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Abstract
In recent years the population in most industrialized countries is experiencing a change

in the age composition of its members. Most notably, the share of old people will increase
as a consequence of low fertility rates and increasing life expectancies. By now, it is not
clear how a changing age composition of a society will affect the overall level of savings
of an economy. However, this influence has to be considered as crucial, since the saving
rate is an important variable in an economy.

This master thesis focuses on the individual level. It deals with the question of how
an increasing life expectancy influences consumption and savings at the individual level.
By reviewing four alternative models of the literature, the thesis works out the different
results on the relation between longevity and individual savings as it will depend on
the model specification chosen. All four models are based on the life cycle theory with
consumption smoothing. The effects of different pension systems on savings are not
examined in these models, though of course they will have an important impact on
savings.

While the different models introduced in the master thesis produce different outcomes,
we regard the model that assumes an initially low mortality rate and a fixed retirement
age to be the most realistic one. Under these assumptions an increasing life expectancy
will imply falling saving rates. Assuming alternatively an initially high mortality rate
and a fixed retirement age, would result in a positive relation between life expectancy
and savings. For a model that assumes no fixed retirement age, the most probable result
of an increasing life expectancy is again a decreasing saving rate but additionally also
the effect that the population will work longer.

The models used could be improved in many ways. The three most interesting amend-
ments would be the allowance of agents who do not behave fully rational (i.e. either
irrational or bounded rational), to move from an analysis at the individual level to an
analysis at the household level and to allow for institutionalized transfer systems.
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1 Introduction

Nowadays society is facing a transformation in the age composition of its members. The
median age will increase because of a larger proportion of old people as a result of low
fertility and increasing life expectancy. This new population structure is supposed to
have a large influence on savings. It will change the savings levels of different age groups
and therefore can substantially change the overall level of savings of an economy. In
addition to the compositional changes, behavioral effects (i.e. changes in the saving rates
at different ages) will take place. Savings have a significant influence on the economy as
a whole; hence the saving rate is an important economic variable.

The facts of an increasing life expectancy, a larger proportion of old people and changes
in the aggregated saving rates can be measured easily on a macroeconomic level. Nev-
ertheless, the question of how an increasing life expectancy influences an individual’s
choices of consumption and savings over the whole life cycle is not perfectly understood
yet. This is crucial because a sound aggregation of the individual’s choices of savings in
the future would yield an improved forecast of the aggregated saving rate of an economy.

This work gives an overview of various models that aim to link changes in the pop-
ulation structure to savings behavior. Note that savings forecasts are always based on
models and therefore the exact specification of the underlying model plays an important
role.

The focus of this thesis is on the interaction between individual life length and individ-
ual savings with regard to increasing life expectations. It is based on life cycle theories
with consumption smoothing and with a focus on the individual decision rather than on
macroeconomic examinations.

There is no examination of the implications of different pension systems (pay-as-you-
go, pre-funded or mixed systems) on savings, but it is important to note that the actual
behavior of course is influenced by the prevailing pension system. The retirement age in
pension systems can either be exogenously or endogenously implemented, like in Bloom
et al. (2004) where endogenous retirement caused by worsening health in old age is
examined.

Chapter 2 is an introduction to life-cycle models. At first savings as an economic
variable and reasons for people to save are discussed. Afterwards the Solow model as an
example of a model with exogenous saving rates and the Ramsey model as an example
of a model with endogenous saving rates is presented. Then inherent differences between
micro and macro data for savings are analyzed and explained with an intuitive model.
Finally the importance of uncertainty in future income for savings is examined.
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1.1 Overview of the papers included in the thesis

In this section I will outline the main characteristics of the 4 chosen papers for which a
detailed analysis will be presented. The models chosen are two overlapping generations
models and two continuous time models. The two overlapping generations models give
different outcomes which are due to different model specifications. The fact of different
outcomes is also achieved with the two continuous time models. By comparing 4 models
on the same topic the influences of the main model specifications become evident.

A common assumption for all the chosen models is that both the interest rate and the
wage rate are exogenously given.

1.1.1 Overlapping generations models

The two chosen overlapping generations models mainly differ in 3 specifications, as is
shown in table 1.1: if bequests are allowed or not, if educational investment is taken by
parents to their children or is the same for all children (as it is with public schooling),
and if there is an actuarially fair annuity market.

The model described in chapter 3 is an overlapping generations model designed by
Zhang and Zhang (2001), with the characteristics as shown in table 1.1. Three closely
related papers are Ehrlich and Lui (1991), Hu (1995), and de la Croix and Licandro
(1999). In Ehrlich and Lui (1991) the model has no annuity market, in Hu (1995) the
model has non-altruistic agents, and in de la Croix and Licandro (1999) the difference to
the presented model here is that it has non-altruistic agents and an education loan mar-
ket. The model described in chapter 3 processes opposing effects (saving and investment
in human capital) of rising longevity on growth. The new features here are the integra-
tion of an altruistic attitude of the parents, an actuarially fair annuity market and no
education loan market. Without an education loan market, human capital investment
is made to a large extent by the parents, which represents a very realistic important
intergenerational link in most industrial nations. As Hu (1995) and de la Croix and
Licandro (1999) both assume non-altruistic agents, this link is not incorporated in their
models.

The model described in chapter 4 is an overlapping generations model designed by
Zhang et al. (2003), with the characteristics as shown in table 1.1. It tries to capture the
fact that empirical studies indicate a relation of economic growth to increasing longevity,
which depends on the initial level of longevity. To produce this behavior, the presented
model has accidental bequests and no actuarially fair annuity market. Lee (1994) found
out that with an initial high mortality and low life expectancy, a mortality decline affects
primarily children death rates and therefore makes the population in average younger
and not older. Meltzer (1992) found out that in this situation also the rates of return to
investment in human capital increase. Once child mortality rates are sufficiently small,
further mortality declines affect largely the older ages, which has little effect on the rates
of return to investment in human capital (Lee, 1994). In Ehrlich and Lui (1991) there
is a focus on this early stage of mortality, whereas the model presented in chapter 4
focuses on the later stage. That’s why there is sure survival from the schooling period
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Table 1.1: Overlapping generations models

Characteristics model from chapter 3 model from chapter 4

Type of model Agents are living for 3 periods (schooling time, working
time and retirement); infinite number of periods

Life expectation sure survival from 1st to 2nd period; probabilistic sur-
vival from 2nd to 3rd period

Intergenerational educa-
tional link

investment (goods and
time) of a parent in chil-
dren’s human capital

public schooling, financed
by a flat-rate income tax

Bequests no bequests accidental bequests
Retirement age exogenous
Number of children the same for each agent 1 child per agent
Actuarially fair annuity
market

yes no

Education loan market no
Free leisure time to gen-
erate a trade-off between
working and leisure

no

Equilibrium result for
an increasing life ex-
pectancy

individual saving rate in-
creases

individual saving rate in-
creases if initial mortality is
high; individual saving rate
falls if initial mortality is
low

to the working period. As we also have accidental bequests, the approach can be seen
as similar to Abel (1985, 1986), Feldstein (1990) and Huggett (1996).

1.1.2 Continuous time models

The two selected continuous time models mainly differ in 4 specifications, as shown in
table 1.2: if life expectation is probabilistic or deterministic, how retirement is chosen,
the existence of an actuarially fair annuity market, and the possibility of free leisure
time to generate a trade-off between working and leisure.

The model described in chapter 5 is a continuous time model designed by Bloom et
al. (2004), with the characteristics as shown in table 1.2. Two closely related papers
are Chang (1991) and Kalemli-Ozcan and Weil (2002), but both assume an imperfect
annuity market, which generates uncertainty about the return to savings and therefore
can lower in the case of a high death rate the desired age of retirement with an increasing
life expectancy. The new features of the model presented in chapter 5 are an actuarially
fair annuity market, the incorporation of health and its effect on the retirement age, and
the assumption that a rising life expectancy also generates an improved health status at
each age.
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Table 1.2: Continuous time models

Characteristics model from chapter 5 model from chapter 6

Type of model Agents are living for 2 periods (working time and retire-
ment)

Life expectation probabilistic with a con-
stant death rate

deterministic

Intergenerational educa-
tional link

no intergenerational links

Bequests no
Retirement age endogenous as a function of

the health status
endogenous as a function
of the marginal utility of
leisure

Number of children irrelevant
Actuarially fair annuity
market

yes no

Education loan market irrelevant
Free leisure time to gen-
erate a trade-off between
working and leisure

no yes

Equilibrium result for
an increasing life ex-
pectancy

individual saving rate falls,
but the agent will work
longer

individual saving rate in-
creases

In chapter 6 a continuous time model designed by Bloom et al. (2003) is described,
with the characteristics as shown in table 1.2. Three closely related papers are Lee
et al. (2000), Bils and Klenow (2000) and Meltzer (1992). In Lee et al. (2000) the
obtained results are very similar and empirical evidence of these results can be found
in Tsai et al. (2000) and Hurd et al. (1998). In Bils and Klenow (2000) and Meltzer
(1992) they also assume a deterministic life expectation. This assumption is done for
simplicity. Furthermore the model introduced in chapter 6 has no intergenerational links,
as opposed to Mason (1981, 1988) who accounts for the intergenerational link by using
a model on the household level, or Skinner (1985) who accounts for an intergenerational
link by assuming the existence of bequests.
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2 Basics in life-cycle modeling

In this section I will outline some basic facts and fallacies regarding models of life-cycle
behavior.

2.1 Integration of saving in economic models

In theoretical literature saving is a theory of consumption, because it is simply the
difference between income and current consumption. On the other hand, most empirical
studies are descriptive in terms of saving and not much theoretical. Therefore there still
exist two ways of approaching savings in the literature, which are not perfectly unified
by now.

At first I outline an overview of the reasons for people to save. It is to note that
most of these motives are not considered in the models. Afterwards the Solow model
which integrates the saving rate exogenously and the Ramsey model which integrates the
saving rate endogenously are presented. These two models give us an idea of different
possibilities of integrating savings in economic models.

2.1.1 Reasons for people to save

For a better understanding of the motivation for people to save, I will reproduce here
the 9 motives to save by Keynes (1936, page 107-108) and Browning & Lusardi (1996,
page 1797):

1. ’To build up a reserve against unforeseen contingencies’ (the precautionary motive)

2. ’To provide for an anticipated future relationship between the income and the
needs of the individual...’ (the life-cycle motive)

3. ’To enjoy interest and appreciation...’ (the intertemporal substitution motive)

4. ’To enjoy a gradually increasing expenditure...’ (the improvement motive)

5. ’To enjoy a sense of independence and the power to do things, though without a
clear idea or definite intention of specific action’ (the independence motive)

6. ’To secure a masse de manoeuvre to carry out speculative or business projects’
(the enterprise motive)

7. ’To bequeath a fortune’ (the bequest motive)
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8. ’To satisfy pure miserliness, i.e., unreasonable but insistent inhibitions against acts
of expenditure as such’ (the avarice motive)

9. ’To accumulate deposits to buy houses, cars, and other durables’ (the downpayment
motive)

Additionally, Browning & Lusardi (1996, page 1797) remark that ’there is recognition
here of considerable heterogeneity in the motives for saving. It is unlikely that a single
explanation will suffice for all members of a population at any given time or even for
the same person over a long stretch of time. In particular, there is a widespread feeling
that the wealthy have different motives to save from the less wealthy.’

2.1.2 The Solow model

The following introduction to the Solow model is based on the description in Barro &
Sala-i-Martin, see [BiM95]. This model is a very good example of how to integrate
exogenous saving rates in an economic model with a neoclassical production function.
We will derive a differential equation for the evolution of the capital-labor ratio and have
a look at the conclusions obtained from the system in a steady state where the main one
is that the per capita quantities are constant. Finally we will explain the golden rule of
capital accumulation.

Model assumptions

We assume a closed economy. This implies that output equals income, and investment
equals savings.
There will be no markets and firms, so we will have in mind an agent who acts at the
same time as a consuming household and as a producer. Furthermore we will neglect
technological progress, which means that the production function does not depend ex-
plicitly on t. The two inputs of the production function are physical capital K(t) and
labor L(t), so the function can be written with Y (t) as the flow of output produced at
time t as

Y (t) = F [K(t), L(t)] (2.1)

We assume that output can either be consumed, C(t), or invested, I(t). If it is
invested, it will create new units of physical capital K(t).
The saving rate is defined as the fraction of output that is saved and denoted by s(·).
Therefore (1−s(·)) denotes the fraction of output that is consumed. In the Solow model
s(·) is assumed to be an exogenously given constant: s(·) = s with 0 ≤ s ≤ 1.
Furthermore, capital depreciation is assumed to be constant and given by a constant
rate δ > 0. With δ we can express the net increase in the stock of physical capital K̇ as
inflow (gross investment I) less depreciation δK:

K̇ = I − δK = s · F (K,L, t)− δK (2.2)

As s and δ are exogenously given, we are able to derive with (2.2) the behavior of K
over time if we fix the production function and labor.
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Population growth is also simplified by assuming a constant and exogenously given
population growth rate n with L̇/L = n ≥ 0. Furthermore it is convenient to fade out
labor force participation problems, so it is assumed that every member of the population
participates in the labor market at the same given intensity.

The neoclassical production function

A production function from (2.1) with the following 3 properties is said to be neoclassical :

• For all K > 0 and L > 0, F (·, ·) satisfies:

∂F

∂K
> 0,

∂2F

∂K2
< 0

∂F

∂L
> 0,

∂2F

∂L2
< 0

• F (·, ·) has constant returns to scale:

F (λK, λL) = λ · F (K,L) for all λ > 0

• (Inada conditions) The marginal products of capital and labor have the following
properties:

lim
K→0

(
∂F

∂K
) = lim

L→0
(
∂F

∂L
) =∞

lim
K→∞

(
∂F

∂K
) = lim

L→∞
(
∂F

∂L
) = 0

With constant returns to scale we can reformulate output as

Y = F (K,L) = L · F (
K

L
, 1) = L · f(k) (2.3)

where k ≡ K/L denotes the capital-labor ratio and f(k) ≡ F (k, 1). With per capita
output y ≡ Y/L the production function can be reformulated as

y = f(k) (2.4)

Here we choose for the production function a Cobb-Douglas type function:

Y = AKαL1−α, or y = Akα (2.5)

where A > 0 denotes the technology level and α denotes the constant share parameter
with 0 < α < 1. This function fulfills all 3 neoclassical production function properties.
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The fundamental dynamic equation for the capital stock

Let’s now have a look at the dynamic behavior of the economy with regard to a neoclas-
sical production function. With (2.2) and dividing both sides by L, we arrive by using
(2.3) at

K̇

L
= s · f(k)− δk

As the right-hand side consists of per capita dimensions, we can express the left hand
side by using the following link between K̇/L and k:

k̇ ≡
d(K

L
)

dt
=
K̇

L
− nk, with n =

L̇

L

Reformulating gives
k̇ = s · f(k)− (n+ δ) · k (2.6)

This expression is the fundamental differential equation of the Solow model and consists
of only one unknown variable, k. So (2.6) gives us the behavior of k over time. At
one hand k increases over time if the saving rate s is positive, and on the other hand
k decreases because of depreciation. The term n + δ of (2.6) can be interpreted as an
effective depreciation rate for the capital/labor ratio k ≡ K/L. Setting s = 0 reveals
that k declines because capital K depreciates at the rate δ and because labor L grows
at the rate n.

