl open: condition = 143896,5027149321, 1l-norm and
infinite-norm

condition = 143891,40289569343, 2-norm

87

- Sl close: condition = 287254,3405559489, 1l-norm and
infinite-norm

condition = 287196,9122644086, 2-norm

For whole calculation and simulation, using Matlab/Simulink version 7.4

R2007a on PC Intel Pentium D, 2 x 2,66 GHz.

5.3.2 Simulink
5.3.2.1 Hybrid Model
5.3.2.1.1 Steady States

Design of Model

For design of the model using only gain, add/substract and integrator block
for differential equation and sine source block for the sinus voltage. Switch
block was used with threshold 0 and condition control signal >= threshold
for switching differential equation in state C. The model for state A, state B

and state C was shown in figure 5.8.

Simulation

To simulate the system, using solver ode23 (Bogacki-Shampine) for state A
and ode23s (stiff/Mod.Rosenbrock) for state B and state C, le-6 for relative
tolerance and 0 ... 0,2 as simulation interval. Plot x1 and x2 for each state is
shown by figure 5.9. it took 1s to simulate state A, 0,5s to simulate state B and

19,5s to simulate state C.

L
Gaing >
>
Sine Wave
Seape
State A

Add

Gaind

Integrator

Integratert

Sine Mave

Scoped

88

| o

Scopet

Scopez

21443541

Gaind

Integrator

=

Scoped

0.0002

State B

+
9049411779 s
N Integratort
Add1 Gain
+
L 11050
J
Gain2
AddZ

Seopez

Gain?

Add1

Sine Wawel
L
I \\

=1

Seopez -

SuvitchW D

State C N

i
1

—-—
Switchll

214.45541

Gaini

Addz

Integrato2

Gaind

Integratort 'I .
Seopetideal

Gaing

Seopezideal

Figure 5.8 Model of the system steady states (simulink)

Figure 5.9 Plot x1 and %2 steady states (simulink)

89

x1

State A

x2

x1

State B

x2

x1

State C

x2

90

5.3.2.1.2 Classical Simulation

Design of Model

For design of the model using only gain, add/substract and integrator block
for differential equation and sine source block for the sinus voltage. Time
dependent switch was built by embedded matlab m code and switch block
with threshold le-4 and condition control signal > threshold for switching
differential equation in this model. The model for the system was shown in

figure 5.10.

Figure 5.11 Plot x1 and x2 classical simulation (simulink)

91

Simulation
To simulate the system, using solver ode23s (stiff/Mod.Rosenbrock), le-6 for
relative tolerance and O ... 0,3 as simulation interval. Plot x1 and x2 for this

task is shown by figure 5.11. it took 5,5s to simulate this task.

Sy I:I|
. - 3
— — #A5imple
o T 5 » - | 22de0 T
T . o
-~ > » e 2> i
ik
frrrea) » -
Bainata

aan

=
w
airi2

Diode A

*

b[Mosed T

B s
Function s e
v - =
Add =
D_l = S

Diode B e

1= Lo e

ho wa
. N
rovam .
we > O
B
= P
Canatan T wm

Figure 5.12 The model of the system different diode modes (simulink)

92

x1

Diode A

x2

x1

Diode B

x2

x1

Diode C

x2

Figure 5.13 Plot x1 and x2 different diode models (simulink)

93

5.3.2.1.3 Different Diode Models

Design of Model

For design of the model for diode A using only gain, add/substract and
integrator block for differential equation , sine source block for the sinus
voltage and math function block for exponential function. For diode B, the
design is similar with diode A but with addition switch block (threshold 15,
condition: control signal > threshold) for switching differential equation in
diode B. For diode C, the design based on diode B, with changing 1 gain
block (VD/VT) with 1 subsystem block to define the function of VT
(VD/VT(t)). The model for diode A, diode B and diode C was shown in figure
5.12.

Simulation

To simulate the system, using solver ode45 (Dorman-Prince), le-6 for
relative tolerance and 0 ... 0,2 as simulation interval. Plot x1 and x2 for this
task is shown by figure 5.13. it took 153s to simulate diode A, .183s to

simulate diode B and 213s to simulate diode C.

FASimple

314 46641

- air
ntegratar
- 4@
H1Zimpled
Sine Wave
onstan
i +
& [- - o
ntegrator

e X2Zimplet

Add1

WO_WT1

Figure 5.14 Model of the system influence of simulation algorithms (simulink)

94

5.3.2.1.4 Influence of Simulation Algorithms

Design of Model

For design of the model for this task using only gain, add/substract and
integrator block for differential equation , sine source block for the sinus
voltage and math function block for exponential function. The model of the
system was shown in figure 5.14.

Simulation

To simulate the system, using solver ode45 (Dorman-Prince), le-5 for
relative tolerance and 0 ... 0,2 as simulation interval. Plot x1 and x2 for this
task is shown by figure 5.15. it took 255s to simulate this task.

For calculation of condition of massmatrices, can’t be done by simulink,
because simulink didn’t have block function cond() in their library, therefore
no calculation of condition for simulink.

For whole calculation and simulation, using Matlab/Simulink version 7.4

R2007a on PC Intel Pentium D, 2 x 2,66 GHz.

x1

x2

Figure 5.15 Plot x1 and x2 influence of simulation algorithms (simulink)
5.3.2.2 Stateflow
Looking from all the equation comparison 20 above, only state C, task B
(classical simulation), diode B and diode C that can be modelled in stateflow

mode, because they have switching differential equation in their equation.

95

But stateflow have restriction in their system, they don’t allowed any value
from algebraic loop as an input or event trigger, therefore only task
B(classical simulation) that can be simulated in stateflow mode in simulink,

because only task B that didn’t have algebraic loop in its model.

ON
en:Gain=5.1;
X2=2;

R <= 1e-4]

stateflow

R > 1e-4] L
OFF
en:Gain = 0.1;
X2=0;

Figure 5.16 Model of the system classical simulation (stateflow)

5.3.2.2.1Classical Simulation

Design of Model

For design of the model using only gain, add/substract and integrator block
for differential equation and sine source block for the sinus voltage. Time
dependent switch was built by embedded matlab m code, stateflow block

was used to send a control signal to the switch block(threshold le-4 and

96

condition control signal > threshold) for switching differential equation in
this model. The model for the system was shown in figure 5.16.

Simulation

To simulate the system, using solver ode45 (Dorman-Prince), le-5 for
relative tolerance and O ... 0,2 as simulation interval. Plot x1 and x2 for this
task is shown by figure 5.17. it took 1,5s to simulate this task.

For whole calculation and simulation, using Matlab/Simulink version 7.4

R2007a on PC Intel Pentium D, 2 x 2,66 GHz.

Figure 5.17 Plot x1 and x2 classical simulation (stateflow)

5.3.3 Dymola

5.3.3.1 Hybrid Model

5.3.3.1.1 Steady States

Design of Model

For design of the model using only gain, add/substract and integrator block
for differential equation and sine source block for the sinus voltage. Switch
block was controlled by less (<0) block for switching differential equation in

state C. The model for state A, state B and state C was shown in figure 5.18.

97

Simulation

To simulate the system, using solver DASSL, 1000 as numbers of interval, le-
4 for relative tolerance and O ... 0,2 as simulation interval. Plot x1 and x2 for
each state is shown by figure 5.19. it took 0,046s to simulate state A, 0,031s to

simulate state B and 0,234s to simulate state C.

oain?

add3_1 gain X1
K]
i e
k=51 " s Lt /
State A e T34 46541 =

/\/ gaint X2
freqHz=50 2 /

=45243865.77 ..

=

gainz
add3 1 din ¥l
p 1
sine
— 1+
k=0.1
+1
P—
ul k=314 48541 r=
gaing
fregHz=50 add geint W2
]
=0.0002 3
k=9049411 778 =

State B \—’ T

S0 5 ’_p "

=314 46541

Exa
1

State C

Figure 5.18 Model of the system steady states (dymola)

98

— Xy

x1

i State A

x2

1E4
OED |

g4 X].

2E4

Mo State B

n
I

)
h

[
!

x2

N
I

— Ly

D0ED
50EG
-1 DE4 |

-1 564 | X]-

204 4

e — State C

S0E3 XZ

T T T
0.00 005 010 015 0.20

Figure 5.19 Plot x1 and x2 steady states (dymola)

5.3.2.1.2 Classical Simulation
Design of Model
For design of the model using only gain, add/substract and integrator block

for differential equation and sine source block for the sinus voltage. Time

99

dependent switch was built by switch block, less equal block and trapezoid

source with parameter listed below:

- Amplitude = le+8 - Offset = le-4
- Rising = 5e-3 - Falling = 5e-3
- Width = Se-2 - Period = le-1

Switch block was controlled by less equal(0) block for switching differential

equation in this model. The model for the system was shown in figure 5.20.

add3_1 an ¥

k=31 4.46541 p=]

i switch2 w2
add —}—\
+1 k=00494, . b
i’ = /
k=0.0002 ,‘-/_ |——
k= 4

swvitchd

4’—1‘-

| |

Figure 5.20 Model of the system classical simulation (dymola)

— K1y
2E4
1E4
0E04 1
AE4]
_2k4
-3E4 :
000 0.04 0.08 012 016 020 024 028
— Wy
2E6 4
oe0] x2
-2E6
-4E6 T T T T T T T T T T T T T T
000 0.04 0.08 012 016 020 024 028

Figure 5.21 Plot x1 and x2 classical simulation (dymola)

100

Simulation

To simulate the system, using solver DASSL, 1000 as numbers of interval, le-
4 for relative tolerance and O ... 0,3 as simulation interval. Plot x1 and x2 for
this task is shown by figure 5.21. It took 0,203s to simulate this task.

D

gen2 " it
| =Tl 1
- e TH- Tl
A] syt {‘i:ss pen bl L
. i ™
1 . b

-
0.

Diode A

Diode B

Diode C

Figure 5.22 The model of the system different diode models (dymola)

— 1

0.00

——x2

0.00

—x

0.00

1564 4

1.0E4

S0E3

00ED

—x

00ED+

-5.0E3

-1 0E4 4

1564 |

-2.084

1564 4

1.0E4

S0E3

00ED

5.0

0.00

T
005

T
010

T
015

020

x1

Diode A

x2

x1

Diode B

x2

x1

Diode C

x2

Figure 5.23 Plot x1 and %2 different diode models (dymola)

5.3.2.1.3 Different Diode Models

Design of Model

101

For design of the model for diode A using only gain, add/substract and

integrator block for differential equation , sine source block for the sinus

102

voltage and exponent block for exponential function. For diode B, the design
is similar with diode A but with addition switch block and greater
block(sending Boolean signal to switch block) for switching differential
equation in diode B. For diode C, the design based on diode B, with
changing 1 gain block (VD/VT) with 1 subsystem block to define the function
of VT (VD/VT(t)). The model for diode A, diode B and diode C was shown in
figure 5.22.

Simulation

To simulate the system, using solver DASSL, 1000 as numbers of interval, le-
8 for relative tolerance and O ... 0,2 as simulation interval. Plot x1 and x2 for
this task is shown by figure 5.23. it took 2,66s to simulate diode A, .5,42s to

simulate diode B and 6,14s to simulate diode C.

=0 gaingd Gt
e ID
*J> o |
add3_1 52188 | gain l—i1—[it D
=ine
k=01
—m T+ ™ L F—
f -1
st P TRE)
: =t

fregHz=50 R X1
const]
- O% S
=0
T Wit

4.1\ > /
=43245666 k=1

i add
gain3 -
-
T

k=T105e-9

a3 3
+

A4 o+ b
-1

WDORanRMn = E >

=5000

Figure 5.24 Model of the system influence of simulation algorithms (dymola)

5.3.2.1.4 Influence of Simulation Algorithms
Design of Model
For design of the model for this task using only gain, add/substract and

integrator block for differential equation , sine source block for the sinus

103

voltage and exponent block for exponential function. The model of the
system was shown in figure 5.24.
Simulation
To simulate the system, using solver DASSL, 1000 as numbers of interval, le-
8 for relative tolerance and O ... 0,2 as simulation interval. Plot x1 and x2 for
this task is shown by figure 5.25. it took 0,141s to simulate this task.
For calculation of condition of massmatrices, can’t be done directly by
dymola, because dymola didn’t have block function cond(), but dymola do
have norm and inverse function in their library, therefore the calculation of
condition based on equation below.

