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Abstract 
 

Before a new product is launched to the market, a company have to test the 
product and make sure that the product is ready and presentable, especially 
if the product is a problem solving system, such as control system, 
automated system or self-learning system. Testing is a highly cost consuming 
yet unavoidable activity. Therefore to reduce cost of production, company 
will use methods like simulation to test their product. 
There are so many simulation softwares in the market which offers different 
abilities and advantages. The various choices has makes it even more 
difficult for end-users (company) to choose which one is more suitable and 
useful for the company. On this thesis Three “comparison problem” based 
on electrotechnic will be compared each other by using four simulations 
software (Matlab/Simulink, Dymola, Mosilab and SimulationX), with different 
approaches to model of the system. 
The method used for this research is a literature study to have a deeper 
understanding about the behaviour and algorithm of the code from 4 
different simulation softwares, the design model of three comparison 
problems and simulates these models to find the most suitable plot result. 

After a thorough research of these three comparison problems, conclusion 
can be made as follow:  

- Matlab is the only simulation software which able to simulate all 
calculation of matrix. 

- Stateflow, stategraph and statechart which can only model the 
equation with switching state, the harder the equation is, the 
longer time required to simulate the equation. 

- Dymola has the most variation type of modelling that needed in 
this thesis, the fastest time simulation is by dymola electrical 
model to simulate task d in comparison 3 = 0,015s,  

- SimulationX took the longest time in simulating task diode C in 
comparison 20 = 1307,6718s, Type of designer block in 
simulationX is very useful feature for expert user in defining their 
code in new element type 

- Below are the simulation timing ranking from fastest to slowest 
type of modelling: 

a.  Textual mode 
b.  Electrical model 
c.  Hybrid model 
d.  Stateflow/stategraph/statechart model 
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1 

1.INTRODUCTION 

1.1 Background 

Before a new product is launched to the market, a company have to test the 

product and make sure that the product is ready and presentable, especially 

if the product is a problem solving system, such as control system, 

automated system or self-learning system. Testing is a highly cost consuming 

yet unavoidable activity. Therefore to reduce cost of production, company 

will use methods like simulation to test their product. 

Simulation is an imitation of some real thing, state of affairs, or process[1]. 

The act of simulating something generally entails representing certain key 

characteristics or behaviours of a selected physical or abstract system. 

Simulation is used in many contexts, including the modeling of natural 

systems or human systems in order to gain insight into their functioning. 

Other contexts include simulation of technology for performance 

optimization, safety engineering, testing, training and education. Simulation 

proves also cost effective, reducing the cost of the production. One of 

simulation that common used is computer simulation. 

A computer simulation, a computer model or a computational model is a 

computer program, or network of computers, that attempts to simulate an 

abstract model of a particular system[2]. Computer simulations have become 

a useful part of mathematical modelling of many natural systems in physics 

(computational physics), chemistry and biology, human systems in 

economics, psychology, and social science and in the process of 

engineering new technology, to gain insight into the operation of those 

systems, or to observe their behavior.  

There are so many simulation softwares in the market which offers different 

abilities and advantages. The various choices has makes it even more 

difficult for end-users (company) to choose which one is more suitable and 

useful for the company. On this thesis Three “comparison problem” based 

on electrotechnic will be compared each other by using four simulations 

http://en.wikipedia.org/wiki/Scientific_modeling
http://en.wikipedia.org/wiki/Technology
http://en.wikipedia.org/wiki/Safety_engineering
http://en.wikipedia.org/wiki/Experiment
http://en.wikipedia.org/wiki/Training
http://en.wikipedia.org/wiki/Education
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Simulation
http://en.wikipedia.org/wiki/Model_%28abstract%29
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Computational_physics
http://en.wikipedia.org/wiki/Chemistry
http://en.wikipedia.org/wiki/Biology
http://en.wikipedia.org/wiki/Economics
http://en.wikipedia.org/wiki/Psychology
http://en.wikipedia.org/wiki/Social_science
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Technology
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software (Matlab/Simulink, Dymola, Mosilab and SimulationX), with different 

approaches to model of the system. 

 

1.2 Problem’s Formulation 

Based on the problem at hand, this thesis will focus on problems as follow: 

- Designing and building model using 4 simulation softwares 

(Matlab/Simulink, Dymola, Mosilab, SimulationX) with different 

approaches for 3 “comparisons problem” based on electrotechnic 

method. 

- Provide comparison, analysis and conclusion from the above 4 

simulation softwares in search for a better solutions based on the 

results. 

1.3 Concluded Area 

Concluded area for designing and building the model of this thesis are as 

follow: 

- Only 3 comparison problems are being used for this thesis and they are 

all based on electrotechnic with non-linear problem. They are 

comparison 3, comparison 5 and comparison 20. 

- Only 4 Simulation Softwares are being used: Matlab/Simulink, Dymola, 

Mosilab and SimulationX. 

- Only hybrid model, textual mode, electrical model and statechart 

approach are being used for problem solving. 

- System Platform is Windows XP for Matlab/Simulink, Dymola and 

SimulationX software and Linux UBUNTU for Mosilab. 

- The result of the research will be tested on PC Intel Pentium D,  2 x 2,66 

GHz and Dell notebook Latitude D630 Intel Centrino Duo. 

- Matlab/Simulink version 7.4 R2007a, Dymola version 6.0b, Mosilab 

version 3.1, Simulation X version 2.0 are being used. 

- All the feature of Matlab/Simulink, Dymola, Mosilab and Simulation will 

not be discussed in details, only the features used in this thesis. 

 



1.4 Objective 

The objectives of this thesis are: 

- To have better understanding on the characteristics, weaknesses and 

strengths in each of the 4 simulation softwares analized in this thesis, 

within the concluded area. 

- As a future reference for academical purpose. 

 

1.5 Research Plan 

1.5.1 Study Literature 

Literature studies will be done to have better understanding on how to use, 

explore and practice 4 simulation softwares used in the thesis, and to 

understand the approaching methods to find the solution of the problem. 

1.5.2 Design and Solutions  

Step by step design of the model with different approach methods and 

simulation softwares, simulate the model to get the solutions. Compare all 

solutions based on the same approach with different simulation software. 

 

1.6 Writing Method 

The writing method and the abstract of each chapter are: 

- CHAPTER 1 INTRODUCTION 

   Explanation about the background and formulation of the problem, 

concluded area, objective and research plan which will be 

implemented. 

- CHAPTER II THEORY 

   Brief discussion about the simulation software, software language, 

functions and methods that being used to solve the problem. 

- CHAPTER III Comparison 3: Generalized Class-E Amplifier 

   Detail discussion about the comparison 3 problem, model design 

planning and model solution. 
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- CHAPTER IV Comparison 5: Two State Model 

   Detail discussion about the comparison 5 problem, model design 

planning and model solution. 

- CHAPTER V Comparison 20: Electrical Model – Basics 

   Detail discussion about the comparison 5 problem, model design 

planning and model solution. 

- Chapter VI Comparison 

   Consist of comparison table and discuss advantage and disadvantage 

for each simulation software 

- CHAPTER VII CONCLUSION AND SUGGESTION 

   Final conclusion and suggestion to improve model development. 
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2. THEORY 

2.1 MATLAB 

MATLAB is a high-performance language for technical computing. It 

integrates computation, visualization, and programming in an easy-to-use 

environment where problems and solutions are expressed in familiar 

mathematical notation[3]. Typical uses includes: 

- Math and computation  

- Algorithm development  

- Data acquisition  

- Modeling, simulation, and prototyping  

- Data analysis, exploration, and visualization  

- Scientific and engineering graphics  

- Application development, including graphical user interface building  

MATLAB is an interactive system whose basic data element is an array that 

does not require dimensioning. This allows you to solve many technical 

computing problems, especially those with matrix and vector formulations, 

in a fraction of the time it would take to write a program in a scalar 

noninteractive language such as C or Fortran. 

The name MATLAB stands for matrix laboratory. MATLAB was originally 

written to provide easy access to matrix software developed by the LINPACK 

and EISPACK projects. MATLAB has evolved over the years with input from 

many users. In university environments, it is the standard instructional tool 

for introductory and advanced courses in mathematics, engineering, and 

science. In industry, MATLAB is the tool of choice for high-productivity 

research, development, and analysis. Screenshot of Matlab is shown in 

figure 2.1. 

 

2.1.1 The MATLAB System 

The MATLAB system consists of five main parts:  

1. Development Environment. 
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This is a set of tools and facilities that will help you to use MATLAB functions 

and files. Many of these tools are graphical user interfaces. It includes the 

MATLAB desktop and command Window, a command history, an editor and 

debugger, and browsers for viewing help, the workspace, files, and the 

search path. 

 

 
Figure 2.1 Screenshot of Matlab 

 

2. The MATLAB Mathematical Function Library.    

This is a vast collection of computational algorithms ranging from elementary 

functions, like sum, sine, cosine, and complex arithmetic, to more 

sophisticated functions such as matrix inverse, matrix eigenvalues, Bessel 

functions, and fast Fourier transforms.  

3. The MATLAB Language.    

This is a high-level matrix/array language with control flow statements, 

functions, data structures, input/output, and object-oriented programming 

features. It allows both "programming in the small" to rapidly create a quick 
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and dirty throwaway programs, and "programming in the large" to create 

large and complex application programs.  

4. Graphics.    

MATLAB has extensive facilities for displaying vectors and matrices as 

graphs, as well as annotating and printing these graphs. It includes high-

level functions for two-dimensional and three-dimensional data visualization, 

image processing, animation, and presentation graphics. It also includes 

low-level functions that allow you to fully customize the appearance of 

graphics as well as to build complete graphical user interfaces on your 

MATLAB applications.  

5. The MATLAB Application Program Interface (API).    

This is a library that allows you to write C and Fortran programs that interact 

with MATLAB. It includes facilities for calling routines from MATLAB 

(dynamic linking), calling MATLAB as a computational engine, and for 

reading and writing MAT-files 

 

2.1.2 ODE SOLVER 

2.1.2.1 ODE File 

Odefile is not a command or function. It is a help entry that describes how to 

create an M-file defining the system of equations to be solved. This definition 

is the first step in using any of the MATLAB ODE solvers. We can use the 

odefile M-file to define a system of differential equations in one of these 

forms 

y’ = f(t,y)    or    M(t,y)y’ = f(t,y)  

where: t is a scalar independent variable, typically representing time. 

y  is a vector of dependent variables. 

f  is a function of t and y returning a column vector the same length as 

y. 

M(t,y)  is a time-and-state-dependent mass matrix.  
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The ODE file must accept the arguments t and y, although it does not have to 

use them. By default, the ODE file must return a column vector the same 

length as y.  

 

2.1.2.2 Odeset  

Create or alter options structure for input to ordinary differential equation 

(ODE) solvers Syntax: 

 

options = odeset('name1',value1,'name2',value2,...) 

options = odeset(oldopts,'name1',value1,...) 

options = odeset(oldopts,newopts) 

 

odeset 

Description:  

The odeset function lets you adjust the integration parameters of the ODE 

solvers. options = odeset('name1',value1,'name2',value2,...) creates an 

integrator options structure in which the named properties have the 

specified values. Any unspecified properties have default values. It is 

sufficient to type only the leading characters that uniquely identify a 

property name. Case is ignored for property names.  

options  = odeset (oldopts,'name1',value1,...) alters an existing options 

structure oldopts. 

options = odeset (oldopts,newopts) alters an existing options 

structure oldopts by combining it with a new options structure 

newopts. Any new options not equal to the empty matrix overwrite 

corresponding options in oldopts.  

Odeset with no input arguments displays all property names as well as their 

possible and default values.  
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2.1.2.3 Initial Value ODE Problem Solvers 

These are the initial value problem solvers. The table 2.1 lists the kind of 

problem you can solve with each solver, and the method each solver uses. 

Table 2.1 List of Solver 

 

 

 

 

 

 

 

 

 

2.2 SIM

Simulink

analyze

referred

behavio

circuits,

mechan

Simulati

user cr

graphic

system's

simulate

a specif

 

2.2.1 S

Typicall

function

called s
Solver Solves These Kinds of Problems Method 

ode45 Nonstiff differential equations Runge-Kutta 

ode23 Nonstiff differential equations Runge-Kutta 

ode113 Nonstiff differential equations Adams 

ode15s Stiff differential equations and DAEs NDFs (BDFs) 

ode23s Stiff differential equations Rosenbrock 

ode23t Moderately stiff differential equations and DAEs Trapezoidal rule 

ode23tb Stiff differential equations TR-BDF2 

ode15i Fully implicit differential equations BDFs 
ULINK 

 is a software package that enables us to model, simulate, and 

 systems whose outputs change over time. Such systems are often 

 to as dynamic systems. Simulink can be used to explore the 

r of a wide range of real-world dynamic systems, including electrical 

 shock absorbers, braking systems, and many other electrical, 

ical, and thermodynamic systems[4]. 

ng a dynamic system is a two-step process with Simulink. First, a 

eates a block diagram, using the Simulink model editor, which 

ally depicts time-dependent mathematical relationships among the 

 inputs, states, and outputs. The user then commands Simulink to 

 the system represented by the model from a specified start time to 

ied stop time. The screenshot of Simulink is shown in figure 2.2. 

tates 

y the current values of some system, and hence model, outputs are 

s of the previous values of temporal variables. Such variables are 

tates. Computing a model's outputs from a block diagram hence 
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entails saving the value of states at the current time step for use in computing 

the outputs at a subsequent time step. Simulink performs this task during 

simulation for models that define states.  

 

 
Figure 2.2 Screenshot of Simulink 

 

Two types of states that can occur in a Simulink model: discrete and 

continuous states. A continuous state changes continuously. Examples of 

continuous states are the position and speed of a car. A discrete state is an 

approximation of a continuous state where the state is updated (recomputed) 

using finite (periodic or aperiodic) inte  

ould be the position of a car shown on a digital odometer where it is 

posed to continuous state. In the limit, as the 

rvals. An example of a discrete state

w

updated every second as op

discrete state time interval approaches zero, a discrete state becomes 

equivalent to a continuous state.  

Blocks implicitly define a model's states. In particular, a block that needs 

some or all of its previous outputs to compute its current outputs implicitly 



defines a set of states that need to be saved between time steps. Such a 

block is said to have states is shown in figure 2.3.  

 
Figure 2.3 Block have states 

 

2.2.1.1 Continuous States 

Computing a continuous state entails knowing its rate of change, or 

derivative. Since the rate of change of a continuous state typically itself 

changes continuously (i.e., is itself a state), computing the value of a 

continuous state at the current time step entails integration of its derivative 

from the start of a simulation. Thus modeling a continuous state entails 

representing the operation of integration and the process of computing the 

uous state at the current time step entails 

integrating its values from the start of the simulation. The accuracy of 

rn depends on the size of the intervals between 

time steps. In general, the smaller the time step, the more accurate the 
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state's derivative at each point in time. Simulink block diagrams use 

Integrator blocks to indicate integration and a chain of operator blocks 

connected to the integrator block to represent the method for computing the 

state's derivative. The chain of block's connected to the Integrator's is the 

graphical counterpart to an ordinary differential equation (ODE).  

In general, excluding simple dynamic systems, analytical methods do not 

exist for integrating the states of real-world dynamic systems represented by 

ordinary differential equations. Integrating the states requires the use of 

numerical methods called ODE solvers. These various methods trade 

computational accuracy for computational workload. Simulink comes with 

computerized implementations of the most common ODE integration 

methods and allows a user to determine which it uses to integrate states 

represented by Integrator blocks when simulating a system.  

Computing the value of a contin

numerical integration in tu



simulation. Some ODE solvers, called variable time step solvers, can 

automatically vary the size of the time step, based on the rate of change of 

the state, to achieve a specified level of accuracy over the course of a 

simulation. Simulink allows the user to specify the size of the time step in the 

case of fixed-step solvers or allow the solver to determine the step size in the 

case of variable-step solvers. To minimize the computation workload, the 

variable-step solver chooses the largest step size consistent with achieving 

an overall level of precision specified by the user for the most rapidly 

changing model state. This ensures that all model states are computed to the 

e blocks, 

s of blocks connected to the inputs of 

ver. The fixed-step discrete solver determines a fixed step 
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accuracy specified by the user.  

 

2.2.1.2 Discrete States 

Computing a discrete state requires knowing the relationship between the 

current time and its value at the time at which it previously changed value. 

Simulink refers to this relationship as the state's update function. A discrete 

state depends not only on its value at the previous time step but also on the 

values of a model's inputs. Modeling a discrete state thus entails modeling 

the state's dependency on the systems' inputs at the previous time step. 

Simulink block diagrams use specific types of blocks, called discret

to specify update functions and chain

the block's to model the state's dependency on system inputs.  

As with continuous states, discrete states set a constraint on the simulation 

time step size. Specifically a step size must be chosen that ensure that all the 

sample times of the model's states are hit. Simulink assigns this task to a 

component of the Simulink system called a discrete solver. Simulink 

provides two discrete solvers: a fixed-step discrete solver and a variable-

step discrete sol

size that hits all the sample times of all the model's discrete states, regardless 

of whether the states actually change value at the sample time hits. By 

contrast, the variable-step discrete solver varies the step size to ensure that 

sample time hits occur only at times when the states change value.  



2.2.1.3 Modeling Hybrid Systems 

A hybrid system is a system that has both discrete and continuous states 

Strictly speaking a hybrid model is identified as having continuous and 

iscrete sample times from which it follows that the model will have 

discrete states. Solving a model of such a system entails 

cal design and development tool that works wi

imulink. Stateflow is a suitable environment for modeling logic used to 

deled in Simulink.  

els the desired behavior. The screenshot of stateflow 

is shown in figure 2.4. 
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d

continuous and 

choosing a step size that satisfies both the precision constraint on the 

continuous state integration and the sample time hit constraint on the 

discrete states.  

Simulink meets this requirement by passing the next sample time hit as 

determined by the discrete solver as an additional constraint on the 

continuous solver. The continuous solver must choose a step size that 

advances the simulation up to but not beyond the time of the next sample 

time hit. The continuous solver can take a time step short of the next sample 

time hit to meet its accuracy constraint but it cannot take a step beyond the 

next sample time hit even if its accuracy constraint allows it to. 

 

2.3. Stateflow 

Stateflow is a graphi th 

S

control and supervise a physical plant mo

Stateflow integrates with its Simulink environment to model, simulate, and 

analyze your system. Stateflow lets you design and develop deterministic, 

supervisory control systems in a graphical environment. It visually models 

and simulates complex reactive control to provide clear, concise 

descriptions of complex system behavior using finite state machine theory, 

flow diagram notations, and state-transition diagrams all in the same 

diagram. Stateflow brings system specification and design closer together. It 

is easy to create designs, consider various scenarios, and iterate until the 

Stateflow diagram mod



2.3.1 Finite State M

tateflow is an example of a finite state machine. A finite state machine is a 

achine Concepts 

S

representation of an event-driven (reactive) system. In an event-driven 

system, the system makes a transition from one state (mode) to another 

prescribed state, provided that the condition defining the change is true. For 

example, you can use a state machine to represent a car's automatic 

transmission. The transmission has a number of operating states: park, 

reverse, neutral, drive, and low. As the driver shifts from one position to 

another the system makes a transition from one state to another, for example, 

from park to reverse. 

 

 
Figure 2.4 Screenshot of Stateflow 

 

Traditionally, designers used truth tables to represent relationships among 

the inputs, outputs, and states of a finite state machine. The resulting table 

describes the logic necessary to control the behavior of the system under 

study. Another approach to designing event-driven systems is to model the 

behavior of the system by describing it in terms of transitions among states. 

The state that is active is determined based on the occurrence of events 
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under certain conditions. State-transition diagrams and bubble diagrams are 

graphical representations based on this approach. 

 

 
Figure 2.5 Graphical objects in Stateflow 

phical Objects 

S

re

1. Event Objects 
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2.3.2 Stateflow Notations 

2.3.2.1 Nongra

tateflow defines event, data, and target objects that do not have graphical 

presentations in the Stateflow diagram editor. 



An event is a Stateflow object that can trigger a whole Stateflow chart or 

in its own workspace. 

3. Target Objects 

 executes a Stateflow model or a Simulink model 

 

hical Object 

us 

ling methodology based on object orientation and 

equa n s to a block 

diag nipulation. Other 

high h

g models.  

l composition.  

n - symbolic pre-processing.  

model components.  

 Open interface to other programs.  

• 3D Animation.  

• Real-time sim
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individual actions in a chart. Because Stateflow charts execute by reacting 

to events  

2. Data Objects 

A Stateflow chart stores and retrieves data that it uses to control its 

execution. Stateflow data resides 

A target is a program that

containing a Stateflow machine.  

2.3.2.2 Grap

The name of each graphical object in Stateflow is shown in figure 2.5 

 

2.4 Dymola 

Dymola - Dynamic Modeling Laboratory - is suitable for modeling of vario

kinds of physical systems[5]. It supports hierarchical model composition, 

libraries of truly reusable components, connectors and composite acasual 

connections. Model libraries are available in many engineering domains. 

Dymola uses a new mode

tio s[6]. The usual need for manual conversion of equation

ram is removed by the use of automatic formula ma

lig ts of Dymola are: 

• Handling of large, complex multi-engineerin

• Faster modeling by graphical mode

• Faster simulatio

• Open for user defined 

•

ulation.  



 
Figure 2.6 Architecture of Dymola 

 

 
Figure 2.7 Screenshot of Dymola 

 

e use 

17 

2.4.1 Architecture of Dymola  

The architecture of the Dymola program is shown in figure 2.6. Dymola has a 

powerful graphic editor for composing models. Dymola is based on th

of Modelica models stored on files. Dymola can also import other data and 

graphics files. Dymola contains a symbolic translator for Modelica equations 



generating C-code for simulation. The C-code can be exported to Simulink 

and hardware-in-the-loop platforms.  

Dymola has powerful experimentation, plotting and animation features. 

cripts can be used to manage experiments and to perform calculations. 

Automatic documentation generator is provided.  

 

.4.2 Basic Operations of Dymola 

ymola has two kinds of windows: Main window and Library window. The 

perates in one of two modes: Modeling and Simulation.  

n window is used to compose models and 

S

2

D

Main window o

The Modeling mode of the Mai

model components. The Simulation mode is used to make experiment on the 

model, plot results and animate the behavior. The Simulation mode also has 

a scripting subwindow for automation of experimentation and performing 

calculations. The screenshot of dymola is shown in figure 2.7 and simulation 

mode of dymola is shown in figure 2.8. 

 

 
Figure 2.8 Simulation Mode of Dymola 
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2.5 Mosilab 

2.5.1 MOSILAB Architecture 

The 

modelling process with the help of 

graph

Figure

definit

model

model

GNU g

repres ernel classes. 

GENSIM simulation tool MOSILAB (Modeling and Simulation 

Laboratory) includes the simulation kernel (consisting of a model compiler, 

a runtime system and a numerical solver framework) and an IDE (Interactive 

Development Environment)[7], the interface to the user of the simulation 

system. It supports him both in the 

ical UML and text editors and during the simulation experiment. 

 2.9 shows the data flow within the MOSILABtools: Beside experiment 

ions, the models also developed within the IDE are stored as MOSILA 

 classes. Together with the MOSILA standard library, these MOSILA 

s are compiled to C++ classes by the MOSILA compiler. Using the 

cc/g++ compiler, the executable simulator is built from these C++ 

entations and the simulator k

 
Figure 2.9 Data Flow within Mosilab 

 

2.5.2 MOSILAB Configurations 

MOSILAB can be configured in to act in three modes: 

a) The generated simulator is represented by a single, monolithic 

C/C++ application. This option has the smallest memory footprint and only 

few dependencies on the underlying platform, so it is most useful e.g. for 

embedded applications. However, the functionality of w.r.t. dynamic 

parameterization at runtime is limited. 
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b) The simulator is represented by a shared object file which can be 

dynamically linked to a main program which controls the simulation. 

MOSILAB uses the Python language and interpreter 

chanism for experiment 

 controlled in protocol-based, platformindependent manner, and it 

ccording to the structural variability of 

the model). This run-time model can be uired via introspection features of 

t  

o) experiment scripts are able to follow the structural changes over the 

mulation run. This way, if special reactions to model 

simulation experiment. In the 

modelling mode the user can choose between three graphical UMLH-editors 

20 

(http://www.python.org) as its central me

control. The simulator is loaded as an “extension” into the interpreter, 

and “experiment scripts”, written in Python, access the simulator API 

via a Python-level interface. 

c) The simulator acts as a service. In this mode, the simulator is linked 

with appropriate libraries to publish its API via standard TCP/IP-based 

protocols such as SOAP in a web or grid services framework (e.g. the 

upcoming release 4 of the Globus Toolkit). In this mode, the simulator can 

easily be

is easy to deploy multiple (and potentially large numbers of) “simulator 

service instances” in a coordinated way in a heterogeneous network or Grid, 

for instance to solve an optimization problem. Python-based experiment 

control support is available in this mode as well a (Python) client library is 

used to talk to thesimulator’s API over the network in this case. The simulator 

maintains a run-time representation of the model object hierarchy (as 

defined in the source and evolving a

25 

 inq

he simulator API, so (using the synchronisation features offered by this API,

to

entire course of a si

structure changes are needed, which cannot be formulated in the model 

itself due to their complexity, such reactions can easily be implemented in 

the experiment script. 

 

2.5.3 The MOSILAB Development Environment 

The MOSILAB Development Environment (MOSILAB-IDE) supports the user 

during the modelling process and the 



(class diagrams, collaboration diagrams and statecharts) and a text editor. 

While the graphical views give the user an intuitive overview about the 

structure and the logic of a complex model, the text editor offers the user 

features like syntax highlighting for implementing the MOSILA/Modelica 

models. 

In the experiment mode of the MOSILAB-IDE the user can define the root 

model for the simulation experiment, can parameterize model variables and 

can choose and configure a suitable numerical solver. Furthermore he can 

define a subset of model variables, which should be observed during the 

simulation experiment. The observed variables are the basis for different 

types of post-processing. Figure 2.10 shows a screenshot of the prototypical 

implementation of the MOSILAB-IDE. 

 
Figure 2.10 Screenshot of OSILAB-IDE 

 

2.6 SimulationX 

SimulationX is a standard software based on modelica language, for 

valuation of the interaction of all components of techni

tion and analyzing of physical effects 

 with ready-to-use model libraries for 1D mechanics, 3D multibody systems, 

ower transmission, hydraulics, pneumatics, thermodynamics, electrics, 

26 
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Prototypical Implementation of the M

cal systems. It is the 

universal CAE tool for modeling, simula

–

p



electrical drives, magnetics as well as controls – postprocessing included[8]. 