The steady state

In Barro & Sala-i-Martin (1995, page 19), a steady state is defined as ’a situation in
which the various quantities grow at constant rates’. Here, the steady state is represented
by k̇ = 0 (for a detailed derivation see Barro & Sala-i-Martin, 1995, page 19, footnote
1) in (2.6), and the corresponding value of k is denoted as k∗. So we get that k∗ fulfills

s · f(k∗) = (n+ δ) · k∗ (2.7)

In the steady state k is constant, which gives that y with y∗ = f(k∗) and c with c∗ =
(1 − s) · f(k∗) are also constant. This means that the per capita quantities k, y
and c are all constant in the steady state. As the levels of the variables K, Y and
C are all connected to the per capita quantities k, y and c by the population L which
grows at the population growth rate n, we get that K, Y and C all grow in the steady
state at the population growth rate n.
Finally we note that the steady-state growth rates of y∗, k∗ and c∗ are independent of
s, n and δ. More precisely, the steady-state growth rates of these per capita quantities
are all equal to 0.
This is the reason why the model as presently specified cannot explain long-run per
capita growth.
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The golden rule of capital accumulation

With given n, δ and F (·, ·), there is for every exogenous s a unique steady-state value
k∗ > 0 given by (2.7). That gives a relation between the saving rate and the capital/labor
ratio which is expressed by k∗(s), with dk∗(s)/ds > 0. Furthermore the steady-state level
of per capita consumption is given by c∗ = (1 − s) · f [k∗(s)] = f [k∗(s)] − s · f [k∗(s)].
With (2.7) we get

c∗(s) = f [k∗(s)]− (n+ δ) · k∗(s)
Steady-state per capita consumption c∗ increases for low levels of s and decreases for
high levels of s. To get the maximum, we calculate the derivative and set it equal to 0:

dc∗(s)

ds
= [f ′(k∗)− (n+ δ)] · dk

∗

ds
= 0

As dk∗/ds > 0, we get that [f ′(k∗)− (n + δ)] = 0. By denoting kgold as the value of k∗

that corresponds to the maximum of c∗, we can calculate kgold by

f ′(kgold) = n+ δ

This condition is called the golden rule of capital accumulation. It can be interpreted as
(see Barro & Sala-i-Martin, 1995, page 20) ’if we provide the same amount of consump-
tion to members of each current and future generation - that is, if we do not provide
less to future generations than to ourselves - then the maximum amount of per capita
consumption is cgold = f(kgold)− (n + δ) · kgold’. The saving rate corresponding to kgold
is denoted by sgold.

A saving rate that is bigger as sgold at all times must be inefficient because a higher per
capita consumption c could be generated at all times simply by reducing the saving rate
to sgold. An economy that oversaves like as described is called dynamically inefficient.
If the saving rate is below sgold, then a rise in the saving rate would reduce c in current
times and during part of the transition phase to the new steady state. The overall
outcome will therefore be seen as positive or negative depending on the households’
time preferences, precisely on the exchange factor of today’s consumption against future
consumption.

2.1.3 The Ramsey model

The following introduction to the Ramsey model is based on the description in Barro
& Sala-i-Martin, see [BiM95]. This model is a very good example of a growth model
with consumption optimization, and hence endogenous savings. The main conclusions
are that the per capita quantities are growing in the steady state and that inefficient
oversaving is impossible. Finally we will note that the Solow model is a special case of
the Ramsey model.

Model assumptions

All households receive wages in exchange for labor services, earn interest income on as-
sets, consume goods and save. Each household consists of at least one adult. An adult
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is everybody in the population who works.
We consider an immortal extended family although individuals die in finite time. This
approach is reasonable if we consider altruistic parents.
The growth rate of the population is n, exogenously given and constant. With normal-
izing the number of adults in one household at time 0 to 1, the adult population in one
household at time t is ent.
Let c(t) be the consumption per adult person. Each household wants to maximize its
overall utility U :

U =

∫ ∞
0

u[c(t)] · ent · e−ρtdt (2.8)

u[c(t)] denotes the utility of consumption per person at time t, ent denotes the number
of adults in the household, and e−ρt denotes the discount factor for time t with ρ > 0
being the rate of time preference.
We assume u(c) to be increasing and concave: u′(c) > 0, u′′(c) < 0. Furthermore it
should satisfy the Inada conditions: u′(c)→∞ as c→ 0 and u′(c)→ 0 as c→∞.
We assume ρ > n which implies in (2.8) a finite integral for a constant c(t) = c.
Finally it is to note that (2.8) assumes that ρ stays unchanged for the individuals and
even across generations.
We assume a closed economy where households can only lend to and borrow from each
other, with a real rate of return r(t). The household’s net assets per person, a(t), can
be positive (net lender) or negative (net borrower).
The wage rate paid for 1 unit of labor services per time unit is w(t). We assume for
every adult to deliver in 1 time unit exactly 1 unit of labor services. In an equilibrium
state the labor market will clear, so there is no involuntary unemployment in the model.
The flow budget constraint for the household (without time subscripts) is given by

ȧ = w + ra− c− na (2.9)

That means that the change in assets equals the wage income, plus the interest income
(lender) or payments (borrower) of the existing assets, less consumption and less the
expansion of the population.
Finally, to rule out ever-growing negative assets for a household, we assume the following
restriction:

lim
t→∞

{
a(t) · exp

[
−
∫ t

0

[r(µ)− n]dµ

]}
≥ 0 (2.10)

We will see later that (2.10) is derived from the market equilibrium.

First-order conditions

The present value Hamiltonian of the problem is given by

J = u(c)ent · e−ρt + ν · ȧ = u(c)e−(ρ−n)t + ν · [w + (r − n)a− c] (2.11)

where ν represents the present-value shadow price of income. The first-order conditions
for a maximum of U yield:

∂J

∂c
= 0⇒ ν = u′(c)e−(ρ−n)t (2.12)
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ν̇ = −∂J
∂a
⇒ ν̇ = −(r − n)ν (2.13)

The last equation is called Euler equation or Ramsey rule of optimal saving.
Differentiation of (2.12) with respect to t and using (2.12) and (2.13) leads to

r = ρ−
(
du′/dt

u′

)
= ρ−

[
u′′(c) · c
u′(c)

]
· ċ
c

(2.14)

As
(
−
[
u′′(c)·c
u′(c)

])
> 0 we see that the return to saving r and the discount rate ρ are con-

nected by a positive term times ċ/c which represents the way consumption is smoothed

over time. We see that
[
u′′(c)·c
u′(c)

]
needs to be asymptotically constant if we want to find

a steady state with constant r and ċ/c.
For further analysis we need an explicit form of u(c), and we assume it of the following
style (constant intertemporal elasticity of substitution utility function):

u(c) =
c1−θ − 1

1− θ
with θ > 0 (2.15)

With (2.15),
[
u′′(c)·c
u′(c)

]
equals −θ. This simplifies (2.14) to

ċ

c
=
r − ρ
θ

(2.16)

So the per capita consumption path over time is dependent on r, ρ and θ. It is rising if
r > ρ and falling if r < ρ.

Integration of (2.13) results in

ν(t) = ν(0) · exp

{
−
∫ t

0

[r(µ)− n]dµ

}
with ν(0) = u′[c(0)]

The transversality condition is given by limt→∞[ν(t) ·a(t)] = 0. Together with the result
of ν(t) and a constant u′[c(0)] we get

lim
t→∞

{
a(t) · exp

[
−
∫ t

0

[r(µ)− n]dµ

]}
= 0 (2.17)

Optimizing households will satisfy (2.17) instead of only satisfying (2.10).

The consumption function

First we define the average interest rate as

r(t) =
1

t
·
∫ t

0

r(µ)dµ

11



If we solve (2.9) as a first-order linear differential equation in a we get for any T ≥ 0:

a(T ) · e−[r(T )−n]T +

∫ T

0

c(t)e−[r(t)−n]tdt = a(0) +

∫ T

0

w(t)e−[r(t)−n]tdt

Letting T approach infinity, T → ∞, a(T ) · e−[r(T )−n]T vanishes because of (2.17) and
we get the intertemporal budget constraint∫ ∞

0

c(t)e−[r(t)−n]tdt = a(0) +

∫ ∞
0

w(t)e−[r(t)−n]tdt = a(0) + w̃(0) (2.18)

This means that the present value of consumption equals initial assets a(0) plus the
present value of wage income w̃(0).
Integration from 0 to t of (2.16) leads to

c(t) = c(0) · e(1/θ)[r(t)−ρ]t

This expression gives us consumption at time t as a function of c(0) and some constants.
Together with (2.18) we can calculate the consumption function at time 0:

c(0) =
a(0) + w̃(0)∫∞

0
e[r·(1−θ)/θ−ρ/θ+n]tdt

(2.19)

With an expression of c(0), and c(t) as a function of c(0) we now have the whole con-
sumption path.

Firms

Firms produce an output Y and pay for the inputs labor L and capital K:

Y = F (K,L)

The function F (·, ·) has the properties of a neoclassical production function as defined
in section 2.1.2. We furthermore assume labor-augmenting technological progress at a
constant rate:

Y = F (K, L̂) with effective labor L̂ ≡ L · A(t)

A(t) denotes the level of technology with a constant growth rate x ≥ 0. With assuming
A(0) = 1 we get A(t) = ext. We define quantities per unit of effective labor as:

ŷ ≡ Y/L̂ , k̂ ≡ K/L̂

This results in

ŷ =
Y

L̂
=
F (K,L)

L̂
= F (

K

L̂
, 1) = f(k̂)

The net rate of return for a household for 1 unit of capital equals the rental price for
capital services R less capital depreciation δ ≥ 0. On the other hand, households can
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lend funds with an interest rate r. As these two possibilities are supposed to be perfect
substitutes, we get R− δ = r, or R = r + δ.

For a firm the profit equals sales of output less factor payments for capital and labor.
If we normalize the price of one unit of K in units of C to 1, we arrive at:

Profit = F (K, L̂)− (r + δ) ·K − wL = L̂ · [f(k̂)− (r + δ) · k̂ − we−xt] (2.20)

The firm will take r, w and L̂ as given and maximize its profit which results in

f ′(k̂) = r + δ (2.21)

In a perfect competition equilibrium, the profit of the firm in (2.20) must equal 0. With
(2.21) we get

w = ext[f(k̂)− (r + δ) · k̂] = ext[f(k̂)− f ′(k̂) · k̂] (2.22)

Equilibrium

As households only lend from other households, the average household has 0 net debts.
Together with the facts that the whole capital stock in a closed economy stays in the
economy, and each adult provides 1 unit of labor, we get that the assets per adult
person a have to equal the capital per worker k. With a = k, k̂ ≡ K/L̂ = ke−xt and
ĉ ≡ C/L̂ = ce−xt we can rewrite (2.9) and use (2.21) and (2.22) to get

˙̂
k = f(k̂)− ĉ− (x+ n+ δ) · k̂ (2.23)

This is the resource constraint for the economy. The change in the capital per worker
equals output less consumption and less depreciation. (2.23) determines the evolution of
k̂ over time and therefore also of ŷ = f(k̂) over time, with the only inconvenience of being
dependent on ĉ. If we would take constant savings, the link would be ĉ = (1− s)f(k̂) as
in the Solow model. Here we use (2.16) and (2.21) to arrive at

˙̂c

ĉ
=
ċ

c
− x =

1

θ
· [f ′(k̂)− δ − ρ− θx] (2.24)

(2.23) and (2.24) give a differential equations system in ĉ and k̂ which determine their
evolution over time for a given k̂(0) and the transversality condition. We can rewrite
this condition (2.17) by using k̂ = ke−xt and a = k to get

lim
t→∞

{
k̂ · exp

[
−
∫ t

0

[f ′(k̂)− δ − x− n]dµ

]}
= 0 (2.25)

For the limes to be 0 we need that f ′(k̂) − δ − x − n > 0, or f ′(k̂) − δ > x + n, which
means that the steady state rate of return has to be bigger than the steady state growth
rate of K.
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The steady state

We now analyze if the differential equation system (2.23) and (2.24) allows a steady state,
which means (Barro & Sala-i-Martin, 1995, page 72) ’a situation in which the various
quantities grow at constant rates’. In the Ramsey model, the steady state corresponds

to
˙̂
k = ˙̂c = 0, which means that k̂, ĉ and ŷ are constant. This implies that k, c and

y grow at the rate x. Furthermore it implies that K, C and Y grow at the rate n + x.
These results are similar to those obtained in the Solow model in 2.1.2.

The steady state values k̂∗ and ĉ∗ of k̂ and ĉ we get by setting the differential equation
system of (2.23) and (2.24) to 0. If we do this for (2.23) we get

ĉ = f(k̂)− (x+ n+ δ) · k̂ (2.26)

Taking the first derivative of this expression with regard to k̂ gives us the peak of the
curve at f ′(k̂) = x + n + δ. With (2.21) we see that the interest rate r equals x + n at
the point in the steady state which gives the maximum of ĉ. This point also defines the
golden-rule level of k̂.

Setting (2.24) to 0 gives
f ′(k̂∗) = δ + ρ+ θx (2.27)

So the interest rate in the steady state r∗ = f ′(k̂∗) − δ must equal the overall discount
rate ρ+ θx in which θx captures the fact that c is growing at the rate x.

Finally we now can determine the steady state values (k̂∗, ĉ∗): with (2.27) we get k̂∗

and with (2.26) we get ĉ∗.
From (2.25) we got that f ′(k̂)− δ > x+ n must hold true, and with (2.27) we arrive at

ρ > n+ (1− θ)x (2.28)

(2.28) implies that f ′(k̂∗) = δ + ρ + θx > δ + x + n = f ′(k̂gold). With f ′′(k̂) < 0 we get

k̂∗ < k̂gold. As k̂gold corresponds to the golden-rule level of k̂ which leads to a maximum
of ĉ in the steady state, we see that in the Ramsey model there is no inefficient
oversaving possible like in the Solow model. This is because in the Solow model the
saving rate has no restrictions except being between 0 and 1.

The saving rate in the Ramsey model equals s = [ŷ − ĉ]/ŷ = 1− [ĉ/ŷ] = 1− [ĉ/f(k̂)].
In the case of a Cobb-Douglas production function we get for the steady state saving
rate s∗:

s∗ = α · x+ n+ δ

δ + ρ+ θx
(2.29)

With (2.28) we see that s∗ < α where α is the gross capital share.

To sum up, the Solow model with an exogenous saving rate cannot explain per capita
growth of capital, consumption or income in the steady state because in this state these
quantities are all constant. So population growth or changes in the saving rate don’t
affect these quantities. On the other hand, the Ramsey model with an endogenous
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saving rate is able to explain steady state per capita growth of capital, consumption
and income. In both models the overall level of capital, consumption and income is
influenced by the saving rate and the population growth rate, but only the Ramsey
model can additionally explain steady state per capita growth.

2.2 Differences between micro and macro data for
savings

This short introduction on aggregation issues is based on the work of Weil (1994), see
[Wei94]. Using data at the household level (micro data), most studies have found little
or no dissaving of the elderly. Contrarily, when using data at the aggregate level (macro
data), studies frequently found that the pure fact of a large elderly population decreases
a population’s saving rate. As the micro data does not take into account intergenera-
tional relations, it is straightforward that if aggregated micro data does not produce the
observed macro data which includes all interactions naturally, there must be interactions
among households which have to be added for consistency.