Condition = norm(A,p) * norm(inv(A),p) [14]

Where A= system matrix (massmatrices)

p = norm condition number (1, 2 or infinite)

—x
2E4

1E4
OEQ
x1

-1E4 |

<264

N X2

14

-2 T T T T T T T T T T T T T T T T T T T
0.00 005 10 015 0.20

Figure 5.25 Plot x1 and %2 influence of simulation algorithms (dymola)

As written before, only equation in explicit form that the condition of
massmatrices can be calculated, therefore only state A, state B and task B
(classical simulation) that qualified for this task.

The result: the calculation of condition of massmatrices can’t be done by
dymola, because dymola can’t make inverse matrix for system matrix state

A, state B and task B (too stiff).

104

For whole calculation and simulation, using Dymola version 6.0b on PC Intel

Pentium D, 2 x 2,66 GHz.

5.3.3.2 Stategraph Model

As written before in stateflow, only state C, task B (classical simulation),
diode B and diode C that can be modelled in stategraph mode. This time,
stategraph didn’t have any restriction like stateflow in simulink.

5.3.3.2.1 Steady States

Design of Model

For design of the model using only gain, add/substract and integrator block
for differential equation and sine source block for the sinus voltage. Switch
block was controlled by stategraph block for switching differential equation
in state C. Stategraph get input signal from less (<0) block and greater equal
block (0) to define which state is active is. The model for state C was shown

in figure 5.26.

Y. N N /
k=01 4 ‘

sine
/\/ Za14 46541 =1
_ gaine x2
+
swicht :@, k=1
g k=45245868.77 =
——»—
gainRC WD
= Gl
¥
switch2 ::O
+
» \ =110.5e.9
-
|—F BT
Deit
conel adl i VD
s g
- i’;@ -
+ ket
i, =Fx

T

aclive
T A 0

g

Figure 5.26 Model of the system steady states (stategraph)

105

-1.564 X 1

1.0E4 Xz

Figure 5.27 Plot x1 and x2 steady states (dymola stategraph)
Simulation
To simulate the system, using solver DASSL, 1000 as numbers of
interval, le-4 for relative tolerance and 0 ... 0,2 as simulation interval. Plot x1

and x2 is shown by figure 5.27. It took 0,234s to simulate state C.

5.3.2.2.2 Classical Simulation
Design of Model

For design of the model using only gain, add/substract and integrator
block for differential equation and sine source block for the sinus voltage.
Time dependent switch was built by switch block, less equal block and

trapezoid source with parameter listed below:

- Amplitude = le+8 - Offset = le-4
- Rising = 5e-3 - Falling = 5e-3
- Width = Se-2 - Period = le-1

Switch block was controlled by stategraph block for switching differential
equation in state C. Stategraph get input signal from less equal (1e-4) block
and greater block (>1e-4) to define which state is active is. The model for the

system was shown in figure 5.28.

106

Diode B

Diode C

Figure 5.29 The model of the system different diode modes (stategraph)

107

Simulation
To simulate the system, using solver DASSL, 1000 as numbers of interval, le-
4 for relative tolerance and O ... 0,3 as simulation interval. Plot x1 and x2 for

this task is shown by figure 5.21. It took 0,235s to simulate this task.

5.3.2.2.3 Different Diode Models

Design of Model

For design of the model for diode B using only gain, add/substract and
integrator block for differential equation , sine source block for the sinus
voltage and exponent block for exponential function. Switch block was
controlled by stategraph block for switching differential equation in diode B.
Stategraph get input signal from less equal (<=15) block and greater equal
block (>15) to define which state is active is. For diode C, the design based
on diode B, with changing 1 gain block (VD/VT) with 1 subsystem block to
define the function of VT (VD/VT(t)). The model for diode B and diode C was

shown in figure 5.29.

Simulation

To simulate the system, using solver DASSL, 1000 as numbers of interval, le-
8 for relative tolerance and O ... 0,2 as simulation interval. Plot x1 and x2 for
this task is shown by figure 5.30. it took.5,08s to simulate diode B and 6,11s to
simulate diode C.

For whole calculation and simulation, using Dymola version 6.0b on PC Intel

Pentium D, 2 x 2,66 GHz.

— %1

x1

— X2

Diode B

x2

— %1

x1

— X2

Diode C

X2

T T T T T T T T T T T T T T T
005 010 015 0.20

Figure 5.30 Plot x1 and x2 different diode models (stategraph)

5.3.3.3 Electrical Model
5.3.3.3.1 Steady States
Design of Model

108

For design of the model based on figure 5.2, using basic electric

resistor, capacitor, inductor and sine voltage source for state A and state B.

Using diode ideal for state C. The model for state A, state B and state C was

shown in figure 5.31.

State A

State B

State C

Simulation

sinevotage

resistor

R=0.1

Yt
\

resistor

sineviataos

63—‘

inductor

L=318e-3

resistort

R=5

capacitor

L =]
C=221e-9

inductor

L=3:16e-3

—L

gruind

capacitor

L=
C=221e8

resistord

resistor

1T

grn?nd

inductar

L P

p ey

4637

Figure 5.31 Model of the system steady states (dymola electrical)

R=01

singtottane

L=318e-3

R=5

capacitor

L

C=221e9

resistort

idealDiods

-

g round

109

To simulate the system, using solver DASSL, 1000 as numbers of interval, le-

4 for relative tolerance and O ... 0,2 as simulation interval. Plot x1 and x2 for

each state is shown by figure 5.19. it took 0,031s to simulate state A, 0,031s to

simulate state B and 0,188s to simulate state C.

5.3.2.3.2 Classical Simulation

Design of Model

For design of the model using basic electric resistor, capacitor, inductor and

sine voltage source Time dependent switch was built by ideal closing switch

block, less equal block and trapezoid source with parameter listed below:

110

- Amplitude = le+8 - Offset = le-4
- Rising = 5e-3 - Falling = 5e-3
- Width = Be-2 - Period = le-1

Ideal closing switch block was controlled by less equal(0) block for
switching differential equation in this model. The model for the system was

shown in figure 5.32.

resistor inductor talse

R=01 L=3.1Ge-3

resistort

+ .
capacitor
trapezoid
C=221e8

Figure 5.32 Model of the system classical simulation (dymola electrical)

Simulation
To simulate the system, using solver DASSL, 1000 as numbers of interval, le-
4 for relative tolerance and O ... 0,3 as simulation interval. Plot x1 and x2 for

this task is shown by figure 5.21. It took 0,703s to simulate this task.

5.3.2.3.3 Different Diode Models

Design of Model

For design of the model, based on state C by changing the type of diode. For
diode A using ideal diode, for diode B using semiconductor diode and for
diode C, using temperature diode. Sinus function and prescribed
temperature as input for heating diode. The model for diode A is the same as
state C, therefore the task for diode A won’t be needed again. The model for

diode B and diode C was shown in figure 5.33.

Diode B

Diode C

resistor

R=0.1

inductor

L=gtte-3 resistort

capacitor

C=221e9

tlioce.

wi=0.04

ground
registor inductor
ey
R=4 L=3.18e-3 resistor
hestingDioe
Voltag
capacitor
C=z21ed
sine 4Lj
ground T
/\/ Na
cot ;@
iregHz=25 +

k=310

111

Figure 5.33 The model of the system different diode modes (dymola

electrical)

x1

capactory

Diode B

x2

x1

L

b

| 1]I

1

-

il

Diode C

x2

010

[TH

om

Figure 5.34 Plot x1 and x2 different diode models (dymola electrical)

112

Simulation

To simulate the system, using solver DASSL, 1000 as numbers of interval, le-
8 for relative tolerance and O ... 0,2 as simulation interval. Plot x1 and x2 for

this task is shown by figure 5.34. it took.4,08s to simulate diode B and 4,83s to

simulate diode C.
5.3.2.1.4 Influence of Simulation Algorithms
Design of Model

For design of the model based on figure 5.1 with all the switch closed and

using ideal diode. The model of the system was shown in figure 5.35.

booleanConstart booleanConstart1
resistor inductor]:]:
o e true true
R=0:1 L=318e-3

]

dealClasi.

resistart

R=5
sine'oltage

iaN

capacitor

L=
C=221e-9

Figure 5.35 Model of the system influence of simulation algorithms (dymola

idealDiods

\||—-

=3
=
c
15
=3

electrical
“—u}.«.l.\.q.
i | | A ; A LA / A
\‘I / II| '-II \ |,' II'. { 1 Il|’ { II:_ ,lr
| i \ .-j ik 11_ [1A | \ ."'I
V1 \ ,'l / \ \\. \ W \ ¥ Wi Xl
x4 I'_ ."I 4
A ||r | I' \ f \I .'r'\lll :||\‘. Iln' \ lll,
A 1] 1 | \
. WE EE fEEI R uE X2
I B e o e S e B l [
o g S 'J |\ J |\ oy At 1) ,-J { b |
0. I OEI"C) I'Hlﬂ) 0':5 ()

Figure 5.36 Plot x1 and %2 influence of simulation algorithms (dymola

electrical

113

Simulation

To simulate the system, using solver DASSL, 1000 as numbers of interval, le-
8 for relative tolerance and O ... 0,2 as simulation interval. Plot x1 and x2 for
this task is shown by figure 5.36. it took 0,094s to simulate this task.

For whole calculation and simulation, using Dymola version 6.0b on PC Intel

Pentium D, 2 x 2,66 GHz.

5.3.3.4 Modelica Text Mode
5.3.3.4.1 Steady States
Design of Model
For design of the model, using the exact differential equation with modelica
function der(x) as dx/dt in the equation. The equation for state A, state B and
state C was written below:

equation //State A

L¥*der(x1)= -x1*(R1+R2) - x2 + U;

C*der(x2)=x1;

equation //State B

L*der(x1l)=-x1*R1 -R2*C*der(x2) - x2 + U;
C*(R2+Ron+Rmin)*der(x2)= x1*(Ron+Rmin) - x2;

equation //State C
VDr= (R2*C*der(x2)) + x2;
if VDr< 0 then
L*der(x1)=-x1*R1 - VDr - U;
C*der(x2)=x1 - VDr*le-5;
else
L*der(x1)=-xI1*Rl - VDr*le-5 - U;
C*der(x2)=x1 - VDr;
end if;

Simulation
To simulate the system, using solver DASSL, 1000 as numbers of interval, le-
4 for relative tolerance and O ... 0,2 as simulation interval. Plot x1 and x2 for

each state is shown by figure 5.19. it took 0,031s to simulate state A, 0,031s to

simulate state B and 0,203s to simulate state C.

114

5.3.2.4.2 Classical Simulation

Design of Model

For design of the model, using the exact differential equation with modelica
function der(x) as dx/dt in the equation. Time dependent switch using

algorithm below:

equation
t red = mod(time, 1E-1);
k=((le+8)-(1e-4))/TRF;
algorithm
if
(0<=t_red) and (t_red<TRF) then
Trap:=(le-4) + k*t_red;

elseif
(TRF<=t_red) and (t_red<(5e-2)) then
Trap:=le+8;
elseif

((5e-2)<=t_red) and (t_red<((5e-2)+TRF)) then
Trap:=(le+8) - k*(t_red - (5e-2));
elseif
((5e-2)+TRF<=t_red) and (t_red<(le-1)) then
Trap:=le-4;
else
Trap:=-5;
end if;

Simulation
To simulate the system, using solver DASSL, 1000 as numbers of interval, le-

4 for relative tolerance and O ... 0,3 as simulation interval. Plot x1 and x2 for

this task is shown by figure 5.21. It took 0,219s to simulate this task.

5.3.2.4.3 Different Diode Models
Design of Model
For design of the model, using the exact differential equation with modelica
function der(x) as dx/dt in the equation. The equation for diode A, diode B
and diode C was written below:

equation //Diode A

L¥*der(x1)= -x1*RI -R2*C*der(x2) - x2 - U:

C*der(x2)=x1 - ids*(exp(((R2*C*der(x2))+x2)/VT)-1);

equation //Diode B
L*der(xl)=-xI*R1 -R2*C*der(x2) - x2 - U;

VD= (R2*C+*der(x2)) + x2;

CTR=VD/VT;

115

if CTR > maxexp then
C*der(x2)=x1 - ids*(exp(maxexp*(1+CTR-maxexp))-1) + (VD/R);
else
C*der(x2)=x1 - ids*(exp(CTR)-1) + (VD/R);
end if;
equation //Diode C
L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 - U;
VD= (R2*C*der(x2)) + x2;
VT= ((30 * sin(2*3.14159*%100%*time))+310)*8.61734681e-5;
CTR =VD/VT;
if CTR > maxexp then
C*der(x2)=x1 - ids*(exp(maxexp*(1+CTR-maxexp))-1) + (VD/R);
else
C*der(x2)=x1 - ids*(exp(CTR)-1) + (VD/R);
end if;
Simulation
To simulate the system, using solver DASSL, 1000 as numbers of interval, le-
8 for relative tolerance and O ... 0,2 as simulation interval. Plot x1 and x2 for
this task is shown by figure 5.23. it took 2,5s to simulate diode A, .3,77s to

simulate diode B and 4,39s to simulate diode C.