Figure 2.11 shows SimulationX screenshot. 

SimulationX supports the use of the most convenient way of modeling in each 

of the engineering domains - signal blocks in the control domain, circuit 

diagrams in the electronic, magnetic and fluid domains, functional sketches 

in 1D mechanics, and 3D geometrical structures with visualization and 

hanics. animation in 3D mec

 

 
Figure 2.11 Screenshot of SimulationX. 

The all-domain ITI modeling philosophy opens up new application fields for 

real system simulation and analysis including:  

• Linear and Rotary Mechanics 

• Multibodies  

• Hydraulics  

• Pneumatics  

• Controls  

• Electronics  

 

• Magnetics  

• Power Transmission  

• Electromechanical  

• Thermics  

• Thermal Fluid  

• Thermodynamics  
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2.6.1. Library Bar 

The library bar offers access to the installed element types. For clarity, the 

element types are subdivided into libraries (groups). In the tree view, 

element types and libraries are shown according to their hierarchy. The 

library view offers access to the element types over symbols that are 

administered in folders. 

The model view serves for the graphical 

 

2.6.2 Model View 

representation of the structure and 

the modification of the simulation model. Elements and connections are the 

components of a simulation model. Elements have connectors that can link 

together via a connection. Connections can be branched arbitrarily; i.e. they 

can link more than two connectors. 

There are different types of connectors, such as mechanical (linear and 

rotary), hydraulic, and electrical connectors, as well as signal inputs and 

outputs. Only connectors of the same type can be connected to each other. 

Each connector posses  with respect to the 

se names can be made visible via "Pin Labels" 

ses an unambiguous name

corresponding element. The

(menu "View"). Figure 2.12 shows components in SimulationX. 

 

 
Figure 2.12 Components in SimulationX. 



3. Comparison 3: Generalized Class-E Amplifier 

s introduced by N.O. Sokal and A.D. 

 R.E. Zulinski[10]. They use the following equivalent circuit of a 

generalized class-E amplifier as a test example for a procedure to evaluate 

steady means of MATLAB. Figure 3.1 shows 

Class 

3.1 Definition 

The basic class-E power amplifier wa

Sokal in their classic paper from 1975[9]. It is a switching-mode amplifier 

that operates with zero voltage and zero slope across the switch at switch 

turn-off. The actual numerical example is taken from J.C. Mandojana, K.J. 

Herman and

 state boundary conditions by 

E Amplifier 

 
Figure 3.1 Class-E Amplifier 

The comp

VDC = 5 volt, L1 = 79.9E-6 henry, C2 = 17

C4 = 9.66E

 

The time dependent resistor R(t) models

with an ON-resistance of 0.05 ohm and 

extreme ON-resistance of value zer  a 

pathological system

capacitor with a certain charge is sudd

DC voltage source w

shows func
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onent values are: 

.9E-9 farad, L3 = 232.0E-6 henry,  

-9 farad and RL = 52.4 ohm.  

 the active device acting as a switch 

an OFF-resistance of 5.0E+6 ohm. A

o ohm will of course result in

n 

 i.e. the old story of what happens when an ideal 

enly short circuited. Furthermore the 

ill be short circuited through the ideal coil L1. Figure 3.2 

tion of time R(t). 



 
Figure 3.2 Function of time R(t) 

The duty ratio is 50%  10E-6 seco 00 kHz). The 

rise/fall time is TRF = 1E-15 seconds.  

The equations describing the circuit may be the state-equations where 

inductor currents and capacito  variables. By 

off voltage and current laws we get the following differential 

d

 = VC2 (the 

volta  

Note quations demands a topological 

analysis of the circuit excluding some inductor currents and capacitor 

volta  loop of N 

capacitors then only N-1 of these may be given an arbitrary initial charge).  

hould be performed:  

the eigenvalues of the system in the ON-period: 

F-period: R(t)=5E+6 ohm.  

r the time interval [0, 100E-6] sec 

 initial state. Time curves of the state 

the current in the switch resistor IR(t) = x2/R(t) and the 

ltage VL = x3*RL are wanted.  
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. The period is nds (frequency 1

r voltages are chosen as system

using the Kirchh

equations:  

L1*dx1/dt = - x2 + VDC 

C2*dx2/ t = + x1 - x2/R(t) - x3 

L3*dx3/dt = + x2 - RL*x3 - x4 

C4*dx4/dt = + x3  

where the variables are as follows: x1 = IL1 (the current of L1), x2

ge of C2), x3 = IL3 (the current of L3) and x4 = VC4 (the voltage of C4).

 that normally the setup of state e

ges as candidates for system variables (e.g if there is a

The following tasks s

a. Calculation of 

R(t)=0.05 ohm and in the OF

b. Simulation of the system ove

with the zero-solution as

variables, 

output vo



c. A parameter variation study over the time interval [0, 9E-6] sec 

olution equal to the final solution at 100E-6 sec from task 

(b). The rise/fall time TRF should be varied through the values: 1E-15, 

1, 1E-9, 1E-7 sec. The phase plane curves of dx3/dt = VL3 as a 

age difference V2-V3 as a function of the 

3.2 

Bloc

The odel consist of only 2 block diagram: Time dependent 

gure 3.3 shows block diagram for 

comparison 3. 

 

 

 

 

ock Diagram 

.2.1 Matlab 

 time dependent resistor matrix A = A(R(t)). The 

resis n are built by matlab function-typ

mented as a continuous 

fu System Matrix 
global VDC L1 C2 L3 C4 RL TRF 
A
0 1/
e
 

with initial s

1E-1

function of x3 = IL3 i.e the volt

current IL3 are wanted. Time curves of the current in the switch 

resistor IR(t) = x2/R(t) and the output voltage VL = x3*RL are wanted.  

 

Design and Solutions 

k Diagram 

design of this m

Resistor and Differential Equation. Fi

TIME 
DEPENDENT 

R RESISTO
DIFFERENTIAL 

EQUATION 
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Figure 3.3 Bl for Comparison 3 

3

Design of Model  

For design model, using differential equation in state space form dx/dt = 

A*x, x R3, A R3*3, with

tivity R(t) and the differential equatio e 

m-files. The time-dependent resistivity R(t) was imple

function. In the following these m-file models (A.m, R.m, deq.m) 

nction Aout=A(t)                                                 %

out=[0 -1/L1 0 0; 1/C2 -1/(C2*R(t)) -1/C2 0;  
L3 -RL/L3 -1/L3; 0 0 1/C4 0]; 

nd 

function R_out = R(t)                                             %Time dependent Resistor 
global TRF 
TRF=1e-15;  
k=((5e+6)-(5e-2))/TRF; 



t_red=mod(t, (10e-6)); 
if(0<=t_red)&(t_red<TRF)  
    R_out=(5e-2)+k*t_red; 
elseif(TRF<=t_red)&(t_red<(5e-6))  
    R_out=5e+6; 
elseif((5e-6)<=t_red)&(t_red<((5e-6)+TRF)) 
    R_out=(5e+6)-k*(t_red-(5e-6)); 
elseif((5e-6)+TRF<=t_red)&(t_red<(10e-6)) 
    R_out=5e-2; 
else 
    R_out=-5; 
end 
function dx=deq(t,x)     %Differential equation 
global VDC L1 C2 L3 C4 RL TRF 
b=[VDC/L1; 0; 0; 0]; 
dx=(A(t)*x)+b; 
end 

 

Solutions 

Ta

Using Matlab built function  the eigenvalue’s matrix of 

 and when R(t) is off = 5e+6 ohm. The 

TRF= 1e-15; L1= 79.9e-6; VDC= 5; C2= 17.9e-9; 

A(TRF)) 
(A(0)) 

It too

Table 3-1 Eigenvalues of R(t) (matlab) 

 

 

 

ith the solv

[tsol,xso

here ode2

sk a Calculation of eigenvalues 

eig() to determined

the system when R(t) is on = 0.05 ohm

result of eigenvalues is shown in Table 3-1. 

global VDC L1 C2 L3 C4 RL TRF 

L3= 232e-6; C4= 9.66e-9; RL= 52.4; 
R0ff= eig(
ROn= eig 

k 0,101523s to simulate the task a  

27 

 

 

 

Task b Sim

To simulate

w

W

alues R(t) OFF Eigenvalues R(t) ON Eigenv

-54708 +1.0408e+6i -1.1173e+9 

-54708 -1.0408e+6i -625.78 

-58228 +5.3275e+5i -1.1304e+5 +6.5835e+5i 

-58228 -5.3275e+5i -1.1304e+5 -6.5835e+5i 
unction ode23s (odesolver) 

er form:  

l]=ode23s('deq',[0 100e-6],[0;0;0;0]); 

3s = ode solver matlab built in function  

ulation of the system 

 the system, using matlab built in f



 deq = differential equation of the model in form of m-files 

[0 100e.6] = simulation time interval 

[0;0;0;0] = Initial condition of the model 

tsol = time solutions of the model 

xsol = variable value solutions of the model 

he result for variable current switch resistor IR(t) and output voltage VL is 

hown in figure 3.4. It took 4,344246s to simulate the task b. 

 

 

 

 

T

s

 
Figure 3.4 The result for variable current switch resistor IR(t) and output 

voltage VL(matlab) 

 Variation Study 

l solution given by task b. The time 

inte  Also using the matlab built in function ode23s in the 

sol

('deq',[0 9e-6],[0.26144;0.010869;0.044044;-14.475]); 
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Task c Parameter

The parameter of TRF is varied between 1e-15s, 1e-11s, 1e-9s, 1e-7s. Initia

state for the task c is equal to the fina

l 

rval is 0…9e-6s.

ver form: 

 [tsol,xsol]=ode23s
x1=xsol(:,1); 
x2=xsol(:,2); 
x3=xsol(:,3); 
x4=xsol(:,4); 
VL= x3*RL; 
D3= (1/L3)*((x2-VL)-x4); 



The phase plane curves dx3/dt=VL3 as a function of x3 = IL3 is shown in 

figure 3.5. It took 1.075 s to simulate task c. The four simulations will be 

 on PC Intel Pentium D,  2 x 2,66 GHz. 

 

 

 

 

 

 

 

 

Figure 3.5 The phase plane curves dx3/dt=VL3 as a function of x3 = IL3 for 

TRF(matlab): 

el 

  

he time dependent resistor is using block clock as a input and built by 

block embedded Matlab function R(t):  

executed separately 

For the complete calculation and simulation, using Matlab/Simulink version 

7.4 R2007a

 

 

 

 

 

 

 

 

 

 

 
(a) 

 
(b) 

  
(d) 
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(c) 

(a). 1e-15s     (b). 1e-11s     (c) 1e-9s     (d) 1e-7s 

 

3.2.2 Simulink 

3.2.2.1 Hybrid Mod

Design of Model

T



function R_out = R(t) 
persistent TRF 
TRF=1e-15;  
k=((5e+6)-(5e-2))/TRF; 
t_red=mod(t, (10e-6)); 
if(0<=t_red)&&(t_red<TRF) 
 R_out=(5e-2)+k*t_red; 
elseif(TRF<=t_red)&&(t_red<(5e-6))  
    R_out=5e+6; 
elseif((5e-6)<=t_red)&&(t_red<((5e-6)+TRF)) 
    R_out=(5e+6)-k*(t_red-(5e-6)); 
elseif((5e-6)+TRF<=t_red)&&(t_red<(10e-6)) 
    R_out=5e-2; 
else 
    R_out=-5; 
end 

block integrator, add/subtract, gain, 

user defined block and Mux. Figure 3.6 shows the model of the system using 

i

The differential equation part is built by 

S mulink. 

 
Figure 3.6 Model of the system using Simulink 

of the system 

To simulate the system, using variable step as a time step, 0 …100e-6s as 

simulation time interval and ode23 (Bogacki-Shampine) as the solver. Under 

30 

Solutions 

Task a Calculation of eigenvalues 

Because there is no special function in simulink to calculate the eigenvalue. 

Therefore this task can’t be done by simulink.  

Task b Simulation 



the intial state zero, the result for variable current switch resistor IR(t) and 

output voltage VL is shown in figure 3.7. It took 4s to simulate the task b. 

 
Figure 3.7 The result for variable current switch resistor IR(t) and output 

voltage VL(simulink) 

Figure 3  IL3 for 

(a). 1e-15s     (b). 1e-11s     (c) 1e-9s     (d) 1e-7s 

Task c Parameter Variation Study 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
.8 The phase plane curves dx3/dt=VL3 as a function of x3 =

TRF (simulink): 

  
(a) (b) 

 
(d) 
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(c) 



The parameter of TRF is varied 1e-15s, 1e-11s, 1e-9s, 1e-7s. Initial state for 

the t

 the complete calculation and simulation, using Matlab/Simulink version 

7.4 R2007a on PC Intel Pentium D,  2 x 2,66 GHz. 

 

3.2.2.2 Stateflow 

Design of Model  

The model has 3 parts: controller, time dependent resistor and differential 

equation. The time dependent resistor has also 2 parts for state off and on, 

using block clock as an input and built by block embedded Matlab function 

Roff(t) and Ron(t):  

function R_out = Roff(t) 
persistent TRF 
TRF=1e-15;  
k=((5e+6)-(5e-2))/TRF; 
t_red=mod(t, (10e-6)); 

elseif(TRF<=t_red)&&(
    R_out=5e+6; 
else 
    R_out=5e-2; 

TRF=1e-15;  

else 

Part controller using stateflow mode to control time dependent resistor 

tate off and when is state on with outpul signal SGN. Figure 
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ask c is equal to the final solution is given by task b. The time interval is 

0…9e-6s.  As the result, the phase plane curves dx3/dt=VL3 as a function of 

x3 = IL3 is shown in figure 3.8. It took 9,5s to simulate task c. The four 

simulations will be executed separately. 

For

if(0<=t_red)&&(t_red<TRF)  
    R_out=(5e-2)+k*t_red; 

t_red<(5e-6))  

end 
 

function R_out = Ron(t) 
persistent TRF 

k=((5e+6)-(5e-2))/TRF; 
t_red=mod(t, (10e-6)); 
if((5e-6)<=t_red)&&(t_red<((5e-6)+TRF)) 
    R_out=(5e+6)-k*(t_red-(5e-6)); 
elseif((5e-6)+TRF<=t_red)&&(t_red<(10e-6)) 
    R_out=5e-2; 

    R_out=5e+6; 
End 
 

block, when is s



3.9 shows Stateflow mode of the system. The differential equation part is built 

, add/subtract, gain, user defined block, switch and Mux. by block integrator

Figure 3.10 shows the model of the system using Stateflow mode. 

 
Figure 3.9 Stateflow mode of the system 

 
(a) 

 
(b) 

em

el    (
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Figure 3.10 Model of the syst  using Simulink (stateflow) 

(a)Main Mod b)Subsystem 



Solutions 

ulation of the system 

ariable step as a time step, 0 …100e-6s 

Task b Sim

To simulate the system, using v

as simulation time interval and ode23s (Stiff/Mod. Rosenbrock) as the solver. 

Under the intial state zero, the result for variable current switch resistor IR(t) 

and output voltage VL is shown in figure 3.11. It took 3s to simulate the task 

b. 

 

 
Figure 3.11 The result for variable current switch resistor IR(t) and output 

voltage VL (simulink stateflow) 

 

Task c Parameter Variation Study 

The parameter of TRF is varied between 1e-15s, 1e-11s, 1e-9s, 1e-7s. Initial 

state for the task c is equal from the final solution is given by task b. The time 

terval is 0…9e-6s.  As the result, the phase plane curves dx3/dt=VL3 as a 

nction of x3 = IL3 is shown in figure 3.8. It took 2s to simulate task c. The 

ur simulations will be executed separately. 

or the complete calculation and simulation, using Matlab/Simulink  version 

.4 R2007a on PC  Intel Pentium D,  2 x 2,66 GHz. 
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in

fu

fo

F

7



3.2.3. Dymola 

.2.3.1 Hybrid Model 

esign of Model  

he time dependent resistor is built by block Trapezoid source and shown in 

gure 3.12. The differential equation part is built by block integrator, 

dd/subtract, gain, division and constant. Figure 3.13 shows the model of the 

ng Dymola. 

3

D

T

fi

a

system usi

 
 

 

 

Figure 3.12 Trapezoid Source 

 

 
Figure 3

 
 

- Amplitude = 5e+6 
- Rising = 1e-15 
- Width  = 5e-6 

- Offset  = 5e-2 
- Falling = 1e-15 
- Period = 10e-6 
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.13 The Model of the system using Dymola 



Table 3-2 Eigenvalues of R(t) (dymola) 

 

 

 

 

 

 

Solutions 

Task a Calculation of eigenvalues 

To calculate the eigenvalues of the system when R(t) is on = 0,05 ohm and 

when R(t) is off = 5e+6 ohm by using the function “eigenValues” (included in 

Modelica standard library 2.2). It t f 

took 0,047s to simulate the task b. 

ook 0,5s to execute task a. The result o

eigenvalues is shown in Table 3-2. 

Task b Simulation of the system 

To simulate the system, using Dassl as an algorithm integration, 1000 as 

number of intervals, 0…100e-6s as simulation time interval and 1e-4 as a 

tolerance integration. Under the intial state zero, the result for variable 

current switch resistor IR(t) and output voltage VL is given by figure 3.14. It 

 
Figure 3.14 The result for variable current switch resistor IR(t) and output 

voltage VL(dymola) 

Eigenvalues R(t) OFF Eigenvalues R(t) ON 

-54697.1634644282 +1040801.10427323i -1117317558.64085 

-54697.1634644282 -1040801.10427323i -625.800550896034 

-58228.2500355719 +532753.338849395i -113038.779297539 +658348.699798618i 

-58228.2500355719 -532753.338849395i -113038.779297539 -658348.699798618i 
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Task c Parameter Variation Study 

The parameter of TRF is varied between 1e-15s, 1e-11s, 1e-9s, 1e-7s. Initial 

esult, The phase plane curves dx3/dt=VL3 as a 

function of x3 = IL3 is given by figure 3.15. It took 0,025s to simulate task c. 

 separately. 

alculation and simulation, using Dymola version 6.0b on 

/dt=VL3 as a function of x3 = IL3 

    (b). 1e-11s     (c) 1e-9s     (d) 1e-7s 

 

 

 

state for the task c is equal from the final solution is given by task b. The time 

interval is 0…9e-6s. As r

The four simulation executed

For the complete c

PC  Intel Pentium D,  2 x 2,66 GHz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 The phase plane curves dx3

(dymola) 

(a). 1e-15s 

 

  
(a) (b) 

  
(d) 
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(c) 



3.2.3.2 Stategraph Model 

ependent resistor is built by block triggered trapezoid 

and  figure 3.16. 

Design of Model  

The model has 3 parts: Controller, time dependent resistor and differential 

equation. The time d

shown by

 
 

 

Figure 3.16 Triggered Trapezoid 

 
Figure 3.17 Part Controller of the system (stategraph) 

 

 
Figure 3.18 The Model of the system using Dymola stategraph mode 

-15 
fset  = 5e-2 

- Falling = 1e-15 
- Amplitude = 5e+6 - Of
- Rising = 1e
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Part controller using stategraph mode to control time dependent resistor 

block, when state is off and when state is on. Controller is built by trapezoid 

ource, greater equal, less equal, initial step, step and transition block. 

igure 3.17 shows part controllerof the system. The differential equation pa

 built by block integrator, add/subtract, gain, division and constant. Figure 

odel of the system using Dymola stategraph mode 

 0…100e-6s as simulation time interval and 1e-4 as a 

tolerance integration. Under the intial state zero, the result for variable 

current switch resistor IR(t) and output voltage VL is given by figure 3.14. It 

took 0,063s to simulate the task b 

Task c Parameter Variation Study 

The parameter of TRF is varied between 1e-15s, 1e-11s, 1e-9s, 1e-7s. Initial 

state n is given by task b. The time 

interval is 0…9e-6s. As result, The phase plane curves dx3/dt=VL3 as a 

function of x3 = IL3 is show simulate task c. 

The four simulation executed separately. 

For all the calculation and simulation, using Dymola version 6.0b on PC  Intel 

Pentium D,  2 x 2,66 GHz. 

 

3.2.3.4. Electrical Model 

Design of Model  

The model built based on electrical model as given by figure 3.1. Time 

dependent resistor block is built by variable resistor and trapezoid source 

as input of variable resistor. Electrical model for comparison 3 is given by 

figure 3.19. 
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s

F rt 

is

3.18 shows the m

 

Solutions 

Task b Simulation of the system 

To simulate the system, using Dassl as an algorithm integration, 1000 as 

number of intervals,

 

 for the task c is equal from the final solutio

n in figure 3.15. It took 0,047s to 



Solutions 

Task b Simulation of the system 

To simulate the system, using Dassl as an algorithm integration, 1000 as 

number of intervals, 0…100e-6s as simulation time interval and 1e-4 as a 

tolerance integration. Under the intial state zero, the result for variable 

current switch resistor IR(t) and output voltage VL is given by figure 3.14. It 

took 0,047s to simulate the task b 

Task c Parameter Variation Study 

The parameter of TRF is varied between 1e-15s, 1e-11s, 1e-9s, 1e-7s. Initial 

state for the task c is equal from the final solution is given by task b. The time 

interval is 0…9e-6s. As result, The phase plane curves dx3/dt=VL3 as a 

fu . 

The four simulation executed

alculation and simulation, using Dymola version 6.0b on PC  Intel 

nction of x3 = IL3 is shown in figure 3.15. It took 0,015s to simulate task c

 separately. 

For all the c

Pentium D,  2 x 2,66 GHz. 

 
Figure 3.19 Electrical Model for Comparison 3. 

n. For time dependent resistor using 

lgorithm as below: 
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3.2.3.4. Modelica Text Mode 

Design of Model 

For design of the model, using the exact differential equation with modelica 

function der(x) as dx/dt in the equatio

a



equation  
t_red = mod(time, 10E-6); 

)/TRF; 
algorithm  

6; 

6)+TRF)) then 
) - k*(t_red - (5e-6)); 

)) then 

Solu

Task

To simulate the system, using Dassl as an algorithm integration, 1000 as 

num me interval and 1e-4 as a 

tolerance integration. Under the intial state zero, the result for variable 

itch resistor IR(t) and output voltage VL is given by figure 3.14. It 

erval is 0…9e-6s. As result, The phase plane curves dx3/dt=VL3 as a 

y. 

or all the calculation and simulation, using Dymola version 6.0b on PC  Intel 

Hz. 
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k=((5e+6)-(5e-2)

if  
  (0<=t_red) and (t_red<TRF) then 
    Rt:=(5e-2) + k*t_red; 
elseif  
      (TRF<=t_red)  and (t_red<(5e-6)) then 
    Rt:=5e+
elseif  
      ((5e-6)<=t_red) and (t_red<((5e-
    Rt:=(5e+6
elseif  
      ((5e-6)+TRF<=t_red) and (t_red<(10e-6
    Rt:=5e-2; 
else 
    Rt:=-5; 
end if; 

 

tions 

 b Simulation of the system 

ber of intervals, 0…100e-6s as simulation ti

current sw

took 0,047s to simulate the task b 

 

Task c Parameter Variation Study 

The parameter of TRF is varied between 1e-15s, 1e-11s, 1e-9s, 1e-7s. Initial 

state for the task c is equal from the final solution is given by task b. The time 

int

function of x3 = IL3 is shown in figure 3.15. It took 0,031s to simulate task c. 

The four simulation executed separatel

F

Pentium D,  2 x 2,66 G

 

 



3.2.4 Mosilab 

3.2.4.1. Modelica Text Mode 

Design of Model 

For design of the model, using the exact differential equation with modelica 

function der(x) as dx/dt in the equation. For time dependent resistor using 

algorithm as below: 

t_ ); 
-(5e-2))/TRF; 

d) and (t_red<TRF) then 

t_red)  and (t_red<(5e-6)) then 

6)<=t_red) and (t_red<((5e-6)+TRF)) then 
6) - k*(t_red - (5e-6)); 

    ((5e-6)+TRF<=t_red) and (t_red<(10e-6)) then 
; 

nd if; 

 

equation  
red = mod(time, 10E-6

k=((5e+6)
algorithm  
if  
  (0<=t_re
    Rt:=(5e-2) + k*t_red; 
elseif  
      (TRF<=
    Rt:=5e+6; 
elseif  
      ((5e-
    Rt:=(5e+
elseif  
  
    Rt:=5e-2
else 
    Rt:=-5; 
e

 
 

Figure 3.20 The result for variable curr

42 

ent switch resistor IR(t) and output 

voltage VL(mosilab) 



Solutions 

ask a Calculation of eigenvalues  

To calculate the eigenvalues of the system when R(t) is on = 0,05 ohm and 

when R(t) is off = 5e+6 ohm can’t be done by mosilab, because Mosilab 

didn’t have “eigenValues” function in their modelica library. 

 

Task b Simulation of the system 

To simulate the system, using Dassl as an algorithm integration, 1e-10 as min 

stepsize, 1e-7 as max stepsize and 0…100e-6s as simulation time interval. 

Under the intial state zero, the result for variable current switch resistor IR(t) 

and output voltage VL is given by figure 3.20. It took 1,3s to simulate the task 

b 

Ta

This task can’t be done b ab didn’t have plotArray 

nction in their core system. 

or all the calculation and simulation, using Mosilab version 3.1 on Notebook 

ell Latitude D630 Intel Centrino Duo. 

.2.4.2 StateChart 

esign of Model 

or design of the model, using the exact differential equation with modelica 

nction der(x) x/dt in the eq ation. For time depend resistor using

lgorithm the same as previous. The code for statechart is written below: 

equation 
s1 = if Rt>=5e+6 then true else false; 
s2 = if Rt<=5e-2 then true else false; 
statechart  
    state C3MosilabStateSC extends State;  
        annotation(extent=[-104,104; 44,-43]); 
        State State1 annotation(extent=[-90,63; -77,59]); 
        State State2 annotation(extent=[-51,62; -38,58]); 
        State Initial (isInitial=true) annotation(extent=[-82,74; -80,72]); 
        transition Initial->State1 action 
        Rs:=5e+6
        end transition annotation(points=[-82,72; -82,63]); 
        transition State1->State2 event s2 action  
        Rs:= 5e-2; 
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T

sk c Parameter Variation Study 

y mosilab because mosil

fu

F

D

 

3

D

F

fu as d u ent  

a

; 



        end transition annotation(points=[-77,59; -51,59]); 
        transition State2->State1 event s1 action 
        Rs:= 5e

60; -77,60]); 

me interval. 