2.2.1 Empirical verifications

In the work of Weil (1994, page 59-60), an empirical regression with macro data of
different countries is performed. The derived result is that, depending on the exact
model specifications for the regression, a 1% shift of the population from the working
age group to the elderly group reduces the saving rate between 0.52% and 1.78%. So,
there is indeed a macroeconomic influence of the share of old people on the saving rate.

Weil (1994, page 61-62) also performs an empirical regression using micro data of the
USA. The results are shown in table 2.1, where we can see that both consumption and
income have roughly similar hump-shaped characteristics, but we cannot observe any
sign of dissaving by people aged 65 years or older (the target age group for retirees). So,
on an individual level, there is no observation of dissaving among the elderly. It is to
remark that relations between people cannot be observed by this kind of data.

2.2.2 A demonstrative model

For a better understanding of these differences, let’s assume a two-generation economy
with intergenerational relations where the first generation is represented by children and
the second generation by parents. Every child has one parent, but every parent can
have several children. Children and parents don’t live in the same household, which
corresponds to relations between adult children and their parents.

The saving of an individual is assumed to be connected to its age and the intergener-
ational relations. The saving of a child is given by

s1 = β1 + π2,1 ·
(

1

1 + #siblings

)
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Table 2.1: Consumption, income and saving in micro data (Weil, 1994, page 62)

Consumption Income Saving
Age group Coefficient S.E. Coefficient S.E. Coefficient S.E.

0-4 -135 280 -190 336 -55 364
5-9 -347 297 -1357 356 -1010 386

10-14 149 301 -1177 360 -1325 390
15-19 2345 270 759 323 -1586 350
20-24 5974 248 4397 297 -1577 322
25-29 8952 246 9998 295 1046 320
30-34 11204 271 12304 325 1100 352
35-39 12068 296 14156 355 2087 384
40-44 11562 332 13948 398 2385 431
45-49 10746 337 12744 403 1998 437
50-54 7956 350 10377 420 2421 455
55-59 7978 338 10990 405 3012 439
60-64 7517 340 8049 408 532 442
65-69 7776 363 7549 435 -227 471
70-74 6296 409 6772 490 476 530
75-79 6271 522 6245 625 -26 677
80+ 5400 509 5645 610 246 661
N 12019 12019 12019
R2 0.114 0.146 0.010
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where β1 is the saving of a child if it had no intergenerational link and π2,1 represents
the effect of a parent on the saving of a child. The first term reflects the behavior
without intergenerational influence and the second term should represent the influence
of parents. As every child has exactly one parent, the number of parents cannot be of
any influence. Therefore the influence is expressed by the number of siblings a child has.

The saving of a parent is given by

s2 = β2 + π1,2 · (#children)

where β2 is the saving of a parent if it had no intergenerational link and π1,2 represents
the effect of a child on the saving of a parent. In the second term we see that the number
of children is the influential parameter.

It is important to understand that the β coefficients are not the average savings but the
savings without any intergenerational links. This means that any saving not caused by
the number of siblings for a child, or the number of children for a parent is incorporated
in the β coefficients. We see that s1 = β1 if a child has an infinite number of siblings,
and s2 = β2 if a parent has no children.

Let’s now analyze the results taken from micro data. If we think of a set of household
data where each household consists only of members of a single generation, we don’t get
the number of siblings or children of each person. If ni represents the number of parents
with i children, and w1 and w2 are the total population in each age group, we get the
mean number of children per parent by

#children

#parents
=

∑
i≥0 nii∑
i≥0 ni

=
w1

w2

Similarly, we get the mean of the quantity 1
1+#siblings

among children by∑
i≥1

1
i
nii∑

i≥0 nii
=
w2 − n0

w1

We assume for simplicity n0 = 0, which means that every parent has at least 1 child.
This is not unrealistic because even if an old person has no child, he or she can still
affect the saving of the young. Weil (1994, page 66) mentions correctly that ’In the case
of accidental bequests, for example, the wealth of the childless elderly will be passed
to someone, and so may have the same effect on saving of the young as the wealth of
elderly people with children.’

With this assumption we get for the mean savings

s1 = β1 + π2,1 ·
w2

w1

s2 = β2 + π1,2 ·
w1

w2

These s parameters are exactly what is measured by the micro data, and not the β
parameters! So, micro data reflects mean intergenerational links rather than no inter-
generational link at all.
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If we now aggregate our micro behavior to the level of the whole population, we get
for saving per capita:

S = w1·s1+w2·s2 = w1

(
β1 + π2,1 ·

w2

w1

)
+w2

(
β2 + π1,2 ·

w1

w2

)
= w1(β1+π1,2)+w2(β2+π2,1)

So, this result would now reflect the information in macro data. If we now analyze age
specific savings by regressing S on the fraction of the population in each age group, we
would get

s̃1 = β1 + π1,2

s̃2 = β2 + π2,1

Due to this the resulting s̃ parameters are neither equal to the β parameters, which reflect
pure savings, nor to the s parameters, which reflect mean savings. These s̃ parameters
still incorporate intergenerational effects by the π parameters.

So, it is followed that with intergenerational relations it is impossible to forecast
aggregate savings for changes of the age structure correctly by using micro data which
does not incorporate intergenerational relations. To get an idea of the quantity of the
error, we just need to take a look at the differences:

s1 − s̃1 = π2,1 ·
w2

w1

− π1,2

s2 − s̃2 = π1,2 ·
w1

w2

− π2,1

As w1 and w2 is greater than 0 and given, we see that the age-specific saving estimates
for micro and macro data will differ if the π parameters are not equal to 0. Though this
would mean that intergenerational links are present.

At this point we can see that as in our framework the elderly have higher savings in
micro than in macro data, s2 > s̃2, either π1,2 > 0 or π2,1 < 0 must hold. This means
that there is a positive intergenerational link of the young on the saving of the elderly
or a negative intergenerational link of the elderly on the saving of the young.

Finally, we know that one of the main sources of intergenerational relations is be-
quests. An expectation about receiving a future bequest already increases household
consumption and therefore lowers savings. In this sense, it is not even necessary to re-
strict to bequests, because inter vivos gifts from the elderly have clearly the same effect.
So, even if the elderly do not dissave themselves, they still lower average savings by
lowering the savings of the young.

2.3 The importance of uncertainty

For a better understanding of the importance of uncertainty, let’s consider a very simple
two-period model. This example is taken from [BL96]. An agent maximizes expected
utility U given by

U(c1, c2) = ln c1 + ln c2
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Table 2.2: Shortened outcome of the calculations from Browning and Lusardi (1996, page
1802)

ε = 0 ε = 0.01 ε = 0.01
y1 = 1, y2 = 2 y1 = 2, y2 = 1 y1 = 1, y2 = 2

First period consumption 1.5 1.49 0.98
Saving rate -0.5 0.255 0.02

where c1 and c2 represent certain consumption in period 1 and 2. y1 denotes first period
earnings plus any starting wealth and earnings in period 2 are supposed to be stochastic:
0 earnings with probability ε and y2

1−ε with probability (1 − ε). Therefore an increase
in ε gives a mean preserving spread in future earnings risk, because the expectation of
second period income is y2 and independent of ε:

Ey2 = ε · 0 + (1− ε) y2

1− ε
= y2

Finally, the real rate of interest is supposed to be 0.
Browning and Lusardi (1996, page 1802) calculate 3 scenarios: perfect certainty (ε =

0) with a low y1, and small uncertainty (ε = 0.01) with either a high or low y1. The
results are shortened and presented in table 2.2.

The results reveal that with an initial high y1, small uncertainty about the future
income only has a small influence, as first period consumption with uncertainty is 1.49,
as opposed to 1.50 with certainty. However, if y1 is initially low, small uncertainty
already hugely influences first period consumption, as it reaches only 0.98, but certainty
gives 1.5. So, a model which deals with certainty about future income or the length
of life can highly differ in the outcome to a model with even very small uncertainty.
Additionally, in table 2.2 is presented the saving rate. Introducing small uncertainty
with an initial low y1 would change the saving rate from -0.5 to 0.02, so it is very
advisable to pay attention to modeling variables with certainty.

The differences between micro and macro data show us the importance of accounting
for interactions between individuals. The empirical evidence suggests that an increased
share of old people should decrease the overall saving rate of a population. Furthermore
variables with certainty should be used with caution because the change from certainty
to even very small uncertainty could be fundamental for the outcome.
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3 Longevity and economic growth in a
dynastic family model with an
annuity market (Zhang and Zhang
2001)

In this section I will present the model published by Zhang and Zhang, see [ZZ01]. It
is a dynastic family model with an annuity market and examines the impact of a rising
life expectancy on economic growth. It belongs to the class of overlapping generations
models without bequests.

We will see that it can explain rising life-cycle savings if longevity rises, and also shows
that even with endogenous fertility (which falls with increasing longevity), the overall
labor supply to working age population still rises with a rising longevity.

3.1 Motivation

In industrial countries, life expectancy is rising and also the fraction of retirees in relation
to the whole population has been rising. Furthermore this fraction is expected to rise
even more in the next few decades, so in relation to the working age population there will
be a considerable higher fraction of retirees. In most industrial countries, birth rates are
nowadays around the replacement level. All that raises the question about the impact
of population aging on the economic growth rate.

3.2 The model

The model will use an overlapping generations approach with an infinite number of
periods where every agent lives for 3 periods (child in young age, worker in middle age
and retiree in old age).

Assumptions

• Overlapping generations with every agent living for 3 periods

• Two-sector growth model (production and education)

• Economy with a single good
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• Perfect competition in the goods market

• Physical capital fully depreciates in one period

• Infinite number of periods

• Physical capital investment and old-age consumption come from life-cycle savings
(no support from children to parents)

• Only link between generations: investment of parents in children’s human capital

• No bequests

• Actuarially fair annuity market

• No education loan market

• Sure survival from young to middle age

• Probability p of survival from middle to old age

• Each middle-aged agent has nt identical children, born between young and middle
age

• A middle-aged agent has no free leisure time, all time is devoted to rearing children,
educating children and working

• The interest rate rt and the wage rate wt are exogenous

In the model the human capital investments of children are made to a large extent by
its’ parents, and represents the only intergenerational transfer. For Zhang and Zhang
(2001, page 270), this is ’perhaps the main form of intergenerational linkage in most
industrial nations where the average schooling years of workers are about 10 years or
higher’.

Model formulation

The utility Vt of a representative middle-aged agent with t denoting a period in time is
assumed to be logarithmic:

Vt = ln(ctt) + p · ln(ctt+1) + η · ln(nt) + αVt+1, 0 < α < 1, η > 0 (3.1)

where the subscript t is the current period in time and the superscript t represents the
generation born in (t− 1). ctt is middle-age consumption, ctt+1 is old-age consumption, η
represents the taste for the number of children, α describes the taste for the welfare of
children and Vt+1 is the utility per child.

As we assume perfect competition in the goods market, we can use the following
Cobb-Douglas-type aggregate production function

Yt = DKθ
t (LtltHt)

1−θ, D > 0, 0 < θ < 1 (3.2)
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where Yt is aggregate output, D the productivity parameter, Kt aggregate physical
capital, θ the share parameter associated with physical capital, Lt the number of agents
in middle age living in period t, lt the input of labor per middle-aged agent and Ht the
human capital per middle-aged agent. (LtltHt) represents effective labor.

As all companies want to maximize their profits, we have profits = output− input =
Yt − [w · (LtltHt) + (1 + rt) ·Kt] with w as the wage rate per effective unit of labor, r
the interest rate and (1 + rt) being the cost of capital because capital fully depreciates

in one period. With the first order conditions of ∂(profits)
∂(LtltHt)

= 0, ∂(profits)
∂Kt

= 0 we get

wt =
∂Yt

∂(LtltHt)
= (1− θ)Deθt (3.3)

1 + rt =
∂Yt
∂Kt

= θDeθ−1
t

with et = Kt/(LtltHt) being the ratio of physical capital to effective labor.
The human capital of a child Ht+1 is assumed to accumulate Cobb-Douglas like:

Ht+1 = Aqβt (htHt)
1−β, A > 0, 0 < β < 1 (3.4)

where A is a scaling parameter1, qt the investment of goods from the parent for this
child, β the share parameter2 associated with qt, and ht the investment of time from the
parent for this child.

With v being the fixed units of time to rearing one child (0 < v < 1), a middle-aged
agent with nt children uses vnt units of time to rearing children. Furthermore an agent
provides for the children’s education htnt units of time. If we assume that there is no
additional free leisure time in middle age, an agent uses the remaining lt units of time
for earning a wage income wtltHt:

lt = 1− vnt − htnt (3.5)

A middle-aged agent spends the income on own consumption ctt, savings stwtltHt with
st being the saving rate, and the investment of goods in the education of children, qtnt.

The budget constraints for a middle-aged agent are:

ctt = wtltHt(1− st)− qtnt (3.6)

That means that middle-age consumption equals earnings less savings and investment
in children.

ctt+1 =
1 + rt+1

p
stwtltHt (3.7)

Here we see that old-age consumption equals savings stwtltHt times the expected rate
of return on savings which is composed of two terms: (1 + rt+1) being the return rate
on capital and 1/p representing the investment in an actuarially fair annuity market.

1In fact, A is not defined in [ZZ01].
2In fact, β is not defined in [ZZ01].
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Here we see that an increasing life expectancy, represented by an increasing p, influ-
ences not only directly the utility function (3.1) but also the budget constraint (3.7).

Markets clear when physical capital accumulation equals savings:

Kt+1 = LtstwtltHt (3.8)

3.3 The optimization problem

If we insert (3.6), (3.7) and (3.5) into (3.1), we arrive at the following optimization
problem where the agent chooses the number of children nt, the investment in goods qt
and time ht for every child and the saving rate st:

Vt(Ht) = max
ht,nt,qt,st

{ln[wt(1− vnt − htnt)Ht(1− st)− qtnt]+

+ p · ln
[

1 + rt+1

p
stwt(1− vnt − htnt)Ht

]
+ η · ln(nt) + αVt+1(Ht+1)}

(3.9)

subject to the human capital evolution of a child:

Ht+1 = Aqβt (htHt)
1−β

First order conditions

If we differentiate (3.9) with respect to st, we get

∂Vt(Ht)

∂st
=

1

ctt
[−wt(1− vnt − htnt)Ht] +

p

ctt+1

[
1 + rt+1

p
wt(1− vnt − htnt)Ht

]
= 0

and therefore
1

ctt
=

1 + rt+1

ctt+1

(3.10)

or, equally,
1

ctt
= p

1 + rt+1

p · ctt+1

The interpretation is clearly stated by Zhang and Zhang (2001, page 272) that ’the
utility forgone from saving one more unit in middle age is equal to the utility obtained
from receiving (1 + rt+1)/p units more in old age at a chance p’.