5.3.2.4.4 Influence of Simulation Algorithms

Design of Model

For design of the model, using the exact differential equation with modelica
function der(x) as dx/dt in the equation. The equation for this task was

written below:

equation

L*der(x1)=-x1*RI -VD - x2 - U;

C*der(x2)=x1 - ids*(exp(VD/VT)-1) - (VD/(Ron+Rmin));
Simulation
To simulate the system, using solver DASSL, 1000 as numbers of interval, le-
8 for relative tolerance and O ... 0,2 as simulation interval. Plot x1 and x2 for
this task is shown by figure 5.25. it took 0,125s to simulate this task.
For whole calculation and simulation, using Dymola version 6.0b on PC Intel

Pentium D, 2 x 2,66 GHz.

116

5.3.4 Mosilab
5.3.4.1 Modelica Text Mode
5.3.4.1.1 Steady States

Design of Model
For design of the model, using the exact differential equation with modelica
function der(x) as dx/dt in the equation. The equation for state A, state B and

state C was written below:

equation //State A
L*der(x1l)= -x1*(R1+R2) - x2 + U;
C*der(x2)=x1;

equation //State B
L*der(x1)=-xI1*R1 -R2*C*der(x2) - x2 + U;
C*(R2+Ron+Rmin)*der(x2)= x1*(Ron+Rmin) - x2;

equation //State C
VDr= (R2*C*der(x2)) + x2;
if VDr< 0 then
L*der(x1)=-x1*Rl - VDr - U;
C*der(x2)=x1 - VDr*le-5;
else
L*der(x1)=-x1*Rl - VDr*le-5 - U;
C*der(x2)=x1 - VDr;
end If;

Simulation

To simulate the system, using solver DASSL, le-6 as min step size, 0,08
as max step size, 1.0 for relative tolerance and 0 ... 0,2 as simulation interval.
Plot x1 and x2 for each state is shown by figure 5.37. It took ls to simulate

state A, 0,2s to simulate state B and 13,4s to simulate state C.

117

State A

1.5e+04 5fF
le+04 M-
5000 4+

o]

= -5000 -3t
levoa
-1.5e+04 -
2e+0a 1
-2.5e+04 It

State B

x2

4]
hEW N e RN W

5000 5

0

-5000

= -le+04 o)

-1.5e+04 3

2e+04

-2.5e+04 JH

4] 0.05 0.1 0.15 0.2
time
~expive State C

2.5e+04 5~ S

2e+04 5 rrrrrr ; ‘ i
1.5e+04 rrrrrr

= le+04 ------ - -4
5000 ------ - - i XZ
L \ \ |

5000 JH------
T

T T 1
o 0.05 01 0.15 0.2
time

Figure 5.37 Plot x1 and x2 steady states (mosilab)

118

5.3.4.1.2 Classical Simulation

Design of Model

For design of the model, using the exact differential equation with modelica
function der(x) as dx/dt in the equation. Time dependent switch using

algorithm below:

equation
t red = mod(time, 1E-1);
k=((le+8)-(1e-4))/TRF;
algorithm
if
(0<=t_red) and (t_red<TRF) then
Trap:=(le-4) + k*t_red;

elseif
(TRF<=t_red) and (t_red<(5e-2)) then
Trap:=le+8;
elseif

((5e-2)<=t_red) and (t_red<((5e-2)+TRF)) then
Trap:=(le+8) - k*(t_red - (5e-2));
elseif
((5e-2)+TRF<=t_red) and (t_red<(le-1)) then
Trap:=le-4;
else
Trap:=-5;
end if;

Simulation
To simulate the system, using solver DASSL, le-6 as min step size, 0,08 as
max step size, 1.0 for relative tolerance and O ... 0,3 as simulation interval.

Plot x1 and x2 for this task is shown by figure 5.38. It took 9,1s to simulate this
task.

x1

x2

time

Figure 5.38 Plot x1 and x2 classical simulation (mosilab)

119

5.3.4.1.3 Different Diode Models

Design of Model

For design of the model, using the exact differential equation with modelica
function der(x) as dx/dt in the equation. The equation for diode A, diode B

and diode C was written below:

equation //Diode A
L*der(x1)=-xI*R1 -R2*C*der(x2) - x2 - U;
C*der(x2)=x1 - ids*(exp(((R2*C*der(x2))+x2)/VT)-1);

equation //Diode B
L*der(x1)=-x1*R1 -R2*C*der(x2) - x2 - U;

VD= (R2*C*der(x2)) + x2;

CTR =VD/VT;

if CTR > maxexp then

C*der(x2)=x1 - ids*(exp(maxexp*(1+CTR-maxexp))-1) + (VD/R);

else

C*der(x2)= x1 - ids*(exp(CTR)-1) + (VD/R);

end If;

equation //Diode C
L*der(x1)=-xI*R1 -R2*C*der(x2) - x2 - U;
VD= (R2*C*der(x2)) + x2;
VT= ((30 * sin(2*%3.14159*100*time))+310)*8.61734681e-5;
CTR=VD/VT;
if CTR > maxexp then
C*der(x2)=x1 - ids*(exp(maxexp*(1+CTR-maxexp))-1) + (VD/R);
else
C*der(x2)= x1 - ids*(exp(CTR)-1) + (VD/R);
end If;

Simulation

To simulate the system, using solver DASSL, le-8 as min step size, le-5
as max step size, le-8 for relative tolerance and O ... 0,2 as simulation
interval. Plot x1 and x2 for this task is shown by figure 5.39. It took 47,9s to

simulate diode A, .100,9s to simulate diode B and 110,7s to simulate diode C.

120

: Diode A

x2

Akl

Diode B

- x2

. Diode C

Figure 5.39 Plot x1 and x2 different diode models (mosilab)

121

5.3.4.1.4 Influence of Simulation Algorithms

Design of Model

For design of the model, using the exact differential equation with modelica
function der(x) as dx/dt in the equation. The equation for this task was

written below:

equation
L*der(x1)=-xI*R1 -VD - x2 - U;
C*der(x2)=x1 - ids*(exp(VD/VT)-1) - (VD/(Ron+Rmin));

x1

Figure 5.40 Plot x1 and x2 influence of dimulation algorithms (mosilab)
Simulation
To simulate the system, using solver DASSL, 1000 as numbers of interval, le-
8 for relative tolerance and O ... 0,2 as simulation interval. Plot x1 and x2 for
this task is shown by figure 5.40. it took 9,7s to simulate this task.
For the calculation of condition of massmatrices can’t be done by mosilab,
because mosilab didn’t have cond(), norm() and inv() in their core system.
For whole calculation and simulation, using Mosilab version 3.1 on Notebook

Dell Latitude D630 Intel Centrino Duo.

5.3.4.2 Statechart
The same as previous, only state C, task B, diode B and diode C that can

be simulated with statechart mode.

122

5.3.4.2.1 Steady States
Design of Model

For design of the model, using the exact differential equation with modelica

function der(x) as dx/dt in the equation. The statechart for state C was
written below:

Equation
sl = if VDr >= 0 then true else false;
s2 = if VDr < 0 then true else false;
statechart //statechart algorithm
state C20MosilabSC idealchartSC extends State;
annotation(extent=[-103,103; 46,-46]);
State Statel annotation(extent=[-92,60; -79,56]);
State State2 annotation(extent=[-51,59; -38,55]);
State Initial (islnitial=true) annotation(extent=[-85,71; -83,69]);
transition Initial->Statel action
A=1;
end transition annotation(points=[-84,69; -84,60]);
transition Statel->State2 event s2 action
A=-1;
end transition annotation(points=[-79,56; -51,56]);
transition State2->Statel event sl action
A=1;
end transition annotation(points=[-51,57; -79,57]);
end C20MosilabSC _idealchartSC;

//statechart equation

5000 o

[V |

B AR AR A AR A
| |
|

= det0d Jf koo

IR R x1
] Ii. } .'f '._‘ et K [[
-l5e+04 [{ | b |
-2e+04 5\\]} \;’ |I||\ \ Illl |'|I \JJ' \U \ rll ‘|\ \j‘l

-2.5e+04 g A Y. j

T T T T 1

0 0.05 0.1 015 0.2

L
- Expl.VE
2.58+04 o+~

2e+04 - :
1.50-+0a 3L - - - - i X2

= 1e+04 J--- - - - - i

1 (I N

a .

so00 k-

e e e

0 0.05 0.1 0.15 0.2

Figure 5.41 Plot x1 and x2 steady states (mosilab statechart)

Simulation

To simulate the system, using solver DASSL, le-6 as min step size, 0,08 as

max step size, 1.0 for relative tolerance and O ... 0,2 as simulation interval.

123

Plot x1 and x2 for each state is shown by figure 5.41. It took 14,1s to simulate

state C.

5.3.4.2.2 Classical Simulation

Design of Model

For design of the model, using the exact differential equation with modelica
function der(x) as dx/dt in the equation. The statechart algorithm was the
same as previous in steady states. The statechart equation for this task was

written below:

equation
sl = if Trap>le-4 then true else false;
s2 = if Trap<=1le-4 then true else false;if

x1

Diode C

x2

Figure 5.42 Plot x1 and x2 different diode models (mosilab statechart)

124

Simulation

To simulate the system, using solver DASSL, le-6 as min step size, 0,08 as
max step size, 1.0 for relative tolerance and O ... 0,3 as simulation interval.
Plot x1 and x2 for this task is shown by figure 5.38. It took 8,8s to simulate this
task.

5.3.4.2.3 Different Diode Models

Design of Model

For design of the model, using the exact differential equation with modelica
function der(x) as dx/dt in the equation. The statechart algorithm was the
same as previous in steady states. The statechart equation for diode B and

diode C was written below:

equation //Diode B and C
s2 = if CTR>maxexp then true else false;
sl = if CTR<=maxexp then true else false;

Simulation

To simulate the system, using solver DASSL, le-8 as min step size, le-5 as
max step size, le-8 for relative tolerance and O ... 0,2 as simulation interval.
Plot x1 and x2 for this task is shown by figure 5.42. It took.105,2s to simulate
diode B and 116,8s to simulate diode C.

For whole calculation and simulation, using Mosilab version 3.1 on Notebook

Dell Latitude D630 Intel Centrino Duo.

5.3.5 SimulationX

5.3.5.1 Hybrid Model

5.3.5.1.1 Steady States

Design of Model

For design of the model using only gain, add/substract and integrator block
for differential equation and signal generator for the sinus voltage. Relational

changeover switch was controlled by 2 signal (sl<s2) for switching

125

differential equation in state C. The model for state A, state B and state C was

shown in figure 5.43.

State A

ma
Sk

-DF
:_ﬂ o

State B R e
S 1

Figure 5.43 Model of the system steady states (simulationX)

x1

02 R ER R A RAR LA RR R A RS RARE R ER R RR A RER LA RAL R R LR RN AR AR AR RAARAR AR AR R nsata
008 008 0.1 .12 014 (13 0.6 02 St t A
f ate
oot SRS A YT I SN G S 4 W R A ¥R A W SN A ¥ SN A A A WA A

B R L S e S e R o AR
10000 !) :
o L RS 1
TTITE B T R N : :
20000 . 3 T
R | i S i
02 0.4 0.5 0.8 0.1 0.1z 0.14 0.16 0.13 0.2
2]
1]
o
1]
X2
2]
-]
L d
0 »
H
10000 ;
20000 -i-
i b i ;
0.02 0.04 0.05 0.8 0.1 0.1z 0.14 0.1 0.1 0.2
=
20000)
10000-] ! xz
- i e i
0.05 0.08 01 0.12 0.14 0.16 0.18 0.2

Figure 5.44 Plot x1

Simulation

and x2 steady states (simulationX)

126

To simulate the system, using solver BDF-method, l1e-14 as min step size, le-

8 as min output step size, le-5 for absolute tolerance, le-5 for relative

tolerance and O ... 0,2 as simulation interval. Plot x1 and x2 for each state is

shown by figure 5.44. it took 0,7020s to simulate state A, 0,11181s to simulate

state B and 9,1124s to simulate state C.