Under the intial state zero, the result f le current switch resistor IR(t) 

re 3.20. It took 85s to simulate the task 

he differential equation part is built by block integrator, add/subtract, gain, 

ignal generator(as constant).The time dependent 

 type designer block using modelica code. The model of 

(t_red<(5e-6)) then 
; 

red) and (t_red<((5e-6)+TRF)) then 
-6)); 

(10e-6)) then 
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+6; 
        end transition annotation(points=[-51,
    end C3MosilabStateSC;   
 

Solutions 

Task b Simulation of the system 

To simulate the system, using Dassl as an algorithm integration, 1e-12 as min 

stepsize, 1e-9 as max stepsize and 0…100e-6s as simulation ti

or variab

and output voltage VL is given by figu

b 

For all the calculation and simulation, using Mosilab version 3.1 on Notebook 

Dell Latitude D630 Intel Centrino Duo. 

 

3.2.5 SimulationX 

3.2.5.1 Hybrid Model  

Design of Model 

T

function (as division) and s

resistor is built by

the system was shown by figure 3.21. The code for time dependent resistor 

was written below: 

algorithm 
if  
  (0<=t_red) and (t_red<TRF) then 

Rt:=(5e-2) + k*t_red; 
 elseif  
 (TRF<=t_red)  and 
 Rt:=5e+6
 elseif  
 ((5e-6)<=t_
 Rt:=(5e+6) - k*(t_red - (5e
 elseif  
 ((5e-6)+TRF<=t_red) and (t_red<
 Rt:=5e-2; 
 else 
 Rt:=-5; 
 end if; 



 
equation 
 t_r  mod(time,ed =  10E-6); 

+6)-(5e-2))/TRF;  k=((5e
 

 
Figure 3.21. The model of the system (simulationX) 

Task a Calculation of eigenvalues  

To calculate the eigenvalues of the system when R(t) is on = 0,05 ohm and 

when R(t) is off = 5e+6 ohm by simulate the whole system first and then go to 

tab analysis(natural frequencies and mode shapes). In there simulationX 

automatically calculate the eigenvalue. It took 0,0723s to execute task a. The 

result of eigenvalues is in Table 3-3. 

Table 3-3 Eigenvalues of R(t) (simulationX) 

 

 

Solutions 

 

 

Eigenvalues R(t) OFF Eigenvalues R(t) ON 

-54708+1,0408E+5i -1,11731E+9 

-54708-1,0408E+5i -625,78 

-58228+5,3275E+5i -1,1304E+5 +6,5835E+5i 

-58228+5,3275E+5i -1,1304E+5 -6,5835E+5i 
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Figure 3.22 The result for variable current switch resistor IR(t) and output 

voltage VL(simulationX) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23 The phase plane curves dx3/dt=VL3 as a function of x3 = IL3 

(a). 1e-15s     (b). 1e-11s     (c) 1e-9s     (d) 1e-7s 

  
(a) (b) 

 
(d) 
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(c) 



Task b Simu

To sim

1e-15 

simula

zero, t

VL is g

Task c Parameter Variation Study 

The amet

the tas

is 0…9e-6s. As result, The phase plane curves dx3/dt=VL3 as a function of x3 

 IL3 is given by figure 3.23. It took 0,0858s to simulate task c. The four 

ly. 

lation and simulation, using SimulationX version 2.0 on PC  

ical Model 

esign of Model 

he design of model based on figure 3.1, using resistor, inductor, capacitor 

nd constant voltage as VDC. The time dependent resistor was built by type 

esigner us a code. The em was shown by figure 

.24. The code for time dependent resistor was written below: 

equation 
 v=pin1.v -pin2.v; 
 v=R*i; 
 pin1.i=i; 
 pin2.i=-i; 
 tred = mod(time, 10E-6); 
 k=((5e+6)-(5e-2))/TRF; 
 if (0<=tred) and (tred<TRF) then 
  R=(5e-2) + k*tred; 
 elseif (TRF<=tred)  and (tred<(5e-6)) th n 

e+6; 
 elseif ((5e-6)<=tred) and (tred<((5e-6)+TRF)) then 

6) - k*(tred - (5e-6)); 
 elseif ((5e-6)+TRF<=tred) and (tred<(10e-6)) then 
  R=5e-2; 
 else 
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lation of the system 

ulate the system, using BDF-Method as solver, 1e-18 as min step size, 

as min output step size, 1e-8 as absolute tolerance, 0…100e-6s as 

tion time interval and 1e-8 as relative tolerance. Under the intial state 

he result for variable current switch resistor IR(t) and output voltage 

iven by figure 3.22. It took 1,2528s to simulate the task b. 

 

par er of TRF is varied 1e-15s, 1e-11s, 1e-9s, 1e-7s. Initial state for 

k c is equal from the final solution is given by task b. The time interval 

=

simulation executed separate

For all the calcu

Intel Pentium D,  2 x 2,66 GHz. 

 

3.2.5.2 Electr

D

T

a

d ing modelic  model of the syst

3

e
  R=5

  R=(5e+



  R=0; 
 end if; 

 
Figure 3.24. The model of the system (simulationX electrical) 

Solu

ask a Calculation of eigenvalues  

e eigenvalues of the system when R(t) is on = 0,05 ohm and 

requencies and mode shapes). In there simulationX 

auto 133s to execute task a. The 

o sim  solver, 1e-18 as min step size, 

 absolute tolerance, 0…100e-6s as 

r variable current switch resistor IR(t) and output voltage 

61s to simulate the task b. 

The parameter of TRF is varied between 1e-15s, 1e-11s, 1e-9s, 1e-7s. 

l from the final solution is given by task b. 

he tim . As result, The phase plane curves dx3/dt=VL

of x3 = IL3 is given by figure 3.23. It took 0,11s to simulate task 

c. Th

 SimulationX version 2.0 on 

PC  Intel Pentium D,  2 x 2,66 GHz. 
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tions 

T

To calculate th

when R(t) is off = 5e+6 ohm by simulate the whole system first and then go to 

tab analysis(natural f

matically calculate the eigenvalue. It took 0,0

result of eigenvalues is in Table 3-3. 

Task b Simulation of the system 

T ulate the system, using BDF-Method as

1e-15 as min output step size, 1e-8 as

simulation time interval and 1e-8 as relative tolerance. Under the intial state 

zero, the result fo

VL is given by figure 3.22. It took 0,84

Task c Parameter Variation Study: 

Initial state for the task c is equa

T e interval is 0…9e-6s 3 

as a function 

e four simulations executed separately. 

For all the calculation and simulation, using



4. Comparison 5: Two State Model 

4.1 

In many engineering problems simulation models turn up to be 

disco uous, but either the first or 

high tinuities may occur either at 

spec nditions are satisfied. 

When a discontinuity has been passed, not only the model may be changed, 

but also the function that determines the location of the discontinuity. 

Cons inuity is not correctly modelled and determined, 

respectively, the results may go wrong qualitatively[11]. 

forementioned type in a satisfactory way. The problem is as follows 

dy1/dt = c1 * (y2 + c2 - y1) 

dy2/dt = c3 * (c4 - y2)  

This ODE system is essentially a simple linear stiff problem with exponential 

decays as analytical solution. One of these is a very rapid transient, and the 

stationary solution of the slow decay varies from the two states of the model. 

This actually "drives" the model (and the discontinuity). 

Parameters c1 and c3 remain unchanged during simulation: c1 = 2.7E+6, c3 = 

3.5651205. 

The model operates in two states:  

• The model is in state 1 when 2 is 0.4 and c4 is 5.5 (also the initial 

= 0.3. The model 

he choice of c2 and c4 ensures 

 m el sw ate 2, parameters c2 and c4 change to c2 

4 = 2.73. The model remains in state 2 as long as y1 > 2.

When passing this instance the model switches back to state 1; the 

2 4

The time interval is 0 to 5

he tasks to re:  
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Definition 

ntinuous. That is, the solution itself is contin

er order derivatives have jumps. Discon

ific time points or when certain co

equently, if this discont

This example tests the ability of the simulator to handle discontinuities of the 

c

state). The initial values are y1(0) = 4.2 and y2(0) 

remains in state 1 as long as y1 < 5.8. T

that y1 will grow past 5.8.  

• When the od itches to st

= -0.3 and c 5. 

choice of c  and c  ensures that this will happen.  

. 

T  be performed a



a. Plot y1 as function of time.  

b. Printout the time for every located discontinuity and the final 

value y1(5.0).  

c. Repeat question b) for the true relative accuracy varying 

between 10-6, 10-10, 10-14. Analytical solution values can be found, so for 

nd the y1(5.0) value should be approximately 5.369. If 

 rerun a) and b) with a true relative 

accuracy of 10-11.  

 

4.2. Design and Solutions 

 

 

 

 

 

 

i o m

comparison we state that the last discontinuity occurs at time 

4.999999646 a

the last discontinuity is not located, the previous ones are not found 

with adequate accuracy. The value of y1(5.0) also reflects the accuracy 

of the locations of the discontinuities and any value between 5.8 and 

5.1 can be expected.  

d. Change the state 2 parameter values of c2 to -1.25, c4 to 4.33 and 

the condition to y1 > 4.1 and

Block Diagram 

The design of this model consists of only 3 block diagrams: Switching State, 

Controller and Differential Equation. Figure 4.1 shows block diagram for 

comparison 5. 

 

Different
o

ial 
Equati n 

Controller Switching 
 State
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F gure 4.1 Bl ck Diagra  Comparison 5 

 

 

 



4.2.1 M

Design o

The model design in matlab algorithm od

numerically and to calculate th

solver’s state event finder. Each time a switching event encountered, the 

integration of ODE solver stopped and the values of c2 and c4 were changed. 

ain at time of discontinuity. The state 

interval is reached. The differential 

ents function are as follow: 

global p d 

Where ode15s = ode solver matlab built in function  

deq = differential equation of the model in form of function 

 [tstart tfinal] = simulation time interval 

 y0 = Initial condition of the model 

 options = an options structure that can pass as an argument to any of 

the ODE solvers 

 t= time solutions of the model 

 y = variable value solutions of the model 

 te = time event 

 ye = variable value event 

 ie = ith iteration event 

The code is: 

tstart = 0; tfinal = 5; y0= [4.2 0.3]; C = [2  0.4 3.5651205 5.5]; 

51 

atlab 

f Model 

e15s is used to solve the system 

e times of the discontinuities by calling the 

Then the solver has to be restarted ag

will switch back and forth until the time 

equation code and ev

function dydt = F(t, y, C) 
dydt(1,1) = C(1) * (y(2) + C(2) - y(1)); 
dydt(2,1) = C(3) * (C(4) - y(2)); 
function [value,isterminal,direction] = events(t,y) 

value = y(1)- [p;0]; 
isterminal = [1;1]; 
direction = [d;1];  

 

Task a. Plot y1 

To simulate the system, using matlab built in function ode15s (odesolver) 

with the solver form:  

[t,y,te,ye,ie] = ode15s(@deq,[tstart tfinal],y0,options); 

 

.7E+6



p=5.8; d=1; 
options = odeset('reltol',1e-14,'Events',@events); 
tout = tstart; yout = y0; teout = []; yeout = []; ieout = []; 
  
while tout(lengt
% Call ODE Solve
FUN = @(t,y)F(t,y,
[t,y,te,ye,ie] = ode15s(FUN,[tstart tfinal],y0,options); 
  nt = length(t); 

>=5.8 
     p=2.5; d=-1; C = [2.7E+6 -0.3 3.5651205 2.73]; end 

     p=5.8; d=1; C = [2.7E+6 0.4 3.5651205 5.5]; end 

  options = odeset(options); 

 
Plot y1 is given by figure 4.2. It took 0,890272s to simulate the task a 

h(tout))<5 
r 
C); 

  if y(nt)

  if y(nt)<=2.5 

  tout = [tout; t(2:nt)];  yout = [yout; y(2:nt,:)]; 
  teout = [teout; te];  yeout = [yeout; ye]; 
  ieout = [ieout; ie]; 
   % Set the new initial conditions 
  y0=[y(nt,1) y(nt,2)]; 
  tstart=t(nt); 

end 

 
Figure 4.2 Plot y1(matlab) 

 

Task .0) 

The 

297 

t  = 3,0542  t  = 4,0756 

1
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 b Time Discontinuity and Final Value of y1(5

time discontinuity and the final value are: 

t0 = 1,1083  t1 = 2,1

2 3

y (5,0) = 5,8 



Table 4-1 The result of time discontinuity and final value y1(5.0) with vary 

r ranceelative tole  (matlab) 

 

 

 

 

 

 

Task c Time Discontinuity and Final Value of y1(5.0) with Different 

Relative Tolerance 

The parameter of relative tolerance are varied between 10-6, 10-10 and 10-14 

while still using variable 0 …5s as simulation time interval and ode15s as the 

solver. When relative tolerance 10-14 was used there is a warning message 

from matlab and matlab will then automatically set the relative tolerance to 

2.22045e-014. Table 4-1 shows the result of time discontinuity and final value 

y (5.0) with vary relative tolerance. 1

 
Figure 4.3 plot y

Task d t Even

Changi te 2 pa lu tch ion ts in 

a high frequent event of

took 10 o simu d. F ho s  (tas

The time discontinuity and the final value are: 

Relative Tolerance 10-6 10

1 (task d) (matlab) 

 

  Frequen ts 

ng the sta rameter va es and swi ing condit  will resul

 discontinuity for y1 with relative tolerance 1e-11. It 

,789155s t late task igure 4.3 s w  plot y1 k d) 

10-10 -14

t0 1083 3 1,11, 1,108 083 

t1 ,1297 7 2,12 2,129 297 

t2 0542 2 3,03, 3,054 542 

t3  4,0756 4,0756 4,0756 

y1(5,0) 5,8000 5,8000 5,8000 
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t0 = 1,1083 

 

 

9 

 

t  = 1,6169 

9

t13 =

t14 =

t15 =

t16 =

t17 =

t19 = 2,2662 

t20 = 2,3799 

t  = 2,3933 

22

 = 2

 = 2

 = 2

 = 2

 = 3

t31 = 3,0291 

t32 = 3,1428 

t33 = 3,1563 

t  = 3,2700 

35

 3,5

 3,6

 3,6

 3,7

 3,7

t44 = 3,9058 

t45 = 3,9192 

t46 = 4,0329 

t  = 4,0464 
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,414

,427

,541

,5550 

687 

t57 = 4,6822 

t58 = 4,7959 

t59 = 4,8093 

t  = 4,9230 

61

 

4.2.2 Simulink 

 of controller is to control the signal that was sent to switching state 

 change the value c2 and c4; depending on which state is active. Part 

controller was built by using 2 hit crossing block and OR gate block. Part 

switching state was built by using clock and triggered subsystem block. 2 hit 

crossing blocks will be used for detection when value y1 rises above 5,8 or 

falls below 2,5 otherwise the output is FALSE. In case of output TRUE, 

triggered subsystem is executed. The subsystem changes the value of c2 and 

c4 by using switches, which is different depending on the value of y1.  

The Differential equation was built by Integrator, Gain and add/substract 

block. Figure 4.4 shows the model of the system. 

 

54 

t1 = 1,1217

t2 = 1,2355

t3 = 1,248

t4 = 1,3626

t5 = 1,3760 t

 1,8847 t

 1,9984 t

 2,0118 t

 2,1256 t

 2,1390 t

18 = 2,2527 

26 ,7614 t

27 ,7748 t

28 ,8885 t

29 ,9019 t

30 ,0157 t

39 = 377 t

40 = 515 t

41 = 649 t

42 = 786 t

43 = 920 t

52 = 4 4 

53 = 4 8 

54 = 4 6 

55 = 4

56 = 4,6

t6 = 1,4898 

t7 = 1,5032 

8

t  = 1,6304 

t10 = 1,7441 

t11 = 1,7575 

t12 = 1,8713 

21

t  = 2,5070 

t23 = 2,5205 

t24 = 2,6342 

t25 = 2,6476

34

t  = 3,2834 

t36 = 3,3972 

t37 = 3,4106 

t38 = 3,5243

47

t  = 4,1601 

t49 = 4,1735 

t50 = 4,2873 

t51 = 4,3007

60

t  = 4,9365 

 

Y1(5,0) = 5,7804 

The whole calculation and simulation was done by using 

Matlab/Simulink version 7.4 R2007a on PC Intel Pentium D,  2 x 2,66 

GHz. 

4.2.2.1 Hybrid Model 

Design of Model 

The model has 3 parts: Controller, Switching State and Differential equation. 

The task

to



 
(a) 

 
(b) 

Figure 4.4 The model of the system (simulink) 

(a) Main Model    (b) Triggered subsystem 

 

To simulate the system a time step, 0 …5s as 

simulation time interval, relative tolerance of 10-11 and ode23s (Stiff/Mod. 

Rosenbrock) as the solver. Under the intial state 4,2 for integrator y1 and 0,3 

for integrator y2, the result for value y1 is given in figure 4.5. It took 0,5s to 

simulate the task a. 

 55

Solutions 

Task a. Plot y1 

 using variable step as 



 
Figure 4.5 Plot y1(simulink) 

(5.0) 

The time discontinuity and the final value are: 

t  = 3,054  t  = 4,0754    t  = 4,9998 

 with vary 

ative tolerance (simulink) 

 

 

 

 

 

Task c Time Discontinuity and Final Value of y1(5.0) with Different 

Relative Tolerance 

The parameter of relative tolerance is varied between 10-6, 10-10 and 10-14 

while still using variable step as a time step, 0 …5s as simulation time 

interval and ode23s (Stiff/Mod. Rosenbrock) as the solver. When relative 

Task b Time Discontinuity and Final Value of y1

t0 = 2,1204e-007 t1 = 1,1083    t2 = 2,1296 

3 4 5

y1(5,0) = 5,0980002181246 

Table 4-2 The result of time discontinuity and final value y1(5.0)

rel

 

 

 

Relative Tolerance 10-6 10-10 10-14

t0 2,1204e-007 2,1204e-007 2,1204e-007 

t 1,1082 1,1083 1,1083 1

t2 2,1294 2,1296 2,1296 

t3 3,0538 3,054 3,054 

t4 4,075 4,0754 4,0754 

t5 4,9994 4,9998 4,9998 

y1(5,0) 5,0940204247788 5,0979970081424 5,0980106702 

56 



tolerance 10-14 was used and simulink was automatically set the relative 

tolerance to 2.842170943040401e-014 there is a warning message from 

matlab. Table 4-2 shows the result of time discontinuity and final value 

y1(5.0) with vary relative tolerance. 

 
Figure 4-6 plot y1 mu

Task d  Frequent Events 

Changing t and switching condition will results in 

high frequent event of ity o too simu d. 

Figure 4.6 shows plot y1 (

The time ity an va

t0 09 

t1

t2

t3

t4

t5

t8 = 1,5031 

t  = 1,6303 

11

t13

t14

t15

t16

t17

18 9 

t21 =2,3798 

t22 =2,3932 

t  =2,5069 

24 =2,5203 

t25 =2,6341 

t26

t27

t28

t29

t30

t31 =3,0155 

 

t34 =3,1561 

t35 =3,2698 

t36 =3,2832 

t37 =3,397 

t38 =3,4104 

t39

t40

t41

t42

t43

t44 =3,7918 

t46 =3,919 

t47 =4,0327 

t48 =4,0461 

t49 =4,1598 

t50 =4,1733 

t51 =4,287 

t52

t53

t54

t55 4,5413 

t56 =4,5547 

t57 =4,6684 

t59 =4,7956 

t60 =4,809 

t61 =4,9227 

t62 =4,9362 

 

Y1(5,0) = 5,0980002181246 
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 (task d)(si link) 

he state 2 parameter values 

discontinu f r y1. It k 3s to late task 

task d) 

 discontinu d the final lue are: 

 = 9,6205e-0

 = 1,1083 

 = 1,1217 

 = 1,2354 

 = 1,2488 

 = 1,3626 t  = 2,138

 = 1,8712 

 = 1,8846 

 = 1,9983 

 = 2,0117 

 = 2,1255 

 =2,6475 

 =2,7612 

 =2,7746 

 =2,8884 

 =2,9018 

 =3,5241 

 =3,5375 

 =3,6513 

 =3,6647 

 =3,7784 

 =4,3004 

 =4,4141 

 =4,4276 

 =

t6 = 1,376 

t7 = 1,4897 

t19 = 2,2526 

t20 =2,266 

t32 =3,0289 

t33 =3,1427

t45 =3,9055 t58 =4,6819 

t9 = 1,6169 

10

t  = 1,744 

23

t

t12 = 1,7574 



4.2.2.2 Stateflow 

Design of Model 

The model has 3 parts: Controller, Switching State and Differential equation. 

The task of controller is to control the signal that was sent to the switching 

state to change the value c2 and c4, depending on which state is active. Part 

controller was built by using 2 hit crossing blocks and OR gate block. Part 

switching state was built by clock and triggered subsystem block. 2 hit 

crossing blocks are used for detection when value y1 rises above 5,8 or falls 

below 2,5 otherwise the output is FALSE. In case of output TRUE, triggered 

subsystem will be executed. The subsystem changes the value of SGN by 

 block changes the value 

of c2 and c4, which is differed depending on value SGN. The differential 

equation was b ck. Figure 4.7

shows stateflow block of the system. Figure 4.8 shows the model of the 

system. 

 

using switches, which is differed depending on the value of y1. Value SGN is 

used as a switch event of stateflow block. Stateflow

uilt by Integrator, Gain and add/substract blo

 
Figure 4.7 Stateflow block of the system (comparison 5) 
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(a) 

 

 
(b) 

he model of the system (simFigure 4.8 T ulink stateflow) 

ain M l    (b) Trigg  subsystem 

olutions 

em, using variable step as a time step, 0 …5s as 

imulation tim  interval, rel lerance od. 

osenbrock) a  the solver. Und he intial state 4,2 for integrator y1 and 0,3 

r integrat he result f  y1 is sh  figure 4 ok 9s to 

imulate the task a. 
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(a) M ode ered

S

Task a. Plot y1 

To simulate the syst

e ative to of 10-11 and ode23s (Stiff/Ms

R s er t

fo or y2, t or value own in .9. It to

s

 



 
Figure 4.9 Plot y  (simulink stateflow) 

Task b T tinui l (5

The time ity an a

t0 = 2,1204e-007 2 7 

t3 = 3,0542  4

y1(5 2727 8

 

Table 4 ult of ti a .0

elati e at

 

 

 

 

Task c Time Discontinuity and Final Value of y (5.0) with Different 

Relative Tolerance 

The parameter of relative tolerance is varied between 10 , 10  and 10 , 

while still using variable step as a time step, 0 …5s as simulation time 

interval and ode23s (Stiff/Mod. Rosenbrock) as the solver. When relative 

Re ce -10 10-14

1

ime Discon ty and Fina Value of y1 .0) 

 discontinu d the final v lue are: 

t1 = 1,1083    t  = 2,129

t  = 4,0755    t  = 5 5

,0) = 5,1871 1 67 

-3 The res time discon nuity and fin l value y1(5 ) with vary 

r ve toleranc (simulink st eflow) 

lative Toleran 10-6 10

t0 2,1204e-007 2,1204e-007 2,1204e-007 

 

 
t1 1,1083 1,1083 1,1083 

t2 2,1297 2,1297 2,1297 

t3 3,0542 3,0542 3,0542 

t 4,0755 4,0755 4,0755 4

t5

 
5 5 5  

y1(5,0) 5,1871018782202 5,1870844463401 5,1871273654863

60 

1

-6 -10 -14



tolerance 10-14 was used and simulink was automatically set the relative 

tolerance to 2.842170943040401e-014. Table 4-3 shows the result of time 

discontinuity and final value y1(5.0) with vary relative tolerance. 

Task d  Frequent Events 

Changing the state 2 parameter values and switching condition will result in 

a high frequent event of discontinuity for y1. It took 14s to simulate task d. 

Figure 4.10 shows plot y1 (task d) 

 
Figure 4.10 plot y1 (task d) (simulink stateflow) 

The time discontinuity and the final value are: 

t0 = 9,6205e-009 

t1 = 1,1083 

t2 = 1,1217 

t3

t4 = 1,2489 

 1,3626 

t  = 1,5032 

t13 = 1,8713 

t14 = 1,8847 

t  = 1,9984 

16

t17 = 2,1256 

t18 = 2,139 

t19 = 2,2527 

t  =2,3799 

t26 =2,6476 

t  =2,7614 

t  =2,7748 

29

t30 =2,9019 

t31 =3,0157 

t32 =3,0291 

t  =3,1563 

t39 =3,5243 

t40 =3,5377 

t  =3,6515 

42

t43 =3,7786 

t44 =3,792 

t45 =3,9058 

t  =4,0329 

873 

t52 =4,3007 

t53 =4,4144 

t  =4,4278 

55 ,5416 

t56 =4,555 

t57 =4,6687 

t58 =4,6821 

t  =4,8093 

Y1(5,0) = 5,7804027877939 
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27

 = 1,2355 

15

t  = 2,0118 

28

t  =2,8885 

41

t  =3,6649 

54

t  =4

t5 =

t6 = 1,376 

t7 = 1,4898 

8

t9 = 1,6169 

t10 = 1,6304 

t11 = 1,7441 

t20 =2,2661 

21

t22 =2,3933 

t23 =2,507 

t24 =2,5205 

t33 =3,1428 

34

t35 =3,27 

t36 =3,2834 

t37 =3,3971 

t46 =3,9192 

47

t48 =4,0464 

t49 =4,1601 

t50 =4,1735 

t59 =4,7959 

60

t61 =4,923 

t62 =4,9365 

 

t12 = 1,7575 t25 =2,6342 t38 =3,4106 t51 =4,2



For all the calculation and simulation, using Matlab/Simulink  version 7.4 

R2007a on PC  Intel Pentium D,  2 x 2,66 GHz. 

el 

ck. Switching State was built 

y constant, switch and greater equal block. Greater equal threshold block 

lock are used to detect whether value y1 rises 

depending on value of y1.  

igure 4.11 shows the model of the system. 

 

4.2.3. Dymola 

4.2.3.1 Hybrid Mod

Design of Model 

The model has 3 parts: Controller, Switching State and Differential equation. 