Differentiating (3.9) with respect to qt gives

∂Vt(Ht)

∂qt
=

1

ctt
[−nt] + α

∂Vt+1(Ht+1)

∂qt
= 0

With
∂Vt+1(Ht+1)

∂qt
=
∂Vt+1(Ht+1)

∂Ht+1

· ∂Ht+1

∂qt
=
∂Vt+1(Ht+1)

∂Ht+1

· βHt+1

qt
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we get
nt
ctt

= α
∂Vt+1(Ht+1)

∂Ht+1

· βHt+1

qt
(3.11)

If we differentiate (3.9) with respect to ht, we arrive at

∂Vt(Ht)

∂ht
=

1

ctt
[wt(−nt)Ht(1− st)] +

p

ctt+1

[
1 + rt+1

p
stwt(−nt)Ht

]
+ α

∂Vt+1(Ht+1)

∂ht
= 0

With
∂Vt+1(Ht+1)

∂ht
=
∂Vt+1(Ht+1)

∂Ht+1

· ∂Ht+1

∂ht
=
∂Vt+1(Ht+1)

∂Ht+1

· (1− β)Ht+1

ht

and (3.10) we arrive at

wtntHt

ctt
= α

∂Vt+1(Ht+1)

∂Ht+1

· (1− β)Ht+1

ht
(3.12)

The envelope condition is

∂Vt(Ht)

∂Ht

=
1

ctt
[wt(1−vnt−htnt)(1−st)]+

p

ctt+1

[
1 + rt+1

p
stwt(1− vnt − htnt)

]
+α

∂Vt+1(Ht+1)

∂Ht

With using

∂Vt+1(Ht+1)

∂Ht

=
∂Vt+1(Ht+1)

∂Ht+1

· ∂Ht+1

∂Ht

=
∂Vt+1(Ht+1)

∂Ht+1

· (1− β)Ht+1

Ht

=
wtntht
αctt

where the last equality uses (3.12), and using (3.10) results in

∂Vt(Ht)

∂Ht

=
wt(1− vnt)

ctt
(3.13)

As we already used (3.10) to eliminate ctt+1, we now use (3.13), with replacing t by (t+1),
to simplify (3.11) and (3.12):

nt
ctt

= α
wt+1(1− vnt+1)

ct+1
t+1

· βHt+1

qt
(3.14)

wtntHt

ctt
= α

wt+1(1− vnt+1)

ct+1
t+1

· (1− β)Ht+1

ht
(3.15)

If we rewrite (3.14) and (3.15) by

qtnt
ctt

=
αwt+1(1− vnt+1)βHt+1

ct+1
t+1

wtntHtht
ctt

=
αwt+1(1− vnt+1)(1− β)Ht+1

ct+1
t+1
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where the interpretation is stated clearly by Zhang and Zhang (2001, page 273) that
’the losses in utility from investing an additional unit of goods and time in children’s
education equal the gains in children’s welfare by these investments, respectively.’

Finally, if we differentiate (3.9) with respect to nt, we get

∂Vt(Ht)

∂nt
=

1

ctt
[wt(−v − ht)Ht(1− st)− qt] +

p

ctt+1

[
1 + rt+1

p
stwt(−v − ht)Ht

]
+
η

nt
= 0

and therefore by using (3.10) we have

wt(v + ht)Ht + qt
ctt

=
η

nt
(3.16)

The interpretation is clearly stated by Zhang and Zhang (2001, page 273) that ’the loss
in utility from adding one child, which arises from the forgone earning and the increased
education investment for this child, is compensated by the gain in utility from enjoying
the additional child.’

Equilibrium

The equilibrium is characterized by setting the number of children nt = n, the investment
of time for each child ht = h, and the saving rate st = s as constant. Note that with nt
and ht being constant, also lt = l will be constant. Furthermore the ratio of investment
of goods for each child to labor income, γq = qt

wtltHt
is supposed to be constant.

Dividing (3.6) by wtltHt results in

γc1 ≡
ctt

wtltHt

= 1− s− n qt
wtlHt

= 1− s− nγq (3.17)

So, we see that the ratio γc1 of middle-age consumption to labor income is constant too.
With (3.15) we get

wtnHt

γc1 · wtlHt

= α
wt+1(1− vn)

γc1 · wt+1lHt+1

· (1− β)Ht+1

h

where the simplification gives us

h =
α(1− β)(1− vn)

n
(3.18)

This expression gives us the first equation for the equilibrium.
Using (3.14) gives us

n

γc1 · wtlHt

= α
wt+1(1− vn)

γc1 · wt+1lHt+1

· βHt+1

γq · wtlHt

and simplifying leads to

γq =
αβ(1− vn)

n(1− vn− hn)
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If we use (3.18) we finally get

γq =
αβ(1− vn)

n(1− vn− α(1− β)(1− vn))
=

αβ(1− vn)

n(1− vn)[1− α(1− β)]
=

αβ

n[1− α(1− β)]
(3.19)

Here we obtain the second equation for the equilibrium.
Taking (3.10), using (3.7), and multiplying by wtlHt leads to

wtlHt

ctt
=

(1 + rt+1)p · wtlHt

(1 + rt+1)swtlHt

=
p

s

which results in
γc1 =

s

p
(3.20)

If we use (3.20) and (3.17) we get

s =

(
1 +

1

p

)−1

(1− nγq) =
p

p+ 1

(
1− αβ

1− α(1− β)

)
=

p(1− α)

(p+ 1)[1− α(1− β)]
(3.21)

This expression is the third equation for the equilibrium.
Using (3.20) and (3.21) gives us instantly

γc1 =
1− α

(p+ 1)[1− α(1− β)]

Here the fourth equation for the equilibrium is obtained.
Taking (3.16) and using (3.6),(3.18) (3.19), (3.5) and (3.21) results in

η

n
=

wt(v + h)Ht + γqwtlHt

wtlHt(1− s)− wtlHtγqn
=

=
(v + α(1−β)(1−vn)

n
) + αβ

n[1−α(1−β)]
(1− vn− α(1− β)(1− vn))

(1− vn− α(1− β)(1− vn))(1− p(1−α)
(p+1)[1−α(1−β)]

− αβ
n[1−α(1−β)]

n)

This equation only involves the variable n. Reformulation yields

n =
η(1− α)− α(p+ 1)

v(1− α)(p+ 1 + η)

This expression is the last equation for the equilibrium.
To sum up, the equations describing the equilibrium solution of h, γq, s, γc1 and n

are:

h =
α(1− β)(1− vn)

n
(3.22)

γq =
αβ

[1− α(1− β)]n
(3.23)
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s =
p(1− α)

(1 + p)[1− α(1− β)]
(3.24)

γc1 =
1− α

(1 + p)[1− α(1− β)]

n =
η(1− α)− α(1 + p)

v(1− α)(1 + η + p)
(3.25)

With (3.25) we derive a condition for positive fertility (n > 0) for η: η > ηmin =
α(1 + p)/(1−α). This condition shows us that we have a positive fertility (n > 0) if the
taste for the number of children η is bigger than ηmin which is a function of the taste
for the welfare of children α and the probability of survival p.

(3.4) can be rewritten with the growth rate of human capital per worker ght, and by
using (3.3) in the last equality, as

1+ght =
Ht+1

Ht

=
Aqβt (hHt)

1−β

Ht

=
A[γqwtlHt]

β(hHt)
1−β

Ht

= A[γq(1−θ)Deθt l]βh1−β (3.26)

Here we see that the only parameter not fixed on the right-hand side is et.
If we denote kt = Kt/Lt as physical capital per worker, then we can derive an expres-

sion for the growth rate of physical capital per worker gkt by using (3.8), (3.3) and the
definition of et:

1 + gkt =
kt+1

kt
=
Kt+1Lt
Lt+1Kt

=
(LtswtlHt)Lt

(Ltn)Kt

=
s(1− θ)Deθ−1

t

n
(3.27)

With these two equations we express the evolution of et:

et+1 ≡
Kt+1

Lt+1lHt+1

=
Ktn(1 + gkt)

(nLt)l(Ht(1 + ght))
= et ·

n
s(1−θ)Deθ−1

t

n

n · A[γq(1− θ)Deθt l]βh1−β =

=

{
s[(1− θ)D]1−β

nA(γql)βh1−β

}
e
θ(1−β)
t

(3.28)

As the exponent of et is between 0 and 1, 0 < θ(1− β) < 1, we get a global convergence
of the ratio of physical capital to effective labor to

e =

{
s[(1− θ)D]1−β

nA(γql)βh1−β

} 1
1−θ(1−β)

(3.29)

(3.5) and (3.22) imply
l = (1− vn)[1− α(1− β)] (3.30)
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If we insert this expression into (3.29) and the result into (3.26) we get

1 + g =

A

[
γq(1− θ)D

{
s[(1− θ)D]1−β

nA(γq(1− vn)[1− α(1− β)])βh1−β

} θ
1−θ(1−β)

(1− vn)[1− α(1− β)]

]β
h1−β

=

{
(Ah1−β)1−θ · [1− α(1− β)]β(1−θ) · [γq(1− vn)]β(1−θ) · [(1− θ)D]β ·

( s
n

)βθ} 1
1−θ(1−β)

(3.31)

We denote ght with g because we get the same result by using (3.26), which means that
the growth rate of human and physical capital is the same. Here we see that a higher
growth rate g depends positively on the investment of goods qt = γq · wtlHt and the
investment of time ht from the parents for their children, and negatively on fertility n.

3.4 Results

Now we will have a closer look at the implications that we get in the equilibrium.

Proposition 3.1 A rise in life expectancy increases the saving rate, ∂s
∂p
> 0, and the

ratio of physical capital investment to income, ∂(Kt+1/Yt)
∂p

> 0.

Proof Taking the derivative of (3.24) with respect to p leads instantly to ∂s
∂p
> 0. With

(3.2) and (3.8) we get

Kt+1

Yt
=

LtswtlHt

DKθ
t (LtlHt)1−θ = swt

(LtlHt)
θ

DKθ
t

= s(1− θ)

where the last equality comes from using (3.3). So, we see that

∂(Kt+1/Yt)

∂p
= (1− θ) · ∂s

∂p

and therefore, as (1− θ) > 0, that ∂(Kt+1/Yt)
∂p

> 0.

So, we see that in the equilibrium, a longer life expectancy drives the agents to save a
higher fraction of income and therefore invest a higher fraction of income in physical
capital. Furthermore we see with (3.24) that ∂2s

∂p2
< 0, which means that the saving rate

and the ratio of physical capital investment are both concave in p. So, the rise of s
diminishes with an ongoing rise of p.

Proposition 3.2 A rise in life expectancy reduces fertility, ∂n
∂p

< 0, but raises labor

supply, ∂l
∂p
> 0.
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Proof Taking the derivative of (3.25) with respect to p leads instantly to ∂n
∂p
< 0. With

(3.30) we get
∂l

∂p
= [1− α(1− β)]v ·

(
−∂n
∂p

)
As [1− α(1− β)]v > 0, we finally get that ∂l

∂p
> 0.

This result is very important: a rising life expectancy increases the number of agents in
old age, and a reduction of fertility reduces the number of workers. So, the fraction of
old-age people to the whole population must rise if life expectancy increases, which is
consistent with statistics in many industrialized countries. On the other hand, middle-
aged agents use their time differently: they shift time used for children to time used
for working in average, a fact that can be explained by an increasing participation of
women in the labor market in many industrialized countries in the past, as they represent
approximately 50% of the population.

Proposition 3.3 A rise in life expectancy increases human capital investments: ∂γq
∂p

> 0

and ∂h
∂p
> 0.

Proof Taking the derivative of (3.23) with respect to p leads to

∂γq
∂p

=
αβ

[1− α(1− β)]n2
·
(
−∂n
∂p

)
(3.32)

As αβ
[1−α(1−β)]n2 > 0, and using proposition 3.2 gives us ∂γq

∂p
> 0. Taking the derivative of

(3.22) leads to
∂h

∂p
=
α(1− β)

n2
·
(
−∂n
∂p

)
(3.33)

As α(1−β)
n2 > 0, and using proposition 3.2 gives us ∂h

∂p
> 0.

Here we see that a rising life expectancy increases human capital investments through
decreasing fertility, so there is an adjustment between the quality and the quantity of
children.

Proposition 3.4 A rise in life expectancy increases per capita growth: ∂g
∂p
> 0.

Proof Taking the derivative of g with respect to p leads to

∂g

∂p
=
∂g

∂h
· ∂h
∂p

+
∂g

∂γq
· ∂γq
∂p

+
∂g

∂n
· ∂n
∂p

+
∂g

∂s
· ∂s
∂p

(3.34)

With (3.31) we get that

∂g

∂h
> 0,

∂g

∂γq
> 0,

∂g

∂n
< 0,

∂g

∂s
> 0

With the results from proposition 3.1-3.3, ∂h
∂p
> 0, ∂γq

∂p
> 0, ∂n

∂p
< 0 and ∂s

∂p
> 0, we get

that ∂g
∂p
> 0.
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Here we see that a rising life expectancy increases per capita growth.

Proposition 3.5 When fertility n is fixed, a rise in life expectancy increases the saving
rate, ∂s

∂p
> 0, and the ratio of investment in physical capital to income, ∂(Kt+1/Yt)

∂p
> 0.

Therefore it also increases per capita growth, ∂g
∂p
> 0.

Proof With n being fixed, we have ∂n
∂p

= 0. As n does not interfere in the proof of

proposition 3.1, the result remains the same for constant n. So, we get ∂s
∂p

> 0 and
∂(Kt+1/Yt)

∂p
> 0. With (3.32) we instantly get ∂γq

∂p
= 0, and with (3.33) we get ∂h

∂p
= 0.

With these results, (3.34) is reduced to

∂g

∂p
=
∂g

∂s
· ∂s
∂p

As ∂g
∂s
> 0 is still true, we get that ∂g

∂p
> 0 for constant n.

Here we see that if we fix fertility and have a rising life expectancy p, the only force
responsible for the rise of the growth rate g is the saving rate s or the ratio of physical
capital investment to income. The result is the same as with an endogenous fertility,
but in the latter case there are four driving forces of an increasing growth rate g at an
increasing life expectancy p, as seen in proposition 3.4: the investment of time from a
parent for a child h, the ratio of goods for each child to labor income γq, fertility n and
the saving rate s.

3.5 Conclusion

Importance of the parameter β

The model can rule out the influence of savings or physical capital investment to long-
run growth by setting β equal to 0 in (3.31), which would mean that any investment
of goods for a child has no influence on its human capital. But this would not be in
line with most empirical evidence, because typically one of the growth determinants is
saving or investment in physical capital.

Opposing effects on the saving rate s

With a rising life expectancy p, there are different opposing effects:

• If a worker expects a longer lifetime in retirement, he or she will save more and
reduce both consumption while working and the investment in the education of
his or her children to save for retirement.

• On the other hand, rising longevity may lower the total rate of return of annuity
investments, which leads the worker to save less for retirement.

• If an altruistic parent expects the children to live longer, he or she may invest more
in their education.
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Interpretation of the results

In this section we saw an example of a dynastic family model with an annuity market.
The model shows us that the effect of rising life expectancy on equilibrium growth, which
represents long-run growth, is positive. To reach this conclusion, we have considered the
influence on several growth determinants: fertility, savings, ratio of physical capital
investment to income, labor supply and human capital investments.

In general a rising life expectancy increases savings and human capital investments,
reduces fertility and all that results in increasing long-run growth. If we take fertility as
constant, we still have increasing long-run growth because of a positive effect on savings
and investment in the ratio of physical capital investment to income.