127

5.3.5.1.2 Classical Simulation

Design of Model

For design of the model using only gain, add/substract and integrator block
for differential equation and signal generator for the sinus voltage. Time
dependent switch was built by type designer block using modelica code and

relational changeover switch block. Modelica code was written below:

algorithm
if
(0<=t_red) and (t_red<TRF) then
Trap:=(le-4) + k*t_red;
elseif
(TRF<=t_red) and (t_red<(5e-2)) then
Trap:=le+8;
elseif
((5e-2)<=t_red) and (t_red<((5e-2)+TRF)) then
Trap:=(le+8) - k*(t_red - (5e-2));
elseif
((5e-2)+TRF<=t_red) and (t_red<(le-1)) then
Trap:=le-4;
else
Trap:=-5;
end if;

equation
t red = mod(time, 1E-1);
k=((le+8)-(1e-4))/TRF;

Relational changeover switch block was controlled by 2 signal (s1<=s2) for
switching differential equation in this model. The model for the system was

shown in figure 5.45.

Simulation

To simulate the system, using solver BDF-method, le-16 as min step
size, le-8 as min output step size, le-5 for absolute tolerance, le-5 for
relative tolerance and 0 ... 0,3 as simulation interval. Plot x1 and x2 for this

task is shown by figure 5.46. It took 7,7191s to simulate this task.

128

10000

-10000—

fffffffffff
200000~ - -~ -
100000~ - - -~

o] x2
~100000 —
~200000—

200000

Figure 5.46 Plot x1 and x2 classical simulation (simulationX)

5.3.5.1.3 Different Diode Models

Design of Model

For design of the model for diode A using only gain, add/substract and
integrator block for differential equation , signal generator for the sinus
voltage and exponent block for exponential function. For diode B, the design
is similar with diode A but with addition relational changeover switch block
that was controlled by 2 signal(s1>s2) for switching differential equation in
diode B. For diode C, the design based on diode B, with changing 1 gain
block (VD/VT) with 2 signal generator(as sinus and constant), 1

129

add/substract block, 1 gain block and 1 function block (as division) to define
the function of VT (VD/VT(t)). The model for diode A, diode B and diode C

was shown in figure 5.47.

Figure 5.47 The model of the system different diode modes (simulationX)

10000

-10000 —

-20000 —

0000

20000

10000

i}

T
'
'
'
;
I
04 0.08 0.0z

0.1z 0.14 016 0.18 0.2

-10000 —

20000 —

018 o2

0000

* IR

20000 —

10000

10000

FrerTrT
002

10000

}
j
'
|
1 1
e
104 006 008

T T T T T T T T T T T rrTT
0.1 0.2 0.14 016 0.18 0.2

-10000 —

-20000 —

0000

' '
' '
' '
' '
I I
' '
' '
' '
' '

E -
1 T
' '
' '
' '
' '

a r
' '
' '
' '
' '
I I

1
'
'
'
'

I
'
'
'
'
I

TP TP P e e e
0.02 .04 0.06 0.08 0.1 0.1z 0.14 0.16 .18

0.2

20000—

10000~

R LAARS ImssaR
1,

Figure 5.48 Plot x1

0.04

TP e P T T T
0, 0,08 0.1 01 0.14 .1 Bt 0z

130

x1

Diode A

x2

x1

Diode B

x2

x1

Diode C

x2

and x2 different diode models (simulationX)

131

Simulation

To simulate the system, using solver BDF-method, 1e-18 as min step size, le-
8 as min output step size, le-5 for absolute tolerance, le-5 for relative
tolerance and O ... 0,2 as simulation interval. Plot x1 and x2 for this task is
shown by figure 5.48. it took 8,9803s to simulate diode A, .10,0866s to
simulate diode B and 1307,6718s to simulate diode C.

5.3.5.1.4 Influence of Simulation Algorithms

Design of Model

For design of the model using only gain, add/substract and integrator block
for differential equation and signal generator for the sinus voltage. The

model of the system was shown in figure 5.49.

Figure 5.49 Model of the system influence of simulation algorithms

(simulationX)

Simulation

To simulate the system, using solver BDF-method, le-8 as min step size, le-4
as min output step size, le-5 for absolute tolerance, le-5 for relative
tolerance and O ... 0,2 as simulation interval. Plot x1 and x2 for this task is

shown by figure 5.50. it took 560,5021s to simulate this task.

132

For calculation of condition of massmatrices, can’t be done by
simulationX because simulationX didn’t have function that can calculate the
condition of massmatrices.

For whole calculation and simulation, using SimulationX version 2.0 on

PC Intel Pentium D, 2 x 2,66 GHz.

x1

x2

Figure 5.50 Plot x1 and x2 influence of simulation algorithms (simulationX)

5.3.5.2 Electrical Model
5.3.5.2.1 Steady States
Design of Model
For design of the model based on figure 5.2 using resistor, inductor,
capacitor and sine voltage source. For state C, ideal diode was used. The

model for state A, state B and state C was shown in figure 5.51.

Simulation

To simulate the system, using solver BDF-method, le-14 as min step
size, le-8 as min output step size, le-5 for absolute tolerance, le-5 for
relative tolerance and O ... 0,2 as simulation interval. Plot x1 and x2 for each
state is shown by figure 5.44. It took 0,6697s to simulate state A, 0,0844s to

simulate state B and 16,2727s to simulate state C.

133

idealDinde1

State C

| %2
a

Figure 5.51 Model of the system steady states (simulationX electrical)
5.3.5.2.2 Classical Simulation
Design of Model
For design of the model based on state B changing 1 resistor with 1 ideal
switch. The ideal switch as time dependent switch was controlled by type
designer block using modelica code that was used on hybrid model and
relational changeover switch to assign when ideal switch open or closed.

The model of the system was shown by figure 5.52

Simulation

To simulate the system, using solver BDF-method, l1e-14 as min step size, le-
8 as min output step size, le-5 for absolute tolerance, le-5 for relative
tolerance and O ... 0,3 as simulation interval. Plot x1 and x2 for this task is

shown by figure 5.53. It took 9,3952s to simulate this task.

134

A -

4000000
2000000

o] x2
-2000000 -3

4000000

— T T T T T T T T T T T T T T T T T T
ol 0.2 [

Figure 5.53 Plot x1 and x2 classical simulation (simulationX electrical)

5.3.5.2.3 Different Diode Models

Design of Model

For design of the model based on state C with different diode model, Model
diode A is the same as state C using ideal diode, For model diode B using
semiconductor diode and model diode C can’t be done by simulationX,
because simulationX have only 2 type of diode. The model for diode B was

shown in figure 5.54.

135

-10000

B N

20000 -

10000 -

-10000

Figure 5.55 Plot x1 and x2 different for diode B (simulationX electrical)
Simulation
To simulate the system, using solver BDF-method, le-14 as min step size, le-
8 as min output step size, le-5 for absolute tolerance, le-5 for relative
tolerance and O ... 0,2 as simulation interval. Plot x1 and x2 for this task is

shown by figure 5.55. It took 8,6296s to simulate diode B.

5.3.5.2.4 Influence of Simulation Algorithms
Design of Model
For design of the model based on figure 5.1 with all switch closed.The model

of the system was shown in figure 5.56.

136

Figure 5.56 Model of the system influence of simulation algorithms

(simulationX)

Simulation

To simulate the system, using solver BDF-method, 1e-14 as min step size, le-
8 as min output step size, le-5 for absolute tolerance, le-5 for relative
tolerance and O ... 0,2 as simulation interval. Plot x1 and x2 for this task is
shown by figure 5.57. it took 0,3801s to simulate this task.

For whole calculation and simulation, using SimulationX version 2.0 on PC

Intel Pentium D, 2 x 2,66 GHz.

x1

x2

Figure 5.57 Plot x1 and x2 influence of simulation algorithms (simulationX)

137

6. Comparison
6.1 Table of Result

Based on the design and solutions of each comparison discussed in the

previous chapter, the result can be tabulated as follow:

6.1.1. Comparison 3
As analyzed in chapter III, table 6-1 shows which software is able to complete
the task.

Table 6-1 The Result of the simulation softwarecompleting the task for

comparison 3

Task | Matlab Simulink Dymola Mosilab SimulationX
T M S M S E T T S M E

A v x® x® v v v v® X® X® Ve Vo
B A% A% v A% A% A% A% A% v v v
C v A% v v v v v X® X® A% v

Note: T = text mode

M= hybrid model

S= stateflow/stategraph/statechart mode

E= Electrical model

(1) Simulink is unable to complete task A, this task can be done only
by using matlab code.

(2) Doing the task using the same method “calling the eigenValue
function”

(3) Mosilab is unable to complete task A, due to the lack of function to
calculate the eigenvalue

(4) Mosilab is unable to complete the task, because it does not have

any function to create a phase simulation (xy plot, phase plot)

138
(8) Doing the task with the same method, step one is to simulate the
system and then proceed to tab analysis (natural frequencies and
mode shapes).
Table 6-2 described the list of the time needed to simulate the task for

comparison 3.

Table 6-2 The list of the time needed to simulate the task for comparison 3

Task Matlab Simulink Dymola
T M S M S E T

A 0,1015 X X 0,5 =0 =0 =0

B 4,3442 4 3 0,047 0,063 0,047 0,047

C 1,075 9,5 2 0,025 0,047 0,015 0,031
Task Mosilab SimulationX

T S M E

A X X 0,0723 0,0133

B 1,3 8,5 1,2528 0,8461

C X X 0,145 0,11

Note: All value is in second (s)
(1) Because it is using the same method, therefore the-timing would

also be the same

6.1.2. Comparison 5
As analyzed in the chapter IV, table 6-3 shows which software is able to

complete the task.

139

Table 6-3 The Result of the simulation software completing the task for

comparison 5

Task | Matlab Simulink Dymola Mosilab SimulationX
T M S M S E T T S M E

A \% A% \Y% \Y% \Y% xX® \Y% \Y% \Y% \Y% X®

B \% \% \% \% \% xX® \% v A% A% X®

C \Y% \Y% \Y% \Y% \Y% xX® \Y% \Y% \Y \Y% X®

D \ \% \ \'% \% xX® \% \% A\ \% X®

Note: (1)&(2) Because comparison 5 itself does not have any electrical
circuit, therefore no electrical model can be applied for this
comparison.

Table 6-4 described the list of the time needed to simulate the task for

comparison 5.

Table 6-4 The list of the time needed to simulate the task for comparison 5

Task Matlab Simulink Dymola
T M S M S E T
A 0,8903 0,5 9 0,047 0,062 X 0,047
B X X X X X X X
C X X X X X X X
D 10,7892 3 14 0,204 0,25 X 0,187
Task Mosilab SimulationX
T S M E
A 0,1 0,3 0,0582 X
B X X X X
C X X X X
D 1,3 2,3 0,434 X

140

Note: - All value is in second (s)

- Task B and C does not have time for the simulation, because these

tasks are only the result of data from task A.

6.1.3. Comparison 20

As analysed in chapter V, table 6-5 shows which software is able to complete

the task.

Table 6-5 The Result of the simulation software completing the task for

comparison 20

Task | Matlab Simulink Dymola Mosilab SimulationX
T M S M S E T T S M E
A-sa v Vv X® v X® v \'A \'A X® Vv v
sb A\ A\ X® A% X® v v v X® v v
sc| VO vV | X® \% X® \% \% \% X® \% \%
B \% \% \% \% \% \% \% \% V| Vg \%
C-da v, ® Vv X® v v X® \'A \'A Vv Vv X®
db| v, O vV | X® \% \% \% \% \% \% \% \%
de| Vv, O vV | X® \% \% V40 ® \% \% \% \% XV
D V,O v &) v p &) Vg® v v X® v V1
cond v X® | x® X® X X©® X X© X© X© X©
Note: sa=state A
sb= stateB
sc= State C
da= diode A
db= diode B
dc=diode C

ns= not satisfied
cond= condition. Only the equation in explicit form that its condition

can be calculated

141

diff= the plot is different than others.

(1) Using odelbi can simulate the task, but the result isn’t satisfactory.

(2) Simulink can’t calculate the condition, this task can only done by
using matlab code.

(3) Only the equation that have switching state and in explicit form can
be modelled in stateflow model. But stateflow have restriction,
which does not allow algebraic loop inside their stateflow, that’s
why only task B’s condition can be calculated.

(4) Dymola can calculate indirect condition number with equation:
cond = norm(A,p)*norm(inv(A,p))

But in this task, dymola can’t calculate condition because dymola
can’t inverse the system matrix in it. Probably the matrix is too stiff.