The task of controller is to control the signal that was sent to the switching 

state to change the value c2 and c4 depending on which state is active. Part 

controller was built by greater equal threshold block, less equal threshold 

block, OR gate block and triggered sampler blo

b

and less equal threshold b

above 5,8 or falls below 2,5, for otherwise the output is FALSE. In case of 

output TRUE, triggered sampler is activated, changing the value of c2 and c4 

by using switches that is different 

The Differential equation is built by Integrator, Gain and add/substract 

block. F

 
Figure 4.11 The model of the system (dymola) 
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Figure 4.12 Plot y1 (dymola) 

 

Solutions 

tem, using 1000 as number of intervals, 0 …5s as 
-11

e final value are: 

t0 = 2,46288e-007 t1 = 1,10831    t2 = 2,12968 

 = 4,07553    t5 = 5 

1(5.0) with Different 

ameter of relative tolerance is varied between 10-6, 10-10 and 10-14, 

 solver. There is an error message from dymo

when relative tolerance 10-14 was used because it is unable to do the task, 

ill be used as the new relative tolerance instead. Table 4-4 
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Task a. Plot y1 

To simulate the sys

simulation time interval, relative tolerance of 10  and Dassl as the solver. 

Under the intial state 4,2 for integrator y1 and 0,3 for integrator y2, the result 

for value y1 shown in figure 4.12. It took 0,047s to simulate the task a. 

 

Task b Time Discontinuity and Final Value of y1(5.0) 

The time discontinuity and th

67 

t3 = 3,05415  t4

y1(5,0) = 5,37114 

 

Task c Time Discontinuity and Final Value of y

Relative Tolerance 

The par

while still using 1000 as number of intervals, 0 …5s as simulation time 

interval and Dassl as the la 

therefore 10-12 w



shows the result of time discontinuity and final value y1(5.0) with vary 

 

relative tolerance (dymola) 

 

 

 

 

 

 

Task d  Frequent Events 

Changing the state 2 parameter values and switching condition will 

result in a high frequent event of discontinuity for y1. It took 0,204s to 

simulate task d. Figure 4.13 shows plot y1 (task d) 

 

relative tolerance.

 

Table 4-4 The result of time discontinuity and final value y1(5.0) with vary 

 

 

 

 
Figure 4.13 plot y1 (task d) (dymola) 

10-6 10-10 10-12Relative Tolerance 

t0 2,46288e-007 2,46288e-007 2,46288e-007 

t1 1,10831 1,10831 1,10831 

t2 2,12969 2,12968 2,12968 

t3 3,05416 3,05415 3,05415 

t4 4,07555 4,07553 4,07553 

t5 5 5 5 

y1(5,0) 5,79999 5,38522 5,36955 
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The time discontinuity and the final value are: 

61e-008 

31 

t  = 1,23546 

t  = 1,5032 

9

 

t12 = 1,75752 

t15 = 1,99841 

t  = 2,01184 

t18 = 2,13899 

t  =2,37988 

22

t23 =2,50704 

t26 =2,64762 

t27 =2,76136 

t28 =2,77478 

t  =2,88851 

t31 =3,01567 

t  =3,15625 

35

t36 =3,28341 

t39 =3,5243 

t40 =3,53773 

t41 =3,65146 

t  =3,66489 

t44 =3,79204 

t  =4,03294 

48

t49 =4,16009 

 =4,28725 

t52 =4,30068 

t53 =4,41441 

t54 =4,42783 

t  =4,54157 

t57 =4,66872 

t  =4,80931 

61

t62 =4,93646 

Y1(5,0) = 5,7804 

or all the simul n, using Dymola version 6.0b on PC  Intel 

entium D,  2 x 2, 6 GHz. 

 

.2.3.2 Stategr ph Model 

esign of Mod

he model has 3 parts: Controller, Switching State and Differential equation. 

The task of controller is to send a signal to the switching state to change th

value c2 and c4 depe ontroller was built 

 block and less equal threshold block. Switching 

t0 = 1,073 t13 = 1,87125 

t1 = 1,108 t14 = 1,88468 

t2 = 1,12173 

3

t4 = 1,24889 

t5 = 1,36262 

16

t17 = 2,12557 

29

t30 =2,90194 

42

t43 =3,77862 

55

t56 =4,55499 

t6 = 1,37605 

t7 = 1,48978 

8

t  = 1,61694 

t10 = 1,63036

t19 = 2,25273 

t20 =2,26615 

21

t  =2,39331 

t32 =3,0291 

t33 =3,14283 

34

t  =3,26999 

t45 =3,90578 

t46 =3,9192 

47

t  =4,04636 

t58 =4,68215 

t59 =4,79588 

60

t  =4,92304 

t11 = 1,7441 t24 =2,52047 

t25 =2,6342 

t37 =3,39715 

t38 =3,41057 

t  50 =4,17352 

t51

F  calculation and atio

P 6

4 a

D el 

T

e 

nding on which state is active. Part c

by greater equal threshold

State was built by constant, switch and and stategraph block such as initial 

step, step and transitition block. Greater equal threshold block and less 

equal threshold block are used to detect whether value y1 rises above 5,8 or 

falls . In case of output TRUE, 

transititio  io w i ending on 

which th o TR  e ntrols the 

value of c n step block 

active or not. Figure 4.14 shows part controller and switching state of the 

system. 
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below 2,5, for otherwise the output is FALSE

n 1 block or transitit n 2 block ill be act vated dep

reshold bl ck send a UE output. Then the st p block co

2 4 and c  by using different switch depending o  whether 



The Diffe u  b i /substract 

block. Fi sh od s

rential eq ation was uilt by Integrator, Ga n and add

gure 4.15 ows the m el of the sy tem. 

 
Figure 4.14 Part Controller and Switching State of the System (dymola 

stategraph) 

 

 
Figure 4.15 The model of the system (dymola stategraph)  

 

Solu

t y1 

system, using 1000 as number of intervals, 0 …5s as 

for value y1 is shown in figure 4.12. It took 0,062s to simulate the task a. 
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tions 

Task a. Plo

To simulate the 

simulation time interval, relative tolerance of 10-11 and Dassl as the solver. 

Under the intial state 4,2 for integrator y1 and 0,3 for integrator y2, the result 



Task b Time Discontinuity and Final Value of y1(5.0) 

The time discontinuity and the final value are the same as dymola hybrid 

model: 

e Tolerance 

The parameter of relative tolerance is varied between 10-6, 10-10 and 10-14 

There is an error message from dymola when relative 

lica Text Mode 

  when (y1>=5.8) then 

67 

 

Task c Time Discontinuity and Final Value of y1(5.0) with Different 

Relativ

while still 1000 as number of intervals, 0 …5s as simulation time interval and 

Dassl as the solver. 

tolerance 10-14 was used because it is unable to do the task, therefore 10-12 

will be used as the new relative tolerance instead. The result will be the 

same as the hybrid model shown by Table 4-4. 

 

Task d  Frequent Events 

Changing the state 2 parameter values and switching condition will result in 

a high frequent event of discontinuity for y1. It took 0,25s to simulate task d. 

Figure 4.13 shows plot y1 (task d) 

The time discontinuity and the final value are the same as dymola hybrid 

model. 

For all the calculation and simulation, using Dymola version 6.0b on PC  Intel 

Pentium D,  2 x 2,66 GHz. 

 

4.2.3.3. Mode

Design of Model 

For design of the model, using the exact differential equation with modelica 

function der(y) as dy/dt in the equation. For switching state using algorithm 

as below: 

algorithm  

     c2:=-0.3; 
     c4:=2.73; 
  end when; 
  when (y1<=2.5) then 
     c2:=0.4; 



     c4:=5.5; 

 

Solutions 

Task a. Plot y1 

  end when; 

1 and Dassl as the solver. 

Under the intial state 4,2 for integrator y1 and 0,3 for integrator y2, the result 

for value y1 is shown in figure 4.12. It took 0,047s to simulate the task a. 

 

Task b Time Discontinuity and Final Value of y1(5.0) 

The time discontinuity and the final value are the same as dymola hybrid 

model: 

 

Task c Time Discontinuity and Final Value of y1(5.0) with Different 

Relative Tolerance 

The parameter of relative tolerance is varied 10-6, 10-10 and 10-14. Still 1000 as 

number of intervals, 0 …5s as simulation time interval and Dassl as the 

solver. There is an error message from dymola when relative tolerance 10-14 

was used because it is unable to do the task, therefore 10  will be used a

the new relative tolerance instead. The result will be the same as the hybrid 

model shown by Table 4-4. 

 

Task d  Frequent Events 

Changing the state 2 parameter values and switching condition will result in 

a high frequent event of discontinuity for y . It took 0,187s to simulate task d. 

Figure 4.13 shows plot y  (task d) 

The time discontinuity and the final value are the same as dymola hybrid 

model. 

For all the calculation and simulation, using Dymola version 6.0b on PC  Intel 

 

68 

To simulate the system, using 1000 as number of intervals, 0 …5s as 

simulation time interval, relative tolerance of 10-1

-12 s 

1

1

Pentium D,  2 x 2,66 GHz. 



4.2.4 Mosilab 

4.2. lica Text 

Design of Model 

For design of the model, using the exact differential equation with modelica 

fu  

as below: 

algori
when (y1>=5.8) then 
   c2:=-0.3; 
   c4:=2.73; 
end when; 
when (y1<=2.5) then 
 c2:=0.4; 

   c4:=5.5; 
end when; 

 

1 2 1

4.1. Mode  Mode 

nction der(y) as dy/dt in the equation. For switching state using algorithm

thm  
  
  
  
  
  
    
  
  

Solutions 

Task a. Plot y1 

To simulate the system, using 1e-6 as min stepszize. 0,08 as max stepsize, 

relative tolerance of 10-6 and Dassl as the solver. Under the intial state 4,2 for 

integrator y  and 0,3 for integrator y , the result for value y  is shown in 

figure 4.16. It took 0,1s to simulate the task a. 

 
Figure 1  
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4.16 Plot y  (mosilab)

 



Task b T on d u 0)

The time ui  f ar

t0 = 1,1088  t  = 2,1397 

t2 = ,  ,

y1(5 8

Task c tinuity and Final Value of y1(5.0) with Different 

elative Tolerance 

ax stepsize and Dassl as the solver. Table 4-5 

shows the result of time discontinuity and final value y1(5.0) with vary 

relative tolerance. 

Table 4-5 The result of time discontinuity and final value y1(5.0) with vary 

relative tolerance (mosilab) 

 

 

 

 

 

 

 

ime Disc tinuity an  Final Val e of y1(5.  

 discontin ty and the inal value e: 

1

3 0588 t3 = 4 0760 

,0) = 5,798  

Time Discon

R

The parameter of relative tolerance is varied 10-6, 10-10 and 10-14. Still using 

1e-6 as min stepszize. 0,08 as m

 
Figure 4.17 plot y1 (task d) (mosilab) 

Relative Tolerance 10-6 10-10 10-14

t0 1,1088 1,1083 1,1090 

t1 2,1397 2,1394 2,1299 

t2 3,0588 3,0584 3,0592 

t3 4,0760 4,0757 4,0764 

y1(5,0) 5,7988 5,7985 5,7997 
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Task d Frequent Events 

Changing the state 2 parameter values and switching condition will result in 

a high frequent event of discontinuity for y1 with relative tolerance 1e-11. It 

took 1,3s to simulate task d. Figure 4.17 shows plot y

t0 = 1,1088 

t  = 1,1220 

t  = 1,5037 

 1,8716 

t13 = 1,8852 

t  = 1,9987 

,1259 

397 

t18 = 2,2534 

t19 = 2,2669 

t  = 2,3804 

,3939 

t25 = 2,6482 

t26 = 2,7618 

t  = 2,7755 

0 

t29 = 2,9023 

t30 = 3,0161 

t31 = 3,0297 

t32 = 3,1433 

t33 = 3,1569 

t34 = 3,2705 

t38 = 3,5249 

t39 = 3,5382 

t40 = 3,6520 

t41 = 3,6655 

t42 = 3,7791 

t43 = 3,7925 

t44 = 3,9062 

t45 = 3,9197 

t46 = 4,0335 

t47 = 4,0469 

t51 = 4,3013

t52 = 4,4150 

t53 = 4,4283 

t54 = 4,5419 

t55 = 4,5556 

t56 = 4,6694 

t57 = 4,6827 

t58 = 4,7963 

t59 = 4,8098 

t60 = 4,9235 

,0) = 5,7827 

 

For all g Mosilab version 3.1 on Notebook 

Dell Latitude D630 Intel Centrino Duo. 

 

Desi  of M

For design of the model, using the exact differential equation with modelica 

funct  der( ation. For switching state using statechart 

algo m as

ation 
 >= 5.8 then true else false; 

2.5 then true else false; 

extends State;  
        annotation(extent=[-104,105; 45,-43]); 
        State State1 annotation(extent=[-90,63; -81,59]); 
        State State2 annotation(extent=[-58,62; -45,58]); 
        State Initial (isInitial=true) annotation(extent=[-82,74; -80,72]); 

1 (task d) 

The time discontinuity and the final value are: 

1

t2 = 1,2357 

14

t15 = 2,0121 

27

t28 = 2,889

t3 = 1,2493 t16 = 2

t4 = 1,3629 t17 = 2,1

t5 = 1,3765 

t6 = 1,4899 

7

t8 = 1,6174 

20

t21 = 2

t9 = 1,6307 

t10 = 1,7446 

t11 = 1,7578 

t12 =

t22 = 2,5077 

t23 = 2,5209 

t24 = 2,6349 

t35 = 3,2838 

t36 = 3,3977 

t37 = 3,4111 

t48 = 4,1608 

t49 = 4,1739 

t50 = 4,2878 

t61 = 4,9370 

 

Y (51

 the calculation and simulation, usin

4.2.4.2 StateChart 

gn odel 

ion y) as dy/dt in the equ

rith  below: 

equ
s2 = if y1
s1 = if y1 <=
statechart  
    state C5MosilabStateSC 



        transition Initial->State1  
        end transition annotation(points=[-82,72; -82,63]); 
        transition State1->St te2 event s2 action 
        c2:= -0.3; c4:= 2.
        end transition annot tion(points=[-81,59; -77,60; -58,60]); 
        transition State2->State1 event s1 action 
        c2:= 0.4; c4:= 5.5; 
        end transition annotation(points=[-58,59; -77,59; -81, ); 
    end C5MosilabStateSC; 
 

Solutions 

Task a. Plot y1 

To simulate the system, using 1e-6 as min stepszize. 0,08 as max stepsize, 

relative tolerance of 10-6 and Dassl as the solver. Under the intial state 4,2 for 

integ  

. It took 0,3s to simulate the task a. 

Task b Time Discontinuity and Final Value of y1(5.0) 

isc previous in the text 

mode 

Task c Time Discontin (5.0) with Different 

The parameter of relativ een 10-6, 10-10 and 10-14 

tepszize. 0,08 as max stepsize and Dassl as the 

solve

erance. 

Changing the state 2 parameter values and switching condition will result in 

nce 1e-11  

took 2,3s to simulat

The time discontinuity and the final value are the same as previous in the text 

mode  

ion, using Mosilab version 3.1 on Notebook 

Dell 
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a
73; 

a

59]

rator y1 and 0,3 for integrator y2, the result for value y1 is shown in

figure 4.16

 

The time d ontinuity and the final value are the same as 

 

uity and Final Value of y1

Relative Tolerance 

e tolerance is varied betw

while still using 1e-6 as min s

r. Table 4-4 shows the result of time discontinuity and final value y1(5.0) 

with vary relative tol

Task d  Frequent Events 

a high frequent event of discontinuity for y1 with relative tolera . It

e task d. Figure 4.17 shows plot y1 (task d) 

For all the calculation and simulat

Latitude D630 Intel Centrino Duo. 



4.2. S

Hybrid 

Design of Model 

The m g State and Differential equation. 

The task of contro al that sent to switching state to 

chan  te active is. Part 

controller was built by single pass switch block, relational pass switch block, 

constan vent sample and hold block. Switching 

State w an itch 

block a

value y1 rises above 5,8 or falls below 2,5, 

In case of output value of 5,8 or 2,5, controlled event sample and hold block 

will pas ng the value of c2 and c4 by using single 

change switc

5 imulationX 

Model 

odel has 3 parts: Controller, Switchin

ller is to control the sign

ge the value c2 and c4 that depend on which sta

t, add block and controlled e

as built by constant d single change switch. Single pass sw

nd relational pass switch block are being used to detect whether 

for otherwise the output is ZERO. 

s and hold this value, changi

hes which is differ depending on value of y1.  

The if

block. Figure 4.18 shows the model of the system. 

 

D ferential equation is built by Integrator, Gain and add/substract 

 
Figure 4.18 The model of the system (simulationX) 

73 

 

 



Soluti

Task a. Plot y1 

To s bsolute 

tolerance, 0 …5s as simulation time interval, relative tolerance of 10-6 and 

he intial state 4,2 for integrator y1 and 0,3 for 

e result for value y1 shown in figure 4.19. It took 0,0582s to 

ons 

imulate the system, using 1e-12 as min stepsize, 1e-3 as a

Dassl as the solver. Under t

integrator y2, th

simulate the task a. 

 
Figure 4.19 Plot y1 (simulationX) 

Task b Time Discontinuity and Final Value of y1(5.0) 

The the final value are: 

3

8 

Table 4-6 The result of time discontinuity and final value y1(5.0) with vary 

relative tolerance (simulationX) 
-6 -10 10-14

time discontinuity and 

t0 = 1,108  t1 = 2,130 

t  = 3,058  t  = 4,079 2

y (5,0) = 5,791

 Relative Tolerance 10 10

t0 1,108 1,105 1,105  
t1 2,130 2,130 2,130  
t2 3,058 3,055 3,055 

 
t3 4,079 4,077 4,077 

y (5,0) 5,798 5,799 5,798 
 

1
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Task ontinuity and Final Value of y1(5.0) with Different 

Relative Tolerance 

ter of relative tolerance is varied between 10-6, 10-10 and 10-14 

hows the result of 

time discontinuity and final value y1(5.0) with vary relative tolerance. 

 

Task

Changing the state 2 parameter values and switching condition will result in 

a high frequent event of discontinuity for y . It took 0,434s to simulate task d. 

Figure 4.20 shows plot y  (task d) 

 

The time discontinuity and the final value are: 

t0 = 1,107 

t1 = 1,122 

t2 = 1,239 

t3 = 1,250 

t4 = 1,368 

t5 = 1,382 

t6 = 1,498 

t7 = 1,511 

t8 = 1,627 

t9 = 1,638 

t10 = 1,756 

t11 = 1,770 

t12 = 1,886 

t13 = 1,897 

t14 = 2.015 

t15 = 2,029 

t16 = 2,145 

t17 = 2,159 

t18 = 2,275 

t19 = 2,284 

t20 = 2,404 

t21 = 2,415 

t22 = 2,534 

t23 = 2,547 

t24 = 2,663 

t25 = 2,677 

t26 = 2,793 

t27 = 2,803 

t28 = 2,922 

t29 = 2,935 

t30 = 3,051 

t31 = 3,062 

t32 = 3,181 

t33 = 3,194 

t34 = 3,310 

t35 = 3,321 

t36 = 3,440 

t37 = 3,453 

t38 = 3,569 

t39 = 3,583 

t40 = 3,699 

t41 = 3,709 

t42 = 3,828 

t43 = 3,842 

t44 = 3,957 

t45 = 3,968 

t46 = 4,087 

t47 = 4,100 

t48 = 4,216 

t49 = 4,227 

t50 = 4,346 

t51 = 4,359 

t52 = 4,475 

t53 = 4,486 

t54 = 4,605 

t55 = 4,615 

t56 = 4,734 

t57 = 4,745 

t58 = 4,863 

t59 = 4,874 

t60 = 4,993 

 

Y1(5,0) = 4,123 

 

For all the calculation and simulation, using SimulationX version 2.0 on PC  

Intel Pentium D,  2 x 2,66 GHz. 
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 c Time Disc

The parame

while still using 1e-12 as min stepsize. 1e-3 as absolute tolerance, 0 …5s as 

simulation time interval and Dassl as the solver. Table 4-6 s

 d  Frequent Events 

1

1
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Figure 4.20 plot y1 (task d) (simulationX) 



5. Comparison 20: Electrical Model - Basics 

5.1 Definition 

 

Figure 5.1 Electrical circuit comparison 20 

Electrical circuit comparison 20 is giv

are: 

,1E-9 farad 

r currents and capacitor voltages are chosen as system variables. By 

using the Kirchhoff voltage and current laws we get the following differential 

equations:  

L*dx1/dt = U – x1*R1 - VD 

C*dx2/dt = + x1 - ID – VD/Rmin 

VD= R2*C*dx2/dt +x2 

ID = ids*(eVD/VT-1) 

Where: x1 = IL (the current of L) 

  x2 = VC (the voltage of C) 

  VD = voltage of diode 

  ID = current of diode 

  ids = saturation current of diode 

  VT = thermal voltage of diode 

77 

en by figure 5.1. The component values 

- U =  2*10kV* sin(2 *50Hz*t + ) volt 

- L = 3,18E-3 henry 

- C = 11

- R1 = 0,1 ohm 

- R2 = 5 ohm 

- Rmin = 1E-4 ohm  

The equations describing the circuit may be the state-equations where 

inducto



5.2 Tasks 

5.2.1 Steady States 

 

Figure 5.2 Steady States 

Equa

-Stat – x2 

-Stat 1*R1 – (R2*C*dx2/dt) –x2 

on+Rmin) –x2  

-Stat  – VD 

C*dx2/dt =  x1 – (1e-5*VD) 

  VD>=0 L*dx1/dt = -U – x1*R1 – (1e-5*VD) 

2] 

5.2.2 Classical Simulation 

The task are, plot x1 and x2 when switch S1 is time dependent switch is 

Equation:S1 open: L*dx1/dt = U – x1*(R1+R2) – x2 

hm 

 78

A 

C 

Ron=1e-4 o
B 

Steady states is given by figure 5.2. Simulate the system for each state. 

tion: 

e A: L*dx1/dt = U – x1*(R1+R2) 

C*dx2/dt =  x1  

e B:  L*dx1/dt = U – x

C*(R2+Ron+Rmin)*dx2/dt = x1*(R

e C: VD<0:  L*dx1/dt = -U – x1*R1

C*dx2/dt =  x1 – VD [1

given by figure 5.3. 

C*dx2/dt =  x1  

       S1 close L*dx1/dt = U – x1*R1 – (R2*C*dx2/dt) –x2 

C*(R2+Ron+Rmin)*dx2/dt = x1*(Ron+Rmin) –x2  
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5e-2 sec 

Figure 5.3 Time dependent S1 

5.2.3. Different Diode models 

The tasks are simulate the system when diode is: 

- ideal model with simplification (diode A) 

Equ  = -U – x1*R1 – VD 

C*dx2/dt = x1– ID  

  VD= R2*C*dx2/dt +x2 

ID = ids*(eVD/VT-1) [13] 

- diode modelled as exponential function (diode B) 

Equation:  

L*dx1/dt = -U – x1*R1 – VD 

VD/ C*dx2/dt = x1 – id R  

VD/VT > maxexp  C*dx2/dt = x1 – ids*(emaxexp*(1+(VD/VT)-maxexp)-1) 

+VD/R 

VD= R2*C*dx2/dt +x2 

where R = diode resistance 

nt for linear continuation. 

VD/VT-1) +VD/R  

ation:  L*dx1/dt

s*(eVD/VT-1) +VD/VT <=  maxexp 

   maxexp = maximum expone

- realistic with data from a set of characteristic curves (temperature 

diode=diode C) 

L*dx1/dt = -U – x1*R1 – VD 

VD/VT  <=maxexp C*dx2/dt = x1 – ids*(e
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VD/VT > maxexpC*dx2/dt = x1 – ids*(emaxexp*(1+(VD/VT)-maxexp)-

1)+VD/R 

 R2*C*dx2/dt +x2 

where k =Boltzmann’s constant 

5.2.4 Influence of Simulation Algorithms 

The tasks are: 

simulate the system when all switch on. 

Equation:  L*dx1/dt = -U – x1*R1 – VD 

C*dx2/dt = x1– ID – VD/(Ron+Rmin) 

  VD= R2*C*dx2/dt +x2 

ID = ids*(eVD/V -1) 

calculatio  condition of the mass matrices for each case. 

5.3. Design and Solutions 

de15i for state C. Ode15i was used, 

because of its speciality that it can solve the matrix in implicit form, where 

ode2  al 

equation in eded. The code of 

diffe n

function d

b=[
dxdt=(A*x)+
end 
 

VD=

VT= (k*T)/q    

   T = absolute temperature (oK) 

   q = magnitude of charge on an electron

 

- 

T

- n of the

 

5.3.1 Matlab 

5.3.1.1 Steady States 

Design of Model 

For design of the model using matlab algorithm ode23s to solve the system 

numerically for state A and state B, o

3s can only solve the matrix in explicit form. For switching differenti

state C, solver’s state event finder was ne

re tial equation and events function for state C were written below: 

xdt= deqx(t,x)  %State A 
global L C R1 R2 
A=[-(R1+R2)/L -1/L; 1/C 0]; 

U(t)/L; 0]; 
b; 



fun ti xdt= deqxB(t,x   %Sta e B 

-((R1*R2)+((R1+R

c on d ) t
global L C R1 R2 Rmin Ron 
A=[ 2)*(Ron+Rmin)))/(L*(R2+Ron+Rmin)) -
(Ron+Rmin)/
(Ron+Rm
b=[U(t)/L; ]; 
dxdt=(A*x)+b; 

global L C R1 R2 R 
 VD<0 

L)-((x(1)*R1)/L)-(((R2*C*xp(2))+x(2))/L) 
((R2*C*xp(2))+x(2))*R)/C)]  

 
global L C R1 R2 R 

dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((((R2*C*xp(2))+x(2))*R)/L) 
        (x(1)/C)-((((R2*C*xp(2))+x(2))+R)/C)]   

terminal,direction] = events(t,x,xp)   

isterminal = [1;1]; 

 built in function ode23s (odesolver) for 

tate A and state B, ode15i for state C with the solver form:  

Where xp0 = initial value for dx/dt 

s, it took 29,635323s to simulate state A, 1,194620s 

to simulate state B and 1,437591s to simulate state C. 