The assumptions of the model seem to be quite relevant to the current situation in
industrial countries, so the outcome of the model could give hope to a positive effect of
an aging population.
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4 Rising longevity, education, savings,
and growth (Zhang et al. 2003)

In this section I will present the paper of Zhang et al., see [ZZL03]. An overlapping
generations model without annuity markets constitutes the modeling framework. Since
agents won’t reach retirement for certain, accidental bequests occur which generate
heterogeneity among the population. The aim of the paper is to investigate the influence
of an exogenously rising longevity on economic growth and on the saving rate. In
addition we assume public education which is financed by a tax, and the tax rate is
chosen endogenously by majority voting of the population.

4.1 Motivation

Nowadays in most industrialized countries people are worried about an unfavorable
impact of an aging population on aggregated capital and economic growth. People get
in average older because of an increasing life expectancy and low birth rates. A longer
life for an individual means that bequests are received in average later in life, and are
diminished by an in average longer consumption period.

The empirical analysis shows us that the relation of economic growth to mortality
decline could depend on the initial level of mortality. Table 4.1 reports the average
growth rates of the gross domestic product per capita (1960-1985) and the ratios of
private investment to the gross domestic product (1970-1985) for countries with different
initial life expectancies in 1960. As the initial life expectancy rises from below 60 to 69
years, the private investment ratio and the growth rate rise, but with a life expectancy
of 70 years or more the private investment ratio and the growth rate fall. Indeed, a
declining mortality can have different demographic effects depending on the initial level
of mortality. If we start from a high mortality level, a decline in mortality mainly
diminishes death rates in childhood, which strongly raises the population growth rate
thus making the population younger on average. In this case the declining mortality

Table 4.1: Investment ratios, growth rates and initial life expectancy (Zhang et al. 2003,
page 85)

Life expectancy at birth in 1960 (years) <60 60-64 65-69 ≥70
Number of countries 41 8 14 12
Private investment/GDP (1970-1985 (%)) 14 20 23 22
Average growth rates (1960-1985 (%)) 1.88 3.18 3.36 2.50
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raises the rates of return to investment in human capital. Once life expectancy has
reached the level of around 65, a further decline in mortality strongly influences the
older population. Therefore it does not much influence the population growth rate and
the rates of return to investment in human capital because death rates in childhood are
already at a very low level.

Here we will focus on initial low mortalities, which means that further declines strongly
affect the older population.

4.2 The model

The following life-cycle model constitutes an overlapping generations model of three-
period-lived agents with accidental bequests. As the amounts of the received bequests
can differ, the agents are inhomogeneous. The received bequests depend on the entire
mortality history of their ancestors.

First, every agent has a schooling period, then a working period with 1 unit of labor
time, and finally a retirement period. In young adulthood, agents save for consumption
in retirement and pay taxes to finance public education for the current generation of
children. Furthermore they vote for the level of this flat-rate income tax. If an agent
dies before retirement, his or her wealth is considered as an accidental bequest to the
own child. There is no trade-off between working and leisure time because every agent
works the same amount of time in life.

Assumptions and notations

• Every generation lives for 3 periods: schooling, working and retirement period

• Every agent survives for sure to childhood and young adulthood

• With a probability p ∈ (0, 1) the agent dies after working and before starting
retirement

• Every agent has exactly 1 child which is born between the schooling and the
working period of the parent

• Market of only 1 good

• Infinite number of periods

• Imperfect capital markets

• Accidental bequests are considered

• Physical capital depreciates completely in 1 period

• Only public education is available for children

• Every agent works the same amount of time in life
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• Growth is endogenous

Since every agent has exactly 1 child, the population size of children equals the pop-
ulation size of young adults and is normalized to 1. This means that aggregate capital
stock equals average capital stock per worker.

As bequests are accidental, the received bequest for a child depends on the entire
mortality history of its family. We will denote with subscript t the time period and
superscript j the type-j-agents in a generation. A type-j-agent is defined as an agent
whose exactly j consecutive previous family generations have died before entering into
retirement. That gives the number of type-j-agents as (p)j(1− p) where (p)j represents
the j consecutive died generations before retirement, and (1 − p) the generation living
before which had to survive to retirement. As our model has an infinite number of
periods, there are also infinitely many types of agents, which means j ∈ N.

We will indicate variables without parentheses, .j, for a type-j-agent, and with paren-
theses, (.)j, if j represents the exponent.

Human capital accumulation equation

The human capital of a type-j-agent at time t, hjt , accumulates according to

hjt = A · qαt−1 · h1−α
t−1 , 0 < α < 1 (4.1)

where A is a scaling parameter1, qt−1 the average amount of goods invested by the
preceding generation for public schooling, α the share parameter and ht−1 the average
human capital of the preceding generation.

This formula indicates that agents of the same generation have the same human capital
stock: hjt = ht.

Utility function

The utility function U j
t is defined as

U j
t = ln[cj1,t] + (1− p)δ · ln[cj2,t+1] + φ · ln[qt], 0 < δ < 1, 0 < φ < 1 (4.2)

where cj1,t denotes consumption in young adulthood, p the probability of dying before
retirement, δ the subjective discount factor on the expected utility from consumption
in retirement, cj2,t+1 consumption in retirement, φ the subjective discount factor on the
expected utility from the quality of schools for children and qt the quality of schools for
children.

Here we see that δ < 1 indicates that certain consumption in young adulthood is
preferred to uncertain consumption in retirement, and φ < 1 means that own young
adulthood consumption is of more utility than the quality of schools for children.

1In fact, A is not defined in [ZZL03].
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Consumption functions

The consumption in young adulthood of a type-j-agent is

cj1,t = bjt · (1 + rt) + wjt · (1− τt)− s
j
t (4.3)

where bjt is the bequest at the beginning of t, rt the interest rate, wjt the wage rate, τt
the wage tax rate and sjt the amount of savings.

This formula simply states the budget equation: consumption equals total income
(bequests with interests plus after tax wage) less savings.

The consumption in retirement of a type-j-agent is given by

cj2,t+1 = (1 + rt+1) · sjt (4.4)

The formula states that if the agent survives to retirement, he or she consumes the whole
stock of savings.

If we denote consumption in young adulthood as a fraction of after-tax young-age
income [bjt · (1 + rt) + wjt · (1− τt)] by γc with 0 ≤ γc ≤ 1, we can rewrite (4.3) as

cj1,t = γc · [bjt · (1 + rt) + wjt · (1− τt)] (4.5)

With (4.3) and (4.5) we instantly get

sjt = (1− γc) · [bjt · (1 + rt) + wjt · (1− τt)] (4.6)

where we already see that (1−γc) represents the saving rate. Using (4.6) and (4.4) gives
us

cj2,t+1

1 + rt+1

= (1− γc) · [bjt · (1 + rt) + wjt · (1− τt)] (4.7)

Bequests

Agents who die before retirement leave their savings as accidental bequests to their
children. Agents who survive to retirement leave nothing:

bjt = sj−1
t−1 for j ≥ 1 and bjt = 0 for j = 0 (4.8)

Production function

The production function is given by

yt = D · kθt

[
∞∑
j=0

hjt · lt · (p)j(1− p)

]1−θ

= D · kθt · h1−θ
t , D > 0, 0 < θ < 1 (4.9)

where D is a scaling parameter2, kt the aggregate or average physical capital stock, θ the
share parameter, ht the human capital, lt the labor input per worker which is assumed

2In fact, D is not defined in [ZZL03].
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to equal 1, and (p)j(1− p) the number of type-j-agents. The last equality uses hjt = ht,
lt = 1 and

∑∞
j=0(p)

j = 1
1−p .

As physical capital depreciates completely in 1 period and the production factors
obtain their marginal products, we arrive at:

wjt = (1− θ) ·D
(
kt
ht

)θ
hjt = (1− θ) ·D · eθt · h

j
t (4.10)

1 + rt = θ ·D ·
(
ht
kt

)1−θ

= θ ·D · eθ−1
t (4.11)

where et = kt
ht

is the physical-human capital ratio. As hjt = ht, we have wjt = wt, which
means that the wage rate is the same for all workers in 1 generation.

Market clearing

Markets clear when physical capital equals savings:

kt+1 =
∞∑
j=0

sjt · (p)j(1− p) = st (4.12)

st represents weighted average or aggregate savings.

Government budget constraint

The government is assumed to have a balanced budget in each period. Therefore the
budget constraint is given by

qt = τt

∞∑
j=0

wjt · (p)j(1− p) = τt · wt (4.13)

4.3 Equilibrium and results

The optimization problem is solved in two steps. In young adulthood, agents first choose
savings with regard to (4.1), (4.3), (4.4) and (4.10), taking as given τt, b

j
t , qt−1, ht−1 and

et (thus with using (4.11) also rt). Afterwards, agents vote for their preferred tax rate,
and the applied tax rate is chosen in a political equilibrium.

In the first step of the problem, an agent wants to choose savings sjt optimally. There-
fore we take the derivative of (4.2) with regard to sjt , using (4.3) and (4.4):

∂U j
t

∂sjt
=

1

cj1,t
(−1) + (1− p)δ 1

cj2,t+1

(1 + rt+1) = 0

1

cj1,t
=

(1− p)δ
sjt

=
(1− p)δ

bjt · (1 + rt) + wjt · (1− τt)− c
j
1,t
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cj1,t =
1

1 + (1− p)δ
[bjt · (1 + rt) + wjt · (1− τt)]

γc =
1

1 + (1− p)δ
(4.14)

So, in the optimum the fraction of income consumed in young adulthood γc increases
with a lower subjective preference parameter δ and a higher mortality rate p. It is
independent of the tax rate τt.

As we already know that the saving rate is (1− γc), we get

1− γc =
(1− p)δ

1 + (1− p)δ
(4.15)

This result yields that in the optimum the saving rate (1− γc) rises with a higher δ and
a lower mortality rate p.

If we take (4.6) and use the fact that b0t = 0 we get

s0
t = (1− γc)wt(1− τt) (4.16)

This equation determines the savings of a type-0-agent.
Taking again (4.6) and using (4.16) gives us

sjt = (1− γc) · bjt · (1 + rt) + s0
t (4.17)

This equation separates the savings of a type-j-agent into a fraction dependent of the
received bequest and a fraction dependent on type-0-agent savings.

Taking (4.12) and using (4.17) leads us to

kt+1 =
∞∑
j=0

{
[(1− γc) · bjt · (1 + rt) + s0

t ] · (p)j(1− p)
}

= (1− γc)(1 + rt)
∞∑
j=0

{
bjt · (p)j(1− p)

}
+ s0

t = (1− γc)(1 + rt) · bt + s0
t

(4.18)

where bt represents the weighted average or aggregate bequest. This equation connects
the next period’s physical capital stock with the current period average or aggregate
bequest and the current savings of type-0-agents.

If we look at aggregate or average savings in period t−1, st−1, we see that as a fraction
p of each type of agents die before retirement, this fraction p · st−1 is the next period’s
accidental aggregate or average bequest bt:

bt = p · st−1 = p · kt (4.19)

where the last equality uses (4.12).
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If we denote the growth rate of physical capital as 1 + gk,t = kt+1

kt
, we get by using

(4.18) and (4.19):

kt+1 =
kt+1

s0
t

s0
t =

kt+1

kt
s0t
kt

s0
t =

1 + gk,t

1 + gk,t − (1−γc)(1+rt)bt
kt

s0
t =

1 + gk,t
1 + gk,t − (1− γc)(1 + rt)p

s0
t

(4.20)
Here the aggregate physical capital stock of the next period is linked to the savings of
this period’s type-0-agents. It increases with higher savings s0

t , a lower growth rate of
physical capital (1 + gk,t), a higher saving rate (1 − γc), a higher interest rate rt and a
higher mortality rate p.

If we assume p = 0, which means that it is certain to survive until retirement, we
see from (4.20) that kt+1 = st = s0

t . So, aggregate savings st equal aggregate savings
of type-0-agents s0

t , which can only be if there are no accidental bequests. If p > 0,
these accidental bequests increase the physical capital accumulation, which results in
kt+1 = st > s0

t .
Using (4.20) gives us

1 + gk,t =
kt+1(1− γc)(1 + rt)p

kt+1 − s0
t

With (4.16) and (4.18) we get

1 + gk,t =
[(1− γc)(1 + rt)bt + (1− γc)wt(1− τt)](1− γc)(1 + rt)p

[(1− γc)(1 + rt)bt + s0
t ]− s0

t

=
[(1 + rt)bt + wt(1− τt)](1− γc)p

bt

With (4.19), (4.10) and (4.11) we arrive at

1 + gk,t =
[θ ·D · eθ−1

t · p · kt + (1− θ)D · eθt · ht(1− τt)](1− γc)p
p · kt

=
(1− γc)Deθ−1

t

kt
[θ · p · kt + (1− θ)et · ht(1− τt)]

Using the fact that et = kt
ht

gives us

1 + gk,t = D(1− γc) [θ · p+ (1− θ)(1− τt)] eθ−1
t (4.21)

Here we see that the growth rate of physical capital decreases if p decreases, which means
that the people have a higher probability of survival until retirement.

Defining the growth rate of human capital by 1 + gh,t = ht+1

ht
and using (4.1), (4.10)

and (4.13) gives us

1+gh,t ≡
ht+1

ht
= A·qαt ·h−αt = A(τtwt)

α·w−αt (1−θ)αDα·eαθt = A·ταt (1−θ)αDα·eαθt (4.22)
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Here we see that the growth rate of human capital is positively influenced by the tax
rate τt, which is clear because the tax rate defines the amount of goods the population
invests in the next generation’s human capital.

With (4.21) and (4.22) we get the evolution of the physical-human capital ratio:

et+1 ≡
kt+1

ht+1

=
(1 + gk,t)kt
(1 + gh,t)ht

=
D(1− γc) [θ · p+ (1− θ)(1− τt)] eθ−1

t

A · ταt (1− θ)αDα · eαθt
et

=
D1−α(1− γc) [θ · p+ (1− θ)(1− τt)]

A · ταt (1− θ)α
e
(1−α)θ
t

Solving this equation for the steady state ratio e∗ = et+1 = et with a constant tax rate
τ results in

e∗ =

[
D1−α(1− γc) [θ · p+ (1− θ)(1− τ)]

A · τα(1− θ)α

] 1
1−(1−α)θ

Inserting this result into either (4.21) or (4.22) results in

1 + g =

[
{D(1− γc) [θ · p+ (1− θ)(1− τ)]}αθ

{A · τα(1− θ)αDα}θ−1

] 1
1−(1−α)θ

(4.23)

Here we see that the growth rate is affected by the mortality rate p directly through one
term, and indirectly through the saving rate (1− γc) and the tax rate τ .

The behavior of the growth rate for changes of the saving rate and the tax rate are
given by

Proposition 4.1

∂g

∂(1− γc)
> 0;

∂g

∂τ
> 0 if τ < 1− θ + pθ

Proof Taking the derivative of (4.23) with respect to (1 − γc) and to τ immediately
produces the results.

This means that a rise in the saving rate or tax rate has a positive effect on the growth
rate, as long as the tax rate is not too high.