(5) Only the equation that have switching state and in explicit form can
be modelled in stategraph model in dymola and statechart mode in
mosilab

(6) Diode A is the same as state C

(7) Using heating diode made the plot different than others

(8) The plot is slightly different than others. This plot is going to have a
more stable result than the plot from other model and textual mode

(9) Mosilab and simulationX can’t calculate condition number,
because they don’t have any function for this task.

(10) The plot from hybrid model simulationX slightly different than
others, although using the same signal block in electrical model
simulationX.

(11) SimulationX does not have other type of diode in electrical model
- They only have 2 types: ideal diode and semiconductor diode,
therefore there is no diode C for this task.

(12) The plot is different than others and compared to the plot in
number (8), this plot is already stable from the beginning, much

more like in the tesxt book theory than the result in-actual situation

142

Below is Table 6-6 described the list of the time needed to simulate the task

for comparison 20.

Table 6-6 The list of the time needed to simulate the task for comparison 20

Task Matlab Simulink Dymola
T M S M S E T
A-sa 29,6353 1 X 0,046 X 0,031 0,031
sb 1,1946 0,5 X 0,031 X 0,031 0,031
sc 1,43176 19,5 X 0,234 0,234 0,188 0,203
B 50,5118 5,5 1,5 0,203 0,235 0,703 0,219
C-da 0,8612 153 X 2,66 X X 2,5
db 1,0165 183 X 5,42 5,08 4,08 3,71
dc 0,9585 213 X 6,14 6,11 4,83 4,39
D 0,8593 255 X 0,141 X 0,094 0,125
cond 0,19 X X X X X X
Task Mosilab SimulationX
T S M E
A-sa 1 X 0,7020 0,6697
sb 0,2 X 0,1118 0,0844
sc 13,4 14,1 9,1124 16,2727
B 9,1 8,8 71,7191 9,3952
C-da 41,9 X 8,9803 X
db 100,9 105,2 10,0866 8,6296
dc 110,7 116,8 1307,6718 X
D 9,7 X 560,5021 0,3801
cond X X X X

143

Note: - All value is in second (s)

- The task that don’t have time result (X), refer to table 6-5.

6.2 Advantage and disadvantage

6.2.1 Matlab

Advantage:

- User friendly

- Powerful package

- Can do all calculation of matrix, such as eigenvalue, norm, condition, etc..

- Can do all the task that given

- Very complete documentation inside their help sections

- When error occurred, the error message is very detail that user can
immediately knew what the problem is.

- Provide workspace, that user can overlook the data from simulation

- Provide many free literatures in internet.

- Provide step by step tutorial, that a new user can understand the algorithm
code immediately.

- Provide internet newscenter which function as a forum for user so they can
correspondence with other matlab user around the world to seek answers

should they run into problems while using the software.

Disadvantage:

- cost expensive

- Have only 1 type modelling: textual mode.

- One of the solvers is not working very well, odel5i is the only solver that
can solve differential equation in implicit form.

- Take up so many memory from the compute, around 125 Kb in stand by

mode

144

6.2.2 Simulink

Advantage:

- User friendly

- Powerful package

- Very complete documentation inside their help sections

- When error occurred, the error message is very detail that user can
immediately knew what the problem is.

- Have 2 type of modelling: hybrid and stateflow

- Provide workspace, that user can overlook the data from simulation

- Provide many free literatures in internet.

- Provide step by step tutorial, that a new user can understand the algorithm
code immediately.

- Provide internet newscenter which function as a forum for user so they can
correspondence with other simulink user around the world to seek answers

should they run into problems while using the software.

Disadvantage:

- cost expensive

- Can’t do all calculation of matrix, such as eigenvalue, norm, condition, etc..

- Give restriction in simulink mode, can’t do the task if there is any signal
source inside the subsystem block.

- Give restriction in stateflow mode, can’t do the task if there is any loop
inside the stateflow block such as algebraic loop.

- Take up so many memory from the computer around 125 Kb in stand by

mode

6.2.3 Dymola
Advantage:

- User friendly

- Powerful package

- Very fast simulation

145

- Can do some calculation of matrix, such as eigenvalue, norm, inverse etc..

- When error occurred, the error message is very detail that user can
immediately knew what the problem is.

- Very complete description for their model in the dymola library

- Doesn’t have algebraic loop restriction in their stategraph mode.

- Have 4 type of modelling: hybrid, electrical, stategraph and textual mode.

- Have many variation of electrical model in their library.

- Provide free literatures in internet.

- Provide tutorial, that a new user can understand the algorithm of code.

- Provide dymola forum that if user got question about their problem, can
send a question to this place and get the answer from user of dymola from
TU Kaiserslautern.

- Provide demo version in their website

Disadvantage:

- Have problem to inverse stiff matrix.

- The documentation inside their help sections is not complete

- Do not provide workspace

- Take up average memory from the computer around 65 Kb in stand by
mode

- New user have difficulty when encounters textual mode in dymola, because

user must understand first modelica language.

6.2.4 Mosilab

Advantage:

- User friendly

- When error occurred, the error message is very detail that user can
immediately knew what the problem is.

- Doesn’t have algebraic loop restriction in their statechart mode.

- Have 2 type of modelling: textual and statechart.

146

- Provide getting started and tutorial documentation, which enable new user
to understand how to use mosilab.

- Provide free software from their website.

Disadvantage:

- The package is not so powerful

- Can’t calculate all matrix calculation.

- Do not provide documentation inside their help sections

- Do not provide workspace

- Can only works in operating linux system

- Before software installation, user must provide first a few small programs
that support mosilab.

- New user will have difficulty in software installation. User must be an expert

of linux first.

- New user will have difficulty when they encounter textual mode and
statechart in mosilab, because user must understand first modelica

language.

6.2.5 SimulationX

Advantage:

- User friendly

- Powerful package

- When error occurred, the error message is so detail that user can
immediately knew what the problem is.

- Complete description for their model in the simulationX library

- Have 2 types of modelling: hybrid and electrical.

- Have variation of electrical model in their library.

- Provide free literatures in internet.

- Provide tutorial-which enable new user to understand the algorithm-code.

- Provide ITT helpdesk that if user got question about their problem, can send

a question to this place and get the answer from ITI expert.

147

- Provide free student version in their website.

- Provide type designer block, that user can define their code for new
element type.

- Provide list data in the form txt file, user can overlook the data from

simulation

Disadvantage:

- Can’t calculate all matrix calculation, only eigenvalues and eigenvector.

- Complicated view of connector between block. So many tangled and
tousled between one connector with other connector.

- Not so complete documentation inside their help sections

- Take up a lot of time to execute the software

- Take up many memory from the computer around 85 Kb in stand by mode

- New user will have difficulty when they encounters type designer block,

because user must understand first modelica language.

148

7. Conclusion and Suggestion

7.1 Conclusion

Base on result, advantage and disadavantage above, the conclusion can be

made as follow:

2.

Matlab is the only simulation software that can do all calculation of
matrix.

Dymola is the fastest simulation software.

. Dymola have the most variation type of modelling needed in this

thesis.

. Despite Matlab can do all task that was given, they have quite few not

satisfied result in comparison 20. This was because of using solver

odel5i. The only solver that can solve the equation in implicit form,

. The longest time simulation is by simulationX to simulate task diode C

in comparison 20 = 1307,6718s.

. The fastest time simulation is by dymola electrical model to simulate

task d in comparison 3 = 0,015s.
Mosilab in comparison 3 can only do task B. The other tasks are
impossible, because mosilab didn’t have any function to calculate

eigenvalue and to plot y function x (y(x)).

. To measure the time simulation in matlab by using matlab built

function tic toc.

10. Measuring the time in simulink and stateflow, by looking computer

clock.

11.Dymola, mosilab and simulationX provide time simulation in their

software. Dymola in their message window, mosilab in their

simulation process window and simulationX in their output bar

window.

12. Only matlab that have not satisfied result when encounter equation in

implicit form.

149

13.The different plot between equation model and electrical model in
task D comparison 20 because of in equation model is only the
approximation equation for task D.

14.The different plot between electrical model by dymola and
simulationX in task D comparison 20 because of different algorithm
and equation of ideal diode, between the two simulation software.

15.The simulation in dymola for task diode C electrical model heating
diode can only be done by dymola, because inside the equation of
this diode, they have 2 special dymola built in function, exlin and pow,
which only available in dymola.

16. Stateflow, stategraph and statechart can only model the equation that
has switching state.

17.Stateflow can only model 1 task in comparison 20, because they have
restriction which does not allow any algebraic loop as input or event
in their stateflow block

18.The stiffer the equation is, the longer time required to simulate the
equation.

19.Ranking time simulation from fastest to slowest between type of
modelling in dymola are:

a. Textual mode
b. Electrical model

Hybrid model

Q

d. Stategraph model
20.As written above, this ranking is also valid for other simulation
software.
21.Matlab, Simulink and Dymola have limitation for their step size time in
simulation. Matlab limit is 2.22045e-014, simulink limit is
2.842170943040401e-014 and dymola limit is 5.939787e-013. Smaller
than that matlab and simulink will automatically set to this limit, but

dymola will give failed and pop up an error message.

150

22.Mosilab and simulationX don’t have step size limitation in their core
system.

23.Modelling the system in modelica code is the most efficient and
easiest way to model the system based on equation.

24.0Only simulink have real time simulation by setting the stop time to
infinite. The other simulation software didn’t have this feature.

25.Type designer block in simulationX is very useful feature for expert
user to define their code in new element type.

26. Only simulink that have if, switch case, while loop and for loop block
in their library.

27. Stateflow, stategraph and statechart are based on Petri nets theory and
very useful as controller in the system.

28.Extracting data in task b and c in comparison 5 from plot result in
Dymola, Mosilab and simulationX, by pointing mouse cursor in the
plot result.

29. Matlab and simulink have workspace to extract data from simulation.

30.Only simulationX that automatically calculate eigenvalue from every
simulation.

31.User must be a linux expert first to install mosilab in their computer.

7.1 Suggestion
Based on result, advantage, disadvantage and conclusion above, the
suggestion can be made as follow:

1. Installation of mosilab can be made easier, like in windows, with step-
by-step installation wizard.

2. User shouldn’t need to provide initial small programs to support
mosilab, before installation. Mosilab should have provides them in the
first place for the user.

3. Matlab should add anoother solver that can solve problem in implicit
form, not only odel5i, maybe in the future; there will be ode23i,

ode45i, etc.

151

. Dymola, mosilab, simulationX should add feature like workspace in
matlab/simulink, it will make easier for user to see the data result from
their simulation.

. Dymola and matlab/simulink should reduce their limitation in step
size time.

. Simulink should delete algebraic loop restriction in their stateflow
mode.

. Dymola, mosilab, simulationX should add complete features of all
matrix calculation.

. Mosilab should add y(x) plot in their core system.

. SimulationX should add more models in their library to reduce user

using type designer block.

10.Dymola, mosilab and simulation should add if, for loop, while loop,

switch case block in their library.

11.Matlab and simulink should add feature for automatic time simulation

measurement.

12.Dymola, mosilab and simulationX should add real time simulation

feature (setting stop time to infinite).

13. Simulink should add electrical model in their library.

14.SimulationX should add statechart and digital model in their library.

15.For future reference, other comparison can be made with different

simulation software such as vensim, jsim, anylogic, java, C/C++ etc...

152

REFERENCE

[1] http://en.wikipedia.org/wiki/Simulation
[2] http://en.wikipedia.org/wiki/Computer_simulation
[3] http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.html

[4] Dabney, James B.: Mastering Simulink / James B. Dabney ; Thomas L.
Harman. - Upper Saddle River, NJ:Prentice Hall, 2004. - XIX, 376 S..-
ISBN 0-13-1424717-1

[5] Fritzson, Peter : Principles of object-oriented modeling and simulation
with Modelica 2.1 / Peter Fritzson. - New York, NY : Wiley, 2004. - XLII,
897 S. . -ISBN 0-471-47163-1

[6] Tiller, = Michael : Introduction to physical modeling with
Modelica / Michael Tiller. - Boston, Mass. [u.a.]:Kluwer Academic
Publ., 2001. - XXII, 344 S. .- (Kluwer international series in engineering
and computer science ; 615). - ISBN 0-7923-7367-7

[7] http://www.mosilab.de/
[8] http://www.iti.de/news/topics_e.htm

[9]Nathan O. Sokal and Alan D. Sokal, Class E - A New Class of High-
Efficiency Tuned Single-Ended Switching Power Amplifiers, IEEE Journal
of Solid-State Circuits, Vol. SC-10, No. 3, June 1975, pp. 168-176.