8

(L*(R2+Ron+Rmin)); 
in)/(C*(R2+Ron+Rmin)) -1/(C*(R2+Ron+Rmin))]; 
 0

1 

end 
 
function dxdt = f1(t,x,xp)  %State C 

%
dxdt = [-(U(t)/
        (x(1)/C)-((

function dxdt = f2(t,x,xp)

% VD>=0 

function [value,is
global R2 C d 
value = ((R2*C*xp(2))+ x(2)) - [0;0]; 

direction = [0;d];  

 

Simulation 

To simulate the system, using matlab

s

 

[tsol,xsol]=ode23s('deq',[tstart tfinal],x0); 

[t,x,te,xe,ie] = ode15i(@deq,[tstart tfinal],x0, xp0, options); 

 

The result for plot x1 and x2 state A, state B and state C is shown in figure 5.4. 

With time interval 0 … 0,2
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Figure 5.4 Plot x1 and x2 steady states (matlab) 

5.3.1.2 Classical Simulation 

Design of Model 

For design of the model using matlab algorithm ode23s to solve the system 

numerically. Time dependent  switch was built by matlab function-type m-

files. The code of time dependent switch, differential equation and ev nts 

function were written below: 

function T_out = T(t)   %time dependent switch 
persistent TRF 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
StateA plot x1 

 
State A plot x2 

 
State B plot x1 

 
State B plot x2 

 
State C plot x1 

 
State C plot x2 



TRF=5e-3;  
k=((1e+8)-(1e-4))/TRF; 
t_red=mod(t, (1e-1)); 
if(0<=t_red)&&(t_red<TRF)  
    T_out=(1e-4)+k*t_red; 
elseif(TRF<=t_red)&&(t_red<(5e-2))  
    T_out=1e+8; 
elseif((5e-2)<=t_red)&&(t_red<((5e-2)+TRF)) 
    T_out=(1e+8)-k*(t_red-(5e-2)); 
elseif((5e-2
    T_out=1e-

    T_out=-5; 

function dxdt1= deqtaskb1(t,x)   %S1 open 

(x(2)*(Ron+Rmin)/(L*(R2+Ron+Rmin)))+(U(t)/L); 

function [value,isterminal,direction] = events(t,x) 

value = T(t)- p + [0;0]; 
isterminal = [1;1]; 
dir

Simulation 

To simulate the system, using matlab built in function ode23s with the solver 

form:  

[t,x,te,xe,ie] = ode23s(@deq,[tstart tfinal],x0, options); 

The result for plot x1 and x2 is shown in figure 5.5. With time interval 0

0,3s, it took 50.511835s to simulate this task. 

 

 

Figure 5.5 Plot x1 and x2 classical simulation (matlab) 

)+TRF<=t_red)&&(t_red<(1e-1)) 
4; 

else 

end 

global L C R1 R2  
dxdt1(1,1) = (-x(1)*(R1+R2)/L)-(x(2)/L)+(U(t)/L); 
dxdt1(2,1) = (x(1)/C); 
function dxdt2= deqtaskb2(t,x)   %S1 close 
global L C R1 R2 Rmin Ron 
dxdt2(1,1) = (-x(1)*((R1*R2)+((R1+R2)*(Ron+Rmin)))/(L*(R2+Ron+Rmin)))-

dxdt2(2,1) = (x(1)*(Ron+Rmin)/(C*(R2+Ron+Rmin)))-(x(2)/(C*(R2+Ron+Rmin))); 

global p 

ection = [0;0];  

 … 

 
plot x2 
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plot x1 



5.3.1.3 Different Diode Models 

Design of Model 

For design of the model using matlab algorithm ode15i to solve the system 

numerically in implicit form. The function for diode B and diode C are 

simila ferent is in thermal voltage VT, where in diode B, VT is a 

variable and in diode C, VT is a function. The code of differential equation, 

events function and thermal voltage VT were written below: 

function dxdt = f(t,x,xp)   %diode A 
global L C R1 R2 Rmin Ron ids VT R 
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L) 
        (x(1)/C)-((ids*(exp(((R2*C*xp(2))-x(2))/VT)-1))/C)];  
 
function dxdt = f1(t,x,xp)  %diode B & C, where in B   VT=0.04 
global L C R1 R2 Rmin Ron ids VT R    in C   VT=VT(t) 
%VD/VT maxexp 
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L) 
        (x(1)/C)-((ids*(exp(((R2*C*xp(2))-x(2))/VT)-1))/C)+(((R2*C*xp(2))-x(2))/(R*C))]  
 
function dxdt = f2(t,x,xp) 
g  R2 Rmin Ron ids VT maxexp R 
%VD/VT>maxexp 
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L) 
(x(1 (exp(maxexp*(1+(((R2*C*xp(2)) + x(2)/VT))-maxexp))-1))/C)-
(((R2*C*xp(2))-x(2))/(R*C))]  
 
function [value,isterminal,direction] = events(t,x,xp)   
global R2 C VT maxexp 

isterminal = [1;1]; 
direction = [0;0];  
 
function VTout = VT(t)  %Thermal Voltage function for diode C 
VTout= ((30 * sin(2*pi*100*t))+310)*8.61734681e-5; 
End 

Simulation 

To simulate the system, using matlab built in function ode1 i

solver form:  

[tsol,xsol]=ode15i(@deq,[tstart tfinal],x0, xp0);   %for diode A 

[t,x,te,xe,ie] = ode15i(@deq,[tstart tfinal],x0, xp0, options);  %for diode B  

The result for plot x1 and x2 diode A, diode B and diode C is shown in figure 

5.6. With time interval 0 … 0,2s, it took 0,861165s to simulate diode A, 

1,016539s to simulate diode B and 0,958469s to simulate diode C. 
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r, the dif

lobal L C R1

)/C)-((ids*

value = (((R2*C*xp(2))+ x(2))/VT) - maxexp + [0;0]; 

5  with the 
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Figure 5.6 Plot x1 and x2 different diode models (matlab) 

 

5.3.1.4 Influence of Simulation Algorithms 

Design of Model 

For design of the model using matlab algorithm ode15i to solve th

t,x,xp) 
global L C R1 R2 Rmin Ron ids VT 
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L) 

e 

system numerically in implicit form. The code of differential equation were 

written below: 

function dxdt = f(

 
DiodeA plot x1 Diode A plot x2 

 
Diode B plot x1 

 
Diode B plot x2 

 
Diode C plot x2 
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Diode C plot x1 



(x(1)/C)-((ids*(exp(((R2*C*xp(2))-x(2))/VT)-1))/C)-((R2*C*xp(2))/(C*(Ron+Rmin)))-

 

Simulation 

To simulate the system, using ma

(x(2)/(C*(Ron+Rmin)))]  

tlab built in function ode15i with the solver 

 

Figure 5.7 Plot x1 and x2 influence of simulation algorithms (matlab) 

 

Using matlab build in function con  for calculation of condition of 

massmatrices. This t

ondition of system matrix from state A, state B and 

calculate the condition. The result are: 

- State A: condition = 143896,5027149321, 1-norm and infinite-norm 

- State B: condition = 287254,3405559489, 1-norm and infinite-norm 

- Task B: S1 open:  condition = 143896,5027149321, 1-norm and 

infinite-norm 

     condition = 143891,40289569343, 2-norm 

form:  

[tsol,xsol]=ode15i(@deq,[tstart tfinal],x0, xp0);  

The result for plot x1 and x2 is shown in figure 5.7. With time interval 0 … 

0,2s, it took 0,859261s to simulate this task. 

 
plot x2 
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plot x1 

d()

ask can only executed if the system matrix in explicit 

form, therefore only the c

task b(classical simulation) that can be calculated. It took 0,189968s to 

 

     condition = 143891,40289569343, 2-norm 

     condition = 287196,9122644086, 2-norm 



-      S1 close: condition = 287254,3405559489, 1-norm and 

infinite-norm 

     condition = 287196,9122644086, 2-norm 

 

For whole calculation and simulation, using Matlab/Simulink  version 7.4 

R2007a on PC  Intel Pentium D,  2 x 2,66 GHz. 

 

5.3.2 Simulink 

5.3.2.1 Hybrid Mod

5.3.2.1.1 Steady States 

 

For design of the model using only gain, add/substract and integrator block 

for differential equation and sine source block for the sinus voltage. Switc

block was used with threshold 0 and condition control signal  >= threshold 

for switching differential equation in state C. The model for state A, state B 

and state C was shown in figure 5.8. 

 

Simulation 

To simulate the system, using solver ode23 (Bogacki-Shampine) for state A 

and ode23s (stiff/Mod.Rosenbrock) for state B and state C, 1e-6 for relative 

tolerance and 0 … 0,2 as simulation interval. Plot x1 and x2 for each state is 

shown by figure 5.9. it took 1s to simulate state A, 0,5s to simulate state B and 

19,5s to simulate state C. 
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Figure 5.8 Model of the system steady states (simulink) 

 

State C 

88 

State A 

State B 



 

 

 

 

 

 

Figure l  a  steady states (s 5.9 P ot x1 nd x2 imulink) 
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5.3.2.1.2 Classical Simulation 

k 

for differential equation and sine source block for the sinus voltage. Time 

dependent switch was built by embedded matlab m code and switch block 

with threshold 1e-4 and condition control signal > threshold for switching 

differential equation in this model. The model for the system  was shown in 

figure 5.10. 

Design of Model 

For design of the model using only gain, add/substract and integrator bloc

 

Fig k) 

 

ure 5.10 Model of the system classical simulation (simulin

 

 

Figure 5.11 Plot x1 and x2 classical simulation (simulink) 

x1 

x2 
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Simulation 

To simulate the system, using solver ode23s (stiff/Mod.Rosenbrock), 1e-6 for 

relative tolerance and 0 … 0,3 as simulation interval. Plot x1 and x2 for this 

task is shown by figure 5.11. it took 5,5s to simulate this task. 

 

 

 

Diode C 

Figure 5.12 The model of the system different diode modes (simulink) 
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Figure 5.13 Plot x1 and x2 different diode models (simulink) 

 

 

 

x1 
 
 

 
 
 
x2

x1 
 
 
 
Diode B 
 
 
 
x2

x1 
 
 
 

x2

92 
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5.3.2.1.3 Different Diode Models 

Design of Model 

For design of the model for diode A using only gain, add/substract and 

) for switching differential equation in 

diod  B, with changing 1 gain 

bloc  define the function of VT 

(VD/ (t)). T as shown in figure 

5.12. 

Simulation 

To simulate the system, using solver ode45 (Dorman-Prince), 1e-6 for 

relative tolerance and 0 … 0,2 as simulation interval. Plot x1 and x2 for this 

task is shown by figure 5.13. it took 153s to simulate diode A, .183s to 

simulate diode B and 213s to simulate diode C. 

integrator block for differential equation , sine source block for the sinus 

voltage and math function block for exponential function. For diode B, the 

design is similar with diode A but with addition switch block (threshold 15, 

condition: control signal > threshold

e B. For diode C, the design based on diode

k (VD/VT) with 1 subsystem block to

VT he model for diode A, diode B and diode C w

 

 

Figure 5.14 Model of the system influence of simulation algorithms (simulink) 
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5.3.2.1.4 Influence of Simulation Algorithms 

Design of Model 

For design of the model for this task using only gain, add/substract and 

integrator block for differential equation , sine source block for the sinus 

voltage and math function block for exponential function. The model of the 

system was shown in figure 5.14. 

Simulation 

To simulate the system, using solver ode45 (Dorman-Prince), 1e-5 for 

relative tolerance and 0 … 0,2 as simulation interval. Plot x1 and x2 for this 

task is shown by figure 5.15. it took 255s to simulate this task. 

For calculation of condition of massmatrices, can’t be done by simulink, 

because simulink didn’t have block function cond() in their library, therefore 

no calculation of condition for simulink. 

For whole calculation and simulation, using Matlab/Simulink  version 7.4 

R2007a on PC  Intel Pentium D,  2 x 2,66 GHz. 

 

 

Figure 5.15 Plot x1 and x2 influence of simulation algorithms (simulink) 

5.3.2.2 Stateflow 

Looking from all the equation comparison 20 above, only state C, task B 

(classical simulation), diode B and diode C that can be modelled in stateflow 

mode, because they have switching differential equation in their equation. 

 
 
 
 
x2 
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x1 
 
 



But stateflow have restriction in their system, they don’t allowed any value 

from algebraic loop as an input or event trigger, therefore only task 

B(classical simulation) that can be simulated in stateflow mode in simulink, 

because only task B that didn’t have algebraic loop in its model. 

 

 

Figure 5.16 Model of the system classical simulation (stateflow) 

 

5.3.2.2.1Classical Simulation 

Design of Model  

For d

ial equation and sine source block for the sinus voltage. Time 

stateflow 

model 

95 

esign of the model using only gain, add/substract and integrator block 

for different

dependent switch was built by embedded matlab m code, stateflow block 

was used to send a control signal to the switch block(threshold 1e-4 and 



condition control signal > threshold) fo  switching differential equation in 

was shown in figure 5.16. 

r

this model. The model for the system 

Simulation 

To simulate the system, using solver ode45 (Dorman-Prince), 1e-5 for 

relative tolerance and 0 … 0,2 as simulation interval. Plot x1 and x2 for this 

task is shown by figure 5.17. it took 1,5s to simulate this task.  

For whole calculation and simulation, using Matlab/Simulink  version 7.4 

R2007a on PC  Intel Pentium D,  2 x 2,66 GHz. 

 

 

 

Figure 5.17 Plot x1 and x2 classical simulation (stateflow) 

 

5.3.3 Dymola 

5.3.3.1 Hybrid Model 

5.3.3.1.1 Steady States 

Design of Model 

For design of the model using only gain, add/substract and integrator block 

for differential equation and sine source block for the sinus voltage. Switch 

block was controlled by less (<0) block for switching differential equation in 

state C. The model for state A, state B and state C was shown in figure 5.18. 

 

x1 
 
 
 
 

 

x2 
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Simula

To simulate the system, using solver DASSL, 1000 as numbers of interval, 1e-

 0 … 0,2 as simulation interval. Plot x1 and x2 for 

e 5.19. it took 0,046s to simulate state A, 0,031s to 

d 0,234s to simulate state C. 

tion 

4 for relative tolerance and

each state is shown by figur

simulate state B an

 

 

 

 

 

Figure 5.18 Model of the system steady states (dymola) 

Sta
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Figure 5.19 Plot x1 and x2 steady states (dymola) 

 

5.3.2.1.2 Classical Simulation 

Design of Model 

For design of the model using only gain, add/substract and integrator block 

for differential equation and sine source block for the sinus voltage. Time 

 

State A 
 
 
x2 

x1 
 
 
State B 
 

 
State C 
 
 
x2 
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dependent switch was built by switch block, less equal block and trapezoid 

source with parameter listed below: 

- Amplitude = 1e+8  - Offset  = 1e-4 

- Rising = 5e-3   - Falling = 5e-3 

- Width  = 5e-2   - Period = 1e-1 

Switch block was controlled by less equal( 0) block for switching differential 

equation in this model. The model for the system  was shown in figure 5.20. 

 

Figure 5.20 Model of the system classical simulation (dymola) 

 

 

 x2 classicaFigure 5.21 Plot x1 and l simulation (dymola) 
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Simulation 

To simulate the system, using solver DASSL, 1000 as numbers of interval, 1e-

4 for relative tolerance and 0 … 0,3 as simulation interval. Plot x1 and x2 for 

this task is shown by figure 5.21. It took 0,203s to simulate this task. 

 

 

 

Figure 5.22 The model of the system different diode models (dymola) 
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Diode A 



 

 

 

Figure 5.23 Plot x1 and x2 different diode models (dymola) 

5.3.2.1.3 Different Diode Models 

Design of Model 

For design of the model for diode A using only gain, add/substract and 

lock for differential equation , sine source block for the sinus 

x1 
 
 
Diode C 
 
 
x2 

x1 
 
 
Diode B 
 
 
x2 

x1 
 
 
Diode A 
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voltage and exponent block for exponential function. For diode B, the design 

is similar with diode A but with addition switch block and greater 

block(sending Boolean signal to switch block) for switching differential 

equation in diode B. For diode C, on diode B, with 

he model for diode A, diode B and diode C was shown in 

ver DASSL, 1000 as numbers of interval, 1e-

8 for rval. Plot x1 and x2 for 

this t mulate diode A, .5,42s to 

simu

the design based 

changing 1 gain block (VD/VT) with 1 subsystem block to define the function 

of VT (VD/VT(t)). T

figure 5.22. 

Simulation 

To simulate the system, using sol

 relative tolerance and 0 … 0,2 as simulation inte

ask is shown by figure 5.23. it took 2,66s to si

late diode B and 6,14s to simulate diode C. 

 

Figure 5.24 Model of the system influence of simulation algorithms (dymola) 

 

5.3.2.1.4 Influence of Simulation Algorithms 

esign of Model 

ly gain, add/substract and 

or differential equation , sine source block for the sinus 
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D

For design of the model for this task using on

integrator block f



voltage and exponent block for exponential function. The model of the 

system was shown in figure 5.24. 

Simulation 

To simulate the system, using solver DASSL, 1000 as numbers of interval, 1e-

8 for terval. Plot x1 and x2 for 

this task is shown by figure 5.25. it took 0,141s to simulate this task. 

For calculation of condition of massmatrices, can’t be done directly by 

dymola, because dymola didn’t have block function cond(), but dymola do 

have norm and inverse function in their library, therefore the calculation of 

condition based on equation below. 

Condition = norm(A,p) * norm(inv(A),p) [14] 

Where  A= system matrix (massmatrices) 

  p = norm condition number (1, 2 or infinite) 

 

 relative tolerance and 0 … 0,2 as simulation in

 

Figure 5.25 Plot x1 and x2 influence of simulation algorithms (dymola) 

 

As written before, only equation in exp e condition of 

mass  state A, state B and task B 

(clas n) that qualified for this task. 

The result: the calculation of condition of massmatrices can’t be done by 

dym ke inverse matrix for system matrix state 

A, state B and task B (too stiff). 

x1 
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x2 

licit form that th

matrices can be calculated, therefore only

sical simulatio

ola, because dymola can’t ma



For whole calculation and simulation, using Dymola version 6.0b on PC  Intel 

 x 2,66 GHz. 

 

ode. This time, 

tategraph didn’t have any restriction like stateflow in simulink.  

5.3.3.2.1 Steady States 

Design of Model 

For design of the model using only gain, add/substract and integrator block 

for differential equation and sine source block for the sinus voltage. Switch 

block was controlled by stategraph block for switching differential equation 

in state C. Stategraph get input signal from less (<0) block an r equal 

block ( 0) to define which state is active is. The model for state C was shown 

in figure 5.26. 

Pentium D,  2

5.3.3.2 Stategraph Model 

As written before in stateflow, only state C, task B (classical simulation), 

diode B and diode C that can be modelled in stategraph m

s

d greate

 

Figure 5.26 Model of the system steady states (stategraph) 
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Figure 5.27 Plot x1 and x2 steady states (dymola stategraph) 

 is shown by figure 5.27. It took 0,234s to simulate state C. 

 

5.3.2.2.2 Classical Simulation 

Design of Model 

For design of the model using only gain, add/substract and integrator 

block for differential equation and sine source block for the sinus voltage. 

Time dependent switch was built by switch block, less equal block and 

trapezoid source with parameter listed below: 

- Amplitude = 1e+8  - Offset  = 1e-4 

- Rising = 5e-3   - Falling = 5e-3 

- Width  = 5e-2   - Period = 1e-1 

Switch block was controlled by stategraph block for switching differential 

t signal from less equal ( 1e-4) block 

x1 
 
 
 
 
x2 
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Simulation 

To simulate the system, using solver DASSL, 1000 as numbers of 

interval, 1e-4 for relative tolerance and 0 … 0,2 as simulation interval. Plot x1 

and x2

equation in state C. Stategraph get inpu

and greater block (>1e-4) to define which state is active is. The model for the 

system was shown in figure 5.28. 



 

Figure 5.28 Model of the system classical simulation (stategraph) 

 

 

 

Figure 5.29 The model of the system different diode modes (stategraph) 

Diode C 

Diode B 
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Simulation 

To simulate the system, using solver DASSL, 1000 as numbers of interval, 1e-

 interval. Plot x1 and x2 for 

y figure 5.21. It took 0,235s to simulate this task. 

l 

For design of the model for diode B using only gain, add/substract and 

integ urce block for the sinus 

voltage and exponent block for exponential function. Switch block was 

controlled by stategraph block for switching differential equation in diode B. 

Stategraph get input signal from less equal ( <=15) block and greater equal 

block (>15) to define which state is active is. For diode C, the design based 

on diode B, with changing 1 gain block (VD/VT) with 1 subsystem block to 

define the function of VT (VD/VT(t)). The model for diode B and diode C was 

shown in figure 5.29. 

 

Simulation 

To simulate the system, using solver DASSL, 1000 as numbers  interval, 1e-

8 fo or 

own by figure 5.30. it took.5,08s to simulate diode B and 6,11s to 
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4 for relative tolerance and 0 … 0,3 as simulation

this task is shown b

 

5.3.2.2.3 Different Diode Models 

Design of Mode

rator block for differential equation , sine so

of

r relative tolerance and 0 … 0,2 as simulation interval. Plot x1 and x2 f

this task is sh

simulate diode C. 

For whole calculation and simulation, using Dymola version 6.0b on PC  Intel 

Pentium D,  2 x 2,66 GHz. 

 



 

 

Figure 5.30 Plot x1 and x2 different diode models (stategraph) 

 

5.3.3.3 Electrical Model 

5.3.3.3.1 Steady States 

odel 

 figure 5.31. 
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Design of M

For design of the model based on figure 5.2, using basic elec

resistor, capacitor, inductor and sine voltage source for state A and state B. 

Using diode ideal for state C. The model for state A, state B and state C was 

shown in

tric 



 

 

 

Figure 5.31 Model of the system steady states (dymola electrical) 

tate is shown by figure 5.19. it took 0,031s to simulate state A, 0,031s to 

simulate state B and 0,188s to simulate state C. 

al Simulation 

ource with parameter listed below: 

 

State B 

State C 
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State A

 

Simulation 

To simulate the system, using solver DASSL, 1000 as numbers of interval, 1e-

4 for relative tolerance and 0 … 0,2 as simulation interval. Plot x1 and x2 for 

each s

 

5.3.2.3.2 Classic

Design of Model 

For design of the model using basic electric resistor, capacitor, inductor and 

sine voltage source Time dependent switch was built by ideal closing switch 

block, less equal block and trapezoid s



- Amplitude = 1e+8  - Offset  = 1e-4 

- Rising = 5e-3   - Falling = 5e-3 

 = 5e-2   - Period = 1e-1 - Width 

Ideal closing switch block was controlled by less equal( 0) block for 

switching differential equation in this model. The model for the system was 

shown in figure 5.32. 

 

Figure 5.32 Model of the system classical simulation (dymola electrical

 

Simulation 

To simulate the system

) 

, using solver DASSL, 1000 as numbers of interval, 1e-

4 for relative tolerance and 0 … 0,3 as simulation interval. Plot x1 and x2 for 

this task is shown by figure 5.21. It took 0,703s to simulate this task. 

 

5.3.2.3.3 Different Diode Models 

Design of Model 

For design of the model, based on state C by changing the type of diode. For 

diode A using ideal diode, for diode B using semiconductor diode and for 

diode C, using temperature diod ribed 

temperature as input for heating diode. The model for diode A is the same as 

state C, therefore the task for diode A won’t be needed again. The model for 

diode B and diode C was shown in figure 5.33. 
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e. Sinus function and presc



 

 

Figure 5.33 The model of the system different diode modes (dymola 

electrical) 

 

 

Figure 5.34 Plot x1 and x2 different diode models (dymola electrical) 
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Simulation 

er DASSL, 1000 as numbers of interval, 1e-

ance and 0 … 0,2 as simulation interval. Plot x1 and x2 for 

For design of the model based on figure 5.1 with all the switch closed and 

using e system was shown in figure 5.35. 

To simulate the system, using solv

8 for relative toler

this task is shown by figure 5.34. it took.4,08s to simulate diode B and 4,83s to 

simulate diode C. 

5.3.2.1.4 Influence of Simulation Algorithms 

Design of Model 

 ideal diode. The model of th

 

Figure 5.35 Model of the system influence of simulation algorithms (dymola 

electrical 

  

Figure 5.36 Plot x1 and x2 influence of simulation algorithm

x2 

s (dymola 

electrical 

 

 

x1 
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Simulation 

To simulate the system, using solver DASSL, 1000 as numbers of interval, 1e-

8 for relative tolerance and 0 … 0,2 as simulation interval. Plot x1 and x2 for 

this task is shown by figure 5.36. it took 0,094s to simulate this task. 

For whole calculation and simulation, using Dymola version 6.0b on PC  Intel 

Pentium

 

 States 

C*(R2+Ron+Rmin)*der(x2)= x1*(Ron+Rmin) - x2; 

 C 
; 

  if VDr< 0 then 
  L*der(x1)= -x1*R1 - VDr - U; 
  C*der(x2)= x1 - VDr*1e-5; 
  else 
  L*der(x1)= -x1*R1 - VDr*1e-5 - U; 
  C*der(x2)= x1 - VDr; 
  end if; 
 

Simulation 

To simulate the system, using solver DASSL, 1000 as numbers of interval, 1e-

4 for relative tolerance and 0 … 0,2 as simulation interval. Plot x1 and x2 for 

each state is shown by figure 5.19. it took 0,031s to simulate state A, 0,031s to 

simulate state B and 0,203s to simulate state C. 
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 D,  2 x 2,66 GHz.  

5.3.3.4 Modelica Text Mode 

5.3.3.4.1 Steady

Design of Model 

For design of the model, using the exact differential equation with modelica 

function der(x) as dx/dt in the equation. The equation for state A, state B and 

state C was written below: 

equation    //State A 
L*der(x1)= -x1*(R1+R2) - x2 + U; 
C*der(x2)= x1; 
 
equation    //State B 
L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 + U; 

 
equation    //State
VDr= (R2*C*der(x2)) + x2



5.3.2.4.2 Classical Simulation 

Design of Model 

For design of the model, using the exact differential equation with modelica 

function der(x) as dx/dt in the equation. Time dependent switch using 

algorithm below:  

equation  
t_ time, 1E-1); 
k=((1e+8)-(1e-4))/TRF; 
algorithm  
if  
  (0<=t_red) and (t_red<TRF) then 
    Trap:=(1e-4) + k*t_red; 
elseif  
      (TRF<=t_red)  and (t_red<(5e-2)) then 
    Trap:=1e+8; 

      ((5e-2)<=t_red) and (t_red<((5e-2)+TRF)) then 
    Trap:=(1e+8) - k*(t_red - (5e-2)); 
elseif  
      ((5e-2)+TRF<=t_red) and (t_red<(1e-1)) then 
    Trap:=1e-4; 
else 
    Trap:=-5; 
end if; 
   

Simulation 

To simulate the system, using solver DASSL, 1000 as numbers of interval, 1e-

4 for relative tolerance and 0 … 0,3 as simulation interval. Plot x1 and x2 for 

this task is shown by figure 5.21. It took 0,219s to simulate this task. 