To get a better understanding of the implications on growth with a rising longevity,
we focus on an exogenous tax rate to keep it simple:

Proposition 4.2 For a given tax rate τ , ∂g
∂p
< 0 unless τ ≥ 1−θ(1−p)[2+δ(1−p)]

1−θ . In partic-

ular, if p is sufficiently high, then ∂g
∂p
< 0. If p is low, then the sign of ∂g

∂p
is ambiguous

in general and positive for sufficiently large δ, θ and τ .

Proof For a constant τ , the mortality rate p influences g as in (4.23) only through
(1 − γc)[pθ + (1 − τ)(1 − θ)], with γc as given in (4.14). Therefore, ∂g

∂p
is signed by

f(p) ≡ θ(1− p)[1 + δ(1− p)]− pθ − (1− τ)(1− θ) and f ′(p) < 0. The restriction on τ
for signing ∂g

∂p
negatively follows immediately. Evidently, f(p) < 0 and therefore ∂g

∂p
< 0

if p is sufficiently high.
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This proposition states that for an exogenous tax rate, rising longevity has a positive
effect on the growth rate if initial mortality is sufficiently high. If initial mortality is
low, the effect is ambiguous.

We should also note that the saving rate as stated in (4.15) increases if p falls, because
∂(1−γc)
∂p

< 0. At the same time the saving rate is concave in p because ∂2(1−γc)
∂p2

< 0. So,

a higher longevity (a lower p) increases the saving rate, but this increase gets smaller
with an increasing longevity.

Determination of the tax rate

The tax rate is determined endogenously through majority voting in two steps. First we
calculate the preferred tax rate τ jt for each type of agents, and then we will determine
the actual tax τt. As agents in retirement don’t pay any taxes because we only consider
an income tax, their welfare is not affected by the tax. Furthermore their grandchildren
are not part of the utility function, so they are indifferent to the level of the tax applied.
That’s why in our model they don’t have a vote.

Taking (4.2) and using (4.5), (4.7) and (4.5) leads to

U j
t = ln[cj1,t] + (1− p)δ · ln[cj2,t+1] + φ · ln[qt]

= ln[γc[b
j
t(1 + rt) + wt(1− τ jt )]]+

+ (1− p)δ · ln[(1 + rt+1)(1− γc)[bjt(1 + rt) + wt(1− τ jt )]] + φ · ln[τ jt · wt]

where we finally get to the problem formulation in the second stage with the utility
function V j

t which is maximized with regard to τ jt :

V j
t = ln γc + [1 + (1− p)δ] ln[bjt(1 + rt) + wt(1− τ jt )]

+ (1− p)δ ln[(1 + rt+1)(1− γc)] + φ ln τ jt + φ lnwt
(4.24)

Here we take as given bjt , et, rt, rt+1 and wt. Note that γc is independent of τ jt by (4.14).
With this expression we derive the preferred tax rate for each type of agent as follows:

Proposition 4.3 The preferred tax rate of type-j-agents is

τ jt =
φ

1 + φ+ (1− p)δ

[
1 +

θp

1− θ
bjt
bt

]

In addition,
dτ0
j

dp
> 0.

Proof Taking the derivative of (4.24) with respect to τ jt results in

∂V j
t

∂τ jt
= [1 + (1− p)δ] −wt

bjt(1 + rt) + wt(1− τ jt )
+
φ

τ jt
= 0

and therefore
φ[bjt(1 + rt) + wt(1− τ jt )] = wt[1 + (1− p)δ]τ jt
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τ jt =
φ

1 + φ+ (1− p)δ

[
1 +

bjt(1 + rt)

wt

]
Using (4.10), (4.11), (4.19) and et = kt

ht
gives us

1 + rt
wt

=
θDeθ−1

t

(1− θ)Deθtht
=

θ

(1− θ)kt
=

θp

(1− θ)bt

which leads us to

τ jt =
φ

1 + φ+ (1− p)δ

[
1 +

θp

1− θ
bjt
bt

]
Taking the derivative of (4.24) with respect to τ jt two times results in

∂2V j
t

∂(τ jt )2
= −wt[1 + (1− p)δ] wt

[bjt(1 + rt) + wt(1− τ jt )]2
− φ

(τ jt )2
< 0

So, the preferred tax rate is a local maximum.
As b0t = 0 we have τ 0

t = φ
1+φ+(1−p)δ and we get

∂τ 0
t

∂p
=

−φ
[1 + φ+ (1− p)δ]2

(−δ) > 0

Here we observe 3 important facts:

• With given bequests bjt , the preferred tax rate of all types of agents falls if longevity
increases. This shows us that resources are shifted from investments in children’s
human capital to own consumption in retirement.

• The preferred tax rate rises with the type-j bequest bjt . This fact is clear because
the quality of schools for children is a normal good for the parent, so a higher
received bequest raises demand for a higher quality of schools.

• The preferred tax rate of type-0-agents is independent of time t: τ 0
t = τ 0.

Let’s now have a look at the equilibrium tax rate. Only agents in young adulthood
have the right to vote, and each type of them votes for its preferred tax rate. As
every agent has one vote, each τ jt is voted by a fraction of (p)j(1− p) type-j-agents. If
p < 1

2
then type-0-agents form the majority, otherwise no single type forms a majority.

The preferred tax rate in the political equilibrium is the median tax rate, which is
given by the preferred tax rate of type-j∗-agents such that

∑
i≥j∗(p)

i(1 − p) ≥ 1
2

and∑
i≤j∗(p)

i(1 − p) ≥ 1
2
. So the median tax rate is the preferred tax rate of the median

type-j-agent population, which are called type-j∗-agents. By reformulation we get∑
i≥j∗

(p)i(1− p) = (p)j
∗
(1− p)

∑
k≥0

(p)k = (p)j
∗
(1− p) 1

1− p
= (p)j

∗ ≥ 1

2
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j∗ ≤
ln[1

2
]

ln p
(4.25)

Due to the fact that the expression on the right-hand side of this inequation is a real
value, j∗ is the rounded down integer of this expression.

Using the balanced growth condition
sjt
sjt−1

= st
st−1

and defining at ≡ (1−γc)(1+rt)
st/st−1

=

(1−γc)(1+rt)
1+gk,t

by using (4.12), st
st−1

= kt+1

kt
= 1 + gk,t. With (4.11) and (4.21) we get

at =
(1− γc)θ ·D · eθ−1

t

D(1− γc) [θ · p+ (1− θ)(1− τt)] eθ−1
t

=
θ

θ · p+ (1− θ)(1− τt)

Using (4.17) and (4.8) gives us sjt = (1 − γc)(1 + rt)s
j−1
t−1 + s0

t = at
st
st−1

sj−1
t−1 + s0

t =

at · s
j−1
t

sj−1
t−1

· sj−1
t−1 + s0

t = at · sj−1
t + s0

t . Therefore we get

sjt =

j∑
k=0

akt · s0
t =

1− (at)
j+1

1− at
s0
t (4.26)

Dividing (4.20) by 1 + gk,t results in st = 1
1−at·ps

0
t . With this result, (4.8), (4.19) and

(4.26) we get

bjt
bt

=
sj−1
t−1

p · st−1

=

1−(at)j

1−at s
0
t

p · 1
1−at·ps

0
t

=
(1− (at)

j)(1− at · p)
p(1− at)

(4.27)

With this expression and proposition 4.3 we finally get the equilibrium tax rate τ j
∗

t :

τ j
∗

t =
φ

1 + φ+ (1− p)δ

[
1 +

θ

1− θ
(1− (at)

j)(1− at · p)
1− at

]
(4.28)

and

at =
θ

θ · p+ (1− θ)(1− τ j∗t )
(4.29)

These two equations determine the solution for at and τ j
∗

t . With a given value p we
calculate j∗ by using (4.25). With this result we get at and τ j

∗

t , which are actually time
invariant, at = a and τ j

∗

t = τ j
∗
.

As a next step we investigate the change of steady-state growth with a rising longevity:

Proposition 4.4 With an endogenously determined tax rate for public education by a
majority of voters, dg

dp
< 0 if p is large enough.

For a small enough p, we have dg
dp
> 0 when δ and θ are sufficiently large.

Proof From (4.23) we see that the sign of dg
dp

is determined by the first-order derivative

with respect to p of Φ(p) ≡ τ 1−θ(1− γc)θ[θ · p+ (1− τ)(1− θ)]θ. Let τ = τ j
∗
. If p→ 1

then j∗ → ∞ by (4.25), a < 1 by (4.29) and
bj
∗
t

bt
→ 1 by (4.27). Note that as p → 1,
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Table 4.2: Growth effects of rising longevity with labor income taxes (Zhang et al. 2003,
page 94)

α = 0.15, δ = 0.995, θ = 0.36, φ = 0.06 and A = D = 3.0
Adult mortality Saving/income Public education/income Annual growth
(p) (s/y (%)) (q/y (%)) (g1/25 (%))
0.98 1.83 5.58 2.18
0.90 8.25 5.29 2.63
0.80 14.59 4.87 2.77
0.72 18.62 4.47 2.80
0.60 23.31 3.72 2.77
0.50 26.07 3.53 2.77
0.40 28.44 2.32 2.56
0.30 29.81 2.19 2.54
0.20 30.64 2.07 2.52
0.04 31.04 1.91 2.48
0.02 30.99 1.89 2.47

φ < 1 implies τ j
∗
< 1. This and (4.28) leads us to the fact that dτ j

∗

dp
is finite. As p→ 1,

Φ′(p)→ −∞.
If p ≤ 1

2
, type-0-agents form a majority. So, the preferred tax rate is τ j

∗
= τ 0 =

φ
1+φ+(1−p)δ . With p→ 0, Φ′(p) is signed by δ(1− θ)(1 + δ)[(1− θ)(1 + δ)− φθ] + θ(1 +

δ)(1 + φ+ δ)[θ(2 + φ+ δ)− 1] which is positive for δ and θ large enough.

Here we see that the net impact of rising longevity on steady-state growth is ambiguous:
if initial mortality p is high, rising longevity has a positive effect on steady-state growth
g, whereas with an initial low p, rising longevity has a negative effect on g, given a large
enough δ and θ.

The authors of [ZZL03] did some numerical analysis with plausible values for the
parameters. The results are given in table 4.2. The ratio of aggregate saving to aggregate
income is derived by using successively (4.12), (4.18), (4.16), (4.11), (4.10), (4.9) and
(4.19):

st
yt

=
kt+1

yt
=

(1− γc)(1 + rt)bt + (1− γc)wt(1− τ j
∗
)

yt
=

= (1− γc)
θ ·D · eθ−1

t · bt + (1− θ)D · eθt · ht(1− τ j
∗
)

D · kθt · h1−θ
t

= (1− γc)[θ · p+ (1− τ j∗)(1− θ)

Here we see that with an adult mortality p going from 0.98 to 0.02, the ratio of aggregate
saving to aggregate income st

yt
rises first and finally declines a bit. On the other hand

the ratio of public education investment to aggregate income qt
yt

= τ j
∗
(1 − θ) (derived

by using (4.13), (4.10) and (4.9)) only falls. With that fact we finally get that initially
the net effect of lower adult mortality on growth is positive, and later negative.
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The authors furthermore investigated a more rational voting process which considers
not only the direct impact of the tax rate, but also an indirect impact. There is the
possibility of considering the influence of the tax rate on investment decisions of other
individuals, which influences the aggregate physical-human capital ratio in the next pe-
riod, et+1. This fact influences the return to savings, rt+1. With these rational reflections
the model becomes non-analytic. Therefore the authors did a numerical simulation. It
results in the same behavior of the ratio of savings to income, which is our focus here.
Therefore this approach is not discussed here in more detail.

4.4 Conclusion

In this section we took a closer look at the growth rate with exogenously rising longevity,
in the framework of a two-sector endogenous growth model without annuity markets.
As agents don’t reach retirement for certain, we have accidental bequests which generate
heterogeneity among the population. Public education is financed by a tax, where the
tax rate is chosen endogenously by majority voting.

Driving forces

This model gives for increasing longevity an ambiguous result on growth because a
declining mortality affects growth in 3 ways:

• It raises the saving rate and therefore raises the rate of physical capital accumula-
tion;

• It reduces accidental bequests which lowers investment and therefore lowers the
rate of physical capital accumulation;

• If initial mortality is low, it may lead the median voter to decrease the tax rate
and therefore lowers the human capital accumulation. If initial mortality is high,
there is a positive effect on growth.

In the numerical analysis, with the results in table 4.2, we see that if initial mortality is
high, a declining mortality has a positive effect on the saving rate. However, if mortality
is low, as in most industrialized countries nowadays, a furthermore declining mortality
has a negative effect on the saving rate.

Shortcomings of the model

The presented model has several shortcomings, which should be taken into account. The
main simplifications are:

• A very simple tax system: in childhood and retirement, no direct or indirect taxes
are paid;
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• The voting process: in reality tax rates are fixed by the government which is mostly
elected by public voting, but does not necessarily reflect exactly the public opinion
on preferred tax rates. Furthermore old agents should have a vote, too.

• No trade-off between working and leisure time because every agent works the same
amount of time in life;
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5 The effect of improvements in health
and longevity on optimal retirement
and saving (Bloom et al. 2004)

In the following section I will present the model published by Bloom et al., see [BCM04].
It is a continuous time model of agents living for two periods, a working and a retirement
period. In each period, agents can choose a consumption level. In the first period they
also decide on their retirement and whether to save for the second period, i.e. for
retirement. If the agent survives until retirement, the saved assets will be the only
funding of consumption in retirement, as there are no transfers either from the state or
directly from the working population to the retirees.

This model can be seen as a benchmark for social security systems because the optimal
retirement age derived from the model should be close to the mandatory retirement age
of a well designed social security system. Otherwise people would be obliged to retire
from work before it would be necessary for them personally.

5.1 Motivation

In the last 100 years there have been significant improvements in the overall health level
and an increase in the life expectancy. According to Lee (2003, page 168) the average
life expectancy at birth for the whole world was 30 years in 1900, 65 years in 2000 and
is projected to reach 81 years in 2100.

This significant change in people’s time horizons is supposed to have an important
influence on their economic life-cycle behavior. Let’s give one short example to clarify
this: if we think of choosing between an education at university and starting to work
after high school, then education at university would be an investment in one’s human
capital. It will be chosen because it is expected to pay off afterwards by higher salaries.
So, doing this investment reflects the expectation of living a sufficient time after finishing
this education. Given 2 exemplary life expectations, 30 years and 65 years, then clearly
in the first case it would be unattractive to invest in an education at university, whilst in
the second case it could be an attractive investment. This example shows that changes
in the planning time horizons could have significant influences in people’s choices over
their whole life.
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5.2 The model

Motivation of saving

In the literature there are several different reasons for people to save, as already men-
tioned in section 2.1.1. In the model presented here we will only consider the motivation
of saving for retirement, and ignore all the other reasonings.

There is one important difference between developing countries and industrial coun-
tries: in developing countries, the elderly often benefit from intra-family transfers, whilst
in industrial countries they often benefit from well-working social security systems.

Given these facts, it is clear that the transfer systems of a state affect the incentives
to save and to retire for the people.