[10] Julio C. Mandojana, Kelly J. Herman and Robert E. Zulinski, A
Discrete/Continuous Time-Domain Analysis of a Generalized Class E
Amplifier, IEEE Transactions on Circuits and Systems, Vol. 37, No. 8,
August 1990, pp. 1057-1060

[11] http://www.argesim.org/comparisons/index.html

[12]file:///C:/Programme/Dymola/Modelica/Library/Modelica%202.2.1/hel
p/

[13] http://en.wikipedia.org/wiki/Diode

[14] http://de.wikipedia.org/wiki/Kondition_%28Mathematik%29

153
Hanselman, Duane and Littlefield, Bruce: Matlab Bahasa Komputasi Teknis.
Alih Bahasa: Jozep Edyanto, Yogyakarta: Andi, 2002. ISBN: 979-533-753-X.
Hanselman, Duane C.:Mastering MATLAB 7 / Duane Hanselman ; Bruce
Littlefield. - Internat. ed..-Upper Saddle River, NJ:Pearson Prentice

Hall, 2005. - XI, 852 S. . - ISBN 0-13-185714-2

http://apcmag.com/how_to_dual_boot_windows_xp_and_linux_xp_installed
_first.htm

http://www.dynasim.se/index.htm
http://en.wikipedia.org/wiki/Petri_net
http://en.wikipedia.org/wiki/State_diagram

http://www.facstaff.bucknell.edu/mastascu/eLessonsHtml/Diodes/Diodel.ht
ml

http://www.mathworks.com/matlabcentral/newsreader/
http://www.modelica-forum.com/forums/index.php?showforum=4
http://www.modelica.org/
http://en.wikipedia.org/wiki/Matrix_norm
http://en.wikipedia.org/wiki/Inverse_matrix
http://en.wikipedia.org/wiki/Eigenvalue

http://www.psychocats.net/ubuntu/installingsoftware

APPENDIX
SOURCE CODE

Comparison 3

Matlab

function Aout=A(t)

global VDC L1 C2 L.3 C4 RL TRF
Aout=[0-1/L1 0 0; 1/C2 -1/(C2*R(t)) -1/C2 0;
01/L3 -RL/L3 -1/1L3; 00 1/C4 0];

End

function R_out = R(t)

global TRF

TRF=1e-15;

k=((8e+6)-(5e-2))/TRF;

t_red=mod(t, (10e-6));

if(0<=t_red)&(t_red<TRF)
R_out=(Be-2)+k*t_red;

elseif(TRF<=t_red)&(t_red<(5e-6))
R_out=5e+6;

elseif((5e-6)<=t_red)&(t_red<((5e-6)+TRF))
R_out=(8e+6)-k*(t_red-(5e-6));

elseif((5e-6)+TRF<=t_red)&(t_red<(10e-6))
R_out=5e-2;

else
R_out=-5;

End

function dx=deq(t,x)

global VDC L1 C2 L3 C4 RL TRF
b=[VDC/LI; 0; 0; 0];
dx=(A(t)*x)+b;

end

tic

global VDC L1 C2 L.3 C4 RL TRF

TRF= le-15; L1=79.9e-6; VDC=5; C2=17.9e-9;
L3=232e-6; C4= 9.66e-9; RL= 52.4;

ROff= eig(A(TRF))

ROn= eig (A(0))

Toc

Dymola & Mosilab

Modelica Text

model C3Dymola_textv2

constant Real Ll = 79.9E-6; constant Real C2 = 17.9E-9;
constant Real L3 = 232.0E-6; constant Real C4 = 9.66E-9;
constant Real VDC = 5; constant Real RL = 52.4;
constant Real TRF = 1E-15;

Real x1; Real x2; Real x3; Real x4;

Real Rt; Real t_red; Real IRT; Real VRL; Real k;

equation

154

t_red = mod(time, 10E-6);
k=((8e+6)-(5e-2))/TRF;
algorithm
if
(0<=t_red) and (t_red<TRF) then
Rt:=(5e-2) + k*t_red;
elseif
(TRF<=t_red) and (t_red<(5e-6)) then
Rt:=8e+6;
elseif
((Be-6)<=t_red) and (t_red<((5e-6)+TRF)) then
Rt:=(5e+6) - k*(t_red - (5e-6));
elseif
((Be-6)+TRF<=t_red) and (t_red<(10e-6)) then
Rt:=5e-2;
else
Rt:=-5;
end if;
equation
Ll*der(xl)= -x2 + VDC;
C2*der(x2)= x1 - (x2/Rt) - x3;
L3*der(x3)= x2 - (RL*x3) - x4;
Cé4*der(x4)= x3;
IRT = x2/Rt; VRL = RL*x3;
end C3Dymola_textv2;

MOSILAB STATECHART
model C3MosilabState
constant Real Ll = 79.9E-6; constant Real C2 = 17.9E-9;
constant Real L3 = 232.0E-6; constant Real C4 = 9.66E-9;
constant Real VDC = 5; constant Real RL = 52.4;
constant Real TRF = 1E-15;
event discrete Boolean sl (start=false), s2(start=false);
Real x1; Real x2; Real x3; Real x4;
Real Rt; Real t_red; Real IRT; Real VRL; Real k;
equation
t_red = mod(time, 10E-6);
k=((8e+6)-(5e-2))/TRF;
algorithm
if
(0<=t_red) and (t_red<TRF) then
Rt:=(5e-2) + k*t_red,;
elseif
(TRF<=t_red) and (t_red<(5e-6)) then
Rt:=8e+6;
elseif
((Be-6)<=t_red) and (t_red<((5e-6)+TRF)) then
Rt:=(5e+6) - k*(t_red - (5e-6));
elseif
((Be-6)+TRF<=t_red) and (t_red<(10e-6)) then
Rt:=5e-2;
else
Rt:=-5;
end if;

155

156

equation
sl = if Rt>=8e+6 then true else false;
s2 = if Rt<=8e-2 then true else false;
Ll*der(x1)= -x2 + VDC;
C2*der(x2)= x1 - (x2/Rt) - x3;
L3*der(x3)= x2 - (RL*x3) - x4;
C4*der(x4)= x3;
IRT = x2/Rt; VRL = RL*x3;
statechart
state C3MosilabStateSC extends State;
annotation(extent=[-104,104; 44,-43]);
State Statel annotation(extent=[-90,63; -77,59]);
State State2 annotation(extent=[-51,62; -38,58]);
State Initial (isInitial=true) annotation(extent=[-82,74; -80,72]);
transition Initial->Statel action
Rs:=5e+6;
end transition annotation(points=[-82,72; -82,63]);
transition Statel->State2 event s2 action
Rs:= 5e-2;
end transition annotation(points=[-77,59; -51,59]);
transition State2->Statel event sl action
Rs:= 5e+6;
end transition annotation(points=[-51,60; -77,60]);
end C3MosilabStateSC;
end C3MosilabState;

COMPARISON 5

MATLAB
function [t,y]=C5
tic
globalp d
tstart = O; tfinal = 5;
y0=[4.2 0.3]; C = [2.7TE+6 0.4 3.5651205 5.5];
p=5.8; d=1;
options = odeset('reltol',le-11,'Events',@events);
tout = tstart; yout = yO;
teout = []; yeout = []; ieout = [J;
while tout(length(tout))<5
% Call ODE Solver
FUN = @(t,y)F(t,y,C);
[t,y.te,ye,ie] = odel5s(FUN,[tstart tfinal],y0,options);
nt = length(t);
if y(nt)>=5.8
p=2.5; d=-1; C = [2.TE+6 -0.3 3.5651205 2.73]; end
if y(nt)<=2.5
p=5.8; d=1; C = [2.7E+6 0.4 3.5651205 5.5]; end
tout = [tout; t(2:nt)]; yout = [yout; y(2:nt,:)];
teout = [teout; te]; yeout = [yeout; yel;
ieout = [ieout; ie];
% Set the new initial conditions
yO=[y(nt,1) y(nt,2)];
tstart=t(nt);
options = odeset(options);
end
yl=yout(l:end,l);

157

plot(tout,y1);
A=teout
B=yl(length(yl))
toc

%
function dydt = F(t, y, C)

dydt(l,1) = C(1) * (y(2) + C(2) - y(1));
dydt(2,1) = C(3) * (C(4) - y(2));

%
function [value,isterminal,direction] = events(t,y)
globalp d

value = y(1)- [p;0];

isterminal = [1;1];

direction = [d;1];

DYMOLA & MOSILAB

Modelica Text
model C5Dymola_text2
constant Real cl = 2.7E+6; Real c2(start=0.4); constant Real ¢3 = 3.5651205; Real
c4(start=5.5);
Real y1(start=4.2); Real y2(start=0.3);
algorithm
when (y1>=5.8) then
c2:=-0.3; c4:=2.73;
end when;
when (y1<=2.5) then
c2:=0.4; c4:=5.5;
end when,;
equation
der(yl)=cl*(y2 + c2 - yl);
der(y2)= c3*(c4 - y2);
end C5Dymola_text2;

MOSILAB STATECHART
model CBMosilabState
constant Real cl = 2.7E+6; Real c2(start=0.4); constant Real ¢3 = 3.5651205; Real
c4(start=5.5);
Real y1(start=4.2); Real y2(start=0.3);
event discrete Boolean sl (start=false), s2(start=false);
equation
s2 = if yl >= 5.8 then true else false;
sl =if yl <=2.5 then true else false;
der(yl)=cl*(y2+c2-yl);
der(y2)=c3*(c4-y2);
statechart
state C8MosilabStateSC extends State;
annotation(extent=[-104,105; 45,-43]);
State Statel annotation(extent=[-90,63; -81,59]);
State State2 annotation(extent=[-58,62; -45,58]);
State Initial (isInitial=true) annotation(extent=[-82,74; -80,72]);
transition Initial->Statel
end transition annotation(points=[-82,72; -82,63]);
transition State1->State2 event s2 action

c2:=-0.3; c4:= 2.785;

end transition annotation(points=[-81,59; -77,60; -58,60]);

transition State2->Statel event sl action
c2:=0.4; c4:= 5.5;

end transition annotation(points=[-58,59; -77,59; -81,59]);

end C5MosilabStateSC;
end C3MosilabState;

Comparison 20
MATLAB
STEADY STATES

function Source = U(t)
Source= 14142.135623731 * sin((2*pi*B80*t)+pi);
end

function dxdt= deqx(t,x)
global L CR1 R2
A=[-(R1+R2)/L-1/L; 1/C 0];
b=[U(t)/L; 0];
dxdt=(A*x)+b;

end

function dxdt= deqxB(t,x)
global L C R1 R2 Rmin Ron

A=[-((R1*R2)+((R1+R2)*(Ron+Rmin)))/(L*(R2+Ron+Rmin)) -

(Ron+Rmin)/(L*(R2+Ron+Rmin));

(Ron+Rmin)/(C*(R2+Ron+Rmin)) -1/(C*(R2+Ron+Rmin))];

b=[U(t)/L; 0];
dxdt=(A*x)+b;
end

tic

global L C R1 R2 Y%State A
L=3.18e-3; C=22.1e-9; R1=0.1; R2= 5;
[tsol,xsol]=ode23s('deqx',[0 2e-1],[0;0]);
x1=xsol(l:end,1); x2=xso0l(1:end,2);
plot(tsol,x1);

toc

tic

global L C R1 R2 Ron Rmin Y% StateB
L= 3.18e-3; C=22.1e-9; R1=0.1; R2= 5;
Ron=1e-4; Rmin=1e-4;
[tsol,xsol]=ode23s('deqxB',[0 2e-1],[0;0]);
x1=xsol(l:end,1); x2=xsol(1:end,2);
plot(tsol,x1);

toc

function C20StateC_exponent %StateC
tic

global LCRI R2dR

Ron = le-4; Rmin= le-4; L= 3.18e-3; C=22.1e-9;
R1=0.1; R2= 5; d= -1; R=1e-5;

x0= [0;0]; xp0=[0;0];