 

5.3.2.4.3 Different Diode Models 

Design of Model 

For design of the model, using the exact differential equation with modelica 

function der(x) as dx/dt in the equation. The equation for diode A, diode B 

and diode C was written below: 

equation     //Diode A 
L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 - U; 
  C*der(x2)= x1 - ids*(exp(((R2*C*der(x2))+x2)/VT)-1); 
 
equation      //Diode B 
L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 - U; 
  VD= (R2*C*der(x2)) + x2; 
  C
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red = mod(

elseif  

TR = VD/VT; 



  if CTR > maxexp then 
  C*der(x2)= x1 - ids*(exp(maxexp*(1+CTR-maxexp))-1) + (VD/R); 

  CTR = VD/VT; 

  C*der(x2)= x1 - ids*(exp(maxexp*(1+CTR-maxexp))-1) + (VD/R); 
  else 

ion interval. Plot x1 and x2 for 

this task is shown by figure 5.23. it took 2,5s to simulate diode A, .3,77s to 

simul

 

5.3.2.4.4 Influence of Simulation Algorithms 

odel 

g solver DASSL, 1000 as numbers of interval, 1e-

8 for

For whole calculation and simulation, using Dymola version 6.0b on PC  Intel 

Pentium D,  2 x 2,66 GHz. 
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  else 
  C*der(x2)= x1 - ids*(exp(CTR)-1) + (VD/R); 
  end if; 
 
equation      //Diode C 
L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 - U; 
  VD= (R2*C*der(x2)) + x2; 
  VT= ((30 * sin(2*3.14159*100*time))+310)*8.61734681e-5; 

  if CTR > maxexp then 

  C*der(x2)= x1 - ids*(exp(CTR)-1) + (VD/R); 
  end if; 
 

Simulation 

To simulate the system, using solver DASSL, 1000 as numbers of interval, 1e-

8 for relative tolerance and 0 … 0,2 as simulat

ate diode B and 4,39s to simulate diode C. 

Design of M

For design of the model, using the exact differential equation with modelica 

function der(x) as dx/dt in the equation. The equation for this task was 

written below:  

equation 
L*der(x1)= -x1*R1 -VD - x2 - U; 
C*der(x2)= x1 - ids*(exp(VD/VT)-1) - (VD/(Ron+Rmin)); 

 

Simulation 

To simulate the system, usin

 relative tolerance and 0 … 0,2 as simulation interval. Plot x1 and x2 for 

this task is shown by figure 5.25. it took 0,125s to simulate this task. 



5.3.4 Mosilab 

5.3.4.1 Modelica Text Mode 

5.3.4.1.1 Steady States 

 

Design of Model 

F  

function der(x) as dx/dt in the equation. The equation for state A, state B and 

//State A 

 

Dr= (R2*C*der(x2)) + x2; 
VDr< 0 then 

)= -x1*R1 - VDr - U; 
  C*der(x2)= x1 - VDr*1e-5; 

 min step size, 0,08 

as max step size, 1.0 for relative tolerance and 0 … 0,2 as simulation interval. 

Plot x1 and x2 for each state is shown by figure 5.37. It took 1s to simulate 

state A, 0,2s to simulate state B and 13,4s to simulate state C. 

 

 

116 

or design of the model, using the exact differential equation with modelica

state C was written below: 

equation    
L*der(x1)= -x1*(R1+R2) - x2 + U; 
C*der(x2)= x1; 

equation    //State B 
L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 + U; 
C*(R2+Ron+Rmin)*der(x2)= x1*(Ron+Rmin) - x2; 
 
equation    //State C 
V
  if 
  L*der(x1

  else 
  L*der(x1)= -x1*R1 - VDr*1e-5 - U; 
  C*der(x2)= x1 - VDr; 
  end if; 
 
 

Simulation 

To simulate the system, using solver DASSL, 1e-6 as



 

 

 

Figure 5.37 Plot x1 and x2 steady states (mosilab) 
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5.3.4.1.2 Classical Simulation 

Design of Model 

For design of the model, using the exact differential equation with modelica 

function der(x) as dx/dt in the equation. Time dependent switch using 

algorithm below:  

equation  
t_red = mod(time, 1E-1); 
k=((1e+8)-(1e-4))/TRF; 
algorithm  
if  
  (0<=t_red) and (t_red<TRF) then 
    Trap:=(1e-4) + k*t_red; 
elseif  
      (TRF<=t_red)  and (t_red<(5e-2)) then 
    Trap:=1e+8; 
elseif  
      ((5e-2)<=t_red) and (t_red<((5e-2)+TRF)) then 
    Trap:=(1e+8) - k*(t_red - (5e-2)); 

    Trap:=1e-4; 
else 
    Trap:=-5; 
end if; 
   

Simulation 

To simulate the system, using solver DASSL, 1e-6 as min step size, 0,08 as 

max step size, 1.0 for relative tolerance and 0 … 0,3 as simulation interval. 

Plo is 

elseif  
      ((5e-2)+TRF<=t_red) and (t_red<(1e-1)) then 

t x1 and x2 for this task is shown by figure 5.38. It took 9,1s to simulate th

task. 

 

Figure 5.38 Plot x1 and x2 classical simulation (mosilab) 
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x1 
 
 



5.3.4.1.3 Different Diode Models 

Desig

For design of the model, using rential equation with modelica 

function der(x) as dx/dt in the equation. The equation for diode A, diode B 

 was written below: 

  if CTR > maxexp then 
xp*(1+CTR-maxexp))-1) + (VD/R); 

C*der(x2)= x1 - ids*(exp(CTR)-1) + (VD/R); 
  end if; 
 
equation      //Diode C 
L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 - U; 
  VD= (R2*C*der(x2)) + x2; 
  VT= ((30 * sin(2*3.14159*100*time))+310)*8.61734681e-5; 
  CTR = VD/VT; 
  if CTR > maxexp then 
  C*der(x2)= x1 - ids*(exp(maxexp*(1+CTR-maxexp))-1) + (VD/R); 
  else 

 

Simulation 

To simulate the system, using solver DASSL, 1e-8 as min step size, 1e-5 

as max step size, 1e-8 for relative tolerance and 0 … 0,2 as simulation 

interval. Plot x1 and x2 for this task is shown by figure 5.39. It took 47,9s to 

simulate diode A, .100,9s to simulate diode B and 110,7s to simulate diode C. 

 

119 

n of Model 

the exact diffe

and diode C

equation     //Diode A 
L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 - U; 
  C*der(x2)= x1 - ids*(exp(((R2*C*der(x2))+x2)/VT)-1); 
 
equation      //Diode B 
L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 - U; 
  VD= (R2*C*der(x2)) + x2; 
  CTR = VD/VT; 

  C*der(x2)= x1 - ids*(exp(maxe
  else 
  

  C*der(x2)= x1 - ids*(exp(CTR)-1) + (VD/R); 
  end if; 



 

 

 

Figure 5.39 Plot x1 and x2 different diode models (mosilab) 
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5.3.4

Design o

For design of the model, using the exact differential equation with modelica 

function der(x) as dx/dt in the equation. The equation for this task was 

x1*R1 -VD - x2 - U; 
C*der(x2)= x1 - ids*(exp(VD/VT)-1) - (VD/(Ron+Rmin)); 

 

.1.4 Influence of Simulation Algorithms 

f Model 

written below:  

equation 
L*der(x1)= -

 

Figure 5.40 Plot x1 and x2 influence of dimulation algorithms (mosilab) 

imul ion 

o sim ate the sy m, using solve ASSL, 1000 a bers of interval, 1e-

 0,2 as simulation interval. Plot x1 and x2 for 

this ta

For the calculation of condition of massmatrices can’t be done by mosilab, 

because mosilab didn’t have cond(), norm() and inv() in their core system. 

d simulation, using Mosilab version 3.1 on Notebook 

5.3.4.2 Statechart 

he same as previous, only state C, task B, diode B and diode C that can 

be simulated with statechart mode. 

 

x1 
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x2 

S at

T ul ste r D s num

8 for relative tolerance and 0 …

sk is shown by figure 5.40. it took 9,7s to simulate this task. 

For whole calculation an

Dell Latitude D630 Intel Centrino Duo. 

 

T



5.3

Design of Model 

For design of the model, using the exact differential equation with modelica 

io (x) t in the e  The statech stat

written below: 

Equ n     //s on 
s1 = if VDr >= else false; 
s2 = if VDr < en true else false; 
state t      //statechart a m 
    st abS ealc C extends State;  
        annotation(extent=[-103, 46,-
       te Sta anno (e nt=[- 60; - 6]); 
        St Stat o (extent=[-5 59; -38,55]); 
        State Initial (isInitial=true) annotation(extent=[-85,71; -83,69]); 

        end t
        trans
        A:= -
        end tran ion(points=[-79,56; -51,56]); 
        transition State2->State1 event s1 action 

osilabSC_idealchartSC;  

.4.2.1 Steady States 

funct n der  as dx/d quation. art for e C was 

atio tatechart equati
 0 then true 

0 th
char lgorith

ate C20Mosil C_id hartS
103; 46]); 

 Sta
ate 

te1 
e2 ann

tation
tation

xte 92,
1,

79,5

        transition Initial->State1 action 
        A:= 1;  

ransition annotation(points=[-84,69; -84,60]); 
ition State1->State2 event s2 action 
1; 

sition annotat

        A:= 1; 
        end transition annotation(points=[-51,57; -79,57]); 
    end C20M

 

 

Figure 5.41 Plot x1 and x2 steady states (mosilab statechart) 

 

SSL, 1e-6 as min step size, 0,08 as 

x1 

 
 
 
 
x2

122 

 

 

Simulation 

To simulate the system, using solver DA

max step size, 1.0 for relative tolerance and 0 … 0,2 as simulation interval. 



Plot x1 and x2 for each state is shown by figure 5.41. It took 14,1s to simulate 

state C

 

5.3.4.2.2 Classical Simulation 

er(x) as dx/dt in the equation. The statechart algorithm was the 

sam as 

written below: 

equation  
s1 = if Trap>1 ue else false; 
s2 = if Trap<=  true else false;if  

 

. 

Design of Model 

For design of the model, using the exact differential equation with modelica 

function d

e as previous in steady states. The statechart equation for this task w

e-4 then tr
1e-4 then

 

 

Figure 5.42 Plot x1 and x2 different diode models (mosilab statechart) 
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Simulation 

To simulate the system, using solver DASSL, 1e-6 as min step size, 0,08 as 

max s

Plot x1 an hown by figure 5.38. It took 8,8s to simulate this 

task. 

5.3.4.2.3 Different Diode Models 

Design of Model 

For design of the model, using the exact differential equation with modelica 

function der(x) as dx/dt in the equa rithm was the 

same as previous in steady states. The statechart equation for diode B and 

diode C was written below: 

equation
s2 = i
s1 = if CTR<=maxexp then true else false; 

Simulation 

To simulate the syst  1e-8 as min step size, 1e-5 as 

max step size, 1e-8 for rela l. 

Plot x1 and x2 for this task is shown by

diode B and 116,8s to

For whole calculation and simulation, usi

Dell Latitude D630 Intel Centrino Duo. 

 

5.3.5 Sim

5.3.5.1 Hybrid Mod

5.3.5.1.1 Steady States 

Design of Model 

For design of the model using only gain

for differential equation and signal generator for the sinus voltage. Relational 

changeover switch was controlled by  
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tep size, 1.0 for relative tolerance and 0 … 0,3 as simulation interval. 

d x2 for this task is s

 

tion. The statechart algo

     //Diode B and C 
f CTR>maxexp then true else false; 

em, using solver DASSL,

tive tolerance and 0 … 0,2 as simulation interva

 figure 5.42. It took.105,2s to simulate 

 simulate diode C. 

ng Mosilab version 3.1 on Notebook 

ulationX 

el 

, add/substract and integrator block 

 2 signal (s1<s2) for switching



differential equation in state C. The model for state A, state B and state C was 

shown in figure 5.43. 

 

 

 

Figure 5.43 Model of the system steady states (simulationX) 
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Figure 5.44 Plot x1 and x2 steady states (simulationX) 

Simulation 

To simulate the system, using solver BDF-method, 1e-14 as min step size, 1e-

8 as min output step size, 1e-5 for absolute tolerance, 1e-5 for relative 

tolerance and 0 … 0,2 as simulation interval. Plot x1 and x2 for each state is 

shown by figure 5.44. it took 0,7020s to simulate state A, 0,11181s to simulate 

state B and 9,1124s to simulate state C. 
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x1 
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State C 
 



5.3.5.1.2 Classical Simulation 

del 

e model using only gain, add/substract and integrator block 

tion and signal generator for the sinus voltage. Time 

odelica code and 

 if  

t_red - (5e-2)); 
 elseif  

  
equation 

(time, 1E-1); 
 k=((1e+8)-(1e-4))/TRF; 

sh

S

e-8 as min output step size, 1e-5 for absolute tolerance, 1e-5 for 

elative tolerance and 0 … 0,3 as simulation interval. Plot x1 and x2 for this 

 figure 5.46. It took 7,7191s to simulate this task. 
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Design of Mo

For design of th

for differential equa

dependent switch was built by type designer block using m

relational changeover switch block. Modelica code was written below: 

algorithm 

 (0<=t_red) and (t_red<TRF) then 
  Trap:=(1e-4) + k*t_red; 
 elseif  
 (TRF<=t_red)  and (t_red<(5e-2)) then 
 Trap:=1e+8; 
 elseif  
  ((5e-2)<=t_red) and (t_red<((5e-2)+TRF)) then 
 Trap:=(1e+8) - k*(

 ((5e-2)+TRF<=t_red) and (t_red<(1e-1)) then 
 Trap:=1e-4; 
 else 
 Trap:=-5; 
 end if; 

 t_red = mod

 

Relational changeover switch block was controlled by 2 signal (s1<=s2) for 

switching differential equation in this model. The model for the system was 

own in figure 5.45. 

 

imulation 

To simulate the system, using solver BDF-method, 1e-16 as min step 

size, 1

r

task is shown by



 

Figure 5.45 Model of the system classical simulation (simulationX) 

 

 

 

Figure 5.46 Plot x1 and x2 classical simulation (simulationX) 

5.3.5.1.3 Different Diode Models 

For design of the model for diode A using only gain, add/substract and 

integrator block for differential equation , signal generator for the sinus 

voltage and exponent block for exponential function. For diode B, the design 

is similar with diode A but with addition relational changeover switch block  

that was controlled by 2 signal(s1>s2) for switching differential equation in 

diode B. For diode C, the design based on diode B, with changing 1 gain 

block (VD/VT) with 2 signal generator(as sinus and constant), 1 

x1 

x2 
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Design of Model 



add/substract block, 1 gain block and 1 function block (as division) to define 

e function of VT (VD/VT(t)). The mth odel for diode A, diode B and diode C 

was shown in figure 5.47. 
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Figure 5.47 The model of the system different diode modes (simulationX) 



 

 

 

 

 

 

 

Figure 5.48 Plot x1 and x2 different diode models (simulationX) 
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Simulation 

To simulate the system, using solver BDF-method, 1e-18 as min step size, 1e-

rval. Plot x1 and x2 for this task is 

shown by figure 5.48. it took 8,9803s to

simulate diode B and 1307,6718s to simulate diode C. 

 

5.3.5.1.4 Influence

Design of Model 

For design of the model using only gain

for differential equation 

model of the system was shown in figure 5.49. 

8 as min output step size, 1e-5 for absolute tolerance, 1e-5 for relative 

tolerance and 0 … 0,2 as simulation inte

 simulate diode A, .10,0866s to 

 of Simulation Algorithms 

, add/substract and integrator block 

and signal generator for the sinus voltage. The 

 

Figure 5.49 Model of the system influence of simulation algorithms 

(simulationX) 

Simula

To sim

as min output step size, 1e-5 for absolute tolerance, 1e-5 for relative 

tole

shown . it took 560,5021s to simulate this task. 
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tion 

ulate the system, using solver BDF-method, 1e-8 as min step size, 1e-4 

rance and 0 … 0,2 as simulation interval. Plot x1 and x2 for this task is 

 by figure 5.50



For calculation of condition of massmatrices, can’t be done by 

tionX because simulationX didn’t have function that can calculate the 

ion of massmatrices.  

simula

condit

PC  In

For whole calculation and simulation, using SimulationX version 2.0 on 

tel Pentium D,  2 x 2,66 GHz. 

 

 

 

Figure 5.50 Plot x1 a

 

5.3

5.3.5

Design o

For design of the model based on figure 5.2 using resistor, inductor, 

capacitor and sine voltage source. For state C, ideal diode was used. The 

model for gure 5.51. 

Simula

size, 1

relativ

state i

simula

 

 

x2 
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x1 
 
 

 
 

nd x2 influence of simulation algorithms (simulationX) 

.5.2 Electrical Model 

.2.1 Steady States 

f Model 

 state A, state B and state C was shown in fi

 

tion 

To simulate the system, using solver BDF-method, 1e-14 as min step 

e-8 as min output step size, 1e-5 for absolute tolerance, 1e-5 for 

e tolerance and 0 … 0,2 as simulation interval. Plot x1 and x2 for each 

s shown by figure 5.44. It took 0,6697s to simulate state A, 0,0844s to 

te state B and 16,2727s to simulate state C. 



 

 

 

Figure 5.51 Model of the system steady states (simulationX electrical) 

5.3

esign of Model 

e odel based on state B changing 1 resistor with 1 ideal 

de that was used on hybrid model and 

rel

The m n by figure 5.52 

 

Simula

To simulate the system, using solver BDF-method, 1e-14 as min step size, 1e-

8 a

toleran

shown 3. It took 9,3952s to simulate this task. 

ate B 
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State A 

St

State C 

.5.2.2 Classical Simulation 

D

For d sign of the m

switch. The ideal switch as time dependent switch was controlled by type 

designer block using modelica co

ational changeover switch to assign when ideal switch open or closed. 

odel of the system was show

tion 

s min output step size, 1e-5 for absolute tolerance, 1e-5 for relative 

ce and 0 … 0,3 as simulation interval. Plot x1 and x2 for this task is 

 by figure 5.5



 

Figure 5.52 Model of the system classical simulation (simulationX electrical) 

 

 

Figure 5.53 Plot x1 and x2 classical simulation (simulationX electrical) 

 

5.3.5.2.3 Different Diode Models 

Design of Model 

For design of the model based on state C with different diode model, Model 

diode A is the same as state C using ideal diode, For model diode B using 

semiconductor diode and model diode C can’t be done by simulationX, 

because simulationX have only 2 type of diode. The model for diode B was 

shown in figure 5.54. 

 

x1 

x2 
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Figure 5.54 The model of the system for diode B (simulationX electrical) 

 

 

 

Figure 5.55 Plot x1 and x2 different for diode B (simulationX electrical) 

ulation Sim

To simulate the system, using solver BDF-method, 1e-14 as min step size, 1e-

tole

sho 96s to simulate diode B. 

Design of Model 

.1 with all switch closed.The model 

of the system was shown in figure 5.56. 

x1 

 
 
x2 

Diode B 

 
 
Diode B 

8 as min output step size, 1e-5 for absolute tolerance, 1e-5 for relative 

rance and 0 … 0,2 as simulation interval. Plot x1 and x2 for this task is 

wn by figure 5.55. It took 8,62

 

5.3.5.2.4 Influence of Simulation Algorithms 

For design of the model based on figure 5
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Figure 5.56 Model of the system influence of simulation algorithms 

(simulationX) 

 

8 as min output step size, 1e-5 for absolute tolerance, 1e-5 for relative 

 x2 for this task is 

shown by figure 5.57. it took 0,3801s to simulate this task. 

For whole calculation and simulation, using SimulationX version 2.0 on PC  

z. 

Simulation 

To simulate the system, using solver BDF-method, 1e-14 as min step size, 1e-

tolerance and 0 … 0,2 as simulation interval. Plot x1 and

Intel Pentium D,  2 x 2,66 GH

 

 

 

Figure 5.57 Plot x1 and x2 influence of simulation algorithms (simulationX) 

x1 
 
 
 
 
 
x2 



137 

6. Comparison 

6.1 Table of Result 

Based on the design and solutions of each comparison discussed in the 

previous chapter, the result can be tabulated as follow: 

nalyzed in chapter III, table 6-1 shows which software is able to complete 

-1 The Result of the simulation softwarecompleting the task for 

comparison 3 

 Dymola Mosilab SimulationX 

 

6.1.1. Comparison 3 

As a

the task.

Table 6

Matlab SimulinkTask 

T M S M S E T T S M E 

A  V X(1) X

 V 

 V 

 V 

V  

(2) 

 V 

 V 

V(2) 

 V 

 V 

V(2) 

 V 

 V 

 V(2) 

 V 

 V 

X(3)

 V 

X(4)

X(3)

 V 

X(4)

V(5) 

 V 

 V 

 V(5) 

 V 

 V 

(1) V

B  V 

C  V 

 

Note:  T = text mode     

M= hybrid model     

S= stateflow/stategraph/statechart mode 

E= Electrical model 

 task A, this task can be done only 

e. 

g the task using the same method “calling the eigenValue 

function” 

nable to complete task A, due to the lack of function to 

e the eigenvalue  

ask, because it does not have 

on (xy plot, phase plot) 

(1) Simulink is unable to complete

by using matlab cod

(2) Doin

(3) Mosilab is u

calculat

(4) Mosilab is unable to complete the t

any function to create a phase simulati



(5)  Doing the task with the same method, step one is to simulate the 

system and then proceed to tab analysis (natural frequencies and 

e time needed to simulate the task for 

 The list of the time needed to simulate the task for comparison 3 

 

second (s) 

(1) Because it is using the same method, therefore the 

mode shapes). 

 

Table 6-2 described the list of th

comparison 3. 

 

Table 6-2

 

 

 

 

 

 

 

 

 

 

 

Note:  All value is in 

timing would 

 

parison 5 

shows which software is able to 

ete the task.  

Matlab Simulink Dymola Task 

M S M S E T T 

A 0,1015 X

B 4,3442 

C 1,075 

 

4 

9,5 

X 

3 

2 

0,5 

0,047 

0,025 

=(1) 

0,063 

0,047 

=(1) 

0,047 

0,015 

=(1) 

0,047 

0,031 

also be the same 

6.1.2. Com

As analyzed in the chapter IV, table 6-3 

compl

 

 

Mosilab SimulationX Task 

T S M E 

A X X 

B 1,3 8,5 

X X C 

0,0723 

1,2528 

0,145 

0,0133 

0,8461 

0,11 
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Table 6-3 The Result of the simulation software completing the task for 

comparison 5 

Dymola Mosilab SimulationX Matlab Simulink Task 

T M S M S E T T S M E 

A  V   V   V   V   V 

B  V  V  V  V  V X(1) 

C  V  V  V  V  V X

D V V V V V X

X(1) 

(1)

  V 

 V 

V 

 V 

 V 

 

V 

  V 

 V 

 V 

V 

  V 

 V 

 V 

V 

X(2) 

X(2) 

X(2) 

X(2)  

(1)  V  V

 

Note: (1)&(2) Because comparison 5 itself  does not have any electrical 

al model can be applied for this 

ed the list of the time needed to simulate the task for 

n 5. 

able 6 4 The list of the time needed to simulate the task for comparison 5 

 

 Dymola 

circuit, therefore no electric

comparison. 

 
Table 6-4 describ

compariso

T -

Matlab Simulink Task 

 T M S M S E T 

 A 0,8903 0,5

 B X 

 
C X X X 

 
10,7892 3 14 D 

 

X 

9 

X 

0,047 

X 

X 

0,204 

0,062

X 

X 

0,25 

X 

X 

X 

X 

0,047 

X 

X 

0,187 
 

 

 

 

 

 

 

Mosilab SimulationX Task 

T S M E 

0,1 A 

B 

C X 

D 

X 

1,3 

0,3 

X 

X 

2,3 

0,0582 

X 

X 

0,434 

X 

X 

X 

X 
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Note:  - All value is in second (s) 

and C  does not have time for the simulation, because these 

 A. 

which software is able to complete 

e Result of the simulation software completing the task for 

comparison 20 

imulink Dymola Mosilab SimulationX 

- Task B 

tasks are only the result of data from task

 

6.1.3. Comparison 20 

As analysed in chapter V, table 6-5 shows 

the task. 

Table 6-5 Th

Matlab STask 

T M S M S E T T S M E 

A-sa  V  V X

sb  V  V 

sc  V

B V   V 

C-da V

db  V

dc 

ns
(1) 

 Vns
(1) 

 V 

 V 

 V 

X(3) 

X(3) 

 V

X(3) 

X(3) 

X(3) 

 V 

 V 

 V 

 V 

 V 

 V 

 V 

X(5) 

X(5) 

X(5) 

V 

V 

V 

V 

X(5) 

 V 

 V 

 V 

 V 

X(6) 

 V 

 Vdiff
(7) 

 Vdiff
(8) 

 V 

 V 

 V 

 V 

 V 

 V 

 V 

 V 

 V 

 V 

 V 

 V 

 V 

 V 

 V 

 V 

X(5) 

X(5) 

X(5) 

 V 

V 

V 

V 

X(5) 

 V 

 V 

 V 

 Vdiff
(10) 

 V 

V 

V 

V 

X(9)

 V 

V 

V 

V 

X(6) 

 V 

X(11) 

 Vdiff
(12) 

X(9)

(3) V 

ns
(1) 

ns
(1)  V 

D  Vns
(1)  V X(3) 

cond V  X(2) X(2)  X(4) X(4) X(4) X(4) X(9) X(9)

 

Note:  sa=state A  

sb= stateB 

sc= State C  

da= diode A  

 that its condition 

db= diode B 

dc= diode C 

ns= not satisfied 

cond= condition. Only the equation in explicit form

can be calculated 
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 diff= the plot is different than others. 

e task, but the result isn’t satisfactory. 

s task can only done by 

 code. 

e equation that have switching state and in explicit form can 

e modelled in stateflow model. But stateflow have restriction, 

es not allow algebraic loop inside their stateflow, that’s 

(4) Dymola can calculate indirect condition number with equation: 

, dymola can’t calculate condition because dymola 

t inverse the system matrix in it. Probably the matrix is too stiff. 