Exogenous variables

In the model, there are assumed to be several exogenously given variables:

• Interest rate r

• Disutility of labor ν: it describes the negative value of investing time to work and
will depend on life expectancy Z and age t

• Rate of time preference δ: the discount factor of an agent will be e−δt

• Real wage rate w: an agent will earn a wage w(t) at age t if working, so it will
depend on age t

• Rate of wage growth σ: ẇ = σw

• Constant death rate λ (with 1/λ = life expectancy Z)

Environment

For the model there are several general assumptions:

• Complete capital markets: existence of perfect annuity markets

• Impossibility of using consumption c and health services to have a longer life,
and no link from labor supply to health status and life expectancy: Z will be
independent of c and on the argument if the agent has retired or not at age t

• Working life starts at the beginning of the life cycle (no schooling period)

• No bequests

47



Health

Health during the lifetime of an agent is represented by Z, which will have an influence
on the decision when to retire. So, the disutility of work will depend on a worker’s health
status.

The decision to retire is only caused by a poor health status, which means that as
long as an agent is healthy enough, he or she will not retire.

A rising life expectancy is linked to improved health at each age t, so an agent will
live both a longer and a healthier life span (as opposed to the possibility of living longer,
but at very poor health in the additional years in life).

Wealth effect

If we think of an increase in life expectancy, it would be tempting to think of a result
where the proportion of lifetime spent working to total life remains constant, and con-
sumption & the saving rate remain unchanged, e.g. if an agent who expects to live 60
years will work 40 years (proportion 40/60 = 2/3), then an agent who expects to live 90
years will choose to work 60 years (same proportion 60/90 = 2/3).

Evidently this is not the case because of the wealth effect: a longer lifetime spent
working permits more accumulation of compound interests on savings, which generates
a higher potential wealth at retirement compared to the proportionality result.

Lifetime expected utility

The lifetime expected utility U is given by:

U =

∫ ∞
0

e−(δ+λ)t [u(c(t))− χt · ν(Z, t)] dt with
∂ν(Z, t)

∂t
> 0,

∂ν(Z, t)

∂Z
< 0

e−δt is the discount factor, with δ being the subjective rate of time preference. e−λt is the
probability of being alive at age t, with λ being the constant death rate. [u(c(t))− χt · ν(Z, t)]
gives the instantaneous utility at age t, with u(c(t)) being the utility function, ν(Z, t)
being the disutility of working, χt being an indicator function with 1 for working and 0
for retired, and Z being the life expectancy.

The disutility of work ν(Z, t) should grow in t in a way that once it is more interesting
to be retired than to work, it should stay this way. So, the indicator function χt gives
the retirement age which is the age t where χt changes its value from 1 to 0. ∂ν(Z,t)

∂Z
< 0

represents the assumption of a both longer and healthier life span.
This formula specifies for given variables δ, λ, Z, a given disutility of work ν(Z, t),

and a given utility function u(c(t)) for every chosen consumption path c(t) in t and
retirement age χt the lifetime expected utility U of that agent.

The budget constraint

The budget constraint is given by:

dW (t)

dt
= χt · w(t) + (λ+ r)W (t)− c(t)
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W (t) denotes the state variable and describes the overall wealth at age t. w(t) denotes
the wage at age t which the agent only receives if he is working at age t. The effective
interest rate (λ+ r) is bigger than r because of the mortality risk the agent faces. As we
have no bequests, this term describes a perfect annuity market. c(t) is the consumption
at age t and decreases the overall wealth.

The transversality condition is given by limt→∞W (t) ≥ 0. It is important to notice
that there is not necessarily equality. Agents may want to hold positive wealth at every
age t because they don’t know when they will die.

5.3 Optimal solution

The Hamiltonian

The lifetime expected utility is maximized with respect to the budget constraint. The
control variables for this optimization problem are c(t) and χt, so the agent chooses the
consumption path and the retirement age.

The Hamiltonian for this problem is:

H = e−(δ+λ)t [u(c(t))− χt · ν(Z, t)] + φ [χt · w(t) + (λ+ r)W (t)− c(t)]

The costate equation for this problem yields

φ̇ = − ∂H

∂W (t)
= −φ(λ+ r) (5.1)

The first order conditions of this problem are given by

∂H

∂c(t)
= e−(δ+λ)t · u′(c(t))− φ = 0 (5.2)

∂H

∂χt
= −e−(δ+λ)t · ν(Z, t) + φ · w(t) ≥ 0 when χt = 1

∂H

∂χt
= −e−(δ+λ)t · ν(Z, t) + φ · w(t) ≤ 0 when χt = 0

(5.3)

With (5.2) we get
φ = e−(δ+λ)t · u′(c) (5.4)

Taking the first derivative with respect to t yields

φ̇ = −(δ + λ) · e−(δ+λ)t · u′(c) + e−(δ+λ)t · u′′(c) · ċ (5.5)

If we insert (5.4) and (5.5) into (5.1), we arrive at

ċ(t) = (r − δ) u′(c(t))

−u′′(c(t))
(5.6)
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Obviously a rising consumption level over time can be observed for a concave utility
function (u′(x) > 0, u′′(x) < 0) if r is bigger than δ, even without an explicit expression
of u(c(t)).

Inserting (5.4) into (5.3) results in

χt = 1⇔ u′(c(t)) · w(t) ≥ ν(Z, t) (5.7)

This equivalence shows that an agent works at age t, if the marginal utility of consump-
tion times the wage exceeds the disutility of work. If we assume that the utility function
is concave and ν(Z, t)/w(t) is non-decreasing then we get a distinctive age t where we
have equality for a concave utility function.

5.4 Results

Additional assumptions

For a detailed analysis we assume the utility function and the disutility of work to have
an explicit form.

For the utility function we assume the form of constant relative risk aversion:

u(c) =
c1−β

1− β
for β ≥ 0 and β 6= 1

u(c) = log(c) for β = 1

Here, β is both the coefficient of relative risk aversion and the inverse of the intertemporal
elasticity of substitution.

For the disutility of work we assume an explicit form as given by:

ν(Z, t) = d · et/Z = d · eλt

d describes the intensity of the disutility of work. Here we see that both conditions,
∂ν(Z,t)
∂t

> 0 and ∂ν(Z,t)
∂Z

< 0 are satisfied, which means that the disutility of work rises in
λ (λ = 1/Z) and t.

Optimal consumption path c(t)

With these additional assumptions, we now derive some further explicit results. Inserting
them into (5.6) gives the optimal growth rate of consumption

ċ(t)

c(t)
=
r − δ
β

where the consumption path results in

c(t) = c0 · e
r−δ
β
t (5.8)
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with c0 as initial level of consumption. c0 can be derived by the budget constraint over
the whole life: ∫ ∞

0

e−(λ+r)tc(t)dt =

∫ R

0

e−(λ+r)tw(t)dt

The left side represents the discounted present value of consumption over the whole
life cycle, and the right side the discounted present value of earnings over the whole life
cycle. R is the optimal retirement age. e−(λ+r)t gives the market discount rate of capital.
With (5.8) and w(t) = w0e

σt, where w0 is the initial wage rate, we arrive at∫ ∞
0

e−(λ+r)tc0 · e
r−δ
β
tdt =

∫ R

0

e−(λ+r)tw0e
σtdt

Integration and assuming σ < λ+ r yieldsc0 e−( r(β−1)+λβ+δ
β )t

−
(
r(β−1)+λβ+δ

β

)
∞

0

= w0

[
e(σ−(λ+r))t

σ − (λ+ r)

]R
0

With the assumption of β ≥ 1 we finally get an expression of the initial consumption:

c0 = w0
r(β − 1) + λβ + δ

β(λ+ r − σ)

(
1− e(σ−λ−r)R

)
with β ≥ 1 and σ < λ+ r (5.9)

To have σ < λ + r for any λ, we choose σ < r. Equation (5.9) is the first explicit link
between R and c0 which shows us that a rise in the retirement age R results in a rise in
the initial consumption c0.

Optimal retirement age R

With (5.7) we get that R is given by the marginal condition

ν(Z,R) = w(R) · u′(c(R))

which can be written as

d · eλR = w0 · eσR
[
c0 · e

r−δ
β
R
]−β

(5.10)

This equation is the second link between R and c0 which shows us that a rise in the
retirement age R results here also in a rise in the initial consumption c0.

Determination of the time path of consumption

With (5.9) and (5.10) we can determine c0 and R, and together with (5.8) we finally get
the optimal time path of consumption.

Solving (5.9) and (5.10) gives us

d · eλR = w1−β
0

[
β(λ+ r − σ)

r(β − 1) + λβ + δ

]β
e(σ+δ−r)R

(1− e(σ−λ−r)R)β
(5.11)
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c0 = w0
r(β − 1) + λβ + δ

β(λ+ r − σ)

[
1−

(
w0c0

−β

d

) σ−λ−r
λ−δ−σ+r

]
(5.12)

Unfortunately, these are 2 implicit functions of R and c0 which we cannot solve explicitly
for an arbitrary β. This is why we need to look for another solution to derive some results.

5.5 A special case

Special case of δ = r = σ = 0

With δ = r = σ = 0, (5.11) and (5.12) simplify to:

d · eλR = w1−β
0

[
1− e−λR

]−β
or λR =

R

Z
= f1(w0, d, β)

This equation shows us that the optimal retirement age is a fixed proportion of life
expectancy because w0, d and β are fixed exogenously, which gives R

Z
= const.

c0 = w0

[
1− d

w0c
−β
0

]
or c0 = f2(w0, d, β)

This equation reveals that the optimal consumption level is independent of the life
expectancy because w0, d and β are fixed exogenously, which gives c0 = const. Addi-
tionally, r = δ = 0 results in constant consumption over time.

Very special case of δ = r = σ = 0 and β = 2

For δ = r = σ = 0 and β = 2 there is an explicit solution of (5.11) and (5.12):

R = log

[
1 + 2dw0 +

√
1 + 4dw0

2dw0

]
Z

c0 =

√
1 + 4dw0 − 1

2d

As there is now an explicit solution for a very special case, the idea for δ, r and σ 6= 0 is
to derive an approximation by linearizing around the solution for R and c0 around the
point δ = r = σ = 0.

Approximation for β = 2 around the point δ = r = σ = 0

If r, δ and σ are small and β = 2, we can derive the following approximation by using
the implicit function theorem and linearizing around the solution for R and c0 around
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the point δ = r = σ = 0:

R =log

[
1 + 2dw0 +

√
1 + 4dw0

2dw0

]
Z +

(
log

[
1 + 2dw0 +

√
1 + 4dw0

2dw0

]
− 2√

1 + 4dw0

)
Z2σ+

+

(
1√

1 + 4dw0

+ log(2)− log
[

1 + 2dw0 +
√

1 + 4dw0

dw0

])
Z2r+

+
log
[

1+2dw0+
√

1+4dw0

2dw0

]
− 1

√
1 + 4dw0

Z2δ

c0 =

√
1 + 4dw0 − 1

2d
+

√
1 + 4dw0 − 1

4d
√

1 + 4dw0

Z(2σ − r)+

+

√
1 + 4dw0 − 1 + (

√
1 + 4dw0 − 1)2log

[
4dw0

(
√

1+4dw0−1)2

]
4d
√

1 + 4dw0

Zδ

With this approximation for the problem, we are now able to derive some results.

Results for β = 2 and the approximation

The results derived from the approximations for parameter changes are captured in table
5.1.

Table 5.1: Results for β = 2 and the approximation (Bloom et al., 2004, page 18)

Parameter increased Retirement age Initial consumption

Interest rate r Falls Falls
Rate of time prefer-
ence δ

Falls if R < Z when
r = δ = σ = 0

Rises

Wage growth rate σ Rises Rises
Disutility of labor d Falls Falls
Initial wage level w0 Falls Rises but less than

proportionately
Life expectancy Z Rises but less than pro-

portionately if r = δ
and if R < Z when r =
δ = σ = 0

Rises if r = δ

Especially for life expectancy Z we see that, under certain assumptions, the retirement
age rises less than proportionately according to Z, which means a more than proportional
increase in time spent in retirement. For example, if Zinitial = 60 years, Rinitial = 50
years and Znew = 90 years, the proportionality result would be Rprop

new = (50/60)·90 = 75
years. But if the optimal retirement age results in Ropt

new = 70 years, we get that
the agent doubles the time spent in retirement (20 years instead of 10 years) if the
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life expectancy increases by 50% (proportionately it should be 10 · 1.5 = 15 years in
retirement).

Furthermore there is an increase in initial consumption, which means a higher con-
sumption at each age t. The reason which makes both more consumption and a longer
time spent in retirement possible is the wealth effect, which results in an increase in
lifetime expected utility.

Effect on the saving rate

If life expectancy Z rises (or λ = 1/Z falls), we have a higher initial consumption c0
which results in a higher consumption at each age t. With a lower λ the effective interest
rate (λ + r) on annuities fall, so we have a lower total return on savings which makes
saving less attractive.

As consumption rises and total income (including the return on wealth) falls, we get
a reduction of the observed saving rate of an agent at each age t conditional on working
at age t.

So, we conclude that a longer life expectancy generates a lower saving rate at each
age t (but the agent will work a longer lifetime).

Main effects of increased life expectancy

If we compare an agent 1 with a given life expectancy Z and an agent 2 with a higher
life expectancy who works the same proportion of life, agent 2 would have a higher than
proportional level of accumulated assets because of the wealth effect. To maximize his
or her lifetime expected utility, agent 2 would smooth consumption and adjust his retire-
ment age, which means that agent 2 would choose a higher level of initial consumption
and an earlier retirement than the proportionality result.

So, the proportion of lifetime spent in employment falls, but the main effect of in-
creased health and longevity is an increase in the lifetime spent working.

5.6 Conclusion

In the presented model there are 3 major influences for the retirement age and the saving
rate:

• Higher levels of lifetime income result in an earlier retirement and a higher saving
rate

• Lower disutility of working results in longer working lives and a lower saving rate

• Longer life expectancies and healthier lives lead to longer working lives and a lower
saving rate

Depending on the strength of these influences, the working life and saving rate either
rises or falls.
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Shortcomings

Due to an easier handling, some simplifications were implemented in the model. A more
complete and realistic model should respect the points listed below.

• Lack of foresight to save for retirement (assuming a non-rational agent)

• Time inconsistency in preferences (assuming a non-rational agent)

• No perfect capital market

• Possible negative externalities if people suffer an impoverished old age (a possible
redistributional element)

• Welfare gains from intergenerational (or institutionalized) transfers

• An accurate health measurement to treat health and longevity as two separate
variables.
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6 Longevity and life-cycle savings
(Bloom et al. 2003)

In this section I will present the model published by Bloom et al., see [BCG03]. It
is based on a life-cycle model which accounts for health and longevity, but abstracts
from bequests and family structures. In this model an increase in longevity alone tends
to increase the relative length of retirement, which generates higher saving rates in
working life. A higher health level alone can postpone retirement and therefore results
in a longer working life. The overall effect of increasing longevity and a higher health
level is ambiguous.

Increases in life expectancy may increase the saving rate at each age, but the effect on
aggregate savings is only temporary. An increase in longevity in a stationary population
(stable age distribution and no population growth) gives an age structure with a higher
proportion of old-age population, so that in the long run higher age-specific saving rates
are accompanied by a greater number of retirees who are dissaving. However, the long
run can be even more than 50 years.