158

options = odeset('Events',@events,'RelTol', le-7, 'AbsTol, le-7);
tstart=0; tfinal=0.2; tout = 0; xout = x0";
teout = []; xeout = []; ieout = [J;
FUN=@(t,x,xp)fl(t,x,xp);
while tout(length(tout))<0.2
% Call ODE Solver
[t,x,te,xe,ie]=0de15i(FUN,[tstart tfinal],x0,xp0,options);
nt = length(t);
tout = [tout; t(2:nt)];
xout = [xout; x(2:nt,:)];
dxl=xout(l:end,1); dx2=xout(l:end,2);
dx1dtall= diff(dx1); dx2dtall= diff(dx2);
nx= length(dx2);
dx2i=dx2dtall(nx-2); x2i= dx2(nx-1);
ctrl= ((R2*C*dx2i) + x2i);
if ctrl<0
FUN=@(t,x,xp)f2(t,x,xp); d=-1 ;end
if ctrl>0
FUN=@(t,x,xp)fl(t,x,xp); d=1 ;end
% Set the new initial conditions
x0=[x(nt,1); x(nt,2)];
xp0=[dx1dtall(nx-1); dx2dtall(nx-1)];
tstart=t(nt);
options = odeset(options);
end
x1=xout(l:end,l); x2=xout(l:end,2);
plot(tout,x1);
toc
%
function dxdt = f1(t,x,xp)
global LCR1 R2R
% VD<0
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))+x(2))/L)
(x(1)/C)-(((R2*C*xp(2)) +x(2))*R)/C)]

%

function dxdt = f2(t,x,xp)

global LCR1 R2R

% VD>=0

dxdt = [-(U(t)/L)-((x(1)*R1)/L)-(((R2*C*xp(2)) +x(2)) *R)/L)
(%(1)/C)-(((R2*C*xp(2))+x(2))+R)/C)]

%
function [value,isterminal,direction] = events(t,x,xp)
globalR2C d

value = ((R2*C*xp(2))+ x(2)) - [0;0];

isterminal = [1;1];

direction = [0;d];

CLASSICAL SIMULATION
function T_out = T(t)
persistent TRF
TRF=5e-3;
k=((le+8)-(le-4))/TRF;
t_red=mod(t, (1e-1));
if(0<=t_red)&&(t_red<TRF)

T out=(le-4)+k*t red,;

159

elseif(TRF<=t_red)&&(t_red<(5e-2))
T out=1e+8;
elseif((8e-2)<=t_red)&&(t_red<((5e-2)+TRF))
T_out=(le+8)-k*(t_red-(5e-2));
elseif((8e-2)+TRF<=t_red)&&(t_red<(le-1))
T out=le-4;
else
T out=-5;
end

function C20TaskBV2_withevents
tic
global L C R1 R2 Rmin Ron p
Ron = le-4; Rmin= le-4; L= 3.18e-3; C=22.1e-9;
R1=0.1; R2= 5; p=1le-4; x0= [0 0];
options = odeset('Events',@events);
tstart=0; tfinal=0.3; tout = 0; xout = x0;
FUN=@(t,x)deqtaskbl(t,x);
while tout(length(tout))<0.3
% Call ODE Solver
[t,x,te,xe,ie]=0de23s(FUN,[tstart tfinal],x0,options);

nt = length(t);

tout = [tout; t(2:nt)];

xout = [xout; x(2:nt,:)];

Tu= t(nt);

if T(Tu)<=le-4

p=1e+8; FUN=@(t,x)deqtaskb2(t,x); end
if T(Tu)>=1e+8
p=le-4; FUN=@(t,x)deqtaskbl(t,x); end

% Set the new initial conditions

x0=[x(nt,1) x(nt,2)];

tstart=t(nt);

options = odeset(options);
end
x1=xout(l:end,1); x2=xout(l:end,2);
plot(tout,x2);
toc
%
function dxdtl= deqtaskbl (t,x)
global L CR1 R2
dxdtl(1,1) = (-x(1)*(R1+R2)/L)-(x(2)/L)+(U(t)/L);
dxdtl(2,1) = (x(1)/C);
%
function dxdt2= deqtaskb2(t,x)
global L C R1 R2 Rmin Ron
dxdt2(1,1) = (-x(1)*((R1*R2)+((R1+R2)*(Ron+Rmin)))/(L*(R2+Ron+Rmin)))-
(x(2)*(Ron+Rmin)/(L*(R2+Ron+Rmin)))+(U(t)/L);
dxdt2(2,1) = (x(1)*(Ron+Rmin)/(C*(R2+Ron+Rmin)))-(x(2)/(C*(R2+Ron+Rmin)));
%
function [value,isterminal,direction] = events(t,x)
global p
value = T(t)- p + [0;0];
isterminal = [1;1];
direction = [0;0];

160

161

DIFFERENT DIODE MODELS

function C20StateC %Diode A

tic

global L C R1 R2 Rmin Ron ids VT

Ron = le-4; Rmin= le-4; L= 3.18e-3; C= 22.1e-9;

R1=0.1; R2= 5; ids= le-6; VT= 0.04; maxexp=15; R=1e+8;

[tsol,xsol]=ode15i(@f,[0 2e-1],[0;01,[0;0]);

x1=xsol(l:end,1); x2=xsol(1l:end,2);

plot(tsol,x1);

toc

%

function dxdt = f(t,x,xp)

global L C R1 R2 Rmin Ron ids VT R

dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L)
(x(1)/C)-((ids* (exp(((R2*C*xp(2))-x(2))/VT)-1))/C)];

function C20StateC_exponent %Diode B
tic
global L C R1 R2 Rmin Ron ids VT maxexp R
Ron = le-4; Rmin= le-4; L= 3.18e-3; C=22.1e-9;
R1=0.1; R2=5; ids= le-6; VT= 0.04; maxexp=15; R=1e+8;
x0= [0;0]; xp0=[0;0];
options = odeset('Events',@events, Refine',100);
tstart=0; tfinal=0.2; tout = 0; xout = x0";
teout = []; xeout = []; ieout = [J;
FUN=@(t,x,xp)fl(t,x,xp);
while tout(length(tout))<0.2
% Call ODE Solver
[t,x,te,xe,ie]=0de1Bi(FUN,[tstart tfinal],x0,xp0,options);
nt = length(t);
tout = [tout; t(2:nt)];
xout = [xout; x(2:nt,:)];
dxl=xout(l:end,1); dx2=xout(l:end,2);
dxldtall= diff(dx1); dx2dtall= diff(dx2);
nx= length(dx2);
dx2i=dx2dtall(nx-2); x2i= dx2(nx-1);
ctrl= ((R2*C*dx2i) + x2i)/VT;
if ctrl<maxexp
FUN=@(t,x,xp)f2(t,x,xp); end
if ctrl>maxexp
FUN=@(t,x,xp)fl(t,x,xp); end
% Set the new initial conditions
x0=[x(nt,1); x(nt,2)];
xp0=[dx1dtall(nx-1); dx2dtall(nx-1)];
tstart=t(nt);
options = odeset(options);
end
x1=xout(l:end,l); x2=xout(l:end,2);
plot(tout,x1);
toc
%
function dxdt = f1(t,x,xp)
global L C R1 R2 Rmin Ron ids VT R
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L)

162

(x(1)/C)-((ids* (exp((R2*C*xp(2))-x(2))/VT)-1))/C)+(((R2*C*xp(2))-x(2))/ R*C))]

%

function dxdt = f2(t,x,xp)

global L C R1 R2 Rmin Ron ids VT maxexp R

dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L)
(x(1)/C)-((ids*(exp(maxexp*(1+(((R2*C*xp(2)) + x(2)/VT))-maxexp))-1))/C)-

((R2*C*xp(2))-%(2))/ (R*C))]

%

function [value,isterminal,direction] = events(t,x,xp)

global R2 C VT maxexp

value = ((R2*C*xp(2))+ x(2))/VT) - maxexp + [0;0];

isterminal = [1;1];

direction = [0;0];

function VTout = VT'(t) %VT(t) for Diode C
VTout= ((30 * sin(2*pi*100*t))+310)*8.61734681e-5;
end

function C20StateC_exponent_temp %Diode C
tic
global L C R1 R2 Rmin Ron ids maxexp R
Ron = le-4; Rmin= le-4; L= 3.18e-3; C=22.1e-9;
R1=0.1; R2=5; ids= le-6; VT= 0.04; maxexp=15; R=1e+8;
x0= [0;0]; xp0=[0;0];
options = odeset('Events',@events);
tstart=0; tfinal=0.2; tout = 0; xout = x0";
teout = []; xeout = []; ieout = [J;
FUN=@(t,x,xp)fl(t,x,xp);
while tout(length(tout))<0.2
% Call ODE Solver
[t,x,te,xe,ie]=0de15i(FUN,[tstart tfinal],x0,xp0,options);
nt = length(t);
tout = [tout; t(2:nt)];
xout = [xout; x(2:nt,:)];
dxl=xout(l:end,1); dx2=xout(l:end,2);
dx1dtall= diff(dx1); dx2dtall= diff(dx2);
nx= length(dx2);
dx2i=dx2dtall(nx-2); x2i= dx2(nx-1);
ctrl= ((R2*C*dx2i) + x2i)/VT;
if ctrl<maxexp
FUN=@(t,x,xp)f2(t,x,xp); end
if ctrl>maxexp
FUN=@(t,x,xp)fl(t,x,xp); end
% Set the new initial conditions
x0=[x(nt,1); x(nt,2)];
xp0=[dx1dtall(nx-1); dx2dtall(nx-1)];
tstart=t(nt);
options = odeset(options);
end
x1=xout(l:end,l); x2=xout(l:end,2);
plot(tout,x1);
toc
%
function dxdt = f1(t,x,xp)
global L C R1 R2 Rmin Ron ids R
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L)

(x(1)/C)-((ids* (exp((R2*C*xp(2))-x(2))/VT(1))-1))/C)+((R2*C*xp(2))-x(2))/ (R*C))]

%

function dxdt = f2(t,x,xp)

global LL C R1 R2 Rmin Ron ids maxexp R

dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L)
(x(1)/C)-((ids*(exp(maxexp*(1+(((R2*C*xp(2)) + x(2)/VT(t)))-maxexp))-1))/C)-

((R2*C*xp(2))-%(2))/ (R*C))]

%

function [value,isterminal,direction] = events(t,x,xp)

global R2 C maxexp

value = ((R2*C*xp(2))+ x(2))/VT(t)) - maxexp + [0;0];

isterminal = [1;1];

direction = [0;0];

INFLUENCE OF SIMULATION ALGORITHMS

function C20_subsystem3

tic

global L C R1 R2 Rmin Ron ids VT

Ron = le-4; Rmin= le-4; L= 3.18e-3; C=22.1e-9;
R1=0.1; R2= 5; ids= le-6; VT= 0.04;
[tsol,xsol]=ode15i(@f,[0 2e-1],[0;0],[0;0]);
x1=xsol(l:end,1);

x2=xsol(l:end,2);

plot(tsol,x2);

toc

%
function dxdt = (t,x,xp)

global L C R1 R2 Rmin Ron ids VT

dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L)

(x(1)/C)-((ids* (exp((R2*C*xp(2))-x(2))/VT)-1))/C)-((R2*C*xp(2))/(C* (Ron+Rmin)))-

(x(2)/(C*(Ron+Rmin)))]

DYMOLA & MOSILAB

Modelica Text

model C20DymolaStateA_text
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4;
constant Real L = 3.18E-3; constant Real C = 22.1E-9;
Real x1; Real x2; Real U;
equation
U =14142.135623731 * sin((2%3.14159*50*time) + 3.14159);
L*der(x1)= -x1*(R1+R2) - x2 + U;
C*der(x2)=x1;
end C20DymolaStateA_text;

model C20DymolaStateB_text
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4;
constant Real Ron = 1E-4; constant Real L, = 3.18E-3; constant Real C = 22.1E-9;
Real x1; Real x2; Real U;
equation

U =14142.135623731 * sin((2%3.14159*50*time) + 3.14159);

L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 + U;

C*(R2+Ron+Rmin)*der(x2)= x1*(Ron+Rmin) - x2;
end C20DymolaStateB_text;

163

164

model C20DymolaStateC_Ideal_text
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4;
constant Real Ron = 1E-4; constant Real L = 3.18E-3; constant Real C = 22.1E-9;
Real x1; Real x2; Real U; Real VC; Real IL;; Real VD; Real VDr; Real ID;
equation

U =14142.135623731 * sin((2%3.14159*50*time) + 3.14159);

VDr= (R2*C*der(x2)) + x2;

if VDr< 0 then

L*der(x1)=-x1*R1 - VDr - U;

C*der(x2)= x1 - VDr*1e-5;

else

L*der(x1)=-x1*R1 - VDr*1e-5 - U;

C*der(x2)= x1 - VDr;

end if;
VD= x2-x1; ID=x1; IL= -x1; VC= -x2 + x1;
end C20DymolaStateC_Ideal_text;