(5) Only the equation that have switching state and in explicit form can 

 in stategraph model in dymola and statechart mode in 

g heating diode made the plot different than others 

(8) The plot is slightly different than others. This plot is going to have a 

more stable result than the plot from other model and textual mode 

ionX can’t calculate condition number, 

ve any function for this task. 

The plot from hybrid model simulationX slightly different than 

others, although using the same signal block in electrical model 

nX  does not have other type of diode in electrical model 

: ideal diode and semiconductor diode, 

diode C for this task. 

(12) The plot is different than others and compared to the plot in 

number (8), this plot is already stable from the beginning, much 

ry than the result in 

 (1) Using ode15i can simulate th

(2) Simulink can’t calculate the condition, thi

using matlab

(3) Only th

b

which do

why only task B’s condition can be calculated.  

 cond = norm(A,p)*norm(inv(A,p)) 

 But in this task

can’

be modelled

mosilab 

(6) Diode A is the same as state C 

(7) Usin

(9) Mosilab and simulat

because they don’t ha

(10) 

simulationX. 

(11) Simulatio

- They only have 2 types

therefore there is no 

more like in the tesxt book theo actual situation 
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Below is Table 6-6 described the list of the time needed to simulate the task 

st of the time needed to simulate the task for comparison 20 

Simulink Dymola 

for comparison 20. 

Table 6-6 The li

 

 Matlab

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Task 

T M S M S E T 

A-sa 29,6353 1 

1,1946 sb 

1,4376 19,5 sc 

B 50,5118 5,5 

C-da 0,8612 153 

db 1,0165 

dc 0,9585 213 

D 

cond 0,19 

0,8593 

0,5 

183 

255 

X 

X 

X 

1,5 

X 

X 

X 

X 

0,046 

0,031 

0,234 

0,203 

2,66 

5,42 

6,14 

0,141 

X 

X 

0,234 

0,235 

X 

5,08 

6,11 

X 

X 

0,031 

0,031 

0,188 

0,703 

X 

4,08 

4,83 

0,094 

X 

0,031 

0,031 

0,203 

0,219 

2,5 

3,77 

4,39 

0,125 

X X X X 

Mosilab SimulationX Task 

T S M E 

A-sa 1 X 

sb 

sc 13,4 14,  

B 9,1 8,8 

C-da 

db 

dc 110,7 

0,2 

100,9 

9,7 

X 

X 

X 

105,2 

116,8 

X 

X 

0,7020 

0,1118 

9,1124 

7,7191 

8,9803 

10,0866 

1307,6718 

560,5021 

X 

0,6697 

0,0844 

16,2727 

9,3952 

X 

8,6296 

X 

0,3801 

X 

1

47,9 

D 

cond 
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Note:  - All value is in second (s) 

result (X), refer to table 6-5. 

antage and disadvantage 

vantage: 

, such as eigenvalue, norm, condition, etc.. 

 given 

help sections 

urred, the error message is very detail that user can 

tely knew what the problem is. 

erlook the data from simulation 

ial, that a new user can understand the algorithm 

ediately. 

vide internet newscenter which function as a forum for user so they can 

atlab user around the world to seek answers 

g: textual mode. 

ly solver that 

pute, around 125 Kb in stand by 

- The task that don’t have time 

 

 

6.2 Adv

6.2.1 Matlab 

Ad

- User friendly 

- Powerful package 

- Can do all calculation of matrix

- Can do all the ask thatt

- Very complete documentation inside their 

- When error occ

immedia

- Provide workspace, that user can ov

- Provide many free literatures in internet. 

- Provide step by step tutor

code imm

- Pro

correspondence with other m

should they run into problems while using the software. 

 

Disadvantage: 

- cost expensive 

- Have only 1 type modellin

- One of the solvers  is not working very well, ode15i is the on

can solve differential equation in implicit form. 

- Take up so many memory from the com

mode 
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6.2.2 Simulink 

Advantage: 

- User friendly 

- Powerful package 

- Very complete documentation inside their help sections 

or occurred, the error message is very detail that user can 

brid and stateflow 

ata from simulation 

 Provide many free literatures in internet. 

ovide step by step tutorial, that a new user can understand the algorithm 

m for user so they can 

- When err

immediately knew what the problem is. 

- Have 2 type of modelling: hy

- Provide workspace, that user can overlook the d

-

- Pr

code immediately. 

- Provide internet newscenter which function as a foru

correspondence with other simulink user around the world to seek answers 

lems while using the software.

h as eigenvalue, norm, condition, etc.. 

e, can’t do the task if there is any signal 

ock. 

tion in stateflow mode, can’t do the task if there is any loop 

s algebraic loop. 

 from the computer around 125 Kb in stand by 

3 Dymola 

should they run into prob

 

Disadvantage: 

- cost expensive 

- Can’t do all calculation of matrix, suc

- Give restriction in simulink mod

source inside the subsystem bl

- Give restric

inside the stateflow block such a

- Take up so many memory

mode 

 

6.2.

Advantage: 

- User friendly 

- Powerful package 

- Very fast simulation 



- Can do some calculation of matrix, such as eigenvalue, norm, inverse etc.. 

ed, the error message is very detail that user can 

r stategraph mode. 

elling: hybrid, electrical, stategraph and textual mode. 

iation of electrical model in their library. 

 Provide free literatures in internet. 

tand the algorithm of code. 

vide dymola forum that if user got question about their problem, can 

d ge er from user of dymola from 

erse stiff matrix. 

tion inside their help sections is not complete 

e workspace 

emory from the computer around 65 Kb in stand by 

 difficulty when encounters textual mode in dymola, because 

t modelica language. 

, the error message is very detail that user can 

oblem is. 

ve algebraic loop restriction in their statechart mode. 

rt. 
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- When error occurr

immediately knew what the problem is. 

- Very complete description for their model in the dymola library 

- Doesn’t have algebraic loop restriction in thei

- Have 4 type of mod

- Have many var

-

- Provide tutorial, that a new user can unders

- Pro

send a question to this place an t the answ

TU Kaiserslautern. 

- Provide demo version in their website 

 

Disadvantage: 

- Have problem to inv

- The documenta

- Do not provid

- Take up average m

mode 

- New user have

user must understand firs

 

6.2.4 Mosilab 

Advantage: 

- User friendly 

- When error occurred

immediately knew what the pr

- Doesn’t ha

- Have 2 type of mod lling: textual and statechae
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- Provide getting started and tutorial documentation, which enable new user 

 use mosilab. 

ot so powerful  

 all matrix calculation. 

 Do not provide documentation inside their help sections 

erating linux system 

, user must provide first a few small programs 

are installation. User must be an expert 

ew user will have difficulty when they encounter textual mode and 

ilab, because user must understand first modelica 

.2.5 SimulationX 

rred, the error message is so detail that user can 

eir model in the simulationX library 

ing: hybrid and electrical. 

al model in their library. 

 tutorial 

to understand how to

- Provide free software from their website. 

 

Disadvantage: 

- The package is n

- Can’t calculate

-

- Do not provide workspace 

- Can only works in op

- Before software installation

that support mosilab. 

- New user will have difficulty in softw 

of linux first. 

- N

statechart in mos

language. 

 

 6

Advantage: 

- User friendly 

- Powerful package 

- When error occu

immediately knew what the problem is. 

- Complete description for th

- Have 2 types of modell

- Have variation of electric

- Provide free literatures in internet. 

- Provide which enable new user to understand the algorithm code. 

r from ITI expert. 

- Provide ITI helpdesk that if user got question about their problem, can send 

a question to this place and get the answe



- Provide free student version in their website. 

ir code for new 

overlook the data from 

vantage: 

matrix calculation, only eigenvalues and eigenvector. 

between block. So many tangled and 

tor with other connector.  

tion inside their help sections 

 the software 

 by mode 

ner block, 

nderstand first modelica language. 

147 

- Provide type designer block, that user can define the

element type. 

- Provide list data in the form txt file, user can 

simulation 

 

Disad

- Can’t calculate all 

- Complicated view of connector 

tousled between one connec

- Not so complete documenta

- Take up a lot of time to execute

- Take up many memory from the computer around 85 Kb in stand

- New user will have difficulty when they encounters type desig

because user must u
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7. Conclusion and Suggestion 

ion can be 

can do all calculation of 

test simulation software. 

have the most variation type of modelling needed in this 

thesis. 

ave quite few not 

e longest time simulation is by simulationX to simulate task diode C 

. 

test time simulation is by dymola electrical model to simulate 

only do task B. The other tasks are 

have any function to calculate 

(y(x)). 

lab by using matlab built 

 computer 

ck. 

ionX provide time simulation in their 

ndow, mosilab in their 

rocess window and simulationX in their output bar 

ied result when encounter equation in 

7.1 Conclusion 

Base on result, advantage and disadavantage above, the conclus

made as follow: 

2. Matlab is the only simulation software that 

matrix. 

3. Dymola is the fas

4. Dymola 

5. Despite Matlab can do all task that was given, they h

satisfied result in comparison 20. This was because of using solver 

ode15i. The only solver that can solve the equation in implicit form, 

6. Th

in comparison 20 = 1307,6718s

7. The fas

task d in comparison 3 = 0,015s. 

8. Mosilab in comparison 3 can 

impossible, because mosilab didn’t 

eigenvalue and to plot y function x 

9. To measure the time simulation in mat

function tic toc. 

10. Measuring the time in simulink and stateflow, by looking

clo

11. Dymola, mosilab and simulat

software. Dymola in their message wi

simulation p

window. 

12. Only matlab that have not satisf

implicit form. 
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13. The different plot between equation model and electrical model in 

del is only the 

model by dymola and 

se of different algorithm 

diode, between the two simulation software. 

ymola, because inside the equation of 

this diode, they have 2 special dymola built in function, exlin and pow, 

which only available in dymola. 

the equation that 

they have 

aic loop as input or event 

 stiffer the equation is, the longer time required to simulate the 

9. Ranking time simulation from fastest to slowest between type of 

 dymola are: 

 ranking is also valid for other simulation 

itation for their step size time in 

42170943040401e-014 and dymola limit is 5.939787e-013. Smaller 

ulink will automatically set to this limit, but 

dymola will give failed and pop up an error message. 

task D comparison 20 because of in equation mo

approximation equation  for task D. 

14. The different plot between electrical 

simulationX in task D comparison 20 becau

and equation of ideal 

15. The simulation in dymola for task diode C electrical model heating 

diode can only be done by d

16. Stateflow, stategraph and statechart can only model 

has switching state. 

17. Stateflow can only model 1 task in comparison 20, because 

restriction which does not allow any algebr

in their stateflow block 

18. The

equation. 

1

modelling in

a. Textual mode 

b. Electrical model 

c. Hybrid model 

d. Stategraph model 

20. As written above, this

software.  

21. Matlab, Simulink and Dymola have lim

simulation. Matlab limit is 2.22045e-014, simulink limit is 

2.8

than that matlab and sim



22. Mosilab and simulationX don’t have step size limitation in their core 

he most efficient and 

odel the system based on equation. 

 have real time simulation by setting the stop time to 

infinite. The other simulation software didn’t have this feature. 

block in simulationX is very useful feature for expert 

w element type. 

imulink that have if, switch case, while loop and for loop block 

 Stateflow, stategraph and statechart are based on Petri nets theory and 

seful as controller in the system. 

acting data in task b and c in comparison 5 from plot result in 

ymola, Mosilab and simulationX, by pointing mouse cursor in the 

orkspace to extract data from simulation. 

cally calculate eigenvalue from every 

simulation. 

pert first to install mosilab in their computer. 

e and conclusion above, the 

an be made easier, like in windows, with step-

er shouldn’t need to provide initial small programs to support 

silab should have provides them in the 

ther solver that can solve problem in implicit 

form, not only ode15i, maybe in the future; there will be ode23i, 

ode45i, etc. 
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system. 

23. Modelling the system in modelica code is t

easiest way to m

24. Only simulink

25. Type designer 

user to define their code in ne

26. Only s

in their library. 

27.

very u

28. Extr

D

plot result. 

29. Matlab and simulink have w

30. Only simulationX that automati

31. User must be a linux ex 

 

7.1 Suggestion 

Based on result, advantage, disadvantag

suggestion can be made as follow: 

1. Installation of mosilab c

by-step installation wizard. 

2. Us

mosilab, before installation. Mo

first place for the user. 

3. Matlab should add anoo
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4. Dymola, mosilab, simulationX should add feature like workspace in 

for user to see the data result from 

p 

 restriction in their stateflow 

mulationX should add complete features of all 

 calculation. 

in their core system. 

rary to reduce user 

ary. 

dd feature for automatic time simulation 

odel in their library. 

 their library. 

 future reference, other comparison can be made with different 

e such as vensim, jsim, anylogic, java, C/C++ etc... 

matlab/simulink, it will make easier 

their simulation. 

5. Dymola and matlab/simulink should reduce their limitation in ste

size time. 

6. Simulink should delete algebraic loop

mode. 

7. Dymola, mosilab, si

matrix

8. Mosilab should add y(x) plot 

9. SimulationX should add more models in their lib

using type designer block. 

 Dymola, mosilab and simulation should add if, for loop, while loop, 10.

switch case block in their libr

11. Matlab and simulink should a

measurement. 

12. Dymola, mosilab and simulationX should add real time simulation 

feature (setting stop time to infinite). 

13. Simulink should add electrical m

14. SimulationX should add statechart and digital model in

15. For

simulation softwar
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APPENDIX 
SOURCE CODE 

Comparison 3  

Matlab 

function Aout=A(t) 
global VDC L1 C2 L3 C4 RL TRF 
Aout=[0 -1/L1 0 0; 1/C2 -1/(C2*R(t)) -1/C2 0;  
0 1/L3 -RL/L3 -1/L3; 0 0 1/C4 0]; 
End 
 
function R_out = R(t) 
global TRF 
TRF=1e-15;  
k=((5e+6)-(5e-2))/TRF; 
t_red=mod(t, (10e-6)); 
if(0<=t_red)&(t_red<TRF)  
    R_out=(5e-2)+k*t_red; 
elseif(TRF<=t_red)&(t_red<(5e-6))  
    R_out=5e+6; 
elseif((5e-6)<=t_red)&(t_red<((5e-6)+TRF)) 
    R_out=(5e+6)-k*(t_red-(5e-6)); 
elseif((5e-6)+TRF<=t_red)&(t_red<(10e-6)) 
    R_out=5e-2; 
else 
    R_out=-5; 
End 
 
function dx=deq(t,x) 
global VDC L1 C2 L3 C4 RL TRF 
b=[VDC/L1; 0; 0; 0]; 
dx=(A(t)*x)+b; 
end 
 
tic 
global VDC L1 C2 L3 C4 RL TRF 
TRF= 1e-15; L1= 79.9e-6; VDC= 5; C2= 17.9e-9; 
L3= 232e-6; C4= 9.66e-9; RL= 52.4; 
R0ff= eig(A(TRF)) 
ROn= eig (A(0)) 
Toc 
 

Dymola & Mosilab 

Modelica Text  
model C3Dymola_textv2  
constant Real L1 = 79.9E-6; constant Real C2 = 17.9E-9; 
constant Real L3 = 232.0E-6; constant Real C4 = 9.66E-9; 
constant Real VDC = 5; constant Real RL = 52.4; 
constant Real TRF = 1E-15;  
Real x1; Real x2; Real x3; Real x4; 
Real Rt; Real t_red; Real IRT; Real VRL; Real k; 
equation  
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t_red = mod(time, 10E-6); 
k=((5e+6)-(5e-2))/TRF; 
algorithm  
if  
  (0<=t_red) and (t_red<TRF) then 
    Rt:=(5e-2) + k*t_red; 
elseif  
      (TRF<=t_red)  and (t_red<(5e-6)) then 
    Rt:=5e+6; 
elseif  
      ((5e-6)<=t_red) and (t_red<((5e-6)+TRF)) then 
    Rt:=(5e+6) - k*(t_red - (5e-6)); 
elseif  
      ((5e-6)+TRF<=t_red) and (t_red<(10e-6)) then 
    Rt:=5e-2; 
else 
    Rt:=-5; 
end if; 
equation  
  L1*der(x1)= -x2 + VDC; 
  C2*der(x2)= x1 - (x2/Rt) - x3; 
  L3*der(x3)= x2 - (RL*x3) - x4; 
  C4*der(x4)= x3; 
IRT = x2/Rt; VRL = RL*x3; 
end C3Dymola_textv2; 
 
MOSILAB STATECHART 
model C3MosilabState  
constant Real L1 = 79.9E-6; constant Real C2 = 17.9E-9; 
constant Real L3 = 232.0E-6; constant Real C4 = 9.66E-9; 
constant Real VDC = 5; constant Real RL = 52.4; 
constant Real TRF = 1E-15; 
event discrete Boolean s1(start=false), s2(start=false); 
Real x1; Real x2; Real x3; Real x4; 
Real Rt; Real t_red; Real IRT; Real VRL; Real k; 
equation  
t_red = mod(time, 10E-6); 
k=((5e+6)-(5e-2))/TRF; 
algorithm  
if  
  (0<=t_red) and (t_red<TRF) then 
    Rt:=(5e-2) + k*t_red; 
elseif  
      (TRF<=t_red)  and (t_red<(5e-6)) then 
    Rt:=5e+6; 
elseif  
      ((5e-6)<=t_red) and (t_red<((5e-6)+TRF)) then 
    Rt:=(5e+6) - k*(t_red - (5e-6)); 
elseif  
      ((5e-6)+TRF<=t_red) and (t_red<(10e-6)) then 
    Rt:=5e-2; 
else 
    Rt:=-5; 
end if; 
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equation  
s1 = if Rt>=5e+6 then true else false; 
s2 = if Rt<=5e-2 then true else false; 
  L1*der(x1)= -x2 + VDC; 
  C2*der(x2)= x1 - (x2/Rt) - x3; 
  L3*der(x3)= x2 - (RL*x3) - x4; 
  C4*der(x4)= x3; 
IRT = x2/Rt; VRL = RL*x3; 
statechart  
    state C3MosilabStateSC extends State;  
        annotation(extent=[-104,104; 44,-43]); 
        State State1 annotation(extent=[-90,63; -77,59]); 
        State State2 annotation(extent=[-51,62; -38,58]); 
        State Initial (isInitial=true) annotation(extent=[-82,74; -80,72]); 
        transition Initial->State1 action 
        Rs:=5e+6; 
        end transition annotation(points=[-82,72; -82,63]); 
        transition State1->State2 event s2 action  
        Rs:= 5e-2; 
        end transition annotation(points=[-77,59; -51,59]); 
        transition State2->State1 event s1 action 
        Rs:= 5e+6; 
        end transition annotation(points=[-51,60; -77,60]); 
    end C3MosilabStateSC; 
end C3MosilabState; 
 
COMPARISON 5 

MATLAB 
function [t,y]=C5  
tic 
global p d  
tstart = 0; tfinal = 5; 
y0= [4.2 0.3]; C = [2.7E+6 0.4 3.5651205 5.5]; 
p=5.8; d=1; 
options = odeset('reltol',1e-11,'Events',@events); 
tout = tstart; yout = y0; 
teout = []; yeout = []; ieout = []; 
while tout(length(tout))<5 
% Call ODE Solver 
FUN = @(t,y)F(t,y,C); 
[t,y,te,ye,ie] = ode15s(FUN,[tstart tfinal],y0,options); 
  nt = length(t); 
  if y(nt)>=5.8 
     p=2.5; d=-1; C = [2.7E+6 -0.3 3.5651205 2.73]; end 
  if y(nt)<=2.5 
     p=5.8; d=1; C = [2.7E+6 0.4 3.5651205 5.5]; end 
  tout = [tout; t(2:nt)];   yout = [yout; y(2:nt,:)]; 
  teout = [teout; te]; yeout = [yeout; ye]; 
  ieout = [ieout; ie]; 
  % Set the new initial conditions 
  y0=[y(nt,1) y(nt,2)]; 
  tstart=t(nt); 
  options = odeset(options); 
end 
y1=yout(1:end,1); 
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plot(tout,y1); 
A=teout 
B=y1(length(y1)) 
toc 
% -------------------------------------------------------------------- 
function dydt = F(t, y, C) 
dydt(1,1) = C(1) * (y(2) + C(2) - y(1)); 
dydt(2,1) = C(3) * (C(4) - y(2)); 
% -------------------------------------------------------------------- 
function [value,isterminal,direction] = events(t,y) 
global p d 
value = y(1)- [p;0]; 
isterminal = [1;1]; 
direction = [d;1];  
 
DYMOLA & MOSILAB 

Modelica Text 
model C5Dymola_text2  
constant Real c1 = 2.7E+6; Real c2(start=0.4); constant Real c3 = 3.5651205; Real 
c4(start=5.5); 
Real y1(start=4.2); Real y2(start=0.3); 
algorithm  
  when (y1>=5.8) then 
     c2:=-0.3;      c4:=2.73; 
  end when; 
  when (y1<=2.5) then 
     c2:=0.4;      c4:=5.5; 
  end when; 
equation  
  der(y1)= c1*(y2 + c2 - y1); 
  der(y2)= c3*(c4 - y2); 
end C5Dymola_text2; 
 
 
MOSILAB STATECHART 
model C5MosilabState  
constant Real c1 = 2.7E+6; Real c2(start=0.4); constant Real c3 = 3.5651205; Real 
c4(start=5.5); 
Real y1(start=4.2); Real y2(start=0.3); 
event discrete Boolean s1(start=false), s2(start=false); 
equation 
s2 = if y1 >= 5.8 then true else false; 
s1 = if y1 <=2.5 then true else false; 
der(y1)=c1*(y2+c2-y1); 
der(y2)=c3*(c4-y2); 
statechart  
    state C5MosilabStateSC extends State;  
        annotation(extent=[-104,105; 45,-43]); 
        State State1 annotation(extent=[-90,63; -81,59]); 
        State State2 annotation(extent=[-58,62; -45,58]); 
        State Initial (isInitial=true) annotation(extent=[-82,74; -80,72]); 
        transition Initial->State1  
        end transition annotation(points=[-82,72; -82,63]); 
        transition State1->State2 event s2 action 

157 



        c2:= -0.3; c4:= 2.73; 
        end transition annotation(points=[-81,59; -77,60; -58,60]); 
        transition State2->State1 event s1 action 
        c2:= 0.4; c4:= 5.5; 
        end transition annotation(points=[-58,59; -77,59; -81,59]); 
    end C5MosilabStateSC; 
end C3MosilabState; 
Comparison 20 

MATLAB 

STEADY STATES 

function Source = U(t) 
Source= 14142.135623731 * sin((2*pi*50*t)+pi); 
end 
 
function dxdt= deqx(t,x) 
global L C R1 R2 
A=[-(R1+R2)/L -1/L; 1/C 0]; 
b=[U(t)/L; 0]; 
dxdt=(A*x)+b; 
end 
 
function dxdt= deqxB(t,x) 
global L C R1 R2 Rmin Ron 
A=[-((R1*R2)+((R1+R2)*(Ron+Rmin)))/(L*(R2+Ron+Rmin)) -
(Ron+Rmin)/(L*(R2+Ron+Rmin)); 
   (Ron+Rmin)/(C*(R2+Ron+Rmin)) -1/(C*(R2+Ron+Rmin))]; 
b=[U(t)/L; 0]; 
dxdt=(A*x)+b; 
end 
 
tic 
global L C R1 R2   %State A 
L= 3.18e-3; C= 22.1e-9; R1= 0.1; R2= 5; 
 [tsol,xsol]=ode23s('deqx',[0 2e-1],[0;0]); 
x1=xsol(1:end,1); x2=xsol(1:end,2); 
plot(tsol,x1); 
toc 
 
tic 
global L C R1 R2 Ron Rmin %StateB 
L= 3.18e-3; C= 22.1e-9; R1= 0.1; R2= 5; 
Ron=1e-4; Rmin=1e-4; 
 [tsol,xsol]=ode23s('deqxB',[0 2e-1],[0;0]); 
x1=xsol(1:end,1); x2=xsol(1:end,2); 
plot(tsol,x1); 
toc 
 
function C20StateC_exponent  %StateC 
tic 
global L C R1 R2 d R 
Ron = 1e-4; Rmin= 1e-4; L= 3.18e-3; C= 22.1e-9; 
R1= 0.1; R2= 5; d= -1; R=1e-5; 
x0= [0;0]; xp0=[0;0]; 

158 



options = odeset('Events',@events,'RelTol', 1e-7, 'AbsTol', 1e-7); 
tstart=0; tfinal=0.2; tout = 0; xout = x0'; 
teout = []; xeout = []; ieout = []; 
FUN=@(t,x,xp)f1(t,x,xp); 
while tout(length(tout))<0.2 
% Call ODE Solver 
[t,x,te,xe,ie]=ode15i(FUN,[tstart tfinal],x0,xp0,options); 
  nt = length(t);   
  tout = [tout; t(2:nt)]; 
  xout = [xout; x(2:nt,:)]; 
  dx1=xout(1:end,1); dx2=xout(1:end,2); 
  dx1dtall= diff(dx1); dx2dtall= diff(dx2); 
  nx= length(dx2); 
  dx2i=dx2dtall(nx-2); x2i= dx2(nx-1); 
  ctrl= ((R2*C*dx2i) + x2i); 
  if ctrl<0 
     FUN=@(t,x,xp)f2(t,x,xp); d=-1 ;end 
  if ctrl>0 
     FUN=@(t,x,xp)f1(t,x,xp); d=1 ;end 
  % Set the new initial conditions 
  x0=[x(nt,1); x(nt,2)]; 
  xp0=[dx1dtall(nx-1); dx2dtall(nx-1)]; 
  tstart=t(nt); 
  options = odeset(options); 
end 
x1=xout(1:end,1); x2=xout(1:end,2); 
plot(tout,x1); 
toc 
% -------------------------------------------------------------------- 
function dxdt = f1(t,x,xp) 
global L C R1 R2 R 
% VD<0 
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-(((R2*C*xp(2))+x(2))/L) 
        (x(1)/C)-((((R2*C*xp(2))+x(2))*R)/C)]  
% -------------------------------------------------------------------- 
function dxdt = f2(t,x,xp) 
global L C R1 R2 R 
% VD>=0 
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((((R2*C*xp(2))+x(2))*R)/L) 
        (x(1)/C)-((((R2*C*xp(2))+x(2))+R)/C)]   
% -------------------------------------------------------------------- 
function [value,isterminal,direction] = events(t,x,xp)   
global R2 C d 
value = ((R2*C*xp(2))+ x(2)) - [0;0]; 
isterminal = [1;1]; 
direction = [0;d];  
 