6.1 Motivation

If we regard savings in the life-cycle model, we see that agents save in young age to
finance consumption in old age. So, in theory and without bequests, the amount of
dissaving of the old should be equal to the amount of savings of the young, which means
that in a stationary population we have no change in the aggregate capital stock. If this
is not the case, there can be aggregate savings or dissavings, as with population growth
or youth dependency (the presence of children increases the consumption requirements
of young families).

In this section we will have a closer look at the influence of changes in longevity on
aggregate savings.

An increase in longevity is assumed to be accompanied by reduced morbidity. However
it would be interesting to look at the effect of increased longevity and reduced morbidity
separately. Unfortunately we don’t have comprehensive data on ill health, so we use
life expectancy as a general health measure which accounts for both. The effect of an
increase in longevity without changing morbidity on the saving rate clearly is positive
because the agent will, in general, be unable to work much longer (unchanged morbidity)
and therefore needs to finance a longer retirement (increased longevity). If an increase
in longevity is accompanied by a reduction in morbidity, the overall effect on the saving
rate is ambiguous.

56



6.2 The model

Assumptions

The assumptions of the model are:

• Every agent maximizes his or her lifetime utility

• The family structure has no effect on consumption and savings

• No bequests

• Lifetime T is known: it is independent of consumption, spending on health care
and the timing of death (which could be important for the savings behavior)

• Every agent can choose his or her retirement age

• Exogenously fixed variables: the time path of health ht, the time path of wages
wt, the interest rate r and the initial stock of wealth W0.

Equations

Every agent maximizes lifetime utility given by∫ T

0

e−δt · U(ct, lt, ht)dt (6.1)

where δ denotes the subjective rate of time preference, t denotes age, U denotes the
instantaneous utility function, c denotes consumption, l denotes leisure and h denotes
health. e−δt represents the discount factor on future utility. The control variables to
choose are the consumption path, ct, and leisure time, lt.

Every agent is faced by the constraints

ct ≥ 0, 1 ≥ lt ≥ 0, WT ≥ 0 (6.2)

which mean that consumption is never negative, leisure time is somewhere between 0
and 100% of the available time for working which is normalized to 1, and the stock of
wealth W at the end of life is never negative.

The stock of wealth at age t, Wt, evolves according to

dWt

dt
= rWt + (1− lt)wt − ct (6.3)

Here we see that the change of wealth (the savings) is given by the interest r on existing
wealth Wt, plus the working time (1− lt) times the wage rate wt less consumption ct.
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6.3 Optimal path of consumption and leisure

Let’s assume the instantaneous utility function U as increasing and strictly concave in
each argument. The Hamiltonian of the optimization problem is

H = e−δt · U(ct, lt, ht) + φ[rWt + (1− lt)wt − ct]

The costate equation yields

φ̇ = − ∂H
∂Wt

= −r · φ (6.4)

The optimality conditions yield

∂H

∂ct
= e−δt · ∂U

∂ct
− φ = 0 (6.5)

∂H

∂lt
= e−δt · ∂U

∂lt
− wt · φ = 0 for 0 ≤ lt ≤ 1 (6.6)

(6.5) and (6.6) immediately give

wt
∂U

∂ct
=
∂U

∂lt
for 0 ≤ lt ≤ 1

Therefore, the optimal path of consumption and leisure satisfies (without the subscripts
t):

∂U

∂l
= wt

∂U

∂c
if 0 < l < 1,

∂U

∂l
≥ wt

∂U

∂c
if l = 1,

∂U

∂l
≤ wt

∂U

∂c
if l = 0

Here we see that agents work until their marginal utility of extra leisure ∂U
∂l

equals the
marginal utility of extra consumption they can afford to buy when they work, wt

∂U
∂c

.
Retirement (l = 1) happens when the marginal utility of extra leisure ∂U

∂l
always exceeds

the marginal utility of extra consumption wt
∂U
∂c

, even if the agent doesn’t work at all.
We will denote the optimal plan by (c∗t , l

∗
t ), which also determines wealth holdings W ∗

t

over time.

6.4 Results

We will make two further assumptions:

Assumption 1

Initial wealth W0 = 0 and the optimal path W ∗
t ≥ 0 for all 0 ≤ t ≤ T for any T . This

means that consumption cannot be financed through debts. Agents have to save to be
able to dissave later on.
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Assumption 2

Consumption and leisure are both normal goods:

∂c∗t
∂W0

≥ 0,
∂l∗t
∂W0

≥ 0 for all 0 ≤ t ≤ T

This assumption implies that increasing initial wealth, W0, increases both c∗t and l∗t at
all times.

If we define the saving rate st as

st =
yt − ct
yt

where yt = rWt + (1− lt)wt (6.7)

then we can state the following proposition:

Proposition 6.1 Let W0 = 0. With assumptions 1 and 2, an increase in longevity
increases the saving rate at every age, if we keep everything else the same.

Proof We shall denote (c∗t , l
∗
t ) as the initial optimal plan for life expectancy T , and

(c∗∗t , l
∗∗
t ) as the new optimal plan at a rising life expectancy. With the use of assumption

1, we can conclude that wealth at time T in the new optimal plan is bigger or equal to
0, W ∗∗

T ≥ 0. If we retain the new optimal plan after T and focus on the time interval [0,
T ], we see that the new optimal plan cannot be improved in this interval as it maximizes∫ T

0

e−δt · U(c̃t, l̃t, ht)dt

subject to
c̃t ≥ 0, 1 ≥ l̃t ≥ 0, W̃T ≥ W ∗∗

T

With stating the latter optimization problem, it is clear that in the optimum the wealth
at the end of life, W̃T , will be as little as possible. Any residual wealth has no di-
rect utility, but could be used for extra consumption which would increase total utility.
Therefore the optimal plan maximizes the latter optimization problem with the con-
straint W̃T ≥ W ∗∗

T .
The latter optimization problem can be transformed to an equivalent one by maxi-

mizing over [0, T ] subject to

ct ≥ 0, 1 ≥ lt ≥ 0, WT ≥ 0 but with W0 = −W ∗∗
T · e−rT

Here, final minimum wealthW ∗∗
T is discounted to initial negative wealthW0 which retains

the equivalency. So, we have the original problem of maximizing over [0, T ], with the
only difference of lower initial wealth. By assumption 2 it follows that on [0, T ] we
have c∗∗t ≤ c∗t and l∗∗t ≤ l∗t . With (6.7) we see that s∗∗0 ≥ s∗0. At each point in time,
consumption is lower. With (6.3) we see that wealth rises more quickly under the new
optimal plan and interest payments on the higher wealth boost the difference. So we
see that at every time t income under the new plan is higher and consumption is lower.
Therefore we have under the new plan a higher saving rate.
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The proposition only assumes an increase in longevity, and does not say anything
about the health status. In practice, an increase in longevity will be linked closely to a
better overall health status, and empirical regressions will count both effects as one, if
there is no control for morbidity separately.

Let’s now suppose a proportional increase in longevity from T to T ′ = λT with λ being
constant, and also a proportionately improving health status which implies a delay of the
effects of aging at work, which means productivity, by supposing h′λt = ht and w′λt = wt.
The effect of a λ bigger than 1 for a given ht is shown in the following diagram:

With these assumptions, an agent maximizes∫ T ′

0

e−δt · U(ct, lt, h
′
t)dt

subject to

ct ≥ 0, 1 ≥ lt ≥ 0, WT ′ ≥ 0,
dWt

dt
= rWt + (1− lt)w′t − ct

With a variable substitution, z = t
λ
, and defining Kz = Wt

λ
, we instantly get∫ T ′

0

e−δt · U(ct, lt, h
′
t)dt =

∫ T

0

e−δλz · U(cλz, lλz, hz)λdz = λ

∫ T

0

e−δλz · U(c̃z, l̃z, hz)dz

subject to

c̃z ≥ 0, 1 ≥ l̃z ≥ 0, KT ≥ 0,
dKz

dz
=

1
λ
dWt

1
λ
dt

= rλKz + (1− l̃z)wz − c̃z

where c̃z and l̃z are the new control variables in this optimization problem.
If r = δ = 0, then the new maximization problem yields the same consumption

and leisure path, because the problem is the same as in (6.1) to (6.3), apart from the
multiplier λ which makes no difference for the optimization. This means that the optimal
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decision at time t in the original problem is the same in the new problem at time λt.
This result is a proportionality result, which does not take into account the compound
interest effect, because of r = 0, and the subjective preference rate, because of δ = 0.

In general, a longer life can be associated with a greater or less than proportional
increase in health at each age. The theory normally suggests for a longer life a higher
saving rate, but it can get ambiguous when taking into account that it can be associated
with a more than proportional increase in health and therefore with higher productivity
and lower disutility of work.

6.5 Conclusion

Increasing longevity and a higher health level are likely to have a big influence on life-
cycle behavior as people will have both a longer and healthier life. To obtain results on
the influence of these demographic changes on savings, we need to understand whether
an increasing longevity and a higher health level increases or decreases the length of
the working life. An increasing longevity alone seems to increase the relative length
of retirement, which generates higher saving rates in working life. With a proportional
increase in longevity and health we see that in the case of r = δ = 0 the saving rate stays
unchanged. So a higher health level alone has the effect of decreasing the saving rate
and therefore postponing retirement to smooth consumption. The higher productivity
and lower disutility of work here result in a longer working life.

The overall effect of increasing longevity and a higher health level is ambiguous.

Driving forces

Different effects appear if longevity increases:

• As longevity rises, saving rates rise at every age to finance increased old-age con-
sumption needs.

• An increased longevity is assumed to be accompanied with general health im-
provements at each age that may increase old-age productivity and wages, which
represents an incentive to retire later (depending on the interest rate and the rate
of time preference).

• Health improvements that increase longevity and also reduce morbidity may allow
a large enough increase in the length of working life so that saving rates will fall.

Shortcomings of the model

The decision of how much to save is in practice not only due to the need of consumption
smoothing. There can be other factors too:

• Credit constraints can have an impact on borrowing and aggregate savings

• Habit formation can increase savings during periods of rapid income growth
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• Institutional arrangements: i.e. a mandatory retirement age will increase the
saving rate if longevity increases; pension schemes can have a huge impact on
savings behavior

• Availability of appropriate financial markets to invest all savings

• Likelihood of inflation because inflation can decrease the value of financial assets

The biggest point however is that the savings decision is maybe made on the household
level, rather than from every individual itself. Therefore changes of longevity and in
the demographic structure influence the decision through the family structure and not
directly at the individual consumption smoothing level. This is especially important if
we think of developing countries with large families, because our model does not take
into account any intra-family or intra-household transfers, nor consumption needs of a
potentially large number of children.
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7 Conclusion

In this work the effects of a transformation in the age composition of a society on the
saving rate is analyzed. Therefore the motives for people to save are reviewed and the
motive to save for retirement is given priority.

In the first part of the thesis two standard aggregate saving models - the Solow model
which incorporates savings exogenously and the Ramsey model which integrates sav-
ings endogenously - as well as selected empirical estimates on the relation between age
structure and saving rates, are reviewed. As opposed to the Solow model, in the Ram-
sey model, endogenous savings eliminate the possibility of inefficient oversaving in the
economy and the model is additionally able to explain steady state per capita growth.
Empirical evidence indicates differences in the relation between age structure and sav-
ings when micro and macro level data is compared. These findings hint towards the
existence of intergenerational relations among households that are not properly taken
care of in micro level data.

Since the aggregate saving rate of an economy is based on individual decisions on
savings, the focus of the master thesis is on individual life cycle models. Four different
models from the literature on individual life cycle savings and longevity are reviewed.
The aim is to better understand which model specification is the most adequate to repli-
cate observed empirical patterns of the relation between life cycle savings and longevity.

7.1 Results derived from the models

The 4 chosen papers which are analyzed describe two overlapping generations models
and two continuous time models. The approach of comparing 4 models on the same
topic emphasizes the influence of the main model specifications. An assumption for all
these models is that both the interest rate and the wage rate are exogenously given.

The two chosen overlapping generations models mainly differ in 3 specifications: if
bequests are allowed or not, if educational investment into children is taken by parents
individually or is the same for all children, and if there is an actuarially fair annuity
market. In the case of an initial high mortality rate, both overlapping generations
models from chapter 3 and 4 give the same result of an increasing saving rate if life
expectancy increases. If the initial mortality rate is low, the effect of an increasing
life expectancy on the saving rate is ambiguous: the model from chapter 3 still has as
result an increasing saving rate, but the model from chapter 4 gives a decreasing saving
rate. Since these two models differ in their behavior at an initial low mortality if life
expectancy increases, it is to note that the model from chapter 4 seems to be more
adapted to reality. It includes the fact that the vast majority of children are in public
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schools and furthermore considers bequests.
The two selected continuous time models mainly differ in 4 specifications: if life ex-

pectation is probabilistic or deterministic, how retirement is chosen, the existence of an
actuarially fair annuity market, and the possibility of free leisure time to generate a
trade-off between working and leisure. In the case of the continuous time models, the
assumption of an endogenous retirement age is unrealistic, because in most countries
there is a fixed retirement age. Nevertheless it is important to consider a freely cho-
sen personal retirement age because it is interesting to compare it with a mandatory
retirement age of a given economy. The model from chapter 5 gives at an increasing
life expectancy a decreasing saving rate which is explained by the fact that the length
of lifetime spent with working increases. This is opposed to the outcome of the model
from chapter 6 where an increasing life expectancy increases the saving rate. Since these
two models have a different behavior at an increasing life expectancy, it is to note that
the more realistic model would be the model from chapter 5. It assumes a probabilistic
life expectancy and the fact of a deterministic life expectancy can influence the results
dramatically, as already explained in section 2.3.

In most industrial countries which nowadays face a change in the composition of its
age structure because of an increasing life expectancy, the most probable change in
the saving rate will be negative. This result is based on the assumptions of a fixed
retirement age and an initial low mortality rate. On the other hand, if a country has a
fixed retirement age and an initial high mortality rate, the result with highest probability
will be an increasing saving rate. In the case of a freely chosen retirement age, the most
probable result will be a falling saving rate and people who will work a longer lifetime.

7.2 Possible improvements

There are several opportunities to improve the existing framework to get a more realistic
model:

• The most important improvement would be to allow agents to behave not com-
pletely rational. This approach would introduce behavioral economics with agents
who are short-sighted and are not able to process economic information perfectly.
Additionally, agents would use heuristics and rules of thumb to forecast the future
and simply lack the necessary willpower to save the necessary amount in each point
in time.
So an agent could be modeled as forecasting at each time point t the future only
with a rule of thumb and only until t+ h, with h being the forecast horizon of the
short-sighted agent.

• Given the fact that actual savings decisions are rather made by households than
by individuals, it would be appealing to do the whole analysis on the household
level instead of the individual level and to take into account intra-family and intra-
household transfers.
So the agent would represent a whole household in the analysis. The size and the
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composition of the members of the households and inter-household links need to
be considered.

• Another important point would be the inclusion of an institutionalized transfer
system, for example a tax system, a pension system or an incentive system. Since
in most industrialized countries the government pays annuities to people in old
age, an integrated institutionalized transfer system would be appropriate.
As the main reason for saving in the master thesis is to save for retirement, an
institutionalized transfer system which pays annuities in retirement could largely
influence the saving rate.

• The introduction of an accurate health measurement would allow treating health
and longevity as two separate variables and therefore would give more insights
about the role of the health level in life-cycle decisions.
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