CLASSICAL SIMULATION

model C20DymolaStateB_taskB_text
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4;
constant Real Ron = 1E-4; constant Real L = 3.18E-3; constant Real C = 22.1E-9;
constant Real TRF = 5e-3; Real x1; Real x2; Real U; Real t_red; Real k; Real Trap;
equation
t_red = mod(time, 1E-1);
k=((1e+8)-(le-4))/TRF;
algorithm
if

(0<=t_red) and (t_red<TRF) then

Trap:=(le-4) + k*t_red;

elseif
(TRF<=t_red) and (t_red<(5e-2)) then
Trap:=le+8;
elseif

((Be-2)<=t_red) and (t_red<((5e-2)+TRF)) then
Trap:=(le+8) - k*(t_red - (5e-2));
elseif
((5e-2)+TRF<=t_red) and (t_red<(le-1)) then
Trap:=1e-4;
else
Trap:=-5;
end if;
equation
U =14142.135623731 * sin((2*%3.14159*50*time) + 3.14159);
if Trap <= le-4 then
L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 + U;
C*(R2+Ron+Rmin)*der(x2)= x1*(Ron+Rmin) - x2;
else
L*der(x1l)= -x1*(R1+R2) - x2 + U;
C*der(x2)=x1;
end if;
end C20DymolaStateB_taskB_text;

165

DIFFERENT DIODE MODELS

model C20DymolaStateC_text_simple
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4;
constant Real Ron = 1E-4; constant Real L = 3.18E-3; constant Real C = 22.1E-9;
constant Real ids = 1e-6; constant Real VT = 0.04;
Real x1; Real x2; Real U; Real VC; Real IL;; Real VD; Real ID;
equation
U=14142.135623731 * sin((2%3.14159*50*time) + 3.14159);
L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 - U;
C*der(x2)= x1 - ids*(exp(((R2*C*der(x2))+x2)/VT)-1);
VD= (R2*C*der(x2)) + x2;
ID=x1 - (C*der(x2));
IL=-x1; VC= -x2;
end C20DymolaStateC_text_simple;

model C20DymolaStateC_text_simple_ exponentv2
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4;
constant Real Ron = 1E-4; constant Real L, = 3.18E-3; constant Real C = 22.1E-9;
constant Real ids = le-6; constant Real VT = 0.04; constant Real maxexp = 15; constant Real R
= le+8;
Real x1; Real x2; Real U; Real VC; Real ILi; Real VD; Real ID; Real CTR;
equation

U =14142.135623731 * sin((2%3.14159*50*time) + 3.14159);

L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 - U;

VD= (R2*C*der(x2)) + x2;

CTR = VD/VT,;

if CTR > maxexp then

C*der(x2)= x1 - ids*(exp(maxexp*(1+CTR-maxexp))-1) + (VD/R);

else

C*der(x2)= x1 - ids*(exp(CTR)-1) + (VD/R);

end if;
ID=x1 - (C*der(x2)); IL= -x1; VC= -x2;
end C20DymolaStateC_text_simple_exponentv2;

model C20DymolaStateC_text simple_exponentvZ_temp
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4;
constant Real Ron = 1E-4; constant Real L, = 3.18E-3; constant Real C = 22.1E-9;
constant Real ids = 1e-6; constant Real maxexp = 15; constant RealR = 1e+8;
Real x1; Real x2; Real U; Real VC; Real IL;; Real VD; Real ID; Real CTR; Real VT;
equation

U =14142.135623731 * sin((2%3.14159*50*time) + 3.14159);

L*der(x1)=-x1*R1 -R2*C*der(x2) - x2 - U;

VD= (R2*C*der(x2)) + x2;

VT= ((80 * sin(2*3.14159*100*time))+310)*8.61734681e-5;

CTR = VD/VT,

if CTR > maxexp then

C*der(x2)= x1 - ids*(exp(maxexp*(1+CTR-maxexp))-1) + (VD/R);

else

C*der(x2)= x1 - ids*(exp(CTR)-1) + (VD/R);

end if;
ID=x1 - (C*der(x2)); IL= -x1; VC= -x2;
end C20DymolaStateC_text_simple_exponentv2_temp;

INFLUENCE OF SIMULATION ALGORITHMS
model C20DymolaStateB_subsystem3_text
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4;
constant Real Ron = 1E-4; constant Real L = 3.18E-3; constant Real C = 22.1E-9;
constant Real ids = le-6; constant Real VT = 0.04;
Real x1; Real x2; Real U; Real VC; Real IL;; Real VD; Real ID;
equation
U =14142.135623731 * sin((2%3.14159*50*time) + 3.14159);
VD= (R2*C*der(x2)) + x2;
L*der(x1)=-x1*R1 -VD - x2 - U;
C*der(x2)= x1 - ids*(exp(VD/VT)-1) - (VD/(Ron+Rmin));
ID=x1 - (C*der(x2)); IL= -x1; VC= -x2;
end C20DymolaStateB_subsystem3_text;

MOSILAB STATECHART

model C20MosilabSC_idealchart
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4;
constant Real Ron = 1E-4; constant Real L, = 3.18E-3; constant Real C = 22.1E-9;
event discrete Boolean sl (start=false), s2(start=false);
Real x1; Real x2; Real U; Real VC; Real IL;; Real VD; Real VDr; Real ID; Integer A;
equation
U= 14142.135623731 * sin ((2*3.14159*50*time) + 3.14159);
VDr= (R2*C*der(x2)) + x2;
sl = if VDr >= 0 then true else false;
s2 = if VDr < O then true else false;
if A<O then
L*der(x1)=-x1*R1 - VDr - U;
C*der(x2)= x1 - VDr*1e-5;
else
L*der(x1)= -x1*R1 - VDr*1e-5 - U;
C*der(x2)= x1 - VDr;
end if;
VD= x2-x1; ID=x1; IL= -x1; VC= -x2+x1;
statechart
state C20MosilabSC _idealchartSC extends State;
annotation(extent=[-103,103; 46,-46]);
State Statel annotation(extent=[-92,60; -79,56]);
State State2 annotation(extent=[-51,59; -38,55]);
State Initial (isInitial=true) annotation(extent=[-85,71; -83,69]);
transition Initial->Statel action
A=1;
end transition annotation(points=[-84,69; -84,60]);
transition State1->State2 event s2 action
A:=-1;
end transition annotation(points=[-79,56; -51,56]);
transition State2->Statel event sl action
A=1;
end transition annotation(points=[-51,57; -79,57]);
end C20MosilabSC_idealchartSC;
end C20MosilabSC_idealchart;

CLASSICAL SIMULATION
model C20MosilabStateB_TaskB_chart

166

167

constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4; constant Real Ron =

1E-4;

constant Real L = 3.18E-3; constant Real C = 22.1E-9; constant Real TRF = 5e-3;

event discrete Boolean sl (start=false), s2(start=false);
Real x1; Real x2; Real U; Real t_red; Real k; Real Trap; Integer A;
equation
t_red = mod(time, 1E-1);
k=((1e+8)-(le-4))/TRF;
algorithm
if

(0<=t_red) and (t_red<TRF) then

Trap:=(le-4) + k*t_red;

elseif
(TRF<=t_red) and (t_red<(8e-2)) then
Trap:=1e+8;
elseif

((Be-2)<=t_red) and (t_red<((5e-2)+TRF)) then
Trap:=(le+8) - k*(t_red - (5e-2));
elseif
((5e-2)+TRF<=t_red) and (t_red<(le-1)) then
Trap:=le-4;
else
Trap:=-5;
end if;
equation
U= 14142.135623731*sin((2*3.14159*50*time) + 3.14159);
sl = if Trap>1le-4 then true else false;
s2 = if Trap<=1e-4 then true else false;
if A> 0 then
L*der(x1)=-x1*R1 - R2*C*der(x2) - x2 + U;
C*(R2+Ron+Rmin)*der(x2)= x1*(Ron+Rmin) - x2;
else
L*der(x1l)=-x1*(R1+R2) - x2 + U;
C*der(x2)= x1;
end if;
statechart
state C20MosilabStateSC extends State;
annotation(extent=[-104,104; 44,-43)]);
State Statel annotation(extent=[-90,63; -77,59]);
State State2 annotation(extent=[-51,62; -38,58]);
State Initial (isInitial=true) annotation(extent=[-82,74; -80,72]);
transition Initial->Statel action
A:=-1;
end transition annotation(points=[-82,72; -82,63]);
transition State1->State2 event s2 action
A:=1;
end transition annotation(points=[-77,59; -51,59]);
transition State2->Statel event sl action
A:=-1;
end transition annotation(points=[-51,60; -77,60]);
end C20MosilabStateSC;
end C20MosilabStateB_TaskB_chart;

168

DIFFERENT DIODE MODELS

model C20MosilabStateC_simple_exponent_chart
constant Real R1=0.1; constant Real R2= 5; constant Real Rmin= 1E-4; constant Real Ron= 1E-
4;
constant Real L= 3.18E-3; constant Real C= 22.1E-9; constant Real ids= l1e-6; constant Real
VT=0.04;
constant Real maxexp= 15; constant Real R = le+8;
Real x1; Real x2; Real U; Real VC; Real IL;; Real VD; Real ID; Real CTR; Integer A;
event discrete Boolean sl (start=false), s2(start=false);
equation
U= 14142.135623731*sin((2*3.14159*50*time) + 3.14159);
VD= (R2*C*der(x2)) + x2;
L*der(x1)=-x1*R1 - VD - x2 - U;
CTR=VD/VT;
s2 = if CTR>maxexp then true else false;
s1 = if CTR<=maxexp then true else false;
if A>0 then
C*der(x2)= x1 - ids*(exp(maxexp*(1+CTR-maxexp))-1) + (VD/R);
else
C*der(x2)= x1 - ids*(exp(CTR)-1) + (VD/R);
end if;
ID=x1 - (C*der(x2)); IL= -x1; VC= -x2;
statechart
state C20MosilabStateSC extends State;
annotation(extent=[-104,104; 44,-43)]);
State Statel annotation(extent=[-90,63; -77,59]);
State State2 annotation(extent=[-51,62; -38,58]);
State Initial (isInitial=true) annotation(extent=[-82,74; -80,72]);
transition Initial->Statel action
A:=-1;
end transition annotation(points=[-82,72; -82,63]);
transition State1->State2 event s2 action
A:=1;
end transition annotation(points=[-77,59; -51,59]);
transition State2->Statel event sl action
A:=-1;
end transition annotation(points=[-51,60; -77,60]);
end C20MosilabStateSC;
end C20MosilabStateC_simple_exponent_chart;

model C20MosilabStateC_simple exponent_temp_chart

constant Real R1=0.1; constant Real R2= 5; constant Real Rmin= 1E-4; constant Real Ron= 1E-
4;

constant Real Li= 3.18E-3; constant Real C= 22.1E-9; constant Real ids= le-6;

constant Real maxexp= 15; constant Real R = le+8;

Real x1; Real x2; Real VT; Real U; Real VC; Real IL; Real VD; Real ID; Real CTR; Integer A;
event discrete Boolean sl (start=false), s2(start=false);

equation

U= 14142.135623731*sin((2*3.14159*50*time) + 3.14159);

VD= (R2*C*der(x2)) + x2;

L*der(x1)=-x1*R1 - VD - x2 - U;

VT= ((30 * sin(2*3.14159*%100*time))+310)*8.61734681e-5;

CTR= VD/VT,;

s2 = if CTR>maxexp then true else false;

169

sl = if CTR<=maxexp then true else false;

if A>0 then

C*der(x2)= x1 - ids*(exp(maxexp*(1+CTR-maxexp))-1) + (VD/R);

else

C*der(x2)= x1 - ids*(exp(CTR)-1) + (VD/R);

end if;

ID= x1 - (C*der(x2)); IL= -x1; VC= -x2;

statechart

state C20MosilabStateSC extends State;
annotation(extent=[-104,104; 44,-43]);
State Statel annotation(extent=[-90,63; -77,59]);
State State2 annotation(extent=[-51,62; -38,58]);
State Initial (isInitial=true) annotation(extent=[-82,74; -80,72]);
transition Initial->Statel action
A:=-1;
end transition annotation(points=[-82,72; -82,63]);
transition Statel->State2 event s2 action
A:=1;
end transition annotation(points=[-77,59; -51,59]);
transition State2->Statel event sl action
A:=-1;
end transition annotation(points=[-51,60; -77,60]);
end C20MosilabStateSC;
end C20MosilabStateC_simple_exponent_temp_chart;

	2.4.1 Architecture of Dymola