CLASSICAL SIMULATION 
function T_out = T(t) 
persistent TRF 
TRF=5e-3;  
k=((1e+8)-(1e-4))/TRF; 
t_red=mod(t, (1e-1)); 
if(0<=t_red)&&(t_red<TRF)  
    T_out=(1e-4)+k*t_red; 
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elseif(TRF<=t_red)&&(t_red<(5e-2))  
    T_out=1e+8; 
elseif((5e-2)<=t_red)&&(t_red<((5e-2)+TRF)) 
    T_out=(1e+8)-k*(t_red-(5e-2)); 
elseif((5e-2)+TRF<=t_red)&&(t_red<(1e-1)) 
    T_out=1e-4; 
else 
    T_out=-5; 
end 
 
function C20TaskBV2_withevents 
tic 
global L C R1 R2 Rmin Ron p 
Ron = 1e-4; Rmin= 1e-4; L= 3.18e-3; C= 22.1e-9; 
R1= 0.1; R2= 5; p=1e-4; x0= [0 0]; 
options = odeset('Events',@events); 
tstart=0; tfinal=0.3; tout = 0; xout = x0; 
FUN=@(t,x)deqtaskb1(t,x); 
while tout(length(tout))<0.3 
% Call ODE Solver 
[t,x,te,xe,ie]=ode23s(FUN,[tstart tfinal],x0,options); 
  nt = length(t);   
  tout = [tout; t(2:nt)]; 
  xout = [xout; x(2:nt,:)]; 
  Tu= t(nt); 
  if T(Tu)<=1e-4 
     p=1e+8; FUN=@(t,x)deqtaskb2(t,x); end 
  if T(Tu)>=1e+8 
     p=1e-4; FUN=@(t,x)deqtaskb1(t,x); end 
% Set the new initial conditions 
  x0=[x(nt,1) x(nt,2)];  
  tstart=t(nt); 
  options = odeset(options); 
end 
x1=xout(1:end,1); x2=xout(1:end,2); 
plot(tout,x2); 
toc 
% -------------------------------------------------------------------- 
function dxdt1= deqtaskb1(t,x) 
global L C R1 R2  
dxdt1(1,1) = (-x(1)*(R1+R2)/L)-(x(2)/L)+(U(t)/L); 
dxdt1(2,1) = (x(1)/C); 
% -------------------------------------------------------------------- 
function dxdt2= deqtaskb2(t,x) 
global L C R1 R2 Rmin Ron 
dxdt2(1,1) = (-x(1)*((R1*R2)+((R1+R2)*(Ron+Rmin)))/(L*(R2+Ron+Rmin)))-
(x(2)*(Ron+Rmin)/(L*(R2+Ron+Rmin)))+(U(t)/L); 
dxdt2(2,1) = (x(1)*(Ron+Rmin)/(C*(R2+Ron+Rmin)))-(x(2)/(C*(R2+Ron+Rmin))); 
% -------------------------------------------------------------------- 
function [value,isterminal,direction] = events(t,x) 
global p 
value = T(t)- p + [0;0]; 
isterminal = [1;1]; 
direction = [0;0];  
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DIFFERENT DIODE MODELS 
 
function C20StateC  %Diode A 
tic 
global L C R1 R2 Rmin Ron ids VT 
Ron = 1e-4; Rmin= 1e-4; L= 3.18e-3; C= 22.1e-9; 
R1= 0.1; R2= 5; ids= 1e-6; VT= 0.04; maxexp=15; R=1e+8; 
 [tsol,xsol]=ode15i(@f,[0 2e-1],[0;0],[0;0]); 
x1=xsol(1:end,1); x2=xsol(1:end,2); 
plot(tsol,x1); 
toc 
% -------------------------------------------------------------------- 
function dxdt = f(t,x,xp) 
global L C R1 R2 Rmin Ron ids VT R 
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L) 
        (x(1)/C)-((ids*(exp(((R2*C*xp(2))-x(2))/VT)-1))/C)];  
 
function C20StateC_exponent  %Diode B 
tic 
global L C R1 R2 Rmin Ron ids VT maxexp R 
Ron = 1e-4; Rmin= 1e-4; L= 3.18e-3; C= 22.1e-9; 
R1= 0.1; R2= 5; ids= 1e-6; VT= 0.04; maxexp=15; R=1e+8; 
x0= [0;0]; xp0=[0;0]; 
options = odeset('Events',@events,'Refine',100); 
tstart=0; tfinal=0.2; tout = 0; xout = x0'; 
teout = []; xeout = []; ieout = []; 
FUN=@(t,x,xp)f1(t,x,xp); 
while tout(length(tout))<0.2 
% Call ODE Solver 
[t,x,te,xe,ie]=ode15i(FUN,[tstart tfinal],x0,xp0,options); 
  nt = length(t);   
  tout = [tout; t(2:nt)]; 
  xout = [xout; x(2:nt,:)]; 
  dx1=xout(1:end,1); dx2=xout(1:end,2); 
  dx1dtall= diff(dx1); dx2dtall= diff(dx2); 
  nx= length(dx2); 
  dx2i=dx2dtall(nx-2); x2i= dx2(nx-1); 
  ctrl= ((R2*C*dx2i) + x2i)/VT; 
  if ctrl<maxexp 
     FUN=@(t,x,xp)f2(t,x,xp); end 
  if ctrl>maxexp 
     FUN=@(t,x,xp)f1(t,x,xp); end 
  % Set the new initial conditions 
  x0=[x(nt,1); x(nt,2)]; 
  xp0=[dx1dtall(nx-1); dx2dtall(nx-1)]; 
  tstart=t(nt); 
  options = odeset(options); 
end 
x1=xout(1:end,1); x2=xout(1:end,2); 
plot(tout,x1); 
toc 
% -------------------------------------------------------------------- 
function dxdt = f1(t,x,xp) 
global L C R1 R2 Rmin Ron ids VT R 
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L) 
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        (x(1)/C)-((ids*(exp(((R2*C*xp(2))-x(2))/VT)-1))/C)+(((R2*C*xp(2))-x(2))/(R*C))]  
% -------------------------------------------------------------------- 
function dxdt = f2(t,x,xp) 
global L C R1 R2 Rmin Ron ids VT maxexp R 
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L) 
        (x(1)/C)-((ids*(exp(maxexp*(1+(((R2*C*xp(2)) + x(2)/VT))-maxexp))-1))/C)-
(((R2*C*xp(2))-x(2))/(R*C))]  
% -------------------------------------------------------------------- 
function [value,isterminal,direction] = events(t,x,xp)   
global R2 C VT maxexp 
value = (((R2*C*xp(2))+ x(2))/VT) - maxexp + [0;0]; 
isterminal = [1;1]; 
direction = [0;0];  
 
function VTout = VT(t)  %VT(t) for Diode C 
VTout= ((30 * sin(2*pi*100*t))+310)*8.61734681e-5; 
end 
 
function C20StateC_exponent_temp  %Diode C 
tic 
global L C R1 R2 Rmin Ron ids maxexp R 
Ron = 1e-4; Rmin= 1e-4; L= 3.18e-3; C= 22.1e-9; 
R1= 0.1; R2= 5; ids= 1e-6; VT= 0.04; maxexp=15; R=1e+8; 
x0= [0;0]; xp0=[0;0]; 
options = odeset('Events',@events); 
tstart=0; tfinal=0.2; tout = 0; xout = x0'; 
teout = []; xeout = []; ieout = []; 
FUN=@(t,x,xp)f1(t,x,xp); 
while tout(length(tout))<0.2 
% Call ODE Solver 
[t,x,te,xe,ie]=ode15i(FUN,[tstart tfinal],x0,xp0,options); 
  nt = length(t);   
  tout = [tout; t(2:nt)]; 
  xout = [xout; x(2:nt,:)]; 
  dx1=xout(1:end,1); dx2=xout(1:end,2); 
  dx1dtall= diff(dx1); dx2dtall= diff(dx2); 
  nx= length(dx2); 
  dx2i=dx2dtall(nx-2); x2i= dx2(nx-1); 
  ctrl= ((R2*C*dx2i) + x2i)/VT; 
  if ctrl<maxexp 
     FUN=@(t,x,xp)f2(t,x,xp); end 
  if ctrl>maxexp 
     FUN=@(t,x,xp)f1(t,x,xp); end 
  % Set the new initial conditions 
  x0=[x(nt,1); x(nt,2)]; 
  xp0=[dx1dtall(nx-1); dx2dtall(nx-1)]; 
  tstart=t(nt); 
  options = odeset(options); 
end 
x1=xout(1:end,1); x2=xout(1:end,2); 
plot(tout,x1); 
toc 
% -------------------------------------------------------------------- 
function dxdt = f1(t,x,xp) 
global L C R1 R2 Rmin Ron ids R 
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L) 
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        (x(1)/C)-((ids*(exp(((R2*C*xp(2))-x(2))/VT(t))-1))/C)+(((R2*C*xp(2))-x(2))/(R*C))]  
% -------------------------------------------------------------------- 
function dxdt = f2(t,x,xp) 
global L C R1 R2 Rmin Ron ids maxexp R 
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L) 
        (x(1)/C)-((ids*(exp(maxexp*(1+(((R2*C*xp(2)) + x(2)/VT(t)))-maxexp))-1))/C)-
(((R2*C*xp(2))-x(2))/(R*C))]  
% -------------------------------------------------------------------- 
function [value,isterminal,direction] = events(t,x,xp)   
global R2 C maxexp 
value = (((R2*C*xp(2))+ x(2))/VT(t)) - maxexp + [0;0]; 
isterminal = [1;1]; 
direction = [0;0];  
 
INFLUENCE OF SIMULATION ALGORITHMS 
 
function C20_subsystem3 
tic 
global L C R1 R2 Rmin Ron ids VT 
Ron = 1e-4; Rmin= 1e-4; L= 3.18e-3; C= 22.1e-9; 
R1= 0.1; R2= 5; ids= 1e-6; VT= 0.04; 
 [tsol,xsol]=ode15i(@f,[0 2e-1],[0;0],[0;0]); 
x1=xsol(1:end,1); 
x2=xsol(1:end,2); 
plot(tsol,x2); 
toc 
% -------------------------------------------------------------------- 
function dxdt = f(t,x,xp) 
global L C R1 R2 Rmin Ron ids VT 
dxdt = [-(U(t)/L)-((x(1)*R1)/L)-((R2*C*xp(2))/L)-(x(2)/L) 
        (x(1)/C)-((ids*(exp(((R2*C*xp(2))-x(2))/VT)-1))/C)-((R2*C*xp(2))/(C*(Ron+Rmin)))-
(x(2)/(C*(Ron+Rmin)))]  
 
DYMOLA & MOSILAB 

Modelica Text  

model C20DymolaStateA_text  
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4; 
constant Real L = 3.18E-3; constant Real C = 22.1E-9; 
Real x1; Real x2; Real U; 
equation  
  U = 14142.135623731 * sin( (2*3.14159*50*time) + 3.14159); 
  L*der(x1)= -x1*(R1+R2) - x2 + U; 
  C*der(x2)= x1; 
end C20DymolaStateA_text; 
 
model C20DymolaStateB_text  
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4; 
constant Real Ron = 1E-4; constant Real L = 3.18E-3; constant Real C = 22.1E-9; 
Real x1; Real x2; Real U; 
equation  
  U = 14142.135623731 * sin( (2*3.14159*50*time) + 3.14159); 
  L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 + U; 
  C*(R2+Ron+Rmin)*der(x2)= x1*(Ron+Rmin) - x2; 
end C20DymolaStateB_text; 
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model C20DymolaStateC_Ideal_text  
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4; 
constant Real Ron = 1E-4; constant Real L = 3.18E-3; constant Real C = 22.1E-9; 
Real x1; Real x2; Real U; Real VC; Real IL; Real VD; Real VDr; Real ID; 
equation  
  U = 14142.135623731 * sin( (2*3.14159*50*time) + 3.14159); 
  VDr= (R2*C*der(x2)) + x2; 
  if VDr< 0 then 
  L*der(x1)= -x1*R1 - VDr - U; 
  C*der(x2)= x1 - VDr*1e-5; 
  else 
  L*der(x1)= -x1*R1 - VDr*1e-5 - U; 
  C*der(x2)= x1 - VDr; 
  end if; 
VD= x2-x1; ID= x1; IL= -x1; VC= -x2 + x1; 
end C20DymolaStateC_Ideal_text; 
 
CLASSICAL SIMULATION 
 
model C20DymolaStateB_taskB_text  
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4; 
constant Real Ron = 1E-4; constant Real L = 3.18E-3; constant Real C = 22.1E-9; 
constant Real TRF = 5e-3; Real x1; Real x2; Real U; Real t_red; Real k; Real Trap; 
equation  
t_red = mod(time, 1E-1); 
k=((1e+8)-(1e-4))/TRF; 
algorithm  
if  
  (0<=t_red) and (t_red<TRF) then 
    Trap:=(1e-4) + k*t_red; 
elseif  
      (TRF<=t_red)  and (t_red<(5e-2)) then 
    Trap:=1e+8; 
elseif  
      ((5e-2)<=t_red) and (t_red<((5e-2)+TRF)) then 
    Trap:=(1e+8) - k*(t_red - (5e-2)); 
elseif  
      ((5e-2)+TRF<=t_red) and (t_red<(1e-1)) then 
    Trap:=1e-4; 
else 
    Trap:=-5; 
end if; 
equation  
  U = 14142.135623731 * sin( (2*3.14159*50*time) + 3.14159); 
  if Trap <= 1e-4 then 
  L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 + U; 
  C*(R2+Ron+Rmin)*der(x2)= x1*(Ron+Rmin) - x2; 
  else 
  L*der(x1)= -x1*(R1+R2) - x2 + U; 
  C*der(x2)= x1; 
  end if; 
end C20DymolaStateB_taskB_text; 
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DIFFERENT DIODE MODELS 
 
model C20DymolaStateC_text_simple  
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4; 
constant Real Ron = 1E-4; constant Real L = 3.18E-3; constant Real C = 22.1E-9; 
constant Real ids = 1e-6; constant Real VT = 0.04; 
Real x1; Real x2; Real U; Real VC; Real IL; Real VD; Real ID; 
equation  
  U = 14142.135623731 * sin( (2*3.14159*50*time) + 3.14159); 
  L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 - U; 
  C*der(x2)= x1 - ids*(exp(((R2*C*der(x2))+x2)/VT)-1); 
VD= (R2*C*der(x2)) + x2; 
ID= x1 - (C*der(x2)); 
IL= -x1; VC= -x2; 
end C20DymolaStateC_text_simple; 
 
model C20DymolaStateC_text_simple_exponentv2  
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4; 
constant Real Ron = 1E-4; constant Real L = 3.18E-3; constant Real C = 22.1E-9; 
constant Real ids = 1e-6; constant Real VT = 0.04; constant Real maxexp = 15; constant Real R 
= 1e+8; 
Real x1; Real x2; Real U; Real VC; Real IL; Real VD; Real ID; Real CTR; 
equation  
  U = 14142.135623731 * sin( (2*3.14159*50*time) + 3.14159); 
  L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 - U; 
  VD= (R2*C*der(x2)) + x2; 
  CTR = VD/VT; 
  if CTR > maxexp then 
  C*der(x2)= x1 - ids*(exp(maxexp*(1+CTR-maxexp))-1) + (VD/R); 
  else 
  C*der(x2)= x1 - ids*(exp(CTR)-1) + (VD/R); 
  end if; 
ID= x1 - (C*der(x2)); IL= -x1; VC= -x2; 
end C20DymolaStateC_text_simple_exponentv2; 
 
model C20DymolaStateC_text_simple_exponentv2_temp  
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4; 
constant Real Ron = 1E-4; constant Real L = 3.18E-3; constant Real C = 22.1E-9; 
constant Real ids = 1e-6; constant Real maxexp = 15; constant Real R = 1e+8; 
Real x1; Real x2; Real U; Real VC; Real IL; Real VD; Real ID; Real CTR; Real VT; 
equation  
  U = 14142.135623731 * sin( (2*3.14159*50*time) + 3.14159); 
  L*der(x1)= -x1*R1 -R2*C*der(x2) - x2 - U; 
  VD= (R2*C*der(x2)) + x2; 
  VT= ((30 * sin(2*3.14159*100*time))+310)*8.61734681e-5; 
  CTR = VD/VT; 
  if CTR > maxexp then 
  C*der(x2)= x1 - ids*(exp(maxexp*(1+CTR-maxexp))-1) + (VD/R); 
  else 
  C*der(x2)= x1 - ids*(exp(CTR)-1) + (VD/R); 
  end if; 
ID= x1 - (C*der(x2)); IL= -x1; VC= -x2; 
end C20DymolaStateC_text_simple_exponentv2_temp; 
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INFLUENCE OF SIMULATION ALGORITHMS 
model C20DymolaStateB_subsystem3_text  
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4; 
constant Real Ron = 1E-4; constant Real L = 3.18E-3; constant Real C = 22.1E-9; 
constant Real ids = 1e-6; constant Real VT = 0.04; 
Real x1; Real x2; Real U; Real VC; Real IL; Real VD; Real ID; 
equation  
  U = 14142.135623731 * sin( (2*3.14159*50*time) + 3.14159); 
  VD= (R2*C*der(x2)) + x2; 
  L*der(x1)= -x1*R1 -VD - x2 - U; 
  C*der(x2)= x1 - ids*(exp(VD/VT)-1) - (VD/(Ron+Rmin)); 
ID= x1 - (C*der(x2)); IL= -x1; VC= -x2; 
end C20DymolaStateB_subsystem3_text; 
 
 
MOSILAB STATECHART 
 
model C20MosilabSC_idealchart  
constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4; 
constant Real Ron = 1E-4; constant Real L = 3.18E-3; constant Real C = 22.1E-9; 
event discrete Boolean s1(start=false), s2(start=false); 
Real x1; Real x2; Real U; Real VC; Real IL; Real VD; Real VDr; Real ID; Integer A; 
equation 
U= 14142.135623731 * sin ((2*3.14159*50*time) + 3.14159); 
VDr= (R2*C*der(x2)) + x2; 
s1 = if VDr >= 0 then true else false; 
s2 = if VDr < 0 then true else false; 
if A<0 then 
L*der(x1)= -x1*R1 - VDr - U; 
C*der(x2)= x1 - VDr*1e-5; 
else 
L*der(x1)= -x1*R1 - VDr*1e-5 - U; 
C*der(x2)= x1 - VDr; 
end if; 
VD= x2-x1; ID= x1; IL= -x1; VC= -x2+x1; 
statechart  
    state C20MosilabSC_idealchartSC extends State;  
        annotation(extent=[-103,103; 46,-46]); 
        State State1 annotation(extent=[-92,60; -79,56]); 
        State State2 annotation(extent=[-51,59; -38,55]); 
        State Initial (isInitial=true) annotation(extent=[-85,71; -83,69]); 
        transition Initial->State1 action 
        A:= 1;  
        end transition annotation(points=[-84,69; -84,60]); 
        transition State1->State2 event s2 action 
        A:= -1; 
        end transition annotation(points=[-79,56; -51,56]); 
        transition State2->State1 event s1 action 
        A:= 1; 
        end transition annotation(points=[-51,57; -79,57]); 
    end C20MosilabSC_idealchartSC;  
end C20MosilabSC_idealchart; 
 
CLASSICAL SIMULATION 
model C20MosilabStateB_TaskB_chart  
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constant Real R1 = 0.1; constant Real R2 = 5; constant Real Rmin = 1E-4; constant Real Ron = 
1E-4; 
constant Real L = 3.18E-3; constant Real C = 22.1E-9; constant Real TRF = 5e-3;  
event discrete Boolean s1(start=false), s2(start=false); 
Real x1; Real x2; Real U; Real t_red; Real k; Real Trap; Integer A; 
equation  
t_red = mod(time, 1E-1); 
k=((1e+8)-(1e-4))/TRF; 
algorithm  
if  
  (0<=t_red) and (t_red<TRF) then 
    Trap:=(1e-4) + k*t_red; 
elseif  
      (TRF<=t_red)  and (t_red<(5e-2)) then 
    Trap:=1e+8; 
elseif  
      ((5e-2)<=t_red) and (t_red<((5e-2)+TRF)) then 
    Trap:=(1e+8) - k*(t_red - (5e-2)); 
elseif  
      ((5e-2)+TRF<=t_red) and (t_red<(1e-1)) then 
    Trap:=1e-4; 
else 
    Trap:=-5; 
end if; 
equation 
U= 14142.135623731*sin((2*3.14159*50*time) + 3.14159); 
s1 = if Trap>1e-4 then true else false; 
s2 = if Trap<=1e-4 then true else false; 
if A > 0 then 
  L*der(x1)= -x1*R1 - R2*C*der(x2) - x2 + U; 
  C*(R2+Ron+Rmin)*der(x2)= x1*(Ron+Rmin) - x2; 
else 
  L*der(x1)= -x1*(R1+R2) - x2 + U; 
  C*der(x2)= x1; 
end if; 
statechart  
    state C20MosilabStateSC extends State;  
        annotation(extent=[-104,104; 44,-43]); 
        State State1 annotation(extent=[-90,63; -77,59]); 
        State State2 annotation(extent=[-51,62; -38,58]); 
        State Initial (isInitial=true) annotation(extent=[-82,74; -80,72]); 
        transition Initial->State1 action 
        A:=-1; 
        end transition annotation(points=[-82,72; -82,63]); 
        transition State1->State2 event s2 action  
        A:=1; 
        end transition annotation(points=[-77,59; -51,59]); 
        transition State2->State1 event s1 action 
        A:=-1; 
        end transition annotation(points=[-51,60; -77,60]); 
    end C20MosilabStateSC;   
end C20MosilabStateB_TaskB_chart; 
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DIFFERENT DIODE MODELS 
 
model C20MosilabStateC_simple_exponent_chart 
constant Real R1= 0.1; constant Real R2= 5; constant Real Rmin= 1E-4; constant Real Ron= 1E-
4; 
constant Real L= 3.18E-3; constant Real C= 22.1E-9; constant Real ids= 1e-6; constant Real 
VT= 0.04; 
constant Real maxexp= 15; constant Real R = 1e+8; 
Real x1; Real x2; Real U; Real VC; Real IL; Real VD; Real ID; Real CTR; Integer A; 
event discrete Boolean s1(start=false), s2(start=false); 
equation 
U= 14142.135623731*sin((2*3.14159*50*time) + 3.14159); 
VD= (R2*C*der(x2)) + x2; 
L*der(x1)= -x1*R1 - VD - x2 - U; 
CTR= VD/VT; 
s2 = if CTR>maxexp then true else false; 
s1 = if CTR<=maxexp then true else false; 
if A>0 then 
C*der(x2)= x1 - ids*(exp(maxexp*(1+CTR-maxexp))-1) + (VD/R); 
else 
C*der(x2)= x1 - ids*(exp(CTR)-1) + (VD/R); 
end if; 
ID= x1 - (C*der(x2)); IL= -x1; VC= -x2; 
statechart  
    state C20MosilabStateSC extends State;  
        annotation(extent=[-104,104; 44,-43]); 
        State State1 annotation(extent=[-90,63; -77,59]); 
        State State2 annotation(extent=[-51,62; -38,58]); 
        State Initial (isInitial=true) annotation(extent=[-82,74; -80,72]); 
        transition Initial->State1 action 
        A:=-1; 
        end transition annotation(points=[-82,72; -82,63]); 
        transition State1->State2 event s2 action  
        A:=1; 
        end transition annotation(points=[-77,59; -51,59]); 
        transition State2->State1 event s1 action 
        A:=-1; 
        end transition annotation(points=[-51,60; -77,60]); 
    end C20MosilabStateSC;   
end C20MosilabStateC_simple_exponent_chart; 
 
model C20MosilabStateC_simple_exponent_temp_chart 
constant Real R1= 0.1; constant Real R2= 5; constant Real Rmin= 1E-4; constant Real Ron= 1E-
4; 
constant Real L= 3.18E-3; constant Real C= 22.1E-9; constant Real ids= 1e-6; 
constant Real maxexp= 15; constant Real R = 1e+8; 
Real x1; Real x2; Real VT; Real U; Real VC; Real IL; Real VD; Real ID; Real CTR; Integer A; 
event discrete Boolean s1(start=false), s2(start=false); 
equation 
U= 14142.135623731*sin((2*3.14159*50*time) + 3.14159); 
VD= (R2*C*der(x2)) + x2; 
L*der(x1)= -x1*R1 - VD - x2 - U; 
VT= ((30 * sin(2*3.14159*100*time))+310)*8.61734681e-5;   
CTR= VD/VT; 
s2 = if CTR>maxexp then true else false; 
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s1 = if CTR<=maxexp then true else false; 
if A>0 then 
C*der(x2)= x1 - ids*(exp(maxexp*(1+CTR-maxexp))-1) + (VD/R); 
else 
C*der(x2)= x1 - ids*(exp(CTR)-1) + (VD/R); 
end if; 
ID= x1 - (C*der(x2)); IL= -x1; VC= -x2; 
statechart  
    state C20MosilabStateSC extends State;  
        annotation(extent=[-104,104; 44,-43]); 
        State State1 annotation(extent=[-90,63; -77,59]); 
        State State2 annotation(extent=[-51,62; -38,58]); 
        State Initial (isInitial=true) annotation(extent=[-82,74; -80,72]); 
        transition Initial->State1 action 
        A:=-1; 
        end transition annotation(points=[-82,72; -82,63]); 
        transition State1->State2 event s2 action  
        A:=1; 
        end transition annotation(points=[-77,59; -51,59]); 
        transition State2->State1 event s1 action 
        A:=-1; 
        end transition annotation(points=[-51,60; -77,60]); 
    end C20MosilabStateSC;   
end C20MosilabStateC_simple_exponent_temp_chart; 
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